Y . e
20 .'-:r | 5-= r‘ ﬁ T ‘L F
A A\ ' I'I

F e e s e o T == T TRy el e — M*‘Mﬂh—ﬂm

The BASIC
Handbook

Encyclopedia of the
BASIC Computer Language

by
David A. Lien

APPLE - TRS-80 « ATARI + IBM « DEC + ABC-80 *« SHARP

EXDY + NEC + HEWLETT—PACKARD + HEATH

SYSTEM80 -+ TEXASINSTRUMENTS + PET + NORTHSTAR

SINCLAR » WANG + VARIAN + OHIO SCIENTIFIC
PLUS OVER 200 OTHERS

WHICH BASICs ARE INCLUDED?

In the First Edition, we documented BASIC as implemented
on 78 different computers. This all-new Second Edition
contains words from more than 250 different computers.

IS YOUR COMPUTER COVERED?

Virtually every significant BASIC language feature of virtu-
ally every computer which speaks BASIC is explained. All
known computers from North America, Europe, Asia and
Australia are included. Your computer is almost certainly
covered.

- 2nd Editlon -

Encyclopedia of the
BASIC Computer Language

by
David A. Lien

COMPUSOFT® PUBLISHING
A Division of CompuSoft, Inc.
San Diego, California 92119 U.S.A.

Copyright © 1981 by CompuSoft Publishing,
A Division of CompuSoft, Inc.
San Diego, CA. 92119

SECOND EDITION — 1984 PRINTING

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without the prior
written permission of the publisher. No patent liability
is assumed with respect to the use of the information
contained herein. While every precaution has been
taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions.
Neither is any liability assumed for damages resulting
from the use of the information contained herein.

CompuSoft is a registered trademark of CompuSoft,
Inc.

In nearly every version of BASIC listed
here and throughout the HANDBOOK
(and on the cover) one or more names or
words are registered Trade Marks, and
should be treated accordingly.

International Standard Book Number: 0-932760-05-8
Library of Congress Catalog Card Number: 81-67479

Printed in the United States of America 10 9 8 7 6

Preface To The 2nd Edition

When the 1st Edition of The BASIC Handbook was released
in 1978. | was pleasantly overwhelmed by the response. It is
with great pleasure (and a bit of modest pride) that | offer this
greatly expanded and revised 2nd Edition.

The BASIC language has changed in many ways since 1978.
With each new computer came new words, and with each
new word the need to update. Relying on what | believe is the
most extensive BASIC language library in the world, plus
assistance from many manufacturers, I've attempted to docu-
ment and explain virtually every BASIC feature of virtually
every computer in the world.

In this 2nd Edition, special attention was given to new com-
puters introduced (and about to be introduced) from Europe
and Asia. In addition to filling gaps in the 1st Edition, a strong
effort was made to continue documenting “disk BASIC”, that
misunderstood enigma which frustrates so many users. Since
there are no standards for “disk BASIC”, only common con-
cepts, documentation follows the few identifiable trends.

Many kind readers offered suggestions for changes in format
which they felt would increase The Handbook’s usefulness.
Many of those suggestions are incorporated, and to the corres-
pondents | say “Thank You”.

To fellow computer students of all ages, in all places, and at
all levels of proficiency, | wish you the best in your BASIC
programming endeavors. May The BASIC Handbook be your
guide to success.

Dr. David A. Lien
San Diego — 1984

Acknowledgements
In addition to the many acknowledgements in the First
Edition, I would like to especially thank the following:

David Lunsford of San Diego, California, the Principal
Researcher and Technical Editor.

David Gunzel of Ft. Worth, Texas, the Managing Editor
and designer.

Introduction To
The 2nd Edition

The BASIC Handbook places at your fingertips
authoritative information about the principal BASIC
programming language words from “dialects” used around
the world. Correspondence from all parts of the globe attest
to the fact that The BASIC Handbook has become The
Standard BASIC Language Reference.

This greatly expanded 2nd Edition documents BASIC as
implemented on virtually every BASIC-speaking computer
in the world.

Its creation was a monumental task. We hope it will be of
great value to you.

A Perspective On The
Language

The BASIC language is a rushing river, or a swamp, vary-
ing with its mood. Most manufacturers and language
designers travel its wide “mainstream”, staying in the
channel. The mainstream is fed by tributaries, each adding
a flake of gold --- or effluent.

Along the river are aspiring rivulets, most going nowhere.
Some connect isolated ponds to form obscure networks ---
pretenders to the throne of “BASIC”.

To carry deeper traffic, some designers dredge the main
channel, stirring up tons of mud and silt. Expanded beyond
its flow, the river is still called BASIC.

Perhaps this drawing will help you visualize the terrain as
we portage across the dry spots.

The Ground Rules

In preparing The BASIC Handbook, certain ‘‘ground rules’ had to be
established. For without setting boundaries, the job would never have
been completed and no one would benefit from the information. The
ground rules are listed here so you might understand the working
concepts we used to create the Handbook.

1. The Handbook will be an encyclopedic type reference work ---
not a dictionary or a textbook. It will be a precise and
definitive reference suitable for accompanying a good BASIC
language text, but will not attempt to replace it.

2. Top priority has been given to information that will help
BASIC language users solve the problem of program
incompatibility due to the existence of hundreds of BASIC
dialects.

3. There is a large ‘‘mainline’’ core of BASIC words that is
shared by most computers. Extensive treatment of that core is
more important than extensive coverage of lesser used and
obscure special-purpose words. To the extent that time and
space allow, lesser-used BASIC words are covered. But like
the universe, BASIC keeps expanding. We can only chase it ---
but never catch it all.

4. BASIC is used in everything from pocket computers to huge
mainframes. But since some small computers have vastly
superior BASIC capabilities, size is unimportant. Priority will
be given to documenting the language, not machines.

5. For ease of use, BASIC words will be treated in as uniform a
manner as possible. Those words that are little used, or
exclusive to only one machine with limited possibility for
translation to other dialects, will be documented in an
abbreviated format.

6. It is not as important to identify whose version of BASIC does
what as it is to thoroughly document each important BASIC
word. Tying specific capabilities to specific manufacturers will
therefore be given low priority.

10.

11.

12.

. Large computers typically use compilers; small ones usually use

interpreters. Since it makes little difference to the language
itself, the words interpreter and compiler will be used
interchangeably.

. To hold down size and price, the book will refer readers to key

central words rather than repeat the same information in many
places.

. There is little uniformity in BASIC control of peripheral

devices such as disks, tapes and printers. Such control words
stray far beyond mainline BASIC. We have made an initial
attempt at documenting these words, but a standardized
treatment will have to wait for that part of the language to
‘‘shake out’’.

The Handbook is not a substitute for the manufacturer’s
manuals that accompany each computer. It is a supplement.

Manufacturers change their BASICs, eliminating ‘‘glitches’”’,
frequently without acknowledging that a problem existed. No
attempt will be made to document every known glitch, change,
improvement or modification by manufacturers or software
houses.

BASIC as implemented on ‘‘light and game machines™ is
generally not used for serious computer applications, nor did
most of these manufacturers attempt to adhere to reasonable
language standards. Since incidental computing is only one of
their several capabilities, these ‘‘off-the-wall’’ dialects will be
documented in relation to their importance and potential for
adaptation to other computers.

Converting Programs From One Computer
For Another

Some Handbook users are programmers who rewrite programs from
other languages into BASIC. Many other users are computer students
who need detailed explanations of BASIC words; what they mean, and
how they do their job in different ways.

Judging from the mail, however, the greatest help The Handbook
offers is to those converting a BASIC program written for one
computer so it will run on a different one --- usually their own. A few
words at this point might benefit the many readers performing such
conversions.

Prepare For The Trip

To adapt a program to RUN on a different computer, you must have a
thorough understanding of your own computer’s dialect of BASIC. The
computer’s own reference manual (tho perhaps incomprehensible) is
the starting point. At least try to figure out what the manual contains
and where that good stuff is hidden.

If the manual doesn’t have a good index, list all your computer’s
BASIC words alphabetically on a sheet of paper, along with a notation
where the explanations are found. The BASIC Handbook can then
become the “missing link” between the program to be adapted and
your computer.

Untangle The Original, First

Untangle the original program so you can understand it, before trying
to convert it. Sample Runs of the original program, if available, can be
very helpful in determining the programmer’s intent. Find those words
which behave differently on the original computer and yours. The
BASIC Handbook will show you alternate words and subroutines.

Long programs with multiple statement lines and no blank spaces
make conversion unnecessarily difficult. Identify these lines, and also
those having words foreign to your BASIC. Rewrite them, allowing
only one statement per line. Renumber the program as necessary to
make room for the additional lines. Keep copies of the program at each

10

stage of conversion, so if (when) it “bombs”, you can take one step
backward and try again.

Table of Variables

If the original program is more than just a few lines long, prepare a
table showing the Allocation of Variables within it. List each vari-
able letter, string, array, etc. and briefly describe what that variable
represents. This table will be invaluable as you untangle and convert
the program.

Create a similar table for your own version of the program. The table
can (preferably) be included at the end of the program in REM lines as
part of its documentation, or, (if memory is limited) written on a
separate sheet of paper.

A Word About Word-For-Word Conversion

Word-for-word program conversion is very inefficient and produces a
poorly designed end product. It does not take advantage of the special
features that are the strength of your particular machine.

Try instead to break the original program into small, functional blocks
or modules. Sprinkle REMark statements liberally throughout, as tho
you were explaining its operation to someone else. In other words,
perform the program documentation which the original programmer
probably ignored. Then, with the help of “The Handbook”, determine
how to accomplish the intention of each of those blocks by using the
BASIC words and features that are part of your computer.

Always A String Attached

As a general rule, the most formidable differences between BASIC
dialects are the ways in which they handle strings and external (disk
or tape) files. Many BASICs require strings to be DIMensioned before
use. Computers with this requirement generally manipulate substrings
by use of subscripts. Example: A% (3,5) refers to the third thru fifth
characters in string A$.

Other computers usually use MID$, LEFT$, RIGHT$, etc. to process
substrings. Know which system is used by your BASIC and perform a
“global” conversion, if necessary.

File It Down

File handling is the least standard feature of BASIC. If external files
are part of the program, determine how they are used, carefully
document that use, then redesign and rewrite those parts in accord-
ance with your computer’s filing system.

Isit An O Or A0

An unfortunate carry-over from earlier days of computer programming
is the problem of distinguishing an O from a 0. Originally, and for
many decades in the electronic communication field, a / thru a 0
identified it as a zero. Since early computer programmers did not
generally come from the ranks of radio hams or other communications
types, they slashed the symbol O and used it to specify the letter ohh.
Check any outdated programming text to see the confusion.

During the latter 1970’s, a concerted effort was made by manufac-
turers of keyboards and printers to standardize on the slashed 0 to
mean zero. A quick inspection of your program’s line numbers will
show which is which.

A matter not yet resolved is, which is which when neither uses a
slash? Many printers use an O with squared off corners to mean the
letter and an 0 with “pointy” tops and bottoms to mean the number.
That’s easy enough, but many other printers exactly reverse them.
We're right back where we started! Again, the quickest way to tell is
to check any line number.

Avoid use of either the letter or number 0 as a variable in your
programs. Avoid them like the plague! We have enough confusion in
this field already without providing more opportunities for errors.

Imbedded Special Keys

A few computers (e.g. the Commodore PET) allow their programs to
contain special symbols indicating commands inserted by special
purpose keyboard keys. These symbols represent moving the cursor on
the screen, displaying characters in reverse video, CLEARIng the
screen, moving the cursor to HOME, etc. The symbols are contained in
PRINT statements and are apparent by their very uniqueness.

11

12

Examples:

S18 FRIMT "TPREZES sRETURNE WHEM COMFLETED™
Z28 PRIMT "BEMTER THE FROGRAMS OM SIDECI
SEE PRIMT :P=P+1

S48 FPRIMT " PROGRAM #":F:" _IGBEI;

3 e

In the lines below, the words “down”, “reverse-field”, “off-the-reverse
field”, “back”, “up”, etc. describe actions that are created by single
keystrokes on the PET keyboard.

902 PRINT "down, reverse-field” i N ; "off-reverse-field, back, up"i: GOTO 25¢
12@® PRINT "down, null-symbol, back, up" 5:N$="":GOTOD 250

Except for printing the special graphics characters, accomplishing the
intent of most other keys on another computer is simply a matter of
substituting equivalent statements, when possible.

Goofy Printers

Some printers do not print standard character sets. As I write this, I'm
looking at a set from a British magazine which prints a backslash
instead of a $ sign, tho a $ sign is intended; and another, from an
American magazine has something that looks like the footprint of a 4
toed animal to represent an *. Sometimes the accompanying text will
point these things out. Don’t let printer differences confuse you into
thinking you are dealing with another dialect of BASIC.

Goofy Computers

Hundreds of thousands of TRS-80 computers print an up-arrow on the
screen but a left bracket on most printers. Since the up-arrow is used
almost exclusively in mathematical formulas, it is in formulas where
this ROM “glitch” will usually be noted.

Goofy Programming

Some programmers think they have to define each variable by using
an entire word instead of a simple letter variable. Such elegance is
alright in simple programs, but can lead to very serious problems on -
computers that don’t permit lengthy variables.

Worse, the reader may think the variable is some new and exotic
BASIC word not included in The BASIC Handbook. The way to
untangle this problem is to create a good Allocation of Variables
table, then rename the variables.

%

PEEK and POKE Mean Trouble

If the program relies heavily on PEEKs and POKEs, translation to
another computer is nearly impossible without memory maps of both
computers --- plus knowing how to use the maps. This task is beyond
the skill of the average BASIC language programmer. Determine the
price you are willing to pay in terms of time and frustration to make a
particular program RUN on your system. It may not be worth the
effort.

Impossible?

In the final analysis, not every program can be converted to run on
every computer. Within the context of “mainline” BASIC however,
such programs are rare.

At this time in history, the toughest conversion problems involve
programs from “color video game machines” which include a “custom”
BASIC interpreter as a marketing afterthought. This and the problem
of undocumented manufacturers’ glitches are also discussed in the
section titled GROUND RULES.

But Good Shall Triumph!

Your own keen interest, a good dose of organization and common sense
--- plus The BASIC Handbook will solve most problems and make your
programming time a lot more efficient and enjoyable.

13

14

How To Use This Handbook

The information about each BASIC word is broken into a number of parts. Study this example
carefully to better understand what to expect from your Handbook.

@ The WORD itself: It is a word found in a BASIC program, or used to control one. Words
which are used for overall system monitor purposes, editor languages, and other computer
languages are not part of The BASIC Handbook.

@ Other words: Abbreviations and alternate spellings of the word are placed here.

@ ANSI Standard notation: If the word “ANSI” appears here, it means the word is part of
the National Bureau of Standards American National Standards Institute minimum BASIC
vocabulary.

@ Word Category: BASIC words are divided into 4 categories:

Commands: which tell the computer to do something with a program, like RUN, LIST. etc.
Some computers allow commands to be imbedded in a program, thus also serve as a Statement.

Statements: words which actually appear within a program, and comprise the detailed
instructions on which the computer makes its decisions and performs its duties. Example:

PRINT AsBC

Functions: words which call forth pre-programmed machine-level “micro-programs”. They
perform relatively complicated “functions” such as finding a trigonometric value, a square root.
etc., serving as part of a larger statement. Examples:

LET X = TANC(Y) PRINT LOGC(A)

Operators: non-word characters which perform in special comparative or modifying capacities.
Examples: comma, colon, equal sign, etc.

In The BASIC Handbook, Commands, Statements and Functions appear in alphabetical order.
Operators, not lending themselves to alphabetizing, appear in a separate section at the back.

@ Introductory and Descriptive remarks about the WORD, telling what it is and what it
does. May include special notes relating to brands of computers which predominantly or
exclusively use the word.

@ TEST PROGRAM: Allows user to enter a brief program into a computer to see if its
interpreter or compiler recognizes the word and makes use of it.

@ SAMPLE RUN: Shows how the computer might be expected to respond to the TEST
PROGRAM. Results will vary slightly from machine to machine, but the general pattern
should not vary widely from the sample run.

@ HELPFUL HINTS: Sometimes there are programming techniques which greatly simplify
achieving a high level of simplicity and/or reliability. They are noted here.

ALTERNATE SPELLING: When different spellings are used on different computers. the
alternate spellings are noted here.

@ IF YOUR COMPUTER DOESN'T HAVE IT: Gives alternate ways to accomplish the
same objective using other BASIC words, when possible. .. and it isn’t always possible. In the
case of functions, a sub-routine is usually included which is able to circumvent the absent
intrinsic function. In the case of statements (especially PRINT), a simple re-writing of part of a
program using other words and techniques allow program execution with the same or
somewhat diminished results.

@ VARIATIONS: Variations in usage of the WORD; that is, how the WORD itself might be
used differently by different computers. (Not variations in how the desired results might be
achieved with other words.)

@ ALSO SEE: Rather than spend an inordinate amount of space duplicating information,
words are sometimes “clustered” around a central word, and that central word is discussed in
great detail. Related words then treat their specific purpose only, referring to other words for
more detail as desired.

Function @

SEGS$ extracts a segment of a string from a string
variable. SEG$ has three arguments: the string

variable, the starting position in the string, and
the number of characters in the substring.

Example: IF A$="COMPUTER" s THEN PRINT
SEG$(A%,4,3) prints PUT.

Test Program

10 REM * SEG$ TEST PROGRAM =*

20 A$="CONTESTANT"

30 B$=SEG$(A%,4.4)

49 IF B%$<:"TEST" THEN 70

5¢ PRINT "SEG$ PASSED THE "iB%
6@ GOTO 99

70 PRINT "SEG$ FAILED THE TEST"
99 END

Sample Run

SEG$ PASSED THE TEST

~ SEG$ can be used to simulate LEFT$ and RIGHT$. SEG$(A$,1,4) is
’ equivalent to LEFT$(A$,4), while SEG$(A$,LEN(A$)-3,3) is equivalent to
- RIGHTS$(AS$,3).

Alternate Spelling

A few computers use SEG.
IF YOUR COMPUTER DOESN'T HAVE IT

If neither SEG$ nor SEG is available on your computer, try MID$ in the
test program. If that doesn’t work, some computers that require a DIM
statement for all strings (e.g. Hewlett-Packard) will accept A$(4,7) as the
substring in positions 4 through 7.

Variations In Usage

None known.

@ Also See

MID$, LEFT$s RIGHT$ s DIM

15

16

Function

The ABS function determines the ABSolute value
of a number or numeric variable. A number’s
absolute value is its value without a + or — sign.

Example: PRINT ABS(-10) prints 10.

ABS is capable of handling any number, large or
small, within the limitations of the computer’s
interpreter.

Test Program #1

12 REM 'ABS’ TEST PROGRAM

20 X=35

30 PRINT "ABS PASSED THE TEST IF"3

49 PRINT ABS(-435.28)3

o@ PRINT ABS(-,03243) i

6@ PRINT ABS(-3X)

70 PRINT "ARE ALL PRINTED AS POSITIVE VALUES.,"
99 END

Sample Run

ABS PASSED THE TEST IF 435.28 ,0324% 35
ARE ALL PRINTED AS POSITIVE VALUES.

Most interpreters also allow use of the ABS function within arithmetic
operations. This feature is valuable in programs which require a positive
value from math operations that would otherwise produce a negative value.

The entire math operation following ABS must be enclosed in parentheses.

Test Program #2

19 REM 'ABS’ MATH OPERATION TEST PROGRAM

20 A=18
30 B=58
49 PRINT "THE ABSOLUTE VYALUE OF"3(A-B)/Z3i"IS"3ABS((A-B)/2)
99 END
Sample Run

THE ABSOLUTE VALUE OF -Z20 IS 2@

Alternate Spelling
Some computers accept A. as an abbreviation for ABS.
IF YOUR COMPUTER DOESN’T HAVE IT

If ABS is not intrinsic to the computer, it can easily be simulated by the
following subroutine:

17

Test Program #3

19 REM ‘ABS’ GSUBROUTINE TEST PROGRAM
20 PRINT "ENTER A NEGATIVE NUMBER":

30 INPUT X

49 GOSUB 30010

3@ PRINT "THE ABSOLUTE VALUE OF"3X3i"IS"iy

60 GOTO 2@

30010 REM * ABS(X) SUBROUTINE # INPUT X, QUTPUT ¥

30012 Y=X

30014 IF X:»=@ THEN 30018
30016 Y=-X

30018 RETURN

30999 END

Sample Run (using -35.5)

ENTER A NEGATIWE NUMBER?T -35.3
THE ABSOLUTE VALUE OF -35,5 IS 35.5
ENTER A NEGATIVE NUMBER®

Variations In Usage

None known.

18

Function

The ACS(n) function is used in some BASICs to
compute the ARCCOS of the ratio n in radians
(not in degrees). A radian is approximately 57
degrees.

N\ AC.

ACSD
ACSG
ARCOS

X |

Arccos (ACS) is defined as the angle (A) of a right triangle formed by the
hypotenuse (of length H) and one of the sides (length X).

A=ACS (X/H)

The opposite of ACS is COS (cosine). The cosine of an angle (whose measure
is A radians) is the length of the side adjacent to the angle divided by the
hypotenuse of the right triangle.

CO8(A)Y= X/H

Test Program

190 REM ‘ACS’ TEST PROGRAM

2@ PRINT "ENTER A COSINE VALUE (-1 TO 1)"j

30 INPUT C

49 W=ACS(C)

5@ PRINT "THE ANGLE WITH THE X/H RATIO OF “iC3i" IS "5W3
"RADIANG"

30999 END

Sample Run

ENTER A COSINE VALUE (-1 TO 17 @
THE ANGLE WITH THE X/H RATIO OF @ IS 1,5708 RADIANS

To convert values from radians to degrees, multiply the angle measure (in
radians) by 57.29578. For example:

49 W=ACS(C)*57,29578

There are some computers that will calculate the angle in degrees or in
grads (100 grads=90 degrees). These computers use ACSD for degrees and
ACSG for grads. Substituting in Line 40 and using 0 in the sample run
should produce 90 degrees and 100 grads.

19

Alternate Spellings

The Sinclair ZX80 uses ARCOS while the SHARP 1211 (TRS-80 Pocket
Computer) uses AC.

IF YOUR COMPUTER DOESN'T HAVE IT

If your computer won't accept line 40 in the TEST PROGRAM but
recognizes ATN (ARCTANGENT) and SQR(SQUARE ROOT), substitute

49 W = 1.5708-2#ATN(C/ (1+8QR(1-C*CH))

If your computer doesn’t have ATN or SQR, the following subroutine can be
substituted. The subroutine program under ASN must be added to this one.

3eeee GOTO 308988

30500 REM * ARCCOS SUBROUTINE # INPUT C» OUTPUT W
30502 REM ALS0 USES VARIABLES Sy X Y AND Z INTERNALLY
30504 S5=C

305¢6 GOSUB 30520

30508 W=1.570796-W

30519 RETURN

Finally, change line 40 in TEST PROGRAM to:
49 GOSUB 30509

To make the ARCCOS subroutine express the angle in DEGREES, add the
following line:

30309 W=Wx37,28578

Variations In Usage

None known.

Also See
COS+ ASN, ATN, SOR, SIN, TAN

20

Operator
Statement

AND is used in IF-THEN statements as a “logical
math” operator.

For example, IF A=8 AND B=G THEN 80 reads;
if the value of variable A equals 8 AND the
value of variable B equals 6, the IF-THEN
condition is met and execution continues at
line 80.

Test Program #1

1¢ REM LOGICAL ‘AND‘ TEST PROGRAM

20 A=8

30 B=G

49 IF A=B AND B=6G THEN 70

3¢ PRINT "AND FAILED THE TEST AS LOGICAL OPERATOR"
6@ GOTO 99

7¢ PRINT "AND PASSED THE LOGICAL OPERATOR TEST"

98 END

Sample Run

AND PASSED THE LOGICAL OPERATOR TEST

A few computers use the AND operator to “logically” compare
strings.

For example, 1F A$="A" AND B$="B" THEN 8¢ reads, if the string
variable A$ is equal to (or “the same as”) the letter A AND the
string variable B$ is equal to the letter B, the IF-THEN condition is
met and execution continues at line 80. For more information see the
operators + and *.

Test Program #2

12 REM STRING LOGICAL ‘AND‘ TEST PROGRAM

20 As="A"

30 Bs="F"

49 IF A%="A"AND B%$ >"B" THEN 70

5@ PRINT "'AND’ FAILED THE TEST AS A LOGICAL OPERATOR"
60 GOTO 99

70 PRINT "‘AND’ PASSED THE STRING LOGICAL OPERATOR TEST"
99 END

Sample Run

"AND " PASSED THE STRING LOGICAL OPERATOR TEST

Some computers use the logical operator AND to determine if the conditions
are met in two relational operators. When the condition of both operators is
met, AND returns the number -1. When the condition of the AND operator
is not met, AND returns a 0.

21

For example, PRINT A=4 AND B=8 if A equals 4 AND B equals 8 the
computer will print the number -1. If either condition is not met, the
computer prints a 0.

Test Program #3

1® REM ‘AND’ LOGICAL TEST PROGRAM

20 PRINT "ENTER A NUMBER FROM 1 TO 10"3

30 INPUT A

a9 B=A > 4 AND A < 11

50 IF B=-1 THEN 80

6@ PRINT AS"IS NOT GREATER THAN 4 AND LESS THAN 11"

79 GOTO 2@
8@ PRINT AS"IS GREATER THAN 4 AND LESS THAN 11"
99 END

Sample Run (typical)

ENTER A NUMBER FROM 1 TO 107 2

2 IS NOT GREATER THAN 4 AND LESS THAN 11
ENTER A NUMBER FROM 1 TO 107 B

8 IS5 GREATER THAN 4 AND LESS THAN 11

The AND operator is used by a few computers to compute the binary logical
AND of two numbers using Boolean algebra.

Without presenting a complete course in Boolean algebra... it compares
two binary bits to determine whether both are a binary “one”. When both
ANDed bits are a binary one, the computer answers with a 1.

For example:

1 AND @
@ AND 1
1 AND 1

nounon

@
@
1

Therefore, when the computer ANDs one number with another, each
number’s bit value is logically ANDed with the other number’s bit value,
producing a third number.

For example:

DECIMAL BINARY
3 0011
(logical) AND
5 0101
=1 0001

In this example only the rightmost bit is a binary one in both numbers, so
the resultant number is a decimal 1 (binary 0001).

Test Program #4

1@ REM 'AND’ BINARY LOGIC TEST PROGRAM

2@ PRINT "ENTER A YVALUE FOR X"3

30 INPUT X

49 PRINT "ENTER A VALUE FOR Y"3

30 INPUT Y

B@ A=X AND Y

70 PRINT "THE LOGICAL ‘AND’ VALUE OF"iX3"AND";Y3"IS"j3A
80 GOTO Z@

98 END

Sample Run (using 6 and 10)

ENTER A VALUE FOR X7

ENTER A VALUE FOR ¥7 10

THE LOGICAL ‘AND’ VALUE OF B AND 10 IS 2
ENTER A VALUE FOR X7

Alternate Spelling
A few computers (e.g. Britain’s Acorn) allow A. for AND,

Variations In Usage

The AND (p,q) statement is used by the WANG 2200B computer to compute
the binary logical AND of two hexadecimal values or two character strings.
The first value, p, must be a string variable and the second is either a
string variable or a 2-digit hex constant. The resulting value replaces the
first of the two values.

hex number 5A and Q$ = hex number 3C, then
hex number 18.

For example, if P$
AND(P$,Q$%) sets P$

o

HEX BINARY

P$ = 5A 01011010
AND

Q$ = 3C 00111100

then P$ = 18 00011000

When P$ is a character string and Q is a hex constant, each character in
the string is converted to its ASCII value and logically ANDed with the hex
constant. The results are converted back to character form and stored in P$.
So string “EFG” ANDed with hex 43 results in string “ABC”.

AND —

23

E F G
ASCII 69 70 71
HEX 45 46 47
BINARY 0100 0101 01006 0110 0100 0111
AND AND AND
hex 43 0100 0011 0100 0011 0100 0011
= 0100 0001 0100 0010 0100 0011
ASCIT 65 66 67
so P$ = A B C

Test Program #5

1o REM ‘AND’ TEST PROGRAM

26 DIM A$3 (Note: this line sets the length of A$ to 3 bytes.)
30 A% = "CCC*"

40 AND (A% +F1)

S0 PRINT "AND PASSED THE TEST IF "3A%$35"=AAA"

99 END

Sample Run

AND PASSED THE TEST IF AAA=AAA
IF YOUR COMPUTER DOESN'T HAVE IT

If you don’t have the logical AND operator, its effect can be simulated with
two IF-THEN statements. Replace line 40 of TEST PROGRAM #1 with

49 IF A <+ 8 THEN 50
45 IF B = B THEN 70

The AND statement as used in the WANG 2200B computer can be replaced
with statements that combine string handling functions with the logical
AND operator. Example: Line 40 in the above test program can be replaced
with the following statements:

490 REM ‘AND’ REPLACEMENT
41 N = LEN(AS$)
42 FOR I = 1 TO N

43 C$% = C% + CHR$(ASC(MID% (A%, I, 1)) AND 241)
44 NEXT I
45 A% = C%

Also See

OR» XORs NOT s %9 4+ =4 <y y sxy =y =

24

Command

APPEND is a command to combine a program
from external storage (e.g. disk or tape) with one
already in memory. The line numbers of the
program being brought in from “outside” must be
larger than the last line number of the program
already in memory.

For example, APPEND PROG2 will cause program
PROG2 to be brought in from the outside and
APPENDed to the end of the resident program.

Test Program

(For our example, we’ll assume cassette tape
storage.) To test APPEND, store this short program on tape as PROG2. (See
CSAVE for information.)

1009 PRINT "THESE LINES ARE"
1010 PRINT "FROM PROGZ"
1020 END

Then type NEW or SCRATCH to erase the program and enter PROG1:

1@ REM ‘APPEND’ TEST PROGRAM PROGI
2¢ PRINT "THESE LINES ARE"

3@ PRINT “"FROM PROGL™

40 PRINT " BUT 44"

Then type APPEND PROGZ,

When PROG 2 has been loaded, RUN (use your computer’s naming method
for SAVE PROG2 and APPEND PROG?2, i.e. quotes, single letter names,
ete.).

Sample Run

THESE LINES ARE
FROM PROGI1

BUT 4
THESBE LINES ARE
FROM PROGZ

APPEND is often used to load large DATA files into a program. It may also
be used to “append” a frequently used subroutine to a resident program
(which is why all the major subroutines published in The BASIC Handbook
have non-overlapping line numbers beginning above 30000).

IF YOUR COMPUTER DOESN’T HAVE IT

If your computer doesn’t respond favorably to APPEND, try TAPPEND,
MERGE or WEAVE. If none of them work, some computers can be made to
append a program if the “pointers” to the present program can be located.

25

— APPEND

This gets a little sticky, so consult your computer’s Manual. The following is
the procedure used with a TRS-80.

Locate the pointer that gives the ending address of the program
currently in memory. For the TRS-80 Model I, this number is stored at
16333 and 16334. Use PEEK to get the values stored there.

Subtract 2 from the first number (the one stored in 16333). If the
difference is negative, add 256 to it and subtract 1 from the SECOND
number.

In either case, POKE these 2 numbers into 16548 and 16549 without
additional changes.

Now, CLOAD the program in from tape. Restore the values at 16548-49
with POKEs of 233 into 16548 and 66 into 16549.

The second program is now APPENDed to the first.
Also See

TAPPEND: PEEK . POKE:s CSAVE, CLOAD. DATA

26

Function

The ASC function converts a character or string
variable to its corresponding ASCII decimal
number.

For example, PRINT ASC("A") prints 65, the
ASCII code for the letter A. PRINT ASC(A%)
prints the ASCII code of the first character in
string variable A$.

Test Program #1 Asci

1@ REM 'ASC(CHARACTER) " TEST PROGRAM

20 PRINT "THE ASCII CODE FOR LETTER A IS"3
3@ PRINT ABC("A™)

49 IF ASC("A")=B5 THEN 70

S0 PRINT "ASC FAILED THE TEST"

60 GOTO 98

78 PRINT "ASC PASSED THE TEST"

89 END

Sample Run

THE ASCII CODE FOR LETTER A IS BS
ASC PASSED THE TEST

The next program tests the ASC function with a variable.

Test Program #2

19 REM 'ASC(STRING VARIABLE)’' TEST PROGRANM

2@ PRINT "TYPE ANY LETTER, NUMBER:; OR CHARACTER"S
30 INPUT A4

4¢ PRINT "THE ASCII CODE FOR "3A%3" IS"JASC(AS%)
99 END

Sample Run (using H)
TYPE ANY LETTER: NUMBER: OR CHARACTER? H
THE ASCII CODE FOR H IS5 72

Some computers which incorporate the ASC function can accept character
strings longer than one character, but only the first character is evaluated
and converted to ASCII code. To test for the ASC string limit, use the
second Test Program and INPUT progressively longer strings until an error
message appears.

Alternate Spelling
Some computers (e.g. DEC-10) use ASCII instead of ASC.

27

Variations In Usage

Some interpreters (e.g. MAXBASIC) use the format ASC(A$,X) which prints
the ASCII code of the first X characters contained in A$.

Also See
CHR$» CODE s Appendix A for the ASCII code.

28

Function

The ASN(n) function is used by the TEKTRONIX
4050 series BASIC to compute the ARCSIN in
Radians (not in degrees) of the ratio n. A radian
is approximately 57 degrees.

B ASNG

ASND
A []

ARCSIN
Arcsin (ASN) is defined as the angle (A) created for a certain ratio of the
length of the side opposite it (Y) to the length of the hypotenuse (H) of the
right triangle.

A=ASN(Y/H)

The opposite of ASN is SINE (SIN). The SINE of an angle is the ratio of the
length of the side opposite the angle to the length of the hypotenuse of the
right triangle.

SIN(A)=Y/H

Test Program

10 REM ‘ASN‘ TEST PROGRAM

2@ PRINT "ENTER A RATIO OR SINE VALUE";

3@ INPUT N

42 W=ASN(N)

20 PRINT “THE ANGLE WITH THE Y/H RATIO OF"3iN3"IS5"iW3
"RADIANS"

30999 END

Sample Run (using .5)

ENTER A RATIO OR SINE YALUE? .5
THE ANGLE WITH THE Y¥/H RATIO OF ,5 I8 .52359 RADIANS

Some computers calculate the angle in degrees or in grads (100 grads = 90
degrees). These computers use the functions ASND for degrees and ASNG
for grads. Using .5 in the sample run should produce 30 degrees and
33.3333 grads when each is substituted in Line 40.

To convert values from radians to degrees, multiply the angle (in radians)
times 57.29578.

Example: D=ASN(A)*57,29578

29

To convert values from degrees to radians, multiply the angle (in degrees)
times .0174533.

Example: R=n (angle expressed in degrees) * 0174533,

Alternate Spelling

Some computers (e.g. Sinclair ZX80) use ARCSIN in place of ASN. Try
ARCSIN in line 40 of the Test Program to see if your computer allows its
use.

IF YOUR COMPUTER DOESN'T HAVE IT

If your interpreter has the ATN (ARCTANGENT) and SQR (SQUARE
ROOT) capability, but does not have ASN, substitute the formula
ZHATN(X/ (1+8OR(1-¥%X))) for ASN.

If your interpreter does not have ASN or ATN and SQR capability, the
following subroutine can be substituted:

30000 GOTO 30399

30520 REM # ARCSIN SUBROUTINE * INPUT S, OUTPUT W
30522 REM ALBO UBES VARIABLES X AND Z INTERNALLY
30524 K=

30526 IF ABB(8)«<=,5 THEN 32556

30328 K=.,5%(1-ABS(5))

30530 IF M:=@¢ THEN 30536

30532 PRINT 835 "I5 OUT OF RANGE"

3534 STOP

30536 W=X/Z

30538 IF W=0 THEN 30554

30540 £Z=0

30542 Y=(X/W-W)/2

30344 IF Y=@¢ THEN 30554

30546 IF ¥=2Z THEN 30354

30548 W=W+Y

3055Q Z=Y

39552 GOTO 30542

30554 K=

30536 YW =H#xX

30558 W=(4,241734E-2%Y+2,3099402E-2) *¥+4,35320B3E-2
3056@ W=(((W#Y+,074947)%Y+1/B)#YV+1) %X

30562 IF ABB(S)<=.,5 THEN 30566

30564 W=5GN(S)*(1,570796-2%W)

32566 RETURN

To use this subroutine with the TEST PROGRAM for finding the ARCSIN
(in RADIANS) of a ratio (SINE), make the following TEST PROGRAM
changes:

35 §=N
4o GOSUB 30520

30

ASN=——

To make the ARCSIN subroutine express the angle in DEGREES, add the
following lines:

30566 W=W*57,29578
30568 RETURN

Variations In Usage

None known.

Also See
ACS, ATN, COS, SIN, SOR, TAN

31

Function

The AT function is used with PRINT statements
(TRS-80 Level I BASIC) to specify the PRINT
statement’s starting location. The AT function
value may be a number, numeric variable, or
mathematical operation. A comma or semi-colon
must be inserted between the AT value and the
string.

For example:

19 PRINT AT 42¢., "HELLO"
20 PRINT AT (420)3% "HELLO"

Both lines print the word “HELLO” AT location
420. The parentheses are optional.

Test Program #1

190 REM ‘AT’ TEST PROGRAM

2¢ PRINT AT 128,"2., IF THIS LINE IS PRINTED AFTER LINE 1."
3¢ PRINT AT @, "1, THE ‘AT’ FUNCTION PASSED THE TEST"

49 GOTO 4@

989 END

Sample Run

i+ THE ‘AT’ FUNCTION 'PASSED THE TEST
2+ IF THIS LINE IS8 PRINTED AFTER LINE 1.

The TRS-80 has 1024 PRINT AT locations (0 to 1023). If an AT value
smaller than zero or larger than 1023 is used, the computer automatically
calculates the difference between the out-of-range number and 1023 for the
AT value.

For example, PRINT AT 1034 "HELLO" prints the word HELLO at location
10 (don’t forget to count zero as one location).
Test Program #2

19 REM ‘AT OVERFLOW' TEST PROGRAM

20 PRINT AT 182, "'AT’ (DVERFLOW) PASSED THE TEST"
30 PRINT AT 1248, "IF ONLY ONE LINE IS PRINTED."
99 END

Sample Run

‘AT’ (OVERFLOW) PASSED THE TEST IF ONLY ONE LINE IS
PRINTED.

The following program tests the interpreter’s ability to use numbers,
numeric variables, or mathematic operations in the AT function.

32

Test Program #3

18 REM ‘AT VALUE’ TEST PROGRAM

20 FOR X=1 TO 15

30 PRINT X

4@ NEXT X

S0 PRINT AT X*28+4, "“’'AT’ PASSED THE TEST IF THIS IS5 LINE
#8,"5

60 GOTOD Go

99 END

Sample Run

‘AT’ PASSED THE TEST IF THIS I8 LINE %8,

[isaues BENIR ey IR S B N 0% IS S0 I Sl

—
=

Alternate Spelling

The @ operator is used by some computers (e.g. the TRS-80 Level 1I, Level
IIT and Disk BASICs) for the AT function. See @ for specific constraints.
Computers using Tiny BASIC also allow A. to be used for AT.

Also See
@), PRINT,» TAB,» HLIN, YLIN, DRAW, HDRAW

33

—0nZr

Function

The ATN(n) function computes ARCTANGENT in
Radians (not in degrees) of the ratio n. A radian
is approximately 57 degrees.

ATAN
ATND
ATNG A

ARCTAN ! X l

ARCTANGENT (ATN) is defined as the angle (A) required for a certain
ratio of the length of the side opposite it (Y) to the length of the side
adjacent to it (X). ATN means literally “The Arc (angle) of the TaNgent
(ratio).”

A=ATN(Y /X

The opposite of ATN is Tangent (TAN). The Tangent of an angle is the ratio of
the length of the side opposite it to the length of the side adjacent to it.

TANCA) =Y /X

Test Program

10 REM ‘ATN’ TEST PROGRAM

20 PRINT "ENTER A RATIO OR TANGENT VALUE":

3@ INPUT N

4@ A=ATN(N)

5@ PRINT “"THE ANGLE WITH THE Y/X RATIO OF"3iN3"IS"3iAS
"RADIANG™"

30899 END

Sample Run (for input of 2)

ENTER A RATIO OR TANGENT VALUE? 2

THE ANGLE WITH THE Y/X RATIO OF I8 1.12715 RADIANS

Some computers calculate the angle in degrees or in grads (100 grads = 90
degrees). These computers use the function ATND for degrees and ATNG
for grads. Substitute each of these functions in line 40 of TEST PROGRAM
and run it. Using 2 in the sample run should produce 63.43495 degrees and
70.4833 grads.

To convert values from radians to degrees, multiply the angle (in radians)
times 57.29578,

Example: D=ATN(A)*57,29578

34

ATN=—=

To convert values from degrees to radians, multiply the angle (in degrees)
times .0174533.

Example: R=A (angle expressed in degrees) .9174533

Alternate Spelling

A few computers use ATAN for the ARCTANGENT FUNCTION. To see if
ATAN can be used with your computer, substitute ATAN for ATN in line
40 and run it.

Some computers (e.g. Sinclair ZX80) use ARCTAN in place of ATN. Try
ARCTAN in line 40 of the Test Program to see if your computer accepts this
spelling.

IF YOUR COMPUTER DOESN’T HAVE IT

If your interpreter does not have the capability of finding the ATN
(Arctangent), the following subroutine can be substituted.

The subroutine program you’ll find under SGN must be added to this one to
make it work (saves space not to duplicate it here).

30000 GOTO 309899

30570 REM % ARCTANGENT SUBROUTINE # INPUT X, OQUTPUT A
(RADIANS)

30572 REM ALSO USES B, C»s» D AND T INTERNALLY

30374 GOSUB 3e0@8@

30376 D=¥X

30578 K=ABS(X)

3058@

30582

30584

30586

30588

30590

30382

30584

30596

30598

30600

30602

30604

=

«=1 THEN 30388

—_

e N
>X 2K

2+BBB23E-3%¥A-1.B1657E-2) #A+4,29096E-2) *A
(B-7,5289E-2) %A+, 10B563)%A~, 142089) %A
(B+,199936)*A-,333332)%#A+1) %}

<1 THEN 30600

70796-A

DD-=D3EBDX0OI—=0
—~ o~~~ 32

Mmua T 8 w7

— O -
* e [~ o~ o~ kN

DU

~z

A
-
=

N

To use this subroutine with the TEST PROGRAM for finding the
Arctangent (in Radians) of a ratio (Tangent), make the following TEST
PROGRAM changes:

35 X=
4@ GOSUB 3@57¢

35

To make the Arctangent subroutine express the angle in Degrees, add the
following line to it:

30603 A=A*37,28378

Variations In Usage

Some (rare) interpreters convert everything to degrees automatically.

Also See
TANs ASN, SIN, COS» ACS

A TRICK

This is very important! Most computers have only an ATN as their “inverse
trig function”. ARCCOS and ARCSIN are rarely found. This leaves ATN as
the only “window” through which all angles can be calculated and returned
to the “outside”.

Now obviously, if ATN is to be used, the TAN must be known, or able to be
determined, and that may be easier said than done. The following formulas

will enable you to convert any ratio to TAN, and from there to the angle
itself, via ATN.

1
TAN = 1/COT TAN= |1 — COS? TAN = |1 ~ SIN?
OS2 SINZ

1

EEEN oy TAN=\[SEC*-1

These formulas make use of relationships between the trig functions to give
us ways of calculating each of the inverse functions. For example, to
calculate A = ARCSEC(X) use

A = ATN(SOR(X%X-1))
The formulas for each of the inverse functions coded in BASIC are:

ARCCOS (X
ARCCOT (X
ARCCSC ()
ARCSEC (X
ARCSIN (X

1.3708 - Z¥ATN(X/ (1+8QR(1-X%*X)))
ATNCL/X

ATNCL/5QR(X#*X-1)

ATN(SOR (X*X-1))

ZEATN X/ (1+8QR(1-X#X)))

(LI T I N | O 11

36

Command

The AUTO command provides automatic insertion
of program line numbers. The starting line
number and the incremental value between lines
can be specified in the AUTO command. For
example, AUTO 1900,5 sets the first line number
at 100 and increments each successive line
number by 5. This feature is very convenient when
writing new programs.

If the starting line number and increment value
are not specified in the AUTO command, the
computer automatically sets the first line number
at 10 and increments the line numbers by 10.

If the AUTO command generates a line number that is already in use, an
asterisk may appear following the number. This cautions the programmer
that information typed into the computer at that Line number will erase
existing statements. The AUTO feature may be turned off to prevent this
from happening. To turn off the AUTO feature, some computers require
pressing the BREAK key, while others require typing a control C.

Test Procedure

To test the computer’'s AUTO feature, type the AUTO command and press
the ENTER key (RETURN on some keyboards). If the line number 10 is
printed followed by a prompt, then the computer successfully passed the
AUTO command test.

Press the ENTER key again. The computer should print another line
number increased in value by 10.

Type the command AUTO 10,5 and enter this program.

1@ REM ‘AUTO’ TEST PROGRAM

13 PRINT "THE NEXT LINE NUMBER SHOULD INCREASED BY 5°
2@ PRINT "PRESS THE BREAK KEY TO STOP THE AUTO FEATURE"
89 END

After the AUTO feature is stopped with the BREAK key, line numbers out
of sequence can be entered (e.g. line 99).

Again enter AUTO 12,5 and line 10 should be printed, followed by an
asterisk, indicating information is already stored in a line 10; if ENTER is
pressed, it will be erased. New information can be typed in instead, or the
original information can be saved by pressing the BREAK key.

List the program to check the contents of each line.

37

= AUTO

Variations In Usage

None known.

Also See
BREAK » LIST» MAN

38

Statement

The BASE statement is used in some computers
(e.g. those with Control Data BASIC Version 3) to
define the BASE (lowest) variable array element
value as 0 or 1.

For example:

10 BASE 0
20 DIM A(S)

The BASE 0 statement defines this array as a six
element array [A(0) to A(5)].

Many computers automatically establish array

elements 0 to 10 (11 elements) without prior

DIMensioning. The BASE statement allows this

range to be changed from the normal 11 elements (0 to 10) to 10 elements (1
to 10), and back again.

Only one BASE statement may ordinarily be used in a program and it must
be executed before DIM statements and before array variables are
manipulated.

Test Program #1

16 REM ‘BASE’ TEST PROGRAM
20 BAGSE 0

30 DIM A(S)

49 FOR X=0 TO 5

30 ACK) =X

B@ NEXT X

7@ FOR X=0 TO S

B PRINT A(X)i

90 NEXT X

10@ PRINT "THE BASE STATEMENT PASSED THE TEST"
9899 END

Sample Run
@ 1 2 3 45 THE BASE STATEMENT PASSED THE TEST

A few computers (e.g. those using MAXBASIC) allow more than one BASE
statement in a program and allow the BASE value to be defined as any
integer value.

For example:

1@ BASE 5
20 DIM ACLD)

The BASE 5 statement defines this array as a six element array [A(5) to
A(10)].

—nNZr

39

—BASE

Test Program #2

1® REM 'BASE’ TEST PROGRAM
2@ BASE 3

30 DIM A(3)

49 FOR X=3 T0 3

S0 ACX) =X
B0 NEXT X
70 BASBE ¢
80 FOR X=0 TO 2
90 A(X) =X
100 NEXT X

11@ FOR X=0 TO 5

120 PRINT ACX) 3

130 NEXT X

149 PRINT "THE BASE STATEMENT PASSED THE TEST"
998 END

Sample Run

@ 1 2 3 4 5 THE BASE STATEMENT PASSED THE TEST
Variations In Usage
ANSI BASIC includes the OPTION statement.

Also See
DIM, DPTION

40

Statement
BREAK is used in a few computers (e.g. the . =
Harris BASIC-V) to direct one or more program
lines to stop execution and place the computer in
the monitor or immediate mode, similar to a STOP
statement.

The BREAK statement can be used to cause any
line number (or line numbers) to stop program
execution by placing each line number (separated
by a comma) after the BREAK statement.

For example, 1@ BREAK 50,790,100 stops the computer before executing
lines 50, 70, and 100. Program execution is continued after each BREAK by
typing COntinue.

BREAK also accepts a range of line numbers by placing a dash between the
first and last line number in the range.

For example, 1® BREAK S0-12@ stops program execution at the end of each
line from 50 to 100.

Execution can be stopped before each program line by using the BREAK
ALL statement. This allows the user to “step through” the program one line
at a time, typing the CO command after each break.

Unlike the END statement which (in some computers) causes all variables
to be reset to zero, values stored in variables are retained when the BREAK
statement is executed.

Test Program

1@ REM 'BREAK’ TEST PROGRAM

20 BREAK 30,50:70-90

3@ PRINT "THE COMPUTER SHOULD STOP EXECUTION AT LINE 30"
49 REM TYPE THE COMMAND ‘CO’ TO CONTINUE

5@ PRINT "LINE 50"

6@ REM THIS LINE NOT INCLUDED IN THE BREAK STATEMENT

7¢ PRINT "LINE 70"

B0 PRINT "LINE 80"

9@ PRINT "AND LINE 80"

99 END

Sample Run

THE COMPUTER SHOULD STOP EXECUTION AT LINE 30
LINE 5@

LINE 70

LINE 8@

AND LINE 90

Variations In Usage

Most keyboards have a BREAK key to allow manual interruption of the
program.

Also See

STOP: CONT s END

41

Command
Statement

BYE is a command used to exit from BASIC. Most
large, time-shared computers accept BYE as the
sign-off command and terminate the user’s job.

Several small computers (e.g. SOL and ATARD
enter the monitor level or the Disk Operating
System when the user types BYE. BYE can be
included as a program statement in Processor
Technology’s Extended BASIC.

GOODBYE
Alternate Spelling

Time-share systems often accept GOODBYE
instead of (or in addition to) BYE when a user

signs off the computer. Check the user’s manual for the sign-off procedure at
your installation.

Variations In Usage

None known.

Also See
8YSTEM, the Disk BASIC Summary

42

Statement

The CALIL(n) statement transfers program control
to a machine-language routine that has an entry
point at memory location n. The routine may be
part of the computer’s system software or could be
written by the user. User-written
machine-language programs can be entered via
POKES from the keyboard, by a BASIC program,
or using a “monitor/editor” program at the system
level.

Example: CALL 18624 will cause a

machine-language program stored at decimal

address 18624 to begin execution. When a

RETURN instruction is encountered in the machine language program, we
are back in BASIC and the statement following the CALL statement is
executed. To test the CALL statement, you must load a machine-language
routine into the computer or locate the entry point of a resident subroutine.
Check your computer’s Manual for information on how to do this.

Variations In Usage

Some computers use the CALL statement to branch to a specific BASIC
subroutine. In these computers, CALL can be used just like a GOSUB
except a subroutine name is used instead of a line number. When CALL is
used in this way, the subroutine begins with a SUB statement that contains
the name and ends with a SUBEND.

For example, CALL TEST causes control to be transferred to subroutine
TEST. Control is transferred back to the statement following the CALL
statement when a SUBEND is reached.

Test Program

18 REM ‘CALL’ TEST PROGRAM

20 CALL TEST

30 PRINT "'CALL’ PASSED THE "iA%
4@ GOTO 99

o9 SUB TEST

6@ A%="TEST"

70 SUBEND

99 END

Sample Run

‘CALL’ PABSED THE TEST

Also See

USSR+ POKEs SYSTEM, GOSUB» RETURN

43

Function

CDBL is used to change numbers or numeric
variables from regular “single-precision” to
“double-precision”. Variables used in the CDBL
function return to their original single-precision
status if they are used again without the CDBL.

Double-precision variables are capable of storing
numbers containing 17 digits (only 16 digits are
printed). Single-precision variables are accurate to
6 digits. Great care must be used to ensure that
the numbers which are used to create a
double-precision answer are also double precision.
If not, the answer will be a big long lie.

Test Program
19 REM ‘CDBL‘ TEST PROGRAM

20 X=2

30 ¥=3
49 PRINT "CDBL CHANGES X/Y FROM"SX/Y3i"TO"3CDBL(X)/CDBL(Y)
3@ PRINT "AND BACK TO THE VYALUE OF"3X/Y3"WHEN REMOVED™"
99 END
Sample Run

CDBL CHANGES X/Y¥ FROM ,BBGBG7 TO .GGGEGGEGEBEGEEG67
AND BACK TO THE VALUE OF .BGGBGB7 WHEN REMOVED

Variations In Usage

None known.

Also See
DEFDBL+ DEFSNG, DEFINT, CSNG» #, |y %, CINT

44

CH is a function in the Acorn ATOM computer
that identifies the ASCII number of the first
character of a given string. For example,
PRINT CH"ACORN" will cause 65 (the ASCII value
of A) to be displayed on the screen. Only the first
character of a string is identified by CH.

See ASC for more information.

Test Program

19 REM ’‘CH’ TEST PROGRAM

20 PRINT "THE ASCII CODE FOR LETTER A I8"3
30 PRINT CH "A"

40 IF CH"A"=B5 THEN 7@

50 PRINT "CH FAILED THE TEST"

6@ GOTO 99

7@ PRINT "CH PASSED THE TEST"

99 END

Sample Run

THE ASCII CODE FOR A IS GBS
CH PASSED THE TEST

Variations In Usage

None known.

Also See
ASCs CODE.+ CHR%: Appendix A for the ASCII code.

Function

45

46

Statement

CHAIN is used to load a new program into the
computer’s memory from an external device (such
as disk or tape) and execute that program without
additional RUN commands. A program may
CHAIN to any other program, including back to
the starting one which may serve as a “menu”.

The main advantage of CHAINing is that it
permits consecutive execution of related programs
automatically without needing to keep more than
one of them actually in the computer at a given
time. This is especially useful where there is a
common file of DATA stored externally which can
be accessed and manipulated by programs in the CHAIN. CHAIN finds its
best application in systems large enough to have disk storage, with fast
access times.

If the values of variables are to be carried from one program to another, a
separate file must be created for them. Before such a program is allowed to
CHAIN to another, it must save the values of its variables in this file so the
NEW program can read them back in prior to its execution.

Some BASICs are able to pass the values of the variables used by the first
program directly to the second. Microsoft BASIC 5.0, for instance, accepts
the statement CHAIN "PROGZ", 152, ALL which “chains” to a program on
disk called PROG2. PROG2 begins execution at line 150 after receiving
values of all the variables that had previously been defined by the calling
program.

The new program’s name must be included after the CHAIN statement.
Some computers specify the new program’s starting line number by a
number following the program’s name. If the starting line is omitted, the
computer automatically starts at the new program’s beginning.

For example, 10 CHAIN TEST,30 tells the computer to erase the program
presently in memory and load a program called “TEST” from an external
device, then start execution at its line 30. The external storage device can
be specified in some computers (e.g. the DEC 10 BASIC) by placing the
device name after CHAIN, followed by a colon.

For example, 10 CHAIN PTR:TEST .70 This tells the computer to load a
program named “TEST” from the Paper Tape Reader and start execution at
its line 70.

l
i

Test Programs
Save this program on disk or tape under the name “TEST”.

19 REM *TEST* PROGRAM

20 PRINT "THE ‘TEST’ PROGRAM IS5 NOW RUNNING"

30 FORrR X=1 70 9

a4 PRINT X3

50 NEXT X

B@® PRINT "THIS PROGRAM SHOULD NOW CHAIN BACK
TO THE MAIN PROGRAM"

7@ CHAIN MAIN, 40

99 END

Now, enter the main program into the computer, and save it on disk or tape
under the name “MAIN”.

10 REM *MAIN* PROGRAM

29 PRINT "THIS PROGRAM SHOULD LOAD AND RUN THE ‘TEST'
PROGRAM"

30 CHAIN TEST

49 PRINT "CHAIN PASSED THE TEST IF THE 'TEST’ PROGRAM"

S@ PRINT "PRINTED A SERIES OF NUMBERS"

99 END

Prepare your disk or tape(s) to be read on command, then RUN.

Sample Run

THIS PROGRAM SHOULD LOAD AND RUN THE ‘TEST’ PROGRAM
THE ‘TEST’ PROGRAM IS NOW RUNNING

123456788
THIS PROGRAM SHOULD NOW CHAIN BACK TO THE MAIN PROGRAM
CHAIN PASSED THE TEST IF THE ‘TEST’ PROGRAM
PRINTED A SERIES OF NUMBERS

IF YOUR COMPUTER DOESN’T HAVE IT

CHAINING can be accomplished successfully, if more slowly, on
micro-computers using floppy disks, or even cassettes. Most small system
BASICs start each new program CHAINed at its first line number, not
having the option to start elsewhere.

The following 3 programs demonstrate how CHAINing can be accomplished
on a TRS-80 Disk system. The word RUN is used instead of CHAIN. Note
the new program’s name is enclosed in quotes.

10 REM #*MAIN* PROGRAM

20 PRINT

3¢ PRINT "THIS IS THE MAIN CONTROL PROGRAM,"

49 INPUT"SHALL WE ‘CHAIN’ TO PROGRAM #1 OR =2
(TYPE 1 OR 2)"31

CHAIN=——

|

47

—=CHAIN

SO PRINT "STAND BY FOR LOADING - - -
6@ ON I GOTO 70, B0

7¢ RUN "TESBT1"

80 RUN "TESTZ"

99 END

1@ REM *TEST1* PROGRAM

20 PRINT "TEST PROGRAM NUMBER 1 IS5 NOW RUNNING"

30 FOR X=1 TO 9

49 PRINT "ONE",

SO NEXT X

BO® PRINT

7@ PRINT "WE WILL NOW CHAIN BACK TO THE MAIN PROGRAM---"
80 RUN "MAIN®

99 END

10 REM *TESTZ* PROGRAM

20 PRINT "TEST PROGRAM NUMBER 2 IS NOW RUNNING"

3¢ FOR X=1 TO 9

49 PRINT "TWO",

3@ NEXT X

B@® PRINT

70 PRINT "WE WILL NOW CHAIN BACK TO THE MAIN PROGRAM-~-"
B¢ RUN "MAIN"

99 END

Type in each program and save it on Disk under the name given in each
Line 10. Then RUN the MAIN program. Watch the screen and disk drive(s)
CHAIN the programs together and execute them.

Variations In Usage

None other known.

Also See

CLOAD+ CSAVEs COMMONs RUN

u
l

Statement

CHANGE is a statement used by the DEC-10
computer to convert strings of characters to their
ASCII numbers, and numbers back to character
strings.

CHANGE X$ TO ¥ converts each character in
string X$ to its ASCII number and stores them all
in an array named X. The LENgth of the string,
LEN(X$) is stored in array element X(0).

CHANGE X TO X% converts values stored in array X into a character string
X$. The number of values to be converted is found in X(0). Each value of X
must be between 0 and 255.

Test Program #1

19 REM ‘CHANGE X$ TO X’ TEST

20 DIM X(G)

30 X$ = "SYSTEM"

4@ CHANGE X% TO X

5@ PRINT "CHANGE HAS CONVERTED ‘SYSTEM’ TO"
B® FOR N=1 TO X(@)

70 PRINT X(N)3

BO® NEXT N

989 END

Sample Run

CHANGE HAS CONVERTED ‘SYSTEM’ TO
83 889 83 B84 68 77

Test Program #2

10 REM ‘CHANGE X TO X%’ TEST

20 DIM X(B)

30 READ X(2)

40 FOR I=1 TO X(@)

50 READ X(I)

60 NEXT I

78 CHANGE X TO X

80 PRINT "CHANGE "3iX$3" THE TEST"
9@ DATA G, B0, BS5+ 83 B3, BY,» GB
898 END

Sample Run

CHANGE PASSED THE TEST

49

—=CHANGE

IF YOUR COMPUTER DOESN'T HAVE IT

CHANGE can be simulated by using LEN, ASC, MID$ and CHRS. In TEST
PROGRAM #1 replace line 40 with:

49 X(@) = LEN(X$)
41 FOR I=1 TO X(@)

42 X(I) = ASC(MIDS(X&,I,1))
43 NEXT I

In TEST PROGRAM #2 replace line 70 with:
70 X$ = "o

71 FOR I=1 TO X(@)
72 Hé=X$ + CHR$(X(I))
73 NEXT I

Also See

LENs ASC: MID$: CHR$%s DIM and refer to the ASCII table in
Appendix A.

50

Function

The CHR$ function is used to retrieve the single
character represented by the decimal ASCII
number code enclosed in parentheses. For
example: PRINT CHR$(75) prints the letter K.

The ASCII code can be represented by a number or
variable within the ASCII code range (typically
0—-127). Many computers have an extended ASCII
code (up to 255) which includes special capabilities
and graphics characters. Most computers set aside
certain ASCII numbers for special “non-standard”

CHR
CHAR

. . . CHARS
purposes (typically, control a line printer, erase CHRX{

the screen, “put out the cat,” etc.).

This program lets you test any ASCII code number and view the ASCII
character, if it is printable.

Test Program

1@ REM 'CHR%’ TEST PROGRAM

20 PRINT "ENTER THE LOMWEST AGCII CODE NUMBER":
30 INPUT L

49 PRINT "ENTER THE HIGHEST ASCII CODE NUMBER"3
30 INPUT H

6@ FOR X=L TO H

70 PRINT “"ASCII CODE"3§Xi"= "3

80 PRINT CHR$(X)

90 FOR ¥=1 TO 150

1090 NEXT Y

110 NEXT X

998 END

Sample Run (checking only 4 numbers)

ENTER THE LOWEST ASCII CODE NUMBERT G35
ENTER THE HIGHEST ASCII CODE NUMBER? G8

ASCII CODE B3 = A
ASCII CODE GG = B
ASCII CODE 67 = C
ASCII CODE G8 = D

Try this program using your computer’s full range of ASCII codes.

Alternate Spellings

Several different spellings are used for CHRS, e.g. CHR (SOL and SWTP
4K), CHAR$ (Micropolis BASIC), and CHAR (MAX-BASIC).

51

——CHRS

Variations In Usage

The Swedish ABC-80 uses CHRX{ to convert up to four ASCII numbers to
their corresponding characters. (XX is the Swedish currency symbol which
stands for “string”, replacing the $.)

CHAR(N1,N2), found in MAXBASIC requires two numbers. The first is the
ASCII code and the second tells how many characters to generate.
CHAR(73,1) is the equivalent of CHR$(73). CHAR(65,4)= AAAA. See
STRINGS for more details.

Also See
ASCs STRING%: ASCII code in Appendix A

52

Function

CINT is used to convert individual numbers or
numeric variables to their integer value. Variables
used in the CINT function return to their original
precision if they are used again without the CINT
function.

Numbers are always rounded down — that is, the
whole number remains the same regardless of the
value of numbers removed to the right of the
decimal point. When a negative number is
integered, the resultant number will be rounded
off to the next smaller whole number.

For example, PRINT CINT(-4.65) will print the number -5.

Most computers do not allow numbers assigned to the CINT function to be
smaller than —32768 or larger than +32767. The INT function is very
similar but not restricted by such a narrow number range.

Test Program

19 REM ‘CINT’ TEST PROGRAM

20 DEFDBL X

30 K=12345,6789

49 PRINT "CINT CHANGES THE VALUE OF X FROM"§X3"TO"3:

CINT(X
30 PRINT "AND BACK TO THE YALUE OF"3iX3i"WHEN REMOVED"
99 END
Sample Run

CINT CHANGES THE VALUE OF X FROM 12345.6789 TO 12345
AND BACK TO THE YALUE OF 12345.,6789 WHEN REMOVED

Variations In Usage

None known.

Also See

DEFINT, INT, DEFDBL+ DEFSNG: CDBL s CSNG, !y #; 7%

53

Command
Statement

CLEAR is used by a few computers to erase the
resident program. Type:

1@ REM CLEAR TEST PROGRAM

Then type CLEAR. .. then LIST. If no lines were
listed, CLEAR passed this test and there’s no need
to try the remaining usages.

CLEAR is most commonly used to set all numeric
variables to zero and erase all data that may be
held by string variables.

CLR

Test Program #1

i® REM ‘CLEAR’ TEST PROGRAM

20 A=300

30 A%="TEST STRING"

49 PRINT "BEFORE THE ‘CLEAR’ COMMAND A="3A
2@ PRINT "AND STRING VARIABLE A% = "iA%

60 CLEAR

7@ PRINT "AFTER THE ‘CLEAR‘ COMMAND A="3A
82 PRINT "AND STRING UVARIABLE A%$="3A%

99 END

Sample Run

BEFORE THE 'CLEAR’ COMMAND A=300
AND STRING VARIABLE A$=TEST STRING
AFTER THE ‘CLEAR’ COMMAND A=0

AND STRING VARIABLE A%=

CLEAR is used by some computers to specify the number of bytes to reserve
in memory for strings. This feature lets the programmer conserve memory
by specifying the actual amount of space needed for string storage.

For example, CLEAR 100 sets 100 bytes of memory aside for string storage.

It is common for interpreters with CLEAR capability to automatically
reserve 50 bytes in memory for strings. Others reserve up to 200 bytes for
this purpose. CLEAR ### allows this “default” reserve to be changed.

The amount of space remaining for string storage in memory can be checked
by interpreters with the FRE(A$) function when used in a PRINT
statement.

Test Program #2

1@ REM ‘CLEAR X’ TEST PROGRAM

20 CLEAR S5

3¢ PRINT "ENTER FROM 1 TO 35 CHARACTERS";
49 INPUT A%

54

20 PRINT "STRING "A$3" USED ALL BUT"SFRE(A%)3;"BYTES"
6@ PRINT "OF STRING SPACE."

7¢ GOTO 20

99 END

Sample Run (using T and TEST)

ENTER FROM 1 TO S CHARACTERST T
STRING T USED ALL BUT 4 BYTES

OF STRING SPACE.

