THE
aToz |
BOOK OF =1
COMPUTER GAMES

8Y THOMAS C. McINTIRE

No. 1062
$12.95

THE

BOOK OF L1
COMPUTER GAMES

BY THOMAS C. McINTIRE

TAB TAB BOOKS Inc.

BLUE RIDGE SUMMIT, PA. 17214

FIRST EDITION
SEVENTH PRINTING
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respectto
the use of the information herein.

Copyright © 1979 by TAB BOOKS Inc.
Library of Congress Cataloging in Publication Data

Mclintire, Thomas C. 1942-
The A to Z book of computer games.

Includes index.
1. Electronic digital computers—Programming. 2. Basic
glgomputerprogramlanguage) 3.CGames—Dateprocessing. I
itle.
QA76.6M322 794 79-11698
ISBN 0-8306-9809-4
{SBN 0-8306-1062-6 pbk.

Cover photo courtesy of IBM General Systems Division.

M m o0 W P

Contents

Introduction

Programming Notes—Program Format—Program Names

Abstract

15

The Programming Problem—The Design Approach—Building the
Program-—How the Programs Works—The Program

Bandit

Defining the Problem—Design Strategy—The Internals of
Bandit—The Program

Cokes

How the Program Plays—The Program

Dice

Problem Definition—The Architecture of Dice—A General-
Purpose Technique—How Dice Works—The Program

Elevate

How the Program Works—The Program

Fivecard

Fivecard Design—How Fivecard Works—Notes About the
Architecture—How the Mainline Works—Fivecard Hand
Analyzer—Fivecard Winner Picker—The Program

Gunners

26

38

47

76

Building Gunners—Gunners’ Internals—The Program

& = » D &£ T =)

Hotshot S ¥ |
the Virtual Logical Grid—The Programmed Strategy—Putting Hotshot

Together—Making Hotshot Work—The Program

111171 ¢ 101
Program Overview—What's Inside of Invert—The Program
Justluck.............. 115
Justluck's Architecture—Justluck’s Listing—The Program
Knights.....cccoeeees vevvenaane 125
The Layout of Knights—Knights From Wrthm—The Program

Lapides138
Lapides Logic—The Program

Match 144

Match From the Outsxde—Match From the Inside—The Program

Naughts & CroSSes .cuuemnvicrseersececsssorasmsnassnsnaran 156
A Design Approach—The Tables in Naughts & Crosses—

Modules, Mapping & More—Housekeeping & Mainline—The

Program

0-TEH-0....eereerrccrerenrcrrs e rssnseeinsisisersssensssessssesassasensnse 172
The Play—Problem Definition—The Basic Logic Pnncrples——A
Picture of the Program—O-tell-O From the Inside—The Program

Par-2covenennes O ST SR ...191
Design Considerations—Programming Par-2-The Program

Quantal cienevssessersanenes 199
Design & Logic—The Program

Rouletteccceevverecucnen 206
Playing Roulette——Programmmg Fioulette——The Program

371 (L 217

The States Template—States Internally—The Program

Twenty 1...... resseerssensasnsasannens 228
The Deck—A Design Audit—Putting Twenty1 Together—The Program

Ultranim.......ccoveceneeee veeeen 240
Strategies in Nim—The Computer's Choice—The Rest of
Ultranim—The Program

Verhoten ... 252
A Verboten Program——-Verboten s Coding—The Program

W WaMPUS ..oconeeiisncsccsinnnnnrssisissnccesrersssessssesenarsssssassssssesans 260
Defining the Probiem-~~Describing the Program—Describing the
Mechanics—The Program

X Xchange 270
The Game—Program Organization—Print Grids—The End—The
Program

Y Yat-Cuurerrecccrrinrscnninin s snesssssnsasensesnesevsessenns 282
The Program Template—The Coding of Yat-C—The Program

Z ZoEN o.eeciecsnnisnnsensnnsnnsnsnssessisssssnssssanssssassassansssssnsasanses 294
From The Top—Replay—The Program

Appendices
1 BASIC Dialects: Foreign Conversions..........coccocereerernenne 299
2 RANDOMIZE Methodscevereerrerrerercrsenmsnensesmencsraranns 302
3 GAME MatliX...ovvrrecrenererecrernrersseneenessiesacessessessassseseae 304
4 Truth Table Blanks: 8 Bits by 256 Words...........cceeu.n. 305

introduction

There is probably no need to explain the fun you can have playing
games with computers. More specious though, perhaps, is the
enjoyment experienced by the person who programs the computer.
Most games played with cards, dice, and the like are challenging and
mentally stimulating. So too, is the process of computer
programming—perhaps even more so.

Nearly all games allow for some element of luck, but computer
programming is more finite; in fact lucky breaks are not really a
factor of carefully designed programs. Yet the quickening of the
pulse in anticipation of the next draw of cards is not very different
from that experienced by a programmer when he runs his newly
written program the first time.

There is another comparison of games and programming.
Matching wits with a skillful opponent is somewhat akin to mastering
a machine. Perservering, finally getting an intricate program to
operate correctly is much the same as succeeding in a bout with a
clever adversary. And after a match of either type, as the warm
feeling of victory begins to wane, the thrill of the contest can be
rekindled with thoughts about future challenges.

Just as in games of skill, programming requires patience, prac-
tice, and diligence to maintain high levels of proficiency. The op-
timum combination of these two challenges— games and program-
ming — is to devise a program that enables the computer to play a
superior game, difficult even for its programmer to beat.

Computers are useful appliances in games. Advances in
micro-electronics in recent years have reduced the cost of

7

computer-based devices to the point where many machines are
available for purely entertainment purposes. Coming rapidly into
vogue now are devices for which a variety of game programs may be
purchased.

These exploit attributes such as the speed, arithmetic, preci-
sion, or the impartality of computers. The machine may serve as
the game board, playing field, or arena for human contestants.
Scorekeeping and refereeing are often features: it's tough to argue
convincingly with a machine. The more sophisticated computer
driven games may also have a player role, allowing for human-
machine contests.

This book is not offered in competition to these technical
marvels of the seventies, nor with the many books that offer up-
wards of a few hundred game programs ready to be copied and
played. Of course the programs contained here may simply be
copied. Certainly they are fun. These selections intend a dual
purpose, however.

Do copy and play these games, but study them also as compu-
ter programs. The variety from A to Z was carefully picked to
provide examples of gaming schemes appropriate to computers as
well as tricks and techniques for programming in BASIC.

The narrative of each chapter explains the scheme of the game,
of course, but provided also are lessons on game program construc-
tion. I have also tried to insure that there is at least one program-
ming trick-of-the-trade per listing, useful for other types of prog-
rams and for languages other than just BASIC. The purpose is to
equip the student for the maximum of enjoyment in playing games
and programming computers.

Some assumptions were made in choosing the games that
follow. BASIC, beginner’s all-purpose symbolic instruction code, is
a common programming language. In the several years since BASIC
was invented, however, numerous variations have appeared. In-
sofar as possible there was an honest attempt to provide program-
ming examples that are not particularly sensitive to a specific lan-
guage implementation.

The burgeoning microcomputer industry has adopted BASIC
almost universally. Various factions have taken liberties with the
original syntax, and each vendor’s product has nuances— even
among those claiming they conform to the recent standard from the
American National Standards Institute. The language, conceived at
Dartmouth, made it easy to program a computer from a terminal on
a time-sharing system. The inventors could not anticipate the popu-

larity BASIC would eventually attain, though, nor the permutations
of its form that would be forced by today’s technology.

Many BASIC dialects are a direct outcome of its use in desk-
top microcomputers, and extensions to the original language have
evolved to support modern peripherals. These influences were
factored also in designing the programs for this book.

The CRT (cathode-ray tube), the TV-set-like display, is espe-
cially conducive to computerized games. All of the programs in this
book were developed on a CRT-based machine, but they will work
well enough on one with a serial printer. To facilitate easy im-
plementation on either, and to minimize device-specific language
features, all output formatting has been kept simplistic. As an aid to
those wishing to copy these games just as they are presented,
Appendix I deals with the subject of BASIC language conversions.
Many of the more common differences in dialects are identified
there.

Simplicity was attempted also in the internal design of these
programs. The practiced BASIC programmer, versed in a favorite
product, will find numerous opportunities to optimize these designs.
And to the professional offering critique, be aware that I believe in
the KISS* philosophy, especially for the benefit of our novitiates.

In all events, it is my hope that you will be able to quickly
perceive the nucleus of each of these games and that you will enjoy
full license to enhance and otherwise modify them to your own
liking. I hasten to add, however, that this invitation is intended for
personal endeavors and not for commercial plagiarism.

There is no special significance to the order of presentation of
the chapters that follow, other than the obvious one of using the
alphabet, keying on the first letter of the program name. The
shortest is Cokes, perhaps the simplest is Z-End (a variation of the
classic #im), and unquestionably the longest program is Fivecard
(poker). A cross-reference appendix at the back of the book will help
you to locate different game types, programming techniques, al-
gorithms, etc.

Do read the notes that follow before immersing yourself in any
of these programs. It is here that I have described common aspects
of the structure of most of the programs and offered other com-
ments of a general nature to preclude repetition in each chapter.

PROGRAMMING NOTES

Chance, the flip of a coin or a random draw at cards, is an
element of many games. To expect a computer to supply a

*Keep it simple, stupid.

haphazard value is nearly contrary to the principles on which com-
puters are designed, however. Precision is an inherent feature of
computers and normally nothing occurs by chance. Random-number
generation through program routines is the usual solution to this
seeming paradox.

To the serious student of mathematics the topic of random
numbers offers several tangents for study. We shall accede to the
many texts that treat this subject professionally. Definition here is
only for that which has been provided, why, and how to use it.

The basic problem is to have the computer hand up a number
that cannot be presaged by a human player. Ideally, even the
programmer should not be able to predict exactly what number will
come forth. To obtain a random value in BASIC usually a language
function RND is used. The model used in the development of these
programs requires a numeric expression with the function, such as:
RND®).

Any positive integer used will cause the system to return a
six-digit decimal value ranging between zero and one (example: O
.372508). If the function is written with a zero expression, such as
RND(0), the value returned will be the same as that the last previ-
ous fetch brought forth.

Many implementations of BASIC use the key word RAN-
DOMIZE to start the system’s random-number generator from a
system-supplied “seed.” Some, however, expect the programmer
to supply the root number from which subsequent calls can derive a
pseudorandom value. Appendix II anticipates this, and contained
there is a BASIC programming example for using innocuous
operator input to start the ball rolling.

All of the programs listed here that have need for random
numbers contain a GOSUB 9000 early in the sequence. The sub-
routine listed at statement 9000 is simply the RND(1) followed by a
RETURN. You may either use what we have here or pick up the
subroutine from the appendix. Of course, if your BASIC permits
RANDOMIZE, simply substitute it for the subroutine jump instruc-
tion and ignore the statements after line 9000.

A note is appropriate also on the use of alphabetic responses
from players. Letters Y and N for yes and no are typically used. Our
model allows for alphanumeric string input. For versions of BASIC
without this facility, or if your preference differs, numeric input
conventions may be substituted. For example, you may use 1 for
yes and 0 for no, or some similar code.

Other conventions of design prevailed but were not always
practiced religiously. Symbol Q (for query) was most often used for

10

answers solicited from the operator, and the letters I and J were
used extensively for the counters in FOR-NEXT loops.

We come now to the subject of program structure or, in the
argot of the trade, software architecture. System or program house-
keeping tasks are up front, just before the operator is asked
whether the rules or instructions should be printed. For most
programs the rules are listed starting at line 1000 and end with a
subroutine RETURN. Housekeeping for the game itself is usually
next, and all of that immediately preceding the start of the game is
never again accessed.

Most game processes can be grouped by major function, such
as create adeck of cards'in memory(ina table),shuffle the deck using
arandom-number device and draw the cards from the deck one at a
time. Typically then, each such function is coded as a stand-alone
subroutine. One advantage is that the separate subroutines may be
accessed whenever there is a need, such as to reshuffle the deck in
blackjack (name, Twentyl).

Building programs in this manner—working on one module at a
time—is often easier, especially in an interactive form of BASIC.
During development of a program, I usually code (and load) one
module at a time. Debugging is easier this way, too, since new parts
are not added until all that has been entered before is working
properly.

A mainline routine serves to bind all of the subroutines together
into a complete program. A start sequence will establish score
counters at zero and set up the playing order. A series of subroutine
jumnps (GOSUB instructions) will call the functional modules as
necessary. At the bottom of one complete round of play, the end-
of-game condition is tested for, and if the game is not over a GOTO
statement reenters the mainline near the top.

If a fallthrough occurs when the end-of-game state is tested for
the players are asked whether they would like to play another
round. If the answer is yes another GOTO branches to the game’s
housekeeping area. Otherwise an END statement is encountered
and the program terminates.

A caution is in order at this point about switching players and
scorekeeping. No particular convention prevails. Scores may be
tallied within the mainline or, likely as not, in one of the servicing
modules. This is true of the player-switching logic also. A flip-flop
scheme is usually used for two-player games, often within the
mainline near the top. In multiple-player games (three or more), a
player counter is more likely to be updated near the bottom of the

11

mainline to insure that all players have had their share of turns
before the game ends.

Now, a word on documentation. By many standards the use of
remarks (REM statements) in the listings is notoriously sparse. Itis
supposed, however, the narrative and diagrams in each chapter
sufficiently explain program logic and structure. A favorite type of
diagram used here is the template. I have borrowed the template
concept from software engineering labs because of its excellent “big
picture” capability. To use the more traditional flowcharts takes
more space, and often the overall structure is not as apparent as it is
with the template.

Space conservation was a factor throughout. The scarcity of
REM statements was in part to save memory and partly to reduce
the length of the listings. A tradeoff was made to permit short
PRINT lines for those with 32- or 40-column printers or display
lines: but sometimes more statements resulted than would have
otherwise.

It is difficult to predict the amount of memory required for
unidentified systems. As a guide, though, the model used was an
8080-based microcomputer. The BASIC implementation was of the
source-code interpretive type, and the amount of user memory
available was approximately 4000 bytes. As a SAWG* then, these
programs should fit in a 4-kilobyte environment on most systems.

PROGRAM FORMAT

Statement numbering is intended to be always in increments of
ten. Very occasionally, the low-order digit sequence will be of the
form two, four, six, eight — which will usually mean that some steps
were inadvertently left out when the program was first written, but
added later. At other times, this stilted sequence was adopted to
enable coding of enough steps within an artificial numbering bound-
ary.

Whenever a single-statement insertion was required , perhaps
to eliminate a bug, the low-order digit used was five. Whichever the
case, the prevalence of multiples of ten is presumed to be sufficient
to permit easy modification anywhere without the need to renumber
any line referencing instructions.

For most programs two-digit line numbers (00-90) will contain
only program startup instructions, executed but once, and not
subject to being branched to from within the program anywhere
else. Program mainline tasks are usually restricted to three-digit

*SWAG scientifically weighted, arbitrary guess

12

line numbers. Branching within the mainline area is frequent
enough, but as a formatting and design convention there should not
normally be any reference to this area by any statement outside of
the three-digit range of numbers.

Where the major-task module form of architecture was
adhered to, the subroutines are blocked by thousands, that is, line
numbers starting with 1000, 2000, 3000, etc. Nested subroutines,
subroutines within subroutines, will begin with a whole-hundreds
sequence within the thousands block, such as 2400, 2600, 2800,
etc.

PROGRAM NAMES

There are never more than eight characters in a program
name, and they’re always alphanumeric; the only special character
used is the hyphen. The model used for developing these programs
could only tolerate an eight-character program ID, and I have found
this to be something of a de facto standard on many microcomputer
products. And my experience on various systems has caused me to
adopt a no-spaces, no-punctuation, always-alpha-first set of rules in
coining file names. So be it.

Enough of the general; it’s time for the games. In the chapters
that follow, the game is described first, followed by a brief on how I
approached the design, and finally, a description of how the program
works.

And work they all do. Having programmed for many years, I
realize the folly of promising error-free code. We have tried our best
toinsure that there are no bugs, but in the unlikely event that you do
find one, feel perfectly free to exterminate it.

Tom Mclntire

13

Abstract

Perhaps you know someone who has indicated that he or she would
like to learn programming. In a limited way the game of Abstract
gauges a player’s aptitude for programming because it tests for
deductive reasoning ability. It is just a game, and an amusing one to
play; so don't jeopardize friendships or career aspirations by reason
of anyone’s consistent inability to win.

The game begins with an announcement by the computer that it
is holding a three-digit number in memory. The player has twenty
chances to guess what the number is. The first guess must neces-
sarily be just that, an arbitrary guess. Following each entry a list of
clues are printed to show the relative accuracy of each of the digits in
the player’s guess.

The clues that are possible, and their order of presentation is,
ASTUTE, ABSTRACT, and ASKEW. For each of the player's
digits that corresponds exactly with that of the number being held in
memory, the clue ASTUTE will print. Obviously, three astute is a
winner.

Each of the digits of the player’s guess is compared, one at a
time, with each digit of the computer’s number. For each of the
player’s digits that has no match anywhere within the computer’s
number, the clue that is printed is ABSTRACT.

Whenever a player’s digit matches one of the computer’s, but
the digit is in the wrong position, ASKEW indicates the misalign-
ment. What is not revealed, however, is which of the digits prompts
the different clues, since the clues are always presented in the same
sequence.

15

The three types of comparisons used to trigger the clues
following each entry are mutually exclusive. By deductive reason-
ing, then, and with an ounce or two of luck, the player may home in
on the correct number. To do so merely requires that each guess be
carefully formulated based on the trail of clues provided with previ-
ous entries.

A few trial games might be necessary to fully grasp the signifi-
cance of the clues. Interestingly, this tends to be less true with
children sometimes than for some adults.

It is important to be aware that no two digits of a guess should
ever be the same, and that the player should not enter a number
having more than three digits. Either type of error will invoke an
appropriate message, but the guess is not counted as a turn. The
game ends when the player’s guess matches the computer’s number
exactly, and the message is: YOU GOTIT. Also, if the total number
of guesses is less than thirteen the number of turns used will be
printed. If thirteen or more turns are taken, the ending message
includes the sarcasm; FINALLY!!!

In either event, or after twenty attempts, the game ends with
an option to play again. For those unfortunates who use up all twenty
of the permitted guesses without solving ABSTRACT, the ending
routine will reveal the elusive number that the computer has been
holding.

THE PROGRAMMING PROBLEM

Conceptually this is not a diifficult program to design, but it has
some interesting processing requirements. Seemingly, two three-
digit numbers must be managed with continuing comparisons made
of their respective digits. The first number, of random origin, is that
held in memory by the computer. The second number is the player’s
guess; naturally, it's subject to change with each succeeding turn.

In both cases the two numbers must be quality checked to
insure that neither contains more than three digits and that neither
contains any duplicate digits. Each digit, then, of each of the two
numbers must be cross-compared to determine which clues are
appropriate.

Housekeeping and maintenance chores are nominal, requiring
only that the turns be counted and limited to twenty. Allowing for
repeated play without having to reload the program does require that
the turn counter be reset to one at the beginning of each game.

THE DESIGN APPROACH
Since the program will have to examine individual digits re-
peatedly, set up the memory number as three distinct integers from

16

the outset. The player’s guess is a whole number, however, so a
parsing routine is required to separate the digits to facilitate the
individual comparisons.

Three different clues means that at least three different tests
must be made, so the obvious choice is to use separate routines—
one for each type of clue. Because multiple clues can occur for each
of the tests, but only a single print line is wanted, the clue routines
must each provide a counter for use at message-print time.

BUILDING THE PROGRAM

Begin by roughing out the program template shown in Fig. A-1.
(The line numbers are added during the writing of the program.)
Each of the major tasks and their approximate relationships are

0 7000
INITIALIZE RULES
100 1110
110 2000 GET
START GAME RS
120 2080
3000 7400
PLAYER INPUT ASTUTE TESTS
3340 4440
T30 3000 4450
MAINLINE GETCLUES éESSFgACT
280 | 4030 4500
5000 4600
PRINT CLUES ASKEW TESTS
5540 4690

Fig. A-1. Program template for Abstract.

17

identified there. But the sequence of processing is not yet clearly
defined. Since the template does show which routines will ultimately
be needed, and by planning for each to be a stand-alone subroutine,
the modules can be coded in any order, and depend on the mainline
to prescribe the calling sequence.

A suggested starting point is to lay up the number-parser first,
since so much depends on being able to correctly split apart the
player’s guess. Figure A-2 shows the BASIC expressions that can
accomplish this and the rudiments of the algorithm on which the
parsing scheme is based. The principle alluded to in this example is
useful for any processing problem that requires isolation of the
individual digits of a whole number.

It’s a good idea to code the computer’s random-number maker
next. This will tend to insure that the symbol letters used for storing
each of the player’s digits will align correctly with those of the
computer. Although this subroutine should be coded at this point a
good debugging trick is to wait until later to bind it into the mainline
program.

To take full advantage of this idea during early trial runs of the
program with the bulk of the programming statements in place, use
programmer supplied test-case integers rather than allow the sys-
tem to generate an unknown value. This scheme will also enable you
to qualify the correctness of each of the clue generators because it
permits easy changes to both the computer’s supposedly hidden
number and a complete variety of guesses.

Back to the business of building. The three clue testors should
be coded next. There is no special importance as to which should be
programmed first, second, or third; but within each, extreme careis
necessary to insure accuracy — especially in the use of the storage
location identifiers for the various parts of the numbers.

The message-print subroutine that outputs the clues is the final
major module to be coded. At this point, assuming that each of the
clue testers are able to generate a number between one and three
(inclusive), all that’s needed is a loop-controlled print task that can
be accessed three times—to be called once for each of the three
types of clues.

Finally the frame is built by which all of the subroutines are
managed. Basically the calling sequence is (1) generate the compu-
ter's number, (2) accept player input and qualify it for range and
duplicates, (3) generate and print the clues, and (4) branch back to
permit another guess. Just before the branch at the bottom of the
mainline, don’t forget to check for a winner (a three in the astute
counter), nor for the possibility that the guess counter has reached
the twenty-tries limit.

18

STEP 1. LET B(1)=INT(A1/100)

DIVIDE At INTEGER A1
8.64
100 ' 864 8.64

STEP 2. LET B(2) =INT(A1/10)-B(1)

MULTIPLY B(1) DIVIDE A1 SUBTRACT
8 86
x10 86.4 -80

80 10lee4 G

STEP3. LET B(3)=A1-B(1)*100-B(2)*10

MULTIPLY B(1) MULTIPLY B(2) SUBTRACT
8 6 864
x100 x10 -800
800 60
- 60
4

Fig. A-2. Algorithm to reduce a three-digit number to three separate digits.

HOW THE PROGRAM WORKS

Advice to the system to allocate two three-element tables
(identified as A and B) is contained in statement 40. Table A will
house each of the three digits of the held number, Table B is for
storing the player’'s guess after it is parsed each time. It's not
difficult to remember which table has which number because the
computer’s number must be generated first, andA comes before B.

The logic for permitting an optional printing of the game’s rules
is easily discernible by studying lines 50 through 90. Notice that the
rules themselves are printed by the subroutine starting at line 1000.

19

A bit of subtlety exits at line 100 as to the logical use of this
statement, but the intent is to provide a touch of humor. The
alpha-string storage location denoted by F$ is initialized with the
phrase “I FORGOT TO TELL YOU THAT". Later, during playing
of the game, in the first instance only, if the operator enters a
three-digit number containing duplicate digits, the contents of F$
are printed, followed by: “MY NUMBER HAS NO 2 DIGITS THE
SAME.”

The printing sequence starting at line 3100 outputs the “forgot-
ten” instruction, and F$ is immediately reloaded with the phrase
“PAY ATTENTION”. From then on any duplicate-digits error de-
tected by the sequence starting at line 3060 will cause the operator
to be admonished for forgetting the “forgotten” rule.

Housekeeping for the game is done by statements 110 and 120.
The symbol G, for guess, is used to store the number of the turn. At
this point it's set to 0, since the incrementing instruction is at the top
of the mainline flow. The next instruction, GOSUB 2000, will call up
the subroutine that generates the computer’s hidden number.

The logic of this routine is rather rote, but in essence the
outcome will be three different integers storedin Table A. Using the
system’s random-number function the integers are fetched one at a
time, and successive duplicates are refused, the computer insisting
that another be called. Multiplication by ten in the RND expression
will shift the offered number one position to the left. The result at
that point will be an integer followed by five decimal digits. Con-
struction of the expression with the INT (for integer) function will
truncate the decimal portion also, leaving only a value between zero
and nine, inclusive.

Back to the mainline. In rapid succession, starting at line 140,
there are three subroutine jumps to control sequential access to the
major modules of the program. The balance of the mainline, lines
170 through 280, test for the end-of-game condition, permit optional
replay, or terminate with the closing quip “SO LONG THEN.”

The subroutine starting at line 3000 is wholly concerned with
entry of a guess. Itis here that the operator is prompted by the word
GUESS, and with a wee bit of intimidation by showing the turn
number with each prompt. The conditional in line 3020, read as if
equal to or less than 999, will go around the “too big” message. A
nested subroutine jump is then effected to line 3300 to parse the
player’s entry (as shown in Fig.A-2).

Upon return from the parsing subroutine the flow continues
with the duplicate-digits test sequence that was described earlier. If
all is copacetic the return instruction in line 3090 will link back to the

20

mainline. Notice that there is no escape from the player-input
module until a guess is input that is satisfactory to the logic of the
program.

The business of getting the clues is next, and it’s all done by the
set of tasks beginning at line 4000. This module is actually coded as a
miniprogram itself, complete with a short mainline of its own to
manage access to the three types of test necessary. Return to the
game’s mainline is from statement 4030.

Counter M1 is set to zero at line 4400 just before entering a
FOR-NEXT loop that is allowed to execute a total of three times.
Loop control uses the letter I, and the value there is also used as a
subscript for comparing the digits in the two tables, A and B, in a
parallel manner. The expression at line 4430 will increment the
value of M1 only in the event the table pairs being tested by line 4420
are equal. Notice also that later, upon return to the game’s mainline,
if M1 contains a three the game will end because the player’s guess
matches the computer’s number.

The astute counting sequence is a finite loop,always repeating
three full times, and a fallthrough occurs to the abstract tester which
begins at line 4450. Another counter, M2, is set to zero, and three
more tests are made through the use of a FOR-NEXT loop. Symbol
I is again used for both loop control and as a table-accessing sub-
script. The sequence-of-three statement beginning at line 4470
compares each digit of Table A with each in Table B. Any match
encountered here will preclude access to statement 4480, which
counts mismatches (abstracts). The return instruction at line 4500
exits back to the minimainline for an immediate jump to the last set of
tests.

The askew clue test routine is purely a linear sequence. After the
M3 counter is initialized by statement 4600, the series of expres-
sions that follows cross-compares the digits in 7able A with those of
B. For every instance of a frue condition within this sequence a jump
to the M3 incrementer at line 4680 will occur. After bumping down
through all of these tests, with or without incrementing M3, the
return at line 4670 will link back to line 4030. That statement also
contains a return; so an exit is immediate, signifying that all tests are
finished and it’s time to return to the program’s mainline.

And there—an immediate jump to line 5000 occurs (from
statement number 160). This routing is a bit circuitous but with
supposedly good intentions. Philosophically we suffer an inhibition
about crossing major module block boundaries (statements in the
thousands series). Sure GOTO branches could have provided direct

21

links, but the modular architecture would have been softened con-
siderably.

The clue printing process begins at line 5000, and this is the last
of the major tasks accessed by the mainline. A universal counter,
symbol M, is used for controlling a repetitive print subroutine which
is really a FOR-NEXT loop beginning at line 5500. The loop is
allowed to execute M times, so the individual clue counters (M1,
M2, and M3)are moved to M before the printer is called each time.
A universal message field (M$) is also used by the print task, anditis
initialized with the respective constant, ASTUTE ABSTRACT, OR
ASKEW, just before it is invoked each time. After the last jump to
the printing sequence a blank line is output by statement 5060, and a
relink to the program mainline occurs from line 5070.

From that point on, the program either loops back through the
mainline to reexecute the whole business or the game is over,
depending on the outcome of the tests in lines 170 and 175.

THE PROGRAM
10 REM "ABSTRACT"
20 REM

30 605UB 9000

40 DIM A(3)s B(3)

50 PRINT "YOU NEED INSTRUCTIONS (Y OR N)"s
60 INPUT Q%

70 IF @% = "N" THEN 90

80 GOSUB 1000

90 PRINT

100 LET F$ = "1 FORGOT TO TELL YOU THAT"
110 LET 6 = O

120 GOSUB 2000

129 REM "MAINLINE"

130 LET 6 = &+1

14D GOSUB 3000

150 GOBUB 4000

160 GOSUBR 5000

170 IF M1 = 3 THEN 190

175 IF G < 20 THEN 130

180 PRINT “IT WAS:"A(1)3A(2)3A(3)
185 GOTO 240

190 PRINT "YOU GOT IT - "i

200 IF 6 € 13 THEN 230

240 PRINT "FINALLY!!t®

220 60TO 240

22

230

240

250

260

270

280

99%
1000
1040
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1999
2000
2010
2020
2030
2035
2040
2050
2060
2065
2070
2080
2999
3000
3010
3020
3030
3040
3050
3060
3070
3080
3o%0
3100

PRINT "IN ONLY" & "GUESSES!"
PRINT "ANOTHER ROUND (Y QR N)"3
INPUT @%

IF @$ = "Y" THEN 90

PRINT "80 LONGs THEN."

END

REM "INSTRUCTIONS"

PRINT "I AM HOLDING A 3-DIGIT"
PRINT "NUMBER...CAN YOU GUESS"
PRINT "WHAT IT 187"

PRINT

PRINT "WHEN YOU GUESS I WILL TELL YOu:"
PRINT " ASKEW = A DIGIT IS IN"

PRINT * THE WRONG PLACE"
PRINT " ASTUTE = A DIGIT IS IN"
PRINT * THE RIGHT PLACE"
PRINT " ABSTRACT = A DIGIT 18"
PRINT * INCORRECT. "

RETURN

REM "COMPUTER'S MNUMBER"
FORI=1703

LET ACI) = INT(1D#RND(1))
IF I = 2 THEN 2070

IF I = 3 THEN 2060

IF A(3) = A(1) THEN 2010

NEXT I

RETURN

IF A(3) = A(2) THEN 2010
IF AC3) = A(1) THEN 2010
IF A(2) = A¢1) THEN 2010
GOTO 2040

REM "PLAYER INPUT"

PRINT "GUESS #"G" "i

INPUT @

IF @ =¢ 999 THEN 3050

PRINT "T00 BIG - CAN BE ONLY 3 DIGITS"
60TO 3000

GOSUR 3300

IF B(1) = B(2) THEN 3100
IF B(2) = B(3) THEN 3100
IF B(3) = B(1) THEN 3100
RETURN

PRINT F$

23

24

3110
312N
3130
3140
3299
3300
3340
XYY
3340
3340
3999
4000
4010
4020
4030
4399
4400
4410
44200
L4300
44400
4449
44500
44500
4470
L4772
4474
4480
4450
4500
4599
44600
4610
4620
4630
4640
44650
4640
4670

4680
4690
4999

LET F$ = "PAY ATTENTION"
PRINT "MY NUMBER HAS NO 2"
PRINT "DIGITS THE BAME."

GOTO 3000

REM "PARSE PLAYER NUMBER"

LET A1 = @

LET B{1) = INT(A1/100)

LET B(2) = INTCA1/7100-B(1)%10
LET B(3) = AI-B{1)»#100-B(2)#10
RETURN

REM "GET CLUES®

PRINT

GOSUB 4400

GOSUB 44600

RETURN

REM "COUNT ASTUTE CLUEB™

LET M1 = D

FOR 1 =170 3

IF A<I) <3 B(I) THEN 4440

LET M1 = M1 + 1

NEXT 1

REM "COUNT ABSTRACT CLUES"
LET M2 = O

FORI =170 3

IF A¢1) = B(I) THEN 44%0

IF A¢2) = B(I) THEN 44%0

IF AC3) = B(I) THEN 4490

LET M2 = M2+1

NEXT I

RETURM

REM "COUNT ASKEW CLUES"

LET M3 =8

IF AC1) = B(2) THEN GOSUB 4680
IF AC1) = B(3) THEN GOSUB 4680
IF AC(2) = B(1) THEN GOSUR 4680
IF A€2) = B(3) THEN GOSUR 4680
IF AC3) = B(2) THEN GOSUB 4480
IF A(3) = B(1) THEN GOSUB 4680
RETURN

LET M3 = H3+1

RETURN

REM "PRINT CLUES™

5000
5010
5020
50308
5040
5050
5060
5070
5100
5140
5200
5210
5300
5500
5510
5520
5540
5540
2000
2010
2020

LET M = M1

60SUB 5100

LET B = M2

G0SUB 5200

LET # = M3

G0osuB 5300

PRINT

RETURN

LET M$ = "ASTUTE"
60TO 5500

LET M$ = "ABSTRACT"
60T0 5500

LET M$ = "ASKEW"
IF M = 0 THEN 5540
FORI =1 T0H
PRINT M¢

NEXT I

RETURN

REM "RANDOM NUMBER ROUTINE"
LET Z = RND(1)
RETURN

25

Bandit

Maybe you have been to Freeport, Monte Carlo, or Las Vegas. If so
you're undoubtedly familiar with slot machines. In any event we
have here the poor programmer’s facsimile of the one-armed ban-
dits common to the gambling capitals of the world. Of course few mi-
crocomputers can cough up cold cash so a little pretending is helpful.

To partly compensate for your machine’s inability to heap piles
of winnings at your feet the game of Bandit does permit you to vary
the amount of the bet with each figurative pull of the handle. And
during the course of play an occasional whimsical message is
printed, based on your winnings or lack thereof. Both are interest-
ing features that the makers of real slot machines perhaps ought to
consider adding.

In the absence of fancy graphics capability, instead of displaying
pictures of grapes, lemons, and cherries, this program will print the
names (GRAPES, LEMONS, or whatever). It does help, then, for
the players of Bandit to at least be literate. The tidbits of humor that
occasionally surface are more enjoyable also to the person able to
read simple English.

This game is essentially mechanical. When the prompt appears
(BET?), type a number to represent a dollar amount. The rules
caution on the limit of $200 for a single bet. When you terminate the
entry—by use of the RETURN, LINE FEED, or whatever your
fini-key is called—the program will roll the three picture tumblers.

Your bet is lost if you don’t get at least a pair of something. Any
odd pair will pay you, though—twice whatever you bet. If all three

26

pictures come up alike your winnings for that roll are five times your
bet—with the exception of BAR or JACKPOT. Triple bars are
worth ten times the amount you bet, and triple jackpots will pay your
bet twenty times over.

Opportunites to quit the game (or to elect to continue) are
announced whenever your winnings or losses exceed $200 or
whenever you are again even with the board. Notice also that it is
not necessary to type an amount for each pull of the handle. The
computer will remember the amount typed in at any point and will
allow you to “let it ride” with each simulated pull of the handle,
providing you terminate without typing anything at all. Points con-
cerning the end-of-game boundaries and the automatically repeated
betting are seemingly unrelated, yet they do have problematic
implications.

Betting in hundred-dollar increments or similarly large
amounts will indeed cause a short game. Conversely, nickel or dime
bets may never exceed the $200 win or loss threshold; indeed, it
may well take more than just all night for you to get back to
zero—especially if you arbitrarily vary the bets.

Because of the way this all works it can be rather fun to force an
end-of-game situation by blowing the $200 upper limit by intention-
ally losing more than $200 or, even more arduous sometimes, by
trying to zero out.

DEFINING THE PROBLEM

It isn't at all difficult to envision the more or less simplistic
sequences of conditional testing that can be devised to handle $200
entry and end-of-game business—nor even, for that matter, for the
zero-balance aspect and the auto-repeat betting feature.

The real crux of this programming problem has to do with the
printing of picture names from a list of ten or so, and in a seemingly
circulating fashion, yet trapping at random points in the list. Obvi-
ously not only must the list be rolled three times, comparisons must
be made to know when pairs or triplets occur; and in case of BAR
and JACKPOT, at least, distinction is necessary because different
win multipliers must be used.

DESIGN STRATEGY

Going for the simple direct solution could mean simply setting
up a series of picture-name print statements and conditionally acces-
sing them based on the use of arandom integer. Of course the three
random picks would have to be saved for the comparison tests. And
every print line could be followed by a RETURN or by a GOTO that

27

branched to a common return statement so that the whole sequence
could be treated as a subroutine—to satisfy the three-times usage
requirement.

This could be made to work, but there is the monotony of
coding ten print statements alternated with an exit of some type.
And too, there’s the unstated but certainly desirable need to print
the three pictures on the same line, uniformly spaced apart. Tabbing
could be used for that, but a looping technique would certainly be
less tedious than using a long linear sequence for printing the
pictures.

If the picture names were stored as elements in a table they
could be fetched using the random number as a subscript. The
table-accessing statement would move the constant to a general-
purpose field for the print statement’s benefit. These tasks and a
tabbing mechanism could be included within a loop sequence. Even
the three-times comparisons could be integral to the same loop.
This scheme is definitely less tiresome to code than the previous
idea.

The purist could introduce arguments at this point having to do
with speed and storage tradeoffs, even including the technique
finally adopted by Bandit. And our example would lose, at least by
reason of a speed disadvantage. But this is a game program, anditis
supposed to be a reasonable imitation of a slot machine. The method
chosen for Bandit does use a loop, in fact two of them, one nested
within the other. The inside loop manages the circulating list of ten
picture names; but rather than a table, the list is a data-statement
structure. A READ X$ is contained within the loop and a random
value is set up to define the limit of FOR-NEXT iterations.

The outside loop provides the random number, saves that
value, and does the printing of X$. The TAB variable is also gener-
ated by the outside loop arithmetically from the loop counter itself.

Successive data reading is a relatively slow technique, and
there is a degree of randomness as to the time required since X$ is
located by use of a random number. The result is an impression of
coasting, especially since the printing and reading tasks are inter-
laced within nested loops.

THE INTERNALS OF BANDIT

There is not a lot of modularity to this program, but what is
there is shown by the template in Fig. B-1. As usual, the instruc-
tions to the player are self-contained in the subroutine that starts at
line 1000. Statements 3000 through 3150 contain the instructions
for rolling the tumblers as well as the picture names themselves.

28

10 1000

INITIALIZE PRINT RULES
130 1080

3000
ROLL
TUMBLERS

3150

140
MAINLINE

380 \\ 4000

TEST WINNERS
4180

Fig. B-1. Program template for Bandit.

The other major task, computing the winnings based on pairs and
triplets of pictures, is all done by the subroutine beginning with line
4000.

Symbol R is used extensively throughout the program and the
mnemonic connotation of R is random. The DIM statement in line 30
sets aside a three-element table called R to temporarily store the
value of each picture as it is rolled. The simple variable R is also a
work field, used to store the random number that will trap the
selected picture for each tumbler.

A lot of use is made of the number handed up by the random-
number expression contained in statement 3060. The +1 tacked
onto the end of the expression will cause a net value in the one to ten
range. The RND function produces an integer between zero and
nine, inclusive, but adding one gives a number from a series that
starts with one.

Each picture is obtained by the FOR-] inside loop in lines 3080,
3090, and 3100. The READ X$ stops when R is reached, and the

29

RESTORE in line 3110 will reset the data pointer for use the next
time.

The number in R at that point is also saved in fable R, using the
I loop counter as a subscript. This is accomplished by the instruction
inline 3070, which you'll notice is outside of loop/ but within loop].

All of the comparison logic depends on the numbers contained
in table R. If all three fields added together total three, they must
each contain a one (JACKPOT), since zero can't occur. Similarly, if
the sum is thirty (BAR), each roll was a ten, which is the largest
number possible. Thus it is learned by statements 4010 or 4020
whether the bet should be multiplied by either ten or twenty and an
appropriate branch is taken.

If the down-total of the table is neither three nor thirty the loop
beginning at line 4030 is entered. Here it is learned whether trips of
anything else exists. If so, the loop falls through to multiply the bet
by five in statement 4060.

During the loop, though, any mismatch will cause a branch to
the series of tests beginning in line 4120. This sequence will detect a
pair, and any found will branch to 4170 to double the bet. Otherwise,
the player’s bet is lost by converting @ to a negative amount by
subtracting the bet from zero.

Upon return to the mainline whatever is in @ is added to T,
which contains the running total as a positive or a negative value,
depending on whether the player is winning or losing. Immediately
after updating the player’s balance in line 260 a zero balance is tested
for. If the balance is zero an option to stop is announced; otherwise,
the player’s account status is output at either line 340 or 370. Notice
the use of the ABS (absolute) function in lines 340 and 350 to enable
use of the balance without regard to the use of any arithmetic sign.
And if 200 is exceeded the sfop option is again allowed.

There are many opportunities to experiment with custom
changes to this program. The whole business of multiplying the bets
is subject to such modifications. Choices here are simply the au-
thor’s, but they are related to the auto-repeat feature. There is a
tendency by the player to let the bet stand, so the frequency of the
messages output is somewhat controlled by either a series of wins
or losses.

Since Q is itself factored (or made negative), and in our model
will remain unaltered by a null input, either the bets are compounded
or, more often, the operator attempts to bet a negative which
causes an immediate message that they must enter an amount to
play. And even though fractions of dollars are permitted by use of

30

decimal entries, a bet amounting to less than a dollar accuses the
player of being a cheapskate.

All of these tests and messages are done in the mainline
programming sequence, which can be totally rewritten if desired
without affecting the logic of the other modules. It's also worth
mentioning that none of the modules is dependent upon any house-
keeping elsewhere.

The technique used for variable tabbing in statement 3120
might also be noted, since this trick is often useful for a variety of
programming tasks. By arbitrarily multiplying the loop counter (an
integer) by ten, then immediately subtracting ten, the values of
zero, ten, twenty, etc. can be derived. This gives uniform spacing
with the distance dictated by the multiplier.

THE PROGRAM

10 REM "“BANDIT"

20 REM

30 GOSUR 7000

35 DIM R(D

40 PRINT "WANT A DESCRIPTION (Y OR N)"3
50 INPUT @%

60 1IF @% = “N" THEN 12D

70 1IF @$ = "Y" THEN 1410

80 PRINT "PLEASE ANSWER: Y FOR YES"
90 PRINT " OR N FOR NO..."

1B0 GOTO 40

110 GOSUB 1000

120 LET T = @

130 PRINT

140 PRINT “BET"}

150 INPUT @

160 IF @ > O THEN 190

170 PRINT "YOU HAVE TO BET TO PLAY!"
180 GOTO 140

190 IF @ < 201 THEN 220
200 PRINT "BE REASONABLE NOW!"
210 GOTO 130
2200 IF @ > .99 THEN 24D
230 PRINT "CHEAPSKATE"
240 GOSUR 3000
250 608UR 4000
260 LET T =T + @

3

27u

280

290

300

310

320

330

340

350

360

370

380
1000
1010
1020
1030
1040
1050
1060
1070
1080
3000
3010
3020
3030
3040
3050
3060
3070
3080
30%0
3100
3110
3120
3130
3140
3150
4000
4010
4020
4030
4040

32

IF T € 0 THEN 340

IF T » O THEN 370

PRINT "READY TO QUIT (Y OR N)"3
INPUT Q%

IF @% = "N" THEN 130

PRINT "### S0 LONGs CHICKEN %"

END

PRINT "YOU OWE ME $"ABS(T)

IF ABS(T) { 200 THEN 130

G0TO 290

PRINT "YOU’'VE WON: $"T

G60TO 350

PRINT "THIS GAME SIMULATES A"

PRINT " ONE-ARMED BANDIT (THAT'S"
PRINT " A SLOT MACHINEs YOU KNOW)."
PRINT "BET ON EACH PULL - UP TO $200"
PRINT "3 JACKPOTS PAYS 20 X THE BET"
PRINT "3 BARS PAYS 10 X THE BET"
PRINT "3 OF ANYTHING ELBE PAYS 5 TIMES"
PRINT "2 OF THE QTHERS PAYS DQUBLE"
RETURN

REM "FETCH THE FRUITS"

DATA JACKPOTs BELLs PLUM

DATA ORANGEs LEMONs GRAPE

DATA CHERRYs APPLEs MELON

DATA BAR

FOR1I=17023

LET R = INTC1D#RND(1))+1
LET R(I) =R

FOR J =1 TOR

READ X$

NEXT J

RESTORE

PRINT TAB(I#1D-10) X$3
NEXT 1

PRINT

RETURN

REM "FIGURE WIN AMOUNT"

IF RC4I+R(2)+R(3) = 3 THEN 4100
IF RU4I+R(2)+R(3) = 30 THEN 4080
FORI =170 2

IF R(3) <> R(I) THEN 4120

4050
4060
4070
4080
4£0%0
4100
4110
4120
4130
4140
4150
4160
4170
4180
000
9010
9020

NEXT 1

LET @ = 5#@

RETURN

LET @ = 10%@

RETURN

LET @ = 20%@

RETURN

IF R(3) = R(1) THEN 4170
IF R(3) = R(2) THEN 4170
IF R(1) = R(2) THEN 4170
LET @ = 0-@

RETURN

LET @ = Q%2

RETURN

REM "RANDOM NUMBER ROUTINE"
LET Z = RND(1)
RETURN

33

Imagine—you just left the computer room heading for the canteen
to have a cold soft drink. Enroute another programmer offers to flip
a coin with you to determine who will buy. And as you round the
corner in the hallway two peopie from another department offer to
join you in this age-old form of office gambling,

Rather than risk being seen by a boss while gambling with a
group in the corridors, suggest instead that a return to the computer
room is in order. There you can introduce your friends to the game
of Cokes, the computerized version of odd man out.

As provided here, this game permits from one to four persons
to play. The computer picks a number between 1 and 999, and the
players take turns trying to guess what the hidden number i: not.
Because there are so many numbers in the range from 1 tc 999,
even with four players the game could last all afternoon in this rm.
So there is another feature of the game that has been add:d to
quicken the pace.

With each guess by a player the range permitted for the next
guess is continuously reduced. If a player’s guess is too higi, the
value of the guess is adopted by the computer to be the new top
limit. In the same manner, when a guess is too low, the number just
entered becomes the low-end limit for the next turn. Obviously, as
the range narrows, the risk of bumping into the correct number
increases rapidly.

For those players who are timid of heart but short on abstract
reasoning capacity, you can discount the logic for an always-one-

34

less-than strategy. They’re just as likely to encounter the hidden
number that way as any other. In fact, you can hasten their play by
using a strategy that roughly equates to a binary search algorithm;
enter guesses that are halfway between the changing limits. You're
certainly nomore apt to accidentally pick the losing number this way
since the odds are the same for all numbers regardless of the
guessing scheme.

HOW THE PROGRAM PLAYS

Notwithstanding our enthusiasm for modular programming, as
shown by a glance at the listing, this program is simple straight-line
coding. Some programming problems just don’t seem to deserve
highfalutin engineering.

The program begins by asking how many players are to be
entertained. The operator's response is stored at location P (for
Dblayers); but before executionis allowed to continue, Pis testedfora
valid number in the one to four range. Naturally, less than one player
is impossible, and more than four around a single console can cause
too much commotion.

Another variable (T for turn) is preconditioned in statement 80,
the only rule is printed by lines 85 and 86, and the game begins. The
fatal number (to the loser) is picked by the random-number calling
sequence of statements 100, 110, and 120.

The expression in line 100 will place a whole number in location
X that is not larger than 998. Multiplication of the usual six decimal
digits by 1000, and the -1 appended to the end of the expression
helps, of course. Zero and negatives are precluded by the test in
statement 110. If the random number fetched into X by line 100 is
zero or less the program forces a one into the variable at line 120.

The range limits are set up inA for the low and Z for the high.
Lines 130 and 140 initialize the game with limits of 1 and 999,
respectively. Thereafter, A andZ are updated as the game progres-
ses. The input prompt line is of the form:

PLAYER # ¢t GUESS aaa — zzz

where ¢ is the turn (meaning player number), aaa is the low limit,
and zzz is the upper limit. The three print statements beginning with
line 150 are responsible for this output.

As soon as a guess is accepted by the instruction in line 180, itis
masked by the INT (integer) function in line 190 to insure that
location N will only contain a whole number. The player attempting
to enter a fraction will soon get discouraged of such tricks since the

35

program simply ignores any decimal value by way of this masking
technique.

If the tests in lines 200 or 210 detect an out-of-bounds entry the
message “TOO LOW” or TOO HIGH is printed from line 300 or
320, and the same player must try again. Notice that the branching
sequence is such that the turn number has not been altered, so the
prompt line will repeat the player number.

Once execution gets past the range checks line 220 tests to see
whether the guessis aloser—meaning N and X are equal. If not, and
if the guess missed on the low side, a branch is taken to line 230 to
update the lower limit; another branch continues on to line 250,
where the player number is updated for the next turn. The alternate
path possible out of the test in line 230 is a fallthrough, implicitly
meaning the guess was on the high side. Location Z is immediately
changed to whatever the guess was, and a direct access to the turn
number updating occurs.

The turn number is incremented each time statement 250 is
hit, but line 260 checks whether the value of P (number of players) is
exceeded. If so line 280 is called into play to reset T back to 1. In
either event the end of a complete round has occurred, and a branch
from line 270 recycles the process, reentering at line 150.

The whole game is just a loop in essence, and when finally a
match on the hidden number is detected by line 240 an exit from the
loop goes to line 340. Lines 340, 350, and 360 announce the loser,
and a short looping sequence will print the numbers of the players
that won.

THE PROGRAM

10 REM "COKES"

20 REM

40 PRINT "HOW MANY PLAYERS"3
50 INPUT P

55 IF P{1 THEN 40

60 IF P<5 THEN 80

70 PRINT "TOOQ MANY PLAYERS"
75 60TQ 40

an T = ¢

85 PRINT "GUESS A NUMBER WITHIN THE™
86 PRINT "RANGE INDICATED"

20 GUSUB 9000
1000 LET X = INT(1DOD*RND(1))-1
110 IF X>1 THEN {30
120 LET X=1

36

130
140
150
160
170
180
190
200
210
220
230
240
250
240
270
280
290
3uu
310
321
340
340
350
360
37
3&1
390
395
396
400
410
420
430
440
Quan
QUi
20:0

LET A=O
LET Z=999
PRINT "PLAYER#"3T:

PRINT " GUESS"3A:
PRINT "-"3Z3

INPUT N

LET N = INT(N)

IF N <= A THEN 300
IF N »>= I THEN 320
IF N = X THEN 340
IF N < X THEN 430
LET Z = N

LET T = T#1

IF T > P THEN 280
6070 150

LET T=1

60TO 270

PRINT " TOO LOW "
6070 150

FRINT " T00 HIGH "
6070 150

PRINT "PLAYER#"3T;

PRINT "BUYS THE COKESs GANG"
PRINT "FREE DRINKS FOR PLAYERS #"
LET I=1

IF I=T THEN 39%9&

IF I>P THEN 410

PRINT I3

LET 1 = I+1

GOTO 380

FRINT

END

LET A = N

GOTO 250

REM "RANDOM NUMBER ROUTINE"
LET Z = RND(D)

RETURN

37

Here is a game that is especially suited to computers. In fact,
although this game can be played with paper and pencil, much of the
fun would soon dissipate because of the clerical tedium that is
involved if it is played that way. Repetition and tedious arithmetic
are the forte of modern micros, however, and it’s easy to presume
they are accurate and dispassionate as well.

The form of play is usual enough; two people taking turns
rolling a pair of dice, and the score per roll is the sum of the numbers
rolled. You are permitted multiple rolls per turn, and the score
keeps mounting; but there is a catch. If a roll comes up as a match,
exactly, with a previous rollin the same turn, you forfeit the turn and
the score that was accumulating for that turn. Of course, you may
relinquish your turn at any point voluntarily and receive credit for
your score to that point.

There is another pressure-cooker element also. A game of
Dice consists of but twenty turns each. The player with the highest
score after twenty complete rounds is the winner.

PROBLEM DEFINITION

Up front, the housekeeping chores for a two player game are
needed. Each will have separate scoring accumulators, and a
mechanism is required to know whose turn it is. There is also the
problem of limiting the play to twenty rounds, making sure that both
players get their share of rolls.

38

The need for a temporary accumulator is apparent—needed to
hold the score as it accumulates within a turn—but a single worker
should suffice since it can be used for either player in turn. Mainte-
nance of this field has toinclude (1) setting it to zero at the beginning
of a player’s turn, (2) adding to it the sum of each roll and, (3)
clearing it if a match forfeit occurs (when a player voluntarily gives
up his turn, the contents must be added to the player’s running
total).

Let’s consider next the business of the dice. A pair of random
numbers are needed, each limited to a range of one to six. If the two
integers of a roll are placed immediately adjacent all of the possible
combinations will be found in the series; 11, 12, 13...64, 65, 66.
This suggests a possible scheme then. A table of at least sixty-six
elements to hold any roll specifically; the value of the roll can be used
to access the table.

Actually, sixty-six permutations with a pair of dice is not pos-
sible. No die has zeros. The sequence of 01 through 10 can’t occur;
either can 20, 30, 40, 50, or 60. Nevertheless, sixty-six is the
largest table that would be required to hold any possible permuta-
tion.

To better define that part of our programming problem having
to do with the dice consider the following. We must fetch a pair of
random integers and add their sum to a temporary worker. Their
combined value (side by side) may be used to access a table as
column and roll subscripts into an array; or the pair can be usedasa
whole-number subscript to vector into a table. In either case if the
table check reveals that a repeat has occurred a match must be
flagged. If the table shows that this is a first-time instance for this
pair of numbers, the table must be marked in some manner to
benefit subsequent checks for this pair.

There is a housekeeping task associated with this or any other
table scheme. All of the elements of the table must be initialized to a
known state at the beginning of each round of play. Whether the
cleanup is done immediately before a round commences or after a
round is finished is not important—but a clean slate is needed
somehow.

If we pause a moment now and mentally mull over the total
problem as described above we can intuitively surmise that the bulk
of the program will have to do with managing an individual round of
play. The sum of the lines of programming needed for a two-player
game otherwise is bound to be less than for the business of the dice.
As it turns out, that is the case. At least it is in the model provided
here.

39

THE ARCHITECTURE OF DICE

Our theme regarding modularity, as practiced elsewhere in this
text, has not been abandoned in Dice, but it is less obvious. Part of
the indistinction stems from the use of module boundaries denoted
by line numbers in even hundreds (rather than thousands). This
method was adopted to preclude a cursory assumption that the
structure of this program is the same as those others. It is different.

Notice that the programming template in Fig. D-1 indicates
that module boundaries are sometimes crossed directly. GOTO
statements, for example, may be from a 700-series line number to
an 800-series line number.

There is another interesting structure in this program. The
bottom of the mainline is never crossed. A round of play is managed
wholly by a FOR-NEXT loop. But contrary to most such loops, the
NEXT instruction is never sequentially passed; meaning the TO limit
is never reached. Two exits from the loop are possibie, one in the
event the player voluntarily gives up his turn, and the other case is
on a forced exit because of a matched roll.

A GENERAL-PURPOSE TECHNIQUE

At a point in this program it is necessary to combine the two
separate numbers of the dice into a whole number. The requirement
is certainly not unique because it can occur in a variety of program-
ming problems. The solution provided in this example isn't neces-
sarily unique either, but it does work sufficiently well, and the
amount of coding required is minimal.

Suppose we roll a3 and a 6. From this we need 36. Multiply the
first digit by 10, thus 30. Now, add the 6 to 30, and presto, 36.

Obviously the same algorithm applies with more than two
digits. If three integers had to be combined the first would require
multiplication by 100 and the second by 10; then the three values can
be added together. Notice also this technique is actually opposite
that described in Chapter A for parsing whole numbers into separate
integers.

HOW DICE WORKS

We begin the study of the program from the top. In line 30,
which is the first of any significance, is a dimension specification for a
66-element table called D (for dice). By now the reader can undoub-
tedly anticipate the use of this table, but we'll postpone describing
the mechanics for accessing it until the appropriate point in the
program.

40

10 100

PROGRAM ES
SETUP AUL
220 200

300

GAME SETUP
315

320
MAINLINE

335
PLAYER
SETUP

390

MAINLINE
450 \\ =5
ROLL DICE
690 \ 0 e

MANAGER

800
MATCHED ROL
OR EXIT

900
PRINT SCORES

1000
END OF GAME

2000

Fig.l D-1. Program template for Dice.

Another table is indicated here, consisting of but two fields, and
the table is symbolically called P (for players). The individual scores
are kept in fable P by use of a simple variable (also called P). A player
number is maintained in P, either a one or a two, to be used as a
subscript for addressing the scores in table P.

Perhaps you're curious as to the need for defining small tables
by use of DIM statements. The model system on which these
programs were built does provide for dynamic (implicit) dimension-
ing of tables of eleven elements or less (subscript range zero to ten).

41

As a general practice, though, you'll find that tables are always
defined at the beginning of the programs in this book regardless of
their size. This practice is valuable for documentation reasons.

A more important reason for always defining tables—even the
short ones—has to do with debugging. Dynamic redefinition of a
table is not permitted by our model. Once a dimension statement
has been encountered in a program you are not supposed to change
the size of the table or array anywhere else within the same run.

Consider this. Suppose our problem logic requires a two-
element table, just as inDice. In the absence of a DIM statement a
subscript of three (or four, five, six, . . . ten) will work mechanically
even though t’s contrary to our logical needs. If a mistake is made in
a procedural area, creating a subscript variable larger than two,
program execution will continue merrily on its way. On the other
hand, a DIM D (2) will cause the system to flag any attempt touse a
subscript larger than two. This can be a rather nice bit of assistance
in the event a coding error stores values at table locations that were
not supposed to exist by the program.

The operator is permitted the option of bypassing the descrip-
tion of the game. If the input to line 60 is Y lines 100 through 220 are
skipped over. Either way statements 300 to 315 are gone through to
set the scores to zero and to set a variable to one. The label M may
mean monitor, master, mother, or whatever, but it's used as
counter of the rounds of play—that’s why it’s started at one. Whenit
goes past twenty the game is over.

