TRS-80 INFORMATION SERIES - VOLUME IV

- Lewis Rosenfelder

i |

It g
i L e
i

BASIC
Faster & Better

& Other Mysteries

Written by Lewis Rosenfelder
Edited by Jim Perry

Technical Editor David Moore

Graphics by John Teal

Cover Design by Harvard Pennington

Copyright © 1981 Lewis Rosenfelder
ISBN 0936200 03 0

First Edition
Fourth Printing
June 1982

All rights reserved. No Part of this book may be reproduced by any

. . - . : Published b
means without the express written permission of the publisher. HoAsed by

Example programs are for personal use only. Every reasonable effort 1JG Inc
has been made to ensure accuracy throughout this book, but neither 1953 West
the author or publisher can assume responsibility for any errors or 11th Street
omissions. No liability is assumed for any direct, or indirect, Upland,CA
damages resulting from the use of information contained herein. 4 811768-65(878%)

4 BASIC Faster & Better

Contents

Acknowledgements
Preface

Introduction

What Is Faster And Better?
Efficiency

Execution Speed
Programming Time
Function

Workability
Reliability
Recoverability

Ease of Operation
Ease of Training
Capacity

Portability
Compatibility
Maintainability

Ease of Modification
Understandability
Documentation
Attractiveness

How to Use This Book

Chapter 1

Subroutines, ‘Handlers’, & ‘Shells’
Subroutines

Handlers

Shell Programs

Programming Standards

Chapter 2

Super-Power Function Calls
Facts Ab(%g;t Function Calls
] ocumentation

to Functions

L R 4 Chapter 3
USR Routing] ‘or Speed & Flexibility
Writing USR Routines with an Editor/Assembler

Load & Execute USR Routines from Disk
Poking USR Routines into Memory

Saving USR Routines to Disk

Magic Strings

Loading USR Subroutine into Strings

Magic Arrays

Loading & Executing ‘Magic Arrays’

Writing ‘Magic Array’ USR Routines
Putting ‘Magic Arrays’ in Random Disk Files
Passing USR Arguments with Control Arrays
Multiple-Argument Handler for USR Calls

Chapter 4

Magic Memory Techniques

How Much Memory Do You Really Have?
Peek & Poke Above Byte 32767

Adding & Subtracting Integer Addresses
Peeking 2 Bytes

Poking a 2-Byte Integer into Memory

How to Change ‘Memory Size’ from BASIC
Reserving Memory Below Program Text
Partially Restore Data Statements

The Active Variable Analyzer

Active Variable Analyzer Comments
The ‘Move-Data’ Magic Array

A Deluxe Move-Data USR Subroutine
Passing Variables Between Programs

Chapter 5

BASIC Overlays

The Ultimate Memory Saver
Bottom-Loaded Overlay Theory
Top-Loaded Overlay Theory

How to Use Bottom-Loaded Overlays
Program Storage — Memory & Disk
How To Use Top-Loaded Overlays
Top-Loaded Overlay Demo

How to Use Bottom-Loaded Overlays

A Bottom-Loaded Overlay Demo

Chapter 6

Number Crunchers & Munchers
Remainder Function Calls

Using ‘ANDNOT" to Find Remainders
Rounding Functions

Rounding Down

Rounding Up

Saving Space With 1-Byte Numbers
Saving Space With 2-Byte Numbers
Saving Space With Unsigned Integers
Saving Space With Signed Integers
High-Speed ‘Print Using’ Functions
High Speed Integer Formatting

Special Purpose ‘Print Using’ Functions
Instantly Sum Arrays

Instantly Sum Double Precision Arrays
Summing Partial Arrays

Decimal to Hex Conversions

Base Conversion Routine

Chapter 7

Using Strings in New Ways
Peeks, Pokes & Strings

‘Pointing’ a String

Strip Trailing Blanks from a String
Padding & Centering Strings

Last Name First Function

Strip Blanks With USR Calls
Using Strings to Store Data

Code Lookup With Strings

Easy Input With Strings

Substring Replacement Subroutine
String Compression

Storing 3 Bytes in 2

Upper Case Conversions

Chapter 8

Date & Time Manipulation
The 8-Byte Date

A Simple Date Validity Check
The 3-Byte Date

Storing a Date in 2 Bytes
Find a Day of a Year
Simplified Date Computing
Days Between Dates

Day of the Week

Back to 8-Byte Dates

Going Fiscal

1901 - 2099 Perpetual Calendar
Timing Benchmark Tests
Time Clock Math

Chapter 9

Bit Manipulation
Setting a Bit of a Byte
A Bit on Bit Testing
Useful Bit Tests
Combination Bit Tests
Brisk Bit Finding

Chapter 10

Arrays, Searches & Sorts

Peeks & Pokes for BASIC Arrays

Instantly Clear an Array

Insert & Delete Array Elements — Instantly
Super String-Array Searcher

Speedy String-Array Sort

Making Numeric Data Sortable

Sorting With Assorted Keys

Chapter 11

More — Arrays, Searches & Sorts
‘Pointing’ a String Array

Save Kilobytes for Large Arrays

A High-Speed Memory Sort
Interactive Sorting by Insertion
High-Speed Memory Search

Chapter 12

Keyboard & Video Trickery
Video Display = Visible Memory
Video Display POKEs

Video Display PEEKSs

Pointing Strings at the Screen
LPRINT the Video Display
Storing Displays on Disk

Reading a Display from Disk
LSET & RSET the Screen
Pointing Disk Buffers to the Screen
Video Displays to Random Files
The Single-Key Subroutine

Quick, & Easy, Menu Routines
Finding the Cursor Position
Flashing Cursors

Locking Out the ‘BREAK’ Key
Repeating Keys & Combinations
Free-Form Video Displays
Computing Video Display Positions
An Easy Way to Plan Video Displays
Special Keys & Their Codes

Video Display Planning Sheets
String Graphics

Alphanumeric Inkey Routine
Alphanumeric Inkey Modifications
Numeric Inkey Subroutine
Numeric Inkey Modifications
Formatted Inkey Subroutine
Formatted Inkey Modifications

A Dollar Inkey Subroutine

Dollar Inkey Modifications

Poking Graphics Into Program Text
Store & Recall Screens - Instantly
Swapping Screens

Chapter 13

Data Entry Made Easy
Horizontal I/O Subroutine
Scrolling a Split Screen
The Up-Down Scroller
Video Entry To Memory
Video Entry Demo

115
115
115
116
117
118
120

124
124
124
125
126
130
134
137
139

142
142
142
145
150
155
157
165
165
165
165

168
169
169
170
170
171
171
172
173
174
174
175
175
176
178
179
180
180
180
181
183
184
186
187
187
188
191
192
193
195
196
196
196
199
200
203
211

Contents 5

Unscrolled Video Handler
Using the Unscrolled Handler
Specifying Parameters
Prompting Subroutines
Validation Subroutines

Video Entry Handler Commands
The ‘Forms’ Command

The ‘New’ Command

Write to Disk Fields
Redisplay Fields Command
The ‘Change’ Command
Handling More Than 12 Fields
Required Program Lines

Chapter 14

Useful Utilities

A BASIC Program ‘Pretty-Printer’
How to Use DOCLIST/BAS
Program Merge & Renumber Utility
How to Use MERGEPRO/BAS

A DOS Address Finder

Chapter 15

Model 2 Modifications

Peek & Poke for the Model 2

Video Display Printing Guidelines
Special Character Conversions
Model 2 Supervisor Calls & BASIC
Preventing the Screen from Scrolling
Turning Off the Flashing Cursor

Video Display Save & Recall
Pointing Strings to the Video
Keeping a Video Display in Memory
Model 2 Modification Notes

Chapter 16
The Faster & Better Disks

Appendix 1
Decimal to Hexadecimal Conversion

Appendix 2
USR Routine Pointer Addresses

Appendix 3
Disk Buffer Memory Locations

Appendix 4
Disk DCB Addresses

Appendix 5
Divisors of 256

Appendix 6
Divisors of 255

Appendix 7
TRS-80 Graphics Characters

Appendix 8
Functions Index

Appendix 9
Major Subroutines

Appendix 10
USR Routine Index

Appendix 11
USR Routine Merge Library

Index

219
219
220
220
221
221
222
223
231
231
232
234
235
235
242
243
243
245
246
247
248
248
248

248

249
249
250

255
255

264
264

272
272

273
273

274
274

275
275

276
276

277
277

278
278

280
280

282
282

283
283

280

6 Acknowledgements

Acknowledgements

This book was produced with the aid of several Radio Shack TRS-80’s (Model
1’s, 2’s, and 3’s); an LN W-80 computer; a LOBO expansion interface; a mixture of
35-, 40-, and 77-track disk drives; an NEC Spinterm printer; an Epson MX-80
printer; the Electric Pencil 2.0; Scripsit; a special type translation program; an
Autologic Micro 5 typesetter (at Pacesetting Services, Anaheim, CA.); LDOS;
NEWDOS+; and NEWDOS-80.

Most books take a year or more to change from manuscript into final book form.
The book you are now reading took less than 3 months. Part of the reason is the
technology used (typesetting directly from the original files), but the main reason
is the cooperation, and hard work, of several special people. I would like them all
to stand, and take a bow:

Lewis Rosenfelder (the author) - for having the skill, perception, and
perserverance, needed to research and write this book in the first place.

David Knoch (of Pacesetting Services) — for literally giving me the keys to his
business, and letting me ‘play’ with a hundred-thousand-dollars worth of
typesetting equipment.

David Moore (technical editor) — for only making the same mistakes once, he
learns fast! Denny Steele - for the main translation software. Mike Wagner - for
the machine language interface. Kip Pennington - for making coffee at 7 am, and
volunteering for everything.

Harv Pennington - for letting us get on with the job. Bruce - for keeping the
ship afloat. And, by no means least, Al Krug - for keeping Lewis afloat!

Thanks to all of you,

Jim Perry,
Editor

NEWDOS and NEWDOS+ are trademarks of Apparat Inc.Radio Shack and
TRS-80 are registered trademarks of the Tandy Corporation. BASIC is a
trademark of the trustees of Dartmouth College.

Preface 7

Preface

'The TRS-80 is a powerful computer . . . I've had mine for more than three years
now, and each day I become more convinced of this.

You’d think that with a low-cost, mass-produced, computer you’d soon become
frustrated by its limitations. I've found that the opposite is true. Each day I
become more and more impressed with its capabilities.

Learning to program a computer is like learning to play the piano. It’s easy to
play simple melodies from the very first day, but you can spend a lifetime
improving your technique and expanding your repertoire.

I started out with the TRS-80, probably much the same way you did, with this
simple program . . .

10 PRINT"HELLO THERE. I AM YOUR NEW TRS-80 MICROCOMPUTER."®

From that point to this day, I’ve spent almost every waking hour in front of my
computer, or at least thinking about ways to make it perform better and faster. 1
even dream about GOSUBS, FOR-NEXT loops, PEEKS and POKES!

I remember the first time I ever saw a TRS-80, back in December of 1978. 1
walked into a Radio Shack and asked for a demo. I may not have said it, but my
original attitude was: “You call that a computer? Huh!”.

A few days later I gathered up my credit cards and bought one. I wanted to get
into the software business, and I figured that, whether or not the TRS-80 was any
good, Radio Shack would sell thousands of them, and there just might be an
opportunity. As it turned out, the TRS-80 is a fantastic computer, and Radio
Shack has sold hundreds of thousands of them!

My background was as a mini-computer and accounting machine salesman for
one of the largest and oldest computer manufacturers. So I knew accounting
applications and a little COBOL and assembly language. Having knocked on
hundreds of doors trying to sell computers, I had a good understanding of what
small business owners need and want. Having been involved in the installation
and operator training for dozens of computer systems, I was well aware of the
‘real-world’ design requirements in making computer systems ‘water-tight’ and
operator-oriented. In summary, I thought I was going to make a fortune selling
TRS-80 programs.

8 BASIC Faster & Better

Before long, I had developed several Level I programs that did some cash flow
planning, inventory, and manufacturing applications, and I took photos of the
video display. Irealized, that without disk drives and a line printer, the programs
wouldn’t be practical for use in business, but I showed the pictures to a few
business owners, and the Radio Shack manager that sold me my computer.
Within a few weeks, I had several orders for programs, which were to be delivered
a few weeks after the disk drives and line printer became available.

Little did I know that Level II BASIC and disk programming would be a whole
new ball game! By the time I got my disk drives and printer I was buried in orders,
and I had grossly underestimated the time it would take to program and deliver
the applications. Fortunately, thanks to the patience of my original customers, I
was able to develop and deliver the programs.

This book is the result of the efforts I’'ve made to make my BASIC programs run
better and faster. Every time I'd have to stop and figure out a routine or
technique, I'd put it in my programming notebook. Many times, I’'ve had to throw
out aroutine and come up with an improvement, because the real test was whether
or not it would work successfully on a day-to-day basis at a customer site.

You won’t find any trivia here. Each routine and technique solves one or more
specific problems that you are likely to encounter when programming the TRS-80.
Every thing we’ll discuss is pragmatic, with the goal of making the computer do
what you want it to do, with the least programming effort.

You won’t find any ‘pretty-printed’ subroutines or programs in this book. Each
routine is packed so as to require the smallest amount of memory overhead in your
program. Kach routine is shown in 64-character lines, as it will appear on your
video display, to simplify the entry into your computer. For standard subroutines,
performance is the name of the game, and that’s the approach this book takes.

The subroutines and techniques in this book don’t attempt to be ‘all things to
all people’. I suppose it would be possible to write a sorting subroutine, or disk
file-handling subroutine, that could handle every possible operation you might
want to perform. But why sacrifice execution speed? Why waste the memory?
Instead, this book gives you relatively flexible routines, with the documentation
that will allow you to modify them as your application requires.

I hope you’ll find this book as valuable to you as it is to me. I use it daily as a
reference in my programming work. Though some of the information can be found
elsewhere, this book gives you a handy ‘one-source’ reference. And, now that these
routines and techniques are explained in book format, my documentation efforts
for any system I write are greatly simplified. I can now refer anyone who reads one
of my program listings back to this book, instead of filling up the program with
memory-wasting remarks. If you adopt the same techniques and standards, you
too can save a lot of time on documentation. You will be free to concentrate on the
logic of the application, rather than the specific techniques required to make the
computer perform better and faster!

Lewtis Rosenfelder
July 1981

Introduction 9

What Is Faster And Better?

If we could define ‘faster’ and ‘better’, in a way that would apply to all
programming problems, it would be a much simpler matter to design programs.
Programming would become less of an art, and more of a science. It would be a
simple matter of starting at point ‘A’ and working to point ‘B’.

But a large part of our programming problem is deciding exactly what point ‘B’ is.
In programming and system design we are working in a world of trade-offs. To
make a system better in one way we often have to make it not quite as good in
another way. We must balance our limited resources to arrive at the best overall
solution.

Let’s talk about some of the trade-offs we must work with. Each can be
maximized only at the expense of one or more other considerations. Every
programming technique in your bag-of-tricks has its own advantages and
disadvantages. If you can decide on the ‘mix’ that is best for your application
you've cleared away one of the main roadblocks to developing your system.

Efficiency

How economically does the program use limited disk and memory space? We
can save disk space through data compression at the expense of memory space,
execution time, and compatibility. We can conserve memory space at the expense
of execution speed:

Execution Speed

How fast is it overall? How fast is it in those operations that are most critical?
How fast and responsive is it for operator-paced operations? We can often make
one operation faster by making another operation slower. We can often make a
system faster at the expense of reliability or portability.

Programming Time

How long will it take to develop? Can deadlines be met? Given enough time we
can improve on many aspects of performance, but nearly every other performance
consideration is achieved at the expense of programming time.

Function

Does it do the job intended? By limiting the project to only certain parts of the
overall problem we can save on programming time. By doing some things
manually we can improve on computer execution speed.

10 BASIC Faster & Better

Workability

Does it do the job in a way that is practical and worthwhile to the user? We can
maximize the functions performed by the computer, but by doing so, we often
sacrifice workability.

Reliability

Is it vulnerable to operator errors or equipment malfunctions? Is it
‘crash-worthy’? Is it bug free? We can improve on reliability at the expense of
programming time, execution speed and efficiency.

Recoverability

How easily can the results of operator errors or equipment malfunctions be
overcome? We can improve on recoverability at the expense of function,
workability, design and programming time. Or, we can improve on recoverability
with special utility programs that reconstruct data that has been lost. We can live
more dangerously in terms of reliability if the system is easily recoverable.

Ease Of Operation

Is it ‘operator-oriented’? Are keystrokes minimized? Are operator entries
consistent so that it can be run ‘instinctively’? We can usually make a system easy
to operate at the expense of programming and design time, and memory efficiency.

Ease Of Training

How easy is it to learn for someone who is new to the system? How good are the
operator prompting messages? How simple is the overall system? We can make
a system easier to learn at the expense of memory usage, programming and
documentation time. Too much operator prompting can ‘get in the way’ of an
experienced operator, sacrificing ease of operation.

Capacity
How much data can it handle? Programming a system to handle a small amount
of data in memory can be a simple matter. For larger amounts of data we get into

the complexities of disk storage. To allow for capacity beyond that of a single disk
adds even more complexity.

Portability

How easily can it be transfered for use on a different computer system? We can
maximize portability at the expense of efficiency and execution speed. We can
make a system easier to transfer by ignoring many of the capabilities and
advantages that are unique to the system we are using.

Compatibility

How well does it tie-in with other systems the user might have? We can make
the system perform more functions and work faster if we don’t have to allow for
compatibility with other systems.

Introduction 11

Maintainability

If something goes wrong how easy will it be to find the problem and correct it?
We can improve on maintainability at the expense of function and efficiency. By
conforming to programming standards we make the system more maintainable,
but we sometimes sacrifice the ability to use procedures that are best suited to the
application.

Ease Of Modification

How easy will it be to modify the system to perform other functions that were
not originally considered in the design? We can usually make it easier to modify
with more programming and design time.

Understandability

How easily can a programmer other than the one who wrote the program
understand the system? We can improve on understandability with extra
programming and design time. By sacrificing some techniques that make the
system more efficient or faster we can make it more understandable to others.

Documentation

How well are the operating procedures, capabilities, and limitations of the
system explained? We can always improve on documentation by spending more
time. Internal documentation, by inserting remarks in the body of the program
text, can be achieved at the expense of execution speed and memory efficiency.

Attractiveness

How well designed are the video displays and printouts? Does it ‘sell’ itself to
those who must use it? We can make a program look good with more programming
time and slower execution speed.

With the ‘tools’, presented in this book, you can maximize the performance of
your system, according to the goals you have defined for the project at hand. Every
function and program has been carefully designed to achieve one or more specific
purposes. Most of the routines provide exceptional speed. Others operate slower
than alternative techniques, but can provide a great savings in programming time.
It is up to you to select your programming tools wisely and to test them for your
specific application.

How To Use This Book

This book can be valuable to you whether you’re a beginner, with only a few
weeks experience, or an expert programmer with many years of experience.

If you are new to programming, or the TRS-80 is new to you, yotr'll need first to
get familiar with the capabilities and peculiarities of the TRS-80 and the BASIC
programming language. The best way is to work through the examples shown in
your operating manuals, and to modify them and experiment with them. Then
you can give yourself simple programming challenges, and expand and modify
your programs. There is no better teacher for programming than your own

12 BASIC Faster & Better

computer! It’ll tell you when you’ve made an error and you can try again and again.
When you start looking at the examples in this book, you’ll get ideas on how to do
things differently, (and, hopefully, better).

If you are new to assembly language programming, or if you have not been
exposed to it at all, don’t let the assembler listings in this book scare you off! Just
gloss over them. You don’t need to know Z-80 assembly language, and you don’t
need to own an editor/assembler program to use any of the routines in this book.
If you want to learn assembly language for the TRS-80, I recommend T'RS-80
Assembly Language Programming by Bill Barden. You can pick it up at Radio
Shack stores. Then, after you get a feel for assembly language,.you can start
studying and modifying the assembly language subroutines shown here.

I’ve made no attempt in this book to duplicate anything that can be found in
your instruction manuals, except where some amplification or clarification, or
summarization for your convenience is required.

The first 4 chapters of this book cover programming techniques that are
important to the implementation of the routines found in the remainder of the
book. They discuss subroutines, function calls, USR routines, and techniques for
managing the memory of your computer. Again, even if you are an experienced
programmer, be sure to go through these chapters first. I guarantee you’ll find new
ideas and techniques that you’ve never seen published anywhere else!

Chapters 5 through 15 contain hundreds of ideas, tricks, subroutines, function
calls, and USR routines that can be implemented in your programs. It’s
unavoidable that when you use them, you will need to skip around, because video
routines sometimes interact with disk routines, printer routines with disk
routines, and so forth. So, before you begin using any of them, be sure to at least
‘skim’ through the whole book so you’ll know what’s included.

To get the maximum usefulness from this book, you’ll want to create a disk
library of the subroutines, functions, test programs, and utilities. That way you
can merge what you need into any program that you might be writing.

Chapter 1 13

Subroutines, Handlers,
And Shell Programs

The BASIC language, as you’ll find it on the TRS-80 computer, has around 150
commands and built-in functions. Have you ever considered which commands
and capabilities are the most important to you? My answer to this might suprise
you, but to me, MERGE and DELETE are, without a doubt, the most powerful
and important commands!

I wouldn’t have said that a few years ago, but, now that I’ve built up a library of
programs, subroutines, and functions, I almost never start a program from scratch.
You could take away the NEW command, (which clears out memory so you can
begin writing a new program), and I wouldn’t miss it.

A few years back I was in a computer store having a discussion with a salesman.
He thought it was foolish to be in the programming business because “in a couple
of years, every program will have been written!” Of course, that statement has
turned out to be quite false, but from a programming productivity standpoint, we
who program computers would do well to take the attitude that everything has
already been written. Our job is to rearrange, modify, combine, insert, and delete
so0 as to come up with programs that can perform any one of an endless range of
useful applications.

Subroutines

It doesn’t take long to realize that the subroutine capability of BASIC can save
you countless hours of work. The GOSUB command lets your program branch to
another line, execute some logic, and then RETURN to resume execution with the
next command following the GOSUB. Let’s consider the advantages of a liberal
use of subroutines:

® Subroutinessave memory. Any significant operation that has to be
performed more than once in your program only needs to appear once as
a subroutine.

® Subroutines save programming time. With subroutines, you are
not continually retyping the same logic over and over again.

® Subroutines provide flexibility. Simple modifications to a
program having a liberal use of subroutines can make it perform new
functions that were never considered when the program was originally
written.

® Subroutines simplify testing and debugging. They let you break
your program down to logical modules. Once you’ve completely tested a
subroutine, you can forget about it.

14 BASIC Faster & Better

® Subroutines free you. They allow you to concentrate on the overall
logic and design of the application. You can forget about the details and
complexities of those operations you perform again and again.

® Subroutines increase understanding. They make programs more
readable and understandable. The details and complexities of common
operations don’t interrupt the ‘train-of-thought’ in your main program.
Even if a routine is used only once in a program, the benefits of
readability can sometimes make it worthwhile to design that routine as a
subroutine.

® Subroutines ease conversions. They can make your program more
easily convertible to other computers and operating systems. For
example, if a new computer system differs only in its disk handling
instructions you simply modify your disk handling subroutines. The rest
of your program can remain unchanged.

® Subroutines can be libraries. You can create a library of
subroutines on disk, and as you need them, merge them into the program
you are writing.

This book gives you an extensive library of subroutines that can be used as you
need them. Nearly all of them are shown with specific line numbers ranging from
40000 to 59999. You’ll find no overlapping of subroutine line numbers shown in
this book, except in a few cases where two subroutines perform the same function
in a different way, and there would be no reason to have them both in the same
program.

If you wish, you can change the line numbers and variables used by any of the
standard subroutines in this book. But be aware that by doing so, you’ll be missing
out on one of the main benefits that this book provides - the pre-written
documentation and detailed explanations. The line numbers and variables shown
are arbitrary, but I've found that they work well for me. I trust that you’ll find
similar success with them.

Handiers

A ‘handler’ is a group of subroutines and procedures that work together to
perform a major function within a program.

In this book, for example, we’ll be introducing a video display handler for the
simplified programming of data entry and video display inquiries.

Handlers provide all the benefits of subroutines, but they go a level above and
beyond single subroutines to provide system-wide standards for program
organization, disk file organization, and standardized operator-computer dialogs.

A handler gives you specific procedures for using a set of subroutines. To set up
a handler within a program, you simply merge the subroutines required, and

Subroutines, ‘Handlers’ & ‘Shells’ 15

modify, insert, or delete specific lines according to the instructions provided. A
handler provides a starting point for you to begin the modifications required for
any particular application. No attempt is made to make any one handler do
everything for every possible application. Handlers are designed so that they can
be modified for maximum efficiency in a particular application.

You'll find that the time-saving and standardization benefits of handlers are
enormous. Once you adopt standard handlers into your programs you’ll wonder
how you ever got along without them!

Shell Programs

A ‘shell program’ can be any program that you’ve designed to be easily modified
to perform entirely different applications.

For example, I have used a sophisticated shell program for nearly three years to
develop hundreds of different applications. My accounts receivable system has all
the handlers for menu selection, video display additions, changes, and inquiries,
transaction entry, report printing, and disk file handling. By deleting certain
routines, I've got a mailing list system. Other changes have made it into a general
ledger system, an inventory control system, an accounts payable system, and
many other specialized applications.

When considering a new application, your first question should be, ‘What other
applications that are already written have the same general structure?” When you
think about it, just a few, well-designed, shell programs can be modified to
perform almost any application, with upto a 90 percent savings in programming
time!

Programming Standards

When I started gathering the subroutines, handlers and function calls for this
book I considered changing around the line numbers and variable names to come
up with some ‘ideal’ standards. But, after further consideration, I decided to leave
the line numbers and variables unchanged — even though they are quite arbitrary.
After all, they’ve worked well for me, and they can work just as well for you.

I doubt that we’ll ever have standard line numbering and variable conventions
that everyone can agree upon. The important thing is that you adopt standards
that work for you in the types of programs you write. That way you’ll always know
where to find something in a program and you’ll always know how a specific
variable is used. I've found that standardization is tremendously valuable to me.
Though I’ve written hundreds of programs, I immediately know by memory where
to find any routine in any one of them.

One of the biggest mistakes you can make with a BASIC program is to use a
renumber utility and arbitrarily renumber all your lines in increments of 10. That,
in my opinion, is like removing all the paragraphs and chapter headings from a
book. It no longer makes any sense. You can’t see the structure and you can’t find
anything. Some people may disagree with me on this point, but I believe that line
numbers should help to indicate the structure of the program. I think of each
group of lines beginning at a multiple of 1000 as a chapter, each group of lines
beginning at a multiple of 100 as a major topic within the chapter, and each group
of lines beginning at a multiple of 10 as a paragraph.

16 BASIC Faster & Better

The following two charts give the general variable naming and line numbering
conventions that I have adopted. The specific uses of each variable and line
number are explained in the remainder of this book, but for now it will be
worthwile for you to get an overview. Iinvite you to adopt these standards, and to
modify them, or add to them, as your needs dictate.

Variable Naming

Standards All variables are pre-defined as integer, except F, which is

defined as string for disk file and video display fields. Therefore,
at the beginning of a program, "DEFINT A-z" and "DEFSTR F", can be
used, All other variables are explicitly defined within the program
text as required, using the "$", "I", and "#" symbols,

WORKING VARIABLES:

AS,A%,A!,A#
Al$-A5%,A1%-A5%, etc,
ANS

Temporary storage (very transient)
Temporary storage (less transient)
Pointed string, temporary storage

FX$,FX%,FLS$,FL% Control flags and switches
TCS$,TC%,CDS,CD% Current transaction code

COUNTERS:

X%,Y%,2% - FOR—-NEXT loops, etc.

CONSTANTS :

KD$ Current date, 8-byte format

KS$ Current date, 2-byte compressed format
KD%, KM%, KY% Current day, month, and year

CNS$S Company name

GRAPHICS CONSTANTS:

SG$ Horizontal bar, STRINGS$(63,131)
Cs Clear to end of display - CHRS$(31)
Cls Clear to end of line - CHRS$ (38)

VIDEO INPUT AND DISPLAY:

PO% Current print or input position

Al% Current input length limit

PL% Print position - start of current line
LI% First position in scrolling portion
LV% Number of lines in scrolling portion
LT% Horizontal tab position

LZ% Current input line number

LN% Highest input line number entered

LM% Limit, number of entries

F1$() Formatted screen, field storage

SEARCHES AND DISK ACCESS

KY$,FKS$
RES

- Search key
- Return string - key found.

Subroutines, ‘Handlers' & ‘Shells’ 17

LINE PRINTER

OP$ - Report Options String

TIS - Report title

PN% - Page number

H1S$ - Report heading, line 1.

H2$ - Report heading, line 2.

DISK FILES

FS$,FD$ - Disk file name

PF% - Current file number

PR% (PF%) - Current or desired physical record
PP% (PF%) - Previous physical record

LR% (PF%) - Current or desired logical record
LL% (PF$%) - Logical record length

L% (PF%,0) - LO% (PF%,6) - Current file statistics

FHS () - Field variables

USR ROUTINES

J% - Argument passed back to BASIC
Us% (), UX%() - Magic Array USR routine storage
Cs(), P%() - Control or parameter arrays

Line Numbering
Standards

Program name, copyright information, date last modified
Memory size modification, CLEAR command

DEF commands - DEFUSR's, DEFINT's, DEFSTR's, etc.

DIM commands - Array dimensioning

Constants and literals to be used in the program

@ USR routine loading

@ Function Definitions

o o0 Uloe oo WM

80 GOSUB's for opening files and other housekeeping

108 Main program menu display
1908 Operator input of menu selection., ONGOTO command,

200 Secondary menus

900 Program close-out and end logic
1900 First major routine
2000 Second major routine

iSBEﬂ Subroutines peculiar to the application

40000 Standard subroutines, keyboard, and video display
41008 Standard subroutines, general

§7ﬂﬂﬁ Standard subroutines, line printer
58000 Standard subroutines, disk file handling

18 Chapter 2

Super-Power Function Calls

Did you skip over the section in your BASIC manual that explains how to use
functions? If you’re like me, and probably thousands of others, the function call
capability just didn’t seem to be too useful. I completely ignored the function call
capability for at least the first year that I had my TRS-80.

Since then, I've discovered that functions provide just about the most useful
programming technique. But I’ll bet the DEFFN command is one of the most
under-used capabilities of BASIC. I guess the unpopularity of the function call is
because of the simplistic, and usually useless, examples that are used to illustrate
them. The typical BASIC manual gives an example that shows how to use a
function to concatenate two strings:

10 DEFFNCS$(AS$,BS) = A$ + " " 4+ BS
20 INPUT "ENTER FIRST NAME"; F$

30 INPUT "ENTER LAST NAME"; L$

40 PRINT "FULL NAME IS ";FNCSS$(FS$,LS)

When you run the sample program, the dialog looks something like this . . .

ENTER FIRST NAME?JACK
ENTER LAST NAME?JONES
FULL NAME IS JACK JONES

... to which your reaction is most likely, “Big deal!”.

But, looking at this simplistic and useless example, let’s carefully reconsider the
advantages:

® The variables used in defining the function are totally unaffected by
a use of the function call. In the example, A$ and B$ are not altered. If
A$ contains the string “ABCDEF” before using FNCS$(A$,B$), it still
contains “ABCDEF” afterwards. Because of this feature, you have total
freedom in variable name usage. You can have a whole library of function
calls that can be merged into programs when needed - without any
concern for variable names.

® The function definition can be done at any line number in the
program. Your only requirement is that the program logic must pass
through the definition at least once before the function is called. Again,
this makes it easy to create a ‘merge library’ of function calls.

USR Subroutines 19

Little-Known Facts About Function Calls

If you experiment with function calls you’ll find that they can be very flexible.
Here are some of the little-known facts you will discover:

1. You can redefine a function as often as you wish in a program. (In our
example, you could later define FNCS$(A$,B$) as B$+“,”+AS3.)

2. A function definition can refer to other functions. You can ‘nest’
functions, just as one subroutine can call another.

3. A function definition can call one or more machine language USR
subroutines.

4. A function definition can use variables from your program which don’t
have to be specified as arguments. For example, if, in an inventory
control program, LC! contains the quantity when an item was last
counted, PR! contains the quantity purchased since the last count, and
SO! contains the quantity sold since the last count, you could use
FNOH!(0) to get the on-hand quantity. Your function definition would
be:

DEFFNOH! (A%) = LC! + PR! = 50!

In this case, ‘A%’ is a dummy argument. It is not used within the function
definition.

5. A function definition must be an expression. It cannot contain any
BASIC verbs, such as PRINT or POKE.

Using Function Definitions As Documentation

Function calls can be very documentative. In this book, we’ll use A1, A2, A3, etc.
as standard variable names to specify the arguments to a function call. So, to
document the string concatenation function we used as our example, we would,
instead, define it, and document it as follows:

DEFFNCS$ (A1$,A28) = ALS$S+™ "+A2$

Our documentation, if we were to put this into a library of function calls, might
read:
FNCS$(A1$,A28) adds the string specified by argument 2 onto the
string specified by argument 1, inserting a space between them.

