Nine Dollars and Ninety-Five Cents
Cat. No. 62-2072

Levelll
BASIC

By

Don Inman
Bob Albrecht
Ramon Zamora

MORE TRS-80 BASIC®

DON INMAN
RAMON ZAMORA
and
BOB ALBRECHT

Dymax Corporation
Menlo Park, California

John Wiley & Sons, Inc.
New York ¢ Chichester o Brisbane ¢ Toronto

Copyright © 1981, by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work
beyond that permitted by Sections 107 or 108 of the 1976
United States Copyright Act without the permission of
the copyright owner is unlawful. Requests for permission
or further information should be addressed to the
Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data:
Inman, Don
More TRS-80 BASIC.

(Wiley self-teaching guides)
Includes index.

I. TRS-80 (Computer)—Programming. 2. Basic.

(Computer program language) 1. Zamora, Ramon. IL.
Bob, 1930- . III. Title. IV. Series.
QA76.8T18156 001.642 81-150
ISBN 0-471-08010-1 AACR2

Printed in the United States of America
10987654321

Albrecht,

Contents

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Appendix A
Appendix B
Appendix C

Index

To the Reader

How to Use This Book
Introduction

A Guided Tour of Memory
Graphics and Supergraphics
Introduction to Cassette Data Files
More about Cassette Files

Disk Operation

Using Disk Files

Tuning Up Your Computer

Special Features and Fancy Functions
Graphics and Animation
Arithmetic Functions

A TRS-80 Art Lesson

Table of Graphic Characters

The Cassette Recorder

ERROR Codes and Messages

vii

35

65

89
105
129
157
181
205
229
251
269
270
274
271

TO THE READER

If you bought this book we assume that you already have a TRS-80 microcomputer, or
the use of one in a school or office. And we hope that you have read, enjoyed, and
learned from our earlier book, TRS-80 BASIC.* (Or another book that introduced
you to BASIC and the TRS-80 computer.) This book starts where TRS-80 BASIC
ended and will give you more hours of pleasure from your computer than ever before.

We begin with a review of commands and statements and move quickly to a detailed
guide to your TRS-80’s memory so you can get the most out of PEEK and POKE and
use your computer most efficiently. We then progress through Graphics, Cassette and
Disk Files, and Animation. Lots of programs demonstrate what is taught and there is
plenty of opportunity to change programs, add to them, and write your own. You get
some tricks for saving space and many special programs that range from car races to
phone indices. And Self-Tests let you check your progress and understanding through-
out the book.

If you have read any of our other books you know that we feel computer terminology
and concepts can be introduced within a framework of fun and exploration, and that
when we do this, true learning takes place. Microcomputers are here to stay. Every-
thing in this book is directed toward helping you fully explore the workings and uses of
your TRS-80 microcomputer.

The next section tells you How to Use This Book. Why don’t you first browse
through that, then begin your further adventures with your TRS-80 and BASIC.

*TRS-80 BASIC, Albrecht, Inman, and Zamora, (C) John Wiley and Sons, Inc., 1980.

HOW TO USE THIS BOOK

This book is a Self-Teaching Guide. This means that you can use the book to teach
yourself. Each chapter of the book is composed of short bites of information present-
ing a single idea or topic on the BASIC language, the TRS-80, a special feature, or a
program that is being developed. Throughout the sections there are lots of questions
and exercises to be done.

We encourage you to use this book while you are in front of a TRS-80 computer.
Try the programs and exercises that are discussed on the machine. Let the TRS-80 be
your “teacher.”

The first page of each chapter briefly lists what the chapter is to cover. Scan that
list. If you feel you already know the material to be covered skip to the back of the
chapter and take the Self-Test. You can review the chapter if you have trouble an-
swering the questions.

The material in the book gets more challenging as you move through the chapters in
order. If you have only a basic knowledge of BASIC and your TRS-80 start with the
first chapters and don’t try to skip around. If you know quite a lot of BASIC and are
pretty familiar with your computer look at the Table of Contents and feel free to ex-
plore some of the later chapters.

As a final note before you start, be aware that as you use the book, enter lines into
your computer, answer Self-Test questions, and do the exercises:

YOU CANNOT DO ANYTHING WRONG!

There is no way you can “hurt” or “harm” the computer by what you type into it.
You may make mistakes, but that is a natural part of learning and exploration. In
fact, we introduce deliberate errors in several places as part of the learning process.

So, explore, enjoy, and tell us about your discoveries as you use your Radio Shack
TRS-80 microcomputer.

vii

CHAPTER ONE

Introduction

Welcome to this second book in a series designed to help you discover and use more of
the features of your Radio Shack TRS-80 Model I computer. In the first book, TRS-
80 BASIC,* we assumed you were a newcomer to computers and computing. We used
a frame-by-frame presentation of material that kept everything down to small, bite-
sized lumps. Here, however, we assume that you have finished the first book (or its
equivalent) and that you are familiar with some aspects of the Level II BASIC lan-
guage. The material is presented as a series of chapters that expand on what was cov-
ered in the beginner’s text. It includes detailed discussions of several new language
features of your TRS-80 and self-test exercises and answers at the end of nearly every
chapter.

* Albrecht, Inman, and Zamora, TRS-80 BASIC: A Self-Teaching Guide. John Wiley & Sons, Inc., N.Y.,
N.Y., 1980.

2 MORE TRS-80 BASIC

In this chapter, we will preview some of the things you will learn and briefly re-
view the commands, statements, terms, and other features of BASIC that we covered
in TRS-80 BASIC. In chapter 2, we will assume that you are familiar with the ele-
ments of BASIC and begin introducing new features of TRS-80 BASIC.

Throughout this book, each new BASIC statement is described in detail when it
is first used. Longer programs are broken into logical blocks, or sections, and each sec-
tion is explained thoroughly. When the user must interact with a program, there are
sample program results with sketches of video displays. The material covered is sum-
marized at the end of each chapter.

We have worked to make this book easy to read, to understand, and to use. Some
programs appear more than once. These repetitions provide continuity and emphasize
relationships between new and previously used instructions. Elementary forms of some
programs appeared in our beginners’ book.

The Level IT BASIC Reference Manual, supplied with your TRS-80 Model 1
computer, is used often as a source for discussions of BASIC statements, commands,
and functions. Some Radio Shack hardware and software products are also used as
examples.

The central theme of the book is practical, application-based uses of the ma-
chine. In some cases, the information is developed in terms of educational or recrea-
tional programs. Where possible we indicate several areas where a technique or ap-
proach may apply. You will also be introduced to file handling techniques and applica-
tions of your TRS-80 cassette recorder and disk. The TRS-80 has so many features
and capabilities that we were hard pressed to keep this second book down to its current
size.

We do, however, cover new statements, such as PEEK and POKE, the many
mathematical and ERROR functions and routines, and most other features of TRS-
80 Level 11 BASIC that were not described in our first book. We include two full chap-
ters of useful, powerful graphic techniques and a chapter on the generation of sound
and music, using inexpensive devices that plug into your TRS-80.

The addition of easy-to-use graphics and sound has lifted computer use out of
the number and word crunching business and industrial world and greatly enhanced
the computer’s recreational and educational aspects. Today’s microcomputers, such as
the TRS-80, have created an opportunity for nearly everyone to own, use, and master
the “mysteries” of a small computer. The small computer is finding its way into the
home, the school, and the small business. Thousands of programs are being developed
for these machines to perform a wide variety of educational, recreational, and busi-
ness-related tasks.

"With the steady increase of programs and computer users, the number of new
applications for these powerful tools will continue to grow. New users bring new inter-
ests and avocations that lead to different problems to be solved. Everyone benefits as
new solutions are discovered and shared, opening up new areas to apply the tool. The
cycle feeds on itself, and everyone has an opportunity to be an inventor and creator in
this rapidly growing field.

This book will help you expand your knowledge of Level II BASIC and expand
your ability to create programs. As you make greater use of your TRS-80, you will
find that you and those around you have both the ability and skill to design programs

INTRODUCTION 3

that perform any number of tasks you may wish to do. By the time you complete your
tour of this book, you will have used nearly every BASIC language command and
statement available on a Level II 16K machine. For those of you with larger machines
(24K, 32K, and so forth), the material in this book will work as well.

As always, we encourage you to venture forward into the book with a spirit of
exploration and discovery. We believe that learning to use a small computer can be
both fun and educational. In that vein, we occasionally try to lighten things here and
there with a bit of humor, and even go so far as to POKE (ooops, there we go — poke)
fun at ourselves. Enjoy learning some new ways to use your TRS-80, and share what
you learn with those around you. Are you ready? Let’s go! If you need to review, move
on to the next section. If not, skip the review, and look at chapter 2 for a “guided tour
of memory.”

Things We Expect You to Know

Although we assume that you have a background knowledge of Level II BASIC, a
brief review of the BASIC statements, commands, and functions from the beginner’s
book is presented here. If you feel confident in your knowledge of Level Il BASIC, you
can either pass quickly through the review section or skip on to chapter 2.

BASIC Statements and Commands

ASC(string) Returns the ASCII code of the first character in the string argument
specified in parentheses.

CHRS (exp) Returns a one-character string of exp, which may be an ASCII, con-
trol, or graphics code.

4 MORE TRS-80 BASIC

Clearn Sets numeric values to zero and strings to null; sets aside n bytes of string
space in memory.

CLS Clears the videodisplay.

DATA item list Holds the data for access by a READ statement; items may be nu-
meric or string; items are separated by commas.

DELETE mm-nn Deletes the program lines from line mm through nn.

DIM array (dim#l, dim#2, . . .dim #k) Reserves storage for a k-dimensional array
with the specified size per dimension; DIM may be followed by a list of arrays sepa-
rated by commas.

EDIT mm Puts you in the edit mode at line mm.

EDIT Puts you in the edit mode at the last line entered, altered, or in which an error
has occurred.

END Ends the execution of a program.

FOR var = exp TO expSTEP exp Opens a FOR-NEXT loop. STEP is optional —
if not used, STEP will be 1.

GOSUB mm Branches to the subroutine beginning at line mm.

GOTO mm Branches to the line number specified by mma.

IF exp THEN statement #1 ELSE statement #2 Tests the expression, exp; if True,
statement #1 is executed and control proceeds to the next program line (unless
statement #1 is a GOTO); if exp is False, statement #2 is executed; the ELSE state-
ment #2 is optional.

INKEY$ Reads the keyboard and returns a one-character string, which is the string
value of the key that was last pressed.

INPUT “message”; var PRINTS the message (if any) and waits for an input from
the keyboard; var may be a numeric or string variable; a list of variables separated
by commas may be used.

INT (exp) Returns the largest integer that is not greater than the expression, exp.

LEFTS (string, n) Returns the first n characters of the specified string.

LEN (string) Returns the length (number of characters) of the string.

LET var=exp Assigns a value equal to exp to the specified variable, var.

LIST Lists the entire current program in memory.

LIST mm-nn Lists only lines mm through nn of a program; -nn is optional.

MIDS (string, p, n) Returns a substring of the specified string; the length of the
substring will be z starting with the character in position p.

NEW Deletes the current program in memory and resets all variables, pointers, etc.

NEXT var Closes a FOR-NEXT loop; the variable, var, is optional.

POS (0) Returns a number indicating the current cursor position; the argument (0)
is a dummy variable.

PRINT exp Output the value of exp to the display; exp may be numeric or string
variable or constant, or a list of such items.

PRINT @n Modifies the PRINT statement to begin printing at the display
position .

RANDOM Reseeds the random number generator (starts with new number).

READ variable list Assigns values to the specified variables starting with the cur-
rent data item from the DATA statement.

REMARK Remark indicator; tells the computer to ignore the rest of the current
line; abbreviation REM may be used also.

INTRODUCTION

5

RESET (X, Y) Turns off the graphic blocks at horizontal coordinate X and vertical
coordinate Y.

RESTORE Resets the data pointer to the first item in the first DATA statement.

RETURN Branches to the statement following the last executed GOSUB.

RIGHTS (string, n) Returns the last n characters of the string specified.

RND (0) Returns a pseudorandom number between 0.000001 and 0.999999,
inclusive.

RND (exp) Returns a pseudorandom integer between 1 and INT (exp), inclusive.

RUN mm Executes a program beginning at line mm; mm is optional; if not speci-
fied, the execution begins at the lowest numbered line.

SET (X, Y) Turns on the graphic block at horizontal coordinate X and vertical coor-
dinate Y.

STRINGS (n, char) Returns a sequence of n character symbols using the first char-
acter of char.

TABn Modifies a PRINT statement; moves cursor to the specified display position
(0 through 63) on a given line.

TROFF Turns off the trace function.

TRON Turns on the trace function that displays the line number of each line exe-
cuted.

VAL (string) Returns the number represented by the characters in the specified
string.

Frequently Used Terms

Backspace key Used to move the cursor left one space and erase the character in
that space. If the SHIFT key is held down at the same time, an entire line is erased.

Break key Stops the computer at the current line being executed.

Cassette recorder Used to store data outside the computer.

Clear key Clears the TV display.

Concatenation Joins two or more strings together.

Cursor Shows where the next printed character will appear.

Data pointer A pointer (or counter) the computer uses to tell it which item to select
from a data list.

Debug To remove errors, or “bugs,” from programs.

Edit mode Allows changes in an existing program without retyping the whole line.

Empty string(””) A string with nothing in it, not even a space.

Enter key Tells the computer a command or statement is completed.

Flag A signal to the computer that some process has been completed and should be
discontinued.

Floating point A special method of writing very large or very small numbers.

Inequality symbols ~Symbols used to express a relationship between two quantities
that are not necessarily equal.

Keyboard The control center of the TRS-80.

Line number Used to tell the computer which line to execute next.

Multiple-statement line A program line that contains more than one statement to be
executed.

6 MORE TRS-80 BASIC

Numeric variable A variable that identifies a number.

One-dimensienal array A list of numbers or strings arranged in a specific order.

Order of operations The order in which arithmetic operations are performed within
a given arithmetic expression.

Power of numbers Tells how many times a number is to be used as a factor.

Power supply The TRS-80 power supply converts 110- to 120-volt AC to smaller
DC voltages.

Print positions Positions on the video display that are numbered from the upper left
to the lower right (0 through 1023).

Prompt The > symbol tells you that it’s your turn to tell the computer what to do.

RAM (Random Access Memory) Used to store your programs and data.

Random number A number chosen from a given set of numbers so that each number
has an equal chance of being selected.

Ready A message printed on the video screen that indicates the computer is ready to
do something.

ROM (Read Only Memory) Used to store the TRS-80 operating system and the
BASIC interpreter.

Rounding numbers Changing values to the nearest specified decimal place.

Sequence of values Values that come one after another in order.

String A string of numerals, letters, and/or special characters.

String variable A variable that identifies a particular string.

Superscript Specifies the power of 2 number.

Two-dimensional array A table of numbers or strings consisting of rows and col-
umns.

Variable subscript Denotes the order of an element in an array named by the varia-
ble.

Video display The TV screen on which graphics and/or text is shown.

CHAPTER TWO

A Guided Tour of Memory

The TRS-80 performs its wondrous feats with a carefully planned, ingenious use of
memory. Almost everything that goes on inside the computer uses memory in some
way. The computer’s operating procedures, the BASIC programs you write, and the
data used by your programs are all stored in memory.

Did you ever wonder why you lose your programs when the computer is turned
off, yet the computer is still able to operate when it is turned on again? If the computer
“forgets” your programs when turned off, how can it “remember” its own operating
procedures? Stay with us. This chapter presents a map to guide you through TRS-80
Memory Land. You will see the different kinds of memory and learn how each is used.
When you finish the chapter, you’ll be able to PEEK and to POKE around inside your
own memory. You’'ll also have a better understanding of how the computer works and
how you can use it more efficiently.

You will learn:

how ROMs and RAMs are packaged,

how the CPU works with ROM,

how to PEEK into ROM,

the difference between ROM and RAM,
how ROM and RAM are organized,

how your BASIC program uses RAM,

why the MEMORY SIZE? prompt is used,
how memory space is reserved for strings,
how to conserve memory space,

how to PEEK and/or POKE into RAM,
how to use POKE with care, and

where the video screen is located and how to use it.

8 MORE TRS-80 BASIC

What is Memory?

The first chapter of TRS-80 BASIC* briefly discusses two kinds of memory—ROM
and RAM. The computer can read information from ROM, but cannot erase or
change it in any way. Therefore, this type of memory is called Read Only Memory, or
ROM for short. Information in ROM is permanently stored, much like the informa-
tion on the pages of this book or the information on a phonograph record. It cannot be
changed and it is not “forgotten” when the computer is turned off.

A ROM in a computer can be replaced, just as a book is replaced by a new, re-
vised edition or a record is replaced in your phonograph. But the information in that
particular ROM cannot be changed from the keyboard or by a BASIC program.

The ROM:s inside the TRS-80 are enclosed in rectangular packages with
twenty-four small, metal legs, twelve on each side. These legs make electrical connec-
tions to the rest of the computer.

The heart of the computer is called the Central Processing Unit (CPU). It is
contained in a package similar to the ROM’s. Although the CPU does most of the
work (or processing) for the computer, the ROMs are the boss; they tell the CPU what
to do, how and when to do it, and where to put the results.

When the TRS-80 is turned on, the CPU immediately looks at a certain memory
location in ROM to see what it should do. The ROM then takes over, giving directions
to “fire up” the system and get it READY for your input.

Since the ROM is so important to the computer, it is placed at the beginning of
the memory block. Regardless of whether you have a 4K, 16K, 32K, or other size
TRS-80, the ROM occupies the memory locations numbered from 0 through 12287.
Therefore, every TRS-80 Level II computer has a 12K ROM (K for thousand). Each
K actually refers to 1024 locations.

*Albrecht, Inman, and Zamora, TRS-80 BASIC: A Self-Teaching Guide. John Wiley & Sons, Inc., N.Y.,
N.Y. 1980.

A GUIDED TOUR OF MEMORY 9

12K =12 X 1024 = 12288 (Numbered 0 through 12287)

Location
{or Address)
00000
Level I
BASIC ROM
12287

Remember, you can only read information from ROM. Nothing can be written
into the memory locations from 0 through 12287.

PEEK into ROM

You can read information from ROM using Level II BASIC’s PEEK function. This
function lets you PEEK at (or read) the information stored in one memory location.
PEEK can be used with a PRINT statement in the Immediate Mode, as well as within
a program.

PRINT P Exm Parentheses

Display on \ The memory location that

the screen we are PEEKing into

Now, turn on your TRS-80 and PEEK around a bit.

* Whenitsays MEMORY SIZE? you press ENTER

This is what you see:

MEMORY SIZE?

RADIO SHACK LEVEL II BASIC
READY

>

16 MORE TRS-80 BASIC

¢ Youtype: PRINT PEEK(1000) and press ENTER

This is what you see:

MEMORY SIZE?
RADIO SHACK LEVEL II BASIC
READY

PRINT PEEK(10@0)

56
READY
-,

By PEEKing, we found that the number 56 is stored in ROM location 1000.
Hmmm, wonder what is in location 0.

o Youtype: PRINTPEEK(0)

243. Hmmm!
I wonder what

It prints: 243
\/// that means

So far, you've found a number (243) in memory location 0 and another number
(56) in memory location 1000. Is that all you’re going to find — a bunch of numbers?
Try another. This time find out if the PEEK statement can use a variable instead of
the numeric location.

s Youtype: A=1
o Youtype: PRINT PEEK(A)

It prints: 175 (This number is in memory location 1, since A = 1.)

You now know this about the Level Il ROM:

Location Value
0 243
1 175
1000 56

A GUIDED TOUR OF MEMORY 11

To find what is in the first few locations, type in the following single line and press
ENTER:

CLS: FOR A= TO 5: PRINT PEEK(A): NEXT A

Lo and behold! You get the numbers stored in memory locations 0 through 5.

Location 0 ————-» 243
Location] ———+175
Location 2 ————4» 195
Location 3 ————+ 116
Location 4 ———+» 6
Location 5 ———++ 195
READY
e

That one line in the Immediate Mode performs the same function as the following
BASIC program:

19 cLs
20 FOR A = § TO 5
39 PRINT PEEK(A)
49 NEXT A

Try using the program and see if you get the same results. To look at more results,
change line 20. If you try to get too much data on the screen, the results will scroll by
so fast that you can’t see them all. Try changing line 20 to:

20 FOR A = § TO 13

Now run the program again and compare your results with ours.

243 ™

175
195
116
6 Contents of memory
195
g
64
195
2
64
225
233
195 __|
READY
>

locations O through 13

By this time, you may be convinced that all ROM contains is a bunch of num-
bers. What do the numbers mean? They don’t mean anything to you, but they do

12 MORE TRS-80 BASIC

mean something to the computer. It interprets them as specific instructions—what,
how, and when to do something.

Perhaps you are itching to PEEK into the rest of the ROM. The following pro-
gram lets you pick the starting and ending locations for a screenful of ROM locations.
The addresses of the locations where the values are stored will also be printed.

Use the following program to explore ROM:

ROM PEEK Program

199 REM * INPUT LOCATIONS *
119 CLS

12¢ INPUT ''START ADDRESS'';B
13 INPUT ''END ADDRESS'';C
14¢ CLS

209 REM * PRINT CONTENTS OF ROM *
210 FOR A = B TO C

220 PRINT A, PEEK(A)

23¢9 NEXT A

3g¢ REM * GO BACK FOR MORE *
319 GOTO 128

Be sure to look at the last locations in the ROM when you have entered the
ROM PEEK Program. Are all of the ROM locations used? Decide for yourself by
running the program with the following inputs:

START ADDRESS? 12275
END ADDRESS? 12288

After entering these starting and ending addresses and pressing ENTER, this is what
you will see:

-

12275 195
12276 152
12277 26
12278 193
12279 2p9
12280 195
12281 25
12282 26
12283 2
12284 2
12285 [}
12286 2
12287 g
12288 255
START ADDRESS? -

The last five locations in ROM (12283 through 12287) contain zeroes. Location
12288 is actually the beginning of RAM, which we will discuss next.

A GUIDED TOUR OF MEMORY

13

Random Access Memory (RAM)

The ROMs and the CPU are physically located inside your TRS-80 keyboard. The
keyboard is also the home of many electronic circuits and integrated circuit “chips.”
Eight of these chips, enclosed in packages similar to the ROM chips, make up the first
4K or 16K of your Random Access Memory (or RAM).

Each RAM chip holds either 4,096 bits (binary digits) or 16,384 bits, depending
on the computer’s memory size. In a 4K machine, each chip holds 4,096 bits; in a 16K
machine, each chip holds 16,384 bits. The computer combines 1 bit of information
from each chip to make a “byte” of information. The TRS-80 is called an 8-bit com-
puter because it works with pieces of information 8 bits long. A binary number whose
length is 8 bits is called a byte. One memory location can hold 1 byte of information
made up of 1 bit from each of the 8 chips.

RAM is different from ROM in two important ways.

1. Information can be written into, stored into, or read from RAM.
Therefore, you can erase or change the information in RAM. It is like a
blackboard or scratch pad.

2. All information is lost from RAM when the electric power is removed
JSfrom the chips. The information stored there is not permanent, unlike
ROM. That is why the computer “forgets” your BASIC programs when
it is turned off. BASIC programs are stored in RAM.

The TRS-80 uses RAM for many of its own operations. The area of RAM re-
served for this use is located at address numbers 12288 (just above the ROM) to
17129. This area is reserved for special purposes, such as keyboard memory, video
memory, and other duties called “household chores.” It is not used to store BASIC
programs, but is used by the computer as it stores or runs your BASIC programs.

14 MORE TRS-80 BASIC

You can see in the diagram below that the computer’s memory is growing.

Memory
location
00000
Level I
BASIC ROM
12288
Reserved RAM used by TRS-80
17129

You've finally reached the area of RAM that you can use for your programs.
This area begins at memory location 17129. The highest memory location available to
you depends upon the size of your computer. The upper level address is 20479 for 4K,
32767 for 16K, 49151 for 32K, and 65535 for 48K computers. The table below shows
the RAM areas for the different size systems and the amount of RAM that may be
used by your programs.

Computer Size
4K | 16K | 32K | 48K
Top location 20479 132767 | 49151 | 65535
Low location 17129 | 17129 | 17129 | 17129
Usable memory 3350 | 15646 | 32022 | 48406

Memory use by computer size

Notice that the amount of usable memory may not be what you would expect.
The TRS-80 uses some of your RAM for various necessary purposes.

A GUIDED TOUR OF MEMORY

i5

A more dramatic display of the amount of RAM available to you, the user, can
be shown graphically. The following diagram gives a picture of the RAM capacities

for different computer systems.

TRS-80 level II memory map

Memory Memory Map by Machine Size
location 4K 16K 1K 8K
00000
Level I1
BASIC ROM
— 12288 ~ — — — —_— —_— —
Reserved RAM
for TRS-80
— 17129 o — — A —_
User RAM
User
RAM User
— 32767 o — e
RA
M RAM
— 49151 — e |
- 65535 - B 1

16 MORE TRS-80 BASIC

How RAM Is Used

RAM is used in many interesting ways. As you type in the text of your program, RAM
is used from location 17129 upward. String space is assigned from the top of your
RAM downward. Remember, string space is automatically set for 50 bytes when you
turn the system on. The amount of string space can be changed by using the CLEAR
N statement (where N is the number of locations to be reserved for string characters).
Simple variables are stored upward, immediately following the program text. Any ar-
rays used are assigned upward following the simple variables.

Next in line are locations used by the stack. The stack keeps track of data during
GOSUB statements and FOR-NEXT loops. Therefore, your RAM is gobbled up from
both ends. The TRS-80 munches its way toward the middle of RAM, as indicated in

the following table.
17129 Beginning of User RAM
| Program Text 1
l -S—im;;e V_a.ria-;les_ o T
T_ :\rr-a-;ls”—” - T
7};_ ——F;eSj;ac-e_ - —ff
T Tsmk 1
T SwimgSpace 1

Space optionally reserved for
machine language routines
accessed from BASIC
End of End of memory and
RAM User RAM

How RAM is used

Notice that there is an optional space at the top of memory that can be reserved
for machine language programs you may want to access from your BASIC program.
Use of this space and machine language programs is described in chapter 8. This
space, if it is to be reserved, is set when you first turn the computer on. It responds:

' MEMORY SIZE?-

A GUIDED TOUR OF MEMORY 17

If you are not going to use a machine language program (and usually you won’t), the
space is not reserved when you press the ENTER key.

MEMORY SIZE? <% Press ENTER
RADIO SHACK LEVEL II BASIC

i.Ef e Then READY message

is printed

If you are going to access a machine language program from a BASIC program, type
in the address of the start of the machine language program following the MEMORY
SIZE? prompt before pressing the enter key. The computer then reserves (or saves)
the locations from the stated memory location to the top of your RAM for the machine
language program.

Example: A machine language program is to be
accessed from BASIC starting at
location 32700.

MEMORY SIZE?3270@

RADIO SHACK LEVEL II BASIC
READY

-

Assume that you are not using a machine language program and you have just
received the READY prompt after turning on your 16K machine.

° Next, verify the amount of “free”” memory space in your computer.
e Type: PRINT MEM

MEMORY SIZE?
RADIO SHACK LEVEL II BASIC

READY

>PRINT MEM - You type

15572
READY \ D
Original free memory

>

18 MORE TRS-8¢ BASIC

Suppose you know that you will not be using any strings. Can you unreserve the
string space that is saved? To find out, use the CLEAR N statement with N being 0.
Then, PRINT MEM again.

—
.
o
o
READY
>PRINT MEM
15572 <———————- Qriginal free memory
READY

>CLEAR § <t .
READY Free the String Space

>PRINT MEM
15622

READY T

- Fifty more locations now free
(15622 through 15572 = 50)

Now set the string space back where it was originally.

—

.
°
.
READY
>PRINT MEM
15622 <———— Free memory after zeroing

READY String Space
>CLEAR 5§
READY
>PRINT MEM Type: Clear 50
15572 ~—
};Ef\ > Back to original free memory

Next, put in a small program one line at a time and match the free memory
space decrease as the program text is entered.

A GUIDED TOUR OF MEMORY 19

Assume, as you enter this program, that you are using a 16K TRS-80. You have
just turned the computer on and it shows free memory space of 15572 locations.

READY .
>19 A=5 <+———— First program line
>PRINT MEM

R;ig? T Eight locations used up for line 10

>- (15572 through 15564)

[READY
>10 a=5

>PRINT MEM
15564

READY

>2¢ B=6 <«——— Second program line
>PRINT MEM

15556 o .
READY Eight more locations used for

>- line 20 (15564 through 15556)

(READY

>10 a=5
>PRINT MEM
15564
READY
>20 B=6
>PRINT MEM
15556
READY
>30 PRINT A+B =+ Third program line
>PRINT MEM

>- line 30 (15556 through 15546)

You used 26 memory locations to store this three-line program. When you RUN
the program, more memory space is used to store the variables. RUN the program and
see how much total memory is used.

£]

L]
L]
>PRINT MEM

15546
READY
>RUN

11 - 5+6 = 11
READY
>PRINT MEM

15532
READY D Fourteen more locations used for
> the run (15546—15532)

14426 = 40 total locations

20 MORE TRS-80 BASIC

You can see that memory gets used up pretty fast as you type in each line of the
program. Remember, you use memory to store program text, variables, arrays, strings,
etc. Even line numbers and spaces between words in the text take up memory loca-
tions. To demonstrate, type the following three-statement program on one line with no
spaces. Then check the free memory again.

o Type: NEW
o Then enter the program on one line.

('READY

>1g A=5:B=6:PRINT A+B < The program: Three statements

>1R1UN on one line
READY
>PRINT MEM

15541 4_————-—_
READY 15572—15541 = 31 locations

>

for the program and run

This one-line program used 31 locations. Therefore, you saved a total of 9 loca-
tions by squeezing data onto one line. You can save memory in this way, but it makes a
program hard to read.

PEEK intoe RAM

Would you like to see what a program looks like after it’s stored in RAM? Since you
know the program is stored in RAM starting at memory location 17129, you can
PEEK into that area of memory after you have entered your program. Use the pre-
vious three-line program because you know how much memory it used. If it’s not still
in your computer, type NEW and enter it again.

/

READY

>1g8 A=5

>20 B=6

>3¢ PRINT A+B

>PRINT MEM
15546

READY

>

A GUIDED TOUR OF MEMORY

21

Since the program took 26 locations (15572—15546), you want to look at mem-
ory locations 17129 through 17154. However, if you add a couple more locations you
will see something significant.

/

READY
>10 aA=5
>20 B=6
>3@ PRINT A+B
>PRINT MEM
15546
READY
>FOR C=17129 TO 17156:PRINT PEEK(C);:NEXT C
241 66 19 @ 65 213 53 § 249 66 20§ 66 213 54 ¢
3 67 33 9 178 32 65 205 66 g 9 0

READY j

>
~ End of program

That long list of numbers is the text of the three-statement program. The three
zeros at the end signify the end of the program text. Amazingly, the computer can in-
terpret those numbers meaningfully. How does it do it? Well, it’s that work horse,
CPU (Central Processing Unit), following the directions of its boss, the ROM. To-
gether they make a great pair, figuring out those crazy codes and performing the work
with lightning speed. .

If you added another instruction to your program, you’d see that the program in
memory has been lengthened. Try adding an END statement at line 40.

e

o

L]

>4@ END

>PRINT MEM
15540

READY

>_

Six more memory locations have been used for line 40 (15546 through 15540).
Therefore, look at locations 17129 through 17162 this time.

READY

>FOR C=17129 TO 17162:PRINT PEEK(C);:NEXT C
241 66 19 @ 65 213 53 0 249 66 20 § 66 213 54 @
3 67 39 9 178 32 65 205 66 8 9 67 40 § 128 § P
I}

READY

>

If you compare the two programs, you can see that 6 more locations containing
the codes 0, 9, 67, 40, 0, and 128 have been added just before the three zeros that indi-
cate the end of the program.

22 MORE TRS-80 BASIC

One last demonstration before leaving the subject of program RAM. This time
enter a program that will PEEK at itself when it is run.

Once again, the program will start at location 17129; ROM sees to that. Type
NEW and enter the following program:

/’

READY

>1g FOR A=17129 TO 17172

>20 PRINT PEEK(A);

>3p NEXT A

>RUN
255 66 19 @ 129 32 65 213 49 55 49 58 57 32 189
32 49 55 49 55 5¢ 9 11 67 20 @ 178 32 229 49 65
41 59 @ 19 67 3@ @ 135 32 65 0 ¢ @

READY

-

—— End of program

To get the same results, the program must be entered exactly as shown. Any ex-
tra spaces change the codes produced. Try putting spaces on both sides of the equal
sign in line 10. Then run the program again. Compare the two results. See the differ-
ence? Try other changes and compare results. Be careful, though. Don’t let your curi-
osity get the best of you — the habit is catching. You can spend hours at this sort of
thing. You might even discover what some of those numbers mean to the computer.

PEEK and POKE

The PEEK instruction is very useful. It offers a passive way to investigate what is in-
side the computer’s memory without disturbing what is there. PEEK has a companion,
named POKE, that is just the opposite. The POKE instruction is very active. It
changes what is inside a specific memory location. Therefore, use it with great care.
Its use can alter a vital piece of information if used at the wrong time or the wrong
place. It works like this:

POKE 17500,10
‘ A : A A :
POKE a new value. Into location 17500. This is the value POKEd.

POKE and PEEK are often used together. It is often desirable to PEEK at the
value in a memory location before you POKE in a new value. Jot down on paper what
is there. Then, if a disaster occurs when the new value is POKEd in, you will know
what value to POKE back in to restore the original condition.

Get your computer READY to try a few PEEKs and POKEs.

Try a POKE into ROM

Remember, the TRS-80 ROM, discussed in the early part of this chapter, is addressed
from 0 through 12287.

A GUIDED TOUR OF MEMORY 23

s First, PEEK into the ROM to see what is in location 120.

READY

>PRINT PEEK(120)
33

READY

> e

o Then, try to POKE the number 5 into location 120.

READY
>PRINT PEEK(12§)

33
READY
>POKE 129,5 <+—— POKE it!
READY
-

e Now, PEEK again to see if it changed.

READY

>PEEK(120)
33 «+——o
READY
>POKE 120,5
READY
>PEEK(120)
33 4+—————— What happened?

iEADY It didn’t change.

Remember, ROM is Read Only Memory. It cannot be written into. The POKE
statement writes data info memory. You can’t do that with ROM. PEEK reads, and
POKE writes. The TRS-80 accepts the POKE 120,5 statement and tries to write 5
into location 120. Since location 120 is a part of ROM, it cannot be written into. No
error prompt will be displayed but the data has not been accepted.

If you or your TRS-80 seem hopelessly confused, turn off the TRS-80, then turn
it on and start over!

24 MORE TRS-8¢ BASIC

POKE into RAM

Although you can’t POKE into ROM, you can POKE into RAM. Random Access
Memory can be read from or written into. For the time being, let’s stay in the user
RAM area from location 17129 up. Erase any program that may be in your TRS-80
by typing NEW. Then PEEK at 17150, POKE a 10 into 17150, and then PEEK at
17150 again.

[

READY
>PRINT PEEK(17158)
2
READY
>POKE 17150,18
READY
>PRINT PEEK(17158)
19 < It’s there!
READY
>

Success! You can POKE into RAM. Now, try this:
o POKE the numbers 10, 11, and 12 into locations 17150, 17151, and
17152.

~

READY

>POKE 17158,10

READY

S>POKE 17151, 11

READY

>POKE 17152,12

READY

>FOR X=1715@ TO 17152: PRINT PEEK(X): NEXT X
2

114————___
There they are

Recall the three-line program on page 20:

19 =5
28 B=6
30 PRINT A+B

A GUIDED TOUR OF MEMORY 25

Enter the program in the computer again, and then PEEK at locations 17129 through
17156.

READY
>18 A=5 <—- Enter program

=20 B=6 Peek

>30 PRINT A+B)

241 66 19 9 65 213 § 249 66 20 ¢ 66 213 54 @

>FOR C=17129 TO 171Sf:PRINT PEEK(C) ; : NEXT C
3 67 30 @ 178 32 65,205 66 9 8 ¢
READY /

>

Keep your eye on this one; it
is the number in location 17135.

Now, you are going to do something that you should never, never do. You’re
going to POKE a number into the memory area where your program is stored.

o Add line 25, which POKEs the value 54 into memory location 17135 — the mem-
ory location circled in the previous screen picture.

/

READY

>25 POKE 17135,54

>LIST

19 a=5

20 B=6

25 POKE 17135,54 <—There it is
38 PRINT A+B

READY

>

e Now RUN the program.

/

>LIST
19 A=5
2@ B=6
25 POKE 17135,54
3¢ PRINT A+B
READY
>RUN
1 Looks just fine
READY
e

26 MORE TRS-80 BASIC

Tt looks as if nothing is wrong. Everyone knows that 5 plus 6 is 11. Just to make
sure, list the program again.

>LIST
19 A=5
28 B=6 _)
25 POKE 17135,54 |-—We started with this
3¢ PRINT A+B program

READY]

>RUN
11 -

READY
>LIST
19 A=6
20 B=6
25 POKE 17135,54 |—We ended up with this

3 PRINT A+B
R?:ADY I program. Now A=6.

> WHY? Read on.

It worked OK

By using the POKE statement in line 25, you actually changed the program. At
line 10, A was set to 5. At line 20, B was set to 6. When the program was executed,
these values were stored in the memory area assigned to variables. Line 25 actually
changed line 10 in the program. However, the program has already executed that line,
s0 no harm was done to the result produced at line 30. Execute the program again to
see what the answer is.

—

READY
>RUN
12 ~<————————— Sure enough, the answer is
READY now 12
>_

This example produces a very minor fault. You were lucky. You might have de-
stroyed your whole program. REMOVE LINE 25 IMMEDIATELY. Then change
line 10 back to A=5.

READY .
>25 ¢—— Delete line 25

>10 A=5 < Change line 10
>RUN

OK!

READY
>

To emphasize the care that must be used with POKE, we encourage you to pro-
duce a major disaster by poking several numbers into the memory area that your pro-
gram occupies. We think you will discover why this kind of poking is a NO, NO.

A GUIDED TOUR OF MEMORY 27

 List the program to make sure you have the original program, then add line 40, be-
low.

49 POKE 17159,187:POKE 1716@,0: POKE 17161,0 POKE 171620

(-

>LIST

19 a=5

20 B=6

30 PRINT A+B

READY

>4p POKE 17159,187:POKE 17168,0:POKE 17161,0:POKE 17162,0
>

Now RUN the program.

(>LIST

19 A=5
20 B=6
30 PRINT A+B
READY
>4¢ POKE 17159,187:POKE 17168,0:POKE 17161, :POKE 17162,8
>RUN
11
READY
>

Nothing strange seems to have happened. RUN it again to make sure everything
is all right.

READY
>RUN _____—
>

e LIST the program.

It’s gone!

The program destroyed itself. This can happen when the POKE instruction is
not used wisely. Results can be altered, a program can be destroyed, or the computer
can become so confused that it doesn’t know what to do next.

Enough for destructive uses of POKE. Let’s now turn to a more useful area of
memory and POKE around.

28 MORE TRS-80 BASIC

Video Screen Memory

Hidden away in an area called reserved RAM is a section the TRS-80 uses for its video

display.
00000
Level 11
BASIC ROM
12288
Reserved RAM Video screen
memory is
17129 in here
: User RAM
7 \
Reserved RAM area

The video screen memory consists of 1024 RAM locations, numbered from
15360 to 16383, inclusive.

12288
15360

Video Screen Memory
16383
17129

\ Y
Video screen memory

This area of RAM memory displays the text and results of BASIC programs.
You can alter the screen by poking certain values into the video screen memory
(locations 15360 through 16383).

e For example, try this program:

READY

>19 CLS

>20 POKE 1536@,191
>60 GOTO 6§

>RUN

You see this:

. e

Press the BREAK key to stop the program.

A GUIDED TOUR OF MEMORY 29

e Now, add line 30.

BREAK, IN 6§
READY

>3Q POKE 15423,191
>RUN

What do you see?

You see this:

at 15360 —-| @ !7 <+— at 15423

* Again, press the BREAK key to stop the program. Then add two more lines.

BREAK IN 68
READY

>4 POKE 16328,191
>S50 POKE 16383,191

>RUN
Now, you see:
2] |
at 16320 ——| & B | <— at16383

You have now located the memory locations assigned to the four corners of the
video screen. Each rectangle occupies the space assigned to one memory location. You
can put a number into each corner with the following program. Lines 20,30,40, and 50
POKE the ASCII codes for the numbers 1,2,3, and 4 into the video screen memory.*

*For a review of the ASC function, see Albrecht, Inman, and Zamora, TRS-80 BASIC: A Self-Teaching
Guide. John Wiley & Son, Inc.,, N.Y, N.Y., 1980.

30 MORE TRS-80 BASIC

e Enter this:

READY

>1¢ CLS

>20 POKE 15368 ,As8C("1")
>3@ POKE 15423,ASC("'2")
>4 POKE 16328 ,ASC("3")
>53 POKE 16383 ,ASC("4")
>68 GOTO 6§

>RUN

Then you see:

[y
N

(78
BN

The next example uses strings, string functions, ASC, and MIDS$ to poke the
numbers 1,2,3.4, and 5 into the first five video screen locations.

~

READY

>1p CLS

>20 A$="12345" POKE 1,2,3 4,

iig g‘;R_AM?D;(zg i 0, and 5 into locations
>50 POKE 15359+A:AéC(B$) 15360, 15361, 15362,
>60 NEXT A 15363, and 15364
>7¢ GOTO 78

>_

RUN the program.

' 12345

o Sit back and watch the next program POKE zeros into each successive memory lo-
cation on the top line of the video screen. You can see that the memory locations are
numbered from the upper left corner horizontally across the screen.

15360

—= 15423

A GUIDED TOUR OF MEMORY 31

READY
>1g cLS

>2@ FOR X = 1536@ TO 15423

>3@ POKE X,ASC("§”))
>40 NEXT X 4.____/—_ POKE can use a variable
>5@ GOTO 5@ address

>RUN

The RUN:

(00()000w
64 zeros on one line

* To show two lines on the screen, change line 20 to:

29 FOR X = 15368 TO 15487. RUN the program again.

00
00

Two rows of 64 zeros

* Fora full screen of zeros, change line 20 to:

2¢ POR X = 1536 TO 16383

Now, you'll see the consecutive locations filled with zeros. Add line 50: 50 GOTO 10
and the screen clears after it is full of zeros. Then it all repeats.

Summary
You have explored the TRS-80 memory in this chapter. You learned that:

* ROM (Read Only Memory) is located at the low memory locations. It contains the
TRS-80 operating system and the BASIC language interpreted. You can PEEK at
the contents of ROM, but you cannot POKE new data into it.

e The CPU (Central Processing Unit) does most of the work, as directed by the in-
structions that are located in ROM.

* ROM contains information in the form of numbers that the CPU interprets as spe-
cific instructions — what to do and how and when to do it.

32 MORE TRS-80 BASIC

RAM (Random Access Memory) is made up of integrated circuits in which data
can be stored. RAMs are organized in the TRS-80 to handle bytes of information
made up of 8 binary digits.

You can PEEK at the data in RAM, and also POKE new data into it.

All information in RAM is lost when the power is turned off, but information in
ROM is not lost.

Some RAM is reserved for special purposes (keyboard, memory, etc.). BASIC
programs use RAM memory to store program text, variables, arrays, strings, etc.
The MEMORY SIZE? prompt may be used to save memory space for machine
language programs.

PEEK and POKE instructions allow you to explore memory and alter RAM mem-
ory. POKE must be used with care. It may change data that is important to the op-
eration of your program.

The POKE statement may be used to create and change the video display, since
the display is controlled by the data in a specific block of RAM.

Keeping all these things in mind, try your luck with the following exercises.

Self-Test

1.

2.

Complete the sentence: TRS-80 Level I1 BASIC is stored in the 12288 ROM
memory locations, which have addresses . __ through
What does the following statement tell the TRS-80 to do?
PRINT PEEK(1234)
Answer:

What does the following statement tell the TRS-80 to do?
X = PEEK(1234)
Answer:

Write a program to explore ROM. When someone RUNs your program, it
should begin like this.

START ADDRESS?§ Enter 0
END ADDRESS? 13 Enter 13

A GUIDED TOUR OF MEMORY 33

After you enter 13 and press ENTER, this should happen:

EACH PAIR OF NUMBERS (LOCATION AND BYTE)
BEGINS AT A STANDARD
SCREEN POSITION — COMMA SPACING, 0, 16, 32, 48.

0 16 32 48

] | !]

v v v v

LOC & BYTE LOC & BYTE LOC & BYTE LOC & BYTE
0 243 1 174 2 195 3 116

4 6 5 195 6 0 7 64

8 195 90 10 64 11 225

12 233 13 195

Your program packs four pieces of information onto each line. Each item consists of
the ROM location (LOC) and the number stored there (BYTE).

You decide how to end your program. Simply stop (TRS-80 prints READY and
prompt)? Or, use an “idling” GOTO, such as 710 GOTO 710? Or, use INKEY$? Or,
?7? You choose!

5.

6.

7.

Where does TRS-80 reserved RAM begin (what address or location number)?

Where does RAM, that you can use, begin (address or location number)?

Where does usable RAM end?

a) 4K TRS-80

b) 16K TRS-80

¢) 32K TRS-80

d) 48K TRS-80

What does the following statement tell the TRS-80 to do?

POKE @, 255

Answer:
Will the TRS-80 do as it has been told to do?

Write a statement to POKE the number 123 into location 17129,
Answer:

34 MORE TRS-80 BASIC

10.

ARG

Screen positions 0 (upper left corner) through 1023 (lower right corner) corre-
spond, one to one, to RAM memory locations 15360 through 16383.

Screen Position RAM Memory Location
0 15360
1 15361
2 15362
1023 16383

Complete the following equations, relating Screen Positions and RAM Memory
Locations.

RAM Location = Screen Position +
Screen Position = RAM Location —

Answers to Self-Test

0 through 12287

PRINT the decimal number contained in memory location 1234.

Assign the decimal number contained in memory location 1234 to the variable
X.

One way to do it. (The READY prompt will follow the display.)