ENTER FROM 1 TO 5 CHARACTERS? TEST
STRING TEST USED ALL BUT 1 BYTES
OF S8TRING SPACE.,

ENTER FROM 1 TOD 5 CHARACTERST

Some computers with CLEAR capability allow the CLEAR value to be
specified by a variable. To test this feature, make these changes to the
second Test Program;

Z0 A=5
25 CLEAR A

If the interpreter accepted this program change, the sample run should not
change.

Alternate Spellings
The Apple II and PET both use CLR as an alternate spelling of CLEAR.

Variations In Usage

Some computers use CLEAR as a special statement to clear terminal input
or output buffers. WANG computers use CLEAR as a command only. Used
alone, CLEAR erases all program lines and variables from memory. It
performs the same function as NEW or SCRATCH does in other computers.
CLEAR P removes program lines but leaves variables alone. CLEAR P nl,
n2 will remove program lines with line numbers between nl and n2. If n2 is
left out, it will erase all program lines from n1 on. CLEAR V removes only
the variables from memory while CLEAR N removes only non-common
variables.

In Microsoft BASIC 5.0 (BASIC-80), CLEAR does not reserve any string
space but does provide an option to reserve space at top of memory. For
example, CLEAR s 32009 sets all numeric variables to 0 and string variables
to null while reserving memory beyond 32000 for machine language
programs.

Also See

FRE(A%), COMMON: NEW: SCRATCH

CLEAR=——

55

Function

The CLG(n) function is used by the Honeywell
Series 60 BASIC to compute the value of the
common (base 10) logarithm of any number (n)
whose value is greater than 0.

Test Program

19 REM ‘CLG’ TEST PROGRAM

20 PRINT "ENTER A POSITIVE NUMBER";
CLOG 30 INPUT X

49 L=CLG(X

5¢ PRINT "THE COMMON LOG OF"3X35 “"IS"iL
3089989 END

Sample Run (using 100)

ENTER A POSITIVE NUMBER?T 120
THE COMMON LOG OF 100 IS 2

Alternate Spelling
CLOG is used by some computers instead of CLG.
IF YOUR COMPUTER DOESN'T HAVE IT

If your computer failed the TEST PROGRAM, try the TEST PROGRAMs in
LOG10, and LOG. If they also fail, substitute the subroutine found under
LOG. To make it compute the common logarithm (instead of the natural
logarithm), make the following changes:

32150 REM #* COMMON LOGARITHM SUBROUTINE * INPUT X
ODUTPUT L
30187 L=L*.,4342945

To use this subroutine with the TEST PROGRAM, change line 40 to:
4@ GOSUB 30150
CONVERSION FACTORS

To convert a common log to a natural log, multiply the common log value
times 2.302585.

For example, ¥=CLG(N)#2,302585

To convert a natural log to a common log, multiply the natural log value
times .4342945.

56

Variations In Usage

None known.

Also See

LOG1@,s LOG

57

Function

CLKS$ is used with PRINT statements in the DEC
BASIC-PLUS-2 and the Texas Instruments 990
BASIC to indicate the time of day in hours (0 to
24), minutes, and seconds (hh:mm:ss). The
computer automatically inserts a colon after the
hour and minute values and prints the time as a
string.

For example, PRINT CLK% will print a time
similar to 22:19:15, indicating the current time is
10:19 p.m. plus 15 seconds.

CLK

Test Program

10 REM ‘CLK%’ TEST PROGRAM

20 PRINT "THE CURRENT TIME IS "3

30 PRINT CLK%

4@ PRINT "/CLK$’ PASSED THE TEST IF A SIX DIGIT NUMBER
I8 PRINTED"

99 END

Sample Run (typical)

THE CURRENT TIME I8 10:28:45
‘CLK$ PASSED THE TEST IF A SIX DIGIT NUMBER IS PRINTED

Alternate Spelling

CLK(n) is used by the Sperry Univac System/9 BASIC to indicate time
(hhmmss). A numeric expression (enclosed in parentheses) following CLK is
required, although it has no effect on the CLK function. Change line 30 of
Test Program to 32 PRINT CLK(®) and run the program to see if your
computer accepts CLK.

Variations In Usage

None known.

Also See
TIME, TIME®

58

Command
Statement

CLOAD is a special command used by some
interpreters (e.g. those with Microsoft BASIC) to
load a program into the computer from a cassette
tape.

Test Program

Enter this program into the computer from the
keyboard, then store the program on cassette tape.
(See CSAVE for details.)

10 REM 'CLOAD’ TEST PROGRAM
2@ PRINT "THIS PROGRAM TESTS THE CLOAD FEATURE"
89 END

Once the program is recorded on cassette tape, erase the computer memory
with NEW, SCRATCH, or whatever is appropriate.

Rewind the tape, then set the recorder to the Play mode and type the
CLOAD command.

The cassette recorder’s motor is controlled by the computer which’ turns it
on and off before and after the “load” cycle. The cassette should “play back”
the program, LOADing it into the computer.

List the program to verify that the program held in the computer’s memory
is identical to that originally entered (see LIST). If all looks well, RUN the
program.

Sample Run

THIS PROGRAM TESTS THE CLOAD FEATURE

CLOAD “program name” is used by some CLOAD-equipped computers to
load only that program on the cassette that has a matching program name.
A program name used to identify a specific program may contain more than
one letter or number, but the computer may recognize only the first
character.

Record the TEST PROGRAM onto the cassette using CSAVE“A” (see
CSAVE), erase the computer memory, then load “A” back into the computer
using CLOAD®“A”. List the program to check for possible errors.

CLOAD? “program name” is used by some CLOAD-equipped computers to
compare a program stored in the computer’s memory with a program stored
on cassette under the program name indicated. The computer does a
bit-by-bit comparison of the two and prints an error message if any
difference is encountered. This allows you to compare the tape with the
memory contents to verify that you executed a successful CSAVE, or
CLOAD, before erasing either.

59

60

—CLOAD

Check the TEST PROGRAM on cassette tape (stored with the program
name “A”) against the computer using the CLOAD?"A” command. If an
error message is not printed, the two programs matched.

Add this line to the test program stored in the computer.
30 REM EXTRA LINE

Again check the “A” program on cassette tape using the command
CLOAD?“A”. An error message should be printed, indicating the computer
found a difference between the program stored in the computer and the
program stored on tape.

CLOAD* (array name) is used by a few CLOAD-using computers as a
command to load an array stored on cassette tape (under the same array
name). Example: CLOAD*A means “load array A”.

CLOAD*(array name) can also be used as a program statement so array
data can be loaded as a program is being executed.

Variations In Usage

None other known.

Also See

CsAVE, LIST, CHAIN, RECALL + APPEND

The CLRDOT statement is used by Sweden’s ABC
80 as a graphics feature to “turn off” a graphics
block on the display screen. The block to be
“turned off” is specified by the L,C coordinates
following the CLRDOT statement. L specifies the
line (0 to 71 in graphics mode) and C specifies the
column (2 to 79 in graphics mode).

For example, CLRDOT 9,15 causes the computer
to turn off the block located in the tenth row and
sixteenth column from the upper left corner. To
turn on the graphics block see SETDOT.

Test Program

12 REM ‘CLRDOT’ TEST PROGRAM
2¢ PRINT CHRXE (12) ‘CLEARS SCREEN

Statement

3@ PRINT “CLRDOT PASSED THE TEST IF A LINE APPEARS"

40 PRINT "AND THEN DISAPPEARS."
3@ FOR T=1 TO 2Z00@ : NEXT T

B0 PRINT CLRXx (12)

7@ FOR R=0 TO 23

8@ PRINT CUR(R@)3 CHRY (151)3
90 NEXT R

100 R=5

119 FOR C=2 TO 35

120 SETDOT R.C

130 NEXT C

140 FOR T=1 TO 2000 : NEXT T
130 FOR C=2 TO 35

16¢ CLRDOT R.C

17@¢ NEXT C

180 FOR T=1 TO 2000 : NEXT T
9989 END

Sample Run

CLRDOT PASSED THE TEST IF A LINE APPEARS
AND THEN DISAPPEARS.

(A horizontal line should appear briefly near the top of the screen.)

Variations In Usage

None known.

Also See

RESET» SETDOT,» SET, 1

61

Command
Statement

The CLS (clear screen) command is used to
perform the same function as the CLEAR key on
many keyboards. It erases the entire screen
instantly without disturbing the program. CLS can
also be used as a program statement to clear the
screen before starting a graphics display or a new

“page” of printed information.

Test Program

1@ REM ‘CLS’ TEST PROGRAM

29 FOR X=1 TO 15

3@ PRINT "THIS LINE SHOULD DISAPPEAR™

40 NEXT ¥

5@ CLS

B® PRINT "IF THIS IS ALL THAT’S ON THE SCREEN"
70 PRINT “THE CLS STATEMENT PASSED THE TEST"
99 END

Sample Run

IF THIS IS ALL THAT’S ON THE SCREEN
THE CLS STATEMENT PASSED THE TEST

IF YOUR COMPUTER DOESN'T HAVE IT

Many video screens can be cleared or “erased” by using an ASCII character.

Try this change to the test program:
5@ PRINT CHR%(24)

If CHR$(24) fails (due to nonconformity of some manufacturer’s use of

ASCII numbers), try this program to search for an ASCII screen-clear:

Test Program

19 REM ASCIIT CLEAR SCREEN SEARCH
20 FOR X=0 TO 128

30 PRINT "ASCII CODE"§X3

49 PRINT CHR% (X

50 FOR Y=1 TO 200

6@ NEXT Y

7@ NEXT X

99 END

62

CLS

Variations In Usage

The TRS-80 COLOR COMPUTER uses CLS(n) to clear the screen and set
the background color. The numbers 0 thru 8 below indicate which number
turns on which color. If CLS is used without a number, the color used is the
current background color.

0 = BLACK 3 = BLUE 6 = CYAN

1 = GREEN 4 = RED 7 = MAGENTA
2 = YELLOW 5 = BUFF 8 = ORANGE
Note that the CLS and CLEAR statements are completely different.
Also See

CHR%(X) sy ABCII table in Appendix A,

63

64

Function

The CODE function is used by the Sinclair ZX80
to convert a character to its “numeric code”.
Sinclair does not use the ASCII code used by
virtually all other computers.

For example, PRINT CODE("A") prints 38.
PRINT CODE (A%) prints the code of the first
character of the string stored in variable AS$.

Test Program

1% REM ‘CODE’ TEST PROGRAM

20 PRINT "THE NUMERIC CODE FOR THE LETTER A IS"3

30 PRINT CODE("A"™)

49 PRINT

5@ PRINT "TYPE ANY LETTER,» NUMBER OR CHARACTER"S

6@ INPUT A%

7@ PRINT "THE NUMERIC CODE FOR "iA$" IS"ICODE(AS$)
99 END

Sample Run
THE NUMERIC CODE FOR THE LETTER A IS 38

TYPE ANY LETTER:» NUMBER OR CHARACTER?T *
THE NUMERIC CODE FOR * IS Z@

Also See

ASC s CHR%

Command
Statement

COLOR is used in the APPLE II BASIC as a
special feature to specify a color to be displayed on
the screen by the graphics statements PLOT,
HLIN-AT and VLIN-AT. The same color is
displayed each time a graphics statement is
executed. To change colors, a new color must be
specified by the COLOR statement.

The computer displays 16 different colors, and
each is assigned a number (from 0 to 15). They

are:
0 BLACK 8 BROWN
1 MAGENTA 9 ORANGE
2 DARK BLUE 10 GREY

3 PURPLE 11 PINK

4 DARK GREEN 12 GREEN

5 GREY 13 YELLOW
6 MEDIUM BLUE 14 AQUA

7 LIGHT BLUE 15 WHITE

An equal sign (=) must be placed between COLOR and the COLOR value.
This value may be a number or a numeric variable.

For example, COLOR = 13 selects the color yellow for the next graphics
statement. COLOR can be used as both a command and a program
statement.

Test Program

19 REM
20 GR
3@ FOR X=0 TO 15
4@ COLOR = X

SO0 Y=X*2

6@ HLIN 0,39 AT ¥
70 NEXT ¥

g9 END

‘COLOR’ TEST PROGRAM

Sample Run

If your computer accepted the TEST PROGRAM, each of the 16 colors
should be displayed as a horizontal line across the screen.

Variations In Usage
See ATARI and TRS-80 Color Computer summaries.

Also See

GR» PLOT» HLIN-AT VLIN-AT

65

66

Statement

The COMMON statement is used in some
computers to transfer values from one program to
another. If each of two (or more) programs
contains similar COMMON statements, when the
second program is CHAINed to the first, the
current values stored in the variables named in
COMMON will be available to the second
program. (See CHAIN.)

Example: If the first program contains the statement

COM

1@ COMMON Ay By Cy I+ J

and the second program contains the statement
3@ COMMON Xy Y 29 Ty U

then the final value of A becomes the initial value of X, the final value of B
becomes the initial value of Y, etc.

Alternate Spelling

COM is used by some computers (e.g. WANG 2200) as a short form of
COMMON

Test Program
Save this program on disk or tape under the name “TEST”.

1@ REM # TEST # PROGRAM

2@ COMMON A

3¢ PRINT "THE ‘TESBT’ PROGRAM RECEIVED A"3iA
4@ A=A*Z

3@ CHAIN MAIN, 350

898 END

Now enter the following program into the computer and save it on the same
tape following TEST, or on disk under the name “MAIN”.

1@ REM % MAIN * PROGRAM

20 COMMON A

30 A = 3

49 CHAIN TEST

5@ PRINT "AND RETURNED A"3A
89 END

Prepare your disk or tape to be read on program command, then RUN.

Sample Run

THE ‘TEST’ PROGRAM RECEIVED A 3
AND RETURNED A 10

Variations In Usage

The COM statement (on the WANG) also provides the ability to specify the
length of string variables up to a maximum of 64 characters. (Its default
length is 16 characters.)

For example, COM A%$(100)1, B%8 establishes a single character string
array A$(n) with 100 elements and the string variable B$ with a length of 8

COMMON=——

characters.
Also See
CHAINs DIM

67

Command

Test Program
REM ‘CONT’ TEST PROGRAM

10
20
30
49
89

PRINT "ENTER
STOP

The CONTinue command restarts program
execution after it was “broken” due to a STOP
statement, or use of a keyboard BREAK key.
Unlike the RUN command, which causes
execution to start at the program’s beginning,
CONT resumes execution at the line following the
break and variables are not reset to zero.

CONT has no application as a program statement
since it is only used when the program has
STOPped.

THE ‘CONT’ COMMAND"

PRINT "THE CONT COMMAND PASSED THE TEST"

END

Sample Run

ENTER THE ‘CONT’ COMMAND
BREAK AT 30
CONT

THE CONT COMMAND PASSBED THE TEST

Alternate Spellings

Several other abbreviations of CONTinue are used, among them are CON,
CO and C. Try each with the Test Program to see which your computer

accepts.

Variations In Usage

None known.

Also See

STOP

END s RUN

68

Function

The COS(A) function computes the COSINE of the
angle A, when that value is expressed in Radians
(not in degrees). One radian = approximately 57
degrees.

COSD
COSG

Cosine (COS) is defined as the ratio of the length of the side adjacent to the
angle being investigated to the length of the hypotenuse, in a right triangle.

CO8(A)Y=X/H

The opposite of COS is ARCCOS. ARCCOS (abbreviated ACS) finds the
value of the angle when its COS, or ratio of sides (X/H) is known.

Test Program

19 REM 'COS’ TEST PROGRAM

20 PRINT "ENTER AN ANGLE (EXPRESSED IN RADIANG)";
30 INPUT R

49 Y¥=CO0S(R)

30 PRINT "THE COSINE OF A"iRI"RADIAN ANGLE IS";Y
30889 END

Sample Run (for input of 1)
ENTER AN ANGLE (EXPRESSED IN RADIANS)T 1
THE COSINE OF A 1 RADIAN ANGLE IS ,540307

To convert values from degrees to radians, multiply the angle in degrees
times .0174533.

For example: R=COS(A%,0174533)
To convert values from radians to degrees, multiply radians times 57.29578

Some computers accept the measure of the angle in either degrees or grads
(100 grads = 90 degrees). These computers use the function COSD with
degrees and COSG with grads. Substitute each of these functions in line 40
of TEST PROGRAM and run it. Using 1 in the sample run should produce
.999848 with COSD and .999877 with COSG.

—nZr

69

70

IF YOUR COMPUTER DOESN’T HAVE IT

If your interpreter does not have the COSine capability, the following
subroutine can be substituted.

The subroutine program you’ll find under SIN must be added to this one to
make it work (saves space not to duplicate it here).

30000 GOTO 308898

32330 REM * COSINE SUBROUTINE * INPUT X IN RADIANS:
QUTPRUT Y

30332 REM ALSO USES C» D+ W AND Z INTERNALLY

30334 K=xK*¥37,28578

30336 W=ABS(X)/X

30338 D=X

30340 K=X+90

30342 GOSUB 30366

30344 X=D/37.28578

30346 IF Z<x-1 THEN 30332

30348 IF W< 1 THEN 3@332

30330 Y=-Y

30332 RETURN

To use the subroutines with the TEST PROGRAM to find the COSine of an
angle (expressed in Radians), make the following TEST PROGRAM
changes:

35 X=R
49 GOSUB 30330

To find the COSine of an angle (expressed in Degrees), either delete line
30334, or change line 40 to:

49 GOSUB 30336

Variations In Usage

Some (rare) interpreters convert everything to degrees automatically.

Also See

SINs ASN, ATN,s TAN, ACS,s COSHs SINHs TANH

Function

COSH(N) is a function that calculates the
hyperbolic cosine of a number. Hyperbolic
functions express relationships based on a
hyperbola similar to the way trigonometric

P(x,y)

CSH

0O (1,0)

functions are identified on a circle. If, on the unit hyperbola (i.e. the graph
of X*X — Y*Y = 1), a line is drawn from the origin to a point ,P, on the
curve (see diagram), a region is formed with an area N/2. COSH(N) will
give the value of the X coordinate of the point of intersection. [SINH(N) will
give the value of Y.]

Unlike the trig functions, N does not name the measure of an angle and,
therefore, is not in degrees or radians. N can be any real number, positive
or negative but COSH(N) is always greater than or equal to 1.

Test Program

1@ REM ‘COSH’ TEST PROGRAM

20 PRINT "ENTER A VALUE";

30 INPUT N

40 C=COSH(N)

9@ PRINT “THE HYPERBOLIC COSINE OF"iN3"IS";C
30989 END

Sample Run (using the value 1)

ENTER A VALUE? 1
THE HYPERBOLIC COSINE OF 1 IS5 1.54308

|
|

71

—COSH

IF YOUR COMPUTER DOESN'T HAVE IT

If your computer doesn’t accept COSH, you can compute the value by
substituting the EXP function, as follows:

4@ C=,3 *#(EXP(N)+EXP(-N))

If your computer doesn’t have EXP function either, substitute the following
subroutine, instead. The subroutine program found under EXP must also be

included.

30000
30430
30432
30434
30436
30438
30449
30442
30444
30446

GOTO 30999
REM * COSH SUBROUTINE * INPUT N ODUTPUT C
REM ALS0O USES As By Es» L AND X INTERNALLY

GOSUB 30200
C=E

Voo
nE-

GOsUB 30200
C=.5%(C+E)
RETURN

To use this subroutine, make the following change in TEST PROGRAM:
4¢ GOSUB 30430

Alternate Spelling
Harris BASIC-V uses CSH for the COSH function.

Variations In Usage

None known.

Also See

SINHs TANH: EXP

72

Function

COUNT is a function in the ACORN ATOM
computer that “counts” the number of characters
printed since the last carriage return. COUNT is
similar to POS (see POS for more information).

Test Program

1@ REM ‘COUNT’ TEST PROGRAM

Z@ PRINT "THIS LINE HAS A CHARACTER COUNT OF"3
3@ K = COUNT

40 PRINT K+3

898 END

-

Sample Run

THIS LINE HAS A CHARACTER COUNT OF 37

Also See
POS

73

74

Command

7 CSAVE is used by some computers (e.g. those with
a Microsoft interpreter) to record programs from
computer memory onto cassette tape.

Test Program

1@ REM ‘CSAVE’ TEST PROGRAM

2¢ PRINT "THIS PROGRAM TESTS THE
CSAVE FEATURE"

g9 END

Set up the cassette recorder for Recording and type the command CSAVE.
The computer should control the operation of the cassette recorder by
turning the motor on and off at the beginning and end of the record cycle.

Once the program is recorded on cassette tape, type NEW (or whatever is
required) to clear the program from memory. Load the program from tape
back into the computer (see CLOAD). List the program to verify that the
program held in the computer’s memory is identical to that originally
entered (see LIST).

Sample Run
THIS PROGRAM TESTS THE CSAVE FEATURE

CSAVE (program name) is used by some computers using CSAVE to assign
a specific name to the program being recorded on cassette tape. The file
name may contain one or more letters, numbers, or other selected ASCII
symbols, but only the first character may be recognized by the computer.
The program name identifies the program for later retrieval via the CLOAD
(program name) command.

Record the TEST PROGRAM on cassette tape using the command
CSAVE®“A”, erase the memory, then load the program back into the
computer using the CLOAD"A” command.

List the program to check for possible errors.

Variations In Usage

CSAVE?* can be used in Microsoft BASIC 5.0 to save the values of a
numeric array on tape.

Also See

CLOAD s LIST+ STORE

|

Function

CSNG is used to change numbers or numeric
variables which are previously defined as being of
“double-precision” back to regular ‘“single-
precision”. Variables listed in the CSNG function
return to their original double-precision status if
they are used again without the CSNG function.

Single-precision variables are capable of storing
numbers containing no more than 7 digits (only 6
digits are printed). Double-precision means being
accurate to 17 digits. If CSNG is used with a
double-precision number containing more than 6
digits, that number is “rounded-off” to six signifi-
cant places.

Test Program
1@ REM ‘CSNG’ TEST PROGRAM

20 DEFDBL X

30 K=123456789@Q123456

40 PRINT "CSNG CHANGES THE VALUE OF X FROM" 53
"TO"SCSNG (X

S0 PRINT "AND BACK TO THE VALUE OF"iX3"WHEN REMOVED"

99 END

Sample Run

C8NG CHANGES THE WYALUE OF X FROM 1234567890123456 T0
1,23437E+15
AND BACK TO THE YALUE OF 12345G678890123456 WHEN REMOVED

Variations In Usage

None known.

Also See
DEFSNG, DEFDBL» DEFINT: CDBL: !y #+ %s CINT

75

76

Function

CUR is a function used with a PRINT statement
by Sweden’s ABC-80 computer. It positions the
next print character at a desired location L,C.
PRINT CUR(L.C) produces results similar to
PRINT AT (B4#L+C) or PRINT @ (G4*L+C).

Test Program

10
20
30
40
99

REM 'C

UrR’ PROGRAM :

PRINT CHRx (12) ‘CLEARS SCREEN ON ABC 8@
PRINT CUR(124+16)3 "MIDDLE"

PRINT
END

"CUR PASSED IF MIDDLE IS IN THE CENTER"

Sample Run

CUR

MIDDLE

PASSED IF MIDDLE IS IN THE CENTER

Also See

PRINT AT, @

LOCATE

Operator

D is used to indicate ““double precision” in
numbers expressed in “exponential” or “standard
scientific notation”.

For example, 1.23456789D+22,

Numbers expressed in single precision are written
in exponential notation using the letter “E”.

For example, 1 ,234E+20

Test Program

1¢ REM ‘D’ DOUBLE PRECISION EXPONENT TEST PROGRAM

20 A#=1234567890123456789

3@ PRINT "EXPONENTIAL NOTATION ‘D’ PASSED THE TEST IF"
49 PRINT A#3i "CONTAINS THE LETTER ‘D‘"

989 END

Sample Run

EXPONENTIAL NOTATION ‘D’ PASSED THE TEST IF
1,2345367890123457D+18 CONTAINS THE LETTER ‘D7

Variations In Usage

The letter “D”, like all other letters of the alphabet, is used by all
computers to indicate a numeric variable.

Also See

Es #, !, DEFDBLs» DEFSNG

77

—nN2Z2r

Statement

A DATA statement contains data to be read by a
READ statement. The items in the DATA
statement must be separated by commas and may
include both positive and negative numbers.

Test Program #1

10 REM 'DATA’ TEST PROGRAM

20 DATA 20+-10,.5

DAT 30 READ AB,C

D. 40 D=A+B+C

59 PRINT "D ="3D

B2 PRINT "DATA PASSED THE TEST IF D
= 10,5

99 END

Sample Run

D= 12.5
DATA PASSED THE TEST IF D = 10.5

Most computers allow strings in a DATA statement. Some require that the
strings always be enclosed in quotes, while others require quotes only when
the string is preceded by, encloses, or is followed by a blank, comma or
colon.

Test Program #2

10 REM 'DATA’ TEST PROGRAM USING STRINGS

20 DATA "LINE NUMBER",Z20,"PASBED"

30 READ A% .,A,B%

4¢ PRINT "DATA STATEMENT IN "iA$3AIB&I" THE TEST"
99 END

Sample Run

DATA STATEMENT IN LINE NUMBER Z@ PASSED THE TEST

Remove the quotation marks from the String Variables in line 20 and run
again to see if they are needed in your interpreter. .

DATA statements may be placed at'any location in a program.

Alternate Spellings

DAT (by PDP-8E) and D. (Tiny BASIC) are used as abbreviations for
DATA.

78

Variations In Usage

None known.

Also See
READ » RESTORE

DATA=——

79

—nZzr

Statement

The DEF statement allows the user to DEFine
(create) new functions (most computers have some
built in functions) which can then be used the
same as any intrinsic (built in) function.

For example, DEF FNA(R) = R*R%3.,14159. The
expression R#R*3,14159 (the formula to find the
area of a circle, normally written 7r?) is DEFined
in this example as the function FNA. FN (an
abbreviation for the word FuNction) is used in
DEF statements followed by any legal numeric
variable. “A” is used in this example to identify
function FNA as the Area of a circle, but any
variable could have been used. Once a function is defined, it usually cannot
be redefined in the same program.

The variable enclosed in parentheses [(R) above] must match the variable
used in the statement to the right of the equal sign. These are commonly
referred to as “dummy” variables.

The operation stored in the FN (variable) function by the DEF statement
can be used to manipulate any number or numeric variable.

For example,

10 X=2
20 DEF FNA(N)=3%N-1
30 PRINT FNA(X

The FN function in this example is named “A” (FNA), and is assigned the
equation 3*N-1 in line 20. The numeric variable (X) following FNA is
substituted for the “dummy variable” (N) in the DEF statement each time
FNA is executed.

Test Program #1

1@ REM ‘DEF’ TEST PROGRAM
20 PRINT "ENTER THE RADIUS OF A CIRCLE (IN INCHES)"3
30 INPUT R
, 49 DEF FNC(X)=2%3,14159%¥
30 PRINT "THE CIRCUMFERENCE OF A CIRCLE"
6@ PRINT "WITH A RADIUS OF"iR3"INCHES IS"iFNC(R) 3}
"INCHES"
99 END

Sample Run (using 4)

ENTER THE RADIUS OF A CIRCLE (IN INCHES)?T 4
THE CIRCUMFERENCE OF A CIRCLE
WITH A RADIUS OF 4 INCHES IS 25,1327 INCHES

80

DEF

Some computers allow more than one variable in the DEFined expression.
Each of these variables must be listed after the FN(variable) function.

Test Program #2

190 REM ‘DEF’ MULTIPLE VARIABLE TEST PROGRAM
2@ DEF FNA(X,»Y)=(X+¥)/2

30 PRINT "ENTER ANY TWO NUMBERS":

49 INPUT XY

30 A=FNACKY)

B@ PRINT "THE AVERAGE OF"3Xi"AND"3iY3i"IS5"iA
988 END

Sample Run (using 20 and 40)

ENTER ANY TWO NUMBERS?T Z0.,40@
THE AVERAGE 0OF 20 AND 4@ IS5 30

Some computers allow the same function to be DEFined in more than one
line. In the following TEST PROGRAM the function FNA is DEFined as
X*9 if the value of variable X is less than 10, or as X/2 if the value of X is
greater than or equal to 10.

Test Program #3

19 REM ‘DEF’ REQUIRING MORE THAN ONE LINE

20 PRINT “"ENTER A VALUE FOR X THAT IS GREATER
OR LESS THAN 10"3

30 INPUT X

49 DEF FNA(X

50 FNA=X*Z

B@ IF X <18 THEN 80

70 FNA=X/2

80 FNEND

90 PRINT "THE VALUE OF THE FUNCTION IS"3iFNACX)

999 END

Sample Run (using 12)

ENTER A VALUE FOR X THAT IS GREATER OR LESS THAN 107 12
THE VALUE OF THE FUNCTION IS B

The FNEND statement in the last TEST PROGRAM tells the computer to
stop defining function FNA. Multiple line DEF statements must always end
with the FNEND statement, and the computer does not allow branching
into or out of multiple line DEF statements. For more information see
FNEND.

81

IF YOUR COMPUTER DOESN'T HAVE IT

If your computer does not have the DEF capability, substitute FN with a
subroutine containing the same equation.

For example, the DEF statement in TEST PROGRAM #2 can be replaced
with the following subroutine:

100 A=(X+Y) /2
118 RETURN

and these TEST PROGRAM CHANGES:
Delete line 20 and add

30 GOSUB 100
70 GOTO 999

“Dummy” variables cannot be used with GOSUB, so the actual variables in
the subroutine will have to be given values before each call.

Some BASICs allow string functions to be defined by the DEF statement.
For example, 1@ DEF FNL$(A%)=LEFT$(A%,1) returns the first character
of a string (handy for checking keyboard input).

Variations In Usage

None other known.

Also See
FNs FNEND, GOSUB,» RETURN

82

Statement

DEFDBL is used to DEFine (declare) a variable or
variables as being accurate to “DouBLe-precision”.
Double-precision variables are capable of storing
numbers accurate to 17 digits (only 16 digits are
printed). Single-precision variables are typically
accurate to 6 digits.

Caution: DEFDBL should only be used where
single-precision accuracy is not adequate, since
double-precision variables require more memory
space and their manipulation requires more time.
In most computers the DEFDBL line must be
executed before the variable listed in the DEFDBL
statement is assigned a numeric value.

Test Program #1

1@ REM 'DEFDBL’ TEST PROGRAM

20 A=1,234567890123456

30 PRINT "DEFDBL IN LINE 350 CHANGED THE YALUE OF
VARIABLE ‘A""

4@ PRINT "FROM"3AS"TO"3

50 DEFDBL A

B® A=1,234567890123456

70 PRINT A

89 END

Sample Run

DEFDBL IN LINE 5@ CHANGED THE YALUE OF YARIABLE ‘A’
FROM 1.23457 TO 1.234567890123456

Most computers with DEFDBL capability also allow designation of more
than one variable as “double-precision” by a single DEFDBL statement. For
example, DEFDBL AF M defines the variables A, F and M as having
double-precision, and DEFDBL A-M defines all variables that begin with
letters A thru M as being double-precision.

Test Program #2

10 REM ‘DEFDBL’ (WITH MULTIPLE UVARIABLES) TEST PROGRAM
20 DEFDBL AGsL-N

30 A=1/3

40 G=2/3

50 L=1/9

60 M=1,2345678901234567D+38

70 N=-1,2345678901234567D+38

80 PRINT "DEFDBL PASSED THE TEST IF THE FOLLOWING"
90 PRINT "NUMBERS CONTAIN MORE THAN 7 DIGITS:"

100 PRINT ASGILIMIN

998 END

83

——DEFDBL

Sample Run

DEFDBL PASSED THE TEST IF THE FOLLOWING
NUMBERS CONTAIN MORE THAN 7 DIGITS:
+3333333333333333 GGBGGGBEGG666667 J1111111111111111

1.,234567890123457D+38 -1,234567890123457D+38

The “D” before “+38” is the same as an “E” in exponential notation, but
signifies that the number is “double-precision accurate”.

Some computers may not print the first three values as shown in the
SAMPLE RUN due to the calculation being done in single precision. This
problem can be eliminated in computers that have a Double Precision
Declarative sign (e.g. the # sign). Place the sign after each fraction in lines
30, 40 and 50 as follows to produce the correct results.

30 A=1/3%

a9 G=Z2/3#
50 L=1/9%

Variations In Usage

None known.

Also See

DEFSNG» DEFINT, #, %, !, CDBLs» CSNG, CINT: D and E

84

Statement

DEFINT is used to DEFine (declare) that the
variables listed by the DEFINT statement are
INTegers. Variables defined as integers store the
integer (whole number) value of assigned
numbers. This is especially useful in large
programs since less memory is required to store
integer values than non-integers.

A potential disadvantage of using the DEFINT
statement is the inability of many interpreters to
process numeric values larger than that allowed
by the interpreter’s INT function (typically
— 32767 to +32767).

The DEFINT line must be executed by the computer before a variable listed
in the DEFINT statement is assigned a numeric value.

Test Program #1

1@ REM 'DEFINT’ TEST PROGRAM

20 DEFINT A

30 A=12.G68

4@ B=12.68

5@ IF A=12 THEN 70

6@ GOTO 8@

7¢ IF B=12.68 THEN 100

80 PRINT "DEFINT FAILED THE TEST LINE 20"

g0 GOTO 999

100 PRINT "THE DEFINT STATEMENT PASSED THE TEST
IN LINE Z0 BY"

11@ PRINT "CHANGING THE VALUE OF VARIABLE A FROM"3
IITDH ;A

9989 END

=3]

Sample Run

THE DEFINT STATEMENT PASSED THE TEST IN LINE 20 BY
CHANGING THE VALUE OF VYARIABLE A FROM 12.68 TO 12

Most computers with DEFINT capability also allow assignment of multiple
variables (separated by comma) in a single DEFINT statement. For
example, DEFINT AF M defines the variables AJF and M as integers.
DEFINT A-M defines all variables that begin with letters A thru M as
integers.

85

==DEFINT

Test Program #2

19 REM ‘DEFINT’ (WITH MULTIPLE VARIABLES) TEST PROGRAM
20 DEFINT AsGsL-N

30 A=6.25

49 B=21.42

50 G=-6.19

GO L=4.001

70 M=32000.999

80 N=14.8

9¢ PRINT "IF THE NUMBERS"JFAIGILIMINI" ARE INTEGERS."

1¢@ PRINT "AND THE NUMBER"3B3i"IS A DECIMAL . THEN DEFINT"
11¢ PRINT "PASBED THE MULTIPLE VARIABLE TEST IN LINE Z@.,"
999 END

Sample Run

IF THE NUMBERS B -7 4 32000 14 ARE INTEGERS:
AND THE NUMBER 21,42 IS A DECIMAL: THEN DEFINT
PASSED THE MULTIPLE VARIABLE TEST IN LINE 20.

If the interpreter has a double-precision declarative character (e.g. the #
sign in Microsoft BASIC) and/or a single precision declarative character
(e.g. the ! sign in Microsoft BASIC), and one of these characters is assigned
to a variable that is listed in the DEFINT statement, the variable is treated
as double precision (or single precision) because Declarative Characters
over-ride the DEFINT statement. For more details see #, ! and % operators.

Test Program #3

10 REM ‘DEFINT’ TEST PROGRAM

20 REM USES DOUBLE-PRECISION TYPE DECLARATION
CHARACTER "=~

30 DEFINT AsB

40 A=9.,123456789012345

S0 B#=8,123456789012345

B@ IF A=B# THEN 119

79 PRINT "A ="3f

B® PRINT "B# ="iB#

9¢ PRINT "THE TEST PASSED, SHOWING # OVER-RIDING DEFINT"

190 GOTO 988

119 PRINT "THE # CHARACTER OVER-RIDE FEATURE FAILED
THE TEST"

8899 END

Sample Run

A =9
B# = 9,123456789012345
THE TEST PASSEDs SHOWING # OVER-RIDING DEFINT

86

DEFINT=—

Variations In Usage

None known.

Also See

INTs+ #, DEFSNG, DEFDBLs» CINTs CSNGs CDBL+ % and !

87

Statement

DEFSNG is used to DEFine (declare) specified
variables as being of “SiNGle precision”.
Single-precision variables are capable of storing
numbers containing no more than 7 digits (only 6
digits are printed). Double precision means having
16-digit precision.

Since most interpreters automatically treat
variables as having single precision, the DEFSNG
statement is used in programs to redefine
variables as having only single precision after one
or more were defined as double precision by a
previous DEFDBL or as integer by a DEFINT
statement.

In most computers the DEFSNG line must be executed before the variable
listed in the DEFSNG statement is assigned a numeric value. Line 20 below
declares both X and Y to be maintained with double precision.

Test Program #1

1@ REM 'DEFSNG’ TEST PROGRAM

20 DEFDBL XY

30 X=1,234367890123456

ae Y=x

3@ PRINT "DOUBLE PRECISION VALUE OF Y="jY
B® DEFSNG Y

70 V=X

B2 PRINT "SINGLE PRECISION VALUE OF Y="3§¥
98 END

Sample Run

DOUBLE PRECISION VALUE OF Y=
SINGLE PRECISION VALUE OF Y=

1,234567890123456
1.23457

Most computers with DEFSNG capability also allow assignment of multiple
variables (separated by comma) in a single DEFSNG statement. For
example, DEFSNG A:F M defines the variables A, F and M as single
precision, and DEFSNG A-M defines all variables that begin with the letters
A thru M as single precision.

88

DEFSNG=——

Test Program #2

10 REM ‘DEFSNG’ (WITH MULTIPLE YARIABLES) TEST PROGRAM

20 DEFDBL AsGsL-N

30 GOSUB Zeo

49 PRINT "THE DOUBLE PRECISION VALUES OF AGsL M AND N
ARE"

50 PRINT ASGILIMiIN

BE@ DEFSNG A+GsL-N

70 GOSUB Zov

80 PRINT "THE SINGLE PRECISION VALUES OF A:G,LsM AND N
ARE"

80 PRINT ASGILIMIN

100 GOTO 999

200 REM SUBROUTINE

210 A=1234.,567890

220 G=4/10

23¢ L=G/1@

249 M=L/10

230 N=M/1¢

260 RETURN

999 END

Sample Run

THE DOUBLE PRECISION WALUES OF AsGsLsM AND N ARE
1234.,56789 123.,456789 12,3456789 1.23456789 ,123456789

THE SINGLE PRECISION YALUES OF A»G,LsM AND N ARE
1234.57 123,457 12,3457 1.23457 123457

If the interpreter has a double-precision declarative character (e.g. the #
sign in Microsoft BASIC) and/or an integer declarative character (e.g. the %
sign in Microsoft BASIC), and one of these characters is assigned to a
variable that is listed in the DEFSNG statement, the variable is treated as
double precision (or integer) because Declarative Characters over-ride the
DEFSNG statement. For more details see #, ! and % operators.

Test Program #3

1¢ REM ‘DEFSNG’ TEST PROGRAM

20 REM USES DOUBLE PRECISION DECLARATION CHARACTER ‘#-

32 DEFSNG AB

40 A=1.,234567890123456

°@ B#=1,234567890123456

62 IF A=B# THEN 110

70 PRINT "A ="jiA

80 PRINT "B# ="iB#

9¢ PRINT "THE TEST PASSED WITH # OVER-RIDING DEFSNG"

109 GOTO 999

110 PRINT "THE # CHARACTER OVER-RIDE FEATURE FAILED THE
TEST"

999 END

|

89

——DEFSNG

Sample Run
A = 1.23457
B# = +234567880123456

THE TEST PASSED WITH # OUVER-RIDING DEFSNG

Variations In Usage

None known.

Also See

DEFINT, #., DEFDBLs !+ CSNGs CDBLs» CINT: %

90

Statement

The DEFSTR statement is used to specify
designated variables as string variables. A
variable listed in the DEFSTR statement is
treated the same as if it was defined as a string
variable by the $ (string) sign.

It is important in large programs to specify only
those variables that need string storage, since
string variables require more memory space than
numeric variables.

The DEFSTR line must be executed before the
defined variable is assigned a string notation.

Test Program #1

10 REM ‘DEFSTR‘ TEST PROGRAM
20 A=25

3¢ PRINT "NUMERIC YARIABLE A ="3A
40 DEFSTR A

50 A="TEST STRING"

B PRINT "STRING UARIABLE A = "jA
99 END

Sample Run

NUMERIC VARIABLE A = 25
STRING VARIABLE A = TEST STRING

Most computers with DEFSTR capability also allow assignment of multiple
variables (separated by comma) by a single DEFSTR statement. For
example, DEFSTR AF M defines the variables A, F, and M as string
variables. DEFSTR A-M defines all variables that begin with the letters A
thru M as string variables.

Test Program #2

10 REM DEFSTR (WITH MULTIPLE YARIABLES) TEST PROGRAM
20 DEFSTR A:G,L-N

30 A="DEFSTR "

49 G="PASSED THE "

o0 L="MULTIPLE VARIABLE "

60 M="TEST "

7@ N="IN LINE Z0."

8@ PRINT AIGIiLIMIN

89 END

Sample Run

DEFSTR PASSED THE MULTIPLE VARIABLE TEST IN LINE 2@,

91

—DEFSTR

Some interpreters require that space be reserved in memory for the
assigned strings by use of a DIM or CLEAR statement.

Interpreters with declarative characters (e.g. %, #, or !) take precedence
over the DEFSTR function when added to variables listed in the DEFSTR
statement. This feature can be tested by making these changes to the
second TEST PROGRAM.

70 N="IN LINE"

B® PRINT ASGILIMING
85 Al=20

90 PRINT A!

The single-precision declarative character (!) added to lines 85 and 90
should over-ride the DEFSTR statement in line 20 and print the sample
run.

Variations In Usage

None known.

Also See

DEFDBL+ DEFINT: DEFSNG:s DIM,s CLEAR: %: D (exponential
notation), E (exponential notation), % (integer operator), # (double precision)
and ! (single precision).

92

Command
Function
Stateent

DEG is used by a few computers (e.g. the
Cromemco 16K Extended BASIC) as a command
which causes the computer to execute
trigonometric functions in degrees (rather than in
radians). One degree = approximately .02 radians.

Test Program #1

1¢ REM ‘DEG COMMAND’ TEST PROGRAM
20 A=8IN(L.4) DEGREE

39 PRINT "THE SINE OF 1.4 RADIANS I8":A
8989 END

Sample Run

As shown above, the computer will execute the program and compute the
sine of an angle of 1.4 radians.

THE SINE OF 1.4 RADIANS I8 ,98545

Type the command DEG. Then RUN. The computer will output the sine of
the angle measuring 1.4 DEGrees.

THE SINE OF 1.4 RADIANS I5.02443%

To change the computer back to the radian mode, type RAD or SCR. (SCR
will also SCRatch the entire program.)

IF YOUR COMPUTER DOESN’T HAVE IT

If your computer does not have the DEG command, it can be simulated in
the program by multiplying degree values times .0174533. To use this
conversion in the first TEST PROGRAM, make this program change:

20 A=8IN(1.,4%,0174533)

Variations In Usage

DEG converts angle measures from degree, minute, second form to degree
and decimal fraction form on the TRS-80 Pocket computer.

Example: By entering DEG 33,4025
DEG converts a measure of 33° 40’ 25" to 33.6736 degrees.

DMS can be used on the Pocket computer to convert back from decimal
degrees to Degree-Minute-Second form.

Example: By entering DMS 33,6736
DMS converts a measure of 33.6736 degrees to 33° 40’ 25".

A few computer (e.g. those using MAX BASIC) have DEG(n) as an intrinsic
function to convert a value (n) expressed in radians to degrees.

93

Test Program #2

1@ REM ‘DEG FUNCTION’ TEST PROGRAM
2 PRINT "ENTER AN ANGLE (EXPRESSED IN RADIANG)"3
30 INPUT A
4@ B=DEG(A) _
50 PRINT "THE RADIAN ANGLE OF"3A3I"IS EQUAL TO"3B3"DEGREES"
99 END
Sample Run (using 1.4)
ENTER AN ANGLE (EXPRESSED IN RADIANEG)T 1.4
THE RADIAN ANGLE OF 1.4 IS EQUAL TO 80.2141 DEGREES

Alternate Spelling

Some computers (e.g. Sharp/TRS-80 Pocket) use DEGREE as the statement
that sets the computer in degree mode for trig calculations.

IF YOUR COMPUTER DOESN'T HAVE IT

If your computer does not have the DEG function, it can be simulated by
multiplying the radian values times 57.29578. To use this conversion in the
second TEST PROGRAM, make this program change:

49 B=A%*37.295378

Also See

SINs COSs TANs; ATN: RAD:s ASN: ACS

94

Command

The DELETE command is used to “erase” specified
program lines from the computer’s memory.

Test Program

19 REM ‘DELETE’ TEST PROGRAM
20 PRINT "LINE Zo@"

30 PRINT "LINE 30"

49 PRINT "LINE 4d@“

S@ PRINT “LINE S@" DEL
B@® PRINT "LINE G@"

7¢ PRINT "LINE 7@ - END OF DELETE TEST"

g9 END

RUN the program to ensure that all lines are properly entered.

Sample Run

LINE 20
LINE 3¢
LINE 40
LINE 50
LINE G@
LINE 7¢ - END OF DELETE TEST

A single program line can be eliminated from the computer’s memory using
the command DELETE(line number). To test this feature, try the command
DELETE 50 and run the program. This command should have eliminated
the printing of “LINE 50”. Check by LISTing and RUNning.

More than one program line can be eliminated from memory by some
computers using the command DELETE(line#-line#). All line numbers
within the range specified by this command are eliminated. To test this
feature, try the command DELETE 30-40, then RUN the program. Lines 30
and 40 should be gone. Some computers require that the first and/or last
line numbers actually exist. Others erase all numbers in the range even if
the numbers specified at each end are not in use.

DELETE-(line number) is used by some computers to eliminate all line
numbers from the first line number in the program to the line number
specified in the DELETE command. To test this feature, try the command
DELETE -60 and run the program. All lines should be eliminated except
line 70 and 99.

Some computers with the DELETE feature allow eliminating of groups of
line numbers plus individual line numbers by use of commas.

For example, DELETE 20,40-50,90 eliminates lines 20, 40, 50 and 90 from
the program. To test for this feature, re-enter the test program and try the
command DELETE 2@, 40-80. LIST the program to verify that all lines
except 10, 30, 70 and 99 have been eliminated.

95

——DELETE

A few computers use DELETE(line number)- to eliminate all line numbers
starting from the line number specified in the DELETE command to the
end. To test for this feature, try the command DELETE 3@-. LIST the
program to verify that only line 10 remains.

Alternate Spelling

Some computers (e.g. DEC-10 and Apple) use DEL as the DELETE
command. DEL on the DEC-10 responds as described above.

The Apple version of DEL uses commas where DELETE uses hyphens. To
DELete lines 20 thru 50, type DEL 2¢.50. DELeting a single line requires
DEL 32,30 (or simply typing the line number and pressing RETURN).

IF YOUR COMPUTER DOESN'T HAVE IT

If your computer does not have the DELETE command, the same thing can
be accomplished by typing each line number individually, followed by
pressing the ENTER or RETURN key. To eliminate all line numbers in one
operation, use the NEW or SCRATCH command.

Also See
NEW, LIST, SCRATCH

96

Function

DET is the determinant function which returns
the single numeric value associated with a square
matrix (i.e. a two dimensional array having the
same number of rows as columns). If D=DET (&)
where A is a 2x2 array, then D=A(1:1)%A(2,7) -
AlL,2)r#A(241). If A were a 3x3 array, the deter-
minant would then be formed by 6 products. The
determinant of a 4x4 matrix is made up of sums
and differences of 24 products.

Test Program #1

19 REM % DET % TEST PROGRAM
20 DIM A(3+3)

3¢ FOR I=1 TO 3

49 FOR J=1 TO 3

5@ READ A(I+d)

6@ NEXT J

70 NEXT I

80 D=DET(A)

99 PRINT "THE DETERMINANT OF ARRAY A IS “iD
100 DATA 1141 14243 14,49
309899 END

Sample Run
THE DETERMINANT OF ARRAY A IS8 2

Some interpreters calculate DET only if MAT INV has first been used on
the array. (See MAT INV for information.) Once the inverse of the matrix
is calculated with MAT B=INV(A), DET reports the determinant value of
matrix A. If DET =0, then matrix A has no inverse and the values of array
B are invalid.

Test Program #2

10 REM * DET WITH MAT INY % TEST PROGRAM
20 DIM A(3+3) B(3:3)

3¢ FOR I=1 TO 3

4¢ FOR J=1 T0O 3

S50 READ A(I +J)

6@ NEXT J

70 NEXT I

8@ MAT B=INU(A)

90 PRINT "THE DETERMINANT OF MATRIX A IS "3DET
100 DATA 14141 15253 14449

309899 END

97

Sample Run
THE DETERMINANT OF MATRIX A IS 2
IF YOUR COMPUTER DOESN'T HAVE IT

If your computer doesn’t allow either form of the DET function, substitute
the following subroutine:

3oe9@ GOTO 309899

30949 REM # DET SUBROUTINE * INPUT N+ AC ») QUTPUT D

39942 REM ALSO USES I, Js Ks» L AND R INTERNALLY

30944 REM =» VALUES OF ARRAY A ARE ALTERED BY THIS
ROUTINE <<

30946 D=1

308948 FOR K=2 TO N

30950 L=K-1

39952 IF A(L L)< THEN 30876
39954 FOR I=K TO N

30956 IF ACI L)@ THEN 30964
308958 NEXT I

30860 D=0

39962 GOTO 30986

3¢964 FOR J=1 TO N

30966 R=ACJL)

30968 ACdLY=ACTT)

30970 ACT»I) =R

30972 D=-D

308974 NEXT J

30976 FOR I=K TO N

30978 R=ACIsL) /AL 4L

30980 FOR J=K TO N

30982 AT) =ACI) -R¥A(L D)
30984 NEXT J

30986 NEXT I

30988 NEXT K

3099¢@¢ FOR L=1 TO N

30992 D=D¥A(L L)
30884 NEXT L
30986 RETURN
To use this subroutine with TEST PROGRAM #1, make these changes:

75 N=3
80 GOSUB 30940

Variations In Usage

None known.

Also See
MAT INU, DIM

98

Statement

The DIGITS statement is used in TSC Extended
BASIC to specify the maximum number of digits
to be printed by a PRINT statement. For example,
20 DIGITS 8,2 might be used in a program
where all the printed values represent dollars and
cents. The first number specifies the total number
of digits to be printed and the second the number
of places to the right of the decimal. The second
number must not be greater than the total number
of digits to be printed.

If the actual value is too large to be printed in the

number of places allowed, the value is printed in

exponential form. The fractional part of the number is rounded to the
desired number of digits where necessary and the right-most digits are not
displayed.

Test Program

10 REM DIGITS TEST PROGRAM
20 DIGITS G4

30 X = @.1234567
49 PRINT X
5@ PRINT "DIGITS PASSED THE TEST IF 90,1235 WAS PRINTED"
98 END
Sample Run
?.1235

DIGITS PASSED THE TEST IF @.123% WAS PRINTED

PERCOM Super BASIC uses the DIGITS statement to specify only the
number of digits to be printed after the decimal point. For example, 20
DIGITS = 4 limits all printed values to four decimal places.

IF YOUR COMPUTER DOESN’T HAVE IT

If DIGITS isn’t available on your computer, try the PRECISION statement
in line 20.

The maximum number of digits after the decimal point can also be
controlled by deleting line 20 and replacing line 40 with:

4@ PRINT USING "##,##ua" i}
If PRINT USING isn’t available either, don’t despair! Substitute
49 PRINT INT(X*10009 + .,5)/10000

Variations In Usage

None known.

99

DIGITS

Also See

PRECISIONs PRINT USING:

IMAGE » FMT

INT

Statement

The DIMension statement is used to establish the
number of elements allowed in a numeric or string
array.

An array DIMension is established by placing the
array variable after the DIM statement, followed
by the array size enclosed in parentheses.

—nZzr

For example, DIM A(2@) allows array variable A
to use the 21 array elements from A(0) to A(20).
[Some computers start with array element A(1),
while a few computers (e.g. those conforming to
ANSI BASIC) can define the lowest array element
as either 0 or 1 by using the BASE statement. For
more information see BASE.]

When the DIM statement is executed, the computer sets the values stored in
each designated array element to zero.

Test Program #1

1¢ REM 'DIM’ NUMERIC ARRAY TEST PROGRAM

20 DIM AC1O)

32 PRINT "THESE NUMBERS ARE STORED IN AND PRINTED"
49 PRINT "FROM A SINGLE DIMENSION NUMERIC ARRAY.,"
30 FOR X=1 TO 10

6O ACX)=X

7@ PRINT ACX)3

80 NEXT X

99 END

Sample Run

THESE NUMBERS ARE STORED IN AND PRINTED
FROM A SINGLE DIMENSION NUMERIC ARRAY,
i1 2 3 4 5 68 7 8B 9 10

To check your interpreter’s ability to use array elements starting at 0, make
this change in the TEST PROGRAM:

30 FOR X=0 TO 10

If your interpreter accepted the array element A(0), a Sample Run should
print numbers from 0 to 10.

Most computers allow each array to use elements from 0 (or 1) to 10 without
the need for DIMensioning. Delete line 20 from the Test Program to test for
this capability.

If it works, make this change in line 50:
50 FOR X=1 70 15

101

and RUN. Since a few computers (e.g. TRS-80 Level I) do not require any
dimensioning, their array size is automatically limited only by the amount
of unused memory. TRS-80 Level I allows only one array, named A(n). Most
computers allow the full range of Alphabetic variables, and many allow
arrays to have Alpha/Numeric array names [e.g. A3(n)].

Assuming that line 50 change above caused a crash, make this change to
line 20:

20 DIM A(LS)
and RUN

Sample Run

THESE NUMBERS ARE STORED IN AND PRINTED
FROM A SINGLE DIMENSION NUMERIC ARRAY.
i 2 3 4 5 6 7 8 9 1e 11 12 13 14 15

This next program tests the computer’s ability to DIMension string arrays.
Some computers (e.g. Hewlett-Packard) require dimensioning of all strings,
including string arrays, with no string space set aside without DIM.

Test Program #2

19 REM 'DIM’ STRING ARRAY TEST PROGRAM
20 DIM A%(4)

30 FOR X=1 TO 4

40 READ A%(X

50 NEXT X

B® PRINT "THE ‘DIM’ STATEMENT PASSED THE "3
70 FOR X=1 TO 4

B0 PRINT A®(X) 3

90 NEXT X

100 DATA THE 5T

989 END

Sample Run

THE ‘DIM’ STATEMENT PASSED THE TEST

DIM is also used in some computers to set the maximum element size for
numeric and string arrays which contain two dimensions (or more).

For example, DIM A(2®,25) establishes the maximum size of the first
dimension at 20, and the second at 25.

Most computers with two and three dimension array capability
automatically reserve space for 10 elements in each dimension. Many
smaller computers (e.g. Microsoft interpreter variations) reserve element
space for only the first and second dimension.

102

DIV =—

Test Program #3

1@ REM 'DIM’ TWO DIMENSION ARRAY TEST PROGRAM
20 DIM A(3:4)

30 PRINT "THESE NUMBERS ARE STORED IN AND PRINTED"
4¢ PRINT "FROM A TWO DIMENSION NUMERIC ARRAY."
5@ FOR I=1 TO 3

6@ FOR J=1 TO 4

70 A(Isd)=1

B0 NEXT J

90 NEXT I

100 FOR I=1 TO 3

110 FOR J=1 TO 4

120 PRINT ACI+d)

130 NEXT J

149 PRINT

150 NEXT I

8898 END

Sample Run

THESE NUMBERS ARE STORED IN AND PRINTED
FROM A TWO DIMENSION NUMERIC ARRAY.
1

LI Py o
% I SN I o
L3 1) e

2
2
3

Test Program #4

This program tests the computer’s ability to DIMension three dimension
numeric array variables.

1@ REM ‘DIM‘ THREE DIMENSION ARRAY TEST PROGRAM

20 DIM A(3:4,2)

30 PRINT "THESE NUMBERS ARE STORED IN AND PRINTED"
4¢ PRINT "FROM A THREE DIMENSION NUMERIC ARRAY.®"
3@ FOR K=1 TO 2
B@ FOR I=1 TO 3
7¢ FOR J=1 TO 4
B A(I»JsK)=1

80 NEXT J

100 NEXT I

110 NEXT K

12¢ FOR K=1 TO 2
130 FOR I=1 TO 3
14¢ FOR J=1 TO 4
15@ PRINT ACIdy
160 NEXT J

179 NEXT I

18@ PRINT

19@ NEXT K

8988 END

LN

103

Sample Run

THESE NUMBERS ARE STORED IN AND PRINTED
FROM A THREE DIMENSION NUMERIC ARRAY.

1 1 1 1
3 3 3 3
1 1 1 1
3 3 3 3

IF YOUR COMPUTER DOESN’'T HAVE IT

If your computer doesn’t allow multidimensional arrays, simulating them
with a single dimension is not difficult. To use a two-dimensional array
such as A(3,4), DIMension the array as A(12) and replace each reference
to ACI) with A((I-1)*%4+J). If the zero subscripts will be used, the
array will be DIMensioned as A(19), i.e. (3+1)%4+1)—-1 = 19. Then use
A(I*4+1) in place of ACI 4).

Similarly for three dimensions, to declare array A(3,4:2), use DIM A(Z4)
[or DIM A(59) if using zero as a subscript] and replace A(I.J:Kk) with
ACCCTI-1y%d+(J-1))#2+K) [or with A((I#4+))*2+K) if using the zero

subscripts].
Generally:
For an MxN array:
without zero subscript DIM A(M*N) and use A (I-1)*N+J)
with zero subscript DIM AC(M+1)%(N+1)-1) and use
ACT*N+1)
For LxMxN array:
without zero subscript DIM A(L*M*N) and use A(((I-1)
#M+(J-1)) *¥N+K)
with zero subscript DIM AC(L+1)*#(M+1)*(N+1)-1)

and use A((T*M+J) *N+K)

Variations In Usage

None other known.

Also See
CLEAR, MAT INPUT, MAT PRINT, MAT READ

104

Function

The DOT function is used by Sweden’s ABC-80
computer to indicate whether or not a specific
graphics block on the video screen is “turned on”.
The graphics block is specified by the L,C
coordinates following the DOT function, where L
determines the line (0 to 71 in graphics mode) and
C determines the column (2 to 79 in graphics
mode).

For example, IF DOT (8,15) THEN 950 causes
the computer to branch to line 950 if the block
located in the tenth row and sixteenth column
from the upper left corner is “on”.

To turn on the graphics block see SETDOT.

Test Program

1@ REM ‘DOT’ TEST PROGRAM

20 PRINT CHRY} (12) ‘CLEARS SBCREEN
30 R=3

4@ PRINT CUR(R:@)3SCHRY (151)3 ‘SETS GRAPHICS MODE
50 FOR C=1 TO 35

60 SETDOT RC

70 NEXT C

80 PRINT

g0 IF DOT (S,12) THEN 120

i9@ PRINT "THE BLOCK IS OFF"

119 GOTOD 130

12@ PRINT "THE BLOCK IS ON*

130 FOR T=1 TO Z@@0 : NEXT T

140 PRINT CHRX (1Z2)

999 END

Sample Run

THE BLOCK IS ON

Variations In Usage

None known.

Also See

POINT,» SETDOTs CLRDOT:» X

105

106

Statement

DRAWTO

Also See
PLOT » HDRAW

DRAW is used by several computers (e.g. Apple II)
to draw a pre-defined shape (numbered N) starting
at location X,Y.

Example: DRAW N AT XY

Another version, DRAW ¥,¥ is used on the Sinclair
ZX80 to draw a line from a current position (H,K)
to a new position (X +H, Y +K).

The Atari computer uses a line drawing statement
DRAWTO XY that draws a line from the current
position to position (X,Y).

Some computers use PLOT in the same way these
computers use DRAW. See PLOT for more
information.

Statement

DSP is used in the APPLE II BASIC as an
analytical tool to display a specific variable and its
value each time the variable is assigned a value.
The variable’s associated line number is also
displayed preceded by a # sign. More than one
DSP statement is allowed in a program.

For example:

10 D8P X
20 DSP Y

instructs the computer to display (print) variables
X and Y, and their values, along with the line
numbers each time they are assigned or
reassigned a value.

Test Program

1¢ REM 'DGP’ TEST PROGRAM

20 DSP A

30 DSP B

49 A=35

50 B=10

G@ C=A%B

70 A=A+C

8¢ PRINT "THE DSP STATEMENT PASSED THE TEST"
99 END

Sample Run

#4Q A=3
#30 B=10
#70 A=33
THE DSP STATEMENT PASSED THE TEST

IF YOUR COMPUTER DOESN'T HAVE IT

This very handy troubleshooting feature can be duplicated by adding a
temporary test line at each point where the variable being traced is
changed. For example,

19 REM DSP SIMULATION

40 A=35

41 PRINT "#4@ A="3A

5@ B=10

51 PRINT "#3@ B="3iB

B@ C=Ax%B

70 A=A+C

71 PRINT "#7@ A="3A

80 PRINT "END OF THE DSP SIMULATION™
99 END

107

Variations In Usage

None known.

Also See

TRON s TRACE

108

Operator

E is used to indicate “exponential notation”, or
“standard scientific notation”.

For example, 1,23E+12 means 123 followed by 10
Zeros.

Numbers expressed in double precision are written
in exponential notation using the letter “D”.

For example, 1,234568789D+20

Test Program

19 REM ‘E’ SINGLE PRECISION EXPONENT TEST PROGRAM

20 A=123456789

30 PRINT "EXPONENTIAL NOTATION ‘E’ PASSED THE TEST IF"
49 PRINT AS"CONTAINS THE LETTER ‘E’"

989 END

Sample Run

EXPONENTIAL NOTATION ‘E‘ PASSED THE TEST IF
1,23457E+08 CONTAINS THE LETTER ‘E’

Variations In Usage

The letter “E”, like all other letters of the alphabet, is used by all computers
to indicate a numeric variable.

Also See
D) !y #, DEFSNG, DEFDBL, CSNG, CDBL

109

Command

EDIT is a special command used by some
computers (e.g. those using Microsoft BASIC)
which allows editing of the program line specified
by the EDIT command. It is similar to the RUN
and LIST commands in that if no number follows
it, the first program line is automatically
implied---in some computers.

Test Program

190 REM YEDIT’ TEST PROGRAM
2@ PRINT "CAN THIS PROGRAM BE

MODIFIED"
3¢ PRINT "BY THE EDIT COMMAND?"
989 END

After loading this program, type EDIT 2@ to determine if the computer has
the EDIT feature. The computer should print the number 20 followed
possibly by a cursor. This indicates the computer is in the EDIT mode and is
ready to modify line 20.

The EDIT command may call up your editor, but you’ll have to check the
machine’s manual to see how to perform the editing and get back into
BASIC. Sometimes it’s as easy as hitting the carriage return. Other times
(especially on large multi-language time-sharing machines) it takes a whole
series of commands to get in and out of the “editor”.

Variations In Usage

There are many versions of text, character and line editors. Each speaks its
own “language,” and it is not BASIC. The BASIC Handbook will therefore
not cover Editor languages.

110

ELSE is used to execute an alternate statement
when the condition of an IF-THEN statement is
not met. For example, IF X=3 THEN 120 ELSE
STOP instructs the computer to branch to line 100
if X equals 3, but STOP if X does not equal 3.

Test Program
10 REM ‘ELSBE’ TEST PROGRAM

20 K=

30 IF X « 5 THEN G¢ ELSE GOTO 9@
4¢ PRINT "ELSE FAILED THE TEST"
39 GOTO 99

BO® PRINT X3

70 HK=X+1

80 GOTO 3@

90 PRINT "‘ELSBE’ PASSED THE TEST"
99 END

Sample Run

1 2 3 4 'ELSE’ PASSED THE TEST
IF YOUR COMPUTER DOESN’T HAVE IT

Statement

If your computer does not have the ELSE statement, it can be simulated in

the test program by changing line 30 to
30 IF X <« 3 THEN G@
and adding the following new line.

35 GOTO 9@

Variations In Usage

None known.

Also See

IF-THEN: GOTO

111

—nNZ>

Statement

The END statement is used to terminate execution
of the program. Many computers require it to be
placed at the highest line number in the program,
while others accept it at any point.

The END statement is optional with many
computers (mostly micros).

Test Program

12 REM 'END’ TEST PROGRAM
20 PRINT "THE FIRST END STATEMENT FOLLOWS™®

30 END
49 PRINT "THE SECOND END STATEMENT FOLLOWS®
99 END

Sample Run

THE FIRST END STATEMENT FOLLOWS

If your computer does not pass this test and will not allow an END
statement at line 30, delete line 30 and run the program again.

Then delete line 99 to see if your computer accepts END as an optional
statement.

Alternate Spelling

E. is used by TRS-80 Level I and other computers with Tiny BASIC as an
abbreviation for END.

Also See

STOP (for the many problems encountered when using END and STOP in
the same program).

112

EQ is used in a few computers (e.g. the T.I. 990) as
an optional word for the equal sign when used as a
relational operator. (See Line 30.) It cannot be
used to assign a value to a variable. That’s why
Line 20 uses an = sign.

For more information see =.