Statement 325 checks whether the player number is two. Of
course when the program first starts it should be zero, so P is made
to be one in line 330. Later, P becomes two by adding one for the
benefit of player Z’s turn. Another pass through the same logic will
add another one, making three, but this sequence will reset the
player number to one. Thus, the player number (P) can never be
anything other than one or two.

By the way, line 320 is the reentry point for successive rounds
of play, and line 300 is the starting point for a new game. In line 320
the variable E is initialized for each round. This field is a program
flag, E meaning exit. If we look momentarily at line 415 we see a
conditional branch to statement 320 to start a new round of play in
the event E is anything other than zero. The GOSUB 600 in line 410
breaks out of the mainline loop, and any task thereafter will upon a
RETURN, allow the loop to continue if E is conditioned to zero; or a
new round can be triggered by moving a value into E.

By similar logic, if M (the master counter) has reached
twenty-one a new game is started by a conditional branch to line 220
from line 416.

42

Placement of these conditional exits is not because of sophis-
try. In a later routine it would be possible to branch directly to the
beginning of another round or a new game. All other routines can
only be gotten to by way of the GOSUB 600, however. If the
integrity of the subroutine jumping is not maintained—if the RE-
TURN sequencing is broken—the system’s jump stack would even-
tually overflow. Imagine your chagrin if the program bombs out after
several hours of play—for seemingly capricious reasons.

A round of play actually begins with the setting of the tempor-
ary score counter (S) to zero in line 335 and by clearing table D with
the FOR-NEXT loop in lines 340, 350, and 360. Notice that only
elements 11 through 66 are cleared—1 through 10 are never used.
Neither are 20, 30, 40, etc. But why interrupt this compact loop for
them? The input prompt at the start of a round reads:

PLAYER# p IS UP - ROUND# m

Therest of the mainline extends from line 390 through line 450. This
is the FOR-NEXT loop mentioned earlier; notice that it is never
exited by sequentially passing the NEXT statement. The TO limit is
defined to be sixty-six, but there is no way it can be attained. A
matching roll has to occur long before sixty-six is ever reached.

From within this loop the upcoming roll number is announced to
the player, and a jump to line 600 goes to the dice roller. The usual
RETURN from there will leave two numbers displayed, and the
player will be asked “OK?”. By preconditioning the response field
(Q$) with an arbitrary Z a simple termination of the INPUT in line
430 will result in a not-equal-to-X condition at line 440, and another
roll is executed.

If the player chickens out, though, and types an X before
terminating the input statement a jump to line 820 will credit his
account with whatever has accumulated in the temporary worker S.
From that area round counter M is incremented every other turn
(by lines 830 and 835) and the player number is bumped up by one in
line 840. If the game isn't over, the scores are printed and the exit
flag (E) is incremented to signal to the mainline that a new player is
up.

The remaining routine, the dice roller itself, is fairly simple.
Two sequences, one starting at line 610, the other at line 640, will
set up N1 and N2, respectively. These are forced to contain inte-
gers in the one to six range.

If the RND statements offer any other number GOTO state-
ments will repeatedly branch back, insisting on a valid number.

43

The first number rolled, N1, is multiplied by ten, summed with
N2, and the result is placed in N. The dice are printed by line 680,
and the table is checked by loading table R with whatever is at the
location of ¢able N.

If the location is blank (zero), the round number (I) is stored at
that spot by statement 710, and another roll is permitted.

Whenever table D is checked and the spot that is accessed does
not contain zero, regardless of whatever is there, the indication is
that this same pair (the combination of both dice) has occurred
before. The number that is actually stored in the table tells when it
happened. Statement 800 tells the player that he has zapped, and R
tells which roll was duplicated.

The game-ending option is usual enough. When the M counter
hits twenty-one the game is over. The final scores are printed, and
the high score is the winner. Another game can be started by
answering with a Y when asked. A relink to the mainline is triggered
froma Y test, and a branch is conditionally activated from line 416 to
line 220 to begin again.

Perhaps a final suggestion is in order regarding this program.
Debugit thoroughly. It’s bound to get a lot of use because # really is
fun to play.

THE PROGRAM
10 REM "DICE"
20 REM

30 DIM D(66Ys P(2)

35 GOSUBR 000

40 PRINT "DC YOU KNOW HOW TCO PLAY DICE"
50 PRINT "TC¢ SKIP RULESs TYPE Y"j

60 INPUT Q%

65 PRINT

70 IF @% = "Y" GOTO 300

100 PRINT "THIS IS A 2-PLAYER GAME AND"
110 PRINT "YOU TAKE TURNS. MULTIPLE "
120 PRINT “ROLLS PER TURN ARE PERMITTED."
130 PRINT "THE SCORE PER TURN IS THE SUM"
140 PRINT "OF ALL NUMBERS ROLLED."

150 PRINT "YOU MAY END YOUR TURN WITH"
160 PRINT "AN ’X’' AND THE SCORE ADDS"

170 PRINT "TO YOUR TOTAL: BUT..."

180 PRINT "YOU LOSE THE SCORE IF You"

190 PRINT "MATCH A PREVIOUS ROLL."
200 PRINT "HIGH SCORE WINS AFTER 20 TURNS"

44

220
300
310
315
320
325
330
335
340
350
340
370
&0
390
400
410
415
416
420
425
430
440
445
444
450
600
610
620
630
640
650
660
670
680
690
700
710
72D
730
800
810
8z0
830

PRINT

LET PC(1) = O

LET P(2) = 0

LET M =1

LETE =20

IF P = 2 THEN 335
LET P = 1

LET 8§ =0

FOR I = 11 TO 66
LET D(I) = O

NEXT 1

PRINT "PLAYER#"iPi

PRINT "IS UP - ROUND#"3iM
FOR I =1 70 66

PRINT "ROLL #"3iIs

GOSUB 600

IF E <> O THEN 320

IF M = 21 THEN 220
PRINT "OK"s3

LET g% = "2"

INPUT e%

IF @% <> "X" THEN 450
GOSUR 820

60TO 415

NEXT I

REM DICE ROLLER SUBROUTINE
LET N1 = INT(10#RND(1))
IF N1 < 1 THEN 610

IF N1 > 6 THEN 610

LET N2 = INTC(40¥RND(1))
IF N2 < 1 THEN 640

IF N2 > 6 THEN 640

LET N = Ni1#10 + N2
PRINT N13NZz

LET R = b(N)

IF R <> 0 THEN 800

LET D(N) = I

LET 8 = G+N1+N2

RETURN

PRINT “ZAP...MATCHED ROLL#"iR
G60TO 830

LET P(P) = P(P)+8

IF P = 1 THEN 840

45

46

835
840
850
210
920
925
930
940
1000
1005
1010
1620
1030
1040
1050
1060
1070
1080
1090
2000
2000
2010
020

LET M M+1
LET P = P41
IF M = 21 THEN 1000

PRINT "BCORES: #1="3iP(1)}
PRINT " #2="iP(2)

PRINT

LET E = E+1

RETURN

IF P = 1 THEN 930

PRINT

PRINT “END OF GAME"

PRINT "FINAL SCORES:"
PRINT "PLAYER #1"iP(D)
PRINT “PLAYER #2"iP(2)
PRINT "PLAY AGAIN (Y OR N)"j

INPUT @%

IF @$ = "Y" THEN 2000

PRINT "GOODBYE"

END

RETURN

REM "RANDOM NUMBER ROUTINE™
LET Z = RND(D)

RETURN

AN
\ // . \\
’ Elevate .

Here is a game program that makes use of one of the transcendental
functions. Transcendental, according to Webster, means “incapable
of being the root of an algebraic equation with rational coefficients,”
or “being, involving, or representing a function,” such as sine. This
program does use the BASIC function SIN, so the math majors in
our midst should enjoy it.

For those who have all but forgotten nearly all of this here’s a
brief review of sine.

Again, from Webster, sine is defined as “the trigonometric
function that for an acute angle in a right triangle is the ratio of the
side opposite the angle to the hyptenuse.” No kidding.

If all of this puffy phraseology doesn’t jog your memory don't
despair. Just be aware that the distance a projectile will travel can be
predicted if the upward angle at which it was shot is known. Here, of
course, we do ignore a few things such as velocity, wind resistance,
the weight of the round, etc.

To explain this game to the elementary-school set an analogy
can be shown while watering the lawn. With the nozzle aimed ahead,
nearly horizontal to the ground, the stream from the hose hits the
ground a few feet in front of you. Horizontal is zero degrees of
elevation. If you aim directly overhead that’s 90 degrees of elevation
of the nozzle. You will get wet. An elevation of greater than 90
degrees is beyond straight up, and you may well find yourself hosing
down your living room through an open window.

47

Range, and how it is affected by elevation, can be de-
monstrated with the garden hose also. With the nozzle adjusted to
produce a thin stream, begin again at the horizontal. Show that, as
elevation increases, the distance from you that the water will carry
alsoincreases. At a point you will learn the greatest distance you can
achieve without having to move. That is termed, by the guys with
the big guns, as maximum range.

The game Elevate simulates the shooting of a cannon at a ship.
You are told the maximum range of the cannon, and a fictitious
artillery spotter gives you the approximate range to the ship. You
are supposed to guess the elevation required to hit the ship and
enter the degrees on the keyboard. When you terminate the entry
the computer will figure the striking point of your shot and advise
whether you were over or short on the range—and by how many
yards. The game continues until you sink the ship. Actually, a direct
hit isn’t necessary, either. Any hit within 100 yards of the ship will
damage it so severely that it can be assumed to sink.

As you fire away, correcting your elevation based on the
spotter’s correction data, your shots are counted. The object is to
use as few rounds as necessary to score a hit. Seeif your friends can
do better.

HOW THE PROGRAIM WORKS

Because of the relative simplicity of the programming problem,
the architecture of Elevate is just straight-line coding. Infact it would
seem somewhat contrived to attempt modularity where it isn’'t
warranted. A cursory scan of the program listing shows that it is
basically all a mainline and that there are no major subroutines.

The program begins with an option regarding the printing of the
game’s description. Notice that if the description is printed by the
statements extending from line 70 through line 185 the program will
haltat the INPUT Q$inline 190. There are two reasons for this halt.

The video screen of the model on which this program was built
can only accommodate sixteen print lines per page. If the program
wasn't halted where it is, the first six lines or so of the information
would be lost due to automatic scrolling. The second reason for the
stop has to do with human factors engineering. Stopping the prog-
ram at this point will permit the player to read the descriptive
information without being distracted by the message that
follows—which is really part of the start of a round of play.

Line 2001is the start of a game of E levate, and this is the point of
entry if the game’s descrption is bypassed. From here an an-

48

nouncement is made regarding the maximum range of the gun and
the distance to the target.

The expression in line 220 will concoct the random range value
in a worker called R. Perhaps you recall the expression “my dear
aunt sally, “the initial letters of which also stand for multiply, divide,
add, and subtract. Whatever value the system generates in re-
sponse to the RND function it is first multiplied by 3000; then the
result is subtracted from 43000, giving a random range result in R.

The expressionin line 240 is the last of the game’s initialization.
When the program is first loaded S, the shot counter, is automati-
cally preconditioned. The placement of this instruction is for the
benefit of players who want to play again and again.

The abrupt change in the statement numbering scheme from
line 250 to 2500 denotes the logical boundary between housekeep-
ing for the game and the loop reentry point for corrected guesses.
This is the point at which the player is asked for an elevation figure.
Whatever the entry it’s stored in location E, and the shot counter is
immediately incremented upon termination of the keyboard entry.
Two conditional branches in lines 2530 and 2540 determine all that
happens after that.

A normal entry should be a positive value, considerably less
than 90 degrees. If the guess is less than 88, the branch from line
2530 is taken to the program area starting in line 4000. That's the
valid guess path, which we'll describe shortly. But first, the errors.

A guess in the 88 to 92 range would be nearly straight up. The
message printed by lines 2550 and 2560 announces the idiocy of the
entry and suggests that the gunner ought to make a hasty departure
before the shell returns to the point from whence it was fired. The
sequence next printed looks like this:

BOOM!

Concentric FOR-NEXT loops are used to print the periods that
simulate the descent of the round from overhead. Loop I begins in
line 2570 and extends through 2610. The inside loop, J, is really a

49

do-nothing loop that executes 100 times between periods. This is
just a timer to slow down the printing. This routine was coded for a
TV screen, and without the J loop, line scrolling on the screenis too
fast. On a serial printer output device statements 2580 and 2590
should probably be omitted.

Following the trail of ten dots the explosion (BOOM!) occurs,
and a branch from line 2640 returns the program to line 2500 for
another guess.

The other type of mistake is an elevation entry of more than 92
degrees—which is past straight up, or in effect, behind you. The
THEN 2650 in line 2540 is executed for any entry greater than 92.
When it happens, this message is printed:

THAT SHOULD MAKE YOU A HERO—
THAT ROUND MAY HIT CAMBRIDGE!

A conditional (C) is set to one by statement 2670, and the GOTO in
2680 returns the program for another elevation guess. At whatever
point, later, that a normal guess permits the program to proceed to
the area on line 4000, the subroutine at lines 3000 through 3050 is
called upon if C is found to contain a one. The delayed message is :

NEWS FLASH!
CAMBRIDGE COW HIT
BY MYSTERY MISSILE

The regular program path is from the keyboard entry point to line
4000. Whether or not “news flash” is printed, the current entry is
qualified one step further. If the guess is less than one a simple
“ILLEGAL” is printed and a return branch to line 2500 is invoked.
Otherwise, the shot is somewhere near reasonable, supposedly.

The E value is multiplied by two, divided by 57.2958 in state-
ment 4030, and the result is placed in E2. Worker J is set up in line
4040 by multiplying the SIN function of E2, by the maximum range
of 46500. The result to this point, in J, is subtracted from the
randomly chosen range (R) by statement 4050, and the difference is
placed in N.

The temporary number N is an actual distance, so Dis setup by
line 4060 to contain this result without the decimal portion by use of
the integer function. Since D can be either positive or negative, the
conditional test in line 4070 included the absolute function to deter-
mine whether or not the distance differential is less than 100 regard-

50

less of the algebraic sign. If so a hit on the ship is conceded, and a
branch to the game-ending area is in order.

If the ranging error is greater than 100 yards the signis allowed
to influence whether the over or short messages are printed. The
ABS form of expression is used to tell the player his distance error,
since the sign isn't wanted as part of the printed output.

A bit of humor is attempted at the end if more than seven shots
were used to score a hit. Either way, line 4130 outputs the shot
counter and the play-again option is encountered in line 4170.

Inany event this game is not very difficult to implement. It's fun
for some players, and it offers lots of opportunities for experimental
programming. So good luck and good shooting.

THE PROGRAM

10 REM "ELEVATE"

20 REM

30 GOSUR 2000

40 PRINT "WANT A DESCRIPTION <Y OR N)"}
50 INPUT Q%

60 IF @% = "N" THEN 200

70 PRINT "THIS GAME SIMULATES THE EFFECT"
80 PRINT " OF CHANGING THE ELEVATION OF"
0 FRINT " A CANNON."

95 PRINT "YOU ARE ON DUTY WITH A BOSTON"
100 PRINT " COASTAL DEFENSE BATTERY."

105 PRINT "YQU’RE TRYING TO SINK AN"

110 PRINT " APPROACHING WARSHIP."

115 PRINT "A HIT WITHIN 100 YARDS WILL"
120 PRINT " DO IT."

125 PRINT "FOR MORE RANGE: ELEVATE."

1300 PRINT "IF YQU OVERSHOOT: LOWER THE"
140 PRINT " ELEVATION."

1501 PRINT "ENTRIES ARE IN DEGREES "

180 PRINT ".....EXAMPLE: 45,3"

185 PRINT "QK"

190 INPUT Q%

195 PRINT
200 PRINT "MAXIMUM RANGE 15 44500 YARDS"
210 PRINT ™ DISTANCE TO THE SHIP IS"

2200 LET R = 43000-3000#RND(1)
2300 PRINT "R"YARDS"
260 LET 8 =0

2500 PRINT

51

25010
2510
2520
2540
2540
2550
2540
257G
2580
2590
2400
2640
2620
2630
2640
265(1
2660
2670
2680
3000
3010
3020
3030
3040
3050
3200
3240
4000
4010
4020
4030
4040
4050
40560
4070
4080
4090
4100
4110
4120
4130
4140
4150

52

PRINT "ELEVATION":
INPUT E
LET § = 5+1

IF E € 88 THEN 4000

IF E » 92 THEN 2630

PRINT " YOU SHOT NEARLY STRAIGHT UP..."
PRINT "...LET'S GET QUT OF HERE'"
FORI =1 T0 10

FOR J = 1 T0 100

NEXT J

PRINT TAR(15) "."

NEXT I

PRINT TAB(13) "BOOM!"

PRINT

60TO 2500

PRINT "THAT SHOULD MAKE YOU A HERQ --"
PRINT " THAT ROUND MAY HIT CAMBRIDGE!'"
LET € = 1

GOTO 2630

PRINT TAB(3) "NEWS FLASH!"

PRINT "CAMBRIDGE COW HIT"

PRINT "BY MYSTERY MISSILE"

PRINT

LET C =20

RETURN

PRINT "ILLEGAL™

G0TO 2630

IF € <> 1 THEN 4020

GOSUB 3000

IF E £ 1 THEN 3200

LET E2 = 2#E/57.2958

i

LET J = 46500#5INCEZ)

LET N = R-J

LET D = INT(N)

IF ABS(D) < 100 THEN 4100

IF R-J ¢ O THEN 4200

IF R-J > O THEN 4220

PRINT "GOT "EM"¥

IF 8 < 8 THEN 4130

PRINT " FINALLY!!"

PRINT S"ROUNDS FIRED"

PRINT

PRINT "ANOTHER GAME (Y OR N)"3

4160
4170

INPUT @8
IF @¢ = "Y" THEN 195

4180 PRINT “END"

4190
4200
4210
4220
4230
9000
9010
7020

END

PRINT "SHORT BY" ABS(D)"YARDS"
G0TO 2500

PRINT "OVER BY" ABS(D)"YARDS"
60TO 2500

REM "RANDOM NUMBER ROUTINE"
LET Z = RND(1)

RETURN

()
Fivecard

The game program for this microcomputer version of poker pits
man against machine in a variation of five-card stud. The rules are
simple and the rounds are fast. The house and player start with an
equal stake of $200. The ante for each hand is $5, and the betting
limit per turn is $20.

Betting occurs only once in each hand, immediately after each
player is dealt two cards. All cards are dealt faceup, and the player
bets first. The computer-cum-dealer is expected to match whatever
is bet. Then the remaining three cards apiece are dealt. Both hands
are analyzed by the program according to traditional poker rules, the
rankings are printed, and another round begins automatically.

The object of the game is for one player, man or machine, to
win all of the other’s money. The bet and the call are both subject to
the $20 limit, but also to an account balance. When one or the other’s
stake falls below $20 the limit is reduced accordingly. The person
can’t bet more than he or she has left, nor bet more than the
computer can cover if the machine’s stake is nearly depleted.

As a game this program is entertaining, just as it is presented.
It is also interesting as a program. We included it in this volume
primarily because of the deck management scheme employed, and
the poker-hand analyzer that it uses.

Programs that simulate card games must, in some way, hold a
deck of cards in memory. In most cases it is up to the computer to do
the shuffling and dealing as well. A number of techniques can be
devised to do these things, but invariably a single concept prevails:

54

the deck is really a table or an array, usually containing numbers to
denote both rank and suit.

At print time the codes designating the suits are converted to
names, and the aces and the face cards are spelled out. The conver-
sionis strictly for the benefit of the human eye; the internal number-
ing scheme facilitates using arithmetic for determing the relative
ranking of hands.

The coding scheme used, the table structure itself, and the
business of dealing and shuffling are all highly interrelated. There
are two other card games in this book and they offer some contrasts
to the methods used in this one. The following rationale describes
why Fivecard is built the way it is, and why poker-like games insist
that certain techniques be used.

FIVECARD DESIGN

Inveterate poker players have an intuitive sense of the order of
probability in the drawing of hands. Any bias suspected of the
machine’s randomness will be quickly challenged. In fact, some will
remain leery regardless of your contention that your program is
honest. Let's see why.

One way to devise a card-dealing process is to generate a
random number, force it into the one to fifty-two range, and reduce
it to a rank and suit. To preclude an obvious faux pas it is also
required that each succeeding card be compared with any previously
dealt, ignoring any duplicates. There is an inherent risk to such a
scheme. Some may contend that you are tampering with the natural
odds.

The ultimate methodis probably the one that accurately mimics
a human dealer. Build a deck of fifty-two cards, thoroughly shuffle
them, then deal one card at a time, alternating between the players
and working strictly from the top of the stack, downward. In
Fivecard we come close to such a scheme, save the part about
dealing strictly from the top.

Instead of using random-number values to swap around the
cards in the table (which is created as a sequential series), a
pseudoshuffle is attempted by picking the cards from the table based
on a random number.

Although this method may be vulnerable to an attack from the
purist, it does seem to provide believable odds. The shortcut of not
doing a preparatory shuffle is preferred in card games that require a
new deck for each round of play. There are noticeable delays, as it
is, and a good card-shuffling technique can require quite a few
additional seconds.

55

There is another design factor imposed by poker and similar
card games. Not only must the 7ank be of random origin but so must
the suit. In fact, it’s best to encode the deck so that the cards are
each represented as complete values, with each having a serial value
and a suit designation combined as one code. Some games pay no
heed to color or pattern, so suits can be generated capriciously. The
poker player is apt to holler if affush crops up too often—you can bet
on it.

HOW FIVECARD WORKS

The preceding discussion mentioned that the card deck is
stored in a table. There are nine tables in Fivecard, but the deck is
the largest one, and it has fifty-two numeric fields. The design of this
whole program is based on the deck table, the other tables, and the
use of subscripts to move values among them.

Before getting into those structures and their uses a couple of
the design goals should be mentioned. Modularity is highly in vogue,
so most of the major subroutines can stand alone functionally. This
was done so that individual routines can be modified or rewritten
completely without creating havoc elsewhere in the program. There
is also the advantage that subroutines or groups of subroutines may
be transported intact to some other program.

In essence the idea was to provide in Fivecard a collection of
major task modules in a minilibrary of techniques useful to most card
games. This is done through the use of two design methods. First,
there is the game’s character.

The identity of Fivecard, as seen by the player, is provided
almost exclusively by the program’s mainline. It is in the mainline
that all of the dialog, operator input, betting, scorekeeping, and so
on is done. Processes having to do with card-deck management,
poker-hand analysis, and the printing of cards are all independent of
the mainline, and most are independent of each other.

The subroutines, tables, and the mainline are kept independent
of each other in two ways: (1) mainline procedures never access
tables directly, and (2) for the most part one module is never allowed
to tamper with another’s table.

The tables, their individual structures, and their contents are
described next. Since this whole program is based around these
tables an understanding of the tables will make it easier to learn how
the program works.

Table D

The card deckis stored in this table; its makeup is shown in Fig.

F-1. As can be easily seen, there are fifty-two elements, and each

56

10

2 (2)

3 (3)

Fig. F-1. Tabie D, the deck. 4 (4)
< 2§
b Y 'S

50 (50)

51 (51)

52 (52)

contains a number from the set 1 through 52. The table is generated
each time a new deck is needed. As cards are randomly picked
during the deal, at the point the number is removed from the table,
zeros are moved to that spot. It is this mechanism that precludes
duplicate cards.
Tables A, A1, & B, B1

These four tables are each five elements deep, and they are
used to hold the hands. Tables A and A1 are for the human player; B
and BI are for the house (the computer’s hand). The structure of
these four tables is shown in Fig. F-2. At the beginning of a round of
play the hands are initialized to zero. As each card is dealt the card
and suit codes are moved to the respective tables sequentially from
the top.
Card Code Generation

A poker deck is supposed to have thirteen cards in each of four
suits. The numerical deck in table D contains the numbers one
through fifty-two. As a card is removed from the deck it is reduced
to a number in the one to thirteen range and the suit is derived from

57

A Al B B1
11 5)) 1 13 %) 3
3 @ 4 5 2 1
6 3) 2 5 (3) 2
4 (4) 3 4 4 2
2 (5 1 12 5] 4
ﬂCARDS (1-13) /P KING
SUITS (1-4) SPADE
A-B CODES CARD A1-B1 CODES SUIT
1 2 1 HEARTS
2 3 2 CLUBS
3 4 3 DIAMONDS
4 5 4 SPADES
9 10
10 JACK
11 QUEEN
12 KING
13 ACE

Fig. F-2. The players’ hands.

the multiple factor. If the card as picked, is already in the one to
thirteen category, the suit code is one. If the selected card number
is larger than thirteen then thirteen is subtracted from it, and the
result is checked for greater than thirteen. Each time the subtrac-
tion occurs a one is added to the suit number. At whatever point the
one to thirteen test is satisfied the number in the suit counter
becomes the code that is ultimately stored in either table Al or B1.

Tahble H

The symbol H was chosen to mnemonically represent hand.
This table is a general-purpose working storage area used by the
hand analyzer logic. It's used for either player, depending on whose
hand is being scrutinized. Since this same table is used for both
players it is cleared to all zeros immediately prior to its use each
time. Figure F-3illustrates the contents of fable H as it would appear
during the analysis of the computer’s hand, as it is shownin Fig. F-2
(table B and BI).

58

In poker one of the most significant aspects of a hand in
determining its relative ranking is whether it contains pairs, triplets,
or whatever. Table H is used to support an easy programming trick
for counting duplicate cards ina player’s hand. Each card numberina
hand (fable A or table B) is picked up, one at a time, and the number
itself is used as the subscript for adding one to a counter in fazble H.

In the previous example (Fig. F-2, table B) the first card code is
thirteen. A one is added to location 13 in fable H, then. Since the
table was cleared to zeros before this frequency-counting process
began the one is added to zero the first time. As each card code is
counted into the appropriate spot in the hand table several things
can be determined about the player’s hand by reviewing the con-
tents of fable H. Other things must be known ultimately, but here is
what we can learn from the hand-counter table:

B The highest numbered location that isn’t zero in table H
tells the rank of the highest card in the player’s hand. It’s
the location number that tells, not the code that’s there.

H
(N
(2)
(3
1 (4 1 FIVE
2 () 2 SIXES
G
@)
®
(©)
(10)
(1)
1 (12) 1 KING
1 (13) 1 ACE

Fig. F-3. Table H, the hand count.

8 Multiples can be detected by examining the numbers at
any nonzero location. A twois a pair; threeis triplets, etc.

B The card value of multiples is the same as the fable H
element number (plus one). In the example the count of
two in location 5 will eventually decode to mean a pair of
SIXes.

B If none of the counters is larger than one the hand cannot
be a winner on the basis of pairs, three of a kind, or
anything of that type.

B Straights can also be deduced from this table. One way is
to scan from the top, incrementing a counter for each one.
Once counting begins the first non-one breaks the count-
ing process. At that point if the count is five the hand holds
a straight. Anything other than five contiguous 1s is zip.

It is incidental to Fivecard, but for the same reason fable H knows
the player’s highest card, the lowest card is also known. As can be
seen, a considerable amount of data can be derived fromfable H, yet
the mechanics for doing the frequency counting is quite simple. Suits
must be looked at as well in poker, so additional tables are used for
the total analysis of the player’s hands.

Table R

As can probably be guessed, R means rank. It too starts as all
zeros, is built on the fly during the analysis, and is used temporarily
for either hand. Figure F-4 has a picture of fable R, and the numbers
in the illustration reflect the same example (fable B, Fig. F-2).
Obviously, the depth of the table (ten elements) coincides with the
ten possible poker rankings.

The buildup of table R begins by making several passes down
through table H. In the first pass the hand table is searched for a
straight. If this search reveals five ones with no intervening zeros a
code of five is forced into fable R at location 6. Otherwise , this spot
will be left with nothing in it, from which we may infer that the hand
does not contain a straight.

In another pass through the hand table multiples are looked for.
During this scan any number larger than one indicates the player’s
hand does contain matching card values. The serial value of the
matching cards corresponds to the table H subscript address at
which the multiple’s code is found. The card value is then moved into
table R, according to the number of duplicates that there are for that
value.

It is in this manner that fgble R is made to show quads, triplets
and pairs. If a hand contains four sevens then sevenis stored infable
R atlocation 3. The third spot from the top is used because four of a

60

RANK CODE il

ROYAL FLUSH HIGH CARD)
STRAIGHT FLUSH HIGH CARD 2
4 OF A KIND CARD VALUE @
FULL HOUSE TRIPS VALUE @
FLUSH 6 G
STRAIGHT (6)
TRIPS CARD VALUE (7
2 PAIRS HIGH PAIR VALUE ®)
PAIR CARD VALUE 5 ©)
HIGH CARD CARD VALUE 13 }(10)

Fig. F-4. Table R, the ranking of a hand.

kind in poker is the third highest possible hand. The card value
(seven) is stored there so that if the opponent’s hand also has four of
akind, the one with the higher number can be declared the winner.

This same convention is used for triplets and pairs. Table R
locations 7, 8, and 9 are used, respectively, to denote three of a
kind, two pairs, or a single pair. In the earlier example two fives can
be seen in Fig. F-3; these will eventually be revealed to the players
as a pair of sixes.

After the scanning of table H for multiples is completed if the
ranking table reveals that two pairs are present, the higher-ranking
pair is coded in fable R in field 8; the other pair is noted in field 9.
Logic within the multiple scanner will cause the higher of two pairs
to bubble up from field 9 to 8. If only a single pair is found it’s noted in
field 9 and 8 stays empty.

The rank table is itself examined several times to learn more
about the player’s hand. If a triple and a pair are noted the lucky
player has a full house; the card code for three of a kind is placed in
the fourth spot down in fable R. Here again if both player’s get a full
house, the winning hand can be argued on the basis of which has the
higher number in location 4 of table R.

The last spot in fable R contains the numeric equivalent of the
highest card in a player’s hand that is not part of a matched set. If a

61

tie breaker is needed this is the card used. By the same token, if
table R is scanned from the top down and found to be all empty
location 10 will show us a high-card hand.

The values infable R at this point are used in conjunction with a
suit scanning process to further decide whether more codes need to
be developed within the table. Card suits are only significant when
they are the same for all five cards in a player’s hand. As far as the
game’s internal logic is concerned it doesn't matter which suit is
held. It is only significant if they're all alike.

Table Al or Bl is examined to determine flush conditions. If a
five-of-a-kind condition exists in either table, we have a flush. A
code of (six) is generated to denote a flush, and it is stored inlocation
5 of table R. If there is a code at both locations then, subscripts five
and six, a straight flush can be deduced. If so the high card of the
straight (from field 6) is replicated in the second location down in
table R. The same scheme works for that one-in-a million maxi: the
royal flush. Needless to say the top spot in fable R isn’t encoded
often.

Tables A2 & B2

These are the remaining tables, so this overview is nearly
over. There isn't any illustration this time. Tables A2 and B2 are
really duplicates of fable R (Fig. F-4). Once the human’s hand
(player A) has been codified the values built up in fable R are copied
into A2. The same is true for the computer-cum-dealer (player B):
table R is copied into B2. A parallel comparison process can be made
after both hands are analyzed by cross-checking the corresponding
locations of A2 and B2.

Most of the time a winner is readily determined by scanning
from the top of each of these tables. The first non-zero condition
usually marks the winner—assuming the other table has a zero at
the same spot. Ties have to be further argued. If one number is
larger than the one at the same spot in the other table the smaller
one is the loser. If the two numbers happen to match a tie condition
must be broken if possible.

One device for breaking ties relies on the sum of the values in
each of the tables (A2 and B2). A comparison of their totals will
break most ties; the exception is when their respective high cards
are the same, in which case it’s necessary to sum the original hand
tables. This trick will account for any discrepancies in the value of
the second highest card, etc.

The mechanics of comparing table A2 with B2, and subsequent
tests for breaking ties, are all separate from the hand-analyzer

62

routine. We will delay further discussions on this until you are well
into the internal workings of the program.

As a brief review of the tables: 4, AI, B, and BI are the
player’s hands as dealt. Table H is dimensioned at thirteen, each
spot being used as a counter location for each of the thirteen
card-code numbers possible. Tables R, A2, and B2 are all alike—ten
spots—for holding ranking codes.

NOTES ABOUT THE ARCHITECTURE

It has already been mentioned that Fivecard is modularized.
The proponents of structured programming may wince at this claim,
but perhaps they are not fluent in BASIC. To argue: there are
discernible boundaries between functional modules, and most tasks
are accomplished by stand-alone subroutines.

The programming template shown in Fig. F-5 illustrates how
the tasks are broken out. Like most other programs in this book all

0 700
INITIALZE | RULES
190 180
7000
AAEE 5300
1680 GENERATE
== / 8030
DRAW HANDS 3700
2000 | ——— DRAWCARDS
s 8200
CARD PRINT G
200 / oo \ SETUP
MAINLINE 31%‘90 PRINT
a0 \ 5000
PICK WINNER
5200
)
PRINT HAND
TYPE
8120
7300
ADD SCORES
7070

Fig. F-5. Program template for Fivecard.

63

of the global housekeeping, the rules for playing, and the startup are
closely combined up front. Once the mainline structure is entered,
GOSUB statements are used to call up the tasking subroutines in
whatever order they are needed. And as usual capricious boundary
violations are guarded against. In the mainline GOTO statements
can only reference three-digit line numbers (which are exclusive to
the mainline). Similarly, module-to-module linking is only permitted
by exiting from one, back through the mainline, to get to another.
That is, there are no direct branches between groups of statements
denoted by whole thousands.

One more note is important: the size of this program may be a
problem, depending on the vastness of your memory. Mine s a tight
fit. In fact although the REM statements are few and far between
they must be purged on our model, just to get the program loaded.
There are other places where you may do some “shoehorning” if
necessary. Some candidates are to cut out the rules—that’s a lot of
alpha code—and if that isn’t enough, consider the lengthy descrip-
tions in the card and hand-ranking printing tasks.

A primary philosophy of the architecture for Fivecard was to
make it easy to leave out, add to, and overhaul subroutines, or
modify the mainline, without wrecking the general fabric of the
program otherwise.

HOW THE MAINLINE WORKS

The first thing worth noticing in the program listing is the table
dimensioning statements in lines 30 through 60. The business of
printing the rules and the option to do so are next, extending from
line 70 through line 180. Which brings us quickly to the program’s
housekeeping area.

Initialization starts at line 200 by presetting two counters to
$200. Counter Y is for you and counter M is for me, as considered
from the machine’s point of view. The symbol Q is unconditionally
zeroed in this area also. Line 215 does this; it's necessary to get rid
of any residue in this worker whenever a new game begins. The
remaining replay item is to set the player counter (P) to one, as can
be seen in line 230.

The restart point for each round of play is statement 240. From
there, we have an immediate subroutine jump to the scorekeeping
module (lines 7000 through 7070). It is within that subroutine that
the stakes are maintained.

The scorekeeping process is relatively simple; at a glanceit can
be seen that the input worker is Q. The jump to the scorekeeping
module happens at the beginning of each round of play, and that is

64

why Q had to be set to zero initially. At the start of a game a null
update of the stakes occurs, but thereafter Q will contain the bet.
Upon return to the mainline at statement 250, Q is again cleared in
preparation for the next bet.

The conditional tests in lines 260 and 270 check whether either
player is vet busted. If so a THEN expression exits to line 290 or
340 to close out the game. Otherwise, the game continues at line
360.

From statement 360 a chained jumping sequence occurs. The
first GOSUB is to line 2000, the draw module. Another GOSUB is
executed immediately from there to the deck-generating routine.
Only four lines of coding are required there (lines 8000 through
8030) using a FOR-NEXT loop to create the number series one to
fifty-two and to load them into fable D. When the table is full, a
RETURN gets the program back to the draw routine.

Uninformed players might be quite surprised if they learned
what next happens internally. The loop sequence from line 2010 to
2090 will deal all five cards to each player (you and the machine).
The actual draw is done by the task module that extends from line
8100 to line 8200. This subroutine is called alternatingly during the
deal, setting up the cards in fables A and A1 for the human, and in
tables B and BI for the computer. Once both hidden hands are
complete, a RETURN in line 2090 exits back to the mainline at line
370.

A two-times loop from line 370 to 390 includes a jump to line
3400 to effect the dealing of the cards visibly. Each iteration of the
loop deals one card to each player. It’s in this manner that two cards
apiece are dealt preparatory to the betting dialog. The reason a
FOR-NEXT loop is used, even though it's only done twice, is that
the FOR-variable (I) is used as a subscript to fetch the card codes
from fable A and table B.

Asrevealed in the listing the sequence from line 3400 to 3480 is
really a minimainline. A common pair of workers, Cfor card and S for
suit, are loaded alternately from the hidden hands, and the dealing
sequence is maintained in I. The values in C and S are carried to the
print setup task (lines 3000 through 3140) to get the alphanumeric
output, which is then displayed within the minimainline.

After two cards from each of the hands are revealed the
mainline is continued from line 400. This simple prompt—BET? —is
output, and execution halts for keyboard input. The sequence of
code from line 420 to 500 edits whatever is typed into the numeric
variable §. The checking that is done is based on the assumption

65

that the operator is most likely to enter bets in terms of dollars—or
at least as dollars and cents.

The routine betting limit of $20 is tested for in statement 450.
The simple variable L is used in the limit tests also. The actual
conditioning of the L variable is done by the scorekeeping routine,
and that is why a GOSUB 7000 occurs from line 510 (and again at the
beginning of a round of play). In the event one or the other player’s
balance has fallen below twenty, L is adjusted accordingly. The
simple checking that is done does not preclude decimal entries,
however, so those players that are not receptive to suggestive
conditioning may enter decimal values, but at no special risk to the
program’s arithmetic integrity.

After the bet the balance of the hands are dealt by the sequence
that extends from line 520 to 540. This one works the same as that
for the first two cards, but this time the loop variable begins with
three and runs through the fifth card. All that remains is to analyze
the hands, compare them, and declare the winner. A pair of jumps
(lines 550 and 560) analyzes the player's hand then prints the
results; the computer’s hand is done by the same modules, and that
pair of jumps is in lines 590 and 600.

The GOSUB 5000 from line 620 takes off to the subroutine that
does the actual comparisons to determine the winner of the hand of
play. Upon return from there the end of the mainline is encountered
in line 630 and a branch back to line 220 begins another round.
Before the loop can be closed alot goes on, though, and that is what
is described next.

FIVECARD HAND ANALYZER

As the chairman of the Brotherhood of Butchers once said,
. . and now folks, we come to the meat of the matter.” For us
anyway, the meat of a poker-playing program is the business of
figuring out what’s in a hand. There are sixty-seven lines of code
required to doit, extending all the way from lines 1000 to 1660; but it
is not nearly as foreboding as a casual glance at the listing may imply.
Recalling the earlier description of the table structures, notice
that the basic requirements are to do frequency counts of any
matching sets of cards in a given hand, check for straights, check for
flushes, and dump the tallies into either fable A2 or B2, depending on
whose hand is being looked at. Not really so much after all as we
shall soon see.
One reason this module appears to be lengthy is that it contains
it’s own housekeeping tasks, even including the table-to-table trans-
fers. Another reason for its length is that there are several suppor-

113

66

tive tasks tacked on to the bottom of the module; it actually ends at
line 1480 or 1520. The exit that is taken depends on whether fable
A2 or B2, is finally set up. It does begin at the top and proceed
downward, so that’s how we will study it, but one task at a time,

Clear Tahle-H

A nice tight loop (lines 1010 through 1030) moves zeros into
each of the thirteen elements of this table. Agreed, many are
already blank. At most no more than five of these counter locations
are ever used at one time. By arbitrarily zeroing them all none is
missed, and it doesn’t really matter which were used the last time
through here.

Frequency Counts

Another loop, albeit not quite as tight, runs but five times fo
count the cards, including multiples. The loop itself is from line 1040
to line 1070, but it includes repeated jumps to the series of instruc-
tions from line 1620 to 1660. The supporting subtask controls the
pickup of cards from either fable A2 or B2, depending on the P
variable (one or two). With each iteration of the loop a one is added
intofable H at the appropriate spot, as determined by the code value
of each card.

Clear Table R

Compactness, all the way. This is another three-line FOR-
NEXT series. The result: zeros in all ten fields of the rank table.
After execution of lines 1080 through 1100, ten times, a fallthrough
is automatic.

Multiples & Straights

The whole of this sequence is from line 1110 to 1270, All but
lines 1260 and 1270 are part of a FOR-NEXT loop that runs uncondi-
tionally for thirteen times. There are several internal conditional
branches, however. Gradually being set up are table R fields, num-
bers 3, 6, 7, 8, and 9. In poker language these are: four of a kind,
straight, triplets, two pairs, and a pair, respectively. It is worth
noting that the loop’s logic assumes that a straight exists until
proved wrong.

During the loop all ones are counted into location 6, but when
the loop ends at line 1260, if the count in fable R (6) is not five, it's
immediately zeroed. Either way, processing continues with line
1280, which is the start of another subtask.

67

High Card

Whatever the highest numbered card in a player’s hand is it’s
forced into the tenth spot of table R. This is accomplished with the
FOR-NEXT scheme, lines 1280 through 1310. The structure of this
loop is interesting for two reasons: it counts backwards, and it never
completes. The loop variable (I) is set to thirteen so that the
scanning of table H can begin at the bottom. By incrementing witha
negative 1 each higher spot in the table is examined until something
is found, ignoring all zeros.

The high card is actually a generated number. The I variable
itself is moved into table R(10) with each cycle of the loop. When the
conditional expression in line 1300 finds a not-zero condition, the
THEN 1320 takes over, breaking the loop and abandoning whatever
the count infable R(10) is at that point—which is, amazingly enough,
the exact equivalent of the highest card in the player’s hand.

Full House

This is the easiest task of all. Lines 1320 and 1330 look at R(7)
and R(8), and if they are both not zero, statement 1340 moves the
value of the triple (from location 7) into fable R at location 4. The
residue below in fable R can be left since later analysis works
downward from the top of the rank table.

Flush

The first test is for a simple flush—meaning there is no consid-
eration at this point regarding straights. A five-times loop begins at
line 1350 and runs until line 1380, including a subroutine jump to the
series at lines 1530 through 1610. Duplicate copies of the same logic
occur there, one set each for fetching the suit codes from either
table Al or BI —again based on whether P is one or two.

The all-are-alike qualification is done by comparing each card’s
suit code with the one at the bottom of the hand (fifth element). If
any comparison fails the loop is broken with a THEN 1440, which
completely bypasses the further testing for more perfect hands.

Straight Flush

The odds are getting tougher. In fact this program ran many
hours before I was confident this test sequence worked. The testis
simple, though. If a flush is present, as detected by line 1380 having
resulted in a fallthrough, then the straight indicator, which is a code
of five in R(6), is tested for. If both conditions are true, meaning we
have a straight and a flush, R(2) is loaded with the high-card value
that was generated earlier in fable R(10).

68

One further test is required here. If that panacea of poker is
present, meaning that not only do we have a straight flush but that
R(10) contains a thirteen, a thirteen is slipped quietly into the first
element of table R. This is supposed to be done by statement 1430,
but I have yet to see it actually happen, at least in live play.

All that's left is to copy the contents of table R to either table A2
or B2. The P value is checked in line 1440; if it is a two, the THEN
1490 takes over or a fallthrough takes place—and either way the
hand analyzer is finished.

Perhaps you will now agree, although this module seems
lengthy, it is actually quite simplistic in design. Notwithstanding the
amount of time it takes to read about it and study it the onboard
execution time is pretty reasonable. Even if we include the time to
compare the hands it doesn’t take long for either this narrative or the
computer, as you will notice in the next and final section.

FIVECARD WINNER PICKER

Add up everything in the tables. That’s the first step this
module does, although for many hands the winner can be declared
before these totals are ever needed. As can be seen in the listing
lines 5000 through 5030 contain a simple nine-times loop to add
downward through tables A2 and B2, leaving the results in the
high-card spot. This is done so that if the following tests find a tie
situation higher up in the tables perhaps the sums of the tables will
break that tie.

The next loop (lines 5040 through 5060) is broken whenever
one or the other of the two tables has something other than zero in
it. Scanning begins from the top, and the expression in line 5050
checks themin a parallel manner by adding together the correspond-
ing fields in fables A2 and B2. If other than zero comes up, one of
them is not zero (or maybe both are not), so the program branches
to line 5070 to learn more.

It is possible of course that both tables contain a code at the
same distance down from the top. Line 5070 checks if they are the
same values; if so a tie is in the making. Otherwise, the test in line
5080 determines which is larger. The winner and loser are an-
nounced accordingly. The results of the betting are displayed, and a
return to the mainline occurs.

So goes Fivecard. The casual player may think this is simple
game. Show them the listing. But it is fun, especially the program.
The coding and loading did seem a bit of a chore, but getting it all to
work proved very entertaining.

69

THE PROGRAM

10

20

3

40

5f

60

74

80

QU
100
140
120
13D
140
154
1600
170
180
19U
195
20
210
215
27n
230U
240
250
260
271
280
270
30n
310
320
340
340
350
34N
370
380
320
400

70

REM "
REM
DIM DC
DIM AC
DIM B¢
DIM H(
PRINT
INPUT
IF 0%
PRINT
FRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
GOSUR
PRINT
LET Y
LET M
LET @
PRINT
LET P
GOSUR
LET @
IF M
IF Y
GOT0 3
PRINT
PRINT
INPUT
IF @¢
END
FRINT
GOTO 3
GOsUR
FOR 1
GOSUR
NEXT 1
PRINT

LU 1]

FIVECARD"

521

5)s A1(5)s A2(iDD

53s B1(5), B2{1D

13)s RUIDD

"WANT THE RULES (Y OR N)"i

0%

= "N' THEN 190

"YOU AND 1 WILL PLAY 5-CARD STUD."
"THE ANTE IS $5. BETTING LIMIT"
"18 $20, I CALL ALL BETS AND WE"
"GPLIT ON TIE HANDS. WE HAVE $z00"
"EACH. GAME ENDS WHEN ONE OF USY
"GOES BROKE. BETTING 15 ALLOWED"
"ONLY ONCE - AFTER 2 CARDS APIECE"
"ARE DEALT. THE DECK IS SHUFFLEDY
"BEFQRE EACH ROUND."

Qoen

oo
Q- ™)
o
Lo

=1

7000

= 0

0 THEN 290

8 THEN 340

60

"I'M BUSTED"

"ANOTHER GAME (Y OR N) "%
Qs

= "Y" THEN 200

"YOU’RE BROKE"
00

2000

=170 2

3400

TAR(9) "BET"3

410
415
420
430
440
450
4460
470
480
490
50101
510
5210
53t
540
550
560
570
580
590
600
610
620
630
1000
10410
1070
1030
1040
1050
1060
1070
1080
1090
1100
11410
1120
14130
1145
1150
1460
1470

INPUT @
LET @ = ABS(®)

IF @ > 0 THEN 450

PRINT "HUH?"

GOTO 400

IF @ <€ 21 THEN 480

PRINT "HOUSE LIMIT IS $20."
60TO 400

IF @ =(L THEN 51D

PRINT “"THE LIMIT IS NOW ONLY $“L
GOTO 400

GOSUR 7000

FOR1 =3 705

GOSUR 3400

NEXT I

608UR 1000

GOSUR 6000

PRINT C$3§

LET P =2

60SUBR 1000

GOSUR 6000

PRINT TAEB(18) C%

60SUR 50060

G0T0220

REM "HAND ANALYZER"

FORI =1 T0 13
LET H(I) = 0

NEXT I

FORI =1T05
GOSUR 1620

LET H(J) = H(J)+1
NEXT I

FORI =1 T0 10
LET R(I) = O

NEXT I

FORI =1 70 13
LET J = H(D

IF J = 0 THEN 1250

IF H(I) <> H(I-1) THEN 116D
LET R(6) = R(6)+J

IF J <> 2 THEN 121D

IF R(9) = O THEN 1200

71

1180
1170
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440

1450
1450

1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600

72

LET R(8) =1

60TO 1210

LET R(9) =1

IF J <> 3 THEN 1230
LET R(7) =1

IF J <> 4 THEN 1250
LET R(3) =1

NEXT I

IF R(6) = 5 THEN 1280
LET R(6) = O

FOR I = 413 T0 1 STEP -1
LET R¢10) = 1

IF H(I) <> O THEN 1320
NEXT 1

IF R(7) = 0 THEN 1350
IF R(8) = 0 THEN 1350
LET R(4) = R(7)

FORI =17T705

G0SUB 1530

IF J <> R(5) THEN 1440
NEXT I

LET R(3) = &

IF R(6) = 0 THEN 1440
LET R(2) = R(41D)

IF R(10) <> 13 THEN 1440
LET R(1) = 13

IF P = 2 THEN 1490

FOR I =1 T0 10
LET A2(I) = HL)

NEXT 1

RETURN

FOR I =1 T0 10
LET B2(1) = R
NEXT I

RETURN

IF P = 2 THEN 1590

LET R(5) = A1(1)

LET J = A1(DD

IF R(5) = J THEN 1580
LET R(5) = 0O

RETURN

LET R(5) = Bi({)

LET J = B1(D)

1610
16720
1630
1640
1650
14660
1999
2000
2010
2020
2030
2040
2050
2040
2070
2080
20%0
2999
3000
3040
307N
3020
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3399
3400
3410
3420
3430
3440
3450
34460
3470
3480

GOTO 1580

IF P = 2 THEN 1650

LET J = A(I)

RETURN

LET 4 = B(I)

RETURN

REM "DRAW HANDS"

GOSUB 8000

FORI =1T705

GOSUB 810D

LET ACI) = C

LET A1(l) = 8

GOSUB 84100

LET B(I) = €

LET B1(1) = 8

NEXT I

RETURN

REM "SET UP CARD PRINT™
DATA 2533435+635718+9+10
DATA JACKsQUEENIKINGsACE
FOR 11 = 1 TO 13

READ C%

IF € = I1 THEN 3060
NEXT 11

RESTORE

LET 8% = " HEARTS"
IF § = 1 THEN 3140
LET 8% = " CLURS"
IF § = 2 THEN 3140
LET 8% = " DIAMONDS"
IF 8§ = 3 THEN 3140
LET 8% = " SPADES"
RETURN

REM "CARD PRINTER"
LET € = AC(D

LET 8§ = A1(D)

GOSUB 3000

PRINT C$§ 5%

LET € = B(I)

LET 8§ = B1(D)

GOSUB 3000

PRINT TAB(18) C$i S5¢

RETURN

73

4999
5000
5010
5020
5030
5040
5050
5060
5065
5070
5080
5090
5100
5110
5115
5120
5130
5140
5150
5160
5170
5172
5174
5180
5190
5200
5210
5220
5999
6000
6010
6020
6030
6040
6050
6060
6070
6080
6090
6100
6110
6120
6999

74

REM "PICK THE WINNER"
FORI=1T7079

LET A2(10) = A2(100+A2(1)

LET B2(10) = B2(iDy+B2(1)

NEXT 1

FORI =1T010D

IF A2¢1) + B2(I) <> 0 THEN 5070
NEXT 1

60TO 5190

IF A2(1) = B2(I) THEN 5460

IF A2(I) > B2(1) THEN 54130
PRINT TAB(9) "1"3

LET M = M+K

PRINT " WIN $"K/2

PRINT "YOU = s"Y" HE = $"NM
RETURN

PRINT TAB(9) "YOU"3

LET Y = Y+K

60TO 5110
LET A2(1)
LET B2(1)
LET AzU1)
LET B2(10)
G070 5000
PRINT "TIE HAND"

LET M = MeK/2

LET Y = Y+K/2

60705115

REM "PRINT HAND TYPE"

DATA ROYAL-FLUSHsSTRAIGHT-FLUSH
DATA 4-0F-KINDsFULL-HOUSEsFLUSH
DATA STRAIGHTsTRIPSs2-PAIRS
DATA PAIRsHIGH~CARD

FOR I =1 T0 13

READ Q%

NEXT 1

FOR I =1 70 1D

READ C%

IF R(I) <> O THEN 6110

NEXT 1

RESTORE

RETURN

REM "ADD SCORE"

0
0

[}

0
1]

7000
7010
7020
7030
7040
7044
7046
7048
7050
7055
7060
7070
7999
8000
8010

8020
8030

8099
8100
8110
8120
8130
8140
8150
816D
8170
8180
8190
8200
2000
9010
QUz0

LET M = N-@
LET Y = Y-@
LET K = @+@
LET L = 20

IF 8 € L THEN 7050
IF Y > L THEN 7060
LET L =Y

GOTO 7060

LET L = H

IF Y { M THEN 7046
LET @ =20

RETURN

REH "GENERATE DECK"
FORI = 1 T0 52
LET D) = 1

NEXT 1

RETURN

REM "DRAW CARDS"
LET € = INTCIDO#RRNDC1))

IF C < 1 THEN 8100

IF C > 52 THEN 8100
IF D(C) = O THEN 8100
LET DCC) = O

LET 6§ = 1

IF € » 13 THEN 818D
RETURN
LET € = C-1
LET 8 = &+1
GOTO 8160
REM "RANDOM NUMBER ROUTINE"
LET Z = RND(1D)

RETURN

3

75

Gunners

Gunners is simple and saucy, quick to code and fun to play, espe-
cially for those just breaking the two digit age barrier.

The game of Gunners was inspired by that commercialized
plastic board-and-peg game called Battleship, which was itself no
doubt inspired by that pencil-and-paper game of the same name.
Instead of each player having to keep track of all of those little boats,
though, each gunner has only one weapon—a tank. The idea of
ten-by-ten grids is retained, and the players trade shots in an effort
to blow away each other’s tank. Thus the similarity to the game
played with warships.

There are other differences. In Gunners the computer picks
the grid locations for each contestant and provides spotter reports
after each shot is fired. Printed out advice such as “low left” or “high
right” is meant to help the gunner to lob successive rounds onto his
opponent.

The phantom spotter’s vocabulary is limited to just four clues:
high, low, left, and right. The report may include only one of these,
or it may be of the form mentioned above, using a pair of words.
Because the grids are formed as intersecting columns and rows,
once the clues fall into a one-word format all following shots that
proceed along the indicated column or row are bound to score.

Lady Luck does pose a hazard to either player, but fortunately
with equal odds for both. It is possible to score a direct hit with a
single shot, and it is equally possible to home in on the correct
column or row at the outset. Over the long run, however, the

76

players with the best strategies are likely to win more often than
they lose. We will leave it to the eventual players of Gunners to
determine what the best firing patterns are. Our purpose here is to
help you get the game up and running.

BUILDING GUNNERS

In essence this is just another number-guessing game. It does
differ from most in that there are two hidden numbers—one for each
of two human players; and they are competing to see who can guess
their opponent’s number first. '

There is a column and row connotation for each of the con-
cealed locations, also. These could be generated internally as four
separate integers—two for each player—but the technique used in

i 7600
INTIALIZE | INSTRUCTIONS
80 1100
7600
GAID
%0 _,.—'—""”” 2180
GAME START
250
= 3000
TANK
POSITIONS
= 3080
MAINLINE

380

3500

NN

INPUT
3570
5000
y PLAGE SHOT
4000 71 _.—.—-—“"-'—— 6020
copfie
4050 \ 7000 5050 MODULE
SPOTTER
7100
000
END OF GAME
8110

Fig. G-1. Program template for Gunners.

77

this program splits apart a two-digit whole number to derive the
column-and-row value. Actually, there doesn’t seem to be
any special reason to prefer one method over the other, since either
would require about the same amount of code and execution time.
The choice here is simply my usual one.

Notice that the players in this game are supposed to enter both
a column and a row number. These inputs are compared to those of
the computer’s, which are first generated as a pair of two-digit
numbers (one for each tank’s location). This whole scheme can be
contrasted with that of Abstract. There, the player inputs a whole
number which is parsed into individual digits for comparison to
RND-generated digits. Incidental, but academically interesting.

There are several other tasks in Gunners, more than just that
of the numbers. Figure G-1 illustrates all of the tasks and their
conceptual placement. This program template also provides an
alternative design method for controlling player sequencing.

All game programs that provide for multiple players must have
some mechanism for knowing whose turn it is. Typically a player
number is used for this. During a cycle of play the number is held
constant, and routines, such as for player-dialog, scorekeeping and
victory determination, use that constant. Between rounds, then,
the player number is switched by arithmetic or some other means. A
player number is used in Gunners also, but it serves only one
purpose.

During a loop through the mainline the player number is
checked for content and a subroutine jump is taken to one of two
command modules. The two modules are alike, totally autonomous
while in command. Yet they both depend upon a common set of
supporting routines. All instructions that are sensitive to player
identification are contained within the appropriate command mod-
ule. And both modules contain identically coded subroutine jumps to
the commonly used modules.

There is one other feature of Gunners that is slightly unusual.
The program knows the players’ names. Because a separate sub-
program is used by the player in command it is easy to announce
whose turn it is in a personal manner. Kids love this feature—the
computer can remember their names. And there is even a bit of
humor attempted by the startup sequence that accepts their self-
introductions.

The entire business of the numbers, the names, command
modules, and all of the rest are revealed in the following study on the
guts of Gunners.

78

GUNNERS’ INTERNALS

Although the number of statements in this program listing is
over a hundred most of the coding is relatively simple. The program
initialization sequence is just like most others in this book, and it is
followed by a game startup sequence. It is there that we encounter
the first of the several traits that characterize Gunners.

Out of line 100 the players are asked whether they would like to
be provided with a printed grid. This, like the game’s description, is
an optionally invoked routine. Unlike the description process this
optionis afforded at the beginning of each running of the game. This
replay option is possible because the mainline entry point for
another game is at statement 90.

The column-and-row picture that is provided consists of lines of
asterisks, with appropriate column numbers across the top and row
numbers down the side. A brief descriptionis in order at this point as
to how this is done by the module located between statements 2000
and 2180.

