A GUIDE TGO
rRUGRANRNNG i
LcUEL il BAGIC

Illl\‘_
EHLIEE PRESLES

| S ARRENCEUILLE
/)
RESS, INC.

BRUCE PRESLEY

DISTRIBUTED BY
VAN NOSTRAND REINHOLD COMPANY

NEW YORK CINCINNATI TORONTO LONDON MELBOURNE

First published in 1982

Copyright ©1982
by

ARRENCEVILLE

/),

RESS, INC.

Library of Congress Catalog Card Number 82-60365
ISBN 0-442-25892-5

All rights reserved. No part of this work covered by the
copyright hereon may be reproduced or used in any form
or by any means—graphics, electronic, or mechanical,
including photocopying, recording, taping, or information
storage and retrieval systems—without written permission
of the publisher. Printed in the United States of America.

VRE

Educational orders may be placed by writing or calling:

Van Nostrand Reinhold Inc.
76 25 Empire Drive

Attn: Department T
Florence, Kentucky 41042
Telephone 606-525-6600

Van Nostrand Reinhold Company
135 West 50th Street, New York, NY 10020

Van Nostrand Reinhold Ltd.
1410 Birchmount Road, Scarborough, Ontario M1P 2E7

Van Nostrand Reinhold Australia Pty. Ltd.
17 Queen Street, Mitcham, Victoria 3132

Van Nostrand Reinhold Company Ltd.
Molly Millars Lane, Wokingham, Berkshire, England RG11
2PY

16 15 14 13 12 11 1098 7 6 5 4 3

This guide is written and published by Lawrenceville
Press, Inc. and is in no way connected with the Tandy
Corporation. TRS-80 is the registered trademark of Tandy
Corporation with regard to any computer product.

PFREFACE

The publication of this first edition of A GUIDE TO PROGRAMMING IN LEVEL Il BASIC
represents the latest achievement of faculty members and students at The Lawrenceville
School in developing curricular materials to assist students in learning to program
computers.

Based on experience gained in our classrooms over the past fifteen years, we are
convinced that a structured, concisely written computer text is invaluable in teaching and
learning programming. This latest manual, written specifically to instruct students in Level
Il BASIC, not only retains but expands on the features which have resulted in the wide
acceptance of our previous publications, A GUIDE TO PROGRAMMING IN APPLESOFT
and A GUIDE TO PROGRAMMING IN BASIC PLUS.

The production of this manual has involved the cooperation and talents of many
individuals. Lester Waters, Robert Lynch, Eli Hurowitz, and Donald Mikan, have all made
contributions to this publication which have been invaluable. Each has authored and taken
responsibility for specific areas of the manual. The clarity and accuracy of each chapter
reflect their considerable effort and expertise. Majorie Vining, of the Rhode Island School
of Design, has produced the imaginative cover design, and William Sunfest of Trentypo the
art work, while Dr. Theodore Fraser of The College of the Holy Cross has edited the text to
ensure that it is both grammatically and stylistically correct. A very special thanks is due
Harold Simmons and his staff at Trentypo. Their assistance in producing this and our
earlier manuals has been invaluable.

To all of these people | am deeply grateful. Thanks to their combined efforts we have
produced what | believe to be one of the very finest computer texts available today.

Bruce Presley

THBLE OF CONTERTS

CHAPTER ONE—Introduction to Programming
What is a program?
Line Numbering
PRINT

Typing Errors
LIST
N PP PP PP PPPPPTPPPRRRTPRRIN
What is a variable?
READ, DATA
GOTO
I U PP
Print Formatting
Immediate Mode
REM

...

..

..

..

...

...
...

..

...

CHAPTER TWO—Decisions and Loops
L N o 1 =1 PP PPPPPPS
Extended Use of IF ... THEN, Multiple Statement Lines
IF... THEN ... ELSE

..........................
..
..

FOR...TO...STEP, NEXT
RESTORE
Exercises

CHAPTER THREE—Computer Games and Graphics
BND

SUMMALION oo,
ROUNAING EFTOIS ..ottt ee e e e

Formatting OUIPUL ..cooiiiiiee e e
PRINT TAB
CLS
P S et s e e ere e
PRINT@ ..ottt et es e s
GrapPhiCS oot e n
SET—RESET
POINT

...

CHAPTER FOUR—Nested Loops and Subscripted Variables
Nested FOR ... NEXT LOOPS .iiiiiiiiieiiiccie et
The Need for Subscripted Variablesccocccccevieiiiiiiiiiicie e
Single Subscripted Variablescccooiiiiiiiiiiiiicce e
DIM

...

Double Subscripted Variablescccccoviiieiiiiiiiieeee e,
Some Final Notes on Subscripted Variablesccccocoviovviieeeiienieeieennnn,
Extended Variables Namescocciiiiiiieiciiieec et e
EXBICISES ..ottt e e e e ee e e
CHAPTER FIVE—Programming Techniques
Structuring @ Programcccociiir it
DEDUGGING .t e e e e e e e e e e aeaeeeaean
SYNEAX EITOIS oo e e e e e e e e e e e
Runtime Errors
Logic Errors
Hand Tracing
TRON—TROFF

...
..
..

...
..

CHAPTER SiX—Mathematical Functions
Order of Operations
SQR

ATN

..

DR et st et

Shifting and Scaling a Graph
Exercises

...

CHAPTER SEVEN—Subroutines and Error Handling
GOSUB—RETURN ittt ettt evt ettt s st e et e seee e
ON—7GOTO ittt st st e s ee e eeeeene s
ON—GOSUB oottt s s e

Using Subroutines to Structure Programsccooccovvooiiciiiiinis s
ON ERROR GOTO and RESUME ...iiiiiiiiieeiii it
ERR and ERL ..
EXBICISES ottt e e e tr e e

CHAPTER EIGHT—String Functions and Data Types
BiNary COde .o e n s
Computer Memory and ProCessingcccoooeiieiiiiiecneiee e
D= L= B Y/ o1 SO OO UUUPUPRPTPRON
ASCIl Code—ASCIl Character CONVErsioNSococceeeeeiiceieie e e e e
String Manipulation FUNCLIONS ... e e
=] o1 T= T SR PO P TSP UUPPPPRPRRPINN

CHAPTER NINE—Sequential Files
O P EN e e br e e e et e e e rees
L0 0 1] OO PPPPPRPUPPPTPIN
P RIN T eeetie ittt e e e e et e e e e e e e s e s sabbebeeeee e e e s e e ahebnnanreeeaeeeneans
INP U TH ittt e e e s e e s e ee e s e e n e e e e e e e s e ee s nanrreraeens
Updating Sequential FileS ..ot
O PO P OO UOTUPPPPPPPRPPS
LINE INPUT oottt e e e e e s e s e e e e e e e se s s ntbeeeaenes
LINE INPUTH oot e e s e e e e s s s e rsabe e ee e e e e s s saabnnneeee s
Demonstration Programsc.cuuceicuceiini s e e e
EXBICISES ittt e a e te e e e e eenene

CHAPTER TEN—Random-Access Files
O P EN ittt e e e e e e s e e et rere e ne s n s brere e e e e aas
L =1 USSP P TP
LSET and RSOET oottt e et e e e e e s et eeeeaeneeeaaes
P U e
LG L PP PP PP PT TP TPERR
Converting Numbers Into SIrings ..o
Converting Strings INt0 NUMDErs ... e
LOC and LOF e e
Demonstration Programs ... e e
Accessing Multiple FIles ... e
EXOICISES teitiiiiiei ittt et ettt e ee e e e e e e rr e e e reete e e e ne e

APPENDIX A—Using The Editor
LI L PO PP PP PPPPPPR

APPENDIX B—Disk Basic Commands
011V, 5 TR

S AV i s

APPENDIX C—TRSDOS Operating System
Starting The System

... C.1
APPEND e e C.2
O Y ettt e bt C.2
5] | RSP C.2
RENAME et e C.3
DU AL e e e e e e e r e e s C.3
FORM AT ittt e e e s s s bbb e e e s s se s b areeaee s C.3
BACKURP e C.3

APPENDIX D—Formatting Output
PRINT USING ..ottt st D.1

REVIEW ANSWERS

ANSWERS TO ODD NUMBERED EXERCISES

INDEX

To communicate with a computer a special language is required. The language
described in this manual is LEVEL I BASIC which consists of simple English words
understood by the computer. In this chapter the user will be introduced to the most
fundamental statements required to write a program on the TRS-80 computer.

What Is a Program?

A program is a sequence of instructions that informs the computer of the tasks which
the user wants it to perform. From the very beginning, it is important to realize that the user
must determine the order in which the computer performs all tasks assigned to it. It is also
essential to realize that the computer operates with a limited vocabulary and that it can
understand only certain key words which serve as commands. Hence, words which make
perfect sense to the user may make no sense at all to the computer if they are not part of
its vocabulary. This manual will present one of the special vocabularies of the TRS-80 and
will explain how it can be used in a variety of applications.

Line Numbering

To establish the sequence of instructions for any given program, line numbers must
be assigned to each line within a program. This operation is essential since the computer
reads instructions beginning with the lowest line number, then progresses to the next
higher number, and ends with the highest numbered line.

It is permissible to type the program lines out of order because the computer puts
them back into their proper order. For example, line 20 may have been typed before line
10; but, when the program is run, the computer automatically reads line 10 first. Such a
system has the advantage of allowing any forgotten instructions, say between lines 10 and

1.1

20, to be entered later as lines 15, or 12, or 17, etc. For this reason it is best to number the
lines of the program in units of ten (10, 20, 30, etc.) since this leaves nine possible line
numbers that can later be inserted. It is also important to realize that the capital letter O
cannot be used in place of zero.

An error in any instruction may be corrected at any time by depressing the return key
and retyping the entire line using the same line number. If two lines are given the same line
number, the computer uses only the last one typed and erases the first. By typing only a
line number followed by a RETURN the line is eliminated entirely. The highest line number
allowed on the computer is 65529.

PRINT
There are two basic types of information which the computer can utilize: numbers and
words. What distinguishes one from the other is the fact that a number can be used in a

mathematical calculation, whereas a word cannot. The PRINT statement is used to print
both numbers and words.

PROGRAM 1.1

This program uses the PRINT statement at each line to print the results shown below.

10 PRINT 5 % 3
20 FRINT 12 + 8
30 FRINT 7 7 2

40 FPRINT "SAND"
S0 PRINT "Sx3n
READY
*RUN
15
20
3.9
SAND
9X3
READY

-

Line 10 instructs the computer to print the product of 5 and 3. Note than an asterisk
(*) is used to indicate multiplication. Line 20 adds 12 and 8 while line 30 divides 7 by 2, with
the slash (/) indicating division. At line 40 the word SAND is printed. When a word or any
set of characters is printed, they must be enclosed within quotation marks. Line 50 prints
“5"3" rather than 15 because quotation marks are used. Information enclosed in quotation
marks is called a string. Both lines 40 and 50 contain strings. If a printer is available, the
command LPRINT, rather than PRINT, will send the output to the printer rather than to the
video display.

1.2

The command RUN is typed after a program has been entered to execute the
program, but it is not part of the program.

Typing Errors

An error in a program can be corrected in one of three ways. First, the program line
can be retyped using the same line number. For example,

=40 PRINT "ROCES"
*RUN

15

els)

ROCES

READY

changes only that part of the output which is produced by line 40. The second method of
correcting an error involves the use of the key marked (=) which can be employed if the
error is detected while the line containing the error is being typed. Each time the (=) key
is pressed, it causes the computer to erase one character to the left of the cursor on the
screen. The third method of error correction consists in the use of the built in line editor.
To learn how to use this feature refer to Appendix A.

LIST

The LIST command is used to print the program currently in the computer's memory.
Typing LIST followed by a RETURN will print the entire program, while LIST followed by a
line number and a RETURN will cause only that line to be printed. To list portions of a
program, type LIST followed by the first and last line numbers of the portion desired,
separating the two numbers with a hyphen (-). For example:

*I8T

10 PRINT © % 3

20 PRINT 12 + 8
E0 OPRINT 7 2

40 PRINT "
50 PRINT "
READY

/
ROCKS"
Sk3"

*H.I8T 30
S0 PRINT "3%3"
READY

1.3

*LIST 20-40

20 PRINT 12 + 8
30 PRINT 7 7 2
40 PRINT "ROCES"
READY

To send the program listing to a printer, type LLIST instead of LIST.

Before entering a program into the computer, the NEW command should be used to
clear the computer’s memory. The use of this command insures that program lines from a
previous program do not affect the new program.

10 PRINT 5 % 3
20 PRINT 1%

30 PRINT 7 7 2
40 PRINT "ROCKS"
30 PRINT "S%3=v
READY

NEW

READY

=LIST

READY

Observe that after the NEW command is used, a subsequent LIST shows that no program
is currently in the computer’s memory.

What Is a Variable?

One of the most useful properties of a computer is its ability to manipulate variables.
A variable is a symbol that may assume many different values. The computer uses
variables to represent numbers or strings.

Numeric variables are represented by letters or by letters and numbers. A, D, A1, and
B1 are all legal names for numeric variables. The computer allows the use of longer names
for variables, but for the sake of simplicity only a single letter or a single letter followed by
a single digit will be used in the early chapters of this manual.

Variables can change in value as the name itself implies. For example, suppose that
program line

20X =5

is typed. When the program is run and reaches line 20, X will be assigned the value 5.

1.4

Suppose a later statement such as
50X =7

is entered. Then at line 50 the value of X will change from 5 to 7.

Just as in algebra, the computer can have one numeric variable defined in terms of
another. For example, when the statement Y = 4*X is executed by the computer, Y will be
assigned the value 20 if X=>5, or Y will be assigned 28 if X=7, and so on.

It is important to realize that the equal sign (=) is interpreted as “is assigned the
value.” Therefore, when assigning a value to a variable, the statement must be in the form:
‘variable = value’, not ‘value = variable’. Therefore, the statement

507 = X
is invalid.
PROGRAM 1.2

This program assigns values to the variables X and Y, where the value of Y depends
upon the value of X.

10 X =1
20 Y = 3
0 PRINT
40 X = 1
50 PRINT X, Y

HO Y = T X X + 5
70 PRINT X, Y

READY
*RUN
12 41
15 At o
15 S0
READY

The value of X is originally 12 at line 10 and then becomes 15 at line 40. Y changes its
value at line 60 because X changed at line 40. Note than when X and Y are printed at line
50, X is now 15, but Y is still 41 because the variable Y is not changed until it is reassigned
at line 60. A comma is used in the PRINT statements at lines 30, 50, and 70 to allow the
values of X and Y to be printed on a single line. Up to four variables can be printed on a
single line of the display by the use of commas to separate each variable name.

String variable names are used in the same way as numeric variable names, except
that a string variable name must end with a dollar sign ($). For example, A$, D$, A1$, C5%
all represent string variables. To assign characters to a string variable the characters must
be enclosed in quotation marks. For example, the statement

10 A$ = “HARRY”

1.5

will assign “HARRY"” to the string variable A$. At some later pointin a program it is possible
to assign different characters to the same variable. For example, the statement

50 A$ = “SHERRY?”
will replace “HARRY” with “SHERRY".

PROGRAM 1.3

This program assigns two different sets of characters to the string variable B$.

10 B$ = "GEORGE"
20 PRINT E$

IO OR% = "JUDY™
//40 FRINT E$
/S0 FRINT "IT IS NICE TO SEE YOU "; B%
/ READY
#RUN
> GEORGE
__Jupy
IT IS NICE TO SEE YOU JUDY
READY

Observe that at line 50 a sentence can be formed from two strings, the first of which
in this case is not a variable.

Note that when a semicolon rather than a comma is used to separate items in a print
statement, the items will be printed next to each other on the same line.

REVIEW
1. Write a program that will print the value of Y when X=5 and Y=5X+7

2. Write a program that will produce the following output by using string variables for
“HARRY” and “SHERRY”, but not for the other words.

+RUN

HELLO HARRY

SHERRY IS LOOKING FOR YOU.
READY

-

1.6

READ, DATA

A variable may be directly assigned its value not only by a statement such as X = 5,
but also by a combination of READ and DATA statements.

PROGRAM 1.4

This program uses READ and DATA statements to assign values to numeric variables.

10 READ X, Y, Z
20 PRINT 2 X X + 3 XY + 8 % Z
I0 DATA 3, 2, 0.5
READY
+RUN
16
READY
.

~

The READ statement at line 10 instructs the computer to assign numbers to the
variables X, Y, Z. The computer finds these numbers in the DATA statement at line 30 and
assigns them in the order listed (X = 3, Y = 2, and Z = 0.5).

In a DATA statement only numbers that are expressed in decimal or scientific form are
‘acceptable. For example, the numbers .0032, -5.78, 1050, 2.9E5, and 4.76 E-1 are
acceptable. The E stands for “times ten to the power” (e.g., 5.3 E3 = 5300 and 8.72 E-3 =
.00872). However, data such as the arithmetic expressions 15/3, 3*5, and 7+2 are not
permitted in DATA statements since, unlike PRINT statements, DATA statements allow for
no calculations.

GOTO

Suppose that a student has more than one set of values for the variables X, Y, Z in
Program 1.4. To introduce the extra values, line 30 can be retyped as follows:

»3I0 DATA 3, 2, 0.5, -7, 2.5, 1EZ
*RUN
16

Note that only the first three numbers in the DATA statement are processed, the
remaining numbers are not used. To overcome this problem, line 30 could be retyped each
time a new set of data is to be run, but this involves unnecessary labor. By including a
GOTO statement between lines 20 and 30, the problem can be more easily solved by
establishing a loop which allows line 10 to be used over again.

1.7

LIST
10 READ X, Y, 27
20 PRINT 2 % X + 3 x ¥V + 8 % 7

25 6070 10
S0 DATA E, 2, 0.5, -7, 2.5, 1EZ
READY
FRUN
1é
793.5
Out of DATA in 10
READY

Observe that by typing the command LIST, the computer prints the current version of
Program 1.4 including the new line. By running Program 1.4, all of the data presented in
line 30 can now be processed. Each time the computer reaches line 25, the GOTO
statement causes the computer to return to line 10 where the next set of data is assigned
to the variables. On the first pass through the loop X = 3,Y = 2,Z = .5; on the second pass
X =-7,Y =25, Z = 1E2. However, on the third attempted pass, no additional data is
available for assignment to the variables at line 10 and, therefore, an error message is
printed.

The location of the DATA statement within a program is not important. Therefore, it
can be placed anywhere. When the computer encounters a READ statement, it makes use
of the DATA statement regardless of its location. DATA statements may contain strings as
well as numbers and are usually placed at or near the end of a program.

PROGRAM 1.5

This program reads the names and grades of three students and prints the averages
of their grades.

5 PRINT "NAME", "AVERAGE"

10 READ N$, A, B, C, D

20X = (A+B+C+D) / 4

30 PRINT N$, X

40 GOTO 10

S0 DATA WATERS, 83, 95, 86, 80, FRENCH, 42, 97, 66,89, MIKAN, 61, 83, 42, 90
READY

»RUN

NAME AVERAGE
WATERS 86
FRENCH 73.5
MIKAN &9

Out of DATA in 10

READY

»

Examine this program carefully since it contains a number of important concepts. Line
5 produces the headings for the columns and is placed at the beginning of the program to
insure that the headings will only be printed once. Line 10 assigns a student’'s name to the
string variable N$ and the student’s four grades to the numeric variables A, B, C, D. Unless

1.8

the sequence of string variables and numeric variables in the READ statement is the same
as the sequence of strings and numbers in the DATA statement, an error will occur. Line
40 returns the program to line 10 to read more data. What would happen if

40 GOTO 5
was substituted for the current line 407

REVIEW

3. Write a program using READ, DATA statements to evaluate Y where Y = 3X +5 and
X = 3,5, 12, 17, 8.

4. Write a program containing the DATA line in Program 1.5 which prints only the name
and first grade of each student

*RUN

NAME FIRST GRADE
WATERS a3

FRENCH 2

MIKAN 61

Out of DATA in 10

READY

INPUT

In many instances it is preferable to introduce data from the keyboard rather than
placing it in a DATA statement. To do this an INPUT statement is used in place of the READ,
DATA statements. When an INPUT statement is executed, the computer prints a question
mark (?) and then waits for data to be entered.

PROGRAM 1.6

Data entered from the keyboard is used to assign a value to the variable X in the
following program.

10 INPUT X

20 PRINT S5 % X x X + 3 %X X + 2
Z0 60TO 10

READY

1.9

K F\UN

\.Jé)

b

200
M)

28

Rl

Break in 10

The GOTO statement at line 30 creates a loop which will continue to run until it is
interrupted by pressing the BREAK key. This operation halts the run of the program and
causes BREAK IN 10 to be printed. If this is not done, Program 1.6 will continue to run until
the RESET key is pressed or the computer is shut off.

PROGRAM 1.7

This program is a revision of Program 1.5. Here a student is asked for his or her name
and four grades. The computer then prints the name and grade average. It is possible to
have the INPUT statement print a question or a remark by enclosing the words to be
printed in quotation marks followed by a semicolon and the variable names. Also, note that
more than one variable can be entered by using a single INPUT statement.

10 INFUT "WHAT IS YOUR NAME"; N$
20 INPUT "WHAT ARE YOUR GRADES"3; &, B, C, D
O OX = (A + B A+C+ D) /4

40 PRINT N$, X

S0 GOTO 10

READY

*RUN

WHAT IS YOUR NQME”!TEDQ

WHAT ARE YOUR GRADES? 87, 54, 76, 95
SMED 78 .

TWHAT 15 YOUR NAME”’JDH‘l

WHAT ARE YOUR BRADEQ““WH. b, 47, 84
JOHN 81.25.

WHAT IS5 YOUR NAME?T ALBERT

WHAT ARE YOUR GRADES? 100, 95, 31, &0
ALBERT 71.5

WHAT I8 YOUR NAME?T

Break in 10

READY

PRINT Formatting

There are a number of ways in which output can be formatted by the use of
punctuation. A few of the more important uses of punctuation are demonstrated by the
following program.

PROGRAM 1.8

The TRS-80 is capable of printing 64 characters on a single line. This line is divided
into four printing zones consisting of 16 characters each. When commas are used in a
PRINT statement, the output is printed in successive zones.

~% FRINT "N A ME", "6 R ADE §", "AVERAGE"
10 READ N%, A, B, C
20 X = (A + B +C) /3

20 PRINT
40 PRINT N&, Ay B; C, X b
50 GOTO 10
60 DATA [HAYES, 90,87, 93, GRAHAM,74,98,8%, WATSON,53,76,18
READY T
=RUN
SN A M E GRADES AVERAGE
HAYES 90 B7 93 0
GRAHAM 74 98 83 85
WATSON 5% 76 18 49
Out of DATA in 10
READY

Note the output produced by line 5. Each word begins at the beginning of one of the
zones because commas have been used to separate the words. The PRINT at line 30 is
used to place a blank line between each of the printed lines. When printing a number, the
computer places a single space in front of and behind the number. If the number is
negative, the space in front is occupied by the minus (—) sign.

When semicolons (;) are used in place of commas (as in line 40), the output of each
variable begins in the next space following the last variable printed.

PROGRAM 1.9

This program demonstrates the difference between commas and semicolons used in
a print statement.

10 PRINT "ZONE 1", "ZOME 2", "ZONE 3", "ZONE 4"

20 X = ~14

IO PRINT "%k%"g

40 T = 42

S0 PRINT "X%'"j

60 A = 86"

70 PRINT "k%";

80 PRINT X;
READY

*RUN

ZONE 1
X¥—14 %X

X% 42 XX
k86X

X3

T3

II**"

H**Il

A$: k"

T: A%; 99

-14 42 86 99

READY

e

ZONE 2 ZONE = ZONE 4

Note how the values —14 and 42 were printed by lines 30 and 50, respectively. Line 70
shows that strings are not printed with a leading and trailing space.

REVIEW

5. Write a program in which you input a value of X and have the computer calculate 5*X
and X/5. The printout should appear exactly as shown below.

*RUN

WHAT I8 X7 12
SkX= &0

X/39= 2.4

WHAT IS X7 20
SkX= 100

X/5= 4

WHAT I8 X7 &4
S¥X= E20

X/8= 12.8
WHAT I8 X7
Break in 10

6. Write a program which allows you to input your name and the name of a friend and then
produces the printout as follows:

+RUN
WHAT
WHAT
JUDY

IS YOUR NAME?T BRUCE
IS YOUR FRIEND®S NAME? JUDY
I8 A FRIEND OF BRUCE

WHAT IS YOUR NAMET DON
WHAT 1% YOUR FRIEND'S NAME?T SHERRY
SHERRY IS A FRIEND OF DON

WHAT IS YOUR NAME?
Break in 10

immediate Mode

The computer may perform simple tasks using the immediate mode rather than a
program. An immediate mode instruction is typed without a line number. When the
computer receives a command without a line number, it recognizes that the command is
not part of a program but is to be executed immediately. The following are examples of
immediate mode statements:

SERINT (Z3%5) + 4
19
READY

*FRINT 7/9
777778
READY

A= G

READY

B o= 2

READY

*FRINT A + B + 4
11

READY

A% = "BETTY"
READY

*FRINT A$; " ROO"
BETTY EROO

READY

Note that a RUN command was not used in any of the preceding examples. Most
commands are permissible in the immediate mode with the notable exception of the INPUT
statement. In performing most tasks it is best to write complete programs and to reserve
the use of immediate mode for simple calculations.

1.13

REM

The REM statement is used in the body of a program to allow the programmer to
introduce explanatory remarks. Everything to the right of a REM statement is ignored by
the computer when the program is run. For example,

30 REM CALCULATE AREA OF CIRCLE

will be printed only when the program is listed. Remarks placed strategically within a
program are useful in explaining the function of various parts of the program.

1.14

PART A

1. Write a program which prints the following.

ARCD

2. Write a program which makes the following calculations. Check the results by hand

computation.

(a) 8 * (19 - 4)

(b) 1*2+2%3+3%4+4%5
(@ 1+1/10+1/100

(d) 10 - 20 + 30 - 40 + 50 - 60

3. What is the exact output for the following program?

10
20
0

40

A=
FRINT "THE VALUE OF B
E=A+4%4
FRINT E

4. How many lines of output does the following program produce before an error
message appears indicating “Out of DATA in 10”7

10
20
E0
40

1

READ A,E,C
FRINT (A+B+C) /7

GOTO 10

DATA 11,32,43, 14,25, 56,47

DATA 58,%39,50,61,22,83,94

Peter Kolodnigork has loused up once again. Here is a program of his which he says
“mysteriously doesn’t work”. Give Peter a hand and correct this monstrosity for him so
that the output looks like the following:

THE SUM IS 20

THE SUM IS 14

OUT OF DATA IN 10

10 READ A B

20 FRINT THE SUM IS
30 GOTO 17

40 DATA 12,8,5%%,5

A+R

Write the output, and check by running the program.

10 READ A%
20 FRINT A%
IO GOTO 10
40 DATA S,

I,X!," &",6

Write a program in which the price (P) in cents of a loaf of bread and the number (N)
of loaves bought are entered from the keyboard. The total spent for bread is to be
printed in dollars and cents.

Write a program to enter your weight (W) in pounds and height (H) in inches and which
then prints the quotient W/H followed by the words “POUNDS PER INCH”.

Using an INPUT statement, write a program which produces the following output.

RUN

T 2.4

= 2 Y= 4 X¥Y= 8

7 -8, 70

X==8 Y= 70 XKY=—E60

1.16

10. Predict the output of the following program. Check the answer by running the
program.
10 FP$ = "TOTAL FRICE"
20 F o= .89
EOOPRINT Pég" = $0O"sF
11. Predict the output, and check by running the program.
10 READ A, B, C,D
20 FRINT AR
A0 PRINT Cy " "2 D
40 DATA ZE2,510,3E-1, .51
12. Use immediate mode to print the following numbers.
(a) .05 (b) .005
(c) 123456789 (d) 1234567890
(e) -.065 (f) 4.62E5
(g) .086E-3 (h) -4,900
13. Self-proclaimed computer whiz Cecil Cedric Cenceless has typed the following
gibberish in the immediate mode and has challenged anyone to guess the output
correctly before he or she presses the RETURN key. Put Cecil in his place and
correctly predict the answer.
FRPRINT"AAA™; 111,222 "AAAT, "EZE g Me 1H-TXR2
14. Write a program which will add the numbers 3, 5, and 7.
PART B
15. What is the exact output for the following program?

10 A% = "ABCD"
20 B$ = "XYZ"
X0 F = 7

40 G = -4

S0 PRINT A$;B$
4O FRINT A% F
70 PRINT Fj3;B$
80 PRINT G;bs%

16. Write a program to evaluate each of the following expressions for A = 10 and B = 7.

(A + 10B)/2AB (1/2)A/(A—B)

1.17

17. In the first week of the season the cross country team ran the following number of
miles each day: 2, 3, 4, 3, 5. Write a program to calculate and print the total mileage
for the week.

18. A piece of pizza normally contains about 375 calories. A person jogging one mile uses
about 100 calories. Write a program that asks a person how many pieces he or she
wishes to eat and then tells him/her how far they must run to burn up the calories they

will consume.

RUN
HOW MANY FIECES DID YOU EAT? 4
YOU MUST RUN 15 MILES.

19. Have the computer evaluate the expression 12x + 7y for the following data:

x | 3| 7|
y] 2 l 9 | -4

20. The art of thinking up good insults can be enormously aided by the computer. To test
an insult, have a computer program ask for the victim’s name-and the insulting word
which should then be attached to the suffixes “breath” and “head”. For example, given
“Gary” as the victim’s name and “bone” as the insulting word, the program should

print:

GARY IS A BONE-HEAD
or
GARY IS A BONE-BREATH

21. Using an INPUT statement, write a program that will compute the volume of a room
given its length, width, and height.

1.18

22.

23.

24.

25.

26.

27.

Write a program to compute the areas (cm?) of circles with radii 5.0 cm., 3.0 cm., arnd
8.0 cm. Have the output in the form “AREA OF CIRCLE =" with two spaces between
each of the printed lines.

Just as three-dimensional objects are measured by volume, so four-dimensional
objects are measured by tesseracts. Have your program ask for the dimensions of a
four-dimensional object, height, width, length, and “presence” and print the object’s
tesseract.

With the equation E = MC?, Einstein predicted that energy could be produced from
matter. If the average human hair weighs a tenth of a gram and the town of
Woodsylvania uses 2 x 10" units of energy in a day, find out how many hairs from
Einstein’s head would be required to supply the town for a day (C = 3 x 10'°).

Use the computer to calculate your library fines. Enter the number of books you have
borrowed and how many days late they are. Have the computer print the amount of
your fine if you are charged 10¢ per day per book.

The perimeter of a triangle is equal to the sum of the lengths of the three sides of the
triangle. The semiperimeter is one-half of the perimeter. A triangle has sides of
lengths 13 cm, 8 cm, 11 cm. A second triangle has sides of 21 ft, 16 ft, 12 ft. Write a
program that reads these measurements from a DATA statement and then prints the
semiperimeter of each triangle showing the correct units. The output should look like
this:

SEMIPERIMETER OF FIRST TRIANGLE 16 CM.

SEMIPERIMETER OF SECOND TRIANGLE 24.5 FT.

Professional athletes have succeeded in making staggering sums of money through
careful negotiations. Of course, the real winner is Uncle Sam who does not negotiate
at all. Write a program which asks for a player’'s name and salary and then prints the
player’'s name, take-home salary, and taxes if the tax rate for his income bracket is
44%.

FRUN

WHAT I8 THE FLAYERS NAME? JUGGIE RACKSON
WHAT I8 JUGGIE RACKESON™S WABGE? 150000
JUGGIE RACESON WOULD EEEF % 84000

HE WOULD FAY % 46000 IN TAXES.

READY

FRUN

WHAT IS5 THE FLAYERS NAME?T DOFEY

WHAT I8 DOFEY™S WAGE?T 4200

DOFEY WOULD KEEF 4 2352

HE WOULD FAY % 1848 IN TAXES.

READY

28. Sale prices are often deceptive. Write a program to determine the original price of an
item, given the sale price and the discount rate.

»RUN

SALE PRICE? 3.78

DISCOUNT RATE? 10

THE ORIGINAL FRICE WAS ¢ 4.2

29. The area of a triangle can be found by multiplying one-half times the length of the base
times the length of the altitude (A = .5 x base x height). Write a program that allows
the user to enter from the keyboard the base and altitude of a triangle and then skips
a line before printing out the area of the triangle.

*RLUN
WHAT IS THE BASE? 10
WHAT IS THE ALTITUDE? 5

THE AREA 18 235

30. A state has a 7 percent sales tax. Write a program that will allow you to INPUT the
names and prices (before taxes) of different items found in a department store and
then print the item, tax, and the price of the item including tax.

*RUN

ITEMS NAME? COAT

WHAT I8 ITS FPRICE? 65.00

COAT HAS A TAX OF $ 4.55 AND COSTS % 49.55

ITEMS NAME?T TENNIS RACKET

WHAT I8 ITS PRICE? 23.00

TENNIS RACKEET HAS A TAX OF $ 1.61 AND COSTS $ 24.61
ITEMS NAME?

Break in 10

READY

31. In an election in Grime City, candidate Sloth ran against candidate Graft for mayor.
Below is a listing of the number of votes both candidates received in each ward. What
total vote did each candidate receive? What percentage of the total vote did each
candidate receive?

Candidate Sloth Graft
Ward | 528 210
2 313 721
3 1003 822
4 413 1107
5 516 1700

1.20

32. A Susan B. Anthony dollar of diameter 2.6 centimeters rests on a square postage
stamp as shown. Have the computer find the area in square centimeters of the part of
the stamp not covered by the coin.

33. Given the assumption that you sleep a healthy 8 hours a night, have the computer print
the number of hours of your life which you have spent sleeping. Input the date of your
birth and today’s date in numeric form (e.g., 6, 4, 62). Use 365 days in each year and
30 days in a month.

34. Using an INPUT statement, write a program which averages each of the following sets
of numbers: (2, 7, 15, 13); (8, 5, 2, 3); (12, 19, 4); (15, 7, 19, 24, 37). Note that the sets
do not contain the same number of elements.

1.21

—Ee=="\
E s iANNNN
777 TN

The statements presented in Chapter One allow the user to perform routine calcu-
lations and to print numbers or strings in different formats. The higher capabilities of a
computer are not called upon, however, until the computer is used to make decisions or to
carry out a process many times. This chapter presents the conditional statement IF ...
THEN ... ELSE which allows the computer to make simple decisions, and also the
statements FOR ... TO ... STEP, NEXT which allow loops to be established in a
convenient manner.

IF ... THEN

The statements introduced in Chapter One (GOTO, PRINT, etc.) are called uncondi-
tional because the computer will always execute them. In contrast, the IF ... THEN
statement is conditional because the action taken depends upon whether the conditonal
statement is found to be true or false.

The simplest form of the IF ... THEN statement is:

IF <condition> THEN <line number>

The ‘condition’ portion of the statement compares two quanities which must be separated
by one of the symbols indicated in the table below:

SYMBOL MEANING
equal to
greater than
less than
greater than or equal to
less than or equal to
not equal to

ANAV AV
Il

Vol

2.1

An example of an IF ... THEN statement is:
20 IF X>5 THEN 60
When the condition in line 20 (X is greater than 5) is true, the computer jumps to line 60.

When the condition is false, as when X is less than or equal to 5, the computer proceeds
to the next line of the program.

PROGRAM 2.1

This program determines whether the value entered for X is the solution to the
equation 2X — 18 = 0. The computer decides which of two messages is to be printed.

10 INFUT X
20 IF 2%X-18=0 THEN 350
30 FRINT X3"IS NOT THE SOLUTION"

40 BOTO 10
50 PRINT X3"IS THE SOLUTION®
READY
+RUN
7?15
15 IS NOT THE SOLUTION
? 4
4 IS NOT THE SOLUTION
7?9
9 IS THE SOLUTION
READY

Note the necessity of line 40. Without it, the program would print “IS THE SOLUTION”
even when the solution was not X. The line number sequence that the computer follows
when X is the solution is 10, 20, 50; and when X is not the solution, it follows the line number
sequence 10, 20, 30, 40, 10.

The IF ... THEN statement can be used to compare two strings. Here the symbols
greater than (>), less than (<), equal (=), etc., now refer to an alphabetical rather than a
numerical order.

PROGRAM 2.2

The following program determines whether A$ is alphabetically before, the same, or
after B$.

2.2

10 FRINT

20 INFUT "ENTER TWO STRINGS";A%, B
30 IF As=BR$ THEN 70

40 IF A%:B$ THEN 90

S0 PRINT As;" IS BEFORE ";B$

&0 GOTO 10

70 FRINT A$;" IS EQUIVALENT TO "j;BE4$
80 GOTO 10

F0 FRINT A%;" IS AFTER ";B%

100 GOTO 10

READY

*RUN

ENTER TWO STRINGS? A,C
A IS BEFORE C©

ENTER TWO STRINGS? TRS,ALL
TRS IS AFTER ALL

ENTER TWOD STRINGS? SYSTEM,SYSTEM
SYSTEM IS EQUIVALENT TO SYSTEM

ENTER TWO STRINGS?

Break in 20
READY

Line 30 directs the computer to line 70 if A$ and B$ are equivalent. Line 40 causes a
jump to line 90 if A$ comes after B$ in the alphabet. Line 50 is reached only if both
conditions in lines 30 and 40 fail and, therefore, A$ comes before B$ in the alphabet.

Extended Use of the IF . . . THEN Statement, Multiple Statement
Lines
In the preceding section the simplest form of the IF . . . THEN statement was given as
IF <condition> THEN <line number>

More flexible usage of IF . . . THEN permits a statement instead of a line number to follow
the word THEN. This means that the statement after the condition will be executed only if
the condition is true. The form is:

IF <condition> THEN <statement>
The following examples illustrate legal use of the IF . .. THEN statement:
IF X<>0 THEN PRINT X

IF Z>1 THEN PRINT “IT IS LARGER THAN ONE”
IF R<=0THENR =X + 2

2.3

The computer allows a series of statements to be entered on a single program line if
they are separated from each other by colons (:). Multiple statement lines have special
meaning when used with IF . . . THEN. A/l statements following THEN will be executed when
the condition following IF is true. No statements following THEN will be executed when the
condition is false. For example,

60 IF X = 5 THEN PRINT “GOOD”: GOTO 80

has two statements on one line. If the condition X = 5 is true, then “GOOD” will be printed
and program control will be passed to line 80. If the condition is false, neither of these
actions is taken. Instead, the program will continue on to the line following line 60. This
means either the PRINT “GOOD” and the GOTO 80 statements are executed, or neither is
executed. Whichever of the two occurs depends upon whether the condition X = 5 be true
or false.

PROGRAM 2.3

Program 2.1 can be shortened by using multiple statement techniques.

10 INPUT X
20 IF 2%X-18=0 THEN PRINT X:;"I% THE SOLUTION": G0OTO 10O
TO OPRINT X;"IS NOT THE SOLUTION": GOTO 10
READY

=RUN
TGS

15 IS NOT THE SOLUTION
2 IS NOT THE SOLUTION
"9

QIS THE SOLUTION
Break in 10
READY

Note that the statement GOTO 10 in line 20 is executed only if the condition in the IF
... THEN statement is true. Otherwise the program proceeds to line 30. The statement
GOTO 10 on line 30 will always be executed if line 30 is reached since it is not preceded by
an IF ... THEN statement on the same line.

IF... THEN ... ELSE

The IF . .. THEN statement can be extended by the use of the modifier ELSE to include
an alternate statement if the condition of the IF .. . THEN is false. When the IF condition is
true, the statement following THEN is executed; otherwise the statement following ELSE is
executed. The general form of the IF ... THEN ... ELSE is:

2.4

IF <condition> THEN <statement> ELSE <statement>

When the following statement is executed, “LARGER?” is printed if X>50; otherwise the
program will print “SMALLER OR EQUAL”

40 IF X>50 THEN PRINT “LARGER” ELSE PRINT “SMALLER OR EQUAL”
A line number is also valid following ELSE.
40 IF X>50 THEN PRINT “LARGER” ELSE 100

When IF ... THEN ... ELSE is used, only one statement may appear between THEN and
ELSE. The following line is not valid:

70 IF' Y = 3 THEN PRINT “DONE”: GOTO 200: ELSE 30

More than one statement may appear after the ELSE; and it will only be executed if the
condition of the IF is false. When the statement

80 IF Z<>5 THEN 200 ELSE PRINT “RIGHT”: GOTO 20

is executed, the program will jump to line 200 if Z<>5; otherwise “RIGHT” is printed and
the program jumps to line 20.

REVIEW

1. Allow two numbers, A and B, to be entered in the computer and then print the two
numbers in descending order.

2. Allow two names to be entered and then printed in alphabetical order.

ENTER TWO LAST NAMES?T FATRICK ,GREER
GREER

FATRICE

ENTER TWO LAST NAMES?

Break in 10

READY

!

AND, OR

The statement modifiers AND and OR can be used in the IF . .. THEN statement when
more than one condition is to be considered. The statement

20 IF X>5 AND Y = 3 THEN 50

2.5

will cause a transfer to line 50 only if both conditions are true. On the other hand, the
statement

20 IF X>5 OR Y = 3 THEN 50
will cause program control to be transferred to line 50 if either or both conditions are true.

PROGRAM 2.4

The following program uses the OR modifier and reviews much of what has been
presented.

10 INFUT "WHO ARE YOU";N#

20 IF N$="JAMES BOND" OR N$="007" THEN 30

IO OPRINT "THIS MISSION IS MOT MEANT FOR YOU!"

