-'-;.-:-!'.1'?..'_:_-;.,_ E‘-:

i P

""-1' ":Ef%:lﬁ'#:-x
SR

ASSEMBLY LANGUAGE
PROGRAMMING FOR THE

TRS-80 MODEL 16

ASSEMBLY LANGUAGE
PROGRAMMING FOR THE

TRS-80 MODEL 16

BY DAN KEEN & DAVE DISCHERT

TAB BOOKS Inc.
BLUE RIDGE SUMMIT, PA. 17214

This book is dedicated to Alicia, Trisha, David, and Mark.

FIRST EDITION

FIRST PRINTING

Copyright © 1984 by TAB BOOKS Inc.

Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect to
the use of the information herein.

Library of Congress Cataloging in Publication Data

Keen, Dan.
Assembly tanguage programming for the TRS-80 model 16.

Includes index.

1. TRS-80 Model 16 (Computer)—Programming.
2. Assembler language (Computer program language)
I. Dischert, Dave. il. Title.
QA76.8.T1834K44 1984 001.6424 83-24160
ISBN 0-8306-0649-1
ISBN 0-8306-1649-7 (pbk.)

TRS-80 and TRSDOS are trademarks of Tandy Corporation

Cover photograph by The Ziegler Photography Studio of Waynesboro, PA.

Contents

PR

Acknowledgments viii
Introduction X
1 The Assembler-16 Package 1

Development Procedures

2 Developing a Source Code 4
Op Codes—Registers—Loading Registers—Direct and indirect
Addressing—The Edit 16 Format—Addressing Modes-Direct
Addressing—Indirect Addressing—Indirect Addressing Using
Byte-Offset

3 Supervisor Routines 13
The SVC Block—A Routine to Return to DOS

4 Screen Formatting 19
Another Method

5 Displaying Text on the Screen 23

Positioning the Cursor—Displaying a Line of Text—Displaying a
Character— Putting Several Routines Together—Branching and
Jumps with CALL and RETURN--Calculating the Number of
Characters Using the TEXTC Op Code

6 Keyboard Routines 31
Clearing the Type Ahead Buffer—Keyboard Character
Routine—Keyboard Line Routine—Displaying a Message and

10

1"
12
13

Getting Input—Testing for a Match Using the CMP Op Code—
The Branch Op Code

Directing Output to a Printer
Print a Character—Print a Line

Disk Input and Output Routines
The Floppy Disk—The Hard Disk—Opening a File—Writing to the
File—Closing the File—Reading a Record From a File

Deciphering Error Codes
An Error Handler—Assembler Error Messages—Execution Error
Messages

Putting It All Together

Modular Format—The Game Plan~—Initial Setup of Subroutines
and Storage Areas—Jump to DOS Routine—Clear the Screen
Subroutine—Screen Display Subroutine—The Main Body of the
Program—The Open Routine—Create a File—Opening an
Existing File—Keeping Track of Next Available Record—The Add
Routine—Writing to the Disk—The Print Labels Section—The
Search and Modify Routines—Wrapping It All Up—Mailing List
Source Code

The TRS-80 Model 11/16 Microcomputer
Interpreting Assembler Listings

Some Programming Techniques

Timing Loops and Loops in General—Incrementing the Value
Stored in an Address—Testing for Greater Than and Less
Than—Debugging ldeas—A Word About “END”

Appendix A SVC Block Setup

Jump to TRSDOS Routine—Clear the Screen Routine—Display
a Character Routine—Position the Cursor Routine—Display a
Line Routine—Keyboard Character Routine—Keyboard Line
Routine—Clear the Type Ahead Buffer Routine—Display Mes-
sage and Keyboard Line Input Routine—Print a Character
Routine—Print a Line Routine—Display TRSDOS Error
Number—Display Error Message—Open a Disk File—Close a
Disk File—Get a Record From a Disk File—Put a Record Into a
Disk File

Appendix B EDIT16 Op Code Mnemonics

40

43

59

70

133
138

145

152

162

Appendix C Assembler-16 Directives (Pseudo Op Codes) 163

Appendix D Decimal to Hexadecimal Conversions

164

Appendix E MC68000 Data Sheets
Glossary
References

Index

169
176
181

182

Acknowledgments
L T T

We wish to thank George M. Keen for his editorial suggestions and
photographic contributions.

We also thank Kathryn Engle, marketing consultant with
AT&T, for the many houss she spent editing our material.

We appreciate Mr. Steve M. Hluchanyk’s technical assistance.

We especially thank Betty and Joe Tocci whose generosity
made our research much easier.

We are very grateful to Radio Shack and to David Gunzel,
Director of Technical Publications at Radio Shack, for supplying us
with material for this book. They have graciously permitted us to
use terms in the book which are found in the manuals supplied with
the Model 16. By use of expressions such as “SVC block,” the
reader will not be unnecessarily confused by our inventing phrases
that are not in keeping with his owner’s manual.

Finally, we acknowledge Motorola and Mr. James T. Farrell
III, manager, Technical Communications at Motorola, for their per-
mission to reprint their technical information sheets on the
MC68000 microprocessor.

viii

The authors shall have no liability or responsibility to the purchaser
with respect to any loss or damage caused either directly or indi-
rectly by the use of this material.

Every possible effort has beenmade to ensure all information is
true and accurate.

Introduction

One of the most powerful microcomputers currently on the market
is the TRS-80 Model 16 manufactured by Radio Shack. Its great
potential resuits from the use of an MC68000 microprocessor as the
central processing unit.

Writing assembly-language programs to fully tap the resources
of this computer is not a simple task. Indeed, assembly-language
programming for any computer requires some study.

The documentation supplied with the Model 16 and its accom-
panying Assembler-16 manual contain much information, but the
user must be an experienced assembly-language programmer in
order to use it. While these manuals make no claim to be tutorial
documents, many of the instructions and procedures are not clearly
demonstrated and are difficult to understand.

This book is a supplement to the manuals supplied with the
Model 16 microcomputer. It will enable you to begin writing as-
sembly programs without your investing a great deal of time. We
amplify many of the routines in these manuals and demonstrate how
they can be put together to do various practical applications.

We do not describe each instruction in the MC68000 instruc-
tion set as there are other books available on the subject. This book,
however, does address the specific needs of the Model 16
assembly-language programmer.

We develop complete subroutines that programmers can in-
corporate into their own programs. These include routines to clear

X

The TRS-80 Model 16 microcomputer. {Courtesy of Radio Shack)

the screen, print text on the video display, address the keyboard,
output information to a printer, and create and maintain disk files.
Youmay be a novice or an experienced programmer; however, each
routine developed is thoroughly explained.

The material presented here will save Model 16 assembly-
language programmers many frustrating hours that would other-
wise be spent on trial-and-error attempts.

After completing this book, you may wish to delve deeper into
the workings of the MC68000 and its instruction set. Our book will
act as a springboard into more complex programming for this ad-
vanced microcomputer.

Radio Shack offers a Model 16 Enhancement option for their
popular Model II and Model 12 computers. An extra circuit board
converts the Model II into a Model 16, with the exception of a few
features such as extra disk storage and a green video screen. All of
the information contained in this book applies to the Model 16,
modified Mode! II, and the modified Model 12. For simplicity, all
references are for the Model 16; however they also include the
Model 2 and Model 12.

xi

DISPLAY ROUTINE
SCREEN O oA LAQ.SVC
oV #A0, 48
DISPLAY A CHAPACTER LOGP

The Assembler-16 Package

The main advantages of writing programs in assembly language are
speed and efficient use of memory space. High-level languages
must go through an interpreter to decipher the commands and
instructions of the language and put them into a machine-readable
form. It is possible to write programs using binary or using the
actual hexadecimal MC68000 instruction codes, but this would be
needlessly laborious and time consuming.

An editor/assembler program allows us to write programs
using letter symbols that make more sense to us as human beings. It
converts those instructions into codes that are in the computer’s
mother tongue. An editor/assembler makes life easier for us in
many other ways. For instance, it automatically computes address
locations in memory for relative jumps (similar to GOTO state-
ments in BASIC) by allowing us to use words and phrases to identify
particular sections of a program.

DEVELOPMENT PROCEDURES

The Assembler-16 system actually consists of three separate
programs. Using these programs, several steps are taken after you
write your own program in order to get it into a set of instructions
that the machine can execute.

First, the editor program is run. This allows you to write your
program and create a “source” code. This program is saved and can
later be loaded and easily changed. You cannot work directly on a

1

machine-language object code, which is the final form a program
takes on to be executable. This is true when writing assembly
programs for any type of microprocessor.

Next, the assembler program is run, which takes the source
code and creates an intermediate object file. At this time the
assembler will report to you any syntax or addressing-mode errors.
If there are problems, you can correct the source code by going back
to the editor program.

Once an error-free pass has been made, a program, called a
linker must be run. The linker takes the assembled file of the
program and develops a complete stand-alone machine-executable
program, which it stores as a disk file.

Each of the three programs creates a separate file on the disk.
The last file is the executable program, which is run from the disk
operating system mode (TRSDOS 16 Ready). The source file is the
code you work on if changes are necessary. The object file, is no
longer needed.

Let us follow a complete sample development of a program.
This will be the procedure to follow when you create your own
assembly-language programs.

Programs are written with the editor. From the TRSDOS
ready mode, type EDIT16. This loads the editor program.

Let’s assume we have written a mailing list source code, by
following the instructions in the Assembler-16 manual. This source
listing must be stored on the disk. A logical file name for our sample
session might be MAILLIST. The extension we must give our file
name is /SRC to tell the computer that this is a source listing. In the
command mode of the editor program, type SAVE MAILLIST/
SRC.

Next we exit the editor program and return to the disk operat-
ing system ready mode. To assemble our program, type ASM16
MAILLIST. This will load the assembler and create an intermediate
file called MAILLIST/OB]J, representing an object file. Notice that
it was not necessary to use the extension /SRC when we told the
assembler the name of the program to assemble.

For some strange reason, the writers of the Assembler-16
make us create a so-called control file to direct the linker program. It
seems to be an unnecessary step, one that could perhaps have been
incorporated into the assembler itself. In any event, a discussion of
the complete procedure follows.

Type EDIT16 and reload the editor program. When prompted
with C?, type IN to insert the following two lines:

2

INCLUDE MAILLIST
END

We suggest that INCLUDE and END be placed in the operand
column (as opposed to the label column), so use the tab key on the
computer before entering them (label and operand columns of the
assembler are discussed in the next chapter). The file name may
also be placed in the next tab position. Therefore the first line could
be entered by hitting the tab key, typing INCLUDE and hitting the
tab key again and typing MAILLIST.

To exit the insert mode, type the symbol ! and the C? will
reappear. Save this on disk with the file name MAILLIST/CTL.
The extension /CTL indicates to the computer that this is the
control file. Enter the word QUIT and again return to the TRSDOS
16 ready mode.

Finally, enter LINK16 MAILLIST and the machine-language
program will be placed in its completed form.

The program is executed by entering MAILLIST from the
TRSDOS 16 ready prompt.

Chapter 2

SCREER DISPLAY ROUTINE
LOA AQ, SV

v A0, 48
DISPLAY A CHARAUTER (AOP

Developing a Source Code

In this chapter we will talk a little about the MC68000 micro-

processor (Fig. 2-1) and how we write instructions for it using the
Radio Shack EDIT16 editor program.

OP CODES

When you first learned to program in a high-level language, it
was necessary for you to learn the various reserved words and
symbols. In BASIC, for example, you would have had to learn that
the PRINT command instructs the computer to display values or
text on the video screen. In time the commands of any language
become second nature to you.

In the same way, assembly language consists of groups of
letters that symbolically represent instructions for the computer.
The big difference is that now we must work directly with the
microprocessor.

Many operations, such as arithmetic calculation, are harder to
do in assembly language than in high-level languages, and some are
easier such as moving blocks of information from one area in mem-
ory to another.

The reserved words or commands are called op codes, which is
short for operational codes. These are the actual instructions that
the MC68000 microprocessor chip understands. To help us re-
member what the various op codes do, their names often resemble

Fig. 2-1. The MC68000 microprocessor. The arrow points to the microprocessor
as it sits among associated Model 16 circuitry. (Photograph by George M. Keen)

their functions. For example, LD is the op code for loading a
register with a value.

There are about 20 op codes which we can use in our programs
that the microprocessor does not understand. These are called
bseudo op codes. Although these instructions are not understood by
the MC68000, they have meaning to the editor/assembler program.
The assembler translates these terms into machine code for us.

By using pseudo ops, we can write programs faster and with
greater ease. We will be using pseudo ops in the routines developed
in later chapters.

REGISTERS

Inside the central processing circuit itself are small areas of
RAM (random access memory). These spaces are called registers.
Their purpose is not to hold cash, but they do hold values. The
MC68000 has many registers. The general-purpose registers that
we will be dealing with in this book fall into two categories: address
and data registers.

Each register can store a maximum of four bytes of informa-
tion. Think of registers in the central processing unit as temporary
storage areas. Data is placed in registers to be manipulated, moved,
or compared. Some registers must have certain values placed in
them before executing some of the op codes.

LOADING REGISTERS
Loading a register means taking data from one register or

memory address and copying it into another register or memory
location. The source address, the register where the data was
copied from, remains unchanged. Therefore, an LD command does
not alter the contents of the “from” address, only the destination
address.

Since registers in the MC68000 can contain instructions up to
four bytes long, we must tell the computer how many bytes a
specific instruction will act on. The letter B represents one byte; W
represents two bytes, which is referred to as a word; and L repre-
sents a long word, that is, four bytes.

By following the load instruction with one of these letters, we
can tell the computer how much room we will require in the regis-
ter. For example, the instruction to load the AQ register with the
decimal number 10 would look like this:

LDW .AQ,#10

The suffix W attached to the LD command causes the register
to utilize two of its bytes to store the number 10. The value on the
right-hand side of the comma is loaded into the register whose name
appears on the left-hand side of the comma. You will note the use of
a pound sign (#) placed before the number 10. This tells the
assembler to load the information immediately following the pound
sign. The function of the period before the register name is covered
under Direct and Indirect Addressing, which follows.

In this example the number 10 can be stored in one byte.
Therefore the instruction could have used LDB instead of LDW.
However, because a “word” was specified, the assembler will fill
the upper byte with a zero, and will store 10 in the lower byte of the
register. Whether you use LDB or LDW depends on what you want
to do with that register at a later point. Some commands only allow
operations to be performed on a word of information and not a byte.
If, at alater date, we needed to access a number stored in a register
by using an op code that requires a word, we are sure that there
would not be any random value in the upper byte of the register as
long as a 10 was loaded with the LDW instruction.

DIRECT AND INDIRECT ADDRESSING

A period placed before a register signifies a direct operation on
that register. Again in the instruction:

LDW .AQ,#10

note the period placed in front of AQ. This means that the value 10 is
placed directly in register AQ.

It is possible to place the value 10 or any other value we may
choose into an address in the computer’s memory. This can be
accomplished by first loading the desired memory address into a
register, A0 in this case. This time we do not want to place the value
directly into register A0, but rather into the memory location
“pointed to” by the address stored in A0. In other words, we want to
indirectly address A0. The @ symbol instructs the assembler to do
that very thing, as in

MOVW @A0,#10

The number 10 will be stored in the memory location specified
by register AO. The MOVe command is used to load a register
indirectly. It performs the same function as the load (LD) op code;
however, the LD instruction is not capable of loading a register
indirectly. Later in this chapter we will discuss the various op codes
needed to load registers in different addressing modes.

THE EDIT16 FORMAT

The editor program acts on the instructions we enter by de-
termining the function of the op code and the position of items we
place in various columns on the screen. The column titles are

LABEL OP CODE OPERAND COMMENTS

Labels are words or phrases used to identify particular sections
of a program. It follows then that we can use a label as a location to
jump or branch to from other areas in the program. These are
similar to pseudo ops in that they are not a part of the MC68000
instruction code. The assembler computes the actual address loca-
tion of a label. When we use a label in the operand column, the
assembler will instruct the computer to use the address. For exam-
ple, we could tell the computer to branch or jump to a label name and
it would jump ahead or behind by the correct number of bytes. The
next instruction to be executed would then be the address indicated
by the label.

We may also wish to load a register with the address of a
particular label. Assume we have set up the phrase SVC block (a
type of buffer area, which is discussed in Chapter 3) in the label
column. In order to load the address where the SVC block begins

7

into register A0, we could write the instruction
LDA .A0,SVC BLOCK

(LDA is an op code which we will cover in a moment.)

The next column in the editor is where the op code is placed.
This is the actual “mnemonic” or instruction.

There are no hard and fast column positions, but there must be
at least two spaces between the items placed in each column.

Next is the operand column. Not all instructions have an
operand; some have two. The source and destination addresses or
registers are specified in this column. A comma separates operands
if there is more than one part.

In most cases, the source will be identified on the right side ofa
comma, and the destination on the left, but there are exceptions.
The value on the right is loaded into the registor or memory location
on the left. This is true of all load and move instructions. In

LDW LAl #13

the decimal number 13 is loaded directly into register Al.

The exception to the rule is the ST or STore op code. It takes
the value to the left of a comma and stores it in the address or
register indicated to the right. In

STW LA2@A0

the value currently residing in register A2 is loaded into the mem-
ory location whose address is stored in AQ. Note that the position-
ing of the source and destination operands are in contrast to the load
and move instructions; they are in the opposite format. But in both
cases, the source address will still contain the same value after the
instruction has been executed. Only the destination register will be
altered.

Finally, the comment column is located at the far right. This is
where the programmer can place comments or remarks to help
document his program. The assembler ignores these comments
when it creates the object code, but they remain in the source
listing.

Comments do not necessarily have to be placed in the comment
area. By preceding any comment with an asterisk (+), remarks may
be added. This is useful to help identify certain lines in a program

8

since they can be sectioned off by using a whole row of asterisks or
other symbols. It is advisable to place the asterisk and begin a
comment line either in the label or comment column. Avoid starting
a comment in the operand column, as assembler errors sometimes
result.

ADDRESSING MODES

Addressing mode refers to the way in which a register can be
accessed or “talked” to. For example, the instruction

LDW @AO0, #264

is illegal. The MC68000 does not understand that instruction. It
makes sense to us, though. We may try to use that format to load the
decimal number 264 into the memory address location stored in
register AO. To perform this task we must use the MOV op code:

MOVW @A0, #264

This form is acceptable to the microprocessor.

So, how do we know which addressing modes are legal and
which are illegal? This is a difficulty that awaits every beginning
assembly-language programmer regardless of the type of micro-
pressor being used. Unfortunately, there are few hard and fast rules
here. It is kind of like learning the spelling rules of the English
language in that there are many exceptions to the rules. In school
we were taught “i before e except after c.” Just when we thought we
knew that rule, we came up against such words as “reign,”
“neither,” and “their.”

Our best advice is that if you cannot do something one way, try
another even if you must use an indirect method. There is bound to
be another way to accomplish the same thing. It may not always be
the easiest way but so long as the end result is the same, you are in
business. The Assembler-16 manual also shows valid addressing
modes under each op code heading which can assist you finding the
correct format for a particular operation you may need to perform.

A good example of accomplishing a task indirectly can be found
in the error handler routine in Chapter 9. In that program, it is
necessary to take a two-byte long number, which is located at
byte-offset two in a block of memory pointed to by register A0, and
move that number into byte-offset six of the same block. To put all
that in English, what we are trying to do is to load one byte-offset

9

register (discussed at the end of this chapter and in Chapter 3) into
another byte-offset. Such a thing is not directly possible, so we need
to do the job indirectly. It will require two steps.

LDW .AL2@A0 *LOAD THE NUMBER STORED IN PO-
* SITION 2 OF THE ADDRESSING
* POINTED TO BY A0 INTO Al

STW .AL6@A0 *LOAD (STORE) THAT NUMBER
* BACK INTO THE ADDRESS
* REFERENCED BY A0 BUT AT
+ BYTE-OFFSET 6

So, those lines of programming will accomplish the same goal.

Next we will present a few of the most commonly used ad-
dressing mode formats. These formats are the building blocks of
many routines.

As a general rule, the load, move, and store op codes (LD,
MOV, ST) are used to address registers in one way or another. The
ways used to access registers are direct, indirect, and indirect with
a “byte-offset.”

DIRECT ADDRESSING

In cases where a register is to be loaded directly with a value,
the LD instruction may be used. The letters “B,” “W,” or “L”
should accompany the op code to tell the microprocessor the size of
the data to be operated on, namely a byte, word, or long word. The
instruction

LDW AL #HFF
loads register Al with the hexadecimal number FF. The instruction
LDW AL #13
loads register Al with the decimal number 13, and
LDA .A0,MESSAGE

loads register AQ with the address of the label MESSAGE. You may
be wondering where the suffix “A” came from as we have previously
stated that the suffixes are B, W, and L. It so happens that LDA is a

complete MC68000 instruction. All four bytes of the register are

10

affected, and it is not necessary to tag a data size character onto the
end. So, LDA is an instruction that means load an address that
immediately follows into the specified register. Note that the pound
sign (#) is not necessary in front of MESSAGE when using this
instruction.

INDIRECT ADDRESSING

Indirect addressing refers to the loading or retrieving of infor-
mation from an address pointed to by a register. For example:

MOVW @AO0,#264

loads the memory location whose address is stored in A0 with the
decimal number 264. The instruction

MOVW @A0,#VALUE

loads the address pointed to by A0 with the number stored in the
location referred to as VALUE. This label is set equal to a number
elsewhere in the program.

INDIRECT ADDRESSING USING BYTE-OFFSET

In the next chapter, we will discuss the concept of creating an
area of memory space within a program to be used when calling
routines that are built into the disk operating system. This area is
commonly called a supervisor block or SVC block. The SVC block
must be made up of 32 consecutive bytes in memory. It is necessary
to place certain values inside this area before jumping to one of the
system routines. This is done by indirectly addressing a register
using a byte-offset, explained in Chapter 3. The move instruction can
be used when doing this type of addressing. For example, the line

MOVW 8@A0Q,#1

stores the decimal number 1 into the seventh and eighth byte of the
block whose address is indicated by register AO. This is referred to
as byte-offset eight and nine. To see how byte-offset is calculated,
examine the supervisor block setups in the appendices.

STW .A2,8@A0

stores the number currently in register A2 into the seventh and
11

eighth byte of the block whose address is indicated by register AQ.
Note that this is backwards from the MOVe and LoaD codes where
the source contents are on the right of the comma in the operand and
the destination is on the left. The STore instruction performs the
same function as MOVe in this case. But MOVe does not have an
addressing mode to load a value directly from an address register
into a register indirect with byte-offset. That is the reason for
choosing the STore op code.

These examples should prove to be a handy reference as you
begin assembly-language programming on the Model 16 computer.

12

Chapter 3

1SPLAY ROUTIRE |
scReen psP Y sve

uove @AO. 4B
DISPLAY A CRARRCTER LOOP

Supervisor Routines

The disk operating system (referred to simply as the “operating
system”) of the computer consists of a series of machine-language
routines that the microprocessor uses to communicate with the
keyboard, video display, disk drives, modems, and printers. Some
of the routines are available for us to call on to do work. These
routines are referred to as supervisor calls, or SVCs for short.

We can save a lot of time writing assembly programs by
utilizing supervisor routines. These can help us print messages on
the screen, direct output to a printer, get information from the
keyboard, and handle disk input/output operations. Programming
would be a very tedious job if we had to write our own routines to
perform these various tasks by giving instructions directly to the
disk controller and other circuitry.

By properly setting up the MC68000s registers and establish-
ing a buffer area in RAM called an SVC block, we can choose one of
the many supervisor routines and execute it from our own
machine-language programs.

THE SVC BLOCK

Before calling a supervisor routine, an area of RAM (random
access memory) must be selected to act as a buffer. This buffer area
is usually referred to as the SVC block. This is in keeping with your
owner’s manual.

Each supervisor call has a number by which the operating

13

system identifies it. This is known as a supervisor function code, or
an SVC number. Every SVC block must have this indentifying
number placed in the first word (first two bytes) of the block before
the routine is called.

The supervisor number and other parameters are placed within
the block to initialize it prior to execution of the routine. Also,
values can be passed back and forth between a program and the
supervisor routine via this buffer.

An SVC block of space can be placed right within the
assembly-language program by using a label and instructing the
assembler to set aside 32 contiguous bytes of memory. The assem-
bly listing should be set up similar to the following:

SVC BLOCK
RDATAB 32,0

It is customary to use SVC BLOCK as the identifying label.
RDATAB is a pseudo op, which along with the operand 32,0 sets
aside a series of 32 consecutive bytes in memory and fills them with
Zeros.

The block must contain 32 bytes, which is the equivalent of 16
words. To address a particular word within the block we use a
number to indicate the starting byte’s position. This is called the
byte-offset number.

The first byte in a block has a byte-offset number of zero, the
second byte position is indicated by a one, the third by a two, and so
on. As an example, let us assume register A0 has been loaded with
the address location of the beginning of the SVC block, and that a
number has been placed into Al. The instruction:

STW .Al,6@A0

will cause the value stored in Al to be placed in the seventh and
eighth bytes of the block. This is an offset of six bytes, which is
actually the seventh byte beyond the beginning address pointed to
by register A0. Figure 3-1 shows the relationship of the actual byte
positions and the so-called “byte-offset” position.

Since a word is two bytes long, the byte-offset number must
always be an even number. The first three words in a supervisor
block must always store the same type of information, regardless of
the routine to be called. These include the identifying supervisor
number and an error code placed in the block by the operating

14

Byte position
123 45 6 7 8 910111213141516 17 18 1920 2122 2324 25262728 29 303132

0 123456 7 89 1011121314151617 1819 20 212223242526 27 28 29 30 31
Byte-offset

Fig. 3-1. Demonstrates the relationship between “byte-offset” and the actual
byte position within the block of memory in a program, which has been set aside
as a buffer to call a supervisor routine contained in the disk operating system.

system if an error occurs during the execution of the routine. Also,
byte-offset four and five must always contain a zero.

Some routines, such as those that control disk input and out-
put, will also require certain parameters to be placed in other
positions within this buffer.

To set up a supervisor call we first establish an SVC block.
Then we must place the identifying disk operating code and any
other parameters particular to that specific call into the block in the
appropriate positions. Execution of the routine is initiated by the
instruction BRK #0.

A ROUTINE TO RETURN TO DOS

The first routine we shall develop will cause the computer to
exit a machine-language program and jump to the TRSDOS 16 ready
mode. Usually you will use this routine at the end of a program to
terminate its execution.

Figure 3-2 shows the complete “return to DOS ready” routine.
This can be entered and assembled exactly as it appears. Nothing
more needs to be added.

If you have dabbled in assembly-language programming for one
type of microprocessor or another, you will notice that this program
does not contain an ORG pseudo op. The ORG op code is usually

START LDA .A0,SVC BLOCK
MOVW @A0 ,#264
BRK #0
SVC BLOCK
RDATAB 32,0
END START

Fig. 3-2. A complete jump to the disk operating system routine.

15

used to establish the starting address of a machine-language pro-
gram. While Radio Shack’s assembler does recognize the ORG
statement, it is not necessary to place it in the program. If no origin
is specified, the assembler will simply load the machine-language
program into the first available space in RAM once the disk operat-
ing system and any utility programs have been loaded.

The first instruction

LDA .A0,SVC BLOCK

loads the beginning address of the area whose label identifies it as
SVC BLOCK into register A0. Next,

MOVW @ A0, #264

moves the number 264 into the first word of the SVC block area.
Two bytes are used because of the W attached to the MOV com-
mand. As we mentioned in the last chapter, the@symbol (“at” sign)
indicates an indirect load where the register itself is not loaded with
the number but rather the address that the value in A0 “points to.”

To actually execute the supervisor call we give the com-
mand BRK #0 which causes the computer to jump to
the address in memory where the supervisor routine is located. It
also internally stores away the address of the next instruction to be
carried out upon completion of the supervisor call. This is some-
what similar to the commands GOSUB and RETURN in the BASIC
language.

Every assembly-language program must be terminated with an
END statement. But prior to that we must create our supervisor
buffer, hence the instruction

SVC BLOCK
RDATAB 32,0

It is important to place the op code and the operand on a
different line in this case. This makes the label universal in that this
instruction can be referenced from anywhere in the program.

We should also point out that the reason for filling this block
with zeros is two-fold. First, this makes sure that there are no stray
characters or control codes present within the block; we are start-
ing with a clean slate so to speak. Second, all of the supervisor
routines must have zeros placed in byte-offsets four and five, as

16

START Lba .A0,SVC BLOCK
MOVW @A0, #JUMPDOS SVC NUMBER
BRK #0
SVC BLOCK
RDATAB 32,0
JUMPDOS SVC NUMBER
EQUW 264
END START

Fig. 3-3. An enhanced version of a jump to the disk operating system.

these bytes are reserved for the disk operating system.

Figure 3-3 lists the identical routine. However, here we have
placed it in a form that makes it more universal. By that we mean the
various parameters such as the SVC block and the SVC number have
been set up as areas in RAM which we can easily change in order to
execute other supervisor calls. The pseudo op EQUW, which
stands for EQUate a word, causes the assembler to replace every
occurrence in the program of JUMPDOS SVC NUMBER with the
indicated value, namely decimal 264. The label takes on the value of
the operand. It does not take up any space in memory when the
source code is assembled. This is easily seen by examining a
printout of an assembled listing.

The assembler printout is in the format of columns, each
representing a different parameter. A sample section may look like
this:

25 000062 4D454E55 25 MENU TEXT 'MENU'

26 0000000D EQUW 13
27 000066 3D3D3D3D TEXT '===='

The first column shows the line number of the source code.
Here we see lines 25, 26, and 27. Next is the relative memory
address. This value is displayed in hexadecimal form. The first line
of the program has a relative address of zero. The op code TEXT
(described later in this book) is shown beginning on relative address
62. There are four letters in the word “MENU,” which should push
the relative address of the next instruction to 000066. You will
notice that the next instruction is EQUW 13 and it does #not take up
any room in memory. The op code TEXT, which sets aside space
and fills it with equal signs, is the next instruction which is given
memory space. Keep this definition in mind. You cannot use EQU to
hold values in a particular area of memory as you would need to do to

17

place a terminator character (as shown in Chapter 5).

The column after the relative address is the actual generated
instruction code in hexadecimal notation. The column to the right of
that indicates the line number in the source listing where that
particular label was defined.

The last columns are the same as the editor program, namely
the label, op code, operand, and comment columns.

Now, getting back to our explanation of the jump to DOS
routine, we come upon the label START. It is located at the
beginning of the program and it identifies the first instruction to be
executed. While START is used here, BEGIN or any other valid
label could be employed to represent this address. This label is
used as an operand for the END command, telling the computer the
memory address it is to begin executing once the program has been
loaded into memory. The first line of a program may not necessarily
be the point at which program execution is to commence.
Assembly-language programmers will frequently place tables or
equate values to labels at the top of their programs. To prevent the
computer from trying to execute these lines, a label such as START
is placed at the first instruction past them.

Bothroutines listed in Figs. 3-2 and 3-3 are complete and ready
to run as they stand.

18

Chapter 4

ROUTINE
scaeen 0};:“’" _80,SVC
" €AD 18

#OV! »
DISPLAY A CHARACTER 100!

Screen Formatting

Whatever language you use or whatever type of program you write,
one of the very first tasks you will probably ask your program to do
is to clear the video display. By clearing the screen and starting with
a“clean slate,” you pave the way for printing text and instructions to
the user.

Once the video display is cleared, it is usually desirable to
place the cursor in the upper left-hand corner of the screen. This is
referred to as the cursor’s “home” position. The cursor can also be
moved to any position on the screen with the position cursor routine
described in Chapter 5.

The Model 16 allows several styles of printed characters on
the screen. There are two sizes of letters as well as selections
between normal and inverse video characters.

In the small size, 80 characters can fit horizontally across the
screen on one line. Usually, this is the preferred size and is there-
fore considered the “normal” mode. A 40-character mode doubles
the width of each letter and consequently only half as many charac-
ters can fit on a line.

In its normal format, this computer displays green letters on a
black background. Through software control we can cause the
background to be green and the letters to be black. This reversed-
character mode of printing is known as inverse video. On a Model II
computer that has been modified to include the MC68000 circuitry,
the inverse video mode is black letters on white, since the Mode! II

19

does not have a green phosphor picture tube.

There are two different routines we can use to do the job. The
following subroutine listing clears the screen, homes the cursor,
prepares the normal/inverse mode for normal green on black print-
ing, and sets the letter size to 80 characters per line.

LDA .A0,SVC BLOCK *LOAD ADDRESS OF BLOCK INTO A0
MOVW QRO, %7 *LOAD BLOCK WITH SVC NUMBER
MOVW 6@A0, #1 *LOAD BLOCK-SET 80 CHAR. MODE
MOVW 8@A0,#1 *LOAD BLOCK-SET NORMAL VIDEO
BRK #0 *JUMP TO SUPERVISOR ROUTINE

SVC BLOCK .
RDATAB 32,0 *ESTABLISH BLOCK-~FILL WITH ZEROS

In its present form the routine is not a complete stand-alone
program. We will discuss why it cannot be run without the addition
of a few more instructions in just a moment.

The supervisor number, which the disk operating system re-
quires to identify the routine, is seven. This number is placed into
the supervisor block with the instruction:

MOVW @AQ,#7

Byte-offset six in the SVC block establishes the size of the
letters; as in

MOVW 6@A0, #1

A numerical value of one places the video in the normal mode, which
is 80 characters per line. The 40-character mode is kicked in by
loading a zero in this position.

The normal or inverse video format is determined by the value
in the eighth byte-offset, as in

MOVW 8@A0,#1

A value of one is normal, while a zero places the display in the
reverse mode.

The asterisks in the listing allow us to make comments or
remarks and store them within the source code listing for our own
use. This extra documentation is not assembled and does not be-
come a part of the final object code. So feel free to liberally place as
many comments within a program as you need. Comments do not
hamper the speed of program execution nor do they take up any

20

memory in the final object code form.

Now back to the reason why this program cannot be executed
in its present form.

First, the routine needs an identifying label at the beginning
and at its end. As was discussed in Chapter 3, a label placed at the
beginning must also be placed in the operand column of the END
pseudo op. The Assembler-16 manual shows the operand for END
as being optional, but we ran into trouble when we left it off, and so
therefore recommend using one. The label should point to the
location in the program where execution is to begin. This is usually
the top of the program, but if the first few lines of a program are used
to equate, store, or otherwise define information, execution must
begin after this area.

The second problem that would occur from directly running
this program is the failure to return to the disk operating system
ready mode, or to at least jump around the SVC block. Once the
computer executed the subroutine (by way of the BRK #0 line),
it would attempt to carry out the codes generated by creating the
SVC block. The machine would try to interpret these codes as
instructions and would therefore either do something unpredicta-
ble; or, if it was an illegal code, stop and report an error message on
the screen.

A fully complete clear screen and return to TRSDOS 16 routine
follows. It uses supervisor call number eight which we will discuss
in a moment.

START LDA .A0,SVC BLOCK
MOVW @A0, 48
MOVW 6€A0,#30
BRK #0
* JUMP BACK TO DOS NEXT
MOVW @A0,#264

BRK #0
SVC BLOCK

RDATAB 32,0

END START

Notice that the routine above calls more than one supervisor
routine, yet it only has one SVC block. Since only one supervisor
routine is called at a time, there is no reason why one block of
dedicated memory space cannot be shared by all of the supervisor
routines in the program.

ANOTHER METHOD

The Model 16s disk operating system also has a built-in routine
which allows us to output a character or a control code to the video

21

display. A list of all valid control codes is given in the owner's
manual supplied with the computer. From that chart, we find that a
hexadecimal 1E, or a decimal equivalent of 30, will cause the video
display to be blanked out. The character or code that we want must
be placed in byte-offset six of the supervisor block. Either the
hexadecimal or corresponding decimal number can be used. The
assembler will interpret either one. The letter H followed by an
apostrophe and the hexadecimal number is the convention to use for
assigning a hexadecimal value.

MOVW 6@A0,#30 *using a decimal
or

MOVW 6@A0,#H'1E *using hexidecimal

The supervisor number for this call is eight. It is a very simple
setup procedure, as follows:

LDA .A0,SVC BLOCK
MOVW @A0,#8
MOVW 6@A0,#30
BRK #0
SVC BLOCK
RDATAB 32,0

22

Chapter 5

SCREEN DISPLAY ROUTINE
LOA ADLSVC

MOVW 8AD, B
DISPLAY A CHARACTER LOOP

Displaying Text on the Screen

No matter what the application of a program may be, it will almost
certainly require the display of information on the video tube. The
computer can communicate with the operator via the screen by
displaying information such as the results of a computation, in-
structions for using a program, or perhaps a menu, that is, a list of
options from which the user may make a selection.

In this chapter we will tackle the job of displaying lines of text
on the screen.

The disk operating system gives us several calls addressing
the video display. One routine outputs a single character or a
control code to the screen. This “display a character” call, as we
shall refer to it, has a supervisor number of eight.

The second routine allows us to display an entire line of codes
and text (a string of characters, words, and phrases). The super-
visor number nine identifies this “display a line” routine.