A remainder computation function call, FNRE#(A1#,A2#), might be
documented as follows:

FNRE#(A1#,A2#) returns the remainder of argument 1 divided by
argument 2.
Because function calls can be documentative in defining commonly used

mathematical computations or other expressions, in certain situations, you may
wish to use a function definition as a programming guide. If a computation is used

20 BASIC Faster & Better

only once within a program, you may wish to program it ‘in-line’. For example, the
remainder function, as defined in this book is:

35 DEFFNRE# (Al#,A2#)=ALl#-INT (Al#/A24#) *A2#

If you want to print the remainder of X#/Y# within a program, but you don’t
want to define it as a function, you can use the function definition as a guide. In
this way you might come up with a program line such as this:

42¢ PRINT@512,"THE REMAINDER IS ";X#-INT(X#/Y#)*X#

As you can see, we substituted X and Y into the pattern shown by FNRE#. You
can make the decision on whether to define a function or to program it in-line
based on programming convenience and memory availablity in you application.

Packing IF-THEN Logic Into Functions
Suppose you have the following programming problem:

If the integer A is between 100 and 306, B is 1.
If the integer A is between 301 and 866, B is 2.
If the integer A is greater than 806, B is 3.
Otherwise, B is 0.

You could use IF-THEN expressions to compute B based on A, but you’ll need
more than one program line. Believe it or not, the following expression takes care
of all the logic:

B%$=-(A%>=100) *~-((A%>=100) +(A%>=301) +(A%>=801))

To put it into a function, FNCB% (A%), you can use the following definition:

10 DEFFNCB% (A%) =- (A%>=100) *~((A%>=100) +(A%>=301) + (A%>=801))
Then your main-line program might say:

20 INPUTAS%
30 B%=FNCBS% (A%)

The key to this technique is that an expression using any logical operator
returns 0 if the expression is false or —1 if the expression is true. For example, if
your program contains the expression, “A% =1 > 2”, A% will equal 0. If you use
the expression, “A=1 < 2”, A% will equal —1, indicating that “1 < 2”isatrue
condition.

In the example above we determined B% by putting each possible condition
between parentheses, and manipulated the resulting —1’s or 0’s with addition and
multiplication to return the answer.

With a little creativity and experimentation, you can do unbelievable things
with function calls and expressions. And once you’ve defined and tested the
function, it’s there for you to plug into any program. This book is full of
ready-to-use functions that will save you time in developing programs. The line

USR Subroutines 21

numbers shown for function definitions in this book are arbitrary, so feel free to
change them according to your requirements.

Some functions will provide execution speed improvements over alternate
methods. Others will provide capability improvements, sometimes at the expense
of speed. Most will save memory, depending on your application. You’ll have to
judge the trade-offs, but nearly always, the standard function calls will save
programming time. Finally, your main-line program logic will be more convenient
to write, and easier to follow.

For most of the subroutines, USR routines, and functions in this book, I've
provided demonstration or test programs. The best way for you to get familiar
with the routines is to try the test programs. That way you can experiment with
different modifications and various types of data, and most importantly, you can
validate the routines to your satisfaction. Sometimes, in the printed listings for
test or demonstration programs, to save space, the subroutines aren’t reprinted.
You'll need to type-in, or merge from disk, the subroutines and function
definitions which are listed separately.

4

| e

22 Chapter 3

USR Routines — For Speed and Flexibility

Nothing beats the BASIC language for a quick and simple way to program your
computer applications. BASIC lets us talk to the computer with commands and
mathematical formulas that are quite consistent with the way we think and
communicate. But, when super-fast execution speed and truly economical
memory usage is required we must speak to the computer in its native tongue,
Z-80 machine language. Once we’ve relieved the TRS-80 of the burden of
translating from BASIC to Z-80 commands, its true speed and power can take
over.

It is rarely practical to write complete application programs in Z-80 machine
language. It’s just too time-consuming for most programmers to create, test, and
modify programs this way, and the speed and memory-conserving benefits are
often not needed. The most useful approach is to have a library of short routines
that you can call from BASIC when and where you need them. The USR routine
capability lets us jump from BASIC to machine language and back to BASIC
again.

In this book, we’re going to discuss many special-purpose USR subroutines, and
you won’t need to know a single Z-80 command to use them. But when you’re
ready to take the plunge into programming your own Z-80 routines, if you haven’t
already, the listings provided will give you a good place to start. With an
editor-assembler, you can modify or combine the routines shown, or you can create
new ones from scratch.

All of the USR routines shown in this book have one very important
characteristic - they are relocatable, so you can load and execute them at any
location in RAM. In fact, in some cases, we’ll be using techniques where a USR
routine might be relocated several times during the execution of a BASIC
program.

You may have seen or purchased, some of the excellent machine language
subroutines for high-speed sorting and other purposes that are available for the
TRS-80. Though they often perform well, there are four problems with many of
these products:

1. They are designed to load at a specific location in memory. You've got
to reserve memory space for them by answering the ‘MEMORY SIZE’
question properly. If you've got an upper-lower case driver, printer
driver, or other ‘canned’ USR routine that also loads at the same address,
you're out of luck.

Screen Fill Editor
Listing

M 2 Note # 1

USR Subroutines 23

2. The assembly language documentation is not usually provided with
them. You can’t easily see how they work, so it is difficult to learn from
them, or modify them.

3. They are often provided in packages that contain more than one
routine. You must load the routines you don’t need along with the one or
two routines you do need, wasting valuable memory space.

4. To use them in programs you sell to others you have to pay royalties.

The USR routines we’ll be discussing in this book avoid these four problems,
giving you the maximum in flexibility and performance. And you don’t need to
worry about royalties with the routines we’ll be discussing, (as long as you don’t
resell them as a ‘library’, or copy the documentation.)

Writing USR Routines With An Editor/Assembler

Let’s look at the procedures required to create a Z-80 machine language
program. We won’t get too specific because your editor/assembler manual gives
the details, and the exact commands will depend on the version that you use. If
you don’t have an editor/assembler program, just follow along — you don’t need
one to use the routines in this book!

For a sample program, we’ll write a short subroutine that instantly copies the
content from the video display print position 0, to the 1023 other positions on the
screen. For example, if we print an ‘X’ at position 0, a call to this Z-80 subroutine
will fill the screen with ‘X’s’.

With an editor, we can type in the following

PPGLlO;SFILL - SCREEN-FILL USR ROUTINE

00020;

0Bo30 ORG @BFFOH sORIGIN

poB4o LD HL,15360 sHL POINTS TO 0
00050 LD DE,15361 ;sDE POINTS TO 1
00060 LD BC,1023 s REPEAT 1§23 TIMES
peoT70 LDIR sHL TO DE. REPEAT.
0o080 RET s RETURN TO BASIC
el END ;

1. Line 30 specifies an origin for the USR routine. We have selected
BFFO, which is 16 bytes below the top of RAM in a 32K TRS-80. For a
48K TRS-80, we might prefer to make our origin FFF0. To assemble any
7.-80 routine for use on the TRS-80 you will have to specify an origin that
is above 3000, (where ROM ends, and RAM begins.) If you design the
routine to be relocatable, (no JP’s or CALL’s to absolute addresses within
the routine), the origin you select need not be the address you’ll use when
you execute the routine. For assembly and testing purposes, I usually
select an origin that is just enough bytes below the top of RAM so that,
when assembled, the routine won’t wrap back around to the ROM area.
I also consider whether any other USR routines are needed in memory at
the same time. Sometimes it takes a little trial and error in specifying the
ideal origin.

24 BASIC Faster & Better

Screen Fill
Assembly Listing

M 2 Note # 1

BFF0O
BFF0
BFF3
BFF6
BFF9
BFFB
P3FF

21603C
11813C
P1FF@3
EDB@
C9

Most assembler listings in this book will show an ORG command specifying
F000 or FF00 as the origin. To assemble them with a 32K TRS-80 you can change
the origin to B000 or BF00. For all routines, the origin is totally up to you.

2. Lines 40 through 80 provide the actual program logic for the routine.
We are loading the HL register with the address of the first byte on the
TRS-80 video display, and the DE register with the address of the next
byte. Then we load the BC register with 1023. The LDIR command in
line 70 copies the byte ‘pointed-to’ by HL to the location pointed-to by
DE. Thenitadds 1 to HL and DE and subtracts 1 from BC. It repeats this
process until BC equals zero. The result of this is that we duplicate the
first byte of the video display 1023 times. Line 80 is a RET command,
similar to the RETURN command in BASIC. If we call this as a USR
routine from BASIC, the RET will bring us back to resume with the next
command in our BASIC program.

3. Line 90 satisfies the assembler requirement that there be an END
statement.

Now that we’ve typed it in, we can assemble it into a disk, or tape, machine
language ‘object code’ file. We can also save the ‘source code’ that we’ve entered
into another file, in case we want to make modifications later — without retyping
the whole routine. Here’s how our assembled listing for the screen-fill USR

routine will look:
i R G e S T e

PPl ;SFILL - SCREEN-FILL USR ROUTINE

00029 ;

00030 ORG @BFFOH ;ORIGIN

po04D LD HL,15360 sHL POINTS TO 0

000850 LD DE,;15361 ;DE POINTS TO 1

00060 LD BC,10823 sREPEAT 1023 TIMES
pooB70 LDIR #MOVE HL TO DE, REPEAT
00080 RET # RETURN TO BASIC

p0990 END ;

r

PB0@0B TOTAL ERRORS

How To Load And Execute USR Routines From Disk

Let’s suppose that we’ve assembled the screen-fill routine into a disk file named
‘SFILL’. Having just assembled it, our executable code is not yet in memory, so
our first step is to load it into RAM. From ‘DOS READY’, we can load the SFILL
routine by typing: LOAD SFILL.

Now we want to get into BASIC. But before we do, we’ll have set the top of
memory so that BASIC will not disturb the area occupied by our USR routine.
Looking back at the assembler listing we see that the origin specified was BFF0,
which corresponds to 49136 decimal. Our answer to the MEMORY SIZE question
in this case must not be greater than 49136. (In BASIC we could compute 49136
as our memory size by simply typing, PRINT 65536 + &HBFFO0.)

Once we’re in BASIC, our progam must specify the starting address of our USR
routine. The DEFUSR command in disk BASIC lets us define up to 10 addresses

M 2 Note # 2

M 2 Note # 3

M 2 Note # 2
M2 Note # 3

USR Subroutines 25

as starting points for up to 10 USR routines, 0 through 9. To define our machine
language subroutine as USR routine 0, our program line could read:

10 DEFUSR@=&HBFF0Q

or,

19 DEFUSR=&HBFF#
or,

10 DEFUSRG=49136
or,

10 DEFUSR=49136

If we had more than one USR routine, we could define the second one with
DEFUSRI, the third with DEFUSR2, and so forth. Be aware that you may
redefine USR addresses as often as you wish in a program. Also, you’ll find that
a USR routine address remains defined until you redefine it or you reload BASIC.
You can RUN or LOAD other programs without altering the USR addresses
you’ve defined.

To execute the screen-fill USR routine that we’ve assembled and loaded,
type-in and RUN the following program:

19 DEFUSR@=&HBFFU
20 PRINT@@,"X"
39 J=USRO(0)

Instantaneously, the screen will be filled with X’s. If you modify line 20 to print
a different character, the screen will be filled with 1023 copies of that character
when you run the program.

Line 30 calls the USR routine. In this case, ‘J %’ is a dummy variable, as is the
‘0’ between the parentheses. In more sophisticated applications we’ll be replacing
the ‘0’ with an integer value or expression as a method for passing an argument to
a USR routine for use in its computations. We’ll be using ‘J %’ or another integer
variable to receive integers passed back to BASIC from USR routines.

Poking USR Routines Into Memory

Each USR routine in this book is shown in ‘poke format’. In other words, you’ll
be given a list of the numbers that you need if you want to POKE the routine into
memory. This way, you don’t need an editor/assembler program, and you don’t
need to understand Z-80 machine language. The screen-fill USR routine we’ve
been discussing can be ‘loaded’ by poking the following 12 numbers into any 12
contiguous bytes in RAM:

33, ¢, 60, 17, 1, 60, 1, 255, 3, 237, 176, 201

Try these steps to see how it works:

1. From DOS READY, load BASIC with a memory size of 49136.
2. Type in the following program:

10 DEFUSRO=&HBFF@

15 DATA 33,0,60,17,1,60,1,255,3,237,176,201

16 FORX=0TOll : READ P : POKE &HBFFO+X,P : NEXT
20 PRINTG@@,"X"

30 J=USRO (0)

26 BASIC Faster & Better

M2 Note #4

M 2 Note # 3

3. Run it. Your screen will instantly display 1024 X’s. Now, replace
line 20 with:

20 PRINT@@,CHR$(191)

Run it again. Your screen should instantly go completely white.

Our DATA statement in line 15 specifies a list of numbers which correspond to
the 12 bytes in our USR subroutine. Line 16 puts them into 12 bytes of protected
memory, starting at BFF0, (49136 decimal), so that we can execute the routine.

Since the screen-fill routine is relocatable, we can replace the &HBFFO in lines
10 and 16 with any other address in protected memory, and it will run the same.
If you have a 48K TRS-80, you might try changing the BFF0 to FFF0. You can also
specify a lower number in response to the MEMORY SIZE question, and use an
address lower than BFFO0.

Are you wondering how we got the numbers to be poked? Our assembly listing
gave us the hexadecimal codes for the USR routine. The command, ‘LD
HI1,,15360°, in line 40 generated the machine language instruction, 21003C.
Converting this instruction to decimal:

21 is 33 decimal.
00 is 0 decimal.
3C is 60 decimal.

We then continued the conversion for lines 50 through 80 of the assembly listing
to get the 12 numbers to be poked. Or, more easily, we could have gotten the
numbers to be poked by loading the assembled program into memory from disk or
cassette. Then from BASIC we could have printed the PEEK values from the first
byte to the last byte of the routine by issuing the command:

FOR X= &HBFF@ TO &HBFFB : PRINT PEEK(X); : NEXT

Saving USR Routines To Disk

Each machine language USR routine in this book is shown in ‘poke format’.
That is, you’ll be given a list of numbers that you can POKE, starting at any
address in protected memory. Once you’ve poked the numbers indicated for the
USR routine, you can record that routine onto a disk, using any valid disk file
name. Suppose you want to save the screen-fill USR routine that we’ve been using
for our example:

1. First you go into BASIC, remembering to specify a memory size low
enough so that the planned location of your USR routine will be in
protected memory. In our example we specified a memory size of 49136
so that we could locate our 12-byte USR routine at BFFO0.

2. Then you write or load a program that will poke the required numbers
at the desired starting address. Here are the program lines that do the job
for the ‘SFILL’ routine:

15 para 33,9¢,60,17,1,60,1,255,3,237,176,201
16 FORX=@TOll : READ P : POKE &HBFF@+X,P : NEXT

Note that, for this purpose, we just took lines 15 and 16 from our test program.

M 2 Note # &

‘M2 Note#6

M2 Note # 7

M2Note#8

USR Subroutines 27

3. Next you run the program. This reads the data statement and pokes
the numbers into memory.

4. Now, go back to DOS READY. To do so, type, CMD*“S”.

5. When in DOS READY mode, you can use the DUMP utility. To dump
the 12 bytes that are still at location BFF0 in memory into a disk file
named ‘SFILL/CIM’, enter this command:

DUMP SFILL (START=X'BFF@',END=X'BFFB')

Note that the dump command automatically adds the file name extension
‘/CIM’ unless you specify an extension. Your disk operating system manual
explains this and the other details of the DUMP command.

6. From now on, whenever you know that you’ll be calling the SFILL
routine in a BASIC program, you can type the command, SFILL, before
going into BASIC. The routine will be loaded into RAM at the same
address it was when you dumped it. When going into BASIC, you’ll again
need to protect memory at the address of your USR routine.

If you wish, you can rename ‘SFILL/CIM’ to any other valid file name. To do
this, you’ll use the RENAME command. If you do rename it, for example to
‘FILLSCRN’, and it no longer has the ‘CIM’ extension, your command to load it
from DOS will be, LOAD FILLSCRN.

If you have a Model 111, or if you’re using the NEWDOS operating system on a
Model I, you can load your routine while in BASIC. In N EWDOS, we can have a
program line that reads:

10 CMD"SFILL" N
or,
10 CMD"LOAD SFILL"

... depending on whether or not the routine on disk has the ‘/CIM’ extension.

If you've got a Model ITI with TRSDOS 1.3 your DUMP command from TRSDOS
READY is:

DUMP SFILL (START=BFF@,END=BFFB)
Then, from TRSDOS READY you can load the routine now stored on disk as
SFILL/CMD, by simply typing SFILL. In BASIC you can have a program line that

reads:

19 ap"L","SFILL/CQD"

28 BASIC Faster & Better

M 2 Note # 3

Magic Strings

Loading USR Routines Into Strings

We can load any relocatable USR routine into a string, as long as it is smaller
than 255 bytes. There are some big advantages to this technique. First, when
we’ve got the USR routine in a string, we can avoid the requirement of reserving
memory in response to the ‘MEMORY SIZE’ question. Secondly, we can easily
move the routine from one memory location to another by poking the string’s
VARPTR and LSETing it into another string. Finally, we can store it in an
ordinary disk file, which may contain a whole library of routines, for faster and
more convenient loading from BASIC.

The screen-fill routine can be loaded into the string S$ with the following
command:

S$=CHR$ (33) +CHRS$ (0) +CHR$ (60) +CHRS (17) +CHRS (1) +CHRS$ (68) +CHRS (1) +C
HR$ (255) +CHRS (3) +CHRS (237) +CHRS$ (176) +CHRS (201)

Now, to execute the routine, we can define our USR routine address so that it

points to the data contained in the string:

DEFUSRO=PEEK (VARPTR(S$) +1) +256 *PEEK (VARPTR(S$) +2)

For safety though, we should define the USR routine address before each call to
it. For as we add and work with other strings in the program, BASIC may move S$
to another location in memory.

Here’s an easier way to get a longer USR routine into a string, especially after
you have already loaded it and tested it in protected memory:

1. Load the routine into protected memory from a file created by the
editor/assembler, or poke it into protected memory. We've already
discussed how you can do this for the screen-fill routine.

2. Use the DEFUSR command to point USRO to the routine. For our
example, the screen-fill routine starts at BFF0 in memory:

DEFUSRO=&HBFF
3. Now define a string using the command:

‘gg=nn

4. Poke the VARPTR of S$ so that its length equals the length of your
USR routine. In our example we would type:

POKE VARPTR(SS),12

5. Poke the USR routine pointer into the VARPTR of the string.
Appendix 2 gives you a list of the USR routine pointer addresses for
many of the popular disk operating systems. Here’s the command you
can use if you are using NEWDOS on a Model I:

POKE (VARPTR(SS$)+l),PEEK(&H5B14)
POKE (VARPTR(SS)+2) ,PEEK (&H5B15)

USR Subroutines 29

Now the string S$ contains the USR routine, and we can put S$ into a random
disk file so that we can easily load and execute the routine in future programs
without the bothers of protecting memory or using data statements. The random
disk file we will create can store dozens of USR routines if we wish. To put the
routine stored in S$ into record 1 of a random disk file named, ‘USR’ we can
execute the following commands:

OPEN R,1,"USR"

FIELD 1,LEN(S$)AS AS

LSET A$ = S$

PUT 1,1

CLOSE

Whenever we want to use the screen-fill routine in a future program, we can,

somewhere near the beginning of the program, use the following commands to load
the routine into S$:

OPEN R,1,"USR"

FIELD 1,12 AS A$

GET 1,1

S$=AS

CLOSE1

Then we can call the routine when necessary, using:

POKE&H5B14 ,PEEK (VARPTR(S$) +1)
POKE&H5B15,PEEK (VARPTR(SS) +2)
J=USRO(9)

The two pokes perform the function of the DEFUSR command, except that
they get the address from the VARPTR of S$. The &H5B14 and &H5B15 shown
above will be replaced by the addresses shown in appendix 2 if you are using a
different disk operating system.

As an alternative, you can leave the USR routine in the disk buffer during
execution. Each disk buffer is, in effect, 256 bytes of protected memory that has
been reserved by your response to the HOW MANY FILES?’ question. The disk
buffer addresses are given in Appendix 3.

For example, to use disk file buffer 1 for execution of the screen-fill routine with
NEWDOS 2.1 we can use the following command to load the routine:

OPEN R,1,"USR" 'OPEN FILE CONTAINING THE ROUTINE
GET1,1 '"GET THE RECORD CONTAINING THE ROUTINE
DEFUSRO = &H6575 'SPECIFY USR ADDRESS AS DISK BUFFER ADDRESS

Then, each time we want to execute it, we can use the command:
J=USR@ (8)"

You'll find that the ‘magic string’ techniques we’ve discussed in this section
provide the one of the fastest, most flexible, and most memory-efficient methods
for handling USR routines.

30 BASIC Faster & Better

Screen Fill Magic
Array
Demonstration

M 2 Note # 9
M 2 Note # 10

M 2 Note # 11

Magic Arrays
How to Load and Execute ‘Magic Arrays’

As well as loading a USR routine into a string, and then ‘executing’ the string,
you can also load a USR routine into an integer array, and then execute the ‘Magic
Array’. I often use this technique because it lets me avoid reserving memory. A
15-element integer array, for example, automatically reserves and protects 30
bytes of memory. An equally important advantage of the technique, as we shall
see, is that it provides a convenient and economical method for passing integer
arguments to USR routines.

To see how the magic array technique works, enter this short program and run
it. It performs the same demonstration that we used for the screen-fill routine.
Your sereen will be filled instantly with 1024 ‘X’ characters.

5 DEFINTA-Z:J=0

10 US(P)=8448:US(2)=4352:US(4)=256:U5(6)=-20243:05(7)=201
20 US(1)=15360:U5(3)=15361:US(5)=1023

30 PRINT@H,"X"

40 DEFUSRO=VARPTR(US(0))

58 J=USRO(8)

60 GOTO60

We loaded 7 integers into an integer array. Then, in line 40, we defined our USR
routine address to point to the first element of the array. In line 50 we called the
USR routine stored in the magic array.

Now look at line 20. We passed the three arguments to the USR routine via
array elements 1, 3, and 5. Element 1 specified the address of the byte to be
duplicated, in this case, 15360, the memory address of the upper left corner of our
display. Element 3, being 1 greater than element 1, specified that just 1 byte was
to be duplicated, and element 5 specified that that 1 byte was to be duplicated
1023 times.

Let’s try a modification using different parameters. Let’s duplicate the word
‘TEST’ 63 times. Change lines 20 and 30 as follows:

20 US(1)=15360:US(3)=15364:US(5)=63*LEN("TEST")
30 PRINT@S,"TEST"

Now run the program. ‘TEST’ is duplicated 63 times. We changed the
arguments for our USR routine by loading array elements. As you can see, it sure
beats poking the arguments in!

Before you start playing with this routine, be careful! It’s powerful. One wrong
move and your computer will go on that strange journey into nowhere. So take
these precautions before experimenting:

@ Save the program you’re working on.
® Remove all diskettes.

USR Subroutines 31

Also, we’d better first talk about the rules for using magic arrays:

1. The magic array must be an integer array. In our example we simply
used the command ‘DEFINT A-Z’ to insure that the US% array would be
integer.

2. Your program must not use any new variables for the first time
between your ‘DEFUSR’ command and the call to the USR routine. To
comply with this rule, note that we pre-initialized the variable, ‘J%, in
line 5 of our sample program.

This rule is necessary because BASIC moves integer arrays up in memory
whenever you use a new variable in a program. If we were using the variable ‘J %’
for the first time in line 50, the address of our array would have moved up, and our
DEFUSR command in line 40 would have been invalidated. It’s a good idea to do
your DEFUSR immediately before each call to a magic array USR routine. That
way, in a complex program you won’t accidentally move your USR routine by
initializing a new variable.

Each USR routine in this book is shown in ‘magic array format’. You are
provided with a list of the integers you need to load into an integer array if you
want to use the magic array method. For longer routines than the one shown in our
example you can use DATA statements to get the integers into the array. The
magic array technique works best for short USR routines of about 50 bytes or less.
You may have noticed that if your program has several large arrays in it, program
execution can begin to get a little sluggish. But for short USR routines with any
number of arguments, the magic array technique is indeed ‘magic’!.

Writing ‘Magic Array’ USR Routines

As you've seen, a magic array provides a simple way to load arguments from
BASIC into a machine language USR routine. If you know Z-80 assembler
language, here’s how you can write your own magic array USR routines:

1. Write a Z-80 subroutine and assemble it using the editor/assembler.
It must be a relocatable routine!

2. Look at your assembled listing to determine where your arguments
will be needed. Then, if necessary, insert ‘NOP’ commands, or
re-organize your routine so that the arguments to be passed start on even
numbered bytes within the routine. If the length of the routine is not
evenly divisible by 2, add a NOP as the last instruction to make it an even
length. Now re-assemble, and check again to verify that the alignment is
correct.

Here’s the assembler listing that was used in creating the magic array for our
screen fill magic array demonstration program. From here on, we’ll be calling this
subroutine the ‘move-data’ magic array, because, as you will see, it is useful in
many applications where we want to move blocks of data from one memory
address to another.

In lines 120, 140, and 160 of the move-data magic array assembler listing we are
loading 2-byte integer zeros into the HL,.DE, and BC registers. When loaded into
an integer array in BASIC, those zeros line up so that they will be replaced by the
contents of elements 1, 3, and 5. So, as we load the parameters to the required

32 BASIC Faster & Better

BFF0
BFF0
BFF1
BFF4
BFF5
BFF8
BFF9
BFFC
BFFE
BFFF
pooo

0o
2100600
00
110000
2o
010000
EDB#
Cc9

0o

00100 ORG OBFFOH ;ORIGIN - RELOCATABLE
polle NOP ;NO-OP FOR ALIGNMENT
00120 LD HL, @ ;LOAD "FROM" ADDRESS
90130 NOP ; NO-OP FOR ALIGNMENT
00140 LD DE,® ;LOAD "TO" ADDRESS
00150 NOP ;NO-OP FOR ALIGNMENT
20160 LD BC, 0 ;LOAD # OF BYTES

pp170 LDIR ;MOVE BC BYTES, HL TO DE
00180 RET ;RETURN TO BASIC

00190 NOP ;s NO-OP FOR EVEN LENGTH
00200 END H

00060 TOTAL ERRORS

Move Data Magic
Array Assembly

Listing

array elements within a BASIC program, we are actually filling in those
instructions.

In lines 110, 130, and 150 we’ve used NOP’s to align the parameters to even
bytes. The Z-80 NOP instruction is simply an 8-bit zero, indicating ‘no operation’.
The computer just ignores it, and continues with the next instruction.

Line 170 is the powerful Z-80 LDIR instruction. It moves the byte from the
location pointed to by HL to the location pointed to by DE. Then it increments
the HL and DE registers, and decrements the count in the BC register. If BC is
non-zero after the decrement, the move, increment, and decrement process is
repeated until BC is zero.

In line 200, we used a NOP instruction to make the routine an even number of
bytes in length. It is important that magic array routines be of even length.

After you've assembled your routine, load it into memory and go into BASIC,
selecting a memory size so that the routine won’t be overwritten.

Now, to get the integers that are to be used in the magic array, use the following
program:

10 s% &HBFF@ 'START ADDRESS

20 E% &HBFFF 'END ADDRESS

30 FOR X = S% TO E% STEP 2

40 PRINT CVI(CHRS (PEEK(X))+CHRS (PEEK(X+1)));
50 NEXT

You will, of course, change lines 10 and 20 to reflect the starting and ending
addresses of your program. Usually, you'll want to make line 40 an LPRINT
command, to create a printed copy on your line printer.

Putting ‘Magic Arrays’ Into Random Disk Files

The magic array technique has some nice advantages for getting a USR routine
into your computer’s memory. When typing the data statements you’re working
with half as many numbers as you would be with the poke method.

Once you’ve got a program that reads the required numbers into a magic array,
you may wish to record the USR routine that is stored in the array into a random
disk file. That way, you will not need to waste the memory required by the data
statements in any future programs where you want to use the routine. Here’s how
to record a magic array into a random disk file, as long as it has 127 or fewer
elements:

USR Subroutines 33

1. Open your disk file in random mode.

2. Field it, 255 bytes as A$.

3. Initialize a dummy string variable, S$, using S$=".

4. Poke the VARPTR of S$ with the length of the routine stored in the
magic array. The length will be twice the number of elements because
each element takes 2 bytes.

5. Poke the VARPTR of S$ + 1 with the LSB (Least Signifigant Byte)
of the address of your magic array. If your magic array starts at
US 9%(0) then your command will be:

POKE VARPTR(S$)+l, ASC(MKIS(VARPTR(USS(8)))

6. Poke the VARPTR of S$ + 2 with the MSB (Most Signifigant Byte)
of the address of your magic array. Continuing our example, your
command is :

POKE VARPTR(SS)+2, ASC(RIGHTS (MKI$ (VARPTR(US%(8))) /1))

Now S$ contains your USR routine. To put it on disk, LSET A$ = S$, and do
a disk PUT to the physical record you wish to store it in.

Whenever you want to use the routine in a program, you can OPEN the disk file
and GET the physical record in which you stored it. You can then execute it
within the disk buffer, move it to another area of protected memory, or move it
back into an integer array.

Here’s an example. Let’s say you’ve loaded 58 numbers into a magic array,
US%, using DATA statements. Your USR routine now starts at US% (0). To
record it into physical record 2 of a file named ‘ROUTINES’ your commands are:

OPEN"R",1,"ROUTINES":FIELD1,255ASA$
S$="": POKEVARPTR(S$) ,116
POKEVARPTR (S$) +1 ,ASC (MKI$ (VARPTR(US%(8))))
POKEVARPTR(S$) +2,ASC (RIGHT$ (MKI$ (VARPTR(US% (0))),1))
LSETA$=S$:PUT1,2:CLOSE
If you want to load it back into a magic array in a later program, instead of using

data statements, you can use the following commands:

DIMUS% (58)
OPEN"R",1,"ROUTINES":FIELD1,116ASAS

GET1,2

S$="":POKEVARPTR(S$) ,116
POKEVARPTR(S$) +1 ,ASC(MKIS$ (VARPTR(US% (@))))
POKEVARPTR (S$) +2 ,ASC(RIGHTS (MKI$ (VARPTR(US%(0))),1))
LSETS$=A$

Or, if you don’t need to pass arguments via array elements, you can use any of
the techniques we discussed for loading and executing magic strings.

Passing USR Routine Arguments With Control Arrays

This is another powerful technique that you won’t find in your disk operating
system manual. We simply create an integer array that will contain the arguments
that we want to pass to a USR routine. This ‘control array’ may also contain
integers computed by the USR routine that are to be passed back to BASIC.

For example, the ‘SORT1’ USR routine, which sorts a string array into
ascending sequence, requires 2 arguments. The BASIC program that calls it must

34 BASIC Faster & Better

M 2 Note # 12

specify the string array to be sorted and the number of elements to be sorted.
Those 2 arguments are contained in an integer array. Element 0 contains the
VARPTR to the string array, and element 1 contains the highest element number
of the string array to be included in the sort.

To sort the first 600 elements of the S$ array, here are the commands that can
be used to call the USR routine, with the C% array as our control array:

100 C%(9)=VARPTR(S$(@))
191 C%(1)=599
182 J=USRG (VARPTR(C%(0)))

Earlier in the program, we would have used the DEFUSRO command to load the
address of the SORT1 USR routine. Also, the dummy integer variable, ‘J%’,
would have to have been defined earlier in the program for this USR call to work
properly. The control array method for passing arguments may be used with any
USR routine, whether it is stored in protected memory, a magic string, or magic
array.

Control arrays are especially useful when many arguments must be passed
between a USR routine and BASIC. You'll find alist of the required elements with
each of the USR routines that use the control array technique.

There are a few things you should know when using control arrays:

1. A control array must be an integer array, so you should use percent
symbols, or DEFINT the variable name you’ll be using.

2. Remember that array addresses will change when you define new
variables during the execution of a BASIC program. If one of the
elements in your control array is the VARPTR to another array, make
sure you don’t use any new variables between the time you load the
control array and the time your program calls the USR routine.

3. Youdon’t need to start from element zero in the control array. You can
use other elements of the array for other purposes. For example, we could
have used the following commands to call the SORT1 routine:

100 C%(14)=VARPTR(SS$(0))
161 C%(15)=599
102 J=USR@ (VARPTR(C%(14)))

If you're writing your own USR routines and you want to use control arrays, take
alook at the assembler listing for any of the USR routines in this book that use the
technique. You’ll see that the first three Z-80 instructions of the routine are:

CALL OA7FH
PUSH HL
POP IX

The ‘CALL 0A7FH’ loads the argument between the parentheses of the USR()
function in the BASIC program into the HL register pair. The ROM subroutine
at 0A7F does this for us. Because the argument passed from BASIC is the
VARPTR to a control array, HL points to the first element of that array.