188 CLS

11¢ INPUT “START ADDRESS"”; S
12¢ INPUT “END ADDRESS"; E
139 CLS '

148 A$= “LOC&BYTE"

15 PRINT AS$, AS$, A$, AS

16@ FOR X = S TO E

17¢ PRINT X; PEEK(X),

18@ NEXT X

12288

17129

4K TRS-80 20479

16K TRS-80 32767

32K TRS-80 49151

48K TRS-80 65535

Place the value 255 into memory location 0.
No. (You cannot POKE into ROM.) °
POKE 17129, 123

+15360

~15360

CHAPTER THREE

Graphics and Supergraphics

One of the most useful and entertaining features of the TRS-80 is its graphics capabil-
ities. There are several ways to produce useful shapes and moving displays. We will
discuss the following four methods in this chapter.

(1) Setting individual, tiny rectangies.

(2) Setting blocks of six rectangles with POKE.
(3) Setting blocks of six rectangles with CHRS.
(4) Setting strings of blocks of six rectangles.

In this chapter you will also learn:

 the difference between video print positions and graphic positions,

o touse SET and RESET to plot graphic rectangles,

* to POKE graphic characters into video screen and memory,
 todisplay all the graphic characters with the graphic codes that produce

them,
* to paint the screen white and POKE holes in the printing by four different
methods:
SET, RESET
POKE
CHRS$
STRINGS

* tocreate different shapes and move them across the screen by three differ-
ent methods:

POKE
CHRS$
STRINGS

* toconstruct simple and complex mandalas with the CHRS$ function.

35

36

MORE TRS-80 BASIC

Individual, Tiny Rectangles
The TRS-80 video screen lives two distinct lives.

* For text, it has 1024 printing positions, numbered 0 through 1023.
* For graphics, it has 6144 positions, each of which can be occupied by a tiny rec-
tangle of light, much smaller than a “character.”

In this chapter, we will discuss both modes and the relationship of one to the other. We
begin with the graphics mode, most useful for drawing pictures, graphs, and assorted
shapes.

The video screen is divided into 6144 tiny rectangles for display. Each tiny rec-
tangle can be turned on by the SET statement or turned off by the RESET statement.
The screen is numbered from the upper left corner. There are 48 rows (numbered 0
through 47) with 128 rectangles in each row (numbered 0 through 127).

COLUMNS

00— 127

0
\ 48x128=6144
47

Two values must be specified in the SET and RESET statements. The first tells
how far OVER from the left side to place the given rectangle. The second value tells
how far DOWN from the top to place the rectangle. A comma is put between the two
values; this tells the TRS-80 that there are two values; one for OVER — the second
for DOWN.

Count '
from here
I pown
\
=
Here is the
rectangle
comma
The statement is: SET (OVER, DOWN)
* * parentheses
Examples: !
SET (29, 18)
SET (12,20)

Dot like this: cLs : SET (2@,18) : SET (12,28)

GRAPHICS AND SUPER GRAPHICS 37

And this is what you will see. (Well, of course you won’t see our arrows explain-
ing what is happening.)

(READY
>- l

B
OVER =20
DOWN = 10

- e

OVER = 12

DOWN =20

0 2 10

If you wanted to turn on every tiny rectangle on the screen using the SET state-
ment, you could do it like this:

1§ REM *PAINT HORIZONTAL LINES*
20 cLs o
3¢ FOR DO = § TO 47-+——- This gives 48 rows

46 FOR OV = § TO 127<— 128 rectangles in each row
> et SOV PO % Tymng point on

6@ NEXT OV ~— .
78 NEXT DO Next rectangle in row

8@ GOTO 8¢ ‘\ Next row

Each time through the inner FOR-NEXT loop, one complete row of rectangles is
turned on, and each time through the outer loop, a new row is set up. A white screen is
painted with horizontal brush strokes beginning near the top of the screen.

-

38 MORE TRS-80 BASIC

The screen can be painted with vertical stripes by interchanging lines 30 and 40
and also lines 60 and 70.

13 REM *PAINT VERTICAL LINES*
28 CLS

3¢ FOR OV = @ TO 127

40 FOR DO = @ TO 47

5@ SET (OV, DO)

6§ NEXT DO

7¢ NEXT OV

8¢ GOTO 8%

Now the screen is painted with top to bottom vertical stripes, beginning near the left
edge of the screen.

Now let’s use the white screen, but randomly erase some of the points on it.
You'll need a random value for OVer, between the values 0 and 127, inclusive. DOwn
will range from 0 to 47 inclusive.

10 REM *PAINT HORIXONTAL LINES*
20 CLS

3y FOR DO = § TO 47

4 FOR OV = @ TO 127

5@ SET (OV, DO)
60 NEXT OV
7¢ NEXT DO

80 REM *ERASE SOME POINTS* .
9g DO = RND (48)—1 <—— Gives a random value (0 through 47)
1pp OV = RND (128)~1<—— (Gives a random value (0 through 127)

11g RESET (OV, DO) mgee___ ;
128 GOTO 9@ Erases a point

The screen is painted white, and strange patterns appearing as tiny rectangles
are erased. Eventually, it begins to look like a maze of black dots on a white back-
ground. Then it slowly transforms into white dots on a black background as more and

GRAPHICS AND SUPER GRAPHICS 39

more points are erased. Look for interesting patterns along the way. When you tire of

watching, press the BREAK key to stop the program.

You can restrict the point erasures to a certain part of the screen in a variety of

ways. Here are two variations.
1. Change line 90 to:
99 DO = RND (24) —1 (top half of screen)
2. Change line 100 to:
199 OV = RND (64)—1 (left half of screen)

Your turn. Show how to do each of the following variations.

3. Bottom half of screen. Change line 90 to:

4. Right half of screen. Change line 100 to:

5. Center portion of screen. Change lines 90 and 100 to:

3. 98 DO = 48 — RND (24)
4. 190 OV = 128 — RND (64)
5. 9¢ DO = 36 — RND (12)

18 OV = 96 — RND (32)

Setting Blocks of Six Rectangles with POKE

Each character printed on the screen occupies the same space as 6 of the tiny graphic

rectangles.

=
One graphic /

rectangle

One PRINT position
(=6 graphic rectangles)

40 MORE TRS-80 BASIC

You know from the PRINT @ statement that text can be printed at any one of
1024 print positions (numbered from 0 through 1023, inciusive). Each print position
occupies one storage location in the memory used for the video display. The map of the
video memory locations is like this:

15360 15361 15362 15421 15422 15423
15424 15425 15426 15485 15486 15487
15488 15489 «».ve : : .

] 5552

16320 16321 16322 16281 16.382 l6383

Remember, each memory block contains 6 rectangular graphic cells. The rela-
tionship between memory addresses and the row and column numbers used in SET
and RESET statements is indicated in the following diagram:

Memory Memory Memory
Location Location Location
15360 15361 15362

OV=0| OV=] OV=2| OV=3 OV=4 |0OV=5
DO=0| DO=0 DO=0 | DO=0 DO=0 | DO=0

OvV=0|0V=l OV=2|0V=3 OV=4 |OV=5
DO=1|DO=1 DO=1| DO=1 DO=1 | DO=1
OV=0|0V=l OV=2|0V=3 OV=4 | OV=5

DO=2| DO=2 DO=2| DO=2 DO=2 | DO=2

You can POKE data into any one of the video memory locations by using the
POKE statement. If the correct data is POKEd into a given location, a pattern com-
posed of a combination of these 6 rectangles will turn on. The data, if between 128 and
191, produces a pattern called a graphic character.

WARNING! AVOID POKING DATA INTO THE WRONG ADDRESS

The video addresses for the graphic characters must be in the range of 15360
through 16383, inclusive.

GRAPHICS AND SUPER GRAPHICS 41

A table of graphic characters is given in appendix A. However, it is easy to con-
struct a graphic character from the following:

1.

Number each of the 6 cells

with a power of 2 in the

order shown.
] 201 2!
4 |8 |orf22|»
16 |32 24|28

The number 128 creates)
a blank character (all tiny rectangles OFF).

Decide what rectangles
you want turned on.

The data used to form your

graphic character is the

sum of 128 and the value(s)

in the cell(s) that you want to light.

16| 32

Add 128
8
=+ 1
137

Add 128
32

is the graphic
character

is the graphic
character

42 MORE TRS-80 BASIC

Add 128
32
16
8
4

Alon T a8 [<SAllon 41

16 | 32 191 s the graphic

character

To put a graphics character on the screen, you must put together the correct
combination of video memory location and graphic code and POKE the code into the
memory. Suppose you want to display the following:

Graphic Memory
Code Location

Upper left 128+1+2+4 = 135 15360
Upper right 128+1+2+8 = 139 15423
Lower left 128+4-+16+32 = 180 16320
Lower right 1284-8+16+32 = 184 16383

This short program would do the job.

18 CLS
2¢ POKE 15368,135: POKE 15423,139
3¢ POKE 1632@,18@: POKE 16383, 184

GRAPHICS AND SUPER GRAPHICS 43

To see the complete table of graphic character codes and their shapes, enter and

run this program:

Display Graphic Characters

19
20
3p

109
119
120
139
140
150
169

200
219
220
23p
249
250
260

3pp
31p

1909
1919
1920
1239
1849
1850

REM *INITIALIZE*
CLS
M=15360: A=129

REM *PRINT A ROW OF GRAPHICS*
FOR C= A to A+3 :
IF C> 191 GOTO 3p¢ -——— Don’t go beyond code 191
; Rf”ﬁﬁ’s i POKE M, C <—_ Pprint code and character
IF M>16383 GOTO 330 .
NEXT C T Don’t go beyond screen
memo
REM *READY NEXT ROW* emory
IF A = 149 or A=173 GOSUB 198Q
A = a4
M = M+64
est for full screen
IF M> 16383 GOTO 30p T
PRINT
GOTO 1pp
_ Double check
REM *ALL DONE*
GOTO 31p
Go get another row
REM *END OF SCREEN BLOCK*
PRINT: PRINT
INPUT ''PRESS ENTER TO CONTINUE''; A$
M=15360
CLS
RETURN

B Type RUN and press ENTER. This is what you see:

44 MORE TRS-80 BASIC

B Press ENTER and this happens:

:|I53 .|354

pis7 58
AL ez
1165 {166
yie9 [LY
K73 74

PRESS ENTER TO CONTINUE? —

B Press ENTER again to get the last bunch of graphics characters:

The program works like this:

Lines 10 through 30 initialize the first graphic character and the first screen
memory position.

Lines 100 through 160 print a line of graphic codes and their corresponding
characters (4 of each on a line).

Line 210 tests to see if the screen is full. If so, the subroutine at line 1000 is exe-
cuted. You can study the screen of characters as long as you want. When you press a
key, the subroutine initializes the screen again and proceeds with the next screen of
characters. If the screen is not full, line 260 returns the program to line 100 for an-
other line of characters.

Notice that another safety check is made at line 240 to be sure that the memory
location where data is to be POKEd is not beyond the boundary 16383. Line 250 pro-
vides a space between lines for easier viewing.

GRAPHICS AND SUPER GRAPHICS 45

Do you remember how slowly the screen was painted white by the SET state-
ment? The graphics code 191 produces a complete block of 6 rectangles.

1} 2 128+1+2+4+8+16+32 =19]
41 8 All six rectangles on
16 | 32

Compare the results of the program that painted the screen white using the SET
statement with the following program that POKEs the screen white with graphic code
191.

¢ REM *LIGHT A WHOLE BLOCK*-e— Fill every screen memory

29 cLs location with code 191.
38 FOR M = 15360 TO 16383

48 POKE M, 191

5§ NEXT M

6§ GOTO 6

This program takes about seven seconds to run compared to forty-seven seconds
for the program using the SET statement.

Now see how fast black holes can be put in with POKE statements. Add these
lines to'lines 10 through 50.

6¢ REM *POKE BLACK HOLES*
7% R = RND(1024)+15359

B0 POKE R,128 . —— A blank block of 6 rectangles

9¢ GOTO 7§

The holes that get POKEd into the white screen are much larger. Therefore, the
transition from black on white to white on black takes place much faster.

Let’s move on to something a little more entertaining. Graphic codes can be
POKEd in to produce a three-car dragster race across the video screen. Work with
only one car in the design of the program first. Break the program into these four
steps:

Decide on the graphics for the car.
Decide how to make the car move.
Add two more cars.

4. Determine the winner.

W=

First, to keep the car’s design as simple as possible, limit it to three graphics
blocks.

, Block 1 = 128+2+8+32 =170
41 8 41 8 Block 2 = 128+4+8 = 140
16 | Block 3 = 128+4+8+16 = 156

BLOCK2 BLOCK3

46 MORE TRS-80 BASIC

This may not look like much of a dragster, but with a little imagination it will do.
The BASIC statements to draw the dragster are:

Block 3: POKE M+2,156
Block 2: POKE M+1, 140
Block 1: POKEM, 170

Second, move the dragster by poking each block one place to the right each time,
using a FOR-NEXT loop. Follow the car with a blank space to erase the last block or
else the dragster will leave tracks across the screen. WATCH MY DUST!

Oops! We forgot to
clear out the tracks.

i

TTHIHTIES —mm

The FOR-NEXT loop looks like this:
FOR M = 15360 TO 15420

POKE M+3, 156: POKE M+2, 140: POKE M+1, 170: POKE M, 128

NEXTM
A blank space

Before going to step three, put the first two steps together and try it out.

19 CLS

28 FOR M = 15368 TO 15420

3¢ POKE M+3,156: POKE M+2,14@: POKE M+1, 17g: POKE M,
40 NEXTM

5@ GOTO 5@

Across the screen it goes from start to finish. How would it do with some competition?

Let’s find out.
Third, set up three cars to speed across the screen. Of course you must add some

clement of chance. Add a random value for movement to give each car a chance to

win.

GRAPHICS AND SUPER GRAPHICS 47

Three Car Dragster Race

1@ REM *POKE CAR RACE*

2@ CLS

39 A=g; B=g: C=p

189 REM *RACE ON*

119 FOR M = 15359 TO 15423

120 A=A+RND(2)—1: B=B+RND(2) —1:C=C+RND(2)~1

138 D=M+A: E=M+B+128: F=M+C+256

149 POKED+3,156: POKE D+2,14@: POKED+1,170:POKE D,128:
POKE D—1,128

158 POKE E+3, 156: POKE E+2,14@: POKE E+1,170:POKE E, 128
POKE E—1,128

169 POKE F+3,156:POKE F+2,140:POKE F+1,170: POKE F,128
POKE F—1,128

178 IF D+3>15421 OR E+3>15549 OR F+3>15677 THEN 219

188 NEXT M

200 REM *PICK WINNER#*

219 IF A>=B AND A>=C THEN D=1 :GOTO 24§

220 IF B>=C THEN D=2:GOTO 240

230 D=3

240 PRINT @540 ,“CAR #"D"WINS"

The three cars move forward either one or two spaces with each pass through the
loop. The increase in the value of M accounts for one space. The other space is
provided by line 120, where A, B, and C are increased by a value of either 1 or 0, de-
pending on the random number selected. Line 170 serves as a check to stop the race
when one car crosses the finish line.

Fourth, lines 210 through 230 determine which car wins the race. There is a
slight bias for A in case of a tie with B and /or C, and a slight bias for B in case of a tie
with C. A typical end of the race might look like this:

. . b
Car #2 Wins -
b

Since the POKE command can set 6 rectangles at once, the race is much more
realistic than it would be by SETting each individual rectangle. Notice the two POKE
128 statements at the end of each car. These erase the back of the car as it moves for-
ward. Two blank spaces must now follow each car since the car €an now move two
spaces forward as the FOR-NEXT loop is executed.

Setting Blocks of Six Rectangles with CHR$

The CHRS function returns a one-character string whose ASCII code, control, or
graphics character is specified. Using it for graphics, the form is:

PRINT CHR$ (exp)
— a graphics code, 128 through 191

48 MORE TRS-80 BASIC

Since you will now be printing the characters instead of poking them into memo-
ry, you must use print positions instead of actual video memory locations to display the
graphic characters where you want them. To print a full 6-block graphics character:

PRINT CHRS (191)

;‘ / All on

12841+2+4+8+16+32 =191

Go back and paint the screen white using CHRS.

1g REM *PAINT IT WHITE*
20 CLS

3p FOR 8§ = § TO 1§22

49 PRINT @S,CHR$(191);
50 NEXT S

6§ POKE 16383,191

78 GOTO 78

Line 60 reverted to the POKE statement to avoid scrolling the screen. Whenever
PRINT @1023 is executed, the screen automatically scrolls one line. We don’t want
that to happen now so we use 2 POKE statement to paint screen position 1023 white.

This looks very similar to the program on page 22. Try it. Then punch some
black holes in the white screen by adding these lines:

79 REM *PRINT BLACK HOLES*

8¢ S = RND (1§24)—1

90 PRINT @S, CHRS (128)<— a blank space (black hole)
19% GOTO 8§

1. Try the addition. Which is faster, POKE or PRINT CHR$?

1. They both take about the same time. (They should, since each does the same
thing — puts a graphic character into successive display positions. They simply use a
different BASIC statement to accomplish the same thing.)

GRAPHICS AND SUPER GRAPHICS 49

Now, change the racing car program on page 47 to use CHRS instead of POKE.
As you do so, remember that strings can be concatenated (joined together).
Example:

PRINT @D, CHR$(128)+CHRS (128)+CHRS (179)+CHR$ (140)+CHR$ (156)
or

AS=CHRS (128)+CHR$ (128)+CHR$ (17) +CHRS (140)+CHRS (156)
PRINT @D, As

The following is one way to alter the three-car dragster race to use CHRS:

changes: 119 FOR M = g TO &g

149 PRINT @D, A$

15¢ PRINT @E, Ag

168 PRINT @F, A$

178 IFD+3>60 OR E+3>188 OR F+3 >316 THEN 21§

addition: 49 AS=CHRS (128)+CHRS (128)+CHRS (17g)+
CHRS (148)+CHR$ (156)

This makes the dragsters move across the screen faster. The dragster shape is gener-
ated once at line 40. In the original program, the shape was generated three times on
every pass through the loop. Therefore, this calculation time is greatly reduced.

Three-Car Dragsters with CHRS

19 REM *CHRS$ CAR RACE*
20 cLS

3¢ A=g:B=p: c=p

49 A$=CHR$(128)+CHR$(128)+CHR$(17Q)+CHR$(14Q)+CHR$(156)
199 REM *RACE ON*

119 FOR M = § TO 6§

120 A=A+RND(2)—1: B=B+RND(2) ~1: C=C+RND(2)—1

13¢ D=M+A: E=M+B+128: F=M+C+256

140 PRINT @D,As

158 PRINT @E,As

168 PRINT @F,AS

178 IFD+3>60 OR E+3>188 OR F+3> 316 THEN 21§

180 NEXT M
208 REM *PICK A WINNER*
218 IF A>=B AND A>=C THEN D=1: GOTO 24§
22p IF B>=C THEN D=2: GOTO 240
233 D=3
248 PRINT @548, “CAR # "D WINS"

50 MORE TRS-80 BASIC

Mandalas

A mandala is a pattern used in meditation. It is usually symmetrical left, right, up, and
down. The next three programs illustrate methods to create simple and complex man-
dalas.

Start by printing a solid block near the center of the screen. Then, print one
graphic code in each corner (upper left, upper right, lower left, and lower right). As-
sign the variables A, B,C, D, E, and F to the rectangles for the upper left corner. The
computer will generate random 1’s or O’s for each of the six variables (1 for ON and 0

for OFF).
A|B 2002
CcC\|D or 2212 for upper left
E|F 2412

The value for the graphic block in the upper left corner is then:
UL = 128+A+2*B+(2*C)12+(2*D)3+(2 *E)14+(2*F)15
Example:

If A and D =1 and all the rest =0,
UL = 128+140+0+(2*1)]3+0+0 = 128+1+8 = 137

Then PRINT CHR$(137) in the upper left corner.

To make the complete picture symmetrical, you can define the other rectangles

as follows:

Upper left Upper right
Al|B B|A
C|D D!C
E{F F|E

Center

E|F CHRS$(191) Fl|E
C|D D|C
A|B B|A

Lower left Lower right

This makes the complete picture symmetrical left, right, up, and down.

GRAPHICS AND SUPER GRAPHICS 51

Center and Four-Corner Mandala

19 REM *SET UP CHARACTER CODES*

20 CLS

4§ A=RND(2)—1:B=RND(2)—1:C=RND(2) —1 :D=RND(2)~1:E=RND(2)~
F=RND(2)~1

199 UL=128+A+2*B+(2*C)]‘2+(2*D)T3+(2*E)T4+(2*F)]’5 < Note:

119 UR=128+B+2*A+(2*D)T2+(2*C)T3+(2*F)I4+(2*E)IS P

120 LL=128+E+2%F+(25C)[2+(2%D) [3+(2%A)[4+(2%B)]5 owers

139 LR=128+F+2*E+(2*D)T2+(2*C)T3+(2*B)T4+(2*A)]5 . of 2

2@ REM *PRINT THE MANDALA*

219 PRINT @544,CHR$(191);:PRINT @144,CHRS (UL) ;

22@ PRINT @176 ,CHR$ (UR); : PRINT @912,CHR$ (LL) ;

23¢ PRINT @944,CHRS(LR);

399 GOTO 19

Line 40 creates random 1’s or 0’s for the variables A, B, C, D, E, and F. Lines
100 through 130 use these variables to create symmetrical graphic codes for upper left
(UL), upper right (UR), lower left (LL), and lower right (LR). Lines 210 through
220 print the graphics at their respective positions. The program then repeats, giving a
different pattern at the corners each time.

B Enter the program and let it run for awhile before going to the next program.
Don’t erase the program; you’ll add to it later.

By making a few additions and changes, you can extend the pattern inward from
the four corners toward the center to form a large X shape.

Add: 30 FOR N = @ TO 33¢ STEP 66
50 IF N=§ THEN M=g ELSE M=62*(N/66)

249 NEXT N
25¢ FOR WAIT = 1 TO 2¢@: NEXT WAIT

Change: 218 PRINT @544, CHR$(191);: PRINT @144 +N, CHRS (UL) ;
220 PRINT@176+M,CHRS (UR);: PRINT @912 —M,CHRS (LL) ;
23¢ PRINT @944-N,CHR$(LR);

52 MORE TRS-80 BASIC

The altered program:

19 REM *SET UP CHARACTER CODES*

28 CLS
© 39 FOR N = § TO 33§ STEP 66

4 A=RND(2)—1:B=RND(2)—1:C=RND(2)~1:D=RND(2)~1:E=RND(2)—1:

F=RND(2)—1

50 IF N=§ THEN M=§ ELSE M=62%(N/66)

199 UL=128+A+2*B+(2*C)T2+(2*D)T3+(2*E)T4+(2*F)TS
110 UR=128+B+2*A+(2*D)TZ+(Z*C)TB+(2*F)T4+(2*E)]5
129 LL=128+E+2*F+(2*C)T2+(2*D)T3+(2*A)]4+(2*B)T5
139 LR=128+F+2%E+(2*D)]2+(2*C) 13+ (2*B)4+(2*2)]5
209 REM *PRINT THE MANDALA*

219 PRINT @544,CHR$ (191);: PRINT @144+N,CHRS (UL) ;
228 PRINT @176+M,CHR$(UR);: PRINT @912-M,CHRS$ (LL) ;
23p PRINT @944—N,CHR$(LR);

24@ NEXT N

25@ FOR WAIT = 1 to 2@@: NEXT WAIT

3p@ GOTO 1§

B Enter and let the program run awhile. Here is a possible shape:

After a brief time delay, the screen is erased and a new pattern is drawn.
Enter and run this program. If you wish, eliminate the time delay at line 250 to
create a continually changing pattern. Do not erase the program.

B After you tire of the X-shaped mandala, make the following additions and
changes.

GRAPHICS AND SUPER GRAPHICS 53

Add: 25 s=1p
35 FOR R= @ TO §

235 NEXTR
237 8 = 8—1

Change: 212 PRINT @544,CHR$(191);: PRINT @144+N+R,CHRS(UL);
22¢ PRINT @176+M—R,CHRS$ (UR);:PRINT @912—M+R,CHRS$ (LL) ;
23¢ PRINT @944—N-R,CHRS (LR);

Fancy Mandala
19 REM *SET UP CHARACTER CODES*
2¢ CLS
25 s= 1p

3¢ FOR N =@ TO 33J STEP 66
35 FORR = g TO §

40 A=RND(2)—1:B=RND(2)~ 1:C=RND(2) —1:D =RND(2)~1:
E=RND(2)—1:
F=RND(2)~—1
5@ IF N=@ THEN M= ELSE M=62+*(N/66)
190 UL=128+A+2*B=(2*C)T2+(2*D)T3+(2*E)I4+(2*F)TS
119 UR=128+B+2*A+(2*D)T2+(2*C)73+(2*F)T4+(2*E)T5
129 LL=128+E+2*F+(2*C)T2+(2*D)T3+(2*A)T4+(2*B)TS
13¢ LR=128+F+2*E+(2*D)Tz+(2*C)IB+(2*B)I4+(2*A)TS
200 REM *PRINT THE MANDALA*
21@ PRINT @544,CHR$(191);:PRIwr@144+N+R,CHR$(UL);
220 PRINT @176+M—R,CHR$(UR); : PRINT@912-M+R,CHRS$ (LL) ;
239 PRINT @944—N—R,CHR$(LR);

235 NEXT R
237 8§ = g—1

24F NEXT N

250 FOR WAIT = 1 TO 20@: NEXT WAIT
3g@ GOTO 19

B Enter the program and let it run. It is rather slow, but it lets you see the mandala *
grow from the outside inward. Enjoy it awhile before going on.

Here is a sample mandala:

T T
AL T X
: T i
: ! | |
TR .
1 TR
il
K HRAERN e ETEERI
il Al
1 1]
RHEMIHEAIT e ' b SRR
thBiis B ol A alidASR AR,
e i HIEHHERS
S A L IECE

54 MORE TRS-80 BASIC

Setting Strings of Graphic Blocks

‘When more than one graphic block having the same code is to be displayed, the
STRINGS function can be used. The format for this function is:

strINGS (n, code)

t ASCII, control or

graphic code

number of times
the character
is to be printed

@ Returning once again to painting a white screen, use the following program:

1g REM *PAINT IT WHITE*

29 CLEAR 18§ <— Enlarge the string space
3p CLS

4p FOR § = @ to 896 STEP 64

5§ PRINT @S,STRING$(64, 191)

69 NEXT S < A full line of blocks

7¢ PRINT @96, STRINGS$(63,191)

80 POKE 16383,191 i .

92 GOTg op A Toavoidscrolling, only 63

blocks in this line

Comparing the time to completely paint the screen, this program takes about
one second versus seven seconds for POKE and CHR$ and forfy-seven seconds for
SET.

@ To punch in a random sized block of holes, change line 90 and add the lines as
shown:

9¢ REM *PUNCH BLACK HOLES*

19¢ M = RND(32) = Randon\kngthlﬂock(lthrough32)
119 P = RND(991) =

12¢ PRINT @P, STRINGS$(M,128); Random address

139 GOTO 188

This addition can blank out up to half a line of the screen ata time. The random value
selected for M can be changed to provide shorter or longer length blocks. This can
really black out the screen in a hurry.

After you have tried the painting and hole punching program, return to the
three-car dragster program. This time use the STRINGS function along with CHR$
to print each car’s progress. Make each car appear to move by increasing the number
of blank spaces following it.

GRAPHICS AND SUPER GRAPHICS 55

The car is denoted by:

A$ = CHR$(170)+CHRS (140)+CHRS (156)

To move the car along, use an ever increasing number of blank spaces by the
STRINGS function.

PRINT @@,STRINGS(D, 191)+As

\

Where D increases for each
printing.

Three-Car Dragsters with Strings

19 REM *STRINGS CAR RACE+

20 CLEAR 208

30 CLS:A=0:B=@:C=0

40 As = CHR$(1'7§J)+CHR$(14Q)+CHR$(156)

1@ REM *RACE ON*

112 FOR M = @ TO 60

120 A=A+RND(2)—1: B=B+RND(2) ~1:C=C-+RND(2)~1
138 D=M+A: E=M+B: F=M+C

140 PRINT @@,STRINGS(D,191)+As

150 PRINT @128,STRINGS(E,191)+as

168 PRINT @256,STRINGS(F,191)+as

179 IF D 58> OR E >58 OR F> 58 THEN 21§
180 NEXT M

200 REM *PICK A WINNER*

219 IF A>=B AND A>=C THEN D=1: GOTO 24Q
229 IF B>=C THEN D=2: GOTO 249

230 D=3

240 PRINT @542, “CAR #“D"WINS"

The results of this race look much the same as before; however, the printing tech-
nique is quite different. During each pass through the FOR-NEXT loop, each car is
printed on a separate line, but the length of blank spaces to the left of the cars in-
creases each time. Here is a diagram of successive printings for one car.

56 MORE TRS-80¢ BASIC

Example: Suppose D increases each time through the
loop in the following manner:

D=1,3,5,6,8,9,11,¢tc.

May the fastest car win!

Spaces printed by STRING$(D,191)

Summary

If you weren’t a graphics expert before this chapter, you should be by now. You have

learned:

The video screen consists of 48 rows with 128 rectangles in each row that can be
individually SET or RESET.

GRAPHICS AND SUPER GRAPHICS 57

0 — columns — 127

0

|

rows

47

* Ablock of 6 (2 columns by 3 rows) rectangles can be POKEd into video screen
memory. Each pattern of 6 rectangles is specified by a character code. The block of
6 rectangles corresponds to a PRINT position.

¢ The graphics codes (128, all rectangles off through 191, or all rectangles on) can
be POKE into the video memory associated with any PRINT position. Print posi-
tions are O through 1023. The corresponding video memory locations are 15360
through 16383.

e Touse the PRINT position graphics codes with the CHR$ function. Since this
method PRINTS the graphic characters instead of poking them into memory, the
print positions can be specified directly.

e Toset a whole string of graphic character blocks with the STRINGS function.
This function allows you to specify the graphics code and how many times it is to
be used successively.

 To use sample demonstrations of all four graphics display methods:

SET, RESET
POKE
CHRS$
STRINGS$

Self-Test

1. Before you RUN the following program, draw a sketch of the screen showing
what it will look like after the TRS-80 has reached line 80.

19 REM**PAINT PART OF THE SCREEN WHITE
29 cLS

3¢ FOR DO = § TO 47

49 FOR OV = § TO DO

5@ SET (OV,DO)
60 NEXT OV
7@ NEXT DO

88 GOTO 8§

58 MORE TRS-80 BASIC

Draw your sketch before you RUN the program!

0 127

4 ™

41 \ /

2. Inexercise 1, the screen is painted with horizontal stripes, beginning at the top of
the screen. Write a program to produce exactly the same effect using vertical
stripes, beginning at the left edge of the screen.

GRAPHICS AND SUPER GRAPHICS 59

3. Write a program to paint the screen as shown in the following sketch.

0 47 127

Paint this
.~ portion white

60 MORE TRS-80 BASIC

4. For each graphics shape, write the corresponding numeric code below the shape.
Remember: The code is equal to 128 plus the values of the turned on (H) tiny rec-
tangles.

@[| (®) @

5. For each graphics character code, show the corresponding shape.

(a) (b) (c)

166 150 185

6. Write statements to:

(a) POKE the graphics code 185 into video memory location 16000:

What screen position is this?
(b) POKE the graphics code 185 into screen position 1000:

(¢) POKE the graphics code for into screen position 5000:

7. Below are two sketches of a “dog.” Each consists of three graphics characters.

GRAPHICS AND SUPER GRAPHICS 61

The sketches are the same, except for the position of the dog’s “tail.” Write a pro-
gram to show the dog “wagging” its tail. Put the dog near the center of the screen,
perhaps in print positions 543, 544, and 545.

8. Write a program to move your happy dog of exercise 7 across the screen from
screen position 512 past the right edge of the screen then, after a brief pause, re-
peat. Of course, your dog’s tail should wag as he goes joyfully across the screen.

(a) First, write the program using POKE statements.

62 MORE TRS-80 BASIC

(b) Then, rewrite the program, using the STRINGS function to move the dog.

Answers to Self-Test

0 47 127

% each line one longer

)
.
W,

-4

i
7777
/////////////////// ///// from OV=0 through 47

(48 long)

GRAPHICS AND SUPER GRAPHICS 63

1§ REM ** PAINT PART OF THE SCREEN WHITE #2
20 CLS

39 FOR OV = § TO 47

40 FOR DO - OV TO 47

5@ SET(OV,DO)

6¢ NEXT DO

7@ NEXT OV

8¢ GOTO 8§

1@ REM ** PAINT PART OF THE SCREEN WHITE #3
20 CLS

38 FOR OV = @ TO 47

49 FOR DO = @ TO 47 — OV

50 SET(OV,DO)

6¢ NEXT DO

78 NEXT OV

8¢ GOTO 8¢

(a) 153 (b) 186 (c) 158

(a) (b) (c)

166 150 185

(128+32+9+2) (128+16+4+2) (128+32+16+8+1)

(a) POKE 16000, 185

640

(b) POKE 16460, 185

()

POKE 15860, 167

Here is one way to program it.

REM ** WAG THE TAIL
CLS

PRINT@545, CHRS$(151);
PRINT@544, CHR$(140);
PRINT@543, CHR$(169);
FORX = 1 T0 2@: NEXT X
PRINT@543, CHR$(179);
FOR X = 1 TO 2@: NEXT X
GOTO 58

64 MORE TRS-80 BASIC

8. There are many ways to write programs a and b. We show one possible program

for part b.
19 REM +* WAG TAIL AND MOVE DOG -
2f CLEAR 1088
3p CLS
40 A$ = CHR$(169) + CHR$(14@) + CHR$(151)
50 B$ = CHR$(17@) + CHR$(14@) + CHR$(151)
60 FOR P = 512 TO 572 STEP 2
79 FOR Y = 1 TO §
8p PRINT@P, STRINGS$(P-511,128)+B$;
°p FOR X = 1 TO 1§ : NEXT X
199 PRINT@P, STRING$(P-511,128)+As;
119 NEXT Y
12@ NEXT P
139 cLs
14p FOR X = 1 TO 5@: NEXT X
158 GOTO 6§

Introduction to Cassette Data Files

CHAPTER FOUR

Many computer programs require entering long lists of data that are used by the pro-
gram. This is often done by using INPUT statements, which takes time and causes lots
of wear on finger tips if much data is to be entered. And, if your program is used again,
the data must be entered all over again. It’s true that READ and DATA statements
may be used to include the data in the program, but if new datum is necessary, the pro-
gram must be rewritten each time the data are changed.

In this chapter you will explore the use of the cassette recorder to enter and save
data that may be used again at a later time. You will learn:

how to handle data (made up of numbers, strings, or a mixture of the two)
with the cassette recorder,

to use the PRINT #-1 statement to transfer data from memory to the cas-
sette recorder,

to use the INPUT #-1 statement to transfer data from the cassette recor-
der to the computer’s memory,

what kind of cassettes to buy and how to care for and use them,

the format used on tapes,

the difference between a data record and a data file,

to use demonstration programs to input, save, and retrieve data,

how to conserve the amount of tape used in saving data, and

other technical information about cassette recording.

65

66 MORE TRS-80 BASIC

Using Your Recorder

A cassette tape recorder, shown below, is standard equipment with the TRS-80
system.

Video display

Power supply

Cassette
recorder

Keyboord unit
(computer is inside)

You have probably used the cassette recorder to load cassette programs into memory
(RAM, of course) using the CLOAD command. You may also have used the cassette
recorder to.CSAVE your own programs on cassette tapes or to make back-up copies of
cassette programs you have purchased.*

If you have not used CLOAD and CSAVE, we suggest you read appendix B, “The
Cassette Recorder”, before continuing with this chapter.

o When you CSAVE a program, the TRS-80 records the program from its
memory onto a cassette, using the cassette recorder.
CSAVE: FROM MEMORY TO TAPE

MEMORY

o When you CLOAD a program, the TRS-80 reads a program from a cas-
sette into its memory, again using the cassette recorder.

*It is OK to make back-up copies of copyrighted software that you have purchased for your own use. It is
NOT OK to make copies to sell or give to others. This is unfair to people who invest their time and money to
provide good, inexpensive software, and is illegal as well.

INTRODUCTION TO CASSETTE DATA FILES

67

CLOAD: FROM TAPE TO MEMORY

MEMORY

This chapter presents a new way to use the recorder. You will learn how to save
data (information) on cassettes, and how to read data from cassettes into the memory
of the TRS-80.

The data (information you store on tape cassettes) can consist of numbers or
strings or a mixture of both. So, the information can be almost anything. For example:

o A personal telephone directory with people’s names and phone numbers.

o A dictionary of three-letter words to be used in a computer game.

o Aninventory of your record, coin, or stamp collection -— or whatever you
collect.

o A list of your important personal property. Put this cassette in your bank
deposit box. You might need it if your house burns down or you are
burgled!

o The first five hundred prime numbers.

e Your shopping list for next Christmas (add to it now and then).

o People’s birthdays, anniversaries, and other important dates.

e Tax information so you and your friendly TRS-80 can go bravely into bat-
tle against the giant IRS monster.

Why put such information on tape cassettes? Because, once it is on cassettes you
can read it into your TRS-80 and do things with it, or to it, as the case may be. In addi-
tion, information stored on cassette tape is “machine-readable.” The TRS-80 auto-
matically reads it much faster (and with fewer errors) than you can type it in. So, save
wear and tear on the old fingers — learn how to put data on cassette tape.

IT’'S EASY!

Start with two short, simple programs. The first program lets you enter informa-
tion from the keyboard and save it on tape. Of course, this information must first go
into the memory (RAM) of the TRS-80. That’s why we call this program KEY-
BOARD TO MEMORY TO TAPE.

1¢@ REM ** KEYBOARD TO MEMORY TO TAPE
119 CLS
129 INPUT A$ = Keyboard to memory

138 PRINT # —1, A$ < - Memory to tape
148 GOTO 120

Line 120 is the KEYBOARD TO MEMORY part of the program. When a question
mark appears, you enter a string. The string is stored into memory as the value of A$.

68 MORE TRS-80 BASIC

Line 130 is the MEMORY TO TAPE part of the program.

The statement:
130 PRINT # —1, AS$

tells the TRS-80 to “PRINT” the value of A$ on device # —1, which just happens to

be the cassette tape recorder.
Let’s say it again, boldly.
< \\ /

PRINT ondevice thevalueof
Now you have two ways to use PRINT.

— E

1) PRINT AS$ means to “PRINT” on the TV screen.
2) PRINT #—1, A$ means to “PRINT” on the cassette tape.

As you work through this book, you will find even more ways to use PRINT.

OK, you have a program to put information on tape. Here is a program to get in-
formation from tape into memory. This program is called TAPE TO MEMORY TO
SCREEN.

200 REM ** TAPE TO MEMORY TO SCREEN
219 cLS
22p INPUT # —1, A$ <———— Tape to memory

23f PRINT AS <~ Memory to screen
240 GOTO 220 y ce

Line 220 is the TAPE TO MEMORY part of the program. It tells the TRS-80 to IN-
PUT avalue from device # —1 (AHA! The cassette recorder) and put it into AS.

NB0T 2 =1, 48)

INPUT fromdevice thevalue of

Line 230 is the MEMORY TO SCREEN part of the program. It tells the TRS-80 to
PRINT the value of A$ (which is in memory) on the TV screen.

INTRODUCTION TO CASSETTE DATA FILES

69

In summary:

INPUT AS

PRINT # —1, A$

INPUT # —1, A$

PRINT A$

And remember,

MEMORY

MEMORY

MEMORY

MEMORY

SLOW DOWN AND ... READ VEERRRYYYY CAREFULLY!

Now we are going to try out our two programs. This must be done VERY care-
fully. We wish you success on your very first try. Read slowly, then reread, then read

again. 8 1 o wis good.

70 MORE TRS-80 BASIC

Start by finding a high quality, never-before-used tape cassette. Don’t (repeat,
DON'T) buy just any old cheap cassette. Always treat your TRS-80 to the best, if you
want the best from it. Next, examine the cassette. Most cassettes have lots of magnetic
tapeand ... VERY IMPORTANT ... a few inches of leader. Leader? Rewind your
tape. The first few inches probably consists of nonmagnetic leader, usually clear, yel-
low, or blue, or any color other than dull brown. Dull brown is the color of magnetic
tape.

YOU CAN'T RECORD ON LEADER

Why put all this space into what you can’t do on leader? Because, if you want
your TRS-80 to CSAVE or PRINT # ~1, then you must

o rewind the tape,
 then, wind it forward a few inches so that magnetic tape, not leader, is in
position to receive your message.
Now, enter both of our programs into the TRS-80. Note how we have cleverly
chosen line numbers so that you can do this. For your convenience, here again are the
two programs.

1¢@ REM ** KEYBOARD TO MEMORY TO TAPE
11¢ CLS

12@ INPUT AS

13@ PRINT # —1, AS

148 GOTO 129

2¢@ REM ** TAPE TO MEMORY TO SCREEN
21@ CLS

22¢ INPUT # -1, A3

23@ PRINT AS

248 GOTO 22¢

We assume that you have placed the cassette in the cassette recorder. You have,
haven’t you? What! You haven’t? Well, OK, do it now.

o Press both PLAY and RECORD on the cassette recorder. Nothing should
happen. If the tape starts to move, you probably don’t have the recorder
properly hooked up to the TRS-80 (check the plug).

o Set the volume control on the cassette recorder to 5 or 6, or whatever
works when you use CSAVE and CLOAD.

o Type RUN and press ENTER.
This is what you see. f ?
The TRS-80 is waiting

for a value of AS.

* Now, type a string value for A$ and press ENTER. You should see the
tape move in the cassette recorder. Aha! The TRS-80 has accepted your
value, stored it in A$, then recorded it on tape.

INTRODUCTION TO CASSETTE DATA FILES

71

The following brief history shows what might happen when you run KEY-
BOARD TO MEMORY TO TAPE. Make this tape and keep it for later use.

-

ABC

1234567890

BLUE

COMPUTERTOWN USA!

TAKE A DRAGON TO LUNCH
TESTING

ONE

TWO

THREE

THAT'S ALL FOLKS!
< Press BREAK to

READY g\stop the computer.

AUEE VRV IS RV AV RN BN BV RN

After typing each string, keep one eye on the cassette recorder. Each time you press
ENTER, the tape should move. The TRS-80 is recording your last entry on the cas-

sette.
If all went well, you recorded 10 strings on the tape cassette like this:

Direction of
tape movement
PSSR

n__JBLUE [123456789] ABC

To find out if those 10 strings are really on tape, use the following TAPE TO MEM-
ORY TO SCREEN program:

= First, press STOP on the cassette recorder.

» Rewind the tape: It is not necessary to move the tape forward because you
are going to read from the tape, not record onto tape. In reading from
tape, the TRS-80 ignores the leader.

o Press BREAK to stop the program in progress.

e Type RUN 210 and press ENTER. This wil RUN the program,
beginning at line 210. Another way to do this is to type GOTO 210 and
press ENTER.

Poof! The screen goes blank. Nothing seems to be happening.
° Press PLAY on the cassette recorder. The tape begins to move; informa-
tion appears on the screen.

72 MORE TRS-86 BASIC

Here’s what happens when you run the program. First, the screen looks like

......

Good! That’s the first
string you put on tape.

A little later, the screen looks like this:

IMPORTANT NOTICE! This is

ABC v what happens if all goes well.
1234567890 You did use a high quality,
BLUE T,
COMPUTERTOWN USA! never-before-used tape, didn’t
TAKE A DRAGON TO LUNCH you? If not, you may be

getting “noise” on the screen!

And still later:

ABC

1234567899

BLUE

COMPUTERTOWN USA!

TAKE A DRAGON TO LUNCH
TESTING

ONE

TWO

THREE

THAT'S ALL FOLKS!

You may recall that that is everything you put on tape. But glance at the cassette
recorder — the tape is still moving. You know that there is no more information on the
tape. But the TRS-80 doesn’t know. Look at the program.

208 REM ** TAPE TO MEMORY TO SCREEN
21g CLS

22¢ INPUT # —1, AS It’s still trying!
23p PRINT A$ AL

249 GOTO 228 B

Interrupt your patient TRS-80 and you can try some new things.

INTRODUCTION TO CASSETTE DATA FILES 73

* Press STOP on the cassette recorder. This stops the tape. Remove the cas-
sette if you wish.
The TRS-80 is still trying to read tape! Press the RESET button, located
in the back of the keyboard unit, left side as you face the keyboard. It is
behind a little plastic door.

%@ﬁ%

Reset Button

Rear of Keyboard Unit

We hope everything went well. If it didn’t, reread our directions carefully, then try
again. Do each steps1ow 1y and carefully. If you still have trouble, try these reme-
dies.

» Clean and demagnetize the heads on your cassette recorder.

o Check the volume setting. A setting of 4 to 6 should work. Try several set-
tings in this range.

e Check the cables that connect the cassette recorder to the keyboard unit.

o Try a fresh, good-quality cassette.

* Yell for HELP! With so many TRS-80s in use, there is probably another
user within shouting distance.

o Take this chapter and your TRS-80 to the nearest Radio Shack store.
They will be happy to help you.

74 MORE TRS-80 BASIC

On Stopping when Done

Here, once again, are the two programs KEYBOARD TO MEMORY TO TAPE and
TAPE TO MEMORY TO SCREEN. Well, almost — we have made a small change
in the second program.

19§ REM ** KEYBOARD TO MEMORY TO TAPE
119 CLS

128 INPUT A$

139 PRINT # —1, AS

149 GOTO 128

20@ REM *** TAPE TO MEMORY TO SCREEN

21 CLS Type RUN 210 or
22QINPUT # -1, AS <—— GOTO 210 to use
23 PRINT AS this one.

235 IF AS = “THAT'S ALL FOLKS!" THEN END

240 GOTO 220

Enter this program, then rewind your tape from page 70, type RUN 210, and
press ENTER.

/

ABC

1234567890

BLUE

COMPUTERTOWN USA!

TAKE A DRAGON TO LUNCH
TESTING

ONE

TWO

THREE

THAT'S ALL FOLKS!
READY -2 Success! The program stopped, automatically.

The tape stopped, too.
Just as you expected. . . ?