Test Program

19 REM ‘EQ (EQUAL)’ TEST PROGRAM
20 A=10
30 IF A EQ 10 THEN G@

49 PRINT "THE EQ OPERATOR FAILED THE TEST"

50 GOTO 99

60 PRINT "THE EQ OPERATOR PASSED THE TEST"

99 END

Sample Run

THE E®@ DPERATOR PASSED THE TEST

Variations In Usage

None known.

Also See

=y xy IF-THEN, GE:» GTs LE:s LT+ NE:

Operator

113

Command
Statement

ERASE is a command used to delete a program
from memory. It is the equivalent of NEW or
SCRATCH used by other computers. To test
ERASE on your computer, enter a short program,
such as

10 REM THIS IS5 A SHORT PROGRAM
99 END

Type LIST to see that the program is there.

Type ERASE, then type LIST again. If ERASE did the job, the program
should be gone.

Some interpreters (e.g. BASIC-80) use ERASE as a statement to remove an
array from a program and release the storage space it used. By using
ERASE within a program, an array can be redimensioned while the
program is RUNning, a procedure prohibited by most interpreters and
compilers.

Some computers allow redimensioning of arrays without this statement, but
most give an error message if the same array name appears in two DIM
statements.

Test Program

19 REM 'ERASE’ TEST PROGRAM

20 DIM ACLS)

30 FOR I=1 TO 15

49 ACI) =1

5@ NEXT 1

B® ERASE A

7¢ PRINT "ERASE PASBSED THE TEST IF @ ="3iA(1l)
80 DIM A(5:3)

g0 A(543)=2

1@@ PRINT "ERASE PASSED"iA(S,3)3i" TESTS."
989 END

Sample Run

ERABE PASSED THE TEST IF @ = @
ERABE PASSED Z TESTS.

Also See

NEW s SCRATCHs DIMs LIST

Function

The ERL function is used with the ON-ERROR
statement to identify the last line number in
which an error has occurred.

The ERL function initializes at the numeric line
number value of 65535 (the maximum two-byte
value). When an error occurs, ERL changes to the
line number in which the error occurred. The line |g
number contained in the ERL function changes ERRL
each time an error occurs in a different line.

By using ERL in “error-trapping” routines, it is
possible to identify the “errored” line and take
appropriate action.

Test Program

1® REM 'ERL’ TEST PROGRAM

20 ON ERROR GOTO 100

30 PRINT "ENTER THE NUMBER 10, 2¢, THEN 30"}

49 INPUT N

50 A=10/(N-1@)

BO® A=1@/(N-2@)

70 A=1@/(N-3@)

8@ PRINT "THE NUMBER "3$N3i"DID NOT CAUSE AN ERROR"
90 GOTO 3¢

100 PRINT "AN ERROR HAS JUST OCCURRED IN LINE": ERL
118 RESUME 30

9989 END

Sample Run

ENTER THE MNUMBER 1@, 20, THEN 307 10

AN ERROR HAS JUST OCCURRED IN LINE 5o
ENTER THE NUMBER 10, 20, THEN 307 20

AN ERROR HAS JUST OCCURRED IN LINE G2
ENTER THE NUMBER 10, 20, THEN 327 30

AN ERROR HAS JUST OCCURRED IN LINE 70
ENTER THE NUMBER 1@+ 20, THEN 307

Alternate Spelling
Hewlett-Packard’s 35, 45, and 85 computers use ERRL.

Variations In Usage

None known.

Also See

ERROR» ON-ERROR-GOTOs» RESUME

1156

Function

ERR is used in some computers (e.g. those with
Microsoft BASIC) to identify the error code of the
last error which occurred in a program. The error
code contained in the ERR function changes each
time a different error occurs. By using ERR in
“error-trapping” routines, it is possible to identify
the type of error which occurred and take
appropriate action. Refer to the computer’s manual
ERRBN for a listing of its particular error codes.

Test Program

1@ REM ‘ERR‘ TEST PROGRAM

20 DIM A(S)

30 CLEAR

4¢ ON ERROR GOTO 100

5@ PRINT "ENTER A SAMPLE NUMBER"3

6@ INPUT N

70 A(NY=10@/N

80 PRINT "THE NUMBER":iNi"DID NOT CAUSE AN ERROR"
8¢ GOTO 5¢
19@ IF ERR
110 IF ERR
120 GOTO 180

130 PRINT "THE NUMBER"IiN3"IS TOO LARGE"

149 PRINT "USBE A NUMBER BETWEEN 1 AND 5"

150 RESUME 30

169 PRINT "THE SMALLEST NUMBER ALLOWED IS 1"

170 RESUME 30

18@ PRINT "THE NUMBER"iNi"CAUSED AN ERROR CODE OF"IJiERR
9989 END

8 THEN 130
11 THEN 16

o

Sample Run (Typical)

ENTER A SAMPLE NUMBER? 12

THE NUMBER 1Z IS TOO LARGE

USE A NUMBER BETWEEN 1 AND 5
ENTER A SAMPLE NUMBER?T @

THE SMALLEST NUMBER ALLOWED IS 1
ENTER A SAMPLE NUMBER?

Alternate Spelling
Hewlett-Packard’s 35, 45, and 85 computers use ERRN.

116

ERR 1
Ee——

Variations In Usage

The TRS-80 Level II BASIC stores a value in the ERR function that does
not equal the actual error code. To convert the value stored in the ERR
function to the actual error code, divide the ERR value by 2 and add 1.

For example, PRINT ERR/2+1

Also See

ERL» ON-ERRORs RESUME, DIM, CLEAR

117

Command
Statement

ERROR ## is used to intentionally cause the
computer to report an ERROR. The nature of the
error is specified by an error code in the ERROR
statement. The ERROR statement is commonly
used in programs to execute error trapping
routines, or to print a specified error message.

Test Program #1 (for a
Microsoft Interpreter)

19 INPUT N
20 IF N > 32000 THEN ERROR 7
989 END

When a value greater than 32000 is assigned to variable N, the condition of
the IF-THEN statement in line 20 is met and the computer generates the
ERROR message.

OM ERROR IN 20

(out of memory in line 20), even though the computer is not actually out of
memory.

Variables cannot be used as ERROR codes. Each code must be specified by
an actual integer error code number. If the specified error code is not
recognized by the computer’s interpreter, then ERROR message
“UNPRINTABLE ERROR” is printed by most computers.

ERROR can also be entered as a command to test specific error codes. See
your computer’s manual for a listing of its error messages.

Test Program #2

19 REM ‘ERROR’ TEST PROGRAM

20 PRINT "ERROR PASSED THE TEST IF ERROR MEGSAGE ‘08’ OR"
390 PRINT "'0UT OF STRING SPACE’ IS PRINTED."

49 ERROR 14

89 END

Sample Run (typical)

ERROR PASSED THE TEST IF ERROR MESBSAGE ‘0S5’ OR
‘OUT OF STRING SPACE’ IS PRINTED.
708 ERROR IN 40

Variations In Usage

None known.

Also See

ON-ERROR-GOTO» RESUME+ ERRs ERL

118

Function

EXAM(n) is used by some computers (e.g. the
Digital Group MAXI-BASIC, the North Star
BASIC, and the Processor Technology 8K BASIC)
to read the contents of specified addresses in the
computer’s memory.

For example, ¥=EXAM(20@) assigns the value
stored in memory address 200 to variable X.

The EXAM function gives us the contents of that

memory address as a decimal between 0 and 255 (the range of values that
can be held in an 8 bit memory byte). EXAM can be used with the FILL
statement to read what FILL has stored in memory. (Some computers use
POKE or STUFF.) The highest numbered address that can be EXAMined
depends of course on the computer’s memory size.

Check your computer’s manual before executing this TEST PROGRAM to
determine that memory addresses 18368 to 18380 are reserved as “free”
memory. This avoids FILLing data into memory addresses reserved for
other computer operations. If addresses 18368 to 18380 are not reserved as
free memory in your computer, select a group of 12 adjacent memory
addresses and change lines 20 and 60 in the TEST PROGRAM accordingly.

Test Program

19 REM ‘EXAM’ TEST PROGRAM
20 FOR X=18368 TO 1838¢

30 READ Y

a0 FILL XY

3@ NEXT X

6@ FOR X=18368 TO 1838¢

70 Y=EXAM{X)

B@ PRINT CHR&(Y) 3

90 NEXT X

190@ DATA 84,69,83:84,128,:67,79,77,:80,+76,69:84,69
9898 END

Sample Run

TEST COMPLETE
Variations In Usage
None known.

Also See

FILLs POKEs PEEK: USR: SYSTEM.: STUFF,» FETCH

119

Statement

EXCHANGE is a statement available in a few
BASICs (e.g. TDL BASIC) that switches the values
of two variables or array elements. For example,
EXCHANGE A B results in the original value of A
being stored in B and the former value of B being
stored in A. EXCHANGE is very useful for
arranging values of an array in ascending or
descending order.

Test Program

i@ REM 'EXCHANGE’ TEST PROGRAM

20 PRINT "ENTER TWO VALUES (SEPARATED BY COMMAS)™"
30 INPUT AsB

49 IF A<=B THEN G@

30 EXCHANGE A:B

B@ PRINT A" IS5 LESS THAN OR EQUAL TO "iB

7@ GOTO 20

99 END

Sample Run

ENTER TWO VALUES (SEPARATED BY COMMAS)
T 347

3 IS5 L.ESS THAN OR EQUAL TO 7

ENTER TWO VALUES (SEPARATED BY COMMAS)
T 91

1 IS LESS THAN OR EQUAL TO 9

ENTER TWO VALUES (SEPARATED BY COMMAS)

MAXBASIC uses a double equal sign (= =) to exchange the contents of two
variables of the same type. For example, 50 A == B is equivalent to line 50
of the TEST PROGRAM.

IF YOUR COMPUTER DOESN'T HAVE IT

If EXCHANGE doesn’t work with your computer, try SWAP in line 50. If
neither is available, the values can be exchanged by replacing line 50 with:

48 T=A

30 A=B
52 B=T

Also See

SWAP

120

EXIT is a statement used by some BASICs (e.g.
North Star BASIC) to EXIT from a FOR-NEXT
loop before that loop has completed the specified
number of cycles. EXIT transfers program control
to the line number designated and cancels the
FOR-NEXT loop. The value of the loop counter at
that time continues available for use in the rest of
the program.

Test Program

Statement

190 REM 'EXIT’ TEST PROGRAM

20 PRINT "ENTER A WORD - TYPE ‘DONE’ TO QUIT™

30 FOR I=1 TO 500

4@ INPUT A%

5@ IF A%$="DONE" THEN EXIT 100

6@ PRINT "ANOTHER":

790 NEXT I

80 PRINT "'EXIT’ FAILED THE TEST."

g9¢ GOTO 999

1@ PRINT "‘EXIT’ PASSED THE TEST. ‘DONE’ WAS WORD
NUMBER" » I

999 END

Sample Run (typical)

ENTER A WORD - TYPE
PETART

ANOTHER
ANOTHER
ANOTHER
ANOTHER
CEXITY

IF YOUR COMPUTER DOESN'T HAVE IT

‘DONE’ TO QUIT
TCHECK
TEXIT
THERE
TDONE
PASSED THE TEST.

‘DONE " WAS

WORD NUMBER 2

GOTO can replace EXIT in most cases. Some computers will not know
which loop is active if another FOR 1= etc. follows the loop just EXITed in

this way. In those computers, replace line 50 with:

5S¢ IF A%< :"DONE" THEN GO

32 J4 =1 ‘J STORES THE CURRENT VALUE OF THE LOOP
COUNTER

54 I = 8898 ‘SET I TO0 A VALUE ABOVE THE LIMIT OF THE
LOOP

56 GOTO 7@

121

=EXIT

and add lines 75 and 95

7% IF I=8989 THEN 93
93 I=J

These lines let the loop terminate “normally” before going on to the rest of
the program.

Also See

FORs NEXT.: GOTO

122

The EXP(n) function computes the natural
logarithm’s base value e (2.718282. ..) raised to
the power of (n).

This is just the opposite of what happens when the
LOG function is used.

For example, AzEXP(3) is the same as
A=2718282 * 2.718282 * 2.718282.

The value (n) can be written as a number or a
numeric variable.

Test Program

10 REM ‘EXP’ TEST PROGRAM
20 N=4,80517
30 E=EXP(N)

Function

49 PRINT "IF THE NATURAL EXPONENTIAL OF"SiN3"IS"3E

30 PRINT “THEN THE EXP FUNCTION PASSED THE
309899 END

Sample Run

TEST."

IF THE NATURAL EXPONENTIAL OF 4.,B0517 IS5 100

THEN THE EXP FUNCTION PASSED THE TEST.
IF YOUR COMPUTER DOESN’'T HAVE IT

If your interpreter did not accept the EXP function, substitute the following

subroutine for EXP:

3e@@o GOTO 30999

30200 REM * EXPONENTIAL SUBROUTINE % INPUT
J0Z02 REM ALSD USES Ay B AND L INTERNALLY
30204 L=INT (1,4427%X)+1

30206 IF ABS(L)<127 THEN 30218

30208 IF X<=0 THEN 30214

3021@ PRINTX3 "IS OUT OF RANGE®"

30212 8TOP

30214 E=¢

30216 RETURN

30218 E=,693147%L -}

B=X

A=1,32988E-3-1,4131BE~4%E
A=((A*¥E-B.30136BE-3)*E+d,1B574E-2) %E
E=(((A-,1BGBB6ES)*E+,5)¥E-1)*E+1

A=2

IF L*® THEN 30238

A=.,5

L=-L

IF L=0 THEN 30244

Ko QUTPUT E

—nNZ>

123

——EXP

30238 FOR X=1 TO L
30240 E=Ax*E

30242 NEXT X

30244 XK=

30246 RETURN

To use this subroutine with the TEST PROGRAM, make the following
program changes:

25 X=

3¢ GOSUB 3vZ0d

Also See

LOG, LOG1@®,s CLG

124

FETCH(n) is used in the Digital Group Opus 1
and Opus 2 BASIC to read the contents of
addresses in the computer’s memory.

For example, ¥=FETCH(300@) assigns the decimal
value stored in memory address 3000 to the
variable X.

That value will be a number between 0 and 255
(the range of values that can be held in an 8 bit
memory byte). The highest numbered address that
can be FETCHed depends of course on the
computer’s memory size.

Function

FETCH can be used with the STUFF statement to check what STUFF has
stored in memory. (Some computers use POKE or FILL instead.)

Check your computer’s manual before executing this TEST PROGRAM to
determine that memory addresses 18368 to 18377 are reserved as free
memory. This avoids STUFFing data into memory reserved for special
purposes. If addresses 18368 to 18377 are not reserved as free memory in
your computer, then select a group of 10 free consecutive memory addresses
and change lines 30 and 70 in the TEST PROGRAM accordingly.

Test Program
190 REM ‘FETCH’ TEST PROGRAM

20 Y=

30 FOR X=18368 T0 18377
49 STUFF Y

S0 Y=Y+1

GO NEXT X

7¢ FOR X=18368 TO 18377
8@ Y=FETCH(X

899 PRINT Y3

109 NEXT X

119 PRINT

120 PRINT "'FETCH’ PASSED THE TEST IF #1 THRU %10

ARE PRINTED"
999 END

Sample Run
1 2 3 4 5 6 7 8 89 10

‘FETCH’ PASSED THE TEST IF #1 THRU #10 ARE PRINTED

125

=—=FETCH

Variations In Usage

None known.

Also See

STUFF s+ POKE: PEEK, FILLs USSR SYSTEM: EXAM

126

FILL is used by a few interpreters (e.g. the
NORTH STAR BASIC and the Digital Group
MAXI-BASIC) to assign a specified byte in the
computer’s memory an integer value between 0
and 255 (the maximum 8 bit value).

For example, FILL 3000.:15 “fills-in” memory
address 3000 with the decimal number 15.

The EXAM function can be used to inspect what
FILL has placed into memory. (Some computers
use PEEK or FETCH instead.)

Statement

Computers vary in the amount of available memory and memory addresses
that can be FILLed without erasing memory dedicated to other purposes.
Check your computer’s manual before running this TEST PROGRAM to
determine that memory addresses 18368 to 18380 are noncritical memory

locations.

Test Program

1@ REM ‘FILL’ TEST PROGRAM
20 FOR X=18368 TO 18380

30 READ Y

49 FILL XY

S0 NEXT X

60 FOR X=18368 TO 18380

70 Y=EXAM(X)

8@ PRINT CHR$(Y) 3

90 NEXT X

109 DATA B4,69,83+84,128467,79,77:80,:76,69,84:69

999 END

Sample Run

TEST COMPLETE

Variations In Usage

None known.

Also See

POKEs STUFF., EXAM.: PEEK,» FETCH. USR»

SYSTEM

127

Function

The FIX function is used to remove all numbers to
the right of the decimal point. Its operation is
similar to the INT function except FIX does not
round negative numbers down.

Example: 19 PRINT FIX(3.,8)
20 PRINT FIX(-3.B)

prints the numbers 3 and -3. While

1@ PRINT INT(3.6)
20 PRINT INT(-3.6)

prints the numbers 3 and -4.

FIX is capable of handling any number, large or small, within the
limitations of the computer’s interpreter.

Test Program
1@ REM ‘FIX’ TEST PROGRAM
20 N=-12,34586
30 A=FIX(N)
49 PRINT "FIX PASSED THE TEST IF "iN3i"IS CHANGED TO "3A
99 END

Sample Run
FIX PASSED THE TEST IF -12,3456 IS CHANGED TO -12
IF YOUR COMPUTER DOESN'T HAVE IT

If your interpreter does not have the FIX function capability, but has the
ABS, INT and SGN functions, then line 30 in the TEST PROGRAM can be
replaced with:

30 A=5GN(N)*INT(ABS(N))

Variations In Usage

None known.

Also See

INT, ABS+ SGN

128

FLASH is used by the APPLE II as either a
command or a statement to put the screen in its
FLASHing mode. In this mode, all output from the
computer is displayed alternately as white
characters on black background and then as black
characters on white background.

To restore the display to its non-flashing, normal
mode, type NORMAL.

Test Program

1¢ REM ‘FLASH’ TEST PROGRAM

20 FLASH

30 PRINT "THIS IS A FLASHY MESSAGE,"
88 END

To run this program, clear the screen and type RUN.

Sample Run

Statement
Command

THIS IS A FLASHY MESSAGE. (The screen should be flashing)

Variations In Usage

None known.

Also See

NORMAL » INVERSE

129

Command
Statement

Test Program
10 REM ‘FLOW’

FLOW is a command used by Micropolis BASIC to
activate a feature which prints program line
numbers on the screen as each line is executed by
the computer. It is used as a program
trouble-shooting aid and is turned off by the word
NOFLOW.

FLOW may be used within a program in
conjunction with NOFLOW to trace only a desired
section of the program.

TEST PROGRAM

20 PRINT "'FLOW’ TRACES EACH LINE"

30 FLOW

4@ GOTO 9@

30 PRINT "UNT
6@ NOFLOW

79 PRINT "THE
80 GOTO 110

IL TURNED OFF BY"

‘NOFLOW STATEMENT"

9¢ PRINT "THAT FOLLOWS THE ‘FLOW’ STATEMENT"

109 GOTD 3@

119 PRINT "AS ILLUSTRATED BY THIS LINE"

998 END

Sample Run

‘FLOW TRACES EACH LINE

<90 THA

T FOLLOWS THE ‘FLOW’ STATEMENT

o480 x UNTIL TURNED OFF BY

éB@} THE ‘NOFLOW’ STATEMENT
AS TLLUSTRATED BY THIS LINE

Variations In Usage

None known.

Also See

NOFLOW: TRACE s

TRACE ONs TRON

130

language.

expression:

9

.(period)

,(comma)

function.

The FMT function is used in some BASICs (e.g.
Micropolis BASIC) to format the output of a
PRINT statement. It bears a vague resemblence to
PRINT USING, and is somewhat similar to
formatting as used in the FORTRAN computer

FMT expresses the format of the numeric that is
to be printed in a string expression. The string
expression must be enclosed in quotes.

Function
Statement

The following are valid characters for the string

Each 9 determines the position of one digit in the output
field. If a 5-digit number is to be printed, five 9’s can be used
in the string expression (799999”). If a number has fewer
digits than are specified by FMT, the left most positions are
printed as zeros.

Z can be used in place of 9 as above. Leading zeros are
suppressed (replaced by blanks) if Z is used.

V aligns the decimal points. It doesn’t cause a decimal point
to be printed, however, and does not allocate an additional
print position.

If $ is used to the left of Z or 9, a $ is printed in front of the
number. Two or more $ give a “floating” $ result, i.e., the $
is printed in the position immediately to the left of the first
digit of the number.

An * is printed wherever a leading zero might occur. If both
* and $ are used the $ should be placed to the left of * (just
the opposite of PRINT USING).

A period is printed only if a period is present in the string
expression.

Commas may be used to indicate inclusion of commas in the
printed value. Commas that would occur ahead of the first
digit are not printed.

Any character string that can’t be interpreted as one of the above will be
printed as text. Therefore, labeled values can be formatted with the FMT

If the field is too small to handle the numeric value, question marks (?) are
printed at every position in the field, including any text positions.

FMT always truncates (i.e. chops) trailing digits for which no provision has
been made by the formatting expression.

131

Test Program

1¢ REM 'FMT’ TEST PROGRAM
20 PRINT FMT(Z2401,"9998899")
99 END

Sample Run
pe2401

Other examples:

Statement Result
20 PRINT FMT(-2401,"9989989") @241
20 PRINT FMT(2401 y"ZZZ2Z299") 2491
20 PRINT FMT(L23.456y"Z22Z098™") 12345
20 PRINT FMT(123.4536"2222V,89") 123.458
20 PRINT FMTC(IZ2343y" 2,222 4+222") 12345
20 PRINT FMT(1000000,"THIS BOOK IS WORTH $$$:%%%:$6%%")
THIS BOOK IS5 WORTH 1,000,000
20 PRINT FMT(LI23y"*x*%x%x399") *¥¥#%123

Variations In Usage

FMT is used as a statement (Honeywell) to format a print line similar to an
IMAGE statement. The PRINT statement that uses this format line must
contain the line number of FMT as the first item following the word PRINT.

For example:

180 PRINT, 180, X T
190 FMT FB.2» X6+ E12.5

The F6.2, X6 and E12.5 tell the computer how and where to print the
values of X and T.

F

Xn

indicates that the value is to be printed with a decimal
point. The first number (6) tells the width of the field (i.e.
the maximum number of characters to be printed including
sign, if any, and the decimal point) and the second (2) tells
the number of digits to be included to the right of the
decimal.

signals exponential form (Example: 1.385E +05). The first
number again is the width of the field but the second
number states the number of significant digits to be printed
(whole number and fraction combined).

says skip the number of places indicated by the number n. In
our example, six spaces will appear in the print line
separating the values of X and T.

132

FMT=—

IF YOUR COMPUTER DOESN’T HAVE IT

If your computer doesn’t have FMT in either form, you should try PRINT
USING. The PRINT USING equivalent of “ZZZZV.99” is “#### ##"
E12.5 can be changed to “## . #####° """, etc.

Also See

FRINT USING: IMAGE

133

Function

FN is a function that allows a “user-defined”
process to be used as if it were a built-in function.
The user-defined function is named by a letter
following FN and accompanied by one or more
values enclosed in parentheses, such as FNA(X,N).

The DEF statement defines the process that will
be executed when FN is used later.

For example:

1@ DEF FNA(X)=1/X
20 PRINT FNACN)

The FN function in this example is named “A”(FNA), and is defined in line
10 as the function 1/X. FNA is used here to compute the reciprocal of any
numerical expression (except one having a value of zero, of course).

The numeric variable (N) following FNA is substituted for the “dummy
variable” (X in this example) in the DEF statement each time FNA is
executed. Any valid numeric variable or expression can be used in place of

N.

Test Program
1@ REM ‘FN’ TEST PROGRAM

20 DEF FNX(A) = (A-32)%,5335555
30 PRINT "ENTER A TEMPERATURE IN FAHRENHEIT DEGREES"}
49 INPUT F

30 C = FNX(F)
6@ PRINT Fi"DEGREES FAHRENHEIT ="3C3i"DEGREES CELSIUS.,"
99 END

Sample Run (using 70)

ENTER A TEMPERATURE IN FAHRENHEIT DEGREES? 70
7®% DEGREES FAHRENHEIT = Z21.1111 DEGREES CELSIUS.

Variations In Usage

Some BASICs (e.g. DEC BASIC-PLUS) allow FN to be defined as a function
acting on strings.

Example: DEF FNP$(A$,N) = RIGHTH(STRINGSE(N:" ")+A% N)

can be used to “pad” a string of characters with leading blanks to cause it to
have length N.

134

FN

IF YOUR COMPUTER DOESN’T HAVE IT

If your computer doesn’t allow you to define functions this way, you will
have to write the desired function in each program line where it is needed.

Also See

DEF+ FNEND

135

Statement

Z) The FNEND statement is used in computers which
have the capability of DEFining and reDEFining a
function at different points throughout a program.
It ENDs the function’s DEFining process.

Each DEF statement which is spread out over
more than one line must end with a FNEND
statement, and the computer cannot branch out of
or into these DEF statements before the FNEND
statement is executed.

Test Program

i¢ REM ‘FNEND’ TEST PROGRAM

2@ PRINT "ENTER A YALUE FOR X THAT IS
GREATER OR LESS THAN 1@"3

38 INPUT X

4% DEF FNA(X

30 FNA=X*Z

B IF X<1@ THEN BO

7@ FNA=X/2

8@ FNEND

8¢ PRINT "THE NEW VALUE FOR X IS"3iFNA(X

999 END

Sample Run (using 6)

ENTER A YALUE FOR X THAT IS5 GREATER OR LESS THAN 107 G
THE NEW UALUE FOR X IS 1Z

Variations In Usage

None known.

Also See

DEF s FN

136

Statement

The FOR statement is part of a FOR-TO-NEXT
statement and is used to assign numbers to
“numeric variables within the range specified by
FOR-TO.

The first number immediately following the FOR
is incremented by 1 each time its corresponding
NEXT statement is executed. When the number
following TO is exceeded, program execution
continues at the line following the corresponding
NEXT statement.

Test Program

1@ REM ‘FOR’ TEST PROGRAM

20 FOR X=1 TO 5

30 PRINT Xi

49 NEXT X

30 PRINT "THE ‘FOR‘ STATEMENT PASSED THE TEST®
98 END

Sample Run
1 2 3 4 5 THE ‘FOR’ STATEMENT PASSED THE TEST

Some computers use the STEP statement to increment FOR-TO-NEXT by a
value other than one, and to allow decrementing (changing numbers in
descending order).

For more information see STEP.

Alternate Spelling

Some computers (e.g. ACORN and TRS-80 Level I) allow F. to be used in
place of FOR.

IF YOUR COMPUTER DOESN'T HAVE IT

If your computer doesn’t accept the FOR statement, you can use a counting
loop to replace it. Replace lines 20 and 40 with

20 X=

35 X=
4@ IF

—nzZzr

137

——FOR

Variations In Usage

Some computers (e.g. DEC BASIC-PLUS-2), under specific conditions allow
a FOR-TO with the NEXT only implied, not actually written.

Example:
1@ PRINT X38QR(X) FOR X=1 T0 12

prints a table of values for the numbers 1 to 12 and their square roots.

Also See

NEXT s+ STEP

138

Function

The FRAC function is used by some BASICs (e.g.
Micropolis BASIC) to isolate the fractional part of
a number along with its proper sign. For example,
30 F = FRAC(-12.,345) gives F the value -0.345.

Test Program

19 REM ‘FRAC’ TEST PROGRAM
20N = -12.5

30 F = FRAC(N)

49 PRINT "FRAC PASSED THE TEST IF -0.5 ="i F
99 END

Sample Run
FRAC PASSED THE TEST IF -@.5 = -0.5
IF YOUR COMPUTER DOESN’'T HAVE IT
If FRAC didn’t pass the test, replace line 30 with
30 F = N - SGNIN)*INT(ABS(N))

and RUN the Test Program again.
Also See

INTs FIX

139

Function

The FRE(string) function is used to report the
numer of bytes of total string space allocated but
unused in the computer’s memory. Any character
(enclosed in quotes) or string variable can be used
with the FRE function. The B$ in line 50 below is
completely arbitrary.

Most computers with FRE capability automatically
reserve 50 bytes of string space when the
FREE computer is turned on.

Test Program #1

1@ REM 'FRE(STRING)‘ TEST PROGRAM
29 PRINT "ENTER ANY COMBINATION OF LETTERS AND NUMBERS" 3

30 INPUT A%
49 PRINT "THE AMOUNT OF UNUSED STRING SPACE="3

30 PRINT FRE(B%)
98 END

Sample Run (Typical, using COMPUTER)

ENTER ANY COMBINATION OF LETTERS AND NUMBERST COMPUTER
THE AMOUNT OF UNUSED STRING SPACE = 42

Try various combinations of letters and numbers in the test program to
demonstrate the action of the FRE function.

Some computers use numbers or numeric variables in the FRE function to
report the total amount of memory remaining (not just that part reserved
for strings), similar to the MEM statement.

Test Program #2

1¢ REM 'FRE(MEMORY)' TEST PROGRAM
20 PRINT FRE(N)§"BYTES OF MEMORY REMAIN,®
99 END

Sample Run

13504 BYTES 0OF MEMORY REMAIN,

The amount of memory remaining will depend on the memory size of your
computer.

Typing NEW usually resets all String (and Numeric) variables back to null
(and zero), so the full memory is again available.

140

FRE——

Alternate Spelling

A number of BASICs, among them North Star, Processor Technology and
Digital Group MAXI-BASIC, use FREE(0) to report the total amount of
memory remaining. Try FREE(0) in line 20 of Test Program #2 to see if
your computer accepts it.

Variations In Usage

None known.

Also See

MEM: CLEARs % NEW

141

Operator

GE is used in some computers (e.g. the TI 990) as
an abbreviation for the “greater than or equal to”
sign (> =).

For more information see > =,

Test Program

1¢ REM ‘GE’ (GREATER THAN OR EQUAL TO) TEST PROGRAM
Z0 IF 2@ GE 10 THEN 50

3¢ PRINT "THE GE OPERATOR FAILED THE TEST IN LINE 2@"
49 GOTO 989

50 IF 20 GE 20 THEN B0

6@ PRINT "THE GE OPERATOR FAILED THE TEST IN LINE 50"
70 GOTO 99

8¢ PRINT "THE GE OPERATOR PASSED THE TEST"

99 END

Sample Run

THE GE OPERATOR PASSED THE TEST

Variations In Usage

None known.

Also See

#=y IF-THEN

142

Statement

GET is a statement used by some computers (e.g.
PET and APPLE 1I) to accept a single character
from the keyboard without displaying it on the
screen and without waiting for the RETURN key
to be pressed. Its use is similar to INKEY$.

With a numeric variable such as GET A, GET
accepts only numeric input. A string variable (e.g.
GET A$) will accept input from any key except the
STOP key.

The GET statement in the APPLE II causes

program execution to pause until a key is pressed.

In the PET, GET scans the keyboard. If it finds no

key pressed, it stores a null character and proceeds to the rest of the
program. (See INKEY$ for more information.)

Test Program

10 REM 'GET’ TEST PROGRAM

20 PRINT "TYPE IN ANY CHARACTER"

30 GET A%

49 IF A%$="" THEN 3@

5O PRINT "YOU JUST PRESSED THE "5A%3" KEY."
B® PRINT "PRESS "iA$i" AGAIN TO CONTINUE."
70 GET B%

80 IF B$=A% THEN 20

9@ GOTO 7@

99 END

Sample Run (using X)

TYPE IN ANY CHARACTER
¥YOU JUST PRESSED THE X KEY.
PRESS X AGAIN TO CONTINUE.

Variations In Usage

Many computers (e.g. DEC PDP-11) use GET# to read a record from disk or
tape.

Example: GET #2, RECY
READs information stored in record number REC% from file #2.

A few BASICs (e.g. NEC’s N-BASIC, TRS-80 Extended Color BASIC, and
Microsoft Level III BASIC) provide a GET@ which stores information
displayed in a section on the screen. The X,Y locations of opposite corners of
the boundary rectangle must be specified, plus the name of the array which
will store it.

143

Example:

GET@(12+8)-(25,14) »A%

saves, in array A%, characters and graphics symbols in columns 10 thru 25
on lines 8 thru 14. The information can be put back on the screen with a
similar PUT@ statement.

GET is used‘by Hewlett-Packard BASICs to LOAD a program or data file
from disk or tape. From example:

GET "PROGH"
erases any program in memory and LOADs in PROG.

GET can also be used to APPEND a program segment to the end of an
existing program by specifying the first number to be assigned to the
program being loaded.

GET "SUB1":s 500

will renumber program SUBI as it is loaded into memory, starting with line
500. All lines of the existing program with line numbers smaller than 500
will be retained and will have the SUB1 program lines attached at the end.

IF YOUR COMPUTER DOESN'T HAVE IT

If your computer wasn’t able to run the Test Program, it may use another
word to accept a character from the keyboard. Try the Test Program using
one of the following words in lines 30 and 70: INKEY$, KEY$, INCH,
INCHAR, KEYIN.

Also See

INKEY$ s KEY%, PUTs APPEND, #

144

Statement
Command

GO is used as part of GO TO and GO SUB
statements. GO usually has meaning only when
combined with another BASIC word. Most
computers don’t care if there is a space after the
GO, converting automatically to GOTO or
GOSUB. Others (e.g. TRS-80 Level I) do not allow
the space.

This program uses GO in the GO TO statement.
For more information see GOTO.

Test Program #1

1@ REM ‘GO’ TEST PROGRAM

20 PRINT "THE GO STATEMENT":
30 GO TO G@

49 PRINT "FAILED THE TEST®
5@ GOTO 98

6@ PRINT "PASSED THE TEST."
99 END

Sample Run
THE GO STATEMENT PASSED THE TEST.
This program uses GO in the GO SUB statement. For more information see
GOSUB.
Test Program #2

19 REM ‘GO’ (USED WITH SUB) TEST PROGRAM

20 GO SUB 100

30 PRINT "PASSED THE TEST WHEN USED WITH SUB."
49 GO TO 999

109 REM SUBROUTINE

112 PRINT "THE GO STATEMENT "3

120 RETURN

999 END

Sample Run

THE GO STATEMENT PASSED THE TEST WHEN USED WITH SUB,

Variations In Usage

GO is used by DATAPOINT as a short form of GOTO as a statement and as
a direct command. As a command, GO n restarts the program at line n.

Also See

¢oto., GOSUB,, IF-GOTOs» ON-GOTO» GOTO-0F» ON-
GOsuUB s+ GOSUB-0OF » CONT

145

—nZr

Statement

GOSUB is used to branch out of a program’s
“mainstream’ to a Subroutine. The GOSUB
statement must be followed by a line number to
indicate the first line of the subroutine to be
executed.

A RETURN statement must be used at the end of
a subroutine’s execution to return control from the
subroutine to the main program.

Gos.

Test Program

10 REM ‘GOSUB’ TEST PROGRAM

20 GOsSuB 100

3@ PRINT " PASSED THE TEST AT LINE 20"
4@ GOTO 999

100 REM SUBROUTINE

11¢ PRINT "THE GOSUB STATEMENT i

120 RETURN

999 END

Sample Run
THE GOSUB STATEMENT PASSED THE TEST AT LINE 20

Some computers (e.g. Sinclair ZX-80 and the ACORN ATOM) allow variable
expressions in the GOSUB statement. On such computers GOSUB N and
even GOSUB N#10+100 are acceptable statements. N must be given a
suitable value during the execution of the program. If N is a small integer,
GOSUB N#1 gives a result similar to ON N GOSUB 12, 2@, 30,... Insert
these lines into the Test Program to test for this feature:

15 N=100
20 GOsSUB N

and RUN the program.

Alternate Spelling
GOS. is used in various Tiny BASIC’s as an abbreviation for GOSUB.

Variations In Usage

None known.

Also See

RETURN: DN-GOSUB,» IF-GOSBUB

146

Statement
Command

GOSUB-OF is a multiple subroutine branching
scheme similar to ON-GOSUB used by H-P and
Tektronix computers.

For example, GOSUB X OF 10002000 causes the
computer to branch to the subroutine at 1000 if X
has a value of 1, and to 2000 if the value of X is 2.

Test Program

10 REM 'GOSUB-OF’ TEST PROGRAM

2@ PRINT "ENTER THE NUMBER 1, 2, OR 3"3
30 INPUT X

40 PRINT "THE GOSUB-OF STATEMENT "3
50 GOSUB X OF 100, 200 300

60 GOTO Zz2@

100 REM SUBROUTINE #1

110 PRINT "BRANCHED TO SUBROUTINE #=#1"
120 RETURN

200 REM SUBROUTINE #2

219 PRINT "BRANCHED TO SUBROUTINE #Z"
220 RETURN

300 REM SUBROUTINE %3

319 PRINT "BRANCHED TO SUBROUTINE #3"
320 RETURN

999 END

Sample Run

ENTER THE NUMBER 1, 2+ OR 37 1

THE GOSUB-0OF STATEMENT BRANCHED TO SUBROUTINE #1
ENTER THE NUMBER 1., 2. OR 37 2

THE GOSUB-OF STATEMENT BRANCHED TO SUBROUTINE #2
ENTER THE NUMBER 1, 24+ OR 37 3

THE GOSUB-OF STATEMENT BRANCHED TO SUBROUTINE #3
ENTER THE NUMBER 1, 24 OR 37

Variations In Usage

None known.

Also See

ON-GOSUB+ GOTO-0F s ON-GOTO

147

Statement

Z2 The GOTO statement causes program execution to
“jump” to a specified line number. Many
computers also accept this statement as two words;
GO TO.

—nZzr

Test Program

1@ REM 'GOTO’ STATEMENT TEST PROGRAM
20 PRINT "THE GOTD STATEMENT "3

GO TO 3¢ GOTO G2
GOT 4¢ PRINT "FAILED."
G. 5¢ STOP
6@ PRINT "HAS PASSED THE TEST."
99 END
Sample Run

THE GOTO STATEMENT HAS PASSED THE TEST.

Some computers (e.g. Sinclair ZX-80, the ACORN ATOM and those using
Micropolis BASIC) allow variable expressions in the GOTO statement. On
those computers, statements such as GOTO N and even GOTO N*10+ 100
are acceptable. N must be given a suitable value during the execution of the
program so that an existing line number is referenced. If N is a small
integer, GOTO N*10 gives a result similar to ON N GOTO 10, 20, 30,. ..
Insert the following lines into the Test Program to test this feature:

253 N=B@
30 GOTO N

and RUN the program.
Variations In Usage

GOTO is often used in conjunction with other key words.

Alternate Spellings

Try GOT and G. in line 30 of the test program to see if your computer
accepts these abbreviations.

Also See

IF-GOTO:s ON-GOTO:+ and GOTO-0F

148

Statement

GOTO-OF is used by some computers (e.g. Hewlett
Packard and Tektronix) as a multiple branching
tool which incorporates a number of IF-THEN
tests into a single statement.

For example, GOTD ¥ OF 100,200,300 instructs
the computer to branch to lines 100, 200 or 300 if
the integer value of X is 1, 2 or 3 respectively. If
INT X is less than 1 or more than 3, the tests in
this example all fail and execution defaults to the
next program line. The INT value of X cannot
exceed the number of possible branches in the
statement.

Most computers accept both GO TO (two words) and GOTO (one word) while
a few (e.g. the VARIAN 620) accept only the two words GO TO.
Test Program

19 REM ‘GOTO-0F’ TEST PROGRAM

20 H=2

30 GOTO X OF 404:6¢

4@ PRINT "/GOTO-0F’ FAILED THE TEST"

50 GOTO 99

6@ PRINT "‘GOTO-0F’ PASSED THE TEST"
8989 END

Sample Run

'GOTO-0F’ PASSED THE TEST
Variations In Usage
None known.

Also See

ON-GOTO s ON-GOSUB: IF-THEM: INT: GOSUB-OF

149

Command
Statement

GR is used in the APPLE II BASIC as both a
command and a program statement to change the
computer’s operation from the TEXT mode to the
GRaphics mode. GR must be executed before using
the special graphics statements PLOT, HLIN-AT
and VLIN-AT.

GR can also be used to clear the screen before
starting a new graphics display. Each time GR is
executed, the computer erases the entire screen.

Test Program

10 REM 'GR* TEST PROGRAM
20 GR

3@ COLOR=B

49 HLIN @439 AT 20

30 END

Sample Run

If the computer accepted the GR statement, a blue horizontal line should
appear across the screen.

Variations In Usage

None known.

Also See

TEXT» COLOR,» HLIN-ATs ULIN-AT, PLOT: CLS

150

GRAD is used in a few computers (e.g.
Sharp/TRS-80 Pocket Computer and Tektronix
4050 Series) to make them calculate in GRADs
instead of radians. (100 grads = 90 degrees) Most
computers are in the radian mode when powered
up, but some also have the capability of
calculating trigonometric functions in degrees and
a few can use grads.

Test Program

12 REM 'GRAD’ TEST PROGRAM

2@ R = SINC4@)

3¢ PRINT "THE SINE OF 49 RADIANS IS5"3iR
49 GRAD

S0 G = SINC4D)

B@ PRINT "THE SINE OF 4¢ GRADS I8"iG
98 END

Sample Run

THE SINE OF 40 RADIANS IS ©.745113
THE SINE OF 4¢ GRADS I5 @0.587785

Also See

RAD s DEG:s ACSs ASNs ATN,s COSy SIN, TAN

Statement
Command

151

Operator

GT is used in some computers (e.g. the T1 990) as
an alternate word for the “greater-than” sign (>).

For more information see >.

Test Program

19 REM 'GT
PROGRAM

20 IF 12 GT 3 THEN 3@

30 PRINT "THE GT OPERATOR
THE TEST"

49 GOTO 99

3@ PRINT "THE GT OPERATOR

99 END

(GREATER THAN)

Sample Run |

THE GT OPERATOR

Variations In Usage

None known.

Also See
P IF-THENs 3=y 4 <=4 =,

Ly EQ

’ TEST

FATLED

PASSED THE TEST"

PASSED THE TEST

GEs LE» LTy NE

152

Statement

HLIN-AT is used in APPLE II BASIC as a special
feature to display a Horizontal LINe AT a
specified row on the screen.

The horizontal line length is determined by two
numbers following the HLIN statement. These
numbers indicate the bounds between which the
line will extend. The line may extend any length
between columns 0 to 39.

The number following AT represents the row
number which the line must occupy. This number
may range from 0 to 39.

For example, HLIN 12,30 AT 2@ tells the
computer to draw a horizontal line from column 10 to column 30 AT row 20.

The GRaphics statement must be executed before the computer can accept
the HLIN-AT statement (see GR). The line’s color is determined by the
COLOR statement (see COLOR).

Test Program

1 REM 'HLIN-AT’ TEST PROGRAM
20 GR

30 Y=0

40 FOR X=0 TO 38

5@ COLOR = ¥

B® HLIN @,39 AT X

79 Y=¥+1

80 IF Y < 16 THEN 100
90 Y=0

100 NEXT X

9989 END

Sample Run

If the computer accepted the HLIN-AT statement, the screen should be
filled with 39 horizontal lines of various colors.

APF BASIC does not use AT in its HLIN statement. A comma is used
instead. The shape and color to be used are declared in the SHAPE and
COLOR statements prior to using HLIN.

Variations In Usage

None known.

Also See

GR» COLORs PLOT» VLIN-AT, TEXT

153

Command
Statement

HOME is a command used to clear the screen and
position the cursor in the upper left corner. It is
similar to CLS found on other computers.

HOME can also be included as a program
statement to clear the screen before the program
creates a graphics display.

Test Program

1® REM ‘HOME’ TEST PROGRAM

20 FOR I=1 TO 12

390 PRINT "THIS NEEDS TO BE ERASED"

49 NEXT I

50 HOME

B@ PRINT "HOME PASSED IF THIS IS ALL THAT IS5 DISPLAYED"
899 END

Sample Run
HOME PASSED IF THIS IS ALL THAT IS5 DISFLAYED

Also See

CLS

154

Statement
Modifier

The IF statement is part of the conditional
branching statements IF-THEN, IF-GOTO,
IF-GOSUB, IF-LET, etc., and is used to indicate
the variable to be tested by one of the relational
operators (see =, <, >, <=, >=, <>),

—nNZ>

For example: IF ¥=3 THEN 100 the computer
branches or “jumps” to line 100 IF X equals 3. If
the condition is not met (i.e. X#3), the test “falls
through” and program execution continues on the
next line.

These conditional IF-THEN tests must be placed

last on multiple statement lines because the

computer either branches to the indicated line number (if the test is true),
or falls through to the next numbered line (if the test is false).

For example: 3¢ IF %=3 THEN 10@:PRINT "X=3". The PRINT statement
can never be executed.
Test Program

19 REM “IF’ TEST PROGRAM

20 H=10

30 IF X=10 THEN G@

4¢ PRINT "‘IF’ FAILED THE TEST"

59 GOTO 99

@ PRINT "'IF’ PASSED THE TEST"
99 END

Sample Run
‘IF’ PASSED THE TEST

To further check the computer’s IF capability, see the TEST PROGRAMS
under IF-GOTO and IF-LET.

Variations In Usage

A few BASICs (e.g. DEC BASIC-PLUS-2) use IF as a modifier of most other
statements.

For example: ¥=¥ IF XY

The assignment statement X=Y will be executed only if the current
value of X is smaller than the value of Y.

Also See

IF-THEN, IF-GOTOs+ IF-LETs ELSE

155

Statement

IF-GOTO is a conditional branching statement
using one of the relational operators (see =, <, >,
<=, =, <>,

When the condition of the IF-GOTO statement is
met, the computer executes the branching
statement GOTO.

For example, IF ¥=3 GOTO 100 tells the
computer to branch or “jump” to line 100 if X equals
3. If the condition is not met (i.e. X £3), the test “falls
through” and the program execution continues on
the next line.

Test Program
19 REM ‘IF-GOTO’ TEST PROGRAM
20 K=30
3@ IF X=30 GOTO GO
49 PRINT "THE IF-GOTO STATEMENT FAILED THE TEST"
S0 GOTO 99
B® PRINT "THE IF-GODTOD STATEMENT PASSED THE TEST®
899 END

Sample Run

THE IF-GOTO STATEMENT PASSED THE TEST

Alternate Spellings

Some computers allow IF-GOT (e.g. PDP-8E) or IF-G. (e.g. TRS-80 Level D)
to be used as short forms of IF-GOTO.

Variations In Usage

Some interpreters allow the statement THEN to be used in place of GOTO.
See IF-THEN.

Also See

GOTO: GOSUB: ELSEs IF-THEN: IF

156

Statement

The IF-LET statement is a conditional LET
statement using one of the relational operators
(see =, <, >, <=, >=<>).

When the condition of the IF-LET statement is
met, the computer assigns a value to the variable
following LET.

Test Program
10 REM "IF-LET’ TEST PROGRAM
20 K=30
30 IF X:*20 LET X=10
4@ PRINT "X ="3iX
5@ PRINT " ‘IF-LET’ PASSED THE TEST IF THE VALUE OF
X I8 19"
99 END

Sample Run

Moz 10
‘IF-LET’ PASSED THE TEST IF THE VALUE OF X IS 10

Variations In Usage

Computers are not uﬁiform in their use of the LET statement. Most allow
LET to be omitted while others allow the THEN statement in place of LET.

Most computers that allow IF-LET will allow almost any executable
statement such as PRINT, READ, INPUT, GOSUB, another IF, etc.

Example:

Change 30 IF X:20 IF X<4@ X=1@

Also See

IF-THENs LET s IF

157

—nNZr

Statement

The IF-THEN statement is a conditional
branching statement using one of the relational
operators (see =, <, >, <=, >=, <>),

When the condition of the IF-THEN statement is

met, the computer executes the branching

statement number following THEN. For example,

. IF %=3 THEN 100 tells the computer to branch or

IE-THE “jump” to }ine 100 if X equals 3. If the condition is

IE-T not met (i.e. X#3), the test “falls through” and
) program execution continues on the next line.

Test Program #1

1@ REM ’‘IF-THEN’ TEST PROGRAM

20 X=30

30 IF X=30 THEN G@

49 PRINT "THE IF-THEN STATEMENT FAILED THE TEST"

39 GOTO 99

6@ PRINT "THE IF-THEN STATEMENT PASSED THE TEST IN
LINE 30"

99 END

Sampley Run

THE IF-THEN STATEMENT PASSED THE TEST IN LINE 3¢

Some computers allow math operations to be performed when the IF-THEN
statement is satisfied. For example, IF A=3 THEN X=2Z#(A + B)/3
calculates for the value of X if the variable A is equal to 3. If not, the test
fails and execution proceeds to the next line.

To test this feature in your computer, add the following program lines:

70 IF X=30 THEN X=X+d@
8@ PRINT "X="3X
90 PRINT"IF-THEN PASSED THE TEST IN LINE 7@ IF X=1Z@"

Sample Run
THE IF-THEN STATEMENT PASSED THE TEST IN LINE 3¢

K=120

IF-THEN PASSED THE TEST IN LINE 70 IF x=1Z0

Some interpreters allow any of the operating statements to be performed
when the IF-THEN condition is met. For example, IF =3 THEN END will
stop program execution when the value of X equals 3.

Add the following line to the test program to check this capability:

100 IF ¥=120 THEN PRINT "IF-THEN PASSED THE TEST IN
LINE 100"

158

IF-THEN=—=7

Sample Run
THE IF-THEN STATEMENT PASSED THE TEST IN LINE 30
H=120

IF-THEN PASSED THE TEST IN LINE 70 IF X=120
IF-THEN PASSED THE TEST IN LINE 100

Computers are not uniform in their use of the THEN statement. Many
allow THEN to be omitted when IF is followed directly by a math operator,
operating statement, or branching statement.

Test Program #2
This program tests for three variations which imply (but do not use) THEN.

19 REM TEST PROGRAM WITH IMPLIED ‘THEN‘ IN LINES 3@
6@ AND 9598

29 X=30

30 IF X=30 GOTO GO

40 PRINT "LINE 3¢ FAILED THE TEST"

S0 GOTO 8989

B@ IF X=3@ GOSUB 1¢¢

790 GOTO 988

129 REM SUBROUTINE

119 PRINT "LINES 30 AND G@ PASSED THE TEST., DOES LINE
gggen

120 RETURN

98989 IF X=30 END

Sample Run
LINES 3@ AND G® PASSED THE TEST. DUOES LINE 9987

Great caution must be used with interpreters which allow use of multiple
statement lines. The “falling thru” of an IF-THEN test is to the next line,
not the next statement on the same line. For this reason, IF-THEN tests are
usually not followed by other statements on the same line. It’s bad
programming style.

For example: IF X=5 THEN X=X+Y:PRINT ¥X. On most computers, the
PRINT statement is not executed if the value of X does not equal 5.

Some computers accept a statement such as 5¢ IF X THEN 12¢. Such
computers will transfer program control to line 120 when X contains a
non-zero value and will execute the line following line 50 when X = 0.

159

—|F-THEN

Test Program #3

19 REM ‘IF X THEN' TEST PROGRAM

2@ PRINT "TYPE IN A NUMBER"

30 INPUT X

490 IF X THEN 70

5¢ PRINT "YOUR NUMBER WAS ZERO THAT TIME."
G® GOTD 20

7@ PRINT "YOU ENTERED A NON-ZERO VALUE OF"
80 GOTO Z@

98 END

Sample Run

TYPE IN A NUMBER 7 4

YOU ENTERED A NON-ZEROD WALUE OF 4
TYPE IN A NUMBER 7 @

YOUR NUMBER WAS ZERO THAT TIME,
TYPE IN A NUMBER 7

Alternate Spellings

Some computers allow IF-THE (e.g. PDP-8E) or IF-T. (e.g. TRS-80 Level 1)
to be used as short forms of IF-THEN.

Also See

IF:, IF-GOTO,» IF-LET, ELSE: GOTODOs GOSUB, STOP, END

160

Statement

The IMAGE statement is used by some computers
(e.g. Hewlett-Packard) to specify the print format
to accompany a PRINT USING statement. For
example:

119 IMAGE BAs 2D ":"» 2Dy "2y 2D

+

18@ PRINT USING 110, “"TIME: "4 Hy M+ §
results in something like
TIME: 12:55:31

The format characters that can be used in an HP
IMAGE statement are:

A used once for each letter to be printed (a number may
preceed A, e.g. 6A, to indicate the number of characters to be
printed)

D used once for each digit to be printed (a number may also
preceed D)

E used to indicate exponential format (example: 12345.67
printed with format D.4DE would be 1.2346E +04)

S used to indicate a + or — sign is to be printed

X used once for each blank to be printed (a number may also
preceed X)

(period) used to indicate where a decimal point should be printed
(3D.2D)

,(comma) and / (slash) are used as format separators. The / also
generates a new line.

0 used to repeat a group of format descriptions (example:
2(5D.2D, 3X, 4D) is the same as 5D.2D, 3X, 4D, 5D.2D, 3X,
4D)

+ suppresses the line feed at the end of the print line causing
the next PRINT statement to print at the beginning of same
line

- suppresses the carriage return causing the next PRINT
statement to print in the next position but one line down

suppresses both the carriage return and the line feed causing
the next PRINT statement to print where the current line
ends

String constants in quotes may be used anywhere in the IMAGE line.

161

——[MAGE

Variations In Usage

None known.

Also See

FMT» 3+ PRINT USING

162

Function

The INDEX tells us the starting position of the
first character in a string which is part of a larger
string. Position is counted from the left. For
example:

INDEX("ABADABA" +"DAB") = 4

If it turns out that the small string is not part of
the larger string, INDEX = 0.

Index is similar to INSTR as used on other
computers.

Test Program

1@ REM “INDEX’ TEST PROGRAM

20 A% "KEYBOARD"

30 Bs "OAR™"

49 K = INDEX(A%$,B%)

5@ IF K<*3 THEN 110

6@ B$ = "ORE"™

70 K = INDEX(A%$,B%)

80 IF K<:@ THEN 110

9@ PRINT "'INDEX’ PASSED THE TEST"
log GOTO 39999

110 PRINT "‘INDEX’ FAILED THE TEST"
309989 END

Sample Run
"INDEX’ PASSED THE TEST
IF YOUR COMPUTER DOESN'T HAVE IT

If the Test Program failed try INSTR or POS in place of INDEX. If neither
work on your computer, use the subroutine listed under INSTR (saves space
not to duplicate it here).

To use the subroutine with this Test Program, make these program
changes:

35 N = 1

49 GOSUB 300G@
70 GOSUB 300G

Variations In Usage

None known.

Also See

INSTR s+ POS

163

Function

The INKEY$ function is used to read a character
from the keyboard each time INKEYS$ is executed.
Unlike the INPUT statement, INKEY$ does not
halt ‘execution waiting for the ENTER key to be
pressed. The computer just keeps “circling” until it
receives a message from the keyboard. Until a key
on the keyboard is pressed, INKEY$ simply reads
an “empty” string (ASCII code of 0).

Since INKEY$ doesn’t wait for you to enter a
character from the keyboard and “ENTER”, it
usually is placed in a program loop to repeatedly
scan the keyboard looking for a pressed key.

For example:

1@ IF INKEY$="X" GOTO 100

20 GOTO 1@

1090 PRINT "¥OU HIT ‘X’ DIDN'T YOUT"
110 GOTO 1@

The INKEY$ function repeatedly looks for the letter X at the keyboard to
meet the condition of the IF-THEN statement. When the letter X is entered,
the condition of the IF-THEN statement is met and the computer branches
to line 100.

Test Program

19 REM ‘INKEY$'’ TEST PROGRAM

20 CLS

30 PRINT "PRESS ANY KEY ON THE KEYBOARD®

49 AE=INKEYS$

30 IF As="" GOTO 40

6@ PRINT "YOU HAVE JUST PRESSBED THE "3A%:" KEY"

70 PRINT: PRINT "PRESS THE "3iA$3i" KEY AGAIN TO BTART
OVER"

8@ IF INKEY$=A% GOTO Z¢@

9@ GOTO 80

g9 END

Sample Run (using R)

PRESS ANY KEY ON THE KEYBOARD
¥Y0OU HAVE JUST PRESSED THE R KEY

PRESS THE R KEY AGAIN TO START OVER

164

INKEY$=——

Variations In Usage

None known.

Also See
INPUT s IF-THEN+ INPUT$, GET

165

Statement

INP stands for “INput from a Port”.

The INP statement is used to read the decimal
value of a byte of information at a specified
computer port. The byte value can be any positive
integer from 0 to 255.

For example: PRINT INP(3}) prints the decimal
value of the byte at port X.

INP is a useful tool to monitor ports for a specific
condition, such as an input request from a remote
peripheral device. Other applications might
include reading temperatures from remote sensors
on a solar hot water heating system, etc.

Test Program
18 REM ‘INP’ TEST PROGRAM
20 FOR =0 TO 255
3@ PRINT "THE DECIMAL YALUE OF THE BYTE AT PORT="3
4@ PRINT Xi"IG" §INP(X)
3@ NEXT X
99 END

Sample Run (typical)

THE DECIMAL VALUE OF THE BYTE AT PORT= 0 IS I35

THE DECIMAL VALUE OF THE BYTE AT PORT# 255 15 127

Variation In Usage

INP is also used in versions of the PDP-8 as an abbreviation for the INPUT
statement.

For more information see INPUT.

Also See

OouUTs PEEK: POKE: INPUT: FIN

166

Statement

The INPUT statement allows the user to assign
data to variables from the keyboard. When the
computer executes an INPUT statement, it prints
a question mark indicating it is waiting for you to
assign a value to a variable. It will continue to
wait until the ENTER (or RETURN) key is
pressed.

Test Program #1

190 REM “INPUT’ STATEMENT TEST PROGRAM

2¢ PRINT "ASSIGN A VALUE TO THE YARIABLE X"
3@ INPUT X

49 PRINT "THE VALUE OF X I8"3iX

99 END

Sample Run (using 10)

ASSIGN A VALUE TO THE VARIABLE X
T 10
THE VALUE OF X 1§ 1@

Alternate Spellings

Most Tiny BASICs as well as the ACORN computer allow IN. as an
abbreviation for INPUT. TRS-80 Level I will also accept 1., and some
versions of the PDP-8 allow INP.

Variations In Usage

An increasingly common variation found in microcomputer interpreters
allows INPUT to serve in both PRINT and INPUT capacities (thus
conserving space).

Test Program #2

19 REM ‘INPUT/PRINT‘ STATEMENT TEST PROGRAM

29 INPUT "ASBSIGN A VALUE TO THE YARIABLE ‘X‘/"j ¥
30 PRINT "THE WALUE OF X I8"iX

889 END

Sample Run (using 10)

ASSIGN A VALUE TO THE VARIABLE ‘X' 7 10
THE VALUE OF X I8 10

Note that no PRINT statement preceded the INPUT statement. Both oper-
ations were combined in line 20.

—nZzr

167

=——INPUT

Also See

INPUT1 s INKEY®

INP

INPUTS +

PIN

LINEINPUT +

INPUTLINE

168

INPUTLINE is similar to INPUT. It is used in
TSC Extended BASIC and in PRIME BASIC/VM
to accept an entire LINE of input and assigns it to
a single string variable. INPUTLINE prompts the
user (with a !) the same as INPUT. The string it
“inputs” may include commas, colons and other
special characters without the need for enclosing
them in quotes.

INPUTLINE is similar to LINEINPUT. (See
LINEINPUT for more information.)

Test Program

Statement

19 REM INPUTLINE TEST PROGRAM
20 PRINT "TYPE YOUR NAME - LAST, FIRST"3
3@ INPUTLINE N$
4@ PRINT "HELLO,» "3iN#s3", I‘'MCOMPUTER. MICRO."
99 END
Sample Run
TYPE YOUR NAME - LAST, FIRST | DOE, JOHN

HELLO s DOEs JOHN., I‘'M COMPUTER. MICRO.

Also See

LINEINPUT +

INPUT

169

Function

Test Program

19
20
30
ae
99

REM INPUTS$ ()

INPUT$(n) is a Microsoft BASIC function used to
read a specified number of characters from the
keyboard without displaying them on the screen.
The ENTER or RETURN key does not have to be
pressed after the last character is entered, but the
correct number of characters must be typed before
the program will proceed.

Example: z$ = INPUT$(5) causes the program to
pause while the user enters five characters.

TEST PROGRAM

PRINT "TYPE IN ANY COMBINATION OF 3 CHARACTERS."
A = INPUT$(3)
PRINT "¥0OU JUST TYPED "3iAs%

END

Sample Run (Typical)

TYPE IN ANY

COMBINATION OF 3 CHARACTERS.

You JUST TYPED QWE

Variations In Usage

None known.

Also See

INKEY$ s KEY$s GET» INPUT

170

Statement

The INPUT1 statement is used by a few computers
(e.g. North Star and Digital Group with
Maxi-BASIC) in a manner similar to the INPUT
statement, but INPUT1 stops the carriage return
and line feed after the INPUT data has been
assigned to a variable.

For more information see INPUT.

Test Program

10 REM ‘INPUT1’ TEST PROGRAM

20 PRINT "ENTER A VALUE FOR THE VARIABLE X"

30 INPUTI X

49 PRINT " WARIABLE X="iX

5@ PRINT "INPUT1 PASSED THE TEST IF THE WORDS
VARIABLE X ="3§ X

6@ PRINT "ARE PRINTED ON THE SAME LINE A5 THE 7 SIGN"

g9 END

Sample Run (using 10)
ENTER A VALUE FOR THE VARIABLE X
7?10 VARIABLE X = 10
INPUT1 PASSED THE TEST IF THE WORDS VARIABLE X = 1@
ARE PRINTED ON THE SAME LINE AS THE 7 SIGN

Variations In Usage

None known.

Also See
INPUTs INP, INPUTLINE: LINEINPUT» PIN

171

Function

INSTR(N A% +B%) is a string function that locates
the starting position of the first occurrence of
string B$ within string A$. If B$ is not found in
AS$, INSTR = 0. N is optional and is used to start
the search at the Nth character of A$. See POS for
more information.

Test Program #1

i@ REM "INSTR’ TEST PROGRAM

20 A% "PROGRAM"

30 B% "RAM"

49 K = INSTR(A%$: B%)

59 IF K<:3 THEN 110

6P B$ = "ROM"

70 K = INBTR(A%,B%)

80 IF K<:*® THEN 110

9@ PRINT "'INSTR(A%:;B%$)’ PASSED THE TEST"
100 GOTO 30989

11@ PRINT "‘'INSTR(A%$,B%)’ FAILED THE TEST"
309989 END

Sample Run

"INSTR(A%,B%$)’ PASSED THE TEST

Test Program #2

19 REM ‘INSTR(N,;A%:B%$)’ TEST PROGRAM
Z0 A% = "COMPUSOFT"

30 B$s = "0O"

4d K = INSTR(4 1A% :B%)

30 IF K=7 THEN 8¢

B@ PRINT "’'INSTR(N,A%$,B%)’ FAILED THE TEST"
70 GOTO 308988

B0® PRINT "’'INSTR(N,A%$:B%$)’ PASSED THE TEST"
308999 END

Sample Run

"INSTR(N A% +B%) PASSED THE TEST

172

INSTR=—

IF YOUR COMPUTER DOESN'T HAVE IT

If both tests failed, try the POS and INDEX functions. If your computer
uses the MID$ and LEN functions this subroutine can be used.

3epee GOTO 30999

30060 REM * INSTR SUBROUTINE * INPUT N, A%, B%,» OUTPUT K
30062 REM ALSO USES L INTERNALLY

30064 L. = LEN(B$)

30066 FOR K=N TO LEN(A%)-L+1

30068 IF B$=MID$(A%,K,L) THEN 30074

30070 NEXT K

30072 K=0

30074 RETURN

To use this subroutine with Test Program #1 make these changes:
3% N =1
49 GOSUB 300G@
790 GO5UB 30069

For Test Program #2 make these changes:

35 N = 4
49 GOSUB 30060

Also See
POS, INDEX, MID$, LEN

173

—nNZzr

Function

The INTeger function is used to round numbers off
to their integer (whole number) value. In BASIC
numbers are always rounded down. The whole
number remains the same regardless of the value
of the numbers removed from the right of the
decimal point; except, when a negative number is
integered, the resultant number is rounded off to
the next smaller whole number. For example, INT
1. (—4.65) becomes —5.

There are limits to the size of the number that
some computers will process with the INT
function. Some microcomputers will not accept a
number smaller than —32768 or larger than
+32767.

Test Program

1¢ REM ‘“INT’ TEST PROGRAM
20 READ X
39 PRINT "THE INTEGER VALUE OF"3 Xi
49 X = INT X
3¢ PRINT "Ig"is X
GO IF X=8999 THEN 9899
7¢ GOTO 20
8¢ DATA 3.,33:2.864,.,35,+-3.,15,32766,853,-32766,853,999,98
998 END
Sample Run
THE INTEGER WVALUE OF 3.33 I8 3
THE INTEGER VALUE OF 2,864 IS5 2
THE INTEGER VALUE OF .35 IS5 @
THE INTEGER VALUE OF -3.15 I5 -4
THE INTEGER YALUE OF 327686.,853 15 32766
THE INTEGER VALUE OF -32766.853 IS5 -32767
THE INTEGER VALUE OF 999.99 IS5 998

Alternate Spelling
I. is used by most Tiny BASICs as an abbreviation for INT.

Variations In Usage

None, other than the limitation indicated.

Also See

CINT %+ FIX

174

INVERSE is used by the APPLE II as either a
command or a statement to display its screen
output in INVERSE mode. In this mode, output
from the computer is displayed as black characters
on a white background. To restore the display to
its normal mode, type NORMAL.

