by

David A. Lien

COMPUSOFT™ PUBLISHING

A Division of CompuSoft ™, Inc.

San Diego, California 92119 U.S.A.

Notice to Manufacturers
and
Software Houses

Each time The BASIC Handbook is reprinted, an effort will be made to
incorporate the key features of new BASIC interpreters and compilers.
To ensure that yours is included, please send complete documenta-
tion, including all materials sent to customers which relate to BASIC.
You will then be contacted.

A hearty “Thank You" to the many companies which actively assisted
in this effort. A special invitation is extended to the rest to help us
accurately explain the features of your BASIC.

Comments and suggestons from readers and companies are wel-
comed and solicited. They should be sent to:

Editor, The BASIC Handbook
COMPUSOFT PUBLISHING
Box 19669
San Diego, Ca 92119

U.S.A.

Notice to Readers

These days it seems one has to give a disclaimer for everything, sowe
have to tell you that although we’ve “done our darndest”, the informa-
tion in this book is only as accurate as the manufacturers’ information,
verified by seemingly endless test runs, when possible. In any case,
you have to use it at your own risk, it might contain errors (we’d correct
them if we knew where they were!), the contents might be hazardous
to your health, etc., etc., etc.,

COMPUSOFT is a registered Trade Mark of CompuSoft, Inc.

The
BASIC
Handbook

An Encyclopedia of the BASIC Computer Language
by
David A. Lien

COMPUSOFT PUBLISHING
A Division of CompuSofi, Inc.
P.O. Box 19669 @ San Diego, California 92119 U.S.A.

Copyright © 1978 by Compusoft Publishing,
A Division of CompuSoft, Inc.
San Diego, CA. 92119

FIRST EDITION
SECOND PRINTING — 1979

All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, elec-
tronic, mechanical, photocopying, recording or
otherwise, without the prior written permission
of the publisher. No patent liability is assumed
with respect to the use of the information contain-
ed herein. While every precaution has been taken
in the preparation of this book, the publisher
assumes no responsibility for errors or omissions.
Neither is any liability assumed for damages
resulting from the use of the information con-
tained herein,

International Standard Book Number: 0-932760-00-7
Library of Congress Catalog Card Number: 78-64886

Printed in the United States of America

Preface

With the roots of the BASIC language now firmly established
throughout the world, it is necessary to make its many dialects
understandable so programs can be transported between different
computers. After you've found just the program you’ve been
looking for, you know how frustrating it is only to discover that it
won’t RUN on your computer. This HANDBOOK addresses that
problem by discussing in detail every commonly used BASIC
Statement, Function, Operator and Command.

For the most part, BASIC words mean the same thing to every
computer which recognizes them. If a computer does not possess
the capabilities of a needed or specified word, there are often
ways to accomplish the same function by using another word, or
combination of words.

That’s where The HANDBOOK comes in. It helps you get the
most from your computer, be it a “bottom-of-the-line”” micro, or
an oversized monster.

Have fun computing!

Dr. David A. Lien
San Diego — 1978

Personal Acknowledgements

In a book of this scope and complexity, there are far too many contrib-
utors, direct and indirect, to identify by name. In fact, most are
unknown, but the fruits of their intensive labors are documented in this
Handbook.

Much credit is due fellow computer fancier, Ham radio operator and
technical writer, Dave Waterman of Alpine, California. He assisted as
a researcher, tester and “‘rough writer”’.

Dave Gunzel of Ft. Worth, Texas was the designer and Editor. Since
he is one of the best in the business, he kept the irrepressible author on
a short leash, and the book turned out the way you see it.

Dr. Lance Leventhal, fellow pioneer in this exciting business, was
visionary enough to concur that this book had to be written, and could
be, and provided the needed encouragement.

The cover photo is by James R. Ney.

Many others reviewed early copies of the manuscript outline, and their
helpful suggestions turned the germ of an idea into a book.

They include:

Mr. Harold Ehler, Head of Computer Operations, R.J. Fisher
Construction Co., Fresno, CA.

Prof. W.E. English, WoWYQ, Chairman, Engineering & Technol-
ogy Dept., Cuesta College, San Luis Obispo, CA.

Mr. Jacob Konen, Systems and Programming Supervisor, Gross-
mont College, El Cajon, CA.

Prof. David Lunsford, Mathematics and Computers, Grossmont
College, El Cajon, CA.

Dr. Donald Martin, Director of Engineering Services, KPBS-TV/
FM, San Diego State University, San Diego, CA.

Dr. Ed Thorland, Computer Center Director, Luther College,
Decorah, Iowa.

Mr. Charles Zappala, WA6VZR, Technical Writer, Tel-tone Corp.,
Bothell, WA.

Introduction

While preparing this Handbook, a number of assumptions and ground rules
were established. Without them, the job would never have been completed
and no one would benefit from the accumulation of information. Those
assumptions and ground rules are listed here so you might better understand
where the Handbook is ““coming from”.

1. Users of the language are exceedingly frustrated by not being able to
take a BASIC program from another computer or a magazine article and
make it work on their computer. Top priority will be given to that
information which will help users solve this “‘incompatability” problem.

2. There is a large central core of BASIC words which are shared by all
manufacturers. A thorough treatment of that core is more important
than extended discourse on lesser used and obscure special-purpose
BASIC words.

3. To the extent that time and space allow, lesser used BASIC words will
be covered, but like the expanding universe theory, BASIC keeps
expanding. We can only chase it — but never catch it all.

4. BASIC is used on all sizes of computers, Micros, Minis and Maxis. Size is
unimportant, since some smaller computers have vastly superior BASIC
capabilities. Emphasis shall therefore be on the language, not the size
of machine.

5. The Handbook will be an Encyclopedic type reference work — not a
dictionary or a textbook. It will be a precise and definitive reference
which can accompany a good BASIC text, but not try to replace it.

6. To make the Handbook easy to use, it will be divided into logical
sections, and a uniform method of dealing with each BASIC word will
be followed.

7. It’s not as important to identify whose version of BASIC does what, as
it is to make a given program run on a given computer, if at all possible.
Tying specific capabilities to specific manufacturers will therefore be
given low priority.

8. Large computers typically use compilers; small ones typically use
interpreters. Since it makes little difference to the language itself, we will
use the words interpreter and compiler interchangeably.

10.

11.

12.

Each BASIC word will be treated clearly and concisely. To avoid wasting
trees for excess paper, duplication will be minimized by referring the
reader to other related words.

The Handbook is important enough to users that they will readily (and
hopefully, gently) point out errors, omissions and variations which might
not be covered in this edition. We can pick up those changes and
additions in future editions.

There is very little uniformity in control of peripheral devices, such as
disks, tapes and printers. The words that are required and used extend

far beyond the original scope of Dartmouth BASIC. To attempt to include
them at this point would be premature.

The Handbook is not a substitute for the manufacturer’s manual which
accompanies each computer. It is a supplement.

Some Thoughts about the BASIC Language

A computer is just a box of switches, not very different from the on/off
switches which control household light bulbs. Each of the thousands of
switches is either ON or OFF at a given time. By making up a “code”
whereby the on/off status of each switch means something, an extensive
(but not very complicated) system of holding and processing information
can be created.

Unfortunately, computers can only hold, process and communicate
information in the form of “switches” being either ON or OFF. To most of
us that’s like a tough foreign language. That “computer language” is now
taught in many schools and colleges.

For most of us mere mortals, however (or those of us in a hurry), it is much
more efficient to hire an interpreter to translate back and forth between this
strange ON/OFF computer language and English. That way, we can talk
directly to the interpreter, let the interpreter talk to the computer, let the
computer talk back to the interpreter, and then the interpreter talks back

to us. This might seem tedious and inefficient, but modern computer
interpreters work so fast they are effectively “invisible’’ between us and the
computer (and nothingis lost in translation but a few millionths of a second).

We say the computer “talks” in machine language. We talk in English. Our
interpreter isn’t content to just do its job and not fuss about it, it wants to
be called a language too. (These days, everybody’s got to have a fancy title
that no one can really pin down!) The most common interpreter language is
named BASIC. BASIC stands for Beginners All-purpose Symbolic
Instruction Code. Our interpreter’s language is BASIC, and we hide it right
inside the computer. Pretty sly — using part of the computer to act as its
own interpreter.

Early computers were almost entirely preoccupied with interpreting, when
forced to communicate in the English language, (leaving little capability for
deing anything useful). Changes in technology have brought prices down to
where even today’s “small” computers are large enough to easily do the
interpreting, with room and power to spare for real computing.

Development of the BASIC language at Dartmouth College in 1963 by
Professors Kemeny and Kurtz was an important breakthrough, making it
possible for us ordinary folks to use computers. That was why it was
developed, and because it’s so easy to learn and use, it is the most popular
computer language.

There are a number of other computer “‘languages” which act as interpreters,
but most are so complicated that you have to learn them like a foreign
language. Even so, they are still much simpler than machine language.

The BASIC language is incredibly simple compared to the entire English
language. Its vocabulary is very limited, several hundred words at most,
compared to hundreds of thousands of English words. Unlike English, it has
to be used with great precision — ro sloppiness is allowed. The computer

is just a dumb box of parts that does as it’s told, but hasn’t the good sense to
come in out of the rain.

BASIC was once looked down on by elitists as a simple-minded computer
language of the unwashed masses, and, tho phenomenally powerful, not
worthy of respectability. (So was the Volkswagen.) More computers now
speak BASIC than any other computer language. Because of BASIC’s
simplicity, computer programming (and thereby control) has escaped the
grasp of just a select few.

Because we have to “speak’ BASIC clearly and concisely to the Computer,
there are a few simple ground rules we must know. They include:

1. Each message we send to the computer must be typed on one line,
and that line must have a number. For Example:
1¢ PRINT "HELLO THERE DUMB COMPUTER!"
The computer reads our message from the smallest line number to
the largest, acting on each one as it goes.

(3]

Letters of the alphabet are used just as in regular mathematical
equations. If more than the 26 letters are needed, each letter can be
followed by a single number (e.g. B7), making available 260
additional “variables.” In some versions, 2 or more letters can be
combined to give a variable a name (e.g. “UP” or “ANGLE” or
“IRVING?”, etc.).

3. The computer responds to specific commands like RUN, STOP,
LIST, etc., after we type those simple English words.

4. A computer “program” is a whole set of messages in the form of a
LISTing of numbered lines.

5. The standard rules of mathematics generally apply to solving
equations. The standard symbols also apply, with the exception of
multiplication, where * is used instead of “x”. Trigonometry,
Matrices and Arrays, and other advanced operations can be
performed with relative ease.

If these and other simple rules were universally true, there would be no need
for The BASIC Handbook. However, as computers developed in laboratories
around the world, over a hundred variations or *‘dialects” of BASIC also
developed.

These dialects have much in common, but there are enough differences that
non-trivial programs written for one computer will seldom run on another
without modification.

The efforts of the ANSI (American National Standards Institute) and NBS
(National Bureau of Standards) towards standardization of at least a
common language core will probably be the major factor in some day
having a Standard BASIC. Failing that, the immutable laws of the free
market will determine which version of BASIC survive.

Caution:

When you come across “‘standard” English words or abbreviations in
computer programs, don’t automatically assume they are BASIC
words (the program might be in another computer language). A word
to the wise . . .

BASIC not only changes from manufacturer to manufacturer, it
changes from a given manufacturer with time. Features are added,
changed and dropped, often without notice. That’s why two
apparently identical computers may not always work exactly the
same.

10

How To Use This Handbook

The information about each BASIC word is broken into a number of parts. Study this example
carefully to better understand what to expect from your Handbook.

@ The WORD itself: It is a word found in a BASIC program, or used to control one. Words
which are used for overall system monitor purposes, editor languages, and other computer
languages are not part of The BASIC Handbook.

@ ANSI Standard notation: If the word “ANSI” appears here, it means that the word is part
of the proposed National Bureau of Standards American National Standards Institute minimum
BASIC vocabulary. Although adoption was not official as of press time, any changes in the
proposed Standard are expected to be minor.

(3 Word Category: BASIC words are divided into 4 categories:

Commands: which tell the computer to do something with a program, like RUN, LIST, etc.
Some computers allow commands to be imbedded in a program, thus also serve as a Statement.
Statements: words which actually appear within a program, and comprise the detailed
instructions on which the computer makes its decisions and performs its duties. Example:
PRINT A,B,C
Functions: words which call forth pre-programmed machine-level “micro-programs’. They
perform relatively complicated “functions” such as finding a trigonometric value, a square
root, etc., serving as part of a larger statement. Examples:
LET X = TAN(Y) PRINT LOG(A)
Operators: non-word characters which perform in special comparative or modifying capacities.
Examples: comma, colon, equal sign, etc.
In The BASIC Handbook, Commands, Statements and Functions appear in alphabetical order.
Operators, not lending themselves to alphabetizing, appear in a separate section at the back.
@ Introductory and Descriptive remarks about the WORD, telling what it is and what it
does. May include special notes relating to brands of computers which predominantly or
exclusively use the word.
(3) TEST PROGRAM: Allows user to enter a brief program into a computer to see if its
interpreter or compiler recognizes the word and makes use of it.

SAMPLE RUN: Shows how the computer might be expected to respond to the TEST
PROGRAM. Results will vary slightly from machine to machine, but the general pattern
should not vary widely from the sample run.

(D HELPFUL HINTS: Sometimes there are programming techniques which greatly simplify
achieving a high level of simplicity and/or reliability. They are noted here.

IF YOUR COMPUTER DOESN'T HAVE IT: Gives alternate ways to accomplish the same
objective using other BASIC words, when possible . . . and it isn’t always possible. In the case
of functions, a sub-routine is usually included which is able to circumvent the absent intrinsic
function. In the case of statements (especially PRINT), a simple re-writing of part of a program
using other words and techniques allow program execution with the same or somewhat

Aisminialhad vanniléa
ALITIATLAOIIU G A vuuiLo,

(® VARIATIONS: Variations in usage of the WORD); that is, how the WORD itself might be
used differently by different computers. (Not variations in how the desired results might be
achieved with other words.)

0 ALSO SEE: Rather than spend an inordinate amount of space duplicating information,
words are sometimes “clustered” around a central word, and that central word is discussed in
great detail. Related words then treat their specific purpose only, referring to other words for
more detail as desired.

@

INT function except FIX does not round negative

The FIX function is used to remove all numbers to the
right of the decimal point. Its operation is similar to the

numbers down.

Example: 1¢ PRINT FIX(3.6)
20 PRINT FIX(-3.6)

prints the numbers 3 and -3. While

1¢ PRINT INT{3.6)
26 PRINT INT(-3.6)

prints the numbers 3 and -4.

FIX is capable of handling any number, large or small, within the limitations of the com-
puter’s interpreter.

TEST PROGRAM

19 REM 'FIX' TEST PROGRAM

2¢ N=-12.3456

39 A=FIX(N)

49 PRINT "FIX PASSED THE TESTIF ‘“;N'1S CHANGED TO ';A
99 END

SAMPLE RUN

FIX PASSED THE TESTIF -12.3456 1S CHANGED TO -12

[F YOUR COMPUTER DOESN'T HAVE IT

If your interpreter does not have the FIX function capability, but has the ABS, INT and
SGN functions, then line 30 in the TEST PROGRAM can be replaced with:

3¢ A=SGN{N)*INT{ABS(N})

VARIATIONS IN USAGE

None known.

ALSO SEE

INT, ABS, SGN

11

12

A. is used in the TRS-80 Level I and other variations of
Palo Alto Tiny BASIC as an abbreviation for the ABS
(absolute) function.

For more information see ABS.

TEST PROGRAM

19 REM 'A. (ABS)' TEST PROGRAM Function
2¢ X=A.(-188)

38 PRINT *'A.' PASSED THE TEST IF";X;

4% PRINT “1S PRINTED AS A POSITIVE VALUE."

99 END

SAMPLE RUN

‘AL PASSED THE TEST IF 1¢¢ IS PRINTED AS A POSITIVE VALUE.

VARIATIONS IN USAGE

A.is also used in the Level [Basic as an abbreviation for the function AT, when used in
PRINT statements.

For more information see AT.

TEST PROGRAM

19 REM "A. (AT)" TEST PROGRAM

28V =A.(-2¢)

3¢ PRINT A.V;"A.PASSED THE 'AT' TEST."
99 END

SAMPLE RUN

A. PASSED THE 'AT' TEST.

The function ABS must be used instead of A. to print absolute values. A. used after
PRINT is always executed as the function AT.

ALSO SEE
ABS, AT, @

13

The ABS function gives the absolute value of a number or
numeric variable. A number’s absolute value is its value
without a + or — sign.

Example: PRINT ABS(-18) prints 1.

ABS is capable of handling any number, large or small,
within the limitations of the computer’s interpreter.

Function

TEST PROGRAM

1¢ REM 'ABS' TEST PROGRAM

2¢ X=35

3¢ PRINT "ABS PASSED THE TEST IF";

49 PRINT ABS(-435.28);

5¢ PRINT ABS (-.$3245);

6¢ PRINT ABS (-X)

78 PRINT "ARE ALL PRINTED AS POSITIVE VALUES.”

99 END

SAMPLE RUN

ABS PASSED THE TEST IF 435.28 .¢3245 35
ARE ALL PRINTED AS POSITIVE VALUES,

Some interpreters also allow the ABS function within arithmetic operations. This feature
can be used in programs which require a positive value from math operations that would
otherwise produce a negative value.

The entire math operation following ABS must be enclosed in parentheses.

TEST PROGRAM

19 REM 'ABS' MATH OPERATION TEST PROGRAM

2¢ A=18

3¢ B=58

4¢ PRINT "THE ABSOLUTE VALUE OF";(A—B}/2;"1S';ABS{{A—B}/2}
59 END

SAMPLE RUN

THE ABSOLUTE VALUE OF -20 IS 2¢

—nZzZr

14

ABS
IF YOUR COMPUTER DOESN'T HAVE IT

If ABS is not intrinsic to the computer, it can easily be simulated by the following sub-
routine:

TEST PROGRAM

1¢ REM 'ABS' SUBROUTINE TEST PROGRAM

20 PRINT "ENTER A NEGATIVE NUMBER'";

3¢ INPUT X

49 GOSUB 3¢¢¢¢

5¢ PRINT "THE ABSOLUTE VALUE OF ";X;"IS$'";Y
60 GOTO 2¢

3¢9@P REM * ABS(X) SUBROUTINE * INPUT X, OUTPUT Y
36419 IF X D>=¢ THEN 3¢9¢4¢

3gP2¢ Y=X*1

3¢¢3¢ RETURN

30949 Y=X

3¢@5¢0 RETURN

30999 END

SAMPLE RUN (using -35.5)

ENTER A NEGATIVE NUMBER? —35.5
THE ABSOLUTE VALUE OF -35.5 IS 35.5
ENTER A NEGATIVE NUMBER?

VARIATIONS IN USAGE

None known.

16

AND is used in FOR-NEXT statements as a ‘“logical
math” operator.

For example, IF A=8 AND B=6 THEN 8¢ reads; if the
value of variable A equals 8 AND the value of variable B
equals 6, the IF-THEN condition is met and execution
continues at line 8¢).

TEST PROGRAM #1 Operator
1¢ REM LLOGICAL 'AND' TEST PROGRAM
2¢ A=8
3¢9 B=6

40 IF A=8 AND B=6 THEN 7¢

5S¢ PRINT "AND FAILED THE TEST AS A LOGICAL OPERATOR"
69 GOTO 99

7¢ PRINT "AND PASSED THE LOGICAL OPERATOR TEST"

99 END

SAMPLE RUN

AND PASSED THE LOGICAL OPERATOR TEST
A few computers use the AND operator to “logically” compare strings.

For example, IF A$="A"AND B$="B" THEN 8¢ reads, if the string variable A$ is equal
to (or “the same as”) the letter A AND the string variable B$ is equal to the letter B, the
IF-THEN condition is met and execution continues at line 8¢}. For more information see
the operators + and .

TEST PROGRAM #2

16 REM 'STRING LOGICAL 'AND' TEST PROGRAM
28 AS="A""

39 BS="E"

40 1F AS="A"AND B$ > "B THEN 79

5¢ PRINT ""'AND' FAILED THE TEST AS A LOGICAL OPERATOR"

6¢ GOTO 99

7¢ PRINT "'AND' PASSED THE STRING LOGICAL OPERATOR TEST"
99 END

16

r AND

SAMPLE RUN

'AND’ PASSED THE STRING LOGICAL OPERATOR TEST

Some computers use the logical operator AND to determine if the conditions are met in
two relational operators. When the condition of both operators is met, AND returns the
number -1. When the condition of the AND operator is not met, AND returns a @.

For example, PRINT A=4 AND B=8 if A equals 4 AND B equals 8 the computer will
print the number -1. If either condition is not met, the computer prints a @.

TEST PROGRAM #3

1¢ REM 'AND' LOGICAL TEST PROGRAM

20 PRINT "ENTER A NUMBER FROM 1 TO 1¢°";

3¢ INPUT A

49 B=A >4 AND A < 11

5¢ IF B=-1 THEN 8¢

6¢ PRINT A;"IS NOT GREATER THAN 4 AND LESS THAN 11"
7¢ GOTO 2¢

8¢ PRINT A;"'IS GREATER THAN 4 AND LESS THAN 11"

99 END

SAMPLE RUN (typical)

ENTER A NUMBER FROM 1 TO 197 2

2 IS NOT GREATER THAN 4 AND LESS THAN 11
ENTER A NUMBER FROM 1 TO 1¢7 8

8 1S GREATER THAN 4 AND LESS THAN 11

The AND operator is used by a few computers to compute the binary logical AND of two
numbers using Boolean algebra.

Without presenting a complete course in Boolean algebra, ... it compares two binary
bits to determine whether both are a binary “one”. When both ANDed bits are a
binary one, the computer answers with a @.

For example:

1t AND ¢ = ¢
@ AND 1 =¢
1 AND 1 = 1

17

— AND

Therefore, when the computer ANDs one number with another, each number’s bit value
is logically ANDed with the other number’s bit value, producing a third number.

For example

DECIMAL BINARY
3 P11
(logical) AND
5 P101
= 1 0po1

In this example only the first (right hand) bit in each number is a binary one, so the
resultant number is a decimal 1 (binary ¢@@1).

TEST PROGRAM #4

1§ REM 'AND' BINARY LOGIC TEST PROGRAM
2¢ PRINT "ENTER A VALUE FOR X'

39 INPUT X

Ap PRINT "ENTER A VALUE FOR Y'";

5S¢ INPUT Y

6¢ A=X AND Y

8¢ GOTO 2¢
99 END

SAMPLE RUN (using 6 and 1§)

ENTER A VALUE FOR X176

ENTER A VALUE FOR Y7 19

THE LOGICAL 'AND' VALUE OF 6 AND 1§ 1S 2
ENTER A VALUE FOR X7

VARIATIONS IN USAGE

None known.

ALSO SEE

*a+7=s< 5 >,<>

18

The ASC function converts a character or string variable
to ASCII integer code.

For example, PRINT Asc(a*) prints 65, the ASCII code
for the letter A. PRINT Asc(ag) prints the ASCII code
of the first character in string variable AS.

TEST PROGRAM

14 REM 'ASC(CHARACTER)' TEST PROGRAM

2¢ PRINT "THE ASCII CODE FOR LETTER A IS";
3¢ PRINT ASC {"A'Y)

4¢ IF ASC("A'")=65 THEN 7¢

Function

5¢ PRINT "ASC FAILED THE TEST"
6¢ GOTO 99

7¢ PRINT ""ASC PASSED THE TEST"
99 END

SAMPLE RUN

THE ASCII CODE FOR LETTER A 1S 65
ASC PASSED THE TEST

The next program tests the ASC function with a variable,
TEST PROGRAM

1§ REM 'ASC(STRING VARIABLE)' TEST PROGRAM
2¢ PRINT "TYPE ANY LETTER, NUMBER, OR CHARACTER"";
39 INPUT A S

49 PRINT "THE ASClI CODE FOR ';Ag;:" 15" ASC(Ag)

99 END

SAMPLE RUN (using H)

TYPE ANY LETTER, NUMBER, OR CHARACTER? H
THE ASCII CODE FOR H IS 72

Some computers which incorporate the ASC function can accepr character strings longer
than one character, but only the first character is evaluated and converted to ASCII
code. To test for the ASC string limit, use the second Test Program and INPUT progres-
sively longer strings until an error message appears.

VARIATIONS IN USAGE

Some interpreters (e.g. MAXBASIC) use the format ASC(A$,X) which prints the ASCII
code of the first X characters contained in AS.

ALSO SEE
CHRS, Appendix A for the ASCII code.

The ASN(n) function is used by the TEKTRONIX 4051
BASIC to compute the ARCSIN in Radians (not in
degrees!) of the ratio n. A radian is approximately 57
degrees.

/ > |
A ; Function

Arcsin (ASN) is defined as the angle (A) created for a certain ratio of the length of the
side opposite it (Y) to the length of the hypotenuse of the right triangle.

A=ASN(Y/H)

The opposite of ASN is SINE (SIN). The SINE of an angle is the ratio of the length of the
side opposite the angle to the length of the hypotenuse of the right triangle.

SIN[A)=Y/H

TEST PROGRAM

19 REM 'ASN' TEST PROGRAM

20 PRINT "ENTER A RATIO OR SINE VALUE'™;
3¢ INPUT N

4P W=ASN(N)

3¢999 END

SAMPLE RUN (using .5)

ENTER A RATIO OR SINE VALUE? .5
THE ANGLE WITH THE Y/H RATIO OF .5 IS .52359 RADIANS

To convert values from radians to degrees, multiply the angle (in radians) times 57.29578.

Example, b=AsN(A)+57.29578 To convert values from degrees to radians, multiply the
angle (in degrees) times .f174533.

Example, r=A(angle expressed in degrees) «.8174533.

If your interpreter has the ATN (ARCTANGENT) and SQR (SQUARE ROOT)
capability, but does not have ASN, substitute ATN(X/SQR(-X#X+1) for ASN.

20

r ASN

If your interpreter does not have ASN or ATN and SQR capability, the following sub-
routine can be substituted:

39090 GOTO 39999

3¢53¢ REM » ARCSIN SUBROUTINE * INPUT S, OUTPUT W
39535 REM ALSO USES VARIABLES X AND Z INTERNALLY
39549 X=S

3¢545 IF ABS(S) < =.79071¢7 THEN 3¢6¢¢

30550 X=1-5,S

39555 IF X < § THEN 3¢558

39557 GOTO 3¢56¢

39558 PRINT S;"IS OUT OF RANGE"

30559 STOP

39569 W=X/2

39565 Z=¢

39579 Y=({X/W-W)/2

3¢575 IF Y=¢ THEN 3¢597

3958¢ IF Y=2Z THEN 3$597

3@585 W=W+Y

39590 Z=Y

39595 GOTO 3¢957¢

39597 X=W

B3P60Q YEX+XeXaX/6+X4XsXsXxX+ B75+X+Xx X4 XxX+*X+X+4. 464286E-2
39695 W=Y+X+ XX+ XX+ X+ X*X+X+3.438194E-2

30619 IF ABS(S) > 797197 THEN 39629

39615 GOTO 39625

39629 W=1.57¢796-W

396390 RETURN

To use this subroutine with the TEST PROGRAM for finding the ARCSIN (in
RADIANS) of a ratio (SINE), make the following TEST PROGRAM changes:

35 $=N
49 GOSUB 3¢54¢

To make the ARCSIN subroutine express the angle in DEGREES, add the following line
toit:

3¢625 W=W=#*57.29578

VARIATIONS IN USAGE

None known.

ALSO SEE
SIN, ATN, SQR, COS, TAN

21

The AT function is used with PRINT statements (TRS-80
Level I BASIC) to indicate the PRINT statement’s starting
location. The AT function value may be a number,
numeric variable, or mathematical operation. A comma or
semi-colon must be inserted between the AT value and the
string.

For example:

Funciion

19 PRINT AT 424, "HELLO"
2¢ PRINT AT (42¢); "HELLO"

Both lines print the word “HELLO” AT location 420. The parentheses are optional.

TEST PROGRAM

19 REM 'AT' TEST PROGRAM

2¢ PRINT AT 128,"2. 1F THIS LINE IS PRINTED AFTER LINE 1."
3¢ PRINT AT ¢.*'1. THE 'AT"’ FUNCTION PASSED THE TEST"

49 GOTO 4¢

99 END

SAMPLE RUN

1. THE 'AT' FUNCTION PASSED THE TEST
2.1F THIS LINE IS PRINTED AFTER LINE 1.

The TRS-80 has 1024 PRINT AT locations (§ to 1023). If an AT value smaller than zero
or larger than 1923 is used, the computer automatically calculates the difference between
the out-of-range number and 1023 for the AT value.

For example, PRINT AT 1¢34 "HELLO" prints the word HELLO at location 19 (don’t
forget to count zero as one location).

TEST PROGRAM

1§ REM 'AT OVERFLOW' TEST PROGRAM

2¢ PRINT AT 192, AT {OVERFLOW) PASSED THE TEST"
3¢ PRINT AT 1248,”1F ONLY ONE LINE IS PRINTED."

99 END

SAMPLE RUN

'AT' (OVERFLOW) PASSED THE TEST IF ONLY ONE LINE IS PRINTED."

22

AT

The following program tests the interpreter’s ability to use numbers, numeric variables,
or mathematic operations in the AT function.

TEST PROGRAM

1§ REM ‘AT VALUE' TEST PROGRAM

2¢ FOR X=1 TO 15

3¢ PRINT X

49 NEXT X

5¢ PRINT ATX*28+4,"'AT' PASSED THE TEST IF THIS IS LINE #8.;
64 GOTO 69

99 END

SAMPLE RUN

1
2
3
4
5
6
7
8

'AT' PASSED THE TEST IF THIS IS LINE #8.
9

19

11

12

13

14

15

DIFFERENT WORD FOR AT

The @ operator is used by some computers (e.g. the TRS-80 Level II BASIC) for the AT
function. See @ for specific constraints.

ALSO SEE

@, PRINT, TAB

23

ATAN(n) is used in the Motorola BASIC to compute the
ARCTANGENT in Radians (not in degrees) of the ratio n.
A radian is approximately 57 degrees.

For more information see ATN.

TEST PROGRAM

1$ REM 'ATAN' TEST PROGRAM
20 A=ATN{2)
3¢ PRINT "THE ANGLE WITH THE Y/X RATIO OF 2 IS'A{"RADIANS"

Funciion

99 END

SAMPLE RUN

THE ANGLE WITH THE Y/X RATIO OF 2 1S 1.19715 RADIANS
To convert values from radians to degrees, multiply the angle (in radians) times 57.29578.

Example, D=ATAN(A)*57.29578. To convert values from degrees to radians, multiply the
angle (in degrees) times .0174533. Example, r=A(angle expressed in degrees)*.¢174533.

IF YOUR COMPUTER DOESN’T HAVE IT

See the special subroutine in ATN.

VARIATIONS IN USAGE

None known.

ALSG SEE
T

ATN, TAN

24

The ATN(n) function computes the ARCTANGENT in
Radians (not in degrees!) of the ratio n. A radian is
approximately 57 degrees.

Function

e X g

ARCTANGENT (ATN) is defined as the angle (A) required for a certain ratio of the
length of the side opposite it (Y) to the length of the side adjacent to it (X). ATN means
literally “The Arc (angle) of the Tangent (ratio).”

A=ATN(Y/X)

The opposite of ATN is Tangent (TAN). The Tangent of an angle is the ratio of the length
of the side opposite it to the length of the side adjacent to it.

TAN(A)=Y/X

TEST PROGRAM

1§ REM 'ATN' TEST PROGRAM
2¢ PRINT "ENTER A RATIO OR TANGENT VALUE";

3¢ INPUT N

49 A=ATN(N)

5¢ PRINT "THE ANGLE WITH THE X/Y RATIO OF";N;"1$;A" RADIANS"

3¢999 END

SAMPLE RUN (for input of 2)

ENTER A RATIO OR TANGENT VALUE? 2
THE ANGLE WITH THE X/Y RATIO OF 21S 1.14715 RADIANS

To convert values from radians to degrees, multiply the angle (in radians) times 57.29578.

Example: D=ATN(A)*57.29578

To convert values from degrees to radians, multiply the angle (in degrees) times (174533,

Example: r=a(angle expressed in degrees)*.¢174533

- Z P

25

— ATN

IF YOUR COMPUTER DOESN'T HAVE IT

If your interpreter does not have the capability of finding the ATN (Arctangent), the
following subroutine can be substituted.

The subroutine program you’ll find under SGN must be added to this one to make it
work (saves space not to duplicate it here).

30600 GOTO 39999

3866¢ REM * ARCTANGENT SUBROUTINE * INPUT X, OUTPUT A [RADIANS)
3¢67¢ REM ALSO USES B AND T INTERNALLY

3¢68¢ GOSUB 3p8¢5

39699 X=ABS(X)

3¢695 C=¢

3¢7¢¢ IF X >1 THEN 30719

39795 GOTO 3¢72¢

3¢71¢ C=1

39715 X=1/X

3p72¢ A=X*X

39725 B=(({2.86623E-3+A-1.61657E-2)+A+4.29096E-2)+A

3¢730 B=({({(B-7.5289E-2)+*A+.106563)+A-.142¢89)+A+.199936)+A
33735 A={(B-.333332)*A+1)*X

3¢74¢ IF C=1 THEN 3¢750

3$745 GOTO 39755

3975¢ A=1.579796-A

3¢755 A=T*A

39769 RETURN

To use this subroutine with the TEST PROGRAM for finding the Arctangent (in Radians)
of a ratio (Tangent), make the following TEST PROGRAM changes:

35 X=N
49 GOSUB 3$68¢

To make the Arctangent subroutine express the angle in Degrees, add the following line
to it:

39769 A=A*57.29578

ing tn daareac autamatically
ng e G arees auiomalical Y.

¢

ALSO SEE
TAN, ATAN, ASN, SIN, CQOS

26

ATN

A TRICK

This is very important! Most computers only have an ATN as their “inverse trig func-
tion”. ARCCOS and ARCSIN are rarely found. This leaves ATN as the only “window”
through which all angles can be calculated and returned to the “outside”.

Now obviously, if ATN is to be used, the TAN must be known, or able to be determined,
and that may be easier said than done. The following formulas will enable you to convert
any ratio to TAN, and from there to the angle itself, via ATN.

— 2
TAN = 1/COT TAN = lCOCS?S TAN =

] — SIN?2

SIN2

1
TAN = -7 TAN = l SEC2-1
\ICSC2~1

27

The AUTO command provides automatic insertion of
program line numbers. The starting line number and the
incremental value between lines can be specified in the
AUTO command. For example, AuTo 1¢¢,5 sets the first
line number at 1@ and increments each successive line
number by 5.

If the starting line number and increment value are not
specified in the AUTO command, the computer auto- - =
matically sets the first line number at 1¢ and increments Command
the line numbers by 1¢.

If the AUTO command generates a line number that is already in use, an asterisk may
appear following the number. This cautions the programmer that information typed into
the computer at that line number will erase existing statements. The AUTO feature may
be turned off to prevent this from happening. To turn off the AUTO feature, some
computers require pressing the BREAK key, while others require typing a control C.

TEST PROCEDURE

To test the computer’s AUTO feature, type the AUTO command and press the ENTER
key (RETURN on some keyboards). If the line number 19 is printed followed by a
prompt, then the computer successfully passed the AUTO command test.

Press the ENTER key again. The computer should print another line number increased in
value by 10.

Type the command AuTo 1¢,5 and enter this program.

190 REM 'AUTO' TEST PROGRAM

15 PRINT "THE NEXT LINE NUMBER SHOULD INCREASED BY 5"
2¢ PRINT "PRESS THE BREAK KEY TO STOP THE AUTO FEATURE"
99 END

After the AUTO feature is stopped with the BREAK key, line numbers out of sequence
can be entered (e.g. line 99).

Again enter AuTo 18,5 and line 10 should be printed, followed by an asterisk, indicating
information is presently stored at line 1(). New information can be typed in at this point
or the original information can be saved by pressing the BREAK key.

List the program to check the contents of each line.

VARIATIONS IN USAGE

None known.

ALSO SEE
BREAK, LIST

28

The BASE statement is used in some computers (e.g.
those with Control Data BASIC Version 3) to define the
BASE (lowest) variable array element value as (¢ or 1.

For example:

19 BASE ¢
2¢ DIM A(5)

The BASE @ statement defines this array as a six element
array [A(9) to A(5)]. Statement

Many computers automatically allow array elements 1 to 10 (19 elements) without prior
DIMensioning. The BASE statement allows this range to be changed from the normal 10
elements (1 to 1) to 11 elements () to 1¢), and back again.

Only one BASE statement may be used in a program and it must be executed before DIM
statements and before array variables are manipulated.

TEST PROGRAM

19 REM 'BASE' TEST PROGRAM
2¢ BASE ¢

3¢ DIM A(5)

4¢ FOR X=¢ TO 5

50 A{X)=X

64 NEXT X

78 FOR X=¢ TO 5

8¢ PRINT A(X);

9¢ NEXT X

1¢0 PRINT "THE BASE STATEMENT PASSED THE TEST"
999 END

SAMPLE RUN

$ 12345 THE BASE STATEMENT PASSED THE TEST

A few computers (e.g. those using MAXBASIC) allow more than one BASE statement in
a program and allow the BASE value to be defined at any integer value.

For example:

19 BASE 5
2¢ DIM Al19)

The BASE 5 statement defines this array as a six element array [A(5) to A(10)].

- Z D

29

— BASE

TEST PROGRAM

1¢ REM 'BASE' TEST PROGRAM
2¢ BASE (3)

3p DIM A(S5)

4P FOR X=3 TO 5

5¢ A({X)=X

69 NEXT X

79 BASE (¢)

8¢ FOR X=¢ TO 2

8¢ A(X)=X

199 NEXT X

119 FOR X=¢ TO 5

129 PRINT A(X):

138 NEXT X

14p PRINT "THE BASE STATEMENT PASSED THE TEST"
999 END

SAMPLE RUN

12345 THE BASE STATEMENT PASSED THE TEST

VARIATIONS IN USAGE
ANSI BASIC includes the OPTION statement.

ALSO SEE
DIM, OPTION

30

BREAK is used in a few computers (e.g. the Harris
BASIC-V) to direct one or more program lines to stop
execution and place the computer in the monitor or
immediate mode, similar to a STOP statement.

The BREAK statement can be used to cause any line
number (or line numbers) to stop program execution by
placing each line number (separated by a comma) after
the BREAK statement. o

Statement

For example, 19 BREAK 5¢,78,1¢¢ stops the computer

before executing lines 5@, 70, and 10@. Program execution is continued after each
BREAK by typing COntinue.

BREAK also accepts a range of line numbers by placing a dash between the first and last
line number in the range.

For example, 1¢ BREAK 5¢-1¢¢ stops program execution at the end of each line from

50 to 100.

Execution can be stopped before each program line by using the BREAK ALL statement.
This allows the user to “step through” the program one line at a time, typing the CO
command after each break.

Unlike the END statement which (in most computers) causes all variables to be reset to
zero, values stored in variables are retained when the BREAK statement is executed.

TEST PROGRAM

14 REM 'BREAK' TEST PROGRAM

2¢ BREAK 3¢,5¢,7¢-9¢

3¢ PRINT "THE COMPUTER SHOULD STOP EXECUTION AT LINE 39"
4¢ REM TYPE THE COMMAND 'CO' TO CONTINUE

5¢ PRINT "LINE 5¢'

6§ REM THIS LINE NOT INCLUDED IN THE BREAK STATEMENT

7¢ PRINT "LINE 78"

8¢ PRINT "LINE 8¢"

9¢ PRINT "AND LINE 9¢"

99 END

SAMPLE RUN

THE COMPUTER SHOULD STOP EXECUTION AT LINE 3¢
LINE 5¢

LINE 7¢

LINE 8¢

AND LINE 9¢

31

BREAK

VARIATIONS IN USAGE

Some terminals have a BREAK key to allow keyboard interruption of the computer’s
operation.

ALSO SEE
STOP, CO, CON, CONT, END

32

C. is used in the TRS-80 Level I as an abbreviation for the
CONT (continue) statement.

For more information see CONT.

TEST PROGRAM

19 REM 'C. (CONT)' TEST PROGRAM

2¢ PRINT "ENTER THE ‘C.' COMMAND"

3¢ STOP

49 PRINT “THE C. COMMAND PASSED THE TEST"
99 END

SAMPLE RUN

ENTER THE 'C.' COMMAND

BREAK AT 3¢

C.

THE C. COMMAND PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
CONT, CON, STOP

Command

33

CDBL is used to change numbers or numeric variables
from regular “single precision” to “double precision”.
Variables used in the CDBL function return to their
original single precision status if they are used again with-
out the CDBL.

Double precision variables are capable of storing numbers
containing 17 digits (only 16 digits are printed). Single
precision variables are accurate to 6 digits.

Function

TEST PROGRAM

1$ REM 'CDBL' TEST PROGRAM

2¢ X=2

3¢ v=3

49 PRINT "CDBL CHANGES X/Y FROM'X/Y;'"TO'{CDBL(X)/CDBL(Y)
5¢ PRINT "AND BACK TO THE VALUE OF';X/Y;"WHEN REMOVED"
99 END

SAMPLE RUN

COBL CHANGES X/Y FROM .666667 TO .6666666666666667
AND BACK TO THE VALUE OF 666667 WHEN REMOVED

VARIATIONS IN USAGE

None known.

ALSO SEE
DEFDNRL, DEFSNG, DEFINT, CSNG, #,!,%

34

CHAIN is used to load a new program into the computer’s
memory from an external device (such as tape or disc)
and execute that program without additional RUN com-
mands. Each program may also CHAIN to other programs,
including back to the starting one.

The main advantage of CHAINing is that it permits con-
secutive execution of related programs without needing to
keep more than one of them actually in the computer at a
given time. This is especially useful where there is a com- Statement

mon file of DATA stored externally which can be access-

ed and manipulated by all the programs in the CHAIN. CHAIN finds its best application
in systems large enough to have disc storage with reasonably fast access times.

The new program’s name must be included after the CHAIN statement (a few computers
require quotes around the name). Some computers specify the new program’s starting line
number with a number following the program’s name. If the starting line is omitted, the
computer automatically starts at the new program’s beginning.

For example, 1¢ cHAIN TEST,3¢ tells the computer to erase the program presently in
memory and load a program called “TEST” from an external device, then start execution
at its line 3(. The external storage device can be specified in some computers (e.g. the
DEC 10 BASIC) by placing the device name after CHAIN, followed by a colon.

For example, 14 cHAIN PTR:TEST,1¢ This tells the computer to load a program named
“TEST” from the Paper Tape Reader and start execution at its line 10.

TEST PROGRAM

Save this program on disc or tape under the name “TEST”.

1§ REM » TEST + PROGRAM

2¢ PRINT "THE 'TEST' PROGRAM IS NOW RUNNING"

39 FOR X=1 TO 9

44 PRINT X;

560 NEXT X

69 PRINT "THIS PROGRAM WILL NOW CHAIN BACK TO THE MAIN PROGRAM"
7¢ CHAIN MAIN,4¢

99 END

35

 CHAIN

Now, enter the following program into the computer, and save it on disc or tape under
the name “MAIN"".

19 REM *MAIN * PROGRAM

2¢ PRINT "“THIS PROGRAM SHOULD LOAD AND RUN THE 'TEST' PROGRAM"
3¢ CHAIN TEST

49 PRINT "CHAIN PASSED THE TEST IF THE ‘TEST' PROGRAM"

5¢ PRINT "PRINTED A SERIES OF NUMBERS"™

99 END

Prepare your disc or tape(s) to be read on command, then RUN.

SAMPLE RUN

THIS PROGRAM SHOULD LOAD AND RUN THE 'TEST' PROGRAM
THE 'TEST PROGRAM IS NOW RUNNING

1 2 3 4 5 6 7 8 9
THIS PROGRAM SHOULD NOW CHAIN BACK TO THE MAIN PROGRAM
CHAIN PASSED THE TEST IF THE '"TEST' PROGRAM
PRINTED A SERIES OF NUMBERS

VARIATIONS IN USAGE

None other known.

ALSO SEE
CLOAD, CSAVE

36

CHAR(n1,n2) is used in some computers with MAX-
BASIC to retrieve the character represented by the ASCII
decimal code number (nl). The value (n2) specifies the
number of characters (nl) to be included in the string. If
the value (n2) is omitted, the computer automatically
assumes its value to be 5.

TEST PROGRAM

1§ REM 'CHAR' TEST PROGRAM

2¢ PRINT "THE CHAR FUNCTION PASSED THE '';
3¢ FOR X=1 TO 4

49 READ A

5¢ PRINT CHAR(A,1)

69 NEXT X

Function

79 DATA 84,69,83,84
99 END

SAMPLE RUN

THE CHAR FUNCTION PASSED THE TEST

IF YOUR COMPUTER DOESN’T HAVE IT

If your computer failed the TEST PROGRAM, try the TEST PROGRAMs in CHARS
CHRS and CHR.

’

VARIATIONS IN USAGE

None known.

ALSO SEE
CHARS, CHRS, CHR, and the ASCII code appendix.

37

CHARS$(n) is used in some computers (e.g. those using
COMPUMAX BASIC) to retrieve the single character
represented by a decimal ASCII code (n).

For example, PRINT CHAR$(75) prints the letter K.

For more information see CHRS.

TEST PROGRAM

Function

1¢ REM 'CHARS' TEST PROGRAM

2¢ PRINT "THE CHARS$ FUNCTION PASSED THE '";
3% FOR X=1 TO 4

49 READ A

5¢ PRINT CHARS{A);

6¢ NEXT X

7¢ DATA 84,69,83,84

99 END

SAMPLE RUN

THE CHARS$ FUNCTION PASSED THE TEST"

IF YOUR COMPUTER DOESN'T HAVE IT

If your computer failed the TEST PROGRAM, try the TEST PROGRAMs in CHRS and
CHR.

VARIATIONS IN USAGE

None known.

ALSO SEE
CHRS, CHR, and the ASCII code appendix.

38

The CHR function is used to retrieve the single character
represented by the ASCII decimal code number enclosed
in parenthesis. Its use (e.g. SWTP 4K) is rare compared to
CHRS.

For example, PRINT cHR(75) prints the letter K.

For more information see CHRS

TEST PROGRAM

1§ REM 'CHR' TEST PROGRAM

2¢ PRINT "THE CHR FUNCTION PASSED THE ';
39 FOR X=1TO 4

49 READ A

5¢ PRINT CHR(A);

6% NEXT X

7¢ DATA 84,69,83,84

99 END

SAMPLE RUN

THE CHR FUNCTION PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
CHRS, CHR, CHARS and the ASCH Appendix.

Function

39

The CHRS$ function is used to retrieve the single character
represented by the decimal ASCII number code enclosed
in parenthesis. For example: PRINT cHR$(75) prints the
letter K.

The ASCII code can be represented by a number or
variable within the ASCII code range (typically §—127).
Some computers have an extended ASCII code (up to
255) which includes special capabilities and graphics
characters. Many computers set aside certain ASCII num-

Function

bers for special “non-standard” purposes (typically, control a line printer, erase the

screen, “put out the cat,” etc.).

This program lets you test any ASCII code number and examine the ASCII character

created (or use for some other purpose).

TEST PROGRAM

19 REM 'CHRS' TEST PROGRAM

2¢ PRINT "ENTER THE LOWEST ASCII CODE NUMBER";
3¢ INPUT L

49 PRINT “ENTER THE HIGHEST ASCIH CODE NUMBER'";
5¢ INPUT H

6¢ FOR X=L TO H

7¢ PRINT "ASCII CODE'"{X;"= "}

8¢ PRINT CHRS(X)

9¢ FOR Y=1 TO 15¢

199 NEXT Y

119 NEXT X

999 END

SAMPLE RUN (checking only 4 numbers)

ENTER THE LOWEST ASCII CODE NUMBER? 65
ENTER THE HIGHEST ASCIi CODE NUMBER? 68
ASCII CODE 65 = A
ASCI1 CODE 66 = B
ASCII CODE 67 = C
ASCH CODE 68 =D

Try this program using your computer’s full range of ASCII codes.

VARIATIONS IN USAGE

None known.

ALSO SEE
CHR, ASC, Appendix

40

CINT is used to convert individual numbers or numeric
variables to their integer value. Unlike the INT function,
variables used in the CINT function return to their origi-
nal precision if they are used again without the CINT
function.

Numbers are always rounded down — that is, the whole
number remains the same regardless of the value of num-
bers removed to the right of the decimal point. When a o
negative number is integered, the resultant number will be Function
rounded off to the next smaller whole number.