The string THAT’S ALL FOLKS! marks the end of file on the tape. It marks
the end of information on the tape. Well, actually, it marks the end of this particular
bunch of information on tape. If you want to put more information on this tape, you
may. But you must remember where it begins and where it ends. Use the tape counter
on the cassette recorder to position the tape at the beginning of your information.

A bunch of information on tape is sometimes called a record.
A bunch of records is called a file.

INTRODUCTION TO CASSETTE DATA FILES

75

Oh well, whatever they are called, let’s now set up something useful; a personal
phone directory. Again, we have two programs; one to set up the directory and one to
play it back. There is nothing new in these programs. Read them, figure out what they
do, then move on.

By now, you should read the programs carefully and try to understand them
before you try them on your TRS-80. Who knows? You might improve them before
trying them!

1902 REM ** MAKE A TAPE OF NAMES AND NUMBERS

119 CLEAR 1098

12¢ CLS Sorry, NAME is
. i " . 4—__/-‘—

138 PRINT M INPUT” NAME" ; NAYMS a reserved word

149 INPUT ‘'NUMBER' ; NMBRS

159 PRINT # —1, NAYM$, NMBR$ <————— Aha! Two thingsin

168 GOTO 13@ one PRINT#—I

208 REM ** READ 1@ NAMES AND NUMBERS
219 CLEAR 1pg
229 CLS

23@ FOR K = 1 TO 1@

249 INPUT # —1, NAYMS$, NMBRS

250 PRINT NAYM$ TAB(3@) NMBRS

268 IF NAYMS$ = ''NO MORE NAMES' THEN END
27¢ NEXT K

3¢@ REM ** THE PRINT STATEMENTS TELL ALL
319 PRINT

32¢ PRINT “TO GET MORE NAMES AND NUMBERS,"
339 PRINT “PRESS THE SPACE BAR" ;

349 KEY$ = INKEYS : IF KEYS = ““ THEN 340
358 IF KEY$ = ' ' THEN 229 ELSE 3490

Put a space between quotes

QUESTION: When you run the program called MAKE A TAPE OF NAMES AND
NUMBERS, what should you put on the tape as the very last “name?” What do you
suggest for the corresponding telephone NMBR$? (We have two completely outra-
geous numbers in mind.) OK, let’s go! We ran program MAKE A TAPE OF NAMES
AND NUMBERS. If you had been there to watch, this is what you would have seen.

76 MORE TRS-80 BASIC

We typed RUN (or RUN 100 or RUN 110 or GOTO 100 or GOTO 110) and

~

NAME? DON INMAN
NMBR? 415-323-6117

NAME? RAMON ZAMORA
NMBR? 415-323-6117

NAME? BOB ALBRECHT
NMBR? (415) 323-6117

NAME? COMPUTERTOWN USA!
NMBR? 415/323-3111

NAME? DYMAX GAZETTE
NMBR? 4153236117

NAME?

From now on, each new line pushes the line at the top off the screen. This does not
affect the'writing of information onto the cassette tape.

We continue.

NAME? GANDALF
NMBR? 777 777 7777

NAME? PRIME TIME
NMBR? 235 711 1317

NAME? FIBONACCI
NMBR? 112 358 1321

NAME? PCC
NMBR? 415 323 3111

NAME? ERIC BAKALINSKY
NMBR? 415 DAFFODIL

NAME? TIME OF DAY
NMBR? POPCORN

NAME? INFORMATION
NMBR? AREA CODE 555-1212

NAME? HANDICAPPED AID
NMBR? 80§ 722-3240

NAME? NO MORE NAMES
NMBR? 999 999 9999

NAME? We are finished. So, we press STOP on the
READY recorder and BREAK on the keyboard.

> -

INTRODUCTION TO CASSETTE DATA FILES

77

We arbitrarily chose 999 999 9999 as the number for NO MORE NAMES.
Hmmm . .. could it be an actual number? We tried it. This is what we heard:

The number you dialed is not 2 working number.
Please check your listing and dial again.

Great! We had hoped that this would not be a real telephone number.
Now, let’s play it back. We assume, of course that:

 the programs (both) are in memory and ready to go, and
 the cassette containing the file of names and phone numbers is in the cas-
sette recorder and ready to go (rewound? right side up? OK!).

GO! Type RUN 210 and press ENTER. This is what you see:

/

DON INMAN 415-323-6117
RAMON ZAMORA 415-323-6117
BOB ALBRECHT (415) 323-6117
COMPUTERTOWN USA! 415/323-3111
DYMAX 4153236117
GANDALF 777 777 7177
PRIME TIME 235 711 1317
FIBONACCI 112 358 1321
PCC 415 323 3111
ERIC BAKALINSKY 415 DAFFODIL

TO GET MORE NAMES AND NUMBERS,
PRESS THE SPACE BAR.

Now, press the space bar. The screen clears and the next bunch of names and
numbers come on the screen.

TIME OF DAY POPCORN
INFORMATION AREA CODE 555-1212
HANDICAPPED AID 898 772-3249

NO MORE NAMES 999 999 9999

READY

-y,

Since there are NO MORE NAMES on the cassette, the TRS-80 stops auto-
matically.

We put names on the cassette in no particular order. You might want to
set up your personal telephone directory in alphabetical order as names
usually appear in a printed directory. This might be especially useful if your
tape directory has many names and numbers.

78 MORE TRS-80 BASIC

You Can Store Numbers, Too

So far, you have stored only string values on tape cassettes by using string
variables in PRINT # —1 statements. You have used the following PRINT
statements:

13 PRINT # -1, AS <«———— String variable
15¢ PRINT # —1, NAYMS, NMBRS

L———T—— String variables

We can also store numbers on tape cassettes by using numerical variables or
expressions in the PRINT # —1, statement.

149 PRINT # —1, X <+—— Numeric variable

The following program will store consecutive integers (1,2, 3,4, 5, and so on)
on a tape cassette.

1@ REM ** MEMORY TO SCREEN AND TAPE
119 CLS
12 X = 1

13¢ PRINT X ; < Memory to screen

14¢ PRINT # —1, X <+————— Memory to tape

15 X = X + 1
168 GOTO 130

This program also PRINTs each number on the screen (line 130) just before
writing it on tape (line 140).

And, of course, you also need a program to read the numbers back from tape
into the memory and put them on the screen.

20@ REM ** TAPE TO MEMORY TO SCREEN
21@ CLS

22¢ INPUT # —1, X

238 PRINT X ;

2408 GOTO 229

Enter both programs. Then, put a C-10 cassette (five minutes on each
side) in the recorder, press PLAY and RECORD, type RUN on the key-
board, press ENTER . . . and this is what you see:

INTRODUCTION TO CASSETTE DATA FILES

79

(1 2 3 4 5 andsoon

This goes on for about five minutes until the end of the tape is reached.
CLICK! The recorder stops, but the TRS-80 continues putting numbers on

the screen.

We now press the reset button to stop the TRS-80.

Let’s find out how many numbers are on the tape. Rewind the tape, press
PLAY on the recorder, type RUN 210 and press ENTER. When the recorder
stops, press the reset button.
The numbers are read one by one as the value of X appears on the
screen. Five minutes pass . . . CLICK! The recorder stops at the end of the

tape.

f

12345
19 2g9 21
35 36 37
51 52 53
67 68 69

READY
>

6
22
38
54
79

789 19 11 12 13 14 15 16 17 18

23 24
39 49
55 56
71 72

25
41
57
73

26 27 28 29 3¢ 31 32 33 34
42 43 44 45 46 47 48 49 59
58 59 6@ 61 62 63 64 65 66
74 75

T

The recorder stopped here. The
TRS-80 is still trying to read
tape. Press the reset button to
stop it.

Using the statement PRINT # —1, X allows us to put about seventy-five numbers on
one side of a C-10 cassette. You might get a slightly different number on your C-10

cassette. However, assuming about seventy-five numbers on a C-10, we might expect
about the following on long cassettes.

CASSETTE NUMBER OF NUMBERS
C-30 225
C-60 450
C-90 675

A C-30 has fifteen minutes on

each side, a C-60 has
thirty minutes on each side,

and so on.

80 MORE TRS-80 BASIC

Writing only one number at a time is the least efficient way to store information
on a cassette. How can we store more numbers on tape? Try this: Make these changes
to the programs MEMORY TO SCREEN AND TAPE and TAPE TO MEMORY

TO SCREEN.
14 PRINT # —1, X, X + 1
156 X = X + 2
22¢ INPUT # -1, X, Y

239 PRINT X; Y;

o Use a fresh C-10 tape and RUN the (modified) program called MEM-
ORY TO SCREEN AND TAPE.

o Then, play this tape back, using the program called TAPE TO MEM-
ORY TO SCREEN. Remember, to read this tape back, rewind it, then
type RUN 210 or GOTO 210 to start the program.

Using a C-10 tape, we ran both programs. Here is what we got when we played
the tape back, using the second program:

12345678918 11 1213 14 15 16 17 18
19 2@ 21 22 23 24 25 26 27 28 29 3@ 31 32 33 34
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 6@ 61 62 63 64 65 66
67 68 69 7@ 71 72 73 74 75 76 77 78 79 8§ 81 82
83 84 85 86 87 88 89 9§ 91 92 93 94 95 96 97 98
99 1pg 1@1 182 13 194 195 196 197 18 199 119 111
112 113 114 115 116 117 118 119 1208 121 122 123
124 125 126 127 128 129 13§ 131 132 133 134 135
136 137 138 139 14@ 141 142 143 144 145 146 147

the reset button to stop the TRS-80.

Aha! This time, the C-10 tape has 148 numbers, almost twice as many as before. This
happened because two numbers are written on tape each time.

14¢ PRINT # —1, X, X + 1
L————I——— two numbers

If we write two numbers on tape each time, we usually INPUT two numbers when we
play back the tape.
22@ INPUT # -1, X, Y

two numbers (put one in X and the other in Y).

Hmmm . . . what happens if we INPUT only one number? Try it and find out!

INTRODUCTION TO CASSETTE DATA FILES

81

Technical Stuff

You may skip this section if you wish. We will explain how the TRS-80 writes infor-
mation on a cassette tape; then you may understand why PRINT # ~1, X, X+1 crams
about twice as much information on tape as PRINT # —1, X.

In executing a PRINT # —1 statement, the TRS-80 first records 128 zero bits
(binary digits) on the tape. It then records a code which is later used to sychronize the
tape and the computer when the tape is read back. This code is 1010 0101 in binary
or A5 in hexadecimal. Huh? Well, we did say you could skip this section!

As you might expect, all those zero bits and the hexadecimal code use up some
tape. Finally, however, your information gets recorded on tape. So, if you are putting
only one number on tape at a time, it looks something like this:

and 128 128 128
soon. .. zero zero zero
bits bits bits

3rdX——T LAS 2ndXJ LAS lstX~j LAS

synchronizing code

When you save the pieces of data in the same PRINT statement, such as:

140 PRINT # —~1, X, X+1

L—I— two numbers

approximately twice as much data can be stored on the same length of tape.

128 128 128
zero bits zero bits zero bits

T AS T AS T AS
S5th X 3rd X Ist X
6th X 4th X 2nd X

By comparing this sketch and the previous sketch, you can see that more data
can be squeezed onto the same length of tape by printing more than one item in a
PRINT # —1 statement. However, there is a limit to the number of items given in the
PRINT # — statement. The total number of characters printed by one PRINT # —1
statement must not exceed 255. All characters after the 255th would be cut off or
ignored.

82 MORE TRS-80 BASIC

The characters would be counted like this:

IstX =2 1 character
2nd X =32 2 characters
3rd X =559 4 characters (the decimal point
—_— counts as a character)
TOTAL 7 characters

When using PRINT # —1 and INPUT # —1 statements, you must be sure that
the variables used in both statements match. If numeric variables are saved, then nu-
meric variables must be used to retrieve that data. If string variables are saved, then
string variables must be used to retrieve that data.

INPUT # —1, A matches PRINT # —1, A (the same variable)
INPUT # -1, A matches PRINT # —1, X (same type of variable)
INPUT # —1, AS matches PRINT # —1, AS (same variable)
INPUT # —1, AS matches PRINT # —1, BS (same type of variable)
However,
INPUT # —1, A does not match PRINT # —1, AS
numeric variable string variable

If you mix variable types in PRINT # —1statements, use great care to match the varia-
ble types in the InpUT # —1statement.

PRINT # —1, A, A$, X <——— Used tosave data file
INPUT # —1, A, AS, X -

or |— May be used to retrieve
INPUT # —1, B, B$,C = data file
But not
INPUT # —1, AS$, A, X$ NO, NO, NO

These do not match

the types used in

the PRINT # —1
statement.

Well that’s enough about cassette data files for one chapter. Stop now and read
through the summary. Then try the Self-Test before going on.

INTRODUCTION TO CASSETTE DATA FILES 83

Summary

Even though you had probably used the cassette recorder before to CSAVE and
CLOAD programs, this chapter introduced some new uses. You learned:

° totransfer data from memory to tape.

PRINT # —1 , AS

} 44
PRINT on device

the string

or

PRINT # —1 , X

T— the numeric value of X

* that more than one data item can be saved on tape by the same PRINT # —1 state-
ment.

PRINT # —1, A, B, C

t———?——— three numeric

values

* totransfer data from tape to memory.

INPUT # —1 , AS
} b4
INPUT from device the string A$
or
INPUT # ~1 x:l

L

* if data has been saved on tape using more than one data item per PRINT # —1
statement, it must be input in the same format.

The numeric value
to be assigned to X

If you saved it this way:

PRINT # —~1, A,B,C

t———t— three numeric values

84 MORE TRS-80 BASIC

it must be input this way,

INPUT # —1, A,B,C

u—— three numeric variables.

(The variable names do not have to be
the same ones used in PRINT # —1, but
they must be the same type., i.e., X,Y.,Z
would be OK, but NOT X§, Y§, Z3%)

o that the amount of tape used to save data files can be conserved by printing more
than one item in a PRINT # —1 statement.

o that the total number of characters saved by one PRINT # —1 statement must not
exceed 255.

Self-Test

1. When we CLOAD a program, the program is read from a cassette into memory.
Is the program read into ROM or into RAM?

2. When you CSAVE a program, the TRS-80 records the program in its memory
onto a cassette. Is the program copied from ROM or fromRAM?

3. Isit possible to enter information from a cassette into ROM?

4. Isit possible to copy information from ROM onto a cassette? (Go ahead-guess!)

If you said yes, please explain how this might be done.

5. Suppose we RUN the following program.

1@@ REM ** MYSTERY PROGRAM 2A-1

11§ AS$ = “BLUE” : BS$ = "YELLOW' : C$ = "RED"

12¢ CLS

13¢ PRINT “PRESS PLAY AND RECORD ON CASSETTE # —1"
14§ PRINT "THEN PRESS THE SPACE BAR"

159 KEY$ = INKEY$: IF KEY$ = " THEN 150
168 IF KEY$ = “ ' THEN 17¢ ELSE 15

17¢ PRINT # —1, AS, BS, CS$

999 END

(a) Show what first appears on the screen.

INTRODUCTION TO CASSETTE DATA FILES 85

(b) If you press the space bar, what happens?

Here are our first KEYBOARD TO MEMORY TO TAPE and TAPE TO
MEMORY TO SCREEN programs. Rewrite them so that instructions to the op-
erator are given, as in exercise 5, above.

1@ REM ** KEYBOARD TO MEMORY TO TAPE
119 cLS

128 INPUT Ag

13 PRINT # —1, As

140 GOTO 128

2¢@ REM ** TAPE TO MEMORY TO SCREEN
219 cLS

229 INPUT # —1, AS

230 PRINT A$

240 GOTO 229

86 MORE TRS-80 BASIC

7. Explain the following program:

1@@ REM ** MEMORY TO TAPE

118 cLS

12@ READ AS

13¢ PRINT # —1, A$

14p IF A$ = "“THAT'S ALL FOLKS!" THEN END

15¢ GOTO 120

16§ DATA ABC, 1234567898, BLUE, COMPUTERTOWN USA!

170 DATA TAKE A DRAGON TO LUNCH, TESTING, ONE, TWO, THREE
183 DATA 'THAT'S ALL FOLKS!"

8. Write a program to put the first twenty-five prime numbers on a cassette as
numeric (not string) values. The first twenty-five prime numbers are shown
below.

2 3 5 7111317 192329
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97

INTRODUCTION TO CASSETTE DATA FILES 87

9. Write a program to put on tape the names and ages of the people below. Use a
string variable for the name and a numeric variable for the age. Make five rec-
ords, each containing one name and one age.

JONES, 45
KEYS, 22
LARS, 27
MUNZ, 52
NANCE, 18

10. Write a program to transfer from tape to memory to screen the data saved in ex-

ercise 9.
Answers to Self-Test
1. RAM
2. RAM
3. No
4. Yes. You could assign a variable to a PEEK statement such as A = PEEK(25),
then PRINT # —1, A.
5. (a) PRESS PLAY AND RECORD ON CASSETTE # —1

THEN PRESS THE SPACE BAR

(b) The tape moves and the data for A$, B, and C$ is recorded. The tape then
stops.

88 MORE TRS-80 BASIC

6. Thisis one way to do it. Yours may be different. If yours works, it is correct. Try
it.

1@ REM ** KEYBOARD TO MEMORY TO TAPE

119 CLS

12¢ PRINT “INPUT A STRING WHEN THE ? APPEARS."

133 PRINT “THEN PRESS THE ENTER KEY."

14@ PRINT "IF ALL ENTRIES HAVE BEEN MADE T YPE 'DONE' "
15@ PRINT "“FOR YOUR INPUT."

16@ INPUT AS

17¢ PRINT # —1, AS

180 IF AS$ = "DONE" THEN END

198 GOTO 16§

2@¢ REM ** TAPE TO MEMORY TO SCREEN

219 CLS

220 PRINT "PRESS PLAY AND RECORD ON CASSETTE # —1."
22¢ PRINT "THEN PRESS THE SPACE BAR."

23 KEY$ = INKEY$, IF KEY$ = "" THEN 230
24p IF KEY$ = " " THEN 250 ELSE 239

25@ INPUT # ~—1, AS

260 PRINT A$

27@ IF A$ = “DONE'" THEN END

289 GOTO 258

7. The program reads the items in the data list one at a time, turns on the recorder,
and saves the item read. The recorder then stops. This is repeated for each data
item. When the last item is recorded the program stops. '

8. Hereis one program. Yours, of course, may be different. Try yours to make sure
it works.

198 CLS

118 FOR N =
126 M= 2
139 IF N/M<>INT(N/M) THEN M = M + 1 : GOTO 13§
14g IF N = M THEN PRINT # -1, N

158 NEXT N

1 TO 190

9. 1pg cLs
119 FOR N = 1 TO 5
12§ INPUT AS, A

138 PRINT # —1, AS$, A
149 NEXT N

10. 2pp cLs
219 FOR N = 1 TO 5
220 INPUT # —1, AS, A
239 PRINT AS$; ," i A

24@9 NEXT N

CHAPTER FIVE

More About Cassette Files

In this chapter, you will learn more ways to copy information from the memory of the
TRS-80 onto cassette tapes and read information from these tapes into the TRS-80’s
memory. You will learn to:

e putinformation on a cassette tape by using the READ, DATA, and
PRINT #1—1 statements,

e put information stored in a numeric or string array onto cassette tape, and

 read information from a cassette tape into an array.

Something Old, Something New

In chapter 4, you started with two programs called KEYBOARD TO MEMORY TO
TAPE and TAPE TO MEMORY TO SCREEN. Here they are again:

199 REM *+#KEYBOARD TO MEMORY TO TAPE
119 CLS

12@ INPUT AS

13§ PRINT #-1, AS

140 GOTO 12¢

20§ REM ** TAPE TO MEMORY TO SCREEN
219 cLS

220 INPUT #-1, AS

233 PRINT AS

248 GOTO 229

89

90 MORE TRS-80 BASIC

You used the first program (lines 100 through 140) to put information on tape (see
page 67). Here’s a different program to put information on tape.

1@@ REM ** READ FROM MEMORY, PUT ON TAPE

11@ CLS
120 READ A$
13@ PRINT #-1, A$

140 GOTO 128

Aha! Instead of getting the value of A$ from the keyboard, the TRS-80 will get it from
a DATA statement. So, let’s put the required information in DATA statements, as
shown in the following program:

19P@ REM ** INFORMATION TO PUT ON TAPE
191§ DATA ABC

1929 DATA 1234567890

193§ DATA BLUE

1349 DATA COMPUTERTOWN USA!

1059 DATA TAKE A DRAGON TO LUNCH
106@ DATA TESTING

1979 DATA ONE

1@8¢ DATA TWO

199¢ DATA THREE

11p§ DATA THAT'S ALL FOLKS!

We put one item of information in each DATA statement. Of course, you can pack
more information per DATA statement if you wish. For example, it could be like this:

1@@@ REM ** INFORMATION TO PUT ON TAPE

191¢ DATA ABC, 1234567898, BLUE

1¢29 DATA COMPUTERTOWN USA! TAKE A DRAGON TO LUNCH
1@3¢ DATA TESTING, ONE, TWO, THREE

1#40 DATA THAT'S ALL FOLKS!

We arbitrarily began our block of information at line 1000. You can chaose a different
block of line numbers.

By now, you can put a fresh, blank tape in the recorder and get everything ready
to go. Do it! Then, run the READ FROM MEMORY, PUT ON TAPE program.
CLICK, WHRRR; CLICK, WHRRR; . .. and soon, as information is READ from
DATA statements one item at a time and put on tape.

Eventually, the last item in the last DATA statement is read and put on tape.
The TRS-80 stops with an OUT OF DATA message on the screen.

20D ERROR IN 120
READY
-

MORE ABOUT CASSETTE FILES 91

The information in the DATA statements has been recorded on a cassette tape. If all
went well, 10 strings are on the tape, as follows:

Direction of tape movement ———

§ COMPUTERTOWN USA! | BLUE | 1234567890 { ABC >
and 4th 3rd 2nd Ist
soon item item item item

Did it happen? Find out by playing the tape back, using the program TAPE TO
MEMORY TO SCREEN, just as you did in the preceding chapter (pages 78-80).

Hmmm ... try the tape again using this version of TAPE TO MEMORY TO
SCREEN.

2@@ REM ** TAPE TO MEMORY TO SCREEN

21g cLs

220 INPUT #—1, AS$

23¢ PRINT AS

235 IF A$ = "THAT'S ALL FOLKS!' THEN END -e————Add thisstatement

2408 GOTO 22¢

Numbers Instead of Strings

Instead of string, let’s put numbers on tape. The following version of READ FROM
MEMORY, PUT ON TAPE uses a numeric variable (X) in lines 120 and 130.

19§ REM ** READ FROM MEMORY, PUT ON TAPE
119 CLS

12¢ READ X =% X is a numeric variable
13@ PRINT #-1, X

148 GOTO 129

10@@ REM ** NUMBERS TO PUT ON TAPE
1918 DATA 1, 2, 3, 4, 5

1820 DATA 6, 7, 8, 9, 18

1938 DATA 11, 12, 13, 14, 15

1940 DATA 16, 17, 18, 19, 20

92 MORE TRS-80 BASIC

Are the numbers on tape? Find out. Play the tape back, using this program
which you may recall from chapter 4.

2¢@ REM ** TAPE TO MEMORY TO SCREEN
219 CLS

220 INPUT #-1, X

230 PRINT X;

240 GOTO 220

If everything has been done right, the numbers from 1 to 20 are read from the tape and
the screen looks like this.

12345678918 11 12 13 14 15 16 17 18
19 20

|

At this point, the tape keeps running but no
more numbers are printed on the screen.

Of course! There aren’t any more numbers on the tape, but your ever-patient TRS-80
keeps looking for more numbers because that’s what you told it to do.

218 CLS I'm looking!
22¢ INPUT #—-1, X
230 PRINT X;

249 GOTO 228

It isn’t going to find more numbers, so:

o Press STOP on the tape recorder.
o Press the reset button on the TRS-80.

Flags to the rescue! Change the last DATA statement, as follows.

1949 DATA 16, 17, 18, 19, 2§, —1

i An end of

data flag.

Then, add this line to the TAPE TO MEMORY TO SCREEN program.

225 IF X = =1 THEN END

MORE ABOUT CASSETTE FILES 93

Try the above changes. The flag (—1) is the last thing on tape. It is detected when you
read the tape back into memory and causes the program to stop. If you want the flag
(—1) to be printed on the screen, use 235 as the line number of the IF statement that
looks for the flag. Feel free to choose a different number as the flag. A good choice
might be 1E37, a very unlikely number!

Nayms and Numbers

Do you remember the personal telephone directory program in the preceding chapter?
If not, go back and browse through it again. You can now make an even more useful
telephone directory by using arrays to hold the names and phone numbers. First, enter
the names and numbers into two arrays, NAYMS (for the names) and NMBRS$ (for
the telephone numbers). Use the CLEAR statement to reserve enough memory space
to hold your names and numbers.

The following program segment allows you to enter names and numbers from
the keyboard and store them in the array NAYM$ and NMBRS.

18@ REM ** PERSONAL TELEPHONE DIRECTORY

11@ REM ** SET UP STRING ARRAYS NAYMS AND NMBR$

120 REM ** NAYM$ = NAMES NMBR$ = PHONE NUMBERS

139 CLEAR 50028 TN~ TN

140 DIM N 2 o

40 DIM NAYMS(208), NMBRS(209) Arrays NAYMS$ and NMBRS$
can store up to two hundred names

Y and numbers with a maximum

total of five thousand characters. If
you need more, change lines
130 and 140.

W

94 MORE TRS-80 BASIC

2¢@ REM*+*KEYBOARD TO NAYM$ AND NMBR$
219 CLS

226 K = 1

23¢ PRINT : INPUT “NAME " ; NAYMS$(K)
240 INPUT “NUMBER” ; NMBRS(K)

250 IF NAYMS (K)="22Z%22" THEN 310
260 K = K + 1 : GOTO 238

RUN the program and enter these names and numbers in alphabetical order. Do
NOT include commas in strings. We will explain why later.

NAME NUMBER
Albrecht Bob 4152326117
COMPUTERTOWN USA! 4153233111
Inman Don 4153236117
People’s Computer Co. 4153233111
Radio Shack 817 3903011
Zamora Ramon 4153270541
277277 999999 9999 This is the “end-of-
directory” flag.
It should go like this:

/

NAME? ALBRECHT BOB
NUMBER? 415 323 6117

NAME? COMPUTERTOWN USA!
NUMBER? 415 323 3111

NAME? INMAN DON
NUMBER? 415 323 6117

NAME? PEOPLE'S COMPUTER COMPANY
NUMBER? 415 323 3111

NAME? RADIO SHACK
NUMBER? 817 39@8 3811

NAME?

MORE ABOUT CASSETTE FILES

95

From now on, each new line will push a line off the top of the screen. This does not af-
fect storing the information into the arrays NAYMS$ and NMBRS. We continue:

/

L

e

NAME? ZAMORA RAMON
NUMBER? 415 327 @541

?UL ERROR IN LINE 250
READY
>

NAME? 2222722 ::}’_‘____ .
NUMBER? 999 999 9999 End of directory

Oops! Check line 250 in the program. Aha! Since NAYMS$(K) is equal to
“ZZZZ7ZZ, the TRS-80 tried to go to line 310. Since there is, as yet, no line 310, it
stopped with an Undefined Label error. We will fix that soon.

Our little phone directory is now stored in arrays NAYMS$ and NMBRS, as fol-

lows.

NAYMS$(1)|ALBRECHT BOB

NMBRS$(1)[415 323 6117

NAYMS(2) [COMPUTERTOWN USA! NMBRS$(2)[415 323 3111

NAYMS$(3) INMAN DON

NMBRS(3)[415 323 6117

NAYMS$(4) [PEOPLE’'S COMPUTER CO| NMBR$(4)|415 323 3111

NAYMS(5) [RADIO SHACK

NMBRS$(5)] 817 390 3011

NAYMS$(6) [ZAMORA RAMON NMBRS$(6)[415 327 0541

NAYMS(7)|ZZZZZ

NMBRS$(7){999 999 9999

You can use direct statement to convince yourself that the directory is stored. Clear

the screen, then:

You type:
It prints:

You type:
It prints:

Or, you can do it this way:

You type:
It prints:

PRINT NAYMS$(2)
COMPUTERTOWN USA!

PRINT NMBRS$(2)
415 323 3111

PRINT NAYMS$(3), NMBR$(3)
INMAN DON 415 323 6117

96 MORE TRS-80 BASIC

The next program segment stores the names and numbers on a cassette. First, it
prompts you to press the play and record keys on the recorder. Of course, you have al-

Pruasipu 5 o

ready put a fresh new cassette in the recorder, haven’t you? If not, do it now.

3pg REM ** INSTRUCTIONS TO USER

319 cLS

32¢ PRINT “PRESS PLAY AND RECORD ON THE RECORDER."
330 PRINT

34p PRINT “PRESS THE SPACE BAR AND I WILL STORE"
359 PRINT “THE NAMES AND PHONE NUMBERS ON TAPE."
360 K$ = INKEY$: IF K$ = ' THEN 36§

379 IF K$ = "V THEN 41§ ELSE 36§

4pg REM ** NAYM$ AND NMBR$ TO TAPE
419 K = 1

420 PRINT # —1, NAYM$(K), NMBRS(K)
430 IF NAYMS$ (K)="Z2ZZZ" THEN 458

449 K = K + 1 : GOTO 428
45¢ PRINT : PRINT “DONE. REWIND AND REMOVE TAPE."
460 END

Store and RUN the entire program, lines 100 through 450. The directory is now
stored on tape; it is also still in memory.

We suggest you make a second copy on a second cassette. Remove the tape con-
taining the first copy of the directory and position the second cassette in the recorder.

DON’T type RUN
DON'T type RUN 300

When you type RUN or RUN 300, the TRS-80 first erases the values of all variables.
Bye, bye directory!

DO type GOTO 300

The TRS-80 will go to line 300 and begin. Sit back for a few moments as the computer
puts a second copy of the directory on tape. Make as many copies as you wish.

MORE ABOUT CASSETTE FILES

97

Read and Use the Directory

Next, we need a program to read the personal telephone directory and to look up num-
bers. It begins like this:

199 REM ** READ AND USE DIRECTORY

119 REM ** SET UP STRING ARRAYS NAYMS$ AND NMBRS$
120 REM ** NAYM$ = NAMES NMBR$ = PHONE NUMBE RS
139 CLEAR 5008

149 DIM NAYMS(2@@), NMBRS(200)

Well, that certainly looks familiar, doesn’t it? The next piece of the program reads the
directory information from the tape cassette into NAYMS$ and NMBRS.

2¢@ REM ** INSTRUCTIONS TO USER

219 CLS

22¢ PRINT “PRESS PLAY ON THE TAPE RECORDER."

23¢9 PRINT

24@ PRINT ‘‘PRESS ANY KEY AND I WILL READ THE TAPE"
25¢ PRINT “INFORMATION INTO MEMORY."

260 K$ = INKEY$: IF K$ = "" THEN 260

39@ REM **TAPE TO NAYM$ AND NMBRS

319 K = 1

320 INPUT #—1, NAYM$(K), NMBRS$(K)

339 IF NAYMS (K)="'2Z%22%" THEN 358

340 K = K + 1 : GOTO 320

350 PRINT : PRINT “DONE. REWIND AND REMOVE TAPE."
360 PRINT : PRINT “TO CONTINUE, PRESS ANY KEY."
378 K$ = INKEY$: IF K§ = "' THEN 37¢

After you RUN this part of the program, the screen will look like this.

(

PRESS PLAY ON THE TAPE RECORDER.

PRESS ANY KEY AND I WILL READ THE TAPE
INFORMATION INTO MEMORY.

DONE. REWIND AND REMOVE TAPE.

TO CONTINUE, PRESS ANY KEY.

98 MORE TRS-80 BASIC

The directory is stored. Press any key and the TRS-80 will continue with the following
section of the program:

400
419
420

580
519
520
530
540

REM ** ASK FOR NAME TO LOOK-UP
CLS
INPUT “NAME ; WHOS

REM ** SEARCH NAYM$ ARRAY FOR WHOS$

K = 1
IF NAYMS$(K) = WHO$ THEN 618
IF NAYM$(K) = '‘z22Z2"” THEN 710

K=K+ 1 : GOTO 520

If the name is in the directory, the TRS-80 will find it and go to line 610. If the
name is not in the directory, the TRS-80 will search through the entire array NAYM$
and find the flag ZZZZZ. In this case, it will then go to line 710. Blocks 600 and 700
are shown below:

60p
610
620
630

789
719
729
739

REM *+* PRINT THE NAME AND PHONE NUMBER
PRINT NAYM$(K), NMBRS(K)

PRINT

GOTO 420

REM ** OOPS! NAME NOT IN DIRECTORY
PRINT “THAT NAME IS NOT IN THE DIRECTORY."
PRINT

GOTO 42§

That’s it. Enter the program and RUN it. The part of the program beginning at line
400 might go like this.

-

NAME? INMAN DON
INMAN DON 415 323 6117

NAME? ZAMORA
THAT NAME IS NOT IN THE DIRECTORY.

NAME? ZAMORA RAMON
ZAMORA RAMON 415 327 @541

NaME? and soon. ..

MORE ABOUT CASSETTE FILES

99

Hmmm . . . perhaps you are annoyed at having to type in the entire name exactly
as stored in the memory. So, change block 500, as follows.

5009
51p
520
539
540
550

REM ** SEARCH NAYMS$ ARRAY FOR WHO$

LWHO = LEN(WHO$)

K = 1

IF LEFTS$ (NAYMS$(K), LWHO) = WHO$ THEN 61§
IF NAYM$(K) = “222%Z2" THEN 71§

K =X + 1 : GOTO 530

With this change, a RUN might look like this:

*

*

-

NAME? INMAN
INMAN DON 415 323 6117

NAME? RADIO
RADIO SHACK 817 39g 3811

NAME? C
COMPUTERTOWN USA! 415 323 3111

NAME? 2
ZAMORA RAMON 415 327 @541

NAME? 22
222727 999 999 9999

NAME? B
THAT NAME IS NOT IN THE DIRECTORY

naME? andsoon. ..

Now you can enter the left part of a stored name. The computer will find the
first name for which the leftmost part of the name exactly matches your entry. If no
match is found, the computer will eventually find the flag “ZZZZ7" and tell you that
your name is not in the directory.

Look at block 500. The statement 510 LWHO = LEN(WHOS$) computes the
length of the string WHOS$ and assigns this value to LWHO. If the value entered
for WHOS is INMAN, then LWHO will be equal to 5.

Then, look at line 530. The statement 530 IF LEFT$(NAYMS$(K), LWHO) =
WHOS$ THEN 610 compares the leftmost LWHO characters of NAYMS$(K)
with WHOS. If they are equal, the TRS-80 goes to line 610. Otherwise, the TRS-
80 goes to line 540.

100 MORE TRS-80 BASIC

No Commas, Please

Don’t include commas in strings stored in cassette files, even if you enclose the strings
in quotation marks. When you tfy to INPUT #—1, a string which includes a comma,
you will get only the part of the string to the left of the comma.

Try this. First, enter the following program:

19 CLS

2@ PRINT "“PUT A FRESH TAPE IN THE RECORDER"
3¢ PRINT “THEN PRESS PLAY AND RECORD"

4@ PRINT ''NOW PRESS THE SPACE BAR"

50 K$ = INKEY$: IF INKEY$ = """ THENS5Q
6@ IF K$ = " " THEN 7@ ELSE 59
7¢ PRINT #—1, “COMPUTERTOWN, USA!"
\ '
80 PRINT Aha! A comma

9@ PRINT “REWIND TAPE, THEN PRESS PLAY"
192 PRINT “PRESS THE SPACE BAR"

119 K$ = INKEYS$: IF K$ = """ THEN 110
120 IF K$ = """ THEN 13Qg ELSE 110

139 INPUT—1, AS

140 PRINT AS

150 END

RUN the program. It should go like this:

PUT A FRESH TAPE IN THE RECORDER
THEN, PRESS PLAY AND RECORD
NOW, PRESS THE SPACE BAR

REWIND TAPE, THEN PRESS PLAY
PRESS THE SPACE BAR

PEXTRA IGNORED < ' Older TRS-80s may not show this.
COMPUTERTOWN

READY .

e

The TRS-80 stored “COMPUTERTOWN, USA!” on tape as two strings separated
by a comma, even though the original string was enclosed in quotation marks.

Change lines 130 and 140 as follows:

13g INPUT #—1, AS, BS
14@ PRINT AS$ BS

With this change, the TRS-80 will read COMPUTER into A$ and USA! into BS.
Try it.

MORE ABOUT CASSETTE FILES 101

Summary
You have learned in this chapter to:

o Put information on cassette tape by using READ, DATA, and PRINT #-1 state-
ments.

128 READ A$

13@ PRINT #—1, A$

14@ GOTO 128

19@@ DATA ABC, 1234567898

o Putinformation stored in an array onto cassette tape.

410 K = 1
429 PRINT #-—1, NAYMS$(K) NMBRS(K)
430 K = K + 1 : GOTO 420

o Read information from a cassette tape into an array.

319 K = 1
320 INPUT #—1, NAYM$(K), NMBRS(K)
33 K = K + 1 : GOTO 320

= Store, retrieve, and use a Personalized Telephone Directory.

Self-Test

1. Names and telephone numbers are in DATA statements as follows.

1@@@ REM #* INFORMATION TO PUT ON TAPE
191¢ DATA ALBRECHT BOB, 415 323 6117

192¢ DATA COMPUTERTOWN USA!, 415 323 3111

1@3@ DATA INMAN DON, 415 323 6117

1p4p DATA PEOPLE'S COMPUTER COMPANY, 415 323 3111
195@ DATA RADIO SHACK, 817 39§ 3011

1§69 DATA ZAMORA RAMON, 415 327 @541

1979 DATA ZZ2Z2%Z, 999 999 9999

102 MORE TRS-80 BASIC

Write a program to READ the names and phone numbers in the DATA statements
into arrays NAYMS$ and NMBRS. Put the names into array NAYM$(1) through
NAYMS$(7) and the phone numbers into NMBR$(1) through NMBR$(7).

2. Using the DATA statements in exercise 1, write a program to store the names
and phone numbers in the DATA statements directly onto a tape cassette. Do not put
the information into arrays NAYMS$ and NMBRS.

MORE ABOUT CASSETTE FILES

103

3. Our telephone directory program lets you look up a name, then gives you the
phone number. Write a program segment, beginning at line 400, to ask for a number,
then give the first name in the directory corresponding to that number.

4. Modify your program of exercise 3 so that after the first name is displayed,

* pressing the space bar causes the computer to continue searching for the same
phone number. If another occurrence is found, display it. If not, quit when
727777 is found.

* pressing the Q key (for Quit) causes the computer to return to the beginning
of your program segment and ask for another number.

5. Modify the name look-up program blocks on pages 137 through 139 so that after
name and phone number are found,

* pressing the space bar causes the next name and number to be displayed.

* pressing the Q key causes the computer to GOTO 410.

104 MORE TRS-80 BASIC

Answers to Self-Test

1. 18% REM ** PERSONAL PHONE DIRECTORY
119 CLEAR 5890
12¢ DIM NAYMS$(20@), NMBRS(208)

2@ REM ** READ DATA & STORE IN ARRAYS

218 CLS: K = 1

220 READ NAYMS(K), NMBRS(K)

230 IF NAYM$(K) = “222z2Z" THEN 258
240 K = K + 1 : GOTO 220

25@ END

1@@ DATA (use data from problem)

or
219 FOR K= 1 TO 7
220 READ NAYM$(K), NMBRS(K)
23§ NEXT K
240 END
2. 19@ REM ** STORE NAMES AND PHONE NUMBERS

119 CLS : K = 1
128 READ NAYMS, NMBRS

13g PRINT #—1, NAYMS, NMBRS

140 IF NAYM$ = “ZZ2ZZZ" THEN 168
150 K = K + 1 : GOTO 128

169 END

1pgp DATA (same as problem)

3. 4pp
41p
4290
43p0
449
450
460
599

4, a4g
458
460
479
483
499
508
519

5. 63¢g
640
650

REM ** SELECT NAME BY PHONE NUMBER

CLS

INPUT “PHONE NUMBER" ; N$

K =1

IF NMBR$(K) = N$ PRINT NAYM$(K) : GOTO 42§
IF NMBR$ (K) = "22zZ2Z" PRINT “NUMBER NOT FOUND"
K =K+ 1 : GOTO 44§

END

IF NMBR$(K) = N$ PRINT NAYMS$(K) : GOTO 478

IF NMBRS$(K) = "2Z2%%" PRINT “NUMBER NOT FOUND”
K=K 1 : GOTO 448

A$ = INKEY$: IF A$ = """ THEN 46§

IF A$ = """ THEN 440

IF A$ = “Q" THEN 419

GOTO 47¢

END

A$ = INKEY$: IF A$ = "" THENG63p

IFA$ = " PRINT NAYMS(K+1), NMBRS(K+1)

IF A$ = “Q" THEN 418

GOTO 598

GOTO 518

CHAPTER SIX

Disk Operation

So you want to upgrade your TRS-80 system for disk operation? If you’re not sure you
need a disk, you should read this chapter to see the capabilities available. If you’re not
interested in disk operations, skip this chapter and the next one.

In this chapter you will learn:

the advantages of disk over cassette operation,

a) faster

b) more capacity

¢) more reliable
what components are necessary for a minimum TRS-80 disk operating
system,
how to get your disk system running,
how Radio Shack designates changes to its Disk Operating System by a
version number,
about the care of disks,
how to make a back-up of the TRSDOS software diskette with a one-disk
system,

a) the difference between Source

and Destination disks

b) how to swap disks when prompted

c) how a successful back-up is signified
why a back-up is needed,
how to display a File Directory,
how to SAVE a program on disk from BASIC,
how to LOAD and RUN a program previously stored on disk, and
how a two-disk system differs from a one-disk system in operation.

a) back-up procedure

b) disk use

Even if you have a two-drive system, the single-disk procedures will be
useful should one of your drives break down.

105

106 MORE TRS-80 BASIC

A diskette is a circular plastic sheet that is coated with a layer of ferromagnetic
material. It is permanently sealed inside a protective jacket to prevent bending, creas-
ing, scratching, and contamination from foreign objects. Avoid touching the plastic
portion -— handle by the jacket carefully.

LABEL Write protect
/ nofch
Jocket —— | 0 q
O<_|
g | Sector hole
Read/Write |
opening—_|

The write protect notch of the TRSDOS diskette is covered by a tape (or tab) so
that the information on it is protected.

HB / Protect tab

The TRS-80 disk drive is a mass storage device providing much more storage
than is available on a cassette recorder. Data can be stored on disk and retrieved from
disk much quicker than when using a cassette recorder. In addition, the disk is much
more reliable and you don’t have to worry about critical volume settings, as you do
with the cassette recorder.

Read your TRSDOS and DISK BASIC Reference Manual (Radio Shack Cata-
log Number 26-2104) carefully for technical information.

TRSDOS means Tandy/Radio Shack Disk Operating System

We will assume that you have learned how to make the necessary connections so that
you may get right into disk operation. If you don’t remember, study the TRSDOS and
DISK BASIC Reference Manual that came with your disk system.

DISK OPERATION 107

In order to run the Radio Shack disk system, you need a minimum of the follow-
ing:

1) CPU/keyboard unit with 16K RAM,

2) Video monitor,

3) Expansion interface (Radio Shack Catalog Number 26-1140) with 16K
additional RAM recommended,

4) One disk drive (Radio Shack Catalog Number 26-1160) and the
TRSDOS diskette,

5) One blank diskette (Radio Shack Catalog Number 26-305), and

6) Optional —additional blank diskettes. (Highly recommended!)

The minimum disk system would look like this:

Although a disk system may be used with only 16K of RAM, there will be little
room left for your own programs. Since one of the primary advantages of a disk system
is the capability to store huge programs and lots of data, we recommend that you have
a minimum of 32K of RAM. This means 16K in the keyboard unit and 16K more in
the expansion interface.

The first disk drive is designated Drive 0 (zero). When the disk system is in use,
Drive 0 always contains the TRSDOS diskette, which has the operating system soft-
ware on it. The diskette also contains an executive program to control operations and
several auxiliary programs, including DISK BASIC.

Your first disk operation should be to duplicate the TRSDOS diskette onto a
blank diskette. The disk system is useless without the TRSDOS diskette. Therefore, a
duplicate should be made before you remove the write protect tape from the TRSDOS
diskette. In fact, we recommend that you never remove the write protect tab. The
back-up diskette which you will make will be a working copy of the original diskette.

108 MORE TRS-80 BASIC

The write protect tape prevents any information from being written onto the diskette.
It is placed on the TRSDOS to prevent the vital information already there from being
destroyed.

Duplicate the TRSDOS diskette before you
do any other disk operation. Directions
for this operation will follow shortly.

Power Up and Duplicate TRSDOS

Connect the expansion interface and your disk drive(s) in the manner described in
your TRSDOS and DISK BASIC Reference Manual (Radio Shack Catalog Number
26-2104).

Always power up the peripherals (disk drive(s), printer, expansion interface,
etc.) first. Turn on your TRS-80 CPU /keyboard unit last of all.

The power switch for the disk drive is on the rear of the unit. Power ON is the up
position of the switch, power OFF is down.
In general,

1) turnon the expansion interface,

2) turnon your disk drive(s),

3) open the front door of the drive and insert the TRSDOS diskette, mak-
ing sure it is all the way in. Then close the disk door. If it doesn’t close
easily, don’t force it. Reinsert the diskette and try again.

Labeled side
on the right,
notch up

\OK =

{[i

Do not touch the

magnetic surface of
the disk

DISK OPERATION

109

4) Turn on the CPU/keyboard unit. The computer will instantly attempt to
load TRSDOS from Drive 0. Therefore, the TRSDOS diskette must be
in Drive 0 when the CPU /keyboard is turned on.

Another approach to these four steps is to plug all devices into an adequate
power strip (such as Radio Shack Catalog Number 26-1451) and turn them all on at
one time from the power strip’s single switch.

=)
——ltEddaaaad

Now, power up the TRS-80 for disk operation according to the previous direc-
tions, and you’ll be ready to duplicate the TRSDOS diskette. Remember, we are as-
suming that you have only one disk drive (Drive 0).