Why, you may ask, are two different routines employed? Well,
each has its own merits. While the display a character call is capable
of only printing one character or sending one control code to the
screen at a time, it has an advantage in that any ASCII code from 0
through 255 can be used. This means that it can be used to display
the various graphic characters which are contained in the Model 16s
video character generator. The ASCII code for these shapes begins
with 128.

Many times it is necessary to place words, phrases, and sen-

23

tences on the screen. For this job we may resort to the supervisor
routine which will output an entire line of text to the display.
However, the drawbacks to this call is that it is limited to characters
and control numbers whose ASCII code falls between 1 and 127.
Control codes extend from 0 to 31. Numbers, symbols, and upper-
and lowercase letters have ASCII values between 32 and 127.
Therefore, no graphics can be displayed by using this method.

Before we go any further, there is one call that we should
discuss.

POSITIONING THE CURSOR

Prior to calling any routine to display data on the screen, you
may wish to place the cursor at the screen location where you desire
printing to begin. Both the display a character and the display a line
routine start printing at the cursor’s current resting spot.

This is a fairly straightforward routine with the supervisor
number being placed within the SVC block at the usual address of
byte-offset zero, the row position in offset six and seven, and the
column position in eight and nine.

The row position refers to the Y-axis, that is, up and down or
vertical placement. This can be a number from 1 through 24, since
the video display is set to have a maximum of 24 horizontal lines.

By the same token, the column refers to the x-coordinate,
which can be 1 through 80.

The following listing moves the cursor to the center of the
video display. We will locate the cursor 12 lines down from the top
of the screen, roughly in the middle of the tube. Since there are 80
character positions across a horizontal line, we chose 40 as the
x-coordinate.

Lpa .A0,SVC BLOCK
MOVW @AQD,#10 *IDENTIFYING CODE
MOVW 6QA0,#12 *LINES DOWN FROM TOP OF SCREEN
MOVW 8@A0,#40 *POSITIONS FROM LEFT SIDE OF TUBE
BRK #0

SVC BLOCK
RDATAB 32,0

DISPLAYING A LINE OF TEXT

Once we have placed the cursor at the desired location, we are
ready to output text to the screen.

In conjunction with the display a line supervisor call, we need
to define a block of text. Radio Shack’s Assembler-16 program
contains a directive (a pseudo op) that eases this task. The instruc-

24

tion is TEXT. With it, we can set aside a block of RAM within our
program and in which we can store strings of characters. By using a
label to define this section, we can access it from various points
within a program.

In the sample listing below, the computer is instructed to
display the statement PREPARE PRINTER FOR OUTPUT.

LDA .A0,SVC BLOCK
MOVW QAD, %9

MOVW 6@A0,#26

MOVW 8@A0,#13

MOVL 10€A0, $MESSAGE

BRK #0
SVC BLOCK
RDATAB 32,0
MESSAGE TEXT ' PREPARE PRINTER FOR OUTPUT'

Let’s thoroughly examine this listing. First, the address of the
SVC block is loaded into register AO0.

The identifying supervisor number for this routine is nine and
is loaded into the SVC block in the first and second bytes of it.

Next the computer needs to know several things about our line
of text that we want to print. We must tell it how many characters
make up our message. This information is placed in the “block” at
byte-offset six. In byte-offset eight we place what the owner’s
manual calls the “terminator character.” The term “terminator”
gives the impression that this ASCII code marks the end of the
message. This is not true. The machine does not need to have a
terminator since the number we place in byte-offset six represent-
ing the length of the text to be displayed, is in control. The code
placed in offset eight is the character which we want to send to the
screen after our message has been displayed. The thinking here is
that typically a programmer would want to send an ASCII 13 at the
end of a message to give a line feed and a carriage return. Here you
will use a decimal 13 to create a carriage return.

The address of the first byte of our message must be put in
byte-offset ten. In our sample listing, you will note that we defined
this address by referring to the text we wish to display with a label,
namely MESSAGE. An important note must be made. Notice how
we have always MOVed a “word” but when we deal with a memory
address or a label which represents an address, we must use a “long
word."” It takes four bytes to store the value of an address and should
you mistakenly define the above example as MOVW instead of
MOVL, no error would be generated and your program would run,
but nothing would happen on the screen.

As we have pointed out in Chapter 4, this routine would need
an additional call to return execution back to the TRSDOS ready

25

mode. This would have to be carried out before the computer would
be allowed to reach the SVC block.

DISPLAYING A CHARACTER

Often it is desirable to direct a single character or control code
to the screen. Control codes are mainly used to perform suchjobs as
maneuvering the cursor and initializing the video display. You may
remember this supervisor call from Chapter 4 where we cleared the
screen by sending an ASCII code of 30 to the routine.

The ASCII code for the character to be sent to the screen is
placed in byte-offset six within the SVC block. A list of available
control codes and their functions is given in the Assembler-16
manual and therefore need not be shown here.

The ASCII value of 13 (OD in hexadecimal) causes a line feed,
which refers to moving the cursor down to the beginning of the next
line. We will use this code in our sample routine, as follows:

LDA .AQ,SVC BLOCK
MOVW @AD,#8
MOVW 6@A0,#13 *CODE TO BE OUPUT TO SCREEN
BRK #0
SVC BLOCK
RDATAB 32,0

PUTTING SEVERAL ROUTINES TOGETHER

Now that we have discussed all of these short routines, let’s
put them together in one program to do something useful.

In the following complete listing, we will instruct the machine
to clear the screen, position the cursor, display a message, and
return to the DOS ready mode. The cursor is positioned so that the
message will be horizontally centered on the top line of the screen.

All of the calls can use the same defined SVC block. As a matter
of fact, once we load register A0 with the address of the block, there
is no reason to do it again at the beginning of each routine. At no
time do we use that register anywhere else in the program, so its
contents remain intact.

START
CLEAR SCREEN
LDA .AQ0,SVC BLOCK
MOVW @AD,#8 *FUNCTION CODE
MOVW 6@A0,#H'1B *ASCII CODE TO CLS
BRK #0
POSITION CURSOR
MOVW @AD,#10 *FUNCTION CODE
MOVW 6@A0, #1 *ROW POSITION (TOP/BOTTOM)
MOVW ggAO,#3l *COLUMN POS. (LEFT/RIGHT)
BRK

26

DISPLAY A LINE ROUTINE

MOVW @A0,#9 *FUNCTION CODE
MOvVW 6@AD,#18 *LENGTH OF MESSAGE
MOVW 8@AQ,#H'0D *TERMINATOR CHARACTER
MOVL 10@Aa0, $MESSAGEL *LOADS ADDRESS OF TEXT
BRK #0

JUMPDOS
MOVW @A0,4264 *FUNCTION CODE
BRK #0

MESSAGEL TEXT ! INVENTORY PROGRAM'

TERM DATAB 13 *CARRIAGE RETURN

SVC BLOCK
RDATAB 32,0
END START

BRANCHING AND JUMPS WITH CALL AND RETURN

When writing programs in the BASIC language, the reserved
word GOSUB branches execution to another section in the program
where the desired instructions are carried out. When the command
RETURN is encountered, execution jumps back to the next in-
struction following the GOSUB statement which sent it there.

Similarly, the instruction set of many microprocessors in-
cludes the instructions CALL and RET (for return), which perform
the identical functions. The CALL statement causes the computer
to jump to the location indicated by the label in the operand column.
The editor/assembler manual that accompanies the Model 16 fails
to mention that CALL also pushes the address of the next instruc-
tion onto the stack, an area in RAM used for temporary storage. The
computer needs to save this location so that upon its return from
executing the subroutine, it will know where it left off and can
continue running.

The manual does correctly state that RETurn branches execu-
tion back to the instructions immediately following the CALL in-
struction. This is done by popping the stored address location off of
the stack and placing it into the PC, or program counter register.
This register always points to the memory address that contains the
next instruction the computer is to carry out as soon as it completes
the current line.

So, the CALL and RET instructions are in keeping with tradi-
tional microprocessor assembly-language programming methods.

The next sample program uses a CALL to branchto a routine to
clear the screen and then jump back to the position cursor line. The
program itself is somewhat similar to the previous one which
cleared the screen, positioned the cursor, displayed a line of text,
and returned to the DOS ready mode. In it, the section given the
label CLEAR SCREEN is used as a subroutine. It is CALLed first to

27

get rid of all characters on the video display. The purpose here is to
demonstrate how CALL and RET work in their simplest form. The
reason for making the clear screen routine a subroutine is so that we
can access it from various places within our program. By setting it
up as a subroutine, we only need to include that routine once even
though it may be used many times.

START CALL CLEAR SCREEN

POSITION CURSOR
MOVW @A0, #10 *FUNCTION CODE
MOvVwW 6@A0,#12 *POSITION ~ ROW
MOVW 8@A0,#40 *POSITION ~ COLUMN
BRK #0

* DISPLAY A LINE ROUTINE
MOVW @A0,49 *FUNCTION CODE
MOVW 6@A0,#16 *LENGTH
MOVW 8@A0,#13 *ASCII TERMINATOR
MOVL 10@a0,#MESSAGEL
BRK #0

JUMP BACK TO DOS
MOvw @Ar0,#264 *FUNCTION CODE
BRK #0

SVC BLOCK
RDATAB 32,0

MESSAGEL TEXT 'MIDDLE OF SCREEN'
DATAB 13 *TERMINATOR

**

* CLEAR THE SCREEN SUBROUTINE
i b T T T T T T ¥ T IO

CLEAR SCREEN

LDA -A0,SVC BLOCK

MOVW @n0,#8 *FUNCTION CODE
MOVW 6@A0,#27 *CODE TO CLS
BRK #0

RET

END START

CALCULATING THE NUMBER OF
CHARACTERS USING THE TEXTC OP CODE

If during an entire program only one or two lines of text need to
be displayed on the screen, the routines we have discussed so far
would be sufficient. However, it is more than likely that a program
will require many messages and prompts to be shown. Since the
display a line and the print a line (discussed in Chapter 7) routines
need to know the number of characters in each message line, we
must somehow devise a way of calculating the length of each line.
One such method might be to create a table within the program. In it
we could store all of the values necessary to indicate the length of
each message. We could then take the number stored there and use
it in each of the routines.

Perhaps an easier path to take is to use the pseudo-op code
TEXTC. As you will recall, TEXT creates a block of memory and

28

stores a string of characters in it. The directive TEXTC does the
same thing and more. It automatically calculates the number of
characters in the line and stores this value as the first element in the
string. The following program shows how this method can be used.

START

CLEAR SCREEN
LDA .A0,SVC BLOCK
MOVW @A0,#8 *FUNCTION CODE~OUTPUT CHAR TO VIDEO
MOVW 6QA0,#H'1B *ASCII CODE TO CLEAR SCREEN
BRK #0

POSITION CURSOR
MOVW @AOD,#10 *FPUNCTION CODE-POSITION CURSOR
MOVW 6QA0,#1 *ROW POSITION (TOP TO BOTTOM)
MOVW 8@A0,#38 *COLUMN POSITION (LEFT TO RIGHT)
BRK #0

DISPLAY A LINE ROUTINE
MOVW QAD, %9 *FUNCTION CODE-DISPLAY A LINE
MOVB 68A0,4#0 *INSURES A ZERO IS THERE
MOVB 7@A0,/MENU *LOAD # IN MENU INTO SVC BLOCK
MOVW 8@QAQ0,#H'0D *LINE FEED-TERMINATOR CHARACTER
MOVL 10@A0,#MENU+1 *LOAD ADDR. OF 18T CHARACTER

BRK #0

JUMPDOS
MOVW @A0,4264 *FUNCTION CODE~RETURN TO DOS
BRK #0

SVC BLOCK

RDATAB 32,0

MENU TEXTC 'MENU'
DATAB 13 *LINE FEED-TERMINATOR CHAR. (H'OD)
END START

There is some new food for thought in the above program.
Since the label MENU now points to the first element, which is the
number 4 because of the action of TEXTC, we can use this label to
point to the length of the line of text. In its present form, the
TEXTC command will store the value representing the length in
one byte. Normally, byte-offset six and seven are used to store the
length. The MC68000 requires values to be in the order of most
significant byte, least significant byte. So, only byte-offset seven
needs to have the value placed in it. Just to be sure that byte-offset
six has no effect on the operation, we dumped a zero in it.

The terminator character is loaded into byte eight of the SVC
block.

Next the address of the location storing the string of characters
is needed. We cannot use MENU to point to the beginning of the
text since the number 4 is now there, representing a “count” (thus
the suffix “c” in TEXTC) of characters in the line. The actual
location is the address of MENU plus one. The assembler is capable
of doing this calculation right within the operand itself:

29

¢ MOVL 10@ A0, #MENU+1

In the next chapter we will explore yet another way to fill the
entire screen with text. Now we are beginning to combine many
simple routines into more practical modules. Chapter 6 will show
how text and keyboard input routines can work together.

30

REFN DISPLAY ROUTINE

5 LON ADLSVC
40 240,48

DISPLAY A CHARACTER LOOP

Keyboard Routines

It is extremely rare for a program of any real complexity not to need
data from the operator. The Model 16s disk operating system
contains two routines for inputting information from the keyboard.
This information can then be employed within our program. You
may develop a love/hate relationship with these two routines since
they have both positive and negative characteristics.

A third routine is available to empty the buffer area in RAM
which stores any keystrokes that the operator may have previously
entered. Since the routine is usually executed prior to any keyboard
input calls, we will cover it first.

CLEARING THE TYPE AHEAD BUFFER

A unique feature of the Model 16 computer is its ability to
accept keyboard input from the user even though it is busy per-
forming another duty. For example, when you first turn the machine
on, you can type the date even before the screen prompts you with
ENTER DATE (MM/DD/YYYY). The information you type is not
immediately displayed on the screen, but it is stored in a buffer
area. The computer will display and process that information when
it catches up.

It doesn’t take long before you begin to grow fond of the
machine’s ability to do this. You quickly learn that it is possible to
enter quite a few commands well in advance. Of course, you must
know what questions are coming up.

31

There may be times when you want to clear out this buffer and
get rid of any extraneous keystrokes or input from the operator. A
logical place for such a routine would be at the beginning of a
program.

The disk operating system has a routine to perform this duty.
The only value needed to be placed within the SVC block before
calling it is the function code itself, which is one.

LDA .A0,SVC BLOCK
MOVW @AD,#1
BRK #0

SVC BLOCK

RDATAB 32,0

KEYBOARD CHARACTER ROUTINE

The Model 16 has the ability to accept one character or a string
of characters from the keyboard. These can be either characters or
control codes.

There are many instances when it is desirable to input one
single character from the keyboard. For example, let us assume that
you are writing a mailing list program and a menu is displayed on the
screen. In all likelihood it would probably prompt the user to select
a letter in order to branch to a section of the program where a
specific task will be accomplished. The options might be something
like this:

<A> ADD A NAME TO THE LIST

<D> DELETE A NAME FROM THE LIST
<P> PRINT MAILING LABELS

<S> SEARCH FOR A NAME ON THE LIST

SELECT ALETTER: A, D, P, OR S

In our sample menu above, it is preferable to simply have the
user hit one letter and not have to hit the <ENTER> key. By typing
only one keystroke, the operator can speed through a pro-
gram more efficiently.

Two values must be placed within the SVC block of the routine
that inputs a single character. The function code number is four. In
byte-offset six and seven we must place a one or a zero to tell the
machine to scan the keyboard once or to examine the keyboard and
wait until a key is struck before returning to the assembly-language
program. A value of one indicates a wait condition, and a zero
instructs the machine not to wait.

32

For those readers who have programmed in BASIC on oth-
er models of Radio Shack computers, we make the following
analogies.

When a zero is placed in the “wait/don’t wait” section of the
SVC block, the program does not stop as it would on a BASIC
INPUT statement. If we consider the call as a subroutine, the
BASIC equivalent might be represented by

100 A$=INKEYS
110 RETURN

A value of one placed in byte-offset six and seven prepares the
routine to wait until a key is pressed. Again, this concept in BASIC
could be written

100 AS=INKEY$
110 IF A$="" THEN GOTO 100 ELSE RETURN

Any keystroke will return it to the program.

This routine is easy to use. It does not print the letter chosen
on the screen, just as it would not in our BASIC version above. In
our fictitious mailing list program, it would not be necessary to
display (referred to as “echo” back) the letter selected. The ASCII
code of the character keyed in by the operator is stored in byte-
offset eight and nine. We can then pull that value out of the super-
visor block and use it within our program. The display a character
routine listed in Chapter 5 could be used to print the character that
has been entered on the screen. Thus, the routine to get a single
keystroke from the keyhoard would be set up like this:

LDA .A0,SVC BLOCK

MOVW @AO0,#4 *FUNCTION CODE
MOovwW 6@A0, 41 *WAIT CONDITION
BRK #0

SVC BLOCK
RDATAB 32,0

KEYBOARD LINE ROUTINE

Next we will explore the supervisor routine which allows the
operator to enter multiple characters, words, and phrases for use
within a program. The bare bones of the routine follow.

LDA .A0,SVC BLOCK

MOVW @AD, 45 *FUNCTION CODE

MOVW 6@A0,#5 *MAX # OF INPUT CHARACT. ALLOWED
MOVL SSAO,#KEYBOARD STORAGE AREA

BRK

33

SVC BLOCK
RDATAB 32,0
KEYBOARD STORAGE AREA
RDATAB 5,0

Note that a long word is used to MOVe the address location
defined by the label KEYBOARD STORAGE AREA. Four bytes are
needed when dealing with all memory addresses in the Model 16,
since the computer can handle up to 512K of RAM.

The keyboard line routine displays a row of periods on the
screen while awaiting input from the operator. The number of
periods is dependent upon the value placed in byte-offset five and
six of the SVC block. This number specifies the maximum number
of characters the computer is to accept from the keyboard for this
particular input. This feature can be a plus, especially when the
information entered by the user is to be placed in a disk file. Records
in files must be set up in fields or sections, each having a predeter-
mined length. It is a nice feature in that it shows the operator
exactly how much space with which he has to work. Let us assume
the user is asked to enter a part description on an inventory pro-
gram. If the field in the record to be placed on the disk and the record
has been set up to only allow room for a maximum of ten characters,
the number ten can be placed in byte-offset five so that the user
cannot attempt to enter more information than will be stored. In this
way, he knows exactly what characters will be truncated when his
response is stored on the disk. As the operator types in letters, the
periods are replaced by the characters he enters.

While we feel that a keyboard input routine should limit itself
to the job of gathering information from the operator to be used
within the program, apparently the designers of the disk operating
system did not. When an input is terminated, either by the operator
hitting the <ENTER> key or by his typing in the maximum amount
of characters, this routine will clear the rest of the screen following
the last character entered. This clearing starts at the end of the text
entered by the operator and proceeds to the end of the screen. The
developers of the disk operating system made the decision for us.
Personally, we do not like this mandatory “erase to the end of
screen” feature, as the assembler manual refers to it. If the pro-
grammer has set up a nice-looking video display, perhaps with
graphic designs around the borders or some other information being
displayed on the screen below his keyboard input line, executing
this supervisor call would be disastrous to his screen format. Such a
feature can be either a blessing or a curse, depending on the

34

particular situation. For whatever our opinion is worth, we feel it is
a drawback and creates more work for the programmer who must
design his screen displays around it.

DISPLAYING A MESSAGE AND GETTING INPUT

The need often arises to have a message displayed on the
screen and then wait for a response from the user. By examining the
supervisor routines that we have covered so far, one might suggest
first using the routine to display a line of text and then execute the
keyboard line routine just demonstrated above. Well, we can
applaud the disk operating system writers here for some foresight.
They have given us a supervisor routine which calls both of these
routines in a logical order.

LDA .A0,SVC BLOCK
MOVW @A0,#12 *FUNCTION CODE
MOVW 6@A0,#26 *# OF CHAR. IN PROMPT MESSAGE
MOVW B@AD, #5 *MAX 4 OF INPUT CHAR. ALLOWED
MOVL 10@A0, #KEYBOARD INPUT
MOVL 14@A0,#DISPLAY PROMPT
BRK #0
SVC BLOCK

RDATAB 32,0
KEYBOARD INPUT
RDATAB 5,0
DISPLAY PROMPT
TEXT 'ENTER THE AMOUNT OF LOAN §$'

The function code is five and is loaded into byte-offset zero and
one as usual. Offset six and seven hold the number of characters
contained in the prompting message. The maximum number of
characters that the operator is allowed to enter in is stored in eight
and nine. The address where we wish to place the information
entered by the user is loaded into byte-offset 10, 11, 12, and 13. As
we have previously stated, it takes a long word to store an address
for this computer. Similarly, the address of the text to be displayed
is stored in 14, 15, 16, and 17.

TESTING FOR A MATCH USING THE CMP OP CODE

In the BASIC language, true/false testing is done by the IF-
THEN statement. IF something is true THEN the machine istold to
take a specific action.

Similarly, in assembly language we need a way to compare or
check two values for equality. The op code CMP, or CoMPare,
basically enables us to test various registers in the microprocessor

35

against a numerical value, another register, or the contents of an
address in memory.

Compares are actually treated by the computer as a subtraction
process. The “Z” or flag bit in the status register is set if the result
of the subtraction is zero, that is, if it is a match. In Chapter 9 we will
deal with the status register in more depth.

The next statement to follow this would logically be an in-
struction which tests the result of that comparison and acts accord-
ingly depending upon the results. The BRanch command does just
that.

THE BRANCH OP CODE

The status of the Z flag bit in the status register can be tested
with the BRanch instruction. This is invaluable when you want to
branch execution to another area of the program if certain conditions
are met.

Next we will show a program which incorporates the display
and keyboard routines we have discussed in this and the previous
chapter. In it we make use of the CoMPare and BRanch instructions.

The program listing is given at the end of this chapter. We have
included line numbers to make it easier to follow our explanations.
First the screen is cleared. The cursor is then positioned to the
screen location where we want the printing to begin.

The bigjob is displaying many lines of text on the screen. Here
we put the display a character supervisor routine to work. Near the
end of the program, the pseudo op TEXT establishes the many
message lines we need to call up. DATA is used to define bytes of
memory where we can place an ASCII code of 13. These are located
between the lines of text where carriage returns and line feeds are
needed.

Our technique here is to place the display a character routine
inside a loop and print out all of the desired text. As previously
shown in Chapter 5, this supervisor call requires that the ASCII
code of the letter we wish to send to the display be placed in
byte-offset six and seven. Since the character to display will be
different with each pass of the loop, we need some way of constantly
changing the character in offset six and seven.

Instead of placing the actual value there, we have chosen to use
alabel to point to the memory address where the ASCII code for the
character we wish to display is located. The label STOREL1 in our
program is a four-byte area within the program that we use to store
away the address of the next character to be sent to the screen.

36

All of the text to be printed is defined at the bottom of the
program. The label MENU is used to indicate the address of the
first character to be displayed.

Before entering the loop, we must place the memory address
of MENU into the STORE1 area. This is done in a section labeled
INITIAL SETUP. The address of the first character is loaded into a
register; we selected A3.

LDA .A3,MENU

Then the address stored in A3 is placed into our designated
storage area.

STL .A3,/STORE1

The slash (/) in front of STORE! instructs the assembler that
the address stored in register A3 is to be loaded into the memory
location identified by the label STOREL

Next the address of the SVC block is loaded into register A0
and the function code is placed in the appropriate position within the
block.

The loop begins at line 18 and ends at line 28. Once inside the
loop, the ASCII code located at the memory address which has been
saved in STOREL1 is loaded into register A3. This takes place in line
19. The character in A3 is moved into byte-offset seven of the SVC
block. Since we are only dealing with one byte, we chose to place
the character directly into the SVC block. Since the MC68000
stores values in the form of most significant byte, least significant
byte, the ASCII value (being between 0 and 255) is placed in offset
seven and not six. To be sure that there will not be any chance of
error, we opted to load a zero into offset six.

In order to prepare for the next character to be displayed, the
memory address stored in A3 is incremented by one.

ADDW .A3,#1

This new address is stored away in our storage area, ready to
be called up the next time a character is to be sent to the screen.

STL .A3,/STOREL

Now the supervisor call is made in line 24.

We must test this byte to see if we have reached the end of our
text. At the end of the defined text we placed a terminator code.
There are several ASCII codes which the Model 16 owner’s manual

37

indicates have no purpose and are unused by the machine. We chose
a value of five which is one of these unused numbers. It is a good
idea to avoid using a character since there may be an occasion when
it would be necessary to display that particular character. A test can
now be made on each character to see if it is the terminator
character.

We have not yet used any of the data registers in our program.
It is easy to compare the value in a data register with a numerical
value using the CoMPare instruction. So we load the value of the
character (which has been placed in byte-offset seven of the SVC
block) into a data register, such as DO. Prior to that we place all
zeros in DO to insure there are no other values present that might
creep into our program and give us trouble.

LDL DO, #0
LDB .D0, #5

The CMPB .DO, #5 instruction compares a byte,
that is, it subtracts the number in DO from five. If the two numbers
are not equal, the computer is directed to branch execution back to
the beginning of the loop and get another character to display. BNE
represents “branch if not equal” to the location indicated in the
operand.

cMPB .DO, #5
BNE DISPLAY A CHARACTER LOOP

If a match is found, execution falls through to the next instruc-
tion, which is on line 29. This is the keyboard input routine de-
scribed earlier in this chapter. The computer waits for the operator
to type one keystroke. The operator’s answer is stored within the
program in the space identified by KEYBOARD STORE1. We used
RDATAB to define KEYBOARD STORE1 and STORE]1 storage
areas, but DATAB would also have done the same thing.

Again by using the CMP op code, the character entered by the
operator can be tested for an “A” or “S” response. BE is a “branch if
equal” instruction which sends program execution to the proper
section. If the user selects a letter other than “A” or “S” he is
returned to the disk operating system ready mode.

We have not included “add” or “search” sections to this par-
ticular program, as the intention here is to present the concepts of
displaying text and comparing values as clearly as possible. Chapter
10 develops a complete program showing how these sections might
be written. Here is a listing of the full keyboard routine using the
subroutines we’ve discussed in this chapter.

38

OO0~ O U B N s

st 4
MO

—
w

et et
[- LN

B Pt et ot
OO oo~

[\ ¥
™

44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

*THIS PROGRAM DEMONSTRATES CREATING A FULL SCREEN MENU

START
CLEAR SCREEN
LDA .A0,SVC BLOCK

MOVW @Ar0,48 *FUNCTION CODE~-QUTPUT CHAR.
MOvVwW 6@AD0,#H'1B *ASCII CODE TO CLEAR SCREEN

BRK #0
POSITION CURSOR

MOVW @A0,#10 *POSITION CURSOR FUNCTION CODE

MOVW 6@A0,#1 *ROW POSITION (TOP TO BOTTOM)
MOVW 8@A0,#38 *COLUMN POSITION (LEFT-RIGHT)
BRK #0
INITIAL SETUP
Lpa .A3,MENU
STL .A3,/STOREl *STORES AWAY BEG.MENU ADDR.
LDA .A0,8VC BLOCK
MOVW @r0,4#8 *FUNCTION CODE—DISPLAY A CHAR.
DISPLAY A CHARACTER LOOP
LDL .A3,/STORE1l
MOVB 7@A0,@A3

MOVB 6@A0,40 *INSURES A ZERO IS THERE
ADDW A3, 41 *INCREMENT~POINT ADDR.NEXT CHAR

STL .A3,/STOREl *STORE AWAY NEXT CHAR. ADDR
BRK #0

LDL .DO,#0

LDB .D0,7€A0

CMPB .D0, 45

BNE DISPLAY A CHARACTER LOOP

KEYBOARD INPUT ROUTINE

MOVW @AQ,#5 *FUNCTION CODE
MOVW 6@A0,#1 *# OF CHARA. TO BE ENTERED
MOVL 8@A0, $KEYBOARD STOREL
BRK #0

*TEST FOR AN "A"™ OR "§"
LDB .D0, /KEYBOARD STOREL
CMPB .D0,#65 *TEST FOR AN "A"
BE ADD ROUTINE
CMPB .DO,#83 *TEST FOR AN "S"
BE SEARCH ROUTINE

JUMPDOS
MOVW @n0,4#264 *FUNCTION CODE
BRK #0

ADD ROUTINE

-~ program continues here --

SEARCH ROUTINE

—-- program continues here -~

SVC BLOCK

RDATAB 32,0
STOREL

RDATAB 1,0
KEYBOARD STORE1l

RDATAB 1,0 *STORAGE AREA FOR USER INPUT
MENU TEXT 'MENU'

DATAB 13,13

TEXT '

TEXT '

DATAB 13,13,13,13

TEXT '<A> ADD A NAME TO THE LIST °

DATAB 13,13

TEXT '<§> SEARCH FOR A NAME'

DATAB 13,13,13,13

TEXT 'SELECT THE APPROPRIATE LETTER > '

DATAB 5 *TERMINATOR CHARACTER

END START

39

Chapter 7

1SPLAY ROUTINE
SEREEN 0, o AD,SVC

MovW @O, 88
DISPLAY A CHARACTER LOOF

Directing Output to a Printer

Similar to the routines that direct output to the video display, the
disk operating system contains routines for printing information on
the printer. Two routines are given for sending characters to the
printer while two additional calls are used to control the printing
format of each page. The latter routines test or set such printer
parameters as the number of lines on a physical page, the logical
length of the page, and the number of characters printed on one
horizontal line. These two routines are fairly self-explanatory and
are well covered in the Assembler-16 manual, so we will not be
dealing with them here.

PRINT A CHARACTER

Chapter 5 discussed two video routines, one designed to out-
put a single letter or code to the screen and the other to display a
string of characters. Chapter 6 similarly demonstrated a routine to
get one character from the keyboard and a routine that gets an entire
line. As you might have guessed, TRSDOS provides us with two
similar routines for directing output to a printer.

The print a character call is straightforward and does not
require any special treatment. We should mention that since most
printers do not actually print until their buffer is filled or until a line
feed code is sent to them, the routine below may not give immediate
action on your printer. Fig. 7-1 shows the printer for the Model 16.
In our example, the letter “A” is sent to the printer.

40

(3oeUS oipey jo
Asapunon) ‘aul 1ayy ul s1oNdwos0io
-l JI8Y10 pue g [8POW 8yl yim asn
Jo} Yoeyg oipey Aq paisyo siajuud
Auew j0 suo “sjuud jasym Asiep
1samau s oeyg oipey ‘i-£ ‘Big

41

The function code for this call is 18.

LDA .A0,8VC BLOCK
MOVW @AD, %418 *FUNCTION CODE
MOVW 6@A0,#65 *ASCII CODE-LETTER "A"
BRK #0
SVC BLOCK
RDATAB 32,0

In order to see if the routine is working, the simplest thing to
do is to execute the routine twice, first by sending a character, then
sending an ASCII code 13 (line feed/carriage return) which will
cause the printer to empty its buffer.

LbA .AQ,SVC BLOCK

MOVW eao,#18 *FUNCTION CODE

MOVW 6€8A0,#65 *ASCII CODE FOR "A"

BRK #0

MOVW 6Q@A0,#13 *LINE FEED/CARRIAGE RETURN
BRK #0

SVC BLOCK
RDATAB 32,0

PRINT A LINE

In order to print a line, the length of the line must be placed in
byte-offset six and seven. The ASCH code of the character to be
sent to the printer after the text is printed is placed in offset eight
and nine. Similar to the display a line routine covered in Chapter 5,
the owner’s manual refers to this code in offset eight as a “ter-
minator” character, although it does not terminate anything. It’s not
really the best phrase to describe the function. The actual termina-
tion of the printed message is determined by the number placed in
byte-offset six which limits the number of characters to be sent to
the printer.

The address of the text is placed in byte-offset 10, 11, 12, and
13 of the SVC block. Thus we must use the suffix, “L,” on the MOVe
command.

LDA .A0,SVC BLOCK

MOVW @A0,#19 *FUNCTION CODE

MOVW 6@A0,#14 *LENGTH OF LINE TO BE SENT
MOVW 8@A0,#13 *"TERMINATOR" CHARACTER
MOVL 10€A0,#PRINTER MESSAGE

BRK #0
PRINTER MESSAGE

TEXT ' INVENTORY LIST'®
SVC BLOCK

RDATAB 32,0

42

Chapter 8

€EN DISPLAY ROUTINE
s LOR LAD,SVE

Wove @AD. 88
DISPLAY A URARACTER OGP

NI

Disk Input and Output Routines

When we write computer programs, the instructions which make up
the program reside in the computer's RAM. The microprocessor
fetches one instruction at a time from RAM and carries out the
orders. Programs are placed in memory by loading them from some
type of storage medium such as a disk, or by typing them in via the
keyboard.

RAM can also be used as a storage area for various items.
However, RAM loses all information stored there when the power
is turned off; it can only be used to temporarily store data.

To permanently store information, we must place the data on
disk. Basically there are two kinds of disk storage devices, the
floppy disk and the hard disk. A floppy disk (also sometimes called a
diskette) cannot store as much information as a hard disk can, but it
has the advantage of being easily swapped between other comput-
ers of the same model. Also floppy disks can be economically
carried or sent through the mail.

On either type of disk, we can create files. Disk files are just
like the files you would find in any place of business; in either case
the basic concept is the same. By comparing a disk file to a typical
index card file, we can more easily explain some terms.

A file is one entity, made up of many records. In an index file,
each card is considered to be one record. Each record can be broken
down into smaller entries called fields. Every record contains the
same fields. Suppose we have an index card file that gives us a list of

43

names and addresses of all the charge customers for a particular
business. Each record would contain the same fields, that is, each
would have a field for the name, one for street address, town, state,
and zip code. Every record is made up of the same fields, but
naturally each record will contain different names and addresses.

In this chapter we will discuss the fundamental routines
needed to create and maintain a disk file. By “maintain” we refer to
the adding of new records to an existing file or the modifying of
existing records.

THE FLOPPY DISK

The Model 16 computer is capable of using either single-or
double-sided disks. Single-sided disks record information only on
one side; double-sided disks store data on both sides. The Model I
computer, however, can only access one side of a disk. When a
Model II is upgraded to become a Model 11/16, that is, a Model II
with the MC68000 circuitry added to it, the disk drives are not
touched. Therefore the Model 1I/16 cannot utilize two sides of a
disk either. (Chapter 11 discusses the Model 11/16 in more depth.)

The Model 16 has two “photo eyes,” which are used to detect
whether a disk is single or double sided. Double-sided disks simply
have both sides rather than just one side coated with a ferromagne-
tic material.

The placement of the indexing sector hole, which is present on
every disk, is used by the machine to detect whether the current
disk in the drive is single or double sided. The indexing hole is
placed in a slightly different location on the two types of disks. The
photo eyes, also known as photo cells, are electronic devices that
detect light. Inside the disk drive mechanism light bulbs are placed
on one side of the disk. Two photo cells are located at the position
where they will line up with the proper indexing hole. Should one
photo cell see light, then that might indicate a single-sided disk. If
the other photo cell sees the light, then it would mean the disk could
be accessed on both sides.

Figure 8-1 shows both a single-sided and double-sided disk.
Note the few degrees difference between the indexing sector holes.

The indexing hole aligns with the photo cells once every
revolution. The computer also uses this hole when formatting a disk
(with the FORMAT command). Track and sector information is set
up on the disk when it is formatted and the alignment of the indexing
hole gives the machine a reference point on the disk.

Tracks are laid out in concentric circles. Each track, except for

44

Fig. 8-1. Single- and double-sided disks. Note the difference in placement of the
indexing sector holes. (Photograph by George M. Keen)

track zero on side one, contains the same number of bytes. As the
tracks approach the center of the disk, the data is jammed closer
together. Mechanical and electrical precision are needed to insure
the proper reading and writing of information in these higher num-
bered tracks. Track zero is located on the outside rim of the disk and
track 76 is closest to the center, making a total of 77 tracks.
The disk operating system of the Model 16 will support either
single- or double-sided disks. The disk itself determines whether or
not both sides will be accessed. Double-sided recording is trans-
parent to the operator. The machine keeps track of all of the
information stored on the disk. We cannot specify on which side of
the disk we wish to store information. A single-sided disk is for-
matted to have 77 tracks. As far as the user is concerned, a double-
sided disk appears to him as one disk with 154 tracks (77 x 2).
Each track consists of 32 sectors. A sector is made up of 256
bytes. A Model 16 disk contains a total of about 625,290 bytes per
side. If a double-sided disk is used, the total number of bytes is
1,256,704. The reason two-sided disks do not have exactly twice as
many bytes as one-sided disks is because track zero on side one is
formatted differently than the rest. It is used exclusively by the disk
operating system. While the other tracks are formatted in the
“double-density” mode, this “boot” track is single density. The
machine apparently is in the single-density mode when it is turned
on and the information on this track kicks it into the double-density

45

o sues Sl Tals o
Model | SINGLE 350 35 89,600
Model HI SINGLE 720 40 184,320
Model Il SINGLE 1,875 77 509,184
Model II/16 SINGLE 1,875 77 509,184
Model 16 DOUBLE 4,928 154 1,256,704
5M HARD DISK - 19,584 612 5,013,504
8M HARD DISK - 34,816 1,024 8,912,869
12M HARD DiSK 1,836 11,898,400

Fig. 8-2. Amounts of disk capacity on the various Radio Shack microcomputers.

mode. Single and double density are terms which describe the
technique used to store information on a disk. Double density packs
more data onto the same size disk than single density, thus giving it
increased storage capacity.