M 2 Note # 13

USR Subroutines 35

The PUSH and POP instructions copy the contents of HL into the IX register.
Then, for example, if we need to load the contents of the second element of the
control array into register pair DE, we can use:

LD E, (IX+4)
LD D, (IX+5)
We can put data back into the control array using the opposite procedure. If, for

some reason, we want to put the contents of BC into array element 3 for use by
BASIC we can say:

LD (1X+6) ,C
LD (1X+7) ,B

If we only have one argument to pass back to BASIC, our last command in the
USR subroutine is:

JpP OA9AH

This causes a jump to a ROM routine that returns the contents of HL to BASIC.
If we used this jump to return to BASIC, and our original call was:

J=USRO (VARPTR(C%(0)))

... the variable, ‘J’, would receive the last value of HL computed by the USR0

routine. If we simply use a ‘RET” instruction to return to BASIC, the contents of
J% will be unaffected by the USR call.

Relocatable Multiple-Argument Handler For USR Calls

If you do assembly language programming, here is a standard ‘front-end’ that
you can put on USR routines as an alternate method for handling multiple
arguments. The multiple argument handler lets your BASIC program specify all
values to be passed to your USR routine in a single expression. For example, our
move-data routine requires 3 arguments:

1. From address.
2. To address.
3. Number of bytes to move.

With the multiple argument handler, if we want to move 50 bytes from location
15360 to location 15384, our USR call is:

J=USR(15360) ORUSR(15384) ORUSR(50)

The handler maintains a count of the arguments passed. When all (3 in this
case) arguments have been received, it passes control to the body of the USR
routine for the processing of the arguments. The assembly listing for the multiple
argument handler is given on the next page.

To write a Z-80 subroutine with the multiple argument handler:

1. Depending on the USR routine number (0-9) you will be using, and
depending on the operating system, refer to Appendix 2 to get the USR

36 BASIC Faster & Better

Multiple-Argument #0000 ;MULTIPLE ARGUMENT HANDLER

Handler USR Routine @001 ;

FFO0O polop ORG GFFO0OH sORIGIN

FF00 CD7FBA 20110 CALL BATFH s PUT ARGUMENT IN HL

FF03 DD2Al45B 66120 LD IX, (B65B14H) +IX = DEFUSR ADDRESS

FFB7 DD7535 pO136 LD (IX+53),L H

FFOA DD7436 polan LD (IX+54) ,H s PUT ARGUMENT IN STORAGE AREA
FFOD DD3469 poL150 INC (IX+9) ;

FF10 DD3409 PBl60 INC (IX+9) sADD 2 TO POINTER

FF13 DD346C po170 INC (IX+12) :

FF1l6 DD346C 00188 INC (IX+12) :ADD 2 TO SECOND POINTER
FF19 DD7E@9 00190 LD A, (IX+9) H

FF1C 0635 00200 LD B,53 H

FF1E 90 00210 SUB B ;A = ARGS PASSED * 2

FF1F DD4634 006220 LD B, (IX+52) :B = ARGS REMAINING * 2
FF22 90 00230 SUB B H

FF23 2806 00240 JR 7, PASS1 ;s IF @, NO MORE ARGS TO PASS
FF25 2100600 00250 LD HL,8000H s CLEAR FOR RETURN

FF28 C39A0A 00260 JP BA9AH sRETURN TO GET NEXT ARG
FF2B DD360935 06270 PASSl LD (IX+9),53 H

FF2F DD368C36 00280 LD (IX+12) ,54 s RESTORE COUNT

FF33 1806 BB290 JR START H

FF35 0000 0309 DEFW /] ;ARGUMENT 1 STORAGE

FF37 0000 6a310 DEFW 0 ; ARGUMENT 2 STORAGE

FF39 0000 00320 DEFW] ¢ ARGUMENT 3 STORAGE

FF3B 00 008338 START NOP ;BODY OF ROUTINE STARTS HERE
402D 00340 END 40 2DH ;

p0000 TOTAL ERRORS

routine pointer address. Modify line 120 accordingly. (The illustration
shows 5B14, the address of the USRO pointer for NEWDOS 2.1.)

2. Insert or delete DEFW commands between lines 290 and 330 so the
number of DEFW commands is equal to the number of arguments you
want to pass from BASIC to the USR subroutine. It is required that
nothing else be between the ‘JR START’ command and the ‘START’
label, because the handler uses the difference between these two points
to determine the number of arguments to be passed before execution of
the main routine.

3. Put the logic for your Z-80 subroutine at, and below, the ‘START’
label. To access the arguments that have been passed you can use the IX
register:

(IX+53) and (IX+54) contain the first argument

(IX+55) and (IX+56) contain the second argument

(IX+57) and (IX+58) contain the third argument, etc.

For example, to load the second argument into DE, your command is:

i 2 Note # 12
M 2 Note # 13

LD E, (I1X+55)
LD D, (IX+56)

IX, as you'll see if you analyze the handler, points to the base of the USR
routine. IX was loaded in line 70, by an inquiry into the address used when the
DEFUSR was done. You're program automatically figures out where it is in
memory — no matter where you put it!

USR Subroutines 37

The multiple argument handler is probably the most convenient way to call
USR routines from BASIC. Keep its limitations in mind when you use it:

1. At most, about 25 arguments can be passed in a single call.

2. You must pre-determine which USR routine you’ll be using because
that pointer is assembled into the handler. (You can poke in the 6th and
7th bytes if you need more flexibility.)

3. The handler adds about 50 bytes to your routine, so consider the
trade-offs when considering whether or not to use it.

4. The logic is self-modifying during run-time. All variables must be
passed properly or the handler will not be re-initialized to its original
status.

5. You can save memory if your USR routine doesn’t need to be
relocatable. The main advantage of the multiple argument handler is
that it’s relocatable, and the working storage memories are imbedded in
the routine!

38 Chapter 4

Table of Memory
Limits

M 2 Note # 14

Magic Memory Techniques

‘Any given program will expand to fill all available memory’

If you’ve been programming the TRS-80 computer for any length of time, you’ll
be able to attest to the truth of that statement. It always seems that, no matter
how much memory or disk space you have, you can find a way to use it. This
section will give you the techniques you need to make the most of the memory you
have.

We’ve all seen shows where a memory expert entertains the audience by quickly
memorizing everyone’s name, or the contents of each page in a magazine. These
‘super’ memory powers are really based on simple techniques that anyone can
learn. This section will give you some simple techniques that can, likewise, give
your computer’s memory some amazing powers. You’'ll find that when you know
how to control your computer’s memory, move data quickly, and roll program
modules in and out from disk, your programs can enter whole new ‘generations’ of
performance!

How Much Memory Do You Really Have?

If Radio Shack sold you a ‘48K’ TRS-80 computer, you really have 64K of
memory. If you bought a ‘32K’ TRS-80, you really have 48K of memory. True,
some of the memory is ROM, so it is unmodifiable from a programmer’s
standpoint, but you might as well start thinking in terms of the upper-limit of your
usable memory:

Radio Shack Top Byte Top Byte Top Byte
Catalog Hexadecimal Decimal Integer Format
"16K" 7FFF 32767 32767
"32K" BFFF 49151 -16385

"48K" FFFF 65535 -1

Magic Memory Techniques 39

Peek And Poke Above Byte 32767

If you try to POKE 65535,0 you will get an overflow error. This is because the
PEEK and POKE commands require an integer argument for the memory
address. The secret is that you must convert any address above 32767 by
subtracting 65536 from the number. Therefore, the proper command to poke zero
into the highest address of a 48K TRS-80 is POKE—1,0. To look at the contents
of the top byte in a 48K TRS-80, your program can use, PRINT PEEK(-1).

If your program will be doing a lot of peeking and poking to high memory (above
32767), you may want to include the function calls listed below. They let your
program handle memory addresses in single precision format so that you don’t
have to worry about overflow errors.

To allow peeking or poking any address in the range 0 to 65535, define the
following function early in your program:

DEFFNSI% (S!)==((S1>32767) *(S!-65536))—-((S1<32768) *S!)

Then, if you want to look at the contents of memory location 51400, your
program can use the command:

PRINTPEEK (FNSI%(514680))

Or, to sequentially look at the contents of all addresses in memory, a routine
could be written similar to this:

FOR Al = @ TO 65535 : PRINT A!,PEEK(FNSI%(A!)) : NEXT

The analogous POKE format is:

POKE FNSI%(A!l) ,A%

... where ‘A"’ is the address from 0 to 65535, and ‘A%’ is the number, from 0 to
255, to be poked into that address.

The function call simply converts any unsigned 4-byte single precision number
from 0 to 65535, to its 2-byte signed integer equivalent, ranging from —32768 to
32767. To convert back you can use the following function call:

DEFFNIS! (I%) = =((I%<0)*(65536+I%)+((I%>=0)*I3))
For example:

FNIS!(-1) is 65535
FNIS!(32000) is 32000

Adding And Subtracting Integer Addresses

With many of the subroutines and techniques in this book we’ll find it necessary
to compute the next address above or below a given address. At other times, we’ll
need to add or subtract several bytes from an address.

In most cases it’s perfectly safe to do the addition or subtraction without any
worry as to the validity of the result. But when there’s a chance we’ll be near 32767
or —32768 we risk getting an overflow error. For example, we know that the next
address above 32767 is —32768, but if we add 1 to 32767 or subtract 1 from —32768
we get an overflow.

40 BASIC Faster & Better

Integer Address
Addition &
Subtraction
Function

Most of the subroutines in this book don’t consider this danger point unless
there’s good reason to believe that we’ll be encountering it. Usually we will be
adding 1 or 2 to an address returned by the VARPTR function. If you get an
overflow error when developing a program it’s usually a simple matter to
reorganize the program or insert a few dummy lines so a VARPTR of 32767 or
—32768 won’t occur for the variable in question.

FNIA% (A1%,A2%) is a solution to the integer address addition and
subtraction problem. It returns the integer address obtained by adding the
number specified by the second argument to the address specified by the first
argument. If you want it to be safe for any possible integer addition, you can call
this function from your subroutines or other function calls:

10 DEFFNIA% (Al%,A2%)=(65536~-(A1%+A2%))*((A1%+A2%)>32767) +((0-Al%
+A2%) *~((A1%+A2%)<-32768)) +(AL1%+A2%) *~(((Al1%$+A2%) <32768) AND((Al%
+A2%)>-32769))

The logic performed by the FNIA function is:

If the result of the addition is greater than 32767, then subtract the
result from 65536.

If the result of the addition is less than —32768, then subtract the result
from 0. Otherwise, return the result of the addition.

Here are some examples:

FNIA% (16554,11) is 16565
FNIA % (32767,1) is —32768
FNIA % (—32768,—1) is 32767
FNIA% (—5,1) is —4

FNIA% (-1,10)is 9

Peeking 2 Bytes

As you know, when you PEEK any location in memory, the result will be a
number from 0 to 255. And, likewise, the second argument of a POKE command
must be from 0 to 255.

Often, it is necessary to work with 2 contiguous memory locations to recall or
load an integer ranging from —32768 to 32767. This is because your computer
needs 2 bytes to store an integer number. The first byte stores what’s called the
‘LSB’, or ‘least significant byte’. The second byte stores the ‘MSB’ or ‘most
significant byte’. The MSB is a number from 0 to 255 that tells us how many 256’s
there are in the number. The LSB is a number from 0 to 255, which when added
to the MSB times 256, gives us the integer that’s stored in memory.

To look at the 2-byte integer contents of memory, starting at any address except
32767, the expression is:

PRINT PEEK(A%) + PEEK(A%+1) *256
or,
PRINT CVI(CHRS (PEEK(A%))+CHRS(PEEK (A%+1)))

If it’s possible that your program will be looking at the contents of location

M 2 Note # 15
M2 Note #7

Magic Memory Techniques 41

32767, you should use the FNSI% function shown above, and express your address
as a single precision number. To look at the 2-byte integer contents of memory,
starting at any address expressed as a single precision number, A!, the expression

18!

PRINT PEEK(FNSI%$(A!)) + PEEK(FNSI%(Al+l))*256
or,
PRINT CVI(CHRS(PEER (FNSI%(A!)))+CHRS(PEEK(FNSI%(A!+1))))

Poking A 2-Byte Integer Into Memory

From time to time, you may want to change a 2-byte integer located at a given
address in memory. We’ll be doing it when we start modifying the TRS-80’s
internal pointers to perform some special tricks. You may also want to do it to
poke an integer argument into a USR routine.

To POKE an integer, 1%, ranging from —32768 to 32767, into any two
contiguous memory addresses, your command is:

POKE A%,I%/256 : POKE A%+l,I%-INT(I1%/256)*256
or
" POKE A%,ASC(MKI$(I%)): POKE A%+l,ASC(MIDS(MKI$(I%),2))

These simple commands are fine if any of the addresses used will never be
32767. If you will be crossing over from 32767 to —32768, and you need a general
routine, you can use the following command to poke any integer into memory, but
you will need to define the functions FNSI% (S!) and FNIS!(I1%):

POKE A%,1%/256 : POKE FNSI%(FNIS!(A%)+1),I%-INT(1%3/256)*256

How To Change ‘Memory Size’ From BASIC

When your computer goes into BASIC under the TRSDOS disk operating
system, you are first asked - MEMORY SIZE?

Under NEWDOS, and other disk operating systems, you specify the memory
size as part of your command to load BASIC.

If, for example, you specify a memory size of 61000 using a 48K TRS-80, all
memory from 61000 to 65535 is protected. BASIC will not use that area.

From time to time, you might wish to change memory size while in a BASIC
program. For example:

® You might want to allocate space for a USR routine which you will be
poking in, or loading from a disk file.

® You might want to allocate space in memory to store data, or
temporarily save a copy of the video display.

® You might want to establish a common protected area for passing
variables between programs.

® You might need to free-up space for program and variable storage
when a previously protected area of memory no longer needs to be
protected.

First, here’s a command that loads the current MEMORY SIZE setting into a
single precision variable, MS! :

MS! = PEEK(16561)+PEEK(16562) *256+1

42 BASIC Faster & Better

M 2 Note # 16

M 2 Note # 16

M 2 Note # 16

Here’s a command that prints your current MEMORY SIZE setting:

PRINT PEEK(16561)+PEEK(16562) *256+1

Now, to change the memory size, set MS equal to the desired memory size
setting, minus 1, and execute the following command:

POKE16562,MS!/256 : POKE16561,MS!-INT(MS!/256) *256

You must follow this command with a RUN or CLEAR command to get BASIC
to ‘read’ the new memory size setting. When I change the memory size, I usually
do it as the first command in my program. For example, line 1 might read . . .

1 MS1=64401:POKEL6562,MS!/256 :POKE16561 ,MSi~INT (MS!/256) *256
:CLEAR500
... to set a memory size of 64401 and clear 500 bytes for string storage. To make
it easier (for the computer), you can convert to hexadecimal notation. The
number 64400 in hex is FB90. To perform the same memory size setting shown
above, (to 64401), we could instead use:

1 POKE16562,&HFB:POKE16561,&H90 : CLEAR500

Reserving Memory Below Program Text

Here’s how to find where your program text begins in memory:

Start of Program Text = PEEK(&H40A4)+PEEK (&H40A5) %256
or
Start of Program Text = PEEK(16548)+PEEK (16549)% 256

Below the program text, the disk operating system reserves an area of 290 bytes
for each disk file that you specified when answering the question, ‘HOW MANY
FILES?’. (301 bytes for NEWDOS80, 360 bytes for Model 3 TRSDOS 1.2.)
Because of this, your program text will begin at different locations based on the
number of files and the disk operating system you are using.

You can poke the program text pointers with a larger value so that the area
between the file buffer area and the program text is in effect, reserved. This
technique is especially useful when the top of memory is being used by the
upper-lower case driver or other machine language program and you want to find
another location to load a USR routine.

It’s easiest if you move the program text up in even multiples of 256. Simply:

POKE 16549, PEEK(16549)+M

...where if M% is 1, you are moving the text up by 256, if it is 2, you are moving
it up by 512, etc.

After poking the beginning of text pointers with the desired address, you’ll need
to poke a zero into the byte preceding the desired address. Then, your next

command should be NEW, LOAD or RUN. The next program that you type in,
load or run will start at the new address!

Partial Restore of
Data Statements -
Demonstration
Program

M 2 Note # 17

Magic Memory Techniques 43

Let’s suppose you want to load the program, ‘PROGYT’, at address 7000, (28672
decimal.) Your commands are:

POKE&HA@A4L , &HOO : POKE&HAOAS , &§H70 : POKE&H6FFF, 0 : RUN"PROG1 "

How To Partially Restore DATA Statements

As you know, the DATA command lets you specify a list of information in your
program that you can access sequentially with the READ command. The
RESTORE command allows you to re-read your data from the first DATA
statement. Let’s suppose you don’t want to restore all the way back to the first
data statement. You can restore to any data element by simply saving BASIC’s
internal pointer the first time you read that element. The data statement pointer
is stored in memory locations 40FF and 4100.

Suppose we have a data statement that contains:

DATA A,B,C,D,E,F

If we want to restore back to ‘D’ for re-reading, we just save the pointers the first
time we read the ‘D’. Here’s a program that demonstrates how to do it:

20 DATA A,B,C,D,E,F

1060 CLS:PRINT"GROUP 1";TAB(20) : FORX=1TO3 :READAS$;s PRINTAS; s NEXT
191 D1%$=PEEK (&H40FF) :D2%=PEEK (&H4100)

110 PRINT:PRINT"GROUP 2";TAB(20) :FORX=1TO03:READAS:PRINTAS; : NEXT
111 POKE&H4OFF,D1%:POKE&H4100,D2%

120 POKE&H4OFF,D1%:POKE&H4100,D2%
121 PRINT:PRINT"GROUP 2 RESTORED";TAB(28)
122 FORX=1T03:READAS:PRINTAS$; : NEXT

Line 20 is our DATA list. In line 100 we read and printed the first 3 data
elements. Line 101 saved the data pointer in the integer variables,D1% and D2%,
because we knew we’d want to do a RESTORE to this point. Then in line 110 we
read the next 3 data elements. In line 120 we poked the data pointers back in so
that in line 122 we could re-read the last 3 data elements. Here’s what the display
looks like when this program is run:

GROUP 1 ABC
GROUP 2 DEF
GROUP 2 RESTORED DEF

Data statements can be very memory-efficient for storing strings that are to be
used as ‘literals’, (for headings, file names, standard product descriptions, etc.),
because the data only appears once in memory. They can be very wasteful of
memory if they are being used to load values into numeric arrays. In the case of
numeric arrays, the data appears twice: once in string format within the program
text, and once in numeric format within the variable storage area.

44 BASIC Faster & Better

The Active Variable Analyzer

Here is one of the most powerful and useful utility programs that you can have
in your library. It can be a tremendous aid in debugging programs and in finding
ways to improve on memory efficiency. The active variable analyzer is a
subroutine that you can temporarily merge into any BASIC program that you
might wish to analyze. Then, at any point in the program,

® youcansee what integer, single precision, double precision and string
variables are currently in use. This includes simple variables as well as
single, double or triple dimensioned arrays.

® you can view the current contents of all variables that are currently
inuse. For strings that are 2, 4 or 8 bytes long, it even shows the CVI, CVS
and CVD translations. (In case those strings contain binary compressed
numbers.)

® you can analyze the sequence in which the variables were introduced
into the program.

The active variable analyzer is particularly useful when you are trying to
understand how someone else’s undocumented program works. Having the
contents of all variables displayed for you can often tell you how each is used, so
that you can make corrections, modifications or enhancements.

In many programs you will be able to find ways to save memory. You’ll be able
to see the ‘dead weight’ that the program may be carrying. Often you can find
arrays that were ‘over dimensioned’. You may find simple numeric variables that
can be re-used for other purposes. Or, you may find strings that were defined and
used in an earlier part of the program, whose contents are not necessary in a later
part. To free-up more string storage, you can ‘null’ those strings or re-use them for
other purposes. (To null a string, you change its length-to zero. For example, to
null XY$, you can say XY$=".)

By minimizing the number of variables in use, you automatically improve on
program execution speed because BASIC doesn’t have as much searching to do. By
nulling strings that are no longer needed, you can cut down on the string
reorganization time that BASIC may require.

Analyzing the sequence in which the variables were defined can lead to major
performance improvements. If you change your program so that the most
frequently used variables are defined first you can cut down on searching time,
resulting in much more responsive performance.

The active variable analyzer normally occupies lines 65000 through 65162. It
uses its own variables, all of which start with ZZ or ZD. You may want to have
several versions of the subroutine that use other variable names or line numbers
so that you’ll be ready to analyze any program. The version we’ll be showing uses
PRINT commands. You may also want to have a LPRINT version handy. (You
can use the CHANGE/BAS’ program modification utility, shown in this book, to
make your other versions.)

Magic Memory Techniques 45

To use the active variable analyzer:
1. Load the program you want to analyze.

2. Merge the active variable analyzer from disk. It must have been
previously saved with the ‘A’ option, in ASCII format.

3. Run your program. When you get to a point where you wish to analyze
the variables currently defined, press BREAK and type GOSUB 65000.
You can also insert the ‘GOSUB 65000’ at one or more points in your
program before running it. You may need to insert an ‘END’ or ‘STOP’
command just before the active variable analyzer subroutine to prevent
your program logic from flowing into it. You may also need to adjust your
‘CLEAR’ command so that you don’t get an ‘out of string space’ error.

4. Be sure to delete the active variable analyzer subroutine before you
SAVE your program.

Here’s a simple program that initializes some variables so we can see how the
active variable analyzer works:

1 CLEAR1G00

10 TIS="TEST PROGRAM"

20 TIS$S=" *% "LPIS4™ %% ";TPLEN(TIS)<S5THENG%=3030
30 DIMA%(3) ,B%(1,1)

40 B%(0,0)=100:B%(9,1)=B%(0,0)*2:B%(1,1)=LEN(TIS)
50 XY$=MKIS$(B%(0,0))

Now, if we MERGE the active variable analyzer and insert a ‘GOSUB 65000 :
END’ at line 60, when we type RUN, here’s what we get:

ACTIVE SIMPLE VARIABLES:

TIS " %% TEST PROGRAM ** "
XY$ "n,"
CVI(XY$) 100
ACTIVE ARRAYS:

As(9) g
A% (1)]
As(2)]
A% (3) 8
Bs(6, 0) 100
Bs(1, 0) 9
Bs(0, 1) 200
Bs(1, 1) 20

Notice that only the final content of each variable is shown. The string XYS$,
which stored the number 100 in 2-byte, MKI$ format, was automatically
converted for us. For any strings having undisplayable characters, (less than
ASCII 32 or greater than ASCII 191), a period replaces the character. Quotes are
shown on both sides of all strings to highlight any leading or trailing blanks.
Though the integer, G %, was referenced in line 20, the program logic never got to
that point so it is not included in our variable list.

46 BASIC Faster & Better

Active Variable
Analyzer
Subroutine

M 2 Note # 18

M 2 Note # 19

65000 PRINT"ACTIVE SIMPLE VARIABLES:"
65002 ZD%=0:22%=0:2Z$="":2%$(3)="":22%(0)=PEEK(16633) :22% (1) =PEE
K(16634)

65004 GOSUB65110

65006 IFZ2%(0)=PEEK(16635)ANDZz2%%(1)=PEEK(16636) THEN65030ELSEGOSU
B65130

65087 GOSUB65140:GOT065006

65030 PRINT"ACTIVE ARRAYS:"

65032 722%(0)=PEEK(16635) :2%% (1) =PEEK (16636)

65034 GOSUB65118

65036 IFz2%(0)=PEEK(16637)ANDZZ% (1)=PEEK (16638) THENRETURNELSEGOS
UB65130:GOSUB65100:GOSUB65100:GOSUB65100:GOSUB65110:2D%=22% (3) :2
Z2%=0

65038 IF2Z3=ZD%$THEN65040ELSEGOSUB65100:GOSUB65110:2%$(1)=22$(0) :
GOSUB65100:GOSUB65110:7%2%% (8+%2%) =0:22% (5+22%) =CVI(22$(1) +22$(0))
$22%=272%+1:GOT065038

65040 ZZ$=LEFTS$(22$,2):%2$(3)="(":FORZ%%=2D%TO1STEP-1:22$(3)=22$
(3) +STRS$ (22% (7+2%%))

65041 IFZZ%>1THENZZS$(3)=22$(3)+", "ELSEZ2$(3)=22$(3)+")"

65042 NEXT

65050 GOSUB65140

65051 7Z%(7+2D%)=22% (7+2ZD%)+1:IFZ2%% (7+%D%)<%2% (4+2D%) THEN65040
65052 IFZD%=1THEN65070ELSEZZ% (7+2D%) =0

65053 7Z7%(6+2D%)=22% (6+2D%) +1:IFZ%% (6+2ZD%) <Z2% (3+2D%) THEN65040
65054 IFZD%=2THEN6507@ELSEZ2% (6+2D%) =0

65055 22%(5+2D%)=2%% (5+ZD%) +1:IF22% (5+2D%) <22% (2+2D%) THEN650 40 EL
SE650870

650860 GOTO65040

650780 GOSUB65100:GOSUB65118:G0OT065036

65100 72Z%(0)=22%(0)+1:IF22%(0)=256THENZ2%(0)=0:22%%(1)=22% (1) +1
65161 RETURN

65110 22%(4)=CVI(CHRS$(22%%(0))+CHRS$(22%(1))):22%(3)=PEEK(22%(4)):
ZZ$(0)=CHR$(ZZ% (3)) :RETURN

65120 FORZZ%=1TOZZ% (2) :GOSUB65100:GOSUB65110:22$(1)=22$(1)+22S (0
) :NEXT:IFZZ$(3)=""THENGOSUB65100 :GOSUB65110

65121 IFINSTR("ZZ$27%2ZD%",%%$) THENZZS=""

65122 RETURN

65130 22%(2)=22%(3) :GOSUB65100:GOSUB65110:2%2$=2%$(0) : GOSUB65100
GOSUB65110:7%2$=%2$(0) +Z%$: RETURN

65140 Zz72S$(1)="":ON(INSTR(™ 2 3 4 8",STRS$(ZZ%(2)))=1)/2+1GOSUB651
44,65146,65160,65162

65142 RETURN

65144 22$=22$+"%" :GOSUB65120:IFZZ$=""THENRETURNELSEPRINTZZ$;2%$ (
3)TAB(28)CVI(22S(1l)) :RETURN

65146 22$=72$+"$":GOSUB65120: IFZ2$=""THENRETURNELSEPRINTZZS$;2%$ (
3)TAB(20)

65148 PRINTCHRS$(34)::2%2$(2)=CHRS$(Z%%(0))+CHRS(Z2%(1))+CHRS$(22%(2
)):2%2%=ASC(Z2Z2$(1)) :2%2%(0)=ASC(MIDS(Z22$(1),2)):22%(1)=ASC(MIDS$(z%Z
$(1),3)):228(1)="":22%(2)=22%

65156 IFZ2%$>0THEN65156 ELSEPRINTCHRS (34) :%2%2%(8)=ASC(22$(2)) :22%(1
) =ASC(MIDS(2Z2$(2),2)) o

65152 IFZ2%(2)=2THENPRINT"CVI(":22$:22$(3):;")";TAB(208)CVI(22S(1)
) ELSEIFZZ% (2) =4THENPRINT"CVS(";:22$:22$(3) ;") "; TAB(20)CVS(22$(1))
ELSEIFZ%% (2) =8THENPRINT"CVD(";2%2%$;2%$(3) ;") "; TAB(20)CVD(Z25(1))

65154 72%(2)=ASC(MIDS(ZZS$(2),3)):GOSUB65110:RETURN

65156 GOSUBGSll@:GOSUBGSlﬂu:ézs(1)=zz$(1)+zzs(ﬁ):IFzz%(3)<3zoRz

Z%(3) >191THENPRINT","; ELSEPRINTZZS(0) ;

65158 22%=2%%-1:G0T065150

65160 7272$=2Z2S+"1":GOSUB65120:IFZ2ZS=""THENRETURNELSEPRINTZZS$;22$(
3)TAB(20)CVS(ZZ$(1)) :RETURN

65162 Z272$=ZZS+"#":GOSUB65120:IF2ZS=""THENRETURNELSEPRINTZZ$;:225$ (
3)TAB(20)CVD(2ZS$ (1)) :RETURN

M 2 Note # 18

Magic Memory Techniques

Active Variable Analyzer Comments

1. We’ve sacrificed readability in this subroutine by packing the lines
and using only variables starting with ‘ZZ’ or ‘ZD’. This was done to avoid
introducing more that a few new entries into the variable list in memory,
and to simplify changes to other variable names. In case you want to
make modifications, here are the variables we used:

22% Temporary counter and working storage,

22%(0) LSB of the current address,

22%(1) MSB of the current address,

22%(2) Type code 2, 3, 4, or 8 for %, $, !, or # variables.
Also, temporary storage of string length,

22%(3) Contents of current memory address, @ - 255,

Z2%(4) Current memory address in variable storage area.

722%(5) Dimension 1, of current array.

Z272%(6) Dimension 2, of current array, if any.

22%(7) Dimension 3 of current array, if any.

722%(8) Dimension 1 counter,

22%(9) Dimension 2 counter,

27%(19) Dimension 3 counter,

VAL Current variable name.

22$(0) Contents of current memory address, CHR$ format.

228(1) Current variable or string pointer contents.

47

22$(2) Temporary storage of current address during string build.

Z272$(3) Current variable subscripts for display with arrays.

ZD% Dimension of current array. (Single, double or triple.)

2. You may ‘GOSUB 65030’ if you want arrays only. You may put a
‘RETURN’ at 65030 if you want simple variables only. Lines 65030
through 65070 are not required if you only want to display simple

variables.
3. In line 65002 we load the beginning address for simple variables in

memory. This pointer is found at memory addresses 16633 and 16634.
We know we’ve finished with the simple variables when we reach the
address indicated by the contents of 16635 and 16636. This is the
beginning the array storage area. Note that we reload the starting
address in 65032 in case you GOSUB directly to the array printing
routine. We know we’ve finished with the arrays when we get to the
address indicated by the contents of memory locations 16637 and 16638.
4. Subroutine 65100 increments our address for us. This pattern is useful
in many applications which require a byte-by-byte ‘read’ through
memory. We add 1 to the LSB of the address. If the LSB reaches 256, we

set it back to zero and add 1 to the MSB of the address.
5. Subroutine 65110, for programming convenience and memory

efficiency, (at the expense of speed), converts the LSB and MSB back to
an integer-format address. Then it gets the ‘peek’ value of the current
address, converts and stores the CHR$ of the peek value.

6. Subroutine 65120 builds a string containing the contents of the

current variable at the current address.) _
7. Line 65121 checks to see if the variable name is part of the active

variable analyzer subroutine. If you want to bypass other variable
names, you can insert those names in this line, or you can make a
modification here so that only those variables you specify are printed. If
the variable is in the ‘by-pass’ list, ZZ$ is set to a null string.

48 BASIC Faster & Better

8. Subroutine 65130 builds the variable name.

9. Subroutine 65140 directs the logic to the proper subroutine for integer,
string, single precision, or double precision.

10. If you don’t want to display the CVI, CVS, and CVD conversions for
2-, 4-, and 8-byte strings, you can delete line 65152.

11. If you make an LPRINT version of this subroutine, you may need to
change the ‘191’ in line 65156 to a lower number, such as 128. Many

printers use ASCII characters above 128 for special control codes.

The ‘Move-Data’ Magic Array

Many special effects and high-speed techniques involve nothing more than
moving, (or more accurately described, ‘copying’) a block of data from one location
in memory to another. With special Z-80 machine language subroutines, we can
perform this function instantaneously. We simply specify the ‘from’ address, the
‘to’ address, and the number of bytes to move.

The Z-80 has two instructions that are especially useful for moving data, LDIR
and LDDR. To illustrate how they work, lets assume we have a block of 16 bytes
in memory. We’ll number them starting at zero, but they could start at any
location, from 0 to 65535. Let’s also assume that the first 4 bytes of this memory
block contain the word ‘DATA’:

<BB><BL><B2><B3><PA>KB5>KBE6><BT><BB>KPI><LIB><11><L2><13><14><15>
D A T A ? ? ? ? ? ? ? ? ? ? ? ?
To move (or copy) the word ‘DATA’ to location 6, the LDIR command would
first move the ‘D’ to location 6, then the first ‘A’ to location 7, the “TI” to location
8, and the final ‘A’ to location 9. After this move, our memory block looks like this:

<BB><BL><B2><P3><P4><B5><B6><BT><BB><BI><LP><1I><12><13><14><15>
D A T A ? ? b A T A ? ? ? ? ? ?

We’ve just done a move of 4 bytes from location 0 to location 6.

The LDDR command can perform the same function, but it starts with the final
‘A’ in ‘DATA’ and works down to the ‘D’. It first moves the ‘A’ from location 3 t6
9. Then it moves the “I” from location 2 to 8, the ‘A’ from location 1 to 7 , and
finally, the ‘D’ from location 0 to 6.

These two methods of moving data are interchangeable when our source and
destination don’t overlap. But let’s suppose we want to move 4 bytes from location
0 to 1. Starting with our original memory contents, the Z-80 LDIR command
would move the ‘D’ in position 0 to 1. Then it would move the contents of memory
location 1, which is now ‘D’, to position 2. It would continue this a total of 4 times
so our result is:

<BB><O1><B2><B3><P4><B5><B6><OT><PB><PI><KLB><LL><12><13><14><15>
D D D D D ? ? ? ? ? ? ? ? ? ? ?