A facsimile of the grid that can optionally be printed is shown in
Fig. G-2. The print module begins by printing the header (COL-
UMNS) and the series of numbers one through ten. A blank line

COLUMNS
1 2 3 4 5 6 7 8 9 10
* ok ok ok ok ok ok %k x k 1
* ok ok ok ok ok ok % x ox 2
R* ¥ %k ok ok ok &k & ok ok 3
O% % % % % % % *x % x4
VSV* ¥ % k% ok % % x %k % 5
* ok ok ok ok %k Kk %k Kk %k 6
* 0k ok ok ok %k ok % ok ok 7
* %k % % sk % % % % % 8
* ok ok ok ok ok %k Kk % %k 9
* ok %k ok % %k ok % % %10

Fig. G-2. The Gunners grid,

79

occurs then in 2060, the alpha variable A$ is loaded with a string of
alternating asterisks and spaces. Each row of the matrix is output by
simply printing the A$ value followed by the row number.

Since it was desired to include the ROWS caption in a vertical
form along the side the grid is printed in three sections. The first
three lines of asterisks are done by the FOR-NEXT loop in state-
ments 2070, 2080, and 2090. Rows 4 through 7 are output by
discrete expressions, and each includes one of the letters R, O, W,
S, in that order. The print instructions in these four lines (2100
through 2130) are easily constructed using the A$ constant, with the
appropriate trailing number from the series four through seven. The
third and final step prints the remaining three rows in the same
manner that the first three were done; this time by lines 2140, 2150,
and 2160. The RETURN in 2180 relinks from this module back to
the game's startup area at line 140.

From the relink point, or from statement 120 if the grid option
is bypassed, the program unconditionally branches to line 200. It is
here that the players are introduced to the computer.

Statements 200 through 240 ask for two names to be typed,
one at a time; they are accepted into storage at P1$ and P2$. Lines
250 and 260 ask whether the names, as typed, are satisfactory. If
the person doing the typing responds with N (for no), the whole
introduction sequence is repeated. Otherwise, a couple of simple
tests are made on the contents of P1$ and P2$. There is no logical
need for these tests—they just add to the fun.

The conditionals in lines 272 and 274 do a quasi-check for
alphabetical content in the name fields. Effectively, only the first
letter is looked at, and only to the extent that the names must begin
with A or some higher code. This at least precludes blanks and
numbers being entered as nick-names. The comparison in line 276
goes one step further: identical aliases are rejected. This check is
necessary; otherwise there would be no way for the computer to
know who's shooting at whom.

A failure of any of these tests results in a bit of dialog that tends
to show how smart the computer is. When the computer asks:

“NAMES OK (Y OR N)”
If the player answers Y but the tests fail the retort is:

“NO THEY'RE NOT!”

The program’s exhortation is printed by statement 150, which is
gotten to by whichever condition is disallowed. Sequential

80

fallthrough occurs from line 150 back into the introduction exercise.
When the two entered names are finally different and they consist of
at least one letter, the game gets under way.

From statement 280 a subroutine jump is taken to the module
that dispassionately hides the tanks in their respective grids loca-
tions. Since this is done only once during the game’s initialization this
is an appropriate point to study the mechanics involved.

Deploying the Tanks

Only two expressions are used in Gunners to defilade the
tank’s combat positions (that’s army talk for picking their parking
spot). Lines 3000 and 3020 are both alike; they each generate a
random number in the range 00 to 99. The first goes into P1 and the
second in P2. By now you have probably surmised that the symbol P
is consistently used to mean player.

A scan of the module’s length from line 3000 to 3080 shows the
RND expressions and an obvious gap in the line numbering following
each. The gaps are intentional. If any difficulty is had in getting the
kinks out of this program the following two statements will help
immeasurably.

3010 PRINT P1

3030 PRINT P2

While we are here two other housekeeping chores are taken care of:
establishing who gets the first shot, and the starting of a shot
counter with one. The S variable is always initialized by statement
3060, but 3050 is normally only accessed once. When Gunners is
first loaded, P is bound to have a zero in it. Most systems initialize a
newly loaded program with zip in all numeric variables. In any event
if the program s restarted from the top, P is forced to zero by line 90
during program initialization.

The purpose of the conditional branch in line 3040 is to maintain
the integrity of the alternation of the players’ turns. By continuing
the scheme of taking turns right on through from one game to the
next, the capricious odds for lucky shots are somewhat nullified.

The RETURN statement at the bottom of this module lets the
program continue at line 290, where it is announced which player
gets to shoot first. From there on, beginning with line 300, the
program is well into the mainline loop. Reentry into the mainline is
either here or at line 320, depending on who fired last. Each time the
first player’s name comes up the shot counter is displayed by the
print statement in line 300.

81

The conditional expression in line 320 checks whether or not P
is a one, and either a branch to line 360 occurs or player 2 is up and
the sequence from line 330 on is entered into. Both of the remaining
sequences are comparable. The tank commander’s name is dis-
played, P is surreptitiously flipped, and a jump to the appropriate
command module is made. (Note the GOSUB in lines 350 and 380.)
The subroutine return from either is followed by a check whether
the game was ended while that player was in command. If either
zaps the other a GOTO 100 restarts the game; otherwise the
mainiine is cycled through to permit a retaliatory shot.

Command Module

We will now look at one of the command modules. Because
they are essentially the same only one must be studied. The twin
routines are in lines 4000 through 4050 and 5000 through 5050.
Let’s look at the first, which starts in line 4000.

Right off of the bat a jump to line 3500 is taken. There the
gunner is asked for fire-control directions. If the C and R values
accepted by line 3506 are valid, a one is subtracted from both anda
RETURN is effected. Either way, a return to the command module
isn’t allowed until the column and row workers each have a single
digit in the zero to ninth range. When the relink is made an im-
mediate test is executed to see whether a hit was scored.

The expression in line 4010 (and line 5010) is mechanically
simple. Whatever is in C is multiplied by ten and the R value is added
to it. Combined in this manner, the resulting two-digit number is
structurally the same as the 00 to 99 value that is being maintained in
P1 (and P2). In the event the CR value is an exact match with the
opponent’s tank the game is over. A branch from the command
module to line 8000.(or 8090) announces the winner. The end-of-
game module halts with an option to replay. If taken the Y response
is carried along, following the RETURN (in line 7100), and the
command module allows another game to be set up. If anything
other than Y is typed the program simply terminates.

About the spotter and the clues: if the match is not exact when
tested near the entry point into either command module, two more
subroutines are called. The first of these, a GOSUB 6000, follows a
simple move command to load T (temporary variable) with the
opponent’s grid location.

The module that is defined from line 6000 to 6020 parses the
combined P1 (or P2) value into two digits. Statements that do this
arein lines 6000 and 6010, working on the temporary copy of P1 that
isinT. The result is placed into X and Y, corresponding with Cand R

82

(the column and row workers). With the numbers now structured
alike and aligned, the RETURN in 6020 is taken; so it’s back to the
command module for another jump, now to line 7000.

The spotter’s report is done from line 7000 to 7100. Here X and
C are compared, and so are Y and R. As the program bumps down
through this sequence, each test results either in an immediate
PRINT or a bypass to the next conditional. Because of the presenta-
tion sequence, not more than two clues can result, and they cannot
be logically contradictory.

No doubt General Patton would approve if he could have seen
Gunners.

THE PROGRAM
10 REM "GUNNERS"
20 REM

30 GOSUB 9000

40 PRINT "WANT INSTRUCTIONS (Y OR N)"j
50 INPUT @%

60 IF @% = "N" THEN 90

70 PRINT
80 G0SUB 1000
QULET P=20

100 PRINT "WANT GUNNER'S GRID (Y OR N)"j
110 INPUT 0%

123 IF @$ = "N" THEN 200

130 GOSUB 2000

140 60TO 200

150 PRINT "NO THEY'RE NOT!"

200 PRINT "TYPE 2 PLAYER'S NAMES"
210 PRINT "GUNNER #1 ";

220 INPUT Pi%

230 PRINT "GUNNER #2 "j§

240 INPUT P2%

250 PRINT "NAMES OK (Y OR N)"j
260 INPUT 0%

270 IF @$ = "N" THEN 200

272 IF P1$ < "A" THEN 150

274 IF P2% < "A" THEN 150

276 IF P1%$ = P2$ THEN 150

280 G0SUB 3000

290 PRINT "#"P" GETS THE FIRST SHOT"
300 PRINT “ROUND #"S

320 IF P = 1 THEN 360

83

330

340

350

352

354

356

360

370

380

385

390

999
1000
1010
1020
1030
1040
1045
1050
1060
1070
1080
1090
1400
1999
2000
2020
2050
2060
2070
2080
2050
2100
2110
2120
2130
2440
2150
2160
2170
2480
2999
3000

PRINT P2%i

LET P = ¢

GOSUR 4000

LET § = 8+1

IF @$ = "Y" THEN 100

G070 300

PRINT P1%3

LET P =2

GOSUB 5000

IF @% = "Y" THEN 100

GOTO 320

REM "DESCRIPTION"

PRINT "TWO PLAYERS SHOOT FROM A TANK AT"
PRINT "EACH OTHER OVER A HILL."

PRINT “"(THEY CAN'T SEE EACH OTHER.)"
PRINT "I‘LL ACT AS SPOTTER FOR BQTH."
PRINT "INPUT IS A ROW/COLUMN VALUE"
PRINT "LIKE THI&:"

PRINT " AIM (R:0)7 354"

PRINT "THE GRID IS 10 X 10s 50 NEITHER"
PRINT "R NOR C MAY BE OVER 10 OR LEGS"
PRINT "THAN 1."

PRINT

RETURN

REM "GUNNER'S GRID"

PRINT TAR(Z) "COLUMNS"

PRINT TAB(3) "1 23 4567 8 9 10"
PRINT

LET A% = "# % % % & & & # % & "

FOR 1 =170 3

PRINT TAB(3) A%3l

NEXT 1

PRINT "R " A% " 4"

PRIN.{ Ho #H As i) SM

PRINT " " A% " 4"

PRINT "§ " A " 7"

FORI=1703

PRINT TAB(3) A$§ I+7

NEXT I

PRINT

RETURN

REM "RANDOM GRID LOCATIONS"

LET P1 = INTC1DO#RND(1D)-

3020
3040
3050
3060
3070
3080
3499
3500
3502
3504
3506
3510
3520
3530
3540
3542
3544
3550
3560
3570
3999
4000
4010
4020
4030
4040
4050
4999
sa04a
5010
5020
5030
5040
30540
5994
&000

6010
6020
6999
7008
7040
700
7030

LET P2 = INT(100*RND(1))
IF P <> 0 THEN 3040

LET P =1

LET § = 1

LET @$ = "X"

RETURN

REM "PLAYER INPUT"
PRINT " AIM (RsC)"3
LET C =0

LETR=20

INPUT CsR

IF ¢ € 1 THEN 3560

IF € > 10 THEN 3560

IF R € 1 THEN 3560

IF R > 10 THEN 3540

LET € = €-1

LET R = R-1

RETURN

PRINT "ILLEGAL..."

60TO 3500

REM "QUALIFY #1’8 SBHOT"
GOSUR 3500

IF C#10+R = P2 THEN 8000
LET T = P2

GOSUR 6000

GOSUB 7000

RETURN

REM "QUALIFY #2'8 SHOT"
GOsUR 3500

IF Cx40+4R = P1 THEN 8090
LET T = P1

GOSUR 4000

GOSUR 7000

RETURN

REM "PLACE SHOT"
LET X = INT(T/10)

LET Y = T-INT(X#1Q)
RETURN

REM "“SPOTTER'S REPORT"
PRINT "MISSED: 3§

IF € = X THEN 7030
PRINT "LOW "j§

IF € => X THEN 7050

nu

o on

86

7040
7050
7040
7070
7080
7050
7400
79%9
8040
8010
8oz
a0
8040
8050
8040
8070
a08a0n
8070
8100
8110
Qo0
2010
DD

PRINT "HIGH "3

IF R =< Y THEN 7070

PRINT "RIGHT"3

IF R =» Y THEN 7090

PRINT "LEFT"3§

PRINT

RETURN

REM "WRAP IT UPY

PRINT P1%3 " I8 HIT"

PRINT P2%3

PRINT " IS5 THE BEST GUNNER."
PRINT

PRINT “ANOTHER GAME (Y OR N)"§

INPUT @%

IF @% = "Y" THEN 7100

PRINT "THE END"

END

PRINT Pz$i " IS HIT®

PRINT Pi%3

GOTO &020

REM “RANDOM NUMBER ROUTINE™
LET Z = RNDC(D)

RETURN

Hots‘ﬂot

sw

In the previous chapter Gunners permitted humans to shoot at each
other. The role of the computer there was as a dispassionate
mechanic. In this game human aficionados try to zap the elusive
machine.

Once again, the foe is ensconced in a grid, ten numbers to the
side, and to shoot is to enter column and row coordinates. Mean-
while, inside of the program, the trail of your shots is watched, and
the computer tries to escape your shot pattern. After each round is
fired you are tersely advised as to the accuracy of your shot, and the
computer may or may not take evasive action. In either event the
computer can move only one square per turn, in any direction it
chooses.

A particular meaning applies to each of the three spotter clues.
A hot shot is one that has landed on an adjacent square (above,
below, to either side, or on either adjacent diagonal) to the compu-
ter’s entrenched position. When you make a kot shot the computer
has to move.

Advice that you were close should be interpreted similarly, the
difference being that your round landed two squares distant. That s,
there is one square between the target and the strike of your shot. If
you were close, the computer may move one square in any direc-
tion, including on the diagonals. Then again, it may not make a
move; the choice is the computer’s.

If the computer advises that you missed, it is not permitted to
move. To have missed simply means that your shot was beyond the

87

definition of the other two clues (and you certainly did not score;
otherwise the game would be over).

Sound like fun? It is. Even after you have mastered the in-
tricacies of how the program calculates its moves it can still be
exasperating, sometimes, to defeat what is in principle a simple
strategy.

Every move made by the computer is based on a finite scheme
which depends on a primitive implementation of artificial intelli-
gence. That is, it looks at a brief history of your shots in an attempt
to discern whether you are proceeding according to some plan. To
do so, the program has to “see” the grid and the relative placement
of your shots. What the program sees is looked at in the following
manner.

THE VIRTUAL LOGICAL GRID

Players of Hotshot and the program tself depend ona ten by ten
virtual grid (it exists in concept only). The one shown in Fig. H-1
assists in seeing how the program works, but oddly enough no such
array really exists; at least it isn’t defined as a table structure. All of
the program’s processes are constructed in such a way that there is
a virtual logical grid.

The player thinks of the grid as being numbered from one to ten
across the top and one to ten down the side. When a shot is entered
the program first subtracts a one from both the column and row
number; then it combines the results to make a whole number
between zero and ninety-nine, inclusive.

A simple bit of arithmetic can derive a vector from any two
placement values. The difference between two numbers, as shown
in the drawing, indicates whether the two locations are on a horizon-
tal, vertical, or a diagonal line. The sign of the result after subtrac-
tion indicates direction.

If a first shot is made on square 33, and the next is on 34,
subtraction will give a positive 1. The implication is that the shots
are moving along a vertical line from top to bottom. By orienting the
grid like a map, with the top to the north, the sequence of 33, 34, 35,
indicates a due-south vector along the logical column 3. In the same
way, if 34 is subtracted from 33, the absoiute difference of one still
means a vertical track, but the inverted sign (minus) indicates a
direction of north.

Notice, also, that distance along a line can be determined from
even multiples. For example, 54 from 74 is +20. If a player first
shoots at 54, then 74, he might be tracking due-east, shooting at
every other square. Then again, he might not pick 94 next. Who

88

COLUMNS

0 1 2 3 45 6 7 8 9
0§j00§10§20}30f40]50]60}70] 80} 90
ot{11]21]31)41 51i61|71|81] o1
02)12|22|32| 42| 52| 62| 72| 82] 92
03{13]|23]33[43| 53(63[73|83]93
0411424 134)44)54064]74|84]04
05§15|25]35] 45| 55|65} 75|85] 95
06116 12636 |46| 56| 66{76 |86 | 96
07|17 2737 47| 57| 6777 | 87| 97
0818 28|38|48| 58| 68|78 88|98
09 19|29 39} 49| 59|69 79|89} 99

—

ROWS

®© O N O b W W

16 33 86
! /
27\ 34 54 —64-74 77

% /
38 35 68

ABS(11) ABS (1) ABS (10) ABS(9)

Fig. H-1. The virtual logical grid in Hotshot.

knows what some people are apt to do? Yet, it is possible that the
player is using some sort of pattern to locate the target.

The logic of this program presumes the player may be tracking
along some line, in a given direction. When a move has to be made, it
is best not to make a move that coincides with such an obvious trail,
just in case.

THE PROGRAMMED STRATEGY

Assume that the player has been shooting at alternate squares
along a given line. If aclose clue is given, the player may think he has
the target pegged at two squares farther along. (The target might
also be at aright angle to the vector he is on.) If the program knows
that the track is straight it attempts to move one square ahead to foil
any such straddling tactic.

89

The player has no assurance that the program will attempt to
evade him, though, when he is only close. The computer’s decision
is based simply on whether a programmed move would encounter
the grid’s boundary. If the computed move wouldn't be legal the
program simply defaults and no move is made. The inference hereis
that the player may crowd the target into the side of the grid and zap
it—if he is tracking true, and if the computer indicated a close when
his last strike was three squares from the edge.

For a hot shot-—one square off the mark—the computer uses a
different tactic. In this case the player knows the computer has to
move. To make it more difficult to anticipate the move, instead of
staying on the same vector the program forces a move at a right
angle, either right or left of the indicated track. The direction change
is programmed in, but the boundary problem will cause it to reverse
its usual choice whenever anillegal move is attempted. Here againis
an inference for the player. Work the target into a corner, but
remember the prior maneuvers: the program’s probable move can
be predicted if you know where it last was.

The history file on which the program does its analysis is brief:
only two shots are looked at—this one and the last one. And all of the
forced moves are made, even if there is no straight line indicated by
comparing the two most recent shots. In the event their difference
is not one, nine, ten, or eleven (or double any of these) the program
works as if the difference is one. The sign of the actual difference is
used, however, to determine whether an east or west turn is taken
following a randomly placed kot shot.

The program for playing Hofshot is not very long; yet thereisa
certain intricacy in its internal logic. By modularizing its design the
separate tasks can be studied individually, thus simplifying what
could otherwise be a complex program.

PUTTING HOTSHOT TOGETHER

The program’s template is shown in Fig. H-2. The first three
blocks at the upper left are easily understood. The program’s
initialization sequence includes the option to print the game’s in-
structions. There is also, like Gunners, an option to print out a grid
from the start-game area. The third block in the sequence is the one
executed just before each game gets under way, so it includes a
jump to the subroutine that initially hides the target. Then, the
mainline.

The dispatching sequence out of the mainline is, in order, to
lines 4000, 5000, and 6800. The first jump is made to get the
player’s input, and the second is to output the appropriate clue. The

90

10 1000
INITIALIZE INSTRUCTIONS
90 1150
]
100 2000
GRID OPTION PRINT GRID
160 2180
]
170 3000
START GAME HIDE TARGET
190 3090

4000
PLAYER INPUT

200 4110
MAINLINE
00 \ 5000
\ PRINT CLUES
AY
‘\ 5210
\
AY
A ——— o
W 6000

NOATH/SOUTH
6200 ,\
1

6800 / EAST/WEST 7500
PATTERN

3

TESTS 5400 i LEGAL MOVE?
6960 |~ sourHwest/ | 7070

NORTHEAST !

5600 ,

NORTHWEST/ H

)

1

SOUTHEAST
6700

Fig. H-2. Program template for Hotshot.

third jump, to 6800, is to the crux of the program, to figure out what
to do, based on what the player did. After the last two shots are
compared one of the other 6000-series blocks is branched to if a
move is required.

The dotted lines in Fig. H-2 show the RETURN path back to
the mainline. All of this area commonly shares the subroutine which
begins at line 7000 to qualify the legality of computed moves, and the
RETURN from there is always back to the calling point. There are
certain inter-relationships between the blocks that are surrounded
by the dotted line. What those relationships are will become evident
when it is seen how the program actually works.

91

MAKING HOTSHOT WORK

Down to line 180 in the program listing the logic is both routine
and rote. The dialog from lines 40 through 100 includes the jump to
print the game’s instructions; that from line 110 through line 170
provides for the grid, printed at the player’s option. It is out of line
180 that the game really begins, with a housekeeping jump to line
3000.

The RND expression in line 3000 generates a two-digit integer
in the 00 to 99 range. From line 3010 to 3040 the intent is to enforce
the random generation function to give an initial target location at
least one square removed from the grid’s outside boundaries. Need-
less to say the player is not told anywhere that the target is never
initially near an edge. After all the machine is at an intelligence
disadvantage—in most cases anyway.

The player’s shots are accepted between lines 4000 and 4110.
Notice that as this subroutine begins the round number (R) is
incremented by one. It was initialized at zero during housekeeping;
so from here on each time this routine is called the prompt line will
show the number of the shot then being input.

The player’s row and column numbers are accepted into the X
and Y variables in line 4020. The next two expressions insure that
no decimal junk nor any negative signs are allowed to clutter up
these two workers. Because both the X and Y values are im-
mediately reduced by one the range tests in lines 4050 and 4060 only
have to check for an upper limit of nine. The expression in line 4070
combines the two input values into the field known as S (for shot). If
the result is usable, the RETURN in line 4080 goes back to the
mainline.

For any input that is illogical, an/nvalid shot message is printed
by line 4090, and control is returned to 4010 to force another entry.
The exception: an entry of ninety-nine as a row value will condition
the programmer’s prerogative to conclude the game without actu-
ally winning.

The next module that is called upon extends from lines 5000 to
5210. Itis here that the player’s shot is spotted, the appropriate clue
is printed, and the M worker (wissed) is conditioned. If the compari-
son in line 5000 finds that the game should be ended, M is returned
to the mainline with a zero in it. Otherwise, the game goes on.

As this subroutine is continued, M is set to one in line 5040.
The expression in line 5050 generates the actual distance from the
shot to the target (L), and places the signed result inD. In line 5060
this value is converted to an absolute integer in A. This completes
the preparation for the clue-generating sequence that follows.

92

From lines 5070 to 5130 is a two-times FOR-NEXT loop that
does comparisons on the absolute distance between the shot that
was just made and the current location of the target. The four
conditionals are testing for whether A is equal to a one, nine, ten, or
11. Xf so, a kot shot exit is taken to line 5170. If all four conditionals
fail, however, M is increased to a two by line 5120, and the tests are
tried again. By using M as a multiplier, A can be checked ifit contains
atwo, eighteen, twenty, or twenty-two. If so, the same exit to line
5170 is taken, and there the close message is output.

Whenever the loop runs all the way through twice the player’s
shot is more than two squares away from the target; soM is loaded
with a three, missed is printed, and the game continues back in the
mainline.

Ifback there in line 220 is anything other than a zero a jumpis
made to line 6800. Although a missed shot M equals a three may
already be known at this point, it is still necessary to go to the next
module to update the fwo-shot history file before proceeding with
another input.

Logic of the sequence that runs from lines 6800 to 6960 is very
much like the one just studied. This time, P is the variable that is
used to know whether the two-times FOR-NEXT loop runs only
once, twice partially, or twice through all of the way. The numbers
that are being tested have nothing to do with the target this time;
rather, it is the player’s most recent two shots that are analyzed.

In line 6810 and 6820 D and DI are set up using subtraction.
WhereS is still used to hold the shot, SI holds the last previous shot.
Subtracting twice, once each way, will cause a negative result in D
or D1, and vice versa. It is these opposites that permit the program
to change its mind when making right-angle moves.

In line 6830 the prior shot is overwritten with the one just
made. This is done in anticipation of the next-time use of these
processes. Line 6840 now tests for a missed shot. If such was the
case the RETURN to the mainline is taken out of line 6960. Other-
wise, something more arduous is required.

If the pattern tests learn that the absolute distance between the
last two shots is one, nine, ten, or eleven the appropriate dispatchis
made, and P holds a one to indicate the single-space situation. If the
loop fails the first time through it is tried once more with a twoin the
multiplier. The same exits are possible on this lap, but they will only
activate this time on two, eighteen, twenty, or twenty-two. If none
of the above, P is made to be a three, and M is looked at in line 6940.
This is done to decide whether the program has to make a move.

93

Recall that if M had a threeinit the program doesn’t get this far;
Nor would it if M was zero. At this point only a one and a two are
possible. If M was conditioned earlier with a two the last clue given
was for a shot that was close. The optionis easy: exit. The remaining
choice is just as easy: the program has to make a move if M is equal
to one. The branch that is taken is arbitrary, and it goes to the same
module that would have been chosen if the player’s pattern indicated
a vertical track.

The four move modules are identical. Their only differences
are the branching references used and the constants used to com-
pute a move. The first of the four is labeled “north/south” (lines
6000 through 6100). The nextis itsclose relative, “east/west” (lines
6200 through 6300). The other two move modules are similarly
related, and they work in conjunction to affect moves on either
diagonal (lines 6400 through 6500 and lines 6600 through 6700).
Because they are all so much alike only one needs to be studied
closely.

Looking at the one that starts in line 6000, notice the test for a
one in P. If a one is the value in P the player’s last two shots were
single-stepping on the north/south axis. The program goes to the
next module to do an east to west move in this case. The branch
there is one line late; otherwise, an identical test would be encoun-
tered. It is these matching tests that will always cause a right-angle
move for a patterned kot shot or for those moves that have to be
made when no pattern is discernible.

If the pattern test does fail (or P has a twoinit) the signofD is
looked at in line 6010 to determine direction. Depending on the
outcome, the T-temporary worker is loaded with a modified location
value in either line 6020 or line 6070. The jump to line 7000 is next,
in either case, to see whether the computed move is a legal one.

The subroutine from line 7000 to line 7070 will leave T alone if it
is usable, or 999 may be overlaid into T to show an attempted
boundary violation. The other possibility is that the computed move
is not a valid one, but the program doesn’t have to make any move.
That is why in line 7030 the M variable is checked for a two. The
can’t-go-straight-ahead option is set up by changing P to a nine (line
7060). Back to the calling module.

The first test there, in line 6035, checks the P=9 option. If so,
on with the game. Otherwise, what does T have in it? If the test in
line 6040 defaults the computed move is good: the location is
updated with the tested move and the RETURN in line 6060 links
back to the mainline.

94

If the request for a computed move comes back with a 999 the
“other” D (being held in D1) is used, and line 6100 branches back to
the top to make the program compute a right-angle move in the
opposite direction. Simple, huh?

Notwithstanding the program’s internal simplicity, the real
hotshots in the family will be known by their ratios of close encoun-
ters and shots fired. Don't be surprised if someone other than
yourself has better scores in the final line output at game’s end.

THE PROGRAM
10 REM "HOTSHOT"
20 REM

30 GoSUEB 2000

40 PRINT "WANT DESCRIPTION (Y OR N)"i
50 INPUT @%

&0 IF @% = "Y' THEN 90

70 IF @% = "N" THEN 100

80 60TO 40

90 605UB 1000

100 PRINT

110 PRINT "WANT GRID Y OR N)"i
120 INPUT @%

130 IF @% = "Y" THEN 160

140 IF @% = "N" THEN 170

150 6070 110

160 GOSUR 2000

170 PRINT

180 GOSUB 3000

190 PRINT

200 GOSUB 4000
205 IF X = 98 THEN 250

210 GOSBUR 5800
2200 IF M.= 0 THEN 245
230 GOSUR 6800

240 GOTO 200
245 PRINT "MISSED"R3"CLOSE"RZ"HOT SHOTE"R4
2501 PRINT "PLAY AGAIN (Y QR N)"3
260 INPUT as

270 IF @$ = "Y" THEN 100

280 IF @% <> "N" THEN 250

290 PRINT "S0 LONG NOW ..."

308 END

1000 PRINT "I AM HIDING IN A 10 X 40 GRID."

95

1040 PRINT "YOU ARE SHOOTING AT ME."

10700 PRINT "AFTER EACH SHOT YOU'LL BE TOLD:"
1030 PRINT * (1) HMISSED"

1040 PRINT ® (2) CLOSE"

1050 PRINT " (3) HOT BHOT™

1060 PRINT "IF YOU 'MISSED' I WON'T MOVE."
1070 PRINT "“IF YOU WERE 'CLOSE' I MAY MOVE."
41080 PRINT "A 'HOT SHOT' MAKES ME MOVE.Y
1090 PRINT " (I CAN ONLY MOVE 1 SQUARE --"
41100 PRINT " UPs DOWNs OR DIAGONALLY.)"
1410 PRINT "INPUT 15 A ROW/COLUMN VALUEs"
1120 PRINT "LIKE THIS: SHOOT (RsC)? 5s6"
1130 PRINT “READY"3:

1140 INPUT @$

1150 RETURN

1999 REM "PRINT GRI1D"

2000 PRINT TABR(9) "COLUMNS"

2070 PRINT TAB(3) "1 2345 67 89 10"
2050 PRINT

2060 LET A = "% % % % % % # # ¥ ¥

2000 FOR I = 1 10 3

2080 PRINT TAB(3) A%$il

2090 NEXT 1

24100 PRINT "R ™ A% " 4"

2110 PRINT "0 " A$ " 5"

2120 PRINT "W " A% " &"

2430 PRINT "8 " A$ " 7"

2140 FOR I = 1 TO 3

2450 PRINT TAB(3) A$: I+7

2460 NEXT 1

2162 PRINT

2164 PRINT

2170 INPUT Q%

2180 RETURN

2999 REM "HIDE TARGET"

3000 LET L = INT(1DO#RNDC(1))

3010 IF L € 44 THEN 3000

3020 IF L > 88 THEN 3000

3030 LET T = INT(L/1D)

3040 IF T#10-L = O THEN 3000

3050 LET S1 =0

3060 LET R =10

3062 LET R1 =0

3064
3066
3070
3080
3090
3999
4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
4100
4110
4999
5000
5010
5020
5030
5040
5050
5060
5070
5080
5090
5100
5110
5120
5130
5140
5150
5155
5160
5170
5180
5185
5190
5200
5205

LET R2 = 0

LETR3I =0

LET X = 0

LETY =20

RETURN

REM "PLAYER INPUTY
LET R = R+1

PRINT "("R") SHOOT (R:C)"j
INPUT XsY

LET X = INT(ABS(X-1))
LET Y = INTC(ABS(Y-1))
IF X > 9 THEN 409D
IF Y > 9 THEN 4090
LET & = Y+X#10
RETURN

PRINT "INVALID SHOT"
IF X = 98 THEN 4080
GOTO 4010

REM "PRINT CLUES"

IF § <> L THEN 5040
PRINT “ZAP -- GOT ME!"
LETM =20

RETURN

LET M = 1

LET D = L-8

LET A = ABS(DD

FORI =1T02

IF A = M#1 THEN 5170
IF A = M%9 THEN 5170
IF A = M*10 THEN 5170
IF A = M#11 THEN 5170
LET M = 2

NEXT I

LETM =3

PRINT "MISSED"

LET R3 = R3+1

RETURN

IF B = 2 THEN 5200
PRINT "HOT SHOT"

LET R1 = Ri#1

RETURN

PRINT "“CLOSE"

LET R2 = R2+1

97

98

5240
5999
6000
6010
6020
6030
6035
6040
6050
6060
6070
6080
6050
6100
6199
6200
6210
6220
6230
6235
6240
6250
6260
6270
6280
6290
6300
6399
6400
6410
6420
6430
6435
56440
6450
6460
6470
6480
6490
6300
6599
6600
6610

RETURN

REM "NORTH/SOUTH"

IF P = 1 THEN 621D
IF D € O THEN 6070
LET T = L-1

605UB 7000

IF P = 9 THEN 6060
IF T = 999 THEN 6090
LET L =T

RETURN

LET T = L+1

60T0 4030

LET D =D

6070 4000

REM "EAST/WEST"

IF P = 1 THEN 6010
IF D € O THEN 6270
LET T = L-10

GoSuB 7000

IF P = 9 THEN 6260
IF T = 999 THEN 6290
LETL =T

RETURN

LET T = L+10

6070 6230

LET D = D1

GOTO 46200

REM "SOUTHWEST/NORTHEAST"
IF P = 1 THEN 6610
IF D < D THEN 6470
LET T = L-9

Gosue 7000

IF P = 9 THEN 6460
IF T = 999 THEN 6490
LET L =7

RETURN

LET T = L+9

GOTO 6430

LETD=D1

60TO 6400

REM "NORTHWEST/SOUTHEAST"
IF P = 1 THEN 6410
IF D € O THEN 6670

BN

bh2
6430
6635
6640
&450
&béN
6670
6LED
6690
&700
6799
6&00
6802
68014
68100
6820
6830
6840
6850
6840
6870
6880
68711
6500
6510
69211
6710
69450
&G5 LU
6940

697y

7000
7010
7011
7012
7013
7014
7015
7016
7017
7018
7020
7021

LET T = L-11

60SuUR 7000

IF P = 9 THEN 6640
IF T = 999 THEN 6690
LETL =T

RETURN

LET T = L+1d

GOTO 6630

LET D = D1

GOTO 6600

REM "PATTERN TESTS"
LET P = 1

IF 81 <> 5 THEN 6810
LET § = 5+1

LET D = 51~

1
5-51
5
THEN 6960
= ABS(D)
=1T02
= Px1 THEN 6000
= P10 THEN 6200
IF A = P#9 THEN 4400

IF A = P#11 THEN 6600
LET P =2

NEXT I

LET P=3

IF M = 2 THEN 49460
50T0 6210

RETURN

REM "LEGAL MOVE?"

IF T < 0 THEN 7030
IF T > 99 THEN 7030
REM "IF LOW-T IS Os LOW-L CAN'T BE 9"
REM "IF LOW-T IS5 95 LOW-L CAN'T BE 0"

LET 19 = O

LET L9 =0

IF T = 0 THEN 7017

LET T9 = INT(T/10:

IF L = 0 THEN 7020

LET L9 = INT(L/1D)

IF T - T9%10 = 0 THEN 7023
IF T - T9#10 = 9 THEN 7025

99

822
7023
7024
7025
7026
7030
7040
7050
7060
7070
000
2010
9020

100

RETURN

IF L - L9#10
RETURN

IF L - L9#10
RETURN

IF W = 2 THEN 7060

LET T = 999

RETURN

LET P =9

RETURN

REM "RANDOM NUMBER ROUTINE"
LET Z = RND(D)

RETURN

9 THEN 7030

0 THEN 7030

Invert. to reverse in position, order, or relationship. Thank you,
Mr. Webster. That is exactly how this game is played—with a string
of nine numbers, one each from the set one through nine. Two
players compete, starting out with matching copies of a jumbled
string of numbers. The object is to see who can straighten his or
hers out first, by rearranging them into their natural sequence of
from one to nine.

The competition: you and the computer. As the game pro-
ceeds, with the two of you taking turns, your individually manipu-
lated strings are reprinted to show the results of each move. There
is only one rule.You may pick any of the individual digits in your
string to invert. Then all of the numbers from the leftmost position,
through the one you pick, will be reversed in their order of presenta-
tion.

You always get the first turn. Your simplest strategy would be
to duplicate whatever move the computer makes. This does require
that you properly anticipate the computer’s first move, but that isn’t
difficult because the Invert program uses only one algorithm. For
want of a better name I call it the two-step-absolute algorithm. It is
shown in Fig. I-1. Yes, it is simple. But, lest you think this is all too
simple or too absolute, please read on.

There can be corporeal benefits from having this program in
your game library. You can do pseudoscientific studies on your
friends and neighbors. But don't tell them about the computer’s
ironclad algorithm. Repeated play is assumed to be the norm, so the

101

program maintains win counters. It can be very interesting to see
just how long it takes for man to ascend beyond the simple intelli-
gence of the machine.

This is not to imply that I am trying to ameliorate with those
who have an affinity for categorizing everyone into archtypal group-
ings. Nevertheless, there does seem to be a distinct tendency for
the players of Invert to align themselves with one of the following.

B Some never seem to catch on. Their moves always appear
to be haphazard; perhaps depending on blind luck, or
maybe they are cowered into believing that there is some
mystique involved

@ Many players soon detect the rhythm of the machine’s
moves. A few of these remain perplexed on their first
move, indicating an intuitive grasp, yet they remain incap-
able of practicing what they know

B Probably the most amusing of all are those who accurateiy
perceive how it is done, but that fail to identify the incom-
pleteness of the two-step-absolute algorithm

As a programmer, and as you study the internals of Invert, you are
bound to notice that the algorithm used here never takes advantage
of any preexisting natural sequences imbedded within the randomly
generated startup strings. Human perception can prevail over this
failure, but only in those instances that some natural order is inhe-
rent when the strings are first generated.

There is also that purely humanistic trait: mistakes. The
machine is not supposed to ever be guilty of carelessness. It will
unerringly do its thing, time and again. If you are running neck-and-
neck you should always win—unless you make a mistake. You are
also enforced to use a two-step method, so it takes two rights to
correct a wrong. This usually means that you will have lost the
advantage that is inherent to having the first move. Because all
human-type players are capable of an occassionally hasty move the
program does permit a graceful out.

At the point in the play, when it's your turn, a pick of zero will
trap out and ask if you would like to forfeit the game. If the zero
entry was itself a careless keystroke you may advise the program
with a no answer and be permitted to continue playing. On the other
hand, if you can readily see that you are beaten, a yes response to
the forfeit question will invoke a simple “thank you” from the
computer and a new game may be started immediately with no
further ado.

102

-t

STEP 1. PICK THE 7, ANDTHE RESULT WILL BE:

§

~!
[}
o]
n
w

1@89

’

STEP2.PICKTHE4, AND THE RESULT WILL BE:

(THE NEXT PICK WILL BE THE 6, STARTING ANOTHER 2-STEP CYCLE))

Fig. I-1. The two-step-absolute algorithm to rotate the next desired digit through
the leftmost position.

In a nutshell, that’s all there is to the game of Invert. The
program for invert is worthy of study, though. As can be surmised
the string of numbers is kept in a table; so there is at least the
business of the topsy-turvy table gyrations—for both the human and
the machine.

PROGRAM OVERVIEW

Here again the modularity theme prevails. The illustration in
Fig. I-2 shows this as well as the marmer in which the program'’s
major tasks are laid out. This template does look much the same as
others in this book for games that involve two players.

In this game one of the players is the computer, so thereis a
separate module to support the machine’s turn. The player’s move
uses two modules, one for input and a separate one for manipulating
his string. All of these supporting tasks are callable subroutines,
with the mainline dictating their accessing sequence.

103

The mainline looping sequence begins with a jump to a string
print module that outputs both player’s strings, one above the other.
The top one is labeled YOURS and the second one, MINE. The
mainline flow then calls the player input module. This module out-
puts an operator prompt line that looks like this.

INVERT #-?

Inlieu of # the program automatically inserts whatever the player’s
leftmost string number is to further insure that the player is studying
his own string. The input module does quite a bit of checking to
make sure that whatever is typed s a valid number—but not neces-
sarily whether there is any rhyme or reason to the choice.

Upon return to the mainline, the invert string is called next.
This module reverses that portion of the player's string that is
delimited by the two numbers that appear in the INVERT 7 prompt.
The numbers are only rearranged in memory at this point; printing
comes later, after the computer has its turn.

Only one subroutine is needed for the computer to have a go.
Logic of this module is such that the choice is in accordance with the
two-step-absolute method described earlier. Manipulation of the
MINE string is accomplished here, immediately, with nothing being
printed yet. Printing of both strings is delayed until the start of
another cycle, their respective contents being at this time whatever
the results of each player’s move was during this round.

When the mainline is returned to from the computer’s turn the
last major module is called up. This routine is constructed to test for
a win and either allow the mainline to be recycled or close up the
game with an option to start another.

There is a scorekeeping service provided by this module also.
There are two counters maintained here—one for each player. Just
before the replay option is allowed both scores are printed. If the
counters are equal and the player elects to quit the program says
THANKS FOR THE GAME, and program execution stops.

On the other hand when the exit route is chosen two other
messages are possible. If the player’s score is the higher of the two
the program prints: GOOD-YOU'RE TOO CLEVER ANYWAY.
But if the player hasn't vet caught up to the computer’s score, a
parting shot is made: CHICKEN.

Invert is meant to amuse, so there is quite a lot of this sort of
dialog scattered throughout the coding; yet conceptually thereis not
much complexity in the program’s mechanics.

Basically, operation of this program depends on the manage-
ment of tables. There are three of these, and each are nine elements

104

deep. Table A and table B are used to house the human’s and the
machine’s number strings. The third table (C for collector) is a work
area, and it is alternately shared by the two string-manipulating
processes.

When a game first begins, near the top of the mainline, a
stand-alone task is called to generate the matching scrambled
strings. During this task only able A and table B are used. The
randomly sequenced numbers are shuffledin B, then the whole of B
is copied in parallel intoA. This enables a fair start, with both players
having an identical mess.

From here on the two tables are maintained independently; in
one case by use of a finite discipline. In the other case? Who the heck
knows what some humans are apt to do. In the study that follows we
describe how the program works so that you can get your own copy
running. From that point perhaps you can figure out how some
human’s work.

WHAT'S INSIDE OF INVERT

A glance at the top area of the listing shows the usual program
initializing code and the option to display the instruction repertoire.
A “funny” is contained within the rules sequence. The player is
asked whether he understands the rules; if he answers yes, the
game gets under way. If a no response is detected by statement
1160 the message constants in lines 1190 and 1200 are output; then
a return to the mainline occurs, just as would have been the case
anyway.

At the reentry point (line 90) the @$ (for query) field is con-
ditioned with an asterisk character. This is done so that later, while
in the end-of-game dialog, if the content of QF is overlaid the
mainline can detect that a game has been finished and alter the
recycle addressing accordingly. Alternative routing is at the bottom
of the mainline, within statements 180 through 210.

A game is started out of line 100 with a jump to the module that
is used to set up the strings initially. The short sequence from line
2000 to line 2140 does this, with the RETURN bringing the program
back to the primary mainline. What happens within the string setup
module deserves a brief description.

A typical FOR-NEXT loop spreads the/ variable down through
table A. This coding is in lines 2001, 2010, and 2020. Another loop,
from line 2030 to line 2100, moves the numbers from fable A, in a
helter-skelter manner, throughout tezble B. A combination of the
INT and the RND function is used to generate a number in the zero
to nine range. Since only one to nine is wanted any zero that is
fetched up is discarded by the branch in line 2050.

105

The generated integer is used, then, to pick up one of the
“canned” numbers from fable A. That number is moved to table B,
sequentially from the top, using the loop control variable as a
subscript. To preclude any duplicates being created in the second
table, as each number is retrieved from the fable A stack, a zerois
written into the spot from which it is taken. That is the reason for the
test statement in line 2070; any attempt to fetch a zero is ignored,
forcing another call to the random-number expression in statement
2040.

The final act in setting up the initial strings is accomplished by
the short loop from line 2110 to line 2130. This FOR-NEXT sequ-
ence merely copies table B over to table A, resulting in a matched
pair of strings. That’s all that is required, so the RETURN in line
2140 is next executed, which does take us back to the mainline at
line 110. From there we fall into a series of GOSUB instructions,
which collectively are a task dispatching sequence.

A complete round of play is accomplished by the series of jump
statements that extend from line 120 to line 160. The conditional
testing expression that is inserted at line 135 has to do with the
elective forfeiture option. If @ does contain a zero at this point the
regular cycle is abandoned in favor of getting to the end-of-game
logic quickly. Since the normal flow does follow the list of jumps as
presented, that is the sequence in which those task modules will be
described.

Display 2 Tables (3000—3140)

The DATA constants (00, 01, 02, etc.) are primarily for includ-
ing a parenthetical notation of the round number each time the
strings are output. The coding that displays these numbers is in line
3030. There is a secondary use of the first constant (00). Later, in
the module that accomplishes the computer’s move, if 78 has the
double-naught code in it a new game is signified.

The list of eighteen numbers is supposed to be sufficient,
meaning the maximum number of turns the computer should ever
need to sequence its string is eighteen. The trailing asterisk charac-
ter is included to trigger a read-restore function should it ever be
needed. Normally it won't be. During debugging, however, if a
vectored start is made directly into a procedural area this logic will
insure that the READ pointer never gets out of logical range.

The balance of this subroutine is essentially just the two loops
that print the strings. One starts in line 3060, and it prints the fable A
string followed by the YOURS label. The other loop, which begins in
3100, works the same way to print fable B, followed by MINE.

106

0
INITIALIZE
40
N N
50
MODE
150
3600 fa00 __l]___150 2000
FREQUENCY
1 TeouNTs MAINLINE J MAINLINE G BALANCES
3070 490 200 2070
Lem __i t 6000
END KEEP GOING?
250 6070
L1400
INSTRUCTIONS
r—1640 J
1000
INSTRUCTIONS
L {7060 c
(SHARED CODE)
1140
5000
PLAYER INPUT
5120
(SHAREDCODE)
5180
]
4000 4400
DICE ROLLER [—] SCORES
4100 4500

Fig. I-2. Program tempiate for Invert.

Player Input (4000—4340)

Basically there are three services provided by this subroutine:
player input is accepted (line 4030), qualified (lines 4040 and 4050,
and either the move is approved or a forfeiture condition is set up.
The E variable that is preconditioned in line 4001 is used by the
invalid-entry logic that spans from line 4130 to line 4250. Three
different errors are possible by this series in the event repeated
inputs fail to pass the validity checks. Just a bit of humor here that
most players will never see, save those wanting to test your pro-
gramming finesse.

107

Notice that, before zero is declared an error, the sequence
from 4300 to the bottom of the module is used to qualify whether the
input of zero is intentional. If a forfeiture is being declared when the
RETURN in 4120 is branched to the zero will be in @ and @§ will
have a Y code in it.

Invert Player's Numbers (6000—6090)

Here is what the game is all about; yet only ten statements are
needed to reverse any portion of the player’s string. The process
begins with a copy statement to move the first field in table A to the
collector table. This statement (line 6010) is within a FOR-NEXT
loop that is defined for a maximum of nine loops, butit seldom has to
run that long. In any event, as each table element is compared with
the player’s move (saved in@), when a match does occur, as it must
at some point, the loop is broken with a branch to line 6040.

When that happens whatever is in the loop variable (/) denotes
the length of the substring that is to be reversed. Another FOR-
NEXT loop is started then, using/ as a a counter. Transfers fromC
back to A begin then, using the I variable for the pickups and the
counter as the subscript for putting the numbers back into table A.
During this loop, as/ is incremented,] is decremented by statement
6060, the two working in conjunction to effect the switch in the
string’s sequence. When I has finally been decremented through
one, the zero test in line 6070 will learn that the reversalis complete
and the routine can be exited.

Computer’s Pick (5000—5230)

Conceptually this module is much the same as the previous
one. In this case there are two pairs of the FOR-NEXT loops that do
the reversal process, and table B and table C are the ones used
(instead of A and C). Other additional statements have to do with
deciding what the machine’s move ought to be, based on the two-
step cycling required by the driving algorithm. There is also the
elementary logic needed to keep track of the next digit to be worked
on, depending on a serial descent from nine.

The countdown, as predicted earlier, is conditioned off of the
00 code as can be seen in statement 5001. Variable X is used by this
module to contain the digit that the machine is going for. The second
pair of switcher loops that extend from line 5130 to line 5230 are
used for step 2 of the process. The earlier pair (lines 5020 to 5120)
are used if the “pick” is not yet in the string’s leftmost position. The
distinction as to which step is needed is argued by the conditional
expression in line 5030. If the first table element has in it the number

108

ez

that is neededit’s the second step that should be done, even though”
the string may have been initially generated such that step 1 is
unneeded.

As afinal act of using the step 2 sequence, in every case the X
value is decremented by line 5220 so that the next-required digit is
known when this module is again called upon.

It was mentioned in the overview that these procedures will
not take advantage of any natural ordering of a string. There is one
slight exception to that statement. Notice that it is possible—though
it doesn’t happen very often—if the jumbled string is presented in
just the right sequence when this module is called, if X was just
decremented and it agrees at that point with the value in the table’s
first spot, two successive iterations of step 2 can occur.

Check for a Winner (7000—7280)

A quick glance at this final major module reveals that it is largely
just dialog having to do with the end-of-game logic. The first win test
that is made is done by the loop that runs from line 7006 to line 7020.
A parallel comparison is made of the human’s string with the loop’s
counter. Any nonmatch indicates a break in an assumed serially
ascending sequence; so a branch is taken to a comparable loop that
starts in line 7210. There the same kind of logic is used to check the
machine’s string table.

Before either of these tests can get under way the check in line
7002 may find a zero-forfeit code in @, in which case neither test is
made. They would probably fail anyway. The only other real service
provided by this module is the addition of a one to either W1 or W2 if
awin has been determined either by logical qualification or by player
default.

If neither is the case a return to the mainline is in order to
permit another round of play. In any event, if the program is to
continue to run, a RETURN does occur back to the mainline. There
the determination as to whether the game did end while in this
module is made on the basis of whatever is in @$. If asked for and
received the Y code implanted in Q$ by line 7100 will appear as a
non-match to the asterisk character that was stored there by the
game’s housekeeping logic.

Looking back through the program listing for Invert, it is
noticeable that much of it is operator dialog. Most of the mechanics
on the other hand are fairly compact. So, while it may be a bit boring
to code and load, it shouldn’t take long to get it running correctly—
all of which ought to be worth the effect.

109

THE PROGRAM

10
20
it
40
a1t
60
70
80
90
100
110
120
130
135
140
150
160
180
190
200
210
1000
10011
1040
1020
1030
1040
1050
1060
1070
1080
1090
14100
1140
1120
1130
1140
1150
1160
1170
1180
1190

110

REM "INVERT"

REM

GOSUBR 9000

DIM AC9)s B(F)s C(T)

PRINT "WANT INVERT RULES (Y OR NI"3§
INPUT @%

IF @% <> "Y" THEN 90

G0SUB 1000

LET @ = "#"

608U 2000

PRINT

GOSUE 3000

G0BUR 4000

IF @ = 0 THEN 160

GOSUR 6000

G0S8UR 5000

GOSUE 7000

IF @$ = "#" THEN 110

RESTORE

PRINT

G0TO 90

REM "INSTRUCTIONS FOR INVERT"

PRINT "INVERT: YOU AND I COMPETE."
PRINT "WE START WITH JUMBLED NUMBERS"
PRINT "LIKE THIB:"

PRINT " 43215678¢9%9"

PRINT "YOU SPECIFY HOW MANY NUMBERS"
PRINT “TO INVERT (TRYING TO GET TO"
PRINT "12345678% BEFORE I D0.)"

PRINT "THE STRING TO BE INVERTED STARTS"
PRINT "ON THE LEFTs AND GOES TO THE"
PRINT "NUMBER YOU INPUT - LIKE THIS:"
PRINT " 432156789 "

PRINT "INVERT 4 - 7"

PRINT "IF YOU TYPE A 1s THEN YOU GET"

PRINT "123456789"
PRINT "UNDERSTAND (Y OR N)"ji
INPUT @8%

IF @% = "N" THEN 1490

PRINT

RETURN

PRINT "THEN LET’S TRY A GAME OR THWO."

1200 PRINT "-- YOU'LL CATCH ON."
1210 60701170

2000 REM "BUILD MATCHING TABLES"
2001 FORI =170 9

2010 LET A(I) = 1

2020 NEXT I

2030 FORI =170 9

2040 LET J = INTC10#RND(1))

2050 IF J € 1 THEN 2040

2070 IF A(J) = 0 THEN 2040
2080 LET A(JY = O
I

2090 LET B(J)
2100 NEXT I
24140 FORI =1 T0 9

2120 LET A(I) = B(I)

2130 NEXT 1

2140 RETURN

3000 REM "DISPLAY 2 TABLES"

3001 DATA 00s D01s DZs 035 D4s 055 06s 07
3002 DATA 08s 09y 10s 11y 129 135 145 15
3040 DATA 16 174 18y #

3020 READ T%

3020 PRINT "("Tg"o¥

3040 IF T% <> "#" THEN 3040

3050 RESTORE

3060 FORI =1 T0 %

3070 PRINT A(D)s

3080 NEXT 1

0% PRINT “YOURS™

J1IB0 FOR I =1 70 9

3110 PRINT B(I)3

3120 NEXT 1

3130 PRINT " MINE"

3140 RETURN

4000 REM "PLAYER INPUT®

4001 LETE =20

4010 LET @ = O

4020 PRINT “INVERT"A(1)"- "3}

4030 INPUT @

4032 LET @ = INT(Q)

4034 IF @ = O THEN 4300
4040 IF @ < 1 THEN 4130
4050 IF @ > 9 THEN 4130

i

4040 FOR I = 1 70 9

4070 IF @ £» A(1) THEN 40%0
4080 GOTO 4130

4090 IF 1 = @ THEN 4120
4100 NEXT I

4110 G0TO 4130

4120 RETURN

4130 PRINT "ERROR "3§

4140 LET E = E+1

4150 IF E = 4 THEN 4240
4160 IF E = 3 THEN 4220
4170 1F E = 2 THEN 4200
4180 PRINT

4190 GOTO 4010

4200 PRINT "COME ON NOW"

4240 GOTO 4040

4270 PRINT "DO IT RIGHT!"

4230 GOTO 4040

4240 PRINT "$7&%# - STQR IT!!"
4250 6070 4000

4300 PRINT "ZERQ?7"

4310 PRINT "WANT TO FORFIET (Y OR N)"3
4320 INPUT @%

4330 IF @% <> "Y" THEN 4040
4340 GOTO 4120

5000 REM "COMPUTER'S PICK"
5001 IF T$ <> "00" THEN 5020

5010 LET X = 9
5020 FOR 1 =170 9
500 IF B(1) = X THEN 5430

5040 LET C(I) = B(D)
5050 IF B(1) = X THEN 5070

5060 NEXT I

5070 FOR J = 1 70 9
5080 LET B(J) = C(D)
5060 LET I = I-1

5100 IF I = 0 THEN 3120
5110 NEXT J

5120 RETURN

5131 FOR I =1 70 9

5140 LET C€(1) = B(D)
514% IF 1 = X THEN 5160
5150 NEXT I

112

5160 LET I = X

5170 FOR J = 1 TO 9
5180 LET B(J) = €(1)
5190 LET I = I-1

52000 IF I = 0 THEN 5220

5246 NEXT J

527200 LET X = X-1

5230 RETURN

6000 REM "INVERT PLAYER'S NUMBERS"
6001 FOR I =170 9

6010 LET C(I2 = ACD)

6020 IF ACI) = @ THEN 6040
6030 NEXT I

6040 FOR J = 1 70 9

6050 LET A(SH) = C(D)

6060 LET I = I-1

6070 IF 1 = O THEN 6090

6080 NEXT J

6070 RETURN

7000 REM "CHECK FOR A WINNER"
7002 IF @ = O THEN 7270

7006 FORI =170 9

7010 IF ACI) <> I THEN 7240
7020 NEXT I

7030 PRINT "CONGRATULATIONS"
7040 LET W1 = Wi+1

7050 PRINT "SCORES: YOU ="W13
7060 PRINT " ME ="W2

7070 PRINT

7080 PRINT "GO AGAIN (Y OR N)"j
7090 INPUT 0%

7100 IF @% = "Y" THEN 7190
7110 IF W1 € W2 THEN 7150

7120 IF W1 > W2 THEN 7170

7130 PRINT “THANX FOR THE GAME"
7140 END

7150 PRINT "CHICKEWN!'"

7160 GOTO 7430

7170 PRINT "G00D - YOU'RE TOO CLEVER ANYWAY"
7180 GOTO 713D

7190 RESTORE

72D0 RETURN

113

7240 FOR I =4 T0 9

7220 IF B(I) <> I THEN 7200
7230 NEXT 1

7240 PRINT "HA HA"

7245 GOSUR 3100

7250 LET W2 = W2+1

726D GOTO 7050

7270 PRINT "THANK YOU"

7280 GOTO 7250

9000 REM "RANDOM NUMBER ROUTINE"
9010 LET Z = RND(1)

9020 RETURN

114

Here is a dual-purpose program. The first purpose is a game called
Chuck-a-Luck. It’s a fast-moving game played with three dice, anda
one-time favorite with riverboat gamblers. The dice, enclosed in an
hourglass-shaped wire cage, are rolled when the dealer turns the
cage over. Bet on any number, one through six. If your number
comes up on one of the dice you win. You win double if your number
comes up on two dice, and triple if it comes up on all three.

This game program simulates the part about turning over a
cage, of course. We have found it difficult to turn over some models
of microcomputers. Otherwise, even the legendary Bat Masterson
would recognize this game as a direct takeoff of Chuck-a-Luck.

Why Justluck then? A second purpose of this program enables
you to prove that the random-number generating feature of your
computer really does involve just luck. Besides, Chuck-a-Luck is
too long a name to use as an eight-character program label, and it
doesn’t start with the letter J.

The dual aspect of this program includes a startup sequence
that has three pages of operator instructions. The first offers the
choice as to which mode to run in. Either the usual game of Chuck-
a-Luck may be selected or the alternative may be the benchmark
mode to ascertain the degree of natural odds provided by com-
puterized games. After selecting either the C or the] mode—the
symbolic codes are self-explaining—a second page of instructions
may be optionally printed; depending on which mode was picked.

In the Chuck-a-Luck mode the game runs as described earlier.
The player inputs a bet, the dice are rolled, and the winnings are

115

computed. The house keeps all lost bets in a counter and the
player’s balance is maintained in another. On every tenth roll these
counters are displayed, and on every twentieth roll the game may be
ended or continued, optionally.

The Justluck mode is basically the same process, except the
cage is continuously turned without stopping for a bet each time, and
a tally is made of the three types of match conditions. There are
separate counters for singles, doubles, and triples. At the start, asis
explained in page 3 of the instructions, four questions are asked of
the operator. They are:

(1) BET?
(2) NUMBER?
(3) ROLLS?

(4) PRINT?