For example, PRINT ciNT(-4.65) will print the number -5.

Most computers do not allow numbers assigned to the CINT function to be smaller than
-32767 or larger than +32767.

TEST PROGRAM

19 REM 'CINT® TEST PROGRAM

2¢ DEFDBL X

3¢ X=12345.6789

49 PRINT “CINT CHANGES THE VALUE OF X FROM';X;"TO" ;CINT(X)
5¢ PRINT "AND BACK TO THE VALUE OF';X;"WHEN REMOVED"

99 END

SAMPLE RUN

CINT CHANGES THE VALUE OF X FROM 12345.6789 TO 12345
AND BACK TO THE VALUE OF 12345.6789 WHEN REMOVED

VARIATIONS IN USAGE

None known.

ALSO SEE
DEFINT, INT, DEFDBL, DEFSNG, CDBL, CSNG, !, #,%

41

CLEAR is used to set all numeric variables to zero and
clear all data that may be held by string variables.

CLEAR can be used as either a command or program
statement.

TEST PROGRAM

16 REM 'CLLEAR' TEST PROGRAM

Command

20 A=309 Statement
39 AS="TEST STRING"

4¢ PRINT "BEFORE THE 'CLEAR' COMMAND A=";A
5¢ PRINT "AND STRING VARIABLE A$ = "A$

6¢ CLEAR

7¢ PRINT "AFTER THE 'CLEAR' COMMAND A='"3A
8¢ PRINT ""AND STRING VARIABLE A$='A§

99 END

SAMPLE RUN

BEFORE THE 'CL.LEAR' COMMAND A=3¢¢
AND STRING VARIABLE AS=TEST STRING
AFTER THE 'CLEAR' COMMAND A=¢

AND STRING VARIABLE AS=

CLEAR is used by some computers to specify the number of bytes to reserve in memory
for strings. This feature lets the programmer conserve memory by specifying the actual
amount of space needed for string storage.

For example, cLEAR 199 sets 100 bytes of memory aside for string storage.

It is common for interpreters with CLEAR capability to automatically reserve 5@ bytes in
memory for strings. Others reserve up to 20§ bytes for this purpose.

The amount of space remaining in memory for string storage can be checked by inter-
preters with the FRE(A$) function when used in a PRINT statement.

TEST PROGRAM

1¢ REM 'CLLEAR X’ TEST PROGRAM

2¢ CLEAR 5

3¢ PRINT "ENTER FROM 1 TO 5§ CHARACTERS'";

49 INPUT AS

5¢ PRINT "STRING "A$;" USED ALL BUT'";FRE(AS);"BYTES"
6¢ PRINT "OF STRING SPACE.”

7¢ GOTO 2¢

99 END

42

I

CLEAR

SAMPLE RUN (using T and TEST)

ENTER FROM 1 TO 5 CHARACTERS? T
STRING T USED ALL BUT 4 BYTES

OF STRING SPACE.

ENTER FROM 1 TO 5 CHARACTERS? TEST
STRING TEST USED ALL BUT 1 BYTES

OF STRING SPACE.

ENTER FROM 1 TO 5 CHARACTERS?

Some computers with CLEAR capability allow the CLEAR value to be specified by a
variable. To test this feature, make these changes to the second Test Program;

2¢ A=5
25 CLEAR A

If the interpreter accepted this program change, the sample run should not change.

VARIATIONS IN USAGE

Some computers use CLEAR as a special statement to clear terminal input or output
buffers.

ALSO SEE
CLR, FRE(A$)

43

The CLG(n) function is used by the Honeywell Series 60
BASIC to compute the value of the common (base 1)
logarithm of any number (n) whose value is greater than .

TEST PROGRAM

19 REM 'CLG' TEST PROGRAM

2¢ PRINT "ENTER A POSITIVE NUMBER"
3¢ INPUT N

4¢ X=CLG(N)]
5¢ PRINT "THE COMMON LOG OF'"N;"I1$";X Function

30999 END

SAMPLE RUN (using 100)

ENTER A POSITIVE NUMBER? 109
THE COMMON LOG OF 1¢¢ iS 2

IF YOUR COMPUTER DOESN'T HAVE IT

If your computer failed the TEST PROGRAM, try the TEST PROGRAMs in LOG10,
CLOG, LOG and LGT. If they also fail, substitute the subroutine found under LOG
(saves space not to duplicate it here). To make it compute the common logarithm
(instead of the natural logarithm), make the following subroutine changes:

39179 REM * COMMON LOGARITHM SUBROUTINE * INPUT X, OUTPUT X
3¢20¢ GOTO 39223
39223 X=L*.4342945

To use this subroutine in this TEST PROGRAM, make these TEST PROGRAM changes:

35 X=N
49 GOSUE 3617¢

CONVERSION FACTORS

To convert a common log to a natural log, multiply the common log value times 2.3026.
For example, X=CLG(N)*2.3¢26
To convert a natural log to a common log, multiply the natural log value times .434295.

VARIATIONS IN USAGE

None known.

ALSO SEE
LOG1¢, CLOG, LGT, LOG, LOGE, LN

44

CLK(n) is used in the Sperry Univac System/9 BASIC to
indicate the time of day in hours, minutes, and seconds
(hhmmss). A number or numeric variable (enclosed in
parenthesis) following CLK is required, although it has no
effect on the TIM function.

TEST PROGRAM

19 REM 'CLLK' TEST PROGRAM

Function

29 PRINT "THE CURRENT TIME IS ";CLK{(N)

3¢ PRINT "THE CLK FUNCTION PASSED THE TEST"
4¢ PRINT "IF A SIX DIGIT NUMBER IS PRINTED"
99 END

SAMPLE RUN (using §82515)

THE CURRENT TIME IS ¢82515
THE CLK FUNCTION PASSED THE TEST
iF ASIX DIGIT NUMBER IS PRINTED

VARIATIONS IN USAGE

None known.

ALSO SEE
CLKS, TIME, TIMES, TIM, TI, TI$

45

CLKS$ is used with PRINT statements in the DEC BASIC-
PLUS-2 and the Texas Instruments 990 BASIC to indi-
cate the time of day in hours (§ to 24), minutes, and
seconds (hh:mm:ss). The computer automatically inserts
a colon after the hour and minute values and prints the
time as a string.

For example, PRINT cLk$ will print a time similar to
22:19:15, indicating the current time is 10:19 p.m. plus
15 seconds.

Function

TEST PROGRAM

14 REM 'CLLK$' TEST PROGRAM

2¢ PRINT "THE CURRENT TIME IS ';

3¢ PRINT CLKS$

4¢ PRINT "'CLKS$' PASSED THE TEST IF A SIX DIGIT NUMBER IS PRINTED"
99 END

SAMPLE RUN (typical)

THE CURRENT TIME IS 10:28:45
‘CLK$' PASSED THE TEST IF A SIX DIGIT NUMBER IS PRINTED

VARIATIONS IN USAGE

None known.

ALSO SEE
CLK, TIME, TIMES, TI, TI$,

46

CLOAD is a special command used by some interpreters
(e.g. those with Microsoft BASIC) to load a program into
the computer from a cassette tape.

TEST PROGRAM

Enter this program into the computer from the keyboard,
then store the program on cassette tape. (See CSAVE for
details.)

Command
Statement

14 REM 'CLOAD' TEST PROGRAM
2¢ PRINT "THIS PROGRAM TESTS THE CLOAD FEATURE"'
99 END

Once the program is recorded on cassette tape, erase the computer memory with NEW,
SCRATCH, or whatever is appropriate,

Rewind the tape, then set the recorder to the Play mode and type the CLOAD command.

The cassette recorder’s motor is controlled by the computer which turns it on and off
before and after the “load” cycle. The cassette should ‘“play back” the program,
LOADing it into the computer.

List the program to verify that the program held in the computer’s memory is identical
to that originally entered (see LIST). If all looks well, RUN the program.

SAMPLE RUN

THIS PROGRAM TESTS THE CLOAD FEATURE

CLOAD “program name” is used by some CLOAD-equipped computers to load only that
program on the cassette that has a matching program name. A program name used to
identify a specific program may contain more than one letter or number, but the com-
puter may recognize only the first character.

Record the TEST PROGRAM onto the cassette using CSAVE“A” (see CSAVE), erase the
computer memory, then load “A” back into the computer using CLOAD*“A”". List the
program to check for possible errors.

CLOAD? “program name” is used by some CLOAD-equipped computers to compare a
program stored in the computer’s memory with a program stored on cassette under the
program name indicated. The computer does a bit-by-bit comparison of the two and
prints an error message if any difference is encountered. This allows you to compare the
tape with the memory contents to verify that you executed a successful CSAVE, or
CLOAD, before erasing either.

Check the TEST PROGRAM on cassette tape (stored with the program name “A”)
against the computer using the CLOAD?“A” command. If an error message is not print-
ed, the two programs matched.

47

CLOAD

Add this line to the test program stored in the computer.
3¢ REM EXTRA LINE

Again check the “A” program on cassette tape using the command CLOAD?“A”. An
error message should be printed, indicating the computer found a difference between
the program stored in the computer and the program stored on tape.

CLOAD#* (array name) is used by a few CLOAD-using computers as a command to load

an array stored on cassette tape (under the same array name). Example: CLOAD*A
means “load array A”.

CLOAD*(array name) can also be used as a program statement so array data can be
loaded as a program is being executed.

VARIATIONS IN USAGE

None other known.

ALSO SEE
CSAVE, LIST, CHAIN

48

The CLOG(n) function computes the value of the com-
mon logarithm of any number (n) whose value is greater
than §.

TEST PROGRAM

19 REM 'CLOG' TEST PROGRAM

2¢ PRINT "ENTER A POSITIVE NUMBER"';
3¢ INPUT N

4¢ X=CLOG(N])

5¢ PRINT "THE COMMON LOG OF'" ;N;"IS";X

Function

999 END

SAMPLE RUN

ENTER A POSITIVE NUMBER7? 10¢
THE COMMON L.OG OF 1¢¢ 1S 2

If your computer failed the test program, see LOG1$ for a substitute subroutine and
other conversion tips.

VARIATIONS IN USAGE

None known.

ALSO SEE
LOG1¢, LGT, LOG, LOGE, LN

49

CLR is used in a few computers (e.g. the APPLE II BASIC
and the Commodore PET) as an abbreviation for the
CLEAR command which sets all numeric variables to zero
and clears all data that may be held by string variables.

For more information see CLEAR.

TEST PROGRAM

Command
19 REM 'CLR' TEST PROGRAM Statement
29 A=3¢¢
39 AS="TEST STRING"
4¢ PRINT "BEFORE THE '‘CLR' STATEMENT A = ';A
5¢ PRINT "AND STRING VARIABLE AS§ = ";AS$
6¢ CL.R
79 PRINT "AFTER THE 'CL.R' STATEMENT A = ";A
8¢ PRINT "AND STRING VARIABLE A$ = '";A§
99 END
SAMPLE RUN

BEFORE THE 'CLR' STATEMENT A = 3¢¢
AND STRING VARIABLE A$ = TEST STRING
AFTER THE 'CLR' STATEMENT A = §

AND STRING VARIABLE A =

IF YOUR COMPUTER DOESN'T HAVE IT

Stopping the program and restarting it with RUN almost always resets the variables to
zero. This is often inconvenient or not practical. The other way to reset them is to write
them into the program.

69 A=¢
61 Ag =" "

VARIATIONS IN USAGE

None known.

ALSO SEE
CLEAR, NEW

50

The CLS (clear screen) command is used to perform the
same function as the CLEAR key on many keyboards. It
erases the entire screen instantly without disturbing the
program. CLS can also be used as a program statement to
clear the screen before starting a graphics display or a new
“page” of printed information.

TEST PROGRAM

1¢ REM 'CLS' TEST PROGRAM

Command
2¢ FOR X=1 TO 15
i’ Statement
3¢ PRINT "THIS LINE SHOULD DISAPPEAR"''
49 NEXT X
5¢ CL.S

6¢ PRINT "IF THIS IS ALL THAT'S ON THE SCREEN"
7¢ PRINT "THE CLS STATEMENT PASSED THE TEST"
99 END

SAMPLE RUN

1F THIS IS ALL THAT'S ON THE SCREEN
THE CLS STATEMENT PASSED THE TEST

IF YOUR COMPUTER DOESN’T HAVE IT

Many video screens can be cleared or “erased” by using an ASCII character. Try this
change to the test program:

5¢ PRINT CHR$(24)

IF CHR$(24) fails (due to nonconformity of some manufacturer’s use of ASCII num-
bers), try this program to search for an ASCII screen-clear:

TEST PROGRAM

1§ REM ASCII CLEAR SCREEN SEARCH
2¢ FOR X=¢ TO 128

3¢ PRINT ""ASCII CODE";X;

4¢ PRINT CHRS${X)

5¢ FOR Y=1 TO 2¢¢

6¢ NEXT Y

7¢ NEXT X

99 END

VARIATIONS IN USAGE

None other than the use of the CLEAR key. It obviously is of no value with a printer
terminal. Note that CLS and CLEAR statements are completely different.

ALSO SEE
ASCII, CHR3(X)

CO is used (by Processor Technology, Harris BASIC-V,
etc.) as an abbreviation for the CONTinue command,
which restarts program execution after it was “broken”
due to a STOP statement, or use of a keyboard “BREAK”
key. Unlike the RUN command, which causes execution
to start at the program’s beginning, CO resumes execution
at the line following the break.

CO has no application as a program statement since it is
only used when the program has stopped. Command

TEST PROGRAM

19 REM 'CO' TEST PROGRAM

2¢ PRINT "ENTER THE ‘CO’' COMMAND*

3¢9 STOP

4¢ PRINT "THE CO COMMAND PASSED THE TEST"
99 END

SAMPLE RUN (typical)

ENTER THE 'CO' COMMAND

BREAK AT LINE 3¢

co

THE CO COMMAND PASSED THE TEST

VARIATIONS IN USAGE

The Harris BASIC-V allows the CO command to specify a program line to resume pro-
gram execution.

For example, co 2¢ when used with the TEST PROGRAM should resume program
execution at line 20 (not line 49). This of course is a common feature with the RUN
command. However, unlike RUN, CO does not reset all variables back to zero before
resuming execution.

ALSO SEE
CONT, CON, STOP, BREAK, RUN, END

52

COLOR is used in the APPLE II BASIC as a special fea-
ture to specify a color to be displayed on the screen by
the graphics statements PLOT, HLIN-AT and VLIN-AT.
The same color is displayed each time a graphics state-
ment is executed. To change colors, a new color must be
specified by the COLOR statement.

The computer displays 16 different colors, and each is
assigned a number (from @ to 15). They are: ‘
® BLACK 8 BROWN Command

1 MAGENTA 9 ORANGE Statement
2 DARK BLUE 1¢ GRAY

3 PURPLE 11 PINK

4 DARK GREEN 12 GREEN

5 GREY 13 YELLOW

6 MEDIUM BLUE 14 AQUA

7 LIGHT BLUE 15 WHITE

An equal sign (=) must be placed between COLOR and the COLOR value. This value may
be a number or a numeric variable.

For example, coLor = 13 selects the color yellow for the next grai)hics statement.
COLOR can be used as both a command and a program statement.

TEST PROGRAM

1§ REM 'COLOR' TEST PROGRAM
20 GR

3¢ FOR X=¢ TO 15

48 COLOR = X

5@ Y=Xu2

64 HLIN ¢$,39 AT Y

7¢ NEXT X

99 END

SAMPLE RUN

If your computer accepted the TEST PROGRAM, each of the 16 colors should be dis-
played as a horizontal line across the screen.

VARIATIONS IN USAGE

None known.

ALSO SEE
GR, PLOT, HLIN-AT, VLIN-AT

53

CON is used in the APPLE II BASIC as an abbreviation
for the CONTinue command. It restarts program execu-
tion after it was stopped by pressing the CTRL/C keys.

For more information see CONT.

TEST PROGRAM

19 REM 'CON' TEST PROGRAM
20 PRINT "PRESS CTRL/C TO STOP THE COMPUTER"

Command

3¢ GOTO 39
99 END

SAMPLE RUN

PRESS CTRL/C TO STOP THE COMPUTER

Once the computer is stopped with CTRL/C, type “CON”. The computer should
CONtinue program execution.

VARIATIONS IN USAGE

CON is used in computers with MAX BASIC to set the value of each element in array
variables to 1.

For example, A=con sets the value of each element in the A array to 1.

ALSO SEE
CONT, STOP, END, RUN

54

The CONTinue command restarts program execution after
it was “broken” due to a STOP statement, or use of a
keyboard “BREAK” key. Unlike the RUN command,
which causes execution to start at the program’s begin-
ning, CONT resumes execution at the line following the
break.

CONT has no application as a program statement since it
is only used when the program has STOPped.

TEST PROGRAM

19 REM 'CONT' TEST PROGRAM

2¢ PRINT "ENTER THE 'CONT' COMMAND""

3¢ STOP

4¢ PRINT "THE CONT COMMAND PASSED THE TEST"
99 END

SAMPLE RUN

ENTER THE 'CONT' COMMAND
BREAK AT 39

CONT

THE CONT COMMAND PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
CON, STOP, END, RUN

Command

1515}

The COS(A) function computes the COSINE of the angle
A, when that value is expressed in Radians (not in
degrees). One radian = approximately 57 degrees.

Function

A []
2 X e
Cosine (COS) is defined as the ratio of the length of the side adjacent to the angle being
investigated to the length of the hypotenuse, in a right triangle.

COS(A)=X/H

The opposite of COS is ARCCOS. ARCCOS (abbreviated ACS) finds the value of the
angle when its COS, or ratio of sides (X/H) is known.

TEST PROGRAM

1¢ REM 'COS' TEST PROGRAM

2¢ PRINT "ENTER AN ANGLE (EXPRESSED IN RADIANS)";
3¢ INPUT R

4¢ Y=COS(R)

5¢ PRINT “"THE COSINE OF A'";R;"RADIAN ANGLE IS";Y
30999 END

SAMPLE RUN (for input of 1)

ENTER AN ANGLE (EXPRESSED IN RADIANS)? 1
THE COSINE OF A 1 RADIAN ANGLE IS .54¢3¢2

To convert values from degrees to radians, multiply the angle in degrees times .$174533.
For example: R=cOs{A*.¢174533)

Ta convert values fram radians to degrees, multiply radians times 57.29578

IF YOUR COMPUTER DOESN'T HAVE IT

If your interpreter does not have the COSine capability, the following subroutine can be
substituted.

—-—nZ2>r

56

— GCOS

The subroutine program you’ll find under SIN must be added to this one ake it
work (saves space not to duplicate it here).

30099 GOTO 39999
3¢35¢ REM * COSINE SUBROUTINE * INPUT X IN RADIANS, OUTPUT Y
3¢352 REM ALSO USES W AND Z INTERNALLY

3¢354 X=X*57.29578

3¢356 W=ABS(X)/X

39358 X=X+9¢

39359 GOSUB 3¢376

3936¢ IF Z=-1 THEN 3¢362

39361 GOTO 30365

3¢362 IF W=1 THEN 3¢364

3363 GOTO 3¢365

39364 Y=-Y

39365 RETURN

To use the subroutines with the TEST PROGRAM to find the COSine n angle
(expressed in Radians), make the following TEST PROGRAM changes:

35 X=R
49 GOSUB 3¢35¢

To find the COSine of an angle (expressed in Degrees), either delete line 39354 change
line 40 to:

4¢ GOSUB 39356

VARIATIONS IN USAGE

Some (rare) interpreters convert everything to degrees automatically.

ALSO SEE
SIN, ASN, ATN, ATAN, TAN

CSAVE is used by some computers (e.g. those with the
Microsoft interpreter) to record programs from computer
memory onto cassette tape.

TEST PROGRAM

ip REM 'CSAVE' TEST PROGRAM
28 PRINT "THIS PROGRAM TESTS THE CSAVE FEATURE"

899 END

Command

Set up the cassette recorder for Recording and type the command CSAVE. The com-
puter should control the operation of the cassette recorder by turning the motor on and
off at the beginning and end of the record cycle.

Once the program is recorded on cassette tape, type NEW (or whatever is required) to
clear the program from memory. Load the program from tape back into the computer
(see CLOAD). List the program to verify that the program held in the computer’s
memory is identical to that originally entered (see LIST).

SAMPLE RUN

THIS PROGRAM TESTS THE CSAVE FEATURE

CSAVE (program name) is used by some computers using CSAVE to assign a specific
name to the program being recorded on cassette tape. The file name may contain one or
more letters, numbers, or other selected ASCII symbols, but only the first character may
be recognized by the computer. The program name identifies the program for later
retrieval via the CLOAD (program name) command.

Record the TEST PROGRAM on cassette tape using the command CSAVE®A”, erase the
memory, then load the program back into the computer using the CLOAD“A” command.

List the program to check for possible errors.

VARIATIONS IN USAGE

None known.

ALSO SEE
CLOAD, LIST

58

CSNG is used to change numbers or numeric variables
which are previously defined as being of “double-precision”
back to regular “single-precision”. Variables listed in the
CSNG function return to their original double-precision
status if they are used again without the CSNG function.

Single-precision variables are capable of storing numbers
containing no more than 7 digits (only 6 digits are
printed). Double-precision means being accurate to 17
digits. If CSNG is used with a double-precision number
containing more than 6 digits, that number is “rounded-
off” to six significant places.

TEST PROGRAM

Function

19 REM 'CSNG' TEST PROGRAM
2¢ DEFDBL X

3¢ X=123456789¢ 123456

4¢ PRINT "CSNG CHANGES THE VALUE OF X FROM';X;'"TO'";CSNG{X)
5¢ PRINT "AND BACK TO THE VALUE OF'";X;WHEN REMOVED"

99 END

SAMPLE RUN

CSNG CHANGES THE VALUE OF X FROM 123456789 TO 1.23457E+¢8
AND BACK TO THE VALUE OF 123456789 WHEN REMOVED

VARIATIONS IN USAGE

None known.

ALSO SEE
DEFSNG, DEFDBL, DEFINT,CDBL, !, #, %

59

D is used to indicate “double precision” in numbers
expressed in ‘“‘exponential” or “standard scientific nota-
tion”.

For example, 1.23456789D+2¢. Numbers expressed in
single precision are written in exponential notation using
the letter “E”.

For example, 1.234E+2¢

Operator

TEST PROGRAM

19 REM 'D' DOUBLE PRECISION EXPONENT TEST PROGRAM

20 A#=1234567899123456789

39 PRINT "EXPONENTIAL NOTATION 'D' PASSED THE TEST IF"
49 PRINT A#; "CONTAINS THE LETTER 'D'"

99 END

SAMPLE RUN

EXPONENTIAL NOTATION 'D’ PASS’ED THE TEST IF
1,23456789¢123457D+16 CONTAINS THE LETTER 'D’

VARIATIONS IN USAGE

The letter “D”, like all other letters of the alphabet, is used by all computers to indicate a

numeric variable.

ALSO SEE
E, #,!, DEFDBL, DEFSNG

60

D. is used in the TRS-80 Level I as an abbreviation for the
DATA statement.

For more details see DATA.

TEST PROGRAM

1¢ REM 'D.' TEST PROGRAM

290 D. 2¢

3¢ READ A

4¢ PRINT "'D.' PASSED THE TEST IN LINE";A
99 END

SAMPLE RUN

'D.' PASSED THE TEST IN LINE 2¢

VARIATIONS IN USAGE

None known.

ALSO SEE
DATA, DAT, READ

Statement

61

DAT is used in the PDP-8E as an abbreviation for the
DATA statement.

For more details see DATA.

TEST PROGRAM

19 REM '‘DAT' TEST PROGRAM

2¢ DAT 2¢

39 READ A

49 PRINT "'DAT' PASSED THE TEST IN LINE' A
99 END

SAMPLE RUN

'‘DAT' PASSED THE TEST IN LINE 2¢

VARIATIONS IN USAGE

None known.

ALSO SEE
DATA, D., READ

Statement

62

A DATA statement contains data to be read by a READ
statement. The items in the DATA statement must be
separated by commas and may include both positive and
negative numbers.

TEST PROGRAM

1¢ REM 'DATA' TEST PROGRAM
28 DATA 20,-1¢,.5

3¢ READ A,B,C Statement
49 D=A+B+C

5¢ PRINT "D ='";D

69 PRINT "DATA PASSED THE TEST IF D = 19.5"

99 END

SAMPLE RUN

D=1¢.5
DATA PASSED THE TEST IF D = 19.5

Most computers allow strings in a DATA statement. Some require that the strings always
be enclosed in quotes, while others require quotes only when the string is preceded by,
encloses, or is followed by a blank, comma or colon.

TEST PROGRAM

19 REM 'DATA' TEST PROGRAM USING STRINGS

2¢ DATA "LINE NUMBER',28,"PASSED""

3¢ READ A$,A,BS

40 PRINT "DATA STATEMENT IN '";A$;A;:B$;"" THE TEST"
99 END

SAMPLE RUN

DATA STATEMENT IN LINE NUMBER 2¢ PASSED THE TEST

Remove the quotation marks from the String Variables in line 2 and run again to see if
they are needed in your interpreter.

DATA statements may be placed at any location in a program.

VARIATIONS IN USAGE

None known.

ALSO SEE
DAT,D.,R.,REA, READ

—-wnZ2>

63

The DEF statement allows the user to DEFine (create)
new functions (most computers have some built in func-
tions) which can then be used the same as any intrinsic
(built in) function.

For example, DEF FNA(R)) = R+R«3.14159 The expres-
sion R#R#%3.14159 (the formula to find the area of a
circle, normally written 7r2) is DEFined in this example
as the function FNA. FN (an abbreviation for the word
FUNCTION) is used in DEF statements followed by any Statement

legal numeric variable. “A” is used in this example to

identify function FNA as the Area of a circle, but any variable could have been used.
Once a function is defined, normally it cannot be redefined in the same program.

The variable enclosed in parenthesis [(R) above] must match the variable used in the
statement to the right of the equal sign. These are commonly referred to as “dummy”
variables.

The operation stored in the FN (variable) function by the DEF statement can be used to
manipulate any number or numeric variable.

For example,

19 X=2
20 DEF FNA(N)=3*N-1
3¢ PRINT FNA(X)

The FN function in this example is named “A” (FNA), and is assigned the equation
3#N-1 in line 20. The numeric variable (X) following FNA is substituted for the ““dummy
variable”” (N) in the DEF statement each time FNA is executed.

TEST PROGRAM #1

1¢ REM 'DEF’ TEST PROGRAM

2¢ PRINT "ENTER THE RADIUS OF A CIRCLE [IN INCHES)™":

3¢ INPUT R

40 DEF FNC([X)=3+1.4159%X

5¢ PRINT "THE CIRCUMFERENCE OF A CIRCLE"

63 PRINT "WITH A RADIUS OF ™:R;'INCHES IS"{FNC(R):"INCHES"
99 END

SAMPLE RUN (using 4)

ENTER THE RADIUS OF A CIRCLE (IN INCHES)? 4
THE CIRCUMFERENCE OF A CIRCLE
WITH A RADIUS OF 4 INCHES IS 25.1327 INCHES

-_-nZP

64

— DEF

Some computers allow more than one variable in the DEFined expression. Each of these
variables must be listed after the FN(variable) function.

TEST PROGRAM #2

19 REM 'DEF' MULTIPLE VARIABLE TEST PROGRAM
2¢ DEF FN(X,Y)=(X+Y)/2

39 PRINT "ENTER ANY TWO NUMBERS"'";

4¢ INPUT X,Y

50 A=DEF(X,Y)

6¢ PRINT "THE AVERAGE OF " X;"AND';Y"IS';A
999 END

SAMPLE RUN (using 20 and 4¢)

ENTER ANY TWO NUMBERS? 2¢,4¢
THE AVERAGE OF 20 AND 49 1S 3¢

Some computers allow the same function to be DEFined in more than one line. In the
following TEST PROGRAM the function FNA is DEFined as X2 if the value of variable
X is less than 10, or as X/2 if the value of X is greater than or equal to 1.

TEST PROGRAM #3

1¢ REM 'DEF' REQUIRING MORE THAN ONE LINE
2¢ PRINT "ENTER A VALUE FOR X THAT IS GREATER OR LESS THAN 1¢";
39 INPUT X

40 DEF FNA(X)

5¢ FNA=X*2

6¢ IF X < 1¢ THEN 8¢

79 FNA=X/2

89 FNEND

9¢ PRINT "THE NEW VALUE FOR X IS'"{FNA(X)

999 END

SAMPLE RUN (using 12)

ENTER A VALUE FOR X THAT IS GREATER OR LESS THAN 197 12
THE NEW VALUE FOR X IS 6

The FNEND statement in the last TEST PROGRAM tells the computer to stop defining
function FNA. Multiple line DEF statements must always end with the ENEND state-
ment, and the computer does not allow branching into or out of multiple line DEF state-
ments. For more information see FNEND.

65

DEF
[F YOUR COMPUTER DOESN'T HAVE IT

If your computer does not have the DEF capability, substitute FN with a subroutine
containing the same equation.

For example, The DEF statement in TEST PROGRAM #2 can be replaced with the fol-
lowing subroutine:

198 A={X+Y)/2
11§ RETURN

and these TEST PROGRAM CHANGES:
Delete line 2§ and add

5¢ GOSUB 190
7¢ GOTO 999

VARIATIONS IN USAGE

None other known.

ALSO SEE
FN, FNEND, GOSUB

66

DEFDBL is used to define (declare) a variable or variables
as being accurate to “double-precision”. Double-precision
variables are capable of storing numbers accurate to 17
digits (only 16 digits are printed). Single-precision vari-
ables are typically accurate to 6 digits.

Caution: DEFDBL should only be used where single-
precision accuracy is not adequate since double-precision
variables require more memory space and their manipula-
tion requires more time. In most computers the DEFDBL Statement
line must be executed before the variable listed in the

DEFDBL statement is assigned a numeric value.

TEST PROGRAM

1¢ REM 'DEFDBL’ TEST PROGRAM
2¢ A=1.23456789¢123456

3¢ PRINT "DEFDBL IN LINE 5¢ CHANGED THE VALUE OF VARIABLE 'A*"
49 PRINT "FROM'A;"'"TO'" ;

5¢ DEFDBL A

60 A=1.23456789¢123456

7¢ PRINT A

99 END

SAMPLE RUN

DEFDBL IN LINE 4¢ CHANGED THE VALUE OF VARIABLE 'A’
FROM 1.23457 TO 1,23456789¢123456

Most computers with DEFDBL capability also allow designation of more than one vari-
able as “double-precision” by a single DEFDBL statement. For example, DEFDBL A,F,M
defines the variables A, F and M as having double-precision, and bEFDBL A-M defines
all variables A thru M as being of double-precision.

TEST PROGRAM

19 REM '‘DEFDBL' (WITH MULTIPLE VARIABLES) TEST PROGRAM
2¢ DEFDBL A,G,L-N

3¢ A=1/3

4¢ G=2/3

5¢ L=1/9

€60 M=1.23456789¢1234567D+38

7¢ N=-1.23456789¢1234567D+38

8¢ PRINT "DEFDBL PASSED THE TEST IF THE FOLLOWING"
99 PRINT "NUMBERS CONTAIN MORE THAN 7 DIGITS:*

108 PRINT AG;L:;MN

999 END

67

DEFDBL

SAMPLE RUN

DEFDBL PASSED THE TEST IF THE FOLLOWING

NUMBERS CONTAIN MORE THAN 7 DIGITS:
.,3333333333333333 .666666666666667 LAT11111111181 11
1.23456789¢123457D+38 1.23456789¢$123457D+38

The “D” before “+38” is the same as an “E” in exponential notation, but signifies that
the number is “double-precision accurate™.

Some computers may not print the first three values as shown in the SAMPLE RUN due
to pecularities in the interpreter’s bit manipulation. This problem can be eliminated in
computers that have a Double Precision Declarative sign (e.g. the # sign). Place the sign
after each fraction in lines 30,40 and 50 as follows to produce the correct results.

3¢ A 1/3 #

49 G 2/3 #
5P L 1/9%#

VARIATIONS IN USAGE

None known.

ALSO SEE
DEFSNG, DEFINT, #

68

DEFINT is used to define (declare) that the variables list-
ed by the DEFINT statement are integers. Variables
defined as integers store the integer (whole number)
value of assigned numbers. This is especially useful in large
programs since less memory is required to store integer
values than non-integers.

A potential disadvantage of using the DEFINT statement
is the inability of many interpreters to process numeric
values larger than that allowed by the interpreter’s INT
function (typically —32767 to +32767).

Statement

The DEFINT line must be executed by the computer before a variable listed in the

DEFINT statement is assigned a numeric value.

TEST PROGRAM

18 REM 'DEFINT' TEST PROGRAM

2¢ DEFINT A

3¢ A=12.68

a¢ B=12.68

54 IF A=12 THEN 7¢

69 GOTO 8¢

7¢ IF B=12.68 THEN 1¢¢

8¢ PRINT "DEFINT FAILED THE TEST LINE 29"
9¢ GOTO 999

19§ PRINT "THE DEFINT STATEMENT PASSED THE TEST IN LINE 29 BY'

11§ PRINT "CHANGING THE VALUE OF VARIABLE A FROM

999 END

SAMPLE RUN

THE DEFINT STATEMENT PASSED THE TEST IN LINE 2¢ BY
CHANGING THE VALUE OF VARIABLE A FROM 12.68 TO 12

GBOTOMA

Most computers with DEFINT capability also allow assignment of multiple variables
(separated by comma) in a single DEFINT statement. For example, DEFINT A,F,M
defines the variables A,F and M as integers. DEFINT A-m defines variables A thru M as

integers.

TEST PROGRAM

19 REM 'DEFINT' (WITH MULTIPL.E VARIABLES) TEST PROGRAM

2¢ DEFINT A,G,L-N
3¢ A=6.25
49 B=21.42

69

DEFINT

5¢ G=-6.19

6¢ L=4.9¢1

7¢ M=3280¢.999

8¢ N=14.8

9¢ PRINT "IF THE NUMBERS" A GL;M/N;""ARE INTEGERS,"

1¢¢ PRINT "AND THE NUMBER':8;"IS A DECIMAL, THEN DEFINT"
11¢ PRINT "PASSED THE MULTIPLE VARIABLE TEST IN LINE 2¢4."
999 END

SAMPLE RUN

IF THE NUMBERS 6 -7 4 32009 14 ARE INTEGERS,
AND THE NUMBER 21.42 1S A DECIMAL, THEN DEFINT
PASSED THE MULTIPLE VARIABLE TEST IN LINE 2¢.

If the interpreter has a double-precision declarative character (e.g. the # sign in the Micro-
soft BASIC), and this character is assigned to a variable that is listed in the DEFINT state-
ment, the variable is treated as double precision because Double Precision Declarative
Characters over-ride the DEFINT statement.

TEST PROGRAM

1¢ REM 'DEFINT' TEST PROGRAM

2¢ REM USES DOUBLE-PRECISION TYPE DECLARATION CHARACTER'#'
3¢ DEFINT A,B

4¢ A=9.123456789¢12345

5@ B#=9.123456789¢12345

6@ IF A=B# THEN 119

7¢ PRINT A ="iA

8¢ PRINT "B# =" ;B#

9¢ PRINT "THE TEST PASSED, SHOWING # OVER-RIDING DEFINT"

19¢ GOTO 999

118 PRINT "THE # CHARACTER OVER-RIDE FEATURE FAILED THE TEST"

999 END

SAMPLE RUN

A =9
B# = 9.123456789¢12345
THE TEST PASSED, SHOWING # OVER-RIDING DEFINT

VART

Faeys

TIONS IN [JSAGF

Ty s L gl . LI

None known.

ALSO SEE
INT, # , DEFSNG, DEFDBL

70

DEFSNG is used to define (declare) specified variables as
being of “single precision”. Single precision variables are
capable of storing numbers containing no more than 7
digits (only 6 digits are printed). Double precision means
having 16-digit precision.

Since most interpreters automatically treat variables as
having single precision, the DEFSNG statement is used in
programs to redefine variables as having only single pre-
cision after one or more were defined as double precision
by a previous DEFDBL statement or # operator.

Statement

In most computers the DEFSNG line must be executed before the variable listed in the
DEFSNG statement is assigned a numeric value. Line 20) below declares both X and Y to
be maintained with double precision.

TEST PROGRAM

1§ REM 'DEFSNG' TEST PROGRAM

2¢ DEFDBL X,Y

3¢ X=1.23456789¢123456

4¢ v=X

5¢ PRINT "DOUBLE PRECISION VALUE OF Y=";Y
6¢ DEFSNG Y

7¢ Y=X

8¢ PRINT "SINGLE PRECISION VALUE OF Y=',Y
99 END

SAMPLE RUN

DOUBLE PRECISION VALUE OF Y = 1,23456789¢9123456
SINGLE PRECISION VALUE OF ¥ = 1.23457

Most computers with DEFSNG capability also allow assignment of multiple variables
(separated by comma) in a single DEFSNG statement. For example, DEFSNG A,F,M
defines the variables A, F and M as single precision, and pEFsNG A-M defines all vari-
ables A thru M as single precision.

TEST PROGRAM

16 REM 'DEFSNG' (WITH MULTIPLE VARIABLES) TEST PROGRAM

2¢ DEFDBL A,G,L-N

3¢ GOSUB 2¢¢

4¢ PRINT "“'THE DOUBLE PRECISION VALUES OF A,G LM ANDN ARE"
5¢ PRINT AG;L;M;N

69 DEFSNG A,G,L-N

7¢ GOSUB 2¢¢

B9 PRINT "THE SINGLE PRECISION VALUES OF AG,LMANDN ARE"

71

— DEFSNG

9¢ PRINT A;G;L;M;N
169 GOTO 999

209 REM SUBROUTINE
21¢ A=1234.56789¢
22¢ G=A/1p

23¢ L=G/1§

249 M=L/1¢

259 N=M/1¢

26¢ RETURN

999 END

SAMPLE RUN
THE DOUBL.E PRECISION VALUES OF A,G,LLM AND N ARE
1234.56789 123.456789 12.3456789 1.23456789 .123456789
THE SINGLE PRECISION VALUES OF A,G,L,M AND N ARE
1234.57 123.457 12.3457 1.234857 123457

An Over-Riding Operator

If the interpreter provides for a double precision declarative character (e.g. the # in the
MICROSOFT Basic), and this character is shown with a variable that is listed in the
DEFSNG statement, the double precision character over-rides the action of the DEFSNG
statement and declares the variable to be double precision. See line 5 below.

TEST PROGRAM

1§ REM 'DEFSNG' TEST PROGRAM

2¢ REM USES DOUBLE PRECISION DECLARATION CHARACTER '#'
3¢ DEFSNG A,B

49 A=1.234567899123456

5¢ B#=1.234567890123456

64 IF A=B# THEN 110

7¢ PRINT "A=";A

8 PRINT "B#=""B#

9¢ PRINT "THE TEST PASSED WITH # OVER-RIDING DEFSNG"

199 GOTO 999

119 PRINT "THE # CHARACTER OVER-RIDE FEATURE FAILED THE TEST"
999 END

SAMPLE RUN

A = 1.23457
B# = 1.23456789%123456
THE TEST PASSED WITH # OVER-RIDING DEFSNG

- W A Wew W A RN R T O La. N IO A YYD
VAKIATIONS 1N udAuUL
None known.

ALSO SEE
DEFINT, #, DEFDBL, !, CSNG, CDBL, CINT

72

The DEFSTR statement is used to specify designated
variables as string variables. A variable listed in the
DEFSTR statement is treated the same as if it was defined
as a string variable by the $ (string) sign.

It is important in large programs to specify only those
variables that need string storage, since string variables
require more memory space than numeric variables.

Statement

The DEFSTR line must be executed before the defined
variable is assigned a string notation.

TEST PROGRAM

19 REM 'DEFSTR' TEST PROGRAM
2¢ A=25

3¢ PRINT "NUMERIC STRING A =';A
44 DEFSTR A

5¢ A="TEST STRING"

6¢ PRINT "STRING VARIABLE A = ';A
99 END

SAMPLE RUN

NUMERIC STRING A = 25
STRING VARIABLE A = TEST STRING

Most computers with DEFSTR capability also allow assignment of multiple variables
(separated by comma) by a single DEFSTR statement. For example, DEFSTR A,F,M de-
fines the variables A, F, and M as string variables. pEFsTR A-M defines all variables A
thru M as string variables.

TEST PROGRAM

1¢ REM DEFSTR {WITH MULTIPLE VARIABLES) TEST PROGRAM
2§ DEFSTR A,G,L-N

3¢ A=""DEFSTR "

4¢ G="PASSED THE "

5¢ L="MULTIPLE VARIABLE "

60 M="TEST

78 N="IN LINE 2¢."

8¢ PRINT A;G;iL;M;iN

99 END

SAMPLE RUN

DEFSTR PASSED THE MULTIPLE VARIABLE TEST IN LINE 2¢.

73

DEFSTR

Some interpreters require that space be reserved in memory for the assigned strings using
the DIM or CLEAR statements.

Interpreters with declarative characters (e.g. D, E, %, #, or 1) take precedence over the
DEFSTR function when added to variables listed in the DEFSTR statement. This feature
can be tested by making these changes to the second TEST PROGRAM.

7¢ N="IN LINE"

8@ PRINT A;;G;lL:iM:N;
85 Al=20

9¢ PRINT Al

The single-precision declarative character (!) added to lines 85 and 9¢ should over-ride the
DEFSTR statement in line 2() and print the sample run.

VARIATIONS IN USAGE

None known.

ALSO SEE

DEFDBL, DEFINT, DEFSNG, DIM, CLEAR, §, D (exponential notation), E (exponen-
tial notation), % (integer operator), # (double precision) and ! (single precision).

74

DEG is used by a few computers (e.g. the Cromemco 16K
Extended BASIC) as a command which causes the com-
puter to execute trigonometric functions in degrees
(rather than in radians). One degree = approximately .2
radians.

TEST PROGRAM

10 REM 'DEG COMMAND' TEST PROGRAM
24 A=SIN{1.4)

3¢ PRINT "THE SINE OF 1.4 RADIANS IS';A
99 END

Command
Function

SAMPLE RUN

As shown above, the computer will execute the program and compute the sine of an angle
of 1.4 radians.

THE SINE OF 1.4 RADIANS 1S .98545

Type the command DEG and then RUN. The computer will compute the sine of the
angle 1.4 converted to DEGrees.

THE SINE OF 1.4 RADIANS IS .¢24432

To change the computer back to the radian mode, type RAD or SCR. (SCR will also
SCRatch the entire program.)

IF YOUR COMPUTER DOESN'T HAVE IT

If your computer does not have the DEG command, it can be simulated in the program
instead by multiplying radian values times .0174533, To use this conversion in the first
TEST PROGRAM, make this program change:

20 A=SIN{1.4+.$174533)

VARIATIONS IN USAGE

A few computers (e.g. those using MAX BASIC) have DEG(n) as an intrinsic function to
convert a value (n) expressed in radians to degrees.

75

DEG

TEST PROGRAM

1¢ REM 'DEG FUNCTION' TEST PROGRAM

2¢ PRINT "ENTER AN ANGLE (EXPRESSED IN RADIANS)';

3¢ INPUT A

4p B=DEG(A)

5¢ PRINT "THE RADIAN ANGLE OF';A;"IS EQUAL TO';B;'DEGREES"
995 END

SAMPLE RUN (using 1.4)

ENTER AN ANGLE (EXPRESSED IN RADIANS)? 1.4
THE RADIAN ANGLE OF 1.41S EQUAL. TO 8¢.2141 DEGREES

IF YOUR COMPUTER DOESN'T HAVEIT

If your computer does not have the DEG function, it can be simulated by multiplying the
radian values times 57.29578. To use this conversion in the second TEST PROGRAM,
make this program change:

49 B=A+57.29578

ALSO SEE
SIN, SINE, COS, TAN, ATN

76

DEL is used as an abbreviation for the DELETE command
to “erase” specified program lines from the computer’s
memory.

For more information see DELETE.

TEST PROGRAM

1¢ REM 'DEL' TEST PROGRAM
2¢ PRINT "LINE 28"

3¢ PRINT "LINE 3¢"

99 END

Run the program to ensure that all lines are properly entered.

SAMPLE RUN

LINE 2¢
LINE 3¢

Type the command DEL 2¢ and run the program. This command should have eliminated
the printing of “LINE 2. Check by LISTing and RUNning.

VARIATIONS IN USAGE

None known.

ALSO SEE
DELETE, LIST

77

The DELETE command is used to “erase” specified pro-
gram lines from the computer’s memory.

TEST PROGRAM

16 REM '‘DELETE’' TEST PROGRAM
2¢ PRINT "LINE 2¢*"
3P PRINT “LINE 39"
4¢ PRINT "LINE 4¢°"
5¢ PRINT "LINE 5¢"
6¢ PRINT "LINE 69" Command

7¢ PRINT "LINE 7¢ - END OF DELETE TEST"

99 END

RUN the program to ensure that all lines are properly entered.

SAMPLE RUN

LINE 2¢
LINE 3¢
LINE 4¢
LINE 5¢
LINE 60
LINE 7¢ - END OF DELETE TEST

A single program line can be eliminated from the computer’s memory using the command
DELETE(line number). To test this feature, try the command pELETES¢ and run the
program, This command should have eliminated the printing of “LINE 50”. Check by
LISTing and RUNning.

More than one program line can be eliminated from memory by some computers using
the command DELETE(line #-line#). All line numbers within the range specified by this
command are eliminated. To test this feature, try the command pELETE3¢-44, then
RUN the program. Lines 3¢ and 4¢ should be gone.

DELETE-(line number) is used by some computers to eliminate all line numbers from the
first line number in the program to the line number specified in the DELETE command.
To test this feature, try the command pELETE-6¢ and run the program. All lines should
be eliminated except line 7 and 99.

Some computers with the DELETE feature allow eliminating of groups of line numbers
plus individual line numbers by use of commas.

For example, DELETE 2¢,4¢-5¢,9¢ eliminates lines 20, 40, 50 and 9¢ from the pro-
gram. To test for this feature, re-enter the test program and try the command DELETE
2¢, a¢-6¢. LIST the program to verify that all lines except 10, 3, 70 and 99 have been
eliminated.

78

DELETE

A few computers use DELETE(line number)- to eliminate all line numbers starting from
the line number specified in the DELETE command to the end. To test for this feature,
try the command peLETE 3¢-. LIST the program to verify that only line 1§ remains.

IF YOUR COMPUTER DOESN'T HAVEIT

If your computer does not have the DELETE command, the same thing can be accom-
plished by typing each line number individually, followed by pressing the ENTER or
RETURN key. To eliminate all line numbers in one operation, use the NEW or
SCRATCH command.

ALSO SEE
NEW, LIST

79

The DIMension statement is used to establish the number
of elements allowed in a numeric or string array.

An array DIMension is established by placing the array
variable after the DIM statement, followed by the array
size enclosed in parenthesis.

For example, pim A(2¢) allows array variable A to use

the 21 array elements from A(®) to A(20). [Some com- Statement

puters start with array element A(l), while a few com-

puters (e.g. those conforming to ANSI BASIC and MAX BASIC) can define the lowest
array element as either § or 1 by using the BASE statement. For more information see
BASE.]

When the DIM statement is executed, the computer sets the values stored in each desig-
nated array element to zero.

TEST PROGRAM

19 REM 'DIM' NUMERIC ARRAY TEST PROGRAM

20 DIM A{1¢)

3¢ PRINT "THESE NUMBERS ARE STORED IN AND PRINTED"
49 PRINT "FROM A SINGLE DIMENSION NUMERIC ARRAY."
5¢ FOR X=1 TO 1¢

63 A(X])=X

7¢ PRINT A{X);

8¢ NEXT X

99 END

SAMPLE RUN

THESE NUMBERS ARE STORED IM AND PRINTED
FROM A SINGLE DIMENSION NUMERIC ARRAY,
1 2 3 4 5 6 7 8 9 1¢

To check your interpreter’s ability to use array elements starting at ¢, make this change
in the TEST PROGRAM:

5¢ FOR X=¢ TO 1¢

If your interpreter accepted the array element A(@), a SAMPLE RUN should print num-
bers from) to 1.

Most computers allow each array to use elements from @ (or 1) to 1§ without the need
for DIMensioning. Delete line 20 from the TEST PROGRAM to test for this capability.

If it works, make this change in line 50:

—-—nZ>y

80

DIM

5¢ FOR X=1 TO 15

and RUN. Since a few computers (e.g. TRS-80 Level I) do not require any dimensioning,
their array size is automatically limited only by the amount of unused memory. TRS-80
Level I only allows arrays named A(n) and B(n). Most computers allow the full ranee of
Alphabetic variables, and many allow arrays to have Alpha/Numeric array names [e.g.
A3(n)].