On the other hand, the LDDR command ‘pulls-up’ the memory we want to copy,
starting at the last byte. To move the word ‘DATA’ up 1 position, we can tell the
LDDR command to move 4 bytes from position 3 to 4. Working with aur original
memory contents and the LDDR command, we get:

<@0><B1><B2><P3><P4><P5><P6><BT><BB><PI><IP><L1><12><13><14><15>
D D A T A ? ? ? ? ? ? ? ? ? ? ?

Move Data Magic
Array
Demonstration
Program

M 2 Note # 20
M 2 Note # 21

Magic Memory Techniques 49

We call this an ‘overlapping’ move because the new data overlaps the old data.

In Z-80 machine language the LDIR and LDDR commands operate based on the
contents of 3 registers: HL, DE, and BC. (If you don’t speak ‘Z-80’, you can think
of HL,, DE, and BC just as you would think of 3 integer variables in BASIC.) The
HL register specifies the ‘from’ address, the DE register specifies the ‘to’ address,
and the BC register specifies the number of times to copy a byte from one address
to the other. The LDIR command increments the ‘from’ and ‘to’ addresses after
each byte is moved. The LDDR command decrements the ‘from’ and ‘to’
addresses after each byte is moved. For LDIR and LDDR, the BC register is
decremented after each byte is moved. When BC reaches 0, the multi-byte move
is complete.

We can take advantage of these high-speed move capabilities in BASIC with the
‘move-data magic array.” We simply load the required Z-80 codes into an
8-element integer array, do a DEFUSR to point a USR routine address to the first
element of that array, and with the USR function, we execute the move.

Here are the Z-80 codes that go into the move-data magic array:

Element 0: 8448

Element 1: ‘From’ address.

Element 2: 4352

Element 3: “T'o’ address.

Element 4: 256

Element 5: Number of bytes to move.

Element 6: —20243 for LDIR, or —18195 for LDDR
Element 7: 201

You’ll normally want to pre-load elements 0, 2, 4, and 7 because they are
constant for any type of move you might want to make. You might also want to
pre-load element 6 with —20243 if you aren’t going to be doing any overlapping
moves, or if you won’t need to do any LDDR moves.

To demonstrate a few moves, let’s play with video display memory which
occupies addresses 15360 to 16383. Type in the following program:

10 DEFINT A-% : J=0 s A$=""
20 US(P)=8448:US(2)=4352:US(4)=256:U5(7)=201
30 CLS: PRINT"MOVE-DATA DEMO"

40 PRINT@ 64,"FROM "t INPUT US(1)
50 PRINT@128,"TO ": s INPUT US(3)
60 PRINTE192,"# BYTES: " ¢ INPUT US(5)

780 PRINT@256 ,"I=LDIR, D=LDDR ";:INPUTAS

71 IFA$="D"THEN US(6)= -18195 ELSE US(6)= -206243
80 DEFUSR=VARPTR(US(@)) :J=USR(0)

90 GOTO 40

50 BASIC Faster & Better

M 2 Note # 22

Now, before you run the move-data demo program, save your program and, as
a precaution, remove your disks or make backups. If you accidentally type an
incorrect number you could move data to a memory location containing vital
BASIC or DOS pointers. This could trigger a command that could ‘kill’ a disk.
(Believe me, I know from experience!) The move-data routine is powerful so it’s
important to know where the data will go, and how much will be moved. If you
follow the examples carefully you shouldn’t have any problem.

Example 1: To copy the top half of the screen to the bottom half, type RUN,
and enter ‘15360’ as the from address, ‘15872’ as the ‘to’ address, and ‘612’ as the
number of bytes. When you enter ‘I’ for LDIR mode, it will be duplicated
instantly.

Example 2: To copy the title MOVE-DATA DEMO’ from position 0 to 32 on
your display:
From = 15360,
To = 15392,
Bytes = 14,
‘T for LDIR

Example 3: To copy the contents of the first 512 bytes of ROM to the bottom
half of your video display:

From = 0,

To = 15872,

Bytes = 512,
‘T for LDIR

Example 4: To give the illusion of shifting the data you just copied from ROM
to the bottom of our screen:

From =1,

To = 15872,

Bytes = 512,
‘T’ for LDIR

Example 5: To do an overlapping move-up, so that the MOVE-DATA DEMO’
title will move over 5 positions, giving us ‘MOVE-MOVE-DATA DEMO’ in the
upper left corner:

From = 15373,
To = 15378,

Bytes = 14,

‘D’ for LDDR

Example 6: To fill the screen with M’s, (assuming position 0 is still displaying
an ‘M’):
From = 15360,
To = 15361,
Bytes= 1023,
‘T’ for LDIR

Many other examples are possible. Be careful however, not to enter 0 for the
number of bytes to move. This is very important if a Z-80 LDIR or LDDR

Magic Memory Techniques 51

command gets a 0 as the parameter in BC, it will loop through 65536 moves. The
result is always disasterous to the current contents of memory.

The following chart gives you a convenient reference for the types of operations
you may wish to perform with the move-data magic array, and how to load
elements 1, 3, 5 and 6, This chart is also helpful if you are writing assembly
language programs:

NON-OVERLAPPING MOVE UP OR DOWN

2 0 g 0 G G G € € G e Gl e e G D O G I G R S G G G G0 € S €500 G G €E50 55 €0 S5 €I e e 20 Sioe e (e Siae G0 CHke SN € S GRG0 0 (00 XD Gl G S e G 0 G G S0 S0

ELEMENT 1 (HL) FROM ADDRESS

ELEMENT 3 (DE) = TO ADDRESS
ELEMENT 5 (BC) = NUMBER OF BYTES TO MOVE
ELEMENT 6 (LDIR) = -=20243

OVERLAPPING MOVE UP

LAST BYTE OF BLOCK TO BE MOVED UP
LAST BYTE OF DESTINATION

NUMBER OF BYTES TO MOVE

=18195

ELEMENT 1 (HL)
ELEMENT 3 (DE)
ELEMENT 5 (BC)
ELEMENT 6 (LDDR)

owonn

OVERLAPPING MOVE DOWN

= e em B T T i el L L T T T pp s ——"

ELEMENT 1 (HL) FROM ADDRESS

ELEMENT 3 (DE) TO ADDRESS (LOWER THAN FROM ADDRESS)
ELEMENT 5 (BC) NUMBER OF BYTES TO MOVE

ELEMENT 6 (LDIR) =20243

nownn

UPWARD PROPAGATION OF A BYTE PATTERN

ELEMENT 1 (HL) = ADDRESS OF FIRST BYTE OF PATTERN

ELEMENT 3 (DE) = ADDRESS OF FIRST BYTE OF FIRST DUPLICATION

ELEMENT 5 (BC) = NUMBER OF TIMES THE PATTERN IS TO BE
DUPLICATED (NOT INCLUDING ORIGINAL)
MULTIPLIED BY THE PATTERN LENGTH

ELEMENT 6 (LDIR) =20243

DOWNWARD PROPAGATION OF A BYTE PATTERN

ELEMENT 1 (HL) = ADDRESS OF LAST BYTE OF PATTERN
ELEMENT 3 (DE) = ADDRESS OF FIRST BYTE OF PATTERN - 1
ELEMENT 5 (BC) = NUMBER OF TIMES THE PATTERN IS TO BE
DUPLICATED (NOT INCLUDING ORIGINAL)
MULTIPLIED BY THE PATTERN LENGTH
=18195

ELEMENT 6 (LDDR)

Here are some examples of applications for the move-data magic array:
1. Insert and delete operations on the video display.

2. Up or down scrolling for complete or partial screens. Scrolling to and
from protected memory.

3. Saving the video display in protected memory, and later, restoring it.

4. Moving data to protected memory so that it can be passed from one
program to another.

5. Inserting and deleting array elements.

52 BASIC Faster & Better

M 2 Note # 7

6. Moving data from a random disk buffer directly to video display
memory, without fielding. Saving video display screens on disk, 256
bytes at a time by moving data from the video display to the disk buffer,
followed by a PUT command.

7. Moving a relocatable USR routine from one address in memory to
another.

8. High-speed loading of elements into numeric arrays from disk, and
high-speed recording of numeric arrays on disk. For integer arrays, up to
128 elements can be loaded or recorded instantly.

9. Clearing memory, or loading repeating byte patterns into memory.
Graphics effects.

10. Instant duplication of array elements.

11. Moving data or USR routines directly from the disk buffer to
protected memory.

As you can see, the move-data magic array is quite useful, and it’s extremely
fast. We’ll be getting into the specifics of some of its applications in other sections
of this book.

A Deluxe Move-Data USR Routine

Here’s a USR subroutine that performs an instant move of a block of memory
from an address to any other address. The MOVEX USR subroutine performs the
same function as the move-data array, with these differences:

1. You can pass the ‘from’, ‘to’, and ‘number-of-bytes’ arguments to the
MOVEX USR routine with a single BASIC expression. This can make it
more convenient for you when programming, and your program
execution speed will be slightly faster than with the move-data magic
array.

2. It handles any move, including overlapping upward and downward
moves. You don’t have to decide whether to use LDIR or LDDR, as you
do with the move-data magic array. You can’t ‘propagate’ a pattern of
bytes in memory, as you can with the move-data magic array.

3. Though MOVEX requires 88 bytes, compared to the 16 required by
the move-data magic array, in most applications you’ll have a net savings
in memory with MOVEX. This savings is possible because your BASIC
program has to do fewer computations, and you have the single
expression argument passing capability.

4. MOVEX employs the ‘USR routine multiple-argument handler’.
Because of this, you will have to first decide which USR number you’ll
use (USRO - USR9), and you may need to modify 2 bytes depending on
the DOS you’re using.

To illustrate a MOVEX call from BASIC, let’s say you want to copy the top half
of the video display to the bottom half. Assuming you’ve loaded and defined
MOVEX as USRO, your command is:

J=USR(15360) ORUSR(15872) ORUSR(512)

Magic Memory Technigues 53

To shift the contents of the top line on the video display right 1 position use:
J=USR(1536%) ORUSR(15361) ORUSR(63)

To shift the top line left 1 position:

J=USR(15361) ORUSR(15360) ORUSR(63)

To scroll-up any portion of the video display, where Li% is the beginning
PRINT@ position of the scrolling portion, and LV% is the number of lines to
scroll, you can say:

J=USR(15360+LI+64)ORUSR(15360+LI)ORUSR(64*(LV-1))
PRINT@15360+LI+(LV-1) *64,CHRS(38) 3

As you’ve probably deduced by now, you call MOVEX with an expression in the
following format:

J%$=USR(F%) ORUSR({T%) ORUSR(B%)

Where the integer variables are:

J % is a dummy variable. (The new contents are useless to your program
after the call).

F% is an integer variable, constant, or expression specifying the ‘from’
address.

T% is an integer variable, constant, or expression specifying the ‘to’
address.

B% is the number of bytes to move. Important: B must be non-zero!

The ‘magic-array format’, ‘poke-format’ and assembly listing for MOVEX are
shown below. As shown, it will execute as USRO with the NEWDOS 2.1 disk
operating system. To use it as another USR routine (USR1 - USR9) with
NEWDOS 2.1, or to use it on another operating system, refer to Appendix 2 and
use the following guidelines:

1. For execution as a magic array, replace the 4th element, 23316, with
the the required integer from Appendix 2. For example, if you are using
TRSDOS 2.3 and you want to execute MOVEX as USRG, you find 5B83
in Appendix 2. Converting to decimal, 5B83 is 23427, so the 4th element
would be 23427.

2. If you are poking the MOVEX routine, replace the 7th and 8th bytes,
20 and 91, with the required bytes from Appendix 2. For example, if you
are using NEWDOS 2.1 and you want to execute MOVEX as USR9, you
find 5B26 in Appendix 2. The 7th byte should be 26, (38 decimal), and the
8th byte should be 5B. (91 decimal.)

3. If you are re-assembling MOVEX, replace the 5B14 in line 160 of the
assembly listing with the required hexadecimal number.

MOVEX/DEM is a demonstration program for the MOVEX routine. It lets you
input ‘from’ and ‘to’ addresses, plus the ‘byte count’. The routine is loaded into a
magic array from data statements so that you won’t have to protect memory when

54 BASIC Faster & Better

loading BASIC. Remember, though, that you’ll need to change the ‘23316’ in line
31 if you are using an operating system other than NEWDOS 2.1 on a TRS-80
Model 1.

You’ll find this a useful program to keep in your disk library. I most often use
it to move relocatable USR routines from one address to another.

MOVEX
Beluxe Move Data 00000 ;MOVEX
USR Subroutine peoael ;
FOO0 polo6 ORG GFO00H $ORIGIN - RELOCATABLE

00119 ;

00120 ;THE FOLLOWING LOGIC ACCEPTS THE 3 ARGUMENTS

B139 ;

FO68 CD7F8A 30140 CALL OATFH s PUT ARGUMENT IN HL
FGO3 00 pa150 NOP :NO-OP FOR ALIGNMENT
FOB4 DD2A145B 00160 LD IX, (05B14H) s IX HAS DEFUSR ADDRESS
FE®8 DD7531 BB176 LD (IX+49) ,L :
FOOB DD7432 60180 LD (IX+50) ,H :LLD ARG TO STORAGE AREA
FOOE DD348A 00196 INC (IX+10) H
FOll DD346A 00200 INC (IX+19) ¢ADD 2 TO POINTER
F@l4 DD340D 662106 INC (IX+13) :
F@17 DD340#D 60220 INC (IX+13) sADD 2 TO POINTER 2
FBlA DD7EGA 00230 LD A, (IX+19) H
FG1lD 8631 00240 LD B,49 ;
Fglr 90 090250 SUB B ;A = ARGS PASSED *2
FB206 DD4630 po260 LD B, (IX+48) :B = ARGS REMAIN #*2
FG23 99 00270 SUB B ?
FG24 2801 00280 JR Z,PASS] sIF 8 NO MORE ARGS
F@26 C9 60290 RET sOTHERWISE, RETURN FOR NEXT
FG27 DD360A3) 003008 PASSL LD (IX+10) ,49 H
F@G2B DD360D32 006310 LD (IX+13) ,50 s RESTORE COUNT
F@2F 18066 p0320 JR START :
FO31 0600 60330 DEFW) : STORAGE FOR "FROM" ADDRESS
FG33 06000 60340 DEFW] ;s STORAGE FOR "TO" ADDRESS
FO35 0000 60350 DEFW 7] s STORAGE BYTES TO MOVE
s #6351 ;

@@352 ;THE FOLLOWING LOGIC PROCESSES THE MOVE

00353 ;
F@37 E5 #0368 START PUSH HL s LAST ARGUMENT IS STILL IN HL
F@g38 Cl 6e379 POP BC :# OF BYTES TO MOVE NOW IN BC
F@#39 DD6E31 00380 LD L, (IX+49) :
F@3C DD6632 pB390 LD H, (IX+50) :"FROM" ADDRESS IN HL
FOA3F E5 po4aADO PUSH HL :SAVE "FROM" ADDRESS ON STACK
FG40 DD5E33 pB410 LD E, (IX+51) ;
F043 DD5634 p04aA20 LD D, (IX+52) : "TO" ADDRESS IN DE
F46 B7 00430 OR A s CLEAR CARRY FLAG
FP47 ED52 00440 SBC HL,DE ; SUBTRACT "TO" FROM "FROM"
FG49 E1 00450 POP HL :RESTORE "FROM" ADDRESS FROM STACK
FP4A 3803 00460 JR C,MOVEUP sMOVE UP IF "TO"™ IS GREATER
FOAC EDBO 60470 LDIR sOTHERWISE, MOVE THE BLOCK DOWN
FP4E C9 0480 RET ¢ RETURN TO BASIC
FO4F 0° 0499 MOVEUP ADD HL,BC ¢HL HAS END OF BLOCK TO MOVE + 1
Fp506 2B 80500 DEC HL ;HL HAS END OF BLOCK TO MOVE
FO51 EB 00510 EX DE, HL ;HL HAS "TO" ADDRESS
F@52 09 BO520 ADD HL,BC :HL END OF "TO" BLOCK + 1
FO53 2B 08530 DEC HL {HL END OF "TO" BLOCK
F@54 EB PB540 EX DE, HL :HL=END OF "FROM", DE=END OF "TO"
F855 EDBS8 806550 LDDR :MOVE THE BLOCK UP
F@57 C9 00560 RET s RETURN TO BASIC
FO4AF 00570 END ;

#0000 TOTAL ERRORS

Magic Memory Techniques 55

MOVEX Magic Array Format, 44 elements:
Deluxe Move. Data
USR Subroutine 32717 10 10973 23316 30173 =-8911 12916 13533 -8958
M 2 Note # 23 2612 13533 -8947 3380 32477 1546 -28623 18141 -28624
296 =-8759 2614 -8911 3382 6194 6)]
-6912 -8767 12654 26333 =6862 24285 -89049 13398 -4681
=7854 824 -20243 2505 -5333 11017 -4629 -13896
Poke Format, 88 bytes:
205 127 10 @ 221 42 26 91 221 117 49 221 116 50 221 52
190 221 52 1@ 221 52 13 221 52 13 221 126 190 6 49 144
221 70 48 144 49 1 201 221 54 10 49 221 54 13 50 24
6 [} [} /]] 0 @ 229 193 221 116 49 221 102 58 229
221 94 51 221 86 52 183 237 82 225 56 3 237 176 201 9
43 235 9 43 235 237 184 201
MOVEX/DEM 10 DEFINTA-Z :J=0
Move Data
Demonstration and 30 'LOAD MOVEX USR ROUTINE INTO A MAGIC ARRAY
Utility 31 DATA 32717, 16, 18973, 23316, 36173,-8911, 12916, 13533,-8958
M 2 Note # 21 , 2612, 13533,-8947, 3380, 32477, 1546,-28623
M2 Note #2 3 32 DATA 18141,-28624, 296,-8759, 2614,-8911, 3382, 6194, 6, 0, 0
M 2 Note # 2 4 ¢=6912,-8767, 12654, 26333,-6862
33 DATA 24285,-8909, 13398,-4681,-7854, 824,-20243, 2505,-5333,
11017 ,-4629,-13896
34 DIM UX(43) :FORX=0TO043:READ UX(X) :NEXT
109 CLS:PRINT"MOVEX DEMONSTRATION AND UTILITY"
110 PRINT@ 64,"MOVE FROM: "; s INPUTMF$%
120 PRINT@128,"MOVE TO: "; s INPUTMTS
130 PRINT@192,"NUMBER OF BYTES ";:INPUTNB%
131 IFNB$=@THEN130
140 DEFUSR=VARPTR(UX(9))
150 J=USR(MF%)ORUSR(MT$) ORUSR(NB%)
160 GOTOllp
JOURNEY/DEM is a modification to the MOVEX/DEM program. It gives you
a quick visual §ourney’ through memory. The bottom line of your video display
will show the current address, in increments of 64, while the contents of memory
scrolls on the top portion of your video display. Besides demonstrating the speed
of the MOVEX routine, you can use the journey program to get an idea of what’s
in memory and where it is.
Torun JOURNEY/DEM, delete lines 100 through 160 from the MOVEX/DEM
program, and add the following lines:
JOURNEY/DEM 100 CLS:A=0:DEFUSR=VARPTR(UX (D))
Modifications to 110 FORX=-1T032766STEP64 :A=X+1:GOSUB200 : NEXT
MOVEX/DEM 12¢ FORX=-32768TO0STEP64 :A=X:GOSUB200 : NEXT
M 2 Note # 25 139 END

200 PRINT@990 ,A;:J=USR(A)ORUSR(15360) ORUSR(968) : RETURN

56 Chapter 5

BASIC Overlays

Passing Variables Between Programs

Any time you issue a RUN or LOAD command, all variables that were
previously active are cleared so the new program can start with a clean slate. But
there are many situations where you don’t want those variables cleared as you go
from one program to another.

If you can pass variables between programs, you can divide your application into
smaller programs. With smaller programs, you have more memory available for
storage of variables. One program, for example, might load in data from keyboard
entry or disk. The next program might process that data, and a third program
might provide a printout.

Before you can use the variable-passing subroutines must know that variables
are stored immediately above your BASIC program textin memory. Let’s suppose
as an example, that you have written this program:

10 X%$=1

20 A%=2
30 S$=STRINGS(5,"X")

When you run the program, the contents of X% will be stored in memory just
above the address where line 30 is stored. The contents of A% will be stored just
above the contents of X % . And just above the location where A % is stored, BASIC
will record a pointer that indicates the length and location of the contents of S$.
The five X’s ‘contained in’ S$ will be stored just below the top of memory as you
defined it with your answer to the ‘ MEMORY SIZE?’ question. Had you defined
one or more arrays in the program, they would have been stored just above your
simple variables, integers X%, A% and S$.

The area of memory that stores all the active variable names, type codes,
dimensions, numeric values and string data pointers is called the variable list.
Because the variable list starts just above the program text, the starting location
of your variables in memory will depend on the length of the program you have
loaded. To pass variables, we override this feature of BASIC, and we decide on a
fixed location to begin the variable list. The location we select will be just above
the ending address of the longest program we’ll be using.

Here’s how to find the first available address, beyond the end of your longest
program:

1. Load your program, making sure that you answer the ‘ HOW MANY
FILES?’ question the same way you’ll be answering it when you’ll be

M 2 Note # 26

Variable List
Pointer Subroutine

M 2 Note # 27

Variable Pass
Subroutine

M 2 Note # 28

BASIC Program Overlays 57

running the program in actual practice.

2. Enter the following commands:

CLEAR

PRINT CVI (CHRS (PEEK (&H4@F9)) +CHR$ (PEEK (&H40FA)))

3. Add 17 to the number displayed. The result is the lowest address that
you may use for the beginning of your variable list if you wish to pass
variables between programs. In actual practice, you may want to add 300
or more to this address so that if you make minor modifications that
lengthen your program, you won’t have to recompute and reprogram a
starting address for your variable list.

Now, here’s how we force our variables to be stored starting at the fixed location
we’ve chosen. In the first program we’ll be running, we do a ‘GOSUB 52000’ as one
of the first commands. This GOSUB must be executed before we use any
variables. Subroutine 52000 modifies BASIC’s three pointers that determine the
start and end of the active variables:

52000 A$="":FORA%=1TO3:A$=A$+MKI$ (30000) :NEXT:ANS="XXXXXX" : POKEV
ARPTR (ANS) +1, §HF9 : POKEVARPTR (ANS) +2 ,&H40 : LSETANS$=AS$:A$="" : RETURN

You should change the ‘30000’ in subroutine 52000 to the address you wish to
use as the start of your variable list.

Note: The subroutine 52000 uses an interesting method of poking the
new pointers into the 6 bytes starting at 40F9. We first create a string,
(A$) that contains the 6 bytes to be poked. Then we modify the
VARPTR of AN$ so that AN$ points to the address 40F9 for 6 bytes.
Finally, we LSET A$ into AN$. The LSET command gives us an instant
6 byte poke. Had we tried to poke the 6 bytes with individual poke
commands, BASIC would get confused because the first 2-byte pointer
would only be ‘half-poked’ after the first command.

The final A$=" in subroutine 52000 sets up A$ as the first variable to be
initialized. The ‘variable-pass’ subroutine, and ‘variable-receive’ subroutine both
expect to find A$ as the first variable of our variable list.

Subroutine 52100 is the ‘variable-pass’ subroutine. When you want to pass
variables from one program to another you ‘GOSUB 52100’, then RUN the new
program. Subroutine 52100 loads A$ with all the pointers that BASIC is currently
maintaining. Among other things, the 104 bytes loaded into A$ will contain the
starting location of our simple variables, the starting and ending location of any
arrays that may be active, the current status of our string storage area and the type
declarations (DEFSTR, DEFINT, DEFSNG, or DEFDBL) that may be active.

S e e e e

52100 AN$="":POKEVARPTR(ANS) ,104:POKEVARPTR(ANS)+1,&HB3 : POKEVARP
TR(ANS) +2,&H40 : AS=STRINGS (104,0) : LSETA$=ANS$: RETURN

The final requirement of the variable-passing technique is that for a program to
receive the variables, it must ‘GOSUB 52200’ as its first command. The line that
calls subroutine 52200 must contain no other program statements. Subroutine

58 BASIC Faster & Better

Variable Receive
Subroutine

M 2 Note # 28

VARPASS/DEM

Variable Passing
Demonstration
Program

M 2 Note # 27
M 2 Note # 28

52200 is the ‘variable-receive’ subroutine. It must know the fixed address that
you’ve chosen for the start of variable storage. Knowing this, and knowing that A$
was the first variable you defined in the previous program, it reconstructs a
temporary A$ to retrieve the 104 bytes of pointers that you saved in the string
storage area of memory. Finally, it points AN$ to BASIC’s communications
region, and instantly ‘pokes’ the 104 bytes back in with an LSET command.

52200 A$="":FORA%=0TO02:POKEVARPTR(AS) +A% ,PEEK (30000+A%+3) :NEXT:A
N$="" : POKEVARPTR (AN$) ,104 : POKEVARPTR(ANS) +1 , 8HB3 : POKEVARPTR (ANS)
+2,&H40 : LSETANS=AS : RETURN

You should change the ‘30000’ in subroutine 52200 to the address you’ve chosen
as the start of your variable list.

To see how the variable passing technique works, you can enter the following
two programs. VARPASS/DEM initializes the variable list at memory location
30000. It then creates and displays several variables. Finally it calls the
‘variable-pass’ subroutine and runs the second program, VARPASS/RCV. The
first action taken by VARPASS/RCV is to recover the variables generated by
VARPASS/DEM. It does this by calling subroutine 52200. In line 2 of
VARPASS/RCV, A$ is set back to a null string because the 104 bytes used for
passing BASIC’s pointers is no longer needed. Finally VARPASS/R;CV displays
the variables that it has recovered.

You should be aware that VARPASS/RCYV, as it is written, cannot be run
directly. The RUN“VARPASS/RCV” command must be executed by
VARPASS/DEM.

@ 'VARPASS/DEM
1 CLEAR150
2 GOSUB52660

20 C$="CAT"+"":D$="DOG"+""
30 DATA1,2,3,4,5,6,7,8,9,10
31 FORX=1TO1@:READAS (X) : NEXT
40 Al=123:A#=456

1806 CLS

116 PRINT"PROGRAM 1 - VARIABLES ARE:"

120 PRINT"CS$=";C$;TAB(20) ;"D$=":D$

136 PRINT"A%()="; :FORX=1TOl10:PRINTA% (X) ; :NEXT:PRINT
140 PRINT"A!=";Al;TAB(20) ;" "A#=";A%

200 GOSUB52106:RUN"VARPASS/RCV"™

52000 A$="":FORA%=1TO03:A$=A$+MKI$ (30000) :NEXT:ANS="XXXXXX": POKEV
ARPTR(ANS$) +1 , &8HF9 : POKEVARPTR (AN$) +2 , &H40 : LSETANS$=AS$: A$="" : RETURN

52100 AN$="":POKEVARPTR(ANS) ,104:POKEVARPTR(ANS)+1,&HB3 : POKREVARP
TR(ANS) +2 ,&H40 s A$S=STRINGS (104 ,0) : LSETA$S=ANS : RETURN

VARPASS/RCV

Variable Receiving
Demonstration
Program

M 2 Note # 28

BASIC Program Overlays 69

°'VARPASS/RCV
1 GOSUB52208
2 Ag=""

100 CLS

110 PRINT"PROGRAM 2 - VARIABLES ARE:"

120 PRINT®CS$=%;CS$;TAB(20);"D$=";D$

130 PRINT"A%()=";:FORX=1TO10:PRINTA% (X) ; :NEXT:PRINT
140 PRINT"AI=";Al:;TAB(20); "A#=";A#

200 END

52200 A$="":FORA%=0TO2:POKEVARPTR(AS) +A% ,PEEK (30000+A%+3) :NEXT:A
N$="" s POKEVARPTR (ANS$) ,104 : POKEVARPTR (ANS) +1 , &HB3 s POKEVARPTR (AN$)
+2,&H40 : LSETAN$=AS : RETURN

The Ultimate Memory Saver

Large computers use sophisticated techniques that automatically load small
blocks of program logic from disk as they are needed. This makes it possible to
execute programs that are, in effect, larger than the available memory. With the
subroutines and procedures we’ll discuss in this section, you can do the same thing
on your TRS-80! I’'m sure you’ll find, as I did, that when you implement these
techniques, your programs will enter a whole new ‘generation’ of performance
capabilities.

We'll call each group of BASIC program lines loaded with this technique an
‘overlay’ or ‘sub-program’ and refer to the lines that remain in memory as our
‘master program’. Overlays can be loaded for limited operations or subroutines.
They can also be major blocks of program logic which act as sub-programs. Here
are some of the advantages of the BASIC program overlay technique:

1. You can, in effect, go from one ‘program’ to another, retaining all
variables that are in use. You can also leave your disk files open as you
roll in overlays.

2. Common routines and subroutines can remain in memory as you go
from one sub-program to another. Because of this, you don’t have to
repeat your ‘housekeeping’ logic in each program, and — you don’t need to
repeat those subroutines that are ‘standard’ to the overall application in
each program. Because you can look at every application as a group of
modules, with little or no logic being repeated, you save disk space. Since
you only load what you need, when you need it, your effective ‘load’ time
may be faster.

3. Because your sub-programs share the same standard subroutines and
housekeeping logic, you save time when you need to make modifications.
Let’s say, for example, you want to change a disk file layout. Instead of
changing it in several different programs, you only need to change it once
if you’ve got your disk handling subroutine in the master program.

4. Program execution speeds can improve because you have less text in
memory at any one time. BASIC doesn’t have to search as far when it
receives a GOTO or GOSUB command. Since you will be able to reserve
more space for string storage, you’ll have fewer delays for string
reorganization.

60 BASIC Faster & Better

5. An overlay program can ‘GOTO’ or ‘GOSUB’ to any line in the master
program. The master program can execute GOTO’s or GOSUB’s to any
line in the overlay program. One overlay program can even load another.

6. You can make almost any large application run in as little as 1 K of
memory! Of course you wouldn’t want to run that ‘tight’ because
performance would be seriously degraded by the continual loading of
overlays from disk. But in practice, the ability to significantly reduce the
memory space required for program text lets you have more space for
string and variable storage, and, if you need it, more space for protected
memory at the top of RAM.

We'll be discussing two methods for loading overlays. A ‘top-loaded’ overlay is
loaded above the master program in memory. With the top-loaded method, all
line numbers in the overlay must be higher than the highest line number in the
master program. The top-loaded method also makes it very easy to load in more
than one, stacking each above the other in memory.

A ‘bottom-loaded’ overlay is rolled in from disk below the master program in
memory. Allline numbers in a bottom-loaded overlay must be lower than the line
numbers in the master program. I most often use bottom-loaded overlays because
most of my standard subroutines are above line 30000 and I prefer to leave them
in memory with my master program. Top-loaded overlays, however, are easier to
understand and implement.

Here’s an example of how I use bottom-loaded overlays in my general ledger
system:

Starting at line 30000 I have the ‘master program’. This master program
is stored on disk as ‘MENU/GL’. It contains all of my function call
definitions, the master menu logic, (which lets the operator select the
operation to be performed), and my standard subroutines. The standard
subroutines used by the system provide the logic for disk file handling,
keyboard entry, and video display formatting. Program overlays are
loaded with a short routine at line 53000. It loads an overlay program
from disk by file name and begins execution at line 1 of the overlay
program.

Then, I have an overlay program for each major operation to be
performed by the general ledger system. The line numbers in the overlay
programs range from 0 to 29999. The overlay programs are:

"OPENFILE/GL" - To open all files upon startup.

"INQUIRY/GL" - To allow account additions, changes, and inquiries.
"INPUT/GL" - To allow entry of general ledger transactions,
"POST/GL" - To process transactions that have been entered.
"REPORTS1/GL" - To print certain standard general ledger reports.
"REPORTS2/GL" - To print another group of standard reports.
"BUDGETS/GL" - To allow entry of budget amounts.

"FORMAT/GL" - To allow custom formatting of financial statements.
"FINSTMTS/GL" - To print customized financial statements.
"CHECKINQ/GL" - To allow check register inquiries.

"CHECKREG/GL" - To print check register reports.

BASIC Program Overlays 61

Each overlay program takes about 5K of memory or less, and the master
program takes about 8K. All together, the system has about 63K of program logic,
but no more than 13K is in memory at any one time. Using ‘normal’ techniques,
it would be impossible to store all the programs on one 35-track single density disk,
because standard routines would have to be repeated with each program.

What do I do with all the memory I save? I protect the top portion of RAM for
my general ledger account nunbers. They are loaded from disk upon startup with
the ‘OPENFILE/GL’ overlay. Because the account numbers are in memory, I can,
in under a second, search for any account number, from any sub-program and
access the proper disk record. Also, I've got plenty of space for arrays and
variables.

As for performance, the operator thinks it’s one program. There’s just a slight
delay of 5 seconds or so when a new function is selected.

To use BASIC program overlay techniques, you’ll first need an understanding
of the way that your computer stores programs in memory and on disk. Then
you’ll need to understand the theory behind each overlay technique. Finally, we’ll
be able to go into the specifics of how to use them. You’ll find that once you know
the theory, it’s very easy to write and use overlay programs.