Questions 1 and 2 are common to the regular game: the first
expects a dollar-amount entry, and the second requires a number of
from one to six. The third and fourth questions are unique to the J
mode. Question 3 (Rolls?) anticipates a whole number to be used for
a run-until-done limit. When the limit is reached, the program will
break out of the otherwise self-perpetuating loop at the normal
end-of-game halt point. At this time the contents of the singles,
doubles, and triples counters are output, as well as the house and
player’s balances.

Question 4 (Print?) is supposed to be answered with ¥ or NV,
meaning yes (print each roll) or no (suppress all printing until the end
of the run). The no-print optionis intended to benefit those suffering
from an austere computing budget. If you'd rather not have umpteen
feet of printer paper wasted for, say, a thousands rolls of the dice,
the N response to the fourth question is warranted. For short runs
or for CRT-based output, the turns can be fully displayed. In this
case the values of the dice are printed, followed immediately with
the accumulations in the winnings counters and the frequency coun-
ters.

JUSTLUCK'S ARCHITECTURE

A glance at the illustration in Fig. J-1 shows how this program
achieves its dual personality. Two separate mainlines are used to
run in either the J mode or the C-mode. Those subroutines that are
exclusive to one or the other are shown out to the sides of either,
and most everything else is parrallel below, in the middle.

116

10 1000
INITIALIZE DESCRIPTION
76 1180
80 2,
Q- N
START GAME LETTERS
90 {2250 PICKER |

2000
TRUE/FALSE
100 / 4230 |
MAINLINE
200 3000
PRINT BOARD
PLAY 3180
310
5000
INPUTKMGHTS\\\\\
5700 gap 5200 — 5900
CHARACTER? INPUTKNAVES DUPLICATES?
6020
5790 =
INPUT
NUMSKULLS
5500

Fig. J-1. Program template for Justiuck.

Notice especially how the instructions and the input areas are
joined. Often subroutines are accessed from multiple points in a
program. In this study this is true, also, with an additional attribute.
The instructions C module and the player input modules were
constructed in such a way that sharable statements are located near
the bottom of the routines. This allows jumping into the routine
midway down from the top while the J mode is in force. And out of
the shared-code portion of the input subroutine another two levels
of jumping serve both modes, to roll the dice and to affix their
individual scores

All RETURN statements effect relinking back to the calling
mainline in any event. Those characteristics that are most notice-

117

able to the operator, depending on the mode then running, are
largely established within the respective mainline sequences. Oddly
enough, however, neither of the mainlines contains very many
statements. This will be seen in the following study of the Justluck
program listing.

JUSTLUCK'S LISTING

Two dimensioning expressions in line 40 reserve work space
for the dice (D), and for the match counts (M). This is all there is to
the business of globally initializing the program. From line 50 down
through line 150 the mode option is established. Notice that the
mode code (C or J) is accepted into M$ for storage purposes. Later,
when it is necessary to know which mode is in force, this variable
can be tested.

The appropriate dispatch to the selected mainline is done from
line 120 or line 130. Because Chuck-a-Luck is the simpler of the
two, it is the first offered for study.

Chuck-a-Luck

All of the subroutine calling for the regular dice game is done by
the series from line 160 to line 200. The conditional jump to line 1000
out of line 160 is triggered on the basis of the C counter having zero
init. It is the C counter that is used for knowing which roll is being
bet on, and in the beginning it does contain zero. The conditional
jump takes place then to output the game’s brief instructions. The C
value is never again zeroed unless the player switches modes. The
startup of a J run will clear the counter; so the instructions will
always be printed just prior to playing Chuck-a-Luck. The remain-
der of the nucleus of this mainline is unconditionally executed.

Statement 165 force-loads anN into @3 so that all end-run tests
can presume the status of this variable. At various places in the
program the player is asked whether he wishes to continue playing.
The questions are always phrased so as to elicit a Y response as an
exception to going on. An obvious use of this technique can be seen
in the looping conditional in line 200.

Three intervening GOSUB statements in lines 170, 180, and
190 do the jumping required to support running in the C mode. Inthe
order called those tasks accept player input, roll the dice, update the
balances, and print them when conditions permit.

Dialog for entering a bet and choosing a number to try to match
is in the sequence from line 5000 to line 5180. Mechanics there are
easily understood with a definition of the symbols used. The B andN
workers are used for player inputs for bets and numbers. In line

118

5150 the field called P is updated with the player’s winnings. This
arithmetic expression does a multiplication of the bet by the number
in the match counter (3). This works to give credit for doubles and
triples, and even for singles. A single match is worth only one times
the bet. If M has a zero in it, meaning there were no dice matching
the player's N entry, line 5170 is used to give the bet amount to the
house (H). The dice roller was called earlier, from line 5120, so that
routine should be looked at next. Itis there, also, that the M countis
established.

Before the dice are rolled by the routine that ends in line 4100
the first statement in line 4000 initializes M with zero. As the dice
are each generated they are compared to N in line 4040, and if
appropriate M is incremented by one in line 4050, All of this is inside
the three-times loop that calls the six-statement subroutine, lines
4400 through 4500. This subroutine generates a number between
one and six and returns to the roller loop.

As the dice are rolled each time through the loop the M value is
also used to add a one to the frequency counters in fable M. These
counters are only output when the program runs in the Justluck
mode, but the frequencies are tallied while running in either mode.

Back to mainline C. The short subroutine from line 2000 to line
2070 is called upon next, first to find out whether it is time to print
the player’s balances, and second to do the printing if the rounds
counter is an even multiple of ten. Either way, the RETURN in line
2070 goes back to the mainline for the final jump—this time to line
6000.

The question the program is asking itself here is whether the
rounds counter is a multiple of twenty. To learn this easily a repeat-
ing subtraction trick is used, continuing until the copy of C thatisin
the temporary worker (T) falls exactly on or below zero. If zero is
passed the RETURN is immediately executed. If at some point T is
reduced to exactly zero by the successive subtractions of twenty, a
stop question is asked. The response is accepted into @§ for action
as directed back in the mainline. An N response, as described
earlier, will allow the play to continue.

If the player overlays a Y into @§ the dialog from line 210 to line
230 will allow an optional switch in the running mode. For the sake of
this study assume the branch to line 50 is taken. This lets us look at

Justluck.

Justluck

Because theJ mode takes advantage of Chuck-a-Luck’s coding
wherever possible, it is only necessary to narrate the differences.

119

The mainline from line 400 to line 490 controls most of the Justluck
flow, beginning with an immediate jump to line 1400.

Another GOSUB is executed to line 1060 to use the house-
keeping logic that is in the tail end of the instructions C module. The
first-level RETURN will complete a startup of Justluck, extending
downward from line 1410 to line 1640. Dialog here is for conditioning
arun limit (L) and to load @$ with a code for controlling the no-print
option.

Each lap through the mainline checks whether the rounds
counter (C) has vet caught up to the L (for limit) value. It is the
GOSUB 5120 in line 420 of the mainline that causes the dice to be
rolled, using all of that beyond line 5120 just as is done by Chuck-a-
Luck. The remaining difference while running in the J mode is the
use of the routine at lines 3000 through 3070.

This is the only complete module that is exclusive to Justluck.
It is merely a linear series of PRINT statements to print all of the
program’s counters. Access to this supporting subroutine is con-
ditional. In one case if printing is supposed to be suppressed line 440
is bypassed. If @$ has a Y init the conditional in line 430 will permita
jump to line 3000 each time the mainline is cycled. On the other hand
the jump to line 3000 is done from line 462 when aJ runis completed.

There is one other nuance exclusive to the J mode. It is well
within the area of shared programming, in the area of line 5130. This
is the line that actually prints the dice. This PRINT statement is
conditionally hit based upon the two preceding statements. A C
mode indicator in M$ forces the printing, but if M$ has aJ in it the
next test is done instead. Line 5124 acts on whether @$ has N init,
optionally put there by question 4 (“PRINT?”) that was asked when
Justluck was initialized. This is how you can save paper on those
long runs: nothing will be printed until the run ends.

1t is this feature, perhaps, that best justifies your adoption of
this program into your library. When your machine has nothing
better to do you can let it play all by itself. I once started mine at
lunch time. When interrupted at sundown the rounds counter was
only a little over 2000. Imagine the fun the computer would have had
if I had let it continue until the 5000-time limit that was specified.

THE PROGRAM
10 REM "JUSTLUCK"
201 REM

30 GOSUR 9000
40 DIM D(3)s M(3)
50 PRINT "THERE ARE 2 MODES:"

120

60
740
a0
eu
100
1410
120
130
140
150
160
165
170
180
190
200
210
220
230
240
250
400
410
420
430
440
450
460
4462
4465
470
480
490
997
1000
1040
1020
1030
1040
1050
1040
1070
1080

PRINT " (1) CHUCK-A-LUCK"

PRINT " (2) JUSTLUCK

PRINT

PRINT "INDICATE YOUR CHOICE"

PRINT "(C OR J)"§

INPUT M$

IF M$ = "J" THEN 400

IF M$ = "C" THEN 160

PRINT "YOU MUST SELECT A MODE"
6070 &80

IF C = 0 THEN GOSUR 1000

LET @% = "N"

605UR 5000

GOSUB 2000

GOSUR 6000

IF @% = "N" THEN 170

PRINT "WANT TO STOP (Y OR N)"3
INPUT @%

IF @$ = "N" THEN 50

PRINT "END OF PROGRAM"

END

GOSUB 1400

IF C = L THEN 440

GOBUR 5120

IF @$ = "N" THEN 450

60SUB 3000

60TO 410

IF @% <> "N" THEN 4465

G0SUR 3000

PRINT "ANOTHER RUN (Y OR N)"j
INPUT %

IF @$ <> "N" THEN 400

GOTO 210

REM "INSTRUCTIONS-C"

PRINT ". . . CHUCK-A-LUCK . . ."
PRINT "YOU BET AN AMOUNT AND PICK"
PRINT "A NUMBER (i-6). IF YOUR NUMBER"
PRINT "COMES UP YOU WIN. PAIRS PAY"
PRINT "DOUBLE -- TRIPS PAYS 3 TIMES"
PRINT "YOUR BET."

LET P =10
LETH=10
LET C =10

121

1090 FOR I = 1 T0 3
1100 LET D(I)
1140 LET M(D)
1420 NEXT 1
1130 LET M = O

1140 PRINT

1150 RETURN

1399 REM "INBTRUCTIONG- J"

1400 GOSUR 1060

1440 PRINT *. . . JUBTLUCK . . ."
14200 PRINT “BET"3

1430 INPUT B

1440 PRINT “NUMEER":

1450 INPUT N

1450 LET N = ABB{INT(N))

1470 IF N < 1 THEN 1490

1480 IF N € 7 THEN 1510

1490 PRINT "ILLEGAL"

1500 6070 1440

1540y PRINT "LIMIT"3

1520 INPUT L

1530 LET L = ABSCINT(L))

1540 IF L < 2000 THEN 1580

1551 PRINT "“ARE YOQU SURE (Y OR N)"3j
1560 INPUT @%

1570 IF A% = "N" THEN 1510

1580 PRINT "PRINT (Y OR N)"i

1590 INPUT Q%

1600 IF @$% = "N" THEN 1640

1610 IF @% = "Y" THEN 1640

1620 PRINT "1 DON'T UNDERSTAND..."
1630 GOTO 1580

1640 RETURN

1999 REM "BALANCEE"

2000 IF € = 0 THEN 2070

2000 LET T = INTCC/1)

2070 IF € <> T#10 THEN 2070

2030 PRINT "ROLL#" €3

2040 PRINT " YOU=$" P3

205 PRINT " ME=$" H

2040 PRINT

20170 RETURN

2999 REM "FREQUENCY COUNTS"

0
0
0

122

3000
3010
3020
3030
3040
3050
3060
3070
3999
4000
5010
4020
40320
4040
4050
4060
4070
4080
4070
44100
4£399
4400
4410
4420
4430
4500
4999
5000
5010
5020
5030
5040
5050
5060
5070
5080
5090
5100
5110
5120
5122
5124
5130

PRINT "ROLL#" C3
PRINT " YOQU=$" P3
PRINT " ME=$" H

PRINT " 86L=" M(1)}
PRINT " DBL=" M(2)3
PRINT " TRP=" H(3)
PRINT

RETURN

REM "DICE ROLLER"
LETM =20

FORI =1T703
GOSUB 4400

LET D(I) = X

IF N €> X THEN 4060
LET M = M+1

NEXT 1

IF M = 0 THEN 4090
LET M(M) = M(M)+1
LET C = C+1

RETURN

REM "SCORES"

LET X = INT(10*RND(1))

IF X € 1 THEN 4400

IF X € 7 THEN 4500

LET X = INT(X/2)
RETURN

REM "PLAYER INPUT"
PRINT "BET"3

INPUT B

IF B > 0 THEN 5050
PRINT "WHAT? -- ILLEGAL"
6070 5000

PRINT "NUMBER"3

INPUT N

LET N = ABSCINT(N))

IF N > O THEN 5140
PRINT "NIX -- ILLEGAL"
60TO 5050

IF N > 6 THEN 5090
GOSUB 4000

IF M$ = "C" THEN 5130
IF @% = "N" THEN 5140
PRINT DCDY" "D(2)" "D(3)

123

5140
5150
5160
5170
5180
599%
6000
6010
6020
6030
6040
6050
6060
6070
9000
2010
2020

124

IF M = O THEN 5170

LET P = P+B#M

6070 5180

LET H = H+B

RETURN

REM "KEEP GOING?"

LET T = €-20

IF T € 0 THEN 6070

IF T = 0 THEN 6050

LET T = 7-20

6070 5010

PRINT "STOP CHUCK-A-LUCK (Y OR N)"§
INPUT Q%

RETURN

REM "RANDOM NUMBER ROUTINE"
LET Z = RND(1)

RETURN

History provides an interesting introduction to the principals in this
game. First, there are the knights. In the century or so just past
these are supposed to have been the noblest of men—always honest
and gentlemanly, but not necessarily horsemen. Flipping back
through the pages of history we find that their title has more to do
with horsemanship than with honorable virtues. This game pre-
sumes the modern connotation, at least to the extent that knights
are considered to be incapable of telling a falsehood.

Knaves, on the other hand, are considered today to be inveter-
ate storytellers. In days of old they were merely small boys, boy
servants, or young men of humble origin. Isn’t it amusing that with
the passing of time a guy on a horse has become virtuous and
boyhood has become almost synonymous with lying?

Remaining principals in the game of Knights seem to have
suffered no change in all of history. Numskulls used to be, still are,
and probably always will be considered to be unreliable. It is a good
idea, in history, in life, and especially in this game, to pay no heed to
their advice.

These are the characters in Knights. In the beginning there are
nine letters displayed, in groups of three, and below each is a letter,
T or F. Two truth symbols are printed as if in response to the
question: “Are these now right?” The game’s player (that’s you) sits
in judgment of these declarations. The object of the game is to move
the letters about until they are all properly grouped under the
headings of knights, knaves, and numskulls (three per).

125

As the game opens you are forewarned that: (1) knights never
lie, (2) knaves always lie, and (3) you can't trust numskulls. Your
ability to deduce the correct placement of the individual letters
depends on your faith in these axioms.

Any letter appearing in the knights’ group that is marked with a
T is in the correct group. By the same logic an F* beneath a letter in
the first group indicates that the letter is falsely placed. Imperative
logic applies to the knaves as well, but their truth indicators must be
considered as inverted or switched. Remember: the knaves always
lie—you can depend on it.

You cannot depend on the numskulls, however—neither for a
correct answer nor even for the same answer twice in a row. The
letter G, for example, may first appear in the knights’ area. At that
point assume G is shown to be false. If, though, when you retype the
letters and move G under the knaves, it could now be labeled with a
T (which must be read as false). If this be the case: G must be a
numskull. Yet, as you continue to regroup all of the letters, but each
time keeping G with the numskulls, his truth indicator may alternate
between T and F', sporadically. You just can’t trust a numskull.

A reverse trail of markers must be seen to fully appreciate how
it is that you can succeed, possibly even in fewer turns than your
friends. Regardless of the marker appearing under a letter in the
numskulls’ area, if, when that letter is moved to the first area it is
then tagged as true, it is a knight. Similarly, if aletter is marked with
anF whenever it is located under the knaves heading, keep it there;
it is where it belongs.

The logic of Knights is such that when the knights and the
knaves are properly grouped, the numskulls will all read as true.
The end of the game is reached when you achieve all true answers.
Because the knaves are forever liars the indicator string will read;
T-T-T, F-F-F, and T-T-T.

When the game does end there is an immediate replay option
just like other games in this book. Because of this it should be
apparent that the solution to one game has no bearing on a following
game. Not only do the letters take on a different labeling, the letters
themselves are apt to change from game to game.

Although a game uses only nine letters of the alphabet (all
different), the program houses twenty-four letters. The reason that
there are not twenty-six possibles is that, the letters T and F are
excluded from the random selection list. This is done to preclude
confusion as to what is supposed to be typed for each turn; turns
consist of three entry points, with three letters asked for at each.

A round begins with a turn number notation and the knights
prompt. Three letters should be typed, then, separated by commas.

126

When the entry of the knights character string is terminated, the
knaves prompt appears. Again, three letters should be entered,
terminated, and the numskulls label will appear to permit entry of
the remaining group of three letters.

Following the three entries a new board is printed showing
your rearrangement of the letters with their resulting truth flags.
And so goes the game until the truth of the groupings is correctly
established.

The game of Knights can be fun—even exasperating for some.
The program can be fun too. It can be fun to code and load, andit can
be exasperating to get to work correctly as well, especially if it is not
lifted accurately from what follows. In the section that deals with the
internal logic my original bugs are exposed, as well as how they
were exterminated. The design layout survived intact, however, so
we will start there.

THE LAYOUT OF KNIGHTS

As to both problem definition and task allocation this program s
rather simple. The drawing in Fig. K-1 reflects the organization of
the different sections of the program into logical tasks and how they
are interconnected.

At the top there is nothing very original. Both the program’s
initialization and the optional description routines are typical. The
game’s startup requirements aren’t much, either: mostly just a jump
to a stand-alone module that selects the nine letters to be used.
From there the logical flow is directly into the mainline. As an
architecture up to this point this layout is not too exciting.

The presentation sequence of the modules, as connected to the
mainline, does have one peculiar attribute. According to the
template (and to the actual processing sequence) the truth table is
generated from the outset as soon as the newly generated random-
letter string is formed.

Because the letters are picked out, their truth is qualified; and
then the first board is printed it is possible that an automatic win can
occur. Odds on this happening have got to be on the order of being
ridiculous, however. My attitude was if this ever does happen so
what? You canimmediately invoke the replay option to start another
game.

Actually I did not have much difficulty with the program’s
layout. This one was chosen to favor being able to stack the blocks
as shown. Notice how all of the play business is nicely separated
from the usual mechanics for managing a game program. This does
have an advantage during fault isolation exercises, but a careful

127

study of the program’s internals may preclude your having to de-
pend on this advantage.

KNIGHTS FROM WITHIN

The program listing is usual enough down to line 70, including
the jump to the optional description routine. Statements 72, 74, and
76 define tables used by the program, so their use ought to be
known before we encounter them further.

Table X8 is filled once with the letters of the alphabet. Only
twenty-four slots are allocated because the A to Z DATA string
does not include the letters T and F'. Tables C$ (C for computer)
and P$ (P for player) are a matching pair having nine fields each. The
first is for holding the computer’s nine randomly selected letters,
and the second is for player entries. Table T, of course, is for the
truth indicators—one for each letter in the player’s string.

Definition of the tables is the last of the program initialization
steps, and the next two lines (80 and 90) constitute the start game 9
operation. Line 90 merely sets the rounds counter to zero, but the
GOSUB 2000 in line 80 deserves some explanation.

The routine that extends from line 2000 to line 2250 is the one
that generates the initially scrambled list of nine letters. The pro-
cess is accomplished through the use of three FOR-NEXT loops
that are of the run-until-done type, one following another.

The first loop is the three statements at lines 2030, 2040, and
2050. Table X$ is loaded with the twenty-four DATA constants in
sequence from the top downward, the DATA pointer is restored by
line 2060, and the second loop is entered.

From line 2070 to 2170 the nine letters for this game are
selected from the master list and loaded into table C$. Since nine are
needed the loop is set up to run nine times. The RND expression in
line 2080 will fetch a two-digit value in the 00 to 99 range. Since zero
cannot be used as a valid table subscript line 2090 will force another
try until at least a one is obtained.

The conditional in line 2100 tests to see whether the number
meets the maximum of twenty-four; if so a branch is taken to line
2130. Any RND call that gives a number in the 25 to 99 range is
divided by two otherwise, and the range tests are repeated until an
acceptable value is achieved. The R value may now be used topick a
letter from the master list.

Statement 2130 does this, and places the selection into the
next available spot in fable C$. Before the loop is allowed to repeat,
however, the conditional in line 2150 checks whether a space code
was retrieved. (It would have been placed there in a previous loop

128

10 1000
INITIALIZE INSTRUCTIONS

70 1090

2000
NAMES
2160

80
START GAME
100

3000
PILEUPROCKS
3030

4000

PRINT PILE
4060

110
MAINLINE
240

5000
PLAYER INPUT
5180

6000
CHECK
FOR WIN

' 6130

S T
Fig. K-1. Program template for Knights.

ANA

by line 2140.) This logic works to preclude any duplicate letters in
the final string. Once the RND value is good and a unique letter is
placed into the I-designated location in table C$ it is copied into table
P§ by line 2160 and the loop is repeated. Upon completion of nine
loops both tables are filled with matching strings of scrambled
letters.

Notice that table P$ contains a winner at this point. Because the
program does generate its own solution a temporary patch can be
used to find any bugs that manage to crawl into later areas. To take
advantage of this self-help opportunity insert a RETURN statement
numbered between lines 2170 and 2180. Running of the program
with this early exit in place will at least qualify whether or not the

129

program knows when a game is supposed to be over. Do remember
to remove this patch or you'll never get to do anything but win—
instantly.

Getting through to the final loop of the scrambler routine is
essential to a challenging game. This loop runs nine times, too, to
shuffle the player’s string. Line 2190 generates a single digit in R
which is used in conjunction with the I counter to swap around the
contents of table P$. By using the loop control as one of the
subscripts every letter is subject to being relocated, although it is
possible that some may end up where they started. Either way the
result is deemed usable, and the RETURN in line 2250 exits back to
the mainline to begin the game.

And a short mainline this one is. The round counter is bumped
up by one in line 100 and output in line 110. Two jumps in lines 120
and 130 will get the truth of the present situation and print it all out.
The W that is tested by line 140 controls the ending of the game (or
continuation of play by branching to the GOSUB 5000 in line 300).
As long as the win switch remains off player entries are processed
by the input modules. The usual looping through the mainline in-
cludes jumps to lines 4000, 3000, and then 5000; so that is the order
in which they are described below.

From line 4000 to 4230 the truth table is generated afresh, just
before each round of play. The object of this routine is to turn on (or
off) the T or F letter indicators and to condition the I¥ variable based
on the total truth of table T. Whether or not a win is in order cannot
be learned until the tasks here are finished; so W is conditioned to off
at the beginning of the module in line 4005. Later, if appropriate, itis
set to on with a one.

Within the truth table itself three values are used. For the
knights group a T is represented by positive one and F is zero.
Knaves use zero for false also, but a true conditionis indicated with a
negative one. Rather than looking at the letters in the third group
the whimsy of numskulls is simulated by doing arithmetic on the
indicators for the letters in the first two groups. This works on the
principle that addition of positive and negative ones will sometimes
leave a zero, or something, depending on the number of offsetting
ones. Because an equal number of positive and negative ones will
generate a zero, and an odd number will produce an absolute
residue, the numskulls will appear to change capriciously. If a player
runs this game long enough he or she might discover the relation-
ships. But few will.

Status of the knights and the knaves is established by two sets
of concentric loops that compare the C$ and P§ tables. The first pair

130

of FOR-NEXT loops extends from line 4010 to line 4070. The
outside loop picks up the letters from the player’s table, one at a
time, and the inside loop compares each of them to the first three
letters in table C$. Just before the comparison is made in line 4040
the T field that is pointed to by is made a one. If the comparison fails
the loop is simply repeated. If on the other hand an equal match is
found the inside loop is broken by branching to line 4060, which
resets the one to zero. After three complete laps through the
outside loop the program falls through into the next pair of nested
FOR-NEXT loops.

The series form line 4080 down to line 4140 is much the same
as the previous structure. The fourth, fifth, and sixth letters in the
tables are compared here to generate the status codes for the
knaves group. Notice in line 4100 that the default setting is zero this
time; and if the comparison comes up as equal the T field is loaded
with negative one. Because of the reversed use of the zero code the
knaves will be presented as opposites of knights, meaning they are
lying.

Numskulls are codified next, by lines 4150, 4160, and 4170.
This loop adds the truth values for the knights and the knaves in
parallel, and each sum is placed in the seventh, eighth, and ninth
spotsin the table. All three groups of letters have now been qualified
as to their individual placement, and all that remains is to see if they
are all where they belong. Again a loop is used to do this task.

The loop from line 4180 to line 4200 adds together each knights
indicator with a corresponding numskulls code and compares the
sum with a positive two. Any pair of indicators from the knights and
the numskulls that does not equal two is sufficient cause to abandon
the test: some character somewhere is not yet properly grouped.
When this loop finally does run to completion the game is over; so W
is set to one by line 4210. Either way the RETURN in line 4230 links
control of the game back to the mainline.

From statement 130in the mainline a jump is made immediately
to the routine that prints the board. Three printed lines are output
by this series of statements, which extends from line 3000 to line
3180. The first line printed is done by the single statement in line
3020. These are the column headings: KNIGHTS, KNAVES, AND
NUMSKULLS. Next a loop is used to print the contents of the
player’s table in groups of three.

The FOR statement is constructed in line 3080 to cause the
loop to run three times. Notice that the I variable is incremented by
three each time. In doing it this way the print statement in line 3040
can use modified / subscripts to output three letters per loop. As

131

each cycle completes the PRINT command in line 3150 spaces the
print buffer to the right for six spaces to cause the next group to be
aligned under the next columnar heading. The final PRINT in line
3070 advances the output in preparation for the printing of the truth
indicators.

From line 3080 to line 3160 is another FOR-NEXT loop, also
incremented by three, to print the 7' and F markers. Printing and
spacing control is much the same for this loop as the one above,
thereby insuring that the markers will align under their correspond-
ing letters. The series of conditional expressions from line 3090 to
line 3140, which is inside of the loop, will always print exactly three
symbols per iteration of the loop. Whether a T or an F is printed is
determined by the codes in fable T: a zero always produces an F,
and either a positive or a negative one will trigger a T

After the print loop runs three times the dummy PRINT inline
3170 completes the output by spacing up once, and the RETURN in
line 3180 ends this subroutine.

The last major chunk of this program is all of that having to do
with accepting player input. This is all done between lines 5000 and
6020, including learning whether the letters that are typed are
usable or not. This does appear to be a long list of instructions; yet
there is a considerable amount of redundancy within. Each line of
input expects three letters to be typed. one line for the knights, one
for the knaves, and a final line for the numskulls. As the lines are
entered two jumps will follow to find out whether any of the charac-
ters are invalid or whether any on this line or the previous line are
duplicates. Study of how this is all done can concentrate on the
knights sequence. Logic for taking in the operator’s selections for
the other two groups works the same.

The INPUT statement in line 5020 expects three letters to be
typed, and they must be separated by commas as a convention of
BASIC. Two variables are then set up preparatory to use of the
error-checking subroutines. The F field is used as a flag to know the
results of the tests. The flag is always set to one prior to jumping to
either test, and if it remains upon return from the test no error was
found. Either test module will place a zero into F' toindicate that the
operator must reenter the line just typed.

The other control variable is L. This one is used as a limiting
base address by the error checkers. It is preloaded with three, six,
or nine toindicate the depth of the table scanning that should be done
after each line of player entry. The way this is used can be seen by
looking at the two test modules.

From line 5700 to line 5790 a pair of nested FOR-NEXT loops
are used to check whether each of the player’s letters have a

132

counterpart somewhere in the master string. The subtraction ex-
pression in line 5710 adjusts the FROM counter for the I loop to run
three times, ending with the preloaded limit. The J loop is estab-
lished for a maximum of nine iterations; but as each of the three
characters from an input line are looked for in fable C$, whenever a
match does occur, the long loop is vacated. If it ever does happen
that the full nine comparisons finds no match the character is invalid
and F is set to zero to flag this condition.

The routine that checks for duplicate characters is similar in
concept to the previous one. Two more nested loops are used (lines
5910 through 5970), again using the floating L variable. In this case it
is table P$ itself that is examined; instead of always running for a
possible nine times it is only permitted to scan down as far as new
entries have been made. The reason for restricting the depth of the
scan is that characters further down in the table are residue from a
previous turn. Notice also that one match is bound to occur in this
loop—as the scan passes the letter that is being compared for
duplicates. Thatis why F isincremented in line 5950. Because three
letters are checked and F was initialized with a one, a valid test
should end with a four in . The conditional in line 5980 checks for
this, and any sum other than a four triggers the error message and
resets F zero.

That is really all there is to Knights. The use of the floating
variables within the nested loops can cause some irritation if a minor
mistake is made in implementing this coding. Even mine didn’t work
the first time (nor, alas, the second and third). To get the kinks out I
finally resorted to using a temporary loop between lines 3010 and
3020 to dump the C$ and T values prior to starting the input.
Knowing what the program was looking for did help.

THE PROGRAM
10 REM "KNIGRTS"
20 REM

30 G0O5UB 9000

40 PRINT "WANT A DESCRIPTION (Y OR N)"i
50 INPUT @$

60 IF @$ <> "Y" THEN 72

70 60SUB 1000

72 DIM X$(24)

74 DIM C$(9)s PH(F)

76 DIM T(9)

80 605UB 200D

0 LET C =0

133

100
110
120
130
140
150
160
170
180
190
200
300
310
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1430
1140
1150
1160
1170
1180
2000
2010
2020
2030
2040
2050
2060

2070
2080

20590
2100

134

LET € = €+#1

PRINT "ROUND $"C

&0OSUB 4000

GOSUB 3000

IF W = 0 THEN 30D

PRINT "GOOD SHOW OLD CHAP"

PRINT "WANT TO GO AGAIN (Y OR N)"i
INPUT €%

IF @& = "Y" THEN 80

PRINT "S0 LONG THEN ..."

END

GOSUR 5000

G0TO 4100

REM "DESCRIPTION"

PRINT

PRINT "KNIGHTS KNAVES NUMSKULLS"
PRINT " Gs@s8 RaXsP LsEsA"
PRINT " TF F FTF TTF"
PRINT "THE LETTERS T AND F (TRUE/FALSE)"
PRINT "TELL WHETHER THE LETTERS ABOVE"
PRINT "ARE IN THE RIGHT GROUP. THE"
PRINT "OBJECT IS8 TO RETYPE THE LETTERS"
PRINT "TO GET ALL ’TRUE' ANSWERS IN AS"
PRINT "FEW TURNS AS YOU CAN. KNOW THAT:"
PRINT " KNIGHTS NEVER LIE BUT."

PRINT " KNAVES ALWAYS LIE ANDs"

PRINT " YOU CAN’'T TRUST NUMSKULLS."
PRINT "LETTERS ARE ASKED FOR IN GROUPS"
PRINT "OF 3 WITH COMMAS (EX: Gs@s8)."
PRINT “READY"

INPUT €%

RETURN

REM "9-RANDOM LETTERS PICKER"

DATA AsBsCsDsEsGsHsIsJsKsLsM

DATA NsQsPsQsRsSsUsVslsXsYsZ

FOR 1 =1 70 24

READ X$CD)

NEXT I

RESTORE

FORI1I=1T70°9

LET R = INT(1DD%¥RND(1))

IF R € 1 THEN 2080

IF R € 25 THEN 2430

2110
2120
2430
2140
2150
2160
2170
2180
2190
2200
2210
27220
2230
2240
2250
3000
3010
300
3040
3040
3050
30601
3070
3080
3090
3400
3110
3170
3130
3140
3150
3160
3170
318D
4000
4005
4010
4020
4030
4040
4050
4040
4070

LET R = INT(R/2Z)

GOTO 2090

LET C$(I) = X$(R)

LET X$(R) = " "

IF C$(I) = " " THEN 2080
LET P$(I) = C$(I)

NEXT 1

FORI =1T02¢9

LET J = INTCID#RND(1))
IF J € 1 THEN 2190

LET X$ = P$(D)
LET P$(I) = P$(d)
LET P$(J) = X%
NEXT 1

RETURN

REM "PRINT THE PLAYING BOARD"

PRINT

PRINT "KNIGHTS KNAVES NUMBKULLS™
FORI =1 70 9 STEP 3

PRINT " "P$CI)"s"P$(I+1)"s"P$(I+2)3

PRINT " "3

NEXT I

PRINTS

FOR'I =170 9 STEP 3

IF T{I) = 0 THEN PRINT "F "3

IF T<I) <> 0 THEN PRINT "T "
IF T(I+1) = 8 THEN PRINT “F "3}
IF T(I+1) <> O THEN PRINT "T "3j
IF T(I+2) = 0 THEN PRINT "F "3
IF T(I+2) <> O THEN PRINT "T "3
PRINT " "3

NEXT I

PRINT

RETURN

REM "TRUE/FALSE"

LET W =20

FOR I =1

FOR J =1
LET T(I)
IF C$(D)
NEXT J
LET T(I) =
NEXT I

nonn

T0 3
T0 3

O e O O

1

$(I) THEN 4070

J
o

135

4080
4090
4100
4110
4120
4130
4140
4150
4160
4170
4180
4190
4200
4210
4230
5000
5010
5020
5030
5040
5050
5060
5070
5080
5200
5210
5220
5230
5240
5250
5260
5270
5280
5400
5410
5420
5430
5440
5450
5460
5470
5480
5490

136

FOR I = 4
FOR J = 4
LET T(D)
IF Cs(J)
NEXT J
LET T(I)
NEXT 1
FORI =1T023
LET T(I+6) = T
NEXT 1

FORI =1T703
IF T(I) + T{I+6) > 2 THEN 4230
NEXT 1

LET W = 1

RETURN

REM "INPUT KNIGHTS"

PRINT "KNIGHTS"

INPUT P$C1)s P$(2)s P$(3)

LET F = 1

LET L =23

GOSUB 5700

IF F = 0 THEN 5010

60SUB 5900

IF F = 0 THEN 5010

REM "INPUT KNAVES"

PRINT "KNAVES"

INPUT P$(42s P$(5)s P$(4)

LET F = 1

LETL =6

GOSUR 5700

IF F = 0 THEN 5210

GOSUR 5500

IF F = 0 THEN 5210

REM "INPUT NUMSKULLGE"

PRINT "NUMSKULLS"

INPUT P$(7)s P$(8)s P$(%)

LET F =1

LET L =9

G0SUB 5700

IF F = 0 THEN 5410

GOSUB 5%00

IF F = 0 THEN 5410

PRINT

0
0
0
P

$(I) THEN 4140

-1

(I) + T(I+3)

5500
5700
5710
5720
5730
5740
5750
5760
5770
5780
5790
5900
5910
3930
5940
5950
5960
5970
5980
5990
6000
6010
6020
2000
2010
2020

RETURN

REM "BAD CHARACTER CHECK"
FORI=L-2T01L

FORJ =1T7029

IF P$(I) = €$(J) THEN 5780
NEXT J

PRINT "ILLEGAL CHARACTER"
LET F =20

RETURN

NEXT 1

RETURN

REM "CHECK FOR DUPLICATES"
FORI =L-2T0L

FORJ =1T0L

IF P$(1) <> P$(J) THEN 5960
LET F = F#1

NEXT J

NEXT 1

IF F <> 4 THEN 6000

RETURN

PRINT "DUPLICATES -- NO FAIR"
LETF =20

RETURN

REM "RANDOM NUMBER ROUTINE"
LET Z = RND(D)

RETURN

137

Time again for a touch of class. The name of the game is Latin for
rocks. In the game there are forty-five rocks, and they are piled up
so that the bottom row has nine, the next row up has eight, the next
seven, and so on.

Two players compete in playing Lapides. They take turns
removing rocks from the pile, working from the top down. Ina turn,
a player may remove as many rocks from the upper row as he or she
likes, with one stipulation: he or she must not specify the removal of
more rocks that the total remaining in the topmost row. The object
is to force the other person to grab the last rock.

This is a fast game and one that is especially enjoyed by
children. The listing here has only 107 lines of programming, and
this can easily be reduced to less than a hundred if you omit the REM
statements. Even if you are clumsy on the keyboard hardly an hour
should be required to load and debug this simple program.

Study of how the program is built and how it works should not
take long, either. The program template in Fig. L-1 shows all of the
parts of the program and how they are conceptually connected. A
classic, actually.

LAPIDES LOGIC

The DIM statement in line 25 sets aside a work table tohold the
rocks. The rest of the program’s cold-start initialization extends
down to line 70. Within this area are the usual mechanics for
permitting an optional display of the game’s brief rules.

138

10 7000
INITIALIZE —— INSTRUCTIONS
80 1130
50
START GAME 2060
160 NEW DECK
3600 T
DRAW CARDS
4000 3150 3500
PLAYER INPUT SETUPSUITS
170 ——4170 5500 3590
MAINLINE CLEARTANK
590 5540

Fig. L-1. Program template for Lapides.

The starting point for repeated games of Lapides is line 80. The
two jumps, one to line 2000 and the next to line 3000, are for
game-level housekeeping chores. The subroutine from line 2000 to
line 2160 permits the players to introduce themselves to the prog-
ram. Whatever two names are typed are stored in P1$ and P23.
During play the players are summoned to the keyboard by their
names only; so the logic here insures that two visibly different
values are entered.

Statements from line 2110 to line 2160 also provide a bit of
programming whimsy. In line 2110 the P worker (player) is loaded
with a random integer, and in line 2120 it is tested for content. In
" essence this is like flipping a coin. If the random digit is one of the
five in the zero to four range P is loaded with a one. There are five
digits in the five to nine range also; so the odds are equal that P may
be initially started with a two. It is the P number that is used in the
input task to condition which player’s name is printed each turn.

The other start-game task is done by the tight FOR-NEXT
loop in lines 3000 to 3030. This simply loads the rock table with the
numbers 1 through 9, one number per field. As the game proceeds
the number indexed by the player is subtracted from these fields,
beginning with the top one (a one). As each field is reduced to zero,
then, that field is effectively deactivated (until the next game).

As can be seen in the conditional test in line 140 repeated laps
through the mainline include the jumps to lines 4000, 5000, and

139

6000. These are to the supporting routines for printing the decreas-
ing rock pile, the player entries, and the test to see whether the
game is over. As long as the X variable is returned with more than a
one in it the game continues.

The balance of the mainline area contains the go-again dialog,
and an option tointroduce a new pair of players. Recall thatitisin the
introduction module that the decision as to who s first is made. If the
same two players do continue to play their turn-trading continues
right on through from one game to the next.

Print Lapides

A pair of nested FOR-NEXT loops are contained in the routine
from line 4000 to line 4060. The outside loop (/) controls the number
of rows to be printed; the inside loop (/) controls the printing of
rocks per row. Each time theJ loop activates it is conditioned to run
until whatever limit is in fable R at the field then referenced by thel
counter. Notice also the patch statement added as line 4005. This
conditional causes the bypassing of the empty rows so that no line
spacing will occur until the active portion of the table is encounter-
ed.

Player Input

Depending on the P number (one or two), the PRINT state-
ment in line 5020 or line 5040 serves as the player prompt, by name.
The input in @ is then checked in line 5070 to insure that it is some
positive integer. It would not be fair to permit a player to pass witha
Zero entry.

The loop in lines 5110, 5120, and 5130 runs down through fable
R quickly tofind the currently active row. The @ value is then tested
forits reasonableness. (An entry like 99999 would be ridiculous, and
the rules of the game do not permit a number larger than the
remaining rocks per row.)

Check for Win

The test itself is pure simplicity. The loop that is expressed in
lines 6010, 6020, and 6030 does a down-total of the table. The sum
inX is then compared toa one. A hasty RETURN is taken out of line
6080 as long as the table has more than one rock in it. When finally
only one rock remains, the player whose turn it is, is the loser.
Hopefully, it wasn’t you.

140

THE PROGRAM

10
20
25
30
40
50
60
70
a0
20
180
140
120
130
140
150
160
170
180
190
200
210
220
230
240
1000
1040
1020
10:0
1040
1050
1060
1070
1080
1090
1999
2000
2010
200
2040
2040

REM "LAPIDES"
REM
DIM RC4DD
PRINT "KNOW THIS GAME (Y OR N)"3
INPUT a$
IF @% = "Y" THEN 70
GOSUB 1000
GOSUR 2000
PRINT
GOSUB 2000
GOSUB 3000
GOSUR 4000
GOSUB 5000
GOSUB 6000
IF X > 1 THEN 110D
PRINT "DO IT AGAIN (Y OR NO"
INPUT Q%
IF @ = "Y" THEN 210
PRINT "850 LONG GANG"
PRINT "THE END ..."
END
PRINT "SAME PLAYERE (Y OR N)"}
INPUT @%
IF @$ = "Y" THEN 100
G0TO 80
PRINT "TWO PLAYERS TAKE ROCKS FROM A"
PRINT "PILE. THE ONE STUCK WITH THE"
PRINT "LAST ROCK LOSES."
PRINT
PRINT "YOU CAN'T TAKE MORE ROCKS IN"
PRINT "YOUR TURN THAN ARE LEFT IN"
PRINT "THE TOP ROW."
PRINT
PRINT "HERE WE GO"
RETURN
REM "TYPE NAMES"
PRINT "TWO PLAYER'S NAMES:"
PRINT "#1"35
INPUT Pi1%
PRINT "#2"3
INPUT P2%

141

2050
2055
2060
2070
2080
2050
2100
2110
2120
213D
214D
2150
2160
2999
3000
3010
3020
3040
399
4004
4005
4810
4020
4030
4040
4050
4060
4999
5000
5040
50010
5030
5040
5050
5040
5070
S0&MN
5090
5101
5110
5120
5130

142

PRINT "OK (Y OR N)"3
INPUT Q%

IF @% = "Y" THEN 2080
IF @$ = "N" THEN 2000
IF P1% = " " THEN 2000
IF P2¢ = " " THEN 2000
IF P1% = P2$ THEN 2000
LET P = INTCI0#RNDC1D)
IF P =»> 5 THEN 2150
LET P =1

RETURN

LET P =2

RETURN

REM "“PILE UP THE ROCKS"
FORI=1T0¢9

LET R(I) =1

NEXT 1

RETURN

REM "PRINT LAPIDES"

FORI=1T079

IF R(I) = O THEN 4050
FOR J = 1 T0 R(I)
PRINT "#'"3

NEXT J

PRINT

NEXT 1

RETURN

REM "PLAYER INPUTY
IF P = 1 THEN 5040
LET P =1

PRINT P1$"'8 TURN"
GOTO 5060

PRINT P2%"’S TURN"
LET P = 2

INPUT &

IF @ € 1 THEN 50%0
G0TO 5140

PRINT "PLAY FAIR!"
GOTO 5060
FORI=1T09

IF R(I) (> D THEN 5140
NEXT I

5140
5150
5140
5170
5180
599%
6000
6010
6020
6030
6040
6045
6050
6040
6070
6080
6090
6100
6110
6120
6130
2000
9010
9020

IF @ =€ R(I) THEN 5170
PRINT "ONLY"R{I)"POSSIBLE"
6070 5090

LET R(1) = R(1)-@
RETURN

REM "CHECK FOR WIN"
LET X =0

FORI =1T709

LET X = X+R(D)

NEXT 1

IF X > 1 THEN 6080

IF X = 0 THEN 6110
PRINT "HA HAs "3

IF P = 1 THEN 609D
PRINT P2% " WINS."
RETURN

PRINT P1$ " WINS."
RETURN

PRINT “DUMMY!"

PRINT "YOU TOOK THE LAST ONE."
RETURN

REM "RANDOM NUMBER ROUTINE"
LET Z = RND(1)
RETURN

143

a Q\

Pick up on the gaming theme of Dice, devise an internal card-deck
management scheme, and. . . presto! We have another game for our
library. For the sake of variety, however, there are some other
differences. They are noticeable in the instructions as printed by the
program itself.

2,3, OR 4 PLAYERS
DRAW CARDS IN TURN.
YOU MAY DRAW FROM 2
TO 9 CARDS PER TURN
(OR YOU MAY PASS).
SCORE 1 POINT FOR EACH
CARD DRAWN -- UNLESS
YOU GET A PAIR. ANY
MATCH ENDS YOUR TURN
AND YOU GET NO SCORE.
GAME IS 20 POINTS -- FIRST
ONE THERE WINS.

In the referenced game of Dice, a turn required a decision by the
player for each roll. A turn in Match consists of but one operator
entry: the number of cards to draw. According to the instructions a
valid entry can be zero (to pass) or any digit from two through nine.
There is a reason for the different playing conventions. With
dice the odds for what may be rolled in any one turn are the same as
for every other turn. With a deck of cards, however, the odds

144

change with every draw in any card game where the deck is continu-
ally being used up. This program does use a shrinking deck, but
when it is exhausted a new one is automatically brought in to play.
There are some possibilities for using one’s skills in this case rather
than depending entirely on Lady Luck.

As each card is dealt a parenthetical note is output also, which
shows the draw number (ranging from one to fifty-two, serially).
Suppose then, the last card dealt was number 47. There are five
cards left in the deck. If your infallible photographic memory says
there are no pairs remaining in the deck an entry of five is strategi-
cally sound.

What about taking a chance with a draw request for six? In the
example just cited the sixth card will introduce a newly shuffled
deck. Only Lady Luck knows what the first card from a new deck is
apt to be. (Drawing any pair does mean you'll get no score for the
turn, remember.)

The Match program does use an honest deck (though you may
have to use this text, a copy of your program’s listing, and maybe
even pencil and paper to prove it to some skeptics). One of the
design goals for this program was to devise an authentic shuffling
mechanism that cannot be faulted by any arguments concerning
mechanical bias. During your study of what follows you too may
believe that here we have an honest game.

MATCH FROM THE OUTSIDE

One picture is worth a thousand words. To see the program,
then, look at Fig. M-1. The several parts of Match are shown
pictorially by the program template, although as we all know there
are no blocks around the statements in the computer’s memory.

If you are not the sort of person that begins reading a book at
midpoint you will agree there is nothing new about the top two
blocks. Out of the program’s initialization area there is an optional
call to a subroutine to print the game’s instructions. Ho hum. Thena
game is set up.

The start game section of the program does brief housekeeping
and performs a jump to the new deck module. The arrangement of
the blocks and the connecting lines infer that the 2000-series coding
(lines 2000 to 2150) is a shared subroutine. It is called upon just
before a game starts, and thereafter it may also be jumped to
whenever an attempt is made to draw cards (lines 3000 to 3150)
from an empty deck.

The terraced structure to the right of the mainiine, with but one
path out and back, predicts two things. The architecture of Match is

145

10 1000

INITIALIZE | INSTRUCTIONS
80 1130
&)
START GAME 2000
160 NEW DECK
3000 12150
DRAW CARDS
3500
000 5150
PLAYER INPUT SETUPSUITS
170 —4170 5500 3590
MAINLINE CLEARTANK
590 5540

Fig. M-1. Program template for Match.

characterized by nested subroutines, and the mainline must condi-
tion the commonly used variables prior to each repeated trip up the
chain. Two other inferences are possibie from this picture as well.

The clear tank block (lines 5500 to 5540) can be assumed to
mean that a table is used to hold all of the cards for a given draw.
That is true. So is the implied case that card values and their
respective suits are managed apart. That is why there is the block
labeled setup suits. This design was laid out after the deck structure
was conceived, and that is probably the best order for describing it
all. Skeptics may begin taking notes now.

The Dubitable Deck

Needed: a table. There are fifty-two cards in a regular playing
deck, so the table ought to have fifty-two fields. It does. Figure M-2
shows an abbreviated picture of the program’s table D and its initially
coded contents.

Creation of a new deck s not difficult at all. Two loops are used
by the program to generate numerical codes to represent all of the
cards, including their suits. One of the loops counts from one to
thirteen and the other counts from zero to three. The second

146

counter is the one used for the suits; it is incremented by one each
time the first counter passes thirteen. (The one to thirteen counter
is reset to one at the same time.)

001 (01)
@ 002 | (02
0OXX J 2 —
o
@ 012 | (12
013 | (13
g —————
-
101 | (19)
® 102 | (15)
1XX < % =
T
112 | (25)
113 (26)
o
Fig. M-2. Table D, the deckin Match. 201 @7
202 | (28)
0]
XX 4 5 ==
&)
212 (38)
213 | (39)
f 301 | (40)
302 | (41)

§ 3XX <

DIAMONDS

312 (51)

313 | (62

147

The table is loaded from the top downward, a field at a time.
Each code stored there is a combination of the two counters. The
zero to three count becomes the code’s high-order digit. The other
counter (one to thirteen) is formed as the two digits to the right of
the suit code. Once the table is fully loaded all that remains is to
shuffle the deck. That is phase 2 of the new deck process.

The Shuffle

A programming loop is used for the shuffling task. Naturally.
To insure that the job is thoroughly done, the loop executes fifty-
two times.

With each pass through the loop the steadily incrementing
counter is used as one of a pair of table subscripts. The other
subscript is obtained by a technique that depends on the RND
function. Near the end of the loop, using the pair of subscripts for
accessing two of the table fields, the codes at those locations are
swapped. Because the one table reference is serially incremented,
and because the loop runs for the length of the deck, every card has
the potential of being shuffled with some other. It is possible, of
course, that at any given point in time the two subscripts may be
alike, resulting in a self-swap.

This is believed to be a natural consequence, equally possible if
a real deck of cards was shuffled by hand. So too is the possibility
that as the task proceeds, a card may be shuffled off to some random
location and in a later pass get swapped back to its original spot. In
some ways the whole of this process is more thorough than some
lazy card players.

Some could argue that it is unnatural to riffle the cards for an
exact number of times. For that matter they could also argue about
the fact that each new deck begins in a predictable sequence. So
what? Some people would argue with the devil, too. They are not
likely to be impressed with the way RND is implemented either.

Using a standard form of expression—Ilet J=INT(100*RND
(1))—it is easy to ask your system to hand up a random value in the
00 to 99 range. The dimensions of table D dictate the need for a
subscript of from one to fifty-two, inclusive. In this program the
algorithm expressed in BASIC chooses to refuse a zero and insists
on repeated function calls until something more significant is of-
fered.

Rather than risk infuriating your operating software by being
too obstinate, if the RND call fetches a number larger than fifty-two
we will use it. How? By simply cutting it in half (divide by two and
truncate the 0.5 for the oddballs).

148

The result of dividing any number of the series from 53 to 99 by
two and ignoring the remainder will be some number from 26 to 45.
To force the value over the table’s halfway mark the arithmetic
expression used in this implementation includes the addition of a one
to whatever is derived by the division step. This seems to be fair.
The likelihood that an RND call will fetch a number from the set one
to fifty-two is slightly skewed—the odds are a little better than
fifty-fifty that the number will be usable just as it is first offered.

The astute may observe that, conversely, nearly half the time
the division trick is resorted to. This does mean that considerably
more than half the time the second of the two subscripts that are
used is aimed into the lower portion of the deck. You might counter
by recalling that exactly half the time the shuffle loop’s counter is
addressing the top area of the table.

If you are still suffering a doubting Thomas, here is another
idea: ask him or her to do a careful audit on the movement of the
cards in a real deck as they are shuffled by hand. This might not
eliminate your friend’s eristic voice, but it should buy you enough
time to study the rest of what is inside the Match program.

MATCH FROM THE INSIDE

Skipping quickly over the rote statements in the listing notice
the table allocations in line 80. There is the D-for-52. The deck table
has already been intimately described. The M$ and U assignments
that are there also deserve a brief exposure. These are, respec-
tively, the author’s nicknames for the match table and the user table.
We'll delay their intimacies until they become involved.

The DIM inline 80is the last function of the program’s initializa-
tion. From line 90 down through line 160, all of which is within the
startup of a game, are nine lines of dialog to ascertain how many
players are to be allowed. When asked for, the answer must be
absolute: two, three, or four. It is stored in a variable that is
arbitrarily called 4.

After all of that the GOSUB 2000 in line 170 sets up the first
deck of cards. The previous description did not include the variables
used during the card shuffling task. So it is time for them to be
introduced.

The two loop counters are I and/, as seen for the first time in
lines 2000 and 2010. The left half of the LET expression in line 2020
uses both of the variables in conjunction as a serial subscript for
addressing fable D. On the right, I times 100 plus J will create a
three-digit number with the suit code in the high-order position. The

149

loop-and-store phase continues for fifty-two times, finally falling
through to statement 2050.

The shuffle phase extends down to line 2130. Temporary
worker S is used by this task during the swapping of the card codes.
Later, in another routine, S is again used for transient purposes
(meaning then, suit). More about that later.

Finishing up with the card shuffling module, the simple variable
D is set to zero in line 2140 just before the RETURN is executed.
Use of this counter is exclusive—it tells the number of the last card
dealt. When it reads fifty-two the deck is depleted. But now, with a
new deck in place, let us return to the mainline at statement 180.

Here we find the ubiquitous U. There are really two of them:
one is a simple nonsubscript variable, and the other is a table name.
They both have to do with the program’s users. The single field of U
is a counter. It is initially set to one in line 180; and whenever it is
incremented beyond the value in A (checked by line 400), it is set
back to one in line 410. The fable called U has four counters, one
each for the four possible players. These fields are for storing the
players’ scores.

Both types of U are displayed by the PRINT expression in line
420. This serves as part of the input prompt: it shows which player
is supposed to be up, and in parentheses displays that player’s
current score. After the player takes his turn his total is tested to
see whether he has attained or has passed the game’s twenty-point
limit. The player’s score is updated by the number of cards that are
drawn; in the event of a match, his U score remains intact. The
scorekeeping is done within the input module, as called for by the
GOSUB 4000 in statement 430. That is the area to study next.

The rest of the input prompt consists of the one word: DRAW.
As soon as this is printed by line 4000 a quick jump is taken to line
5500. Most likely, before the player can respond to the input
request, the loop from line 5500 to line 5540 will be completed. That
task will clear the nine-element tank that will hold the individual
cards as they are drawn. (Notice that @2 serves as the loop and the
subscript variable in that task.) The final function that is ac-
complished before the subroutine recovers to line 4020 is the
loading of @ with 99.

Program executionis suspended on execution of the INPUT in
line 4020. A default entry (nothing typed but the terminating key)
will function as if the player had typed 99 due to the earlier precondi-
tioning. This convention, plus the quality checking that is done from
line 4025 to line 4050, will keep the player from making careless
keystrokes.

150

Recall the prediction about nested structures. Here they are,
There are two concentric loops between lines 4060 and 4094. The
outside loop uses @I as its counter. This is the loop that is control-
ling the draw. That is why it is limited to @ times. (@ has the player’s
draw request in it.)

The inside loop extends from line 4080 to 4086. As each card is
drawn the @2 counter runs the loop for nine times, unless the search
finds a match or a blank spot in fable M$. A blank spot in the table
means this is a good draw; so statement 4090 saves this card right
there. The @2 stops then, and the first loop is executed again to
draw another card.

If another draw results in a match with one already in the table
the conditional in line 4084 will branch down to line 4110. The
player’s request in @ is zapped in line 4110 (no score allowed), the
machine chortles because of it, and the RETURN goes back to the
mainline.

Other nested loops are possible, also. One of them happens
with each draw because of the GOSUB 3000 in line 4070. This is also
the start of a nested subroutine jump sequence.

At the top of the draw cards module (in line 3020) is another
possible jump. This one goes to the new deck procedures which, as
has already been covered, has two more loops. The conditional in
line 3000 only lets this task be executed after a deck is exhausted;
otherwise, the D-for-draw number is incremented in line 3030 and a
card is taken from the top of the deck.

The number of the card to be picked up is displayed by line
3040, and the code from the table at the D location is moved to
C-for-card. Time out now for a short subroutine jump.

The DATA definitions in lines 3060 and 3070 are used by the
task that begins in line 3500. That is why they immediately precede
the GOSUB in line 3080.

Two things are accomplished between line 3500 and the RE-
TURN inline 3590. The card code (in C) is parsed into two numbers
by lines 3500 and 3510. Now the C variable only has the card’s
ordinal number; the high-order digit is nowinS. The defaulting type
of logic from line 3520 to 3590 will wind up with S$ loaded with the
printable name of a suit. That is all that this task does; but remember
that the C code is now a whole number of from one to thirteen. Back
to line 3090.

Here we have a READ loop. The FOR-NEXT setup from line
3090 to 3120 uses the one to thirteen portion of the original card
code to halt the READ task with the right DATA name in C$. The

151

RESTORE in line 3130 preconditions the DATA pointer for use the
next time.

After all of that the PRINT expression in line 3140 to display
the card does seem almost anticlimactic. It is. The refurn in line
3150 starts the relinking process, going back to line 4080. From
there the RETURN in line 4130 will eventually get back to the
mainline.

It is recognized that the nesting of both loops and subroutines
may seem confusing. Mostly just to people, though. Try coding and
loading the Match program as presented here. Chances are your
computer won't be confounded. And the chances are equally good
that you and your skeptical friends will enjoy this game.

