for the TRS-80
Model I &l

- Alan J. Parker

BASIC for Business
for the TRS-80:
Model Il and |l

Alan J. Parker, Ph.D.

Professor of Computer Systems
School of Hospitality Management
Florida International University
Miami, Florida

Reston Publishing Company, Inc.

m A Prentice-Hall Company
Reston, Virginia

TRS-80 is a trademark of Tandy Corporation.

Library of Congress Cataloging in Publication Data

pParker, Alan J. (Alan Jay)
BASIC for business for the TRS-80.

Includes index.

1. Basic (Computer program language).

2.

TRS-80 (Com-

puter)--Programming. 3. Business--Data processing.

I. Title.
HF5548.5.B3P364 001.64'24
ISBN 0-8359-0352-4

81-23435

Also published as TRS-80 disk BASIC for business for the

model II and model III

©1980, 1981, 1982 by Alan J. Parker

All rights reserved. No part of
this book may be

reproduced in any

way, or by any means, without
permission in writing from the
publisher.

10 9 87 65 43

Printed in the United States of America.

To my family and my past,
present, and future students

Contents

1 7/

Introduction

The Impact of Computers on Society, 3
Why Use BASIC?, 4

How to Use a Computer, 5
Communicating with the TRS-80, 6

Performing Simple Calculations
Writing a Program, 13

Running a Program, 16

Modifying the Program, 16
Printing Many Values on a Line, 28
Handling Alphabetic Titles, 31
Summary, 36

Problems, 38

Data Entry

Entering Data from a Keyboard, 41
Processing Many Records, 48

Program Verification, 55

How to Catch Some Errors in Data, 55
Summary, 62

Problems, 64

Sequential Files

Setting up a File, 69

Reading a File, 78

Finding a Record in a File, 82
Correcting Records in a File, 87
Copying a File, 93

11

39

67

vi / Contents

]

10

11

Summary, 93
Problems, 94

Writing Reports from Sequential Files
How to Accumulate Totals, 99

How To Calculate Subtotals, 109
Report Writing by Computer, 120
Summary, 124

Problems, 124

Adding and Deleting Records
Adding Records to a File, 129
Deleting Records from a File, 147
Summary, 155

Problems, 156

Updating Sequential Files
Updating Files, 159

Updating with Missing Transactions, 169

Updating with Coded Transactions, 176
Summary, 182
Problems, 183

Using Lists and Tables
Summary Output, 187
Reference Tables, 191
Sorting Lists and Tables, 205
Summary, 212

Problems, 213

Using Direct Access Files
Creating a Direct Access File, 217

Reading and Printing a Direct Access File, 221
Changing Values in a Direct Access File, 222
Updating Master Records in a Direct Access File, 226
Querying Records in a Direct Access File, 231

Summary, 232
Problems, 234

Use and Design of Complex Programs
Using Canned Programs, 237
Structured Programming, 242
Suuuumy, 250

Conclusion

Batch, On-Line and Real-Time Processing, 253

Routine Business Applications, 254
First-Time Users, 254
Conclusion, 260

97

127

157

215

235

251

Contents /

Appendices

Index

A

: Summary of BASIC Commands and Instructions, 263

B: Sorting, 266

C
D
E

: Selected Error Messages, 269
: How To. . .,270
: Initialization of Diskettes, 271

261

273

Preface

This introductory book is intended for students in a classroom setting. Un-
like most programming texts, the objective of this book is to introduce the
BASIC language through business problems rather than introducing the
language and then solving problems. The business problems start at a
simple level and are expanded to become more complex as you proceed
through the book. All examples, exercises, and problems deal with busi-
ness — payroll, inventory, customer statements, salesmen’s commissions,
etc. This book was written with an assumption that the reader has some
basic knowledge of business transactions. A mathematics background is not
required.

After teaching courses in Management Information Systems (MIS) for
many years to Business School students, it became clear that most program-
ming texts fail to give the student the necessary background. MIS requires a
fundamental background in files. This material is usually taught last, if at
all, in a programming course. Files are used extensively in this book (start-
ing in Chapter 4). All business applications use files, and the file instruc-
tions for the TRS-80 are different from those for other computers. This
book was written specifically for the Model II and Model II1. Where devia-
tions occur between the two models, they are highlighted in the text. One of
the major differences between the two TRS-80 models is the size of the
screen. The Model 111 will display 64 characters to a line, while the Model 11
will display 80 characters. As a result, all programs in the book use 64 char-
acters to a line. Since all programs deal with business, all outputs were pro-
duced on a line printer although the programs will indicate a print to the
screen.

X

/ Preface

I would like to express my gratitude to Dennis Nelson and Buzz Lange
with the Radio Shack Computer Center in Miami for their assistance. The
capable help of Skip Banks with Thunderbird Enterprises was of great assis-
tance.

My special thanks to Dr. Val Silbey of Ball State University, co-author
of the first book in this series, for his valuable contributions.

Alan J. Parker

1 / Introduction

The Impact of Computers on Society / 3

At the end of this chapter you should be able to:

® Understand the importance and impact of computer usage
® Sign-on and sign-off the TRS-80 computer
® Understand how the TRS-80 reacts to system commands

Everyone living in the United States today is affected by computers. The
federal government uses computers in almost all of its departments. The So-
cial Security Administration and the Internal Revenue Service are highly
computerized. State and local governments use computers for tax collections
and assessments. Businesses and utilities use computers for customer billing.
Banks and other financial organizations use computers to handle customer
accounts. Hospitals use computers for hospital administration and patient
billing. Unless you live as a hermit in a cave, you are affected everyday in
some way by computers.

The computer revolution is approximately thirty years old. Since 1946 when
the ENIAC (the first electronic digital computer) began operating, the
changes that computers have wrought have been prodigious. All areas of our
society have been, and are being, touched by computers. From the time we
read the morning newspaper (typeset by computer) until we go to sleep
watching television (computer allocated programs), we are constantly using
computers either directly or indirectly.

The effect of the Computer Revolution can be compared to the Indus-
trial Revolution, which also radically changed society. Both revolutions
changed work and leisure activities. With respect to work, no occupations
were left untouched by the Industrial Revolution, except artisan crafts
(sculptors, painters, etc.). Now, approximately two hundred years after the
beginning of the Industrial Revolution, there are no coopers (barrel makers),
wainwrights (horse drivers), millers (flour makers) or weavers (cloth makers)
in the old sense of those occupations. The products or services are still sup-
plied, but the methods of production have been radically altered. Work
hours at the beginning of the Industrial Revolution were dawn to dusk, six
days a week, leaving limited time for leisure activities. Now leisure is avail-
able during long weekends and after working hours. The impact of the In-
dustrial Revolution may aid us in imagining the breadth of changes that will
result from the computer revolution.

Initially, the few digital computers available were used for numerical
calculations (“number crunching”) by an elite group of mathematicians, en-
gineers and scientists. Since then, radical changes in the cost, design, and use
of computers have occurred. Today, computers are no longer the exclusive
tool of mathematicians and scientists. More computers are used in busi-
nesses, such as insurance, banking, retailing, utilities, manufacturing and
hospitals, than are used in scientific organizations. Almost daily, television
and newspapers report new uses of computers. The computer has taken the

Performance
Objectives

THE IMPACT OF
COMPUTERS
ON SOCIETY

4 7/ |Infroduction

Impact of
Computers on
Management

WHY USE

D ACiA

Wi

drudgery out of calculating and printing bills, invoices, paychecks and other
record-keeping tasks, freeing people from many of the routine tasks of add-
ing numbers together. With the shift of paperwork from people to com-
puters, some significant implications have become apparent. For society the
use of computers is considered by some people to be a mixed blessing. But
blaming the computer for human failings is an error. The computer itself is a
tool. It is simply a new technology and this technology will be used as soci-

ety chooses. The first quarter century of the computer revolution has
brought us

© Computer controlled air-defense and air traffic control systems
The landing of men on the moon

Large scale and inexpensive use of checking accounts

Credit cards '

Integrated reservation systems for travel

Computerized hospitals

A new field of employment (data processing)

Management Information Systems

® 6 ® ®© ® ® ©

But so far we can barely envision what the second quarter century will bring.

The first computer dedicated to business applications was installed in 1954.
Since that time business applications have become more sophisticated. Ap-
plications at first consisted of simple clerical functions: preparation of pay-
roll, financial statements, and other bookkeeping tasks. Thousands of
clerical jobs were replaced by computers. The computer could do these rou-
tine tasks faster, cheaper, and more accurately.

The next major step was the use of computers to make simple decisions,
€.g., ordering to restock inventory when a low level has been reached. At the
present time, computers are the tools used to implement Management Infor-
mation Systems (MIS). Management Information Systems transcend routine
business applications because attention is focused upon providing manage-
ment with the proper information for decision making. In many organiza-
tions, it is common to see computer terminals in the offices of the president
and other senior executives. And MIS will become more common in organi-
zations as computers become less expensive and easier to use. The manager
of the future will need some familiarity with computers in order to make use
of the great potential of MIS.

BASIC (Beginners All-purpose Symbolic Instruction Code) is a computer
languagy. 1L was Liiusein TUL Liis LGAL TUI LUIICIOUS 1Easons. THE (ISt and
most significant reason is that it is the simplest computer language that is
widely available. The second reason is that the time required to learn BASIC
is the shortest of all the common languages. Additionally, the extensions and
enhancements made to BASIC have added power to the language, making
BASIC comparable to other, more difficult languages.

How to Use a Computer / 5

A final reason for learning BASIC is that almost all of the manufac-
turers and vendors of microcomputers and minicomputers provide BASIC
for their machines and systems; and these smaller computers are the fastest
growing segment of the computer market. Radio Shack alone has sold over
250,000 TRS-80 microcomputers; and every one of these small computers
used BASIC for its higher-level language. Computers of this type are used
by the hobbyist as well as by the largest organization.

This text is written with an assumption that the student has some basic Prerequisites
knowledge of business transactions such as payroll, invoicing, and customer
statements. It is also helpful if the student has the ability to think logically.
The computer is not affected by emotions. If the student is a disciple of Mar-
shall McLuhan, beware: The computer is not!
It is nor important, however, that you possess a mathematical back-
ground in order to learn BASIC. (A mathematical background, however,
will not penalize a student.) On the basis of the successful completion of this
text alone, the reader will probably not be able to find employment as a com-
puter programmer or technician; but the student will understand the funda-

mentals of programming and be able to write programs of reasonable
complexity.

In business, one usually wishes to computerize a manual system or function. ~HOW TO USE
It is important to understand how the manual system operates in order to A COMPUTER
successfully perform this function on a computer. Throughout this text, the
major example will be the payroll function. It will serve as a vehicle for the
introduction of programming (instructing the computer to perform a func-
tion, in this case payroll). A payroll system consists of the collection and ma-
nipulation of data to pay people for their time spent working. An hourly
payroll system will be analyzed and programmed.

The first step in computerizing a payroll is an analysis of the system and
a clear definition of the system: The Silpar Company, Inc., has approxi-
mately 14 hourly employees used in the fabrication and assembly of com-
puter components. All hourly wages are computed on the basis of hourly
rate multiplied by the regular hours worked, plus time-and-a-half for over-
time. The normal work week is 40 hours with one paid hour per day for
lunch and coffee breaks. An employee may work a maximum of 20 overtime
hours per week, if work is available. The payroll system should produce
weekly paychecks and the necessary reports for tax and auditing purposes.

It should be obvious that all of the analysis and definition of the com-
puterized payroll system has not been performed in the preceding para-
graph. However, enough has been stated to begin the computerization of the
payroll system. The first step consists of identifying the data necessary to
produce all of the output (paychecks and reports). An examination of the
manual system data will provide the answers to our first step.

In the manual system, each employee has a record that contains infor-

6 / Infroduction

mation such as employee number, social security number, address, marital
status, number of dependents, hourly wages, wage payments made during
the last year, federal income taxes withheld, FICA (Social Security) and
other miscellaneous data. Each week, time cards are used to accumulate the
regular and overtime hours worked by each employee. At the end of a pay
period (weekly), the time cards are signed by the employee’s supervisor and
sent to the payroll department for processing. The payroll department com-
putes the employee’s pay for the week, the required deductions, issues a
check for the employee’s net pay (gross pay minus deductions), enters this
information into the employee’s record, and prepares a payroll register. A
payroll register is a listing of the amounts paid to all employees, all deduc-
tions subtracted from their pay, and totals for all amounts.

In computerizing the payroll function or any other business application,
it is very important to understand that files are used exactly as in the manual
system. In the payroll, two files are used. The first is the employee master
file; it consists of the records of all the employees. Each employee record
contains data in fields. The fields are: employee number, name, hourly rate,
etc. It is important to note that all records in one file must contain the same
fields in the same order. Also, fields may contain data that is numeric,
alphabetic, or both alphabetic and numeric (alphanumeric). The second file
is the time file; it consists of a record for each employee and contains as
fields the regular and overtime hours worked. With these two files and the
appropriate program, a payroll register will be produced in Chapter 8.

COMMUNICATING Sometime in the not too distant future, we may communicate with compu-
WITH THE TRS-80 ters by simply talking. In many science fiction films this is already the case.
Unfortunately, technology has not taken us that far yet. As a consequence,
we have to communicate with a computer through some sort of mechanical
device. The common name for this device is a keyboard. One important

feature is that a keyboard is similar to a typewriter keyboard.

The keyboard allows us to communicate with the TRS-80. It takes the
information that we transmit by pressing on the keys and transforms it into
electronic signals that can be understood by the computer. Conversely,
when the TRS-80 communicates with us, the terminal transforms the elec-
tronic signals from the computer into characters printed on paper or dis-
played on a video screen. A short way of referring to the screen is by the ini-
tials CRT, which stands for cathode ray tube. The way messages are written
on a CRT is similar to the way pictures appear on a TV screen. (A television
picture tube is a CRT. but no one calls it that, except technicians.) In the
TRS-80 the computer is housed in the same enclosure as the keyboard.

You should not be timid about using the TRS-80: The important thing
to remember is that you cannot damage a computer or do any harm to it by
typing anything on the keyboard. The only way you can cause any damage
is by banging on the keyboard or spilling coffee on it. You may type any-
thing on the keyboard and not harm or “break” the computer system. Simi-

Communicating with the TRS-80 / 7

larly, neither the keyboard nor the computer can harm the user in any
physical manner.

Every time you wish to use the TRS-80, there is a procedure that you must Sign-On
follow. This procedure is called a sign-on. Silly as it may sound, your first Procedure
step, after sitting at the TRS-80, is to make sure it is on. There are two dif-

ferent sign-on procedurées depending upon whether you have a Model 111 or

a Model 11.

For the Model II1
Once the TRS-80 is on, and all diskette units and printers are turned on, in-
sert a TRSDOS system diskette in the disk unit. If you have two diskette
drives, use the bottom one. The diskette label is on the top, and the oval
hole is to the rear for insertion of the diskette. (See Appendix E for a de-
scription of the TRSDOS system diskette and the Format and Backup pro-
cedures.) Close the diskette door, and press the orange button. Messages are
displayed on the screen, and you are asked to enter the date in this format —
MM/DD/YY. (Example: September 1, 1981, would be typed in as
09/01/81.) After typing the date, press “ENTER”. You are then asked for
the time in this format—HH.MM.SS. You do not have to enter the time.
You may simply press “ENTER”. The message TRSDOS Ready will appear
on the screen. Type BASIC, and press “ENTER”. The question “HOW
MANY FILES?” will appear on the screen. Press “ENTER”. Next the ques-
tion “MEMORY SIZE?” will appear on the screen. Press “ENTER”. The
TRS-80 will respond with Ready and a “prompt” character (>) on the next
line. This tells you that the TRS-80 is ready for you to enter your program.
The computer is prompting you to begin.

The “ENTER?” key serves the same function as a carriage return kéy on
a typewriter. When you finish typing a line on a typewriter, you press it. Of
the TRS-80, when you press “ENTER”, you have told the computer that
you are at the end of a line. The TRS-80 will then respond with a promipt
character (>) or a message on the next line.

To recap:

1. Turn the power switch on.

Insert a diskette in the bottom drive.

Close the diskette drive door.

Push the orange button.

Type the date MM/DD/YY when requested. Press “ENTER”.

Type the time HH.MM.SS. and press “ENTER”, or just press
“ENTER”.

7. Type BASIC. Press “ENTER”.

RIS

8 / Introduction

Sign-Off
Procedure

8. HOW MANY FILES? Press “ENTER”.
9. MEMORY SIZE? Press “ENTER”.

For the Model IT
Once the TRS-80 is on, and all diskette units and printers are turned on,
insert a TRSDOS system diskette in the drive—label to the right. (See
Appendix E for a description of the TRSDOS system diskette and the For-
mat and Backup procedures.) When the diskette is properly inserted, you
will hear a click. Close the diskette drive door. Messages are displayed on
the screen and you are asked to enter the date. Type in the date in this for-
mat—MM/DD/YYYY. (Example: September 1, 1981, would be typed in as
09/01/1981.) After typing in the date, press “ENTER”. You are then asked
for the time in this format—HH.MM.SS. You do not have to enter the
time. You may simply press “ENTER”. The message TRSDOS Ready will
appear on the screen. Press the key “CAPS”, type BASIC, and press
“BNTER”. The TRS-80 will respond with READY and a “prompt” char-
acter (>) on the next line. This tells you that the TRS-80 is ready for you to
enter your program. The computer is prompting you to begin.

The “ENTER” key serves the same function as a carriage return key on
a typewriter. When you finish typing a line on a typewriter, you press it. On
the TRS-80, when you press “ENTER”, you have told the computer that
you are at the end of a line. The TRS-80 will then respond with a prompt
character (>) or a message.

To recap:

Turn the power switch on. Turn on all diskette units and printers.
Insert a diskette in the disk drive and close the door.
Type the date MM/DD/YYYY when requested. Press “ENTER”.

Type the time HH.MM.SS. and press “ENTER”, or just press
“ENTER”.

5. Press “CAPS”. Type BASIC. Press “ENTER”.

AW N

When you have finished with the TRS-80, the following procedure should
be used.

For the Model 11T
eremn FAATIIC A A smrans SENITLRD
Tons CMIDWE ond mroon “ENTED?

The TRS-80 will respond with the message TRSDOS Ready. Then remove
the diskette from the drive after the drive light goes out. Turn the power
switch off.

Communicating with the TRS-80 / @

For the Model I1
Type SYSTEM and press “ENTER”. The TRS-80 responds with TRSDOS
Ready. Open the diskette drive door and remove your diskette. Then turn
the power switch to the off position. Always remove your diskette before
turning the power off!

In order to write programs (instructions understood by the computer), the Programming
sign-on procedure must be used. The program in BASIC is entered through in BASIC
the terminal after the prompt character, line by line.
The greatest problem that people have when first using a computer is
that they forget to press the “ENTER” key after entering something on a
line. The result is that nothing happens! The “ENTER” must be pressed to
indicate the end of your message to the computer. Until it is pressed, the
computer assumes that you have not finished whatever you are trying to tell
it!

2 / Performing Simple Calculations

1

Writing a Program /7 13

At the end of this chapter you should be able to: Performance
® Write a program that will do simple calculations Objectives
® Enter a program into the computer and use simple BASIC commands

(NEW, SAVE, LIST, RUN)
® Use BASIC instructions for data manipulation and calculations (assign-

ment to data fields, addition, subtraction, multiplication, division,

output of results, end of program)
® Retrieve and modify an existing program using a BASIC command

(LOAD)
® Obtain a list of programs stored on a diskette

The first uses of computers were computational. The power of the computer
was used to perform engineering and scientific calculations. In business
there are many instances where calculations have to be performed. Com-
puters can perform these calculations very quickly. In this chapter we will
show you how to program the computer to perform calculations and how to
display the results of these calculations.

The first problem deals with payroll calculations. Starting with elementary WRITING A
calculations, this problem will be expanded to include more and more realis- PROGRAM
tic elements. For the very first problem you are given the hourly rate and the

number of hours worked. You are asked to calculate the gross pay for an

employee.

One way of showing what a program does is to diagram the general steps of Flowcharting
a program. Such a diagram shows the order in which the various steps are The lLogic of
performed. Conceptually the execution of a program flows from one instruc- a Program
tion to another; hence, the name flowchart. Flowcharts are used throughout

this book to illustrate the structure of programs. For simple programs a

flowchart may not be necessary; however, for complex programs flowcharts

are very helpful. The symbols used in program flowcharting are explained

here.

The rectangle is used to describe all processing performed by a com-
puter. The arrow shows the direction of flow in the flowchart. In general the
flow is top to bottom and left to right on a page.

The diamond is used to indicate a decision point where the flow may go
in one of two directions depending on the condition in the diamond. The
parallelogram is used to indicate input of data to the computer or output

14 / Perfoming Simple Calculations

of information from the computer. The oval is used for the beginning or end
of the program.

Problem Summary

Input
Hourly rate: $3.00
Number of hours worked: 40

Processing

Multiply hourly rate timés hours worked, giving gross pay.
Output

Gross pay

The paycheck calculation program has to pérform the following steps:
1. Assign values to data fields.
Calculate the gross pay.

Outpiit the gross pay amount.

Ao

End the program.

The flowchart and 4 BASIC computer program to perform these four
steps is shown below:

10 REM PROGRAM TO COMPUTE PAY ‘ Start ’
100 LET R=3.00

110 LET H=40]
120 LET P=R*H

130 PRINT P Assign Initial
140 STOP Data Values
32767 END

Calculate Gross Pay

)

/Output Gross Pay /

L /

‘ Terminate ’

Writing a Program / 16

This program consists of seven lines. Each line starts with a number.
This number, also called the statement number, is important because it tells
the computer the sequence in which this program should be performed. The
statement with the lowest number will be performed first, then the statement
with the next lowest number, and so on until the end of the program is.
reached

In this example the statement numbers go from 10 to 32767. However,
any other sequence of numbers that keeps the same order could have been
used. As long as the order of the lines is not changed the lines could have
been numbered from 10 to 16. These line numbers would have the same
effect as the present numbers in the example program. Each line of the
program is now explained:

The first line, 10 REM PROGRAM TO COMPUTE PAY, serves the
programmer and not the computer. In fact, all “REM” statements are ig-
nored by the computer. REM is short for remark. It is used to insert com-
ments in a program as an aid to understanding the logic of the program.

The second line, 100 LET R = 3.00, states that the value 3.00 (the hourly
rate of $3.00) is assigned to the field called R (for rate). The programmer
identifies these fields by giving each a name. In BASIC, field names consist
of one letter, or a letter followed by a single-digit number or two letters.
Following are examples of field names with explanations of their validity.

Example Explanation
A Valid field name; one letter
AA Valid field name; two letters
Al Valid field name; one letter followed by single-digit
number

B2 Valid; one letter and one digit
2B Invalid; the first character has to be a letter

00 Valid; letter “O” followed by zero “0” (but not recom-
mended since it is hard to see the difference)

11 Valid; letter “I” followed by number “1” (also not
recommended since it may be difficult to distinguish be-
tween I and 1)

The third line, 110 LET H = 40, sets the value of H (H stands for hours
worked) to 40. It is good practice to use field names that will help you to
remember what is in that field. Such descriptive names are called mnemonic
—memory aids. Of course, with only one letter, two letters, or a letter fol-
lowed by a number, BASIC is limited in mnemonic capability.

The fourth line, 120 LET P = R * H, performs the calculations for gross

16 / Performing Simple Calculations

RUNNING THE
PROGRAM

pay. First the hourly rate (R) is multiplied by the number of hours worked
(H). Then the result of this multiplication is placed in the field P. The star
(*) between R and H means multiply. Other arithmetic operations are +
(plus) for addition, — (minus) for subtraction, / (slash) for division. A final
arithmetic operation—raising to a power—shows as [on the screen when
you press the upward arrow (4) on the Model III. On the Model II,
pressing the shift key and the 6 shows as a caret (A) on the screen. Paren-
theses may be used to separate parts of an arithmetic statement.

The next line, 130 PRINT P, tells the system to display the value of field
P. Whatever number has been placed into the field called P, will be written
on the screen.

The last two lines are used to terminate the program. The STOP tells
the TRS-80 that the processing is finished. This statement will result in a
message after your program has run that will tell you that the program has
finished as you intended. The END, which is the last statement of any
program, is optional on the TRS-80. If you use other computers with the
BASIC language, it is absolutely necessary, and its omission will result in an
error. The END instruction is used in all programs in this book. Since it is
the last instruction of a program, it will have the statement number 32767;
32767 is the highest line number available on the Model I1.

The next step in the problem-solving process is the entry of the program into
the TRS-80. First, sign-on the system using the procedure from the previous
chapter. Once you are on, then type

NEW

Don’t forget the “ENTER”! The command NEW tells the system that a new
BASIC program will be entered. The computer is now ready to accept the
program and responds with Ready and on the next line a > is printed. At
this time, type the program, one line at a time, ending each line with
“ENTER”. The program that you enter will be held in the TRS-80 memory.

The memory is where anything typed from the keyboard is stored.
When the TRS-80 is turned off, all information stored in memory is wiped
clean. Think about the memory as a blackboard that is wiped clean when
you sign off.

10 REM PROGRAM TO COMPUTE PAY
100 LET R=3.00
110 LET H=40
120 LET P=R*H
130 rRiIwni r
140 sTOP
32767 END
If a mistake is made in typing a line, the mistake can be corrected by
pressing “ENTER” and retyping the line. To erase a single character, use the

backward arrow key (<-) (Model III), or the “BACKSPACE” key (Model

Running the Program / 17

IT). Do not worry, mistakes will occur; to err is human. Merely retype the
line correctly.
When the program has been entered into the TRS-80, type

SAVE “PAY”

This command places a copy of the program onto the diskette and stores it
there under the program name (PAY). You can use up to 8 characters for a
program name. The first character must be alphabetic. The program itself is
also still in the memory (only a copy of the program exists on the diskette).
If you did not SAVE “PAY?”, and turn the TRS-80 off, you would have to
retype the program. To see what is in the memory type

LIST

This command will display the program in memory. Each line of the pro-
gram is written on the screen. The command permits you to check that the
program was entered correctly. Errors can be corrected by retyping incor-
rect lines. When a new line is typed with an old line number, the new line
wipes out the old line and takes its place in the program sequence. To tell
the computer to do what the program says (i.e., to execute or run the pro-
gram) type the word

RUN

If you type RUN and the screen displays the message:

Syntax Error in 130
Ready
130

this means that you have made a typing error in line 130. Press “ENTER?”,
and the screen will display the incorrect line and the prompt character (>)
on the next line. Retype the line, press “ENTER”, and, on the next line after
the prompt character, type RUN. Then press “ENTER”. Syntax errors con-
sist of typing BASIC instructions wrong. For example, if you typed 130
PRNT P you would get an error message when you try to run the program.
Syntax errors are called “dumb errors”. The computer will catch these. If
you typed 100 LET R = 300, the computer would not catch that type of
error.

NEW

Ready

>

>10 REM PROGRAM TO COMPUTE PAY
>100 LET R=3.00

>110 LET H=40

18 / Performing Simple Calculations

>120 LET P=H*R
>130 PRINT P
>140 STOP
>32767 END

>

>SAVE "PAY"
Ready

>

>LIST

10 REM PROGRAM TO COMPUTE PAY
100 LET R=3.00
110 LET H=40
120 LET P=H*R
130 PRINT P
140 STOP

32767 END
Ready

>

>RUN

120
Break in 140
Ready

>

Notice that the last line BREAX 1IN 140 is a result of the STOP. All
programs, when run, will give this message. The line number will corre-
spond to the line number of the STOP. As you proceed through the book,
programs become more complex, and it is important to know if your pro-
gram ran to completion. The message “BREAK IN ” tells us that the
program finished as it should.

Since the terminal session is now complete, sign-off.

When looking at the process that has occurred, some elements become
apparent. First the problem has to be precisely specified. In this case the
specification included a definition of starting values, hourly rate and hours
worked; a statement of the desired output, gross pay; and a statement of
how to get the output from the given inputs—multiply hourly rate by hours
worked to get gross pay. Second, a program has to be written to perform the
actions required to solve the problem. Third, the computer performs the in-
structions, one at a time in line number sequence. The BASIC instructions
that tell the computer what to do were:

The LET statement, which assigns a value to a field

The PRINT statement, which displays the value of a field

The STOP statement, which tells the computer to stop executing
The END statement, which indicates the end of the program

These are all statements in the BASIC language. Furthermore, to work with
a program, these BASIC commands were used:

Running the Program / 19

NEW

To tell the system that a new program will be input from the
keyboard

SAVE To tell the system to keep a copy of the program on the diskette

LIST
RUN

To display the program currently in the memory

To tell the TRS-80 to perform (execute) the program

BASIC commands do not have line numbers; BASIC instructions (state-

ments
tered

) must have line numbers. Only after the last command (RUN) is en-
does the computer actually perform (execute) the instructions of a

program.

Invoice Example: This example deals with invoice calculations. Initial data Examples
are the number of units sold and the price per unit for an item. The output
desired is the dollar amount of the invoice.

Input

Problerm Summary

Number of units sold: 50
Price per unit: $15

Processing
Multiply number of units sold by price per unit, giving dollar amount of
invoice.

Output
Dollar amount of invoice

NEW

>10 REM THIS PROGRAM COMPUTES INVOICE AMOUNT ’
>100 LET U=50 Y
>110 LET P=15 Assign Initial Data
>120 LET D=U*P Values
>130 PRINT D ‘
>140 STOP

>32767 END Calculate Invoice
> Amount

>SAVE "INVCE"
READY

>
>LIS
10
100
110
120

T

REM THIS PROGRAM COMPUTES INVOICE AMOUNT
LET U=50

LET P=15

LET D=U*P

Print Invoice
Amount

Terminate

20 / Performing Simple Calculations

130 PRINT D
140 STOP
32767 END
READY

>

>RUN

750

Break in 140

Inventory Example: This problem asks for the calculation of ending inven-
tory. The number of units in beginning inventory, the number of units re-
ceived into inventory and the number of units released from inventory are
given.

Problem Summary
Input
Number of units in beginning inventory: 120
Number of units received into inventory: 40
Number of units released from inventory: 45
Processing
Add number of units received (o inventory; then subtract number of
units released, giving ending inventory.
Output
Number of units in ending inventory

NEW

Ready

> .
>10 REM THIS PROGRAM COMPUTES ENDING INVENTORY
>100 LET B=120

>110 LET R1=40

>120 LET R2=45

>130 LET E=B+R1~R2

>140 PRINT B

>150 STOP

>32767 END

N

>SAVE "INVTY"
Ready)
>
>RUN

115
Break in 150

Running the Program / 21

Note: Save all programs. These exercises will be modified in later chapters.

Commission Exercise: Write a program to calculate the commission that a Exercises

salesman has earned. The initial data are gross sales and the commission
rate.

Problem Summary
Input
Gross sales: $12000
Commission rate: 0.05
Processing

Multiply gross sales by commission rate, giving dollar amount of com-
mission.

Output
Dollar amount of commission

Program:

Run your program, and see if your output matches the following:

RUN
600
Break in 140

22 / Performing Simple Calculations

MODIFYING
THE PROGRAM

Account Balance Exercise: Retail merchants have to update customer ac-
counts. The update consists of adding new charges to an account balance
and subtracting customer payments from an account balance. Write a pro-
gram that will perform these tasks to arrive at an ending balance for the
customer.

Problem Summary
Input
Starting balance: $60
Customer payments: $60
New charges: $45
Processing
Subtract customer payments from starting balance; then add customer
charges to balance, giving ending balance.
QOutput
Ending balance

Program:

Run your program and check your ending balance with the following ending
balance:

RUN
4b
Break in 150

To change a program that has already been written requires the use of some
new BASIC commands. For the payroll example, a modification is in order,
if the problem is changed.

Modifying the Program / 23

Assume that the output requirement is changed so that the words
“GROSS PAY” as well as the amount of gross pay are displayed. This
change requires that the print statement in the program be expanded for the
output of alphabetic information. Printing aphabetic information is easy:
Simply type “PRINT” followed by the alphabetic information enclosed in
quotation marks as illustrated in line 125 below. Each PRINT causes one
line of output. Therefore to display a line with “GROSS PAY”, followed by
a line with the amount of gross pay, the new program would look as follows:

10 REM PROGRAM TO COMPUTE PAY
100 LET R=3.00 Start

110 LET H=40
120 LET P=R*H 4
125 PRINT "GROSS PAY"

130 PRINT P Assign Initial
140 sTOP Data Values
32767 END

Calculate Gross Pay

Output Heading for
Gross Pay

\

/Output Gross Pay
‘ Terminate ’

This new program has an extra line. To add this line to the existing program,
it will be necessary to get the old program, and make the addition. This
modification involves a series of steps.

First, sign-on the system. Next to get a copy of the program from the
diskette, type

LOAD “PAY”

This command will copy your SAVEd program (PAY) from your disk-
ette to memory where you may modify or RUN it.
If you cannot remember the program name, type

24 / Performing Simple Calculations

Review of
Problem
Modification
Procedure

CMD “D:0” (ModelIII)
SYSTEM “DIR” (Model II)

This command gives a list of the program names on the diskette. It stands
for diskette directory.

After PAY is in memory, the new line can be inserted into the program.
Type the additional line

125 PRINT “GROSS PAY”’

The system will place the line in the proper sequence automatically. In order
to provide space for program modifications, the line numbers were initially
picked so that there was room for the insertion of additional lines. If the
line numbers in the original program had run from 10 to 16, then no open
space for program modifications would have been available. To place a
copy of the modified program on your diskette the command

SAVE “PAY1”
will have to be used.

After saving the modified program, LIST it; then RUN it. Following is
the sequence that performs these tasks.

LOAD "PAY"
READY

>

>125 PRINT "GROSS PAY"
>

>SAVE "PAY1"
READY

>

>LIST

10 REM PROGRAM TO COMPUTE PAY
100 LET R=3.00

110 LET H=40

120 LET P=R*H

125 PRINT "GROSS pAY"
130 PRINT P

140 STOP

32767 END
READY

>

>RUN
GROSS PAY

120
Break in 140

The problem modification procedure starts with a change in one of the prob-
lem specifications, either a change in initial data, or in the processing re-
quirement, or in the desired output. In this example, the output was changed
to include alphabetic information. Then the required changes are identified
in the written program.

Modifying the Program / 25

Next, on the TRS-80, the old program is retrieved from the diskette
and placed in memory. The new line is added to the program. The program
is renamed and saved. The changed program is then listed and executed.

Invoice Example: In this problem we want to have a heading for the invoice Examples
dollar amount. The remaining problem specifications are unchanged. The
procedure for making this modification is given as follows:

LOAD "INVCE"
READY

>

>LIST

10 REM THIS PROGRAM COMPUTES INVOICE AMOUNT
100 LET U=50
110 LET P=15
120 LET D=U*P
130 PRINT D
140 sTOP

32767 END
READY
>
>125 PRINT "INVOICE AMOUNT"
>
>SAVE "INVCE2"
READY
>
>RUN
INVOICE AMOUNT
750
Break in 140

Sales Tax Example: Many states and municipalities require that a sales tax
be added to the purchase price of an item. The initial data for this problem
are a dollar amount of taxable sales and the tax rate. The desired output is
the total amount of the sale that the customer has to pay.

Problem Summary
Input
Dollar amount of sale: $10.00
Tax rate: 4%
Processing
Multiply tax rate by dollar amount to get taxes. Add taxes to dollar
amount, giving total amount of sale.
Output
Total sale

NEW

Ready

>

>10 REM THIS PROGRAM COMPUTES THE TOTAL SALE

26 / Performing Simple Calculations

Exercises

>100 LET S$=10.00
>110 LET R=.04
>120 LET T=S*R
>130 LET A=S+T
>140 PRINT A
>150 STOP
>32767 END

>

>SAVE "TAX"
Ready

>

>RUN

10.4
Break in 150

It now becomes desirable to have additional output. Customers would like
to see the tax separate from the total. Therefore, the desired output has
been changed to include printing of the sales amount and of the tax.

LOAD "TAX"
READY
>
>135 PRINT S
>137 PRINT T
>
>SAVE "TAX"
READY
>
>LIST
10 REM THIS PROGRAM COMPUTES THE TOTAL SALE
100 LET S$=10.00
110 LET R=.,04
120 LET T=S*R
130 LET A=S+T
135 PRINT S
137 PRINT T
140 PRINT A
150 STOP
32767 END
READY
>
>RUN

10

A

10.4
Break in 150

Account Balance Exercise: Change the account balance problem so that
the title “ENDING BALANCE” will appenr as part of the output. Your
output should look similar to the output shown below:

Modifying the Program / 27

RUN

ENDING BALANCE
45

Brealk in 150

Sales Tax Exercise: Change the sales tax problem to calculate the total sales
amount for a tax rate of 5%. The title “TOTAL SALE” should appear in the
output. You can check your results with the output shown below.

RUN

TOTAL SALE
10.5

Break in 150

28 / Performing Simple Calculations

PRINTING
MANY VALUES
ON A LINE

The PRINT instruction has already been used to display the value of one
field as well as to display alphabetic information. This PRINT statement can
also be used to output many field values. To output many fields with one
PRINT statement, the fields are separated by commas. This capability is il-
lustrated by taking the initial payroll example and changing the desired out-
put to a display of the hours worked and the hourly rate in addition to the
output of gross pay.

Problem Summary

Input

Hourly rate: $3.00

Hours worked: 40
Processing

Multiply hours worked by hourly rate, giving gross pay.
Output

Hourly rate, hours worked, and gross pay

This change would alter line 130 of the Pay program to
130 PRINTR, H, P

To make this change in the program, the required sequence of steps is:
1. Sign-on.
2. Get the old program (LOAD “PAY”).
3. List the old program (LIST).
4. Type the new line (130 PRINT R, H, P).
5. Save the program (SAVE “PAY2”).
6. List the program (LIST).
7. Execute the program (RUN).
8. Sign-off.

LI L 1 PR DD IO F | PO i S
1D DULUILLILL UL DILED WULLILL PIUMULL LG LUV T LS VWL,

LOAD "PAY"

READY

>

>LIST

10 REM PROGRAM TO COMPUTE PAY

Printing Many Values on a Line / 29

100 LET R=3.00
110 LET H=40
120 LET P=R*H
130 PRINT P
140 STOP

32767 END
READY
>
>130 PRINT R,H,P
>
>SAVE "PAY2"
READY
>
>LIST
10 REM PROGRAM TO COMPUTE PAY
100 LET R=3.00
110 LET H=40
120 LET P=R*H
130 PRINT R,H,P
140 STOP

32767 END
READY

>
>RUN

3 40 120
Break in 140

Notice that with the new PRINT instructions, three numbers are
printed on a line. Each of these field values starts at a column position that
has been built into the system. The prespecified column positions are called
zones and are 16 characters long. For the Model III, with 64 columns per
line, there are four print zones. The Model II, with 80 columns per line, has
five print zones. If the PRINT instruction contains more fields than can be
printed on a single line, the fields will be continued on the next line.

With the prespecified zones, headings and associated data will always
line up. As long as the alphabetic information has less than 16 characters,
including blanks, any data displayed will fall directly under the headings.
This alignment is shown in the revised payroll problem where headings are
added to the output.

Problern Summary
Input
Unchanged
Processing
Unchanged

30 / Performing Simple Calculations

Output
Change output to include headings for hourly rate, hours worked, and
gross pay.

This modification requires that a line of headings be added to the program.
After sign-on, the steps are:

1. Get the old program.
LOAD "PAY2"

2. List the program to see where to make the modification.

LIST

10 REM PROGRAM TO COMPUTE PAY
100 LET R=3.00

110 LET H=40

120 LET P=R*H

130 PRINT R,H,P

140 sSTOP

32767 END

3. Make the change. In this example, the data are printed in line 130. Since
the headings have to appear before the data, a line has to be added
before line 130. The headings consist of the words “Hourly Rate”,
“Hours Worked”, and “Gross Pay”. It is good practice to keep headings
and data together. Therefore, line number 125 is used to output the
headings.

125 PRINT "HOURLY RATE","HOURS WORKED","GROSS PAY"
LIST

10 REM PROGRAM TO COMPUTE PAY

100 LET R=3.00

110 LET H=40

120 LET P=R*H

125 PRINT "HOURLY RATE","HOURS WORKED","GROSS PAY"
130 PRINT R,H,P

140 STOP

32767 END

4. Execute the program.

RUN
HOURLY RATE HOURS WORKED GROSS PAY
3 40 120

Break in 140

Handling Alphabetic Titles 7 31

5. Check the output. Although this aspect has not been discussed before, it
should be remembered that errors can occur. Therefore, whenever you
execute a program for the first time, make sure that the output is correct.
If you are satisfied with the output, then the program can be
SAVED for future use in the current form.

SAVE "PAY3"

6. If you are finished, sign-off.

The headings in the last example were all smaller than the number of posi- HANDLING
tions available in a print zone. However, what would happen if the headings ALPHABETIC
were longer? For example, what would the output look like, if the alphabe- TITLES

tic titles that you wanted were “Hourly Rate of Pay”, “Hours Worked”, and
“Gross Pay”? To find out what a system would do if requirements change,
there is only one valid test—try it. Make the change and execute the
program to see what happens. For the payroll problem, the key steps are
shown below:

LOAD "PAY3"
Ready
>
>125 PRINT "HOURLY RATE OF PAY","HOURS WORKED", "GROSS PAY"
>

>RUN
HOURLY RATE OF PAY HOURS WORKED GROSS PAY
3 40 120

Break in 140

Oops! The data do not line up. One way of handling this problem is to
print the headings on two lines. The heading “HOURLY RATE OF PAY”
is separated into two parts “HOURLY” and “RATE OF PAY”. The two
parts are then printed separately. The procedure for this change involves re-
typing line 125 as

125 PRINT “RATE OF PAY”, “HOURS WORKED”, “GROSS PAY”
and a new line is added as line number 123
123 PRINT “HOURLY™

Now the output from the program would look as follows:

>125 PRINT "RATE OF PAY","HOURS WORKED", "GROSS PAY"
>123 PRINT "HOURLY"
>

32 / Performing Simple Calcuiations

Example

>RUN

HOURLY

RATE OF PAY HOURS WORKED GROSS PAY
3 40 120
Break in 140

Ready

>

>SAVE "PAY3"

Inventory Example: Inventory records typically show more than just the
number of units in ending inventory. In this example we want to show the
beginning inventory, the number received into inventory, the number issued
from inventory, the number in ending inventory and the dollar amount of
ending inventory. Furthermore, a general heading for the output is also
worked.

Problem Summary
Input
Number of units at beginning: 120
Number received into inventory: 40
Number of units issued from inventory: 45
Cost per unit: $5.20
Processing
Add number received to beginning inventory and subtract number is-
sued from inventory, giving ending inventory. Multiply ending inven-
tory by cost per unit to get dollar amount of inventory.
OQutput
Heading of “Inventory Status”, labels for each field of output “Begin-
ning Inventory”, “Receipts”, “Issued”, “Ending Inventory”, and “Dol-
lar Amount” followed by a line of field values.

Note: Five tields are printed on a line in this program. The heading “Inven-
tory Status”, should appear centered over the output. Therefore, to align
the words “Inventory Status” over the third column, it is necessary to skip to
the third zone position. Printing two blank fields will skip to the third
column. Similarly, two blank fields are inserted in the print line for “Re-
ceipts” and “Issued” since these titles do not have to be split over print lines.