The Model I1/16 formats disks a little differently and thus has a
total storage capacity or 509,184 bytes per disk.

Not all of these bytes are available to the user. The disk
operating system requires some of the tracks to store its routines.
Figure 8-2 lists the various amounts of disk capacity on the most
popular Radio Shack model microcomputers, the 5 megabyte hard
disk drive (shown in Fig. 8-3) and the 8 megabyte hard disk storage
devices. The chart shows the impressive storage capability of the
Model 16. Radio Shack also has a new 12M hard disk.

THE HARD DISK

The Radio Shack 8 Megabyte Hard Disk storage device is
designed to be connected to the Model II, 16, and II/16. Unlike
floppy disks, the disks used here are invisible to the user. They
cannot be taken out of the unit. Inside the square-shaped case are
two platters or “disks.” Each disk is double sided making a total of
four recording surfaces. While the disks are sectioned off into tracks
and sectors similar to floppy disks, an additional factor called a
“cylinder” comes into play.

On each of the four surfaces, the same number of tracks is layed
out and numbered. The track numbers are located at the identical
positions on the disk. Figure 8-4 shows a three-dimension-
al view of the platters. Electronic switching selects which head is to
be accessed. A head is a small device made up of a coil of wire which
can transfer electrical signals to and from a magnetic storage

46

{(oeys oipey jo AsaunoD) “eaup ysiD prey sjkqebaw g s joRYS OlpeY S paimdid 't-8 ‘B4 ﬂ
: Sy i

S

Surface 1 Track 0
Track 0
Surface 2
Track O
Surface 3
Track O

Surface 4

Fig. 8-4. A three-dimensional view of the two disk platters in a hard disk drive.
The relationship of tracks on each surface can be seen. Track zero on the top of
the first disk, for exampie, is located at the same distance from the center of the
disk as track zero on the underside surface as well as track zero on the top and
bottom of the second platter. (Graphic art by Betty Tocci)

medium. The concept is similar to the record and playback heads in
tape recorders.

Each head can be used to either read information from the disk
or write data to it. The read or write function is selected electroni-
cally by the machine.

The four read/write heads are all positioned over the same
track number on all four surfaces. The ability to switch electroni-
cally between all four heads and tracks without physically moving
any parts helps account for the great speed at which hard disks can
store and retrieve information.

For example, track ten on the top disk has the same radius as
track ten on the bottom disk. The track located on the outer rim is
track zero. Similarly, track zero on the bottom of the same platter is
located directly underneath track zero on the top. Track zero on the
top and bottom of the second disk is also in the same physical
position.

These four tracks over which the heads are positioned at any
given time comprise one unit called a cylinder. There are 34 sectors
per track, so four tracks contain a total of 136 sectors. This makes
up one cylinder. Figure 8-4 shows a three-dimensional view of the
two platters and the relationship of the same track number on each
platter.

48

OPENING A FILE

The concepts of opening a file, getting or putting a record onto
the disk, and using a buffer as a temporary storage area where
information passes on its way to and from the disk, are the same as
in the BASIC language.

BASIC does a lot of things for us. In assembly programming we
are required to keep track of some of the parameters which BASIC
normally handles for us.

The first thing that must be done to create a file where we can
store information is to open a file on the disk. This is accomplished
with the OPEN statement. In an office situation, it is necessary for
you to first “open” the drawer of the file cabinet before you can
begin to place any records in the file.

TRSDOS allows us to specify several ways in which we may
choose to open a file. We may wish to create a file that has never
before been in existence. The first time we open the file to place
data into it is the time to use this creation option.

We may want to open a new file but not if it already exists,
since valuable information currently stored there may be destroyed
if we overwrite old records with new ones.

Another type of open condition would be to open a file only if it
has previously been created.

At the time we open a file, these and other parameters must be
set up to instruct the computer how to go about opening the file we
have chosen.

The open supervisor call has an identifying number of 40. A
name must be given to the file to identify it from other programs and
files on the disk. TRSDOS file names can consist of up to eight
characters. The first character must, however, be a letter of the
alphabet. The remaining seven can be any alphanumeric character,
that is, letters or numbers. Generally you should avoid using sym-
bols and punctuation when naming a file. Frequently programmers
will use an extension of three letters which the disk operating
system allows. If the eight characters are followed by a slash (/),
then an extension of three more letters is permitted. Typically a
/CMD is placed at the end of a file name to signify a command
program, or a machine-language program. To represent a data file
such as a mailing list program, the extensions /DAT are commonly
used. File extensions are optional. An important note: please be
advised that we ran into trouble when using the extension /FIL so
we advise avoiding it to represent “file.”

The list of names which our mailing list program will create

49

could be stored in a file called something like LIST/DAT to show
that the LIST file name is not a program but rather a data file.

Entry conditions before calling the open supervisor routine
require the usual function code to be placed in byte-offset zero of the
SVC block.

The address where we specify the name of the file we wish to
open is placed in byte-offset six through nine. Since this is an
address, it requires four bytes. An ASCII code of 13 (carriage
return) is needed at the end of the location where the file name is
defined. The TEXT op code can be used to establish the file name
and the DATAB instruction will reserve a byte of space within the
program for the carriage return code.

Finally, offsets 10 through 13 store the address where we have
established a five-byte block of memory that has been filled with
instructions concerning the opening of the file. The Model 16
owner’s manual refers to this block as a parameter list. Similar to
the SVC block, five consecutive bytes in memory are used to
establish certain criteria for the file.

In the first position, which is an offset of zero, we place a code
representing how the file is to be accessed. Three combinations are
possible, “R,” “W,” or “P.” The access code “R” can be tagged on if
we want to limit the user’s access to the file. By being able to only
“read” the information in a file, the user is kept from recording any
data into the file. The “R” code, for “Read” access only, can be set
up in the designated memory block by either using the EQUate op
code or by directly placing the value into the desired location with a
MOVe command. In a moment we will show how to perform that
operation both ways.

Regardless of the method you use, probably the best procedure
is to use a register as the temporary holding spot for the parameter
list. We have been doing the same type of thing with register A0 and
the SVC block throughout this book. But this will be slightly dif-
ferent. First, a register can be filled with the necessary code. Then
the contents of that register can be placed into the memory area
where we are storing these items prior to calling the open super-
visor routine. In keeping with the owner’s manual, we shall set up
our open routines using basically the same program skeleton.

Since register A0 is tied up keeping track of the SVC block
location, we can choose any one of seven other address registers.
Decisions, decisions! How about if we use Al, but you can just as
easily use any address register your little heart desires. Now we
can look at the two ways of getting these codes into register Al.

50

First we will show how EQUate can be used to make life easy
for us programmers. All we have to do is EQUate a byte of text. By
putting quotes or apostrophes around the alphabetical character,
the assembler will automatically convert it to the ASCII equivalent
for us and plug in the correct value in register Al.

MOVB @Al,#READ/WRITE ACCESS CODE

(program continues)

READ/WRITE ACCESS CODE
EQUB 'R’

It is much simpler to directly place the ASCII number for the
desired character into the register itself as in

MOVB @Al,482

In the following instruction, the programmer had to look up the
ASCII code for the letter “R” which is 82 decimal, or a 52 hexadeci-
mal.

MOVB @Al $u'52

Personally, we feel that the latter two examples are preferable
to the EQU method since it tends to keep the program shorter and
cleaner. A comment or remark can always be added to the line to
make it more self-documenting.

However, as with any type of programming, there isn’t neces-
sarily a right or wrong way to go about setting this thing up. We
don’t know who originally said it, but an analogy has been made
between artists painting a picture and programmers programming.
If you take ten artists and let them paint a picture of a sunset, you
will get ten different pictures. Each has its own merits, but none is
really right or wrong. The same holds true for programming. Under
certain circumstances, one technique may be better than another,
but as long as both perform equally well in the final mix, it doesn’t
really matter.

Getting back to the other two access codes, “W” and “P,” we
have “W” to allow both reading and writing of data files. “P” is used
to permit the reading and writing of Z80 program files.

The next byte in the parameter list, byte-offset one, stores the
length of the record. Record length can be up to 256 bytes.

51

Two types of files can be handled by TRSDOS; variable length
files and fixed length files. Variable length is not as common as fixed
files. It allows each record within a file to have a different length. In
this book, we will be dealing with files which have predetermined
record lengths that do not change from one record to the next. Just
as in the case of the access code, letters are used to control the
desired function, “V” for variable length and “F” for fixed length.
This value is positioned in byte-offset two.

In byte-offset four the number 0, 1, 2, or 3 is placed to specify
the conditions which we want to open the file. Figure 8-5 sum-
marizes what each code represents.

The last item in the parameter list is the attribute code. The
disk operating system supposedly pays no attention to this number.
It is strictly for our own use. With it we can assign our own
identification code to the file. Valid numbers are 32 through 255, but
not zero as the owner’s manual states. The number is placed in
offset four of the list.

Once we have digested all of that material, we are ready to
open a file.

In the Model 16 owner’s manual is a partial listing found under
the directive OPEN in the chapter on supervisor calls. Like OPEN,
most of the routines are not intended to be complete programs, but
rather short examples. Therefore they lack a BEGIN or similar
label at the top of the program and an END instruction at the bottom,
both of which are necessary in order to get the program to run on its
own. Be advised that we were not able to get the routine to work
exactly as it is shown, even with the addition of the END instruc-
tion. The five instructions that load five separate bytes of informa-
tion into a block of memory set aside as the open routine’s parame-

Code 0 Open the file. If the file has never previously
been opened, do not open it now.

Code 1 Create the file. If the file already exists on
the disk, do not open it. Return an error if
the file has been created prior to now.

Code 2 Create the file. If the file already exists on
the disk, destroy it.

Code 3 Open the file to have shared access. If the
file has never previously been opened, do not
open it now.

Fig. 8-5. Creation condition codes for files.

52

ter list, cause the machine to give an odd address trap error mes-
sage when the program is run. Here is the listing from the manual:

MOVW @AL,$#WRITE ACCESS

MOVW 1@Al,#RECORD LENGTH

MOVW 2@Al,$FIXED FILE

MOovW 3@Al,#OPEN ONLY IF EXISTS
MOVW 4@ALl,#USER ATTRIB

When the routine failed to work, we changed the OPEN ONLY
IF EXISTS code (currently holding a value of 0) to a one, which
should create a new file, according to the previous chart. Therefore,
if the routine worked at all it would be easy for us to see since we
could examine the directory from TRSDOS with the DIR command
and see if file name had indeed been created on the directory.

After making that change, the program still did not work and
continued to give an odd address trap error message (see Chapter 9
for an explanation of this error message). We reasoned that perhaps
only a single byte should be indicated by the MOV instruction
instead of a word, that is, MOVB rather than MOVW. It seemed
logical since one byte is all that is being MOVed, anyway. After
changing all of the MOVW instructions in the parameter list to
MOVB, the routine worked fine.

As is our usual practice, we prefer to place numbers directly
into registers and addresses whenever possible instead of using
EQUate to define their values elsewhere in the program. This helps
to keep the program shorter, clearer, and with less chance of
reusing variable names that may be storing important information.
Since comment lines take up no room in the final listing, documen-
tation of the program to keep everything easily understandable can
be used as much as necessary.

So our complete program to open a file on the disk such that you
can see the file name on the directory looks like this:

OPEN LDA .A0,SVC BLOCK
MOVW @AQ,#40 *INDENTIFYING FUNCTION CODE
LDA .Al ,FILENAME
STL .Al,68A0
LDA .Al,PARAMETER LIST
MOVB @Al,#80 *READ/WRITE ACCESS
MOVB leal,#100 *LENGTH OF RECORD
MOVB 2@Al,4H'46 *FIXED/VARIABLE FILE
MOVB 3@al,#1 *CREATE A NEW FILE
MOVB 4@A1,432 *ATTRIBUTE CODE
STL .Al,10@A0
BRK $0

JUMPDOS
MOVW @n0,$264
BRK #0

53

SVC BLOCK
RDATAB 32,0

FILENAME
TEXT ' LIST/DAT'
DATAB H'OD *CARRIAGE RETURN TERMINATOR
DATAB 0 *RESERVE 1 BYTE TO KEEP

*INSTRUCTIONS ON EVEN
*ADDRESS LOCATIONS
PARAMETER LIST
RDATAB 6 *ONLY 5 BYTES USED BUT 6
*KEEPS INSTRUCTIONS ON EVEN
*ADDRESS LOCATIONS
END OPEN

Let’s carefully go through this routine. The first thing we do is
to load the address of the SVC block into register A0 and move the
identifying supervisor code into byte-offset zero and one.

Next we need to set up a block of memory and by using the
TEXT directive establish the file name that we want on the disk’s
directory. This can be done in two moves. The location of the file
name can appropriately be labeled FILE NAME. This address is
loaded into register Al and from Al it can be moved into byte-
offsets 6, 7, 8, and 9 of the SVC block where it must reside prior to
calling the open supervisor routine. The two instructions are:

LDA .Al,FILE NAME
STL .Al,6@A0

Inkeeping with the Assember-16 manual, we will use the same
idea of setting up the parameter list in one area of memory whose
address location is pointed to by register Al. Just as we use A0 to
point to a spot in memory where we can place the various values into
it by using the byte-offset feature, we can address Al indirectly with
byte offsets, also. Once we have loaded the address of the parame-
ter list into Al, each item in the list is placed into the proper
position in the block one byte at a time. Offset zero stores the code
telling the machine how we want to access the file. There are two
possibilities—read only or both read and write. “R” is for read only
access, “W” for read or write, and “P” is for reading and writing of
Z80 program files. The decimal ASCII codes are 82 for “R,” 87 for

“W,” and 80 for “P.” These values can be placed directly into the
desired offset. Here is the instruction to both read and write:

MOVB @al,#80

Byte-offset one of the parameter list block indicates the length
of the record in bytes. In this example we chose 100:

MOVB leal,#100

54

The type of file, fixed or variable, which is placed in offset
position two, can have the ASCII value placed directly into it just as
we did with the access code parameter. Here an “F” or a “V” is
needed. The ASCII code for “F” is 70 decimal or 46 hexadecimal. In
our sample listing we use the hexadecimal value simply to show
how it is possible to use either decimal or hexadecimal values
interchangeably. The ASCII for “V” is 86 decimal. The instruction
for “F” or fixed file is

MOVB 2QA1, #H'46

The creation code, either the number 0, 1, 2, or 3 as shown
previously on the creation code chart, establishes the conditions for
opening the file. This value is placed in byte-offset 3 of the parame-
ter list. We have used the code number one which creates the file:

MOVB 3@al, #1

The final byte in the parameter list contains the user’s attribute
code. According to the manual, this number is for our own use and
the computer does not look at it. However, it does affect the
computer somehow since placing a zero there caused problems.

MOVB 4@Al,#32

Now that the parameter list has been set up, its address
location is loaded into the proper positions in the SVC block, namely
offsets 10, 11, 12, and 13.

With these entry conditions ready to go, the supervisor routine
can be called.

At the bottom part of the program we have defined memory
spaces for the SVC block, the file name, and the parameter list. The
file name is fixed by using the TEXT pseudo op to define the
alphanumeric characters and by terminating the phrase with an
ASCH code of 13 for a carriage return. It is important that this 13 be
put in place. We feel it is good practice to keep the length of
instructions and block definitions to even numbers. This helps
prevent possible odd address trap errors when the program is run.
You may have noted that we defined an extra byte of memory after
the carriage return. By the same token, we set aside six bytes for
the parameter list, even though only five are needed.

FILENAME
TEXT 'LIST/DAT'
DATAB H'OD
DATAB 3

PARAMETER LIST
RDATAB 6,0

55

Upon exiting from the open supervisor routine, any error
codes are placed in byte-offset two and three as usual.

When the file is opened, TRSDOS assigns a number to the file
to identify it. This number is returned in offsets 14 and 15. We need
not be concemed about the value of this number. However, we do
have to use this number whenever we want to perform any opera-
tions on this file such as reading or writing a record and closing the
file. We will show how to handle this number next as we discuss
writing a record to the file.

WRITING TO THE FILE

In order to write a record into the file we just opened, we use
the supervisor routine number 44 entitled DIRWR in the Model 16
owner’s manual.

As we have previously mentioned, the disk operating system
assigns a number by which it can identify that particular file. This is
returned as a word length in byte-offsets 14 and 15 in the SVC block.
Whatever that value may be, it must be taken from byte-offsets 14
and 15 and placed into offsets 6 and 7 to prepare the block for entry
into the write routine. This is accomplished by the following lines:

LDW .Al,14@A0 *MOVE FILE ID # INTO Al
STW +Al,6@A0 *MOVE FILE ID # INTO SVC BLOCK

Besides storing the function code of the write routine as well as
the file identification number into the SVC block, two other
parameters need to be set. The address which stores the data or
text to be written to the disk is positioned in offsets 8to 11. We have
given this storage area or “disk buffer” a length of 256 bytes. That
lets us use that area for other files of different lengths. The record
length will be controlled by the open routine, anyway. Only as many
bytes as were indicated at the time the file was opened will be
written to the disk.

The last step is to place the record number into offsets 12
through 15. Unlike the BASIC on other Radio Shack microcomput-
ers, the first record in the file has a number of zero. Zero is not a
valid record number in BASIC. Records are numbered in consecu-
tive ascending order, 0, 1, 2, 3, and so forth with the maximum
number being 4,294,967,295 decimal or FFFFFFFF hexadecimal.
That is a big file!

In a moment we will create a short program that will dem-
onstrate the write routine.

56

CLOSING THE FILE

When we are done with a file, it must be closed. In an office,
when a secretary is finished entering or examining records in a file
cabinet, she closes the drawer.

The identifying function code for closing a file is 42. Only one
other parameter need be set up and that is the file identification
number which the machine created at the time the file was opened,
as mentioned previously. That value is placed in byte-offsets 6 and
7. In this way the computer knows the specific file you want to
close. It is possible to have more than one file open at any given time
and you may want to close one but not another.

So with all of this knowledge we can get our feet wet with disk
file concepts by writing a small program that opens a file, writes a
string of characters (a bunch of “As” into the first record), closes the
file, and returns to the TRSDOS ready mode.

To see if this program does create a file and fill it with “As” you
can use the LIST command. After running the program from the
TRSDOS ready mode, type LIST LIST/DAT. This will show you
the file and the contents of its one record.

Program that opens a file, writes a character string, and closes file

START
OPEN LDA .A0,SVC BLOCK
MOVW @A0,440
LDA .Al,FILENAME
STL .Al,6€A0
LDA .Al,PARAMETER LIST
MOVB @Al,#80 * ASCII FOR "pP"
MOVB 1@al,480 * RECORD LENGTH
MOVB 2@Al1,4#H'46 * ASCII FOR "F"
MOVB 3eal, 41 * CREATE A FILE
MOVB 4@A1,#32 * ATTRIBUTE CODE
STL .Al,10@A0
BRK $0
WRITE LDA .A0,SVC BLOCK
MOVW @AD, #44
LDW .Al,14@A0
STL .Al,6@A0
LDA .A2,RECORD BUFFER
STL .A2,86A0
LDL LA3,40 * 1ST RECORD, # 0
STL .A3,12€A0
BRK #0
CLOSE LDA .A0,SVC BLOCK
MOVW @A0, 442
STW .Al,6@A0
BRK #0
JUMPDOS
MOVW @A0, #4264
BRK #0
SVC BLOCK

RDATAB 32,0

57

FILE NAME

TEXT 'LIST/DAT'
DATAB 13
DATAB 0

PARAMETER LIST
RDATAB 6,0

RECORD BUFFER

RDATAB 256,65
END STARTS

READING A RECORD FROM A FILE

The DIRRD routine, as it is referred to in the Model 16
owner’s manual, is very similar to the write routine, only now we
need to pull a record off the disk and place it into a buffer. Its
function code is 35. This buffer address is placed into offsets 8to 11.
The file identification number goes into 6 and 7. The number of the
record we wish to read is placed in 12 through 13.

Byte-offset 16 allows us to limit the users access to the record
by locking it. A zero indicates a locked record and any other value
locks it.

And that dear friends, covers the basics of file manipulation on
the Model 16. In Chapter 10 we shall put these ideas into action.

58

Chapter 9

ct OISPLAY ROUTINE
SCREEN 9o AQ,SVC

uove #A0. 48
DISPLAY A UHANAUTER LOOP

Deciphering Error Codes

The computer can help us debug our programs by detecting such
unforgivable sins as syntax errors and illegal addressing mode
attempts.

This chapter is divided into two sections. First, we will show
how to make TRSDOS 16 inform us of any errors that may occur
from executing a supervisor routine; errors that might otherwise go
undetected.

Part two will deal with specific error messages that may appear
when developing an assembly-language program.

AN ERROR HANDLER

There are times when it is desirable to place error detection
lines within a program to check to see if certain conditions are being
met.

One application using error detecting is checking to see if
everything went according to plan after the execution of a super-
visor call. For example, if we call a routine that writes a record to
the disk, we would need to know if that record was properly written
or if the computer had trouble carrying out our orders. It is possible,
for instance, for the disk to be full; the machine would then be
unable to store the last entry. Perhaps the record could not be
written because there was no such file name on the disk.

59

The Status Register

Before we proceed any further, we need to discuss one of the
MC68000’s registers; the status register. This is analogous to the
status or “flag” registers found in other microprocessors. We do not
use this register in the same way we use the address and data
registers which we have been working with so far. The status
register is comprised of sixteen bits, for a total of two bytes. Eight
bits make up one byte. We are only concerned with one byte. The
other byte is reserved for use by the machine. Each bit can contain
either a one or a zero. Regardless of the type of microprocessor you
are working with, the terms “set” and “cleared” are used to de-
scribe the state of a bit in the status register. After performing
certain operations, the microprocessor “sets” or “clears” some of
the bits in this register. This register is also known as a “flag”
register.

After executing many op codes such as those that perform
arithmetic operations, some of the bits in the status register are set
or cleared, giving us an indication of certain conditions which took
place as a result of a particular operation.

For example, one bit in the status register is designated a “C”
or carry bit. If two numbers are added together by an ADD instruc-
tion, the carry bit is cleared when no carry is generated as a result of
that addition, and it is set if the operation produces a carry digit.

The MC68000 has many op codes which let us check the status
of all eight bits within the register. Then we can take action de-
pending on the condition of the particular bit we are interested in.
This testing for a true/false condition is similar to the IF-THEN
statement used in BASIC programming.

Displaying an Error Code

With this background information, we are ready to develop a
routine that will test for any abnormalities after execution of a
supervisor call.

After calling one of the routines contained in the disk operating
system, the computer will place an error code in byte-offset two and
three in our established SVC block. If TRSDOS was able to carry
out our call without any errors occuring, a zero is placed in this
position within the SVC block.

By using the op code TEST, the operand, which is byte-offset
two in this case, is compared to the value zero. If both are zero, then
there is no error and the “Z” bit position (stands for zero bit) of the

60

status register is cleared. Should there be an error code present,
the Z flag is set.

Next, the “branch on condition” instruction is used to check the
status of the Z flag. The op code BNE represents “branch if not
equal.” If the Z flag is set, that indicates there is an error code
present. Actually the computer compares the Z bit with the number
zero and acts on the results. If the Z flag is set, that is, contains a
logical value of one, the result would be “not equal to” and execution
would branch to the address location indicated in the operand.
Otherwise the program chugs along its merry way onto the next
instruction.

To make life as easy as possible, we will define the address to
branch to if an error occurs as ERROR HANDLER. This label is
defined later in this program.

TESTW 2@Aa0 *ASSUME A0 CONTAINS ADDRESS OF SVC BLOCK
BNE ERROR HANDLER *BRANCH IF THERE IS AN ERROR

In summary, TEST sets or clears the Z flag, while BNE checks
the status of that bit and jumps to another section within the
program if the conditions are met.

Now that we have detected an error and sent the program to
the section labeled ERROR HANDLER, we need to call up the
TRSDOS routine which will jump out of our program and display the
associated error code on the screen.

The error handler listing appears below and is followed by an
explanation.

ERROR HANDLER LDW .Al,20A0
LDA .A0,8VC BLOCK
MOVW @A0, $#39
STW .AL,6@A0
BRK #0

As we have mentioned, if an error has occurred during the
execution of a supervisor call, the TRSDOS error code is placed in
byte-offset two of the SVC block. The first instruction, LDW
.A1,2@A0 loads that number into register Al.

Next, we prepare to execute another supervisor call. This
built-in routine takes the error code number stored in byte-offset
six and jumps to TRSDOS to display the word ERROR and the
associated error code number. So as with all of our supervisor calls,
we load the address of the block into AQ.

The TRSDOS 16 error display routine is number 39, which is
placed in byte-offset zero.

61

Instruction STW A1,6@A0 takes the error code previ-
ously loaded into Al and stores it into byte-offset six, the position in
which we place the code number that we want displayed.

The BRK #0 instruction causes the error to be dis-
played.

You may recall the discussion in Chapter 26 regarding why we
must first load Al with the error number and then load Al back into
the SVC block. This is a way of loading a byte-offset into a byte-
offset. If necessary, refer to the section on addressing modes in
Chapter 2 for a more complete explanation.

It is possible that you do not wish to return to TRSDOS 16 to
display the error but would rather have the computer act upon that
information. This could be done also. If a “disk full” error occurred
you may want the program to create a new file on another disk drive
and continue on. There are endless possibilities for handling errors,
but all of these can be built around this fundamental basic error-
detecting routine.

Displaying an Error Message

Definitions for error codes are listed in the Model 16 owner’s
manual. But it is not always convenient to get out that big book and
thumb through it to find out what a particular error code represents.

The disk operating system contains a routine which, when
called, will display a more detailed message concerning the
specified error code number.

By placing the number of the error code into byte-offset six and
seven, we can call this subroutine and get a descriptive message.
We would then get more information than we would by using the
previous routine which only displayed the TRSDOS error code
number,

The message must be placed somewhere in memory by the
display an error message routine. This is established prior to calling
the routine. Once it is there, we can jump to the display a line
routine and print out the information. Descriptions are 80 charac-
ters or less in length. Therefore, the storage area in which we will
place the error message should be 80 bytes of space.

The identifying function code is 52. The basic routine follows.

LDA .A0,SVC BLOCK

MOVW @8AQ,#52

MOVW 68A0, $ERROR CODE NUMBER
MOVL 8@A0,#ERROR DESCRIPTION
BRK #0

62

SVC BLOCK

RDATAB 32,0
ERROR CODE NUMBER

EQUW 0 * (REPLACE ZERO WITH DESIRED CODE)
ERROR DESCRIPTION

RDATAB 80,0

A sample listing appears below showing how you might use
this routine in conjunction with the display a line supervisor call. It
is assumed that a supervisor call has just been executed prior to this
routine. If an error occurred, it is placed in byte-offset two and three
of the SVC block.

*GET ERROR FROM SVC BLOCK (ASSUMES ROUTINE HAS JUST BEEN
*CALLED)

LDW .Al,2@A0 *GET ERROR CODE~PUT IN Al

LDA .A0,SVC BLOCK

MOVW @A0,#52 *FUNCTION CODE-ERROR MESSAGE

STW .Al,6QA0 *PUT ERROR CODE IN OFFSET 6 & 7

MOVL 8@A0 #ERROR DESCRIPTION

BRK $#0 *STORE MESSAGE IN "ERROR DESCR."
*PLACE DESCRIPTION OF ERROR ON VIDEO

MOWW @A0,#9 *FUNCTION CODE-DISPLAY A LINE

MOVW 6@A0,#80 *LENGTH OF LINE TO BE DISPLAYED
MOVW 8@AQ0,#13 *TERMINATOR CHARACTER
MOVL 10€A0,#ERROR DESCRIPTION

BRK #0 *DISPLAY ERROR MESSAGE ON TUBE
. program continues here . . .
SVC BLOCK

RDATAB 32,0

ERROR DESCRIPTION
RDATAB 80,0
END

First the routine gets the error code from the SVC block and
stores it in offset six and seven in preparation for calling the display
an error message routine. A spot in memory is chosen to store the
80-byte long descriptive error message. It is designated here by the
label ERROR DESCRIPTION. The supervisor subroutine is ready
to be called.

Next, the text now stored in “ERROR DESCRIPTION” needs
to be directed to the video display. The function code is loaded into
its proper position in the SVC block. The length of the line, 80
bytes, is placed in offset six and seven. We used an ASCII code of 13
as the terminator character.

Finally, the address of the text to be displayed is placed in
offset 10, 11, 12, and 13, namely ERROR DESCRIPTION.

ASSEMBLER ERROR MESSAGES
The assembler is capable of displaying many error messages.

63

Here we will examine some of the more common error messages
that you are apt to get when entering the routines presented in this
book. Use this section as a reference to help you figure out what the
problem might be that causes a specific error message to occur in
your programs.

We have classified these errors into two categories, those that
occur during assembling and those which show up during the actual
running of the program. The linker program is also capable of
detecting errors. However, in our experience so far, we have never
had an error message displayed during the linking process.

Operand Not Compatible with Instruction

When the operand is not in a form that is allowed for use with
the particular op code, an OPERAND NOT COMPATIBLE mes-
sage is generated. This can happen when an illegal addressing mode
has been used.

Let’s look at a sample line. In Chapter 2 various addressing
modes were shown. As stated there, the MOVe instruction must be
used when loading an address register indirectly with a number. If
you attempt to use a load (LD) instead, this error would occur. The
following line would cause such an assembler error.

LDW @A0,#255

Missing Comment Separator and Incorrect Number of Gperands

If you get a lot of errors during an assembly, don’t be too
disheartened. Many times one mistake will cause more than one
error message, so0 you may not have as many problems as first
appears. For example, take the instruction

STL .A3,/STORE

which takes the current number stored in address register A3 and
stores it in the program in the area with the identifying label
STORE. If the comma is mistakenly omitted, three error messages
will be generated: MISSING COMMENT SEPARATOR, INCOR-
RECT NUMBER OF OPERANDS, and OPERAND INCOMPATI-
BLE WITH INSTRUCTION. Therefore, by repairing that one
problem, three errors will be eliminated.

Unknown Op Code and lilegal Statement
When writing programs in BASIC on most microcomputers,

64

we get the message SYNTAX ERROR when we have used an
instruction that the computer’s BASIC interpreter does not have in
its vocabulary. The machine does not understand the command, and
thus it does not know how to handle it. When writing in assembly
language, we have an additional factor that we must consider, and
that is the proper column placement of instructions. As covered in
Chapter 2, each line is divided into four columns titled LABEL, OP
CODE, OPERAND, and COMMENT. We must be sure to place the
correct item in its true position. If we placed the MOVe OP CODE
in the LABEL or left-most column and accidently placed the
operand in the OP CODE column as might happen if we forget to use
the TAB key on the Model 16 prior to entering the line, we would
get UNKNOWN OP CODE and ILLEGAL STATEMENT error
messages. In the following example, MOVW and 10 A0, #MES-
SAGE are in the wrong columns.

MOVW 10@A0, #MESSAGEL *LOADS ADDRESS OF MESSAGEL
SVC BLOCK

RDATAB 32,0

Symbol Undefined and lllegal Expression

The editor/assembler programs which are supplied with the
Model 16 are fairly liberal when it comes to the exact positioning of
items in the four columns. As we pointed out under UNKNOWN OP
CODE just a minute ago, the characters placed at the far left are
considered to be labels. After that, the assembler simply requires a
minimum of two spaces between each element on a line to separate
them. In the following sample listing, you will note that there is only
one space between the operand 10@A0, #MESSAGE and
the comment

*LOADS ADDRESS OF MESSAGE.
MOVW 10@A0,4MESSAGE]l *LOADS ADDRESS OF MESSAGE

The assembler will display the following error information:

SYMBOL UNDEFINED: LOADSADDRESSOFMESSAGE
ILLEGAL EXPRESSION

A SYMBOL UNDEFINED error will also occur if a label was
not defined or was mistakenly defined after the END instruction.
Apparently the assembler does not look past the END command,
and indeed it is a good thing it does not, since this helps trap errors
for us. If a SYMBOL UNDEFINED error has been generated by
placing a label beyond an END pseudo op, you can quickly find out

65

by checking the bottom of the assembled listing since every in-
struction which follows an END will also be surrounded by the error
message: STATEMENT ILLEGAL AFTER END.

Symbol Multiply Defined

When you have used a label more than once in a program, a
SYMBOL MULTIPLY DEFINED message is produced. The error
will show the name of the offending label. This message will appear
at every occurrence of the label in the program. Therefore, if you
have used a label twice to define two different address locations,
you will get two error messages. The sample listing below shows
how the error message SYMBOL MULTIPLY DEFINED
JUMPDOS will cause two errors when assembled. JUMPDOS ap-
pears twice in the listing.

JUMPDOS MOVW @AD,#264
BRK #0

ERROR ROUTINE
LW .Al,2@A0
LDA .A0,8VC BLOCK
MOVW @AQ,#39
STW .Al,6@A0
BRK #0
TESTW 2@A0
BNE JUMPDOS

JUMPDOS MOVW @AD,%#264
BRK #0

*
¥

Value Not Relative to Current Psect.

If this error occurs, check to see that you have remembered to
include pound signs (#) in the operands that require them. As you
will recall, the pound sign tells the computer that the numerical
information is immediately following. This error would happen if
the pound sign was left out of the line or in

MOVW @A0,264
The correct format would of course be

MOVW @A0,#264

Assembler Warnings

At the completion of assembling a program, the assembler
gives a summary report.

66

STATISTICS OF THIS ASSEMBLY
TOTAL NUMBER OF ERRORS 0

TOTAL NUMBER OF WARNINGS 0

If there are any errors, the program would not run if execution
was attempted, so it would be of no use to proceed with the linking
operation.

However, a warning does not necessarily mean a fatal error
exists. It is possible to get a warning and yet still have the program
perform flawlessly.

A common cause for a warning message is because the assem-
bler has made an assumption. You do not know whether the as-
sumption it made was correct or not, thus we get the cautionary
report. If, for instance, you used a load (LD) instruction and did not
include a data size suffix (B, W, or L), a warning would be gener-
ated.

As we have said, the assembler does automatically make some
assumptions. If a size code is not indicated by the programmer, the
assembler will evaluate the op code and provide its own code. This
will cause a warning message to be displayed after assembling. If
the assembler has made a correct assumption as to the data size, the
program will run fine, assuming of course everything else in the
listing is kosher.

Let us assume a program was written containing the following
line:

ADD JA3,#H'S

The programmer forgot to include the data size code. This

causes the assembler to give the warning message WARN-

ING WORD LENGTH ASSUMED.
In this case, the assembler happens to correctly assume that

the instruction should be ADDW. So this line will run fine, but it is
advisable to include the suffix when you write your programs. This
way you will always be sure exactly how the computer is going to
handle your instruction.

Warning 1 Missing String Terminator

Such a message is generated when one of the quotes or apos-
trophes have been left out of a quoted string of characters as, for
example, in TEXT ‘<A>DD A NAME. Note the end apostrophe
has been accidentally left out.

67

EXECUTION ERROR MESSAGES

1t is possible to write a program that will not give any errors or
warning messages during the assembling and linking processes, and
yet still have errors in it. The program will run fine until a problem
is encountered, at which time execution stops and an error message
is output to the screen.

Hlegal Instruction Trap

When the computer attempts to execute code which it cannot,
an ILLEGAL INSTRUCTION TRAP AT USER PC=(relative ad-
dress number) message is generated. Naturally the assembler
would pick out any illegal code during the assembling process so
when this error occurs you know that your syntax is not the offend-
ing cause.

Check your program to see if your computer is trying to
execute a table, or perhaps an area of memory that has been defined
as a storage area, such as would be created by the TEXT op code. If
you place an SVC block or define some labels at the end of a
program, be sure that the computer does not try to execute those
lines: it might try to interpret them as instructions. Usually a
program will have a call to return to the disk operating ready mode
which would be located ahead of any blocks or tables. Should your
program contain such lines at its beginning, be sure that you instruct
the machine to begin execution after they appear in the program. If
you place tables in the middle, be certain to direct the program flow
around them.

The following program, if attempted to be run as it stands,
would generate such an error.

START LDA .A0,SVC BLOCK
MOVW @AQ, %8
MOVW 6@A0,#30

BRK $0
SVC BLOCK

RDATAB 32,0

END START

After the machine has carried out the BRK instruction, it
proceeds on to the SVC block where it will try to execute the code
which has to be generated by the defining of the SVC block. This
will create an error code. Refer to Chapter 4 for more information.

0dd Address Trap
Most of the op codes for the MC68000 microprocessor are two

68

bytes in length. It is important that the operand of certain instruc-
tions fall on even address locations in memory. This is a factor
which never needs to be considered when programming 8-bit pro-
Cessors.