THE PROGRAM
10 REM "MATCH"
200 REM
30 GOGSUR 000
400 PRINT "KNOW THE RULES (Y OR N)"j
50 INPUT @%
&0 IF @% = "Y" THEN 80
70 60SUR 100D
g0 DIM D(52)y M$(P)s U(H)
90 FRINT “HOW MANY PLAYERS (2-4)"3
100t INPUT A
105 LET A = INT(ARE{(A))
110 IF A € 5 THEN 14D
120 PRINT "TO0 MANY"
130 6070 90
140 IF A > 1 THEN 17C
150 PRINT *T00 FEW"
160 GOTO 90
170 GOSUBR 2000
180 LET U = 1
190 PRINT
200 FOR 1 =1 70 4
230 LET Td1Y = O
220 NEXT 1
400 IF U <= A THEN 420
410 LET U = 1
420 PRINT "PLAYER #"U"("UCU)™)"3
430 GOSUR 4000
440 IF UCUY => 20 THEN 480
450 LET U = U+l

152

4600
470
480
490
500
510
520
53
540
560
570
58N
590
994
1000
1010
1020
1030
1040
1045
1050
1040
1070
1080
1040
1100
1140
11274
1430
199y
200
2010
2020
20150
2041
2050
2040
2070
208l
2nsd
2100
2140
2120

PRINT

60TO 400

PRINT "CONGRATULATIONS"
PRINT

PRINT "ANQTHER GAME (Y OR N)"i

INPUT 0%

IF @% = "Y" THEN 560
PRINT "GOOD - I'M TIRED."
END

FORI =170 4

LET Uy = O

NEXT I

6070 90

REM "INSTRUCTIONS"
PRINT

PRINT "2s 3y OR 4 PLAYERS."
PRINT "DRAW CARDS IN TURN."
PRINT "YOU MAY DRAW FROM 2"

PRINT " TO 9 CARDS PER TURNs"
PRINT " (OR YOU MAY PASS)."

PRINT "SCORE 1 POINT FOR EACH"
PRINT " CARD DRAWN -- UNLESS"
PRINT " YOU GET A PAIR. ANY"
FPRINT " MATCH ENDS YOUR TURN"
PRINT " AND YOU GET NO SCORE."

PRINT "“GAME 15 20 POINTS --
PRINT " ONE THERE WINS."
PRINT

RETURN

REM "CREATE CARD DECK"
FORI =8T03

FOR J =1 TO 13

LET DCJ+I#13) = J+1#100
NEXT J

NEXT 1
FOR I =1 TO 5%
LET J = INT(1DOD#RND(1))

IF J < 1 THEN 2060
IF J € 53 THEN 2100
LET J = INT(J/2)+1

LET 8 = DD
LET DG = DD
LET D(I) = §

153

2130
2140
2150
"JCIUD
3000
301l
3uz0
KIRIE

3041
30
IOt
3070
30k
304
3400
3110
3120
3131t
3140
3150
3500
3510
35710
3520
3540
3550
3560
3570
3580
3590
3999
4000
4010
402D
4025
4030
£040
4050
40460

4070
4080

4082
4084

154

NEXT I
LET D =20
RETURN

REM "DRAW CARDS"
IF b € 52 THEN 3030
PRINT "NEW DECK™
GOSUB 2000
VLET D = D41
PRINT "“DRAW #"D3

LET € = b(D)

22 33 435 55 b

DATA ACEs
DATA JACK

3

GOSUR 3500
FORI =1 T0C

READ C%

QUEENs KING

IF 1 = € THEN 3130

NEXT I
RESTORE

PRINT TAB(12) (% 5%

RETURN

S = INT(C/1000
€ =€ - 5100

LET 5%
IF 6§ =
LET &%
IF § =
LET S%
IF § =
LET 5%
RETURN

0 oGd Bl ho e H

LH

HEARTS"

THEN 3590

CLURSB"

THEN 3590

DIAMONDS"

THEN 3590

SPADES"

REM "PLAYER INPUT"
PRINT " DRAW":
GOSUR 5500

INPUT @

LET @ = INT(ABS(Q))
IF @ = D THEN 4130
IF @ > 9 THEN 4140
IF @ € 2 THEN 4140
FORQI =170 @

GOSUR 3000

FOR @2 =
IF M$(2)
IF M$(Qz)

1

T0 9
" " THEN 40%0
€$ THEN 4110

7s &s

9

10

4086
4088
4070
4094
4100
4110
4120
4130
4140
4150
4160
4170
5499
5500
55106
5520
5530
5540
2000
9010
9020

NEXT @z

GOTO 40%4

LET M$(Q2) = C%
NEXT @1

60TO 4160

LET @ =0

PRINT "MATCH - HA HA'"
RETURN

PRINT "ILLEGAL"
GOTO 4020

Uy = U +@
RETURN

REM "CLEAR TANK"
FOR @2 = 1T0 9
LET M$(@2) = " ¥
NEXT @2

LET @ =20

RETURN

REM "RANDOM NUMBER ROUTINE"

LET Z = RND(1D)
RETURN

155

Naughts & Crosses

On the whole this book is meant to entertain. But not without class.
Naughts & Crosses does seem more eloquent than tic-tac-toe.
Besides, the letter T had already been committed.

By whatever name this game should be recognizable to chil-
dren the world over; and your own young friends will undoubtedly
enjoy being able to “beat a computer.” Most every youngster at
about the third grade or so knows the elementary strategies for this
game. That is about the age at which they should have an advantage
over the educational level of this program. Yet, it is amusing—
especially to build it and to get it to work properly.

That is the true ambition of this example, anyway. Here are the
mechanics and structures for programming tic-tac-toe games. The
more adventuresome can go from here to devise more complex
offensive internals. Some may even wish to go all the way and
attempt a three-dimensional version. There is at least a foundation
here for such designs, as well as some academically interesting
techniques.

A DESIGN APPROACH

There is first the matter of the playing board. Secondly, a
means is necessary for the player to indicate a move choice. Fancy
graphic output could be done, even with a data printer or display; but
is it all really needed? This program supposes not. Here is a sample
output.

156

1283 0O « o
4 56 +« X o

789 X +«O0

Three lines are always printed; the numbers on the left are data
constants, and the period characters are replaced as a game pro-

1 2 13— 8

THE GRID
41516 —1s5

7 8 9 —24
100N

15 12 15 18 15

1— TOTALS

A‘ROW' — | 1 12 1 386 [()

™~

41516 §15]¢@

718119 2410

1 417 1121

THE ARRAY
2 518 f15](9

316}]9¢]18](®

3 517 §151 (M

1 51 9 815} (8
m @& 6 @

Fig. N-1. Row values used in table R.

157

ceeds. The traditional lines that are handy when playing with a pencil
are omitted, but they are easily imagined. The periods are there to
enable the eye to see where the lines ought to be.

There is also a perceptual advantage to the arrangement of the
numbers. More importantly, the numbers provide a mechanism for
the player to indicate, through the keyboard, where he or she
wishes to place his or her marker. The markers themselves are built
into the program. The computer always owns the O, and X is
exclusively the human'’s.

Otherwise, in most ways, the usual mechanics for managing a
two-player game—one fleshy and one phony-—must be program-
med for. There are two tasks conspicuously absent, however.
There are no scorekeeping routines, nor is there any real need fora
random-number generating function. The rudimentary strategy that
the program uses is finite, although some variety could be imparted
to the computer’s rote selections if an RND was used. In which
case, if the computer could find no move dictated by logic, it could
choose haphazardly. Even though this program never guesses it is
surprising how few players ever detect the machine’s offensive
pattern.

For the most part this program does assume it is always on the
defensive. He who gets to gofirst alternates, game to game, but the
computer may lose this advantage quickly. The built-in intelligence
will capture the center position, if possible, block any third chance
for the player (when obvious), and it will never miss an obvious
move to win itself.

Otherwise, an open move is achieved by picking from a table of
numbers. In fact, the whole of this program is table driven. Thereis
a table for knowing the player’s moves, one for holding the
machine’s markers, and another that represents both. There is also
a master table that is made up of numeric constants for determining
position vacancies. Because so much depends on these structures
and their uses, that is what is described next.

THE TABLES IN NAUGHTS & CROSSES

A tricky task in tic-tac-toe games is knowing when a win has
occurred or is imminent. There are eight rows possible: three
vertical, three across, and the two diagonals through the center.
The technique used here includes assigning a number value to each
position to use in doing simple row addition for the positions that are
taken up. By knowing in advance what the maximum for a row can
be, if any position is not taken, the temporary sum will beless thanis
possible for that row.

158

<

To better show some of the contents possible in fables H, C,
and B, Fig. N-2 illustrates a partially played game. Supposing the
computer was about to make an offensive play: notice the last group
of fields in¢zble B (elements 7, 8, and 9). Added together they equal
exactly twenty. The only way a row can add up to twenty (infable B)
is if the computer has marked twice in a row and the third spot is

11213
4§ 5] 6
718109
TABLE H
1)) 0
@ |0
@ |3
@ f 4 :> X
pd
(5) 5
© ¢ O
7 |0
® | O
9 {0

0 X
X X
0 0
TABLE C TABLE B
1 10
o |\ 0
0 \ 1
0 \ 1
ol 1
o| | 0
7 | 10
T
9 - 10

Fig. N-2. Naughts and Crosses, tables H, C, and B.

159

empty. By adding together the corresponding fields in fable
C—which is sixteen—and by subtracting that amount from the
appropriate total in fable R (twenty-four), the number eight is
deduced.

A similar scheme works for a defensive play by the machine.
Fields 4 and 5 of tzble B add up to two—no more and no less. Any
row that totals two exactly in this table means the machine had
better make a blocking move pronto. Again, using arithmetic on the
corresponding fields in the human’s table (and the total from R), the
position number for the blocking play can be easily determined.

The reason for using ones and tens in fable B is revealed in the
following list of numbers. These are the only totals possible for any
TOW.

012 3 10 11 12 20 21 30

Of these, the important ones are two, three, twenty, and
thirty. Both two and twenty indicate disaster is imminent, depend-
ing on whose side you're on. In the event any row adds up to three or
thirty the jig is up; in the first case the computer lost, and in the
second it won.

Overall, table R is the master tabie that drives the program.
The other tables are storage tanks. Whenever it is necessary to
scan the board the subscript constants are used from the master
table. What happens internally? A loop is executed eight times, each
time using one of the rows of numbers from this table. The numbers
themselves are used as individual addressing offsets into each of the
storage tables.

When a game begins all three of these tables must be cleared.
From there on they are posted on the fly. Any move by either player
requires two postings. Table H or table C is marked, depending on
whose play is being recorded; and table B is posted at the same time
with either a one or a ten.

The way these things are accomplished will be seen in the
study of the program's contents. There are some interesting coding
techniques shown there, also—especially some of the compound
multidimensioned, multiple subscripting expressions used. Before
delving into that delightful detail, however, a few comments are
appropriate on how Naughts & Crosses is laid out.

MODULES, MAPPING & MORE

The program template shown in Fig. N-3 shows the conceptual
organization of Naughts & Crosses. My editor’s sensitivities were

160

aroused when I implied this drawing is a modules map. “Map? It
looks more like an atlas!”

A few minutes’ study should show, though, that the architec-
ture of this program is not all that complex. As usual at the top are
the housekeeping routines. The broken-line box is the mainline of
the program. Internally it has a pair of paths—down the left side for
the human, down the right for the computer. Further to the left are
supporting subroutines that are proprietary to people and such, and

2000 ‘ 10 000
SETUP INITIALIZE DISFLAY RULES
ROW CHECKER PROGRAM
2080 90 1180
|
000
INITIALIZE
GAME T
i DEFENSE
PLAY
[bty Kol L X L L | 090
§ MAINLINE 300 [e
] I seouence §

s 3 | conmRoL i CAN T Win?
EMPTY _ : a0 4200
SPACE? g N

4070 300 e o

ACHINE OFFENSE
HUMAN | macHine g RN
400 _ 570 50
] 600]
§ TiE? ! B
! 870 ! DID | WIN?
700 800 2460
win WIN
730 820
8 500 8
] END GAME §
§ 980 i
| RN W, -
5000
MACHINE S
TURN
5030
5000
DISPLAY
BOARD
5080
7000
PLAYING
B0ARD
12150

Fig. N-3. Program template for Naughts and Crosses.

161

on the far right are those routines that do the mechanized oppo-
nent’s thinking. Notice also there is a set of subroutines at the
bottom that are shared, from two different points, by both factions.
The illustration shows the gist of the design. To learn how the
program works, our study continues with a look at the listing.

HOUSEKEEPING & MAINLINE

The first statements of significance are those at lines 30 and 40.
These establish explicitly the program’s mass storage areas. The
DIM in line 30 defines R to be an array. Conceptually, the left-hand
parameter of eight specifies depth; the four to the right of the
comma indicates width. Tables H, C, and B are all single-
dimensioned in line 40, each with a depth of nine. These are one-
shot initializing statements. So is the next.

The GOSUB 2000 is unconditionally executed to embrace the
task that loads the row table (the eight by four array) with the
numeric constants. Once the array is fully conditioned this exercise
is not again needed. The values are read many times over, but these
constants remain unaltered throughout the entire program’s execu-
tion. Because it is only done once, a quick glance is appropriate here
to see how it is done.

The DATA statements in lines 2010, 2020, and 2030 are
defining, for logical purposes, a continuous string of twenty-four
digits. The FOR-NEXT loop that extends from line 2040 to line 2070
grabs the numbers as sets of three and moves them to the row-
checker array. The READ expression in line 2050 loads the con-
stants directly into the table. Notice that as the I variable is in-
cremented the table is filled a row at a time from the top. Concur-
rently, the fourth column of the array is compiled by the addition
expression in statement 2060. Eight times through, and back to the
mainiine.

The balance of the program’s initializing logic extends from line
60 to line 90. This includes nothing more than the option to print a
brief description of the game. If the operator is being coy and
answers with an N —meaning no, I don’t know how to play—the
rules module is invoked. Enough of that. Most programmers know
how to play tic-tac-toe, and most kids can figure out the subroutine
from line 1000 to 1160. The RETURN takes us back to the mainline
at statement 100.

Time out now for a nine-times loop. Zeros are moved into all of
the fields in the storage tables by the FOR-NEXT task that spans
from line 110 to 150. When the I counter reaches nine a fallthrough

162

is automatic. The last two tasks for initializing a game are in state-
ments 160 and 170. The @ and W workers (query and win) are used
in several places as we shall soon see.

Sequence Control

The P variable has but one purpose: the players are identified
internally as number I and number 2. The superiority of mankind is
acknowledged by making the machine second. For the first game
only the expression in line 230 sets P to one. From then on player
sequencing is continuously automatic, alternating from one to two
and back, even across the end-of-game boundary.

Human's Play

In line 310 P is switched to two. This is how the alternation is
accomplished. It is reset to one immediately upon entry into the
machine’s module. From line 320 to line 400 is the rest of the control
block for people procedures. A jump is made to line 6000 to display
the playing field; then a quick test is made to see whether there are
any open spaces in the grid. Notice that @ is turned on with a one in
line 320. When a relink after the GOSUB 4000 occurs, if @ was
switched off with a zero, the grid is full. Because a win trap had
never taken place from anywhere else, a tie is implied; so the
conditional in line 350 will exit to the draw task at line 600. Other-
wise, if @ is returned with any value in it, our human friend gets to
play.

Again, @ and W are both turned off in lines 360 and 370, and a
GOSUB 2200 is executed. There the player gets to type his or her
position choice, which is then qualified as to whether it is legal; the
program then returns to line 390. If W comes back with a three in it
the human won and a branch to line 700 will make him or her the
victor. Any value in W other than three means the computer gets a
chance; so the branch in line 400 goes to line 200 for resequencing
the mainline flow.

Computer's Play

Coding from line 500 toline 570 is logically similar to that for the
human’s control block. A series of jumps (lines 5000, 3200, and
2400) will print the board again, then fetch the machine’s move, and
checkifit lucked out and won. Notice that in line 550 if W comes back
as thirty a branch is taken to announce the computer’s victory. If @
was set to off the game should be ended as a draw. This logic is the
same as for when the human was in command. Any residue in @

163

means there is more to come; so the branch in line 570 loops back to
the top of the mainline.

Tie, Win, Or End

The series of code from line 600 down to line 900 are brief
tasks, mostly to announce the outcome and to recondition the P
variable whenever necessary. The end-of-game wrapupis from line
900 to line 980. When asked to play again either a branch to line 100
will occur (from line 930) or the program is ended with a complimen-
tary closing. Assuming you wish to continue it’s time to look at the
supporting modules, beginning with those for human opponents.

Empty Space Test

The module from line 4000 to line 4070 is used preparatory to
the human'’s play to see if there is room for his or her marker. All that
is necessary to learn this is a quick check of fable B. Any zero found
there will interrupt the search task with an exit via line 4060. The
loop counter is moved into @ only as a nonzero indicator. If the loop
runs a full nine times the tank is full (thus, so is the grid); so the
default exit is taken (which will cause @ to be returned empty).

Player Input

There is a prompt in line 2210, an INPUT in line 2220, and an
editing mask in line 2215. This last was a later addition to clean up
sloppy typing. The INT and ABS functions working together will
force @ tobe a clean integer, ignoring junk such as decimal digits or a
minus sign. The conditionals in lines 2230 and 2240 insure that what
is left is between one and nine, inclusive. Otherwise, the player is
admonished and forced to try again. Quality control over solicited
input is not yet complete. The attempted move must be further
checked against the existing state of the board.

Using the contents of @ as a subscript statements 2270 and
2280 look at both the human’s and the computer’s tanks to see if
there is already a marker there. If so an illegal move is being
attempted; so the previous error route is taken. If the move is valid,
programmatically at least, the @ number is moved into fable H at the
@ location, and fable B is posted at the € address also. This routine
then bottoms out right into the win checker.

Check For Winner

Coding from line 2400 to line 2460 makes use of the subsecript-
ing constants intable R to check the combinations of totals intable B.

164

Any row that adds up to either three or thirty will cause this loop to
exit instantly with the win indicator intact. Anything else in W will
mean the loop ran a full eight times. The residual result is meaning-
less.

The previous routine is a shared module, used by both players,
and that is why both the three and the thirty are qualified. There is
another set of mutually shared code, and this is a convenient time to
look at it.

Display Board

Three print lines are needed, with constants on the left and a
picture of the board’s contents on the right. The series of state-
ments from line 6010 to line 6070 contains number grid constants
within PRINT constructs plus alternating jumps to a subroutine to
fetch up the board a line at a time. The first jump is to line 7000,
which conditions a from and a limit variable (F and L). The next two
lines are printed by using a jump into line 7020 so that the FOR-
NEXT parameters may be built upon. Conditional printing logic from
line 7050 to line 7100 will output a cross (x) a naught (0), or a period,
depending on the contents of the three tables that reflect the playing
board’s status.

All that remains of our Naughts program is to look at how the
machine is able to take its turn. For this there are three closely
coupled tasks, all coded in the 3000-series line numbers. The order
of processing first determines whether the computer can win or a
defensive play is needed. If neither is the case the logic assumes the
initiative and the computer is permitted a bold attacking play—well,
sort of bold, anyway.

Check For Win Move

A short looping sequence from line 3210 to line 3240 will find
any row in fable B that adds up to twenty. Although this may not
happen often, whenit does, zap: the branch to line 3260 takes over,
the winning move is chalked up, and the victory will be discovered
back in the mainline. More frequently, the loop will exhaust the limit
of eight and a branch to line 3000 will take place.

Check For Defense

The looping scheme from lines 3000 to 3040 is just like the
previous one—this time it’s a two that is being looked for. If found
the indication is that there are two ones codified in a row in table B;
hence, the opposition must be blocked. The branch to line 3060 will

165

enter the logical sequence that argues which position is the vacant
one, based on the depth that[indicates the scan was made to. Inline
3060 we see the arithmetic that subtracts the value of the marked
locations from the total possible for that same row. The result is
then placed into @ and becomes the move choice for the computer.

If the defense-testing logic executes the full eight times with-
out finding a pair of the opponent’s markers in one row (with a blank
spot) the logic switches to the offensive. The GOTO 3300 in line
3050 is the way the program gets there.

Make Offense Play

Right off of the bat, is the center spot taken? This question is
asked by the expression in line 3310. If vacant € is loaded with this
strategically valuable number (a five, and a hasty exit is taken by
means of the branch in line 3330. Now for the hard part. If the center
spot has already been burned all of the remaining vacancies should
be thoroughly analyzed to determine the most strategically sound
play. That is what should be done. What this program does is much
easier. The loop that runs from line 3340 to line 3360 just iooks down
through table B for an empty spot. Ho hum.

If you are inclined to do so this is a good place to begin trying to
raise your computer's IQ. At least with Naughts your experimenting
won't have toinclude teaching it how to play elementary tic-tac-toe.

THE PROGRAM

The master table is labeled with an R (for row), and it is set up
as an array. It is four columns wide and eight rows deep. The values
that are stored in this table and how they are derived are shown in
Fig. N-1. There are eight win rows possible in the three-by three
grid. Each of the numbers, per row, are stored in the first three
table elements, per row. The fourth column of the table holds the
sum of the numbers in each row. Again, table R is generated once, to
be used thereafter as a source of addressing subscripts and total-
testing constants.

There is a table, also, for each player. One is tagged with an
(for human), and the other is called C (for computer, naturally).
Both of these tables are single-dimensioned and both have nine
fields, one for each of the possible marker locations on the playing
grid. In the beginning both tables are empty. Whenever a turn is
taken, amusingly enough, the number denoting a move is itself
stored in the player’s table; at the spot corresponding to the move.

Suppose the kid on the keyboard had played a one and a three.
The first three fields in fable H would read out as 1-0-3. Added

166

together, that’s four. Four from six (looking at the fourth element of
the first row in table R) is two. The difference of two not only
indicates a vacancy in the top row of the grid, it is the position value
of the vacant spot.

Because each player has an individual table there is a need for
some cross checking. Rather than having to continuously look at
both tables—depending on who is up at the time a play takes
place—by either, a third table is posted to indicate all of the markers
thus far played. It benefits both, soitis called B. (Or maybe it was B
for Board—whatever you like.)

10

20

30

40

S0

&0

70

80

20
100
110
120
130
140
150
160
170
200
21
220
230
240
300
310
320
330
340
350
J&0
370
380
320

REM "NAUGHTS"

REM

DIM R(8s4)

DIM H(9)y C(F)s B(9)

GOSUB 2000

PRINT "KNOW HOW TO PLAY (Y OR N)"j
INPUT @%

IF @% = "Y" THEN 100

GOSUR 1000

REM "INITIALIZE PLAYING BOARDS™
FORI =170 9

LET H({I) = O

LET C(I) =0

LET B(1) = O

NEXT I
LET @ =

LET W =

REM "SEQUENCE CONTROL"
IF P =1 THEN 300

IF P = 2 THEN 500

LET P =1

GOTO 210

REM "HUMAN'S PLAY"

LET P =2

LET @ = 1

GO5UR 6000

GOSUR 4000

IF @ = 0 THEN 600

Honu

0
0
@

non

HEN 700

167

400
500
510
520
54n
540
5511
511
57U
&00
610
620
631
6401
650
&é0h
670
700
710
720
7.4
800
810
820
QU
910
Qz0
Q3
Q40
250
Q60
Q7u
Q&
1000
1010
1070
1040
1040
1050
1060
1070
1080

168

GOTO 200

REM

LET P
GOSUR
GOSUR
GOSUR

"COMPUTER’S PLAY"
= 1

5000

3200

2400

iF W = 30 THEN 800
IF @ = 0 THEN 600
6070 200

REM
FRINT
PRINT

LET P

"TIE GAME"

"OH WELL™

IF P = 2 THEN 660

=2

070 900

LET P

= 1

6070 200

REM

GOSUR
PRINT
6070
REM

60SUR
PRINT
REM

FRINT
INFUT
IF a%
PRINT
PRINT
PRINT
PRINT
END

REM

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

"HUMAN WON"

5000

"O0OPS - GOT ME"
{00

"COMPUTER WONY
5000

"HA HA - I WON"
"END OF GAME"
"PLAY AGAIN (Y OR N)"3
%

= "Y" THEN 100

"THANKS FOR PLAYING"
"NAUGHTS AND CROGGEE"
"WITH ME. 600D-BYE."

"DESCRIPTION OF GAME"

"THIS I8 TIC-TAC-TOEM

"YOU ARE FIRST TO PLAY"
"THEREAFTEK WE TAKE TURNS™

"YOUR SYMBOL IS ALWAYS 'X’ AND"Y

"MINE IS 'Q’"
"ENTER THE NUMRER OF THE"

"BOARD POSITION FOR 'YOUR MOVE'™

"POSITION NUMBERS ARE"

1090 PRINT "PRINTED ON THE LEFT AND"

1100 PRINT "THE BOARD IS TO THE RIGHT®

1110 PRINT "“THREE-IN-A-ROW FOR EITHER"

1120 PRINT "OF US WINS THE GAME."

1130 PRINT "READY"3

1140 INPUT @%

11450 PRINT "THEN HERE WE GO..."

1160 RETURN

2000 REM "SET UP ROW CHECKER"

2000 DATA 1+233443536:1738+9

2020 DATA 1+4+73235384356:9

2030 DATA 3s54731354%9

2060 FOR1 = 1 70 8

2050 READ R({Is1)s R(Is2)s R(Is3)

2060 LET R(Is4) = R(UIsDI+R(I1s2)+R(I 3

2070 NEXT 1

2080 RETURN

2200 REM "HUMAN INPUTT

2210 PRINT "YOUR MOVE"3

2220 INPUT @

2230 IF @ € 1 THEN 2250

2240 IF @ € 10 THEN 2270

2250 PRINT "ILLEGAL"

2260 GOTO 2220

2270 IF H(@) <> O THEN 2250

2280 IF C(Q) <> 0 THEN 2250

2290 LET H(Q) = @

2300 LET B(@) = 1

2400 REM "CHECK FOR WINNER"

2410 FOR I 1708

2420 LET W = B(R(Is4))4B(R(Is2))+B(R(Is3))

2430 IF W = 3 THEN 2440

2440 IF W = 30 THEN 2440

2450 NEXT 1

2440 RETURN

a0y REM "CHECK FOR DEFENSEY

JUI0 FOR I =170 B

3020 LET W = B(R(Is1))+B(R(Is2)I4B(R(Is3))

SO0 IF W = 2 THEN 3060

3040 NEXT 1

3050 6070 3300

3060 LET @ = R(Is4) - (H(R(Is1))+H(R({I:2M)
+H(R({Is3)2)

169

3070 LET C(@)
3080 LET B(Q)
3090 RETURN
3200 REM “CHECK FOR WIN MOVE"

321D FOR 1 =1 T0 8

3270 LET W = B(R(Is1))+B(R(Is2))+B(R(I+3))
3230 IF W = 20 THEN 3260

3240 NEXT 1

3250 GOTO 3000

3260 LET @ = R(Is+4) - (CCR(Is1)I+CCR(Is2))+C(R(Is3)))
3270 LET C(@) = @

3280 LET B(Q) = 1D

3290 RETURN

3300 REM "MAKE OFFENSE PLAY"

3310 IF B(5) <> O THEN 3340

332D LET @ = 5

3330 GOTO 3270

340 FOR 1 = 4 TO 9

3350 IF B(I) = 0 THEN 3390

3360 NEXT 1

337D LET @ = O

3380 RETURN

3390 LET @ = 1

3400 GOTO 3270

3500 RETURN

4000 REM “EMPTY SPACE TEEBT"

4010 FOR I =170 9

4020 IF B(I) = 0 THEN 4060

4030 NEXT 1

4040 LET @ = O

4050 RETURN

4060 LET @ = 1

4070 RETURN

5000 REM "COMPUTER’S BOARD™

5010 GOSUB 6000

5020 PRINT "MY MOVE"

5030 RETURN

6000 REM "DISPLAY BOARD"

6010 PRINT

6020 PRINT "1 2 3"

6030 GOSUB 7000

6040 PRINT "4 5 6&"s

4050 GOSUB 7020

Q
10

170

6040 PRINT "7 8 9"j

6070 GOSUB 702D

6080 RETURN

7000 LET F = 1

7010 LET L = 3

7020 PRINT TAB(1D)3

7080 FORI1 = F TO0 L

7050 IF C{I) <> I THEN 7070
7060 PRINT "0 "3

7070 IF H(I) <> I THEN 70%0
7080 PRINT "X "j

7090 IF B(I) <> 0 THEN 7110
7100 PRINT ". "3

7110 NEXT 1
7120 PRINT
7130 LET F = L+1
7140 LET L = L+3

7150 RETURN

171

There is another game called Reversi, another called Go, and
another called Othello. My computer game is dubbed O-tell-O. They
are checkerboard games.

As the game is played, the markers are constantly changing
their colors, belonging first to one player, then the other. Inits more
prosaic form two-colored tokens are used, usually white on one side
and black on the other. When taking an opponent’s piece, it is simply
turned over, thereby reversing its color. Like most other program-
med versions, we use the letters X and O to distinguish the pieces.
Unlike most others, however, this program serves two human
combatants. Once you have mastered the strategy with a friend you
can easily add a subroutine to take on the computer as an opponent.
The design of this program is intended as a base for experiments in
artificial intelligence.

THE PLAY

The game begins with four tokens in place as shownin Fig. 0-1.
One player will be assigned Xs and the other player Os. The X
player always goes first. Each play, including the first one, involves
bracketing an opponent’s inhabited squares with your own, thereby
converting the opponent’s pieces to your own. This bracketing can
be achieved vertically, horizontally, or diagonally; and any number
of squares may be bracketed so long as the sequence of bracketed
squares is uninterrupted by blank squares or by squares already
owned by the playing individual.

172

A BCDETFGH

0o ~NO® O p WN —
>
L=

0o N0 O HNN —

A B CDETFGH

Fig. O-1. The O-tell-O playing board (reduced to eight squares for microcompu-
ter play).

Referring to Fig. 0-1 the first player may bracket the D4 square
(containing the opponent’s piece) by playing an X at D3, thus
converting the Os at D4 to an X and resulting in three vertically
aligned Xs at D3, D4, and D5. Or he or she could play an X at C4,
thus bracketing the D4 square horizontally (resulting in three hori-
zontally aligned Xs at C4, D4, and E4). Assuming the first player
makes this latter move the board would look like the setup pictured
in Fig. O-2A.

The opponent (O player) now has but one token on the board,
and since his or her move must bracket the first player’s pieces, the
choice of plays is limited: put O at E3, making a vertical row of Os at
E3, E4, and E5; place O at C3, making a diagonal line of Os at C3,
D4, and E5; or he can place the O at C5, making a horizontal row of
Os at C5, D5, and E5. Let’s assume he or she does the latter, which
rearranges the pieces to the setup pictured in Fig. 0-2B.

Now X can play at C6, converting the O at C5 for a vertical line
and the O at D5 for a diagonal line in a single move. Or play X at ES6,

173

similarly converting two lines to Xs. (The first of these is the move
pictured in Fig. 0-2C.)

If O plays at B5 he or she brackets the C5 and D5 Xs, convert-
ing them both to Os. The play goes on in this fashion, each player
depositing one token per move, until the board’s squares are filled.

If a move is possible, even if there is only one such possibility
you must do it. If you can not make any bracketing move (a move
that will result in at least one capture) you must pass. If ever it does
happen that neither player can make a legal move the game is over.
In the end whoever has the most markers showing is the win-
ner.

PROBLEM DEFINITION

First, there is the matter of a playing board. Internally,
perhaps, the board may be mapped as an array (other schemes are
possible). It is necessary to have an input scheme that permits a
player to specify grid coordinates, such as a column and row
number. Several other games in this book, (notably Gunners and
Hotshot) use grids, and their conventions expect two numbers to be
input, separated by a comma. There is a human factors problem with
such conventions, however.

Which comes first, the column number or the row? In fact,
which are the colurans, and which are the rows? Up-and-down, or
across? These are elementary and basic to programmers and to
computers, but they are recurring questions in the minds of children
and more than just a few adults.

The model of O-tell-O provided in this chapter offers a two-
pronged solution to the quandary that sometimes occurs at the
keyboard. Instead of two numbers the player is asked for a number
and a letter. And it doesn’t matter which comes first. The computer
knows the difference.

Beyond that, and the usual mechanics of managing a two-player
game, the programming problem has two major elements. First,
there are those implications having to do with rows. Looking at an
array the scanning logic must track vertically, horizontally, and on
the two diagonals. The other half of the principal programming
problem is that attempted plays must be fully qualified, according to
the rules, before the array is updated. In short these are the things
that must be done following an entry—but mostly before anything in
storage is altered.

BR Are the column and row coordingtes legal? (Not less than
one, nor more than eight.)

174

ABCDETFGH A BCDETFGH
| P |
2 2 2 2
3 3 3 3
4 XXX 4 4 XXX 4
5 Xio 5 § 0:0 0 5
8 6 6 (3]
7 7 7 7
8 8 8 8
A BCDETFGH A BCDETFGH
A BCDETFGH A BCDETFGH
| (| i
2 2 2 2
3 3 3 3
4 XiXiX 4 4 XXX 4
5 XiX|0 5 5 0j0i0|0 5
6 X 6 6 X 6
7 7 7 7
8 8 8 8
A BCDETFGH A BCDETFGH

Fig. O-2. One possible sequence of opening moves for O-tell-O.

B Is the indicated position vacant?

B Is that spot adjacent to an opponent’s piece&

B If the attempted move is valid thus far, does it bracket? Is
there a row eminent from here, in some direction, that
ends with this player’s piece?

B Is there along that line of tokens one or more of the
opposition’s uninterrupted pieces that can be reversed?

B If all of the above questions can be answered with yes the
move choice can be accepted and applied, but there is
more to do.

B Are there any other rows affected by this move? Adroit
tacticians can, and will make dual or even triple-thrust
moves.

The toughest part of this problem has to do with the need to scan
from any point on the board in any of eight possible directions—

175

every time. The method chosen for doing this, in this program, is
looked at next. Everything else about the program’s design sort of
falls into pi-.ce based on this relatively simple scheme.

THE BASIG LOGIC PRINCGIPLES

The first design decision that was made was to store the board
in memory as an array, eight columns wide, and eight rows deep. A
conceptual picture of the memory board is shown in Fig. O-3.

The illustration also shows that the axes along which scanning
must be done are thought to be like a compass. To be able to do a
scan implies the need for looping techniques, and the labels such as
east, south, and so on are handy for describing direction.

For example, to do a scan from position 4, 6 toward the easta
loop can be used that increments the six (the column or J value),
maintaining the row-half (four) constant. In the same way a scan
toward the west would hold the first number constant and decre-
ment the column coordinate.

For scanning along the north-south axis the same principle
applies, but it is the row number that is incremented or de-
cremented, and the column number is held steady. The diagonals
pose only a slightly more complex problem: both coordinates must
be manipulated.

Looping from the northwest down and to the right, to the
southeast, works by incrementing both coordinates in parallel. To
back up along the same diagonal, decrementing is used instead of
incrementing. To operate on the other diagonal (southwest to
northeast) is a little trickier. In that case one coordinate must be
incremented as the other is decremented. Directional control along
this diagonal is achieved according to which of the two coordinates is
added to and which is subtracted from. In either case the arithmetic
done on the column and row numbers is always opposite to one
another.

The scan process itself is the same from any given point,
toward any of the eight possible directions. By starting the loop with
the next adjacent position, and by placing the following tests up
front, if any test fails immediately, nothing further needs to be done
(in that direction). The tests and their order are:

B Is the edge of the board about to be encountered?
i Is the next position vacant?
i If there is a marker there does it belong to this player?

If all of these tests fail the only remaining possibility is that a marker
is there and that it belongs to the other player. Depending on the

176

] COLUMNS

NORTHWEST NORTH NORTHHEAST
. ! /

it 12 1131415116117] 18

21122123 |24 2526|271 28

31132133834)35}136]37]3s

WEST «—— | 41|42 |43 44| 45]) 46} 47| 48 |—» EAST

511521631541 55]56}57] 58

[4
nROWS
6.1 621631 64]65]66]67] 68

71172 |73} 74 75} 76} 77]78

8,1 82|83} 84]|85|86]87]88
7 i "a

SOUTHWEST SOUTH SOUTHEAST

Fig. O-3. The memory board in O-tell-O.

direction that is being worked on the coordinates are adjusted to
look at the next position and the tests are tried again. When an exitis
finally taken, if the last marker looked at is this player’s, a move is
appropriate.

At this point the starting and ending points are known. Sois the
direction. All of the markers along this line can be updated; so
another loop is used to overwrite this player’s mark in every posi-
tion.

The total scheme then: scanin each of the eight directions from
the indicated position, and update all valid rows. If it does happen
that all eight directions are attempted and no capture can be made
the choice for this move is not valid. Let the player try again; if
necessary, let him or her pass. There is also a simple mechanism

177

included to detect that rare case when both players have to pass.
That ends the game, just the same as when the board is finally full.

Before going on to see how these mechanics work in O-tell-0 a
few points ought to be made about how the program is put togeth-
er.

A PICTURE OF THE PROGRAM

Most of that to the left of center in Fig. 0-4 is like other game
programs in this book. There is a hint of something clever in the
print board block (3000 to 3170) because of the appurtenance on its
right edge. For the moment, however, the right side of the program
template deserves attention.

Conceptually the row scanners are categorized into two
groups. Those that work on horizontal and vertical axes, and those
that work on either of the diagonals. Stair-stepped structures on the
right, and their labeling, conveys nearly the whole design of this
O-tell-O program. Each direction does employ its own string of
code, and the overlapping of the blocks with a single connecting
thread implies they are all accessed each lap through the player input
module. There is also an inference that there must be considerable
redundancy of programming statements. There is—but not without
a rationale.

The program was originally built with only the east block of
coding in place. Once everything worked correctly to that point it
took only a short while to copy that routine, modifying it each time
only to the extent necessary to change directions. The design
philosophy in this case was this: ifit works for one, it should work for
all.

The advantage of building a program along these lines is that, if
there is a bugin the coding that is added later, it must be because of a
copying error and not because of a design error. Sometimes the
time required for typing in the extra lines of programming is a fair
tradeoff for the time that might be required for isolating a logic error
in a compact, but extremely complex universal routine.

There is another advantage. This narrative, and the time re-
quired to study how the program works are both lessened; all that
has to be studied in detail is one of the scanners. From that, you can
easily understand how they all work.

O-TELL-O FROM THE INSIDE

Initialization of the program begins with a declaration of the
array, B, in statement 30. As shown in the listing, this is an
eight-by-eight numeric structure. In the next statement (line 40)

178

0 1000
INITIALIZE INSTRUCTIONS
130 1170
140 2600
SET UP GAME FIRST BOARD
4400
140 2140 CONVERT
INPUT
4540
3000 -]
5000 5200
gf;gT BOARD § HORIZONTAL EAST
& VERTICAL
5060 5400
150 3600 WEST
MAINLINE PLAYER INPUT 5600
310 4260 SOUTH
5800
7°°§ ORE NORTH
KEEPING 5920
7120
6000 | [6200
DIAGONALS NORTHEAST
6060 6400
SOUTHWEST
6600
SOUTHEAST
6800
NORTHWEST

6920

Fig. O-4. Program template for O-tell-O.

there are two alpha tables declared, one called L (for letters), and
one called N (for numbers).

The dual field's READ loop in lines 70, 80, and 90 takes the
letters and numbers defined in the DATA statements (lines 50 and
60) and loads them into the L$ and N$ tables. Later, as can be
surmised, the trick of allowing the player to input a letter and a
number coordinate, in either order, works against these two tables
to derive pure numeric column and row values.

After the usual bit of dialog (lines 100 through 120) to optionally
print the instructions (lines 1000 through 1170) the game is set up by
a jump to line 2000. The first board subroutine puts zeros all over

179

the board (lines 2040 through 2090), establishes the P workers, and
puts the first four tokens in the center of the board (lines 2100
through 2130).

As to the use of P, depending on your thoughts at different
points in the program, at times it means prece, and other times it
meansplayer. Most of the time pairs are involved; P or P§ is for one,
and P1 or P1$ is for the other guy. During the course of play the
letters O and X are alternately exchanged in P$ and P18, and player
numbers 1 and 2 are swapped between P and PI.

The RETURN in line 2140 goes back to line 150, which is the
start of the mainline. The nucleus of the mainline is the repeating
sequence of lines 150 through 210. This is basically a dispatch
sequence that prints the board, accepts player input, and updates
their scores. The first of these tasks is done by the subroutine from
line 3000 to 3170.

The principal structure of the print board module is a pair of
concentric FOR-NEXT loops, both conditioned to run eight times.
The J loop (lines 3040 through 3110) prints a period character for
vacant positions or an O or anX, depending on whether the cells in
the B array contain a zero, a one, or a two. TheJ loop works across
the board, advancing the column number. The outside loop, 7,
works down the board, advancing the row number.

That bit of cleverness promised earlier is revealed by the
GOSUB inline 3010. The jump is actually to the tail end of this same
subroutine. It is done to make double use of the PRINT statement in
line 3140. Just before the board is printed the letters A through H
are output as column labels. After the board is printed, by passing
through this same sequence again, the letters are again printed,
underneath the board. Coding that jump at the top of the module was
easier and cheaper than duplicating the PRINT string.

Notice that row numbers are output also. Line 3030 is respon-
sible for the numbers on the left side of the board, and line 3120
prints the same numbers on the right and advances the printed
output by one line.

The only other thing done by this routine is the setting of T to
zero (line 3160). This is a trigger worker used to know about
impending stalemates, where both players find it necessary to pass.
It is safe to always reset the trigger to zero whenever the board is
printed because the board is not printed whenever either player
passes. By simply adding a one to the trigger elsewhere, if it ever
reaches two, then both players must have passed in immediate
succession.

180

The next jump from the mainline (line 160) is to line 4000 to
accept player input. This module (lines 4000 through 4260) isitself a
miniature mainline. All of the dialog having to do with a round of play,
by either player, is done within the central structure. Whatever is
typed by the player is looked at; and if reasonable, an attempt is
made to convert the entry to row and column coordinates. The
conversion process depends on a free-standing subroutine (lines
4400 through 4540), and if successful two jumps are used to the
array scanning modules.

As the INPUT sequence begins @$ and Q1% are space-filled.
This is done to clear any residue, and to insure an explicit response
from the player. It is possible that nothing will be typed following the
prompt that is output by line 4020. Line 4040 checks whether
anything was entered; if not the logic assumes a pass was intended.

Any value other than a space character in Q$ will trigger the
jump to line 4400. An eight-times FOR-NEXT loop (lines 4400
through 4430) compares @$ with the charactersin tables N§ and L$,
in parallel. If @§ matches any of the numbers 1 through 8 the logicis
dispatched toline 4460. If the first entry from the keyboard (in @$) is
found to match a letter in the series A through H the dispatch is to
line 4500 instead.

The remaining possibility is that @$ does not match anything in
either table. The player must have typed aninvalid response: [is set
to zero as an indicator, and an immediate return is made back to the
dialog sequence.

Two other loops are used to get the other coordinate, depend-
ing on whether @8 was found to have the number or the letter half.
Both of these loops (lines 4460 through 4480 and 4510 through
4530) work like the previous one. If @1§ is found to be invalid, [is
zeroed and the indicator is returned. If @1§ is found to match an
appropriate symbol, the returnis executed with a significant value in
I. The net result is that I will have in it the row coordinate andJ will
be returned with the column coordinate.

That test in line 4060 is the one that detects whether I came
back loaded with something useful or not. If not a branch to line 4000
lets the player go again after heis told: “I DON'T UNDERSTAND?”.

The next test (lines 4090 through 4110) determines whether
the attempted play is aimed at any empty spot on the board. If not
the message is terse: “OCCUPIED SPACE”. Go again—back to
line 4000.

Another variable—E for error—is used to keep track of
whether all of the row scanners fail or not. Before that process is
started, E is preset to zero in line 4120. If it comes back as zero no

181

move was possible—so go again to line 4000. You must have tried an
“ILLEGAL MOVE".

There is a short dispatcher that extends from line 5000 to line
5060 to sequence the scanners that work along the horizontal and
vertical rows. The entire dispatcher is a FOR-NEXT loop that runs
four times—once for each of the directions east, west, south, and
north. The variable K is used as a loop control (I and/ are otherwise
committed). The reason a loop is used is that a pair of temporary
workers are needed for the row and column pointers. (R andR1 are
for rows; C and CI are for columns.) All four of these have to be
reestablished for each of the directional scanners. Setting them up
within a loop does save some repetitious code.

Looking at the east module it can be seen in line 5200 how it is
that the dispatcher is able to call successive subroutines with a
single GOSUB address (in line 5050: GOSUB 5200). If K has a one
init, east will execute. IfK is not equal to one controlis passed to the
west; and so on down there also.

To scan along the east-west line, the column number (now in
C) is the one that should vary. Whatever is in the row worker (now
in R) will be held constant. Looking specifically toward the east the
following logic increments C. (Later, to look toward the west, C is
decremented.)

Line 5210 tests to see whether the attempted play is next to
the edge of the board. If so, exit. Line 5220 tests to see whether the
next position is vacant. If so, exit.

Line 5230 tests to see whether the next position is occupied by
this player’s piece. If so, and this is the first time this test was made
(meaning C has not yet been incremented beyond what it started
with), exit by reason of the test in line 5270.

Now increment C. This is done in line 5240. The same set of
tests are repeated, then, until either an exit is taken or line 5290 is
reached. If the flow does get to there a move is in order. At that
point C has been incremented so that it is larger than C1. (CI was
present to contain the same value as C, that value being thel column
number.)

To make the move, line 5300 overwrites P—the player’'s
piece, either a one or a two—into the first row segment location.
Line 5310 then increments C1 and the overwriting continues until
C1 catches up to C. When done the exit route that is taken is
through line 5330, which increments E. When control is finally
returned to the dialog area it will be known that a move was made
because the error worker will not be zero.

182

Each of the other scanners work just like this one. Their only
differences are in the varying of R, R1, C, and C1. The logic is
always the same; there is even a similarity in the line numbering. If
you do encounter any bugs you must have copied something wrong.
The design has to be right: “What works for one should work for
all.”

Back in the mainline two test sequences work to know when
the game is over. The one in lines 170 and 210 through 240 takes
care of stalemates or voluntary aborts by reason of successive
passes. The other test depends on knowing whether the board is all
filled up. The scoring routine can detect if it is, and if so, a W (for
win) flag is set to one.

As each play is made a jump to line 7000 is made to update the
scores. Concentric loops are used to run across and down the whole
board, and as this is being done the player’s accumulators are
generated so as to have a current count of their pieces. The variable
O is used for one, and X is for the other. If they both add up to 64 W
is turned on.

Thatis really all there is to the programming of O-tell-O. These
are all of the mechanics for managing the board and for qualifying
player’s moves. You'll have no trouble developing a ten by ten board
from the eight by eight model described if that’s your bent.

To develop a version that has the computer as an opponent
notice that all of the scanner logic can be used for attempted plays by
the computer. The strategies the computer can employ and the logic
by which it can deduce its next move is up to you and the degree of
artificial intelligence you can impart to your mechanical friend.

Meanwhile, the kids can have fun playing this version while you
have fun teaching the computer to play.

THE PROGRAM

100 REM "QTELLOQ"

200 REM

30 DIM B(8,8)

40 DIM L$(8)s N$(8)

50 DATA As 13 Bs 25 Cs 35 Dy 4
60 DATA Es 59 Fy 63 G2 79 Hy 8
70 FOR I =170 8

80 READ L$(1)s N$<{I)

90 NEXT 1
100 PRINT "WANT INSTRUCTIONS (Y OR N)";
110 INPUT @%

183

120
130
140
150
160
170
180
190
20
204
206
210
22n
230
240
250
260
270
280
290
300
310
1000
10410
1020
1030
1040
1050
1040
1070
1080
1090
1400
11410
1420
1130
1140
1150
1160
14170
1999
2004

184

IF 0%
&G05UB
GOSUR
GOSUR
GOSUR

= "N" THEN 140
1000
2000
3000
4000

IF T <> 0 THEN 210

GOSUR

IF W =

7000
1 THEN 250

G070 150

IF Q%

= " " THEN 160

6070 150

IFT=

PRINT
INPUT
IF @3
PRINT
PRINT
PRINT
INPUT
IF @%
FRINT
END

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
INPUT

1 THEN 204
"STALEMATE (Y OR N)"§
Qs
<> "Y" THEN 150
"GCORES 0 = "0" X = "X

MANOTHER GAME (Y OR N)"3
0s

= "Y" THEN 140

HBYE LH

“TWO PLAYERS COMPETE ON AN"
"8-BY-8 BOARD. ONE HAB 'X’'s THE"
"OTHER HAS ‘0’. IN YOUR TURNs"
"pLACE YOUR MARK NEXT TO ONE OF"
“HIS 80 THAT YOU MAKE A 'ROW'"
"(YERTICALs HORIZONTALs DIAGONAL)"
"WITH YOUR'S ON THE ENDS."

“WHEN YOU DOs YOU 'FLIP' ALL OF"
“"HIS TO BE YOUR'S."

“IF YOU CAN’T PLAYs PABS (NO"
"ENTRY). "

"GAME 15 OVER WHEN YOU BOTH HAVE"
“TO PASS: OR THE BOARD IS FULL."
"THE PLAYER WITH THE MOST PIECES"
“WINS THE GAME."

" ecassscaes READY"S

0%

RETURN

REM

"FIRST BOARD"

LET P$ = "O"

2010
2020
20320
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2999
3000
3010
3020
3030
3040
3050
30460
3070
3080
3090
3100
3140
3120
3130
3135
3140
3150
3160
3170
3999
4000
4010
4020
4030
4040
4050
4060
4070

LET P1s = "X"
LET P = 1

LET P1 = 2

LET W =20

FORI =1T028
FORJ =1T08
LET B(IsJ) = W
NEXT J

NEXT 1

LET B(4s4) = P
LET B(5s5) = P
LET B(4s5) = P1
LET B(5s4) = P1
RETURN

REM "PRINT BOARD"
PRINT

G0SUB 3140
FORI =1T08
PRINT I" "j
FORJ=1T08

IF B(IsJ) <> O THEN 3070
PRINT ". "3

IF B(IsJ) <> 1 THEN 3090
PRINT "0 "3

IF B(IsJ) <> 2 THEN 3110
PRINT "X "3

NEXT J

PRINT 1

NEXT I

PRINT

PRINT " ABCDEFGH"
PRINT

LET T =20

RETURN

REM "PLAYER INPUT"

LET @ = " "

LET @1% = @%

PRINT P$" MOVE (CsR)"j
INPUT @%s Q1%

IF @$ = " " THEN 4180
GOSUB 4400

IF I > O THEN 4090

PRINT "I DON’T UNDERSTAND"

185

4080
4090
4100
4110
4120
4130
4140
4150
4160
4170
4180
4190
4200
4210
4220
4230
4240
4250
4260
4399
4400
4410
4420
4430
4440
4450
4450
4470
4480
4490
4500
4510
4520
4530
4540
4999
5000
5030
5020
5030
5040
5050
5055

186

GOTO 4000

IF B(IsJ) = 0 THEN 4120
PRINT "OCCUPIED SPACE"
60TO 4000

LETE =20

G05UB 5000

605UB 6000

IF E <> 0 THEN 4200

PRINT "ILLEGAL MOVE"
GOTO 4000

PRINT "PASS"

LET T = T+1

LET @ = P

LET P =P1

LET.P1 = @

LET Q1% = P$

LET P$ = P1$

LET P1$ = Q1%

RETURN

REM "CONVERT INPUT"
FORI =1T038

IF @% = N$(I) THEN 4460
IF @% = L$(1) THEN 4500
NEXT I

LET 1 =20

RETURN

FORJ =1T038

IF @1% = L$(J) THEN 4450
NEXT J

GOTO 4440

LET J =1

FORI=17028

IF @1% = N$(I) THEN 4450
NEXT 1

60TO 4440

REM "HORIZONTAL & VERTICAL"
FORK=1T0 4

LETR=1

LET R1 = 1

LET C = J

LET C1 = J

G0SUB 5200

NEXT K

5040
5199
5200
5210
5220
5230
5248
5260
5270
5290
531011
5310
5320
5330
5340
539y
5400
5410
5420
5430
5440
5460
5470
54%0
5508
5510
5520
5599
5600
5610
56211
5630
5640
5660
5670
5690
5700
5710
5720
5799
5800
5810
5820

RETURN

REM "EAST"

IF K <> 1 THEN 5400
IF C+1 > 8 THEN 5340

IF B(RsC+1) = 0 THEN 5340
IF B(RsC+1) = P THEN 5270
LET € = C+1

60TO 5210

IF € = J THEN 5340
IF €1 > C THEN 5330
LET B(RsC1) = P

LET €1 = €141

GOTO 5290

LET E = E+1

RETURN

REM "WEST"

IF K <> 2 THEN 5600
IF C-1 < 1 THEN 5340

IF B(RsC-1) = O THEN 5340
IF B(RsC-1) = P THEN 5470

LET € = C-1

60TO 5410

IF C = J THEN 5340
IF €1 < C THEN 5330
LET B(RsC1) = P

LET C1 = C1-1

60TO 5490

REM "SOUTH"

IF K <> 3 THEN 5800
IF R+1 > 8 THEN 5340
IF B(R+1sC) = O THEN 5340

IF B(R+1:C) = P THEN 5670
LET R = R#1

60T0 5610

IF R = I THEN 5340

IF R1 > R THEN 5330

LET B(RisC) = P

LET R1 = Ri#1

GOTO 5690

REM "NORTH"

REM

IF R-1 < 1 THEN 5340

IF B(R-1:C) = 0 THEN 5340

187

5830 IF B(R-1sC) = P THEN 3870
5840 LET R = R-1

58400 GOTO 5810

5870 IF R = 1 THEN 5340
5890 IF R1 < R THEN 5330
5900 LET B(R1sC) = P

5910 LET R1 = Ri-1

5920 GOTO 5890

5999 REM "DIAGONALS"
6000 FOR K = 1 TC 4

6010 LET R = 1

6020 LET R1 =1

6030 LET € = J

6040 LET €1 = J

6050 GOSUR 6200

6055 NEXT K

6040 RETURN

5199 REM "NORTHEAST"
6200 IF K <> 1 THEN 6400
6210 IF C+1 > 8 THEN 6340
6215 IF R-1 < 1 THEN 6340
6270 IF B(R-1:C+1) = O THEN 6340
6230 IF B(R-1sC+1) = P THEN 6270
6240 LET C = (+1

6245 LET R = R-1

6260 GOTO 6210

6270 IF R = I THEN 6340
6250 IF C1 » C THEN 633D
6300 LET B(R1:C1) = P
6310 LET C1 = Ci+1

6315 LET R1 = R1-1

632D 6070 6290

6330 LET E = E+1

6340 RETURN

6399 REM "SOUTHWEST"
6400 IF K <> 2 THEN 6600
6410 IF C-1 <€ 1 THEN 6340

6415 1IF R+1 > 8 THEN 4340

6420 IF B(R+1sC-1) = 0 THEN 6340
6430 IF B(R+1:C-1) = P THEN 6470
6440 LET € = C-1

6445 LET R = R+1

m

188

64460
6470
6490
46500
6510
6515
6520
6599
6600
6610
6615
6620
6630
6640
6645
6660
6670
6690
6700
6710
6715
6720
6799
4800
6810
6815
6820
6830
&840
6845
6860
6870
6890
6900
6910
6915
6920
6999
7000
7010
7020
7030
7040

GOTO 6410
IF R = I THEN 6340

IF €1 ¢ C THEN 6330
LET B(R1sC1)

LET €1 = C1-1
LET R1 = R1+1

GOTO 6490
REM "SOUTHEAST"

IF K <> 3 THEN 6800
IF R+1 > 8 THEN 6340
IF C+1 > 8 THEN 6340

IF B(R+1sC+1)
IF B(R+1sC+1)

LET € = C+1
LET R = R+1
GOTO 6610
IF R = I THEN 6340
IF C1 > C THEN 6330
LET B(R1sC1)

LET €1 = €141
LET R1 = Ri#1

60TO 6690
REM "NORTHWEST"

REM

P

0 THEN 6340
P THEN 64670

P

IF R-1 < 1 THEN 6340
IF C-1 < 1 THEN 6340

IF B(R-1:C-1)
IF B(R-1:C-1)

LET € = €-1
LET R = R-1
G0TO 6810
IF R = I THEN 6340

IF C1 < C THEN 6330
LET B(R1sC1)

LET €1 = C1-1
LET R1 = R1-1

60TO 6890

REM

LET X
LET 0
FOR I
FOR J

J

R~ L~
A —
Yoo
w0 O

nn

0 THEN 6340
P THEN 6870

P

"SCOREKEEPING"

THEN 7060

189

7050
7060
7070
7080
7090
7100
7110
7420

190

LET 0 = 01

IF B(IsJ) €> 2 THEN 7080
LET X = X+1

NEXT J

NEXT 1

IF X+0 €> 64 THEN 7120
LET W = ¢

RETURN

This is another of those few games that have evolved as a direct
consequence of modern computer technology. This one specifically
is attributable to the invention of the serial printer. In other lan-
guages, on a variety of systems, this game has also been known as
golf, minigolf, putt-putt, and perhaps others but the basis of each is
always the same.

The program prints an asterisk (the ball) and a zero (the hole)
some distance apart. You simulate putting by guessing the number
of print spaces between the ball and the hole. The program then
moves the ball, and counts your strokes. With any luck at all (or if
you have calibrated eyeballs) you should hit the hole in two strokes.
Thus, par is 2.

As programmed here, Par-2 optionally permits two, three, or
four players, and the course is a full eighteen holes. Although it has
been done often on Teletype and similar printers this model was
developed on a CRT, which permits but thirty-two characters per
line. Which does prove that no matter what type of display you have,
nor how austere your computing budget may be, you too may adopt
this elementary but fun programmers’ favorite.

DESIGN CONSIDERATIONS

Because the Par-2 game is based on printed output there is a
certain degree of sensitivity in its design regarding the mechanical
attributes of the display used. Line length is one such attribute. It is
desired that the ball and the hole always be printed on the same

191

output line. To achieve this the sum of the player’s guess and the
TAB value of the ball's current position must be restricted. The
range permitted in this model is zero through thirty-one. (Thirty-
two character spaces).

There is another system-specific sensitivity to the designing of
this program, and it has to do with how PRINT with TAB is
implemented. Our BASIC doesn’t mind what presentation sequence
is expressed in a print statement, but if a first TAB variable is
greater than the next the output will be printed as if the second TAB
didn’t exist in the expression. The significance in Par-2 is that the
ball may have to be printed either to either the left or the right of the
hole (the player may overshoot).