Handiing Alphabetic Titles /7 33

{ Start ’

Y

Assign Initial Values
to Fields

Y

Calculate Ending Inventory
at Dollar Value

Output Headings

Y

Qutput Field
Values

Y

(Terminate '

>LOAD "INVTY"
READY

>

>LIST
10 REM THIS PROGRAM COMPUTES ENDING INVENTORY

100
110
120
130
140
150
3276

LET B=120

LET R1=40

LET R2=45

LET E=B+R1-R2
PRINT E

STOP

7 END

READY

>

>132
>134
>136
>138
>140
>142
>

LET C=5.20

LET D=E*C

PRINT " "," ", "INVENTORY STATUS"

PRINT "BEGINNING"," "," ", "ENDING","DOLLAR"

PRINT "INVENTORY","RECEIPTS","ISSUED","INVENTORY", "AMOUNT"
PRINT B,R1,R2,E,D

>SAVE "INV2"

READ
>

Y

>LIST

34 / Performing Simple Calculations

10 REM THIS PROGRAM COMPUTES ENDING INVENTORY
100 LET B=120

110 LET R1=40

120 LET R2=45

130 LET E=B+R1-R2

132 LET C=5.20

134 LET D=E*C

136 PRINT " "," ","INVENTORY STATUS"

138 PRINT "BEGINNING"," "," ","ENDING","DOLLAR"
140 PRINT "INVENTORY","RECEIPTS","ISSUED","INVENTORY","AMOUNT"
142 PRINT B,R1,R2,E,D

150 sToP

32767 END

Ready

>

RUN
INVENTORY STATUS
BEGINNING ENDING DOLLAR
INVENTORY RECEIPTS ISSUED INVENTORY AMOUNT

120 40 45 115 598
Break in 150

Notice that what you see on the screen of your TRS-80 will differ in
many cases from what is printed in this book. The differences occur since all
program listings and output presented were written on a printer with a 132-
character print line, while the TRS-80 screen is only 64 characters wide on
the Model III. On the Model II, with an 80-character per line screen, this
problem will occur less frequently.

Program output can, of course, use many more than 64 spaces. Some
programs that generate reports will need more than 64 print positions.
While you can write such a program in BASIC with no thought given to
whether or not you even have a printer, when you RUN it, the output can
look very strange as each printed line takes up two lines on the screen. This
is called “wrapping”.

With a little practice, you can learn to read the screen well enough to
tell whether or not your program ran correctly.

The output on your screen for the last program would look as follows
on the Model I11I:

RUN
INVENTORY STATUS
| BEGINNING ENDING
I DOLLAR
INVENTORY RECEIPTS ISSUED INVENTORY
AMOUNT
120 40 45 115
598
Break in 150
Ready
>

Handling Alphabetic Titles / 35

Sales Tax Exercise: Change the output of the sales tax problem so that it Exercises

will print the amount of sale, the tax, and the total with appropriate head-
ings.

RUN
SALE TOTAL
AMOUNT TAX SALE AMOUNT
10 .5 10.5

Break in 150

Account Balance Exercise: Change the account balance problem so that
the heading “Beginning Balance”, “Payments”, “New Charges” and “End-
ing Balance” will appear over their respective values.

36 / Performing Simple Calculations

RUN
BEGINNING ENDING
BALANCE CHARGES PAYMENTS BALANCE
60 45 60 45

Break in 150

SUMMARY This chapter has shown you how to use the computer for simple calcula-
tions. The instructions of the BASIC language and the BASIC commands
are listed below. BASIC commands are used to manipulate a program; they
have no line numbers. BASIC instructions are used to manipulate data in a
program; they do have line numbers.

Additionally, you have learned, not only how to write a program from
scratch, but also ways of changing your program. The method of program
modification will be continued throughout this book as the problem require-
ments and the BASIC capabilities are further developed.

BASIC Commands Infroduced:

NEW Tells the TRS-80 that the operator is about to type in a
new program,

LIST Gives a printout (listing) of the program.

SAVE Puts a copy of the program onto the diskette under pro-

gram name. Must give program name.

RUN Executes a program, i.e., tells the computer to perform
the program instructions.

LOAD Asks for a copy of a program from the diskette, and

nlacec it in memorv en that van can madifu rin Ar et
- - v B e e A

it. Must give program name.

CMD “D:0” Lists the names of programs saved on the diskette.
(Model I1I)

SYSTEM “DIR”
(Model IT)

Summary / 37

BASIC Instructions Introduced:

Statement Explanation

LETX =Y Assigns the value of Y to the field X

PRINT XY Displays the values of X and Y

PRINT “XYZ” Displays the alphabetic information XYZ
STOP Tells the system to stop

END Indicates the physical end of a program

REM Ignored by computer—remarks for programmer

Arithmetic operations

X +Y Add Y to X

X -Y Subtract Y from X
X*Y Multiply X by Y
X/Y Divide X by Y

X[Y (Model III) Raise X to the Y power
X AY (Model IT)

) Parentheses may be used to group parts of arith-
metic statements

Definitions

Field Name: A field is named by a letter (A — Z), or by a let-
ter followed by a number (A —Z, 0—9), or by
two letters.

Program Name: A program name may be up to 8 characters;
the first character must be a letter. Short pro-
gram names are used in this book to minimize
typing.

38 / Performing Simple Calculations

PROBLEMS

Write programs that will do the following:

1.
2.
3.

10.

Write your name.
Calculate the amount of a sale where 175 units are sold at $1.19 per unit.

Calculate the net amount of a sale where 47 units are sold at $4.56 per
unit and a return is made for 3 units at $6.26 per unit.

Calculate the average sale for a day in which sales were made for
$126.46, $276.19, $197.50 and $252.71. (Note: Average = the sum of
daily sales divided by the number of sales.)

. Modify Problem 3 above where the output is labelled Net Sale.
. Modify Problem 4 above where the output is labelled Average Sale.

- Modify the inventory program on page 33 so that the amount is printed

on a separate line.

Calculate the amount of interest that would be earned in one year on
$527.26 at 4%, 5%, 6%, 6.5%, and 7% annual interest. Display the results
on one line and place headings of the interest rate above the interest
amounts. Also center the heading Interest Calculation in your output.

In economics, the concept of unit elasticity means that the price times
the quantity is a constant. If a product is manufactured by a company
whose revenue is $125,000, and output could be 10,000, 8,000, 7,000, or
6,000 units, what would the price be at the four levels of output? Put
headings on your output and write the numeric output on one line.
(Note: pq = r where p = price, q = quantity, r = revenue.)

The formula for compound interestis A = P (1 + i) where p = prin-
cipal amount, i = interest rate expressed as a decimal, n = the number
of time periods, and A = total amount at the end of n periods. Deter-
mine and label the output for p = $1,250,i = .055, and the number of
time periods is from 1 to 5.

3 / Data Entry

39

Entering Data from a Keyboard / 41

At the end of this chapter you should be able to:

® Write a program that will take data from the TRS-80 keyboard
® Write a program that will process many records
® Test data for reasonableness

In many cases the data values are unknown when the program is written.
For example, payroll data change from week to week. Consequently, to use
the program, the data assignments have to be changed. Quite often in busi-
ness, the person who runs a program is not the person who wrote the pro-
gram. Therefore making changes, such as changing the assignment
statements, would be cumbersome and awkward. Isn’t there a way to give a
program to somebody to run so that the person using the program doesn’t
have to know programming? The answer is yes. There is a way for a program
to get data from a keyboard. In this chapter, we will show you how to enter
data while a program is running, how to process many records at the same
time, and how to check field values for reasonableness.

The payroll function must calculate the employee’s gross pay and the em-
ployee’s net pay, the amount of his paycheck. Gross pay is the wages for reg-
ular and overtime hours. Net pay is gross pay minus deductions. Deductions
include federal income tax and social security contributions (also known as
FICA —Federal Insurance Contribution Act). In the following problems you
are given the tax rate and the social security withholding rate.

The program should be written so that the data for the hourly rate, the
number of regular hours worked, and the number of overtime hours worked
can be entered from a keyboard. The required outputs are gross pay, taxes,
social security deductions, and net pay. Gross pay is calculated by adding
regular wages to overtime wages. Regular wages are regular hours worked
multiplied by the hourly rate. With time-and-a-half for overtime, overtime
wages are calculated by multiplying overtime hours by 1.5 and then multi-
plying by the hourly rate. The deductions are calculated by multiplying
gross pay by the appropriate rate. Net pay is calculated by subtracting the
deductions from gross pay. The person is identified by name.

Problem Summary

Input
Social security withholding rate: 6.70% (.067)
Federal income tax rate: 15% (.15)
Hourly rate: $3.00
Regular hours worked: 40
Overtime hours worked: 2
Processing
Multiply regular hours by hourly rate, giving regular wages. Multiply
overtime hours times 1.5 and then multiply by hourly rate, giving over-
time wages. Add regular wages to overtime wages, giving gross pay.

Performance
Objectives

ENTERING
DATA FROM A

KEYBOARD

Problem
Description

42 / Data Enfry

Multiply gross pay by income tax rate, giving federal income tax deduc-
tion. Multiply gross pay by social security rate, giving social security de-
duction. Subtract federal income tax and social security deductions
from gross pay, giving net pay.

Output
Gross pay, payroll deductions, and net pay.

< Start }

/

Assign Initial
Data Values

Print
Instruction
for Data
Entry

Get Data /
from
Keyboard /
Y
Perform
Required

Calculations

Print
Headings
for
Output

Qutput Gross
Pay,
Deducations, and
Net Pay

\ rettmnaie g

10 REM PROGRAM TO INPUT AND COMPUTE PAY
100 LET Fl=.15
110 LET F2=.067

Entering Data from a Keyboard / 43

120 PRINT "TYPE NAME, HOURLY RATE, REGULAR HOURS, OVERTIME HOURS"
130 INPUT N$,R,H1,H2

140 LET G=R*H1+R*H2*1.5

150 LET D1=G*Fl

160 LET D2=G*F2

170 LET N=G-D1-D2

180 PRINT "NAME: ", N$.

190 PRINT "GROSS","F.I.T.","F.I.C.A.","NET"
200 PRINT "PAY","DEDUCTION","DEDUCTION","PAY"
210 PRINT G,D1,D2,N

220 STOP

32767 END

This program contains one new BASIC instruction. Line 130 contains
the word “INPUT”. This instruction tells the computer to ask for data from
the keyboard. During program execution, a question mark (?) will be dis-
played on the screen. Data values are typed, each field separated by a
comma, after the question mark. One value has to be entered for each field
of the INPUT statement. In this case, four values separated by commas have
to be typed, one value each for name, hourly rate, regular hours and over-
time hours. This program also contains a new type of field name (N§), for
alphabetic information. In line 130, N$ is used to hold alphabetic informa-
tion. In line 180 the name is printed. After this program is entered, it can be
executed.

Note: When entering dollar amounts, do not use the dollar sign (§) and
do not use commas to separate thousands. Commas are used to separate
field values; and the “$” has a special meaning in BASIC. It is used to name
a field that contains alphabetic or alphanumeric data. The definition of a
field name remains the same, but a § is added.

The arithmetic statement in line 140 computes ~5oss pay. It also could
have been written the following way: e

140 LET G = (R#H1) + (R*H2x1.5)

The parentheses could have been added; but the computation in the pro-
gram and the one above with parentheses give us exactly the same result.
Arithmetic statements are performed in BASIC in the following sequence:
First, exponentiation; next, division or multiplication; and last, subtraction
or addition. In the program, G would be calculated in the following way: H2
is multiplied by 1.5, and this result is multiplied by R; HI is multiplied by
R, and this result is then added to the first result, giving us G.

RUN
TYPE NAME, HOURLY RATE, REGULAR HOURS, OVERTIME HOURS
?JONES,3.00,40,2
NAME: JONES

44 / Data Entry

GROSS F.I.T. F.L.C.A. NET
PAY DEDUCTION DEDUCTION PAY
129 19.35 8.643 101.007
Break in 220
READY
>

>SAVE "PAY4"

Notice that the name, the hourly rate, the regular hours, and the over-
time hours have to be typed in that order. The program will take the first
typed value and assign it to the first field in the input statement, assign the
next value to the next field, and so on, until it has assigned a value to each
field. With the capability of entering data during program execution, it is not
necessary for you, the programmer, to know what the specific data values
will be. You can write the logic of processing and use it for different data
values. By this approach you achieve a generally more useful program, since
changes in data values do not require changes in the program. However, the
person who uses the program must know what the data values are and the
order in which they must be entered.

Examples Invoice Example: This example deals with invoice calculations. The data to
be input during execution are the number of units sold and the price per unit
for an item. The output desired is the dollar amount of the invoice.

Problem Summary

Input
Number of units sold: 50
Price per unit: $15
Processing
Multiply numter of units sold by price per unit, giving dollar amount of
invoice.
Output
Dollar amount of invoice

10 REM DETERMINE DOLLAR AMOUNT OF INVOICE

100 PRINT "TYPE NUMBER OF UNITS, PRICE PER UNIT"
110 INPUT U,P

12U LEL D=UTP

130 PRINT "AMOUNT"

140 PRINT D

150 STOP

32767 END

READY

>

Entering Data from a Keyboard 7/ 45

>SAVE "INVCE3"

READY

>

>

>RUN

TYPE NUMBER OF UNITS, PRICE PER UNIT
? 50,15.00

AMOUNT

750

Break in 150

The flowchart to derive this program follows.

< Start }

Y

Print Instructions
for Data Entry

/
Get Data from
Keyboard

Y

Calculate Invoice
Amount

[

Print Headings
for Amount

A

Print Invoice
Amount

1
{ Terminate ’

Inventory Example: This problem requires the calculation of ending inven-
tory. The number of units in beginning inventory, the number of units re-
ceived into inventory and the number of units released from inventory are
given.

46 / Data Entry

Exercises

Problem Summary
Input
Number of units in beginning inventory: 120
Number of units received into inventory: 40
Number of units released from inventory: 45
Processing
Add number of units received to inventory; subtract number of units re-
leased, giving ending inventory.
Outpur
Number of units in ending inventory

10 REM CALCUIATE ENDING INVENTORY

100 PRINT"TYPE BEGINNING UNITS, UNITS RECEIVED, UNITS RELEASED"
110 mPUT B,R1,R2

120 LET E=B+R1-R2

130 PRINT "ENDING INVENTORY"

140 PRINT E

150 sTOP

32767 END

RON

TYPE BEGINNING UNITS, UNITS RECEIVED, UNITS RELEASED
? 120,40,45

ENDING INVENTORY

115

Break in 150

Commission Exercise: Write a program to calculate the commission that a
salesman has earned. The data are gross sales and the commission rate; both
should be input during execution with instructions on the order of input. La-
bel the output “Commission.”

Problem Summary
Input
Gross sales: $12000
Commission rate: 0.05
Processing
Multiply gross sales by commission rate, giving dollar amount of com-
mission.
Output
Dollar amount of commission

Entering Data from a Keyboard /7 47

Program:

Run your program, and see if your output matches the following output.

TYPE GROSS SALES,COMMISSION RATE
? 12000,.05

COMMISSION

600

Break in 150

Account Balance Exercise: Retail merchants have to update customer ac-
counts. The update consists of adding new charges to the account balance
and subtracting customer payments from the account balance. Write a pro-
gram that will perform these tasks to arrive at an ending balance for the cus-
tomer. The data should be input during execution. Label the output
“Account Balance.”

Problem Summary
Input
Starting balance: $60
Customer payments: $60
New charges: $45
Processing
Subtract customer payments from starting balance and add customer
charges to balance, giving ending balance.
Output
Ending balance

48 / Data Enty

Program:

Run your program and check your ending balance with the ending balance
given below.

TYPE STARTING BALANCE,CUSTOMER PAYMENT ,NEW CHARGES
? 60,60,45
ACCOUNT BALANCE
45
Break in 150

PROCESSING Let’s assume that you have collected the weekly payroll data. You have a
MANY stack of time cards, with each card containing the weekly data on a person.
RECORDS Depending on the size of the organization, the stack of time cards may con-
tain anywhere from 20 to 2,000 records. Therefore, to do the calculations for
the weekly payroll, you would have to run your payroll program 20 to 2,000
times. In this section we will show you how to write a program to nrocess

many records in one run.

The assignment for this problem is similar to the previous problem. But
instead of data for only one person, the weekly time records of many people
have to be processed. The data are listed in Table 3-1. A program for
processing all the data in one run follows.

Processing Many Records / 49

‘ Start ’

(

Assign Permanent
Data Values

{

Print Instruction
for Data Entry
and Get Input Data

{

Calculate Gross Pay,
Deducations, and
Net Pay

Y

Print Headings
for Qutput

Y

Output Gross Pay,
Deductions and
Net Pay

Weekly Payroll Data

Regular

Hourly Hours

Name Rate Worked
1. Adams 5.00 40
2. Baker 5.60 40
3. Cohen 6.25 38
4. Johnson 3.75 40
5. Tanner 4.25 36

Overtime
Hours
Worked

OO h O

10 REM PROGRAM TO INPUT AND COMPUTE PAY

100 LET Fl=.15
110 LET F2=.067

Table 3-1

120 PRINT "TYPE NAME, HOURLY RATE, REGULAR HOURS, OVERTIME HOURS"

130 INPUT N$,R,H1,H2

50 /7 Data Entry

140 LET G=R*H1+R*H2*1.5

150 LET Dl=G*Fl

160 LET D2=G*F2

170 LET N=G-D1~D2

180 PRINT "NAME: ", NS

190 PRINT "GROSS","F.I.T.","F.I.C.A.","NET"
200 PRINT "“PAY","DEDUCTION","DEDUCTION","PAY"
210 PRINT G,D1,D2,N

215 GOTO 120

220 STOP

32767 END

This program contains one new BASIC instruction, “GOTO 120,”
found in line 215. The instruction means exactly what it says: When the
computer reaches line 215, it is instructed there to go back to line 120. When
the program is run, the computer executes lines 100 to 210 in sequence;

when it reaches line 215, it goes back to line 120 and executes from 120 on-
wards.

This repetition is shown in the flowchart by the arrow that takes the
flow back to steps that have already been executed. Thus the computer
effectively processes one payroll record, and, since more than one employee
is involved, it goes back to get the next employee record. To stop the pro-
gram, after the last employee record has been processed, press the BREAK
key. The message

BREAK IN 130
READY

will appear on the screen on the Model I11.

For the Model II, when the BREAK key is pressed, the following

appears: aC

BREAK IN 130
READY

The logical end of the program is, therefore, entered during execu-
tion—after the last piece of data has been processed and more data is
requested.

Since this program is only a one line change from the previous program,
the modification is accomplished speedily. The change and execution actions

are chnwm ac fallawe-

LOAD "PAY4"
READY

>

>215 GOTO 120
>

>SAVE "PAYS5"

Processing Many Records / 51

READY

>

>RUN

TYPE NAME, HOURLY RATE, REGULAR HOURS, OVERTIME HOURS
? ADAMS,5.00,40,0

NAME: ADAMS

GROSS F.I.T. F.I.C.A. NET

PAY DEDUCTION DEDUCTION PAY
200 30 13.4 156.6

TYPE NAME, HOURLY RATE, REGULAR HOURS, OVERTIME HOURS
? BAKER,5.60,40,4

NAME: BAKER
GROSS F.I.T. F.I.C.A. NET
PAY DEDUCTION DEDUCTION PAY
257 .6 38.64 17.2592 201.701

TYPE NAME, HOURLY RATE, REGULAR HOURS, OVERTIME HOURS
? COHEN,6.25,38,0

NAME : COHEN

GROSS F.I.T. F.I.C.A. NET

PAY DEDUCTION DEDUCTION PAY
237.5 35.625 15.9125 185.963

TYPE NAME, HOURLY RATE, REGULAR HOURS, OVERTIME HOURS
? JOHNSON,3.75,40,0

NAME: JOHNSON
GROSS F.I.T. F.I.C.A. NET
PAY DEDUCTION DEDUCTION PAY
150 22.5 10.05 117.45

TYPE NAME, HOURLY RATE, REGULAR HOURS, OVERTIME HOURS
? TANNER,4.25,36,0

NAME: TANNER
GROSS F.I.T. F.I.C.A. NET
PAY DEDUCTION DEDUCTION PAY
153 22.95 10.251 119.799

TYPE NAME, HOURLY RATE, REGULAR HOURS, OVERTIME HOURS
?

g

Break in 130

Invoice Example: In this problem we want a heading for the invoice dollar Examples
amount and to process four records. The remaining problem specifications
are unchanged. The procedure for making this modification is given below.

Problem Surmmary

Input
Units
sold Price per unit
50 $15.00
20 $14.00
120 $ 1.20

30 § 6.00

52 / Data Entry

Processing

Perform calculations for four records.
QOutput

Unchanged

LOAD "INVCE3"
READY
>
>LIST
10 REM DETERMINE DOLLAR AMOUNT OF INVOICE
100 PRINT "TYPE NUMBER OF UNITS, PRICE PER UNIT"
110 INPUT U,P
120 LET D=U*p
130 PRINT "AMOUNT"
140 PRINT D
150 sTOP
32767 END
READY
>
>145 GOTO 100
>
>SAVE "INVCE4"
READY
>
>RUN
TYPE NUMBER OF UNITS, PRICE PER UNIT
? 50,15.00
AMOUNT
750
TYPE NUMBER OF UNITS, PRICE PER UNIT
? 20,14.00
AMOUNT
280
TYPE NUMBER OF UNITS, PRICE PER UNIT
? 120,1.2
AMOUNT
144
TYPE NUMBER OF UNITS, PRICE PER UNIT
? 30,6
AMOUNT
180)
TYPE NUMBER OF UNITS, PRICE PER UNIT
? Break in 110

Sales Tax Example: Many states and municipalities require that a sales tax
be added to the purchase price of an item. The initial data for this problem

Processing Many Records / 53

are a dollar amount of taxable sales and the tax rate. The desired output is
the total amount of the sale that the customer has to pay. Six records should
be processed.

Problem Summary
Input
Dollar amount of sale: $10.00, $42.00, $57.00, $2.50, $726.32, $9.27
Tax rate: 4%
Processing
Multiply tax rate by the dollar amount to get the taxes; add the taxes to
dollar amount, giving the total amount of sale.

Output
Total sale

100 PRINT "TYPE AMOUNT OF SALE"
110 INPUT S
120 LET R=.04
130 LET T=R*S
140 LET A=S+T
150 PRINT "TOTAL SALE"
160 PRINT A
170 GOTO 100
180 sTOP
32767 END
READY
>
>RUN
TYPE AMOUNT OF SALE
? 10.00
TOTAL SALE
10.4
TYPE AMOUNT OF SALE
? 42.00
TOTAL SALE
43.68
TYPE AMOUNT OF SALE
? 57
TOTAL SALE
59.28
TYPE AMOUNT OF SALE
? 2.50
TOTAL SALE
2.6
TYPE AMOUNT OF SALE
? 726.32
TOTAL SALE
755.373

54 | Data Entry

Exercise

TYPE AMOUNT OF SALE
? 9.27

TOTAL SALE

5.6408

TYPE AMOUNT OF SALE
?

Break in 110

Account Balance Exercise: Change the Account Balance Problem so that
five records are input.

Problem Summary
Input
Starting balance 60 130 59.95 22.50 37.62
Customer payment 60 120 59.95 22.50 0.00
New charges 45 60 39.75 0.00 4297
Processing
Perform calculations for five records.
Output
Unchanged

Program:

TYPE STARTING BALANCE,CUSTOMER PAYMENT,NEW CHARGES
2 60,60,45
ACCOUNT BALANCE

How to Catch Some Errors in Data /7 55

45

TYPE STARTING BALANCE,CUSTOMER PAYMENT,NEW CHARGES
? 130,120,60
ACCOUNT BALANCE

70

TYPE STARTING BALANCE,CUSTOMER PAYMENT,NEW CHARGES
? 59.95,59.95,39.75
ACCOUNT BALANCE

39.75

TYPE STARTING BALANCE,CUSTOMER PAYMENT,NEW CHARGES
?2 22.50,22.50,0.00
ACCOUNT BALANCE

0
'TYPE STARTING BALANCE,CUSTOMER PAYMENT,NEW CHARGES
? 37.62,0,42.97
ACCOUNT BALANCE

80.59

TYPE STARTING BALANCE,CUSTOMER PAYMENT,NEW CHARGES
D

Break in 110

When a program is written, it is necessary to make sure it performs its in-
tended function. In the examples given so far, the numbers have been suffi-
ciently simple so that the calculations can be checked by hand. It is good
practice to check all calculations of a program whenever possible.

Errors do occur in complex programs. Errors crop up in the specifica-
tion of a problem: For example, if salesman commissions are defined as a
percentage of gross margin (sales minus cost of goods sold), then a specifi-
cation of commission on the basis of gross sales would be in error. Errors
can happen when the program is first written: For example, if receipts were
subtracted from rather than added to beginning inventory, then a design
error would exist. Errors can happen when the program is entered into the
computer: Hitting the wrong key on the keyboard can cause many prob-
lems. These errors, called syntax errors, are caught when the program is
first run. Other errors will be caught when the program tries to do some-
thing and can’t. Logical errors like these will show up during execution.

But many errors, such as the erroneous calculation of inventories will
not give any error messages. In those cases it is necessary to do the calcula-
tions by hand to make sure that the output is correct. However, even hand
calculation will not catch problem specification errors. The salesman com-
mission error—the calculation of commission on the basis of gross sales in-
stead of gross margin—would require a comparison of the specifications with
the actual operations of the company.

Errors in programs, called “bugs”, bedevil even experienced programmers.
But the largest number of errors in data processing is caused by bad data.
This source of errors has been immortalized by the phrase “garbage in, gar-

PROGRAM
VERIFICATION

HOW TO
CATCH SOME
ERRORS IN DATA

56 / Data Entry

bage out.” In this section we show you how to catch some of the “garbage
in.” The concept is known as “range checking.”

Range checking assumes that you know the permissible range of data
values. Range checks make sure that data are not too high or too low. But
range checking can not catch errors when the erroneous data is within the
range. A transposition error (for example, $3.69 is entered incorrectly as
$3.96) will not be caught by range checks if the erroneous data is within
range. In the case of the payroll example, we know that regular hours
worked cannot exceed 40 hours. Therefore, we can check to make sure that
values for regular hours worked are not larger than 40. The permissible
ranges for the data fields are:

Field Low Value High Value
Hourly rate 3.05 10.00
Regular hours 0 40
Overtime hours 0 20

Checking range values of input fields is only part of the task. Once an error
has been found, it must be identified so that the keyboard operator can cor-
rect the mistake. By accident, such as misinterpreting handwritten numbers,
or through carelessness, erroneous data may have been typed. Range checks
help to catch input that is obviously wrong. But the operator also needs to
be told that the input is wrong. Hence, appropriate error messages must be
printed. Following are flowcharts (Figs. 3—1 and 3-2) and a program that
perform these additional requirements:

10 REM PROGRAM TO INPUT AND COMPUTE PAY

100
110
120
130
131
132
133
134
135
136
137
138
139
140
150
160
170
180
190

LET Fl=.15

LET F2=.067

PRINT "TYPE NAME, HOURLY RATE, REGULAR HOURS, OVERTIME HOURS
INPUT NS$,R,H1,H2

IF R<3.05 THEN 138

IF R>10 THEN 138

IF H1<0 THEN 138

IF H1>40 THEN 138

IF H2<0 THEN 138

IF H2>20 THEN 138

GOTO 140

PRINT "ERROR IN INPUT DATA"

GOTO 120

LET G=R*H1+R*H2*1.5

LET D1=G*F1l

LET D2=G*F2

LET N=G-D1-D2

PRINT "NAME: ", NS$

PRINT "GROSS","F.I.T.","F.I.C.A.","NET"

How to Catch Some Errors in Data / 57

200 PRINT "PAY","DEDUCTION","DEDUCTION","PAY"
210 PRINT G,D1,D2,N

215 GOTO 120

220 SsTOP

32767 END

The difference between this program and the previous program on page
49 is in lines 131 to 139. Here we test the data with a series of IF statements.
An IF statement compares two values.

Assign Permanent
Data Values

/

/Print Instruction
'/ for Data Entry

and
/ Get Input Data

Print
Error
Message

within
Range?

YES

Calculate Gross
Pay Deductions
and Net Pay

Y

Print Headings
for Qutput

Y

Output Gross
Pay, Deductions,
and Net Pay

Flowchart of Range Test Program Figure 3—-1

58 / Data Entry

!

Print Instruction /

for Data Entry

and
Get Input Data

’ Print
2 Error

Message

R<3.05?

Calculate Gross
Pay Deductions
and Net Pay

Figure 3—-2 Range Tests:
Expansion of Decision—"Is Data Within Range?”

How to Catch Some Errors in Data / 89

The six comparison operators are:

Equal
Less than

= Less than or equal
Greater than

= Qreater than or equal

AV V AA

> Not equal

The comparison is followed by THEN and a line number. The “THEN line
number” means GOTO the line number indicated if the comparison is true.
If the comparison is not true, the next line is executed (see Fig. 3—-2). Fields
are compared with values or with other fields. Thus we can read line 131 as,
“IF the hourly rate (R) is less than 3.05 THEN go to line 138.” Similarly,
line 132 means: “IF the hourly rate (R) is greater than 10 THEN go to line
number 138.” In line 138 an error message is printed. The error message is
followed by a return to the instruction (line 120) for data entry.

Notice the GOTQ 140 in line 137. This GOTO directs control to line
140 for the processing of valid data. When the computer reaches line 137,
the data must be valid because it passed all the tests in lines 131 to 136. If
line 137 did not exist, then valid records would also print the error message.

These changes to the old program are shown below:

LOAD "PAY5"
READY
>131 IF R<3.05 THEN 138
>132 IF R>10 THEN 138
>133 IF H1<0 THEN 138
>134 IF H1>40 THEN 138
>135 IF H2<0 THEN 138
>136 IF H2>20 THEN 138
>137 GOTO 140
>138 PRINT "ERROR IN INPUT DATA"
>139 GOTO 120
>SAVE "PAY6"
READY
>
>LIST
10 REM PROGRAM TO INPUT AND COMPUTE PAY
100 LET Fl=.15
110 LET F2=.067
120 PRINT "TYPE NAME, HOURLY RATE, REGULAR HOURS, OVERTIME HOURS"

60 / Data Entfry

Example

130 INPUT N$,R,HL,H2

131 IF R<3.05 THEN 138

132 IF R»10 THEN 138

133 IF H1<0 THEN 138

134 IF H1>40 THEN 138

135 IF H2<0 THEN 138

136 IF H2>20 THEN 138

137 GOTO 140

138 PRINT "ERROR IN INPUT DATA"
139 GOTO 120

140 LET G=R*H1+R*H2%*1.5

150 LET D1=G*Fl

160 LET D2=G*F2

170 LET N=G-D1-D2

180 PRINT "NAME: ", N$

190 PRINT "GROSS","F.I.T.","F.I.C.A.","NET"
200 PRINT "PAY","DEDUCTION","DEDUCTION","PAY"
210 PRINT G,D1,D2,N

215 GOTO 120

220 STOP

32767 END

Invenfory Example: We want to modily ihe inventory example in Chapter 2
to process three records and check the appropriateness of their values. The
high values were determined by examining the capacity of the company to
store and handle inventory. The low values cannot be negative, and the low-
est cost of an item of inventory is $1.00.

Note: The output of this program was produced on a printer. To use a
printer, replace all PRINT’s with LPRINT.

Problem Summary

Input
Number of units at beginning: 120 20 60
Number received into inventory: 40 70 20
Number of units issued from inventory: 45 100 80
Cost per unit: $5.00 §7.00 §3.25

Processing
Test the data for reasonableness.

How to Catch Some Errors in Data /7 61

Data Ranges
Field Low Value High Value
Units at Beginning 0 10,000
Units Received 0 3,000
Units Issued 0 *
Cost $1.00 $10.00

Outp

*Number of Units in Inventory = Units at Beginning + Units Received.

ut

Unchanged

10 REM THIS PROGRAM CALCULATES ENDING INVENTORY VALUE
PRINT"TYPE BEGINNING UNITS, UNITS RECEIVED, UNITS RELEASED"
PRINT"AND COST, SEPARATED BY COMMAS"

INPUT B,R1,R2,C

IF B<0 THEN 120

IF B>10000 THEN 120

IF R1<0 THEN 120

IF R1>3000 THEN 120

IF R2<0 THEN 120

IF R2>(B+R1) THEN 120

IF C<1.00 THEN 120

IF C>10.00 THEN 120

GOTO 130

100
105
110
111
112
113
114
115
116
117
118
119
120
121
130
134
136
138
140
142
143
150
327

PRINT

"ERROR IN INPUT DATA"

GOTO 100

LET E=
LET D=

PRINT
PRINT
PRINT
PRINT

B+R1-R2

C*E

mow wow WINUENTORY STATUS"

"BEGINNING"," "," ","ENDING", "DOLLAR"

"INVENTORY", "RECEIPTS","ISSUED", "INVENTORY", "VALUE"
B,R1,R2,E,D

GOTO 100

STOP
67 END

Ready

>

RUN
TYPE BEGINNING UNITS, UNITS RECEIVED, UNITS RELEASED
AND COST,
? 120,40,45,5.00

SEPARATED BY COMMAS

INVENTORY STATUS

BEGINNING ENDING DOLLAR
INVENTORY RECEIPTS ISSUED INVENTORY VALUE
120 40 45 115 575
TYPE BEGINNING UNITS, UNITS RECEIVED, UNITS RELEASED

AND COST, SEPARATED BY COMMAS

? 20,70,100,7.00

62 / Data Entry

ERROR IN INPUT DATA
TYPE BEGINNING UNITS, UNITS RECEIVED, UNITS RELEASED
AND COST, SEPARATED BY COMMAS
? 60,20,80,3.25
INVENTORY STATUS

BEGINNING ENDING DOLLAR
INVENTORY RECEIPTS ISSUED INVENTORY VALUE
60 20 80 0 0
TYPE BEGINNING UNITS, UNITS RECEIVED, UNITS RELEASED
AND COST, SEPARATED BY COMMAS
2
Break in 110
Review of This sequence of actions starts with the sign-on procedure. The old program
Validity Check is copied from the diskette and placed into the memory with the command
Operations
and Deleting LOAD “PAYS5”
Obsolete
Programs When the system indicates that it is ready with a prompt, the new lines
between 130 and 140 are typed. The SAVE and LiST cominands save a copy
of the modified PAY6 and provide a display of the program so that you can
visually verify your modifications. If an error has occurred, you can call the
old PAYS program and make the modifications again. This same sequence
is used for the inventory example.

Note that only the program in memory is changed. The diskette is not
affected unless you SAVE a program. SAVE copies a program from the
memory to the diskette. You can find out what programs are stored for you
on the diskette by typing the directory command.

You can also delete programs from the diskette with the KILL com-
mand. Old programs that have been superseded by newer programs should
be removed. Look at the directory. See if you have programs that you no
longer need. If there are obsolete programs in your catalog that you want to
remove, then type KILL followed by the program name in quotation marks.
When the system responds with the prompt character, the program has been
deleted from the diskette.

SUMMARY This chapter covered four new techniques:

e How to get data from a keyboard
e How to process many records

Summary / 63

® How to check records for reasonableness
@ How to delete obsolete programs

All these techniques make your programs more realistic because they add
generality and flexibility. No longer do you need to know specific data val-
ues when you write a program. The specific data can be entered when the
program is used. No longer does a program have to be re-run for each re-
cord. A loop controlled by a GOTO can process many records in one run.
And with range checks, some of the errors in input data will be caught.
Therefore, programs written this way use the computer more flexibly and
provide important assistance to the users.

BASIC Commands Inhoduéed:

KILL Eliminates a program from the diskette. Must use
program name.

BASIC Instructions Infroduced:

Statement Explanation

INPUT XY Takes numeric values for fields X and Y from the
keyboard.

INPUT X$,Y$ Gets alphabetic values for fields X$ and Y$ from
the keyboard.

GOTO nnn Tells the system to go to line number nnn for the
next instruction.

IF x THEN nnn If x is true then go to line nnn for the next instruc-
tion, otherwise (if x is false) go to the next line in
sequence.

Comparison operators Result of comparison

X=Y Result is true if X equals Y

X<Y Result is true if X is strictly less than Y

X<=Y Result is true if X is less than or equal to Y

X>Y Result is true if X is strictly greater than Y

X>=Y Result is true if X is greater than or equal to Y

X<>Y Result is true if X is not equal to Y

Rather than stating the comparison result as true or false, yes or no may be
used.

64 / Data Entry

PROBLEMS

Write a program to do the following:

1.

Modify the invoice problem in this chapter to check the value of the
price per unit. The price should not be less than zero or more than $20.
Data to be input at execution time

Units 20 12 34 27 100
Price 1.50 21.22 1450 195 256

Modify the commission problem in this chapter to check the values of
gross sales and commission rate. Gross sales may range from 0 to
$100,000. The commission rate varies from 2% to 6%. Data to be input
at execution time

Gross sales 2,476 29,650 400,000 97,727
Commission rate 4% 4.2% 2.1% 6.7%

Error messages should indicate whether the error detected is in
gross sales or the commission rate.

Modify the payroll example on page 56 to output specific error messages
such as “HOURLY RATE TOO HIGH”, “HOURLY RATE TOO
LOW”, “HOURS TOO HIGH”, “HOURS TOO LOW”, “OVERTIME
TOO HIGH”, “OVERTIME TOO LOW”. Use the following data:

Name Hourly Rate Regular Hours QOvertime

Able $1.95 40 0
Baker 2.96 42 26
Charlie 11.65 -4 0
Fern 5.50 40 25
Graak 7.20 40 10

In Problem 3 above, a single error will result in not processing a per-
son’s data. Modify your program so that multiple errors in a person’s
data will be detected and result in appropriate error messages. Use the
same data. Note: Process invalid records.

IViU(iiiy Lilc iuvcuwxy C)&'cuupic Vil papc ;8 W vutput opcuifw (SRS
messages such as “BEGINNING INVENTORY TOO HIGH”, “BE-
GINNING INVENTORY TOO LOW”, “UNITS RECEIVED TOO
HIGH”, “UNITS RECEIVED TOO LOW”, “UNITS ISSUED TOO
HIGH”, “UNITS ISSUED TOO LOW?”, “COST TOO HIGH”, “COST
TOO LOW?”. Use the following data:

Problems / 65

Beginning Units Units
Inventory Received Issued Cost

100 20 60 § 4.00
20 3,500 4,000 §$.75
500 200 600 $12.00
20 ~40 60 § 1.50
~100 200 700 $14.00

Modify your program in Problem 5 so that multiple errors in a data re-
cord (a line of input) will be indicated. Use the same data. Note: Process
invalid records.

4 / Sequential Files

67

Sefting up a File / 69

At the end of this chapter you should be able to: Performance

® Use files to store data Objectives

® Write a program that will put data in a file
® Write a program that will read data from a file
® Find a record in a file

To use a computer, it is necessary to get data into the computer. In many
cases when the amount of data is large, a computer file has to be set up to
store the data. With files, the same data can be used again and again.

With files, entry of data is separated from the processing of data. There-
fore, the data can be entered into a computer file at one time to be processed
later.

But the files that a computer uses are different from the files used by
people. Data is stored in a computer file in electromagnetic form. And peo-
ple can’t read electromagnetic data directly.

It is necessary to write a program to enter data into files and to write
programs that read data from files. In this chapter, we will show you how to
set up a file for computer processing. The type of file used is a sequential file.
The file is called a sequential file because it is organized in a particular se-
quence, one record next to another. In a later chapter another type of file, a
direct access file, will be discussed.

Note for the Model II: In order to run programs with files, you must make
a simple modification to the sign-on procedure. Up to this point the last step
of the sign-on was to type BASIC; now you must type BASIC-F:n and press
“ENTER?”. The n is the number of files that you will use in a program.

The payroll problem will illustrate the capabilities of BASIC to handle files. ~ SETTING UP
In this case, we want to write a program that lets a data entry A FILE
operator enter data into a file. Later, we will use the data in the file for cal-
culations and reports. When files are used, only one record at a time is read
or written.

The payroll data for this problem consists of records with the following
fields. Field names are in parentheses.

Employee number (N)

Employment department number (D)
Employee name (N$)

Hourly rate of pay (H)

Regular hours worked (R)

Overtime hours worked (V)

The processing consists of entering data through a keyboard and placing it
in a file. For output, messages telling the operator what to do are necessary.

70 / Sequential Files

Problem Summary

Input Valid Range
Employee number 100 to 999
Employee department number 1 to 20
Employee name anything
Hourly rate 3.05 to 15.00
Regular hours worked 0 to 40
Overtime hours worked 0to 20

Processing
Take data from a keyboard and place valid data in a file. Check the data
for validity.

Output
Instructions for operator and data on a computer file.

Therefore the program has to be able to:

1. Setup anew file (openit).

2. Getdata from the keyboard when an operator types it.
3. Write the data into a file that the computer can use.

4, Stop when all the data has been entered.

See the flowchart (Fig. 4-1) and program to do all of these actions below:

10 REM THIS PROGRAM TAKES DATA FROM THE KEYBOARD AND
20 REM PLACES IT IN THE EMPLOY FILE

100 OPEN "O",1l,"EMPLOY"

110 PRINT "TYPE EMPLOYEE NUMBER, DEPARTMENT NUMBER, EMPLOYEE NAME"
120 PRINT "HOURLY REATE, REGULAR HOURS"

130 PRINT "OQVERTIME HOURS, SEPARATED BY COMMAS"
140 PRINT “"WHEN FINISHED, TYPE 99,99,aA,99,99,99"
150 INPUT N,D,NS$,H,R,V

160 IF N=99 THEN 400

170 IF N<100 THEN 290

180 IF N>999 THEN 290

190 IF D<1 THEN 290

200 IF D>20 THEN 290

210 IF H<3.05 THEN 290

220 IF H>15.00 THEN 290

230 IF R<0 THEN 290

240 IF R>40 THEN 290

250 IF v<0 THEN 290

240 TE US?20 THRN 240

270 PRINT #1, N;D;N$;",":;H;R;V

280 GOTO 110

290 PRINT "ERROR IN INPUT DATA, PLEASE RETYPE"
300 GOTO 110

400 CLOSE #1

32767 END

Setting up a File 7 71

‘ Start }

Open
File

Write Operator
Instructions

Y

Get Data from
Terminal

Is
Data
Finished?

Close
File

Y

‘ Terminate ’

Write
Error
Message

Write Data
onto File

Flowchart for Setting Up a File Figure 4-1

This program contains three new statements:

e Line 100 opens a file.
e Line270 writes data into a file.
o Line 400 closes a file.

Let’s look closely at these three statements.

Open a file: Line 100 is OPEN “0”.1,“EMPLOY”. This statement is used
to open a file for writing. It creates the file “EMPLOY” if it has not been
- OPENed before. The statement says to open a file, for writing, that the

72 / Sequential Files

number of the file is 1, and that the name of the file is “EMPLOY?”. The “O”
in the statement stands for output. The data will be written “out” to the
diskette. The one (1) is the number of the file. The file number is necessary
inside the program to identify the file. Line 100, therefore, links the compu-
ter file name with the file number.

The file name is limited to 8 alphanumeric characters. The first char-
acter must be alphabetic. Examples of valid and invalid file names are
shown in the following list. (Note: The rules for filenames are the same as
the rules for program names!)

Example Explanation
A Valid file name. You can use up to 8 characters.
Al Valid file name. Numbers are also alphanumeric charac-

ters. The file names A and Al are not recommended since
they may be confused with field names.

LIST Valid file name; but not recommended since it is a BASIC
command and therefore a possibility of confusion exists.

ACCREC Valid file name. Good choice of a name since ACCREC for
Accounts Receivable has mnemonic (helps you remember)
characteristics.

2PAYROLL Invalid file name. File names must begin with a letter.

After you have run this program you will find that your directory con-
tains not only programs but also the data file “EMPLOY”.

Write into a file: Line 270 PRINT #1,N;D;NS$;”,”;H;R;V uses the file
number, one (1) in this case, preceded by a “#” symbol. The # symbol means
that the number following it is a file identifier number. A file number is
used for brevity —it is shorter to use a file number than to refer to a file by
its name (“EMPLOY”). Valid file numbers are 1, 2, and 3.

The PRINT in line 270 tells the computer to write. The “#1” tells it
where to write and the list of fields tells it what to write. The fields are
always separated by semicolons with one exception. If a field contains
alphabetic data (N$), it must be followed by a semicolon and quotation
mark, comma, quotation mark, semicolon (;”,”;). This is necessary since
the computer treats numeric fields differently from alphabetic fields.

Close 2 file: Line 400 CIOSE #1 closes the file. The CLOSE tells the
computer that you are finished with the file.

When you use computer files, think about a file cabinet in an office. In
order to put data into a fiJe cabinet, you have to open the file drawer

Setting up a File / 73

(OPEN), place the information in the drawer (PRINT), and, finally, close
the drawer (CLOSE).

One last explanation before you try this program. In line 140 the opera-
tor is instructed to type “99,99,AA,99,99,99” when no more data has to be
entered. This entry generates a last record. In effect, we have a dummy re-
cord. It is used to indicate that the data input to the file is finished.