Assuming that line 5 change above caused a crash, make this change to line 20:

2¢ DIM A(15)

and RUN

SAMPLE RUN

THESE NUMBERS ARE STORED IN AND PRINTED
FROM A SINGLE DIMENSION NUMERIC ARRAY.
1 2 3 4 5 6 7 8 9 16 11 12 13 14 15

This next program tests the computer’s ability to DIMension string arrays. Some com-
puters (e.g. Hewlett-Packard) require dimensioning of all strings, including string arrays,
with no string space set aside without DIM.

TEST PROGRAM

1§ REM 'DIM' STRING ARRAY TEST PROGRAM
2¢ DIM A$(4)

3¢ FOR X=1 TO 4

4¢ READ A$(X)

59 NEXT X

6¢ PRINT "THE 'DIM' STATEMENT PASSED THE *;
7¢ FOR X=1TO 4

8¢ PRINT AS(X);

9¢ NEXT X

199 DATA T,E,S,T

999 END

SAMPLE RUN

THE 'DIM' STATEMENT PASSED THE TEST

DIM is also used in some computers to set the maximum element size for numeric and
string arrays which contain two dimensions (or more).

For example, piM A(2¢,25) establishes the maximum size of the first dimension at 20,
and the second at 25.

81

— DIM

Most computers with two and three dimension array capability automatically reserve
space for 10 elements in each dimension. Many smaller computers (e.g. Microsoft inter-
preter variations) reserve element space for only the first and second dimension.

TEST PROGRAM

1§ REM 'DIM' TWO DIMENSION ARRAY TEST PROGRAM
2¢ DIM A(3,4)

3¢ PRINT "THESE NUMBERS ARE STORED IN AND PRINTED"
4¢ PRINT "FROM A TWO DIMENSION NUMERIC ARRAY."
5¢ FOR 1=1 TO 3

69 FOR J=1 TO 4

7¢ A1,3)=1

8¢ NEXT J

9¢ NEXT I

169 FOR I=1 TO 3

11¢ FOR J=1 TO 4

12¢ PRINT A(1,1),

13¢ NEXT J

14¢ PRINT

15¢ NEXT |

999 END

SAMPLE RUN

THESE NUMBERS ARE STORED IN AND PRINTED
FROM A TWO DIMENSION NUMERIC ARRAY .

1 1 1 1
2 2 2
3 3 3

TEST PROGRAM

This program tests the computer’s ability to DIMension three dimension numeric array
variables.

19 REM 'DIM' THREE DIMENSION ARRAY TEST PROGRAM
2¢ DIM A(3,4,2)

3¢ PRINT "THESE NUMBERS ARE STORED IN AND PRINTED"
4¢ PRINT "FROM A THREE DIMENSION NUMERIC ARRAY."
5¢ FOR K=1 TO 2

6¢ FOR 1=1 TO 3

7¢ FOR J=1TO 4

8¢ Al K)=1

9¢ NEXT J

169 NEXT |

11§ NEXT K

82

. DIM

129 FOR K=1 TO 2
13¢ FOR I=1 TO 3

14¢ FOR J=1 TO 4

150 PRINT A(1,J,K),
160 NEXT J

17¢ NEXT I

18¢ PRINT

199 NEXT K

999 END

SAMPLE RUN

THESE NUMBERS ARE STORED IN AND PRINTED
FROM A THREE DIMENSION NUMERIC ARRAY.
1 1 1

2 2 2
3 3 3
1 1 1
2 2 2

VARIATIONS IN USAGE

None other known.

ALSO SEE
CLEAR, MAT INPUT, MAT PRINT, MAT READ

83

DSP is used in the APPLE II BASIC as an analytical tool
to display a specific variable and its value each time the
variable is assigned a value. The variable’s associated line
number is also displayed preceded by a # sign. More than
one DSP statement is allowed in a program.

For example:

16 DSP X

Statement

2¢ DSP Y

instructs the computer to display (print) variables X and Y, and their values, along with
the line numbers each time they are assigned or reassigned a value.

TEST PROGRAM

1¢ REM 'DSP' TEST PROGRAM

2¢ DSP A

3¢ DSP B

44 A=5

5¢ B=19

6¢ C=A+B

7¢ A=A+C

8¢ PRINT "THE DSP STATEMENT PASSED THE TEST"
99 END

SAMPLE RUN

#40 A=5
#5¢ B=1¢
#7¢ A=55
THE DSP STATEMENT PASSED THE TEST

IF YOUR COMPUTER DOESN'T HAVE IT

This very handy troubleshooting feature can be duplicated by adding a temporary test
line at each point where the variable being traced is changed. For example,

19 REM DSP SIMULATION
4¢ A=5

41 PRINT "#40 A='"A

5¢ B=19

84

DSP
51 PRINT "#5¢ B=";B
6§ C=A+B
7¢ A=A+C

71 PRINT "#7¢ A=';A

99 END

VARIATIONS IN USAGE

None known.

ALSO SEE
TRON, TRACE

8¢ PRINT "END OF THE DSP SIMULATION"

85

E is used to indicate “exponential notation™, or “standard
scientific notation™.

For example, 1.23E+12 means 1.23 followed by 12 zeros.

Numbers expressed in double precision are written in
exponential notation using the letter “D”.

For example, 1.23456789D+2¢

Operator

TEXT PROGRAM

19§ REM 'E' SINGLE PRECISION EXPONENT TEST PROGRAM

2¢ A=123456789

3¢ PRINT "EXPONENTIAL NOTATION'E' PASSED THE TEST IF"
49 PRINT A;"CONTAINS THE LETTER 'E'"

99 END

SAMPLE RUN

EXPONENTIAL NOTATION 'E’' PASSED THE TEST IF
1.23457E+¢8 CONTAINS THE LETTER 'E’

VARIATIONS IN USAGE

The letter “E”, like all other letters of the alphabet, is used by all computers to indicate
a numeric variable.

ALSO SEE
D, !, #, DEFSNG, DEFDBL

86

E. is used in the TRS-80 Level I as an abbreviation for the
END statement.

For more information see END.

TEST PROGRAM

Statement

19 REM 'E. (END)' TEST PROGRAM

2¢ PRINT “THE COMPUTER SHOULD ONLY PRINT THIS LINE"
3¢ E.

43 PRINT "IF THIS LINE IS PRINTED THE TEST FAILED"

99 END

SAMPLE RUN

THE COMPUTER SHOULD ONLY PRINT THIS LINE

VARIATIONS IN USAGE

None known.

ALSO SEE
END

87

EDIT is a special command used by some computers (e.g.
those using Microsoft BASIC) which allows editing of the
program line specified by the EDIT command. (It is simi-
lar to the RUN and LIST commands in that if no number
follows it, the first program line is automatically implied.)

TEST PROGRAM

19 REM 'EDIT' TEST PROGRAM Command
2¢ PRINT "CAN THIS PROGRAM BE MODIFIED"

39 PRINT "BY THE EDIT COMMAND?"

99 END

After loading this program, type EDIT 2¢ to determine if the computer has the EDIT
feature. The computer should print the number 2¢) followed possibly by a cursor. This
indicates the computer is in the EDIT mode and is ready to modify line 20.

VARIATIONS IN USAGE

There are many versions of text, character and line editors. They each speak their own
“language,” and it is not BASIC. This Handbook will therefore not cover Editor languages.

The EDIT command may call up your editor, but youll have to check the machine’s
manual to see how to perform the editing and get back into BASIC. Sometimes it’s as
easy as hitting the carriage return. Other times (especially on large multi-language time-
sharing machines) it takes a whole series of commands to get in and out of the “editor”.

88

ELSE is used to execute an alternate statement when the
condition of an IF-THEN statement is not met. For
example, IF X=3 THEN 1¢¢ ELSE STOP instructs the
computer to branch to line 109 if X equals 3, but STOP if
X does not equal 3.

TEST PROGRAM

1¢ REM 'ELSE' TEST PROGRAM Statement
2¢ X=1

3¢ 1F X < 5 THEN 69 ELSE GOTO 9¢

4¢ PRINT “"ELSE FAILED THE TEST"

5¢ GOTO 99

6¢ PRINT X;

7¢ X=X+1

8¢ GOTO 3¢

9¢ PRINT " 'ELSE' PASSED THE TEST"

99 END

SAMPLE RUN

1 2 3 4 'ELSE' PASSED THE TEST

IF YOUR COMPUTER DOESN'T HAVE IT

If your computer does not have the ELSE statement, it can be simulated in the test pro-
gram by changing line 30 to 3¢ 1IF x < s THEN 6¢ and adding the following new line.
35 GOTO 9¢

VARIATIONS IN USAGE

None known.

ALSO SEE
IF-THEN, GOTO

The END statement is used to terminate execution of the
program. Many computers require it to be placed at the
highest line number in the program, while others accept it
at any point.

The END statement is optional with many computers
(mostly micros).

TEST PROGRAM

1¢ REM 'END’' TEST PROGRAM
2¢ PRINT "THE FIRST END STATEMENT FOLLOWS"
30 END

¢ 4¢ PRINT “"THE SECOND END STATEMENT FOLLOWS"

99 END

SAMPLE RUN

THE FIRST END STATEMENT FOLLOWS

Statement

If your computer does not pass this test and will not allow an END statement at line 39,

then delete line 3¢ and run the program again.

Then delete line 99 to see if your computer accepts END as an optional statement.

ALSO SEE

STOP (for the many problems encountered when using END and STOP in the same

program).

920

EQ is used in a few computers (e.g. the T.I. 990) as an
optional word for the equal sign (=).

For more information see =.

TEST PROGRAM

14 REM 'EQ (EQUAL) TEST PROGRAM
2¢ A EQ 19

39 1IF A EQ 1§ THEN 6¢

4¢ PRINT "THE EQ OPERATOR FAILED THE TEST"
5¢ GOTO 99

6¢ PRINT "THE EQ OPERATOR PASSED THE TEST"
99 END

SAMPLE RUN

THE EQ OPERATOR PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
=, <> [F-THEN

Operator

91

The ERL function is used with the ON-ERROR statement
to identify the last line number in which an error has
occurred.

The ERL function initializes at the numeric line number
value of 65535 (the maximum two-byte value). When an
error occurs, ERL changes to the line number in which
the error occurred. The line number contained in the ERL
function changes each time an error occurs in a different
line.

Function

By using ERL in “error-trapping” routines, it is possible to identify the ‘“‘errored” line

and take appropriate action.

TEST PROGRAM

1 REM ‘ERL' TEST PROGRAM

2¢ ON ERROR GOTO 198

3¢ PRINT "ENTER THE NUMBER 1¢, 2¢, THEN 3¢";

AP INPUT N

5¢ A=1¢/(N-18)

69 A=1¢/(N-20)

76 A=10/(N-39)

8¢ PRINT " THE NUMBER ";N{"DID NOT CAUSE AN ERROR"
99 GOTO 3¢

160 PRINT "AN ERROR HAS JUST OCCURRED IN LINE"; ERL
119 RESUME 3¢

999 END

SAMPLE RUN

ENTER THE NUMBER 1§, 2¢, THEN 347 1¢

AN ERROR HAS JUST OCCURRED IN LINE 5¢
ENTER THE NUMBER 18, 2¢, THEN 3§47 2¢

AN ERROR HAS JUST OCCURRED IN LINE 6¢
ENTER THE NUMBER 1§, 2¢, THEN 397 3¢

AN ERROR HAS JUST OCCURRED IN LINE 7¢
ENTER THE NUMBER 18, 2¢, THEN 3¢7

VARIATIONS IN USAGE

None known.

ALSO SEE
ERROR, ON-ERROR-GOTO, RESUME

92

ERR is used in some computers (e.g. those with Microsoft
BASIC) to identify the error code of the last error which
occurred in a program. The error code contained in the
ERR function changes each time a different error occurs.
By using ERR in “error-trapping” routines, it is possible
to identify the type of error which occurred and take
appropriate action. Refer to the computer’s manual for a
listing of its particular error codes.

Function

TEST PROGRAM

1§ REM 'ERR’' TEST PROGRAM

2¢ DIM A(5)

3¢ CLEAR

49 ON ERROR GOTO 14§

5¢ PRINT "ENTER A SAMPLE NUMBER'";

69 INPUT N

78 A(N)=1¢/N

8¢ PRINT "THE NUMBER';N;"DID NOT CAUSE AN ERROR"
9¢ GOTO 5¢

199 IF ERR = 8 THEN 13¢

11¢1F ERR = 11 THEN 16¢

12¢ GOTO 18¢

139 PRINT "THE NUMBER'iN;"IS TOO LARGE"

14¢ PRINT "USE A NUMBER BETWEEN 1 AND 5"

15¢ RESUME 3¢

16¢ PRINT “THE SMALLEST NUMBER ALLOWED iS 1"

17¢ RESUME ¢

18¢ PRINT “"THE NUMBER';N;"CAUSED AN ERROR CODE OF'ERR
999 END

SAMPLE RUN (Typical)

ENTER A SAMPL.E NUMBER7? 12

THE NUMBER 12 IS TOO LARGE

USE A NUMBER BETWEEN t AND 5

ENTER A SAMPLE NUMBER? ¢

THE SMALLEST NUMBER ALLOWED IS 1
THE NUMBER 1 DID NOT CAUSE AN ERROR
ENTER A SAMPLE NUMBER?

VARIATIONS IN USAGE

The TRS-80 Level Il BASIC stores a value in the ERR function that does not equal the
actual error code. To convert the value stored in the ERR function to the actual error
code, divide the ERR value by 2 and add 1.

93

ERR

For example, PRINT ERR /2+1

ALSO SEE
ERL, ON-ERROR, RESUME, DIM, CLEAR

94

ERROR is used to intentionally cause the computer to
ERROR. The type of error is specified by an error code in
the ERROR statement. The ERROR statement is com-
monly used in programs to execute error trapping
routines, or to print a specified error message.

TEST PROGRAM #1 (for a Microsoft Interpreter)

19 INPUT N
201F N D> 32090 THEN ERROR 7
99 END

Command
Statement

When a value greater than 32(00@ is assigned to variable N, the condition of the IF-THEN
statement in line 2¢) is met and the computer generates the ERROR message.

OM ERROR IN 2¢
(out of memory in line 20), even though the computer is not actually out of memory.

Variables cannot be used as ERROR codes. Each code must be specified by an actual
integer error code number. If the specified error code is not recognized by the computer’s
interpreter, then ERROR message “UNPRINTABLE ERROR? is printed by most com-
puters.

ERROR can also be entered as a command to test specific error codes. See your com-
puter’s manual for a listing of its error messages.

TEST PROGRAM #2

1§ REM 'ERROR' TEST PROGRAM

2¢ PRINT 'ERROR PASSED THE TEST IF ERROR MESSAGE '0S’ OR"
3¢ PRINT "'OUT OF STRING SPACE' IS PRINTED."

49 ERROR 14

99 END

SAMPLE RUN (¢ypical)

ERROR PASSED THE TEST IF ERROR MESSAGE '05'"
OR 'OUT OF STRING SPACE' IS PRINTED.
70S ERROR IN 4¢

VARIATIONS IN USAGE

None known.

ALSO SEE
ON-ERROR-GOTO, RESUME, ERR, ERL

95

EXAM(n) is used by some computers (eg. the Digital
Group MAXI-BASIC, the North Star BASIC, and the Pro-
cessor Technology 8K BASIC) to read the contents of
specified addresses in the computer’s memory.

For example, X=EXAM(2¢9) assigns the value stored in
memory address 200 to variable X.

The EXAM function gives us the contents of that memory
address as a decimal number between @ and 255 (the Function

range of values that can be held in an 8 bit memory byte).

EXAM can be used with the FILL statement to read what FILL has stored in memory.
(Some computers use POKE or STUFF.) The highest number address that can be
EXAMined depends of course on the computer’s memory size.

Check your computer’s manual before executing this TEST PROGRAM to determine that
memory addresses 18368 to 18380 are reserved as “free’” memory. This avoids FILLing
data into memory addresses reserved for other computer operations. If addresses 18368
to 1838(are not reserved as free memory in your computer, select a group of 12 adjacent
memory addresses and change lines 20 and 6§ in the TEST PROGRAM accordingly.

TEST PROGRAM

16 REM 'EXAM' TEST PROGRAM
2¢ FOR X=18368 TO 1838¢

3¢ READ Y

4% FILL X,Y

5§ NEXT X

6¢ FOR X=18368 TO 18380

7¢ Y=EXAM(X)

8¢ PRINT CHRS(Y);

89 NEXT X

1¢¢ DATA 84,69,83,84,128,67,79,77,8¢,76,69,84,69
999 END

SAMPLE RUN
TEST COMPLETE

VARIATIONS IN USAGE

Nana bnawn
None nown,

ALSO SEE
FILL, POKE, PEEK, USR, SYSTEM

96

The EXP(n) function computes the natural logarithm’s
base value e (2.71828. . .) raised to the power of (n).

This is just the opposite of what happens when the LOG
function is used.

For example, A=ExP(3) is the same as A=2.71828 *
2.771828 *2.71828.

The value (n) can be written as a number or a numeric Function

variable.

TEST PROGRAM

1 REM 'EXP*' TEST PROGRAM

2¢ N=4.69517

3¢ E=EXP(N)

49 PRINT “IF THE NATURAL EXPONENTIAL OF ;N IS iE
5¢ PRINT "THEN THE EXP FUNCTION PASSED THE TEST."
99 END

SAMPLE RUN

IF THE NATURAL EXPONENTIAL OF 4.69517 1S 1¢4¢
THEN THE EXP FUNCTION PASSED THE TEST.

IF YOUR COMPUTER DOESN'T HAVE IT

If your interpreter did not accept the EXP function, then substitute the foll
routine for EXP:

3¢¢0Q GOTO 3¢999
3¢24¢ REM * EXPONENTIAL SUBROUTINE * INPUT X, OUTPUT E
3¢242 REM ALSO USES L AND A INTERNALLY
39244 L=INT{1.4427*X)+1

39246 IF L<127 THEN 39258

34248 IF X<=¢ THEN 3¢254

3¢25¢ PRINT XIS OUT OF RANGE""

39252 STOP

39254 E=¢

39256 RETURN

39258 E=.693147+L-X

39260 A=1.32988E-3-1.41316E-4+E

3¢262 A=((A+E-8.30136E-3)*E+4.16574E-2)+E
30264 E=({{A-.166665)«E+.5)*E-1}+E+1

39266 A=2

3¢268 IF LD ¢ THEN 3¢276

3¢27¢ A=.5

owing sub-

—nZ>r

97

= EXP

3¢272 L=-L

30274 IF L=¢ THEN 39282
39276 FOR X=1 TO L
30278 E=AYE

3¢28¢ NEXT X

3$282 RETURN

To use this subroutine with the TEST PROGRAM, make the following program changes:

35 X=N
49 GOSUB 3¢244

ALSO SEE
LOG, LOGE, LOG1¢, CLOG

98

F. is used in the TRS-80 Level I and other variations of

Palo Alto Tiny BASIC as an abbreviation for the FOR
statement.

For more information see FOR.

TEST PROGRAM

19 REM 'F. (FOR)' TEST PROGRAM
2¢ F. X=1 TO §

3¢ PRINT X;

4% NEXT X

5¢ PRINT "'F. PASSED THE TEST"
99 END

SAMPLE RUN

1 2 3 4 5 'F.' PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
FOR, FOR-NEXT

Statement

99

FETCH(n) is used in the Digital Group Opus 1 and Opus 2
BASIC to read the contents of addresses in the computer’s
memory.

For example, X=FETCH(3¢¢¢) assigns the decimal value
stored in memory address 300 to the variable X.

That value will be a number between ¢ and 255 (the range
of values that can be held in an 8 bit memory byte). The R
highest number that can be FETCHed depends of course Function

on the computer’s memory size.

FETCH can be used with the STUFF statement to check what STUFF has stored in
memory. (Some computers use POKE or FILL instead).

Check your computer’s manual before executing this TEST PROGRAM to determine that
memory addresses 18368 to 18377 are reserved as free memory. This avoids STUFFing
data into memory used for special purposes. If addresses 18368 to 18377 are not reserved
as free memory in your computer, then select a group of 10 free consecutive memory
addresses and change lines 3¢ and 70 in the TEST PROGRAM accordingly.

TEST PROGRAM

1¢ REM 'FETCH' TEST PROGRAM
2¢ Y=1

3¢ FOR X=18368 TO 18377

a9 STUFF XY

5¢ Y=Y+1

69 NEXT X

7¢ FOR X=18368 TO 18377

8¢ Y=FETCH(X)

9¢ PRINT Y

198 NEXT X

119 PRINT

12¢ PRINT '‘FETCH' PASSED THE TEST IF #1 THRU #19 ARE PRINTED"
999 END

SAMPLE RUN

f 2 3 4 5 6 7 8 9 1¢
JFETCH' PASSED THE TEST IF #1 THRU #19 ARE PRINTED

VARIATIONS IN USAGE
None known.

ALSO SEE
STUFF, POKE, PEEK, FILL, USR, SYSTEM

100

FILL is used by a few interpreters (e.g. the NORTH
STAR BASIC and the Digital Group MAXI-BASIC) to fill
a specified byte in the computer’s memory with an integer
value between @ and 255 (the maximum § bit value).

For example, FitL 3¢¢¢,15 fills memory address 3000
with the decimal number 15.

The EXAM function can be used with FILL to inspect
what FILL has stored into memory. (Some computers use Statement
PEEK or FETCH instead).

Computers vary in the amount of available memory and

memory addresses that can be FILLed without erasing memory dedicated to other pur-
poses. Check your computer’s manual before running this TEST PROGRAM to determine
that memory addresses 18368 to 1838() are noncritical memory locations.

TEST PROGRAM

1§ REM 'FILL' TEST PROGRAM
2¢ FOR X=18368 TO 1838¢

390 READ Y

4 FILL X,Y

5¢ NEXT X

6¢ FOR X=18368 TO 1838¢

7¢ Y=EXAM(X)

8¢ PRINT CHRS${Y}:

9¢ NEXT X

166 DATA 84,69,83,84,128,67,79,77,8¢,76,69,84,69
999 END

SAMPLE RUN

TEST COMPLETE

VARIATIONS IN USAGE

None known.

ALSO SEE
POKE, STUFF, EXAM, PEEK

101

The FIX function is used to remove all numbers to the
right of the decimal point. Its operation is similar to the
INT function except FIX does not round negative
numbers down.

Example: 14 PRINT FIX(3.6)
20 PRINT FIX(-3.6)

prints the numbers 3 and -3. While

Function

1¢ PRINT INT(3.6)
2¢ PRINT INT(-3.6)

prints the numbers 3 and 4.

FIX is capable of handling any number, large or small, within the limitations of the com-
puter’s interpreter.

TEST PROGRAM

1 REM 'FIX' TEST PROGRAM

2@ N=-12.3456

3¢ A=FIX(N])

49 PRINT "FIX PASSED THE TEST IF ";N;""IS CHANGED TO 'iA
99 END

SAMPLE RUN

FiIX PASSED THE TEST IF -12.3456 IS CHANGED TO -12

IF YOUR COMPUTER DOESN'T HAVE IT

If your interpreter does not have the FIX function capability, but has the ABS, INT and
SGN functions, then line 30 in the TEST PROGRAM can be replaced with:

3¢ A=SGN(N)*INT(ABS(N})

VARIATIONS IN USAGE

None known.

ALSO SEE
INT, ABS, SGN

102

The FN function is used with the DEF statement to speci-
fy variables as “user defined”. The FN function is not
executed when preceded by DEF. For more information
see DEFine. '

The FN function can be manipulated like any built-in
function.

For example,

Function

1¢ DEF FNA(X)=1/X
2¢ PRINT FNA(N)

The FN function in this example is named “A” (FNA), and is assigned the equation 1/X
in line 10. FNA is used here to compute the reciprocal of any numeric variable.

The numeric variable (N) following FNA is substituted for the “dummy variable” (X in
this example) in the DEF statement each time FNA is executed.

TEST PROGRAM

19 REM 'FN' TEST PROGRAM

2¢ DEF FNX{A)=(A-32)+5/9

3¢ PRINT "ENTER A TEMPERATURE IN FAHRENHEIT";

49 INPUT F

5¢ C=FNX(F}

60 PRINT F;"DEGREES FAHRENHEIT =";C /' DEGREES CELSIUS."
99 END

SAMPLE RUN (using 70)

ENTER A TEMPERATURE IN FAHRENHEIT? 7¢
7¢ DEGREES FAHRENHEIT = 21.1111 DEGREES CELSIUS.

VARIATIONS IN USAGE

None known.

ALSO SEE
DEF, FNEND

103

The FNEND statement is used in computers which have
the capability of DEFining and reDEFining a function at
different points throughout a program. It ENDs the func-
tion’s DEFining process. ‘

Each DEF statement which is spread out over more than
one line must end with a FNEND statement, and the com-
puter cannot branch out of or into these DEF statements
before the FNEND statement is executed.

Statement

TEST PROGRAM

1§ REM 'FNEND' TEST PROGRAM

2¢ PRINT "ENTER A VALUE FOR X THAT IS GREATER OR LESS THAN 1¢';
3¢ INPUT X

49 DEF FNA(X)

50 FNA=Xx*2

6¢ IF X< 1§ THEN 8¢

78 FNA=X/2

8¢ FNEND

9¢ PRINT "THE NEW VALUE FOR X IS'"/FNA({X)

999 END

SAMPLE RUN (using 6)

ENTER A VALUE FOR X THAT IS GREATER OR LESS THAN 1976
THE NEW VALUE FOR X IS 12

VARIATIONS IN USAGE

None known.

ALSO SEE
DEF, FN

104

The FOR statement is part of a FOR-TO-NEXT statement
and is used to assign numbers to numeric variables within
the range specified by FOR-TO.

The first number immediately following the FOR is incre-
mented by 1 each time its corresponding NEXT state-
ment is executed. When the number following TO is
exceeded, program execution continues at the line follow-
ing the corresponding NEXT statement,

—nzZ>r

Statement

TEST PROGRAM

1§ REM 'FOR' TEST PROGRAM

2¢ FOR X=1 TO 5

3¢ PRINT X;

49 NEXT X

5¢ PRINT “THE 'FOR' STATEMENT PASSED THE TEST"
99 END

SAMPLE RUN

1 2 3 4 5 THE'FOR'STATEMENT PASSED THE TEST

Some computers use the STEP statement to increment FOR-TO-NEXT by a value other
than one, and to allow decrementing (changing numbers in descending order).

For more information see STEP.

VARIATIONS IN USAGE

Some computers (e.g. DEC BASIC-PLUS-2), under specific conditions allow a FOR-TO
with the NEXT only implied, not actually written.

ALSO SEE

NEXT, FOR-NEXT, STEP, F.

105

The FRE(string) function is used to report the number of
bytes of total string space allocated but unused in the
computer’s memory. Any character (enclosed in quotes)
or string variable can be used with the FRE function. The
BS$ in line 50 below is completely arbitrary.

Most computers with FRE capability automatically
reserve 50 bytes of string space when the computer is
turned on.

Function

TEST PROGRAM

1¢ REM 'FRE(STRING}' TEST PROGRAM

2¢ PRINT "ENTER ANY COMBINATION OF LETTERS AND NUMBERS'";
3¢9 INPUT AS

49 PRINT "THE AMOUNT OF UNUSED STRING SPACE ='';

5¢ PRINT FRE(BS)

99 END

SAMPLE RUN (Typical, using computer)

ENTER ANY COMBINATION OF LETTERS AND NUMBERS? COMPUTER
THE AMOUNT OF UNUSED STRING SPACE = 42

Try various combinations of letters and numbers in the test program to demonstrate the
action of the FRE function.

Some computers use numbers or numeric variables in the FRE function to report the

total amount of memory remaining (not just that part reserved for strings), similar to
the MEM statement.

VARIATIONS IN USAGE

None known.

ALSO SEE
MEM, CLEAR, §

106

FREE(®) is used by some computers (e.g. the NORTH
STAR BASIC, Processor Technology Extended BASIC,
and Digital Group MAXI-BASIC) to report the total
amount of remaining memory (i.e. similar to the MEM
statement). .

TEST PROGRAM

19 REM 'FREE(¢)' TEST PROGRAM
2¢ PRINT FREE(¢);"BYTES OF MEMORY ARE REMAINING*"
99 END Function

SAMPLE RUN (typical)

135¢4 BYTES OF MEMORY ARE REMAINING

The amount of memory remaining will of course depend on your computer.

VARIATIONS IN USAGE

None known.

ALSO SEE
MEM, FRE

107

G. is used in the TRS-80 Level I and other variations of
Palo Alto Tiny BASIC as an abbreviation for the GOTO
statement.

For more information see GOTO.

TEST PROGRAM

1§ REM 'G.' TEST PROGRAM

2¢ PRINT "THE G. STATEMENT";

3¢ G. 6¢

4¢ PRINT "FAILED"

5¢ STOP

6¢ PRINT "HAS PASSED THE TEST."
99 END

SAMPLE RUN

THE G. STATEMENT HAS PASSED THE TEST.

VARIATIONS IN USAGE

None known.

ALSO SEE
GOTO, GOT

Statement

108

GE is used in some computers (e.g. the TI 990) as an
abbreviation for the “greater than or equal to” sign (> =).

For more information see > =.

TEST PROGRAM _
Qperator

1¢ REM 'GE' (GREATER THAN OR EQUAL TO) TEST PROGRAM
20 IF 2¢ GE 19 THEN 59

3¢ PRINT "THE GE OPERATOR FAILED THE TEST IN LINE 2¢"
4¢ GOTO 99

5@ IF 2¢ GE 2¢ THEN 8¢

69 PRINT "THE GE OPERATOR FAILED THE TEST IN LINE 5¢"
7¢ GOTO 99

8¢ PRINT "THE GE OPERATOR PASSED THE TEST"

99 END

SAMPLE RUN

THE GE OPERATOR PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
>=,=> [IF-THEN

109

GO is used as part of GO TO and GO SUB statements.
The BASIC language does not recognize the word GO by
itself. Most computers don’t care if there is a space after
the GO, converting automatically to GOTO or GOSUB.
Others (e.g. TRS-80 Level 1) do not allow the space.

This program uses GO in the GO TO statement. For more
information see GOTO.

TEST PROGRAM

Statement

1§ REM ‘GO' TEST PROGRAM

2¢ PRINT "THE GO STATEMENT *;
3¢ GO TO 6§

49 PRINT "FAILED THE TEST"

50 GOTO 99

6¢ PRINT "PASSED THE TEST.”

99 END

SAMPLE RUN

THE GO STATEMENT PASSED THE TEST.

This program uses GO in the GO SUB statement. For more information see GOSUB.

TEST PROGRAM

1§ REM 'GO' (USED WITH SUB) TEST PROGRAM

2¢ GO SUB 199

3¢ PRINT "PASSED THE TEST WHEN USED WITH SUB."
48 GO TO 999

199 REM SUBROUTINE

119 PRINT "THE GO STATEMENT 'Y

12¢ RETURN

999 END

THE GO STATEMENT PASSED THE TEST WHEN USED WITH SUB.
T A CWRT A PTIWAARTEY WART WTLOO A AT
VAINLA LERJIND i1 WOoMATgL,
None known.

ALSO SEE
GOTO, GOT, G., GOSUB, GOS.

110

GOS. is used in the TRS-80 Level I and other variations of

Palo Alto Tiny BASIC as an abbreviation for the GOSUB
statement,

For more information see GOSUB.

TEST PROGRAM

19 REM 'GOS.' TEST PROGRAM

20 GOS. 199

3¢9 PRINT "PASSED THE TEST AT LINE 2¢"
4¢ GOTO 999

19 REM SUBROUTINE

11¢ PRINT "THE GOS.STATEMENT '";

12¢ RETURN

999 END

SAMPLE RUN

THE GOS,. STATEMENT PASSED THE TEST AT LINE 2¢

VARIATIONS IN USAGE

None known.

ALSO SEE
GOSUB, ON-GOSUB, IF-GOSUB, RETURN

Statement

111

GOSUB is used to branch out of a program’s “main-
stream” to a Subroutine. The GOSUB statement must be
followed by a line number to indicate the first line of the
subroutine to be executed.

A RETURN statement must be used at the end of a sub-
routine execution to return control from the subroutine
to the main program.

TEST PROGRAM

1§ REM 'GOSUB' TEST PROGRAM

20 GOSUB 189

3¢ PRINT "PASSED THE TEST AT LINE 20"
49 GOTO 999

19¢ REM SUBROUTINE

119 PRINT "THE GOSUB STATEMENT ';
12¢ RETURN

999 END

SAMPLE RUN

THE GOSUB STATEMENT PASSED THE TEST AT LINE 28

VARIATIONS IN USAGE

None known.

ALSO SEE
RETURN, ON-GOSUB, IF-GOSUB, GOS.

Statement

- Z P

112

GOT is used in the PDP-8E as an abbreviation for the
GOTO statement.

For more details see GOTO.

TEST PROGRAM

19 REM 'GOT’' TEST PROGRAM
2¢ PRINT "THE GOT STATEMENT '; Statement
3¢ GOT 69

4¢ PRINT "FAILED"

5¢ GOTO 99

6% PRINT "HAS PASSED THE TEST."

99 END

SAMPLE RUN

THE GOT STATEMENT HAS PASSED THE TEST.

VARIATIONS IN USAGE

None known.

ALSO SEE
GOTO, G.

113

The GOTO statemrent is used to “jump” program execu-
tion to a specified line number. Many computers also
accept this statement as two words; GO TO.

TEST PROGRAM

1§ REM 'GOTO' STATEMENT TEST PROGRAM
2¢ PRINT "THE GOTO STATEMENT ';

390 GOTO 69

49 PRINT ""FAILED"

59 STOP

69 PRINT ""HAS PASSED THE TEST."

99 END

SAMPLE RUN

THE GOTO STATEMENT HAS PASSED THE TEST.

VARIATIONS IN USAGE

GOTO is often used in conjunction with other expressions.

ALSO SEE
GOT, G., IF-GOTO, ON-GOTO, GOTO-OF, etc.

Statement

—-—wnZr

114

GOTO-OF is used by some computers (e.g. the Hewlett
Packard 3000 and the Tektronix 4051) as a multiple
branching tool which incorporates a number of IF-THEN
tests into a single statement.

For example, coTo X OF 1¢4,2¢¢,3¢¢ instructs the
computer to branch to lines 100, 200 or 300 if the integer
value of X is 1, 2 or 3 respectively. If INT X is less than 1
or more than 3, the tests in this example all fail and
execution defaults to the next program line. The INT
value of X cannot exceed the number of possible branches
in the statement.

TEST PROGRAM

1§ REM 'GOTO-OF' TEST PROGRAM

24 X=2

3p GOTO X OF 49,69

4¢ PRINT " 'GOTO-OF' FAILED THE TEST"
58 GOTO 99

69 PRINT "“'GOTO-OF' PASSED THE TEST"
99 END

SAMPLE RUN

‘GOTO-OF' PASSED THE TEST

VARIATIONS IN USAGE

None known,

ALSO SEE
GO-TO-OF, ON-GOTO, ON-GOT, ON-GOSUB, IF-THEN and INT

Statement

115

GO-TO-OF is used in a few computers (e.g. the VARIAN
62(BASIC) as a multiple branching scheme which incor-
porates a number of IF-THEN tests into a single state-
ment .

For example, co TO X OF 1¢¢,20¢,3¢¢ instructs the
computer to branch to lines 100, 200, or 3@ if the value
of X is 1, 2, or 3 respectively. If INT of X is less than
1 or more than 3 the tests in this GO-TO-OF example all
fail and execution defaults to the next program line. The Statement
value of X cannot exceed the number of possible branch-

es in the statement.

Most compuiers accept both GO TO (two words) or GOTO (one word) while a few (e.g.
VARIAN 620 BASIC) accept only the two words GO TO.

TEST PROGRAM

1§ REM 'GO-TO-OF' TEST PROGRAM
2¢ X=2

3¢ GO TO X OF 49,69

44 PRINT "' 'GO-TO-OF*' FAILED THE TEST"
5¢ GOTO 99

6§ PRINT ' 'GO-TO-OF' PASSED THE TEST"
99 END

SAMPLE RUN

'GO-TO-OF' PASSED THE TEST

VARIATIONS IN USAGE

See ON-GOTO for various multiple branching schemes.

ALSO SEE
GOTO-OF, ON-GOTO, ON-GOT, GOSUB-OF, ON-GOSUB, IF-THEN

116

GR is used in the APPLE II BASIC as both a command
and a program statement to change the computer’s opera-
tion from the TEXT mode to the GRaphics mode. GR
must be executed before using the special graphics state-
ments PLOT, HLIN-AT and VLIN-AT.

GR can also be used to clear the screen before starting a
new graphics display. Each time GR is executed, the
computer erases the entire screen.

Command
TEST PROGRAM Statement

1§ REM 'GR' TEST PROGRAM
2¢ GR

39 COLOR=6

4¢ HLIN ¢,39 AT 2¢

5¢ END

SAMPLE RUN

If the computer accepted the GR statement, a blue horizontal line should appear across
the screen.

VARIATIONS IN USAGE

None known.

ALSO SEE
TEXT, COLOR, HLIN-AT, VLIN-AT, PLOT

117

GT is used in some computers (e.g. the TI 990) as an
alternate word for the “greater-than” sign (>).

For more information see > .

TEST PROGRAM

19 REM 'GT {GREATER THAN)' TEST PROGRAM
29 1F 19 GT 5 THEN 5¢
3¢ PRINT “THE GT OPERATOR FAILED THE TEST"

49 GOTO 99
5¢ PRINT "THE GT OPERATOR PASSED THE TEST"

99 END

SAMPLE RUN

THE GT OPERATOR PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
> IF-THEN

Operator

118

HLIN-AT is used in the APPLE II BASIC as a special
feature to display a Horizontal LINe AT a specified row

on the screen.
The horizontal line length is determined by two numbers
following the HLIN statement. These numbers indicate
the bounds between which the line will extend. The
line may extend any length between columns @ to 39.

The number following AT represents the row number
which the line must occupy. This number may range
from @ to 39.

Statement

For example, HLIN 1¢,3p AT 2¢ tells the computer to draw a horizontal line from

column 10 to column 3¢ AT row 20.

The GRaphics statement must be executed before the computer can accept the HLIN-AT
statement (see GR). The line’s color is determined by the COLOR statement (see

COLOR).

TEST PROGRAM

1¢ REM 'HLIN-AT' TEST PROGRAM
2¢ GR

3¢ Y=¢

4¢ FOR X=§ TO 39

5¢ COLOR =Y

64 HLIN ¢,39 AT X

70 Y=Y+1

8¢ IF Y< 16 THEN 1¢¢
9p Y=¢

190 NEXT X

999 END

SAMPLE RUN

If the computer accepted the HLIN-AT statement, the screen should be filled with 39

horizontal lines of various colors.

VARIATIONS IN USAGE

None known.

ALSO SEE
GR, COLOR, PLOT, VLIN-AT, TEXT

119

I. is used in the TRS-80 Level I and other variations of
Palo Alto Tiny BASIC as an abbreviation for the INT
function.

For more information see INT.

TEST PROGRAM

19 REM "I, (INT)' TEST PROGRAM Function
2¢ X=2.864 Statement
3¢ PRINT “THE INTEGER VALUE OF'";X;

49 X=1.{X)

5¢ PRINT "IS'";X

99 END

SAMPLE RUN (using 10)

THE INTEGER VALUE OF 2.864 1S 2

VARIATIONS IN USAGE

I. can also be used in the TRS-80 Level I BASIC as an abbreviation for the INPUT state-
ment when . is not followed by a value enclosed in parenthesis.

TEST PROGRAM

1¢ REM ‘L. (INPUT)' TEST PROGRAM

2¢ PRINT "ASSIGN A VALUE TO THE VARIABLE X'';
3¢ 1.X

4¢ PRINT “THE VALUE OF X IS';X

39 END

SAMPLE RUN (using 10)

ASSIGN A VALUE TO THE VARIABLE X71¢
THE VALUE OF X IS 19

ALSO SEE
INPUT, INPUTL, IN., INP

120

The IF statement is part of the conditional branching
statements IF-THEN, I[F-GOTO, IF-GOSUB, IF-LET, etc.,

and is used to indicate the variable to be tested by one of
the relational operators (see =, < , >, <=, >=,
<>).

For example, 1F x=3 THEN 1¢¢ the computer branches
or “jumps”to line 19@ IF X equals 3. If the condition is
not met (i.e. X#3), the test “falls through” and program
execution continues on the next line. Statement

These conditional IF-THEN tests must be used last in multiple statement lines because
the computer either branches to the indicated line number (if the test is true), or falls
through to the next numbered line (if the test is false).

For example, 3¢ IF X=3 THEN 1¢¢:PRINT "Xx=3" The PRINT statement can never be
executed.

TEST PROGRAM

19 REM 'IF' TEST PROGRAM
29 X=1¢

3¢ IF X=1¢ THEN 6¢

4¢ PRINT ' 'IF' FAILED THE TEST"
5¢ GOTO 99

6¢ PRINT "‘IF' PASSED THE TEST"
99 END

SAMPLE RUN

IF' PASSED THE TEST

To further check the computer’s IF capability, see the TEST PROGRAMS under
IF-GOTO, IF-GOSUB and IF-LET.

VARIATIONS IN USAGE

None known.

ALSO SEE
IF-THEN, IF-GOTO, IF-GOSUB, IF-LET, IF-G., IF-GOS., IF-GOT, IF-T., IF-THE

—nZ>

121

IF-G. is used in the TRS-80 Level I and other variations of

Palo Alto Tiny BASIC as an abbreviation for the IF-
GOTO statement.

For more information see IF-GOTO.

TEST PROGRAM

1¢ REM 'iF-G. (IF-GOTO)' TEST PROGRAM
2¢ X=3¢
3¢ IF X=39 G.60

4¢ PRINT "THE IF-G. STATEMENT FAILED THE TEST"

54 GOTO 99

69 PRINT "THE IF-G. STATEMENT PASSED THE TEST"

899 END

SAMPLE RUN

THE IF-G. STATEMENT PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
IF-GOTO, IF-GOT, IF-THEN, GOTO

Statement

122

IF-GOS. is used in the TRS-80 Level I and other variations
of Palo Alto Tiny BASIC as an abbreviation for the IF-
GOSUB statement.

For more information see IF-GOSUB.

TEST PROGRAM

Statement

1¢ REM 'IF-GOS.' TEST PROGRAM
2¢ X=3

3¢ IF X=3 GOS. 198

4¢ PRINT "PASSED THE TEST AT LINE 3¢."”
5¢ GOTO 999

190 REM SUBROUTINE

114 PRINT "THE IF-GOS. STATEMENT ";
12¢ RETURN

999 END

SAMPLE RUN

THE IF-GOS. STATEMENT PASSED THE TEST AT LINE 3¢.

VARIATIONS IN USAGE

None known.

ALSO SEE
IF-GOSUB, GOSUB, RETURN, IF-THEN, ELSE

123

The IF-GOSUB statement is a conditional subroutine
branching statement using one of the relational operators
(see =,<,>,<=>=,<>).

When the condition ot the I1F-GOSUB statement is met,
the computer executes the GOSUB statement.

For example, 1F x=3 gosuB 1¢¢ tells the computer to
branch or “jump” to the subroutine starting at line 109 Statement
if X equals 3. If the condition is not met (i.e. X#3), the

test “falls through” and program execution continues on the next line.

TEST PROGRAM

1¢ REM 'IF-GOSUB' TEST PROGRAM

2¢ X=3

3¢ 1F X=3 GOSUB 1¢¢

4¢ PRINT "PASSED THE TEST AT LINE 3¢"
5¢ GOTO 999

1¢¢ REM SUBROUTINE

114 PRINT "THE IF-GOSUB STATEMENT *;
129 RETURN
999 END

SAMPLE RUN

THE IF-GOSUB STATEMENT PASSED THE TEST AT LINE 3¢

VARIATIONS IN USAGE

None known.

ALSO SEE
GOSUB, IF-GOS., RETURN, IF-THEN, ELSE

124

IF-GOT is used in the PDP-8E as an abbreviation for the
IF-GOTO statement.

For more details see IF-GOTO.

TEST PROGRAM

18 REM 'IF-GOT' TEST PROGRAM
20 X=1¢

3¢ IF X=1¢ GOT 69

4¢ PRINT ""IF-GOT' FAILED THE TEST"
59 GOTO 99

6¢ PRINT "'IF-GOT' PASSED THE TEST"
99 END

SAMPLE RUN

"TF-GOT* PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
IF-GOTO, IF-G.

Statement

125

[F-GOTO is a conditional branching statement using one
of the relational operators (see =, <,> ,<=,>=,<>).

When the condition of the IF-GOTO statement is met, the
computer executes the branching statement GOTO.

For example, iF x=3 goTo 1¢¢ tells the computer to
branch or “jump” to line 199 if X equals 3. If the condi-
tion is not met (i.e. X#3), the test “falls through” and the
program execution continues on the next line. Statement

TEST PROGRAM

1p REM 'IF-GOTO' TEST PROGRAM

20 X=3¢

3¢ IF X=3¢ GOTO 69

49 PRINT "THE IF-GOTO STATEMENT FAILED THE TEST"
59 GOTO 99

6¢ PRINT "THE IF-GOTO STATEMENT PASSED THE TEST"
99 END

SAMPLE RUN

THE IF-GOTO STATEMENT PASSED THE TEST

VARIATIONS IN USAGE
Some interpreters allow the statement THEN to be used in place of GOTO. See IF-THEN.

ALSO SEE
GOTO, GOSUB, ELSE, IF-THEN

126

The IF-LET statement is a conditional LET statement using
one of the relational operators (see =,<,>,<=,>= < >).

When the condition of the IF-LET statement is met, the
computer assigns a value to the variable following LET.

TEST PROGRAM

19 REM 'IF-LET' TEST PROGRAM Statement
2¢ X=3¢

39 1F X>2¢ LET X=1¢

49 PRINT "X =';X i
5¢ PRINT " 'IF-LET' PASSED THE TEST IF THE VALUE OF X IS 1¢"

99 END

SAMPLE RUN

X=1¢
‘TF-LET' PASSED THE TEST IF THE VALUE OF X 1S 1¢

VARIATIONS IN USAGE

Computers are not uniform in their use of the LET statement. Many allow LET to be
omitted while others allow the THEN statement in place of LET.

ALSO SEE
IF-THEN, LET

127

IF-T. is used in the TRS-80 Level I as an abbreviation for
the IF-THEN statement.

For more information see IF-THEN.

TEST PROGRAM

19 REM 'IF-T.' TEST PROGRAM

29 X=1¢

3¢ IF X=19 T.69

4% PRINT "‘IF-T.' FAILED THE TEST"
5¢ GOTO 99

6¢ PRINT ''IF-T.' PASSED THE TEST"
99 END

SAMPLE RUN

‘IF-T.' PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
IF-THEN, IF-THE

Statement

128

IF-THE is used in the PDP-8E as an abbreviation for the
IF-THEN statement.

For more information see IF-THEN.

TEST PROGRAM

19 REM 'IF-THE' TEST PROGRAM
2¢ X=1¢

3P IF X=1¢ THE 6¢

49 PRINT "'IF-THE' FAILED THE TEST'"
5¢ GOTO 99

6@ PRINT **'IF-THE' PASSED THE TEST"
99 END

SAMPLE RUN

IF-THE' PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
IF-THEN, IF-T.

Statement

129

The IF-THEN statement is a conditional branching
statement using one of the relational operators
(see=, <, >, <=, >=,<>),

When the condition of the IF-THEN statement is met, the
computer executes the branching statement number fol-
lowing THEN. For example, 1F X=3 THEN 1¢¢ tells the
computer to branch or “jump” to line 10 if X equals 3.
If the condition is not met (i.e. X¥3), the test “falls
through” and program execution continues on the next Statement
line.

TEST PROGRAM

19 REM 'IF-THEN' TEST PROGRAM

20 X=3¢

3¢ IF X=3¢ THEN 6¢

4¢ PRINT "THE IF-THEN STATEMENT FAILED THE TEST"

54 GOTO 99

6¢ PRINT "THE IF-THEN STATEMENT PASSED THE TEST IN LINE 3p"
99 END

SAMPLE RUN

THE IF~-THEN STATEMENT PASSED THE TEST IN LINE 3¢

Some computers allow math operations to be performed when the IF-THEN statement is
satisfied. For example, 1IF A=3 THEN X=2«(A + 6)/3 calculates for the value of X if the
variable A is equal to 3. If not, the test fails and execution proceeds to the next line.