40 PRINT = GOTO 10

S50 PRINT "THESE ORDERS ARE FOR YOUR EYES ONLY!"
&0 INFUT "ARE YOU ALONE" ;A%

70 OIF A% XPYESY THEN PRINT "TRY LATER." = GOTO 10
80 FRINT @ FRINT " DR. GOUODHEAD HAS ESCAFED! YOUR™
90 FRINT "MISSION, SHOULD YOU DECIDE TO ACCEFT"
100 PRINT "IT, IS TO SEEE OUT GOODHEAD AND

110 FRINT "RETURN HER TO THE TELENGARD FRISON"
READY

FRUN

WHO ARE YOU? BRAVE SIR ROEBIN

THIS MISSION IS NOT MEANT FOR YOU!

WHO ARE YOU? JAMES BOND

THESE ORDERS ARE FOR YOUR EYES ONLY!
ARE YOU ALONE?T NO

TRY LATER.

WHO ARE YOU? Q07

THESE ORDERS ARE FOR YOUR EYES ONLY!
ARE YOU ALONE? YES

DR. GOODHEAD HAS ESCAFED! YOUR
MISSION, SHOULD YOU DECIDE TO ACCEFT
IT, I8 TO SEEER 0OUT GOODHEAD AND
RETURN HER TO THE TELENGARD FPRISON
READY

Line 10 asks the user for a name. The name entered as N$ is compared with the two
names at line 20. If N$ is either ‘JAMES BOND’ or ‘007, then the program skips to line 50.
Otherwise, a message is printed by line 30, and the program returns to line 10. At line 50,
a warning message is printed, while line 60 inquires whether Mr. Bond is alone or not. Note
that in line 70, any response other than ‘YES’ will cause the program to print ‘TRY LATER’
and jump back to line 10. Otherwise, the mission description is printed by lines 80 through
110.

2.6

END

The END statement is used to terminate the run of a program. For example,

80 END

will cause the run of a program to stop when line 80 is reached. It is possible to place END
statements at more than one location within a program, including insertion in an IF . . .

THEN statement.

PROGRAM. 2.5

This program uses the END statement to terminate program execution when the name

KERMIT is input.

10 INPUT

20 IF Né=

I0 PRINT
40 PRINT
READY
*RUN

"WHAT IS YOUR NAME"3;N$
"EERMIT" THEN END
"IT*S GOOD TO MEET YOU
: GOTO 10

II§N$

WHAT IS YOUR NAME? CYNTHIA
IT*"S GOOD TO MEET YOU CYNTHIA

WHAT IS YOUR NAME? KERMIT

READY

REVIEW

3. Write a program that will allow a number N to be entered. If the number is between 25
and 112 then the computer should indicate this; otherwise, the computer should say that

the number is out of range.

+RUN

ENTER A NUMBER? 14

14

ENTER A NUMBER?

a4

IS OUT OF RANGE
94

IS BETWEEN 25 AND 112

ENTER A NUMBER? 112
112 I8 OUT OF RANGE
ENTER A NUMBER?

Break

in 10

READY

4. Write a program in which the user enters a string N$. If it comes alphabetically before
Garbage or after Trash, then have the computer print “YES”; otherwise print “NO”.

2.7

FOR...TO...STEP, NEXT

The FOR ... TO ... STEP, NEXT statements provide a simple way of establishing a
loop. A loop is a section of a program designed to be executed repeatedly. The FOR...TO
... STEP, NEXT loops provide a method for generating a large sequence of numbers in a
case where each number in the sequence differs from its predecessor by a constant
amount. The general form of the FOR ... TO ... STEP, NEXT statement is:

FOR <variable> = <starting value> TO <ending value> STEP <increment>
]
L

NEXT <variable>

Note that the ‘variable’ after FOR and NEXT must be the same. A string variable cannot
be used in a FOR. .. NEXT loop. The STEP portion may be omitted if the increment equals
+1.

For example,

— 10 FOR X =2TO 6

-]
(]

—— 40 NEXT X

—— 70 FOR H1 = N*2 TO 26 STEP +2

— 100 NEXT H1

120 FOR T = 10 TO 0 STEP—1

180 NEXT T

Note that a loop is formed by the FOR ... TO ... STEP and NEXT statements. In the
example,

30 FOR N =3 to 11 STEP 2

80 NEXT N

2.8

the variable N starts at line 30 with a value of 3. N retains the value of 3 until the NEXT N
statement is encountered at line 80. At this point, N is increased by the STEP value. In this
example N changes from 3 to 5 to 7, etc. All the statements in the lines occurring between
lines 30 and 80 are executed in sequence during each consecutive pass through the loop.
The program continues to return from line 80 to the line immediately following line 30 until
N exceeds the specified limit of 11. At this point, the program exits irom the loop and
moves on to the line following 80.

PROGRAM 2.6

This program uses READ, DATA, while Program 2.7 uses a FOR ... TO . .. STEP,
NEXT loop to print all integers between 10 and 30, inclusive.

10 READ N

20 FPRINT Mg

EO BOTO 10

40 PRINT " DONE®

S0 DATA 10,11,12,13,14,15,16,17,18

&0 DATA 19,20,21,22,23,2 W 25, 286,27

70 DATA 28, 29,30

READY

*RUN
10 11 12 1% 14 15 16 17 18 19 20 21 22 23 24 25
26 27 28 29 IO

Out of DATA in 10

READY

PROGRAM 2.7

10 FOR N=10 TQ 30

20 FRINT MNj

Z0 NEXT N

40 FPRINT " DONE"

READY

*RLUN
o 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26 27 28 29 =0 DOME

READY

Program 2.6 continues to read data until all of it is exhausted. Program 2.7 generates
all of the values of N between 10 and 30. Note that the loop in Program 2.7 is completed
by a NEXT statement, not a GOTO statement. Unlike Program 2.6, Program 2.7 can
therefore proceed to line 40.

2.9

PROGRAM 2.8

This program finds solutions to the compound condition 5X + 3<100 and 2X2-1>50
and tests all odd integers from 1 to 25.

10 FOR X=1 TO 25 STEF 2
20 IF SXX+3<100 AND 2%X[2-1350 THEN FRINT X3
IO NEXT X
40 PRINT " DONE™
50 END
READY
*RUN
7 9 11 13 15 17 19 DONE

READY

-

Note that the symbol ([) is used to denote ‘raised to the power’ (e.g. X[2 means X*X).
The ([) symbol is generated by pressing the uparrow (4) key. Lines 10 and 30 create a loop
for testing the conditions located at line 20. The loop starts at line 10 with X=1. Each time
the program reaches the NEXT X statement at line 30, N is incremented by the STEP value
which is 2. The program will then return to line 20 unless the value of the loop variable X
has exceeded its maximum value of 25, at which point the loop will be exited. Remember
that a FOR loop is not completed by a GOTO statement, but by a NEXT statement.

PROGRAM 2.9

The following program illustrates the use of a negative STEP value. The integers from
1 to 10 are printed in descending order.

10 FOR X=10 T0O 1 STEF -1

20 FRINT X3
Z0 NEXT X
40 PRINT
50 END
READY
*RUN
io 9 8 7 66 S 4 3 2 1
READY

REVIEW
5. Write a program that prints the integers between 1 and 25, inclusive.

6. Using a FOR ... TO ... STEP, NEXT loop, have the computer print the following:

*RUN
20 18 16 14 12 10
READY

210

7. Write a program that will allow a number N to be entered. Using N as a STEP value, print
numbers between 8 and 20.

RESTORE

FRUN
STEF VALUE? 2

8 10 12 14 146 18 20
READY

At times the user might find it desirable to employ a set of data more than once. The
RESTORE statement makes it possible to read data again starting at the beginning of the
data. For example,

40 RESTORE

causes the next READ statement encountered to read data starting with the first item in the
first DATA statement.

PROGRAM 2.10

This program searches DATA statements for a specific student and then prints the
student’s grades. It employs the RESTORE statement so that each time a student’s name
is entered, a searching process starts at the beginning of the first DATA statement. How
would the program run if line 20 is deleted?

10
20
=0
40
50
6O
70
80
QO

PRINT : INFUT "NAME"j3;B%
RESTORE
FOR FP=1 TO &
READ N%,A,B,C,D
IF N$=p% THEN 80
NEXT P
FRINT "STUDENT "3;B%;" NOT FOUND": GOTO 10O
FRINT N$3;" HAS THE FOLLOWING GRADES:"
FRINT AzB:C3D

100 60TO 10
110 DATA WATERS, 83, 75,52,80, PARTRIDGE, 74,81,92, 76
120 DATA HAYDEN, 72,81, 63, 60,HAYES, 99,84, 92, 87

130 DATA GRAHAM, 100,9%,82, 89, STEHLE, 78, 93, 85, 94
140 END

READY

2.11

*RUN

NAME? STEHLE
STEHLE HAS THE FOLLOWING GRADES:
78 93 83 94

NAME? L.YNCH
STUDENT LYNCH NOT FOUND

MAMET HAYDEN
HAYDEN HAS THE FOLLOWING GRADEG:
72 81 &I 60

NAME™?

Break in 10
READY

2.12

[

PART A

1.

Write a program to allow two numbers (A and B) to be entered. Have the computer
compare them and print a message stating whether A is less than, equal to, or greater
than B.

Write a program which allows three names to be entered as A$, B$, and C$. Have the
computer print the name which is alphabetically last.

Allow a string (A$) composed of letters to be entered. Have the computer print A$ if
it comes alphabetically after the string “MIDWAY”. Use only two line numbers and no
colons.

Write a program which prints six exclamation marks if BIGWOW is entered for the
string X$ but which otherwise prints six question marks. The program is to run until the
BREAK key is struck.

Use only one line number to enter two strings (A$ and B$) and to print output similar
to the following.

FRUN

? STARTFINIGH

START FINISH
FINISH START

2.13

6. Allow a number (X) to be entered. Print the message “NOT BETWEEN" if X is either
less than -24 or greater than 17. Only one IF . .. THEN statement is permitted.

7. Allow a string (A$) to be entered. Print the message “A$ IS BETWEEN” if A$ comes
between “DOWN” and “UP” alphabetically. Only one IF ... THEN statement is
permitted.

8. Allow a number (X) to be entered. Print “IN THE INTERVAL” if X satisfies the inequality
25 < X < 75, but otherwise print “NOT IN THE INTERVAL”. Only one AND and one IF
... THEN statement are to be used.

9. Rewrite the program of the preceding exercise, using OR instead of AND.

10. Use only one PRINT statement to produce the following rectangle.
*RUN
AR R AR KKk
KEKKK kAR KK KK
11. Print the cubes of the odd integers from 11 to -11, inclusive, in that order.
12. Print all the integers which end in 4 from 4 to 84, inclusive.
13. Use a loop to print a line of 40 asterisks.
14. Write a one line IMMEDIATE MODE command for each of the following:
(A) Find the value of 143 x 74.
(B) Find the average of 53, 72, 81, and 76.
(C) Find which is larger, X4Y or Y4X, when X = 4 and Y = 5.
PART B
15. Print all of the integers in the set 10, 13, 16, 19, ..., 94, 97.

2.14

16. Using a loop have the computer print a letter | as follows:

ARUN
¥k Aok k
KK
KKKk
KK
Aok ¥
Xk %
Hok X
¥Eokkx

17. Below is a list of various creatures and the weapon necessary to destroy each.

Creature Weapon

Lich Fire Ball
Mummy Flaming Torch
Werewolf Silver Bullet
Vampire Wooden Stake
Medusa Sharp Sword
Triffid Fire Hose

Using READ and DATA, have the computer state what weapon is to be used to destroy
a given creature. For example:

RUMN

CREATURE? VAMFIRE

YOU CAaN EILL A VAMFIRE WITH A WOODEN STAKE
CREATURE? LICH

YOuU CAN EILL A LICH WITH A FIRE ERALL
CREATURE? BLOE

CREATURE BLOE NOT FOUMD.

CREATURE? MEDLSA

YOU CAN EILL A MEDUSA WITH A SHARF SWORD
CREATURE™

Break in 10

READY

Moy VAMPIRE
(},«-.«.4 Q:__—_”‘r%.

i No E w7

25 Jé\;z)

2.15

18.

19.

Menacing Matilda has written the following program using too many GOTO
statements and cannot figure out in what order the lines of the program will be
executed. Assist her by listing the line numbers in the sequence in which the computer
will execute them.

10 READ A, B
SOOIF A+ 4 ORB > 4 THEN 50
X0OIF A £ 1 AND B < 1 THEN &0

40 BOTO 70

SO0X = A+ Br GOTO 80

40 X = A ¥ Br GOTO 80

7O X = A/ B

80 IF X 1 THEN PRINT X:G0TO 10
GO DATA 5, B, =1, =%, 0, 2

John Doe’s brother Jim has been assigned the following program for homework. Jim
is not in shape today, so assist him by stating the exact order in which the lines of the
following program are to be executed.

10 READ A, R,
BOOS = ATERC

I0OIF 8 = 10 THEN RESTORE @ READ S
40 FRINT S,

=0 IF 8 o= 14 THEN END

50 GOTO 10

70 DATA 4,2, 30 b.0,2,7

20. Write a program which asks for a person’s age. If the person is 16 years or older, have

21.

the computer print “YOU ARE OLD ENOUGH TO DRIVE A CAR”. Otherwise, have the
computer indicate how many years the person must wait before being able to drive.

*RUN
HOW OLD ARE YOU # 164
YOU ARE OLD ENOUGH TO DRIVE A CAR

The Happy Holiday Motel has 10 rooms. Have the computer print a label for each
room’s door indicating the room number. For example:

*RUN

HAFFY HOLIDAY MOTEL
ROOM 1

2.16

22. As candidate for mayor, you are very busy. Use the computer to print thank you letters
to 10 people who have contributed money to your election campaign. Be sure to
mention the exact amount each person has contributed.

*RUN
DEAR RICH BRYEURRY,
THANE YOU FOR YOUR GENEROUS CONTRIBUTION
OF 25000 DOLLARS TO MY ELECTION CAMFAIGN. MAYBE
NEXT YEAR WE WILL HAVE EETTER LUCK!
SINCERELY,

SMILEY R. POLITICO

23. Write a program which will produce the following table:

+RUN

X XLa2 XL3

2 4 8

4 14 b4

& 26 216
8 bH4 3512

10 100 1000

24. The Bored Auto Company has done it again! Some models of their cars may be
difficult to drive because their wheels are not exactly round. Cars with model numbers
102, 780, 119, 220, 189, and 195 have been found to have a defect. Write a computer
program that allows 10 of their customers to enter the model number of their car to
find out whether or not it is defective.

BOoRED

|88)=

25. Using only two print statements, write a program to print a triangle that is N lines high
and N columns wide. For example:

*RUN

~ o
H st

¥ X
KX
XAkx
Rk dk

217

26.

27.

28.

2.18

Have the computer find all odd integers from 5 to 25 which are simultaneous solutions
of the inequalities X3> 500 and X? + 3X + 2 < 700. Print only the solutions.

The following table contains employee performance data for the Tippecanoe Typing
Company.

Employee Performance
Oakley 69%
Howe 92%
Anderson 96%
Wolley 88%
Goerz 74%

Tippecanoe Typing is suffering from financial difficulties and needs to cut back on its
staff. Using READ, DATA and a loop, have the computer print notices of dismissal for
any employee whose production performance is below 75%.

FRUN

DEAR OAKLEY,

I AM SO SORRY THAT I MUST FIRE YOU.
YOU HAVE EBEEN SUCH A FINE EMFLOYEE
WITH A FERFORMANCE RATING OF &9 %

I'M SURE YOU'LL HAVE NO TROUBLE
FINDING ANOTHER JOE.
SINCERELY,

BEORGE SHWARR

DEAR GDERZ,

I AM 80 SORRY THAT I MUST FIRE YOU.
YOU HAVE REEN SUCH A FINE EMFLOYEE
WITH A FERFORMANCE RATING OF 74 %
I"M SURE YOU®LL HAVE NO TROUBLE
FINDING ANOTHER JOB.

SINCERELY,

BEORGE SHWARR

Wayne Peber bought stock two years ago and wants to use the computer to calculate
his profit or loss. He bought 200 shares of Consolidated Technologies at $85.58 per
share and 400 shares of American Amalgamated Securities at $35.60 per share.
Today C.T. is worth $70.82 a share and A.A.S. is worth $47.32 a share. What is his
profit or loss?

29. The Exploitation Oil Company uses the computer to determine the weekly wages of its

30.

31.

employees by inputting the hours worked and the hourly wage for each employee. If
the employee works over 40 hours, he or she is paid one and a half times the hourly
rate for each additional hour.

FRUM

HOURS WORKED? 43

HOURLY WAGET 10.00

THE WAGE FOR THE WEEEK IS 4% 4735

The Last Chance Finance Company is charging a rate of 2% per month on all loans it
is making. Write a program that allows Last Chance to calculate the monthly payments
charged a customer using the following formula.

L™l

Monthly Payment = ——————
1-(1+1) -m

where L = Amount Loaned
| = Interest (monthly)
m = Number of months to be loaned

FRUN

THE AMOUNT OF THE LOANT 100
LENGTH OF THE LOAN IN YEARS?Y 5
THE MONTHLY FAYMENT I5 Z.88

TOTAL AMOUNT FAID WILL BE 1732.61
READY

You have $200.00 to spend on a buying spree. Write a program that, as you buy
merchandise, subtracts the cost and the appropriate sales tax (5%) from your
remaining money and shows your present total. The program should prevent you from
buying items that cost more than you have.

#RUN
HOW MUCH DOES THE ITEM COST? 10.00
YOUR TOTAL IS NOW $ 189.5

HOW MUCH DOES THE ITEM COST? 230.00
YOU DON®T HAVE ENOUGH

HOW MUCH DDOES THE ITEM COST? 25.00
YOUR TOTAL IS NOW $ 163,25

HOW MUCH DOES THE ITEM COST? O
READY

2.19

VAN
77T VN

This chapter introduces material which should be interesting, practical, and entertain-
ing. In fact, the emphasis will be placed on employing graphics to involve the user in
computer games which are often the most enjoyable way to learn computer programming.

RND

In many computer simulations that involve science problems and also in a variety of
computer games, the process of generating random numbers becomes essential. The RND
function is used to generate random numbers on the computer and it operates in two ways.
The statement

X = RND(0)
will assign X a random six place value such that 0<X<1. The statement
X = RND(n)
will assign X a random integer between 1 and n, inclusive, where n can be a positive integer
between 2 and 32767. RND(1) is meaningless and will always return 1.
Sometimes it may be desirable to produce a random number between two values
other than 1 and n. The following formula will assign X a random integer between A and B,

inclusive:

X = RND(B—A+1) + A—1

3.1

For example, the statement

X = RND(26) + 74

will assign X a random integer between 75 and 100, inclusive.

PROGRAM 3.1

This program will produce five random numbers between 0 and 1 followed by five
random integers between 5 and 14.

10 REM Five random floating point values
20 FOR X = 1 TO &

30 R = RND(O)
4¢) FPRINT R
S0 NEXT X

60 REM Five random integers between 5 and 14
70 FOR Y = 1 TO0 5
a0 FRINT RND(L10O)+43
0 NEXT Y
100 FPRINT
READY
*RUN
- S5T481E
. 625858
» 708253
71425
571674
14 8 6 5 12
READY

PROGRAM 3.2

3.2

This game program selects a random number between 1 and 100 and then gives the
player an unlimited number of chances to guess it. After each guess the computer informs
the player whether the guess is too high, too low, or correct.

10 PRINT "I'm thinking of a random number between 1 & 100."

20 R =

RND (100)

30 INPUT "What is your guess"; G

40 IF 6 < R THEN FRINT "Too Low!" :@: G0OTO 30
S0 IF G * R THEN PRINT "Too High!'" : GOTO 30
6O FRINT "That is correct!!!'"

READY

FRUN

I"m thinking
What is your
Too High!
What is your
Too Low!
What is your
Too Low!
What is your
Too High!
What is your

of a random number between 1 % 100,
guess? 90

guess? 25
guess? 34

guess? 43

guess? 40

That is correct!!!

READY

INT

The statement A = INT(X) sets A to the largest integer that is not greater than X. This
function does not round off a positive number but simply truncates its decimals. In the case
of a negative number, it takes the next lower negative integer. For example:

INT (3.7640) =3 INT (5.9) =5
INT (—1.7) = =2 INT (—3.01) = —4

The process of rounding off a number to the nearest integer is performed by using
A = INT(X + .5). For example:

If X = 34, then 34 + .5 = 3.9, and INT(3.9) =3.
If X = 3.6, then 3.6 + .5 = 4.1, and INT@4.1) =4.

If X = —6.2, then —6.2 + .5 = —5.7, and INT(—5.7)

I
|
o

*PRINT INT(3.6 + 0.5)
4

READY

SPRINT INT(3.1 + 0.5)

READY

FPRINT INT(3.5 + 0.5
4

READY

-~

The INT function is also used to round off numbers to any desired number of decimal
places. For example, INT(10*X 4 .5)/10 will round X to one decimal place. If X = 2.57, then
(10*X + .5) = (25.7 + .5) = 26.2 and INT (26.2) = 26. If the 26 is then divided by 10 the result
is 2.6, the correct rounded value. Furthermore, INT(100*X + .5)/100 rounds X to two
decimal places and INT(1000*X + .5)/1000 to three places and so on. Rounding off a

3.3

number to the nearest tens place (for example, 257 to 260) is accomplished by using
INT(0.1*X + 0.5)/0.1. The general formula for rounding X to N decimal places is:

INT(104N*X+.5)/104N
REVIEW

1. Write a program that will generate 2 random integers between 50 and 150 and then find
their product.

*RUN
93 multiplied by 123 is 11439
READY

2. Write a game program similar to Program 3.2 which picks a random number between
1 and 50, inclusive, and gives the player only five attempts to guess it.

FRUN
I'm thinking of a random number between 1 % 50.

What is vour guess™ 25
Too Low!

What is yvour guess? 37
Too Low!

What is your guess? 473
Too High!

What is yvour guess? 40
Too l.ow!

What is youwr guess? 41
Too Low!

You’ve had 5 guesses now.
The number wag 42
READY

Summation

If the programmer decides to keep score for the number guessing game (Program
3.2), some technique would have to be devised to keep count of the number of guesses
taken. One possible technique is to use a summation statement of the form:

30 A=A+1
The statement A=A+1 makes no sense in mathematics since A can equal A but not
A+1. The computer, however, interprets the equal sign to mean “is replaced by” rather

than “equal to”; and each time it encounters the statement above, it takes the present value
of A, adds 1 to it, and makes that sum the new value of A.

3.4

PROGRAM 3.3

This program demonstrates how the summation statement works by printing the
values of A until the program is halted with the BREAK key.

10 4 =6+ 1

20 PRINT Ag

ZO GOTO 10

READY

»RUN
1 2 0% 4 05 & 7 8 9 10 11 12 1z 14 15 16 17 18
19 20 21 2RRE R4 25 26 27 028 29

Brealk in 20

READY

}-\

If line 10 is replaced with
10 A=A+5

then 5 will be added to A each time the statement is encountered.

#10 A = A + 3

=RUN

5010 15 20 25 IO 35 40 45 50 55 60 &5 70 73 80
85

Break in 10

READY

-

In this problem the initial value of A is zero for both runs. This is true because the
computer sets any undefined numeric variable to zero at the start of the run.

PROGRAM 3.4

Here, Program 3.2 has been modified to record the number of turns required to guess
the random number. In this case the variable T acts as a counter, increasing in value by 1
after each guess.

10 PRINT "I°m thinking of a random number between 1 & 100"
20 R = RND(100)

30 INFUT "What is yowr guess'; B

T =T + 1

40 IF 6 < R THEN FRINT "Too Low!" : GOTO 30

50 IF B » R THEN PRINT "Too High!" : GOTO 30

60 PRINT "That is correct!!!”

70 PRINT "That took you"; T; "guesses."

READY

3.5

FRUN

I'm thinking of a random number between 1 % 100,
What is youwr guess? S50
Too Low!

What is your guess? 79
Too Low!

What is your guess? 8é
Too High'!

What is vour guess? 78
That is correct!?!

That took yvou 4 guesses.
READY

Rounding Errors

Because the computer has a finite capacity, any numerical computations involving
infinitely repeating decimals cannot be accurate (for example, 1/3 = .3333 . . ., which the
computer truncates to a limited number of digits). Since the computer uses binary
numbers (0 and 1), any fraction whose denominator is not an integral power of 2 (e.g., 2,
4, 8, 16) will be an infinitely repeating decimal and therefore will be truncated by the
computer. In Chapter Eight binary numbers are examined in greater detail.

PROGRAM 3.5

This program illustrates summation and rounding errors.

10 FOR X = 1 TO 1300

20 A=A + (1 /7 2)
E0 B =R+ (1 7/ 3
40 NEXT X

S0 PRINT "A ="3 A
&HO PRINT "B ="; B
READY

RN

A = 730

B = S00,.004

READY

The final value of A is the result of adding 1/2 1500 times which comes out to be
exactly 750. B, however, which is the result of adding 1/3 1500 times does not come out to
be exactly 500 because of the rounding error. The computer will sometimes not recognize
an equality when one in fact should exist. If the line

70 IF B = 500 THEN PRINT “EQUALS”
ELSE PRINT “NOT EQUAL”

were added to the above program, the computer would print “NOT EQUAL".

3.6

REVIEW

3. Select 50 random integers between 0 and 9, inclusive, and have the computer tell how
many of the numbers were from 0-4 and how many were from 5-9.

RUN
There ware 18 numbers between O and 4.
There were 32 numbers between 5 and 9.

READY

4. Input ten numbers from the keyboard and have the computer tell how many are odd and
how many are even.

=RUN
Enter a number? 42
Enter a number? &9
Enter a number? 14
Enter a number? 111
Enter a number? 86
Enter a number? 72
Enter a number? 144
Enter a number? 8218
Enter a number? 2001
Enter a number? 9

6 Eveny 4 Odd
READY

FORMATTING OUTPUT

The statements presented in this section allow program output to be formatted. For
advanced formatting techniques, which are especially useful in producing tables, refer to
Appendix D where the PRINT USING statement is presented.

PRINT TAB

The PRINT TAB statement provides an easy way to format output and allows the
programmer to begin portions of the printout at specified locations. The left edge of the
screen is TAB(0), and the right edge of the screen is TAB(63). The printing of information
at TAB positions 13, 25 and 32 is accomplished by:

10 PRINT TAB(13): "This": TAB(25); "is"; TAB(32); "TAB"
READY
*RUN
This is TAR
READY

3.7

It is important to use semicolons (;) in each instance after the TAB parentheses.

PROGRAM 3.6

The substitution of variables for the numbers in the TAB parentheses is permissible
provided these variables have previously been assigned values.

10 READ X, Y, Z
20 FRINT TAB(X); "This"; TAB(Y); "is"; TAR(Z); "TAR"
30 DATA 13, 25, 32
READY
+RUN

This is TAE
READY

PROGRAM 3.7

This program draws a triangle on the display screen.

10 PRINT TAB(10) s "kkxkdkkxk"
20 FOR X = 1 TO 5

30 FRINT TAB(X + 10); "Xx":; TAR(1&)3; "x%x"
40 NEXT X
S0 PRINT TAB(1&6); "xv
READY
*RUN
KRRk Ak X
b ¢ ¥
¥ X
X %
X X%
k¥
4
READY

S
p

The PRINT TAB statement does not move the cursor to the left, but only to the right.
If a TAB position is specified which is to the left of the current TAB position, the cursor will
remain where it is and the printing will proceed from there.

10 FRINT TAB(10); "##"; TAR(1S); "##"
20 FRINT TAB(1S); "##": TAB(10);

i -_H:# i
READY
*RLUN
H##
A

READY

3.8

CLS

The CLS statement is used to clear the entire display screen. This statement is
generally used before graphing. CLS may also be used in the immediate mode.

POS

The POS function is used to find the current horizontal position of the cursor. The
statement

X = POS(0)

will assign X a value corresponding to the horizontal position (the current TAB position) of
the cursor on the screen. X = 0 for the left edge and 63 for the right edge.

PROGRAM 3.8

The following program demonstrates TAB and POS.

10 FRINT TAB(32); "ROCK";
20 PRINT FOS(0)

T0 PRINT TAE(21): FOS(0)
READY

+RUN

ROCK Zé6

READY

PRINT@

The TRS-80 screen can hold 16 lines of 64 characters, or a total of 1024 characters.
The PRINT@ statement allows output to begin at any one of these 1024 positions. The
general form of PRINT@ is:

PRINT@ <position>, <print list>
where “position” refers to one of the 1024 (numbered 0 to 1023) print positions on the
display screen. The top line on the screen contains print positions 0 through 63; the
second, 64 through 127, and so on, down to the bottom line, which contains print positions

960 through 1023.
“Print list” is any expression valid in a normal PRINT statement. The statement

PRINT @30, “HERE”

3.9

will output the word “HERE” at the middle of the top line on the display screen, while the
statement

PRINT @409, AS

will print the contents of the string variable A$ in the middle of the screen.
The “position” can be a variable. For instance, if X = 863, then the statement

PRINT @X, “CARROTS”;

will place the word “CARROTS"” at position 863. The trailing semicolon leaves the cursor
positioned immediately after “CARROTS.” A subsequent PRINT statement will begin
output at that point on the screen.

The PRINT@ statement may be extended to print several items at several different
locations on the display screen. The statement

70 PRINT @30, “HERE”; @442, “THERE”; @814, “EVERYWHERE”
will print “HERE” at position 30, “THERE” at 442, and “EVERYWHERE” at 814.
PROGRAM 3.9

The following program will print the word “M*A*S*H” and “4077” 14 times in diagonals
on the screen using the PRINT@ statement. The output is shown as it appears on the video
screen.

10 CLS

20 FOR I = O TO 13

20 N = T % 67 + 1

40 Fro= (Z6 — ZXI) + 1%&44

50 FRINT aF, " 4077" DN, "MAXAXSEH"
A0 NEXT I

MEAXSKH 4077
M¥xAxSkH 4077
MEAXSKH 4077
MEAKRS¥H 4077
M¥AXSXH 4077
MEAXSKH 4077
MYXAXEXH
AO7TMROXSH
4077 MYXAXS*H
A0T77 MEAXES¥H
4077 MYXAXS¥H
477 MEARSXH
4077 M¥AXS¥H
4377 MEkAXSKH

READY

3.10

GRAPHICS

The graphics capability of the computer is often used to produce game programs, and
the mastery of this skill is the secret to developing most of the entertaining computer
games.

The TRS-80 divides the graphing area on the display screen into 48 rows. Each row is
subdivided into 128 rectangular areas shaped like ‘bricks.” Each brick represents a point
and may be shaded either black or white. The origin (0,0) of the 48 by 128 graphing grid
is located in the upper-left corner of the display screen.

No special command is needed to enable the graphics capabilities on the TRS-80. In
fact, text and graphics may be intermingled on the display screen.

d

=

—
o
= -

SET-RESET

The SET statement is used to plot a single point or ‘brick’ on the display screen, and
to shade it white. The statement

SET(X,Y)

will plot a white brick at the coordinates (X,Y). Note that X may range from 0 to 127, and Y
may range from 0 to 47, inclusive.

PROGRAM 3.10

The following program will plot 21 bricks on the display screen; 20 at random
locations, and 1 at (60,47).

3.1

10 QLS
20FOR T = 1 TO 20

50 Xo= RND{1ZES) - 1
40 Y o= RND{48) -~ 1
50 SETX,Y)
S0 NEXT T
70 SET(&0,47)
FRUN

' 2

The RESET statement functions exactly as the SET statement, except that the point
(brick) plotted is shaded black instead of white. The statement

RESET(A,B)
will plot a black brick at the coordinates (A,B).

The SET and RESET statements can be combined to cause a brick on the screen to
appear to blink. This is done by continuously SETting and RESETting a particular point.

PROGRAM 3.11

This program utilizes SET and RESET to blink a brick in the center of the display
screen, while plotting 50 random bricks on the screen.

3.12

10
a0
=20
40
50
&0
100
110

120 REM

130
140
150
160
170
180
190
=R

REM Flot border
CLS
FOR 8 = O TO 127
SET(S,0) 3 SET(S,47)
IF 8§ < 48 THEN SET(0,8)
NEXT S
REM
REM

around edge of screen

SET(127,8)

Flot 50 random points while simultaneously
flashing a single point at (&0,232)
FOR X = 1 T0O 50
SET (60, 22)
FOR D = 1 TO 350
RESET (60, 22)
FOR D = 1 TO 40
SET(RND(128) -1,
MEXT X
N

MEXT D ¢ REM Delay lLoop

MEXT D
RND (48) -1)

REM Delay again
REM Random Foint

l' " l@ ' # '.
.l 8 . I' [.

The loops at lines 150 and 170 are needed to slow the rate of flashing of the point circled

at (60,22).

REVIEW

5. Write a program that will produce the following figure.

3.13

6. Write a program that will move a single brick back and forth across the center of the
screen.

POINT

The POINT function is used to test whether a particular brick on the screen is shaded
black or white. This function returns a non-zero value if the brick is shaded white, otherwise
a zero is returned meaning that the selected brick is shaded black. The line

20 SET(14,42) : IF POINT(14,42)<>0
THEN PRINT “IVORY” ELSE PRINT “EBONY”

will always print “IVORY” since position (14,42) is SET just prior to the IF ... THEN . ..
ELSE statement which tests (14,42).

PROGRAM 3.12

This game program plots eight targets at random locations on the display screen. The
player’'s mission is to destroy all eight targets. Each time a shot is fired, the coordinates
struck flash momentarily.

10 REM A B = Coordinates fired at by plaver

20 REM I = [Loop variable for plotting random targets
20 REM C = # of hits scored

40 REM

30 REM Flot 8 random targets on soreen

60 CLS

70 FOR L = 1 TO 8

80 SET(RND(127), RND(41))

P00 MEXT L

100 REM

110 REM Get coordinates to shoot at from player
120 PRINT 2894, "Coordinates to fire at (1-127,1-47)";
130 INFUT A,B
140 FRINT 2896, " "
150 IF FOINT(A,B) = O
THEN FRINT 28%94, "Missed..."
ELSE PRINT 28%9&, "A Hit!'!!" ¢+ C =0 + 1
200 REM

3.14

210 REM Flash coordinates struck
R0 FOR X = 1 TO 8

230 SET (AR

240 FOR D = 1 T0O S50 : NEXT D : REM Delay loop
250 RESET (A, B)

260 FOR D = 1 TO S50 @ NEXT D : REM Delay loop

270 NEXT X
280 IF C < 8 THEN 100
#RUN

Coordinates to fire at (1-127,1-47)?

Lines 70 through 90 plot the eight targets on the screen. The player enters the
coordinates to fire upon at line 130. Line 150 checks to see if a hit is scored and notifies the
player of his results. The variable C is used as a counter. When C = 8, all of the targets have
been destroyed and the game is over.

PROGRAM 3.13

The following program is a game similar to Program 3.12, except that the player,
instead of battling many, is involved in a one-on-one dogfight. The mission is to align the
view sight (+) directly on the target. At that point, the enemy is destroyed.

10 REM F1,F2 = Random target position (F1,F2)
20 REM S, T.N = Dummy variables for Loops

20 REM X, Y = Gight position (X,Y)

40 REM AR = Coordinates entered by plaver
50 REM sC = # of hits scored

100 REM

110 REM Draw border around screen & init variables
120 CL.S

120 FOR 8 = O TO 127
140 SET(S,0) : SET(S,738)
130 NEXT S

160 FOR T = O TO 38

170 SET(O,TY = SET(1Z27,T)
180 NEXT T
190 6C = O : REM Score

3.15

LOO X = 6% @ ¥ = 19 : REM Sight position
Z00 REM

310 REM New random target at (F1,F2)

IR0 Pl = RND(1O8) + 8 ¢ P2 = RND(28) + 5
400 REM

410 REM Flot sight centered at (X,Y)

420 FOR N = 1 TO 4

4730 SET (X+N=-7,Y) = SET(X+N+2,Y)
440 SET (X, Y+N-7) 1 SET (X, Y+N+2)

4530 NEXT M @ SET(FL,F2)

460 FRINT 2832, "SCORE: ":SC: 9869, "FOSITION: (MeXs"a"syvYety v
S00 REM

910 REM Did plaver score a hit?

G20 IF POINT(X,Y) THEN SC = 8C + 1 : RESET(X,Y) : GOTO 310
HOO0 REM

610 REM Get new coordinates

620 INFUT "NEW COORDINATES (8-118,6-32): ":A,R

700 REM

710 REM Erase old sight

720 FOR N = 1 TO 4

730 RESET (X+N-7,Y) : RESET (X+N+2,Y)
740 RESET (X, Y+N-7) : RESET (X, Y+N+2)
730 NEXT N

800 X = A : Y =B : GOTO 400

FRUN

NEW CODRDINATES (8-118,6-32): ?

Lines 100 through 200 draw a border around the display screen and set up program
variables. Line 320 generates a random target for the screen, while lines 400-460 plot the
view sight and display the player’s current score. A ‘hit’ is scored only if the center of the
view sight is alighed directly on the target (note line 520). The player is prompted for
coordinates at line 620. Lines 700-750 erase the view sight so that it may be replotted
elsewhere on the screen.

3.16

f/ .
IR
vl

\ N
PART A
1. Generate ten random numbers between 0 and 1, but print only those which are greater
than 0.5.

2. Generate three random numbers between 0 and 1, and print their sum.

3. Input a number (N). Print it only if it is an integer. (Hint: compare N and INT(N)).

4. Allow a user to guess a random integer between -3 and 4, inclusive. Print whether the
guess was correct or not. If the guess was wrong, the correct value is also to be
printed.

5. Determine randomly how many coins you find on the street. You are to find from 2 to
5 nickels, 1 to 4 dimes, and 0 to 3 quarters. Lunch costs 99 cents. The program is to
report the amount that you found and whether you are able to buy lunch with it.

RUN

YOU FOUND % .75

SORRY, YOU CANTT RBUY LUNCH
READY

=RUN

YOU FOUNMD & 1.25

YOu CAN BUY LUNCH

READY

3.17

Input an integer (N), and print the sum of N random numbers between 0 and 1. Also
print N/2 for comparison with the sum.

7. A child puts pennies into a piggy bank once each week for four weeks. The bank
already contains 11 pennies in it when the child first receives it. Write a program to
allow pennies to be added each week and to print the dollar value of the bank’s
contents after each addition.

8. Have the computer produce the following output.

FRUN
123458678901 2345678901 2345678901 2345467890
X 9 ? - !) X

9. Use PRINT@ to draw a straight diagonal line (composed of asterisks) starting at the
upper left hand corner and moving 3 spaces over for each space down until the line
hits the bottom of the screen.

10. Put a flashing notice on the screen which advertises Uncle Bill's whamburgers for
$0.59.
| To0ay oNLY!
UNCLE BILL'S
WHAKBURGERS
ONLY $0.59 §

PART B
11. Les Brains wrote both of the following programs but has forgotten what their output is.

3.18

Determine the output, and check your answer by running the program.

(a) 10 FOR Z = 1 TO 4
20 FRINT TAE(Z);3Z
Z0 NEXT 2
40 FOR Y = 1 TO 4
50) FRINT TAR(Y),Y
60 NEXT Y

(b) 10 B = 123,454

20 PRINT INT (10 % G)/10, INT (10 X G + .5)/10
S0 FPRINT INT (100 % G)/100, INT (100 % 6 + .5)/100

12. Write a program that generates 10 random integers between 8 and 25, inclusive, and

13.

14.

prints them on the same line. The output should be similar to the following:

17 12 22 25 8 17 19 11 21 23

Make a chart showing in their correct order the values taken by the variables X and Y.
Circle those values that are printed by the computer. Check by running the program.

10 FOR X = 1 TO =
13 READ Y

20 IF Y » O THEN 35
25 Y = Y + X

50 IF X = 2 THEN Y = Y - 1 : GOTO 40
5 FRINT X,Y

40 NEXT X

45 DATA 5,0,-1

(a) Determine a possible output for the program below.

(b) Rewrite the program so that the message LEARN THE MULTIPLICATION TABLE
is printed if three wrong answers are given.

(c) Rewrite the program so that five different questions are asked and the message
NICE GOING, HOTSHOT is printed if all five questions are answered correctly.

10 CLS : PRINT2384,
20 A = RND(10)

30 B = RND(10)

40 PRINT TABC12) ;A" X" jE; "=";

50 INFUT C

40 IF C = A % B THEN 90

70 PRINT "YOU ARE WRONG. TRY AGAIN."
80 GOTO 40

90 FRINT TAR(1Z) 3 "CORRECT™

15. Write a program that contains one FOR . .. NEXT loop which finds the sum of all the

odd integers from 13 to 147, inclusive. The output should be as follows:

THE SUM = 5440

3.19

16.

17.

18.

3.20

Suzy Fowlup, one of the slower members of the computing class, wrote the following
program. It allows the user to enter at the keyboard any integer greater than 1 and to
have the computer tell the user whether or not the integer is prime. A prime number
is an integer that contains only itself and 1 as factors. The computer tests the integer
by repeatedly dividing it by integers smaller than itself but larger than 1 and checking
whether the quotient is whole. If so, the integer entered by the user is hot prime. The
program contains three errors. Find them, rewrite the program, and run it. The output
should look like this:

+RUN

INTEGER *» 1 FLEABE? 12
THAT INTEGER IS NOT PRIME.
READY

FRUN

INTEGER * 1 FLEASE? 17
THAT INTEGER IS FRIME.