As the system comes on, you’ll hear a whirr and clackety-clack as TRSDOS is
loaded into memory from the disk. A program called the executive program has been
loaded into the first 4K bytes of RAM. It stays there while TRSDOS is in control to
make sure the computer will follow the necessary disk operating procedures.

Then the video display shows this message:

- ™

TRSDOS — DISK OPERATING SYSTEM -~ VER 2.3

DOS READY [

Your version
may have a
different
number

\ J

The TRSDOS is revised from time to time. A new version
represents a substantial expansion of the previous version.
The integer part of the version number shows which ver-
sion is present. Ours is version 2. A new release is simply
an update of the previous version. A later release gener-
ally includes wider implementation and efhancements, as
well as fixes for earlier problems. A new release is signi-
fied by the decimal part of the version number. Ours
shows release .3. Thus the complete version number we
are using is 2.3.

110 MORE TRS-80 BASIC

You can see from the video display that TRSDOS, version 2.3 (or whatever ver-
sion you have), has been loaded. The prompt “DOS READY” indicates that the disk
operating system is ready and waiting for your first command. Notice that the prompt
used in BASIC (>) is not displayed. Only the cursor shows.

DOS READY

Cursor
only

This can serve as a reminder of whether you are in the disk command mode or BASIC
language mode.

Now, it’s time to make a back-up copy of the original TRSDOS diskette. A
back-up copies the operating system from the original diskette into memory and then
onto your blank diskette. When using a one-disk system, each disk that you use must
have the operating system on it. Even though programs may be stored on the original
TRSDOS diskette, it is a good idea to save the original for the back-up procedure only.

You should have both the TRSDOS disk and a blank disk ready now for the
back-up procedure.

When using only one drive, you must swap the
TRSDOS diskette (the SOURCE) and your blank disk (the
DESTINATION) several times during the back-up proce-
dure. The BACK-UP program will tell you when to insert
the DESTINATION disk and when to reinsert the
SOURCE disk.

Are you ready to BACK UP your TRSDOS diskette?
Ifso,...

Type: BACKUP (and press ENTER)

Display:

TRS DISK BACKUP UTILITY VER 2.3
SOURCE DRIVE NUMBER?-

DISK OPERATION

111

Remember, this procedure is being used with one disk drive (Drive 0).
Therefore, . ..

Type: @ (and press ENTER)

Display:

TRS DISK BACKUP UTILITY VER 2.3

SOURCE DRIVE NUMBER?Q
DESTIMATION DRIVE NUMBER?-

Since there is only one drive, the back-up is made from Drive 0 to Drive 0. That
is why the disks must be exchanged in the drive as you go through this procedure. A
second drive would make it simpler, but for one drive you must . . .

Type: @ (and press ENTER)

Display:

TRS DISK BACKUP UTILITY VER 2.3

SOURCE DRIVE NUMBER?@
DESTINATION DRIVE NUMBER?@
BACKUP DATE (MM/DD/YY)

T Lm—————-— year all two-digit
day numbers with
month slash separators

Do not type in the parentheses; just add the date that you are making the back-
up.

Type: present date
Example: 05/22/81 (for May 22, 1981)

Display:

TRS DISK BACKUP UTILITY VER 2.3

SOURCE DRIVE NUMBER?§
DESTINATION DRIVE NUMBER?
BACKUP DATE (MM/DD/YY)?@85/22/81

112 MORE TRS-80 BASIC

When you press the ENTER key, TRSDOS will start the BACK-UP procedure.
The computer first formats the blank diskette, locking out any defective tracks on the
disk. It then duplicates the contents of the TRSDOS diskette onto the blank diskette.

The example shown here is for TRSDOS 2.3. If you have a different version, the

number of disk exchanges that are necessary may be different.

°
°

BACKUP DATE (MM/DD/YY)?@5,/18/81

INSERT SOURCE DISK (ENTER) < this message flashes

on and off

If your Source Disk (the TRSDOS diskette) is already in the drive, press ENTER. If
not, insert the Source Disk, close the drive door, and press ENTER.

The display shows:

/

e ° o o

BACKUP DATE (MM/DD/YY)?@5/22/81

INSERT DESTINATION DISK (ENTER) <—————= Flashing message

Now, you must make one of the several disk exchanges. Open the drive door,
take out the Source Disk and insert the Destination Disk. Then close the drive door
and press ENTER.

Then the display shows:

BACKUP DATE (MM/DD/YY)?05/22/81

FORMATTING TRACK 34
VERIFYING TRACK XX, SECTOR YY XX and YY are

T T two-digit numbers that
increase as tracks

and sectors are

examined.

DISK OPERATION

113

When all tracks and sectors have been verified or locked out, the display shows:

(.

. These numbers may
. i 7 differ for different
FORMATTING TRACK 34 . ,
VERIFYING TRACK 34, SECTOR @9 versions of TRSDOS

INSERT SOURCE DISK (ENTER) - Flashing

The computer is now ready to copy the negessary information from the
TRSDOS disk to your blank disk. Therefore, you have to first place the TRSDOS disk
in the drive to load the information from that disk to the computer’s memory.

Switch the disks again — Destination out - Be sure you
Source in = | get the right
disks.

and press ENTER

When this portion is finished, the display shows:

[

FORMATTING TRACK 34
VERIFYING TRACK 34, SECTOR §9

LOADING TRACK 2@, SECTOR @9
INSERT DESTINATION DISK (ENTER) <————— Flashing

Now the computer miust copy the data from memory onto the blank disk. There-
fore, the blank disk must go into the drive.

Switch disks — Source out
Destination in

Press ENTER and wait . . .

(.

FORMATTING TRACK 34 ;
VERIFYING TRACK 34, SECTOR @9 nately:ixsplaystl‘]e
work COPYING and

VERIFYING as it first
LOADING TRACK 2§, SECTOR §9

VERIFYING TRACK 2§, SECTOR 99 - COPi€S,and then
INSERT SOURCE DISK (ENTER) verifies each

sector of each track.

The computer alter-

114 MORE TRS-80 BASIC

The computer has loaded 20 tracks of the TRSDOS disk, copied them onto the
biank disk, and verified that all 20 tracks were copied correctly. It’s now time to load
some more information from the TRSDOS disk.

Switch disks again and press ENTER.

~

°

°

FORMATTING TRACK 34
VERIFYING TRACK 34, SECTOR @9

LOADING TRACK 2@, SECTOR 9

VERIFYING TRACK 2@, SECTOR §9

LOADING TRACK 31, SECTOR $9

INSERT DESTINATION DISK (ENTER) <———— Flashing

Tracks 21 through 31 have been loaded from the TRSDOS disk into the comput-
er’s memory. It’s now time to copy them onto the blank disk.

Switch disks again — destination disk in — then press ENTER.

~

°

LOADING TRACK 2@, SECTOR §9

VERIFYING TRACK 2@, SECTOR £9

LOADING TRACK 31, SECTOR 9

VERIFYING TRACK 31, SECTOR 99 -=+———— COPYING then
INSERT SOURCE DISK (ENTER) VERIFYING

Tracks 21 through 31 have now been copied and verified. Just a little more to go.
More data must now be loaded from the Source Disk.

Switch disks again, press ENTER.

-

LOADING TRACK 2@, SECTOR §9

VERIFYING TRACK 2§, SECTOR £9 .

LOADING TRACK 31, SECTOR @9

VERIFYING TRACK 31, SECTOR 29

LOADING TRACK 34, SECTOR $9 <¢——————— Almost done
INSERT DESTINATION DISK (ENTER)

Tracks 32 through 34 are loaded. They must now be copied and-verified. You
need the blank disk (Destination) in the drive again.

DISK OPERATION

115

Switch disks one more time and press ENTER.

-

.

°

LOADING TRACK 2@, SECTOR @9
VERIFYING TRACK 28, SECTOR @9
LOADING TRACK 31, SECTOR @9
VERIFYING TRACK 31, SECTOR @9
LOADING TRACK 34, SECTOR #9
VERIFYING TRACK 34, SECTOR @9

BACKUP COMPLETE - DONE AT LAST

HIT 'ENTER' TO CONTINUE

Watch for the BACKUP COMPLETE. If your disk BACK-UP has been suc-
cessful, that is the message you will see at the end of the operation. However, if you
see:

BACKUP REJECTED DUE TO (.. ...)

erase the diskette with a bulk eraser (such as Radio Shack Catalog Number 44-210)
and repeat the BACK-UP procedure. If it still doesn’t work, try using another blank
diskette.

NOTICE: The BACK-UP utility program is provided by Radio Shack solely
for your personal use. It is legal to use it to maintain copies of
your TRSDOS and data diskettes. It is not legal to make copies
for sale.

You may now put your original TRSDOS disk away for safekeeping. Keepitina
protective envelope. A case for protecting up to 10 disks is available from Radio Shack
(Catalog Number 26-1452). Radio Shack also has a box which will protect up to fifty
disks (Catalog Number 26-1450).

From now on, use the working copy. (Hmm . . . then it is not a back-up copy.)

116 MORE TRS-80 BASIC

Displaying Disk Files

You now have a back-up copy of the TRSDOS on your previously blank disk. Use this
as a working disk in the future and save the original TRSDOS disk for making future
back-ups.

The disk operating software must be in the system for disk operation. Therefore,
if you have a one-disk system, TRSDOS should be available on the disk that you are
using.

Each time you need a new disk, repeat the BACK-UP procedure to copy
TRSDOS from the original disk to the new blank disk.

To see what has been copied onto your working disk, place it in the disk drive and
close the drive door. If you continue from the completed BACK-UP procedure, it is al-
ready in the drive. After the “HIT ‘ENTER’ TO CONTINUE” message, do as it says
— press the ENTER key.

TRSDOS —DISK OPERATING SYSTEM — VER 2.3

DOS READY Whenever the DOS READY
prompt is displayed, you

- PR
may enter a command.

To see what programs have been placed on your disk, look at the file directory.

Type: DIR, and press ENTER

FILE DIRECTORY --- DRIVE TRSDOS -- $5/22/81
TEST1,/CMD GETDISK/BAS TEST2/BAS
DISKDUMP/BAS GETTAPE/BAS TAPEDISK/CMD

DOS READY

The files shown in the directory are utility programs available for your use. No-
tice the letters following the slash in each file name. CMD means the program is ac-
cessed by a command from TRSDOS. BAS means that DISK BASIC must be ac-
cessed before using the program.

TRSDOS provides many of these utility programs that you will use as you be-
come more familiar with the disk system. A detailed discussion of the utilities would
be inappropriate at this time. However, you will be using the DIRectory to look for
your own programs. You will come back to the directory after you have SAVEd a pro-
gram of your own.

DISK OPERATION 117

Saving a BASIC Program on Disk

One of your first disk operations is to save a BASIC program on your disk. To demon-
strate, let’s use the short program from chapter 3 that painted the screen white and
poked black holes in the painting.

PAINT SCREEN AND POKE HOLES

1@ REM * LIGHT A WHOLE BLOCK *
20 CLS

3 FOR M = 1536@ TO 16383

48 POKE M, 191

50 NEXT M

60 REM * POKE BLACK HOLES *

79 R = RND(1924)+15359

80 POKE R, 128

99 GOTO 79

To enter the program with the disk system on, you must first access DISK
BASIC.

DOS READY

BASIC- <————— Type: BASIC (and press ENTER)

(,> HOW MANY FILES?-

You respond to this question with the maximum number of disk files that will be
in use (such files are said to be open) at any one time. The number must be from 0
through 15. If no number is given, 3 files will be open for use. Rather than gointoa
lengthy discussion of file space at this point, we’ll not input a number. Just press the
ENTER key.

HOW MANY FILES?
MEMORY SIZE? -

The second question should be familiar to you from Level II BASIC. Since you
are not protecting any memory for machine language programs, just press ENTER
again.

HOW MANY FILES?
MEMORY SIZE?

RADIO SHACK DISK BASIC VERSION 2.2
READY

>~ <——prompt and cursor

118 MORE TRS-80 BASIC

Now enter the PATNT SCREEN AND POKE HOLES program, lines 10 through 90.

/’

>1@ REM * LIGHT A WHOLE BLOCK *

o

L]

L

L]

>80 POKE M, 128
>9@ GOTO 78
-

To save the program, which is now in the computer’s memory type:
SAVE “HOLES/BAS”
Name of program for a BASIC program

This command (SAVE “HOLES/BAS”) saves program in compressed format, which
takes up less disk space and is faster loading and saving than other formats.
Press the ENTER key after the SAVE instruction. The program is copied from

the computer’s memory to disk. When it is finished (it won’t take long), the display
will show:

>9¢ GOTO 78
>SAVE "“HOLES/BAS"
READY

>
\————-—- Notice that both prompt and cursor

are displayed; this means that
you are still in BASIC.

To get back to TRSDOS at any time . ..

Type: CMD “S” and press ENTER

DISK OPERATION 119

You should go back to TRSDOS to make sure that the program has really been
saved. Use CMD “S” to do this.

-~

>90 GOTO 79
>SAVE "“HOLES/BAS"
READY

>cMp s

DOS READY <—-—————— Now you are back

in TRSDOS.

Now look at the directory to see if the program is there.

Type: DIR, and press ENTER

~

FILE DIRECTORY --- DRIVE § TRSDOS -- $5/22/81
. , TESTI/CMD GETDISK/BAS TEST2/BAS

There's -+ HOLES/BAS DISKDUMP/BAS GETTAPE/BAS

your TAPEDISK/CMD

program

DOS READY

Let’s go back to BASIC now to see if we can access the HOLES program from
the disk. Remember the necessary command?

—

o

.

.

DOS READY

BASIC- (then press ENTER)

HOW MANY FILES? - (press ENTER)
MEMORY SIZE? & - (press ENTER)
RADIO SHACK DISK BASIC VERSION 2.3

READY

-

120 MORE TRS-80 BASIC

Since you are in BASIC, you should LIST to see if the HOLES program is still
in memory.

°

READY .

~LIST Going back to DOS seems
READY - to have wiped the program
> -

out of memory.

Since the program is no longer in memory, you’ll have to load it back in from the
DISK. Oh well, that’s what you really wanted to learn how to do anyway. At this
point, you may either LOAD the program from disk into memory and then RUN it, or
you may LOAD and RUN it immediately with one command. We’ll show both
methods.

a) First method — LOAD program, then RUN it.

Type: LOAD “HOLES/BAS” (and press ENTER).

READY
>LOAD ‘“HOLES/BAS"

READY <= After a brief whirr,
= the program is loaded.

Type: RUN (and press ENTER).

Screen is painted
white and black
holes appear —
the program is
running.

Press the BREAK key to stop the program.
b) Second method - LOAD and RUN immediately.

Type: NEW to erase the program from memory.

DISK OPERATION 121

Then type: RUN “HOLES/BAS” (and press ENTER).

B
ll BB The program loads
and immediately
B starts running.
s ne

Again, press the BREAK key to stop the program.

You have now used your disk to save your first BASIC program. You can find it,
load it, and run it at any time. Be sure to label any disks on which you have placed pro-
grams so that you can quickly find them. If you don’t, you’ll have to search the directo-
ries of each of your disks until you find the program that you want.

Using a Two-Disk System

If you have two disk drives, you will find that your system is more convenient and eas-
ier to use than a one-drive system. One drive (Drive 0) can be used to hold a disk that
has the operating software on it. The second drive (Drive 1) can then hold a “working”
disk that does not need to contain the operating system software. Therefore, there will
be much more storage space on the disk for your own files.
We'll show you how easy it is to make a back-up of the TRSDOS disk with a

two-disk system.

1) Insert the TRSDOS disk in Drive 0.

2) Insert a blank disk in Drive 1.

Drive 1 * Drive O

&
Z)
e

& . gO %0 /ZQEDOS

Blank disk —

122 MORE TRS-80 BASIC

3) Power up your system and go.

TRSDOS - DISK OPERATING SYSTEM - VER 2.3
DOS READY

Type: BACKUP (and press ENTER).

TRS DISK BACKUP UTILITY VER 2.3
SOURCE DRIVE NUMBER?~

The Source disk (TRSDOS) is in Drive 0, so. . .
Type: 0 (and press ENTER).

TRS DISK BACKUP UTILITY VER 2.3

SOURCE DRIVE NUMBER?@
DESTINATION DRIVE NUMBER?-

Your Destination disk (now blank) is in Drive 1,s0. ..
Type: 1 (and press ENTER).

TRS DISK BACKUP UTILITY VER 2.3
SOURCE DRIVE NUMBER?#

DESTINATION DRIVE NUMBER?!
BACKUP DATE (MM/DD/YY)?-

Type: the present date (say May 28, 1981).

L]

o

SOURCE DRIVE NUMBER?{
DESTINATION DRIVE NUMBER?1
BACKUP DATE (MM/DD/YY)?@5/28/81-

DISK OPERATION 123

When you press the ENTER key, the back-up procedure begins. With two disks,
you no longer have to swap disks as the process goes along. The back-up goes merrily
on its way uninterrupted.

/

BACKUP DATE (MM/DD/YY)?@5/28/81
FORMATING TRACK 34 -

VERIFYING TRACK 34, SECTOR 09 Thi s |
VERIFYING TRACK 34, SECTOR §9 IS goes on continuously
VERIFYING TRACK 34, SECTOR 9 =+—oI until the sectors
BACKUP COMPLETE of all tracks are
loaded, copied, and
verified.

HIT ‘ENTER’ TO CONTINUE

The process is much quicker and easier if you have two disk drives. To see the file
directory of the disk system in Drive 1, you must specify the drive number.

DIR:1
File/ f\‘m%k
directory number

s The command DIR will display the file
directory of the disk in Drive 0.

o The command DIR:1 will display the file
directory of the disk in Drive 1.

LOAD, SAVE, and RUN with a Two-Disk System

The commands to SAVE, LOAD, and RUN BASIC programs are similar to those
demonstrated with the one-disk system. Once again, the disk drive number must be
specified if the drive desired is not Drive 0. To save a program from the computer’s
memory to the disk in Drive 1, first access DISK BASIC.

DOS READY

BASIC- <«————— Type: BASIC and press ENTER

124 MORE TRS-86 BASIC

HOWMANY FILES? < press ENTER
MEM SIZE? =< press ENTER
RADIO SHACK DISK BASIC VERSION 2.3

READY

Type:

%AVE “HOLES/BAAS: 17

same as for colon drive number
DriveOina

one-drive

system

The same is true to LOAD or RUN a BASIC program that is on Drive 1.

LOAD “HOLES/BAS:1”
or
RUN “HOLES/BAS:1”

As stated earlier, the disk in Drive 1 does not have to contain the disk operating
software (it is available from Drive 0). Therefore, more storage space is available on
the second disk.

Summary

You now have some knowledge of TRSDOS (Tandy/Radio Shack Disk Operating
System). Although, you have barely scratched the surface of the disk operating sys-
tem, you have made a good beginning. You learned:

» that disk operation is faster, more reliable, and has more storage capacity
than cassette operation,
o that an expansion interface, 32K of memory, and at least one disk drive
are needed,
o anew power-up procedure,
o that the first drive in your system is named Drive 0, and it must contain
the TRSDOS software disk,
o that TRSDOS has been published in several versions — version 2.3 is
demonstrated in this chapter,
o to BACK UP your TRSDOS diskette with one disk drive,
a) The Source disk contains TRSDOS.
b) The Destination Disk is originally
blank — the BACK-UP copies TRSDOS
from the Source disk onto the
Destination disk.
o todisplay the file directory of the disk in Drive 0,

DISK OPERATION 125

e toSAVE a BASIC program from memory onto Drive 0,
SAVE “HOLES/ BA\S”

filename a BASIC program

to LOAD, or LOAD and RUN a BASIC program from disk,

LOAD “HOLES/BAS”<«— loads a BASIC program

RUN “HOLES/BAS” < loads and runs a BASIC
program

» how to get back and forth between TRSDOS and BASIC,
BASIC <——————— a TRSDOS command that executes DISK BASIC
CMD “S” <+— a BASIC command that sends control back
to TRSDOS

o how easy it is to BACK UP TRSDOS using a two disk system, and
o toalter the SAVE, LOAD, and RUN commands for use on a two disk
system.
SAVE “HOLES/BAS:1” <—saves “HOLES” on disk Drive 1
LOAD “HOLES/BAS:1” <—loads “HOLES” from disk Drive 1
RUN “HOLES/BAS:1” <«—1loads and runs “HOLES” from
disk Drive 1

Self-Test

1. What do the letters in “TRSDOS” represent?

2. Why must TRSDOS be on each disk if you are using a one-drive
system?

3. What is the purpose of a write protect tape on a disk?

4. Number the power-up steps in the recommended sequence (1,2,3,4).
Turn on the keyboard unit
Turn on the expansion interface
Insert disk
Turn on disk drive(s)
5. This chapter demonstrates TRSDOS version 2.3 which means:
version —release
(2or37) (20r3?)
6. Tell in your own words why you have to swap disks when performing a BACK-
UP with a one-drive system.

126 MORE TRS-80 BASIC

10.

11.

12.

13.

14.

When starting the BACK-UP procedure, TRSDOS is on the

disk.

(source, destination)

When using a one-drive system, give the cotrect response to these questions.

SOURCE DRIVENUMBER?

DESTINATION DRIVE NUMBER?

Write in the correct command for displaying the file directory of the disk in
Drive 0.

In order to SAVE a BASIC program named “WHITE” on a disk with a one-
drive system, the correct command would be:

If you are using DISK BASIC, and CMD “S” is executed, fill in the display.

Why is it easier to make a BACK-UP with a two-drive system than with a one-
drive system?

If you have two drives, what would be your answers to the following?

TRS DISK BACKUP UTILITY VER 2.3

SOURCE DRIVE NUMBER?

DESTINATION DRIVE NUMBER?

Suppose you have a BASIC program named “COUNT” on a disk in Drive 1,
and you want to load and run it immediately. Give the necessary DISK BASIC
command.

DISK OPERATION 127

[\ I

10.

11.

12.

13.

14.

Answers to Self-Test

Tandy/Radio Shack Disk Operating System
Because the operating software contained in TRSDOS must be available for
successful disk operation
So that information cannot be written over the essential TRSDOS
software
4 Turn on the keyboard unit
1 Turn on the expansion interface
3 Insert disk
2 Turn on disk drive(s)
2 version
3 release
The BACK-UP procedure loads information from TRSDOS (the Source) and
then must copy it back to a blank disk (the Destination). Therefore, disks must
be exchanged.
Source
SOURCE DRIVE NUMBER?0
DESTINATION DRIVE NUMBER?0

DIR (or DIR:Q)
SAVE “WHITE/BAS"

DOS READY

The disks do not have to be swapped.

SOURCE DRIVE NUMBER?§@
DESTINATION DRIVE NUMBER?1

RUN *COUNT/BAS:1"

CHAPTER SEVEN

Using Disk Files

Now that you know how to get the disk system running, we will explore the use of se-
quential disk files. In this chapter you will learn:

what the computer wants when it asks “HOW MANY FILES?” as you
access Disk BASIC from DOS,
the format to OPEN disk files for use,
the format to CLOSE disk files after you have finished using the files,
how to use a program to create a disk file and save it on a disk,
how to use a program to load a disk file from a disk into the computer’s
memory,
how to add data to a disk file, and
how to use a program that includes the ability to:

a) create a new data file from the keyboard,

b) input a data file from disk,

¢) add records to a data file,

d) delete records from a data file, and

e) examine records in a data file.

Creating a Data File

In chapter 6 you learned how to save a BASIC program in a disk file. You will now

learn to create a data file. A data file is not a program, but merely a list of information
that you might want to save and use at a later date. You know how to save data on cas-

sette tape. Disk data files are not much different.

129

130 MORE TRS-80 BASIC

After you turn on your disk system and see the DOS READY prompt, you ac-
cess disk BASIC to create a data file.

o
L4
L]
DOS READY
BASIC— ==&~

Type BASIC and press ENTER

The first thing that the computer wants to know is how many files you will be us-

(HOW MANY FILES?-

The number that you type in tells the computer how many buffers to create to
handle the disk accesses you will make (the number of READs and
WRITE:). A buffer is an area of memory where datum waits when it is going
to and from the disk file.

Normal Buffer Disk
Computer <:> RAM <:> ©
RAM Area

If you do not give a number (but merely press the ENTER key) the computer
automatically reserves three buffers. In most cases, you will not use more
than three buffers. Therefore, you can just press the ENTER key to go on.

ing.

Computer The buffer area is actually
RAM a part of the computer’s RAM.
Buffer #1 However, for a clearer explanation,
Buifer #2 we have shown ii separately.
Buffer #3
Disk
Normal Buffer #1
Computer <___> Buffer #2 <___>
RAM Buffer #3

When you want to access a particular disk file, you must tell the com-
puter which buffer to use to access the file. You must also tell it what kind of
access you want (Sequential Output, Sequential Input, or Random I/O). All

this is done in one statement — OPEN — and undone with another statement
— CLOSE.

USING DISK FILES

131

Example:
* * * The commas,
colon, and quotes
OPEN “0", 1, "PHONE/TXT;@" are important.
The letter O —J Only 1
for Sequential buffer File Disk drive
Output; I for used name number
Sequential
Input or; R for
Random I/O

You need a BASIC program to input the data into the computer’s memory and

to send it to the disk. Here is a short program to do that. Our numbering system may
seem odd, but the reasons behind it will appear obvious later on.

19
29
3g
49

180
119
120
13g
149
1590
160
179
189

199
209
219
220
239
249
258
260

Program to Create a New Data File

REM * HOUSEFEEPING * .]
CLEAR 500 - Clear string space and
DIM A$(30),B$(38) == Dimension arrays
cLs

REM * CREATE A FILE *

INPUT “HOW MANY NAMES";R
FOR N = 1 TO.R

INPUT “NAME";AS$(N) -
INPUT"PHONE # (XXX-XXXX)" iB$(N) 4——-——J Inpln data to
NEXT N memory

LINE INPUT “FILE NAME? (XXXXXXX/TXT:@)";D$
PRINT “PRESS ‘ENTER'"

INPUT “TO SEND TO DISK";C$

REM * MEMORY TO DISK *

OPEN “0",1, D$ = Open file

PRINT#1,R

FOR N = 1 TO R .
PRINT#1,A$(N);"," iB$(N) == Send data to disk

NEXT N

CLOSE - Close the file

END

Note: A new disk BASIC statement is used in line 160. LINE INPUT is a statement

that will allow a string input that includes commas, quotes, and other punctua-
tion marks.

132 MORE TRS-80 BASIC

Also note line 250:

DO NOT REMOVE A DISK WHICH CONTAINS AN OPEN FILE.

* CLOSE THE FILE FIRST *

Before

you try the file program, be sure to save it on disk. You may want to use it

again sometime. Remember the command to save a BASIC program?

/

HOWMANY FILES? <¢—————— You pressed ENTER

MEMSTZE? = You pressed ENTER and the
o computer went to BASIC
>25@ CLOSE - Type in the BASIC program
>26@ END

>SAVE "PHONE/BAS:$" <+—— This saves your BASIC

F;E_ADY Input program on disk

Suppose that you want to create a data file of names and phone numbers of a
club, your friends, or some other group. Here is a list of five names and phone numbers
to be entered. You should start out with a small list. You can learn to expand or alter

the list later.

Name Phone Numbers
Last, First initial

Able B 555-0101
Baker D 555-1010
Candy K 555-1111
Dunks C 333-2020
Dunks D 333-2020

Run the program and input the names and phone numbers in response to the input

prompts.
/
e
READY
>RUN .
HOW MANY NAMES?5 <g———————— Five names and phone numbers
NAME?ABLE B ¢ First name
PHONE # (XXX-XXXX)?555-91091 First phone number
NAME?— —g—)
Ready for second name

USING DISK FILES

133

After the last phone number has been typed in, the computer displays the entries:

ABLE B 555-2181
BAKER D 555-101@
CANDY K 555-1111
DUNKS C 333-2829
DUNKS D 333-2820
FILE NAME? (XXXXXXX/TXT:0)~

The program is now requesting you to enter the name of the data file. We will call this
one:

PHONE/TXT:@ -<——To Drive 0

]

Name of
file

The word PHONE is typed in in place of the X’s in the request for file name. This is
not a BASIC file so we used TXT for the type of file. When you type in the file name it
is assigned to the variable D$. When you type in the file name and press ENTER, the
computer then gives another prompt message and waits for you to press a key before
sending the data to the disk.

FILE NAME? (XXXXXXX/TXT:@) PHONE/TXT:@
PRESS ENTER * *
TO SEND TO DISK?-

You type this

Press ENTER and the data will be saved on disk under the file name
PHONE/TXT:0.
Then:

PRESS ‘ENTER’
TO SEND TO DISK -———— The data fileis

R>EADY saved on the disk

You will no doubt want to check the disk directory to make sure your original
BASIC program and the data file are actually on the disk. You must go back to the
disk operating system to do this. Just type: CMD *“S” and then type DIR.

>cMp 8"~ <———Type and press ENTER

13¢ MORE TRS-80 BASIC

FILE DIRECTORY—DRIVE{ TRSDOS —§5/28/81
TEST1/CMD PHONE/BAS <¢——y GETDISK/BAS
TEST2/BAS HOLES /BAS DISKDUMP/BAS
GETTAPE/BAS TAPEDISK/CMD PHONE/TXT
DOS READY r.___.,..._j
Data file
BASIC program
that created
the data file

Since both programs are there, you have successfully passed the first test. How-
ever, at some time your list of names and phone numbers has expanded to nineteen, as

shown below.

Name Phone number
Able B 555-0101 ™
Baker D 555-1010
Candy K 555-1111
Dunks C 333-2020
Dunks D 333-2020
Evers L 555-2130
Fink F 333-1212
Good K 555-3120
Henry B 555-2212
Irving D 333-1115
Jones E 555-7632
Kane K 555-7603
Lemon R 333-1515
Marks H 555-8119
Noble M 333-8991
OttoD 333-1129
Pinks C 555-3210
Riot C 555-4567
Sample F 333-7654

—— To be added

—— From original list

You must now make a decision. Should you go back and use the PHONE/BAS
input program and input the whole list over, or should you write a new program to
change the data in the data file? Since you only have five names in the data file named
PHONE/TXT, you might be tempted to just do it all over again. However, your list
may grow later, and you may have to add only a few names. It would probably be to
your advantage to write a new program that could add names to the list.

USING DISK FILES

135

First you need a BASIC program to load the data file back into the computer.
Remember the original input program PHONE/BAS opened a file for output. Since
you want to input data from the disk, you must open the file for Sequential Input.

OPEN “1", 1, “PHONE/TXT:@"

T T————— That’s the file

Open for you want
Sequential Input

Program to Input File from Disk

19 REM * HOUSEKEEPING *
20 CLEAR 5@0

39 DIM A$(38),B$(3P)

49 CLS

3P9 REM * INPUT DATA FILE *

319 LINE INPUT “NAME OF FILE?";D$
32¢ OPEN “I",1,D$

330 INPUT#1,R

349 CLS

350 FOR N = 1 TO R

368 INPUT#1,AS$(N),BS$(N)

378 PRINT A$(N),B$(N)

389 NEXT N

398 CLOSE - Don’t forget the
4p@ INPUT “PRESS ‘ENTER' TO CONTINUE";C$ v

413 END CLOSE statement

Access disk BASIC before entering the program.

DOS READY
BASIC
READY

>

136 MORE TRS-86 BASIC

Enter the program and run it. The disk whirrs and merrily clickety-clacks as it finds
the PHONE/TXT file and loads and prints the old names and telephone numbers.

(

ABLE B 555-0191
BAKER D 555-1g1g
CANDY K 555-1111
DUNKS C 333-202¢9
DUNKS D 333-282p
READY

o N

You need a program that will add fourteen more names to the data file. To make it
more general, you should be able to input where you want to start adding names and
where you want to stop. You don’t want to disturb the five names that are already in

the file.

Since you will usually want to input the names and phone numbers that you already
have, you might as well add this program to the program that inputs the data file.

509
519
520
539
549
550
568
579
580
590
690
619
629
630

REM * ADD RECORDS *
INPUT “ADD HOW MANY RECORDS";A -«——— Number of new

FOR N = R+1 TO R+A names to be added

INPUT “NAME";A$(N)
INPUT “PHONE # (XXX-XXXX)" iBS$(N)
NEXT N
REM * SEND ALL TO DISK *
OPEN “0",1,D$
PRINT#1,R+A < Same aame will
FOR N = 10 R¥FA-S erase old file
PRINTH#1,A$(N);", :B$(N)“”——\
giggé‘ New data put in file
END (old names plus new)

Add lines 500 through 630 to lines 10 through 410 of the Program to Input File from
Disk. Then SAVE it for the future as PHLOAD/BAS:0 (for PHone LOAD from

disk 0).

-

>62¢ CLOSE

>63@ END

>SAVE “PHLOAD/BAS:g@"
READY

>

Now run the BASIC program again and input the additions to the list.

USING DISK FILES

137

You may see a need for some organization as your list of programs to handle this
data changes. You can now add names and numbers to the list, but pretty soon you
will want to do additional things with the file. You should plan such things in advance
and combine the separate programs with a Menu Selection to perform the desired
results. For example, you might want to do these things:

Create a new data file.

Input a data file from disk.

Add records to a data file.

Delete records from a data file.

5. Examine the records in a data file.

£ R

You have worked with the first three things on the list. Now let’s combine them
all into one program with a menu to select the program you want.

The first item on the list was numbered with lines 100 through 260. The second
used lines 300 through 400. The third used lines 500 through 630. With some
planning, we have avoided any line number conflicts. All you have to do is put the five
programs together and plan a separate Menu Selection section.

Data File Program

1@ REM * HOUSEKEEPING *

20 CLEAR 58¢

38 DIM AS$(38),B$(38)

49 CLS

5§ GOTO 5000 <= 5000 lists the menu

199 REM * CREATE A FILE *
11¢ INPUT “HOW MANY NAMES';R

12¢ FOR N = 1 TO R

138 INPUT “NAME";AS$(N)

149 INPUT “PHONE # (XXX-XXXX)" :B$(N)

150 NEXT N

16§ LINE INPUT “FILE NAME? (XXXXXXX/TXT:@)'';D$
17@ PRINT “PRESS ‘ENTER"

18¢ INPUT “TO SEND ¥0 DISK';C$

190 REM * MEMORY TO DISK *

2@¢@ OPEN “0"1,D$

21@ PRINT #1,R

228 FOR N = 1 TO R

239 PRINT #1,A$(N);","iB/$(N)

24@ NEXT N

25@ CLOSE

26@ GOTO SQQQ«\\ Got
0 10 menu

39@ REM * INPUT FILE FROM DISK *
319 LINE INPUT “NAME OF FILE?";D$
32¢ OPEN “I",1,D$

33@9 INPUT #1,R

349 cLs

350 FOR N = 1 TO R

360 INPUT#1,A$(N),B$(N)

37¢ PRINT A$(N),B$(N)

38¢ NEXT N

398 CLOSE

4@9@ INPUT “PRESS ‘ENTER' TO CONTINUE";C$
419 GOTO 5@¢¢

138 MORE TRS-80 BASIC

5¢¢ REM * ADD RECORDS *

51¢ INPUT “ADD HOW MANY RECORDS;A

52§ FOR N = R+1 TO R+A

539 INPUT “NAME";A$(N)

540 INPUT “PHONE # (XXX-XXXX)' ;B$(N)
550 NEXT N

56§ REM * SEND ALL TO DISK *

57¢ OPEN “0”,1,D$

58¢ PRINT#1,R+A

593 FOR N = 1 TO R+A
690 PRINTH#1,A$(N);"," iBS(N)
618 NEXT N
62¢ CLOSE

630 GOTO 59Pp

7@% REM * DELETE RECORDS *

713 PRINT “NOT IMPLEMENTED YET"
720 FOR X = 1 TO 5@@:NEXT X
730 GOTO 5808

9¢p REM * EXAMINE RECORDS *
91¢ PRINT “NOT IMPLEMENTED YET
920 FOR X = 1 TO 5@@:NEXT X
93¢ GOTO 5999

119§ REM * END OF PROGRAM
1119 END

S@PP REM * MENU SELECTION *
S@19 CLS

5¢2§ PRINT @86,"PHONE DIRECTORY MENU'

533 PRINT @214,"1. CREATE A NEW FILE"

5@4p PRINT @278,"2. INPUT FILE FROM D ISK”

5@58 PRINT @342,“3. ADD RECORD(S)"

5@6¢ PRINT @4£6,"4. DELETE RECORD(S)”

5070 PRINT @478,"5. EXAMINE RECORD(S)”

5¢80 PRINT @534,“6. QUIT"

@9 PRINT @662,"TYPE NUMBER OF SELECTION (1-6)";
51gg INPUT N: N=INT(N)

511§ IF N>=1 AND N<=6 THEN 5140 i

5120 PRINT @798,'MUST DE A NUMBER 1-6"

513§ PRINT @662,STRINGS(48,” "):GOTO 5398

514 ON N GOTO 10@,3008,500,700, 999,119

Items 4 and 5 on the menu haven’t been written yet, but they can now be added
when ready. Before you do anything else, though, enter the Data File Program and
SAVEit AS: “DATFILE/BAS:0.”

°o
°

514p ON N GOTO 18@,380,509,709 ,909,1109
SAVE “DATFILE/BAS:@"-

t----——-—The:Oisoptional.

It is used to indicate
that we are using Drive 0.

USING DISK FILES

139

Now take another look at the directory to see what programs we now have on
disk. Some of them should be removed since DATFILE/BAS performs the same oper-
ation. Remember how to access the directory?

-

°

o

>514¢ ON N GOTO 188,300,502 ,709,909,1100
SAVE “DATFILE/BAS:g"

READY

>CMD “'8"-

Then type: DIR

-

FILE DIRECTORY ——DRIVE @ TRSDOS —@35/28/81
TEST1/CMD PHONE/BAS - GETDISK/BAS
TEST2/BAS HOLES /BAS DISKDUMP/BAS
GETTAPE/BAS TAPEDISK/CMD PHONE/TXT
PHLOAD /BAS DATFILE/BAS

DOS READY

You won’t need these

anymore. DATFILE/BAS does
the same thing and will

do more later.

To erase the old files that are not needed, go back to Disk BASIC and use the
KILL command.

f

DOS READY
BASIC - Type: BASIC and press ENTER

READY

xiLL “pone/sag «—— T¥Pe: KILL “PHONE/BAS” and

READY press ENTER

>KILL “PHLOAD/BAS"

READY " Type: KILL “PHLOAD/BAS" and
== press ENTER

Take one more look at the directory to see if everything is as planned.

READY
>cMp “s”-~ <a+———— Type: CMD “S™ and press ENTER

140 MORE TRS-80 BASIC

—

DOS READY
DIR~ <+—— Type: DIR and press ENTER

FILE DIRECTORY — DRIVE @ TRSDOS -—@5/28/ 81

TEST1/CMD GETDISK/BAS DATFILE/BAS gy

TEST2/BAS HOLES/BAS DISKDUMP/BAS

GETDISK/BAS TAPEDISK/BAS PHONE /TXT immearearmesemneret

DOS READY

- Your two
programs;
BASIC and data

You now have a program, DATFILE/BAS, that can be used to 1) create a new

disk data file, 2) load an existing data file, and 3) add records to an existing data file.
Two other operations still to be written are 4) delete records from an existing data file,
and 5) examine all or part of an existing data file. You have space (lines 700 through
1000) for these sections to be added. Here is the section to delete records.

780
718
720
738
748
758
760
779
788
799
890
819
820

83p
849
850
869

2000
2019
2020
2839
2040
2058
2060
2078
2p89

Program Section to Delete Records

REM * DELETE RECORDS * R is the number of
A=g: B=f names on the file
INPUT “NAME TO BE DELETED”;N§

FOR N = 1 TO R <)
IF A$(N)=N$ THEN A=N: GOTO 2000 Search list for name
NEXT N <o to be deleted
IF A=@ PRINT “NAME NOT FOUND''
INPUT “DELETE ANOTHER NAME':E$
IF LEFT$(ES$,1)="Y" GOTO 72§ @-—" Test for another

IF B=@ GOTO S§p@ <= If no deletions, there is no
OPEN "0",1,D$ need to save file
PRINT#1,R—B

FOR N=] TO R—B Save new file under

S same name
PRINT#1,AS(N);"," ;B$(N)

NEXT N

CLOSE Back to menu

GOTO 5099

REM * DELETE & MOVE ALL UP ONE *

FOR X = A TO R—B—1 Move names up one,
AS$(X)=A$(X+1) =) erasing desired name
BS (X)=Bs(X+1) o | and phone number

NEXT X

AS(R—B+1)=" " <+ Blank out last name

B$(R—-B+1)="" 4

B=B+1 Count number of

RETURN

deletions

USING DISK FILES

141

SAVE THE NEW VERSION ON DISK AS DATFILE/BAS

Use of the New Section

Suppose we had a data file named TSTPH/TXT:0 on a disk and we had just input it
from section 2 of DATFILE/BAS. The list is displayed.

ABLE B 555-g1¢1

BAKER D 555-1@1¢

CANDY K 555-1111 -« This is the

DUNKS C 333-202¢ 5,
DS & 3 file called TSTPH/TXT:0
PRESS ‘ENTER' TO CONTINUE?-

When you press ENTER, the menu is displayed.

-

PHONE DIRECTORY MENU

. CREATE A NEW FILE

. INPUT FILE FROM DISK - You just used this
ADD RECORD(S)

. DELETE RECORD(S) =e This is next

EXAMINE RECORD(S)

QuiT

LW -

TYPE NUMBER OF SELECTION (1-6)7-

142 MORE TRS-80 BASIC

Suppose you wish to delete the names BAKER D and CANDY K. Type in the
number 4 and press the return key.

e © o

o
TYPE NUMBER OF SELECTION (1-6)24
NAME TO BE DELETED?- <#— Type BAKER D

Exactly like
itisin file

When the program finds BAKER A at line 740: N=2, A is set to 2, R=5, and
B=0. Since A$(2) = N§ at line 740, the subroutine is entered.

During the execution of the FOR-NEXT loop:

FORX=2TO4
A$(1)=ABLEB
When X= A$(2)=AS$(3) — AS$(2) becomes CANDY K
B$(2)=BS$(3) — B$(2) becomes 555-1111

When X=3 A$(3)=AS%(4) i A$(3) becomes DUNKS C
B$(3)=B$(4) et B$(4) becomes 333-2020

When X=4 A$(4)=AS%(5) it A$(4) becomes DUNKS D
B$(4)=B$(5) — B$(5) becomes 333-2020

Now out of FOR-NEXT loop

A$(5)="" — AS$(5) blanked out
B$(5)="" — B$(5) blanked out
B=B+1 e B is increased to one

(one change made)

The program returns to line 750. When it reaches line 770, a new question is
posed.

e

L

o

NAME TO BE DELETED?BAKER D

DELETE ANOTHER NAME?- -t Type YES

NAME TO BE DELETED?- <—————— Type CANDY K

USING DISK FILES 143

When the name, CANDY K, is found (now in A$(2)) at line 740; N=2, A is set
to 2, R=5, and B=1. The subroutine:

FORX=2TO3
AS$(1)isstil ABLEB
When X=2 A$(2)=A$(3) — AS$(2) becomes DUNKS C
B$(2)=B$(3) — BS$(2) becomes 333-2020

When X=3 A$(3)=A8$(4) — AS$(3) becomes DUNKS D
B$(3)=B§(4) ——+= BS$(3) becomes 333-2020

Now out of FOR-NEXT loop

A$(4)="" — A$(4) blanked out
B$(4)="" ——= B$(4) blanked out
B=B+1 —— Bisincreased to 2

(two changes made)

Once again a request is made to see if you want to delete another name. You an-
swer NO and the program goes on to line 800 where the file is opened, the number of
records is set to R-B (now 3), and the file is saved under the same name: TSTPH/
TXT:0. The file is then closed and return is made to the menu.

PHONE DIRECTORY MENU

1. CREATE A NEW FILE

2. INPUT FILE FROM DISK

3. ADD RECORD(S)

4. DELETE RECORD(S)

5. EXAMINE RECORD(S)

6. QUIT

TYPE NUMBER OF SELECTION (1-6)7-

You might want to look at the altered file to make sure that the change was
made correctly. If you do, type: 2 and press ENTER.

(.

NAME OF FILE?TSTPH/TXT:@ =<+—— Type file name, press
ENTER

e

ABLE B 555-81@1
DUNKS C 333-2p929 <———- Baker and Candy have

DUNKS D 333-202¢ been removed and all
PRESS ‘ENTER' TO CONTINUE?-
others moved up

144 MORE TRS-80 BASIC

Examine Records Section

One last section of the program remains. Suppose you would like to examine a data file
by one of three different ways.

1. By selecting the left part of a person’s last name. For example, C, CA,
CAN, etc. would select CANDY K and D, or DU, DUN, etc. would se-
lect DUNKS C and DUNKS D

2. By selecting a range of last names. For example, A to C would select
ABLE B, BAKER D, and CANDY K and R to Z would select RIOT C
and SAMPLE F. A to Z would select the complete file.

3. By selecting the phone prefix (first three digits). For example, 333 would
select all those records with a 333 phone prefix and 555 would select all
those records with a 555 phone prefix.

We'll show you one way to do it. You may be able to improve this section or add
other ways to select records.