The net effect of the TAB convention is best shown with an
example. Assume that B means ball and 4 means hole. Now con-
sider:

PRINT TAB (B) “*" TAB (H) “O”

As long as the value in B is less than the value in H the result will be
just as we expect. On the other hand, if B had fifteen and H
contained twelve, the output would look like this:

*O

Meaning that the asterisk would be printed in position 15; but since
the H value had already been passed (scanning from left to right) the
second TAB is ignored and the hole is dumped immediately.
Persevering programmers shall overcome. The solution used
in this example depends on the use of two different print state-
ments. For a given line only one is used. Their selectionis argued by
conditionally comparing B and H. If B is less than H, then:

PRINT TAB (B) “*” TAB (H) “O”

Whenever the duffer on the keyboard overshoots, meaning B will be
bumped beyond H, then:

PRINT TAB (H) “O” TAB (B) “*"

There is. of course, a third condition possible. B and H may be
equal. A Palmer-type player may get lucky and ace it, or—even
should it take all afternoon—at some point the ball may roll in,
causing B and H to come up alike.

My microcomputer’s BASIC will not back up along a print line.
Nor can we preclude a one-character escapement after each charac-

192

0 7000
INITIALIZE INSTRUCTIONS
110 1120
2000
NUMBER
%0 " 2080
START ROUND
240 — 3000
BALL & HOLE
3070
7000
250 4130
MAINLINE
400 5500
| MovEBAL
5240

Fig. P-1. Program template for Par-2.

ter. So the ball can never be superimposed over the hole. To show
the concluding stroke in a player’s turn this program outputs an X
when the print positioning values become equal. Problem solved.
To an extent at least all of that above had some bearing on the
way the tasks were allocated and in the make up of the template in
Fig. P-1. There are basically two tasks required to begin a player’s
turn, and there are two others for repeated strokes within a turn.
The illustration can only portray conceptual structure, however.

PROGRAMMING PAR-2

The dimensioning of P for five in line 40 portends a bit of
subtlety. Up to four players may be accommodated; their scores are
maintained in fable P in the first four slots. The fifth element of P is

193

used to hold the round-of-play counter. There is nothing exciting
about this, but it did have to be explained.

The expression in line 120 is now obvious—the game is in-
itialized to start out on hole number 1. The club member is then
asked in line 130 to identify how many players are in his party. Only
two, three, or four is permitted as a response, and the answer is
storedin A. The expressionin line 150 is used to clean up whatever
is typedinto®, insuring that A won't be a digit followed by a decimal
value. (Half a player would be difficult to accommodate.)

The final act in preparing the course is done by the FOR-NEXT
loop in lines 190 through 210. Enough of table P is erased (A fields)
to give each player his or her own scorecard. We are now ready to
tee off.

In line 2000, following the GOSUB out of line 230, P will be less
than A, so the branch to line 2030 is taken to increment the player
number. The simple variable P (as distinguished from able P fields)
starts out as zero; in the first round it is made a one. In succeeding
rounds, whenA players have played, P will be reset to zero in line
2010, and P(5) will be incremented at that time to show that the
party has advanced to the next hole.

Simulating what happens in real life the subroutine starting at
line 3000 uses the RND function to set up each player’s putting
green situation. The ball is always initialized at one, but the length of
the putt is controlled by whatever is generated in /. Line 3010 will
insure that H is at least a four; line 3020 insures that H is not
beyond the end of the print line. D means distance (line 3030), the
ball and the hole are displayed (lines 3040 and 3050), and the stroke
counter is initialized in S. Back to the mainline for the player’s
stroke.

Line 250 calls line 4000, and the single-character prompt is #,
followed by the system’s own question mark, indicating a number is
being asked for. Whatever is typed into @ is cleaned up in line 4020;
only a positive whole number can be tolerated by the logic that
follows.

Either @ is added to B or it is subtracted for comparison
purposes in line 4040 or line 4110. This logic permits the player to
indicate distance in an absolute sense—the computer is smart
enough to know which direction is toward the hole. If the resulting
arithmetic won't place the ball off the left or right end of the print line
the entry is accepted and the subroutine is exited. If the player’s
entry is not tolerable he or she is admonished to try again; the stroke
does count, but the ball is not moved.

194

The remaining jump out of the mainline goes to line 5000 to
reposition the ball based on how hard it was hit. The first decision is
whether the ballis in the hole. If soan X is printed, and ACE, PAR,
BOGEY, or DUFFER is printed, depending on the number of
strokes taken. Notice that in line 5050, six is considered enough. A
forced exit is manufactured by making B and H equal in line 5160 so
that the common exit path through line 5050 will let the next player
go ahead back in the mainline.

Looking at line 270 this is where distance is important. When
there is no distance between the ball and the hole, meaning D is
zero, the regular loop back to line 250 is quit. In line 280, then, the
player’s strokes are added from S to his or her scorecard. If the last
player hasn't yet played line 290 will branch the program back to line
230. After the last player has been up, each time, line 300 checks
what hole is being played; if an eighteen is not yetin P(5) the game
goes on, again back to line 230.

Chances are the option to play again after the final scorecard is
printed (by the FOR-NEXT loop in lines 320 through 340) will often
be taken. Playing golf on a computer is even less strenuous than
riding a real course in one of those motor-driven caddy carts. And
like in the real game, on a pleasant afternoon Par-2 can be enjoyed
when you are a member of a companionable foursome.

THE PROGRAM

10 REM "PAR-2"

200 REM

34 GOSUR 9000

40 DIW P(5)

50 PRINT "WANT THE RULES (Y OR N)"j
60 INPUT 0%

70 IF @% = "Y" THEN 140

80 IF @% = "N" THEN 120

Q0 PRINT "HUH?"

100 6070 50

140 GOSUR 41000

120 LET P{(5) = 1

130 PRINT "HOW MANY PLAYERS (2-41)"§
140 INPUT @

150 LET A = INT(Q)

160 IF A € 2 THEN 180

170 IF A € 5 THEN 20D

180 PRINT "HUH?"

120 GOTO 130

195

200
210
22
i
240
250
260
27u
280
290
30y
310
320
KR
340
350
3460
370
3&0
390
400
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1400
1110
1120
1999
2000
2010
20270
20150
2040
2050
2060

196

FORI =1 T0A

LET PC(I) = 0

NEXT I

GOsUR 2000

GOSUR 3000

GOSUR 4000

GOSUR 5000

IF D <> D THEN 2530
LET P(P) = P(P)+8E
IF P <> A THEN 230
IF P(5) <> 18 THEN 230
PRINT “SCORE CARD"
FOR I =1 T0 A

PRINT "#"I"="P(D)

NEXT I

PRINT

PRINT "ANOTHER ROUND (Y OR N)"3
INPUT @%

IF @% = "Y" THEN 120

PRINT "S0 LONG GANG."

END

PRINT "PLAYERS TAKE TURNS. I WILL"
PRINT "PRINT A BALL AND A HOLE. GUESS"
PRINT "THE DISTANCE (PRINT SPACES) FROM"
PRINT "THE BALL TO THE HOLE."

PRINT

PRINT "YOUR TURN CONTINUES UNTIL YOU"
PRINT "S8INK THE BALLs OR UNTIL YOU HAVE"
PRINT "8HOT SIX TIMES."

PRINT

PRINT "A COMPLETE GAME IS 18 HOLES."
PRINT "LOWEST SCORE WINS."

PRINT

RETURN

REM "PLAYER NUMBER"

IF P < A THEN 2030

LET P =20

LET P(5) = P(5)+1

LET P = P+1

PRINT "HOLE"F{(5)3

PRINT " PLAYER #"Pj

PRINT " SCORE ="P(P)

2070
2080
2999
3000
3mp
30z
3030
3040
3050
30460
3070
3999
4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
4100
4110
4120
4130
4959
5000
5010
5020
5030
5040
5050
506N
5070
5080
5090
5100
5110
5120
5130
5140
5150

PRINT

RETURN

REM "BALL & HOLE"

LET B = 1

LET H = INT(I10D#RND(1))+4
IF H > 31 THEN 3010

LET D = H-B

PRINT TAB(B) "x"3
PRINT TAB(H) "O"

LET 5§ =0

RETURN

REM "STROKE™®
PRINT "#"3

INPUT @

LET @ = INT(ARS(@))

IF B » H THEN 4110
IF B+@ < 32 THEN 4080
PRINT "OFF THE COURSE -- TRY AGAIN."
LET § = 5+1

GOTO 4000

LET B = B+@

LET § = §5+1

RETURN

IF B-@ < 0 THEN 4050
LET @ = B-@

GOTO 4080

REM "MOVE THE BALL"
IF B <> H THEN 5150
PRINT TAB(H)Y "X"

LET M$ = "ACE"

IF § > 1 THEN 5070
PRINT M$

LET D = H-B

RETURN

LET M$ = "PAR"

IF 8 > 2 THEN 5100
G0TO 5040

LET M$ = "BOGEY"

IF 5 > 3 THEN 5130
GOTO 5040

LET M$ = "DUFFER"
GOTO 5040

IF § € 6 THEN 5180

[{ I

197

5460 LET H = B

5170 GOTO 5130

5180 IF B > H THEN 5220
5190 PRINT TAB(R) "#"§
5200 PRINT TAB(H) "o
5210 6070 5050

5220 PRINT TAB(H) "0"3
5230 PRINT TAB(B) "#"
5240 GOTO 5050

9000 REM "RANDOM NUMBER ROUTINE"
9010 LET Z = RND(1)
9020 RETURN

198

Quantal

1> 1

OR AND

Quantal; An adjective meaning data that fits into only one of two
categories. Typical quantal elements are yes or no, true or false, on
or off, all or none.

This game has two guantal properties. Each player has ten
switches; some may be on and some may be off. The object of the
game s to get all of your switches set alike at the same time—either
all on or all off. If you do so before your opponent does you win the
game.

Problem: the switches are all hidden. In the beginning the pro-
gram sets up all of both player’s switches—purely at random. Some
may be turned on and some may be turned off. It is even possible (in
theory at least) that they could all be initialized to the same setting.

In your turn you may interrogate only one switch. Any one.
This is done by entering a number between one and ten, inclusive.
The response will be simply ON or OFF, as the case may be for that
switch. You are then afforded the opportunity to leave the switch as
you found it or ask that it can be changed to its opposite setting.

The program doesn’t look at all of a player’s switches until after
he or she has taken a turn. Because all ten could be on (or off) at
the outset, for the first turn at least, any one switch should be
checked , but left alone. There doesn’t seem to be any good reason
for changing the state of that first switch. It could be correct as is.

A player could win right from the start, but he probably won't.
The randomizing scheme that is used sets up the switches individu-

199

ally. The odds that ten random settings (in a row) will come up the
same must be astronomical. But it could happen.

After the first turn both players are entirely on their own. One
might adopt a strategy of setting all switches to the same position as
that of the first one looked at. This would produce a winner in a
maximum of ten rounds. Maybe even less. Only nine turns would be
required if the final switch is already in the correct state. In the same
way only eight turns would be required if the two switches left for
last had beeninitialized to match the chosen pattern. Equally maybe,
however, Lady Luck could favor the opposition.

Simple strategies and a lot of luck. But the kids will love it—and
you too, for the short hour that you will spend adding this program to
your library.

DESIGN & LOGIC

As shown by the program’s template in Fig. Q-1 the design of
Quantal is nearly artless. Like most of the others in this book the
program is shown to provide instructions out of the initialization
sequence. This is followed by a brief start game sequence which
includes jumps to two modules that do housekeeping tasks. The real
mainline follows, and it consists mainly of a cyclic calling sequence to
the two primary supporting subroutines. That is really all thereis to
the layout of Quantal.

Looking now at the program’s listing there is a clue in line 40
that there is a slight innovation internaily. A table is used to hold the
sets of switches. But notice that only one table is defined (table S),
and it has twenty elements. Half of these are used for one player and
the remaining ten elements belong to the second player.

One benefit of this design approach can be seen in the short
subroutine that does the randomized settings. A single FOR-NEXT
loop (lines 2000 through 2050) runs twenty times, putting either a
one or a zero in each spot, with no distinction as to which player will
ultimately have the upper or lower half of the table. In fact it is the
tail end of this module that sets up P (for player) to condition which
player will have the first turn.

Notice also the optimum use of the coding shown here. When
all twenty switches are set the loop completes and falls through.
There is some residue left in the R variable at that point, and the
conditional in line 2070 tests it, causing P to end up with either a one
or an eleven in it. These two codes are interpreted elsewhere to
control which player is up, but more importantly the values of one
and eleven enable P o be used as a base subscript for accessing the
shared table.

200

10 1000
INITIALIZE INSTRUCTIONS
100 1100
3000
110 3150 DUCTIONS|
START GAME
120 \ 2000
RANDOM
2100 SWITCHES
4000
130 4310
MAINLINE
5000
WINNER?
5130

Fig. Q-1. Program tempiate for Quantal.

At least some of the savings gained by this cleverness is traded
off in the rote dialog that extends from line 3000 to line 3150. Most
players seem to enjoy the personal touch afforded by having the
computer “know” them, however. This subroutine asks them their
names and insists that at least the first two letters of each are in fact
letters, and that the two names are not alike. Later, each player is
called to the keyboard for his or her turn, by whatever nickname was
given during the introductions sequence.

Internally the players are still just numbers. Nearly the whole
game is accomplished by the player input module, which begins in
line 4000, and the initial logic there determines which player is up.

The prompt that follows the player’s name is: “SWITCH #”.
The @ variable will receive whatever is typed, and from line 4060
through 4140 the entry is checked thoroughly to insure that it is
logically acceptabie.

Once execution gets as far as line 4150 the entry has to be one
of the numbers from one to ten, inclusive, so any switch can be
accessed as requested. A single subscript (S) is formed by adding

201

the P code (one or eleven) to the keyboard entered number, less
one. The conditional in line 4160 then examines the table (one
through ten, or eleven through twenty) and causes “ON” or “OFF”
to be printed.

The second step of each player’s turn begins with the simple
prompt: “CHANGE”, or “CHANGE (Y ORN)”. Inline 4210 the C$
field may either be blank or it may contain the self-erasing yes-or-no
note. This extra feature is included to suppress the monotonous
reminder of what response is expected.

If the player does answer with an N an immediate exit is taken
out of line 4240, down to the RETURN in line 4290. On the other
hand, if the player wants to change the switch being looked at, the
sequence from line 4270 to 4310 will flip the switch that is refer-
enced still, by subscript S. In both cases the RETURN will be back
to the mainline area.

The last call out of the mainline is to line 5000. A pair of loops is
used in this module to quickly scan both players’ table halves to see if
either has won. Both processes work alike. The @ variable is used
as a temporary worker to hold the topmost switch of a player’s
group. Each succeeding switch is then compared with the first, and
the loop is broken if any mismatch is found. When finally either loop
does complete, meaning that all ten elements are the same (either
zeros or ones), the winner is announced by name. The exit sequ-
ence is common to either loop, through line 5060, which loads @
with an arbitrary code of 99. Itis this code that is looked for in line
130 in the mainline to stop the game.

The balance of the mainline includes two options. The program
can be ended or another game started. If the continue option is
called for a second sequence allows conditionally branching to call for
new player's names, or the same two may compete again.

Chances are they will want to play again. This is a simple game,
but the “sudden win” aspect keeps them coming back.

THE PROGRAM

10 KEM "QUANTAL"

200 REM

30 GOSUER 000

40 DIM S(20)0

50 #RINT "WANT INSTRUCTIONS (Y OR N)"3

&0 INPUT Q3%
70 IF @% = "Y" THEN 100
80 1F @% = "N" THEN 110
QU s0TO 50

202

100 6OSUR 1800

110 GOSUB 3000

1200 GOSUB 2000

1300 IF @ = 9% THEN 170

140 GOSUR 4000

150 608UB 5000

160 GOTO 130

170 PRINT

180t PRINT "ANOTHER GAME (Y OR N)"j§

190 INPUT %

200 IF @% = "N" THEN 240

210 PRINT "SAME PLAYERS (Y OR N)"i

215 INPUT Q%

2000 IF @% = "N'" THEN 1410

230 G070 120

240 PRINT "BYE"

2501 END

1060 PRINT “TWO PLAYERS EACH HAVE 10"
1040 PRINT "SWITCHES. GSOME ARE ON AND"
1020 PRINT "SOME ARE OFF. 1IN A TURN YOU®
1030 PRINT "MAY TEST ONE OF YOUR SWITCHES"
10401 PRINT "AND LEAVE IT A5 ISs OR YOU"
1050 PRINT "MAY CHANGE 1I17.

10460 PRINT

1070 PRINT "THE F1RST PLAYER TO HAVE HIS 10¢
1080 PRINT "ALL ONs OR ALL OFFs WINS."
1050 PRINT

1100 RETURN

1999 REM "20 RANDOM SWITCHES"
20000 FOR'I =1 70 20

2040 LET R = INT(10%RNDCI))

2020 LET 81y = 0
2040 IF R € 5 THEN 2050
2040 LET 8(I1) = 1
2050 NEXT I
2060 LET P = 1
2070 IF R < 5 THEN 2090
2080 LET P = 14
2090 LET C% = "(Y OR M) "
2100 RETURN
2999 REM "INTRODUCTIONS"

3000 PRINT "PLEASE TELL ME YOUR NAMES™
3010 PRINT "PLAYER #1"3

203

3020
3040
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3999
4000
4010
4015
4020
4030
4035
4040
4050
4040
4070
4080
4£0%0
4100
4110
4120
4130
4140
4150
4160
4170
4180
4190
420D
4210
4212
4214
4220

204

INPUT P16

PRINT "PLAYER #2"3
INPUT P2%

IF P1$ <> P2% THEN 3080
PRINT "I DON’'T UNDERSTAND."
G070 3000

IF P4$ < "AA" THEN 3110
IF P2% < "AA" THEN 3140
RETURN

PRINT "ENTER #1 AGAIN"%
INPUT P1%

G070 3030

PRINT "ENTER #Z AGAIN"$
G070 3040

REM "PLAYER INPUT"

IF P = 1 THEN 4030

LET P =1

PRINT Pg$s

GOTO 4040

LET P = 11

PRINT P13

PRINT ": BWITCH #"3
INPUT @

IF @ > 0 THEN 4D90
PRINT "“NO MINUS!"

GOTO 4040

IF @ <= 10 THEN 4120
PRINT "T00 LARGE."

GOTO 4040

IF @ = INT(@) THEN 4150
PRINT "NO DECIMAL'"
GOTO 4040

LET 8§ = P+@-1

IF 8(5) = 1 THEN 4190
PRINT "OFF"

GOTO 4200

PRINT M"ON"

PRINT "CHANGE "3

PRINT C¢

LET C$ = " ¢

LET Q% = €%

INPUT @$%

4230
4240
4250
4260
4270
4280
4290
4300
4310
4999
S000
5010
5020
5030
5040
5050
5060
5070
5080
5090
5100
5140
5120
5130
2000
9010
9020

IF @% = "Y" THEN 4270

"N

IF @% = "N" THEN 4290
LET C$ = " (Y OR NO"
GOTO 4200

IF 8(8) = 0 THEN 430D
LET §¢58) = 0

RETURN

LET 8(8) = 1

RETURN

REM "WINNER?"

LET @ = 8(1)

FORI =2 70 10

IF §(I) {> @ THEN 5080

NEXT 1

PRINT P2%3

PRINT " JUBT WON"

LET @ = 99

RETURN

LET @ = 8(41)

FOR I = 12 TO 20

IF S(1) <> @ THEN 5070

NEXT I
PRINT P1$3
G0TO 5050

REM "RANDOM NUMBER ROUTINE"
LET Z = RND(1)
RETURN

205

"Roulette

Outside it is dark, the sun having gone down now some two hours.
On deck all that is heard is the frogs on the bank, and the soft lapping
of the paddle wheel on the oily bl 'ck waters of the Mississippi. The
year is 1850 and we are aboard a River Queen, just out of New
Orleans.

Inside it is warm, and the air hangs heavy with cigar smoke.
There are muted sounds of chatter and occasional laughter. Then,
above it all, “Ladies and Gentlemen, place your bets please!”

Roulette is the most glamorous of all gambling games. As you
watch the whirling ivory ball spin around the wheel, you can almost
see gentlemen in tall silk hats and ladies in satin gowns. And perhaps
even Lady Luck herself hovers nearby.

In this, our microcomputer version of Roulette, certain changes
were made to the traditional game. Some were necessitated by
computer mechanics; some others were merely my choices. Likely
as not, Mark Twain, that champion of the riverboats of old would
approve. Hopefully, you will too.

PLAYING ROULETTE

You can bet on any number—zero through thirty-six—and if
the number that comes up is the same that you entered you win five
times your bet. You may also bet on the color, red or black. There
are twelve red numbers and twenty-five black ones; the computer
knows which are red because they are the ones that can be evenly

206

divided by three. If your choice of color is the right one your bet is
tripled. If not you lose twice what you bet.

Two other betting options include odd/evens and high/low. If
you do guess correctly on whether the number that comes up is odd
or even, you win double; otherwise you lose your bet. The high
range of numbers is all of those above eighteen, and low is con-
sidered those from zero through eighteen. A win or a loss in this
case is even money, bhased on your bet.

After you have placed your markers on each of the four
options—you can pass on any of them—you are asked to input your
bet. The computer-cum-croupier then spins the wheel. Up comes
the results, your winnings (or losses) are tallied, and the game goes
on.

To retire and leave town with your winnings, enter a zero bet.
The program will ask you if naught was intended; if your answer is
affirmative, the game will end. Because there is a variety of options
posed, such as this, there is a rather intelligent error-checking
feature in the program. A lot of the fun in playing Roulette, as
provided here, is in seeing the variety of messages that will be
printed following careless keystroking.

Computer gamesmen will take notice that this is solitaire, and it
ends only on command (the zero bet), with no replay option. These
are departures from normal, and there are a few others inside of the
program itself. In the study that follows some of its concepts are
useful for other game programs.

PROGRAMMING ROULETTE

This program is iengthy but not particularly complex. Its design
serves as an example of making tradeoffs of conciseness in favor of
simplicity. Much of its length is caused by the amount of dialog
needed, but there is also quite a lot of redundancy in its procedures.
The program’s structure is shown by the template in Fig. R-1.
Because the drawing is uncluttered it will serve nicely as a tour map
through the labyrinth of coding that makes up Roulette.

Initialize (10— 100)

First of significance is line 35. The name M is symbolic for
money. In this case there are five workers defined. Each of the first
four are for options calculations, and the fifth spot in table M is for
totaling the others into. The only other task that is accomplished by
this block of coding is permitting an optional printout of the game’s
brief description. That’s next.

207

70 3000
INITIALIZE END OF GAME
100 3090
7700
110 ERRORS
DESCRIPTION 7000 /7800
220 PLAYER INPUT
7560 7300
59 | ~~~__| FORGOTTEN
555 8000 RULE
WHEEL 7950
MAINLINE WHEEL
270 N 8350
6000
READ
THE WHEEL
6210

Fig. R-1. Program template for Roulette.

Description (110-220)

There is nothing exotic here—just thirteen print statements.
They are either executed or not, depending on the two conditionals
back up in lines 60 and 70.

Mainline (225-270)

Line 225 was inserted for debugging reasons. Here the M (for
money) accumulator is zeroed so that if, while on a bug-chasing
expedition, a vectored start is done, M will be reset (it should begin
with zero automatically whenever the program is first loaded). The
rest of the mainline is simply three subroutine jumps, with a loop
back through them caused by the GOTO 230 that is in line 270. The
calling sequence of lines is 7000, 8000, then 6000. (That is also the
order shown in the template.)

Player Input (7000-~7590)

After the prompt-line PRINT: “number (0—36) ”—the player
is supposed-to pick a number, if that is his or her choice. The variable
A is preloaded with 99, just in case a number is not typed in. From
line 7020 through 7060 whatever is typed is qualified; and if nothing
was the error-checking is bypassed. (This works because of the

208

ninety-nine test case necessary because zero is a valid player’s
choice.)

Line 7060 asks for a one-letter code—B for black, or R for red
— and the input will be accepted into B§. If the player wishes not to
bet on a color, and enters nothing the preloaded space code in B$
(done by line 7065) will let the program bypass the color-coding
logic.

Forgotten Rule

That business of testing @$ for an N character (lines 7070
through 7084) has to do with the “forgotten rule.” All of this adds a
bit of amusement and overcomes the problem of having too long a
description for one page on a sixteen-line CRT. The reason an N is
tested for: if the player had said yes when asked whether the
description should be printed this trick will fetch the rest of it. A
glance at line 7082 shows that if used it can only happen once,
because @9 is overwritten with an N to forget forever the forgotten
rule.

Red or Black

Back to B$. Line 7090 accepts the color choice, and lines 7100
through 7140 insure that either nothing, a B, or an R is typed. If
nothing was typed, the numeric variable B is loaded with a nine; if
black, the B code is a one; if red, B is made a zero.

Odd or Even

The choice about odd or even is next, beginning in line 7200.
This is procedurally like the previous option. The typed response
goes into C$ and the numeric C is loaded with a nine for pass a one
for odd, or a zero for even. One feature that was added to this option
after watching others play Roulette for awhile is in line 7235. Too
often novice operators seem confused about the letter O and the
number zero. This trick eliminates any quandary. Either character
will be accepted, and interpreted to mean O for odd. You and I and
the computer know the difference between 0 and O; but why bore
others?

High or Low

The fourth option—high or low—is also a redundant scheme.
The prompt is in line 7320, and the input is followed by IF-THEN
statements that make explicit tests for a blank, anH or anL. D$ is
the alpha variable this time, and numeric D is coded with a nine to

209

pass, a one for high, or a 0 for low. As in the preceeding options, if
the explicit tests fail, a GOSUB 77001is activated to sound the alarm.

Error inputs

Each time a mistake is made, one of the smart remarks from
the DATA strings in lines 7700 through 7720 is printed. This
subroutine works as a perpetual READ loop. The trailing asterisk
character denotes the end of the list; when encountered a final
message is output and arestore is used to restart the list. It is funny,
in play. The list is compiled so as to imply that the computer’s
patience is being sorely tried. Back to the norm.

The Wager

All that remains of player input is to “place your bet.” Line 7430
asks for a dollar amount, which will be received into X after the
receiver is set to zero (in line 7435). Nearly anything is tolerable at
this point. A negative entry would not make much sense; so line
7460 will say “IMPOSSIBLE” if that ever happens. A pass or a
typed-in zero at this point could mean the player wishes to quit
playing. Line 7490 attempts a bit of intimidation, and asks if the
player really does want to stop. If so, following the machine’s retort
(Thank Goodness), a branch is taken to line 3000 to wrap up the
game. But maybe the zero was unintentional: THEN BET SOME
MONEY.

A single bet of over $10,000 is considered unreasonable but
anything less will allow a RETURN. Time out now. The markers are
down, and the bet is made, so... roll it!

Wheel Spinner (8000—8350)

A pair of concentric loops are used at the start of this routine to
simulate a wheel, coasting to a stop. A period character is printed
between the two loops (with a leading space). The outside loop
(lines 8010 through 8050) executes ten times, and the inside loop
(lines 8020 through 8040) steadily increases in duration by a factor of
ten times, the iteration count then in J (the outside loop’s control
variable). In execution this does appear something like a wheel
coasting to a stop.

In line 8060 the wheel has stopped, and Al is loaded with a
random number that supposedly shows where the ball has landed.
To heighten the realism a final space, a period, and the A1 value are
displayed, all seemingly as a continuation of the wheel spinner loops.

The result inA1 is tested for whether it is odd or even. This is
done by lines 8100 through 8110, and 8240 through 8250. Depend-

210

ing on the number’s parity, either a one or a 0 is loaded into C1
(coinciding with C, which is where the player’s code is stored).

Using a very similar technique, but dividing by three, the
wheel’s number is checked for red or black. The code of one or zero
is again used,but this time it is placed in BI by line 8140 or 8260.
Again there is a correspondence: the player’s marker is in B.

The rest of the 8000-series coding does the printed output of
the color, the parity, and whether the number is high or low. Notice
that there is one exception—since zero cannot be divided, it is
checked for explicitly; when it occurs the single PRINT in line 8280
does it all.

Read The Wheel (6000—6210)

A rather rote scheme does the comparisons of what the player
chose with what the wheel spinner wrought. Each of the fields, A
through D, are compared to their counterparts (41 through ADI),
and for each matching pair a calculated score is placed into M(1)
through M(4). Notice that in lines 6000, 6040, 6090, and 6140 the
pass trigger (ninety-nine or nine) is tested for; if found, that option is
not qualified any further. (This works because fable M is cleared
back in the mainline prior to each round of play.)

Lines 6190 through 6196 include a table tally that totals into
M(5), and line 6200 outputs the score for this spin and the money
that has been accumulated thus far—whether it’s your's or the
machine’s.

THE PROGRAM

10 REM "ROULETTE"

20 REM

30 G0SUB 9000

35 DIM M(5)

40 PRINT "WANT A DESCRIPTION (Y OR N)"3
50 INPUT a%

60 IF @% = "N" THEN 225

70 IF @% = "Y" THEN 110

80 PRINT "PAY ATTENTIONs I SAID (Y OR N)"
90 PRINT
100 GOTO 40
110 PRINT "ROULETTE GAME"
120 PRINT " BET ON A NUMBER (D-3&)"
130 PRINT " BET ON A COLOR (RED/BLACK)"
140 PRINT " BET NUMBER 15 ODD OR EVEN"
150 PRINT " BET NUMBER IS LOW OR HIGH"

211

160
170
175
180
190
200
210
221
225
23N
237
234
23h
240
25it
24{
270
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
5999
&000
60015
6010
6020
6030
6040
6050
60460
6070
6080
6050
6100
6140
6120
6130

212

PRINT M (0-18, 19-36)

PRINT "RESULTS OF BETTING ARE:"
PRINT

PRINT ",.NUMBER......WIN..... LOSE.."
PRINT " NUMBER BET X 5 BET®
PRINT " COLOR BET X 3 BET X 2"
PRINT " ODD/EVEN BET X 2 BET"
PRINT " HIGH/LOW BET BET"
LET M =20

FRINT

FORI =1T053

LET M{I) =0

NEXT 1

GOSUB 7000

G0SUR 8000

GOSUB 6000

6070 230

PRINT “END OF GAMEs "3

IF M < O THEN 3060

IF M > 0 THEN 3080

PRINT "WE'RE EVEN."

PRINT

END

PRINT "PAY THE HOUBE $"ABS(M)
GOTO 3040

PRINT "YOU'RE LUCKYs COLLECT $"ABS(M)
GOTO 3040

REM "READ THE WHEEL"

IF A = 99 THEN 6040

IF A {> A1 THEN 6030

LET M(1) = X#5

GOTO 6040

LET M(1) = 0-X

IF B = 9 THEN 46090

IF B <> B1 THEN 6080

LET M1 = M1+3%X

GOTO 6090

LET M(2) = 0-2%X

IF € = 9 THEN 6140

IF C <> C1 THEN 6130

LET M(3) = 2#X

GOTO 6140

LET M(3) = 0-X

6140
6150
6160
6170
6180
6190
6192
6194
6196
6200
6210
6999
7000
7005
7010
7020
7025
7030
7040
7050
7060
7065
7070
7075
7080
7082
7084
7090
7100
7110
7120
7130
7140
7150
7160
7170
7180
7190
7200
7205
7210
7220
7230

IF D = 9 THEN 6190
IF D <> D1 THEN 6180

LET M(4) = X
60T0 6190
LET M(4) = 0-X

FORI =170 4

LET M(5) = M({5)+M{I)

NEXT I

LET M = M+M(5)

PRINT "THIS TURN $"M(5)" TOTAL $"M
RETURN

REM "PLAYER INPUT™

PRINT "NUMBER (D-36)"j

LET A = 99
INPUT A
IF A € 0 THEN 7040

IF A = 99 THEN 7060

IF A € 37 THEN 7060

GosUB 7700

G070 7000

PRINT "BLACK/RED (B OR R)"}
LET Bg =" "

IF @$ = "N" THEN 7090
PRINT

GOSUR 7900

LET @% = "N"

60707060

INPUT B$%

IF B$ = " " THEN 7450

IF B$ = "R" THEN 7190

IF B$ = "B" THEN 7170
GOSUB 7700

60TO 7060

LET B =9

60TO 7200

LET B =1

G070 7200

LET B =20

PRINT “ODD/EVEN (0 OR E)"i
LET C$ = " ¥

INPUT C$

IF C$
IF C$

" " THEN 7270
"0" THEN 7290

213

7235 IF €% = "D" THEN 7290
7240 IF C$ = "E" THEN 7310
7250 GOSUB 7700

7260 GOTO 7200

7270 LET C = 9

7280 GOTO 7320

7290 LET C = 1

7300 GOTO 7320

7310 LET € = 0

7320 PRINT "HIGH/LOW (H OR L)"3

7325 LET Dg = " *

7327 INPUT D%

7330 IF D$ = " " THEN 7380
7340 IF D$ = "H" THEN 7400
7350 IF D$ = "L" THEN 7420

7360 GOSUB 7700

7370 6070 7320

738D LET D = %

7390 60TO 7430

7400 LET D = 4

7410 GOTO 7430

7420 LET D = 0

7430 PRINT "BET $"j

7435 LET X = O

7440 INPUT X

7450 IF X => 0 THEN 7480

7460 PRINT "IMPOSSIBLE"

7470 GOTO 7430

7480 IF X <» 0 THEN 7560

7490 PRINT "COWARD...WANT TO QUIT (Y OR N)"
7500 INPUT J$

7510 IF J% = "N" THEN 7540

7520 PRINT "THANK GOODNESS"

7530 60TO 3000

7540 PRINT "THEN BET SOME MONEY"

7550 60TO 7430

7560 IF X < 10000 THEN 7590

7570 PRINT "LET'S BE REASONABLE"

7580 6OTO 7430

7590 RETURN

7697 REM "ERRORS"

7700 DATA OOPSs CAREFULs HEY'!'s PLEASE!!
7710 DATA FUN-N-Ys HEADS-UPs ONCE-MORE

214

7720 DATA STOP-ITs LAST-CHANCE, *

7730 READ X%

7740 IF X% <> "#" THEN 7790

7750 PRINT "YOU'VE EXHAUSTED MY PATIENCE.."
7760 PRINT " NOW PLAY RIGHT!"

7770 RESTORE

7780 RETURN

7790 PRINT X%

7800 RETURN

7899 REM "FORGOTTEN RULE"

7900 PRINT "I FORGOT TO EXPLAIN: RED NUMBERS"
7910 PRINT " ARE ANY EVENLY DIVISIBLE BY 3"
79:0 PRINT " ANDs TO SKIP ANY ENTRY DON'T"
7930 PRINT " ENTER ANYTHING."

7940 PRINT

7950 RETURN

7999 REM "WHEEL SPINNER"

8000 PRINT "SPINNING ."i

8010 FORI = 1 T0 10
8020 FOR J = 1 TO I#10
8030 NEXT J

8040 PRINT " ."i

8050 NEXT I

8055 PRINT

8060 LET A1 = INTCIDO%RND(1))
8070 IF A1 > 36 THEN 8060
8080 IF A1 = O THEN 8280

8090 PRINT ™ ."A1" "3

8100 LET C1 = INT(A1/2)

8110 IF A1-Ci%2 = 0 THEN 8240
8115 LET C1 = 1

8120 LET B1 = INT(A1/3)

8130 IF A1-Bix3 = 0 THEN 826D
8140 LET B1 = O

8150 IF B1 <> O THEN 8200
8160 PRINT " BLACK"3

8170 IF C1 <> O THEN 8220
8180 PRINT " EVEN"3

8190 G070 8330

8200 PRINT " RED":

8210 60TO 8170

8220 PRINT " ODD"3

8230 GOTO 8330

215

8240
8250
8260
8270
8280
8290
8300
8310
8320
8330
8340
8342
8344
8346
8348
8350
000
2010
9020

216

LET €1 = O

60TO 8120

LET Bt = 1§

G0TO 81%0

PRINT " . O BLACK EVEN LOW"
LET B1 = O

LET C1 =0

LET D1 = O

RETURN

IF A1 € 19 THEN 8346
LET b1 = 1

PRINT " HIGH"
RETURN

PRINT " LOW"

LET D1 = O

RETURN

REM "RANDOM NUMBER ROUTINE"
LET Z = RND(1)
RETURN

States

This game was stimulated by a ten year-old with an intense dislike
for geography. He was supposed to learn the names of the states
and their relative placements, and he liked to play games on the
computer. So. ...

The States program holds in memory the two-letter abbrevia-
tions of all fifty names. These are the same abbreviations that are
acceptable to the post office. The complete list can be found in
nearly any almanac for recent years.

The program also knows a clue about each state. There are ten
clues in all, and for the most part they have a boundary or border
connotation. For example, Alabama (AL) has a shoreline on the Gulf
of Mexico. If the clue that is printed is GULF, a player might guess
AL. If the guess is correct he or she then “owns” that state; if not,
he or she simply loses the turn to the second player, who may then
guess which other state it is that the computer is holding.

As the players watch each other’s guesses one should eventu-
ally score. The program then moves the state to that player’s
account, and picks another from the shrinking list. The first player to
own the names of ten states wins the game.

Although there are fifty states, the ten clues are not evenly
distributed at the rate of five states per clue. One of the clues is
ATLANTIC. Fourteen different states will prompt that clue. At the
other end of the scale, only one state (WV) will trigger CHARLES-
TON clue. The ten clues and their relative distributions are as
follows.

217

PACIFIC 3
ATLANTIC 14
CANADA 5
MEXICO 3
GULF 4

LAKES 6
REMOTE 2
RIVER 5
WESTERN 7
CHARLESTON 1

Variety abounds in this business, and the clues and their actual
assignments were all my own whims. You may agree, or you may
wish to coin other clues or assign them differently. The design of the
States program makes it easy to vary these things—handy when
some players get most of them down pat.

In fact, an advantage of having this program in your library is
the variety of games that can be spun off of it. Other lists—the
nares of the months, astrological signs, psalms, and so on—can be
easily overlayed with their own sets of clues. All of the driving
mechanics of the program are insensitive to the names that are
being guessed.

There is value offered by this program for other reasons also.
The method used for accepting player inputs can be useful in a
variety of programming problems. The method that is used is
described best in conjunction with a look at the overall structure of
the States program.

THE STATES TEMPLATE

For the most part our usual architecture prevails in this prog-
ram. Looking at Fig. S-1thereis a bit of difference on the far right. It
has to do with keyboard entries from the players. As announced in
the game’s instructions, whenever the program stops to allow the
player to enter something from the keyboard, two optional requests
may be made.

If the player types the word ALL, the program will print out all
of the states. The remaining master list is shown as well as each of
the two account files. After the lists are printed the program recov-
ers to the entry point where it was when the ALL request was
made.

The other option that is possible is to end the program. To do
so the player simply types END. The program will acknowledge the
request with a personalized signoff message, then terminate.

218

10 1000
INITIALIZE INSTRUCTIONS
90 1160
2000
INTRO-
DUCTIONS
100 ””””—2160
START GAME
3000
120
I LOAD STATES
3320
X 7000
ALLINPUTS
7000 080
GET A STATE
130 -——””’—4080 8000
MAINLINE PRINT "ALL"
5000
310 2180
I~ PLAYER INPUT
6000
2230 I~ auaury
GUESS
6080

Fig. S-1. Program template for States.

As indicated by the template these requests may be made (1)
after the instructions are printed, (2) while the players are introduc-
ing themselves to the computer, or (3) at any time while the game is
in progress. All of which depends on the design technique of jumping
to a common module to accept keyboard entries. There the
keywords ALL and END are tested for and acted upon, or whatever
else is entered is passed back to the calling sequence.

In a rather primitive way this design scheme is comparable to
that used by system programmers for detecting and dispatching on
“system commands.” In concept at least this is how your system
works when you command it to run, list, save, edit, or whatever. In
some other areas in the States program I have borrowed from
system programming methods also. Those tricks can be seen in the
program’s internals.

STATES INTERNALLY

Beginning in line 40 the program listing declares several work
areas. The large alphanumeric table, S$, is sixty elements deep.

219

This table is set aside for the fifty names, plus the ten clue words.
The two ten-element tables known as P1$ and P2§ are the “account
files.” As each player correctly identifies the name of a state its
abbreviation is moved into that player’'s own table.

Inline 50 there is another large table (C), used to hold fifty code
numbers. This table will be looked at again a little later, where it will
be seen to correspond with the fifty states’ names; one C field being
used for each state’s clue code.

The remaining pair of workers are labeled X. By use of table-
subscripting techniques the players’ scores can be added into these
two workers while within a looping sequence. More about that later.

The two GOSUB statements in lines 100 and 110 are for
setting up the game. The first will jump to line 2000 for the introduc-
tions and the second to line 3000 for building the master list with the
names of the states.

During the players’ self-introductions the first use of the com-
mon inputs module can be seen. At the point in the dialog that their
names are supposed to be typed (lines 2030 and 2050) the program
does a jump to line 7000. Whatever is typed into @8 there is
returned here for movement to the players’ own worker, either P1§
or P2§. If the data that is brought back is a space character, either
that is what was typed, or the ALL option was exercised. Either
way an empty @ is useless; so line 2034 or 2054 will again ask for a
player’s name.

Lines 2060 through 2100 take care of making sure that the
players’ nicknames are alphabetic, at least in the first character
position, and that the two names are visually different. If they didn’t
look different you would not be able to tell one from the other; all
printed player references are done on a strictly personal basis. This
tends to prove that people do not always have to be reduced to
numbers just for the benefit of computers.

The rest of the subroutine that does the introductions business
is also responsible for choosing which player gets to go first. This is
done by the brief random-number sequence from line 2110 to line
2160. A single random integer is looked at, and P (the player control
variable) is loaded with either a one or a two. If the number that is
fetchedis less than five the player that is known internally as number
1 will get to go first. If the random number is larger than five player 2
will be first up.

The other part of setting up a game has to do with loading the
states’ names and their clues into tables. The DATA series that
begins in line 3000 includes each state’s abbreviation, followed
immediately by its corresponding clue code. The last ten DATA

220

elements are the clues themselves. Looking at this arrangement of
DATA and the logic that follows it can be seen that anything could be
defined here, allowing for other than the names of the states.

The RESTORE inline 3200 s to condition the READ pointer to
the beginning of the list. The loop from line 3210 to line 3230 reads
the first 100 DATA values, two at a time, and places the names inS$
and the numbers in fable C. Because the I variable is used concur-
rently the names and the codes will have a one-to-one correspon-
dence in the two tables.

Immediately following this loop is another. When the first is
completed the READ pointer should be established at the first clue
word. The FOR expression in line 3240 is begun with 51 so that the
clues will begin loading into the S$ table from locations 51 through
60. The reason for using two loops is, of course, because there are
no code numbers needed after the clues. The first loop reads two
values. The second reads only one at a time.

From lines 3270 through 3300 another loop is used. It runs ten
times and blanks out the two account files. The final act in game
initialization is in line 3310. Worker H$ is for holding the name of the
state that the program picks out at random. The reason that it must
be space-illed is that conditional calls are made to “GET A
STATE”. The jump to line 3000 is only made whenever H$ be-
comes empty.

All of the lines from 4000 to 4030 are involved in picking a
random number of from one to fifty. This value is used as a subscript
in line 4040 to load H$ with a state’s abbreviation (from fable S$).
The same value is used to pick up the corresponding clue code from
table C, which is then used to obtain the clue itself.

When the clue code is obtained, if it is a negative number, the
conditional in line 4050 causes a different state to be picked. If the
code is negative it got that way during the course of play—when a
player wins a state that state’s code number is replaced by a
negative form of the player’s number. This works to mark the state
as owned; yet it can still be printed in the ALL mode. The code
switching business is done in player input (lines 5000 through 5230).

One of the player’s names is printed by either line 5010 or
5020, depending on the content of P, which should have either a one
or atwo init. Then, out of line 5040, a jump is made to line 7000 to
permit the player to type a two-letter state name. The space test in
line 5050 is similar to the one described before: if a blank is returned
the same player is again asked for input.

Line 5060 checks if the player’s guess is correct. If it is line
5070 replaces the clue code. This trick is often used in the design of

221

compilers and assemblers. The number in its absolute form is still
useful, but marking it with a positive or negative sign makes it
possible to have distinguishing characteristics—without otherwise
corrupting it.

The series from line 5080 to 5140 is a FOR-NEXT loop that is
used to move the state to the next available slot in the player’s
account file. The series from line 5170 to line 5190 is an extension of
the same routine, needed to act on fable P2$ instead of P1$. When
working in either area, if the FOR-NEXT loop expires by running a
full ten times the added message “AND YOU WIN” follows the
printing of the player’s current score.

Line 5200 is the point at which execution is branched to if the
player’s guess does not match the state being held in H$. An
immediate jump is made to line 600 to qualify whatever it was that
was typed into @3.

The first thing to be checked for is whether the input guessisin
fact the correct abbreviation for some state. A FOR-NEXT loop
lines (6000 through 6020) is used to scan down table S§, comparing
Q$ with each name, one at a time. If the loop ever does run beyond
fifty times with no match @§ must be bad. If it is @8 is cleared; and
when the program returns to the calling sequence the player will be
allowed to guess again.

Another possibility is that the abbreviation is a valid one but one
that has already been played and won by one of the two players. This
is where that negative code comes in handy, again. Line 6030 looks
for this condition; if found, line 6070 prints an “ALREADY OWN-
ED"” message. Like the “INVALID"” one 3 is sent back empty to
let the player try again.

The remaining routine is that called print all. The only jump to
line 8000 is that coming from line 7030 (in the all inputs routine); yet
this subroutine expects to be called upon nearly any time.

This is where finally the two-element table called X is used. As
the loop from line 8020 to line 8060 runs, whenever a state’s
corresponding code field is negative, that state is temporarily skip-
ped during the printout. As the mass printing is going on, however,
the absolute value of the code (one or two) serves as a subscript to
increment one of the X counters.

Two more loops are used then, conditionally, to print out the
states that are marked as belonging to each of the players. Both
loops are set to run according to the X counter, and the names
themselves are obtained from the respective player’s file.

By now you will have noticed that it really doesn’t matter what
it is that is stored in fable S$. Taken just as is States can be fun and

222

educational; and the program’s design can be used for more than just
for geography. However it is used it is worthwhile—it can make
learning fun—for children and adults.

THE PROGRAM

10
20
30
40
5L
&
70
B0
2@
100
110
1210
130
140
150
160
170
18&it
190
200
210
270
23
2401
250
240
270
281
290
o
310
100
1010
1020
1034
1040
105§
1060

REM
REM
GOSUR
DIM 5%
pIM C(
PRINT
INPUT
IF @%
GOSUR
GOSUB
GOSUR
PRINT
IF H$
GOBUR
IF p =
G0SUB
LET P
IF I =
GOTO 1
GOSUR
LET P
GOTO 1
FRINT
INPUT
1F 8%
FRINT
END
PRINT
INPUT
IF Q%
GOT0 1
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

STATES"

J000

(60)s P1$010)s P23(1D)

S0)s X(2)

"WANT INSTRUCTIONS (Y OR N)"j
Q%

= "N" THEN 100

1000

2000

3000

<> " " THEN 150
4000
1 THEN 200
5000
=1
10 THEN 23D
30
5000
an
"ANOTHER GAME (Y QR N)"3j
0%
= "Y' THEN 280
"GOOD-BYE "P1$"s AND "PZ$

"SAME PLAYERS (Y OR N)"i

04

= "Y" THEN 110

oo
"I KNOW ALL 50 STATES BY THEIR"
"2-LETTER ABBREVIATIONS. I°LL"
"PICK ONE AND GIVE YOU A CLUE."
"YOU TAKE TURNS TRYING TO GUESS"
"THE STATE. THE FIRST PLAYER TO"
""OWN’ 10 STATES WINS."

223

1870
1080
1090
1400
1140
14120
1130
1140
1150
1140
1999
200
20410
2070
20a0
2032
2034
2040
2050
2052
2054
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2999
3000
3010
3020
3030
3040
3050
30460
30711
3080
3090

224

PRINT "FOR A LIST OF THE STATES TYPE"
PRINT " 'ALL' (ANYTIME)."
PRINT

PRINT "TO END THE GAME TYPE"
PRINT " 'END’ (ANYTIME}."
PRINT

PRINT "READY"$

GOSUR 7000

PRINT

RETURN

REM "INTRODUCTIONS"

LET M1$ = "PLAYER #"

LET M2$ = "s WHAT IS YOUR NAME"
PRINT M1$"1"M2%

GOoSUR 7000

LET P1% = g%

IF @$ = " " THEN 2020

PRINT Mi$"2"Mi%

GUSUR 7000

LET P2% = @%

IF @ = " " THEN 2040

IF P1% ¢ "A" THEN 2090

IF P2% < "A"™ THEN 2090

IF P1% {» P2% THEN 2140

PRINT "PLEASE TRY AGAIN."
GOTO 2020

LET P = INT(1D#RND(1))

IF P {5 THEN 2150

LET P = 2

RETURN

LET P = 1

RETURN

REM "LOAD STATESM

DATA ALs5+AKs73AZ2s43AR+85CAs1
DATA COs9sCTs23DEs2sFL353GA2
DATA HIs7:1Ds3sILsb6sINsb6s1A+8
DATA KS:PsKYs8sLAsSsMEs2sMDs 2
DATA MA:2sMIsbsMNs34MEs5sM0:8
DATA MT+3sNEsPsNVs2sNHs2sNJs 2
DATA NMs4sNYs2sNCs2sNDs3s0Hs6
DATA OK+F30Rs1sPAs63RIs2:5C+2
DATA SD1F3sTNs8sTXs4:UTsPsVT:3
DATA VA:2:sWAs1sWVs10sWIs6sHY

3100
3110
3120
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3315
3320
3999
4000
4010
4020
4030
4040
4050
4060
4070
4080
40%0

4999
50150
50113
5020
5040
5040
S05(:
50s1
5070
SOLN
S09()
5140
5110
5170
5174

DATA PACIFICs ATLANTICs CANADA
DATA MEXICOs GULFs LAKESs REMOTE
DATA RIVERs WEGSTERNs CHARLESTON
RESTORE

FOR I = 1 70 50

READ S$(I)s C(ID

NEXT 1

FOR I = 51 TO 6D

READ 5%(I)

NEXT I

FOR'I =1 T0 1D

LET P1s(Dd e

LET P2%(D)
NEXT 1

LET H$ = " ¢
LET I =208
RETURN

REM "“GET A STATE"

LET H = INT(100%RND(1))+1
IF H =< 50 THEN 4040

LET H = INT(H/2)

IF H < 1 THEN 4000
LET H$ = 8%(H)

IF C(H) < D THEN 4000
LET X = C(H)

LET C% = 8%(X+3D)
PRINT C%

RETURN

REM "PLAYER INPUT"
IF P = 1 THEN 5030
PRINT P2%:

G60TO 5040

PRINT P1%i§

GOSUR 7000

IF @% = " " THEN 5000
IF @$ <* H$ THEN 5200
LET €(H) = 0-P

FORI = 1 T0 {0

IF P = 14 THEN 5170

IF P24(I) <> " " THEN 5140
LET P2%(1) = H$

PRINT "YOU NOW OWN"I
LET H$ = »

225

5125
5130
5140t
515{1
5160
5170
5180
5190
5200
5210
52720
5230
5999
6000
6010
601
6075
6030
615
&040
6050
&055
6060
&070
6080
6959
7000
7010
7azu
7040
7040
7050
7060
7070
7080
7999
&0no
8010
8015
80z0
8030
8040
8045

226

IF I = 10 THEN 5150

RETURN

NEXT I

PRINT “AND YOU WINY

RETURN

IF P4$CI) <> " " THEN 5140

LET P1%(1) = H$

6070 5120

605UB 6000

IF @% = " " THEN 5000
PRINT "SORRY"

RETURN

REM "QUALIFY GUESS"
FORI =1 T0 50

IF @ = 5%(I) THEN 6030
NEXT 1

GOTO 6040

IF C(I)> < O THEN 6070
GOTO 6052

PRINT "INVALID"

LET @¢ = " *

LET I =10

RETURN

PRINT "ALREADY OWNED"
GOTO 6050

REM "ALL INPUTS"

LET @ = " "

INPUT @6

IF @% <> "ALL" THEN 7060
GOSUB 8000

G0TO 7000

RETURN

IF @% <> "END" THEN 7050
PRINT "B0 LONG "Pi%$"s AND "P2%
END

REM "PRINT ALL"

LET X{4) = O

LET X(2) = O

LET J =0

FOR I =1 T0 50

IF C(I) > O THEN 8050

LET X(ABS(C(I))) = X(ABS(C(I)))+1
GOTO 8060

8050
8052
8054
8056
8058
8060
8070
8074
8076
8080
80%0
8100
8110
8120
8124
8126
8130
8140
8150
8160
8170
8180
000
9010
2020

PRINT Ss(I)" "§

LET J = J#1

IF J < 11 THEN 8040
PRINT

LET J =20

NEXT 1

IF X(1) = O THEN 8120
PRINT

PRINT

PRINT P1$ " HAS"X{1)
FOR I =1 TO X(1)
PRINT P4gCI}" "3

NEXT 1

IF X¢2) = 8 THEN 8170
PRINT

PRINT

PRINT P2%" HAS"X(2)
FOR I =1 TO X(2)
PRINT P2$(I)" "3

NEXT 1

PRINT

RETURN

REM "RANDOM NUMBER ROUTINE"
LET Z = RND(D)

RETURN

227

HIT?
>21 WWh G

TIE
o =21
4 oOp \36‘
\‘, s ©
¢ BET $1
WIN $2

Twenty1

Nearly everyone has played this card game, which may be better
known by its other name, blackjack. By either name, so too, has
nearly every programmer written at least one program to play it.
Most of us have programmed it several times, several different
ways, and perhaps in different languages. Here is yet another.

The first time that you do it the game’s mechanics provide an
interesting programming challenge. After that it is sometimes more
of a challenge to find something else challenging about it rather than
the rote mechanics of dealing the cards and tallying their worth.
That can become old hat in short order.

My enthusiasm for this iteration was finally rekindled by the
challenge of conceiving a new card-deck management scheme.
Which does tend to prove that, no matter how tiring some problems
seem, if we ponder long enough, the fun of designing novel solutions
to them can still be had.

THE DECK

There are four suits in a regular deck of playing cards. Without
any special regards for which is which (in this game it doesn’t
matter), each suit is assigned one of the numbers one, two, three,
or four. For graphic purposes, the assignments used here are, in
order: hearts, spades, diamonds, and clubs.

Each suit has thirteen cards. There is an ace, the numbers 2
through 10, ajack, a queen, and aking. In contrast to the suits which
have a code number assigned to them physically the individual card’s

228

values are logically assigned. This is achieved by using a table that is
thirteen elements deep, each element being reserved to hold four
suit codes.

The first position in the table represents all four aces. The next
position down is for the twos, the next is for the threes, and so on.
Notice that the card values themselves can be derived from the table
element’s position rather than from an actual code number.

The dealing mechanism uses a random number (between one
and thirteen) to look into the table at a relative position (from the
top). What it may find there is 1234. Or it may find4321, or2314, or
3124, or something similar.

When a new deck is built the suit codes are randomly jumbled,
one code for each suit all packed together, and the resulting combi-
nations are moved into the table, one line at a time. Each line’s
combination is individually scrambled, but each set is comprised of
the four digits 1,2,3, and 4.

During the course of play, as the cards are dealt, the suit codes
are removed from the table one at a time. The algorithm that does
the dealing first picks a random number of from one to thirteen. That
number is then used as a subscript to access an element of the table.
Next, the low-order (rightmost) digit of the code set is removed and
the remaining digits are shifted to the right by one position. The
shortened result is put back into the table at the same location from
which it was taken.

The number that was removed (shifted out) is used in conjunc-
tion with the accessing subscript to represent the card then being
dealt. To get the alphanumeric PRINT values, a DATA structure is
used, and a READ to obtain the corresponding card’s name. The
suit’s name is obtained by use of it's code, picking up the name from
a four-field table of alphanumeric constants. The exact mechanics of
decoding the cards will be seen more clearly in the program’s listing.
Before that, however, there is an aspect of this deck-storage
scheme that deserves recognition.

A DESIGN AUDIT

Remembering that the four codes that denote the suits are re-
moved, one at a time from each field in the deck, eventually the
elements are zeroed out. The subroutine that randomly selects one
of the thirteen fields is constructed so that if one element is empty
another must be looked at. Obviously, as the deck is used up, more
and more of the elements have all zeroes — thus, the longer it takes
to find a number. When there is but one code left, in only one of the
elements (meaning fifty one cards have been dealt), it can take a
while to find that last card.

229

Whether the length of time is too long or not is a matter of
judgment. In my experience the wait has been quite acceptable.
Before the design was fully committed, however, I used an audit
mechanism that can be used in a variety of situations.

A special-purpose variable is allocated for saving the loop count
at the point a card code is found. Beginning with a newly constructed
deck the very first attempt has to be valid so the auditor will contain
a one. From then on, continuing as long as the program is active,
every time the dealer subroutine is executed, if the loop count
exceeds that previously attained, the auditor is updated with this
higher number.

The following logic does this, using A8 as a temporary counter
and A9 as the auditor.

LET A8 = A8+1 (increment the counter, each loop)
IF A9 > A8 THEN (skip a line)

LET A9 = A8 (overwrites the auditor)

Additionally, it is necessary to initialize the A8 temporary counter
with a zero somewhere preparatory to the jump to the card-dealing
sequence.

The history that is achieved in the auditor ought to be looked at
periodically. Preference can prevail as to how. lincludeda PRINT
A 9 inline immediately after it was updated; but you could instead
merely stop the program from time to time to look at the auditor.

However it is employed, this trick, borrowed from “systems
tuning” concepts, is handy in many ways. (By the way, my biggest
count to date was 204. Only rarely does it ever broach 100, how-
ever.)