20 READ "INTEGER > 1 FLEASE"iN

IO FOR X = 2 TO N-1

40 IF N /7 X = INT(N/X) THEN 70

S0 NEXT N

60 PRINT "THAT INTEGER IS5 PRIME. "

7O PRINT "THAT INTEGER IS NOT PRIME."

Generate 1000 random integers between 1 and 9, inclusive, and print how many were
even and how many were odd. The output should be similar to the following:

FRUN
THERE WERE 547 0DD INTEGERS.
THERE WERE 453 EVEN INTEGERS.

Write a program that allows the user and computer to alternately select integers
between 3 and 12, inclusive, keep a sum of all the integers selected, and declare the
winner to be the one who selects that integer which makes the sum greater than 100.
Have the program ask the user if he or she would like to proceed first or second.

19. A bank pays interest once a year at a yearly rate of 5%. A man deposits $1000 on
January 1, 1983 and wishes to leave it there to accrue interest until the balance is at
least $2000. Compute the balance on Jan. 1 of each year, starting with 1984 and
ending in the year when the balance exceeds $2000. The output should resemble the
following:

DATE BALANCE
JAN 1, 1984 % 1050
JAN 2, 1985 $ 1102.5

.o $ 1979.9%
- % 2078.97%

20. Input a positive integer N, and print all positive integers that are factors of N. The
output should resemble the following:

FRUN

A FOSITIVE INTEGER, FLEASBE? 1.4
YOUR NUMEBER WAS NOT AN INTEGER
A FOSITIVE INTEGER, FLEABE? 12
1 2 3 4 & 12

21. Print the radius (cm.) of a sphere, given its volume (cm.3). Round off the results to the
nearest hundredth.

DATA: 690, 720, 460, 620
Note: Volume = (4/3) (7) R3, where = = 3.14159

22. (a) Print twenty random integers between 0 and 100, inclusive.
(b) Change the program so that sixty percent of the twenty integers printed will be
less than 25.

23. Write a program that will produce the following triangle. The figure is centered on
TAB(15).

*RUN

A RKI KKK KKK

3.21

24. Modify the answer to Exercise 23 so that the display is done graphically.

*RUN

25. Using SET, write a program that will draw a football in the middle of the screen. (Hint:
use the equation of a circle.)

26. (a) Have the TRS-80 draw the dart board pictured below, and have it fire ten random
shots, using SET to indicate the points hit. (The coordinates.of the corners are shown).
(b) Rewrite program (a) to give the score at the end of a game. A hit in the center
rectangle is worth 10 points, the outer rectangle 4 points, and the region outside both
—1 points.

3,45 125,45

27. Have the computer randomly select a number of quarters (from 0 to 7), dimes (from
0 to 4), and pennies (from 0 to 9) and print the exact number of coins and their total
value. The user has ten chances to determine how many quarters, dimes and pennies
were selected.

3.22

28.

29.

30.

31.

Luke Skywalker needs a simple simulator for his computer so that he can train before
his next battle against the Empire. Help Luke by writing a simple Star Wars game.
Have the computer plot two points at random positions on the screen. Luke has ten
chances to guess the X and Y coordinates of the two enemy points or the rebellion will
fail. After each guess, have the computer briefly flash the location of the guess. Use
PRINT@ to position the input line each time so that the enemy points are not pushed
off the top of the screen during the course of the game.

Have the computer draw a solid rectangle with its upper left corner at (19,10), a length
of 3 columns, and a height of 2 rows.

Have the computer draw a small letter i about an inch high with the dot at (15,18).

The following table shows production output per day for each employee of Papa’s
Pizza Parlor. Plot a bar graph showing the output for the week for each of Papa’s
employees.

Employee Pizza Production
Greer 18,12,9,10,16,22,14
McPherson 12,21,19,16,28,20,22
Rady 18,20,14,19,11,16,23
Wyncott 23,27,18,16,21,14,24

32. Allow the user to enter 3 numbers: A, B, and R. Have the computer plot a circle of

radius R with its center at (A,B). (Hint: The equation of a circle with center (A,B) and
radius R is (X-A)2 + (Y-B)2 = R2)

3.23

S NN
7V

d

We have previously observed that the FOR ... TO ... STEP, NEXT statements set up
loops. This chapter proceeds further by showing how to combine two or more loops in such
a way as to place one loop inside another.

The second part of this chapter deals with subscripted variables which use a fixed
variable name in conjunction with a variable subscript (e.g. A(N)), where A is fixed and N
varies. This technique enables a program to deal conveniently with a large amount of data.

Subscripted variables usually employ FOR ... NEXT loops to generate the values for the
subscripts.

Nested FOR ... NEXT Loops

The concept of a FOR . .. NEXT loop was presented in Chapter Two. In this chapter,
the concept of nested FOR ... NEXT loops (that is, one loop placed or ‘nested’ within
another) is introduced. For example:

——— 10 FOR P =1 TO 20

[:20 FOR Q = 3 TO 10
30 NEXT Q
40 NEXT P

By definition, nested loops must never cross. One loop must be contained entirely
within another, or entirely separate from another. For example, the following arrangement
is not permissible because the loops cross each other:

— 10 FOR P =1 TO 20
——20 FOR Q =3TO 10
30 NEXT P
——40 NEXT Q

4.1

When this program is run, the following error message will result:

NEXT WITHOUT FOR IN 40

PROGRAM 4.1

This program uses nested loops to print a portion of the multiplication table.

10 FOR X = 1 TO 5

20 FOR Y = 1 TO 3

0 FRIMT X3 "X%"g Yz "="3 XXY,

40 NEXT Y

50 FRINT

6D NEXT X

READY

=RUN
1 %1 =1 1 % 2 =2 X 3 o= 3
2% 1 = 2 2 % 2 = 4 2% 3 = 6
T X1 = 3 T X2 =64 T X E =9
4 % 1 = 4 4 % 2 = 8 4 % T o= 12
90K 1 = 5 5% 2 = 10 5 % 3 = 13

READY

Line 10 establishes the outer X loop and starts X with the value 1. X retains this value
until it is incremented by the execution of line 60. Line 60 is not executed, however, until the
inner Y loop, lines 20-40, has run its entire course. X therefore retains the value 1 while Y
changes from 1 to 2 to 3. When the Y loop has finished its cycle of three passes, line 60 is
executed, incrementing X to 2. The program returns to line 20 and starts the Y loop over
again at its initial value of 1. Whenever a program encounters the FOR . . . TO statement of
a loop, the loop variable is reset to its initial value. Since this program does not return to
line 10, the X loop is never reset back to 1. Notice that Y will take on its values of 1, 2 and
3 five times. Indentation is used in the above program in order to clarify the program’s
structure, and the contents of each loop are indented to clarify the boundaries of the loop.

PROGRAM 4.2

This program calculates and prints all possible combinations of coins that add up to
fifty cents, using quarters, dimes, and nickels.

10 PRINT "Quarters", "Dimes", "Nickels"

20 FOR @ = 0 TO 2 : REM fuarters

30 FOR D = O TO S : REM Dimes

40 FOR N = O TO 19 : REM Nickels

50 IF %25 + DX10 + N5 = 50 THEN FRINT @, D, N
&0 NMEXT N

70 MEXT D

80 NEXT @

READY

4.2

FFLIN

Cluar ters Dimes Nickels
0) 10
0 &
0 2 &
0 A 4
0 4 2
0 = 0
1 0 5
1 1 =
1 2 1
o ') 0

READY

Q represents the number of quarters, D the number of dimes, and N the number of
nickels. There may be anywhere from 0 to 2 quarters in a combination. Similarly, there may
be anywhere from 0 to 5 dimes and from 0 to 10 nickels. Using three nested loops, every
possible combination that might work is checked at line 50.

REVIEW

1. Use nested loops to produce the following output. The outer loop runs from 20 to 24,
and the inner loop runs from 1 to 3.

RN

Duter lLoop: 20

Inners 1 Inner: 2 Inner: 3
Outer Loop: 21

Inner: 1 Inners 2 Inners: 3
Outer Loops 22

Innmers: 1 Inners 2 Inner: 3
Outer Loop: 23

Inners 1 Inners 2 Inners 3
Outer Loop: 24

Inners 1 Inners 2 Inners 3
READY

The Need for Subscripted Variables
The following section demonstrates the usefulness of subscripted variables.

PROGRAM 4.3

10 FOR X
20 Y
30 FR
40 NEXT X
READY
#RUN

9 14 1 16 20 1F 20 11 17 17
READY

-

1 TO 10
RND (20)
T Ys

I

N

4.3

Every time a new value is assigned to Y, it replaces the previous value for Y. Since the
previous values of Y are not remembered, it is impossible to prevent repetition by
comparing the old values of Y with the new value of Y. If a box analogy is used here, the
first two cycles of Program 4.3 would appear as:

Y

)4

14

< Y = RND | 1st cycle

— 14 Y = BND | 2nd cycle

PROGRAM 4.4

This program prints four random numbers between 1 and 20 without any repetition.
The technique can be expanded to have the program choose 10 numbers if the user is
willing to type the program lines required.

10 Y1 = RND(20)

20 PRINT Yig

IO YZ2 = RND(Z2O)

40 IF Y2 = Y1 THEN 30

S0 PRINT Y23

60 Y3 = RND{(20)

70 IF Y3 = Y2 OR Y3 = Y1 THEN 60O
80 PRINT Y3Is

0 Y4 = RND(20)

100 IF Y4 = YI OR Y4 = Y2 OR Y4 = Y1 THEN 20
110 PRINT Y4

READY

*RUN

5 17 9

READY

The similarity between the three sets of lines 30-50, 60-80, and 90-110 is obvious. In
each set the first line selects a random number between 1 and 20, while the second line
checks to see if the number is a repetition of a number previously chosen. If this is the case,
then execution goes back to the first line in the set so that another number may be chosen.
Finally, the third line of the set prints the random number selected. The use of subscripted
variables will eliminate the need for the repetition of these sets.

4.4

Single Subscripted Variables

In mathematics, a set of single subscripted numeric variables (e.g. X,, X,, X5, ...) is
symbolized by a letter and a subscript which is written below the line of the letter. On the
computer, the same set of subscripted variables would be referred to as X(1), X(2), X(3),
and so on, where the integer enclosed in parentheses is the subscript.

The name for a set of single subscripted numeric variables consists of one of the usual
numeric variable names, followed by the parenthesized subscript. For example, A(1),
B2(17), and X(8) are all legal subscripted variable names. Similarly, single subscripted
string variable names such as Z$(5), Y1$(20), and M$(14) are acceptable.

The subscript variable L(2) is not the same as the variable L2. Furthermore, the
subscript is a part of the variable name and must not be confused with the value of the
variable. For example, in the statement L(5) = 32 the subscript is 5 and the value of L(5) is
32.

PROGRAM 4.5

This program illustrates the difference between the subscript and the value of a
subscripted variable.

10 L(1) = 7
20 L(2) = §
20 L3 = 4

40 PRINT "L (1)="g L€1), "L(2)="3 L(2), "L(Z)="3 L3
S0 PRINT "L{1 + 2)="3; L(1 + 2
60 PRINT "L (1) + L(2)="3 L (1) + L({2)

70 X = 2

80 FRINT "L(X)="3 LX)

READY

*RUN

L{1)= 7 L(2)= 3 L{3)= 4

L1 + 2)= 4
L) + L(2)= 12
L{Xy= 3

READY

-

Lines 10 through 30 set the value of L(1) through L(3) as follows:

L (1) L (2) L (3)

7 5 4

4.5

Lines 50 and 60 point out the difference between adding two subscripts and adding the
values of two variables. L(1 + 2) is identical to L(3) and has a value of 4. L(1) + L(2) calls
for the values 7 and 5 to be added, thus producing a total of 12. Since the subscript X
equals 2 in line 80, a value of 5 is printed. Thus, as can be seen, it is permissible to use a
numeric variable as the subscript of a subscripted variable.

PROGRAM 4.6

Like Program 4.3, this program selects 10 random numbers between 1 and 20 and
makes no attempt to prevent repetition. Yet unlike Program 4.3, it stores the numbers
chosen in a subscripted variable.

10 FOR X = 1 TO 10

20 R{X) = RND{20)

Z0 O NEXT X

40 FPRINT "Ten random numbers have been stored in RO ."
50 PRINT

6O FOR N = 1 TO 10

70 FRINT "R(": Mz; ") has a"; RNy "stored in it."
80 NEXT N

READY

*RUN

Ten random numbers have been stored in RO,

RC 1) has a 19 stored in it.
R 2) has a & stored in it.
R(C 2) has a &6 stored in it.
RC 4) has a 11 stored in it.
RO 5) has a 18 stored in it.
R &) has a 2 stored in it.
RO 7) has a 2 stored in it.
R B) has a 18 stored in it.
R 2) has a 19 stored in it.

R 10) has a 11 stored in it.
READY

-

This program has two loops which are not nested but which follow one another. Each
loop is executed 10 times. In the first loop, line 20 chooses a random number and stores
itin one of the subscripted R() variables. The first time through this loop (X = 1), a random
number is stored in R(1); the second time (X = 2), a new number is stored in R(2), and so
on 10 times. After the above run of this program, the R() boxes had contents as follows:

4.6

R (1) R (2) R (3) R (4) R (9)

15 6 6 11 18

R@®6) R(7) R(@) R(9 R(10)
2 2 18 19 11

The second loop (lines 60 through 80) prints the contents stored in the boxes.

The ability to store numbers in this way wili allow the writing of a new program to
choose 10 random numbers without repetition. By checking whether a chosen random
number equals any of those previously selected, a program can determine whether to
accept the random number chosen or to make another selection.

PROGRAM 4.7

This program uses nested loops and subscripted variables to pick 10 random
numbers between 1 and 20 without repetition.

10 FOR X = 1 TO 10

20 Y (XY = RND{20)
30 IF X = 1 THEN 70
40 FOR @ = 1 70O X-1
50 IF Y(X) = Y(&) THEN 20
&0 NEXT @&
70 FRINT Y(X);
80 NEXT X
READY
*RUN
10 12 18 4 1 8 3 20 17 14
READY

Line 20 selects a random number between 1 and 20 and stores it in one of the
subscripts of Y(). Since Y(1) is the first random number, line 30 is included to ensure Y(1)
will be printed immediately since it is obviously not a repeat of another number. Lines 40
to 60 constitute a nested loop which determines if a number just chosen, Y(X), is equal to
any of the previously chosen numbers, Y(1) through Y(X-1). The X-1 in line 40 ensures that
Y(X) is not rejected by being checked against itself. If X rather than X-1 were used, then Q

4.7

would eventually equal X. Line 50 would determine that Y(X) was a repeated number when
Q equalled X and would then mistakenly return to line 20.

There is an additional reason for including line 30. When X and Q are equal to 1, Y(X)
will equal Y(Q) and without line 30 program flow would continuously jump back to line 20.

PROGRAM 4.8

The following program will randomly read a list of 5 names into a subscripted string
variable N$(), without repeating any of the names.

10 FOR X 1 TO 5
20 Y RND (3)
a0 IF N$(Y) <= """ THEN 20
40 READ N%(Y)
50 NEXT X

6O FOR Z = 1 TO S
70 FRINT N%(Z)
80 NEXT Z

70 DATA TED, JOHM, MARY, KEITH, ANN
READY

*RUN

MARY

ANN

EEITH

TED

JOHN

READY

*RUN

TED

FEITH

JOHN

ANN

MARY

READY

HH

This program reads the names in the DATA statement in the order of occurrence, but
randomly places them in N$(1) to N$(5). Repetition is avoided by checking each new box
as it is selected to discover whether it contains a name. If it is full, a new box is tried by
selecting a new random number. At line 30 the consecutive double quotes (“”) refer to the
box being empty. Unassigned subscripted string variables contain an empty space, which
is represented on the compuer by (‘).

REVIEW

2. Using subscripted variables, write a program in which 3 numbers are input. Then have
the computer type them back in reverse order.

4.8

&

READY

3. Six words are to be entered from the keyboard. Have the computer randomly select and
print four of the words as a “sentence” (which may not make sense). Repetition of words
is allowed.

FRUN

JACE

AND

JILL

RAN

AWAY

7 SCREAMING

JACK SCREAMING AWAY AWAY

J o w3 ed el)

4. Modify the program of the previous exercise so that words are not repeated.

*RUN

JACK.

AND

JILL

RAN

AWAY

? HAPFILY

AWAY JILL JACEK HAFFILY .

33 3 3))

DIM

Whenever the highest subscript of a subscripted variable exceeds 10, the computer
must be informed. The DIM (dimension) statement is used to direct the computer to open
enough boxes in its memory to accommodate the anticipated input. Program 4.8 could
store 100 names by making the appropriate changes in several lines and by adding the line

5 DIM N§(100)

If the ages of the people were also to be stored, a numeric subscripted variable would have
to be added and the DIM statement modified. '

5 DIM N§(100), A(100)

4.9

It is possible to request more space (i.e. boxes) in memory than the computer can
supply. This results in the error message:

SUBSCRIPT OUT OF RANGE

It is a good idea to place DIM statements at the beginning of a program since the DIM
statement must be executed before using more than 10 subscripts of a subscripted
variable. Though it is possible to have several DIM statements in a program, each
subscripted variable may only be dimensioned once. If there are two DIM statements for
the same variable or if a DIM statement is executed more than once, the error message

REDIMENSIONED ARRAY

will result.

CLEAR

The computer sets aside a limited amount of space for storing string variables,
including subscripted string variables. Storage space for 50 characters of string data is
initially set aside by the computer. For many applications this is not sufficient. The CLEAR
statement is used to change the amount of space reserved for string variable storage. The
line

10 CLEAR 250

will set aside storage space for 250 characters of string data, set all numeric variables to
zero, set all string variables to null (*”), and cancel the effect of any previous DIM
statement. The CLEAR statement should be the first line in a program and should only be
preceeded by REM statements. The maximum value that may be CLEARed is 32767, the
minimum is 0.

Double Subscripted Variables

The computer can also use double subscripts to name a variable. This is similar to
single subscripting except that there are two numbers within the parentheses instead of
one. For example,

A(1,5) B3(7,3) CS$(@4,9)

are all double subscripted variables. The computer reserves space in memory for a double
subscripted variable by placing them in rows and columns, rather than in a single column
(as is the case with a single subscripted variable). This procedure provides a convenient
technique for dealing with problems in which the data is two-dimensional in nature, such
as the location of seats in a theater.

4.10

To understand more clearly how the double subscripted variable operates, the box
analogy is again helpful. The first integer in the subscript identifies the row and the second
the column in which the variable is located. For example, A(2,3) is located at the second
row, third column.

Row 1

Row 2

Row 3

Col. 1

Col. 2

Col. 3

Col. 4

A, 1)

A1, 2)

A (1, 3)

A (1, 4)

A2 1)

A (2, 2)

A (2, 3)

A (2, 4)

A (3, 1)

A (3, 2)

A (3, 3)

A (3, 4)

PROGRAM 4.9

A classroom has 5 rows of seats with 3 seats to a row. The following program

randomly assigns a class of 14 students to seats, leaving one seat empty.

4.11

10 CLEAR 1350
20 DIM M$ (5,735

EOOFDR X = 1 TO 14

40 READ A%

50 Foo= FRMD(3)

&HO o= RND(E)

T IF N$(R,CY < OTHERN S0

80 ME(R,C) = A%

PO NEXT X

100 FOR R1L = 1 TO 5

110 FOR C1 = 1 TO 2

120 IF M$RL,CLY = v

THEN FRINT "Empty",

ELSE FRIMT N$(RL,CL),

130 NEXT 1

140 FRINT

150 NEXT Rl

1460 DATA AMNE, DON, SHERRY, MAGGIE, TED, LIZA, RORB

170 DATH MARY, DAVID, MARE, FKEVIN, SUSAN, WENDELL, CINDY
FRUN

MARY ROEB Empty

CINDY SHERRY MAGGTE

DAVID MARE SUSAN

WENDELL LTZA EEVIN

DOM TED ANNE

READY

The computer also allows 3, 4, etc., all the way up to 11 dimensions in a subscripted
variable (e.g. DIM X(5,5,8,2,3,19)). However, the more dimensions that a subscripted
variable has, the smaller each dimension must be. This is due to the limited amount of
space available in the computer's memory.

REVIEW

5. Six numbers are to be input from the keyboard as X(K). These are subsequently to be
printed in a vertical column, and then a second time, closely spaced on a single line.

FRLIN

ML s
: sk

7 67
Po128
7 A7
74z
7143

oy
alend

&7
128

ey
ud 7

42
147

e
oo tnd

READY

&7 128 Z7 42 1435

412

6. Use the double subscripted variable X$(1,J) for which the row variable | runs from 1 to
5 and the column variable J from 1 to 3. Enter the letters A, B, C as the first row, D, E,
F as the second, up to M, N, O as the fifth. Have the program print the following (making
the rows become columns). (Hint: Use READ, DATA)

Some Final Notes on Subscripted Variables

Subscripted string and numeric variables greatly enhance the programmer’s ability to
store and deal with large quantities of data within any one program run. It must be
remembered, however, that if the program is run again, all of the stored data in the
computer’'s memory is erased. This means that all of the boxes become either null (“”) or
zero at the start of the next run. A method for permanently storing data is presented in
chapters 9 and 10.

Extended Variable Names

Previously, variable names have consisted of a single letter, possibly followed by a
digit. As was pointed out in this chapter, these names may also be subscripted. Actually,
TRS-80 variable names may be of any length. For example, ALPHABET, HAROLD, SCARE
and BLACKBEARD23 are all permissable variable names. There are, however, drawbacks
to these names. Nowhere in the name of a variable may any key word occur. For example,
SCORE, FORTUNE, SAND and DIMWIT are all unacceptable variable names because they
contain the words OR, FOR, AND and DIM in them, respectively. Also, no matter how long
the variable name may be, the TRS-80 only considers the first two characters. This means
the variable names XMIN and XMAX are considered the same because the both start with
XM. Because of these drawbacks, it is recommended that extended variable names not be
used except where they are useful in identifying what a variable represents.

413

PART A
1. Using a nested loop have the computer print a rectangle consisting of eight lines of
thirty asterisks each.

2. Show the output of the following program and check by running it. Rerun the program
after removing line 50.

10 FOR I = 1 TO 5
20 FOR J = 1 TO 2 % I - 1
Z0 FRINT ".";

40 NEXT J

50 FRINT

60 NEXT I

3. Enter values of X(l) for I=1 to 6. Print the values of | and X(l) in two columns with |
proceeding in the order 1, 3, 5, 2, 4, 6.

4. Enter 15 letters of the alphabet (not necessarily different), and print them in reverse
order as a single block of letters.

5. Have the computer compute the values of A(l,J), where A(l,J)=3*14+J*J, | varies from
1 to 4, and J varies from 1 to 12. The user is to input a number N from 1 to 4 so that
all values of A(N,J) can be printed.

4.14

6. Using a DATA statement have the computer enter one letter of the alphabet for each
member of A$(l,J), where | runs from 1 to 11 and J from 1 to 3. The letters are first to
be printed in the form of an 11 word sentence, with each word consisting of 3 letters.
Then, the letters are to be printed again as a 3 word sentence, with each word

consisting of 11 letters. The words may or may not make sense.

PART B
(a) Les Brains, who has forgotten where the computer is, needs to know the output for
the following programs. Predict the output in each case, and check by running the
program.

7.

8.

(a) 10
20
30
40

50

(b) 10
20
O
40
=0
&HO
70
@9

(c) 10
20
EO
40

50

FOR L1 = 1 TO =
FOR L2 = 5 T0O &
FRINT L1,L.2
MEXT L2
NEXT L1

FOR X = 10 T0 1% STEF 2
FOR Y = 15 TO 10 STEPF -2
IF ¥ = X THEN 99
IF X <Y THEN FRINT X:
FRINT Y
NEXT Y
NEXT X
END

FOR & = 1 TO 10
READ &<(8)
MEXT &
FRINT ACI) ,A07) A1)

GOTO &0

DATA 23,1%,45,2,87,34,89,17,2,35, 70

Suzy Fowlup has done it again and has written another program that will not run

properly. Assist her by correcting the program. The output should look like this:

20 IF A =
40 PRINYAR

S0 NEXT A

60 NEXT E

4.15

9. The following program is designed to print the numbers in the DATA statement in
decreasing order. However, there are some errors in the program. Correct and run the
program to produce this output:

*RUN
40 Z7 27 27 16 9 8 5 2 1
READY
10 FOR X = 40 TO 1
20 FOR ¥ = 1 TO 10
30 READ N
40 IF N = X THEN FPRINT Nj
30 NEXT X
60 NEXT Y

70 DATA S5,27,37,16,27,8,2,40,1,9

10. What is the exact output for the following program?

10
20
30
40
S0
&HO
70
80

READ E1,B2,B3,E4,B5,Eb
FOR X = 1 TO &
READ E(X)
NEXT X
FRINT “B4="3;E4;" BUT B(4)=";RE(4)
PRINT Bl + B2 + B3,B(1) + B(2) + B(I),B(l + 2 +3)
DATA 3,7,4,1,8,12
DATA 14,42,69,86,12,111

11. The following program is designed to find random integers between 1 and 99,
inclusive, until it encounters a duplicate. At that point it should print how many
numbers it has found and then print all of them. However, there are a number of errors
in the program. Correct them to produce output similar to:

4.16

+RUN
DUFLICATE AFTER 12 NUMBERS

F o046 26 7 93 37 14 8O Q0 96 I2 3
READY

20 FOR X = 1 TO 100

20 M(X) = RND(I9)

40 FOR Y = 1 TO 100

S50 IF N(X) <x NC(Y) THEN 70

&0 FPRINT "DUPLICATE AFTER"; Xi "NUMBERS"
70 FOR Z = 1 TO X = FRINT N¢(X); = NEXT Z
80 MEXT Y

F0 NEXT X

12.

13.

14.

15.

Write a program that reads the names, street addresses, towns, and zip codes of five
people into subscripted variables N$(X), A$(X), T$(X), and Z$(X). The user enters a
name, and the program prints the full name and address of that person. If the name
is not there, have the program print PERSON NOT FOUND.

A Pythagorean Triple is a set of three integers which are the lengths of the sides of a
right triangle (C2 = A? + B?). Find all sets of three integers up to C = 50 which are
Pythagorean triples. For example, A = 3, B = 4, C = 5 is a solution. (Note that due to
rounding errors, it is better to use A*A + B*B = C*C ratherthan A4 2+ B4 2=C4 2
to check for equalities.)
Stan’s Grocery Store has 3 aisles and in each aisle there are five items. Write a
program that will read 15 items into the subscripted variable 1$(X,Y), dimensioned 3x5.
Let his customers type in the item they want to buy, and be informed by the computer
of the aisle and the item’s number.

+RUN

WHAT ARE YOU LOOEING FOR 7 CHERRIES

YOU WILL FIND CHERRIES IN AISLE # 1 ITEM # 4

WHAT ARE YOU LODEING FOR 7 BREAD

YOU WILL FIND BREAD IN AISLE # 2 ITEM # 1

WHAT ARE YOU LOOKING FOR 7 PEFFER

I'M SORRY, WE DON'T HAVE FEFFER

WHAT ARE YOU LLOOKING FOR 7

Break in 70

READY

/

Pick 20 random integers between 10 and 99, inclusive. Print the odd integers on one
line and the even integers on the next line. The output should look like this:

FRUN

ODD INTEGERS: 27 13 55 59 45 33 93 29

EVEN INTEGERS: 32 60 84 446 S4 12 34 82 328 S2 44 74
READY

4.17

16. Find the average of four grades for each of five students. The output should give in

columns on consecutive lines each studen

t's name, four grades, and average. Each

column should have a heading. The last student’'s average should be underlined and
the class average printed below it in the same column.

#RUN

STUDENT # 1 7 DON
ENTER FOUR GRADES: 7
STUDENT # 2 7 LESTER
ENTER FOUR GRADES: 7
STUDENT # = 7 ILIZ
ENTER FOUR GRADES: 7
STUDENT # 4 7 ROBE
ENTER FOUR GRADES: 7
STUDENT # 3 7 SUE
ENTER FOUR GRADES: 7

42,86,99,99
50,55, 45, 54
100, 98, 99,97
67,72,71, 68

89,91,93, 90

NAME 1 2 A 4 AVE.
DON 42 86 P9 99 81.5
LESTER S0 35 45 24 46
4 100 28 99 97 98.5
ROB &7 72 71 &8 6£9.59
SUE 89 ?1 93 F0 PU.TS
77.25

17. Marcus Welby wants you to program the co

mputer to keep track of his busy schedule.

(a) Write a program to allow a patient to choose the day and time he or she wants to
see the doctor. There are 5 days and 6 time slots for each day. If the desired slot is
empty, the patient enters his or her name. If it is full, the program asks for another slot.
(b) Add the steps needed to allow Dr. Welby to print his schedule for any particular

day.

MARCUS
WEALgY
[Y

° "

(‘ — L)

Jl/ 3:00 JOHN =
3:30 SUSAN ||=—=
4:00 BRUCE
4.30SALLY ,

)

18. Susie Gossip has 3 skirts—red, green, and purple; 2 pairs of jeans—white and electric

4.18

purple; 4 blouses—Dblue, pink, orange, and black; and 2 slightly tight sweaters—yellow

and green. Have the computer print a list of all possible combinations of the articles
she can wear (e.g., red skirt and blue blouse, or white jeans and yellow sweater).

N —

RED SKIRT....YELLOW SWEATER
GREEN SKIRT...WHITE SWEATER

—
PURPLE JEANS..YELLOW SWEATER
WHITE JEANS..YELLOW SWEATER || —T1—
BLUE SKIRT..RED BLOUSE —

19. Write an extended version of the game high-low. In this game, the computer picks a

20.

secret random number between 1 and 100 and gives the player an unlimited number
of chances to guess it. For each wrong guess the computer tells whether to guess
higher or lower and stores the guess in a subscripted variable. If the player guesses
the same number twice, the computer should produce the message WAKE UP! YOU
GUESSED THAT NUMBER BEFORE.

Betty Bright has written the following two programs to sort data. Read the programs
carefully and predict the output.

(@ 10 DIM A1)
20 FOR B = 1 TO 10

Z0 READ A(RB)

40 NEXT R

S0 FOR C = 2 TO 10

60 FOR D = 1 TO C~1

70 IF A(D) < AWC) THEN 90
80 E = AM: AM) = A : AL = E
0 NEXT D

100 NEXT C

110 FOR F = 1 TO 10

120 - FRINT AF)

130 NEXT F

200 REM

210 DATA 1,3,7,2,4,9,0,2,5,8

4.19

21.

(b) 10 DIM @%(10)
20 FOR M = 1 TO 10

30 READ &% (M)

40 NEXT ™

50 FOR R = 5 TO 10

&0 FOR Z = 3 70O R-1

70 IF @%(Z) < Q% (R) THEN 90
80 Te = QB(Z):0%(Z) = CF(R) QB (R) = TH
0 NEXT Z

100 NEXT R

110 FOR I = 10 TO 1 STEF -1

120 FRINT @#(I)

130 NEXT I

200 REM

210 DATA DOM,FRENCH,LESTER,FAZIDLI,MARY
220 DATA SUSAN,LIZ,ELI,ROB,KIM

The game Penny Pitch is common in amusement parks. Pennies are tossed onto a
checkerboard on which numbers have been printed. By adding up the numbers in the
squares on which the pennies fall, a score is accumulated. Write a program which
simulates such a game in which ten pennies are to be randomly pitched onto the
board shown below.

|||
2|2
313
313
2|2
|]

— P rore|ro
— PO PP P

Have the computer print the board with an X indicating where each penny has landed

and

then the score. Below is a sample run. Note that more than one penny can land

in one square.

4.20

#RUN

il

o S el i S]
Ll Ol o6 B N 2

A C Y N 3 1o
=) < L P o
= D e 2 D

= < B3 P3RS

SCORE =17

22. Write a program that rolls two dice 1000 times and prints the number of times each

23.

24.

25.

different point total (2, 3, 4, 5, ..., 12) appeared. The output should resemble the
following:
RUN
FOINT TOTAL. TIMES AFFEARING
2 34
= 6H4
4 [=1-)
"5

Write a program which makes up 15 “words” (i.e. groups of letters, whether
pronounceable or not) composed of from one to seven randomly chosen letters, and
print them. (Hint: use addition of strings. For example if A$(2)="“B” and A$(12)=“L"
then A$(2)+A$(12)="BL".)

Use the computer to play a modified game of Othello. Have it randomly fill an 8x8
subscripted string variable with X’s and O’s and print the array by row (horizontal) and
column (vertical). Examples are below. The X’'s are for player 1, the O’s for player 2.
Have the program alternately ask the players for the row and column of the opponent’s
piece that should be flipped (changed from an X to an O or vice versa). All of the
opponent’s pieces along the horizontal or vertical line passing through the flipped
piece are also flipped. For example, if player 1 flipped the 0 at 1,8, board A would be
changed to board B.

A 1 2345678 B 1 234564678
1 DO0OO0OX X00O0 1 X X X X X X X X
2 00X 00X X X X 2 0X00X X X X
T XX X000XO0 T XX X000 X X
4 XO0OX000XO0 4 X0 X0DO0DXX
5 00X 0000 X 5 00X 0000 X
& X 00X 000X & X 00X 000X
7 O0OX000XO0KX 7 0X000XO0X
8 0 X X 0X X 00 8 00X X0 X X0X

The ancient puzzle ‘Towers of Hanoi’ uses 5 different sized disks and 3 pegs. The 5
disks are initially stacked on the left peg in order of decreasing size. The object of the
game is to move all of the disks to the right peg. Only 1 disk can be moved at a time
and a larger disk cannot be placed on top of a smaller disk.

4.21

ettt e e e e P e P L

TOWERS OF HANOI
Initial Configuration for Towers of Hanoi

(a) Write a program using graphics that will draw a checkered base with pegs and plot
the initial configuration of 5 disks on the left tower.

(b) Expand the program from part A to allow movement of the disks. The user should
be able to enter two values (P and Q). This should cause the top disk on tower P to be
moved to the top of the stack on tower Q. (Hint: Set up a subscripted variable A(X,Y)
with maximum values X=3, Y=5). There are 15 possible slots for disks; 3 towers, 5
slots per tower. When a slot is occupied, the subscripted variable A(X,Y) should
contain the disk number occupying that slot (1-5). If the slot is free, the appropriate
position in A(X,Y) should contain a zero).

: o R B L e
FROK TOHER TD TOWER? 1,3 FROM TOWER TO TOHER? 1,3

26. Have the computer generate 200 random integers between 1 and 10, inclusive. Using
graphics, plot a properly labeled bar graph showing the number of occurrences of
each random number.

27. Mr. and Mrs. Charles Windsor want to start a bank account for their newborn son,
William. They open the account with $500. At the beginning of each successive year
they deposit $60 more. When William is 21, how much money will be in the account?
(Assume the interest rate to be 6% compounded quarterly).

4.22

In a well written program the purpose and sequence of each line should be obvious.
As a whole, the lines should serve as a clear indication of what the program does and the
sequence it must follow.

The term ‘code’ is used to define the instructions which comprise a program. Each line
of a program contains statements referred to as code. If presented in a clear and logical
style, the code is less likely to contain errors. Furthermore, a well written program is easily
read and understood by another programmer with a minimum of effort.

The first step in writing a program is to understand precisely the problem to be solved.
Next, a plan should be developed to break the problem down into a series of smaller units;
each can then be programmed as a unit. A common mistake made by many inexperienced
programmers is to start writing the code before the problem or its solution is understood.
From this, there results a program which is frequently modified by adding or deleting lines
of code until the desired output is achieved. The resulting program is usually a “mish-
mash” of statements which do not flow logically from one to another. When GOTO and IF
... THEN statements have to be added to a program to make it work, the sequential top to
bottom flow from line-to-line—a sign of good programming—is often destroyed. Therefore,
one should plan a program as thoroughly as possible before approaching the computer.
As the computer pioneer, R.W. Hamming has declared; “Typing is no substitute for
thinking.”

Structuring a program

The structure of a program determines the ease with which it can be read and
understood. Several techniques which follow help to achieve such a structure.

1. REM statements strategically placed throughout a program can be helpful in explaining
how the program works. It is a good practice to use REM statements at the beginning

5.1

of a program to indicate what the program does and to list and define the variables used
within the program.

2. Indent the lines within FOR . . . NEXT loops to clarify where the loops begin and end and
what portions of the program are contained within each loop.

3. Break a program down into separate units in which each unit performs a specific task.
It is a good practice to separate each unit from the others by choosing appropriate line
numbers. For example, if a program contains three units and each is about 15 lines
long, number the lines of the first unit from 100 to 250, the second unit from 300 to 450,
and the third from 500 to 650. Separate each unit from the next using blank REM
statements and begin each unit with a REM statement which explains the function of that
unit.

4. ThelF ... THEN ... ELSE statement is extremely powerful, and if used properly, it can
substantially reduce the amount of code required within a program. Although its
structure can be confusing, it may be clarified by being segmented. For example,
Program 5.1 willuse an IF ... THEN ... ELSE statement to cause the program to jump
to line 230 if A = X*Y. It will print ANSWER TOO HIGH if A>X*Y, or print ANSWER TOO
LOW if A <X*Y.

190 IF A = X*Y THEN 230 ELSE IF A>X*Y THEN PRINT “ANSWER TOO HIGH”
ELSE PRINT “ANSWER TOO LOW”

With so much of the code all on a single line, it is difficult to determine exactly its
function. If this line is structured

190 IF A = X*Y
THEN 230
ELSE IF A>X*Y
THEN PRINT “ANSWER TOO HIGH”
ELSE PRINT “ANSWER TOO LOW”

then it is obviously much easier to read. Notice that the line is broken and indented where
the THEN and ELSE occur. A line of code can be split by using the downward arrow key
(¥) to move the cursor to the next line on the screen and the space bar and backward
arrow key (=) to place the cursor where desired. The ENTER key must not be struck until
all of the line of code has been entered. Though such a procedure may seem bothersome,
the resulting clarity in program format is well worth the effort.

PROGRAM 5.1

The four programming techniques presented above are used here to produce a clear,
easy-to-read program. This program tests a student on muitiplication and division by
giving ten problems of each type, and he or she has five chances to answer each one
correctly. If a wrong answer is given, the computer will inform the student whether his or
her answer is too high or too low. The student’s score is based on receiving five points for
a correct answer on the first try, four for a correct answer on the second try, and so on. No

5.2

points are received if the problem is not answered correctly after five responses.
Read the program carefully, note its structure, and try to predict its output. Many of the
programming details are left for the reader to analyze.

REM THIS FROGRAM TESTS A STUDENT ON MULTIFLICATION AND
DIVISION. THERE ARE TEN PROBLEMS OF EACH TYFE.

[N

2 REM N = NUMBER OF THE QUESTION (1-10)

3 REM T = NUMBER OF FOINTS AWARDED

4 REM X, ¥ = TWO RANDOM MUMBERS USED IN RUESTION
3 REM A = STUDENT"S ANSHWER

& REM 85 = STUDENT"S SCORE

7 REM

8 REM

100 REM MULTIFIL.ICATION FROBLEMS
110 FRINT "YDOU WILL BE ASKED TEN MULTIPLICATION FROBLEMS"

120 FRINT "AND BE GIVEN FIVE CHANCES TO GET EACH CORRECT."
1720 FOR N = 1 TO 10

140 X = RND((10)
150 Y = RND({(10Q)
1460 FOR T = 5 TQO 1 STEF -1
170 FRINT"WHAT DOES "gX3" % "gz¥g" = "3
180 INFUT A
190 IF A= X %Y
THEN 2730

ELSE IF A> X X Y
THEN FRINT "ANSWER TOO HIGH"
ELSE PRINT "ANSWER TOO LOW"

200 NEXT T

210 FRINT "YOU GOT THE ANSWER WRONG FIVE TIMES, IT IS"jXXY
220 GOTO 240

230 8 =8 + T

240 NEXT N

250 REM

260 REM

E00 REM DIVISION FRORLEMS

310 PRINT "YOU WILL BE ASEED TEN DIVISION FROBLEMS"

IZ20 FRINT "ANMD RE GIVEN FIVE CHANCES TO GET EACH CORRECT."
F30 FOR N = 1 TO 10

S40 X = RND(1O)
EHO Y = RND(10)
Z60 FOR T = 5 TO 1 STEF -1
70 FRINT"WHAT DOES "3Xg" / "a¥sz" = "z
80 INFUT A
390 IF A = X/Y
THEN 4730
ELSE IF Ax X/Y
THEN FRINT "ANSWER TOO HIGH"
ELSE FRINT "ANSWER T0OO LOW"
400 NEXT T

5.3

410

FRINT "YOU GOT THE AMNSWER WRONG FIVE TIMES, IT I8"3;X/Y

420 GOTO 440
4730 G =8+ T
440 NEXT N
450 REM
460 REM
SO0 REM FRINT SCORE
510 PRINT"YOUR SCORE IS ="3 &
520 EMD
REVIEW

1. Using the techniques discussed in this chapter structure both of the following programs.

a). 1o
20

IO

b).

O NO G-

INFUT "ARE YOU COMING OR GDING"g3;A%
IF A%="COMING" THEN FRINT "HELLO" ELSE FRINT "GOOD-BYE"
END

REM SHELLSORT OF THE LIST OF CLUB MEMBERS

INFUT "HOW MANY NAMES IN THE LIST"jN
FOR X=1 TO N

INFUT "MEMEER" 3 M$ (X)
MEXT X

g=N

§=INT(S/1.5) : 0=5
F=0

FOR X=1 TO N

10 Q=X+8

11

1

1

5.4

IF Ox*N THEN 14
IF M% (X)) =Me(C) THEN Té=M$ (X) 1 M$ (X)) =M$(C) s MB (D) =Ths F=1

3 NEXT X

vt

14

IF §+1 THEN 7

5 IF F=1 THEN 8
16
17
18
19

FOR X=1 TO N
FRINT M$(X)
NEXT X

END

DEBUGGING

Debugging is the process of locating errors or “bugs” in a program and then
correcting them. Obviously, the best approach is to avoid bugs by carefully planning a
program, but even the most carefully written program often contains errors.