To test this feature in your computer, add the following program lines:

7¢ IF X=3¢ THEN X=X+9¢
8¢ PRINT '"X='";X
99 PRINT"IF-THEN PASSED THE TEST IN LINE 7¢ IF X=12¢"

SAMPLE RUN

THE IF-THEN STATEMENT PASSED THE TEST IN LINE 3¢
X=120
IF-THEN PASSED THE TEST IN LINE 78 IF X=12¢

Some interpreters allow any of the operating statements to be performed when the
IE-THEN condition is met. For example, 1F x=3 THEN END will stop program execution
when the value of X equals 3.

—_nZ>P

130

IF-THEN

Add the following line to the test program to check this capability:

196 IF X=12¢ THEN PRINT "IF-THEN PASSED THE TEST IN LINE 1p¢'"

SAMPLE RUN

THE IF-THEN STATEMENT PASSED THE TEST IN LINE 3¢
X=12¢

IF-THEN PASSED THE TEST IN LINE 7¢ IF X=12¢
IF-THEN PASSED THE TEST IN LINE 1¢¢

Computers are not uniform in their use of the THEN statement. Many allow THEN to be
omitted when IF is followed directly by a math operator, operating statement, or branch-
ing statement.

TEST PROGRAM

This program tests for three variations which imply (but do not use) THEN.

14 REM TEST PROGRAM WITH IMPLIED 'THEN' IN LINES 3¢, 69 AND 999
2¢ X=3¢

39 IF X=3¢ GOTO 6¢

49 PRINT ""LINE 3¢ FAILED THE TEST"

5¢ GOTO 999

6 IF X=3¢ GOSUB 109

7¢ GOTO 999

1$¢ REM SUBROUTINE

11¢ PRINT ""LINES 3¢ AND 6§ PASSED THE TEST. DOES LINE 9997
12¢ RETURN

999 IF X=38 END

SAMPLE RUN

LINES 39 AND 68 PASSED THE TEST. DOES LINE 9997

Great caution must be used with interpreters which allow use of multiple statement lines.
The “falling thru” of an IF-THEN test is to the next line, not the next statement on the
same line. For this reason, IF-THEN tests are usually not followed by other statements on
the same line,

For example: IF X=5 THEN X=X+Y:PRINT X. The PRINT statement is not executed if
the value of X does not equal 5.

ALSO SEE

ELSE, GOTO, GOSUB, STOP, END, PRINT and other IF . .. statement BASIC words
which allow use of THEN by implication.

131

IN. is used in the TRS-80 Level I and other variations of

Palo Alto Tiny BASIC as an abbreviation for the state-
ment INPUT.

For more informaiion see INFUT.

TEST PROGRAM

1¢ REM 'IN.' TEST PROGRAM
2¢ PRINT "ASSIGN A VALUE TO THE VARIABLE X'';
3¢ IN. X

4¢ PRINT "THE VALUE OF X IS'"iX

99 END

SAMPLE RUN (using 10)

ASSIGN A VALUE TO THE VARIABLE X7 1¢
THE VALUE OF X IS 19

VARIATIONS IN USAGE

None known.

ALSO SEE
INPUT, INPUTL, INKEYS, INP, L.

Statement

132

The INKEYS function is used in the TRS-80 Level II
BASIC to read a character from the keyboard each time
INKEY$ is executed. Unlike the INPUT statement,
INKEY$ does not halt execution waiting for the ENTER
key to be pressed. The computer just keeps “circling”
until it receives a message from the keyboard. Until a key
on the keyboard is pressed, INKEY$ simply reads an
“empty” string (ASCII code of).

Since INKEY$ doesn’t wait for you to enter a character
from the keyboard and “ENTER”, it usually is placed in
a program loop to repeatedly scan the keyboard looking for a pressed key.

Function

For example:

19 IF INKEY$="X" GOTO 1¢¢
2¢ GOTO 19
1¢¢ PRINT “"YOU HIT ‘X' DIDN'T YOU!["

The INKEY$ function repeatedly looks for the letter X at the keyboard to meet the
condition of the IF-THEN statement. When the letter X is entered, the condition of the
IF-THEN statement is met and the computer branches to line 100.

TEST PROGRAM

19 REM 'INKEYS' TEST PROGRAM
2¢ CLS

3¢ PRINT "PRESS ANY KEY ON THE KEYBOARD"

4 AS=INKEYS$

50 IF AS=""GOTO 4¢

6¢ PRINT "YOU HAVE JUST PRESSED THE 'AS:" KEY"

7¢ PRINT: PRINT "PRESS THE ";A$;" KEY AGAIN TO START OVER"
80 IF INKEY$=A% GOTO 28

99 GOTO 8¢

99 END

SAMPLE RUN (using R)

PRESS ANY KEY ON THE KEYBOARD
YOU HAVE JUST PRESSED THE R KEY

PRESS THE R KEY AGAIN TO START OVER

VARIATIONS IN USAGE

None known.

ALSO SEE
INPUT, IF-THEN

133

INP stands for “Input from a port”.

The INP statement is used to read the decimal value of a
hyte of infarmation at a specified computer port. The
byte value can be any positive integer from @ to 255.

For example, PRINT INP(X) prints the decimal value of
the byte at port X.

INP is a useful tool to monitor ports for a specific condi- Statement

tion, such as an input request from a remote peripheral

device. Other applications might include reading temperatures from remote sensors on a
solar hot water heating system, etc.

TEST PROGRAM

19 REM 'INP' TEST PROGRAM

2¢ FOR X=¢ TO 255

3¢ PRINT "THE DECIMAL VALUE OF THE BYTE AT PORT#'i{X;"IS'INP(X)
49 NEXT X

98 END

SAMPLE RUN (typical)

THE DECIMAL VALUE OF THE BYTE AT PORT# ¢ 1S 255

THE DECIMAL VALUE OF THE BYTE AT PORT# 25515 127

INP is also used in versions of the PDP-8 as an abbreviation for the INPUT statement.

For more information see INPUT.

TEST PROGRAM

1¢ REM 'INP (INPUT)' TEST PROGRAM

2¢ PRINT "ASSIGN A VALUE TO THE VARIABLE X"
3¢ INP X

4¢ PRINT "THE VALUE OF X 1S';X

99 END

SAMPLE RUN (using 1¢)

ASSIGN A VALUE TO THE VARIABLE X

71¢
THE VALUE OF X IS 18

134

INP

VARIATIONS IN USAGE

None other known.

ALSO SEE

OUT, PEEK, POKE, INPUT, I, IN.

135

The INPUT statement allows the user to assign data to
variables from the keyboard. When the computer executes
an INPUT statement, it prints a question mark indicating
it is waiting for you to assign a value to a variable. It will
continue to wait until the ENTER (or RETURN) key is
pressed.

TEST PROGRAM

Statement

14 REM ‘INPUT' STATEMENT TEST PROGRAM

2¢ PRINT "ASSIGN A VALUE TO THE VARIABLE X"
3¢ INPUT X

4¢ PRINT "THE VALUE OF X IS";X

99 END

SAMPLE RUN (using 10)

ASSIGN A VALUE TO THE VARIABLE X
719

THE VALUE OF X IS 19
VARIATIONS IN USAGE

An increasingly common variation found in microcomputer interpreters allows INPUT to
serve in both PRINT and INPUT capacities (thus conserving space).

TEST PROGRAM

1¢ REM 'INPUT/PRINT' STATEMENT TEST PROGRAM
2¢ INPUT "ASSIGN A VALUE TO THE VARIABLE 'X'"
39 PRINT "THE VALUE OF X IS';X

99 END

SAMPLE RUN (using 10)

ASSIGN A VALUE TO THE VARIABLE 'X’
719
THE VALUE OF X IS 1¢

Note that no PRINT statement preceded the INPUT statement. Both functions were
combined in line 2.

ALSO SEE
INPUTL, INKEYS, INP, IN., 1.

—-wnzZzP

The INPUTL statement is used by a few computers (e.g.
the Digital Group Maxi-BASIC) in a manner similar to the
INPUT statement, but INPUTL stops the carriage return
after the INPUT data has been assigned to a variable,

For more information see INPUT.

TEST PROGRAM

Statement

14 REM 'INPUTL' TEST PROGRAM
2¢ PRINT "ASSIGN A VALUE TO THE VARIABLE X"

3¢ INPUT X

4¢ PRINT "VARIABLE X=';X

58 PRINT "INPUTL PASSED THE TEST IF THE WORDS VARIABLE X =';X
60 PRINT "ARE PRINTED ON THE SAME LINE AS THE ? SIGN"

99 END

SAMPLE RUN (using 10)

ASSIGN A VALUE TO THE VARIABLE X
210 VARIABLE X = 1¢

INPUTL PASSED THE TEST IF THE WORDS VARIABLE = 1¢
ARE PRINTED ON THE SAME LINE AS THE ? SIGN

VARIATIONS IN USAGE

None known.

ALSO SEE
INPUT, INP, IN. I.

137

The INTeger function is used to round numbers off to
their integer (whole number) value. In BASIC numbers are
always rounded down. The whole number remains the
same regardless of the value of the numbers removed from
the right of the decimal poift; cxeept, when o negative
number is integered, the resultant number is rounded off
to the next smaller whole number. For example, INT

(—4.65) returns a value of 5.

There are limits to the size of the number that some com-

Function

puters will process with the INT function. Some microcomputers will not accept a num-

ber smaller than —32767 or larger than +32767 within the parenthesis.

TEST PROGRAM

1§ REM ‘INT' TEST PROGRAM

2¢ READ X

3¢ PRINT "THE INTEGER VALUE OF"; X;

4¢ X = INT(X)

5¢ PRINT "IS'; X

6¢ IF X=999 THEN 999

7¢ GOTO 2¢

8¢ DATA 3.33,2.864,.35,-3.15,32766.853,-32766.853,999.99
899 END

SAMPLE RUN

THE INTEGER VALUE OF 3.33153

THE INTEGER VALUE OF 2.864 1S 2

THE INTEGER VALUE OF .35 IS ¢

THE INTEGER VALUE OF -3.15 1S -4

THE INTEGER VALUE OF 32766.853 IS 32766
THE INTEGER VALUE OF -32766.853 IS -32767
THE INTEGER VALUE OF 999.99 IS 999

VARIATIONS IN USAGE

None, other than the limitation indicated.

ALSO SEE
CINT, %

- nZ>P

138

L. is used in the TRS-80 Level I and other variations of
Palo Alto Tiny BASIC as an abbreviation of the LIST
command.

For more information see LIST.

TEST PROGRAM

1¢ REM 'L. {LIST)' TEST PROGRAM Command
2¢ REM THIS COMMAND

3¢ REM WILL DISPLAY EACH LINE

49 REM AS HELD BY THE COMPUTER

5¢ PRINT ""'L.' TEST COMPLETE"

99 END

SAMPLE RUN

After entering the L. command, the computer should LIST the entire program. With
longer programs, it will list only enough of it to fill the screen; to see more, press the 1
key.

VARIATIONS IN USAGE

None known.

ALSO SEE
LIST, LI, LIS

139

LE is used in some computers {e.g. the TI 990) as an
alternate word for the “less than or equal to” sign (< =).

For more information see < =,

TEST PROGRAM

19 REM 'LE (LESS THAN OR EQUAL TO)} TEST PROGRAM

2¢ IF 19 LE 2¢ THEN 5¢ Operator
3¢ PRINT "THE LE OPERATOR FAILED THE TEST IN LINE 29"

49 GOTO 99

5S¢ 1F 2¢ LE 2¢ THEN 8¢

64 PRINT "THE LE OPERATOR FAILED THE TEST IN LINE 5¢"

7¢ GOTO 99

8¢ PRINT "THE LE OPERATOR PASSED THE TEST"

99 END

SAMPLE RUN

THE LLE OPERATOR PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
< =,=< ,IF-THEN

140

The LEFT(string,n) function is used in some computers
(e.g. those using MAX BASIC) to isolate a specific number
(n) of string characters, starting from the left-most charac-
ter in the string.

For example, PRINT LEFT{"RUNNING",3) prints the
letters RUN, which are the left 3 characters in RUNNING,
which is a string.

For more information see LEFTS.

Function

TEST PROGRAM

14 REM 'LEFT' TEST PROGRAM

2¢ AS="TESTING"

30 B$=LEFT{A$,4)

4¢ PRINT "THE 'LEFT' FUNCTION PASSED THE ':B$
99 END

SAMPLE RUN

THE 'LEFT' FUNCTION PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
LEFT$

141

The LEFTS$(string,n) function is used to isolate a specific
number (n) of string characters starting from the left-most
character in the string.

For example, PRINT LEFTS$("RUNNING",3) prints the
letters RUN, which are the left 3 characters in the string
RUNNING.

The string must be enclosed in quotes or listed as a string
variable. The number of characters (n) can be expressed as
a variable, number or arithmetic operation. A comma
must separate the string from the number.

Function

If the value of (n) is a decimal, the computer automatically finds its integer value.

TEST PROGRAM

1¢ REM 'LEFTS' TEST PROGRAM

2¢ A$="TESTING"

3¢ BS=LEFT$(AS$.4)

49 PRINT LEFTS$("THEATER',3) ;' '"LEFT$ FUNCTION PASSED THE ' ;8%
99 END

SAMPLE RUN

THE 'LEFTS$ FUNCTION PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
PRINT, RIGHTS, MID§, CHRS, SPACES, STRS, STRINGS, INKEY$

142

The LEN function is used to measure the LENgth of
strings by counting the number of characters enclosed in
quotes or assigned to string variables.

For example, 1¢ PRINT LEN{"TEST") should print 4,
the number of letters in the word “TEST”.

TEST PROGRAM

Function

19 REM 'LEN' TEST PROGRAM
20 PRINT "TYPE ANY COMBINATION OF LETTERS AND NUMBERS"

3¢ INPUT AS
4¢ PRINT "YOU ENTERED '";A$" WHICH CONTAINS";

5¢ PRINT LEN(AS); "CHARACTERS'";
99 END

SAMPLE RUN (using ABC123)

TYPE ANY COMBINATION OF LETTERS AND NUMBERS

7 ABC123
YOU ENTERED ABC123 WHICH CONTAINS 6 CHARACTERS

VARIATIONS IN USAGE

None known.

ALSO SEE
ASC, FRE, LEFTS$, MID§, RIGHT$, STR$, VAL

143

The LET statement is used to assign values to variables
(e.g. LET x=2¢). LET is required by a few computers, but
is optional on most. When not required, it is sometimes
used as a method of “flagging” variables that are being
assigned new values or where speciai identification is
desired.

TEST PROGRAM

Statement

19 REM 'LET' TEST PROGRAM

2¢ LET X=2¢

3¢9 PRINT "THE LET STATEMENT PASSED THE TEST IN LINE'";X
99 END

SAMPLE RUN

THE LET STATEMENT PASSED THE TEST IN LINE 2¢

To determine if LET is required by your computer, delete LET from line 20 and try
again.

VARIATIONS IN USAGE

None known.

—-nZ>

144

The LGT(n) function computes the value of the common

logarithm of any number (n) whose value is greater than .
It is used in the Tektronix 4051 BASIC and MAX BASIC.

TEST PROGRAM

19 REM 'LLGT' TEST PROGRAM
2¢ PRINT "ENTER A POSITIVE NUMBER"'";

3¢ INPUT N

48 X=LGT(N) Function
5¢ PRINT "THE COMMON LOG OF'";N;"I5"" ;X

3¢999 END

SAMPLE RUN (using 100)

ENTER A POSITIVE NUMBER? 198
THE COMMON LOG OF 1¢¢ IS 2

If your computer failed the test program, see LOG1Q for a substitute subroutine and
other conversion tips.

VARIATIONS IN USAGE

None known.

ALSO SEE
LOG1¢, CLOG, LOG, LOGE, LN

145

LI is used by some computers (e.g. the T.I. 990) as an
abbreviation for the LIST command.

For more information see LIST.

TEST PROGRAM

1¢ REM 'Ll (LIST)' TEST PROGRAM
2¢ REM THIS COMMAND

3¢ REM WILL DISPLAY EACH LINE
4¢ REM AS HELD BY THE COMPUTER

Command

5¢ PRINT "'LI' TEST COMPLETE"
99 END

SAMPLE RUN

After typing LI as a command, the computer should LIST the entire program.

VARIATIONS IN USAGE

None known.

ALSO SEE
LIST, LIS, L.

146

The LIN(n) statement (used in the Hewlett-Packard 2000
BASIC and the Digital Group Opus I and Opus 2 BASIC)
causes the computer to skip a specified number (n) of
lines on a printer or CRT before printing the next line.

TEST PROGRAM

1§ REM 'LIN‘ TEST PROGRAM

2¢ PRINT "THE LIN STATEMENT PASSED THE TEST"
39 LIN(5)

4¢ PRINT "1F 5 LINES ARE SKIPPED BEFORE THIS LINE IS PRINTED"

Statement

99 END

SAMPLE RUN

THE LIN STATEMENT PASSED THE TEST

IF 5 LINES ARE SKIPPED BEFORE THIS LINE IS PRINTED

IF YOUR COMPUTER DOESN'T HAVEIT

If your computer does not have LN(n), it can be easily simulated by substituting (n)
number of PRINT statements for LIN(n).

For example, substitute the following line for line 39 in the TEST PROGRAM:
3¢ PRINT:PRINT:PRINT:PRINT:PRINT

Since each PRINT statement triggers a line-feed, the above line will cause the computer
to perform the same operation as LIN(5).

VARIATIONS IN USAGE

None known.

ALSO SEE
PRINT

147

LIS is used in the PDP-8E as an abbreviation for the LIST
command.

For more information see LIST.

TEST PROGRAM

19 REM 'LIS' TEST PROGRAM .
2¢ REM THIS COMMAND Command
3¢ REM WILL DISPLAY EACH LINE

4¢ REM AS HELD BY THE COMPUTER

5¢ PRINT "'LIS' TEST COMPLETE"

99 END

SAMPLE RUN

After entering LIS the computer should LIST the entire program.

VARIATIONS IN USAGE

None known.

ALSO SEE
LIST, LIS, L.

148

"The LIST command is used to display each program line
in the numerical order in which it appears in the program.
Some computers (or terminals) will scroll through the
entire program list unless stopped by a specified key func-
tion. (Control C, Control S, etc.) Others will stop after
displaying the first 12, 16, 24 or more lines, then advance
one additional line each time the up-arrow, down-arrow or
other appropriate key is pressed.

Command
Statement

The LIST command can also be used in conjunction with
a line number to specify a starting point other than at the
beginning. Many computers will also accept a start and finish line number. For example,
LIST1¢-2¢ or LIST 1¢-2¢ will list only those program lines with numbers from 10 to 2§.

TEST PROGRAM

1¢ REM 'LIST' COMMAND TEST PROGRAM
2¢ REM THIS COMMAND

3¢ REM WILL DISPLLAY EACH LINE

49 REM AS HELD BY THE COMPUTER

5¢ PRINT "LIST TEST COMPLETE"

99 END

SAMPLE RUN

Type in LisT28-3¢ and your computer should print:

2¢ REM THIS COMMAND
3¢9 REM WILL DISPLLAY EACH LINE

If your computer will not accept the line number limitations, then try entering LIST20.
If this test fails, try entering LIST without line numbers.

VARIATIONS IN USAGE

Enter alonger program and try the following LIST commands: LIST- LIST1¢8- LIST-19¢
LIST—10¢

If your computer accepted these LIST commands, LIST- should have listed the entire
program, LIST100- the program starting at line 10@, and LIST-10® the program starting
with the first line and ending with line 100.

The LIST command is accepted by some computers as part of a program statement. To
test this on your computer, add the following line to the Test Program: 6¢ LisT

149

L.
€?

If

—

IST is accepted as a program statement then it will print:

LIST TEST COMPLETE

1¢ REM 'LIST' COMMAND TEST PROGRAM
2¢ REM THIS COMMAND

36 REM WILL DISPLAY EACH LINE

49 REM AS HELD BY THE COMPUTER

5¢ PRINT "LIST TEST COMPLETE"

6¢ LIST

99 END

ALSO SEE
L., LIS, LI

150

The LN(n) function (used by COMPAL Micropolis BASIC
and DEC-17D BASIC) computes the value of the natural -
logarithm of any number (n) whose value is greater than
@. It is a “shorthand” for the more common LOG(n)

TEST PROGRAM

1¢ REM 'LLN’' TEST PROGRAM
2¢ PRINT “"ENTER A POSITIVE NUMBER"'";

3¢ INPUT N Function
4% L=L.N(N)

5¢ PRINT “THE NATURAL LOG OF ";N;"IS""iL.
39999 END

SAMPLE RUN (using 100)

ENTER A POSITIVE NUMBER? 1¢¢
THE NATURAL L.OG OF 188 1S 4.6¢517

If your computer failed the test program, see LOG for a substitute subroutine and other
conversion tips.

VARIATIONS IN USAGE

None known.

ALSO SEE
LOG, LOGE, LN, LOG1¢, LGT

151

The LOAD command is used to load a program into the
computer from cassette tape.

TEST PROCRAM

Enter this program into the computer from the keyboard,
then store it on cassette tape. (See SAVE for details.)

19 REM 'LLOAD' TEST PROGRAM Command
2¢ PRINT "THIS PROGRAM TESTS THE LOAD FEATURE"
99 END

Once the program is recorded on cassette tape, erase the computer memory with NEW,
SCRATCH or whatever is appropriate.

Rewind the tape, then set the recorder to the PLAY mode and type the LOAD com-
mand.

The cassette recorder’s motor is controlled by the computer which turns it on and off
before and after the LOAD cycle. The cassette should “play back” the program, LOAD-
ing it into the computer.

List the program to verify that the program held in the computer’s memory is identical to
that originally entered (see LIST). If all looks well, RUN the program.

SAMPLE RUN

THIS PROGRAM TESTS THE LOAD FEATURE

VARIATIONS IN USAGE

None known.

ALSO SEE
CLOAD, SAVE, CSAVE, LIST, NEW

152

The LOG(n) function computes the natural logarithm of
any number (n) whose value is greater than §. For com-
mon logs see LOG1§, CLOG, CLG or LGT.

TEST PROGRAM

1¢ REM 'LOG' TEST PROGRAM
2¢ PRINT "ENTER A POSITIVE NUMBER"'";
33 INPUT N

49 L=LOG (N}

5¢ PRINT "THE NATURAL LOG OF'N;' 15 ;L. Function
34999 END

SAMPLE RUN (using 100)

ENTER A POSITIVE NUMBER? 1¢9
THE NATURAL LOG OF 190 IS 4.69517

DIFFERENT WORDS FOR NATURAL LOG
See LOGE and LN,

IF YOUR COMPUTER HAS NONE OF THEM

If they all fail, substitute the following subroutine:

3p@PP GOTO 39999

3¢17¢ REM * NATURAL LOGARITHM SUBROUTINE * INPUT X, OUTPUT L
3$172 REM USES A,B,C AND L INTERNALLY

3$1741F X > ¢ THEN 3¢18¢

3$176 PRINT "LOG UNDEFINED AT ;X

39178 STOP

3p18¢ A=1

3¢182 B=2

3$184 C=.5

3p186 E=9

3¢188 IF X >=A THEN 3¢2¢2

3¢19¢ IF X < C THEN 3¢2¢8

30192 X=(X-797197)/{X+.797197)

34194 L=X*X

39196 L={({.598979+L+.961471)*L+2.88539)+X+E-.5)%.693147

—_nZP

153

3¢198 1F ABS(L) < 1E-6 THEN 3¢22¢
392¢¢ RETURN

3¢202 X=C*X

39294 E=E+A

39206 GOTO 39188

39208 X=B*X

3¢21¢ E=E-A

39215 GOTO 3919¢

39220 L=0

39225 RETURN

To use this subroutine in the TEST PROGRAM, make these program additions:

35 X=N
40 GOSUB 38170

CONVERSION FACTORS

To convert natural log to common log, multiply the natural log times .434295. For
example, X=LOG(N)*.434295. To convert common log to natural log, multiply the
common log times 2.3(26.

VARIATIONS IN USAGE

A few computers (e.g. IMSAI 4K) use LOG to compute the COMMON LOG, not the
NATURAL LOG (but this is the exception).

ALSO SEE
LN, LOGE, LOG 19, CLOG, CLG and LGT.

154

The LOGE(n) function computes the value of the natural
logarithm of any number (n) whose value is greater than
¢. For common logs see CLG, LOG10, CLOG or LGT.

TEST PROGRAM

1¢ REM 'LOGE' TEST PROGRAM

290 PRINT "ENTER A POSITIVE NUMBER'";
3¢ INPUT N Function
4¢ L=LOGE(N)

5¢ PRINT "THE NATURAL LOG OF";N;"IS'";L

3¢999 END

SAMPLE RUN (for 100)

ENTER A POSITIVE NUMBER? 198
THE NATURAL LOG OF 1¢¢ IS 4.69517

If your computer failed the TEST PROGRAM, try the TEST PROGRAMS in LOG and
LN. If they also fail, substitute the subroutine found under LOG (saves space not to
duplicate it here).

To use that subroutine with this TEST PROGRAM, make these TEST PROGRAM
changes:

35 X=N
4¢ GOSUB 39179

CONVERSION FACTORS

To convert a natural log to a common log, multiply the natural log value times .434295.

For example: X=LOGE(N)*.434295

To convert a common log to a natural log, multiply the common log value times 2.3026.

ALSO SEE
LOG, LN, CLG, CLOG, LOG10, LGT

165

The LOG1¢(n) function computes the value of the com-
mon (base 10) logarithm of any number (n) whose value
is greater than .

TEST PROGRAM

16 REM 'LOGI@ TEST PROGRAM

2¢ PRINT "ENTER A POSITIVE NUMBER"';
3¢ INPUT N

40 X=LOG1p(N) Function
5¢ PRINT "THE COMMON LOG OF'NIS' X

39999 END
SAMPLE RUN (for 100)

ENTER A POSITIVE NUMBER? 109
THE COMMON LOG OF 1¢¢ 1S 2

IF YOUR COMPUTER DOESN'T HAVE IT

If your computer failed the TEST PROGRAM, try the TEST PROGRAMS in LOG,
CLOG and LGT. If they also fail, substitute the subroutine found under LOG (saves space
not to duplicate it here).

To make the subroutine compute the common logarithm (instead of the natural loga-
rithm), make the following subroutine changes:

3917¢ REM * COMMON LOGARITHM SUBROUTINE * INPUT X, OUTPUT X

392009 GOTO 3¢$223
3$223 X=L* .4342945

To use the LOG subroutine with the TEST PROGRAM, make these TEST PROGRAM
changes:

35 X=N
40 GOSUB 3¢17¢

CONVERSION FACTORS
To convert a common log to a natural log, multiply the common log value times 2.3(26.
For example: Xx=L.OoG1¢(N)*2.3¢26

To convert a natural log to a common log, multiply the natural log value times .434295.

ALSO SEE
CLG, CLOG, LGT, LOG, LOGE, LN

156

LT is used in some computers (e.g. the TI 990) as an alter-
nate word for the “less-than” sign (<).

For more information see < .

TEST PROGRAM

19 REM 'LT (LESS-THAN)' TEST PROGRAM

20 1F 5 LT 19 THEN 5¢

3¢ PRINT "THE LT OPERATOR FAILED THE TEST"
49 GOTO 89

5¢ PRINT "THE LT OPERATOR PASSED THE TEST"
99 END

SAMPLE RUN

THE LT OPERATOR PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
<., IF-THEN

Operator

157

M. is used in the TRS-80 Level I as an abbreviation for the
MEM (memory) function.
For more information see MEM.

[sakanlals-al WERRR AN SUTN A AR
1D FERULTICAIVL

19 REM 'M. (MEM)' TEST PROGRAM
2¢ PRINT M.; "BYTES OF MEMORY REMAINING"
99 END

SAMPLE RUN (typical)

35090 BYTES OF MEMORY ARE REMAINING

VARIATIONS IN USAGE

None known.

ALSO SEE
MEM, FRE, FREE())

Function
Command
Statement

158

MAN is used in the APPLE II BASIC to allow MANual
insertion of program line numbers.

If the computer is in the AUTOmatic line numbering

mode, control X must be typed before the computer can
accept the MAN command.

TEST PROCEDURE

Command

To test the computer’s MANual feature, place the com-

puter in the AUTOmatic line numbering mode by typing

the command AUTO and pressing the RETURN key. If line number 10 is printed, the
computer successfully went into the AUTOmatic mode. Now type control X and the
command MAN. Enter a few test program lines to verify that the computer passed the
MANual command test.

VARIATIONS IN USAGE

None known.

ALSO SEE
AUTO

159

MAT INPUT is used to assign values to each element in an
array via the keyboard. The DIM statement establishes the
number of array elements that may be assigned values.

For example,

1¢ DIM A(5)
2¢ MAT INPUT A

The DIM statement allows variable A to use 5 array ele- Statement

‘ments named A(1) to A(5). They are assigned values by

the MAT INPUT statement. (For more information see DIM.)

When the MAT INPUT statement is executed, the computer prints a ? indicating it is
ready to receive a value for the first element in the array. If all elements are to be filled in
one pass, a comma must be typed after each value before the RETURN or ENTER key is
pressed. If each element in the array did not receive a value before the RETURN or
ENTER key is pressed, the computer prints a double question mark (??) indicating more
values are needed. As with an ordinary INPUT statement, values can be entered one at a
time, each followed by the RETURN.

The MAT INPUT statement assigns values to each vertical column in the first row of two-
dimensional-array variables before assigning values to the following horizontal row.

For example,

1¢ DIM A(2,3)
2¢ MAT INPUT A

The computer assigns values to array variable elements A(1,1), A(1,2), and A(1,3) before
A(2,1), A(2,2), and A(2,3).

Most MAT INPUT handling computers allow the array size to be established with the
MAT INPUT statement if not more than 1@ array elements are used. [e.g. MAT INPUT
A(2,3).] If an array requires more than 1Q) elements, it must be DIMensioned.

For example,
1¢ DIM B{2¢,20)

2¢ MAT INPUT A(3,5)
39 MAT INPUT B(15,11)

160

. MATINPUT

TEST PROGRAM

1¢ REM '"MAT INPUT' TEST PROGRAM

2¢ DIM A(3,4)

3¢ PRINT "ENTER 12 NUMBERS (TYPE A COMMA BETWEEN EACH NUMBER]"
4¢ MAT INPUT A

5¢ FORI=1 TO 3

6¢ FOR J=1 TO 4

7¢ PRINT A{1,d);

8¢ NEXT J

9¢ PRINT

199 NEXT I

11¢ PRINT “THE MAT INPUT STATEMENT PASSED THE TEST"

12¢ PRINT "1F THE INPUT VALUES ARE PRINTED" ;
139 PRINT "IN A MATRIX HAVING THREE ROWS OF FOUR COLUMNS."

999 END

SAMPLE RUN (typical)

ENTER 12 NUMBERS (TYPE A COMMA BETWEEN EACH NUMBER)
?71,2,3,4,5,6,7,8,9,19,11,12

1 2 3 4
5 6 7 8
9 1¢ 11 12

THE MAT INPUT STATEMENT PASSED THE TEST
IF THE INPUT VALUES ARE PRINTED
IN A MATRIX HAVING THREE ROWS OF FOUR COLUMNS,

IF YOUR COMPUTER DOESN’T HAVEIT

If your computer does not have the MAT INPUT capability, it can be replaced by FOR-
NEXT and INPUT statements. Substitute the following lines in the TEST PROGRAM:

33 FOR i=1 TO 3
36 FOR J=1 TO 4
49 INPUT A(l,4)
43 NEXT J
46 NEXT |

This substitution differs slightly from the MAT INPUT statement in that it does require
the RETURN or ENTER key to be pressed after each value is typed.

VARIATIONS IN USAGE

None known.

ALSO SEE
MAT PRINT, MAT READ, FOR-NEXT, INPUT, DIM

161

MAT PRINT is used to print the values stored in specified
array elements. The number of elements printed is deter-
mined by the DIMensioned value assigned to the array.
For more DIMensioning information see DIM.

For example,

1¢ DIM A(3)
2¢ MAT PRINT A

Statement

prints the three element values assigned to the “A” array.

TEST PROGRAM =1

19 REM 'MAT PRINT' TEST PROGRAM
28 DIM A(S)

3¢ FOR X=1 TO 5

49 A(X)=X

5¢ NEXT X

6§ MAT PRINT A

7¢ PRINT "END OF MAT PRINT TEST"
99 END

SAMPLE RUN

Uobh W N -

END OF MAT PRINT TEST
Most computers with MAT PRINT capability allow a comma following the MAT PRINT

statement, to print the array values in pre-established horizontal zones. (See Comma.)
To test this feature in the TEST PROGRAM, change line 60 to:

690 MAT PRINT A,

and RUN.

SAMPLE RUN

1 2 3 4 5
END OF MAT PRINT TEST

162

— MAT PRINT

A semicolon (;) following the MAT PRINT statement may be used to print the array
values in a horizontal line with spaces inserted for its + or — sign. (See Semicolon.) To
test this feature, change line 60 to:

6@ MAT PRINT A;

and RUN,

SAMPLE RUN

1 2 3 4 35
END OF MAT PRINT TEST

The MAT PRINT statement can print the contents of arrays having more than one dimen-
sion. The number of elements in the first dimension specifies the number of rows to be
printed while the number of elements in the second column determines the number of
columns.

For example,

DIM A{2,3)
MAT PRINT A

The DIM statement establishes the A variable as being capable of storing values in a two
dimensioned array which is printed by the MAT PRINT statement as a matrix having 2
rows and 3 columns.

The printing of more than one array can be ordered in one MAT PRINT statement by
inserting a comma or semicolon between each array specified. The results are shown by
the following TEST PROGRAM.

TEST PROGRAM #2

1¢ REM 'MAT PRINT' WITH MULTIPLE ARRAY VARIABLES TEST PROGRAM
2¢ DIM A(3),B(3,5)

3¢ FORI=1TO 3

ag FOR J=1 TO §

50 B(1,J}=3
69 NEXT J
78 All)=t

8¢ NEXT]I

9¢ MAT PRINT A;:B,
1¢¢ PRINT "END OF MAT PRINT TEST"
999 END

163

BE A faryiaiE

VIA L TN

SAMPLE RUN
1 2 3
1 2 3 4
1 2 3 4
1 2 4

END OF MAT PRINT TEST

IF YOUR COMPUTER DOESN'T HAVE IT

If your computer does not have the MAT PRINT capability, it can be simulated with
FOR-NEXT and PRINT statements. Substitute the following lines in TEST PROGRAM
#2:

81 FOR X=1TO 5§
82 PRINT A(X),

84 NEXT X

86 PRINT

88 FOR I=1 TO 3
9¢ FORJ=1TOS5
92 PRINT B(1,J):
94 NEXTJ

96 NEXTI

98 PRINT

ALSO SEE
MAT INPUT, MAT READ, (comma), (semicolon), FOR-NEXT, PRINT, DIM

164

MAT READ is used to read values from a DATA state-
ment and assign them to an array. The DIM statement
establishes the array size.

For example,

1¢ DIM A(S)
2¢ MAT READ A

Statement

The DIM statement allows variable A to use 5 array elements named A(1) to A(5). For
more information see DIM. ¢

The MAT READ statement assigns values to each column in the first row of two-
dimensional-array variables before assigning values to the following row.

For example,

19 DIM A{2,3}
29 MAT READ A

The computer reads six values from the DATA statement and assigns them to array vari-
ables elements A(1,1), A(1,2), and A(1,3) before A(2,1), A(2,2), and A(2 3).

TEST PROGRAM

1¢ REM 'MAT READ' TEST PROGRAM

2¢ DIM A(3,4)

39 MAT READ A

49 FOR I=1 TO 3

5¢ FOR J=1 TO 4

69 PRINT A(l,J}:

7¢ NEXT J

8¢ PRINT

9¢ NEXT |

1¢¢ DATA 1,2,3,4,5,6,7,8,9,19,11,12

119 PRINT "THE MAT READ STATEMENT PASSED THE TEST"
12¢ PRINT "IF A MATRIX 1S PRINTED HAVING 3 ROWS OF 4 COLUMNS"

8999 END
SAMPLE RUN
1 2 3 4
5 6 7 8
9 19 11 12

THE MAT READ STATEMENT PASSED THE TEST
1IF AMATRIX IS PRINTED HAVING 3 ROWS OF 4 COLUMNS

165

MAT READ

Most MAT READ handling computers allow the array size to be established with the
MAT READ statement if not more than 10 array elements are used. If more than 10 ele-
ments are required in an array, it must be DIMensioned.

For example,
11¢ DiM B(2¢,29)
12¢ MAT READ A(3,5)

139 MAT READ B(15,11)

To test this feature in your computer, omit line 20 in the TEST PROGRAM and change
line 30 TO:

3¢ MAT READ A(3,4)

If your computer accepts this feature, the SAMPLE RUN should not change.

IF YOUR COMPUTER DOESN’'T HAVEIT

If your computer does not have the MAT READ capability, it can be replaced by FOR-
NEXT and READ statements.

Substitute the following lines in the TEST PROGRAM:

23 FOR I=1 TO 3
26 FOR J=1TO 4
39 READ A{l,J)
33 NEXT J

36 NEXT !

VARIATIONS IN USAGE

None known,

ALSO SEE
MAT PRINT, MAT INPUT, READ, DATA, DIM, FOR-NEXT

166

MEM is used with the Print statement to display the
amount of unused bytes of MEMory remaining in the
computer. MEM can also be used as a program statement.

TEST PROGRAM

1¢ REM '"MEM’ TEST PROGRAM

2¢ PRINT MEM; "BYTES OF MEMORY ARE REMAINING"

99 END Command
Statement

SAMPLE RUN :

135¢4 BYTES OF MEMORY REMAINING

(The amount of memory available will of course depend on the size of your computer.)

VARIATIONS IN USAGE

None known.

ALSO SEE
FRE, FREE(0), M.

167

MID(string,nl,n2) is used in the Harris BASIC-V and the
DEC BASIC-PLUS-2 to isolate a specific number (n2) of
string characters that are (nl) characters from the left-
most character in the string.

For example, PRINT MID("COMPUTER",4,3) prints the
letters PUT, which are the 3 MIDdle characters starting
with the fourth string character from the left.

For more information see MIDS. Function

TEST PROGRAM '

19 REM 'MID’ TEST PROGRAM
2¢ AS="CONTESTANT"

39 PRINT ""‘MID’ PASSED THE ';
49 PRINT MID(AS$,4,4)

89 END

SAMPLE RUN

‘MID' PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
MIDS

168

The MIDS$(string,nl,n2) function is used to isolate a
specific number (n2) of string characters that are (nl)
characters from the left-most character in the string.

For example, PRINT MID$(' 'COMPUTER",4,3) prints
the letters PUT, which are 3 MIDdle characters starting
with the fourth string character from the left.

The string must be enclosed in quotes or assigned to a
string variable. The number of characters and the start-
ing position can be expressed as variables, numbers or
arithmetic operations. A comma must separate each element in the MID$ function.

Function

If the value of nl or n2 is a decimal, the computer automatically converts to the integer
value,

TEST PROGRAM

1¢ REM 'MID$' TEST PROGRAM

20 AS="CONTESTANT"

3¢9 B$=MIDS{AS,4,4)

49 PRINT MIDS("ATHENA',2,3)" ‘MID$’' FUNCTION PASSED THE 'iB$
99 END

SAMPLE RUN

THE 'MID$' FUNCTION PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
MID, PRINT, RIGHTS, LEFT$, CHRS, SPACES, STR§, STRINGS, INKEY$

169

X MOD Y is used in some computers (e.g. the H.P. 3000,
COMPAL, Harris Computer Systems, and Apple Com-
puter) to compute the arithmetic remainder (MODulo)
when the value X is divided by the value Y.

For example, PRINT 8 MoD 5 prints the number 3,
which is the remainder of 8 divided by 5.

A few computers automatically integer the MODule value.

Function

For example, PRINT 1¢.5 MOD 4 may print the number
2 (the integer value of the 2.5 remainder).

TEST PROGRAM

190 REM '"MOD' TEST PROGRAM

2¢ A=13 MOD 5

39 IF A =3 THEN 6§

4¢ PRINT "THE MOD FUNCTION PASSED THE TEST"
50 GOTO 99

60 PRINT "THE MOD FUNCTION PASSED THE TEST"
99 END

SAMPLE RUN

THE MOD FUNCTION PASSED THE TEST

IF YOUR COMPUTER DOESN'T HAVE IT

MOD is handy but by no means indispensable. Here, step-by-step, is a way around it.
2¢ A =13/5
22 A= A—INT(A)+.001
24 A = INT{A*5)

A more general form of the equation is

20 A= INT(Y#[X/Y—INT{X/Y))+.081)

Substitute 13 for X and 5 for Y and try it in the TEST PROGRAM.

170

— MOD

VARIATIONS IN USAGE

A few computers (e.g. the Harris BASIC-V) use MOD(X,Y) to compute the X MODulo Y
value.

ALSO SEE
INT, FIX

171

N. is used in the TRS-80 Level I and other variations of
Palo Alto Tiny BASIC as an abbreviation for the NEW
command and the NEXT statement.

The interpreter recognizes N. as NEW when it is used in
the command mode, and as NEXT when it is used as a
program statement following the FOR statement.

This program uses N. as the command NEW. For more in- »
formation see NEW. Command
Statement

TEST PROGRAM !

1§ REM 'N. ([NEW)' TEST PROGRAM
2¢ PRINT "HELLO THERE"
99 END

SAMPLE RUN

LIST the program to ensure it has been entered as shown. Type N. to erase the test pro-
gram, then type LIST again to be certain the program has been “erased”.

This next program uses N. as the statement NEXT. For more information see NEXT.

TEST PROGRAM

19 REM ‘N. (NEXT)' TEST PROGRAM
2¢ FOR X=1 TO 5

3¢ PRINT X;

49 N. X

5¢ PRINT " 'N.' PASSED THE TEST"
99 END

SAMPLE RUN

1 2 3 4 5 'N.’PASSED THE TEST

VARIATIONS IN USAGE

None other known.

ALSO SEE
NEW, NEXT, NEX, NE

172

NE is used in a few computers (e.g. the T.I. 990) as an
abbreviation for the NEW command and the “not-equal”
(<>) relational operator. It is recognized as NEW when
used in the command mode, and as < > when used as a
program statement.

This program uses NE as the command NEW. For more
information see NEW. & :
TEST PROGRAM Command
1¢ REM 'NE (NEW)' TEST PROGRAM Operator

2¢ PRINT "HELLO THERE" ;

99 END

SAMPLE RUN

LIST the program to ensure it has been entered as shown. Type NE to erase the TEST
PROGRAM, then type LIST again to be certain the program has been “erased”.

This next program uses NE as the “not-equal” relational operator. For more information
see < >.

TEST PROGRAM

1§ REM 'NE { < >)' TEST PROGRAM

20 A=19

3¢ IF A NE 2¢ THEN 6§

4¢ PRINT "THE NE OPERATOR FAILED THE TEST"
5¢ GOTO 99

6¢ PRINT "THE NE OPERATOR PASSED THE TEST"
99 END

SAMPLE RUN

THE NE OPERATOR PASSED THE TEST

VARIATIONS IN USAGE

None other known.

ALSO SEE
NEW,N., <>, ><

173

The NEW command erases the BASIC program(s) stored
in memory. However, it does not erase the interpreter it-
self. NEW is normally used when a new program is to be
entered into the computer but the existing program is to
be deleted.

TEST PROGRAM

19 REM 'NEW' COMMAND TEST PROGRAM
2¢ PRINT "HELLO THERE."”
99 END

SAMPLE RUN

LIST the program to be sure it has been entered as shown. Check the remaining memory
space with the PRINT MEMory command (or PRINT FRE((), or other appropriate
command).

Type NEW to erase the test program, then test for memory space again. There should be
a corresponding increase in available memory.

To be certain the program has been “erased”, double-check by typing LIST.
Some computers use the commands SCRATCH or UNSAVE instead.

VARIATIONS IN USAGE

None known.

74

NEX is used in the PDP-8E as an abbreviation for the
NEXT statement.

For more information see NEXT.

TEST PROGRAM

19 REM '"NEX' TEST PROGRAM

2¢ FOR X=1TO 5

3¢ PRINT X;

49 NEX X

5¢ PRINT ""'NEX’ PASSED THE TEST"
99 END

SAMPLE RUN

‘NEX' PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
NEXT, N.

Statement

1756

The NEXT statement is used to return program execution
to the preceding FOR statement which uses the same
variable. When the range of the FOR statement is exceed-
ed, the computer continues program execution at the line
following the NEXT statement.

For example:

19 FOR X=1 TO 3
20 NEXT X Statement
99 END

The fourth time the NEXT statement is executed, the value of X is incremenfed to 4
which exceeds the FOR statement range of 3 causing the computer to “fall through” to
line 99.

TEST PROGRAM

1¢ REM 'NEXT' TEST PROGRAM

29 FOR X=1 TO 4

3¢ PRINT X,

49 NEXT X

5¢ PRINT "THE 'NEXT' STATEMENT PASSED THE TEST."
99 END

SAMPLE RUN

1 2 3 4
THE 'NEXT' STATEMENT PASSED THE TEST.

Because NEXT statements return only to the preceding FOR statement which uses the
same variable, it is possible with most computers to use “nested” FOR-NEXT statements.
For more information see FOR-NEXT.

TEST PROGRAM

19 REM TEST PROGRAM WITH NESTED 'NEXT' STATEMENTS

2¢ FOR A=1TO 3

3§ FOR B=1 TO 4

4¢ PRINT AB,

5¢ NEXT B

69 NEXT A

7¢ PRINT "THE 'NEXT'STATEMENT PASSED THE TEST WHEN NESTED"
99 END

—-—nZP

176

NEXT

SAMPLE RUN
11 12 13 14
21 22 23 24
31 32 33 34

THE 'NEXT'STATEMENT PASSED THE TEST WHEN NESTED

A few computers allow execution of a NEXT statement which does not contain a vari-
able. In this case, the computer returns to the preceeding FOR statement (regardless of
its associated variable) so long as it has not exceeded its stated range.

To test for this feature, run the second TEST PROGRAM after removing the variables A
and B from the NEXT statements in line 50 and 6(¢). The sample run should remain the
same.

VARIATIONS IN USAGE

Some computers (e.g. DEC BASIC-PLUS-2) allow NEXT to be implied, under certain
circumstances. The FOR is written, but not the NEXT.

ALSO SEE
FOR-NEXT, FOR

177

The NOTRACE command is used by the APPLE II BASIC
to disable the trace function (see TRACE). NOTRACE

may be used as a program statement to turn the trace off
at specified areas in the program.

TEST PROGRAM

18 REM 'NOTRACE' TEST PROGRAM

29 TRACE
3¢9 PRINT "EACH LINE SHOULD BE TRACED" Command
49 NOTRACE Statement

5¢ PRINT "BY THE '"TRACE' STATEMENT"
6¢ PRINT "UNTIL TURNED OFF BY THE 'NOTRACE' STATEMENT"
99 END

SAMPLE RUN

#39 EACH LINE SHOULD BE TRACED
#4¢ BY THE 'TRACE' STATEMENT
UNTIL TURNED OFF BY THE 'NOTRACE' STATEMENT

VARIATIONS IN USAGE

None known.

ALSO SEE
TRACE, TRACE OFF, TROFF, TRACE ON, TRON

178

The ON ERROR GOTO statement is used to branch to an
error subroutine, when a program error is encountered,
without stopping program execution. The ON ERROR
GOTO statement must appear in the program before an
execution error is anticipated. Any error encountered
after the ON ERROR GOTO statement causes the compu-
ter to execute the line number listed in the ON ERROR
GOTO statement.

TEST PROGRAM Statement

19 REM 'ON-ERROR-GOTO' TEST PROGRAM

20 ON ERROR GOTO 198

3¢ PRINT "ENTER A NUMBER AND IT'S INVERSE WILL BE COMPUTED";
4 INPUT N

5¢ A=1/N

69 PRINT "THE INVERSE OF';N{"IS' ;A

79 GOTO 3¢

14¢ PRINT “THE INVERSE OF ¢ CANNOT BE COMPUTED - TRY AGAIN"
11¢ RESUME 3¢

999 END

SAMPLE RUN (using 4 and §)

ENTER A NUMBER AND ITS INVERSE WILL BE COMPUTED?4
THE INVERSE OF 4 1S5 .28

ENTER A NUMBER AND ITS INVERSE WILL BE COMPUTED? ¢
THE INVERSE OF ¢ CANNOT BE COMPUTED - TRY AGAIN
ENTER A NUMBER AND ITS INVERSE WILL BE COMPUTED?