PUTTING TWENTY1 TOGETHER

The layout of the program’s major pieces can be seenin Fig. T-1.As
shown in the drawing, after the program is initialized and after the
mstructions option is allowed, the program proceeds to set up the
game. The principal set up task is to create a deck of cards in
memory. The drawing also shows that the new deck module may be
called later if, as the cards are being dealt, the deck becomes
depleted.

In the center of the template there is a major module for the
human’s play and another for the computer’s play. At the start of a
round these two tasks are called by a sequencer that cycles until

230

10 1000

INITIALIZATION INSTRUCTIONS
170 1150
180 2000
SET UP GAME NEW DECK
230 2170

4400

HUMAN'S PLAY

/ 4520 :]\
240 4000 3000
FIRST 2
MAINLINE CARDS DEAL A CARD |

620 4080] 3340

4800

COMPUTER'S
PLAY
4950

Fig. T-1. Program template for Twenty |.

both players have been dealt their first two cards. From there on the
player modules are called directly from the mainline as they are
needed.

There is only the one module that serves to deal the individual
cards. An advantage of this layout is that if you want to experiment
with other deck schemes only two modules have to be replaced: the
one that creates the deck and the one to deal a card.

The program does work quite well just as presented, and
whether you decide to copy it as is or not, its internal mechanics
should be observed closely. The following descriptions are intended
to assist you in your study of Twentyl.

Initialization (10—170)

The DIM statement in line 40 establishes three single-dimension
tables. Table D has thirteen numeric elements for holding the deck.
The four-element table called S is a work area for holding the suit
codes (one, two, three, and four) during the process of shuffling
them as a set, in conjunction with the deck-building sequence.

231

The remaining table (S$) is for holding the names of the suits.
Lines 50 through 80 fill fzble S$, immediately and in the simplest way
possible. The reason a table is used rather than simple variables is
that it permits the dealer to use the suit codes as direct subscripts to
obtain the printable names of the suits.

Presumably the instructions business (lines 90 through 180)
needs no explanation. There is certainly nothing tricky there, norin
the series of print statements from line 1000 to 1140, which end with
a return to line 180.

Set Up Game (180-~230)

Symbol M if for me. T is for you. These are assigned from the
computer’s point of view, of course. These are the scorekeepers,
and that is why they must be cleared before each new game is
started. The other part of setting up a new game includes the jump
out of line 220 to build the first deck of cards.

New Deck (2000—2170)

First, the suit numbers one, two, three, and four are loaded into
tableS. The short loop from line 2000 to line 2020 does this. A pair of
concentric FOR-NEXT loops are used then to concurrently jumble
the suit codes and assemble them into groups of four as they are
placed into the deck table. The outside loop (controlled by I) man-
ages the table insertions; it runs thirteen times.

The loop that is controlled by / extends from line 2040 down to
line 2110. A random integer is used to exchange the codes in the
second, third, or fourth element of fable S with whatever isin the top
spot. The exchange process is conditioned to run four times. Fewer
than four shuffles did not seem to give much variety. Running more
than four times slows up the whole works. Four was finally settled
upon as sufficient but not excessive. It wouldn't be necessary to
shuffle them at all, but some players of Twentyl might get suspicious
if the suits appeared with a fixed regularity.

After the shuffle loop, lines 2120 through 2140 use simple
arithmetic to combine the codes together into four-digit numbers.
As a set then, they are placed directly into the deck at the location
thatis currently aimed at by the] variable. When the deck is all built,
line 2160 sets the deck’s counter (D) to zero, and the RETURN in
line 2170 is executed.

Deal A Card (3000 —3340)

Each time this routine is called line 3000 checks whether the deck
has run out. If it has, before a new deck is created, the player is

232

asked whether he wants or she wants to stop. If the answer is yes
the program terminates. Anything other than a Y will cause a jump
to line 2000 (to build a new deck of cards), and the game continues.

Line 3090 is the one responsible for incrementing the deck’s
counter. This is the same continuation point that line 3000 branches
to as each card is dealt and as long as the count has not yet reached
fifty two.

Lines 3100 and 3110 fetch a random number (two digits); if the
number that is handed up is larger than thirteen, line 3120 subtracts
thirteen from it. The branch in 3130 causes the reduced amount to
be checked, and the sequence repeats itself until a valid number is
obtained (one to thirteen).

The card number that is now in C is used in line 3140 to remove
a set of suit codes from the deck table. Before going any further line
3150 checks if the value in C is zero; if so, the pickup sequenceis run
through again. (The auditor routine that was described earlier will fit
nicely here, between lines 3140 and 3150.)

The rightmost suit code is parsed from the set that was picked
up. This is done by lines 3160, 3170, and 3180. The resulting single
digit is now in S, and S serves as the subscript to load S§ with that
suit’s name.

The DATA strings in lines 3200 and 3210 include the names of
all of the cards in ascending sequence. The FOR-NEXT loopin lines
3220 through 3240is set up to run for C times. C still has the value in
it that was used to get the suit code out of the deck. Whenthe READ
loop stops C$ will have in it the corresponding card’s name.

At this point the card is available and ready to be delivered.
Before it is output, however, C is adjusted (lines 3260 through
3270) so that the code will not be larger than ten for jacks and above,
since ten is the point value of all face cards.

Now C$ (the card) is printed along with S§ (the suit), and the
task is finished, with the card’s point value in C.

First Two Cards (4000—4080)

At the start of a round of play each of the two hands (Al and B1) are
set to zero. So are the ace counters (A2 and B2). The humanis first:
those counters are A. The dealer always plays last, so those coun-
ters are in the two B workers. Four jumps in sucession are used
then, to alternately deal each two cards, beginning with the jump to
line 4400 for the player’s first card. The final return from here will be
back to the mainline for the draw process.

Human's Play (4400—4520)
This is the first player, so, P is set to one in line 4400. Now GOSUB
3000 is invoked to get a card from the dealer, If the card that is

233

returned in C is not an ace (is not a one) life is simple. Aces can
optionally count as one or an eleven. Most of this routine’s complex-
ity has to do with managing the aces.

The first test that is made (in line 4410) is to see if the cardis an
ace. If not, will this card increase the points in A1 beyond twenty
one? If not, simply add the card to the hand and exit lines (4430
through 4440).

If a “bust” is in the making (about to exceed twenty one the
branch to line 4490 is to see whether any aces are already present in
the hand, and if so, to change their worth from eleven to one, if
possible. A2 is this player’s ace counter; if it is empty (checked in
line 4490), the player is in trouble. There is nothing else this routine
can do, however, so Al is increased anyway and the routine is
exited.

The A2 counter only keeps track of eleven point aces. If there
is a number inA2, one is subtracted from it, and the hand is reduced
by ten points (lines 4500 and 4510). Now, again, the previous try is
made to see whether the card that is being dealt will go over twenty
one.

Most of this logic is the same as when an ace is first dealt. In
that case, however, it must be immediately determined whether the
ace should be put away initially as a one or as an eleven. If eleven will
fit, as checked for in line 4450, lines 4460 and 4470 will adjust C
accordingly, and add one to the ace counter. If an eleven point ace
will not fit, it is counted as a one, and treated no differently from any
other card.

Computer's Play (4800—4950)

Whatever is fair for humans is fair for computers. Maybe that should
be restated— the other way around. Anyway, this routine is nearly
identical to the preceding one. The only difference is at the outset: if
the dealer’s hand (BI) has seventeen or more points in it, it gets no
more cards. An immediate exit is taken (line 4820).

The Draw

Back in the mainline, after the players have received their first
two cards, the human is asked if he or she would like a hit. The
option is offered in line 310, but only if A1 is less than twenty one.
Blackjacks are detected automatically by line 280. In line 270 there
is also a test to see whether both hands have twenty one already. In
the event of a tie at the outset, the dealer wins and another roundis
started. This can be seen by tracking the branches from line 270.

234

If only A1 has twenty one the dealer's draw must be gone
through. The dealer might be able to match exactly on twenty one.
The exit in this case (from line 280) is to line 510 to first print
“BLACKJACK,” then on to line 360 for the dealer’s draw. This is
the same point that the human’s hit option will finally get to when
finally, the player either chickens and says no, or goes bust by
exceeding twenty one points.

The dealer’s drawing mechanics are slightly more complex,
since there is no benefit of a human’s intelligence. The first decision
is made in line 370. If B1 is sixteen or less the dealer must draw. In
Iine 380 if the dealer’s hand ever matches the other exactly, the
dealer wins on the basis of the dealer-takes-pushes “tie” rule. The
dealer will also win at any point that the computer’s hand exceeds
the other’s (the default branch in line 415), but two other things can
happen before that.

The dealer can go bust. This possibility is checked in line 390.
The dealer canalso get lucky and get a Blackjack, as tested forinline
400. If so, the dealer needs no further cards and the exit is down
through line 420. All of those short two-and three-line sequences
below are for outputting the appropriate messages, adjusting the
scores, and routing the flow back to line 240 for another round. So
the game goes on.

THE PROGRAM
10 REM "TWENTY4™
201 REM

30 GOSUB 9000
40 DIM D(13)s 5(4)s 5%(4)

50 LET §%(1) = "HEARTE"
60 LET 8¢(2) = "SPADES"
70 LET §%(3) = "DIAMONDS"
80 LET 5%(4) = "CLupg"

20 PRINT
100 PRINT "WANT INSTRUCTIONS (Y OR N)"3
110 INPUT 0%
120 IF @$ = "Y" THEN 1460
130 IF Q% = "N" THEN 180
140 PRINT "HUH?"
150 6070 90
160 PRINT
170 GOSUR 1000
180 PRINT
190 LET M = O

235

200 LET Y =0

210 PRINT “NEW DECK"

2% GOSUR 2000

230 6070 250

240 PRINT “SCORES: YOU $"Y" ME $"M
250 PRINT

260 GOSUB 4000

270 IF A1+B1 = 42 THEN 490
280 IF A1 = 21 THEN 510
290 IF A1 > 21 THEN 470
300 LET @% = "Y"

310 PRINT "HIT"%

3200 INPUT @%

340 IF @% = "N" THEN 360
3400 GOSUR 4400

350 5070 270

360 GOSUR 4800

370 IF B1 < 17 THEN 360

380 IF Bl = A1 THEN 490
390 IF B1 » 21 THEN 530
400 IF BY = 21 THEN 420

410 IF B1 < A1 THEN 540

415 GOTO 430

4200 PRINT TAB(16) "BLACKJACK!"
430 LET ¥V = Y-1

440 PRINT TAB(16) "I WIN $1.00"
450 LET M = M+l

460 GOTO 240

470 PRINT "BUSTEDs HA HA"$

480 GOTO 430

490 PRINT TAB(10) "TIE"3

5000 GOTO 430

510 PRINT "BLACKJACK! "i

5200 GOTO 360

530 PRINT TAB(i4) "OOPS"

540 IF A1 <> 21 THEN 5%0

550 PRINT "YOU WIN $2.00"

560 LET Y = Y+2
570 LET M = M-2
5800 GOTO 240

590 LET Y = Y+1
600 LET M = M-1

610 PRINT "YOU WIN $1.00"

236

620 GOTO 240
1000 PRINT "A BLACKJACK I8 21 POINTS."
1010 PRINT " 2 THROUGH 10 = FACE VALUE"
10210 PRINT " FACE CARDS = 10 POINTS™
1030 PRINT " ACES = 1 OR 11"
1040 PRINT "WE START WITH TWO CARDS APIECE."
1050 PRINT "I AM THE DEALER."
1060 PRINT "I ALWAYS STAND ON 17 OR MORE,."
1070 PRINT "I MUBT DRAW ON 16 OR LESS."
1080 PRINT "I WIN ALL TIES."
1090 PRINT "BETS ARE $1."
1100 PRINT "BLACKJACKS PAY DOUBLE."
1110 PRINT "A DECK HAS 5Z CARDS."
1120 PRINT "THE GAME MAY BE ENDED WHEN THE"
1130 PRINT "DECK RUNS QUTs OR YOU MAY GO ON."
1140 PRINT "READY"3
1150 INPUT Q%
1160 RETURN
1999 REM "NEW DECK"
2000 FORI =1 70 4
2040 LET S(I) = 1

2020 NEXT I

20380 FOR I = 1 70 13

2040 FOR J = 1 TO 4

2050 LET R = INT(410*RND(1))
2060 IF R € 2 THEN 2050
2070 LET R = INT(R/2)

2080 LET 8 = 8(R)

2090 LET S(R) = 8(1)

2100 LET 8(1) = 8

2110 NEXT J

2120 LET D(I) = 5(1)+5(2)%10
2130 LET DCI) = DCI)+8(3)#100
2140 LET D(I) = D(I)+5(4)*1000

2150 NEXT 1

2160 LET D = 0O

2170 RETURN

2999 REM "DEAL A CARD"

3000 IF D € 52 THEN 3090

3040 PRINT "END OF DECK"

3020 PRINT "WANT TO STOP (Y OR N)"j
3030 INPUT Q%

3040 IF @$ <> "Y" THEN 3070

237

3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
31460
3170
3180
3190
3201
3210
32201
32340
3240
3450
3260
3270
3280
3300
3310
3450
3440
39yy
4000
4010
400
4010
4040
4050
4040
4070
4080
4399
4400
4405
4410
4420

238

PRINT "S0 LONG ..."
END

PRINT "NEW DECK"
GOSUBR 200D

LET D = D+1

LET € = INT(1DD#RND{1))+1
IF ¢ € 14 THEN 3140
LET C = ¢-13

GOTO 3140

LET § = D(C)

IF 8 = 0 THEN 3100
LET J = INT(5/1)

LET D(C) = J

LET 58 = §-J#1D

LET 8% = 5%(5)

DATA ACEs 23 35 435 53 b3 73 84 9
DATA 10s JACKs QUEENs KING
FOR1 =170 C

READ C%

NEXT I

RESTORE

IF € ¢ 11 THEN 3280
LET € = 10

IF P <> 1 THEN 3330
PRINT C$" "S%

RETURN

PRINT TAB(16) C$" "S8%
RETURN

REM "FIRST 2 CARDS®
LET A1]

LET Az g

LET Bi g

LET Bz 0

GOBUBR 4400

GOSUR 4800

GOSUR 4400

GOSUR 4800

RETURN

REM "HUMAN'S PLAY"
LET P =1

608UR 3000

IF C = 1 THEN 4450

IF A1+C > 21 THEN 4490

4430)
4440
445()
44460
4470
4480
4490
45010
4510
4520
4799
4800
4820
4830
4835
4840
4850
4840
4870
4880
4850
4900
4910
4920
4930
4940
4950
qoon
Q010
Q020

LET A1 = Af+C

RETURN

IF A1+11 > 21 THEN 4490
LET AZ = AZ+1

LET € = 11

GOTO 4430

IF A2 < 1 THEN 4430
LET A2 = A2-1

LET A1 = Al1-10

GOTO 4420

REM "COMPUTER’'S PLAY"
IF B1 < 17 THEN 4830
RETURN

LET P =2

605UB 3000

IF € = 1 THEN 4880

IF B1+C > 21 THEN 4920
LET B1 = B1+C

RETURN

IF B1+11 > 21 THEN 4920
LET Bz = B2+1

LET € = 11

60TO 4860

IF B2 < 1 THEN 4840
LET B2 = B2-1

LET B1 = BR1-1D

60TO 4850

REM "RANDOM NUMEER ROUTINE"

LET Z = RND(1)
RETURN

239

.., ... Ultranim

Some games involve you and the computer as opponents. Others
enable you to challenge a friend, using the computer as nothing more
than the ultimate in fancy game boards. The program presented in
this chapter does either of these optionally or both at the same time.

The game itself is based on the ancient game of nim—probably
the most programmed game in the world. Because you can play
against the computer, against a friend, or the three of you may
compete at the same time, this is called Ulfranim.

As a program. Ultranim contains all the techniques necessary
to enable the computer to play a perfect game of nim. There is also
within it programming tricks that can be used for the control of other
games that involve two people and the machine.

This is how Ultranim presents itself. A game begins with five
groups of five tokens each. In a turn a player may pick from one toall
of the tokens in any groups. The player who gets the last pick wins
the game.

STRATEGIES IN NIM

Classical versions of this game involve only two players, and
the winner can be predicted exactly before the game even begins.
This does assume that both players play a perfect game, of course.
This is especially necessary of the one with the strategic advantage.
Any error on his or her part can il nullify his advantage. As a case
in point, suppose the following:

240

B 100 tokens
B A draw cannot be less than one nor more than ten
B Player who gets the last draw is the winner.

In the above variation of nim the player who goes first has a real
advantage and should always win. In your first turn you should take
one token. Thereafter, the number that you should take should be
such that your pick added to your opponent’s will equal eleven every
time. The results: 99, 88, 77, . . . 22, 11, and in the end, zero.

Ultranim offers several deviations to the classical scheme; yet
it can still be predicted who ought to win in every case. There is the
difference that there are only twenty-five tokens. They are grouped
as sets of five, and a player may take any or all of the five in any one
group in his or her turnm; and either two or three players may
compete, one of which may be the computer.

Without mapping out truth tables for the various combinations
of players copy this program and play it for a while. I debugged it in
just that way, and it was surprising how many games I had to play
before the pattern could be discerned as to know how to beat the
machine. Amusingly enough this is true even when we already know
how the program makes its moves.

THE COMPUTER'S CHOICE
A game line is printed by the program like this:

sofee seDee 063ce soleo ecBeo

XXXXX XKEXK XXXXX XXXXX XXXXX

A move choice by any of the players is then, a group number,
followed by the pick within that group. Whenever it is the compu-
ter’s turm, it first looks at the largest group. It does work from left to
right; soin early rounds the first encountered with all five tokens still
in place will be its group choice. As the groups are diminished during
successive rounds of play the program will always look for the
largest remaining group, choosing from the left in cases of equally
sized groups. Then it does a thing involving binary numbers and
parity checks.

The real numbers of 0, 1, 2, 3, 4, and 5 have the binary
equivalents of 000, 001, 010, 011, 100, and 101. The programusesa
table of these equivalents to convert the number of tokens remain-
ing in each group to a binary value. An example is shown in Fig. U-1
of what a partially played out game will produce.

The binary equivalents are stacked one above the other and
aligned, just as if arithmetic was about to be performed. That is in

241

L0200 .8, 4L LB

THE LINE: xxxx XXXXX XX

11///

THE BINARY VALUES:

100
101
010
011
001

Fig. U-1. Number of Ultranim tokens per group, in binary.

fact what is done next. In Fig. U-2 the same set of binary numbers is
used again, showing the result of addition down their vertical
columns. This additionis done always without any consideration for
carrying.

In effect what is achievedis a column-by-column parity value. If
there is an odd number of ones in a column, a one will result in the
total (in that colummar position). Conversely, if there is an even
number of ones in a column, the result for that column will be zero.

The computer now makes its play, taking sufficient tokens
from the largest group to bring the overall parity situation to all
zeros. As implemented within the program this algorithm always
works, regardless of the order of play. If, as it can happen parity
exists at the outset(when it is the computer’s turn) it always first
removes one token, then it checks the parity. If that one pick
produced the desired result the program relinquishes its turn; it
took the minimum permitted. If, on the other hand, an odd parity is
present after removing one tokenit takes another. Andit checks the
parity again. It takes another and another until an even parity
situation is produced.

This scheme really does work to cause perfect play. When the
computer’s starting position gives it the strategic advantage it will

242

always win. It is also true that it will play a perfect loser, and that it
will assume the advantage if allowed to do so.

THE REST OF ULTRANIM

All of the things that go on in Ultranim are pictorially re-
presented in Fig. U-3. As usual there are instructions provided as
the game is started the first time. Slightly unusual, however, is the
fact that this subroutine is called arbitrarily (the usual option was
omitted). The description is brief; so it is just dumped on you
without asking whether you wanted it.

Another free-standing task is called during initialization to set
up the short table of binary numbers. This is strictly a reference
table, so it is appropriate to generate it during startup housekeep-
ing. It too is done somewhat arbitrarily—the table is only needed to
support the computer—player mechanisms. If, as the program is
exercised, the computer is never allowed to play its supporting
routines are not needed. Really, you ought to let it play at least one
game with you; otherwise, all of that extra coding is just taking up
space.

Two tasks are associated with setting up for a given game. One
is the dialog involved in getting your decisions regarding who will
play. The programis the arbitrator of who will play first, second, and
third. Once it completes its capricious selections, the next player
subroutine is uced to advise you of the playing order.

EVEN EVEN ObD

100 GROUP 1
101 GROUP 2
010 GROUP 3
011 GROUP 4
001 GROUP 5

001 PARITY

Fig. U-2. The parity of Ultranim tokens overall.

243

From that point on the mainline is in control. The next player is
announced, a game line is printed, whoever is up is allowed to play,
and a winning situation is tested for. If the game is not yet over, the
mainline cycles through the whole sequence again. The really in-
teresting things to look for in the coding is how the program knows
who is up and that business of the computer’s play.

Complying with the doctrine of most programming schools, all
of the required tables are declared up front. Line 50 sets aside the
binary number table. It’s called B, and it provides for three binary
integers per line, for the range of zero through five. Table A, which
is another array, is also declared in line 50; the A is for analyzer.
More about that later.

The final act of setting up for a game is a presentation of the
order of play. This is economically done by the series of GOSUB
statements in lines 3280 through 3300. Those jumps are all to line
3400, which is the start of the next player module. This is the same
subroutine that is called preparatory to each player’s turn. The way
that routine works is rather simple.

Table U, which has the scrambled series of 1-2-3, is operated
as a circulating stack. The topmost element, having either a one, a
two, or a three init, is used as a subscript to print the corresponding
U$ constant—but only if that constant was not blanked out. In
preparation for the next time this module will be called, then, the
numbers in the U stack are bumped up one line, with the used
number being placed on the bottom of the stack. This all works to
maintain the order of play and to print out the appropriate player
prompts with a single, simple coding sequence.

The next thing that the players see after their prompt is the
game line, after its having been updated according to the previous
player's move. The print commands in lines 4000 through 4040
output the #ibbon line, and a pair of FOR-NEXT loops are used to
print the tokens themselves. A TAB value is maintained in 7" so that,
as the inside loop completes each group, the outside loop aligns the
printing within the next group. For each number within a group, an
X is printed—that number being the one held in the group fields of
table G. The null print in line 4140 s to space the output up one line,
just before the RETURN in line 4150.

As the game goes on all human inputs are processed by a
common module. Line 5000 asks for a group number, a comma, and
the number to be deleted from that group. The entry string goes
into G and X.

The choice of U, as used inline 60, is for Ultranim’s users. The
three-field alphanumeric table (U$) will later contain the three

244

1000

INSTRUCTIONS
1100

\

10

INITIALIZE
80

2000
BINARY
NUMBERS

2110

90 3000
START GAME SETUP GAME
100 3360

3400
NEXT PLAYER
3470

4000
PRINT TOKENS
4150

110

MAINLINE
280

7000
WIN CHECKER

6200
7050 LARGEST

GROUP?
6280

6000
COMPUTER'S
PLAY

]
6060 ~—

6400

ANALYZER
6570

5000
HUMAN'S PLAY
5180

TIX

Fig. U-3. Program template for Ultranim.

prompts, YOU, FRIEND, and ME. They each also have a numeric
worth (1, 2, and 3), which is what the numeric table (U) is used for.
Inline 70 the symbol G means group; P means parity. There are five
groups, soG needs five fields. To do the vertical parity scheme on
the number of tokens in all of the groups requires three columnar
positions; P is given one element for each column’s parity.

After establishing the table areas a jump is made out of line 80
to load up teble B with the binary digits. The digits are grouped as

245

sets of three (one set per decimal equivalent) in the DATA state-
ments of lines 2000 through 2050. A pair of concentric FOR-NEXT
loops do the loading task by using a pair of subscripts-with a READ,
directly into table B. When done the RETURN in line 2110 goes
back to line 90.

The GOSUB 3000 is to set up the game. The first task done
there is to load the number 5 in each of the fields in fable G. A simple
FOR-NEXT loop does this (lines 3000 through 3020).

A menu type of display is shown by lines 3030 through 3060,
from which the operator is supposed to indicate the player-mode
choice. The series of statements from line 3070 to line 3210 are all
executed while the operator is deciding. This series first loads the
U$ constants; thenit does a simple unsort of the series 1-2-3 in‘able
U.

The operator’s decision is accepted into U (the simple variable)
and, depending on the response (ME, FRIEND, or neither) may be
blanked out in table U$.

Lines 5040 through 5070 insure that only positive integers of
five or less are input, and lines 5080 and 5090 insure that the player’s
choices are logically valid. If they are line 5100 does a simple
subtraction directly into table G. If a clumsy keystroke did result in
unusable input the player is admonished by either line 5140 or line
5170, and is permitted to type in his or her choice all over.

Just before the call to get a player’s move (either a human'’s or
the computer’s), the jump to line 7000 is executed out of line 130 in
the mainline. A win trigger called W is incremented by line 7030 for
every group that is not zero. As long as W ends up with more than
one the game goes on. When W does come back to line 140 as a one
the game might as well be ended. It is reasonable to assume the next
player will grab whatever is left in that final group and win the game
by reason of picking last.

“WHEE . . . ”is the only message indicating the winner—the
prompt has already been output, the game line is there, and it is
obvious to all who is the victor. Whoever it is, he or she must have
played a perfect game. The following “programmed intelligence”
shows how the computer can play a perfect game.

The series of statements from line 6200 to line 6280 are all for
determining which group has the most tokens in it. A match
maximum worker called M is used by a FOR-NEXT loop (lines 6210
through 6240) to learn which G field is the largest. Another FOR-
NEXT loop follows (lines 6250 through 6270) to load into simple
variable G the number of that group. Two things are established
then: G knows the group number and M knows how many are in that

group.
246

The first task of the analyzer is to convert the numbers in the .
groups to binary. A pair of concentric FOR-NEXT loops does this,
and results are fed directly into array A. The compound expression
(of the subscripts) in line 6420 looks more confusing than it really is.
The leftmost subscript for B uses G(I); G is the group table and[is
incremented through all five groups. J is the column counter for the
three vertical columns of binary digits in {able B.

The next pair of nested loops does two things. The vertical
columns of the array (A4) are summed in a conventional decimal
manner into the elements of fable P. The results are individually
checked by the series from lines 6500 to 6520 to determine odds and
evens. The P elements are then rewritten with either a one or a
zero accordingly.

Back up in line 6050, which is the return point from the
analyzer, a simple arithmetic check is made to see whether the
three P fields add up to nothing. If that is the case the computer has
done its thing. If the parity across the boardis not yet even line 6010
is called upon again to remove another token from the largest group,
and the whole analysis is done again.

These reiterative processes are laborious, but they are done
quite quickly on most any computer—even on the relatively slow
microcomputer. If you don’t yet have a full appreciation for your own
micro’s speed, try computing your own moves in exactly this same
fashion. You too can play a perfect game of Ultranim —if you don’t
make any mistakes.

THE PROGRAM
10 REM "ULTRANIM"
201 REM

30 GOSUR 9000

40 GOSUR 1000

S{ BIM B(693)s A(5353)
601 DIM U$(3)s UL

70 DIM G(5)s P(3)

&(1 505UB 2000

g0 GOSUE 3000

180 PRINT

110 60EUR 3400

120 GOSUB 4000

1301 GOSUR 7000

1400 IF W = 1 THEN 200
1500 IF U$ <> "ME" THEN 180
160 GOBUR 6000

247

170

180

190

20

210

270

23u

240

250

260

270

20
1040
1010
1000
1030
1044
1050
1040
1070
1084
1oe{
11041
194
20t
=M
2020
2030
2040
2050
204N
207
2080
2091
210
2410
294y
30
3010
3020
3040
3040
3050

248

GOTO 110

G05UR 5000

GOTO 140

PRINT "WHEE ..."

FRINT

PRINT "ANOTHER GAME (Y QR N)"i

INPUT Q%

IF @4 = "Y" THEN 90

IF @$ = “N" THEN 270

G070 220

PRINT "THEN END. ULTRANIM."

END

PRINT "A GAME BEGINS WITH 5 GROQUPS"
PRINT "OF 5 TORENSE."

PRINT

PRINT “IN A TURN A PLAYER MAY PICK"
PRINT “FROM ONE TO ALL OF THE TOKENS"
FRINT "IN ANY GROUP."

PRINT

PRINT "THE PLAYER THAT GETS THE LAST"
PRINT "PI1CK WINS THE GAME."

PRINT

RETURN

REM "BINARY NUMBERS"

DATA Os Os
DATA Os Os
DATA Os 15
DATA Os 1
DATA 1s Os
DATA 19 Os
FORI=1T06
FOR J = 1 70 3
READ B(Isdd

EE o B am R o

NEXT J

NEXT I

RETURN

REM "SET UP GAME"

FORI =14T7T05

LET &{I) =3

NEXT 1

PRINT "HOW MANY FLAYERS?7"
PRINT ™ 1 = YQU AND I"

PRINT "* 2 = YOU AND A FRIEND"

3060
3070
30&0
3090
3400
3140
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3354
3360
339y
3400
3410
3420
3430
3440
3450
3440
3470
3999
4000
4010

FRINT " 3 = YOUs A FRIENDs AND I

LET U$C1) = "yYour

LET U$(2) = "FRIEND"

LET U$(3) = "ME"

LET U(1) = 1

LET U2y = 2

LET U(3) = 3

FOR 1 =1T703

LET T = INTC(1D#RND(1))+1
IF T > 3 THEN 3140

LET U = U<

LET UCD) = UM

LET U(T) = U

NEXT I

PRINT "#"3

INPUT U

IF U = 1 THEN 3350

IF U = 2 THEN 3330

IF U = 3 THEN 3280

PRINT “NIX! ANSWER WITH 1s 25 OR 3."

60TO 3200

PRINT "THE ORDER OF PLAY 1&5:"
GOSUR 3400
GOSUR 3400
G08UB 3400
PRINT
RETURN

LET U$(3)
GOTO 3290
LET Us$(2)
GOTG 3290
REM "NEXT PLAYER"
LET U = U)

LET Us = Us()

LET U(1) = U2

LET U(2) = U3

LET U3) = U

IF Us = " " THEN 3400
PRINT U$

RETURN

REM "PRINT TOKENS*
PRINT " ..1.."§

PRINT " ..2.."3

H oM

H

Hon

nnan

249

4020 PRINT " ..3.."3

4030 PRINT " ..4.."§

4040 PRINT " ..5.."

4050 LET T = 1

4060 FOR 1 = 1 70 5

4070 PRINT TAB(T)3S

4080 FOR J = 1 T0 G(I)
4090 IF 6(1) = O THEN 4120

4100 PRINT "X"3

4110 NEXT J

4120 LET T = T+6

4130 NEXT 1

4140 PRINT

4150 RETURN

4999 REM "HUMAN INPUT"
5000 PRINT "(GsX)"§
5010 INPUT Gs X

5020 LET 6 = INT(ABS(G))
5030 LET X = INT(ABS(X))
5040 IF G € 1 THEN 5420
5050 IF X < 1 THEN 5120

5060 IF G > 5 THEN 5120

5070 IF X » 5 THEN 5120

5080 IF 6(G) € 1 THEN 5140

5090 IF X > G(G) THEN 5170

5400 LET G(G) = G(G)-X

5110 RETURN

5120 PRINT "I DON'T UNDERSTAND."
5130 GOTO 5000

5140 PRINT "GROUP"G"IS EMPTY"S
5150 PRINT " -- TRY AGAIN."

5160 GOTO 5000

5170 PRINT "GROUP"G"HAS ONLY"G(G)3
5180 GOTO 5150

5999 REM "COMPUTER'S PLAY"

6000 GOSUR 6200

6010 LET G(G) = 6(G)-1

6020 IF G(G) <> O THEN 6040

6030 RETURN

6040 GOBUB 6400

6050 IF PC(1)+P(2)+4P(3) <> O THEN 4010
6060 RETURN

6199 REM "LARGESBT GROUP"

250

6200
4210
6220
6230
6240
6250
6260
6270
6280
6399
6400
6410
6420
6420
6440
6450
6450
6470
6480
6470
6500
6510
6520
6530
6540
6550
6560
6570
65999
7000
7010
7020
7030
7040
7050
2000
2010
9020

LET M = 6(1)

FORI =27T05

IF M > G(I) THEN 6240
LET M = 6(I)

NEXT 1

FORG =1T05

IF G(G) = M THEN 6280
NEXT G

RETURN

REM "ANALYZER"

FORI =1T05

FORJ =1 T0 3

LET ACI+J) = B(G({IYsd)
NEXT J

NEXT I

FORI =170 3

LET PCI) = 0
FORJ=1T705

LET PCI) = P(I)+ACJ 1D

NEXT J
IF P(I) = 0 THEN 6540
LET T = INT(P(I1)/2)

IF T#2 = P(I1) THEN 6540
LET P(I) = 1

NEXT I

RETURN

LET P(I} = O

GOTO 6540

REM "WIN CHECKER"

LET W =20

FORI =1705

IF G(I) = 0 THEN 7040
LET W = W+t

NEXT I

RETURN

REM "RANDOM NUMBER ROUTINE"™
LET Z = RND(1)

RETURN

251

Verboten

Imagine a cosmopolitan computer. Here is a chance to teach your
electronic companion a bit of German. Although other languages
could be equally possible the German equivalent for forbidden quite
nicely fits our chapter-per-letter scheme.

This game is a derivative of the basic theme of players guessing
a hidden value that was chosen at random by the computer. Its
construction is simple, yet the game has quite a lot more appeal than
the variety that has no more substance than to just pick a number.

Whether played by German kinder or children elsewhere, they
all enjoy the suspense that builds as they take turns picking letters of
the alphabet. Eventually, in twenty-six or fewer turns, the alphabet
will run out.

Three things can happen with each turn. The player may get to
keep his or her chosen letter and score one more point. Some one
letter, when picked, will declare a bonus and that player’s score for
the round thus far will be doubled. Some other letter isverboten. The
player who gets the forbidden one loses his or her score instantly.
Another round is started then, and the game goes on.

Presumably no lengthy argument is necessary to convince you
to adopt this program into your games library. The few minutes
required to copy it could hardly be an excuse not to, and there is at
least one programming nicety within it. And, it is fun to play.

A VERBOTEN PROGRAM

A quick glance at Fig. V-1 shows neZrly all of the structures in
this program. As implied by the drawing a primary task during

252

program initialization is to read the alphabet as DATA characters,
and to store them in a table. The table is used thereafter for
obtaining numerical equivalents of the letters that are typed in by the
players.

Three short tasks are involved in preparing for a round of play.
There is a fank that is used to know which letters are owned at any
point by either of the two players. The tank, which is really just a
numeric table, has to be cleared before each new round. The other
two housekeeping chores, per round, is the picking of the bonus
letter and the one that is forbidden. As can be surmised, an RND
function is used in both cases, and that is why the player entries
must be reduced to numerical substitutes. (The letter codes are

1000
INSTRUCTIONS
1170

10
INITIALIZE
120

2000
ALPHA TABLE

2060

3000

CLEAR TANK
3050

4000
BONUS LETTER
4020

130

SET UP ROUND
150

5000
VERBOTEN
LETTER

ANA

5030

160 6000
MAINLINE PLAYER INPUT
410 6310

Fig. V-1. Program template for Verboten.

253

repeatedly compared to the two random integers that are being held
in suspense.)

Most of the program’s mainline has to do with scorekeeping
and the end-of-game dialog. There is but one jump from the mainline
to the input module. It is there that all of the tasks associated with
player entries are done. Player alternation is also done in the input
module— as they acquire their letters, the tank is posted with their
code number.

It is the use of the tank and the codes therein that gives this
program a distinct character. Often, to impart a sensé of per-
sonalized dialog to a game the players are asked to input their
names. In Verboten a technique ic used that instead gives an implied
awareness as to which player is whom. The awareness is derived
from the codes in the tank.

Depending on which of the two players is at the keyboard the
computer uses the pronouns yo# and your—and it can tell them
apart! If you are up and you type a letter that you picked before the
program tells you that you already own that letter. On the other
hand, if you type a letter that is owned by the other player, the
message says that the letter is owned by your friend.

This can be a refreshing technique occasionally. Personalized
games are fun, but it can be monotonous having to announce your-
self game after game. Looking through the listing it can be seen how
easy it is to plug in this nicety and how easy it can be to add that
cosmopolitan flair as well.

VERBOTEN'S CODING

The DIM statement in line 40 has all of the declaratives. The
table called A$ is the one for the alphabet. The one called X is the
tank. To be able to use the player number as a subscript for round
totals fable R is declared: one element for each player. Later, the
simple form of R is also used, again meaning round, but in this case
the total there is the cumulative rounds count.

The remainder of the program’s initialization is typical enough,
ending with the jump out of line 120 to generate the alphabet’s table
(lines 2000 through 2060). A 26-times FOR-NEXT loop is used
there to load the alpha constants into table A$.

Lines 130, 140, and 150 comprise the start of a round. The
three GOSUB statements are executed in quick succession, one to
each of the separately identified housekeeping tasks. Obviously, all
three tasks could have been included in a single module. My
predilection for task-level modularity prevails, however— this does
make it easy to describe the tasks one at a time.

254

To clear the tank a simple FOR—NEXT loop is used (lines
3020 through 3040) to overwrite Os into all twenty-six locations of
table X. Inlines 3000 and 3010, the players’ round totals are cleared
also, with two simple move expressions.

The picking of a bonus letter is pure simplicity. The expression
inline 4000 will place into B (for bonus) an integer in the range of one
to one hundred. Only those numbers one to twenty-six are usable;
so line 4010 will refuse anything larger and will allow the RETURN
when RND finally gives a valid number.

Setting up the V worker (verboten) is done the same way.
Another statement was added in this case.(line 5020) to preclude
the same letter coming up as the bonus and the forbidden one. This
is done by simply comparing B toV, andif equal, insisting on another
call to RND. With both workers loaded with different integers the
return in line 5030 will let the round get under way.

The jump from the mainline to the input module is immediate
out of line 160, and it will be done repeatedly until X$ is returned
empty. The conditional in line 170 maintains this tight loop until X$
signals that a round of play has been concluded. The variable X§ is
the one that is used for player entries. To seeitinuse, we look at the
remaining major module.

The first four lines of the player input module (lines 6000
through 6030) take care of the variable P. This logicis analogous toa
flip-flop. By the time line 6040 is reached which outputs the input
prompt, the player number thatisin P will be either a one or a two.
Whichever is there will automatically flip-flop to the other any time
this module is entered from the top.

The player is being asked at this point to enter a letter. The
entry will be accepted into X§$ at line 6060. To learn whether the
players type anything useful, the FOR-NEXT sequence from line
6070 to line 6090 does a quick scan to compare X$ with the letters of
the alphabet (that is in table A$). Any match will cause a branch to
line 6130—at least a letter was typed in, and it was not cluttered or
surrounded by any extraneous keystrokes.

If it should happen that the loop completes and falls through
without finding a match, X$ has unintelligible junk in it. Loosely
translated, the expression FRISCH AUF! means to look alive. This
error message is followed by a branch back to the prompt line to
permit another entry by the same player.

Where a good letter was found in X$, at that point I has its
relative equivalent number. Line 6130 uses that number to look into
the tank to see whether this same letter has ever been typed before.

255

1f table X has a zero in the location, we have in fact a new letter: go
on through, otherwise go to line 6260 to handle the error.

Assuming for the moment that X$ does contain a single letter
that has not been tried previously it is time to see whether it
matches either the bonus or the verboten one, and to process it
accordingly. Ifit is the verboten one, as detected by the comparison
in line 6150, the branch is to line 6220 where “VERBOTEN!” is
announced. The player’s scorekeeper (for the round) is zeroed, X§
is blanked, and the return to the mainline is out of line 6250.

The bonus play is detected by line 6160, which compares the
counter to the RND value being held in B: if they are equal,“***
BONUS***” is announced. Line 6200 doubled the player’s round
score, and the return is out of line 6210. In this case X§ is not
blanked. Back in the mainline if any residue does remain in X§ the
round goes on.

If the tests for V and B both fail line 6170 simply adds one point
to R(P). Again, X$ is allowed to retain its content because the play
was valid and a return is taken out of line 6180.

Now for the duplicates type of error. When the tank is looked at
by line 6130, and it does not find a zero, what it does find is either a
one or a two. One of these two codes got there by reason of the
statement in line 6140, through which all valid plays pass. In line
6260 then it is the code number (the player number) that is being
examined specifically.

1t is easily known whether the previously played letter was
picked by you or your friend. Your number is currently in P.
Whichever number you are, the other number must belong to your
friend. After the message is printed, the branch is back to line 6050
to let you (or your friend) try again.

Sooner or later one of you will pick the verboten letter. In line
170, in the mainline, when X$ finally does come back with a blank in
it the round is ended. The round scores are added to 71 and 72,
which are your respective totals. You can either continue or stop. If
you do want to stop now it's AUF WIEDERSEHEN.

THE PROGRAM
10 REM "VERBOTEN"
20 REM

30 GOSUR 9000

40 DIM A%¢(263s X(26)s R(2)

50 PRINT "WANT INSTRUCTIONS (Y OR M) "3
60 INPUT @%

70 IF @% = "Y" THEN 110

256

80 IF @$ = "N" THEN 120

90 PRINT “WAS GIRT ES?7"

100 60TO 50

110 GOSUB 1000

120 GOSUR 2000

130 GOSUR 3000

140 GOSUB 4000

150 GOSUR 5000

160 GOSUB 6000

170 IF X$ <> " " THEN 1640

180 LET T1 = T1+R(1)

190 LET T2 = T24R(2)

200 LET R = R+1

210 PRINT "ROUND #"R" TOTAL"

220 PRINT "# 1 ="R(1)" T4

230 PRINT "§ 2 ="R(2)" "T2

240 PRINT

250 PRINT "GO0 AGAIN (Y OR N)"3

260 LET @$ = " ¢

270 INPUT Q%

2800 IF @$ = “Y" THEN 130

290 IF @% = "N" THEN 320

300 PRINT "WAS ES LO§?"

310 60T0 250

320 PRINT "NEW GAME (Y OR N)"3

330 LET @ = " ©

345 INPUT Q%

340 IF @$ = "N" THEN 400

350 LET T1 = @

360 LET T2 = O

370 IF @$ = "Y" THEN 130

380 PRINT "WAS GIRT ES?"

390 GOTO 320

400 PRINT "AUF WIEDERSEHEN"

410 END
1000 PRINT "YOU AND A FRIEND TAKE TURNS."
1010 PRINT "TYPE ANY LETTER OF THE ALPHABET"
1020 PRINT "THAT HASN'T ALREADY BEEN PICKED.
1030 PRINT “EACH LETTER IS WORTH ONE POINT:"
1040 PRINT "EXCEPT: (IN A ROUND)"
1050 PRINT " ONE IS A BONUSs WHICH WILL"
1060 PRINT " DOUBLE YOUR SCOREs ANDs ONE"
1070 PRINT " IS VERROTENs WHICH WILL ERASE"

non

257

1080
1090
14100
1140
1420
1130
1140
1150
1160
1170
1999
2000
2010
2020
2040
2040
2050
2060
2999
3000
3010
3020
3030
3040
3050
3999
40400
4010
4020
4999
5000
5010
5026
5030
5999
6000
6010
6020
s030
6040
6050
6040
6070

258

PRINT

" YOUR SCORE."

PRINT “WHEN THE FORBIDDEM LETTER 18"
PRINT "PICKED THE ROUND ENDS AND YOQUR"
PRINT "SCORES ARE UPDATED."

PRINT "THE NEXT ROUND BEGINS WITH A"
PRINT "NEW ALPHARET."

PRINT " READY"3

INPUT @%

PRINT

RETURN

REM "ALPHA TABLE"

DATA AsBsCsDsEsFsGsHslsJsKsLsM
DATA NsO:sPs@sRsSsTsUsValsXsYslZ

FOR I = 1 TO 26

READ A$(I)

NEXT 1

RESTORE

RETURN

REM "CLEAR TANK"

LET R(1) = O

LET R(2) = O

FOR 1 =1 T0 26

LET X¢I) = O

NEXT I

RETURN

REM "BONUS LETTER"
LET B = INT(1DD#RND(1))+1
IF B > 26 THEN 4000
RETURN

REM "VERBOTEN LETTER"
LET ¥ = INT(4DD¥RND(1))+1
IF V > 26 THEN 5000

IF V = B THEN 5000
RETURN

REM “PLAYER INPUT"

IF P <> 1 THEN 6030
LET P = 2

GOTO 6040

LET P = 1

PRINT "PLAVER #"Pj

LET X$ = " "

INPUT X$

FOR 1 =1 T0 26

"

6080
6050
6100
6110
6120
6130
6140
6150
6160
6170
6180
6190
5200
5210
6220
6230
6240
6250
6260
6270
6280
6290
6300
6310
9000
9010
9020

IF X$ = A$(I) THEN 4130
NEXT 1

PRINT "FRISCH AUF!"
PRINT

GOTO 4040

IF X(I) <> 0 THEN 6260
LET X(I)» = P

IF I =V THEN 4220

IF 1 = B THEN 4190

LET R(P) = R(P)+1
RETURN

PRINT "#%% BONUS #xx"
LET R(P) = R(P)#2
RETURN

PRINT "VERBOTEN!"

LET R(P) = O

LET X$ =" ©

RETURN

IF X(I) = P THEN 4300
PRINT "YOUR FRIEND *;
PRINT "PICKED "X$" BEFQORE"
60TO 6050

PRINT "YOU "3

G0TO 6280

REM "RANDOM NUMBER ROUTINE'
LET Z = RND(1)

RETURN

259

Have you ever seen a wampus? “He’s a big hairy creature that will
gobble you if he gets you.” So goes the story that introduces this
game.

The wampus lives in a cave. You are lost in his cave trying to
find the only exit so that you can go home. There are twenty
chambers in the cave and each has three passageways leading to
other chambers. One of the tunnels does go to the cave’ mouth, and
when you find it you are free.

There are hazards. In one chamber there is a deep pit. If you
stumble into there you have had it. In three other chambers there
are bats. You are afraid of bats, and when you encounter them you
take the nearest exit. Normally you have time to ponder over which
of the three tunnels to take next.

When you wander into the wampus you have another choice.
He is afraid of loud noises. You have a six-shooter. If you crawl into
the chamber where he is you can make a hasty exit; or if you fire the
gun he will take off to another chamber. You are safe for the
moment. You don’t know which tunnel he took, but neither does he
know where you will go next. If ever you run out of ammunition and
and happen to run into the wampus again, he will eat you.

DEFINING THE PROBLEM

Looking through the game’s description there are the following
parameters to contend with.

260

B There is one exit tunnel

B There is one pit (one of the chambers)

Three chambers have bats in them

B The gun has six shots

B There are twenty chambers

B Each chamber has three tunnels going from it

The matter of the cave itself should be dealt with first. To conceive
of afloor plan that would have twenty rooms, all interconnected such
that each has three passages going to others, implies the need for a
definite geometric pattern. One such possibility is a decagon (a
ten-sided polygon). As shown in Fig. W-1 there are actually two
decagons used in Wampus, one inside of the other.

Each of the cave rooms is assigned a number from the series
one to twenty. The numbering scheme is arbitrary and it remains
constant. All of the other parameters vary from game to game. As
each game is set up, one room is randomly designated the exit;
another has the pit, and three others have bats in them.

Fig. W-1. A floor plan of the cave where the man-eating wampus lives.

261

During play you and the wampus move from room to room. The
ability to do so depends on knowing which room numbers can be
reached from any one room.

DESCRIBING THE PROGRAM

As the program is being initialized the player is afforded an
option to receive a printout of the story. This capability is alluded to
in the program template for Wampus, as shown in Fig. W-2. The
block numbers 1000 through 1230 imply that this is more of a story
than merely instructions. It is.

To set up the game is really to set up the cave. A free-standing
subroutine is used to get room numbers at random, and the numbers
are then allocated to the exit, the pit, the bats, you, and wampus.
Control from there on is maintained by the mainline.

As you run through the cave, and as you enter each chamber,
you must pick the number of the tunnel! to go through next. Thisis so
when you have time, anyway. When you run into bats the program
will help you by making the exit choice for you. Normally the dialog
goes thus:

YOU ARE IN ROOM 2
EXITS ARE: 145
MOVE TO?

Take your pick and enter either 1, 4, or 5. Your room number
changes according to your choice, and the dialog is repeated. If you
run into bats the message is: “THERE ARE BATS IN HERE, SO
YOU RUN TO:”—the message is followed by your new room
number, automatically.

If you bump into the wampus another subroutine is called. You
are first offered the choice: SHOOT OR RUN (S OR R). If you
answer that you want to run the dialog from above comes back into
play. If you decide to shoot: BANG... HE RAN OUT. Control then
returns to the normal-move sequence.

If ever YOU CAN FEEL A DRAFT, one of the three exits
available to you leads to the mouth of the cave. Remember the other
two numbers if you do not pick the winner. Taking a wrong turn does
eliminate one of the numbers just shown to you.

Go ahead, but watch out for the wampus. Go easy on the use of
the gun, too. After you have fired six times, and you run into him
again: “YOU'RE OUT OF SHOTS, AND WAMPUS HAS YOU.”

DESCRIBING THE MECHANICS
There is a series of DATA statements inside the program that
contain sixty numbers. That is, there are three sets of twenty

262

10 1000
INITIALIZE THE STORY
110 1230
120 2000 2400
RANDOM
SET UP GAME SET UP CAVE ROOMS
130 2270 2460
4000

5000
SHOOT OR
RUN
5130

280 3330

BATS
140 3000 / 4030
RUN THROUGH
MAINLINE CAVE \

Fig. W-2. Program template for Wampus.

numbers. They are accessed and used, both during the setup and
the play, by a belt READ loop.

From line 130 in the program’s listing there is a GOSUB
2000. It is in lines 2010 through 2040 that the numbers are estab-
lished as DATA constants. The jump from line 2050 goes directly to
the random rooms module—that is, to the belt READ loop.

Inline 2400 the variable R is loaded with a random value of one
to one hundred. The belt loops then until R is reached. The READ
statement in line 2420 is inside of the loop, and each time it is
executed three numbers are obtained from the DATA string. There
is also, immediately after the READ, a conditionally executed RE-
STORE. The only time that R2 ever comes up with a sixteen is at
the end of the list. By restoring the DATA pointer at that point the
DATA belt can continue uninterrupted. (The list of numbers is
constructed intentionally so that the last set of three has a unique R2
value; it could be any number solong as it doesn’t occur elsewhere in
the same relative position.

During setup the belt READ loop is called four times. The first
time (out of line 2050) is to get the exit number. Variables R1, R2,

263

and R3 are returned with valid interconnecting numbers. Somewhat
arbitrarily, R3 is loaded into E as the cave exit number. One of the
bat caverns is picked at this point also. The number that is in R1 is
placed into BI in line 2070.

More numbers are needed. Another GOSUB 2400 is done out
of line 2050. This time the P (for pit) variable is loaded with R1, and
a second bat room (B2) is taken from R3. Some exclusives are
necessary at this point.

Line 2110 makes sure that the pit and the exit are not the same.
Lines 2120 and 2130 insure that the bats are not in the pit chamber
either. If any of these tests are true, or if both B2 and B3 are the
same number, this phase is executed again by going back to line
2080.

The remaining bat chamber, B3, is obtained by another jump to
line 2400. Another series of tests is done in lines 2170 through 2200.
These work the same as those previous, this time making sure that
B3. which was loaded from K2, is not contrary to the exclusives.

You and the wampus are next. The fourth jump to line 2400 is
made out of line 2210. The variable Y is foryou; you start out inroom
R3. The wampus is known as W; he begins the game inR1. TheX
variable that is turned on with a one in line 2260 will be used later to
let the mainline know when the game is over. IfX is ever passed to
the mainline with a zero in it, the end-of-game dialog is invoked.

Primary mechanics as you run through the cave are done by
lines 3000 through 3330. From the top, Y, whichis where youare, is
tested for several conditions. If your room number matches that of
the exit (E), the branch that is taken is through line 3230, followed
by areturn to the mainline. Because the X trigger is turned off inline
3230 the mainline will know the game is over.

Line 3010 tests whether you have fallen into the pit. If Y ever
does match P the same exit is taken back to the mainline. The
end-of-game dialog will discern why X was turned off.

Another test that is made, presuming the game can go on, is
whether you have just entered a room where the wampus is. If your
room number is the same as W, the branchis to line 3270. If you are
out of shots the usual exit is taken back to the mainline; otherwise,
the module that runs from line 5000 to 5130 is called. More about
that in a moment—there are more tests in lines 3030 through 3050.

The bats areinrooms B1, B2, and B3. Whenever Y comes up
the same as any B field the branch is to line 3250. That sequence
first calls line 4000, then branches to 3000. All of that happens in the
bats module is that Y is reloaded with whatever is in R1; that is the
nearest exit. After you are told your new room number all of the

264

preceding tests are again executed. Your hasty exit may have
landed you in trouble.

If all of that series of tests fail (lines 3000 through 3050) a
normal move is in order. Line 3060 tells you what room you are in.
Line 3070 does a RESTORE to reset the DATA belt to its starting
point. Another version of the READ loop is used then, to load into
R1,R2, and R3 the exit possibilities from the room you are in. This
is done by running down the belt until it is aligned with Y. That is
where you are.

The possible exit paths are shown to you by line 3110. Before
the prompt that asks for your choice is reached (in line 3160) the
program checks whether any of them are the way out. If so you are
alerted to the possibility by the message that is printed by line 3150.
Being able to feel a draft is supposed to mean that you are near the
cave entrance.

It is interesting to notice that, by reason of the testing sequ-
ences, whenever you are in a room where there are bats you leave
so quickly that you do not have time to feel any draft—even if there
was one.

The bit of logic that was passed by a moment ago is that having
to do with encounters with our hairy friend. Out of line 5010is where
you have the option to shoot or run. If you respond with the letter R
the program simply goes to the normal move sequence. If you shoot
the gun by typing an S the wampus will do the running.

Normally the wampus will run through the middle tunnel (R2),
as can be seenin line 5100. An exception is that he will not leave the
cave. If R2 is the same as E (the exit), the wampus will instead go to
R1. Tt is possible that he will go into a cave where there are bats.
The tests are all ordered such that the wampus business takes pre-
cedence over that having to do with the bats. After all, he repre-

sents a more serious encounter than the bats.
It is also possible that the wampus will run into the chamber

that has the deep pit. That is all right for him—he can crawl the
walls. If you run into that same room you are done for. The earlier
test sequence traps out if Y equals P—before the test for whether Y
equals W. Either way you are done for. So are we.

THE PROGRAM

10 REM "WAMPUB™

20 REM

30 GOSUB 9000

40 PRINT

50 PRINT "WANT THE STORY (Y OR N)"§

265

&0
70
a0
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
2an
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1400
1110
1120
1130
1140
1150
1160
1170
1180
1190

266

INPUT @%

IF @% = "Y" THEN 110

IF @% = "N" THEN 120

PRINT "DON'T YOU KNOW?"

6070 40

G0SUR 1000

PRINT

605UB 2000

605UB 3000

IF X <> 0 THEN 140

IF Y <> E THEN 200

PRINT "YOU GOT OUTs BUT WAMPUS"
PRINT "WILL GET YOU NEXT TIME."
6070 220

IF Y <> P THEN 23D

PRINT "YOU FELL INTO THE PITs"

PRINT "80 LONG ..."

PRINT

PRINT "ANOTHER GAME (Y OR N)"§

INPUT @%

IF @$ = "Y" THEN 120

PRINT "BYE"

END

PRINT "YOU ARE LOST IN A CAVE THAT HAS"

PRINT "20 CHAMBERS. ALL CHAMBERS HAVE"
PRINT "TUNNELS TO THREE OTHERS. ONE OF"
PRINT "THE TUNNELS GOES TO THE MOUTH OF"
PRINT "YHE CAVE. IF YQU FIND IT YOU"
PRINT “"GET HOME FREE.™

PRINT

PRINT "WAMPUS LIVES IN THE CAVE. HE'S"
PRINT "A BIG HAIRY CREATURE THAT WILL"
PRINT "GOBBLE YOU IF HE GETS YOU. HE"
PRINT "WILL RUN TO ANOTHER CHAMBER IF"
PRINT "YOU SHOOT AT HIM. YOUR GUN ONLY"
PRINT "HAS SIX SHOTSs HOWEVERs 80 USE"
PRINT "THEM WISELY."

PRINT * HIT ANY KEY TO CONTINUE."
INPUT @4

PRINT "SOME CHAMBERS HAVE BATS IN THEM."
PRINT “THEY SCARE YOU 50 BAD YOU SIMPLY"
PRINT "RUN THROUGH THE NEAREST TUNNEL."
PRINT "ONE CHAMBER HAS A DEEP PIT --"

41200 PRINT "DON'T FALL IN OR YOU'LL NEVER"

1240 PRINT "GET HOME."

1220 PRINT

1230 RETURN

1999 REM "SET UP CAVE"

2000 LET 8 = 6

2010 DATA 233+10513435513431452333732357+8

2020 DATA 12+18+19143554125531251851341841931514416
2030 DATA 1451551646748+ 9947+20:3510:14511517:20
2050 DATA 10:11:20+135155171638:946:19317515516513
2050 GOSUR 2400

2060 LET E = R3

2070 LET B1 = R4

2080 GOSUB 2400

20w LET P = R1

2100 LET B2 = R3

2110 IF P = E THEN 2080
2420 IF P = B1 THEN 2080
2120 IF P = B2 THEN 2080

2440 IF B1 = B2 THEN 2080
2150 GOSUB 2480
21640 LET B3 = Rz

2170 IF B3 = E THEN 2150
2180 IF B3 = P THEN 2150
2190 IF B3 = B1 THEN 2150
2200 IF B3 = B2 THEN 2150
22100 GOSUB 2400

2220 LET W = R1

2230 LET Y = R3

2240 IF Y = P THEN 2210
2250 1IF Y = E THEN 22410

2260 LET X = 1

2270 RETURN

2399 REM "RANDOM ROOMB™
2400 LET R = INTC1DO0*RNDC1))+1
2410 FOR I = 1 TO R

2420 READ R1s R2s R3

2430 IF R2 <> 16 THEN 2450
2440 RESTORE

2450 NEXT I

24560 RETURN

2999 REM "RUN THROUGH CAVE"

267

3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3140
3115
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
32460
3270
3280
3290
3300
3310
3320
3330
3999
4000
4010
4020
4030
4999
5000
5040

268

IF Y = E THEN 3230

IF Y = P THEN 3230

IF Y = W THEN 3270

IF Y = B1 THEN 3250

IF Y = B2 THEN 3250

IF Y = B3 THEN 32530

PRINT "YOU ARE IN ROOM #"Y

RESTORE

FORI=1T0Y

READ R1s R2s R3

NEXT 1

PRINT “EXITS ARE: "R1§ R23 R3
IF R1 = E THEN 3450

IF R2 = E THEN 3150

IF R3 = E THEN 3150

G0TO 3140

PRINT "YOU CAN FEEL A DRAFT"

PRINT "MOVE TO"3
INPUT Y

IF Y = R1 THEN 3240
IF Y = R2 THEN 3240
IF Y = R3 THEN 3240
PRINT "TRY AGAIN."
GOTO 3160

LET X = O

RETURN

GOSUB 4000

G070 3000

IF 8 > 00 THEN 3310

PRINT "YOU’'RE QUT OF SHOTS, AND"
PRINT "WAMPUS HAS YOU."