There are three types of errors which will cause a program to fail in producing proper
output.

Syntax Errors
Syntax errors are caused by typing an improper statement. For example,
10 REED X, Y
should be
10 READ X, Y

Happily, the computer detects this type of error and informs the programmer by printing an
error message.

Runtime Errors
Runtime errors are detected when a program is run. For example,

10 READ AS, B
20 DATA 35, SMITH

is a format violation since the computer attempts to assign the string “SMITH” to the
numerical variable B. Another common runtime error is caused by using two different
variables to define a FOR ... NEXT loop.

10 FORX =1TO 10

20 PRINT X, X[2, X[3

30 NEXT Y

The computer detects a runtime error and prints an appropriate error message.

Logic Errors
Although the computer accepts and runs a program, the output may not reflect the

programmer’s true intent. Yet if the program does not violate any of the syntax rules of
BASIC it is not rejected. The errors in the program may stem instead from the program-

5.5

mer’s incorrect analysis of how to develop a logical sequence of statements to achieve the
intended goal. These forms of errors—referred to as logic errors—are the most difficult to
detect and correct.

PROGRAM 5.2

This program is supposed to print the areas of circles whose radii are integers varying
from 1 to 100 except for those whose computed areas are integers (note line 30). The
equation A = 7wR?is used with the value of = taken as 3.1.

10 FOR X = 1 TO 10

20 A= 3.1 % X[2

0 IF & = INT(A) THEN 10
40 FRINT A,

S0 NEXT X

&0 END

READY

*RUN

Z.1 12.4 27.9 49. 6
77.5 111. 6 151.9 198. 4
251.1 3.1 12.4 27.9
49 . 4 77.5 111.6 151.9
198. 4 251.1 3.1 12.4
27.9

Break in 40

READY

Note that the printed areas go as high as 251.1 and then start to repeat. The program
actually goes into an infinite loop, which means that it keeps running until the BREAK key
is struck.

A useful technique used for detecting the logic error in Program 5.2 is the placing of
an extra PRINT statement in the program in order to print the loop variable X. This extra
statement can later be removed when the error has been corrected.

25 PRINT “X ="; X,

5.6

-RUN
= 1 3.1 X= 2 12.4
= 3 27.9 X= 4 49.6
= 5 77.5 = 6 111.6
= 7 151.9 = 8 198.4
= 9 251.1 = 10 = 1
3.1 X= 2 12. = 3
27.9 X= 4 49. 646 X= G
77.5 X= 6é 111.6 = 7
151.9 X= 8 198. 4 X= @
291.1 X= 10 = 1 3.1
X= 2 12.4 = 3 27.9
X= 4 49.6 = 3 77.5
X= & 111.6 = 7 151.9
X= g 198.4 = 9 281.1

Brealk in 40
READY

The output indicates that X only reaches 10 and then starts repeating rather than
continuing on to 100 as it should. The problem results from the fact that line 30 should send
the program to line 50 rather than to line 10, where it restarts the X loop at one.

In longer programs it is often useful to place additional print statements at a number
of locations to check the value of variables and then remove them when the program is
operating properly.

Another technique is to place a line in the program to indicate whether it is getting to
a certain point as anticipated.

50 PRINT “I'M AT LINE 50 NOW”

The line can later be removed when no longer needed.

Hand Tracing

It is almost impossible to guarantee that a program will run properly for all possible
situations that it may encounter, but one technique that creates confidence in the validity
of a program is called hand tracing. By using test data, calculations are solved by hand and
the results are checked with those produced by the program. If the computer program
produces identical answers for the same data, the programmer is then confident that the
program at least works for the data that is being tested.

5.7

TRON—TROFF

To follow the sequence in which the lines of a program are executed, type the
command TRON before typing RUN. Each line number will then be printed as the line is
processed by the computer, thus allowing the programmer to easily trace program flow. To
stop the line tracing, the command TROFF is typed after the computer completes its run.

PROGRAM 5.3

This program prints the combinations of quarters and dimes which add up to $1.00.

1 REM &
2 REM D
I REM

OUARTERS
DIMES

i

10
20
30
40
50

&0

FOR 0 =
FOR

0O TO 4
D= 0O TO 10
IF 25%€ + 10%D

MEXT D

MEXT @
END

100 THEN FPRINT

!lc_:,‘!zllg[:!!|

I|D::ll;D

READY
FRUN

d== O =2

A= 2 S
= 4 = 0
READY
*TRON
READY

f= O
el RO el SO el T
SO RO T

TS BCEAr 16 BT 4

GO B 4O e
ZO 04O 2T P40 B B0 P 40O B0E
OxG= 4 D= O
FO 40300400 E0 P40 P T0 40 5L F0O 40 TR0

Ol BO T 4O S E0

RO B
READ
*TROFF
READY

Fa

Follow the program flow carefully for both loops. Notice that each time a NEXT
statement is executed, it returns the program to the statement following the corresponding
FOR ... TO statement.

5.8

STOP and CONT

A useful debugging technique is the halting of a program at certain points by using
one or more STOP statements. Upon interruption the values of the program’s variables
may be examined. Typing CONT will continue program execution from the point at which
it was interrupted.

PROGRAM 5.4

10 FOR X = 1 TO 100
20 A = 3XX[3 + 2%XL[2 + 5
30 B = 7X%XL[2 + 2%X + 35
40 IF B > A THEN FRINT Bz">"3;A
S50 NEXT X
60 END
READY
*RUN
14 > 10
READY

When Program 5.4 is run, the computer prints one solution to the condition at line 40
and then gives the appearance of being at rest, until it finally prints READY. Is there only
one solution or is there a bug in the program? The values of A and B can be checked when
X = 50 by adding the line:

45 IF X = 50 THEN STOP

The values of A and B can then be examined when the program is halted by typing PRINT
A,B. Typing CONT allows this program to continue on to completion. Since A is much
larger than B when X = 50, it is obvious that there will be no other solutions than the first
one. Hence there is no bug in the program.

READY
*RUN
14 > 10
Break in 435
READY
*FRINT A,B
380005 17605
READY
*CONT
READY

“,
‘,#

5.9

REVIEW

2. Each of the following programs contains a ‘bug’. Find it and correct it.

a).

b).

5.10

10
20
Z0
40

S50

10
ry

2O

4.0

S0

INFUT A
FOR X=10 T0O 1
C=A/X
FRINT INT(C)
NEXT X

INFUT N

IF N O THEN 10 ¢ REM FREVENTS NEGAT IVE

P=NXS5
IF B < 0
THEN PRINT "THE FRODUCT IS NEGATIVE"
ELSE FRINT "THE FRODUCT IS FOSITIVE"
END

INFUT

1.

/

S/
7

/

/

Each of the following programs contains an error. In each case identify and correct the

error(s).

()

(b)

(c)

(d)

(e)

(H

10
=20
=D
40

50

10
20
O
40

S50

10
20
30
40

50

10
20
=0
410
50
40

10
20
H0
410
S0
HO

-y .

FAS]

10
20
Z0
40

S0

KEAD A, E,C,D
E=AXE+C+D
FRINT E

DATA 2,3, 4
END

READ A, R
DATA 1,2,3,4
FRINT A/R
GOTO 20

END

READ A, E,C
FRINT A%/E+C
FRINT D/F=3;D/F
DATA S5,4,10
END

READ F,G

IF Fx5 OR <10 THEN 40
BOTO 10

FRINT F G

DATA 1,10,6,9,11,4
END

FOR X=1 TO 8
FOR Y=1 TO 2
X=X+Y
MEXT X
NEXT Y
FRINT X
END

READ C.D,F

DATA Z,46.9,4,7,10
FRINT C+D+F

HEOTO 20

END

5.11

2. Trace the following program by hand and determine its output. Use the TRON
command to check your results.

10 READ N,A,R
20 FOR I=1 TO N

0 FOR J=2 TO N+1
40 A2k A+E
=50 B=2 % E+A
&0 NEXT J

70 FRINT AR

80 NEXT I
0 DATA 3,1, 2
100 END

3. What output is produced by the following program? (Do not run the program.)

10 FOR X=1 T0O 5 STEF 2

E0 READ K1,E2
0 A=A+ —REE

40 B=RE—-K1+E2

S0 NEXT X

50 PRINT A, B
70 DATA 1,3, 7.4,3,5
80 END

4. The following simple programs have errors in logic (i.e., the program runs, but the
output is illogical). Find and correct the errors.

10 READ A,E,C
20 FRINT A+E+C

(a) =0 GOTOD 20
40 DATA 1,2,3.4,5,6
=0 END

10 FOR X=1 TO 10

20 IF X35 THEN 50

%0 FRINT X;"IS GREATER THAN 5¢
®) 40 GOTO 60

50 FRINT X;"IS LESS THAN 5@

A0 NEXT X

70 END

10 READ A,RE,C
20 FOR X=1 TO 10

=0 Y= (AXE) / (C~X)
(© 40 IF Y<1 THEN 50
50 FRINT "Y<1";Y

60 NEXT X
70 DATA 20,10,5,5,10,20
80 END

512

5. Each of the following programs contains errors which will result in error messages
being printed by the computer when the program is run. Find and correct the errors.

(a)

(b)

(©)

(d)

(e)

(f)

10
20
S0
40

50

FRINT "WHAT IS THE FORMULA WEIGHT OF THE ELEMENTS";

INFUT FORMULLA WEIGHT
IF X=20 THEN 30O
X=X/2

FRINT X

299 END

15
25
x5

435
53
&HS

75

FOR X=1 TO 2
FOR Y=1 TO 3

IF Y=X THEN A=A+1

NEXT Y

FRINT "X AND Y ARE EQUAL"3;A; "TIMES"

MEXT X
END

S5 READ B,A,C

10
20
=0
40
S0
&0
70
g0

10
20
A0
40
HO

&0

10
20
0
40
=50

10
20
B0
40

S50

X 1= (B+ (SOR (RL2—-4XAXC) /2KA)
X 2= (B (SOR (BL2-4%AXC) /2%A)
IF X13X2 THEN 50

BOTO 5

FRINT "X1=";X1; "X2="jgX2
BOTO 5

DATA 1,2,3.4.5.6

END

READ A, E,C

X = A ¥ B+ C

IF X » 200 THEN LINE 10
FRINT X

DATA 25, 26,27, 28,29, 30
END

FOR X=1 T{ Zé
22k T

MEXT X

FRINT A%

END

FOR X=1 TO 26
AB=AS+ A"

NEXT X

FRINT A%

END

GOTO 30

5.13

6. The following program is designed to arrange sets of numbers in descending order.
If the second number is larger than the first, the computer interchanges the two
values. (This occurs in lines 30 and 40.) Explain the output and correct the program to
give the desired output.

130 READ A, B

20 IF AFR THEN 50
S0 A=

40 B=6

S0 OPRINT AR

&0 GOTO 10

70 DATA 10,20,20,10
80 END

READY
FRUM
20 20
20 10
Out of DATA in 10
READY

7. The area of a square that measures one inch on a side is equal to one square inch. If
the computer takes various slices of this same square and sums the areas of the
slices, the answer should be one square inch. In the following program 100, 1000, and
1024 slices are used and the output printed below. Explain the results.

10 READ N

20 FOR X=1 TO N

0 Y=Y+1/N

40 NEXT X

S0 FRINT Y3 "SOQUARE INCHES FOR"3;Ng "SLICES"
HO ¥=0

70 GOTO 10

80 DATA 100, 1000, 1024

70 END

READY

FRUN
- FIP999 SAUARE INCHES FOR 100 SLICES
999921 SQUARE INCHES FOR 1000 SLICES
1 SEOUARE INCHES FOR 1024 SLICES

Out of DATA in 10

READY

5.14

8. Structure

indenting

(a)

NONDO AR

S OND O W)

P e e
LONDU RO

the following programs by adding spaces and REM statements and by

where appropriate and necessary.

REM THIS FPROGRAM DECIDES WHICH MOVIE WE WILL SEE

R=RND (20) +5
X=1
FORL=1TOR
X=X%—1

IFL=RTHENFRINT"WEWILLSEE" EL.SEFRINT
IFX*OTHENFRINT"ANNIE"ELSEPRINT"FOLTERGEIST"

NEXTL
END

DIMJ (10,10}

FORX=0TO%

FRINT TAB(X%4+5) 3 X+13

NEXTX

FRINT

FORX=0TO 8

FRINTTARB(XX4+&) 5 "——"3

NEXT X

FRINTTAB(42) 3 " —-"
FORX=1TO10
FORY=1TO10
JX,Y)=K+Y
IFF=0THEMFRINTX; "2 "3

PRINTTARB(FX4+5) 5 (X, Y) 5

F=F+1
IFF=10THENPRINT: F=0
NEXTY

NEXTX

END

5.15

SIS
77T VN

This chapter covers the various mathematical functions that the computer can
perform. The extent to which they can be useful to any individual depends on his or her
mathematical background. Generally speaking, the functions presented here are primarily
employed by mathematicians, scientists, and engineers.

Order of Operations

What is the value of 2+20/4? Should the 2 be added first to the 20 and then the
division performed afterward, or should the 20 first be divided by 4 and then be increased
by 2? The latter procedure is correct because division is carried out before addition. When
parentheses are used, the operations in the innermost parentheses are completed first. For
example, (2+20)/4 = 22/4 = 5.5.

The computer performs arithmetic operations in the same order as that employed by
mathematicians. Quantities in parentheses are evaluated first (starting from the in-
nermost), followed by raising to a power, then by multiplication and division, and finally by
addition and subtraction. Operations of equal priority are carried out from left to right. For
example:

6/3*2 The result is 4. Although the answer might seem to be 6/6=1, the
computer starts at the left and performs the division first, then the
result of the division is multiplied by 2.

3*(5 + 6) The result is 33. The computer first adds 5 and 6 and then
multiplies the sum by 3.

5+ (3%(6/2)) The result is 14. The computer first divides 6 by 2, the operation
within the innermost parentheses. Next it multiplies that result by 3
and finally adds 5.

6.1

12 + 4/0 The result is an error message. The computer does not divide by

zero.

24342 The result is 64 just as it would be for (243)42. Again, the left-to-
right rule is in operation. Remember that ([) is used to raise to a
power.

SQGR
The SQR function calculates the positive square root of a number.
10 PRINT SQR(14)

The square root of a number N is defined as that value which, when multiplied by itself,
gives N. For instance, the square root of 36 is 6 because 6x6=36.

PROGRAM 6.1
This program illustrates the square root function.

10 FOR X = 1 TO 4

20 FRINT "The square root of”"; X3 "is": SER(X)
IO NEXT X

READY

»RUN

is 1
is 1.41421
is 1.73205
is 2

The square root of
The square root of
The square root of
The squars root of
READY

-~

B by e

In the expression SQR(X), SQR is the function name and X is called the argument.
With the SQR function, the argument may be any mathematical expression with a non-
negative value. For example, SQR(3*X+5) is perfectly acceptable provided that the
expression 3*X+5 produces a non-negative value.

Note that the argument of a function must be enclosed in parentheses. In its evaluation
of a mathematical function, the computer first evaluates the argument and then the
function, using the value previously obtained for the argument. Some functions have a
limitation on the value of the argument. Such limitations will be indicated as the functions
are introduced.

6.2

SGN and ABS

In some situations it may be necessary to know if a variable is positive or negative. The

SGN function has only three possible values: 1, 0, and —1.

SGN(X) = 1 if X>0
SGN(X) = 0 if X=0
SGN(X) =-1 if X<0

PROGRAM 6.2

This program finds the SGN (signum) of the numbers from 6 to —6, incrementing by

-1.2.

10 FOR X
20 A
IO F
40 NEXT X
READY
*RUN

SGNC &)
SGNC 4.8
SGNC .6
SGENC(2.4
SGNC 1.2
SENC O)
SOM(-1.2
SEN(~2. 4
SEN(-Z. 4
SGN(-4.8
READY

o

= &6 TO -6 STEF -1.Z2
= HGN(X)

[I I I
e el)

R i | B |
o

RINT "SGN("; X3 ") =" A

The ABS function can be used to find the absolute value of a number. The ABS

function yields values according to the rule:

ABS(X) = X if X>=0
ABS(X) = —1*X if X<0

6.3

PROGRAM 6.3

This program illustrates the use of the ABS function.

10 FOR X = & TO -& STEF —1.7
20 A = ABS(X)
20 FRINT Aj;
40 NEXT X
READY
*RUN
6 4.8 3.6 2.4 1.2 0 1.2 2.4 Z.6 4.8

READY

FIX

The FIX function returns the integer portion of a number, that is, it truncates all digits
to the right of a decimal point. The statement

N = FIX(2.41)

will assign N the value 2, truncating the decimal portion .41. Unlike the INT function, the FIX
function.does not return the next lower value of a number when the number is negative.

INT(5.01) = 5 FIX(5.01) = §
INT@.7) =4 FIX(4.7) = 4
INT(-8.7) = =9 FIX(-8.7) = —8
INT(-6.2) = —7 FIX(—6.2) = —6

The FIX function is useful in determining the fractional portion of a number. The
statement

N = ABS (X — FIX(X))

will assign N the fractional portion of X. For example, if X = 4.237, then N = ABS (4.237 —
FIX(4.237)) = 0.237.

REVIEW

1. What is X when X = FIX(ABS(—12 + 6*SGN(—9 +9/3) + 1.8)—18.2)?

6.4

2. Write a program that will take a number N and print the fractional portion of N rounded
to two decimal places.

*RUN

T 18.648

INFUT: 18.4648 OUTFUT: &5
READY

Trigonometric Functions: SIN, COS, TAN

The computer is able to find the values of several trigonometric functions. The
functions SIN(X), COS(X) or TAN(X) will produce the value of the sine, cosine, or tangent
of the angle X, where X is measured in radians. To convert an angle from degrees to
radians, multiply it by 3.14159265 and then divide the result by 180 (180 degrees equals «
radians).

PROGRAM 6.4

The following program illustrates these functions.

10 INFUT "Value"; A

20 X = A % 3.14159 / 180
Z0 PRINT A; "Degrees equals'i; X3 "Radians."
40 PRINT "SIN(": A; ") ="3 SINX)
50 PRINT "COS(": a; ") ="3 COSX)
HO FPRINT "TAN("; Az ") ="3 TAN(X)
70 FRINT

80 GOTO 10

READY

=RUN
Yalue? 30

Z0 Degrees equals 523398 Radians.

SINC 30) = .5
COS(C 30) = .B6&6026
TANC 30) = S7735

Value? 45

45 Degrees equals 785398 Radians.
SINC 45) = 707106
COost 45) = 707107
TAN(45) = 999999
Value?
Break in 10

READY

Note the rounding error that occurs in the output.

6.5

ATN

The only inverse trigonometric function supplied by the computer is the principal
arctangent function ATN. The function ATN(X) is used to find the angle whose tangent is X.
The value produced by the ATN function is in radians. Thus, the arctangent of 1 is #/4
radians = .785398163. To convert an angle from radians to degrees, multiply it by 180 and
then divide the result by 3.14159265. The ATN function, just like the principal arctangent
function in mathematics, gives values only between —#/2 and »/2 radians. There is no
limitation on the value that the argument may assume.

PROGRAM 6.5

This program finds the angle whose tangent is entered and prints the result in
degrees.

10 INFUT "Enter a tangent value": T

20 R = ATN(T)

FOD =R % 180 / 3.14159

40 FRINT "The angle whose Tangent is"; Ty "is"3; D: "Degrees.”
50 PRINT @ GOTO 10

READY

*RUN

Enter a tangent value? 1

The angle whose Tangent is 1 is 4% Degrees.

Enter a tangent value® O
The angle whose Tangent is O is O Degrees.

Enter a tangent value? Q.57735
The angle whose Tangent is 57735 is 30 Deqgrees.

Enter a tangent value?
Break in 10
READY

To find the principal arcsine of a number, it is necessary to use the trigonometric
identity:
X

ARCSINE (X) = ARCTAN \/—‘1——?

Therefore, to find the principal angle whose sine is X, the expression ATN(X/SQR(1—-X42))
is used. This angle will be measured in radians and will be between —#/2 and »/2. The
value of X, however, must be between —1 and 1, not inclusive.

To find the arccosine of X, use the expression ATN(SQR(1-X4}2)/X). This gives the
angle which is between —#/2 and »/2 (whose cosine is X). In this expression, X must be
between —1 and 1, inclusive, but not equal to 0.

6.6

PROGRAM 6.6

This program finds the arcsine and arccosine of X in both radians and degrees.

10 INFUT "Value"; X

20 8 = ATN(X / SRl -~ X[Z))

IO 81 = 85 % 180 / E.141059

40 C = ATN(SOR(L — XL2)Y /7 X)

S50 C1 = C % 180 / 3.14159

40 FPRINT "The angle whose Sine is"3 X3 "is"j; §; "Radians.
70 PRINT "The angle whose Cosine is"; X3 "is"; C; "Radians.”
80 FRINT "The angle whose Sine is"; X3 "is"; 813 "Degrees."
0 FRINT "The angle whose Cosine is"; X3 "is"; Clj "Degrees. "
100 PRINT = GOTO 10

READY

FRUN

Value? 0.5

The angle whose Sine is .58 is 523599 Radians.

The angle whose Cosine is .5 is 1.0472 Radians.

The angle whose Sine is .9 is Z0 Degrees.

The angle whose Cosine is .5 is 60.0001 Degrees.

Value? Q.8B77

The angle whose Sine is 877 is 1.069238 Radians.
The angle whose Cosine is .877 is 501214 Radians.
The angle whose Sine is 877 is 61.2826 Degrees.
The angle whose Cosine is 877 is 28.7173 Degrees.

Value?
Break in 10
READY

Logarithms and the Exponential Function: LOG, EXP

The LOG function can be used to find natural logarithms, that is, logarithms to the
base e. To find the natural logarithm of X, LOG(X) is used. Do not confuse the natural
logarithm with the common logarithm usually studied in a second year algebra course. The
common logarithm, that is, logarithm to base 10, can be found from the natural logarithm
by using the formula:

In(X)
In(10)

log,, (X) =

where In(x) designates the natural logarithm of X. Therefore, to find log,, (X) simply use
LOG(X)/LOG(10). The argument in the LOG function must always be positive.

The function EXP(X) is used to find values of the exponential function, eX, where e =
2.71828. This number is the same as the base of the natural logarithm function.

6.7

PROGRAM 6.7
This program illustrates the use of the above functions.

10 INFUT "Enter X"3; X

20 FPRINT "LN(X) ="3; LOG(X)

0 OIF X < 87 THEN FPRIMT "e raised to X ="3 EXP(X)
40 T = 1L.0G(X) / LOG(1O)

S0 FRINT "The common logarithm of"y Xg "is“; T
60 FRINT @ GOTO 10O

READY

FRUN

Enter X7 1

LN{X) = 0

e raised to X = 2.71828

The common logarithm of 1 is O

Enter X7 0,01

LN(X) =—4, 60517

e raised to X = 1.010035

The common logarithm of 01 is-2
Enter X7 10000

LNOX) = 9,21034

The common logarithm of 10000 is 4

Enter X7 0,525

LNOX) =—, 644357

2 raised to X = 1.6%9046

The common logarithm of 525 is-.279841

Enter X7
Break in 10
READY

Several standard functions, such as SQR, ABS, and LOG, have already been
introduced in this chapter. In addition, the programmer can define other functions by using
a DEF statement. The major advantage of DEF lies in the fact that the expression for the
function need only be written once, even though the function can be evaluated at more than
one location within the program. The form of a DEF statement is:

DEF FN <function name> (<variable name>) = <expression>

6.8

The function name may be any acceptable numeric variable name (e.g., FNA, FNF,
FNG3). The variable name (i.e, the argument) following the function name must always
appear within parentheses and may be any appropriate numeric variable.

In the following example,

10 DEF FNP(X) = X[2 — 2*X — |

P is the function name, X is the variable name, and X2—2X—1 is the expression used to
compute the function’s value. For instance, when X = 5, FNP(X) = 14 because 542 —2*5 —1
= 14.

PROGRAM 6.8

The following program evaluates the polynomial function FNP(X) several times.

10 DEF FMP(X) = X[& - 2%X - 1

20 PRINT "X", "FNFOXO"

0 OFOR A = 1 TO 3

40 FRINT &, FNF (A}

50 MEXT A

&HO INFUT X

7O PRINT "The result of FNFC("3 Xz ") dis "3 FNFOX)

READY
*RUN
X FNF (X)
1 -2
2 -1
4 7
5 14
7 =10
The result of FNF(-10) is 119

READY

When the function is evaluated at line 40, the variable in parentheses is A. When it is
evaluated on line 70, the variable is X. The name of the variable in parentheses may be the
same as or different from the variable name used in the DEF statement. Note also that if the
DEF statement were not used, the formula on line 10 would have to appear twice (lines 40
and 70). Economy results from the fact that though the function is defined only once, it may
be evaluated at any place within the program.

6.9

Another advantage obtained by the use of the DEF statement is that it can be easily
retyped to define a different function. This is illustrated by re-running Program 6.8 with line
10 changed to:

10 DEF FMFP(X) = XI73 — S%X[2 + 1

FRUN
X FMF (X))
2 -11
S -17
4 -15
5 1.000073
7?10
The result of FNP(-10) ig —-1499

READY

String functions may also be defined using DEF. This technique is handy for
simplifying certain string operations such as the addition of strings.

PROGRAM 6.9

This program illustrates how a user defined string function can be implemented.

10 DEF FNG$(A$) = A% + " is yellow"

20 B% = "The Sun"

Z0 PRINT FNGH(B$); " and "3 FNG$("RIG Mellow'); "."
READY

*RUN

The Sun is yellow and BIG Mellow is yellow.

READY

Note the output produced by line 30. FNG$() is evaluated twice, first with “The Sun”
and then with “BIG Mellow”.

User defined functions may have more than one variable within the parentheses. For
example, the statement

DEF FNR(A,B) = RND(B—-A+1) + A — 1

defines the function FNR(A,B) which returns a random integer between A and B, inclusive.
The statement

DEF FNC$ (X§,Y$,Z8) = X$ + 7 + Y§ +)7 + Z$

defines a function which combines three string variables, and inserts commas between
each item.

6.10

PROGRAM 6.10

This program illustrates several multivariable user defined functions.

10 CLEAR 100

20 DEF FNR(A,B) = RND(B-A+1) + A — 1

%0 DEF FNW$ (X$, Y$,Z%) = X& + ", " + Y& + ", or " + I%
100 REM

110 REM Frint a few random numbers using FNRO

120 FOR K = 1 TO 4

130 G = RND(25) — 12 : T = RND(75) + 8§

140 FRINT "A random number between "3 83 "and "3 T;
150 FRINT TAR(IZS); "is "3 FNR(G,T)

160 NEXT K

170 X = 18 ¢« Y = 29

180 FRINT FNR(X,Y), FNR(10,11), FNR(X,X%2), FNR{-3,-2)
200 REM

210 REM Use a string function now...

220 FPRINT : FRINT FNW$("This", "That", "The Other Thing")

2EO R$ = "EAHN" @ V$ = "Mr. Spock”

240 FRINT "Who will defeat: "3 FNWH(R%,V$,"a Klingon!'™)
250 J% = FNWS ("Crystal","Alexis", "Blake™) + " will move."
260 PRINT J%

READY

+RUN

A random number between 0 and 43 is 8

A random number between —11 and 27 is 21
A random number between 2 and 323 is 17
A random number between —11 and 10 is b

21 10 24 -2

This, That, or The Other Thing

Who will defeat: EAHN, Mr. Spock, or a Klingon!
Crystal, Alexis, or Blake will move.

READY

REVIEW

3. Write a program that will produce the following output. Two user defined functions
should be used: one to convert degrees to radians; the other to convert radians to
degrees.

FRUN
DEGREESY 20
That is 523583 radians.

RADIANS? 7853753

That is 4% degrees.
READY

6.11

Shifting and Scaling A Graph

A hand-drawn graph usually includes an X-axis drawn horizontally, a Y-axis drawn
vertically, and a continuous curve drawn through a number of plotted points. There are
some obvious limitations to graphs produced by the computer (for example, the lack of
connection between plotted points). The graphing area on the display screen contains a
limited number of points available for plotting. Thus, certain adjustments of the X and Y-
axes may be necessary to accommodate functions which produce values that exceed the
number of graphing points available. This problem is solved by determining the domain
(smallest and largest X values) and the range (smallest and largest Y values) for a function
where Y = f(X) and then scaling the axes accordingly. This process is referred to as shifting
and scaling.

Shifting is achieved by subtracting the minimum value of Y from each Y value. For
example, if a function has values between —10 and +15, Y minus the minimum value
(Y—(—10)) shifts the graph to points between 0 and 25 on the Y-axis. This does not affect
the shape of the graph.

Scaling, on the other hand, takes the difference between the largest and smallest
values and divides this difference by one less than the number of points available for a
particular axis. The one extra space allows the axis to start with the smallest plotted value.
For example, if the interval between the largest and smallest Y values for a particular graph
is 141 units and the display screen has only 48 vertical points for plotting, the 141 is divided
by (48-1) or 47 to produce the proper scale. Every 3 points on the graph’s Y axis
corresponds to 1 point on the screen.

The ‘brick-shaped’ points used for graphing on the TRS-80 have a height-width ratio
of approximately 1.95 to 1. Thus, scaling is also used to bring shapes into proper
proportion as illustrated by Program 6.11.

—
—

6.12

PROGRAM

6.11

The following program illustrates how a figure can be scaled to its proper proportions

by plotting

two circles side by side, with one scaled and the other unscaled. Here both

circles have been derived from the property X2 + Y2 = R2,

10 REM X0, YO = Origin of unshifted/unscaled circle
20 REM X2,¥2 = Origin of shifted/scaled circle
30 REM R = Radius of both circles
40 REM X = Loop variable
50 REM
60 REM Flot Center of unscaled circle at (XO,YO0)
70 CLS @ R = 20 3 X0 = 25 3 YO = 28
80 FOR X = XO0-R TO XO+R
0 Y = SER(RLE — (X-XO)L[2)
100 SET(X,YO+Y) = SET(X,YO-Y)
110 NEXT X
120 REM
120 REM FPlot Center of scaled circle at (X2,Y2)
140 X2 = 86 = Y2 = 25
150 FOR X = X2-R TO X2+R
160 Y = GOR(RLZ — (X-X2)[Z2)
170 Y = ¥Y/1.95
180 SET(X,Y2+Y) : SET(X,¥Y2-Y)
190 NEXT X
=RUN
8
Fﬁgm m’m-
!J ".l
lI Il . Pmmnu
] 8 lel “ﬁ.
] a
8 8 a 8
% ¢
B] "- -Ell’
y . Y ™
% ¢

The circle on the left is unscaled and therefore appears elongated, but the circle on

the right is
the second

scaled to proportion by line 170 of the program. Line 140 moves the origin of
circle so that the two circles can be plotted next to each other.

6.13

PROGRAM 6.12

This program plots the function Y = 1/X on the display screen. Note how the graph has
been shifted and scaled.

10 REM XO, YO
20 REM X. Y
30 REM Xi,v1
40 REM T

50 REM

HO XD = &4 ¢ YO = 25 1 REM Origin (0O,0)

70 REM

80 REM Draw and label X-—axis

QO CLS ¢« FOR T = O TO 127 @ SET(T,YO) & NEXT T
100 FOR T = 4 TO 124 STEF 20

Origin of graph on screen
Function variables

Shifted/Scaled X & Y values

l.oop variable for setting up axes

i

i

110 SETA(T,YO—1) ¢ SET(T,YO+1)
120 READ M : REM Read a label from DATA statement
1320 IF N X O

THEN FRINTD (574 + INT(T/2)). Mg
ELSE FRINTD (444 + INT(T/2)), N
140 NEXT T
1350 REM
160 REM Draw and label Y-axis
170 FOR T = 3 TO 47 3 SET(XO0,T) ¢ NEXT T
180 FOR T = 5 TO 45 STEF 10
190 BET(XO-1,T) & SET(XO0+1,T)
200 NEXT T
210 PRINT 294,"1%; 2993,"—-1"; DI4F LG
MTET Ty P2, "Y-axnis";

H]

220 REM
230 REM Plot function Y = 1/X
240 FOR X = ~12 TO 12 STEF 0.25

250 IF X<x0 THEN Y = 1/X ELSE Y = 0O

260 REM

270 REM Shift/Scale X % Y to display screen
280 X1 = XO + X % (120/24)

ER0 Y1 = YO — Y X (40/2)

H00 IF (X1 > O AND Y1 & o)

THEN IF (X1 + 128 AND Y1 < 48)
THEN SET(X1,Y1)

T10 NEXT X

I20 DATA —~12, -8B, -4, O, 4, 8, 12

6.14

#RUN

The analysis of this program is left as an exercise for the reader.

6.15

7

/] TANDN
777

PART A
1. When a number is input have the computer generate the following output. Be sure to
prevent a negative input.

*RUN
74
N = 4 SOUARE ROOTS = + OR — 2

2. Write a program which prints the integers from 121 to 144, inclusive, and their
respective square roots. Label each column of the output.

3. Perform each of the following computations on paper. Check your results by using
immediate mode on the computer.

(A) 34243 (B) 5 - 442
(C) 3*(5 + 16) (D) 5+ 3*6/2
(E) 640/10/2 * 5 (F) 5 +3*4-1
(G) 24342 (H) 24(342)

(

) 64/4 * 0.5 + ((1 + 5) * 243) * 1/(2 * 4)

4. Input a number N. If N is zero, print 0. Otherwise, print ABS(N)/N. What does the
program do?

5. Input a number N, and print the product of SGN(N) and N. What does this program
do?

6.16

6. Input a number N, square it, and print the square root of the result. What should the
program produce?
7. Print a table consisting of 2 columns with headings showing each angle in radians and
degrees. The angles in radians are to be 0, .25, .5, .75, . . ., 3.0. Remember that 180°
= 3.14159 radians.
8. Input an angle in degrees and convert it to a fraction of a revolution (1 rev. = 360°) and
to radians.
9. Input an angle in degrees. Of the three functions sine, cosine, and tangent, print the
value of the one which has the greatest value.
10. For angles from 0° to 180° (at intervals of 10°) print the angle in degrees, the sine, the
cosine, and the sum of their squares in columns with headings. What patterns
emerge?
11. Input two numbers (A, B). Print the quantity F(B)-F(A), given that F(X) = 9X® - 7X? +
4X - 1.
12. Input a number N. Print the values of F(N) and F(F(N)), where F(X) = 20 * SQR
(ABS(X))—10 * SGN (X) + 5 * INT (X).
13. Print a table (with headings) of X, the natural logarithm of X, and the exponential
function of X for X = 1 to 15.
14. Print a table (with headings) of X, the logarithm of X to the base 10, and 10 raised to
the power X for X = 1 to 15.
PART B
15. What is the exact output for the following program? Check by running the program.
10 READ A,B,C,D
20 PRINT SOQRA) , INT(R) ,SOR(INT(C)) , INT (SRR (D))
Z0 DATA 25,-3.4,9.7,24

16. Print the square roots of the integers from 50 to 60, inclusive.

6.17

17. What is the exact output for the following program? Check by running the program.

10 DEF FNF(N) = 3 x N - &
STERP 2

20 FOR X = -4 TO 6

30 IF FNF(X) » O THEN PRINT "FNF("zX:"™) IS FOSITIVE"
4 IF FNF(X) = 0O THEN FRINT "FNF(":X:") IS ZERQ"

S0 IF FNF({X) < O THEN PRINT "FNF("3Xz") IS5 NEGATIVE"
60 NEXT X

18. Input a number, and print the square root, sign, log, and sine of the number. For
example:

*RUN
P 1é
SAR(14
S6NC(16
LOG(16
SINC 16

- 77259
- 287903

o #H
PRI

19. What is the exact output for the following program? Check by running the program.

10 FOR X = -3 T0O 4

20 READ A

30 FRINT SGM{X) % ABS(X)
40 NEXT X

SO DATA 3,-5,1,6,-2,4,-9.5

20. Using three user-defined functions, have the computer evaluate the following for the
integers from -10 to 10.

X2 4+ 3X + 2
LOG(Xz + 1) — X

ATN(SIN(X))

21. Write a program to convert from polar to rectangular coordinates (i.e., from (r,0) to
(X,Y)).

6.18

22.

23.

24.

If two functions, f and g, are inverse to each other, the following relations hold:
f(g(x)) = x and g(f(x)) = x.

(a) Tabulate the values of the following quantities for X = -5 to 10: X, EXP(X),
LOG(EXP(X)).

(b) Print a table for X = 1 to 151 of X, LOG(X), EXP(LOG(X)), using STEP 10.

(c) Do EXP and LOG appear to be inverse to each other?

Produce your own sequence of random numbers without using the RND command. To
do this let X vary from 1 to 100 in steps of 1. Obtain SIN(X) and multiply this by 1000,
calling the absolute value of the product Y. Divide INT(Y) by 16, and let the remainder
R serve as your random number. Hint: the remainder of A + B is A/B—INT (A/B).

Six year old Dennis the Menace has decided to invest 50¢ in the Last Chew Bubble
Gum Company. Starting with the 11th year, he withdraws 5¢ at the beginning of each
year. His money earns 8% interest compounded continually. The formula for interest
compounded continually is P = Pseit , where t is the elapsed time in years, P, is the
initial deposit, P is the amount at time t, and i is the interest rate. In this case the
formula would be P=P,e-%8t . How much is Dennis’s deposit worth after 50 years?

6.19

25.

26.

27.

28.

6.20

Use the SIN function to generate the following:

SHAZAM!
SHAZAM!
SHAZAM !
SHAZAM!
SHAZAM!
SHAZAM!
SHAZAM!
SHAZAM!
SHAZAM!
SHAZAM!
SHAZAM!
SHAZAM!
SHAZAM!
SHAZAM!
SHAZAM!
SHAZAM!
SHAZAM!
SHAZAM !
SHAZAM!
SHAZAM!
SHAZAM!
SHAZAM!
SHAZAM!
SHAZAM!
SHAZAM!
SHAZAM!
SHAZAM!
SHAZAM!
SHAZAM!
SHAZAM!
SHAZAM !
SHAZAM!

(a) Write a program which will solve a triangle (compute the unknown sides and
angles) if two sides and the included angle are input. Modify the program to solve for
the unknown sides and angles for the following situations:

(b) input two angles and any side,

(c) input three sides.

Print a graph of Y = SIN(n = X), where n is chosen by the user from the set
(=1,1,1/2,1/4). The units of length for the X and Y axes need not be the same. The
periodic nature of the sine function should be indicated on your graph.

Produce the following graphs with numbered X and Y axes and the origin properly
centered. (Hint: see Program 6.12).

(A) Print a graph of Y = SGN(X)
(B) Print a graph of Y = ATN(X)
(C) Print a graph of Y = INT(X)

Writing long, complex programs may require special programming techniques. It is
often helpful to divide these programs into sections, called subroutines. Subroutines are
useful because they perform a specified task and may be accessed from anywhere in the
program. A long program may be divided into a main section and a series of subroutines.
The main section directs the order in which the subroutines do their specialized jobs. This
type of organization usually reduces the size of a program because the lines needed to
perform a certain task have only to be placed once in a program, even though the task may
be performed several times.

GOSUB-RETURN

In the case of programs whose various portions are repeated at different places, it
may be efficient to use a subroutine. A subroutine is entered by the statement
GOSUB <line number> and exited by the statement RETURN. For example:

10 sieenaas
20 GAOSUER 200

0 RETURN
PP END

7.1

The skeleton program illustrates the use of a subroutine. At line 20 the program jumps
to the subroutine which begins at line 200, executes the subroutine, and then returns from
line 230 to the body of the program at line 30. It is legal to use more than one RETURN
statement within a subroutine. You should remember that the computer always returns to
the first statement after the GOSUB statement which caused the subroutine to be executed.
The only difference between GOSUB and the GOTO statement is that GOSUB permits the
use of RETURN whereas GOTO does not. Subroutines are usually placed towards the
bottom of a program. They may be written so that one subroutine can access another.

PROGRAM 7.1

Given the numbers of pennies, nickels, dimes, and quarters as input, this program will
output the total amount of money represented by these coins. One subroutine processes
and reports the amount of money involved for each of the four types of coins.

10 A% = "PENNIES": V = 1
20 GOSUR 200

Z0 A% = "NICKELS": V = 35
40 GOSUR 200

S0 A% = "DIMES": V = 10

60 GOSUR 200

70 A% = "QUARTERS": V = 25

80 GOSUBR 200

Q0 FPRINT "THE TOTAL VALUE WAS $"3T/100
100 END

200 REM SUBROUT INE

210 PRINT "NUMBER OF "3A%:
220 INFUT N

2ZT0 PRINT NyA%;" ="3NxV;"CENTS"
240 T = T + NxV

250 RETURN

READY

=RUN
NUMBER OF FENNIES? 4

4 FPENNIES = 4 CENTS
NUMBER 0OF NICKELS? 9

2 NICKEELS = 43 CENTS
NUMBER OF DIMES™T =

2 DIMES = Z0 CENTS
NUMBER OF QUARTERS? 6

6 DQUARTERS = 150 CENTS
THE TOTAL VALUE WAS $ 2.29
READY

Line 10 assigns the type (A$) and value (V) of the first coin. Line 20 causes a jump to
the subroutine, which begins at line 200 where the number of coins is input. Line 210 prints
information about the particular coin being considered, and line 240 adds its contribution
to the previous total value of all coins up to this point. Line 250 returns the program back
to the line following the most recently used GOSUB statement. This entire process,

7.2

beginning at line 200, repeats itself three more times, and then the dollar total is printed.
What would happen if line 100 were deleted?