But the computer doesn’t know that you have chosen a record with 99’s
and an AA in each field to end the data. This record is called a dummy re-
cord since it does not contain usable payroll data. To the machine, it looks
like any other record. We know that this record indicates the end of data
because that’s what we told the operator to do in line 140 in order to end
data input. We could have told the operator to enter any other values in line
140 to indicate the end of data. But whatever we told the operator, we have
to pick carefully. The dummy record should be invalid so that it stands out.
It should be the same every time so that when the data changes, we don’t
have to rewrite the program.

The instruction to type 99’s and AA serves to end the data for the pay-
roll problem. When such a record is reached, we know that it is time to close
the file since data entry is finished. The end of data is tested in line 160. If N,
the field for employee number, has a 99 then we assume that no more data
will be forthcoming, and we go to line 400 to close the file.

Sign-on the system and type the program. Once you have finished typ-

ing the program and given the RUN command, enter the payroll data shown
below in Table 4-1.

Payroll Data Table 4-1
Employee Department Employee Hourly Regular Overtime
Number Number Name Rate Hours Hours
101 1 Adams $5.00 40 0
103 12 Baker 5.60 40 4
104 17 Brave 4.00 40 2
108 16 Cohen 6.25 38 0
172 2 Johnson 3.75 40 0
198 1 Tanner 4.25 36 0
202 16 Wilson 4.00 40 0
206 7 Lester 5.25 40 0
255 12 Schmidt 5.60 40 4
281 12 Miller 6.00 40 0
313 7 Smith 4.25 40 4
347 12 Gray 6.00 38 0
368 1 Weaver 3.50 40 2
422 1 Williams 4.00 40 0

74 / Sequential Files

Better yet, write the program and talk somebody else into entering the data
from the keyboard. By having somebody else enter the data, you have a
closer approximation to how things are actually done in organizations. If an
error occurs during data entry, then you must stop the program and run it
again from the beginning. So be careful. In the last section of this chapter
you will learn how to correct records in a data file.

Example Inventfory Example: Create a file called “INV” with five fields per record.

Problem Summary

Input
Part Beginning Units Units
Number Units Received Issued Cost
101 120 40 45 $5.00
210 20 70 100 7.00
219 60 60 80 3.25
226 S 110 90 2.95
235 100 0 50 6.20
347 0 50 20 4.60
Data ranges remain the same as in Chapter 3.

Processing
Take data from keyboard and place valid records in a file named
“INV”,

Output

Instructions for data entry and a file named “INV”.

100 REM THIS PROGRAM PUTS DATA INTO THE INV FILE

110 OPEN "O",l,"INV"

120 PRINT "TYPE PART NUMBER, BEGINNING UNITS, UNITS RECEIVED,"
130 PRINT "UNITS ISSUED, AND COST, WITH COMMAS IN BETWEEN"
140 PRINT "WHEN FINISHED TYPE 1,1,1,1,99"

150 INPUT P,B,R,I,C

160 IF C=99 THEN 350

170 IF B<0O THEN 270

180 IF B>1000 THEN 270

190 IF R<0 THEN 270

200 IF R>3000 THEN 270

210 IF I<0 THEN 310

Settingup a File 7 75

220 IF I>B+R THEN 310

230 IF C<1 THEN 330

240 IF C>10 THEN 330

250 PRINT #1,P;B;R;I;C

260 GOTO 120

270 PRINT "ERROR IN BEGINNING UNITS-RETYPE"

280 GOTO 120

290 PRINT "ERROR IN UNITS RECEIVED-RETYPE"

300 GOTO 120

310 PRINT "ERROR IN UNITS ISSUED-RETYPE"

320 GOTO 120

330 PRINT "ERROR IN COST-RETYPE"

340 GOTO 120

350 CLOSE #1

360 STOP

32767 END

READY

>

>RUN

TYPE PART NUMBER, BEGINNING UNITS, UNITS RECEIVED,
UNITS ISSUED, AND COST, WITH COMMAS IN BETWEEN
WHEN FINISHED TYPE 1,1,1,1,99

? 101,120,40,45,5.00

TYPE PART NUMBER, BEGINNING UNITS, UNITS RECEIVED,
UNITS ISSUED, AND COST, WITH COMMAS 1IN BETWEEN
WHEN FINISHED TYPE 1,1,1,1,99

? 210,20,70,100,7.00

ERROR IN UNITS ISSUED-RETYPE

TYPE PART NUMBER, BEGINNING UNITS, UNITS RECEIVED,
UNITS ISSUED, AND COST, WITH COMMAS IN BETWEEN
WHEN FINISHED TYPE 1,1,1,1,99

? 219,60,60,80,3.25

TYPE PART NUMBER, BEGINNING UNITS, UNITS RECEIVED,
UNITS ISSUED, AND COST, WITH COMMAS IN BETWEEN
WHEN FINISHED TYPE 1,1,1,1,99

? 226,5,110,90,2.95

TYPE PART NUMBER, BEGINNING UNITS, UNITS RECEIVED,
UNITS ISSUED, AND COST, WITH COMMAS IN BETWEEN
WHEN FINISHED TYPE 1,1,1,1,99

? 235,100,0,50,6.20

TYPE PART NUMBER, BEGINNING UNITS, UNITS RECEIVED,
UNITS ISSUED, AND COST, WITH COMMAS IN BETWEEN
WHEN FINISHED TYPE 1,1,1,1,99

? 347,0,50,20,4.60

TYPE PART NUMBER, BEGINNING UNITS, UNITS RECEIVED,
UNITS ISSUED, AND COST, WITH COMMAS IN BETWEEN
WHEN FINISHED TYPE 1,1,1,1,99

21,1,1,1,99

Break in 360

76 / Seqguential Files

Exercises Account Balance Exercise: Set up a customer statement file (“CUST”)
with six records that contains the data specified below.

Problem Summary

Input
Customer Customer
Number Name Balance Payments Charges
2741 Fernwood 120 120 40
2937 Blakey 0 0 90
3246 Grey 250 130 170
3359 Phillips 90 40 100
3426 Bird 180 180 200
3527 Lombard 100 100 250
Processing
Take data from keyboard and place it in a file named “CUST”.
Qutput

Instructions for data entry and a file named “CUST”.

Sales Commission Exercise: Set up a sales file called “SALES” that con-
tains seven records with the data specified below.

Setting up a File / 77

Problem Summary

Input
Sales Gross Commission
Territory Salesman Sales Rate
1 Bill $12,050 .05
1 Joe 5,270 045
2 Tom 6,940 .04
2 Phil 11,200 055
3 Clyde 7,340 04
3 Harry 9,460 045
3 Bob 14,690 05
Processing
Take data from keyboard and place it in a file named “SALES”.
Output

Instructions for data entry and a file named “SALES”.

78 / Sequential Files

READING A In the previous section, you learned how to set up a computer file. To know
FILE what is in a computer file, it is necessary to write a program. The program
will read a file and print its contents.

The processing for this program consists of reading a file, record by re-
cord, and then printing the records. The program continues reading and
printing records until there are no more records in the file.

A program to do that is shown below:

10 REM THIS PROGRAM READS AND PRINTS THE "EMPLOY" FILE
100 OPEN "I",1,"EMPLOY"

110 INPUT #1,N,D,N$,H,R,V

120 PRINT N;D,N$,H,R;V

130 GOTO 110

250 CLOSE #1

500 STOP

32767 END

This program contains one new instruction:
110 INPUT #1,N,D,N$,H,R,V

Line 110 tells the computer to input field values from file number 1. The
INPUT statement that reads a file is identical to the input from a terminal
except for the specification of the file number.

When we run this program, the content of the file is printed:

101 1 ADAMS 5 40 O
103 12 BAKER 5.6 40 4
104 17 BRAVE 4 40 2

Reading a File / 79

108 16 COHEN 6.25 38 O
172 2 JOHNSON 3.75 40 O
198 1 TANNER 4.25 36 O
202 16 WILSON 4 40 O
206 7 LESTER 5.25 40 O
255 12 SCHMIDT 5.6 40 4
281 12 MILLER 6 40 O
313 7 SMITH 4.25 40 4
347 12 GRAY 6 38 0
368 1 WEAVER 3.5 40 2
422 1 WILLIAMS 4 40 O

Input past end in 110

You’'ll note that, at the end of the file, when the program attempts to
read past the last record in the file, a message is printed on your output. The
message is: Input past end in 110.

To eliminate this message, it is necessary to introduce a new BASIC in-
struction. The instruction is the same as any IF statement, but in this case it
takes the following form:

105 IF EOF(1) THEN 250

The EOF(]) tells the computer that if the end of the file one [EOF(1)] is en-
countered in the INPUT statement, the next line to execute in the program
is 250. This closes the file and then ends the program. Line 130 GOTO 110
must be modified to 130 GOTO 105 so that the end of file occurs before
each record is read.

You may wonder why the test for the end of file occurs in the program
before the INPUT statement rather than after it. In TRS-80 BASIC it must
always precede the INPUT statement in order for the test to work properly.
(Beware: From a logical point of view, flowcharts that have end of file
tests will place the test after the INPUT statement.) The placement of the
end of file test in TRS-80 BASIC is one of the oddities of the rules of the
language.

You may also wonder how all six fields printed on a line can appear on
a single line of the screen. This is done by the use of semicolons in the
PRINT statement.

120 PRINT N;D,N§,H,R;V

The semicolons override the use of the print zones and will place fields very
close to each other. In the line above, the department number field is
printed close to the employee number field. The same is true in the case of
the regular hours and overtime hours fields. You have to be careful in the

80 / Sequential Files

use of the semicolon if you want your columns to line up. You should only

use semicolons after numeric fields that have the same number of digits. Try

putting a semicolon after the hourly rate or the name and see what happens.
Below you have a listing of the program and its output.

10 REM THIS PROGRAM READS AND PRINTS THE "EMPLOY" FILE
100 OPEN "I",1,"EMPLOY"

105 IF EOF(1l) THEN 250

110 INPUT #1,N,D,N$,H,R,V

120 PRINT N;D,N$,H,R;V

140 GOTO 105

250 CLOSE #1

500 STOP

32767 END

READY

>

>RUN

101 1 ADAMS 5 40 0
103 12 BAKER 5.6 40 4
104 17 BRAVE 4 40 2
108 16 COHEN 6.25 38 0
172 2 JOHNSON 3.75 40 0
198 1 TANNER 4,25 36 0
202 16 WILSON 4 40 0
206 7 LESTER 5.25 40 O
255 12 SCHMIDT 5.6 40 4
281 12 MILLER 6 40 0
313 7 SMITH 4.25 40 4
347 12 GRAY 6 38 0
368 1 WEAVER 3.5 40 2
422 1 WILLIAMS 4 40 0
Break in 500

Example Inventory Example: Read the file “INV” and print each record in that file.

10 REM THIS PROGRAM READS "INV" FILE AND PRINTS IT
100 OPEN "I", 1,"INV"
105 IF EOF(1) THEN 250
110 INPUT #1, P,B,R,I,C
120 PRINT P;B,R,I,C
130 GOTO 105
250 CLOSE {1
500 STOP
32767 END
Ready
>RUN
101 120 40 45 5

Reading a File 7 81

219 60
226 5
235 100
37 0

Break in 500

Account Balance Exercise: Read the customer statement file “CUST” and
print each record.

60
110

80
90
50
20

.
-

5
5

o w
AMNO N

Exercises

Sales Commission Exercise: Read the sales file “SALES” and print each

record.

82 / Sequential Files

FINDING A
RECORD IN
A FILE

A file of data is created for some purpose. Files are not created to be placed
on a shelf in the corner to collect dust. Files are used to hold data until there
is a need for it. When there is a need for data, we must be able to go to a file
and pull data, with the desired characteristics, out of the file.

Suppose that Smith, employee number 313, wanted to know how many
hours of overtime he had worked. Smith is one of the people in the file “EM-
PLOY™. To answer his question, we need to write a program that will locate
his record and print it out. But to locate his record in a sequential file, all
preceding records will have to be read.

Problem Summary
Input
The file “EMPLOY” with each record having six fields:
@ Employee identification number
@ Department number
@ Employee name
@ Hourly rate
@ Regular hours worked
@ Overtime hours worked

Processing
Search the file until the record with employee number 313 is found.
Print that record and stop.

Output
If the search is successful, the desired record is printed. If the search is
not successful (the record is not in the file) then a “RECORD NOT

FOOT INTIND i a e T L s
F R A P AHLCOIEN 4D pSAARILAL,

The logic of the program for finding a record in a sequential file is:
1. Link to the file.

2. Read a record.

Finding a Record in a File / 83

3. If it is the record we want, then print it; otherwise, read the next record.

4. Stop when the search is finished.

A flowchart (Fig. 4-2) and program to do these tasks are shown below:

Open
File

Do
P

{

Read a
Record

End of File
Been Reached?

“END OF DATA"
Message

Terminate

Is It
the Record
We Want?

NO

Print the
Record with
Headings

Terminate

Flowchart of Finding a Record Figure 4-2

100 REM PROGRAM TO FIND AN EMPLOYEE RECORD
110 OPEN "I",1,"EMPLOY"

120 IF EOF(1) THEN 280

130 INPUT #1, N,D,NS$,H,R,V

140 IF N=313 THEN 170

84 / Sequential Files

150 GOTO 120
160 REM PRINT THE RECORD FOUND

170 PRINT "EMPLOYEE","EMPLOYEE","HOURLY","REGULAR", "OVERTIME"
180 PRINT "NUMBER®,"NAME","RATE","HOURS", "HOURS™
190 PRINT M,M$,H,R,V

200 CLOSE #1

210 STOP

270 REM ##% RECORD NOT IN FILE #u#

280 PRINT "END OF DATA-RECORD NOT FOUND®

290 CLOSE #1

300 STOP

32767 END

READY

>

SRUN

EMPLOYEE EMPLOYEE HOURLY REGULAR OVERTIME
NUMBER NAME RATE HOURS HOURS
313 SMITH 4.25 40 y

The key to the search program lies in statement 140. Here the employee
number of the record that was read from the file is compared to 313, Smith’s
employee number. If there is a match (i.e., the vaiue of N, the employee
number, is 313), then we know that the desired record has been found and
can be printed in lines 170-190. Or, if the employee number is not 313, the
next record in the file is read and the check for a match is repeated.

But notice that we also need to consider the possibility that Smith is not
in the file, Maybe he was on vacation or sick leave and did not work that
week. Or maybe his time card was lost and not entered into the file. Hence,
we must include instructions telling the computer what to do if the end of
file is reached. The IF EOF(1) condition in line 120 and the statements fol-
lowing line 280 take care of that possibility.

No matter the result, whether the desired record is found, or the desired
record is not in the file, or the program “bombs” (fails), the file must be
closed and the program must be terminated.

We have repeated this same logic in the next example. Look it over, and
try the exercises that follow.

Example Inventfory Example: Read the file “INV”, find and print out the record for
nart numher 235 with suitable headings.

100 REM TO FIND INVENTORY RECORD
110 OPEN "I",1,"INV"

120 IF EOF(1) THEN 280

130 INPUT #1, P,B,R,I,C

140 IF P=235 THEN 170

Finding a Record in a File / 85

150
160
170
175
177
178
180
185
190
200
205
206
210
270
280
290
300

GOTO 120
REM PRINT THE RECORD FOUND

PRINT "PART NUMBER","BEG. UNITS","UNITS REC."
PRINT P,B,R

PRINT

PRINT

PRINT "UNITS ISSUED",COST™

PRINT I,C

PRINT

CLOSE #1

PRINT

PRINT

STOP

REM ##% RECORD NOT IN FILE ###

PRINT "END OF DATA-RECORD NOT FOUND"
CLOSE #1

STOP

32767 END
READY

>

>RUN

PART NUMBER BEG. UNITS UNITS REC.
0

235

100

UNITS ISSUED COST

50

6.2

Break in 210

Account Balance Exerclse: Read the customer statement file “CUST”, Exercises
find and print out the record for customer number 2741 with suitable
headings.

86 / Sequential Files

Sales Commission Exercise; Read the sales file, “SALES”, find and print
out the record for salesman Clyde with suitable headings.

Correcting Records in a File / 87

Once a file has been created it is good practice to check it by writing a pro- ~ CORRECTING
gram that reads and prints the file. Then you can look at what is in the file to RECORDS IN
see that all records have been entered correctly. Although the range checks A FILE
will catch some errors in data entry, they do not catch errors if the incorrect
value entered is within the range specified. These errors can be caught by
comparing the records in a file with what the data should have been. To cor-
rect them, a program has to be written.

Assume that the “EMPLOY” file had an error: for some reason the reg-
ular hours for Gray, employee number 347, was entered as 38 when it should
have been 40. A program to correct that error is shown below:

100 REM PROGRAM TO CORRECT THE HOURS WORKED FOR GRAY
110 REM

120 REM LINK TO FILES

130 REM

140 OPEN "I",1,"EMPLOY"

88 / Sequential Files

150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
410
420
430

OPEN "O",2,"EMPLCR"

REM

REM READ THE RECORDS FROM EMPLOY

REM

IF EOF (1) THEN 410

INPUT #1,N,D,NS,H,R,V

REM

REM DETERMINE WHETHER ITS THE RECORD FOR GRAY
REM

IF N<>347 THEN 330

REM

REM IT IS THE RECORD FOR GRAY,EMPLOYEE NUMBER 347
REM THEREFORE ASSIGN THE CORRECT HOURS WORKED
REM

R=40

REM

REM PUT RECORD INTO EMPLCR -- THE CORRECT FILE
REM

PRINT #2, N;D;NS$;",";H;R;V

GOTO 190

REM

CLOSE #1

CLOSE #2

STOP

32767 END
READY

>

>RUN

Break in 430

If you now change the program that prints the “EMPLOY?” file in line 100

to

100 OPEN“I",1,“EMPLCR?”

and run it, you can list the “EMPLCR”’ file as follows:

101
103
104
108
172
198
202
206
255
281
313

1 ADAMS 5 40 O
12 BAKER 5.6 40 4
17 BRAVE 4 40 2
16 COHEN 6.25 38 0
2 JOHNSON 3.75 40 0
1 TANNER 4.25 36 0
16 WILSON 4 40 O
7 LESTER 5.25 40 0
12 SCHMIDT 5.6 40 4
12 MILLER 6 40 0
7 SMITH 4.25 40 4

Correcting Records in a File / 89

347 12 GRAY 6 40 0

368 1 WEAVER 3.5 40 2

422 1 WILLIAMS 4 40 0
Break in 500

The logic for this program is illustrated in Fig. 4-3 (below). This
program is designed to find a specific record, employee number 347, and to

Read a Record
from EMPLOY

Terminate

Is
It the Record
We Want?

Make Correction
in Record

<t

Y

Write Record
into EMPLCR

Flowchart for Correcting Records in a File Figure 4-3

Q0 / Sequential Files

Example

change the value of the regular hours in that record. When you look at the
program two differences from earlier programs emerge:

1. Two files are opened.
2. A LET seems to be missing in line 290.

The program runs despite the apparent error in line 290. It runs be-
cause the LET is optional. Many computer systems permit you to assign
values to a field without the keyword LET. A few systems do not. In TRS-
80 BASIC, the LET is optional. Since the LET is optional, you do not have
to use it, and by this omission you can save time, and energy, not to men-
tion the added possibility of making typographical errors. In all subsequent
programs we have omitted the LET.

Two files are necessary because sequential files can only be used for
input to the program or for output from the program, but not both. There-
fore to correct an error, we need to read the old file and place the correct
data in a new file.

In this program, lines 140 and 150 open the two files. Each file must be
unique (a filename should appear only once). At the end, both files are
closed.

The logic of this program takes a record from “EMPLOY?”. Line 240
checks whether it is the record with an error. If it is, the error is corrected:
the statement in line 290 assigns the correct value to R thereby erasing the
old, incorrect value of R. And correct records are written into “EMPLCR”.
The process continues until all records have been read from “EMPLOY”
and written into “EMPLCR”.

After this program has been run, both files will appear in your direc-
tory—“EMPLOY” with its error, and “EMPLCR” with only correct
records. In effect we have copied the “EMPLOY?” file.

A more general error correction program is the next example.

Inventory Example: It has been discovered that when the file “INV” was
initially created, two errors were made. The units received for part number
219 should have been 160 instead of 60; and the beginning units for part
number 235 should have been 90 instead of 100. These records must be cor-
rected. Part numbers to be corrected should be entered in ascending order.

Proablam Shimmong

Input
The file “INV" where each record has five fields:
@ Part number
® Beginning units
@ Units received

Correcting Records in a File / 91

® Units issued
® Unit cost

Correct field values for erroneous records.

Processing
Get the identification number for incorrect records from the terminal.
Search the file until the desired record has been found. Get correct data
for incorrect records from the terminal. Place correct records into file
“INVCR”.

Output
Instructions for data entry and the file “INVCR” with correct inventory
records.

100 REM THIS PROGRAM TO CORRECT ERRORS IN THE INV FILE
110 REM

120 REM LINK TO FILES

130 REM

140 OPEN "I",2,"INV"

150 OPEN "O",3,"INVCR"

160 REM

170 REM GET PART NUMBER OF RECORD TO BE CORRECTED
180 REM

190 PRINT "TYPE PART NUMBER OF RECORD TO BE CORRECTED"
200 PRINT "WHEN FINISHED -- TYPE 99"

210 INPUT N

220 REM

230 REM CHECK IF ERROR CORRECTIONS ARE FINISHED
240 REM

250 IF N=99 THEN 545

260 REM

270 REMGET A RECORD FROM INV

280 REM

285 IF EOF(2) THEN 670

290 INPUT %2, P,B,R1,R2,C

300 REM

310 REM

320 REM CHECK IF THE RECORD NEEDS TO BE CORRECTED
330 REM .
340 IF P=N THEN 420

350 REM

360 REM WRITE RECORD INTO THE INVCR FILE
370 REM

380 PRINT #3, P;B;R1;R2;C

390 GOTO 285

400 REM

410 REM '

420 PRINT "FOR PART NUMBER ";P

92 / Sequential Files

430 PRINT "ENTER BEGINNING UNITS,UNITS RECEIVED"
440 PRINT "UNITS ISSUED, AND COST"

450 INPUT B,R1,R2,C

460 PRINT #3,P;B;R1l;R2;C

470 REM

480 REM GET PART NUMBER OF NEXT RECORD TO BE CORRECTED
490 REM

500 GOTO 190

510 REM

520 REM CORRECTIONS FINISHED, COPY REMAINING RECORDS
530 REM FROM INV TO INVCR
540 REM

545 IF EOF(2) THEN 670
550 INPUT #2,P,B,R1,R2,C
560 PRINT #3,P;B;R1;R2;C
570 GOTO 545

640 REM

650 REM TERMINATE

660 REM

670 CLOSE #2

680 CLOSE #3

690 STOP

32767 END

READY

>

TYPE PART NUMBER OF RECORD TO BE CORRECTED
WHEN FINISHED -- TYPE 99

? 219

FOR PART NUMBER 219

ENTER BEGINNING UNITS,UNITS RECEIVED

UNITS ISSUED, AND COST

? 60,160,80,3.25

TYPE PART NUMBER OF RECORD TO BE CORRECTED
WHEN FINISHED ~- TYPE 99

? 235

FOR PART NUMBER 235

ENTER BEGINNING UNITS,UNITS RECEIVED

UNITS ISSUED, AND COST

? 90,0,50,6.20

TYPE PART NUMBER OF RECORD TO BE CORRECTED
WHEN FINISHED -- TYPE 99

? 99

Break in 690

If the old program to list the “INV” file is changed as follows:

100 OPEN “I”,1,“INVCR”

Correcting Records in a File / 93

and run, the “INVCR? file is printed as follows:

101 120 40 45 5
219 60 160 80 3.25
226 5 110 90 2.95
235 90 0 50 6.2
347 0 50 20 4.6

Break in 500

This program can correct any number of erroneous records. No matter
which records are wrong or which fields have false values, the program can
correct them. However, the operator must know in which records the errors
have occurred and what the correct field values are. Both items have to be
entered by the operator from the terminal.

The program finds a record specified by the operator by searching
through the file. As it searches, records that have a lower identification
number are placed in the new file. When the record to be corrected has been
found, the operator is instructed to enter the data for that record. The data
received from the terminal is then placed into the new file. This cycle is re-
peated until there are no more records to be corrected. At that time any
records still remaining in the old file are copied into the new file.

At times it is necessary to make a copy of a file for back up. Then, if the COPYING
first file is accidentally destroyed, the copy can be retrieved and used. In the A FILE
previous section, where errors in records were corrected, a revised version
of a file was created.
The general approach to error corrections is also appropriate to copy-
ing a file:
® Link to the desired files
@ Read data from one file
® Write the data into the other file
® When no more data remains in the first file, then close both files and
terminate.
These steps are included in both examples and in both exercises of the
previous section. They are particularly obvious in lines 545-570 of the last
program (page 92) where the records remaining in file “INV” are copied to
file “INVCR”.

This chapter introduces you to sequential files. Sequential files are very eco- SUMMARY
nomical when large volumes of data have to be processed. You have seen
how to set up files and how to enter data into a file. Next the data file was
read and printed. Finding a record in a file is an elementary operation that
has uses in many applications. In this chapter finding a record was used to
correct erroneous data. The chapter concluded by pointing out that error

94 / Sequential Files

PROBLEMS

correction has to copy a file. Copying a file is necessary in error correction
because sequential files should only be read or written, not both.

In the programs of this chapter more REM statements have been used
to explain how the programs work. In computer terms, this is called internal
documentation of a program. As you proceed through the book, more and
more REM’s will be used as the programs become more complex.

BASIC Instructions Infroduced:

Statement

OPEN “I”,1, “filename”
OPEN “0”,1, “filename”

INPUT #1, fieldnamel, fieldname2, etc.

PRINT #1, fieldnamel; fieldname2; etc.

CLOSE #1

IF EOF(1) THEN line number

Explanation

Opens a file identified by
the filename, and gives it an
identifying number. The
filename can be from 1 to 8
characters. The “O” is for
output. The “I” is for input.

Reads a record from the
file. Records are specified
by their fteldnames.

Writes a record on the file.
The fields of the record will
be separated by semicolons.
Alphabetic fields are sepa-
rated by ;%,”;

Closes the file.

Tells the computer to go to
line number when all rec-
ords of a file have been
read.

1. Set up a file called “XKI” and enter the following data:

LD. Number Time |
101 40
103 40
104 40
108 38

Time 2

<D

S N

Problems / 95

172 40 0
198 36 0
202 40 0
281 40 0
347 38 0
422 40 0

Print out the contents of file XKI.

Write a simple program that will set up a file “TOP” with the input data
(below) and print out the file.

1.D. Name
247 Farnsworth
262 Lowell

264 Fergerson
275 Fong

. Read the sales file, “SALES”. Find and print out the record for sales-

man Joe with suitable headings.

Read the inventory file. Find and print out the records for part numbers
219 and 347 with suitable headings. The END OF DATA—-RECORD
NOT FOUND message will be printed.

Read the “XKI” file from Problem 1, above. Find and print out the re-
cord for I.D. number 172 with suitable headings.

For problems 7—10 below, write an additional program to read and print the

file:

7.

10.

Write a program that will read the customer statement file “CUST” and
place that data in a new file “CUST1” so that you have two files with
exactly the same data. Verify by printing “CUST1”.

. Write a program that will read the customer statement file “CUST” and

place only customer data that have customer numbers from 3000 to
4000 into a new file “CUST2”. Verify by printing “CUST2”.

Write a program that will read the sales commission file “SALES” and
place the name and gross sales data into a new file “SALE1”. However,
the company has instituted a new sales policy so that the commission
rate for all salesmen will be 6%. Verify by printing “SALESI”.

Write a program that will read the payroll file “EMPLOY” and place
the following data fields into a new file “EMPL1”: Employee number,
department number, name, hourly rate.

5 / Writing Repor’rs fron Sequential
Files

97

How to Accumulate Totals / 99

At the end of this chapter you should be able to: Performance

@ Calculate totals and subtotals for a file Objectives

@ Produce reports that are clear and legible

Data is the lifeblood of a business. Without data, a business could not oper-
ate. For example, customer orders tell a firm what items to ship to a cus-
tomer. They also tell a business who to bill and how much the customer
owes the business. Data, such as customer orders, direct the operations of a
business.

There are many other items of data that have the same characteristic, i.e.
they support business operations. Production orders, inventory transactions,
vendor invoices, time cards, and the like all serve to direct the activities of
the firm.

But data is also used to support management decision making. From a
management perspective, it is not enough to know that one customer has or-
dered one item. For decision making it is necessary to keep track of all cus-
tomers. It is necessary to look at inventories as a whole. It is necessary to
judge and evaluate all products. It is necessary to plan and control the oper-
ations of the firm as a whole.

Data to support management decisions has to be collected and pro-
cessed. The processed data has to be presented to management as informa-
tion in a report that will help management keep track of the activities of a
firm. For example, a customer report allows management to determine their
best customers. A product-line sales summary would tell management which
products are selling well and which products are selling poorly.

This chapter shows you how sequential files are processed to produce
reports. It will show you how to accumulate totals for the whole file and how
to calculate subtotals for parts of the file. And it will show you how to use
additional PRINT capabilities to make your reports neat and orderly.

In order to understand the programming involved in accumulating totals, HOW TO
the following example illustrates what is required. ACCUMULATE
TOTALS
Problem Summary
Input
“EMPLOY?™ file
Processing
Accumulate the total number of regular hours worked for all employees.
Output

Total regular hours worked with an appropriate heading.

See the flowchart (Fig. 5-1) and program to do this on the next page.

100 /7 Writing Repoarts from Sequential Files

Figure 5-1

10 REM PROGRAM TO TOTAL REGULAR HOURS WORKED FOR
11 REM ALL EMPLOYEES; Rl WILL BE THE ACCUMULATION
12 REM OF REGULAR HOURS

100 OPEN "I",1,"EMPLOY"

110 R1=0

115 IF EOF(l) THEN 190

120 INPUT #1l,N,D,NS$,H,R,V

140 R1=R1+4R

150 GOTO 115

190 CLOSE #1

200 PRINT "TOTAL REGULAR HOURS ",R1

210 sTOP

32767 END

‘ Start }

{

Open File

Set Up Total

{

Read a Record

Is

Data YES Close

Finished? File
7
Add Hours Worked Print
for Total
L:.'xw:uyu.u woTuial I [A———— |

-4

‘ Terminate ’

Flowchart for Accumulating Totals

How fo Accumulate Totals / 101

This program is very similar to the last payroll program with the excep-
tion of lines 110 and 140.

II0R1 =0

Line 110 sets the value of R1 to zero. This is called initializing an accumula-
tion. Most computer systems will do this automatically, however some sys-
tems will not. Therefore it is worth the slight additional effort to put in an
initialization statement. The choice of the name, R1 in this case, is up to the
programmer. Any name could be used provided it is not used to define any
other field. R1 seems a reasonable choice since R is the name assigned to the
regular hours field.

140 R1 = R1 + R

This statement looks strange until you remember that the equal sign (=) is
not an equal sign in algebraic terms. This statement looks the same as the
algebra statement a = a + b; however, it is different. The equal sign in BA-
SIC is an assignment. Line 140, if translated into English means take the
value that you found in field R, add its value to the current value of R1, and
assign the sum to R1. If we look at the first four records in EMPLOY the
values of R are: 40 for Adams, 40 for Baker, 40 for Brave, and 38 for Cohen.

When the computer executes line 110 it sets the value of R1 to 0, at line
120 the value of R for Adams is 40. At line 140 the values to the right of the
equal sign are 0 and 40 which sum to 40. The value 40 is now assigned to
R1; after line 140 has been executed, R1 has the new value of 40. The pro-
gram then directs that the next record be input (Baker). Again at 120 the
value of R for Baker is 40. In line 140 R1 is 40 and R is 40. When they are
summed, the new value of R1 is 40 + 40 which is 80. The program directs
that the next record be input (Brave). At line 120 the value of R for Brave is
40. At line 140, R1 is now 80 and R is 40. These values are summed and the
new value of R1 is assigned as 120. The next record is input (Cohen). The
value of R is 38, R1 is 120. The new value of R1 is assigned as 158.

This process repeats until the end of the file is reached. Then the file is
closed and the following output is produced:

TOTAL REGULAR HOURS 552
Break in 210

As a second example, let us increase the number of totals. For this case,
we want to calculate the total hours worked (both regular and overtime) and
the total wages earned by everyone. The “EMPLOY” file will again be used.
Now, we need to add the regular and overtime hours worked by each em-
ployee to get their totals, also we need to add the wages earned by each em-
ployee to get the total wages earned.

102 / Wiriting Reports from Sequential Files

Problem Summary
Input
“EMPLOY” file
Processing
Accumulate regular hours worked, overtime hours worked, and wages
earned by each employee to get totals.

Qutput
Totals for regular hours worked, overtime hours worked, and wages
earned with appropriate headings.

The program therefore has to:
1. Link to the “EMPLOY” file.
Set up fields for the totals.
Read the records in the file.

Accumulate totals.

A e

Dripmt tha
£TIIY

PP P s TSI S ER L .
¢ the totals with appropriate headings.

The program to perform these steps is shown below:

10 REM THIS PROGRAM TO ACCUMULATE TOTALS FOR REGULAR HOURS
11 REM OVERTIME HOURS, AND TOTAL WAGES EARNED IN THE "EMPLOY"
12 REM FILE.

100 OPEN "I",1,"EMPLOY"

120 R1=0

130 v1=0

140 W1=0

145 IF EOF(1) THEN 250

150 INPUT #1, N,D,NS$,H,R,V

170 R1=R1+R

180 V1=V1+V

190 W1=W1+H*R+1.5%H*V

200 GoTn 148

250 CLOSE #1

260 PRINT "TOTAI REGULAR HOURS WORKED",R1

270 PRINT "TOTAL OVERTIME HOURS WORKED",V1

280 PRINT "TOTAL WAGES EARNED BY ALL EMPLOYEES",Wl

290 STOP

32767 END

How to Accumulate Totals 7 103

RUN

TOTAL REGULAR HOURS WORKED 552

TOTAL OVERTIME HOURS WORKED 16

TOTAL WAGES EARNED BY ALL EMPLOYEES 2771.7

Break in 290

The first group of statements, lines 120, 130, and 140, sets the fields
called R1, V1, and W1 to zero. R1 will be used to accumulate regular hours.
V1 will be used to accumulate overtime hours. And W1 is used, later in the
program, to accumulate the wages earned. Again, as in the preceding exam-
ple, before you read a record, you have to initialize these fields to zero any-
where before the loop.

The second group of statements performs the accumulation of totals. As
each record is read, the data from the record is added to the fields that are
used to hold the accumulation. Remember the = symbol is an assignment
symbol and not an equal sign! What line 170 tells the computer to do is:
Take the value that is currently in R1, add to this the value that is currently
in R, and place the sum back into R1.

A similar operation occurs in lines 180 and 190. In line 180, the current
contents of V1 is added to the current contents of V; and the result is placed
into V1. In line 190, a somewhat more complicated procedure is involved:

First, the regular wages are computed when the hourly rate is multiplied
by the hours worked (H*R).

Next, the computer calculates overtime wages when it multiplies the
overtime hours (V) by one-and-a-half times the hourly rate (1.5+H).

Then, the regular wages and the overtime wages are added to the current
wage total (W1).

Finally, that sum is stored again in W1.

In this way, the wages of all employees are accumulated, but only one at
a time.

The third group of statements, in lines 260-280, prints what has been
accumulated in R1, V1, and W1, with appropriate headings, of course.

To further illuminate this process, here is another example. To highlight
how the accumulation procedure works, let’s take a simple data file and gen-
erate the totals of that file.

Assume you have a file called “SALORD”, that contains sales orders.
Further assume that each sales order has just two fields—order number and
dollar amount of order. The file of data could look like this:

104 / Writing Reports from Sequential Files

Sales Order Number Dollar Amount of Sale

20473 1800.00
20474 450.00
20475 600.00
20476 150.00
20477 500.00

Of course, a real sales order would have many more fields. For example,
a sales order would have to identify the customer, the customer address, the
salesman who made the sale (for commission calculation if needed), where
to ship the items, who to bill for the sale, and so on. And obviously, a real
sales order file would contain many more records than the five that are
shown. For our simple example, this file will be adequate.

Now, what we need to do is write a program that will accumulate the
total dollar amount of sales, and then print out this total. But let’s also print
the value of sales and the value for the total as we are accumulating.

A program to perform this task is given below:

100 REM PROGRAM TO TOTAL SALES ORDERS
110 OPEN "I",1,"SALORD"

120 T=0

125 IF EOF(1) THEN 210

130 INPUT #1, N,S

150 T=T+S

160 PRINT "S=";S,"T=";T

170 GOTO 125

210 CLOSE #1

220 PRINT "THE TOTAL DOLLAR SALES ARE: ";T
230 STOP

32767 END

If you now type RUN, the program will give the following output.

S= 1800 T= 1800

S= 450 T= 2250

s= 600 T= 2850

S= 150 T= 3000

Ss= 500 T= 3500

THE TOTAL DOLLAR SALES ARE: 3500
Break in 230

Look again at the program. We'li go over the sieps ihai 1t periorins one
by one, and we’ll trace what happens to the fields labelled N, S and T.
After opening the file, line 120 sets the field T to zero. So, picture a box
called T and put a zero into it.
T | 0 I

How to Accumulate Totals /105

Line 130 reads two values from the file and puts these values into N and S.

Thus:
N [20473] s

Line 150 then takes the value of field T. Look at the box called T
above. It contains a zero-right? So, it takes the zero and adds to it the
content of the box called S. S contains 1800. So, 1800 is added to zero and
now T would look like:

T 1800

In line 160, we print the contents of S and T. And line 170 gets us back
to line 125. At line 130, the next set of values is placed into the fields N and
S:

N s [450

Line 150 then adds what is in T (the 1800) to the contents of S (the 450).
And the result (2250) is placed into the field T.

T = 2250

Line 160 outputs S and T before line 170 takes us back for another
cycle.

You can now repeat these steps on your own. Use the boxes below for
the third, fourth and fifth records.

ending
3rd starting T | 2250 | NI] S] T]
4th NI] SI] T I l
Sth NI] SI] T I]

Note the pattern that is followed in accumulating a total. Start by set-
ting a field to zero. Then, add one item at a time to that field until you are
out of data. When you next PRINT that field, the grand total is output.

Example
Problem Summary

Input

“SALES” file
Processing

Accumulate the total sales commissions that must be paid to the sales-

men.
Output

Total of all the commissions suitably labelled.

106 / Writing Reports from Sequential Files

Exercises

10 REM THIS PROGRAM TO ACCUMULATE IN <Cl
11 REM THE TOTAL COMMISSION PAID TO ALL SALESMEN
12 REM IN THE FILE "SALES"

100 OPEN "I",3,"SALES"

110 C1=0

115 IF EOF(3) THEN 250

120 INPUT #3, b,S$,S,C

140 Cl=Cl+S*C

150 GOTO 115

250 CLOSE #3

260 PRINT "TOTAL COMMISSION PAID",Cl

270 STOP

32767 END

RUN
TOTAL COMMISSION PAID 3137.05
Break in 270

Inventory Value Exercise:

Problem Summary
Input
“INVY file
Processing
Accumulate the beginning units, units received, and units issued; calcu-
late the total inventory value at the beginning of the period.
Qutput
Totals for beginning units, units received, units issued, and beginning
inventory value, with appropriate headings.

How to Accumulate Totals / 107

TOTAL BEGINNING UNITS 285
TOTAL UNITS RECEIVED 260
TOTAL UNITS ISSUED 285
TOTAL VALUE OF THE BEGINNING INVENTORY 1429.75

Account Balance Exercise:

Problem Summary
Input data
“CUST” file
Processsing
Accumulate balances, payments, charges, and new balances for the file.

108 / Wiriting Reports from Sequential Files

Output
Totals for balances, payments, charges and new balances, with appro-
priate headings.

How to Calculate Subtotals / 109

TOTAL BEGINNING BALANCES 740

TOTAL PAYMENTS 570 /
TOTAL CHARGES 850

TOTAL NEW BALANCES 1020

Break in 300

In many cases, summaries of the file as a whole are too gross to make any HOW TO
decisions. A more refined breakdown of the data is needed. But the detail is CALCULATE
not at the individual record level. Instead of totals for the file as a whole or SUBTOTALS

detail at the individual record level, we need an intermediary categorization
of the data. Subtotals provide such intermediary categorizations.

Again, we look to the payroll problem for an illustrative example. Look
at the payroll data file. It contains values for employee number, department
number, employee name, etc. For our example, we need a summary of em-
ployee wages by department.

Departmental subtotals furnish an intermediary breakdown of the data.
They are not as aggregate as file totals, neither are they as detailed as the
earnings by individual employee. Instead, they fit someplace between the
employee level detail and the all encompassing aggregation of file totals.

But before subtotals can be calculated with sequential files, the data has
to be reorganized. Table 5~ 1 shows how the EMPLOY file would look once
it’s been placed into department number sequence.

Employee File Sorted by Department Number Table 5-1
Employee Dept. Employee Hourly Regular Overtime
Number Number Name Rate Hours Hours
422 1 Williams $4.00 40 0
368 1 Weaver 3.50 40 2
198 1 Tanner 4.25 36 0
101 1 Adams 5.00 40 0
172 2 Johnson 3.75 40 0
313 7 Smith 425 40 4
206 7 Lester 5.25 40 0
347 12 Gray 6.00 38 0
281 12 Miller 6.00 40 0
255 12 Schmidt 5.60 40 4
103 12 Baker 5.60 40 4
202 16 Wilson 4.00 40 0
108 16 Cohen 6.25 38 0
104 17 Brave 4.00 40 2

10 7/ Wilting Reports from Sequential Files

The process used to order the data in a particular sequence is called
sorting. (Sorting is a complex subject, so we will not cover the logic of sort-
ing a data file. Instead, Appendix B contains a sort program with instruc-
tions on how to use it. We will indicate where a sort is needed, but sorting
itself is left to your discretion.)

Problem Summary
Input
“EMPLOY” file in department number sequence, which will be called
“EMPLDP”.
Processing
Accumulate regular hours worked, overtime hours worked, and wages
earned by department and for the file as a whole.
Quitput
Subtotals and totals accumulated.

The program will have to:

Link to the “EMPLDP” file.

Set up fields for subtotais and totais.
Read the records in the file.
Accumulate subtotals by department.
Print the subtotals.

Accumulate totals for the file.

Print the totals.

® N R Wy

Terminate.

The flowchart for the program is shown in Figure 5-2. A program to do
these steps is shown below.

10 REM PROGRAM TO ACCUMULATE SUBTOTALS FOR THE
11 REM PAYROLL PROBLEM AND TO ACCUMULATE TOTALS
12 REM OF THE SUBTOTALS
130 OPEN "I",1,"EMPLDP"

T AN ™ n
AU avae T

TN 71 N
R L S V4

160 wWl=0
170 R2=0
180 v2=0
190 w2=0
200 D1=0
210 PRINT "DEPARTMENT","REGULAR","OVERTIME", "WAGES"

How to Calculate Subtotals /

11

220 PRINT "NUMBER","HOURS","HOURS","EARNED"

230 PRINT [LI u,u _____ "’u _____ n,n ______ "

240 REM READ THE DATA IN THE FILE

245 IF EOF(1l) THEN 520

250 INPUT #1, N,D,NS,H,R,V

\265 REM SET UP FOR THE FIRST DEPARTMENT

270 IF D1>0 THEN 280

275 D1=D

280 IF D1<D THEN 350

290 REM THEN DEPARTMENT THE SAME AS FOR THE PREVIOUS RECORD
300 REM THEREFORE ACCUMULATE SUBTOTALS FOR THE DEPARTMENT
310 R1=R1+R

320 V1=V1+V

330 Wl=WLl+H*R+1.5%H*V

331 REM READ THE NEXT RECORD

340 GOTO 245

341 REM PRINT DEPARTMENT SUBTOTALS

350 PRINT D1,R1,V1,Wl

360 REM ADD SUBTOTALS TO TOTALS

370 R2=R2+R1

380 V2=V2+Vl

390 W2=W2+Wl

400 REM SET SUBTOTALS TO ZERO FOR THE NEXT DEPARTMENT
410 R1=0

420 V1=0

430 W1l=0

440 REM SET DEPARTMENT TO CURRENT DEPARTMENT

450 D1=D

460 GOTO 310

510 REM PRINT SUBTOTALS FOR THE LAST DEPARTMENT

520 PRINT D1,R1,V1,Wl

530 REM ADD SUBTOTALS FOR THE LAST DEPARTMENT TO TOTALS
540 R2=R2+R1

550 V2=V2+V1

560 W2=W2+W1l

570 REM PRINT THE TOTALS

580 PRINT "TOTAL",R2,V2,W2

590 REM TERMINATE THE PROGRAM

600 CLOSE #1

610 sToOP

32767 END

RUN

DEPARTMENT REGULAR OVERTIME WAGES

NUMBER HOURS HOURS EARNED
1 156 2 663.5
2 40 0 150
7 80 4 405.5
12 158 8 983.2
16 78 0 397.5
17 40 2 172

TOTAL 552 16 2771.7

Break in 610

112 /7 Writing Reports from Sequential Files

‘ Start ,

y

Open File

Set Up Totals
and Subtotals

Print Headings

Y

Read a Record

Set
Department
Number

Is It the
First Record?