The error message ODD ADDRESS TRAP AT USER
PC=(relative address number) occurs if this uneven memory loca-
tion problem exists in your program. The relative address number
listed in the error message gives us the relative location within our
program. This is not an absolute memory address in RAM.

The odd address problem can occur if you define abyte on aline
which preceeds an instruction. For this reason it is always a good
idea to define a word, even though a byte would suffice.

If you get an odd address trap message and you have some text
to be displayed within your program, the problem may be that you
have an uneven number of characters in a text string. Normally it
would not make any difference whether there was an even or odd
amount of letters, but if there are instructions to be carried out
which follow an uneven amount of text, then these instructions may
fall on an uneven address. Count the characters in your text mes-
sages and see if this is the case.

Message Text ‘Inventory Program’

If indeed this is the cause, it can be solved in one of two ways.
You could increase the length of the text message. The easiest way
to accomplish that would be to add an extra blank space (from the
space bar) into the message, perhaps at its end. This, of course, is
not always possible, since other information may be needed to be
placed at that same location on the screen.

Another way is to place all text messages at the end of the
program, being careful not to place any instructions beyond these
message definitions, with the exception of the END pseudo op. If an
uneven amount does give the END instruction a problem, merely
define a byte of memory prior to it using DATAB 0. Perhaps an
extra byte could be set aside following any line of text in the
program which is uneven. That may keep uneven text messages
clearly marked. The computer certainly has memory enough so that
wasting a few bytes here or there won’t matter.

69

Chapter 10

DISPLAY RUUTINE
SCREEN DISP! N

VW WA, 48
DISPLAY A JHARACTER Lk

Putting It All Together

The routines developed in previous chapters form the basic ingre-
dients for any type of program you may need to write. Here we will
expand on those short listings and bring them together to create a
complete disk-based mailing list program. The structure of this
program is such that with only minor changes it could be rewritten
to handle any type of simple disk storage application. This might
include a program that keeps a record of bank account checks or
perhaps a program that stores a list of inventory items.

MODULAR FORMAT

Since we are now going to have a much more complex pro-
gram, many of the short routines, or modules that we have been
developing should be used as subroutines to keep the program from
becoming unnecessarily long. We can then jump to any subroutine
we need by using the CALL and RET statements. We will need to
access such routines as clear the screen, jump to DOS, and display a
character from many different locations within the program.

For that reason, one of the first things to do is to create a
subroutine section and place the various short routines together.

The more lengthy a program becomes the more important it is
to keep the listing clear and uncluttered. A complicated program can
be kept manageable by the use of comment lines to explain the
reasoning behind a particular instruction and to set aside each
module or subroutine. As previously mentioned, comment lines,

70

which begin with an asterisk () symbol, are not present in the
assembled object code. Therefore they do not take up any memory
space in the final program, nor do they affect the speed of its
execution. By examining a paper printout created by assembling a
program which contains a comment line, you will note that no
machine code is generated nor is any memory space allocated for it.
So the mailing list program we will develop here will use comments
liberally.

THE GAME PLAN

First we should decide what functions we want the prograrm to
perform. Since all actions must branch from the same beginning
point, we might draw up a “menu,” that is, a list of options from
which the operator may choose. The menu will be our home base of
operations. Whenever we have completed a job, such as adding a
new entry to the list or printing labels, we will return to this point.

In our mailing list program we will need to be able to add anew
name and address to the list, modify or make changes to an existing
name and address, search for a specific name to see if it is in our file,
and print mailing labels. When we are done with the program, we
want to be able to “bail out” and return to the TRSDOS ready mode.

With that in mind, we will set up the first display screen to look
like this:

MENU

<A> Add a name to the list
<8> Search for a name

<M> Modify a record

<P> Printout address labels

<R> Return to DOS Ready

Select the appropriate letter > .

Many programmers use a “greater than” and “less than” sign to
surround letters in the menu indicating that those are valid charac-
ters with which he should respond. In our menu here, we prompt for
an “A,” “S,” “M,” “P,” or “R” keyboard response.

71

INITIAL SETUP OF SUBROUTINES AND STORAGE AREAS

The bottom section of our program will contain all the neces-
sary subroutines and storage areas we will require. Over the years
microcomputer assembly-language programmers have come to use
a line of asterisk symbols in their source code listings to give a clear
visual indication of the different sections in their programs. The
asterisk also happens to be an Assembler-16 convention instructing
the computer that the following information is a comment or
documentation for the programmer only and the computer is to
ignore it. So a string of asterisks, like the following, need not be
preceded by any other symbol.

ke ok ook X * o
* SUBROUTINES *
4 sk e s e sk o ok e o e sk ok ok e ok oK ke ok ok e o e e ok

Assembly-language programs can get very complex and we
cannot stress enough how important it is to freely section off each
part of the program that performs a specific function.

JUMP TO DOS SUBROUTINE

Let’s start our subroutine section by placing several routines in
it that we will need to call from the first few lines of our program,
namely “clear the screen” and “display a character” instructions.
The menu also gives us the option to return to the TRSDOS ready
mode so perhaps we should place a routine to jump to DOS here.
Note that even though JUMPDOS is a subroutine, we do not need to
terminate it with a RET statement since the very act of calling the
routine sends it out of the program.

Khkhhkhhkhhhhkhkhhhhkhkhkhhkhhkhhhhrhhkhkhhhhhk

* JUMP TO DOS READY MODE *
* ENTRY CONDITIONS: NONE *
KA KRR ARRR RN ARRRRRARAR KRR IR AR R *R
JUMPDOS

MOVW @A0,#264 *FUNCTION CODE
BRK #0

Note the comment in the heading “ENTRY CONDITIONS:
NONE.” Perhaps it is a good idea if we place this line at the
beginning of each subroutine to show any registers or storage areas
that must be set up prior to entering the subroutine. In the section

72

that displays text on the screen which we shall discuss in a moment,
that very thing comes into play.

CLEAR THE SCREEN SUBROUTINE

In Chapter 4 we showed a routine that clears the screen by
using the display a character supervisor call and sending an ASCII
control code to the video display. Again we will call on that routine
to perform the duty of clearing the screen. This routine is definitely
needed as a subroutine since we will want to call it every time we
enter a new phase of our program; at the beginning, when entering a
name, changing a name, searching for a party, and the like.

*********t*****************t****************

* CLEAR THE SCREEN: ENTRY CONDITIONS: NONE *
P Y T L A T R R S A S A S R

CLEAR SCREEN

LDA .A0,SVC BLOCK

MOVW @A0,#8 *FUNCTION CODE

MOVW 6@A0,#H'1B *ASCII CODE TO CLS
BRK $0

RET

We must remember to place a RET instruction after each
routine to send execution back to where it came from.

SCREEN DISPLAY SUBROUTINE

There are almost always several ways in which the same task
can be accomplished. In order to display all of the instructions for
our menu, we need a routine that will direct text to the video
screen. Again, there are many ways to do it but we have optedfora
method which uses the “display a character” supervisor call. Is
there a method to our madness? We voted against using the “display
a line” routine because it requires that we know the length of the
line to be displayed. Since we intend to have many lines of text, we
would have to devise some way of getting this information into the
SVC block. It can be done but we felt it would be easier to use the
“display a character” routine and print one letter at a time. In this
way we can also test each character. By doing it this way we can also
test certain characters or codes in the text line to be used for
whatever purpose we wish. We do not need to know the length of
the line and we can mix carriage return and line feed codes into the
message areas.

In Chapter 6 we developed a routine for printing messages on
the screen based on the “print a character” supervisor call. The
same concept is used here.

73

The only thing we need to tell the computer going into this
routine is the address location of the first character to be printed.
Keeping in mind that this section of the program is to be a sub-
routine, one that must be compatible with other sections of the
program that may call it. For that reason we cannot directly load the
address where our menu text is to begin, since when we get to the
“add a name to the list” section we will need the address location
indicating the beginning of the text to create that particular screen
display. So we must set up a storage area where we can place the
address pointing to the first character to be printed and fill that area
with the location of our choice prior to entering the routine. A
moment ago we discussed that very idea. In our comment line
heading for this section of the program, we will indicate that a
Storage area, which we have designated with the label STORE],
must point to the address where the next line to be displayed starts.
Now the routine is universal and can display any text that we have
stored at any location.

The routine is shown below followed by an examination of what
takes place.

*************t*********t*******************

* SCREEN ROUTINE ENTRY CONDITIONS : *
STOREl POINTS TO ADDR. NEXT LINE TO DISPL
*************t**************************t**
SCREEN DISPLAY ROUTINE

LDA .A0,SVC BLOCK

MOVW @AQ,#8 *FUNCTION CODE
DISPLAY A CHARACTER LOOP

LDL .A3,/STORE1

MOVB 7QA0,@A3

MOVB 6@A0,§0 *INSURES A ZERO IS THERE

ADDW .A3,#1 *INCREMENTS

STL -A3,/STORE1l *STORES AWAY ADDR NEXT CHAR
BRK #0

LDL DO, %0

LDB .D0,7¢A0

CMPB .D0,45

BNE DISPLAY A CHARACTER LOOP

RET

By creating a loop each character can be displayed one at a
time. As we have mentioned, the entry conditions require that the
address of the text to he printed be stored in STORE1. That is
accomplished by the instructions

Lpa .A3,MENU
STL +A3,/STOREL

Those instructions will appear at the top of our program just prior to
calling this subroutine.

74

Upon entering the screen display subroutine, we first load
register AQ with the address of the SVC block. Next the TRSDOS
identifying function code, eight, is moved into byte-offset zero.
Now we enter a loop which will get a character from memory, print
it, and test to see if it has reached the end of the text to be printed.
We use an ASCII code of five to indicate the end of the text. As was
explained in Chapter 6, we selected this value because it is one of
the codes not used by the machine. If you ever write aroutine where
you choose a value that is used by the machine to cause an action on
the screen, you may need to slightly revise our “display a character
loop” section so that the test for your terminator character is done
before the character is sent to the video. Here we send the charac-
ter to the screen and then test to see if it is the terminator character.
It doesn’t make any difference here which way it is handled since
sending an ASCII five to the screen does not do anything anyway.

Inside the “display a character” loop we load the address
location of the first byte of our text message into register A3. We
could have chosen any address register at this point for this instruc-
tion with the exception of A0 since that is keeping track of the SVC
block.

LDL .A3,/STORELl

The slash indicates “the contents of.” So the contents of STORE1 is
loaded into register A3. Addresses require four bytes to store them
s0 the load instruction must indicate a long word.

Byte-offset seven holds the value of the ASCII code to be sent
to the screen. Most if not all of the instructions for the MC68000 are
aword in length so we insure that there is no stray value in offset six
by placing a zero into it.

At this time, register A3 holds the address of the character we
want to be printed. After that character is displayed, we will need to
get the next one. All of the text or control codes for a given display
will have to be placed in sequential order. In this way we can simply
increment the address stored in A3 by one and step through each
character.

ADDW .A3,%1 * INCREMENT

Once we have incremented the address to point to the location of the
next character to be sent to the supervisor routine, that address
must be stored away into STOREL, our storage area. It will be
recalled and used to print another character if the present character
does not terminate the routine.

75

Finally, we test the character to see if it is our terminator code,
five. The CMP instruction enables us to compare a numerical value
with the value stored in a data register. To insure there are no stray
numbers in the data register we select, zeros are loaded into it.
Register DO was selected but any data register would do equally
well. Then the one-byte character that was just displayed on the
screen is loaded into DO where it is compared with the number five.
If there is a match then the routine has, hopefully, successfully
completed the entire screen display. The RETurn instruction
ends the subroutine. Should there not be a match, execution
branches back to the “display a character loop” location where
another character is obtained, placed into the SVC block, and
displayed.

The text which will comprise our menu needs to be defined.
Following the subroutine section of our program we have set up a
message and working storage area (we've adopted this phrase from
the COBOL language). In some ways assembly-language program-
ming on the Model 16 resembles certain aspects of COBOL —for
instance the use of whole phrases to define a location in the pro-
gram. In any event, we can use the label MENU to define the first
address location where we will place the various text and control
codes that will make up the full screen display. Since the display a
character routine permits us to mix text and codes, we can use the
op code TEXT to define the alphanumeric characters we wish to
print and DATA to send line feed/ carriage return instructions. If we
need a line feed we can use DATAB 13. Should we want several line
feeds, DATAB 13, 13 will work.

The first thing we want to print is the word “MENU” and
underline it with a row of 80 equal signs (=) to dress up the screen
display. The editor program does not let us assign a string of 80
characters on one TEXT line. This problem is easily solved by
simply placing 40 equal signs on one line and 40 on another without
sending an ASCII code 13 to give a line feed. A continuous row of 80
symbols can then be displayed.

MENU TEXT 'MENU'
DATAB 13,13
TEXT ' '
TEXT ' '
DATAB 13,13,13,13
TEXT '<A> Add a name to the list '
DATAB 13,13
TEXT '<8> Search for a name'
DATAB 13,13
TEXT '<M> Modify a record'
DATAB 13,13
TEXT '<P> Printout address labels'

76

DATAB 13,13

TEXT f<R> Return to DOS Ready'

DATAB 13,13

TEXT 'Select the appropriate letter >
DATAB 5 *TERMINATOR CHARACTER

Note that we have added a space at the end of the message
“<A> Add aname to the list.” This is to make the message an even
number of bytes in length in order to prevent a possible odd address
trap error later on in the program.

While we are adding information to our storage area, we can
establish the SVC block and STORE1. STORE1 will be used to
store an address so it will have to be four bytes wide.

SVC BLOCK
RDATAB 32,0
STOREl RDATAB 4,0

Now to jump back to our subroutine section and add one more
routine. We are skipping around a bit but we feel that it is better to
explain the entire program in the order that you might write it
instead of starting at line one and explaining each line in numerical
order. By doing it this way, it is easier to see the relationship
between the various sections of the program and how they tie
together. The thinking is more logical.

There is one more subroutine we want to put into place before
going back to the top of the program and continuing on. After
executing some of the supervisor calls, we may need to test the
SVC block to see if any errors have occurred during the carrying out
of the routine.

All supervisor calls return an error number in byte-offset two
and three of the SVC block after execution. The error handling
routine found in Chapter 9 should be placed in the subroutine
section of our mailing list program. There will be a time when we
want to check if an error is there but not print it on the screen. An
error in the open routine will need to be handled differently as we
shall see when we get to the file handling section.

Fhkkhhkhhkhkhhhhhdhhkhkkkhhhhhhhkhrhrhhhdkhhkhd

* DISPLAY ERROR NUMBER ON VIDEO *

RhkRhhRhkhkhkhkhkhhhhhhhkhhkhkkhkhkhhkhkhhkhkhhhhhki

ERROR HANDLER
LDW .Al,2@A0 *LOAD ERROR CODE INTO Al
MOVW @A0,#39 *IDENTIFYING FUNCTION CODE
STW .Al,6@AD *LOAD ERROR CODE INTO SVC
BRK 0 *EXECUTE ERROR NUMBER DSPLY
RET

77

THE MAIN BODY OF THE PROGRAM

The top of our program is indicated by the label START.
Whenever we need to return to the menu we can branch to the
START label.

As usual, the screen should be wiped off before we establish
our menu page. Our first instruction initiates a jump to the clear
screen subroutine which we already have in place:

CALL CLEAR SCREEN

We have placed the text we wish to use in the working storage
area. To add some “class” to the menu display page, let’s horizon-
tally center the word “MENU” at the top of the screen. This is done
by positioning the cursor at the location where printing is to begin
and then calling the routine to display the desired information. In
Chapter 4 the supervisor call that positions the cursor was dis-
cussed. In this case we want the column position to have a value of
one, indicating the top line on the screen. To calculate the horizon-
tal location, we use standard typing methods. There are 80 charac-
ter positions across a horizontal line. Half of that is 40, about the
horizontal center point. MENU has a length of four characters, half
of which yields two. The result of 40 minus 2 is 38, the location
where printing should begin.

POSITION CURSOR

MOVW @AD,#10 *POSITION CURSOR FUNCTION CODE
MOVW 6@A0, #1 *ROW POSITION (TOP TO BOTTOM)
MOVW 8@A0,#38 *COLUMN POSITION (LEFT TO RIGHT)
BRK #0

Since register A0 still holds the address of the SVC block
which was loaded in from the previous routine, the instruc-
tion LDA .A0,SVC BLOCK is not needed in the posi-
tion cursor section.

We have cleared the screen and positioned the cursor. Now we
can put the screen display ROUTINE to work. As we said before,
the address where the first character in our text is stored must be
loaded into STORE1. This is the entry condition for the screen
display ROUTINE. To do this, we randomly chose A3 to temporar-
ily hold the address of the menu. Then that number is stored away
into STOREL. The screen display routine can be called next. The
entire video screen will show our menu and prompt the user to make
a selection.

78

INITIAL SETUP

LDA .A3,MENU
STL .A3,/STOREL *STORES AWAY BEGIN. ADDR.
CALL SCREEN DISPLAY ROUTINE

The operator has been shown a list of options to choose from.
We can then call on the keyboard supervisor routine to get the
character he types and place it into a holding area where we can
work with it. Chapter 6 shows the routine in which we place the
number of characters to be entered and the memory location where
the input is to be stored into the SVC block. We want the routine to
wait until the operator hits one key. It is not necessary that he hit
the <ENTER> key. We do not want him to enter more than one
letter. Also it will speed the operator’s use of the program if he only
has to hit one key as opposed to also hitting <ENTER>.

In this instance, only one byte needs to be set aside to store the
character entered from the keyboard. The holding place is defined
down in the working storage section of our program.

KEYBOARD STORE1L
DATAB g
DATAB 0

To prevent a possible odd address trap error, we define two
bytes, even though only one is needed for this routine. This keeps
address locations on even numbers.

KEYBOARD INPUT ROUTINE
MOVW @AQD,#5 *FUNCTION CODE
MOVW 6@A0,#1 *NUMBER OF CHAR. TO BE ENTERED
MOVL 8@A0,#KEYBOARD STOREL
BRK #0

So far we have displayed the menu and gotten an input from the
user. Next we must test that character to find out what he entered.
This can be accomplished by loading that character into a data
register. Once it is in a register, the CoMPare and Branch instruc-
tions can test it and branch execution to the appropriate section of
the program.

To load the character into a register, we use the instruction:

LDB .D0,/KEYBOARD STORE1

A byte suffix (B) is attached to the LoaD command as that is all we
need to check. We arbitrarily chose data register DO. Remember
that the slash symbol (/) is an Assembler-16 convention meaning
“the contents of,” so the contents of the address referred to as
KEYBOARD STORE1 is loaded into register D0. We tacked a 1

79

onto the label since it may make it easier for you to modify this
program to make it perform a different task. If at some time in the
future you want to take the basic structure of this program and
create an inventory storage program or some such thing, you may
need other areas within the program to save inputs from the
keyboard. By using the label KEYBOARD STORE1 the door is
open for the addition of more areas with the same general name:
KEYBOARD STORE2, KEYBOARD STORE3, etc.

Now to test the letter entered by the operator. Since there are
five options, five similar instruction sequences are needed. The
character is compared with the known ASCII value of the letter
being asked for. If a match is found, the proper flag in the status
register is set. A “branch if equal” (BE) command can direct the
program flow to the proper location where execution is to continue.
We need to test for the following letters and branch to sections
which we will give the corresponding labels to.

test for "A" ASCII code
test for "S* ASCII code
test for "M® ASCII code
test for "p" ASCII code

65 branch to ADD ROUTINE

83 branch to SEARCH ROUTINE

77 branch to MODIFY ROUTINE

80 branch to PRINTOUT ADDRESS
LABELS

82 branch to JUMPDOS

L

test for "R" ASCII code

#

It is important to “idiot proof’ the program as much as possi-
ble. We are not implying that the operator may be an idiot (of
course, he might be); but as you know it is easy to make a typo-
graphical error or to become pretty bleary-eyed after entering a lot
of names and slip and hit the wrong key. For this reason we should
end this routine by placing a BRanch instruction which will clear the
screen, display the menu, and prompt for the correct letter again.
This is a blanket instruction in that it will handle any key the user
can find on the keyboard. Only the correct responses will cause an
action to be taken.

So, the test routine could be put together in a very simple form
to look something like this:

*TEST INPUT

LpA .D0,/KEYBOARD STOREl

CMPB .DO0,4%65 *TEST FOR AN "A" INPUT
BE ADD ROUTINE

CMPB .DO,#83 *TEST FOR AN "S" INPUT
BE SEARCH ROUTINE

CMPB .DO,#77 *TEST FOR AN "M" INPUT
BE MODIFY ROUTINE

CMPB .DO,#80 *TEST FOR A "P" INPUT

BE PRINTOUT ADDRESS LABELS

CMPB .DO0,#82 *TEST FOR AN "R" INPUT

80

BE JUMPDOS
BR START

THE OPEN ROUTINE

Since we will need to open the file containing the list of names
from many different places in the program, the best way to handle an
open routine is to place it in the subroutine section of our program.
The file will have to be opened to add new names, search for a name,
modify an existing record, or print out mailing labels. Creating the
open routine will take a little thought. The TRSDOS supervisor call
which opens a file requires that a different value be placed in the
SVC block to indicate when a file is first created or when it has
previously been opened. Therefore we must make two open sub-
routines, one to be used the first time the file is opened and created,
and the second to open an already existing file.

CREATE A FILE

There are many ways to achieve the same results in program-
ming. We will now show three different ways that the “open a file”
supervisor block could be set up.

The first method we will examine is somewhat similar to the
example given in the Model 16's owner’s manual under the “open”
supervisor call heading. That programming technique requires the
use of the EQUate op code to place the various information into the
appropriate locations, as in the following example:

INDENTIFYING FUNCTION CODE

EQUW 40
FILENAME
TEXT ' LIST/DAT'
DATAB 13

PARAMETER LIST
RDATAB 5,0
FIXED OR VARIABLE FILE

EQUB 'F!
CREATE A FILE
EQUB 1
ATTRIBUTE
EQUB 32
OPEN MOVW @A0,#IDENTIFYING FUNCTION CODE
LDA .Al,FILENAME
STL .Al,6@A0
LDA .Al,PARAMETER LIST
MOVB @Al,#READ OR WRITE ACCESS
MOVB 1@Al,#LENGTH OF RECORD
MOVB 2@A1,4#FIXED OR VARIABLE FILE
MOVB 3@Al,#CREATE THE FILE
MOVB 4QAl1,$ATTRIBUTE
STL .Al,10€A0
BRK #0

81

You may note that when indirectly loading A1, we used the op
code MOVB as shown in the owner’s manual. However, we were
not able to get MOVW to work and discovered MOVB functioned
fine. It makes sense that the byte suffix be used, anyway, since only
one byte is being loaded.

In a moment we shall go into more detail about the instructions
needed to set up the SVC block before a file can be opened.

But first let’s look at another way to set up the create-a-file
routine. In this case, the decimal values are located within the move
or load instruction itself. By doing it this way, the program can be
shortened since all of the equate instructions are not needed.

OPEN MOVW @n0,#40 *IDENTIFYING FUNCTION CODE
LDA .Al,FILENAME
STL .Al,6@A0
LDA .Al,PARAMETER LIST

MOVB @Al, 487 *ALLOWS READ OR WRITE TO FILE
MOVB 18A1,490 *RECORD LENGTH = 90 BYTES
MOVB 2@A1,470 *ASCII CODE "F" FOR FIXED FILE
MOVB 3@al,#1 *CREATE THE FILE ON DISK

MOVB 4@AL,$#32 *USER ATTRIBUTE

STL -Al,10€A0 *PUT ADD OF PARA, LIST IN SVC
BRK #0
FILENAME
TEXT 'LIST/DAT'
DATAB 13
PARAMETER LIST
RDATAB 5,0

Finally we offer the version which we will use in our mailing
list program. In the preceding two instances, the parameter block
contains information indicating the logical record length, user attri-
bute codes, read/write accessibility, fixed or variable file, and code
to open a new file or an existing one. The various data are placed
into those codes by first defining a section of consecutive bytes of
memory (parameter list). Similar to the way we have been handling
the SVC block, register A1 has been chosen to point to the memory
location of the parameter list. By using byte-offset addressing, the
values we have selected are indirectly moved into the parameter
list block. Then the address of that block is stored into the proper
location in the SVC block, after which the supervisor call is made.

In our final method, each value is placed directly into the
parameter list memory block. We feel this is the simplest and least
complicated technique to use in this particular circumstance. It does
not matter whether or not the address of the SVC block is loaded
into A0, since its address should already be there. By the time our
program execution reaches the open section, many other super-

82

visor routines, such as clearing the screen and getting input from
the keyboard, have already been called. We will not use A0 for any
other purpose in our program.

Rather than define the parameter list and filling it with zeros,
let’s place the values directly into that block. So in the working-
storage section, we establish the parameter list with the numbers
87 (allows reading or writing to the file), 90 (the record length in
bytes), 70 (the ASCII code for “F,” fixed file code), 1 (create the file
on disk and open it), and 32 (user attribute code).

PARAMETER LIST
DATAB 87,90,70,1,32

When writing assembly-language programs for the Model 16,
there is one thing that should haunt you and forever be on your mind,
that is, the need to keep addresses on even numbers. Now, as you
examine the parameter list you will note that there are five values
which therefore take up five bytes of memory. While there is
nothing wrong with that in itself, as you should well know by now,
the number five is an odd number (oh horrors!) and could cause an
odd address trap later on in the program if there are any instructions
following it. It would be a wise decision to tack an extra byte onto
the end of that block and thereby fill it out to six digits. The last digit
will never actually be used anyway, so we can stick any value there.
Perhaps it is safest to use a zero, as we have here:

PARAMETER LIST
DATAB 87,%0,70,1,32,0

Our create a file routine will look like this:

kkkkk kA khkhkkkkhk khhhhhAARk kAR hAk Ak khhkhhhhhh ki

* OPEN - CREATE A FILE SUBROUTINE *
*********k******i************************'k********
OPEN LDA .A0,SVC BLOCK
MOVW @n0,#40 * IDENTIFYING FUNCTION CODE
LDA .Al,FILENAME
STL .A1,6@A0
LDA .Al,PARAMETER LIST
MOVB 3@Al,#1 *CREATE THE FILE ON DISK
STL .A1,10@A0 *PUT ADDR OF PARAM LIST IN SVC
BRK 40

To be on the safe side, we included the instruction
LDA .A0,SVC BLOCK to be sure A0 is pointing to the
right place.

Next, the identifying function code, decimal 40, is moved into
the SVC block. Then the address of the file name is loaded into SVC

83

block by first loading in into an address register with a load instruc-
tion and then into the SVC block with a store command:

LDA .Al,FILENAME
STL .Al,68A0

We used register A1 to store the file name into the block. It is
not necessary to keep that value in Al so we are free to use it again,
Now we can load the address of the parameter list into Al. As we
will see ina moment, the fourth byte in the parameter list indicates
whether an existing file is to be opened or a new one created. We
can move the number one into the parameter list (indicating create a
file) with the MOVB 3@Al,#1 instruction.

Before we put a RET instruction at the end of our open routine,
we need to store away the file identification number. In Chapter 8
we told how TRSDOS creates a number when a file is opened. We
must use this number to perform read/write operations as well as
close the file, although closing all programmer files can be done by
supervisor call number 133, which is a blanket close, but more on
that function later.

The file identification number is used by the computer to
identify that particular file. We had better store that number away in
a safe place—somewhere where we can easily fetch it while
executing routines anywhere in the program. The SVC block is used
constantly throughout our program. We cannot depend on any val-
ues remaining intact in this area. Everytime a supervisor call is
made, the block values may change. Let’s temporarily use address
register Al to move the file ID number out of the SVC block and into
our storage area, which we will give the appropriate label FILE
IDENTIFICATION NUMBER.

Low .Al,14@A0 *GET FILE ID #
STW .Al,/FILE IDENTIFICATION NUMBER
RET

OPENING AN EXISTING FILE

As we mentioned, our program will require two separate open
routines, one to open a file the first time to create it on the disk and
the other to open an existing file.

There is really only one difference between the routine to
create afile or open an existing file, and that is the byte in the fourth
position (offset three) in the parameter list. Therefore, this routine
will be very similar to the create instructions, the only change being
the presence of a zero in the fourth byte of the parameter list.

84

Now, the program is run and the operator selects from the
menu the option to add a name to the file, how will we know which
open routine to call? If we try to open a file by creating it and the file
already exists, the machine will return an error into the usual
location in the SVC block, i.e., offset two and three. What we need
is a test after the create routine is executed to see if an error
occurred. If so, we can branch execution to the existing open file
section. The completed create routine will look like this:

RhkkkhkkkhkRhkhkhrhhhkhhkkhkhhkhhhkhkhhkhhthhhi

* OPEN ~ CREATE A FILE SUBROUTINE *
RhkRhA kR hTRRRRAR RN hhkhhhhhhkhhhhhhhhkrhh
OPEN LDA .AD,SVC BLOCK
MOVW @AO,#40 *INDENTIFYING FUNCTION CODE
LDA .Al,FILENAME
STL .Al,6@A0
LDA .Al,PARAMETER LIST
MOVB 3@al,#l *CREATE THE FILE ON DISK
STL .A1,10€A0 *PUT ADDR.OF PARAM, LIST IN SVC
BRK 0
TESTW 2@A0 *TEST FOR AN ERROR
BNE OPEN EXISTING FILE *IF ERROR, THEN BRANCH
RET *RETURN

If an error occurs when the computer tries to create a file, we
detect that error and send it to the open existing file subroutine.
However, we are taking a chance here in assuming that the error
will be a “file already exists” error. If you like, you could put
additional testing here to see exactly what type of error has oc-
curred and then act accordingly. But our aim is to demonstrate a
disk-based mailing list program in as clear and uncluttered a way as
possible. Did you ever get the feeling that a program is never done?
There is always something else you could change, always another
feature you could add. Theoretically, spend your whole lifetime on a
single program.

Now we can set up our open existing file routine. While it may
not be necessary, we prefer to try to close the file before opening it.
We do this just in case the create subroutine does manage to get the
file open. If we then branch to the open existing file and try to open
it, a “file already open” error may occur. So again to be on the safe
side we will close the file. Nothing can be harmed if the file is
already closed, and it only takes a split second to execute the call.

We will, of course, need to close the file from many different
areas in our program, so it would be best to make a close subroutine
which we can call up from any point. There are two close supervisor
calls available to us. One close routine, with a function code of 42,
allows one individual file to be closed. This, however, would re-

85

quire a little extra work from us since we would have to get the file
identification code that the disk operating system invents at the
time of opening it, and place that into the close SVC block.

Perhaps an easier routine is the blanket close routine, which
has a function code of 133. This call closes all user files (not DO or
SPOOL files—see the owner’s manual for more information on
these particular cases). Here all we will need to do is place the
identifying supervisor number into the SVC block and call it.

In our subroutine section, we will place the close all files
routine.

AhR AR kRN kR Rk hhhhkhhkhkkAhhhhhhhkhAhhkhhk

* CLOSE THE FILE *

KR hhhkhhhhhkkhkhkhkhhhk ok hakhhhkhhhhhrhhi

CLOSE
MOVW @A0,#133 *CLOSE ALL FILES
BRK #0 *CALL TO SVC CLOSE ALL FILES
RET *RETURN

The open existing file routine follows.

AhkkIANKRRRIXhhhhkhkkhhhhhhhhhhhkkhhkhhhkhkkhkhhk

* OPEN EXISTING FILE SUBROUTINE *
AR KA IR IR AR IR IR AR AR R R AR R AR Rk R RRA R R AR
OPEN EXISTING FILE

CALL CLOSE

LDA .A0,8VC BLOCK

MOVW @A0,#40 *INDENTIFYING FUNCTION CODE
LDA .Al,FILENAME

STL .Al,6QA0

LDA .Al,PARAMETER LIST

MOVSB 3@AL, 40 *OPEN EXISTING FILE CODE

STL .Al,10€a0 *PUT ADDR. OF PARAM. LST IN SVC
BRK #0

TESTW 2@A0 *CHECK FOR ERRORS

BNE ERROR HANDLER

KEEPING TRACK OF NEXT AVAILABLE RECORD

As you know, when the computer is turned off, all of the
information in RAM is lost. A way of storing the last record number
that contains a name and address must be devised. When we get to
the routine which will write information to the disk, you will see
how that routine requires that we tell it the record number where
that information is to be stored in the file. So we will need a way to
find out the last used record so we can write new information into
the next higher numbered record. It will also be necessary to know
the number of records in the file when we eventually get to the print
labels routine. There, each record will have to be read from the disk
and directed to the printer. It will be necessary to know what the

86

highest record number is so we will know when all of the entries
have been printed.

Obviously we cannot use a label to establish a location to store
the next record number (Yes, that will be needed too). While the
program is up and 1unning, we will need a place to store the next
available record. But this would not work if we returned to
TRSDOS ready or if we turned off the computer and came back at a
later date, loaded the program, and attempted to add more names to
the list.

Many techniques could be used to overcome this problem. A
separate file could be opened and used to just store the top record
number in the mail list file.

Perhaps a simpler way would be to dedicate the first record in
the mail list file, record number zero, to the job of storing the last
record number in the file. Then all we have to do is open the file,
which we would need to do anyway in order to do a read or write,
and get that information from record zero. This saves a lot of work
setting up another whole open routine using a different file name. It
won’t matter if we waste one record in the file. The machine has
such a vast amount of storage, especially if several hard disk drives
are attached, that loosing one record is almost like taking one grain
of sand away from the beach. No one will ever miss it.

So let us designate the first four bytes of record number zero as
the holding tank for the last used record in the mail list file.

The first time we access that file, it will have a zero in it. That
can be used to advantage. All we have to do is get the number from
record zero and increment it by one. That will give us the next
available record number where new data can be written.

We already have a disk buffer area in RAM labeled DISK
BUFFER AREAL. The first four bytes (a long word) will store the
last used record number.

At the end of our “open existing file” routine can be placed a
routine to read the first record on the disk. This information is
brought in and stored in the “disk buffer areal”. This is ac-
complished by using the read supervisor call, whose identifying
function code is 35 decimal.

The address of the “disk buffer areal is loaded into address
register Al and then stored into a RAM location which we will call
NEXT RECORD NUMBER. Actually this stores the last filled
record number in the file. That value is to be used in figuring out the
next available record. We must increment the value stored there by
one in order to get the next available record number.

87

Upon entering this routine, the first thing we must do is to
store away the file identification number. A moment ago we dis-
cussed that under the open-create a file section. Initially, program
flow will be sent to the “open-create a file” routine. If the file
already exists, the error will cause it to jump to the “open existing
file” routine. We have not yet stored away the file identification
number if the file was already in existence. Since program execu-
tion will automatically fall through to the “get last used number”
section after reaching the “open existing file” section, we can place
instruction to save the file ID number in either the “open existing”
or “get last used record” sections. The two instructions can be
identical to those that we just developed under “open-create afile.”

LDW .Al,14@A0 *GET FILE ID
STW .Al,/FILE IDENTIFICATION NUMBER

With that in mind, we can tack the following routine onto the
end of the open existing file section.

*GET LAST USED RECORD NUMBER FROM RECORD #0

LDW .Al,l4@A0, *GETS FILE ID

STW .Al,/FILE IDENTIFICATION NUMBER

MOVW @A0,#35 *INDENTIFYING CODE (READ)
STW .Al,6@A0 *PUT IN SVC BLOCK

LDA .Al,DISK BUFFER AREAl

STL .Al,8@A0 *PUT BUFFER ADDRESS IN SVC
MOVL 12@A0,#0 *GET RECORD #0 (1ST IN FILE)
MOVW 16@A0,4#0 *UNLOCK RECORD

BRK #0

LDL .Al,/DISK BUFFER AREAlL

STL .Al,/NEXT RECORD NUMBER

RET

THE ADD ROUTINE

Upon selecting the “add a name” option from our menu, pro-
gram flow is passed to a section which we will label “ADD
ROUTINE.” (That sounds like a good descriptive title.)

Once into the add routine, we must open the file, get the file
identification number that is created by the open routine, and store
that number into the memory location labeled FILE IDENTIFICA-
TION NUMBER. We have already built that feature into our open
subroutines.

Next we can clear the video and print a nice heading on the
screen, showing the operator that he is in the add mode. We already
have a subroutine in place that we can call to print text on the
screen. As you will recall, that routine displays one character at a
time until the message is complete, and is terminated by a decimal

88

five. An entry condition must be met prior to calling up the sub-
routine. The address of the first character to be printed has to be
placed in STOREL.

So the first few lines of the add routine can be written some-
thing like this:

ADD ROUTINE
CALL OPEN

ADD MENU
CALL CLEAR SCREEN
LDA .A3,ADD SCREEN DISPLAY
STL .A3,/STOREL

CALL SCREEN DISPLAY ROUTINE

The name, address, city, state, zip, and special code informa-
tion has to be entered by the operator, stored within our program,
and written to the disk.

The user will have to be prompted with messages to enter the
name, the address, and so on. In Chapter 6, we explained the
supervisor routine that prints a line of text and gets input from the
keyboard. This routine (with an identifying number of 12) requires
that the number of characters to be displayed, the number of
characters allowed to be entered by the user, the address of the
prompting message, and the storage address of the keyboard re-
sponse, be placed within the SVC block.