REVIEW

1. Write a program where names are input and then printed. If DONALD is input use a
subroutine to underline the name.

ON—GOTO

=RUN

MAMET MARY
MARY

NAMET SUE
SUE

NAME? DONALD
DONALD

NAME?

EBreak in 10
READY

The GOTO statement allows a program to jump to a single specified line. The ON—
GOTO statement allows jumps to one of several lines, depending on the value of a numeric

variable at the time the statement is encountered. This statement takes the form:

For example:

ON <variable> GOTO <list of line numbers>

50 ON X GOTO 100, 120, 140, 160

If X = 1, the program jumps to line 100; if X = 2, it jumps to line 120, and so on. Note
that X should not be less than one or greater than the number of line numbers in the list.

7.3

PROGRAM 7.2

This program simulates the random path taken by a mouse through the following
maze:

i

= 5 3 1%

“Cheese Mouse

o 4 2
Cat

Once the mouse enters the maze, the door is shut. The mouse wanders about until it either
finds the cheese or stumbies upon the cat.

100 FRINT 1,

110 X = RND(2)

120 ON X GOTO 200,300

200 FPRINT 2,

210 X = RND(2)

RO ON X GOTO 100,300

ZO0 PRINT =,

10 X = RND(E)

Z20 0N X GOTO 100, 200,400

400 PRINT 4,

410 X = RND{3Z)

420 ON X GOTO 300, 500, 4600

SO0 PRINT 3

910 PRINT "THE MOUSE IS GORGING ITSELF!®
520 END

&HOO FRINT &

H10 PRINT "THE CAT HAS BEEN AWAKENED BY ITS LUNCH."

FEADY
=RUN

1 E 1 &)
=) 4 b
THE CAT HAS BEEM AWAEENED BY ITS LUNCH.
READY

At line 100, the program prints a 1 to indicate that the mouse is in room #1. Line 110
randomly picks either the number 1 or the number 2. The ON GOTO statement at line 120
sends program execution to line 200 if X = 1, and to 300 if X = 2; lines 200 and 300
correspond to rooms 2 and 3, respectively. Once in one of the other rooms, the program

7.4

prints the room number and decides where the mouse will go from there. Execution
continues until the mouse finds itself either in room 5 or room 6.

REVIEW

2. Write a program to draw five cards from a deck. The computer picks two random
numbers, the first is between 1 and 4 inclusive, and the second between 1 and 13
inclusive. An ON GOTO statement should use the first number to pick each suit. The
second represents the card’s value within the suit.

READY
*RUN
CARD 1 IS THE 9 OF HEARTS

CARD 2 15 THE 1 OF HEARTS
CARD = IS5 THE 9 OF DIAMONDS
CARD 4 IS THE 4 OF DIAMONDS
CARD S IS5 THE 12 OF HEARTS
READY

ON—GOSUB

The ON—GOSUB statement operates in much the same way as the ON—GOTO

statement. If there are a number of subroutines in a program, they can be called using the
ON—GOSUB statement.

50 ON X GOSUB 300, 400, 500
If X = 1, the program jumps to the first subroutine at line 300; if X = 2, to the second
subroutine at line 400; and if X = 3, to the third subroutine at line 500. When the subroutine

is completed, the RETURN statement directs the program back to the first statement after
line 50.

Using Subroutines to Structure Programs

Subroutines are useful both in reducing the amount of code required to write a
program and in breaking a program down into its separate functions to help clarify its
structure.

7.5

PROGRAM 7.3

This program tests a student on addition, subtraction, multiplication and division.
Without the use of subroutines much of the code would have to be repeated four times.

10 FRINT "YOU WILL BE ASKEED 2 QUESTIONS ON ADDITION (1, "

12 FRINT "SUBTRACTION (2), MULTIFLICATION (3), OR DIVISION 4),"
14 FRINT "AND BE GIVEN 2 TRIES TO GET EACH ONE CORRECT. YOU"

16 PRINT "CAN CHOOSE WHICH TYPE OF QUESTION YOU WANT EY"

18 FRINT "RESFONDING WITH THE AFFROFRIATE NUMBER. "

19 REM

20 INFUT "WHAT TYFE DO YOU WANT"3N

F0 OFOR X =1 TO 2

40 A = RND(10)

S0 B = RND(13)

60 ON N GOSUE 200,300, 400, 500

70 FOR Y = 1 TO 2

g0 INFUT "YOUR ANSWER IS"3;D

0 IF D = C THEN PRINT "CORRECT": GOTO 130
100 FRINT "YOUR ANSWER I8 WRONG"

110 NEXT Y

120 FRINT "YOU ARE WRONG FOR A SECOND TIME, THE ANSWER Is":C
130 FRINT

140 NEXT X

150 60OTO 20

160 REM

170 REM

200 REM ADDITION
210 FRINT "WHAT DOES";A;"+"3Ry"="
220 C = A + B
230 RETURN
240 REM
230 REM
F00 REM SUBTRACTION
310 PRINT "WHAT DOES";A;"-"3;B;"="
F20C = A - B
330 RETURN
240 REM
3350 REM
400 REM MULTIFLICATION
410 FRINT "WHAT DOES";A;"x"3;R;"="
420 C = A X B
30 RETURN
440 REM
450 REM
300 REM DIVISION
3510 PRINT "WHAT DOES";A;"/";B;"="
320 C=4A4 /B
T30 RETURN

7.6

FRLIM

YO WILL BE ASKEED 2 QUESTIONS ON ADDITION (1),
SUBTRACTION (2), MULTIFLICATION (3), OR DIVISION (4),
AND BE GIVEN 2 TRIES TO GET EACH ONE CORRECT. YOU
CAN CHODSE WHICH TYFE OF QUESTION YO WANT BY
RESFONDING WITH THE AFPROFPRIATE NUMBER.

WHAT TYFE DO YO WANT? 3

WHAT DOES 1 K 10 =

YOUR ANSHER 157 10

CORRECT

0

WHAT DIOES 2 % 1 =

YOUR GRSEER T1G7 10

YOUR ANSHER IS WRONG

YOUR ARSHER I&67 91

YOUR ANSWER IS5 WRONG

YOU ARE WRONG FOR A& SECOND TIME, THE ANSWER IS 9

WHAT TYFE DO YOU WANT? 2
WHAT DOES & — 7 =

YOUR ANSWER I57 -1
CORRECT

WHAT DOES 7 - 3 =
YOUR ANSWER 15T 4
CORRECT

WHAT TYFE DO YOU WANT? 1
WHAT DOES Z + 9 =

YOUR ANSWER IST 12
CORRECT

WHAT DODES 8 + 1
YOUR ANSWER IS7?
CORRECT

?
WHAT TYFE DO YOU WANT?

Break in 20
READY

7.7

ON ERROR GOTO and RESUME

If an error can be anticipated before a program is run, it is possible to “trap” the error
by using the ON ERROR GOTO statement which allows the program to continue execution.
When an error is encountered, this statement suppresses the printing of an error message
and causes the program to jump to the specified line. For example,

30 ON ERROR GOTO 60

sends the program to line 60 when an.error occurs.

Examples of two frequently encountered errors are that of dividing a number by zero
or of taking the square root of a negative number. To trap these errors the ON ERROR
GOTO statement must be placed in the program before the error occurs. Then, if there is
an error, the program will jump to the specified line.

The RESUME statement performs two functions after an error has been trapped. It
returns the program to the point where the error occurred and resets the error trap so that
new errors may be trapped. If the RESUME statement is not used, the program will
continue from the point where it was sent by the ON ERROR GOTO statement and will
therefore be unable to trap any future errors. It is important to correct an error, before
executing the RESUME statement; otherwise, the error may occur again and may put the
program into an infinite loop.

PROGRAM 7.4

This program allows the user to input two numbers, the first to be divided by the
second.

1 REM N, D = NUMERATOR AND DENOMINATOR
2 REM
3 REM
10 ONM ERROR GOTO 100
20 INFUT "NUMERATOR AND DENOMINATOR";N,D
20 FRINT N/D
40 GOTO 20
100 PRINT "DIVISION BY ZERO ATTEMFTED"
110 N=1 : D=1
120 RESUME
170 END
READY
*RUN
NUMERATOR AND DEMOMINATOR? e
1.66667
NUMERATOR AND DENOMINATOR? 2,0
DIVISION BY ZERO ATTEMFPTED
1
NUMERATOR AND DENOMINATOR? 8.9
. 888889
NUMERATOR AND DENOMINATOR?
Break in 20
READY

7.8

Note that if an error occurs, the program will assign a value of one to N and D and then
resume.

RESUME <line number>
instructs the computer to continue execution at the specified line. Changing line 120 to
120 RESUME 20
and deleting line 110 eliminates the need of reassigning N and D values before resuming.
RESUME NEXT

instructs the computer to continue execution at the statement immediately following the
one where the error occurred. In Program 7.4, the line

120 RESUME NEXT

will send the program to line 40 when executed.

ERR and ERL

Program 7.4 has the drawback of handling all errors alike whether they are anticipated
or not. The ERR and ERL functions allow the program to be more discriminating in
handling errors.

—

N 7

1 REM N,D = NUMERATOR AND DENOMINATOR
2 REM

3 REM

10 ON ERROR GOTO 100

20 INPUT “NUMERATOR AND DENOMINATOR";N,D
30 PRINT N/D

40 6OTO 20

| SRR——
100 PRINT “DIVISION BY ZERO ATTEMPTED"
110 N=1 : D=1

120 RESUME

130 END

7.9

ERR returns a number that identifies the specific error that has occurred.
20 PRINT ERR/2 + 1

will return a number corresponding to an error listed below. The need to divide ERR by two
and add one is an idiosyncrasy of the computer.

Code Explanation
1 NEXT without FOR
2 Syntax error
3 RETURN without GOSUB
4 Out of data
5 IHegal function call
6 Overflow
7 Out of memory
8 Undefined line
9 Subscript out of range
10 Redimensioned array
11 Division by zero
12 lllegal direct
13 Type mismatch
14 Out of string space
15 String too long
16 String formula too complex
17 Can’'t continue
18 No RESUME
19 RESUME without error
20 Undefined error
21 Missing operand
22 Bad file data
23 Disk BASIC feature

ERL returns a number equal to the line number where the most recent error occurred.
For example,

30 PRINT ERL

7.10

PROGRAM 7.5

This program can respond correctly to two different types of errors—division by zero
and the square root of a negative number.

10 ON ERROR GOTO 100
20 INFUT "FIRST AND SECOND NUMBER";MN1,NZ
=0 PRINT N1p"/"sNZ;"="3N1/N2
40 PRINT "SOUARE ROOT OF"3N1"=";S0R(N1)
50 FRINT "SOUARE ROOT OF"jN2j "="; SOR (N2)
40 END
70 REM
B8O HEM
100 IF ERR/2+1 = 11
THEN FRINT "DIVISION RY ZERD AT LINE";ERL
ELSE IF ERR/2+1 = 5
THEN FRINT "IMAGINARY RODT AT LINE";ERL
110 INFUT "NEW NUMBERS"3N1,N2
120 RESUME

READY

FRUN

FIRST AND SECONMD NUMBER?T 10,2
10 / 2 =5

SEUARE ROOT OF 10 = 3.1622°
SOUARE ROOT OF 2 = 1.414%1
READY
=RUN
FIRST AMD SECONMD NUMRBER?T 10,0
10 / 0 =DIVISION RBY ZERO AT LINE 30
NEW NUMBERS? 10,-2
10 /-2 =-5
SOUARE ROOT OF 10 = 3.16228
SOUARE ROOT OF-2 =IMAGINARY ROOT AT LINE 50
NEW NUMBERS?
Brealk in 110
READY

The statement
25 ON ERROR GOTO 0

nullifies any previous ON ERROR GOTO statement. If this line were included in Program 7.5
the errors would no longer be trapped.

7.11

PART A
1. Have the computer produce the printout below. Use a subroutine to print out “PART”
and the appropriate number.

*RUN

FART 1

AR KKK KKK KKK KK KK KKK KK KKK KK K KK X KK K K
FART 2
! ! !
FART 3
ABABABARABABABABABARABARABABABARABABARAR
READY

7.12

5.

Have the computer pick a random integer from 1 to 4 which will determine whether the
prize to be awarded will be a ball, balloon, toy car, or candy bar.

Input an integer from 1 to 4. The integer should cause one of the following four
suggestions to be printed.

DON'T LET YOUR COMPUTER TURN TO TRASH.
DON'T LET BUGS GET IN YOUR TRASH.
STUDY HARD AND YOU WON'T NEED A TRUSS.
NEVER PLAY WITH TRASH.

What is the exact output for the following program?

10 READ

X

200N X GOTO 30, 40,50, 60, 70,80, 100

30 PRIN

T

40 PRINT "ROW, "

50 FRIN

70 FRIN

T

T "GBENTLY

80 FRINT @ GOTO

0 DATA
100 END

L I B By

‘
Sy alg g oty b

"MERRILLY, "3:30T0O 10

e BOTO 10

T "YOUR BOAT": GOTO 10
&HO PRIN

DOWN THE STREAM": GOTO 10

"LIFE IS BUT & DREAM": GODTO 10

10

(a) Give the exact order in which the lines of the following program are executed.
(b) If line 80 is changed to:

80 DA

what will be the output?

1O READ X

20 IF X=9

TA 3,04,-5,—-1,-8,1,5,999

99 THEM 20

S0 0N BGNX) +2 GOSUR 50,60,70

40 GOTO 1
S0 M==N+1a
6O T=Z+1:
70 F=Pl
80 DATA &
20 PRINT
100 END

€)
RETURN
RETURN
RETURN
1.0, 999
HN:II;N, llzm”;ZE‘ llF:::ll;Fu

7.18

6. (a) Give the exact order in which the lines of the following program are executed.
(b) If line 90 were changed to:

90 DATA 1,8,—2,5,—3,-6,2,4,-7,0

what would the output be?

10 READ X

20 IF X=0 THEN 93
T0 BOSUR A0

40 T=T+X

S0 6G0O0TO 10

60 IF X0 THEN 80

70 P=REX

80 RETURN

GO DATA D,2,-7,0,5,5
(?5 FlF\']l\lT "T:‘:" ;.TF “F’:':“ ;F:'
100 END

7. Write a program which reads the dimensions of a triangle from a DATA statement and
prints its area and perimeter if it is a right triangle. The program should call a
subroutine to check whether the triangle is a right triangle or not.

8. Let X and Y be the coordinates of a point in a plane. Write a program which randomly
picks X and Y, each as an integer from -5 and 5, inclusive. The user of the program is
to guess X and Y, with the guesses being called X1 and Y1. A subroutine must be used
to print the distance between the guessed point and the actual point after each guess.
The user is to be given 3 guesses and, if unsuccessful, is then to be given the value of
X as well as 2 more tries to guess Y.

7.14

9. Isolated in his ski-lodge in the Swiss Alps, Bjorn Rich oftens gets his mail late. As a
result the statements from his Swiss bank account rarely arrive on time. To solve this
problem, write a program to assist Bjorn in keeping his account up to date. Have three

subroutines which take care of deposits, withdrawals, and the interest (5%,% com-
pounded quarterly).

=RUN

WITHDRAWAL (1) ,DEFOSIT(2), OR CALCULATE INTEREST(Z)7
HOW MUCH WOULD YOU LIEE T0O DEFOSIT? S00.00

YOUR BALANCE NOW STANDS AT 500 DOLLARS.
WITHDRAWAL (1) ,DEFOSIT(2), OR CALCULATE INTEREST(Z)?
HOW MANY MONTHES SINCE LAST CALCULATIONT? 5

YOUR BALANCE NOW STANDS AT S07.188 DOLLARS.
WITHDRAWAL (1) , DEFOSIT(2), OR CALCULATE INTEREST(Z)? 1
HOW MUCH WOULD YOU LIKE TO WITHDRAW? 175.50

YOUR BALANCE NOW STANDS AT 331.688 DOLLARS.
WITHDRAWAL (1) ,DEFOSIT(R), OR CALCULATE INTEREST(Z)?
HOW MANY MONTHS SINCE LAST CALCULATIONT 1

TOO SO0ON

YOUR BALANCE NOW STANDS AT 331.688 DOLLARS.
WITHDRAWAL (1) ,DEFOSIT(2), OR CALCULATE INTEREST(Z)7
Break in 10

READY

1N

o

W

10. The area of any triangle may be found from Hero's formula:

AREA = VS (S—A) (S—B) (5—0C)

where A, B, and C are the length of each side of the triangle and S is the
semiperimeter. S = (A+B+C)/2. Write a program that uses Hero’s formula in a
subroutine to calculate the area of a triangle.

715

11.

12.

7.16

Write a program that prints all the results of 10 divided by all integers between -5 and
5 inclusive. Your program should trap the error that occurs when you try calculating
10/0.

Write a program that uses the Quadratic Formula: —b+ Vb2—4ac

2a
to find the roots of an equation. Input a,b,c and have the computer print the two roots.
Your program should have an error trap for the error that might occur when the
computer attempts to take the square root of a negative number. When this situation
arises have the computer print “roots are imaginary.”

IV
771 1T\~

Modern computers have resulted from the union of the binary number system with the
principles of electricity. The binary number system uses only two digits, 0 and 1, and can
therefore be represented by the two states of an electric circuit, off or on. This concept has
made digital computers possible, since they operate by reducing all data to a binary code.
How different types of data can be reduced to a binary system is explained in this chapter.

Binary Code

The most familiar number system, the decimal system, uses ten digits: 0,1,2,3,
4,5,6,7,8,9 and is therefore considered to be base ten. In contrast, the binary system, which
uses only the digits 0 and 1, is base two.

In the base ten system, columns are used to represent powers of ten with the first
column left of the decimal point representing 10°, the second 10, the third 102, and so on.
For example, in the numeral 458, 8 represents 8x10°, 5 represents 5x10' and 4 represents
4x102. The numeral itself represents the sum: 4x102 + 5x10' + 8x10°.

The base two system works identically except the columns represent powers of two
instead of ten. For example, in the numeral 101, the 1 on the right represents 1x2°, the 0
represents 0x2', and the 1 on the left represents 1x22. The numeral itself represents the
sum 1x2% + 0x2' + 1x2°, which is known as five in the base ten system.

Base Two Base Ten
I = 1x2' + [x2° = 3
1011 = 1x2% + 0x22 + 1x2! + 1x20 =11
11001 = 1x2* + 1x2? + 0x22 + Ox2! + [x2° =75

8.1

To convert a number from base ten to base two, we must find which powers of two
add up to the number. Since 13 = 8 + 4 + 1, the base two representation for 13 is 1101
(1x8 + 1x4 + 0x2 +1x1).

Base Ten Base Two
6 =4+ 2 = 1x22 + 1x2! + 0x2° = 110
29 =16 + 8 + 4 + 1 1x2* + 1x23 + 1x22 + 0x2! + 1x2° = 11101
52 =32+ 16 +4 = 1x2% + 1x2* + 0x2% + 1x22 + Ox2! + 0x2° =110100

Computer Memory and Processing

The computer is composed of a solid-state electronic memory which stores informa-
tion and a central processing unit (CPU) which performs calculations, makes decisions,
and moves information.

Because electricity has two basic states, ON and OFF, it is ideal for expressing binary
numbers. A circuit (calied a “flip-flop”) when on stands for a “1”, and when off stands for
a “0”. By designing computers to contain millions of simple flip-flop circuits, huge
quantities of information can thus be stored.

A single binary digit (0 or 1) is called a “bit”, and eight of these bits constitute a “byte”.
Single characters require one byte and integers two bytes of memory for storage. The
memory stores both instructions for the CPU and data as binary digits.

The power of a computer is vastly increased when it is capable of storing letters and
special characters as well as numbers. In order to do this, a code has been established to
translate letters and special characters into numbers which can then be stored in binary
form. This code has been standardized by the computer industry as the American
Standard Code for Information Interchange (ASCIl). In this code, each letter of the
alphabet, both upper case and lower case, each symbol, and each control function used by
the computer is represented by a number. For example, the name JIM is translated by the
computer into ASCIl numbers 74,73,77. In turn these numbers are then stored by the
computer in binary form.

J =74 = 01001010
I =73 = 01001001
M =77 = 01001101

In order for the computer to store a name such as JIM, or any piece of non-numeric
information, it must be entered in the form of a string, converted character by character
into ASCIl numbers, and then stored in memory as binary numbers. The following is a table
of the ASCII character codes available on the computer.

8.2

The following

is a tablie of the ASCIl character codes.

Decimal ASCIl Decimal ASCII Decimal ASCII
Value | Character Usage Value |Character| Usage Value Character Usage
0 NUL FILL 43 + 86 \'%
character
1 SOH 44 , COMMA 87 W
2 STX 45 - 88 X
3 ETX CTRL/C 46 . 89 Y
4 EOT 47 / 90 4
5 ENQ 48 0 91 [
6 ACK 43 1 92 / Back-
slash
7 BEL BACKSPACE 50 2 93]
8 BS 51 3 94 " or}
9 HT HORIZ. 52 4 95 — Or=
TAB
10 LF LINE FEED 53 5 96 Grave
accent
11 VT 54 6 97 a
12 FF 55 7 98 b
13 CR CAR. RET 56 8 99 c
14 SO 57 9 100 d
15 Si 58 : 101 e
16 DLE 59 ; 102 f
17 DCH1 60 < 103 g
18 DC2 61 & 104 h
19 DC3 62 > 105 i
20 DC4 63 ? 106 j
21 NAK 64 = 107 k
22 SYN 65 A 108 |
23 ETB 66 B 109 m
24 CAN 67 Cc 110 n
25 EM 68 D 111 o
26 SuUB 69 E 112 p
27 ESC 70 F 113 q
28 FS 71 G 114 r
29 GS 72 H 115 s
30 RS 73 | 116 t
31 us 74 J 117 u
32 SP SPACE 75 K 118 v
33 ! 76 L 119 w
34 * 77 M 120 X
35 # 78 N 121 y
36 $ 79 o} 122 z
37 % 80 P 123 {
38 & 81 Q 124 | Vertical
Line
39 ‘ APOSTRO- 82 R 125 }
PHE
40 (83 S 126 - Tilde
41) 84 T 127 DEL
RUBOUT
42 * 85 u

8.3

Data Types

When information is entered into the computer, it can take one of three forms: ASCII
characters, integers, or floating point numbers. An integer is a number without decimal
places, while a floating point number has either a decimal point or an implied decimal point
and decimal places. For example, the number 29 could be either integer or floating point,
but 29.73 is definitely floating point.

Floating point numbers on the computer can be specified to be either single precision
or double precision. A single precision floating point number is internally accurate to seven
significant figures, but rounded to six when printed. A double precision floating point
number is internally accurate to seventeen significant figures but rounded to sixteen when
printed.

Storage of an integer requires 16 bits, a floating point number either 32 or 64 bits,
depending on whether it is single or double precision, and an ASCII character 8 bits.
Because of storage requirements it is important to distinguish between the several forms.
When files are presented in Chapters 9 and 10, the significance of this factor in planning
efficient storage of data will become apparent.

The four data types employ different symbols to inform the computer which is being
used. Strings of ASCII characters employ the familiar symbol ($) for string variable names
(e.g., G$, B33). Integers, which have the disadvantage of being restricted to the range
—32768 to 32767 are denoted by a percent sign (%). For example, B% and Z% are variable
names for integers. While integers have a severe range limitation, they are processed
fastest by the computer. Single precision floating point variables are denoted by an
exclamation mark (!); (e.g., C!, Hll). Double precision floating point variables are denoted
by a number sign (#); (e.g., G7#, D#). While they are more accurate, calculations involving
double precision numbers are the slowest.

The precision of constants as well as variables can be declared and will then
determine the precision of the calculations in which they are used. For example,

PRINT 2/3
produces
666667
while
PRINT 2#/3#
produces

.6666666666666667

Variables and constants not specifically declared otherwise are assumed to be single
precision floating point.

8.4

ASCIl Code—ASCIlI Character Conversions

Earlier in this chapter, the ASCIl code was described as a method by which the
computer converts information in the form of strings into numbers. Commands exist to
convert strings into ASCIl values and vice versa.

Function Format Operation

X = ASC(P$) Converts only the first character of the string P$ to its ASCII
code number.

P$ = CHR$(X) Assigns the character with the ASCIl code number of X to P$,

which now contains only one character.

P$ = STRINGS$(X, Y) Generates a string, P$, of length X composed of characters all
having the ASCIl code number Y.

PROGRAM 8.1

This program demonstrates the use of the ASCII character conversions.

1 REM Ce = CHARACTER INFUT
2 REM A = ABCIT VALUE OF C%$
I REM Ed = NEW STRING

4 REM Yé = INDICATOR

5 REM

& REM

1O INFUT "ANMY CHARACTER";C$
20 A = ASCCS)

S0 FRINT "THE ASCII VALUE OF "";Cs3"" IS5":A

40 FE = STRINGH(17,0)

S0 FRINT " ""sCHR$ (Q) 3 "7 REFEATED 17 TIMES LOOKES LIKE THIS: "g
&0 FPRINT KE$

70 INFUT "WOULD YOU LIKEE TO RUN THIS AGAIN";VY4$

80 IF ASC(Y$) = 8% THEN 10

READY

*RLN

ANY CHARACTER? R

THE ABCII VALUE OF "R™ IS5 82

"RTOREFEATED 17 TIMES LOOES LIKE THIS: RRRRERRRRFERERRRRE
WOULD YOU LIEE TO RUN THIS AGAINT N

READY

8.5

REVIEW

1. Write a program that will allow the user to input a letter. Have the computer print that
letter’'s ASCIl code and then print the letter that comes two letters after it in the alphabet.
If Y or Z is the letter input, then A or B should be returned respectively.

FRUN

A LETTER FROM THE ALFHARET FLEABE? R
THE ASCII OF "R* I8 82

TWO LETTERS AFTER "R IS °T°

A LETTER FROM THE ALFHARET FLEASE? Y
THE ASCII OF *Y* IS5 89

TWO LETTERS AFTER Y IS A7

A LETTER FROM THE ALFHARET FLEASE?
Break in 10

READY

String Manipulation Functions

Strings can be manipulated with the following functions:

Function

I$ = INKEY$

L$ = LEFT$(AS,N)

L = LEN(A$)

M$ = MID$(A$,N)

M$ = MID$(AS, N1, N2)

MID$(A$, N1, N2) = R$

R$ = RIGHTS$(AS,N)

S$ = STR$(X)
T$ = TIMES
V = VAL(A$)

8.6

Operation

Assigns I$ a one character string which is not printed when
entered. The ENTER key need not be struck to input the
character.

Assigns L$ a substring of the string A$ from the leftmost
character to and including the Nth character.

Assigns L a value equal to the number of characters in the
string A$, including blank spaces.

Assigns M$ a substring of the string A$ from the Nth character
to the rightmost character of the string.

Assigns M$ a substring of the string A$, starting with the
character N1 and being N2 characters long.

Replaces N2 characters of A$, starting at character N1, with
the first N2 characters of R$.

Assigns R$ a substring of the string A$ consisting of the
rightmost N characters.

Converts X into a string of numeric characters and assigns it
to S$.

Assigns T$ a string representing the current date and time.

Converts the first set of numeric characters in the string A$
into a numeric value that is assigned to V. Non-numeric
characters are ignored.

PROGRAM 8.2

This program will input a ten character string without an ENTER and manipulate it to
show the use of string functions.

THFLUT SECTION USING ITMEEYS

FOIg om M THEN 110
TH = Té + I

FRINT T4

150 IF LEN(T®) < 10 THEM 110

1HO REM

STRING MAMIPLLATION SECTION

INT "2 e Tee " BACKWARDS 185: "y

o= 10 TO 1 8TEF -1

FRIMT MID® (T$,%X, 1y

MEXT ¥

FRIRMT

FRINT "THE YALUE OF " "sTes " IS s VAl (T$)

FRINT "7 "sTHs " HALVED AND FLIFFED I5: "

FRINT RIGHTS (T$,5) 3 LEFTS (T%, ™)

FRINT "2 Me ol (TE) 5" BADEWARDS ISy "

FOR X o= LENETRS$ (VAL (TS))Y TO 1 STER -1
FRINT MIDE (STRE(VAL(TS)) , X, 1)

NEXT X

o

AERTL.MIDE

AEGRTLMIDET BACEWARDS 1S: QDJIMLTRS41

LOVALLE OF 7 145RTLMJIDGT I5: 145

TLAGRTLMIDE® HALVED AND FLIFFED IS: LMJIDEL4SRT
145 7 BACEWARDS IS: 541

READY

Unlike INPUT, INKEY$ does not wait for data from the keyboard. When INKEY$ is
executed, the computer checks immediately to see if a key is being pressed. If not, the

computer proceeds to the next program line. Line 120 checks to see if INKEY$ returned a
character. If not, the program returns to line 110.

8.7

VIR
777 TN

PART A

1. Write a program in which you input a name and then have the computer print the
ASCIl number for each letter in the name.

2. Inputthree letters, add their ASCIl numbers, find the INT of one third of their sum, and
print the character corresponding to the result. Is there any meaning to this process?

3. Using properly selected ASCIl numbers on a DATA line, print the sentence “ASCII DID
THIS!”

4. Using ASCIl numbers 45 and 46 and the PRINT TAB statement, print the following
figure.

READY

5. Enter the string THREE!@Q#$%STRING!@#$%FUNCTIONS. Use LEFT$, MID$, and
RIGHTS$ to print the phrase “THREE STRING FUNCTIONS”.

6. Enter a string A$ of any length. Print the length of A$ and the ASCII number of its first
and last characters.

8.8

10.

11.

12.

13.

Enter a string A$, and use a loop to print the ASCIl number of each of its characters.
Let A$="2598". Have the computer apply VAL to those parts of A$ whose sum is 123.

Enter the words “QUEEN”, “LENGTH”, and “REMEMBER”. Print each word with all E’s
removed.

Use the computer or a hand calculator to find the binary equivalents of the decimal
values given below.

89, 74, 80, 107, 255, 129, 28, 39, 29, 24, 43

Use the computer or a hand calculator to find the decimal equivalents for the binary
values given below.

1011, 10100, 1111, 1110, 1010011, 110011, 1011100,
1101111, 11000000, 10000111

Input a string A$ which consists of the digits 0 to 9, inclusive, each to be used only
once (e.g., 1956472038). Use string functions to obtain from A$ two numbers N1 and
N2, N1 being the number represented by the first three digits of A$ and N2 the number
represented by the last three digits. Print the sum of N1 and N2.

Let A$ consist of the first READY
twelve letters of the alphabet. “RUN

Using A$, construct the right triangle 21__‘

shown at the right. ARC
ARCD
ARBCDE
ABCDEF
ABCDEFG
ARCDEFGH
ABCDEFGHI
ABCDEFGHIJ
ABCDEFGHIJE
ARCDEFGHI JEL
READY

8.9

i4. As a young boy Franklin Roosevelt signed his letters to his mother backwards:
TLEVESOOR NILKNARF. Write a program that accepts a person’s name and prints it

15.

backwards.

Using the ASCII chart given in the text, determine the output for the following program.
Check by running the program.

10 FOR A=1 TO 4
20 READ A%
S0 FRINT ALBC (A%)

40 NEXT A

50 DATA "W, UHY, T, NeRE"

HO O END

16. The output of the following program is Foxy Moxie's message to Jimmy Band. What is
the message? Check by running the program.

160
20
=0
40
55O
&HO
70
a0
90
100
110
120

FOR W=1 T0O &

READ A%, B%,C$

FRINT LEFT$ (A%, 1) :MIDS (B$, 2, 2) sRIGHTH(C%, 1)

NMEXT W

DATA SECTION
DATA FET, LOXE,NTY
DATA SFJ,DAYT, GES
DATA HWT, BELM, BIF
DATA WIM,WILS, WZL
DATA CDE, HOMV, FSE
DATA SOA, ADDC, TZN

17. Choose fifteen random integers from 65 to 90, inclusive, to serve as ASCIl code

numbers. Convert these fifteen integers to the fifteen characters for which they stand,
and print the results.

8.10

18. Write a program which produces a sentence containing twenty nonsense words. Each
word can contain from two to five letters. Use random numbers and the ASCII code to

produce the words.

FRLIM

T e o
YFEE

EF

TYFHF
OIAC NSZ

RWVL.

READY

ITAL IR BE
TOND &U OFM 0Oy

LEN ELS WEBLWM ELRBREX

QR FEQOD HEDD RSGE SWE

[\

4
/
YFXS ZVFHR RVL (ALIR BK LBN i
ELS WBLWN ELBKX QB KQD
HQDD RSGQ SWK EP QJAC NSZ
IONO AU OPM OY
e ——
N\

19. Using random numbers and the ASCIl code numbers from 32 to 126, inclusive, have
the computer generate a string of 100 characters, allowing repetitions. Tabulate how
many characters are letters, numbers, or miscellaneous characters. Print the results.

20.

Using string functions, write a program to play a word guessing game. Ask the player
to guess a secret word. Search through each guess to see if the guess contains any
correct letters. If any letter is correct, have the computer print the ones that are. If the
entire word is guessed, type “YOU GUESSED IT!l”

FRUN

GUESS A
GUESS A
H IS IN
A IS IN
GUESS A
A IS5 IN
A TS IN
GUESS A
G IS IN
M IS IN
GUESS A

WORD? SUE
WORD? HARRIET
THE WORD

THE WORD
WORD? BASERALL
THE WORD

THE WORD
WORD? GRUMF
THE WORD

THE WORD
WORD? HANGMAN

YOU GUESSED IT

READY

21. You are a spy who will use the computer to produce a secret code.

(a) Input a short message, and have the computer type back what appears to be
nonsense words. To produce the coded words, convert each letter of the original
message into its corresponding ASCIl code number, add two to each number, and
convert to characters to produce the message. Keep all spaces between the words in
their original places, and understand that the letters Y and Z are to be converted to A
and B.

(b) Write a program that will decode the message.

NCYTGPEGXKNNG
—) UEJQQN

22. When the following program is run the output is:

A = 1500 B = 999.977

Explain in a clear, brief manner why the value of B is not exactly 1000, and why the
value of A is exactly 1500.

10 FOR X=1 TO 3000
20 A=A+1/2

Z0 B=B+1/3

40 NEXT X

50 FRINT "A="3A; "B=";H
60 END

23. Often, literary critics argue over the true identity of the author of some ancient
manuscript. To resolve such disputes, it is helpful to show similarities between the
anonymous text and a text by a known author. Write a program which tabulates the
occurrences of each article (“a”, “an”, and “the”), each adverb (check for “ly”), and of
each mark of punctuation (“.”, ©,”, “I”, “27, ", “”).

8.12

24. Create bizarre “sentences” by having the computer print the words of a real sentence
in reverse order. Your program should NOT reverse the order of the letters in each
word.

25. Last night you were informed that your aunt had left you several million dollars. You
decide to start your own corporation. In the tradition of DEC, GTE, RCA, IBM, and
other great corporate conglomerates, you want your corporate name to be composed
of as many initials as you like, each standing for a word (e.g., Radio Corporation of
America becomes RCA). Write a program which accepts up to ten words and then
prints a block of letters composed of the first letters of each word. For example, given
“WE AWAIT SILENT TRYSTERO’S EMPIRE”, the program should return “WASTE".

26. Write a program which prints FRUN
a triangle made up of parts of the A, B, AND C7F 18,324,536
word “triangle”. The triangle should L

be obtuse, and the program RIAN
should ask for its height, NGL
how far to indent the GLET
bottom edge, and where the ETRI
bottom edge ends. TRIAN
RIAMGL
ANGLET
NGLETRI
GLETRIAN
ETRIANGL
TRIANGLET
RIAMGLETRI
ANGLETRIAN
NGLETRIANGL
GLETRIANGLET
ETRIANGLETRI

READY

27. Enter a positive integer N$ as it would be expressed in binary form. That is, enter a
string of ones and zeros. Have the computer print the equivalent of N$ as it is
expressed in the decimal system.

8.13

‘;":ﬁ'

AN
77T TN

A computer file is analagous to a filing cabinet which stores information that can be
recalled and cross referenced. As such, the computer file provides the means for storing
large quantities of data indefinitely.

The computer utilizes two different file types: sequential and random-access. The
sequential file is best adapted to situations requiring data to be recalled in the same order
as it was originally stored in the file. Proceeding line-by-line from the beginning, the
computer reads the file sequentially until all the desired information has been retrieved. If
information is to be retrieved from a random location in the file (for example, a single entry
in a mailing list), random-access files are better suited. Since they are more difficult to use,
random-access files will be discussed separately in the next chapter.

It is suggested that before proceeding to learn the use of files, the programmer should
first read Appendix B in order to become familiar with the special aspects of Disk BASIC.

OPEN

The OPEN statement establishes a line of communication between a program and a
file and prepares the file for use. The OPEN statement must include the name of a file, and
a channel designator; it also must specify the mode of access desired. A file name is a
unique label used by the computer to identify each file and program stored on a disk. A
channel designator is an integer from 1 to 15, and not larger than the number of files
specified when the system was initialized. It indicates the channel to be used as a line of
communication between the program and the file.

The four modes of access are:

O: Sequential Output. The computer will output data to the file starting at the
beginning. If the file does not already exist, it will automatically be created,

9.1

otherwise the new data will be written over any previously existing data stored in
the file.

I Sequential Input. The computer will input data from the file to the computer
starting at the beginning. If the file does not already exist, it will print FILE NOT
FOUND.

E: Sequential Output at End of File. The data will be output from the computer and
appended to the end of the file. Previously stored data will be added to, not lost.
If it does not already exist, the file will be created.

R: Random Input and Output. This option is discussed in Chapter 10.

The general format for the OPEN statement is:
OPEN “<mode>", <channel>, “<file name>"

It is important to note that the mode and file name must be enclosed in quotation marks.
For example,

10 OPEN “I”, 2, “PAYROLL/TXT”

will open a file named PAYROLL/TXT for sequential input on channel 2. Remember that
files and programs must not have the same name.

CLOSE

Any file previously opened must be closed. This procedure is necessary in order to
break the line of communication between a program and a file that was originally
established by the OPEN command. A file is closed by using the command CLOSE
followed by the channel designator that was specified when the file was opened. For
example,

100 CLOSE 2

will close the file previously opened on channel two. Closing a file insures that all its
information is properly retained. One should never remove a disk from a drive on which
files are open. There is no way to guarantee that all of the data has been written to the file
until it is closed, thus removing a disk prematurely may result in loss of data.

9.2

INT #

While the OPEN statement establishes a line of communication between a program
and a file, the PRINT# command is used to place data in the file. Its form is:

PRINT #<channel>, <variable>; “,”; <variable> . ..

Information contained in the variables mentioned in the PRINT# statement will be placed in
the file associated with the specified channel. It is necessary to place commas within
qguotation marks between the variables so that they too will be placed in the file. The
commas act as markers so that the computer can tell the different items of data apart when
reading them from the file.

PROGRAM 9.1

This program, named CREATE/BAS, opens a sequential file named WORK/TXT on
the disk in drive one. In it are stored the names of four employees, their hourly wages and
the number of hours they have worked. Note the structure of line 60.

1 REM N$ = EMFLOYEE NAME
2 REM W = WAGE

A REM H = HOURS WOREED

4 REM

5 REM

10 OFEN "0",1,"WORK/TXTz1"
20 FOR X = 1 TO 4

30 INFUT "NAME:N$

40 INFUT "WAGE" ;W

50 INFUT "HOURS WOREED":H
&0 FRINT #1, N#&g","sW3",":sH
70 FRINT

80 NEXT X

20 CLOSE 1

READY

*RUN

NAME?T LESTER WATERS
WAGE? 4.45
HOURS WOREED? 39

NAME? JULIE COOK
WAGE? 4.795
HOURS WOREED? 42

NAMET ELI HUROWITZ
WAGE? S.10

HOURS WOREED? 36.795
NAME? DIANE BARRY
WAGE? 4.99

HOURS WORKED? 27.5

READY

9.3

REVIEW

1. Write a program named CALENDAR/BAS that will create the sequential file
MONTHS/TXT containing the names of the months of the year.

INPUT #

The INPUT# statement is used to read information from a sequential file. Its format is
similar to the PRINT# statement.

INPUT #<channel>, <variable>, <variable> . ..

Note that the commas between the variable names mentioned in the INPUT statement are
not enclosed in quotation marks. It is necessary that the order in which the variables are
listed in the INPUT# statement be the same as the order of the PRINT# statement that
created the file. For example, a program that reads the data from WORK/TXT created by
Program 9.1 would have to input the data in the order N$, W, H. After the file has been
closed the same channel designator need not be used to access it at a later time. For
example, a program accessing the file created by Program 9.1 might use channel 3.

PROGRAM 9.2

This program, named SHOW/BAS, will open the file WORK/TXT created by Program
9.1 and print the names and hours worked for the four employees.