Test Program

10
20
30
a9
99

To run this program, clear the screen and type RUN.

REM INVERSE TEST PROGRAM
PRINT "THIS DEMONSTRATES "3i
INVERSE

PRINT "INVERSE PRINTING.,"
END

Sample Run

THIS DEMONSTRATES

| INVERSE PRINTING.

Variations In Usage

None known.

Also See

MORMAL + FLAGH

Statement
Caommand

175

176

Function

The KEY$ function is used in APF Imagination
Machine BASIC to input a character without
displaying it on the screen. KEY$(n) accepts one of
only three different values for n.

KEY$(0) reads the keyboard, KEY$(1) reads the
right hand game control and KEY$(2) reads the
left hand game control.

KEY For example, A% = KEY$(®) scans the keyboard
looking for any key that is pressed. If no key is
pressed, A$ = “’ (null), otherwise A$ “reads” the

character that is typed. KEY$(0) is equivalent to
INKEYS$. (See INKEY$ for more information.)

Test Program #1

10
20
30
40
50
G
70
80
9@
98

REM KEY$(@) TEST PROGRAM

CALL 17048 'CLEARS THE SCREEN IN APF BASIC
PRINT "TYPE ANY CHARACTER"

A% = KEY$(Q)

IF As="" THEN 4@

PRINT "YOU JUST TYPED A "iA%

PRINT "TO REPEAT: TYPE "3A%$37" AGAIN,"

IF KEY(@)=A% THEN 20

GOTO 8@

END

Sample Run (using #)

TYPE ANY CHARACTER
YOU JUST TYPED A #

TO

REPEAT s TYPE # AGAIN,

R$ = KEY$(1) checks the right hand game control. If no key is pressed, R$
= 7. If one of the numeric keys 0-9 is pressed, R$ becomes that numeric
character.

When the CL button is pressed, a “?” is stored in R$. R$ = KEY$(1) will set
R$ to “!” when the EN or FIRE buttons are pressed.

Finally, R$ receives N, S, E or W to indicate which way the directional
knob has been pushed. L$ = KEY$(2) reads the left hand game control in
similar fashion.

KEYS—

Test Program #2

Sample Run (typical)

THE RIGHT HAND CONTROL GENERATED
THE LEFT HAND CONTROL GENERATED N

Alternate Spelling

KEY) to do the same thing as KEY$(0).
Also See

INKEY$,s PDLs GET, INPUT

GENERATED

10 REM KEY$®(1 & 2) TEST PROGRAM

20 R$ = KEY$(1)

30 IF R$="" THEN 20

a9 L$ = KEY$(Z)

5@ IF L$="" THEN 4¢

B@® PRINT "THE RIGHT HAND CONTROL GENERATED
79 PRINT "THE LEFT HAND CONTROL

989 END

KEY is used by Texas Instruments’ TI 99/4 in a CALL statement (i.e. CALL

"R
“iLs

177

Operator

LE is used in some computers (e.g. the TI 990) as
an alternate word for the “less than or equal to”
sign (< =).

For more information see <=,

Test Program

19 REM ‘LE (LESS THAN OR EQUAL TO) ' TEST PROGRAM
20 IF 190 LE 2@ THEN 50
30 PRINT "THE LE OPERATOR FAILED THE TEST IN LINE Zo"
49 GOTO 99
30 IF 20 LE 20 THEN 80
6@ PRINT "THE LE OPERATOR FAILED THE TEST IN LINE 30"
70 GOTO 99
80 PRINT "THE LE OPERATOR PASSED THE TEST"
99 END
Sample Run

THE LE OPERATOR PASSED THE TEST

Variations In Usage

None known.

b4

Also See

FEgyoxy o=y o4y EQy GEs GTs LT NEs IF-THEN

178

Function

The LEFT$(string,n) function is used to extract a
specific number (n) of string characters starting
from the left-most character in the string.

For example, PRINT LEFT$("RUNNING® ;3) prints
the letters RUN, which are the left 3 characters in
the string RUNNING.

The string must be enclosed in quotes or listed as
a string variable. The number of characters (n) LEFT
can be expressed as a variable, number or

arithmetic operation. A comma must separate the

string from the number.

If the value of (n) is a decimal, the computer
automatically finds its integer value.

Test Program

10 REM ‘LEFT%’ TEST PROGRAM

20 A%$="THEATER"

30 B$=LEFT$("TESTING" ;4)

49 PRINT LEFT%(A%$ 3)3" 'LEFT$’ FUNCTION PASSED THE "iB%
99 END

Sample Run

THE ‘LEFT$’ FUNCTION PASSED THE TEST

Alternate Spelling

Some BASICs (e.g. MAX BASIC and DEC BASIC-PLUS) use the
LEFT(string,n) instead.

Variations In Usage
None known.

Also See

PRINT s RIGHT$ s MID%$: CHR%: SPACE$, STR$, STRINGS,
INKEY4$, INSTRs POSs SEG$s DEFSTR

179

Function

The LEN function is used to measure the LENgth
of strings by counting the number of characters
enclosed in quotes or assigned to string variables.

For example, 1@ PRINT LEN("TEST") should
print 4, the number of letters in the word “TEST”.

L.

Test Program

19 REM 'LEN’ TEST PROGRAM

2@ PRINT "TYPE ANY COMBINATION OF LETTERS AND NUMBERS"
30 INPUT A%

49 PRINT "YOU ENTERED "3As$" WHICH CONTAING"S

50 PRINT LEN(A%$)3 "CHARACTERS"

98 END

Sample Run (using ABC123)

TYPE ANY COMBINATION OF LETTERS AND NUMBERS
? ABC1EZ3
¥OU ENTERED ABC12Z3 WHICH CONTAINS 6 CHARACTERS

Alternate Spelling
The British ACORN ATOM computer allows L. as an abbreviation for LEN.

Variations In Usage

None known.

Also See
ASC, FRE, LEFT$, MID$, RIGHTS, STR%, VAL, SEGS

180

Statement

The LET statement is used to assign values to
variables (e.g. LET X=2@). LET is required by a
few computers, but is optional on most. When not
required, it is sometimes used as a method of
“flagging” variables that are being assigned new
values or where special identification is desired.

-2

Test Program
1@ REM ‘LET’ TEST PROGRAM
20 LET X=20
30 PRINT "THE LET STATEMENT PASSED THE TEST IN LINE" X
99 END

Sample Run

THE LET STATEMENT PASSED THE TEST IN LINE 20

To determine if LET is required by your computer, delete LET from line 20
and try again.

Variations in Usage

None known.

181

Function
Statement

(‘ The LIN(n) statement (used in the
Hewlett-Packard 2000 BASIC and the Digital
Group Opus 1 and Opus 2 BASIC) causes the
computer to skip a specified number (n) of lines on
a printer or CRT before printing the next line.

Test Program

190 REM ‘LIN‘ TEST PROGRAM

20 PRINT "THE LIN STATEMENT PASSED THE TEST"

30 LIN(D)

49 PRINT "IF & LINES ARE SKIPPED BEFORE THIS LINE IS
PRINTED"

989 END

Sample Run

THE LIN STATEMENT PASSED THE TEST

IF 5 LINES ARE SKIPPED BEFORE THIS LINE I8 PRINTED

Some computers use LIN as a function in a PRINT statement. If the test
program didn’t work, try it with

30 PRINT LIN(S)
IF YOUR COMPUTER DOESN'T HAVE IT

If your computer does not have LIN(n), it can be easily simulated by
substituting (n) number of PRINT statements for LIN (n).

For example, substitute the following for line 30 in the TEST PROGRAM:

28 FOR %=1 TO 5
30 PRINT
32 NEXT X

Since each PRINT statement triggers a line-feed, these lines will cause the
computer to perform the same operation as LIN(5).

182

LIN

Variations In Usage

None known.

Also See

PRINT » UTAB

183

Statement

LINEINPUT is similar to INPUT. It accepts an
entire LINE of input up to a maximum of 254
characters and assigns it to a single string
variable.

No prompt symbol (such as a question mark) is
given by LINEINPUT. The string it “inputs” may
include commas, colons and other special
characters without the need for enclosing them in
quotes. Any character except a carriage return
will be accepted.

LINPUT

Test Program

10 REM LINEINPUT TEST PROGRAM

20 PRINT "TYPE YOUR NAME - LAST, FIRST"S
3@ LINEINPUT N&%

49 PRINT "HELLO, "sN&i", I‘'M -80, TRS."
99 END

Sample Run

TYPE YOUR NAME - LAST, FIRST DOEs JOHN
HELLO+ DOEs JOHN. I'M -80, TRS,

LINEINPUT is able to print its own prompt message. Delete line 20 and
change line 30 to

32 LINEINPUT "TYPE YOUR NAME - LAST:s FIRST "iN$
The results should be the same as before.

Alternate Spelling

Some computers allow the shortened form, LINPUT, in place of
LINEINPUT.

Also See

INPUTLINE:s INPUT

184

Command
Statement

The LIST command is used to display each
program line in the numerical order in which it
appears in the program. Some computers (or
terminals) will scroll through the entire program
list unless stopped by a specified key function.
(Control C, Control S, SHIFT @, etc.) Others will
stop after displaying the first 12, 16, 24 or more
lines, then advance one or more additional lines
each time the up-arrow, down-arrow or other Lis
appropriate key is pressed. Ll

The LIST command can also be used in
conjunction with a line number to specify a
starting point other than at the beginning. Many computers will also accept
a start and finish line number. For example, LIST1#-4% or LIST 10-40
will list only those program lines with numbers from 10 to 40.

Test Program

1@ REM 'LIST’ COMMAND TEST PROGRAM
2@ REM THIS COMMAND

30 REM WILL DISPLAY EACH LINE

49 REM AS HELD BY THE COMPUTER

30 PRINT "LIST TEST COMPLETE"

989 END

Sample Run
Type in L1STz0-30 and your computer should print:

20 REM THIS COMMAND
39 REM WILL DISPLAY EACH LINE

If your computer will not accept the line number limitations, try entering
LIST20.

Line 20 should be printed. If this test fails, try entering LIST without line
numbers.

Some computers will display line 20 and all lines following when LIST 7o
is entered. If your computer does then use LIST 20-2¢ or LIST Z0.:20 to
list line 20 alone.

Try the following list commands:

LIST-
LIST30-
LIST-30

185

=LIST

10
20
30
ae
50
6@
99

LLIST

If your computer accepted these LIST commands, LIST- should have listed
the entire program, LIST 30- the program starting with line 30, and
LIST-30 the program starting with the first line and ending with line 30. If
these commands failed, try using commas (,) in place of hyphens (-).

LIST is accepted by some computers as a program statement. To test this on
your computer, add the following line to the Test Program:

6@ LIST
If LIST is accepted as a program statement then it will print:

LIST TEST COMPLETE

REM ‘LIST’ COMMAND TEST PROGRAM
REM THIS COMMAND

REM WILL DISPLAY EACH LINE

REM AS HELD BY THE COMPUTER
PRINT "LIST TEST COMPLETE"

LIST

END

Alternate Spellings

Several abbreviations are in use, including LIS (PDP-8E), LI (Texas
Instruments 990) and L. (Tiny BASIC.).

Also See

186

Command
Statement

LLIST is used by Microsoft BASIC to list the
program currently in memory on a printer, instead
of a screen. LLIST is most often used as a
command, but may also be used as a statement
within a program.

All the options available to LIST will work with
LLIST. Since the listing is being produced on
paper and not the video screen, it will not stop
after 12, 16 or 24 lines (like LIST may do), but
will continue to the end of the program or until
BREAK, RESET, Control C, etc. is pressed.

CAUTION: A printer must be connected to the

computer and ready to operate before you type the LLIST command.
Otherwise the computer may get “hung”. The TRS-80 Model III is an
example of a computer which can be “unhung” by pressing the BREAK or
similar key.

Test Program

10 REM LLIST COMMAND TEST PROGRAM
Z0 REM THE LLIST COMMAND

30 REM WILL PRINT THIS PROGRAM

40 REM ON THE PRINTER

99 END

Sample Run

Typing LL.18T should produce the listing above at your printer. Typing
LLIST 20-3@ should print

20 REM THE LLIST COMMAND
3@ REM WILL PRINT THIS PROGRAM

Typing LL.I5T-20 should list only the first two lines, and LLIST 40-
should list only the last two lines.

To see if LLIST can be used as a program statement, add
S0 LLIST
to the Test Program and type RUN. If LLIST is accepted it should print:

1¢ REM LLIST COMMAND TEST PROGRAM
Z0 REM THE LLIST COMMAND

30 REM WILL PRINT THIS PROGRAM

490 REM ON THE PRINTER

59 LLIST

899 END

187

==L LIST

Also See

LISTs LPRINT,s LIST "P"

(ATARTI)

188

Command

The LOAD command is used to load a program
into the computer from cassette tape or disk.

Test Program

Enter this program into the computer from the

keyboard, then store it on cassette tape. (See
SAVE for details.)

1@ REM ‘LOAD’ TEST PROGRAM
20 PRINT "THIS PROGRAM TESTS THE LOAD FEATURE"
99 END

Once the program is recorded on cassette tape, erase the computer memory
with NEW, SCRATCH or whatever is appropriate.

Rewind the tape, then set the recorder to the Play mode and type the LOAD
command.

The cassette recorder’s motor is controlled by the computer which turns it
on and off before and after the LOAD cycle. The cassette should “play back”
the program, LOADing it into the computer.

List the program to verify that the program held in the computer’s memory
is identical to that originally entered (see LIST). If all looks well, RUN the
program.

If it is desired, the program can be given a name when it is SAVEd. Other
programs will then be ignored and the specified one will be LOADed when
found. Example: LOAD"TEST".

Sample Run
THIS PROGRAM TESTS THE LOAD FEATURE

Variations In Usage

LOAD “filename” is commonly used to LOAD in a program previously saved
on Disk. A filename is required.

Also See

CLOAD: SAVE,s CSAVE, LIST: NEHW

189

Function

The LOG(n) function computes the natural
logarithm of any number (n) whose value is

greater than 0. For common (base 10) logs see
LOG10 or CLG.

—-nZzr

Test Program

1® REM ’LOG’ TEST PROGRAM
20 PRINT "ENTER A POSITIVE NUMBER":

LOGE 3@ INPUT N

LR 4@ L=LO0G(N)
5@ PRINT "THE NATURAL LOG OF"SN3F"IS"iL
30999 END

Sample Run (using 100)

ENTER A POSITIVE NUMBERY 100
THE NATURAL LOG OF 100 IS 4.6@517

Alternate Spellings

Some BASICs use LN (e.g. Micropolis BASIC), some use LOGE, while a few
(e.g. DEC-10) use all three forms of the natural logarithm.

IF YOUR COMPUTER HAS NONE OF THEM
If they all fail, substitute the following subroutine:

30009 GOTO 30999

30159 REM * NATURAL LOGARITHM SUBROUTINE % INPUT X,
ouTPUT L

30152 REM USES As By C: D AND E INTERNALLY

30154 IF X:0 THEN 301G@

30156 PRINT "LOG UNDEFINED AT"3X

30158 STOP

30160 A=1

301B6E B=2Z

301684 C=.8

30166 D=X

30168 E=0

3017@ IF X<A THEN 30178
30172 K=C»X

30174 E=E+A

30176 GOTO 30170

30178 IF X:=C THEN 30186
30180 K=B#*X

30182 E=E-A
30184 GOTOD 30178

30186 X=(X-.7071@7)/(X+,707107)

30188 L=XxX

30190 L=(((.508979%L+,961471)%L+2,B885339)#X+E-.5)%.,683147
30192 IF L:1E-G THEN 30196

190

30194 L=
301896 X=
30198 RE

To use this subroutine in the TEST PROGRAM, make these program
additions:

35 X=
40 GOSUB 30150

CONVERSION FACTORS

To convert natural log to common log, multiply the natural log times
4342945. For example, ¥=LOG(N)* ,43472845, To convert common log to
natural log, multiply the common log times 2.302585.

Variations In Usage

A few computers (e.g. IMSAI 4K) use LOG to compute the COMMON LOG,
not the NATURAL LOG (but this is a rare exception).

Also See

LOG1@ s CLG

191

Function

The LOG10(n) function computes the value of the
common (base 10) logarithm of any number (n)
whose value is greater than 0.

Test Program

10 REM ‘LDG10&‘ TEST PROGRAM

20 PRINT "ENTER A POSITIVE NUMBER":
30 INPUT N

LGT 40 L=LOG1B(N)

5@ PRINT "THE COMMON LOG OF"3iN3“IS";L
30999 END

Sample Run (for 100)

ENTER A POSITIVE NUMBERY 10@
THE COMMON LOG OF 100 IS 2

Alternate Spellings

Several other words are used by various BASICs. LGT is used by some (e.g.
Tektronix 4050 series BASIC and MAX BASIC). CLG and CLOG are used
by others.

IF YOUR COMPUTER DOESN'T HAVE IT

If your computer failed the TEST PROGRAM, try the TEST PROGRAM
found under LOG. If LOG works, the common log can be computed from
LOG by adding

40 L=LO0G(N)=*,4342945

If LOG’s TEST PROGRAM also failed, substitute the subroutine found
under LOG, making the following changes:

30150 REM * COMMON LOGARITHM SUBROUTINE * INPUT X,
OQUTPUT L
30187 L=L%,4342945

and these TEST PROGRAM changes:

35 X=
40 GOSUB 30150

CONVERSION FACTORS

To convert a common log to a natural log, multiply the common log value
times 2.302585.

For example: ¥=L0OG10 (N)*2,322585

To convert a natural log to a common log, multiply the natural log value
times .4342945.

Also See

CLG» LOG

LOG10—

193

Command
Statement

LPRINT is used by Microsoft BASIC to send a
PRINT statement to a printer instead of the
screen. LPRINT may be used as either a direct
command or a program statement.

All of the options available to the PRINT
statement are available to LPRINT with the
exception of @. Included are TAB, zone printing
with commas, close printing with semicolons and
LPRINT USING. See PRINT and PRINT USING
for more information.

Caution: a printer must be hooked up to the computer and be ready to
operate before RUNning a program using LPRINT. If not, the computer
may get “hung” and the program will be lost. Later versions of Microsoft
BASIC (e.g. TRS-80 Model III) allow escape from this “hang up” by simply
pressing the BREAK key.

Test Program

19 REM LPRINT TEST PROGRAM

20 LPRINT "YOU HAVE ONE FINE PRINTER HERE!"

30 LPRINT

a9 A = 30

50 LPRINT TAB(A)Y: A A+45 A+B

6@ LPRINT "JUST MEASURING THE LENGTH OF A LINE."
70 LPRINT 1,2,3

80 LPRINT " AND CHECKING ZONE PRINTING,"

80 LPRINT "IT ALL LODKS GOOD TO ME."

19@ LPRINT USING "I‘LL GIVE YOU $=.=# FOR IT.",B/3

999 END
Sample Run
YOU HAVE ONE FINE PRINTER HERE!
30 34 3B
JUST MEASURING THE LENGTH OF A LINE.
1 2 3

AND CHECKING ZONE PRINTING.
IT ALL LOOKS GOOD TO ME.
I'LL GIVE YOU $2.67 FOR IT.

Also See

PRINT s PRINT USINGs TAB:s s(comma):s. i(semicolon)y LLIST

194

Operator

LT is used in some computers (e.g. the TI 990) as
an alternate word for the “less-than” sign (<),

For more information see <.

Test Program

- 1@ REM ‘LT(LESS-THAN)’ TEST PROGRAM
20 IF 5 LT 1@ THEN 50
30 PRINT "THE LT OPERATOR FAILED THE TEST®

49 GOTO 99
S0 PRINT "THE LT OPERATOR PFASSED THE TEST"

989 END

Sample Run
THE LT OPERATOR PASSED THE TEST

Variations In Usage

None known.

Also See
S o w=g kg ow=y o=y o4xy EQy GEs GTs LEs NEs IF-THEN

ll
|

195

Command

MAN is used in APPLE II BASIC to allow
MANual insertion of program line numbers.

If the computer is in the AUTOmatic line
numbering mode, control X must be typed before
the computer can accept the MAN command.

Test Procedure

To test the computer’s MANual feature, place the
computer in the AUTOmatic line numbering mode
by typing the command AUTO and pressing the
RETURN key. If line number 10 is printed, the
computer successfully went into the AUTOmatic

mode. Now type control X and the command MAN. Enter a few test
program lines to verify that the computer passed the MANual command

test.

Variations In Usage

None known.

Also See

AUTO

196

Statement

MAT CON is used by some computers to set the
value of each element in an array to some
CONstant--- typically the number 1.

CON may be used to redimension the array as
well, provided the number of cells in the
redimensioned array is less than or equal to the
number of cells originally reserved by the DIM
statement.

For example, if array A is declared a 3x5 array,
then MAT A=CON stores fifteen 1’s in 3 rows (with
5 in each row), while MAT A=CON(Z.:6) stores
twelve 1’s in 2 rows (with 6 1’s in each row.)

Test Program #1

19 REM * MAT CON * TEST PROGRAM
20 DIM A(3,:3)

3@ MAT A=CON

49 FOR I=1 TO 3

S0 FOR J=1 TO 5

6o PRINT ACIsJd) s

70 NEXT J
B@ PRINT
9@ NEXT I

1@0@ PRINT "'MAT CON’ PASSED THE TEST IF A"
11@ PRINT "3X5 ARRAY OF ONES WAS PRINTED.
999 END

Sample Run

11111

11111

11111

‘MAT CON’ PASSED THE TEST IF A
3X3 ARRAY OF ONES WAS PRINTED.

Test Program #2

19 REM * MAT CON # REDIMENSION TEST PROGRAM
20 DIM A(3:3)

39 MAT A=CON(Z.6)

490 FOR I=1 TO Z

S0 FOR J=1 TO 6

Go PRINT A(CI)3

70 NEXT J
8¢ PRINT
9@ NEXT I

129 PRINT "’'MAT CON’ PASSED THE REDIMENSION TEST IF A"
110 PRINT "2XB ARRAY OF ONES WAS PRINTED"
999 END

197

—MAT CON

Sample Run

111111

111111

‘MAT CON’ PASSED THE REDIMENSION TEST IF A
2XB ARRAY OF ONES WAS PRINTED

IF YOUR COMPUTER DOESN'T HAVE IT

If your computer doesn’t allow MAT CON, Line 30 can be replaced with
FOR-NEXT loops.

22 FOR I=1 7O 3
26 FOR J=1 TO 5
30 AT D) =1

34 NEXT J

38 NEXT I

Also See

MAT ZER s MAT IDN, DIM: FOR s NEXT

198

Statement

MAT IDN is used on a square matrix (2
dimensional array whose dimensions are both the
same) to form the identity matrix, a matrix with
1’s on the main diagonal and 0’s everywhere else.

For example, if matrix A is declared a 4x4 array
then MAT A=1DN generates the following matrix:

10 ¢ 0
21 e 0
o010
22 01

Test Program #1

19 REM ‘MAT IDN’ TEST PROGRAM
20 DIM ACdd)

30 MAT A= IDN

4@ FOR I=1 TO 4

30 FOR J=1 70 4

G2 PRINT ACI+d) 5

70 NEXT I
8@ PRINT
90 NEXT J

109 PRINT "'MAT IDN‘ PASSED THE TEST IF A 4X4 IDENTITY"
119 PRINT "MATRIX WAS PRINTED"
999 END

Sample Run

SIS S e
LSS N
LS AN ST
—_— S S

‘MAT IDN’ PASSED THE TEST IF A 4X4 IDENTITY
MATRIX WAS PRINTED

IDN may be used to redimension a matrix as well, provided that the
number of cells in the redimensioned matrix is less than or equal to the
number of cells originally reserved by the DIM statement.

Example: If A is a 2x5 array, MAT A=IDN(3:3) redimensions it as a 3x3
identity matrix.

199

—MAT IDN

Test Program #2

19 REM 'MAT IDN’ REDIMENSION TEST PROGRAM
Z0 DIM ACZ,3)

3@ MAT A=IDN(3,3)

49 FOR I=1 TO 3

5@ FOR J=1 TO 3

Go PRINT ACI+d) s

70 NEXT J
80 PRINT
90 NEXT I

10@ PRINT "'MAT IDN’ PASSED THE REDIMENSION TEST IF A
3X3 IDENTITY"

110 PRINT "MATRIX WAS PRINTED"

999 END

Sample Run

1o @

21 @

2 21

‘MAT IDN’ PASSED THE REDIMENSION TEST IF A 3X3 IDENTITY
MATRIX WAS PRINTED

IF YOUR COMPUTER DOESN'T HAVE IT
If your computer failed the IDN test, use the following procedure.

26 FOR I=1 TO 4
28 FOR J=1 TO 4
30 ACT»d)=0

32 NEXT J

34 A(I«IN=1

36 NEXT I

Also See

The other MAT statements, DIM: FOR » NEXT

200

Statement

MAT INPUT is used to assign values to each
element in an array via the keyboard. A DIM
statement establishes the number of array
elements that may be assigned values.

For example:

ig DIM ACS)
20 MAT INPUT A

The DIM statement allows variable A to use array
elements named A(0) to A(5). (For more
information see DIM.) MAT INPUT assigns values
for cells A(1) to A(5).

When the MAT INPUT statement is executed, the

computer prints a ? indicating it is ready to receive a value for the first
element in the array. If all elements are to be filled in one pass, a comma
must be typed after each value before the RETURN or ENTER key is
pressed. If each element in the array did not receive a value before the
RETURN or ENTER key is pressed, the computer prints a double question
mark (??) indicating more values are needed. As with an ordinary INPUT

statement, values can be entered one at a time each followed by the
RETURN.

The MAT INPUT statement assigns values to each vertical column in the
first row of two-dimensional-array variables before assigning values to the
following horizontal row.

For example,

190 DIM AC2:3)
20 MAT INPUT A

The computer assigns values to array variable elements A(1,1), A(1,2), and
A(1,3) before A(2,1), A(2,2), and A(2,3).

Most MAT INPUT handling computers allow the array size to be
established with the MAT INPUT statement if not more than 10 array
elements are used. [e.g. MAT INPUT A(Z,3).] If an array requires more than
10 elements, it must be DIMensioned.

For example:

10 DIM B(20:20)
20 MAT INPUT A(3,5)
30 MAT INPUT B(15,11)

201

—MAT INPUT

Test Program

1@ REM ‘MAT INPUT’ TEST PROGRAM

20 DIM A(3+4)

30 PRINT "ENTER 12 NUMBERS (SEPARATED BY COMMAS)"
49 MAT INPUT A

50 FOR I=1 TO 3

6@ FOR J=1 TO 4

70 PRINT ACIJ) 5

B NEXT J
g0 PRINT
100 NEXT I

11@ PRINT "THE MAT INPUT STATEMENT PASSED THE TEST"
120 PRINT "IF THE INPUT VALUES ARE PRINTED IN A"

130 PRINT "MATRIX HAVING THREE ROWS OF FOUR COLUMNS."
989 END

Sample Run (typical)

ENTER 12 NUMBERS (SEPARATED BY COMMAS)
TL233494455684+748:9410 411412

1 2 3 4

5 B 7 B

9 1¢ 11 1z
THE MAT INPUT STATEMENT PASSED THE TEST
IF THE INPUT YALUES ARE PRINTED IN A
MATRIX HAVING THREE ROWS OF FOUR COLUMNS,

IF YOUR COMPUTER DOESN’'T HAVE IT

If your computer does not have the MAT INPUT capability, it can be
replaced by FOR-NEXT and INPUT statements. Substitute the following
lines in the TEST PROGRAM:

33 FOR I=1 TO 3
38 FOR J=1 TO 4
a9 INPUT ACI D)
43 NEXT J

46 NEXT I

This substitution differs slightly from the MAT INPUT statement in that it
does require the RETURN or ENTER key to be pressed after each value is
typed.

Variations In Usage

None known.

Also See

MAT PRINTs MAT READ» FORs INPUT, DIM, NUM

202

Statement

MAT INV is used on a square matrix (2 dimen-
sional array whose dimensions are both the same)
to form a matrix that is the inverse of the starting
one.

Not all square matrices have inverses. If A is a
matrix that has an inverse, when MAT B=INU(A)
is executed, B is a matrix which, when multiplied
times A, results in the identity matrix. (See MAT
IDN))

Some computers calculate the determinant (see DET) of the matrix along
with the inverse. DET can then be tested to see if a true inverse exists. If
DET =0, the matrix has no inverse, and the values in B are invalid.

Test Program

19 REM * MAT INY % TEST PROGRAM

20 DIM A(34+3),: B(3,:3)

3¢ FOR I=1 TO 3

4¢ FOR J=1 T0O 3

o0 READ A(I +J)

B@® NEXT J

70 NEXT I

80 MAT B=INYV(A)

9¢ FOR I=1 TO 3

1@ FOR J=1 TO 3

110 PRINT B(Isd) s

120 NEXT J

130 PRINT

140 NEXT I

1530 PRINT "‘MAT INY’ PASSED THE TEST IF 3 -,5 -,5"

16@ PRINT * -1 @ in

170 PRINT * -1 '3 -5 HWAS
PRINTED"

182 DATA 1+14+1 4+ 344,45, 14241

30998 END

Sample Run

3 -3 -.5

-1 2 1

-1 .3 -.5

‘MAT INV’ PASSED THE TEST IF 3 -,
-1 @
-1

IF YOUR COMPUTER DOESN’T HAVE IT

5 "05
1
3 ~+3 WAS PRINTED

If MAT INV is not available on your computer, substitute the following sub-
routine.

203

==MAT INV

300060 GOTO 38999

3850 REM * MAT INV SUBROUTINE * INPUT N, A(,) OUTPUT B(,)
39852 REM ALSO USES I, J, K, P AND R INTERNALLY
38853 REM DIMENSION ARRAY J HERE IF N>10
3p854 FOR I=1 TO N

3p856 FOR J=1 TO N

30858 B(I,J)=A(I,J)

30860 NEXT J

30862 NEXT I

30864 M=N-1

30866 FOR K=1 TO N

30867 J(K)=0

30868 P=B(K,1)

30870 IF P<>@ THEN 30894

30872 FOR I=K+1 TO N

30873 J(K)=I

30874 IF B(I,1)=0 THEN 30888
30876 FOR J=1 TO N

30878 R=B(K,J)

30880 B(K,J)=B(I,J)

30882 B(I,J)=R

3¢884 NEXT J

3p886 GOTO 30868

30888 NEXT I

30890 PRINT"*** NO INVERSE EXISTS ***"
3892 GOTO 30999

3894 FOR J=1 TO M

30896 B(K,J)=B(K,J+1)/P

3p898 NEXT J

30908 B(K,N)=1/P

38902 FOR I=1 TO N

30904 IF I=K THEN 38916

30906 R=B(I,1)

30908 FOR J=1 TO M

30910 B(I,J)=B(I,J+1)-R*B(K,J)
30912 NEXT J

39914 B(I,N)=-R*B(K,N)

3916 NEXT I

34918 NEXT K

36920 FOR K=M TO 1 STEP -1

30922 J=J(K)

30924 IF J=0 THEN 30936

30926 FOR I=1 TO N

30928 R=B(I,K)

30930 B(I,K)=B(I,J)

36932 B(I,J)=R

30934 NEXT I

30936 NEXT K

30938 RETURN

30999 END

To use this subroutine with the TEST PROGRAM, make the follow-
ing changes to the TEST PROGRAM:

73 N=3 .
80 GOSUB 3085@

Also See

MAT IDN, MAT %, DET, FOR s+ NEXTs DIM: MAT READ:
MAT PRINT

204

Statement

MAT PRINT is used to print the values stored in
specified array elements. The number of elements
printed is determined by the DIMensioned value
assigned to the array. For more DIMensioning
information see DIM.

For example,

10 DIM ACD)
20 MAT PRINT A

prints the three values assigned to the “A” array,
A1) thru A(3).

Test Program #1

1 REM ‘MAT PRINT’ TEST PROGRAM
20 DIM A(3)

30 FOR X=1 TO 3

49 AKX =X

30 NEXT X

B@ MAT PRINT A

70 PRINT "END OF MAT PRINT TEST"
99 END

Sample Run

1

3
4
2
END OF MAT PRINT TEST
Most computers with MAT PRINT capability allow a comma following the
MAT PRINT statement, to print the array values in pre-established hori-
zontal zones. (See Comma.) To test this feature in the TEST PROGRAM,
change line 60 to:

G@ MAT PRINT A
and RUN.

205

==NMAT PRINT

Sample Run (80 Column screen)

1 2 3 4
END OF MAT PRINT TEST

I3

A semicolon (;) following the MAT PRINT statement may be used to print
the array values in a horizontal line in packed format (i.e. with only one or
two spaces separating them). (See ;) To test this feature, change line 60 to:

6@ MAT PRINT AS
and RUN.

Sample Run

1 2 3 4 5
END DF MAT PRINT TEST

The MAT PRINT statement can print the contents of arrays having more
than one dimension. The number of elements in the first dimension specifies
the number of rows to be printed while the number of elements in the
second column determines the number of columns.

For example:

DIM A(CZ:3)
MAT PRINT A

The DIM statement establishes the A variable as being capable of storing
values in a two dimensioned array which is printed by the MAT PRINT
statement as a matrix having 2 rows and 3 columns.

The printing of more than one array can be ordered in one MAT PRINT
statement by inserting a comma or semicolon between each array specified.
The results are shown by the following TEST PROGRAM.

Test Program #2

190 REM 'MAT PRINT’ WITH MULTIPLE ARRAY VARIABLES TEST
PROGRAM

20 DIM A(3)B(3:53)

30 FOR I=1 TO 3

a9 FOR J=1 TO 5

50 B(I+J)=J
6o NEXT J

70 A(I)=1

B0 NEXT I

90 MAT PRINT AiB,
102 PRINT "END OF MAT PRINT TEST"
988 END

206

MAT PRINT=——7

Sample Run
1 2 3
1 2 3 4 3
1 2 3 4 3
1 2 3 4 3

END OF MAT PRINT TEST

A few computers will allow formatted printing of arrays with MAT PRINT
USING. See PRINT USING for more information.

IF YOUR COMPUTER DOESN'T HAVE IT

If your computer does not have the MAT PRINT capability, it can be simu-
lated with FOR-NEXT and PRINT statements. Substitute the following
lines in TEST PROGRAM #2:

81 FOR X=1 TO 3

82 PRINT AC(X) 3
84 NEXT X
86 PRINT
88 FOR I=1 TO 3
90 FOrR J=1 TO 5
92 PRINT B(I,Jd)
94 NEXT J
95 PRINT
96 NEXT I
98 PRINT

Also Sée

MAT INPUT, MAT READ, s(comma),i(semicolon), FOR, PRINT, DIM,
PRINT USING

207

Statement

d MAT READ is used to read values from a DATA
statement and assign them to an array. The DIM
statement establishes the array size.

For example,

1@ DIM A(3)
20 MAT READ A

The DIM statement allows variable A to use 6
array elements named A(0) to A(5). For more
information see DIM. MAT READ fills cells A(1)
thru A(5).

The MAT READ statement assigns values to each column in the first row of
two dimensional-array variables before assigning values to the following
row.

For example:

1@ DIM A(Z:3)
20 MAT READ A

The computer reads six values from the DATA statement and assigns them
to array variables elements A(1,1), A(1,2), and A(1,3) before A(2,1), A(2,2),
and A(2,3).

Test Program

1¢ REM ‘MAT READ’ TEST PROGRAM

20 DIM A3 +d)

30 MAT READ A

49 FOR I=1 TO 3

39 FOR J=1 TO 4

G PRINT ACI)3

70 NEXT J

8@ PRINT

90 NEXT I

100 DATA 14233444548 +7+8+9510,11 4172

110 PRINT “THE MAT READ STATEMENT PASSED THE TEST"

120 PRINT "IF A MATRIX IS PRINTED HAVING 3 ROWS OF
4 COLUMNG™

998 END

208

MAT READ=——

Sample Run

1 2 3 4

2 6 7 8

8 1e 11 12
THE MAT READ STATEMENT PASSED THE TEST

IF A MATRIX IS PRINTED HAVING 3 ROWS OF 4 COLUMNS

Most MAT READ handling computers allow the array size to be established
by the MAT READ statement if not more than 10 array elements are used.
If more than 10 elements are required in an array, it must be DIMensioned.

For example,

110 DIM B(20+20)
120 MAT READ A(3.:3)
130 MAT READ B(13:11)

To test this feature in your computer, omit line 20 in the TEST PROGRAM
and change line 30 TO:

30 MAT READ A(3:4)
If your computer accepts this feature, the SAMPLE RUN should not change.
IF YOUR COMPUTER DOESN'T HAVE IT

If your computer does not have the MAT READ capability, it can be re-
placed by FOR-NEXT and READ statements.

Substitute the following lines in the TEST PROGRAM:

23 FOR I=1 TO 3

26 FOR J=1 TO 4

30 READ AC(I»J)

33 NEXT J

36 NERXT 1
Variations In Usage

None known.

Also See

MAT PRINT, MAT INPUT: READ.s DATA, DIM, FOR

209

Statement

B=

Test Program
19 REM * MAT TRN * TEST PROGRAM

20
30
a0
50
(51
70
8@
=21
100
110
120
130
140
150
160
999

DI

M A(3:+3)s B(3

FOR I=1 TO 3
FOR J=1 TO 3

ACT) =10%I+J

NEXT J

NE

KT 1

MAT B=TRN(A)
FOR J=1 TO S5

FOR I=1 T0O 3
PRINT B(JsI)
NEXT I
PRINT
NEXT J
PRINT " ‘'MAT TR
PRINT "21-25
END

Sample Run

11
12
13
14
13

21
e
et

23
24

~y
25

31
3z
33
34
335

‘MAT TRN’ PASSED TH

21-25,

AND 31-35 AR

MAT TRN is a statement used to form the trans-
pose of a matrix (2 dimensional array). If A is an
MxN array and B is an NxM array, then MAT

TRN(A) forms matrix B in such a way that the

first row of matrix A becomes the first column of
matrix B, second row of A becomes second column
of B, etc.

+3)

s
9

N’ PASSED THE TEST IF THE NUMBERS 11-15,"
AND 31-35 ARE PRINTED IN 3 COLUMNS,"

E TEST IF THE NUMBERS 11-15,
E PRINTED IN 3 COLUMNS,.

The statement MAT A=TRN(A) is legal, but only if both dimensions of A
are the same (i.e. A is a square matrix).

210

MAT TRN=—=

Variations In Usage

Some computers allow the word MAT to be optional. In those programs,
Line 80 can be replaced by:

BO B=TRN(A)
IF YOUR COMPUTER DOESN’T HAVE IT

If your computer doesn’t accept the MAT TRN statement, you can produce
the transpose of an MxN matrix with:

76 FOR I=1 TO M
78 FOR J=1 TO N
80 B(JsI)=A(IJ)
82 NEXT J

84 NEXT I

Also See

The other MAT statements, DIM: FOR s NEXT

211

Statement

MAT ZER is used by some computers to set the
value of each element of an array to 0. MAT ZER
may be used to redimension the array as well,
provided the number of cells in the redimensioned
array is less than or equal to the number of cells
originally reserved by the DIM statement.

For example, if array A is declared a 3x5 array,
then MAT A=ZER stores fifteen 0’s in 3 rows (with
5 in each row) while MAT A=FER(Z,B) stores
twelve 0’s in 2 rows (with 6 0’s in each row).

Test Program #1

1@ REM 'MAT ZER’ TEST PROGRAM

20 DIM A(3:5)

22 REM START WITH SOME NON-ZERO VALUES
24 FOR I=1 TO 3

26 A(I+I)=1

28 NEXT I

30 MAT A=ZER

4@ FOR I=1 70 3

30 FOR J=1 TO 5

Go PRINT ACI+J) 5

7@ NEXT J
80 PRINT
98 NEXT 1

1e@ PRINT "'MAT ZER’ PASSED THE TEST IF A"
119 PRINT "3X3 ARRAY OF ZEROS WAS PRINTED."
9989 END

Sample Run

VN
00 0 0
20 Q0 0
‘MAT ZER’ PASSED THE TEST IF A
3X5 ARRAY OF ZEROS WAS PRINTED,

Test Program #2

19 REM ‘MAT ZER’ REDIMENSION TEST PROGRAM
20 DIM A(3:5)

30 MAT A=ZER(Z:B6)

49 FOR I=1 70 2

5@ FOR J=1 70O G

GO PRINT ACI+d)3

70 NEXT J
80 PRINT
90 NEXT I

1@@ PRINT "'MAT ZER’ PABSED THE REDIMENSION TEST IF A"
110 PRINT "2XB ARRAY OF ZEROS WAS PRINTED"
999 END

212

MAT ZER—

Sample Run

2000 Q0

@00 Q@ 0

‘MAT ZER’ PASSED THE REDIMENSION TEST IF A
2XB ARRAY OF ZERDOS WAS PRINTED

IF YOUR COMPUTER DOESN’T HAVE IT

If your computer doesn’t allow MAT ZER, Line 30 can be replaced with
nested FOR-NEXT loops:

22 FOR I=1 TO 3
26 FOR J=1 TO 3
30 AT, 1) =0
34 NEXT J

38 NEXT I

Also See

MAT CON,» MAT IDNs DIM: FORs NEXT

213

Statement

MAT = assigns the values stored in one array to
the corresponding cells of another array. For
example, MAT B=A copies the value of array A into
array B. Most computers that accept MAT
statements will dimension B to the same dimen-
sions as A, provided sufficient space has been
reserved by a DIM statement.

Test Program

12 REM * MAT ASSIGNMENT % TEST PROGRAM
20 DIM A(2,3) s B(2:3)

3¢ FOR I=1 70 2

48 FOR J=1 TO 3

30 READ ACI)

B® NEXT J

70 NEXT I

B® MAT B=A

9@ FOR I=1 TO 2

ige FOR J=1 TO 3

110 IF B(IsJ) =% ACT+d) THEN 160
120 NEXT J
130 NEXT I

149 PRINT "THE MAT ASSIGNMENT PASSED THE TEST®
159 GOTO 999

160 PRINT "THE MAT ASSIGNMENT FAILED THE TEST"
170 DATA L1y 24 3y 4y 34 B

999 END

Sample Run

THE MAT ASSIGNMENT PASSED THE TEST

Variations In Usage

Some computers allow the word MAT to be optional. In those programs, line
80 can be replaced by

80 B=A

214

MAT =——

IF YOUR COMPUTER DOESN’T HAVE IT

If your computer failed the MAT assignment test, use nested loops to copy
the values of one array into another array. Substitute the following lines for
line 80 in the TEST PROGRAM:

76 FOR I=1 TO 2

78 FOR J=1 70 3

=17 B(Iy»d) = A(I)
82 NEXT J

Bd NEXT I

Also See

DIMs FORs» NEXTs READ: DATAs PRINT: MAT READ, MAT PRINT

215

Statement

The MAT + statement is used to add the corre-
sponding elements of two arrays of the same size
and store the results in a third array with the
same dimensions. For example, MAT C=A+B will
cause C(1,1) to contain A(1,1)+B(1,1). C(1,2) will
contain A(1,2)+B(1,2), etc.

Test Program

1@ REM ‘MAT +’ TEST PROGRAM
20 DIM A(Z2,3)s B(24+3)y C(24+3)
30 FOR I=1 TO 2
49 FOR J=1 T0O 3
5@ READ ACIsJ)
6@ NEXT J
70 FOR K=1 TO 3
8o READ B(IK)
8@ NEXT K
100 NEXT I
11¢ MAT C=A+B
120 FOR I=1 TO Z
1390 FOR J=1 TO 3
140 PRINT C(Is+d)s
150 NEXT J
160 PRINT
170 NEXT I
180 PRINT "‘MAT +‘ PASSED THE TEST IF 3 &6 g"
180 PRINT " 12
WAS PRINTED"
200 DATA 2 4, By 14 2
Z1® DATA B,10,12+y 4, 5
8999 END

Sample Run

3 6 9

12 15 18

‘MAT +’ PASSED THE TEST IF 3 6 8
12 15 18 WAS PRINTED

Variations In Usage

Some computers permit the word MAT to be optional, much as LET is
optional in most computers. In their programs, line 110 can be replaced by
110 C=A+B with the same results.

216

MAT +——

IF YOUR COMPUTER DOESN’T HAVE IT

If your computer didn’t pass the test, matrix addition can be accomplished
by replacing line 110 with:

106 FOR I=1 TO 2

198 FOR J=1 TO 3

110 CCIsd) = ACIsd) + B(I,J)
112 NEXT J

114 NEXT I

Also See

MAT - MAT *, DIM, FOR, NEXT,» MAT READ:; MAT PRINT

217

Statement

The MAT — statement is used to subtract corre-
sponding elements of two arrays of the same size
and store the results in a third array with the
same dimensions. For example, MAT C=A-B will
cause C(1,1) to contain A(1,1)—B(1,1). C(1,2) will
contain A(1,2)—B(1,2), etc.

Test Program

1@ REM ‘MAT -’ TEST PROGRAM

20 DIM A(Z2,3)y B(24+3)y C(2:3)

3¢ FOR I=1 TO 2

4¢ FOR J=1 TO 3

5@ READ AC(I+J)

6@ NEXT J

79 FOR K=1 TO 3

80 READ B(IsK)

90 NEXT K

190 NEXT I

110 MAT C=A-B

1290 FOR I=1 TO 2

130 FOR J=1 TO 3

14@ PRINT C(Is+.0) 5%

150 NEXT J

160 PRINT

170 NEXT I

180 PRINT "'MAT - PASSED THE TEST IF 1 2

199 PRINT " 4 5 B
WAS PRINTED™"

200 DATA 24+ 4,y B 1+ 24+ 3
219 DATA B,104+12s 4y 54 B
9898 END
Sample Run
1 2 3
4 5 B
‘MAT -’ PASSED THE TEST IF 1 3

4 5 6 WAS PRINTED

Variations In Usage

Some computers allow the word MAT to be optional, much as LET is
optional in most computers. In those programs, line 110 can be replaced by
112 C=A-B with the same results.

218

MAT — —

IF YOUR COMPUTER DOESN’T HAVE IT

If your computer didn’t pass the test, matrix subtraction can be accomp-
lished by replacing line 110 with:

le6 FOR I=1 TO 2

leg FOR J=1 7O 3

110 CCI+dd) = ACIsd) - B(I)
112 NEXT J

114 NEXT I

Also See

MAT +, MAT %, DIM: FOR,» NEXT: MAT READ: MAT PRINT

219

Statement -

The MAT * statement is used for two different
kinds of multiplication.

In the form MAT B=(K)#A (called scalar multi-
plication) each element of array A is multiplied by
the value of K and the result is stored in array B.
K must be in parentheses and array B must have
dimensions as array A.

The form MAT A=(K)*A is legal and stores the
result of the multiplication back in array A.

Test Program #1

10 REM * SCALAR

MULTIPLICATION TEST PROGRAM *

20 DIM ACZ2:3)» B(2:+3)
3¢ FOR I=1 TO 2

4¢ FOR J=1 TO 3

50 READ ACI+)

6@ NEXT J

70 NEXT I

B0 K=10

90 MAT B=(K)*A

100 FOR I=1 TO 2
1te FOR J=1 TO 3
120 PRINT B(I+J)3

130 NEXT J
149 PRINT
150 NEXT I
160 PRINT
170 PRINT "
180 DATA 1,
9889 END

Sample Run

10 20 30
49 5¢ BG@
‘MAT ® 7

"IMAT ¥

PASSED THE TEST IF 10

PASSED THE TEST IF 1@ 2@ 30"

4 5S¢ 60 WAS PRINTED"

2y 3y 4y 35 B

20 3¢
49 50 60 WAS PRINTED

MAT * can also be used to multiply one matrix, A, by another, B, provided
that A has dimensions MxN and B has dimensions NxP (i.e. the second
dimension of A must equal the first dimension of B). This is called Matrix

Multiplication.

The result is stored in a matrix whose dimensions must be MxP. MAT A=A*B
is illegal; however, MAT B=A%A is okay provided that A is a square matrix.
(CAUTION: MAT C=B*A gives different results than MAT C=A%B.)

220

MAT *——

Test Program #2

1@ REM * MATRIX MULTIPLICATION TEST PROGRAM *
20 DIM A(Z24+3) s B(3,2)y C(2:2)
30 FOR I=1 TO 2

4@ FOR J=1 TO 3

30 READ AC(I .

B® NEXT J

70 NEXT I

8@ FOR I=1 TO 3

9@ FOR J=1 TO 2

100 READ B(I s+

110 NEXT J

120 NEXT I

130 MAT C=A*B

149 FOR I=1 TO 2

1%¢ FOR J=1 TO 2

160 PRINT C(I.d)3

170 NEXT J

188 PRINT

190 NEXT 1

209 PRINT "‘'MAT %' PASSED THE TEST IF 10 14

219 PRINT " 4 41 WAS PRINTED™"

220 DATA 13243 45,0
230 DATA 144y 045 340
999 END

Sample Run

10 14
4 41
‘MAT =’ PASSED THE TEST IF 10 14
4 41 WAS PRINTED

Variations In Usage

Some computers may allow the word MAT to be optional. In those
programs, line 90 in TEST PROGRAM #1 can be replaced by

90 B=(K)#*A
with the same results.

Also, line 130 in TEST PROGRAM #2 would be equivalent to
130 C=A*B

221

—RART *

IF YOUR COMPUTER DOESN’T HAVE IT

If MAT * is not available on your computer, you can accomplish both kinds

of multiplication using nested FOR-NEXT loops. For scalar multiplication,
replace line 90 in TEST PROGRAM #1 with

86 FOR I=1 TO 2

g8 FOR J=1 TO 3

g0 B(I»J)=K*A(I,J)
92 NEXT J

94 NEXT 1

For matrix multiplication three extra loops are needed to replace Line 130:

122 FOR I=1 TO 2

124 FOR J=1 TO 2

126 C(Is»J)=0

128 FOR K=1 TO 3

130 C(Is+d) = CAI+d) + ACIHK) % B(K+J)
132 NEXT K

134 NEXT J

136 NEXT I

Also See

MAT +» MAT -4+ DIMs FORs NEXTs MAT READs MAT PRINT

222

Function

The MAX function is used to determine which of
two values is larger.

For example, ¥Y=A MAX 5 assigns Y the value of A
if it is larger than 5. Otherwise, Y becomes 5.

Test Program #1

10 REM ‘MAX’ TEST PROGRAM

20 A=12

3@ Y=A MAX 5

40 IF Y¥=12 THEN 70

3@ PRINT "’'MAX’ FAILED THE TEST"
6@ GOTO 99

7@ PRINT "’'MAX‘ PASSED THE TEST"
989 END

Sample Run
‘MAX’ PASSED THE TEST

Micropolis BASIC uses MAX to compare two strings and return the string
that would occur later in an alphabetical listing.

For example: MAX("ABC" ;"XYZ") returns "XYZ".

Variations In Usage

Some computers use the form MAX(A,B) for the same purpose. A few
computers can find the largest value in an array by using MAX. Example:
3@ M=MAX(A)

IF YOUR COMPUTER DOESN’T HAVE IT

The MAXimum value (Y) of two numbers can be determined by the follow-
ing formula:

Y= (A+B+ABS(A-B)) /2
or by

30 Y¥=A

32 IF Ax=B THEN 40

34 ¥=B

The MAXimum value in an array can be determined by this program:

223

Test Program #2

19 DIM A(B)

29 FOR I=1 70 6

30 READ A(ID)

49 NEXT I

30 M=AC(1)

G0 FOR I=2 TO B

70 IF Mx=AC(I) THEN 9@
g0 M=A(I)

9@ NEXT I

19® PRINT "THE MAXIMUM VALUE I8"iM
119 DATA 3:5,13+1+8:-3
999 END

Sample Run

THE MAXIMUM VALUE IS5 13

Also See

ABS+ MINs =

224

Function

MEM is usually used at the command level with a
Print command to display the amount of unused
bytes of MEMory remaining in the computer.
MEM can also be used in a program statement.

Test Program

190 REM ‘MEM’ TEST PROGRAM

2@ PRINT MEM3 "BYTES OF MEMORY ARE
REMAINING" M.

g9 END

Sample Run (Typical)
13504 BYTES OF MEMORY REMAINING

(The amount of memory available will of course depend on the memory size
of your computer.)

Alternate Spelling
M. is used by TRS-80 Level I as an abbreviation for MEM.

Variations In Usage

None known.

Also See

FREs CLEAR

225

Function

The MID$(string,n1,n2) function is used to isolate
a specific number (n2) of string characters that are
(nl) characters from the left-most character in the
string.

Forexanuﬂe,PRINT MID$("COMPUTER" +4:3)
prints the letters PUT, which are 3 MIDdle
characters starting with the fourth string charac-
ter from the left.

MID

The string must be enclosed in quotes or assigned
to a string variable. The number of characters and
the starting position can be expressed as variables,
numbers or arithmetic operations. A comma must
separate each element in the MID$ function.

If the value of nl or n2 is a decimal, the computer automatically converts to
the integer value.

Test Program #1

19 REM ‘MID$’ TEST PROGRAM

20 A$="CONTESTANT"

30 B$=MID& (A% 4.,4)

49 PRINT MID$("ATHENA"»2Z,3)3" ‘MID%’ FUNCTION PASSED

THE "3B%
99 END
Sample Run

THE ‘MID$%$’ FUNCTION PASSED THE TEST

If the length (n2) is omitted, most BASICs will simply isolate the rest of the
string. There are some, however, (e.g. TDL BASIC) that isolate only the
character in the one specified position. Others don’t allow values to be
omitted.

Test Program #2

10 REM 'MID$(A%,N)’ TEST PROGRAM
20 PRINT MID$("RODENT"3)
889 END

Did it print DENT, D or an error message?

MIDS$ is placed on the left side of the equal sign by some interpreters (e.g.
BASIC-80, TDL BASIC, etc.) to modify the contents of a string variable. For
example, 3@ MID%(A%,3,5)=B% replaces five characters of A$ with the
first five characters of B$ starting at the third position from A$’s left. If B$
does not contain five characters, blanks are inserted in A$. If the length is
omitted (5 in our example), all the rest of A$ is replaced by B$.

226

MIDS=—

Test Program #3

1@ REM ‘MID$=' TEST PROGRAM

20 A%="CORPORATION"

30 MID$(A$:+3.:4)="MPUT"

49 PRINT "A COMPUTER WOULD SURE HELP THIS "“iA%
989 END

Sample Run
A COMPUTER WOULD SURE HELP THIS COMPUTATION

Alternate Spelling

Some interpreters (e.g. DEC’s BASIC-PLUS and Harris BASIC-V) accept
MID in place of MID$ to isolate substrings.

[F YOUR COMPUTER DOESN’T HAVE IT

Most computers have ways of isolating substrings even if they don’t have
the MID$ function. SEG$ is used by some while SUBSTR is used by others.

Computers which require dimensioning of string variables (e.g. North Star,
Hewlett-Packard, etc.) use subscripts to isolate the string characters. For
example,

10 DIM A%(8)

20 A$="ABCDEFGH"
30 PRINT A%(3:35)
989 END

prints out CDE.
Sinclair ZX80 8K BASIC requires line 30 to read
30 PRINT A$(3 TO 5)

Variations In Usage

None known.

Also See

PRINT» RIGHT®, LEFT%s CHR%: SPACE$: STR$s STRINGS
INKEY$» SEGS

227

Function

The MIN function is used to determine which of
two values is smaller.

For example, ¥=A MIN 5 assigns Y the value of A
if A is smaller than 5. Otherwise, Y =5.

Test Program #1

19 REM ‘MIN’ TEST PROGRAM

20 A=2

30 Y=A MIN 5

49 IF Y¥=2 THEN 7@

S50 PRINT "'MIN’ FAILED THE TEST"
6@ GOTO 989

70 PRINT "'MIN’ PASSED THE TEST"
899 END

Sample Run

"MIN’ PASSED THE TEST

Variations In Usage

Some computers use the form MIN(A,B) for the same purpose. A few com-
puters can find the smallest value in an array by using MIN. Example:
30 M=MINC(A)

Micropolis BASIC uses MIN to compare two strings .and return the string
that would occur earlier in an alphabetical listing.

For example: MIN("ABC" »"XYZ") returns "ABC",
IF YOUR COMPUTER DOESN’T HAVE IT
The MINimum value (Y) of two numbers can be determined by this formula:
Y= (A+B-ABS(A-B)Y /2
or by
30 ¥=A
32 IF A<=B THEN 4@
34 Y=B

The MINimum value in an array can be determined by this program:

228

Test Program #2

10 DIM A(B)

20 FOR I=1 TO B

30 READ ACI)

4@ NEXT I

S0 M=AC1)

6@ FOR I=2 TO B

7¢ IF M<=A(I) THEN 9@
80 M=A(I)

90 NEXT I

100 PRINT "THE MINIMUM YALUE 18 "M
110 DATA 3+54+13+14+8,-3
999 END

Sample Run

THE MINIMUM YALUE IS5 -3

Also See

ABS, MAX,y <=

229

Function

X MOD Y is used in some computers (e.g. the H.P.
3000, COMPAL, Harris Computer Systems, and
Apple) to compute the arithmetic remainder
(MODulo) after the value X is divided by the value
Y.

For example, PRINT 8 MOD 5 prints the number
3, which is the remainder of 8 divided by 5.

A few computers automatically integer the
MODulo value.

For example, PRINT 19¢.5 MOD 4 may print the
number 2 (the integer value of the 2.5 remainder).
Test Program

19 REM ‘MOD’ TEST PROGRAM

20 A = 13 MOD 5

3¢ IF A = 3 THEN B@

49 PRINT "THE MOD FUNCTION FAILED THE TEST"
3¢ GOTO 99

B@® PRINT "THE MOD FUNCTION PASSED THE TEST"
989 END

Sample Run
THE MOD FUNCTION PASSED THE TEST
IF YOUR COMPUTER DOESN’T HAVE IT
MOD is handy but by no means irreplaceable. Here, step-by-step, is a way

around it.
290 A = 13/5
22 A = A-INT(A)
24 A = INT(A*S)

A more general form of the equation is

20 A = INTCR - Y¥INT(X/Y))
Substitute 13 for X and 5 for Y and try it in the TEST PROGRAM.
Variations In Usage

A few computers (e.g. the Harris BASIC-V) use MOD(X,Y) to compute the X
MODulo Y value.

Also See

INTs FIX

230

Command
Operator

NE is used in a few computers (e.g. the T.I. 990)
as an abbreviation for the NEW command and the
“not-equal” (<>) relational operator. It is recog-
nized as NEW when used in the command mode,
and as <> when used as a program statement.

Program #1 uses NE as the command NEW. For
more information see NEW.

Test Program #1

10 REM ‘NE(NEW)’ TEST PROGRAM
20 PRINT "HELLO THERE"
99 END

Sample Run

LIST the program to ensure it has been entered as shown. Type NE to erase
the TEST PROGRAM, then type LIST again to be certain the program has
been “erased”.

Program #2 uses NE as the “not-equal” relational operator. For more
information see <>.

Test Program #2

1@ REM 'NE (<3x)7
20 A=10

30 IF A NE Z0 THEN G

49 PRINT "THE NE OPERATOR FAILED THE TEST"
50 GOTO 99

6@ PRINT "THE NE OPERATOR PASSED THE TEST"
99 END

TEST PROGRAM

Sample Run

THE NE OPERATOR PASSED THE TEST

Variations In Usage

None other known.

Also See

NEW s <35y <4 >y 4=y =y =43 EQy GE+ GTs+ LE+ LT IF-THEN

231

Command

The NEW command erases the BASIC program(s)
stored in memory. However, it does not erase the
interpreter itself. NEW is normally used when a
new program is to be entered into the computer
and the existing program is to be deleted.

Test Program
1@ REM ‘NEW’ COMMAND TEST PROGRAM

NE Z® PRINT "HELLO THERE,"
N. 99 END
Sample Run

LIST the program to be sure it has been entered as shown. Check the
remaining memory space with the PRINT MEMory command (or PRINT
FRE(0), or other appropriate command).

Type NEW to erase the test program, then test for memory space again.
There should be a corresponding increase in available memory.

To be certain the program has been “erased”, double-check by typing LIST.
Some computers may use SCRATCH or SCR instead.

Alternate Spellings
A few computers accept NE or N. as abbreviations for NEW.

Variations In Usage

There are computers (e.g. Sinclair ZX80) that use NEW n to erase the pro-
gram and at the same time set the amount of memory available for BASIC.
If a machine language program is to be present in memory along with a
BASIC program, it is good practice (maybe even necessary) to reserve the
top portion of memory for the machine language program. n is a decimal
number.

Also See

CLEAR s SCRATCH

232

Statement

The NEXT statement is used to return program
execution to the preceding FOR statement which
uses the same variable. When the range of the
FOR statement is exceeded, the computer con-
tinues program execution at the line following the
NEXT statement.

—nZzr

For example:

1@ FOR %=1 TO 3 NEX
20 NEXT X N,
99 END

The fourth time the NEXT statement is executed,
the value of X is incremented to 4 which exceeds

the FOR statement range of 3 causing the computer to “fall through” to line
99.

Test Program #1

190 REM ‘NEXT’ TEST PROGRAM

20 FOR X=1 TO 4

30 PRINT X,

4d NEXT X

5@ PRINT

6@ PRINT "THE 'NEXT’ STATEMENT PASSED THE TEST."
99 END

Sample Run

1 2 3 4
THE ‘NEXT’ STATEMENT PASSED THE TEST.

Because NEXT statements return only to the preceding FOR statement
which uses the same variable, it is possible with most computers to use
“nested” FOR-NEXT statements. For more information see FOR.

Test Program #2

1@ REM TEST PROGRAM WITH NESTED ‘NEXT‘ STATEMENTS

2@ FOR A=1 TO 3

3@ FOR B=1 TO 4

49 PRINT A3B

3@ NEXT B

G@ PRINT

70 NEXT A

80 PRINT "THE ‘NEXT’ STATEMENT PASSED THE TEST WHEN
NESTED"

89 END

233

=——NEXT

Sample Run
1 i 1z 1 3 1 4
2o z oz z 03 z o4
3 1 3 2 3 3 3 4
THE ‘NEXT’ STATEMENT PASSED THE TEST WHEN NESTED

Many computers allow execution of a NEXT statement which does not con-
tain a variable. In this case, the computer returns to the preceding FOR
statement (regardless of its associated variable) so long as it has not ex-
ceeded its stated range.

To test for this feature, run the second TEST PROGRAM after removing the
variables A and B from the NEXT statements in line 50 and 60. The sample
run should remain the same.

Some computers allow NEXT to specify more than one variable. To end a
triple nested loop, for example, NEXT K,J,I (with the variables in reverse
order from the corresponding FOR statements) may be used.

Alternate Spellings
A few computers allow NEX and N. to be used as abbreviations for NEXT.

Variations In Usage

Some computers (e.g. DEC BASIC-PLUS-2) allow NEXT to be implied,
under certain circumstances. The FOR is written, but not the NEXT.

Example: 30 PRINT M%)} FOR ¥=1 TO 5

Also See

FOR

234

Command
Statement

The NOFLOW command is used by Micropolis
BASIC to disable its trace function (see FLOW).
NOFLOW may be used as a program statement to
turn the trace off at specified areas in the
program.

Test Program

10 REM ‘NOFLOW’ TEST PROGRAM
2¢ PRINT "THE FIRST THREE LINES OF
THIS PROGRAM"
30 NOFLOW
4¢ PRINT "ARE PRINTED WITH THE TRACE TURNED ON.,"
3@ PRINT "THIS LINE IS PRINTED WITH THE TRACE TURNED OFF."
899 END

Sample Run
RUN the Test Program after typing the FLOW command.

“10% <20: THE FIRST THREE LINES OF THIS PROGRAM
©30: ARE PRINTED WITH THE TRACE TURNED ON.
THIS LINE I8 PRINTED WITH THE TRACE TURNED OFF,

Variations In Usage

None known.

Also See

FLOW, NOTRACE: TRACE OFF, TROFF

235

Statement
Command

Test Program

NORMAL is used by the APPLE II as either a
command or a statement to return the display to
NORMAL mode. In this mode, all output from the
computer is displayed as white characters on a
black background. NORMAL is used following
either FLASH or INVERSE, both of which create
special display effects.

1® REM ‘NORMAL‘ TEST PROGRAM

20 INVERSE

3¢ PRINT “"THIS IS8 INVERSE PRINTING,"

49 NORMAL

3@ PRINT "BACK TO NORMAL"

893 END

To run this program, clear the screen and type RUN.

Sample Run

"BACK TO NORMAL

Variations In Usage

None known.

Also See

INVERSE » FLASH

236

Operator

NOT is used in IF-THEN statements as a logical
operator to reverse the condition.

For example, IF NOT(A:5) THEN G@ reads, “if
the value stored in A is NOT greater than 5,
GOTO line 60”.

Test Program #1

10 REM LOGICAL ‘NDT’ TEST PROGRAM

20 A=3

30 IF NOT(A:5) THEN GO

49 PRINT "'NOT’ FAILED THE LOGICAL DPERATOR TEST"
5@ GOTO 98

B@ PRINT "‘NOT’ PASSED THE LOGICAL OPERATOR TEST"
989 END

Sample Run

‘NOT” PASSED THE LOGICAL OPERATOR TEST

A few computers use NOT in string comparisons. For example, IF
NOT(A%="YES" OR A%="NO") THEN B6@ reads, “if the string stored in A$ is
neither a YES nor a NO, program control goes to line 60”.

Test Program #2

10 REM STRING LOGICAL ‘NOT’ TEST PRUGRAM
20 PRINT "TYPE A YES OR A ND"i

30 INPUT A%

49 IF NOT(As="YES" OR A$="NO") THEN 7@
S0 PRINT "THANK YOU"

6@ GOTO 99

7% PRINT A%3" IS MEITHER YES NOR NO!"