In the working storage section of our program, the prompting
messages and storage locations for the operator’s entries can be
established by using labels. Just as we did in the creation of the
menu, a blank space is added to the end of each text message that
has an uneven number of characters in it.

Once the information has been entered by the operator, that
data will have to be written to the disk. By placing all of the input
responses in consecutive order, we can give the whole block a label
and use it to write the entire 90-byte block to the disk. Note that we
determine how many bytes of space are to be dedicated to each
parameter. We have chosen to set aside 25 characters for the name,
25 for the street address, 25 for the city or town, 2 for the state, 8 for
the zip code, and 5 for the special user code.

*PROMPT AND INPUT STORAGE AREA FOR "ADD" ROUTINE
PROMPT1 TEXT 'Enter name > '

PROMPT2 TEXT 'Enter street address > '

PROMPT3 TEXT 'Enter city or town > '

PROMPT4 TEXT 'Enter 2 letter state abbreviation > °
PROMPTS TEXT 'Enter zip code > '

PROMPT6 TEXT 'Enter code > '

DISK BUFFER AREAl

89

INPUTL RDATAB 25,0 *STORES NAME
INPUT2 RDATAB 25,0 *STORES ADDRESS
INPUT3 RDATAB 25,0 *STORES TOWN
INPUT4 RDATAB 2,0 *STORES STATE
INPUTS5 RDATAB 8,0 *STORES ZIP
INPUT6 RDATAB 5,0 *STORES CODE

The first time a name entry is added to the list, the entire disk
buffer areal, that is, the block of memory reserved for keyboard
input, will contain zeros. However, the second time we go for
another name the information entered previously by the keyboard
will still be there. For example, if the first name entered was longer
than the second name, some of the characters of the first name will
be trailing on the new name. Therefore, it would be a good idea for
us to clear out that buffer area before a new name and address entry
is made. Placing zeros in the block should be all right, but some-
times zero is used as a control code and it is best to avoid it. A better
choice would be to fill the block with spaces; e.g., an ASCII 32. In
this way we are sure that nothing will be seen on the screen or on
the printer. Are you thinking ahead? Yes, we can use this same area
to dump data to the printer too. But let’s not get off on a tangent just
yet.

So let’s write a small subroutine that will stuff 90 spaces in the
disk buffer areal block. Here is how we chose to do it, although
other methods could also be employed.

************************************t***

* FILL DISK BUFFER AREA WITH SPACES *
KRR KKK KR RRANKIRRRN KRN AR R AR KRR RR N AR

CLEAR BUFFER
LDW .DO,#90 *D0 IS COUNTER ~ 90 BYTES
LDA .A4,DISK BUFFER AREAl
FILL LOOP
MOVB @A4,432 *LOAD SPACE
ADDW A4, 41 *INCREMENT ADDRESS
DBE .DO,FILL LOOP *90 BYTES
RET

Here, register DO is loaded with a count of 90. The address of the
first byte holding a character to be printed is loaded into register
A4. Next, we enter a loop where a space is loaded into the address
pointed to by A4. The address is incremented by one to point to the
next location where a space is to be placed. The value in DO is
decremented. If it has reached zero, then the program execution is
returned back to the next statement after the one which called the
subroutine. Otherwise, the instructions inside the loop are carried
out another time.

90

Now all we have to do is set up the SVC block for the routine
that will print a message and get data from the operator. This could
be done in a loop, but for the sake of simplicity we will use the old
brute-force method and write the set of instructions six times, once
for each needed parameter. The first set is a little longer than the
rest because we have placed in it the instruction to load the SVC
block with the identifying supervisor number and the instruction to
call the “clear the buffer” subroutine.

*GET NAME FROM KEYBOARD
CALL CLEAR BUFFER
MOVW @R0,#12 *FUNCTION CODE-DSPLY TXT~INPUT
MOVW 6@A0, 414 *4 OF CHAR. IN PROMPT MESSAGE
MOVW 8@A0,#25 *MAX # OF INPUT CHAR. ALLOWED
MOVL 10@A0,#INPUTL
MOVL 14@A0, #PROMPTL
BRK $#0

*GET STREET ADDRESS FROM KEYBOARD
MOVW 6@A0,#24 *4 OF CHAR. IN PROMPT MESSAGE
MOVW 8@A0,#25 *MAX 4 OF INPUT CHAR. ALLOWED
MOVL 10@A0, # INPUT2
MOVL 14@A0, #PROMPT2
BRK $0

*GET TOWN/CITY FROM KEYBOARD
MOVW 6@A0,#22 *4 OF CHAR. IN PROMPT MESSAGE
MOVW 8@A0, #25 *MAX # OF INPUT CHAR. ALLOWED
MOVL 10@A0,# INPUT3
MOVL 14@A0, # PROMPT 3
BRK #0

*GET STATE FROM KEYBOARD
MOvwW 6@A0,#36 *% OF CHAR. IN PROMPT MESSAGE
MOVW 8@AQ,#2 *MAX # OF INPUT CHAR. ALLOWED
MOVL 10@a0,#INPUTY
MOVL 14@A0, $ PROMPT 4
BRK #0

*GET ZIP FROM KEYBOARD
MOvwW 6QA0,#18 *4 OF CHAR. IN PROMPT MESSAGE
MOVW 8@A0, #8 *MAX # OF INPUT CHAR. ALLOWED
MOVL 108A0,#INPUTS
MOVL 14@A0, #PROMPTS
BRK #0

*GET SPECIAL CODE FROM KEYBOARD
MOVW 6@A0,#32 *4 OF CHAR. IN PROMPT MESSAGE
MOVW 8@A0, 45 *MAX §# OF INPUT CHAR. ALLOWED
MOVL 10@A0,# INPUT6
MOVL 14@A0, #PROMPT6
BRK #0

WRITING TO THE DISK

At this point, all of the information that is to be stored in a
record has been entered by the operator and is residing in the area
we affectionately call disk buffer areal. Now the information in that
block must be written onto the disk. The supervisor call to write
data to the disk is easy to use. The identifying function code, 44, is
placed into the SVC block along with the address where the text to

91

be written is stored, the file identification number that was created
by TRSDOS at the time it was opened, and the record number.
(That last factor can be a little bit tricky.)

As discussed previously, we will be using the first record in the
file to keep track of the last record that contains data. At the time the
file is opened, we read that number in the first record and save it in
the RAM space labeled NEXT RECORD NUMBER. This value is
used to let us know the highest record number in the file. If we add
one to that number, we will get the next available record number
where a new entry can be written to the disk.

After we write the information to the disk, we must save the
value which points to the last record number in the file. Since the
SVC block is already set up to perform a write operation, all we
need to do is place that number in byte-offset eight and tell the
machine that the record to receive this information is record zero.
Then a simple BRK instruction will call up the routine.

WRITE
MOVW @AD, #44 *IDENTIFYING FUNCTION CODE
LDW .Al,/FILE IDENTIFICATION NUMBER
STW .Al,6@A0 *PUT FILE ID INTO SVC BLOCK
LDA -A2,DISK BUFFER AREAl
STL .A2,8@A0 *PUT BUFFER ADDR. INTO SVC
LDL .A3,/NEXT RECORD NUMBER
ADDW A3, 41 *INCREMENT NEXT RECORD
STL -A3,12@A0 *PUT RECORD # TO WRITE INTO SVC
STL +A3,/NEXT RECORD NUMBER *SAVE NEW NUMBER
BRK #0 *EXECUTE SUPERVISOR ROUTINE
*SAVE NEXT AVAILABLE RECORD # IN RECORD #0
LDA «A2,NEXT RECORD NUMBER
STL .A2,8@A0
MOVL 12@A0,40 *RECORD #0 TO WRITE
BRK #0

It is conceivable that the user may want to add many names in
one sitting. If we simply returned him to the menu at this point it
would require a lot more effort on his part. He would then have to
again select the “add a name” option and the file would have to be
reopened and the first record read to calculate the next record
number.

So to make our program more “user friendly” (that term is
getting worn out by the micro industry, but at least it’s descriptive)
we will ask the operator if he wants to add another name or return to
the menu. The file is already open and we have updated the next
record number in both RAM and on the disk.

Again we can call on the routine that prints a message on the
screen and waits for an input. We only need one byte to store the

92

response away in memory. A few extra line feeds should be given
prior to printing a new message to make it stand out from the other
text on the screen. Also, note that we have defined two bytes of
memory for the response instead of one in order to keep everything
on even addresses. So in the working storage section, we have
constructed a message and dedicated two bytes of memory:

TEMPORARY KEYBOARD INPUT
RDATAB 2,0 TEMPORARY KYBRD STORAGE
MENU OR ADD PROMPT
DATA 13,13
TEXT 'Do you wish to <A>dd another name or
return to menu?’

In the above routine, please note that the text message appears
on one complete line in the source code. (Due to limitations in the
number of letters on a horizontal line in this book, we have shown it
on two separate lines.)

The instruction set needed to display the message and get the
input from the keyboard follows.

*ASK IF USER WANTS TO ADD ANOTHER OR RETURN TO MENU
ADD OR RETURN MENU OPTION

MOVW @n0,#12 *FUNCTION CODE

Movw 6@A0,%#56 *# OF CHAR. IN PROMPT MESSAGE
MOVW 8@A0,#1 *MAX # OF INPUT CHAR. ALLOWED
MOVL 10@A0, # TEMPORARY KEYBOARD INPUT

MOVL 14@A0,4MENU OR ADD PROMPT

BRK #0 *EXECUTE SUPERVISOR ROUTINE

We are on the last leg of our journey through the add routine.
The only thing left is to test the character entered by the operator
and take appropriate action.

The letter typed by the user is currently being held in the
“temporary keyboard input” location. By loading that character into
data register DO, he can compare them to check for the two appro-
priate responses. If an “A” has been selected, he wants to add
another name. The program flow can then be directed to the “add
menu” section where another name can be taken on. Should he want
to return to the menu, the file must be closed and execution can
branch to the top of the program. Another short routine is needed
for this option. We will call it the “return to menu” section. Init, a
call to the close subroutine followed by a branch to the start of the
program is all that is needed.

The response testing section should be terminated with an
unconditional branch back to the routine we just created to print the

93

message and get an input. This will “idiot proof” the routine against
the user hitting a key other than the two we are looking for.

*TEST FOR AN "A" OR "R" RESPONSE FROM OPERATOR

LDB .D0,/TEMPORARY KEYBOARD INPUT
CMPB .DO0,#65 *TEST FOR AN "A" INPUT
BE ADD MENU *GO TO ADD ROUTINE
CMPB .DO, 482 *TEST FOR AN "R" INPUT
BE RETURN TO MENU
BR ADD OR RETURN MENU OPTION

RETURN TO MENU
CALL CLOSE
BR START

THE PRINT LABELS SECTION

Let’s take stock of what has been accomplished so far. We are
getting cramps in our writing hand and you are probably getting
bleary-eyed from looking at all these listings. But the program is
beginning to take shape—it really does something now. The next
logical section to tackle is the printout label section because now
that we can put names into the machine, it would be nice to see all of
the information stored in the file by printing it out on paper.

The “print labels” module of our program will be a little bit
long. For that reason it is wise to first get some idea of how to attack
this problem.

Each record in the file must be brought into the “disk buffer
area”, starting with the first record in the file and continuing
through to the last record. So we will need to know the number of
the first record that contains a name and the last. As you recall, we
are using up the first record for name storage and just letting it keep
track of the last used record in the file. Therefore, the first name on
the list is stored in record number one. Record number zero is the
first record in the file but not the first with a name in it. By reading
record zero and getting the number stored there, we will know the
number of the record that is at the end of the file.

Once a record is brought into the RAM area, the various
parameters (name, address, city, and so forth) can be individually
sent to the printer to form a label. Then a few line feeds can be sent
to the printer to position the next label for printing. Since line feeds
will have to be sent following each of the parameters and several
line feeds at the end of each label, it would be foolish not to employ a
“print line feed” subroutine.

So we need to keep track of a few things. We must know the
beginning and end of the file, the file identification number, and the
printing of each label.

94

When labels for all of the people on the list have been com-
pleted, the file has to be closed and the program flow should be
directed back to the menu.

Let's start the routine and see what trouble we can get into by
boldly pushing onward.

Using the same formula for printing a heading on the top lines
of the video display, the text can be established in the “message and
working storage area.” The ASCII code of five is used to indicate
the end of the message, just as it was in the add routine. This is a
prerequisite for the routine, just as STORE1 must be set up as an
entry condition. STORE1 can be loaded with the address of the
printout screen text and we can call the screen display routine to get
the message onto the video. Prior to that the clear screen routine
can be utilized. Following the screen formatting, the name list file
can be opened, again by the magic of subroutines.

khhxhkhhhhhhhkkkhkhhhhhhkhhhhkkhhkkdhhk

* MESSAGE & WORKING STORAGE AREA *
R R T

PRINTOUT LABELS SCREEN DISPLAY

TEXT 'PRINTOUT ADDRESS LABRELS'

DATAB 13

TEXT B et
TEXT e e e i e
DATAB 5,0

As always, to prevent the aggravating odd address trap error,
we defined an extra byte after the ASCII five terminator. A zero is
simply placed in that byte.

The beginning point of the printout routine must be labeled
PRINTOUT ADDRESS LABELS because that is what we told the
computer to jump to in the menu.

PRINTOUT ADDRESS LABELS
CALL CLEAR SCREEN
LDA -A3,PRINTOUT LABELS SCREEN DISPLAY
STL .A3/STORE1
CALL SCREEN DISPLAY ROUTINE
CALL OPEN EXISTING FILE

The number pointing to the last record in the file is now in the
NEXT RECORD NUMBER storage area. We need a chunk of
memory to act as a counter, keeping track of the record number to
print. We know the first name is located in record number one. A
STOREI1 already exists and will be put to use in this routine. In the
message and working storage area we can define another storage
area, STORE2, and set aside four bytes, just like STORE1. Record

95

numbers can be up to FFFFFFFF hexadecimal, so a long word of
storage is needed.

*END OF FILE RECORD # NOW LOCATED IN "NEXT RECORD NUMBER"
LDL .DO,#1 *LOAD DO WITH 1ST RECORD #
STL .D0,/STORE2 *STORE FILE COUNTER

A giant loop is needed to test for the end of the file, get a
record, print it, cue up the next label, and branch back to the end of
file test. In this way STOREZ can be incremented after each record
is printed. It can then be compared to the value in “next record
number” to see if the last record has been reached.

Now we will start the loop, stopping to make comments as we
go along. The beginning point of our loop is EOF TEST, that is,
“end of file” check.

EOF TEST
LDL .Al,/NEXT RECORD NUMBER
ADDL .Al,#1 *ALLOW PRINTING OF LAST RECORD
LDL .D0,/STORE2
CMPL .DO,.Al *REACHED EOF YET?
BE PRINTER FINISHED

What makes a person a computer programmer? Anyone can
learn the various reserved words, syntax, and mnemonics of a
language. But it takes some logical thought to make a program
work. Now here we have to scratch our heads and think a little.
Since we happened to place the end of file test at the beginning of the
loop, we have to increment the value obtained from the “next record
number” prior to testing. The value in the “next record number”
location points to the last record in the file that contains a name. We
want that name to be printed on a label. If we simply tested for this
value being the last record number and then jumped out of the loop,
this final record would never actually get printed. Follow that logic?

In amoment we will have to increment the value in STOREZ so
that it is always pointing to the proper record number.

As you can see, Al was loaded with the value of the last record
number in the file and then increased by one to let the final record
fall through and get printed. Data register DO is loaded with the
current record number count. If the two are equal, then all the
names on the list have been printed on labels. Execution then
branches to a section labeled PRINTER FINISHED where we can
close the file and return to the menu—more on that in a minute after
we complete this loop.

If this is not the last record, execution falls through to the next
section which follows.

96

*READ A RECORD FROM THE DISK

LDW .Al,/FILE IDENTIFICATION NUMBER *GET ID
LDA .A0,5VC BLOCK

MOVW @AQ,#35 *IDENTIFYING FUNCTION CODE
STW .Al,68A0 *PUT ID IN SVC BLOCK

LDA .Al,DISK BUFFER AREAL

STL .Al,8@A0 *PUT BUFFER ADDR. INTO SVC
LDL .D0,/STORE2 *GET RECORD COUNTER

STL .D0,12€A0 *PUT RECORD TO GET INTO SVC
ADDW .DO,#1 *INCREMENT RECORD #

STL .D0,/STORE2 *STORE FILE COUNTER

MOVW 160A0,40 *UNLOCK RECORD

BRK #0

We just read a record from the disk and stuck it into the disk
buffer areal of our program. This is a lot simpler than creating
another storage area. Each line there is already divided up with
other labels for convenient distributing on the label.

This time, when we brought the value in STOREZ2 into a
register for use with the read supervisor call, we incremented and
stored the new value back again.

At this point it might be a good idea to set up a “flag” routine so
we can see what is going on down there inside our machine (we
think that there are really little men playin “TRON” games on our
circuit boards). It is a simple matter to dump the entire disk buffer
areal onto the screen with one supervisor call. The entire 90-byte
record can be thrown onto the video. It will look a little sloppy so
you may not want to leave it in your final version but simply put it in
as a debugging tool. Any carriage returns hit during entry of the
name and address will 2lso appear on the screen. This is good since
it will help separate the name, address, town, and so on. As each
record is obtained from the disk, it will appear on the screen.

*FLAG TO DUMP TO RECORD TO SCREEN

LDA .A0,SVC BLOCK

MOVW @A0,#9 *ID CODE

MOVW 6@A0,#90 *LENGTH OF LINE

MOVW 8QA0,#32 *SEND SPACE AT END OF ROUTINE
MOVL 10@A0,#INPUTL *ADDRESS

BRK #0

Again the time comes to put on an extra thinking cap. We have
to develop a way to handle carriage returns that are present in the
name, address, town, zip, and code lines. If the operator had hit the
<ENTER> key after every item when he was entering the data,
there would be no problem. We could simply print each line, or for
that matter, we could just send the entire 90-byte buffer to the
printer and the label would be printed.

However, as you will recall, we only allowed two spaces for

97

entering the state. Since all states have two-letter abbreviations, no
carriage return can ever be stored here. If we allowed three
characters for the state instead, the overall problem of handling line
feeds/carriage returns would still not be solved. This is because it
is still possible to make an entry for one of the other parameters,
such as name, address, and so on and not hit <ENTER>. This
would happen if the operator typed in an address, for example,
which is 25 characters long. The input routines we used to get
information from the keyboard are terminated by either the
operator hitting <ENTER> or by his exceeding the maximum
number of characters allowed for that particular item.

So we need to set up a loop that will test each character for a
carriage return. This loop will resemble the display a character loop
we have already written. In that routine, an ASCII code of five is
tested and displaying of each character is done until the five is
encountered. In this printer routine, we will test for a carriage
return. Since some will and some will not have a carriage return, we
want to be in control of when that code is sent to the printer. We
should set up a subroutine that will print a line feed-carriage return.
Then we can call it up as we need it. Another factor that must be
kept track of here is the maximum allowable number of characters.

So there will be two things that we must test for in our loop.
First we must test for a carriage return. If we find one, we know
there are no more letters to be printed on that line. At that point, our
own carriage return can be sent to the printer and the next line
prepared for printing.

The other thing we must test for is the number of characters
displayed. We do not want more characters displayed than the
maximum number that was allowed during input.

Things get a little complicated in this routine since we are
going to have two routines called from another. Perhaps it is
advisable to sketch out a short flowchart of this section.

Figure 10-1 shows the part of the routine that will actually print
a label. It does not include the section that reads a record from the
disk and tests to see if it is the last record from the disk and tests to
see if it is the last record in the file. It assumes that a record has
already been read and is currently residing in the disk buffer areal of
the program. This will help clarify our thinking in writing this
section of the program.

Follow the bouncing ball through the flowchart as we narrate.
A counter is needed to keep tabs on the number of characters that
are in the field; 25 for the name, 25 for address, and so on. Another

98

Enter
routine

= ——_—;l/
"4 - | Get address in storet |
Load D1 with
rmaximum

character count Increment storet to

\}/ point to next character
to print

Load storet with
address of character

to be printed Compare (set flags)
\]/ Call
Call “print a tabel s
character
Upon return a carriage
return?
Entire routine

executed six
times, once for
name, address,
city, state, zip,
code

Decrement B1
character counter
Print current character

|
|
|
|
|
l foop"
|
'
|
|
|

Has
counter
reached zero,
yet indicating all
letters have

/

Print a
line feed

|2

Terminate
subroutine
(return)

S

Fig. 10-1. Flowchart of print A label section.

storage area could be set up, but it may be best to avoid cluttering up
the program with any more labels unless absolutely necessary. The
MC68000 has over a dozen registers available, so we can temporar-
ily put one of them to work.

We have been playing with data register DO in the “read a
record from the disk” section, so it is sensible to avoid it. Let's
assign D1 the job of keeping track of the number of characters to
print for each field. When the name line is to be printed, D1 can be
loaded with a 25. A routine to dump a character to the printer can be

99

called. After that, the value in D1 can be decremented. If it should
reach zero, then all 25 characters have been printed.

Our old buddy, STORE] is up for grabs. At this point in the
program, he has not been used yet. STORE]1, since it is four bytes
wide, can keep the address of the current character to be printed.

So, we have placed the maximum allowable character count
into D1 and the address of the first character to be printed into
STORE1. Now a routine to print the line (a field) can be called.

Once inside this call routine (given the name PRINT A LABEL
LOOP in the program), the address saved in STORE1 can be placed
into the SVC block in preparatiou for executing the supervisor call
to send the character to the printer.

The value in STORE1 can then be incremented such that it will
point to the address of the next character to be printed. Again, since
some address registers are being used, let’s pick, say, register A5
to make these moves for us.

We have decided to place all of the printer routines together in
the same section of the program. If you wish, you could put the
“print a label loop” into the subroutine area of the program. How-
ever, the program is beginning to get a little long. We thought it was
best to keep all of the instructions involved with the printer to-
gether, since none of these subroutines will be needed anywhere
else in the program.

So far, the subroutine that will print one line of the label looks
like this:

PRINT A LABEL LOOP

LDL .A5,/STORE1
MOVB 7@A0,€@A5
MOVB 6ea0,40 *INSURES A ZERO THERE
ADDW A5, %1 *INCREMENT
STL .A5,/STOREL *STORE AWAY NEXT CHAR.

Before we send that character to the printer, we need to see if
it is a carriage return or not. As mentioned previously, some fields
may not contain a carriage return, such as the state. Therefore, we
thought it best if we do not let any line feeds be printed that are
imbedded within the disk buffer text. We want to be in control of all
line feeds. When a line is done printing, we will send a carriage
return to the printer. Otherwise, there would be two line feeds
between those lines where the operator hit <ENTER> to end a
field and one line feed when the <ENTER> key was not depressed.

In the listing where we just left off, T@A0 is currently
keeping the ASCII code of the character ready to go to the printer.

100

Let’s move it into an unused data register, say D5, and compare it to
an ASCII 13. If the character is a 13 then we do not print it. This
means that all of the characters for that field have been entered by
the operator. So we can print a line feed and bail out of this
subroutine. That would mean going back to the place where D1
could be loaded with the next maximum character count and
STOREL set up to point to the location of the 1st character in the
line to be printed.

Getting back to our comparison test, if the character to be
printed is not a carriage return, then we can print that character.
After that, the value in our character counter, D1, can be dec-
remented. D1 can then be checked to see if all of the characters
allowed in that field have been printed. If they have, then execution
can branch to the routine we just described which prints a line feed
and jumps back to get new values in D1 and STORE1 for another line
of printing. If it fails the test, then the program can loop back to the
place where the address in STORE1 is obtained and another test for
a carriage return and printing takes place.

Continuing with the print a label loop, we add on these new
instructions:

LDB .D5,7@A0

CMPB .D5,#13 *TEST FOR CARRIAGE RETURN
BE PRINT LINE FEED

BRK #0

CMPW .D1,40

SUBW .D1,#1 *DECREMENT COUNTER

BE PRINT LINE FEED

BR PRINT A LABEL LOOP

The subroutine to print a line feed is a simple supervisor call to
send an ASCII 13 to the printer.

*SUBROUTINE TO PRINT LINE FEED CARRIAGE RETURN

PRINT LINE FEED
LDA .A0,SVC BLOCK
MovwW @eno0, 418 *IDENTIFYING CODE-PRINT CHAR,
MOVW 6@8A0,#13 *DUMP A LINE FEED TO PRINTER
BRK #0
RET

In this program we will simply use brute force and manually set
up each D1 and STORE] after which a call to the “print a label loop”
section will print the line. This could all be done in fewer steps, but
it would make the program harder to follow. The thought here is to
clarify the programming concepts. Once you learn the ropes, you
can easily make improvements to this program.

When the label has been completely printed, several line feeds

101

are needed to cue up the printer to the next label. Labels are
supplied on continuous rolls or on fan-folded style sheets.

Fortunately, a subroutine to print a line feed already exists. By
calling that routine several times, the label is advanced by a couple
of lines.

So the lines prior to the print a label loop, which call that
routine six times (once for name, once for address, and so on
through the code), will appear as follows:

*PRINT A LABEL

LDA .A0,SVC BLOCK

MOVW @An0,418 *IDENTIFYING FUNCTION CODE

LDA .A5, INPUT1

STL .A5,/STOREL

LDW .D1,#25 *MAX # OF CHAR IN NAME LINE
CALL PRINT A LABEL LOOP

LDA .A5, INPUT2

STL .A5, /STOREL

LDW .D1,#25 *MAX # OF CHAR IN ADDR LINE
CALL PRINT A LABEL LOOP

LDA .A5,INPUT3

STL .A5, /STORE1

LDW .D1,#25 *MAX # OF CHAR. IN TOWN LINE
CALL PRINT A LABEL LOOP

LDA .A5, INPUT4

STL .A5,/STOREL

LDW .D1,#2 *MAX §# OF CHAR IN TOWN LINE
CALL PRINT A LABEL LOOP

LDA .A5, INPUTS

STL .A5,/STOREL

LDW .D1,#8 *MAX 4 OF CHAR IN ZIP LINE

CALL PRINT A LABEL LOOP

LDA .A5, INPUT6

STL .A5, /STOREL

LDW .D1,#5 *MAX # OF CHAR IN CODE LINE

CALL PRINT A LABEL LOOP

CALL PRINT LINE FEED *CUE UP FOR NEXT LABEL
CALL PRINT LINE FEED

BR EOF TEST

At the beginning of the printer routine, we discussed the
section to test for the end of file. When all of the labels have been
printed, we instructed the machine to go to the address labeled
PRINTER FINISHED. Now it is time to create that section.

The only thing which remains is to close the file and jump to the
main menu. Since we only have one file to worry about, we can use
the blanket close supervisor call, number 133. Then execution can
branch back to the start of the whole program, where the menu will
again be displayed.

PRINTER FINISHED

LDA .A0,SVC BLOCK

MOVW @A0,#133 *ID TO CLOSE ALL FILES
BRK #0

BR START

102

That completes the print labels section of the program.

THE SEARCH AND MODIFY ROUTINES

While it is feasible to write search and modify routines inde-
pendently of each other, many lines of programming can be elimi-
nated if we integrate these two functions.

Before it is possible to modify a person on file, you first must
search for him to see if he is on the disk. If he is, then the whole
record must be read into memory where we can examine it.

The search routine will simply require us to ask the operator
the name of the person to look up. At that point the computer must
scan the entire list. When the name is found, the entire record will
need to be shown on the video display. When the operator is done
studying it, he can indicate that he is done and wants to return to the
main menu.

First, both the search and modify sections should follow the
traditional pattern that we have established. Upon entering these
routines, the screen should be cleared and the appropriate heading
should be shown in order to confirm for the user that he is indeed in
the function that he actually wants.

The search section can start with the following:

SEARCH ROUTINE
*SETUP SEARCH SCREEN DISPLAY
CALL CLEAR SCREEN
LDA .A3,SEARCH SCREEN DISPLAY
STL .A3,/STOREL
CALL SCREEN DISPLAY ROUTINE

As you can see, we set up the entry conditions prior to calling the
screen display routine. The address of the first text character to
print is loaded into STORE1. So down in the message and working
storage area we define the search page heading.

SEARCH SCREEN DISPLAY

TEXT 'SEARCH FOR A NAME'

DATABR 13

TEXT ¥ '
TEXT ! .

DATAB 13,13
DATAB 5,0 *TERMINATOR CHARACTER

The modify section can start with the same idea, but since both
the search and modify routines need to search through the file for
the name, why not just use one routine?

That is exactly what can be done. The modify section can
branch over to the search routine once the heading has been set up.

108

However, the search routine should know whether execution
was sent there by the operator selecting the search option or by the
modify option. Therefore, we will let a register be a “flag,” that is,
an indicator to show that the modify routine is sending the execution
to the search section. By checking this flag, we will know where to
branch to after the name has been found. If the search section sent it
there, then execution should merely return to the menu. Other-
wise, the operator will have to re-enter the information in that
record, updating or changing it.

Again we could pick a storage area, but with so many registers
to work with, let’s choose D6. Arbitrarily we have decided to place a
value of one in D6 if the modify option was selected at the menu, and
a zero there if search did.

After that, both routines need to get a name from the keyboard
for which it can begin searching. How about giving it the label ASK
OPERATOR NAME TO SEARCH FOR?

MODIFY ROUTINE
*SETUP MODIFY SCREEN DISPLAY

CALL CLEAR SCREEN

LDA .A3,MODIFY SCREEN DISPLAY

STL .A3,/STORE1

CALL SCREEN DISPLAY ROUTINE

LDL .D6,#1 *MODIFY "FLAG"

BR ASK OPERATOR NAME TO SEARCH FOR

(add to the MESSAGE AND WORKING STORAGE AREA:)

MODIFY SCREEN DISPLAY

TEXT 'MODIFY A RECORD'

DATAB 13

TEXT ' '
TEXT ' '

DATAB 13,13
DATAB 5,0 *TERMINATOR CHARACTER

What happens if the operator selects the modify option, re-
types the name correctly, is returned back to the menu, and then
selects the search option? At the moment, once D6 is set to a value
of one, it is never reset to zero. So anytime an operator chooses to
search for someone after he has first used the modify routine, he
will again be forced into the modify section.

To prevent this from happening, one of the first lines of the
program should reset the flag to zero. In this way, everytime the
menu is shown, the modify flag will be reset. So between the
START and CALL CLEAR SCREEN instructions, insert

LDL .D6,%0 *D6é USED AS MODIFY FLAG-RESET

104

The next two sets of instructions will prompt the operator to
enter the name of the person he wishes to search for. A keyboard
input routine can get the name and place it into a buffer area.

Once the name the operator wants is in memory, we can pull
records from the disk one at a time and see if the two names match.

The CoMPare instructions has a neat variation where it can
examine two characters stored in memory and perform a “post
increment” function. In a moment, we will show how this powerful
16-bit mnemonic can save a lot of work.

In order to create a loop around the routine that compares each
byte, we will need to know how many characters the operator has
typed in. In that way, if the name on the disk is “Smith” and the
operator only types in “Smi” then a match will be found. This is nice
in that the operator only has to enter as many letters as necessary to
distinguish that name from any other on the list. It also insures that a
match will be made if the name is on the list. You see, we have
allowed 25 bytes of memory for the name. The disk stores 25 bytes
whether the name is 25 letters long or not. Therefore, it would be
conceivable that a match may never be made if the operator entered
“Smith”, which is 5 letters long, and the disk buffer contained the
letters “Smith” plus 20 more spaces. As you will recall, prior to
adding a name in the add routine, we fill the buffer with spaces
(ASCII 32). So, only the number of characters entered will be
checked for a match.

Now we need to display a message and get a response from the
operator. This time we cannot use the supervisor call that performs
both of these functions (with a function code of nine) since it does
not return to us the length of the string of characters entered.

The display a line supervisor call and the keyboard line call
(function code five) will have to be used.

We can label the search message SEARCH PROMPT and the
keyboard input can go under SEARCH NAME INPUT, which we
will have to define in the working storage area.

Since STORE1 stands ready, willing and able to serve us, we
can get the number of characters entered via the keyboard (stored
in 12 @ A0 upon exit) and stick it in STORE1 for safe keep-
ing. After than, we’ll figure out what to do with it.

ASK OPERATOR NAME TO SEARCH FOR
LDA .A0,SVC BLOCK
MOVW QR0 ,#9 *IDENTIFYING FUNCTION CODE
MOVW 6@A0,#26 *§ OF CHAR IN MESSAGE
MOVW 8@A0,4#32 *SEND A SPACE AFTER TEXT
MOVL 10@A0,#SEARCH PROMPT

105

BRK #0
*GET KEYBOARD INPUT
Movw @Aa0,%#5 *IDENTIFYING FUNCTION CODE
MOovwW 6@A0,4#25 *§ OF ALLOWABLE INPUT
MOVL 8@A0,#SEARCH NAME INPUT
0

BRK #
LDwW .Al,12@A0 *GET # OF CHAR. ENTERED
STW .Al,/STORE1l *PUT IN STOREL

(add to message and working storage area:)

SEARCH PROMPT

TEXT 'Enter name to search for: '
SEARCH NAME INPUT

RDATAB 26,0

Now we can open the file. We will jump to the open existing file
routine since no one would ever want to search for a name before
any names have been added. However, you may wish to place an
error trap here in your own version of this program in order to catch
an operator who may try to select the search or modify option
without first using the add routine to put at least one name on file.

The last record number is placed into “next record number” by
the open routine. We will assign STOREZ the task of keeping count
of the record number we have read.

The value in STORE2 can then be compared to the value in the
“next record number” to detect when the entire list has been
scanned. If the two are equal, then the whole file has been
examined. We then branch to “search finished.” These instructions
close the file and jump the program flow back to “start”. You may
want to add a message here for the operator, perhaps something to
the effect “Name not found.”

This whole section basically has the same structure as the one
we developed for the print label routine.

If we are not at the end of the file, a record can be read from the
disk. So far we have

*OPEN FILE (MUST ALREADY EXIST)
CALL OPEN EXISTING FILE
*END OF FILE RECORD # NOW LOCATED IN "NEXT RECORD NUMBER"

LDL .DO,#1 #LOAD DO WITH 1ST RECORD
STL .D0,/STORE2 *STORE FILE COUNTER
END OF FILE TEST
LDL .Al,/NEXT RECORD NUMBER
ADDIL .Al,#1
LDL .D0, /STORE2
CMPL .DO,.al *REACH END OF FILE YET?
BE SEARCH FINISHED
*READ A RECORD FROM THE DISK
LDW .Al,/FILE IDENTIFICATION NUMBER
LDA .A0,5VC BLOCK
MOVW @A0,#35 *IDENTIFYING FUNCTION CODE
STW .Al,6@A0 *PUT ID IN SVC BLOCK

106

LDA .Al,DISK BUFFER AREAL

STL .Al,8@A0 *PUT BUFFER ADDR INTO SVC

LDL .D0,/STORE2 *GET RECORD COUNTER

STL .D0,12@A0 *PUT RECORD # TO GET INTO SVC
ADDW .DO,#1 *INCREMENT RECORD #

STL .D0,/STORE2 *STORE FILE COUNTER

MOVW 16@a0,40 *UNLOCK RECORD

BRK $#0

Now for that neat new variation of CoMPare. Currently we
have two blocks of memory which we want to test byte by byte for
equality. By loading two address registers with the memory loca-
tion of the beginning character in each block, we can take advantage
of the post increment ability of the CMP op code.

CMP as we shall use it, will compare a byte in one memory
location with that stored in another. The appropriate flags in the
status register will be set or cleared, depending upon the results of
the comparison. By using the plus sign (+), the computer automati-
cally increments the value stored in each register by one. In this
way the addresses currently in the two registers are increased by
one byte such that they now point to the next character in each
block. This command is another example of how the MC68000
instruction set is capable of doing several operations in one step as
compared to eight-bit microprocessors.

Now we load A3 with the address of the name and the user
wants to look up. As each record is pulled in and placed into “disk
buffer area “1”, the name from the disk file will be located at “input
1.” A loop can check each character in the two names to see if they
all match.

Several things need to be kept account of in this loop. First, our
character counter, D1, is decremented every time a pass of the loop
is made. When it reaches zero, the number of characters that the
operator typed in has been checked. If it does reach zero, then a
total match has been made and execution can jump out of the loop
into the “found match” routine (which we have yet to invent).

Should any character not match, then the current record is not
the one we are looking for. Another read from the disk can be done
and the next record brought in and examined.

*CHECK NAME FROM RECORD AND FROM DISK FOR MATCH

LDW .D1,/STOREL *Dl IS CHAR. COUNTER
LDA .A2,SEARCH NAME INPUT *GET ENTERED NAME
LDA A3, INPUT1L *GET NAME ON DISK

SEARCH LOOP
SUBW .D1,4%1 *DECREMENT CHAR. COUNTER
BE FOUND MATCH *ALL CHARACTERS MATCHED
CMPB 8A2+,@A3+ *COMPARE A LETTER

BE SEARCH LOOP *MATCH~CHECK NEXT LETTER

BR END OF FILE TEST *GET ANOTHER RECORD

107

Once we have found the name, we can display all of the fields on the
screen. For the sake of simplicity we will use the display a line
supervisor call to get the full contents of the record onto the video
tube. However, you may want to dress up this section of the
program. Remember, some fields contain line feeds in them and
some do not, so this makes the printout a little ragged looking. In
any event, the routine to display the name is next.