Top-Loaded Overlay Theory

The top-loaded overlay technique uses many of the same principles that we
implemented when we discussed how to pass variables between programs. Here
are the key ideas:

1. We decide upon a fixed address in memory to begin the variable list.
Since the length of our program text will vary as we load in overlays of
different lengths, we force the simple and array variable list to begin at an
address that is just above the highest end-of-text we will have when the
longest overlay is in memory.

2. Before loading an overlay program we determine the address of the
next byte following our master program’s text. We poke the beginning of
text pointers at 40A4 and 40A5 with this address. Then we do a ‘LOAD,R’
for the overlay program, causing it to be loaded immediately following
our master program text.

3. The ‘LOAD,R’ option loads and runs a program. It will leave disk files
open, but under normal methods, it will clear all variables. To avoid
clearing variables, immediately before the load, we store the critical
pointers in a 104-byte string, up in the string storage area of memory.

These pointers, which during normal operation are between 40B3 and 411A,
specify the current status of the variable list. Upon completion of the load, we
move these pointers back into their normal storage area and our variables are

restored.

62 BASIC Faster & Better

4. The first instruction of each overlay program restores the beginning of
text pointer so that it again points to the beginning of the master
program. Upon completion of this poke, the master and overlay
programs are both active and can operate as one!

Bottom-Loaded Overiay Theory

1. We decide on a fixed address in memory to begin our master program,
so that we’ll have enough space to load the longest overlay just below it
in memory. Before loading the master program, a startup program is
required to poke 40A4 and 40A5 with the desired beginning of text
address for the master. (I also use this startup program to load any USR
routines that I might need, as well as to allow the operator to enter the

date.)

2. We load each overlay as required with a ‘LLOAD,R’ command. Just
before a load, though, we copy the critical pointers, starting at 40B3, into
a 104-byte string up in the string storage area of memory and poke our
beginning of text pointer so that it will point to the desired load address
of our overlay.

3. The first task of an overlay is to determine its end-of-textand link its
last line to the first line of the master program. Then it calls a subroutine
in the master program to restore variables. The master and overlay
programs are now ready to act as one!

Program Storage - Memory and Disk

Let’s first consider the way that programs are normally stored and executed in
your computer’s memory. A general memory map looks something like this:

TRS-80 Memory Area you protected with "MEMORY SIZE?"
Map e e e e e o e e e e e e e e e e e e

——
——
——
——

o e o G £ o e e S o (e G WD S e S B o . G e e W e s S v R G O 3 S B B G e S G S W o G S

s o o € G € S o e S € (s a0 i € S B S Gy e e e (e D (e (3 e T S SRS T 9 W e S e 4507 s e R B Gt

Area used by disk operating system.

LEVEL II BASIC (ROM)
mz==z===cz=zz=====Bottom O0f Memory==s==s=s=========

M 2 Note # 16

M 2 Note # 16

BASIC Program Overlays 63

Asyou can see from the memory map, any program that you type in or load from
disk will reside just above the disk file buffer area. When operating with disk
BASIC, the beginning of text will vary according to the answer you give for HOW
MANY FILES?’ It will also vary according to which disk operating system you are
using. TRSDOS 2.3 and NEWDOS 2.1 reserve 290 bytes per file, while
NEWDOSS80 reserves 301 and Model 3 TRSDOS 1.2 reserves 360. But under
every DOS I've seen, you can get the beginning of text address by typing:

PRINT "BEGINNING OF TEXT IS: "7PEEK(&H4A4)+PEEK(&H4@A5)"’*‘256

It will, for most operating systems, be somewhere between roughly 6400 (25600
decimal) and 7900 (30976 decimal).

You can get a rough idea of how many bytes your program text requires by
estimating how long it is compared to the size of your video display. If for example,
you typed in a short program and it fills up 1 complete video display (1024 bytes),
the program is probably between 750 and 1000 bytes long.

You can also get an idea of the length of your program text by displaying the disk
directory. When you look next to your program name in the directory, the number
in the ‘EOF’ column shows how many 256-byte sectors it’s using on disk, (that is,
if you didn’t save it in ASCII format.) If for example, your ‘EOF’ is 10, your
program is about 2560 bytes long. This method for estimating your program text
length is based on the fact that, when you SAVE a program, the computer copies
an exact image of your program text from memory to disk, (inserting a 1-byte ‘FF’
as the first byte in the file.)

Now, we must consider how your program text is stored in memory. If you wish,
you can type in a short program, go into ‘DEBUG’, figure the beginning of text
address from the contents of 40A4 and 40A5 and display that address on your
screen. In a nutshell, here’s what you’ll find for each line of your program:

1. The first 2 bytes of each program line is a 2-byte pointer giving the
address of the next program line in memory. If this 2-byte pointer is zero,
there is no next line — we’re at the end of text.

2. The next 2 bytes specify the program line number. The line number is
expressed in LSB, MSB format, so if you have a line 10, you’ll see ‘0A00’
with DEBUG.

3. Next, you’ll find your tokenized program line. That is, each of the
BASIC commands and functions (CLS, GOSUB, CVS, etc.) will have
been changed to a 1-byte code. Any ‘literals’ though, such as quoted
strings, numeric constants, and GOTO or GOSUB line numbers, will be
shown in uncompressed ASCII format.

4. Finally, you’ll find a 1-byte ‘00’ to indicate the end of the line.

As we said before, when you SAVE your program, an exact image will be written
to disk. Therefore, the address pointers from one line to the next will be recorded
on disk exactly as they were in memory. When you LOAD a program that has been

64 BASIC Faster & Better

previously saved, BASIC recomputes these address pointers, just in case your
beginning of text address has changed. It will have changed only if:

1. You’ve changed the ‘HOW MANY FILES? specification,
2. or changed from one DOS to another, or
3. poked in a different beginning.ofstext address.

Also, during a LOAD or RUN, BASIC will clear any variables that you may have
had in memory. It does this because your variable storage area starts just above
the end of your program text. When you load a longer program than the one
previously in memory, you’ll overwrite variables that may have been active
previously. When you load a shorter program, you’ve got additional memory in
which to store variables.

How to Use Top-Loaded Overlays

As we discussed in the previous section, the top-loaded overlay technique lets us
retain a master program in memory at the lower line numbers, with the ability to
load overlay programs to the higher line numbers as we need them. In this section,
we’ll go over the procedures and the program logic you’ll need. We’ll also look at
a program that demonstrates the techniques.

Required Steps

1. Decide how many files your application will require. From DOS
READY, go into BASIC, specifying the number of files that you’ll be
needing.

2. Make a note of the beginning of text address your master program will
use. Since you’ve just started up from DOS READY, it’s currently in
memory locations 40A4 and 40A5.

To get the LSB of the address, type:

M 2 Note # 16 PRINT PEEK (&H40A4)

To get the MSB of the address, type:

PRINT PEEK (&H40A5)

To get the address in decimal, type:

PRINT PEEK(&H40QA4)+PEEK (&H40A5) *256

3. Decide on where you’ll divide your line numbers between master
program and overlay program. With the top-loaded overlay technique, 1
normally use lines 0 through 29999 for my master program and lines
30000 and above for my overlays. (The examples and instructions that
follow assume that you are using this line numbering scheme.)

4. Estimate an address to use for the beginning of the variable list. To do
so, you can load in a program that will be about the length of your master
program and the longest overlay combined. (Leaving the HOW MANY
FILES?’ setting the same.) With the program now in memory, type:

CLEAR : A%$=0 : PRINTVARPTR(A%)

The number displayed will be a good ‘working’ address for your variable list

End-of-Text
Computation
Subroutine

Variable Passing
Subroutine§
Renumbered

M 2 Note # 27

M 2 Note # 28

M 2 Note # 28

BASIC Program Overlays 65

pointer, but you may want to add 1000 or so, just to be safe. You can ‘fine-tune’
later.

5. The first line of your master program should be the following:

1 CLEAR1000:GOSUB29000:GOSUB29998

You may replace the 1000 following the CLEAR command with whatever you’ll
require for string storage. Remember, though, that the overlay technique requires
at least 104 bytes of string storage.

The GOSUB 29000 calls our variable-list pointer subroutine, so that all
VARPTR’s will be above the desired address. The GOSUB 29998 calls the
subroutine in the last line of our master program. Its job is to compute the next
byte address following our text and store it in the integer EP%. You will, of
course, need to modify these line numbers if you’ve chosen a different numbering
scheme.

You may have lines that precede the one we’ve shown, but remember that any
variables used in preceding lines will be erased.

6. The last line in your master program must be the end of text
computation subroutine.

29998 A$="":EP%=VARPTR(AS) : EP$=CVI(CHRS (PEEK (EP%+1)) +CHRS (PEEK(E
P%+2))) +48:RETURN

Upon return from the end of text computation subroutine, assuming you have
located it as the last line, EP% has the address of the next byte following the
master program’s text. You must type the line exactly as shown, because it figures
the end of text as 48 bytes beyond the contents of A$.

7. You must insert subroutines 29000, 29100 and 29200 in your master
program. Note that these are the variable passing subroutines that we
discussed in a previous section, but they have been renumbered.

Subroutine 29000 is the variable-list pointer subroutine, 29100 is the
variable-pass subroutine and 29200 is the variable-receive subroutine.

29000 A$="":FORA%=1TO03:A$=AS+MKIS (30000) : NEXT:ANS$="XXXXXX" : POKEV
ARPTR(ANS) +1 , &HF9 : POKEVARPTR (ANS$) +2 , §H40 : LSETANS$=A$: A$="" : RETURN

29100 ANS$=""3:POKEVARPTR(ANS) ,104:POKEVARPTR (ANS) +1,&HB3 : POKEVARP
TR(ANS) +2, &H40 : AS=STRINGS (104 ,0) s LSETA$=ANS : RETURN

29200 A$="";FORA%=0TO2:POKEVARPTR(AS) +A%, PEEK (30000+A%+3) :NEXT:A
N$="": POKEVARPTR(ANS) ,104: POKEVARPTR (ANS$) +1 , §HB3 : POKEVARPTR (ANS)
+2 ,8H40 : LSETANS=AS : RETURN

You must change the ‘30000’ in line 29000 and the ‘30000’ in line 29200 to the
address that you’ve determined in step 4. This is the fixed address that we’ll use
for our variable list.

8. You must insert an overlay-loader routine. Lines 29300 and 29301 do
the job. First the variables are saved by a call to subroutine 29100. Then
anew beginning of text address is poked in. Finally, the overlay program

66 BASIC Faster & Better

Overlay Loader
Routine

M 2 Note # 16

M 2 Note # 16

M 2 Note # 16

specified by FD$ is loaded from disk, and execution continues with the
first line of that overlay.

29300 GOSUB29100:POKE&H40A4,ASC(MKI$ (EP%)) s POKE&H4MAS ,ASC(MIDS (M
KIS (EP%),2))
29301 LOADFD$,R

9. Each place in your master program’s logic where you want to load and
execute an overlay, you should load the file name into FD$ and GOTO
29300. For example, toload and run the overlay, INQUIRY/BAS:1’ your
command is: .
FD$="INQUIRY/BAS:1":GOT029300

It’s important to note that you can’t be in a subroutine when loading an overlay.
The load routine reinitializes the ‘RETURN’ pointers. (Once the overlay is
loaded, you can use subroutines whenever you wish.)

10. The first line of each overlay program must poke the beginning of text
address to bring back the master program. Then it should call subroutine
29200 to restore all variables. Here’s a sample first line for an overlay:

30001 POKE&H40A4,186:POKE&H40AS,104:GOSUB292060

The ‘186’ in line 30001 should be replaced with the LSB of your master program
text address. The ‘104’ in line 30001 should be replaced with the MSB of your
master program text address. You determined both of these values in step 2. 1
normally put a remark as line 30000 to identify the overlay program name.

11. There are no restrictions for the other lines of the overlay, just so that
each line in the overlay is greater than the highest line number in the
master program. You may freely use ‘GOTO’ and ‘GOSUB’ between
master program and overlay.

Top-Loaded Overlay Demo

Here is a program that demonstrates the use of top-loaded overlays. From a
master program, by menu selection, you can load in either of two overlays. Each
overlay starts at line 30000, and is linked onto the master program. You can prove
to yourself that it is working properly by pressing the break key. First, just the
master program will be in memory. Then, the master program and overlay 1 will
be in memory. Finally, the master program and overlay 2 will be in memory.

You will need to modify line 30001 in both overlays to correspond to the
beginning of text pointer for the disk operating system and number of files you are
using. (As shown, it is set for NEWDOS 2.1 with 3 files.) To get the numbers to
use in place of the ‘186’ and ‘104’, simply type:

PRINT PEEK(&H40A4) ; PEEK(&H40AS5)

When you have the programs on disk as OVERLAYT/DEM,
OVERLAY1/TOV, and OVERLAY2/TOV, you may run the master program. You
won’t be able to directly load and run the overlay programs, because they are
written to be used with the master.

As a general rule, when you are working with overlay and
master programs, you should re-load the program from disk before making
modifications. This prevents you from accidently saving a master program with

OVERLAYT/DEM

Top-Loaded
Overlay
Demonstration
(Master)

M 2 Note # 29
M 2 Note # 30

M 2 Note # 27
M 2 Note # 28

M 2 Note # 28

M 2 Note # 16

OVERLAY1/TOV

Top-Loaded
Overlay
Demonstration
(Overlay 1)

M 2 Note # 16
M 2 Note # 29

OVERLAY2/TOV

Top-Loaded
Overlay
Demonstration
(Overlay 2)

M 2 Note # 16
M 2 Note # 29

BASIC Program Overfays 67

an overlay appended to it, or saving an overlay program with a master program
appended to it. Also, be sure that whenever you run the OVERLAYT/DEM
program your beginning of text pointers are set properly. If you’ve pressed break
before an overlay program has reset the pointers, the next time you try to run the
master, it won’t work.

@ ""OVERLAYT/DEM"

1 CLEAR1000:GOSUB29080:GOSUB29998
10 SG$=STRINGS$(63,131)
160 CLS:PRINT"

OVERLAY DEMONSTRATION
":;5G$

119 PRINT"

<1> LOAD OVERLAY 1
<2> LOAD OVERLAY 2

".SGS

180 PRINT@832,"PRESS THE NUMBER OF YOUR SELECTION...":

190 PRINT@896,CHRS$(31) ; :LINEINPUTAS:A%=VAL(AS) : IFA$=0THEN190@ELSE
ONA%GOTO1000,2000

191 GOTO0190

1000 FDS$S="OVERLAY1l/TOV":GOT0O293640

2000 FDS$="OVERLAY2/TOV":GOT029300

29000 AS="":FORA%=1TO3:A$=AS+MKIS$ (30000) :NEXT:ANS="XXXXXX" : POKEV
ARPTR(ANS) +1 , &HF9 : POKEVARPTR(ANS) +2, &H40 : LSETANS=A$: A$="": RETURN

29100 ANS="" :POKEVARPTR(ANS) ,104:POKEVARPTR(ANS) +1,&HB3 s POKEVARP
TR(ANS) +2 ,&H40 :A$S=STRINGS (104,0) : LSETA$=ANS$: RETURN

29200 A$="":FORA%=0TO02:POKEVARPTR(AS) +A% ,PEEK (30000+A%+3) : NEXT:A
N$="" s POKEVARPTR (ANS) ,104 : POKEVARPTR(ANS) +1 , 8HB3 : POKEVARPTR (ANS§)
+2,&H40 : LSETANS=AS : RETURN

29300 GOSUB29100:POKE&H4PA4 ,ASC(MKIS$ (EP%)) : POKE&H4OAS ,ASC(MIDS (M
KIS (EP%) ,2))
29301 LOADFDS,R

29998 A$="":EP%=VARPTR(AS$) :EP%=CVI(CHRS$ (PEEK (EP%+1)) +CHRS (PEEK (E
P%+2))) +48:RETURN

30000 ‘'OVERLAY1l/TOV
30801 POKE&H40A4,186:POKE&H40AS5,104:GOSUB29200

30108 CLS:PRINT"
THIS IS OVERLAY PROGRAM 1
1]
SG
380116 PRINT"

PRESS <ENTER> TO RETURN TO THE MENU,..";:LINEINPUTAS:GOTOl00

30000 °OVERLAY2/TOV
30001 POKE&H40@A4,186:POKE&HAOAS,104:GOSUB29200

30100 CLS:PRINT"

THIS IS OVERLAY PROGRAM 2
":SG$

301190 PRINT®

PRESS <ENTER> TO RETURN TO THE MENU...";:LINEINPUTA$:GOTO0l180

68 BASIC Faster & Better

M 2 Note # 16

How to Use Bottom-Loaded Overlays

The bottom-loaded overlay technique lets us retain a master program in
memory at the higher line numbers, with the ability to load overlay programs to
the lower line numbers as we need them. In this section, we’ll go over the
procedures and program logic you'll need. We’ll also look at a program that
demonstrates the techniques. If you haven’t tried the top-loaded technique yet,
I suggest you get familiar with it first because it’s easier to understand and
implement.

Steps Required

1. Decide how many files your application will require. From DOS
READY, go into BASIC, specifying the number of files that you’ll be
needing.

2. Make a note of the beginning of text address your overlay programs will
use. Since you’ve just started up from DOS READY, it’s currently in
memory locations 40A4 and 40AS5.

To get the LSB of the address, type:
PRINT PEEK (&H40A4)

To get the MSB of the address, type:
PRINT PEEK (&H40A5)

To get the address in decimal, type:

PRINT PEEK (&H40A4)+PEEK (&H40A5) *256

The address you get from these peeks will be the minimum address your overlay
programs can use, assuming the same number of files and the same disk operating
system. You can use a higher address if you wish. Sometimes it’s desirable to
select a higher address to be compatible with other disk operating systems.

3. Decide on a beginning of text address for your master program. To
figure this address, you’ll need to estimate the length of your longest
overlay program and add it to the address you selected as your overlay
beginning of text. It’s helpful to take a disk directory and look at the EOF
indicator of a program that is about the same length as your longest
overlay will be. Multiplying the EOF indicator by 256 and adding 20 will
give you a good estimate. During program development you’ll want to
estimate high. You can ‘fine-tune’ later.

4. Write a startup program that will be used to load and run your master
program. The main purpose of the startup program is to poke in the
beginning of text address for the master program, but you may also wish
to insert logic for other purposes, such as loading USR routines. Here is
an example showing the only startup program logic required to run a
master program called ‘MENU/GL’ at address 28000:

19 POKE&H40A4,96 sPOKE&H40OA5,109:POKE27999,0
20 RUN"MENU/GL®

Variable Passing
Subroutines

M 2 Note # 27
M 2 Note # 28

M 2 Note # 28

BASIC Program Overlays 69

You should replace the ‘96 in line 10 with the LSB of the beginning of text
address for your master program. The ‘109’ in line 10 should be replaced with the
MSB of the desired master program beginning of text. The 27999 should be
replaced with the address 1 byte below your master program beginning of text.
Your master program’s disk file name should be replaced in line 20.

5. Decide on where you’ll divide your line numbers between master
program and overlay program. With the bottom-loaded overlay
technique, I normally use lines 0 through 29999 for my overlays, and lines
30000 and above for my master program. (The examples and instructions
that follow assume that you are using this line numbering scheme.)

6. Estimate an address to use for the beginning of the variable list. To do
s0, you can poke 40A4 and 40A5 so that your beginning of text is at the
location you’ll be using for your master program. Then youcanloadina
program that will be about the length of your master program. With the
program in memory, type:

CLEAR : A%=@ : PRINTVARPTR(A%)

The number displayed will be a good ‘working’ address for your variable list
pointer, but you may want to add 1000 or so, just to be safe. You can ‘fine-tune’
later.

7. The first line of your master program should be the following:

30001 CLEAR1000:GOSUB52000

You may replace the 1000 following the CLEAR command with whatever you’ll
require for string storage. Remember, though, that our overlay technique requires
at least 104 bytes of string storage.

The GOSUB 52000 calls our variable-list pointer subroutine, so that all
VARPTR’s will be above the desired address. You may have lines that precede the
one shown, but remember that any variables used in preceding lines will be erased.
I'usually put a remark in line 30000 that tells the name of the program.

8. You must insert subroutines 52000, 52100, and 52200 in your master
program. Note that these are the variable passing subroutines that we
discussed in a previous section.

e —— R R AR ——

52000 A$="":FORA%=1TO3:A$=AS+MKIS$ (30000) :NEXT:ANS="XXXXXX" : POKEV
ARPTR(ANS) +1, &HF9 : POKEVARPTR (ANS) +2, 8H40 : LSETANS=AS sA$="":RETURN

52100 AN$="":POKEVARPTR(ANS),104: POKEVARPTR (ANS$) +1 ,&HB3 : POKEVARP
TR(ANS) +2,&H40 : A$=STRINGS (104,0) : LSETA$=ANS : RETURN

52200 A$="":FORA%=0TO2:POKEVARPTR(AS) +A%, PEEK (30000+A%+3) :NEXT:A
N$="": POKEVARPTR (ANS) ,104: POKEVARPTR(ANS) +1 , 8HB3 : POKEVARPTR (ANS)
+2,&H40 : LSETAN$=A$: RETURN

You must change the ‘30000’ in line 52000 and the ‘30000’ in line 52200 to the
address that you’ve determined in step 6. This is the fixed address that we’ll use
for our variable list.

70 BASIC Faster & Better

9. You must insert an overlay-loader routine. Lines 52300 and 52301 do
the job. First the variables are saved by a call to subroutine 52100. Then
the beginning of text address for our overlay poked in. Finally, the
overlay program specified by FD$ is loaded from disk and execution
continues with the first line of that overlay.

Overlay Loader 523006 GOSUB52100:POKE&H40A4,120:POKE&HADBAS ¢+105:POKE26999,0
Routine 52301 LOADFDS,R
M 2 Note # 16

You should replace the ‘120’ and ‘105’ in line 52300 with the LSB and MSB of
your overlay beginning of text address. (You got these two numbersin step 2.) The
26999’ should be replaced with your overlay’s beginning of text address minus 1.

10. Each place in your master program’s logic where you want to load and
execute an overlay, you should load the file name into FD$ and GOTO

52300. For example, toload and run the overlay, REPORTS/GL:1’, your
command is:

FD$="REPORTS/GL:1":GOT052300

It isimportant to note that you can’t be in a subroutine when loading an overlay.
The load routine reinitializes the ‘RETURN’ pointers. (Once the overlay is
loaded, you can use subroutines whenever you wish.)

11. The first line of each overlay program must call a subroutine to link
the last line of the overlay to the first line of to the master. Subroutine
29999, which is the last line of the overlay, does this job. Then the
variables must be restored with a call to subroutine 52200. Here’s a
sample first line for a bottom-loaded overlay:

1 GOSUB29999:G0SUB52200

I normally use line 0 in each overlay program as a remark, to identify the overlay
program name.

12. The last line of each overlay must be the last line linker subroutine.
Since, for our examples, 29999 is the highest line number in our overlays,
it will contain the linker.

Last Line Linker 29999 A$="":A%=PEEK (VARPTR(AS$)+1) : POKEVARPTR(A%) +1 , PEEK (VARPTR (A
Subroutine $)+2) : POKEA%-8,96 : POKEA%~7 ,109 : RETURN

As we discussed earilier, the first 2 bytes of any BASIC program line point to the
next program line. The last line linker subroutine computes its own address in
memory and pokes the first 2 bytes with the beginning of text address for our
master program. Upon return from the last line linker subroutine, our master
program has been linked back into the program text.

You'll need to replace the ‘96’ and the ‘109’ in subroutine 29999 with the LSB
and MSB of your master program beginning of text address, which you decided
upon in step 3. In the example shown, a master program beginning of text address
of 28000 is used.

M 2 Note # 31

OVERLAYB/DEM

Bottom-Loaded
Overlay
Demonstration
(Startup)

OVERLAY1/BOV

Bottom-Loaded
Overlay
Demonstration
(Overlay 1)

M 2 Note # 16

OVERLAY2/BOV

Bottom-Loaded
Overlay
Demonstration
(Overlay 2)

M 2 Note # 29
M 2 Note # 31

BASIC Program Overlays 71

13. You may insert any other program lines you need in the master and
overlay programs, and you may freely use GOSUB’s and GOTO’s
between your master program and overlay programs. You’ll save a lot of
time if you store a master program ‘shell’ and an overlay program ‘shell’
on disk in ASCII format. That way, you can simply merge them in when
you want to develop a new program that uses overlay techniques.

Bottom-Loaded Overlay Demo

The demonstration programs that follow should run without modification on
any of the popular operating systems for the TRS-80, as long as you specify no
more than 3 files. The demonstration is started by running ‘OVERLAYB/DEM’.
It adjusts the beginning of text pointers and chains to ‘MASTER/BOV’. The
master program displays a menu that allows you to load either of 2 overlays, which
are stored on disk as ‘OVERLAY1/BOV’ and ‘OVERLAY2/BOV’. The programs
set the following memory addresses:

Overlay program beginning of text: 27000 (LSB=120, MSB=105)
Master program beginning of text: 28000 (LSB= 96, MSB=109)
Variable list address: 30000

Remember, it’s important to re-load your master or overlay program from disk
before making modifications or corrections. This prevents you from accidentally
saving any data other than the program itself.

'OVERLAYB/DEM
10 POKE&H49A4,96:POKE&H40A5,109:POKE27999,0
20 RUN"MASTER/BOV

@ '""OVERLAY1l/BOV"

1 GOSUB29999:GOSUB52200
108 CLS:PRINT"

THIS IS OVERLAY 1

":SG$

116 PRINT"

PRESS <ENTER> TO RETURN TO THE MENU...";:LINEINPUTA$:GOTO36100

29999 AS$="":A%=PEEK (VARPTR(AS$)+1) : POKEVARPTR (A%) +1 ,PEEK (VARPTR (A
$)+2) :POKEA%~-8,96 : POKEA%~7,109 : RETURN

@ '"OVERLAY2/BOV"

1 GOSUB29999:GOSUB52200
100 CLS:PRINT"

THIS IS OVERLAY 2

":SG$

116 PRINT"

PRESS <ENTER> TO RETURN TO THE MENU,..";:LINEINPUTAS$:GOTO30104

29999 AS$="":A%=PEEK (VARPTR(AS)+1) : POKEVARPTR(A%) +1 ,PEEK (VARPTR(A
$) +2) :POKEA%-8,96 : POKEA%-7 ,109 : RETURN

72 BASIC Faster & Better

MASTER/BOV 30000 ‘'"MASTER/BOV"

Bottom-Loaded

Overlay 30091 CLEAR1000:GOSUB52000

Demonstration

(Master) 30018 SG$=STRINGS(63,131)

M 2 Note # 29 30100 CLS:PRINT"

M 2 Note # 30 BOTTOM-LOADED OVERLAY DEMONSTRATION
n,

M 2 Note # 31 iSG$

36116 PRINT"
<1> LOAD OVERLAY 1
<2> LOAD OVERLAY 2

".SG$

30180 PRINT@832,"PRESS THE NUMBER OF YOUR SELECTION,..";

30190 PRINT@896,CHR$(31);:LINEINPUTAs:A%=VAL(A$):IFA%=ﬂTHEN3ﬂ19@
ELSEONA$GOTO031000,32000

30191 GOTO036190

310006 FD$S="OVERLAY1l/BOV":GOT052300

32000 FD$="OVERLAY2/BOV":GOT0523060

52008 A$="":FORA%=1TO03:A$=AS$+MKI$ (30000) : NEXT:ANS$="XXXXXX" : POKEV
ARPTR(ANS) +1 , &HF9 : POKEVARPTR (ANS) +2 , &H40 : LSETAN$=A$: A$="" : RETURN

52108 ANS="":POKEVARPTR(ANS) ,104:POKEVARPTR(ANS) +1,&HB3 : POKEVARP
TR(ANS) +2 ,&H40 : A$=STRINGS (104 ,0) : LSETA$=ANS : RETURN

52200 A$="":FORA%=0TO02:POKEVARPTR(AS)+A%,PEEK (30000+A%+3) :NEXT:A
N$=%": POKEVARPTR (AN$) ,104 : POKEVARPTR (ANS$) +1 , &HB3 : POKEVARPTR (AN$)
+2 , &H40 : LSETANS$=AS$: RETURN

52366 GOSUB52100:POKE&H40A4,120:POKE&H40GA5,105:POKE26999,0
52301 LOADFDS,R

Remainder
Function

Chapter6 73

Number Crunchers and Munchers

Regardless of the application, almost every program involves some addition,
subtraction, multiplication or division. Whether you are computing an accounting
balance, a scientific formula or the number of points accumulated by each player
in a computer game, you soon become accustomed to talking to your computer
with numbers and formulas. But the problem presented by the application is only
the beginning. Just to get the computer to print data where we want it on the video
display or to retrieve the desired information from a disk file or array, many
numbers and formulas can be involved.

This chapter provides many tricks, function calls and subroutines that can save
you hours of programming time. We'll be looking at some mathematical
techniques that are often required for everyday programs. In addition, we’ll
discuss ways to compress numeric data for more efficient disk and memory storage
and ways of achieving dramatic speed improvements when adding or printing
numbers. Finally, have you ever seen a computer book that didn’t cover the
subject of hexadecimal and other base conversions? We’ll be discussing some

efficient subroutines and function calls that can handle this subject once and for
all!

Remainder Function Calis

You will find that the remainder obtained when you divide one number by
another has many applications in programming. On the video display, for
example, when we divide a PRINT@ position by 64, the remainder is the
horizontal tab position. In disk applications, when we divide the desired logical
record number by the number of logical records per physical record, the remainder
shows us the number of preceding logical records within the physical record. In
base conversion routines, we are repeatedly dividing by the base to get the
remainder.

BASIC provides no automatic way to get remainders. You’ve got to use asimple
formula. The following function, FNRE# (A1#,A2#), computes the remainder of
the first argument, A1#, divided by the second argument, A2#:

35 DEFFNRE# (Al#,A2#)=A1#-INT (AL#/A24) *A24#

As an example, if we set A# equal to FNRE# (154,10), A# equals the remainder
of 154 divided by 10 or 4. Be careful that your program does not allow 0 as the
second argument, because a ‘division by zero’ error will result.

74 BASIC Faster & Better

You can, if you wish, change the FNRE# function call to single precision or
integer by changing the # symbol to one of the other symbols. Or, you can
eliminate the ‘4 and DEFINT, DEFSNG or DEFDBL the variable you wish to use
before calling the remainder function. Like any other function call, you can also
simply use it as a model, including the logic in any program line where needed.

Using ‘ANDNOT’ to Find Remainders

Here’s a convenient trick that lets you find the remainder of any integer divided
by a power of 2.

For any integer ‘A%,

the remainder of A% /2 is given by the expression A% ANDNOT —2
the remainder of A% /4 is given by the expression A% ANDNOT —4
the remainder of A% /8 is given by the expression A% ANDNOT —8
etc...

When you want to find whether a number is even or odd, you can use:
IF A% ANDNOT-2 THEN PRINT "ODD" ELSE PRINT "EVEN®

When you want to test whether a year is a leap year, you can use:

IF(Y% ANDNOT-4)=0 THEN PRINT "LEAP YEAR"

If you want to avoid ‘illegal function call’ errors when using PRINT@ addresses,
you can force any print position to be between 0 and 1023 with the command:

PRINT@ABS (PO$ANDNOT~1024) ,AS

Rounding Functions

Your ‘PRINT USING’ command handles rounding for you on formatted and
printed output, but it is often useful to insure that the numbers you’re handling
internally are the same as those printed. We will be discussing two rounding
functions. The first of these, FNRW#, rounds any number to an integer whole
number. If the decimal portion of the number is greater than or equal to 0.5 the
number will be rounded up to the next whole number if positive or down to the
next whole number if negative. If the decimal portion isless than 0.5, the decimals
will be truncated.

The second function, FNRD#, rounds to 2 decimal places for the proper
handling of dollars and cents. The result will be the nearest cent, taking into
account positive and negative numbers.

In programming rounding functions, the first challenge is to properly handle
positives and negatives. If you’re dealing with double precision numbers there is
an even bigger challenge - avoiding the ‘garbage’ that BASIC can sometimes put
into the decimal portion of your number. The result of much experimentation and
testing, FNRW# and FNRD# handle these two problems.

Rounding Round to nearest whole number:
Functions 10 DEFFNRW# (Al#)=FIX((FIX(Al#*104#)+SGN(Al#)*5)/104#)

Round to nearest cent:
11 DEFFNRD# (Al#)=FIX((FIX(Al#*1000#)+SGN(Al#)*5)/104#) /1004

Number Crunchers & Munchers 75

To use the rounding functions for single precision numbers, you can change each
4 symbol toa V. You'll find that that these functions are more than 2 times faster
in single precision.

Rounding Down

This function, FNFL#, requires two arguments. It finds the first multiple of the
second argument that is less than or equal to the first argument. Let’s say, for
example that we want to round a number down to the nearest 100. FNFL# (392,
100) will return 300. FNFL# (3100, 100) will return 3100.

If we want to find the corresponding left position on the video display for any
position between 0 and 1023, we can use the function below. FNFL# (514, 64) for
example, returns 512. That is, 512 is the PRINT@ position that begins the line
containing position 514.