B0 GOTO 20

99 END

Sample Run

TYPE A YES OR A NO7? OK

OK I8 NEITHER YES NOR NO!
TYPE A YES OR A NO? NO
THANK YOU

The NOT operator is used by some computers to form the binary comple-
ment (one’s complement) of a number (i.e. each bit in the binary represen-
tation of the number is changed. All 0’s become 1’s and all 1’s become 0’s.)

237

Test Program #3

10 REM ‘NOT‘ COMPLEMENT TEST PROGRAM

20 PRINT "ENTER A NUMBER BETWEEN -327B8 AND 32787":
30 INPUT A

4 B=NOT(A)

30 PRINT "THE BINARY COMPLEMENT OF"3A35"I5"3B

6o GOTO z@

989 END

Sample Run (using 5)

ENTER A NUMBER BETWEEN -32Z7G8 AND 327677 5
THE BINARY COMPLEMENT OF 5 IS -6
ENTER A NUMBER BETWEEN -327G8 AND 327677

IF YOUR COMPUTER DOESN'T HAVE IT

By changing the stated conditions, equivalent statements can be made
without using NOT.

For example, NOT(A$="YES" OR A%="ND") is the same as A%+ :"YES" AND
A EUND",

To form the binary complement of a number, use B=-(A+1).

Variations In Usage

None known.

Also See

AND» ORs XORs IF-THEN

238

Command
Statement

The NOTRACE command is used by the APPLE II
BASIC to disable the trace function (see TRACE).
NOTRACE may be used as a program statement
to turn the trace off at specified areas in a
program.

Test Program

10 REM ‘NOTRACE’ TEST PROGRAM

2@ TRACE

39 PRINT "EACH LINE SHOULD BE TRACED"
49 NOTRACE

3@ PRINT "BY THE ‘TRACE’ STATEMENT"
B¢ PRINT "UNTIL TURNED OFF BY THE ‘NOTRACE’ STATEMENT"
99 END

Sample Run

#30 EACH LINE SHOULD BE TRACED
#4090 BY THE 'TRACE’ STATEMENT
UNTIL TURNED OFF BY THE ‘*NOTRACE’ STATEMENT

Variations In Usage

None known.

Also See
TRACE » TRACE OFF, TROFF, NOFLOMW

239

Function

NUM is a function in some BASICs (e.g. Digital
Group BASIC) that converts a numeric string into
its numeric value. That is, a string of digits
(including decimal point) is converted to the
number it represents.

For example:

3@ X = NUMO"3.2™)
49 PRINT Xy X/2

stores 5.2 in X and prints 5.2 and 2.6. “5.2” cannot be used for computations
since it is in “string” form. Converting the string to numeric form allows it
to be included in calculations such as X/2. NUM is similar to the VAL
function.

Test Program #1

1@ REM ‘NUM‘ TEST PROGRAM

20 A%="45,12"

30 A=NUM(A%)

49 PRINT "IF THE STRING "3iA%3" I8 CONVERTED TO THE
NUMBER" 5 A

3@ PRINT "THEN THE NUM FUNCTION PASSED THE TEST."

989 END

Sample Run

IF THE STRING 45,12 IS CONVERTED TO THE NUMBER 45,17
THEN THE NUM FUNCTION PASSED THE TEST.

Some computers that have MAT INPUT (e.g. DEC PDP-11) use NUM to
report how many items were typed into a list.

Test Program #2

19 REM ‘NUM (MAT INPUT)’ TEST PROGRAM
20 DIM N(2@)

3@ PRINT "TYPE A FEW NUMBERS SEPARATED BY COMMAG"
4% MAT INPUT N

5S¢ S = 0

B® FOR I=1 TO NUM

70 5 = S+N(I)

80 NEXT I

99 PRINT "THE AVERAGE OF"iNUM3"UALUES IS"3iS/NUM
99 END '

240

NUM=——

Sample Run (typical)
TYPE A FEW NUMBERS SEPARATED BY COMMAS

To18y 34y 2 8y S84, 18
THE AVERAGE OF 6 WALUES IS ZZ

Variations In Usage

None known.

Also See

VAL » MAT INPUT

241

Function

NUMS is a function similar to STR$. It creates a
string of numbers from a numeric expression.

For example, NUM$ (25.6) converts the value 25.6
into the character string “25.6”. The difference is
that arithmetic operations can be performed on the
numeric form while only string functions can be
applied to the string form.

Test Program

1@ REM ‘NUM%’ TEST PROGRAM

20 A = 123456

30 A% = NUM$(A)

49 PRINT "IF THE NUMBER"3A3"IS CONVERTED TO THE
BTRING "iA%

5@ PRINT "THEN THE NUM$ FUNCTION PASSED THE TEST."

99 END

Sample Run

IF THE NUMBER 123456 IS CONVERTED TO THE STRING 123456
THEN THE NUM$ FUNCTION PASSED THE TEST.

Variations In Usage

None known.

Also See

STR$ s VAL ABC: CHR%

242

Statement

The ON ERROR GOTO statement is used to
branch to an error subroutine when a program
error is encountered, without stopping program
execution. The ON ERROR GOTO statement must
appear in the program before an execution error is
anticipated. Any error encountered after the ON
ERROR GOTO statement causes the computer to
execute the line number listed in the ON ERROR
GOTO statement. ON ERR GOTO

Test Program

1@ REM ‘ON-ERROR-GOTO’ TEST PROGRAM

2@ ON ERROR GOTO 100

30 PRINT "ENTER A NUMBER AND ITS INVERSE WILL BE
COMPUTED" 5

49 INPUT N

5@ A=1/N

B@ PRINT "THE INVERSE OF"iNi"IS"iA

70 GOTO 3@

10¢ PRINT "THE INVERSE OF @ CANNOT BE COMPUTED -
TRY AGAIN"

119 RESUME 3@

989 END

Sample Run (using 4 and 0)

ENTER A NUMBER AND ITS INVERSE WILL BE COMPUTED?T4
THE INUVERSE OF 4 IS .25

ENTER A NUMBER AND ITS INVERSE WILL BE COMPUTED?T @
THE INVERSE OF @ CANNOT BE COMPUTED - TRY AGAIN
ENTER A NUMBER AND ITS INVERSE WILL BE COMPUTEDY

The error here was division by zero.)

If ON ERROR GOTO 0 is executed during an ON ERROR GOTO sub-
routine, the error message is printed and program execution stops. Test this
feature by adding the following line to the test program:

185 ON ERROR GOTO @

A syntax error encountered by some computers causes the line containing
the error to be printed by the edit feature after the ON ERROR GOTO
statement has been executed and program execution has stopped. The
computer is then in the Edit mode. To test this feature change line 50 in the
TEST PROGRAM to:

5@ ILLEGAL LINE

The RESUME statement is normally used to return to the main program
from an ON ERROR GOTO subroutine.

243

ON ERROR

o —————

GOT0

Alternate Spelling

A few BASICs (e.g. APPLESOFT), have ON ERR GOTO instead of ON
ERROR GOTO.

Variations In Usage

None known.

Also See

ERROR s RESUME: ERR: ERL

244

Statement

ON-GOSUB is a multiple subroutine branching
scheme which incorporates a number of IF-GOSUB
tests into a single statement.

For example, ON ¥ GOSUB 100200300
instructs the computer to branch to subroutines
starting at lines 100, 200 or 300 if the integer
value of X is 1, 2, or 3 respectively. If INT X is
less than 1 or more than 3 the tests in this
ON-GOSUB example all fail. In some computers,
execution then defaults to the next program line;
in other computers, the program “crashes” and an
error message is printed.

ON-GOS.

Test Program

10 REM ‘ON-GOSUB’ TEST PROGRAM

2@ PRINT "ENTER THE NUMBER 1, 2 OR 3"
30 INPUT X

4@ PRINT "THE ON-GOSUB STATEMENT" S

5@ ON X GOSUB 100.:200:300

6@ GOTO 20

100 REM SUBROUTINE #1

110 PRINT "BRANCHED TO SUBROUTINE #1"
120 RETURN

200 REM SUBROUTINE #2

219 PRINT "BRANCHED TO SUBROUTINE #=#2"
Z20 RETURN

300 REM SUBROUTINE =3

310 PRINT "BRANCHED TO SUBROUTINE #3"
32@ RETURN

999 END

Sample Run

ENTER THE NUMBER 1, 2 OR 37 1

THE ON-GOSUB STATEMENT BRANCHED TO SUBROUTINE #1
ENTER THE NUMBER 1, 2 OR 37 2

THE ON-GOSUB STATEMENT BRANCHED TO SUBROUTINE #Z
ENTER THE NUMBER 1, 2 OR 37 3

THE ON-GOSUB STATEMENT BRANCHED TO SUBROUTINE #3
ENTER THE NUMBER 1 Z OR 37

Use the same TEST PROGRAM and try entering decimal values larger

than 1 but smaller than 4.

Try values smaller than 1, then larger than 4.

245

——0N-GOSUB

IF YOUR COMPUTER DOESN'T HAVE IT

If your computer did not pass the ON-GOSUB test, substitute these lines:
45 IF X=1 GOSUB 100
30 IF X=2 GOSUB 200
53 IF X=3 GOSuUB 300

o

(Be careful that the value of X is not changed in the subroutine called.) If
this subroutine works, the intrinsic INT functions can be duplicated by sub-
stituting these lines:

45 IF INT(X)=1 GOSUB 100
S0 IF INTO)=2 GOSUB 200
53 IF INT(X)=3 GOSUB 300

For other tricks involving the ON-GOSUB statement, see ON-GOTO.

Alternate Spelling
TRS-80 Level I allows ON-GOS.

Variations In Usage

None known.

Also See

ON-GOTOs ON-ERROR-GOTO: GOTO-0OF . GOSUB-OF» GOSUB

246

Statement

ON-GOTO is a multiple branching scheme which
incorporates a number of IF-THEN tests into a
single statement. For example, ON ¥ GOTOD
190,200,300 instructs the computer to branch to
lines 100, 200, or 300 if the value of X is 1, 2, or 3
respectively. If X is less than 1 or more than 3.999
the tests in this ON-GOTO example all fail and
execution defaults to the next program line.

The integer value of X cannot exceed the number
of possible branches in the statement. If the value
of X is a decimal, the computer automatically
finds its integer value and selects the appropriate
branching line number.

Test Program

10 REM 'ONCX)GOTO’ TEST PROGRAM

20 PRINT "ENTER THE NUMBER 1, 2 OR 3"
30 INPUT X

49 PRINT "THE ON-GOTO STATEMENT"
30 ON X GOTO 100,200,300

BE@ PRINT "FAILED THE TEST"

7@ GOTO 989

100 PRINT "BRANCHED TO LINE 1Q@"
1i¢ GOTO 20

200 PRINT "BRANCHED TO LINE Z2@p"
219 GOTO Zo

309 PRINT "BRANCHED TO LINE 30@"
310 GOTO 2@

9898 END

Sample Run (using 1, 2 and then 3)

ENTER THE NUMBER 1,2 OR 3
Tl

THE ON-GOTO STATEMENT BRANCHED TO LINE 100
ENTER THE NUMBER 1, 2, OR 3

fHE ON-GOTO STATEMENT BRANCHED TO LINE 200
T3

THE ON-GOTO STATEMENT BRANCHED TO LINE 300
ENTER THE NUMBER 1+ 2 OR 3

Using the same TEST PROGRAM, try values smaller than 1, then larger
than 3.999.

247

—0N-GOTO

Alternate Spellings

A few computers allow abbreviations of GOTO in the ON-GOTO statement.
The PDP-8E allows ON X GOT while some Tiny BASICs allow ON X G.

IF YOUR COMPUTER DOESN'T HAVE IT

If the computer did not pass the ON-GOTO test, substitute these lines:

45 IF X=1 THEN 109
30 IF K=2 THEN 200
35 IF X=3 THEN 300

If this substitution works, the intrinsic INT functions can be duplicated by
substituting these lines.

45 IF INT(X)=1 THEN 100
3@ IF INT(X)=2 THEN 200
5% IF INT(X)=3 THEN 300

A TRICK

Errors might occur in prior rounding of the value X producing a value
slightly lower than the expected integer value. The ON-GOTO statement
can be protected from this shortcoming by slightly increasing the value X.
For example:

ON X+.1 GOTO 100, 200, 300

If the value of X in this case had been rounded down to 1.99 instead of the
expected value of 2.0, adding .1 puts X above 2(2.09), which is then rounded
down to the desired 2.0, by the intrinsic integer function. If not, no harm is
done.

Shifting The Base

When the value X is not 1, 2 or 3, an equation can take its place in order to
make ON-GOTO usable. For example:

ON X-3@ GOTO 100, 200, 300
branches to lines 100, 200 or 300 when the value of X is 51, 52 or 53 respec-
tively.
Variations In Usage

Different interpreters may have a limit to the number of branching options
(3 were used only for an example).

The ON-GOTO statement is also used with a few other key words to branch
to another part of the program when a specified condition occurs.

248

ON-GOTO——

ON END GOTO Z2@09 will send the program control to line 2000 when the
program attempts to read more DATA than is stored in a disk or tape file.
ON EOF (1) GOTO Z000 may be used for the same purpose by some
computers.

ON ERROR GOTO Z@09@ transfers control to line 2000 on any error detected
as will ON ERR GOTO 20090. See ON ERROR GOTO for more information.

Another variation of ON-GOTO is the ON X RESTORE statement. This will
reset the data pointer to the start of a DATA line whose line number is in
the list of numbers in the ON statement. Example: ON ¥ RESTORE 200,
210, 220 will restore the DATA pointer to line 200 if X is 1, to 210 if X is
2 or to 220 if X is 3. See RESTORE for more information.

Also See

ON-GDSUB s ON-ERROR s GOTO-0OF,» GOSUB-OF s GOTO

249

—nNZ2>

Statement

OPTION is used in the Harris BASIC-V with the
BASE statement to define the BASE (lowest)
variable array element as any integer value from
0 to 10.

For example:

19 OPTION BABSE=D
20 DIM ACLD)

The OPTION BASE statement defines this array
as having 6 elements [A(5) to A(10)].

If the OPTION BASE value is not specified, the
computer assumes the BASE value to be 0.

For more information see BASE.

Test Program

19 REM ‘OPTION’ TEST PROGRAM
20 DPTION BASE=3

30 DIM A(S)

49 FOR X=3 TO &

S0 AKX =X

6@ NEXT X

7¢ OPTION BASE=0

80 FOR X=0 TO 2

90 A(X)=X

100 NEXT X

11® FOR X=0 TO 3

120 PRINT AC(X) 3

130 NEXT X

149 PRINT "THE OPTION STATEMENT DID NOT CRAGH"
999 END

Sample Run

@ 1 2 3 4 5 THE OPTION STATEMENT DID NOT CRASH

Variations In Usage

ANSI Standard BASIC specifies only OPTION BASE values 0 and 1, and an
equal sign is not required following the word BASE.

Also See

BASE

250

Statement

OR is used with IF-THEN statements to create a
“logical math” operator to test for multiple condi-
tions.

For example, IF A=z OR B=6 THEN 7@ reads, “if
the value of variable A equals 2 OR the value of
variable B equals 6, OR both, the IF-THEN condi-
tion is met, and execution jumps to line 70.”

Test Program #1

1@ REM LDGICAL ‘OR’ TEST PROGRAM

20 A=8

3@ B=8B

49 IF A=2 OR B=6 THEN 7@

50 PRINT "0OR FAILED THE TEST AS A LOGICAL OPERATOR"
6@ GOTO 99

7@ PRINT "OR PASSED THE LOGICAL OPERATOR TEST"

99 END

Sample Run
DR PASSED THE LOGICAL OPERATOR TEST

A few computers allow the OR operator to be used to make compound tests
on literal strings.

For example, IF A$="Y" OR A%$="YES" THEN 80 reads, “If the string

variable A$ contains either the letter Y OR the word YES, the IF-THEN
condition is met and continues at line 80.” Some computers allow the use of
+ in place of OR.

Test Program #2

1@ REM STRING LOGICAL ‘OR’ TEST PROGRAM

20 A$="A"

3¢ Bg="F"

49 IF As="A" OR B$="B" THEN 7@

5@ PRINT "OR FAILED THE STRING LOGICAL OPERATOR TEST"
6@ GOTO 99

70 PRINT" "OR PASSED THE STRING LOGICAL OPERATOR TEST"
99 END

251

OR

Sample Run
OR PASSED THE STRING LOGICAL DOPERATOR TEST

Some computers use the logical operator OR to determine if the conditions
are met in either of two logical operators. If the condition of at least one of
the operators is met, OR responds with a TRUE value (a -1 in most com-
puters; check the user’s manual for your system). When neither condition is
met, OR responds with a FALSE value (the number 0).

For example, PRINT A=4 OR B:% reads, “If A has a value of 4 OR the
value stored in B is greater than 5, OR both, the computer will print the
number -1.” If neither condition is met, the computer will print a 0.

Test Program #3

19 REM ‘OR’ LOGICAL TEST PROGRAM

20 PRINT "ENTER A NUMBER FROM 1 TO 10"5

30 INPUT A

49 B= A1 OR AX1O

5@ IF B<>0 THEN B@

B@ PRINT A3 "IS A NUMBER BETWEEN 1 AND 10"

79 GOTO Z@

B¢ PRINT A3 "IS5 NOT GREATER THAN @ AND LESS THAN 11"
g0 GOTO Ze@

99 END

Sample Runs (typical)

ENTER A NUMBER FROM 1 TO 107 G

6 I8 A NUMBER BETWEEN 1 AND 10
ENTER A NUMBER FROM 1 TO 107 13

13 IS5 NOT GREATER THAN @ AND LESS THAN 11

The OR operator is used by a few computers to compute the binary logical
OR of two numbers following the rules of Boolean Algebra. OR compares
the binary forms of two numbers bit by bit. If either ORed bit is a 1, the
computer outputs a 1.

For example:

0ORO

=)
I
b etk O

OR
10R
OR

O

[T

252

OR

Therefore, when the computer ORs one number with another, each number’s
bits are logically ORed with the other number’s corresponding bits, produc-
ing a third number.

For example:

DECIMAL BINARY
3 0011
(logical) OR
5 0101
= 7 0111

In this example, the only time a 0 results is when both bits are 0.

Test Program #4

19 REM ‘OR‘ BINARY LOGIC TEST PROGRAM

20 PRINT "ENTER A VALUE FOR X"}

30 INPUT X

490 PRINT "ENTER A VALUE FOR Y"j

S0 INPUT ¥

6@ A = X OR Y

70 PRINT "THE LOGICAL ‘OR‘ VALUE OF "3X3" AND "3Y;:

"I "3iA
80 GOTO 20
99 END

Sample Run (using 6 and 10)

ENTER A VALUE FOR X7 B

ENTER A UVALUE FOR Y7 10

THE LOGICAL ‘OR’ VALUE OF 6 AND 10 IS8 14
ENTER A VALUE FOR X7

Variations In Usage

The OR operator is sometimes used in a different form, OR(P$,Q$), to
modify strings. If P$ and Q$ are strings, their contents will be ORed charac-
ter by character with the results stored in P$. If P$ has fewer characters
than Q$, the remaining characters in Q$ are ignored. If Q$ has fewer
characters, the remaining characters in P$ are unchanged.

The WANG 2200B also accepts OR(A$,B), where A$ is a string and B is a
hex constant. Each character of A$ is ORed with the hex value B and the
results stored in A$.

Examples: If P$="ABC” and Q$="DEF”, OR(P$,Q$) sets P$ to "EGG”. If
A$="DDD”, OR(A$,02) sets A$ to “FFF”

263

OR

Test Program #5

1® REM ‘OR’ STRING MODIFIER TEST PROGRAM

20 A%$="ABC"

30 Bs="LMN"

49 OR(A$:B%)

3@ PRINT "OR PASSED THE TEST IF "iAs%i"=MOO"
989 END

Sample Run
OR PASSED THE TEST IF MOO=MOO
IF YOUR COMPUTER DOESN'T HAVE IT

If you don’t have the logical OR operator available on your computer, its
effect can be simulated with subtraction and multiplication. Replace line 40
of Test Program #1 with:

a4 IF (A-Z) ¥ (B-B) = @ THEN 7@

Also See

AND » XOR s NOT s +4 *

254

Statement

The OUT statement is used to send a number
(byte value) to a specified computer OUTput port.

The OUT statement format is QUT (port, byte).

The byte and port values must be positive integers
or variables between 0 and 255. For example: OUT
255, 4 sends the binary equivalent of 4 (decimal)
to port number 255.

Press the Play button on the cassette recorder and
try this program.

Test Program #1 (Configured for TRS-80)

1@ REM ‘0UT’ TEST PROGRAM

20 PRINT "ENTER ‘4’ TO TURN ON THE CASSETTE RECORDER
MOTOR™

30 INPUT X

49 0UT 255X

390 PRINT “"ENTER ‘0’ TO TURN THE MOTOR OFF"

B@ INPUT X

79 OUT 255X

889 END

Sample Run

ENTER ‘4’ TO TURN ON THE CASSETTE RECORDER MOTOR
T od

ENTER '@/ TO TURN THE MOTOR OFF

To

If the cassette recorder motor did not turn on, try this program to find
which port and byte numbers work for your computer.

Test Program #2

19 REM ‘0UT‘ SEARCH PROGRAM
2@ FOR P=¢ TO 255

3@ FOR B=0 TO 255

49 PRINT "PORT#"iP,

5@ PRINT "BYTE#";3B

6@ 0UT P»B

79 NEXT B

8@ NEXT P

99 END

255

Variations In Usage

None known.

Also See

INPy» PINs PEEKs POKE

256

Statement

PAUSE is a statement used by the Sharp/TRS-80
Pocket computer to display data in the window.
PAUSE is like the PRINT statement except that a
pause of 0.85 seconds is generated before the pro-
gram resumes. (On the Pocket computer, PRINT
stops the program until the user restarts it by
pressing the ENTER key.)

Example: PAUSE A$3F displays the contents of A$
and the value of F next to each other.

PAUSE J,K displays the value of J at the left edge
of the display and the value of K starting in
column 13 of the 24 character screen.

The output can be formatted with USING. (See PRINT USING.)

Example: PAUSE USING"#####,s#";C displays a number, C, chopped (not
rounded) after 2 decimal places. The format specified by the USING clause
stays in effect for all PRINT and PAUSE statements until another USING
clause alters or cancels it. PAUSE USING3iN cancels any existing format
before printing the value of N.

Variations In Usage

A few BASICs (e.g. Processor Tech) use the statement PAUSEn to cause the
program to PAUSE for n tenths of a second before continuing execution.

Test Program #1

1@ REM ‘PAUSE’ TEST PROGRAM

20 PRINT "PAUSE PASSED THE TEST IF THIS"
30 PRINT "MESSAGE STAYS ON THE SCREEN FOR"
49 PRINT "FIVE SECONDS.,.,.."

3@ PAUSE 50

6@ PRINT "BEFORE THIS PART IS PRINTED,"
989 END

Sample Run

PAUSE PASSED THE TEST IF THIS
MESSAGE STAYS ON THE SCREEN FOR
FIVE SECONDS.... (pause)

BEFORE THIS PART IS PRINTED.

257

=—=pPAUSE

IF YOUR COMPUTER DOESN'T HAVE IT

If your computer failed the test, you can build in a pause with a FOR-NEXT
loop. By experimenting, the proper number of loops can be determined for
the desired time lapse. Then substitute these lines for line 50:

3@ FOR X=1 TO 1800
35 NEXT X

changing the 1800 to the number that causes your computer to PAUSE for
five seconds.

Also See

PRINT» PRINT USING

258

Function

PDL is a special function used in APPLE II BASIC
to indicate the settings of two game control units.
The control units are identified as PDL(0) and
PDL(1). (PDL is an abbreviation for Paddle and
refers to control game “paddles”.)

Test Program

le¢ REM ‘PDL’ TEST PROGRAM

20 A=PDL (D)

3@ B=PDL (1)

4¢ PRINT "THE VALUE OF PDL(@) I5"3iA

2@ PRINT "THE WALUE OF PDL(1) IS"3iB

B@ PRINT "CHANGE THE CONTROL UNIT SETTINGS AND (RUN)
AGAIN"

98 END

Sample Run (typical)

THE VALUE OF PDL(®) IS 13
THE YVALUE OF PDL(1) IS 146
CHANGE THE CONTROL UNIT SETTINGS AND (RUN) AGAIN

Variations In Usage

None known.

Also See
GR:» PLOT, COLOR: KEY$

259

Statement

PEEK is used to examine the contents of a specific
address in the computer’s memory.

For example, X=PEEK (1837@) assigns the
numeric value stored in memory address 18370 to
the variable X.

The PEEK statement reports the contents of a
memory address as a number between 0 and 255
(the range of values that can be held in an 8-bit
memory cell). PEEK can be used with the POKE statement to read what
POKE has POKEd into memory. The highest number address that can be
PEEKed of course depends on the computer’s memory size.

Check your computer’s manual before executing this Test Program to
determine that memory addresses 18368 to 18380 are reserved as a free
memory. This avoids POKing data into memory addresses reserved for
normal computer operation. If addresses 18368 to 18380 are not reserved as
free memory in your computer, then select a group of 13 consecutive free
memory addresses and change lines 20 and 60 in the TEST PROGRAM
accordingly.

Test Program (Configured for TRS-80)

19 REM 'PEEK’ TEST PROGRAM
20 FOR X=18368 TO 18380

30 READ V¥

49 PORKE XY

30 NEXT X

B@® FOR X=18368 TO 18380

70 Y=PEEK(X)

80 PRINT CHR$(Y) 3

99 NEXT X

100 DATA B4,69,83,84,128+67:79,77480,76,69,84,69
999 END

Sample Run
TEST COMPLETE

The PEEK and POKE statements are also used with the USR(X) statement
to run machine language subroutines.

260

Variations In Usage

None known.

Also See

POKE» USR(X) s SYSTEM: EXAMs FETCH, STUFF, FILL

PEEK=——

261

Function

10
20
30
49

50

99

Sample Run

PI is used to represent the value of m (3.14159265).

Test Program

REM ‘PI‘ TEST PROGRAM

R=B

C=2%PI*R

PRINT "THE CIRCUMFERENCE OF A
CIRCLE"

PRINT "WITH A RADIUS OF B FEET
IS"SCS"FEET"

END

THE CIRCUMFERENCE OF A CIRCLE
WITH A RADIUS OF 6 FEET IS 37.69891 FEET

IF YOUR COMPUTER DOESN’T HAVE IT

If your computer does not have the PI capability, substitute the value

3.14159265 for it.
Variations In Usage

PI(X) in Harris BASIC-V computes the value of PI*X.

262

PIN is used by a few interpreters (e.g. Heath
Benton Harbor BASIC) to read the decimal value
of a byte of information at a specified computer
port. The byte value can be any positive integer
from 0 to 255.

For example, PRINT PIN(X) prints the decimal
value of the byte at port X.

Test Program

1@ REM ‘PIN‘ TEST PROGRAM
29 FOR X=0 TO 2595

Function

30 PRINT “"THE DECIMAL VALUE OF THE BYTE AT PORT#"3

HKETIS"SPINCGY)
48 NEXT X
89 END

Sample Run (Typical)

THE DECIMAL VALUE OF THE BYTE AT PORT#

THE DECIMAL YALUE OF THE BYTE AT PORT#

Alternate Word
See INP

Variations In Usage

None known.

Also See
INP, OUT» PEEK, USRs INPUT

263

Statement

PLOT (nl, n2) is used in APPLE II BASIC as a
special feature to “turn on” or “light up” a colored
graphics block in a predetermined grid on the
screen. The color is determined by the COLOR
statement. (See COLOR)

The grid block to be lit is specified by the two
numbers following the PLOT statement. The first
number (nl) specifies the column and the second
number (n2) specifies the row.

For example, PLOT 1@.:25 instructs the computer
to color a graphics block located in the 10th
column and the 25th row (of the graphics grid).

To “turn off” individual graphics blocks, the color 0 (black) must be selected
for each block. Executing the GR statement erases the entire screen (See
GR).

The column number (nl1) may range from 0 to 39 and the row number from
0 to 47, although only the rows 0 to 39 are within the graphics area. The
bottom 8 graphics rows on the screen are reserved for TEXT. Each line of
text requires 2 rows, making it possible to place 4 lines of text under the
graphics display.

Test Program

10 REM ‘PLOT’ TEST PROGRAM
20 GR

30 COLOR = 4

49 PLOT 0.0

S0 PLOT 39,0

6@ PLOT 39,39

70 PLOT @,39

g9 END

Sample Run

If the computer accepted the PLOT statement, a green dot should appear at
each corner of the screen.

Variations In Usage

None known.

Also See

GR» COLORs TEXTs HLIN-ATs VLIN-AT: BET: RESET: POINT:
DRAW

264

Function

The POINT function is used with IF-THEN state-
ments by the TRS-80 as a special feature to indi-
cate whether or not a specific graphics block is
“turned on”.

The graphics block is specified by the X,Y coordin-
ates enclosed in parentheses following the POINT
function. For Level I a value of 1 is reported back
when the block is lit. Level II gives back -1. Both
report a 0 when the block is not lit.

Test Program

1@ REM ‘POINT’ TEST PROGRAM

20 CLS

30 FOR X=2@ TO 30 STEP 2

40 SET(X8)

30 NEXT X

6@ PRINT “POINT PASSED THE TEST IF NUMBERS 10101010101
APPEAR™

7@ FOR X=20 TO 30

80 A=@

99 IF POINT(X:8)=1 THEN A=1

100 PRINT AjS

110 NEXT X

120 GOTO 120

98989 END

Sample Run (Level I)

POINT PASSED THE TEST IF NUMBERS 12101012101 APPEAR
1 1 9 1 o 1 @ 1 o 1 0 1

To obtain the same results for Level II, change line 90 to
9@ IF POINT(XB)=-1 THEN A=l

Variations In Usage

None known.

Also See

SETs RESET:s CLSs DOT

265

Statement

POKE is used to store integer values from 0 to 255
(decimal) in specified memory locations. For
example, POKE 1536065 places the ASCII
number 65 (which is the letter ‘A’) in memory
address 15360.

Check your computer’s manual before running this
test program to determine that memory addresses
15360 to 16383 are in the computer’s CRT memory
area, and can be POKEd without erasing memory
dedicated to another use.

Test Program

19 REM ‘POKE’ TEST PRDGRAM

Z@ REM USES CRT MEMORY ADDRESSES 13360 TO 16383
3@ FOR Y=63 TO 90

49 FOR X=15360 TO 168383

30 POKE XY

B® NEXT X

70 NEXT Y

989 END

Sample Run

The computer passed this POKE test if the screen filled with letters from A
to Z.

Variations In Usage

None known.

Also See
PEEK, FILL+ STUFF, EXAM, FETCH

266

Statement

POP is a feature of Apple II BASIC. It “pops” the
address of a GOSUB’s line number off the top of a
memory stack which stores it. When the program
encounters a RETURN, it checks the stack to see
where to resume execution, but gets fooled. Let’s
try that one again.

Each time a GOSUB is executed, its machine
language address is stored in a special section of
memory called a “push down” stack. The last
value stored in this stack is the first value which
will be read out and used up. A RETURN state-
ment reads this top address “on the stack” to
determine where to “return” program control after its GOSUB is completed.

In the TEST PROGRAM, the machine language address of Line 20 is stored
on the top of the stack when the program GOSUBs to Line 50. When the
GOSUB in Line 50 is executed, its address is piled on top of the line 20
address.

The POP statement in Line 80 “POPs” the address of Line 50 off the top of
the stack and throws it away. When the RETURN statement in Line 90
goes to the stack to see where to resume execution, it finds the address of
Line 20 instead of Line 50. Execution resumes at the end of Line 20, and
moves on to Line 30.

POP may be used when a calculated result or an error condition requires
branching to another place in the program, rather than RETURNing to the
most recent GOSUB.

Test Program

1@ REM ‘POP’ TEST PROCGRAM

20 GOsuUB 5@

3@ PRINT"'POP’ PASSED THE TEST"
49 GOTO 99

5@ GOSUB 8@

6@ PRINT "’'POP’ FAILED THE TEST®
7¢ GOTO 99

8¢ POP

8¢ RETURN

99 END

Sample Run

‘POP’ PASSED THE TEST

267

——pOPp

IF YOUR COMPUTER DOESN'T HAVE IT

If your computer failed the POP test, similar results can be produced by
using “flags”.

18 REM ‘POOR MAN’S POP’
15 F=0

20 GOsUB S0

39 PRINT "RETURN TO HERE"
49 GOTO 99

30 GOSUB 80

33 IF F=1 THEN 70

6@ PRINT "DON'T PRINT THISG"
7% RETURN

80 F=1

90 RETURN

99 END

Sample Run

RETURN TO HERE

Variations In Usage

None known.

Also See

GOBUB s RETURN, OWN GOSUB. GOSUB OF

268

Function

POS(n,A$,B$) is a string function that finds the
starting position of the first occurence of string B$§
within string A$. If B$ is not found within A$,
POS = 0.

n is optional and is used to start the search at the
nth character of A$. If n is not used, the search
begins at the first, or leftmost character in A$.

Test Program #1

190 REM 'POS’ TEST PROGRAM

20 A% "PROGRAM"

30 B% "RAM"

40 K = POS(A%$,:B%)

S50 IF K<*3 THEN 110

6@ B% = "ROM"

70 K = POS(A%:B%$)

80 IF K<:>@ THEN 110

90 PRINT "‘POSCA%$B%)’ PASSED THE TEST"
100 GOTO 30999 =
110 PRINT "“‘POS(A%$,B4%)’ FAILED THE TEST"
30894989 END

[

Sample Run
‘POS(A%B%)° PASSED THE TEST

Test Program #2

10 REM ‘POS(N,A%$:B%) " TEST PROGRAM

20 A% "COMPUSOFT"

30 B% g

49 K = POS(4,:A%:B%)

3@ IF K=7 THEN B0

6@ PRINT "'POS(N.A%,B%)’ FAILED THE TEST"
70 GOTO 308899

B® PRINT "’'POS(N:;A%,B%)’ PASSED THE TEST"
30989 END

nou

Sample Run

"POS(N A% B%) ° PASSED THE TEST

Variations In Usage

Some interpreters (e.g. Microsoft BASIC) use the POS(n):function to report
the position of the cursor in the current print line. The value of n doesn’t
matter — it’s just a “dummy” number.

269

EEEE::E?{EES

Test Program #3

19 REM ‘POS(N)’ TEST PROGRAM
20 PRINT "THIS LINE HAS A CHARACTER COUNT OF";
30 K = POS(N)
4@ PRINT K+3
99 END
Sample Run

THIS LINE HAS A CHARACTER COUNT OF 37
[F YOUR COMPUTER DOESN'T HAVE IT

If both tests #1 and #2 failed, try the INSTR and INDEX functions or use
the subroutine listed under INSTR. To use this subroutine with Test Pro-
gram #1 make these changes:

35 N = 1
49 GOSUB 30060
79 GOSUB 30060

For Test Program #2 make these changes:

33 N = 4
49 GOSUB 30060

Also See

INSTR s INDEX

270

Statement

The PRECISION statement is used in TDL BASIC
to specify the maximum number of digits to be
printed to the right of the decimal point by a
PRINT statement. For example, 2¢ PRECISION 2
might be used in a program where the printed
values are to represent dollars and cents. If the
actual value is longer than the number of digits
specified, the number is rounded to the desired
number of places and the right most digits are not
displayed.

Test Program

10 REM PRECISION TEST PROGRAM

20 PRECISION 4

30 X = 0.,1234567

49 PRINT X

5¢ PRINT "PRECISION PASSED THE TEST IF @,1235 MWASB
PRINTED"

98 END

Sample Run

0.1235
PRECISION PASSED THE TEST IF @.1235 WAGS PRINTED

IF YOUR COMPUTER DOESN’'T HAVE IT

If PRECISION isn’t available on your computer, try the DIGITS statement

in line 20.

The maximum number of digits after the decimal point can also be con-

trolled by deleting line 20 and replacing line 40 with:
490 PRINT USING "##,#sus" i)

If PRINT USING isn’t available either, don’t despair! Substitute
49 PRINT INT(X#10000 + .5)/10000

Variations In Usage

None known.

Also See
DIGITSs PRINT USINGs IMAGE, FMT, INT

i

271

—nNZ>

Command
Statement

PRINT has a wide range of uses. The most
common is in program statements used to display
variable values or whatever may be enclosed in
quotes. For example, PRINT ¥ prints the numeric
value of the variable X, while PRINT "¥" prints
the letter X.

Most computers use PRINT both as a command (as
you would on a standard calculator), and a pro-
gram statement.

For example, the command, PRINT 4%12/(2+6)
prints the answer 6.

Test Program #1

10 REM 'PRINT’ TEST PROGRAM
2@ PRINT "THE PRINT STATEMENT WORKS"
99 END

Sample Run

THE PRINT STATEMENT WORKS

A comma can be used in a PRINT statement to cause individual items to be
printed in pre-established horizontal zones of about 16 spaces wide. Actual
width of the print zones varies between computers.

For example, PRINT 1,2,3,4 prints in a format similar to;
1 2 3 4

For more information see ,(comma).

Test Program #2

19 REM ‘PRINT’ WITH COMMA TEST PROGRAM

20 PRINT "THE COMMA WORKED IN THE PRINT STATEMENT"
3@ PRINT "IF THESE NUMBERS ARE PRINTED IN 4 ZONES"
49 PRINT 12,34

99 END

Sample Run

THE COMMA WORKED IN THE PRINT STATEMENT
IF THESE NUMBERS ARE PRINTED IN 4 7ONES
1 2 3 4

A semicolon works like a comma, but prints the output values packed
tightly together, instead of in pre-established zones.

272

PRINT——

Change line 40 to read
49 PRINT 13233354
Run the Test Program again and note the new spacing.

The semicolon (;) is often used in PRINT statements to join together (con-
catenate) parts of words or sentences on one line.

For example, PRINT "H"3;"I" prints the word “HI".

For more information see ;(semicolon).

Test Program #3

19 REM ‘PRINT’ WITH SEMICOLON TEST PROGRAM
20 PRINT "IS THIS PRINTED "3

3@ PRINT "ON ONE LINE?"

99 END

Sample Run

I8 THIS PRINTED ON ONE LINE?

TAB(n) is used with the PRINT statement in a manner similar to the tab
key on a typewriter. It inserts (n) spaces before the printed statement as

specified by the value enclosed in parentheses. For more information see
TAB.

The AT function is used with PRINT in the TRS-80 Level 1 BASIC (the «
operator is used by the TRS-80 Level ID to specify the PRINT statement’s
starting location. For more information see PRINT AT and (.

PRINT USING is used by some computers as a special PRINT feature which
allows numbers or strings to be printed USING a specified format.

For example, PRINT USING "*#*###,#2"312,5 prints the number
*4%12,50,

For much more information see PRINT USING.

Some BASICs (e.g. North Star) place format information in the PRINT
statement immediately after PRINT. For example,

PRINT %C1@FZ,P will print the value of P in a 10 column field with two
digits following the decimal point (10F2).

C causes commas to be inserted to form 3-digit groupings. If P = 12345.678
then P will be printed as 12,345.68.

273

==PRINT

Other options for formatting are:
$(print leading dollar sign),
Z (suppress trailing zeros),
wEd (express number in exponential form with d digits to the right of
the decimal. The w should be at least d + 8), and
nl (integer mode with n digits maximum).

MAT PRINT prints the values stored in array variables.

For example,

19 DIM AC3)
20 MAT PRINT A

will print the values assigned to array variables A(1), A(2), and A(3). For
more information see MAT PRINT.

PRINT# is used in the TRS-80 Level I BASIC to store data on cassette tape.
To store more than one value with one PRINT# statement, the following
format is used;

PRINT# Af","iBi","3iC etc.
To test this feature, set the cassette recorder to the Record mode and RUN
this program.
Test Program #4

1@ REM 'PRINT®#’ TEST PROGRAM
2@ PRINT "DATA SHOULD BE RECORDING ON CASSETTE TAPE"
30 A$="TEST"

A0 PRINT# A$I" " 513" ," 525" 4"53
3@ PRINT "PRINT# HAS COMPLETED THE DATA TRANSFER"
98 END

Sample Run

DATA SHOULD BE RECORDING ON CASBSETTE TAPE
PRINT# HAS COMPLETED THE DATA TRANSFER

More advanced TRS-80 BASICs require a -1 following the PRINT# state-
ment when used with a single recorder. If a second recorder is used, it is
addressed by PRINT #-2, (etc.)

For example, PRINT%#-1,A,B:C% stores on tape drive #1 the values
assigned to variables A, B and C$.

274

PRINT——

Test Program #5
Set the cassette recorder to the Record mode and RUN this program.

1@ REM ‘PRINT®#’ TEST PROGRAM

2@ PRINT "DATA SHOULD BE RECORDING ON CASSETTE TAPE"
30 PRINT#-1,"TEST" 12,3

49 PRINT "PRINT#-1 HAS COMPLETED THE DATA TRANSFER"
98 END

Sample Run

DATA SHOULD BE RECORDING ON CASSETTE TAPE
PRINT#-1 HAE COMPLETED THE DATA TRANSFER

To verify that the data was stored, rewind the tape, set the recorder to the
Play mode and RUN this program.

10 REM * INPUT DATA FROM CASSETTE*

Zf PRINT "THE COMPUTER SHOULD BE READING DATA FROM
CASSETTE"

30 INPUT#-1:A%4+A:8,C

49 PRINT "THE FOLLOWING DATA WAS READ FROM THE CASSETTE"

30 PRINT A%.:A,B4C

99 END

Sample Run

THE COMPUTER SHOULD BE READING DATA FROM CASSETTE
THE FOLLOWING DATA WAS READ FROM THE CASSETTE
TEST) - .

PRINT# is used by mini and maxi computers with file handling capability
to store data in “files” on an external device such as disk or cassette. Each
data file is identified by a number (file name) which is listed in the
PRINT# statement to specify in which one the data is to be stored. The data
can consist of numeric values or string characters.

For example, PRINT#33;A,B,"TESTING" stores the contents of variables A
and B and the word “TESTING” in a file named #3. FILE#, INPUT# and
READ# are used to assign file names and space for data storage, and to
READ the data back out of file storage.

Alternate Spellings

A few computers allow shortened forms of the PRINT keyword. PRI is used
by PDP-8E. Britain’s Acorn ATOM, TRS-80 Level I, and other Tiny BASICs
accept P.

In addition, several BASICs allow single-character substitutes for PRINT.
Microsoft BASIC uses ?, North Star BASIC uses !, DEC BASIC-PLUS uses
&, the ABC-80 from Sweden uses ; and Digital Group’s MaxiBASIC uses #.

275

—PRINT

Also See

TABy AT By PRINT USINGs MAT PRINT: #: :(comma):
i(semicolon) » CUR» LINs LPRINT: %+ P4 By |

276

Statement

PRINT AT is used by the TRS-80 Level I BASIC
to indicate a PRINT statement’s starting location.
The AT value may be a number, numeric variable,
or mathematical operation. A comma or semi-colon
must be inserted between the AT value and the
string. There are 1024 screen locdtions --- 16 rows
of 64 horizontal addresses.

For example:

PRINT @
1@ PRINT AT 420+ "HELLO" P.A.
20 PRINT AT (4Z8)3i"HELLO"

Both lines print the word HELLO AT location 420.
The parentheses are optional.

For more information see AT.

Test Program

1@ REM ‘PRINT AT’ TEST PROGRAM

2@ PRINT AT 128,"2, IF THIS LINE IS8 PRINTED AFTER LINE 1."
3@ PRINT AT @,"1. THE ‘PRINT AT’ STATEMENT PASSED THE TEST"
4@ GOTO 4@

99 END

Sample Run

1+ THE 'PRINT AT’ STATEMENT PASSED THE TEST
2+ IF THIS LINE IS PRINTED AFTER LINE 1.

ALTERNATE SPELLINGS

Microsoft BASIC substitutes PRINT @ for PRINT AT and requires a
comma after the location. Tiny BASICs accept P.A.

Variations In Usage

None known.

Also See
PRINT, AT, @+ TAB

277

Statement

PRINT USING is used by computers of all sizes as
a special PRINT feature which allows numbers or
strings to be printed USING a variable format.
PRINT USING is by far the most powerful (and
complex) PRINT statement available in BASIC, so
its many features will be covered here, one at a
time. Not every feature is part of every computer,
but the TEST PROGRAMS will quickly let you
identify what yours can do. See your own com-
puter’s manual for other possible capabilities.

The pound sign (#) reserves a position for each digit in a number or
numeric variable to the left and right of a decimal point. Zeros are
automatically inserted if nothing exists to the right, making it valuable for
financial printing. # always prints the decimal point in the same place,
making it easier to examine rows of numbers. For more information see #.

Test Program #1

19 REM ‘PRINT USING’ TEST PROGRAM

20 PRINT "THE # DPERATOR PASSED THE PRINT USING TEST"
30 PRINT "IF THE FOLLOWING NUMBERS ARE PRINTED"

49 FOR X=1 70 5

50 READ N

B?® PRINT USING "##usssu, sz’ iN

70 NERT X

B0 DATA 1.2:400,2400000.:82450.5+-,20

99 END

Sample Run

THE # OPERATOR PASSED THE PRINT USING TEST
IF THE FOLLOWING NUMBERS ARE PRINTED
20
400,00
2400000 .00
B2430.5¢
-0 23

An asterisk (*) can be printed in all unused spaces to the left of a specified
primary purpose is to prevent someone from increasing the size of a check
printed by computer.

For example, PRINT USING "####zus,#2" ;234,25 will print
##%%234,25. This feature can be tested by making these changes to the
TEST PROGRAM #1.

20 PRINT "THE %% OPERATOR PASSED THE PRINT USING TEST"
BO® PRINT USING "s#xususus, au’iN

278

PRINT USING=—

Sample Run

THE #*% OPERATOR PASSED THE PRINT USING TEST
IF THE FOLLOWING NUMBERS ARE PRINTED
HEEREREL, D20

*%%XHAQD, QO

*#2400000.00

*#¥ #8450 .50

EURKER-Q, 25

A § sign can be printed before the number listed in the PRINT USING
statement by inserting a double dollar sign ($$) before the # sign.

For example, PRINT USING "$s#us,s#";1,25 will print $1.25. To test
this feature in your computer, make these changes to TEST PROGRAM #1:

2@ PRINT "THE %% OPERATOR PASSED THE PRINT USING TEST"
B@ PRINT USING "$$aususs, s N

Sample Run

THE %% OPERATOR PASSED THE PRINT USING TEST
IF THE FOLLOWING NUMBERS ARE PRINTED
$1.20
$400.,00
$2400000.,00
$82450,50
-$0,25

It is possible to insert a comma between every third number to the left of
the decimal point by using a comma between one or more left # signs. The
position of the comma in the PRINT USING statement does not effect the
position of the printed comma.

For example,

PRINT USING "#,###%,#2"512000
PRINT USING "s###,#,4%"512000
PRINT USING "# %% 4,8, 848" 112000

will each print the number 12,000.00.
To test this feature, make these changes to TEST PROGRAM #1.

20 PRINT "PRINT USING ‘COMMA’ PASSED THE TEST®
6@ PRINT USING "#,susuzss,ws"jN

279

—=PRINT USING

Sample Run

PRINT USING ‘COMMA’ PASBBED THE TEST
IF THE FOLLOWING NUMBERS ARE PRINTED
1.20
490,00
244004,000.00
82,45@¢.,50
-, 25

A + sign placed to the left of the #’s causes a + sign to be printed before
each positive number and a — sign before each negative number. If a +
sign is placed to the right of the #’s, the computer prints a — sign to the
right of all negative numbers, and a space is inserted to the right of all
positive numbers.

For example,

PRINT USING "+suuu"il23
PRINT UBING "sza#+"i-123

will print the numbers
+123
and 123-
To test this feature, make these changes to TEST PROGRAM #1

20 PRINT "THE + OPERATOR PASSED THE PRINT USING TEST"
B® PRINT USING "+#suunsun, sz’ iN

Sample Run

THE + OPERATOR PASSED THE PRINT USING TEST
IF THE FOLLOWING NUMBERS ARE PRINTED
+1.20
+400.00
+2400000.,00
+B2430.5¢0

-0.25

Four exponentiation signs ("""") can be used following a # to print
numbers expressed in exponential or scientific notation. A few computers
(e.g. the TRS-80) use ¢ ¢ ¢ # instead.

For example, PRINT USING "##°° """ 3100 prints the number 1E + 02

280

PRINT USING=—

Test Program #2

1@ REM ‘PRINT USING EXPONENTIATION’ TEST PROGRAM
20 PRINT "PRINT USING *""""’ PASSED THE TEST"

3@ PRINT "IF THE NUMBER" 3123436

490 PRINT "IS5 PRINTED USING SCIENTIFIC NOTATION"

50 PRINT USING "##-""""i123456
99 END
Sample Run
PRINT USING ‘"""’ PASSED THE TEST

IF THE NUMBER 123456
IS PRINTED USING SCIENTIFIC NOTATION
1E+95

Some computers (e.g. those with variations of the Microsoft BASIC) use the
! (enclosed in quotes) to print only the left-most character in a string or
string variable listed in a PRINT USING statement.

For example, PRINT USING "!"3;"WORD" prints the letter W.

Test Program #3

1@ REM ‘PRINT USING !’ TEST PROGRAM

29 PRINT "ENTER A SAMPLE WORD"S3

30 INPUT A%

40 PRINT "THE PRINT USING STATEMENT AND THE ! OPERATOR"

5@ PRINT "PASSED THE TEST IF THE FIRST LETTER IN “jA$3" I5 ";
B@ PRINT USING "!"3A%

99 END

Sample Run (using HANDBOOK)

ENTER A SAMPLE WORD?T HANDBOOK
THE PRINT USING STATEMENT AND THE ! OPERATOR
PASSED THE TEST IF THE FIRST LETTER IN HANDBOOK IS H

Use of \\ (backslash) permits printing only the left-most characters in
strings. The number printed is determined by the number of spaces between
the two \ signs. The computer also counts the two \ signs as character posi-
tions, therefore, no less than two characters can be specified by!\\.

For example, PRINT USING "\ \";3;"COMPUSOFT" prints the first three
letters COM because one space is included between the two \ signs (1 space +
2 backslashes = 3 letters). The TRS-80 uses the % sign instead of the \ sign.

281

——PRINT USING

Test Program #4

20 A% = "TESTIFIED"

30 PRINT USING "\ \"iAs
989 END

Sample Run

PASGSED THE TEST

an Image Line.
For example,

1@ Ag="1tn
Z0 B&="ABCD"
3@ PRINT USING A%3B%$

variable B$.

together by semicolons.

Test Program #5

19 REM 'PRINT USING VARIABLES’
20 A$="kwbHEHy, ww"

30 Bs="\ \"
490 Ce="TESTIMONIAL"
30 A=19.95

7% PRINT USING A$iAS
8@ PRINT USING BiC
889 END

Sample Run

and change in Test Program #35.

20 Ad="ErSHHEHE, wu \ \
70 PRINT USING A%5ACH

1@ REM ‘PRINT USING \’ TEST PROGRAM

30 PRINT "THE PRINT USING STATEMENT
49 PRINT "AND THE \ OPERATOR PASSED THE "3

noz
9

THE PRINT USING STATEMENT AND THE \ OPERATOR

Most computers allow the PRINT USING operators, numbers and strings to
be specified as variables. Line 10 contains the PRINT format and is called

will print the letter A which is the left-most character assigned to string

Test Program #5 shows how 3 different PRINT formats can be linked

TEST PROGRAM

B® PRINT "THE BABIC HANDBOOK PASBED THE "3§

THE BASIC HANDBOOK PASSED THE ##%%$189,85 TEST

The same results can be achieved by putting the entire format on one Image
line, and on another line all variables to be printed. Delete lines 30 and 80

282

PRINT USING—

Or, better yet, delete lines 60 and 80 and change

20 A%="\ \#¥Gasae, #5 \ \"
30 B$="THE BASIC HANDBOOK PASSED THE *
70 PRINT USING A%$5B%+ACH

(Note that commas can be used instead of semicolons after all but the
PRINT USING specifier.) Of course, the string image line must be executed
before its corresponding PRINT USING line.

Variations In Usage

Some computers (e.g. the DEC-10, and the Sperry/Univac VS/9) require that
when variables are printed in one line, and the PRINT USING format in an
image line, the image line must be addressed by number and must start
with a colon.

For example,

G A = 12,34
7¢ B = 56,78
80 C% = "MAIN FRAME"

9¢ PRINT USING 100+A:BC%
100 :#ex, uu $&d$,#8 ‘CCCCCLCCCC

will print
12,34 $56.,78 MAIN FRAME

Test Program #6

10 REM ‘PRINT USING LINE NUMBER’ TEST PROGRAM

20 PRINT "THE PRINT USING STATEMENT PASSES THE TEST™
3@ PRINT "IF THE NUMBER 125,50 IS PRINTED NEXT"

4¢ PRINT USING S0,125.5

50 :##H, ##

989 END

Sample Run

THE PRINT USING STATEMENT PASSES THE TEST
IF THE NUMBER 1Z25.,5@ IS PRINTED NEXT
125.50

IF YOUR COMPUTER DOESN’T HAVE IT

Some of the features of PRINT USING are available even in BASICs with-
out it. For example,

9@ PRINT USING “"s#us#ss,szs" i)y

prints the value of X rounded to three places after the decimal. It can be
done by using DIGITS, instead. (See DIGITS.)

283

—PRINT USING

If DIGITS isn’t available, a similar result is obtained by using
90 PRINT INT (X*1@00+.3)/1000

To line up the decimal points in a column of numbers is more involved. To
duplicate the effect of the PRINT USING statement in Test Program #1 we
have to determine how many digits are to be printed before the decimal
point. The common logarithm of the number can help here (See LOGI10).
LOG10(10)=1, LOG10(100) =2, LOG10(1000) =3, etc. Therefore, to produce
the same results as

GO® PRINT USING "#as#suss,wa" N
substitute:

56 T=0

37 K=ABB(N)

58 IF K<.1 THEN G@

59 T=LOG1@(K)

B@ PRINT TAB(B-T)3i SGN(N)*INT(K*100+.5)/100

Even the floating dollar sign can be included by
B@ PRINT TAB(7-T)3 ""5 SGN(N)*INT(K*100+,35)/100

Also See

PRINT, #, %%, 1, ¢ , +,

-1+ 4+ IMAGE,: FMTs DIGITS
\ (backslash): %+ &

284

Statement
Command

RAD is used in a few computers (e.g. Cromemco
16K Extended BASIC) to make them perform
trigonometric calculations in RADians instead of
degrees. Most computers are in radian mode when
powered up, but some also have the capability of
calculating trig functions in degrees. If a DEG
statement has been used in a program, RAD is
needed to restore the computer to “normal” mode.
One radian is approximately 57 degrees.

Test Program #1

10 REM ‘RAD’ TEST PROGRAM

20 DEG

30 D = SIN(3®)

49 PRINT "THE SINE OF 3@ DEGREES IS8"iD
3@ RAD

B@ R = SIN(32)

70 PRINT "THE SINE DF 3@ RADIANS IS"IiR
899 END

RADIAN

Sample Run

THE SINE OF 3@ DEGREES IS 0.5
THE SINE OF 30 RADIANS IS -@.8988032

Alternate Spelling

Some computers (e.g. Sharp/TRS-80 Pocket) use RADIAN as the statement
that sets the computer in radian mode for trig calculations.

Variations In Usage

A few BASICs (e.g. MAX BASIC) use RAD (n) as a function to convert a
value (n) from degrees to radians.

Test Program #2

1¢ REM ‘RAD FUNCTION’ TEST PROGRAM

20 PRINT "ENTER AN ANGLE MEASURE (IN DEGREES)"3

30 INPUT D

49 R = RAD(D)

3¢ PRINT "A MEASURE OF"3Ds" DEGREES IS EQUAL TO"iR3:"
RADIANS"

98 END

2856

RAD

Sample Run

ENTER AN ANGLE MEASURE (IN DEGREES) 743
A MEASURE OF 45 DEGREES IS EQUAL TO @.785398 RADIANS

IF YOUR COMPUTER DOESN'T HAVE IT

If your computer doesn’t have the RAD function, it can be simulated by
multiplying degree values by 0.0174533. To use this conversion factor in the
second Test Program, replace line 40 with

40 R = D % @.,0174533

Also See

DEG: GRAD: ACS: ASNs ATN, COS: SINs TAN

286

Statement

RANDOMIZE is used to “shuffle” or “reseed” a set
of numbers (held in the computer) in a random
order. These numbers are created as needed for
selection by the RND function.

Placing RANDOMIZE in a program before the
RND function causes the generation of a new set
of random numbers for the RND function each
time the program is run.

i V7 P2 o

RANDOM
RAN

Test Program

190 REM ‘RANDOMIZE’ TEST PROGRAM
2@ RANDOMIZE

30 FOR X=1 TD B8

4@ PRINT RND s

SO0 NEXT X

99 END

Sample Run (Typical)

250186 875707 + 773985 244615
+ 890564 2272898 408976 + 771341

Each time the test program is run, a new set of random numbers should be
printed. Be sure you have your own version of RND working before trying
to include line 20.

Some BASICs (e.g. BASIC-80) expect a “seed” value to be included in the
RANDOMIZE statement, such as RANDOMIZE 49817. If the seed is not
included, the program stops and the user is prompted to enter a seed value
from the keyboard.

Alternate Spellings

Several computers use the keyword RANDOM (e.g. TRS-80) instead of
RANDOMIZE. Some (e.g. PDP-8E) accept RAN as a short form.

IF YOUR COMPUTER DOESN’T HAVE IT

If your computer doesn’t have RANDOMIZE it may be that using a negative
number with RND will “reseed” or start generating a new sequence of
numbers. (See RND) If this is not the case, a simple procedure can be used
with each program to cause new sequences of numbers for each run.

Replace line 20 of the Test Program with:

20 PRINT "ENTER A WHOLE NUMBER ‘SEED’ FOR RND"3
22 INPUT 8

24 FOR I=1 TO 8

26 X=RND ‘or RND(D)

28 NEXT I

287

———RANDOMIZE

and RUN the program several times using different numbers. The reason
this works is that RND generates the same sequence of numbers each time
the computer is turned on (each time RUN is typed on some computers). In
effect, RND “reads” from the top of a list of random numbers each time the
program is used. Our procedure causes the program to “throw away” the top
of the list and start using the (S+1)th entry. That allows different starting
points for each seed value. It also allows for repeating a sequence by using
the same seed value on different runs while testing out a new program.

Variations In Usage

None known.

Also See
RND

288

Statement

The READ statement is used to read data from a
DATA line and assign that data to a variable.

Each time the READ statement is executed, data
is read from a DATA line. The pointer then moves
to the next item of data in the DATA line(s) and
waits for another READ statement. When the last
piece of data has been read from all DATA state-
ments, the data pointer must be reset to the be-

—nZ>

ginning of the DATA list before additional READ ggg-

statements can be executed. (See RESTORE)

Test Program #1

10 REM ‘READ’ STATEMENT TEST PROGRAM

20 READ A

30 PRINT "THE READ STATEMENT WORKED IN LINE"3A
4@ DATA 20

889 END

Sample Run
THE READ STATEMENT WORKED IN LINE 20

Since computers allow more than one variable to be placed in one READ
statement, each variable must be separated by a comma and the number of
“reads” must not exceed the number of data items.

Test Program #2

10 REM ‘MULTIPLE READ‘ STATEMENT TEST PROGRAM

20 READ A4B,C '

30 D=A+B+C

49 PRINT "D="3D

50 PRINT "THE READ STATEMENT PASSED THE TEST IF D = go"
BE@ DATA 10,20,30

99 END

Sample Run

D = Go
THE READ STATEMENT PASSED THE TEST IF D = B@

Most computers also allow strings to be read from DATA statements. Each
time a string is read from the DATA statement, it must have a correspond-
ing string variable in a READ statement.

289

——READ

Test Program #3

19 REM 'READ STRINGS’ TEST PROGRAM

20 READ D%

30 PRINT "THE READ STATEMENT PASSED THE "iD$%
49 DATA TEST

99 END

Sample Run

THE READ STATEMENT PASSED THE TEST
Many computers allow both numeric and string data to be read by the same
READ statement and be contained in the same DATA line.
Test Program #4

19 REM ‘MULTIPLE READ’ STATEMENT TEST PROGRAM

20 READ ABCHD%

30 D=A+B+C

49 PRINT "THE READ STATEMENT PASSED THE TEST IN "iD%$iD
50 DATA 248,10 LINE

99 END

Sample Run

THE READ STATEMENT PASSED THE TEST IN LINE 290

Alternate Spellings

Some computers allow abbreviations for READ. Computers using variations
of Palo Alto Tiny BASIC accept REA. as READ while others (e.g. PDP-8E)
accept REA as a short form.

Variations In Usage

None. The only other way to store and call up data is by inputting it
through a keyboard or from off-line storage on tape, disc, etc.

Also See

DATA: RESTORE s s(comma).

290

Statement
Command

RECALL is used in the APPLE II computer as
both a command and a statement to load an array
of numeric values from cassette tape. A large
array can be STOREd on tape under program
control, then RECALLed by the same program or
even another one. See STORE for additional
information.

Example: 10 DIM A(3,3,3)

+

20® RECALL A

will read up to 64 values (4*4*4) previously stored
on a tape for future use. (Note the four values are
0,1, 2and 3.)

Test Program

12 REM ‘RECALL’ TEST PROGRAM
20 DIM A(ZS)4B(25)

3¢ FOR I=1 TO 25

4@ A(I)=1

50 NEXT I

6@ STORE A

70 PRINT "REWIND TAPE AND SET TO PLAY - PRESS RETURN®

80 INPUT As

890 RECALL B

19 FOR I=1 TO 25
11@ PRINT B(I),

120 NEXT I
999 END
Sample Run

REWIND TAPE AND SET TO PLAY - PRESS RETURN
1 2 3
4 3 5]
7 8 g
10 11 1z
13 14 15
16 17 18
19 20 21
22 23 24

R
25

291

——RECALL

Variations In Usage

None known.

Also See

STOREs CLOAD, DIM

292

Statement

The REMark statement is used at the beginning of
some program lines to make them serve as a
“notebook” or “scratchpad” to hold comments
about the program. The REM statement is not
executed. Everything on a line beginning with
REM is ignored by the computer.

—nzZzr

If used in multiple statement lines, those state-
ments preceding the REM statement will be
executed, but everything following is ignored. If
the REMarks require more than one program line,
each such line must begin with REM.

REMARK

Test Program

19 PRINT "'REM’ TEST PROGRAM"

2@ REM PRINT "REM FAILED THE TEST"

30 REM * REM FAILED THE TEST IF LINE 20 IS5 PRINTED*
49 PRINT "REM PASSED THE TEST"

98 END

Sample Run

'REM’ TEST PROGRAM
REM PASSED THE TEST

Some computers allow either the REM or REMARK statement, while others
accept only one.

Variations In Usage

None known.

Also See
’(apostrophe), !

293

Command

RENUMBER is used in some computers (e.g. the
Cromemco 16K Extended BASIC) to change the
program line numbers. The line numbers used in
GOTO, GOSUB, IF-THEN, ON-GOTO and
ON-GOSUB statements are changed accordingly to
maintain the same branching scheme.

If a number is not included in the RENUMBER
statement, the computer automatically RE-
RENUM NUMBERs each program line starting at line 10,
REN and spacing the lines 10 numbers apart.

Test Program

REM ‘RENUMBER’ TEST PROGRAM
K=1

PRINT "IF EACH PROGRAM LINE "3
GOTO 1@

PRINT "THE RENUMBER COMMAND "3

N
N

GOTOD 12

19 PRINT "IS RENUMBERED"

12 ON X GOTO G414

14 PRINT "PASSED THE TEST."
16 END

RUN, to be sure it works.
Type the command RENUMBER and RUN again.

O~ R

Sample Run

IF EACH PROGRAM LINE IS RENUMBERED
THE RENUMBER COMMAND PASSED THE TEST.

To verify that the program is RENUMBERed, LIST the program. It should
appear:

190 REM ‘RENUMBER’ TEST PROGRAM

20 H=1

30 PRINT "IF EACH PROGRAM LINE "3
49 GOTO 80

50 PRINT "THE RENUMBER COMMAND ";
B K=2

7¢ GOTO 9@

8@ PRINT "IS RENUMBERED"

g9 ON X GOTO 50,100

100 PRINT "PASSED THE TEST."

11@ END

294

RENUMBER—

RENUMBER n is used to renumber each program line starting with line
number n and incrementing by 10. To test this feature on the Test Program,
type RENUMBER Z@ and LIST the program. It should read:

20 REM 'RENUMBER’ TEST PROGRAM
30 K=1

49 PRINT "IF EACH PROGRAM LINE
50 GOTO 9¢

6@ PRINT "THE RENUMBER COMMAND
70 K=Z

8@ GOTO 100

8@ PRINT "IS RENUMBERED"

10@ ON X GOTO GO,110

119 PRINT "PASSED THE TEST."
120 END

RENUMBER n1,n2 is used to renumber each program line starting with
line number nl and incrementing by the value of n2. To test this feature on
the Test Program, type RENUMBER 50,20 and LIST the program. Now it

should read:

3¢ REM ‘RENUMBER’ TEST PROGRAM
70 K=1

9¢ PRINT "IF EACH PROGRAM LINE
11¢ GOTO 199

13¢ PRINT "THE RENUMBER COMMAND
180 X=2

170 GOTO 210

19¢ PRINT "IS5 RENUMBERED"

219 ON X GOTO 130.:230

230 PRINT "PASSED THE TEST."
250 END

RENUMBER n1,n2,n3 is used to renumber each program line starting with
the old line number n3. Line number n3 is assigned line number nl, and
the remaining line numbers are incremented by the value n2. To test this
feature on the last Test Program, type RENUMBER 500 10,90 and LIST the

program. Does it look like this?