1 REM N$ = EMFLOYEE NAME
2 REM W = WAGE

3 REM H = HOURS WORKED

4 REM

S5 REM

10 OFEN "I",2,"WORK/TXTz21"
20 PRINT "NAME", "HOURS WORKED"
Z0 FOR X =1 T0 4

40 INFUT #2, N$,W,H
S50 FRINT N&,H

60 NEXT X

70 CLOSE 1

READY

*RUN

NAME HOURS WORKED
LESTER WATERS 9
JULIE COOK 42
ELI HURDWITZ 26.75
DIANE BARRY 27.5
READY

9.4

Note that line 10 specifies the access mode as “I” because the program will input data from
the file to the computer.
The data in the file WORK/TXT appears as follows:

LESTER WATERS, 4.45, 39
JULIE COOK, 4.75 , 42

ELI HUROWITZ, 5.1, 36.75
DIANE BARRY, 4.95, 27.5

Notice that the variable W is read in the input line but is not printed. The computer has an
internal pointer that indicates the next item of information that is to be transferred from the
file by the INPUT# statement. When the INPUT# statement is executed, the pointer is
moved across the data line as each item is read. To insure that the data in the file is read
in the correct sequence, itis important that all of the necessary variables be included in the
INPUT# statement, even if some of them are not used by the program.

REVIEW

2. Write a program named RETRIEVE/BAS that will retrieve the name of a selected month
of the year from the file MONTHS/TXT.

Updating Sequential Files

Specifying the (E)xtend mode allows the user to append new information to the end of
an existing file. When an OPEN command is executed with either the (O)utput or the (I)nput
mode, the computer opens the file and prepares either to write to it or read from it starting
at the beginning of the file. If a programmer uses the (O)utput mode, the new information
added will be written over that which was at the beginning of the file, thus destroying the
old information. To avoid this loss of data, the “E” mode instructs the computer to write new
information at the end of the file.

9.5

PROGRAM 9.3

This program, named UPDATE/BAS, will update the old WORK/TXT file created by
Program 9.1 so that it includes information on two new employees just hired.

1 REM M = EMPLOYEE NAME
2 REM W = WAGE

% REM H = HOURS WORKEED

4 REM

S REM

10 OFEN "E", 1, "WORE/TXTz1"
20 FOR X = 1 TO 2

R0 INFUT "NAME" 3 N$

440 INFUT "WAGE" ;W

50 INFUT "HOURS WORKEED":H
&HO FRINT #1, N&;","sW:","3H
70 FRIMT

80 NEXT X

F0 CLOSE 1

REASDY

FRUN

NAMET ERMA MCCONNELL
WAGET 4.60

HOURS WORKED? 44.235
MAME? JEREMY LEADER
WAGE? 4.80

HOURS WORFED? 41.5

READY

After changing the FOR. . .NEXT loop in Program 9.2 the program can be re-run to show
that the new information is now in the file WORK/TXT.

=RUN

NAME HOURS WORKED
LESTER WATERS 9

JULLIE COOK 432

ELI HUROWITZ 36.75

DIANE BARRY 27.5

ERMA MCCONNELL 44,25
JEREMY LEADER 41.5

READY

9.6

There is no single command that will remove or alter outdated information in a
sequential file. To change such a file, the information to be kept must be transferred to a
new file along with the new or corrected information. After the transfer, the old file can be
deleted and the new file given an appropriate name.

PROGRAM 9.4

When an employee retires, this program named REMOVE/BAS will remove the
employee’'s name from the file WORK/TXT. All of the data is read sequentially from
WORK/TXT and the information that is to be retained is placed in the file WORK/TMP. After
the program has finished, the programmer can delete the old WORK/TXT and rename
WORK/TMP as WORK/TXT by using the RENAME command.

1 REM N = EMPLOYEE NAME
2 REM W = WAGE

E REM H = HOURS WOREED

4 REM R$ = RETIRED EMFLOYEE™S NAME
o REM

& REM

10 INFUT "WHO HAS RETIRED":R%

20 OFEN "I",1,"WORE/TXTs1"

w0 OFEN 0", 2, "WORK/TME: 1"
40 FOR X = 1 TO &

50 INFUT #1, N$,W,H

b0 IF N$ = R$ THEN 80

70 FRINT #32, N$z",";W;","sH
80 NEXT X

P0 CLOSE 1,2

100 FRINT "THE INFORMATION ON "3R$:" HAS BEEN REMOVED."
READY

FRUM

WHO HAS RETIRED? JEREMY LEADER

THE INFORMATION ON JEREMY LEADER HAS BEEN REMOVED.
READY

*CHMD"S"

TRGDOS Ready

FEILL WORE/TXT

Filling WORKE/TXT

TREDOS Ready

RENAME WORE/TMF WORE/TXT

WORK/THMF ————2 WORKE/TXT

TREDOS Ready

BASIC

This program works well in this limited example, but the technique it uses is not always
practical. The FOR...NEXT loop between lines 40 and 80 prevents the program from
attempting to read past the end of the data file. However, this method was used because
the length of the file WORK/TXT was known. Otherwise, a loop using a GOTO statement
must be used to insure that the entire file is read. The file will then be sequentially read until

9.7

the program comes to the file’s end. At this point an INPUT PAST END error will occur, and
the program will be halted. If this occurs, files will be left open and important data may be
lost. To prevent this error, the EOF function is used.

EOF
The EOF function has the form
EOF (<channel>)

It returns a logical true (-1) when the end of the file has been reached, otherwise a logical
false (0) is returned.

PROGRAM 9.5

This program, named REMOVE2/BAS, is a revision of Program 9.4 which allows the
file WORK/TXT to be of any length.

1 REM M$ = EMPLOYEE NAME

2 REM W o= WAGE

5 REM H = HOURS WOREED

4 REM F% = RETIRED EMFLOYEE™S NAME
5 REM T = FLAG TO TEST FOR DATA

&H REM

7 REM

10T = 0

20 INFUT "WHO HAS RETIRED"j;R$
FOO0OPEN "I, 1, "WORE/TXTe1"

40 OFENM "0O", 2, "WORK/THMF: 1"

S50 IF EOF (1) THEN 99

&0 INFUT #1, N$,W,H
70 IF N$ = R$
THEN T = -1

ELSE FRINT #2, N$;","sW;",";H
80 GOTO 50
90 CLOSE 1,2
100 IF T = ~1
THEN FRINT "THE INFORMATION ON ";R$;" HAS BEEN REMOVED."
ELSE FRINT "THERE IS NO ";R$;" ON THE PAYROLL."
READY
*RUN
WHO HAS RETIRED? SANDRA COOEK
THERE IS NO SANDRA COOK ON THE PAYROLL.
READY

9.8

Program 9.5 demonstrates two major improvements over Program 9.4. First, the
program informs the user if a name has been entered that is not in the file. The variable T
is used as an indicator. If the name is in the file, T becomes -1; if not, it remains 0. Second,
the EOF function and a GOTO loop are utilized to read the entire file. This technique is
recommended for reading most sequential files.

LINE INPUT

Since the files created up to this point use commas to separate data, they cannot be
used to store data that contains embedded commas. For example, a text file that
contains a letter would probably have many commas used for punctuation. Fortunately,
there is another method for separating data within a file that does not use commas. The
computer stores the carriage return struck at the end of an input line in a file. Therefore,
carriage returns can be employed to separate data so long as the data is input to the file
a line at a time. This requires that the data be entered into the file using only a single
variable. For example,

20 PRINT A%

A$ may contain embedded commas since a carriage return will separate each entry of A$
from the previous entry.

When inputting data from the keyboard that contains embedded commas the INPUT
statement cannot be used since it recognizes all commas as data separators. Instead, the
LINE INPUT statement is used which allows data containing embedded commas to be
used. lts form is:

LINE INPUT <string variable>

9.9

PROGRAM 9.6

This program, named LETTER/BAS, can be used to build a series of files containing
form letters used by a publishing company. Each file has a name corresponding to the type
of letter it contains.

1 REM L% = FORM LETTER

2 REM M o= NUMBER OF LINES IN LETTER
E REM I% = INFUT TEXT

4 REM

3 REM

10 CLEAR 150

20 INFUT "WHICH LETTER WILL THIS BE"; L%
IO LS = LE 4+ "/TXTzi"

40 OFEN "0",1,L%

S50 INFUT "HOW MANY LINES WILL THIS BE"; N
&0 FOR L = 1 TO N

70 LIMNE INFUT I%
80 FRINT #1, I%
0 NMEXT L

100 CLOSE 1

READY

*RUN

WHICH LETTER WILL THIS BE?Y REJECT
HOW MANY LINES WILL THIS BE? 6

THANE YOU FOR YOUR MANUSCRIFT, "BELLING THE MOUSE". IT
WAS VERY GOOD, BUT WE ALREADY HAVE OVER TWO HUNDRED WORES WITH
THAT TITLE. WE ARE SORRY, BUT YOUR MATERIAL DOES NOT FILL OUR
CURRENT NEEDS.

FILTHY RAG FURLISHERS
READY

LINE INPUT #

When a file using carriage returns rather than commas is read, the LINE INPUT#
statement rather than the INPUT# statement must be used, since LINE INPUT# does not
recognize commas as data separators. Instead, it will read data until a carriage return or
the 255th character is reached. its general form is

LINE INPUT # <channel>, <string variable>

9.10

PROGRAM 9.7

This program, named MAIL/BAS, will read one of several form letters and personalize

it for mailing to several people.
1 REM Moo= NUMEBER OF LETTERS
2 OREM MEC) = RECIFIENT®S NAME
2 REM L4 = FORM LETTER
4 REM
I OREM
100 REM INFUT DATA
110 CLEAR 250
120 INFUT "WHICH LETTER" ;L%
130 L$ = L$ + "/TXTz21"
140 INFUT "HOW MANY RECIFIENTS"$N
150 DIM N$& (N
160 FOR A = 1 TO N
170 FRINT "RECIFIENT #"j3A:
180 INFUT N$(Q)
190 NEXT A
200 REM
210 REM FRODUCE LETTERS
220 FOR B = 1 TO N
FRINT
OFEN "I",1,L.%
250 FRINT "DEAR "sN$E)z","
2460 IF EOF (1) THEN 200
270 LIME INFUT #1, A%
280 FRINT A%
290 GOTO 260
ZG0 CLOSE 1
Z10 FRINT
ARG ONEXT B
READY
FRUIN
WHICH LETTER? REJECT
HOW MANY RECIFIENTSY 2
RECIFIENT # 1 7 MR. STEINRBECKE
RECIPIENT # 2 7 MS. CHRISTIE

DEAR MR. STEINBECH,

THANE. YOU FOR YOUR MANUSCRIFT, "BELLING THE MOUSE". IT
Was VERY GOOD, BUT WE ALREADY HAVE OVER TWO HUNDRED WORES WITH
THAT TITLE. WE ARE SORRY, BUT YOUR MATERIAL DOES NOT FILL QUR
CURRENT NEEDS.

FILTHY RAG FUBLISHERS

DEAR MS. CHRISTIE,
THANE YOU FOR YOUR MANUSCRIFT, "RELLING THE MOUSE". IT

WAS VERY GO0OD, BUT WE ALREADY HAVE OVER TWOD HUNDRED WORES WITH
THAT TITLE. WE ARE SORRY, BUT YOUR MATERIAL DOES NOT FILL OUR
CURRENT NEEDS.

FILTHY RAG FUBLISHERS
READY

9.11

*RUN

WHICH LETTERY REJECT

HOW MANY RECIFIENTS? 2
RECIFIENT # 1 7 MR. STEINBECE
RECIFIENT # 2 7 MS. CHRISTIE

DEAR MR. STEINRECE,

THANE YOU FOR YOUR MANMUSCRIFT, "BELLING THE MOUSE". IT
WAS VERY G0O0D, BUT WE ALREADY HAVE OVER TWO HUNDRED WORES WITH
THAT TITLE. WE ARE SORRY, BUT YOUR MATERIAL DOES NOT FILL OUR
CURRENT NEEDS.

FILTHY RAG FUBLISHERS

DEAR MS. CHRISTIE,

THANE YOU FOR YOUR MANUSCRIFT, "EELLING THE MOUSE". IT
WAS VERY GOOD, RBUT WE ALREADY HAVE OVER TWO HUNDRED WORKES WITH
THAT TITLE. WE ARE SORRY, BUT YOUR MATERIAL DOES NOT FILL OQOUR
CURRENT NEEDS.

FILTHY RAG FURLISHERS
READY

Demonstration Programs

The following programs illustrate applications for the material covered in this chapter.
They consist of a series of examples concerning the record keeping process of a sporting
goods manufacturer.

9.12

PROGRAM 9.8

This program, named ACME/BAS, will produce a file named SALES/TXT that
contains the sales records of all salespeople working for the Acme Sporting Goods
Company. Each salesperson sells baseball bats, balls and helmets.

1 REM F = NUMBER 0OF SALESPERSONS

2 REM N$ = NAME 0OF SALESPERSON

E REM El,B2,H = BATS, BALLS AND HELMETS S0OLD
4 REM

5 REM

10 OPENM "0O",1,"SALES/TXT:z1"
20 INFUT "HOW MANY SALESFERSONS DO YOU HAVE":F

Z0O PRINT

40 FOR E = 1 TO F

50 INFUT "SALESFERSON" ; N&

&0 INFUT "BATS SOLD";BI1

70 INFUT "RBALLS SOLD";RB2

80 INFUT "HELMETS SOLD":;H

F0 FRINT #1, N&z","s;Bl:","sB2:",."sH
100 FRINT

110 NEXT E

120 CLOSE 1

120 FRINT "THE INFORMATION IS IN THE FILE."
READY

*RUN

HOW MANY SALESFERSONS DD YOU HAVE? 5

SALESPERSON? AUSTIN WILMERDING
BATS S0L.D? 32

BALLS SOLD? 17

HELMETS S0LD7? 23

SALESFERSON? DON KEIDDER
BATS SOLDT 4

BALLS SOLD? 10

HELMETS SOLD? 5

SALESFERSONT? FIONA L HUILLIER
BATS SOLD?T 29

BALLS SOLD? =4

HELMETS S0OLD? 52

SALESFERSON? ROBERT OAELEY
BATS SOLD? 45

BALLS SOLD? 17

HELMETS S0LD? 39

SALESFERSON? CYNTHIA GARFILED
BATS SOLD? 26

BALLS sOLDY Z2

HELLMETS SOLD? 12

THE INFORMATION IS IN THE FILE.
READY

9.13

PROGRAM 9.9

This program, named ACME2/BAS, will update the sales records for an individual
salesperson.

< EM N& = MAME OF SALESFERSON

REM Bl,B2,H = BATS, BALLS AND HELMETS SO0OLD
REM Ce = FERSON WHOSE SALES HAVE CHANGED
REM

5 REM

10 OFPEN "I, 1, "SALES/TXTa 1"

20 0OFEN "0, 2, "SBALES/TMF: 1

IOOIMPUT "WHOSE SALES HAVE CHANGED":Cs

40 IF EOF (1) THEN 90

50 ITRNFUT #1, N$,B1,RB2,H

HO IF N& = C% THEN INFUT "NEW SALES";B1,B2,H
70 FRIMT #2, Méz","sBLg","sB2:","sH

80 50T0O 40

RO OCLOSE 1,2

10O FRINT C$3 "8 RECORDS HAVE BEEN UFDATED. "
110 FRINT "FLEASE EILL "S5ALES/TXT® AND RENAME °SALES/TMFP® "3
120 PRINT " A8 "SALES/TXT .M

READY

FRUN

WHOSE BALES HAVE CHANGED?T CYNTHIA GARFIILLED

NEW SALES? 20,38, 22

CYNTHIA GARFILED™S RECORDS HAVE REEN UFDATED.
FLEASE FILL “SALES/TXT™ ANMD RENMAME "SALES/MF™ A8 "SALES/TXT?.
READY

=MD ST

TRSEDOS Ready

FITLL WOREATXT

Filling WORESTXT

TRSEDOS Ready

REMAME WOREATMF WORKE/ZTXT

WOREATMP = WORE S TXT

TREDOS Ready

R&SSI0

B ofed Y o

When the computer has found the right salesperson (at line 60) it prompts the user for data
from the keyboard. The new information is then placed in the new file SALES/TMP at line
70.

9.14

PROGRAM 9.10

This program, named ACME3/BAS, will write a personalized letter of congratulations

t

o]

all salespersons who have sold 75 units or more.

1 REM N$ = NAME OF SALESFERSON

2 REM FE1,B2,H = BATS, BALLS AND HELMETS SOLD

T REM T = INDICATOR TO SEE IF ANYONE QUALIFIED
4 REM

5 REM

10 OFEN "I",1,"SALES/TXT:1"

20T = 0

30 IF EOF (1) THEN 160

40 INFUT #1, N$,B1,E2,H

550 IF Bl + B2 + H »= 75 THEN GOSUE 80

60 GOTO ZO

70 PRINT

80 FRINT "DEAR "jN&z","
?0 PRINT "
100 PRINT "SALESFERSIONS.
110 FRINT

120 PRINT "

120 PRINT

140 T = T + 1

150 RETURN

160 CLOSE 1

170 IF T <% O

THEN FRINT Tg3"SALESFERSONS WILL RECEIVE A BONUS."
THEY NEED A FEPFP TALE."

ELSE FRINT "NO ONE
READY
*RUN
DEAR FIONA L HUILLIER,
CONGRATULATIONS, YOU
SALESFERSONS. YOUR BONUS

DEAR ROBERT OAKLEY,
CONGRATULATIONS, YOU
SALESFERSONS. YOUR BONUS

DEAR CYNTHIA GARFILED,
CONGRATULATIONS, YOU
SALESFERSONS. YOUR EBONUS

CONGRATUL.ATIONS,
YOUR BONUS CHECE IS IN THE MAIL."

YOU ARE ONE OF OUR TOFR"

YOUR BOSS"

SOLD ENOUGH.

ARE ONE OF OUR TOF
CHECE IS IN THE MAIL..

YOUR BOSS

ARE ONE OF DUR TOF

CHECE I8 IN THE MAIL.

YOUR BOSS

ARE ONE OF 0OUR TOF

CHECE IS IN THE MATIL.

YOUR BOSS

I GALESFERSONS WILL RECEIVE A BONLS.

READY

9.15

’////// TN

1. Store 50 random numbers between 0 and 20 in a sequential file. Use a second
program to retrieve the numbers, add them, and print the sum.

2. Store in a sequential file the names and prices of five different desserts served at
MADGE’S DINER. With a second program add two additional desserts. Have a third
program retrieve and print the information.

3. (a) Establish a sequential file name SEQ which contains the members of the following
sequence:; 1001, 1002, 1003, ... 1128.
(b) Write a program to retrieve any member of the sequence from SEQ and print it
when its place in the sequence (i.e. third number, eighth number, etc.) is inputted.

4. Store ten different first names of friends in a sequential file. A second program is to
print all the names in the file which begin with the letters D, E, F, G and H or a message
if none are found.

5. (a) Write a program that will create a sequential file FRAT which contains the names,
fraternities, and ages of thirty college students.
(b) Write a program that will access FRAT and create a Sequential file SIGMA which
contains the names and ages of only students who live in Sigma Chi.
(c) Write a program that accesses the file FRAT and randomly selects twenty-five

9.16

6.

students for seats in a classroom of five rows, five seats to a row. Have the computer
print the seating plan for the class, placing each student’'s name at the correct seat
location.

(a) Create a sequential payroll file called PAY to store each of ten person’s names
(last name first), his or her hourly pay rate, the number of dependents, and deductions
for medical and life insurance for each week. Supply appropriate data.

(b) Use PAY to prepare the payroll data sheet (supply the number of hours (H) each
person worked during the week). The sheet should list the name, hours worked, gross
pay, three deductions, and net pay. Assume a tax rate of 25%, with 2% being
subtracted from this rate for each dependent.

=RUN
MENACE DENNIS

HOURS WORKED 40
GROSS PAY: % 40
TAXs $ 10
MEDICAL INSURANCE: % 2
LIFE INMSURANCE: $ 14
MET 2 $ 27

BEAVER LEAVEITTO

HOURS WORKED 7.1
GROSS FAY: s 8%.48
TaX: $ 20.87
MEDICAL INSURANCE: % 1
LIFE INSURANCE: % 17
MET:: $ 60.61

9.17

7.

(a) Two persons, NIT and WIT, measured the Fahrenheit temperature (F) outside on
Feb. 12 at various times (T) during a ten hour period. Their results are recorded here.
Set up two sequential files, one for each person’s data, naming each file after that
person.

NIT T F WIT T F
0.0 18.1 1.0 20.9
2.1 24.0 1.9 23.3
3.8 27.2 3.5 26.1
6.0 29.3 6.0 28.8
8.0 26.6 8.2 26.2
9.0 16.1 10.0 16.0

(b) Write a program that will merge the two files into one sequential file named
MERGE. The times should be sequentially in order. However, when a value of (T)
occurs both in NIT and WIT, the average of the two values of (F) should be placed in
MERGE.

(c) Retrieve and print the contents of MERGE.

There are twenty seats (numbered 1-20) in a classroom which will be used to
administer the College Board Examination. The computer is to select seats randomly
for each student taking the examination and store the student’'s name in a Sequential
file named SEATS.

(a) Write a program that will create and zero (place a blank space in for each name)
the Sequential file SEATS.

(b) Write a program that will randomly assign a seat to each of twenty students whose
names are in a data statement and then store the name in SEATS with the appropriate
seat number. Make sure no repeats occur.

(c) List the contents of the file SEATS.

(a) The Drama Club has decided to use the computer to print out tickets for a play it
will perform in the school’'s auditorium. To reserve a seat a student runs a program
called DRAMA, and types in the name and the row and seat number he would like.
There are ten rows with five seats to a row. His ticket will appear as below. Write the
program DRAMA and open a file named SHOW which stores the seat assignments.
Make sure that a seat may not be chosen more than once.

DRAMA SHOW CLUR
MICHAEL JOMNES HAS
RESERVED ROW 4
SEAT I FOR

JULY 4, 1983

(b) Write a program which will list the empty seats giving their row and seat numbers.
(c) Write a program that will print a seating plan giving the names of the seat holders
in their correct location.

9.18

.

/TN

S/

A random-access file is structured like a collection of drawers in a filing cabinet, each
holding a block of data that may be accessed individually. This filing system offers
advantages to the one “drawer” structure of sequential files. To read the last line of data in
a sequential file, every line of data preceding it must be read in sequence. However, any
“drawer” in a random-access file can be opened without opening any of the others.
Updating a random-access file is easier than updating a sequential file since the contents
of one “drawer” can be updated without accessing the rest of the file. Unlike a sequential
file, which is opened for a specific mode, a random-access file can be both written to and
read from simultaneously.

In the random-access file each “drawer”, called a record, consists of space reserved
to store information. The length of a record, i.e. the amount of information it can hold, is
specified when a random-access file is created. The user may define records to be of any
length up to 256 characters, but all of the records within a given file must be of the same
length.

A single record need not hold simply one item of data but many pieces, as long as they
do not require more space than the specified size of the record.

To utilize the potential offered by random-access files, it is necessary to understand
how the computer stores information. For file processing, the computer could have been
designed to put each small item of information on the disk as soon as that information was
made available. Since accesssing the disk is time consuming, however, it is more efficient
to transfer information to the disk in complete records. This requires the computer to have
a temporary storage space called a buffer, where information is stored until a record is
complete.

With sequential files the user has no conirol over the interaction between the buffer
and the disk. Instead, the computer automatically determines when the buffer is full and
then transfers its contents to the disk. Random-access files, however, give the user
complete control over both the structure of the buffer's contents and its transfer to the disk.

10.1

The process of transferring data between a program and a random-access file
involves the following series of steps:

1. Using the OPEN statement, the file must be created, opened, and a buffer made
ready to receive data.

2. Using the FIELD statement, the buffer must be partitioned to fit the structure of
each record.

3. Data has to be transferred from the program to the buffer using the LSET and
RSET commands.

4. Data has to be transferred from the buffer to the file using the PUT command.
5. To retrieve data from the file for use in the program, the GET command is used.

Each of these steps is presented separately and should be read carefully so that the
reader understands how each interacts with the others.

OPEN

Like sequential files, random-access files use the OPEN statement. The format for
opening random-access files is

OPEN “R”, <channel>, “<file name>"’, <record length>
For example,
20 OPEN “R”, 3, “KAZOO”, 50

will open a file named KAZOO for random-access on channel three, with each record in the
file containing fifty characters, and will assign it a buffer.

Unlike sequential files, random-access files store all information as strings. This
requires numeric data to be converted to strings before being stored. The commands used
in performing these conversions are discussed later in this chapter.

After the OPEN statement assigns a buffer to a file, the FIELD staiement is used to
organize the buffer so that data can be sent through it from the program to the file and vice
versa. The FIELD statement partitions the buffer into regions where each holds a string and
is referenced by a specific string variable. Its simplest form is

FIELD <channel>, <length> AS <string variable>

10.2

For example,

10 OPEN “R™, 2, “DATA”, 50
20 FIELD 2, 50 AS A$

After the file has been opened at line 10, the FIELD statement at line 20 reserves the entire
fifty characters in the buffer for the string variable A$. It is possible to partition the buffer
to hold more than one string.

20 FIELD 2, 20 AS AS, 30 AS B$

will reserve the first twenty characters of the buffer for the contents of A$ and the last thirty
characters for the contents of B$.

LSET and RSET

The FIELD statement reserves a certain number of spaces for string variables in a
buffer, but it does not transfer the strings to the buffer. To do this, it is necessary to use the
LSET and RSET commands. The form for both is

LSET
or <string variable defined in FIELD> = <string to be transferred to buffer>
RSET

For example,

20 FIELD 1, 24 AS N1§
30 LSET N1§ = “TWENTY-FOUR CHARACTERS!!”

or

20 FIELD 1, 24 AS N1$
30 RSET N1§ = “TWENTY-FOUR CHARACTERS!!”

Besides transferring strings to the buffer, these commands also change the strings to make
sure that they properly fit the space allotted in the FIELD statement. For example, if N1$
contains 15 characters, 9 blank characters have to be added to bring the total to 24. If N1$
contains more than 24 characters, it must be truncated to 24. These operations are
performed by either the LSET or RSET commands.

The LSET command left justifies a string by adding needed blank characters to the
right end of the string. If N1$ contains 15 characters, LSET will add 9 blank characters on
the right end. RSET justifies by adding the 9 blank characters on the left end. Both LSET
and RSET will truncate excess characters from the right end of a string which is larger than
the space specified in the FIELD statement.

10.3

PROGRAM 10.1

This program demonstrates how LSET and RSET change strings to ready them for
storage in a random-access file.

10 OFEN "R",1,"SUNSETz1", 30
20 FIELD 1, 5 AS A%, 10 AS B%, 5 A5 C$, 10 AS D%

Z0 LSET A% = "ABCDEFG"
40 LSET B$ = "ABCDEFG"
50 RSET C$ = "ABCDEFG"
&0 RSET D$ = "ABCDEFG"

70 FRINT "THIS I8 HOW THE 20 CHARACTERS AFFEAR IN THE"

80 FRINT "BUFFER, EXCLUDING THE FPARENTHESES:"

0 FRINT TAB(I) ;"A4"; TARLIZ) ; "BS" 3 TAB(22) ; "CH" s TAB(31) s "D
100 PRINT "(";A%; ") ("sBey ") (";Cdg ") (" DHg "2 "

110 CLOSE 1

READY

+RUN

THIS IS HOW THE 30 CHARACTERS AFFEAR IN THE

BUFFER, EXCLUDING THE FARENTHESES:

A% B C# D&
(ABCDE) (ABCDEFG) (ABCDE) « ABCDEFG)

READY

Notice that the FIELD statement at line 20 has set aside 5 characters for A$, but since
the string in line 30 is longer than 5 characters, the LSET command in line 30 has truncated
the last two. Since 10 characters were set aside for B$, the LSET command in line 40 has
added 3 spaces to the right of the string to make it 10 characters long. As only 5 spaces
were allotted to C$, the RSET command in line 50 truncated the excess characters from the
right. The RSET command in line 60 has added 3 spaces to the left of B$ so that it fills up
the space allotted by the FIELD statement.

PUT

The LSET and RSET commands only transfer information from the program to the
buffer, but do not transfer the contents of the buffer to the disk. The PUT statement is used
to transfer the data in the buffer to a record in the file. Each record is numbered
sequentially, from one to the number of records in the file.

The form of the PUT statement is:

PUT <channel>, <record number>

10.4

If the record number is not specified, the data is transferred to the record immediately
following the last record accessed by the program. For example,

20 PUT 2, 4

instructs the computer to transfer the contents of the buffer to the fourth record of the file
open on channel 2. It is important to note that if the next PUT statement executed after the
above example does not specify a record number, the data in the buffer will be transferred
to the fifth record in the file.

PROGRAM 10.2

This program, named PEOPLE/BAS, creates the file ADDRESS/TXT and will allow the
names and addresses for five people to be placed in the file.

1 REM N$, N1%
2 REM A%, ALlSE
I REM

4 REM

10 CLEAR 100
£20 OFEN "R",1,"ADDRESS/TXT:1", 40
200 FIELD 1, 15 AS N%, 25 A5 A%
40 FOR X =1 TO 5

i

NAME (15 CHARACTERS)
ADDRESS (25 CHARACTERS)

i

50 INFUT "NAME";N1%

HO INFUT "ADDRESS":Al%
70 LSET N$ = NI1%

80 LESET A% = Als$

0 FUT 1

100 FRINT

110 NEXT X

120 CLOSE 1

READY

*RUN

NAME?T C. MAHAN
ADDRESS? 186 BLUE SFRUCE DR.

NAME? (5. MANDEL
ADDRESST 238 0OF0SSUM AVE.

NAME? R. MACFHERSON
ADDRESST 1146 FRANELIN CORNER RD.

NAME? C. JENEINS
ADDRESST 12 NEWFORT RD.

NAME? D. RIMMER
ADDRESST 1 SANDBURG DR.

READY

10.5

The variable names used in the INPUT statements and in the FIELD statements must
not be the same if the program is to transfer data correctly to the file.

REVIEW

1. Write a program, named CALEN2/BAS, that will create a random-access file
MONTHS/TXT and will place the name of each month of the year in order in a separate
record.

GET
The GET statement performs the opposite function of the PUT statement. It is used to
transfer information in a record on the disk to the buffer associated with the file. Again, a

FIELD statement must be employed in order to partition the buffer for the data that is to be
transferred into it. The form of the GET statement is:

GET <channel>, <record number>

Like the PUT statement, the GET statement will transfer data from the record following
the last record accessed if no record number is specified. For example,

20 GET 3, 12
will transfer the contents of record number 12 to the buffer associated with channel 3.
PROGRAM 10.3

This program, named PEOPLE2/BAS, will retrieve and print the name and address of
any person stored in the file ADDRESS/TXT.

1 REM N$ = NAME (15 CHARACTERS)

2 REM A% = ADDRESS (25 CHARACTERS)
I REM R = RECORD NUMRBER

4 REM

3 REM

10 PRINT "ENTER A NEGATIVE NUMBER TO STOF THE FROGRAM"
20 OFEN "R",2,"ADDRESS/TXT:1",40

0 FIELD 2, 15 A8 N, 25 A5 A%

40 INFUT "WHICH RECORD":R

S50 IF R < O THEN 100
&HO GET 2, R

70 FRINT N$ @ FRINT A%
80 FPRINT

0 GOTO 40

100 CLOSE 2

READY

10.6

=RUN

ENTER A NEGATIVE NUMEER TO STOF THE FROGRAM
WHICH RECORD? =

R. MACFHERSON

116 FRANELIN CORNER RD.

WHICH RECORD?T 1
C. MAHAN
186 BLUE SFRUCE DR.

WHICH RECORD? —1
READY
REVIEW

2. Write a program, named LOOKUP/BAS, that will retrieve the name of a selected month
from the file MONTHS/TXT.

Converting Numbers Into Strings

Since random-access files can only store strings, it is necessary to convert numeric
data into a string before it is stored. The following functions perform this operation:

Function Operation

N$ = MKI$(N%) Converts an integer (N%) into a two character string
(N$).

N$ = MKS$(N!) Converts a single-precision number (N!) into a four

character string (N$).

N$ = MKDS$(N#) Converts a double-precision number (N#) into an
eight character string (N$).

10.7

Converting Strings Into Numbers

When converted numeric data is retrieved from a random-access file, it may be
converted back to numeric data using the following functions:

Function Operation

N% = CVI(N$) Converts a two character string (N$) into an integer
(N%). _

N! = CVS(N$) Converts a four character string (N$) into a single-
precision number (N!).

N# = CVD(N$) Converts an eight character string (N$) into a

double-precision number (N#).

LOC and LOF

The LOC and LOF functions are useful when working with random-access files. The
LOC function returns the record number used in the last GET or PUT executed on a
particular channel. The statement

N = LOC(3)
will assign to the variable N the record number used in the last GET or PUT operation
performed on channel 3. The LOC function will return zero until a GET or PUT is executed.

The LOF function returns the length of a file currently open on a particular channel,
that is, the number of records contained in that file. The statement

= LOF(2)
will assign to the variable T the number of records contained in the file currently open on

channei 2. This value is useful in determining where a new record should be PUT when
adding new information to a previously created file.

10.8

PROGRAM 10.4

This program illustrates LOC and LOF.

N FILE

CTERS)

1 REM My G = NLMBER
& ORE Bs,DE = DATH

CREATE FILE "STUFF® AND ALLOW USER TO
FLACE DATA TN THAT FILE
TR, Ly "ESTUFFe v, AR

1. 332 0% Bs

FOR T = 1 TO N
ITMFUT "ENTER DATA"; D%
LSET B$ = D$E @ FPUT 1, T
FRINT "THAT WAS FLACED IN RECORD": LOC(L)y "OF STUFF"
NEXT T
CLOSE 1 & FPRINT
REM
REM
FEM READ FILE "STUFF®
ENCTRT, O3, "STUFFs L, E2
TELD . 22 A% B ¢ (B = LLOFCE
FRINT "THE FILE STUFF CONTAINS"; @ "RECORDS."
FOR T = 1 TO @
250 GET =X
260 FRINT "RECORD"y LOCOE)y; "CONTAING:"
270 FRINT B$
280 NEXT T
220 CLOSE 3 3 PRINT
READY
FRLN
HOW MANY RECORDS DO YOU WANT TO FLACE IN THE FILE? 3
ENTER DATAT HOW™S THIS FOR DATA?
THAT WAS FLACED IN RECORD 1 OF STUFF
ENTER DATAT O.t. LET"S FUT THIS IN # 2
THAT WAS FLACED IN RECORD 2 0F STUFF
ENTER DATAT THAT'S ALL FOLES
THAT WAS FLACED IN RECORD * OF STUFF

-

THE FILE STUFF CONTAINS I RECORDS.
RECORD 1 CONTAING:

HOW" S THIS FOR DATA?

RECORD 2 CONTAINS:

O.v. LET*S PUT THIS IN # 2

RECORD 3 CONTAING:

THAT* S ALL FOLES

READY

INFLT "HOW MANY RECORDS DO YOU WANT TO FLACE IN THE FILE":N

10.9

REVIEW

3. Write a program, named SIZE/BAS, that will determine the length of the file
MONTHS/TXT and place that information in the first record of a new file called
LENGTH/TXT.

Demonstration Programs

The following series of programs establishes a file named GRADES/TXT which
contains the names and grades of a number of students and then demonstrates how the
file can be used.

PROGRAM 10.5

This program, named SCHOOL/BAS, will store students’ names and the course
names and grades for four courses in which they are enrolled in a file named
GRADES/TXT. In each case the student's 1.D. number is used as the record number.

1 REM M&, NM$ = STUDENT"S NAME (20 CHARACTERS)

REM CH,0L%, 026,036, C4% = COURSE NAMES (20 CHARACTERS EACH)

REM G,G1%, 00, 63%,6G4% = GRADES (2 CHARACTERS EACH)

4 REM ID = STUDENT"S ID NUMBER

5 REM

& REM

10 ClLEAR 250

200 OFENM TR, 1, "GRADES/TXTe 1Y, 108

A0 FIFLD 1, 20 A% N$, 20 A5 Cl$, 2 A8 Gls, 20 A8 CZ%,
2OAS GE%, 20 A8 C3e, 2 A5 634, 20 A5 C4%, 2 A5 G49%

40 INFUT "NUMBER OF STUDRENTS": S

50 FOR ID = 1 TO &

&HO IMFUT "STUDENT®S NAME";NM$: LSET N = NM%

70 INFUT "COURSE MAME"3C$% @ LOSET C1% = (0%

8o IMPUT "GRADE":G » LSET G1% = MEIS(G)

PO INFUT "COURSE NAME";C% ¢ LSET C2% = O%

100 IMFPUT YGRADE":; G «» LSET GE$ = MEI$(G)

110 IMFUT "COURSE NMAME";C$ ¢ LSET CIZd% = %

120 IMFUT "GRADE";6E @ LSET G234 = MEI$(G)

1730 INFUT "COURSE NMAME";Cé% @ LSET C4% = %

140 INFUT "GRADE"; G & LSET G4% = MET$ (G

150 FRINT "THAT STUDENT HAS BEEN ASSIGNED ID #";ID

160 FUT 1

170 FRINT

180 MEXT 1D

190 CLOSE 1

READY

P

1]

10.10

FRLIR

10
TL BARRY

SEOMAMET? EUROFEAN HISTORY
GRADE? 79
THAT STUDENT HAS BEEN ASSIGMED ID # 1

STUDENT™ S MAMET DAVID GELLER
LOUFS MAME? PHYS IS

GRAD o

COURSE MNaMET CALCULUS

MAMET ENGL ISH
ET B0
COURSE NaME? DRAFTING
GRADE? 773
THAT STUDENT HAS BEEN ASSIGNED ID # 2

(A COMPLETE RUN IS NOT SHOWN.)

PROGRAM 10.6

This program, named REPORT/BAS, will read and print a particular student’s grades
and computed grade average. Note the use of LOF in line 60 to check for nonexistent 1.D.
numbers.

L REM N&, NM$ = STUDENT'S NAME (20 CHARACTERS)
2 REM C%,01%,02%,03%,04% = COURSE NAMES (20 CHARACTERS EACH)
REM G,G61%,62%,634%,54% = GRADES (2 CHARACTERS EACH)
REM ID = STUDENT®S ID NUMEER
REM
REM
D FRINT "ENTER A NEGATIVE NUMBER TO STOR"
ZO CLEAR 250
IO OPEN "RY, 1, "GRADES/TXT:1", 108
40 FIELD 1, 20 AS N$, 20 AS Cls, 2 AS B1%, 20 A5 C2%,
2 A5 G2%, 20 A5 C3I$, 2 AS B3$, 20 AS C4%, 2 AS G4S
50 INFUT "STUDENT®S ID#"; ID
&0 IF ID » LOF(1) THEN FRINT "BAD ID#" : GOTO 50
70 IF ID £ © THEN 130
80 GET 1, ID
PO A = (CVI(E1$) + CVIG2%) + CVI(EI$) + CVI(G4$)) /4
100 FRINT TAB(5) ;CVI(G1$) 3 TAR(10) ;CVI(G24) ; TAE(15) 1 CVI (GT3%) ;
110 FRINT TAB(20)3;CVI (G4%) 3 TAB (30) 3 "AVE. ="31A
120 GOTO S0
130 CLOSE 1
READY

=0 L]k

10.11

+RLIN
ENTER A NEGATIVE NUMBER TO STOF
STUDENT’ S ID#T 7

g4 80 78 81 AVE.
STUDENT®S ID#? 4

g3 76 B2 90 AVE. = B2.75
STUDENT® S ID#7? ~1
READY

80759

it

- PROGRAM 10.7

This program, named CORRECT/BAS, will allow a teacher to correct a mistake in a
student’'s grades.

1 REM N& = STUDENT®S NAME (20 CHARACTERS)
2 OREM C1%,02%,0%%,04% = COURSE NAMES (20 CHARACTERS EACH)
T OREM B,61%,60%,53%,34% = GRADES (2 CHARACTERS EACH)
4 REM ID = STUDENT®S ID NUMBER
= REM
& REM
10 PRINT “ENTEE A NEGATIVE NUMRER TO STOF
20 CLEAR 250
m0 OFEN "RY, 1, "GRADES/TXT: 1", 108
40 FIELD 1, 20 A5 N$, 70 AS Cl$, 2 AS G1%, 20 AS C2%,
T OAS GBE%, 20 A% 0%, 2 A5 G3%, 20 A C4%, 2 AS G4s
=0 INFUT "STUDENT®S IDH"; ID
b0 IF ID » LOF(L) THEN FRINT "INVALID ID#" : GOTO S50
70 IF ID < O THEN 210
8O GET 1. ID
G0 FRINT "ENTER NEW GRADES"
100 FRINT Cl$,
110 INFUT G @ LSET B1% = MEIS((3)
1520 FRINT C2%,

1730 INFUT 6 ¢ LSET G24% = MEI$(G)
140 FRINT C3i#,
150 INFUT B 2 LSET GI3$ = MEI%(G)
160 FRINT C4%,
170 INFUT G @ LSET G4% = MEI$(HE)

180 FUT 1, ID

190 FRINT "THE RECORDS OM "sN$;" HAVE BEEN UFDATED."
200 60TO 50

210 CLOSE 1

READY

10.12

+RUN

ENTER A NEGATIVE
STUDENT S ID#7? 5
ENTER NEW GRADES
FHYSICS

AMERICAN HISTORY

INDEFENDENT STUDY

STATISTICS

NUMBER TO STOF

837
75
78
84

RIS I

THE RECORDS ON LESTER WATERS

STUDENT®S ID#7 —1

READY

PROGRAM 10.8

Ol By

HAVE BREEN UFDATED.

This program, named NEWKIDS/BAS, allows new students to be added to the file by
creating new records at the end of the file.