First Multiple Less DEFFNFL# (Al#,A2#)=INT(Al#/A2#) *A2#
Than or Equal
Function

You may change this function for single precision or integer variable types. Just
change the # symbols.

Rounding Up

The FNFM# function is similar to the FNFL# function, except that it finds the
first multiple of the second argument that is greater than the first argument. To
illustrate how the FNFM# function works, FNFM# (3022, 100) will return 3100.
FNFM# (3100,100) will return 3200. This function will give the left-most position
of the first video display line beyond position defined by the integer, PO%.

First Multiple DEFFNFM# (Al#,A2#)=INT(Al#/A24#) *A2#+A2%

Greater Function

Again, you may change the symbols if you want to use single precision or integer
types.

Saving Space With 1-Byte Numbers

If you know that a numeric field to be stored on disk will always contain an
integer in the range 0 to 255, you can use the CHR$ and ASC functions instead of
the MKI$ and CVI functions. Rather than using two bytes, you’ll be using just
one!

If you want to store an array in memory containing integers in the range 0 to 255,
you can store up to 255 elements in a string. To initialize the ‘array-string’, create
a string of zeros with a length corresponding to the number of elements you need.
Then to put an integer amount, ‘A%, into element position, ‘E%’, of string,X$’,
you can use the command, MID$(X$,E%,1) = CHR$(A%). To recall an amount,
A%, from element position E%, you can use the command, A% =
ASC(MID$(X$,E%)). You won’t be using much more than half the memory and,
by avoiding standard arrays, in many cases you can speed up program execution.

Saving Space With 2-Byte Numbers

As you know, an integer-type variable may range from —32768 to 32767.
Integers require 2 bytes for both disk storage in random files and memory if we

76 BASIC Faster & Better

don’t count the memory overhead for each variable name. If we need only positive
integers, we can convert the negatives so that we can store a range of 0 to 65535 in
2 bytes. Any math we do, however, will have to be done in single precision.

To work with 2-byte unsigned integers, we will need 2 function calls. The
function below converts a 4-byte unsigned single precision whole number ranging
from 0 to 65535 to a signed integer that can be stored in 2 bytes. FNIS! converts
i nmgned smgle prec131on number

2-Byte Storage of Convert unsigned single to integer:
Unsigned Integers 15 DEFFNSI%(Al!)=-((A11>32767)*(Al1-65536))~((A11<32768)*All)

Convert integer to unsigned single:
16 DEFFNIS!(Al%)=-((A1%<@)*(65536+A1%)+((ALl%>=0)*Al%))

Let’s suppose you want to store the number 62500 in a 2-byte disk field, FXS$.
You’re command is:

LSET FX$ = MKI$(FNSI%(62500))

To recall and print it your command is:

PRINT FNIS! (CVI(FX$))

As another example, let’s say you’ve got an integer array and you want to store
unsigned numbers up to 65535 in it. If B! contains 42000, you can store it in
element 1 of the array using the command:

I$(1)=FNSI%(B!{)

To put the contents of the array element into variable A! for printing or
computing purposes, you can say:

Al=FNISI(I%(1))

If you need unsigned decimal numbers, you can also store them in 2 bytes if you
use an ‘assumed’ decimal. You can, for example, store prices ranging from $000.00
to $655.35 by multiplying by 100 before the compression and dividing by 100 after
the uncompression.

Saving Space With Unsigned Integers

Here are 4 functions that let you compress and uncompress very large unsigned
integers for storage in 3 or 4 bytes on disk. Be sure that the numbers are whole
numbers (without any decimal) and that you observe the limits. The functions

are:
NAME CONVERSION PERFORMED LIMITS
FNU3S (A#) From A# to a 3=byte string B to 16,777,215
FNU3# (AS) 3=byte string teo double precision
FNU4S (A#) From A# to a 4-byte string B to 4,294,967,295
FNU4# (AS) 4-byte string to double precision

Within your program, you’ll work with the numbers in double precision. As an
example, let’s assume you have a variable, N#, that contains 12345678. To store

3 and 4 Byte
Unsigned Integer
Functions

Number Crunchers & Munchers 77

it on disk in a 3 byte field, FX$, you would LSET FX$ = FNU33(N#). To get it
back later, your command could be, N# = FNU3$(FX$).

These 4 functions call the 2-byte unsigned functions which we discussed earlier,
so you will also need to define them in your program.

B T

Compress A# to 3-byte string:
)21 DEFFNU3$ (A#) =CHRS$ (A#-INT (A%/256) *256) +MKIS$ (FNSI% (INT(A%#/256))

Convert 3-byte string, A$ to double precision:
22 DEFFNU3# (AS)=ASC(AS)+FNIS! (CVI(MIDS(AS$,2)))*256#

Compress A# to 4-byte string:
17 DEFFNU4S$ (A#)=MKIS$(FNSI% (INT(A#/65536)))+MKIS$ (FNSI% (A#-INT(A#/
65536) *¥65536))

Convert 4-byte string, A$ to double precision:
18 DEFFNU4# (A$)=FNIS!(CVI(AS))*65536#+FNIS!(CVI(MIDS$(AS,3)))

Saving Space With Signed Integers

You can use the 6 function calls that follow to store large signed integers in 3 or
4 bytes. The procedures for using them in programs are exactly the same as those
for the 3 and 4 byte unsigned compressions, except that the absolute limits are
lower:

NAME CONVERSION PERFORMED LIMITS (+ AND -)

FNS3$ (A#) From A# to a 3~byte string g to 8,000,000
FNS3# (AS) 3-byte string to double precision

FNDIS (A#) From A# To a 4-byte string g to 1,070,000,000
FNDI#(AS) 4-byte string to double precision

FNS4S (A#) From A# to a 4-byte string @ to 2,100,000,000
FNS4# (AS) 4-byte string to double precision

Note that FNDI and FNS4 provide two different methods of storing signed
integers in 4 bytes. FNDI stores the double precision number as 2 signed integers.
Though FNDI has a smaller range, it is faster and it does not require that the other
functions be present in your program. You will need to define the 2-byte integer
compression functions in your program if you use the FNS4 functions.

These function calls are very useful in accounting applications if you use an
assumed decimal place. FNDI, for example, lets you handle positive or negative
dollar amounts up to $10,700,000.00 and you need only half the disk or memory
space required for normal double precision storage! For printing purposes, you
can divide by 100 or you can use some of the special print formatting function calls,
such as FNDF$, that are discussed later in this chapter.

78 BASIC Faster & Better

Be sure that you use FNDI$ and FNDI# together or FNS4$ and FNS4#
together. They are not interchangeable!

3 and 4 Byte Compress A# to 3-byte string:
gmn?ﬂnmgm 23 DEFFNS3$ (A#) =CHR$ (ABS(A#-INT (A#/256) *256)) +MKI$ (INT (A#/256))
unctions

Convert 3-byte string, A$, to double precision:
24 DEFFNS3#(AS$)=ASC(AS)+CVI(MIDS(AS,2))*2564#

Compress A# to 4-byte string (Double integer method):
25 DEFFNDIS (A#)=MKIS$ (A#/32768)+MKI$ (A#~INT(A%#/32768)*32768)

Convert 4-byte string, A$ to double precision:
26 DEFFNDI#(AS)=CVI(A$)*32768#+CVI(MIDS$(AS,3))

Compress A# to 4-byte string:
19 DEFFNS4$ (A#)=MKI$(INT(A#/65536%))+MKI$(FNSI% (A4-INT (A#/65536#
) ¥655364#))

Convert 4-byte string, A$, to double precision:
20 DEFFNS4# (AS$)=CVI(AS)*65536#+FNIS! (CVI(MIDS(AS,3)))

High-Speed ‘PRINT USING’ Functions

The ‘PRINT USING’ command is one of the most powerful features of BASIC,
but it can also be very slow for the formatted printing of double precision numbers.
FNDF$ is a function that formats a double precision number for dollars and cents.
I’'ve found that it is up to 3 times faster than ‘PRINT USING’.

FNDFS$ creates a string which you can PRINT or LPRINT. It requires 4
arguments:

Argument 1 is the double precision number you want formatted. It must
be a whole number, with no decimal. The decimal will be assumed to be
2 places from the right.

Argument 2 is an integer that specifies the number of places to be
formatted to the left of the decimal.

Argument 3 is a string that specifies a symbol to be appended to the
right of the formatted number if it is positive or zero.

Argument 4 is a string that specifies a symbol to be appended to the
right of the formatted number if it is negative.

Dollar Format 15 DEFFNDF$ (Al#,A2%,A3$,A48)=RIGHTS(STRINGS (A2%," ")+LEFTS (STRS (

Print-Using ABS(Al#)) ,LEN(STRS (Al#))=~2) ;A2%) +", "+RIGHTS$ ("@"+MIDS (STRS (ABS(Al

Function #)s) r2) 42) +LEFTS$ (A3$,-(Al#>=0) *LEN(A3$)) +LEFT$ (A4$,~ (A1#<0) *LEN(A
43))

The chart below gives some examples to help you see how the FNDF$ function
works. You should note that this function call does no rounding and if the number
overflows the format the leftmost digits will be truncated.

Number Crunchers & Munchers 79

If N#=302454, FNDFS$(N#,6," DR"," CR") returns " 3@24.54 DR"
If N#=-32352, FNDFS(N#,6," DR"," CR") returns " 323.52 CR"
If N#=12345, FNDF$(N#,4," ","-") returns " 123.45 "
If G#=-12345, FNDFS(G#,4," ","=") returns " 123.45-"
If X#=ﬂ, FNDFs(X#,‘l," "'”“") returnS " 'ﬂg "

In some applications, accountants like to use brackets to indicate that a dollar
amount is negative or that it has a credit balance. The FNBNS$ function works like
the FNDF$ function, except that brackets enclose the amount when it is negative.
Two arguments are required:

Argument 1 provides the double precision integer to be printed.

Argument 2 specifies the number of digit positions to the left of the
decimal point.

Brackets-if-Negative 25 DEFFNBNS$ (Al#,A2%)=RIGHTS (STRINGS (A2%," ")+LEFTS("(",ABS(Al#<0
l;rint-tl'lslng)) +LEFTS$ (" ",ABS(Al#>=0))+MIDS$ (STRS(ABS(Al#)) ,2,~((LEN(STRS (Al#)
unction)=3)>0) *(LEN(STRS (A1l#))-3)) ,A2%) +", "+RIGHTS ("@"+MIDS (STRS (ABS (Al

#)),2) ,2) +LEFTS (") ",ABS(Al#<0)) +LEFTS$ (" ",ABS(Al#>=0))

Note that if you type in the ‘brackets if negative’ function call you will find that
it is too long to fit in a BASIC program line unless you use the ‘edit’ capability. To
do it, first type in as much as you can. Then go into edit mode and use the ‘X’
command to move to the end of the line, where you can continue typing.

The chart below gives you some examples of strings created by the FNBN§$
function. The cautions we discussed for the FNDF$ function apply to the FNBN$
function as well.

If N#=-8166, FNBNS(N#,4) returns " (81.66)"
If N#=12500, FNBNS(N#,4) returns " 125.00 "
If N#=0, FNBNS (N#,4) returns " .00 "
If X#=333, FNBNS (X#,2) returns " 3,33 "
If X$=-333, FNBNS (X#,2) returns "(3.33)"

High-Speed Integer Formatting

This function call, FNNFS$, is similar to the dollar format function. It can be
used when you want execution speed improvements in the right justified printing
of double precision integers where no decimal point is required. When you are
using double precision numbers, it can be from 3 to 6 times faster than ‘PRINT
USING’. FNNF$ creates a string, based on 4 arguments:

:;‘r":gf,'sf:'ma‘ 35 DEFFNNFS$(Al#,A2%,A3$,A4$)=RIGHTS (STRINGS (A2%," ")+MIDS(STRS(A
Function 1#) ,2) ,A2%) +LEFTS (A3$,- (Al#>=0) *LEN (A3$)) +LEFTS (A4S ,~ (AL#<@) *LEN

(a48))

80 BASIC Faster & Better

Telephone Format
Print-Using
Function

Social Security
Format Print-Using
Function

Argument 1 specifies the double precision integer to be formatted.
Argument 2 specifies the maximum number of digits.

Argument 3 provides a string to be appended to the right of the number,
if it is positive.

Argument 4 provides a string to be appended to the right of the number,
if it is negative.

Here are some examples of numbers formatted into strings with the integer
format print function:

If N#=-12345, FNNFS$(N#,7,"+","-") returns " 12345-"
If N$=-33, FNNF$ (N#,7,"+","=") returns " 33-"
If A#=12345, FNNFS$(A#,7,"+","-") returns " 12345+"
If B#=301, FNNFS$ (B#,7," ","=") returns " 301 "
If B#=301, FNNFS$ (B#,3," ","=") returns "

Special Purpose ‘PRINT USING’ Functions

It is most economical to store telephone numbers as numeric data. I commonly
use 8-byte double precision to store the 10 digits in a telephone number, but with
some manipulation you might be able to get it down to 5 bytes.

To let the operator enter a number in telephone format, you can use the
formatted inkey routine that is discussed in this book. To display a number in
telephone format, you can use the FNTF$(A#) function. It creates a 12-byte
string that you can PRINT or LPRINT. Here are some examples:

FNTF$(1234567890) = "(123) 456-7890"
FNTF$(1234567) = "(0PP) 123-4567"
FNTF$ (0) = "(000) 00O-0000"

15 DEFFNTFS$(Al#)="("+MIDS(RIGHTS ("0000000000"+MIDS (STRS (A1#),2),
10) ,1,3)+") "+MID$(RIGHTS("0000000000"+MIDS (STRS (A1#) ,2) ,10) ,4,3
)+"="4+MID$ (RIGHTS ("0000000000 " +MIDS (STRS (A1%) ,2),10) ,7,4)

If you study the FNTF$ function you’ll see how you can design a print function
for just about any special type of number. FNSOS$, for example, formats a double
precision number into a string in social security format. If SS# contains

123456789, FNSO$(SS#) will return ‘123-45-6789’.
D —

25 DEFFNSOS$ (Al#)=MIDS$ (RIGHTS ("0@00000800"+MIDS (STRS (Al#) ,2),9),1,
3) +"-"+MIDS (RIGHTS ("000008000 " +MIDS (STRS (AL#) ,2) ,9) ,4,2) +"="+MID
$ (RIGHTS ("000000000 " +MIDS (STRS (Al#) ,2) ,9) ,6,4)

SUMSNG/DEM
Array Summing
Demonstration
Program

M 2 Note # 23

M 2 Note # 32

Number Crunchers & Munchers 81

instantly Sum Arrays

The SUMSNG USR routine lets you instantly find the sum of all elementsin a
singly dimensioned array of single precision numbers. It can add the contents of
a 2000 element array in about 1 second!

This USR routine is 47 bytes long and fully relocatable. You canload it into any
protected memory address or execute it as a ‘magic array’. The SUMSNG routine
calls three ROM subroutines that handle single precision arithmetic. If you want
more information about ROM subroutines, I recommend that you get a copy of
Microsoft BASIC Decoded, by James Farvour.

Before you can use the SUMSNG routine, you must set up a single precision
variable in your program that will hold the sum that is computed. For example, if
you want your sum to be placed into SM!, initialize the variable with the command
‘SM! = (. You only need to do this once in your program.

Then, if you are executing SUMSNG as a magic array USR routine, you should
load an integer array with the 24 numbers listed below, and you set the 18th
element equal to the VARPTR of your single precision sum variable. (In our
example, VARPTR(SM!)). Again, you only have to do this once in your program.

Or, if you are executing SUMSNG as a regular USR routine in protected
memory, you should poke the VARPTR of your sum variable into the 37th and
38th bytes of the routine.

Now, let’s say you want to sum the array, SA!. Your command is,

J=USRO (VARPTR(SAL(8)))

The sum will be in the single precision variable you specified. (In our example
it will be in SM!.) The argument to be passed to the USR routine is always the
VARPTR to element 0 of the array to be summed. If you are using the magic array
method, be sure that the dummy integer variable, (‘J %’ in our example) has been
previously initialized and that you DEFUSR the first element of your magic array
just before you execute it.

Here is a program that demonstrates the mechanics of setting up and using the
SUMSNG USR routine within a program. In line 20 we initialize the sum variable,
SM!. Line 31 loads the SUMSNG routine into the integer array, UX%. Line 100
generates a 1000 element array containing random numbers. Line 120 calls the
USR routine to compute the sum.

f 'SUMSNG/DEM

10 DEFINTA-2Z

20 SM!=0:DIMSA1(999)

30 DATA32717,-6962,17963,20011,-6687,~12859,2481,-7743,30987,104

é6,4366,4,—6887,—12859,2498,5837,6151,4587,ﬂ,8481,321,4,-2@243,2
1

31 DIMUX(23) :FORX=0T023 :READUX (X) :NEXT:UX(18) =VARPTR(SM!)

100 FORX=GT0999:SA!l (X)=RND(9)/RND(9) : PRINTX,SA! (X) :NEXT

11¢ LINEINPUT"PRESS ENTER TO SUM THE ARRAY...";A$

120 J=0:DEFUSR1=VARPTR(UX(@)) :J=USR1 (VARPTR(SA!(0)))

130 PRINTSM!:GOTOl1l0

82 BASIC Faster & Better

e T e S S S s e S R e

Magic Array Format, 24 elements:

SUMSNG

Single Precision

Array Summing 32717 =-6902 17963 20011 =-6687 -12859 2481 =7743 30987
USR Subroutine 10416 4366 4 ~-6887 -12859 2498 5837 6151 4587
M 2 Note # 23)] 8481 321 4 -20243 201
M 2 Note # 32
Poke Format, 47 bytes:
205 127 10 229 43 78 43 78 225 229 197 2065 177 9 193 225
11 121 176 406 14 17 4 B 25 229 197 265 194 9 295 22
7 24 235 17 B 33 33 65 1l 4 6 237 176 201
00601 ;
FFO0 00090 ORG GFFOOH sORIGIN - RELOCATABLE
FF88 CD7FGA pR100 CALL BATFH sGET VARPTR TO ELEMENT 8§ OF ARRAY
FF@3 E5 pe11o PUSH HL sSAVE IT ON STACK
FF84 2B 006120 DEC HL H
FF@5 46 00130 LD B, (HL) H
FF@P6 2B 60140 DEC HL H
FF@7 4E po158 LD C, (HL) ;BC HAS DIMENSION + 1
FFP8 El B0leod POP HL sRESTORE VARPTR TO ELEMENT 0
FF@9 ES5 601706 PUSH HL s SAVE IT ON STACK AGAIN
FFBA C5 po180 PUSH BC ;s SAVE COUNT
FFOB CDBl09 00190 CALL #9Bl1H sMOVE FIRST ELEMENT TO WORK AREA
FFOE Cl 90206 LOOP POP BC s RESTORE COUNT
FFOF El 60210 POP HL s RESTORE POINTER
FFl0 0B 00220 DEC BC s DECREMENT COUNT
FFll 79 00230 LD A,C H
FFl2 BO 00240 OR B s TEST IF COUNT IS ZERO
FFl3 280E pe250 JR %2 ,ENDIT s IF SO, GO TO END
FFl15 1104060 00260 LD DE,04H H
FF18 19 60270 ADD HL,;DE sADD 4 TO POINTER
FFl19 E5 80280 PUSH HL :SAVE POINTER
FF1lA C5 60290 PUSH BC s SAVE COUNT
FF1B CDC209 60300 CALL #9C2H ; LOAD NEXT ELEMENT INTO BC/DE
FFlE CDl667 80310 CALL #716H ;ADD BC/DE TO WORK AREA
FF21 18EB 60320 JR Loop s REPEAT
FF23 110000 60338 ENDIT LD DE,0000H ;LOAD VARPTR OF DESTINATION VAR
FF26 212141 00340 LD HL,04121H ; LOAD ADDRESS OF WORK AREA
FF29 010400 P0350 LD BC,04H s PREPARE TO MOVE 4 BYTES
FF2C EDB# 00360 LDIR s MOVE FROM WORK AREA TO DEST VAR
FF2E C9 00370 RET sRETURN TO BASIC
0004 00380 END :

¢

00000 TOTAL ERRORS

instantly Sum Double Precision Arrays

The SUMDBL USR routine is similar to the SUMSNG USR routine. It lets you
instantly find the sum of all elements in a single dimensioned array of double
precision numbers. It can add the contents of a 1000-element array in about one
second!

The SUMDBL routine is 59 bytes long and fully relocatable. It, like the
SUMSNG routine, uses calls to some of the ROM subroutines. You can use the
same procedures for setting up and using this routine as discussed for the
SUMSNG routine, except you will be working with double precision numbers.

If you are using the magic array method, be sure to load element 24 with the
VARPTR to your destination variable, a double precision variable that will

Number Crunchers & Munchers 83

contain the computed sum of the array. If you are using SUMDBL as a regular
USR routine in protected memory, you will need to POKE the VARPTR of your
destination variable into the 49th and 50th bytes of the routine.

R R T T TGl 5 S SR

SUMDBL Magic Array Format, 30 elements:
Double Precision
Array Summing 32717 =-6902 17963 200611 -10799 16069 12808 16559 7457
USR Subroutine -12991 2515 -11839 306987 10416 8466 8 -6887 -5179
M 2 Note # 23 16017 -12991 2515 30669 6156 4583) 7457 321
M 2 Note # 32 8 —-20243 201
Poke Format, 59 bytes:
205 127 10 229 43 70 43 78 209 213 197 62 8 50 175 64
33 29 65 285 211 9 193 209 11 121 176 46 18 33 8 "]
25 229 197 235 33 39 65 285 211 9 205 119 12 24 231 17
g g 33 29 65 1l 8 @ 237 176 201
FFO0 80090 ORG OFFO0H sORIGIN - RELOCATABLE
FF@9 CD7FBA 00100 CALL @ATFH :GET VARPTR TO ELEMENT @ OF ARRAY
FF@3 ES5 90110 PUSH HL $:SAVE IT ON STACK
FF04 2B 80120 DEC HL H
FF05 46 00130 LD B, (HL) H
FF06 2B 00140 DEC HL :
FF@7 4E 80158 LD C, (HL) ;BC HAS DIMENSION + 1
FF08 D1 gBl60 POP DE :GET VARPTR TO ELEMENT @
FFB9 D5 00170 PUSH DE ;SAVE IT ON STACK AGAIN
FFBA C5 60189 PUSH BC s SAVE COUNT
FFOB 3E08 00190 LD A,08H ;sDBL PRECISION TYPE CODE TO ACCUM
FFOD 32AF40 00200 LD (40AFH) ,A s SET THE TYPE
FF10 211D4l 00210 LD HL, 411DH ;s LOAD WORK AREA 1 ADDRESS
FF13 CDD3@9 00220 CALL @9D3H ¢MOVE FIRST ELEMENT TO WORK 1
FFlé Cl 008230 LOOP POP BC ;s RESTORE COUNT
FFl17 D1 00240 POP DE s RESTORE POINTER
FF18 0B p0258 DEC BC : DECREMENT COUNT
FF19 79 00260 LD A,C :
FF1A BO pe270 OR ‘B s TEST IF COUNT IS ZERO
FF1B 2812 00280 JR Z,ENDIT sIF SO, GO TO END
FF1D 210800 00290 LD HL,@8H ;
FF20 19 20300 ADD HL,DE sADD 8 TO POINTER
FF21 E5 po310 PUSH HL s SAVE POINTER
FF22 C5 60320 PUSH BC s SAVE COUNT
FF23 EB p0B330 EX DE,; HL s NEXT ELEMENT POINTER TO DE
FF24 212741 60340 LD HL,4127H ;sWORK 2 ADDRESS IN HL
FF27 CDD389 0@350 CALL #9D3H : LOAD NEXT ELEMENT TO WORK 2
FF2A CD770C 00360 CALL @C77H ;ADD WORK 2 TO WORK 1
FF2D 18E7 pA370 JR LOOP s REPEAT
FF2F 110000 #6380 ENDIT LD DE,0000H ; LOAD VARPTR OF DEST VARIABLE
FF32 211D41 p0a390 LD HL,411DH ;s LOAD ADDRESS OF WORK AREA 1
FF35 010800 po400 LD BC,08H : PREPARE TO MOVE 8 BYTES
FF38 EDB@ gR4alLo LDIR s MOVE WORK AREA 1 TO DESTINATION
FF3A C9 00420 RET +RETURN TO BASIC
0008 00430 END :

P@000 TOTAL ERRORS

Sum Partial Arrays

SUMSNG and SUMDBL, as they are shown in the previous sections, add entire
arrays. They determine the number of elements to be summed by accessing the
dimension indicator, which is a 2-byte integer located immediately below array
element 0 in memory.

84 BASIC Faster & Better

DECTOHEX/BAS

Decimal to
Hexadecimal
Conversion
Program

It can often be useful, for example, to sum the first 200 elements of a 1000
element array. A slight modification is possible that works for both the SUMSNG
and SUMDBL routines. Simply change the 3rd element of the magic array from
‘17963’ to ‘256°. Then load the 4th element of the magic array with the number of
the element, through which you want a sum. This will be a number ranging from
1 to the dimension of the array plus 1.

To see how this works, replace line 110 in the SUMSNG/DEM program with:

116 UX(2)=256:INPUT"FIND CUMULATIVE SUM THROUGH ELEMENT";UX(3)

Now run the program. If you enter 3, array elements 0, 1, and 2 will be summed.
If you enter 200, array elements 0 through 199 will be summed.

If you are not using the magic array method to execute the USR routine, you can
make the modification by poking 0 into the 5th byte of the routine and 1 into the
6th byte. Then, to sum through any element, poke the 2-byte element number into
the 7th and 8th bytes of the routine.

Decimal to Hex Conversions

In many cases it’s much more efficient to work with hex notation than with
decimal. To convert from hex to decimal is easy. Disk basic recognizes and will
interpret a hexadecimal number from 00 to FFFF for you. Simply put ‘&H’ in
front of the hex number. For example, if you enter the command:

PRINT &H8B00
... your TRS-80 will respond by displaying —32768.

To convert from decimal to hex, you can use this short program:

@ °‘DECTOHEX/BAS

15 DEFFNH2$ (Al%)=MID$("0123456789ABCDEF", INT (A1%/16) +1,1) +MID$ ("
$123456789ABCDEF" ,A1%$-INT(A1%/16) *16+1,1)

5?) l))EFFNH4$(Al%) =FNH2$ (ASC(MIDS (MKIS (Al%) ,2)))+FNH2S (ASC(MKIS (Al

110 CLS:PRINT"DECIMAL TO HEXADECIMAL CONVERSIONS

12@ PRINT:INPUT"WHAT IS THE NUMBER FROM -32768 TO 65535";Al
121 IFAl>32767THENA%=A!-65536ELSEA%=Al

130 PRINT"HEXADECIMAL VALUE IS: ";FNH4S$ (A%)

146 GOTOl20

Line 15 of the decimal to hex conversion program defines a function,
H2$(A1%). It converts an integer from 0 to 255 to the corresponding hex notation
from 00 to FF. Line 25 defines function, H4$(A1 %). It handles the conversion for
integers from -32768 to 32767. Note that within the function, FNH4$(A1%), we
are using the function, FNH2$(A1%).

Using the decimal to hexadecimal conversion program, you can enter any
decimal number from -32767 to 65535. So, if you enter -1, the program will display
FFFF. If you enter 65535, it will also display FFFF. Line 121 provides the logic
that converts any entry over 32767.

Hexadecimal to
Decimal Function

BASECONVY/DEM
Base Conversion
Demonstration
Program

BASIC Faster & Better 85

If you are writing a program in which you want to allow the operator to enter
values in hexadecimal, you’ll find that INPUT and LINEINPUT do not
automatically recognize a hex number. The ‘&H’ prefix only works in disk BASIC
within a program line or in command mode.

FNDH!(AS$) is a function that converts a 4-digit hex number, expressed as a
string from 0000 to FFFF, to a single precision number. For example, if HS is
‘3C00°, FNDH!(H$) returns 15360. If H$ contains ‘E411’, FHDH!(H$) returns
58385. For valid results you must insure that the length of your string argument
is 4 bytes. Any non-hex characters are assumed to be ‘0’.

10 DEFFNDH! (A$)=INSTR("123456789ABCDEF",MIDS (AS$,1,1)) *4096+INSTR
("123456789ABCDEF"” ,MID$ (A$,2,1)) *256 +INSTR("123456789ABCDEF" , MID
$(A$,3,1))*16+INSTR("123456789ABCDEF" ,MID$ (A$,4,1))

Base Conversion Routine

BASECONV/DEM is a demonstration program that employs a subroutine you
can use for converting base 10 numbers to any other base. It asks you for the
number to be converted and the base you want to convert it to. Here are some
examples:

NUMBER,BASE? 3,2
11

NUMBER,BASE? 63622,2
1111911069010111890

NUMBER,BASE? 39,40
39

NUMBER,BASE? 43283,16
16 8 12 3

The base conversion subroutine occupies lines 210 and 220. To call the
subroutine, ‘BS’ specifies the base, and ‘N’ contains the decimal number to be
converted. Upon return from the subroutine, ‘A$’ contains the number in the
desired base.

You'll find this program especially useful when you are experimenting with bit
manipulations. A conversion to base 2 shows the bits that are set for any number.

160 CLEAR1GO0

116 CLS:PRINT"BASE CONVERSION PROGRAM®
120 INPUT"NUMBER,BASE";N,BS

136 GOSUB210:PRINTAS:GOTO1l20

200 °‘BASE CONVERSION SUBROUTINE:....

210 As=""

220 A$=STRS (N~ (INT(N/BS) *BS)) +A$:N=INT(N/BS) : IFN=8 THENRETURNELSE
220

86 Chapter 7

Using Strings

The string handling capabilities of BASIC provide countless opportunities to
design powerful program routines. This chapter will give you some ideas, standard
function calls and subroutines that will multiply the power of your programs.

Peeks, Pokes, and Strings

Before we start manipulating strings, it is important to know how BASIC stores
them. For each string that has been defined in a program, BASIC maintains a
3-byte pointer. The first byte specifies the current length of the string. The next
2 bytes point to the address where the string data can be found. Thus,

PEEK(VARPTR(A$)) is equal to LEN(AS$)

PEEK(VARPTR(A$)+1) gives the LSB of the memory address where
the data currently in A$ can be found.

PEEK(VARPTR(A$)+2) gives the MSB of that memory address.

PRINT CVI(CHR$ (PEEK (VARPTR (A$)+1)) +CHR$ (PEEK
(VARPTR (A$)+2))) prints the memory address (in decimal) of the data
currently in A$.

The CLEAR command defines the space that will be used for string storage. If
you ‘CLEAR 1000°, BASIC will reserve 1000 bytes for string data storage at the top
of unprotected memory. If for example, you specify a memory size of 61440 and
then CLEAR 1000, memory locations 60439 through 61439 will be used for string
storage.

It is important to know that BASIC does not move a string to the string storage
area if it is defined as a ‘literal’ in the program text. For example, if line 10 of your
program says,

16 A$="XXXXXXXX"™:B$=STRINGS (8,"X") :C8="CAT" :D$="DOG"+""

... the addresses for A$ and C$ will point at the program text. The addresses
for B$ and D$ will point to the string storage area. Though four strings were
defined, only B$ and D$ used memory in the string storage area. Keeping this in
mind, you can judge the ramifications of various methods of programming your
application.

If we use a command that lengthens ‘A$’ string during a BASIC program, the
new contents of the string will be put in the next available location of the string
storage area. If another string has been defined since ‘A$’ was first defined, then
BASIC will put the new ‘A$’ below the data for the last string defined. Then the

String Pointer
Subroutine

. Using Strings In New Ways 87

VARPTR for the string is adjusted to point to its new address in memory. If there
isn’t any contiguous space in the string storage area that is long enough for the new
‘A%’ string, BASIC pauses to reorganize the data in string storage. This
reorganization is often called ‘garbage collection’. If, after reorganizing, there still
isn’t enough space, you get an ‘out of string space’ error.

If we use a command that shortens a string or leaves it the same length, BASIC
simply records the new data in the same area and puts the new length into the
string’s VARPTR. The address of string data doesn’t change as long as it is stored
in the string storage area and isn’t made longer than the original string length.

The LSET and RSET commands leave the length and address of a string
unaltered. They simply replace the data at its current location, filling in spaces to
the left or right of the string. Though LSET and RSET are most often used for
loading data into random disk buffers, they can be very useful in many other ways
also.

‘Pointing’ a String

We can ‘load’ the contents of any contiguous 255 or fewer bytes of memory into
a string. To do it, we simply poke the string’s VARPTR with the length and
memory address we want. If for example, we want A$ to contain the first 25 bytes
of memory, we can use the following sequence of commands:

POKE VARPTR(AS) ;25
POKE VARPTR(AS)+1,0
POKE VARPTR(A$)+2,0

Here’s a general subroutine you can use to point a string at any memory address
for any length. Simply load A% with the desired address, from -32768 to 32767
and A1% with the desired length, from 1 to 255 bytes and GOSUB 41000. Upon
return, AN$ will be pointing where your parameters specified.

Note that your address must be expressed as an integer. For memory addresses
0 through 32767, no conversion is necessary. For memory addresses 32768 through
65535, subtract 65536 to get the integer address, A%.