FOUND MATCH

*DISPLAY NAME
LDA .A0,SVC BLOCK
MOVW @A0,%9 *DISPLAY A LINE ID CODE
MOVW 6QA0,#25 *25 CHARACTERS IN THE NAME
MOVW 8@A0,#13 *SEND LINE FEED AT END
MOVL .10@A0,#INPUTL
BRK #0

*DISPLAY ADDRESS
MOVW 6@A0,#25 *25 CHARACTERS IN THE ADDR,
MOVL 10€A0,#INPUT2
BRK #0

*DISPLAY CITY/TOWN
MOVW 6@A0,#25 *25 CHARACTERS IN THE TOWN
MOVL 10@A0,$#INPUT3
BRK #0

*DISPLAY STATE
MOVW 6@A0,#2 *2 CHARACTERS IN THE STATE
MOVL 10@A0,#INPUT4
BRK #0

*DISPLAY ZIP
MOVW 6@A0,%#8 *8 CHARACTERS IN THE ZIP
MOVL 10@A0,# INPUTS
BRK #0

*DISPLAY CODE
MOVW 68A0,#5 *5 CHARACTERS IN THE CODE
MOVL 10@A0,#INPUTE
BRK #0

We must check here to see if the modify option was selected. If
it was, we can jump to a new section, “modify selected”. If not,
execution will fall through to the next part where the operator can
hit the <ENTER> key when he is done examining the data on the
screen. Then he can be returned to the menu. We will set it up such
that it only allows a one letter response so the user can hit
<ENTER> or actually any key he wants to terminate the routine.
This is a good place to stick the SEARCH FINISHED instructions
that we mentioned a moment ago.

*CHECK TO SEE IF MODIFY OPTION WAS SELECTED

CMPB D6, %1 *1 INDICATES MODIFY
BE MODIFY SELECTED

*IF FALLS THROUGH, THEN END OF SEARCH ROUTINE
MOVW @AQ,#12 *ID CODE VIDKEY
MOVW 668A0,#38 *# OF CHAR IN PROMPT MESSAGE
MOVW 8@A0,#1 *LENGTH OF ALLOWABLE INPUT
MOVL 10@A0,#TEMPORARY KEYBOARD INPUT

108

MOVL 14@A0,#HIT ENTER PROMPT

BRK #0
BR SEARCH FINISHED
SEARCH FINISHED
MOVW @n0,#133 *ID TO CLOSE ALL FILES
BRK #0
BR START

(add to the MESSAGE AND WORKING STORAGE AREA:)

HIT ENTER PROMPT
TEXT 'Hit the <ENTER> key to return to menu

It actually is not necessary for us to use the BR SEARCH
FINISHED instruction since we follow it with that routine. But we
put it in there in the event that you may make some changes to the
program and slip more instructions into that area.

We are down to the last few lines of our program (aren’t you
glad!). The “modify selected” portion can actually make use of the
“add a name” section of our program.

But first we must get the current record number stored in
“next record number”. If you follow the logic of how the record
number was placed there, you will see that the value currently in
that storage area is actually pointing two records too high. This is
easily remedied by subtracting two from it. By saving this value in
“next record number”, we can jump to the “add menu” where the
operator can retype the entire name, address, city, and so on. This
is the easiest thing to do. The record to write this to is ready and
waiting in the “next record number” area, so the write routine will
automatically put it just where we want it.

MODIFY SELECTED
*GET THE CURRENT RECORD #,STORE IN 'NEXT RECORD NUMBER'

LDL .D0,/STORE2

*AT THIS POINT, TWO RECORDS HIGHER SO MUST DECREMENT
SUBL .D0,/NEXT RECORD NUMBER
BR ADD MENU

Our add routine allows you to add as many names as you wish
without ever having to go back to the main menu. While it is fine for
our modify function to use the add routine, we do not want the
prompt “Do you wish to <A>dd another name or <R>eturn to
menu?” to be seen. It would be a good idea if we let the operator
modify several names without having to go back to the menu just as
we did in the add routine. This can be done easily with the addition
of only a few lines of programming.

After the write section in the add routine, test to see if the
modify routine sent it there. If it did, D6, our “modify flag” will
contain a one. Should D6 equal one, branch to the search routine

109

where we can again search for another name.

*CHECK TO SEE IF MODIFY ROUTINE SENT IT HERE
CMPB .D6,#1 *IS FLAG SET?
BE SEARCH ROUTINE

This is fine; however, the search routine opens a file, and at
this point, the file is already open! Again, we need to add a line for
the fix. Locate the search routine and insert the following to make it
the first line in that section.

CALL CLOSE =*MODIFY ROUTINE NEEDS THIS

Now the operator is locked into an endless loop of modifying
names, searching for another, modifying that, etc. We need a way to
allow the user to bail out of the modify routine and return to the
menu.

By allowing a bailout right at the input of the name to search
for, this will also allow the user to exit the search routine without
actually having to search for anyone.

Instruct the operator to simply hit the <ENTER> key in
response to “Enter name to search for:.” Since there can never be
just one character entered for a name, all we have to do is check the
number of keys hit and see if it is a one. Even if a person’s name is
only one letter (highly unlikely), it would still require two keys to be
depressed, one for the letter and one for the <ENTER> key.

Locate the “»get keyboard input” section of our add routine.
You will see that after the supervisor call is executed, the number of
entered characters is returned into byte-offset 14 of the SVC block.
Note that we temporarily used register Al to pull the value
in 14@A0 and place it into STOREL. Therefore, Al still holds
that number. After the STW .Al1l,/STORE1l instruction, we
insert the following few lines to complete the program.

*TEST TO SEE IF GUY JUST HIT <ENTER> INSTEAD OF NAME

*TO ALLOW FOR BAIL OUT-CAN MODIFY MORE THAN ONE NAME
CMPW Al,#1 *JUST ONE CHARACTER RETURNED
BE START *BAIL OUT TO MENU

WRAPPING IT ALL UP

That’s the basic structure for any type of simple disk storage
program. It can be endlessly improved upon, as can any program.
There always seems to be just one more feature that you can
incorporate. The main idea however, was to keep this program as
short and as clear as any machine-language program can be.

110

We did achieve the concept of modular programming, although
the program could certainly be reduced even further in size by some
thoughtful reworking of a few sections. More subroutines could be
employed. Also, the whole program could be set up as a series of
calls. For example, we used the long method of getting a name,
address, city, and so on from the keyboard. One routine could be set
up that would get all of these inputs from the operator by calling the
same supervisor call. Before calling it, the various parameters
could be put in place similar to what we did for the display a
character routine.

The best programming rule is never to have anything in your
program more than once —make a subroutine out of it. This could
certainly be done with the constant text defining of hyphens for use
with the video screen headings:

TEXT e e SRR ==t

Another suggestion we may make would be to expand on the
modify routine. Currently, the operator must retype the entire
record. It would take a little extra programming effort, but it could
be altered so that the operator would only need to retype the field or
fields that he needs to change.

The printer routine is also a candidate for rewriting. Presently,
each field is printed on its own line. In actual practice you may
decide not to print a line feed between the city, state, and zip to put
it more in keeping with the way we usually address envelopes.

No provision has been made for deleting a name, but this is an
idea which could be implemented. In many business applications,
once a person is on a list, they never want him erased. In other
circumstances, an active file may need to constantly add and delete
entries. If this is the case, some thought would have to be given to
the recovery of file space, that is, the filling in of records where a
person has been deleted.

MAILING LIST SOURCE CODE

The entire source code listing all pieced together follows. Line
numbers are given to make entering the program into the computer
more convenient.

111

INIINOY AJTAOW

EOANI WWe ¥V 904 ISHIx LLEf0a
ANILNOY HDYVES

INANI ,S. NV ¥0d ISHLx €84‘0a:
ANILNOY dav

INdNI «V¥. NY 904 ISHIx co#‘0Q-
T3¥0LS Quvodi™i/‘0a"

0#

THI0LS QIVOIA™I#/0VD8

JI¥IINE 38 O SYALOVYVHD 40 ¥HLIWNNxy T#’0¥99
JAOD NOILONDdAx S#‘0V9

ad
gdWO
ad
gdWO
3d
gdRD
ga1
LOdNI LSHELx
dyad
TAONW
MAOW
MAOKW

INILOOY IN4NI qQuvodxmEy

INILOOY AVIdSIA NIZ¥DS

S5HYAAY IXHL NNIW J0 ONINNIODAE AYMY SHYOLS« T13904s/‘¢sv"

NNAW‘EVY"

o#

(IHOIY¥ Ol L43T) NOILISOd NWNTOD« ge#‘oves

(WOLLOY OL dO&L) NOILISOd MO¥x #0999
HU0O NOIILONNA ¥0SYND NOILISOd« 0T#/0Y9

NEHIDS ¥9vd1d
LEASTE-DVTd AJIAOW SV QHISN 90« o#‘9a-

TTYD
T4LS
Yar
d) L3S TYILINI
qag
MAOW
MAOR
MAOW
J0SAND NOILISOd
TIY0
14T
LYYLS

N NO~S 0o

112

HDOVSSHW LdWO¥d NI

ZLAWOUd$/0Yeb T
ZINANI#/0¥D0T
gaMoOTIV “¥VHD INANI 40 # XVHx

*YVHD JO #«

SZ#'0VD8
pZ#/0Y09

TAOR
TAOW
MAOW
MAOKW

JUVYOHAUN WO¥d SSHI0AY LAHYLS LdD«

J3EMOTIV *¥VYHD INdANI 40 # XUk«

JOVSSHW ILdWOYd NI

o#

T1LdWOUd$#/ 0V T
TINANI#0YD0T

SZ#'0V98

*dVHD A0 #« PTI#°0v¥89
Z1#0YD

LOANI 139 % IX®L X1dSd-3d0D NOIIONNAx
¥addnd ¥va1o
qUvOodAHEY WO¥d HWYN 199«
INIINOY AVIdSIA NIFNUDS

19901S/'¢€vY"
Av¥1dSI1a NEH¥DS adv¥‘gv”

NIHYOS ¥varid

[} m--

NV ¥04 SHL«x

Ndd0

L¥YLS
soadwnr
4:3

STV SSHYAAVY INOLNIdd

:m—-

¥ 804 ISHL«s

os8#’0a-

Jqyd
TAOKW
TAOW
MAOKW
MAOW
MAOKW
TIVYO

TIYO
148
va
TI¥D
ONIW dav
TIYD
INILOOY dadv
ud
dad
gdWO
dad
gdWO

113

0# yud
9LAWO¥d$#/ 0V T TAOW
9INdNI%‘0VB0T TAOW

JIMOTIV¥ “YVHD INdNI 40 # XYW« S#‘0ves MAOW

HOVSSHW LdWO¥d NI “¥VHD J0 #« ZEH'0VD9 MAOW
aavodAdyd WoMd 30D IVIDHAAS 1D«

0# qag

CLAWOUdH#/0vYdb T TAOW

SINANT#/0V80T TAOW

aaMoOTIV *¥VYHD INANIJO # XVNWx g8#/0ve8 MAOW

ADVSSHN LdWOYd NI

CUVHD J0 #« 8T#‘0¥89 MAOH
JIvodXHEd WO¥d dIZ Id9«

0# g

P LAWNOYd$#’ 0VOP T TAOW

FINANI$‘0VR0T TAOW

JIMOTIV "¥VHD I0OdNI J0 # XVNHx Z#'0v08 MAOHW

HDVSSHW LdWOdd NI

*¥VHD d0 #« 9c#/0Yd9 MAOW
QUVOgAEY WOUd HAILVIS Id9x

o# yag

£ LAWOUd$#/ VDb T TAOW

CINdANI#/0VD0T "TAOH

JEMOTIV “¥VHD I0OdNI d0 # XVWs sz#‘0ves MAOKW

dDVSSHW LdWOWd NI

"¥YHD 40 #« ZZH#'0Y09 MAOW
QUVOdATI WO¥d ALID/NMOIL I¥9«
0# dyad

114

INANI QUY0dAdN AdVIOdW
d3MOTIV "¥YHO INANI 40 # XU
HSNOdSHY LdWO¥d NI “dVHD 40 #x
JOdNI LED ¥ IXHEL ATTdSA-HAOD NOILONNd«

AL 0VDOT
1#0v98
9G6#/0Y99
ZI#'0VD

TAONW

MAOH
MAOK
MAOK

NOILdO NIW NiNLId ¥0 ddv 96
ONEW OL NIQLIY ¥0 IWUYN HIHLONY ddVv O4 SLNUYM ¥dSN 41 YMSYx S6

0% Yad ¥6

HITYM OL 0 # QYOOHd«x 0#‘0v¥dz1 TAOR £6

ovpg‘ev” TLS Z6

HIGWAN aI00HY IXaN‘zv* wan 16

0# GYOOHY NI # QUOOHYW FIAVTIVAY IXEN HAVSx 06

IANILAOY HOWVHS ad 68

SLHAS 9¥1d SIsx 1#‘9a- ddmWd 88

J¥¥H 1T INIS INIINOY AJICAOW AT IS OL MDFHOx LS8

HINIINOY ¥OSIANHANS HINDAXH s o# Mud 98

NIOd # QuODFY IXHAN HAYS «x YHEGWAN qQ¥003Y IXAN/‘€Y" TLS o]
OAS OINI HII¥M OL # qu0dHd INdx ovezZI‘EvY” 118 ¥8

A¥00HEY IXAN LNHWHMONI « T#¢v’ maav €8

HHGWAN qY0DHY IXIAN/ ‘€Y a1 Z8

MDOTE DAS OLNI ¥aavy ¥344nd ILNdsx oveg‘ey” T1I8 18

TvaYY ¥yad4dnd Ms1a‘zv” van 08

MD0Td DAS OINI # dI AIId L0dx 0vd9’IVY" MIS 6L

I¥Y NI 4GI 9714 INd« JIGWAN NOIIVOIAIINIAI FIId/‘TV° matT 8L
FA0D NOILONNS ONIASTIINIAI x PP#0VD MAOW LL

JLI¥M 9L

115

LAWOdYd HOIVASH#/0vYD0T

IXdI ¥ALAVY FOVdS V ONESx zZE4‘0VD8
dOVSSHW NI ¥VHD J0 #x 9Z4#'0Vd9
HAO0D NOILONNI ONIAJIIINIAT « 6#'0Yd
0079 DAS‘oY’

TAOW
MAOR
MAOH
MAOW

a1

J0d HO¥VIS OL FEWYN ¥OLVYEdO MSY

HNILNOY AVTI4SIA NAFUDS

T990LS/‘ €v"

A¥TdSIA NHIYDS HOWVAS/EV"

NHI¥OS ¥vVATID

SIHI SOHEAN FANILNOY AJATAOWx HS01D

TTYD
TLS
vanl

TIND

TIVD

AYIdSTIA NIHIDS HOWYHAS dNIHS«

LYVLS
45010

NOILdO ONNIW NYNLHY ¥0 dav
ONIW 0L NInILay

I0ANTI ¥, NV ¥0d ISHIx z8%‘o0a-
HSNOdSHY 4Vu NO HENIILNOY dA¥ OL O9x ONIW aav
INANI V¥, NV ¥0d I1STL« G9%‘0Q"

LOANT QUVYOdATY X¥VIOdWAL/‘0q”

ANILOOY HOY¥VAS
gd
TIVD

ONIW 0L NINIay
gd
dd
HdWO
ad
gdWD
ga1

dOLVYEdO WO¥d dSNOdSHY ,¥, ¥O 4Vu NV ¥Od ISHLx

INILOOY YOSIA¥AANS HAINDAXH 0%
LdWOdd aav ¥0 ONIW#‘0VeVT

Jqad
TAOW

gl F7Id 199y YHEWAN NOIIVOIJAIINGAI &71Id/‘TY" ma
MSIA SHL WO¥Wd a¥0ody¥ ¥ avdys

AIHSINIA HOHVAS ag

SLEX HTIA J0 ONI HOVHY« ¥ ‘o0a: TdWD

Za90Ls/‘0a” a1

1#'1¢° Taqy

YHEGWRON dY0OBY IXAN/‘TV" 101
IS3L H7Id4 40 ANA

JAINNOD HTIA FYOILSx Zza¥o1s/0a: 135S

Q¥003¥ IST HIIM 00 dYOTIx T#’0Q- a1

o« JEIWON A¥008Y IX3AN, NI ddI¥D0T MON # q0DHEY d7Td 40 ONH«

714 ONILSIXHT NEJO TIVD
(ISIXH AXAVIAVTIVY ISNKW) FT7Id NIEJIO«

ONIW OL 1IN0 TIvds AR a4

QENINLIY ¥HILOVIVED HNO ISNCL«x T#TY" MAWD
HWYN ANO NVHI HYOW AJIAOW NVO-INO TIVE ¥0d MOTIVY Olx
AWYN 40 OVIISNI <¥IINA> IIH ISOL AND JAI F3S 01 JSHIx

TI¥Y0LS NI ands TIFIOLS/‘'TV" Mis

d9MaEINT ¥VHD 40 # 19« ov¥dZT/Iv” mMatd

o# Myd

INdNI HWYN HOWVIASH#/0VD8 TAOW

INANI HTIYMOTIV 40 #« SZ#/0¥89 MAOW

Hd0D NOILONAJA HNIAATILNAAT S#/0Yd MAOW
INANI QUVOd9AdN 1D«

o# vad

0ST

6v1
8V 1
IA A
9v1
SYT
LA AN
1A A
[4 A"
™I
ovT
6¢T
8ET
LET
9t 1
GET
PET
£eT
[4A %"
T€T
0€T
6C1
8ZT
Lzt
921

~
—

-

JA0D aI ENIT ¥ AV1dSIds 6%/0VD
MO0Td DJAS‘0VY”

a¥00"d ¥YHHIONY 139y J1SIL FTITJd J0 ANEF
YILLET IXHAN MOHHO-HOLUWx dOOT HO¥vES
YALLET ¥ H9YdWOD« +EV8‘+2V0

JIHDIYW SYHALOYIVHD IV« HOIVW aNNod
YHINOQOD *¥VHD INIWIAHOAAy T#'1Q0"

ASTA NO UWUYN LD« TINANI‘EY”
AWUYN JIJYIINT L3O« INdNI FWYN HO¥vVES'ZV®
YALNAOD “¥VHD SI Td«x T8¥0LS/’ 1A

MAOCHK
vantl
HWUN AVTIdSIU«x
HOLVYR ONNO4
ud
dd
gdKWO
Jd
mMans
d00'1 HOYVHS
a1
va1
Ma1

HOLVW ¥04 MSIA WOdd ANV J¥003¥ WOdd JWUN MDHHO«

0%

qi00dd MD0INAx 0#/0v¥891

YAINNOD ITIA JY0OISx Zzagoas/‘oa:

QUODHY INAWIUONI » 1#‘0a

OAS OINI 199 Ol # quoDdy Inds ovaci‘oq:
EINNOD QHOOHY LHO« zd¥oLs/‘0a-
DAS OLNI "¥adv ¥dddnd INds ovdg’ TY"
IVI¥Y ¥add4ngd MsId’Iv”

MD0Td DOAS NI dI Indsx 0¥99‘TVY"

HJ0D NOILONAA ONIASIINIAIx SEH/0VD
MO0IS DAS/OV”

Jyd
MAOHR
TLS
maav
TLS
1a1
145
val
MLS
MAORW
¥a1

SLT
VLT
€LT
LT
LT
0LT
691
891
L9T
991
G991
ot
€91
¢91
19T
091
6ST
86T
LST
9G¢T
661
vat
£EST
(AN
1S1T

[+ o]
puted
-~

daLodATasS SYM NOILAO AJICAOW 41 H3S OL MOFHO«

0% yud

9ILNANI#’0v¥e01 TAOW

HAOD FHI NI SYHIDVYVHD G« S#’0vR9 MAOW
FAOD AV¥1dSIO«x

0# Mudg

SINANI#‘0VB0T TAOW

dIZ FHI NI S¥ELOVIVHD 8« 8#/0vVd9 MAOH
d1Z AV¥1dSIU«

0# Mg

pINANIH 0VBO0T TAOW

HIVLS HHIL NI S¥3LOVIVHD GZ« Z#'0vVd9 MAOW
FIVIS AVI1dSId«

0% Mad

CINANI#‘0V30T TTAOW

NMOI HHI NI SYAIOVIVHD SZ«x sZ#'0Y99 MAOW
NMOL/ALID AV1dSId«

0# Mug

ZINANI$#/0¥D0T TAOW

*¥aa¥ 9HI NI SYHIOVYVHD GZx SZ#'0VD9 MACKH
SSHYAAY AVIdSIax

o# yug

TININI#/0VD0T TAOW

ON" LV ga34d ENIT ONHESk £T#/0Y98 MAOW

ANIT HHI NI SYAIOVYVHD SZ« GZH#'0YD9 MAOKW

0oz

661
861
LeT
961
S6T1
veT
€61
61
161
06T
681
88T
L8T
98T
68T
14
€81
[4: 21
181
08T
6LT
8LT
LLT
9L T

[o)]
-

-

A¥7dSIA NIFYOS XATAOW‘EV* a1 sze
NIFYOS ¥YvHTIO TI¥0 vze

A¥T1dSIA NIHYOS RAIAOW dNLIASx €T

INILNOY AJATAOW Z¢¢

ANIW aav ud 1ze

YHIWNN Y003y IXAN/‘0a° 1LS 0ze

Z#'0a- 1408 612

INAWINOAd LSOW OS ¥HHOTIH SAY0DFY OMI‘INIOd SIHIL IVx 812
zIdoLs/‘oa- a1 L1z

JYIGWON Q¥00EY IXEN, NI FYOLS’# QUODHY INIYYND FHL 1E9x 91¢
aaLOETIS AJIAOR STC

JYUVLS ud vie
o# Mudg £1C

114 TTY HSOTO O dIx EETH#'0VD MAOW zZ1e
adgSINIA HDOWVES 112

IHESINIA HOYVHES ud 01¢C

o# Mud 602

LAWOYd ¥HINT LIH#/0VSVI TAOK 802

INANI QUVOHATY XUVIOAWHL#‘0VDO0T TAOW L0Z

INdNI HTIYMOTIV J0 HIONATx T#‘0Ve8 MAOR 90¢
HOVSSHW LAWOUd NI °"¥YHD 40 #x 8E#/0Ye9 MAOK 1114
AMIAIA JAOD dIx ZT1#0Y® MAOKW yoe

INIINOY HO¥VAS A0 AN NHHI ‘HONOYHL STIVd dIx £0T

AaIOATIS AAIAOKW 9 z202Z

AdTAOW SHLVOIANI Tx T#/90° adWd 102

TvdyY ¥3440d MSIA‘1Y" van
D09 OAS NI JI I0dx NCERR A MIS
(AYI™)3A0D NOIJIONNS ONIXJILNAQT SE#‘0YD MAOKH
AD0T9d OAS‘QVY* vatT
al 9714 13D« YIAWAN NOIIVOIAIINAAI FTIA/‘TY° Mam
¥SIAd HHI WOMd d¥oDdd V avddy
IHSINIA ¥AINI NG ad
SIEX FTIA A0 AN HOVHY v ‘oa TAWD
Za3y¥oas/‘oa: a1
ayo0ay ISY'T 40 ONIININd MOTIV« T#/1V" Taay
UAGWAN 90038 IXAN/’TIv* a1
1S3 J03
YAILNNOD HTI4 HYOLSy zIAWOILS/‘0aQ° T5LS
Q¥OoOHY IST HIIM 040 AVOIx 1#‘0a- a7l

WHEIWON Y0038 IXdAN, NI JELv¥O0T MON # QU0OHY dTId 40 ONdx
I1Id DONILSIXH NIdO TI9D

dINILOOY AV¥I4dSIA NIIUDS TI¥O
TEI0LS/‘€Y" TLS
AV'IdSIA NIFYDS STHEVT INOINI¥d’‘€v* va1

NIIYOS ¥vaTIO TT¥D

ST1HIYT SSHAAAY INOLNI™d
¥0d HOUVHS O1 HWYN JOIVYEdO MSY ud
O¥1d XATUOW« 1#‘9a- 141

HINTIINOY AVIdSIA NHHEDS TIYD
199015/ ¢€¥Y" TLS

062

(344
8ve
Ly
9veC
1’344
vve
£ve
444
ive
ove
6ET
34
LET
9¢t¢
1 X4
vee
15 X4
cee
12
(X4
6t
8¢¢
Lee
9¢e

-

o

-

dO0T1 THEVT V INIdd TIVO SLe

ANIT ¥aaV¥ NI ¥VHD Jd0 # XVHx sZ#‘1Q” Mat vLe

19901S/46¥Y" 118 €12

ZINANI‘GY" vart ZLZ

do01 TH9vYT V¥ ILNIud 179D 1L

ANIT AWYN NI ¥VHD 40 # XUW« cz#’10a’ Ma7 0Lz

THY01S/ 6V 118 692

TINANI‘GY" a1 892

(¥YHDOY¥d) HA0D NOILONNA ONIAATIINIAIx STI#/0VD MAOW L92

MO0Td OAS‘OY” va1 99¢

THAYT V INIddx S92

o# ud v oz

SSHIAAVYy TINANI#/0V¥D0T TAOW €92

ANILOOY J0 ANE IV FOVdS dNHISx r4% M\ £ MAOW z9¢

ANIT 40 HIONIEIx 06#°0Y89 MAOW 192

HA0D dIx 6%'0VD MAOW 092

MD01d DAS‘QV” vaT 662

NFHYDS OL a¥odsd dWnd Ol S¥Tdx 862

0% peeich LSZ

ayooEy MO0INA X 0#‘0v¥291 MAOH 967

YALNNOD TII4 HI0LSx ZHIOLS/'0d° 118 ¥4

¥ # QYOOHY INAWHYONI x 1#‘0Q maav (AT

OAS OINI 135 Ol # 49003y INdx ov¥ez1‘0a’ TLS £S5z
YHINOOD Q003Y IH39« Z9901s/4 04" a7 7262 o

OAS OLNI ~¥0aVv ¥ddd0d L0dsx o0vdg‘TV" 1LS 15

INAWIYONI ¥ TH'GVY" maav 00

HYERL O¥HZ ¥ SHINSNIx 0#/0V99 SGAOW 662 T
SV’ 0vVoL gA0N 862
144901S//6¥" 107 L6Z

dOOT THLHYT V¥V ILNIdd 962
ANILOOY ONILINI¥d THdVIx S62

ISHL 404 gd 62

aadd INIT INI¥d TIYD £62

THIYT IXIN ¥0d dN H0D« d3gd FNIT INIud TIYD 262
40011 T1E€gvT v INIud TIY0 162

ANIT HA0D NI ¥VHD 40 # XYWk s#‘1a MaT 062
199055/ ¢6vY" TIS 682

9INANI‘GVY" va1 88¢

dOo01 1d9v¥7 VY INIud TIYD L8T

INIT dIZ NI ¥VHD 40 # XNk g#'1a" masi 98¢
THIOLS/ ' G¥ " 118 G8¢

SINANI‘GY" vat 82

dOoO1 Iyl ¥ INIud TIYD €8¢

INIT HIVIS NI ¥VHD J0 # XVH« k' 1a Mmam 8¢
Td990Ls/gv" T1LS 18¢

PILOdINI‘GVY" van 08¢

doO1 THdvY ¥ LNIud TIYD 6L2

HINIT NMOL NI ¥VHD 40 # XVUWx sz 1Q” mant 8LT
19901S/'¢6¥" 118 LLZ

£INANI‘GVY"’ ¥an 9L2

RERERERRRENRRERRERERRRN RN RN R R RN RN
* SENILONOYLNS »
REFXRERERERREERFEXRLRN RPN RRRRRAR RN RN RN
»*
139
o# yud
YHINIYd OL 934 ENIT ¥V dW0dx €T#/0VD9 MAOW
YYHD INI¥d-FA0D ONIAATINIAT % 8T#/0Vd MAOW
D019 DJAS‘QY” a1
addd aNIT INIud
NINIHY FOVIYYYD O34 INIT INIYd Ol ENILOO¥dNS«

I9vYLS ¥d
o# P peict
SHII4 TIV HSOTO OL dIx E€ETI#/0VYd MAOW
¥D00T1d9 DJAS‘QVY° ¥ar1
dIHSINIA ¥HINI¥d
doOoT THEVYT V¥V INI¥d adg
aadd =ENIT INIud ad
¥IINAOD DHA « 1#‘10° Mgans
o#’TQ MdWD
0# Myad
agdd FENIT INI¥d g
NYNLEY HOVIVYYD ¥0d ISHLx €T#°Ga* g2dND
ovaL‘eq” qa1

“YVHO LXUN AVMY HYOLSx TIYOLS/‘ G¥* LS

ovaL’0a” gar

0#’0a- 1a7

0% Myd

AYHD IXEN ¥adv AYMY HA¥O0LS« 1A¥0LS/ ‘€ UARS
INHWIYONT & IE R A maav

FYEBL SI 0¥HZ YV SHYNSNIx 0#/0¥99 SAONW
£¥d‘ 0VaL GAOW

1d390L8/¢s¥" 107

dO0T ¥ALOYIVHD ¥

J4A0D NOIIONNdAx 8#‘0V8 MAOW

MD0T9d DJAS’QY" vat

ANILOOY AVTd4dSId NIFYOS

A¥1dSId

FFXRRFRR AR AR F R AR RN RN FXRRFNRRARSE RN ENRRREX

¥1dSTIC0 O INIT IXHAN “¥AAY Od. SINIOd

THEIOLS »

¥ $SNOILIANQOD X¥INI INILNOOY NIAHYOS ¥
FEERNFFFFRAYNNRRERRNNRANNNRRRERRRERFRRRRRRY

o# Mud
HA0D NOILONNdIx P9Z#/0V0 MAOR
agsoTd 3¥NsS HMVHx 45010 TIYD

soadnnre

LIRS EEE R E R SRR LR EEEE R E L LR L LR E S E L]

* dNON ¢ SNOILIANQOD AYLNH
* dA0OW AdV3Y sod O& dmnr

¥
*

FXXRERFRERREES RN NP RN RANRER AR AR RFFRNN

¥

0s¢€

6 ¢
8hE
LyE
9yt
Sve
vre
1323
re
1542
ove
6EE
BEE
LEE
9¢¢t
Gee
vee
[RRY
cee
TEE
(153
6C¢t
8zt
Lze
9ct

hed
o

-

¥yaddNd yvaTo
R R Y Y Y 122 1L,
¥ SAOVdS HLIIM VHYV ¥3440d MSIA TIId «

XERXRREREREERERRRRRNENERREREERENR LR ERNERYY
hAce:t
ATdSd YHIWNN ¥OUY¥d AILNDAXH o# yydg
OAS OLNI HAOD ¥O¥¥E d¥OTIx 0v39 ‘' TV" MIS
FA0D NOILONAA SONIXATINTAAT x 6E#/0YD MAOW
1Y OLNI dd0D ¥0oudE avOisx ovaez‘1v" Man
YA IANYH yo¥yd
FEXNRERXENEREXRRRRERRRRRERERXEENRRERRRNREERRY
M OHAIA NO MAIWNN WO¥d" Avi1dsId *
(AL E ISR RIS LR RS R R R R RER X FRER LR
I3y
o# qud
STO OL Ha0D IIDSYx HT.H#/0YD9 MAOW
HA0D NOIIONNJIx g8#/0vY® MAOR
MD0Td DAS‘QV* waT

NIFFIOS ¥VITO
FRXNERERERERENNRRERERNEIRENENENREARRERRREYR
» ANON :SNOILIANOD A¥INA :NIFYOS HVITD «
FEREREREXRS RN RRNERRERNRREERNRERERERENR

LHY
dOOT ¥ALOVYVHD VY AV1dSIqA ANg
S#‘0a- gdWD

I d7Id JIYOLS «x

XXX REXFFFXRNRERERRRXNRR X2 xxxy Q0P

NENITSx hAce: 66¢

YAGWAN NOILVOIAIINAAI FITA/‘ TV MIS 86¢€

I A114 339 ¢ ACIARRA A Mat L6E

SISIXH &TIId NIHIL ‘¥0¥¥d NV JdIx HIId ONILSIXE NAJO AN 96¢
do¥¥d NV ¥0d LSHILx 0¥dZ MISHL S6¢

TIVD YOSIA¥AINS HINDAXTx 0% ¥ad v6¢
OAS NI JISIT ¥ALIWVYVYd J0 ¥AAY INdy 0ve0T‘TY" TLS €6€
MSIA NO J7Id HHL FIVEED« T#‘TVYDE GAOW 26¢€
LSIT YHIILAWYYVd! V" va1 T16€

0vd9‘ 1V 158 06€

HWYNTIII TV a1 68¢€

HA0D NOIIONAA ONIZJIINIAQT » ov#’0vd MAOW 88¢
¥O0Td DAS/0V”’ va1 N3dO L8¢E
#***#**%*****#***#*****%***%******%***** mwm

x INILNOYENS ATIA V¥ AIVIYD - NAAO «x S8

L Y Y L LTI I ITITTIIY R 11y

NACE:] €8¢

SHALXY 06« doo1 T11d’‘04G" add Z8¢

o#‘0a- HdWD 18¢

SSHYAAY INAWHANONI & T#%Y° Mmaay 08¢

HOVdS dv0I« ZER' YD GAOW 6L¢E

doO1 TIId 8L¢E

IVEYY ¥3a40d MSIa’‘pv" val LLE

J33409 FIA9 06 - YHINNOD SI 0dx o6#’0a- ma 9L¢

127

o# qud T4 4

QY00EY MDOINN« 0#/0V891 MAOW 24

(F7I4 NI IST) O# QYODEY ILdD« 0#0¥92T TAONW £Zy

DAS OINI SSH¥AAGY ¥IAANG SINdx ovdg’Tv" TLS A4
TVEYY ¥dd4409 MSIa’ TV’ wa 184

MDOTd DOAS NI INds 0vd9‘TvV" MIS ozv

x 61F

(ayad) FA0D NOIIONNA ONIAJTIINIAT « SEH#/0YD MAOW 81V
YIGWAN NOIIVDIJILNIAI ATIL/‘TV° MIS LTV

al ¥IId SIH9« A CIASRAA Maa 9T¥H

0# QY00FY WO¥d # QW0OIY AISN ISYT I¥9x STd

YATANYH Jo¥¥d OJ dWNL ¥ou¥d JdIx YATANYH ¥ouyH SN vIb
SYOYYd 904 MOHHO«x 0¥de MISHL €TV

o# ¥udg ZTY

DOAS NI ISIT7 ¥EIAWVYV4 40 SSHYAdV INd « 0v¥80T‘ IV’ 1518 11¥
"AAOD FIIA ONIILSIXH NIJIOx 0#'1VYPE SAONW 0TY

ISIT d3LAWYYYd‘ TY" var 60%

0vd9 ‘' IvY" LS 80%

AWYNATIA V" val LO®

00D NOILONOJA ONIAJTIINIAT» 0v#/0vYd MACK 90¥%
MD0Td DAS’OVY” vaml SO¥

FS0TD TIYD y0¥

114 ONILSIXH N3JO €0¥

FXERERRXRRRRNRRNER SRR XXX N2 e v xxxvxxx COF @
¥ INILNOY HTI4 ONILSIXE NI4O *» T0V +

0‘ze’‘1’0L'06'L8 avivda 0SYy o

a
LSIT VILAWVIYd 6%F
0 MyLvd 8vv
YIdWON NOILVOIAIINFAI H7Id LVY
SNOILYOO0T SSHYAOV NUAR HAYHSHUd« 0 gvLva 9%y
JOLYNIWYAL HWUN HTIds €1 gavrvd 153 A7
s L¥A/LSIT, LXHL 1AA4

INUYNATIE €Y

0% €YIVAY ZHIY0LS Zvb
0'v €vIVay THYOLS Tb¥
0‘zg dYILVQY 1147

AD0TH DAS 6€V

FERRRFRNXXEERIRNF SRR R XXX RRN XXX XXX %x BEP
x* YHYY HOVYOLS ONIMYEOM 8 dHVSSHKH » LEY
EXFRERRXXENERNFEXXFNRXXXRYPYXXS Yy xvvvxy OC)

hAck:| 13 % 74

SETIA TI¥ FSOTO DAS OL TTI¥O«x o# yudg 1457
SHTIA TI¥ HSOTD JdS0TOx CET#'0YD MAOK 138 % 7
HSOTO Zev

EXEXREXFREXRERERRNRNRXNRNX Y RYRXRRXRN XXX ¥y [EF

* 4114 JHI dS0OID x OE¥
FXFEXFRXRRNRFNXRRRPERRRRXRRNRR X XXX X2y OCV

NAcE:] A 4

YAGWAN a90DHEY IXEAN/’ TV TLS LZY

TYIYVY ¥83ddng d¥s1a/‘1v’ 1407 9Zv

HOVYOLS QIVOodAdEN AUVYOdWHL«

€T'¢€1 avIivda
Apeay Sod 03 uinjisy <¥>, IXIL
€T'€T 8YIvVd
s STeqeT ssaappe uﬂouc..num <d>, IXHL
€T'¢T €gvIvd
1pI0021 ® AJTPON <W>, IXAL
£€1'¢€T dvavd
JOUeU ' I0J ydoaess <S>, LXHL
€T‘¢T €vIvd
. ISTT 9yl O3 aweu e ppy <V¥>, IXHL
ET'ET'ET’ET €vING
== = . IXEL
y== == = . IXAL
€T'€T 9vIvd
ONER, IX3L ONARW
dDUBW 03 UIN38<Y> I0 SWeu Isyjoue pp<yY> 01 YsSTtm nolk od, IXAL
€T'€T gvLvd
LdWOud dav ¥0 NNIAW
0‘z 9gvIvay
INANI QUVOdA™ AYVYOdWHL
SNOIIVOO1 MHGWAN NHAZ NO HNISSINAAY SJdTTM« 0 €vivd
INdANI ¥OILV¥Ad0O ¥0d VYIYV HOVIOLSx 0 gvivda
THYNOLS AYVYOdAHEM
(¥003¥ dESN LSY1 SAVNOLSk 0’y dvIvay

SLY
vLy
ELY
cLY
Ly
oLy
697
B9V
LoV
929%
L 4
1224
£9v
o
197%
09v%
6SY
86V
LGY
9¢v
GSy
14%1
1314
(4

o

JHGWON qU0DE¥ IXAN 16p &

€T

QU008Y ¥V XATIAOW,
AVYTdSId
¢ DUSW 03 uinlasx 03 A8y <YIINI> 943 3ITH,

gvLvd
LXHEL
NIHYOS XJIAOW
LXHL

ILdWO¥d ¥9INd LIH
0‘9z dvIvay
INANI HWYN HDUVHS

1 1103 ydoiees 03 eweU 1d3Ud,

YALOVYVYHD YOLUYNIWYHIx 0‘s

€1
+JWYN ¥ Y04 HOWVIES,
ANTdSId

€T
¢ LSIT OL HWUN ¥ Udv,

LXHEL
LdWO¥d HOUVES
dvLvd
gv.Lvd

LXHL

IX4dL
gv.Lva

LXHL

NIHEYOS HOUVHS
qavaLvda

gvivd

LXHL

LXHEL
gvLva

LX3L

AVTdSIA NIEZYOS 4av

S
» < 2933971 ®jeradoadde sys 3087188,

gvava
LXHL

00¢

66%
86v
Le6¥
96¥
S6v
Vov
14334
[4Y4
1134
06v
687
88¥
L8Y
98¥
a8y
1224
13:34
[4:34
18vy
08vy
6LV
8LV
LLY
9LV

-

(]

-

ddod SHIOLSx
dIZ SHYO0LSx
dLVYLS SHYOLSx
NMOL S3HY01Sx
LIFYLS SHIOLSx
dWUN SEYO0LS«

, < JuULUWWOD JI0 °9pod Teioads

, < ©opodo driz

¢ < UotrjeTADIqQR 93B3S ADJJIOT ¢
, < umojl I0 K310

. < Ssaappe 309338

, < ©oueu

ANILA0Y »AdV. Y04 VHYV HOVYOLS INdNI ANV

+ STHEVT SSHYAAY ILOOLNIY¥d,

AVYIdSIA

- — —— - ——————— - Y .] " — T —— {— — - >~

- — T — o1 - o~ . o~ T~ T — o o7 B o Do B Y Y o

LIYIS andg
0’9 €vIvd¥d 9INdNT
0’8 ©vIVd¥ GINANI
0‘c €vIV¥gd PpINdNI
0’Gz €vIv¥d¥ ¢£INANI
0‘6z 9vIVAY ZINANI
0/Gz 9YIVaY TINdNI
TYIYY ¥3adnd MsIid
I93ud, IXdL 91dWoud
asjuld, IXdL SlLdwoud
Is3ud, IXdL $ILdWoud
a93ud, IXHL €LdWo¥d
as3ud, IX8L zIdwoud
I93ud, IX3L TLdWoyd
LdWOUd »
0’‘s av.Lvd
uuuuu . IXIL
uuuuu ' IXHL
€1 qavrva
LXHL
NIFYOS STHIVTI INOLNIVd
0‘s avLvd
£T’€T A AR (4|
vvvvv . IX3L
IIIII i LXHL

6ZS
ZAS
€2S
zzs
125
0zs
61S
8TS
LTS
91S
616G
VIS
€1S
Z1S
TTS
0TS
60S
806
LOS
90S
606G
v0S
€0S
208 «
106 @

Chapter 11

ISPLAY ROUTINE
scRERn OISP e

uwovW EAD. 48
GISPLAY A CHARACTER LOOP

The TRS-80
Model 1I/16 Microcomputer

The Radio Shack Model II computer, shown in Fig. 11-1, has been
popular for many years. It offers a lot of features that make it one of
the most versatile microcomputers in its price range on the market.