3¢ REM 'RENUMBER‘ TEST PROGRAM
70 XK=

509 PRINT "IF EACH PROGRAM LINE
51@¢ GOTO 550

SZ@ PRINT “"THE RENUMBER COMMAND
530 X=2

549 GOTO 560

33¢ PRINT "I5 RENUMBERED"

360 ON X GOTO SZ0.570

37¢ PRINT "PASSED THE TEST."
580 END

e

9

9

9

"

"y

U

295

——RENUMBER

RENUMBER nl, n2, n3, n4 is used by a few computers to renumber the old
program lines from line n3 to line n4. Line n3 is assigned line number nl
and those lines following (ending with line n4) are incremented by the value
n2. To test this feature on the last Test Program, type RENUMBER
8¢,5,7¢ 519 and LIST the program.

50 REM ‘RENUMBER’ TEST PROGRAM

B@¢ X=1

65 PRINT "IF EACH PROGRAM LINE "3
7@ GOTO 35¢@

320 PRINT "THE RENUMBER COMMAND "3
330 X=2

Sde GOTO 5G6¢@

350 PRINT "IS5 RENUMBERED"

360 ON X GOTO S20.570

370 PRINT "PASSED THE TEST."

380 END

Alternate Spellings

Some computers accept short versions of RENUMBER such as RENUM and
REN. TRS-80 Disk BASIC uses NAME. DEC computers use RESEQUENCE.

Variations In Usage

None known.

Also See
GOTOs COSUB: IF-THEN, ON-GOTO, ON-GOSUB, LIST

296

The REPEATS$ function creates a character string
containing a given set of characters repeated a
specified number of times. For example, REPEATS
("MICRO" +4) creates MICROMICROMICROMICRO
and REPEAT$("#%",16) generates
LR R R R R LR LT XN

Test Program

1@ REM ‘REPEAT$’ TEST PROGRAM

20 PRINT "TYPE YOUR FIRST NAME"S

30 INPUT N

4¢ PRINT "NOW PICK A NUMBER FROM Z TO
3@ INPUT M

B@ A% = REPEAT$(N% M)

70 PRINT A%

88 END

Sample Run

TYPE YOUR FIRST NAME 7 DAVID
NOW PICK A NUMBER FROM 2 TO 5 7 3
DAVIDDAVIDDAVID

Also See
STRINGS

sy

9

Function

297

Statement

The RESET statement is used by the TRS-80 to
“turn off” a graphics block in a predetermined
grid on the screen.

The block to be “turned off” within the grid is
specified by the X,Y coordinates enclosed in paren-
theses following the RESET statement. For
example, RESET (5,8) instructs the computer to
turn off a graphics block located in the 5th column
and the 8th row of the graphics grid.

To turn on the graphics block, see SET.

Test Program

1 REM ‘RESET’ TEST PROGRAM
20 CLS
30 Y=1
4@ FOR X=1 TO 100
S0 SET (XaY)
B@ NEXT X
70 PRINT
8¢ PRINT "RESET PASSED THE TEST IF THE LINE DISAPPEARS"
9@ FOR X=1 TO 10@
100 RESET (XY)
119 NEXT X
8998 END
Sample Run

REBET PAGSED THE TEST IF THE LINE DISAPPEARS

Alternate Spelling
R. is used in Level I and Tiny BASIC as an abbreviation for RESET.

Variations In Usage

None known.

Also See

SET, CLS:s POINT. CLRDOT

298

Statement

Execution of a RESTORE statement causes the
DATA pointer to be “reset” back to the first piece
of data in the first DATA line. This enables the
computer to use data stored in DATA statements
more than once.

Test Program #1

19 REM 'RESTORE’ TEST PROGRAM

—nNZr

20 READ X REST.
30 IF X=3 THEN 5@ RES
49 GOTO Ze

S0 RESTORE

69 READ X

79 IF ¥=1 THEN 10¢@

8@ PRINT "RESTORE FAILED THE TEST"
9¢ GOTO 999

190 PRINT "RESTORE PASSED THE TEST™
110 DATA 1,23

999 END

Sample Run

RESTORE PASSED THE TEST

Alternate Spellings

A few computers (e.g. TRS-80 Level I) allow RESTORE to be abbreviated
REST. Others (e.g. DEC PDP-8E) accept RES as the short form of
RESTORE.

Variations In Usage

Some interpreters allow resetting only the DATA in a specific DATA line by
adding that DATA statement line number after a RESTORE statement. See
line 100 below.

Test Program #2

19 REM ‘RESTORE (LINE#)’ TEST PROGRAM
20 READ X

30 PRINT X3

49 IF X=3 THEN B2
30 GOTO 20

6@ READ X

70 PRINT X3

8@ IF X=6 THEN 100
8¢ GATO GO

10¢ RESTORE 180

11¢ READ X

120 IF X=4 THEN 150

299

—RESTORE

130 PRINT "RESTORE FAILED THE TEST®
140 STOP

15¢ PRINT "RESTORE PASSED THE TEST®
170 DATA 1:2,3

18@ DATA 4,56

9889 END

Sample Run

1 2 3 4 5 6 RESTORE PASSED THE TESBT

There are computers (e.g. DEC-10) that can RESTORE numeric data and
string data separately. RESTORES$ inserted in a program restores only the
string data. RESTORE* is used when only the numeric values are to be
reused.

Test Program #3

19 REM RESTORE$ TEST PROGRAM
20 READ X

30 READ N

49 RESTORE$

30 READ T%

6@ READ N

7¢ IF N=2 THEN 100

80 PRINT "IT DIDN'T WORK"

g9¢ GOTO 999

10@¢ PRINT "RESTORE$ PASSED THE "3iT%
11 DATA TEST: 1+ 2

9899 END

Sample Run

RESTORE$ PASSED THE TEST

Also See

DATA, READ

300

Statement

The RESUME statement is used as the last state-
ment in ON-ERROR-GOTO routines, telling the
computer to RESUME program execution at a
specified line number. The computer does not
allow execution of the RESUME statement if it is
not preceded by an ON-ERROR-GOTO statement.
See ON-ERROR-GOTO for a Test Program using
RESUME(line number). (Saves space not to dupli-
cate it here.)

RESUME NEXT is used to branch to the line
following the error and CONTinues program exec-
ution. To test for RESUME NEXT capability in
your computer, change line 110 in the ON-ERROR-GOTO test program to:

1190 RESUME NEXT

Sample Run (ON-ERROR-GOTO test program
using RESUME NEXT) (using 0)

ENTER A NUMBER AND IT’S INVERSE WILL BE COMPUTEDT @
THE INVERSE OF @ CANNDT BE COMPUTED - TRY AGAIN
THE INVERSE OF @ IS @

RESUME 0 and RESUME (without a line number or NEXT) are used to
branch to the statement containing the error.

Test Program

1@ REM ‘RESUME’ TEST PROGRAM

2@ ON ERROR GOTO 100

3@ PRINT "ENTER A POSITIVE NUMBER"S3
49 INPUT N

S0 A=LOGN)

G@ PRINT "THE LOG OF"iN3F"IS"3A

70 GOTO 30

19@ PRINT "A NEGATIVE NUMBER IS NOT ALLOWED™
110 N=Nx*-1

120 RESUME @

988 END

Sample Run (using -4)

ENTER A POSITIVE NUMBER?T -4

A NEGATIVE NUMBER IS5 NOT ALLOWED
THE LOG OF 4 IS 1.,38BB28

ENTER A POSITIVE NUMBER?

301

——RESUME

To test RESUME (without a line number or NEXT) capability in your com-
puter, change line 120 in the above Test Program to:

12¢ RESUME
and RUN. The Sample Run should not change.

Variations In Usage

None known.

Also See

ON-ERROR-GOTO,» ERLs ERR

302

Statement

The RETURN statement is used in conjunction
with the GOSUB statement. It is used as the last
statement in a subroutine; it tells the computer to
return to the line containing the GOSUB state-
ment and continue program execution from that
point.

The computer will not allow execution of the
RETURN statement if it was not preceded by a
GOSUB statement.

Test Program

16 REM 'RETURN’ STATEMENT TEST PROGRAM
20 GOBUB 5@

30 PRINT "WAS ACCEPTED."

49 GOTO 899

50 PRINT "THE RETURN STATEMENT "3

6@ RETURN

70 PRINT "WAS NOT ACCEPTED."

989 END

Sample Run

THE RETURN STATEMENT WAS ACCEPTED.

Alternate Spellings

Various abbreviations are used, including RET. (TRS-80 Level), RET (DEC
PDP-8E), and R. (Acorn ATOM).

Variations In Usage

None known.

Also See
GOS5UB » ON-GOSUB. IF-GOSUB . CGOSUB-OF

303

Function

The RIGHT$(string,n) function is used to isolate a
specific number (n) of string characters, counting
from the right-most character in the string.

For example, PRINT RIGHT$("COMPUSOFT" +d)
prints the letters SOFT, which are the right 4
characters in COMPUSOFT, which is a string.

The string must be enclosed in quotes or assigned
RIGHT to a string variable. The number (n) of characters
can be expressed as a variable, number or arith-
metic operation. A comma must separate the
string from the number.

If the value of (n) is a decimal, the computer automatically finds its integer
value.

Test Program

10 REM ‘RIGHT$‘ TEST PROGRAM

20 A$="CONTEST"

3¢ B$=RIGHT$(A%,4)

40 PRINT "THE "SRIGHT$("ALRIGHT",5)3"$ FUNCTION PASSED

THE "3iB%
99 END
Sample Run

THE RIGHT$ FUNCTION PASSED THE TEST

Alternate Spelling

The RIGHT function is used in some computers (e.g. those using MAX
BASIC).

Variations In Usage

A few BASICs use RIGHT$(A$,N) to isolate the substring of A$ that begins
in position N. Everything to the right of that point is included. For example,
RIGHTS ("CHOCOLATE" +B8) returns LATE since L is in the sixth position.

Also See

PRINT LEFT$, MID%, CHR$, SPACE$, STR$, STRINGS, INKEY$,
INSTR» SEGS

304

Function

RND is a function used by nearly all computers to
produce RaNDom numbers. Actual variation in
usage between computers is as wide as any word
in the BASIC language.

Most computers use RND(n) to tell it to create a
random decimal number between 0 and 1. Very
few (e.g. DEC and APF) comply with the ANSI
rule which requires that RND shall be used alone,
without (n). ANSI further requires that the same
sequence of numbers created shall repeat itself
each time RND is used (for debugging purposes)
unless the BASIC word RANDOMIZE is included
in the program, to “reshuffle the deck”.

Some computers, (e.g. Apple Integer and TRS-80 Level I) have a limited
“Integer BASIC”. They use RND(N) to generate random integer numbers
between certain minimum and maximum values of the particular machine,
typically -32768 to +32767.

Ordinarily, each time RND is used, the computer will “deliver” a different
number. It is common, however, to find the value of N used to specify HOW
the RND function will operate.

For example: if N is given a negative value, it may be “reseeding” the ran-
dom number generator. That means, it’s directing that a new SEQUENCE
of numbers be created each time the negative number is changed. If the
same negative number is repeated, the same sequence of numbers will be
repeated. Forcing this repetition is valuable for program troubleshooting.

Other computers use a negative N to make the VALUE repeat itself. In this
case, N must be positive for RND to operate “normally”.

If the value of N is greater than 1, a few computers (e.g. Sinclair ZX80 and
TRS-80) deliver a positive whole number between 1 and the value of N.

Determining exactly what RND is doing in a program will avoid a lot of
“cut and try”. Your computers reference manual is the best source of in-
formation about how your specific computer can use RND.

Test Program #1

19 REM ‘RND’ TEST PROGRAM
Z0 FOR X=1 TO B

30 PRINT RND

4@ NEXT X

99 END

—nZz2r

305

Sample Run (Typical)

627633 ,358479 137551 127641
125054 809923 888076 787762

RND(0) is used by some computers to specify the same operation as RND.

Test Program #2

1@ REM ‘RND(@)’ TEST PROGRAM
20 FOR X=1 7O 8

3¢ PRINT RND(@) s

40 NEXT X

99 END

Sample Run (T'ypical)

+BB2B73 + 735283 476059 88141
+ 243708 242171 + 968336 721014

While RND(n) generates a random number, in some computers RND(0)
repeats the last number generated by the random number generator.

Test Program #3

1@ REM ‘RND(@) AS A REPEAT’ TEST PROGRAM
20 PRINT "RND(1)"

30 FOR X=1 TO 4

40 PRINT RND(1)

S0 NEXT X

6@ PRINT "RND(@)"

7¢ FOR Y=1 TO 4

8@ PRINT RND(Q) .

90 NEXT Y

98 END

Sample Run (Typical)

RND (1)

+ 382453 2453804 + 118263 + 961308
RND (@)

961308 961308 961308 +961308

A few computers create a random integer between 1 and the value of n
when n is greater than 1 (e.g. TRS-80).

RND(n) automatically integers the value of n.

306

Test Program #4

10
20
30
40
50
g8

REM ‘RND’ TEST PROGRAM
N=1@

FOR X=1 TO 4

PRINT RND(N) »

NEXT X

END

Sample Run (Typical)

8

5

A TRICK

If your computer is one that generates random numbers > 0 and < 1 and
you need a random integer number from 0 to 9, then try this trick.

PRINT INT(1@*RND)

A random number from 1 to 10 can be printed with this trick.

PRINT INT(1@*RND+1)

The general form for generating random integers from A to B is

INT(RND*(B-A+1)+A)

Also See

RANDOMIZE

r-3

307

Command
Statement

The RUN command instructs the computer to
execute the program or programs held in memory,
starting with the lowest line number. With many
computers, a line number may be included after
the RUN command to specify a starting line other
than the first one (e.g. RUN 40).

RU
R.

Test Program

19 REM ‘RUN‘ TEST PROGRAM
20 PRINT "THIS PRINTING STARTED AT LINE Z20."
3¢ GOTO 99
49 PRINT “"THIS PRINTING STARTED AT LINE d@.,"
99 END
Sample Run
After entering the RUN Command, the computer should display:
THIS PRINTING STARTED AT LINE 20,

By adding the number 40 to the RUN command, RUN40 or RUN 40, the
computer should start at line 40 and print the following message:

THIS PRINTING STARTED AT LINE 40,

While most computers use RUN strictly as a command at the monitor level,
a few will accept RUN as a program statement. Those computers using
Microsoft Disk BASIC accept RUN as a form of the CHAIN statement. (See
CHAIN.) For example, 57¢ RUN "PROG:1" loads a program named PROG
from disk #1 and RUNss it.

Alternate Spellings

Some computers (e.g. TI 990) use the abbreviation RU. Computers using
Tiny BASIC accept R.

Also See

CHAIN

308

Command

SAVE is used in a few computers (e.g. the APPLE
IT BASIC and the Commodore PET) to record

programs from computer memory to cassette tape
or disk.

For more information see CSAVE.

Test Program

19 REM ‘SAVE’ TEST PROGRAM
20 PRINT "THIS PROGRAM TESTS THE SAVE FEATURE™"
99 END

Set up the cassette recorder for recording and type the command sAUVE. The
computer should control the operation of the cassette recorder by turning
the motor on and off (at the beginning and end of the record cycle).

Once the program is recorded on cassette tape, type MEMW (or whatever is
required) to erase the program from memory. Load the program from tape
back into the computer (see LOAD). List the program to verify that the
program held in the computer’s memory is identical to that originally
entered (see LIST).

Sample Run

THIS PROGRAM TESTS THE SAVE FEATURE

Variations In Usage

Some computers with disk storage capability use SAVE to copy programs in
computer memory to disk memory. A file name is required.

Example:

SAVE "TEST"

Also See

LOAD,» CSAVE, CLOADs LIST

309

Command
Statement

As a command, SCRATCH erases the program
from memory and resets all variables to zero. It is
equivalent to NEW as used on other computers.
(See NEW for more information.)

SCR

Test Program

1@ REM 'SCRATCH’ COMMAND TEST PROGRAM
20 PRINT "THIS IS5 A TEST"
98 END

Sample Run

LIST the program to be sure it has been entered into memory. Type
SCRATCH, then LIST it again. The program should be gone. A check of the
amount of memory available both before and after SCRATCHing should
show an increase in space when the program is gone.

Alternate Spelling
SCR is sometimes accepted as an abbreviation for SCRATCH.

Variations In Usage

Some systems (e.g. DEC-10) use SCRATCH as a statement to prepare a disk
file to accept output from the computer. Previous contents of that file are
erased (SCRATCHed) so new data can be printed in it.

For example,
100 SCRATCH =1

erases the contents of a file that has been opened on device #1, and sets the
pointer to its first record. The next PRINT #1 statement (or equivalent) will
print data in the first record of that file.

Other BASICs (e.g. Micropolis BASIC) use SCRATCH as a command to
delete files from a disk directory. In this application, SCRATCH must be
followed by a file specification.

Example:

SCRATCH "1:FILE,GROUP"

310

SCRATCH=—

Also See

NEW: CLEAR: ERASE

311

Function

SCRN is used in APPLE II BASIC as a special
feature to indicate the color of a graphics block on
the screen. The computer has the capability of
displaying 16 colors (numbered from 0 to 15). For
a complete color listing, see COLOR.

The graphics block is specified by the X,Y
coordinates enclosed in parentheses following
SCRN. The X value represents the column number
and the Y value represents the row number. These

values may range from 0 to 39 for X and 0 to 47
for Y.

Test Program

19 REM ‘SCRN’ TEST PROGRAM

20 GR

30 COLOR=11

40 PLOT 2010

S0 IF SCRN(Z@,10)=11 THEN B@

B@ PRINT "THE SCRN FUNCTION FAILED THE TEST"
7¢ GOTO 88

8¢ PRINT "THE SCRN FUNCTION PASBED THE TEST®
99 END

Sample Run

THE SCRN FUNCTION PASSED THE TEST

Variations In Usage

None known.

Also See

COLORs PLOT» GRs POINT

312

Function

SEG$ extracts a segment of a string from a string
variable. SEG$ has three arguments: the string
variable, the starting position in the string, and
the number of characters in the substring.

Example: IF A$="COMPUTER" THEN PRINT
SEG$ (A%$,4,3) prints PUT.

Test Program

10 REM # SEG$ TEST PROGRAM *

20 As="CONTESTANT"

3¢ Bs=SECE(A%:4.+4)

4@ IF B&<"TEST" THEN 70

S@ PRINT "SEG$ PASSED THE " iB%
60 GOTO 99

79 PRINT "SEG$ FAILED THE TEST"
98 END

SEG

Sample Run
SEG$ PASSED THE TEST

SEG$ can be used to simulate LEFT$ and RIGHTS$. SEG$(A$,1,4) is
equivalent to LEFT$(A$,4), while SEG$(A$,LEN(A$)-3,3) is equivalent to
RIGHTS$(A$,3).

Alternate Spelling
A few computers use SEG.
IF YOUR COMPUTER DOESN’T HAVE IT

If neither SEG$ nor SEG is available on your computer, try MID$ in the
test program. If that doesn’t work, some computers that require a DIM
statement for all strings (e.g. Hewlett-Packard) will accept A$(4,7) as the
substring in positions 4 through 7.

Variations In Usage

None known.

Also See

MID$, LEFT$,» RIGHT%: DIM

313

Statement

The SET statement is used by the TRS-80 to “turn
on” or “light up” a graphics block in a predeter-
mined grid on the screen.

The block to be lit, within the grid, is specified by
the X,Y coordinates enclosed in parentheses fol-
lowing the SET statement. For example, SET
(5,8) instructs the computer to SET a graphics
block located in the 5th column and the 8th row of
the graphics grid.

To turn off the graphics block, see RESET.

Test Program

19 REM 'SBET’ TEST PROGRAM

20 PRINT "ENTER X COORDINATE"S

30 INPUT X

4@ PRINT "ENTER Y COORDINATE™S

30 INPUT Y

BO SET(XsY)

7@ PRINT "SET PASSED THE TESBT®

8¢ PRINT "IF A LIGHT APPEARED AT (X,Y¥) COORDINATE
(H;).(;II’I!;\(;H)‘H

99 END

Sample Run (Using 65 and 40)

ENTER X COORDINATE?Y B3

ENTER Y COORDINATE? 4@

SET PASSED THE TEST

IF A LIGHT APPEARED AT (X,Y¥) COORDINATE (B3:40),

Alternate Spelling

Some computers (e.g. TRS-80 Level D) allow S. as an abbreviation.

Variations In Usage

None known.

Also See
RESET, SETDOT

314

Statement

The SETDOT statement is used by Sweden’s
ABC-80 as a graphics feature to “turn on” a
graphics block on the display screen. The block to
be “turned on” is specified by the L,C coordinates
following the SETDOT statement where L deter-
mines the line (0 to 71 in graphics mode) and C
determines the column (2 to 79 in graphics mode).

For example, SETDOT 9,15 causes the computer
to turn on the block located in the tenth row and
sixteenth column from the upper left corner. To
turn off the graphics block see CLRDOT.

Test Program

190 REM ‘SETDOT’ TEST PROGRAM

20 PRINT CHRXX(12)

32 PRINT "SETDOT PASSED THE TEST
40 FOR T=1 TO 2000 NEXT T

50 PRINT CHRXX(12)

B¢ FOR R=0 TO 23

70 PRINT CUR(R Q) 5CHR((151) 3

8@ NEXT R

‘CLEARS SCREEN
IF A LINE APPEARS"

'LINES B@®s 70 AND
‘B@ BET THE SCREEN
‘IN GRAPHICS MODE,

90 R=5
10@ FOR C=2 TO 35
1196 SETDOT R.,C

120 NEXT C

130 FOR T=1 TD 2000
1490 PRINT CHRM(12)
999 END

NEXT T

Sample Run
SETDOT PASSED THE TEST IF A LINE APPEARS

Variations In Usage

None known.

Also See

SET» CLRDOT s RESET» X

315

Function

SGN tells us the sign of a number. If its sign is
negative we get a — 1. If it is zero, a 0, and a 1 if
it is positive.

For example, PRINT SGN(-8), SGN(@): SGN(4)
prints:

-1 ? 1

Test Program
19 REM ‘SGN’ FUNCTION TEST PROGRAM
20 X = 5
30 T = SGNX
49 IF T=1 THEN 70
S@ PRINT "/8GN’ FAILED THE TEST"
6o GOTO 99
7@ PRINT "/SGN’ PASSED THE TEST"
30989 END

Sample Run

"SGN’ PASSED THE TEST
Variations In Usage
None known.
IF YOUR COMPUTER DOESN’'T HAVE IT

If your computer failed the SGN test, substitute the following subroutine:
Jooo GOTO 30989

30089 REM % SGN FUNCTION SUBROUTINE % INPUT X, OUTPUT T
30082 T = @
30084 IF X=0 THEN 30082

30086 T = 1
30088 IF X:@ THEN 30092
30090 T = -1
30092 RETURN

and change Test Program line 30 to

30 GOSUB 30080

Also See
ABS

316

Function

The SIN(A) function computes the Sine of the
angle A, when that angle is expressed in
Radians, (not in degrees). One radian = approx-

imately 57 degrees. /\

©

SIND

SING
VR [

Sine (SIN) is defined as the ratio of the length of
the side opposite the angle in question to the
length of the hypotenuse. This formula applies
only to right triangles: SIN(A) =Y /H

The opposite of SIN is ARCSIN. ARCSIN finds the
value of the angle when its SIN, or ratio of sides
(Y/H), is known. See ASN for more information.

Test Program

19 REM ‘SINE’ TEST PROGRAM

20 PRINT "ENTER AN ANGLE (EXPRESSED IN RADIANS)";
30 INPUT R

40 Y¥=8IN(R)

3@ PRINT "THE SINE OF A"3iR:I"RADIAN ANGLE IS5"3Y
308998 END

Sample Run (using 1)

ENTER AN ANGLE (EXPRESSED IN RADIANS)T 1
THE SINE OF A 1 RADIAN ANGLE IS .B41471

To convert angles from degrees to radians, multiply the angle in degrees
times .0174533.

For example, R=SIN(A*,0174533)
To convert angles from radians to degrees, multiply radians times 57.29578.

Some computers also allow entry of the angle in either degrees or grads
(100 grads = 90 degrees). These computers use the function SIND for
degrees and SING for grads. Changing Line 40 should produce .0174524
with SIND and .0157073 with SING.

-0z

317

i

SIN

IF YOUR COMPUTER DOES NOT HAVE IT

If your interpreter does not have the SINe capability, the following sub-
routine can be substituted to compute the Sine in radians.

300@® GOTO 308999

30360 REM * SINE SUBROUTINE % INPUT X IN RADIANG,
OUTPUT ¥

303682 REM ALSDO USBES C AND Z INTERNALLY

30364 X=X*57.29578

30366 IF X=0 THEN 30408
30368 Z=ABS(
30370 C=X
30372 H=Z*X
30374 IF X<36@ THEN 30378
30376 H=X-INT(X/3G0)*3G60
30378 IF X<=90 THEN 30388
30380 H=X/90
30382 Y=INT(X
30384 H=(X-Y)#9@
30386 ON Y GOTO 30388,30392,30396
30388 H=9@0-X
30390 GOTO 30398
30392 H=-X
30394 GOTO 30398
3¢396 X=K—9®
30398 H=Z#X/57.29578
30400 IF ABS(<2,.48616E-4 THEN 32408
30402 Y=H#*X
30404 N=((({N/T72-1)%N/42+1) %Y /20-1)%Y/B+1) %X
30496 GOTO 3041¢@
30408 Y=X
30410 X=C/37,29378
30412 RETURN
And be sure to make these TEST PROGRAM changes:
3% H=R

49 GOSUB 303G¢@

To find the SINE of an angle (expressed in Degrees) either delete line 30364
or change line 40 to:

49 GOSUB 303G6

Variations In Usage

Some (rare) interpreters convert everything to degrees automatically.

Also See

TAN: COSs ATN: ACE: ASN, SINH

318

SINH(N) is a function that calculates the hyper-
bolic sine of a number. Hyperbolic functions ex-
press relationships based on a hyperbola, similar
to the way trigonometric functions are identified
on a circle.

P(x,y)

Function

SNH

If, on the unit hyperbola (i.e. the graph of X*X — Y*Y = 1), a line is drawn
from the origin to a point ,P, of the curve (see diagram), a region is formed
with area N/2. SINH(N) will give the value of the Y coordinate of the point

of intersection. (COSH(N) will give the value of X.)

Unlike the trig functions, N does not name the measure of an angle and,
therefore, is not naming degrees or radians. N can be any real number,

positive or negative.

Test Program

10 REM ‘BINH’ TEST PROGRAM

2@ PRINT "ENTER A VALUE"3

3@ INPUT N

4@ S=8INH(N)

5@ PRINT "THE HYPERBOLIC SINE OF"iN;"I8";38§
39999 END

Sample Run (for input of 1)

ENTER A VALUET |
THE HYPERBOLIC SINE OF 1 IS 11,1752

319

—S8SINH

IF YOUR COMPUTER DOESN’T HAVE IT

If your computer doesn’t accept SINH, you can compute the value by sub-
stituting the EXP function, as follows:

49 8=,5 % (EXP(N)-EXP(-N))

If your computer doesn’t have the EXP function either, substitute the
following subroutine, instead. The subroutine program found under EXP
must be included here.

30000 GOTO 30889

30450 REM % SINH SUBROUTINE * INPUT N, OUTPUT &
30452 REM ALS0O USES A, Bs E+» L AND X INTERNALLY
30454 K=

30456 GOSUB 30200

30438 S5=E

30480 K=-

30462 GOSUB 30200

30464 S=.5%(5-E)

304668 RETURN

To use this subroutine, make the following change in TEST PROGRAM:
49 GOSUB 30450

Alternate Spelling
Harris BASIC-V uses SNH for the SINH function.

Variations In Usage

None known.

Also See

COSHs TANH: EXP

320

Statement

SLEEP is used by the HARRIS BASIC-V to
suspend program execution for a specified number
of tenths of seconds.

For example, SLEEP 300 causes the computer to
pause 30 seconds before continuing program exe-
cution.

Test Program

1@ REM 'SLEEP’ TEST PROGRAM

20 PRINT “THE COMPUTER SHOULD PRINT THE FOLLOWING LINE"
30 SLEEP 150

49 PRINT "AFTER SLEEPING 15 SECONDS™

989 END

Sample Run

THE COMPUTER SHOULD PRINT THE FOLLOWING LINE

(15 second pause)
AFTER SLEEPING 15 SECONDS

IF YOUR COMPUTER DOESN’T HAVE IT

Insert a FOR-NEXT loop to “burn up” computer time. Test your computer to
see how many loops it executes per second. A micro-computer may perform
as few as several hundred, while a big mainframe may execute 50,000 or
more. Replace line 30 in the Test Program (assuming your computer exe-
cutes 1000 loops per second) with:

3¢ FOR L=1 TO 15000
3% NEXT L

Variations In Usage

None known.

Also See

WATT

321

Command

SKIPF is used by a few computers (e.g. Sharp/
TRS-80 Pocket) to advance the cassette tape to the
end of a file. In other words, use SKIPF to SKIP a
File.

If the SKIPF command is given without a file
name, the current file is skipped and the tape
stops at its end. If a file name is specified, for
example

SKIPF "A"
the computer searches the tape for file “A” and stops at its end. If file “A” is
not found, an I/O ERROR is printed on the screen.

SKIPF can be used to display a directory of the programs on a tape by speci-
fying a non-existent file name in the command. Each file name encountered
in the search is displayed on the screen until the tape ends and an I/O
ERROR message is displayed.

Also See

CL.OAD» CSAVE.

|

Function

The SPACE$(n) function is used to insert a speci-
fied number (n) of spaces.

For example, PRINT SPACE$(2¢) ;"HELLO" prints
20 spaces followed by the word HELLO.

Most computers with SPACES$(n) capability re-
quire the value (n) to be greater than 0 and less
than 256. ——
SPACE
Test Program SPA

SPC
18 REM ‘SPACE$’ TEST PROGRAM
20 A$=5PACE$(10)

39 PRINT "IF THE FOLLOWING LINE CONTAINS 1@ LEADING SPACES"

40 PRINT A%3“THE SPACE$ FUNCTION PASSED THE TEST"
99 END

Sample Run

IF THE FOLLOWING LINE CONTAINS 1@ LEADING SPACES
THE SPACE$ FUNCTION PASSED THE TEST

IF YOUR COMPUTER DOESN’T HAVE IT

If your computer uses STRINGS, try 2@ A$=STRING$(1¢," ") in the Test
Program. Then try 2@ A$=STRING$(10,32), The second number is the
ASCII number for a space.

In most cases, SPACEs can be inserted by careful use of the TAB function.
Remember, SPACE$ counts from the present cursor position while TAB
always counts from the left margin.

Forexanuﬂe,d@ PRINT TAB(1@)3"THE SPACE$ FUNCTION PASSED
THE TEST" will accomplish the same thing, and a variable could have been
used instead of the number 10.

Where a variable isn’t needed, simple enclosure of spaces between quotes
will also work.

For example, 40 PRINT" THE SPACE$ FUNCTION PASSED
THE TEST"

Alternate Spellings

Several other words are used for the SPACE$ function. Among them are
SPACE (used by MAX BASIC), SPA (Hewlett-Packard 2000) and SPC
(Benton Harbor BASIC).

323

——SPACES

Variations In Usage

None known.

Also See

TAB: STRING%

324

Function

The SQR(n) function computes the square root of
any positive number (n)

Test Program

18 REM ‘SOR’ TEST PROGRAM

20 PRINT "THE SQUARE ROOT OF 225
15"

30 PRINT SOR(225)

49 PRINT "‘SOR’ PASSED THE TEST IF SORT
THE RESULT IS 15"

30999 END

—nNZr

Sample Run

THE SOQUARE ROOT OF 225 18 15
‘SOR’ PASSED THE TEST IF THE RESULT IS 15

Alternate Spelling

SQRT is used by computers such as the DEC-10 and NORTH STAR to
indicate the square root function.

IF YOUR COMPUTER DOESN’T HAVE IT
If the computer failed the Test Program substitute the following subroutine:

30000 GOTO 30999

309020 REM * SOUARE ROOT SUBROUTINE * INPUT ¥, OUTPUT ¥
30022 REM ALSO USES YARIABLES W AND Z INTERNALLY

30024 IF X=0 THEN 30048

30026 IF X:@ THEN 30032

J00Z8 PRINT "ROOT OF NEGATIVE NUMBER?T"

3@030 STOP

30032 Y=X/4

30034 Z
30036 MW
30038 I
30040 1
30042 Y=Y
30044 Z=
30046 GOTO 30036
30048 Y=0

30250 RETURN

To use this subroutine in the TEST PROGRAM, make these Test Program
changes:

? THEN 300590
< THEN 3p05¢

25 K=225
30 GOSUB 30020
35 PRINT ¥

325

Variations In Usage

None known.

326

Function

The STEP function is used to specify the size
between steps in a FOR-NEXT statement. The
STEP value can be positive, negative or sometimes
even a non-integer decimal value. When a STEP
value is not specified, the value of +1 is automa-
tically assumed.

Test Program #1

—n2Z2>

10 REM ‘STEP’ TEST PROGRAM STE
20 PRINT "WHEN THE STEP YALUE IS 2. gT

n= 9
3¢ FOR X=1 7O 1@ STEP 2
49 PRINT X3
S0 NEXT X
g8 END

Sample Run
WHEN THE STEP VALUE IS 2y X=1 3 5 7 9

The following program tests the interpreter’s ability to handle negative
STEP values.

Test Program #2

10 REM 'NEGATIVE STEP’ TEST PROGRAM
20 PRINT "WHEN THE STEP UALUE IS -2, X="j
3¢ FOR X=10 TO 1 STEP -2

40 PRINT X3

50 NEXT X

99 END

Sample Run
WHEN THE STEP VALUE I5 -2, ¥= 10 8B 6 4 2

Test program #3 checks the interpreter’s ability to handle non-integer
decimal STEP values.

Test Program #3

190 REM ‘NON-INTEGER STEP’ TEST PROGRAM

Z0 PRINT "WHEN THE STEP VALUE I8 .5, X="3
30 FOR X=1 TO 5 STEP .5

490 PRINT X3

S0 NEXT X

99 END

327

STEP

Sample Run

WHEN THE STEP VALUE IS .5y X= 1 1.5 2 2.5 3 3.3 (4
4,5 8

A variable is accepted as the STEP value by some interpreters. For
example, FOR ¥=1 T0O 3¢ STEP A causes the value of X to be incremented
by the value of variable A each time the corresponding NEXT statement is
executed.

Test Program #4

19 REM 'VARIABLE STEP’ TEST PROGRAM

20 PRINT "ENTER A STEP VALUE (BETWEEN 1 AND 1@)"
30 INPUT S

49 PRINT "THE VALUE OF X="j

50 FOR X=1 TO 1@ STEP §

B® PRINT X3

70 NEXT X

89 END

Sample Run (Using 3)
ENTER A STEP VALUE (BETWEEN 1 AND 10)
}Hg VALUE OF X= 1 4 7 10
Alternate Spellings
STE is used in the PDP-8E, ST in the TI 990, and S. in the TRS-80 Level 1.
IF YOUR COMPUTER DOESN'T HAVE IT

If STEP is not intrinsic, or not powerful enough, it can be easily simulated
in ascending FOR-NEXT statements. Omit STEP S from line 50 in the last
test program, and add the following lines:

45 Y=1

B@ PRINT Y3

BS Y=Y+5

67 IF ¥x1ie GOTO 99

Inserting these lines immediately before the corresponding NEXT statement
allows incrementing X by any integer or decimal fraction you wish.

Also See

FOR+ NEKXT

328

Statement

The STOP statement is used to STOP execution of
the program and place the computer in the com-
mand or immediate mode. It can be placed at any
point within a program, but is not usually used in
place of the END statement.

Some computers will stop the program at the line
which contains the STOP statement, while others
jump to the line containing the END statement.

STO
Many computers with interpreters (but not usually ST.
compilers) print the line number where the pro- s.

gram stopped, and allow continuation of program
execution via the CONTINUE command (see
CONT).

Test Program

1@ REM ‘STOP’ TEST PROGRAM

2@ PRINT "SEE THE STOP STATEMENT IN ACTION"
3@ 5TOP

49 PRINT "THE STOP STATEMENT FAILED THE TEST®
989 END

Sample Run

SEE THE STOP STATEMENT IN ACTION
BREAK AT LINE 30

Alternate Spellings

STO is used in the PDP-8E and Tektronix 4050 series. ST. and S. in the
TRS-80 Level 1.

Variations In Usage

Trying to use both STOP and END in the same program can be unusually
frustrating unless you know your machine’s capabilities. Some machines
(e.g. Varian) require physical intervention (push a button) before RUNning,
after hitting a program STOP.

Others (mostly large machines) allow an unlimited number of STOPs, but
only one END. Others allow an unlimited number of ENDs, but no STOPs.
Most micros allow trouble-free mixing of STOPs and ENDs.

With care, the STOP/END problem can almost always be resolved and pro-
grams easily converted.

Also See

CONT s ENDs GO

-z

329

Statement
Command

STORE is used in the APPLE II computer as both
a command and a statement to save an array of
numeric values on cassette tape. A large array can
be placed on tape under program control, then
RECALLed by the same program or by another
program. See RECALL for additional information.

Example: 19 DIM A(3,3,3)

200 STORE A

will store 64 values (4¥4*4) on tape for future use.
(Note: The four values are 0, 1, 2 and 3.)

Test Program

19 REM ‘STORE’ TEST PROGRAM
20 DIM A(Z3),B(25)

3@ FOR I=1 TO 25

49 A(I) =1

30 NEXT I

6@ STORE A

79 PRINT "REWIND TAPE AND SET TO PLAY - PRESS RETURN"
80 INPUT A%

90 RECALL B

160 FOR I=1 TO 235

11@ PRINT B(I),

120 NEXT I

998 END
Sample Run

REWIND TAPE AND SET TO PLAY - PRESS RETURN
! 2 3
4 3 B
7 8 9
19 11 12
13 14 15
16 17 i8
19 20 21
22 23 24
25

Variations In Usage

None known.

Also See
RECALL s+ CSAVE s DIM

330

Function

The STRING$(n,ASCII code) function is used with
the PRINT statement to print an ASCII character
(n) number of times.

For example, PRINT STRING%(1@,65) prints the
ASCII character A(ASCII code 65) ten times.

Test Program #1

1@ REM ‘STRING$’ TEST PROGRAM STRING
20 PRINT STRING$(9,42) 1 STR

3@ PRINT "STRING$ FUNCTION"3

49 PRINT STRING$(9,42)

99 END

Sample Run

FrEENE XX XSTRINGS FUNCT I ON® %% % %% %% %

Variations In Usage

Some computers (e.g. the TRS-80) allow string characters (enclosed in
quotes) or string variables in the STRING$ function.

For example, 1@ PRINT STRING$(10,"A")
prints the letter A ten times.

19 A%="B"
20 PRINT STRING%(3,A%)

prints the letter B five times.

Test Program #2

12 REM ‘STRING$’ TEST PROGRAM

29 PRINT "ENTER ANY LETTER, NUMBER DR SYMBOL":
30 INPUT A%

40 PRINT STRING$(Z0,".")3

5@ PRINT STRING$(20,A%)

99 END

Sample Run
ENTER ANY LETTER, NUMBER OR SYMBOL®

YAYATAY \VRYAVAYAY 000
ININININT

331

— STRINGS

Alternate Spellings
Some computers accept STRING or STR in place of STRINGS.
IF YOUR COMPUTER DOES NOT HAVE IT

If your computer does not allow the STRINGS$ function, it can be simulated
by finding the ASCII character in the ASCII table (see Appendix A) which
matches the ASCII code listed in the STRING$ function. Then place that
character in a PRINT statement the number of times specified by the first
number in the STRING$ function.

For example:

1@ PRINT STRING®(12:45)

can be replaced with:

10 PRINT "eomomomm e "
or

1@ FOR N=1 TO 12

15 PRINT "-"3

20 NEXT N
Also See

PRINT+» ASCs+ CHR% s+ LEN: MID%:, LEFT$, RIGHT$®, STR%, WAL

332

The STR$(n) function is used to convert a numeric
value (n) into a string. The value (n) may be ex-
pressed as a number or a numeric variable.

For example,

10 A$=STR$(33)
20 PRINT A%

prints the number 35 as a string. The computer
automatically allows room before the number for
its sign. In the event the number is positive, that
space is left blank.

Conversion of a number to a string via the STR$
function allows its manipulation using string
modifiers (e.g. LEFT$, RIGHT$, MID$, ASC, etc.)

Test Program

19 REM ‘STR%’ TEST PROGRAM
20 A = 123
30 A% = STR$(A)

Function

4@ PRINT "IF THE NUMBER"S3A3F"IS CONVERTED TO THE

STRING "iA%

5@ PRINT "THEN THE STR$ FUNCTION PASSED THE TEST.,"

899 END

Sample Run

IF THE NUMBER 123 IS CONVERTED TO THE STRING 123

THEN THE S5TR$ FUNCTION PASSED THE TEST.

Variations In Usage

None known.

Also See

ASC» CHR%, LENs LEFT$: MID$s» RIGHT%: STRING$, VAL NUMS%

333

Statement

STUFF is used in the Digital Group Opus 1 and
Opus 2 BASIC to insert integer values between 0
and 255 into specified memory locations.

For example, STUFF 39¢9 65 places the decimal
value 65 in memory address 3000.

The FETCH function can be used with STUFF to
check what STUFF has stored into memory. (Some
computers use PEEK or EXAM instead.)

Computers vary in the amount of available memory and memory addresses
that can be STUFFed without erasing memory dedicated to other purposes.
Check your computer’s manual before running this Test Program to
determine that addresses 15001 to 15010 are non-critical memory locations.
If they are already dedicated, select 10 other consecutive addresses.

Test Program

1@ REM 'STUFF’ TEST PROGRAM

20 FOR X=1 TO 1@

30 STUFF 15000+X X

49 NEXT X

S0 FOR X=135001 T0 135010

G@ Y=FETCH(X

70 PRINT VY3

8@ NEXT X

90 PRINT

1@ PRINT "’'STUFF’ PASSED THE TEST IF #1 THRU #10 ARE
PRINTED"

8999 END

Sample Run

i1 2 3 4 5 B 7 8B 9 10
"STUFF’ PASSED THE TEST IF #1 THRU #10 ARE PRINTED

IF YOUR COMPUTER DOESN'T HAVE IT

If your computer failed the Test Program, try the Test Programs found in
POKE and FILL.

Variations In Usage

None known.

Also See

POKEs» FILL: PEEKs FETCH, EXAM

334

SWAP is used by several computers (e.g.
INTELLEC, SWTP, COMPUCORP) to switch the
values of two variables or array elements.

For example, SWAP(AB) results in the original
value of A being stored in B and the former value
of B being stored in A. SWAP is very useful for
arranging array values in an ascending or des-
cending order.

Test Program

1@ REM 'SWAP’ TEST PROGRAM

20 PRINT "ENTER TWO VALUES (SEPARATED BY
30 INPUT A4B

49 IF A<=B THEN GO

50 SWAP (AB)

B® PRINT As" IS LESS THAN OR EQUAL TO "sB
70 GOTO Z@

989 END

Sample Run

ENTER TWO VALUES (SEPARATED BY COMMAS)
T 347

3 I8 LESS THAN OR EQUAL TO 7

ENTER TWO VALUES (SEPARATED BY COMMAS)
T 81

1 I8 LESS THAN OR EQUAL TO 8

ENTER TWO YALUES (SEPARATED BY COMMAS)

IF YOUR COMPUTER DOESN’T HAVE IT

Statement

COMMAS) ™

If SWAP doesn’t work with your computer, try EXCHANGE in line 50. If
neither is available, the values can be switched by replacing line 50 with:

48 T=A
50 A=B
52 B=T

Also See

EXCHANGE

335

Command
Statement

The SYSTEM command is used by some computers
to allow machine language data (object code) to be
loaded from cassette tape or disc into the com-
puter. These computers may also use SYSTEM as
a program statement.

When the computer executes the line containing
the SYSTEM statement, or when SYSTEM is
typed on the terminal, the computer changes to
the monitor mode and prints an asterisk followed
by a question mark (*?) or some other cryptic
symbol. This signal indicates the computer is
ready to accept the object file from disc or tape.

SYS

Place an object code tape in the cassette player and set it to the PLAY
mode. Type the object file name and RETURN. The cassette recorder’s
motor is controlled by the computer, which turns it on and off before and
after the load cycle. The cassette should “play back” the data into the
computer. When the data is loaded in the computer, another *? is displayed.

To execute the object file routine, type a slash (/) followed by a memory
starting address. If the / is entered without the starting address, then execu-
tion begins at the address specified in the object file.

Alternate Spellings

The Commodore PET, DEC - 10, and Sperry Univac System/9 use SYS as an
abbreviation for SYSTEM.

Variations In Usage

The SYSTEM command is similar to the ESC (escape) key on many key-
boards. Both place the command in the System, Executive or monitor mode.

Also See

PEEK:s POKEs MON

336

Function

The TAB function is used with PRINT statements
in a manner similar to the TAB key on a type-
writer. When the PRINT statement is followed by
TAB(the computer inserts a number of spaces
(enclosed in parentheses) before the statement to
be printed. The TAB value must always be posi-
tive and should be less than the number of spaces
allowed per line.

If more than one TAB statement is used in one T.

line, the numbers must get progressively larger

and allow room inbetween for that which is to be printed. If insufficient
room is allowed between TABs, they will be overrun, just like on a
typewriter.

The value may be expressed as a number, PRINT TAB(S5)} a variable,
PRINT TAB(})3 or an expression, PRINT TAB(2X+Y)., TAB(should be
followed by a semicolon or comma, but it depends upon the interpreter.

Test Program

10 REM ‘TAB’ FUNCTION TEST PROGRAM
20 PRINT TAB(S)4i "TAB 5"

30 X = 10

49 PRINT TAB(X)3 "TAB 1@V

5@ PRINT TAB(G*X/5+48)i%1 "TAB 20"

99 END

Sample Run

TAB 5
TAB 1@
TAB Z0

The maximum value your computer can TAB can be quickly determined by '

adding the following lines to the Test Program:

E@ PRINT "TYPE IN A TAB VALUE"]
70 INPUT T

B® PRINT TAB(T)3§ "TAB"ST

9@ GOTOD GO

The TAB value entered in line 70 will cause line 80 to print the TAB value
following the same number of spaces.

Alternate Spelling

Computers using variations of Tiny BASIC accept T. as an abbreviation for
TAB.

—nZ>

337

TAB

Variations In Usage
None known.
IF YOUR COMPUTER DOESN'T HAVE IT

There is no completely satisfactory replacement for TAB, but there are
several ways to obtain printouts which may be acceptable. Assume an
original PRINT series:

20@ PRINT TAB(1@)i"THE"STAB(Z2@) i"QUICK"STAB(30) 5 "BROWN" 3
212 PRINT TAB(40)i"FOX"

The TAB values are simple numbers and could be replaced by:
200 PRINT" THE QUICK BROWN FOX™"
or, less accurately:
200 PRINT "THE"»"QUICK" s"BROWN" s"FOX"
or
A combination of inserting spaces and automatic zone spacing.

A third, and generally less satisfactory, method of arriving at a usable
printout involves combining the carriage return suppressing ability of the
semicolon (;), the automatic zoning of the comma (,), and inserted spaces. In
some interpreters (compilers) however this can create a remarkably messy
situation.

Also See

PRINT, PRINT USING, PRINT AT, :(comma), i(semicolon), SPACE%$

338

Function

The TAN(A) function computes the Tangent of the
angle A when that angle is expressed in radians
(not in degrees). One radian = approximately 57
degrees.

TAND
TANG

Tangent (TAN) is defined as the ratio of the length of the side opposite the
angle being investigated to the length of the side adjacent to it.

TAN(A) =Y
The opposite of TAN is ARCTAN (ATN). ARCTAN finds the value of the
angle when its TAN, or ratio of sides (Y/X) is known. -

Test Program

19 REM “TAN’ TEST PROGRAM

Z@¢ PRINT "ENTER AN ANGLE (EXPRESSED IN RADIANS)";
3@ INPUT R

49 ¥=TAN(R)

5@ PRINT "THE TANGENT OF A"SRI"RADIAN ANGLE IS"3Y
30999 END

Sample Run (using 1)

ENTER AN ANGLE (EXPRESSED IN RADIANS)™ 1
THE TANGENT OF A 1 RADIAN ANGLE IS 1.85741

To convert values from degrees to radians, multiply the angle in degrees
times .0174533. For example, R=TAN(A%,0174533) To convert values from
radians to degrees, multiply the angle in radians times 57.29578.

Some computers accept the measure of the angle in degrees or grads (100
grads = 90 degrees). These computers use the function TAND for degrees
and TANG for grads. Changing Line 40 should produce .0174451 with
TAND and .0157092 with TANG.

—0Z2>

339

IF YOUR COMPUTER DOESN’T HAVE IT

If your interpreter has the SINe and COSine capability but not TANgent,
substitute SIN(A)YCOS(A) for TAN(A).

If your interpreter does not have SINe, COSine or TANgent capability, the
following subroutine can be substituted to compute the TANgent in radians.

The subroutine programs found under SIN and COS must be added to this
one to make it work (saves space not to duplicate them here).

3e000¢ GOTO 30998

303002 REM *TANGENT SUBROUTINE % INPUT X IN RADIANS,
QUTPUT ¥

30302 REM ALS0O USES Ay By Cs D+ W AND Z INTERNALLY

30304 X=X*37,29378

30306 A=X

30308 GOS5UB 3@336

30310 IF ABS(Y)=>1E-8 THEN 32316

30312 PRINT "TANGENT UNDEFINED"

30314 STOP

30316 B=Y

30318 X=A

30320 GOSUB 30366

30322 Y=Y/B

30324 X=A/57.289578

30326 RETURM

and be sure to make the following Test Program changes:

35 K=R
4o GOSUB 30300

To find the TANGENT of an angle (expressed in degrees), either delete line
30304 or change line 40 to:

490 GOSUB 303086

Variations In Usage

Some (rare) interpreters convert everything to degrees automatically.

Also See

SIN, COSy ATN:s ASN, ACSs TANH

340

Function

TANH(N) is a function that calculates the hyper-
bolic tangent of a number. Hyperbolic functions
express relationships based on a hyperbola similar
to the way trigonometric functions are identified
on a circle.

P(x,y)

TNH

(0] (1,00

If, on the unit hyperbola (i.e. the graph of X*X — Y*Y = 1), a line is drawn
from the origin to a point ,P, on the curve (see diagram), a region is formed
with an area N/2. TANH(N) will give the slope of the line drawn. [COSH(N)
gives the value of the X coordinate of the point of intersection and SINH(N)
gives the value of Y.]

Unlike the trig functions, N does not name the measure of an angle and,
therefore, is not in degrees or radians. N can be any real number, positive
or negative but TANH(N) is always between -1 and 1.

Test Program

19 REM ‘TANH’ TEST PROGRAM

Z0 PRINT "ENTER A VALUE"3

30 INPUT N

49 T=TANH(N)

S@ PRINT "THE HYPERBOLIC TANGENT OF "“3iN3"IS";3T
30999 END

Sample Run (using the value .5)

ENTER A VALUE? .3
THE HYPERBOLIC TANGENT OF .5 IS5 ,4B2117

341

—TANH

IF YOUR COMPUTER DOESN’T HAVE IT

If your computer doesn’t accept TANH, you can compute the value by sub-
stituting the EXP function, as follows:

4@ T=1-2#EXP(-N)/(EXP(N)+EXP(-N))

If your computer doesn’t have EXP function either, substitute the following
subroutine, instead. The subroutine program found under EXP must also be
included.

3¢eee GOTO 30999

30470 REM % TANH SUBROUTINE * INPUT N, OUTPUT T
30472 REM ALSO USES As By E+ L AND X INTERNALLY
30474 X=

30476 GOSUB 30200

30478 T=E

30480 X=-

30482 GOSUB 30200

30484 T=1-2%E/(T+E)

30486 RETURN

To use this subroutine, make the following change in Test Program:
49 GOSUB 30470

Alternate Spelling
Harris BASIC-V uses TNH for the TANH function.

Variations In Usage

None known.

Also See

SINH:; COS8H:s EXP

342

Command

TAPPEND is used by some interpreters (e.g. Per-
com) to combine a program from cassette tape with

one already in memory. It stands for Tape
APPEND.

The line numbers of the program statements being
brought into memory must be larger than the last
line number already in memory.

Test Program

To test TAPPEND, store this short program on
tape as PROG2.

1009 PRINT "THESE LINES ARE"
121@ PRINT "FROM PROGZ2"
1020 END

Then type NEW or SCRATCH to erase the program and type this PROG1:

1@ REM ‘TAPPEND’ TEST PROGRAM PROGI
20 PRINT "THESE LINES ARE"

30 PRINT "FROM PROG1"

49 PRINT BUT+u 0"

Then type TAPPEND PROG2 and RUN.
Sample Run

THESE LINES ARE
FROM PROGL

BUTOO‘
THESE LINES ARE
FROM PROGZ

Also See
APPEND » CLOAD» CSAVE, TLOAD,; TSAVE

343

Command
Statement

TEXT is used in APPLE II BASIC as both a
command and a program statement to change the
computer’s operation from the graphics mode to
the normal TEXT (narrative) mode.

Test Program
10 REM ‘TEXT’ TEST PROGRAM

20 TEXT
3@ PRINT "THE ‘TEXT’ STATEMENT DID NOT CRAGBH"
a9 END

Sample Run

THE 'TEXT’ STATEMENT DID NOT CRASH

Variations In Usage

TEXT is used in computers with MAXBASIC to specify designated variables
as string variables. For example, TEXT A F M defines variables A,F and M
as string variables.

Also See

GRs DEFSTR:+ %

344

Statement

THEN is used with the IF statement to indicate
the next operation the computer is to perform
when the condition of the IF statement is met.

For more information see IF-THEN.

—nNZ2r

Test Program

19 REM 'THEN' TEST PROGRAM \
29 K=10 THE
30 IF X=10 THEN G@ T.
40 PRINT "‘THEN’ FAILED THE TEST"

5@ GOTO 99

69 PRINT "'THEN’ PASSED THE TEST"

989 END

Sample Run

‘THEN’ PASSED THE TEST

Alternate Spellings
THE is allowed by the PDP-8E computer and T. by TRS-80 Level I.

Variations In Usage

None known.

Also See

IF-THEN

345

Command
Function

TIME is used as a special feature in some com-
puters to indicate the elapsed time in seconds or
fractions of seconds from a known reference point
in time.

Most “time-shared” machines count time from
12:00 midnight until the following midnight, while
“stand-alone” machines count from the moment
the computer is turned on until it is turned off.

TIM

Ti For example, PRINT TIME may print a number
similar to 017230 indicating the total computer
run time in some cryptic units.

Computers vary in their unit of time measurement. The Commodore PET
increments the TIME value at a rate of 60 times per second, those using MAX
BASIC increment at a rate of 1000 times per second, and the DEC BASIC-PLUS-2-
increments at a rate of one count per second.

Some computers (e.g. the Commodore PET) report elapsed TIME as a
six-digit number, and this value cannot be changed or reset to zero except
by turning off the computer.

Test Program

10 REM 'TIME’ TEST PROGRAM

20 A=TIME

30 PRINT "TIME IS5 MARCHING ON"

49 FOR X=1 T0 2000

S0 NEXT X

60 B=TIME

70 IF B:*A THEN 100

80 PRINT "THE TIME FUNCTION FAILED THE TEST"
g0 GOTO 999

109 PRINT "/TIME’ PASSED THE TEST - ELAPSED TIME ="iB-A
9898 END

Sample Run (typical)

TIME IS MARCHING ON
‘TIME’ PASSED THE TEST - ELAPSED TIME = 270

Alternate Spellings

TIM is used by some computers (e.g. DEC-10) while others (e.g. Commodore
PET) use TI.

346

TIME=——

Variations In Usage
The DEC BASIC-PLUS-2 uses the following TIME variations:
TIME(0) indicates the total elapsed time in seconds since midnight.

For example, 1#@ PRINT TIME(®) may print a value similar to 25128
indicating 25,128 seconds have elapsed since midnight.

TIME(1%) indicates the total elapsed program time in tenths of seconds.

For example, 182 PRINT TIME(1%) may print a value similar to 85
indicating the program ran 8.5 seconds before printing TIME(1%).

TIME(2%) indicates the total elapsed time in minutes that a terminal was
connected to a time share system.

For example, 1@ PRINT TIME(Z%) may print a value similar to 130
indicating 130 minutes have elapsed since the terminal was connected to
the time share system.

The Hewlett Packard 2000F TIME-SHARED BASIC uses TIME as a com-
mand to print the elapsed time since the terminal was logged onto the
system, and the total accumulated account time.

For example, if the command TIME is typed, it will print a report similar to
this;

CONSOLE TIME = 5 MINUTES., TOTAL TIME = 2045 MINUTES,

Also See

TIMES, CLK$%

347

Command
Function

TIMES is used by some computers (e.g. the Com-
modore PET and the DEC BASIC-PLUS-2) to in-
dicate the time of day.

The PET reports the time in hours (0 -24), minutes,
and seconds as a six digit number (hhmmss). The
TIMES$ value is “set” by assigning a six digit
number (enclosed in quotes) to TIMES$.

TIS For example, TIME$="14450@" sets the time at
144500 (which is the same as 2:45 p.m.). The time
advances in one second increments from the time
the computer is turned on (TIMES$ is initialized at
000000), and from the moment it is assigned a
new value.

Test Program

10 REM ‘TIME$’ TEST PROGRAM

20 PRINT "THE CURRENT TIME IS"3iTIMES®

30 PRINT "THE TIME® FUNCTION PASSED THE TEST®
49 PRINT "IF A SIX DIGIT NUMBER IS PRINTED"
889 END

Sample Run (typical)

THE CURRENT TIME IS Q12536
THE TIME$ FUNCTION PASSED THE TEST
IF A BIX DIGIT NUMBER IS PRINTED

Alternate Spelling
TI$ is used by the Commodore PET as an abbreviation for TIMES.

Variations In Usage

DEC BASIC-PLUS-2 uses TIME$(0%) to indicate the time of day in hours
and minutes, leaving off the seconds.

For example, PRINT TIME$(2%) will print a time in the format 14:32. The

computer automatically inserts the colon between the hours and minutes.
Also, DEC BASIC-PLUS-2 uses TIME$(n) to indicate the time (n) minutes
before midnight. For example: PRINT TIME$(G1) prints 22:59.

Also See

TIME: CLK®%

348

Command

The TLOAD command is used by PERCOM BASIC
to LOAD a program into the computer from cas-
sette tape.

Test Program

Enter this program into the computer from the
keyboard, and store it on cassette tape. (See
TSAVE for details.)

1¢ REM ‘TLOAD’ TEST PROGRAM
20 PRINT "THIS PROGRAM TESTS THE TLOAD FEATURE"
989 END

Once the program is recorded on cassette tape, erase the computer’s memory
with NEW (or SCRATCH or whatever is appropriate).

Rewind the tape, then set the recorder to the PLAY mode and type the
TLOAD command.

When the recorder stops, LIST the program to verify that the program
loaded matches the program above (see LIST). If all looks well, RUN.

Sample Run

THIS PROGRAM TESTS THE TLOAD FEATURE

Variations In Usage

None known.

Also See

CLOAD s LOAD, TSAYE, LIST, NEW, SCRATCH

349

Function

The TOP function in the ACORN ATOM computer
identifies the address of the first byte of unused
memory.

For example, PRINT TOP will print the beginning
address (in hexadecimal) of the available memory.
If you know the starting address (SA) of your
program, then PRINT T0P - sA will report how
large the program is.

Test Program

19 REM ‘TOP’ TEST PROGRAM

20 IF TOP=@ THEN 3@

3¢ PRINT "FREE MEMORY BTARTS AT "iTOP
4@ GOTO 989

5¢ PRINT "TOP FAILED THE TEST"

99 END

Sample Run
FREE MEMORY STARTS AT Z85A

The exact address will depend on the size of computer and the amount of
memory currently being used.

Variations in Usage

None known.

Also See

FRE(@) s+ MEM

350

The TRACE command is used in APPLE II BASIC
to activate a feature which prints program line
numbers as each one is executed by the computer.
It is used as a trouble-shooting aid. This feature is
disabled by the NOTRACE command.

TRACE may also be used as a program statement
to allow tracing only specific sections of programs.

Test Program

10 REM 'TRACE’ TEST PROGRAM

20 PRINT "'TRACE’ TRACES EACH LINE"
30 TRACE

49 GOTO 90

5@ PRINT “UNTIL TURNED OFF BY™®

60 NOTRACE

7¢ PRINT "THE ‘NOTRACE’ STATEMENT®
80 GOTO 11@

Command
Statement

80 PRINT "THAT FOLLOWS THE ‘TRACE’ STATEMENT"

le¢ GOTO S0
11¢ PRINT "AS ILLUSTRATED BY THIS LINE"
98989 END

Sample Run

‘TRACE’ TRACES EACH LINE

#40#890 THAT FOLLOWS THE ‘TRACE’ STATEMENT

#100#50 UNTIL TURNED OFF BY
#B0 THE ‘NOTRACE’ STATEMENT
AS TLLUSTRATED BY THIS LINE

Variations In Usage

None known.

Also See

NOTRACE s TRONs TRACE ONs FLOW

3561

Command
Statement

The TRACE OFF command is used in Motorola
BASIC to disable the trace function (see TRACE
ON). TRACE OFF may be used as a program
statement to turn the trace off at specified areas in
the program.

Test Program

19 REM ‘TRACE OFF’ TEST PROGRAM

20 TRACE ON

32 PRINT "EACH LINE SHOULD BE TRACED"

49 TRACE OFF

39 PRINT "BY THE 'TRACE ON’ STATEMENT"

G0 PRINT "UNTIL TURMED OFF BY THE ‘TRACE OFF’ STATEMENT"

99 END

Sample Run

©30> EACH LINE SHOULD BE TRACED
249 BY THE ‘TRACE ON’ STATEMENT
UNTIL TURNED OFF BY THE ‘TRACE OFF’ STATEMENT

Variations In Usage

None known.

Also See

TRACE ONs NOTRACE: TROFF, NOFLOMW

352

Command
Statement

The TRACE ON command is used in Motorola
BASIC to activate a feature which prints program
line numbers as each one is executed by the com-
puter. It is used as a trouble-shooting aid. This
tracing feature is disabled by the TRACE OFF
command.

TRACE ON may be used as a program statement
to trace only specified sections of a program.

Test Program

1@ REM ‘TRACE ON’ TEST PROGRAM

Z@ PRINT "‘TRACE ON’ TRACES EACH LINE"
3@ TRACE ON

49 GOTO 90

5@ PRINT "UNTIL TURNED OFF BY"

6@ TRACE OFF

70 PRINT “"THE ‘TRACE OFF’ STATEMENT"

8o GOTO 11@

99 PRINT "THAT FOLLDWS THE ‘TRACE ON’ STATEMENT"
leg GOTO 5@

119 PRINT "AS ILLUSTRATED BY THIS LINE"
999 END

Sample Run

"TRACE ON’ TRACES EACH LINE

“49r 90 THAT FOLLOWS THE ‘TRACE ON’ STATEMENT
“10Qx <5@» UNTIL TURNED OFF BY

“B6@: THE 'TRACE OFF’ STATEMENT

AS ILLUSTRATED BY THIS LINE

Variations In Usage

None known.

Also See

TRACE OFFs» TRACE, TRON: FLOW

3563

Command
Statement

TROFF (trace off) is a command which disables
the trace feature found in many interpreters (e.g.
TRS-80). TROFF may also be used as a program
statement to turn the trace off at specific areas in
the program.

Test Program
Type the TRON command, then RUN this test program:

1@ REM ‘TROFF’ TEST PROGRAM

20 PRINT "THE FIRST THREE LINES OF THIS PROGRAM"

30 TROFF

49 PRINT "ARE PRINTED MWITH THE TRACE TURNED ON."

39 PRINT "THIS LINE IS8 PRINTED WITH THE TRACE TURNED OFF."
99 END

Sample Run

$1@Qr <20> THE FIRST THREE LINES 0OF THIS PROGRAM
£30r ARE PRINTED WITH THE TRACE TURNED ON,
THIS LINE IS5 PRINTED WITH THE TRACE TURNED OFF,

Variations In Usage

None known.

Also See

TRON: NOTRACE: NOFLOW. TRACE OFF

354

Command
Statement

The TRON (trace on) command is used to activate
an analytical tool which prints program line
numbers as each line is executed by the computer.
This trace feature is disabled by the TROFF or
NEW commands. TRON is intended to be used as
a program tracing and troubleshooting aid.

Test Program

18 REM ‘TRON’ TEST PROGRAM

20 GOTO 50

30 PRINT "OF THIE TEST PROGRAM."
49 GOTO 70

SO PRINT "TRON TRACES EACH LINE"
E® GOTO 30

7@ PRINT "END OF TEST PROGRAM.,®"
99 END

Sample Run
Type TRON before running the test program.

F20x450 TRON TRACES EACH LINE
30:0F THIS TEST PROGRAM.
70 *END OF TEST PROGRAM.