There a
Change in
Department
Number?,

O S
\ MOCUinuate
() >

\\/, > Departmential
Subtotals

Figure 5-2 Flowchart for Payroll Total Program

How to Calculate Subtotals /113

Print Print Subtotals
Subtotalis for Last Dept.
Y y
Accumulate Add Subtotals
Totals to Totals
Y Y
Clear Print
Subtotals Totals
Y

\
Reset Department ‘ Terminate >
Number

Flowchart for Payroll Total Program (Cont'd.)

We can trace the logic of this program to see what it does. You’ll note
the same elements that existed in the process of getting totals.

First, the fields that are used to hold the subtotals (as well as those for
the totals) are set to zero in lines 140—190. Next, they are used to accumulate
the running totals in lines 310—330. Then they are printed in line 350; used
in the accumulation of totals in lines 370—390; and set to zero for the accu-
mulation of subtotals for the next department in lines 410—430.

As you can see, calculating subtotals is identical to the process used to
calculate totals. The key difficulty lies in determining when to start and
when to stop accumulating for one department.

How do we know we have finished with a department? Look at Table
5-1, the employee file sorted by department number. Cover up the table
(with a sheet of paper or your hand) except for the titles. Now look at the
first record. Move your sheet of paper down the table one record at a time
(because that is the way the computer does it-—the computer sees the whole
file, but only one record at a time). And herein lies the clue for determining
the end of a department. We are finished with one department when we
arrive at the next department.

Figure 5-2

114/ Wiiting Reports from Sequential Files

Example

Try it again. Look at Table 5—1, one record at a time. Look only at the
department number. We start with department number 1. Remember that
number. Look at the next record. It is still department 1. And the next one.
Still 1. Look at the fourth record. Department number is 1. Read the next
record. The department number is no longer one. Therefore, we know that
we are finished with department one.

Now let’s look at the program. The process that you have just gone
through is in lines 250, 270, 275, 280, and 450. The statement in line 250
reads a record. Line 280 compares the department number of the record just
read with a prior department number. The prior department number is de-
fined in lines 270 and 275 for the first record read, and it is set in line 450
after each department break. (A “break” in this context refers to the point
where a number changes from one value to another.)

So, DI “‘remembers’’ the previous department number. And when in
line 280 a different department number (D) is encountered (D1 not equal to
D) then the accumulated values in R1, V1, and W1 represent the subtotals
for the previous department. Hence, the logic flows to line 350 where the
subtotals are printed.

One more item needs to be mentioned: printing the last department. We
know we have finished accumulating the subtotals for the last department
when we run out of data. But at that point, while the accumulation is com-
plete, the answer resides in the computer. To get it out, it has to be printed.
But a print different from line 350 has to be used. This is the purpose of the
THEN 520 in the end-of-file test in line 245. When the end of file occurs,
then it is time to print the last department subtotal, calculate the totals,
print them, and terminate the program.

L.ook over the inventory example and then try the exercises.

Inventory Example: In the “INV” file, assume that part numbers 100—199
belong to department one (1), numbers 200-299 belong to department two
(2), and numbers 300—399 belong to department three (3). Calculate the dol-
lar value of the beginning and ending inventory for each department and
print these values as well as their grand totals. We want to write a program
that will calculate the departmental subtotals for the value of the beginning
and ending inventory values, as well as the grand totals.

Problem Summary
Input
“INV” file
Processing

Accumulate beginning and ending inventory dollar values by depart-
ment for the file.

How to Calculate Subtotals /

15

Output
Departmental subtotals and grand totals suitably labelled.

The steps in this program are the same as in the previous payroll program in
that the program will have to:

Link to the INV file.

Set up fields for subtotals and totals.

Read the records in the file.

Accumulate subtotals by department.

Print the subtotals.

Accumulate totals for the file.

Print the totals.

® N AW D e

Terminate.

10 REM THIS PROGRAM TO ACCUMULATE SUBTOTALS FOR BEGINNING
11 REM AND ENDING INVENTORY VALUES BY DEPARTMENT
12 REM AND TO ACCUMULATE TOTALS FOR THE FILE

100 OPEN "I",2,"INV"

110 B1=0

120 E1l=0

130 B2=0

140 E2=0

150 D1=0

160 PRINT "DEPARTMENT","BEGINNING","ENDING"

170 PRINT "NUMBER","INVENTORY","INVENTORY"

180 PRINT "=———--— n,u _________ u'" __________ "

190 REM READ DATA IN THE FILE

200 IF EOF(2) THEN 480

210 INPUT #2, N,B,R1,R2,C

220 N=INT(N/100)

230 IF D1>0 GOTO 260

240 D1=N

260 IF D1<N GOTO 330

270 REM DEPARTMENT NUMBER IS THE SAME AS THE PREVIOUS RECORD
280 REM THEREFORE ACCUMULATE THE SUBTOTALS

290 Bl=Bl+B*C

300 El=E1+B*C+RL*C-R2*C

305 REM READ THE NEXT RECORD

310 GOTO 200

320 REM PRINT DEPARTMENT SUBTOTALS

330 PRINT D1,Bl,El

340 REM ADD THE SUBS TO THE TOTALS

350 E2=E2+El

360 B2=B2+Bl

16/ Writing Reports rom Sequential Files

370 REM SET SUBS TO ZERO FOR THE NEXT DEPARTMENT

380 B1=0

390 E1=0

400 REM SET D1 EQUAL TO THE NEXT DEPARTMENT NUMBER

410 Dl=N

420 GOTO 290

470 REM END OF FILE REACHED~-PRINT SUBTOTALS FOR LAST DEPARTMENT
480 PRINT D1,Bl,El

490 REM ADD SUBTOTALS FROM THE LAST DEPARTMENT TO TOTALS
500 E2=E2+El

510 B2=B2+Bl

520 REM PRINT TOTALS FOR THE FILE

530 PRINT "TOTAL BEGINNING AND ENDING INVENTORIES ";B2;E2
540 CLOSE #2

32767 END

RUN

DEPARTMENT BEGINNING ENDING
NUMBER INVENTORY INVENTORY

600 575
829.75 513.75
0 138

TOTAL BEGINNING AND ENDING INVENTORIES 1429.75 1226.75

The only difference in logic between this program and the previous
payroll program is the test for a new department. Before, department num-
bers were given in a field; in this example, the department number is deter-
mined from the part number. The instruction in line 220 does this. The
statement

N = INT(N/100)

illustrates the use of a new type of BASIC statement. INT is called a func-
tion. It makes an integer (whole number) out of what appears in parenthesis
after it, by dropping anything after the decimal point. For example, if we
had the number 2.73 appearing in the parenthesis after INT, that is, if we
had INT(2.73), the resulting value would be 2. In the particular case of the
expression in this program, when the first record is input, N is equal to 101,
INT(N/100) divides the value 101 by 100, giving 1.01, and the integer func-
tion makes an integer (1) out of this value.

So DI has the value 1. Tn this way all parts with values 100-199 will he
accumulated. When the second record with part number 219 is input, at line
240 D1 is equal to 1 so that we go to line 330 where departmental subtotals
(for one) are printed. Then in line 410 D1 has the value of 2 and the pro-
gram continues to accumulate the subtotals for department two. Similarly,
when the last record with part number 347 is input, N in line 240 will have

How to Calculate Subtotals 7 117

the value of 3. The department subtotals (for two) will be printed and D1 in
line 410 will have the value 3. The subtotals for department 3 will be calcu-
lated and the next record (EOF) read. Since there are no more records, the
end of file occurs and the subtotals for department 3 as well as the grand
totals are printed.

Sales Commission Exercise: Exercises

Problem Summary
Input
“SALES” file
Processing
Accumulate sales and commissions by sales territory and for the file as a
whole.
Output
Territory subtotals and grand totals suitably labelled.

18 / Wiiting Reports from Sequential Files

(Attach additional paper to complete your program.)

TERRITORY TERRITORY COMMISSIONS
NUMBER SALES PAID

1 17320 839.65

2 18140 893.6

Account Balance Exercise: The department is indicated by the first digit
of the customer number.

Problem Summary
Input
“CUST” file
Processing
Accumulate initial balances and final balances by department and for
the file as a whole.
Output
Department subtotals and grand totals suitably labelled.

How to Calculate Subtotals / 119

(Attach additional paper to complete your program.)

120 / Writing Reports rom Sequential Files

REPORT
WRITNG BY
COMPUTER

120 PRINT
130 PRINT
140 PRINT "
150 PRINT

; M OVERTIME HOURS, AND TOTAL WAGES EARNED IN
111 REM FILE.

DEPARTMENT BEGINNING ENDING
NUMBER BALANCE BALANCE
2 120 130
3 620 890

TOTAL BEGINNING AND ENDING BALANCES 740 1020
Break in 510

So far the output of all the programs has been labelled in a manner that
identifies it. The output of the programs up to now has been brief and satis-
factory for programmer purposes. The output would be unsatisfactory for
management purposes because it is too brief and is not self-explanatory to a
manager. Managers do not read programs. It is important that the output be
self-explanatory with appropriate headings and follow general business for-
mats.
The output to the second payroll example consists of the following:

TOTAL REGULAR HOURS WORKED 552
TOTAL OVERTIME HOURS WORKED 16
TOTAL WAGES EARNED BY ALL EMPLOYEES 2771.7

Rreak in 290

The program can be modified so that the function of the program can be
made clear in the output. The supporting data that resulted in that output
can also be printed. The report that we want to produce is usually called a
payroll report.

Problem Summary
Input
“EMPLOY” file
Processing
Accumulate regular hours, overtime hours, and wages for the company.
Output
An easily readable and understandable payroll report.

PAYROLL REPORT"

Report Writing by Computer /

121

160 PRINT

170 PRINT "EMPLOYEE DEPT NAME HOURLY REGULAR OVERTI

ME GROSS™"

180 PRINT "NUMBER NUMBER RATE HOURS HOUR

S PAY"

190 PRINT Moo m m o im o t o oo o o o e i e

200 OPEN "I",1,"EMPLOY"

210 R1=0

220 V1=0

230 Wl=0

235 IF EOF(1) THEN 360

240 INPUT #1, N,D,NS$,H,R,V

260 R1=R1+R

270 V1=V1+V

280 Wl=W1l+H*R+1l.5*H*V

290 W=H*R+(l.5%H*V)

300 PRINT USING" ### ## sH.## #H#

#,###.##"7N,D,N$,H,R,V,W

310 GOTO 235

360 CLOSE #1

370 PRINT "*******************kk********************************

khkkihkikkhkii W

380 PRINT USING"TOTALS 44
#, 444 #%";R1, VL, W1

32767 END

PAYROLL REPORT

EMPLOYEE DEPT NAME HOURLY REGULAR OVERTIME GROSS

NUMBER NUMBER RATE HOURS HOURS PAY
101 1 ADAMS 5.00 40 0 200.00
103 12 BAKER 5.60 40 4 257 .60
104 17 BRAVE 4.00 40 2 172.00
108 16 COHEN 6.25 38 0 237.50
172 2 JOHNSON 3.75 40 0 150.00
198 1 TANNER 4.25 36 0 153.00
202 16 WILSON 4.00 40 0 160.00
206 7 LESTER 5.25 40 0 210.00
255 12 SCHMIDT 5.60 40 4 257.60
281 12 MILLER 6.00 40 0 240.00
313 7 SMITH 4,25 40 4 195.50
347 12 GRAY 6.00 38 0 228.00
368 1 WEAVER 3.50 40 2 150.50
422 1 WILLIAMS 4.00 40 0 160.00

k******************

TOTALS

552 16 2,771.70

122 / Wiriting Reports from Sequential Files

The only new BASIC instruction in this program is PRINT USING. It
is similar to the PRINT instruction, but it allows us to align numbers in
columns and print zeroes after decimal points. It also can be used for
putting commas (,) in large numbers for thousands, millions, etc. The rules
for PRINT USING are as follows:

1. After the words PRINT USING a pair of quotation marks encloses
what is to be printed on a line.

2. To indicate a numeric field, use the sharp (#). Its length is determined
by the number of sharps.

3. To print a decimal point in a number, use a period (.). Its position is de-
termined by its placement between sharps (#). The value printed will be
rounded to the nearest decimal.

4. To print commas in long numbers, use a comma (,). Its position may be
determined by its placement between sharps (#).

5. Toindicate an alphabetic field, use a percent sign (%). Its length is de-
termined by a pair of percent signs and the space between. (Modei ii
use a backward slash (\) rather than %.)

6. After the second quotation mark, a list of the field names to be printed
on the line, separated by commas, must appear.

7. If the number of characters in a numeric field to be printed is larger
than the number of characters in the PRINT USING statement, a per-
cent (%) will be printed.

Assume for the examples the following field values:

= 101
ADAMS
5.0

Il

I

N
2
=)
>

A £ A
= 2476436

-4 g I eze Z
il

b means a space or blank —it is used on this page to assist you in count-
ing spaces; it is never used in a program.

Report Writing by Computer /123

Examples Printing Columns
112131456789

10 PRINT USING "###":N 1{0] 1

10 PRINT USING "BBB###":N 110]1

10 PRINT USING "PH#.##",H 51.]1]01]0

10 PRINT USING "PR###.4##",;P 2010} .10[0

10 PRINT USING "B#, ###.##" ;T 2(,1417]6 414

10 PRINT USING "pB###B#.##";N,H 1{0]1 5/].1010

10 PRINT USING "BP3BBE:" ;NS A|D/A|M|S

10 PRINT USING "PBspBEspp" ;NS A|D|AIM]| S

10 PRINT USING "###B2pBB%";N,NS 1101 A|{D|A|M|S

In the program the PRINT USING statement appears in line 300.

300 PRINT USING" ### H# % S#.## ##
#, 444, #4";N,D,NS$,H,R,V,W

The first field, N, will be printed in columns 2, 3, and 4. The three sharps in-
dicate that it is three characters long. The one space after the quotation
mark prints a blank as the first character. The second field, D, is printed in
columns 11 and 12. Its length is two characters. The third field, N$, is ten
characters long. It is alphabetic and the name will be printed in columns 19
through 28. It is ten characters long because there are eight spaces between
the percents. The percents are also counted in determining the length of the
printed field. The fourth field, H, is four characters with a decimal point
between the second and third numbers. It is printed in columns 29 through
33. Fields R and V are two and one character long and start in columns 41
and 52, respectively. The last field, W, is printed in columns 56 through 63
and will appear with a decimal point, and comma if there are numbers that
need them.

The second PRINT USING statement appears in line 380. It follows all
of the rules given above, with one extension. The word “TOTALS” is to be
printed in the first six columns of the total row. To do this, insert the word
where you want it to print.

The program does not have a STOP instruction before the END. This
STOP instruction was removed after the program was tested so that the
message Break in 390 would not appear on the report. You may remove the
final STOP instruction after you run the program and it is correct. Then run
the program a final time and the message will not appear at the bottom of
the report.

It is very important to make sure that you know the maximum length
of a field in order to specify its length in a PRINT USING instruction. If
you specify a numeric field larger than its maximum value, the numbers will

124 / Wiiting Reports from Sequential Files

SUMMARY

PROBLEMS

be right justified (printed using the far right positions first). Alphabetic
fields are printed using the far left positions first (left justified). As a result
of this, your printed output will line up in columns that are easily readable.

The preceding program is one example of how a report may be printed
so that it is easily readable and understandable. Columns of numbers can be
made neat with the PRINT USING instruction.

In this chapter you have been shown how to accumulate subtotals and totals
for a file. A use of the BASIC instruction INT has been explained for cases
where department numbers are part of some identification number. Finally
you have seen how to produce reports for management that are easily read-
able and understandable with the PRINT USING instruction.

BASIC Instructions Infroducea:
INT(X) The value X is made into an integer (whole number).

PRINT USING Prints columns of data in a manner that they may be
easily read.

1. Use the “XK1” file from the first problem in Chapter 4 (page 89) to ac-
cumulate the totals from Time 1 and Time 2. Output these totals suita-
bly labelled.

2. Use the “XK1” file to accumulate departmental subtotals from Time 1
and Time 2 assuming that departments are defined as follows:

Department I.D. Number
1 100-199
2 200-299
3 300-399
4 400-499

Output these totals suitably labelled.

3. Use the “INV” file to accumulate department subtotals and grand totals
for units received. Assume department one has part numbers 100-199,
department two has part numbers 200-299, department three has part
numbers 300—399. Output the totals suitably labelled.

4. Modify vour program that produces sales and commission department
subtotals and grand totals from the “SALES” file so that it may be read

[0 334

by management. Title it: Sales and Commission Report.

5. Modify your program that produces initial balances and final balances
by department and grand totals from the “CUST” file so that it may be
read by management. Title it: Customer Sales Report.

Problems /125

Modify the program that produces beginning and ending inventory
value by department and grand totals from the “INV” file so that it may
be read by management. Title it: Inventory Value Report.

Modify your program in Problem 3 above so that you produce a man-
agement report. Title it: Units Issued by Departments.

6 / Adding and Deleting Records

127

Adding Records to a File / 129

At the end of this chapter you should be able to: Performance

@ Add records to sequential files Objectives

© Delete records from sequential files

Files are not static. The contents of files change as the business changes. In
the payroll example, employees are hired and new employee records are
added to the files. People also leave or retire, and the old employee records
have to be dropped from the file. Customers are acquired and new customer
records have to be inserted into a file. Or a product becomes obsolete and it
must be deleted from the file.

In this chapter we will show you how to add and delete records using
sequential files.

An accidental omission has occured. When the data for the employee payroll ADDING
(Table 4-1, Chapter 4) was given, two records were lost. Now they have RECORDS
been found. Fortunately, the payroll has not been prepared. But these two TO A FILE
records have to be added to the file before the payroll program can be run.

This hypothetical situation (it would never occur in real life, would it?)
serves as the basis for showing you how to add records to a file. Let’s assume
that the two missing records are the following:

Employee Department Employee Hourly Regular Overtime

Number Number Name Rate Hours Hours
425 17 Jones 4.80 40 2
426 17 Cooper 4.25 38 0

As you can see, Jones and Cooper belong at the end of the “EMPLOY” file.
So we need to find the end of the file and add the records at that point.

But here we run into a limitation of sequential files. We can either read
from a file or print into a file, but we cannot both read and print the same_,
sequential file unless we are only addﬁ’"——gr'ecords to the end of a file. If
records are to be added between existing records or old records are to be
changed, we need to read from one file and print into another file. Since this
is the most typical situation we will use the two file approach in this chapter.

The problem has two sets of input data. First, the payroll file with its
records of six fields:

Employee number
Department number
Employee name
Hourly rate of pay
Regular hours worked
Overtime hours worked

130 / Adding and Deleting Records

Secondly, the two omitted records with the same fields (which must be
added from the keyboard). For output the problem requires a complete file
as well as messages to the keyboard operator.

The processing consists of reading the records in the old file and writing
them into a new file. When the end of data has been reached in the old file,
then records are entered from the keyboard and added to the new file.

Problem Summary

Input Data

1.

“EMPLOY” file with six fields per record:

© = Employee number

Employee department number

Employee name

Hourly rate

Regular hours

Overtime hours

No validity checks necessary since all fields have already been
checked.

© © ®© ® ©

2. New records to be added to the file, each record consisting of six
fields.
Field name Valid Range
Employee number 100 to 999
Employee department number 1to20
Employee name —
Hourly rate 3.05 to 15.00
Regular hours worked 0 to 40
Overtime hours worked 0to 20

Processing

Take data from the old file and write into new file until end of data is
reached. Then take data from keyboard and place valid records into new
file.

Output

Instructions for operator and complete payroll data file.

The program, therefore, has to be able to:

1.
2.
3.

W

Link to the file “EMPLOY”.

Set up a new file.

Read from the old file and write into new file until end ot data 1s
reached

Get data from terminal and check it for valid range.

Write valid records into new file.

Stop when new records have been added.

Adding Records to a File /7 131

The flowchart for the program is given in Figure 6—1.

Open
Files

y

1

Read a Record
from EMPLOY

Write Record
into EMPLO2

|

Flowchart for Adding Records to the End of a File

Terminate :

Write
Operator
Message

Get Data
from Terminal

YES

End of Data?

within Range?

Write Record
into EMPLO2

NO Print Error
Message

Figure 6--1

132 / Adding and Deleting Records

100
110
120
130
140
150
160
170
180
190
-195
200
220
230
280
290
#300

REM THIS PROGRAM APPENDS RECORDS TO A FILE

REM

REM OPEN FILES FOR INPUT AND OUTPUT

OPEN "I",1,"EMPLOY" - e

OPEN "O",2,"EMPLO2"

REM

REM READ THE FILE "EMPLOY"

REM CHECK FOR END OF FILE

REM AND PRINT INTO THE FILE "EMPLO2"

REM

IF EOF(1l) THEN 300

INPUT #1, N,D,NS$,H,R,V

PRINT #2, N;D;N$;",";H;R;V

GOTO 195

REM READ DATA FROM THE KEYBOARD AND

REM ADD IT TO FILE EMPLO2

PRINT "TYPE EMPLOYEE NUMBER, DEPARTMENT NUMBER"
PRINT "EMPLOYEE NAME, HOURLY RATE, REGULAR HOURS"
PRINT "AND OVERTIME HOURS--SEPARATED BY COMMAS"
PRINT "WHEN FINISHED TYPE 99,99,AA,99,99,99"
INPUT N,D,NS$,H,R,V

REM

REM CHECK FOR END OF DATA

IF N=99 THEN 590
REM

REM CHECK THE DAT
REM

IF N<100 THEN 540
IF N>999 THEN 540
IF D<1 THEN 540

IF D>20 THEN 540
IF H<3.05 THEN 540
IF H>15.00 THEN 540
IF R<0 THEN 540

IF R>40 THEN 540
IF V<0 THEN 540

IF V>20 THEN 540
PRINT #2, N;D;NS$;",";H;R;V

GOTO 300

PRINT "#*#%** ERROR IN INPUT DATA -- PLEASE RETYPE"
GOTO 300

REM

REM TERMINATE PROGRAM

REM

CLOSE #1,#2

amnD

32767 END

Adding Records to a File / 133

TYPE EMPLOYEE NUMBER, DEPARTMENT NUMBER
EMPLOYEE NAME, HOURLY RATE, REGULAR HOURS
AND OVERTIME HOURS--SEPARATED BY COMMAS
WHEN FINISHED TYPE 99,99,AA,99,99,99

? 425,17,JONES,4.80,40,2

TYPE EMPLOYEE NUMBER, DEPARTMENT NUMBER
EMPLOYEE NAME, HOURLY RATE, REGULAR HOURS
AND OVERTIME HOURS--SEPARATED BY COMMAS
WHEN FINISHED TYPE 99,99,AA,99,99,99

? 426,17,COOPER,4.25,38,0

TYPE EMPLOYEE NUMBER, DEPARTMENT NUMBER
EMPLOYEE NAME, HOURLY RATE, REGULAR HOURS
AND OVERTIME HOURS~--SEPARATED BY COMMAS
WHEN FINISHED TYPE 99,99,AA,99,99,99

? 99,99,AA,99,99,99

Break in 600

In order to determine whether the program worked, print the “EMPLO2”
file with the following program.

100 OPEN "I",1,"EMPLO2"
105 IF EOF(1l) THEN 250
110 INPUT #1,N,D,N$,H,R,V
120 PRINT N;D,NS$,H,R;V
130 GOTO 105

250 CLOSE #1

500 STOP

32767 END

101 1 ADAMS 5 40 0
103 12 BAKER 5.6 40 4
104 17 BRAVE 4 40 2
108 16 COHEN 6.25 38 0
172 2 JOHNSON 3.75 40 0
198 1 TANNER 4.25 36 0
202 16 WILSON 4 40 0
206 7 LESTER 5.25 40 0
255 12 SCHMIDT 5.6 40 4
281 12 MILLER 6 40 0
313 7 SMITH 4.25 0 4
347 12 GRAY 6 38 0
368 1 WEAVER 3.5 40 2
422 1 WILLIAMS 4 40 0
425 17 JONES 4.8 40 2
426 17 COOPER 4.25 38 0

Break in 500

134 / Adding and Deleting Records

This program contains no new statements. The TRS-80 allows a much
shorter version of this program only if we want to add records to the end of
the file. But in order for you to better understand the logic of the next
program, this program was written the long way.

Look again at the program. As you can see, it transfers all of the records
from the old file to the new file before it gets any data from the terminal. But
what if the employees Jones and Cooper had employee numbers 154 and 232
respectively? Then the program would still place their records at the end of
the file, but at the end of the file, their records would be out of sequence by
employee number.

We must change the program so that new records fit into the middle of
the new file. The location of these records is determined by the sequence of
identification numbers, in this case employee number. Records to be added
fit into the file after records with lower numbers, and before records with
higher numbers.

However, the computer cannot see the whole file. It operates on the file
one record at a time. It will know where to insert a record only after it has
read a record from the old file with a higher identifying number.

Let’s look at an example to illustrate this point. Below you have the em-
ployee numbers of a section of the payroll file. And the employee numbers

Fihe renmrde o a0 A3,
of the records to be added.

Employee New Employee
Number Numbers of Records
in File to be Added

104 154

108 232

172

198

202

206

255

282

Now look at the first number in each column. Remember, the employee
number stands for the complete record. With the first number in each col-
umn you have the whole record. You can see that record 154 belongs after
record 104. Hence 104 is transferred to the new file.

Now read the next record in the file— 108 Again since it
record to be added-154, it gets transferred to the new file. When you now

read the next record, we have the following position.

Adding Records to a File / 135

Record to be Added Record from Old File Records in New File
154 172 104
108

Here the record from the old file is greater than the record to be added.
Therefore the record to be added is placed into the new file. The new file
now consists of three records in sequential (ascending) order—104, 108 and
154.

Since we do not know where the next record will fit, until we have read
it, a new record to be added is obtained and the comparison is repeated. In
our example, the record to be added is 232. But it could just as easily have
been record 155 or 163 or 171. In that case, the record also should be placed
prior to record 172.

Think your way through the process of placing record 232 into the new
file. Read the old file, one record at a time. Move all records with lower em-
ployee numbers to the new file. Once you read a record with a higher ID
number, then place the record to be added into the new file.

You have been playing “computer” when you think through a problem
in this excruciatingly detailed way. And very simple thinking also; but that
is the way the simple-minded computer works: one elementary operation at
a time on small amounts of data.

The general pattern of record insertion hinges on two things:

1. The old records are in ascending order.

2. The program must find a record that is larger than the one that has to be
inserted into the sequence.

The program therefore has to transfer all records with lower employee num-
bers to the new file. Then the record to be added can be written into the new
file. Then the record with a higher employee number is written into the new
file. Finally, another record to be added is input and the process continued.

A program to add records to a file is shown below. The range checks of
the records to be added have been removed for brevity and to highlight the
program logic.

Problem Summary
Input
“EMPLOY” file in employee number sequence. Records to be added,
also in employee number sequence.
Processing
Place records to be added into their proper location in the file.

136 / Adding and Deleting Records

Qutput
Data entry operator instructions and complete file of payroll records.

Here is the program and flowchart (Fig. 6-2) for placing records in the
middle of a file:

10 REM THIS PROGRAM ADDS RECORDS TO THE MIDDLE OF THE FILE
100 REM OPEN THE FILES

110 REM

120 OPEN "I",1,"EMPLOY"

130 OPEN "O",2,"EMPLO3"

140 REM

150 REM GET A RECORD FROM 'I'HE TERMINAL

160 REM

170 REM

180 PRINT "TYPE EMPLOYEE NUMBER, DEPARTMENT NUMBER, EMPLOYEE NAME"
190 PRINT "HOURLY RATE, REGULAR HOURS, OVERTIME HOURS"
200 PRINT "SEPARATED BY COMMAS"

210 PRINT "WHEN FINISHED TYPE 99,99,AA,99,99,99"

220 INPUT N1,Dl,N1$,H1,R1,V1

230 REM

240 REM CHECK FOR END OF DATA FROM TERMINAL

250 REM

260 IF N1=99 GOTO 670

270 REM

280 REM SEARCH THE FILE FOR NUMBER SEQUENCE

290 REM

295 IF EOF(1l) THEN 670

300 INPUT #1, N,D,N$,H,R,V

320 IF N1<N THEN 420

330 REM

340 REM RECORD FROM FILE LESS THAN RECORD FROM TERMINAL
350 REM

360 PRINT #2,N;D;NS$S;",";H;R;V

370 GOTO 295

380 REM ~

390 REM RECORD FROM TERMINAIL IS LOWER THAN THE ONE IN THE FILE
400 REM PRINT THE RECORD IN THE NEW FILE

410 REM

420 PRINT #2, N1;DL;N1S$;",";HL;R1;Vl

430 REM

440 REM GET ANOTHER RECORD FROM THE TERMINAL
450 REM

460 PRINT "TYPE EMPLOYEE NUMBER, DEPARIMENT NUMBEK, EMPLOYEE"
470 PRINT "NAME, HOURLY RATE, REGULAR HOURS, OVERTIME HOURS™
480 PRINT "WHEN FINISHED TYPE 99,99,AA,99,99,99"

490 INPUT N1,D1,N1$,HL,RL1,V]

500 IF N1=99 GOTO 580

530 GOTO 320

Adding Records to a File / 137

540 REM

550 REM NO MORE RECORDS TO BE ADDED
560 REM TRANSFER REMAINING RECORQS 29 255 ﬂEW F%&ﬁ
570 REM

575 IF EOF(1) THEN 670

580 PRINT #2, N;D;NS$;",";H:R;V

. 590 INPUT #1, N,D,NS$,H,R,V

600 GOTO 575

620 REM ~

630 REM

670 CLOSE #1,#2

700 sTOP

32767 END

TYPE EMPLOYEE NUMBER, DEPARTMENT NUMBER, EMPLOYEE NAME
HOURLY RATE, REGULAR HOURS, OVERTIME HOURS
SEPARATED BY COMMAS

WHEN FINISHED TYPE 99,99,AA,99,99,99

? 154,17 ,JONES,4.80,40,2

TYPE EMPLOYEE NUMBER, DEPARTMENT NUMBER, EMPLOYEE
NAME, HOURLY RATE, REGULAR HOURS, OVERTIME HOURS
WHEN FINISHED TYPE 99,99,AA,99,99,99

? 232,17 ,COOPER,4.25,38,0

TYPE EMPLOYEE NUMBER, DEPARTMENT NUMBER, EMPLOYEE
NAME, HOURLY RATE, REGULAR HOURS, OVERTIME HOURS
WHEN FINISHED TYPE 99,99,AA,99,99,99

2 99,99,A4,99,99,99

Break in 700

To determine whether the program worked, print the “EMPLO3"’ file. This
may be done by modifying your program that prints the “EMPLO2’ file.
The change necessary is

100 OPEN“I",1,“EMPL03”

Then run the changed program.

101 1 ADAMS 5 40 O
103 12 BAKER 5.6 40 4
104 17 BRAVE 4 40 2
108 16 COHEN 6.25 38 0
154 17 JONES 4.8 40 2
172 2 JOHNSON 3.75 40 O
198 1 TANNER 4.25 36 0
202 16 WILSON 4 40 O

138 / Adding and Deleting Records

Example

206 7 LESTER 5.25 40 O
232 17 COOPER 4.25 38 0
255 12 SCHMIDT 5.6 40 4
281 12 MILLER 6 40 0
313 7 SMITH 4.25 40 4
347 12 GRAY 6 38 0
368 1 WEAVER 3.5 40 2

Break in 500

Let’s take another look at this program. Notice how the end of data in
the file (EOF) for the old file and the end of data from the terminal (EOD)
decisions appear a number of times. The program is made complicated by
having to consider all possibilities:

1. There are no records to be added.

2. The file is empty when more records have to be added. (In our example,
the program merely terminated when that happened; see line 295. The
extension of handling such records is left as an exercise for you.)

3. No more records have to be added while there are still records in the file.
4. The file is empty and no records need to be added.

For all four cases the program has to provide a means of reaching a satisfac-
tory conclusion. In our example, the program merely terminates without tell-
ing the operator what has happened. Maybe you can think of some way to
modify the program so that a message appears that would identify why the
program stopped.

Inventory Example: To the inventory file (“INV”), add the following two
records.

Problem Summary

Input
Part Beginning Units Units
Number Units Received Issued Cost
Record 1 112 0 50 10 8.25
Record 2 300 0 150 70 6.85
“INV” file
Processing

= - - + CIC T BN PR I et e m e mem e Eam #laa B4
FIACE ITCCULUD WU UT GUILITLL 111U LIIULL PFEULIUT IO UsRive tax vaxn soasey

Output
Data entry operator instructions
New file “INVI”
Print the file “INVI”

Adding Records to a File / 139

Read a
Record from
Terminal

Read a
Record from
File

YES

T

from File Greater
than Record from

Write Record
of Old File
into New File

Flowchart for Adding a Record into the Middle of a File

YES

Y

Add Record
from Terminal
to New File

Get Next
Record from
Terminal

Write Record

Y

Read a Record

3 Terminate

Figure 6—2

140 / Adding and Deleting Records

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570

REM PROGRAM TO ADD INVENTORY RECORDS TO THE MIDDLE OF THE INV
REM

REM LINK TO FILES

REM

OPEN "I",1,"INV"

OPEN "O",2,"INVL"

REM

REM GET RECORD TO BE ADDED FROM TERMINAL

REM

PRINT"ENTER PART NUMBER, BEGINNING UNITS, UNITS RECEIVED,"
PRINT"UNITS ISSUED, AND UNIT COST -- SEPARATED BY COMMAS"
PRINT"WHEN FINISHED -~ TYPE 99 FOR EACH FIELD®"

INPUT P9,B9,R9,I9,C9

REM

REM CHECK FOR END OF DATA FROM TERMINAL

REM

IF P9=99 THEN 1130

REM

REM SEARCH FILE FOR PLACE TO ADD NEW RECORDS

REM

IF EOF(1) THEN 480 REM INV IS EMPTY BUT ADD MORE DATA

INPUT #1, P,B,R1,R2,C

IF P9<P THEN 440

REM :

REM RECORD FROM TERMINAL BREATER THAN RECORD FROM FILE

REM THEREFORE PLACE RECORD FROM FILE INTO INV1

REM

PRINT #2, P;B;R1;R2;C
GOTO 310

REM

REM RECORD FROM TERMINAL LESS THAN RECORD FROM FILE

REM THEREFORE PLACE RECORD FROM TERMINAL INTO INV1

REM

PRINT #2, P9;B9;R9;19;CO

REM

REM GET ANOTHER RECORD FROM TERMINAL

REM

PRINT"ENTER PART NUMBER, BEGINNING UNITS, UNITS RECEIVED,"
PRINT "UNITS ISSUED, AND UNIT COST ~- SEPARATED BY COMMAS"
PRINT "WHEN FINISHED -- TYPE 99 FOR EACH FIELD"

INPUT P9,B9,R9,I9,C9

REM

REM CHECK FOR END OF DATA ENTRY

REM

IF P9=99 THEN 630

GOTO 330

REM

FIL

Adding Records to a File 7/ 141

580 REM NO MORE RECORDS TO BE ADDED, BUT RECORDS STILL IN INV
590 REM TRANSFER REMAINING RECORDS FROM OLD FILE (INV)

600 REM INTO NEW FILE (INV1)

610 REM

630 PRINT #2, P;B;R1l;R2;C

635 IF EOF(l) THEN 810 REM **INV IS EMPTY AND DATA ENTRY FINISHED
640 INPUT #1, P,B,R1,R2,C

650 GOTO 630

660 REM

780 REM

790 REM NEW FILE HAS BEEN GENERATED, SO PRINT IT OUT

800 REM

810 CLOSE #1,#%2

820 OPEN "I",1,"INVL"

830 REM

840 REM PRINT HEADINGS

850 REM

860 PRINT

870 PRINT

880 PRINT

890 PRINT "PART","BEGINNING","UNITS","UNITS","UNIT"

900 PRINT "NUMBER","UNITS","RECEIVED","ISSUED“,"COST"

910 PRINT "~—m———m n'n______u’n _________ ulu ______ n'u_______u

920 IF EOF(1l) THEN 1130 REM** NEW FILE INV1 HAS BEEN WRITTEN
930 INPUT #1, P,B,R1,R2,C

940 PRINT P,B,R1,R2,C

950 GOTO 920

1120 REM

1130 CLOSE #1

1140 STOP

32767 END

RUN
ENTER PART NUMBER,BEGINNING UNITS, UNITS RECEIVED,
UNITS ISSUED, AND UNIT COST -~ SEPARATED BY COMMAS
WHEN FINISHED -~ TYPE 99 FOR EACH FIELD

? 112,0,50,10,8.25

ENTER PART NUMBER, BEGINNING UNITS, UNITS RECEIVED,
UNITS ISSUED, AND UNIT COST ~- SEPARATED BY COMMAS
WHEN FINISHED -- TYPE 99 FOR EACH FIELD

? 300,0,150,70,6.85

ENTER PART NUMBER, BEGINNING UNITS, UNITS RECEIVED,
UNITS ISSUED, AND UNIT COST -- SEPARATED BY COMMAS
WHEN FINISHED -- TYPE 99 FOR EACH FIELD

? 99,99,99,99,99.

142 / Adding and Deleting Records

PART BEGINNING UNITS UNITS UNIT

NUMBER UNITS RECEIVED ISSUED COST
101 120 40 45 5
112 0 50 10 8.25
219 60 60 80 3.25
226 5 110 90 2.95
235 100 0 50 6.2
300 0 150 70 6.85
347 0 50 20 4.6

This example contains one new feature: A file is opened, closed, and
reopened.

In line 150 the file “INV1” was opened and the program wrote into the
file. However, the problem summary specifies that the file should also be
printed. Therefore “INV1” must be opened again, as shown in line 820. But
before a file can be changed from writing to reading, it must be closed as in
line 810.

It is perfectly legal for a program to open a file first for writing, close
it, and then open it again for reading. When it is opened again, the records
are read starting at the beginning of the file.

If we focus onlv on the end-of-file condition, then three locations in the
program are possible.

1. The EOF was encountered in line 310.
2. The EOF was encountered in line 635.
3. The EOF was encountered in line 920.

If the culprit is line 310, then we have run out of data in “INV?”, but there
are more records to be added. If line 635 was the cause of the EOF, then we
have run out of data in the file “INV” and no more records have to be
added. If line 920 caused the EOF, then the program was printing out the
new file “INV1”.

In the first case, EOF in line 310, the program should get more records
from the keyboard and add them to “INV1”. In the second case, EOF inline
635, data entry is finished and the program should close the files and start to
print out “INV1”. In the third case, EOF in line 920, the program is finished
and it should terminate.

With thic lanin tha nrnaram can add records to the middle of a file.

Vou should notice the strange placement of REM’s in lines 310, 635;

and 920. They appear on the same linc with the IF EOT statements. On the

Adding Records to a File / 143

TRS-80 you can document each line with a REM after any program instruc-
tion. The computer ignores the REM and what follows it on a line.

Account Balance Exercise: The firm has acquired two new cusiomers.
Write a program to add their records to the customer file.

Problem Summary

Input
Customer
Number Name Balance Payments Charges
Record 1 2995 Jonmes 0 0 50
Record 2 3370 Moats 0 0 75
Old “CUST” file
Processing

Get new customer data from the terminal and place it at the end of the
“CUST1” file.

Output
Instructions for data entry
New customer file “CUST1”
Print the “CUST1” file

144 / Adding and Deleting Records

CUSTOMER
NUMBER

(Attach additional paper to complete your program.)

TYPE CUSTOMER NUMBER, CUSTOMER NAME, BALANCE
PAYMENTS, CHARGES --- SEPARATED BY COMMAS
WHEN FINISHED TYPE 999,AAA,999,999,999

? 2995,JONES,0,0,50

TYPE CUSTOMER NUMBER, CUSTOMER NAME, BALANCE
PAYMENTS, CHARGES -~- SEPARATED BY COMMAS
WHEN FINISHED TYPE 999,A3A,999,999,999

? 3370,MOATS,0,0,75

TYPE CUSTOMER NUMBER, CUSTOMER NAME, BALANCE
PAYMENTS, CHARGES --- SEPARATED BY COMMAS
WHEN FINISHED TYPE 999,AAA,999,999,999

? 999,AAA,999,999,999

CUSTOMER

NAME BALANCE PAYMENTS
FERNWOOD 120 120
BLAKEY 0 0

JONES 0 0

CHARGES

Adding Records to a File / 145

3246 GREY
3359 PHILLIPS
3370 MOATS
3527 LOMBARD

Break in 1050

250
90

100

130 170
40 100
0 75

100 250

Sales Commission Exercise: The firm has added two salesmen. Add their

records to the file.

Problem Summary

Input
Sales
Territory ~ Salesman
Record 1 1 Kevin
Record 2 2 Jack
“SALES” file
Processing

Gross Sales

Commission
Rate
.045

.05

Get the data from the terminal and place it in the file (“SALESI”) by

sales territory.
Qutput
Instructions for data entry
New “SALES1” file
Print the “SALES1” file

146 / Adding and Deleting Records

(Attach additional paper 1o complete your program.)

Deleting Records from a File / 147

RUN

TYPE SALES TERRITORY,SALESMAN, GROSS
SALES, AND COMMISSION RATE.-~SEPARATE WITH COMMAS
WHEN FINISHED TYPE 0,AA,0,0.

? 1,KEVIN,2500,.045

TYPE SALES TERRITORY, SALESMAN,GROSS SALES
COMMISSION RATE--SEPARATED BY COMMAS

WHEN FINISHED TYPE 0,AA,0,0

? 2,JACK,500,.05

TYPE SALES TERRITORY,SALESMAN,GROSS SALES
COMMISSION RATE-~SEPARATED BY COMMAS

WHEN FINISHED TYPE 0,AA,0,0

? 0,AA,0,0.

SALES GROSS COMMISSION
TERRITORY SALESMAN SALES RATE

1 BILL 12050 .05

1 JOE 5270 .045

1 KEVIN 2500 .045

2 TOM 6940 .04

2 PHIL 11200 .055

2 JACK 500 .05

3 CLYDE 7340 .04

3 HARRY 9460 .045

3 BOB 14690 .05
Break in 1030

Sometimes it is necessary to delete records from sequential files. Employees DELETING
quit or retire. Occasionally an employee may be fired. Items in inventory be- RECORDS

come obsolete. Suppliers may be dropped. Old customers may shift their FROM A FILE
buying elsewhere. There are many instances when files need to be purged of
records that are no longer needed.

In such cases it is necessary to find the records and delete them. Here
again the nature of computer files places a burden on the programmer.
Reading a record does not remove it from a file.

Therefore to delete a record, we have to read all of the records in a se-
quential file, and write all of the records into a new file—except those records
that should be deleted.

Another aspect to consider is that sequential files are in sequence—and
you can’t go back. Once a record has been processed, it can only be found
again if we start from the beginning of the file.

Therefore if there is more than one record that has to be deleted, they
also must be in sequence. Otherwise, the whole file has to be read for each
record to be removed.