It is possible for TRS-80 Model II computer owners to also
enjoy the benefits of the MC68000 microprocessor. There are
several ways in which current Model II users can utilize the equip-
ment they already have and still take advantage of the newest
technology.

One problem created by the rapid growth of the electronics
industry is obsolescence. A small businessman may invest several
thousand dollars in computer equipment, only to have it become
“obsolete” in two or three years. Machines that can store more, run
faster, and have better features seem to be released while their
predecessors have only been on the market for a year or two. But
we say that if a person purchases a microcomputer and sets it up to
perform certain tasks, as long as it is capable of handling those jobs,
it never becomes obsolete as far as he is concerned. It still does the
work which the owner initially intended.

Even though production of the Model II has stopped, Radio
Shack has not forgotten their customers who have previously
purchased these machines from them. Thoughtful planning at the
time the Model II was developed keeps it from becoming outdated
too easily. We will explain two ways in which current Model II

133

Fig. 11-1. The TRS-80 Model I microcomputer. (Courtesy of Radio Shack)

owners can benefit from the MC68000 technology and still keep
their machine.

The Model 16 is designed so that it can have two other video
terminals connected to it. This will allow a total of three operators
to simultaneously access the Model 16. The term given to a
machine with this ability is “multi-user.” These remote terminals
or workstations allow each user to be working on different pro-
grams at the same time. One person may be doing payroll chores
while another is running an accounts receivable program. The
machine accesses every station so quickly that it appears to each
person that the computer is dedicating all of its time to him alone.
You will see this type of operation referred to as “multi-tasking” in
the computer industry. As we have stated, it means that the com-
puter can perform many tasks at once, each independent of the
others.

So, the Model Il owner who finds he has the need to establish a
remote video terminal in his business, may wish to purchase a
Model 16. The manufacturer has made the Model 16 compatible
with the Model II in that the Model II can then be used as a remote
workstation.

Furthermore, those Model IT owners who need more comput-

134

ing power can upgrade their existing machine to incorporate the
MC68000 microprocessor. This is done by placing a TRS-80 Model
16 Enhancement Option into the Model IL. It consists of two circuit
boards, shown in Fig. 11-2, and a power supply. One circuit board
contains the MC68000 and its associated circuitry while the other
houses more RAM memory chips. The existing Model II power
supply is not sufficient to deliver all of the current needed to run the
extra components so it must be replaced with a heavier duty unit.

The Z80 microprocessor remains in the Model II. Both the 16
and the I1/16 put the Z80 to work handling input and output com-
munications with peripherals as well as other “housekeeping”
chores. This frees the MC68000 from doing many jobs so that it can
dedicate itself to just processing the instructions in the program it is
currently executing.

All of the assembly-language programs and subroutines listed

s

Fig. 11-2. The two circuit boards that comprise the Model Il Enhancement
modification. With the installation of these two boards and the upgrading of the
existing Model Il power supply, the popular Model Il microcomputer can utilize
the powerful MC68000 circuitry found in the Model 16. (Courtesy of Radio
Shack)

135

&

Fig. 11-3. The memory circuit board. The arrow points to the RAM integrated
circuits. (Photograph by George M. Keen)

in this book will run on either a Model 16 or a Model 11/16, that is, a
Model I which has received the Enhancement Option. No changes
whatsoever are necessary. They are completely compatible. The
only time you would have to worry about differences between the
two machines would be if your program accessed memory ad-
dresses above 256K. The Model 16 can have a maximum of 512K of
RAM, but the modified Model II/16 has an upper limit of 256K.

Figure 11-3 points out the RAM chips. It is interesting to note
that the RAM chips used are 64K by 1-bit each. In order to store one
byte of information it requires 8 bits. Therefore 8 chips with one bit
being stored in each are needed to comprise one byte of data. Chips
are in banks of 64K but these are configured in 128K groups making
the available RAM on a Model 16 128K, 256K, 384K, and 512K.

Another difference between the II/16 and the 16 is the disk
drives. Since the disk drives are not changed when a Model II is
upgraded, the Model 16 can store more information on a disk. So if
you have a program which in some way needs to keep track of the
amount of data to be stored on a disk, keep in mind that there is a
difference in the storage capacity between a 16 and a 11/16 disk.

The video character generator in the Model II is the same
circuit board used in the new Model 16. Therefore, the entire ASCII
code set is identical and programs which employ any of these codes
need not be modified for Model 16 or II/16 applications.

Even though the fascinating world of electronics is making
incredible technological breakthroughs, the purchaser of a Model
16 or I1/16 does not have to fear the obsolescence of his computer in
the near future. Radio Shack has wisely set up this machine so that it

136

can be easily converted to a completely functional 32-bit computer.
It uses a 16-bit bus, but by using the process of multiplexing it can
internally handle 32 bits in preparation for the day when 32 bit
systems become the next generation of microcomputers. It appears
as if the fine line that divides a “microcomputer” and a “minicom-
puter” is becoming more vague with each passing year. We are
using equipment whose inner workings utilize circuitry that ap-
proaches the razor’s edge of technology. These are exciting times
for those of us who are involved in the field of computers.

137

Chapter 12

N DISPLAY ROUTINE
SCREEN Dok LA0,5VC

uOVH €RO.3E
DISPLAY A CHARACTER LOOP

Interpreting Assembler Listings

The listing generated by the Assembler-16 can often help you
“debug” your assembly-language programs, that is, find the logic
and syntax errors. The Assembler-16 program allows us to print out
a hard copy (paper listing) on a printer. This gives us a listing we can
study more easily than the listing which appears on the screen
during the assembling process.

In Chapter 3 we mentioned that the EQUate op code does not
take up any memory space in the final machine-language program
form. When we first used EQU in a program, we needed to place a
decimal number 13 into the program to act as a terminator charac-
ter. The ASCII code 13 is the command for a carriage return and a
line feed. However, by using the EQUate instruction the machine
was not actually storing that value at the memory location where the
label was defined as we had incorrectly assumed. Therefore, our
routine did not work. By examining a paper printout of the assem-
bled listing, we quickly spotted the problem. The EQU op code is to
be used when you need to let a word or phrase represent a value. At
the time of assembling, the assembler replaces every occurrence of
each label with the value that has been assigned with the EQU
instruction. But the actual line where the EQU label is defined in the
program does not result in any kind of storage at that point. So the
following line did not work:

TERMINATOR
EQU 13

138

In the above instruction, every occurrence of the label TER-
MINATOR within the program is replaced by the numerical value
13. This line is strictly a programming tool which the assembler
allows us to use. It does not take up any room in the final machine
language form. It only plays a part during the assembling process.

Once we realized the problem, we searched for another
mnemonic that would properly fill our requirements. After ex-
amining some possibilities, we felt the best choice was to use the
DATA op code, which we did. DATA actually reserves memory
space within the program and places the value you specify in that
address. For example, DATAB 13 would reserve one byte of mem-
ory and store a decimal 13 in that location.

The point we wish to make here is that the assembler listing
can be a great debugging tool. And when writing programs in this
somewhat complicated language, every debugging aid available to
us is most beneficial.

In order to get the Assembler-16 to generate a paper copy of an
assembled program, we select the “P” or print option. The format
to use is shown below.

ASM16 file name (P}

First the assembler must be loaded by typing ASM16. The file
name is, of course, the name of the program you wish to list. The
option to generate a printout is given last. The letter P must be
surrounded by those funny shaped symbols { and }. These are called
“braces.” A space should be left between each parameter in the
instruction line. For example, let us say we are going to assemble a
mailing list program called MAILLIST. The proper format for
assembling and printing the assembled listing would be:

ASM16 MAILLIST (P}

The following is a complete program that will clear the screen,
move the cursor two lines down from the top of the video display and
31 character positions to the right, then finally return to the
TRSDOS ready mode. This listing shows the entire assembler
listing which we will discuss in detail.

1 START
2 000000 4EBA 10 CALL CLEAR SCREEN
3 00la
POSITION CURSOR

4 000004 30BC 3 MOVW @A0,%#10
5 000008 317C MOVW 6@A0, %2

0002

0006

139

6 00000E 317C MOVW 8@A0,#31

00LF
0008

7 000014 4540 BRK #0

8 000016 30BC 8 JUMPDOS MOVW @n0,4264
0108

9 00001A 4340 BRK #0

10 CLEAR SCREEN

11 00001cC 41FA 16 LDA .A0,SVC BLOCK
0010

12 000020 317C MOVW @n0,#8
0008

13 000024 317C MOVW 6QA0,#H'1B
001lB

14 00002a 4E40 BRK #0

15 00002C 4E75 RET

16 SVC BLOCK

17 00002E 00 16 RDATAB 32,0

18 0O0004E 00000000+ 1 * END START

We bnefly touched on assembler listings in Chapter 2. As
stated there, the first column of numbers on the left-hand side of the
listing are the line numbers of the source code. Line numbers are in
decimal form. This is the way the line numbers would appear if you
were to go back and load the editor and the specified source code.
These numbers may not be the way you left them upon exiting from
the editor program, since the editor does not give you line numbers
when you first begin typing nor when you insert new lines into a
program.

Should you ever have the need to see each line of instruction
with a line number beside it while you are working on a source code,
simply save the source code, type DE ALL to delete all of the text in
memory, and finally enter CO file name, where “file name” repre-
sents the name of the current file on which you are working. CO is
the command concatenate by loading a source file from disk into the
computer’s memory. The thinking behind the symbol “CO” is for
the function of concatenating, since there may be a time when a
programmer wishes to “concatenate” or add another program froma
disk onto the source file currently in memory. Anytime you need to
edit several lines of a source code, it is very helpful to have line
numbers.

Appearing immediately to the right of the line number will
either be a blank space or a letter “A” through “I.” Usually your
listing will have a blank space indicating this line is from the primary
source file. A character means that line has been “copied” or loaded
into the program lines from another file on the disk. The COPY
pseudo-op code allows us to perform this operation. The character
in the assembly listing is an “A” when it is the first file copied into

140

the program, “B” when it is the second, “C” the third, and so on up
to and including “I.” The limit is nine, “I” being the ninth letter of
the alphabet.

After the line number appears a six-digit figure disclosing the
relative address location of that particular instruction. There is a
slight shroud of mystery concerning the actual addresses where a
program is to reside. The Mode! 16 contains no ROM circuitry with
a language interpreter in it. All of its memory is RAM. TRSDOS
loads into RAM starting at the beginning of the machine’s memory.
It takes up about 48K of the computer’'s RAM memory. At the time
of powering up the machine any other interpreters, systems, or
debugging programs (such as Debug) are loaded. By the time our
program is loaded into memory, its starting address is a fairly high
number in memory. But at no time are we told the exact RAM
location of our program. The starting address of our program,
wherever that may be, is given a relative address by the assembler.
The first instruction falls on relative address zero. Each instruction
is then referenced to that address.

In our sample listing above, note that the first instruction,
CALL CLEAR SCREEN, is given the address of zero. The next
actual instruction, MOVW @ AQ, #10, is shown to have a relative
address of 000004. Ergo, the first instruction requires four bytes of
memory, taking up locations 000000, 000001, 000002, and 000003.

The labels START and POSITION CURSOR do not take up
any memory space, as you will notice. As we have noted before,
labels represent memory locations, but do not take up space them-
selves. START identifies the first instruction of the program, lo-
cated at 000000. POSITION CURSOR points to the first address of
the four-byte long MOVW instruction, which has a relative address
000004.

The third column group of numbers shows the actual
hexadecimal code which will be converted to binary for the micro-
processor to utilize. Should an instruction require several bytes of
memory to store, the additional code is listed directly beneath the
first part of the instruction. Let us examine line four in our sample
listing. The instruction reads:

30BC MOVW @A0,#10
000A

In this case we see the instruction for moving an immediate
word (two byte) value indirectly into register A0. The generated
code is 30BC. The value to be moved is decimal ten. The extension

141

of that instruction is found on the next line in the same column
positions, 000A. As you know, 000A is the hexadecimal equivalent
of a decimal ten.

You may note that the few examples we discussed in Chapter 3
show the hexadecimal instruction codes to be eight digits long.
Here you see instructions are grouped in four column positions,
comprising two bytes as opposed to four. This is because in this
particular sample listing all instructions act on a length of two bytes,
namely one word. In Chapter 3 the example given acted upon long
words (with the exception of EQUate) and therefore required eight
character positions to depict.

25 0000062 4D454E5S 25 MENU TEXT 'MENU'
26 0000000D EQUW 13
27 0000066 3D3D3D3D TEXT 'mmmm

Eight column positions from 10 to 17 are reserved for the
display of the assembled code. If only four positions are needed,
then the first four columns starting at the left going toward the right
remain blank.

In the next column, adjacent to the instruction code, is the
relocatable indicator. It can only be seen once in our program and
that is in the last statement, line 18. In a moment we will discuss
that further.

The next set of numbers in the assembler listing shows the line
number of the source code where a label is first defined. If no label is
present, these column positions 19 through 22 remain blank spaces.

Again referring back to the sample program, examine line number
11.

11 00001cC 41FA 16 LDA .A0,SVC BLOCK

In the operand, the label SVC block is used. This label is
defined on line 16 of the source code. Thus the number 16 is
displayed in the proper columns.

Since we are allowed to use labels up to 45 characters in
length, it is often necessary to place a label on a line prior to the
actual line where the instructions are located. It is also necessary to
dedicate an entire line to a label if that label is to be used as a
“global” reference, that is, it can be referred to from any spot in the
program; it is not limited to any particular range.

Inboth of these cases, the label is actually assigned to the set of
instructions which start on the following line. This can be seen in
line one and line three of our program:

142

1 START

2 000000 4EBA 10 CALL CLEAR SCREEN
001A

3 POSITION CURSOR

4 000004 30BC 3 MOVW @AQ,#10

If a label is not a part of the original source code but has been
copied into it by using the COPY directive as we just discussed, a
letter will be produced and shown back to back against the “line
number defined” column. As we have previously stated, with the
appearance of a letter in column five, the file it came from is defined
as “A” for the first file, “B” for the second, and so forth in keeping
with this assembler’s standards. Since we do not have any copying
taking place in our sample program, column 23 remains a blank
space.

Column 24 will contain either a blank space or an asterisk (*)
symbol. When the assembler must branch to another section of the
program or make a reference to a label, this column indicates the
direction in which the label can be found. Labels which have been
defined prior to executing this line will produce an asterisk here.
This can be seen on the last line of our program, line number 18,

18 00004E 00000000000+ 1 * END START

The symbol START is a backward reference, that is, it was
established before reaching this location in the program.

A blank space shows that the reference is further on in the
program, said to be a forward reference. All of the other occur-
rences in our program here are forward references, thus, column 24
contains a space in all of these.

Several things found in line 18 should also be discussed. As we
have said many times before, all addresses in the Model 16 are four
bytes long. The operand of the END statement in line 18 as START,
which defines the entry point location where the computer will
begin execution once the program has been loaded into memory.
This explains why there are eight zeros in columns 10-17.

Finally, the plus sign (+) immediately following the hexadeci-
mal address shows that the symbol is relocatable. This means that
the linker program (LINK16) can alter addresses of code or infor-
mation. A blank space indicates it cannot be moved. A period means
it is an external signal which is a special case and is beyond the
scope of the material the average programmer needs to know in

order to begin writing assembly-language programs for the Model
16.

143

The remainder of all information to the right of the backward/
forward reference marker in the listing is the source code itself as
we typed it in. This particular sample program does not show any
comments but the comment section is printed at the extreme right
of the listing. If a comment is too long to fit on the paper, the
assembler will simply print the rest of the characters on the follow-
ing line.

We have already shown how the EQU op code does not take up
any memory space as an assembled listing discloses. Other in-
structions in a program, such as branches, can also be followed by
close examination of the hexadecimal codes generated by the as-
sembler. Jumps, calls, and other types of branching commands can
be seen in the listing. Let’s look at the CALL statement in line two
of our example:

2 00000000 4EBA 10 CALL CLEAR SCREEN
001a
The generated code for CALL is 4EBA. Note the instruction’s
extension code 001A. This is a decimal 26. The CALL op code
causes the computer to jump to another memory address and begin
executing instructions from that point. It does this by adding the
number of bytes of displacement to the number which is currently in
the PC (program counter) register. Displacement may be in either
direction, forward or backward in the memory in respect to the
current address. Here, the machine is directed to go to the section
of the program defined by the label CLEAR SCREEN where a
routine to blank out the video display is located. Notice the address
at which the CLEAR SCREEN routine is located.

10 CLEAR SCREEN
11 00001lcC 41FA 16 LDA .AQ,SVC BLOCK

The actual set of instructions for CLEAR SCREEN begin on
line 11. The relative address is shown as being 00001C. This is a
decimal 28. So in order for the computer to execute the instruction
in line 11 next, it must be told how many bytes ahead to travel. As
we previously mentioned, the extention code for CALL is 001A
hexadecimal, or 26. The displacement, therefore, is 26 bytes. This
is the value to be added to the number already residing in the
program counter register. The CALL instruction itself takes up two
bytes. The addition of 2 bytes for the CALL instruction plus 26
bytes for the displacement equals 28. As you will note the location
of the CLEAR SCREEN routine is indeed at the relative address of
28 decimal, 001C hexadecimal.

144

Chapter 13

ROUTINE

s otz 495k
MOV! [LB13 "
DISPLAY A CHARACTER 1001

Some Programming Techniques

In this chapter we will go further into the world of assembly
language by establishing some simple routines which the reader can
use when he needs to perform certain tasks. We will also cover
some ideas to help you debug your machine-language programs.

The listings of the concepts discussed are kept as short and
clear as possible. In this way they are easier to follow and to build
into other programs.

TIMING LOOPS AND LOOPS IN GENERAL

The need to create loops is a very common occurrence in
assembly language. We cannot think of any program which does not
use at least one simple loop. Here we will show how to create a loop
similar to a FOR/NEXT loop in the BASIC language.

Before entering a loop, it is customary to establish the count by
placing the desired value in a memory location or perhaps in a
register. The sequence of instructions which lies between the
beginning and the end of the loop can be repeated any number of
times. If no processing takes place other than incrementing (or
decrementing) a number (a counter) and testing to see if the count
has reached a particular value, the loop can be said to be used as a
time delay. The machine simply sits and counts to itself for a
predetermined length of time.

By the addition of the NOP instruction, the time can be pre-
cisely controlled. The mnemonic NOP represents “no operation.”

145

An NOP will simply cause the computer to waste a few clock cycles
of time. Condition bits in the status register are not changed. The
address stored in the PC (program counter) register is advanced to
point to the location of the next instruction.

Whether we are setting up a time delay or a loop to repeat a
series of instructions, we need the same ingredients. A number can
be placed in a register and it can be incremented or decremented
until it reaches the desired value.

Depending upon the type of assembler, a loop listing for the
Z80 microprocessor might look something like this:

LD B,0FFH
LOOP DJNZ LOOP

The same function can be performed in a similar manner on the
MC68000 by the following:

Lpw .DO,#H'FF
LOOP DBE .D0,LOCP

In the above routine, the hexadecimal number FF (decimal
255) is loaded into data register D0. The next line does all the work.
First, the value in DO is decremented, that is, one (1) is subtracted
from its current value. The Z flag is checked to see if it has been set
or cleared. If the value in DO is not equal to zero, execution
branches back to the same line where again DO is decremented and
tested again.

The letters chosen to represent that op code at first seemed
backward to us. We tend to want to think of the instruction DBE as
meaning “branch if equal” when in fact it is branching when the value
in DO is not equal to zero. But keep in mind that what is actually
happening here is the testing of the Z flag in the status register. The
Z bit is checked for a set or cleared condition. The Z bit is clear (it
contains a zero) as long as the value in DO (in our example) is not
equal to zero. When the register has reached zero, the flag is set (it
contains a value of one). So a little thought is needed when setting
up a loop on the Model 16.

When the routine above is run on the Model 16, it executes far
too rapidly to be seen.

Should we want to extend the count it makes a rather lengthy
routine for the Z80 since its registers cannot hold a value larger than
FF. Registers must be paired together if numbers larger than 255
are required. It is no problem accomplishing a count of, let’s say,
hexadecimal FFFF (65,535 decimal) when programming the
MC68000 since the register can directly store a two-byte value.

146

LDW .DO, #H'FFFF
TIMING LOOP
DBE .D0O,TIMING LOOP

INCREMENTING THE VALUE STORED IN AN ADDRESS

Often it is necessary to take a value which is stored in a
memory location and add a value to it. The routine we show here
uses the ADD mnemonic to increment the value. By using this
instruction we are not limited to incrementing by only one, rather, it
can be increased by any amount.

Let’s assume that we want to increase the current value stored
in the memory location whose label is STORE1. In our example we
will increment the value by one.

The first thing to do is to load the contents of STORE1 into an
address register where we can use the ADD instruction. As you
recall, a slash (/) tells the computer “the contents of”’ that address.

Next we add the desired value to the register. And finally, the
STore command will place the new number back into the address
STOREL.

Below is a listing of our sample routine. Address register Al
has been chosen to perform the addition. We avoid using A0 since
many times that register is tied up in a program keeping track of the
SVCblock. Also, we used the suffix “L” so that this routine could be
used in any application where the number goes as high as
FFFFFFFF.

LDA .Al,/STORE1l
ADDL AL, #1
STL .Al,/STORE1

TESTING FOR GREATER THAN AND LESS THAN

In Chapter 6 we showed how the CMP (compare) instruction is
used to set the various bits in the status register.

Usually we test the Z flag bit to check for an “equal to”
condition.

But what if we wanted to see whether a value was greater or
less than a particular number? There are other bits which can be
examined.

As we pointed out in Chapter 6, the CMP code performs a
subtraction operation. The various bits in the status register are
either set or cleared depending upon the results of the subtraction.
The result of this computation is not stored anywhere. Its purpose
is solely to set the bits in the status register.

Perhaps a sample problem can best demonstrate how we can

147

test for a greater than or less than condition. Assume a number has
been placed in data register DO and we want to find out if the value
stored there is greater or less than, say, the decimal number 100.
This could be done with the following instruction:

CMPW .DO,#100

This instruction will cause the machine to subtract 100 from
DO. If the Z flag equals a one, then the two numbers are the same.
Should the Z bit contain a zero, the value in D0 is not 100. So we can
use the Z bit to find out an “equal to” or “not equal to” condition.

Another bit, the “V” or “borrow” flag, is set if DO is less than
100 and the computer was forced to borrow to complete its calcula-
tion.

There are only three possible combinations of equality. Either
one number is equal to, less than, or greater than another number.
So all we really have to do is test for equal and either greater or less
than. First test for equality and then test for a less than condition. If
execution falls through to the next program instruction, then it must
be greater than.

Next we put the BRanch instruction to work. There are over a
dozen variations of the BRanch command. Each one tests a different
bit of the status register and either branches or does not branch to
another location in the program. The variation to use will depend
upon the particular circumstance and how the program flow is to
proceed when certain conditions are met.

In alphabetical order, the available BRanch commands are:

BC branch if carry

BE branch if equal (referring to Z flag)
BGE branch if greater than or equal

BGT branch if greater than

BH branch if higher than

BHS branch if high, same

BLE branch if less than or equal

BLO branch if low

BLT branch if less than

BN branch if negative

BNC branch if no carry

BNE branch if not equal

BNH branch if not higher than

BNV branch if no overflow

BP branch if positive

BR branch -~ always branch regardless of status register
BV branch if overflow

DEBUGGING IDEAS

Writing assembly-language programs with the Assembler-16
package is a very time-consuming task. If you just want to make one

148

tiny change in the source program, it is necessary to run the editor
program, load your source code, make the change, save the new
version, quit the editor, run the assembler and assemble the source
code, run the linker program, then finally, run your program!
Hopefully the change you made fixed the particular problem you
were having. If not, well, back to the drawing board. It does take a
good four to five minutes to go from the source program to an actual
test running of the program. We would like to mention a few ideas
which we found useful in debugging our programs and which helped
to speed up program development.

As we explained in Chapter 9, an odd address trap error 1s
caused when the computer tries to execute an instruction which
falls on an uneven memory address location. The line at which the
error occurs in the program may not necessarily be the line where
the offending problem is located. For you BASIC programmers,
take a look at this erroneous program:

10 §=0

30 PRINT X
40 S=S5+X
50 NEXT X

Here, the programmer forgot to type in line 20 which should
read something like

20 FORX=1TO 10

By leaving that line out, the computer will generate an error in
line 50 (NEXT WITHOUT A FOR). But that line is the symptom
and not the cause.

Similarly in MC68000 programming, an odd address trap error
could be caused by the use of an uneven number of bytes at some
other point in the program.

To help locate the cause of an odd address trap error, assemble
the program and get a listing on paper. The second set of numbers
on the listing is the relative address locations. Search for an odd
number in the least significant digit location. Acceptable even digits
are of course 0, 2, 4, 6, 8, A, C, and E.

1 000000 41FA 43 OPEN LDA .A0,SVC BLOCK
009a

2 000004 30BC MOVW @AO0,#40
0028

3 000008 43FA 45 LDA .Al,FILE NAME

149

00B2

4 00000C 2149 STL .Al,6@A0
0006

5 000010 43FA 49 LDA .Al,PARAM LIST
00B4

In the above sample piece of an assembler listing, we can
quickly look at the last digit in the relative address column to check
for any occurrences of an odd address. Everything looks all right in
this listing, the least significant numbers being 0, 4, 8, C, and 0.

You should be careful when you define a byte of memory space
in a program. This can cause a later instruction to fall on an odd
address. You can use all the EQUB instructions you want, since
equating a byte does not take up any memory space. However the
command DATAB does set aside a byte of memory and can give
trouble. Perhaps it is a good idea to define two bytes instead of one
when possible even if the other byte is not used. It will act as a place
holder and keep the relative address locations even.

Another trick you may need to help in the process of debugging
is the ability to print a numerical value on the screen. This is not as
easy as it sounds at first. Let’s say that you are working on a
program that is designed to open a file and place some information
into it. Usually you will test the routines by placing some “phoney”
information into the first few records. If afile can be opened and data
written to the first few records, then in all likelihood hundreds of
records of information can be written to it. There may be a time
when you need to know what the record number is of the record
currently being written or read from the file. Assume register Al is
currently holding the number of the next record to be written to the
disk. We may want to introduce a “flag” into the program. In other
words, we need to be able to print that record number on the video
screen so we can examine it.

Why can’t we just place that number into the SVC block and call
the display a character routine? This would not display the actual
number, but rather the ASCII function of that value. As an example,
suppose the record number stored in Al was a one. Putting a one
into the display a character routine would send the control code “1”
to the screen, which is the command to turn on the blinking cursor.

The ASCII codes for the numbers 0 through 9 begin with 48
(decimal) and continue through to 57. Therefore, by adding the
number 48 to the number stored in Al, we can get the supervisor
routine to display the actual decimal number. The drawback to this
is that it will not handle any number greater than 9. The advantage of
this trick is that it enables you to quickly and without too many

150

steps, write a routine that will help you see what the machine is
doing. If A1 holds a number between 0 and 9, you print that value on
the screen with this set of instructions:

LDA A0,SVC BLOCK

ADDW .Al,#48 *ADD 48 TO THE VALUE IN Al
MOVW @A0, 48 *IDENTIFYING FUNCTION CODE
STW .Al,6@A0 *PUT VALUE INTO BLOCK

BRK #0 *EXECUTE SUPERVISOR CALL

A WORD ABOUT “END”

Another simple but very important instruction is END. We
have mentioned earlier in this book that we found that if the END
statement followed by a label showing where the first instruction of
the program is to begin execution is left out, the program would not
work. Also, it is easy to forget to stick the END instruction in a
program. The Assembler-16 manual never shows it in any of the
supervisor routine listings because they are not intended to be
whole programs, so it is easy to forget that statement. The bad
news is that the assembler does not pick up this error. If you omit
the END statement, no error message nor warning is generated by
the assembler. Even worse is the fact that your program will in most
cases just do nothing. When you try to run your program the screen
will merely come back with TRSDOS ready. So you don’t know
whether anything has actually happened. You could spend hours
wondering why a program did not work.

We want to stress that you should carefully inspect any pro-
gram that does not appear to do anything, checking for the proper
label at the top of the program (such as BEGIN or START) and the
correct termination instruction (END START, END

BEGIN, or the like). While this is a simple program, detecting
this error is not so easy since the computer does not help you in
detecting the omission.

Another problem we ran into was mentioned in Chapter 2.
Occasionally we would get assembler errors by having a comment
on the same line as an instruction. Problems have never occurred
when an entire line was dedicated to a comment, beginning with an
asterisk in the label column. In a few instances the assembler gave
errors when a comment was listed on the same line, especially if it
didnot begin in the comment column of the source code listing, even
though it may be preceded by an asterisk.

So, if you get an assembler error message on an instruction line
that looks all right to you, remove the comment at the end of the line
if one is present. This may clear up the error.

151

Appendix A
SVC Block Setup

The following charts show the function and position of all critical
bytes in the supervisor block that are needed before you can call
each of the supervisor routines developed in this book. Information
that is placed within the block by the disk operating system upon
return from execution of a routine is also shown.

These diagrams will help to give you a quick overview of the
SVC block setup. For specific information as to the action of certain
values placed in key positions, refer to the chapter in the text
dealing with that particular supervisor call.

JUMP TO TRSDOS ROUTINE

Byte position
123 456 7 8 9101112131415 16 1718 1920 21 22 2324 25 26 27 28 29 30 31 32

AlA[XIX{0]|0

0123456 7 89 101112131415161718 19 20 2122232425 26272829 3031
Byte-offset

Letters represent byte locations within the block in which
values must be placed before calling the routine.

Byte-offset four and five must have a value of zero placed in
them before calling any supervisor routine.

Before Calling the Routine
A - identifying supervisor code, 264 decimal

152

Upon Return from the Routine
X - TRSDOS error code (zero if no error occurred)

CLEAR THE SCREEN ROUTINE

Byte position
123456 7 8 910111213141516 1718 19 20 21 22 23 24 25 26 27 28 29 30 31 32

AlAlX[Xi010]B{B]C|C

0 12 34 56 7 8 9 10111213141516171819 20 2122 23 24 25 26 27 28 28 30 31

Byte-offset

Letters represent byte locations within the block in which
values must be placed before calling the routine.

Byte-offset four and five must have a value of zero placed in
them before calling any supervisor routine.

Before Calling the Routine

A - identifying supervisor code, 7 decimal

B - determines the size of printed characters, 40 or 80 characters
per horizontal line

C - determines normal or inverse video printing

Upon Return from the Routine
X - TRSDOS error code (zero if no error occurred)

DISPLAY A CHARACTER ROUTINE

Byte position
123 456 7 8 910111213141516 1718192021 22 2324 25 26 27 28 29 30 31 32

AlAalX|xiol0|B|B

Ot 2 3456 7 8 910111213 141516171819 20 2122 23 24 25 26 27 28 29 30 31

Byte-offset

Letters represent byte locations within the block in which
values must be placed before calling the routine.

Byte-offset four and five must have a value of zero placed in
them before calling any supervisor routine.

Before Calling the Routine

A - identifying supervisor code, 8 decimal

B - the code which represents the desired character or control code
that will be output to the screen

Tlpon Return from the Routine
X - TRSDOS error code (zero if no error occurred)

153

POSITION THE CURSOR ROUTINE

Byte postion
123 45678 9 10 1112 1314 15 16 17 18 19 20 21 22 2324 25 26 27 28 29 30 31 32

AlAaIx|xjojolBlB]c|c

01234567 87910111213 141516 17 18 19 20 2122 23 24 25 26 27 28 29 30 31
Byte-offset

Letters represent byte locations within the block in which
values must be placed before calling the routine.

Byte-offset four and five must have a value of zero placed in
them before calling any supervisor routine.