(The error here was DIVISION BY ZERO.)

If ON ERROR GOTO § is executed during an ON ERROR GOTO subroutine, the error
message is printed and program execution stops. Test this feature by adding the follow-
in line to the test program:

195 ON ERROR GOTO ¢

A syntax error encountered by some computers causes the line containing the error to be
printed by the edit feature after the ON ERROR GOTO statement has been executed

and program execution has stopped. The computer is then in the Edit mode. To test this
feature change line 5@ in the TEST PROGRAM to:

5§ ILLEGAL LINE

The RESUME statement is normally used to return to the main program from an ON
ERROR GOTO subroutine.

179

— ON ERROR

GOTO

VARIATIONS IN USAGE

None known.

ALSO SEE
ERROR, RESUME, ERR, ERL

180

ON.G. is used in the TRS-80 Level I and other variations
of Palo Alto Tiny BASIC as an abbreviation for the ON-
GOTO statement.

For more information see ON-GOTO.

TEST PROGRAM

14 REM 'ON-G, {ON-GOTO)' TEST PROGRAM
2¢ x=1

3¢ ON X G. 69

49 PRINT "'ON-G.' FAILED THE TEST"

50 GOTO 99

6¢ PRINT " 'ON-G.' PASSED THE TEST"

99 END

SAMPLE RUN

'ON-G.' PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
ON-GOTO, ON-GOT

Statement

181

ON-GOSUB is a multiple subroutine branching scheme
which incorporates a number of IF-GOSUB tests into a
single statement.

For example, ON X GOSUB 1¢¢,2¢¢,3¢¢ instructs the
computer to branch to subroutines starting at lines 100,
200 or 300 if the integer value of X is 1,2 or 3 respective-
ly. If INT X is less than 1 or more than 3 the tests in this
ON-GOSUB example all fail. In some computers, execu-
tion then defaults to the next program line;in other com-
puters, the program ‘“crashes” and an error message is
printed.

TEST PROGRAM

19 REM 'ON-GOSUB’ TEST PROGRAM

2¢ PRINT "ENTER THE NUMBER 1, 2 OR 3'';
39 INPUT X

4¢ PRINT "THE ON-GOSUB STATEMENT '";

5¢ ON X GOSUB 189,200,300

6¢ GOTO 2¢

194 REM SUBROUTINE #1

11¢ PRINT "BRANCHED TO SUBROUTINE #1"
12¢ RETURN

2¢p REM SUBROUTINE #2

21¢ PRINT "BRANCHED TO SUBROUTINE #2"
22¢ RETURN

3¢¢ REM SUBROUTINE #3

319 PRINT "BRANCHED TO SUBROUTINE #3°
326 RETURN

999 END

SAMPLE RUN

ENTER THE NUMBER 1,2 OR 37 1

THE ON-GOSUB STATEMENT BRANCHED TO SUBROUTINE #1
ENTER THE NUMBER 1, 2 OR 37 2

THE ON-GOSUB STATEMENT BRANCHED TO SUBROUTINE #2
ENTER THE NUMBER 1,2 OR 37 3

THE ON-GOSUB STATEMENT BRANCHED TO SUBROUTINE #3
ENTER THE NUMBER 1, 2 OR 37

Statement

Use the same TEST PROGRAM and try entering decimal values larger than 1 but smaller

than 4.

Try values smaller than 1, then larger than 4.

182

ON-GOSUB

IF YOUR COMPUTER DOESN’T HAVEIT

If your computer did not pass the ON-GOSUB test, substitute these lines:

45 IF X=1 GOSUB 1§¢
5@ IF X=2 GOSUB 2¢¢
55 IF X=3 GOSUB 39¢

If this subroutine works, the intrinsic INT functions can be duplicated by substituting
these lines:

45 IF INT{X)=1 GOSUB 1¢¢
5¢ IF INT{X)=2 GOSUB 2¢¢

55 1F INT(X)=3 GOSUB 3¢¢

For other tricks involving the ON-GOSUB statement, see ON-GOTO.

VARIATIONS IN USAGE

None known.

ALSO SEE
ON-GOTO, ON-ERROR-GOTO, ON-GOT, ON-G.

183

ON-GOT is used in the PDP-8E as an abbreviation for the
ON-GOTO statement.

For more information see ON-GOTO.

TEST PROGRAM

1¢ REM 'ON-GOT' TEST PROGRAM

2¢ X=1

30 ON X GOT 69

49 PRINT "'ON-GOT' FAILED THE TEST"
5¢ GOTO 99

69 PRINT "'ON-GOT' PASSED THE TEST"
99 END

SAMPLE RUN

'ON-GOT' PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
ON-GOTO, ON-G.

Statement

184

ON-GOTO is a multiple branching scheme which incor-
porates a number of IF-THEN tests into a single state-
ment. For example, ON X GOTO 1¢¢,2¢¢,3¢¢ instructs
the computer to branch to lines 100, 20¢, or 30@ if the
value of X is 1, 2, or 3 respectively. If X is less than 1 or
more than 3.999 the tests in this ON-GOTO example all
fail and execution defaults to the next program line.

The integer value of X cannot exceed the number of pos-
sible branches in the statement. If the value of X is a deci-
mal, the computer automatically finds its integer value
and selects the appropriate branching line number.

Statement

TEST PROGRAM

1§ REM 'ON(X)GOTO' TEST PROGRAM
2¢ PRINT "ENTER THE NUMBER 1, 2 OR 3"
3¢ INPUT X

49 PRINT "THE ON-GOTO STATEMENT";
50 ON X GOTO 199,284,399

6¢ PRINT "FAILED THE TEST"

79 GOTO 999

189 PRINT "BRANCHED TO LINE 1¢¢"
119 GOTO 2¢

2¢¢ PRINT "BRANCHED TO LINE 2¢¢"
21¢ GOTO 2¢

3¢90 PRINT "BRANCHED TO LINE 3¢¢"
319 GOTO 2¢

999 END

SAMPLE RUN (using 1, 2 and then 3)

ENTER THE NUMBER 1, 2 OR 3

1

THE ON-GOTO STATEMENT BRANCHED TO LINE 1¢¢
ENTER THE NUMBER 1, 2 OR 3

72

THE ON-GOTO STATEMENT BRANCHED TO LINE 2¢¢
73

THE ON-GOTO STATEMENT BRANCHED TO LINE 3¢¢
ENTER THE NUMBER 1, 2 OR 3

?

Using the same TEST PROGRAM, try values smaller than I, then larger than 3.999.

-wnzZ>r

185

RN R
———

ON-GOTO

IF YOUR COMPUTER DOESN'T HAVE IT

If the computer did not pass the ON-GOTO test, substitute these lines:

45 1F X=1 THEN 1¢¢
5¢ IF X=2 THEN 2¢¢
55 IF X=3 THEN 3¢¢

If this substitution works, the intrinsic INT functions can be duplicated by substituting
these lines.

45 IF INT{X)=1 THEN 168
5¢ IF INT(X)=2 THEN 2¢¢
55 IF INT(X)=3 THEN 3¢¢

A TRICK

Errors might occur in prior rounding of the value X producing a value slightly lower than
the expected integer value. The ON-GOTO statement can be protected from this short-
coming by slightly increasing the value X. For example:

ON X+.1 GOTO 1¢¢
If the value of X in this case had been rounded down to 1.99 instead of the expected

value of 2.9, adding .1 puts X above 2 (2.09), which is then rounded down to the desired
2.9 by the intrinsic integer function. If not, no harm is done.

SHIFTING THE BASE

When the value of X is not 1,2 or 3, an equation can take its place in order to make ON-
GOTO usable. For example:

ON X~—50 GOTO 10¢, 208, 3¢¢

branches to lines 100, 200 or 30@ when the value of X is 51, 52 or 53 respectively.

VARIATIONS IN USAGE

Different interpreters may have a limit to the number of branching options (3 were used
only for an example).

ALSO SEE

ON-GOSUB, ON-ERROR, ON-GOT, ON-G.

186

OPTION is used in the Harris BASIC-V with the BASE
statement to define the BASE (lowest) variable array
element as any integer value from () to 19.

For example,

1% OPTION BASE=5
2¢ DIM A{10)

The OPTION BASE statement defines this array as having
6 elements [A(5) to A(1()].

Statement

If the OPTION BASE value is not specified, the computer assumes the BASE value to be

0.

For more information see BASE.

TEST PROGRAM

1¢ REM 'OPTION' TEST PROGRAM
2¢ OPTION BASE=3

3¢ DIM A(S)

4¢ FOR X=3 TO 5

5¢ A{X})=X

69 NEXT X

7¢ OPTION BASE=§

89 FOR X=¢ TO 2

99 A(X)=X

190 NEXT X

11¢ FOR X=¢9 TO 5

12¢ PRINT A(X);

139 NEXT X

14¢ PRINT "THE OPTION STATEMENT DID NOT CRASH"
999 END

SAMPLE RUN

g 1 2 3 4 5 THE OPTION STATEMENT DID NOT CRASH
»

VARIATIONS IN USAGE

ANSI BASIC uses OPTION BASE values § and 1, and an equal sign is not required fol-

lowing the word BASE.

—nZ P

187

The QUT statement is used to send a number (byte value)
to a specified computer OUTput port.

The QOUT statement format is OUT (port,byte).

The byte and port values must be positive integers or
variables between § and 255. For example: OUT 2554
sends the binary equivalent of 4 (decimal) to port number
255.

Statement

Press a PLAY, REWIND or FAST-FORWARD button on
the cassette recorder and try this program.

TEST PROGRAM (Configured for TRS-80 Level II)

1§ REM 'OUT TEST PROGRAM

2¢ PRINT "ENTER '4' TO TURN ON THE CASSETTE RECORDER MOTOR"
30 INPUT X

49 OUT 255,X

5¢ PRINT "ENTER '¢' TO TURN THE MOTOR OFF"

69 INPUT X

7¢ OUT 255,X

93 END

SAMPLE RUN

ENTER '4"TO TURN ON THE CASSETTE RECORDER MOTOR
4

ENTER '¢' TO TURN THE MOTOR OFF

19

If the cassette recorder motor did not turn on, try this program to find which port and
byte numbers work for your computer.

TEST PROGRAM

1¢ REM 'OUT' SEARCH PROGRAM
2¢ FOR P=¢ TO 255

3¢ FOR B=@ TO 255

49 PRINT "PORT# " P,

5¢ PRINT "BYTE #':B

6§ OUT P,B

7¢ NEXT B

8¢ NEXT P

99 END

VARIATIONS IN USAGE

None known.

ALSO SEE
INP, PIN, PEEK, POKE

188

P. is used in the TRS-80 Level I and other variations of
Palo Alto Tiny BASIC as an abbreviation for the PRINT
statement.

For more details see PRINT.

TEST PROGRAM

190 REM 'P.' TEST PROGRAM
2¢ P. "'P.' PASSED THE TEST"
99 END

SAMPLE RUN

P PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
PRINT, PRI, ?, #

Statement

189

P.A. is used in the TRS-80 Level I as an abbreviation for
the graphics PRINT AT statement.

For more information see PRINT and AT.

TEST PROGRAM

1§ REM 'P.A, (PRINT AT)' TEST PROGRAM

2¢ P,A.128,"2. 1F THIS LINE IS PRINTED AFTER LINE 1.
3¢ P.AS,"1. THE 'P.A STATEMENT PASSED THE TEST."”

49 GOTO 49
99 END

SAMPLE RUN

1. THE '‘P.A. STATEMENT PASSED THE TEST
2. 1F THIS LINE 1S PRINTED AFTER LINE 1.

VARIATIONS IN USAGE

None known.

ALSO SEE
PRINT AT, PRINT, AT, @, TAB

Statement

0

PDL is a special function used in APPLE II BASIC to indi-
cate the settings of two game control units. The control
units are identified as PDL(() and PDL(1). (PDL is an
abbreviation for Paddle and refer to control game “pad-
dles™.)

TEST PROGRAM

1§ REM 'PDL’' TEST PROGRAM Function
2¢ A=PDL.(g)}

3¢ B=PDL{1)}

4¢ PRINT "THE VALUE OF PDL(9} IS':A

5¢ PRINT "THE VALUE OF PDL{1} IS";B

60 PRINT "CHANGE THE CONTROL UNIT SETTINGS AND (RUN) AGAIN"

99 END

SAMPLE RUN (typical)

THE VALUE OF PDL.{$) IS 13
THE VALUE OF PDL({1) 15 146
CHANGE THE CONTROL UNIT SETTINGS AND {RUN) AGAIN

VARIATIONS IN USAGE

None known.

ALSO SEE
GR, PLOT, COLOR

191

PEEXK is used to read the contents of a specified address in
the computer’s memory.

For example, X=PEEK 1837¢ assigns the numeric value
stored in memory address 18370 to the variable X.

The PEEK statement reports the contents of a memory
address as a number between { and 255 (the range of
values that can be held in an 8-bit memory cell). PEEK
can be used with the POKE statement to read what POKE Statement
has POKEd into memory. The highest number address

that can be PEEKed of course depends on the computer’s memory size.

Check your computer’s manual before executing this TEST PROGRAM to determine
that memory addresses 18368 to 18380 are reserved as free memory. This avoids POKing
data into memory addresses reserved for normal computer operation. If addresses 18368
to 1838(are not reserved as free memory in your computer, then select a group of 12
consecutive free memory addresses and change lines 2¢) and 60 in the TEST PROGRAM
accordingly.

TEST PROGRAM (Configured for TRS-80 Level Il)

19 REM 'PEEK' TEST PROGRAM
2¢ FOR X=18368 TO 1838¢

30 READ Y

49 POKE X,Y

5¢ NEXT X

6¢ FOR X=18368 TO 1838¢

7¢ Y=PEEK(X)

8¢ PRINT CHR$(Y):

9¢ NEXT X

1¢¢ DATA 84,69,83,84,128,67,79,77,80,76,69,84,69
999 END

SAMPLE RUN

TEST COMPLETE

The PEEK and POKE statements are also used with the USR(X) statement to run
machine language subroutines.

VARIATIONS IN USAGE

None known.

ALSO SEE
POKE, USR(X), SYSTEM, EXAM, FETCH

192

Pl is used to represent the value of m (3.14159265).

TEST PROGRAM

1§ REM 'PI' TEST PROGRAM
2¢ R=6

39 C=2*PI*R

49 PRINT “THE CIRCUMFERENCE OF A CIRCLE"
5¢ PRINT "WITH A RADIUS OF 6 FEET IS"iC; " FEET" Function
99 END

SAMPLE RUN

THE CIRCUMFERENCE OF A CIRCLE
WITH A RADIUS OF 6 FEET IS 37.6991 FEET

IF YOUR COMPUTER DOESN’T HAVE IT

If your computer does not have the PI capability, substitute the value 3.14159265 for it.

VARIATIONS IN USAGE

None known.

193

PIN is used by a few interpreters (e.g. Heath Benton
Harbor BASIC) to read the decimal value of a byte of
information at a specified computer port. The byte value
can be any positive integer from f to 255.

For example, PRINT PIN(X) prints the decimal value of
the byte at port X.

TEST PROGRAM Function

1$ REM ‘PIN' TEST PROGRAM

2¢ FOR X=§ TO 255

3¢ PRINT "THE DECIMAL VALUE OF THE BYTE AT PORT #"iXilS'iINP(X)
49 NEXT X

99 END

SAMPLE RUN (Typical)

THE DECIMAL VALUE OF THE BYTE AT PORT# 9 IS 255

THE DECIMAL VALUE OF THE BYTE AT PORT# 22515 127

ANOTHER WORD FOR PIN
See INP

VARIATIONS IN USAGE

None known.

ALSO SEE
INP, OUT, PEEK, USR, INPUT

194

PLOT (nl, n2) is used in the APPLE II BASIC as a special
feature to “turn on” or “light up” a colored graphics
block in a predetermined grid on the screen. The graphics
block color is determined by the COLOR statement. (See
COLOR)

The grid block to be lit is specified by the two numbers
following the PLOT statement. The first number (nl)

specifies the column and the second number (n2) specifies
the row. Statement

For example, pLoT 14,25 instructs the computer to color a graphics block located in the
10th column and the 25th row (of the graphics grid).

To “turn off”” individual graphics blocks, the color § (black) must be selected for each
block. Executing the GR statement erases the entire screen (See GR).

The column number (nl) may range from @ to 39 and the row number from @ to 47,
although only the rows @ to 39 are within the graphics area. The bottom 8 graphics rows
on the screen are reserved for TEXT. Each line of text requires 2 rows, making it possible
to place 4 lines of text under the graphics display.

TEST PROGRAM

1§ REM 'PLOT' TEST PROGRAM
2¢ GR

3¢ COLOR = 4

49 PLOT 9.9

5¢ PLOT 39,¢

69 PLOT 39,39

7¢ PLOT ¢,39

99 END

SAMPLE RUN

If the computer accepted the PLOT statement, a green dot should appear at each corner
of the screen.

VARIATIONS IN USAGE

None known.

ALSO SEE
GR, COLOR, TEXT, HLIN-AT, VLIN-AT, SET, RESET, POINT

195

The POINT statement is used with IF-THEN statements
by the TRS-80 as a special feature to indicate whether or
not a specific graphics block is “turned on”.

The graphics block is specified by the X,Y coordinates
enclosed in parentheses following the POINT statement.
For Level I a value of 1 is reported back when the block is
lit (levet II gives back -1), and @ when the block is not lit.

Statement

TEST PROGRAM

1¢ REM 'POINT' TEST PROGRAM
2¢ CLS

3¢ FOR X=2¢ TO 3¢ STEP 2

49 SET(X,8)
.58 NEXT X

6¢ PRINT "POINT PASSED THE TEST IF NUMBERS 19191¢1¢191 APPEAR"
7¢ FOR X=20¢ TO 3¢

89 A=¢

9¢ IF POINT (X,8)=1 THEN A=1
19¢ PRINT A;

119 NEXT X

12¢ GOTO 12¢

999 END

SAMPLE RUN (Level I)

To obtain the same results for Level II, change line 90 to
9¢ IF POINT({X,8)=-1 THEN A=1

POINT PASSED THE TEST IF NUMBERS 161901016181 APPEAR
Tt 8 1 6 1 ¢ 1 ¢ 1 ¢ 1 8 1

VARIATIONS IN USAGE

None known.

ALSO SEE
SET, RESET, CLS

196

POKE is used to store integer values from @ to 255 (deci-
mal) in specified memory locations. For example, POKE
65,1536¢ places the ASCII number 65 (which is the letter
‘A’) in memory address 15360.

Check your computer’s manual before running this test
program to determine that memory addresses 1536(to
16383 are in the computer’s CRT memory area, and can
be POKEd without erasing memory dedicated to another
use,

Statement

TEST PROGRAM

14 REM 'POKE' TEST PROGRAM
2¢ REM USES CRT MEMORY ADDRESSES 15369 TO 16383
3¢ FOR Y=65 TO 9¢

49 FOR X=1536¢ TO 16383

5¢ POKE X,Y

6¢ NEXT X

7¢ NEXT Y

99 END

SAMPLE RUN

The computer passed this POKE test if the screen filled with letters from A to Z.

VARIATIONS IN USAGE

None known.

ALSO SEE
PEEK, FILL, STUFF

197

PRI is used in the PDP-8E as an abbreviation for the
PRINT statement.

For more details see PRINT.

TEST PROGRAM

1¢ REM 'PRI' TEST PROGRAM
2¢ PR1 "'PRI' PASSED THE TEST"

Statement

99 END

SAMPLE RUN

'‘PRI' PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
PRINT, P.

198

PRINT has a wide range of uses. The most common is in
program statements used to display variable values or what-
ever may be enclosed in quotes. For example, PRINT X
prints the numeric value of the variable X, while PRINT
“X” prints the letter X.

- ZP

Most computers use PRINT both as a command (as you
would on a standard calculator), and a program state-
ment.

Command
Statement

For example, the command, PRINT 4+12/({2+6) prints the answer 6.

TEST PROGRAM #1

1¢ REM 'PRINT' TEST PROGRAM
2¢ PRINT "THE PRINT STATEMENT WORKS"*
99 END

SAMPLE RUN

THE PRINT STATEMENT WORKS

A comma can be used in a PRINT statement to cause individual items to be printed in
pre-established horizontal zones of about 16 spaces wide.

For example, PRINT 1,2,3,4 prints in a format similar to;
1 2 3 4

For more information see ,(comma).

TEST PROGRAM =#2

1$ REM 'PRINT’ WITH COMMA TEST PROGRAM

2¢ PRINT "THE COMMA WORKED IN THE PRINT STATEMENT"
3¢ PRINT "IF THESE NUMBERS ARE PRINTED IN 4 ZONES"

49 PRINT 1,2,3,4

39 END

SAMPLE RUN

THE COMMA WORKED IN THE PRINT STATEMENT
IF THESE NUMBERS ARE PRINTED IN 4 ZONES
1 2 3 4

199

PRINT

A semicolon works like a comma, but prints the output values tightly together, instead of
in pre-established zones.

Change line 40 to read
4¢ PRINT 1;2;3:4
Run the Test Program once more and note the new spacing.

The semicolon (;) is often used in PRINT statements to join together (concatenize) parts
of words or sentences on one line.

For example, PRINT ''H*;"1" prints the word “HI”.

For more information see ;(semicolon).

TEST PROGRAM #3

19 REM 'PRINT' WITH SEMICOLON TEST PROGRAM
2¢ PRINT "'1S THIS PRINTED *'';

30 PRINT "ON ONE LINE?"

99 END

SAMPLE RUN

IS THIS PRINTED ON ONE LINE?

TAB(n) is used with the PRINT statement in a manner similar to the tab key on a type-
writer. It inserts (n) spaces before the printed statement as specified by the value enclosed
in parentheses. For more information see TAB.

The AT function is used with PRINT in the TRS-80 Level I BASIC (the @ operator is
used by the TRS-80 Level II) to specify the PRINT statement’s starting location. For
more information see AT and @.

PRINT USING is used by some computers as a special PRINT feature which allows num-
bers or strings to be printed USING a specified format.

For example, PRINT USING "#=# ## ##':12.5 prints the number #»+12.59.
For more information see PRINT USING.

MAT PRINT prints the values stored in array variables.

200

— PRINT

For example,

19 DIM A(3)
2¢ MAT PRINT A

will print the values assigned to array variables A(1), A(2), and A(3). For more
information see MAT PRINT.

PRINT# is used in the TRS-80 Level I BASIC to store data on cassette tape. To store
more than one value with one PRINT # statement, the following format is used;

PRINT#A ', iBi','iC elC.

To test this feature, set the cassette recorder to the Record mode and RUN this program.

TEST PROGRAM #4

19 REM 'PRINT#' TEST PROGRAM

29 PRINT "DATA SHOUL.D BE RECORDING ON CASSETTE TAPE"
3¢ AS="TEST"

4¢ PRINT#AS, 157,52,'3

5¢ PRINT "PRINT # HAS COMPLETED THE DATA TRANSFER"
99 END

SAMPLE RUN

DATA SHOULD BE RECORDING ON CASSETTE TAPE
PRINT# HAS COMPLETED THE DATA TRANSFER

The TRS-80 Level II BASIC requires -1 following the PRINT# statement for use with a
single cassette.

For example, PRINT#-1,A,B,C$ stores on tape the values assigned to variables A, B and
C§.

TEST PROGRAM #5

Set the cassette recorder to the Record mode and RUN this program.

1¢ REM 'PRINT#' TEST PROGRAM

2¢ PRINT "DATA SHOULD BE RECORDING ON CASSETTE TAPE"
3¢ PRINT#-1,"TEST",1,2,3

4¢ PRINT "PRINT#-1 HAS COMPLETED THE DATA TRANSFER"
99 END

201

r PRINT

SAMPLE RUN

DATA SHOULD BE RECORDING ON CASSETTE TAPE
PRINT#-1 HAS COMPLETED THE DATA TRANSFER

To verify that the data was stored, rewind the tape, set the recorder to the Play mode
and RUN this program.

1¢ REM » INPUT DATA FROM CASSETTE *

2¢ PRINT "THE COMPUTER SHOULD BE READING DATA FROM CASSETTE*
30 INPUT#-1,A8,A,B,C

4¢ PRINT "THE FOLLOWING DATA WAS READ FROM THE CASSETTE"

5¢ PRINT A$,A,B,C

99 END

SAMPLE RUN

THE COMPUTER SHOULD BE READING DATA FROM CASSETTE
THE FOLLOWING DATA WAS READ FROM THE CASSETTE
TEST 1 2 3

PRINT# is used in mini and maxi computers with file handling capability to store data
in “files” on an external device such as cassette or disc. Each data file is identified by
a number (file name) which can be listed in the PRINT# statement to specify the file in
which the data is to be stored. The data can consist of numeric values or string charac-
ters.

For example, PRINT#3;A,B,"TESTING" stores the contents of variables A and B and
the word “TESTING” in a file named #3. FILE#, INPUT# and READ=# are used to
assign file names and space for data storage, and to READ the data back out of file
storage.

ALSO SEE
TAB, AT, @, PRINT USING, MAT PRINT, #, (comma), J(semicolon)

202

PRINT AT is used by the TRS-80 Level I BASIC to indi-
cate a PRINT statement’s starting location. The AT func-
tion value may be a number, numeric variable, or mathe-
matical operation. A comma or semi-colon must be
inserted between the AT value and the string.

For example:

19 PRINT AT 429, "HELLO"
2¢ PRINT AT (42¢);""HELLO" Statement

Both lines print the word “HELLO” AT location 42(. The parentheses are optional.

For more information see AT.

TEST PROGRAM

19 REM 'PRINT AT’ TEST PROGRAM

2¢ PRINT AT 128,"2.1F THIS LINE IS PRINTED AFTER LINE 1."

3¢ PRINT AT ¢,"'1. THE 'PRINT AT' STATEMENT PASSED THE TEST"
49 GOTO 49

99 END

SAMPLE RUN

1. THE 'PRINT AT' STATEMENT PASSED THE TEST
2. 1F THIS LINE 1S PRINTED AFTER LINE 1.

VARIATIONS IN USAGE

None known.

ALSO SEE
PRINT, AT, @, TAB, P.A.

203

PRINT USING is used in some computers (e.g. the ADDS
BASIC, Sperry/Univac VS/9, HP. 2000 and those using
Microsoft BASIC) as a special PRINT feature which allows
numbers or strings to be printed USING a variable format.
PRINT USING is by far the most powerful (and complex)
PRINT statement available in BASIC, so its many features
will be covered here one at a time. Not every feature is
part of every computer, but the TEST PROGRAMS will
quickly let you identify what yours can do. See your own
computer’s manual for other possible capabilities.

Statement

The pound sign (#) reserves a position for each digit in a number or numeric variable to
the left and right of a decimal point. Zeros are automatically inserted if nothing exists to
the right, making it valuable for financial printing. # always prints the decimal point in
the same place, making it easier to examine rows of numbers. For more information
see #.

TEST PROGRAM #1

19 REM '‘PRINT USING' TEST PROGRAM

2¢ PRINT "THE # OPERATOR PASSED THE PRINT USING TEST"
3¢ PRINT "IF THE FOLLOWING NUMBERS ARE PRINTED"

4¢ FOR X=1 TO §

5¢ READ N

69 PRINT USING "#### ### ## N

7¢ NEXT X

8¢ DATA 1.2,400,2400003%,8245¢.5,~.25

99 END

SAMPLE RUN

THE # OPERATOR PASSED THE PRINT USING TEST
IF THE FOLLOWING NUMBERS ARE PRINTED
1.2¢
490.90
2400006.00
8245¢.9¢
-3.25

An asterisk () can be printed in all unused spaces to the left of a specified number’s
decimal noint hy placing a douhle asterisk (**) hefore the . Tts primary purpose is to

prevent someone from increasing the size of a check printed by computer.

204

— PRINT USING

For example, PRINT USING "s+### # # ##:234.25 Will print #»+x234.25. This feature
can be tested by making these changes to the TEST PROGRAM #1.

2¢ PRINT "THE »x OPERATOR PASSED THE PRINT USING TEST
69 PRINT USING "wx## #### . F# N

SAMPLE RUN

THE ** OPERATOR PASSED THE PRINT USING TEST
IF THE FOLLOWING NUMBERS ARE PRINTED
wxkreerr]. 20

*rxkr AP0.00

+2498909.09

**xx8245¢.59

wkknkx-0.25

A $ sign can be printed before the number listed in the PRINT USING statement by
inserting a double dollar sign (38) before the # sign.

For example, PRINT USING "$8###.##';1.25 will print $1.25. To test this feature in
your computer, make these changes to TEST PROGRAM #1:

20 PRINT "THE $% OPERATOR PASSED THE PRINT USING TEST
60 PRINT USING "SS###### . ## N

SAMPLE RUN

THE $$ OPERATOR PASSED THE PRINT USING TEST
1F THE FOLLOWING NUMBERS ARE PRINTED
$1.2¢
5408.0¢
$2400000.00
$82450.59
-$¢.25

It is possible to insert a comma between every third number to the left of the decimal
point by using a comma between one or more left # signs. The position of the comma in
the PRINT USING statement does not effect the position of the printed comma.

For example,

PRINT USING "# ,# ## #.##' 112000
PRINT USING "####,#.##'1200¢
PRINT USING "# ## %, # . ##'112009

will each print the number 12,000.09.

205

. PRINT USING

To test this feature, make these changes to TEST PROGRAM #1.

29 PRINT “PRINT USING 'COMMA' PASSED THE TEST"
60 PRINT USING "# ####### ## N

SAMPLE RUN

PRINT USING 'COMMA' PASSED THE TEST
1F THE FOLLOWING NUMBERS ARE PRINTED
1.2¢
408.09
2,408,000.8¢
82,45¢0.5¢
-¢.25

A + sign placed to the left of the #’s causes a + sign to be printed before each positive
number and a — sign before each negative number. If a + sign is placed to the right of the
#’s, the computer prints a — sign to the right of all negative numbers, and a space is
inserted to the right of all positive numbers.

For example,

PRINT USING ""+####"';123
PRINT USING "###F#+'"-123

will print the numbers

+123
and 123-

To test this feature, make these changes to TEST PROGRAM #1

29 PRINT "THE + OPERATOR PASSED THE PRINT USING TEST"
60 PRINT USING "+####### . ## N

SAMPLE RUN

THE + OPERATOR PASSED THE PRINT USING TEST
IF THE FOLLOWING NUMBERS ARE PRINTED
+1.29
+a00.09
+2400000.00
+8245¢.5¢
-g.25

Four exponentiation signs (AA A A) can be used following a # to print numbers
expressed in exponential or scientific notation. A few computers (e.g. the TRS-80 Level
) use 1111 instead.

206

— PRINT USING

For example, PRINT USING "## A A A A ";1¢¢ prints the number 1E+$2

TEST PROGRAM #2

16 REM 'PRINT USING EXPONENTIATION' TEST PROGRAM
20 PRINT "PRINT USING ' AA AA passep THE TEST"
3¢ PRINT "IF THE NUMBER ;123456

4¢ PRINT "IS PRINTED USING SCIENTIFIC NOTATION"

5¢ PRINT USING "## A A A A ';123456

99 END

SAMPLE RUN

PRINT USING ' A A AN pPASSED THE TEST

IF THE NUMBER 123456

1S PRINTED USING SCIENTIFIC NOTATION
1E+¢5

Some computers (e.g. those with variations of the Microsoft BASIC) use the ! (enclosed
in quotes) to print only the left-most character in a string or string variable listed in a
PRINT USING statement.

For example, PRINT USING "'!";"WORD* prints the letter “W”.

TEST PROGRAM #3

19 REM 'PRINT USING I' TEST PROGRAM

20 PRINT "ENTER A SAMPLE WORD";

3¢ INPUT AS

4¢ PRINT “THE PRINT USING STATEMENT AND THE | OPERATOR"
5¢ PRINT "PASSED THE TEST IF THE FIRST LETTER IN ";A$;" IS '
69 PRINT USING “I1'";AS

99 END

SAMPLE RUN (using HANDBOOK)

ENTER A SAMPLE WORD? HANDBOOK
THE PRINT USING STATEMENT AND THE | OPERATOR
PASSED THE TEST IF THE FIRST LETTER IN HANDBOOK IS H

Use of \\ (backslash) permits printing only the left-most characters in strings. The number
printed is determined by the number of spaces between the two \ signs. The computer
also counts the two \ signs as character positions, therefore, no less than two characters
can be specified by \\.

For example, PRINT USING "\ \';"coMPuUsoFT' prints the first three letters “COM”
because one space is included between the two \ signs (I space + 2 backslashes = 3
letters). The TRS-80 Level II uses the % sign instead of the \ sign.

207

PRINT USING

TEST PROGRAM #4

1¢ REM 'PRINT USING \' TEST PROGRAM

2¢ A% = "TESTIFIED"

3¢ PRINT "THE PRINT USING STATEMENT '*;

4¢ PRINT "AND THE \ OPERATOR PASSED THE ';
5¢ PRINT USING "\ \':AS$

98 END

SAMPLE RUN

THE PRINT USING STATEMENT AND THE \ OPERATOR PASSED THE TEST

Most computers allow the PRINT USING operators, numbers and strings to be specified
as variables.

For example,

16 Ag="1"
2¢ B$="ABCD"
3¢ PRINT USING AS;BS

will print the letter “A” which is the left-most character assigned to string variable BS.

Test Program #5 shows how 3 different PRINT formats can be linked together by semi-
colons.

TEST PROGRAM #5

1¢ REM 'PRINT USING VARIABLES' TEST PROGRAM
20 AB=raaGH iR E EH

3¢ BS=""\ X

49 CH=""TESTIMONIAL"

5¢ A=14.95

6¢ PRINT "THE BASIC HANDBOOK PASSED THE "';
7¢ PRINT USING ASA;

8¢ PRINT USING BS;C$

99 END

SAMPLE RUN

THUE BAGIC MANNDROMK PASSED THE w14 08 TEST

The same results can be achieved by putting the format on one line, and on another line
the variables to be printed. Delete lines 3¢ and 8(and change

20 A% = "rxGawsa i\ \o

208

PRINT USING
Or better yet,

20 AS = "% ok k kB H H H# WL HHD %t
7¢ PRINT USING $A;B$,A,C$

(Note that commas can be used instead of semicolons after all but the PRINT USING
specifier.)

VARIATIONS IN USAGE

Some computers (e.g. the DEC-10, DEC-17D and the Sperry/Univac VS/9) require that
when variables are printed in one line, and the PRINT USING format in another line, the
format line must be addressed by number and must start with a colon.

For example,

68 A= 12.34

7¢ B = 14.95

8¢ C$ = "MAIN FRAME"

9¢ PRINT USING 1¢§,A,B,C$

190 :###.#4% $$SE.## /Cccccceg/

will print

12.34 $14.95 MAIN FRAME

TEST PROGRAM #6

1¢ REM 'PRINT USING LINE NUMBER' TEST PROGRAM

2¢ PRINT "THE PRINT USING STATEMENT PASSES THE TEST"
3¢ PRINT "IF THE NUMBER":{125.5¢0;"'I1S PRINTED NEXT"

49 PRINT USING 5¢,125.5

SQ cH B FH

99 END

SAMPLE RUN

THE PRINT USING STATEMENT PASSES THE TEST
IF THE NUMBER 125.5¢ 1S PRINTED NEXT
125.5¢

ALSO SEE
PRINT, #, ##, A, 1, 1+, — %

209

R. is used in the TRS-80 Level I and other variations of
Palo Alto Tiny BASIC as an abbreviation for the RUN
command, the RND function, and the graphics RESET
statement.

The interpreter recognizes R. as RUN when used in the
command mode, as RND when followed by a value en-
closed in parenthesis [e.g. r. (19})], and as RESET when
followed by two values enclosed in parenthesis and sepa-
rated by a comma [e.g. R.(X,Y)].

Command
Function
Statement

This first program uses R. as a RUN command. For more
information see RUN.

TEST PROGRAM

1¢ REM 'R. (RUN}' TEST PROGRAM
2¢ PRINT "THIS LINE PRINTED COURTESY OF THE R. COMMAND."
99 END

SAMPLE RUN

After entering the R. command, the computer should print
THIS LINE PRINTED COURTESY OF THE R. COMMAND.

This program uses R. as a RND function. For more information see RND.

TEST PROGRAM

1p REM 'R. [RND)' TEST PRCGRAM
2¢ N=1¢

3¢ FOR X=1 TO 4

49 PRINT R.(N),

5¢ NEXT X

6¢ PRINT "'R.' PASSED THE TEST"
99 END

210

R.

SAMPLE RUN (Typical)

1 7 S 6

'R', PASSED THE TEST

This last program uses R. as the graphics RESET statement. For more information see
RESET.

TEST PROGRAM

1¢ REM 'R. (RESET)' TEST PROGRAM
2¢ FOR X=¢ TO 127

39 SET{X,1)

a¢ R.(X,1)

5¢ NEXT X

69 PRINT ‘'R.' PASSED THE TEST"
99 END

SAMPLE RUN

Will produce a blinking dot moving from left to right across the screen.

VARIATIONS IN USAGE

None other known.

ALSO SEE
RUN, RND, RESET, SET

211

RAN is used in the PDP-8E as an abbreviation for the
RANDOMIZE statement.

For more information see RANDOMIZE.

TEST PROGRAM

1§ REM 'RAN' TEST PROGRAM
29 RAN

3¢ FOR X=1 TO 8

4¢ PRINT RND(8),

5¢ NEXT X

99 END

SAMPLE RUN (Typical)

349512 694461 .48¢241
407168 .$72483 659667

VARIATIONS IN USAGE

None known.

ALSO SEE
RANDOMIZE, RANDOM, RAND, RND

Statement

191441
517459

212

RANDOM is used to “shuffle” or ‘“‘randomize” a set of

numbers (held in the computer) in a random order. These
numbers are selected by the RND function.

Placing RANDOM in a program before the RND function

causes the generation of a new set of random numbers for

the RND function each time the program is run.

TEST PROGRAM

1 REM 'RANDOM:® TEST PROGRAM
2¢ RANDOM

3¢ FOR X=1TO 8

4¢ PRINT RND(#),

5¢ NEXT X

99 END

SAMPLE RUN (Typical)

361529 .913284 .289381
.999239 497567 458299

Statement

819987
684127

Each time the test program is run, a new set of random numbers should be printed. Be
sure you have your own version of RND working before trying to include line 20.

VARIATIONS IN USAGE

None known.

ALSO SEE
RANDOMIZE, RAN, RND, RAND

213

RANDOMIZE is used to “shuffle” or “reseed” a set of
numbers (held in the computer) in a random order. These
numbers are held in memory for selection by the RND
function.

Placing RANDOMIZE in a program before the RND func-
tion causes the generation of a new set of random num-
bers for the RND function each time the program is run.

Statement

TEST PROGRAM

1§ REM 'RANDOMIZE' TEST PROGRAM i
26 RANDOMIZE

3¢ FOR X=1 TO 8

49 PRINT RND,

5¢ NEXT X

99 END

SAMPLE RUN (Typical)

.25¢186 975797 .775985 544615
.89¢564 227299 408976 771341

Each time the test program is run, a new set of random numbers should be printed. Be
sure you have your own version of RND working before trying to include line 2.

VARIATIONS IN USAGE

None known.,

ALSO SEE
RANDOM, RAN, RND, RAND

—wnZy

214

REA is used in the PDP-8E as an abbreviation for the
READ statement.

For more details see READ.

TEST PROGRAM

1§ REM 'REA' TEST PROGRAM
2¢ REA A

3¢ PRINT "'REA' PASSED THE TEST IN LINE';A
49 DATA 28

99 END

SAMPLE RUN

'REA' PASSED THE TEST IN LINE 2¢

VARIATIONS IN USAGE

None known.

ALSO SEE
READ, REA.

Statement

2156

REA. is used in the TRS-80 Level I as an abbreviation for

the READ statement.

For more information see READ.

TEST PROGRAM

19 REM 'REA. TEST PROGRAM

2¢ REA.A

3¢ PRINT ""REA. PASSED THE TEST IN LINE";A
49 DATA 29

99 END

SAMPLE RUN

'‘REA.' PASSED THE TEST IN LINE 2¢

VARIATIONS IN USAGE

None known.

ALSO SEE
READ, REA, DATA

Statement

216

The READ statement is used to read data from a DATA
line and assign that data to a variable.

Each time the READ statement is executed, data is read
from a DATA line. The pointer then moves to the next
item of data in the DATA line(s) and waits for another
READ statement. When the last piece of data has been
read from all DATA statements, the data pointer must be
reset to the beginning of the DATA list before additional
READ statements can be executed. (See RESTORE) Statement

-—nZ>

TEST PROGRAM

19 REM 'READ' STATEMENT TEST PROGRAM

29 READ A

3¢ PRINT "THE READ STATEMENT WORKED IN LINE';A
4¢ DATA 2¢

99 END

SAMPLE RUN

THE READ STATEMENT WORKED IN LINE 2¢

Since computers will allow more than one variable to be placed in one READ statement,
each variable must be separated by a comma and the number of “reads” must not exceed
the number of data items.

TEST PROGRAM

19 REM 'MULTIPLE READ' STATEMENT TEST PROGRAM

2¢ READ A,B,C

3¢ D=A+B+C

4¢ PRINT "D =';D

50 PRINT "THE READ STATEMENT PASSED THE TEST IF D = 69"
69 DATA 19,2¢,3¢

99 END

SAMPLE RUN

D =69
THE READ STATEMENT PASSED THE TESTIF D = 6¢

Most computers will also allow strings to be read from DATA statements. Each time a
string is to be read from the DATA statement, it must have a corresponding string vari-
able in a READ statement.

217

READ

TEST PROGRAM

19 REM '‘READ STRINGS' TEST PROGRAM

2¢ READ D$

3¢ PRINT "THE READ STATEMENT PASSED THE ";D$
49 DATA TEST

99 END

SAMPLE RUN

THE READ STATEMENT PASSED THE TEST

Many computers allow both numeric and string data to be read by the same READ
statement and be contained in the same DATA line.

TEST PROGRAM

1§ REM 'MULTIPLE READ' STATEMENT TEST PROGRAM

2¢ READ A,B,C,D$

3¢ D=A+B+C

49 PRINT "THE READ STATEMENT PASSED THE TEST IN ';D$:D
5¢ DATA 2,8,1¢,LINE

99 END

SAMPLE RUN

THE READ STATEMENT PASSED THE TEST IN LINE 2¢

VARIATIONS IN USAGE

None. The only other way to store and call up data is by inputting it through a keyboard
or from off-line storage on tape, disc, etc.

ALSO SEE
DATA, RESTORE, Comma(,)

218

The REMark statement is used at the beginning of some
program lines to make them seive as a ‘“notebook” or
“scratchpad” to hold comments about the program. The
REM statement is not executed. Everything on a line
beginning with REM is ignored by the computer.

—nZz>

If used in multiple statement lines, those statements pre-
ceeding the REM statement will be executed, but every-
thing following a statement beginning with REM is

ignored. If the information to be noted requires more Statement
than one program line, each such line must begin with
REM.

TEST PROGRAM

1¢ PRINT "'REM' TEST PROGRAM"

2¢ REM PRINT "REM FAILED THE TEST"

3¢ REM * REM FAILED THE TEST IF LINE 2¢ 1S PRINTED*
49 PRINT "REM PASSED THE TEST"

99 END

SAMPLE RUN

'‘REM® TEST PROGRAM
REM PASSED THE TEST

Some computers allow either the REM or REMARK statement, while others accept only
one.

VARIATIONS IN USAGE

None known.

ALSO SEE
REMARK, ’(apostrophe), !

219

REMARK is used by some computers as an optional
word for REM. Computers that use the REMARK state-
ment may also accept its abbreviation (REM).

For more information see REM.

TEST PROGRAM

19 PRINT "'REMARK!' TEST PROGRAM"
2¢ REMARK PRINT "REMARK FAILED THE TEST"
39 REMARK * REMARK FAILED THE TEST IF LINE 2¢ IS PRINTED *

Statement

4¢ PRINT "REMARK PASSED THE TEST"
99 END

SAMPLE RUN

'‘REMARK' TEST PROGRAM
REMARK PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
REM, ' (Apostrophe)

220

RENUM is used in some computers (e.g. those using ver-
sions of Microsoft BASIC) as an abbreviation for the
RENUMBER command, which changes program line
numbers. For more information see RENUMBER.

RENUM nl,n2,n3 is used to renumber all program lines
starting with the original line number n2. Line n2 is
assigned line number nl and the following lines are incre-
mented by the value of n3.

Command

TEST PROGRAM

2 REM 'RENUM' TEST PROGRAM

3 X=1

4 PRINT “"IF THE PROGRAM LINES '";
5 GOTO 1¢

6 PRINT "THE RENUM COMMARND '';
7 X=2

8 GOTO 12

19 PRINT "ARE RENUMBERED"

12 ON X GOTO §,14

14 PRINT "PASSED THE TEST."

16 END

SAMPLE RUN

Type the command RENUM 1¢¢,5,5¢ and RUN.

IF THE PROGRAM LINES ARE RENUMBERED
THE RENUM COMMAND PASSED THE TEST.

To verify that the program is RENUMbered, LIST the program.

2 REM 'RENUM' TEST PROGRAM
3 X=1

4 PRINT "IF THE PROGRAM LINES '*;
188 GOTO 3¢¢

15¢ PRINT "THE RENUM COMMMARND ";
299 X=2

25¢ GOTO 35¢

3¢ PRINT "ARE RENUMBERED"

35¢ ON X GOTO 15¢,4¢¢

4¢¢ PRINT "PASSED THE TEST."

45¢ END

221

= RENUM

If the original line number (n2) is omitted, the computer automatically renumbers each
line from the first line to the last. In this case, the computer requires two commas
between the values nl and n3 indicating n2 is omitted. (e.s. RENUM 109,,50.)

Some computers (e.g. DEC-10) use the word RESEQUENCE instead of RENUMber.

VARIATIONS IN USAGE

None known.

ALSO SEE
RENUMBER, GOTO, GOSUB, IF-THEN, ON-GOTO, ON-GOSUB, LIST

222

RENUMBER is used in some computers (e.g. the
Cromemco 16K Extended BASIC) to change the program
line numbers. The line numbers used in GOTO, GOSUB,
IF-THEN, ON-GOTO and ON-GOSUB statements are
changed accordingly to maintain the same branching
scheme.

If a number is not included in the RENUMBER state-
ment, the computer automatically RENUMBERs each
program line starting at line 1@, and spacing the lines 10
numbers apart.

TEST PROGRAM

2 REM 'RENUMBER' TEST PROGRAM
3 X=1

4 PRINT "IF EACH PROGRAM LINE ';
5 GOTO 1¢

6 PRINT "THE RENUMBER COMMAND *';
7 X=2

8 GOTO 12

18 PRINT IS RENUMBERED"

120N X GOTO 6,14

14 PRINT “"PASSED THE TEST.”

16 END

RUN, to be sure it works.

Type the command RENUMBER and RUN again.

SAMPLE RUN

IF EACH PROGRAM LINE IS RENUMBERED
THE RENUMBER COMMAND PASSED THE TEST.

To verify that the program is RENUMBERed, LIST the program. It should appear:

19 REM 'RENUMBER' TEST PROGRAM
20 x=1

3¢ PRINT "IF EACH PROGRAM LINE '*;

44 GOTO 8¢

5¢ PRINT "THE RENUMBER COMMAND *;
60 X=2

7¢ GOTO 9¢

Command

223

— RENUMBER

8¢ PRINT 1S RENUMBERED"
9¢ ON X GOTO 5¢,18¢

1¢¢ PRINT "PASSED THE TEST."
11¢ END

RENUMBER n is used to renumber each program line starting with line number n and
incrementing by 10. To test this feature on the TEST PROGRAM, type RENUMBER
20 and LIST the program. It should read:

2¢ REM 'RENUMBER' TEST PROGRAM
39 X=1

4¢ PRINT "IF EACH PROGRAM LINE *;
50 GOTO 9¢

6¢ PRINT “THE RENUMBER COMMAND "
7¢ X=2

8¢ GOTO 199

9¢ PRINT *'IS RENUMBERED"

199 ON X GOTO 6¢,11¢

11¢ PRINT "PASSED THE TEST."