So let’s assume that we have to delete some records from our payroll file,
for example, records with employee numbers 104 and 202. A flowchart (Fig.
6-3) and program to do this follow:

148

/ Adding and Deleting Records

100

350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630

REM PROGRAM TO DELETE RECORDS FROM A FILE

REM

REM OPEN FILES

REM

OPEN "I",1,"EMPLOY"

OPEN "O",2,"EMPLOA4"

REM

REM GET THE ID NUMBER OF THE RECORD TO BE DELETED
REM

PRINT

PRINT "TYPE THE ID NUMBER OF THE RECORD TO BE DELETED"
PRINT "IF FINISHED--TYPE 99"

INPUT N1

IF N1=99 THEN 570

REM

REM READ A RECORD FROM THE EXISTING FILE
REM

REM TEST FOR END OF FILE

REM

IF EOF(1l) THEN 640

REM

INPUT $1,N,D,N$,H,R,V

REM

REM CHECK IF RECORD SHOULD BE DELETED
REM

IF N1=N THEN 450

REM

REM SINCE ID NUMBERS ARE NOT EQUAL THE RECORD REMAINS

REM

PRINT #2, N;D;NS$;",";H;R;V

GOTO 280

REM

REM ID NUMBERS EQUAL; RECORD IS REMOVED
REM

PRINT "RECORD REMOVED";N;D;NS$;H;R;V
GOTO 200

REM

REM END OF FILE REACHED WITH THE RECORD NOT FOUND
REM

PRINT "END OF FILE REACHED"

PRINT "RECORD ";N1;" NOT FOUND"

GOTO 640

REM

REM NO MORE RECORDS TO BE DELETED, TRANSFER REMAINING
REM RECORDS FROM THE OLD FILE TO THE NEW FILE

REM

IF EOF(1) THEN 640

INPUT #1,N,D,NS$,H,R,V

PRINT #2, N;D;NS$;",";H;R;V
GOTO 570

REM

REM END OF PROGRAM

REM

Deleting Records from a File / 149

640 CLOSE #1,#2
650 STOP
32767 END

TYPE THE ID NUMBER OF THE RECORD TO BE DELETED
IF FINISHED--TYPE 99

? 104

RECORD REMOVED 104 17 BRAVE 4 40 2

TYPE THE ID NUMBER OF THE RECORD TO BE DELETED
IF FINISHED--TYPE 99

? 202

RECORD REMOVED 202 16 WILSON 4 40 O

TYPE THE ID NUMBER OF THE RECORD TO BE DELETED
IF FINISHED--TYPE 99

? 99

Break in 650

To determine whether the program worked, print the “EMPLO4” file.
Modify your program that prints the “EMPLQO3” file as follows and run it.

100 OPEN“I",1,“EMPLO4”

101 1 ADAMS 5 40 O
103 12 BAKER 5.6 40 4
108 16 COHEN 6.25 38 0
172 2 JOHNSON 3.75 40 O
198 1 TANNER 4.25 36 0
206 7 LESTER 5.25 40 O
255 12 SCHMIDT 5.6 40 4
281 12 MILLER 6 40 O
313 7 SMITH 4,25 40 4
347 12 GRAY 6 38 O
368 1 WEAVER 3.5 40 2
422 1 WILLIAMS 4 40 0

There are no new statements in this program. Just old instructions in a new
arrangement. But what an arrangement! Three input statements, four deci-
sions, two prints to a file, and many explanatory REM statements.

When we look at such a program, the mind boggles at the amount of
detail. But let’s look at it as a computer would see it—one instruction at a
time. That way the whole process is simplified.

150 / Adding and Deleting Records

Figure 6-3

Get Record

ID from
Terminal

Write
Record into
New File

> NO
Y
Get Record

from Old
File

Write
Deletion
Message

"RECORD NOT

Read a
Record

Y

Write a
Record

Write

FOUND”

Fliowchart for Deleting Records from a File

A:
‘ Terminate ’

We start by getting the identification number of a record (employee
numhar) tn he deleted fram the terminal:

If the data is not finished (ID number is not 99)

Then

We read a record from the old file
If the file is empty

Deleting Records from a File / 151

Then print the record not found message and terminate
Else (there are records in the file)
If the keyboard ID matches the record ID from the file
Then the record deleted message is
printed and we go back to get another
record from the keyboard
Else (record ID does not match keyboard ID)
The record is printed in the new file
and we go back to get another record

Else (there are no more records to be deleted)
If there are no more records in the file (we might have deleted the
last record in the file)
Then terminate
Else Read a record from the file
Print it in the new file
Go back to check end of file (EOF) again.

Notice that when we look at the program from this viewpoint, we do not
look forward. Rather, we work with the limited amount of data available at
any particular time. By golly, the computer is abysmally ignorant; so, we
need to be very precise and consider all possibilities in order to cover all ba-
ses in our programs—before they are written. Otherwise, if something is over-
looked and that particular condition occurs, the program will not work.

Look at this program again. Then review the other examples provided.
After that you can practice thinking logically by doing the exercises.

Inventory Example: Delete from the new inventory file (“INVI”) the Example
records for Part Numbers 101, 219, and 300. Print the new file.

100 REM THIS PROGRAM DELETES RECORDS FROM THE INVENTORY FILE
110 REM

120 REM OPEN FILE FOR INPUT AND OUTPUT

130 REM

140 OPEN "I",1,"INVL"

150 OPEN "O",2,"INV2"

160 REM

170 REM GET THE PART NUMBER FOR THE ITEM TO BE DELETED FROM THE KEYBOARD
180 REM

190 PRINT "TYPE THE PART NUMBER OF THE RECORD TO BE DELETED"
200 PRINT "WHEN FINISHED -- TYPE 99"

210 INPUT N1

220 IF N1=99 THEN 550

230 REM

240 REM RE A RECORD FROM THE EXISTING FILE

250 REM

260 REM CHECK FOR END OF FILE

152 / Adding and Deleting Records

270 REM

280 IF EOF(1) THEN 480

290 REM

300 INPUT #1,N,B,R1,R2,C

310 REM

320 REM CHECK TO SEE IF THE RECORD SHOULD BE DELETED
330 REM

340 IF N1=N THEN 430

350 REM

360 REM ID NUMBERS NOT EQUAL -- RECORD REMAINS IN THE FILE
365 REM PRINT RECORD IN THE FILE

370 REM

380 PRINT #2,N;B;R1;R2;C

383 REM

385 REM READ ANOTHER RECORD FROM THE FILE

390 GOTO 280

400 REM

410 REM ID NUMBERS EQUAL--RECORD NOT TRANSFERRED
420 REM

430 PRINT "RECORD REMOVED";N;B;R1,R2,C

432 REM

435 REM GET THE NEXT RECORD TO BE REMOVED FROM THE TERMINAL
440 GOTO 190

450 REM

460 REM END OF FILE FOUND WITH RECORD NOT FOUND
470 REM

480 PRINT "END OF FILE REACHED"

490 PRINT "RECORD ";N1;" NOT FOUND"

500 GOTO 620

510 REM

520 REM NO MORE RECORDS TO BE DELETED

530 REM TRANSFER REMAINING RECORDS TO A NEW FILE
540 REM

550 IF EOF(1) THEN 620

560 INPUT #1,N,B,R1,R2,C

570 PRINT #2,N;B;R1;R2;C

580 GOTO 550

590 REM

600 REM END OF PROGRAM

610 REM

620 CLOSE #1,4%2

740 STOP

32767 END

- B T ey

S eaEaaany Y 3 WIATTR OTY T TN TY IR MUTRT MRS
AL NUMDLIN U LEIS NRLVINGS L D R/ L s

TYFE THo F

WHEN FINISHED -- TYPE 56

? 101

RECORD REMOVED 101 120 40 45 5

TYPE THE PART NUMBER OF THE RECORD TO BE DELETED
WHEN FINISHED -- TYPE 99

Deleting Records from a File / 153

? 219

RECORD REMOVED 219 60 60 80 3.25
TYPE THE PART NUMBER OF THE RECORD TO BE DELETED

WHEN FINISHED -- TYPE 99

? 300

RECORD REMOVED 300 0 150 70 6.85
TYPE THE PART NUMBER OF THE RECORD TO BE DELETED
WHEN FINISHED -- TYPE 99

? 99

Break in 740

Modify your program that prints the “INV” file to print the “INV2”
file.

112 0 50 10 8.25
226 5 110 90 2.95
235 100 0 50 6.2
347 0 50 20 4.6
Account Balance Exerclse: Delete from the new customer statement file Exercises

(“CUST1™) the records for customer numbers 2741, 2937, and 3426. Print
the new file (“CUST2") with another program.

154 / Adding and Deleting Records

(Attach additional paper to complete your program.) -

Sales Commission Exercise: Delete from the new sales file (“SALES1”) the
records for salesmen Bill, Tom, and Harry. Print the new file with another
program.

Summary /155

(Attach additional paper to complete your program.)

This chapter did not deal with BASIC statements; it dealt with how to use
what you have already learned in order to solve two problems—deleting and
adding records.

The use of sequential files, and some of their limitations, becomes ap-
parent in these problems. Sequential files can only be read from the begin-
ning. We cannot start anywhere in the middle. We must start with the first
record in the file, and proceed record by record until the desired record is
found. Then, and only then, can the operation be performed—adding a re-
cord or deleting a record.

If sequential files are so restricted, why then are they so common? The
answer is simple—cost. Sequential file processing is efficient when large num-
bers of active records are involved. Such is the case for many business appli-
cations. We can collect a large amount of data and process it all together in a
batch.

All of the records are processed in an identical way. The basic logic for
sequential processing is simply input-process-output (and repeat the input-
process-output sequence until finished). Each transaction receives identical
treatment.

In this chapter you have learned more about how to handle sequential
files:
© How to add records to the end and to the middle of a file
@ How to remove records from a file

In the next chapter this added skill will become useful when you update se-
quential files.

SUMMARY

156 / Adding and Deleting Records

PROBLEMS 1.
following records:

D
107
209
420

Use the file “XKI1” from Problem 1 in Chapter 4 (page 94) and add the

Timel Time 2
35 0
40 4
40 2

Call the new file “XK2”. PRINT the new file.

2. Use the file “TOP” from Problem 3 in Chapter 4 (page 89) and add the

following records:

ID
250
263
270
273

Name
Bong
Cabot
Walters
Beck

Call the new file “TOP1”. Print the new file.

3. Use the file “XK2” from Problem 1 above and delete records with the
following IDs: 101, 209, 281, 422, Call the new file “XK3”. Print the

new file.

4, Use the file “TOP1” from Problem 2 above and delete records with the
following IDs: 247, 262, 263, 273. Call the new file “TOP2”. Print the

new file.

/ / Updating Sequential Files

167

Updating Files / 159

At the end of this chapter you should be able to update sequential files with: Performance

@ One transaction record for each master record Objectives
@ Transaction records missing

© Master records missing

@ Multiple transaction records for each master record

@ Coded transaction records

So far, you have used one or two files in a program. The two files have gener- UPDATING
ally had records with the same fields. When you have created files, the FILES

records have also contained the same fields. In this chapter, sequential files
are used; however, the records of the different files will not contain the same
number of fields. Updating is the term used to describe the processing
and/or programs that take master files and transaction files and create new
master files.

The programs in this chapter may appear to be long. Most of the state-
ments in each program are remarks. The programs contain these remarks so
that you may follow the logic in the programs more easily.

The payroll example has the file “EMPLOY” that contains records with
the following fields: employee number, department number, name, hourly
rate, regular hours worked, overtime hours worked. This file has been suffi-
cient for our needs until now. In using this file, you may have thought that
for each pay period (week), this file is input by a data entry operator with
one record per employee. This is not the way it is done by businesses. If the
“EMPLOY” file was prepared this way each week, there would be a great
deal of duplication. To have to type employee number, department number,
and hourly rate for each employee each week would be a great waste of time,
especially if there were thousands of employees.

In order to avoid this duplication, master files and transaction files are
used. A master file contains information that does not change often. A
transaction file contains information that changes regularly. In the payroll
example, the only information about an employee that may change regularly
(with each payroll) will be regular and overtime hours worked. As a conse-
quence of this, each employee may have two records in two different files.
The first file will contain the information that does not change from pay pe-
riod to pay period; this is the employee master file. The second file will con-
tain the information that does change regularly; this is the employee
transaction file.

An example of typical information contained in an employee master file
and transaction file is given in Figure 7—1. The information that changes
regularly, regular and overtime hours, appears in the transaction file along
with the employee number (for identification of the record). The employee
master file contains information that does not change often: department
number, name, hourly rate, number of exemptions as well as some other in-
formation. The year-to-date information is kept in the master record and,

160 / Updating Sequential Files

Figure 7-1

Employee Master File

Employee Master Records

e Employee Number

Department Number
Name
Marital Status
Hourly Rate
Number of Exemptions
Year-to-Date Gross Pay (YTD GROSS)
Year-to-Date Federal Income Tax Withheld (YTD FIT)
Year-to-Date Social Security Withheld (YTD FICA)

e 0 © © © @ e o

Employee Transaction File
Employee Transaction Record
© Employee Number
@ Regular Hours Worked
@ QOvertime Hours Worked

Data in Employee Master and Transaction Files

obviously, these amounts will change with each payroll. So, the definition of
a master record given above must be modified. A master record contains in-
formation that does not often change, as well as summary information. In
this case the summary information is year-to-date data. In a business, an
employee master record for payroll would contain many more fields, but for
brevity, the record defined in Figure 7—1 will be sufficient to illustrate an
update.

In programming terms, an update may be thought of as a program that
matches transaction records with master records and updates the summary
information in the master record. As an integral part of this procedure, a
payroll can be prepared as well as any management reports concerning pay-
roll. In this chapter, to compute the federal income tax (FIT), use 20% of
gross pay; to compute the FICA amount, use 6.13% of gross pay. Emphasis
is placed on the programming logic needed to deal with master and transac-
tion files to perform an update. In a later chapter, the tax information will be
given and you will be able to program the exact computations for taxes.
F::l}::;: i:; 1%U :C:\l 1"‘\,'1 _,Cuh*»v'”;ul,C HTL pay L;iib’: u. Tail Cu:)xlj ‘UC UUEHPU&C{E
(Y1 NEL PAY = YID OGRODS PAY — YID FI1L — Y 1D FICA).

Table 7-1 shows the information in the employee master file,
“EMPMAS”, Table 7-2 shows the information in the employee transaction
file, “EMPTRA?”. You can create the file “EMPMAS” by writing a program
that will take the “EMPLOY” file and print on the records of the

Updating Files / 161

Employee Master File

Employee Dept. Marital Hourly No.of YTD YTD YTD
No. No. Name Status Rate Exemp. Gross FIT FICA
101 1 Adams 2 5.00 3 1000.00 200.00 61.30

103 12 Baker
104 17 Brave
108 16 Cohen
172 2 Johnson
198 1 Tanner
202 16 Wilson
206 7 Lester
255 12 Schmidt
281 12 Miller
313 7 Smith
347 12 Gray
368 1 Weaver
422 1 Williams

5.60
4.00
6.25

2 1288.00 257.60 78.95
4 860.00 172.00 52.72
4 1187.50 237.50 72.79
3.5 0 750.00 150.00 45.98
4.25 4 765.00 153.00 46.89
4.00 5 800.00 160.00 49.04
5.25 3 1050.00 210.00 64.37
5.60 5 1288.00 257.60 78.95
6.00 4 1200.00 240.00 73.56
4.25 3 977.50 19550 59.92
6.00 3 1140.00 228.00 69.88
3.50 1 752.50 150.50 46.13
4.00 2 800.00 160.00 49.04

B = DN RN NN RS NN

Employee Transaction File
Employee Number Regular Hours — Overtime Hours

101 40 0
103 40 4
104 40 2
108 38 0
172 40 0
198 36 0
202 40 0
206 40 0
255 40 4
281 40 0
313 40 4
347 38 0
368 40 2
422 40 0

“EMPMAS” file the following fields: employee number, department
number, name, and hourly rate. Make sure that you leave space for the five
missing fields. Then write another program or continue in the same program
to input from the keyboard the missing fields—marital status, number of ex-
emptions, year-to-date gross pay, year-to-date federal income tax withheld,

Table 7-1

Table 7-2

162 7/ Updating Sequential Files

and year-to-date social security withheld. Marital status is defined as fol-
lows: = single, 2 = married. The alternative way to create the
“EMPMAS?” file is to input all of the data from the keyboard by writing a
program as shown in Chapter 4.

The “EMPTRA” file may be created by writing a program that reads
the “EMPLOY"™ file and places employee number, regular hours, and over-
time hours in the “EMPTRA” file. Alternatively, you may write a program
that will input the data from the keyboard. The transaction file data is found
in Table 7-2.

A program that combines the creation of the “EMPMAS” and “EMP-
TRA” files is given below.:

100 REM THIS PROGRAM CREATES THE EMPLOYEE MASTER FILE
110 REM AND THE EMPLOYEE TRANSACTION FILE

130 OPEN "I",1,"EMPLOY"

140 OPEN "O",2,"EMPMAS"

150 OPEN “O",3,"EMPTRA"

160 INPUT #1, N,D,NS,H,R,V

170 PRINT "MARITAL STATUS (1 OR 2), EXEMPTIONS FOR ".NS
180 INPUT M,E

190 PRINT "YTD GROSS, YTD FIT, YTD FICA"

200 INPUT G,F,Fl

210 PRINT #2, N;D;NS$;",";M;H;E;G;F;Fl

220 PRINT #3,N;R;V

230 GOTO 160

270 CLOSE #1,#2,#%3

300 STOP

32767 END

In the program, the transaction file with the weekly hours worked will
be used to update the master file. Also a list of employees and their gross
pay will be printed.

In order to understand the programming involved in an update, the fol-
lowing example illustrates what is required.

Problem Summary

Input
1. Employee master file, “EMPMAS”
2. Employee transaction file, “EMPTRA”

Processing
VialChn ITansacuon ICCOTas and masicl ICCOTas Oy CHpioySe Huilser.
Calculate gross pay, taxes, and net pay.

Output
An updated master file with the new values for year to date fields. Print
out a list of employee numbers, their names, their net pay, and the up-
‘dated master file suitably labelled.

Updating Files / 163

> o kS

The program therefore has to perform the following steps:

Establish a link to the transaction file, master file, and the new master
file.

Read a transaction record and associated master record.
Calculate the taxes and print the employee number, name, and net pay.
Update the master record with the payroll data.
Write the updated master record into a new master file.
Go back to read more records while there is still data in the files.
Print out the updated master file.

program is shown below:

100 REM UPDATE OF MASTER FILE

120 REM

130 REM SET UP HEADINGS

140 REM

150 PRINT

160 PRINT "EMPLOYEE NAME NET"

170 PRINT "NUMBER PAY"

180 PRINT

190 REM

200 REM

210 OPEN "I",1,"EMPMAS"

220 OPEN "I",2,"EMPTRA"

230 OPEN "O",3,"EMPMAL"

240 REM

250 REM READ A TRANSACTION RECORD

260 REM

270 INPUT #2,I,R,V

280 REM

290 REM READ A MASTER RECORD

300 REM

310 INPUT #1,N,D,NS$,M,H,E,G,F,Fl

320 REM

330 REM COMPARE ID'S

340 REM

350 IF I=N THEN 410

360 IF I>N THEN 310

370 IF I<KN THEN 750

380 REM

390 REM ID'S MATCH -- DO COMPUTATIONS FOR UPDATE

400 REM

410 Gl=(R*H)+(V*H*1.5)
420 F2=.2%Gl
430 F3=.067*Gl

164 / Updating Sequential Files

440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
595
600
610
720
730
740
750
780
790
800
810
820
830
840
850
860
870
880
890

900
905

910
920

P=Gl-F2-F3

G=G+Gl

F=F+F2

F1=F14F3

P1l=Pl+P

REM

REM PRINT UPDATED MASTER RECORD

REM

PRINT #3,N;D;NS$;",";M;H;E;G;F;Fl

REM

REM PRINT ID, NAME, NET PAY

REM

PRINT USING " #i# % % ##H#.H$";N,NS,P
REM

REM READ A TRANSACTION RECORD

REM

IF EOF(2) THEN 780

INPUT #2,I,R,V

GOTO 350

REM

REM MISSING MASTER RECORD

REM

PRINT "MASTER RECORD MISSING FOR EMPLOYEE NUMBER ";I
CLOSE #1,#2,#3

REM

REM PRINT OUT OF UPDATED MASTER FILE
REM

PRINT

PRINT

PRINT

PRINT

PRINT " UPDATED MASTER FILE"
PRINT

OPEN "I",1,"EMPMAL"

PRINT "EMPLOYEE DEPT NAME MARITAL HOURLY EX~- YTD
YTD YTD"

PRINT "NUMBER STATUS RATE EMP GROSS
FIT FICA"

IF EOF(l) THEN 940

INPUT #1,N,D,N$,M,H,E,G,F,F1

PRINT USING " #i## H# % 3 # 4. 44 # #

HREE.HE BHEE. Y HBES.##";N,D,NS,M,H,E,G,F,FL

930
940
950

GOTO 905
CLOSE #1
STOP

32767 END

Updating Files /7 165

EMPLOYEE
NUMBER

101
103
104
108
172
198
202
206
255
281
313
347
368
422

EMPLOYEE

NUMBER
101
103
104
108
172
198
202
206
255
281
313
347
368
422

NAME NET
PAY
ADAMS 146.60
BAKER 188.82
BRAVE 126.08
COHEN 174.09
JOHNSON 109.95
TANNER 112.15
WILSON 117.28
LESTER 153.93
SCHMIDT 188.82
MILLER 175.92
SMITH 143.30
GRAY 167.12
WEAVER 110.32
WILLIAMS 117.28
DEPT NAME MARITAL
STATUS
1 ADAMS 2
12 BAKER 1
17 BRAVE 2
16 COHEN 2
2 JOHNSON 1
1 TANNER 2
16 WILSON 2
7 LESTER 2
12 SCHMIDT 2
12 MILLER 2
7 SMITH 2
12 GRAY 2
1 WEAVER 1
1 WILLIAMS 2

UPDATED MASTER FILE

HOURLY
RATE

DWW AAVTUTLE D WO U,
« . . e s s s s .
[}
o

EX~
EMP

YTD
GROSS
1200.00
1545.60
1032.00
1425.00
900.00
918.00
960.00
1260.00
1545.60
1440.00
1173.00
1368.00
903.00
960 .00

The easiest way to understand the logic that is required for an update is
to begin with the flowchart (Figure 7-2). This flowchart does not represent
each line in the program with a box. It focuses on the logic of matching
transaction records with master records in (a) and the logic of the error rou-
tines in (b). First, a record from the transaction file “EMPTRA” is input
then a record from the master file “EMPMAS” is input. In matching the
transaction record to the appropriate master record three conditions may

YTD

FIT
240.00
309.12
206.40
285.00
180.00
183.60
192.00
252.00
309.12
288.00
234.60
273.60
180.60
192.00

YTD

FICA
74.70
96.21
64.24
88.70
56.03
57.14
59.76
78 .44
96.21
89.64
73.02
85.16
56.21
59.76

166 / Updating Sequential Files

Figure 7-2

‘ Start ’

Open
Files

\i

Input
Transaction
Record

Y

Input
Master
Record

Trans
ID: Master

Print
Master Record
Missing

Close
Files

Y

Perform
Calculations

{ Terminate }

Y

Print New
Master Record

Y

Print
Name, Net Pay

Y

Input
Traneactinn

Record

,_g./rNNO
nf

i T~ File?

YES

&

(a) Matching Logic

Flowchart of Update Program

Updating Files / 167

Close Files
Open File

Y

Input New
Master Record

Close File ——*(Terminata

Print New
Master Record

(b} End-of-File Logic

Flowchart of Update Program (cont'd) Figure 7-2

occur. The employee number (ID) of the transaction record may be greater

than, less than, or equal to the employee number (ID) of the master record.

® If the transaction record ID is greater than the master record I1D: Then,
there is no transaction and input the next master record. This should not
occur since there is one transaction record for each master record.

® If the transaction record ID is equal to the master record ID: Then, per-
form the update calculations, print the updated (new) masterfile, and
print the employee ID, name, net pay. Read the next transaction record.

@ If the transaction record ID is less than the master record ID: Then, a
master record is missing from the master file. If a master record is miss-
ing, a message is generated and the program is terminated.

Note: Remember, the transaction and master Jfiles must be in ascending order of

employee number (ID).

168

/ Updating Sequential Files

Figure 7-3

If the flowchart does not help you understand the program, then let us
perform the job (update) manually. There are two files “EMPMAS” and
“BEMPTRA”, assume that they are in separate cabinets. Also assume that the
data on each record in both files are on a separate sheet of paper, and that
the files are organized in ascending employee number. In order to focus on
the problem of matching master and transaction records only the first field,
employee number (ID), is shown in Figure 7-3.

Master File Transaction File
"EMPMAS" "EMPTRA"
Record Number Employee Number Employee Number
1 101 101
2 103 103
3 104 104
4 108 108
5 172 172
6 198 198
7 202 202
8 206 206
9 255 255
10 281 281
11 313 313
12 347 347
13 368 368
T4 422 422

Employee Number Fields for Master and Transaction Records

Manually we would reach into the transaction file and read the first re-
cord. Remember, you can only read one record at a time! We then reach into
the master file for a record. The IDs match (both are 101). We update the
master record with the information on the transaction record and then read
the second transaction record. Its ID is 103, the master record ID is still 101
so we read the next master record. Its ID is 103 and we have a match. We
update and read the third transaction record—ID is 104. The master 1D is
still 103, so we read the next (third) master record and have a match. We
update and proceed until there are no more records to be processed.

In the program the end-of-file condition is reached after the last master
record is updated. To be more specific, the end of file is reached at line 600
where an attempt to read a transaction record encounters the end of file.
iien i€ iiies aire CioSed aid iii€ updaied Masier He {TMrVIAL) is
printed.

You may be thinking at this point that all you have to do is read a trans-
action record and a master record and they will match. This is the case here
where there is one, and only one, transaction record for each and every
master record. it is rarely the situation!

Updating with Missing Transactions /169

The payroll example illustrates an update where there is one transaction re-
cord for each master record. There are many instances where there may be
more than one transaction record for each master record or no transaction
record for a master record. Common examples are credit card statements,
sales, inventory, and customer statements.

For the next example, the sales file “SALES” will be used as the master
file and the transaction file will be called “SALEST”. The data in these files
is given in Tables 7-3 and 7-4. If you have the “SALES” file saved, you can
run the alphabetic sort given in Appendix B on this file or create a new
“SALES” file with data shown in Table 7-3. The transaction file,
“SALEST”, must be created. The program should print out an error
message if a master record is missing, but it should not terminate.

Sales Master File “SALES” Sorted Alphabetically By Salesman

Gross Sales

Deparrment Salesman Year-to-Date Commission Rate
1 Bill 12050 .05
3 Bob 14690 .05
3 Clyde 7340 .04
3 Harry 9460 .045
1 Joe 5270 .045
2 Phil 11200 .055
2 Tom 6940 .04

Sales Transaction File “SALEST” Sorted Alphabetically By Salesman

Salesman Amount of Sale
Bill 1050
Bill 275
Bill 390
Clyde 460
Clyde 290
Harry 1500
Joe 280
Joe 490

UPDATING
WITH MISSING
TRANSACTIONS

Table 7-3

Table 7-4

170 /7 Updating Sequential Files

Probiem Summary

Input

1. Sales commission master file, “SALES”
2. Sales transaction file, “SALEST”

Processing

Match transaction records and master record by salesman’s name. Cal-
culate the commissions for the salesmen due on the transaction data.

Qutput

A list of commissions for the salesmen for their latest sales, an updated
master file with the new value of year to date sales, and print out the
updated master file.

PN R LN -

The program therefore has to perform the following steps:

Establish a link to the transaction, master and new master files.
Read a transaction record and the associated master record.
Calculate the commissions for the latest sales.

Print the commissions for the salesmen.

Update the master record with the transaction data.

Wiiie the updaied master record nio a new master iile.

Go back to read more records while there is still data in the files.
Print out the updated master file.

See the flowchart (Fig. 7-4) and the following program.

100
120
130
140
150
160
170
180
190
200
210
220

~AAan

250
260
270
280

REM PROGRAM TO UPDATE SALES
REM

REM SET UP HEADINGS FOR OUTPUT
REM

PRINT "NAME","COMMISSION"

PRINT " o oo o e o e e e e e ———————— "
REM

REM LINK TO FILES

REM

OPEN "I",l,"SALEST"

OPEN "I",2,"SALMAS"

OPEN "O",3,"NSALES"

iié READ A TRANSACTION RECCRD
REM

INPUT #1, N$,A

REM

REM READ A MASTER RECORD

Updating With Missing Transactions /

171

290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
495
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
725
730
740
750
760
770

REM

INPUT #2,D,S$,G,C

REM

REM COMPARE TRANSACTION WITH MASTER
REM

IF N$=S$ THEN 410

IF N$>S$ THEN 550

IF N$<S$ THEN 670

REM

REM TRANSACTION EQUAL TO MASTER
REM UPDATE THE MASTER

REM

G=G+A

Cl=A*C

REM

REM PRINT NAME AND COMMISSION
REM

PRINT USING"% % #H#.#4";58,C1
REM

REM READ NEXT TRANSACTION AND GO TO COMPARE
REM

IF EOF(1) THEN 740

INPUT #1, NS$,A

GOTO 340

REM

REM TRANSACTION GREATER THAN MASTER
REM WRITE UPDATED MASTER
PRINT #3,D;SS$;",";G;C

REM

REM GO BACK AND GET ANOTHER MASTER
REM

GOTO 300

REM

REM TRANSACTION LESS THAN MASTER
REM ERROR ~- NO MASTER IN FILE
REM WRITE ERROR MESSAGE, THEN
REM READ ANOTHER TRANSACTION &
REM CONTINUE PROCESSING.

REM

PRINT "*** TRANSACTION WITHOUT MASTER *** ".NS:A
GOTO 495

REM

REM NO MORE TRANSACTIONS -- WRITE REMAINING MASTER
REM RECORDS

REM

IF EOF(2) THEN 790

INPUT #2,D,SS$,G,C

PRINT #3,D;S$;",";G,C

GOTO 725

REM

REM UPDATE IS FINISHED -- PRINT 'THE

172 / Updating Sequential Files

780 REM UPDATED MASTER
790 CLOSE #1,#2,#3

800 OPEN "I",1,"NSALES"

810 REM

820 REM PRINT HEADINGS

830 REM

840 PRINT

850 PRINT

860 PRINT "UPDATED FILE —-- NSALES"

870 PRINT "=————m—m—m—m—m S "

880 PRINT

890 PRINT "TERRITORY","NAME","YTD","COMMISSION"

900 PRINT " "," ", "SALES","RATE"

910 PRINT W e e e e "’ll _________ ll," __________ ll’“ __________
920 REM

930 REM READ A RECORD AND PRINT

940 REM

945 IF EOF(1) THEN 990

950 INPUT %1, D,S$,G,C

960 PRINT USING" B4 % 3 B, EEE B
.k#44#";D,S%,G,C

970 GOTO 945

980 REM

990 CLOSE #1

1110 STOP

32767 END

NAME COMMISSTION

BILL 52.50

BILL 13.75

BILL 19.50

CLYDE 18.40

CLYDE 11.60

HARRY 67 .50

JOE 12.60

JOE 22.05

UPDATED FILE -- NSALES

TERRITORY NAME YTD COMMISSION

SALES RATE

1 BILL 13,765.00 .050
3 BUDB 14,090,000 LUDU
3 CLYDE 8,U090.00 .040
3 HARRY 10,960.00 .045
1 JOE 6,040.00 .045
2 PHIL 11,200.00 .055
2 TOM 6,940.00 .040

Updating With Missing Transactions / 173

Open
Files

!

Input
Transaction
Record

!

Input
Master
Record

Y

{

Print
New Master
Record

Print
No Master
Record

Trans
ID: Master
D

Perform
Calculations

Print
Name and
Commission

A

[nput
Transaction
Record

A

{a) Matching Logic

Flowchart of the Sales Update Figure 7—-4

174 / Updating Sequential Files

! o

Print New Input
Master b1 Master
Record Record

A

YES

Input
Record

4

Close Files >4 Open File [

Print
Record

. Close

(b} Logic of End-of-File

Figure 7-4 Flowchart of the Sales Update (cont'd.)

The flowcharts and program are different from the payroll update in five
ways:

1. Missing transaction records occur.

2. The new master record is printed on the file when the transaction record
ID is greater than the master record 1D.

3. The matching of IDs is on alphabetic data.

- C
a T wawomcn s 8%t I 1 o o maqtar Tennrt m no
4. ing program wi ~n 2 master renord i missing.

5. Multiple transaction records for each master record occur.

Missing transactions are accounted for in the logic in two places. First,
new master records are printed on the file only when the transaction record

Updating With Missing Transactions / 175

ID is greater than the master record ID. Second, if the end of the transac-
tion file has been read and master records remain to be processed, line 495
IF EOF(1) THEN 740 and the instructions that follow line 740 take care of
this problem.

IDs that consist of alphabetic information (salesman name) are matched
in this program. There is no essential difference between matching alpha-
betic as opposed to numeric IDs as far as the programming is concerned.

The program will not terminate if master records are missing. This prob-
lem is solved by printing the appropriate message and reading the next
transaction record.

Finally, the program will handle the case where there is more than one
transaction record for a master record. This is done by not printing a new
master record until the transaction record ID is greater than the master re-
cord ID. Also, the accumulation of the gross sales in line 410, G = G + A,
will update the gross sales on the master record correctly. The value of G is
changed each time a master record is read, while the value of A will be
added to it for each transaction record.

The program can best be understood by referring to the flowchart (Fig-
ure 7-4), Figure 7-5, and tracing the logic. The first transaction record is
input followed by the first master record. The salesman for both these
records is Bill. There is a match, the name and commission are printed and
the second transaction record is input. The master record ID is Bill and the
second transaction record ID is Bill. So the name and commission are
printed using the data of the second transaction record. The third transac-
tion record is read. There is another match and the printout of name and
commission occurs again. The fourth transaction record is read (Clyde) and
the transaction record ID is greater than the master record ID so the master
record for Bill, now fully updated by three transaction records, is printed
and the second master record is read (Bob). You may wonder how Clyde is
greater than Bob. The answer is that the letter “C” is greater, or of higher

Master File Transaction File
SALES SALEST
Record Number Salesman Salesman
1 Bill Bill
2 Bob Bill
3 Clyde Bill
4 Harry Clyde
5 Joe Clyde
6 Phil Harry
7 Tom Joe
8 Joe

Salesman Fields For Master and Transaction Records Figure 7-5

176 / Updating Sequential Files

UPDATING
WITH CODED
TRANSACTIONS

Table 7-5

value, than the letter “B”. The alphabet from A to Z is viewed by the com-
puter as just a series of increasing values. It is this fact that allows us to per-
form alphabetic sorts as in Appendix B, and compare alphabetic fields with
IF statements.

At this point, we have printed Bill’s updated master record, input Bob’s
master record, and input Clyde’s transaction record. Clyde is greater than
Bob (TR>MR) so Bob’s master record is printed. There were no transac-
tion records for Bob; so his updated master record remains the same and the
next master record is input (Clyde). There is a match, name and commission
are printed, and the next transaction record is input (five). There is another
match, name and commission are printed and the next transaction record is
input (Harry). Harry is greater than Clyde, so Clyde’s master record is
printed and the next master record input (Harry). The logic continues in the
above manner until the end of the master file is reached and the program is
finished. Note, there are no transactions for Phil or Tom so that the end of
file for the transaction file occurs at line 495. The statement IF EOF(1)
THEN 740 will direct the computer to line 740 and the remaining master
records that do not have any transaction records will be printed on the new
master file. The two other end-of-file statements (725, 945) are used to print
out the updated master file and produce the required report.

The final example of an update program will use exactly the same logic as
the last program, but the transaction file will be more complex. This last ex-
ample will be an inventory problem. It will use as the master file the file
“INVMR?”. Table 7-5 gives the contents of the master file, Table 7-6 the
transaction file, “INVTR”.

You will have to write programs to create both the transaction and mas-
ter file. The transaction records have three fields: the part number (ID), a
transaction code, and a quantity. The transaction code field has either the
number 1 or 2 in it. A transaction code of 1 means that the transaction is a
receipt to inventory. A transaction code of 2 means that the transaction is an
issuance of goods from inventory. The first transaction record (101,1,150)

Inventory Master File

Part

Number Units on Hand Cost
101 350 5.00
Piu 215 7.0U
219 90 3.25
226 120 2.95
235 360 6.20

247 140 4.60

Updating With Coded Transactions /

177

Inventory Transaction File

Part Transaction
Number Code Quantity
101 1 150
101 2 75
101 2 60
101 2 20
219 2 20
226 1 75
226 1 100
226 2 90
235 2 30
247 1 70

means that 150 units of part 101 were received in inventory. The third trans-
action record (101,2,60) means that 60 units of part 101 were issued from
inventory.

You may assume that the master file is updated at the end of each week
and that the transactions were generated during this week. The files are
sorted by part number and you have to write the program for the update.
For the updated master file, the calculation is as follows:

Units on Hand = Units on Hand (in the old master file)
+ Units received (transaction code 1)
— Units issued (transaction code 2)

Besides updating the master file, one report is to be produced. The re-

port is an “Inventory Valuation Report.” It lists the part numbers and the

amount of money that is tied up in inventory at the end of the week. It is
produced from the updated master file.

Problem Summary
Input
1. Inventory master file, “INVMR”
2. Inventory transaction file, “INVTR”
Processing
Match transaction records and master records by part number. Calcu-
late quantities received and issued by transaction code. Calculate units
on hand.
Output
An updated master file, “INVSN”, and an inventory valuation report.

Table 7-6

178 / Updating Sequential Files

100
110
120
130
140
150
160
170
180
190
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380

I

® =N s

The program therefore has to perform the following steps:

Establish a link to the transaction file and the master and new master

files.

Read a transaction record and associated master record.

Determine from the transaction code whether the quantity is issued or

received.

Update the master record.

Write the updated master record.

Go back to read more records while there is still data in the files.
Print out the new master file.

Produce the report from the updated master file.

The program follows:

REM PROGRAM TO UPDATE INVENTORY

REM
REM
REM

OPEN

T.INK TO FILES

III“ ’ l ’ " INVTR"

OPEN "I",2,"INVMR"
OPEN "O",3,"INVSN"

REM
REM
REM

READ A TRANSACTION RECORD

INPUT #1,P1,T1,01

REM
REM
REM

INPUT #2,

REM
REM
REM

IF pl=P2
IF P1>P2
IF Pl<P2Z

REM
REM
REM
REM
REM
REM

READ A MASTER RECORD

P2,02,C2

COMPARE TRANSACTION WITH MASTER

THEN 380
THEN 560

THEN 680

TRANSACTION EQUAL TO MASTER
UPDATE I'dk MASTER

CHECK IF TRANSACTION IS RECEIPT OR ISSUE

IF T1=2 THEN 470

Updating With Coded Transactions / 179

390 REM

400 REM RECEIPT: Tl=1
410 REM

420 Q2=Q2+Q1

430 GOTO 505

440 REM

450 REM ISSUE: T1=2
460 REM

470 Q2=0Q2-0Q1

480 REM

490 REM READ NEXT TRANSACTION AND GO TO COMPARE
500 REM

505 IF EOF(1) THEN 750
510 INPUT 41,P1,T1,Ql
520 GOTO 290

530 REM

540 REM TRANSACTION GREATER THAN MASTER
550 REM WRITE UPDATED MASTER
560 PRINT #3, P2;Q2;C2

570 REM

580 REM GO BACK AND GET ANOTHER MASTER
590 REM

600 GOTO 250

610 REM

620 REM TRANSACTION LESS THAN MASTER
630 REM ERROR —-- NO MASTER IN FILE
640 REM WRITE ERROR MESSAGE, THEN
650 REM READ ANOTHER TRANSACTION &
660 REM CONTINUE PROCESSING.

670 REM

680 PRINT "*** TRANSACTION WITHOUT MASTER *** ";P1;Tl;Ql
690 GOTO 505

700 REM
710 REM NO MORE TRANSACTIONS -- WRITE REMAINING MASTER
720 REM RECORDS

730 IF EOF(2) THEN 800
740 INPUT #2, P2,Q2,C2,
750 PRINT #3, P2;02;C2
760 GOTO 730

770 REM
780 REM UPDATE IS FINISHED -- PRINT THE UPDATED
790 REM FILE AND THE REPORT

800 CLOSE #1,#2,#3

810 OPEN "I",1,"INVSN"

820 REM

830 REM HEADINGS FOR UPDATED FILE
840 REM

850 PRINT

860 PRINT " NEW INVENTORY MASTER FILE"
870 PRINT " mmmmmmmmmmm e e —————— "
880 PRINT

180 / Updating Sequential Files

890 PRINT "PART UNITS cosT"
900 PRINT "NUMBER ON HAND "
910 PRINT "—-—-—=n —coemee S

915 IF EOF(1) THEN 950
920 INPUT #1,P,Q,C
930 PRINT USING"### e #.4%";P,0,C
940 GOTO 915
950 CLOSE #1
960 OPEN "I",1,"INVSN"
970 REM PRINT REPORT HEADINGS
980 REM
990 PRINT
1000 PRINT
1010 PRINT " INVENTORY VALUATION REPORT"
1020 PRINT " —mmemeemmmmmmm e u
1030 PRINT
1040 PRINT "PART","DOLLAR"
1050 PRINT "NUMBER","AMOUNT"
1]

1060 PRINT "------ U N "
1070 REM
1080 REM READ A RECORD AND CALCULATE INVENTORY VALUES
1090 REM

1100 IF EOF(1) THEN 1190
1110 INPUT #1,P,Q,C
1120 D=Q*C

1130 T=T+4D

1140 PRINT USING " ### #, %4 #4";P,D
1150 GOTO 1100

1160 REM

1170 REM END OF DATA ~- PRINT TOTAL

1180 REM

1190 PRINT "M== mmmmmm s e me e "

1200 PRINT USING "% 3 f, #4E . #4"; "TOTAL", T
1210 CLOSE #1

1220 sTOP

32767 END

NEW INVENTORY MASTER FILE

PART UNITS COosT
NUMBER ON HAND

101 345 5.00
110 275 7.00
Zi5 iU 3.45
226 205 2.95
235 330 6.20
247 210 4.60

Updating With Coded Transactions /

181

INVENTORY VALUATION REPORT

PART DOLLAR
NUMBER AMOUNT
101 1,725.00
110 1,925.00
219 227 .50
226 604.75
235 2,046.00
247 966.00
TOTAL 7,494.25

The flowchart is the same as the flowchart of the sales update program
(Figure 7-4) with one minor exception—the logic for handling the transac-
tion codes. The flowchart for this portion of the program is Figure 7-6.
Since the master record inputs the value of Q2, the two statements

Q2 =Q2+ Q1

Q2 =Q2-0Ql
will accumulate the value of Q2 updated by the transaction records until the
new master record is printed and a new master record is input.

Procedure
for
Nonmatching

Q2=02-01

Q2=Q2+Q1

Y
{nput
Transaction
Record

A

Flowchart of Transaction Code Logic

Figue 7-6

182 / Updating Sequential Files

SUMMARY

The data for the required report are obtained from the new master file
and the report is the last part of the program.

This chapter covered the updating of sequential files. Descriptions of master
files and transaction files to produce a new updated master file were given.
Various conditions with respect to the correspondence of master and trans-
action records were handled by the programs. In each program the third IF
statement used to match master and transaction records could have been re-

placed by a GOTO statement. The IF statement was used to emphasize the
logic of matching.

The objective of data processing in a business environment is achieved
by the update, Throngh the undate, customer statements, payrolls, accounts
receivable, accounts payable and general ledgers are produced on some time
cycle, usually once a month.

Problems / 183

Modify the first update program (payroll example) so that it will provide PROBLEMS
the logic required to:
a. Handle a missing transaction record.

b. Continue processing rather than stop after printing the error message
“MASTER RECORD MISSING FOR EMPLOYEE NUMBER”.

Create and use the following transaction file to test the program.

Employee Regular Overtime
Number Hours Hours
103 40 4
108 38 0
165 40 0
198 36 0
255 40 4
313 40 4
368 40 2

Use “EMPMAS” as the master file.
Print out the updated master file with suitable headings.