41000 AN$=" ":POKEVARPTR(ANS),Al%:POKEVARPTR(ANS)+1,ASC(MKIS$ (A%)
) :POKEVARPTR(ANS) +2 ,ASC(RIGHTS (MKI$ (A%) ,1)) sRETURN

To load AN$ with the top 16 bytes of memory in a 48K TRS-80, your command
would be:

A%=-16 :A1%=16 :GOSUB41600

To load AN$ with the contents of memory locations 16001 to 16049 the
command is:

A%=16001:A1%=49:GOSUB41060

Toload 8 X’s into the 8 bytes starting at memory location 15360, you can use the
command:

A%$=15360:A1%=8:GOSUB4100 P : LSETANS="XXXXXXXX"

88 BASIC Faster & Better

M2 Note #7

Strip Trailing
Blanks Function

Note that the video display string pointer subroutine, which is also discussed in
this book, is just a special version of the string pointer subroutine. Instead of
requiring an address, A%, it uses PO % to specify a position on the video display.
You can use the string pointer subroutine to point to any PRINT@ position on the
video display by adding 15360 to the desired position to get your address, A%.

The ability to point strings to any location in memory gives us a fast and
convenient way to move data from one memory location to another. We simply
point one string to the source address, and point a second string to the destination
address. Then we LSET the second string equal to the first. For example, let’s
suppose we want to instantly write the first 127 elements of the 1% integer array
to the first disk record in file 1. We can say:

FIELD 1, 254 AS B$
Al%$=254:A%=VARPTR(I%(0)) :GOSUB41000
LSET B$S = ANS : PUT 1,1

To load the array from disk we can reverse the procedure:

FIELD 1,255 AS B$: GET 1,1
Al%=254:A%=VARPTR(I%(0)) :GOSUB410068d
LSET ANS$ = BS$

To move 64 bytes from memory location 15360 to memory location 32000 we can
use the following sequence of commands:

Al%=64:A%=15360:GOSUB41000
A$=ANS
Al%$=64:A%=32000:GOSUB41000
LSET AN$ = AS

Stripping Trailing Blanks from a String

Here’s a function call that you can use when you want to insure that there are no
trailing blanks on a string. For a string argument, A$, function FNSS$(A$)
returns the contents of A$ with trailing blanks removed. The only restrictions are
that A$ must be shorter than 253 bytes, and there must not be 2 contiguous blanks
within A$, other than at the end of the string.

21 DEFFNSSS$(AS)=LEFTS$(A$+" ",INSTR(AS+" *," ")-1)

FINSS$ strips the trailing blanks by adding 2 blanks to the end of the string. It
then looks for the first 2 contiguous blanks and returns all characters to the left of
those 2 blanks. If you are likely to have contiguous non-trailing blanks within a
string, you may want to use the RSTRIP USR routine that is explained in this
chapter. It does a ‘true’ strip of trailing blanks, and it’s faster.

There are several common situations in which you might want to strip trailing
blanks. If you are ‘pulling’ strings from video display memory using the string
pointer subroutine, you may want to strip blanks before outputting the string with
a PRINT or LPRINT command. If you are using random disk files, and a string

String Padding and
Centering
Functions

Using Strings In New Ways 89

has been LSET into a field, you may want to strip the right spaces so that you can
print it in a sentence. If you are loading a large amount of string data into an array,
you may wish to strip the right spaces from each string to conserve memory.

Padding and Centering Strings

The FNPLS$, FNPR$, and FNCNS$ functions are very useful when you are
working with variable length strings and you want to print them in special formats
on the video display or line printer.

FNPLS$(A$,A %) pads enough spaces to the left of any string, A$, so that it will
be right justified within a string, whose length is specified by A%. For example,
if ST$ is ‘JOE’, FNPL$(ST$,5) will be ¢ JOE’, with 2 spaces added to the left of
the string to make it 5 characters long. FNPL$(ST$,2) will return the string ‘OE’.
In essence, FNPLS$ is analogous to the RSET command, except you can use it in
many situations where you can’t use RSET.

FNPR$(A$,A%) pads enough spaces to the right of a string, A$, so that its
length will be A%. In effect, it forces the length to be A% by stripping characters
or adding blanks. It is analogous to the LSET command. FNPRS$ is handy when
you want to print variable length strings in columns on the line printer, especially
past tab position 64, FNPR$ makes the lengths what you want them to be so that
your columns will line up. FNPR$(‘JOE’,5) pads 2 blanks onto the right side of
the string, ‘JOE’, so that it is 5 bytes long. FNPR$(“WALTER”,5) generates the
5-byte string, WALTE.

FNCNS$(A$,A%) pads just enough blanks to the left of a string, A$, to center it
in a field of width, A%. If, for example, you want to center the title,
‘Inventory-Status’ on the first line of a printout whose width is 128 characters, you
could use the command,

LPRINT FNCN$("Inventory-Status®,128)
If you want to center the same title on the video display, you can say,
PRINT FNCNS("Inventory-Status™,64)

For the FNCNS$ function call, the length of the string you wish to center must
not be greater than the width specified by A%. Ifitis, you’ll get an ‘illegal function
call’ error. :

Pad right, enforcing a length of A%:]
22 DEFFNPRS (A$,A%)=LEFTS$ (AS+STRINGS (A%," ") ,A%)

Pad left, enforcing a length of A%:
23 DEFFNPLS (A$,A%) =RIGHTS (STRINGS (A%," *)+AS$,A%)

Center by padding left, for a width of A%:
24 DEFFNCNS (A$,A%)=STRINGS (A%/2-LEN(AS)/2-,5," ")+AS

Last Name First Function

In mailing lists, payroll and many other applications, it is useful to store names
on disk with the last name preceding the first. This makes it possible to sort the
data in alphabetical order. The FNFL$ function call lets us convert a string stored

90 BASIC Faster & Better

Last Name First
Function

in ‘last, first’ format to a string in ‘first last’ format. It looks for a comma followed
by a blank within the string. If one is found, the string is reversed and the comma
removed. If a comma-blank isn’t found, the string is not modified.

Here are some examples:

NM$="JONES, SALLY"
FNFLS$ (NMS$) returns "SALLY JONES"

NM$="JOHNSON, MR. & MRS, BILL"
FNFLS$ (NM$) returns "MR, & MRS. BILL JOHNSON"®

NM$="ABC SUPPLY"
FNFL$ (NM$) returns "ABC SUPPLY"

TI$="Strings, How to Sort"
FNFL$(TI$) returns "How to Sort Strings"”

The only major restriction with the FNFL$(A$) function is the string you wish
to reverse, A$, must not have any trailing blanks. You can use the FNSS$(A$)
function to remove them before calling the FNFL$ function. Then, if you want to
restore the string to its original length, you can use the FNPR$(A$,A %) function.

25 DEFFNFLS$(A$)=LEFT$ (MID$ (AS+" , ",INSTR(AS+" , ",", ")+2),INST
R(MIDS (A$+", ",INSTR(A$+", ",", ")+3)+" ®," ®))+LEFTS$(AS$+", ",
INSTR(AS$+", ",", ")-1)

You may modify the FNFL$ function call so that it uses a delimiter other than
a comma to separate the first and last names. To do so, replace those commas in
the function definition that are logically between quote marks with the character
you want to use.

Stripping Blanks with USR Calls

LSTRIP and RSTRIP are two relocatable USR routines that let you strip
leading or trailing blanks from any string. LSTRIP removes any blanks that may
precede the first character in a string. RSTRIP removes any blanks that are on the
right end of a string.

After one or both routines have been loaded into protected memory or a magic
array and you have done a DEFUSR command, you can call LSTRIP or RSTRIP
using the VARPTR to the string you want to alter as your calling argument. For
instance, if you want to strip leading spaces from the string A$ and you have
loaded and defined LSTRIP as USRI1, your command is:

J=USR1 (VARPTR(AS))

If you want to strip trailing spaces from the string A$ and you have loaded and
defined RSTRIP as USR2, your command is:

J=USR2 (VARPTR(AS))

Using Strings In New Ways 91

If both routines have been loaded and defined, you can strip leading and trailing
spaces with one call:

J=USRI1 (VARPTR(AS)) ORUSR2 (VARPTR(AS$))

The integer variable ‘J’ in the examples above is a dummy variable. LSTRIP
and RSTRIP do not return an argument to BASIC. The string that is stripped
remains at the same location in memory. The USR routines simply search for the
first non-blank character and modify the length and address pointers for the
string accordingly.

“

M 2 Note # 23 Magic Array Format - 16 elements

LSTRIP 32717 -6902 9038 9954 -5290 -18567 2344 8254 8382
Strip Left Blanks 3332 6179 =5133 29153 29475 29219 201

USR Subroutine Poke Format - 31 bytes

205 127 18 229 78 35 94 35 86 235 121 183 40 9 62 32
196 32 4 13 35 24 243 235 225 113 35 115 35 114 201

00000 ;LSTRIP

p00601 ;
FFO0 00020 ORG OFFO@H #ORIGIN - RELOCATABLE
FF@@ CDTFQA po0B30 CALL PATFH HL HAS STRING VARPTR
FF@3 E5 P0040 PUSH HL i SAVE HL
FF04 4E pease LD C, (HL) :BC HAS STRING LENGTH
FF@5 23 00060 INC HL HL POINTS TO POINTERS
FF@6 5E poo70 LD E, (HL) H
FFO7 23 00080 INC HL i
FF@8 56 00090 LD D, (HL) iDE NOW POINTS TO STRING
FFP9 EB 00100 EX DE,HL sHL NOW POINTS TO STRING
FFOA 79 90110 REDO LD A,C i PREPARE FOR PRE-TEST
FF@B B7 gel20 OR A : PRE-TEST FOR ZERO LENGTH
FF@C 2809 P0130 JR Z ,RBAS : IFLENGTH=0 THEN RETURN
FFOE 3E20 00140 LD A,020H :SPACE CODE TO ACCUM
FFl0 BE p@150 Cp (HL) i COMPARE & INCREMENT
FF1ll 2004 00le60 JR NZ,RBAS ;RETURN IF NON SPACE
FF13 0D pe170 DEC C iSUBTR 1 FROM LENGTH
FFl4 23 00180 INC HL ;ADD 1 TO ADDRESS
FF15 18F3 00190 JR REDO
FF17 EB 00200 RBAS EX DE,HL HOLD NEW ADDR IN DE
FF18 El 00210 POP HL #{GET VARPTR TO STRING
FF19 71 00220 LD (i) ,C ;NEW LENGTH RECORDED
FF1A 23 06230 INC HL ; POINT TO POINTERS
FF1B 73 00240 LD (HL) ,E H
FF1C 23 00250 INC HL H
FF1D 72 08260 LD (HL) ,D : POINTERS NOW MODIFIED
FF1lE C9 00270 RET sRETURN TO BASIC
FFpA 00280 END i

P0GPP TOTAL ERRORS

m

RSTRIP Magic Array Format - 15 elements

Strip Right Blanks

USR Subroutine 32717 -6902 6 9038 9054 -5290 11817 -18567 2344
M 2 Note # 23 8254 8382 3332 6187 =7693 -13967

Poke Format - 3@ bytes

205 127 10 229 6 P 78 35 94 35 86 235 9 43 121 183
40 9 62 32199 32 4 13 43 24 243 225 113 201

92 BASIC Faster & Better

RSTRIP

Strip Right Blanks
USR Subroutine

FEGO
FEGO
FE@3
FEG4
FEO6
FE@O7
FE@G8
FEB9
FEGA
FEOB
FEGC
FE@D
FEGE
FEQF
FE10
FE12
FEl4
FEl15
FE17
FE18
FE19
FE1B
FELC
FE1D
FEGE

CD7F0A
E5
0600
4E
23
5E
23
56
EB
09
2B
79
B7
2809
3E20
BE
2004
@D
2B
18F3
El
71
C9

pOpOs ;RSTRIP

pooB1 ;

00020 ORG PFEOOH ;ORIGIN - RELOCATABLE

00030 CALL QATFH ;HL HAS STRING VARPTR

B0040 PUSH HL ;SAVE HL

00050 LD B,0 ;

0p060 LD C, (HL) ;BC HAS STRING LENGTH

0eo70 INC HL ;HL POINTS TO POINTERS

poo8o LD E, (HL) ;

00090 INC HL ;

00100 LD D, (HL) ;DE NOW POINTS TO STRING

00110 EX DE,HL ;HL NOW POINTS TO STRING

00120 ADD HL,BC ;HL POINTS TO END OF STRING +1
20130 DEC HL ;HL POINTS TO LAST BYTE OF STRING
§0140 REDO LD A,C ; PREPARE FOR PRE-TEST

89150 OR A s PRE-TEST FOR ZERO LENGTH
poleo JR Z ,RBAS ; IFLENGTH=0 THEN RETURN

oeL70 LD A,020H : SPACE CODE TO ACCUM

00180 CP (HL) ; COMPARE)

p0190 JR NZ ,RBAS ;RETURN IF NON SPACE

06200 DEC C ;SUBTR 1 FROM LENGTH

00210 DEC HL ; POINT TO NEXT TO LAST CHARACTER
p0220 JR REDO

90230 RBAS POP HL ;GET VARPTR TO STRING

00240 LD (1HL) ,C :NEW LENGTH RECORDED

BR250 RET ;RETURN TO BASIC

00260 END :

§PB06 TOTAL ERRORS

Using Strings to Store Data

When you have a small amount of string data to use in a program, such as a list
of file names or a list of the months of the year, it can be very convenient and
efficient to store the list in a string. Supose your program will use 3 disk files,
‘MASTER:1’, ‘TRANS:1’ and ‘INDEX:1’. You can store those file names in a

single string,
FL$="MASTER:1TRANS:1 INDEX:1l "

... and extract them by number as needed. To open the 3 files, your command
could be:

FOR PF$ = 1 TO 3
FD$=MIDS$ (FL$, (PF%~-1) *8+1,8)
OPEN"R",PF%,FD$

NEXT

The programming pattern of the string extraction is defined by the
FNRR$(A1% ,A2% ,A3$) function, where:

Argument 1 is a ‘field’ number within a string, (the first field is 1),
Argument 2 is the length of each field, and
Argument 3 is the string containing the data.

Substring
Extraction
Function

Code Lookup and
Validation
Function

Command String
Peel-off
Subroutine

Using Strings In New Ways 93

R e
15 DEFFNRRS (Al%,A2%,A3$)=MIDS$(A3S, (Al%-1) *A2%+1,A2%)

Here’s an example. To extract the 3-letter month abbreviation from a string,
based on the month number, your program can use the following logic:

INPUT"MONTH NUMBER";M%
PRINTFNRRS (M%,3, "JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC")

Whether you define the substring extraction function or you program the
extraction ‘in-line’, you’ll find that strings can be very good substitutes for data
statements and arrays.

Code Lookup With Strings

The FNRC% function seaches a string for a code entered by the operator and
returns a code number based on the position in the validation string. It is very
useful in validating transaction codes and in converting them to a number usable
by your program.

DEFFNRC% (A1$,A2$,A3%) =(INSTR(ALS$,LEFT$ (A2$+STRINGS (A3%," ") /A3%)
)-1)/A3%+1

The code lookup and validation function, FNRC % (A1$,A2%,A3%), returns a
code number where:
Argument 1 is a string list of valid codes separated by spaces,
Argument 2 is a string containing the code to be tested,and
Argument 3 is the uniform length of the codes in the valid code string.

An accounts receivable posting program might use ‘PD’, ‘CR’, ‘CM’, ‘IN’, ‘DR’
and ‘LC’ as valid transaction codes. To validate an entry by the operator and to
branch to the proper line number, our program logic could be:

VC$="PD CR CM IN DR LC "

PRINT"ENTER THE TRANSACTION CODE"
PRINT"VALID CODES ARE ";VC$
LINEINPUT"CODE: ";A$

TC$=FNRCS$ (VC$,A$,3)

IF TC%=0 THEN PRINT"INVALID CODE":GOTOl0#
ON TC% GOTO 1000,2000,3000,4000,5000,6000

Notice how we designed the program so that the validation string also serves as

an operator prompt. The space after each code insures that a partial code won’t
be accepted as valid.

Easy Input With Strings

Here’s a subroutine that you can use to process a list of commands entered by
the operator. The ‘peel-off’ subroutine gets, one by one, each word in a string of
commands separated by one or more spaces. Upon each call to subroutine 41100,
CS$ contains a list of commands. Upon return, A$ contains the next command,
unless all commands have been exausted. Then A$ will have a length of zero.

U O

41108 A$="":IFMID$(CS$,1,1)=""THENRETURNELSEIFMIDS (CS$,1,1)=" "T
HENCS$=MIDS$ (CS$,2) :GOTO41100

41101 A$=A$+MIDS(CS$,1,1) :CS$=MID$(CS$,2) : IFMIDS$(CSS,1,1) =""ORMI
D$(CS$,1,1)=" "THENRETURNELSE41101

94 BASIC Faster & Better

KILLFILE/BAS
Multifile Purge
Utility Program

The KILLFILE/BAS program demonstrates the peel-off subroutine. The

operator
each file
program
to be kill
this:

is instructed to type a list of disk files to be killed, using a space between
name. After the last file name, the operator presses ENTER. Then the
repeatedly calls ‘peel-off’. After each call, A$ contains the next file name
ed. When A$ is null, the program ends. The dialog looks something like

TYPE A LIST OF THE FILES YOU WANT TO KILL
SEPARATE EACH WITH A SPACE. PRESS <ENTER> AFTER THE LAST ONE.

INVEN:1 AR:1 DATA:2 SORT:0

INVEN:1 KILLED,

AR:1 KILLED.
DATA:2 ERROR, NOT KILLED.
SORT: 0 KILLED.

1l CL

100
110
120
AST
130
140
150
160
161
162
170
180

300

4110
HENC
4110
DS (C

EAR1000

CLS:PRINT

PRINT"TYPE A LIST OF THE FILES YOU WANT TO KILL"
PRINT"SEPARATE EACH WITH A SPACE. PRESS <ENTER> AFTER THE L
ONE. " :PRINT

LINEINPUT CS$ YENTER THE COMMAND STRING
GOSUB411@@: IFAS=""THEN END 'GET NEXT COMMAND FROM STRING
PRINTAS; 'PRINT IT

ONERRORGOTO3 00

KILL AS$ "EXECUTE THE COMMAND

PRINT" KILLED."

ONERRORGOTO@

GOTO140 'REPEAT

PRINT" ERROR. NOT KILLED.":RESUME170

@ A$="":IFMIDS$(CSS$,1,1)=""THENRETURNELSEIFMIDS$(CS$,1,1)=" "T
S$=MID$ (CS$,2) :GOTO41100

1 A$=AS+MIDS (CSS$,1,1) :CS$=MID$ (CS$,2) : IFMIDS$ (CS$,1,1)=""ORMI
§$,1,1)=" "THENRETURNELSE41101

Substring Replacement Subroutine

The substring replacement subroutine, 41200, replaces each occurrence of one
string within another. Three calling variables are required:

A$ is the string to be searched.

Al$
A2$

is the substring to search for.
is the replacement for A1$ when found.

A% and A1% are used temporarily within the subroutine. Upon return, A$

contains the modified string.
Example:
If AS$ = "JOE IS A GOOD GUY, JOE IS RICH."
and, Al$ = "JOE"
and, A2$ = "BILL"

Substring
Replacement
Subroutine

CHANGE/BAS
Program File
Modification Utility

Using Strings in New Ways 95

...a GOSUB 41200 command will modify A$ so that:

A$ = "BILL IS A GOOD GUY, BILL IS RICH,"

The substring replacement subroutine can be very useful in word processing
applications. You can also use it to modify programs that have been saved on disk
in ASCII format. CHANGE/BAS is a short utility program that implements the
substring replacement subroutine to let you change variable names, line numbers
or other information in an ASCII program or text file.

41200 Alsg=1

41201 IFLEN(AS)-LEN(Al$)+LEN(A2$)>255THENRETURNELSEA%=INSTR(Al%,
A$,AlS) : IFA%=0 THENRETURNELSEA$=LEFTS$ (A$,A%~1) +A2$+MID$ (A$, A% +LEN
(Al$)) :Al$=A%+LEN(A2$) :GOT041201

1 CLEAR1000

166 CLS:PRINT"

PROGRAM MODIFICATION UTILITY
2]

119 LINEINPUT"SOURCE FILE NAME: " SF$
120 LINEINPUT"DESTINATION FILE NAME: ";DF$
136 PRINT

140 LINEINPUT"STRING TO BE REPLACED: ";Al$
150 LINEINPUT"REPLACE IT WITH: ";A28
2p00 OPEN"1",1,SF$

210 OPEN"0",2,DF$

220 IFEOF (1) THEN290

230 LINE INPUT#1,AS$

240 GOSUB41200

250 PRINT#2,A$

260 GOTO220

299 CLOSE:GOTO0100

41200 Alg=1

41201 IFLEN(A$)-LEN(Al$)+LEN(A2$)>255THENRETURNELSEA%=INSTR(Al%,
AS,Al$) s IFA$=0THENRETURNELSEA$=LEFTS$ (A$,A%-1) +A2$+MIDS (AS, A% +LEN
(A1$)) :Al$=A%+LEN(A2S$) :GOT041201

Storing 3 Bytes in 2

Suppose you could compress an alphanumeric string down to two-thirds of its
original length for disk or memory storage. In effect, you’d be increasing your
storage capacity by 50 percent!

The COMUNCOM USR subroutine lets you do just that. You can store a
24-byte name or address field in 16 bytes, a 60-byte field in 40 bytes or a 3-byte
field in 2 bytes. The compression or uncompression is faster than a blink of the

96 BASIC Faster & Better

eye. The only restriction is the string to be compressed must consist of characters
from a 40-character set. The 40 characters of the set you define may consist of any
ASCII or non-ASCII character codes from 0 to 255. I've found the following 40

character set to be generally useful:

The letters, A through Z.
The digits, O through 9.
The space, period, comma and dash.

Within your character set, one character can be a default. The most common
default character is the space. When you try to compress a character that is not in
the character set, COMUNCOM changes it to the default character. For example,
if we tried to compress the string ‘A&B SUPPLY’, COMUNCOM would replace
the ‘&’ character with a space, making the string, ‘A B SUPPLY’ before
compressing.

Before going into the specifics of using the COMUNCOM USR routine, let’s
look at the theory behind it.

As you know, we can store a number ranging from 0 to 65535 in 2 bytes or 16 bits,
because 2 to the 16th power is 65536. Now, consider a character set consisting of
40 characters. Any combination of 3 characters from that set can be stored in 2
bytes, because 40 times 40 times 40 equals 64000! To compress, COMUNCOM
looks at the string, 3 characters at a time, converting each ‘triplet’ to a 2-byte
‘token’. The resulting string of 2-byte tokens is the compressed string. To
uncompress, a string is built by converting each 2-byte token back to 3 bytes.

In effect, each compressed character, instead of taking 8 bits, takes only 5 and
a third bits. Since we can’t work with a third of a bit, every compressed string is
amultiple of 16 bits (or 2 bytes) in length. Every string that is uncompressed from
a previously compressed string will be a multiple of 24 bits (or 3 bytes) in length.
If you try to compress a 2-byte or 1-byte string with COMUNCOM, the resulting
compressed string will be 2 bytes. In designing your applications with
COMUNCOM you should plan your uncompressed length as a multiple of 3
whenever possible.

The COMUNCOM USR routine requires 4 arguments:

Argument 1 is the VARPTR to the source string, (the string that is to be
compressed or uncompressed).

Argument 2 is the VARPTR to the destination string, (the string that
will result from the compression or uncompression).

Argument 3 is the VARPTR to the character set string. This string must
be exactly 40 characters in length and if you wish the compressed strings
to be sortable, the characters must be in ascending sequence. The first
character of the character set string is the default character, to be
substituted when compression of an invalid character is attempted.

Argument 4 is an integer ‘1’ to compress or ‘2’ to uncompress.

The COMUNCOM USR routine implements the ‘relocatable multiple
argument handler’ as its method for getting the 4 arguments from BASIC.

Therefore, to call the USR routine from BASIC, assuming it has been loaded and

String Compress
and Uncompress
Function

Using Strings In New Ways 97

defined as USR7, your command is in the format of . . .

J=USR7 (ARG 1) ORUSR7 (ARG 2)ORUSR7 (ARG 3)ORUSR7 (ARG 4)
Assume that we have specified our valid character set as CS$:
CS$=" ,-,ABCDEFGHIJKLMNOPQRSTUVWXYZ"

The following command would compress the 9-byte string ‘MYSTERIES’,
currently stored in U$, down to a 6-byte compressed string, C$, using CS$ as the
character set:

J=USR7 (VARPTR(US$)) ORUSR7 (VARPTR (C$)) ORUSR7 (VARPTR (CS$)) ORUSR7 (1)

Now, assuming we have a compressed string in C$, we can uncompress it into the
string U$ with the following command:

J=USR7 (VARPTR(CS$)) ORUSR7 (VARPTR(US$)) ORUSR7 (VARPTR(CS$)) ORUSR7 (2)
To make the compression and uncompression especially convenient, I use a
function call to handle the USR arguments.

FNKM$(AS$,1) returns a compressed string when the argument is an
uncompressed string. FNKM$(A$,2) returns an uncompressed string when the
argument is a compressed string. As you can see, the first argument to FNKMS$ is
the string to be compressed or uncompressed. The second argument is ‘1’ to
compress or ‘2’ to uncompress.

The program statement . . .
S$="COMPUTER" ; QS$=FNKM$ (S$,1)

... loads a 6-byte compressed string into QS$. To uncompress and print QS$
later we say,

PRINT FNKMS(QS$,2)

... and we’ll get the 9-byte string, ‘COMPUTER .

25 DEFFNKMS$ (A$,A%)=LEFT$ (A$, (USR7 (VARPTR(AS$)) ORUSR7 (VARPTR (W$)) O
RUSR7 (VARPTR(CS$)) ORUSR7 (A%)) *0) +W$

Notice that the string compress and uncompress function does all the work for
us. To use it though, you will need to load and DEFUSR the COMUNCOM USR
routine. CS$ must have been loaded with your character set and W$, a work string,
must have been initialized. (You can use different variable names for W$ and
CS3).

The ‘magic array format’, ‘poke format’ and assembly listing for COMUNCOM
are shown below. As shown, it will execute as USR7 with the NEWDOS 2.1 disk
operating system. To use it as another USR routine (USRO - USR9) with
Note: This technique cannot be used with sequential files.

98 BASIC Faster & Better

M 2 Note # 23
M 2 Note # 34

COMUNCOM

String Compress &
Uncompress USR
Subroutine

FBop
F983
FBg4
Fpo8
F80B
FBOE
Foll
Fol4
FO17
FO1A
F@1D
F@1F
Fo20
F623
F924
F@826
Fo27
FB2B
FO2F
FO31
F@33
F@35
F@837

DD2A225B
DD7531
DD7432
DD346A
DD346A
DD346D
DD346D
DD7EBA
$631

DD368A31
DD366D32
1808
poop
80086
600D
0660

F@39 DDG6E35
F@3C DD6636
F@3F 23

NEWDOS 2.1 or to use it on another operating system, refer to appendix 2 and use

the following guidelines:

1. For execution as a magic array, replace the 4th element, ‘23330’, with
the required integer from appendix 2.

2. If you are poking the COMUNCOM USR routine into memory, replace
the 7th and 8th bytes, ‘34’ and ‘91’, with the required bytes from
appendix 2.

3. If you are re-assembling COMUNCOM, replace the 5B22 in line 160 of
the assembly listing with the required hexadecimal number from
appendix 2.

In line 1080 of the assembler listing, we are calling the ROM subroutine at 2857.
It allocates space in the string storage area for a new string, the length being
specified by the A register. Upon return, the pointers to the new string address are
contained in 40D4 and 40D5. If there isn’t enough space, we get an ‘out of string

space’ error when we return to BASIC.

pB1P6
66110
06120
091306
pB140
p0150
pp160
#0176
668180
96190
86260
06210
00220
906236
00240
06250
p6260
08270
00280
pB290
PB3060
pe31e
00320
pB330
P340
pB358
pB360
pB370
p0380
606396
00400
po4alo
pB420
p04a3p
YR
p0450
00460
00470
0480
00490
o500

nouonn

;ORIGIN - RELOCATABLE

THE FOLLOWING LOGIC ACCEPTS THE 4 ARGUMENTS

;PUT ARGUMENT FROM BASIC IN HL
;NO-OP FOR ALIGNMENT
; IX HAS USR7 ADDRESS

H

;PUT ARGUMENT IN STORAGE AREA

H

sADD 2 TO POINTER

i

sADD 2 TO SECOND POINTER

A HAS NUMBER OF VARIABLES * 2
B HAS NUMBER OF VARIABLES * 2

IF ZERO, NO MORE VARIABLES
OTHERWISE, RETURN FOR NEXT

RESTORE COUNT

W we we WO We W W Ve W WO WS

STORAGE FOR UNCOMPRESS VARPTR

: STORAGE FOR COMPRESS VARPTR

; STORAGE FOR CHARACTER SET VARPTR
;s STORAGE FOR COMMAND CODE

THE PRECEDING STORAGE AREA MUST NOT BE MODIFIED
AS THE USR ROUTINE CALCULATES THE NUMBER OF

THE "JR START" COMMAND

SOURCE VARPTR
DESTINATION VARPTR
CHARACTER SET VARPTR
COMMAND CODE, 1 OR 2

; THE FOLLOWING LOGIC POINTS IX+53&54 TO CHARACTER SET DATA

ORG GFOOBH
H
H
CALL GATFH
NOP
LD IX, (#5B22H)
LD (IX+49),L
LD (IX+50) ,H
INC (IX+19)
INC (IX+10)
INC (IX+13)
INC (IX+13)
LD A, (IX+10)
LD B,49
SUB B
LD B, (IX+48)
SUB B
JR Z ,PASS1
RET
PASS1 LD (IX+10) ,49
LD (IX+13) ,50
JR START
DEFW)
DEFW 2
DEFW B
DEFW /]
e
;s NOTE:
[
: ARGUMENTS TO PASS FROM
H (IX+49) AND (IX+58)
H (IX+51) AND (IX+52)
: (IX453) AND (IX+54)
: (IX+55) AND (IX+56)
H
START LD L, (IX+53)
LD H, (IX+54)
INC HL

°

g
;HL POINTS TO VARPTR

§

L s

F@40
Fp4l
F@g42
F@43
F@46
Fp49

FpacC
FQ4E
F@50
F@53
F@56
F@57
FB59
F@5a
FO5B
F@5D
FOSE
F@5F
FO61
F@63
FB64
F@65
FB67
Fp68
FO6A
F@6C
FB6E
F@70
FO71
F@73

F@75
Fo78
F@7B
F@7C
FO7D
FO7E
FO7F
Fo8o

Fp8l
Fo82
FO84

F086
Fp87
Fp89
F@8A
F@g8cC
FP8F
Fool
F@92
Fp94
Fg98
F@99

5E
23
56
DD7335
DD7236
DD4637

DDE5
FDEl
DD6E31
DD6632

3E00
6c
oD
2818
3C
3C
CB48
2801
3C
@D
280E

280B
CB48
2802
18ED
gD

2802
18E8

DD6E33
DD6634
E5
4E
23
5E
23
56

B9
2821
381B

F5
DDE5
Cc5
FDE5
CD5728
FDE1
cl
DDE1
ED5BD4 40
F1

El

90510 LD E, (HL)
80520 INC HL

00530 LD D, (HL)
00540 LD (IX+53) ,E
p@550 LD (IX+54) ,D
00560 LD B, (IX+55)
060579 ;

09580

P0590 SKP1 PUSH IX

00600 POP Iy

ne6l10 LD L, (IX+49)
00620 LD H, (IX+50)
po630 LD C, (HL)
00640 LD A8
p0650 INC C

0660 DEC C

po670 JR %2 ,LOOP1B
P068¢ LOOP1lA INC A

00690 INC A

00700 BIT 1,B
00710 JR 2, SKP2
80728 INC A

00730 SKP2 DEC C

00740 JR % ; LOOP1B
09750 DEC C

00760 JR % ,LOOP1B
00776 BIT 1,B
00780 JR Z ;SKP3
06790 JR LOOP1A
00800 SKP3 DEC

po8lo JR %2 ,LOOP1B
00820 JR LOOP1A
pe83o ;

00840

00850

po8e6n

00876 ;OTHERWISE,

00880

089G ;