REM N$,NM$ = STUDENT®S NAME
REM C%,C1%,02%,05%, C4%

REM
REM
Q0 CLEAR 230

(20 CHARACTERS)

= COURSE NAMES (20 CHARACTERS EACH)
REM G,061%,07%,53%,64% = GRADES (2
REM ID = STUDENT®S ID NUMEER

0 OFEN "R",1,"GRADES/TXTz1", 108

O FIELD 1, 20 A5 N%,

2 AS B2%,

CHARACTERS EACH)

20 A5 Cl$, 2 AS G1$, 20 AS C2%,
20 AS C3%, 2 AS G3%,

20 A8 Ca4%, 2 A5 G4%

40 INFUT "NUMBER OF STUDENTS";S

50 FOR ID = LOF(1) + 1 TO LOF(1) + §

40 INFUT "STUDENT®S NAME“;NM$: LSET N$ = NM$
70 INFUT "COURSE NAME";C$: LSET Cl% = C%

80 INFUT "GRADE":;G : LSET G1% = MKI$(5)

0 INFUT "COURSE NAME";C$: LSET C2% = C%

100 INFLIT "GRADE":;G : LSET G2% = MEI$(G)

110 INFUT "COURSE NAME";C$: LSET C34% = C%

120 INFUT “"GRADE";G : LSET G3I% = MKI$(G)

130 INFUT "COURSE NAME";C$: LSET C4% = C%

140 INPUT “GRADE";G : LSET G4% = MEI$(B)

150 FRINT "THAT STUDENT HAS BEEN ASSIGNED ID #";ID
160 FUT 1, ID

1760 FRINT

180 NEXT ID
190 CLOSE 1
READY

10.13

=RUN

NUMBER OF STUDENT®S? 2
STUDENT™S NAME?T SHERRY FRENCH

COURSE
GBRADE?
COURSE
GRADE??
COURSE
GRADE?
COURSE
GRADE?

NAME?
87
MNAME?
8=
NAME™?
71
NAME?
78

ENGL.ISH

FHILOSFHY

ASTRONOMY

AMERICAN HISTORY

THAT STUDENT HAS BEEN ASSIGNED ID # 11

STUDENT?S NAMET LISA HURDWITZ

COURSE
GRADE™
COURSE
GRADE?
COURSE
GRADE?
COURSE
GRADE?

NAME?
81
NAME?
82
NAME™?
77
NAME?
78

THAT STUDENT

READY

10.14

CHEMISTRY
STATISTICS
ENGLISH
BEOTONY

HAS BEEN ASSIGNED ID # 12

|

PROGRAM 10.9

This program, named EXTRA/BAS, creates a random-access file named ACTIVI-
TY/TXT which will contain the extracurricular activities and athletic teams in which students

are involved.

1 REM Ale,A2% = ACTIVITIES (20 CHARACTERS EACH)
2 REM T$ = ATHLETIC TEAM (15 CHARACTERS)

I REM ID = STUDENT™S ID#

4 REM I = INFUT

5 REM

& REM

10 FRINT "ENTER STUDENT ID#, TWO ACTIVITIES AND ATHLETIC TEAM"
20 PFPRINT "ENTER A NEGATIVE NUMERER TO STOF"

30 CLEAR 250

40 OFEN "R",1,"ACTIVITY/TXTa21",353

50 FIELD 1, 20 AS Al%, 20 AS AZ%, 19 AS T

60 INFUT "ID#":ID

70 IF ID < © THEN 140
80 INFUT "FIRST ACTIVITY";I% : LSET Al$ = I%
90 INPUT "SECOND ACTIVITY";I% : LSET AZ% = 1%
100 INFUT "ATHLETIC TEAM"3;I% : LSET T$ = I%
110 FUT 1, ID

120 FRINT

130 GOTO &0

140 CLOSE 1

READY

+RUN

ENTER STUDENT ID#, TWO ACTIVITIES AND ATHLETIC TEAM
ENTER A NEGATIVE NUMEBER TO STOF

ID#7T 1

FIRST ACTIVITY? THEATER

SECOND ACTIVITY? GLEE CLUER

ATHLETIC TEAM? TEMNIS

ID#? 2

FIRST ACTIVITY? DEBATING CLUR
SECOND ACTIVITY? CHESS CLUEBE
ATHLETIC TEAM?T FOOTERAL.L

(A COMPLETE RUN IS NOT SHOWN.)

Accessing Multiple Files

It is possible to work with two or more random-access files simultaneously within a
single program. When this is done the programmer should not confuse the variables
associated with each specific file. Note how the channel numbers are used to keep the
information in each file separate within the program.

10.15

PROGRAM 10.10

This program, named FOOTBALL/BAS, opens the files GRADES/TXT and ACTIVI-
TY/TXT and prints the names and grade averages for each member of the football team.
The same record number indicates the same student in both files.

1 REM N# = STUDENT S NAME (20 CHARACTERS)

2 REM Cl1$,02%,075%, C4% = COURSE NAMES (20 CHARACTERS EACH)
2% REM Gle,626,63%,04% = GRADES (2 CHARACTERS EACH)

4 REM Als,AR% = ACTIVITIES (20 CHARACTERS EACH)

5 REM Te = ATHLETIC TEAM (135 CHARALTERS)

& REM ID = STUDENT ID NUMBER

7 REM

g REM

10 ClLEAR 250
20 0OFEN "R",1,"GRADES/TXTa1",108
Z00 DFEN Y"RY.Z2,"ACTIVITY/TXT:21",55
40 FIELD 1, 20 A5 N$%, 20 A8 Cls$, 2 A5 G114, 20 A5 C24,
2 A5 G226, 20 A5 C3s, 2 A% G334, 20 A8 C4%, 2 A5 G4%
90 FIELD 2, 20 A% Als, 20 AB A2%, 19 AS T¢
&0 FOR ID = 1 TO LOF(2)

70 GET 2, ID

80 IF LEFT$(T4,8) <> "FODOTRALL" THEN 130

F0 GET 1, ID

100 A = (CVIGLE) + CVIGEE) + CVIG3E) + CVI(G44)) /4
110 FRINT N#%,A

120 FRINT

170 NEXT ID

140 CLOSE 1,2

READY

RUN

DAVID GELLER 78.25
ERIC SLAYTON 80.75
JEREMY LEADER 85.5

READY

10.16

. Store the 26 letters of the alphabet in a random-access file in order. Have a program
pick five random numbers from 1 to 26 and use these numbers to put together a five
letter “word”.

Store titles of ten books in a random-access file. Use this file to make a sequential file
for all the titles beginning with letters from N to Z, inclusive.

(a) Establish a random-access file named SAYING which is to consist of wise sayings.
Each sage remark is to consist of up to 128 characters. The number of such utterances
is to be determined by the user.

(b) Write the program required to retrieve and print any one of the wise sayings in
SAYING.

WISE PIEN SAY, T0 NOT TRY 70 FIND 7HE
ANSWER, ONLY T0 UNDERSTAND QUEST/ON.

\/

|

B e —

(a) Create a random-access file named ACCOUNTS that will contain the customer
name and current balance for twenty-five savings accounts.

(b) Write a program that will update the file ACCOUNTS whenever an individual
makes a deposit or withdrawal.

(c) Write a program using the file ACCOUNTS that sends a letter of warning to the
holders of all overdrawn accounts, or a letter of congratulations to the holders of
accounts with $500 or more informing them that they will be receiving a toaster in the
mail.

10.17

5. (a) Create a random-access file named CARS to record how many full-sized, mid-
sized and compact cars a dealer sells each month for a twelve month period.
(b) Write a program that will retrieve information from the file CARS for a specific
month and then print a bar graph comparing the sales of the three sizes of cars for that
month.

6. (a) Write a program that will create a random-access file FRAT which contains the
names, fraternities, and ages of thirty college students.
(b) Write a program that will access FRAT and create a sequential file SIGMA which
contains the names and ages of the students who live in Sigma Chi.
(c) Write a program that accesses the file FRAT and randomly selects fifteen students
for seats in a classroom of three rows, five seats to a row. Have the computer print a
seating plan for the class, placing each student’s name at the correct seat location.

7. Open four separate random-access files named NAME, SALARY, AGESEX, and
AUTO, and store in them the data listed. All information is stored under a person’s
identification number, assumed for convenience to run from 1 to 10.

File 1 (NAME)

NAME ADDRESS STATE
1. BOWMAN CANAAN CONN.
2. BROOKS SYOSSET N.Y.
3. CHRISTIAN HARDWICK VT.

4. CUMMINGS TRENTON N.J.
5. EDWARDS MONTGOMERY ALA.
6. HALEY WESTFIELD N.J.
7. HALPERN NEW YORK N.Y.
8. REYNOLDS HOUSTON TEX.
9. SCOTT SHERIDAN WYO.
10. WALKER NEWARK N.J.
File 2 (SALARY) File 3 (AGESEX)
SALARY SAVINGS AGE SEX
1. 18,000 4,200. 1. 48 M
2. 27,000 3,600. 2. 39 F
3. 59,000 2,200. 3. 46 M
4. 78,000 500. 4. 71 M
5. 25,000 7,800. 5. 29 M
6. 45,000 12,000. 6. 38 F
7. 9,000 400. 7. 51 M
8. 21,000 3,200. 8. 62 F
9. 33,000 4,700. 9. 22 F
10. 40,000 3,900. 10. 32 M

10.18

File 4 (AUTO)
AUTO
BUICK
OLDS
CHEV
CHEV
FORD
CHEV
FORD
CAD
VW
FORD

CONOOA~LN A

—

YR
79
72
80
73
78
76
73
74
79
69

By performing the correct file searches, find the following:
(a) Names and addresses of men over 30 years old who own a Ford and have an income

over twenty thousand dollars a year.

(b) Names of men and women who drive a Chevrolet, Ford, or Volkswagen and have a
salary above fifteen thousand dollars a year and savings below two thousand dollars.
(c) The F.B.l. is looking for a young man (under 35) who drives a Ford with New Jersey

plates. Have the computer print his name and address.

(a) Write a program that will create a random-access file named SAVE that can be used by
a bank to store information about ten depositors. Each depositor's name, social security
number, complete address (number and street, city, state, and zip code), and account
balance are to be included. The file SAVE is structured as shown below.

Variable Variable name Space allotment
Name N$ 20
Social Security Number SS$ 11
Street Address A$ 25

City C$ 15
State S$ 2

ZIP Code z$

Balance B$ 4

10.19

(b) Write a single program which allows any of the information, including the balance
of the account, to be changed or updated.

FRLUM

DEFOSITOR™S ACCOUNMT NUMBERT 2

NAME: MARY AMNM WILSON
(1) CHAMGE MAME
{2y CHANGE 50CTIAL SECURITY NUMBER
(3) CHANGE ADDRESS

(4) CHANMGE BALANCE
OFTIONT 4
LD BALANCE: 134,538
MEW BALANDED 159.358

READY

(c) The bank gives its depositors 1/2% interest per month compounded monthly.
Write a program which is run at the end of each month to add 1/2% to the balance of
each account.

9. The computer is to be used to store information on charge account customers at the
Buy Low Department Store in a random access file named CHARGE/TXT. The
information on each customer is to be stored in a single record with the record
number serving as the customer’s charge account number.

(a) Create the file CHARGE/TXT and store in it the name, street address, city, state,
zip code, and total unpaid balance for each of ten charge customers.

(b) Write a program that will daily update the balances as new charges are made and
bills are paid.

FRUN

ENTER A NEGATIVE NMUMBER TO STOF THE FROGRAM
ACCOUNT #7 2

CHARGE (€)Y OR FAYMENMT (F)7 O

AMOUNT? 48.93

TRAMSACTION RECORDED

ACCOUNT #7 ~1
READY

10.20

(c) Write a program that will send each customer a bill at the end of each month. If the
total due exceeds $800, the message YOUR ACCOUNT EXCEEDS YOUR CHARGE
LIMIT, PAY IMMEDIATELY is printed at the bottom of the bill.

FRUN

FROM: BUY LOW DEFARTMENT STORE
T0O: JANE GILMORE

ACCOUNT # 1

YOU HAVE CHARGED 4487.2% AGAINST YOUR
ACCOUNT. THIS AMOUNT IS5 NOW DUE.

THANE YO

FROM: BUY LOW DEFARTMENT STORE
TO: FAUL JOHMSON
ACCOUNT # 2

YOU HAVE CHARGED %874. 12 AGAINST YOUR
ACCOUNT. THIS AMIUNT IS NOW DUE.

YOUR ACCOUNT EXCEEDS YOUR CHARGE LIMIT.
FaYy IMMEDIATELY!

THANE YOU
READY

(d) Write a program that will close the account of a customer who has paid his or her
balance and is moving away. (Hint: Place all blanks in the record.)

FRLUN

WHICH ACCOUNT IS5 BEING CLOSED? 2
ACCOUNT # 2 HAS BEEN CLOSED
READY

(e) Write a program that opens an account for a new customer. Have the computer
search the existing records and use one that is empty. If no empty record is found, add
a new one.

FRUM

MAME? BARA JONES

STREET &DDRESS? 75 BEORGE DYE RD.

CITY? TREMTOM

STATED NI

ZIF CODE?D 08AF0

THIS FERSOM WILL BE ASSIGMNED ACCOUNT # 2
READY

10.21

77T N
7771 \7N

USING THE EDITOR

The TRS-80 has an editor which helps the programmer correct a program currently in
memory. The programmer can best learn the use of the editor by spending time to become
familiar with i1ts different functions. A short outline of the edit commands is presented here.

EDIT

The EDIT command is used to invoke the TRS-80’s built in editor. To correct the line
50 FOR Q = 1 TO 10: PRINT Q, SQR (Q) :NEXT D

the command

EDIT 50

is used. The computer will respond by printing the number of the selected line, leaving the
cursor positioned one space after the line number.

Pressing the ENTER key while in EDIT mode causes the computer to print the rest of
the line being edited and to record any changes made in that line. The computer then
leaves the EDIT mode and returns to normal operation.

Key Function
n. moves cursor n spaces to the right
n moves cursor n spaces to the left

lists line being edited
[o]

n deletes n characters from cursor position

A

Shift

EHUE]

3 -
[o]
o

)

]
A & =

e}

=] o]

A2

}

puts editor in insert mode

exit from insert mode

places cursor at end of line and allows insert

deletes all characters to the right of the cursor and allows insert

searches for the nth occurrence of the character (c) and places cursor
at that position

deletes all characters up to the nth occurrence of the character (c)
changes n characters to the right of the cursor

quits EDIT mode, saving all changes

quits EDIT mode, canceling all changes

cancel changes and returns to EDIT mode

——
N

DISK BASIC COMMANDS

The following commands are intended for systems equipped with at least one disk
unit.

CMD
The CMD command performs a number of different tasks:
CMD “D:d” will list the directory for the disk in drive d (e.g. CMD“D:1”)

CMD “z”, “ON” duplicates all output on a printer as well as on the display
screen

CMD “Z”, *OFF” cancels the effect of CMD “Z”, “ON”

Program and File Names

Every program and file on a disk is identified by a unique name. The general format
for a program or file name is:

<name> / <extension> . <password> : <drive#>

The name may consist of from one to eight characters (letters and numbers). The first
character must be a letter.

B.1

The extension, which is optional, may be from one to three characters, starting with a
letter. It is useful to standardize extensions by employing /BAS for BASIC programs and
/TXT for files. This allows the user to easily distinguish between programs and files.

An optional password may be assigned to a program or file and may be from one to
eight characters long, starting with a letter. The password must be specified whenever
loading a program or opening a file whose name contains a password. A password
prevents unauthorized users from tampering with valuable data or programs.

For example, in loading a program named JONES/BAS with the password SECRET it
is necessary to type JONES/BAS.SECRET. When listing the directory of a disk, the
passwords are not printed. Therefore, it is important to remember passwords.

Optionally, a drive number may be specified when using a system equipped with more
than one disk unit. If a unit number is specified, the computer will perform the operation
desired (such as opening a file) on the selected disk drive.

The following are valid program or file names:

MAIL/BAS
TALK/DAT:1
CODES/TXT. PASSWORD
POTATOES

OMNI3.PAUL
P46/A9.SIX66:0

SAVE
The SAVE command is used to store a program on a disk. Its form is:
SAVE “<program name> : <drive#>"
For example,
SAVE “MYPROG/BAS:1”
will save the program currently in the computer’'s memory on the disk in drive one, and give

it the name MYPROG/BAS. Note that MYPROG/BAS:1 must be enclosed in gquotation
marks.

LOAD

Programs previously saved by the SAVE command may be recalled from the disk and
transferred to the computer’'s memory by the use of the LOAD command. For example,

LOAD “MYPROG/BAS:1”

will load MYPROG/BAS into memory from drive 1.

B.2

KILL

Unwanted programs and files stored on a disk can be removed using the KILL
command. Its form is:

KILL *“<program or file name>: <drive#>"
The command
KILL “MYPROG/BAS:1”

will delete MYPROG/BAS from the disk in drive one.

NAME

The NAME command is used to renumber the line numbers of a program currently in
the computer’'s memory. Its form is:

NAME <newline>, <startline>, <increment>

Newline is the new line number of the first line of the program to be renumbered.
When not specified, the computer will assume 10.

Startline is the line number of the original program where renumbering is to begin.
When not specified, renumbering begins with the first line in the program and then
renumbers the entire program.

Increment specifies the difference between successive renumbered program lines. If
omitted, the computer assumes 10.

For example, the command:

NAME 100,,20
will renumber the entire program currently in memory, so that the first line number is 100,

the second 120, the third 140, and so on. Note that startline was not specified in this
example.

The NAME command will also change the line numbers used within statements so that
they correspond with the new line numbers of the program.

MERGE

The MERGE command is used to combine a program in memory with one that has
been previously stored on a disk. Its form is:

MERGE “<program name> : <drive#> ”’

B.3

For example,
MERGE “ADDENDUM/BAS:1”

will combine the program in memory with the program ADDENDUM/BAS on the disk in
drive one. If the drive number is not specified, the computer will search for the program on
all of the available disks, starting with drive zero. If any line numbers in the program in
memory match line numbers in the program from the disk, the lines in memory will be
replaced by those from the disk.

Programs are usually stored on a disk in a coded format which will not allow them to
be merged with a program in memory. To be merged the program on disk must be stored
in ASCII format. This is accomplished with the command:

SAVE “MYPROG/BAS:1”,A

Sorting

The TRS-80 has a built in function that will alphabetize the contents of singly
subscripted string variables (arrays). The general format for the command is:

CMD *“0”, N%, <array name> (<starting point>)

N% must be an integer variable that specifies the number of elements to be sorted and the
array name is the name of the array to be sorted. Starting point specifies the element of the
array where the sorting process is to begin. For example,

130 N% = 20%
140 CMD “O”, N%, B$(5)

sorts the elements B$(5) to B$(24) and places the alphabetized results back in the elements
B$(5) to B$(24).

PROGRAM B.1
The following program illustrates how the CMD “O” function is used to sort an array

of fifteen names. The first printing lists the names unsorted, the second shows the sort of
A$(4) to A$(10), and the third shows the sort of the entire fifteen names.

B.4

10 CLEAR 250
20 DIM A$(15)
0 FOR X = 1 TO 15

40 READ A% (X)
S0 NEXT X

60 GOSUR 140

70 NA = 7

80 CMD "O", N%, A%(4)
90 GOSUB 140

100 N4 = 15

110 CMD "0", N%4, AH(1)
120 GOSUR 140

1EO END

140 FOR @ = 1 TO 15
150 FRINT A%(),
160 NEXT @

170 FRINT

180 FRINT

190 RETURN

200 DATA TOM,DICK,HARRY,LYDIA, MARY, JANE, DIANE, JEREMY, ELI
210 DATA ROBERT,LESTER,DON,CAROL, ERNIE,ERIC

READY

*RUN

TOM DRICE HARRY LYDIA
MARY JANE DIANE JEREMY
ELT ROBERT LESTER DON
CAROL ERNIE ERIC

TOM DICH HARRY DIANE
ELT JANE JEREMY LYDIA
MERY ROBERT LESTER DON
CAROL ERNIE ERIC

CAROL DIANE DICHE DON
ELT ERIC ERNIE HARRY
JANE JEREMY LESTER LYDIA
MARY ROBERT TOM

READY

="
I YIIRNNNN
77T TN

TRSDOS OPERATING SYSTEM

Starting the System

To bring the computer up in the disk operating mode, place a copy of the TRSDOS
disk in drive 0 and then turn on the computer. After a few seconds, the computer will
respond by asking a series of questions.

ENTER DATE (MM/DD/YY)?
Enter the date in the form requested (e.g. 06/23/82).
ENTER TIME (HH:MM:SS)?

Enter the time in the form requested (e.g. 14:32:10). Note that the computer uses a 24 hour
clock. The computer will now respond

TRSDOS READY
and print a series of periods. Type the word BASIC and then the computer will ask
HOW MANY FILES?

Enter the maximum number of files, from 1 to 15, that you expect to have opened
simultaneously. If you expect to use random-access files, enter a V along with the number.
For example,

HOW MANY FILES? 3V

C.1

When working in BASIC hit the ENTER key as a response to

MEMORY SIZE?

APPEND

The APPEND command is used to tack the contents of one file onto the end of another.
its form is:

APPEND <source> <destination>
For example,
APPEND FILEl/TXT FILE2/TXT

will cause the contents of the file FILE1/TXT to be added to the end of FILE2/TXT. The
contents of FILE1/TXT will not be affected, but FILE2/TXT will now contain both files.

COPY
The COPY command is used to duplicate a file. Its form is:
COPY <original> <new file>
For example,

COPY PAYROLL/TXT SAFETY/TXT

will cause the computer to make an exact copy of PAYROLL/TXT and place it in a new file
named SAFETY/TXT.

COPY PAYROLL/TXT:0 :1

will make an exact copy of the file PAYROLL/TXT located on drive zero and place the copy
on drive one, naming it also PAYROLL/TXT.

DIR

To produce a catalogue of a disk, type
DIR:<d> <(PRT)>

which will list the directory of the disk on the specified disk drive (d). If the (PRT) option is
specified, the directory will also be produced on a printer, should one be available.

c.2

RENAME

Itis possible to change the name of files and programs using the RENAME command.
Its form is:

RENAME <old name> TO <new name>
For example,
RENAME PAYROLL/BAS:1 TO SALARY/BAS:1

will give the program PAYROLL/BAS on drive one the new name SALARY/BAS.

DUAL

DUAL(ON) will cause all subsequent video output to be duplicated on the printer until
the command DUAL(OFF) is executed.

FORMAT

New disks must be initialized, or “formatted” so that the TRS-80 can use them. After
the command FORMAT is given, the computer will respond by asking a series of questions.

FORMAT WHAT DRIVE?
Enter the number of the drive containing the new disk to be formatted.
DISKETTE NAME?

Enter a name from one to eight letters and numbers, starting with a letter, that you wish to
utilize as an internal label for the disk.

MASTER PASSWORD?
Enter a password made up of from one to eight letters and numbers, starting with a letter.

This password is important and must be known when a disk is copied. Hence the
programmer must not forget what it is.

BACKUP

The BACKUP command is used to copy an entire disk at one time. After the command
BACKUP is given, the computer will ask a series of questions.

SOURCE DRIVE NUMBER?

C.3

Enter the number of the drive containing the disk to be copied.
DESTINATION DRIVE NUMBER?
Enter the number of the drive containing the disk to be copied onto.
SOURCE DISK MASTER PASSWORD?

Enter the master password of the disk to be copied.

C.4

FORMATTING OUTPUT

There are many instances when a programmer will want to have the com puter’s output
produced in some special form. This is especially true when charts or tables are to be
printed in some specific format. The PRINT USING statement is usually employed to
produce formatted output.

PRINT USING

The PRINT USING statement allows an entire line of output to be formatted into zones
of variable length. These zones may contain a series of numbers, strings, or a combination
of both. The general form of PRINT USING is:

PRINT USING “<format>"; <variables or expressions>
The format must be a string variable or a string enclosed within quotation marks. Its
purpose is to inform the computer of the format which will be employed in printing the

variables or expressions. The variables or expressions must be preceded by a semicolon
and separated from each other by commas.

D.1

PROGRAM D.1

This program demonstrates some simple applications of PRINT USING.

1068 = 25.68 ¢« B = 2.21 « C = 2.4
20 PRINT USING '$#.# . #"'sA, B, C
S0 FPRINT
40 PRINT USTNG V. #4 . #.oH"y 3.798,
READY
FRUN
25,7 z.2 2
5.80 2.8 R

READY

2.78,

Notice how either variables or expressions may be used in the PRINT USING statement and
also how numbers are rounded off to the desired number of decimal places.
The following table shows the valid formats that may be used in a PRINT USING

statement.

Symbol
#

$$

* k

**$

D.2

Use

Reserve space for one digit.

Indicate location of decimal point within number
sign (#) field.

Specify location of one or more commas within
a # field.

Display the sign of the number being printed. The
+ may be placed before or after the # field.

Display a leading or trailing minus sign regardless
of the sign of the number.

Display a single dollar sign just prior to the
leftmost digit of a # field.

Replace any leading blanks in a # field with
asterisks.

This combines ** and $$ such that a single dollar
sign will be displayed just prior to the leftmost
digitin a # field. Any leading spaces remaining will
be filled with asterisks.

Examples

#iH
##

#.#H
HiHE

#i Y
##H

+ #iH 4
i HH# A+

—HHHE
HitH —

SSHHE#HE
SSH, #iH

T A
M

CSHH#H HE
“SH

(AR

Output a number in scientific notation. Remember #4444

that 4 prints as [. R YYY
! Output only the first character of a string. !
%% Output only the first two characters of a string. %%
“%<n-2 spaces>% Output the first n characters of a string. % %
% %
<any other char> Output any characters not in this table as though ABCD
they were in a normal print statement. Q12R

PROGRAM D.2

This program demonstrates the use of the different symbols given in the table.

1O FPRINT USING " #4#"y &5

2O FRINT USTNG " e, #6575, 28467
SO OPRINT USING ", ###. #8"y 12687.53
"Over ### contributed to the goal of $#, #H, S,

40 F3 =

oo o=

&HD FPRIM

212 & PRINT USING F$p 0,23947000.92

S0 FPRINT USING " ., # HooHHEH+"y 42,3, 8.9172
T USING v HH . W L HEHE 4203, B8.9172
T USING "We can format numbers such as +##.#")

o PRIN

80 FRINT
FO A = 4201.67

LOO FRINT USING "Amount is: XKS#, $##. #8 of budget."; A
L10 FRINT USING "Mr. Dandy gave XXE####. ## to charity.
120 PRINT

READY
FRLIN
ha7

P

Lo N R
1,287
Over 21

]

e
o

4z,

-

USTNG " ssdddd., #4": 201,74

g7
o 53
2 contributed to the goal of 2E,9867,000,.92

8.9172+
+B. 9172

We can format numbers such as +18.4
201.76

Amount

im: Xk64,201.467 of budget.

Mr-. Dandy gave ¥X¥¥%$473.10 to charity.

READY

18.37

"y 43E.10

D.3

It is possible to place the format portion of the PRINT USING statement into a string.
For example,

10 F§ = “#.# ## % %"
can be used later in a PRINT USING statement.
70 PRINT USING F§, A, B, N§
This technique is especially useful in formatting columns in a table so that they line up with
their appropriate headings. The headings are typed in the line directly above the line

containing the format string. By lining up the quotation marks in each of the lines, it is easy
to produce the correct format. Program D.3 demonstrates this procedure.

PROGRAM D.3

10 PRINT "Hey Description Cost Gty Total"

20 FRe o= " Y Yo SBHE. HH Ho KRB, i
IO OFOR L o= 1 TO &

40 READ %, L%, C, &

S50 FRINT USING F2%:; k%, L$, C, &, CXxQ@

&HO T =T+ Ck@) : Q2 = 02 + 0

70 NEXT L

80 FRINT : J&= "### items were sold raising Xk&##, #d#. 48 today”
20 FRINT USING J%; @2, T

100 DATA D, "Diskettes", 5.95, 20, kK, "Cleaner", 2.29, 16

110 DATA B, "I/0 Manual", 17.9%, 100, R, "Ribbon", 1.99, 50

120 DATA W, "CFU Cables", 55.00, 48, Z, "Games Fkg.", 49,95, 12

READY

FRUN

Fey Description Cost Gty Total

D Diskettes $5.99 20 KARk¥E119. 00
k Cleaner $2.29 16 XXKEXETH. 64
R 1/0 Manual $17.95 100 Xk&1,795.00
R Ribbon $1.99 H0O AARKK XKD SO
W CRU Cables H55. 00 48 *XE2, 640,00
Z Games Flg. $49.95 12 ¥RERKETHDF. 40

244 items were sold raising ¥Xx$5,289.354 today
READY

D.4

IS

CRAFTER ONE

1. 10X =15
20 Y = S5%X + 7
30 PRINT Y

2. 10 A% = "HARRY"
20 B$ = "SHERRY"

FOOPRINT “"HELLO "; A%
40 FRINT B&s; " IS LOOKING FOR YOU.™

3. 10 READ X

POV =3 kX O+ 5
30 PRINT Y
40 GOTO 10
50 DATA 3, S5, 12, 17, 8

4. 3 PRINT "NAME", "FIRST GRADE"

10 READ N%$, A, B, C, D

30 PRINT N$, A

40 GOTO 10

50 DATA WATERS, 83, 95,86, 80,FRENCH, 42,97, 66, 89, MIKAN, 61,83, 42, 90

5. 10 INFUT "WHAT IS X"j; X

207 = F % X

IO PRINT "S%X="3; Y
40 PRINT "X/3="; X/5
S0 60TO 10

10 INPUT "WHAT IS YOUR NAME™3; N$

20 INFUT "WHAT IS YOUR FRIENDS NAME":; F$
IO PRINT Féy; " I8 A FRIEND OF "3 N#$

40 FRINT

S50 GOTO 10

CRAPTER TG

10 INFUT "ENTER TWO NUMBERS": A.H
20 IF & » B THEN FRINT A @ PRINT B @ GOTO 10

A0 OFRINT B ¢ FPRINT A @ GOTO 10

10 INFUT "ENTER TWO LAST NAMES";A%,B%$
20 IF A%<B% THEN FRINT A%: FRINT B#: GOTO 10
30 PRINT B$: PRINT A%: GOTO 10

10 INFUT "ENTER A NUMEBER";M

20 IF NX25 AND N<112 THEN 40

Z0 PRINT N3 "IS OUT OF RANGE": GOTO 10

40 PRINT N:"IS BETWEEN 235 AND 112": GOTO 10

10 INFUT "ENTER N$";N$

20 IF N$ < "GARBAGE" OR N$ > “"TRASH" THEN 40
EQ OFRINT "NO":GO0TO 10

40 FRINT "YES" : GOTO 0

10 FOR X = 1 TO 25
20 FRINT X3
FO ONEXT X

10 FOR 8 = 20 TO 10 STEF -2
20 FRINT S;

Z0 NEXT 8

40 FRINT

10 INFUT "STEF VALUE"; N
20 FOrR X = 8 TO 20 S8TEF N

30 FRINT X3
40 NEXT X

S0 PRINT

10
20

30

10
20
25
0
70
a0
85
S0

D1
D2

CHAPTER THREE

RND(101) + 49
RND(101) + 49
FRINT D1;

"multiplied by"; DZ2; "is"; D1%DZ

FRINT "I"m thinking of a random number between 1 & 50.°¢
RND (50)

FOR W =
INFUT "What is your guess'"s G

6

R =

IF

IF B
FRINT
FRINT

1

R T

TO S ¢ REM W = # of wrong guesses

HEN FRINT "Too Low!" : NEXT W : GOTO 90

* R THEN FRINT "Too High!" : NEXT W : GOTO 90

100 FRINT

10
20
Z0
40
50
HO
7O
80
Q0

10
20
20
40
50
60
7O
80
Q0

REM
REM
REM
REM

FOR L

I r<>xm

"Th

il

i

= Il

"Correct!!'!'" : END
"Youve had 5 guesses now."

e number was'; R

Random number between O and 9

Number of random numbers resulting between O 2% 4
Number of random numbers resulting between S5 % 9
Loop variable to generate 50 random numbers

T 50

R = RND(10) - 1
IF R «
NEXT L

FRINT "There were"; X3
100 FRINT "There were"; Y: "numbers between 5 and 9."

REM L
REM N
REM E
REM 1
FOR L =

97T

]

)-F
1

1

HEN X = X + 1 ELSE Y =Y + 1

"numbers between O and 4.°"

Loop for entering 10 numbers from keyboard
Arbitrary value entered from keyboard
NMumber of EVEN numbers entered

= number of 0DD numbers entered
TO 10

INFUT "Enter a number"; N
(M/72) =

IF
NEX

T

L.

FRINT E;

INT(N/Z2) THEN E = E + 1

Even; "3 10-E; "QOdd"

10 CLS

20 OFOR X = 45 TO 73

S0 SET(X,18) = SET(X,19) @ S8ET (X,30) @ SET(X,31)
40 NEXT X

S50 FOR Y = 20 TO 29

HO SET(45,Y) = SET{46,Y) @ SBET(72,Y) = SET(7I,Y)
7O NEXT Y

80 FOR X = 57 T0O &1

90 SET(X,23) 1 SET (X,26)

100 NEXT X

110 FOR Y = 24 T0O 25

120 SET(H7.Y) @ SET(61,Y)

130 NEXT Y

10 CLS

20 X = 1 ¢ ¥ = 24 3 F =1

IO SET(X,Y)

40 X = X + F

50 RESET(X-F,Y)

&0 IF X = 127 OR X = 1 THEN F = F % -1
70 GOTO Z0

CHAFTER FOUA

10 FOR X = 20 TO 24
20 FRINT "Outer Loop:"; X

IO FOR Y = 1 TO 3

40 PRINT "Inner:"3 Y,
50 MEXT Y

&HO FRINT

70 MEXT X

10 FOR X = 1 TO =

20 INFUT L (XD

IO NEXT X

40 REM Print L) in reverse order now
=0 FOR X = 3 T0O 1 STEP ~1

&0 FRINT L (X)

70 NEXT X

10 REM Read 6 words from keyboard

20 FOR X = 1 TO &

30 INFUT W% (X)

40 NEXT X

50 REM Pick 4 words and print them as a sentence
&0 FOR P = 1 TO 4

70 M = RND (3)
80 PRINT We(N); " "3
20 NEXT F

100 PRINT "." 2 REM Feriod = End of sentence

10
20
30
40
50
HO
70
go
Q0
100
110
120
130
140
150

1460

10
20
0
40
S50
&HO
70
80
PO
100
110
120
130
140

REM Read & words from keyboard

FOR X = 1
INFUT
NEXT X

REM Fick 4 words and print them as a sentence

T &
W& (X)

REM Ficlk

another

Ce1) = RND(S5) : REM First random number
FRINT WH(C(1)); " "3 1 REM Always show first word
FOR F = 2 TO 4
CO*) = RND(5)
REM Now check for duplicate random numbers
FOR K = 1 T0O P~1
IF COED) = C(F) THEN 90 H
MEXT F
FRINT WH(C(F))y " "y
NEXT F
FRINT "." : REM FPeriod = End of sentence
REM Enter the sis numbers from keyboard
FOR K = 1 TO &
INFUT X (kD
NEXT K
REM Frint the six numbers in a column
FOR K = 1 TO &
FRINT X ()
NEXT K
REM Frint the six numbers in a row
FRINT
FOR K = 1 TO &
FRINT X (k)
NEXT K
FRINT

S DIM X$(5,2)

10
20
=0
40
=0
&H0O
yAs)
a0
Q0
100
110
120
1370

REM Output X$ 0O, making the rows become columns

FOR I = 1 TO &
FOR J = 1 TO 3
READ X#(I,d)
NEXT J
NEXT I
FOR I = 1 TO 3
FOR J = 1 TO 5
FRINT X$¢(J,I)3" "3
NEXT J
FRINT
NEXT I

DATA A,B,C,D,E,F,G,H, I,J,K,L,M,N,0

if used

1A.

1B.

2A.

2B.

10

20

CRAPTER FUE

INFUT "ARE YOU COMING OR GOING": A%
IF As="COMING"

THEN FRINT "HELLO"

ELSE FRINT "GOOD-BYE"Y

IO END

1 REM SHELLSORT OF THE LIST OF CLUE MEMBERS

10

INFUT "

20 FOR X=1

0

INF

40 NEXT X

S0
60
70

§=N
S=INT (S
F=0

80 FOR X=1

0
100
110

140
150
155
160
170
180
190

O=X
IF
IF

NEXT X
IF 81
IF F=1
FOR X=
FRI
NEXT X
END

HOW MANY NAMES IN THE LIST";N
TO N
UT "MEMBER"jM$ (X)

/1.3 @ B=8

TO N

+5

GxN THEN 1350

M (X) =M% (Q)

THENM T% = M$(X) 2 M$(X) = MEME) =

THEN &0
THEN 70
1 TON

NT M%(X)

M$ (LD

T4

F

i

The problem with 2a is very easy to correct. The FOR-TO-NEXT loop in line 20 is
missing the STEP command. Line 20 should read:

20 FOR X =10 TO 1 STEP -1

The product in line 30 is always positive. The best way to correct this error in logic
would be to eliminate line 40 and replace it with:

40 PRINT “THE PRODUCT IS POSITIVE”

it

10
20
30

40

10
20

=30
40
=50
&HO
70

10
20
=0
=0
&0
70
100
110
1260
120
140

150

16
a0
20
40
50
&HO
70
80
P10

8

INFUT N

X ABS (N — FIX(
Y INT(X % 100
FRINT "INFUT:";

DEF FNR(D)
DEF FND(R)
INFUT "DEGREE
FRINT "That is"j
FRINT
INFUT
FRINT

o

D
R
(=3

"RADIANS";
"That is";

INFUT "NAME" ; N$
FRINT N%
IF N$ =
GOTO 10
REM
REM
REM
FOR I
FRINT"—"3;
NEXT I
FRINT
RETURN

"DONALD"

THIS

1 70
= RMD (13)
G RMD (4)

FOR D o
"

oy

X
X
5

ChAPTER SiK

N)
+ 0.5) / 100

N, "OUTFUT:"3 Y

T.1415 /7 180
180 /7 3.1415
A
FNR(A); "radians."
B

FND(R); "degrees."

CRAPTER SEUEN

THEN GOSUE 100

I THE CODE TO UNDERLINE
1 TO LEN(N$)

q

FRINT "CARD":D3;"185 THE"3;C;"OF
ON 5 GOTO &0,70,80,%0

FRINT "CLUES" : GOTD 100
FRINT "DIAMONDS" : GOTO 100
FRINT "HEARTS" @ GOTD 100
FRINT "SFADES"

100 NEXT D

CHAFTER EIGHT

10 INFUT "A LETTER FROM THE ALFHAEET FLEASE"j;A$

20 PRINT "THE ASCII OF *";As;"" IS";ASC(AS)

IO C o= ASC(AS) + 2

40 IF C » 90 THEN C = C - 26

50 PRINT "TWO LETTERS AFTER “";A$;"° IS “"j;CHR$(C) """
60 GOTO 10

CRAPTER NINE

10 OFPENM "0%, 1, "MONTHS/TXT:1"
20 FOR I = 1 TO 12

E0 READ M%
40 FRINT #1,M$
S50 NEXT I

A0 CLOSE 1
100 DATA JAMUARY, FEEBRUARY , MARCH, AFRIL ,MAY , JUNE . JULY
110 DATA AUGUST, SEFTEMERER, OCTOBER, NOVEMBER, DECEMBER

10 INFUT "WHAT NUMBER MONTH DO YOU WANT";N
20 OFPEN "I",1,"MONTHS/TXTs1"

F0FOR I =1 TO N

40 INFUT #1,N%

S0 NEXT I

60 CLOSE 1

70 PRINT "MONTH"3;N;"IS "j;N$

CRAPTER TEN

1 REM M$,M1% = MONTH (9 CHARACTERS)
2 REM

% REM

10 OFEN "R",1,"MONTHS/TXT:1",9

20 FIELD 1, 9 AS M#$

IO FOR M = 1 TO 12

40 READ M1%

S0 LSET M$ = Ml$
HO FUT 1
70 NEXT M

90 CLOSE 1
100 DATA JANUARY ., FEBRUARY, MARCH, AFRIL,MAY, JUNE
110 DATA JULY,AUGUST,SEFTEMBER, OCTOBER, NOVEMEER, DECEMBER

10
20
a0
40
50

&0

OFEN "R",1,"MONTHS/TXTz1",9
9 A5 N$
INFUT "WHAT NUMBER MONTH"j3N

FIELD 1,

GET 1, N

FRINT "MONTH"§sN;"IS “3M$

CLAOSE 1

1 REM M%
2 REM L%

=7

REM

4 REM

10
20
0
40
S0
60
70

OFEN "R"
FIELD 1,
OFEN "R"
FIELD 2,
LSET L%
FUT 2,1
CLOSE 1,

it oH

MONTH (9 CHARACTERS)

LENGTH OF FILE

"MONTHS/TXT?

2l "MONTHS/TXT21",9

i

~y

s

9 AS M&

~

2y "LENGTH/TXT21", 2

q -

2 A5 LS
MEIS (LOF (1))

(2 CHARACTERS)

11.

ChAFTER QNE

10 PRINT "a"
20 PRINT " B"
ZO PRINT » C"
40 PRINT "QRCD"

*RUN
THE VALUE OF R

19
10 READ A,B
20 FRINT "THE SUM IS ";A+B
20 60T0O 10
40 DATA 12,8,9,9

10 INFUT "PRICE, NUMBER OF LOAVES":P,N
20 FRINT "TOTAL SFPENT = $";PAN/100
10 INFUT X,Y
20 PRINT "X="3X,"Y="3Y,"XkY="3XXY
30 6070 10
*RUN

=00 510

.3 .51

13.