Print out the employee numbers, names and their net pay. Remember
some employees will receive no pay.

Modify the sales update program so that it will print out the total com-
mission due to each salesman, rather than the commission for each sale.
Also print out the total commission due to all salesmen.

Modify the inventory update to print out for each part number the total
units issued and received.

Assume that the payroll transaction file can contain more than one re-
cord for an employee. Modify your program in Problem 1 so that it can
use the following transaction file and perform the update.

Employee Regular Overtime
Number Hours Hours
104 20 0
104 20 5
108 10 0
198 40 7
202 15 0
202 25 4

184 / Updating Sequential Files

202 0 6
206 20 0
206 20 3
313 30 U
313 10 0
313 0 8

There should be a printout for every employee showing number, name,
and net pay—even if it is zero. Use one line per employee. Also print out the
new master file.

8 / Using Lists and Tables

185

Summary Output / 187

At the end of this chapter you should be able to: Performance

@ Set up lists and tables Objectives

@ Use lists to accumulate summary output
@ Use tables to hold data for reference
@ Use lists and tables to hold data for processing

All the transaction processing applications that we have discussed have basi-
cally the same pattern. The pattern consists of getting a transaction, doing
the required computation for that transaction, outputting required results,
and then looping back to get the next transaction. Such processing mini-
mizes the amount of data required by the computer.

But business has problems that require a group of data to be entered at
the beginning and used for all transactions. Tax tables come readily to mind.
And business also has analytic problems, where all the data has to be avail-
able to solve a problem or where data is collected from all transactions and
held for output until the end of all transactions. An example of the first type
would be a linear programming problem (which is a management science
method). An example of the second type would be analytic reports that clas-
sify data in categories.

To help solve these types of problems, BASIC provides lists and tables.
A list is a series of items in a meaningful grouping or sequence. Employee
names in alphabetic sequence would be an example of a list. Total sales in
item number sequence might be another example. Any row or column of
items constitutes a list.

A table is an arrangement of words, numbers, or signs in parallel col-
umns. It is used to show a set of facts or relationships in a compact and com-
prehensive form. Income tax tables are a clear example of “an arrangement
of ...numbers...in parallel columns.” A table is therefore a grouping of
lists. A list is a one-dimensional (row or column, but not both) presentation
of data; and a table is a two-dimensional (both rows and columns) presenta-
tion of data.

Let’s derive a problem from the payroll application to get a feel for the use SUMMARY
of lists and tables. Assume that you need to summarize the payroll expense OUTPUT
by department. As you recall, there are 20 departments—numbered consecu-

tively from 1 to 20. But sorting the file is a time consuming process. Hence

the “EMPLOY?™ file will not be sorted for this problem. A simple representa-

tion of this type of problem is shown in Figure 8—1.

Problem Summary
Input
“EMPLOY” file
Processing
Calculate gross pay and accumulate gross pay by department.

188 / Using Lists and Tables

Figure 8-1

Qutput
Total gross pay by department

The program therefore has to:
1. Link to the “EMPLOY” file.
Read a record.
Calculate the gross pay.

Accumulate gross pay by department number.

AN I

When all records have been processed, print the departmental gross pay
totals.

6. Terminate.

A flowchart (Fig. 8—1), a program to perform these tasks, and the out-
put are shown below:

Input Data

Output Stored
Results

~ End of Data? >

Y

‘ Terminate ,
Process Data

Y

Store Data

Flowchart for Summary Output

Summary Oufput / 189

100 REM PROGRAM TO ACCUMULATE GROSS PAY BY DEPARTMENT
110 REM

120 REM OPEN FILE

130 REM

140 OPEN “"I",1l,"EMPLOY"

150 REM

160 REM SET UP A LIST TO HOLD DEPARTMENTAL TOTALS
170 REM

180 DIM T(20)

190 REM

200 REM READ A RECORD, UNTIL OUT OF DATA

220 IF EOF(1) THEN 420

230 INPUT #1, N,D,NS$,H,R,V

240 REM

250 REM CALCULATE AMOUNT OF GROSS PAY

260 REM

270 G=H*R + H*V*1.5

280 REM

290 REM ACCUMULATE GROSS PAY BY DEPARTMENT NUMBER
300 REM

310 T(D) = T(D) + G

320 GOTO 220

330 REM

340 REM CHECK FOR END OF FILE AND PRINT RESULTS
350 REM

400 REM PRINT DEPARTMENTAL TOTALS WITH HEADINGS
410 REM

420 PRINT "DEPARTMENTAL GROSS PAY TOTALS"

430 PRINT

440 PRINT "DEPARTMENT", Y“GROSS PAY"

450 PRINT W e e Il, W e i e "

460 FOR M=1 TO 20

470 PRINT USING " #H# FHEHEE"; M, T(M)
480 NEXT M

490 REM

500 REM TERMINATE

510 REM

520 CLOSE #1

530 STOP

32767 END

DEPARTMENTAL GROSS PAY TOTALS

DEPARTMENT GROSS PAY

190 / Using Lists and Tables

3 0.00
4 0.00
5 0.00
6 0.00
7 405.50
8 0.00
9 0.00
10 0.00
11 0.00
12 983.20
13 0.00
14 0.00
15 0.00
16 397.50
17 172.00
18 0.00
19 0.00
20 0.00

Break in 530

Now here is a program with some interesting new features:

@ The DIM statement in line 180

© The summation in line 310 and the output in 470

@ The FOR statement in line 460 and its associated NEXT statement in
line 480

Let’s look at each of these three items in turn. The DIM statement sets
up a list, at least that is what the preceding remark in line 160 says. But what
exactly does it do? In this case, line 180 tells the computer to reserve 20 con-
secutive positions all under the name “T.” Previously, one field name served
to identify one value. Here, one field name serves to identify many values.

If many values are identified by one name, how can you differentiate be-
tween the values? The answer is simple—by position. Line 180 sets up a list

of 20 nositions. thus:
O 2V posiuens, inus:t

A
Tl112!3!415!6!7v13!14!15!16!17!18!19[20!

i i i i i i i A i i i i i i i j
14

To pet any one ilen in the list, we need o specify its position (1-20).
The value in the first position would be referred to as T(1). If we wanted the
value from the second position, then T(2) is used. The location in the list is
specified by enclosing a number, or a field name that has the position de-
sired, in parentheses.

Line 310 refers to T(D). Here the “D” (enclosed in parentheses) speci-

Reference Tables /

191

fies which position in T is involved. Hence the Dth position (whatever the
department number D may be) of T is referenced. Similarly, in line 470, the
reference is to position M (whatever value M may have) in T.

A new BASIC instruction in this program is found in lines 460 and 480.
These two lines define a loop. A loop is a shorthand way of telling the com-
puter to repeat a series of instructions a certain number of times. Line 460
sets up the loop and gives the loop parameters. The loop parameters tell the
computer how often the statements in the loop are to be repeated. Line 480
closes the loop.

In general, the FOR-NEXT statements form loops. The statements
within a loop are repeated the number of times specified in the FOR state-
ment by the loop parameters. The loop parameters (in line 460), 1 TO 20,
specify that the loop will be repeated twenty times. Each time the loop is
repeated, the value of M will be increased by one. By this manner, when M
reaches a value of 20, the loop will be repeated one more (final) time.

Line 460 tells the computer to repeat the statements between 460 and
480 (the NEXT M statement) twenty times. In this example, line 470 is per-
formed for M values of 1,2, 3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19 and 20 in turn.

Let us look closely at what the program does. First it opens a file for
input. This is the file “EMPLOY” from past examples. The file contains em-
ployee records with six fields:

Employee number
Department number
Employee name
Hourly rate

Regular hours
Overtime hours

® © © © © ©

The department number is between 1 and 20. The range of department
numbers is important because we want to accumulate gross pay by depart-
ment. Next a list “T” with 20 positions: one for each of the departments, is
set up. Then the program reads a record and calculates gross pay. The de-
partment number (D) is used to add the gross pay to that location in T. In
other words, whenever the gross pay for a person in department 2 is calcu-
lated, it is added to the second position in T. Similarly if the department
were 16, gross pay would be added to the sixteenth position in T.

After the end-of-file has been reached, the gross pay for each of the de-
partments is printed in lines 460--480. Notice that line 470 will print M,
which stands for the department number, as well as the Mth value of T
(which is the departmental gross pay total).

Many problems require the use of reference tables. Income tax tables are the
most obvious example. But life insurance companies use actuarial tables;
statisticians use statistical tables; and financial analysts use present value or

REFERENCE
TABLES

192 7/ Using Lists and Tables

Figure 8-2

annuity tables. If you look closely, you can see tables everywhere. Even this
book has a table, a table of contents.
Tables hold data for reference. When the data is needed, we look it up in

AAAAAAAAAAAAAA 4nlla wofamne Al .-. PR

LAKKJ L(k_}i..l.\\jl.)ilt(t\.- tLaU}\ CLA\/ i.)AKJb}vi ik LK i,i. Kb&xu O I R kD AN Rk EA AadT
come tax calculation. A simple representation of this type of problem is
shown in Figure §-2.

‘ Start ’

A

Input
Tahle Data

o
Pom-

Y
Input
Transaction
Data

BN

YES ;—(Terminate }

Transaction
Finished ?

Process Transaction
Using Reference
Data

OQutput
Results

Flowchart for Reference Tables

The income tax problem requires two tables: one for single people; an-
oliter ior mared peopic. BOLl are SiOWN il i abic 85— i. BUL AT 1aDiCs pro-
vided by the Internal Revenue Service have to be changed to fit our require-
ments. The tables need to be consistent. Table 8-2 is the same IRS tables—
made consistent by the addition of the first line.

Before the tables can be used in the weekly payroll calculation, they
have to be set up. Since tax rates are liable to annual changes, the tax tables

Reference Tables / 193

are stored in separate files: “SINGLE” for single people; and “MARRID”
for married people. The program to get the data into the “SINGLE” file is
shown below.

Percentage Withholding Tables Table 8-1
(a) SINGLE person—including head of household: (b) MARRIED person—
If the amount The amount of income tax If the amount The amount of income tax
of wages is: to be withheld shall be: of wages is: to be withheld shall be:
'Notover $27 0 Notover$46 ,...... 4]
Over— But not over— of excess over— Over— But not over— of excess over—
$27 —$63 159% —$27 $46 —$127 ,...15% —$46
$63 —$131$5.40 plus 18% —3$63 $127 —3%210 .,,.%12.15 plus 189, —$127
$131 —$196$17.64 plus 219% —$131 $210 —-$288 ,,,.$27.09 plus 219% —$210
$196 ~—$273 ,...$31.29 plus 269 —$196 $288 —$369 .,..943.47 plus 249 —$288
$273 —$331 .,,.$51.31 plus 309% —$273 $369 ~-$454 ,,,.$62.91 plus 28% —$369
$331 -—$433 ,,,.$68.71 plus 349 —$331 $454 —$556 ,,,.$86.71 plus 329 —$454
$433. ... e $103.39 plus 399 ~—-$433 $556. ., ..., ...$119.35 plus 379% —$556
Weekly Tax Tables Table 8-2
a. Single person—including head of household b. Married person
Amount of Wages Percentage Amount of Wages Percentage
Lower and Upper Amount to Jor Excess Lower and Upper Amount to Sor Excess
End End be Withheld over Low End End End be Withheld over Low End
$ 0 $ 27 $ 0 0 $ 0 $ 46 $ 0 0
27 63 0 15 46 127 0 0.15
63 131 540 18 127 210 12.15 0.18
131 196 17.64 21 210 288 27.09 0.21
196 273 31.29 26 288 369 43.47 0.24
273 331 51.31 30 369 454 6291 0.28
331 433 68.71 34 454 556 86.71 032
433 999 103.39 .39 556 999 119.35 0.37

100 REM PROGRAM TO SET UP TAX TABLE

110 REM

120 REM LINK TO FILE

130 REM

140 OPEN "O",1,"SINGLE"

150 REM

160 REM SET UP A TABLE OF 8 ROWS AND 4 COLUMNS
170 REM

180 DIM T(8,4)

190 REM

200 REM FOR EACH ROW, GET DATA FROM TERMINAL
210 REM

220 FOR R=1 TO 8

230 PRINT "ENTER LOW AND HIGH WAGES, MINIMUM AND PERCENTAGE"
240 INPUT T(R,1),T(R,2),T(R,3),T(R,4)

250 NEXT R

260 REM

270 REM PRINT TABLE AND PLACE IT INTO FILE

194 / Using Lists and Tables

280 REM

290 PRINT

300 PRINT

310 FOR L=1 TO 8

320 PRINT T(L, L), TCL,2), 0L, 3), L0, 4)
330 PRINT #l,T(L,l);T(L,Z);T(L,B);T(L,4)
340 NEXT L

350 CLOSE #1

360 STOP

32767 END

READY

RUN

ENTER LOW AND HIGH WAGIS,
2 0,27,0,0

ENTER LOW AND HIGH WAGES, MINIMUM AND PERCENTAGE
? 27,63,0,.15

ENTER LOW AND HIGH WAGES, MINIMUM AND PERCENTAGE
? 63,131,5.4,.18

ENTER LOW AND HIGH WAGES, MINIMUM AND PERCENTAGE
? 131,196,17.64,.21

ENTER LOW AND HIGH WAGES, MINIMUM AND PERCENTAGE
2 196,273,31.29,.26

ENTER LOW AND HIGH WAGES, MINIMUM AND PERCENTAGE
? 273,331,51.31,.30

ENTER LOW AND HIGH WAGES, MINIMUM AND PERCENTAGE
? 331,433,68.71,.34

ENTER LOW AND HIGH WAGES, MINIMUM AND PERCENTAGE
2 433,999,103.39,.39

0 27 0 0

27 63 0 .15
63 131 5.4 .18
131 196 17.64 .21
196 273 31.29 .26
273 331 51.31 .3
331 433 68.71 .34
433 999 103.39 .39

Break in 360

The program gets table data from the terminal and places it into the
“SINGLE" fiie. The detaiis of iis operailon deserve cioser mspeciioi.

Line 180 reserves the spaces for the table T. The dimensions of the table
are given in parentheses as 8,4. These dimensions show that the table con-
sists of 8 rows (first dimension) by 4 columns (second dimension). Therefore
32 positions are reserved for T.

The data is entered into the table by the loop in lines 220-250. The
“FOR-NEXT” loops the computer through the statements in 230 and 240

eight times. The first time through the loop, R has the value 1. Therefore line

Reference Tables / 195

240 gets four values from the terminal and assigns them to row 1 (first di-
mension: R is 1), columns 1 through 4 in turn.

Then the NEXT R is encountered. The computer adds 1 to R and
checks the R value against its limit (the 8 specified in the FOR statement).
(Since R is less than 8, lines 230 and 240 are executed.) This time, the data
are placed into row 2.

Every time the computer encounters the NEXT R (until R would exceed
8), it adds 1 to R and fills the next successive row of T. After the eighth row
has been filled, the looping is finished. The computer continues with the next
statement in the program.

Lines 310 through 340 print the data on the screen and also place it into
the SINGLE file. The FOR-NEXT loop sends the computer through the
statements in 320 and 330 eight times. For each value of L (1 to 8), it prints
that row of the table and places the row into the SINGLE file. Thus the
eight rows of T are filed away for future use.

A similar program has to be written to place the data into “MARRID”.
You can use this program if you change the file name from “SINGLE” to
“MARRID”.

These two tables are used in the calculation of the taxes for the employ-
ees in “EMPTRA”. We will also need the master file “EMPMAS?” to get the
number of exemptions and the year-to-date social security (YTD FICA).
Each exemption claimed by the employee deducts $19.23 from taxable
wages. And social security deductions are 6.7% up to a limit of $31,800
gross pay.

The old UPDATE program from Chapter 7 serves as the basis for solv-
ing this problem. We have modified it to handle the tax tables and the social
security calculations.

Note: To run this program on the Model 111, you must sign on and
when asked HOW MANY FILES? type 5 and press “ENTER”.

Problem Summary
Input
“SINGLE” and “MARRID” files for the tax tables
“EMPTRA?" file for the weekly earnings
“EMPMAS?” file for the deductions and year-to-date FICA
Processing
For each employee: Calculate gross pay, social security (FICA), federal
income tax (FIT). and net pay (by subtracting FICA and FIT from
gross pay).
Output
The results of the “pay check” calculations, giving employee name and
number, gross pay, social security and income tax deductions,
and net pay
The updated master file, “EMPMA1"

196 / Using Lists and Tables

REM
REM
REM
REM
PRIN
PRIN
PRIN
PRIN
REM
REM
OPEN
OPEN
OPEN
OPEN
OPEN
REM
pPTM
REM
DIM
FOR

NEXT
REM

The program therefore has to
Link to the files.
Read and hold the tax tables.

(Yot an armnlavea rannrd fram SEAMDTD A
ot an employee record from “EMDPTR A

Find the matching record from “EMPMAS”.

Calculate gross pay.

Determine the amount of the social security deduction:

a. If YTD gross pay plus weekly gross pay is less than $31,800, then
all of weekly gross pay is subject to FICA.

b. If YTD gross pay is less than $31,800, but weekly gross pay added
to YTD gross pay makes it greater than $31,800, then only that por-
tion of weekly gross pay that brings the YTD up to $31,800 is sub-
ject to FICA.

c. IfYTD gross pay is greater than $31,800, then no social security 1s
withheld.

Calculate taxable income by subtracting deductions from gross pay.

Find the applicable tax in the tax tables.

. Calculate net pay.

10. Update the master record and place it into “EMPMAT1".

11. Print the output.

12. Repeat steps 3 through 12 for all other “EMPLOY” records.

13. Terminate.

R

=

O

A program to do all those tasks is shown on the following pages.

UPDATE OF MASTER FILE
SET UP HEADINGS

T

T "EMPLOYEE NAME GROSS FIT FICA
T "NUMBER PAY"

T

"I",4,"SINGLE"
"I"' 5, "MARRID"
"III ’ l' IIEMPMAS "
"It 2, "EMPTRA"
"o",3,"EMPMAL"

MAY TART B#Q

S(8,4), M(8,4)

L1 =1 TO 8

INPUT #4, S(L1,1), S(L1,2), S(L1,3), S(L1l,4)
INPUT #5, M(L1,1), M(L1l,2), M(LL,3), M(LLl,4)
L1

NET"

Reference Tables / 197

240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
405
406
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444

REM

REM READ A TRANSACTION RECORD
REM

INPUT #2, I,R,V

REM

REM READ A MASTER RECORD
REM

INPUT #1, N,D,N$,M,H,E,G,F,Fl
REM

REM COMPARE ID'S

REM

IF I=N THEN 410
IF I>N THEN 310
IF I<KN THEN 750
REM
REM ID'S MATCH -~ DO COMPUTATIONS FOR UPDATE
REM
REM CALCULATE GROSS PAY
REM
Gl=(R*H)+(V*H*1.5)
REM
REM CALCULATE SOCIAL SECURITY
REM
F3=0
REM
REM SOCIAL SECURITY IS ZERO IF YTD GROSS OVER 31,800
REM
IF G > 31800 THEN 433
REM
REM SOCIAL SECURITY IS 0.067 OF WEEKLY GROSS
REM IF YTD GROSS + WEEKLY GROSS LESS THAN 31,800
REM
IF G+Gl > 31800 THEN 429
F3=G1*0.067
GOTO 433
REM SOCIAL SECURITY IS 0.067 OF DIFFERENCE
REM BETWEEN 31800 AND YTD GROSS
REM
F3=(31800-G) * 0.067
REM
REM CALCULATE TAXABLE INCOME BY SUBTRACTING EXEMPTIONS
REM
T=Gl - E*19.23
REM
REM DETERMINE TAX TABLE
REM
IF M=2 THEN 452
REM
REM M IS 1; FIND ROW IN SINGLE TABLE
REM
FOR R1=1 TO 8
IF T <= S(R1,2) THEN 447
NEXT R1
REM

198 / Using Lists and Tables

445
446
447
448
445
450
451
452
453
454
455
456
457
458
459
4606
461
462
463
464
465
466
467
470
480
490
500
510
520
530
540
550
560
#

570
580
590
595
600
610
720
730
740
750
780

g00
glo
820
830
840
850
860
870

REM CALCULATE TAX
REM
F2=S(R1,3) + (T-S(R1,1))*S(R1,4)
GOTO 462
REM
REM M IS 2; FIND ROW IN MARRID TABLE
REM
FOR R1=1 TO 8
IF T <= M(R1l,2) THEN 458

NEXT R1

REM

REM CALCULATE TAX
REM

F2=M(R1,3) + (T-M(R1,1))*M(R1,4)
REM

P =Gl - F2 - F3
REM

REM ADD WEEKLY GROSS, FIT AND FICA TO YTD TOTALS

REM

G =G + Gl

F =F + F2

Fl=F1+F3

Pl=P1l+P

REM

REM PRINT UPDATED MASTER RECORD
REM

PRINT #3,N;D;NS$;",";M;H;E;G;F;F1

REM

REM PRINT ID, NAME, NET PAY
REM

PRINT USING" ### % 3 HEAE . HE
#éd#H. ##";N,N§,GL,F2,F3,P

REM

REM READ A TRANSACTION RECORD
REM

IF EOF(2) THEN 780

INPUT #2, I,R,V

GOTO 350

REM

REM MISSING MASTER RECOR
REM

PRINT "MASTER RECORD MISSING FOR EMPLOYEE NUMBER ";

CLOSE #1,#2,#3,#4,45

™ TR

PRINT
PRINT

HEEE

PRINT " UPDATED MASTER FILE"

PRINT

. #

Reference Tables /7 199

880 OPEN "I1",4,"EMPMAlL"

890 PRINT "EMP DEPT NAME MARITAL HOUR EX- YTD YTD
YyTD"

900 PRINT "NUM STATUS RATE EMP GROSS FIT
FICA"

905 IF EOF(4) THEN 940

910 INPUT #4,N,D,NS,M,H,E,G,F,F1l

920 PRINT USING"### ## % % # 3 3] $ hEHHE. 4
$44H . 44 H4#4.%#";N,D,N$,M,H,E,G,F,F1l

930 GOTO 905

940 CLOSE #4

950 STOP
32767 END
EMPLOYEE NAME GROSS FIT FICA NET
NUMBER PAY

101 ADAMS 200.00 14.91 13.40 171.69

103 BAKER 257 .60 37.31 17.26 203.03

104 BRAVE 172.00 7.36 11.52 153.11

108 COHEN 237 .50 18.19 15.91 203.39

172 JOHNSON 150.00 21.63 10.05 118.32

198 TANNER 153.00 4.51 10.25 138.24

202 WILSON 160.00 2.68 10.72 146.60

206 LESTER 210.00 l6.71 14.07 179.22

255 SCHMIDT 257 .60 18.35 17.26 221.99

281 MILLER 240.00 18.64 16.08 205.28

313 SMITH 195,50 14.10 13.10 168.31

347 GRAY 228.00 19.95 15.28 192.78

368 WEAVER 150.50 17.70 10.08 122.72

422 WILLIAMS 160.00 11.33 10.72 137.95

UPDATED MASTER FILE

EMP DEPT NAME MARITAL HOUR EX- YTD YTD YTD
NUM STATUS RATE EMP GROSS FIT FICA
10l 1 ADAMS 2 5.00 3 1200.00 214.91 74.70
103 12 BAKER 1 5.60 2 1545.60 294.91 96.21
104 17 BRAVE 2 4.00 4 1032.00 179.36 64.24
108 16 COHEN 2 6.25 4 1425.00 255.69 88.70
172 2 JOHNSON 1 3.75 0 900.00 171.63 56.03
198 1 TANNER 2 4.25 4 918.00 157.51 57.14
202 16 WILSON 2 4.00 5 960.00 162.68 59.76
206 7 LESTER 2 5.25 3 1260.00 226.71 78.44
255 12 SCHMIDT 2 5.60 5 1545.60 275.95 96.21
281 12 MILLER 2 6.00 4 1440.00 258.64 89.64
313 7 SMITH 2 4.25 3 1173.00 209.60 73.02
347 12 GRAY 2 6.00 3 1368.00 247.95 85.16
368 1 WEAVER 1 3.50 1 903.00 168.20 56 .21
422 1 WILLIAMS 2 4.00 2 960.00 171.33 59.76

The key statements for the table reference are in lines 452—454 for mar-
ried employees and in lines 441443 for single employees, where the appro-

200 / Using Lists and Tables

priate row of the table is found. But before we can discuss that, let’s look at
how the tables were set up in line 234-238.

First, line 234 reserves the space for two tables: S for single and M for

rann Danl snalala masnlioés nt‘ PO S AT PP, B\ SR ~ T A
G Al bRIL LUKHOES 0 U Gl EUW S Al (OUT COsunmins, Al

cordlng to the tax tables of the Internal Revenue Service, each row corre-
sponds to a range of income. The columns of the table are as follows:

© Column 1: the low end of the weekly income range

© Column 2: the upper end

© Column 3: the taxes up to the low end

e Column 4: the tax rate for anything above the low end (but below the
high end of the range).

Then in lines 235-238 the tables are filled. The field L1 stands for the
row number. It is assigned the values 1 through 8 successively by the FOR-
NEXT statement. For each value of L1, the four columns of each table are
input. So if L.1 is 1, then the first row is filled. When L1 is two, the second
row of the tables S and M is given values. Once all eight rows are filled, we
exit from the loop and start to process the employee records.

Now we can see how to work with these tables. The taxable income has
already been computed when we arrived at line 437. The statement in 437
checks whether the single person or married person tax table has to be used.
Depending on this iest, we go either 1o line 441 for a single person or to line
452 for a married person.

The taxable income tells us what row of the table is used for the tax cal-
culation. Hence taxable income is compared to the upper end of an income
range. Because the ranges are in ascending order, each row holds the data
for a weekly income that is less than the upper end of that row, but greater
than the upper end of the earlier rows. Since the rows are checked starting
with the lowest income, as long as taxable income is greater than the upper
end of a range, we have not yet reached the correct row of the table.

Once the right row has been found, then we can use the row number R1
to calculate the taxes. Line 458 calculates the tax for married employees and
line 447 calculates the tax for single employees.

Besides the table reference, this program also contains one other compli-
cation—the social security calculation. Actually, there is nothing new in lines
414—-429; it’s just cumbersome because we have to follow the rules of the
Internal Revenue Service. All the conditions make it awkward to follow the

calculations. The program handles three conditions:
i. TYear-io-daic greaier ihan $31,500; in wilich case no social security is
calculated (determined in line 418).

2. Year-to-date plus weekly wages less than $31,800; where all of the
weekly wages are subject to social security (caiculated in line 424).

Reference Tables / 201

3. Year-to-date less than $31,800, but year-to-date plus weekly wages
greater than $31,800; here the difference between $31,800 and the year-
to-date is subject to a social security deduction. (That deduction is cal-
culated in line 429.)

TRS-80 BASIC has the ability to handle up to fifteen files in a pro-
gram. However, if you have more than three files open simultaneously in a
program, you must specify the number of files that the program uses when
you sign on.

Of course, the actual payroll calculation for a real firm would have many
more deductions. Not included in this example are deductions for health in-
surance, pension plans, payroll savings plans, state and local taxes where re-
quired, union dues, etc. But from this example you can appreciate what is
needed to do payroll calculations.

Look at the other example that follows.

Inventory Report: Some industries experience rapid price fluctuations. Example
When prices fluctuate rapidly, it is often convenient to establish and main-

tain separate price tables for parts in inventory. Table 8—3 shows the price

table for the parts in inventory.

Inventory Price Table Table 8-3

Part Number Price

101 5.25
110 7.00
219 3.25
226 3.10
235 6.20
247 4.85

Management has asked for a report that shows the dollar value of issues and
receipts by part number. The issues and receipts are in the transaction file
“INVTR”.

Problem Summary
Input
“INVTR” file
Price table file, “INVPRC”
Processing
Accumulate subtotals and totals for the dollar amounts issued and re-
ceived by part number and for the file as a whole.

202 / Using Lists and Tables

100 REM
101 REM
102 REM
103 PRINT
104 PRINT
105 PRINT
106 PRINT

AT BTUTATM
L7 TIOVLN L

110 REM
120 REM
130 REM
140 OPEN
150 OPEN
160 REM
170 REM
180 REM
190 DIM
200 R=0

QOutput
An inventory report, giving by part number the dollar amount of issues
and the dollar amount of receipts.

PROGRAM TO PRICE ISSUES AND RECEIPTS

HEADINGS FOR REPORT

" RECEIPTS AND ISSUES REPORT"
RECEIPTS

LINK TO FILES

nIu R l ’ " INVTR"
mIv, 2, "INVPRC"

SET UP PRICE TABLE AND GET DATA FROM INVPRC

P(6,2)

210 IF EOF(2) THEN 300

220 INPUT
230 R=R+1
240 P(R,1
250 P(R,2
260 GOTO
270 REM
280 REM
290 REM
300 INPUT
310 REM
320 REM
330 REM
340 P9=P1
350 REM
3¢0 REM
370 REM
380 REM
390 FOR R

#2,N,D
)=N
)=D
210
READ AN INVENTORY TRANSACTION
#1,P1,T1,Q1L

SET P9 TO PART NUMBER FOR LATER COMPARISON

DETERMINE PRICE OF PART BY COMPARING Pl TO
COLUMN 1 OF TABLE P

=1 TO 6

ANN T MNIT-D/D T Y MDA AN

410 NEYT
420 REM

430 REM
EIPT

440 REM

DETERMINE WHETHER TRANSACTION IS SHIPMENT OR REC

Reference Tables / 203

450 IF T1=2 THEN 540

460 REM

470 REM RECEIPT: T=1

480 REM

490 R1=R1+Q1l*P(R,2)

500 GOTO 575

510 REM

520 REM SHIPMENT: Tl=2

530 REM

540 S1=S1+Q1l*P(R,2)

550 REM

560 REM READ NEXT TRANSACTTION

570 REM

575 IF EOF(1) THEN 800

580 INPUT #1, P1,T1,Ql

590 REM

600 REM CHECK WHETHER IT'S THE SAME PART AS BEFORE
610 REM

620 IF P1=P9 THEN 390

630 REM

640 REM PRINT OUT OLD PART NUMBER, RECEIPTS, AND SHIPMEN
TS

650 REM

660 PRINT USING" ##4# HHEHS . 444447 ;P9,R1,S1
670 REM

680 REM SET RECEIPT AND SHIPMENT ACCUMULATORS TO ZERO
690 REM AND PROCESS TRANSACTION

700 REM

710 R1=0

720 S1=0

730 GOTO 340

740 REM

800 CLOSE #1,#%2

32767 END

204 / Using Lists and Tables

RECEIPTS AND ISSUES REPORT

PART RECEIPTS ISSUES
101 787.50 813.75
21° 0.0C 55.00
226 542.50 279.00
235 0.00 186.00

This program generates a report of receipts and shipments by part num-

ber from the “INVTR?” file. It performs the following tasks:

1.
2.

3.

10.

It links to files ““INVTR’’ and “INVPRC” (statements 140 and 150).
Ii reserves oo Tor ihe price idabie (statement 190).

It gets a part number and a price from ‘‘INVPRC’’ and assigns it to the
price table (statements 200—260).

It reads the first inventory transaction from “INVTR? (statement 300).
It “remembers” the part number (statement 340).

It processes the transaction:

a. It determines which row of the price table has the same part num-
ber (statements 390-410).

b. It determines whether the transaction is a shipment or a receipt
(statement 450)
(1) Itaccumulates the dollar amount of receipts (statement 490).

(2) It accumulates the dollar amount of shipments (statement 540).
It reads the next transaction (statement 580).

If the part number of this transaction is the same as the part number on
a prior transaction, then repeat steps 6 and 7 (statement 620).

If the part number of this transaction is not the same as the part num-
ber of a prior transaction, then print the prior part number receipts and
shipments (statement 660); set accumulators for receipts and shipments
to zero (statements 710 and 720) and perform steps 5, 6 and 7.

It terminates when out of transaction data.

The table reference in this examole is in step 6. Let’s look at it again to see
the details of its operation. The price tahle P looks as follows-

Sorting Lists and Tables / 205

Column
Row 1 2

1 101 | 5.25
2 {110 | 7.00
31219 [3.35
4 1226 |3.10
5 235]6.20
6 247 | 485

Now let’s take the first transaction:

Part Number Transaction Code Quantity
101 1 150

The FOR-NEXT loop starts R at 1. So in line 400 when we compare the
part number (P1) to column 1 of the table, we have a match. Therefore we
skip out of the loop (R is still 1 since it was not changed) and use this row
number to calculate the dollar value of the receipt in line 490.

That example was too easy. Take another transaction:

Part Number Transaction Code Quantity

226 2 90

Again R starts at 1 in line 390. The comparison between P1 (the part
number) and the table P (Row 1, Column 1) shows they are not equal.
Therefore we come to the NEXT R statement in 410. A one is added to R: R
is now 2; and the comparison in line 400 is between P1 (value of 226) and
row 2, column 1 of table P (value of 110). Again, they are not equal.

Notice that as R is changed, from 1 to 2, to 3, to 4, the program skips
down the first column of P. At each value of R the next row of the table is
used in the comparison. Once the proper row has been found, the row
number (R) is used with the second column of P to calculate the dollar value
of a transaction, either in line 490 or in line 540.

Sometimes we must change the order of a small amount of data. For exam- SORTING LISTS
ple, we might want a listing of our employees by descending order of gross ~ AND TABLES
pay for labor negotiations. Or we might want product lines in ascending or-
der of sales. Or we might want to rank our customers by volume of sales.

Sorting of files has already been mentioned. Appendix B has the sorts

206 / Using Lists and Tables

100
110
120
130
140
150
160
170
180
190
200
210
24U
230
240
250
260
270

needed. But sometimes the data is in lists or tables, not on a file, and we
need to sort it.

Let’s assume that we need a list of employees in descending order of net
pay. The nict pay of the eiployees hias already been caiculaied in ihie revised
employee payroll program. But the output from that program is in employee
number sequence. Our need is in descending order of net pay.

Problem Summary

Input

Employee number

Employee name

Weekly net pay
Frocessing

Store the fields in lists. Sort by weekly net pay (in descending order).
Qutput

Print employee name and number in descending order of pay.

The program therefore has to:

1. Get the employee data and put it into lists.

2. Sort the list into descending order of net pay.
3. Print the sorted data.
4

Terminate.

A program that performs these tasks is shown below:

REM PROGRAM TO SORT LISTS

REM

REM SET UP LISTS TO HOLD DATA

CLEAR 1000
DIM N(100)
REM

,N$(100),P(100)

REM GET TTHE DATA FROM THE TERMINAL AND PLACE IT INTO
REM THE LISTS

REM
1=0

PRINT "TYPE EMPLOYEE NUMBER, EMPLOYEE NAME"
PRINT "AND NET PAY - SEPARATED BY COMMAS"
PRINT "WHEN PFINISHED - TYPE Y% ,ARA,597
INPUT N1,MS$S,Pl

IF N1=99 THEN 330

L=L+1
N(L)=N1
NS$(L)=MS$

Sorting Lists and Tables / 207

280 P(L)=Pl

290 GOTO 230

300 REM

310 REM SORT THE DATA

320 REM

330 U=L-1

340 F=0

350 FOR K=1 TO U

360 REM COMPARE TWO CONSECUTIVE VALUES

370 REM IF THEY ARE NOT IN ORDER, THEN EXCHANGE
380 IF P(K) >= P(K+1l) THEN 600

400 REM

410 REM VALUES OUT OF SEQUENCE, HENCE EXCHANGE
420 REM

430 T=P(K)

440 P(K)=P(K+1)

450 P(K+1)=T

460 REM

470 REM EXCHANGE NAME AND IO ALSO TO KEEP THEM
480 REM AND RATES TOGETHER

490 REM

500 T=N(K)

510 N(K)=N(K+1)

520 N(K+1)=T

530 T$=N$(K)

540 NS(K)=N$(K+1)

550 NS$(R+1)=TS$

560 REM

570 REM SET F TO INDICATE THAT AN EXCHANGE HAS OCCURRED
580 REM

590 F=1

600 NEXT K

610 REM

620 REM CHECK IF ANY EXCHANGES HAVE OCCURRED
630 REM

640 IF F=1 THEN 340

650 REM

660 REM END OF SORT

670 REM

680 REM PRINT OUT LISTS WITH HEADINGS
690 REM

700 PRINT "EMPLOYEE","EMPLOYEE","WEEKLY"
710 PRINT "NUMBER", "NAME", "PAY"

720 FOR K=1 TO L

730 PRINT N(K),N$(K),P(K)
740 NEXT K

750 STOP

32767 END

TYPE EMPLOYEE NUMBER, EMPLOYEE NAME
AND NET PAY - SEPARATED BY COMMAS

208 / Using Lists and Tables

WHEN FINISHED - TYPE 99,AA,99

? 101,ADAMS,171.69

? 103,BAKER,203.03

? 104,BRAVE,153.11

? 108,COHEN,203.39

? 172, JOHNSON 118.32

? 198, TANNER, 138 24

? 202,WILSON,146.60

? 206,LESTER,179.22

? 255,SCHMIDT,221.99

? 281,MILLER,205.28

? 313,SMITH,168.31

? 347,GRAY,192.78

? 368,WEAVER,122.72

? 422,WILLIAMS,137.95

? 99,AA,99

EMPLOYEE EMPLOYEE WEEKLY

NUMBER NAME PAY
255 SCHMIDT 221.99
281 MILLER 205.28
108 COHEN 203.39
103 BAKER 203.03
347 GRAY 192.78
206 LESTER 179.22
101 ADAMS 171.69
313 SMITH 168.31
104 BRAVE 153.11
202 WILSON l46.6
198 TANNER 138.24
422 WILLIAMS 137.95
368 WEAVER 122.72
172 JOHNSON 118.32

Break in 750

This program puts data into lists in lines 190-300. Then it sorts the lists
in lines 340 to 640. Finally, it prints out the lists in lines 700 to 740. Let’s
look at each of these actions in turn.

The storage of data starts by setting the field L to zero. L will be used in
lines 250 through 280 to indicate the location in a list. Notice that the lists
have 100 spaces each (the dimension is set in line 140), although fewer
spaces wiil be needed jor our daia.

Then line 230 gets the first record for the file. The program adds 1 to L
in line 250. L is now 1. Hence in lines 260-280, the first (L value of 1) loca-
tion of N, N§, and P is filled with the values of N1, M$ and P1 respectively.

Line 290 takes us back to the input of data. As long as there are records
in the file, the program reads the data; adds one to L; and places the desired

Sorting Lists and Tables / 209

fields into successive locations in the lists. At the end of the data input, L
will contain the number of records; L is also the highest position in the lists
that has been filled with data.

Lines 330 to 640 sort the data into descending order of weekly pay. The
sort is finished when all items are in order. It works by comparing two adja-
cent positions in the pay list. If they are in sequence, we compare the next
two positions. But if two adjacent positions are out of sequence, they are
first placed in the proper sequence before the next two positions are com-
pared.

We know that all items are in their proper sequence if we do not have to
interchange any items. Whether an interchange has occurred is shown by a
field (a “‘flag’’ called F in the program). The field is set to zero at the begin-
ning of each pass through the array. When an interchange occurs, it is set to
one. Therefore if F is one, we don’t know yet that the lists are in their desired
sequence. Line 640 tests F, and if F is one, we repeat the process.

We can see the operations of this sort by looking at the first five records
of the lists. These records would be in the lists N, N$ and P as follows:

List
Position N N§ P
1 101 Adams 171.69
2 103 Baker 203.03
3 104 Brave 153.11
4 108 Cohen 203.39
5 172 Johnson 118.32

Now let’s start through the steps of the sort. First, U, a field to hold the
upper limit for the comparisons, will be 4. Therefore K, the loop index, will
take on values 1 to 4 in turn. Line 340 sets F to zero, because at this stage no
exchanges have occurred. Then K is set to 1, and we compare the K (first)
position and K + 1 (second) position in the net pay list. They are out of
sequence. P(2) is $203.03, and P(1) is $171.69. To put them in proper order,
Baker should come before Adams. Hence lines 430 to 450 interchange the
values.

Notice that an interchange is a three-step process. If we tried it in two
steps, it wouldn’t work:

PX) =P X+ 1)
P(XK+1)=P (K)

Why not? Because the computer is a sequential machine. For a K value of 1,
the following would happen in the two-step process: Step 1: P (K) =
P (K + 1). This means P (1) = P (2) and after the assignment the first two
positions of P would look as follows:

210 / Using Lists and Tables

Position 1 203.03
Position 2 203.03

Because we put the value from position 2 into the first position, they
are both identical. The value in the first position is lost, wiped out, erased.
And the second step would put a 203.03 into position 2 again.

The three-step process works, because it puts the value for the first posi-
tion temporarily somewhere else—in T. Now when a value is placed into
P (K), we still have its old value in T as shown below:

P(1) | 203.03 = 171.69 | T
\2 3

P(2) | 203.03

The numbers on the arrows give the sequence in which the assignments have
to occur to do the exchange.
At the end of line 450, our lists would look as follows:

N N§ P
101 Adams 203.03
103 Baker 171.69
104 Brave 153.11
108 Cohen 203.39
172 Johnson 118.32

As you can see the net pays are in order, but they are not with the right em-
ployee name and number. Lines 500-550 interchange the names and ID
numbers so that the list will look like this:

N N§ P
103 Baker 203.03
101 \dams 171.69
104 Brave 153.11
108 Cohen 203.39
172 Johnson 118.32

Then line 590 sets F to 1 because an interchan
ready for the next K value.
When K is 2, the second (Kth) and third positions of P are compared.

They are already in sequence. Therefore we go to the next K value.

e has occurred and we are

Sorting Lists and Tables / 211

When K is 3, we compare the third and fourth position. They are out of
sequence. Therefore we interchange and our list would look as follows
before the next K value is executed:

N N$ P
103 Baker 203.03
101 Adams 171.69
108 Cohen 203.39
104 Brave 153.11
172 Johnson 118.32

When K is 4, the comparison between the fourth (Kth) and fifth
(K + 1) values of P shows that they are in sequence.

Since K has now reached its upper limit (the value of U), the looping is
finished. But a check with F (in line 640) shows that at least one exchange
has occurred. Since the lists may not be in sequence, the program sends us
back to 350 for another pass through the data.

At the end of the second pass (K value of 1, 2, 3 and 4), the lists would
look as follows:

N A P

103 Baker 203.03
108 Cohen 203.39
101 Adams 171.69
104 Brave 153.11
172 Johnson 118.32

It takes one more pass to get the data in order and another to assure us that
no more interchanges are needed. Then we know that the lists are in the de-
sired sequence.

Notice that the sequence of the items is basically defined by the test in
line 380. In this example, the contents of two adjacent positions in the list
are compared to see if they are in descending sequence.

It is important that two equal values not be exchanged. If the test in 380
was just greater than (as opposed to the actual greater than or equal), then
two values that were equal would be exchanged. And they would be ex-
changed again in the next pass. And the next. And the next. And the next.
In fact, the exchanges would never end.

A situation like that, called an infinite loop, can cost you a lot in com-
puter time. Therefore care must be taken to avoid infinite loops. In this case,
the test must be a greater than or equal, or less than or equal, so that an infi-
nite loop is not generated.

212 / Using Lists and Tables

SUMMARY

There is one new instruction in the program:
130 CLEAR 1000

The CLEAR instruction must be used to provide space in memory for hand-
ling more than 100 alphabetic characters at the same time. Normally, it is
not necessary in handling records, but in the case of this program, where all
of the names are brought into memory, it must be used, or an error message
will occur when you run the program.

This chapter has discussed the use of lists and tables. Lists and tables are
convenient ways to hold data either for subsequent processing or for output
after processing.

In the first example, a list was used to accumulate departmental totals.
To use the list, space for the list had to be reserved and labelled. To access
individual elements of the list, subscripts giving the location of a position in
a list had to be used.

Tables are different from lists, because two subscripts are needed—a row
indicator and a column indicator. Two tables were used to determine income
taxes for the employees.

Besides lists and tables, this chapter also presented a way to perform
looping. The FOR-NEXT instruction lets you control how often a set of
BASIC statements would be executed.