126 END

RENUMBER n1,n2 is used to renumber each program line starting with line number nl
and incrementing by the value of n2. To test this feature on the TEST PROGRAM, type
RENUMBER 50,20 and LIST the program. Now it should read:

5¢ REM 'RENUMBER' TEST PROGRAM
7¢ X=1

9¢ PRINT "IF EACH PROGRAM LINE ';
119 GOTO 19¢

13¢ PRINT "THE RENUMBER COMMAND '
15¢ X=2

17¢ GOTO 219

19¢ PRINT 1S RENUMBERED"'

210 ON X GOTO 13¢,23¢

239 PRINT "PASSED THE TEST."

25¢ END

RENUMBER n1,n2,n3 is used to renumber each program line starting with the old line
number n3. Line number n3 is assigned line number nl, and the remaining line numbers
are incremented by the value n2. To test this feature on the last TEST PROGRAM, type
RENUMBER 500,10,9¢ and LIST the program. Does it look like this?

5¢ REM 'RENUMBER' TEST PROGRAM
7¢ X=1
5¢¢ PRINT "IF EACH PROGRAM LINE ;

224

r RENUMBER

51¢ GOTO 55¢

52¢ PRINT "THE RENUMBER COMMAND *';
53¢ X=2

540 GOTO 56¢

55¢ PRINT IS RENUMBERED"

56¢ ON X GOTO 52¢,57¢

57¢ PRINT "PASSED THE TEST."

580 END

RENUMBER nl,n2,n3,n4 is used to renumber the old program lines from line n3 to line
n4. Line n3 is assigned line number nl and those lines following (ending with line n4) are
incremented by the value n2. To test this feature on the last TEST PROGRAM, type
RENUMBER 6,5,70,51¢ and LIST the program.

5¢ REM 'RENUMBER' TEST PROGRAM
6¢ X=1

65 PRINT "IF EACH PROGRAM LINE ';
79 GOTO 55¢

52¢ PRINT "THE RENUMBER COMMAND '*;
53¢ X=2

540 GOTO 569

55¢ PRINT "IS RENUMBERED"

569 ON X GOTO 52¢,57¢

57¢ PRINT "PASSED THE TEST."

58¢ END

VARIATIONS IN USAGE

None known. [RESEQUENCE is used by some computers (e.g. DEC-1() instead of
RENUMBER]

ALSO SEE

RENUM, REN, GOTO, GOSUB, IF-THEN, ON-GOTO, ON-GOSUB, LIST

225

RES is used in the PDP-8E as an abbreviation for the
RESTORE statement.

For more information see RESTORE.

TEST PROGRAM

19 REM 'RES' TEST PROGRAM

2¢ FOR X=1 TO 3

39 READ A

46 NEXT X

50 RES

690 READ A

7¢ 1IF A=1 THEN 199

8¢ PRINT "RES FAILED THE TEST"
9§ GOTO 999

1¢¢ PRINT "RES PASSED THE TEST"
119 DATA 1,2,3,4

999 END

SAMPLE RUN

RES PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
RESTORE, REST., READ, DATA

Statement

226

The RESET statement is used by the TRS-80 Levels I and
II as a special feature to “turn off” a graphics block in a
predetermined grid on the screen.

The block to be “turned off” within the grid is specified
by the X,Y coordinates enclosed in parentheses following
the RESET statement. For example, RESET (5,8)
instructs the computer to turn off a graphics block
located in the 5th column and the 8th row of the graphics
grid.

To turn on the graphics block, see SET.

TEST PROGRAM

1¢ REM 'RESET' TEST PROGRAM
2¢ CLS

3¢ Y=1

40 FOR X=1 TO 1¢¢

5¢ SET (X,Y)

69 NEXT X

7¢ PRINT

8¢ PRINT "RESET PASSED THE TEST IF THE LINE DISAPPEARS"

9¢ FOR X=1 TO 1¢¢
199 RESET (X,Y)
11¢ NEXT X

9998 END

SAMPLE RUN

RESET PASSED THE TEST IF THE LINE DISAPPEARS

VARIATIONS IN USAGE

None known.

ALSO SEE
SET, CLS

Statement

227

REST. is used in the TRS-80 Level I as an abbreviation for
the RESTORE statement.

For more information see RESTORE.

TEST PROGRAM

1$p REM ‘REST.' TEST PROGRAM

2¢ FOR X=1 TO 3

3¢ READ A

4P NEXT X

59 REST.

69 READ A

76 iF A=1 THEN 18¢

8¢ PRINT "REST. FAILED THE TEST"
99 GOTO 999

1¢¢ PRINT "REST. PASSED THE TEST"
11¢ DATA 1,2,3,4

999 END

SAMPLE RUN

REST. PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
RESTORE, RES, READ, DATA

Statement

228

Execution of a RESTORE statement causes the DATA
pointer to be “reset” back to the first piece of data in the
first DATA line. This enables the computer to use data
stored in DATA statements more than once.

TEST PROGRAM

19 REM 'RESTORE' TEST PROGRAM
2¢ READ X Statement
3¢ IF X=3 THEN 5¢

44 GOTO 2¢

5¢0 RESTORE

69 READ X

79 IF X=1 THEN 1¢¢

8¢ PRINT "RESTORE FAILED THE TEST"

9¢ GOTO 999

19¢ PRINT "RESTORE PASSED THE TEST"

119 DATA 1,2,3

999 END

SAMPLE RUN

RESTORE PASSED THE TEST

VARIATIONS IN USAGE

Some interpreters will allow resetting only the DATA in a specific DATA line by adding
that DATA statement line number after a RESTORE statement. See line 100 below.

TEST PROGRAM

19 REM 'RESTORE (LINE#)' TEST PROGRAM
2¢ READ X

39 PRINT X;

49 IF X=3 THEN 6¢
5¢ GOTO 2¢

69 READ X

7¢ PRINT X;

8¢ IF X=6 THEN 1¢¢
99 GOTO 69

1¢¢ RESTORE 18¢
119 READ X

129 IF X=4 THEN 15¢

-—nZ>

229

— RESTORE

13¢ PRINT "RESTORE FAILED THE TEST"

14¢ STOP
15¢ PRINT "RESTORE PASSED THE TEST"

169 GOTO 999
iTP DATA §,4,3
189 DATA 4,5,6
999 END

SAMPLE RUN

1 2 3 4 5 6 RESTORE PASSED THE TEST

ALSO SEE
DATA, READ

230

The RESUME statement is used as the last statement in
ON-ERROR-GOTO routines, telling the computer to
RESUME program execution at a specified line number.
The computer does not allow execution of the RESUME
statement if it is not preceded by an ON-ERROR-GOTO
statement. See ON-ERROR-GOTO for a TEST PRO-
GRAM using RESUME(line number). (Saves space not to
duplicate it here.)

Statement

RESUME NEXT is used to branch to the line following
the error and continues program execution. To test for RESUME NEXT capability in
your computer, change line 119 in the ON-ERROR-GOTO test program to:

119 RESUME NEXT

SAMPLE RUN (ON-ERROR-GOTO test program using RESUME NEXT) (using ()

ENTER A NUMBER AND IT'S INVERSE WILL BE COMPUTED? ¢
THE INVERSE OF § CANNOT BE COMPUTED -TRY AGAIN
THE INVERSE OF g IS ¢

1

RESUME ¢ and RESUME (without a line number or NEXT) are used to branch to the
statement containing the error.

TEST PROGRAM

1§ REM 'RESUME' TEST PROGRAM
2¢ ON ERROR GOTO 14§

3¢ PRINT "ENTER A POSITIVE NUMBER";

49 INPUT N

54 ASLOG(N)

6§ PRINT "THE LOG OF '";N;{"IS'";A

7¢ GOTO 3¢

104 PRINT "A NEGATIVE NUMBER IS NOT ALLOWED"
119 N=N#-1

120 RESUME ¢

999 END

231

[

RESUME

SAMPLE RUN (using 4)

ENTER A POSITIVE NUMBER? -4

A NEGATIVE NUMBER IS NOT ALLOWED
THE LOG OF 4 IS 1.38629

ENTER A POSITIVE NUMBER?

To test RESUME (without a line number or NEXT) capability in your computer, change
line 120 in the above TEST PROGRAM to:

12¢ RESUME

and RUN. The SAMPLE RUN should not change.

VARIATIONS IN USAGE

None known.

ALSO SEE
ON-ERROR-GOTO, ERL, ERR

232

RET is used in the PDP-8E as an abbreviation for the
RETURN statement.

For more information see RETURN.

TEST PROGRAM

1 REM 'RET (RETURN)' TEST PROGRAM

2¢ PRINT "RET";

3¢ GOSUB 1¢¢ Statement
4¢ PRINT "THE TEST."

5¢ GOTO 999

199 PRINT " PASSED ';
114 RET

999 END

SAMPLE RUN

RET PASSED THE TEST.

VARIATIONS IN USAGE

None known.

ALSO SEE
RETURN, RET.

233

RET. is used in the TRS-80 Level I and other variations of
Palo Alto Tiny BASIC as an abbreviation for the RE-
TURN statement.

For more information see RETURN.

TEST PROGRAM

1¢ REM 'RET, (RETURN)' TEST PROGRAM
2¢ PRINT "RET.";

3¢ GOSUB 19¢

49 PRINT "THE TEST."

50 GOTO 999

19¢ PRINT "' PASSED ';

119 RET.

899 END

SAMPLE RUN

RET. PASSED THE TEST.

VARIATIONS IN USAGE

None known.

ALSO SEE
RETURN, RET, GOSUB

Statement

234

The RETURN statement is used in conjunction with the
GOSUB statement. It is used as the last statement in a
subroutine; it tells the computer to return to the line con-
taining the GOSUB statement and continue program
execution from that point.

The computer will not allow execution of the RETURN
statement if it was not preceded by a GOSUB statement.

TEST PROGRAM

1¢ REM 'RETURN' STATEMENT TEST PROGRAM
2¢ GOSUB 5¢

3¢ PRINT "WAS ACCEPTED."

49 GOTO 99

5¢ PRINT "THE RETURN STATEMENT '";

6¢ RETURN

79 PRINT "WAS NOT ACCEPTED."

99 END

SAMPLE RUN

THE RETURN STATEMENT WAS ACCEPTED.

VARIATIONS IN USAGE

None known.

ALSO SEE
GOSUB, ON-GOSUB and I[F-GOSUB

Statement

_—n2Z D

235

The RIGHT(string,n) function is used in some computers
(e.g. those using MAX BASIC) to isolate a specific num-
ber (n) of string characters, starting from the right
most character in the string. For example, PRINT
RIGHT("CcOMPUSOFT",4) prints the letters SOFT,
which are the right 4 characters in COMPUSOFT, which is
a string.

For more information see RIGHTS.

TEST PROGRAM

19 REM 'RIGHT' TEST PROGRAM

2¢ AS="CONTEST"

3¢ B$=RIGHT(AS,4)

49 PRINT "THE 'RIGHT' FUNCTION PASSED THE ';B§
99 END

SAMPLE RUN

THE 'RIGHT' FUNCTION PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
RIGHTS

Function

236

The RIGHTS$(string,n) function is used to isolate a specific
number (n) of string characters, starting from the right-
most character in the string.

For example, PRINT RIGHT$(*COMPUSOFT" 4) prints
the letters SOFT, which are the right 4 characters in
COMPUSOFT, which is a string.

The string must be enclosed in quotes or assigned to a
string variable. The number (n) of characters can be
expressed as a variable, number or arithmetic operation. Function
A comma must separate the string from the number.

If the value of (n) is a decimal, the computer automatically finds its integer value.

TEST PROGRAM

1§ REM 'RIGHTS' TEST PROGRAM
2¢ AS="CONTEST"

3¢ BS=RIGHTS(AS,4)

49 PRINT “THE *;RIGHTS{"ALRIGHT'",5);"$ FUNCTION PASSED THE ';B8%

99 END

SAMPLE RUN

THE RIGHTS FUNCTION PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
PRINT, LEFT$, MID$, CHRS, SPACES$, STRS, STRINGS, INKEYS

237

RND is used to generate a random number greater than
¢ and less than 1.

TEST PROGRAM

19 REM 'RND’ TEST PROGRAM
2¢ FOR X=1 TO 8
3¢ PRINT RND,

49 NEXT X Function
99 END
SAMPLE RUN (Typical)
627633 358479 .137551% 127641
.125¢54 899923 .888¢76 787762

RND(®) is used by many computers to specify the same operation as RND.

TEST PROGRAM

1§ REM ‘RND(f)' TEST PROGRAM
2¢ FOR X=1 TO 8

3¢ PRINT RND(§),

49 NEXT X

99 END

SAMPLE RUN (Typical)

862675 735285 476959 .55141
.2457¢8 242171 868336 721914

While RND(n) generates a random number, in some computers RND((}) repeats the last
number generated by the random number generator.

RND(n) is used by some computers to create a random number greater than ¢ and less
than 1 when n is any number greater than zero.

TEST PROGRAM

19 REM 'RND(¢) AS A REPEAT' TEST PROGRAM
2¢ PRINT "RND{1}"

3¢ FOR X=1 TO 4

40 PRINT RND{1),

5¢ NEXT X

60 PRINT "RND(9)"

7¢ FOR Y=1TO 4

8¢ PRINT RND(¢),

9¢ NEXT Y

99 END

- ZD

238

RND

SAMPLE RUN (Typical)

RND(1)
.592453 245804 .118263 861308
RND(g)
.9613¢8 .961398 9613048 961308

A few computers create a random integer between 1 and the value of n when n is greater
than 1 (e.g. TRS-80).

RND(n) automatically integers the value of n.

TEST PROGRAM

19 REM 'RND’ TEST PROGRAM
20 N=1¢

3¢ FOR X=1 TO 4

44 PRINT RND(N),

58 NEXT X

99 END

SAMPLE RUN (Typical)

8 7 2 8

Some computers reset the internal (seed) number and create a random number greater
than @ and less than 1 when the n in RND(n) is negative. See RANDOM or RANDOMIZE

for details.

A TRICK

If your computer is one that generates random numbers > @ and < 1andyouneeda
random integer number from @ to 9, then try this trick.

PRINT INT{19*RND)
A random number from 1 to 1{ can be printed with this trick.

PRINT INT(19*RND+1)

ALSO SEE
RAND, RANDOM, RANDOMIZE

239

RU is used by some computers (e.g. the T.I. 990) as an
abbreviation for the RUN command.

For more information see RUN.

TEST PROGRAM

19 REM ‘RU (RUN)' TEST PROGRAM
2¢ PRINT "THIS LINE COURTESY OF THE RU COMMAND."

Command

99 END

SAMPLE RUN

After entering the RU command, the computer should print

THIS LINE COURTESY OF THE RU COMMAND,.

VARIATIONS IN USAGE

None known.

ALSO SEE
RUN, R.

240

The RUN command instructs the computer to execute the
program or programs held in memory, starting with the
lowest line number. With many computers, a line number
may be included after the RUN command to specify a
starting line other than the first one (e.g. RUN 44).

TEST PROGRAM

1¢ REM 'RUN' TEST PROGRAM Command
2¢ PRINT "THIS PRINTING STARTED AT LINE 2¢."

3¢ GOTO 99

49 PRINT "THIS PRINTING STARTED AT LINE 4¢."

99 END

SAMPLE RUN
After entering the RUN Command, the computer should display:

THIS PRINTING STARTED AT LINE 2¢.

By adding the number 49 to the RUN command, RUN49 or RUN 4§, the computer
should start at line 40 and print the following message:

THIS PRINTING STARTED AT LINE 49.
The RUN command is used only at the monitor or command level and is never accepted

in program statements. If you want to RUN a program using a program statement, see
CHAIN.

ALSO SEE
R., RU, CHAIN

241

S. is used in the TRS-80 Level I and other variations of
Palo Alto Tiny BASIC as an abbreviation for the STEP
statement and the graphics SET statement. Most versions
of Palo Alto Tiny BASIC (but not the TRS-80 Level I)
use S. to abbreviate the STOP statement and SIZE com-
mand.

S. is recognized as STEP when preceeded by the NEXT
statement, and as SET when followed by two values en-

closed in parenthesis and separated by a comma [e.g. Command
S.(X,Y)]. S. replaces STOP when it is used alone as a Function
statement, and as SIZE when used as a command. Statement

The following program uses S. as the STEP statement. For
more information see STEP.

TEST PROGRAM

19 REM 'S, (STEP)' TEST PROGRAM
2¢ FOR X=1 TO 1§ S.2

39 PRINT X;

49 NEXT X

5¢ PRINT "''S.' PASSED THE TEST"
99 END

SAMPLE RUN

1 3 5 7 9 'S’ PASSED THE TEST

The next program uses S. as the graphics SET statement. For more information see SET.

TEST PROGRAM

1¢ REM 'S, {SET)' TEST PROGRAM

2¢ PRINT *''S.' PASSES THE TEST IF A HORIZONTAL LINE APPEARS."
39 FOR X=0 TO 127

ag s.={x,21)

5¢ NEXT X

59 END

SAMPLE RUN

'S PASSES THE TEST IF A HORIZONTAL LINE APPEARS.

The next program uses S. as a STOP command. For more information see STOP.

242

[S L
TEST PROGRAM

14 REM 'S, {STOP)' TEST PROGRAM

2¢ PRINT "THE S. STATEMENT IN ACTION""

3¢ s.

48 PRINT *"THE S. STATEMENT FAILED THE TEST"
99 END

SAMPLE RUN

THE S.STATEMENT IN ACTION
BREAK AT LINE 3¢

This next program uses S. as a SIZE function.

TEST PROGRAM

19 REM 'S. {SIZE)' TEST PROGRAM
2¢ PRINT "THIS PROGRAM SIZE CAN BE CHECKED WITH THE S, COMMARND"
99 END

SAMPLE RUN

Type the command PRINT S. and the computer should print the number of bytes of
memory occupied by this TEST PROGRAM.

VARIATIONS IN USAGE

None known.

ALSO SEE
STEP, SET, STOP, STO, ST.

243

SAVE is used in a few computers (e.g. the APPLE II
BASIC and the Commodore PET) to record programs
from computer memory to cassette tape.

For more information see CSAVE.

TEST PROGRAM

18 REM 'SAVE' TEST PROGRAM
2¢ PRINT "THIS PROGRAM TESTS THE SAVE FEATURE"
99 END

Command

Set up the cassette recorder for recording and type the command SAVE. The computer
should control the operation of the cassette recorder by turning the motor on and off (at
the beginning and end of the record cycle).

Once the program is recorded on cassette tape, type “NEW” (or whatever is required) to
erase the program from memory. Load the program from tape back into the computer

(see LOAD). List the program to verify that the program held in the computer’s memory
is identical to that originally entered (see LIST).

SAMPLE RUN

THIS PROGRAM TESTS THE SAVE FEATURE

VARIATIONS IN USAGE

Some computers with disc storage capability use SAVE to copy programs in computer
memory to disc memory.

ALSO SEE
LOAD, CSAVE, CLOAD, LIST

244

The SET statement is used as a special feature by the
TRS-80 Level I and II BASICs to “turn on” or “light up”
a graphics block in a predetermined grid on the screen.

The block to be lit, within the grid, is specified by the
X,Y coordinates enclosed in parentheses following the
SET statement. For example, seT (5,8) instructs the
computer to SET a graphics block located in the 5th
column and the 8th row of the graphics grid.

Statement

To turn off the graphics block, see RESET.

TEST PROGRAM

19 REM 'SET' TEST PROGRAM

2¢ PRINT "ENTER X COORDINATE';

3¢ INPUT X

4¢ PRINT "ENTER Y COORDINATE"

5¢ INPUT Y

64 SET(X,Y)

7¢ PRINT "SET PASSED THE TEST"

8¢ PRINT "IF A LIGHT APPEARED AT (X,Y) COORDINATE (';X;",";¥;")."
99 END

SAMPLE RUN (Using 65 and 40)

ENTER X COORDINATE? 65

ENTER Y COORDINATE? 4¢

SET PASSED THE TEST

IF A LIGHT APPEARED AT (X,Y) COORDINATE (65, 49).

VARIATIONS IN USAGE

None known.

ALSO SEE
RESET

245

SCRN is used by the APPLE II BASIC as a special feature
to indicate the color of a graphics block on the screen.
The computer has the capability of displaying 16 colors
(numbered from @ to 15). For a complete color listing, see
COLOR.

The graphics block is specified by the X,Y coordinates
enclosed in parentheses following SCRN. The X value
represents the column number and the Y value repre- -
sents the row number. These values may range from @ to Function
39.

TEST PROGRAM

1§ REM 'SCRN' TEST PROGRAM

28 GR

3¢ COLOR=11

4¢ PLOT 26,1¢

5¢ IF SCRN{2¢,1¢)=11 THEN 8¢

6¢ PRINT "THE SCREN FUNCTION FAILED THE TEST"
7¢ GOTO 99

8¢ PRINT "THE SCRN FUNCTION PASSED THE TEST"
99 END

SAMPLE RUN

THE SCRN FUNCTION PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
COLOR, PLOT, GR, POINT

246

The SIN(A) function computes the Sine of the angle A,
when that angle is expressed in Radians, (not in degrees!).
One radian = approximately 57 degrees.

Function

A []

Sine (SIN) is defined as the ratio of the length of the side opposite the angle in question
to the length of the hypotenuse. This formula applies only to right triangles: siN(A)=Y/H

The opposite of SIN is ARCSIN. ARCSIN finds the value of the angle when its SIN, or
ratio of sides (Y/H), is known.

TEST PROGRAM

19 REM 'SINE' TEST PROGRAM
2¢ PRINT "ENTER AN ANGLE (EXPRESSED IN RADIANS)';
3¢ INPUT R

49 Y=SIN(R)

5¢ PRINT "THE SINE OF A";R;"RADIAN ANGLE IS';Y
30999 END

SAMPLE RUN (using 1)

ENTER AN ANGLE (EXPRESSED IN RADIANS)? 1
THE SINE OF A 1 RADIAN ANGLE IS .841471

To convert angles from degrees to radians, multiply the angle in degrees times .$174533.
For example, R=SIN(A*.¢$174533)

To convert angles from radians to degrees, multiply radians times 57.29578.

IF YOUR COMPUTER DOES NOT HAVE IT

If your interpreter does not have the SINe capability, the following subroutine can be
substituted.

39999 GOTO 39999

39370 REM * SINE SUBROUTINE * INPUT X IN RADIANS, OUTPUT Y
3¢372 REM ALSO USES Z INTERNALLY

39374 X=X*57.29578

—wnZ>

247

. SIN

30376 Z=ABS(X)/X

30378 X=2Z*X

3938 IF X D> =36¢ THEN 30388

39382 IF X> 9¢ THEN 36394

3384 X=X/57.29578

3¢385 IF ABS(X)<2.48616E-4 THEN 38437
39386 GOTO 3p429

309388 X=X/369

30390 X=(X-INT{X)}*36¢

39392 GOTO 3382

30394 X=X/9¢

39396 Y=INT(X)

30398 X=(X-Y)+99

304¢0¢ ON Y GOTO 39492,34406,30419
30492 X=9¢-X

3¢4¢4 GOTO 3¢384

3P4P6 X=-X

30408 GOTO 39384

30419 X=X-9¢

3¢415 GOTO 3¢384

BPA28 Y=X-HaXeK/E6+XK KX+ X+ X/ 12X+ XeKaXxXxXxX /5849
BF425 Y=Y+ XXX+ X4 XKxXxX+X+X/36288¢
3943¢ IF Z=-1 THEN 3¢44¢

3¢435 GOTO 38445

39437 Y=¢

30438 GOTO 39445

39440 Y=—Y

39445 RETURN

To use this subroutine with the TEST PROGRAM to find the SINE of an angle
(expressed in Radians), make the following TEST PROGRAM changes:

38 X=R
49 GOSUR 3¢37¢

To find the SINE of an angle (expressed in Degrees) either delete line 39372 or change
line 40 to:

49 GOSUB 39376

VARIATIONS IN USAGE

Some (rare) interpreters convert everything to degrees automatically.

ALSO SEE
TAN, COS, ATN

248

SLEEP is used by the HARRIS BASIC-V to suspend pro-
gram execution for a specified number of tenths of
seconds.

For example, SLEEP 3¢¢ causes the computer to pause
30 seconds before continuing program execution.

TEST PROGRAM

Statement

19 REM 'SLEEP' TEST PROGRAM

2¢ PRINT "THE COMPUTER SHOULD PRINT THE FOLLOWING LINE"
3¢ SLLEEP 15¢

49 PRINT "AFTER SLEEPING 15 SECONDS"

99 END

SAMPLE RUN

THE COMPUTER SHOULD PRINT THE FOLLOWING LINE
(15 second pause)

AFTER SLEEPING 15 SECONDS

IF YOUR COMPUTER DOESN’T HAVEIT

Insert a FOR-NEXT loop to “burn up” computer time. Test your computer to see how
many loops it executes per second. A micro-computer may perform as few as several
hundred, while a big mainframe may execute 5¢,009 or more. Replace line 30 in the
TEST PROGRAM (assuming your computer executes 10¢¢ loops per second) with:

39 FOR L=1 TO 150¢¢
35 NEXT L.

VARIATIONS IN USAGE

None known.

ALSO SEE
WAIT

249

The SPA(n) function is used in the Hewlett-Packard 2000
BASIC to insert a specified number (n) of spaces (blank
positions).

For example, PRINT SPA(1¢);"HELLO" prints 10
spaces followed by the word HELLO.

TEST PROGRAM

Function

14 REM 'SPACE' TEST PROGRAM

2¢ PRINT "1F THE FOLLOWING LINE CONTAINS 19 LEADING SPACES"
3¢ PRINT SPA{1¢):'THE SPA FUNCTION PASSED THE TEST"

99 END

SAMPLE RUN

IF THE FOLLOWING LINE CONTAINS 19 LEADING SPACES
THE SPA FUNCTION PASSED THE TEST

IF YOUR COMPUTER DOESN'T HAVEIT

In most cases, SPAces can be inserted by careful use of the TAB function.

For example, 3¢ PRINT TAB(1¢):"THE SPA FUNCTION PASSED THE TEST" will
accomplish the same thing, and a variable could have been used instead of the number

1¢.
Where a variable isn’t needed, simple enclosure of spaces between quotes will also work.

For example, 3¢ PRINT THE SPA FUNCTION PASSED THE TEST"

VARIATIONS IN USAGE

None known.

ALSO SEE
SPACE, SPACES, SPC, TAB

250

The SPACE(n) function is used in a few computers (e.g.
those using MAX BASIC) to print a specified number (n)
of spaces (blank positions).

For example, PRINT SPACE(1¢);"HELLO" prints 1§
spaces followed by the word HELLO.

TEST PROGRAM

Function

1¢ REM 'SPACE' TEST PROGRAM

2¢ PRINT "IF THE FOLLOWING LINE CONTAINS 1¢ LEADING SPACES"
3¢ PRINT SPACE(1¢):"THE SPACE FUNCTION PASSED THE TEST"

99 END

SAMPLE RUN

IF THE FOLLOWING LINE CONTAINS 10 LEADING SPACES
THE SPACE FUNCTION PASSED THE TEST

IF YOUR COMPUTER DOESN’T HAVE IT

In most cases, SPACEs can be inserted by careful use of the TAB function.

For example, 3¢ PRINT TAB(1¢);"THE SPACE FUNCTION PASSED THE TEST" will
accomplish the same thing, and a variable could have been used instead of the number 1.

Where a variable isn’t needed, simple enclosure of spaces between quotes will also work.

For example, 3¢ PRINT THE SPACE FUNCTION PASSED THE TEST"

VARIATIONS IN USAGE

Some computers require a $ sign following the SPACE function.

ALSO SEE
SPACES, SPA, SPC, TAB

251

The SPACES$(n) function is used to insert a specified num-
ber (n) of spaces.

For example, PRINT SPACES$(28);"HELLO" prints 20
spaces followed by the word HELLO.

Most computers with SPACES$(n) capability require the
value (n) to be greater than ¢ and less than 256.

Function

TEST PROGRAM

1¢ REM 'SPACES$' TEST PROGRAM

29 A$S=SPACES(19)

3¢ PRINT "IF THE FOLLOWING LINE CONTAINS 19 LEADING SPACES"
4¢ PRINT A%;'THE SPACES FUNCTION PASSED THE TEST"

99 END

SAMPLE RUN

I1F THE FOLLOWING LINE CONTAINS 19 LEADING SPACES
THE SPACE$ FUNCTION PASSED THE TEST"

IF YOUR COMPUTER DOESN’T HAVEIT

In most cases, SPACEs can be inserted by careful use of the TAB function.

For example, 3¢ PRINT TAB(1¢);*THE SPACE$ FUNCTION PASSED THE TEST" will
accomplish the same thing, and a variable could have been used instead of the number 1.

Where a variable isn’t needed, simple enclosure of spaces between quotes will also work.

For example, 3¢ PRINT THE SPACE$ FUNCTION PASSED THE TEST"

VARIATIONS IN USAGE

None known.

ALSO SEE

T QDA CD TAR

DAM
(s TS AN W Tul s W T U AP § 9

252

The SPC(n) function is used to insert a specified number
(n) of spaces (blank positions).

For example, PRINT SPc(1¢);"HELLO" prints 1) spaces
followed by the word HELLO.

TEST PROGRAM

Function

19 REM 'SPC' TEST PROGRAM

2¢ PRINT "IF THE FOLLOWING LINE CONTAINS 19§ LEADING SPACES"
3¢9 PRINT SPC(19);"THE SPC FUNCTION PASSED THE TEST"

99 END

SAMPLE RUN

IF THE FOLLOWING LINE CONTAINS 1¢ LEADING SPACES
THE SPC FUNCTION PASSED THE TEST

IF YOUR COMPUTER DOESN’T HAVE IT

In most cases, SPACEs can be inserted by careful use of the TAB function.

For example, 3¢ PRINT TAB(18);"THE SPC FUNCTION PASSED THE TEsST" will
accomplish the same thing, and a variable could have been used instead of the number 1.

Where a variable isn’t needed, simple enclosure of spaces between quotes will also work.

For example, 3¢ prINT © THE SPC FUNCTION PASSED THE TEST"

VARIATIONS IN USAGE

None known.

ALSO SEE
SPACE, SPACES, SPA, TAB

253

The SQR(n) function returns the square root of any posi-
tive number { V).

TEST PROGRAM

—-nZp

19 REM ‘SQR' TEST PROGRAM

2¢ PRINT "THE SQUARE ROOT OF 225 IS";
3¢ PRINT SQR(225)

4¢ PRINT "'SQR' PASSED THE TEST IF THE RESULT IS 15" Function
3¢999 END

SAMPLE RUN

THE SQUARE ROOT OF 225 IS 15
'SQR' PASSED THE TEST IF THE RESULT IS 15

IF YOUR COMPUTER DOESN’T HAVEIT

If the computer failed the Test Program substitute the following subroutine:

39000 GOTO 39999

30619 REM * SQUARE ROOT SUBROUTINE * INPUT X, OUTPUT Y
3¢p2¢ REM USES W AND Z INTERNALLY

3p$25 IF X=¢ THEN 39§85

3003¢ IFX>P THEN 30¢$45

30035 PRINT '""ROOT OF NEGATIVE NUMBER?"
3904¢ STOP

30945 Y=X/4

39959 Z=¢

39455 W={X/Y—Y)/2

30066 IF W=¢ THEN 3¢¢5¢

36665 IF W=2Z THEN 33499

30078 Y=Y+W

39975 Z=W

3008¢ GOTO 39955

39085 Y=¢

3¢0¢9¢9 RETURN

To use this subroutine in the TEST PROGRAM, make these Test Program changes:

25 X=225

3¢ GOSUB 39314
35 PRINT Y

5¢ GOTO 3¢999

2

O

4

SOR

VARIATIONS IN USAGE

None known.

ALSO SEE
SQRT

255

The SQRT(n) function computes the square root of any
positive number (V7).

TEST PROGRAM

1¢ REM 'SQRT' TEST PROGRAM
2¢ PRINT "THE SQUARE ROOT OF 225 IS";

39 PRINT SQRT(225)
49 PRINT "'SQRT' PASSED THE TEST IF THE RESULT IS 15" Function
36999 END

SAMPLE RUN

THE SQUARE ROOT OF 225 1S 15
'SQRT' PASSED THE TEST IF THE RESULT IS 15

If your computer failed the TEST PROGRAM, try the TEST PROGRAM in SQR. If it
fails, substitute the subroutine found under SQR.

To use the SQR subroutine in the TEST PROGRAM, make these TEST PROGRAM
changes:

25 X=225

39 GOSUB 39419
35 PRINT Y

VARIATIONS IN USAGE

None known.

ALSO SEE
SQR

256

ST is used by some computers (e.g. the TI 990) as an
abbreviation for the STEP statement.

For more information see STEP.

TEST PROGRAM

194 REM 'ST (STEP)' TEST PROGRAM

2¢ FOR X=1 TO 1¢ ST 2 Function
3¢ PRINT X;

49 NEXT X

5¢ PRINT "''ST' PASSED THE TEST"

99 END

SAMPLE RUN

1 3 5 7 9'ST' PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
STEP, STE, S.

257

ST. is used in the TRS-80 Level I as an abbreviation for
the STOP statement.

For more information see STOP.

TEST PROGRAM

19 REM 'ST. {(STOP)' TEST PROGRAM

2¢ PRINT "THE PROGRAM SHOULD 'STOP' AFTER THIS LINE"” Statement
39 ST.
4¢ PRINT "'ST.” FAILED THE TEST IF THIS LINE IS PRINTED"
99 END
SAMPLE RUN

THE PROGRAM SHOULD 'STOP' AFTER THIS LINE
BREAK AT 3¢

VARIATIONS IN USAGE

None known.

ALSO SEE
STOP, STO, S., END, CONT

258

STE is used in the PDP-8E as an abbreviation for the

STEP statement.

For more information see STEP.

TEST PROGRAM

19 REM 'STE’ TEST PROGRAM
2¢ FOR X=1 TO 19 STE 2

39 PRINT X;

49 NEXT X

5¢ PRINT "'STE' PASSED THE TEST"
99 END

SAMPLE RUN

1 3 5 7 9 ‘'STE'PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
STEP, S., ST

Function

259

The STEP function is used to specify the size of the step
incremented in a FOR-NEXT statement. The STEP value
can be positive, negative or sometimes even a non-integer
decimal value. When a STEP value is not specified, the
value of +1 is automatically assumed.

TEST PROGRAM #1

1$ REM 'STEP' TEST PROGRAM
2¢ PRINT "WHEN THE STEP VALUE IS 2, X='%;
3P FOR X=1 TO 19 STEP 2

49 PRINT X;

50 NEXT X

99 END

Function

SAMPLE RUN

WHEN THE STEP VALUE IS 2,X= 1 3 5 7 9

The following program tests the interpreter’s ability to handle negative STEP values.

TEST PROGRAM #2

1¢ REM '"NEGATIVE STEP' TEST PROGRAM
2¢ PRINT "WHEN THE STEP VALUE IS —2, X="1;
39 FOR X=1¢ TO 1 STEP -2

40 PRINT X;

50 NEXT X

93 END

SAMPLE RUN

WHEN THE STEP VALUE IS -2, X=1¢§ 8 6 4 2

Test program #3 checks the interpreter’s ability to handle non-integer decimal STEP
values.

TEST PROGRAM #3

19 REM 'NON-INTEGER STEP' TEST PROGRAM
2¢ PRINT "WHEN THE STEP VALUE IS .5, X="";
3¢ FOR X=1 TO 5 STEP .5

4¢ PRINT X;

5¢ NEXT X

29 END

260

= STEP

SAMPLE RUN

WHEN THE STEP VALUE IS .5, X=1 1.5 2 25 3 3.5 4 435 5

A variable is accepted as the STEP value by some interpreters. For example, FOR X=1
TO 3¢ STEP A causes the value of X to be incremented by the value of variable A each
time the corresponding NEXT statement is executed.

TEST PROGRAM #4

1§ REM 'VARIABLE STEP' TEST PROGRAM

2¢ PRINT "ENTER A STEP VALUE {BETWEEN 1 AND 1¢)"
3¢ INPUT S

49 PRINT "THE VALUE OF X=";

5¢ FOR X=1 TO 1§ STEP S

69 PRINT X;

79 NEXT X

99 END

SAMPLE RUN (Using 3)

ENTER A STEP VALUE (BETWEEN 1 AND 19}
73
THE VALUE OF X=1 4 7 1¢

IF YOUR COMPUTER DOESN'T HAVE IT

If STEP is not intrinsic, or not powerful enough, it can be easily simulated in ascending
FOR-NEXT statements. Omit ‘STEP S’ from line 5@ in the last test program, and add the
following lines:

65 X=X+5-1
67 1IF X<¢ THEN 98

Inserting these lines immediately before the corresponding NEXT statement allows incre-
menting X by any integer or decimal fraction you wish.

ALSO SEE
FOR-NEXT,S ., ST, STE

261

STO is used in the Tektronix 4051 and PDP-8E as an
abbreviation for the STOP statement.

For more information see STOP.

TEST PROGRAM

190 REM 'STO (STOP)' TEST PROGRAM Statement

2¢ PRINT "THE PROGRAM SHOULD 'STOP' AFTER PRINTING THIS LINE"
3¢ STO

49 PRINT '''STO' FAILED THE TEST iF THIS LINE IS PRINTED"

99 END

SAMPLE RUN

THE PROGRAM SHOULD 'STOP' AFTER PRINTING THIS LINE

VARIATIONS IN USAGE

None known.

ALSO SEE
STOP, END, CONT

262

The STOP statement is used to STOP execution of the
program and place the computer in the monitor or imme-
diate mode. It can be placed at any point within a pro-
gram, but is not usually used in place of the END state-
ment.

Some computers will stop the program at the line which
contains the STOP statement, while others jump to the
line containing the END statement.

Statement

Many computers with interpreters (but not compilers)
print the line number where the program stopped, and
allow continuation of program execution via the CONTINUE command (see CONT).

TEST PROGRAM

19 REM 'STOP' TEST PROGRAM

2¢ PRINT "SEE THE STOPSTATEMENT IN ACTION"

3¢ STOP

49 PRINT “THE STOP STATEMENT FAILED THE TEST"
99 END

SAMPLE RUN

SEE THE STOP STATEMENT IN ACTION
BREAK AT LINE 39

VARIATIONS IN USAGE

Trying to both STOP and END in the same program can be unusually frustrating unless
you know your machine’s capabilities. Some machines (e.g. Varian) require physical
intervention (push a button) before RUNning, after hitting a program STOP.

Others (mostly large machines) allow an unlimited number of STOP’s, but no END.
Others allow an unlimited number of END’s, but no STOP’s. Most micros allow mixing of
STOP’s and END’s.

With care, the STOP/END problem can almost always be resolved and programs can be
converted quite easily.

ALSO SEE
S.,ST., STO, CONT, END

—-nZzZ>

263

The STR$(n) function is used to convert a numeric value
(n) into a string. The value (n) may be expressed as a
number or a numeric variable.

For example,

19 A$ = STRS(35)
20 PRINT AS

prints the number 35 as a string. The computer auto- Function
matically inserts a space before the number to allow for
the sign (-).

Conversion of a number to a string via the STR$ function allows its manipulation using
string modifiers (e.g. LEFT$, RIGHTS, MIDS, ASC, etc.).

TEST PROGRAM

1§ REM 'STR$' TEST PROGRAM
20 A = 123456

3¢ A% = STR$(A)

49 PRINT "IF THE NUMBER'":;A;"IS CONVERTED TO THE STRING'":A$
5¢ PRINT "THEN THE STR$ FUNCTION PASSED THE TEST."

99 END

SAMPLE RUN

IF THE NUMBER 123456 IS CONVERTED TO THE STRING 123456
THEN THE STR$ FUNCTION PASSED THE TEST.

VARIATIONS IN USAGE
None known.

ALSO SEE
ASC, CHRS, LEN, LEFTS$, MIDS§, RIGHTS$, STRING§, VAL

264

The STRINGS$(n,ASCII code) function is used with the
PRINT statement to print an ASCII character (n) number
of times.

For example, PRINT STRING${1¢,65) prints the ASCII
character A (ASCII code 65) ten times.

TEST PROGRAM

Function

1¢ REM 'STRINGS$® TEST PROGRAM
29 PRINT STRINGS(23,42);

3¢ PRINT "STRINGS FUNCTION '*;
49 PRINT STRINGS$(23,42)

99 END

SAMPLE RUN

HhhRAKRRRKARAIRKRRKNRAE RS STRINGS FUNCTION* ¥k kdkhhhkhhkhhroddrhk

VARIATIONS IN USAGE

Some computers (e.g. the TRS-80 Level II) allow string characters (enclosed in quotes) or
string variables in the STRINGS$ function.

For example, 1¢ PRINT STRINGS(1¢,"A"")

prints the letter A ten times.

19 A$="B"
2¢ PRINT STRINGS$(5,A8)

prints the letter B five times.

TEST PROGRAM

1¢ REM 'STRINGS' TEST PROGRAM

2¢ PRINT "ENTER ANY LETTER, NUMBER OR SYMBOL'";
3¢9 INPUT AS

4¢ PRINT STRINGS(2¢,".");

5¢ PRINT STRINGS$(2¢,AS)

99 END

265

STRINGS

SAMPLE RUN

ENTER ANY LETTER, NUMBER OR SYMBOL? X
.................... KK KKK KKK KK XK KKK KKX XX

IF YOUR COMPUTER DOES NOT HAVE IT

If your computer does not accept the STRINGS function, it can be simulated by finding
the ASCII character in the ASCII table (see Appendix A) which matches the ASCII

code listed in the STRINGS function. Then place that character in a PRINT statement
the number of times specified by the first number in the STRINGS function.
For example:

18 PRINT STRING$(12,45)

can be entered as:

19 PRINT " o oo o o mm e e e "

ALSO SEE
PRINT, ASC, CHRS, LEN, MID$, LEFTS$, RIGHTS, STRS, VAL

266

STUFF is used in the Digital Group Opus 1 and Opus 2
BASIC to insert integer values between ¢ and 255 into
specified memory locations.

For example, STUFF 3¢@¢,65 places the decimal value 65
in memory address 3000.

The FETCH function can be used with STUFF to check
what STUFF has stored into memory. (Some computers
use PEEK or EXAM instead.) Statement

Computers vary in the amount of available memory and memory addresses that can be
STUFFed without erasing memory dedicated to other purposes. Check your computer’s
manual before running this TEST PROGRAM to determine that addresses 15001 to
15010 are non-critical memory locations. If they are not, select 10 other consecutive
addresses.

TEST PROGRAM

18 REM 'STUFF' TEST PROGRAM
2¢ FOR X=1 TO 1¢

3¢ STUFF 15¢9¢+X,X

49 NEXT X

5¢ FOR X=15¢¢1 TO 15¢1¢

69 Y=FETCH(X)

7¢ PRINT Y

89 NEXT X

9¢ PRINT

169 PRINT "'STUFF' PASSED THE TEST IF #1 THRU #1¢ ARE PRINTED"
999 END

SAMPLE RUN

1234567891¢
'STUFF' PASSED THE TEST IF #1 THRU #1¢ ARE PRINTED

IF YOUR COMPUTER DOESN’T HAVEIT

If your computer failed the TEST PROGRAM, try the Test Programs found in POKE and
FILL.

VARIATIONS IN USAGE

None known.

ALSO SEE
POKE, FILL, PEEK, FETCH, EXAM

267

SYS is used by a few computers (e.g. the Commodore
PET and the Sperry Univac System/9 BASIC) as an abbre-
viation for the SYSTEM command.

For more information see SYSTEM.

To test the computer’s SYS capability, type the com-
mand SYS. The computer accepted the SYS command if
the computer changed to the monitor mode and prints
an asterisk followed by a question mark (%?), (or some Command
other appropriate monitor response).

This feature can be activated on some terminals by pressing the escape (ESC) key.

268

The SYSTEM command is used in some computers to
allow machine language data (object file) to be loaded
from cassette tape or disc into the computer. These com-
puters may also use SYSTEM as a program statement.

When the computer executes the line containing the SYS-
TEM statement, or when SYSTEM is typed on the termi-
nal, the computer changes to the monitor mode and prints
an asterisk followed by a question mark (*7) or some
other cryptic symbol. This signal indicates the computer
is ready to accept the object file from disc or tape.

Command
Statement

Place an object file tape in the cassette player and set it to the PLAY mode. Type the ob-
ject file name and RETURN. The cassette recorder’s motor is controlled by the com-
puter, which turns it on and off before and after the load cycle. The cassette should *“play
back” the data into the computer. When the data is loaded in the computer, another *?
is displayed.

To execute the object file routine, type a slash (/) followed by a memory decimal start-
ing address. If the / is entered without the starting address, then execution begins at the
address specified in the object file.

The TRS-80 Level I-to-Level II CONVersion cassette tape is a typical example of how
SYSTEM is used.

VARIATIONS IN USAGE

Some computers use the SYSTEM command similar to the ESC (escape) key on many
keyboards to place the computer in the System, Executive or monitor mode.

ALSO SEE
SYS, PEEK, POKE

269

T. is used in the TRS-80 Level I BASIC as an abbreviation
for the TAB function and the THEN statement.

The computer’s interpreter recognizes T. as a TAB func-
tion when it is followed by a number enclosed in paren-
theses [e.g. T.(20)]. It is recognized as a THEN statement
when not followed by a number enclosed in parentheses
and the computer has previously executed the IF state-
ment (e.g. IF X=20 T.100).

Function

The first test program uses T. as the function TAB. For Statement
more information see TAB.

TEST PROGRAM

i REM 'T. (TAB)' TEST PROGRAM
2¢ PRINT T.{15);"'T.' PASSED THE TAB FUNCTION TEST"
98 END

SAMPLE RUN

'T.' PASSED THE TAB FUNCTION TEST"

This next test program uses T. as a THEN statement. For more information see THEN or
IF-THEN.

TEST PROGRAM

19 REM 'T. ([THEN)' TEST PROGRAM
2¢ X=1¢

30 IF X=10 T.6¢

49 PRINT *'T. FAILED THE TEST"
5¢ GOTO 99

6¢ PRINT "'T,' PASSED THE TEST"
99 END

SAMPLE RUN

T PASSED THE TEST

None other known.

ALSO SEE
TAB, THEN, IF-THEN, THE, IF-THE, IF-T.

270

The TAB function is used with PRINT statements in a
manner similar to the TAB key on a typewriter. When the
PRINT statement is followed by TAB() the computer
inserts a number of spaces (enclosed in parenthesis) before
the statement to be printed. The TAB value must always
be positive and should be less than the number of spaces
allowed per line.

If more than one TAB statement is used in one line, the
numerical values must get progressively larger and allow
room inbetween for that which is to be printed. If insuf-)
ficient room is allowed between TABs, they will be over- Function
run, just like on a typewriter.

The value may be expressed as a number, PRINT TAB(5); a variable, PRINT TAB(X); o1
an expression, PRINT TAB(2X+Y). TAB() must be followed by a semicolon or comma,
depending upon the interpreter.

TEST PROGRAM

1$ REM 'TAB’' FUNCTION TEST PROGRAM
2¢ PRINT TAB(S5): "TAB 5"

3 X=19

4¢ PRINT TAB({X); "TAB 19"

54 PRINT TAB(6*X/5+8); "TAB 2¢"

989 END

SAMPLE RUN

TAB 5
TAB 19
TAB 2¢

The maximum value of the TAB on your computer can be quickly determined by adding
the following lines to the test program:

69 PRINT “TYPE IN A TAB VALUE'Y;
7¢ INPUT T

8¢ PRINT TAB(T); “TAB'“T

98 GOTO &¢

The TAB value entered in line 7 will cause line 8@ to print the TAB value following the
same number of spaces.

VARIATIONS IN USAGE

None known.

—-nZY

271

TAB

IF YOUR COMPUTER DOESN'T HAVEIT

There is no totally satisfactory replacement for TAB, but there are several ways to obtain
printouts which may be acceptable. Assume an original PRINT series:

200 PRINT TAB{18); " THE";TAB(26):"QUICK' iTAB(3p);"BROWN";
219 PRINT TAB(49);"FOX"

The TAB values are simple numbers and could be replaced by:
200 PRINT © THE QUICK BROWN FOoX"
or, less accurately:
2¢¢ PRINT "THE","QUICK" "BROWN" "FOX"

or
A combination of inserting spaces and automatic zone spacing.
A third, and generally less satisfactory, method of arriving at a usable printout involves

combining the carriage return suppressing ability of the semicolon (3), the automatic zon-

ing of the comma (,), and inserted spaces. In some interpreters (compilers) however this
can create a remarkably messy situation.

ALSO SEE
PRINT, PRINT AT, ,(comma), j(semicolon)

272

The TAN(A) function computes the Tangent of the
angle A when that angle is expressed in radians (not

in degrees!). One radian = approximately 57 degfees.

-
Y
A — Function
1 X g

f
Tangent (TAN) is defined as the ratio of the length of the side opposite the angle being
investigated to the length of the side adjacent to it.