9p9@ REM * EXAMINE RECORDS *

91g CLS: PRINT ‘‘YOU MAY SEARCH FOR:’

920 PRINT TAB(3)“1.ANY PART OF LAST NAME-FROM LEFT”
93¢ PRINT TAB(3)“2.NAMES STARTING WITHIN A GIVEN RANGE”
94¢ PRINT TAB(3)“3.BY FIRST 3 DIGITS OF PHONE #':PRINT
950 PRINT “TYPE THE NUMBER OF YOUR SELECTION (1-3)"
96§ AS=INKEY$: IF Ag$=""" GOTO 96§

97¢ IF VAL(A$) <1 OR VAL(A$) >3 GOTO 950

980 ON VAL(AS$) GOTO 21§@,22088,2300

990 INPUT “WANT TO SEARCH SOME MORE"; M$

19@@ IF LEFT$(M$,1)="Y" GOTO 91§

1819 GOTO 5888

219% REM * SEARCH FOR LAST NAME *

211g CLS: INPUT “LEFT LETTER(S) OF NAME''F$

212¢ L=LEN(F$): A=Q

2139 FOR N = 1 TO R

214 IF LEFT$(AS(N),L)=F$ PRINT A$(N),BS$(N): A=A+

2150 NEXT N

216@ IF A=
[+]

NI AAmA
PR RO

PRINT “NONE FOUND"
°z

2209 REM * SEARCH FOR RANGE *

221@ CLS: INPUT “STARTING LETTER OF RANGE';F$

222¢ INPUT “ENDING LETTER OF RANGE" ;G$:A=0

2239 FOR N = 1 TO R

2240 IF LEFTS(AS(N),1)>=F$ AND LEFT$(AS$(N),1) <=G$ PRINT
AS(N),B$(N) :A=A+1

225¢ NEXT N

2260 IF A=@ PRINT “NONE FOUND"

227¢ GOTO 99¢

230¢ REM * SEARCH FOR PHONE PREFIX *

231¢ CLS: INPUT“FIRST 3 DIGITS OF PHONE #'" ;P$:A=f
232¢ FOR N = 1 TO R

2330 IF LEFTS$(BS$(N),3)=P$ PRINT A$(N),BS$(N): A=A+
2340 NEXT N

2353 IF A=@ PRINT “NONE FOUND"

236@ GOTO 99¢

USING DISK FILES 145

Input this section and SAVE on your disk the completed program
DATFILE/BAS. You are now ready to use the complete directory.

Using the Completed DATFILE Program
Of course you must first access Disk BASIC and LOAD DATFILE/BAS before you

can use it. After completing the housekeeping chores (lines 10 through 40), the menu
is displayed.

-

PHONE DIRECTORY MENU

. CREATE A NEW FILE
INPUT FILE FROM DISK
ADD RECORD(S)

DELETE RECORD{(S)
EXAMINE RECORD(S)

. QUIT

Sy b Wk -

TYPE NUMBER OF SELECTION (1-6)7?~

* You may create a new phone file by choosing selection 1. Any number of
files may be created as long as each is given a distinct name.

* You may select any previously created file by choosing selection 2. Of
course, the file must be on the disk that you are using.

e You may add records to an existing file (choice 3 from the menu) but
again, you must first input that file from the disk (choice 2). This two-part
selection is necessary because any operation performed on an existing file
is done in the computer’s memory. After the records have been added, the
altered file must be saved on disk.

MAKE
ADDITIONS

-
| 3
Q| CQ W

Then save on disk

146 MORE TRS-80 BASIC

e You may delete records (choice 4), but again you must input the file to be
altered (choice 2) from the disk. Then make the deletions and SAVE the
altered file.

o You may examine records (choice 5). The file to be examined must also be
input from the disk (choice 2) before it may be examined.

o Leaving the program is easy. Just type 6 when the menu is displayed.
However, as a precaution, you should be sure that all files have been
closed before removing a disk from the disk drive. When the computer
says:

L]

°

°
READY
>

Type: CLOSE and press ENTER.

The CLOSE command will CLOSE all files that have been in use. CLOSE
all files before removing your disk from the disk drives. Then you may turn
the computer off.

Try out selection 5 from the menu to see how it works.

Make sure DATFILE/BAS has been loaded.
Run DATFILE to get the menu.
LOAD PHONE/TXT; your data file.
Examine:
a) records starting with:
1) AB
2) DU
3) FI
4) COB
b) records whose names range from:
1) C-G
2) A-H
3) I-Z
4) D—A
c¢) records whose phone prefixes are:
1) 555
2) 333
3) 444

halb ol S

USING DISK FILES 147

Here are the results of our check of section 5:

1. Load DATFILE

HOW MANY FILES?
MEMORY SIZE?

RADIO SHACK DISK BASIC VERSION 2.2
READY

>LOAD “DATFILE/BAS" -<+—— LOAD it

2. Run DATFILE/BAS

(,—HOW MANY FILES?

o

L]

L]

>LOAD “DATFILE/BAS"

READY

>RUN Run it

3. Load PHONE/TXT

/

PHONE DIRECTORY MENU

CREATE A NEW FILE
INPUT FILE FROM DISK
ADD RECORD(S)

DELETE RECORD(S)
EXAMINE RECORD(S)
QUIT

O bW N -

TYPE NUMBER OF SELECTION (1-6)22

NAME OF FILE?PHONE/TXT A

You type

Computer ——— lists names and phone numbers
You ————— press ENTER
Computer ——— prints directory again

4a)

Examine records

Type 5 in answer to the selection number.

-

L]
L]
L]
TYPE NUMBER OF SELECTION (1-6)?5
YOU MAY SEARCH FOR:
1. ANY PART OF LAST NAME-FROM THE LEFT
2. NAMES STARTING WITHIN A GIVEN RANGE
3. BY FIRST 3 DIGITS OF PHONE #

TYPE THE NUMBER OF YOUR SELECTION (1-3)?1 <—— for check 4a)

148 MORE TRS-80 BASIC

4al)

4a2)

4a3)

4a4)

4b)

4b1)

/

LEFT LETTERS OF NAME?AB
ABLE B 555-8181 < One name beginning
WANT TO SEARCH SOME MORE?YES with AB
YOU MAY SEARCH FOR: »

1. ANY PART OF LAST NAME-FROM THE LEFT

2. NAMES STARTING WITHIN A GIVEN RANGE

3. BY FIRST 3 DIGITS OF PHONE #
TYPE THE NUMBER OF YOUR SELECTION (1-3)?1

LEFT LETTERS OF NAME?DU

DUNKS C 333-2p28 _—
DUNKS D 333-282§ Two names beginning

WANT TO SEARCH SOME MORE?YES with DU

TYPE THE NUMBER OF YOUR SELECTION (1-3)?1

LEFT LETTERS OF NAME?FI

FINK F 333-1212 = One name beginning
? .
WA}:T TO SEARCH SOME MORE?YES with FI
-
TYPE THE NUMBER OF YOUR SELECTION (1-3)?$

LEFT LETTERS OF NAME?COB
NONE FOUND No names beginning
WANT TO SEARCH SOME MORE?YES ;
YOU MAY SEARCH FOR: with COB

1. ANY PART OF LAST NAME-FROM THE LEFT

2. NAMES STARTING WITHIN A GIVEN RANGE

3. BY FIRST 3 DIGITS OF PHONE #

TYPE THE NUMBER OF YOUR SELECTION (1-3)?2 <=— (GO oOn tonext
selection
STARTING LETTER OF RANGE?C . From C through G

ENDING LETTER OF RANGE?G
CANDY K 555-1111
DUNKS C 333-2020
DUNKS D 333-2020
EVERS L 555-213@
FINK F 333-1212
GOOD K 555-312@
WANT TO SEARCH SOME MORE?YES

TYPE THE NUMBER OF YOUR SELECTION (1-3)?2

USING DISK FILES 149

4b2)

4b3)

4b4)

4c)

STARTING LETTER OF RANGE?A
ENDING LETTER OF RANGE?H

ABLE B
BAKER
CANDY
DUNKS
DUNKS
EVERS
FINK F
GOOD K
HENRY B

rfoaoRD

WANT TO SEARCH SOME MORE?YES

L]

TYPE THE NUMBER OF YOUR SELECTION (1-3)?2

555-9181
555-181§
555-1111
333-202p
333-2029
555-213@
333-1212
555-312¢
555-2212

-

STARTING LETTER OF RANGE?I
ENDING LETTER OF RANGE?2Z

IRVING D
JONES E
KANE K
LEMON R
MARKS H
NOBLE M
OTTO D
PINKS C
RIOT C
SAMPLE P

WANT TO SEARCH SOME MORE?YES

TYPE THE NUMBER OF YOUR SELECTION (1-3)7?2

333-1115
555-7632
555-76@3
333-1515
555-8119
333-8991
333-1129
555-321¢
555-4567
333-7654

STARTING LETTER OF RANGE?D
ENDING LETTER OF RANGE?A

NONE FOUND

WANT TO SEARCH SOME MORE?YES

°

-

-3

From A through H

From I through Z

Can you search
backward?

TYPE THE NUMBER OF YOUR SELECTION (1-3)?3 <— Next type

of selection.

150 MORE TRS-8G BASIC

4cl) 7

FIRST 3 DIGITS OF PHONE #7555 gw————— Aji names whose
ABLE B 555-91@1 .
BAKER D 555-191p phone prefix is 555
CANDY K 555~-1111

EVERS L 555-2138

GOOD K §555-3120

HENRY B 555-2212

JONES E 555-7632

KANE K 555-7683

MARKS H 555-8119

PINKS C 555-3218

RIOT C 555-4567

WANT TO SEARCH SOME MORE?YES

°
°
o

TYPE THE NUMBER OF YOUR SELECTION (1-3)?3

4¢2)

FIRST 3 DIGITS OF PHONE#?333 <———— All names whose phones
DUNKS C 333-2020

DUNKS D 333-202p begin with 333
FINK F 333-1212
IRVING 333-1115

LEMON P 333-1515
NOBLE M 333-8991
OTTO D 333-1129
SAMPLE F 333-7654
WANT TO SEARCH SOME MORE?YES

TYPE THE NUMBER OF YOUR SELECTION (1-3)?3

4c3)

FIRST 3 DIGITS OF PHONE#?444 -e——————— Any with a 444 prefix?
NONE FOUND NO
WANT TO SEARCH SOME MORE?NO

Aill done

The computer goes back to the menu.

~

PHONE DIRECTORY MENU

CREATE A NEW FILE
INPUT FILE FROM DISK
. ADD RECORD(S)

DELETE RECORD(S)
EXAMINE RECORD(S)
QUIT

Db Wy =

TYPE NUMBER OF SELECTION (1-6)?6 -=— Let’s quit
READY
>CLOSE =+ Make sure all files are
READY closed

USING DISK FILES

151

Summary

A program was developed in this chapter to demonstrate the use of a disk data file us-
ing names and telephone numbers. It can serve as a model, or as a starting point, for
you to create disk files of your own. The program was broken into the following func-
tional modules that were selectable from the keyboard.

a) create a new file from the keyboard,

b) input a previously created file from disk,

¢) add one or more records to the file,

d) delete one or more records from the file, and
€) examine one or more records in the file.

You also learned:

» to OPEN a file,

OPEN“0",1,"“PHONE/TXT: 3"

SN TN

A sequential One File Disk Drive
output file buffer name number
used

If no disk Drive number is specified, Drive zero (0) will be used.

e to CLOSE afile,

CLOSE = closes all files that have
been opened

CLOSE 1 = closes the file assigned to
buffer #1

CLOSE 1, 2,8 «—————— closes files assigned to
buffers #1, 2, and 8

o all open files should be CLOSEd before removing a disk from the disk drive,
¢ tousethe DATA FILE program to:
a) create a disk data file consisting of names and phone numbers and to save
it on disk,
b) input a previously created file from disk to the computer’s memory,
¢) add one or more records to the file,
d) delete a record from the file and move all records following it up one
position,
e) examine one or more records by:
1. last name or the left part of the last name
2. all last names starting within a specified range
3. telephone prefix

152 MORE TRS-80 BASIC

e PRINT #1 is used to transfer data from the computer’s memory to disk,
o INPUT #1 is used to transfer data from a disk file to the computer’s memory, and
e LINE INPUT is used to input strings containing commas, quotes, and other punc-

tuation marks.

Self-Test

1. Use the completed DATFILE/BAS program to create a file from the keyboard
containing the following names and phone numbers.

CABLE A
FORCE S
GROSS B
KING E

MORE L

353-1111
535-8055
353-7546
556-3294
636-4288

Save the file on disk as MYLIST/TXT.

USING DISK FILES 153

2.

Use DATFILE/BAS to input the data list saved in exercise 1. Copy what you see

on the screen after the file is input.

-

\—

~

Then make the following changes:

Delete: KING E

CABLE A
Add: SOZO W 335-7876
PARKS C 335-0132

WIZARD Z 353-2109

154 MORE TRS-80 BASIC

3. Use DATFILE/ BAS to input the modified file of exercise 2. Examine the file
and list the resulting names and phone numbers.

Name Phone

4. Use theexisting DATFILE/BAS program to arrange the names in alphabetical
order. DO NOT USE THE CREATE-A-NEW-FILE SECTION.

USING DISK FILES 155

5. Input the new MYLIST/TXT file and copy the file here.

6. Eliminate “MYLIST/TXT” from your disk and create a personal phone file for
your own use.

Answers to Self-Test

1. Access Disk BASIC; load and run “DATFILE/BAS”; select #1 from the menu
and enter the five names and phone numbers. Save as MYLIST/TXT.

2. Select menu selection #2.

(

NAME OF FILE?- <—— MYLIST/TXT

f

CABLE A 353-1111
FORCE S 535-8¢55
GROSS B 353-7546
KING E 556-3294
MORE L 636-4288
PRESS ‘ENTER' TO CONTINUE?-

Select #4 and delete KING E and CABLE A.
Select #2 and input the modified file. You see:

FORCE S 535-8@55
GROSS B 353-7546
MORE L 6364288

Select #3 and add SOZO, PARKS, and WIZARD.

156 MORE TRS-8¢ BASIC

3. Select #2 from the menu.

FORCE S 535-8855
GROSS B 353-7546
MORE L 636-7546
S0%0 W 335-9876
PARKS C 335-0132
WIZARD Z 353-2189

4. Select #4 and delete PARKS, SOZO, and WIZARD.
Select #2 and read back.

FORCE S 535-8@55
GROSS B 353-7546
MORE L 636-4288

Select #3 and add in orderPARKS, SOZO, and WIZARD.

5. Select #2 from the menu.

NAME OF FILE? - <——— MYLIST/TXT

FORCE S 535-8855
GROSS B 353-7546

MORE L 636-4288
PARKS C 335-8132
S0Z0 W 335-9876

WIZARD Z 353-2189

6. Select #6.

READY
>- <———Type: KILL “MYLIST/TXT"

Then work on your own personal file.

CHAPTER EIGHT

Tuning Up Your Computer

You already know how to put graphics on the video display to add action to your
BASIC programs. Wouldn’t it be nice to add sound to your programs to really liven
things up? In this chapter you will learn:

screen. The generation of sound to accompany your programs adds another dimension

how to connect your computer to an inexpensive speaker /amplifier to produce
sounds,

that the cassette connections of your computer can be used to feed signals to the
speaker /amplifier,

how to control pulses to the speaker/amplifier with the OUT 255,2 statement to
turn on a pulse and the OUT 255,0 statement to turn off a pulse,

how electrical pulses are converted to sound waves,

how to use a machine language subroutine from your BASIC program to produce

sounds,

how to save memory space for the machine language subroutine by setting
MEMORY SIZE?,

how to access the machine language subroutine with the basic statement:
X = USR(0), and

how the Radio Shack program, MICRO MUSIC, is used.

Graphics, discussed in chapter 3, bring live action to the computer’s video

to your computer.

sound. You can also buy commercially available hardware and software if you wish.

You can develop your own hardware interface and software driver to produce

However, a combination of these two possibilities is more fun. The necessary equip-
ment is easy to obtain and use.

157

158

MORE TRS-80 BASIC

You have probably used the TRS-80 cassette recorder to CSAVE and CLOAD
programs. If you read the earlier chapters of this book on cassette files (and we hope
you have tried all demonstration programs and exercises), you know that the cassette
recorder can save and retrieve data files. Let’s consider how the computer saves infor-
mation on tape. Data is sent from the computer as a series of electrical pulses to an
output port. The output port is connected by means of a gray cable to the AUX jack of
the recorder.

TRS-80
keyboard Gray cable

unit L

Output port

To AUX jock
of recorder

T—

Ordinarily, these pulses are recorded on the magnetic tape of the cassette so that they
can be CLOADed back into the computer at a later time.

If you disconnect the cassette cable (the black one) that connects the computer
and the EAR jack of the recorder and play a tape recording that has been CSAVE(,
you will discover that you can hear the recorded pulses. Thus, if you could control the
pulses sent out by the computer, you might be able to produce sounds of your own. If
you want to immediately hear the sounds that you produce, you ¢an send the pulses to
an amplifier /speaker combination instead of to the recorder. Radio Shack stores sell a
combination speaker/amplifier unit for only $11.95.

©

7 4

If you connect the gray cable (which ordinarily goes to the AUX jack of the recorder)
to the input jack of the speaker/amplifier, you will have a sound system that is suffi-
cient for your needs.

TUNING UP YOUR COMPUTER 159

Volume
TRS-80 \
keyboard \ control
unit .
input jock
|~ put)
Qutput port
L — External
speaker
connector

The pulses from the computer are amplified so that they can drive (make the
speaker vibrate) the speaker hard enough to produce sound waves.

Speaker

. Sound
TRS-80 (A~ Amplifier waves

Pulses Amplified
pulses

You now have a hardware system that can produce sounds. You must find a way
(a program) to create the electrical pulses.

The cassette’s output port (the place where the three cassette cables leave the
computer) has been assigned a number (255) that the computer knows. A signal is
sent to the cassette’s output port by sending the number 2 to the port. The signal is
turned off by sending a zero (0) to the cassette port.

OUT 255,2 ‘
4 Turns on a signal
Output Toport255 A2

OUT 255, @
Turns off the signal

Output™ Toport 255 A zero

A combination of these two statements will create the following pulse:

"L

Turn on your computer, hook up the speaker/amplifier as shown on page 213,
and enter this BASIC program.

Sound Generator

119 FOR X = 1 TO 5@

129 OUT 255,2 =
139 OUT 255,80 - }— Pulse

140 FOR Z = 1 TO 28: NEXT Z -—— Time delay
150 NEXT X

160 MORE TRS-80 BASIC

Run the program and you will hear the result of fifty pulses created by the FOR-
NEXT loop (X as variable). A time delay controls the frequency of the sound. The
longer the delay (FOR Z = 1 TO ?7), the lower the frequency will be. By changing line
140, the frequency will be changed.

P L L

FOR Z=1TO 10: NEXT Z FORZ=1TO 20: NEXT Z
High frequency Low frequency

The outside FOR-NEXT loop (variable X) creates the duration of the sound. The
higher its upper value, the longer the sound is heard.

sl Pl Vel NN e e Nl el Pl o Nl Tl T

FORX=1TO 10 FORX=1TO3
Long duration Short duration

To demonstrate the possibilities for changing the frequency of the sound, change
line 140 to:

143 FOR 2 = 1 TO F: NEXT Z

The frequency can then be varied by adding a FOR-NEXT loop (lines 100 and 160).

1@ FOR F = 19 TO 1 STEP -2

160 NEXT F

List the program. It should now look like this:

Sound Generator

LIST
1@ FOR F = 19 TO 1 STEP —2

11 FOR X = 1 TO 5§ ———r— Frequency
129 OuT 255,2 Durati values: 19,
139 OUT 255,8 —— Duration

140 FOR Z = 1 TO F: NEXT 2 50 17’15’13’11’
15¢ NEXT X 9,75,3,1
16§ NEXT F

Delay between pulses
controlled by frequency
values

TUNING UP YOUR COMPUTER

161

Run the program and you will hear the note rise in tone as the frequency value
(F) goes down from 19 to 1. Although a change in tone can be detected, the results are
not very satisfactory.

The time necessary to interpret the BASIC statements is too long for the crea-
tion of realistic sounds. The speaker must vibrate faster than the BASIC statements
are executed. To get the necessary speed, we will have to write a subroutine in the
computer’s own language so that it doesn’t have to take time translating what we want
done. You can switch from a BASIC language program to a machine language sub-
routine by using a new BASIC function (USR).

The User Function

The user function is our link between our BASIC program and the machine language
subroutine that will produce the sounds. We will use the BASIC program to POKE
the machine language subroutine into memory. To access the machine language sub-
routine, we'll use the statement:

X = USR(Q)

When the computer executes the USR statement, it immediately looks into memory
locations 16526 and 16527 to see where the machine language subroutine can be
found (the memory location where it begins).

BASIC Program

POKE "in machine language

program Machine language subroutine
POKE in starting address
of machine language
program
= Make / -
X = USR(0) Mak _/J\—_
: | sound ~

END

162 MORE TRS-80 BASIC

Saving Memory for the Machine Language Subroutine

Remember the first message that appears on the video screen when the computer is
turned on?

, MEMORY SIZE?

Now is your chance to answer with a number instead of merely pressing the ENTER
key. In order to know what number to enter at this point, refer to the memory maps
that follow.

The first map shows the area (shaded) that may be used by you for your pro-
grams. Let’s stay within the restrictions of a 4K TRS-80 (memory locations 17129
through 20479). In that way our program will be machine-independent (it won’t mat-
ter whether you are using a 4K, 16K, 32K, etc.).

Memory Memory Map by Machine Size
location 4K 16K 32K 48K
00000
Level 11
BASIC ROM
12288 4 — — — [~ — — + — — —|— — —
Reserved RAM
for TRS-80
— 17129 4 — — — |— — — 4 — —
USER
RAM o
— 20479 |/ — — — | USER
USER
RAM
USER
— 32767 — — — —| RAM
RAM
- 49151 — - - =
— 65535 — —

TUNING UP YOUR COMPUTER

163

In the following memory map, the user space for a 4K TRS-80 is shown.

17129 — Program Text l
Simple variables |
If you want a
Arrays l machine language
Free Space subroutine, this
number is
Stack ! specified for
String Space 1 |<—— MEMORY SIZE?
Space optionally reserved | | Our ma.chine language
for machine language subroutine goes here
routines accessed from
BASIC
20479 —

When you press the ENTER key without specifying a number for MEMORY
SIZE, the optional space at the top of memory is not reserved. String space would be
used from 20479 downward.

17129 —= Program Text |
Simple variables |
Arrays |
Free space
Stack 1
20479 —a String space 1

164 MORE TRS-80 BASIC

If you do specify a memory address following the MEMORY SIZE prompt,
space will be reserved for a machine language subroutine.

Example:

MEMORY SIZE?20000

17129 =1 program text l
Simple variables l
Arrays |
Free space
Stack I
20000 ~— String space 1
20001 —| Qur machine language l
20479 —> subroutine goes here

Memory locations 20001 through 20479 will be reserved for a machine language
subroutine and the string space will be allocated from 20000 downward. The memory
location specified at MEMORY SIZE time is one less than the location where your
machine language subroutine will begin.

For a 16K machine, the only difference would be the upper memory boundary
(32767 instead of 20479). However, if you are using a 16K machine, you will probably
want to set MEMORY SIZE to a higher location (such as 32000). Every location
above the MEMORY SIZE response is saved for machine language.

Fora 16K TRS-80 the memory map looks like this:

17129 =1 program text |
Simple variables 1
Arrays !
Free space
Stack T
MEMSIZE ——& String space T
MEMSIZE +1—+| Your machine language |
32767 —> subroutine goes here

TUNING UP YOUR COMPUTER 165

Now let’s see how you can produce some sounds by storing a machine language
subroutine in the reserved space.

The BASIC Program

The first section of the program clears the screen so that there will be no distractions
when the sounds are produced. It then calls a subroutine which POKEs (see chapter 2
for a description of the POKE statement) the machine language program into
memory.

Sound Producing Program
Section 1

199 REM ** CLEAR SCREEN — POKE MACHINE LANGUAGE **
119 CLS: GOSUB 1988

The second section plays eight notes of a musical scale by means of the machine
language subroutine, which is called by the USR function at line 240. The frequency
of the notes is read from a data list and POKEd into the subroutine to replace the note
previously played.

Section 2

20@ REM ** CHANGE NOTE AND PLAY #*¥

210 R=255: POKE 2@0§2,R: L=0: POKE 200¢4,L
220 FOR Y = 1 TO 8

230 READ F: POKE 28020 ,F

243 X=USR(Q)

250 FOR W = 1 TO 1§@: NEXT W

260 NEXT Y

27¢ END

The third section contains the data for the machine language subroutine in lines
310 and 320. These values are the decimal equivalents of the machine language in-
struction codes. Remember they are actually put into memory in binary format. The
data for the frequency of the notes is contained in line 330.

Section 3

3P¢ REM ** SUBROUTINE AND FREQUENCY VALUES **
31p DATA 14,16,33,8,1,58,61,64,239,253,198,2,211,255,214
32¢ DATA 2,211,255,6,160,16,254,43,124,181,32,239,281
33p DATA 85,80,75,78,65,68,55,50

All that is left is the subroutine that is called from Section 1 to read in the data
values given in Section 3.

166 MORE TRS-80 BASIC

POKE Subroutine

19P@ REM ** DATA READING SUBROUTINE **
191§ POKE 16527,78: POKE 16526,33

192 FOR X = 20801 TO 1pp28

193¢ READ D

1949 POKE X,D

1950 NEXT X

1969 RETURN

Now you're ready to enter the program. Turn off your TRS-80 if it is on. Wait a
few seconds, then turn it back on again. When it prompts you with:

MEMORY SIZE?~

answer by typing in the value 20000.

MEMORY SIZE? 20098
RADIO SHACK LEVEL II BASIC
READY

>

Enter the program. However, before you RUN it, make sure that the DATA val-
ues in lines 310 through 330 are correct. A mistake in lines 310 or 320 could cause a
real disaster, even if only one item is wrong. Line 330 is just the data for the notes and
is not as critical as the other two data lines.

Once you have double checked the data statements, RUN the program, and the
scale is played. Be sure the speaker/amplifier is connected, turned on, and the volume
control turned up high enough to hear the notes.

To TRS-80
C——c-

N
/

)

A
V.S N W
() Nd ®
N/ N g

o/ s °

® ®

/

By experimenting with different values for the variables R, L, and F in the
Sound Producing Program, you can discover different types of sounds. If you find
some appropriate sounds you can incorporate them into other BASIC programs.

TUNING UP YOUR COMPUTER 167

Adding Sound To Your Programs

After experimenting with the notes and noises that can be produced with your new
sound system, we have come up with some samples to go with our demonstration pro-
grams.

For the first demonstration, we’ll use the program from chapter 3 that painted
the screen white and punched black holes in it. We have added the sound of a bullet
“puncturing” the screen. Here is the program with the sound modifications.

Target Practice Program

19 REM ** POKE SOUND **
119 CLS: GOSUB 1000

20 REM ** PAINT THE SCREEN **
219 CLS

220 FOR § = § TO 1§22

233 PRINT @S,CHR$(191);

240 NEXT S

3@ REM ** FIRE 10§ SHOTS **
319 FOR W = 1 TO 198

320 S=RND(1§23)—1: PRINT @S,CHR$(128):
33 X=USR(D)

349 FOR Z = 1 TO 150: NEXT %

350 NEXT W

49@ REM ** DO IT AGAIN #* X
419 PRINT @9@#,"PRESS ‘ENTER' TO CONTINUE": INPUTA$
429 GOTO 210

19@@ REM ** POKE SOUND SUBROUTINE **
1§1@ POKE 16527,125: POKE 16526, 1

1929 FOR Y = 32081 TO 3203¢

1930 READ D: POKE Y,D

1948 NEXT Y

1950 RETURN

1869 DATA 14,1,6,80,58,61,64,230,253,198,2,211,255,214,2,211
197@ DATA 255,197,16,254,193,16,242,13,121,246,8,32,234, 201

To run this program, the MEMORY SIZE? prompt must be set to 32000 when
the TRS-80 is turned on. Imagine that you have a gun with a rectangular barrel that

;_:@

shoots rectangular shaped bullets. RUN the program and the gun shoots rectangular
holes through the white screen with the accompanying sound as the screen is punc-
tured. The screen is painted white, then:

168 MORE TRS-80 BASIC

POW! A black hole is shot in the screen
POW! Another black hole
POW! Another

This goes on until one hundred shots have been taken. There may not be one hundred
holes in the screen since some shots may go through a hole that is already there.

You may wish to change some of the data to vary the sound that is produced. A
value that you might try changing is the 80 (fourth item in line 1060).

A second demonstration uses the “running” of a single car across the screen (See
chapter 3). We’ll add some sound to the program. The sound subroutine of the pre-
vious program is used again, but a change is made in the fourth data item, which con-
trols the pitch of the noise produced.

Car with Sound Program

199 REM ** POKE SOUND **
11¢ CLS: GOSUB 19pp

2@@ REM ** MAKE SOUND AND MOVE CAR **
219 FOR M = 15360 TO 15429

22f X = USR(P)

230 POKE M+3,156: POKE M+2, 14§

24¢ POKE M+1,17@: POKE M, 128

250 NEXT M

260 GOTO 260

13@§ REM ** DPOKE SOUND SUBROUTINE **
181§ POKE 16527,125: POKE 16526, 1
1920 FOR Y = 32001 TO 32030

1939 READ D: POKE Y,D

1943 NEXT Y

1958 RETURN

119 DATA 14,1,6,40,58,61,64,230,253,198,2,211,255,214,2,211
1118 DATA 255,197,16,254,193,16,242,13,121,246,9,32,234,281

MEMORY SIZE is again set to 32000. The subroutine produces a short tone each
time the car moves one rectangle to the right.

bed

m———
[N |

01
(i
-
H
i
L=

s
1

q e
I3
[®]

PUTT PUTT PUTT
s]

Variations in the sound subroutine could produce different noises as the car moves
across the screen. Our “putt-putt” sound is not the best. Try our own variation by
changing the fourth data item in line 1100.

TUNING UP YOUR COMPUTER

169

Now we return to the Mandala Program introduced in chapter 3. This time,
we'll produce a tone after each of the four symmetrical graphic symbols are displayed.

120
119
120

200
21p
22p
230
249
25p
260
279
280
299
g0
319
320
330
349
35p
360
379

400
419
420

1990
1919
1p2p
1939
1949
1959

1109
1119
1120

Mandala with Sound Program

REM ** SET UP MACHINE LANGUAGE **
CLS: GOSUB 1908
S = 1g: Z = 25@: POKE 32020,%

REM #** DRAW MANDALA **
FOR N = @ TO 339 STEP 66
FOR R = @ TO S

A=RND(2)—1:B=RND(2)—1:C=RND(~1):D=RND(2) —1:E=RND(2)—1:
F=RND(2)—1
IF N=0 THEN M=Q@ ELSE M=62%(N/66)
UL=128+A+2*B+(2*C)] 2+ (2*D)[3+(2*E) 4+ (2*F)]5
UR=1284B+2*A+(2*D)[2 +(2*C) 3+ (2*F)[4+(2+*E)]5
LL=128+E+2*F+(2*C)] 24+ (2*D)[3+(2*A)]4+(2*B)]5
LR=128+F+2*E+(2*D)]2 +(2*C)]3+(2*B)[4+(2*A)]5
PRINT @544,CHR$(191); :PRINT @144+N+R,CHR$ (UL);
PRINT @176+M~ R,CHR$ (UR); : PRINT@912—M+R,CHRS (LL) ;
PRINT @944—N—R,CHR$ (LR);
X = USR(@)

= 2—5: POKE 32820,2
1

REM ** WAIT AWHILE *%
FOR WAIT = 1 TO 5@@: NEXT WAIT
RESTORE: CLS: GOTO 128

REM ** SOUND SUBROUTINE **
POKE 16527,125: POKE 16526, 1
FOR Y = 32881 TO 32026

READ D: POKE Y,D
NEXT Y
RETURN

REM ** MACHINE LANGUAGE DATA *+*
DATA 14,255,33,0,255,58,61,64,230,253,198,2,211
DATA 255,214,2,211,255,6,250,16,254,37,32,241,201

MEMORY SIZE is set to 32000. After drawing four symmetrical graphic sym-
bols, a tone is played. The tone variable (Z) is lowered (this raises the tone) for the dis-
play of each line of graphic characters.

170 MORE TRS-80 BASIC

Example: (Only upper left corner of screen shown)

by

1 st Note

P O

SR

M)
? ;E @ 3 rd Note

° °
° etc. °
° °

For a variation, try switching lines 330 and 340.

333 NEXT R
340 X = USR(®)

How will this change the program?

BN A~
? (85008
@ \0‘0‘:0.0,0,‘¢
\ “3:'0_.',"" 4

Now a single note will play after each line of the mandala is displayed, instead of
after each four symbols. The note rises in pitch each time.

Our last sound demonstration program makes use of several BASIC statements
that you can incorporate into other programs. It allows you to fill the screen with text.
A warning sound is included for the end of each line. A little birdie “chirps” when you
are within five characters of the end of a line. A different sound is included that sounds
after each keystroke is made. A third sound is given each time you press the ENTER
key after each line of text is completed.

After you have filled the screen with text, the display is cleared and the entire
message is again displayed. A fourth sound provides a surprise ending.

TUNING UP YOUR COMPUTER

171

The sounds are produced in one of four subroutines. The text is stored in a string

array labeled B§(IN) that is dimensioned for 16 strings (one for each line of the video
screen). Each string in the array is built up in a loop that allows up to 64 characters in
the string. This loop can be exited by pressing the ENTER key to terminate that par-
ticular string. The INKEY$ function is used to enter each character that is added to
the current string being formed.

19
20
39

59

199
119
120
139
149
150
160
179
189
1990
200
21p
220

23p
249
250
268
279
288
290
£}
31p
320
33p

1980
1218
1920
1930
1940

2000
2010
2029
2039
2040
2050

3pp¢
3819
3820
3838

REM

Write Text Program

INITIALIZE

CLEAR 15030 <@ Save string space
POKE 16527,125: POKE 16526,1: GOSUB 13@p@

gi: Be(16) = 16 lines of strings

REM *FILL THE SCREEN WITH TEXT*

FOR N=1 TO 16 < Loop for 16 lines
c=1- 64 characters per line;
A=PEEK(16416)+PEEK(16417)*256 -
IF (A/64-INT(A/64))*64=57 GOSUB 18§@ Get cursor position
A$=INKEYS: IF A$="" THEN 15§ ELSEPRINT A$;

IF ASC(A$)=8 THEN C=C—1: B$(N)=LEFTS$(BS$(N),C—1):GOTO 138

IF A$=CHR$(13) THEN GOSUB 28@f§; GOTO 220

GOSUB 3099 A Check for ENTER key
B$ (N)=B$(N)+A$ =

¢ = C+1: IF AC<63 THEN GOTO 138 .

GOSUB 208§ Add AS$ to string

NEXT N

REM * CLEAR SCREEN AND REPRINT TEXT*

FOR W=1 TO S5§: NEXT W

CLS

FOR W=1 TO 2p@: NEXT W

FOR N= 1 TO 15
PRINT B$(N)

GOSUB 2009

NEXT N

PRINT B$(N);

GOSUB 4009

GOTO 330

REM ** RING BELL **

POKE 320@4,2: POKE 3202§,158

X =
X =

USR(@); FOR W = 1 TO 2@ : NEXT W
USR(@)

RETURN

REM
FOR

**% CARRIAGE RETURN SOUND **
Y= 11T05

POKE 32028,255

X

= USR(@)

NEXT Y
RETURN

REM

** KEY CLICK **

POKE 32028 ,2

X =

USR(@)

RETURN

172 MORE TRS-80 BASIC

40P@ REM ** SURPRISE ENDING **
4019 FOR Y = 5@ TO 1g@ STEP 5
402 POKE 32§28,V

403§ X = USR(P)

4049 FOR W = 1 TO 5@; NEXT W
4050 NEXT Y

4060 RETURN

19P@Q REM **POKE MACHINE LANGUAGE **

19010 FOR Y = 320@1 TO 32826

19@2§ READ D: POKE Y,D

19939 NEXT Y

1994@ RETURN

19950 DATA 14,255,33,0,20,58,61,64,2303,253,198,2,211
199608 DATA 255,214,2,211,255,6,15@,16,254,37,32,241,201

In line 130, the variable A is assigned the current cursor position on the video
screen. This value is held in memory locations 16416 and 16417. The value changes
with each keystroke. Since the decimal number 255 is the largest value that will fit in
any one memory location, the cursor’s position on the screen (a memory location be-
tween 15360 and 16383, inclusive) must be broken into two parts. Memory location
16416 holds the least significant part of the cursor’s position. Memory location 16417
holds the most significant part of the cursor’s position. This later value must, there-
fore, be multiplied by 256 before it is added to the least significant part, to form the
complete decimal value of the cursor position. Line 140 compares the current position
to the number 57 to see if it is equal to that position on the given line. If it is, a GOSUB
statement causes the warning bell at subroutine 1000 to ring.

Examples:

a) Cursor at position 184

3rd line, 57th position
L_— 3rd line, 56th position

A=184
A/64=2875
INT(A/64) =2
(A/64-INT(A/64))*64=56 Don’t ring bell yet

b) Cursor at position 185

A=185

A/64 = 2.890625

INT(A/64) =2

(A/64-INT(A/64))*64=57 GOSUB 1000 and ring bell

TUNING UP YOUR COMPUTER

173

After a key is pressed, the character is printed by line 150. If the ENTER key
was pressed, line 170 calls the carriage return sound subroutine at line 2000. On re-
turn from the subroutine, the GOTO statement (end of line 170) causes the next line
of text to be started. If some other key is pressed, line 180 calls the key click subroutine
at line 3000. The character is then added to (concatenated) the string at line 190.

The last section of the main program clears the screen and then prints the string
array, giving the carriage-return sound at the end of each line. A bonus sound is
provided to indicate the end of the text. Press the BREAK key and type RUN if you
want to type in a new screen of text.

The demonstration that follows is fairly self-explanatory. The end-of-line warn-
ing bird chirps when there are five or less spaces left on the line you are typing. Any
line can be terminated by pressing the ENTER key (as on line 1). Empty lines can be
executed by pressing the ENTER key more than once. Key clicks are produced after
each keystroke. A surprise bonus sound is produced when the last line of the text is re-
printed on the screen.

Here is a demonstration using the program:

Press

AFTER PRESSING RETURN, TYPE THE SECOND LINE. THE BELL RINGS.

NTIL THE CARRIAGE IS AUTOMATICALLY RETURNED. NEXT TIME SPACE return
IN 5 SPACES BEFORE TYPING ADDITIONAL TEXT. PRESS RETURN
WHEN YOU HEAR THE BELL OR FINISH THE WORD IF THERE IS ENOUGH

ROOM. YOU CAN ALSO TERMINATE THE LINE AT ANY TIME
BY PRESSING THE ENTER KEY AS WE JUST DID. YOU CAN ALSO HEAR
THE KEY CLICKS AS EACH LETTER IS TYPED. PRESS ENTER TWICE NOW

AND YOU WILL SKIP ONE LINE. WITH A LITTLE MORE WORK, YOU COULD
MAKE THIS PROGRAM INTO A SIMPLE WORD PROCESSOR.

THE ENTER KEY WAS PRESSED THREE TIMES AFTER THAT LAST LINE.
TWO LINES WERE SKIPPED. NOW LISTEN AND WATCH AS YOU FINISH.

-

MICRO MUSIC

Another commercial, sound-producing program is called MICRO MUSIC and is
available from Radio Shack stores for around $14.95. It comes in cassette form with
both Level I and Level II versions on the same tape. MICRO MUSIC, as the title sug-
gests, is used to produce music. It lets you type a tune directly on the video screen us-
ing a letter for each individual note (C,D,E,F,G,A, or B).

You can hear the results of your composition in several ways. You can connect
the plug that usually goes to the recorder to a Hi-Fi system. You may also use the in-
expensive Radio Shack amplifier/speaker discussed earlier in this chapter. Another
method is to record the results on tape using the cassette recorder in the normal way.
Then you can play back the tape to hear the music.

THIS IS A DEMONSTRATION OF THE WRITE TEXT PROGRAM. - ENTER

PRESS ENTER TO GET TO THIS THIRD LINE. THIS TIME WE WILL TYPE U <e}- Automatic

174 MORE TRS-80 BASIC

MICRO MUSIC has a five-octave range including normal notes, sharps, and
flats. Three different tone qualities can be programmed into your music. You can pro-
gram whole notes, half notes, quarter notes, eighth notes, dotted notes, and triplets.
You also have a choice of two basic tempos. You can repeat sections of your music up
to nine times and even use an alternate ending the last time the section is played.

Each note and its duration are displayed at the bottom of the video screen as it is
played. Your tape recorder is automatically started and stopped each time you want to
record your music. Editing features allow modification of your song between plays,
making it easy to get your composition just the way you want it. Instructions for using
MICRO MUSIC are provided with the cassette software. These instructions include:

a)
b)
c)
d)

e)
f)
g)

general description,

load and use instructions,

editing features,

instructions on how to write your own music (with several short
exgmples),

a discussion of advanced features,

instructions on saving and loading the composition, and

a reference sheet of functions.

Using MICRO MUSIC

Let’s look at some features of the MICRO MUSIC software as it is used on the follow-
ing Radio Shack system.

TUNING UP YOUR COMPUTER 175

In addition, the Radio Shack amplifier /speaker shown on page 158 is used.
On a Level II TRS-80, the software is loaded in the SYSTEM mode since it is
written in machine language. When the system is turned on, you see:

MEMORY SIZE~-

press the ENTER key.

MEMORY SIZE?

RADIO SHACK LEVEL II BASIC
READY

>

Type: SYSTEM and press ENTER, then wait until the asterisk (*) appears on the
screen. ‘

MEMORY SIZE?
RADIO SHACK LEVEL II BASIC
READY

>SYSTEM
*

Type: MUSIC and press ENTER, then wait for the second asterisk.

MEMORY SIZE?

RADIO SHACK LEVEL II BASIC
READY

>SYSTEM

*MUSIC
*

Type: a backslash (/) and press ENTER, then wait until a flashing asterisk
appears in the upper left corner of the scgeen.

—

Now you can-type in the notes to be played.

176 MORE TRS-80 BASIC

Examples:

Up the scale

CDEFGAB#Cx

PIOYS\ vw\\
VV\\

\

0 \ The SHIFT key and ¢ key

g S
-~ E are pressed together to
~ I shift up one octave
Down the scale
$CYBAGFEDCx
SHIFT SHIFT
to go up to go down
one octave one octave
Plays o - - c B
\ 0 <A
G
(o] «—F
B © «—E
e} <D
e ®and <

A Typical Amateur’s Composition

Maugcic can ha com?osed directly from cheet music nging MICRO MUSTC. Even if

you’ve never played a musical instrument, you can be composing your own music in no
time at all. If it doesn’t sound right, you can easily change your arrangement with the

editing features.

Composer’s own version of Scarborough Fair

(3D2D4A4G4ALE4 FBE4D2.A21CADBCEDEDS.C8|A4BAGAA2A4TD2 |D4F2G4A4GAF
4D8C8C4D4D2A4G2FAE4D4C4D2R4D2D4A4GAE4 FBE4D2.A2]1C4DSC8D8D4.C8|A4
B4G4A2A41D2|D4F2G4A4G4F4D8C8C4D4D2A4G2F4E4D4AC4D2R4)RRR

TUNING UP YOUR COMPUTER 177

Special Features

The following special features are used by MICRO MUSIC.

Keyboard Function

Entry Resulting

B# play B sharp — whole note

B~ play B flat — whole note

B2 play B - half note

B4 play B — quarter note

B8 play B —eighth note

B. or B2. play B 1% times the stated length
or B4,
or B8.

SHIFT] shift to next higher octave

SHIFT | shift to next lower octave

L change tone quality (to thinnest)

M change to double time

N back to normal from triplet, stacatto,

or tone

R rest

S stacatto

T speed up for triplets

A% change tone quality (thinner than normal)

w slow to half speed

Y play in high range (upper 3 octaves)

z play in bass range (lower 3 octaves)

Edit Functions

a) Move the cursor left, right, up, or down.
b) Clearscreen for new music.

c¢) Change to command mode.

d) Begin playing music.

e) Inserta blank space.

f) Deletea character.

g) Interrupt the music.

178 MORE TRS-80 BASIC

Summary

In this chapter, we have shown one method to produce sounds on the TRS-80.

We made use of the cassette output port and a Radio Shack Speaker/Amplifier to
make the sounds.
We found that BASIC was not fast enough to make useful sounds. Therefore, we
resorted to writing a machine language subroutine that was accessed through a
BASIC program by means of the USR function.
To enter the machine language subroutine, we had to reserve a block of memory
for it. This was done by inputting a memory location when the computer was
turned on in response to the prompt:

MEMORY SIZE?

The POKE statement was used to place the machine language subroutine in mem-
ory when the BASIC program was run.
The machine language program was executed by the BASIC statement:

X = USR(P)

Several demonstrations were given to show how sound can be added to previous
BASIC programs.

The Radio Shack program, MICRO MUSIC, was discussed and directions on its
use were given.

Self-Test

1. Signals are sent from the TRS-80 Computer to the cassette recorder’s
(REMOTE, EAR, AUX) jack.

2. When we used our simple sound system, we connected the cable which normally
goes to the recorder to send the sounds to a

3. BASIC language proved to be too (slow, fast) to produce useful sounds.

4. A machine language subroutine can be accessed from a BASIC program by
meansofthe_____ function.

5. How do you save memory space for a machine language program?

6. Your machine language subroutine should begin at the memory location that is
(one more than, one less than, the same as) the number specified for MEMORY
SIZE.

7. MICRO MUSIC, a cassette program to produce your own music, is available
from

8. The software for MICRO MUSIC is written in (BASIC language, machine ian-
guage)

9. Touse MICRO MUSIC, you type in and that rep-
resent the notes to be played.

10. MICRO MUSIC can play whole , , and

riotes.

TUNING UP YOUR COMPUTER 179

S v oo

voa e

Answers to Self-Test

AUX

Speaker/Amplifier

slow

USR

Input a memory location in response to the computer’s MEMORY SIZE?
prompt

one more than

Radio Shack stores

machine language

letters and numbers

half, quarter, eighth, and dotted

CHAPTER NINE

Special Features and Fancy Functions

In chapter 2 you learned to save memory space by squeezing several BASIC state-
ments into a single program line. Of course, doing so makes a program difficult to
read, but when you need the space, every extra byte is appreciated.

This chapter shows some other ways to save memory in your TRS-80 and introduces
the powerful error handling capabilities of your small computer. Let’s start by doing
things with the BASIC language that use as little memory as possible.

Take Small Bytes First

We have an older Level IT 16K TRS-80. If you have a newer machine or one with
more memory, most of the following demonstrations will produce individual results
that differ with what shows on our screen. Don’t worry about that. Go ahead and try
the examples. The memory savings (the differences between any two results) discussed
are the same for all machines, regardless of computer memory size.