BASIC Instructions Infroduced:

Statement Explanation

CLEARN Allocates space in memory for n alphabetic char-
acters. Used only when n is greater than 100.

DIM Y(X),Z(Q,R) Sets the lists Y (represented by a letter) to X posi-

tions. Defines that Z (represented by a letter) has
Q rows and R columns. Individual elements of
lists and tables are identified by their location:
the position number in a list or the row number
and column number in a table. X, Q, and R must
be numbers.

FORY=NTOM Sets up a loop. The FOR statement begins the
: loop. It sets Y to N (beginning value); the loop
NEXT Y will continue until V has a value greater than M

(the upper bound). The NEXT statement closes
the loop.

Problems / 213

o

Write a program that will generate a summary report of inventory by
department from the “INV” file (see Chapter 5). Use a list to hold the
inventory cost by department.

A machine shop has seven machines. When an order for a part arrives,
the sequence in which any of the seven machines will be us mined. To
make a part requires four of the seven machines. The time in minutes for
each machine to make a part is shown below:

Machine Time

1 20
30
12
26
32
17
7 14
a. Write a program to store the data as a table in the “MCHTM” file.
b. The data regarding orders will be input from a terminal. Order data
consists of an order number and the numbers of the machines in the

required sequence to make the part. The following orders have ar-
rived:

N B WS

Order Number — Machine Sequence

7442 2,456
7443 1,5,3,7
7444 1,6,5,4
7445 1,3,6,7

Write a program that will input the “MCHTM?” file and the order data;

then print the order number and the total time required to process that
order.

In Problem 2, the time required to transport the orders from one
machine to another has been neglected. Modify your program to take
transportation times into account in determining the total time to pro-
cess an order. The transportation time in minutes are as follows:

To Machine
1 2 3 4 5 6 7

0 15 23 7 16 5 19
2 0 16 9 12 17 5
From 25 14 0 12 17 12 18
Machine 12 13 0 9 8§ 14

19 14 15 11 0 12 10
7 15 10 10 15 O 9
17 8§ 14 18 12 13 0

PO P UV N
o0

PROBLEMS

214 / Using Lists and Tables

Write a program to store the transportation time as a table in the
“TRTM” file and modify your program in Problem 2 to include trans-
portation time. Use the same order data as in Problem 2.

4. Change the sort program in this chapter (page 206) so that it will sort in
ascending order. Use the net pay data to test the program.

9 / Using Direct Access Files

215

Creating a Direct Access File / 217

At the end of this chapter you should be able to:

@ Create direct access files

Read and print direct access files

Change field values in a direct access record
Update master records in a direct access file
Query records in a direct access file

® o0 © ©

So far, sequential files have been used exclusively for all problems, exercises,
and examples. There is one major drawback in using sequential files—every
time you want to read any record in a file you must start with the first record
and read each record until the desired record is reached. If a file has 2,000
records, and you want to print the 1,995th record, 1,995 records would have
to be read to reach the record to be printed. A great deal of time would be
wasted reading and testing every record until the one to be printed is reached.
The time to reach a record in a sequential file is proportional to the position
of the record (first, middle, last) in the file.

You may still wonder why a few seconds may be important. A sequen-
tial file of 2,000 records with the same fields as “EMPLOY” was created to
test the time required to find and print a record. It took less than a second to
read and print the first record. It took almost two minutes to read and print
the 1,995th record!

In the early days of computers, only sequential files were available. But
to reduce the time required to find a record, direct access files were devel-
oped. All direct access files share one characteristic—the time to find any
record in a file is constant. With direct access files, there is a method to find
a record without reading from the beginning of a file.

There is one way to create and use direct access files in TRS-80 BASIC. It
follows the techniques of Chapter 8 where lists and tables were discussed.
We shall create a direct access file in almost the same manner as a table is
created. An inventory example will be used throughout this chapter to illus-
trate the use of direct access files.

The data for the inventory master file are found in Table 9- 1. Note that
the part number and the record number are the same! In an actual business,
the part number would be a multi-digit number within which the record
number would exist or be added to the existing part number after a dash.
For example, part number 27364-001 could indicate that part 27364 is re-
cord number one. There are other more sophisticated ways of obtaining re-
cord numbers from part numbers; but they are beyond the introductory
level of this book.

Performance
Objectives

CREATING A
DIRECT ACCESS
FILE

218 / Using Direct Access Files

Open File

a Record

Change Form
of Input Data

Write a Record
Lo Fiie

i

Next R

Y

Close File

Creating a Direct Access File / 219

Inventory Master File—"INVMST” Table 9-1
Part Stock Unit
Number on Hand Cost
1 590 1.50
2 750 2.75
3 231 1.39
4 395 5.96
5 674 7.23
6 279 6.79
7 942 4,26
8 27 5.49
9 152 1.26
10 420 3.74
Problem Summary
Input
Inventory master file.
Processing
Input the data at execution time.
Output
Instructions for input and a direct access file, “INVMST”.
The program consists of the following steps:
1. Link to the direct access file.
2. Input the data.
3. Change the form of the input data.
4. Write the record to the diskette.
5. Stop when ten records have been processed.
See the flowchart (Fig. 9-1). A program to perform all of these steps is
below:
100 REM THIS PROGRAM CREATES A DIRECT ACCESS FILE
110 REM AND INPUTS THE DATA
120 REM
130 REM
140 REM OPEN THE FILE
150 REM
160 OPEN "R",1,"INVMST"

165
170

FIELD #1, 8 AS AlS,
REM

8 AS A2S,

8 AS A3S

220 / Using Direct Access Files

310 REM
320 REM INPUT THE RECORDS ONE AT A TIME
330 REM
340 FOR R=1 TO 10
+350 PRINT "TYPE PART NUMBER,STOCK ON HAND, UNIT COST"
+360 INPUT Al,A2,A3
361 REM
362 REM
363 REM CHANGE THE FORM OF THE INPUT FIELDS
364 REM
365 RSET Al$=MKDS$(Al)
*366 RSET A2$=MKDS$(A2)
*367 RSET A3$=MKDS$ (A3)
368 REM
369 REM PUT THE RECORD IN THE FILE
370 REM
-» 375 PUT 1,R
376 REM
377 REM
~380 NEXT R
390 REM
400 REM FINISH
410 REM
= 420 CLOSE #1
430 STOP
32767 END

Before discussing the program, there is a very important concept that
must be understood. The creation of a direct access file results in a file on
the diskette that is similar to a table. The rows of the table correspond to
records in the file. The record is identified by its row number which is the
same as the record number since each row consists of one record.

Direct access files are opened in the same way as sequential files. The
only difference is the “R” in the OPEN instruction to designate a direct
access file. The next statement

165 FIELD #1, 8 AS A1$, 8 AS A2§, 8 AS A3$

is called a FIELD instruction, and it is necessary when a direct access file is
opened. All data is stored for direct access records in alphanumeric (both
alphabetic and numeric) form. The three fields in the record are Al%, A2S,
and A3$—they each must have a $§. The length of each field must be
defined. The number 8 is used to indicate that eight characters will be the
maximum number of characters in each tieid. 1he tile number (#1) in the
FIELD instruction refers to the file number assigned in the OPEN state-
ment. So we have defined, at this point in the program, a direct access file
(“INVMST?”) that has three fields (A1$, A2%, A3$) where each field will
have a maximum of eight characters.

In the FOR-NEXT loop, lines 340-380, we first input the numeric data

Reading and Printing a Direct Access File / 221

from the keyboard as fields Al, A2, and A3 as usual. Next, the numeric
data has to be changed to alphanumeric data. This is done in lines 365-367.

365 RSET Al$=MKDS$(AI)

All three lines are identical except for the field names. Line 365 takes the nu-
meric data in field Al and changes it into the appropriate alphanumeric
form to be stored in a direct access record. This is done by using the func-
tion MKDS$ and the instruction RSET.

The last step in the loop is the writing of the record to the diskette. The
form of this instruction is PUT 1,R where the 1 refers to the file number and
the R is the record number. A list of fields is not used since they have been
specified in the FIELD statement,

The loop is repeated for ten records and the file is closed.

Upon completion of the data input, you have set up and stored the
direct access file “INVMST?” as if it were a table. The file looks like Figure
9-2.

The program to read and print out the inventory master file is given below. READING AND
PRINTING A
DIRECT ACCESS
FILE
Field
Row 1 2 3
1 1 590 1.50
2 2 750 275
3 3 231 1.39
4 4 395 596
5 5 674 7.23
6 6 279 679
7 7 942 426
8 8 27 5.49
9 9 152 1.26
10 10 420 3.74
The Direct Access File—"INVMST” Figure 9-2
100 REM
110 REM THIS PROGRAM READS AND PRINTS THE "INVMST"
111 REM FILE
120 REM
130 REM
140 REM PRINT HEADINGS FOR PRINTOUT
150 REM
160 PRINT "PART STOCK gNIL"
170 PRINT "NUMBER ON HAND cosT"
130 REM

230 REM OPEN THE FILE

222 / Using Direct Access Files

CHANGING
VALUES IN A

240 REM
1250 OPEN "R",1,"INVMST"
260 REM

~Nro e TiT o L O n o ny
(3 VRO Ry AN R AR W O Y 2 [P RS O S

269 REM
270 REM PRINT THE FILE
280 REM I, INDEX IS THE RECORD NUMBER
290 REM
.300 FOR L=1 TO 10
302 REM
303 REM GET THE RECORD FROM THE FILE
304 REM
®305 GET 1,L
307 REM
308 REM CHANGE THE FORM OF THE FILE DATA
309 REM
+310 Al=CVD(AlS)
.311 A2=CVD(A2S$)
+312 A3=CVD(A3$)
313 REM
314 REM
v315 PRINT USING "### HhEH #4#.#4";A1,A2,A3
<320 NEXT L
330 REM
340 REM FTINTSH
350 REM
360 CLOSE #1
132767 END

o mno anc Q nc a2
O luner adp g wooia Py

In lines 160 and 170 the headings for the output are printed. Next, the
file is opened and the FIELD statement used. Within the loop, line 305 GET
1,L reads the Lth record of file number 1 (“INVMST”). The data in the
record is in alphanumeric form and must be converted back to numeric
form in order to be printed out. The function CVD does the conversion.
Lines 310-312 perform this function. All three lines are identical once again,
except for the field names.

a2 Y

310 Al =CVD(AILS)

The last step in the loop is the printing of the record. The loop is
repeated for the ten records and the file is closed.

It is necessary to change values in an inventory master record due to price
changes and adjusiments. The stock on hand has to be adjusied because a

DIRECT ACCESS manual count of stock on hand just took place. The following records have

FILE

to be adjusted for stock on hand or cost.

Changing Values in a Direct Access File / 223

Changes to the Inventory Master File Table 9—2
Part Stock Unit
Number on Hand Cost
1 600 2.00
9 152 1.40
6 230 7.00
3 231 1.50
10 500 4.00
5 674 7.25

Since “INVMST” is a direct access file, you do not have to order the
changes by record (part) number.

Problem Summary
Input
Inventory master file, “INVMST”
Processing
Find the record to be changed. Input the new values.
Output
The inventory master file, “INVMST”, with the appropriate records
changed.

See the flowchart (Fig 9-3). A program follows:

100 REM

110 REM THIS PROGRAM CHANGES RECORDS IN THE FILE
120 REM

230 REM OPEN THE FILE

240 REM

250 OPEN "R",1,"INVMST"

260 REM

265 FIELD #1, 8 AS Al$, 8 AS a2$, 8 AS A3S

269 REM

270 REM INPUT RECORD NUMBER (PART NUMBER)
280 REM

$290 PRINT "WHAT IS THE RECORD NUMBER? TYPE 9999 TO END"
*300 INPUT R
310 REM
320 REM TEST FOR END OF INPUT
330 REM
#340 IF R=9999 GOTO 740
350 REM
360 REM PRINT OUT RECORD
#365 GET 1,R
370 REM
380 REM CHANGE THE FORM OF THE DISK DATA
390 REM
400 Al=CVD(AL$)

224

/ Using Direct Access Files

410

430
435
AANn
450
460
470
+480
%490
500
510
520
©530
540
550
560

630
640

650

660
1670
680
690
#700
710
720
730
740
750

A2=CVD(A2S$)
A3=CVD(A3S)

REM

PRINT "IS THIS THE RECORD TQ BE CHANGED?"

DN TAIM YTy T at "N N "o s . - R . .
PRINT USINgG W ¥ ik it AL, AZ,AS

REM
REM
REM

IS THIS THE RIGHT RECORD?

PRINT "TYPE Y IF YES, N IF NO"

INPUT BS
REM

REM

REM

IF B$="N"
REM

REM

REM

IF NOT CORRECT RECORD GO BACK TO INPUT

GOTO 290

PRINT "TYPE THE NEW VALUES: STOCK ON HAND, UNIT CcOsT"
INPUT A2,A3

REM
REM
REM

CHANGE THE FORM OF THE INPUT DATA

RSET Al$=MKDS$(R)
RSET A2$=MKDS$(A2)
RSET A3$=MKDS$(A3)

REM
REM
PUT 1,R
REM
REM
GOTO 290
REM
REM
REM
CLOSE #1
STOP

32767 END

PUT THE RECORD ON THE DISK

GO BACK FOR MORE INPUT DATA

FINISH

The program opens “INVMST” as a direct access file in line 250. The
FIELD statement is in line 265. Next, record (part) number is input in line
300. A test for the end of data input is on line 340. It is important to check
that the record to be changed is the one found. The record is retrieved in line
365, the form is changed in lines 400-420, and it is printed out in line 440.
Then a 'Y or an N is input to verify that the record printed out is the record
io be changed. The Y or N is tested in line 530. It the input is Y, then the
values for stock on hand and price are input in line 580, The form of the
input data is changed in lines 620-640 and the record is written to the disk-
ette in line 670. Next, the record number is requested. The end of the pro-
gram is signalled by input of 9999 for record number. The file is closed and
the program ends.

Updating Master Records in a Direct Access File

225

Qpen File

Read Record

1

Change Form

of Data

Write Record

Print Record

input YorN

Change Form
of Data

Input
New Values

/

Close File

> Terminate

Flowchart for Changing a Record

In all programs that read and write direct access files, it is necessary to

perform the following steps:

1.
2.
3.

OPEN the file.

Define the FIELDs of the records in the file.

Read the record (GET).
Change the form of the

fields.

Figure 9-3

226 / Using Direct Access Files

Table 9-3

UPDATING
MASTER
RECORDS IN A
DIRECT ACCESS
FILE

5. Perform manipulations of the data.
6. Change back the form of the fields.
7. Write the recard (PLIT),

8. CLOSE the file.

You should notice that the time required to print out a record after the
record (part) number is given, is the same for all records. There is no need to
read from the beginning of the file to reach any record. After you have input
the changes given in Table 9-2, run the program that prints out
“INVMST". The file should look like Table 9-3 after the changes:

Inventory Master File After Changes

Part Stock Unit
Number on Hand Cost
1 600 2.00

2 750 2.75

3 231 1.50

4 395 5.96

S 674 7.25

6 230 7.00

7 942 4.26

8 27 5.49

9 152 1.40
10 500 4.00

The next logical step, after you have mastered changing records in a relative
record file, is to update the file. The update described below produces an
instantaneously updated master file. There is no transaction file. Each
transaction record updates its appropriate master record as soon as it is
entered. In order to add a touch of realism to the update of the inventory

the arca where inventory is kept. The first terminal is located at the unload-
ing area where shipments are received from suppliers. The second terminal
is located by the loading area where items are shipped (issued) to the com-
pany’s customers.

The first terminal is used to enter any receipts to inventory as soon as
they are placed in inventory. The second terminal is used to enter any ship-
ments (issues) from inventory.

The update program to handle direct access files is much simpler than
the inventory update program in Chapter 7. A transaction code will be used

Updating Master Records in a Direct Access File /227

to indicate a receipt to inventory (code = 1) and a shipment from inventory
(code = 2). A transaction consists of three fields: the code, part number,
and amount. If a shipment transaction (code = 2) has an amount greater
than the stock on hand, the order cannot be filled. The program should can-
cel the shipment and keep the old value of the stock on hand. The transac-
tion data can be found in Table 9—4.

Transaction Data to Update “INVMST”

Transaction ~ Part (Record)

Code Number Quantity
1 9 50
2 2 500
1 10 200
1 5 75
2 9 50
1 1 40
1 2 100
2 8 50

Problem Summary
Input
Inventory master file, “INVMST” (Table 9-3)
Transactions
Processing
Determine the transaction code and update the appropriate master
record.
Output
An updated master file.

See the flowchart (Fig 9—4). A program appears below:

100 REM UPDATE OF "INVMST" IN REAL TIME
110 REM

120 REM

170 REM OPEN THE FILE

180 REM

190 OPEN "R",1,"INVMST"

195 FIELD #1, 8 AS Al$, 8 AS A2$, 8 AS A3S
200 REM

210 REM INPUT TRANSACTION CODE

220 REM

230 PRINT "TYPE THE TRANSACTION CODE:

240 PRINT " 1 IS A RECEIPT TO INVENTORY"
250 PRINT " 2 IS A SHIPMENT FROM INVENTORY"

260 PRINT "TYPE 9999 TO END"

Table 9-4

228 / Using Direct Access Files

270 INPUT T
280 REM

290 REM TEST TO END DATA INPUT

300 REM

310 IF T=9999 THEN 690

320 PRINT “IYPE THE PART NUMBER,QUANTITY"

330 REM

340 REM INPUT TRANSACTION DATA

350 REM

360 INPUT M,Q

361 REM

362 REM GET THE RECORD FROM THE FILE

363 REM

364 GET 1,M

370 REM

380 REM TEST FOR A RECEIPT TO INVENTORY

0N ™o
G u anahly

400 IF T=1 THEN 610

410 REM

420 REM SHIPMENT FROM INVENTORY

430 REM

435 A2=CVD(A2S)

440 A2=A2-Q

441 TF A2<0 THEN 540

445 RSET A2$=MKDS(A2)

449 PUT 1,M

450 REM

460 GOTO 230

470 REM

490 REM

500 REM NOT ENOUGH STOCK ON HAND TO SHIP,

510 REM CANCELL ORDER AND REPLACE OLD STOCK
520 REM ON HAND VALUE

530 REM

540 A2=A2+Q

550 PRINT "*** NOT SUFFICIENT STOCK, ONLY";A2; "UNITS ON HAND"

560 PRINT "#**%%%* SHIPMENT CANCELLED —-~- NOTIFY CUSTOMER **%%kk%#n
570 GOTO 230

580 REM

590 REM RECETPT TRANSACTION: ADD QUANTITY TO STOCK ON HAND
600 REM

610 A2=CVD(A2S)

611 A2=A2+Q

613 RSET A2S=MKDS(A2)
615 PUT 1,M

620 REM

20 noM 30 DLTH TOE el
€40 REM

6§50 GOTC 230

660 REM

670 REM FINISH

680 REM

690 CLOSE #1

700 STOP

32767 END

Updating Master Records in a Direct Access File / 229

Open File

Input L

Transaction Code

YES .
T = 99997 Close File Write R?cord
to File

NO . T
Input Change Form

Part Number and of Data
Quantity Iy

Read Record

from File
YES |Change Form
of Data A2 =A2 +Q ¥
NO
Change Form
of Data
A2 = A2—Q

YES

A2 = A2 +Q

!

Print NOT
SUFFICIENT STOCK

Flowchart of Direct Access Update Figure 9-4

230 / Using Direct Access Files

Table 9-5

In the program, “INVMST” is opened. In line 270 the transaction code
is input, followed by the test to end data input. The transaction part
(record) number and quantity are input next in line 360. After reading the
record from “INVMST?, the test for the transaction code is at line 400. If
the transaction is a shipment from inventory (code=2),then lines 410
through 570 are executed. If there is enough stock on hand, A2, to make the
required shipment, then the stock on hand is adjusted for the shipment in
line 440: A2 = A2 - Q. If Q is greater than the stock on hand, A2, then the
newly assigned value of A2 in line 440 will be negative. For cxample, the
stock on hand is 20 and you wish to ship 30 units; there would be — 10 units
in stock on hand. Line 441 tests for this condition. If the condition (stock
on hand is less than zero) exists, then the old value of stock on hand is re-
placed in line 540, A2 = A2+Q, and the shipment is cancelled (lines 550

AnA &L
and 559).

If the transaction is a receipt to inventory (code= 1), then in line 611
the quantity received is added to the stock on hand, A2 = A2+ Q, and that
record is written on “INVMST”. Then another transaction code is entered.

The writing of the updated master record occurs at lines 449 and 615
where A2 is assigned a value contingent upon the transaction code and other
tests. The update program uses the same concept as the program to change a
record. As soon as a transaction is entered, the master record is updated.
The last transaction will result in a shinment being cancelled.

After the update program is run with the transactions given in Table
9-4, run the program that prints the “INVMST” file. The file should look
like Table 9-5.

A direct access master file is organized by ascending record number.
The transaction may be entered in any order. The time required to update a
master record is the same, regardless of its location in the file.

The “INVMST” File After Updating

Part Stock Unit
Number on Hand Cost
1 640 2.00

2 350 2.75

3 231 1.50

4 395 5.96

6 230 7.00

7 942 4.26

8 27 5.49

9 152 1.40
10 700 4.00

Querying Records in a Direct Access File /7 231

If transactions are entered from the two terminals in the inventory area
as stock is received and shipped, then the master file is updated in real-time.
Real-time updating means the master files contain the latest up-to-the-sec-
ond information. This is especially important when dealing with inventory.
In order to have real-time updating, direct access files must be used. Real-
time updating may be contrasted with batch updating, which has a time cy-
cle (a day, a week, or a month) for the running of the update program. The
update programs in Chapter 7 were examples of batch updating. The trans-
actions were accumulated in a file during the time cycle. Then they were
sorted and the update program was run at the end of the cycle.

If the update is in real-time, then any time you retrieve and print a record of QUERYING
the master file, it contains the latest stock on hand. This is very useful when RECORDS IN
you consider that a company has a sales department. Salesmen need to know A DIRECT
the latest inventory levels in order to give customers reasonable delivery ACCESS FILE
dates. Assume, in our inventory example, that there is a third terminal in the

sales department. When a salesman writes an order for a customer, he

phones the sales department to determine whether sufficient stock is on

hand to fill the order. The program that retrieves and prints master records

is called a query program. “Query” is a short form for “inquire”. The pro-

gram is the same as the first part of the program for changing a record.

Problem Summary

Input
Part (record) number
Inventory master file, “INVMST”

Processing
Retrieve a master record.
Output
Print the appropriate master record.

100 REM

110 REM QUERY PROGRAM

120 REM

130 REM

180 REM OPEN THE FILE

190 REM

200 OPEN "R",1,"INVMST"

205 FIELD 1, 8 AS AlS, 8 AS A2S, 8 AS A3S

210 PRINT "WHAT IS THE PART NUMBER? TYPE 9999 TO END"
220 REM

230 REM INPUT PART NUMBER (RECORD NUMBER)
240 REM

250 INPUT R

260 REM

232 / Using Direct Access Files

SUMMARY

270 REM TEST FOR END OF DATA INPUT
280 REM

290 IF R=9999 GOTO 430

300 REM

310 REM PRINT OUT RECORD
320 REM

330 PRINT "PART STOCK UNIT"
340 PRINT "NUMBER ON HAND cosT"
341 REM

342 REM GET THE RECORD
343 GET 1,R

344 REM

345 Al= CVD(AlS$)
346 A2=CVD(A2$)
347 A3=CVD(A3S)

350 PRLINL USLING “### rHHH #H.##";AL,A2,A3
360 REM

370 REM GO BACK FOR MORE INPUT
380 REM

390 GOTO 210

400 REM

410 REM FINISH

420 REM

430 CLOSE #1

440 STOP

32767 END

The sales department would run this program to see if a customer’s or-
der could be filled. In a sophisticated company, the salesman would have
portable terminals that use a telephone to reach the computer. Also the pro-
grams would be more complex in order to allow a salesman to reserve stock
and to ship partial orders.

in this chapter a type of direct access file is introduced. The programs neces-
sary to handle a direct access file were given. In essence, a direct access file
can be treated as a table where the rows represent records and the columns
represent fields. The examnle throughout this chapter was inventory, not
payroll. Inventory was selected because it represents a good example of the
requirement for real-time updating. The real-time example was illustrated
by an update where, as scon as a transaction was generated, the master file
was updated. The final section dealt with an inquiry program that reads and
prints records from a direct access file.

Summary /233

BASIC Instructions Infroduced:

Instruction

OPEN “R”,1,“filename”

FIELD #1, nl1 AS fieldnamel$,
n2 AS fieldname2$

RSET fieldname$ = MKD$(fieldname)
fieldname = CVD(fieldname$)
GET1,L

PUTI,L

Explanation

Opens a direct access file as file
number 1.

Defines the fields for records of
file number 1; nl, n2 are the
maximum characters in fields 1
and 2; fieldnamel$, fieldname2$
are the fieldnames used in the
diskette file and are alpha-
numeric.

Changes the numeric form of
data in a field to alphanumeric.
Changes the alphanumeric form
of data in a field to numeric.
Reads record L of file number
one from diskette.

Writes record L to diskette on file
number one.

234 / Using Direct Access Files

PROBLEMS

1.

5.

Modify the first program in this chapter so that you can stop an input
session and continue entering the data at any point in the file without
having to re-enter all the earlier records. To test your program, create a

Fila 471127
Ll iii .

Create a direct access file, “CUMST?”, with eight records as follows:

Customer Number Current Balance

1 $257.26
194.40
276.00
0.00
51.27
29.32
426.25
972.36

00~ Oy bW

Write a program that will print the “CUMST” file as described in Prob-
lem 2.

Write a program that will update the “CUMST” file. There are three
types of transactions: payments, purchases, and returns. Payments
should be subtracted from the current balance (Transaction code = 1).
Puichases shouid be added o the current balance (TR CODE=12). Re-
turns should be subtracted from the current balance (TR CODE = 3). If
customers have a current balance less than zero, a message should be
printed to issue a refund check to the customer. Use the following trans-
actions to test your program:
Transaction Code Customer Number — Amount

1 5 51.27
1 1 200.00
2 4 57.26
1 3 250.00
2 8 320.21
3 5 23.27
1 2 194.40
2 1 72.73
3 7 157.29

Write an inquiry program for the “CUMST” file, so that customers may
call and be given their latest balance.

10 / Use and Design of Complex
Programs

235

Using Canned Programs / 237

At the end of this chapter you should be able to: Performance

® Use “canned” programs Objectives

© Recognize the role of structured programming

Programming is the expensive aspect of computer systems. It is also the
most time-consuming. Without programs the computer cannot solve
problems. However, once a program has been written and debugged (i.e., the
errors have been removed), then using these programs to help solve recur-
ring problems is simple.

In progressing through this book, you have built a program library. If a
problem should develop that is similar to those you've already solved, you
don’t have to write a brand new program. Merely modify the appropriate
program to meet the new requirements and it can aid in arriving at a solu-
tion. In effect, your program library is a toolbox. Simple changes to your
tools allow you to solve most data processing problems.

You may have access to programs other than those you’ve written. Any
number of sources may have contributed skills and energies to fill your tool-
box: the vendor of your computer system, an independent consultant, other
people in your organization, or other organizations in your industry.

At times it is difficult to transfer programs from one system to another.
The procedures and problems of one organization may not match the proce-
dures and problems of another organization. In other cases the transfer of
programs is easy. Statistical, scientific, and engineering programs transfer
easily from one organization to another. No matter what organization uses
them, the rules for performing statistical computations remain the same. The
programming of natural laws is not affected by the organization involved.
And mathematical calculations are not a matter of opinion or preference
(2 + 2 = 4 no matter who is involved, where the calculation is performed,
or what we wish the result to be). Therefore once a statistical, scientific, or
engineering program has been written, it can be copied and used by many
organizations.

This chapter discusses how to use programs that have been written else-
where. A statistical program serves as an example of a “canned” program.
The chapter also discusses some elements of style that make a program eas-
ier to read and modify.

Programs developed by one organization that are transferred as a whole to USING
another organization are called “canned” or “packaged” programs. No CANNED
modification of the program logic is involved, although some statements PROGRAMS
may have to be changed to fit your system.

Once the program has been changed so that it will run on another sys-
tem, it can be used by anybody with access to that system. A person pro-
vides the problem context and the data, runs the appropriate program, and
interprets the output. Problem specification, data collection, selection of an

238 / Use and Design of Complex Programs

appropriate program for solution, and interpretation of output are the key
elements for the successful use of canned programs. But these elements are
beyond the scope of this book. Here we shall focus on how to enter the data
and run 2 canned program.

Linear regression is a statistical technique for determining the relation-
ship between two variables. (Regression analysis is covered in statistical
textbooks.) LINREG is a program that performs linear regression. A copy
of this program is shown below:

1 GOTO 630
200 DATA 7E22, 5E22

205 READ Q1
210 DIM D(250,2)

215 PRINT
220 LET I = 0
225 LET I =1 + 1

230 READ D(I,1), D(I,2)
235 IF D(I,1l) <> 7E22 THEN 225

240 LET Q2 = I-1
245 LET S9 = 0
250 IF Q1 1 THEN 270

255 IF Q1 = 2 THEN 325

260 TF Q1 = 3 THEN 2395

265 GOTO 220

270 LET S9 =1

275 GOSUB 490

280 PRINT "LINEAR: Y=A+B*X WITH A=";Q8;" AND B=";Q9
285 GOSUB 565

290 FOR J = 1 TO Q2

295 LET W7 = Q8 + Q9*D(J,1)
300 LET Z7 = W7 - D(J,;2)
305 LET Q4 = 100%27/D(J,2)

310 PRINT D(J,l1), D(J,2), W7, 727, Q4
315 NEXT J

320 GOTO 999

325 FOR J = 1 TO Q2

330 LET D(J,2) = LOG(D(J,2))

335 NEXT J

340 GOSUB 490

345 PRINT "EXPONENTIAL: Y = A*EXP(B*X) WITH A=";EXP(Q8);:" AN
D B=";Q0

350 GOSUB 565

355 FOR J=1 TO Q2

360 LET W7 EXP{Q8+Q9*D(J,1))

365 LET W8 = EXP(D(J,2))

370 LET Z27 = ¥W7-%WS

375 LET Q4 = 100*Z7/W8

380 PRINT D(J,1), W8, W7, 27, Q4
385 NEXT J

390 GOTO 999
395 FOR J = 1 TO Q2

Using Canned Programs / 239

400
405
410
415
420
425
430
435
440
445
450
451
455
460
4€5
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
AT "
650

LET D(J,1)
LET D(J,2)
NEXT J
GOSUB 490
PRINT "POWER: Y=A(X[B) WITH A=";EXP(Q8);" AND B="Q9
GOSUB 565

FOR J = 1 10 Q2

LOG(D(J,1))
LOG(D(J,2))

mn

LET W7 = EXP(D(J,1))

LET W8 = EXP(D(J,2))

LET W9 = EXP(Q8)*W7(Q9

LET Q4 = W9/W8-1

LET 27 = WG-W8

IF Q4 < 0 IHEN 470

LET Q4 = INT(1000*Q4+0.5)/10

GOTO 475
LET Q4 = INT(1000%*Q4-0.5)/10
PRINT W7, W8, W9, 77, Q4

NEXT J

GOTO 999

LET Q3 =0

LET Q4 =0

LET Q5 = 0

LET Q6 = O

LET Q7 = 0

FOR J = 1 TO Q2

LET Q3 = Q3+D(J,1)

LET Q4 = Q4+D(J,2)

LET Q5 = Q5+D(J,1)*D(J,2)

LET Q6 = Q6+(D(J,1))I[2

LET Q7 = Q7+(D(J,2))[2

NEXT J

LET Q9 = (Q2*Q5-03*Q4)/(Q2*Q6-Q3[2)
LET Q8 = (Q4-Q3%*Q9)/Q2

RETURN

LET Q0 = (Q2*Q5~Q3*Q4)/SQR((Q2*Q6-Q3[2)*(Q2*Q7—Q4[2))
PRINT

IF S9 = 0 THEN 590
PRINT "COEFFICIENTS; ";

GOTO 595

PRINT "INDICES: “;

PRINT "CORREL = ";Q0;" DETERM = ";Q0(2
PRINT

PRINT "COMPARISON OF ACTUAL TO ESTIMATED FROM EQUATION: "
PRINT

PRINT "X~ACTUAL","Y—ACTUAL","Y~ESTIM","DIFFER","PCT—DIFF"
PRINT

RETURN

PRINT

PRINT "THIS IS A LINEAR REGRESSION PROGRAM FOR DATA IN TWO"
PRINT "VARIABLES, X AND Y. FROM INPUT POINTS, DESCRIBED BY"
PRINT "THEIR X AND Y COORDINATES, AN EQUATION IS PRODUCED TH

PRINT "BEST FITS THESE POINTS IN THE LEAST-SQUARES SENSE. T

240 / Use and Design of Complex Programs

OII

655 PRINT "USE THE PROGRAM, TYPE THE FOLLOWING:"

660 PRINT

665 PRINT * 0 DATA K"

670 PRINT * (WHERE K = 1 FOR LINEAR, 2 FOR EXPONENTI
AL , "

675 PRINT " AND 3 FOR POWER FUNCTION TO BE FITTED.)"
680 PRINT " 1 DATA X(1),Y(1),X(2),Y(2),..... X(N) Y (N)"

685 PRINT " (WHERE X(1),Y(1) IS THE FIRST POINT, X(2
) , "

690 PRINT " ¥(2) IS THE SECOND, AND SO ON UNTIL ALL"
695 PRINT " POINTS HAVE BEEN ENTERED. ADDITIONAL DA
TA ”

700 PRINT " STATEMENTS 3-199 MAY BE USED AS NEEDED.)
n

/U5 PRINT

710 PRINT "THEN TYPE 'RUN'."

999 STOP

32767 END

You can use LINREG by calling it up (LOADLINREG"),entering your
data, and typing RUN. But data entry for LINREG, as well as many similar
programs, is different from how it was handled in earlier parts of this book.
Data is entered with DATA statements that are part of the program.

A G e S T e e P P
LINREG provides instructions [or enler g daial

THIS IS A LINEAR REGRESSION PROGRAM FOR DATA IN TWO
VARIABLES, X AND Y. FROM INPUT POINTS, DESCRIBED BY
THEIR X AND Y COORDINATES, AN EQUATION IS PRODUCED THAT
BEST FITS THESE POINTS IN THE LEAST~SQUARES SENSE. TO
USE THE PROGRAM, TYPE THE FOLLOWING:

1 DATA K
(WHERE K = 1 FOR LINEAR, 2 FOR EXPONENTIAL,
AND 3 FOR POWER FUNCTION TO BE FITTED.)

2 DATA X(1),Y(1),X(2),Y(2),..... X(N) ,Y(N)
(WHERE X(1),Y(1) IS THE FIRST POINT, X(2),
Y(2) IS THE SECOND, AND SO ON UNTIL ALL
POINTS HAVE BEEN ENTERED. ADDITIONAL DATA
STATEMENTS 3-199 MAY BE USED AS NEEDED.)

THEN TYPE 'ROUN'.

This RUN shows what has to be entered in DATA statements. A DATA
statement is a non-executable BASIC instruction that holds data for a pro-
gram. It starts with a line number, the word DATA and then the individual

data values separated by commas. For example:
1 DATA 3.7,42,3.9,2.5,6

The DATA statement holds five values. They may be the values for five

Using Canned Programs / 241

fields of a record, or they may be five values for one field. Either way, DATA
statements hold a stream of values that are used one after another.

Data values in DATA statements are assigned to fields by READ state-
ments. Look at LINREG, line 205 and line 230. Both contain the BASIC
instruction READ. Line 205, READ Ql1, being the first READ, assigns the
first value found in any DATA statements to QIl. Line 230, READ
D(1,1),D(1,2), assigns the next data value to D(I,1) and the following value
to D(1,2).

Once an item of data has been assigned, the next READ uses the item of
data that follows. Every READ “uses up” data values. Although data can be
distributed over many DATA staternents, they must follow the order of the
READ statements. The READ statements follow the stream of data, using
up data values in sequence.

Now we can run LINREG. First, call up the program. Then enter the
data as specified by the instructions:

DATA 1

DATA 719,3756
DATA 1384,5100
DATA 995,4950
DATA 231,894
DATA 462,480
DATA 486,1908
DATA 1299,5388
DATA 233,240
10 DATA 189,468
11 DATA 759,1662
12 DATA 112,96
13 DATA 1252,5334
14 DATA 677,786
15 DATA 295,648

W0~ U W N

Then type the word “RUN”, and it generates the output.

LINEAR: Y=A+B*X WITH A=-662.491 AND B= 4.5073
COEFFICIENTS; CORREL = ,927248 DETERM = .859788

COMPARISON OF ACTUAL Y 0 S ESTIMATED FROM EQUATION:

X-ACTUAL Y~-ACTUAL Y-ESTIM DIFFER PCT-DIFF
719 3756 2578.26 -1177.74 ~31.3563
1384 5100 5575.61 475.612 9.32572
995 4950 3822.27 -1127.73 ~22.7824
231 894 378.695 -515.305 -57.6404
462 480 1419.88 939.881 195.809
486 1908 1528.06 -379.943 -19.9132

242 / Use and Design of Complex Programs

1299 5388 5192.49 -195.509 ~3.6286
233 240 387.71 147 .71 61.545
189 468 189,388 -278.612 -59.,532
750 1667 2778 . R§ 1096.55 65.977
112 96 -157.674 -253.674 -264.24
1252 5334 4980 .65 -353.352 -6.6245
677 786 2388.95 1602.95 203.93
295 648 667 .162 19.1621 2.9571

The interpretation of this output and its use in decision making will de-
termine the value of LINREG. But that aspect is peripheral to our focus.
Notice how easy it is to use the program: Enter the data, type run, and the
program can generate reams unon reams of outnut,

Other statistical programs are just as easy to use. Just enter the data and
the program does the rest. It is not necessary to know anything about statis-
tics or about computer programming to use these programs for analysis.
Therein lies the power, as well as the danger, of using computers. Anybody,
whether knowledgeable in the technique used or not, has the technique
available if he can enter data and type RUN. But knowledge of the problem
context, of the validity of the data, and of the technique of analysis is re-
quired to derive the proper conclusions from such use of canned programs.

Another example of a canned program is the file sort in Appendix B.
Again, the detailed instructions of the program are unimportant. What is
important is knowing how to use it properly to do the desired job.

Similar to canned programs, but at a much lower level, are functions.
Functions perform one specific task in a program. For example, the INT
function used in Chapter 6, gives the integer portion of a number. Functions
are usually indicated by a three-letter keyword. Table 10-1 lists the mathe-
matical functions available in BASIC.

STRUCTURED Structured programming is a systematic way of designing a program. It is a
PROGRAMMING philosophy of design to make a program readable and easy to change.

Structured programming breaks a program into a number of pieces,

called modules. Each module performs one task. Since the modules are

smaller than the whole program, each piece is easier to understand, easier to

code, and easier to change. But breaking a program into modules requires

planning. Structured programming emphasizes pianning of what a program

does and how its modules are related All modules should be clearly specn—

118U GULUIC \,u\,uu.a A3 YALIQUITH LILiUULL UT UiTdiny uv;iilv‘u’ .,‘L“u..l LT PUETD “1

tlle varlous modules 1dent1ned ()bvmusly this planning is not cheap and re-

ers
io.

Structured programming recognizes three types of sequences of instruc-
tions—simple sequence, selection, and looping. Any program can be com-

£ 4lneos alo umoa C‘nr o

. A it - P N YT - .
POSEa using o1nc Or a Coimvinaudn Or uilst ciementary types. ©or exampic

Structured Programming / 243

Function*

Y = ABS(X)

Y = ATN(X)
Y = COS(X)
Y = EXP(X)
Y = INT(X)

Y = LOG(X)
Y = RND(X)
Y = SGN(X)
Y = SIN(X)

Y = SQR(X)
Y = TAN(X)

Mathematical Functions Table 10--1

Explanation
Assigns to Y the absolute value of X.

Assigns to Y the arc tangent of X; X is ex-
pressed in radians.

Assigns to Y the cosine of X; X is in radians.

Assigns to Y the value of e raised to the X
power; where e is 2.71828.

Assigns to Y the greatest integer in X which is
less than or equal to X.

Assigns to Y the natural logarithm of X.

Assigns to Y a random number uniformly dis-
tributed between 0 and 1.

Assigns to Y the value 1 preceded by the sign of X.
Assigns to Y the sine of X; X is in radians.
Assigns to Y the square root of X.

Assigns to Y the tangent of X; X is in radians.

* Y stands for the name of any field; and X can be a field or a formula, but must be

enclosed in parentheses.

Simple sequence

Selection

Alternative 1

(false)

Alternative 2

(true)

Loop

100 LET R = 3.00

110 LET H = 40
120 LET P = R+H
130 PRINT P

100 IF T = 2 THEN 300

200 Q2 = Q2 + QI
210 GO TO 400

300 Q2 = Q2 — QI
400
100 FORRI = 1 TO 8

200 NEXT R1

244 / Use and Design of Complex Programs

Figure 10-1

A simple sequence has no GOTO. Each statement follows the preceding
statement until the sequence is finished.

A selection consists of an IF-THEN and its two possible groups of in-
structions. Une of these iwo possible groups is selected when the iF—"THEN
is true. The other is selected when the IF-THEN is false.

A loop repeats a group of instructions until a specified condition has
been met.

Of course the alternatives of a selection or the group of instructions in a
loop may contain subsidiary selections or loops. Ideally each type of module
should have one entry and one exit with no backtracking. The flow of a pro-
gram should be top to bottom (except for loops.) GOTO’s that jump back
to previously executed code should be eliminated.

To clarify the relationchin hetween the elemente of a nrogram, ctrue-
tured programming uses indentations and additional comments (REM state-
ments) to highlight the structure of a program. Indentation shows which
elements fit together. Comments aid in understanding both the logic (what
the program does) and the structure (how the program is organized.)

Let’s look at some examples to clarify these ideas. First, look at the
SORT program in Chapter 8. It performs three major tasks that can be
diagrammed as follows in Figure 10-1.