00900 LOOP1lB LD L, (IX+51)
00910 LD H, (IX+52)
00920 PUSH HL

0930 LD C, (HL)
00940 INC HL

00950 LD E, (HL)
009640 INC HL

009760 LD D, (HL)
P0980 ;NOTE:

00990 Cp C

091000 JR % ,LOOP2A
01019 JR C,LOOP2B
01020 ;NOTE: AT THIS

01030 ; WE WILL

1040 PUSH AF

01650 PUSH IX

01060 PUSH BC

010790 PUSH Iy

01080 CALL 02857H
01090 POP IY

01100 POP BC

91119 POP IX

p1120 LD DE, (640D4H)
01130 POP AF

01140 POP HL

Using Strings In New Ways 99

«% we

;DE POINTS TO CHARACTER SET DATA
i

7 IX+53&54 POINTS TO CHARACTER SET
s LOAD COMMAND CODE TO B

,THE FOLLOWING LOGIC COMPUTES LENGTH OF STRING TO BE CREATED

;COPY IX TO IY FOR USE IN LOOP2C

°
e

sHL HAS SOURCE VARPTR
:C HBAS LENGTH OF SOURCE STRING
s INITIALIZE COMPRESS COUNT

s @™o

s INC AND DEC C TO TEST FOR ZERO

®e ™

sADD 2 TO COMPRESS COUNT
s TEST IP COMPRESS OR UNCOMPRESS
sSKIP THIS IFP COMPRESS

[

3 SUBTRACT 1 FROM LNTH OF UNCOMPR
s END IF ZERO

;SUBTRACT 1 FROM LNTH OF UNCOMPR
s END IF ZERO

; TEST IF COMPRESS OR UNCOMPRESS
SKIP THIS IF COMPRESS

H

; SUBTRACT 1 FROM LNTH OF UNCOMPR
;s END IF ZERO

}OTHERWISE, ADD 2

#THE FOLLOWING LOGIC ALLOCATES A NEW ADDRESS WITHIN
#STRING STORAGE IF THE LENGTH OF THE COMPRESSED STRING
;IS GREATER THAN THE PREVIOUS LENGTH OF THAT STRING

IT ADJUSTS THE LENGTH OF THE COMPRESSED STRING

#IF IT IS LESS THAN THE PREVIOUS LENGTH OF THAT STRING

’

;DEST VARPTR TO HL
i SAVE DEST VARPTR
:C HAS CURRENT LNTH OF COMPR STR

«o ™o e

:DE POINTS TO COMPRESS STRING DATA

A HAS LENGTH OF DESTINATION STRING TO BE CREATED

3 COMPARE NEW LNTH IN A TO CURRENT
;NO CHANGE IF LENGTHS ARE EQUAL
;s CURRENT LENGTH IS LONGER

POINT, LENGTH OF CURRENT STRING IS TOO SHORT
HAVE TO CREATE A NEW ONE

;i SAVE THE LENGTH

:SAVE IX

;s SAVE BC

i SAVE IY

¢CALL ROM RTNE TO ALLOCATE SPACE
s RESTORE IY

s RESTORE BC

s RESTORE IX

:DE HAS THE ADDRESS

s LENGTH IS BACK IN A
;HL HAS COMPRESS VARPTR

100 BASIC Faster & Better

FO9A
F@9B
F@B9C
FO9D
FOYE
FO9F

F@AAL
FOA2
FOA3
FOAS5

FAA6
FBA7
FOASB
FOAB
FOAE
FOAF
FOBO
F@B1
F@B2
F@B3
FpB4
F@B6
FOB7
F@B8
F&BY
FOBA
FOBB
FOBE
FOCl
FBC3
FBC5
F@cs
FBCo

FOCA
FOCB
FOCC
FOCF
FOD2
FOD4
F@D7
FODY
F@DC
FODE
FOED
FOELl
FOE3
FOE4
FOE5
FOE6
FOES8
FOEA
FOEC
FOED
FOEE
FOEF
FOFD
FOF2
FOF3

11
23
73
23
72

1865

El
77
1801
El

D5

D9
FD6E31
FD6632
46

23

5E

23

56

D5
FDEl
Dl

B4

85

D%

cs8
DD6E35
DD6636
CB48
2073
112760
19

E5

El

E5
FD7EDD
12800
EDB9
114606
p600
210000
CB39
3001
19
2805

18F4
CB4g
281A
EB
D9
95
D9
283D
El
E5

1150
061160
01170
01180
01196
01200
01210
01220
061236
01240
91250
91260
01270
01280
1299
1300
p1310
1320
p1330
81340
91350
01360
01370
01380
013960
01496
01410
1420
91430
01440
01450
01460
01470
01480
01499
01500
091510
91520
81530
81549
91550
p1569
61570
01580
081590
01600
0l610
81620
01630
61640
01650
ple6d
1670
pl680
01690
p1700
01710
pl720
01730
01740
01750
81760
81770

s RECORD NEW LENGTH

i

;s RECORD LSB OF ADDRESS
H

;RECORD MSB OF ADDRESS

LENGTH OF’CURRENT STRING IS TOO LONG

;HL HAS DEST VARPTR
s RECORD NEW LENGTH
H

s RELIEVE STACK

i
+ THE FOLLOWING LOGIC INITIALIZES COUNTERS AND POINTERS

; SAVE POINTER TO DEST DATA
i

i
;VARPTR TO SOURCE STRING IN HL
$ SOURCE LENGTH IN B

Be We Wo Wwo WO

$IY POINTS TO SOURCE DATA

sDE POINTS TO DEST DATA

H

;SET Z FLAG IF NO DATA TO PROCESS
H

s END IF NO BYTES TO PROCESS

[

#+HL POINTS TO CHARACTER SET

;s TEST IF COMPRESS OR UNCOMPRESS
;JUMP IF UNCOMPRESS

s LOAD DE WITH 39

;HL POINTS TO LAST IN CHAR SET
$SAVE IT ON STACK

H
; THE FOLLOWING LOGIC IS REPEATED FOR EACH GROUP OF 3 CHARACTERS

LD (HL) ,A

INC HL

LD (HL) ,E

INC HL

LD (HL) ,D

JR LOOP2C
;NOTE: AT THIS POINT,
LOOP2B POP HL

LD (HL) ,A

JR LOOP2C
LOOP2A POP HL
LOOP2C PUSH DE

EXX

LD L, (IY+49)

LD H, (IY+50)

LD B, (HL)

INC HL

LD E, (HL)

INC HL

LD D, (HL)

PUSH DE

POP IY

POP DE

INC B

DEC B

EXX

RET Z

LD L, (IX+53)

LD H, (IX+54)

BIT 1,B

JR NZ , UNCOM

LD DE,B827H

ADD HL, DE

PUSH HL
COM1A POP HL

PUSH HL

LD A, (1Y)

LD BC,028H

CPDR

LD DE,8640H

LD B,0
MUL® LD HL, 0
MUL1 SRL C

JR NC, MUL2

ADD HL,DE
MUL2 JR % , MUL9

EX DE, HL

ADD HL, HL

EX DE, HL

JR MUL1
MUL9 BIT 9,B

JR NZ ,COM1B

EX DE, HL

EXX

DEC B

EXX

JR % , END2

POP HL

PUSH HL

;GET POINTER TO LAST IN SET
sRESTORE IT ON STACK

A HAS NEXT IN UNCOMPRESSED STRING
;s LOAD BYTE COUNTER WITH 40

;s SEARCH CHARACTER STRING

; PREP TO MULTIPLY BY 1600

; JUMP INDICATOR FOR AFTER MULTIPLY
sMULTIPLY DE BY C GIVING HL
jCONTINUE. ce e

s CONTINUEcocooo

i CONTINUEcoev oo

§CONTINUEccooso

$CONTINUEcecooe

s CONTINUE: coo0eo

s CONTINUEccoo oo

$CONTINUEccsooos

; TEST ON WHERE TO GO AFTER MULTIPLY

1]

;PUT PRODUCT IN DE

i

: SUBTRACT FROM COUNT OF CHARACTERS

H

; IF ZERO NO MORE TO COMPRESS
;GET POINTER TO LAST IN CHAR. SET
;RESTORE IT ON STACK

FOF4
FOF6
FOF9
FOFC
FOFE
FOFF
F102
Fl04
Flo6
F1@7
F108
Fl109
F10A
Fl0B
Floc
Fl0E
F10F
F119
F112
F115
F118
FllA
Fl1lB
FllC
F11D
Fl11lE
Fl1F
F120
F122
F123
Fl24
F125
F126
F127
F128
F129
F12A
F12B
F12D

F12F
F130
F131
F132
F133
F134
F135
F136
F137

Fl138
139
F13A

FD23
FD7EQQ
p12800
EDB9
D5
112800
g601
18D3
Dl

19

D9

05

D9
2821
El

E5
FD23
FD7EG@
012860
EDB9

09
EB

05
D9
280D
D9
D5
13
13
D9
El
72
23
73
FD23
189B

El
D9
D5
D9
El
72
23
73
Cc9

E5
D9
13:1-1')

01780
01790
0l8p0
01810
01820
01839
01840
01858
1860
81870
01880
81890
01900
91919
01920
01930
01940
1959
01960
01970
81980
01990
02000
02010
02020
02030
02040
02059
02060
82070
02080
02099
02100
62119
02129
02130
02140
92159
02160
02170
02180
02190
02200
02210
02220
02230
02240
02250
02260
02270
02280
02299
2360
02319
02320
02330
02340
92350
02360
02370
02380
02390
02400
02410

INC Iy

LD A, (1Y)

LD BC,028H

CPDR

PUSH DE

LD DE,028H

LD B,91H

JR MUL®
COM1B POP DE

ADD HL,DE

EX DE, HL

EXX

DEC B

EXX

JR 7 , END2

POP HL

PUSH HL

INC Iy

LD A, (1Y)

LD BC,028H

CPDR

EX DE, HL

ADD HL,BC

EX DE, HL

EXX

DEC B

EXX

JR %, END2

EXX

PUSH DE

INC DE

INC DE

EXX

POP HL

LD (HL) ,D

INC HL

LD (HL) ,E

INC 1Y

JR COM1A

Using Strings In New Ways 101

s POINT TO NEXT IN UNCOMPRESSED

;A HAS NEXT IN UNCOMPRESSED STRING
; LOAD BYTE COUNTER WITH 40

? SEARCH CHARACTER STRING

3 SAVE CURRENT TOKEN

i PREPARE TO MULTIPLY RESULT BY 40
s SET RETURN INDICATOR

;GO MULTIPLY IT

;RESTORE CURRENT TOKEN

;UPDATE CURRENT TOKEN

; PUT CURRENT TOKEN IN DE

o

&
SUBTRACT FROM COUNT OF CHARACTERS

2

IF ZERO NO MORE TO COMPRESS
$GET POINTER TO LAST IN CHAR SET
s RESTORE IT ON STACK

¢ POINT TO NEXT IN UNCOMPRESSED
¢A HAS NEXT IN UNCOMPRESSED STRING
¢ LOAD BYTE COUNTER WITH 40

¢ SEARCH CHARACTER STRING

;PUT TOKEN IN HL

;ADD RELATIVE CHARACTER NUMBER
:PUT TOKEN BACK IN DE

H
: SUBTRACT FROM COUNT OF CHAR

i
3 IF ZERO, NO MORE TO COMPRESS

H

s PUT PTR TO COMPRESS STR ON STACK
H

;DE POINTS TO NEXT IN COMPRESS STR

13

;HL POINTS TO COMPRESS STRING

¢ STORE FIRST BYTE OF TOKEN

3 POINT TO NEXT

:STORE SECOND BYTE OF TOKEN

s POINT TO NEXT IN UNCOMPRESSED STR
3 COMPRESS NEXT SET OF UP TO 3 CHAR

i
;THE FOLLOWING LOGIC RELIEVES THE STACK, AND RECORDS A PARTIALLY
;COMPLETED TOKEN INTO THE COMPRESS STRING IF WE'VE RUN OUT OF

i CHARACTERS TO COMPRESS.

END2 POP HL
EXX
PUSH DE
EXX
POP HL
LD (HL) ,D
INC HL
LD (HL) ,E
END1 RET
’
iUNCOMPRESS ROUTINE

iAT ENTRY, NOTHING IS ON STACK

s RESTORE STACK
i
s PUT PTR TO COMPRESS DATA ON STACK

H
$GET POINTER TO COMPRESS DATA

~ @eo

i TOKEN RECORDED IN COMPRESS STRING
: RETURN TO BASIC

IX POINTS TO BASE OF USR ROUTINE

B' HAS NUMBER OF BYTES LEFT TO UNCOMPRESS
DE' POINTS TO UNCOMPRESSED DATA

IY POINTS TO COMPRESSED DATA

i
i
i
H
i HL POINTS TO CHARACTER SET
H
U

NCOM PUSH HL
EXX
RES f,B

s SAVE HL FOR LOOKUPS

&
;FORCE EVEN LNTH COMPRESS STRING

102 BASIC Faster & Better

F13C
F13D
F13E
F140
F142
F145
F147
F14A
F14C
F14E
F150
F152
F153
F154
F156
F158
F15A
F15E
F15F
F160
F162
F163
F165
F167
F168
F16A
F16C
Fl6D
F16F
F171
F172
F173
F174
F175
F176
F177
F179
F17A
F17B
F17D
F17F
F181
F184
F186
F187
F189
F18B
F18C
F18E
F190
F192
F194
F196
F197
F198
F199
F19A
F19C
F19E
F19F
F142

D5
D9
DDE1
DD2B
FD6600
FD23
FD6EQO
FD23
FDE5
PEO3
1628
7D
6C
2600
1E00
610
FD210000
29
17
3001
2C
FD29
FD23
B7
ED52
3603
19
FD2B
10ED
7C
Dl
El
E5
D5
5F
1600
19
7E
DDE5
0600
DD@9
DD7760
DDE1
oD
2805
FDE5
El
18C2
FDEl
DD23
DD23
DD23
D9
05
85
D9
2802
18A4
El
Cc9

02420
02430
02440
02450
02460
02470
02480
02490
925060
02510
02520
02530
P2540
82550
82560
02570
02580
92590
02600
2610
02620
02630
02640
2650
02660
626780
02680
02690
D2700
p2710
02720
82730
p27460
82750
02760
62770
02780
02799
02800
02810
02820
2830
028490
02850
02860
02870
02880
82890
02900
82916
02920
02939
02940
02950
02960
02970
02980
02990
03000
p3010
03020

p0PB06 TOTAL ERRORS

UNCOM1

DIV@

DIV1

DIV2

DIV3

UNCOM2

END3

PUSH

DEC

PUSH

POP

NC,DIV2
L
IY,IY
Iy

A
HL,DE
NC,DIV3
HL,DE
Iy
DIVl
A,H

DE

HL

HL

DE

E,A
D,B
HL,DE
A, (HL)
IX

B,0
IX,BC
(IX),A
IX

C

Z ,UNCOM2
IY

HL
DIVO
IY

IX

IX

IX

B
B

% ,END3
UNCOM1
HL

IX POINTS TO UNCOMPRESSED STRING
IX POINTS TO 1 BYTE BEFORE

0 e We ™o Wo wo

¢

72 BYTES FROM COMPRESS STR IN HL
§ POINT TO NEXT IN COMPRESS STRING
;SAVE IY DURING DIVISION

3SET UP 3 BYTE COUNTER

;DIVIDE 2 BYTE TOKEN IN HL BY 40

; CONTINUE
; CONTINUE
; CONTINUE
; CONTINUE
; CONT INUE
; CONTINUE
; CONTINUE
; CONTINUE
; CONTINUE
; CONTINUE
3 CONTINUE
; CONTINUE
; CONTINUE
; CONTINUE
3 CONTINUE
$ CONTINUE
; CONTINUE
3 CONTINUE

DIVISION
DIVISION
DIVISION
DIVISION
DIVISION
DIVISION
DIVISION
DIVISION
DIVISION
DIVISION
DIVISION
DIVISION
DIVISION
DIVISION
DIVISION
DIVISION
DIVISION
DIVISION

;s REMAINDER TO ACCUM

sDE POINTS TO COMPRESS STRING

sHL POINTS TO CHARACTER SET
;RESTORE PTR TO CHAR SET ON STACK
sRESTORE PTR TO CMPRSS STR ON STK
s REMAINDER IN E

; REMAINDER IN DE

$HL POINTS TO CHARACTER

;s CHARACTER TO A

;SAVE IX TEMPORARILY

7

;POINT TO POS IN STR FOR NEW CHAR
s RECORD NEW CHARACTER

;RESTORE IX

7 SUBTRACT FROM COUNTER

3 SKIP IF ALL 3 CHAR PROCESSED

; PREP FOR TRANSFER OF QUOTIENT
jQUOTIENT IN HL FOR RE-DEVIDE

;GO DIVIDE AGAIN

sRESTORE PTR TO COMPRESSED STRING

POINT TO NEXT 3 IN UNCMPSS STRING

SUB 2 FROM COUNT

~e WMo WO WO W0 wWe Wo W

;GO UNCOMPRESS MORE
s RESTORE STACK
sRETURN TO BASIC

s

Using Strings In New Ways 103

M 2 Note # 23 Magic Array Format -~ 208 elements

M 2 Note # 34

COMUNCOM 32717 10 16973 23339 39173 =-8911 12916 13533 -8958¢
String Compress & 2612 13533 =-8947 3380 32477 1546 -28623 18141 -28624
Uncompress USR 296 ~-8759 2614 -8911 3382 6194 8] 0
Subroutine P -8960 13678 26333 9014 9954 -8874 13683 29405

-8906 14158 -6691 -7683 28381 -8911 12902 15950 3072
19253 15384 -135¢8 1@312 15361 10253 3342 2856 18635
552 -4840 10253 6146 -8728 13166 26333 -6860 9038
9654 -18090 8488 6968 -8715 -14875 -6659 22477 ~-728
=-15963 -7715 23533 16596 =7695 9079 9075 6258 -7931
6263 -7935 ~-9771 28413 ~719 129062 9030 9854 -10922
-7683 1233 -9979 -8760 13678 26333 -13514 8264 4467

39 -6887 -6687 32509 256 40 -17939 16401 1542
8448 0 14795 304 10265 =5371 -5335 -3048 16587
6688 =9749 =9979 15656 -6687 9213 325809 256 49

-17939 4565 40 262 -11496 6609 =-9749 -9979 8488
=66 87 9213 32509 256 40 -17939 2539 -9749 -9979

3368 -10791 4883 -7719 9674 -653 6179 <7781 -18791
-7719 9074 -13965 =-9755 -32565 =9771 =7715 11229 26365
=768 -733 110 9213 =-6659 782 16262 27773 38
30 4102 8701 0 5929 304 -724 -727 -18653
21229 8l6 -743 4139 31981 -7727 -106779 5727 6400
-8834 1765 -8968 -8951 119 -7715 16253 =763 =7707
—igggg ~7683 9181 9181 9181 1497 -9979 552 =-23528

Poke Format - 416 bytes

265 127 10 221 42 34 91 221 117 49 221 116 50 221 52
19 221 52 1@ 221 52 13 221 52 13 221 126 10 6 49 144
221 78 48 144 40 1281 221 54 10 49 221 54 13 50 24

8]] 0]) g 1/ g 221 116 53 221 192 54 35
94 35 86 221 115 53 221 114 54 221 76 55 221 229 253 225
221 116 49 221 192 58 78 62 6 12 13 46 24 60 60 203
72 40 l 60 13 4/ 14 13 40 11 203 72 40 2 24 237
13 40 2 24 232 221 116 51 221 192 52 229 78 35 94 35
86 185 40 33 56 27 245 221 229 197 253 229 285 87 40 253
225 193 221 225 237 91 212 64 241 225 119 35 115 35 114 24

5 225 119 24 1 225 213 217 253 116 49 253 1062 56 76 35
94 35 86 213 253 225 209 4 5 217 200 221 118 53 221 1062
54 263 72 32 115 17 39 @ 25 229 225 229 253 126) 1
40 @ 237 185 17 64 6 6 6 33 g 6 203 57 48 1
25 40 5 235 41 235 24 244 283 64 32 26 235 217 5 217
40 61 225 229 253 35 253 126] 1 40 @ 237 185 213 17
40] 6 1 24 211 299 25 235 217 5 217 46 33 225 229
253 35 253 126] 1 40 g 237 185 235 9 235 217 5 217
40 13 217 213 19 19 217 225 114 35 115 253 35 24 155 225
217 213 217 225 114 35 115 201 229 217 203 128 213 217 221 225
221 43 253 192 @ 253 35 253 110 @ 253 35 253 229 14 3
22 40 125 168 38 @ 30 0 6 16 253 33 0 g 41 23
48 1 44 253 41 253 35 183 237 82 48 3 25 253 43 16
237 124 209 225 229 213 95 22 @ 25 126 221 229 6 P 221

9 221 119 @ 221 225 13 49 5 253 229 225 24 194 253 225
221 35 221 35 221 35 217 5 5 217 40 2 24 164 225 201

o S e e T A S S B s e S S i]

104 BASIC Faster & Better

COMUNCOM/DEM

String Compress &
Uncompress
Demonstration

M2Note#23
M 2 Note # 34

Here is a program that demonstrates the COMUNCOM USR routine. It lets
you enter a string for compression. Then it instantly compresses the string,
uncompresses it, and displays it for youu COMUNCOM/DEM uses the magic
array method for loading the USR subroutine so that you won’t have to enter a
special memory size. Because of its length, though, you should put the
COMUNCOM routine in protected memory for actual applications.

Remember that if you are using a disk operating system other than NEWDOS
2.1, you’ll need to change the ‘23330’ in line 31 according to the instructions we
discussed.

@ 'COMUNCOM/DEM
10 CLEAR10@9:DEFINTA-Z

20 WS=CHRS (@) :U$S=CHRS (8) :C$=CHRS (D)

21 CS$=" ,-,.0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"

25 DEFFNKMS (AS$,A%)=LEFTS$(AS, (USR7 (VARPTR(AS)) ORUSR7 (VARPTR(WS))O
RUSR7 (VARPTR(CS$)) ORUSR7 (A%)) *B) +WS$

3¢ "LOAD COMUNCOM USR ROUTINE INTO A MAGIC ARRAY

31 DATA 32717, 16, 10973, 23330, 36173,-8911, 12916, 13533,-8950
¢ 2612, 13533,-8947, 3380, 32477, 1546,-28623

32 DATA 18141,-28624, 296,-8759, 2614,-8911, 3382, 6194, 8, 0, 0
¢+ 0,-8960, 13678, 26333, 9614

33 DATA 90654,-8874, 13683, 29405,-8906, 14150,-6691,-7683, 28381
(—8911, 12962, 15950, 3072, 16253, 15384,-13508

34 DATA 10312, 15361, 10253, 3342, 2856, 18635, 552,-4848, 10253
, 6146,-8728, 13166, 26333,-6860, 9038, 9054

35 DATA-180890, 8488, 6968,-8715,-14875,-6659, 22477,-728,-15903,
=7715, 23533, 16596,-7695, 9679, 9675, 6258

36 DATA-7931, 6263,-7935,-9771, 28413,-719, 12902, 9038, 9054,-1
0922,-7683, 1233,-9979,-8760, 13678, 26333

37 DATA-13514, 8264, 4467, 39,-6887,-6687, 32509, 256, 40,-17939
16401, 1542, 8448, 0, 14795, 304

38 DATA 10265,-5371,-5335,-3048, 16587, 6688,~9749,-9979, 15656,
-6687, 9213, 32509, 256, 40,-17939, 4565

39 DATA 40, 262,-11496, 6609,-9749,-9979, 8488,-6687, 9213, 3250
9, 256, 40,-17939, 2539,-9749,-9979

40 DATA 3368,-10791, 4883,-7719, 9074,-653, 6179,-7781,-18791,~7
719, 9074,-13965,-9755,-32565,-9771,-7715

41 DATA 11229, 26365,-768,-733, 116, 9213,-6659, 782, 10262, 277
73, 38, 30, 4162, 8761, 9, 5929

42 DATA 304,-724,-727,-18653, 21229, 816,-743, 4139, 31981,-7727
+=10779, 5727, 6400,-8834, 1765,-8960

43 DATA-8951, 119,-7715, 10253,-763,-7787,-15848,-7683, 9181, 91
8l, 9181, 1497,-9979, 552,-23528,-13855

44 DIMUS(207) :FORX=0TO2087 s READUS(X) : NEXT

108 DEFUSR7=VARPTR(US(9))

118 CLS

120 LINEINPUT"UNCOMPRESSED STRING: ";US$
130 CS$=FNKMS (US$,1)

140 US=FNKMS(CS$,2)

150 PRINT"COMPRESSED AND RESTORED: ";U$
160 GOTO120

Using Strings In New Ways 105

Upper Case Conversions
The UPPERCON USR routine scans a string for lower case characters and

converts them to upper case. This can be important to you when you are doing
string compression and when you are doing alphabetical sorts of string data.

Touse UPPERCON, simply load it and define it as a USR subroutine. Then call
the routine, using the VARPTR of the string you want converted as your
argument.

Let’s assume, for example, that you’ve poked the 28 required bytes into
protected memory, starting at F000. You can convert any string entered by the
operator with the following logic:

10 DEFUSR=&HF000

20 LINEINPUT "ENTER A STRING: ".AS
3¢ J=USR(VARPTR(AS))

40 PRINT "CONVERTED STRING IS: ";AS
58 GOTO 280

UPPERCON Magic Array Format, 14 elements:

String Upper-Case

Conversion USR 32717 17936 24699 220651 1259 =14331 =386 14433 =585
Subroutine 12411 -6653 30559 4131 -13839

M 2 Note # 23

Poke Format, 28 bytes:

205 127 10 76 35 94 35 86 235 4 5 200 126 254 97 56
7 254 123 48 3 238 95 119 35 16 241 201

P0009 ;UPPERCON

00001 ;

FO00 00060 ORG OF@O0H ;ORIGIN - RELOCATABLE
FO00 CDTFGA 00070 CALL 0A7FH ;HL HAS STRING VARPTR
FO03 46 00080 LD B, (HL) ;B HAS STRING LENGTH

FO04 23 00099 INC HL ;

FP05 S5E 00109 LD E, (HL) ;

FO06 23 90110 INC HL ;

FO07 56 00120 LD D, (HL) ;DE POINTS TO STRING

FO08 EB 90130 EX DE, HL ;HL POINTS TO STRING

FOO9 04 00140 INC B ;

FOOA 05 00150 DEC B ;INC & DEC B TO TEST IF ZERO
FOOB C8 00160 RET 7 ;RETURN IF ZERO LENGTH
FEOC 7E @@17¢ LOOP LD A, (HL) ;PUT BYTE IN ACCUM

FOOD FE61 90180 cp 61H ; COMPARE TO LOWER CASE A
FOOF 3807 00190 JR C,OK ;JUMP IF LOWER

FOll FE7B 00200 cp 7BH ;IS IT ABOVE LOWER CASE %?
FO13 3003 00210 JR NC, OK ;JUMP IF IT IS

F@15 E6SF 80220 AND 5FH ; CONVERT TO UPPER CASE
FO17 77 00230 LD (HL) ,A ;PUT IT BACK

F@18 23 90240 OK INC HL ; POINT TO NEXT BYTE

FO19 10F1 90250 DJNZ LOOP ; DECREMENT COUNT & REPEAT
F@1B C9 00260 RET ;RETURN TO BASIC

FOOC 00270 END ;

!

00000 TOTAL ERRORS

106 Chapter 8

M 2 Note # 35

Date & Time Manipulation

Sooner or later in your programming efforts, you’re likely to work with date or
time computations. Why be the millionth programmer to spend hours and hours
re-inventing this old wheel? Here are some ‘plug-in’ function calls and
subroutines that can save programming time while conserving valuable computer
memory and disk space.

The 8-Byte Date

The ‘8-byte date’ is simply a string that expresses the month, day and year in the
format, ‘MM/DD/YY’, where:

MM is a 2-digit month number in the range of 01 to 12,
DD is a 2-digit day number, ranging from 01 to 31, and
YY is a 2-digit year number, ranging from 00, to 99.

The string, ‘02/14/82’ is an example of an 8-byte date that stands for ‘February
14, 1982,

If the operator has set the date at startup, your program can get it back in 8-byte
date format by taking the left 8 bytes of the TIMES$ function. That is,

8-byte date = LEFT$(TIMES,8)

Or you can load the 8-byte date into your program using the formatted inkey
routine, (which is discussed in the chapter about keyboard and video routines). To
have it handy, you can POKE the month, day and year into the memory locations
given in your disk system owner’s manual, so that you can get it back with the
TIMES function. This is especially useful when your application ‘chains’ between
2 or more programs. When you’ve got the date in TIMES you don’t have to reload
it each time you run a new program.

A Simple Date Validity Check

Here is a function call that checks the validity of a date entered by the operator.
FNDV % (A13,A2%) checks that, for the string, A1$:

The month (in positions 1 and 2) is between 01 and 12.

The day (in positions 4 and 5) is between 01 and 31.

The year (in positions 7 and 8) is greater than or equal to A2%.
The string is 8 characters long.

Date Validity
Function

8-Byte to 3-Byte
Date Compression
Functions

Date & Time Manipulation 107

To use the valid date function, you must first define it in your program:

>@) AND (VAL (A1$)<13) AND (VAL (MIDS (Al

15 DEFFNDV% (AlS$,A2%)=(VAL(AlS)
<32) AND (VAL (MID$ (A1$,7)) >=A2%) AND(LE

$,4))>0) AND (VAL (MIDS (A1$,4))
N(A1$)=8) ORAL$="00,/00,/00"

Here is an example that shows how FNDV % might be used within a program:

130 INPUT"DATE";AS$

146 'CHECK IF DATE IS VALID, AND THE YEAR IS 19808 OR GREATER
141 IFFNDV%(AS$,80) THEN150ELSEPRINT" INVALID":GOT0130

150 'PROGRAM FALLS-THROUGH HERE IF DATE IS VALID

A big advantage of the valid date function call is that you can handle the validity
test in one line of program logic. The function equals 0 if the date is invalid or —1
if it’s valid. If you don’t want to check on a minimum year, you can simply use 0
as the second argument.

Note that we are accepting ‘00/00/00’ as a valid date. If you don’t want to accept
a zero date, modify the function call by deleting the last 16 bytes, which read:

ORAlS$="00/00/60"

With a slight modification, you can add a third argument that specifies whether
a zero date should be accepted as valid.

The 3-Byte Date

For disk and memory array storage, it is quite convenient to store dates in 3-byte
format. If MO% is the month, DY % is the day and YR % is the year, the 3 byte
format is created using the expression:

CHRS (YR%) +CHRS (MO%) +CHRS$ (DY%)

We use a year-month-day sequence so that the 3-byte date can be sorted and we
can use ‘greater than’ and ‘less than’ tests if necessary.

You'll find that the 3-byte approach is much more convenient than storing a
date as a single precision number. Besides the advantage of using 3 bytes instead
of 4, the execution speed for any conversions will normally be much faster with
string manipulation than with multiplication and division.

Here are 2 function calls that you can use when working with 3-byte dates.
FNCD$(A1$) converts an 8-byte date string, Al$, to a 3-byte date string.
FNUD$(A1$) uncompresses a 3-byte date string back to an 8-byte date string:

Compress 8-byte date to 3-byte date:
15 DEFFNCD$ (Al1$)=CHRS$ (VAL (MIDS$(A1S$,7,2)))+CHRS(VAL(MIDS(A1S$,1,2)
)) +CHRS (VAL (MIDS$ (AlS$,4,2)))

Uncompress 3-byte date to 8-byte date:
25 DEFFNUDS$ (Al1$)=RIGHTS$ (STRS$ (ASC(MIDS$(A1$,2))) ,2)+"/"+RIGHTS (STR
$(ASC(MIDS(AL1$,3))) ,2) +"/"+RIGHTS (STRS (ASC(A1S)) ,2)

108 BASIC Faster & Better

3-Byte to 2-Byte
Date Compression
Functions

Don’t try to store a 3-byte date in a sequential disk file! It will appear to work
fine . . . until you get to the 13th of the month. Remember that BASIC uses
CHR$(13) as an ‘end of field marker’ in sequential files. You’ll have no problems
in random files though. Simply create a 3-byte field and LSET or RSET the
3-byte date into it.

Storing a Date in 2 Bytes

Using bit manipulations, we can store a year, month and day in 16 bits or 2 bytes.
Since the year will range from 0 to 99, we can store the year in the first 7 bits. (2
to the 7th power = 128). The month will range from 1 to 12. We can store it in the
next 4 bits. (2 to the 4th power = 16). And, because the day will range from 1 to
31, we can store it in 5 bits. (2 to the 5th power = 32). When we add 7 bits for the
year, 4 bits for the month and 5 bits for the day, we get a total of 16 bits or 2 bytes!

The following two function calls handle the conversions. FNC2$(A1$)
compresses a date in 3-byte format, A1$, to a 2-byte string containing the date in
2-byte format. FNU2$(A1$) uncompresses a date in 2-byte format, A1$, back to
3-byte format.

Compress 3-byte date to 2=-byte date:
35 DEFFNC2$(A1$)=CHRS((ASC(ALlS$)*2)OR-((ASC(MIDS(A1$,2,1))ANDS8)<>
B))+CHRS ((ASC(MIDS$ (A1$,2,1)) ANDNOT8) *32+ASC(MIDS$(A1S,3,1)))

Uncompress 2-byte date to 3-byte date:
45 DEFFNU2$(A1S$)=CHRS$((ASC(A1$)ANDNOTL)/2)+CHRS ((ASC(MIDS (A1S$,2)
)/32) OR((ASC(ALl$)AND1) *8)) +CHRS (ASC(MIDS (A1$,2)) ANDNOT224)

Using the 8-byte to 3-byte conversion, and the 3-byte to 2-byte conversion we
can compress the current date specified by TIMES$ to a 2-byte string, D2$:

D28 = FNC2$ (FNCD$ (LEFTS (TIMES,8)))
We can get it back and print it later using the uncompress function calls:

PRINT FNUDS$ (FNU2$ (D2§))

If we want to store an 8-byte date, DT$, in