TAN(A)=Y/X

Lhe opposite of TAN is ARCTAN (ATN). ARCTAN finds the value of the angle when its
TAN, or ratio of sides (Y/X) is known.

TEST PROGRAM

19 REM '"TAN' TEST PROGRAM

2¢ PRINT "ENTER AN ANGLE (EXPRESSED IN RADIANS)';
39 INPUT R

49 Y=TAN(R)

5¢ PRINT "THE TANGENT OF A';R;"RADIAN ANGEL IS";Y
39999 END

SAMPLE RUN (using 1)

ENTER AN ANGLE (EXPRESSED IN RADIANS)? 1
THE TANGENT OF A 1 RADIAN ANGLE IS 1.55741

To convert values from degrees to radians, multiply the angle in degrees times .¢174533.
For example, R=TAN({A*.¢174533) To convert values from radians to degrees, multiply
the angle in radians times 57.29578.

IF YOUR COMPUTER DOESN'T HAVEIT

If your interpreter has the SINe and COSine capability but not TANgent, substitute
SIN(A)/COS(A) for TAN(A).

If your interpreter does not have SINe, COSine or TANgent capability, the following
subroutine can be substituted.

The subroutine programs found under SIN and COS must be added to this one to make it
work (saves space not to duplicate them here).

- nZP

273

— TAN

39099 GOTO 39999

39399 REM * TANGENT SUBROUTINE * INPUT X IN RADIANS, OUTPUT Y
3¢3¢2 REM ALSO USES A,CW AND Z INTERNALLY
3¢3P4 X=X*57.29578

39396 A=X

39398 GOSUB 39356

39319 1F ABS(Y) < 1E ~6 THEN 3¢32¢

39312 PRINT "TANGENT UNDEFINED"

39315 STOP

3¢32¢ C=Y

39325 X=A

3¢33¢p GOSUB 39376

3¢335 Y=Y/C

39349 RETURN

To use this subroutine with the TEST PROGRAM to find the TANGENT of an angle
(expressed in RADIANS), make the following TEST PROGRAM changes:

35 X=R
49 GOSUB 393¢9

To find the TANGENT of an angle (expressed in DEGREES), either delete line 39304 or
change line 4 to:

49 GOSUB 393¢6

VARIATIONS IN USAGE

Some (rare) interpreters convert everything to degrees automatically.

ALSO SEE
SIN, COS, ATN

274

TEXT is used in the APPLE II BASIC as both a command
and a program statement to change the computer’s opera-
tion from the graphics mode to the normal TEXT (nar-
rative) mode.

TEST PROGRAM

1¢ REM 'TEXT' TEST PROGRAM

28 TEXT Command
3¢ PRINT “"THE '"TEXT'STATEMENT DID NOT CRASH" Statement
49 END

SAMPLE RUN

THE 'TEXT' STATEMENT DID NOT CRASH

VARIATIONS IN USAGE

TEXT is used in computers with MAXBASIC to specify designated variables as string
variables. For example, TEXT A,F,M defines variables A,F and M as string variables.

ALSO SEE
GR, DEFSTR

275

THE is used in the PDP-8E as an abbreviation for the
THEN statement,

For more information see THEN.

TEST PROGRAM

19 REM 'THE (THEN)' TEST PROGRAM
26 X=1¢ Statement
30 IF X=1¢ THE 69

4¢ PRINT '"'THE' FAILED THE TEST"

5¢ GOTO 99

6¢ PRINT "'THE' PASSED THE TEST"

99 END

SAMPLE RUN

'"THE' PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
THEN, IF-THEN, T., IF-T.

276

THEN is used with the IF statement to indicate the next
operation the computer is to perform when the condition
of the IF statement is met.

For more information see IF-THEN.

TEST PROGRAM

1§ REM 'THEN' TEST PROGRAM
2¢ X=1¢

3¢ IF X=1¢ THEN 6¢

4¢ PRINT “'THEN' FAILED THE TEST"
5¢ GOTO 89

6¢ PRINT "'THEN' PASSED THE TEST"
99 END

SAMPLE RUN

'THEN' PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
IF-THEN, THE, T.

Statement

—tnZ>P

277

TI is used in the Commodore PET as an abbreviation for
the TIME function.

For more information see TIME.

TEST PROGRAM

19 REM 'TI' TEST PROGRAM
2¢ A=TI

39 FOR X=1 TO 20¢8¢

49 NEXT X

Function

5¢ B=TI

6 IFB > A THEN 99

7¢ PRINT "THE TI FUNCTION FAILED THE TEST"
8¢ GOTO 99

9¢ PRINT ""'TI' PASSED — ELAPSED TIME = '";B-A
99 END

SAMPLE RUN (typical)

T’ PASSED — ELAPSED TIME = 167

VARIATIONS IN USAGE

None known.

ALSO SEE
T1$, TIME, TIMES, TIM, CLK, CLK$

278

TIM is used by some computers (e.g. the DEC 10 BASIC
and the Sperry Univac System/9 BASIC) to indicate the
elapsed program run time in seconds.

For example, PRINT TiMm may print a number (such as
19, indicating the computer program ran 1 seconds)
before executing the PRINT statement.

The Univac System/9 BASIC requires a variable (enclosed
in parenthesis) following TIM, although the variable has
no effect on the TIM function.

TEST PROGRAM

19 REM 'TIM' TEST PROGRAM
29 A=TIM

3¢ PRINT “TIME IS MARCHING ON"'

49 FOR X=1 TO 2¢¢¢

5¢ NEXT X

69 B=TIM

7@1F B > A THEN 199

8¢ PRINT "THE TIM FUNCTION FAILED THE TEST"

94 GOTO 999

19¢ PRINT ''TIM' PASSED THE TEST — ELAPSED TIME = ";B-A
999 END

SAMPLE RUN (typical)

TIME IS MARCHING ON
'"TIM' PASSED THE TEST — ELAPSED TIME = 6

Function

The Hewlett Packard 2009 BASIC uses TIM(n) to indicate the current time in minutes,
hours, days and years, depending on the TIM number (n). The TIM number (n) must be

an integer from @ to 3, as follows:

TIM(Q) indicates the current minute (§ to 59)
TIM(1) indicates the current hour ({ to 23)
TIM(2) indicates the current day (to 366)
TIM(3) indicates the current year () to 99)

279

TIM
TEST PROGRAM

19 REM '"TIM{N)' TEST PROGRAM
28 PRINT “THE CURRENT TIME IS*"
3¢ PRINT TIM(g);"MINUTES""

4¢ PRINT TIM(1);"HOURS""

5¢ PRINT TIM(2};"DAYS"

69 PRINT TIM(3); "' YEARS"

99 END

SAMPLE RUN (typical)

THE CURRENT TIME IS
43 MINUTES

16 HOURS

194 DAYS

78 YEARS

ALSO SEE
TIME, TIMES, TI, TI$, CLK, CLKS$

280

TIME is used as a special feature in some computers to
indicate the elapsed time in seconds or fractions of seconds
from a known reference point in time.

Most “time-shared” machines start the time count from
12:00 midnight until the following midnight, while
“stand-alone” machines start the count from the moment
the computer is turned on until it is turned off.

Command
Function

For example, PRINT TIME may print a number similar to
(17230 indicating the total computer run time in some
units.

Computers are not consistent in the unit of time used to increment the TIME counter.
For example, the Commodore PET increments the TIME value at a rate of 60 times per
second, those using MAX BASIC increment at a rate of 10@Q times per second, and the
DEC BASIC-PLUS-2 increments at a rate of one count per second.

Some computers (e.g. the Commodore PET) process the elapsed TIME value as a six-
digit number, and this value cannot be changed or reset to zero except by turning the
computer off.

TEST PROGRAM

1¢ REM 'TIME' TEST PROGRAM

2¢ A=TIME

3¢ PRINT "TIME IS MARCHING ON"

49 FOR X=1 TO 2¢¢¢9

5S¢ NEXT X

6¢ B=TIME

7¢ IF B > A THEN 1¢¢

8¢ PRINT "THE TIME FUNCTION FAILED THE TEST"
99 GOTO 999

1¢¢ PRINT ''"TIME' PASSED THE TEST - ELAPSED TIME = '";B-A
999 END

SAMPLE RUN (typical)

'TIME' PASSED THE TEST - ELLAPSED TIME = 27¢

VARIATIONS IN USAGE
The DEC BASIC-PLUS-2 uses the following TIME variations:

TIME(Q) indicates the total elapsed time in seconds since midnight.

281

EEETT
[Prrm————

TIME

For example, 1¢¢ PRINT TIME(¢) may print a value similar to 25128 indicating 25,128
seconds have elapsed since midnight.

TIME(1%) indicates the total elapsed program time in tenths of seconds.

For example, 1¢¢ PRINT TIME(1%) may print a value similar to 85 indicating the pro-
gram ran 8.5 seconds before printing TIME(1%).

TIME(2%) indicates the total elapsed time in minutes that a terminal was connected to a
time share system.

For example, 14 PRINT TIME(2%) may print a value similar to 13Q indicating 130
seconds have elapsed since the terminal was connected to the time share system.

The Hewlett Packard 2000F TIME-SHARED BASIC uses TIME as a command to print
the elapsed time since the terminal was logged onto the system, and the total accumu-
lated account time.

For example, if the command TIME is typed, it will print a report similar to this;

CONSOLE TIME = 5 MINUTES. TOTAL TIME = 2¢45 MINUTES.

ALSO SEE
TIMES, TIM, TI, TI$, CLK$

282

TIMES is used as a special feature by some computers
(e.g. the Commodore PET and the DEC BASIC-PLUS-2)
to indicate the time of day.

The PET stores the TIMES$ value in hours (§ -24),
minutes, and seconds as a six digit number (hhmmss). The
TIMES$ value can be “set” by assigning a six digit number
(enclosed in quotes) to TIMES.

For example, TiME$="1445¢¢" sets the TIMES at Function
14450Q (which is the same as 2:45 p.m.). The TIMES

continues advancing each second from the time the computer is turned on (the TIME$
value is initialized at QOQG@Q), or from the moment it is assigned a new value.

TEST PROGRAM

19 REM 'TIMES$' TEST PROGRAM

28 PRINT “THE CURRENT TIME IS “;TIMES$

3¢ PRINT "THE TIMES FUNCTION PASSED THE TEST"
4¢ PRINT "IF A SIX DIGIT NUMBER IS PRINTED"

99 END

SAMPLE RUN (typical)

THE CURRENT TIME IS ¢§12536
THE TIMES$ FUNCTION PASSED THE TEST
1F A SIX DIGIT NUMBER IS PRINTED

VARIATIONS IN USAGE

The DEC BASIC-PLUS-2 uses TIMES$(9%) to indicate the time of day in hours and
minutes.

For example, PRINT TIME$(g%) will print a time similar to 14:32. The computer auto-

matically inserts the colon between the hours and minutes. Also, DEC BASIC-PLUS-2
uses TIME(n%) to indicate the time (n) minutes before midnight.

ALSO SEE
TIME, T1, T1§, CLK$

283

TI$ is used in the Commodore PET as an abbreviation for
the TIME$ function.

For more information see TIMES.

TEST PROGRAM

19 REM 'TI$" TEST PROGRAM

20 PRINT "THE CURRENT TIME IS '\TI$

3 PRINT *'TI$' PASSED THE TEST"

49 PRINT "IF A SIX DIGIT NUMBER 1S PRINTED"
99 END

SAMPLE RUN (typical)

THE CURRENT TIME IS 171387
'TI$' PASSED THE TEST
IF A SIX DIGIT NUMBER IS PRINTED

VARIATIONS IN USAGE

None known.,

ALSO SEE
TIMES, TIME, TIM, CLK

Function

284

The TRACE command is used in the APPLE II BASIC
to activate a feature which prints program line numbers as
each one is executed by the computer. It is used as a
trouble-shooting aid. This execution tracing feature is dis-
abled by the NOTRACE command.

TRACE may also be used as a program statement to trace
only specific sections of programs.

TEST PROGRAM

19 REM ‘TRACE' TEST PROGRAM
2¢ PRINT "'TRACE' TRACES EACH LINE"

3¢ TRACE

4 GOTO 9¢

5¢ PRINT "UNTIL TURNED OFF BY"

69 NOTRACE

7¢ PRINT "THE 'NOTRACE' STATEMENT"

8¢ GOTO 11¢

9¢ PRINT '""THAT FOLLOWS THE '"TRACE' STATEMENT"
194 GOTO 5¢

11¢ PRINT ""AS ILLUSTRATED BY THIS LINE"

899 END

SAMPLE RUN

"TRACE' TRACES EACH LINE
#49#99 THAT FOLLOWS THE '"TRACE' STATEMENT
#199#5¢ UNTIL TURNED OFF BY

#6¢ THE 'NOTRACE' STATEMENT

AS ILLUSTRATED BY THIS LINE

VARIATIONS IN USAGE

None known.

ALSO SEE
NOTRACE, TRON, TRACE ON, TROFF

Command
Statement

285

The TRACE OFF command is used in the Motorola
BASIC to disable the trace function (see TRACE ON).
TRACE OFF may be used as a program statement to turn
the trace off at specified areas in the program.

TEST PROGRAM

1§ REM 'TRACE OFF* TEST PROGRAM

2¢ TRACE ON Command
3¢9 PRINT "EACH LINE SHOULD BE TRACED" Statement

4¢ TRACE OFF

5¢ PRINT "BY THE 'TRACE ON*STATEMENT"

6¢ PRINT “UNTIL TURNED OFF BY THE 'TRACE OFF' STATEMENT"
99 END ‘

SAMPLE RUN

<3¢> EACH LINE SHOULD BE TRACED
<4¢> BY THE 'TRACE ON' STATEMENT
UNTIL TURNED OFF BY THE 'TRACE OFF' STATEMENT

VARIATIONS IN USAGE

None known.

ALSO SEE
TRACE ON, TRACE, NOTRACE, TROFF, TRON

286

The TRACE ON command is used in the Motorola BASIC
to activate a feature which prints program line numbers as
each one is executed by the computer. It is used as a
trouble-shooting aid. This tracing feature is disabled by
the TRACE OFF command.

TRACE ON may be used as a program statement to trace
only specified sections of a program.

TEST PROGRAM

14 REM 'TRACE ON' TEST PROGRAM

2¢ PRINT " “TRACE ON' TRACES EACH LINE"
3¢ TRACE ON

49 GOTC 9¢

5¢ PRINT "UNTIL TURNED OFF BY"

6¢ TRACE OFF

7¢ PRINT “"THE 'TRACE OFF' STATEMENT"
8¢ GOTO 11¢

9¢ PRINT "THAT FOLLOWS THE '"TRACE ON' STATEMENT"
19¢ GOTO 5¢

11¢ PRINT “AS ILLUSTRATED BY THIS LINE"
999 END

SAMPLE RUN

"TRACE ON' TRACES EACH LINE
<4p> <99> THAT FOLLOWS THE 'TRACE ON' STATEMENT
<198> <5¢> UNTIL TURNED OFF BY
<69¢> THE 'TRACE OFF'STATEMENT

AS ILLUSTRATED BY THIS LINE

VARIATIONS IN USAGE

None known.

ALSO SEE
TRACE OFF, TRACE, TRON, NOTRACE, TROFF

Command
Statement

287

TROFF (trace off) is a command which disables the trace
feature found in many interpreters (e.g. TRS-80 Level II).
TROFF may also be used as a program statement to turn
the trace off at specific areas in the program.

TEST PROGRAM
Type the TRON command, then RUN this test program:

Command
19 REM 'TROFF' TEST PROGRAM Statement
2¢ PRINT "THE FIRST TWO LINES OF THIS PROGRAM"

3¢ TROFF
4¢ PRINT "ARE PRINTED WITH THE TRACE TURNED ON."
5¢ PRINT "THIS LINE IS PRINTED WITH THE TRACE TURNED OFF."

89 END

SAMPLE RUN

19> <2¢>THE FIRST TWO LINES OF THIS PROGRAM
<£3¢>ARE PRINTED WITH THE TRACE TURNED ON.
THIS LINE IS PRINTED WITH THE TRACE TURNED OFF,

VARIATIONS IN USAGE

None known.

ALSO SEE
TRON, NOTRACE

288

The TRON (trace on) command is used to activate an
analytical tool which prints program line numbers as each
line is executed by the computer. This trace feature is
disabled by the TROFF or NEW commands. TRON is
intended to be used as a program tracing and trouble-
shooting aid.

TEST PROGRAM

Command
14 REM 'TRON' TEST PROGRAM Statement

2¢ GOTO 5¢

3¢ PRINT "OF THIS TEST PROGRAM."

49 GOTO 79

5¢ PRINT "TRON TRACES EACH LINE"
6¢ GOTO 3¢

7¢ PRINT "END OF TEST PROGRAM "'

99 END

SAMPLE RUN
Type TRON before running the test program.

<18><C29><5¢ > TRON TRACES EACH LINE
<69 ><39> OF THIS TEST PROGRAM.

<49 >C7$D>END OF TEST PROGRAM.

<99 >

TRON may aiso be used as a program statement to trace specific sections of programs. To
test this feature, type TROFF to be sure the “trace” is off, then add the following line
to the test program and RUN it.

35 TRON
SAMPLE RUN

TRON TRACES EACH LINE
OF THIS TEST PROGRAM.
<49D>< 7¢DEND OF TEST PROGRAM.
<99>

VARIATIONS IN USAGE

None known.

ALSO SEE
TROFF, NEW

289

The USR function executes a machine language routine
stored in the computer’s memory. The machine language
routine can be entered into memory from the keyboard
using the POKE statement or from cassette tape using a
SYSTEM command.

The USR function can be used in programs similar to any
other “built in” function.

For example, 1¢ PRINT USR(N) If a Function

If a machine language routine which computes the square ‘

root of N, is stored in the computer’s memory, then the computer will print the square
root of the number N.

To test for the USR function, you must load a machine language routine into the
computer (at appropriate addresses) using the POKE statement or SYSTEM command.
Refer to your computer’s Manual for correct use of this special function.

ALSO SEE
POKE, SYSTEM

290

The VAL function is used to convert numbers which are
written as strings, back into numeric notation. VAL has
the effect of stripping off the strings or dollar sign.

For example:

1¢ A%=""35""
2¢0 PRINT VAL(AS)

prints the number 35 as a numeric value. Function

TEST PROGRAM

19 REM 'VAL' TEST PROGRAM

2¢ AS="45.12"

3¢ A=VAL(AS)

4¢ PRINT "IF THE STRING '";A$;" IS CONVERTED TO THE NUMBER":A
5¢ PRINT "THEN THE VAL FUNCTION PASSED THE TEST."

99 END

SAMPLE RUN

IF THE STRING 45.12 1S CONVERTED TO THE NUMBER 45.12
THEN THE VAL FUNCTION PASSED THE TEST.

VARIATIONS IN USAGE

Some computers (e.g. the TRS-80 Level II and other Microsoft variations) allow the use
of combinations of numbers and letters with the VAL function, but the numbers must
precede the letters. If they don't, the VAL function produces a §§ indicating it did not
find a number as the first character.

For example, PRINT VAL("123ABC") prints the number 123.

TEST PROGRAM

19 REM 'VAL WITH MIXED STRING' TEST PROGRAM
2¢ A$="12 O'CLLOCK"

39 A=VAL{AS)

4¢ PRINT "IF THE STRING '"iA%:" IS CONVERTED TO THE NUMBER' ;A

5¢ PRINT "THE VAL FUNCTION ACCEPTED NUMBERS MIXED WITH LETTERS."

99 END

291

VAL

SAMPLE RUN

IF THE STRING 12 O'CLOCK IS CONVERTED TO THE NUMBER 12
THE VAL FUNCTION ACCEPTED NUMBERS MIXED WITH LETTERS,

ALSO SEE
STRS, ASC, CHR$, LEN, LEFTS, MID§, RIGHTS, STRINGS

292

VLIN-AT is used in the APPLE II BASIC as a special
feature to display a Vertical LINe AT a specified column
on the screen.

The vertical line length is determined by two numbers
following the VLIN statement. These numbers indicate
the bounds between which the line will extend. The line
may extend any length between rows @ to 39.

The number following the AT function represents the
column number which the line must occupy. This num-
ber may range from @ to 39.

Statement

For example, VLIN 1¢,3¢ AT 26 tells the computer to draw a vertical line from row 10

to row 39 AT column 26.

The GRaphics statement must be executed before the computer can accept the VLIN-AT
statement (see GR). The line’s color is determined by the COLOR statement (see COLOR).

TEST PROGRAM

19 REM 'VLIN-AT' TEST PROGRAM
2¢ GR

39 Y=0

49 FOR X=¢ TO 39
5¢ COLOR =Y

6¢ VLIN $,39 AT X
70 Y=Y+1

8@ IF Y 16 THEN 1¢¢
o9¢ Y=0

100 NEXT X

999 END

SAMPLE RUN

If the computer accepted the VLIN-AT statement, the screen should be filled with 39

vertical lines of various colors.

VARIATIONS IN USAGE

None known.

ALSO SEE
GR, COLOR, PLOT, HLIN-AT, TEST

293

VTAB (vertical tab) is used by the APPLE IT BASIC to
specify the starting line location on the screen for a
PRINT statement. VTAB values from 1 to 24, represent-
ing the screen’s 24 lines, are accepted.

For example, vt AB 12 specifies the PRINT starting point
as the 12th line down on the screen.

TEST PROGRAM Statement

19 REM 'VTAB' TEST PROGRAM
2¢ PRINT "ENTER A VTAB VALUE FROM 1 TO 24";

3¢ INPUT N

4¢ VTAB N

5¢ PRINT "V TAB PASSED THE TEST IF THIS IS PRINTED ON LINE ';N
99 END

SAMPLE RUN (using 5)

ENTER A VTAB VALUE FROM 1 TO 2475

VTAB PASSED THE TEST IF THIS 1S PRINTED ON LINES

IF YOUR COMPUTER DOESN'T HAVE IT

The easiest way to cause printing to start a certain number of lines down the screen is to
first clear it [by a long series of PRINT statements in succession, or with a series of ASCII
“line feeds” or CLS (clear screen)] . Check your ASCII chart to find your proper “N” for
PRINT CHRS$(N).

Then, again using PRINTs or an ASCII character, move down the screen the desired
number of lines before printing.

VARIATIONS IN USAGE

None known.

ALSO SEE
TAB, PRINT-AT, PRINT, ASC, CHR$

294

WAIT is used in some computers (e.g. those using MAX-
BASIC) to suspend program execution for a specified
time.

For example, walT 3¢ tells the computer to wait 30
seconds before executing the next statement.

A few computers WAIT a fractional value (e.g. 1/10 or
1/1009) of the specified time.

Command

For example, WAIT 1¢g¢¢ requires computers with Statement
ADDS BASIC to WAIT 1000 seconds while the VARIAN 62¢ will WAIT 10 seconds,

This program allows you to check your computer’s WAIT capability.

TEST PROGRAM #1

1¢ REM 'WAIT TIME PERIOD' TEST PROGRAM

2¢ PRINT "ENTER A UNIT OF TIME FOR THE COMPUTER TO WAIT"
3¢ INPUT T

4¢ PRINT “THE COMPUTER IS WAITING FOR'{T;"UNITS OF TIME"
5¢ WAIT T

6¢ PRINT “"THE WAIT STATEMENT PASSED THE TEST"

99 END

SAMPLE RUN (using 60)

ENTER A UNIT OF TIME FOR THE COMPUTER TO WAIT? 6¢
THE COMPUTER IS WAITING FOR 6¢ UNITS OF TIME

THE WAIT STATEMENT PASSED THE TEST

For a time delay alternative, substitute the following FOR-NEXT loop for WAIT in TEST
PROGRAM #1. The value of T will require adjustment for your computer to produce the
same amount of delay as the WAIT statement.

5¢ FOR X=1TO T
55 NEXT X

WAIT is used by some other computers (e.g. those using variations of the Microgoft
BASIC) to suspend program execution until the byte value at a specified computer port
meets the conditions established by two byte values listed after WAIT.

295

For example, waAIT 3¢, 6, 4 tells the computer to WAIT until a non-zero value is produc-
ed when the byte value at port 30 is exclusive ORed with the byte value 4, and the resul-
tant value is logically ANDed with the byte value of 6. (Oh well . . . back to bird watch-
ing.) When this condition is met, program execution continues at the next statement.
If this condition is not met, the keyboard BREAK, MONITOR, ESCAPE (or whatever
works) key can be pressed to get out of the WAIT condition.

Each value listed in the WAIT statement must be between @ and 255 (the range of values
that can be held in an 8 bit memory cell). When the last byte value (4 in the above
example) is omitted from the WAIT statement, the computer assumes its value to be §.

In the above example, port 39) must equal 2 before the computer continues program
execution as illustrated by this “truth table”.

PORT 3rd BYTE 2nd BYTE
VALUE VALUE VALUE

o

OR

W
(|
~3

AND 2 =

[

OO OO0 —~O
OO — O —
O OO OO — e —
SO0 OODODOD—=O
COOCDODOO O

Some computers (e.g. the Processor Technology Extended Cassette BASIC) WAIT until
the byte value at the specified computer port, ANDed with the second byte value, is
equal to the third byte value.

For example, walT 12¢, 5, 5 the computer WAITS until the byte value at port 12 is
equal to 5 as shown in this truth table.

PORT 2nd BYTE= 3rd BYTE
VALUE VALUE VALUE
5 AND 5 = 3
1 1 1
0 0 0
1 1 1
0 0 0
0 0 0
0 0 0
0 0 0

296

— WAIT

TEST PROGRAM #2

19 REM 'WAIT FOR PORT CONDITION' TEST PROGRAM

2¢ PRINT "THE COMPUTER IS WAITING FOR ONLY BIT 1 TO BE SET"
3¢ PRINT "IN PORT 2¢ (THE DECIMAL VALUE OF 2)"

49 WAILT 2¢,253,2

5¢ PRINT "BIT 1 IN PORT 2¢ IS SET"

99 END

SAMPLE RUN

THE COMPUTER IS WAITING FOR ONLY BIT 1 TO BE SET
IN PORT 2¢ (THE DECIMAL VALUE OF 2)
BIT 1 IN PORT 2¢ IS SET

If you are unable to set bit 1 in port 2@, then press the keyboard BREAK key (or what-
ever works) to escape from this condition.

Some computers can use WAIT as a command.

IF YOUR COMPUTER DOESN’T HAVEIT

If your computer has the INP capability, but does not have WAIT, substitute INP for
WAIT in TEST PROGRAM #2, using these changes:

40 IF INP(2¢)=2 THEN 5¢
45 GOTO 4¢

ALSO SEE
INP, FOR-NEXT

297

298

Operators

Since the Operators defy logical organization, we've arbi-
trarily put the “punctuation-type” operators first, then
miscellaneous and ended up with all the math-type opera-
tors. Since there are relatively few operators, we won't
attempt to index them (might take you just as long to
search through an index anyway).

299

Pairs of quotation marks () are used in PRINT state-
ments to enclose letters, numbers or characters to be
printed. If the quotes are omitted, the computer recog-
nizes the letters as variables and prints whatever values
may be assigned to them.

For example, PRINT "A" prints the letter “A”. While
PRINT A prints the value assigned to variable A.

Quotes can be used to print numbers without the usual Operator

space for their + or — sign. It can insert extra spaces by
enclosing them.

For example,

1¢ PRINT °
2¢ PRINT "1¢"

THE NUMBER'';

will print
THE NUMBER1§

Quotes cannot be “nested” inside other quotes. (The computer is unable to distinguish
which one is the end of the actual PRINT statement.)

For example, PRINT "I SAID "HELLO" TO HIM" will not work. An apostrophy is
usually substituted for the inside quotes in these cases.

For example, PRINT "1 SAID 'HELLO' TO HIM"

TEST PROGRAM

16 REM 'QUOTED {"'}) ' PRINT STATEMENT TEST PROGRAM

2¢ A=5

3¢ B=1¢

48 PRINT "A+B =" ;A+B

5¢ PRINT "THE QUOTATION MARKS PASSED THE PRINT TEST."”
99 END

SAMPLE RUN

A+B = 15
THE QUOTATION MARKS PASSED THE PRINT TEST,

Quotes can be used with most recent computers to allow the INPUT statement to serve in
both a PRINT and INPUT capacity.

—0nZ>r

300

TEST PROGRAM

10 REM 'QUOTED () ' INPUT STATEMENT TEST PROGRAM
20 INPUT "ASSIGN A VALUE TO VARIABLE X';X

3¢ PRINT "THE VALUE F X 184X

99 END

SAMPLE RUN (using 5)

ASSIGN A VALUE TO VARIABLE X7 5
THE VALUE OF X IS 5

Some computers require quotes around strings in DATA statements, while others require
them only when the string is preceded by, encloses, or is followed by a blank, comma or
colon. For more information see DATA.

TEST PROGRAM

1¢ REM '"QUOTED ("} ‘ DATA STATEMENT TEST PROGRAM
2¢ DATA " DATA STATEMENT "

3¢ READ AS

4¢ PRINT "QUOTES IN';A$;'PASSED THE TEST"

99 END

SAMPLE RUN

QUOTES IN DATA STATEMENT PASSED THE TEST

Quotes are used with CSAVE and CLOAD in the TRS-80 Level Il (and other versions of

MICROSOFT) BASIC to assign a specific name to the program recorded on cassette tape.
For example,

CSAVE ""A"
CcLoAD "A"

will record a program on cassette tape, naming it “A”, and will load only the program
named “A” back into the computer. For more information and test procedures see
CLOAD and CSAVE.

The TRS-80 Level I BASIC uses quotes in the PRINT# statement to record data on
cassette tape.

For example, PRINT# A", ;B;,';c will store the values assigned to variables A, B and C
on cassette tape. For more information and TEST PROGRAMS see PRINT.

ALSO SEE
PRINT, TAB, j(semicolon), ,(comma), DATA, READ, CSAVE, CLOAD

301

The Comma is an operator with a wide range of uses. One
of the more common is with the PRINT statement, where
it causes individual items to be printed in pre-established
horizontal zones. For example, PRINT 1,2,3,4 prints each
number in a separate zone.

Each zone usually allows a maximum of sixteen charac-
ters. The number of zones allowed on each line varies
from 4 to 8, depending on screen (or printer) line width.

Operator

TEST PROGRAM # 1

10 REM TEST PROGRAM USING ‘COMMA' FOR ZONING

2¢ PRINT "THE FOLLOWING LINE WILL PRINT IN 4 ZONES"

3¢ PRINT 1,2,3,4

49 PRINT "THE FOLLOWING LINES SHOW YOUR AVAILABLE ZONES"
5¢ PRINT 1,2,3,4,5,6,7,8,9,16,11,12,13,14,15,16

99 END

SAMPLE RUN (4 zone per line display, 64 characters maximum per line)

THE FOLLOWING LINE WILL PRINT IN 4 ZONES

1 2 3 4
THE FOLLOWING LINES WILL SHOW YOUR AVAILABLE ZONES

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

The COMMA is also used to separate elements in array fields. Example, a(1,1,k). The
COMMA separates 1,J, and K into individual elements within this three-dimension array.

TEST PROGRAM #2

1¢ REM TEST PROGRAM USING 'COMMA' IN 2 DIMENSION ARRAY
2¢ Al1,1)=5

3¢ PRINT "A{1,1) =";A{1,1)
4¢ PRINT "LINE 2¢ PASSED THE TEST IF A{1,1) =5."
99 END
SAMPLE RUN
A{1,1)=5

LINE 2¢ PASSED THE TEST IF A(1,1) = 5.

—-—nZr

302

The COMMA is used in a similar manner in the DATA, DIM, INPUT, ON-GOTO, and
READ statements to separate items of data.

This program tests the COMMA capability in the INPUT and PRINT statements.

TEST PROGRAM #3

1¢ REM ‘COMMA' TEST PROGRAM

59 PRINT "ENTER THREE NUMBERS'";

69 INPUT A,B,C

190 PRINT "NUMBER 1 =';A,2;"='B,3;"=":C
999 END

SAMPLE RUN (using 11,12,13)

ENTER THREE NUMBERS? 11,12,13
NUMBER 1 = 11 2 =12 3 = 13

To test the COMMA capability in the READ and DATA statements, add these lines to
the last TEST PROGRAM.

8¢ READ D,E,F
199 PRINT "NUMBER""iD;"'="A E;"'="B,F;"="iC
11¢ DATA 1,2,3
Run the program. The SAMPLE RUN should remain the same.
To test the COMMA capability in the ON-GOTO statement, add these lines:

3¢ FOR X=1 TO 3

49 ON X GOTO 5¢,8¢,1¢¢
7¢ NEXT X

99 NEXT X

Run the program, and again the sample run should remain the same.

The computer’s COMMA capability in DIM statements can be checked by adding this
line:

2¢ DIM A(1),B(2),C(3)
The addition of this line should not change the SAMPLE RUN.

For other applications of the COMMA see PRINT USING, AT and @.

303

VARIATIONS IN USAGE

Some computers {e.g. those with Palo Alto Tiny BASIC) use the COMMA in LET state-
ments similar to the way most computers use the COLON, and it’s use in the PRINT and
INPUT statements can be modified with the # and — operators.

ALSO SEE
DATA, DIM, INPUT, ON-GOTO, AT, @, PRINT USING, READ

304

The Period is used in the TRS-80 Level II BASIC (and
others) to cause the computer to LIST or EDIT the last
program line entered, listed or which caused an error in
the computer.

TEST PROGRAM

190 REM ', {PERIOD)' TEST PROGRAM
2¢ PRINT "THE PERIOD FOLLOWING THE LIST COMMAND" Operator
3¢ PRINT "SHOULD LIST THE LAST LINE YOU ENTER"

99 END

SAMPLE RUN

Type the command: risT. (if you omit the period following LIST, the entire program
will of course be LISTed). The computer should print:

99 END

Add the following line to the TEST PROGRAM:

4¢ PRINT "THE PERIOD PASSED THE TEST"

Type the command: eptr. (including the period).

If the computer has this EDIT capability, the computer will print the number 49 follow-
ed by a cursor. This indicates the computer is in the EDIT mode and is ready to modify
line 49 (the last line entered).

VARIATIONS IN USAGE

Several computers (e.g. the TRS-80 Level I and other variations of Tiny BASIC) use the
period as part of word abbreviations.

For example, the letter [is normally used as a variable, but I. can be used as an abbrevia-

tion for INPUT or INTeger depending on how it is used in the program (for more
Information see). In addition, P.=PRINT, R.=RUN, L =LIST, etc.

ALSO SEE
EDIT, LIST, L., INPUT, INT

305

A semicolon is used in PRINT statements to allow several
printed sections to be joined together (concatenized) onto
one line. For example, PRINT "H';*1"" is printed as HL

TEST PROGRAM

1¢ REM 'SEMICOLON’ STRING TEST PROGRAM
2¢ PRINT "IF THIS SENTENCE IS PRINTED ';
3¢ PRINT "ON ONE LINE, THE TEST PASSED." Operator

99 END

SAMPLE RUN

IF THIS SENTENCE IS PRINTED ON ONE LINE, THE TEST PASSED.

When a SEMICOLON is used to separate the printing of numeric values or numeric
variables, a space is automatically inserted before each number to make room for its + or
— sign. An additional space is automatically inserted after the number since it’s assumed
that such a space is always required. This feature can cause programming difficulties when
trying to get a special print format.

For example, PRINT 1;2;3 is printed with two spaces inserted between each number.

TEST PROGRAM

19 REM 'SEMICOLON' TEST PROGRAM WITH NUMERICS
2¢ A=5

3¢ PRINT “STUDY THE SPACING BETWEEN EACH OF THE NUMBERS."
49 PRINT 123" 4;A;"6"; -7

5¢ PRINT "12345678901234567890"

99 END

SAMPLE RUN

STUDY THE SPACING BETWEEN EACH OF THE NUMBERS.
1 23 4 5 6-7
12345678901234567890

VARIATIONS IN USAGE

A few interpreters insert a space between strings being concatenized. Such a (rare) feature
eliminates the need for the space after the letter “D” in line 20 of the first TEST.

ALSO SEE
COMMA, PRINT USING, TAB

-—nZ>

306

The COLON allows placing more than one statement on a
single program line.

For example, 1¢ PRINT "SAMPLE LINE' :LET A=1¢:

coTo 99 holds three separate statements ... PRINT,
LET and GOTO in one program line, number 1.

SAMPLE RUN

Operator

19 REM 'COLON (:) OPERATOR' TEST PROGRAM
2¢ PRINT “"THIS TEST'; :FOR X=1 TO 5¢¢¢: NEXT X: PRINT ' IS COMPLETE"
99 END ;

SAMPLE RUN

tHis TesT(PAUSE) 1s compLETE

GOTO, IF-GOTO, IF-THEN, ON-GOTO and other branching statements must be the last
statement on a multiple statement line to prevent branching out of it before the entire
line is executed.

For example, in the line
1¢ FOR X=1 TO 1¢:NEXT X:GOTO 1¢$:PRINT ""THE LOST WORDS"

The computer executes the GOTO statement and branches to line 100 before it has a
chance toexecute the PRINT statement. There is no way to PRINT the “LOST WORDS™.

Most computers do not allow DATA statements in multiple statement lines. Others (e.g.
IMSAI) do not execute statements on the same line if they follow a GOSUB statement
even though a RETURN directs execution back to that line.

Be especially careful to put IF-THEN statements only at the end of multiple statement
lines. If one fails, execution will fall to the next numbered line, not to the next statement
in the same line.

191F A=1¢ THEN B=A:PRINT A IS NOT EQUAL TO 18
29 END

If the value of A is not equal to 19, the condition of the IF-THEN statement is not met,
and the program ENDs without initializing the value of B to A or executing the PRINT
statement. When IF-THEN statements can’t be placed last on a multi-statement line, they
must be given a “private line.”

307

IF YOUR COMPUTER DOESN'T HAVEIT

Many computers have no provision for writing more than one program statement on a
numbered line. Others that do however, may use a backslash (\) instead of a colon. A very
few use a semicolon.

VARIATIONS IN USAGE

None known.

ALSO SEE
\, ;, GOTO, IF-THEN, IF-GOTO, ON-GOTO, etc.

308

Parentheses are used in arithmetic operations to determine
the order in which math operations are performed. Math
operations enclosed within parentheses are performed
before those outside the parentheses. If a math operation
is enclosed in parentheses which is in turn enclosed within
another set of parentheses (and so on), the computer first
performs those operations “buried the deepest”. When
there is a “tie”, the operation to the left is executed first.

For example, A=5+({(2+4)-2)+3) The computer performs Operator
this math operation in the following sequence:

A = 5+((8-2)#3) = 5+(6+3) = 5+18 = 23

TEST PROGRAM

14 REM '() PARENTHESES' TEST PROGRAM

20 A={10{5-3)}/2

30 PRINT "A ='";A

49 PRINT "THE PARENTHESES PASSED THE TEST IF A = 19"
99 END

SAMPLE RUN

A=19
THE PARENTHESES PASSED THE TEST IF A =1¢

PARENTHESES are required with “logical math™ operators to identify the two state-
ments being compared.

For example, 1F {A=8) 5 (B=6) THEN 8¢
For more information see # and AND.

PARENTHESES are also used to enclose the elements in DIM statements and array
variables. For more information see DIM.

TEST PROGRAM

1¢ REM '() PARENTHESES' TEST PROGRAM USING DIM AND ARRAYS
2¢ DIM A{5,5)

30 A{1,1}=2¢

49 PRINT "() PASSED THE TEST IN LINES'SA{1,1)i"AND A (1,1)+19

89 END

309

[]

SAMPLE RUN

{) PASSED THE TEST IN LINES 20 AND 3¢

Most computers with built in functions use PARENTHESES to enclose the numbers or
letters to be manipulated.

For example, LoG{14¢)

Most computers that use parentheses but not brackets ([]) allow parentheses to substi-
tute for brackets without ill effect. In most cases, parentheses can be used instead of
brackets.
For example,

[1a«B)/Cc]

can be written

({ta*B}/C)

ALSO SEE
#,+, AND, OR, DIM

310

The @ Operator is used by a few computers (e.g. TRS-80
Level II) to specify a PRINT statement starting location
on the video screen. Its value should be from ¢ to 1023
and must be followed by a comma. For example, PRINT
@ 475, HELLO" prints the word HELLO on the CRT
starting at grid position 475.

TEST PROGRAM] '
Operator

1¢ REM "@" PRINT MODIFIER TEST PROGRAM

2¢ PRINT @ 128, "'2. IF THIS LINE IS PRINTED AFTER LINE 1.
3¢ PRINT @ ¢, "1. THE @ OPERATOR PASSED THE TEST"

4p GOTO 49

99 END

SAMPLE RUN

1. THE @ OPERATOR PASSED THE TEST
2. 1F THIS LINE IS PRINTED AFTER LINE 1.

IF YOUR COMPUTER DOESN'T HAVE IT

If your computer does not use the @ operator as a PRINT modifier, this feature can be
simulated by using an appropriate number of PRINT statements (to activate line feeds)
and spaces to arrive at the same location on the CRT.

VARIATIONS IN USAGE

The @ (AT) operator is used by some computers (e.g. TRS-80 Level 1) to erase the last
line displayed on the screen and execute a carriage return. For example, type 1¢ REM
LINE DELETION TEST (but don’t hit the ENTER or RETURN key) and press the @
key. The line should be erased and the cursor should return to the left margin.

The same operation can be accomplished on some computers by pressing the RUB (rub

out), SCR (scratch), < (left arrow) or SND (send) key, or by pressing the ENTER (or
RETURN) key before and after typing the number of the line to be deleted.

ALSO SEE
PRINT, AT, PRINT AT

311

The 4 sign is used to specify individual variables as being
of *“double-precision”. Double precision variables are
capable of storing numbers containing 17 digits (only 16
digits are printed). Single-precision variables are accurate
to 6 digits.

The # sign must be placed after a variable for it to be de-
fined as having double-precision, each time that variable
is used in the program. If the # sign is found with a vari-
able that is listed in DEFSNG or DEFINT statements Operator
(within the same program), the double precision character

(#) over-rides their action and declares the variable to be

of double-precision.

TEST PROGRAM

1§ REM '#' DOUBLE PRECISION OPERATOR TEST PROGRAM
2¢0 DEFSNG A,B

34 A=1.234567890123456

40 B#=1.234567890123456

53 IF A=B# THEN 10§

60 PRINT ""A =';A

7¢ PRINT "B# =':B#

8¢ PRINT “"THE # SIGN PASSED THE DOUBLE PRECISION TEST"
98 GOTO 999

104 PRINT "THE # SIGN FAILED THE DOUBLE PRECISION TEST'"
999 END

SAMPLE RUN

A =1.23457
B# = 1.234567899123456
THE # SIGN PASSED THE DOUBLE PRECISION TEST

The # (number sign) is used by a few computers as a shorthand symbol for the PRINT
statement. For more information see PRINT.

TEST PROGRAM #1

19 REM "#' TEST PROGRAM
2¢ #"THE # SIGN PASSED THE PRINT TEST'
99 END

312

#

SAMPLE RUN

THE # SIGN PASSED THE PRINT TEST

The # operator is used by a few computers as the relational operator “‘not-equal-to”
(< >)

For example, 1F a#8 THEN 1¢¢ tells the computer to branch to line 100 if the value of
variable A is not equal to variable B.

The # operator is used in the PRINT USING statement by most computers using a Micro-
soft BASIC to indicate the PRINT position for each digit in a number or numeric
variable. If the PRINT USING statement contains more # signs than the number of digits
in a number, the computer prints a space for each unused # sign to the left of the decimal
point, and a zero for each unused # sign to the right of the decimal point,

For example, 10 PRINT USING “#####.###";12.5 will print the number 12.500 with
3 blank spaces printed to the left of the number 1 in place of the 3 unused # signs.

For more information see PRINT USING.

TEST PROGRAM #2

1¢ REM '#' PRINT USING TEST PROGRAM

2¢ PRINT "ENTER A VALUE FOR VARIABLE N';
3¢ INPUT N

4¢ PRINT "THE NUMBER'N;"I1S PRINTED AS";
5¢ PRINT USING "#### . ##" N

99 END

SAMPLE RUN (using 12.5)

ENTER A VALUE FOR VARIABLE N7 12.5
THE NUMBER 12.5 1S PRINTED AS 12.5¢

Computers with file handling capability use the # operator in such statements as
INPUT#, PRINT#, READ#, CLOSE#, and others to indicate a device number to store
data and retrieve data from external memory such as disc and cassette tape.

313

TEST PROGRAM #3 (stores data on cassette tape TRS-80 Level II)
Set the cassette recorder to the RECORD mode and RUN this program.

16 REM '‘PRINT#' TEST PROGRAM

2¢ PRINT "DATA SHOULD BE RECORDING ON CASSETTE TAPE"
39 PRINT#-1, "TEST" ,1,2,3

4¢ PRINT "PRINT# HAS COMPLETED THE DATA TRANSFER"

99 END

SAMPLE RUN

DATA SHOULD BE RECORDING ON CASSETTE TAPE
PRINT# HAS COMPLETED THE DATA TRANSFER

To test the computer’s READ# capability, rewind the cassette tape, set the recorder to
the PLAY mode, erase memory and RUN the next TEST PROGRAM.

TEST PROGRAM #4 (enters data from cassette into the computer)

19 REM 'INPUT#' TEST PROGRAM

2¢ PRINT "THE COMPUTER SHOULD NOW READ DATA FROM CASSETTE"
3¢ INPUT#-1,A%,A,B,C

49 PRINT "THE INPUT# STATEMENT PASSED THE TEST IF"

5¢ PRINT A$;A;B;C"iS PRINTED"

99 END

SAMPLE RUN

THE COMPUTER SHOULD NOW READ DATA FROM CASSETTE
THE INPUT# STATEMENT PASSED THE TEST IF
TEST 1 2315 PRINTED

in large time-sharing systems (e.g. the DEC-10), one program can access a number of
different data files, each of which is given a name and stored on disc. A statement in the
program gives a number to each file it will be using, and that file will be referred to by
number, not name. The # sign then literally means “number” — — — the file num-
ber(name) from which DATA is to be READ, INPUT, PRINTed or otherwise processed.

Example:

3¢9 FILE #1,"TESTING"
86 READ #1.A.B.C.D.E

etc.

ALSO SEE
DEFDBL, DEFSNG, DEFINT, !, %. PRINT. REM. PRINT USING, READ#, FILE# < >

314

The § symbol following a letter or letter/number combi-
nation is used to declare a variable to be a string variable.

Information declared a string variable in a program state-
ment must usually be enclosed in quotation marks. For
example, A$ = "THE BAsIc HANDBooK." If an INPUT
statement is used to assign the information entered to a
string variable, then quotes are not usually required. (See
INPUT and READ.)

—nZ2Z2>

Operator

TEST PROGRAM #1

1 REM 'S’ TEST PROGRAM WITH STRING STATEMENT
2¢ AS =" LINE 29"

3¢ PRINT “THIS COMPUTER PASSED THE '$' TEST IN';A$
99 END

SAMPLE RUN

THIS COMPUTER PASSED THE '$' TEST IN LINE 20

The number of characters that can be assigned to a string variable is limited by the com-
puter’s interpreter. Most computers with string capability accept at least 16 characters,
and some can accept as many as 255.

Some computers (e.g.Hewlett-Packard) require you to reserve memory space for each
separate string with a DIM statement [e.g. 1¢ pim As(5¢)]. (See DIM and CLEAR.)

The following program demonstrates the assignment of characters to the variable A$
(pronounced “A string”):

TEST PROGRAM #2

16 REM '$’ INPUT STRING WITH LENGTH TEST PROGRAM

2¢ PRINT "ENTER A KNOWN QUANTITY OF CHARACTERS"

39 INPUT AS$

49 PRINT "COUNT THE NUMBER OF CHARACTERS PRINTED BELOW"
5¢ PRINT AS$

99 END

SAMPLE RUN (Typical)

The “character string” shown in the sample run is 10 characters long:

ENTER A KNOWN QUANTITY OF CHARACTERS

7 123456789¢
COUNT THE NUMBER OF CHARACTERS PRINTED BELOW

1234567899

315

IE

$

If all the characters were printed and no error message appeared, RUN again and add
perhaps 1) more characters. If that prints, continue the process until characters start
being chopped off the end, or an error message appears.

Most computers which can handle strings allow all the letters of the alphabet to serve as
string variable designators. A few computers allow only a few. (e.g. Radio Shack TRS-80
LEVEL I allows only two strings, A$ and B$ and they cannot be compared against each
other.)

The next program tests the full range (A and Z) of alphabet characters allowed by your |
computer.