181

182 MORE TRS-80 BASIC

To begin, type NEW and then ask the TRS-80 to give you the number of bytes

of free memory space by typing:

PRINT MEM

L~ReMEMber! MEM is
a TRS-80 reserved
word for the variable name
that contains the number of bytes
of RAM available.

If you have a 48K If you have a 32K

READY

TRS-80, your screen >PRINT MEM TRS-80, you will
will show 48340 . . . R}’:55724~'—'——‘— show 31956...
(15572 + 32768) SEADY (15572 + 16384)

number of bytes of
RAM available

Now try this example. Type: NEW. With the screen cleared, type:

A=1
PRINT MEM

Your screen should show the following information:

READY
>A=T
READY —— You typed these
>PRINT MEM - :

5565 lines
READY
b=

There is now
less memory avail-
able

Before setting the variable A to one, 15572 bytes were available. When the vari-
able A was set to one (A=1), the MEMory count went down to 15565, 7 fewer bytes of
free memory. (For those of you with larger or newer machines: The number on your
screens will also be down by 7 bytes. Machines with 32K will show 31949; 48K will
show 48333. No matter what your screen shows, just watch the differences, and you
can follow along with the discussion.)

Seven bytes! The TRS-80 used up 7 bytes to reserve a place in memory for the
variable A (the place where the number 1 is now stored) and to record the name of the
variable. In fact (we will tell you how we know this later) the TRS-80 used 4 bytes to
store the number and 3 bytes to store the name. Four plus three is seven. There must
be a way to save some of this space. Thereis. . . . Read on.

SPECIAL FEATURES AND FANCY FUNCTIONS

183

! IMPORTANT MESSAGE !
DO NOT SKIP

In the last example and in those that follow, if you make a typing mistake that
results in a 7SYNTAX ERROR, start the example over from the beginning.
Start by typing the word NEW and then the rest of the example.

Why? Because typing an error can cause the TRS-80 to use memory space.
This extra use of memory throws off the memory count in MEM, and the re-
sults on the screen will be other than what is shown in the book.

Here is a deliberate entry of an error to demonstrate what occurs. We type
NEW to clear the screen. Then we type:

A=1 Ooops!!
PINT MEM -—

PRINT MEM
The screen shows:

//////////////,,">PINT MEM
/ ?SN ERROR \
READY Ooops!
\
—~ >PRINT MEM
15558
READY

-

We typed:

Without an error
this value was
15565

So, if an error occurs while you are entering an example in this section, stop
and reenter the example from the beginning.

' IMPORTANT MESSAGE !!

If you have not read the message shown above, please do so now. O.K., how can you
save some memory space? Enter the next example, and observe what happens to the
value of MEM.

Type the following into your TRS-80:

NEW
A%=1
PRINT MEM

184 MORE TRS-80 BASIC

Your screen should show the following information:

—

READY

= 1

=g A%
You typed these —{: READY
-+ >PRINTMEM

lines .
15567 ~4————————— This value was

READY 15565
- when you entered
A =1

without the percent sign

By placing the percent sign after the variable name, two bytes of memory were
freed for use. Two bytes doesn’t seem like much at this point, but wait. A byte here
and a byte there soon adds up to a lot of extra memory. Best of all, you can have the
TRS-80 take care of the bookkeeping problems of how to make these savings.

The percent sign after the variable name told the TRS-80 to treat A% as an
integer. That is, A% would not need a decimal point and would never have any
fractional values (values requiring numbers after the decimal point). Knowing this,
the TRS-80 can conserve on the amount of memory needed for this variable. When the
variable A is used without the percent sign, the TRS-80 reserves seven locations in
memory (three for the name; four for the value). For A%, five locations are reserved
(three for the name; two for the value).

A Quick Look at Precision

For most numeric variables, such as those in earlier examples of (A=1), the TRS-80
reserves 7 bytes of memory. Three bytes store the variable’s name and four bytes store
the variable’s value. Numbers stored in this form are called single precision numbers
and the variables are called single precision variables. A later chapter discusses in
detail exactly how a number is represented in the 4 bytes and how it is retrieved and
nged in arithmetic. For now learn the terminology o vou can see how much space is
used when you put numbers into the TRS-80. The goal in this chapter is to talk about
the use of space.

You have already seen that variables with a percent sign (%) after the variable
name take less memory to store numbers. Integer variables, as these type of variables
are called, use only 5 bytes of memory. Here is a short table that compares some
features of single precision and integer variables:

Type of Bytes used Value ranges

Variable Name Value Total Smallest Largest
Integer 3 2 5 —32768 +32767
Single

precision 3 4 7 —1.701411E+38 +1.70411E+38

SPECIAL FEATURES AND FANCY FUNCTIONS 185

As you can see, integer variables take up less memory but can only represent numbers
that are much smaller than single precision variables. Unless you put a percent sign
after a variable name, the TRS-80 automatically makes the variable single precision.
The TRS-80 also allows you to explicitly tell it that a variable is single precision by
putting an exclamation point after the variable name. For example:

! |
Al =1 Tells the TRS-80 explicitly
to make the variable
single precision

produces the same result as using the assignment statement A=1.
If you enter one of the earlier examples but use an exclamation point (!) this
time, you can show that the TRS-80 does work this way.

Enter the following statements:

NEW

Al = 1 = !
PRINT MEM
Your screen should display:
READY
>al =1
READY
>PRINT MEM
15565 == The same use of
READY memory as when you
typed A=1

So, A=1 and A!=1 produce the same result in terms of the amount of memory being
used. More on what single precision is about later. For now, continue to look at how to
save some space.

Take a Few More Bytes

Space saving or space usage begins to become a significant factor when you use arrays.
Enter the following into your TRS-80:

NEW
Assigns the value <«+——- Al(g) =1
PRINT MEM

‘“one” to the single
precision (!) array
A! — first element
position A!(0)

186 MORE TRS-80 BASIC

Type in the lines. Your screen should indicate this result:

READY
>AL(g) = 1
READY
>PRINT MEM Hmm...
15520 <————— This example used

iEADY a lot of memory

The available memory locations have been reduced by 52 bytes!! Whew! The
assignment of one number into the array A! caused the TR'S-80 to use up 52 bytes.

(15572 — 15520 = 52)

Try one more experiment before you attempt to puzzle out what has just occurred.
Enter the following lines into the computer:

NEW p/\ The percent sign tells the
as(g) = 1 TRS-80 to set
PRINT MEM up an integer array

Does your screen show this display?

READY
>A%(P) = 1
READY

>PRINT MEM
15542 +—— Down 30 bytes from

READY
RE? 15572

Are you beginning to see any patterns in these results? Well, the difference between
the number of bytes used for the A! array and the A% array is 52 minus 30, or 22
bytes. Aha! Each array contains 11 elements (since no DIMension statement was
used). Two times 11 is 22 — the number of bytes difference in the two values of
memory used. You saw previously that an integer variable required two less bytes of
memory. For this set of experiments, each array had 11 elements so. ... You get the
idea?

Arrays of integer values also take up two less bytes per element of the array. As
the number of array elements gets larger, the amount of memory space you can save
by using integer arrays becomes proportionally larger.

Use me for
single

Use me
for integers

0 —ep

%

SPECIAL FEATURES AND FANCY FUNCTIONS

187

Two Thousand Bytes Is Wortha...

Using single precision or integers for large arrays can have significant effects on the
amount of memory you use in a program.
Enter and RUN the short program that follows:

199 CLS
1000 elements «———————— 119 DIM Al (999)
12¢ PRINT MEM

When you ran the program did the number 11536 appear at the top of your screen? If
not, make certain you typed the program exactly as shown above. Put in the spaces
shown in lines 110 and 120. When your program looks like the one above, RUN it

again.

0.K., now change line 110, as follows:

118 DIM A%(999) ~————— 1000 integer
elements

RUN this program. Does your screen now show 135367 Yes! Good! Let’s see,
13536 minus 11536 is 2000 — 2000 bytes of memory difference between the two small
programs! All you did was change the ! to a % — a change from single precision to
integer variable names. The motto is: Use integer arrays, if you can and save yourself
a lot of memory.

Answer to the Unasked Question

Some of you (those of you who like puzzles) are probably still a few pages back trying
to unravel the mystery of how the TRS-80 came up with 52 and 30 bytes, respectively,
for the use of the unDIMensioned A! and A% arrays. Without going into a lot of
detail, here is a table that shows the TRS-80 memory allocations for arrays of these

types:

Bytes Used
Type of Array Array Number of Each Each
Array Variable Name Size Dimensions Dimension Element
Integer 3 2 1 2 2

1 <y
* 4 Single %
Precision 3 2 1 2 4

188 MORE TRS-80 BASIC

Information in the table shows that the unDIMensioned integer array A%
requires the following number of bytes:

o 3 for the name

o 2 for the size of the array

o 1 for the number of dimensions

o 2 for the single dimension it is using

o 22 for the number of elements (2 times 11)

The total is 30 bytes. For a single precision array the count is the same except for
the last item in the list. The array A! would require 4 times 11, or 44 bytes, for its
element storage. Adding this number of bytes to the eight required for the name,
size, number of dimensions, and the single dimension yields 52 bytes. The mystery
is solved, for now. You will soon have a few more to puzzle over.

The TRS-80 “Bytes” Back

Enter the following sequence of commands into your TRS-80:

NEW
Al = 1 + 2/3

PRINT AL —— Put Alinto A%
A% = Al

Here is what your screen should show:

/

READY
>Al = 1 + 2/3
READY
>PRINT Al
1.66667 <— Yes, 1 plus2/3 is

READY 1.666666
& >aA% = Al i T

. READY that rounds out to 1.66667
What will this do?! -_

Can you guess what the screen displays when this statement is entered?

PRINT A%

If you said the numboer one (1), you’re correct. When A% is set equal to Al, only the
integer portion of the number is stored into A%. The fractional portion of A!is not
carried over. So, beware! If you are using integer and single precision numbers
together, you can experience inadvertent truncation of results in the computer.

SPECIAL FEATURES AND FANCY FUNCTIONS 189

I feel like I'm

E[b o missing
[> 1.66666666 | something
66666666
2/@ 6666666...\166667
' 1

Double Trouble

A%

Some applications, mostly scientific and engineering problems, require more precision
for the numbers and calculations used. If you want to know why, look up some friendly
neighborhood scientists and have them explain their reasons for this need. As for the
TRS-80, it is ready to handle those problems. Try the following examples and see how
the TRS-80 accomplishes this feat.

Many science applications use the constant pi in calculations. Pi is the ratio of
the distance around a circle to the circle diameter. The formula for this relationship is:

circumference= pi X diameter

So, pi is equal to the circumference (distance around the circle) divided by the
diameter (distance across the circle). Pi (often represented by the Greek symbol a1)
turns out to be a constant for all circles. The value of pior m is:

pi=3.141592653589 . ..

The ellipsis (three dots at the end) indicates that the number goes on forever. Pi can
be represented by as many digits as you want to use, but you always have to truncate
some portion of the never-ending stream of numbers it takes to represent pi exactly.
(It is not possible to actually show it exactly, since the numbers go on forever and
never repeat.) Things become complex when you begin to deal with the world of
science!

But, suppose you need pi to be represented in the TRS-80 with at least as much
accuracy as shown above. Try it and see what happens.

Enter the numbér and have the TRS-80 PRINT it on the screen for you:

PI = 3.141592653589
PRINT PI

Does the result look like this?

>PI = 3.141592653589

READY

>PRINT PI

3.14159 <———— Where’s the rest?
READY

>

190 MORE TRS-80 BASIC

The TRS-80 truncated the last seven digits of the number. Hmm . . . let’s see. Piisa
single precision variable. What is needed is a variable with more precision —
something like a double precision variable.

Try this:

7 PIf = 3.141592653589
PRINT PI#

Anything surprising show up on your screen? Yes? What? Did your TRS-80
remember all of the digits this time?

>PI# = 3.141592653589
READY

>PRINT PI#

3.141592653589 <—————— Yep! There’s

READY the rest.

>
Placing a # symbol after a variable name tells the TRS-80 to reserve space for a
double precision number. But, what does this cost in terms of the number of bytes of
memory?

Comparing Bytes

If you run the same set of comparisons done earlier on the amount of memory used by
double precision variables versus integer and single precision, you would discover that
double precision numbers require 11 bytes of memory. That amount of memory is 4
bytes larger than a single precision number. If it still takes only 3 bytes to store the
name, then a double precision variable uses 8 bytes for the storage of the value. Yes,
that is double the number of bytes used for value storage by a single precision variable.
The following table summarizes these results:

Type of Rutec Tiged

Variable Name Value Total

Integer 3 2 5 <+—— % —=+— Use these
Single symbols

Precision 3 4 7 <—— ! <—— behind the
Double variable

Precision 3 8 1] < # =<—— pame

You also get comparable results for double precision arrays.

Enter the following:
NEW
A#(P) = 1

PRINT MEM

SPECIAL FEATURES AND FANCY FUNCTIONS 191

Your screen should show:

READY
>A#(P) = 1
READY
>PRINT MEM

15476 <¢—-——————- That’s 96 bytes used
READY
>

For arrays, double precision variables use 4 bytes more per array element than single
precision arrays, and 6 bytes more per element than integer arrays. Here is a brief
summary of the space used by unDIMensioned arrays and arrays containing 1000

elements:

Number of Bytes Used
Array UnDIMensioned DIMensioned
Name (11 elements) (1000 elements)
A% 30 2008 - Integer
Al 52 4008 <— Single Precision
A# 96 8008 —~——————— Double Precision

Each array requires 8 bytes to store the name, size of the array, number of dimensions,
and space for each dimension (one dimension in this case). The rest of the space is used
to store the values to be put into the array.

Double Warning! Double Warning!

Take care when letting the TRS-80 convert single precision numbers to double

precision.
Enter the following and observe the results:

NEW
A = 1/3
PRINT A#

Look at the screen carefully:

READY
>AH# = 1/3
READY
>PRINT A#

Strange!!

.3333333432674408
READY
>

192 MORE TRS-80 BASIC

The fraction one-third is another repeating number that can be represented by
a l-o-n-g string of threes after a decimal point.

178289999, (oor—

The TRS-80 screen does not show this result. The last nine digits of the displayed
number are “garbage.” Only the first seven digits are accurate. How can this be fixed?
Simple! Just enter the constant into A# this way:

_A# = 1/3# «—— Put symbol at end

When you PRINT A# after making this assignment, the screen shows:

HISVI DG PLIIITE 176

String Space

So far, all of this chapter’s discussions have dealt with numeric variables and arrays.
What about string variables and string arrays? How do they use memory space?
Begin your exploration of string space by entering the following into your

TRS-80:
NEW
Ag = “17
PRINT MEM

Good! What do you see? Does it look like this?

READY

>as = 1"

READY

>PRINT MEM
,,,,, - P R R T T
1000 —Rpmmmmerens (3 u_yLCb unsvu

READY

>_

That operation used 6 bytes. If it also takes 3 bytes for the name of the variable (like
all the rest you have looked at), then the other 3 bytes must be used to store the string.
Right? Well . . . let’s see.

Try this set of entries:

- r__R

As = "123456789"
PRINT MEM

9 characters

SPECIAL FEATURES AND FANCY FUNCTIONS

193

Huh?! Did you get the same number of bytes of MEMory available?

-

READY

>A$ = “123456789"
READY

>PRINT MEM

15566 Same number!
READY :
= e

How can this be?

Oh, yes! The TRS-80 puts strings in a special block of memory called the string space.
When you first turn the machine on, 50 bytes of memory are reserved for string
operations. (Review chapter 2 for more discussions of this feature.) You can reserve
more or less space by using the CLEAR command. CLEAR 0 releases the string space
for other use; CLEAR 1000 would increase the string space to 1000 bytes.

The difficulty is that when the characters of a string are placed into the string
space, the value of MEM does not change. As more strings go into the space, the space
fills, and, if the space is exceeded, an error message occurs indicating that you have
run out of string space. You need a way to tell how much string space is being used to
avoid having the program stop with an error. The TRS-80 lets you do this for FREe.
(Oops, we gave it away.)

FEC DO~ —~

Requires a “dummy”
argument — any
string will work

Name of
function

Type the following statement into the TRS-80, and observe the result produced:

PRINT FRE("D") Any string will
work
here

The screen should show:

>PRINT FRE('D")

41 - The number of
R>EADY bytes of FREE

memory in the
string space

194 MORE TRS-80 BASIC

The available string space is 50 minus 9, or 41 bytes. Nine bytes were used in the
last example when you entered A$="123456789"". There are nine characters in the
string and that takes up nine memory locations. So, string variables behave somewhat
like numeric variables, except the total amount of memory used depends on the size of
the string being used. The same is true for string arrays. This table summarize these

results:
Bytes Used
Single Variable Arrays
(Includes 3 unDIMensioned DIMensioned
Array Name bytes for name) (11 elements) (1000 elements)
A% 5 30 2008
Al 7 52 4008
A# 11 96 8008

*AS 6 41 3008

*Note: A$ also uses 1 byte for every character that appears in every string. The total
space used is a function of the size of the strings stored in AS.

Naming Names and Saving Space

By now, many of you have probably realized that using the characters %, !, #, and $ to
indicate variable types in a program can lead to a lot of errors in typing. Also, the extra
characters use memory space themselves in simply storing the lines of the program.
The solution: TRS-80 special BASIC language features called type definitions.

The TRS-80 allows you to specify and control how variables and constants are
handled in the TRS-80 memory with statements that DEFine variables to be of a
particular type (integer, single precision, double precision, or string) based on the fist
letter of the variable name. Here’s how it works.

Try this small program:

182 REM ** DEFINING VARIABLE TYPES *+
11 cLS
Variables beginning — 12¢ DEFINT a, X-2 <—A and X through Z

with these letters 138 A = 1.25

. 140 Y = 3.14159
will be typed as 158 PRINT “A = ";A,"Y = ";¥
integers

Line 120 tells the TRS-80 to treat all variables that begin with the letter A and those

that begin with the letters X through Z as integer variables. The last type definition

(X through Z) allows you to specify a range of variables to be of a particular type.
RUN the program and observe the resuits:

It worked! [, A= 1 Y = 3

SPECIAL FEATURES AND FANCY FUNCTIONS

195

The two variables contain only the integer portions of the numbers used in the
program. The fractional portions were truncated because the DEFINT statement told
the TRS-80 that A and Y were integer variables.

Similar statements exist for typing other variables:

Use
DEFINT
DEFSNG
DEFDBL
DEFSTR

To Get These Variable Types

placed

The list of letters
you want to use for
integer, single precision, double
precision, and strings are

after these words

Inter

Single Precision
Double Precision
Strings

Enter and RUN this short program that uses all of the type definition

statements:

STRS$ convertsa ————

number to
string

a

190
119

200
219
220
23p
249

399
319
320
339
340

400
419
429
439
449

Your screen should show the following:

This is
string

—a//-r

REM ** TYPE DEFINITIONS +x*
CcLs

REM **TYPE THE VARIABLE NAMES **
DEFDBL D
DEFSNG S
DEFINT I
DEFSTR Z

REM ** ASSIGN VALUES *#*

DPI = 3.141592652589 @ JT"
SPI DPI

IPI DPI

ZPI STRS (DPI)

[I |

REM ** PRINT RESULTS **

PRINT “DPI = "; DPI
PRINT "SPI = "; SPI
PRINT "“IPI = "' IPI

PRINT 'ZPI ZPI = i ZPI

DPI = 3.141592653589
SPI = 3.14159

IPI = 3

ZP1 = 3.141592653589
READY

196 MORE TRS-80 BASIC

Enough typing of variables. Just remember! When you type in programs and want a
particular type of variable, use type definitions by typing the BASIC language words
that tell the TRS-80 to type the variables the way you want them. Also remember,
when you are typing not to make any errors in typing the type definitions. Got that?
No?! Well, maybe typing variables is not the type of thing you like to do.

A~ TN
We do seem to You're

‘3\133 mismatched not my t/yp\e/\))

ERROR Handling on the TRS-80

The TRS-80 has a unique capability that gives you the chance to intercept errors that
occur and create your own way of handling them. No one likes using a program where
an inadvertent mistake causes the program to abort and stop, often with the display of
some cryptic message that cannot be easily deciphered.

This short program demonstrates an abortive error condition:

B$

Make N an 18@ REM ** ERROR DEMONSTRATION **
118 cLS

integer variable —_—
120 DEFINT N

2p9 REM ** ACCEPT AN INTEGER NUMBER **
21¢ INPUT “PLEASE ENTER A POSITIVE INTEGER”;N
22@ PRINT "OK, I GOT IT . . ."

23@ PRINT “I WILL COUNT TO "; N
240 FOR I = 1 TO N: NEXT I
258 PRINT

260 GOTO 21§

If you RUN the program, you will be asked to enter a positive integer. For integers
from 0 to 32767, the program acknowledges the input and executes the FOR-NEXT
loop N times. Try the program using several values such as 100, 200, and so on.

Now, try entering a value such as 100000. What happens? The program should
stop and the screen shows:

ov?
k)
What’s that PLEASE ENTER A POSITIVE INTEGER? 10@@@@@
mean? 20V ERROR IN 21§
READY
>

Since N was DEFined to be an integer variable, the largest value N can assume is
32767. The number 100000 is too big to go into N. The error méssage indicates this
condition with the cryptic display:

OverFlow. .. & 20V ERROR IN 21§
of course!!

You need some way to detect that an error has occurred and have the program display
a “compassionate” message without causing the program to terminate.

SPECIAL FEATURES AND FANCY FUNCTIONS 197

Add these few lines to the program and RUN the altered version:

12¢ ON ERROR GOTO 1888

19@p REM ** ERROR HANDLING **

Two new Basic statements 191 PRINT “I'M SORRY . . . THE NUMBER MUST
BE LESS THAN 32767"
that you may not 192@ PRINT “PLEASE TRY AGAIN.": PRINT

have used before 193¢ RESUME

When you RUN this changed version, try entering 100000 and observe what
happens:

PLEASE ENTER A POSITIVE INTEGER? 13@@g@@Q
Your error message I'M SORRY . . . THE NUMBER MUST BE LESS THAN 32767
is displayed PLEASE TRY AGAIN.

PLEASE ENTER A POSITIVE INTEGER? - 7

The TRS-80 waits patiently for
a number — the program does
not stop

The statement at line 120 tells the TRS-80 that when an error occurs anywhere in the
program control is to be transferred to line 1000. (Of course, you can choose whatever
line number you want. The error handling does not always have to branch to line 1000.
More on that later.) At lines 1010 to 1020 an error message is displayed, and at line
1030 2a RESUME statement is encountered. The RESUME, in this form, tells the
TRS-80 to continue the program at the line where the error was encountered. Clever!!

But, wait!! You can do even more than detect that an error has occurred. You
can also determine what /ine of the program caused the error and actually detect what
type of error has taken place.

Enter this next error-prone program and observe:

13@ REM ** MORE ERRORS **
118 CLS

2¢@ REM ** CLEAR SOME STRING SPACE **
21@ PRINT ‘PLEASE ENTER THE NUMBER OF"

This will 220 INPUT “BYTES OF MEMORY YOU WISH TO USE”;
clear N bytes ———— 230 CLEAR N: PRINT
of memory

3@ REM ** ACCEPT DATA ITEMS **

31¢ PRINT “PLEASE ENTER THE ARRAY INDEX"
32¢ PRINT “NUMBER, AND THE STRING OF DATA"
33¢ INPUT ‘ITEMS (NUMBER,STRING):"; I,S$(I)
3490 PRINT

359 GOTO 31¢

Index String
goes here

198 MORE TRS-80 BASIC

RUN the program. The screen should clear and the request for the number of

bytes should appear:

PLEASE ENTER THE NUMBER OF
BYTES OF MEMORY YOU WISH TO USE ?-

Let’s say you enter 50 at this request; the program then displays:

PLEASE ENTER THE NUMBER OF
BYTES OF MEMORY YQU WISH TO USE ? 50

PLEASE ENTER THE ARRAY INDEX
NUMBER, AND THE STRING OF DATA

ITEMS (NUMBER,STRING):?-

At this point, you can enter pairs of numbers and strings. The number you enter
is used to index the data into the S$ array. If you enter a one (1), the string of data
that follows goes into S$(1). S$, however, is not DIMensioned, so values of I greater
than 10 cause an error to occur. In fact, several places in this program can cause errors

that stop the routine.

Here are three possible error conditions. Press the BREAK key, and reRUN the
program. Enter the following responses and verify for yourself that these errors do

occur.

Response

Enter 16000 for the
number of bytes to CLEAR.

Enter 50 at the first in-
put request: 11. “O0PS”
at the second.

Enter 10 at the first in-
put request;
1,12345678901” at
the second.

Screen Will Show

PLEASE ENTER THE NUMBER OF
BYTES OF MEMORY YOU WISH TOUSE ? 168§
?0M ERROR IN 23§

PLEASE ENTER THE NUMBER OF
BYTES OF MEMORY YOU WISH TO USE ? 50

Out of memory

PLEASE ENTER THE ARRAY INDEX
NUMBER, AND THE STRING OF DATA
ITEMS (NUMBER,STRING):? 11, “00PS”
?BS ERROR IN 33p

READY

Bad subscript

PLEASE ENTER THE NUMBER OF
BYTES OF MEMORY YOU WISH TO USE ? 1@

PLEASE ENTER THE ARRAY INDEX

NUMBER, AND THE STRING OF DATA

ITEMS (NUMBER,STRING):? 1,"123456789@1
7?08 ERROR IN 330

READY \

Out of string space

SPECIAL FEATURES AND FANCY FUNCTIONS

199

Wow! What a lot of ways to get errors in such a small program. You could handle the
errors by putting IF tests in the body of the program, but that method clutters up the
program’s flow. A simple, direct way to handle all these errors is to add an error

handling routine.

Add these lines to the program and then try the same errors:

129
249
op@
91p
920
939
949

Return
control
at line 210

ON ERROR GOTO 90§ -« Note: Different

ON ERROR GOTO 10@§ -~ line numbers

REM ** ERROR ROUTINE **

PRINT “THAT AMOUNT OF MEMORY IS" are used

PRINT “NOT AVAILABLE. .."

PRINT “TRY ANY VALUE FROM § TO" MEM <—Tells how much

PRINT: RESUME 21§ .
memory is left

(ERR/2) + 1 = Error code**

1999 REM ERROR IS AT LINE 33§ *%
1918 REM ** CHECK FOR BS ERROR *#*

Error code 9 is BS error ————— 102¢ IF (ERR/2)+1 <>9 THEN 1198

Return to line 310

Error code 14 is
out-of-string space

Return toline 210

1930 PRINT “INDEX NUMBER IS TOO BIG
1§49 PRINT “MUST BE FROM g TO 1g¢"
195¢ PRINT “PLEASE REENTER"

$ 106@ PRINT: RESUME 31§

1139 REM ** CHECK FOR OUT OF STRING ERROR **
1119 IF (ERR/2)+1<>14 THEN 120@
error ,—/”’”’4'112¢ PRINT “THE LAST ENTRY EXCEEDED THE
AMOUNT"'
113¢ PRINT “OF AVAILABLE STRING SPACE .
114 PRINT “PLEASE START OVER BY INCREASING
115¢ PRINT '“THE AMOUNT OF SPACE YOU NEED.”

”

1

Return to line with
error

= 117¢ PRINT: RESUME 21§

1299 REM ** ANOTHER KIND OF ERROR OCCURRED **
121@ PRINT “ERROR . . . PLEASE REENTER"
122 PRINT: RESUME

Y

Here is what the screen shows as you enter the erroneous data items:

Error mess

(

PLEASE ENTER THE NUMBER OF
BYTES OF MEMORY YOU WISH TO USE ? 16000
age from ——# THAT AMOUNT OF MEMORY IS

lines 900 to 940 NOT AVAILABLE

Control returned to

line 210

TRY ANY VALUE FROM @ TO 14615

+# PLEASE ENTER THE NUMBER OF
BYTES OF MEMORY YOU WISH TO USE ?-

Enter 50 for this input and then try the second error:

200 MORE TRS-80 BASIC

Error message from —+
line 1000 to 1060

Control returned to —t+
line 310

PLEASE ENTER THE NUMBER OF
BYTES OF MEMORY YOU WISH TO USE ? 50

PLEASE ENTER THE ARRAY INDEX
NUMBER AND THE STRING OF DATA
ITEMS (NUMBER,STRING):? 11,'00PS"”
INDEX NUMBER IS TOO BIG

MUST BE FROM @ TO 1@

PLEASE REENTER

PLEASE ENTER THE ARRAY INDEX
NUMBER AND THE STRING OF DATA
ITEMS (NUMBER,STRING):?-

S$(11) would normally cause a ?BS error
inline 310. The ON ERROR GOTO

see Appendix C.

**For a list of error codes,

routed the program to the error
routine

Now, enter valid index numbers but with long strings of data until the last error

condition oceurs:

Error message from ———

lines 1100 to 1170

Control returned to ———z

line 210

(,r PLEASE ENTER THE ARRAY INDEX

NUMBER AND THE STRING OF DATA
ITEMS (NUMBER,STRING):? 4, “Z22222222Z2%2"
THE LAST ENTRY EXCEEDED THE AMOUNT

OF AVAILABLE STRING SPACE

PLEASE START OVER BY INCREASING

THE AMOUNT OF SPACE YOU NEED.

PLEASE ENTER THE NUMBER OF
BYTES OF MEMORY YOU WISH TO USE ?-

string space (OS) errors. It’s possible to have other kinds of errors occur, especially in

line 330. Lines 1200 through 1220 provide a general error message for any other cases
and RESUMES the program at the input line where the error occurred. See if you can
discover an error that will cause the message at line 1210 to be displayed.

SPECIAL FEATURES AND FANCY FUNCTIONS 201

Other ERRORS I Have Known

You have just been introduced to the error handling capabilities of the TRS-80. You
have used the ON ERROR GOTO, RESUME, and ERR features. RESUME was
used in two ways: 1)-To return the program to the line where the error occurred, and
2) to return the program to a different line by specifying a line number. RESUME has
one more possible use — to ignore an error or continue program execution. By putting
the words RESUME NEXT in your program’s error-handling routines, control is
given back to the next line in the program after the point where the error happened.
So, RESUME can be used in three ways:

Usage Action
RESUME or RESUME 0 Resumes program at the statement
containing the error
RESUME 100 Resumes at line 100
RESUME NEXT Resumes at line after the point

where the error occurred

The TRS-80 also has one other variable name -— ERL — that contains the line
number of the line that caused the error condition. ERL can be used in IF-THEN
statements such as:

995 IF ERL<>>230 THEN 188§

ERROR Summary

You can use a combination of ON ERROR GOTO, RESUME, ERR, and ERL
statements and variables to build your own error routines. The ON ERROR GOTO
statements tell the TRS-80 the location of the error routines. Each error routine can
contain one or more RESUME statements that return control to the main program at
the location you want control returned. You can use ERL and ERR variables to tell
you where the errors occurred and what particular error conditions were encountered.

The rest of the book shows examples (where appropriate) of the use of error
processing within the program presented. The TRS-80 error handling features give
you great flexibility in the way you want error messages and error recovery to work
within your programs.

202 MORE TRS-86 BASIC

Summary

Two major capabilities of your TRS-80 are:

o The use of type definitions and symbols.
o The use of error handling routines.

The TRS-80’s BASIC language has four classes of variables: integers, single
precision, double precision, and strings. You can tell the TRS-80 what variable type
you want to use in two ways: 1) put one of the following symbols (%, !, #, $) after the
variable name, or 2) use a type definition (DEFINT, DEFSNG, DEFDBL,
DEFSTR).

In learning to use these methods of expressing variable types, you saw that each
type uses different amounts of memory and that significant memory savings can be
achieved by using the appropriate variable type. You also discovered that the TRS-80
has several unique features built into the BASIC language to facilitate error
processing. You can build your own error routines and can intercept the normal error
messages that the TRS-80 generates. You have the program display messages of your
choice; messages that state what you want to say to the user. The error handling
statements and variables (ON ERROR GOTO, RESUME, ERL, ERR) can prevent
the program from stopping unexpectedly because of an error condition.

Now try your hand at the self-test that follows as a brief review of what was
discussed in this chapter.

Self-Test

1. Match the correct symbol from the second column with the names in the first
column, as they are used in the TRS-80 to specify the zype of variable within a

program:
(a) Integer— ... 1. #
(b) Single
Precision_____ 2. §
(C) Doubie
Precision_________ 3. %
(d) String 4. !

2. Which of the following four type definition declarations
DEFINT DEFSNG DEFDBL DEFSTR
are used to specify that variables beginning with certain letters are to be:

(a) integervariables? ______
(b) string variables? ——
(c) double precision?
(d) single precision? —

SPECIAL FEATURES AND FANCY FUNCTIONS 203

If you use the following statement in a program,
198 DEFINT A,D,M-Q
which of these variables will be integer valued?
(a) COSTS (b) DEBT (c) TAXES (d) ASSET(5,3) (e) PARTS

How many bytes will you save if you use DIM A%(999) in place of DIM
A!(999) in a program?

(a) 1000 bytes (b) 2000 bytes (c) 4000 bytes (d) none

What are the number of bytes required for each of the following simple
variables?

A% — WA (O)A# . (d)AS
A mathematical constant called e has a value of:
e=2.7182818284590452...

If the following assignments are made, what will the contents of each variable
contain if they were PRINTed?

Assignment Contents
E#=2.182818284590452 a
E! = E# b.
E% = E# C.
d.

E$ = STR$(E#)

The following assignment was made and the result PRINTed. Explain the
results.
>A# = 1/3
READY
>PRINT A#
.3333333432674408

READY
'>.—.

If you want to know how much memory is free for string storage, what BASIC
function would you use?

What are the four key statements and variables used in developing your own
error handling routines?

a. b. C. d.

204 MORE TRS-80 BASIC

10.

10.

Describe what appears on the screen when these two PRINT statements are
executed:

a. PRINT ERL

b. PRINT (ERR/2)+1

Answers to Self-Test

a. 3(%) b. 4() c. 1(#) d. 2(%)
a. DEFINT b. DEFSTR ¢. DEFDBL d. DEFSNG

Variables b, d, and e are integer variables.

Variables a and ¢ would not be integer valued unless there was another type
statement in the program (DEFINT C,T) that told the TRS-80 to make them
integers.

b. 2000 bytes (1000 elements times a savings of 2 bytes/element)

a. Sbytes b. 7bytes c. 1lbytes d. 6 bytesplus]l bytefor
each character in the string.

a. 2.182818284590452 b. 2.182818 c. 2
d. 2.182818284590452

I 2 R NN}
f This is PRINTed as a string \
WWM

The last part of the double precision result was not assigned. The constant 1/3
was calculated as a single precision value, and then assigned to A#. To correct
this problem, the assignment should read:

A# = 1/3# 7 Add the symbol

You would use FRE(AS$) or FRE(“DUMMY™). The argument can be any
string value (it is a “dummy” argument). FRE can be used in calculations and
PRINT statements. It returns the value of the amount of string space still
available for use by the program.

a. ONERROR GOTO b. RESUME c. ERR d. ERL

a. The line number of the last program line where an error occurred.

b. The error code of the last error to occur.
These two variables are valuable-in constructing your own error handling
routines.

CHAPTER TEN

Graphics and Animation

Earlier, in chapter 3, you looked at some of the TRS-80’s graphic abilities using the
SET command, POKE command, CHRS$ function, and string operations. You found
that some BASIC statements put graphic characters or strings of information on the
screen quickly. Some, like SET, do so more slowly but let you control a finer pattern of
graphics on the display. To review, let’s build a small program that compares several
ways of putting the same information on the TRS-80’s display.

The Race Is On
To start, enter and run this small program:

189 REM ** GRAPHICS COMPARISON **
119 cLs

2@ REM ** USING THE SET COMMAND **
% S N 1 219 FOR X = @ TO 127
ET, three small ——— 22 SET(X,®): SET(X,1): SET(X,2
% 2 (X,9) (X, 1) (X,2)
%

rectangles to form: 23f NEXT X

6§@ REM ** WAIT AND THEN REDISPLAY *%
61¢ PRINT@896, “PRESS ANY KEY TO CONTINUE
62¢ IF INKEY$="' THEN 52¢ ELSE 118

Does your screen have a “bar” of light across the top?

PRESS ANY KEY TO CONTINUE

208

206 MORE TRS-80 BASIC

The SET commands produce a bar across the top of the screen. Three rows of 128 tiny
rectangles are “turned on” by the SET statements. Press a key and watch the opera-
tion closely. As it is being drawn, the front edge of the bar seems a bit wavy. There are
moments when you can see each SET statement at work. The small rectangle on the
first row is SET, then the one on the second row, and, finally, the one on the third row.
Now, add the next segment of the program and compare the results. Press the

Break key and enter:

333 REM ** USING CHRS$ **

Alsoproducesthe — 3;5 FO?R}I(N:@gszixea CHR$ (191)
character 33¢ NEXT X ,
Vi

When this expanded program is RUN, the race is on. At the end of the first lap,
the screen shows:

SET

CHRS

PRESS ANY KEY TO CONTINUE

The SET commands and PRINTing CHR$(191) do the same thing — put a bar
across the screen. The difference is that the PRINT statement does the operation
Jastor Precc a kev and ohserve the two barg heing drawn again No doubt about it the
PRINTing of CHRS is fast.

Is there yet a faster way? Yes, there is. Press the Break key to stop the program
and add these lines for the last entry into the race.

Remember, you have \499 REM ** USING STRINGS **

to CLEAR extra 419 CLEAR 64
) 420 PRINT@512, STRING$(64,191);
string space for more

than 50 characters

Produces 64 across
screen

GRAPHICS AND ANIMATION 207

After one race is run, the screen shows:

PRESS ANY KEY TO CONTINUE

Using STRINGS places the bar on the screen much more quickly than any of
the other methods. Press a key and observe how fast the three bars are created. The
STRINGS version goes on in the blink of an eye.

The race is now over and you have a clear winner . . . uh oh! Here comes one
more entry around the bend. You thought the race was complete, but there is still one
more way to put the bar across the screen. The entry is getting closer. It looks like
slowPOKE. Yes, it is slowPOKE; only slowPOKE is not so slow.

Observe by runnning this program:

5@@ REM *% USING POKE **
51¢ FOR X = @ TO 63
How fast is » 520 POKE 16128+X, 191
one? 53¢ NEXT X

When you enter and RUN the program, your screen should show:

fast ——————rt

faster ~——————

fastest —————t—v-

only faster

PRESS ANY KEY TO CONTINUE

208 MORE TRS-80 BASIC

Was POKEing the bar across the screen faster than using STRINGS$? Press a key and
screen

look once more. Yep, STRINGS is still the fastest way to put the bar on the

en.

POKE is also fast, but doesn’t seem to be any quicker than CHRS.

Here is a complete listing of the graphic comparison program:

190
11p

200
219
220
230

fast

3@
31p
320
33p

faster

400
410
420

fastest

Y

500
510
520
53g

POKE along

6pg
619
620

Wait!!

REM *% GRAPHICS COMPARISON **
CLS
REM ** USING THE SET COMMAND **
FOR X = § TO 127
SET(X,@): SET(X,1): SET(X,2)
NEXT X
REM ** USING CHR$ **
FOR X = @ TO 63
PRINT@256, CHR$(191);
NEXT X
REM ** USING STRINGS **
CLEAR 64
PRINT@512, STRINGS(64,191);
REM #* USING POKE **
FOR X = @ TO 63
POKE 16128+X, 191
NEXT X
REM ** WAIT AND THEN REDISPLAY **

PRINT@896, "PRESS ANY KEY TO CONTINUE"
IF INKEY$="" THEN 62@ ELSE 11§

Let’s go with the winner for a while and take the STRINGS function to look at other
graphic operations that can be done quickly.

Splitting the Screen

Using STRINGS, the placement of graphic characters is fast enough to let you do sev-
eral graphic operations that appear to be happening at the same time.
Enter the following lines into your TRS-80 and RUN them:

NEW

190
119

200
219
220
23¢
240

Left side

of screen \‘\\\\““-*-
Rightside —

. 390
Wait

319

Lo

REM ** SPLITTING THE SCREEN **
CLS
REM ** TQP TO BOTTOM/ BOTTOM TO TOP **

FOR Y = § TO 14
PRINT @@ + Y*64, STRINGS(32,191);
PRINT @928 - Y*64, STRING$(32,191);
NEXT Y

REM #** WAIT AND REDISPLAY **
IF INKEY$ = """ THEN 31¢ ELSE 118

GRAPHICS AND ANIMATION 209

When this program is RUN, the screen should show the following sequence of
events:

At the start . . .

~

;

Even later . ..

-

/

Later...

At the end.

\\PRESS ANY KEY TO CONTINUE

_J

Press the space bar several times in suceession. The screen empties and refills within
seconds. The left half fills from the top down; the right from the bottom up. The ac-
tions appear to occur at the same time. The end result is like opening a “window” into
your TRS-80. The white area surrounded by the black border gives you the illusion of
looking into a “window.” Hmm . . . is it possible to make the window any size and put
it anywhere?

210 MORE TRS-80 BASIC

What Light through Yender Window . ..

The use of PRINT(@ and STRINGS lets you place a string of characters anywhere on
the screen and control the size of the string within STRINGS. In the last program, the

statement:
Character
L code
PRINT @P + Y*64, STRING$(32,191);
Length of string

Starting location Increment to
next location

lets you specify completely where the string is to be placed (@0 + Y*64), how long it
is to be (32), and what the displayed character is to be (191). With a little modifica-
tion, this one PRINT statement can become a generalized shape generator or window
maker. Before building the program, let’s examine the PRINT statement that is the
heart of the routine and see how it is constructed.

Suppose, to start, that you want to begin your window anywhere on the screen.
This requirement means a variable must follow the @ symbol:

PRINT @_L

L is for the starting Location
of the window

To put parts of the window down the screen, the starting location must be changed.
Add a variable that changes based on a FOR-NEXT loop (ROW) and an increment
that you want to move up or down the screen (INC) to totally medify the starting
location.

PRINT @L + ROW*INC w_
A ~ How far up or down

Staiting location Currcnt row
The PRINT statement now positions the strings of data on the screen. You can add
the STRINGS function, but let’s also make it as flexible as possible. Let the number of
characters to be printed have a beginning length and let that length vary with each
ROW that is displayed. If you use N for the number of characters and NINC for the
increment that changes that number from ROW to ROW, then the PRINT statement

looks like this:
The ROW counter
PRINT@L+ROW*INC, STRINGS (N+ROW*NINC)
~~—_ Increment—
how many more
Same as before Starting number or less on

of characiers each ROW

GRAPHICS AND ANIMATION

211

To make the statement completely general, let the displayed character be a variable
(CH):

Put semicolon.

on end]
PRINT @L+ROW*INC, STRINGS(N+ ROW*NINC,C;I);

Same as before } Character code
goes here

OK? It may seem like a lot of effort, but remember, this one statement is going to do
all the work. Now let’s build the rest of the program around the PRINT statement and
see what can be done.

Enter the following:
5 rows; starting at | NEW
location 400; moving
19@ REM **% SHAPE MAKER **
down one row each 119 cLs

time (64); with 20

characters each > ;? g ﬁigw;: Sésilfga QI,N IITI;ICA_LB 4V ALUES =x
“})IW (NtIcho)l;gl 22@ N=20: NINC=@: CH=191
character code

3¢@ REM ** DISPLAY SECTION *%*
312 FOR ROW = @ TO NROWS—1

320 PRINT@L+ROW*INC, STRINGS (N+ROW*NINC,CH) ;

33¢ NEXT ROW

50@ REM ** WAIT AND REDISPLAY **

519 PRINT @896, “PRESS ANY KEY TO CONTINUE"

52¢ IF INKEY$= """ THEN 52@ ELSE 11§

That’s all there is to the program. RUN it.
Does this display appear on your screen?

20 wide
\

Location /

400 \\,__\/___\ |

e 5 rOWS

PRESS ANY KEY TO CONTINUE

212 MORE TRS-80 BASIC

Simple! Want to make the window wider? That is easy too.
Enter this line and RUN the program:

228 N=4@: NINC=§: CH=191

The “window” will
be twice as wide

Does your screen now show:

/

40 wide

PRESS ANY KEY TO CONTINUE

Changing the value of N from 20 to 40 causes a rectangular “window” to appear on
the screen. In a similar fashion, you can alter any of the variable values in lines 210
and 220, and other shapes appear. Pressing any key except the Break key causes the
shape to be redisplayed.

Try this change:

220 N=4Q: NINC=—-8: CH=191

Hmmm . . . a minus eight!
Wonder what that
willdo...?

If you made the last change and have run the altered program, your screen
should show:

/

(
—— 40 wide

NINC=-8 |
made each ™~
oW 32
shorter 24
« 16
8
PRESS ANY KEY TO CONTINUE

GRAPHICS AND ANIMATION 213

Interesting! You do have a shape maker, but you also need a simple way to change the
variable values so you can have the new shapes drawn quickly. Let’s alter the way the
variables are assigned values and use INPUT statements to change values.