TRON may also be used as a program statement to trace specific sections of
programs. To test this feature, type TROFF to be sure the “trace” is off,
then add the following line to the test program and RUN it.

35 TRON

Sample Run

TRON TRACES EACH LINE

OF THIS TEST PROGRAM.
L4070 END OF TEST PROGRAM.
£997

Variations In Usage

None known.

Also See

TROFF s NEW, FLOW: TRACE: TRACE ON

355

Command

The TSAVE command is used by PERCOM BASIC
to store the program in computer memory on cas-
sette tape. For more information see CSAVE.

Test Program

1@ REM ‘TSAVE’' TEST PROGRAM
20 PRINT "THIS PROGRAM TESTS THE TSAWUE FEATURE"
99 END

Set up the cassette recorder for recording and type the command TSAVE.
The computer should control the operation of the cassette recorder by
turning the motor on and off (at the beginning and end of the SAVE cycle).

Once the program is recorded on cassette tape, type NEW (or SCRATCH or
whatever is appropriate) to erase the program from memory. Load the pro-
gram from tape back into the computer (see TLOAD). LIST the program to
verify that the program held in the computer’s memory is identical to that
originally entered (see LIST).

Sample Run

THIS PROGRAM TESTS THE TSAVE FEATURE

Variations In Usage

None known.

Also See

CSAVE, SAVE, TLOAD: LIST,» NEW: SCRATCH

356

Modifier
Statement

UNTIL is used as both a modifier and a statement.
As a modifier, some computers (e.g. DEC PDP-11)
use UNTIL to make statements conditional.

For example, 6@ ¥=}+Y UNTIL X:100 causes the
value of Y to be added to the value of X repeatedly
until the sum is greater than 100. It’s like having
its own built-in FOR-NEXT loop. Of course, if X
and Y have values such that the sum will not
reach 100 (X=1 and Y=-5 for instance) the
program will never leave line 60.

Test Program

19 REM ‘UNTIL’ TEST PROGRAM

2@ PRINT "TYPE 4 DR 5 NUMBERS (ODNE AT A TIME)"
30 PRINT "THE LAST ONE BEING ZERO"

49 INPUT X

30 8=8+X

B@ GOTO 4@ UNTIL X=@

7¢ PRINT "THE SUM OF THE NUMBERS TYPED IN I5"3S
889 END

Sample Run

TYPE 4 OR 5 NUMBERS (ONE AT A TIME)
THE LAST ONE BEING ZERO

T 23

T B2

747

7?1258

T B

T

THE SUM OF THE NUMBERS TYPED IN IS 283

Some computers (e.g. DEC PDP-11) use UNTIL in a special form of FOR
statement. Example: 50 FOR X=1 STEP 3 UNTIL X#X »100%X+35.
Notice the statement does not have a terminating value (as in FOR X=1
TO 20) but ends only when a specified condition has been achieved.

UNTIL is used as a statement by a few computers (e.g. the Acorn ATOM) to
terminate a loop created by the DO statement. Example:

20 PRINT X XxXs SOR(X
30 UNTIL X=12

Also See

WHILE: FOR

1@ DO X=X+1
+

357

Function

USER

The USR function executes a machine language
routine stored in the computer’s memory. The
machine language routine can be entered into
memory from the keyboard using the POKE
statement or from tape or disk using a SYSTEM
command.

The USR function can be used in programs similar
to any other “built in” function.

For example, 1¢ PRINT USR(N) will print the
value that is computed by the user’s machine
language routine.

If a machine language routine which computes the square root of N, is
stored in the computer’s memory, then the computer will print the square

root of the number N.

To test for the USR function, you must load a machine language routine
into the computer (at appropriate addresses) using the POKE statement or
SYSTEM command. Refer to your computer’s Manual for specific instruc-
tions in the use of this special function on your machine.

Alternate Spelling
Some computers use USER in place of USR.

Also See

POKE s SYSTEM

368

Function

The VAL function is used to convert numbers
which are written as strings back into numeric
notation. VAL has the effect of stripping off the
quotes or dollar sign.

For example:

190 A%="38"
Z0 PRINT VAL (A%)

prints the number 35 as a numeric value.

Test Program #1

19 REM VAL’ TEST FPROGRAM

20 A%="45,12"

30 A=UAL (A%)

49 PRINT "IF THE STRING "iA%i" IS CONVERTED TO THE
NUMBER" 5A

5@ PRINT "THEN THE VWAL FUNCTION PASSED THE TEST."

889 END

Sample Run

IF THE BSTRING 45.12 IS CONVERTED TO THE NUMBER 45.12
THEN THE UAL FUNCTION PASSED THE TEST.

CAUTION: Some BASICs do not interpret a string such as * -45" (a plus
or minus sign preceded by blanks) as a numeric value. If this is a problem
on your computer, a 0 is displayed when PRINT yUaL(" -45") is executed.
Include the following lines in each program where this is a problem:

200 IF LEFT$(A%,1)<x" " THEN 230
210 A% = RIGHT$(A$,,LEN(A%$)-1)
220 GOTO 200

230 A = VAL (A%)

Variations In Usage

Some computers (e.g. Microsoft variations) allow combinations of numbers
and letters with the VAL function, but the numbers must precede the
letters. If they don’t, the VAL function produces a 0 indicating it did not
find a number as the first character.

For example, PRINT UAL("123ABC") prints the number 123.

359

—R AR

Test Program #2

10 REM ‘UAL WITH MIXED STRING’ TEST PROGRAM
20 A%="12 0'CLOCK"

30 A=UAL (A%)
4¢ PRINT "IF THE STRING "jA$i" IS CONVERTED TO THE
NUMBER" 5 A

5@ PRINT "THE VAL FUNCTION ACCEPTED NUMBERS MIXED
WITH LETTERS."
989 END

Sample Run

IF THE STRING 12 0'CLOCK IS8 CONVERTED TO THE NUMBER 12
THE VAL FUNCTION ACCEPTED NUMBERS MIXED WITH LETTERS.

Also See

5TRe, ASCs CHR%, LENs LEFT%, MID$: RIGHT%:s STRINGS

360

Function

VARPTR is a function used by some BASICs (e.g.
Microsoft BASIC) to locate the memory address of
a variable. It stands for VARiable PoinTeR.

A = UARPTR(X

assigns to A the ADDRESS of the first memory
cell used to store the value of variable X. To see
what is stored in location A, type PRINT
PEEK (A). The meaning given to what we find
depends on the type of variable X represents.

If X is an integer variable (see DEFINT and %), location A holds the Least
Significant Byte (LSB) of the value of X. Location A+1 holds the Most
Significant Byte (MSB) of the value of X. VARPTR works correctly if
MSB*256 + LSB = X.

Test Program #1

1@ REM * VARPTR’ TEST PROGRAM
20 X% = 32737
30 A = UARPTR (X))
49 PRINT "‘UARPTR’ PASSED THE TEST IF"3
3@ PRINT PEEK(A+1)*Z5G+PEEK(A) S "EQUALS" i X%
99 END
Sample Run

"UVARPTR’ PASSED THE TEST IF 32737 EQUALS 32737

When VARPTR is used with a STRING variable, A is the memory location
were the length of the string is stored. The next two memory cells, A+1
and A+2, hold the LSB and MSB of the starting address for the string.

VARPTR can be used with string variables to make the strings available to
USR routines. Example: T = USR(UARPTR(A%)) passes the first of the
three addresses to the machine-language routine.

VARPTR can also be used to exchange the contents of two string variables.
Study this Test Program carefully:

361

362

—VARPTR

Test Program #2

19 REM ‘VARPTR(A%)‘ TEST PROGRAM
20 READ F%$.L%

390 DATA FIRSTLABT

49 PRINT "THE "iF&i" SHALL BE "iL%
50 A=UVARPTR(F%)

6@ B=VARPTR(L%)

70 F1l=PEEK(A)

80 F2=PEEK(A+1)

9@ F3=PEEK(A+Z)

100 L1=PEEK(B)

1190 L2=PEEK(B+1)

120 L3=PEEK(B+Z)

13 POKE BsF1

14@ POKE B+1.:FZ2

15@ POKE B+Z,F3

160 POKE ALl

17@ POKE A+1,L2

182 POKE A+Z,L3

199 PRINT "AND THE "3F&i", "3L%
888 END

Sample Run

THE FIRST SHALL BE LAST
AND THE LASTs FIRST

VARPTR can also be used with single-precision and double-precision
variables. The number returned is the address of the first of four storage
cells containing the single precision value. (Eight storage cells are required
for double precision.) Since these numbers are usually stored in a
“normalized exponential form”, it is impractical to “reconstruct” their value
the way we did in Test Program #1.

VARPTR is most often used to simply locate the address of a variable so
that address can be passed to a machine-language routine.

IF YOUR COMPUTER DOESN’T HAVE IT
If VARPTR failed the tests try PTR or ADR.

Variations In Usage

None known.

Also See
PEEK, POKE, USR, DEFINT, %

Statement

VLIN-AT is used in APPLE II BASIC to display a
Vertical LINe AT a specified column on the
screen.

The vertical line length is determined by two
numbers following the VLIN statement. These
numbers indicate the bounds between which the
line will exist. The line may be any length
between rows 0 and 39.

The number following AT is the column number
which the line must occupy. This number may
range from 0 to 39.

For example, VLIN 10,30 AT 2@ tells the computer to draw a vertical line
from row 10 to row 30 AT column 20.

The GRaphics statement must be executed before the computer can accept
the VLIN-AT statement (see GR). The line’s color is determined by the
COLOR statement (see COLOR).

Test Program

19 REM ‘ULIN-AT’ TEST PROGRAM
20 GR

30 ¥=0

49 FOR X=0 TO 39

S0 COLOR = Y

60 VLIN 2,38 AT X
70 Y=¥+1

8@ IF Y¥<16 THEN 109
90 Y=0

100 NEXT X

999 END

Sample Run

If the computer accepted the VLIN-AT statement, the screen should be filled
with 39 vertical lines of various colors.

APF BASIC does not use AT in its VLIN statement. The statement
equivalent to the example above is simply VLIN 10, 30, 20. The shape and
color to be used are declared in SHAPE and COLOR statements prior to
execution of VLIN.

363

=—=VLIN-AT

Variations In Usage

None known.

Also See
GR» COLOR, PLOTs HLIN-AT, TEXT

364

Statement

VTAB (vertical tab) is used by APPLE II BASIC
to specify the vertical location on the screen for a
PRINT statement. VTAB values from 1 to 24,
representing the screen’s 24 lines, are accepted.

For example, UTAB 12 specifies the PRINT
starting point as the 12th line down on the screen.

Test Program

1¢ REM ‘UTAB’ TEST PROGRAM

2¢ PRINT "ENTER A UTAB VALUE FROM 1 TO Z24"3

3@ INPUT N

49 YTAB N

5¢ PRINT "UTAB PASSED THE TEST IF THIS IS PRINTED ON
LINE" N

99 END

Sample Run (using 5)

ENTER A UTAB VALUE FROM 1 TOD 247 5

UTAB PASSED THE TEST IF THIS IS PRINTED ON LINE 5
IF YOUR COMPUTER DOESN’T HAVE IT

The easiest way to cause printing to start a certain number of lines down
the screen is to first clear it [by a long series of PRINT statements in
succession, or with a series of ASCII “line feeds” or CLS (clear screen)].
Check your ASCII chart to find your proper “N” for PRINT CHR3(N).

Then, again using PRINTs or an ASCII character, move down the screen
the desired number of lines before printing.

Variations In Usage

None known.

Also See

TABs PRINT-AT: PRINT: ASC, CHR$%, HOME, LIN

365

Command
Statement

WAIT is used by some computers (e.g. those using
MAX-BASIC) to suspend program execution for a
specified time.

For example, WAIT 3@ tells the computer to wait
30 seconds before executing the next statement.

A few computers WAIT a fractional value (e.g.
1/10 or 1/1000) of the specified time.

For example, WAIT 10000 requires computers
with ADDS BASIC to WAIT 1000 seconds while the VARIAN 620 will
WAIT 10 seconds.

This program allows you to check your computer’s WAIT capability.

Test Program #1

10 REM ‘WAIT TIME PERIOD’ TEST PROGRAM
£@ PRINT "ENTER A UNIT OF TIME FOR THE COMPUTER TO WAIT";

3¢ INPUT T

4¢ PRINT "THE COMPUTER IS WAITING FOR"STS"UNITS OF TIME"
S0 WAIT T

6% PRINT "THE WAIT STATEMENT PASSED THE TEST"

98 END

Sample Run (using 60)
ENTER A UNIT OF TIME FOR THE COMPUTER TO WAIT? GO
THE COMPUTER IS WAITING FOR BO® UNITS OF TIME

THE WAIT STATEMENT PASSED THE TEST

For a time delay alternative, substitute the following FOR-NEXT loop for
WAIT in TEST PROGRAM #1. The value of T will require adjustment for
your computer to produce the same amount of delay as the WAIT statement.

50 FOR X=1 70O T
35 NEXT X

WAIT is used by some other computers (e.g. those using a Microsoft BASIC)
to suspend program execution until the byte value at a specified computer
port meets the conditions established by two byte values listed after WAIT.

 For example, WAIT 32, 2, 5 tells the computer to WAIT until a non-zero

value is produced when the byte value at port 30 is eXclusive ORed with
the byte value 5, and the resultant value is logically ANDed with the byte
value of 2. (Oh well . .. back to bird watching.) When this condition is met,
program execution continues at the next statement. If this condition is not
met, the keyboard BREAK, MONITOR, ESCAPE (or whatever works) key
can be pressed to get out of the WAIT condition.

366

WAIT —

Each value listed in the WAIT statement must be between 0 and 255 (the
range of values that can be held in an 8 bit memory cell). When the last
byte value (5 in the example above) is omitted from the WAIT statement,
the computer assumes its value to be 0.

In the above example, the byte value at port 30 must have its 2-bit “turned
on” before the computer continues program execution, as illustrated by this
table.

PORT 3rd BYTE 2nd BYTE
VALUE VALUE VALUE

1 0 1 1 0 0
2 1 0 1 1 1
4 0 1 1 0 0
8 0 0 0 0 0
16 0 0 0 0 0
32 0 0 0 0 0
64 0 0 0 0 0
128 0 0 0 0 0
2 XOR 5 = 7 AND 2 = 2

Some computers (e.g. Processor Technology Extended Cassette BASIC)
WAIT until the byte value at the specified computer port, ANDed with the
second byte value, is EQUAL to the third byte value.

For example, WATIT 120, 255, G has the computer WAIT until the byte
value at port 120 is equal to 6 as shown in this table.

PORT 2nd BYTE 3rd BYTE
VALUE VALUE VALUE

1 0 1 0
2 1 1 1
4 1 1 1
8 0 1 0
16 0 1 0
32 0 1 0
64 0 1 0
128 0 1 0
6 AND 255 = 6

367

= WAIT

Test Program #2

19 REM ‘WAIT FOR PORT CONDITION’ TEST FROGRAM

20 PRINT "THE COMPUTER IS WAITING FOR ONLY BIT 1 TO
BE SET"

3@ PRINT "IN PORT 2@ (THE DECIMAL VALUE OF 2)"

49 WAIT 2@, 255, 2

30 PRINT "BIT 1 IN PORT 2¢ IS SET"

88 END

Sample Run

THE COMPUTER IS WAITING FOR ONLY BIT I TO BE SET
IN PORT Z0 (THE DECIMAL VALUE OF 2)
BIT 1 IN PORT 20 IS SET

If you are unable to set bit 1 in port 20, then press the keyboard BREAK
key (or whatever works) to escape from this condition.

Some computers can use WAIT as a command.
IF YOUR COMPUTER DOESN’T HAVE IT

If your computer has the INP capability, but does not have WAIT,
substitute INP for WAIT in TEST PROGRAM #2, using these changes:

40 IF INP(Z@)=2 THEN S0
43 GOTO 40

Also See

INP+ FORy NEXT: XOR, AND

368

Statement
Moadifier

WHILE is the beginning statement in a series
which are executed repeatedly until a certain
condition is false. The loop which begins with
WHILE must be closed by a WEND, ENDLOOP,
or THEN statement. Example:

100 WHILE X< :@

11 INPUT X

120 §=5+X

1328 WEND

149 PRINT "SUM ="38

As long as the condition (X<>0) is true, lines 110
and 120 will be executed again and again. When a
0 is entered, execution breaks out of the loop and drops to line 140.

Test Program

12 REM ‘WHILE’ TEST PROGRANM
20 L% = "FIRGT"

30 WHILE L$<:"LABT"

49 READ X» Y L%

S0 PRINT "X#Y ="3x}xY

60 WEND

79 PRINT "WHILE PASBSED THE TEST"
80 DATA 3, 20, MORE

95 DATA 16 4@, MORE

100 DATA 12, 32+ LASBT

89898 END

Sample Run

XY = B0
H#Y = G40
AeY = 384

WHILE PASSED THE TEST

Some BASICs use WHILE in conjunction with DO to form conditional loops.
Line 30 becomes 3@ DO WHILE L#%<:"LAST" and line 60 is replaced by
6@ DOEND.

Other BASICs (e.g. DEC BASIC-PLUS) use WHILE as a modifier of other
statements, making them conditional. For example, to find the largest
power of two that is less than 10000 use:

10 X = 1

20 W = HN¥2 WHILE X<10000

30 PRINT

98 END

369

===WHILE

IF YOUR COMPUTER DOESN'T HAVE IT

Conditional loops can be constructed with IF statements if your computer
does not have a WHILE statement. Deleting lines 20 and 30 of the Test
Program and changing line 60 to 6@ IF L%+ :"LAST" THEN 40 should
produce the same results as in the SAMPLE RUN.

Also See

UNTIL s FORs IF

|

370

XDRAW is a statement used by the Apple 1I to
erase a shape previously drawn on the screen.

XDRAW can also be used to draw the shape.
XDRAWing it a second time erases it without
erasing the background.

Example: XDRAW 2 AT 135,78 will draw shape
number 2 (from the user’s shape table) at location
135 (horizontal) and 78 (vertical).

XDRAW always uses the complement of the color
currently at each point of the shape. Otherwise
XDRAW has the same features as DRAW. See
DRAW for more information.

Variations In Usage

None known.

Also See

DRAW

Statement

371

Operator

XOR is used in IF-THEN statements as the
“eXclusive OR” logical operator. For example,
IF A=3 XOR B=3 THEN 8¢ reads, “if A has a
value of 3 OR B has a value of 3, but not both of
them, the IF-THEN condition is true and
execution jumps to line 80”.

See OR for more details. XOR is the same as OR
with one exception; if both conditions are met,
XRA XOR says the test fails, usually by sending us a 0.

Test Program #1

12 REM LOGICAL ‘XOR‘ TEST PROGRAM

20 A=6

30 B=8

4¢ IF A=3 XOR B=8 THEN 70

50 PRINT "/XOR’ FAILED THE TEST AS A LOGICAL OPERATOR®

6@ GOTO 99

7¢ IF A=B6 XOR B=8 THEN 90

80 PRINT "’'XOR’ PASSED THE LOGICAL OPERATOR TEST"
85 GOTO 98

9¢ PRINT "’'XOR’ FAILED THE ‘EXCLUSIVE OR’ TEST™®
g9 END

Sample Run
‘XOR’ PASSED THE LOGICAL DOPERATOR TEST

Alternate Spelling
NORTH STAR IBASIC uses XRA as the exclusive OR operator.
IF YOUR COMPUTER DOESN'T HAVE IT

If your computer allows OR, AND, and NOT but lacks XOR and XRA
replace line 40 of Test Program #1 with

4@ IF (A=3 OR B=8) AND NOT (A=3 AND B=8) THEN 7@

For computers having none of the logical operators the following Test
Program offers a way to simulate XOR.

372

Test Program #2

10 REM ‘“XOR’ SIMULATION

2@ PRINT "TYPE IN TWO NUMBERS BETWEEN 1 AND 10"
32 INPUT A4+B

49 IF (A-3)*(B-8)<x0 THEN 90

30 IF A-3<:@ THEN 70

6@ IF B-B=@ THEN 9@

7@ PRINT "EITHER A=3 OR B=8, BUT NOT BOTH"

80 GOTO 20

9@ PRINT "BOTH CONDITIONS ARE TRUE OR BOTH ARE FALSE"
190 GOTO 20

999 END

Sample Run

TYPE IN TWO NUMBERS BETWEEN 1 AND 10

T 343

EITHER A=3 OR B=8, BUT NOT BOTH

TYPE IN TWO NUMBERS BETWEEN 1 AND 10

T 348

BOTH CONDITIONS ARE TRUE OR BOTH ARE FALSE

Also See

OR»s» AND: NOT s +4 #

373

—-nzZr

Operator

Pairs of quotation marks (") are used in PRINT
statements to enclose letters, numbers or
characters to be printed. If the quotes are omitted,
the computer recognizes the letters as variables
and prints whatever values are assigned to them.

For example, PRINT "A" prints the letter “A”.
While PRINT A prints the value assigned to
variable A.

Quotes can be used to print numbers without the usual space for their + or
— sign. It can insert extra spaces by enclosing them.

For example,
1@ PRINT ™ THE NUMBER" 3
20 PRINT "1@"
will print
THE NUMBER1®

Quotes cannot be “nested” inside other quotes. The computer is unable to
distinguish which one is the end of the actual PRINT statement.

For example, PRINT "I SAID "HELLO" T0O HIM" will not work. An
apostrophe is usually substituted for the inside quotes in these cases.

For example, PRINT "I SAID ‘HELLO’ TO HIM"

Test Program #1

19 REM ‘QUOTED (")’ PRINT STATEMENT TEST PROGRAM

29 A=5

30 B=1¢@

4@ PRINT "A+B="3A+B

3@ PRINT "THE QUOTATION MARKS PASSED THE PRINT TEST,"
99 END

Sample Run

A+B= 15
THE QUOTATION MARKS PASSED THE PRINT TEST.

Quotes can be used with most newer computers to allow the INPUT
statement to serve in both a PRINT and INPUT capacity at the same time.

374

Test Program #2

19 REM ‘QUOTED (") /INPUT STATEMENT TEST PROGRAM
20 INPUT "ASBSIGN A VALUE TO WARIABLE X"iX

3@ PRINT "THE VALUE OF X I8"§X

99 END

Sample Run (using 5)

ASSIGN A VALUE TO VARIABLE X7 S
THE YALUE OF X IS 5

Some computers require quotes around strings in DATA statements, while
others require them only when the string is preceded by, encloses, or is
followed by a blank, comma or colon. For more information see DATA.

Test Program #3

19 REM ‘QUOTED (") ‘DATA STATEMENT TEST PROGRAM
20 DATA " DATA STATEMENT *
30 READ As
49 PRINT "QUOTES IN"3iA%3"PASSED THE TEST"
99 END
Sample Run

QUOTES IN DATA STATEMENT PASSED THE TEST

Quotes are used with CSAVE and CLOAD in MICROSOFT BASIC to assign
a specific name to the program recorded on cassette tape.

For example,

CSAVE "A"
CLODAD "A™

will record a program on cassette tape, naming it “A”, then will load only
the program named “A” back into the computer. For more information and
test procedures see CLOAD and CSAVE.

TRS-80 Level I BASIC uses quotes in the PRINT# statement to record data
on cassette tape.

For example, PRINT#A3" ,"iB3","3C will store the values assigned to
variables A, B and C on cassette tape. For more information and TEST
PROGRAMS see PRINT.

Also See

PRINT s TAB s i(semicolon), :(comma), DATAs READ: CSAVE s CLOAD

375

—nZzr

Operator

The Comma is an operator with a wide range of
uses. One of the more common is with the PRINT
statement, where it causes individual items to be
printed in pre-established horizontal zones. For
example, PRINT 1,2,3,4 prints each number in a
separate zone.

Each zone usually allows a maximum of sixteen
characters. The number of zones allowed on each
line varies from 4 to 8, depending on screen (or
printer), line width.

Test Program #1

1 REM TEST PROGRAM USING ‘COMMA’ FOR ZONING

20 PRINT "THE FOLLOWING LINE WILL PRINT IN 4 ZONES"

30 PRINT 1+24+3+4

49 PRINT “"THE FOLLOWING LINES SHOW YOUR AVAILABLE ZONESG™
SO PRINT 14243444548 4+738,59,10 411412413414 ,15,16

99 END

Sample Run (4 zones per line display, 64 characters
maximum per line)
THE FOLLOWING LINE WILL PRINT IN 4 ZONES

1 2 3 4
THE FOLLOWING LINES WILL SHOMW YOUR AVAILABLE ZONES
1 2 3 4
3 5] 7 8
g 10 11 12
13 14 15 B

The COMMA is also used to separate elements in array fields. Example,
A(I+Jsk). The COMMA separates I, J, and K into individual elements
within this three-dimension array.

Test Program #2

1@ REM TEST PROGRAM USING ‘COMMA’ IN Z DIMENSION ARRAY
20 ACL1)=0

30 PRINT "A(1+1) ="3AC1,1)
4¢ PRINT "LINE 2@ PASSED THE TEST IF A(1,1) = 5,"
989 END

376

Sample Run

All1)= 3
LINE 2@ PASSED THE TEST IF A(l.:1) = 5,

The COMMA is used in a similar manner in DATA, DIM, INPUT,
ON-GOTO, and READ statements to separate items of data.

This program tests the COMMA’s capability in INPUT and PRINT
statements.
Test Program #3

19 REM ‘COMMA’ TEST PROGRAM

5@ PRINT "ENTER THREE NUMBERS"3

B@ INPUT A+B,C

100 PRINT "NUMBER 1 ="3A,235"="§B,33i"="iC
999 END

Sample Run (using 11,12,13)

ENTER THREE NUMBERSY 11,1213
NUMBER 1 = 11 2 = 12 3 =13

To test the COMMA'’s capability in READ and DATA statements, add these
lines to the last TEST PROGRAM.

80 READ DEF
10@ PRINT "NUMBER"3D3"="3A,E5"="3B,Fi"="3C
110 DATA 1,2,3

Run the program. The SAMPLE RUN should remain the same.
To test COMMA capability in the ON-GOTO statement, add these lines:

3@ FOR X=1 TO 3

49 ON X GOTO 50480100
70 GOTO 90

90 NEXT X

Run the program, and again the sample run should remain the same.

The computer’'s COMMA capability in DIM statements can be checked by
adding this line:

20 DIM ACL)B(2),C(3)
The addition of this line should not change the SAMPLE RUN.
For other applications of the COMMA see PRINT USING, AT and (.

377

Variations In Usage

Some computers (e.g. those with Palo Alto Tiny BASIC) use the COMMA in
LET statements similar to the way most computers use the COLON, and it’s
use in the PRINT and INPUT statements can be modified with the # and —
operators.

Also See

DATAs DIM, INPUT, ON-GOTO: AT, @, PRINT USING: READ

378

Operator

The period (.) is used as a decimal point by nearly
all computers except those having only integer
BASIC.

The Period is used in MICROSOFT BASIC (and
others) to cause the computer to LIST or EDIT the
last program line entered, listed or which caused
an error in program execution.

Test Program

1@ REM ,(PERIOD)’ TEST PROGRAM

20 PRINT "THE PERIOD FOLLOWING THE LIST COMMAND"
30 PRINT "SHOULD LIST THE LAST LINE YOU ENTER®
99 END

Sample Run

Type the command: LIST. (if you omit the period following LIST, the
entire program will of course be LISTed). The computer should print:

989 END
Add the following line to the TEST PROGRAM:

49 PRINT "THE PERIOD PASSED THE TEST"
Type the command: EDIT. (including the period).

If your computer has this EDIT capability, the computer will print the
number 40 followed by a cursor. This indicates the computer is in the EDIT
mode and is ready to modify line 40 (the last line entered).

Variations In Usage

Several computers (e.g. the TRS-80 Level I and other variations of Tiny
BASIC) use the period as part of word abbreviations.

For example, the letter I is normally used as a variable, but I. can be used
as an abbreviation for INPUT or INTeger depending on how it is used in
the program. In addition, P.=PRINT, R.=RUN, L. =LIST, etc.

Also See

EDIT» LISTs INPUT,» INT

—nNZ>

379

Operator

A semicolon is used in PRINT statements to allow
several printed sections to be joined together
(concatenated) onto one line. For example,
PRINT "H"3"1" is printed as HL

—nNZ2r

Test Program #1

19 REM ‘SEMICOLON’ STRING TEST PROGRAM
20 PRINT "IF THIS SENTENCE I8 PRINTED "3
30 PRINT "ON ONE LINEs THE TEST PASSED."
889 END

Sample Run

IF THIS SENTENCE IS5 PRINTED ON ONE LINE, THE TEST PABSED.

When a SEMICOLON is used to separate the printing of numeric values or
numeric variables, a space is often automatically inserted before each
number to make room for its + or — sign. An additional space is
automatically inserted after the number since it’s assumed that such a
space is always required. This feature can cause programming difficulties
when trying to get a special print format. (Apple II and DEC-10 do not use
this automatic feature.)

For example, PRINT 13233 may be printed with two spaces between each
number.

Test Program #2

19 REM ‘SEMICOLON’ TESBT PROGRAM WITH NUMERICS

20 A=3

3@ PRINT "STUDY THE SBPACING BETWEEN EACH OF THE NUMBERS."
4@ PRINT 13"2"§"3"3id45A5"6G" 5 -7

50 PRINT "12345678901234567890"

989 END

Sample Run

STUDY THE SPACING BETWEEN EACH OF THE NUMBERS.
1 234 8 6-7
123436789¢1234567890

380

Variations In Usage

A few interpreters insert a space between strings being concatenated. This
(rare) feature eliminates the need for inserting the space after the letter “D”
in line 20 of the first TEST.

Also See
COMMA, PRINT USING, TAB

381

Operator

The COLON allows placing more than one
statement on a single program line.

For example, 1@ PRINT "SAMPLE LINE":

LET A=10: GOTO 99 holds three separate
statements ... PRINT, LET and GOTO in one
program line, number 10.

Test Program #1

19 REM ‘COLON (:) OPERATOR’ TEST PROGRAM

20 PRINT "THIS TEST"3:FOR X=1 TO 5000:
NEXT X: PRINT" IS COMPLETE"

99 END

Sample Run
THIS TEST (PAUSE) 18 COMPLETE

GOTO, IF-GOTO, IF-THEN, ON-GOTO and other branching statements
should be the last statement on a multiple statement line to prevent
branching out of it before the entire line is executed.

For example, in the line
19 FOR X=1 TO 1@:NEXT X:GO0TD 10@:PRINT "THE LOST WORDS"

The computer executes the GOTO statement and branches to line 100 before
it has a chance to execute the PRINT statement. There is no way to PRINT
“THE LOST WORDS”.

Most computers do not allow DATA statements in multiple statement lines.
Others (e.g. IMSAI do not execute statements on the same line if they
follow a GOSUB statement even though a RETURN directs execution back
to that line.

Be especially careful when using IF-THEN statements in multiple
statement lines. If there are statements following the IF-THEN on the same
line, some BASICs (e.g. Microsoft BASIC) will execute them only if the
condition is true. Others (e.g. North Star BASIC) will execute the rest of the
statement unless branching has taken place. To see which way your
computer responds try this short program.

382

Test Program #2
10 A = 1
20 IF A =2 THEN 3Q:PRINT "EXECUTES THE REST":G0T099

3@ PRINT "IGNORED THE REST"
89 END

The COLON is also used by some computers (e.g. DEC-10) as the first
character of the image line referred to in a PRINT USING statement.

For example:

120 :s$uusas, an
130 PRINT USING 120+ C

produces the same result as 130 PRINT USING "$$#ssss,az", C
IF YOUR COMPUTER DOESN'T HAVE IT

Many computers have no provision for writing more than one program
statement on a numbered line. Others that do however, may use a
backslash (\) instead of a colon. A very few use a semicolon.

Variations In Usage

None known.

Also See

\+ i GOTOs IF-THEN, IF-GOTO, ON-GOTO:
PRINT USING: IMAGE

383

—nz>

Operator

Parentheses are used in arithmetic operations to
determine the order in which math operations are
performed. Math operations enclosed within
parentheses are performed before those outside the
parentheses. If a math operation is enclosed in
parentheses which is in turn enclosed within
another set of parentheses (and so on), the
computer first performs those operations “buried
the deepest”. When there is a “tie”, the operation
to the left is executed first.

For example, A=5+(((2%4)-2)%3). The computer performs this math
operation in the following sequence:

A = 5+((8-2)*3)=5+(6*3)=5+18=23

Test Program #1

19 REM ‘() PARENTHESES' TEST PROGRAM
20 A=(10x(5-3))/2

30 PRINT "A ="1iA
49 PRINT "THE PARENTHESES PASSED THE TEST IF A = 10"
99 END
Sample Run
A= 10

THE PARENTHESES PASSED THE TEST IF A = 10

Parentheses are required with some “logical math” operators to identify the
two statements being compared. They are essential with TRS-80 Level I and
other Tiny BASIC’s.

For example, IF (A=8) * (B=B) THEN 8¢
For more information see * and AND.

Parentheses are also used to enclose the elements in DIM statements and array
variables. For more information see DIM.

Test Program #2

1@ REM 7 () PARENTHESES’ TEST PROGRAM USING DIM AND ARRAYS
20 DIM A(S:3)
30 ACL,1)=C20

49 PRINT "() PASSED THE TEST IN LINES"F;ACLI1)3i"AND"IACL,1)+10

889 END

B

384

Sample Run
() PASSED THE TEST IN LINES Z0 AND 30

Most computers with built in functions use Parentheses to enclose the
numbers or letters to be manipulated.

For example, LOG(10)

Most computers that use parentheses but not brackets ([]) allow
parentheses to substitute for brackets without ill effect.

For example,
[(A¥B)/C1]
can be written

((AxB)/C)

Also See

¥y +4+ AND, ORs DIM

€1}

|

385

Operator

The @ Operator is used by a few computers (e.g.
TRS-80 Level II) to specify a starting location on
the video screen for a PRINT statement. Its value
should be from 0 to 1023 and must be followed by
aconnna.Forexanuﬂe,PRINT @ 473 y"HELLO"
prints the word HELLO on the CRT starting at
grid position 475.

Test Program

1@ REM "@" PRINT MODIFIER TEST PROGRAM

29 PRINT @ 128, "2, IF THIS LINE IS PRINTED AFTER LINE 1."
39 PRINT @ ¢, "1, THE @ DPERATOR PASSED THE TEST"

49 GOTO 4@

8989 END

Sample Run

1+ THE @ OPERATOR PASSED THE TEST
2, IF THIS LINE IS5 PRINTED AFTER LINE 1.

IF YOUR COMPUTER DOESN'T HAVE IT

If your computer does not use the @ operator as a PRINT modifier, this
feature can be simulated by using an appropriate number of PRINT
statements (to activate line feeds) and spaces or TAB’s to arrive at the same
location on the CRT.

Variations In Usage

The @ (AT) operator is used by some computers (e.g. North Star) to erase
the last line displayed on the screen and execute a carriage return. For
example, type 1@ REM LINE DELETION TEST (but don’t hit the ENTER or
RETURN key) and press the @ key. The line should be erased and the
cursor should return to the left margin.

The same operation can be accomplished on some computers by pressing the
RUB (rub out), SCR (scratch), = (left arrow) or SND (send) key, or by
pressing the ENTER (or RETURN) key before and after typing the number
of the line to be deleted.

Each of the commands used by the Exatron Stringy Floppy System includes
a prefix of the @symbol. Example: BNEW: BSAVE s BLOAD.

Also See

PRINT» AT+ PRINT AT, DELETE

386

Operator

The # (number sign) is used to specify individual
variables as being of “double-precision”. Double
precision variables are capable of storing numbers
containing 17 digits (only 16 digits are printed).
Single-precision variables are accurate to 6 digits.

The # sign must be placed after a variable to
define it as having double-precision, each time
that variable is used in the program. If the # sign
is found with a variable that is listed in DEFSNG
or DEFINT statements (within the same program),
the double precision character (#) temporarily
over-rides their action and declares the variable to
be of double-precision.

Test Program #1

10 REM ‘#’ DOUBLE PRECISION OPERATOR TEST PROGRAM

2@ DEFSNG A4B

30 A=1,234367890123456

49 Ba=1,234567890123456

S0 IF A=B# THEN 109

B2 PRINT "A ="3A

70 PRINT "B# ="iB#

80 PRINT "THE # SIGN PASSED THE DOUBLE PRECISION TEST"
9@ GOTO 999

192 PRINT "THE # SIGN FAILED THE DOUBLE PRECISION TEST®
9889 END

Sample Run

A = 1.23457
B# = 1,234567890123456
THE # SIGN PASSED THE DOUBLE PRECISION TEST

The # is used by a few computers as a shorthand symbol for the PRINT
statement. For more information see PRINT.

Test Program #2

19 REM ‘#’ TEST PROGRAM
20 #"THE # SIGN PASSED THE PRINT TEST"
99 END

387

#

Sample Run

THE # SIGN PASSED THE PRINT TEST

The # operator is used by a few computers as the relational operator
“not-equal-to” (<>).

For example, IF A#B THEN 100 tells the computer to branch to line 100 if
the value of variable A is not equal to variable B.

The # operator is used in the PRINT USING statement by most computers
using a Microsoft BASIC to indicate the PRINT position for each digit in a
number or numeric variable. If the PRINT USING statement contains more
signs than the number of digits in a number, the computer prints a space
for each unused # sign to the left of the decimal point, and a zero for each
unused # sign to the right of the decimal point.

For example, 10 PRINT USING "##z#u#s#,#22"312,5 will print the number
12.500 with 3 blank spaces printed to the left of the number 1 in place of
the 3 unused # signs.

For more information see PRINT USING.
Test Program #3

10 REM ‘#’ PRINT USING TEST PROGRAM

20 PRINT "ENTER A VALUE FOR VARIABLE N"3
30 INPUT N

4@ PRINT "THE NUMBER"IN3i"IS PRINTED AG";
59 PRINT USING "s#u#s,#8" N

99 END

Sample Run (using 12.5)

ENTER A VALUE FOR VARIABLE N7 12.5
THE NUMBER 12.5 IS PRINTED AS 12.50

Computers with file handling capability use the # operator in such
statements as INPUT#, PRINT#, READ#, CLOSE#, and others to indicate
a device number to store data and retrieve data from external memory such
as disc and cassette tape.

388

#

Test Program #4 (stores data on TRS-80 Level II
cassette tape)
Set the cassette recorder to the RECORD mode and RUN this program.

1@ REM ‘PRINT#‘ TEST PROGRAM

2@ PRINT "DATA SHOULD BE RECORDING ON CASSETTE TAPE"
30 PRINT#-1, "TEST" +1,2,3

40 PRINT "PRINT# HAS COMPLETED THE DATA TRANSFER™"

99 END

Sample Run

DATA SHOULD BE RECORDING ON CASSETTE TAPE
PRINT# HAS COMPLETED THE DATA TRANSFER

To test the computer’s READ# capability, rewind the cassette tape, set the
recorder to the Play mode, erase memory and RUN the next Test Program.

Test Program #5 (enters data from cassette into the
computer)

1@ REM “INPUT#’ TEST PROGRAM

20 PRINT "THE COMPUTER SHOULD NOW READ DATA FROM
CASSETTE"

30 INPUT#-1,A%.A,:B,C

49 PRINT "THE INPUT# STATEMENT PASSED THE TEST IF"

5@ PRINT A%3AIBICI"IS PRINTED"

989 END

Sample Run

THE COMPUTER SHOULD NOW READ DATA FROM CASSETTE
THE INPUT# STATEMENT PASSED THE TEST IF
TEST 1 2 3 IS PRINTED

In large time-sharing systems (e.g. the DEC-10), one program can access a
number of different data files, each of which is given a name and stored on
disc. A statement in the program gives a number to each file it will be
using, and that file is referred to by number, not name. The # sign then

literally means “number” — - — the file number(name) from which DATA
is to be READ, INPUT, PRINTed or otherwise processed.
Example:

30 FILE #1,"TESTING"
80 READ #1,ABCsDE

etc.

389

#

Also Se

DEFDBL »
READ# 4

€
DEFSNG »

DEFINT: !y %

PRINT »

REM »

PRINT UBING:

390

Operator

The $ symbol following a letter or letter/number
combination is used to declare that variable to be
a string variable.

Information declared a string variable in a
program statement must usually be enclosed in
quotation marks. For example, A% =
"THE BASIC HANDBOOK." If an INPUT statement
is used to assign the information entered to a
string variable, then quotes are not usually
required. (See INPUT and READ.)

Test Program #1

19 REM ‘¢’ TEST PROGRAM WITH STRING STATEMENT

—NZ>

20 A% =" LINE 29"
390 PRINT "THIS COMPUTER PASSBED THE ‘%’ TEST IN":iA%
99 END

Sample Run

THIS COMPUTER PASSED THE ‘$’ TEST IN LINE 20

The number of characters that can be assigned to a string variable is
limited by the computer’s interpreter. Most computers with string capability
accept at least 16 characters, and some as many as 255.

Some computers (e.g. Hewlett-Packard) require you to reserve memory
space for each separate string with a DIM statement [e.g. 10 DIM A%(50)].
(See DIM and CLEAR.)

The following program demonstrates the assignment of characters to the
variable A$ (pronounced “A string”):

Test Program #2

1@ REM ‘%’ INPUT BTRING WITH LENGTH TEST PROGRAM

20 PRINT "ENTER A KNOWN QUANTITY OF CHARACTERS"

32 INPUT A%

49 PRINT "COUNT THE NUMBER OF CHARACTERS PRINTED BELOW"
30 PRINT A%

989 END

Sample Run (Typical)

The “character string” shown in the sample run is 10 characters long:

ENTER A KNOWN QUANTITY OF CHARACTERS

T 1234567890

COUNT THE NUMBER OF CHARACTERS PRINTED BELOMW
1234567890

391

$

If all the characters were printed and no error message appeared, RUN
again and add perhaps 10 more characters. If that prints, continue the
process until characters start being chopped off the end, or an error message
appears.

Most computers which can handle strings allow all the letters of the
alphabet to serve as string variable designators. A few computers allow only
a few. (e.g. Radio Shack TRS-80 LEVEL I allows only two strings, A$ and
B$ and they cannot be compared against each other.)

The next program tests the full range (A and Z) of alphabet characters
allowed by your computer.

Test Program #3

10 REM ‘%’ (BTRING) VARIABLE TEST PROGRAM
20 A%$="LINE 20"

30 PRINT "A% PASSED THE TEST IN "iA%S5

49 Z$=" AND Z% IN LINE de"

530 PRINT I%

889 END

Sample Run

A% PASSED THE TEST IN LINE 20, AND Z¢ IN LINE 40

Many string handling computers allow combinations of letters, numbers and
symbols to specify string and numeric variables. Each variable must start
with a letter, but frequently only the first several (usually 2) alphanumeric
characters are recognized and processed by the interpreter. For example,
AB34K$ and ABYNB% (if accepted), are usually processed as the same string
variable (AB$) since the first two letters are identical. A little
experimenting will quickly show your machine’s capability.

Test Program #4

10 REM ’¢’ (GTRING NAME) TEST PROGRAM
20 ABCDE$="TEST STRING"

30 PRINT "ABXYI4$% = "3FABRYI$

4¢ PRINT "AB123% = "iAB123%

50 PRINT "ONLY THE FIRST TWO LETTERS OF THE STRING
NAME ™"

6@ PRINT "WERE RECOGNIZED IF THE TWO STRINGES ARE
IDENTICAL"

99 END

Sample Run
ABXKYZ$ = TEST STRING
AB123% = TEST STRING

ONLY THE FIRST TWO LETTERS OF THE STRING NAME
WERE RECOGNIZED IF THE TWO STRINGS ARE IDENTICAL

392

$

Words that are intrinsic Statements or Functions cannot be used as string
or numeric variables. For example, SPRINTS$ may be an illegal string
variable because it contains the word “PRINT”. Refer to your owner’s
manual for a list of “reserved words” that cannot be used in your computer’s
programs.

Most computers that accommodate strings, permit string comparison. That
is, one string or string variable can be compared, character by character,
against another string or string variable using relational operators. Strings
must be enclosed in quotation marks when compared to a string variable.

Test Program #5

19 REM ‘4’ (STRING) COMPARISON TEST PROGRAM
20 READ A%

30 IF A%$="WHOA" THEN G@

49 PRINT A%,

3¢ GOTO Z@

6@ PRINT "STRINGE CAN BE COMPARED."

7¢ DATA ONE: TWO, WHOA

98 END

Sample Run

ONE TWO STRINGS CAN BE COMPARED.

Variations In Usage

The British Acorn ATOM uses $ as a prefix for string variables ($A instead
of A$).

Some computers (e.g. Apple II) use $ as a prefix to indicate a machine
address and/or a hexadecimal number. Example: $8A = 138 decimal.

Also See

DEFSTR+ CHR%, FRE(string)» INKEY$, LEN, LEFT$, MID$,
RIGHT$ STR$: STRING$, UALs LET, DATA: READ, DIM,
CLEAR s TEXTs & J{ (sol)

393

Operator

The ! (exclamation mark) is used to specify
individual variables as being of “single-precision”.
Single precision variables are capable of storing
numbers containing no more than 7 digits (only 6
digits are printed). Double-precision means having
17 digit precision.

Since variables are automatically single precision,
the ! operator is used in programs to change a
variable back to single precision after it has been
declared double-precision by a previous DEFDBL
statement or # operator.

Test Program #1

1 REM ‘!’ SBINGLE PRECISION OPERATOR TEST PROGRAM
20 DEFDBL XN
30 N=1234.356789012343

ae K=

3¢ PRINT "DOUBLE PRECISION VARIABLE X="3§X

B@ X!=N

70 PRINT "SINGLE PRECISION VARIABLE X! ="3iX!

89 PRINT "THE ’!‘ SINGLE PRECISION OPERATOR PASSED
THE TEGT"

98 END

Sample Run

DOUBLE PRECISION VARIABLE = 1234.56789012345
SINGLE PRECISION VARIABLE X! = 1234.37
THE ‘t’ SINGLE PRECISION OPERATOR PASSED THE TEST

A/
"
i
"

The ! operator is also used by some computers (e.g. those using the Microsoft
BASIC) in the PRINT USING statement to allow only the left-most
character in a string to be printed.

For example, PRINT USING"!"3"COMPUSOFT" should print the letter “C”.
For more information see PRINT USING and the next Test Program.

Test Program #2

1@ REM '! BTRING SPECIFIER’ TEST PROGRAM

20 PRINT "ENTER A SAMPLE WORD"S3

30 INPUT A%

49 PRINT "THE FIRST LETTER IN THE WORD "3jA$3" IS5 "3
S0 PRINT USING "!1"iAs$

989 END

394

Sample Run (using HANDBOOK)

ENTER A SAMPLE WORD? HANDBOOK
THE FIRST LETTER IN THE WORD HANDBOOK IS H

Variations In Usage

Some interpreters (e.g. the COMPUMAX BASIC) use ! as an abbreviation
for REMark.

Test Program #3

1@ PRINT "’! (REMARK) ’ TEST PROGRAM"

20 ! PRINT " THE ! SIGN FAILED THE REM TEST"

30 REM THE ! SIGN FAILED THE REMARK TEST IF LINE Z@ IS
PRINTED

49 PRINT "THE ! S8IGN PASSED THE TEST®

89 END

Sample Run

‘1 (REMARK)’* TEST PROGRAM
THE ! SIGN PASSED THE TEST

NORTH STAR BASIC uses ! as a substitute for PRINT.
Also See

DEFDBL s+ DEFSNGs %, PRINT USING, DEFINT, CSNG, CDBL
PRINT» CINT, %

395

Operator

% is used by some computers (e.g. those using
Microsoft BASIC) to define variables as integers.
When the % sign is placed to the right of a
variable, that variable is then only capable of
storing integer values.

For more information on the use of the INTeger
function see INT.

Test Program #1

10 REM ‘% INTEGER OPERATOR’ TEST PROGRAM

20 1%=2,864

30 IF I7%=2 THEN G@

490 PRINT "THE % INTEGER OPERATOR FAILED THE TEST"
530 GOTO 99

GB® PRINT "THE % INTEGER OPERATOR PASSED THE TEST®
89 END

Sample Run

THE % INTEGER OPERATOR PASSED THE TEST

The % operator is used by some computers (e.g. those using Microsoft
BASIC) in the PRINT USING statement. It causes the printing of as many
left-most characters in a string as there are spaces between two % signs.
The computer also counts the two % signs, therefore no less than two
characters can be specified. (To specify one character in the string, see the !
operator.)

For example, PRINT USING "% %"3i"ABCDEFGHI" should print the first
four letters “ABCD” because two spaces were included between the % signs
(2 spaces + 2 % signs = 4 letters). For more information see PRINT
USING.

Test Program #2

10 REM %7 STRING SPECIFIER TEST PROGRAM

20 A$"TESTIMONIAL"

30 PRINT "THE 7 OPERATOR PASSED THE STRING SPECIFIER "i
49 PRINT USING "7 %"iA%

99 END

396

O

Sample Run
THE 7% OPERATOR PASSED THE STRING SPECIFIER TEST

Some computers use the % sign in the PRINT USING statement to “flag” a
number as having exceeded the limits of the field specifier (#).

For example, PRINT USING "###,#"3;1234,56 should print the number
%1234.6. The entire number on the left side of the decimal point is printed
when it exceeds the field specifier limits. If the number on the right side of
the decimal point exceeds the field specifier, it is rounded off. For more
information see PRINT USING.

Test Program #3

19 REM ‘%’ PRINT USING OVERFLOW TEST PROGRAM

20 A=123.45 .

30 PRINT "THE PRINT USING STATEMENT CHANGED #"3A§"T0O "3
43 PRINT USING "##.#" 3A

99 END

Sample Run

THE PRINT USING STATEMENT CHANGED # 123,43 TO %123.5

Also See

INTs CINT, DEFINT: CSNG, CDBL+ DEFSNGs» DEFDBL s PRINT
USINGs» IMAGE: FORMATs !+ #, &, \ (backslash)

397

Operator

The ? (question mark) is used by many computers
(e.g. those with variations of Microsoft BASIC) as
an abbreviation for PRINT. Most (but not all)
automatically change the ? sign to the word
“PRINT” when the program is LISTed.

For more information see PRINT.

Test Program #1

10 REM 7 (PRINT)’ TEST PROGRAM
20 7 "THE © SIGN PASSED THE PRINT TEST"
989 END

Sample Run

THE 7 SIGN PASSED THE PRINT TEST

The computer may use ? as the INPUT prompt, indicating it is waiting for
you to enter some data or an answer. Execution resumes when the ENTER
or RETURN key is pressed.

For more information see INPUT.

Test Program #2

¢ REM 77 (INPUT REQUEST) TEST PROGRAM

20 PRINT “"THE 7 SIGN PASSED THE TEST"

30 PRINT "IF THE FOLLOWING LINE CONTAINS THE 7 SIGN"
49 INPUT A

989 END

Sample Run

THE 7 SIGN PASSED THE TEST
IF THE FOLLOWING LINE CONTAINS THE 7 SIGN

Some computers (e.g. those with a Microsoft BASIC) use the ? sign with the
CLOAD command to compare a program stored in the computer’s memory
with a program stored on cassette.

To test this feature, see the test procedures under CLOAD.

Also See

PRINT, #, INPUTs CLOAD, LIST, !

398

Operator

The \ operator is used by a few computers to allow
multiple statements in one program line.

Forexanuﬂe,l@ A=10\B=S\C=A-B\PRINT C
combines four statements in one line.

For more information see : (Colon).

Test Program

i@ REM ‘\ OPERATOR’ TEST PROGRAM

20 PRINT "THIS TEST "i\FOR X=1 TO S0\
NEXT X\PRINT "IS COMPLETE"

989 END

Sample Run
THIS TEST IS COMPLETE

The \ (backslash) operator is used by some computers (e.g. those using
BASIC-80) in the PRINT USING statement. It causes a string of characters
to be printed whose length is equal to two more than the number of spaces
enclosed by the backslashes. The computer also counts the backslashes,
therefore no less than two characters can be specified. (To specify one
character in the string, see the ! operator.)

For example, PRINT USING "\ \"3i"ABCDEFGHI" should print the first
four letters “ABCD” because two spaces were included between the\

(backslashes) (2 spaces + 2 backslashes = 4 letters). For more information
see PRINT USING and % operator.

Variations In Usage

The back-slash is sometimes seen separating letters and numbers as they
are being deleted or “rubbed out” on some terminals. This is often done
when correcting typing errors.

Also See

t(colon)s» PRINT USING: %

399

Operator

The ** (double asterisk) is used as an arithmetic
exponentiation sign in some computers (e.g. the
DEC-10, DEC-BASIC-PLUS-2, H.P. 3000, and
those using the MAXBASIC) to compute the value
of a base number to a specified power.

For example, 2%%3 is the same as the cube of 2 or
2*. For more information see t.

Test Program

10 REM ‘%% (EXPONENTIATION)’ TEST PROGRAM

20 PRINT "ENTER A BASE NUMBER";

30 INPUT B

4@ PRINT "NEXT, ENTER THE EXPONENT"3

3@ INPUT E

GO A=B**E

70 PRINT “THE NUMBER"3$B3"TO THE"IE:"POWER IS";3A
30999 END

Sample Run (using 4 and 3)

ENTER A BASE NUMBERT 4
NEXT» ENTER THE EXPONENT? 3
THE NUMBER 4 TO THE 3 POWER IS G4

s

The ** (double asterisk) is also used by some computers (e.g. those using
Microsoft BASIC) in the PRINT USING statement. An asterisk (*) can be
printed in unused spaces to the left of a specified number’s decimal point.
The primary purpose for doing this is to prevent someone from increasing
the size of a check printed by computer.

For example, PRINT USING"**#ssus, a8 5456, 25 will print ¥*##456, 25

The # sign represents the spaces set aside for the numeric value to be
printed. The unused spaces are filled by a * sign.

For more information see PRINT USING.
Also See

PRINT USING: t , 1

400

Operator

The most common use of the + sign is in
arithmetic addition. Example, PRINT A+B prints
the sum of variables A and B.

Test Program #1

1¢ REM '+’ MATH OPERATOR TEST
PROGRAM

20 PRINT "ENTER A YALUE FOR
VARIABLE A"3

32 INPUT A

4¢ PRINT "ENTER A VALUE FOR
VYARIABLE B"3

5@ INPUT B

6@ C=A+B

7@ PRINT “THE SUM OF"3As"+"3iB3"IS";iC

g8 END

—nZr

Sample Run (using 6 and 14)

ENTER A VALUE FOR YARIABLE A7 G
ENTER A VALUE FOR YARIABLE B? 14
THE SUM OF 6 + 14 IS5 Z@

Some computers use the + sign as a logical “OR” operator in an IF-THEN
statement.

For example, 10 IF (A=8)+(B=6) THEN 80 reads: if the value of A equals
8 OR the value of B equals 6 the IF-THEN condition is met and execution
continues at line 80.

Note that both (A =8) and (B=6) are enclosed in parentheses. Since there is
no other apparent reason to enclose such simple equations in parentheses,
they are the tip-off that the + is used as a logical OR.

Test Program #2

1¢ REM '+’ LOGICAL OPERATOR TEST PROGRAM
20 PRINT "ENTER A VALUE FOR VARIABLE A"3
30 INPUT A

4¢ PRINT "ENTER A VALUE FOR VYARIABLE BY;
5@ INPUT B

6@ PRINT "A ="3A+"B ="3iB

70 IF (A=8)+(B=6) THEN 100

8@ PRINT "NEITHER A = B8 NOR B = B"

90 GOTO 9889

100 PRINT "EITHER A = § OR B = B"

999 END

401

<+

Sample Run (using 4 and 6)

ENTER A VALUE FOR YARIABLE A7 4
ENTER A VALUE FOR VARIABLE B? 6
A= 4d B =6

EITHER A = B8 OR B = B

Variations In Usage

Many computers use the + sign to join (concatenate) separate strings into
one. For example, PRINT "H"+"I" concatenates the strings “H” and “I” to
form the word HI.

Test Program #3

19 REM '+’ CONCATENATION TEST PROGRAM
2@ A%="PASSED THE CON"

30 B%="CATENATION TEST"

49 PRINT "THE + SIGN "3

50 PRINT A%+B%

89 END

Sample Run

THE + SIGN PASSED THE CONCATENATION TEST

The + sign is used by some computers in PRINT USING statements to
automatically attach a + or — sign to a number being printed.

Also See

AND s #45 % PRINT USINGy OR s+ &

402

Operator

The — symbol is used as an arithmetic subtraction
sign to find the arithmetic difference between two
numbers or numeric variables. For example,
PRINT A-B prints the value of variable A minus
the value of variable B.

-2

The — sign is also used for negation in arithmetic
operations. Negation simply means “changing the
sign from what it is to the opposite”.

Example, PRINT -(3-8) subtracts 8 from 3 which
results in a negative 5. The first — (negation) sign
reverses the sign within the parentheses and
prints 5 (the + sign is implied).

Test Program
10 REM ’- SIGN’ TEST PROGRAM

20 A=3
30 B=6
49 C=B-A-(B-A)
30 PRINT "C ="3iC
G@® PRINT "THE - SIGN PASSED THE TEST IF C = @"
99 END
Sample Run
C =20

THE - SIGN PASSED THE TEST IF C = @

Variations In Usage

The — sign is used by some computers in PRINT USING statements to
automatically attach a trailing — sign to a negative number being printed.

Also See

PRINT USING, +

403

—nNZr

Operator

‘The / sign is used as an arithmetic division sign to
find the quotient of two numeric variables.

Example, 8/4 is the same as 8+4

Test Program

1@ REM 7/ DIVISION SIGN’ TEST PROGRAM

20 A=8

30 B=4

49 C=n/B

3@ PRINT "C ="3iC

B® PRINT "THE / SIGN PASSED THE TEST IF C = 27
89 END

Sample Run

cC =2z
THE / SIGN PASSED THE TEST IF C = 2

Some Interpreters (e.g. Palo Alto Tiny BASIC) use only integer values so
PRINT 15/4 yields a quotient of 3.

Variations In Usage

None known.

b

404

Operator

The * symbol (asterisk) is used as an arithmetic
multiplication sign (instead of the letter “X”) to
find the product of two numbers or numeric
variables.

Test Program #1

1@ REM ‘%' MATH OPERATOR TEST
PROGRAM

20 /=8

30 B=AxG

49 PRINT "% PASSED THE TEST IN LINE"SB

99 END

—0nZz2r

Sample Run

* PASSED THE TEST IN LINE 3@

Variations In Usage

Some computers also use the * sign as the “logical math” operator for
“AND”. For example:

IF (A=8) * (B=G) THEN 8@

reads, “if the value of A equals 8 AND the value of B equals 6 then the
IF-THEN condition is met and execution continues at line 80.”

Note that both (A=8) and (B=6) are enclosed in parentheses. This is the
clue to look for when determining if an * is being used for multiplication or
as a logical AND.

Test Program #2

1@ REM ‘*’ LOGICAL ‘AND’ TEST PROGRAM

20 A=8

30 B=G

4@ IF (A=B) * (B=6) THEN 70

3@ PRINT "# FAILED THE TEST AS AND OPERATOR"
6@ GOTO 99

7@ PRINT "% PASSED THE AND OPERATOR TEST®

99 END

Sample Run

* PASBED THE AND OPERATOR TEST

The * asterisk is used by some computers to specify a format for printing
numeric values or strings in the PRINT USING statement. See PRINT
USING for details.

405

ofe

op®

Also See

ANDs PRINT USING, OR:

+

406

|

Operator

The = symbol can be used as an assignment
operator. For example, A=3+5 assigns the value
8 to variable A.

Test Program #1

19 REM TEST PROGRAM USING = AS
ASSIGNMENT OPERATOR

20 A=4

30 B=8B

49 C=A+B

30 PRINT "C ="3iC

6@ PRINT "THE = SIGN PASSED THE TEST IF C = 10"

g9 END

—nZr

Sample Run

C =102
THE = SIGN PASSED THE TEST IF C = 10

The = sign is also used by most computers as a relational operator to
compare two numeric values for equality. For example, IF A=B THEN 1@0
tells the computer to branch to line 100 when the numeric variable A is
equal to numeric variable B. If the condition of the = sign is not met (i.e.
A#B), the test “falls through” and program execution continues on the
next line.

Most computers also use the = sign for string comparisons. This feature
allows one string or string variable to be compared, character-by-character,
against another string or string variable. In the example,
IF A% = "ABCD" THEN 100 the interpreter compares the ASCII code of
each character (from left-to-right) stored in string variable A$ against the
characters enclosed in quotation marks. If the ASCII code of all characters
is found to be equal, the computer branches or “jumps” to line 100. If the
ASCII code of all characters is not found equal, the test “falls through” and
program execution continues on the next line.

Test Program #2

19 REM TEST OF = SIGN AS NUMERIC COMPARISON DOPERATOR

2@ A=3

30 IF A=5 THEN B¢

49 PRINT "= SIGN FAILED NUMERIC COMPARISON TEST"
50 GOTO 99

6@ PRINT "= SIGN PASSED NUMERIC COMPARISON TEST™
989 END

407

|

Sample Run

= SIGN PASSED NUMERIC COMPARISON TEST

Test Program #3

1® REM TEST PROGRAM USING = FOR STRING COMPARISON

20 A% = "ABCDE"

30 IF A% ="ABCDE" THEN G@

4d® PRINT "THE = SIGN FAILED THE STRING COMPARISON TEST®"
50 GOTO 99

B® PRINT "THE = SIGN PASSED THE STRING COMPARISON TEST"
99 END

Sample Run

THE = SIGN PASSED THE STRING COMPARISON TEGT

Variations In Usage

Different interpreters allow different length character strings to be
compared. Some allow only one letter to be compared against another single
letter, while others allow enough characters to compare an entire name and
address, or more.

The combination of > or < with = is very common. Sometimes only
numerics can be so compared, but in most cases the ASCII values of string
characters are automatically derived and those numeric values are
compared.

Also See
oty %y =y k= EQy GEs GT» LEs LT NE

408

Operator

The t (up-arrow) is used as an arithmetic
exponentiation sign to compute the value of a base
number to a specified power. Some computers use
a ~ (carat or circumflex) instead of an {
(up-arrow).

-z

F??r example, 293 is the same as the cube of 2 or
29,

Test Program #1

10 REM ‘% (EXPONENTIATION)’ TEST PROGRAM

Z® PRINT "ENTER A BASE NUMBER";

30 INPUT D

49 PRINT "NEXT ENTER A POWER NUMBER";:

50 INPUT F

B0 P=DYF

70 PRINT "THE NUMBER"3iD3: "TO THE"3iFi"POWER IS" 3P
30999 END

Sample Run (using 4 and 3)

ENTER A BASE NUMBERT 4
NEXT ENTER A POWER NUMBERT 3
THE NUMBER 4 TO THE 3 POWER 15 G4

The t sign is also used to compute a number’s root value by enclosing the
inverse of the index number in parentheses (1/n).

:l/_
For example, 8 (1/3) is the same as the cube root of 8, or V8

Test Program #2

10 REM 't (USED AS A RADICAL SIGN)’ TEST PROGRAM
29 PRINT "ENTER A BASE NUMBER"3

39 INPUT B

49 PRINT "NEXT ENTER A& ROOT NUMBER" S

5¢ INPUT N

60 R=B}(1/M)

70 PRINT “THE"3N3"ROOT OF"3B3“IS";3R

30999 END

Sample Run (using 64 and 3)

ENTER A BASE NUMBERT G4
NEXT ENTER A ROOT NUMBERT 3
THE 3 ROOT OF 64 IS 4

Most computers having PRINT USING will print the exponential or ‘E’ form
of a number when 4 t s are placed in the format string. For example:
PRINT USING “s#,ssxtttt v, 12345 prints 12,345 E+03.

409

DIFFERENT OPERATOR FOR %

** jg used by some computers. Others use A to raise to a power.
IF YOUR COMPUTER DOESN'T HAVE IT
If the above all fail, substitute the following subroutine:

The subroutine programs found under LOG and EXP must be added to this
one to make it work (saves space not to duplicate them here).

30000 GOTO 30999
30100 REM * EXPONENTIATION SUBROUTINE * INPUT X,¥3

ouTPUT P
30102 REM ALSO USES Ay By Cy Ds E+ F AND L INTERNALLY
30104 P=0
30106 IF X<>® THEN 30112

30108 IF ¥<¢@ THEN 30122
30110 RETURN

30112 P=1

30114 IF Y=0 THEN 30140
30116 F=X

30118 IF X0 THEN 30130
30120 IF Y=INT(Y) THEN 32126
30122 PRINT "###"3iX3i"TO THE"3Ys3"POWER IS UNDEFINED ##%"
30124 STOP

30126 P=1-Z2%Y+4%INT(Y/2)
30128 X=-X

30130 GOSUB 3015¢@

30132 X=¥=*L

30134 GOSUB 30200

30136 P=PxE

30138 K=

30140 RETURN

To use this subroutine in the TEST PROGRAM, make these program
changes:

35 X

S8 Y=
60 GO

~o

-

U Tno

ug 30100

Variations In Usage

None known.

Also See

EXP, LOG: #%, PRINT USING

410

Operator

The < sign is used as a “less-than” relational
operator to compare two numeric values in
IF-THEN statements. For example,
IF A<B THEN 1900 tells the computer to branch to
line 100 if the value of variable A is less than the
value of variable B.

Test Program #1

10 REM ‘< RELATIONAL OPERATOR’ TEST PROGRAM
20 A=10

30 IF A<20 THEN G@

4@ PRINT "THE < SIGN FAILED THE TEST"

S0 GOTO 99

6@ PRINT "THE <« SIGN PASSED THE TEST"

99 END

Sample Run

THE < SIGN PASSED THE TEST

Variations In Usage

The < sign can be used by most computers to compare strings. The < sign
compares the ASCII code of each character (from left-to-right) in two
strings. The first difference encountered determines their relationship.