TEST PROGRAM #3

1§ REM '$' (STRING) VARIABLE TEST PROGRAM
2¢ AS="LINE 2¢, "

3¢ PRINT "A$ PASSED THE TEST IN '";A$;

40 Z$=""AND Z$ IN LINE 48"

5¢ PRINT Z$

99 END

SAMPLE RUN

A$ PASSED THE TEST IN LINE 20, AND Z$ IN LINE 49

Many string handling computers allow combinations of letters, numbers and symbols to
specify string and numeric variables. Each variable must start with a letter, but only the
first several (usually 2) alphanumeric characters are recognized and processed by the
interpreter. For example, AB34k$ and ABYN8$ (if accepted), are usually processed as
the same string variable (ABS) since the first two letters are identical. A little experiment-
ing will quickly show your machine’s capability.

TEST PROGRAM #4

19 REM '$' (STRING NAME) TEST PROGRAM

2¢ ABCDE$="TEST STRING"

3¢ PRINT "ABXYZS$ = ";ABXYZS$

4¢ PRINT "AB123% = '";AB123%

5¢ PRINT "ONLY THE FIRST TWO LETTERS OF THE STRING NAME""

6@ PRINT "WERE RECOGNIZED IF THE TWO STRINGS ARE IDENTICAL"
99 END

316

$

SAMPLE RUN

ABXYZ$ = TEST STRING

AB123% = TEST STRING

ONLY THE FIRST TWO LETTERS OF THE STRING NAME
WERE RECOGNIZED IF THE TWO STRINGS ARE IDENTICAL

Words that are intrinsic Statements or Functions cannot be used as string or numeric
variables. For example, SPRINTS$ may be an illegal string variable because it contains the
word “PRINT”. Refer to your owner’s manual for a list of “reserved words” that cannot
be used in your computer’s programs.

Most computers that accommodate strings, permit string comparison. That is, one string
or string variable can be compared character by character against another string or string
variable using relational operators. Strings must be enclosed in quotation marks when
compared to a string variable.

TEST PROGRAM #5

19 REM '$’' (STRING) COMPARISON TEST PROGRAM
20 READ AS$

3¢ IF AS="WHOA' THEN 60

49 PRINT AS,

5¢ GOTO 2¢

6@ PRINT "STRINGS CAN BE COMPARED."

7¢ DATA ONE, TWO, WHOA

99 END

SAMPLE RUN

ONE TWO STRINGS CAN BE COMPARED.

VARIATIONS IN USAGE

None known in the BASIC language.

ALSO SEE

DEFSTR, CHRS, FRE(string), INKEYS, LEN, LEFT$, MID$, RIGHTS, STRS,
STRINGS, VAL, LET, DATA, READ, DIM and CLEAR

317

The ! (exclamation mark) is used to specify individual
variables as being of “single-precision”. Single precision
variables are capable of storing numbers containing no
more than 7 digits (only 6 digits are printed). Double-
precision means having 16 digit precision.

Since variables are automatically single precision, the !
operator is used in programs to change a variable back to
single precision after it has been declared double-precision

by a previous DEFDBL statement or # operator. Operator
TEST PROGRAM

19 REM 'I' SINGLE PRECISION OPERATOR TEST PROGRAM

2¢ DEFDBL X,N

3@ N=1234.56789¢312345

46 X=N

5¢ PRINT "DOUBLE PRECISION VARIABLE X ='";X

68 XI=N

7¢ PRINT "SINGLE PRECISION VARIABLE X! ='";x]

8¢ PRINT "THE 'I' SINGLE PRECISION OPERATOR PASSED THE TEST”

99 END

SAMPLE RUN

DOUBIL-E PRECISION VARIABLE X = 1234.56789¢12345
SINGLE PRECISION VARIABLE X! =1234.57
THE 'I' SINGLE PRECISION OPERATOR PASSED THE TEST

The ! operator is also used by some computers (e.g. those using the Microsoft BASIC) in
the PRINT USING statement to allow only the left-most character in a string to be
printed.

For example, PRINT USING'1";"COMPUSOF T" should print the letter “C”".

For more information see PRINT USING and the next Test Program.

TEST PROGRAM

1¢ REM 'I STRING SPECIFIER' TEST PROGRAM

7{» PRINT "ENTER A SAMPLE WORD":

3¢ INPUT AS

49 PRINT “"THE FIRST LETTER IN THE WORD "A$;" IS '}
5¢ PRINT USING "!'";A$

99 END

318

SAMPLE RUN (using HANDBOOK)

ENTER A SAMPLE WORD? HANDBOOK
THE FIRST LETTER IN THE WORD HANDBOOK IS H

VARIATIONS IN USAGE

Some interpreters (e.g. the COMPUMAX BASIC) use ! as an abbreviation for the REMark
statement.

TEST PROGRAM

1¢ PRINT ‘'] (REMARK) ' TEST PROGRAM"

2¢ | PRINT ' THE | SIGN FAILED THE REM TEST"

3¢ | THE ! SIGN FAILED THE REMARK TEST IF LINE 2¢ IS PRINTED"
4¢ PRINT "THE ! SIGN PASSED THE TEST"

99 END

SAMPLE RUN

' {(REMARK] ' TEST PROGRAM
THE ! SIGN PASSED THE TEST

ALSO SEE
DEFDBL, DEFSNG, #, PRINT USING

319

% is used by some computers (e.g. those using Microsoft
BASIC) to define variables as integers. When the % sign is
placed to the right of a variable, that variable is then only
capable of storing integer values.

For more information on the use of the INTeger function
see INT.

TEST PROGRAM #1

Operator

19 REM % INTEGER OPERATOR' TEST PROGRAM

2¢ 1%=2.864

3¢ IF 1%=2 THEN 6§

4¢ PRINT “THE % INTEGER OPERATOR FAILED THE TEST"
54 GOTO 99

69 PRINT "THE % INTEGER OPERATOR PASSED THE TEST"
99 END

SAMPLE RUN

THE % INTEGER OPERATOR PASSED THE TEST

The % operator is used by some computers (e.g. those using Microsoft BASIC) in the
PRINT USING statement. It causes the printing of as many left-most characters in a
string as there are spaces between two % signs. The computer also counts the two % signs,
therefore no less than two characters can be specified. (To specify one character in the
string, see the ! operator.)

For example, PRINT USING "% %'";"ABCDEFGHI" should print the first four letters
“ABCD” because two spaces were included between the % signs (2 spaces + 2 % signs = 4
letters). For more information see PRINT USING.

TEST PROGRAM #2

19 REM '%' STRING SPECIFIER TEST PROGRAM

29 AS"TESTIMONIAL®Y

39 PRINT "THE % OPERATOR PASSED THE STRING SPECIFIER ';
4¢ PRINT USING "% %';AS$

99 END

320

— 0/0

SAMPLE RUN

THE % OPERATOR PASSED THE STRING SPECIFIER TEST

Some computers use the % sign in the PRINT USING statement to “flag” a number as
having exceeded the field specifier (#).

For example, PRINT USING "###.#';1234.56 should print the number %1234.6. The
entire number on the left side of the decimal point is printed when it exceeds the field
specifier limits. If the number on the right side of the decimal point exceeds the field
specifier, it is rounded up. For more information see PRINT USING.

TEST PROGRAM #3

19 REM '%' PRINT USING OVERFLOW TEST PROGRAM

2¢ A=123.45

3¢ PRINT “THE PRINT USING STATEMENT CHANGED #':A"TO '
40 PRINT USING "##.#' A

99 END

SAMPLE RUN

THE PRINT USING STATEMENT CHANGED # 123.45 TO %123.5

ALSO SEE
INT., L., PRINT USING, #

321

The ? (question mark) is used by many computers (e.g.
those with variations of Microsoft BASIC) as an abbrevia-
tion for PRINT. Most (but not all) automatically change
the ? sign to the word “PRINT” when the program is
LISTed.

For more information see PRINT.

TEST PROGRAM Operator

19 REM '? (PRINT) TEST PROGRAM
2¢ 1 "THE 7 SIGN PASSED THE PRINT TEST"
99 END

SAMPLE RUN

THE 7 SIGN PASSED THE PRINT TEST

Most computers print a ? when it executes the INPUT statement, indicating it is waiting
for you to enter some data or an answer. Execution resumes when the ENTER or
RETURN key is pressed.

For more information see INPUT.

TEST PROGRAM

19 REM '7' {INPUT REQUEST) TEST PROGRAM

2¢ PRINT "“THE 7 SIGN PASSED THE TEST"

3¢ PRINT "IF THE FOLLOWING LINE CONTAINS THE 7 SIGN"
40 INPUT A

99 END

SAMPLE RUN

THE ? SIGN PASSED THE TEST
IF THE FOLLOWING LINE CONTAINS THE 7 SIGN
7

Some computers (e.g. those with a Microsoft BASIC) use the ? sign with the CLOAD
command to compare a program stored in the computer’s memory with a program stored
OiL casseite.

To test this feature, see the test procedures under CLOAD.

ALSO SEE

PRINT, #, INPUT, CLOAD, LIST

322

The \ operator is used by a few computers to allow mul-
tiple statements in one program line.

For example, 1¢ A=1¢\B=5\C=A-B\PRINT c combines
four operations in one line.

For more information see: (Colon).

TEST PROGRAM Operator

1¢ REM \OPERATOR' TEST PROGRAM

29 PRINT "THIS TEST '";\FOR X=1 TO SEP\NEXT X\PRINT IS COMPLETE"
99 END

SAMPLE RUN

THIS TEST IS COMPLETE

VARIATIONS IN USAGE

The back-slash is sometimes seen separating letters and numbers as they are being erased
or “rubbed out” on some terminals. This is often done when correcting typing errors.

ALSO SEE
: (COLON)

323

The == (double asterisk) is used as an arithmetic exponen-
tiation sign in some computers (e.g. the DEC-10, DEC-
17D, DEC-BASIC-PLUS-2, H.P. 3000, and those using
the MAXBASIC) to compute the value of a base number
to a specified power.

For example, 2+=3 is the same as the cube of 2 or 23. For
more information see 1.

Operator

TEST PROGRAM

19 REM '++ (EXPONENTIATION})' TEST PROGRAM

2¢ PRINT "ENTER A BASE NUMBER"'";

39 INPUT B

49 PRINT "NEXT, ENTER THE EXPONENT";

5¢ INPUT E

69 A=Bx+E

7¢ PRINT "THE NUMBER';B;"TO THE';:E;"POWER IS';A
39999 END

SAMPLE RUN (using 4 and 3)

ENTER A BASE NUMBER? 4
NEXT, ENTER THE EXPONENT? 3
THE NUMBER 4 TO THE 3 POWER IS 64

The == (double asterisk) is also used by some computers (e.g. those using Microsoft
BASIC) in the PRINT USING statement. An asterisk (*) is printed in all unused spaces to
the left of a specified number’s decimal point. The primary purpose for doing this is to
prevent someone from increasing the size of a check printed by computer.

Forexample, PRINT USING s+# # # ## % #':456.25 will print »+++456.25

The # sign represents the spaces set aside for the numeric value to be printed. The unused
spaces are filled by a * sign.

For more information see PRINT USING.

TEST PROGRAM

19§ REM '+* PRINT SPECIFIER' TEST PROGRAM
2¢ PRINT "ENTER A SAMPLE NUMBER";

3¢ INPUT N

49 PRINT USING "ss## #### N

5¢ PRINT "THE % SIGN PASSED THE PRINT USING TEST"
99 END

324

* %

SAMPLE RUN (using 468)

ENTER A SAMPLE NUMBER? 468
*xx*x468

THE »* SIGN PASSED THE PRINT USING TEST

ALSO SEE
PRINT USING, 1,!, A and r—

325

The ~ (circumflex) is an arithmetic exponentiation sign
used to compute the value of a base number to a specified
power.

For example, 2 3 is the same as the cube of 2 or 23

For more information see 1.

TEST PROGRAM Operator

19 REM ' M (EXPONENTIATION) TEST PROGRAM

2¢ PRINT “ENTER A BASE NUMBER";

30 INPUT B

4¢ PRINT "NEXT, ENTER THE EXPONENT';

5¢ INPUT E

69 A=B MNE

7¢ PRINT "THE NUMBER'B;"TO THE'";E;"POWER IS'";A
3¢999 END

SAMPLE RUN (using 4 and 3)

ENTER A BASE NUMBER? 4
NEXT, ENTER THE EXPONENT 3
THE NUMBER 4 TO THE 3 POWER IS 64

VARIATIONS IN USAGE

None known.

ALSO SEE

P, AL and #

26

The most common use of the + sign is in arithmetic addi-
tion. Example, PRINT a+B prints the sum of variables A
and B.

TEST PROGRAM

19 REM '+' MATH OPERATOR TEST PROGRAM
26 PRINT "ENTER A VALUE FOR VARIABLE A';
3¢ INPUT A

4¢ PRINT "ENTER A VALUE FOR VARIABLE B*;
5¢ INPUT B

60 C=A+B

7¢ PRINT “"THE SUM OF";A;"+"B;'15";C

99 END

SAMPLE RUN (using 6 and 14)

ENTER A VALUE FOR VARIABLE A7 6
ENTER A VALUE FOR VARIABLE B? 14
THE SUM OF 6 + 14 1S 2¢

Operator

Some computers use the + sign as a logical ““OR” operator in an IF-THEN statement.

For example, 1¢ 1F (A=8)+(B=6) THEN 8¢ reads:if the value of A equals 8 OR the value
of B equals 6 the IF-THEN condition is met and execution continues at line 80.

Note that both (A=8) and (B=6) are enclosed in parenthesis. Since there is no other
apparent reason to enclose such simple equations in parenthesis, they are the tip-off in

determining if the + is used for addition or as a logical OR.

TEST PROGRAM

14 REM '+' LOGICAL OPERATOR TEST PROGRAM
2¢ PRINT "ENTER A VALUE FOR VARIABLE A";
39 INPUT A

40 PRINT "ENTER A VALUE FOR VARIABLE B'";
5¢ INPUT B

6¢ PRINT A =" ;A,"B="B

78 iF (A=8)+(B=6) THEN 14¢

8¢ PRINT "NEITHER A =8 NOR B = 6"

9§ GOTO 999

19¢ PRINT "EITHER A=8 OR B= 6"

999 END

327

4

SAMPLE RUN (using 4 and 6)

ENTER A VALUE FOR VARIABLE A7 4
ENTER A VALUE FOR VARIABLE B?7 6
A = 4 B=6

EITHER A=8O0ORB~=§

VARIATIONS IN USAGE
Many computers use the + sign to join (concatenize) separate strings into one. For ex-

ample, PRINT "H"+"I1" concatenizes the strings “H” and “I” to form the word HI.

TEST PROGRAM

19 REM '+' CONCATENATION TEST PROGRAM
2¢ AS="PASSED THE CON"

39 B$="CATENATION TEST"

49 PRINT ""THE + SIGN ';

50 PRINT A$+BS$

99 END

SAMPLE RUN

THE + SIGN PASSED THE CONCATENATION TEST

The + sign is used, by some computers in PRINT USING statements to automatically
insert a + sign before positive numbers.

ALSO SEE
AND, *, §, PRINT USING

328

The — symbol is used as an arithmetic subtraction sign to
find the arithmetic difference between two numbers or
numeric variables. For example, PRINT A-B prints the
value of variable A minus the value of variable B.

—-nZP

The — sign is also used for negation in arithmetic opera-
tions. Negation means simply “changing the sign from
what it is to the opposite”.

Operator

Example, PRINT -(3-8) subtracts 8 from 3 which results in a negative 5. The first -

(negation) sign reverses the sign within the parentheses and prints 5 (the + sign is
implied).

TEST PROGRAM

1¢ REM -SIGN' TEST PROGRAM
2¢ A=3

3¢ B=6

49 C=B-A-{B-A)

5¢ PRINT "'C =';C

6¢ PRINT ""THE - SIGN PASSED THE TESTIFC = ¢
99 END

SAMPLE RUN

c=9
THE - SIGN PASSED THE TESTIF C = ¢

VARIATIONS IN USAGE

None known.

329

The / sign is used as an arithmetic division sign to find the
quotient of two numbers or numeric variables.

Example, 8/4 is the same as 8+4

TEST PROGRAM

1¢ REM '/ DIVISION SIGN' TEST PROGRAM

2¢ A=8

3p B=4

49 C=A/B

5¢ PRINT ''C =";C

6p PRINT "THE / SIGN PASSED THE TEST IF C = 2"
99 END

SAMPLE RUN

c=2
THE /[SIGN PASSED THE TESTIF C=2

VARIATIONS IN USAGE

None known.

Operator

—-n2ZP

330

The * symbol (asterisk) is used as an arithmetic multipli-
cation sign (instead of the letter “X”) to find the product
of two numbers or numeric variables.

TEST PROGRAM

1¢ REM '*' MATH OPERATOR TEST PROGRAM
2¢ A=5
3¢9 B=A*6

49 PRINT "* PASSED THE TEST IN LINE';B
99 END

SAMPLE RUN

Operator

* PASSED THE TEST IN LINE 3¢

VARIATIONS IN USAGE

Some computers also use the * sign as the “lotical math” operator for “AND”. For
example:

IF {A=8) * {B=6) THEN 8¢

reads, if the value of A equals 8 AND the value of B equals 6 then the IF-THEN condi-
tion is met and execution continues at line 8@.

Note that both (A=8) and (B=6) are enclosed in parenthesis. This is the tip to look for
when determining if an * is being used for multiplication or as a logical AND.

TEST PROGRAM

14 REM '*' LOGICAL 'AND' TEST PROGRAM

2¢ A=8

3¢ B=6

49 1F {A=8) * (B=6) THEN 7¢

5¢ PRINT ''* FAILED THE TEST AS AND OPERATOR"
69 GOTO 99

7¢ PRINT ©* PASSED THE AND OPERATOR TEST"

89 END

SAMPLE RUN

* PASSED THE AND OPERATOR TEST

The * asterisk is used by some computers to specify a format for printing numeric values
or strings in the PRINT USING statement. See PRINT USING for details.

ALSO SEE
AND, PRINT USING

—-—nZy

331

MATH OPERATOR

The = symbol is used as a mathematical equal sign. For
example, A=3+5 assigns the value 8 to variable A.

TEST PROGRAM

19 REMTEST PROGRAM USING = AS MATH OPERATOR
2¢ A=4

3¢ B=6 Operator
49 C=A+B

50 PRINT ""C =";C

6@ PRINT "THE = SIGN PASSED THE TEST IF C = 19"

99 END

SAMPLE RUN

c=1¢
THE = SiGN PASSED THE TESTIFC =1¢

RELATIONAL OPERATOR

The = sign is also used by most computers as a relational operator to compare two
numeric values forequality. For example, 1F A=B THEN 1¢¢ tells the computer to branch
to line 190 when then numeric variable A is equal to numeric variable B. If the condition
of the = sign is not met (i.e. A#B), the test “falls through” and program execution con-
tinues on the next line.

Most computers also use the = sign for string comparisons. This feature allows one string
or string variable to be compared character-by-character against another string or string
variable. In the example, 1IF A% = "ABCD' THEN 1¢¢ the interpreter compares the
ASCII code of each character (from left-to-right) stored in string variable A$ against the
characters enclosed in quotation marks. If the ASCH code of all characters is found equal,
the computer branches or “jumps” to line 10§. If the ASCII code of all characters is not
found equal, the test “falls through” and program execution continues on the next line.

TEST PROGRAM

1§ REM TEST OF = SIGN AS NUMERIC COMPARISON OPERATOR
2¢ A=5

3¢ IF A=5 THEN 6¢

4¢ PRINT "= SIGN FAILED NUMERIC COMPARISON TEST"

5¢ GOTO 99

6¢ PRINT "= SIGN PASSED NUMERIC COMPARISON TEST"

99 END

SAMPLE RUN

= SIGN PASSED NUMERIC COMPARISON TEST

-—nZ>D

332

TEST PROGRAM

14 REM TEST PROGRAM USING = FOR STRING COMPARISON
2¢ AS = "ABCDE"

3¢ IF A$ = "ABCDE" THEN 69

49 PRINT "THE = SIGN FAILED THE STRING COMPARISON TEST"
54 GOTO 99

6¢ PRINT "THE = SIGN PASSED THE STRING COMPARISON TEST"
99 END

SAMPLE RUN

THE = SIGN PASSED THE STRING COMPARISON TEST

VARIATIONS IN USAGE

Different interpreters allow different length character strings to be compared. Some allow
only one letter to be compared against another single letter, while others allow enough
characters to compare an entire name and address, or more.

The combination of > or < with = is very common. Sometimes only numerics can be
so compared, but in most cases the ASCII values of strings are automatically derived and
those values compared.

ALSO SEE
>,<,85,<=>=

333

The A (carat) is an arithmetic exponentiation sign used
to compute the value of a base number to a specified
power.

For example, 2 A 3 is the same as the cube of 2 or 23

For more information see 1.

TEST PROGRAM

1§ REM ' A (EXPONENTIATION} TEST PROGRAM

2¢ PRINT "ENTER A BASE NUMBER'";

3¢ INPUT B

4¢ PRINT "NEXT, ENTER THE EXPONENT';

5¢ INPUT E

6¢ A=BAE

7¢ PRINT "THE NUMBER'B;"TO THE';E;,,POWER IS':A
34999 END

SAMPLE RUN (using 4 and 3)

ENTER A BASE NUMBER? 4
NEXT, ENTER THE EXPONENT? 3
THE NUMBER 4 TO THE 3 POWER IS 64

VARIATIONS IN USAGE

None known.

ALSO SEE

1, and

Operator

-—nZ P

334

The T (up-arrow) is used as an arithmetic exponentiation
sign to compute the value of a base number to a specified
power.

For example, 213 is the same as the cube of 2 or 23,

TEST PROGRAM

19 REM ot (EXPONENTIATION)' TEST PROGRAM

2¢ PRINT "ENTER A BASE NUMBER'";

39 INPUT D

4¢ PRINT "NEXT ENTER A POWER NUMBER'";

5¢ INPUT £

69 P=DTF

7¢ PRINT "THE NUMBER';D; "TO THE';F;{"POWER 1S*:P

Operator

39999 END

SAMPLE RUN (using 4 and 3)

ENTER A BASE NUMBER? 4
NEXT ENTER A POWER NUMBER? 3
THE NUMBER 4 TO THE 3 POWER IS5 64

The 1 sign is also used to compute a number’s root value by enclosing the inverse of the
index number in parenthesis (1/n).

For example, 8T(1/3) is the same as the cube root of 8, or NES

TEST PROGRAM

19 REM ' | {USED AS A RADICAL SIGN)' TEST PROGRAM
2¢ PRINT "ENTER A BASE NUMBER":

3¢ INPUT B

4% PRINT "NEXT ENTER A ROOT NUMBER";

5¢ INPUT N

69 R=BT(1/N)

7¢ PRINT "THE';N;"ROOT OF';B;"I1S'iR

39999 END

SAMPLE RUN (using 64 and 3)

ENTER A BASE NUMBER? 64
NEXT ENTER A ROOT NUMBER? 3
THE 3 ROOT OF 6415 4

335

= 4

DIFFERENT OPERATORS FOR ?t

See ** A and M

IF YOUR COMPUTER DOESN’T HAVE IT

If they all fail, substitute the following subroutine:

The subroutine programs found under LOG and EXP must be added to this one to make
it work (saves space not to duplicate them here).

30090 GOTO 30999

30199 REM * EXPONENTIATION SUBROUTINE * INPUT X,Y: OQOUTPUT P
34192 REM ALSO USES E,L.,A,B,C INTERNALLY
34194 P=1

34196 E=¢

36108 IF Y=¢ THEN 3¢12¢

391190 1F X ¢ THEN 36114

34112 GOTO 3¢116

3114 IF INT(Y})=Y THEN 34122

39116 IF X<> ¢ THEN 3¢913¢

3¢118 P=P*E

3¢12¢ RETURN

30122 P=1-2s Y+A4xINT(Y/2)

39125 X=-X

39139 GOSUB 3917¢

30135 X=Y*L

3¢140 GOSUB 3¢24¢

34145 P=P*E

30150 RETURN

To use this subroutine in the TEST PROGRAM, make these program changes:
35 X=D

55 Y=F
69 GOSUB 391949

VARIATIONS IN USAGE

None known.

ALSO SEE
EXP, LOG, *¥* A, ~

336

The < sign is used as a “less-than” relational operator to
compare two numeric values in IF-THEN statements. For
example, IF A<B THEN 1¢¢ tells the computer to branch
to line 100 if the value of variable A is less than variable B.

TEST PROGRAM

16 REM 'C RELATIONAL OPERATOR' TEST PROGRAM
2¢ A=19

30 1F A< 20 THEN 69 Operator
4¢ PRINT "THE< SIGN FAILED THE TEST"

5¢ GOTO 99

69 PRINT "THE< SIGN PASSED THE TEST"

99 END

SAMPLE RUN

THE < SIGN PASSED THE TEST

VARIATIONS IN USAGE

The < sign can be used by most computers to compare strings. The < sign compares the
ASCII code of each character (from left-to-right) in two strings. The first difference in
equality encountered determines the relationship. For example, string ABCDEF is less
than string ABD even though the first string has more characters. Since the ASCII code
for C (decimal 67) in the first string is less than, or precedes, the ASCII code for D (deci-
mal 68) in the second string, it passes the < test.

If each string has the same sequence of characters, then the longer string is considered
larger. For example, string ABCD is larger than string ABC.

TEST PROGRAM

1§ REM 'C STRING OPERATOR' TEST PROGRAM
2¢ AS="ABC"

3¢9 B$="ABCD"

49 Cg="B"

59 IF A$ < BS THEN 8¢

6¢ PRINT "THE < SIGN FAILED THE TEST IN LINE 5¢"
7¢ GOTO 999

8¢ IF B$< C$ THEN 11¢

9¢ PRINT "THE< SIGN FAILED THE TEST IN LINE 89"
1990 GOTO 999

11¢ PRINT "THE< SIGN PASSED THE TEST"

999 END

-—nZY

337

<

SAMPLE RUN

THE < SIGN PASSED THE TEST

<is frequently combined with = to make the < = operator and combined with > to

make “inequal” operators <>or ><. Some interpreters limit the number of characters
which can be specifically compared in a string.

ALSO SEE
>, <>, ><,=,$,IF-THEN

338

The > sign is used as a “greater-than” relational operator
to compare two numeric values in IF-THEN statements.
For example, tF A > B THEN 1¢¢ tells the computer to
branch to line 100 if the value of variable A is greater than
variable B.

TEST PROGRAM

19 REM 'DRELATIONAL OPERATOR' TEST PROGRAM
2¢ A=2¢

3¢ IF A D19 THEN 6¢ Operator
4¢ PRINT "THEDSIGN FAILED THE TEST"

5¢ GOTO 99

6¢ PRINT "THEDSIGN PASSED THE TEST"

99 END

SAMPLE RUN

THEDSIGN PASSED THE TEST

VARIATIONS IN USAGE

The > sign can be used by most computers to compare strings. The > sign compares the
ASCII code of each character (from left-to-right) between two strings. The first difference
in equality encountered determines the relationship. For example, string ABD is greater
than string ABCDEF even though the first string has fewer characters. Since the ASCII
code for D (decimal 68) in the first string is greater than, or follows the ASCII code for
C (67) in the second string, it passes the > test.

If each string has the same sequence of characters, the longer string is considered larger.
For example, string ABCD is larger than string ABC.

TEST PROGRAM

1¢ REM '>STRING OPERATOR' TEST PROGRAM
2¢ A$="ABCD"

3¢ B$="ABC"

a¢ cg="B"

5¢ IF A$ > BS THEN 8¢

6¢ PRINT "THE >SIGN FAILED THE TEST IN LINE 50"
79 GOTO 999

8¢ IF C$ >BS THEN 11¢

9¢ PRINT ""THE DSIGN FAILED THE TEST IN LINE 8¢"
199 GOTO 999

119 PRINT "THE >SIGN PASSED THE TEST"

999 END

-wn2Z>r

339

7

SAMPLE RUN

THE >SlGN PASSED THE TEST

>is commonly combined with = to make the >=operator and combined with< to make
“inequal” operators < >or >< . Some interpreters limit the number of characters which
can be specifically compared in a string.

ALSO SEE
<,<>,><,=, GT, LT, NE, §, IF-THEN

340

The <> sign is used as a “not-equal” relational operator
to compare two numeric values in IF-THEN statements
for inequality. For example, IF A<>B THEN 1¢¢ tells
the computer to branch to line 199 if the value of variable
A is not equal to variable B.

TEST PROGRAM

1¢ REM' < > RELATIONAL OPERATOR' TEST PROGRAM
20 A=19

30 IF A < D> 28 THEN 6¢

4¢ PRINT "THE < > SIGN FAILED THE TEST"

Operator

5¢ GOTO 99
69 PRINT ""THE < D> SIGN PASSED THE TEST"
99 END

SAMPLE RUN

THE< D> SIGN PASSED THE TEST

VARIATIONS IN USAGE

The <> sign can be used by most computers to compare strings. The <> sign compares
the ASCII code of each character (from left-to-right) in two strings. The first difference in
equality encountered determines the relationship. In the example, 1F A$<>"ABC"
THEN 1¢¢ the interpreter compares the ASCII code of each character (from left-to-right)
stored in string variable A$ against the characters enclosed in quotation marks. If a dif-

ference in equality is encountered, or one string is longer than the other, the condition of

the <> sign is met and the computer branches to line 100.

TEST PROGRAM

1¢ REM * € > STRING OPERATOR' TEST PROGRAM

2¢ A$="ABCDE"

38 1F A5 < > ABCD'" THEN 6¢

49 PRINT "THE < > SIGN FAILED THE TEST IN LINE 3¢
5¢ GOTO 999

60 IF A < D> '"ABCDE' THEN 8¢

79 GOTO 1¢¢

8¢ PRINT "THE < > SIGN FAILED THE TEST IN LINE 6¢
09 GOTO 999

19¢ PRINT "THE < > SIGN PASSED THE TEST"

999 END

—_nZ>

341

<O

SAMPLE RUN

THE <> SIGN PASSED THE TEST

Some computers use the operator >< or #. Some interpreters limit the number of
characters which can be specifically compared in a string.

ALSO SEE
#,>< ,<,>,IF-THEN, §

342

The >< sign is used by a few computers (e.g. those
using MAX BASIC) as a “not-equal” relational operator.

For more information see <> .

TEST PROGRAM

1¢ REM ' >< RELATIONAL OPERATOR' TEST PROGRAM

2¢ A=18 Operator
39 1F A > 2¢ THEN 69

49 PRINT “THE > < SIGN FAILED THE TEST"

5¢ GOTO 99

69 PRINT "THE D> < SIGN PASSED THE TEST"

99 END

SAMPLE RUN

THE D>< SIGN PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
<>, #, NE, IF-THEN

343

The< = sign is used as a “less than or equal to” relational
operator to compare two numeric values in IF-THEN
statements. For example, 1F A<=B THEN 1¢¢ tells the
computer to branch to line 100 if the value of variable A
is less than or equal to variable B.

TEST PROGRAM

1¢ REM 'C~RELATIONAL OPERATOR' TEST PROGRAM Operator
2¢ A=1¢

3¢ IF A< =2¢ THEN 6¢

4¢ PRINT "THE<=SIGN FAILED THE TEST IN LINE 38"

5¢ GOTO 999

69 IF A =19 THEN 9¢

7¢ PRINT "THEC =SIGN FAILED THE TEST IN LINE 6¢"

8¢ GOTO 999

8¢ PRINT "THE<=SIGN PASSED THE TEST"

999 END

SAMPLE RUN

THE<= SIGN PASSED THE TEST

VARIATIONS IN USAGE

The <= sign can be used by most computers to compare strings. The < = sign com-
pares the ASCII code of each character (from left-to-right) in two strings. The first dif-
ference in equality encountered determines the relationship.

If both strings have identical characters and are the same length, then they satisfy the< =
relationship. For example, string ABCDEF is < string ABD even though the first string

has more characters. Since the ASCII code for C (decimal 67) in the first string is less
than, or precedes the ASCII code for D (68) in the second string, it passed the< = test,

If each string has the same sequence of characters, then the longer string is considered
larger. For example, string ABCD is larger than string ABC.

—nZzZ>y

344

TEST PROGRAM

1¢ REM ‘<=STRING OPERATOR' TEST PROGRAM

20 AS="ABC"

3¢ B$="ABCD"

4¢ cg="8B"

5¢ 1IF A$<=B$% THEN 8¢

6p PRINT "THE<=SIGN FAILED THE TEST IN LINE 5¢"
7¢ GOTO 999

8¢ 1F AS<= "ABC"” THEN 11¢

9¢ PRINT "THE= SIGN FAILED THE TEST IN LINE 8¢"
149 GOTO 998

119 IF B3<=C$ THEN 14¢

12¢ PRINT "THE<C = SIGN FAILED THE TEST IN LINE 119"
139 GOTO 999

14¢ PRINT "THE <= SIGN PASSED THE TEST"

999 END

SAMPLE RUN

THE <= SIGN PASSED THE TEST

Some computers use the = < sign instead. Others allow it as an option. Some interpreters
limit the number of characters which can be specifically compared in a string.

ALSO SEE
[E-THEN, < ,=,=<, >, >=, >< , <> ,$,LE, LT, EQ,GT,GE

345

>= js used as a “‘greater-than or equal-to” relational
operator to compare two numeric (or string, when allow-
ed) values in IF-THEN statements.

For example, IF A >=B THEN 1¢¢ tells the computer to
branch to line 10§ if the value of variable A is greater-
than or equal to variable B.

TEST PROGRAM Operator

1§ REM ' >= RELATIONAL OPERATOR' TEST PROGRAM
28 A=29

3¢ IF A D>D=19 THEN 69

49 PRINT "THE >= SIGN FAILED THE TEST IN LINE 39"
5¢ GOTO 999

6@ IF A D>=2¢ THEN 9¢

79 PRINT "THE >=SIGN FAILED THE TEST IN LINE 6¢"
8¢ GOTO 999

8¢ PRINT "THE >=SIGN PASSED THE TEST"

999 END

SAMPLE RUN

THE >=SIGN PASSED THE TEST

The >= operator is allowed by some computers for string comparison. It compares the
ASCIH code of each character (from left-to-right) in two strings. The first difference in
equality encountered determines the relationship. If both strings have identical characters
and are the same length, then they satisfy the >= relationship.

For example, string ABD is greater than string ABCDEF even though the first string has
has fewer characters. Since the ASCII code for D (decimal 68) in the first string is greater
than the ASCII code for C (decimal 67) in the second string, it passed the >= test.

If each string has the same sequence of characters, then the longer string is considered
larger. String ABCD is larger than string ABC.

346

|

>=

TEST PROGRAM

19 REM ' >=STRING OPERATOR' TEST PROGRAM

2¢ AB="ABCD"

3¢ B§="ABC"

49 Cg="B"

5¢ IF A$ D>=B$ THEN 8¢

6¢ PRINT “THE D> = SIGN FAILED THE TEST N LINE 5¢"
7¢ GOTO 999

8¢ IF AS D> ="ABCD' THEN 11¢

99 PRINT "THE >=SIGN FAILED THE TEST IN LINE 8¢"
16§ GOTO 999

11¢1F C$ > = BS$ THEN 149

12¢ PRINT “THE > = SIGN FAILED THE TEST IN LINE 119"

13¢ GOTO 999
14¢ PRINT "“"THE > = SIGN PASSED THE TEST"
999 END

SAMPLE RUN

THE D= SIGN PASSED THE TEST

Some computers use the = > sign instead (or interchangeably).

VARIATIONS IN USAGE

None known.

ALSO SEE
IF-THEN, > ,< , <=, <> ,><

347

=< is used as an “equal to or less than” relational opera-
tor to compare two numeric (or string, when allowed)
values in IF-THEN statements. For example, IF A=<B
THEN 1¢¢ tells the computer to branch to line 100 if the
value of variable A is equal to or less than variable B.

For more information see <=

TEST PROGRAM Operator

1¢ REM '= < RELLATIONAL OPERATOR' TEST PROGRAM
2¢ A=1¢

3¢ 1F A=< 29 THEN 6§

4¢ PRINT "THE=< SIGN FAILED THE TEST IN LINE 3¢"
5¢ GOTO 999

69 1F A=< 19 THEN o¢

7¢ PRINT "THE=< SIGN FAILED THE TEST IN LINE 6¢"
8¢ GOTO 999

9¢ PRINT "THE=< SIGN PASSED THE TEST"

999 END

SAMPLE RUN

THE =< SIGN PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSQO SEE
IF-THEN, <=

348

=> is used as an “equal to or greater than” relational
operator to compare two numeric (or string, when allow-
ed) values in IF-THEN statements. For example, IF
A=>B THEN 1¢¢ tells the computer to branch to line
190 if the value of variable A is equal to or greater than
variable B.

For more information see >=

Operator

TEST PROGRAM

19 REM '=> RELATIONAL OPERATOR' TEST PROGRAM
20 A=2¢

3¢ IF A=> 19 THEN 6¢

4¢ PRINT "THE = > SIGN FAILED THE TEST IN LINE 3¢"
5¢ GOTO 999

69 IF A= >20 THEN 99

7¢ PRINT "THE => SIGN FAILED THE TEST IN LINE 60"
8¢ GOTO 999

9¢ PRINT "THE = > SIGN PASSED THE TEST"

999 END

SAMPLE RUN

THE = > SIGN PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE
IF-THEN, >=

349

The < sign is used in the IBM 5100 and 5110 BASIC as
an “equal to or less than” relational operator to compare
two numeric values in IF-GOTO statements.

For example, iIF A £ B coTo 1¢¢ tells the computer to
branch to line 190 if the value of variable A is equal to or
less than variable B.

For more information see <=

Operator

TEST PROGRAM

1¢ REM ' < RELATIONAL OPERATOR' TEST PROGRAM
2¢ A=1¢

39 IF A < 20 GOTO 69

49 PRINT "THE < SIGN FAILED THE TEST IN LINE 3¢"
50 GOTO 999

60 1IFAS 1§ GOTO 9¢

7¢ PRINT “THE < SIGN FAILED THE TEST IN LINE 6¢"
8¢ GOTO 999

9¢ PRINT “THE < SIGN PASSED THE TEST"

999 END

SAMPLE RUN

THE £ SIGN PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE

350

The 2 sign is used in the IBM 5100 and 5110 BASIC as
an “greater than or equal to” relational operator to com-
pare two numeric values in IF-GOTO statements.

For example, IF A 2 B coTO 1¢¢ tells the computer to
branch to line 10 if the value of variable A is greater than
or equal to variable B.

For more information see >= -
Operator

TEST PROGRAM

1 REM ' 2 RELATIONAL OPERATOR' TEST PROGRAM
2¢ A=2¢

3gIF A 219 GOTO 69

49 PRINT “THE 2 SIGN FAILED THE TEST IN LINE 38"
50 GOTO 999

69 1F A 2 24 GOTO 9¢

7¢ PRINT “THE 2 SIGN FAILED THE TEST IN LINE 6¢"
8¢ GOTO 999

9¢ PRINT "THE 2 SIGN PASSED THE TEST"

999 END

SAMPLE RUN

THE 2 SIGN PASSED THE TEST

VARIATIONS IN USAGE

None knowrn.

ALSO SEE

351

The # sign is used in the IBM 5100 and 5110 BASIC as a
“not-equal” relational operator to compare two numeric
values in IF-GOTO statements.

For example, IF A # B goTO 1¢¢ tells the computer to
branch to line 10¢ if the value of variable A is not equal
to variable B.

For more information see< > .

TEST PROGRAM

1§ REM '# RELATIONAL OPERATOR' TEST PROGRAM
29 A=1¢

3P IF A#2¢ GOTO 6¢

44 PRINT ""THE # SIGN FAILED THE TEST"

5¢ GOTO 99

6§ PRINT "THE # SIGN PASSED THE TEST"

99 END

SAMPLE RUN

THE # SIGN PASSED THE TEST

VARIATIONS IN USAGE

None known.

ALSO SEE

<>, O #

Operator

352

The * (apostrophe) is used by many computers as an
abbreviation for the REMark statement.

For more information see REM.

—nZ>

TEST PROGRAM

1¢ REM '(APOSTROPHE) TEST PROGRAM
2¢ 'PRINT "THE APOSTROPHE FAILED THE REM TEST" Statement
3¢ "THE APOSTROPHE FAILED THE TEST IF LINE 2¢ 1S PRINTED"

4¢ PRINT "THE APOSTROPHE PASSED THE REM TEST"

99 END

SAMPLE RUN

THE APOSTROPHE PASSED THE REM TEST

VARIATIONS IN USAGE

A few computers use the apostrophe in PRINT statements to enclose strings instead of
using quotation marks.

TEST PROGRAM

1§ REM '(APOSTROPHE) x USED AS QUOTES * TEST PROGRAM
2¢ PRINT 'THE APOSTROPHE PASSED. THE QUOTATION MARK TEST'
99 END

SAMPLE RUN

THE APOSTROPHE PASSED THE QUOTATION MARK TEST

ALSO SEE
REM, PRINT

353

NOTES

354

NOTES

355

NOTES

356

NOTES

357

358

Appendix A
ASClIli to DECIMAL Conversion Table

In order to translate between binary computer numbers and English, a code
number is set aside to stand for letters, decimal numbers and other characters.
They are called “The ASCII Set”. ASCII stands for the American Standard Code
for Information Interchange.

Refer to the ASCII table as you read the following:

1. The characters represented by numbers between 32 and 90 are fairly uniform
from computer to computer — but not 100%. .
2. The numbers from 97 to 122 are also reasonably uniform, but since they are
lower case, and many terminals print only upper case characters, they serve
simply as duplicates of other numbers.

3. The numbers from @ to 31 used to be uniform in the old days of slow and
clunking printing terminals. With the advent of video terminals and different
peripheral devices, this uniformity has pretty well disappeared.

4. From 123 to 255 is wide open.

Use this simple BASIC program to discover what character your computer assigns
to each decimal code number. The delay loop in lines 40 and 5@ gives you a little
time to view them on a video screen. You may wish to change the numbers to
match the speed of your computer.

16 FORN =@ TO 255

2¢ PRINT "ASCII NUMBER "N,
3¢ PRINT CHRS$(N)

4 FORD =1 TO 509

5¢ NEXT D

6¢ NEXT N

ASCIli Number Code Chart (in decimal)

Decimal ASCIL Decimal ASCII
Code Character Code Character
32 space 79 0]
33 ! 80 P
34 ” 81 Q
35 # 82 R
36 h) 33 S
37 % 84 T
38 & 85 U
39 ’ 86 v
40 (87 W
41) 88 X
42 ® 89 Y
43 + 90 Zi
44 , 91 Aor [
45 - 92 Y
46 . 93 -
47 / 94 >
48 0 95 —
49 1 97 a
50 2 98 b
51 3 99 c
52 4 100 d
53 5 101 e
54 6 102 f
55 7 103 g
56 8 104 h
57 9 105 i
58 : 106 j
59 ; 107 k
60 < 108 1
61 = 109 m
62 > 110 n
63 ? 111 o}
64 @ 112 p
65 A 113 q
66 B 114 r
67 C 115 8
68 D 116 t
69 E 117 u
70 F 118 v
71 G 119 w
72 H 120 X
73 1 121 y
74] 122 z
75 K 123 {
76 L 124 \
77 M 125 }
78 N 126 ~

359

360

For Additional Copies
of
The BASIC Handbook

Contact your local Computer, Electronics or Book Store
or

Send $14.95 each + $1.35 Postage & Handling to

COMPUSOFT PUBLISHING
P. O. Box 19669-P
San Diego, CA 92119

(California addresses add 6% sales tax)

Educational Discounts available for quantity purchases.
Write for details.

ISBN #0-932760-00-7

Variations of BASIC Included in this Handbook

All, or nearly all of the features of the following

BASIC dialects are explained:

ANSI (American National Standards Institute)
Minimum

ADDS * BASIC

ALTAIR 680 BASIC

ALTAIR 8800 4K BASIC

ALTAIR 8800 8K BASIC

APPLE 1l BASIC

BALLY BASIC

COMMODORE PET 8K BASIC

COMPAL-80 BASIC

COMPAL MICROPOLIS BASIC

COMPUCOLOR CORP BASIC

CONTROL DATA BASIC VERSION 3

CROMEMCO 3K CONTROL BASIC

CROMEMCO 16K EXTENDED BASIC

DATAPOINT BASIC 55

DARTMOUTH BASIC (The original)

DEC PDP-8E EDUSYSTEM-20 BASIC

DECstation OS/78 BASIC

DECsystem 10 BASIC

DIGITAL GROUP MAXI-BASIC

DIGITAL GROUP OPUS ONE

EXIDY SORCERER BASIC

GENERAL AUTOMATION BASIC 16

HARRIS BASIC V

HEATHKIT BENTON HARBOR BASIC

HEATHKIT EXTENDED BASIC

HEWLETT-PACKARD 2000 BASIC

HEWLETT-PACKARD 3000 BASIC

IBM 5100 BASIC

IBM 5110 BASIC

IMSAI 4K BASIC

IMSAI 8K BASIC

INTERDATA BASIC LEVEL 11

MECA BASIC

MICROSOFT 680 BASIC

MICROSOFT 4K BASIC

MICROSOFT 8K BASIC

MICROSOFT EXTENDED BASIC

MOTOROLA BASIC

NORTH STAR BASIC

OHIO SCIENTIFIC 8K BASIC

PALO ALTO TINY BASIC

POLYMORPHIC SYSTEMS 11K BASIC

POLYMORPHIC SYSTEMS DISC BASIC

PROCESSOR TECH BASIC-5

PROCESSOR TECH EXTENDED CASSETTE
BASIC

QUANTEL QICBASIC

RADIO SHACK TRS-80 LEVEL | BASIC

RADIO SHACK TRS-80 LEVEL Il BASIC

SEL 810B BASIC

SWTP 4K BASIC

SWTP 8K BASIC

SPERRY UNIVAC SYSTEM/9 BASIC

VARIAN 620 BASIC

WINTEK 4K BASIC

In addition, most or part of the following BASIC
dielects are explained. Some of them have unique
or special applications, while others are
immensely powerful and high speed disc oriented.
Only the most common disc words are included,
but the underlying ““main line*’ BASIC is

covered in detail and is applicable to all of them.

ALPHA MICRO BASIC

BASIC TIMESHARING, INC. BASIC-X
BILLINGS BASIC

COMPUCOLOR CORP COMPUCOLOR 11
COMPUTERWARE CSS BASIC

DEC BASIC-PLUS-2

DIGITAL GROUP OPUS TWO

DIGITAL GROUP BUSINESS-BASIC
DYNABYTE BASIC CONTROLLER

EDS BUSINESS BASIC

HEWLETT PACKARD SYSTEM 45 BASIC
HONEYWELL SERIES 60 BASIC

INTERDATA BASIC

MAXBASIC

MICROWARE SYSTEMS A/BASIC COMPILER
PRIME BASIC V/M

POLYMORPHIC SYSTEMS EXTENDED BASIC
PROCESSOR TECH EXTENDED DISC BASIC
RCA COSMAC VIP BASIC

TEKTRONIX 4051 BASIC

TEXAS INSTRUMENTS 990 BUSINESS BASIC
TEXAS INSTRUMENTS 990 SCIENTIFIC BASIC
VECTOR GRAPHIC 8K BASIC

WANG BASIC

ZILOG Z-80 BASIC

In nearly every version of BASIC listed
here and throughout the HANDBOOK
(and on the cover) one or more names
or words are registered Trade Marks,
and should be treated accordingly.

" $14.95

Want to really understand BASIC .. .?
Can’t make that favorite program run on your computer. . .?

This book can help!!!

About The Book About The Author
This book is unique. It is not a text- Dr. David Lien is a longtime technical
book. It's far more than a dictionary. It author and College Dean. His diverse
is a virtual ENCYCLOPEDIA of the technical background includes many
BASIC language. years of Electronics/Computer teach-
While not favoring one computer over Ing. 'plus _Aeros_pace and Broadpast

. . : Engineering. His real specialty is

-another, it explains over 250 BASIC . . -
making complicated things under-
words, how to use them, and alternate standable . . . without insulting your
strategies. Since over 50 computers . . U gy
: - intelligence.

are represented, yours is probably in
here too. He is probably best known in the

computer field as the author of the
Radio Shack TRS-80 User’s/Learning
Manual, a widely acclaimed classic
and best seller.

COMPUSOFT™ PUBLISHING

A Division of CompuSoft™ , Inc.
P.O.Box 19669 @ San Diego, California 92119 U.S.A.

ISBN #0-932760-00-7 Printed in U.S.A.