A New Shape Maker

Here is a much more flexible version of the shape maker. The program is altered in
several ways to add the flexibility INPUTting the values directly. The alterations are
worth the extra effort, as you will see. Here is the new program:

NEW

188 REM ** NEW SHAPE MAKER **

119 CLS .
12@ CLEAR 1000 - Make room for strings

208 REM ** ACCEPT THE INPUT VALUES **
21¢ PRINT @@, ‘"CHANGE VALUES(KEYS 1 TO 6):CONTINUE(OTHER KEYS)
22@ PRINT @64,"1(NROWS),2(LOC),3(INC),4(NCHR), 5(NINC),6(CHR)

23@ AS$=INKEYS$: IF A$='" THEN 23¢ ELSE I=VAL(AS)
24Q IF I=@ OR I>6 THEN CLS: GOTO 41§

This part 250 REM ** CLEAR THE FIRST TWO ROWS **

handles the > 26¢ PRINT @@, STRINGS$(128," ");

27@ PRINT @@, THE CURRENT VALUE FOR VARIABLE" I “IS8" A(I-1)
INPUTS 28¢ PRINT @64, "“ENTER THE NEW VALUE";
29@ INPUT A(I-—1)

399 GOTO 21¢

The array A 480 REM ** DISPLAY SECTION **
is being used 41 FOR ROW = § TO A(f)—1 <+—o
420 PRINT @A(1)+ROW*A(2), STRINGS(A(3)+ROW*A(4),A(5));
to store values 430 NEXT ROW
A(0) through A(5) 449 coTo 219 T T
{

Enter and RUN this program. The first thing you see should be:

CHANGE VALUES (KEYS 1 TO 6);CONTINUE(OTHERKEYS)
1(NROWS) , 2(LOC),3(INC),4(NCHR) ,5(NINC),6(CHR)

Start Number of Character
location characters code
Number of How far How many
rows up or down more or

less each row

214 MORE TRS-80 BASIC

Press the number one (1). What happens? The screen clears and then shows:

THE CURRENT VALUE FOR VARIABLE 1 IS @
ENTER THE NEW VALUE?~

Enter the value 5 and press the Enter key. The screen clears, and the first display
returns:

CHANGE VALUES(KEYS 1 TO 6);CONTINUE(OTHER KEYS)
1(NROWS),2(LOC),3(INC), 4 (NCHR),5(NINC),6(CHR)

Enter the following information:

PRESS Then Type
2 400 Press ENTER
3 64 after the
4 20 values are
6 191 typed
ENTER

When you press the Enter key the last time, the screen shows:

-

CHANGE VALUES(KEYS 1 TO 6);CONTINUE(OTHERKEYS)
1(NROWS), 2 (LOC), 3(INC),4(NCHR),5(NINC),6(CHR)

GRAPHICS AND ANIMATION 215

Aha! Your “window” is back. Now move the “window”. Press key 2.
The screen displays:

(

THE CURRENT VALUE FOR VARIABLE 2 IS 48¢
ENTER THE NEW VALUE ?-

Location 400

Enter 200, press the Enter key, and then press the Enter key again. The window
moves up and to the left, like so:

/

CHANGE VALUES(KEYS 1 TO 6);CONTINUE(OTHER KEYS)
1(NROWS) ,2(LOC),3(INC),4(NCHR),5(NINC),6(CHR)

New position

Old position

216 MORE TRS-80 BASIC

Experiment with other value changes. Change the location back to 400 (variable
2) and change variable 5 to a minus 4.
The sawtooth shape appears:

Change variable 5 back to zero, and change variable 6 to character code 188.
Is this what you see?

Now, once again set variable 5 to a minus 4.
Does the *“bar chart” appear?

GRAPHICS AND ANIMATION

217

Experiment with other changes. Alter the character code while keeping the same
shape. What do you discover? Is it possible to make these two shapes? (Hint: You
must set variables 3 and 5 to specific values to get these two shapes.)

The TRS-80 Electronic Easel

The TRS-80’s graphic abilities are fun to use. Make this one small change to the shape
maker program you have been using, and then sit back for your first electronic art
lesson:

24@ IF I=@ OR I>6 THEN 41§

Now the shape maker will not erase the shapes you put on the screen. You can put one
shape on the screen, move it to another location, and both are displayed. You can then
add a third shape, dlter the character codes, and put as many different shapes as you
want on one screen. Experiment with the program. Here is a picture of a shape we
created:

X LEE]

R AR
AEARRERRARAIE

AR g

[NEARRR AR AR RN RN
,IlHIIHHHHIIIII

RN IARRRARRERRRARY - -
IEERER RN R R AR R R

ARINARANRRARNES
LRI

If you want to remove a shape from the screen, use character code 32 (space). You can
also use this code to create “holes” in your drawings. Try other codes also, such as the
numbers 48 through 57, and the letters 65 through 90. Have fun with the electronic
easel.

218 MORE TRS-80 BASIC

Shake, Rattle, and Rumble

The entire discussion on the shape maker programs was designed to show you how a
single routine can be used in variety of ways. The shape maker is like a tool in your
toolbox of routines that you can pull out and incorporate into other programs you are
building.

Here is another such routine that can be used to simulate being hit by cannon
fire or being caught in an earthquake. (Art Canfield of Cybernautics Software uses
something like this in his game Taipan.)

Enter this program and RUN it to see what happens:

NEW

199 REM ** THE SHAKER PROGRAM **
119 cLS

20@ REM ** PUT A SHAPE ON SCREEN **
. 219 FOR ROW = @ TO 4
S bars at location —————— 220 PRINT @4@@+ROW*64, STRINGS(20,188);
400 23@ NEXT ROW

3PP REM ** MAKE IT SHAKE **
319 FOR I = 1 TO 20

What’s this? > 320 PRINT CHRS$(23)
338 REM ** WAIT A BIT **
34 FOR J=1 TO 1§: NEXT J
350 PRINT CHRS(28)
36¢ NEXT I

400 REM ** WAIT AND REDISPLAY *%*
41p IF INKEY$="'' THEN 41§ ELSE 11¢

The image is placed on the screen and the screen then appears to go crazy for a
moment. Press a key (except the Break key), and the shaking repeats. Great! Now you
have a routine to shake things up a bit.

GRAPHICS AND ANIMATION

219

Big and Small

The shaker program that you just examined makes two new uses of CHR$:

CHRS$(23) CHRS$(28)

Character codes

To demonstrate what these two character codes are actually intended to do, en-
ter and run the following program:

NEW
Easy on 199 REM **SMALL TO BIG**

the typing 119 cLS .

fi 120 PRINT@448, “YOUR TRS-8¢ WILL SERVE
ingers YOU WELL"

The message in the PRINT statement appears on the screen:

The message YOUR TRS-8f WILL SERVE YOU WELL
READY
>_

Now, add the following line to the program:

115 PRINT CHRS$(23)

What happens when you RUN this altered program? Yes, the message appears, but in
big letters. CHR$(23) tells the TRS-80 to display 32 characters across the screen
where there are normally 64 characters. The characters appear twice as big with
CHRS$(23).

Great! You can make your program messages easy to read by using CHR$(23).
What about CHR$(28)? If you PRINT CHR$(28), the TRS-80 goes back to display-
ing smaller characters.

220 MORE TRS-80 BASIC

Type the statement in the Immediate Mode and observe the screen:

PRINT CHRS(28) Return to regular-
\/ sized characters

Your screen should show:

READY Message is there, in
== / small letters

YOUR TRS-80 WILL SERVE YOU WELL

READY

> PRINT VcQs(za)f‘
Where did all
the spaces

come from?

CHRS$(28) tells the TRS-80 to go back to 64 characters per line, and it also
homes the cursor (puts it in the upper left corner of the screen). The READY message
appears at the home position in the regular small letter format.

Hold it! The messages that were on the screen before the PRINT CHR$(28)
was executed have spaces between each letter. Why so? Well, when CHR$(23) is used
the TRS-80 takes up two positions from the 64-character line to make one position in
the 32-character line. When the process is reversed, each of the second-character posi-
tions in the 64-character line are empty. This feature offers some interesting possibili-
ties to vary your displays. But, one word of caution!! When using CHR$(23), every
PRINTed message must be placed on the screen at an even numbered location.

Change line 120 to what follows and look at the results:

12@ PRINT @449, “YOURTRS-80WILL SERVE YOU WELL"

0Odd numbered location

RUN this program. What do you see? Nothing? Yes, you see nothing.

This will be

in big

letters READY No message!!
>

GRAPHICS AND ANIMATION

221

Type PRINT CHRS$(28) in the Immediate Mode. Does your screen show this?

~

READY - Everything

- back to
small . .
letters The message is back

now?!

YOUR TRS-8¢ WILL SERVE YOU WELL
READY
> PRINT CHRS$(28)

The message is still there, but the characters are in each of the second-character posi-
tions. When CHR$(23) is used, the TRS-80 takes the characters in each of the first
positions (they are spaces) and expands them into the larger character format. In this
case, you get a row of bigger spaces. Oh, well!! Change the PRINT location back to
448 or some other even-numbered value and this problem disappears (or reappears, as
the case may be).

Biilboard Time

If you have changed line 120 so that the PRINT location is 448, your program looks
like this:

19@ REM **SMALL TO BIG**

119 cLS
Makes big » 115 PRINT CHRS$(23)
[
characters 120 PRINT @448, “YOUR TRS-80 WILL SERVE
YOU WELL

Let’s add a few lines to turn this program into a flashing billboard display:

Wait! —— & 13p FOR I 1 TO 3@¢@: NEXT I
149 PRINT CHRS(28) <-——— Big letters
Wait again ~——— 150 FOR I = 1 TO 3@@: NEXTI
168 GOTO 115 = Back to large letters

The CHRS$(23) at line 115 puts the message in large letters. CHR$(28) at line 140
sets everything back to 64 characters per line. The message appears in smaller letters
but with spaces between each character. The delays at lines 130 and 150 hold each
version of the message on the screen for a while. The result: a flashing billboard
message.

222 MORE TRS-80 BASIC

RUN the program, and see it for yourself. As you watch the message flash be-
tween the two character sizes, think back to the Shaker Program. Can you now see
why that earlier program seemed to make objects on the screen “shake?”” The program
was making several rapid shifts from 32 characters to 64 characters and back again.
The effect produced was like watching the object being vibrated or hit by cannon fire.
The use of CHRS$ to “shake” the screen was probably not meant to be an intended use
of the function. Nevertheless, it is an effective way to simulate being “shaken,” and
you may find many more uses for this feature in your programs.

New York, New York ...

Watching the flashing billboard may remind you of other forms of billboard signs, like
the ones in New York’s Times Square. Some signs flash; others display a message a
few letters at a time and move the message past your vision from right to left. Can the
TRS-80 be made to display one of these “endless” messages? Of course it can.

Enter this program to see the TRS-80 turn into a billboard display sign:

1@9@ REM ** TRS-8(BILLBOARD DISPLAY *%
118 CLS
120 AS = " YOUR TRS-8¢ WILL SERVE YOU WELL . . . K/Onespace

20@% REM ** ROLLING DISPLAY **

Start with — 219 1 = 1 /Displays6characters
one 220 PRINT @480 MID$(AS$,I,6) at a time
short/”"ﬁg i‘oiJI ; 11 TO 50: NEXT J
wait! 25¢ IF 1>LEN(A$) THEN 21§ ELSE 220
Check for end of
message

RUN the program and observe with delight what appears. Hereisa

renregentation of what vou shonld see:

e
First — Y| Message is
Next — YO moving in
Next — YOU this direction
Next - YOUR —

Next — YOUR

Next — YOUR T

Next ~ OUR TR | _|

etc. etc.

This animation effect is difficult
to show on paper. Run the program.

GRAPHICS AND ANIMATION 223

The partial message moves from right to left past your vision and disappears off the
left side. The entire message is displayed and then begins again. This technique is a
clever way to pack a large message into a small “window” on the screen. (The Carlston
brothers of Broderbund Software use examples of this horizontal scrolling in their pro-
grams the Galactic Trilogy.) The billboard sign is being displayed in small letters.
Would you like a bigger sign?

OK, change line 110 to read:

119 CLS: PRINT CHR$(23)

Big letters

RUN the altered program and your sign should appear in large letters. You can use
this routine in many ways in your programs.

Billy the Goat

Up to now, you have seen several techniques for displaying graphics. You have not
used the SET and RESET commands, but rather have relied on the faster CHR$ and
STRINGS functions. However, there are places where SET and RESET can be used
effectively. Since they access the small rectangles on the screen, you can use them in
situations where CHRS and STRINGS may not be effective. The next example ulti-
mately combines STRINGS with SET and RESET.

Enter and RUN this program:

NEW
19@ REM ** BILLY GOAT **
119 CLS

120 CLEAR 288

200 REM ** CREATE THE GOAT *%*

Thisisa = 210 A$ = STRING$(4,156)+"@"
goat?

223 REM ** WALK THE GOAT **

230 FOR X = @ TO 59
You used this » 240 PRINT @@, STRINGS(X,32)+A$
technique 25p NEXT X

in chapter 3

224 MORE TRS-80 BASIC

When you ran the program did “goat’ appear and walk across the screen? Oh, it
een. Let’s slow it down then.

appeared, but it rgn across the scr

. Four of these look like:

The character 156 is

When you add the @ sign, you get a “goat.”

Type these lines into the program:

Slow the ———————» 250 FOR I = 1 TO 5@: NEXT I
goat 260 NEXT X

There! Does the goat “walk” now? It does, but its gait is rather stiff-legged. So,
let’s make another modification to the program to move the goat’s “legs.”
Enter these program lines into the TRS-80:

25§ FOR I = 1 TO 2
260 R = RND(8)—1 o
Randomly set 279 RESET (X*2+R, 2) <Leg position is
and reset the 289 R = RND(8)=1 " Jocation of goat’s
s el o 290 SET(X*2+R,2) . .
goat’s “legs 399 NEXT I tail(X), times two
31¢ NEXT X (XX2), plus
the random number
R(0to7).

Whai happens when you RUN ihis program? The goat now “waiks™ across the
screen, and its legs are ““moving” on their own, not just with the movement of the body.

Thus, SET and RESET can be combined with other graphic statements to pro-
duce special effects on the screen. As you remember, CHRS$ and STRINGS display
six small rectangles at once. SET and RESET work with only one of the screen’s tiny
rectangles. A normal line has 64 character positions, but 128 SET/RESET positions.
That difference is why lines 270 and 290 in the program multiply the position of the
“goat’s tail” (X) by two (XX2). A humorous action occurs if you change each line to
X+R. Try it and see what occurs.

GRAPHICS AND ANIMATION

225

Summary

This chapter has expanded your ability to use your TRS-80’s graphic powers. You dis-
covered that the STRINGS function is the fastest way to put strings of characters on
the screen. You found that you could split the display area into several pieces and
made it appear as if you were doing something in each area at the same time.

You also developed a shape generator and shape maker program and then modi-
fied it into an electronic easel.

Finally, you explored several small routines to simulate “shaking’ the screen.
The CHRS functions changed the size of the characters that the TRS-80 generated.
You turned the TRS-80 into a flashing billboard and one that displayed an endless
message. And, of course, you played with Billy the Goat.

Time now for a few exercises (both physical and mental). After you have flexed
your muscles, move on to the self-test at the end of this chapter and flex your mind.
See you again in chapter 11.

Self-Test

1. Which of the following statements and functions put characters on the screen the
fastest?

(a) SET (b) CHRS$ (c) STRING$ (d) POKE

2. Write a statement to put a solid bar on the screen from locations 448 to 575 (two
rows). First, type: CLEAR 128
PRINT @

3. Write a set of statements to quickly place a vertical bar on the screen, beginning at
location 30 and going to the bottom of the screen. Make the bar 10 characters wide.
CLS: FOR Y = § TO 15: PRINT@ : NEXT Y

4. Write a set of statements to quickly place a “stair step” set of bars 10 characters
wide from the upper left corner to the bottom of the screen. Make each bar shift
one location to the right from the preceding bar.

CLS: FOR Y = § TO 15: PRINT @ : NEXT Y

5. Describe what CHR$(23) and CHR$(28) do when PRINTed.

226 MORE TRS-80 BASIC

6. Write a small program to “flash” from big to little letters the message:
ATTENTION ! ATTENTION !f

7. Write a program to horizontally scroll an “arrow” from left to right in a small

“window’ near the center of the screen.

8. Describe what happened in the Billy the Goat Program when the SET and RESET
parameters were changed to X-+R.

GRAPHICS AND ANIMATION 227

Answer to Self-Test
1. (c) STRINGS is the fastest way to place characters on the screen.
2. PRINT @448, STRINGS$(128,191);

3. CLS: FOR Y = @ TO 15: PRINT @ 3¢+Y*64, STRING$(18,191);:NEXT Y

i

4. cLS: FOR Y = § TO 15: PRINT @@+Y*65, STRINGS$(1#,191);:NEXT ¥

5a. CHR$(23) tells the TRS-80 to use 32 characters per line.

5b. CHR$(28) tells the TRS-80 to use 64 characters per line.
CHRS$(28) also homes the cursor (moves it to the upper left
corner of the screen).

6. 1@ REM ** FLASHING MESSAGE **

119 CLS

12¢ PRINT CHR$(23)

13¢ PRINT @448, “ATTENTION !! ATTENTION ! t" v

140 FOR I = 1 TO 3@@: NEXT I Your

15p PRINT CHRS(28) programs

16§ FOR I = 1 TO 309@: NEXTI

17¢ GOTO 120 may be
different

7. 199 REM ** SCROLL LEFT TO RIGHT *+*
11¢ CLS
120 Ag§ = “*zwom \

one space 5 spaces

2¢9 REM ** DISPLAY SECTION **
218 1T = LEN(A$)

228 PRINT @480, MIDS$(A$,I,6);
239 FOR J= 1 TO 5@: NEXT J
249 I = I —1

250 IF I= @ THEN 21¢ ELSE 22§

8. We’re sorry, but that information is personal. Even Billy the Goat is entitled to
some privacy:

CHAPTER ELEVEN

Arithmetic Functions

You have probably used two arithmetic functions — RND and INT — in some of
your earlier programs. These two functions were discussed in the first book in this
series and they were used in several programs in the current book. RND generates
sequences of “random” numbers. INT operates on a number, drops the fractional
part, and returns with the closest integer value that is less than or equal to the number
that you gave to the function. For example:

You type: The screen shows:
PRINT RND(6) 5
PRINT INT(2.59) 2
PRINT INT(—1.7) -2

Try these examples on your TRS-80. Note: since RND is random, your screen
can show any number from 1 through 6.

Your TRS-80 has many more functions that can operate on the numerical
variables and constants within a program. All these functions are called arithmetic
functions since they perform a variety of mathematical and computationali tasks, as
well as help you work with numbers within the TRS-80. All these functions return
numeric values to the program.

Conversion Functions

Several functions exist to convert between integer, single precision, and double
precision values. As a review, enter and RUN the next program that displays the same
input values with different precisions:

229

230 MORE TRS-80 BASIC

Remember:
is double precision; . 1@ REM ** PRECISION DISPLAY *%

! is single precision; :;g ii,t f A31;141592653589
% is integer. 139 A% = A#

149 CLS

150 PRINT “A# =";A#

168 PRINT “Al! =";A!

178 PRINT “A% =";A%

Your screen should show this display when the program is RUN:

A# = 3.141592653589
You’ve A! = 3.14159
e
this before -

Remember, these symbols (#, !, %), tell the TRS-80 that the variables areeither

double precision, single precision, or integer valued.
Now, with the screen showing the results of running the program, type the

following line (don’t clear the screen or type NEW):
PRINT 1/CDBL(A%)

What'’s this? -

Does the screen show this?

A# = 3.141592653589
Al = 3.14159
A% = 3
Double >PRINT 1/CDBL(A%)
precision .3333333333333333 =——— Hmmm . ..
resuitil READY
| =

CDBL converted A% (an integer variable) to double precision thus forcing the entire
expression to have a double precision result. This feature is handy to temporarily make
a double precision computation with constants and variables that are either integers or
single precision. In this way you don’t have to put the values to be computed into a
double precision variable location and do the arithmetic. You, therefore, save memory
(remember how much room double precision variables occupy) and still can have the
benefits of double precision computations. How would you convert from double to
single precision? The typography gives you the answer — use CSNG.

ARITHMETIC FUNCTIONS

231

Try it with the results of the current program by typing:

PRINT CSNG(A#) <———— Tryit!

A# is a double precision variable that contains the number 3.141592653589, once the
program is RUN. What does your screen show when you enter the PRINT statement?

Is this what you now have?

o

Single
precision

result —_ |

3.141592653589

Al 3.14159

A% 3

>PRINT 1/CDBL(A%)
.3333333333333333

READY

>PRINT CSNG(A#)

AH

[}

T 3.14159

READY
>

CSNG performed the same operation as the program assignment of A! = A#. In

each case, the value in A# was converted to a single precision number.
Have you guessed what the last function is? Yes, it is one that converts values to

integers. The name of this function is CINT.

Type this line into your TRS-80, and

see what happens:

PRINT CINT (A#) -t 'i"ry it also

The screen should now show:

(

A#f = 3.141592653589
Al = 3.14159
A% = 3
READY
>PRINT 1/CDBL(A%)
.3333333333333333
READY
>PRINT CSNG(A#)
Integer 3.14159
result READY
T | >PRINT CINT(A#)
—a
READY
>_

Using CINT results in the same final value as the program assignment A% =
A#. The integer portion of the value is stripped from the number, with the fractional
part dropped. CINT works the same way as INT. They both return an integer value
that is the closest value less than the number or expression within the argument field.
CINT is different in one respect — it only deals with values that are in the range of
—32768 to +32767. Numbers outside that range produce an 70V ERROR

(overflow).

232 MORE TRS-80 BASIC

Try these examples on your TRS-80. What will be displayed?

PRINT CINT(2.75) ~——— 2 displayed
PRINT CINT(—1.4) <———— 2 displayed
PRINT CINT(111111) <————— 70V ERROR displayed

Using the Conversion Routines

Significant time and memory savings are made by using the conversion routines. First
enter and RUN the next program:

1@@ REM %% TIME TRIALS **
119 CLs

Does B# X C# }ig gz = 16/CDBL(3)

20 /CDBL(3)
2000 times 140 FOR I = 1 TO 2000
158 A = BH * C#
16§ NEXT I

17¢ PRINT “CALCULATIONS COMPLETE"

The program takes a l-o-n-g time to run. The double precision variables B# and C#

make the TRS-80 work to perform the multiplication shown in line 150. Time the

program. The routine should make the 2000 calculations in about sixty seconds.
Now, suppose all you need at line 150 is the single precision portions of B# and

C# to use in the computation. Make that change and see how long the program takes.
Reenter line 150 as follows:

158 A = CSNG(B#) * CSNG(C#)

Now RUN and time this program. Surprise! The program now executes in twenty-five
seconds. By changing line 150, you told the TRS-80 to work with just the single
precision portions of B# and C#. The result is a savings of thirty-five seconds when the
program RUNs.

You must be anxious to try the last test — changing the calculation to integers.
(o ahead, and enter this line:

159 A% = CINT(B#) XCINT(C#)

What happens when you try this version of the program? Almost no change? That
seems to be true; the program may run one or two seconds faster than the last version,
but it is difficult to tell the difference. Most of the savings are made ir just dropping
the double precision, no matter how the drop occurs. You may want to experiment
further with programs that test how fast the TRS-80 works. Go ahead and explore.
Try changing the mathematical operation to addition, subtraction, division, and
exponentiation. Vary the conversion functions and record all the times of execution.
Learn how your TRS-80 works and you will enjoy its capabilities even more.

ARITHMETIC FUNCTIONS

233

What Else Can You Do with Numbers?

Type NEW and clear any old programs from your machine’s memory.
Now enter this statement:

PRINT SGN(7), SGN(—7), SGN(@)

Look at the result on the screen. Can you guess what SGN is all about? Yes, it stands
for the SiGN of the number; that is, SGN tells you whether a number is positive,
negative, or zero. How?

Look again at the screen:

PRINT SGN(7), SGN(-7), SGN(@)
1 -1 g -+
. READY
> - Zero
+

SGN returns a +1 when the number is positive; —1 when the number is negative;
0 when the number is 0. How can this function be used?

Enter the Oracle Program given below. This program tells you whether a num-
ber you enter is negative, zero, or positive.

198 REM "ORACLE PROGRAM"

119 CLS
Have you 12@ INPUT “PLEASE, ENTER A NUMBER'; N
seen this \13 ON SGN(N)+2 GOTO 148, 15 6
. N(N GOTO 1
before? 13¢ (N) 2, 2, g
14¢ PRINT “THE NUMBER IS NEGATIVE.”: GOTO 128
158 PRINT “THE NUMBER IS ZERO.": GOTO 12@
L. 168 PRINT ‘“'HE NUMBER IS POSITIVE.':
SGN(N)+2 is either g GoTo 129
1,2,0r3

RUN the program and enter the three numbers 7, —7, and 0. The screen should
show:

The oracle PLEASE, ENTER A NUMBER? 7

works THE NUMBER IS POSITIVE.
PLEASE, ENTER A NUMBER? —7
THE NUMBER IS NEGATIVE.
PLEASE, ENTER A NUMBER? §
THE NUMBER IS ZERO.
PLEASE, ENTER A NUMBER? -

234 MORE TRS-80 BASIC

Try other values. Can you fool the oracle? Try entering —0 or +0. Does the pro-
aram get thoge right? Yep, it’s tongh to fool an oracle. How about small numbers? Try

.00000001 or —.000000000001. They work also!! Well, you might try:

.001

4 4

What did you get? Aha, that number fooled the oracle. Actually, what happened is
that the number is beyond the precision of the TRS-80 computer. The INPUT routine
treats the number as it would a zero. The shorthand notation for the number is

40 zeros

1E-41
T~ A 1 with 40 zeros to the
left and the decimal point
on the left end

So, the oracle wasn’t fooled. The INPUT routine converted the number to a zero and
then went on to the SGN test. Oh, well, the number 1E-41 is almost zero.

Try 1E-38 at the INPUT request. The program says that number is positive. Try
1E-39. What happens in this case? Yes, the program says that number is zero. Some-
where between 1E-38 and 1E-39 is the smallest number that the TRS-80 can accept as
an INPUT. Maybe you can locate that number. Try .99E-38, then .98E—38, then,
then .95E-38, then .94E-38. You should see positive, positive, positive, and negative
results, respectively.

Now you know it is somewhere between .95E-38 and .94E-38; you are narrowing
in on it. The last number you tested was .9404E-38 and it tested positive. You might
want to continue this search on your own.

When you get tired of looking for the smallest number, enter this next statement:

PRINT ABS(7), ABS(—7), ABS(@)

L
Another new
function

Does the screen look like this?

PRINT ABS(7), ABS(—7), ABS(@)
7 7 o}

READY
>_

Where is the minus

sign?

ARITHMETIC FUNCTIONS

235

You have probably guessed what ABS does. ABS eats minus signs; that is to say, ABS
returns the ABSolute value of the argument it receives. If the argument is positive or
zero, ABS of the argument is equal to the argument. If the argument is negative
(arguments are almost always negative . . . discussions can be positive), ABS returns
the argument without its minus sign. ABS negates negative arguments, making them
positive. Is all of this clear? If not, just remember ABS eats minus signs.

ABS is best used to test the difference of two values, such as:

IF ABS (X2—X1) <.@@@@1 THEN STOP

The statement shown causes the program to stop when the absolute value of the differ-
ence between the variables X2 and X1 is less than .00001 in value. The program stops
even if X1 is bigger than X2, as long as the difference is between

(—.00001 < difference <.00001

Without a function like ABS, the number of lines needed to make the test and stop the
program increases, and the logic of making the tests gets complicated.

Let’s examine one final function that tells you something about a number in your
TRS-80. SGN tells you what the sign of a number is; ABS tells you what a number is,
without its sign.

Enter this statement and determine what the new function tells you about a
number:

PRINT FIX(7.5), FIX(=7.5)
Aha! :
A name
that is readable

Does your screen show:

PRINT FIX(7.5), FIX(-7.5) @
=7 <
READY

> O

Hmmm . .. FIX looks a bit like INT or CINT. But, wait! There is one difference:
FIX(—7.5) gives back a —7. INT and CINT would return a value of —8. FIX simply
returns the integer portion of the number and strips away the fractional part. How can
FIX be used?

Try this set of entries:

A = 7.55
PRINT FIX(A) "“DOLLARS AND" (A-FIX(A)) *1g8"“CENTS"

236 MORE TRS-80 BASIC

Here is what the screen should show after making the two entries:

A = 7.55
READY
>PRINT FIX(A) ‘DOLLARS AND" (A-FIX(A))*1g@g ‘CENTS"

Clever! 7 DOLLARS AND 55 CENTS
READY
>_ /
Gives the

fractional part

Anytime you need only the integer portion of the number, FIX can give you that value.
Try a few FIXes in your own programs.

The Square Root Function

Up to this point, all the functions you have used dealt with manipulating numerical
values (changing precision, locating the sign of the number, returning the absolute val-
ue, etc.). With the next function, you will perform your first true mathematical opera-
tion on a number.

Enter this statement:

In math notation, Back to funny
SSRM) is \/4 Of ————— 5 PRINT SOR(4) names again
4

Did you get the number 2 printed on your screen? The number that was returned
is the square root of the argument 4. In other words, 2 is the number that when
squared (multiplied by itself — 2 X 2), gives the number 4. (Yep,2 X 2 =4.)

Now try:
PRINT SQR(2)

-~ A
anc

PRINT SQR(121)

V2
V121

Did you get 1.41421 for SQR(2) and 11 for SQR(121)? Yes? Great! Let’s see . ..
11 X 11 is easy to check. That multiplication gives 121 as an answer. But, what about
1.41421 X 1.414217? How can you check that one?

Use the TRS-80. Just type:

PRINT 1.41421*1.41421

ARITHMETIC FUNCTIONS 237

What did you get? Oh! You got 1.99999 instead of 2. It is close, but not exact.
What happened? Well, the square root of 2 is a number like some earlier ones you
worked with that have endless fractional parts that never repeat. So, 1.41421 is only
part of the number. Many more digits go after those shown. A still better way to check
is to let the TRS-80 keep as many digits as it can while making the computation.

Try this version:

PRINT SQR(2)*SQR(2)

The answer comes back exactly 2 in this case. Is there any other way to check the
answers? After all, using the function that produces the answers to check itself doesn’t
seem fair. Here is a short program that computes the square root using an iterative
procedure (a routine that keeps making successive approximations of the answer and
stops when the result is sufficiently close to the desired value).

Any positive
value will
work

Here is use of

ABS

\

Make the old guess
the new guess T

190
110
120

139
149

150
160

179
180

190
209

219
220
239

249
250
269
279

REM ** NEWTON-RAPHSON EQUATION **
REM ** TO COMPUTE SQUARE ROOTS **
CLS

REM ** SET X1 TO ANY POSITIVE VALUE **
X1 = 5@

REM ** N IS VALUE FOR SQR(N) **
INPUT "ENTER VALUE "; N

REM ** COMPUTE APPROXIMATION *%*
X2 = .5%(X1 + N/X1)

REM ** CHECK FOR STOPPING **
IF ABS(X2-X1) <.@@@@g1 THEN 240

REM ** EXCHANGE X1 and X2 **
X1 = X2
GOTO 189

REM ** DISPLAY RESULTS *%
PRINT “THE SQUARE ROOT IS" X2

PRINT “THE SQR FUNCTION GIVES" SQR(N)
GOTO 168

Enter and RUN this program using the values 4, 2, and 1E17 at the INPUT re-
quest. The screen should show:

The answers
are the
same

N

ENTER VALUE? 4

THE
THE

SQUARE ROOT IS 2
SQR FUNCTION GIVES 2

ENTER VALUE? 2

THE SQUARE ROOT IS 1.41421
THE SQR FUNCTION GIVES 1.41421
ENTER VALUE? 1E17

THE
THE

SQUARE ROOT IS 3.1622BE+f8
SQR FUNCTION GIVES 3.16228E+@8

ENTER VALUE?

238 MORE TRS-8¢ BASIC

The routine seems to work, and both the iterative formula and the SQR function give
the same answers. Do you suppose that the TRS-80 itself might be using the Newton-
Raphson formula to compute square roots? So much for a fair test!

The program will not produce correct results for numbers whose roots are smaller than
.000001 in value. Can you see why? Yes, the cutoff test uses that value to stop the
iteration. To have the program get the correct roots of smaller numbers, change the
value in line 200 to an appropriately small number. Caution: As the number is made
smaller, the program runs for a longer time. Set up some time trials and test this fact
yourself.

The SINE of the Times

To fully understand the TRS-80’s trigonometric functions, you need a bit of geometry.

Don’t worry; you aren’t expected to become a mathematician. The concepts are quite

simple and are introduced only so you can use all of your computer’s capabilities.
There are at least two ways to locate an object from a fixed position of reference:

(1) Interms of coordinates that measure how far over the object is and how
far up.

(2) The distance to the object in a straight line, and an angle from some
reference direction.

The first system looks like this:

_Location of object

/
Fixed
reference R "o
point y up

e

X
1 "
over

This coordinate system is often called the Cartesian system afterthe French
mathematician, René Descartes. The distance to the right is often labeled X; the
distance up is labeled Y. The distance R (not D, since this distance relates to the
radius of acircle . . . but that’s for later) is given by the BASIC formula:

In math notation ———— % R = SQR(X]2 + Y]2)
R = /x*+y?

ARITHMETIC FUNCTIONS

239

The second system is called the polar coordinate system and is pictured in this
way:

Location of object

Fi)ged
f:flgrlg(f;e R Fixed direction
of reference
6
Angle theta

The two systems are related in that they both locate the object in the same place. The
way they are related is through a set of functions called trigonometric functions.
Trigonometric, or trig, functions are relationships between R, the straightline distance
to the object, the X and Y of the Cartesian system, and the angle @ (theta) of the
polar system. One function is called the sine of theta and is given by the equation:

sine(f#) = Y/R
Now, the sine of the angle changes value as the angle changes. When theta is

zero, Y is zero and the sine of theta is zero.

R is along
reference

coordinate & - Location of object

° Indicates
degrees of angle

When theta is 90°, Y is equal to R and the sine of theta is 1. O.K. so far? Oh, yes,
Theta goes from 0° along the reference direction to 90° when the object is directly
above the fixed reference point, to 180° when the object is directly to the left, to 270°
when the object is directly below, to 360° (or back to 0°) when the object is back at
the starting position along the reference direction, as shown below:

90°

Direction of movement:
/ counterclockwise

270°

240

MORE TRS-80 BASIC

How does the sine function behave as theta moves through all of the quadrants?
It goes from O to 1 in the first quadrant; from 1 to 0 in the second; from O to —1 in the
third; from —1 to 0 in the fourth. You can prove that these conditions hold by
computing values for Y/R in all quadrants. A better way is to use the BASIC
language function SIN (not evil, just short for sine). To do so requires you to learn one
tiny detail. Most computers that have trig functions require that the angle theta be
represented in a measurement called radians. Convert radians to degrees like this:

1 radian = 57.29578°

Magically enough, 2 77 radians is equal to 2 X 3.14159 X 57.29578, or 360°.

2 = 360°

So, if 277 radians equals 360°, then the conversion from degrees back to radians is:
1 degree = 2 X 3.14159/360 = .0174533 radians

This last item is the punch line. In BASIC, to convert from degrees to radians, you
multiply the angle (in degrees) by .0174533. If none of this makes sense, don’t worry
about it too much. Just use the SIN function with the constant that was developed and
see if the function behaves as predicted. That result is the important part. Will the
SIN function perform according to plan?

Try a few experiments and see what values SIN produces:

Right — 3 PRINT SIN(f)
Up — > PRINT SIN(9§ * .§174533)

Leff > PRINT SIN(18f * .p174533)
2 PRINT SIN(27@ * .@174533)

Down PRINT SIN(368 * .@174533)

Back to right —

What did you get for each one of these PRINT statements? Did you get 0, 1, 0,
—1, and 0? No!! The SINs of 180° and 360° came out close to zero but were off just a
bit. Another error caused by precision.

Try them again with this constant:

.01745329251993889
A double precision version
of the constant

Did that constant fix things? Yes, it did. Foy the most part, you can stick with the
shorter conversion factor. If you want to be precise, use the double precision number.

ARITHMETIC FUNCTIONS 241
How about trying a few angles in between those already displayed?
Where are PRINT SIN(45 * .@174533)
these on PRINT SIN(135 * .174533)
. 0 PRINT SIN(225 * .@174533)
the diagram? PRINT SIN(315 * .§174533)
With the shorter constant the displayed values all look like either .70710Z or
—70710Z, where the last digit Z is either 5, 6, 7, or 8. The variation is again caused by
the loss of precision as related to the constant being used.
135° 45°
225° 315°
An Encouraging Sine
Trying a bunch of values with the SIN function tells you something about how it
works. Of course, you could write a small program and have the SIN function plaster
the screen with a lot of numbers. That exercise would tell you a bit more, perhaps. An
even better way to examine the function, however, is to plot the results. Here is a small
program that plots the SIN function on the TRS-80 display:
19@ REM ** SIN PLOT **
119 CLS
Makes a 12¢ REM ** PUT HEADER ON PLOT #*
3 —pf 13@ PRINT @985, “SIN(THETA)"
nice border 149 PRINT @960 "~ 1 " STRINGSS(26,“.") " g "
for the plot — STRINGSS(26,".") * +1"
15 REM ** BEGIN LOOP THRU 36§ DEGREES **
16@ FOR X = § TO 36§ STEP 3@
Aren’t we 17§ REM ** THETA IN RADIANS **
precise! > 18§ THETA = X * .§1745329251993889
199 REM ** PLOT CENTER LINE **
Plot 200 PRINT @99@2,":";
T
218 REM ** PLOT POINTS **
220 PRINT @96@+ (SIN(THETA)+1)/2*68, '‘*"
% —What’s all

Wait I
\\\\\\\\\\»—__—_____ 23¢9 NEXT X
- 240 GOTO 248

this?

242 MORE TRS-80 BASIC

Enter and RUN the program. The screen should show a plot of SIN(theta):

-~

SIN (theta)

el VT OO [P oS -+1
*
:\9=O° *

*

§=180° . .

8=360°

Line 220 is the key to this plotting routine. The expression in line 220:

960 + (SIN(THETA)+1)/2 * 6§ < Will plot 61
| | points
Starting How far across
location screen

is used to position the plot symbol (*) across the screen.

Since SIN(theta) varies from —1 to +1, SIN(theta)+1 varies from 0 to 2. Dividing
this expression by 2 gives a range of values from 0 to 1. Multiplying by 60 and adding
960 sets up values from 960 to 1020. These last values represent 61 print positions
across the bottom of the screen. As each line is PRINTed, the screen scrolls upward to
make room for the next iine.

Back to the Geometry Lesson

Now that you have the SIN program working, you can easily look at one other trig
function. Referring back to the diagram:

A

ARITHMETIC FUNCTIONS 243

there is a co-relationship of theta, R, and X, called the cosine. The cosine is given by
the equation:

COSINE(f) = X/R

Can you estimate how this function behaves? Why bother! Just make a few adjust-
ments to the SIN program and let the TRS-80 do it for you.
Here goes; make the following changes:

Change the —— | 139 PRINT @985, “COS(THETA)"
program in 229 PRINT @968+ (COS(THETA)+1)/2+%6@, **"

these two lines

This expression assumes
that the COS will be
in the range of —1 to +1

What appears when you RUN this program? Does your screen show:

-

COS (theta)
Bl P O 0 .. +1

*
Zoo

8=90° °* * 8
\

6=180° : *
6= 27o°/ : *
6= 3so°/

*

The COS produces the same values as SIN, but everything is /<90 out of phase.”
When the SIN is zero, the COS is either +1 or —1. When the SIN is either +1 or —1,
the COS is zero. In fact, it can be proven (but we won’t attempt to do so here) that:

SIN(#) + COS(8): = 1

You may want to write a program that checks out the last statement. Your turn to ex-
periment. Try some other operations with SIN and COS.

244 MORE TRS-80 BASIC

Off on a TANgent

One obvious relationship remains to be explored in our small geometry problem. Since
the SIN is determined by Y /R and the COS is determined by X/R, there is a third
expression that doesn’t involve R. It can be obtained by dividing SIN by the COS.

Here is the result

SIN(#)/COS(8) = Y/R / (X/R) = Y/X

This function, called the tangent, is referred to in BASIC as TAN. The following pro-
gram tabulates the trig functions from 0 to 80 in steps of ten.

Program to

e 100

list trig
functions

19

129
139
149

150
160

179
180

199
200

219

REM ** TRIG FUNCTIONS **
CLS

REM ** HEADER **
PRINT “SIN",*COS”, “TAN","SIN/COS"
PRINT ll___!',li~-‘ll’ll‘_‘li,l("

REM ** BEGIN LOOP THRU ANGLES **
FOR X = § TO 8@ STEP 1§

REM ** COMPUTE THETA **
TH = X * .@1745329251993889

REM ** DISPLAY RESULTS **
PRINT SIN(TH),COS(TH),TAN(TH),
SIN(TH)/COS(TH)

NEXT X

Can you think of a reason for the program not looping to 90°? Try to think of what
would happen, as you enter, RUN, and watch the current program execute.

Your screen should show:

>

.......

.642788
.766844
.8660825
.939693
.984898
READY

.642788
.5

.34292
. 173648

TAN SIN/COS
2 |

BE AP -lro3dy
.36397 36397
57735 .57735
.8391 .8391
1.19175 1.19175
1.73925 1.73p25
2.74748 2.74748
5.67129 5.67129

ARITHMETIC FUNCTIONS

245

Ahh! Symmetry and order! Notice how the SIN and COS have the same values, but in
reverse order. Additionally, SIN/COS is the same as TAN. Maybe that is how the
TRS-80 generates TAN. The two columns are remarkably the same. Have you
guessed what would happen if the loop continued to 90°? The TAN function is grow-
ing quite rapidly. Yes, TAN goes to infinity at 90°! Why? Look at the COS. At 90°,
the COS is zero, while the SIN has the value one. One divided by zero is . . . a big num-
ber! Could it be that this is where the phrase “off on a tangent” got started? Seems a
likely coincidence, doesn’t it?

The TRS-80 also provides an inverse trig function called the arctangent, ATN.
ATN returns a value in radians. To get back to degrees, multiply the result by
57.29578. For example:

PRINT ATN(5.67129) X 57.29578

ol
from the
table

What do you get when you enter the PRINT statement? Do you get a result of
80°? The TAN of 80° was the last entry in the table on the last page. The TAN of 80°
is 5.67129. The arctangent (inverse tangent) of 5.67129 is, of course, 80°. Ahhh . ..
the world is full of order and symmetry.

With these four trig functions — SIN, COS, TAN, and ATN — you can con-
struct many other trig functions. Appendix F of your Level II BASIC Reference Man-
ual lists several other trig functions and how to derive them from the four basic func-

tions. You can even construct the Inverse Hyperbolic Cosecant with a little help from
the next two mathematical functions.

What is the AnaLOG of “EXPect Little?”

Another constant important in mathematics is called e. It is an endless number that
looks like this:

e = 2.7182818284590452 ...

TRS-80 BASIC provides a function that allows you to compute powers of e easily. The
function is called EXP, and EXP(X) represents raising e to the X power:

EXP(X) represents e
To examine the behaviour of EXP, enter and RUN this program:

18¢ REM *+* EXPLORING EXP #*%*
119 CLS

12 FOR X = § TO 1@
13 PRINT EXP(X/18)
140 NEXT X

246 MORE TRS-80 BASIC

A RUN of the program should produce this listing on the display:

k- e°
L 19517

L2214

. 34986

.49182

.64872

.82212

.91375

.22554

. 4596

.71828 <t !
READY

>

NN N et e e ot s

N

EXP is exponential in nature. As the argument gets larger, EXP result gets larger as
well. In fact, EXP gets big fast. If EXP has an argument greater than 87, an 70V
ERROR will occur.

Change line 120 and experiment with other values of EXP. Try some negative
values. What happens when you put negative values into EXP? Try some /arge nega-
tive values. Think about how you could plot EXP on the screen.

EXP also has an inverse function, the natural logarithm. Let’s modify the cur-
rent program to display LOG values. Make these changes:

ran Note range

12 FOR X = 1 TO 1§ change
139 PRINT LOG(X/18)

RUN this program and observe the numbers on the screen:

Tog

—2.30250 =
~1.60944
~1.2@397
~.916291
.693147
.518826
.356675
.223143
—.19536

g = L 1
READY ogJ)
= e

]

!

|

ARITHMETIC FUNCTIONS

247

The values of the arguments to LOG must be positive (greater than zero). At
zero, LOG goes to minus infinity (a large negative number). At one, LOG(1) equals
zero. As the argument of LOG gets larger, LOG grows, but slowly.

Once again, try some values for LOG on your own. Look at those cases where the
arguments get big (1E38). Think how you might go about plotting LOG on the screen.
LOG and EXP are inverse functions. Each is the inverse of the other. Try to prove this
by entering PRINT EXP(LOG(10)). What happens? Now try PRINT
LOG(EXP(10)). What happens with this one? Did you get the same answer in each
case?

Summary

You have been exploring the TRS-80 arithmetic functions. These functions assist in
performing mathematical calculations and doing mathematically based studies. The
functions you have examined are:

o CDBL(X) — Converts X to double precision
o CSNG(X) — Converts X to single precision
e CINT(X) - Converts X to an integer (— 32768 to +32767)

o SGN(X) — Determines the sign of X

o ABS(X) — Computes the absolute value of X

e FIX(X) — Truncates the fractional part of X

¢« SQR(X) — Computes the square root of X

s SIN(X) - Computes the trigonometric sine of X.

X must be in radians. If X is in degrees,
multiply X by .0174533

e COS(X) — Computes the trigonometric cosine of X.
X must be in radians

e TAN(X) — Computes the trigonometric tangent of X.
X must be in radians

e ATN(X) — Computes the inverse tangent of X. Answer

is in radians. To convert to degrees,
multiply by 57.29578
e EXP(X) - Computesthe exponential &*

¢ LOG(X) — Computesthe natural logarithm of X,
log (X)

248 MORE TRS-80 BASIC

You also saw how you might plot some function, such as SIN or COS, on the TRS-80
screen by using the function to calculate where the plot points were to fall. Try your
hand at the self-test that follows. Then move on to the last chapter in the book —a
chapter of fun and games.

Self-Test

1.

7.

What are the names of the functions that convert numbers or expressions to:
(a) Double precision —— (b) Single precision ...
(c) Integers

If the variable A# = 2.7182818282845, what would show on the screen when

you type: PRINT CSNG(A#) (a)
What appears when you type: prINT cinT(A#) (b)

If the following line is in a program, how would you change it so the program ex-
ecutes faster?

120 A% = BH# * CH

What appears on the screen when you type these statements into your TRS-80?
(a) PRINT SGN(15.5) (b) PRINT SGN(—12)

(C) PRINT SGN(@) — _

What does this statement display on the screen?

PRINT ABS(—17.7)

How is the FIX function different from the INT function?

What does the TRS-80 give for:

PRINT SQR(16), 16](1/2)

ARITHMETIC FUNCTIONS 249

8. What is the factor that converts angles in degrees to radians?

9. What is the factor that converts radians into degrees of angle?

10. What does the following PRINT statement produce on the screen:

PRINT EXP(LOG(2f)), LOG(EXP(20))

250

MORE TRS-80 BASIC

W

Answers to Self-Test

(2) CDBL (b) CSNG (c) CINT
(a) 2.71828 (b) 2

One way: 129 A% = CINT(B#) * cINT(c#) if theinteger valuesare in the

range of —32768 to 326767.