‘ Start }

{

Assign Data
to Lists

Sort Lists

Y

Print Out
! Sorted Lists J

SN
{ Terminate }

SORT Program

Structured Programming / 245

This program can be rewritten to make the structure stand out. A rewritten
version follows:

100 REM **kkkkkkhkkhhhhhhhhkhhkhhkkhhhhkhhhkhhhhkhkhkhkhkhkhhhkhhhhhhhkhk

110 REM * PROGRAM NAME: LIST SORT *
120 REM * *
130 REM * THIS PROGRAM ~-- *
140 REM * 1. GETS DATA FROM A TERMINAL AND STORES THEM IN *
150 REM * LISTS *
160 REM * 2. SORTS THE LISTS IN DESCENDING ORDER OF NET PAY *
170 REM * 3. PRINTS THE SORTED LISTS *
180 REM * *
190 REM * PROGRAMMER NAME: A. N. LYST *
200 REM * DATE: 1 APRIL 1979 *
210 REM * *
220 REM * FIELD NAMES: *
230 REM * Foooo.. EXCHANGE FLAG -- SET TO 1 WHEN AN *
240 REM * EXCHANGE HAS OCCURRED; 0 OTHERWISE *
250 REM * K......INDEX OF FOR-NEXT LOOP *
260 REM * Le..o... POINTER TO A LOCATION IN A LIST DURING *
270 REM * DATA ENTRY; THE NUMBER OF ITEMS IN A LIST® *
280 REM * AFTER DATA ENTRY *
290 REM * MS..... EMPLOYEE NAME ENTERED FROM TERMINAL *
300 REM * N()....LIST TO HOLD EMPLOYEE NUMBER *
310 REM * Nl..... EMPLOYEE NUMBER ENTERED FROM TERMINAL *
320 REM * NS$()...LIST TO HOLD EMPLOYEE NAME *
330 REM * P()....LIST TO HOLD EMPLOYEE NET PAY *
340 REM * Pl..... EMPLOYEE NET PAY ENTERED FROM TERMINAL *
350 REM * Teuooon. TEMPORARY STORAGE OF A NUMERIC VALUE *
360 REM * DURING AN EXCHANGE *
370 REM * T$.....TEMPORARY STORAGE OF EMPLOYEE NAME *
380 REM * DURING AN EXCHANGE *
390 REM **,kkkhhkhhhAXhh hh AR hARKARKKARKA AR KA AR K KARR AR KRR AR hh R kA &
400 REM

410 DIM N(100), N$(100), P(100)

420 REM

430 REM GET DATA FROM TERMINAL AND PUT THEM INTO THE LISTS
440 REM

450 L=20

460 REM *** BEGIN DATA ENTRY LOOP

470 PRINT "TYPE EMPLOYEE NUMBER, EMPLOYEE NAME,"
480 PRINT "AND NET PAY -- SEPARATED BY COMMAS."
490 PRINT "WHEN FINISHED ~- TYPE 99,AA,99"

500 INPUT N1,MS$,Pl

246 / Use and Design of Complex Programs

510 REM ----- > EXIT FROM LOOP WHEN DATA ENTRY FINISHED
520 IF N1 = 99 THEN 640
530 REM ASSIGN DATA TO ARRAYS

540 L =L +1
550 N(L) = NI
560 N$S(L) = MS

570 P(L) = Pl
580 REM *** END IF 520

590 GOTO 470

600 REM *** END DATA ENTRY LOOP

610 REM

620 REM SORT THE LISTS INTO DECENDING NET PAY ORDER
630 REM

640 U =1L -1
650 REM *** BEGIN SORT LOOP

660 F = 0
670 FOR K =1 TO U
680 REM

690 REM COMPARE TWO ADJACENT VALUES OF NET PAY
700 REM IF THEY ARE NOT IN ORDER, EXCHANGE THEM
710 REM

720 IF P(K) >= P(K+1) THEN 900
730 REM

740 REM NET PAY VALUES OUT OF SEQUENCE, HENCE EXCHANGE
750 REM

760 T = P(K)

770 P(K) = P(K+1)

780 P(K+1l) = T

790 T = N(K)

800 N(K) = N(K+1)

810 N(K+1) = T

820 T$ = NS$S(K)

830 NS(K) = NS(K+1)

840 N$(K+1) = TS

850 REM

860 REM SET EXCHANGE FLAG (F) TO 1

870 REM

880 F =1

890 REM *%% ENDIF 720

900 NEXT K

910 REM ———--— > EXIT FROM SORT LOOP WHEN F = 0

920 IF F =1 THEN 660
930 REM **% END SORT LOOP

940 REM

950 REM PRINT HEADINGS AND SORTED LISTS

SoU Rk

9/ PRINYT "EMPLOYEE", "EMPLOYEE", "WEEKLY"
980 PRINT " NUMBER ", " NAME Y, " pPAy "
990 PRINT W e —— ll’ e o s e o e e e Il-' LU |)
1000 REM *** BEGIN PRINT LOOP

1010 FOR K =1 TO L

1020 PRINT N(K), NS{K), P(K)

Structured Programming / 247

1030 NEXT K
1040 REM *** END PRINT LOOP
1050 END

As another example, compare the inventory update in Chapter 7
with the structured version of the same program shown below.

100 REM AR AAKREAA R A KA A A A Ak hhhrhhhkhkhhhkhkhkhhhhkhhhkhkkhkhkhhkkhkhhhkkhkihhhkhhk
110 REM * PROGRAM NAME: INVENTORY UPDATE *
120 REM * *
130 REM * THIS PROGRAM -- *
140 REM * 1. UPDATES THE OLD INVENTORY MASTERFILE: *
150 REM * READS INVENTORY TRANSACTION RECORDS *
160 REM * READS OLD INVENTORY MASTER RECORDS *
170 REM * UPDATES MASTER RECORDS WITH TRANSACTIONS *
180 REM * WRITES NEW (UPDATED) MASTER RECORDS *
190 REM * 2. PRINTS THE NEW (UPDATED) MASTERFILE *
200 REM * 3. PRINTS AN INVENTORY VALUATION REPORT *
210 REM * *
220 REM * PROGRAMMER NAME: P. GRAMMER *
230 REM * DATE: 1 APRIL 1980 *
240 REM * *
250 REM * FIELD NAMES: *
260 REM * C....UNIT COST OF PART INPUT FROM UPDATED MASTER *
270 REM * (C2...UNIT COST OF PART INPUT FROM OLD MASTERFILE *
280 REM * D....DOLLAR VALUE OF PART *
290 REM * P....PART NUMBER INPUT FROM UPDATED MASTERFILE *
300 REM * Pl...PART NUMBER INPUT FROM TRANSACTION FILE *
310 REM * P2...PART NUMBER INPUT FROM OLD MASTERFILE *
320 REM * Q....QUANTITY ON HAND INPUT FROM UPDATED MASTER *
330 REM * Ql...QUANTITY OF TRANSACTION INPUT FROM *
340 REM * TRANSACTION FILE *
350 REM * (Q2...QUANTITY ON HAND INPUT FROM OLD MASTERFILE *
360 REM * T....TOTAL DOLLAR VALUE OF INVENTORY *
370 REM * T1,..TRANSACTION CODE INPUT FROM TRANSACTION FILE *
380 REM * CODE VALUES: 1 = RECEIPT *
390 REM * 2 = ISSUE *
400 REM hhkhkhkkhhkkhkhkhkhhhhkkhhhhhkhhkhdhkhhkhkhkhkhhkhkkhkhkhkhhhhhhkkhhkkhk
450 REM

460 REM LINK TO FILES

470 REM

480 OPEN "I",1,"INVTR"

490 OPEN "I",2,"INVMR"

500 OPEN "O",3,"INVSN"

510 REM

520 REM READ A TRANSACTION RECORD

248 / Use and Design of Complex Programs

530
540
550
560

N
ARV

580
590
600
610
620
630
640
650
660
670
€80
690
700
710
720
730
740
750
760
770
775
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960

on
ag0
990
1000
1010
1020

REM

REM
REM

R
AN dait

INPUT #1, P1, T1, Q1
READ A MASTER RECORD

INPUT #2, P2, Q2, C2

REM *** BEGIN UPDATE LOOP
REM
REM IF TRANSACTION EQUALS MASTER
REM
IF Pl = P2 THEN 670
GOTO 820
REM THEN UPDATE MASTER
REM IF TRANSACTION IS A RECEIPT
IF Tl = 1 THEN 700
GOTC 7306
REM THEN ADD TRANSACTION QUANTITY TO QUANT ON HAND
Q2 = Q2 + Q1
GOTO 775
REM ELSE SUBTRACT QUANTITY FROM QUANTITY ON HAND
Q2 = Q2 - Q1
REM *k% END IF 670
REM
REM READ A TRANSACTION RECORD
REM
IF EOF(l) THEN 1110
INPUT #1, Pl, T1, Ql
REM —-—-- >EXIT WHEN OUT OF TRANSACTION RECORDS
GOTO 630
REM ELSE IF TRANSACTION GREATER THAN MASTER
IF Pl > P2 THEN 850
GOTO 960
REM THEN WRITE UPDATED MASTER
PRINT #3, P2;0Q2;C2
REM
REM READ A MASTER RECORD
REM
INPUT #2, P2, Q2, C2
REM —----> EXIT WHEN OUT OF MASTER RECORDS
GOTO 630
REM ELSE TRANSACTION LESS THAN MASTER
REM
REM WRITE ERROR MESSAGE -- NO MASTER IN FILE
REM
PRINT"*#** TRANSACTION WITHOUT MASTER***".p];T1;Ql
DDA
REM READ A TRANSACTION RECORD
REM
INPUT #1, P1, T1, Q1
REM *%% END IF 820
REM =====~ > EXIT WHEN OUT OF TRANSACTION RECORDS

Structured Programming / 249

1030 GOTO 630
1040 REM *** END UPDATE LOOP

1050 REM

1060 REM TRANSFER REMAINING RECORDS FROM OLD TO NEW MASTER
1070 REM

1080 REM *** BEGIN TRANSFER LOOP

1090 IF EOF(2) THEN 1170

1100 INPUT #2, P2,02,C2

1110 PRINT #3, P2,Q2,C2

1111 GOTO 1090

1115 REM ~——-—-——-—~~ > EXIT WHEN OUT OF MASTER RECORDS
1120 GOTO 1090
1130 REM *** END TRANSFER LOOP

1140 REM

1150 REM PRINT THE UPDATED MASTERFILE

1160 REM

1170 CLOSE #1, #2, #3

1180 OPEN "I", 1, "INVSN"

1190 REM

1200 REM HEADINGS FOR UPDATED FILE

1210 REM

1220 PRINT

1230 PRINT " NEW INVENTORY MASTER FILE"

1240 PRINT " ———mmmmmm s s m e m i mm — ="

1250 PRINT

1260 PRINT "PART UNITS cosT"

1270 PRINT "NUMBER ON HAND"

1280 PRINT "=—mm== e =t

1290 REM *** BEGIN PRINT LOOP

1295 IF EOF(1) THEN 1380

1300 INPUT #1, P, Q, C

1310 PRINT USING"### Hhid #.4##":P,Q,C
1320 REM -—~-- > EXIT WHEN OUT OF NEW MASTER RECORDS
1330 GOTO 1295
1340 REM *#** END PRINT LOOP

1350 REM

1360 REM PRINT INVENTORY VALUATION REPORT

1370 REM

1380 CLOSE #1

1390 OPEN "I",1,"INVSN"

1400 REM

1410 REM HEADINGS FOR VALUATION REPORT

1420 REM

1430 PRINT

1440 PRINT

1450 PRINT " INVENTORY VALUATION REPORT"

1460 PRINT " s m i i o i e e "

1470 PRINT

1480 PRINT " PART ", "DOLLAR"

1490 PRINT "NUMBER", "AMOUNT"

1500 PRINT "-——m=- "Moo "

250 / Use and Design of Complex Programs

1510 REM
1520 T =0

1530 REM *** BEGIN INVENTORY VALUATION LOOP

1535 IF EOF(1l) THEN 1640

1540 INPUT #1, P, Q, C

1550 D=2Q % C

1560 T=7T+ D

1570 PRINT USING"##4# #, 444 .484";P,D

1580 REM~~--> EXIT WHEN OUT OF DATA

1590 GOTO 1535
1600 REM *** END INVENTORY VALUATION LOOP

1610 REM

1620 REM PRINT TOTAL VALUATION

1630 REM

1640 PRINT™ == e = e oot "

1650 PRINT USING"$ % #4, 444 . 44" ; "TOTAL",T
1660 CLOSE #1

1800 STOP

32767 END

Now make your evaluations. Which of the two versions of a program
did you find easier to understand? In your opinion, which was easier to
write? Since REM statements make a program larger and take time to write
and enter (they only exist for the benefit of the reader—the computer ignores
them), consider the following: Is the cost in time, effort, and added storage
requirements less than, equal to, or greater than the benefit of readability?
Only you can make that decision for yourself and your organization.

SUMMARY BASIC Instructions Infroduced:

Instruction Explanation

READ XY.Z Assigns values to fields from DATA state-
ments (XY,Z are arbitrary field names)

DATA 52,7 Used to hold data for fields in READ state-

ments

11 / Conclusion

251

Batch, On-Line and Real-Time Processing / 253

At the end of this chapter you should be able to: Performance

© Recognize the differences between batch, on-line, and real-time Objectives

® Understand the problems of a first-time user
@ Understand trends in software and hardware for small business com-
puter systems

In this concluding chapter, the payroll program that has been the main ex-
ample throughout the book will be discussed and put in perspective with re-
gard to other programs that are commonly found in business. The concepts
of batch versus real-time programs will be discussed, as well as first-time
user organizations. As a conclusion, we present an article that focuses, from
the management perspective, on the first-time user and his dilemmas regard-
ing computers.

One of the vehicles for teaching programming in each chapter has been the The Payroll
payroll program. It has grown from a very elementary program to a program Programs
that has most of the elements found in an actual payroll program that a bus-

iness might use. In its present form it is still missing some major elements.

For example, it will not write paychecks, nor keep track of some data needed

for quarterly tax payments by the employer. The intent of the authors in us-

ing payroll as the major example throughout was simple—to pick an applica-

tion that everyone either is, or can become, familiar with.

All of the programs that appear in this book, with the exception of Chapter BATCH,
9, are for batch processing. In its simplest terms, batch processing means ON-LINE
that transactions are allowed to accumulate before they are used to update AND
master records. Batch processing implies a time cycle—how often the master REAL-TIME

file is updated. Transactions will accumulate until the update. Batch process- PROCESSING
ing also implies the use of sequential files.

On-line processing is something you have been doing throughout this
book. When you type a program at a terminal, you are on-line. The com-
puter accepts or makes comments each time you enter a command or a line
of a program. This interaction between a computer and user is referred to as
on-line. Other examples of on-line processing are all of the programs that
require data entry. The data is entered by you or a data entry operator in an
on-line mode.

Files may be considered on-line or off-line. When a file is not being
used, it can be stored outside the computer system. When files in computer
readable form are removed from the system, they are off-line. They are
brought on-line when they need to be used.

The final type of processing is real-time. In real-time, as soon as any
transaction occurs, it is entered into the computer system, and the transac-
tion updates the appropriate master record. In Chapter 9, the inventory ex-
ample illustrated real-time processing. It is necessary to have real-time

254 | Conclusion

ROUTINE
BUSINESS
APPLICATIONS

FIRST-TIME
USERS

processing when there is a limited supply or a need for up-to-the-second in-
formation. Airline reservation systems were among the first and largest real-
time applications.

Payroll was one of the first manual systems to be computerized. After pay-
roll, most accounting systems were computerized. These include invoicing,
accounts receivable, accounts payable, general ledger, and financial state-
ments. After the accounting area was computerized, the other functional
areas of business proceeded with applications. Marketing, production, in-
ventory, distribution, and finance are areas that have large numbers of com-
puter applications. The accounting area was computerized first because it
was the easiest. The rules by which bookkeeping is performed are explicit
and relativelv cimnle, Thece characteristice lend themeelves to relatively eacy
computerization.

In simple terms, you have performed two distinct functions in produc-
ing the programs in this book. The two functions are: systems analysis and
programming,.

Systems analysis deals with defining a problem (application). Most of
the systems analysis was done for you in defining the program requirements.
However, you had to perform some of this function in designing and writing
your programs. It is the systems analysis component that is the most difficult
in converting from manual to computer systems.

As indicated above, the systems analysis function for accounting appli-
cations is simple compared to other areas in a business. As a result, the ac-
counting area was the first highly affected by computers. This is why most of
the programs in this book are accounting oriented. In contrast, the systems
analysis function for a production/control system is very difficult.

With the price of computers decreasing dramatically, more and more organi-
zations are using computers. Organizations that have never used computers
are called first-time users. There are thousands of horror stories about com-
puters and first-time users. This is not to say that organizations experienced
with computers do not also have horror stories; but, first-time users are a
special case.

Most first-time users rely on different computer manufacturers’ sales-
men to provide them with the information they need to choose a computer.
Usually, no one in the organization has had any experience with computers.
A situation that can be considered analogous to this is as follows: Assume
il a cardioiogist iras reconunended iatl a pacemaker be umpianied 1 a4 pa-
tient. The patient then calls the various manufacturers’ representatives for
presentations. ihe patient then seiects a model.

It is obvious in the previous analogy that the patient cannot make a ra-
tional choice. The same is true of a first-time user selecting a computer based

First-Time Users / 255

on the sales presentations of manufacturers’ representatives. The newspa-
pers are full of reports of trials where users are suing manufacturers, or vice
versa, because of basic misunderstandings regarding the computer hardware,
software, or both. The best route for a first-time user is to hire someone with
computer expertise—either as an employee or consultant. By not choosing
either of these alternatives, the use of the computer in an organization might
result in greater trauma than necessary.

The price of computers has dropped dramatically. No longer are large sums Computer
required to get the benefits of computer power. Mini computer systems can Price Trends
be bought for as little as $25,000 or $10,000. Alternatively, you can rent a and

mini computer system for less than $1,000 per month. A TRS-80 Model 11 First-Time User
microcomputer complete with two disk drives and a letter quality printer Organizations
can be purchased for under $5,000. The small price tag lets small organiza-
tions, with three to 99 employees, obtain their first computer. And it lets
large organizations distribute their data processing capabilities throughout
the organization. Therefore, the number of computers in use by business
firms is expected to increase considerably.
But both cases (first-time use in small business and distributed process-
ing in large organizations) represent the introduction of computers to people
who before had little or no contact with computers. Therein lies a danger.
Unless managers prepare themselves and their people now, they may not be
ready to meet the challenge when it comes.

Technical Background: Computers have been around for over 30 years.
They’ve been commercially used since the mid-fifties. However, their cost, at
that time, limited them to large-scale operations. This is no longer the case.
With the advent of minicomputers in the '60s and microcomputers in the
*70s, the cost of computers has fallen. Now even small organizations can af-
ford computers.

Furthermore, the trend of smaller, cheaper, more powerful computers is
expected to continue. New equipment is continually being developed and in-
troduced to the market. The technological cauldron continues to bubble.
New devices will continue to be developed. The cost of computers will drop
even further.

But the cost of computers is not the cost of computer systems. Similarly,
the cost of computation is not the cost of problem solving. The computer is a
small essential part of a computer system. And computation is a small part
of problem solving.

Computer systems are needed to help in solving problems. Computer
systems consist of people, of hardware, and of software. Equipment is re-
quired for the input, storage, manipulation, and output of data and instruc-
tions. Software is required to specify how the equipment should do its work.

256 / Conclusion

The hardware is the tool, the software is the logic for using the tool. Both
aspects, hardware and software, are discussed in the following two sections.

Hardware: Managers are faced with a wide variety of choices when they
consider hardware. The market is flooded with alternatives. For example,
the March 1981 Datapro Report listed 91 suppliers and 355 different small
business systems. Extensive and conprehensive listings are available in
Auerbach Reports and Datapro Reports.

The equipment itself presents a wide spectrum of alternatives. From
the $600 TRS-80 from Radio Shack to the $105,000 HP 3000, a whole range
of price/performance options are available. Which options to choose
depends on the needs of an organization.

The low end of the cost spectrum, such as the $600 computer from Ra-
dio Shack, offers systems which are too small for most businesses. They have
a CRT (cathode ray tube, a TV screen), a keyboard for entering commands,
and a cassette tape recorder to store data and instructions. But these facili-
ties are not enough. Business systems need more main storage, more auxil-
iary storage, and most important, hardcopy output.

Main storage for microcomputers ranges from 16KB-64KB
(KB =kilobyte, roughly one thousand characters—used as a measure of
storage capacily {or a computer system). Larger main storage capacity is ex-
pected to be available in the near future. But useable operating systems
facilities require from 20-25KB of main storage. And the application pro-
grams will need additional space for efficient operations. Therefore, 32KB
of main storage should be considered a minimum for a business system.

Floppy disks provide economic auxiliary storage. Each regular floppy
disk holds about 250,000 characters. But at least two (and possibly four)
floppy disk drives will be needed to hold the data and instructions. Multiple
disk drives are also necessary to provide back up for files and programs.

A printing device is needed for the output of invoices, reports, etc. Al-
though 15 cps (characters per second) printers are available, that equipment
is too slow for most business applications. Typical requirements are better
served by a line printer capable of printing at least 50 lines per minute. Qth-
erwise the output from the system will be inordinately delayed. But even at
50 lines per minute, the printer can be exasperatingly slow.

Considering these additions and iheir associated programs, a minicom-
puter useable by a small business will cost between $15,000 and $25 000 If a

AAsasm e T srmoe s mena o 1T 1nn St oo "1(U I

srmana v sir waes v areerraes BN P CRNEE TR :'.::'_1 Stz Liioes

300 stateimieiits peEr imonih—ihen TRS-80 Modei iii for under $5
business software package for $700 will probably suftice.

The described configuration (32-64KB main storage, 500KB-1000KB
floppy disk auxiliary storage, keyboard-CRT, and 50 Ipm printer) is toward

000 with a

First-Time Users / 257

the low end of the spertrum for small computer systems. Depending on the
needs of an organization, larger systems may be necessary.

Software: Software is the set of programs that makes a computer work.
Without software a computer system is merely a knick-knack that eats elec-
tricity. A computer system needs two types of software—systems software
and applications software. Systems software is the programs that operate the
computer. Applications software uses systems software in the solution of
business problems.

Every computer vendor provides systems software to operate their
machine. The software includes operating systems, assemblers, compilers,
interpreters, and various utilities, such as sort/merge. In general, the systems
software provided with a machine is adequate, although software support
continues to be a problem area.

However, application software is another story. Application software,
unlike systems software, does not deal directly with the computer. It uses the
computer (and its systems software) for business data processing and for
generating management reports. Application software requires an under-
standing of business problems, not of computers. Hence, computer vendors
have been able to provide systems software that does the required job; but
there is a dearth of applications software.

To be sure, most of the standard accounting applications are generally
available. Such applications include programs for general ledger, payroll,
accounts receivable (both open item and balance forward), accounts pay-
able, and fixed asset accounting. But other application areas are less well
developed. Order entry, sales analysis, sales forecasting, inventories, mate-
rials requirements planning, and master production scheduling are cur-
rently available only for some computer systems. But independent program
development is filling the void. Within the next two to three years, adequate
application software should become widely available.

In the meantime, an organization will have to satisfy its needs for appli-
cation software in other ways. The organization can develop its own special-
ized applications or contract for them. In either case, higher level
programming languages speed the development of business applications.
Currently, two languages, BASIC and FORTRAN, are generally available
on small business computers.

BASIC is the most widely supported higher level programming lan-
guage. BASIC (Beginners All-Purpose Symbolic Instruction Code) has the
advantage of being easy to learn and use. It is interactive: This means that
instructions can be entered and changed instantly. The immediate response
of interactive systems eases the program development process. BASIC is in-
terpretive: Each instruction is immediately changed into machine code. In-
terpreters typically require less main storage than compilers; therefore, less
hardware is needed.

258 / Conclusion

Plan for
Computers

The other major, higher-level language that is extensively supported is
FORTRAN. FORTRAN (FORmula TRANslator) requires a compiler and
hence more main storage than a BASIC interpreter. It is excellent for ana-

1o el PRSI, B g, NPV, G IN. JR Falps . | et o e & PR A
Pyiliv G b alivisy A bbb e U b bbb, Odliitiiic caiili PliciiiagUliiviii [S12 SN W)

problems).

COBOL (COmmon Business Oriented Language) and RPG (Report
Program Generator) compilers are available on some systems. Support of
other languages, such as PASCAL, APL, ALGOL, etc., is sporadic. There-
fore, only BASIC and FORTRAN can be considered for generalized appli-
cation development.

Success of a small computer system is not determined by the choice of
hardware and software alone. Success takes a plan and people to unlock the
power inherent in small computer systems.

The low price of computer systems tempts many managers. They have heard
about the speed and accuracy of computers. They have heard about the pro-
digious storage capacity of computers. And they have heard about the al-
most miraculous way of providing information.

At the same time, managers have heard about bad experiences with
computers. These horror stories deal with the inflexibility of computerized
systems. They tell of problems in understanding computer professionals.
And they tell of wasted effort, money, and manpower.

But the truth in either case, the glowing success story and the abysmal
horror story, does not lie with the equipment. The computer is merely a tool.
It can support either success or failure. Which will result depends on how it
is used and what it is used for.

Management control of computer use determines whether or not a com-
puter system supports organizational objectives. Hence, managers must
know what the organizational objectives are before they can set the objec-
tives for computer use. Then actual usage can be compared to the stated
objectives to see if the system is effective.

Setting objectives for the use of computers is an important step. It
should be done before an organization gets a system. But that requires iden-
tifying not only where the organization wants to go, but also where the or-
ganization is at present. Analysis of current operations identifies the areas
where computers can be used to greatest benefit.

- Y + x e ~F s T A ha aglrad.
In the analys;s, WO Lypcs Of quicstions need to oc asxea:

Gt a1T LT LIUIILMEUUN HOSUs UL s RIHTCHE
While the computer system can be designed to perform data processing effi-
cienily and while it can answer managementi’s cry for informaiion, the abil-
ity of the computer system to respond to either need is only as good as the
clarity and precision of the questions that it is asked. An ambiguous ques-

First-Time Users / 259

tion will result in an amorphous design that leaves everybody dissatisfied.
And such dissatisfaction perpetuates the horror stories.

Therefore, the organization must determine its data processing needs.
Ask where computers can make a contribution to organizational operations.
Are there problems in responding to customer questions? On-line inquiry
systems should be able to speed up the answers. Are there problems with the
accuracy of inventory records? Computers are noted for their accuracy.
(Once a program has been debugged, all calculations will be consistent.)
Have you inadvertently missed discount periods on vendor invoices? Set up
a computerized tickling file so the system won’t let you accidentally overlook
a payment due date. Do you have too many stockouts? Delayed billings?
Reports two to three weeks after the end of a period? Administrative people
snowed by a blizzard of paper? Clerical people devoted solely to compiling
reports for regulatory agencies? All of these problems, when carefully ad-
dressed, can be solved with the use of computer systems.

But these questions need to be addressed in detail. For each problem
area detailed questions have to be asked, to provide the needed precision for
computerized processing. What reports and documents have to be gener-
ated? How often? And how many? What are the input data? What is their
volume and frequency? How much data has to be stored? How many files,
what size, frequency of access, etc. These questions focus on the details of
analysis. But these details are needed to explore a prospective problem area.
A thorough description of the problem ensures that your organization adds
to the number of success stories, not to the horror stories.

The use of computers is a business decision. The low price of computer
systems makes computer power available to small organizations and to indi-
vidual departments in large organizations. To obtain the full benefits of
computerized speed, accuracy and memory, an organization needs to plan.
The plan should consider where and how the computer can be put to use.
And in order to plan, an organization must know what its needs are. There-
fore, a foundation for the use of a computer system has to exist before the
computer system can be used successfully.

The introduction of a computer system into an organizational unit is a dra- Prepare your
matic change. The computer system changes the nature of the work per- People
formed by people. It changes the flow of work through an organizational
unit. And therefore the relationships between people are changed.
Even small changes in procedures can be traumatic for some people. But
first-time computerization has more impact than a small change in proce-
dures. Therefore, people have to be prepared through orientation and train-
ing sessions for the new system. Don’t limit the sessions to clerical people.
Management also needs to know what it can and cannot expect from a new
computer system.
Once the requirements have been defined, once a plan for computer use

260 / Conclusion

CONCLUSION

has been established, once a commitment for hardware and software acquisi-
tion has been made, once a specific system has been chosen and purchased,
then intensive preparation for the upcoming chance can start. (Note that we

are recommaending tr
mng e

ery of the computer systern) At this time the organization knows the details
of the system to be delivered and how it will be used. Therefore, it can focus
its training where it will do the most good.

Small business computers are generally easy to operate and use. Hence,
in most cases it will not be necessary to hire computer professionals. In
larger organizations an adequate staff exists already to support the needs of
management. In small organizations, managers will have to do some of the
work themselves and contract outside the organization for the more techni-
cal aspects. But in either case, the training and orientation sessions should
prepare the people for interaction with computer systems professionals.
Hence, some understanding of the terminology and capabilities of com-
puters in general has to be provided by these sessions.

The low cost of small computer systems has led to predictions of almost
exponential growth in the number of organizations using them. Rather than
being a matter of whether, it becomes a matter of when. When will your
workplace have a computer system? Given this inevitability, then prepara-
tion now will pay off in the future. Getting your people prepared now makes
the paih of wansiioi 0 a new sysiemn smooiher.

Of course, with the passage of time, more and more people will already
be familiar with computers. Business schools require introductory courses in
data processing or information systems for their graduates. They learn the
terminology of computers. They learn about the capabilities and limitations
of hardware. And they learn how to program computers in BASIC. Since
BASIC is so widely supported on small business computer systems, the stu-
dents will be ready to make a contribution to any organization that is con-
templating the use of a small business computer.

e and Antamdnts -1
Ay CRIEGE WA ICHLEL0n 3C8510ns 1.)11\; \.U in\. ..u,nugu GCiV-

Low cost computer systems are a reality. But a manager should not be hyp-
notized by the cost of hardware. To make a computer system successful
takes more than computing equipment. Success takes software, tailored to
the needs of a business. It takes people who are trained to operate the hard-
ware and people who are trained to use it. But most of all, it takes manage-
ment—managers who are commitied to planning for compuiterization, man-
agers who set objectives and control computer usage, and managers who are

ol ot mnmn

ITT21) PRSP RR I PRUNPR PAS NPVIPLIN EPURpUNE S F gy . 2 IS I: R
o e ~o WOLTOAT LACTANSLTON LT LA T SUISUNNVL TN UNLINAN EEEYSo

Appendices

261

Appendix / 263

SUMMARY OF BASIC COMMANDS AND INSTRUCTIONS

Summary of BASIC Commands:

CMD “D:0”(Model 111)
SYSTEM “DIR”(Model II)
KILL
LIST
LOAD

NEW

RUN

SAVE

Lists the names of programs and data
files in the directory.

Eliminates a program or file from the
diskette.

Gives a printout (listing) of the pro-
gram.

Asks for a copy of a program from
the diskette.

Tells the system that the operator is
about to type in a new program.

Executes a program, i.e., commands
a computer to do what the program
instructions tell it to do.

Puts a copy of the program onto the
diskette under the current program
name.

Summary of BASIC Instructions:

CLEARn

CLOSE #n

DATA 5,2,7

DIM Y(X),Z(Q,R)

END

Allows a large (n) number of alpha-
betic fields to be stored in memory.

Closes file n and stores it on the disk-
ette.

Used to hold data for fields in READ
statements.

Sets the lists Y (represented by a let-
ter) to X positions; defines that Z
(represented by a letter) has Q rows
and R columns; individual elements
of lists and tables are identified by
their location: position number in a
list; row number and column number
in a table.

Indicates the physical end of a pro-
gram.

APPENDIX A

264 / Appendix

FORY =N TO M

NEXT Y

GOTO nnn

IF x THEN nnn

INPUT #n, fieldnames

INPUT XY

INPUT X§, Y$

INT(X)

LETX =Y

OPEN

PRINT #n fieldname

PRINT XY
PRINT “XYZ”

™ o

READ X\Y,Z

Sets up a loop; the FOR statement
begins the loop; it sets Y to N (begin-
ning value); the loop will continue
unul ¥ has a value greater than M
(the upper bound); the NEXT state-
ment loses the loop.

Tells the system to go to line number
nnn for the next instruction.

If x is true then go to line nnn for the
next instruction, otherwise (if x is
false) go to the next line in sequence.

Reads a record from file number n;
the file is identified by its file number.
Records are separated by their field-
names.

Takes numeric values for fields X and
Y from the keyboard.

Gets alphabetic values for fields X$

N B TN P TN SR T .
aid W from the keyboard.

Makes the value X into an integer
(whole number).

Places the value of Y into the mem-
ory location X.

Opens the file identified by the file-
name and gives it an identification
number.

Writes a record on file n.
Displays the values of X and Y.

Displays the alphabetic information
XY7Z.

Assigns values to fields from DATA
Statements (X,Y,Z are arbitrary field

(ORI

Prints remarks for programmer; ig-

nored by the computer.

Tells the system to stop.

Appendix / 265

Summary of Direct

OPEN “R”,1,“filename”

FIELD #1, nl1 AS fieldnamel$,
n2 AS fieldname2$

RSET

Access Diskette Instructions

Opens a direct access file as file
number 1.

Defines the fields for records of file
number 1; nl, n2 are the maximum
characters in fields 1 and 2; field-
namel$, fieldname2$ are the field-
names used in the diskette file and are
alphanumeric.

Changes the numeric form of data in

fieldname$ = MKD$(fieldname) a field to alphanumeric.

fieldname = CVD(fieldname$)

GET 1,L

PUT 1,L

Arithmetic operations:
X+Y

X=-Y

XxY

XY

X [Y (Model I11)
X AY (Model I1)

Comparison operators:

X=Y

X<Y

X<=Y

X>Y

Changes the alphanumeric form of
datain a field to numeric.

Reads record L of file number one
from diskette.

Writes record L to diskette on file
number one.

Add XtoY

Subtract Y from X
Multiply X by Y
Divide X by Y

Raise X to the Y power

Equal (if X equals Y, this comparison
is true).

Less than (if X is strictly less than Y,

this comparison is true).

Less than or equal to (if X is less than
or equal to Y, this comparison is
true).

Greater than (if X is strictly greater
than Y, this comparison is true).

Greater than or equal to (if X is

266 / Appendix

greater than or equal to Y, this com-
parison is true).

X<>Y Not equal to (if X is greater than or
iess than-that 1s, not equal to—Y,
this expression is true).

APPENDIX B SORTING

. e () == om =

Records may be sorted either alphabetically or numerically for many appli-
cations. In order to use the sort program given in this appendix, it is impor-
tant to understand something about the program:

1. The file to be sorted is unchanged at the end of the sort.

2. The sorted file, at the conclusion of the program, is called
“SORTED/FIL”.

3. You must rename the “SORTED/FIL” with the RENAME command
as soon as the sort is finished. It will automatically be saved.

In the chapter on totals and subtotals, it is necessary to sort the “EMPLOY”
file by department number; then it becomes the “EMPLDP” file.

A listing of the sorting proeram and an examnle running the nrogram
follow:

THIS IS A ROUTINE TO SORT THE EMPLOY FILE ON ANY
FIELD OF YOUR CHOOSING.
SUBMITTED BY THUNDERBIRD, ENT. OF MIAMI, FLA.
PROGRAMMER - - SKIP BANKS
LEAR 2000
READ INFORMATION FROM DISK FILE
CLS

INPUT "FILENAME...";FI$
'

! OPEN FILES

'

OPEN "I™,1,FIS

OPEN "0O",2,"SORTED/FIL"

'

R=100 : K=6

DIM LS(R,K),N(R),D(R),NS(R) ,H(R),R(R),V(R),NR(R)
JS:].O

R=1
IF EOF(1l) THEN CLOSE #1 : GOTO 440
INPUT #1, N(R),D(R),NS(R),H(R),R(R),V(R)

! CONVERT NUMBERS AND STRINGS TO 2 ELEMENT ARRAY

Appendix / 267

270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450

460
470
480

490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790

1
L$(R,1)=STRS(N(R)) : LS(R,2)=STR$(D(R)) : LS(R,3)=NS$S(R)
L$S(R,4)=STRS(H(R)) :LS$(R,5)=STRS(R(R)) : LS$S(R,6)=STRS(V(R))
NR(R)=R
!
! PRINT OUT THE INCOMING FILE TO THE SCREEN
]
FOR I=1 TO 6
PRINT TAB(((I-1)*JS+4))LS(R,I);
NEXT I : PRINT
]
! GET THE NEXT RECORD
1
R=R+1 : GOTO 230
13
! DONE LOADING - - READY TO SORT
1
INPUT "SORT BY FIELD #...";J
]
IF J=0 THEN GOTO 440
II=R
' SORT ROUTINE STARTS HERE
]
NR(II+1) = NR(2)
FOR I8=1 TO II-1
I12=I8
IF L$S(NR(I8+2),J) >= L$(NR(I2),J) GOTO 590
NR(I2+1) = NR(I2)
I2 = I2-1
IF I2 > 0 THEN GOTO 530
NR(1) = NR(I8+2)
GOTO 600
NR(I2+1) = NR(I8+2)
NEXT I8
1
' DONE SORTING - -~ NOW PRINT SORTED FILE
]
J=1
J1=10
CLS
]
! PRINT THE SORTED FILE ON THE SCREEN AND TO THE
' NEW FILE
'
FOR I2 =1 TO 6
PRINT TAB(((I2~1)*%J1+4))LS(NR(J),I12);
PRINT #2,LS(NR(J),I2);",";
NEXT I2
]
J=J+1
PRINT
IF J<=II THEN GOTO 710
CLOSE #2

32767 END

268 / Appendix

FILENAME...? EMPLOY
101 1
103 12
104 17
108 16
172 2
198 1
202 16
206 7
255 12
281 12
313 7
347 12
368 1
422 1

SURT BY FLIELD #...7
101 1
198 1
368 1
422 1
172 2
206 7
313 7
255 12
281 12
347 12
103 12
108 16
202 16
104 17

alemhalk
uAlJllblU

FILENAME...? EMPLOY
101 1
103 12
104 17

The file must now be renamed.

N

ADAMS
BAKER
BRAVE
COHEN
JOHNSON
TANNER
WILSON
LESTER
SCHMIDT
MILLER
SMITH
GRAY
WEAVER
WILLIAMS

ADAMS
TANNER
WEAVER
WILLIAMS
JOHNSON
LESTER
SMITH
SCHMIDT
MILLER
GRAY
BAKER
COHEN
WILSON
BRAVE

For the Model I1I type:

WA OUTUTER SR WO s T,
. . F— . . .

B YT O U R U W b
. e . e

N

Then type BASIC and perform the usual sign-on.

For the Model 11 type:
NAME “SORTED/FIL” AS “EMPLDP”

Tha nracram unill alea rast alhaladiaailen Lol fo

ADAMS
BAKER
BRAVE

&> U1 Ut
o

40
40
40

ONORIOHOOCOTNNDO

NOOPROOR BPOOONOO

CMD“I",“RENAME SORTED/FIL TO EMPLDP”

i O

S PR 2

wregoty opeer ozt

Appendix / 269

SORT

The following is an abbreviated list of error numbers and an interpretation
of their meaning:

108
172
198
202
206
255
281
313
347
368
422

BY FIELD #...

101
103
104
108
347
172
206
281
255
313
198
368
422
202

16
2
1
16
7
12
12
-
12
1
1

COHEN 6.25 38
JOHNSON 3.75 40
TANNER 4,25 36
WILSON 4 40
LESTER 5.25 40
SCHMIDT 5.6 40
MILLER 6 40
SMITH 4.25 40
GRAY 6 38
WEAVER 3.5 40
WILLIAMS 4 40
? 3
ADAMS 5 40
BAKER 5.6 40
BRAVE 4 40
COHEN 6.25 38
GRAY 6 38
JOHNSON 3.75 40
LESTER 5.25 40
MILLER 6 40
SCHMIDT 5.6 40
SMITH 4.25 40
TANNER 4.25 36
WEAVER 3.5 40
WILLIAMS 4 40
WILSON 4 40

SELECTED ERROR MESSAGES

CODE ABBREVIATION EXPLANATION

1 NF NEXT without FOR. A FOR-NEXT
loop is missing either a FOR or a
NEXT.

2 SN Syntax. You misspelled a basic in-
struction or left out a parenthesis or
arithmetic character.

6 oV Overflow. The number in your pro-

gram is too big or too small to be cor-
rect. Check the arithmetic!

ONOHROROOOOO

OOoONOBRBRCCOOCOCNN O

APPENDIX C

270 / Appendix

APPENDIX D

11

13

14

15

Stop a printout on the keyboard

OM

UL

BS

/0

™

(ON]

LS

or printer

Stop execution of a program if

Out of memory. The DIM statement
is too big or you have too many in
your prograim.

Undefined line. A GOTO or THEN
refers to a line number that does not
appear in the program.

Bad subscript. A reference is made to
an element of a list or of a table that
is beyond the size of the table speci-
fied in the DIM.

Division by zero. The program
attempted to divide by zero. Check
the arithmetic.

Type mismatch. You have defined a
number as an alphabetic or alphanu-
meric field or vice versa.

Out of string space. You have more
than 100 alphabetic characters in
memory at one time. Use the CLEAR
instructions.

Long string. You have defined an
alphabetic or alphanumeric field that
has more than 255 characters in it.

HOW TO. ..
Solution

Depress the BREAK key

Depress the BREAK key

nothing seems to be happening

Delete programs from the

directory

Delete data files from the

directory

Delete iines from a program

List a data file

KILL “PROGRAMNAME”

KILL “FILENAME”

DELETE [80-270: 1his will cause
lines 180-270 of the program in vour

work space to be deleted

DELETE 120: Line 120 will be de-

leted.

Write a program that lists and prints

3t
it.

Appendix / 271

INITIALIZATION OF DISKETTES

Any new diskette must be initialized before you can enter, run, or save pro-
grams on it. In order to initialize a diskette, you must perform the following
steps:

1.

8.

Locate the MASTER diskette that is supplied with your TRS-80. Place
it in disk drive 0 (zero). Place your new diskette in disk drive 1, and
sign-on (see Chapter 1).

When the message TRSDOS Ready appears, type BACKUP and press
“ENTER”.

The TRS-80 responds with:
SOURCE Drive Number ?
Type 0 (zero) and press “ENTER”.

The TRS-80 responds with:
DESTINATION Drive Number ?
Type 1 and press “ENTER”.

The TRS-80 responds with:
SOURCE Disk Master Password?
Type PASSWORD and press “ENTER”.

The TRS-80 responds with:

Source Drive 0 Destination Drive 1
Do you wish to RE-FORMAT the diskette?

Type YES and press “ENTER”.
A series of messages appears and you have completed a successful
initialization when the messages
Backup Complete
TRSDOS Ready
appear.

Remove both diskettes.

Note: If at any point you want to start over, press the orange key (Model
111) or the “BREAK” key (Model II).

APPENDIX E

INndex

273

Index / 275

Accumulation 99, 103

—initializing, 101

—subtotals, 109

—totals, 101

Alphabetic information, 23, 28, 37,
43

Arithmetic

—field names, 15, 37

—operations, 16, 37, 43

Assignment statement, 15, 37, 90,
101

BASIC, 4, 257
—commands, 18, 36
—instructions, 18, 37

Batch, 253

Business applications, 4, 254

Calculations

—arithmetic, 13, 37
—subtotals, 109

—totals, 99

Canned programs, 237
Cathode Ray Tube (CRT), 6
CLOSE file, 72, 94
Columns for PRINT, 29
Comma

—ininput, 43

—in output, 28, 37
Comparison operators, 59, 63
Computer, 3, 255

CVD, 222,223

DATA, 240, 241, 250

Data entry, 41, 55

DIM, 190, 212

Directory, 24, 36, 62
Diskette, 7, 8, 17, 62,72, 221
Dollar sign (%), 43

END, 16, 37

End of data, 50, 73, 138
End of file, 79, 94, 138
ENIAC, 3

ENTER key, 7, 8,9, 271
Errors

—design, 55

—logical, 17, 55
—specification, 55
—syntax, 17, 55
—typographic, 17, 55

Federal income tax (FIT), 6, 41, 196

Federal insurance contribution act
(FICA), 6, 41, 196, 200

Field, 6

—instruction, 230, 233

—name (alphabetic), 43

—name (numeric), 15, 35

File

—creation, 72, 217

—name, 72, 94

—reading, 78, 94, 221

—set up, 69

—sorting, 110, 266

—writing, 72, 94, 221

File organization

—direct access, 217

—sequential, 69, 82, 147, 155, 217

File processing

—adding, 129, 134, 155

—copying, 93

—correcting, 87

—deleting, 147, 155

—searching, 82

—updating, 159, 226

File type

—master, 6, 159

—transaction, 159, 226

Flowcharting, 13

FOR-NEXT, 190, 212

Function, 116, 242

GET, 222, 233
GOTO, 50, 59, 63

Hardware, 255
Hierarchy of arithmetic operations,
43

Index 7 277
Transaction —direct file, 226
—code, 176, 227
—file, 159
—record, 159 Verification, 55
Update

—sequential file, 159 Write file, 72, 94, 155, 221, 233

BASIC for Business
for the TRS-80 Model II& 1|

Alan J. Parker

Excellent introduction to BASIC business applications for the TRS-
80 Model Il and Model lll. Structured to help students solve prob-
lems, this book focuses on disc files as the core of all business
data processing. This book contains comprehensive coverage of
payroll, inventory, customer statements, salesmen’s commis-
sions, and other business-related processing. It requires no prior
experience with computers, no math expertise, and no previous
knowledge of BASIC to perform the functions described. Using a
step-by-step method of presenting the information, even the most
inexperienced computer user can master basic business skills
using the TRS-80 by using this book!

The Table of Contents includes:

Introduction

Performing Simple Calcuiations

Data Entry

Sequential Files

Writing Reports from Sequential Files
Adding and Deleting Records
Updating Sequential Files

Using Lists and Tables
‘Using Direct Access Files

Use and Design of Complex Programs
Conclusion

RESTON PUBLISHING COMPANY, INC.

A Prentice-Hall Company
Reston, Virginia 0-8359-0352-4