For example, string “ABCDEF” is less than string “ABD” even though the
first string has more characters. Since the ASCII code for C (decimal 67) in
the first string is less than, or precedes, the ASCII code for D (decimal 68)
in the second string, “ABCDEF” < “ABD” is true.

If each string has the same sequence of characters, the longer string is
considered larger. For example, string “ABCD” is larger than string “ABC”.

Some interpreters limit the number of characters which can be compared
between strings.

—nZzr

411

<

Test Program #2

19 REM ‘< STRING OPERATOR’ TEST PROGRAM

20 A$="ABC"
30 B%="ABCD"
40 C$="B"

30 IF A%<B% THEN B®

6@ PRINT "THE < SIGN FAILED THE TEST IN LINE So"
7@ GOTO 9898

80 IF B%$<C% THEN 110

9¢ PRINT "THE <« SIGN FAILED THE TEST IN LINE B8@"
100 GOTO 999

119 PRINT "THE < SIGN PASSED THE TEST"

998 END

Sample Run
THE < SIGN PASSED THE TEST

< is frequently combined with = to make the < = operator and combined
with > to make “not-equal” operators <> or ><.

Also See

By 4xy =y $y IF-THEN, <=4 =4 EQy GEs GT:s LE+ LT NE

412

Operator

The > sign is used as a “greater-than” relational
operator to compare two numeric values in
IF-THEN statements. For example,
IF A:B THEN 100 tells the computer to branch to
line 100 if the value of variable A is greater than
variable B.

Test Program #1

1@ REM ' RELATIONAL OPERATOR’ TEST PROGRAM
20 A=20

30 IF A > 10 THEN GO

49 PRINT "THE » SIGN FAILED THE TEST"

3¢ GOTO 99

6@ PRINT "THE * SIGN PASSED THE TEST"

99 END

Sample Run
THE » SIGN PASSED THE TEST

Variations In Usage

The > sign can be used by most computers to compare strings. The > sign
compares the ASCII code of each character (from left-to-right) between two
strings. The first difference in equality encountered determines their
relationship.

For example, string “ABD” is greater than string “ABCDEF” even though
the first string has fewer characters. Since the ASCII code for D (decimal
68) in the first string is greater than, or follows, the ASCII code for C
(decimal 67) in the second string, “ABD” > “ABCDEF” is true.

If each string has the same sequence of characters, the longer string is
considered larger. For example, string “ABCD” is larger than string “ABC”.

Some interpreters limit the number of characters which can be compared
between strings.

—WNZ2r

413

>

Test Program #2

18 REM ‘> STRING OPERATOR’ TEST PROGRAM
20 As="ABCD"
30 B&="ABC"
49 Cs="B"
50 IF A% » B$ THEN 80
6@ PRINT "THE * SIGN FAILED THE TEST IN LINE S@°
7@ GOTOD 999
80 IF C% » B% THEN 110
90 PRINT "THE » SIGN FAILED THE TEST IN LINE 80"
1e9 GOTO 899
11@ PRINT "THE * BIGN PASSED THE TEST"
999 END
Sample Run
THE » S5IGN PASSED THE TEST

> is commonly combined with = to make the >= operator and combined
with < to make “not-equal” operators <> or ><.

Also See

Sy o wxy =y GTy LTy NEs» 3 IF-THEN, =y <=4 EQ,y GEs» LE

414

The <> sign is used as a “not-equal” relational
operator to compare two numeric values in
IF-THEN statements for inequality. For example,
IF A<:B THEN 100 tells the computer to branch
to line 100 if the value of variable A is not equal
to the value of variable B.

Test Program #1

l¢ REM * < RELATIONAL OPERATOR’
TEST PROGRAM
20 A=10
30 IF A < Z0 THEN GO
49 PRINT "THE <» SIGN FAILED THE TEST"
S0 GOTO 99
69 PRINT "THE «<* SIGN PASSED THE TEST"
99 END

Sample Run
THE <% SIGN PASSED THE TEST

Variations In Usage

The <> sign can be used by most computers to compare strings. The <>
sign compares the ASCII code of each character (from left-to-right) in two
strings. The first difference in equality encountered determines their

relationship.

In the example, IF A$::"ABC" THEN 100 the interpreter compares the
ASCII code of each character (from left-to-right) stored in string variable A$
against the characters enclosed in quotation marks. If a difference is
encountered, or one string is longer than the other, the condition of the <>

sign is met and the computer branches to line 100.

Some interpreters limit the number of characters which can be compared

between strings.

Test Program #2

Operator

19 REM ‘+» STRING OPERATOR’ TEST PROGRAM

20 As="ABCDE"

30 IF A% < “ABCD" THEN G@

40 PRINT "THE +<» SIGN FAILED THE TEST IN LINE 3@"

30 GOTO 9899
6@ IF A% < "ABCDE" THEN B0
7¢ GOTO 1900

80 PRINT "THE <» SIGN FAILED THE TEST IN LINE B@"
g0 GOTO 9899

1e® PRINT "THE < SIGN PASSED THE TEST"

988 END

—nZzrx

II

415

Sample Run

THE <> SIGN PASSED THE TEST

Alternate Spellings

Some computers use the operator >< or #.

Also See
#4 4y Ly IF-THENs $s =4 <=4 »=, EQ,s GE+ GT4+ LEs+ LT+ NE

416

Operator

The <= sign is used as a “less than or equal to”
relational operator to compare two numeric values
in IF-THEN statements. For example,
IF A<=B THEN 12@ tells the computer to branch
to line 100 if the value of variable A is less than
or equal to the value of variable B.

Test Program #1

1@ REM ‘ <= RELATIONAL OPERATOR’
TEST PROGRAM
20 A=10
30 IF A <= 2@ THEN BG©
49 PRINT "THE <= BIGN FAILED THE TEST IN LINE 30"

5@ GOTO 999
6@ IF A<=1@ THEN 9@

7@ PRINT "THE <= SIGN FAILED THE TEST IN LINE GB@"
8¢ GOTO 9399
99 PRINT "THE <= SIGN PASSED THE TEST"
998 END
Sample Run
THE <= SIGN PASSED THE TEST

Variations In Usage

The <= sign can be used by most computers to compare strings. The <=
sign compares the ASCII code of each character (from left-to-right) in two
strings. The first difference encountered determines their relationship.

For example, string “ABCDEF” is < string “ABD” even though the first
string has more characters. Since the ASCII code for C (decimal 67) in the
first string is less than, or precedes the ASCII code for D (68) in the second
string, “ABCDEF” <=" ABD” is true. Also, if both strings have identical
characters and are the same length, then they satisfy the <= relationship.

If each string has the same sequence of characters, then the longer string is
considered larger. For example, string “ABCD” is larger than string “ABC”.

Some interpreters limit the number of characters which can be compared
between strings.

—nNZ>

417

R

Test Program #2

10 REM ‘<= GTRING OPERATOR’ TEST PROGRAM

20 A%="ABC"
30 Bs="ABCD"
4¢ Cs="B"
S50 IF A% «<=B% THEN 80
6@ PRINT "THE <= SIGN FAILED THE TEST IN LINE S@"
7¢ GOTO 998
8@ IF A% <="ABC" THEN 11@
8¢ PRINT "THE <= SIGN FAILED THE TEST IN LINE 80"
1¢9 GOTO 8999
119 IF B% <= C$% THEN 149
120 PRINT "THE <= SIGN FAILED THE TEST IN LINE 110"
130 GOTOD 989
149 PRINT " THE <= S8IGN PASSED THE TEST"
9989 END
Sample Run
THE <= SIGN PASSED THE TEST

Alternate Symbols

Some computers use the = < or < sign instead. Others allow =< as an
option.

Also See

IF-THEN < =4

i

sy $y LE» LTy EQy GTy+ GE» NE

418

Operator

>= is used as a ‘‘greater-than or equal-to”
relational operator to compare two numeric (or
string, when allowed) values in IF-THEN
statements.

V3 D= >

For example, IF A :=B THEN 10@ tells the
computer to branch to line 100 if the value of
variable A is greater than or equal to the value of
variable B.

=>
>
Test Program #1 =
10 REM ‘ »= RELATIONAL OPERATOR’ TEST PROGRAM
20 A=20
30 IF A = 10 THEN B0
49 PRINT "THE = SIGN FAILED THE TEST IN LINE 30"
5¢ GOTO 999
6@ IF A »*= 2@ THEN 90
7@ PRINT "THE »= SIGN FAILED THE TEST IN LINE Go@"
80 GOTO 999
90 PRINT "THE »= SIGN PASSED THE TEST®
998 END
Sample Run
THE *= SIGN PASSED THE TEST

Variations In Usage

The >= operator is allowed by some computers for string comparison. It
compares the ASCII code of each character (from left-to-right) in two
strings. The first difference encountered determines the relationship.

For example, string “ABD” is greater than string “ABCDEF” even though
the first string has fewer characters. Since the ASCII code for D (decimal
68) in the first string is greater than the ASCII code for C (decimal 67) in
the second string, “ABD”>= “ABCDEF” is true. Also, if both strings have
identical characters and are the same length, then they satisfy the >=
relationship.

If each string has the same sequence of characters, then the longer string is
considered larger. String “ABCD” is larger than string “ABC”.

Some interpreters limit the number of characters which can be compared
between strings.

419

V
I

Test Program #2

1@ REM ‘»= STRING OPERATOR’ TEST PROGRAM
20 A%$="ABCD"

3¢ Bs="ABC"
4@ Cs="B"
S0 IF A% »= B% THEN B@
G@¢ PRINT "THE »= SIGN FAILED THE TEST IN LINE S@"
7@ GOTO 998
80 IF A% »="ABCD" THEN 11¢@
99 PRINT "THE »= SIGN FAILED THE TEST IN LINE 8¢"
109 GOTO 889
11¢ IF C% = B% THEN 140)
120 PRINT "THE »= SIGN FAILED THE TEST IN LINE 11@"
1390 GOTO 889
149 PRINT "THE = SIGN PASSED THE TEST"
999 END
Sample Run
THE = SIGN PASSED THE TEST

Alternate Symbols

Some computers use the operator => or > instead.

Variations In Usage
None known.

Also See

IF-THEN >3 < <%y EQy GEs» LEs LTs NE

n
-

420

Statement

The ’ (apostrophe) is used by many computers as
an abbreviation for the REMark statement.

For more information see REM.

—nNZr

Test Program #1

19 REM '(APOSTROPHE) TEST PROGRAM

20 'PRINT "THE APOSTROPHE FAILED THE REM TEST"

30 REM THE APOSTROPHE FAILED THE TEST IF LINE 20 IS PRINTED
49 PRINT "THE APOSTROPHE PASSED THE REM TEST"

99 END

Sample Run #1

THE APOSTROPHE PASSED THE REM TEST

Variations In Usage

A few computers use the apostrophe in PRINT statements to enclose strings
instead of using quotation marks.

Test Program #2

19 REM ‘' (APOSTROPHE) * USED AS QUOTES * TEST PROGRAM
2¢ PRINT ‘THE APOSTROPHE PASSED THE OUOTATION MARK TEST'
8989 END

Sample Run #2

THE APOSTROPHE PASSED THE QUOTATION MARK TEST

Also See

REMs PRINT, 1y

421

Operator

The & (ampersand) is used by some computers as
the “concatenation” operator, allowing two strings
to be coupled together and stored as one string.

For example, if A$="S0FT" and B$="WARE" then
C$ =A% & Bs$ stores “SOFTWARE” in C$. (See
+.)

Some computers (e.g. DEC-10) use & to indicate
that the image allocations of a PRINT USING
statement are insufficient to accommodate the
number being printed. Example: PRINT
USING "s##"j -123 prints &-123 (see %).

CAUTION: Applesoft BASIC uses & internally but does not make it
available to the user. Trying & with any of the following examples sends
execution to address $3F5 and requires corrective action to regain control of
the computer.

& is used by a few computers (e.g. PDP-11) to indicate that a statement
which is too long for a single line is to be continued on the following line.

Example: IF (5-}) % (¥-1) * ® THEN &
PRINT “"THE VALUE OF X LIES BETWEEN 1 AND S"

& is used by some of those computers having MAT INPUT capability (e.g.
DEC-10) to indicate that additional input values will be entered on the next
line (see MAT INPUT).

Example: when these program statements are executed

DIM C(25)

+

PRINT "PLEASE ENTER THE VALUES OF ALL CHECKS OUTSTANDING"
MAT INPUT C

the user can enter more values than will fit on one line by typing an &
symbol before hitting the RETURN key:

"12.,5¢, 55,00, 37,84, 163,00, 43,00+ 100,00+ B.18&<cr:
7i8.8B@¢, 25.00<cr>

(<cr> indicates that a RETURN key was pressed.)

MAX BASIC, on the other hand, uses an & to terminate the list of values
being entered in response to a MAT INPUT statement.

Some computers use & as a prefix to a number to indicate a machine
address and/or a hexadecimal number. For example, B5 is interpreted as a
variable name but &B5 means B5 is a hex number equal to 181 decimal
(see $).

422

&

A few computers (e.g. PDP-11 with BASIC-PLUS) accept & in place of
PRINT.

1@ & "THIS IS A PRINT LINE"™

prints
THIS IS8 A PRINT LINE

Also See

PRINT PRINT USING, MAT INPUTs +, $, %

423

Operator

Also See

The X (pronounced SOL, for the Sun), is the
equivalent, for computer purposes, to the $ sign.

The Swedish ABC 80 computer uses SOL in the
same way the $ sign is used by most other
computers throughout the world.

String variables are formed with a }{ attached to a
valid variable (i.e. AX for A$). CHRX is the
equivalent of CHR$, MID X is the same as MIDS$,
SPACE X{the same as SPACES$, etc.

If a program contains any variable with a X{
attached, treat that word as if it were followed by
$, and assume it is a string variable.

$+ CHR%, LEFT$: MID$s RIGHT$:+ SPACE$, STRING$:; NUM%

424

Special Section

Acorn ATOM

This special section is not intended to replace official ACORN ATOM
documentation, nor serve as a tutorial. Its purpose is to provide a summary
overview of special ACORN features for BASIC Handbook users.

The BASIC supported by the Acorn ATOM from Great Britain is highly
non-standard and offers features that are not available on any other
machine. Because of the rapid rise in Acorn’s popularity, expect to see many
programs written for the Acorn in computer publications. To assist you in
understanding them, this brief summary of some of Acorn BASIC’s most
unique features is provided.

The most distinctive feature of Acorn BASIC is the naming of its variables.
Integer variables are any of the letters A-Z. Arrays must be named AA-ZZ.
So DIM AA(10) reserves room for 11 values of AA.

DIM A(10) does not do the same thing at all. It stores the address of the
last byte used by the BASIC program in A and increases this address by 11
(the program now appears to be 11 bytes longer).

Floating point variables are formed by placing % in front of a variable or

array name. %A, %B, ... %Z and %ZAA, %BB, ... %22 as well as %@ and %EE are

all available as variable and array names. String names are formed with $

placed in front of numeric variable names, i.e., $A, $B, ... $Z and $AA, $BB,
. $22. The $ need not be used where there is no ambiguity.

The following statements are prefixed by the letter F to indicate they are
key words used with floating-point expressions. Their use is similar, if not
identical, to other key words described elsewhere in The BASIC Handbook.
Variables used with these words must be declared to be floating point by
the prefix % (i.e. %A).

This word is a variation of with these exceptions.

FDIM DIM array names must be of
the form %AA to %ZZ

FGET GET Reads only numbers
from a file

FIF IF AND and OR are not
allowed with FIF

FINPUT INPUT does not allow strings
to be input

425

— ACORN ATOM

FPRINT PRINT again, no string
expressions

FPUT PUT writes only numbers
to a file

FUNTIL UNTIL AND and OR not allowed

For additional information, ALSO SEE: DIM, GET, IF, INPUT, PRINT, PUT,

UNTIL, %

The ! operator is used to indicate an address where a value is to be found or
stored. !A=123456 stores the hexadecimal form of 123456 starting in
location A with the two least significant digits and continues in location
A+1, A+2, etc. until the entire value has been stored. Using A!G instead

with FUNTIL.

would start storage 6 bytes after A.

Other operators and key words used by the Acorn:

’

BGET
BPUT
EXT
FIN

(apostrophe) generates a new line in a PRINT
statement; the next PRINT continues on the same
line if an ’ is not used.

specifies the numeric output field width

is used like ! but stores and recalls one byte at a
time

is the prefix of a hexadecimal constant

is a hexadecimal prefix in the PRINT statement
also the logical AND operator (i.e. bitwise ANDs
two numbers. Example 6 & 12 = 4 because 0110
AND 1100 = 0100)

(inverse backslash) is the logical OR operator
is the logical exclusive OR operator

gives the remainder on division. Example 13 % 5
= 3. % is also used to convert an expression into
integer mode.

gets a byte from a random file
stores a byte in a random file
gives the length in bytes of a file

initializes a random file for input or update and
returns a number used to refer to the file

426

FLT

FOUT

LINK
OLD

PTR

SGET
SHUT
SPUT

Owners of an ATOM must study its reference manual carefully to become
proficient in the use of the above. Most other words are similar to those of
other BASICs and have been referenced on other pages in The BASIC

Handbook..

converts integer expressions into floating point
mode

initializes a random file for output and returns
a number used to refer to the file

calls a machine language routine

recovers a program after NEW has been typed (but
before anything else happens to alter memory)

allows manipulation of pointers of random files
reads a string from a random file
closes a file after use

writes a string to a random file

ACORN ATOM —

427

NOTES

428

Special Section

ATARI

This special section is not intended to replace official ATARI documentation,
nor serve as a tutorial. Its purpose is to provide a summary overview of
special ATARI features for BASIC Handbook users.

The BASIC used on the ATARI 400 and 800 computers contains several key
words not found in other BASICs.

ADR

COLOR

Dos

ENTER

returns the memory address (in decimal) of the string
specified by the expression in parentheses. The address
can then be passed to USR routines. ADR (A%) gives the
address of the string stored in AS$.

determines the data to be stored in the display memory
by the PLOT and DRAWTO statements. If COLOR N
appears in a program in text mode (GRAPHICS 0, 1, or
2), N must be an integer between 0 and 255 and is
interpreted as the ATASCII value of the character to be
displayed. The first 2 bits (MSB) are used to determine
the color of the character.

In graphics modes 3 thru 8, the value following COLOR
only determines the color of the graphics block. In the
2-color or 2-brightness modes the MSB identifies the
choice. In the 4-color modes the first 2 bits are needed
to name which color is used (0, 1, 2, or 3). The actual
colors used are not named by COLOR but are set with
the SETCOLOR statement.

Examples: COLOR ASC("G"):PLOTG 4 will display an
orange G in text mode.

COLOR 1 chooses the color associated with 1 that was
selected by SETCOLOR if the computer is in graphics
modes 3 thru 8.

is a command used to go from BASIC to the Disk
Operating System (see Disk BASIC).

reads a program from disk or tape into memory without
erasing memory. ENTER can be used to APPEND or
merge programs.

429

= ATARI

430

GRAPHICS

ENTER "D:DEMD.BAS" brings the program DEMO.BAS
into memory from disk, replacing any lines in the
resident program that have the same line numbers as
the lines of the new program. This can be useful when
a subroutine stored on disk or tape is to be incorporated
into a program. ENTER is also handy for replacing one
set of DATA statements with another set.

sets the GRAPHICS mode of the display to one of 9
choices. The mode chosen determines whether the
screen prints text or graphics, how many colors are
available, the resolution of the graphics points and
whether a split screen with lines of text at the bottom
will be used or not.

Mode Screen Characteristics

2 Text mode of 40x24 character positions
with 1 color (but 2 brightness levels).
GRAPHICS @ also clears the screen (CLS).

1 Text mode of 20x24 character positions
with 5 colors and split screen. A PRINT
statement puts characters in the 4 lower
text lines and PRINT #6 writes to the
upper text window.

-3

Text mode of 20x12 characters. The screen
is split 10 and 2. Otherwise the same as
above.

3 GRAPHICS mode with 40x24 plot positions
and 4 lines of text. Four colors are allowed.

4 80x48 GRAPHICS mode, split screen with
2 colors

80x48 GRAPHICS mode, split screen with
4 colors

B 160x96 GRAPHICS mode, split screen with
2 colors

7 160x96 GRAPHICS mode, split screen with
4 colors

B 320x192 GRAPHICS mode, split screen, 1
color (but 2 brightness levels)

3]

LOCATE

NOTE

PADDLE

POINT

POSITION

PTRIG

PUT

The split screen can be removed in modes 1-8 by
including +16 in the GRAPHICS statement. Example:

GRAPHICS 4 + 16

LOCATE ¥ ¥ +N is a command (or statement) used to
place the invisible graphics cursor at a specified
location (with coordinates X,Y) in the graphics portion
of the screen, check to see what is displayed there, and
store that data in the named numeric variable (N).

is used to find the current disk sector number and byte
number within that sector which it stores in two
variables.

NOTE #2,5,B finds the current record on device #2
and stores the sector number in S and the byte number
in B. These numbers can be used to build another file
which is an index to the first file.

is a function which returns a number from 1 to 228
depending on how much the control knob on the
designated game PADDLE has been rotated
counterclockwise. As many as 8 game paddles can be
connected to the ATARIL

is a command used when reading from a random access
file. (See the section on Disk BASIC.) POINT places the
“pointer” at the desired point in the file, ready for it to
be READ.

100 POINT #24 A+ B

is the form of the statement. A is the sector number on
the disk and B is the byte number within the sector.

is a command (and statement) used to POSITION the
invisible graphics cursor at a specified location on the
screen. POSITION ¥,Y is the form of the statement
where X is the column number and Y is the line
number of the POSITION. The maximum values
allowed for X and Y depend on the GRAPHICS mode
selected.

is a function which returns a 0 or 1 to indicate whether
the trigger button on the game paddle is pressed. A 0
means the trigger is pressed.

outputs a single byte (one character) to a specified file.
PUT #6+ ASC("A") PUTs the character A on the
graphics window (video screen). The position is
controlled by the POSITION statement.

ATAR| =

431

== ATARI

SETCOLOR

SOUND

has 3 “parameters”. SETCOLOR R, C» B chooses the
particular Color and Brightness to be stored in a
specified Register.
R names the register (0-4)
C names the color (0-15) and
B names the brightness (even number 0-14 with
14 being almost white.)

Available colors are:

0 gray

1 light orange (gold)
2 orange

3 red-orange

4 pink

5 purple

6 purple-blue
7 blue

8 blue

9 light blue
10 turquoise
11 green-blue
12 green
13 yellow-green
14 orange-green

15 light orange

SETCOLOR can be used to set the color in each of the 5
registers. COLOR 1 then selects one of those registers
(which one depends on which graphics mode is set) and
that color is used in the display. “This can be
confusing” — ATARI

sends a specific note to the TV set. S0UND Y, P, D, L
specifies the 4 qualities of the sound.

V is the Voice selection (up to 4 simultaneous voices
can be used)

P selects the Pitch. The frequency is approximately
32000/P. P can range between 0 and 255.

D is the Distortion factor. D is a number between 0 and
14. Each of the numbers causes a special effect.

L is the Loudness (volume) control. Loudness ranges
from quiet (1) to loud (15). When more than one voice
is used, the total loudness should be no more than 32.

432

ATARl ——

STATUS 5TATUS #1,2 calls the STATUS routine for the
specified device (#1). The status of the STATUS
command is stored in the variable (Z). It refers to the
status of a printer or other peripheral.

STICK is similar to PADDLE. The differences are that STICK
gives information about the joysticks and only 9
numbers can result. The values are assigned to the
direction the joystick is pushed as follows:

i
g N

13 5
STRIG is like PTRIG but applies to the joystick.
TRAP is a statement like ON ERROR GOTO. It allows the

program to remain in control even if an error occurs.
100 TRAP 5490

sends control to line 540 after an error has been
detected. PEEK (195) gives the error code (similar to
ERR) and 25G6*PEEK (187)+PEEK (186) gives the
number of the line where the error occurred (ERL on
other computers).

Each time the TRAP is sprung, it must be reset by
another TRAP statement using a number between
32767 and 65535.

K10 is a general input/output statement used for special
operations, such as, filling an area on the screen
between plotted points and lines with a color. The form
is

HIO Cy» Dy Bly B2y F%
where C is the command number

D is the device number (#6 is the graphics
window)

B1 and B2 contain information needed by some
of the commands, e.g., the sector and byte
numbers of POINT, the row and column in
DRAWTO, etc.

F$ is a filespec needed in OPEN, RENAME,
DELETE, etc.

]

433

= ATARI

The various commands performed by XIO are:

3 OPEN
5 GET record (INPUT)
7 GET character
9 PUT record (PRINT)
11 PUT character
12 CLOSE
13 STATUS of device
17 DRAWTO
18 FILL in an area of screen

32 RENAME file

33 DELETE file

35 Lock file

36 UNLOCK file

37 POINT (set file pointer)
38 NOTE
254 FORMAT

434

Special Section

TEKTRONIX

This special section is not intended to replace official TEKTRONIX
documentation, nor serve as a tutorial. Its purpose is to provide a summary
overview of special TEKTRONIX features for BASIC Handbook users.

The TEKTRONIX 4050 series computers support an extended BASIC with
many key words and capabilities not found in more standard BASICs. In
most cases, it is not practical to try to adapt a program that uses these
special-purpose statements on a word-for-word basis.

K18

BAPPEN

BOLD
BRIGHTNESS

BSAVE

CHARSIZE

COPY
DASH
FIND
FONT

GIN

draws X and Y axes with tic marks on graphics
screen

routine that adds a program in binary mode to the
program in memory

loads a program saved in binary mode from tape

sets 4054 display normal or bright, focused or
defocused

routine that stores current program on tape in
binary mode

specifies number of characters/line and number of
lines/screen on 4054

makes hardcopy of screen image
sets dash pattern for lines on graphics screen
locates the beginning of a specified file on tape

selects one of several sets of special characters
(e.g. Spanish, German, Swedish, etc.)

sets the number of digits to be compared and the
closeness to zero for comparison (Example:
FUZZ 6, 1E-5 causes two values to be considered
equal if the first 6 digits are equal and causes

a number whose absolute value is less than 1E-5
to be considered zero.

reads the cursor position and records the X and Y
coordinates in specified variables

435

— TEKTRONIX

INIT

KILL
LINK

MARK
MPY
MTPACK
OFF
oLD
PAGE

POINTER

POLL

PRINTE
RBYTE

RDRAKW

REP

RMOVE

ROTATE

SCALE
SECRET

5UM

resets all parameters (e.g. FUZZ, CHARSIZE, etc.)
to default values

removes reference to a file in the tape directory

loads new program into memory without resetting
variables

prepares tape to receive data or program
creates the product of two matrices

adjusts tension and alignment of tape device
disables interrupt

loads ASCII mode file from tape into memory
clears graphics display and homes cursor

assigns coordinates of the joystick pointer to
specified variables when a key on the keyboard is
pressed. It stores the key entered in a third
variable.

polls the devices listed and returns a number
indicating the first one found requesting service,
along with the value of its status byte

outputs values to physical and logical devices

reads one or more bytes from the General Purpose
Interface Bus and stores it (them) in specified
variables

draws a line from current position of the cursor
(X,Y) to the point (X + H, Y+ K) where H and K are
given in the RDRAW statement

replaces characters in a string similar to the
MID$ function

is a Relative MOVE similar to RDRAW but doesn’t
draw the line, only moves the cursor

causes RMOVE and RDRAW actions to be rotated
thru a designated angle

sets the scale factor for the graphics display

gives protection to a file by setting it in
secret mode

calculates the sum of the elements of an array

436

TEKTRONIX=——

TLIST lists the names and sizes of the files on tape

YIEWPORT defines the dimensions of the frame around the
graph to be displayed

WBYTE sends one or more bytes to a specified device on
the General Purpose Interface Bus

WINDOW defines the minimum and maximum data values to
be included in the display window

Most other Tektronix BASIC words are similar to the more common BASICs
which are covered elsewhere in The BASIC Handbook.

437

NOTES

438

Special Section

TRS-80 COLOR

This special section is not intended to replace official TRS-80 Color BASIC
documentation, nor serve as a tutorial. Its purpose is to provide a summary
overview of special TRS-80 features for BASIC Handbook users.

TRS-80 Extended Color BASIC has several key words that are either unique
to this computer or are used for a purpose that is very remote from the

usual usage.

AUDIO

CIRCLE

CLOADM

allows the computer to send sound through the TV
speaker.

Form: aubIo on
AUDIO OFF

draws a circle or portion of a circle with a specified

center, having a given radius, drawn in a specified

color. By giving the starting and ending points, any
portion of the circle can be displayed.

Also, the circle may be squeezed to make it
out-of-round.

Form: CIRCLE (Xs¥) +R+CsH+SE
CIRCLE (128,96) 3546

where (X,Y) names the location for the center of the
circle, R is the radius, C specifies one of the available
colors (0-8), H tells the height/width ratio (1 means a
true circle, H>1 means it is taller than it is wide, or
H<1 means it is wider than tall).

S is a number 0-1 that gives the Starting location for a
portion of the circle with 0 representing 3 o’clock, .25 at
the 6 o’clock position, etc. E is also a number 0-1
specifying the Ending position. The portion drawn is
the arc determined by tracing the circle in a clockwise
direction from the Start position to the End position.

loads a machine-language program from tape.
Form: CLOADM "NAME" +A

where NAME is the program name and A (optional)
represents the number to be added to the starting
address to move the program to a desired memory
location.

439

——TRS-80 COLOR

CSAVEM saves a machine-language program on tape.
Form: CSAVEM ¥+ 4E:+ BF, SF
COLOR selects the foreground and background colors for the

display. The color codes range from 0 to 8. Depending
on the PMODE setting, either two colors or four colors
are allowed in use at one time. The SCREEN statement
chooses which two or which four colors to use.

For PMODE settings of 0, 2, and 4 there are two colors
available. Selecting color set 0 (with SCREEN) gives (0)
Black and (1) Green as the colors and color set 1 has
Black and (5) Buff. With PMODE settings 1 and 3, there
are four colors to choose from. Color set 0 has Green, (2)
Yellow, (3) Blue, and (4) Red while color set 1 consists
of Buff, (6) Cyan, (7) Magenta, and (8) Orange.

In text mode (selected by SCREEN also) the colors
available are either Black and Green (color set 0) or
Red and Orange (color set 1).

Form: COLOR 5, 7

causes Buff lines to be displayed (when drawn) on a
Magenta background. If no COLOR statement is used,
the highest numbered color in the current color set is
the foreground color and the lowest numbered color is
the background color.

DLOADM is used to Down-LLOAD a machine-language program
from another computer.

Form: DLOADM "NAME", B

where B is either 0 or 1 specifying a baud rate of 300 or
1200. The “baud rate” is the transfer rate of data in
bits per second.

DRAK DRAWSs one or more lines (even a whole figure) by
following the instructions contained in quotes or in a
string variable.

Form: DRAW “string”
DRAW "B23iBMIZ2B,9BESQILIQAIDIQOIRIODIHED"

where “string” is made up of a combination of the
following instructions:

8 Blank - don’t draw
M Move to specified position (default = 128,96
or the end point of the last DRAW

TRS-80 COLOR ——

statement). A plus (+) or minus (—)
following the M instruction means the
numbers are to be added to the current
position to locate the start of the next line.

U DRAW Upward the specified number of
points (default is 1 for U,D,R,LLE,F,G, and H)

D Downward

R to the Right

L to the Left

E 45 degrees (half way between Up and Right)

F 135 degrees (half way between Right and
Down)

G 225 degrees

H 315 degrees

% eXecute another string of instructions and
return Example: Xa$

C Color (default = foreground color)

A Angle of rotation

0 = no rotation (default)
1 = 90 degrees clockwise
2 = 180 degrees clockwise
3 = 270 degrees clockwise

g Scale factor where a factor of 1 means 1/4
scale, 2 means 2/4 or 1/2 scale, etc. (default
= 4/4 or full scale)

N No update, i.e., DRAW the next line from the
previous starting point

HEC sends program control to a machine-language routine at
the specified address. (See USR.)
Form: EXEC 24823
JOYSTK is a function that returns a value between 0 and 63 to
indicate the position of a joystick.
Form: J0OYSTK(n)

where n is a number from 0 to 3 that determines which
joystick is being checked:

horizontal position of the RIGHT joystick
vertical position of the RIGHT joystick
horizontal position of the LEFT joystick
vertical position of the LEFT joystick

SR SN S N

o

JOYSTK (2) must be the first JOYSTK function used in
any program.

441

=—=TRS-80 COLOR

442

LINE

MOTOR

PAINT

PCLEAR

PCLS

draws a line, a box, or a filled-in box between specified
points. The points are either the end points of the line
or the opposite corners of the box.

Form: LINE (X1,¥1)-(X24¥2)+AB
LINE (20,10)-(132,100) +PSET +BF

where (X1,Y1) is the starting point and (X2,Y2) is the
ending point of the line or the opposite corner of the
box.

A is either PSET which selects the foreground color for
the line (box) or PRESET which selects the background
color (“erasing” the figure by blending it with the
background). B is optional and is either a “B” for an
empty box or a “BF” for a filled box. If the starting
point is omitted, the figure is drawn starting at the
previous ending point (or from the center of the screen
if no previous LINE statement was used). The hyphen
(-) must not be omitted, however.

turns the cassette recorder ON and OFF

Form: MOTOR ON
MOTOR OFF

PAINTS the region with a selected color from a given
point to a boundary of a specified color.

Form: PAINT (¥,Y),CB

where (X,Y) names a point within the region to be
PAINTed, C selects one of the available colors (see
COLOR), and B specifies the color of the existing
boundary line.

reserves the amount of memory to be used for graphics.
Graphics memory is divided into 8 “pages” of 1536
memory locations each. If no PCLEAR statement is
included in the program, the computer automatically
reserves 4 “pages” of memory for graphics.

Form: PCLEAR 2

reserves only 2 “pages” making the rest available for
larger programs.

clears the graphics screen similar to the CLS usage in
text mode.

Form: PCLS n

TRS-80 COLOR —

where n is one of the available color codes used to set
the background. If n is omitted, the current background
color is used.

PCOPY copies one graphics “page” to another.
Form: pCcOPY 3to 5

PLAY makes music using a string of instructions that can
specify notes, tempo, volume, rests, etc.

Form: PLAY “music”
PLAY "T235L45035ALBIATAIB-TAIGIFILZ, JATP4"

where “music” is a string containing some of the
following:

note a letter from A to G or a number from 1 to 12
using - for flats and + or # for sharps

0 specifying which of the five Octaves to use (1-5)

L names the Length of the tone (L1 = whole
note, L2 = half note, L4 = quarter note,
L4. = dotted quarter note, etc.)

T sets the Tempo (1-255)

U sets the Volume (1-31)

P determines the length of a rest or Pause
(1-255)

b eXecutes another string of instructions (see
DRAW)

PMODE sets the resolution of the graphics screen, how many
colors are available, and which graphics “page” is used

first.
Form: PMODE R, P

where R is a number from 0 to 4 that establishes the
resolution.

2 gives a 128x96 grid with two colors,

1 gives a 128x96 grid with four colors,

Z gives a 128x192 grid with two colors,

3 gives a 128x192 grid with four colors, and
4 gives a 256x192 grid with two colors.

P is a value from 1 to the value given in PCLEAR to
specify which graphics page to start using.

443

—TRS-80 COLOR

PPOINT

PRESET

PSET

SCREEN

SOUND

TIMER

checks the color of a specified point of the graphics
screen. PPOINT returns the color code if that point is
“On”.

Form: PPOINT (X¥)

sets a specified point to the current background color.
Form: PRESET (X,Y)

sets a specified point to the current foreground color.
Form: PSET (X,Y)

places the computer in text mode or graphics mode and
indicates which color set is to be used (see COLOR).

Form: SCREEN M, C

where M is a 0 (for text Mode) or a 1 (graphics) and C
names COLOR set 0 or COLOR set 1.

generates a tone at a specified pitch for a given length
of time.

Form: SOUND P, T

where P is a number that determines the Pitch (1 is
low, 255 is high, 89 is close to middle C on the piano)
and T sets the duration (10 = .60 secs., 25 = 1.50 secs.,
etc.)

is a function that measures time in “jiffies” (1/60 sec.)
TIMER starts at power-up and resets to zero each time it
reaches 65535. TIMER can be set to measure an event
with

TIMER = @
(any number 0-65535 can be used to set TIMER) and can
be “read” by

PRINT TIMER

444

A Few Thousand Words
About “DISK BASIC”

Many computers are capable of storing programs and data “externally” on
rigid or floppy magnetic disks. A disk is referred to as a “mass external
storage” medium since the amount of information it can store is many times
what the computer can hold internally at any one time.

About the DOS

The Disk Operating System (DOS) is a “Master Control” software program.
DOS is the “Operating System”, and is concerned primarily with control and
operation of the computer and its peripherals --- the Big Picture. It sees that
the CPU (the heart of the computer), the BASIC interpreter (or compiler),
and the storage and Input/Output devices work as a team.

It also tells the CPU where certain programs or data are stored and where
space exists to store more. Some systems refer to the DOS as the “Execu-
tive”, or the “Monitor”.

We are usually aware of DOS because of its file handling features. It allows
us to list directories of the programs and data files stored on disk (typically
using a DIRectory type command). DOS commands are frequently confused
with Disk BASIC statements and commands, since some of the same
commands can be given either from DOS or from BASIC.

We use DOS commands to KILL (or DELETE) a file, RENAME a file, and
COPY a program from one disk drive to another. It also allows us to load in
the BASIC interpreter or compiler (which is just another software program).
So-called “utility” programs usually accompany a DOS to do things like
SORT a data file, RENUMBER program lines and help DEBUG a program.

Disk BASIC is NOT the Same

Disk BASIC, on the other hand, is ordinary BASIC with a few added capa-
bilities, like storing and retrieving programs from disk.

“Plain old” Basic had to undergo some minor changes --- mostly additions,
in order to control large data files. Disk BASICs have the “usual” BASIC
language statements, functions, commands and operators, plus additional
statements and commands for interacting with the files stored on disk.

The lack of uniformity of the added Disk BASIC features makes a thorough
treatment of all Disk BASIC words impractical at its current stage of
development. However, in order that you might recognize the nature of Disk
BASIC as you read program listings, this summary treatment of the more

445

— DISK BASIC

common statements is included. It will help you recognize when a Disk
BASIC is being used, and what it is being used for. You may then be able to
rewrite it using your computer’s version of BASIC.

Programs are usually written to interact with a disk drive because access is
much faster and more convenient than writing to or reading from tape.
Almost anything that can be accomplished on disk can also be done on
tape. . . but much more slowly. If you attempt to convert a program written
for disk to a computer that has only tape storage, it will require more than
just substituting new statements for old. The program flow may have to be
completely reorganized to minimize the impact of the slow tape, and human
intervention is usually required.

“Bringing up” BASIC on a disk-based system is automatic for some com-
puters. Others require a command such as RUN BASIC or just BASIC to
move “down” from DOS into the BASIC interpreter/compiler.

Once in BASIC, getting back “up” to the DOS level requires one of a variety
of commands. (Some computers give a choice.) Typically, BYE, DOS, EXEC,
MONITOR, SYSTEM or CMD“S” do the trick. Sometimes we can return to
DOS only by pushing the “reset” button.

Opening And Closing A File

Disk files consist of “records”, clusters of letters or words which mean some-
thing to someone (or something), as in a DATA file. A “file” is a group of
records to which we give a name. A file may be something more tangible,
like a BASIC program being stored on the disk. Ordinarily we LOAD or
SAVE an entire Program file at a time. DATA files on the other hand may
be READ or altered a single record at a time.

To read or write (called accessing) information in a file, that file must first
be OPENed. Disk files may be accessed sequentially, that is, each record in
order, as on cassette tape, or randomly, as on a phonograph record where
we can place the needle anywhere without spiraling thru the preceding
grooves first.

An OPEN statement must be in the program to specify which access method,
the name of the file to be OPENed, and what reference number to associate
with the file. (That reference number will be used in the program’s READ
and PRINT statements.)

Disk BASICs are not at all uniform, but the following examples show what
typical OPEN statements look like:

19 OPEN "I",3:"MYDATA"

opens a file named MYDATA for sequential INPUT, (“I”). The file can be
read via a READ #3 statement. It is opened for READing only, and cannot
be written into.

446

DISK BASIC =—

20 OPEN NEW "SCORES" AS 1

opens a NEW file named SCORES for sequential OUTPUT. PRINT #1 will
put information from the computer into the file.

32 OPEN "DATA.FIL" FOR INPUT AS FILE 2

opens a sequential input file, DATA FIL, which will be read by the program
as file 2 with a READ #2.

Either of the OPEN statements in the last two examples could also open a
random access file. The statement in line 10 above would need the “I”
changed to “R” for random access. FILE is used in place of OPEii on some
machines.

While a file is OPENed for use, it is vulnerable to having its data altered
accidently, by a program error, power line glitch, or other unforeseen
disaster. Therefore, as soon as a file is no longer needed by the program, it
should be closed with a CLOSE 1 or similar statement. A file may be
OPENed and CLOSEd any number of times during a program’s execution.

Sequential vs Random

READ#, PRINT#* and INPUT# statements are usually used with sequential files
but must specify the buffer associated with the file. Some Disk BASICs use
WRITE# and PRINT# interchangeably. A few use WRITE# to place data in files
with quotes around the strings, while others use WRITE# to insert line numbers
before each DATA line.

Random files must have the contents of their records carefully formatted by
the program. A FIELD statement defines what to expect, and typically reads
like:

10 FIELD #1, 20 AS N$, 22 AS A%, 15 A5 C%y» 2 AS 5%,
5 AS Is%

That FIELD statement specifies that each of the records in file #1 contains
the five items illustrated below. (Numbers are printed above the file
contents here so we can visually measure the length of each entry.)

123456789012345678901234567890123456789012
JOHN A, EDMUND 3206 BEAL ROAD

3456789012345678901234

HARRISON CAB3888
The FIELD statement reserved the first 20 characters (including trailing
blanks) for a name, the next 22 characters for a street address, 15
characters for the city, 2 for the state and 5 for the ZIP code. The BASIC
program will now know how to interpret each record in this random file.

447

—— DISK BASIC

Is There Bufferin In The Buffer?

On its way to or from the disk, information is placed in a temporary storage
area in the computer, called a buffer. LSET and RSET are used by many
Disk BASICs to place data in the buffer before sending it to disk. LSET “left
justifies” data in a string variable and RSET “right justifies” the data. For
example,

190 LSET N$="JOHN A, EDMUND"

places the name in the record to be written as it is shown above.
10 RSET N#%="JOHN A, EDMUND"

causes the name to appear in the record as

12345678901234567890 (reference scale)
JOHN A+ EDMUND

Random Strings

Some Disk BASICs require that all random file data be in string form (no
numeric values allowed). In order to convert numbers to strings, and strings
back to numbers, conversion functions are part of those BASICS.

The functions MKI%, MKS% and MKD$% convert integers, single-and
double-precision numbers to strings. CYI, CVS and CUD convert strings back
into numbers. Other disk BASICs use CcUT%4% and CYTF$ for converting
integers and floating point numbers to strings and CYT$% and CYT$F to
convert them back. They’re simple to use. . . but treacherous.

Reading and Writing

Typical random Input and Output statements are GET#1 for Input and
PuT#1 for Output. A few computers use INPUT:1 or READ:1 instead of
GET#1,and PRINT:1 or WRITE: 1 for PUT#1.

Scratching Where It Itches

On some computers, a sequential output file must be “SCRATCHed” before
data can be written to it. Example:

19 SCRATCH =4

RESTOREing

After READing, some computers allow us to RESTORE data in a sequential
file in order to READ it again. If RESTORE isn’t available, CLOSEing then
OPENing a file will automatically restore the pointer to the beginning of
the DATA file, thus RESTOREing it.

448

DISK BASIC —

EOF

When INPUTting data from a disk or other external mass storage device, it
is necessary to detect when all the DATA has been INPUT and the
end-of-file is reached. The EOF function is used in an IF-THEN statement to
do the job. For example:

100 IF EOF #1 THEN 520
It reads “if the file is out of data, proceed to Line 520”.
How Long?

Some Disk BASICs provide functions to determine the Length-Of-File
(LOF) and (L0OC)ation of the file pointer (i.e. which record is being
accessed). A SET statement SETs the “pointer” (like setting the phonograph
needle) to the exact record location where something is to be PRINTed or
READ.

What’s Ahead?

TYPE (or TYP) is used to detect what kind of data is in the next record of a
sequential file. For instance, in North Star BASIC, if TYP returns a 0,
End-Of-File has been reached. A 1 means the next record contains string
data, and a 2 means it contains numeric data. Other computers using TYPE
may give different meanings to the numbers returned.

EXAMPLE: 190 IF TYP(1)=2 THEN 220
200 READ #1.,A%
219 GOTO 230
220 READ #1,N

What’s In A Name?

Finally, a word about file names. The way the name must be written is
determined more by the computer’s DOS than by its version of disk BASIC.
Since OPEN and other statements need to specify the file name, however, it
is appropriate to discuss them here.

Typically, a file name is composed of four items:

1. the number of the device on which the file is stored,
2. the name of the file,

3. the extension or group, and

4. a password, if any.

For example,
LOAD 1:COINS/DAT.PASS

LOADs a file on disk drive #1 named COINS, and it has the password
PASS. The /DAT is the “extension” or group classification, and may indicate
we’re using it as a DATA file.

449

=== DISK BASIC

450

Where Are We?

Since no standards exist for enhancements to BASIC, disk BASICs have as
much variety as is found at the San Diego Zoo. Either agreement must be
developed as to what form disk statements will have, or we will continue
speaking mutually unintelligible disk BASIC dialects at each other.

For more information of a tutorial nature, see CompuSoft Publishing’s books
dealing with Disk BASIC and Disk Operating Systems.

Index and Scorecard

This and the following pages are both an index to
this expanded edition of The BASIC Handbook and a
scorecard for your computer. As you run each test
program record the results here. Later, a quick
reference to these pages will reveal whether a par-
ticular word is accepted by your machine.

Test Runs

Word/Symbol Page(s) Pass Fail Notes
A 17,21,

32
ABS 17
AC., 19
ACS 19
ACSD 19
ACEG 19
ADR 429
AND 21
APPEND 25
ARCOS 19
ARCSIN 29
ARCTAN 34
ASC 27
ASCII 27
ASN 29
ASND 29
ASNG 29
AT 32
ATAN 34

451

Word/Symbol

ATN
ATND
ATNG
AUDIO
AUTO
KIS
BAPPEN
BASE
BGET
BOLD
BPUT
BREAK
BRIGHTNESS
BSAVE
BYE

c.
CALL
CDBL
CH
CHAIN
CHANGE
CHAR
CHARSIZE
CHARS
CHR
CHR$
CHR X
CINT

Test Runs

Page(s) Pass Fail

34

Notes

34

34

439

37

435

435

39

426

435

426

41

435

435

42

68

43

44

45

46
49

51

435

51

51

51

51

53

452

Word/Symbol
CIRCLE

CLEAR
CLG
CLK
CLK®
CLOAD
CLOADM
CLOG
CLOSE
CLR
CLRDOT
CLS
CMD

Co
CODE
COLOR

COM
COMMON
CON
CONT
COPY
Cos
CosD
COSG
COSH
COUNT
CSAVE

Test Runs
Page(s) Pass Fail

439

Notes

54

56

58

58

59

439

56

447

54

61

62

446

68

64

65,429,

440
66

66

68

68

435,445
69

69

69

71

73

74

453

Test Runs

Word/Symbol Page(s) Pass Fail Notes
CSAVEM 440
CSH 71
CSNG 75
CURr 76
CvD 448
CWI 448
Cus 448
CUTF% 448
CUTHF 448
CUTS$% 448
CUTZ% 448
D 77
D, 78
DASH 435
DAT 78
DATA 78
DEBUG 445
DEF 80
DEFDBL 83
DEFINT 85
DEFSNG 88
DEFSTR 91
DEG 93
DEGREE 93
DEL 95
DELETE 95,445
DET 97
DIGITS 99

454

Test Runs

Word/Symbol Page(s) Pass Fail Notes
DIM 101
DLOADM 440
DMS 93
DOS 429,446
poT 105
DRAW 106,440
DRAWTO 106
DSP 107
E 109
E. 112
EDIT 110
ELSE 111
END 112
ENTER 429
EOF 449
EQ 113
ERASE 114
ERL 115
ERR 116
ERRL 115
ERRN 116
ERROR 118
EXAM 119
EXCHANGE 120
EXEC 441,446
EXIT 121
EXP 123
EXT 426

455

Test Runs
Word/Symbol Page(s) Pass Fail

Notes

Fe 137
FDIM 425
FETCH 125
FGET 425
FIELD 447
FIF 425
FILE 447
FILL 127
FIN 426
FIND 435
FINPUT 425
FIX 128
FLASH 129
FLOW 130
FLT 427
FMT 131
FN 134
FNEND 136
FONT 435
FOR 137
FoOUuT 427
FPRINT 426
FPUT 426
FRAC 139
FRE 140
FREE 140
FUNTIL 426
Fuzz 435

456

Test Runs
Word/Symbol Page(s) Pass Fail

Notes

G, 148
GE 142
GET 143
GET# 448
GIN 435
GO 145
GOODBYE 42
GOS. 146
GOSUB 146
GOSUB-OF 147
GOT 148
GOTO 148
GO TO 148
GOTO-0F 149
GR 150
GRAD 152
GRAPHICS 430
GT 151
HLIN-AT 153
HOME 154
1, 167,174
IF 155
IF-G, 156
IF-GOT 156
IF-GOTO 156
IF-LET 157
IF-T. 158
IF-THE 158

]

457

Test Runs
Word/Symbol Page(s) Pass Fail

Notes

IF-THEN 158
IMAGE 161
IN, 167
INCH 144
INCHAR 144
INDEX 163
INIT 436
INKEY % 164
INP 166
INPUT 167
INPUTLINE 169
INPUTI1 171
INPUTS 170
INSTR 172
INT 174
INVERSE 175
JOYSTK 441
KEY 176
KEY$ 176
KILL 436,445
L 180,185
LE 178
LEFT 179
LEFT$ 179
LEN 180
LET 181
LGT 192
LI 185

458

Word/Symbol

LIN
LINE

LINEINPUT

LINK
LINPUT
LIS
LIST
LLIST
LN

LOAD
LoC
LOCATE
LOF

LOG
LOGE
LOG1®
LPRINT
LSET

LT

M.

MAN
MARK
MAT CON
MAT IDN
MAT INPUT
MAT INV
MAT PRINT
MAT READ

Test Runs
Page(s) Pass Fail

182

Notes

442

184

427,436

184

185

185

187

190

189,446

449

431
449

190

190

192

194

448

195

225

196

436

197

199

201
203

205

208

459

Word/Symbol

MAT TRN
MAT ZER
MAT =
MAT+
MAT -
MAT *
MAX
MEM
MERGE
MID
MID%
MIN
MKD%
MKI%
MKS%
MOD
MONITOR
MOTOR
MPY
MTPACK
N

NE

NEW
NE X
NEXT
NOFLOW
NORMAL
NOT

Test Runs
Page(s) Pass Fail

210

Notes

212

214

216

218

220

223

225

25
226

226

228

448

448

448

230

446

442

436

436

232,233

231,232
232

233

233

235

236

237

460

Word/Symbol
NOTE
NOTRACE
NUM

NUM$

OFF

OLD

ON ERR GOTO
OM ERROR GOTO
ON-G .
ON-GOSUB
ON-GOS.,
ON-GOT
ON-GOTO
OPEN
CPRTION

OR

aguT

P,

P.A,
PADDLE
PAGE

PAINT
PAUSE
PCLEAR
PCLS

PCOPRPY

PDL

PEEK

Page(s) Pass Fail

431
239
240
242
436
427,436
243
243
247
245
245
247
247
446
250
251
257
272
277
431
436
442
255
442
442
443
259
260

Test Runs

Notes

461

Word/Symbol
PI

PIN

PLAY
PLOT
PMODE
POINT
POINTER
POKE
POLL

POP

POS
POSITION
PPOINT
PRECISION
PREBET
PRI
PRINT
PRINT AT
PRINT USING
PRINT @
PSET

PTR
PTRIG
PUT

PUT#

R

RAD

Test Runs
Page(s) Pass Fail

262

Notes

263

443

264

443

265,431

436

266

436

267

269

431

444

271

444

272

272

277

278

277,436

444

427

431

431

448

298,303

308

285

462

Word/Symbol
RADIAN

RAN
RANDOM
RANDOMIZE
RBYTE
RDRAKW
REA
REA.
READ
RECALL
REM
REMARK
REN
RENAME
RENUM
RENUMBER
REP
REPEATS
RES
RESET
REST.
RESTORE
RESUME
RET
RET.
RETURN
RIGHT
RIGHTS

Page(s) Pass Fail

285
287
287
287
436
436
289
289
289
291
293
293
294
445
294
294,445
436
297
299
298
299
299,448
301
303
303
303
304
304

Test Runs

Notes

463

Test Runs

Word/Symbol Page(s) Pass Fail Notes
RMOVE 436
RND 305
ROTATE 436
RSET 448
rRU 308
RUN 308
S, 314,327,
329
SAVE 309,446
SCALE 436
S5CR 310
SCRATCH 310,448
SCREEN 444
S5CRN 312
S5ECRET 436
5EG 313
SEGH% 313
SET 314,449
SETCOLOR 432
S5ETDOT 315
SGET 427
SGN 316
SHUT 427
SIN 317
SIND 317
SING 317
SINH 319
S5KIPF 322

li

464

Test Runs
Word/Symbol Page(s) Pass Fail

Notes

SLEEP 321
SNH 319
SORT 445
SOUND 432,444
SPA 323
SPACE 323
SPACES$ 323
SPC 323
SPUT 427
S0R 325
SQRT 325
ST 327
8T, 329
STATUS 433
8TE 327
STEP 327
STICK 433
5TOD 329
5TOP 329
STORE 330
5TR 331
STRIG 433
STRING 331
STRINGS 331
STR% 333
STUFF 334
5UB 43
SUBEND 43

|

465

Test Runs

Word/Symbol Page(s) Pass Fail Notes
SUM 436
SWAP 335
5YS 336
SYSTEM 336,446
T, 337,345
TAB 337
TAN 339
TAND 339
TANG 339
TANH 341
TAPPEND 343
TEXT 344
THE 345
THEN 345
TI 346
TIM 346
TIME 346
TIMER 444
TIME$ 348
TI% 348
TLIST 437
TLOAD 349
TNH 341
TOP 350
TRACE 351
TRACE OFF 352
TRACE ON 353
TRAP 433

466

Test Runs
Word/Symbol Page(s) Pass Fail

Notes

TROFF 354
TRON 355
TSAVE 356
TYP 449
TYPE 449
UNTIL 357
USER 358
USR 358
VAL 359
YARPTR 361
YIEWPORT 437
ULIN-AT 363
UTAB 365
WATIT 366
WBYTE 437
WEAYVE 25
WHILE 369
WINDOMW 437
WRITE 447
ADRAMW 371
RI0 433
HOR 372
ARA 372
" (quote) 374
+ (comma) 376
+ (period) 379
§ (semicolon) 380
: (colon) 382,426

467

Test Runs

Word/Symbol Page(s) Pass Fail Notes
() (parentheses) 384
[1 (brackets) 384

@ (AT symbol) 386,426
(number sign) 387,426

% (string) 391,425

| (exclamation) 394,426

% (per cent) 396,426

7 (question) 398,426

\ (backslash) 399,426

#% (double 400
asterisk)

+ (plus) 401

- (minus/hyphen) 403

/ (slash) 404

* (asterisk) 405

= (equal) 407

¢ (up-arrow) 409

~ (carat) 409

% (less than) 411

* (greater than) 413

% » (not equal) 415

+ = (less than 417
or equal)

»= (greater than 419
or equal)

’ (apostrophe) 421,426

& (ampersand) 422,426

3 (sol-Swedish 424

string symbol)

468

NOTES

469

Appendix A

ASCIl to DECIMAL Conversion Table

In order to translate between binary computer numbers and English, a code
number is set aside to stand for letters, decimal numbers and other charac-
ters. They are called “The ASCII Set”. ASCII stands for the American
Standard Code for Information Interchange.

Refer to the ASCII table as you read the following:

1. The characters represented by numbers between 32 and 90 are fairly
uniform from computer to computer — but not 100%.

2. The numbers from 97 to 122 are also reasonably uniform, but since they
are lower case, and many terminals print only upper case characters,
they serve simply as duplicates of other numbers.

3. The numbers from 0 to 31 used to be uniform in the old days of slow and
clunking printing terminals. With the advent of video terminals and
different peripheral devices, this uniformity has pretty well disappeared.

4. From 123 to 255 is wide open.

Use this simple BASIC program to discover what character your computer
assigns to each decimal code number. The delay loop in lines 40 and 50
gives you a little time to view them on a video screen. You may wish to
change the numbers to match the speed of your computer.

10 FORN =0 T0 255

20 PRINT "ASCII NUMBER "N,
3@ PRINT CHR%(N)

42 FORD = 1 TO 500

SO NEXT D

6O NEXT N

|

470

ASCIl Number Code Chart (in decimal)

Decimal
Code

ASCII
Character

0-31 (see page 470)

Decimal
Code

ASCII
Character

79

(@)

32

space

80

33

81

34

”

82

35

83

36

#
$

84

37

%

85

38

&

86

39

87

40

88

41

89

42

90

N| =< X S < i w»| B[

43

+ | ®|—l~

91

44

92

45

93

46

94

47

95

48

96

49

97

50

98

51

99

52

100

53

101

54

102

55

103

56

104

57

ol ul slwlop— o] ~]-

105

58

106

59

107

60

108

61

109

62

110

63

111

64

112

65

113

66

114

67

115

68

116

69

117

70

118

71

119

72

120

73

121

74

122

75

123

76

124

77

125

ook Armin e ix|gleigs]lr|wmolo|o |8 |B|—|F|—|~]|=a|~wlo|a|lci g

78

Z| 2| PR | =l @ | Ol O w3 | @] 2| VI AL |-

126

471

NOTES

472

NOTES

|

473

NOTES

474

NOTES

475

NOTES

476

.- - Dealer Inqumes Welcomed ; .
- Educattanal Dzscounts Available for Quanttty Purchases : -
- Wrzte for Detads . .

. Intemanonal Standard Book Number 0- 932760-05 8 -
lerary of Congress Cataiog Card Number 81 67479 ‘; - -

$19.95

IFYOU REALLY WANT TO UNDERSTAND BASIC...
~ THIS BEST SELLING BOOK CAN HELP YOU:!

ABOUT THE BOOK

In “Ground Rules” at the front of this
book, author Lien succinctly states his
overriding purpose: to assemble the most
complete collection of BASIC words ever,
and then describe strategies programmers
can use to convert the many different
“dialects” to their computers. The result is
a working handbook that will vastly expand
your computer's capabilities.

“THE BASIC HANDBOOK" was first
published in 1978 as THE definitive ref-
erence, explaining all important BASIC
words used by computer makers world-
wide. This big new Second Edition intro-
duces 238 ADDITIONAL words, bringing
the total to almost 500. Virtually every sig-
nificant BASIC word used by virtually

every BASIC-speaking computer in the
world is explained.

But author Lien, whose working dictum
s “Make things easy!”, goes one step fur-
ther. He attacks the problem of incom-
patibility by carefully outlining strategies
by which programs can be converted to
other computers — and does it without
getting bogged down in futile arguments
about one computer’'s advantages over
another. He shows how ALL computers’
capabilities can be enhanced by a solid
grasp of BASIC.

Whether you operate a “bottom-of-the-
line”” pocket micro or a megabyte main-
frame, this book will be an invaluable aid
to you.

ABOUT THE AUTHOR

Author David Lien is a Renaissance
man of the Computer Age. Notonlyishe a
programmer and a widely acclaimed tech-
nical author, but an educator and working
engineer as well. His many years teaching
electronics/math/computer science, his
work in the applied technologies of aero-
space and broadcast engineering, and his
experience as an author have all helped
hone his ability to take the hocus-pocus
jargon out of technical topics. In this book,
he uses that rare talent to reduce the

BASIC computer language to its simplest
terms, making it accessible to everyone.

With well over a half-million book sales
to his credit, author David Lien is one of
the world’s leading technical authors. In
addition to THE BASIC HANDBOOK, he
wrote Radio Shack's LEVEL | USER’S
MANUAL — by far the best-selling com-
puter book — plus the LEARNER'S
MANUALS for the Epson MX Series
Printers, and other CompuSoft Publish-
iIng Books.

COMPUSOFT® PUBLISHING
A Division of CompuSoft,® Inc.
San Diego, California 92119 USA

International Standard Book Number #0-932760-05-8
Library of Congress Catalog Number 81-67479

Printed in USA

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf
	207.pdf
	208.pdf
	209.pdf
	210.pdf
	211.pdf
	212.pdf
	213.pdf
	214.pdf
	215.pdf
	216.pdf
	217.pdf
	218.pdf
	219.pdf
	220.pdf
	221.pdf
	222.pdf
	223.pdf
	224.pdf
	225.pdf
	226.pdf
	227.pdf
	228.pdf
	229.pdf
	230.pdf
	231.pdf
	232.pdf
	233.pdf
	234.pdf
	235.pdf
	236.pdf
	237.pdf
	238.pdf
	239.pdf
	240.pdf
	241.pdf
	242.pdf
	243.pdf
	244.pdf
	245.pdf
	246.pdf
	247.pdf
	248.pdf
	249.pdf
	250.pdf
	251.pdf
	252.pdf
	253.pdf
	254.pdf
	255.pdf
	256.pdf
	257.pdf
	258.pdf
	259.pdf
	260.pdf
	261.pdf
	262.pdf
	263.pdf
	264.pdf
	265.pdf
	266.pdf
	267.pdf
	268.pdf
	269.pdf
	270.pdf
	271.pdf
	272.pdf
	273.pdf
	274.pdf
	275.pdf
	276.pdf
	277.pdf
	278.pdf
	279.pdf
	280.pdf
	281.pdf
	282.pdf
	283.pdf
	284.pdf
	285.pdf
	286.pdf
	287.pdf
	288.pdf
	289.pdf
	290.pdf
	291.pdf
	292.pdf
	293.pdf
	294.pdf
	295.pdf
	296.pdf
	297.pdf
	298.pdf
	299.pdf
	300.pdf
	301.pdf
	302.pdf
	303.pdf
	304.pdf
	305.pdf
	306.pdf
	307.pdf
	308.pdf
	309.pdf
	310.pdf
	311.pdf
	312.pdf
	313.pdf
	314.pdf
	315.pdf
	316.pdf
	317.pdf
	318.pdf
	319.pdf
	320.pdf
	321.pdf
	322.pdf
	323.pdf
	324.pdf
	325.pdf
	326.pdf
	327.pdf
	328.pdf
	329.pdf
	330.pdf
	331.pdf
	332.pdf
	333.pdf
	334.pdf
	335.pdf
	336.pdf
	337.pdf
	338.pdf
	339.pdf
	340.pdf
	341.pdf
	342.pdf
	343.pdf
	344.pdf
	345.pdf
	346.pdf
	347.pdf
	348.pdf
	349.pdf
	350.pdf
	351.pdf
	352.pdf
	353.pdf
	354.pdf
	355.pdf
	356.pdf
	357.pdf
	358.pdf
	359.pdf
	360.pdf
	361.pdf
	362.pdf
	363.pdf
	364.pdf
	365.pdf
	366.pdf
	367.pdf
	368.pdf
	369.pdf
	370.pdf
	371.pdf
	372.pdf
	373.pdf
	374.pdf
	375.pdf
	376.pdf
	377.pdf
	378.pdf
	379.pdf
	380.pdf
	381.pdf
	382.pdf
	383.pdf
	384.pdf
	385.pdf
	386.pdf
	387.pdf
	388.pdf
	389.pdf
	390.pdf
	391.pdf
	392.pdf
	393.pdf
	394.pdf
	395.pdf
	396.pdf
	397.pdf
	398.pdf
	399.pdf
	400.pdf
	401.pdf
	402.pdf
	403.pdf
	404.pdf
	405.pdf
	406.pdf
	407.pdf
	408.pdf
	409.pdf
	410.pdf
	411.pdf
	412.pdf
	413.pdf
	414.pdf
	415.pdf
	416.pdf
	417.pdf
	418.pdf
	419.pdf
	420.pdf
	421.pdf
	422.pdf
	423.pdf
	424.pdf
	425.pdf
	426.pdf
	427.pdf
	428.pdf
	429.pdf
	430.pdf
	431.pdf
	432.pdf
	433.pdf
	434.pdf
	435.pdf
	436.pdf
	437.pdf
	438.pdf
	439.pdf
	440.pdf
	441.pdf
	442.pdf
	443.pdf
	444.pdf
	445.pdf
	446.pdf
	447.pdf
	448.pdf
	449.pdf
	450.pdf
	451.pdf
	452.pdf
	453.pdf
	454.pdf
	455.pdf
	456.pdf
	457.pdf
	458.pdf
	459.pdf
	460.pdf
	461.pdf
	462.pdf
	463.pdf
	464.pdf
	465.pdf
	466.pdf
	467.pdf
	468.pdf
	469.pdf
	470.pdf
	471.pdf
	472.pdf
	473.pdf
	474.pdf
	475.pdf
	476.pdf
	477.pdf
	478.pdf
	479.pdf