Another way: 120 A% = CSNG(B#) * CSNG(C#)

(a1 () -1 (90

17.7

FIX truncates the fractional part of the number and returns the integer portion.
INT truncates the fractional part, but returns greatest integer less than the orig-
inal value. So, for negative numbers FIX(—7.5) returns —7; INT (—7.5) returns
-8.

Two numbers; both 4. SQR(16)=4, and 16](1/2) is an alternate way to compute
the square root.

0174533 or .01745329251993889 to be precise. Actually, even the last number
is not precise; there is more. The factor goes on forever.

57.29578—multiplying 27 times the number gives 360.

The screen shows the number 20 printed twice. The LOG and EXP functions
are inverses of each other so the expressions in the PRINT statement return the
argument 20.

CHAPTER TWELVE

TRS-80 Art Lesson

You are nearly to the end of this book. Time to relax and use some of your TRS-80’s
features you have been reading about. Since the graphics on the TRS-80 are so easy to
work with, let’s begin by creating an animated Valentine’s Day card for your mate or

companion.

Electronic Love Notes

Your machine’s graphic features can produce an animated version of a Valentine’s
Day card. Start by building the main program; a series of GOSUB:s to routines to
draw the card’s border, scroll the message across the face of the card, draw some
hearts, shoot arrows, and cause other messages to flash. (We bet no one has ever re-
ceived a card like this before.) Here is the main program:

180
119

129
130
140

/‘ 158
Clear 300 bytes

Subroutines
will do it
all!

169
179

18¢

199
2pp

219
22p

239
240
25@

REM ** VALENTINE'S CARD *+*
REM ** MAIN PROGRAM *x

REM ** CLEAR SCREEN AND CLEAR *+*
REM ** SOME STRING SPACE **

cLS

CLEAR 300

REM ** PUT THE BORDER ON THE SCREEN **
GOSUB 1909

REM #* PAINT A WINDOW ON THE CARD **
REM ** AND SCROLL A MESSAGE **
GOSUB 2000

REM *+ PUT TWO HEARTS ON THE CARD **
GOSUB 39p9

REM ** SHOOT AN ARROW ACROSS THE **
REM ** CARD AND FLASH MESSAGES **
GOSUB 4009

251

252 MORE TRS-8¢ BASIC

To close off the main part of the program, a delay routine is called and the program
redisplays the card.

)) 268 REM ** WAIT AND THEN RE-DISPLAY *+%
Waitawhile... ———————— 27¢ T = 1g8g: GOSUB 5880
280 GOTO 148

Now let’s develop the routine to draw the border. The statements used are taken from
several previous discussions in this book dealing with the rapid placement of graphic
characters on the screen.

189@ REM ** OUTLINE THE SCREEN **
_ 1@1@ REM **% TOP AND BOTTOM FIRST **

Solidbars—«;.-_.._____Ej 1929 PRINT @@,STRINGS(64,191);

across the top 1939 PRINT @896, STRING$(64,191);

and bottom 1949 REM ** NOW THE TWO SIDES **
1950 FOR I = 64 TO 832 STEP 64

TTﬁnstﬁps——~——~———_4>[:::::1969 PRINT@I ,CHR$ (191) ; g [eft
1979 PRINT@I+63, CHRS$(191); —q Right

down the sides 1989 NEXT I

189¢ RETURN

Check this portion of the program by entering “dummy” routines for the rest of
the subprograms to be developed. Type in the delay routine directly since you know

what it looks like:
2089 RETURN
39@@ RETURN <— “Dummy”’ routines
4939 RETURN
Count up to

S@EPP REM ** DELAY ROUTINE **
T \ 501¢ FOR TT = 1 TO T
5P20 NEXT TT
| 5p3p RETURN

RUN this partially completed program. Your screen should show:

4 3

A TRS-80 ART LESSON

253

Now you are ready to enter the next routine — the one to open a window area on the
card and scroll a message across the window.

Enter the following statements:

2008
2819

Window 292g

v

37 , followedby — ;gig
message and six

more

2050
2060
2079
2089
2399
2199
2119
2129
2130

You did

this \
in chapter 10

2149
2150
2160

2179

REM *+* WINDOW AND MESSAGE SCROLL #*
REM ** PAINT THE WINDOW #*#
PRINT @267, STRING$(38,191);

REM ** SET UP THE MESSAGE #+
A$= STRINGS$(37,191) +

‘. . .HAPPY VALENTINE'S DAY ..." +
STRING$(6,191)

REM ** SCROLL THE MESSAGE TWICE ##*
REM ** HORIZONTALLY ACROSS SCREEN #**
FOR K = 1 TO 2

T = 1

PRINT@267, MID$(AS,I,38);
T = 25: GOSUB 5008
I =1+ 1

IF I<= LEN(A$) THEN GOTO 2090
NEXT K

REM *% PUT MESSAGE IN CENTER **
REM ** OF THE WINDOW **

PRINT@267, MIDS(A$,32);

Begins with 32nd
character and takes
rest of message

RETURN

Go ahead and RUN this much of the program. The screen should clear, the bor-
der should appear, then the window, and finally the Valentine’s Day message should
scroll from right to left on the face of the window.

 u

.HAPPY VALENTINE’S DAY ...

The message
will be moving
right to left

-

254 MORE TRS-80 BASIC

Easy enough? You are simply combining several features used in previous chapters.
Ready for the next part? O.K. how about the routine that draws the hearts?
Enter these next statements and RUN the new program:

3000
3g19
3p20

3¢30

What is XINC

used for? N*\

Sets XINC so
that X+XINC
puts heart on
right side of
screen

3p4p
3850
3p6g
3879
3p8p
3099

3100
3119
3129
3139
3140
3150
3160
3179
3180

3199
3209
3219
3229
3230

REM ** DRAW TWO HEARTS **
REM *% DATA VALUES FOR SPOTS %
REM +* TO BE SET **

DATA 21,22,19,21,17,20,15,20,13,20
DATA 11,21,9,22,9,23,9,24,9,25
DATA 11,26,13,27,15,28,17,29,19,3p
DATA 21,31,23,3p,25,29,27,28,29,27
DATA 31,26,33,25,33,24,33,23,33,22
DATA 31,21,29,20,27,208,25,20,23,21
DATA ~99,-99

REM ** READ THE PAIRS OF DATA **
READ X,Y

REM ** CHECK FOR END OF DATA *%

IF X= —99 THEN GOTO 318§

REM ** SET TWO POINTS *%
SET(X+XINC,Y): SET(X+XINC—1,Y)
GOTO 311@

REM ** CHECK TO SEE IF COMPLETE *%
IF XINC<>@ THEN RETURN

REM ** ONE HEART DRAWN **
REM ** ADJUST XINC AND DRAW 2ND **

XINC = 78
RESTORE
GOTO 311g

Do the two hearts appear on the screen when you RUN the program? Doesn’t
that make your heart throb?

q

...HAPPY VALENTINE'S DAY ...

\

A TRS-80 ART LESSON

255

The DATA values in the last subroutine provide the locations of the various
spots used to create one heart diagram. The heart on the left side of the card is drawn
first. Then the variable XINC is changed from zero (0) to 78, the DATA statements
are RESTOREG, and the second heart appears. When the second heart is complete,
XINC is non-zero, and a RETURN is made to the main program.

Are you ready for the grand finale? Yes!! Well, here goes! Enter the statements
for the last subprogram and RUN the complete Valentine’s Day Card program:

Animation of -
arrow

Takes care of
printingand ____,|
flashing

the messages

4008
4p1p
4029
4939

4040
4050

4060
4079
4089

4890
4109
4119

4120
413p

4149
4150
4160
4179

4180
4198
4200
4219
4220

4239
4240
4250

4260
4279

REM ** SHOOT AN ARROW *#*

REM ** AND FLASH THE MESSAGES **
REM ** THIS IS AN ARROW **

B = “ennon >

.REM ** SHOOT THE ARROW THREE TIMES -**

FOR K = 1 TO 3

REM ** ARROW DISPLAY LOOP **
FOR I = § TO 19
PRINT@529,STRINGS (I,32)+B%;

REM ** TEST FOR FIRST TIME **
REM ** THRU K LOOP **
IF K = 1 THEN GOTO 4230

REM ** DISPLAY LOVE MESSAGE *¥*
PRINT@724,"I L O VE Y O U’;

REM ** WHEN I IS GREATER THAN **
REM ** TEN, FLASH THE LOVE NOTE **
IF I>1¢ THEN T=5@: GOSUB 5@8§

IF I>1@ THEN PRINT @274,

STRINGS (28,38);

REM ** IF I IS GREATER THAN **
REM ** TEN, AND THIS IS THE **
REM #* THIRD ARROW SHOT, FLASH **
REM ** THE TOP MESSAGE ALSO **

IF I>1§ AND K=3 THEN PRINT@267,
STRINGS (40,32);

T = 5Q: GOSUB 5080

IF I>1§ AND K=3 TF { PRINT@267,
MIDS$(A$,32);

NEXT I

REM ** BLANK OUT ARROW **
PRINT@548,STRINGS (6,32) ;

4280 NEXT K
4290 RETURN

256

MORE TRS-80 BASIC

The arrow flashes across the screen from heart to heart. When it hits the first time, the
message I LOVE YOU appears near the bottom of the card. As the arrow gets half-
way across on its second pass, the love message begins to flash. On the third pass of the
arrow, both the love message and the message at the top of the screen begin to flash.
Now, that’s a Valentine’s Card! If you have friends who own computers, you can make
up cassettes during holiday seasons or on special occasions and send everyone a TRS-
80 electronic greeting card. Enjoy using your TRS-80 in this way.

Oh, yes! The kinds of routines used in making this card can also be used in programs
and games that you develop. The border display, the scrolling feature, the flashing
messages, the animated arrow, and the drawing of the hearts indicate the many meth-
ods of display you can use on your computer. Think of other things you can do with
these features. What kind of games and programs can you invent to use the TRS-80
this way?

Let’s Get to the POINT

Have you had a chance to use ithe POINT funciion yet7 if not, iry the foiiowing:

Where does the CcLS
TRS-80 POINT t0? ————— PRINT POINT(3@,48)

A TRS-80 ART LESSON 257

What now shows on your screen? Does it look like this?

READY
>PRINT POINT(38,48)
Returns with il
a zero! READY
-

Now, enter these statements and observe the screen:

CLS
Hmmm...——————» SET(3@,40): PRINT POINT(3f,40)

What does your screen show now? Is this what appears:

READY
>SET(30,48): PRINT POINT(38,40)
Now it gives - =1
-1 READY
.

Can you guess what POINT is doing? The function “looks” at the place on the screen
specified by the arguments:

%Y
Function
name

> POINT (X,Y)

If that spot on the screen is SET, then POINT returns the value —1. If the spot is not
SET, POINT returns a value of zero (0). For the TRS-80, the values of —1 and O rep-
resent the logical values of “true” and “false.” Minus one (—1) indicates that a condi-
tion is true; zero (0) indicates that a condition is not true, or false. This set of facts al-
lows you to put the POINT function in an IF-THEN statement and perform some
interesting feats.

19¢ IF POINT(X,Y) THEN GO TO 1@@@

If the spot is SET, the
program branches
to line 1000

258 MORE TRS-80 BASIC

As an example, let’s develop a program that uses POINT to determine if the
screen is SET and if the program is to RESET that spot. To get interesting results, use
a random process for determining where the next spot is to be RESET. Hmmm . . .
seems as if another TRS-80 first is about to happen in the computer world.

The Finer Art of POINTing

Here is the first part of the program:

199 REM *% TRS-8@ ART **

119 REM ** CLEAR SCREEN AND STRING SPACE *%*
12¢ CLS

139 CLEAR 100

) 140 REM ** SET ON ERROR CONDITION *+*
Remember this » 150 ON ERROR GOTO 10¢@

feature?

160 REM ** PAINT THE SCREEN WHITE **
178 FOR I = { TO 896 STEP 64

You’vedone — 180 PRINT@I, STRINGS(64,191);
this before 199 NEXT I
1999 rEsumg -=————— For the ON ERROR
routine

Nothing special up to this POINT (oops! . . . point). The ON ERROR condition takes
care of a problem you will encounter later as the POINT routine tries to “look” off the
edge of the screen.

RUN this part. The screen should turn white, and then an error should occur
(when the RESUME is encountered), but ON ERROR the program goes to 1000.
That place in the program is causing the error, so the result is like putting 1000 GOTO
1000 in the program. Anyway, the screen turns white. What’s next?

Now add this part of the program that performs the random RESET of the spots
on the screen:

20@ REM ** START NEAR THE MIDDLE **
2100 X = 63: V = 23
<——— 220 RESET(X,Y)

230 REM ** PICK A RANDOM DIRECTION **
240 REM ** TO POINT **
258 R = RND(8)

A given spot on the screen has eight surrounding spots (unless the current location is
on the edge of the white area). The locations are numbered in this way. You could
change this assignment; the numbering is arbitrary.

A TRS-80 ART LESSON

259

FoS
W

Current location Y

Possible directions

The next step is to POINT at the randomly chosen location, and if it is SET, to
RESET it.

Enter the following:
260 REM ** SAVE THE CURRENT LOCATION **
270 XX = X: YY = Y
280 REM ** ADJUST X,Y TO POINT AT SPOT **
_29¢ REM ** CHECK FOR SPOT ON RIGHT **

Takes care of 399 IF R<4 THEN X = X + 1

right-left ——] 310 REM ** CHECK FOR SPOT ON LEFT **
320 IF R>4 AND R<8 THEN X = X — 1
330 REM ** CHECK FOR UP #**%

Takes care of 340 IF R>2 AND R<6 THEN Y = Y ~— 1

mamae

up-down 350 REM ** CHECK FOR DOWN **

360 IF R>6 OR R=1 THEN Y= Y + 1

The adjustments to X and Y can produce values that are off the screen. The ON
ERROR statement that was used in line 150 lets the program POINT off the screen
and not abort the program.

Here is the POINT you have been waiting for:

Yes, we skipped —————— 38¢ REM ** CHECK TO SEE IF SPOT IS SET *x*

line 370 390 IF POINT(X,Y) THEN GOTO 228
) 40@ REM ** SPOT NOT SET, CHOOSE ANOTHER **
Change line 1000 41@ REM ** RESTORE X AND Y #%

also 420 X = XX: Y = YY
430 GOTO 250

10@@ RESUME 420

Run this program. The screen should turn white; then a series of small black
holes should start to appear. The “pictures” sketched on the screen will probably never
be the same because of the random way the spots are chosen and RESET make each
“drawing” unique. Here are a few examples of designs we produced:

260 MORE TRS-80 BASIC

Notice that the POINTing process often causes the program to be at a location where
all the surrounding spots are already RESET. The program then enters a loop from
which it never exits: choosing a random spot, pointing at it, finding it RESET, and
going back to choose another random spot. Hitting the BREAK key stops the program
so you can re-RUN it to produce another sketch. Would you like to “move” the cur-
rent spot when the program gets into a loop? Very well; try these additions.

Your Move, Leonardo

The only place a message can be placed on the screen and not disturb the drawing is on
the bottom line. Using PRINT (@ allows a message to be put there without causing the
screen to scroll upward. To prevent scrolling upon INPUT, a clever use of INKEY'$
has been devised.

Enter the following:

Here is line 370 ——— 379 IF INKEY$<>"" THEN 5@8

. . S@@ REM ** ACCEPT CHANGES TO X AND Y *+
Pressing any key will 518 REM ** FIRST REQUEST X CHANGES **
interrupt the program 528 PRINT @96f, “ENTER X'S MOVE(+ OR —)";
now
A 530 REM *#* USE SUBROUTINE TO ACCEPT INPUT *%*

540 GOSUB 2008

550 REM #* INCREMENT IS IN A *+
560 XX = XX + A

57@ REM ** Y CHANGE REQUEST **
588 PRINT @96Q, "ENTER Y'S MOVE(+ OR —)";
590 GOSUB 2000

6QP YY = YY + A

619 GOTO 420

A TRS-80 ART LESSON

261

The subroutine at line 2000 takes care of accepting the INPUT to the model.

Here is that routine:

2000
2019
2020

2039
Accepts data ——————= 2049
one character

. 2095
at a time hoe

2060
2070

2080
2090

2100

Formsalong — 2118

string out of
inputs

2120
213@
2149
2150
Converts the

\\\\\\\\\Hk

string toa 2168
2179
number
2180
2198
2299

REM ** INPUT SCAN ROUTINE **
REM ** CLEAR STRING VARIABLES **
AS = "": Bg = ""

REM ** BEGIN KEYBOARD SCAN *#
B$ = INKEYS$: IF Bs="" THEN 204§

REM +* CHARACTER PRESSED *+*
REM ** CHECK FOR ENTER-KEY **
IF B$=CHR$(13) THEN GOTO 217@

REM #* PUT CHARACTER ON SCREEN **
PRINT BS;

REM ** ADD CHARACTER TO STRING #**
A$ = A$ + BS

REM ** CLEAR B$ AND GO GET *%*
REM *+* NEXT CHARACTER **

By = "

GOTO 2049

REM ** CONVERT TO NUMBER **
A = VAL(A$)

REM ** CLEAR PRINT AREA **
PRINT @968, STRING$(3#,32);

RETURN

When the program POINTSs itself into a corner, press any key. The X-change message
appears at the bottom of the screen. As you press the number keys, they are displayed
on the same line, but when you press ENTER, the screen does not scroll upward. The
Y-change message appears next. You can enter either positive or negative increments
to move the current spot. RUN this altered program. Here are some more examples of

the “art” produced by this program:

262 MORE TRS-80 BASIC

You can tell the program to move the spot off the screen. If you do so, just press
ENTER again and have it move it back. For example, let’s say you are at the right
edge and enter a 30 for the X= change. The X address is now 157 (127 + 30). The
program just goes into a loop. Press ENTER, and at the X-change request type in
—60. The X address is now 97 (157—60). Giving it a value for the Y-change (which
can be zero), causes the program to resume sketching in the white area of the display.
1ry tetling the program to sketch off the screen, and then tell it to move back. Try
other experiments of your own.

Experimental Art

You may want to try some other experiments with the TRS-80 Art Program. What
happens in lines 300 through 360 when you change the increments (+1 and —1) by
which X and Y move? For example, what do you suppose happens when the X incre-
ments are set to +2 and —2 in lines 300 and 3207 Here is a picture of the spots that are

RESET.
\
Current location _ 2 \‘4 ;
+1 7 8 1

A TRS-80 ART LESSON

263

What would occur if only line 300 is changed? Again, here is a diagram of what

spots are RESET:

Current location

\
\4 3

-1 5
6 A 2

+1 7 8 1
-1 +2

Try these experiments. You might want to alter the program so that the incre-
ments are INPUT to the program. Doing so gives you more freedom in trying sets of
values to see how the program responds. Experiment away! For your convenience, the
Valentine’s Card and TRS-80 Art Programs are listed on these final pages. Enjoy us-
ing them and your TRS-80 microcomputer.

180
11p

128
130
149
150

169
179

180
199
209

210
220

23g
249
250

260
279
289

1909
1210
1928
1930

1949
1959
160
1979
1989

1999

Valentine’s Card Program

REM ** VALENTINE'S CARD **
REM ** MAIN PROGRAM **

REM ** CLEAR SCREEN AND CLEAR **
REM ** SOME STRING SPACE **

cLS

CLEAR 300

REM ** PUT THE BORDER ON THE SCREEN **
GOSUB 1909

REM ** PAINT A WINDOW ON THE CARD **
REM ** AND SCROLL A MESSAGE **
GOSUB 2090

REM ** PUT TWO HEARTS ON THE CARD *¥*
GOSUM 3088

REM ** SHOOT AN ARROW ACROSS THE **
REM ** CARD AND FLASH MESSAGES *+*
GOSUB 4998

REM ** WAIT AND THEN RE-DISPLAY **
T = 19@@: GOSUB 5800
GOTO 14@

REM ** OUTLINE THE SCREEN **
REM ** TOP AND BOTTOM FIRST **
PRINT @@,STRINGS(64,191);
PRINT @896, STRINGS$(64,191);

REM ** NOW THE TWO SIDES **
FOR I = 64 TO 832 STEP 64
PRINT@I, CHR$(191);
PRINT@I+63, CHR$(191);
NEXT I

RETURN

264 MORE TRS-80 BASIC

2009 REM ** WINDOW AND MESSAGE SCROLL **
2019 REM *+ PAINT THE WINDOW **
2020 PRINT @267, STRINGS(38,191);

2930 REM ** SET UP THE MESSAGE *x
2048 A$ = STRINGS$(37,191) +
‘. . .HAPPY VALENTINE'S DAY ..."+
STRINGS (6,191)

2050 REM ** SCROLL THE MESSAGE TWICE **
206@ REM ** HORIZONTALLY ACROSS SCREEN **
2p78 FOR K = 1 TO 2

2080 I = 1

2099 PRINT@267, MIDS(AS$,1,38);

2188 T = 25: GOSUB 5§@g

2119 I =1 + 1

2128 IF 1<= LEN(A$) THEN GOTO 2§98
213@ NEXT K

214@ REM ** PUT MESSAGE IN CENTER **
2158 REM ** OF THE WINDOW **

2160 PRINT@267, MIDS(AS,32);

217@ RETURN

3900 REM ** DRAW TWO HEARTS **
3¢19 REM ** DATA VALUES FOR SPOTS *+*
3@2@ REM ** TO BE SET **

3930 DATA 21,22,19,21,17,20,15,29,13,20
3p4@ DATA 11,21,9,22,9,23,9,24,9,25
3¢5@ DATA 11,26,13,27,15,28,17,29,19,38
3§60 DATA 21,31,23,30,25,29,27,28,29,27
3979 DATA 31,26,33,25,33,24,33,23,33,22
3p8@ DATA 31,21,29,20,27,28,25,28,23,21
3090 DATA —99,-99

319@ REM ** READ THE PAIRS OF DATA **
3118 READ X,Y

3123 REM *% CHECK FOR END OF DATA **

313p IF X= —99 THEN GOTO 318Q

3140 REM ** SET TWO POINTS +**

3150 SET(X+XINC,Y): SET(X+XINC—1,Y)

3160 GOTO 311p

REM ** CHECK TO SEE IF COMPLETE *¥*

TTT OUTAA SN MmN TITmIImaT
L svaave ST Gaiday b LU e

tu
P
{0 ~J
AT -~

3199 REM #* ONE HEART DRAWN *+*
32@P REM ** ADJUST XINC AND DRAW 2ND **
3219 XINC = 78

322 RESTORE

323¢ GOTO 3119

4000 REM ** SHOOT AN ARROW *¥*

401@ REM ** AND FLASH THE MESSAGES **
4020 REM ** THIS IS AN ARROW **

4038 Bg = "-...>"

4840 REM ** SHOOT THE ARROW THREE TIMES **
4¢5@0 FOR K = 1 TO 3

4P6@ REM ** ARROW DISPLAY LOOP **
4978 FOR I = § TO 19
4080 PRINT@529,STRINGS (I,32)+BS;

A TRS-80 ART LESSON

265

4999
4100
4119

4129
4139

4149
4159
4168
4179

4189
4190
4200
4219
4220

4230

4249

4250

4260
4279

4280
4290

5009
5@1g
5029
5939

128
119
129
139

149
150

169
179
189
190

280
219
220

239
240
250

REM ** TEST FOR FIRST TIME *x*
REM ** THRU K LOOP *+*
IF K = I THEN GOTO 423¢

REM ** DISPLAY LOVE MESSAGE **
PRINT@724," I LOVE YOU ";

REM ** WHEN I IS GREATER THAN *#*
REM #* TEN, FLASH THE LOVE NOTE *#*
IF I>1Q THEN T=5@; GOSUB 50@8

IF I>1¢ THEN PRINT@274,

STRINGS (20,32);

REM ** IF I IS GREATER THAN **
REM ** TEN, AND THIS IS THE **

REM ** THIRD ARROW SHOT, FLASH #**
REM ** THE TOP MESSAGE ALSO **

IF I>1§ AND K=3 THEN PRINT @267,
STRINGS (408,32);

T = 5@: GOSUB 5§00

IF I>1@¢ AND K=3 THEN PRINT@267,
MID$(A$,32);

NEXT I

REM ** BLANK OUT ARROW **
PRINT@548,STRINGS (6,32);

NEXT K
RETURN

REM ** DELAY ROUTINE **
FORTT = 1 TO T

NEXT TT

RETURN

TRS-80 Art Program

REM ** TRS-8@ ART **

REM ** CLEAR SCREEN AND STRING SPACE *+*
cLs

CLEAR 188

REM ** SET ON ERROR CONDITION **
ON ERROR GOTO 1@g@

REM ** PAINT THE SCREEN WHITE **
FOR I = @ TO 896 STEP 64
PRINT@I, STRING$(64,191);

NEXT I

>
REM ** START NEAR THE MIDDLE **
X = 63: Y = 23
RESET(X,Y)

REM ** PICK A RANDOM DIRECTION **
REM ** TO POINT *%
R = RND(8)

266 MORE TRS-80 BASIC

260 REM ** SAVE THE CURRENT LOCATION **
270 XX = X: YV =Y

280 REM ** ADJUST X,Y TO POINT AT SPOT **
290 REM ** CHECK FOR SPOT ON RIGHT **
3gp IF R<4 THEN X = X + |

319 REM ** CHECK FOR SPOT ON LEFT **
32¢ IF R>4 AND R<8 THEN X = X — 1

339 REM ** CHECK FOR UP **

340 IF R>2 AND R<6 THEN Y = Y —1

350 REM ** CHECK FOR DOWN **

360 IF R>6 OR R=1 THEN Y=Y + 1

379 IF INKEY$<>"" THEN 50§

38¢ REM ** CHECK TO SEE IF SPOT IS SET *+*
399 IF POINT(X,Y) THEN GOTO 228

409 REM ** SPOT NOT SET, CHOOSE ANOTHER **
41§ REM ** RESTORE X AND Y #*¥%

420 X = XX: ¥ = YY

430 GOTO 258

5@ REM ** ACCEPT CHANGES TO X AND Y **
51g REM ** FIRST REQUEST X CHANGES **
520 PRINT @96@, “ENTER X'S MOVE(+ OR —)";

538 REM ** USE SUBROUTINE TO ACCEPT INPUT **
54@ GOSUB 2000

558 REM ** INCREMENT IS IN A **
568 XX = XX + A

579 REM ** Y CHANGE REQUEST *+*

58¢ PRINT @96@, “ENTER Y'S MOVE(+ OR —)”;
590 GOSUB 2888

600 YY = YY + A

610 GOTO 428

199@ RESUME 420

2009 REM ** INPUT SCAN ROUTINE *¥*
2@01@ REM ** CLEAR STRING VARIABLES **
2625 A = "7 B = "7

23¢9 REM ** BEGIN KEYBOARD SCAN **
2049 B$ = INKEY$: IF B$=""" THEN 2040

2059 REM ** CHARACTER PRESSED **
2068 REM ** CHECK FOR ENTER-KEY **
2¢7¢ IF B$=CHR$(13) THEN GOTO 217@

2080 REM ** PUT CHARACTER ON SCREEN **
2890 PRINT BS$;

21908 REM ** ADD CHARACTER TO STRING **
2119 A$ = AS + BS$

2120 REM ** CLEAR B$ AND GO GET **
2130 REM ** NEXT CHARACTER **

214p Bg = "

2150 GOTO 2048

A TRS-80 ART LESSON 267

2169
2179

2189
2199

2209

REM ** CONVERT TO NUMBER **
A = VAL(A3)

REM ** CLEAR PRINT AREA **
PRINT @96@, STRING$(3§,32);

RETURN

268 MORE TRS-80 BASIC

Summary

In this final chapter, you have explored combining several features of your TRS-80
(graphics, animation, and scrolling) into larger programs and you have used the
POINT function, perhaps for the first time.

If you have worked your way through both books in this series, you have now
covered nearly every BASIC language statement and function listed in your TRS-80
Level Il BASIC Reference Manual. The TRS-80 computer contains many useful fea-
tures that allow you to build clever and sophisticated programs. The use of the screen
graphics, the error handling routines, the string functions, and the full range of mathe-
matical operations make the TRS-80 one of the most powerful small computers on the
market. We trust that these books have assisted you in using some of that power and
ability. Thank you for joining us in these explorations.

APPENDIX A

Table of Graphic Characters

=
=
-]
=2

128 129 130 132 133 134 135

=
™
e
ol ©
8
=
i)
=EE - B

136 137 138 139 140 141 142
8 | |
a |
144 145 146 147 148 51

O ==

T
™
il
==
bl
R

156 157

58

°

152 153 154 5

w
by

L
=
=
w B
=
-
i
w0

160 161 162 163 164 165 166 167
168 169 170 171 172 173 174 175
176 177 178 179 80 181 182 183

[]
[
B
B
L
e
[
e

184 185 186 187 188 89 190 191

269

APPENDIX B

The Cassette Recorder

A cassette recorder is provided with the basic TRS-80 system for saving and loading
programs that you write. It also is used to load taped programs that you acquire from
other sources.

Level 11 BASIC transfers data from the recorder to the computer (and vice
versa) at a rate of 500 BAUD (twice the speed of Level I). The volume setting on the
recorder is very critical and should be set at a lower setting for Level II tapes than for
Level I. Volume settings are discussed in more detail later in this appendix.

Saving Your Programs

If you have a program in the computer’s memory that you would like to save for future
use, the recorder must be connected as described in your Level 11 BASIC Reference
Manual, “Setting up the System.”

1. Put the recorder in the RECORD mode by pressing down both RECORD and
PLAY buttons. Use a volume setting approximately midway (about 4 on the
Radio Shack CTR-80 recorder).

The command CSAVE followed by a file (or program) name is used to record pro-
grams on tape from the computer’s memory. The file name may be any alphanumeric
character except quotation marks. The name is enclosed in quotes.

Examples: CSAVE “1”
CSAVE “A”
CSAVE “B”

You should always write file names on the cassette case for later reference. It is
also helpful to write the index setting (of the recorder) along with the file name so that
the program can be found quickly in the futures

270

APPENDIX B 271

2. Onthe computer, now type:

CSAVE “A" OR whatever file name
you want to use
and press the ENTER KEY.

The recorder motor should be automatically started by the computer, and the
program is then recorded. After the recording is completed, the computer will turn off
the recorder (hopefully—see “Recorder Problems” in this appendix). The READY
message will be displayed on the screen.

CSAVE “A"
READY
>

It is a good idea to CSAVE a program more than once on the same tape in case some-
thing should happen to one copy. This can be done by leaving the recorder in the
RECORD mode and typing:

CSAVE “A" and pressing the ENTER key again.

Once again the computer starts the recorder motor, records the program, and
turns the recorder motor off. The READY message is again displayed on the video
screen. When finished, press the STOP button on your recorder.

Checking Recorded Programs

After recording a program, it is advisable to immediately check the recording while
the original program is still in the computer’s memory. Then, if there was an error in
the recording, the original can be recorded again. This check can be made by following
these steps:

1. Rewind the cassette to the point where the recording of your program started.
REWIND and FAST-FORWARD on the CTR-80 are not under remote control.
Press the REWIND button until the tape has been rewound to the desired
position.

2. Press the PLAY button on the recorder.

3. On the computer, type:

croap? “a" and press the ENTER key.

Note the ? mark or whatever file
name you are using

The computer will then compare the tape recording with the original program in the
computer’s memory. If there are any discrepancies, the message: BAD will be dis-
played on the video screen. In that case, you should CSAVE the program again. If the
tapes match Correctly, the recording was good, and the READY message is again dis-
played.

272 APPENDIX B

GOOD RECORDING BAD RECORDING
CLOAD? “‘A” CLOAD? ‘“‘A”
READY BAD
> READY
-
Loading Taped Programs

The volume setting recommended by Radio Shack for loading cassette tapes on a
Level II system with the CTR-80 tape recorder is approximately 4.

For prerecorded tapes by other manufacturers, you will probably have to experiment
to find the volume setting at which they will load correctly. (See “Recorder Problems”
in this appendix for help.) '

To transfer a prerecorded program to the computer’s memory:

1. Connect the recorder as discussed in your Level II Reference Manual.

2. Insert the cassette containing the prerecorded program and rewind the cassette to
the beginning of the desired program.

Press the PLAY button on the recorder.

4. On the computer, type:

(%)

CLOAD “A"” or the file name of
the program that you
want

and press the ENTER key.

The computer turns on the recorder’s motor. After a few seconds, two asterisks should
appear in the upper right corner of the screen. The right asterisk should blink (usually
at an irregular rate). When the program has been completely transferred, the com-
puter stops the recorder’s motor and gives its READY message on the screen.

CLOAD ‘A"
READY
>

If all went well, turn off the recorder. The program is loaded. Type:

RUN
Happy computering!!

APPENDIX B 273

Recorder Problems

The audio cassette recorder provides an inexpensive means to store programs and data
files outside the computer. Keep in mind that the recorder was not originally designed
for this purpose. It is a cheap alternative to floppy disk drives. Although far from per-
fect, it does beat loading programs from the keyboard each time that you want to use
them.

Use of the tape recorder for digital purposes requires great patience, understand-
ing, and care. Here are some problems that you may encounter, and some suggestions
that may prove helpful. You may not agree with all of them.

— Use high-quality, certified digital tapes. Poor-quality audio tapes may have imper-
fect magnetic coatings with some spots that would be undetectable when playing
music or voices. However, a loss of one bit of data during the save or load of digital
data may spoil a good program. Radio Shack recommends its special 10 minute
per side computer tape cassettes.

— Keep the heads of your recorder clean and demagnetized. Special tapes are avail-
able that can quickly be “run through” the recorder to clean or demagnetize the
heads. Special cleaning liquids are also available.

— Be consistent in using a given volume setting when recording and loading your own
taped programs.

— Use short tapes and record only one program on each side of the tape.

— Record a given program several times on the tape.

If you follow the above suggestions, only minor problems should arise when load-
ing or saving your own tapes.

Big problems may arise, however, when you try to load tapes from other sources.
You must patiently try different volume settings until a good load is accomplished.
Recording levels will vary from manufacturer to manufacturer and from tape to tape.
Levels have even been known to vary within a given taped program.

— Once you correctly load a tape from an outside source, make a copy of it by saving
it with your own volume settings.

— Don’t hesitate to return a program that you have purchased if you cannot get it to
load correctly. Not all preprogrammed tapes on the market are perfect, as mass
duplication of tapes is as yet an “imperfect art.” The return rate is high.

There are products on the market that enhance the recorded data. They make it
possible to load tapes within a wide range of volume settings. Some are done by hard-
ware (a “black box” attached between the computer and recorder) and others are
done by software (which must be loaded in from a cassette).

Inside the TRS-80 lives a relay that is supposed to turn the recorder’s motor on
or off at the correct time. But relays have been known to stick, so that sometimes the
recorder may keep on turning after a program has been suc@essfully loaded. At other
times, you may punch the PLAY button on the recorder and find that the recorder
reaches the beginning of a prerecorded program before you can type in CLOAD.

— If this condition persists, don’t hesitate to have your Radio Shack store replace the
relay (within the warranty period, if possible).

APPENDIX C

ERROR Codes and Messages

Message
BS

CN

DD

FC

oM
Py

ID

LS

L3

Error

Subscript out of Range

Can’t Continue

Redimensioned Array

Illegal Function Call

Dad Tila Natn
[ty

~ A
RPLANL & AR

Illegal Direct

String Too Long

Disk BASIC only

Number
9

17

12

15

23

Explanation

An attempt was made to assign a ma-
trix element with a subscript beyond
the DIMensioned range:

A CONT was issued at a point where
no continuable program exists (as af-
ter a program was ENDed or
EDITed).

An attempt was made to DIMension
a matrix that had been previously
dimensioned. It is good practice to
put all DIM statements at the begin-
ning of your programs.

An attempt was made to execute an
operation using an illegal parameter.

Data input from an external source
(such as tape) was not correct or was
in improper sequence, etc.

The use of INPUT as a direct
command.

A string variable was assigned a
string value that exceeded 255 char-
acters in length.

An attempt was made to use a state-
ment, function, or command that is
available only when the TRS-80
Mini Disk is connected via the Ex-
pansion Interface.

274

APPENDIX C 275

MO Missing Operand 21 An operation was attempted without
providing one of the required
operands.

NF NEXT without FOR 1 NEXT is used without a matching

FOR statement. Also occurs if
NEXT variable statements are re-
versed in a nested loop.

NR NoRESUME 18 End of program reached in error-
trapping mode.
Message Error Number Explanation
OD Outof Data 4 A READ or INPUT # statement

was executed with insufficient data
available. DATA statement may
have been left out or all data may
have been read from tape or DATA.

OM Out of Memory 7 All available memory has been used
or reserved. Can be caused by large
matrix dimensions or nested

branches.

OS Out of String Space 14 The amount of string space allocated
was exceeded.

OV Overflow 6 A value that was input or was derived
is too large or too small for the com-
puter to handle.

RG RETURN without 3 A RETURN statement was encoun-

GOSUB tered before a matching GOSUB was
executed.

RW RESUME without error 19 A RESUME was encountered before
ON ERROR GOTO was executed.

SN Syntax Error 2 This usually is the result of incorrect
punctuation, an open parenthesis, an
illegal character, or a misspelled

command.
ST String Formula Too 16 A string operation was too complex
Complex to handle. Break up the operation

into shorter steps.

™ .Type Mismatch 13 An attempt was made to assign a
nonstring variable to a string or vice
versa.

276 APPENDIX C

UE Unprintable Error 20 An attempt was made to generate an
error using an ERROR statement
with an invalid code.

UL Undefined Line 8 An attempt was made to refer or
branch to a nonexistent line.

/0 Division by Zero 11 An attempt was made to divide by
zero.

NOTE: Some errors are difficult to locate. A program line may look correct on the
video screen but contain a “hidden error.” For example: A SHIFTed character may
have been typed where an unSHIFTed character was required. (Such asa SHIFTed
@ in PRINT @ or a SHIFTed variable). Spaces are sometimes important. Examine
the line carefully for places where spaces should be inserted. If you can’t find anything
wrong with the line which causes an error, try retyping the line. Take care to avoid the
SHIFT key unless it is required.

Program Index

Billy Goat, 223

Car with Sound, 168

Center and Four-Corner Mandala, 51
CHRS$ Car Race, 49

Create a New Data File, 131

Data File, 137

Delete Records, 140

Display Graphic Characters, 43

Examine Records, 144
Exploring EXP, 245

Fancy Mandala, 53

Graphics Comparison, 208

Input File from Disk, 135

Keyboard to Memory to Tape, 67, 70,
Keyggard to NAYMS$ and NMBRS, 94
Light a Whole Block, 45

Make a Tape of Names and Numbers, 75
Mandala with Sound, 169

Memory to Screen to Tape, 78

Oracle, 233

Paint Horizontal Lines, 37, 38

Paint it White, 48, 54

Paint Part of the Screen White, 63
Paint Screen and Poke Holes, 117
Paint Vertical Lines, 37

Personal Phone Directory, 104
Personal Telephone Directory, 93
POKE Black Holes, 45

PRINT Black Holes, 48

Punch Black Holes, 54

READ and Use Directory, 97
READ 10 Names and Numbers, 75
ROM PEEK, 12

Shape Maker, 213

SIN Plot, 241

Sound Generator, 160

Sound Producer, 165

Store Names and Phone Numbers, 104
STRINGS$ Car Race, 55

Tape to Memory to Screen, 68, 70, 78, 89

Target Practice, 167

The Shaker, 218

Three-Car Dragster Race, 45, 47
TRS-80 Art, 258, 265

TRS-80 Billboard Display, 222

Valentine’s Card, 251, 263
Wag Tail and Move Dog, 64

Wag the Tail, 63
Write Text, 171

277

Index

ABS, 235 CLOSE disk file, 129, 135, 146, 151
Absolute value, 235 CMD “S”, 133, 139
Add records to data file, 137, 145 Coordinates, 238
Address numbers, 13 Copying disks, 113
Amplifier/speaker, 157 COS, 243
Angle, 238 Cosine, 243
Arctangent, 245 CPU, 7, 8, 31
Arithmetic functions, 229 Create a data file, 137, 145
Arithmetic function summary, 247 CSAVE, 66, 83, 158
Arrays of integer values, 186 CSNG, 230
ASCII code, 47
ATN, 245 DATA, 65, 89, 153
Auxiliary programs, disk, 107 Data file, disk, 129
AUX jack, cassette recorder, 158 DEF, 196

DEFDBL, 202
Backup copy, TRSDOS, 110, 124 DEFINT, 202
Backup program, 110, 122 DEFSNG, 202
Bad subscript error, 198, 200 DEFSTR, 202
BASIC, 7 Delete records from data file, 137, 146
BASIC programs, 7 Destination disk, 110, 124
BASIC ROM, 15, 28 DIM, 186, 198
Binary digits, 13 DIR, 123, 139, 140
Bits, 13 Disk auxiliary programs, 107
BREAK key. 39. 173, 198 DISK BASIC, 123, 129
Buffer, 130 Disk executive program, 107
Builk eraser, 115 P Disk file directory, 105, 116, 124
Byte, 13, 186 Disk files, 117, 129

Disk operating system, TRS-80, 105
Cartesian system, 238 Double precision, 240
Cassette file, 74 DRIVE 0, 107, 121, 124
Cassette output port, 159 DRIVE 1, 121, 125
Cassette record, 74 Duration of sound, 160
Cassette to speaker/amplifier, 157
CDBL, 230 EAR jack, cassette recorder, 158
Central Processing Unit (CPU), 8, 31 Edit functions of MICRO MUSIC, 177
Chips, 13 End of file, cassette, 74
CHRS, 35, 47, 205, 219, 225 ERL, 202
CHR$(23), 220 ERR, 199, 201
CHR $(28), 220 Error message, 196
CINT, 231 Error summary, 201
CLEAR N, 18, 197 Examine records from a data file, 137, 146
CLOAD, 66, 83, 158 Executive program, disk, 107

278

INDEX 279

EXP, 245 OV (Overflow error), 196
File, cassette, 74 PEEK, 7, 9, 20, 22, 23, 31
File directory, disk, 105, 116, 124, 134 PEEK function, 9
FIX, 235 Phone Directory Menu, 143
FOR-NEXT loop, 37, 160, 196 POINT, 256, 259
FRE, 204 POKE, 7, 22, 24, 31, 35, 42, 166, 205, 207
Free memory, 18, 19 Polar coordinate system, 239
Free memory space, 17 PRINT, 68
Frequency of sound, 160 PRINT @, 40, 210
Print position, 36, 40
GOSUB, 251 PRINT #1, 131, 152
GOTO, 173 PRINT #-1, 65, 68, 83, 89
Graphic characters, 35, 40, 41
Graphic codes, 35, 42, 47 Radians, 240
Graphic positions, 35 Radio Shack amplifier/speaker, 178
Radius, 238
HOW MANY DISK FILES?, 130 RAM, 7, 13, 31
RAM, reserved, 15
Index, 198 RAM, user, 15, 28
INPUT, 65, 213, 234 Random access disk files, 130
Input a data file from disk, 137, 145 Random Access Memory (RAM), 13, 24, 31
INPUT #1, 135, 152 READ, 65, 89
INPUT #-1, 65, 69, 83, 89 Read only memory (ROM), 8, 23, 31
INT, 229 Record, cassette, 74
Integer, 184 Record, disk, 129
Inverse trigonometric function, 245 RESET, 35, 258
RESET button, 73
Keyboard memory, 13 Reserved RAM, 15, 28
KILL, 139 RESTORE, 255
RESUME, 197, 201, 258
Leader, tape, 70 RETURN, 255
LINE INPUT, 131, 152 RND, 229
LOG, 246 ROM, 7, 9, 31

Low location (of memory), 14
Saving a BASIC program on disk, 117

Machine language program, 17 Sequential disk files, 130
Machine language subroutine, 157, 178 Sequential input, 130, 135
Mandala, 35, 50 Sequential output, 130
MEM, 17, 183 SET, 35, 205, 257, 259
Memory, 7 SGN, 233
Memory buffer, 130 SIN, 240
Memory Land, TRS-80, 7 Sine, 238
Memory location, 13, 15, 40, 172 Single precision, 173
Memory Map, 15 Source disk, 110, 124
MEMORY SIZE?, 7, 9, 16, 31, 157, 162, 169 Space reserved for machine language routines, 16
Memory summary, 31 Speaker/amplifier, 157
Memory use by computer size, 14 Special features of MICRO MUSIC, 177
Memory, video screen, 28 SQR, 237
MICRO MUSIC, 157, 173, 178 Square root function, 236
MUSIC, 175 Stack, 16

STRINGS, 35, 54, 207, 210, 225
Natural logarithms, 246 Syntax error, 183
NEW, 183 SYSTEM, 175
NO MORE NAMES, 77
Nonmagnetic leader, 70 TAN, 244

Tangent function, 244
ON ERROR GOTO, 197, 200, 258 Tape leader, 70
OPEN, disk file, 117, 129, 130, 135, 151 Tiny rectangle of light, 36
OUT, 159 Top location (of memory), 14
Out of memory error, 198, 200 Trigonometric functions, 238

Out of string space error, 198, 200 TRSDOS, 105, 106, 124

280 INDEX

TRSDOS backup copy, 124 Usable memory, 14
TRSDOS diskette, 107, 110, 124 User RAM, 15, 28
TRS-80 BASIC, 8 USR (user function), 157, 161, 178
TRS-80 disk operating system, 105,
122 Video memory, 13, 40
TRS-80 Level II memory map, 15 Video print positions, 35
TRS-80 Memory Land, 7 Video screen, 7
TRS-80 memory summary, 31 Video screen memory, 28

Two-disk system, 121 Verifying disks, 113, 114

maries ®m Test questions ® Animation ® Graphics

e ® Arithmetic functions m Error handling routines
ids ® Review of BASIC terms, statements and commands
handling techniques ® Numeric and string arrays

dvanced programming
your TRS-80 computer!

s BASIC! Co-authors Don Inman, Bob Albrecht, and Ramon
computer programming talents as they did in their TRS-80
‘But in this book, they take you step-by-step through a
s of Level Il BASIC. It's easy to read and understand so you'll
ling techniques, allowing you to take full advantage of the
| Il computer.

ISBN 0 471 09677-6