Before Calling the Routine

A - identifying supervisor code, 10 decimal

B - lines down from the top of the screen

C - character positions from the left side of the screen

Upon Return from the Routine
X - TRSDOS error code (zero if no error occurred)

DISPLAY A LINE ROUTINE
Byte position
1 23 456 78 9101112131415 16 1718 19 20 21 22 23 24 25 26 27 28 29 30 31 32

AjAalxixiololsiBiclc|pip|pipfy|v]z|z

01234567809 vO111213141516171819202122232425262728293031
Byte-offset

Letters represent byte locations within the block in which
values must be placed before calling the routine.

Byte-offset four and five must have a value of zero placed in
them before calling any supervisor routine.

Before Calling the Routine

A - identifying supervisor code, 9 decimal
B - size of the buffer

C - terminator character

D - memory address of the buffer

Upon Return from the Routine

X - TRSDOS error code (zero if no error occurred)

Y - if an error occurred, the number of characters not sent to the
screen

154

Z - if an error occurred, the character that caused it

KEYBOARD CHARACTER ROUTINE

Byte position
1 23456 7 8 910111213141516 1718 1920 21 22 2324 25 26 27 28 29 30 31 32

AlAlXxixjojolBlBizizZ

0 1 234586 7 8 9101112131415161718 19 20 2122 23 24 25 26 27 28 29 30 31

Byte-offset Y on exit
Y on exit

Letters represent byte locations within the block in which
values must be placed before calling the routine.

Byte-offset four and five must have a value of zero placed in
them before calling any supervisor routine.

Before Calling the Routine
A - identifying supervisor code, 4 decimal
B - determines wait or not wait condition

Upon Return from the Routine

X - TRSDOS error code (zero if no error occurred)

Y - indicates a valid ASCII code has been entered by user
Z - returned character from the keyboard

KEYBOARD LINE ROUTINE

Byte position
123 456 7 8 9101112131415 16 17 18 1820 21 22 2324 25 26 27 28 20 30 31 32

AjAIXIXjoloislB]c|cicicly|Y|z]|z

0123456 7 8910111213 141516171818 20 2122 23 24 2526 27 28 29 30 31
Byte-offset

Letters represent byte locations within the block in which
values must be placed before calling the routine.

Byte-offset four and five must have a value of zero placed in
them before calling any supervisor routine.

Before Calling the Routine

A - identifying supervisor code, 5 decimal

B - maximum characters allowed to be entered
C - address to store input line

Upon Return from the Routine
X - TRSDOS error code (zero if no error occurred)

155

Y - number of characters entered by operator
Z - indicates if carriage return was used to end input

CLEAR THE TYPE AHEAD BUFFER ROUTINE

Byte position
1t 23 4 5 6 7 8 9101112131415 1617 18 1920 21 22 2324 25 26 27 28 29 30 31 32

ATAIXIX]0]0

01234 5 6 7 8 910111213 1416151718 19 20 2122 23 24 25 26 27 28 29 30 31
Byte-ofiset

Letters represent byte locations within the block in which
values must be placed before calling the routine.

Byte-offset four and five must have a value of zero placed in
them before calling any supervisor routine.

Before Calling the Routine
A - identifying supervisor code, 1 decimal

Upon Return from the Routine
X - TRSDOS error code (zero if no error occurred)

DISPLAY MESSAGE AND KEYBOARD LINE INPUT ROUTINE

Byte position

1 2 3 4 5 6 7 8 9101112131415 161718 19 20 21 22 2324 25 26 27 28 29 30 31 32

AlAIX[X]010|B|B{C|C|D|DIDID|EJEJEIE|Y|YIZIZ

0 1 23 4 5 6 7 8 910111213 14151617 1819 20 2122 23 24 25 26 27 28 29 30 31
Byte-offset

Letters represent byte locations within the block in which
values must be placed before calling the routine.

Byte-offset four and five must have a value of zero placed in
them before calling any supervisor routine.

Before Calling the Routine

A - identifying supervisor code, 12 decimal
B - length of message

C - length of keyboard input field

D - address to store keyboard response

E - address of text to be sent to the screen

156

Upon Return from the Routine

X - TRSDOS error code (zero if no error occurred)

Y - if an error occurs, the number of characters not sent
Z - if an error occurs, the character that caused it

PRINT A CHARACTER ROUTINE

Byte position
123 456 7 8 91011121314151617 18192021 22 2324 25 26 2728 29 30 31 32

AJAIXiX{ojo|B|B

0 123456 7 8 9101112131416151718 19 20 2122232425 2627 28 29 30 31

Byte-offset

Letters represent byte locations within the block in which
values must be placed before calling the routine.

Byte-offset four and five must have a value of zero placed in
them before calling any supervisor routine.

Before Calling the Routine
A - identifying supervisor code, 18 decimal
B - character to direct to the printer

Upon Return from the Routine
X - TRSDOS error code (zero if no error occurred)

PRINT A LINE ROUTINE

Byte position
1 23456 7 8 9101112131415 1617181920 21 22 2324 25 26 27 28 29 30 31 32

AfTAIXiIX|olo|B]BICICIDIDIDID

0123456 7 8910111213 1415161718 19 20 2122 23 24 25 26 27 28 29 30 31
Byte-offset

Letters represent byte locations within the block in which
values must be placed before calling the routine.

Byte-offset four and five must have a value of zero placed in
them before calling any supervisor routine.

Before Calling the Routine

A - identifying supervisor code, 19 decimal

B - number of characters in the line

C - character to send at end of buffer to terminate

D - address of message (buffer address) to be printed

157

Upon Return from the Routine
X - TRSDOS error code (zero if no error occurred)

DISPLAY TRSDOS ERROR NUMBER

Byte position
123 456 7 8 9101112131415 1617181920 21 22 2324 2526 27 28 29 3031 32

AfAIXIX]ojo|BiB

0123456 7 89 10111213141516171819 20 21222324252627282930N

Byte-offset

Letters represent byte locations within the block in which
values must be placed before calling the routine.

Byte-offset four and five must have a value of zero placed in
them before calling any supervisor routine.

Before Calling the Routine
A - identifying supervisor code, 39 decimal
B - place the error number here

Upon Return from the Routine
X - TRSDOS error code (zero if no error occurred)

DISPLAY ERROR MESSAGE

Byte position
1t 23 45 6 7 8 910111213141516 1718192021 22 2324 2526 27 28 29 30 31 32

AlAiX|X|ojoiB|B|C|C|C|C

0 123 4 56 7 89 1011121314151617 1819 20 2122 232425262728293031

Byte-ofiset

Letters represent byte locations within the block in which
values must be placed before calling the routine.

Byte-offset four and five must have a value of zero placed in
them before calling any supervisor routine.

Before Calling the Routine

A - identifying supervisor code, 52 decimal

B - place the error number here

C - place the address of the message storage area here

Upon Return from the Routine
X - TRSDOS error code (zero if no error occurred)

158

OPEN A DISK FILE

Byte position
123 456 7 8 9101112131415 16 17 18 1920 21 22 2324 25 26 27 28 29 30 31 32

AlAlXIX{oloB|BIBIBIC C|C|C|Y}Y

012345686 7 8 910111213 141516171818 20 212223242526272829 303N
Byte-offset

Letters represent byte locations within the block in which
values must be placed before calling the routine.

Byte-offset four and five must have a value of zero placed in
them before calling any supervisor routine.

Before Calling the Routine

A - identifying supervisor code, 40 decimal

B - address where the disk file name is located

C - address of OPEN specifications, that is, codes to indicated
record length, read or write status, attributes, and the like

Upon Return from the Routine

X - TRSDOS error code (zero if no error occurred)

Y - contains a special number created by TRSDOS for its internal
use. This number must be used when referring to this file such
as reading and writing to and from the disk

CLOSE A DISK FILE

Byte position
123 456 7 8 910111213141516 17181920 21222324 2526272829 303132

AlAlIXix|ololB|B

0123456 7 8 9101112131415 16171810 20 212223242526 2728 29 3031
Byte-offset

Letters represent byte locations within the block in which
values must be placed before calling the routine.

Byte-offset four and five must have a value of zero placed in
them before calling any supervisor routine.

Before Calling the Routine

A - identifying supervisor code, 42 decimal

B - place here the special number which was returned by TRSDOS
at the time the file was created

Upon Return from the Routine
X - TRSDOS error code (zero if no error occurred)

159

GET A RECORD FROM A DISK FILE

Byte position
123 456 7 8 8101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

AlAIX|X{o]o|BiB|C|C|CIC|DID|D|D|E

0123456 7 8 910111213141516171819 20 212223242526272829 303
Byte-offset

Letters represent byte locations within the block in which
values must be placed before calling the routine.

Byte-offset four and five must have a value of zero placed in
them before calling any supervisor routine.

Before Calling the Routine

A - identifying supervisor code, 35 decimal

B - place here the special number which was returned by TRSDOS
at the time the file was created

C - address where the record information is to be placed once it is
read from the disk

D - the number of the desired record

E - a non-zero value here locks the record

Upon Return from the Routine
X - TRSDOS error code (zero if no error occurred)

PUT A RECORD INTO A DISK FILE

Byte position
123 4 56 7 8 910111213141516 171818202122 2324 2526272829 303132

ATA(X|XioiolBBIC|CiCIC|D|D|D|D

0123456 7 8 9101112131415161718 19 20 2122 2324 2526272829 30 31
Byte-offset

Letters represent byte locations within the block in which
values must be placed before calling the routine.

Byte-offset four and five must have a value of zero placed in
them before calling any supervisor routine.

Before Calling the Routine

A - identifying supervisor code, 44 decimal

B - place here the special number which was retumed by TRSDOS
at the time the file was created

C - address where the record information to be placed on the disk is
located

160

D - the record number where this information is to be placed within
the disk file

Upon Return from the Routine
X - TRSDOS error code (zero if no error occurred)

161

Appendix B
EDIT16 Op Code Mnemonics

The following op code mnemonics, given in alphabetical order, are
used by the Assembler-16 program.

ADD BRK DEC RET SETF
ADDC BRKV DBLO RTR SETLO
ADDD CALL DBHS ROL SETHS
AND CHK DIV ROR SHL

BE CLR DIVU ROLC SHR

BNE CMP EXT RORC SHLA

BC DBR LD SET SHRA
BNC DBE LDA SETE ST

BP DBNE LDM SETNE ST™M

BN DBC LDP SETC STP

BV DBNC LINK SETNC SUB

BNV DBP MOV SETP SUBC
BGT DBN MUL SETN SUBD
BGE DBV MULU SETV TEST
BLT DBNV NEG SETNV TESTSET
BLE DBGT NEGC SETGT TEST1
BH DBGE NEGD SETGE TESTCLR1
BNH DBLT NOP SETLT TESTNOT1
BLO DBLE NOT SETLE UNLK
BHS DBH OR SETH XCH

BR DBNH PUSHA SETNH XOR

162

Appendix C

Assembler-16
Directives (Pseudo Op Codes)

ASECT DSECT PAGE RSECT
COPY END RDATA TEXT
DATA EQU REF TEXTC

DEF ORG RES TITLE

163

Appendix D

Decimal To
Hexadecimal Conversions

Only values from 0 to 255 are given, as 255 represents the highest
number that can be stored in one byte.

Decimal Hexadecimal Decimal Hexadecimal

0 00 19 13
1 01 20 14
2 02 21 15
3 03 22 16
4 04 23 17
5 05 24 18
6 06 25 19
7 07 26 1A
8 08 27 1B
9 09 28 1C
10 0A 29 1D
11 0B 30 1E
12 0C 31 1F
13 0D 32 20
14 0E 33 21
15 OF 34 22
16 10 35 23
17 11 36 24
18 12 37 25

164

Decimal Hexadecimal Decimal Hexadecimal

38 26 79 4F
39 27 80 50
40 28 81 51
41 29 82 52
42 2A 83 53
43 2B 84 54
44 2C 85 55
45 2D 86 56
46 2E 87 57
47 2F 88 58
48 30 89 59
49 31 90 5A
50 32 91 5B
51 33 92 5C
52 34 93 5D
53 35 94 5E
54 36 95 5F
55 37 96 60
56 38 97 61
57 39 98 62
58 3A 99 63
59 3B 100 64
60 3C 101 65
61 3D 102 66
62 3E 103 67
63 3F 104 68
64 40 105 69
65 41 106 6A
66 42 107 6B
67 43 108 6C
68 44 109 6D
69 45 110 6E
70 46 111 6F
71 47 112 70
72 48 113 71
73 49 114 72
74 4A 115 73
75 4B 116 74
76 4C 117 75
77 4D 118 76
78 4E 119 77

165

Decimal

166

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
1356
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

Hexadecimal Decimal

78
79
7A
7B
7C
7D
7E
7F
80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F
90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F
A0

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

Hexadecimal

Al
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF
BO
Bl
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF
Co
Ci
C2
C3
C4
C5
C6
c7
C8
C9

Decimal Hexadecimal Decimal Hexadecimal

202 CA 230 E6
203 CB 231 E7
204 cC 232 E8
205 CD 233 E9
206 CE 234 EA
207 CF 235 EB
208 Do 236 EC
209 D1 237 ED
210 D2 238 EE
211 D3 239 EF
212 D4 240 FO
213 D5 241 F1
214 D6 242 F2
215 D7 243 F3
216 D8 244 F4
217 D9 245 F5
218 DA 246 F6
219 DB 247 F7
220 DC 248 F8
221 DD 249 F9
222 DE 250 FA
223 DF 251 FB
224 EO 252 FC
225 El 253 FD
226 E2 254 FE
227 E3 255 FF
228 E4

229 E5

167

Appendix E
MC68000 Data Sheets

The following material was supplied courtesy Motorola, Inc. The

MC68000 pin assignment, register format, and Motorola’s
mnemonic instruction set is given.

169

16-BIT MICROPROCESSING UNIT

Advances in semiconductor technology have provided the capability
to place on a single silicon chip a microprocessor at least an order of
magnitude higher in performance and circuit complexity than has been
previously available. The MCB8000 is the first of a family of such VLS
microprocessors from Motorola. It combines state-of-the-art
technology and advanced circuit design techniques with computer
sciences to achieve an architecturally advanced 16-bit microprocessor.

The resources available to the MCB8000 user consist of the following:

@® 32-Bit Data and Address Registers
® 16 Megabyte Direct Addressing Range
® 56 Powerful Instruction Types

PROGRAMMING MODEL
31 1615 87 0

i H D0

| | D1

|] 02

| I p3 Eght
“‘D 4 Data

1 | — Registers

I j 3]

i | D6

1 i

07

3 1818 0

A2 Seven
Address
Ad Registers

>
w

r User Stack Pointer] Two Stack
Supervisor Stack Pointer Pointers

Program
Counter

15 87
[System Byte: User Byte

Status
Register

This document contains information on a new product Specifications and information heren
are subject to change without notice.

170

@ Operations on Five Main Data Types
@ Memory Mapped 1/0
® 14 Addressing Modes

As shown in the programming model, the MCB8000 offers seventeen
32-bit registers in addition to the 32-bit program counter and a 16-bit
status register. The first eight registers (D0-D7) are used as data
registers for byte (8-bit), word (16-bit), and long word (32-bit) data
operations. The second set of seven registers (A0-AB) and the system
stack pointer may be used as software stack pointers and base address
registers. In addition, these registers may be used for word and long
word address operations. All seventeen registers may be used as index
registers.

PIN ASSIGNMENT
N
palh @ 64305
D32 837106
D203 62{307
D14 61f3D8
pords 80109
ASCde 59{ID1C
Upsy7 58301
Lb53s 57[3D12
R/W]9 5613013
DTACK CJ10 8511014
B 54015
BGACK [J12 53[JGND
BRCY13 5203 A23
Veeldi4 510 A22
CLKEs 5013 A21
GNDLJ16 491 vee
HALT 7 48F1A20
RESET [J18 4701 A19
VMA L9 46[1A18
ECJ20 45 1 a17
VPAL 4IA16
BERRLJ22 43[1A15
P32 42314
WwLilJoa 41313
PLo2s 401A12
FC2026 3|aAnN
FC1y27 38410
FCOLY28 373A9
ACY28 3BIA8
A2 30 35[A7
A3 34[JA6
Ad[T32 3317345
©MOTOROLA INC , 1982 ADI-814-R3

171

i 3 B Z «—uoneunse(40 (<Joquinu ugq>)~ ugeissj 15189
i Bl Bl Bt Od —P+0d '~ @dS «0d aunnoigng 01 youeig Hsd
UONBUNS! Jagqwnu —
-{-1.1- oo S na oy 105 pue Iig € 15| 1358
et et Bl e Od «—P+0d shemjy youeig vye
uonEeUNS! <IOQUINU UG > e
-t-1.1- Nt..uco_.ﬁmmmum o< bwnsac.”._w - 0 Je8|) pue ug €18} 4108
uoneunsaq 40 <Jequinu Hg>
—-1.]- - Uolleunsaqg 40 (<Joquinu Uq>) ~ ebuey) pue ug eisej OHO8
Z «-uoneunssq 40 (<sequinu ug>)~
-|=-1-1- Od «—P+0d usys 3D 4 Ajjeuoipuod youesg g
etolefe UONEBUNSB(] «— <IUNOD > AQ paLjIyg (uoneunsaQ) HIYS onsuwijiny HSVY 1SV
olol.l. UOBUIISA(] « B18(] SlBIPAWIWY V (UONBUNSS() aiepaww| ONV IGNY
0]0f.]. UORBUNSA(«— (8DIN0G) Y (uoleunss() {eo1boy NV ANV
efele}e uoneullsa(« X + (80IN0G) + (UOKEUNISB() papusix3 ppy Xaav
ehe]efe uOReulISa(] « Ble(a1eIpauwiul] + (UoReulssQ) 301D PPY DOav
efelele uoneunsa « e1eQ sieipai + (UoKeunsa) sleipsww] ppy 1aav
—={=1- UONBUNSS(] o (8DINOG) + (UOHEUNSS(]) SS3IPPY PPY vaay
Ny UOHBUNSB(] «— (BDINOG) + (UOhEUNSAQ) Aeulg ppy aay
Ldnl.in uoneunss(« 0l (aoinog) + 0l uoneunsaq) pusIxy yum jewidaqg ppy| aoav
JINIZ|N
$8p07) uonessdp uonduoseqg oIUOWBUW
uoiipuo)

13S NOLLONHLSNI

172

188 | palosjjeun —
pauyep N paiesio 0 paosjie ,

ol HS o (821N05) je1sibay smelg eyl 01 8AOW| HS 01 IAOW
o HDD «(801N0S) 8p07 LUONIPUOD 01 BAONIHDD 01 IAOW
olo UONBUNSAQ «— (80INOS) | UONEUNSB(Q O B3INOS WO eleg Ao JAOW
.10 uonEUNSad «— <UN0D> AQ PalINS (uoneunsaq) s jeaibo 4S1 1S
—{— dS «—P +dS UV «—dS ' — BdS «-U¥ 81e00||y Pue jui AN
- Uy «-uoneuisag $50IpPY 9AMI08}3 peoT vl
-1- Jd «toneunsaq - @dS «—Jd sunnoigng o} dwnf usr
-] - Od - uotieusaq dwnp dNr
olo UONEeUNSaQ « papusixe-ubig (uoneunsaq) puaixg ubig 1X3
-1 - AY s XY 1o1818ay abueyoxy %3
olo UONRUNSS(« BIBQ S1BIpaWW| ® (uoneunsad) aleipawiul| HO SAISNOX3 1403
olo UONBUNSS(] « (82IN0S) ® {uOneunsag) 1221807 YO BAISN(OX3 403
0f. UONBUNSAQ «— (8DIN0S) /{uoHEUNSST) eping peubisun NAIQ
Of - UOHBUNSB(«— (82IN0G) /{UOHEUNSE() apinQ paubls SAIQ
-~ - 3d —P+0d UsYl | — #ug J 'UQ 1 —ud uayl D0 ~j] youesg pue JuswWBINaQ 'UONIPUOT 1881 J0qa
. (821n0g) — (uoneunseq) Aowieyy aredwio) NdWD
R eleQ elelpawiwy — (uoheunsaq) ieIpawiil] aiedwo) 1dND
e (9ounog) — (uoneunsaq) ssaippy eiedwo) VdND
.. {801n0g) — (uoneunseq) asedwo) dWD
olo uoneunss «-0 puesed() ue ies|) 41
nin dVH1 usul (<ea>) <ug o 0> ua il spunog suiebe 1a1sibay %08yd MNHD

173

1011, UOHeUNSB(e <IUN0OD > AQ Paleloy (uoneunsaq) (PUaIX3 1nounpn) areioy HOY 04
—-—1=T= - S821A8Q jeusnlx3 Jesey 1353y
o il el B ~ @dS «— uoneunsag SS8IPPY 8ANDalT ysng Vid
ojol.l. UOHBUNSBQ . B1R(] B1EIPBWW A (uoneunsaq,) Sieipaww; 4o snsnpou; 1HO
0jof.]. UOHRUNSS(] — (901N0G) A (uoneunsaQy 1891607 YO anisnjoy) HO
ofof.1. UOUBUNSE(Q o (UONEUNSE() ~ wawaidwo) jeabon 10N
—|-]~J= - uonesad(oN dON
slefefe Uoneunsaq « x ~(uoneunsaq) - g Pusix3 yum siebap XO3IN
e fefefe UORBUNSA] e (UOEUNSE() — () aiebapy 93IN
AIni.1n uoneunsaq X ~0luoneunsaq, -0 Pusix3 yum jeweq ajeBapy angn
0j0].]. uoneunss(+—(821n0g), (uoneunsa(y) Aidninw paubisun NN
0jol.j. uoueunse(+—(82in0g), (uoneunsa(y) Aduinpy paubig SInw
0l01.1. UOBBURSA(] o BlEQ BlEIPaUI| A2IN0 anopy 03IA0ONW
—1=]-]= uoneunsaq « (soinog) BleQ (esoyduay anop dINOW
N B B :owwﬂwwwm%”wﬁﬂw%%mw siaisibay apdninpy anopy W3AOW
—[—{~1- UONBUNSA(] «— {80iN0G) SSaIpPY aAop VIAOW
il et Bt B dSN Uy Uy e ygn 8iuIog yoeig sasn anopy dSN JAONW
—-I-1-1- UoneuNsaQ e— yg ?1siBay smeig sy WOY BAOW IS woly JAON
JIAIZIN
$8p0) uonessdp uonduosaqy Oluoweuyy
uonipuoy

(Q3NNILNOD) 138 NOLLONHLSNI

174

19s | psiosyjeun -

pauyap N paies|o o paloayje ,

lsquinu iq={ |

- f- UY e + DdS 'dS Uy Junun MINN
010 DD «PBlIsa] (uoneunsa() puessd() ue 1s8| 1S1
il dvdl usyl A §i MOjIBAQ uO dei | AdVHL
s Od «—(i0108A) |~ @dSS +—HS '~ DdSS «Id deiy dvHi
010 uoneunsaq 40 [L]«—1 ‘0D «—psise| (uoneunsaq) pueiedQ ue 185 pue 1sa) SV1
010 [0:GL] 1015159Y «» [Q1:1E] s818160Y soAjeH Jaisibay demg dYMS
ol UONBUNSS(] & X — (80IN0G) — (UONBUNSA(]) pua1X3 YUm 10eqng X€gNs
el UOIIBUNSS(] « BIB(] B1RIPBWILW| — (UONRUNSS() ¥OIND 108AQNg 0ans
ol UOIIBUNSA(] «— B1B(] S1BIPBWIW| — (LONBUIISE(Q) sleipawiwi 10BAQNG 1ans
- - UONBUISS(] e (BOINOS) — (UONRUNS(]) $S8ippY 1081GNg vens
.. UOHBUNSA(] e (BOINOS) — (UOHBUNSA() Aseurg 10engng ans
el d01S 'HS «—eleQ sielpsww) doig pue saisifiay smeig peo d0O1S
- |- UOHRUNSE(] «—$,0 85[0 UONBUNSE(«§,] syl JJ uonipuoy ol Buipioody 18g Jdg
. In uofleuseq « x —0L(aoinog) — 01 (uoneunsaq) pusIXg yum jeunoa(10enqng ansas
o Jd e + @dS sUNNOIQNS WL} wINlay SiH
ol Jd «— + @dS 00 « + BdS $8p07) UORIPUO) 8101SBY pue wiNlay HiH
ol Jd «— + @dS 'HS « + DdS uondedx3 woy winlay IR
.10 UONBUNSE(«— <IUN0D > AQ PalEIoY (LONBUNSe(Q) pusix3 yum sieioy| HXOH “IXOH

175

Glossary

address—A specific byte in the computer’s memory.

addressing modes—Refers to the form an instruction must take
in order to access or handle data in memory or within the
microprocessor’s registers.

ASCII codes—A standard code representing numbers, letters,
and symbols (such as #,$,%,*, and the like established so that
one brand of computer could “talk” or communicate with another.
ASCII stands for the American Standard Code for Information
Interchange.

ASM16—A program that creates an intermediate file from a source
code created by an editor program. This file is then placed in a
final machine readable form by using the LINK16 program.

assembly language —The actual computer circuitry only under-
stands instructions in the form of ones and zeros, called base two
or binary. Assembly language is a low-level language which
allows us to use symbols and letters that are easier for us humans
to work with. Once we have created a program with an editor, the
assembler program interprets the commands we type in and
converts them to the binary codes needed by the computer.

BASIC—An acronym for Beginner's All-purpose Symbolic In-
struction Code. This is the most popular language of microcom-
puters. BASIC is easier to write programs in than assembly
language, but it does not execute them as fast.

176

binary—Base two. The binary number system is used by computer
logic circuits. Only two states exist, represented by a one or a
zero. All computer programs must be placed in binary codes
before the computer can execute them. This is true regardless of
the high-level language in which the program is written.

bit—A binary digit. Eight bits comprise one byte. There is no
smaller accessible entity by programmers

branch—Usually the computer executes each instruction in a pro-
gram in the order in which it is placed in memory. Once a starting
address is defined the computer works in ascending address
order. Certain instructions cause the machine to jump or
“branch” out of this normal pattern and go immediately to
another address located elsewhere in the program.

buffer—In programming, a buffer refers to an area or block of
memory where information can be stored. Many times this block
is used as a temporary storage area where data can be held as it
passes from one place to another. For example, a buffer area may
be used as a place where information can go on its way to and
from a disk file.

bus—An electronic path over which data is transmitted.

byte—A unit of measure of a computer’s memory. It takes one byte
to store one alphanumeric character. Eight bits make up one
byte.

chip—A common nickname for an integrated circuit or “IC.” The
many thousands of electronic components which comprise the
integrated circuit are built onto a small piece or “chip” of mate-
rial, typically silicon.

conditional branch—A program instruction where normal pro-
gram flow may or may not jump to another location and begin
executing instructions there. Whether or not the branch is made
depends on whether or not certain “conditions” are met.

counter—A register or storage area where a value is placed and
either incremented or decremented depending on whether a
count up or count down is desired.

CPU—Abbreviation for central processing unit. In desktop com-
puters the CPU is the microprocessor.

debugging—Locating and correcting syntax and logical mistakes
or errors in a program. Debugging refers to getting the “bugs”
out of a program.

decrement—Refers to subtracting a number, usually a one, froma

177

number, that is, decreasing a number by a specific value. In
BASIC the equivalent would be X=X~1. The opposite operation
is increment.

directive—Another term for pseudo-op (see “PSEUDO OP”).

disk access—The process of communicating with a disk file, and
transferring information to and from it.

disk file—A file is a group of records, each being similar in format.
Analogous to an index file found in the home or office.

disk operating system—A series of machine-language programs
which contain many routines that allow the microprocessor and
associated circuitry to communicate with various external de-
vices (peripherals) such as the video display, disk drives, mod-
ems, printers, and the keyboard.

diskette (or disk)—A flat circular plastic sheet with one or both
sides covered with a ferromagnetic material. These mass stor-
age devices are also known as “floppy diskettes.” However, the
term diskette has gained little acceptance, and so the term disk is
generally used and preferred.

double sided—Refers to floppy disk storage. If a disk is covered
with the ferromagnetic material on both sides, information can be
stored on both sides. Double-sided disks therefore can store
twice as much information as “single sided” disks.

EDIT16—A program which allows us to create and modify a source
code for the MC68000 microprocessor on the Model 16. This
code can then be put in a machine-readable form by use of an
assembler.

file—See “DISK FILE.”

file name —Many programs and files can be stored on a disk. To
identify each one, the computer allows a file name. Basically, a
file name can be up to eight letters in length. Specific rules exist
for the placement of characters in the file name other than
alphabetical letters.

flag—Each bit in the status register is called a flag bit. A bit will
have a value of a one or zero to indicate that either something has
or has not taken place. Typically, after two numbers are added
together with an ADD instruction, one specific bit referred to as
the “carry bit” will be either set or cleared (one or zero) depend-
ing upon whether or not the results of the addition produced a
carry digit.

floppy diskette (or disk)—See “DISKETTE.”

178

hexadecimal —Base sixteen.

[C—See “INTEGRATED CIRCUIT.”

increment—Refers to adding a number to another number, that is,
increasing it by a certain value. The opposite operation is decre-
ment. In BASIC a variable is incremented with the instruction X
=X+ 1

integrated circuit—An electronic component made up of
thousands of individual components, all connected together in
one package. (Also see “CHIP”.)

LINK 16— A program which takes a file created by the EDIT16 and

assembled by the Assembler-16 programs and creates a final
machine-executable program.

machine language —A binary coded set of instructions which the
microprocessor can utilize. All programs, regardless of the high
level in which they were written, must be placed in machine
language as the final machine-executable form.

memory—Electronic circuits in the computer which hold binary
values.

menu—When the video display shows a list of options or selections
which the operator can choose from, it isreferredtoasa “menu.”
By selecting the option of his cohice, the user can branch to
sections of the program which will carry out various jobs.

microprocessor—This is an electronic device called an integrated
circuit, commonly known as a “chip.” The microprocesor is the
brains of the computer. It fetches each instruction from a pro-
gram which is stored in memory and carries out a specific opera-
tion.

mnemonic—Op codes are sometimes referred to as mnemonics
since they are usually comprised of several letters which repre-
sent a particular instruction. Often the mnemonic jogs one’s
memory to help him remember the function of the code, e.g., LD
for “load,” MOV for “move,” and the like.

object code—The final form of a program which was created by an
assembler (from a source code). The machine can execute this
code directly.

peripheral—A peripheral is a device which connects to the com-
puter and its associated circuitry. Printers, disk drives, and

179

modems are examples of peripheral units.

program—A program is a set of instructions that causes a com-
puter to perform a certain task. There are many different lan-
guages in which we can write programs to make the computer do
work for us. Each language has its advantages and disadvantages.

pseudo op—These are instructions which the microprocessor
does not understand. The assembler translates these commands
into machine codes which the microprocessor can use. Such
instructions make writing assembly language programs much
easier for the programmer. The Radio Shack Assembler-16 man-
ual refers to pseudo ops as “directives.”

read/write—Refers to getting information out of and placing data
into a disk file.

record—A record is a piece of a file. All of the data which pertains
to one case comprises a record. Many records together make up
a file.

register—A small piece of RAM within the microprocessor (the
central processing unit). Information can be stored in the regis-
ters and acted upon. Instructions for the microprocessor are
placed in the registers.

relative address—The Assembler-16 shows us the relative ad-
dress of each instruction in a program. The first instruction is
given an address of 00000000 hexadecimal. This is not the actual
memory location where the program will reside. By giving it a
relative address, the computer can find a home for a program by
locating it at the first available memory space after the disk
operating system and any other programs have been loaded.

single-sided—Refers to storage on floppy disks. If only one side of
a disk is coated with the proper ferromagnetic material then it is
called a “single-sided” disk. Disks that can store information on
both sides are known as “double-sided.”

source code—Assembler programs allow us to write instructions
using mnemonics and symbols. This is called a source code. It
must be assembled into an object code which the machine can
execute.

supervisor routines— The disk operating system has many sub-
routines built into it which instruct the computer how to perform
operations with peripheral devices, the keyboard, video display,
modems, printers, and disk drives.

180

References

PR

Barden, William Jr. TRS-80 Assembly Language Programming.
Catalog No. 62-2006 (Radio Shack).

Bartee, Thomas C. Digital Computer Fundamentals. New York,
NY: McGraw-Hill Book Co., 1980.

Gibson, Glenn, and Liu, Yu-Cheng. Microcomputers for Engineers
and Scientists. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1980.

Kane, Gerry. The 68000 Microprocessor Handbook. Berkeley, CA:
Osborne/McGraw-Hill, Inc., 1981.

Leventhal, Lance A. Z80 Assembly-Language Programming.
Berkeley, CA: Osborne/McGraw-Hill, Inc., 1980.

Scanlon, Leo J. The 68000: Principles and Programming. In-
dianapolis, IN: Howard W. Sams & Co., Inc., 1981.

Radio Shack. Radio Shack’s Editor Assembler Manual for the Model
16. Catalog No. 26-6040.

181

Index
L e T

A
Access codes, 51
Address, 176
Addressing mode formats, 10
Addressing modes, 9, 176
Address registers, 5
ASClI codes, 176
ASM16, 176
Assembier program, 2
Assembler-16, 21, 138
Assembler-16 directives, 163
Assembler-16 system, 1, 2
Assembly language, 1, 176
Assembly language, advantages of, 1
Asterisk, 8, 20
At symbol, 7, 16

B, 6,10

BASIC, 176

Begin, 18

Binary, 177

Bit, 177

Boot, 45

Branch, 177

Branch, conditional, 177
Buffer, 177

Bus, 177

Byte, 6, 177
Byte-offset, 11, 14, 20

c
Central processing unit, 5

182

Chip, 177

Clear screen, 19
Column, comments, 7. 8
Column, label, 7
Column, op code, 7
Column, operand, 7, 8
Columns, 18
Comments, 151
Control file, 2

Controls codes, 16, 24
Counter, 177

CPU, 177

Cursor position, 24, 26

Data files, 51

Data registers, 5, 38

Debugging, 141, 148, 177

Decimal to hexadecimal conversions,
164

Decrement, 177

Density, disk, 46

Direct addressing, 6, 7, 10

Directive, 178

Disk, 178

Disk, double-density, 46

Disk, double-sided, 44

Disk, single-density, 46

Disk, single-sided, 44

Disk access, 178

Disk density, 46

Disk drive, 44

Disk file, 178

Disk operating system, 23, 178
Display, 24, 26

Display a character, 26
Display a line, 24

Double sided, 178

E
EDIT16, 2, 4, 178
EDIT16 format, 7
EDIT16 opcodes, 162
Editor assembler, 1, 2, 5
Editor program, 1, 2, 7, 18
END 18, 151
END statement, 16
Enter a line, 33
Error code, 14, 59
Error code, displaying an, 60, 62
Error handler, 9
Error handling, 59-69
Error messages. 59
Error messages, assembler, 63
Error messages, execution, 68
Error trap, 68
EQU, 17

Fields, 43

File, 178

File handling, 49

File name, 178

Files, data, 51

Files, disk, 43

Files, Z80 program, 51, 54
Flag, 178

Flag register, 60

Floppy disk, 43, 178

G
Get a character, 32
Greater than, 147

H
Hard disk, 46
Head, 46, 48
Hexadecimal, 179
Home, 19

1
Immediate addressing, 6
Increment, 179
Incrementing, 147
Indirect addressing, 7, 11

Indirect addressing with byte-offset,

11
Integrated circuit, 179
Inverse video, 19

K
Keyboard buffer, 31
Keyboard input, 32
Keyboard routines, 31-39

L
L. 6
Labels, 7, 14
Less than, 147
Linker, 2
LINK16, 179
Loading, 5
Long word, 6

M
Machine code, 5
Machine language, 2, 179
Mailing list program, 72
Mailing list source code, 112

MC68000, 1, 4,6-7, 9, 13, 44,99, 133,

135, 146
MC68000 data sheets, 169
Memory, 179
Meny, 23, 179
Microprocessor, 179
Mnemonic, 8, 162, 179
Modular format, 70
Mutti-user, 134

N
Normal video, 19

0
Object code, 2, 20, 179
Object file, 2
100 ps, 145

100 ps, timing, 145

Op code mnemonics, 162
Op codes, 4, 7

ORG pseudo op, 15

P
Period, 6
Peripheral, 179
Pound sign, 6, 11
Print a character, 40
Print a line, 41
Printer, 40
Program, 180
Pseudo op, 24
Pseudo op codes, 5, 14, 163, 180

R
RAM, 5, 13, 16, 27, 136
Read/write, 180
Record, 180

183

Registers, 5, 180
Relative address, 180
Reserved words, 4

S
Screen formatting, 19-22
Sectors, 44
Single-sided, 180
Slash, 37, 147
Source code, 20, 150
Source program, 1, 2
Speed, 1
Stack, 27
Start, 18
Status register, 60
Supervisor block, 11
Supervisor calls, 13
Supervisor function code, 14
Supervisor routines, 180

184

SVC, 13

SVC block, 11, 13, 15-17, 50
SVC block setup, 152

SVC number, 14, 17, 20

T
TEXT, 17
Tracks, 44, 48
Trap error, 149
TRS-80 Model 1, 133
TRSDOS, 25, 40, 56, 60

w
W, 6,10
Warnings, assembler, 66
Word, 6

z
Z80, 51, 54, 146