GOTO 3230

GOsuB 5000

IF @$ = "R" THEN 3070

GOTO 3240

REM "BATS"

PRINT "THERE ARE BATS IN HEREs 50"
PRINT "YOU RUN TO: "Ri

LET Y = Rt

RETURN

REM "SHOOT OR RUNY

PRINT "WAMPUS IS IN THIS ROOM."
PRINT "WANT TO SHOOT OR RUN (8 OR R)"§

5020
5030
5040
5050
5060
5070
5080
5090
5100
5140
5120
5130
9000
9010
9020

INPUT @%

IF @%$ = "8" THEN 5080

IF @%$ = "R" THEN 5070

PRINT "ANSWER QUICKLY!™

60TO 501D

RETURN

PRINT "BANG ... HE RAN OUT."

LET § = 5-1

LET W = R2

IF R2 <> E THEN 5130

LET W = R1

RETURN

REM "RANDOM NUMBER ROUTINE"

LET Z = RND(1)
RETURN

269

[0 v B
rm w
MmO

Xchange

Yes, exchange is misspelled—intentionally. It wasn't easy toinventa
game with a name that begins with X. It's likely though, you'll
forgive the typo when you savor the flavor of what follows.

For this, our twenty-fourth emtremets, 1 have concocted a
program for two mortals. Or it may be enjoyed solitaire. Before a
game begins you are asked whether one or two players wish to play.
This program will then manage one or two Xchange playing grids,
depending on your answer to the mode question.

THE GAME

A playing grid consists of the first eight letters of the alphabet
(A through H) and an asterisk, arranged in a three by three matrix
like this:
D HZC

B F*

A E G

For two players there are two of these grids side by side, and in the
beginning they are identically scrambled. The method of play is to
exchange the letters with the asterisk, one at a time, until the letters
are put into their proper order with the asterisk trailing (lower right
corner). There is one more rule: in a turn only a letter that is

270

immediately to the left or the right of, or immediately above or
below the asterisk may be exchanged.

A move is the entry of just the letter; the program will then
exchange the print positions of your choice and the asterisk. If you
are in the dual-player mode, your opponent is permitted to make an
entry also before two new grids are printed. When playing solitaire
there is only the one board; so the updated output is nearly instan-
taneous after each entry.

In either mode, as can be imagined, the rounds of play can be
very fast. Yet, if you are clumsy on the keyboard, or are not in
possession of the secrets for shuffling strings, this game can drive
you berserk. On the off chance that your local competition may buy
his or her own copy of this book I'll not disclose here the tricky
technique that will unscramble a grid in the least number of moves

There is a risk that some nonprogrammer types may stay
baffled forever: so your computer could stay entrapped in the
enter-print-enter cycle for all time. Rather than having to pull the
plug to force an abort there is a privileged entry to permit program-
mers to exit to the end-of-game routine. (An X will do it in the
left-hand player’s position.) This fact is not advertised in the game’s
instruction module, however, to enable you to maintain that aura of
mystique that surrounds all programmers.

PROGRAM ORGANIZATION

The entire program for playing Xchange is illustrated by the
template in Fig. X-1. Each of the nine blocks in the illustration has a
logical (as opposed to physical) connotation.

Task Orientation

The task orientation of each of the nine blocks is as follows:

B Initialize. Program housekeeping logic, including an op-
tional call to print the game’s description.

& Instructions. This is a linear series of print statements
constructed with quoted alpha strings. Each statement
generates one line of output on the primary display device.

B # Players? The dialog for selecting either the single or
dual mode is contained in the # Players? sequence. Re-
sponse qualification and a keyboard error message is in-
cluded here also.

B Scrambler. It shuffles into random order a pair of strings
(A through H and an asterisk). The result is stored in two
tables, one for each player. The print grids routine is called
from here once to display the scrambler’s handiwork.

271

B Player X. This is the solitaire player’s input routine. Itis
also, in the dual-player mode, the input logic for the player
whose grid is on the left (of the two grids). This routine is
self-sufficient. It prompts the player, accepts and fully
qualifies the response, and does the exchange business for
this player’s grid.

B Player Y. Logically this routine is an exact duplicate of the
other player’s. It does address its own string table, and all
message positioning is tabbed so as to appear to the right
of the other’s grid. The TAB values correspond to the
base-print positions for this player’s own grid.

B Print Grids. This module of coding outputs the contents
of the X and Y tables. It includes a conditional test to
suppress the printing of the second grid if the program is
running in the solitaire mode.

B Win Check. The scrambler module contains a DATA
series ofA, B, C, D, E, F, G, H, *, whichis supposed tobe
the winning sequence. This routine reads that string and
compares it to the player’s tables. A looping process is
used and the first instance of an out-of-order condition
terminates the test (per player). If the loop succeeds in
running nine times a winner is declared.

B Mainline. This is a task dispatcher. It calls each of the
supporting subroutines in a reiterative fashion. There are
conditionals included to avoid callups of routines that are
not needed when only one player is involved. This routine
also contains the logic that permits an early termination by
testing for an X keyboard character. At the bottom of this
module is the code-sequence that handles the end-of-
game and the replay option.

Salient Points

The recipe for Xchange is shown in the program’s listing. All of
the preceding descriptions are assumed to be comprehensive
enough, so let us bump down through the listing, pointing to the
more interesting details only.

In the housekeeping area, at lines 40, 50, and 60, some alpha
messages are initialized into variables denoted with anM. There are
several places in the program where these messages are apt to be
needed. Canning them in an alpha variable permits their printing by
symbolic reference rather than having to duplicate quoted print
expressions. Notice also an asterisk character is prestored in a
similar manner by statement 70.

272

0 1000
INITIALIZE INSTRUCTIONS
50 1160
760 5000
#PLAYERS? SCRAMBLER f—
i210 l2160
3000
PLAYER X
3200
3000
PLAYER Y
220 / 4200
MAINLINE
30 \ 5000
PRINT GRIDS ||
5130
6000
WIN CHECK
6130

Fig. X-1. Program template for Xchange.

Statement 80 has the dimensioning expressions for theX and ¥
tables, and is followed by the conditional dialog for printing the
game’s instructions at the player’s option. Whether the instruction
module is called or not, serial flow resumes at line 160 to accept a
code of one or two to indicate the number of players.

Notice how emphatic this sequence is. Statements 180 and 190
explicitly test for an acceptable code. Anything other thana one ora
two is rejected by the branch in line 2000 and a retry is enforced.
This is an example of programming convenience. Later, when it is

273

desired to condition the program’s logical flow based on the player
number, there are only two possibilities in P, absolutely.

Task dispatching is accessed next—this is the mainline—and it
extends from line 210 to 270. Within this area, in line 225, is the
“easy out” if an X is typed at the player X entry point. The following
statement (line 230) is one of the several that controls whether one
or two playing grids are provided for. Otherwise, the mainline
consists of GOSUB statements for ordering the jumps to the sup-
porting routines.

Every lap through the mainline area does include the jump to
line 6000, where the test is made to see whether either string has
been sorted out. Upon returning from the win check subroutine, the
I variable, which was used by the testing loop, may or may not have
aresidue of eight. If it does, the loop did run until done, meaning one
or the other of the player’s strings are properly ordered so the
mainline’s looping should come to an end. (See the series from line
270 through 330 for the end-of-game options.)

The call to line 2000 from statement 210 is only accessed the
first time the mainline is executed. That call to the scrambler sets up
the strings initially; so it is apt to glance there next to see how it
works.

The scrambler uses three FOR-NEXT loops. The first is a
READ task which loads the DATA string into fable X. Notice the
restore instruction in line 2040; this will reset the READ pointer so
that this module will work correctly if another game is called for. The
win check loop uses the DATA from here as well. The prevailing
design convention is: whoever last did a READ is responsible for
doing a restore as well.

The second phase of the scrambling process uses an RND
function to shuffle the contents of fable X. Statements 2050 through
2110 comprise the whole of this phase. This loop runs nine times
too. Each of the elements is picked up serially and exchanged with
one of the others (including itself, possibly) based on the RND
subscript. When the loop bottoms out, phase 3 of the scrambler
begins.

With fable X completely shuffled all that is needed to support
the dual-player mode is to generate table Y. The loop from line 2120
to line 2140 does this by merely copying the contents of X into Y a
line at a time. This replication is relatively fast; so it is always done
even though the game may be running in the solitary mode. It seems
doubtful that any lone player would be fully appreciative of the
milliseconds that could be saved if this loop were conditionally
bypassed.

274

Anyway, the scrambler finishes with a jump out of line 2150 to
print either one or two grids, depending on the mode, and a relink to
the mainline will get the game under way. Notice that there is a
nested pair of subroutines here. The return at the conclusion of the
print grids will come back to line 2160, and that return will send the
program all the way back to line 220.

The GOSUB 3000 is to the player X routine. The single word
MOVE is output by statement 3000 to prompt the player to type
something. At this point, if an X is entered into @8, the conditional
expression in line 3015 will bypass the balance of this module by
going directly to the RETURN in line 3200. Any value other than an
X will be regarded as normal and an attempt will be made to
accomplish the requested exchange.

The convention for expressing a move choice is for the player
to type the letter that he or she wishes to be exchanged with the
asterisk. In the event the player is confused or careless, and instead
types an asterisk itself, the logic of statement 3020 will default to
print an “ILLEGAL MOVE” note. From there the branch in line
3040 will execute to permit another entry. This test is made as an
independent step so that a loop may be used to scan-compare the
value of @$ with the values in the string table.

The loop that begins in line 3050 and runs until line 3070 is
looking to find a match, meaning that whatever was typed s at least
a valid letter value. There is a usefulness to the position counter at
which a match is found also, as will be shown momentarily.

Meanwhile, if the loop searches the whole table without finding
any match (the asterisk in the table is skipped over), whatever was
typedis unintelligible; so an “INVALID CHARACTER” message is
printed. Although there may be some semblance of validity to the
character if a match is found, another rule must be qualified. Is the
letter adjacent to the asterisk? The logic from line 3130 to line 3160
checks this, again by presuming a good code exists. If these tests do
fail the default route includes an error note and a branch back for
another entry. This test is critical and here’s why.

The brief loop that is stated in lines 3100 through 3120 will
generate into the/ variable the current table location of the asterisk.
Because I has not been tampered with the location of the player’s
choice for an exchange is also known. A simple arithmetic compari-
son of] andJ will determine whether the asterisk is adjacent to the
letter indicated for an exchange. If/ and/ differ by only one they are
adjacent horizontally. If the difference is exactly three they appear
to be adjacent vertically. If any of the explicit tests are satisfactory it
is safe to do the exchange.

275

Only the two statements in lines 4180 and 4190 are needed to
swap the move choice with the asterisk. It doesn’t matter at all
which of the four THEN functions got us here. The program can’t
get this far unless the player’s move is programmatically acceptable.
After the move is made, exit player X.

Returning to the mainline briefly: is player Y needed? If the
conditional in line 230 is defaulted the GOSUB 4000 will accommo-
date the second player. Talk about redundancy. Nearly all of the
lines from 4000 to 4200 are duplicates of lines 3000 to 3200, line for
line. Table Y is worked on by this routine instead of the first player’s
string, and all of the line references are in the 4000 series of course.
Another minor modification is contained in lines 4000 and 4090 as
well. The TAB(16) keeps the printed output aligned to the right of
the first player’s output area.

Perhaps a philosophical excuse is in order here for simply
copying twenty-one lines of the program internally. A single routine
with dual-conditioning could have been designed to be shared by
both players. Agreed. But would the savings in lines of coding be
worth it? What is the likelihood that the increased complexity would
hamper debugging? Anyway, to me, KISS seemed to be a goodidea.
Although neither you nor I are particularly stupid, remember:
“Keep it simple ” End of argument.

The next jump out of the mainline is to line 5000 to print the
grids. Nested FOR-NEXT loops can at times be a wee bit complex,
but this case isn’t especially so with a little study. The outside loop
() is set up in line 5010. Incrementing this variable by three will
cause a FROM series of 1, 3, 6, and so on. The TO limit of nine will
allow the first loop to run only three times. Three print lines are
needed.

Three characters are needed for each line, also. The inside
loop is conditioned from the current value in/, and it uses J as its
own counter. The conditional in line 5050 checks whether two
playing grids are supposed to be printed. If so, as each line of three
characters on the left is completed—meaning one completed re-
volution of the/ loop for three times—before the next left-hand print
is done anotherJ loop (lines 5100 through 5130) is used. This minor
redundancy is excused by the need to reference the other table (¥)
and by the need for a print statement with a TAB.

PRINT GRIDS

Actually, the only thing tricky about the print grids routine is
controlling the line spacing. Particular care must be taken in the use
of the trailing semicolons in the print expressions and in the use of

276

tnc seemingly cosmetic print functions. When PRINT stands alone
here it has logical significance: a line is completed and it’s time to
space up one line in the printed output. Once the looping and the
printing are done it is time to get back to the mainline. Reenter line
260.

This last jump— a GOSUB 6000—is the last for you, me, and
the mainline. So simple it is, too. Both tables are checked by
independent FOR-NEXT loops that include a READ to compare the
DATA from the scrambler module (see line 2000) with each element
in the tables. If either loop can get as far as finding out that the
bottom spot must have the asterisk, and that at the count of eight
everything above is in order, a terse note is output declaring the
winner. Notice that fable Y is tested conditionally, based on the
results of statement 6070. In most microcomputer implementations
of BASIC a reiterative process can be discernibly slower than for
some other techniques, albeit only marginally so sometimes.

THE END

One way or another this routine will ultimately finish via the
return in line 6060. Back in the mainline any residue of eight in the
counteris sufficient notice to the program that someone won. (Who
it was has already been noted in-the print area.) If so the game is
over. If not the junk value in I will cause the mainline loop to go
again.

And you can believe, for some players anyway, it seems they
will go on forever. That is why the game of Xchange canbe fun. Try
it yourself and you may find this recipe affords a dish that can cause
mental indigestion. Remember too, like an antacid, the X cure is
only for temporary relief.

THE PROGRAM

10 REM "XCHANGE"

20 REM

30 6OSUB 9000

40 LET Mi$ = "INVALID CHARACTER"
50 LET M2% = "ILLEGAL MOVE"

60 LET M3% = "YOU’RE THE WINNER"

70 LET A% = "#"

80 DIM X$(9)s Y$(T

0 FRINT "WANT INSTRUCTIONS (Y OR N)"3
100 INPUT Q%

1181 IF a%
w0 IF e%

"N' THEN 140
"Y" THEN 150

n o

277

130
140
150
160
170
180
120
200
210
220
225
230
240
250
260
270
280
290
301
310
azi
330
1000
1040
1020
1030
1040
1045
1050
10460
1070
1080
1090
1100
11410
1420
1130
1140
1450
11460
1999
2000
2010

278

PRINT "HUH?"

G0TO 90

G0SUR 1000

PRINT "NUMBER OF PLAYERS (1 OR 2)"§
INPUT P

IF P = 1 THEN 210

IF P = 2 THEN 210

G070 160

GOSUR 2000

G60SUBR 3000

IF @$ = "X" THEN 280

IF P <> 2 THEN 250

GOSUBR 4000

GOSUB 5000

G0sUB 6000

IF 1 <> 8 THEN 220

PRINT

PRINT "ANOTHER GAME (Y OR N) "3
INPUT Q%

IF @$ = "Y" THEN 160

PRINT "80 LONG ..."

END

PRINT "1 OR 2 MAY PLAY."

PRINT "IF 2s YOU TAKE TURNS."
PRINT "A GRID LOOKS LIKE THI&:"

PRINT " F 6 D"
PRINT " & H #"
PRINT " E B C"
PRINT "BUT IT SHOULD LOOK LIKE THIS:"
PRINT " &4 B C"
PRINT " D E F"
PRINT " 6 H #"

PRINT "YOU MAY EXCHANGE ANY 1 LETTER"
PRINT "WITH THE # - BUT ONLY 1 THAT'S"
PRINT "ADJACENT: ABOVEs BELOWs LEFTs"
PRINT "“OR RIGHT."

PRINT "READY"3

INPUT 0%

PRINT "HERE WE 60 ..."

RETURN

REM "SCRAMBLERY

DATA As Bs Cy Ds Es Fs Gs Hy ¥

FORI =1 T09

2020
2030
2040
2050
2040
2070
2080
2050
2100
2110
2120
2130
2140
2150
2160
294y
3000
3010
3015
30N
3030
3040
3050
3040
3070
3080
3090
3100
3110
31720
3120
3140
3150
31460
3170
3180
3190
3200
3999
4000
4010
4020
4030

READ X$(I)

NEXT I

RESTORE

FORI =1T70¢9

LET R = INTC10%RND(1))
IF R < 1 THEN 2040
LET X$ = X$(D)

LET X$(I) = X$(R)
LET X$(R) = X¢

NEXT I

FORI =17029

LET Y$(I) = X$(I
NEXT 1

GOSURB 5000

RETURN

REM "PLAYER-X MOVES™

PRINT “MQVE";

INPUT @%

IF @% = "X" THEN 3200
IF @% <» A% THEN 3050
PRINT M2%

6070 3000

FORI =170 9

IF @% = X$(I) THEN 3100
NEXT I

PRINT HMi%

6070 3000

FORJ =170 9

IF X$(J) = A% THEN 313D
NEXT J
IF I+1
IF I+3
IF 1-1
IF I-3
G0TO 3030
LET X$(J)
LET X$C(I)
RETURN
REM "PLAYER-Y MOVEG"
PRINT TAB(146) "MOVE':
INPUT 0%

IF &% <> A$ THEN 4050
PRINT M2%

J THEN 3180
J THEN 3180
J THEN 3180
J THEN 3180

X$(I)
A$

279

4040
4050
4060
4070
4080
4090
4100
4110
4120
4130
4140
4150
4160
4170
4180
4190
4200
4999
5000
5010
5020
5030
5040
5050
5060
5070
5080
5090
5400
514D
5120
5430
5999
6000
6010
6020
6030
6040
6050
6060
6070
6080
6090

280

GOTO 4000
FORI1I=1T1079

IF @% = Y$(I) THEN 4100
NEXT 1

PRINT TAB(16) Mi$

G0TO 4000

FORJ =1T079

IF Y$(J) = A$ THEN 4130
NEXT J
IF I+
IF 1+3
IF I-1
IF I-3
GOTO 4030
LET Y$(J)
LET Y$(I)
RETURN
REM "PRINT GRIDS"

PRINT

FOR I =1 T0 9 BTEP 3
FOR J = 1 TO I+2

PRINT " "X$(J)3

NEXT J

IF P = 2 THEN 3100
PRINT

NEXT 1

PRINT

RETURN

FOR J = 1 T0 I+2

PRINT TAB(16) " "Y$(J)3
NEXT J

G0TO 5060

REM "WINNER CHECK"
FORI=1T028

READ X%

IF X$(I) <> X$ THEN 6070
NEXT I

PRINT H3¢

RESTORE

RETURN

IF P <> 2 THEN 6050
FORI =1T708

READ Y%

J THEN 4180
J THEN 4180
J THEN 4180
J THEN 4180

HI LI . 1]

Yé(I)
A%

won

6100 IF Y$(I) <> Y$ THEN 6050
6110 NEXT 1

6120 PRINT TAB(16) M3%

6130 GOTO 4050

9000 REM "RANDOM NUMBER ROUTINE"
9010 LET Z = RND(1)

9020 RETURN

281

Yat-C

S @ /
oo
)
e

For those in the know here is another obvious takeoff of a commer-
cial board game. Whether you recognize the traits and the depar-
tures from Yahtzee or not, it is the program that drives this game
that is worth studying.

The game is played by two persons taking turns, rolling five
dice. A game is over when either passes 500 points; high score
wins. In turn each player is given three chances to better his or her
hand before scoring the round. The options are to pass, hold on to
any one number and roll the other four, or to roll a particular
number, leaving four as they lie. The choice in each case depends on
aknowledge of how score is derived and an intuitive feel for the odds
of what is apt to happen in another roll.

Straights are hard to fill, as any poker player will tell you. In this
game a one through five series or two through six is worth 200
points. Matches are scored by multiplying the number in a set by the
total of the five dice. For example, assume the series 4-1-5-4-4
remains after a player’s third roll. The score for this turn is fifty-
four. (There are three fours; the sum of the five numbers is eigh-
teen; three times eighteen is fifty-four.) There is one other possibil-
ity: no straight and no matches. The program calls this hand a
natural. The score for a natural is simply the sum of the five dice.

A full house exits when two dice have one value and the
remaining three have another single value. In this case the score is
twice the sum of the pair and thrice the sum of the triplets.

All of these mechanics may be easily changed. This program is
fun to have in your library as-is, and it provides opportunities for

280

experimenting with end-of-game limits and scoring points permuta-
tions. As implied earlier these are not the only reasons for including
this design in this book.

The regular position of ¥ as next to the last affords an oppor-
tunity to contrast a complex design with the dramatic simplicity that
will be found in Chapter Z. The complexity of Yat-C is not in its
procedural logic; rather, it is in its structural organization. In some
schools this design would come close to being described as over
engineered.

That is why there is opportunity here to extol, a last time, my
propensity for the template method of documenting BASIC pro-
grams. At a glance the picture in Fig. Y-1 may in fact look like a

70 1000 3566~ 1
INITIALIZE DESCRIPTION PRINT DICE
130 INLT o J

140
SET UP GAME

2100

RANDOM
NUMBER

180 ' 2130
150
MAINLINE
1740
3300
= INPUT #
3380
PRINT DICE [
3240 3400
HOLD. ROLL
OR PASS
3860

FREQUENCY
COUNT

Ba00" /
SCOfE .

8130 \ .
SCORES

8380
[840G |
STRAIGHTS
8490

Fig. Y-1. Program template for Yat-C.

283

plumber’s nightmare. Yet, with the briefest study a sense of reason
can be gleaned from it.

Not much time has been spent elsewhere on how templates are
formed, soitis here that this deficiency can be corrected. Itis hoped
that you will find benefit in this form and the ease with which
complex programs can be documented. In any event a few minutes
perusal should prove worthwhile for novitiate programmers. Even
seasoned coders are apt to appreciate an old trick included, using
subroutines that call themselves.

THE PROGRAM TEMPLATE

Most of the fun in programming has to do with solving a certain
problem. Nearly all schools preach a discipline that insists upon
some form of structuring of the whole job from the outset, including
all of those rote tasks that are in large part pure repetition. On big
advantage of the template scheme is that it will tolerate our begin-
ning the job in the area where it is the most fun: yet the finished
program will appear to have been orderly conceived and im-
plemented.

The template idea, as used throughout this book, is not
suggested as a replacement for traditional methods of programming
and documentation. I do suggest, however, that the template can
serve two roles: one in front of, and the other after the fact. What
follows is a succinct narrative of how we build the template and the
program, using the first to aid the second. When finished the picture
of the program is what is left over. Here is how.

The buildup of Yat-C supposed several programming tasks
were needed from the outset. A first cut of the design was sketched
as shown in Fig. Y-2. In this pass my thinking was along these lines:

B All programs need initialization to at least some extent

[Repeated play should be an option: a set up game sequ-
ence will be necessary

B A mainline area can be used to hook together whatever
subroutines are finally built

[Any instructions that are needed would be assigned to
block 1000

B The dice-rolling sequence would be assigned to block 2000

[The needed player input would be assigned to block 3000

[B In coding the tricky part is to let the player hold, roll, or
pass. By coding this as a subroutine, starting at say 3400,
other tasks associated with player input can be done in the
3000 series also

284

10 1000
INITIALIZE DESCRIPTION
SET UP GAME

2000

/ ROLL THE DICE

MAINLINE

\ 3000 3400

PLAYER INPUT HOLD, ROLL
OR PASS

Fig. Y-2. The first-cut template for Yat-C.

Almost as soon as my pencil touches the paper it is realized that
input will be needed, but there is no real fun in doing all of that dialog
business and keyboard error checking. That can wait. At this point
just code in a GOSUB. Because the keyboard entries will have to
occur before this routine (line 3400) can be used, line 3300 is
arbitrarily used as the eventual address for that module. Carry on.

And so the programming continues. Each time impatience
causes me to want to wait until later to do the detail coding for a
specific task, I simply pick a block number, sketch the block on the
drawing, and continue with the gritty part at hand.

When finished, backing up all the while, finally doing the lesser
tasks, the drawing will show it all, even if somewhat helter-skelter.
But it is all there, and it only takes a few minutes to copy it,
repositioning the blocks so that lines can be drawn connecting them
without ever having to cross over each other.

The general philosophy regarding the connecting lines is that
lines connected to the top or bottom of a block represent
straightthrough flow. Subroutine calls and return paths are depicted
by connecting the blocks with lines into or out of the sides of the
blocks.

Two problems can occur while drawing the template for a very
complex program (or for a very helter-skelter program, as the case

285

may be). In Fig. Y-1 the block drawn with broken lines (the coding
series spanning 3200 through 3400) is duplicate of another block.
The subroutine to print dice exists in the program only once. The
problem, and the reason for showing the block twice, is that to
connect the description block to the solid-line block would require
crossing over other connecting lines. I would really rather not have
to.

The other type of problem is that one associated with block
8000 in Fig. Y-1. The solution in this case is to append a footnote
flagged with an asterisk. The nature of the problem here is that
which was mentioned earlier: while within a jump to line 8000
another jump is executed, jumping a few lines later to an area that
will be executed again (but in a straight-line manner the second
time). In effect this is a subroutine that calls the tail end of itself, then
bottoms out through the same (final) return.

Naturally, the blocks and the lines by themselves donot convey
the complete picture. A sense of sequence depends on a couple of
other template conventions. Whenever possible the blocks should
be positioned in a top-to-bottom order according to their calling
sequence. Thatis why, in Fig. Y-1, line 3100 s positioned above line
3000.

The names shown inside the blocks attempt to convey order-
of-use also. These same names are used in REM statements in the
program as well. This and the use of last-line numbers in the blocks
tends to tie the template and the program together. The combina-
tion works to give adequate documentation, but with little real effort
and without detracting from the fun of programming.

THE CODING OF YAT-C

A few moments thought about what it is this program has to do
will predict that not a lot of storage is required. That is the case.
Two small tables are set aside in line 40. Table D, with five ele-
ments, is for the five dice. That six-element table called F' is for
frequency counting. (There are six numbers possible on any one
die. A pair of sixes would cause a two in the sixth position of table F,
for example.)

All other storage is in simple variables, and even they are few in
number. Four of these are initialized in line 150 through 180. Symbol
S is for score; this is a temporary worker, used for either player
during his or her turn. Results accumulated in S are added toSI or
S2, the total-score workers (one for each player). Players are also
known by a number, either I or 2, and the variable P shows which
player is up.

286

Recurring rounds of play are driven by the sequence in the
mainline that extends from line 190 through 600. The brief FOR-
NEXT loop in lines 190 through 210 is for clearing of the five dice
workers at the start of each round. This is done because the jump to
line 2000 is for rolling five (new) numbers into the table D fields.

The logic of the dice roller (lines 2000 through 2070) is such
that it examines each spot in fable D, inserting a newly generated
random number in any location that has a zero in it (but leaving as-is
any spot already containing a number). From this it is easy to guess
how the “hold or roll” option works—to fetch any new number, just
zero the spot and GOSUB 2000.

This is an apt place to notice that the random-die function is set
aside as a separate subroutine, callable from a variety of locations. It
is in lines 2100 through 2130, and simply returns in R, a number
from one to six.

A key jump out of the mainline is to line 3100. It is there (lines
3100 through 3160) that the player number (P) is alternated from I
toZ2, and the players’ scores are updated by whatever residue isinS
following each completed round of play (after all three of a player’s
rolls). It is because this jump occurs first, before any player input at
~ all (at the beginning of a game) that S must be preconditioned to
zero, and P is started up with a two in it.

The next jump out of the mainline is to line 3000. That sub-
routine is in concept a second mainline. The list of alternating
GOSUB statements from line 3000 to line 3090 causes a continuous
print-enter-print type of sequence. The reason for isolating the print
dice task is that a round for a player begins and ends with printed
output. Printing is done four times; input is done only three.

The dice printer is pure simplicity: FOR-NEXT loop is used,
outputting the five numbers stored in D(1) through D(5). The other
jump, to line 3300, is for player input. The total sequence from line
3300 to line 3380 is not long either, but it contains other jumps,
triggering a long line of nested accesses.

All that is asked for in lines 3300 through 3340 is a number
ranging from zero to six. Whatever is typedis acceptedinto @, and if
valid it is carried along by the jump to line 3400, which is where I
started coding this program.

As seen by the player, to this point he or she has been shown
five dice, asked for the number on one of them, andis now prompted
with “(H, R, ORP)”, followed by a question mark. From line 3420 to
line 3440 the program looks at what was typed into @8, and acts
accordingly.

If the player likes what is seen, and figures to roll anything is
more apt to cost than help, a P (for pass) response will end the turn.

287

The exit logic goes to line 3525 for the return back to the minimain-
line.

If the player’s option is to hold the sequence from line 3470 to
line 3525 comes into play. This sequence interprets the hold option
to mean that the number being held in @ (supposedly matching one
of the dice showing) is to be kept, and the other four numbers are to
be newly generated. The jump out of line 3470 to line 3700 is for two
purposes: to determine the number in @ is valid, and if so, to
ascertain its table D location. (In cases where the number occurs
more than once the first will suffice; either way @1 will tell.)

That test for zero in @ in line 3475 was patched in to exit from
here back to the number-entry area to force another try (@ wasn't
found in table D). If the number in @ is good, the FOR-NEXT loop
from line 3480 to line 3500 clears the whole dice table. Then line
3510 reloads the Q1 location with @ in effect at whatever position it
was found. The jump from line 3520 to line 2000 will refill the four
zeroed spots with new numbers, and the round goes on.

The remaining option is R (for roll). Starting at line 3530 the
program’s logic presupposes that the player is happy with four of the
five dice and would like to selectively roll one by itself. Again, we
jump to line 3700 to find out which number matches @ (or whether a
keyboard mistake was made). This one is easy. Line 3540 jumps to
line 2100 to get a number, and it is then superimposed over what-
ever was in the table where @ was found. And the round goes on.

When the minimainline is exhausted the program returns to the
mainline at line 500. This last jump from the continuous-play loop is
toline 8000, where we have another minimainline, this one for score
calculations.

Calculation of a player’s score begins with a jump to line 8100.
The short FOR-NEXT loop from line 8100 to line 8130 clears the
frequency count table. The returnin line 8130 goes back toline 8020
to pick up the jump to line 8200. This second task, from line 8200 to
line 8260, loops and counts the pairs and so on that are in the five
dice workers, loading the results into fable F.

Now, the heavy: GOSUB 8300. A six-times-always loop from
line 8302 to line 8370 is used to test each position in fable F. Each of
the possible numbers (two through five) are checked for. The S§
variable is loaded with an appropriate message as this loop goes on.
An exception condition is managed by use of anF' counter within the
loop.

Ifatwois foundF isincremented to one. As the loop continues,
if a three is also found, F is again incremented. (Notice the test for
another “YAT” in line 8305; no extra score is given for a second

288

pair.) When the loop finally completes, if F is equal to two, S$ is
overwritten with the full house constant. For arithmetic reasons, it
doesn’t matter which comes first, a pair or triplets—the com-
pounded score will be the same.

By the way, if no counter has anything greater than a one in it,
the natural in S§ will remain unchanged and S is not affected. A
straight might be in table D, though, and that is what is checked
next.
In line 8400 if the first and the last positions in the frequency
table are alike get out quick. With only five dice, a straight cannot
embrace one through six. From line 8420 to line 8450 the loop looks
for zeros. The logic of this routine depends on the fact that only one
zero can be there.

The fallthrough flow back down through lines 8100 to 8130
reclears fable F' as a last act in calculating scores. A return could be
inserted in line 8055, but had this been done I would have missed the
chance to demonstrate the subroutine that calls part of itself. And
that would have removed some of the fun.

THE PROGRAM
10 REM "YAT-C"
20 REM

30 GOSUB 9000

40 DIM D(5)s F(6)

500 PRINT "WANT THE DESCRIPTION (Y OR N)"j
600 TNPUT 0%

70 1F @% = "N" THEN 140

80 IF @% = "Y" THEN 130

90 PRINT "ANSWER WITH Y (FOR YES)s OR"
1000 PRINT “ANSWER WITH N (FOR NO),"

110 PRINT

120 GOTO 50

130 GOSUR 1000

140 PRINT
150 LET &
160 LET P
170 LET 51 = 0
180 LET 52 = O
190 FORI =170 5
2000 LET DC(I) = O

210 NEXT 1

300 GOSUR 2000

310 IF 51 > 500 THEN 700

0
2

nn
non

]

289

320

330

400

500

&0M01

700

705

710

720

730

740

999
1000
1010
1020
1030
1040
1050
1060
1070
108D
1090
1100
1110
1112
1114
1120
1130
1140
1150
1152
1154
1160
1170
1180
2000
2040
2020
2030
2040
2050
2060
2070

290

IF 82 > 500 THEN 700

GOSUR 3100

GOSUR 3000

GOBUR 800D

G070 190

GOSUB 3140

PRINT "WANNA PLAY AGAIN (Y OR N)"j
INPUT Q%

IF @% = "Y" THEN 140

PRINT “GOOD-BYEs THEN..."

END

REM "DESCRIPTION"

PRINT "THIS IS A COOL 2-PLAYER GAME."
PRINT “EACH TURN IS 3 ROLLS OF 5 DICE"
PRINT "LIKE THIS:"

GOSUB 2000

60SUB 3200

PRINT

PRINT “AFTER THE 15T ROLLs YOU MAY:"
PRINT "'H' HOLD 1 NUMBER AND ROLL THE"
PRINT ™ OTHER 435 OR YOU MAY™

PRINT "/R* ROLL ANY 1 NUMBER AND"
PRINT * HOLD THE OTHER 4 OR YOU MAY"
PRINT "'P' KEEP WHAT YOU HAVE (PASS)."
PRINT "OK"3

INPUT @$

PRINT "SCORING: STRAIGHT = 200 POINTS"
PRINT “"YAT-C (5/KIND) = 5 X DICE VALUE"
PRINT "YAT-B (4/KIND) = 4 X DICE VALUE"
PRINT "YAT-A (3/KIND) = 3 X DICE VALUE"
PRINT "YAT (2/KINDY = 2 X DICE VALUE"
PRINT "FULL HOUSE = 2X + 3 X DICE VALUE"
PRINT "NATURAL (MIXED BAG) = VALUE OF"
PRINT "THE DICE ONLY."

RETURN

REM "ROLL THE DICE"

FORI =1T05

LET R = D(D)

IF DCI) <> O THEN 2050

605UB 2100

LET D(I) =R

NEXT 1

RETURN

2099 REM “A RANDOM NUMBER"
2100 LET R = INT(10#RND(1))
2110 IF R € 1 THEN 2100
2120 IF R > & THEN 2100
2130 RETURN

3000 REM "SHOW 'N' TELL"
30211 GOSUB 3200

3040 GOSUB 3300

3045 IF @$ = "P" THEN 3090
3040 GOSUB 3200

3050 GOSUR 3300

3055 IF @% = "P" THEN 3090
3060 GOSUR 3200

3070 GOSUR 3300

3u75 IF @% = "P" THEN 3090
3080 GOSUR 3200

3070 RETURN

3099 REM "PLAYER CONTROL"
3100 IF P = 1 THEN 3125
3105 LET P = ¢

3110 LET 52 = 8248

3145 IF 8§ = 0 THEN 3150
3120 G070 3140

312% LET P = &

3130 LET 81 = 5148

3140 PRINT

3145 PRINT "SCORES: #1" 51 " #2" &2
31581 PRINT

3155 PRINT "PLAYER #" P
3140 RETURN

31%% REM "PRINT DICE™
3200 PRINT " "3

J2A0 FOR I =1 T0 5
3220 PRINT D(I)3

3230 NEXT I

3240 RETURN

3299 REM "INPUT #"
3300 PRINT "NUMBER"
3310 LET @ = O

3320 INPUT @

3330 IF @ < O THEN 3370
3340 IF @ > 6 THEN 3370
3350 GOSUB 3400

291

3355
3360
3370
3380
3399
3400
3405
3410
3420
3430
3440
3450
34460
3470
3475
3480
3450
3500
3510
3520
3525
3530
3535
3540
3550
3560
3699
3700
3710
arzn
3740
3740
7999
8000
8010
8020
8030
8040
8050
8099
8100
8110
8120

292

IF @ = 0 THEN 3370
RETURN

PRINT "HUH?7"

GOTO 3310

REM "HOLDs ROLLs OR PABS"
PRINT "(Hs Rs OR P)"}
LET @ = " "

INPUT @%

IF @% = "H" THEN 3470
IF @$ = "R" THEN 3530
IF @$ = "P" THEN 3525
PRINT "QOPS - Hs Rs OR P"
GOTO 3405

GOSUR 3700

IF @ = 0 THEN 3520
FORI =4T05

LET DIy = O

NEXT I

LET D(@1) = @

G0suB 2000

RETURN

GOSUR 3700

IF @ = 0 THEN 3560
GOSUR 2100

LET D(@1) = R

RETURN

REM "FIND THE ONE"
FOR @1 =1 T05

IF D(@1) = @ THEN 3740
NEXT @1

LET @ =20

RETURN

REM "ANALYZIE & SCORE"
PRINT " "3

G0oSUB 8100

GosuB 8200

GOSUBR 8300

GOSUB 8400

PRINT G%

REM "CLEAR TABLE-F"
FORI =1T06

LET F(I) = O

NEXT 1

8130 RETURN
8199 REM "FREQUENCY COUNTS"

8200 LET 8§ =
821DFORI =1T05
8220 LET J = D(D)

8230 LET F(J) = F(HH#1
8240 LET 8§ = 5+J

8250 NEXT I

8260 RETURN

82%9 REM "SCORE"

8300 LET 5% = "NATURAL"
8301 LET F = O

8302 FORI = 170 6

8304 IF F(I) <> 2 THEN 831D
8305 IF 8% = "YAT" THEN 831D
8306 LET 5% = "YAT"

8308 LET 5 = §+248

8309 LET F = F#1

8310 IF F(I) <> 3 THEN 8330
8315 LET 5% = "YAT-A"

8316 LET F = F+1

8320 LET 5§ = G+3#§

8330 IF F(I) <> 4 THEN 8350
8335 LET 5% = "YAT-B"

8340 LET 5 = S+4%8

8350 IF F(I) <> 5 THEN 8370
8355 LET 5% = "YAT-C"

8360 LET 5 = 8+5#8

LI]

8370 NEXT 1
8372 IF F < 2 THEN 8376
8374 LET 5¢ = "FULL HOUSE"

8376 LET F =0

8380 RETURN

8399 REM "STRAIGHTS"

8400 IF F(1) = F(6) THEN 8490
8410 LETF = 0

84620 FORI = 170 &

8430 IF F(I) <> D THEN 8450
8440 LET F = F#1

8450 NEXT 1

8460 IF F <> 1 THEN 84%0
8470 LET 5% = "STRAIGHT™

8480 LET 5 = 200

8490 RETURN

9000 REM "RANDOM NUMBER ROUTINE"
9010 LET Z = RND(1)

9020 RETURN

293

This is the end. If you lisp a little it might even sound like Z-end. A
corny name, perhaps, but chosen because of a propensity for round-
ing out our library with a simple classic. The game is based on the
ancient game of nim.

The word #im is itself archaic, and means roughly to steal,
filch, or take away. That is how this game called Z-End is played.
Players take turns taking away letters of the alphabet. The one that
gets the Z ends the game and is the loser.

Simple game. Simple program. Included because it is a classic,
but more importantly because it has a definite usefulness.

Need to demonstrate to a friend how easy it is to program? This
is a good model. It includes alphanumeric variables, conditional
logic, elementary arithmetic, DATA structures, and even FOR-
NEXT loops. Its design is basically siraight-line and therefore sim-
ple. And it shows in a rudimentary way how the computer is able to
play a game.

This is also a good game for introducing new players to your
computer. Young and old alike will enjoy the ease with which they
can learn to play with your machine. After a few rounds, and they
move on to other games, they will surely remember the fun they had
inZ-End.

FROM THE TOP

There is an option provided by lines 40, 50, and 60 to skip the
rules. Notice that, unless explicitly skipped with a Y, the rules will

294

be printed. In many programs both ¥ and N are emphatically
checked, overcoming any keyboard accidents by allowing another
try. The choice as to when to use this easier programming method is
not capricious.

Rules

Since the rules option is permitted but once, right after the
program is loaded, an operator’s mistake at this point may let him or
her enter into a complex game without any knowledge as to how it is
played. Z-End is not risky. It is a simple game, and only a few rounds
are needed to conclude a trial round as the learning process. Thus,
there is not any real harm done if the rules question is answered too
hastily. Anyway, Y is all that is checked for in this model.

Housekeeping

A game’s housekeeping is done from line 160 through 185. The
DATA string containing the alphabet is declared here, to be used
later. The symbol Z is set to one. Later, each draw is added to Z,
and when it passes twenty-five the game is over. Dual-purpose
worker @ is zeroed at this point because the GOSUB 500 uses it in
an arithmetic expression. When the game first starts no residue
should be left in @ from a previous game.

Printout

The subroutine that extends from line 500 down to line 660 is
the section of coding that prints the alphabet. From line 550 to 580 is
a brief FOR-NEXT loop that reads the DATA string, stopping with
whatever letter should be the first in the forthcoming round of play.
In the beginning, of course, the loop will break immediately because
the conditional in line 570 will find that Z does contain a one.

Rounds of play

Another FOR-NEXT loop is entered into from the first one
(lines 600 through 620). This one begins with whatever has been
read intoZ$, prints it, and continues to read and print until it reaches
the end of the alphabet. When the restore is finally reached in line 630
the DATA pointer is reset so that succeeding rounds will begin again
withA in the alphabet. The null print in line 640 advances the printed
output, and the conditional in line 650 will let the return work if there
is more than one letter left in the string. .

“YOUR TURN” is set up in the area from line 200 to line 220. If
the number that you type into @ is less than one or more than five

298

there is an emphatic reminder output by line 300 to let you know the
computer is paying attention; go again, back to “YOUR TURN” in
line 210. When you finally get past these tests, GOSUB 500is used
again to print the results of your pick.

The computer is permitted to play next. The subroutine from
line 800 to line 930is used by your opponent, and it is jumped to from
line 270. As can be seen early lines 810 and 820 contain the essence
of the programmed strategy. If fewer than six letters remain the
computer takes all but the final one (line 900). If more than ten
letters are still active, the computer fakes its intelligence with a
random guess (lines 840 through 860). When the countdown gets to
between ten and six letters remaining the program takes but one ata
time (line 920). Sure, you can beat it—but you are a program-
mer.

Humanizing Points

Two other points need to be made about the mechanics of how
this program is controlled. In lines 200, 710, and 880 the symbol P
(player) has a use. When a game does end either a parting shot (HA
HA), or a meek acknowledgment (OOPS) is made—based on
whether P has a one or a two in it.

REPLAY

Early in the mainline, back up in line 155, the @§ was blanked.
In line 195, and again in line 260, @$ is checked for a ¥ character.
After the first game gets under way the only place that accepts input
into @ is in line 760. That is where, after a game has ended, the
player thumping on the keyboard has a chance to ask for another
game. That sequence has to end with a return. (A GOSUB was in
force through line 500, to line 650, to line 700.) To start another
game the branch reenters the program at ine 155 to again blank Q$.

And the game goes again; at least until Z-End.

THE PROGRAM
10 REM "Z-END"
201 REM

30 GOSUB 9000

40 PRINT "SKIP THE RULES (Y OR N)"i

500 INPUT @%

&0 IF @% = "Y" THEN 150

70 PRINT "I'LL PRINT THE ALPHABET."

80 FRINT "YOU’'RE FIRST.

90 PRINT “TYPE THE NUMBER OF LETTERS THAT"

296

100
110
1201
130
140
150
155
160
170
180
185
190
195
200
205
210
215
220
23D
240
250
240
270
28N
290
304
310
S0k
550
560
570
580
590
600
610
615
620
630
640
650
660
700
710

PRINT "™ I SHOULD OMIT NEXT TIME."
PRINT "WE TAKE TURNS AND THE LIMIT®
PRINT " PER TURN IS 5.,%

PRINT "THE ONE THAT GETS THE *Z* Ig§"
PRINT " THE LOSER AND THAT'S Z-END."
PRINT "GOOD LUCKs CUZ I'M CLEVER..."
LET @ = " n

DATA AsBsCsDsEsFsGsHsIsJsKsLsM

DATA NsOsPsQsRsSsTsUsVslWsXsYsZ

LET Z = 1

LET @ =0

G0SUB 500

IF @% = "Y" THEN 155
LET P = 2

PRINT

PRINT "YOUR TURN"}
LET @ = O

INPUT @

IF @ < 1 THEN 300

IF @ > 5 THEN 300

60SUR 500

IF @% = "Y" THEN 155

GOSUR 800

GOTO 190

PRINT

PRINT "ILLEGAL - 1s 25 35 45 OR 5"
6070 210

LET Z = 2+4@

FORI =1 T0 27

READ Z$%

IF I =

NEXT I

LET 4 = Z

FORI =4 T0 26
PRINT 7%

READ Z%

NEXT 1

RESTORE

PRINT

IF 26-7 = 0 THEN 700
RETURN

PRINT "Z-END ";
IF P = 1 THEN 780

Z THEN 590

297

720
730
740
750
760
765
770
780
790
800
810
820
830
840
850
860
870
asan
89a
200
210
920
930

PRINT "QOPS"

PRINT

PRINT "DO IT AGAIN (Y OR N)"§
INPUT @%

IF @$ = "Y" THEN 6460
PRINT "GOOD BYE"

END

PRINT "HA HA!"

6070 730

PRINT

IF 26-7 < & THEN 900
IF 26-7 > 10 THEN 840
GOTO 920

LET @ = INTCAD#RND(1))
IF @ € 1 THEN 840

IF @ » 5 THEN 840
PRINT "MY PICK IS"@
LET P =1

RETURN

LET @ = 26-Z

6070 870

LET @ = 1

G0TO 870

9pUD REM "RANDOM NUMBER ROUTINE®
9040 LET Z = RND(1)
9020 RETURN

298

Appendix 1 P M
BASIC Dialects: ife e 3
Foreign Gonversions ~_cowe

INPUT PROMPTING

During my research for this book I did not find any system that
used other than a question mark as a system-provided indicator.
This does not mean that your system is abnormal if it does not
automatically print a question mark following an input command.
What it does mean, however, is that in copying these programs you
will have to notice in the player dialog where they should be in-
serted. The following is typical:

PRINT “WANT INSTRUCTIONS (Y OR N);
INPUT Q$

A question s being asked, so when the print is executed it should be
followed by a question mark. As a programming convention I ex-
pected two services of the system: the character string within the
quotation marks would be output, and a question mark would appear
automatically immediately following (as a result of the input com-
mand). If your system does not supply the question mark simply
insert one within the quoted string.

PRINTING

In the above example the trailing semicolon in the print expres-
sion has a special significance: the input prompt (?) will appear
immediately after the printed question on the same print line. In the

299

absence of the semicolon the question mark would occur at the start
of the next print line. If the syntax of your system digests the
semicolon character in some other way one will have to be elimi-
nated. And you will have to achieve the desired results according to
your own system’s conventions.

CONDITIONAL CONTROL

Normally branching is done with a GOTO statement. The
syntax for direct branches seems to be universal enough, but there
are deviations for doing conditional branching. The keyword THEN
is interpreted as a synonym for GOTO in most BASIC implementa-
tions. Some even permit the use of either, in which case the
semantical results of the following would be the same.

IF A =B THEN 100

IF A =B GOTO 100

There is at least one commercial BASIC on the market that does not
permit the word THEN. You may have to substitute a GOTO for
every instance of THEN in all of these programs. The vast majority
of modern BASIC products do work with THEN, however, and I
have favored its use for literary reasons.

There is another reason: the BASIC I have used will accommo-
date virtually any valid construct after the word THEN—not just a
line number. For the most part I have used only a line number after
THEN to preclude any aggravation for those syntax is restricted. 1
did enjoy one exception, however, which may require you to make a
minor modification. Consider:

IF A =B THEN GOSUB 1000

The intent, of course, is to do a subroutine jump if the condition is
true and to return to the next immediate statement. If the condition
is not true program execution falls through to the next statement,
bypassing the subroutine jump. There are two other possible ways
of doing this, one of which may be inherent to your BASIC.

IF A =B GOSUB 1000

No problem. Just ieave out the word THEN. If neither of these
methods works in your case you will have to use the following one.

IF A = B THEN nnnn

300

or

IF A=B GOTO nnnn

At the address specified (nnnn), then code a GOSUB 1000 and
follow it with a GOTO (back to the line number that immediately
follows the conditional expression).

END vs STOP

Some BASIC implementations have both of these keywords.
Many, during program execution, work in a similar manner to halt
the program. That is the logical function. Your BASIC may expect
the word END to appear only at the physical end of the program.
That is, END should only be used in the last statement of the
program.

If your BASIC will permit STOP as a logical terminator simply
code in the word STOP where I have used END. Andif your system
also insists on the END at the end of the program file use it
accordingly.

There is one other possibility: you may have to logically exe-
cute the END at the end. If so, where I have used END, substitute a
GOTO, naming the last statement of your program (where you have
added an END statement whose line number is the highest number
in the program).

301

Appendix 2

A tally of the various BASIC missals at my disposal indicates that
one of the following should promote the correct results in your
machine.

1. Use the one included throughout these programs. The
GOSUB 9000 that is coded in the early lines of a program
goes to an RND expression that uses a nonzero integer.
This is supposed to start the ball rolling, and thereafter
each use of RND (with a nonzero integer) will fetch
another, unique pseudorandom number.

2. The keyword RANDOMIZE may be substituted for the
GOSUB 9000, and lines 9000, 9010, and 9020 may be
omitted. If your BASIC likes the word RANDOMIZE it
will probably be necessary to remove the parenthetical
expressions in all other RND statements as well. Care
must be exercised in doing so to the extent that all thatis to
be removed is the left and right parentheses (and the
integer) that is associated with the intended RND(1). Any
other parentheses or variables or operator must be pre-
served.

3. It is possible that you need RANDOMIZE and that you
need to omit the parenthetical modifier that follows any
RND, and still need to do more. This is usually the case
when the system needs to be furnished a seed(in some
BASIC implementations the seed is generated internally,

302

often by use of a clock circuit). The following coding will do
that, and presumes that you will get there by way of the
GOUSB 9000 that already exists—replacing only those
lines beyond 9000.

9010 PRINT “PLEASE TYPE IN THE DAY OF THE MONTH”:
9020 INPUT Q1
9030 PRINT “TYPE IN THE MINUTES PAST THE HOUR":
9040 INPUT Q2
9050 LET Q3 = (Q1+Q2+ABS(Q1-Q2))/2
9060 LET Q4 = (Q1+Q2-ABS(Q1-Q2))/2
9070 IF Q4 > 5 THEN 9090
9080 LET Q4 = Q4+5
9090 FOR | = 1 TO Q3/Q4 STEP Q4/Q3
9100 LET Q5 = RND(2)
9110 NEXT |

9120 RETURN

303

Appendix 3
Game Matrix

304

PLAYERS

GAME TYPE

1 PERSON

2 PERSONS

23,0r4

COMPUTER
CARDS
DICE

NUMBER GUESSING
LETTER GUESSING
GRID BASED

DATA SORTING
NIM VARIANT

ABSTRACT

BANDIT

COKES

DIiCE

ELEVATE

FIVECARD

GUNNERS

HOTSHOT

INVERT

JUSTLUCK

KNIGHTS

LAPIDES

MATCH

NAUGHTS

O-TELL-O

PAR-2

QUANTAL

ROULETTE

STATES

TWENTY 1

ULTRANIM

VERBOTEN

WAMPUS

XCHANGE

YAT-C

Z-END

Appendix 4

Truth Table Blanks
8 Bits by 256 Words

WORD SUTPUTS REMARKS WORD QUTPUTS REMARKS
NO. o807 |06|05| 04j03] 02 01 NO. Tos|o7[o6]os[o4 [o3]02 01

~lofon] mfoaln
~d|
{=]

3@
~|
PN

1000 |~ O | PN
[}

J
O
oy
B

R
@
[

8 86
(a3 87
{24 T 88
25 7 { .89
{26 : I S0
27 [!] 91
28)] [92 T
29 RN 93
] F I A Y I 94
S T %
3 96
gi } i (\ ?L_g] 97 (
e i 98
| 35 7 1 | S T 99
3% 7 R S 100
371 [) 301
38) 7Y PRI A { 7102
|39 v ! 1] {103
40 1] 04
a1 [1 05
42 L 06
43) 07
44 [08
45 [09
46 [0
47 I 1
48 [2
49 I 3
50 ! 4
51 [5
52 T 6
53 7
54 8
55]
55 20
57 EL
58 122
— 59 23
60 | 124
&7 125
62 126
83 | 57

continued on page 306

305

Truth Table Blanks (continued from page 305)

WORD OUTPUTS WORD QUTPUTS
NO. {os|o7]o6]05]04 03 102) 01 REMARKS H0. f[os[o7]os Jo5]04103]02] 01 REMARKS
128 192
129 93
i3 | 194
131 |85
132 196
33 197
1 T 198
35 199
[136 200
137 201
38 202
39 203
30 204
2 205
3 208
3 307
a4 208
35 209
146 0
a7
48
FE)
50 7 4
51 {215
152 216
£3 ; 7
{154]
{155 219
156 220
157 221
{158 202
59 203
60 224
181 225
162 226
63 207
B4 228
65 259
166 230
167 231
168 232
169 233
70 234
171 235
172 236
173 237
174 38
75 | 239
76 40
77 21
78 242
179 43
80 44
181 45
D46 46
83 47
84 NZE
. 185 49
186 2850,
187 . 251
88 252
89 253
150 254
191 255

A
Abstract 15
building the program 17
design approach 16
how the program works 19
program 22
programming problem 16
B
Bandit, defining the problem 27
design strategy 27
program 31
the internals of 28
Battleship 76
H
Card code generation 57
Chuck-a-Luck 115, 118
Cokes, how the program plays 35
program 36
Column 77
Command moduie 82
D
Dice, general-purpose technique 40
how works 40
problem definition 38
program 44
the architecture of 40
Dimension 40
Draw 65
E
Elevate, how the program works 48
program 51
Errors 49
F
Fini-key 26
Fivecard, architecture 63
clear table-H 67
clear table R 67
design 55
frequency counts 67
hand analyzer 66

index

how mainline works
how works
table A
tabie A1
tabie A2
table B
table B1
table B2
table D
table H
table R
the program
winner picker
Flush
straight
Full house

G
Gunners, building
deploying the tanks
four clues
internals
program

Hand
analyzer

High card

Hot shot
making work
program
programmed strategy
putting together

Human factors

I
Indubitable deck
Invalid shot
Invert, check for a winner
computer’s pick
display 2 tables
player input
player's numbers
program

64
56
57
57
62
57
57
62
56
58
60
70
69
56, 68
68
68

77
81
76
79
83

58
58
68
87
92
95
89
90
48

146

92
109
108
106
107
108
110

307

program overview
what's inside

]
Justluck, program

architecture
listing
K
Knights from within
layout
program
L
Lapides, check for win
logic
player input
print
program
Logical grid
M

Match from the inside
Match from the outside
Match, program
Maximum range

Meat of the matter
Micros

Multiples

N
Naughts & Crosses,
design approach
housekeeping
mainline

modules, mapping & more

tables
the program

0

O-tell-O, basic logic principles

from the inside

picture of the program

play
problem definition
program

P

Par-2, design considerations

program
programming

Picture-name print statements

Quantal, design & logic
program

308

103
108

120
116
118

128
127
133

140
138
140
140
141

88

149
145
152
48
66
38
67

156
162
162
160
158
167

176
179
178
172
174
183

191
195
193

27

200
202

Rank

Roulette, playing
program
programming

Row

Shuffle

States internally

States, program

States template
Straights

Structured programming

T
Tank
Twenty1, design audit
program
putting together
the deck
Two-shot

U
Ultranim, program
rest of
strategies in nim

the computer's choice

Verboten program
Verboten's coding

W

Wampus, describing the

mechanics

describing the
program

program

Xchange, end
game
print grids
program

program organization

salient points
task orientation

Y
Yat-C, coding
program
program template
Z
Z-End, from the top
program
rules

56
206
211
207

77

148
219
223
218

67

253
229
235
230
228

93

247
243
240
241

252, 256

254

262

260, 262

265

277
270
276
277
271
272
271

286
289
284

294
296
295