15.

17.

19.

21.

23.

25.

27.

29.

*PRINT"AAA"; 111, 2225 "AAA", "I33I"; " "3 16-3%2

AAA 111 222 AAA 33310
*RUN
ABCDXYZ
AECD 7
7 XYZ
-4 XYZ
10 PRINT 2+3+4+3+5
10 READ X,Y
20 A = 12KX+7KY
30 PRINT A
40 GOTO 10
50 DATA 3,2,7.9.,12,-4

10

20

10
20
30
40

50

10
20

=0

10
20
S0
40
50

&0

10
20

=0

INPUT "LENGTH, WIDTH, HEIGHT"j;L,W,H

PRINT "VOLUME IS"j;LXxWkH

INFUT "HEIGHT"3;H

INFUT "WIDTH"3 W

INFUT "LENGTH";L

INFUT "FRESENCE";F

FRINT "YOUR ORBJECT USES"iHXWxLXF; "TESSERACTS IN FOUR SPACE"
INFUT "HOW MANY BOOES HAVE YOU BORROWED": B
INFUT "HOW MANY DAYS LATE ARE THEY";L
FRINT "YOU OWE":.1O0%XB¥L; "DOLLARS. "

INFUT "WHAT IS THE FLAYERS NAME";F®

FRINT "WHAT IS ";FP$;""8";

INFUT " WAGE"3;W

T=Wx.44

FRINT PF#z" WOULD KEEF $"3W-T

FRINT "HE WOULD FPAY $";T3;"IN TAXES."

INFUT "WHAT I8 THE BASE'":R

INFUT "WHAT I8 THE ALTITUDE"j;A

FRINT:PRINT"THE AREA IS";AXBX.5

31.

33.

10
20
=0
40
50
HO
70
80
Q0

READ S1,61,8%,62,83,63,954,64,55,G65

S = BI+82+53+54+855

G = GL+E2+EI+GE4+65

T = 8+6

FRINT "SLOTH"S TOTAL VOTE WAS";S

FRINT "HIS TOTAL FERCENTAGE WAS";100%8/T
FRINT

FRINT "GRAFT®S TOTAL VOTE WAS"3;G6

FRINT "HIS TOTAL FERCENTAGE WAS"; 100%G/T

100 DATA 528,210,313%,721, 1003, 822,413, 1107, 516, 1700

10
20
0
40
50

&HO

10
20
20
40
50
&HO
70
a0
9O

10
20

10

10

20

10

20

INFUT "MONTH, DAY, AND YEAR OF BIRTH";M1,Di,Y1
D9 = Y1¥Z65+M1IEI0+D1

INFUT "TODAY™S MONTH, DAY, AND YEAR":M2,D2,Y2
DB = YIXILHIFMIXIO+DI

8 = gy {DB-DI)

FRINT "YOU HAVE SLEFT ARBOUT";S; "HOURS."

ChRAFTER TRO

INFUT AR

IF A <« B THEN &0

IF A = B THEN 80

FRINT A;"IS EQUAL TO":;B
GOTO 10

FRINT A;"IS LESS THAN"3 B
GOTO 10

FRINT Az "I18 GREATER THAN"3; B
GOTO 10

INFUT A%
IF A$:"MIDWAY" THEN FRINT A$

INFUT A$,B$: FRINT A$,B%: FRINT B%,A$

INFUT A%
IF A% > "DOWN" AND A% < "UP" THEN PRINT "A$ IS BETWEEN"

INFUT X
IF X <= 25 OR X »= 75
THEN FRINT "NOT IN THE INTERVAL"
ELSE PRINT "IN THE INTERVAL"
6OTO 10

11.

13.

15.

17.

19.

21.

23.

10
20

E0

10
20

0

10
20

=0

10
20
20
40
50
&0
70
80
PO

FOR I = 11 TO -11 STEF -2
FRINT ILC3
NEXT I

FOR I = 1 TO 40
FRINT "¥"3
NEXT I : PRINT

FOR I = 10 TO 97 STEF 3
FRINT I
NEXT 1

INFUT "CREATURE"§ X%
RESTORE
FOR I = 1 TO &
READ C$,W$
IF C% = X% THEN 90
NEXT I
PRINT "CREATURE "3X$;" NOT FOUND. "
GOTO 10
PRINT "YOU CAN KILL A ":;C$:;" WITH A ";Ws

100 GOTO 10
110 DATA LICH, FIRE BALL,MUMMY, FLAMING TORCH

120 DATA WEREWOLF, SILVER BULLET,VAMFIRE, WOODEN STAEE

130 DATA MEDUSA, SHARF SWORD, TRIFFID,FIRE HOSE

Line: 100205305 40550 2060 34 10 4 20 < B0 5 40

10
20
30
40
50

60

10
20
30
40
S50

LEHOFCHO 102050305040

FOR I = 1 TO 10

FRINT & PRINT "o "
PRINT " HAFPY HOLIDAY MOTEL"
PRINT * ROOM" 3 I
PRINT 1 oo oo e "
NEXT I

PRINT “X","X[2","X[3"

FRINT

FOR I = 2 TO 10 STEF 2
PRINT I,IC2,IC3

NEXT I

25.

27.

29.

31.

1O IMFUT M
20 FOR H = 1 TO N @ REM H IS HEIGHT THE TRIANGLE IS.

20 IF W= H THEN 70 = REM W IS WIDTH

40 FRIMT "%x";

S0 W = W+l

HO GOTO =0

70 FRINT ¢« W = 0 ¢ REM RESET WIDTH FOR EACH H

80 NEXT H

10 FOR I = 1 TO S

=20 READ N%,F : REM GET NAME , FERFORMANCE

30 IF P ¥»= 75 THEN 110

40 FRINT ¢ FRINT "DEAR "3iN&;","

S50 FRINT " I AM 80 SORRY THAT I MUST FIRE YOU."

6HO FRINT "YOU HAVE BEEN SUCH A FINE EMFLOYEE"

70 FRINT "WITH A FPERFORMANCE RATING OF"iF3;" 4"

80 FRINT "I°M SURE YOU®LL HAVE NO TROUBLE"

70 FRINT "FINDING ANOTHER JOE."™ @ FRINT TAR(20);"SINCERELY,"

100 FRINT = FRINT TAR(20) 3 "GEORGE SHWABR":FRINT
110 NEXT I
120 DATA OAKLEY, 69 HOWE, 22, ANDERSON, 946, WOLLEY, 88, GOERZ, 74

10 INFUT "HOURS WOREED"3H

20 INFUT "HOURLY WABE"j;W

ZOM =W % H

40 IF H > 40 THENM M = M + .5XWX (H-40)
SO PRINT "THE WAGE FOR THE WEEK IS $'"3M

1 REM A = AMOUNT OF MONEY LEFT

10 A = 200 : REM IMITIAL AMOUNT

20 INFUT "HOW MUCH DOES THE ITEM COST";C

25 IF L = O THEN END

20 A=A - 1.03%C ¢ REM 1.03 % © IS COST WITH TAX

5 OIF A < 0 THEN FRINT "YOU DON'T HAVE ENOUGHY
A= A+ 1.05%C ¢ GBOTO 20

40 PRINT "YOUR TOTAL IS5 NOW $":A

S0 PRINT

&0 GOTO 20

CRAPTER THREE

1. 10 FOR I = 1 TO 10

20 N = RND(0O)
0 IF N » .5 THENM FRINT N;
40 NEXT I

3. 10 IMFUT N
20 IF N = INT) THEN FRINT N
T0 60TO 10

5, 10 N = RND(4) + 1§
20 D = RND(4)
I0 @ = RND(4) — 1
40 F = JO5%N + ,10%D + .25%k0 @: REM TOTAL AMOUNT FOUND

S50 PRINT "YOU FOUND $"3F
60 IF F = .99
THEN FRINT "YOU CAN BUY LUNCH"
ELSE FRINT "SORRY, YOU CAN"T BUY LUNCH"

7. 10 REM A AMOUNT IN BANE

R

20 REM I WEEE NUMEBER

JI0 A= 11

40 FOR I = 1 TO 4

50 FRINT "WEEK"3;Iz", HOW MANY FENNIES DO YOU HAVE";
60 INFUT N

70 A=A+ N

80 FRINT "YOUR TOTAL IS NOW $"3;A/100

0 NEXT I

9. 10 FOR I = © TO 1005 STEF &7
20 PRINTDI, "%"
30 NEXT I

11A. XRUN
1

2
as.

A
ot

4

RV S

11B. »*RUN
123. 4
123.45

P
(AR

Gl
£ U0

13.

15.

17.

19.

21.

23.

X Y
1% S%
2 0
2
i
-1
3% 2%

= THIS SHOULD BE CIRCLED.

10 FOR I = 13 TO 147 STEF 2 ¢ REM STEF 2 FOR 0DDS

20 § =5 + I
F0ONEXT I
40 FRINT "THE SUM = "38§

10 FOR I =_1 TO 1000
20 ND (¢

N = ?)
20 IF N/72 = INTN/2)
THEM E = E + 1
ELSE O = 0 + 1

40 NEXT I
S0 FRINT "THERE WERE";0O; "O0DD INTEGERS."
&HO FRINT "THERE WERE";E; "EVEN INTEGERS."

10 PRINT "DATE", "BALANCE"
208 = 1000 3 Y = 1983
OB =B % 1.05 = ¥ = Y + 1
40 FRINT "JAN 1,":Y,"$": R
SO IF B x 2000 THEN END

&HO GOTO =0

10 READ V

20 FI = 3, 1415

IOOR = (75 %V / FINL(L /7 %)
40 R = INT(RX100 + .5)/100
50 FPRINT "RADIUS IS";R

60 GOTD 10

70 DATA 690,720, 460, 620

10 PRINT TARCIS) 3 "x©

20 FOR T = 1 TO 5

30 FRINT TOBIS-I) 3 "¥" s TAR(IS+T) g "%
40 NEXT I

20 FPRINT TAR () 3 "kkxsddkodorkdorrskoyx "

ONLY

25,

27.

29.

31.

REM SCALE TO

(INT(XC-X+.5), (Y+YC))

"YOou GOT IT!":

= 40

REM FLOT GRAFH

10 R = 7

20 XC = &4 YO = 24 : REM CENTER OF "CIRCLE"
Z0 FOR Y = -7 TO 7

40 X = (REZ2-YL2)L (.5

S0 SET (INT(XCH+X+.5),(Y+YC)) : SET

&HO NEXT Y

10 & = RND(B)Y - 1§

20 D = RND(Z) - 1

30 F = RND(lﬂ) - 1

40 Vo= 250 + ,10%XD + O1%P

S50 T =88 4+ D + F

6O FPRINT "THERE ARE":T:;"COINS, TOTALLING #'":zV
70 FRINT "GUESS HOW MANY OUARTERS. DIMES, PENNIES"
80 FOR I = 1 TO 10

Q0 INFUT "GUESS":;Q1,D1.F1

100 éﬁDml = [AND Dl = D AND Fl1 = P THEN FRINT
110 PRINT "INCORRECT ": NEXT I

120 FRINT "HAH, YOU DIDN'T GET IT

10 Y = 10

20 FOR X = 19 T0O 23

=0 SET(X,Y)

40 NEXT X

50 Y =Y + 1

&0 IF Y + 19 THEN 20

70 END

10 CLS

20 FOR U = O TO =

30 READ N$,A,B,.C,D,E,.F,G

40 R= (A+8B+C+D+E-+F + G / 7 :
50 FOR F = 40 T0O 40 - R STEF -1

&HO SET(E0 % U, F) ¢ SET (30 % U + 1,F) =
70 NEXT F

80 FRINTD (260 + 135 % U) ,N&g

90 NEXT U

100 DATA GREER, 18,12,9,10,16,22,14

20

110 DATA MCPHERSON, 12,21,19,16,88,
120 DATA RADY, 18, ”U 14, 19 11, 1(5:.9.,.w
130 DATA NYNUDTT.T:.‘7 14, 1&.21 14,24

qa.a..

CRAFTER FOUR

10 FOR I = 1 T0 8

20 FOR J = 1 T0Q Z0

=0 FRINT "%x"s

46 NEXT J

50 FRINT ¢ REM USED T0 MOVE TO NEXT LINE
6O NEXT 1

10 FOR I = 1 TO 64

20 INFUT "ENTER X<(I)"3X(I)
30 NEXT I

40 FOR I = 1 TO 5 STEF 2

50 FRINT I,X<(I)

&HO NEXT I

70 FOR I = 22 TO & STEFR 2
g0 FRINT I,X(I)

Q0 NEXT I

5 DIM A4, 1D

10 FOR I = 1 TO 4

20 FOR J = 1 TO 12
30 ACL,J) = ZXkI + J%J
40 NEXT J

50 ONEXT I

A0 INFUT "N"3N

80 FOR I = 1 TO 12

@0 FRINT ANLGI)
100 NEXT I

110 FRINT

120 GO0TO &0

*RUN

1
1

e
-
2
il
—r
k]

s B0 s i s

=r
"]

FRUN
10
10
10
12
12
11
14
13
11

7C.

11.

13.

15.

*RUN
4% 89 =5

10 FOR X = 40 TO 1 STEF -1

20 FOR Y = 1 TO 10

0 READ M

46 IF N = X THEN FRINT Nj
50 NEXT Y

55 RESTORE

A0 NEXT X

70 DATA 5,27,37,16,27,8,2,40,1,9

10 DIM N100)
20 FOR X = 1 7O 100

30 N(X) = RND(?%) : REM GET A NEW RANMDOM NUMBER

35 REM LOOF THROUGH ALL FREVIOUS NUMBER

40 FOR.Y = O TO X-1

50 IF N(X) = NY) THEN 90 : REM SEE IF ANY DUFLICATES
=18 MEXT Y

70 NEXT X

80 END

90 FRINT "DUFLICATE AFTER":X;"NUMEERS"
100 FOR I = 1 TO X

110 FRINT N(I)g;

120 NEXT I

10 FOR I = 3 TO 30
I +

20 FOR J = 1 TO 40 : REM ADD ONME S0 NO DUFLICATES
20 FOR K = J + 1 TO S0

40 IF KXE = J%J + IXI THEN PRINT I,Jd.K

=10 NEXT K

&HO NEXT J

70 NEXT I

10 DIM N(Z20)

20 FOR I = 1 TO 20

Z0 N(I) = RND(?0) + 9

40 NEXT I

50 FRINT "0ODD INTEGERS:"j

&0 FOR I = 1 TO 20

70 IF N(I)/2 < INT(NC(I)/2) THEN FRINT N(I)3;
80 NEXT I

90 PRINT:PRINT"EVEN INTEGERS:"j

100 FOR I = 1 TO 20

110 IF N(I)/2 = INT(N(I)/2) THEN FRINT N(I);
120 NEXT I

17A.

17B.

19.

10
20
0
40
S0

&HO

10
15
17
20
20
40
=50
&0
70
80
PO

100

DIM N#%(5,8)

INFUT "WHAT DAY AND TIME WOULD YOU LIKE";D,T

IF N®(D,T) <> "" THEN FRINT "THAT TIME IS TAKEN ":G0TO 20
INFUT "WHAT IS YOUR NAME ";N&(D,T)

PRINT "THANE YOU S0 VERY MUCH."

GO0TO 20

DIM N$(5,6)

INFUT "ARE YOU THE DOCTOR ";A$

IF A% = "YES" THEN 70

INFUT "WHAT DAY AND TIME WOULD YOU LIKE";D,T

IF N$(D,T) <> "" THEN FRINT "THAT TIME IS TAKEN ":G0TO 20

INPUT "WHAT IS YOUR NAME “3;N$(D,T)

FRINT "THANK YOU S0 VERY MUCH."

GOTO 15

INFUT "WHICH DAY"3;D

FOR T = 1 TO &
IF N$(D,T) = "" THEN FRINT "SANEA EBREAK" : GOTO 110
FRINT N$&(D,T)

110 NEXT T
120 GOTO 15

10 DIM N(100)

20 R o= RND(100)

Z0 FOR X = 1 TO 100

40 INFUT "GUESS": G

30 IF G = R THEN 150

(=1 FOR Z = 1 TO X-—-1

70 IF N(Z) = G THEN 130

80 MEXT Z

Q0 N{X) = 0§

100 IF G » R THEN FRINT "LOWER": GOTO 120
1140 FRINT "HIGHER"

120 NEXT X

IZ0 FRINT "WAKE UF! YOU GUESSED THAT NUMBER BEFORE"

140 GOTO 40

1350

FRINT "CORRECT"

21. 1 KEM ARRAY F HOLDS FOINT VALUES FOR THE BOARD
s REM ARRAY B = F EXCEFT A ZERD IS ENTERED WHEN A FENNY
HITS THE EOARD
10 DIM F(b,6),E(b,&)
20 REM SET UF OUTSIDE OF EDARD FOR 1 FOINT
0 OFOR I = 1 TO &

40 FOl,1) = 1 sPF(&, 1) = 1 aPF(l,é6) = 1 :F(I,1) =1
S50 NEXT I

60 REM SET UF BOARD FOSITIONS WORTH 2 FOINTS

O FOR I = 2 TO 5

80 F(2,1I) = 2 sP(G,I) = 2 :2F{I,2) = 2 :F(I,3) = 2
g0 NEXT I

100 REM SET UF THE THREE FOINMT FOSITIONS

110 P(3,3) = 3 :P(3,4) = 3 :F4,3) = 3 :F4,4) = 3
120 REM SET ARRAY B EQUAL TO ARRAY F

170 FOR O = 1 TO &
140 FOR W = 1 TO &

150 B(Q, W) = F (@, W
160 NEXT W

170 NEXT @
180 REM NOW GET TEN RANDOM ROWS AND COLUMNS FOR FENNY TOSSES
1920 FOR T = 1 TO 10

200 R = RND(&) @ C = RND(&)
210 B(R,C) = O : REM SET HIT FOSITIONS TO O
220 S =85 + FR,C) : REM ADD ON FOINT VALUE FOR THE HIT

230 ONEXT T
240 REM FRINT OUT RESULTANT BOARD
250 FOR R = 1 TO &

260 FOR C = 1 TO &

270 IF B(R,C) = O THEN FRINT " X "3 : GOTO 290
280 PRINT B(R,C);

290 NEXT C

E00 FRINT

F10 NEXT R
F20 PRINT:FRINMT "SCORE IS";5

23. 1 REM ARRAY A% HOLDS THE LETTERS OF THE ALFHABET
2 REM W = THE WORD FORMED
10 DIM A% (26)
20 FOR I = 1 TO 26
30 READ A% (D)
40 MEXT I
50 FOR W = 1 TO 135
&0 R = RND(7) : REM GET RANDOM LENGTH

70 FOR L= 1 TO R : REM GET WORD OF LENGTH R

80 Wk = W$ + AS(RND(26)) =@ REM ADD LETTERS ON
F0 NEXT L

100 FRINT W®

110 We = "" & REM BLANE W$ FOR NEXT WORD

120 NEXT W
200 REM
210 DATA A,B,C, D EFeB,H, I, J, K, L, M,N,0,F,0,R, 8, T,U,V, W, X,Y,Z

25A. 10 CLS
15 REM DRAW CHECEERBOARD BASE
20 FOR X = O TO 127
S0 IF X/72 = INT(X/2)
THEN SET (X, 40)
ELSE SET (X, 39)
40 NEXT X
50 REM DRAW FEGS
6O FOR X = 1 TO =

70 FOR Y = 5 TO 38
80 SET(XXZ0,Y)
0 NEXT Y

100 NEXT X
110 REM DRAW DISCS
120 FOR I = 1 TO 5

130 FOR X = 30 - 2 % I TO 30 + 2 % I
140 SET(X,I%X7 + 1) : SET(X,I%7 + 2) : SET(X,I%7 + 3)
150 NEXT X
160 NEXT 1
25B. 1 REM DISE = NUMBEFR OF DISKE BEING MOVED
2 REM EMFTY = THE NUMEBER OF THE EMFTY SFQOT IN T2
Z REM TL = TOWER 1 = T2 = TOWER 2
4 REM ARRAY A HOLDS THE CURRENT FOSITIOM OF ALL DISKS
3 REM WITH ZERD INDICATING EMFTINESS
10 CLS

15 REM DRAW CHECKERBOARD EBASE
20 FOR X = O TO 127
0 IF X/2 = INT(X/2)
THEN SET (X, 40)
ELSE SET (X, 39)
40 NEXT X
50 REM DRAW FEGS
60 FOR X = 1 TO =

70 FOR Y = 5 TO 28
80 SET (XXZ0,Y)
F0 NEXT Y

100 NEXT X
110 REM DRAW DISCS
120 FOR I =1 TO 5

125 ACT, 1) = 1 ¢ A(I,2) = 0O & A(L,3) = 0O

130 FOR X = 20 - 2 % I TO 30 + 2 % I

140 SET(X,IX7 + 1) ¢ SET(X,IX7 + 2) @ SET(X,I%7 + 3)
150 NEXT X

160 NEXT I

180 REM

190 REM

200 REM MOVEMENT

210 FRINTD 896, : FRINT? 8%6,"FROM TOWER TO TOWER"j
220 INFUT T1,T2

230 DISK = 0O

240 REM START AT TOF OF T1 AND SEARCH FOR A DISK
250 FOR X = 1 TO 3

2460 REM SEE IF WE HAVE FOUND A DISK YET

270 IF DISKE = O OR A (X,T1) = O THEN 340

280 REM IF ONE IS FOUND SET DISE AND CLEAR OLD SPOT

290 DISE = A(X,T1) 1 AX,T1l) = O

EF00 FOR D = Z0XT1 - 2%X TO 30%T1 + 2%X

IF10 RESET (D, X%7 + 1): RESET(D,X%7 + 2): RESET(D,X%7 +3)
20 NMEXT D

30 SET(T1X30, X47+1): SET(T1IX30,X¥7+2): SET(T1%30, XX7+3)
F40 NEXT X

250 IF DISKE = O THEN FRINT® 894, "NO DISE THERE! "o

FOR J = 1 TO Z00 : NEXT J : GOTO 210
F60 EMFTY = O

X70 REM START AT BOTTOM AND SEARCH FOR AN EMFTY SFOT
80 FOR X = 5 TO 1 STEF -1
70 IF EMFTY = 0 AND A(X,T2) = O THEN EMFTY = X

400 NEXT X

410 IF EMPTY = 3 OR AEMFTY+1,T2) »= DISK THEN 430
420 FRINT28%96, "YOU CAN"T DO THAT e TR = T1 @ GOTO 260
30 REM FLOT DISE AT AEMFTY, T2

440 FOR DRAW = 30%XT2 -~ ZFDISE TO Z0XxTZ + 2xDISE

4350 Y = EMFTY%7 +1

460 SET(DRAW,Y) : SET(DRAW,Y+1) : SET(DRAW,Y+Z)
470 NEXT DRAW

480 AEMFTY,T2) = DISK

490 IF A(1,2) = 1 OR A(1,3) = 1 THEN 310

SO0 GOTO 210

510 FRINTD 960, "600D SHOW 0L CHAF"

10 M=300

20 FOR X=1 TO 21

0 FOR B=1 TO 4

40 M=M+-Mk. 06/ 4

50 NEXT @

60 FRINT "AT THE END OF YEAR";X;"THERE IS #%"iM
70 M=M+&£0

80 NEXT X

1.

a)

CRAPTER FHHUE

This program will generate an “Out of DATA in 10” error. Line 10 attempts to read
a fourth data element from line 40. A possible correction might read;

40 DATA 2,3,4,5
where the value 5 becomes the fourth data element.

This program will endlessly print .5 because no new data is read in. Correct line 40
as follows:

40 GOTO 10

Lines 20 and and 30 each contain syntax errors. The function “*/” referenced at
line 20 is illegal. The statement may be corrected to read:

20 PRINT A*B+C
to indicate multiplication, or:
20 PRINT A/B+C

to indicate division of A by B. Line 30 may be corrected by placing quotation marks
around “D/F=" to read:

30 PRINT “D/F=";D/F

In addition, the variables D and F should be defined, or else a division by zero will,
result in line 30.

The conditional clause at line 20 is incomplete. The user has not specified what
variable should be 10. The obvious variable is F, so that line 20 reads:

20 IF F>5 OR F<10 THEN 40

A comma or a semicolon must be inserted between the variables F and G at line
40 so that the computer understands that they are two separate elements:

40 PRINT F,G

e) The FOR-TO-NEXT loops are improperly nested:
10 FORX=1TO 8
20 FORY=1TO3
30 X=X+Y
40 NEXT X
50 NEXTY
60 PRINT X
70 END
Line 40 and 50 may be corrected as follows:
40 NEXTY
50 NEXT X
Also, changing the value of variables used in FOR-TO-NEXT loops is not recom-
mended practice such as at line 30.
f) This program will continuously print the sum of 3, 6, and 9 since new data is not
being read at line 10. Correct line 40 as follows:
40 GOTO 10
>RUN
—6 6
READY
>
a) The computer will return the error “Syntax Error in 20”. Since it appears that the
variable “X” is intended to contain formula weight, line 20 may be corrected to
read:
20 INPUT “FORMULA WEIGHT"”;X
b) When this program attempts to branch to line 50 at line 35, it will not find line 50,
and the error message “Undefined line number in 35” will be printed. Change line
35 to:
35 IF Y=X THEN A=A+1: GOTO 55
c) Note that both lines 10 and 20 do not contain the same number of closing

parentheses as opening parentheses, thereby causing an “lllegal function call in
10”. The computer reports the first error encountered so the error in line 20 goes
undiscovered. The first opening parenthesis is not necessary in either of these
lines.

d) Upon encountering line 30, the computer will print the error message “Syntax
Error in 30”. The line in question should read:

30 IF X>200 THEN 10

e) When the computer runs this program, it will print “Type mismatch in 20” and
terminate the run. The problem arises from trying to add a floating point variable
to a string variable. Variables can be of several types. They can be integers (which
means they have no decimal places), floating point or real (which means they have
decimal places), or string variables. Assuming the intent of this program was to
sum all the numbers between 1 and 26, the best way to correct this program is to
change all occurrences of “A$” to “A”.

20 A=A+X
40 PRINT A

f) The error enountered in this example is “Out of string space in 20”. “A$” in line 20
uses all of the string space allotted to it (when undefined the computer assumes
50). To correct this program it is necessary to allot more space at the beginning of
the program. This is done with the CLEAR command:

5 CLEAR 80

The computer stores all decimal numbers in binary form. Because of this, small
“rounding errors” are introduced into stored numbers. When these errors are
compounded as in the large summation at line 30 (100 and 1000 times), it leads to very
visible miscalculations as seen when this program is run. In this case the error was
small.

CRAFTER SiX

10 INFUT N
20 IF N < O THEN FRINT "NO NEGATIVE NUMBERS ALLOWED" : GOTO 10
EO PRINT "M ="3N," SQUARE ROOTS = + OR —-";SER(N) @ GOTO 10

3A.

3B.

3D.

3E.

3F.

3G.

3H.

3L

FRINT 3[203
729
READY
*PRINT S-4L02

=11

READY

PRINT Z%(S+16&)
63

READY

*PRINT S+32%6/2

14

READY

PRFRINT &40/10/72%5
160

READY

*PRINT S5+3%4-1
16

READY

HPRIMT 20302
b4

READY

HFRINT 2L0(302)
S512.001

READY

*FRINT 64/74%.

14

10

INFUT N

20 PRINT SGN(N) %N
READY
+RUN

?

-14

14

10
20
30
40

10

20
0
40
S0

&0

FRINT "RADIANS", "DEGREES"

FOR A = O TO % STEF .25
FRINT A,AX180/3. 141592655

NEXT A

INFUT N

N =N * . 14159265357 180
C = COSHD

g = GINM

T = TANN)

IF C % AND C = T

THEN FRINT “COSINE ="3;C
ELSE IF & = T

THEN FRINT "SIME ='";8
ELSE FRINT "TANGENT ="3T

S ((1+5) KDL K1/ (2%4)

11.

13.

15.

17.

19.

21,

23.

10
20

50

DEF FNF(X) = 9KX[3E - 7kX[2 + 4%X - 1
INFUT "A,B"3A, B
FRINT FNF(B) - FNF (@)

10 FRINT " X";TABM) s "LMX) "3 TAB(24) s "EXF (X)) "
20 FRINT

30 FOR X = 1 TO 15

40 FRINT X3TAB(7)31L.OG(X) s TAR(Z2) s EXF (X)
50 NEXT X

=RUN

5 4} =

RUN
FNF (-4) IS5 NEGATIVE

FNF (-2) 1S NEGATIVE
FNF¢ O) IS MEGATIVE

FNF ¢ 2) IS5 ZERD
FiMF¢ 4) 18 FOSITIVE

FNF{ &) IS FOSITIVE

FRUN
-1

O

i

4

10 INFUT "R AND THETA (IN DEGREES) :";R,T
20 T = T ¥ Z.141592653/180

0 X = R X COS((T

40 Y = R X% SIN(T

50 FRIMT "(X,Y) = ("sgXg","s¥Ysz")"

10 FOR X = 1 TO 100

20 Y = ABS(SIN{X) ¥1000)

30 R = INT(Y)/1&6 — INT(INT(Y)/164)

40 FRINT R

50 NEXT X

25.

27.

10 FOR N = O TO 6.2 STEF .2

20
S0

40

10
20
0
40
50
&HO0
70
80
0
100
110
120
130
140
150
1460
170
180
190

U = SINN)
FRINT TARB(Z0 X U + 22);"SHAZAM!"

NEXT N

FI = 2.1415926535

INFUT "N"3N

CLS

REM DRAW AXES

X0 = &4 : YO = 24 1 REM CENTER
FOR X = O TO 127

SET (X, YD)

NEXT X
FOR Y = O TO 47

SET (X0, Y)
NEXT Y
REM
REM DO FLOT
FOR X1 = © TO 127
X = (X1 — XO) / 16 : REM SHRINK X
Y = SIN(N X FI % X) % 10 : REM % 10 TO SCALE Y
Y1 = INT(YO — Y + .5) : REM ROUND TO NEAREST INTEGER
IF (Y1l = O) AND (Y1 £ 48) THEN SET(X1,Y1)
NEXT X1

CRAPTER SEVEN

10 GOSUER 400
20 FOR Jd=1 TO 40

50

et

FRINT "%";

40 NEXT J
50 GOSUR 400

760

60 FOR J=1 TO 3
]

1"
#

FRINT *

80 NEXT J
90 GOSURB 400

100
110
120
130
400
410
420

30

FOR J=1 TO 20
FRINT "AEB";

NEXT J

END

PRINT

I=1+1

FRINT "PART"; 1

RETURN

5A.

5B.

10
20
=0
4
50
&HO
70
80
0
100
110

RU
< 10

INFUT "ONE, TWO, THREE, FOUR" 5 X
IF X<x1 AND X<32 AND X< 33 AND X< 34 THEN 10
ON X GOTO 40, 60,80, 100

FRINT "DON'T LET YOUR COMFUTER TURN TO TRASH!®"
END
FRINT "DON'T LET BUGS GET IN YOUR TRASH. "

END
FRINT "STUDY HARD AND YOU WON®T NEED A TRUSS."
END

FRINT "NEVER PLAY WITH TRASH."

END

N

w20 E0HTOM A0 1020 H B0 HIH0 4010 FI R0 I FO RS0 X400 10

FRLIM

N= 3 7

REA

.......

i
fa—y
o

il
S

Dy

READ A, B,C
GOSUR 200

IF L=1 THEN 70
R=O%ER/2
FRINT "AREA="j3R,"FERIMETER="3:Aa+R+C
GOTO 10
FRINT "NOT A& RIGHT TRIANGLE"
GOTO 10

=0

IF A+RBC=C THEN 250

IF A+Ca=B THEMN 250

IF B+C<=A THEN 250

IF INT(ALZ2+BL2)=INT(CLZ) THEN 2&0
l=1

RETURN

DATA Ty8,5,0, 1,100, %, 2y 12,5, 13

END

11.

10
15
20
O
40
115
120
|50
140
145
150

140

INFUT "WITHDRAWAL (1) ,DEFOSIT(2), OR CALCULATE INTEREST(IZ)":D
IF D <> 1 AND D<>2 AND D<:3 THEN 10
ON D GOSUR 120,130,180
FRINT "YOUR BALANCE STANDS AT"jE; "DOLLARS. "
GOTO 10
REM WITHDRAWAL L.OOF
INFUT "HOW MUCH WOULD YOU LIEE TO WITHDRAW";A
IF A == 0 AND B - A > O THEN B = B - A ¢ RETURN
GOTO 120
REM DEFOSIT LOOF
INFUT "HOW MUCH WOULD YOU LIKE TO DEFOSIT";A
IF A > O THEM B = B + A 2 RETURN

170 G6OTO 150

180

INFUT "HOW MANY MONTHS SINCE LAST CALCULATION":mM

190 @ = M / 3

200 IF @ < 1 THEM FRINT "TOO SOOM" @ RETURM
210 FOR C =1 TO @

220 Bo= B + O6B75 / 4 % B

MEXT C

240 RETURM

10
20
0
40
50
&HO
70
80
0

10
20
HO

40

10
20
w0
40
50

&HO

ON ERROR GOTO 70
FOR X=-35 TO 3
J=10/X
FRINT J
MEXT X
GOTO 90
IF ERR/72+1=11 THEN FRINT "DIVISION BY ZERQ"
RESUME 350
END

CRAPTER EIGHT

TRIFUT "NMAME™ s N$
FOR I = 1 TO LENM{N%)

FRINT ASCMIDS (N$, I, 1203
NEXT I

READ X%
FRINT CHR$ (X%) 3

BOTO 10

DATA 65,83, 67,75, 75, 558, 48, 75
DATA 68,32,84,72,7%, 9%, 35
END

REM A% = ORIGINAL STRING
REM L%$,M%,R$ = LEFT, MID, R
REM

REM
As="THREE ! D#$ LS TRINGI#$%FUNC

20 L$=LEFT$(A%,3) : REM SETS

M&=MIDs (A%, 11,46) 1 REM SET

40 RE=RIGHT$(A%,9) : REM SETS

FRINT L$3" ";M$:" ";R$

IGHT STRINGS OF ORIGINAL

TIONG"

L$ EQUAL TO "THREE"

S M$ EQUAL TO "STRING"
R$ EQUAL TO "FUNCTIONS"

TRING

FULLS OUT ONE CHARACTER FROM A%

&0 END

1 REM A% = DRIGINAL STRING

2 REM P = POSITION IN STRING

3 REM N = ASCII OF A CHARACTER

4 REM

5 REM

10 INFUT "YOUR STRING";A$

20 FOR F=LEN(A$) TO 1 STEF -1

0 N=ASE (RIGHTS (A%, F))

40 FPRINT Ni

50 NEXT F

60 END

1 REM A% = A STRING FROM DATA

2 REM L%Z = LENGTH OF A STRING

% REM B$ = A CHARACTER IN A &
REM

5 REM

10 READ A%

20 L%=LEN(A%$)

30 FOR X%=1 TO L%

40 E$=MID% (A%, X%, 1) : REM

50 IF ASC (B$) =69 THEN 70

&0 FRINT E4$;

70 NEXT X%

B0 FRINT

90 GOTO 10

100 DATA QUEEN, LENGTH, REMEMEBER

Binary Decimal

1011 11

10100 20

1111 15

1110 14

1010011 83

110011 51

1011100 92

1101111 111

11000000 192

10000111 135

1 REM A = THE FIRST 12 LETTERS OF THE ALFHABET
2 REM L% = THE LENGTH OF THE STRING TO BE PRINTED
3 REM

4 REM

10 FOR CY=A8C("A") TO ASC L")

20 AB=A%+CHRS (C%)

F0 NEXT C%

40 FOR %=1 TO 12

S0 FRINT LEFTS (A%, L%)
HOONEXT LA

70 END

READY

SRLN
87
72

i

54
READY

10 FOR X%Z=1 TO 15

20 C%=RND (26) +64
30 FRINT CHR% (C%) 3
40 NEXT X%

S50 END

19. 5 CLEAR SO0
10 FOR X = 1 TO 100
20 A%t = A% + CHR$ (RND(25)+31)

30 NEXT X

40 FOR Y = 1 TD 100

=0 C = ASCMIDH (A%, Y, 1))

&HO IF (Ck64 AND C2921) OR (Cx946 AND C<123)

THEN L = L + 1
ELSE IF (Ck47 AND Cu58)
THEN N = N + 1
ELSE M = M + 1
70 NEXT Y
80 PRINT "THERE ARE";L;"LETTERS, "3;N; "NUMBERS, AND"
0 PRINT Mj "MISCELLANEOUS CHARACTERS. "

21A. 10 CLEAR 500 @ REM CLEARS SFACE FOR A%
20 INFUT "MESSAGE TO ENCODE "iM$
Z0 FOR I%=1 TO LENM$)

40 C/A=A8C(MID% (M%$, 1%, 1))

S0 IF Q7«65 DR CL:90 THEN 90
&HO Cr=C%+2

70 IF C%>90 THEN CU=C%L-26

80 AS=A$+CHRS (C%L)

0 NEXT I%
100 FRINT "ENCODED MESSAGE: ";A$
110 END

21B. 10 CLEAR S00
20 INFUT "MESSAGE TO DECODE? "j;M%
S0 FOR I%=1 TO LEN(M%$)

40 ChA=ASC (MID$ (M%, I%, 1))

S0 IF C%<65 OR CY%:90 THEN 80
60 Ch=0%~-2

70 IF CY4<65 THEN C%=C%+26

80 AS=A%+CHRS (CX)

F0 NEXT I%
100 PRINT "MESSAGE: ";A%
110 END

23.

25.

1R
2 R
IR
4 R

g R

100
1160
120
1320
140
150
1460
170
180
190
200
210
220
2350
240
250
260
270
280
290
300

EM 8% QO STORES SENTENCES (UF TO 30)
EM NZ () STORES NUMEBEF OF OCCURRENCES OF EACH TARGET
EM R% = RECORDS NUMBER wF QCCURRENCES IN A SENTENCE
EM
EM
DIM SH(30) ,NA(D)
CLEAR 1000
REM BEGIN INFUT L.OQOF
C4=0C%+1
LINE INFUT "SENTENCE?D";S4% (C4)
IF LEN(S$H(CA)YY=0 THEN 90
S (Ch)=CHR% (32) +8% (L) +CHRS (32
GOTO 40
REM BEGIN FROGRAM
FOR L%=1 TO C¥%-1
RESTORE
FOR WZA=1 TO 9
READ T%
GOSUR 220
N7 (W74 =NZ (W4 +R%
NEXT W%
NEXT L%
FRINT "ARTICLES: "N (1) +NYL (2) +N% (2)
FRINT “"ADVEREBS: "3NZ%L(4)
FRINT "PUNCTUATION MARES: " sNZ (5)+NXL (&) +N%L (7)) +NZ (8) +NZL (9)
GOTO 300
REM BEGIN GOSUR LOOF
RZ=0
FOR FP%Z=1 TO LEN((S$.%))

i

IF MID$ (S$(L%),F%, LEN(T$))=T$ THEN RZ=R%+1
REM LINE 240 FINDS OCCURRENCES OF THE TARGET STRING
NEXT F%
RETURN
DQTA " Q L1} " 11] AN 1] s n THE 1 . ULY " . 11 u 1 s 11 ! 1] " H":',)ll a 5 ; 1 s 11 “ "
END

1 REM W () = STORES WORDS
2 REM

3 REM

10 REM BEGIN INFUT LOOF
20 CLEAR 100

Z0O DIM WH(11)

40 Ch=C%+1

S50 PRINT "WHAT IS YOUR"j;C%s

6O

INPUT "WORD"3;W$(C%4)

70 IF C%4<=10 ANMD LENWS (CX)) 0 THEN 40
80 REM BEGIN FROGRAM LOOF
20 FOR L%=1 TO C%-1

100
110
120

FPRINT CHR$ (ASC WS (LAY)) g
NEXT L%
END

27.

1A.

1B.

3A.

1 REM Ng = YOUR NUMBER

£ REM

Z REM

10 INFUT "WHAT IS YOUR BINARY NUMEBER";N#$
20 D%=0

IO FOR I%=1 TO LEN(NS)

40 IF ASC(MIDS$ (N&%, I%,1))=49 THEN DZ=D%+2L[(LEN (N#)-I%)
30 NEXT I%

60 FRINT "IT*S DECIMAL EQUIVALENT IS";D%
70 6OTO 10

80 END

CRAFPTER MNINE

10 DIM RSO

20 FOR X = 1 TO S0

0 R(X) = RND{Z21) - 1
40 NEXT X

S50 OFEN "O", 1, "RANUM: L"
70 REM

100 REM NOW WRITE TO THE FILE
110 FOR I = 1 TO S0

120 FRINT #1,R(ID

1320 NEXT I

140 CLOSE 1

1 REM R = THE NUMBER READ FROM THE FILE
2 REM = THE SUM OF ALL RS

10 OFEM "IM",2,"RANUM: LY

20 FOR I = 1 TO 30

0 INFUT #2,R

40 5 =5 + R

90 NEXT 1T

& TLOSE 2

FOoOPRINT "THE SUM IS":;S

=i I

10 OFEM "0V, 1, "SER: 1"
20 FOR I = 1001 TO 1128
E0 FRINT #1,1

40 MEXT I

S0 CLOSE 1

3B.

5A.

5B.

10
20
a0
40
50

&0

1 REM N$ = ARRAY TO HOLD THE NAMES

2 REM F& = ARRAY T0O HOLD THE NAME OF THE FRATERNITY
= REM A = ARRAY TO HOLD THE AGES

10 CLEAR 200: DIM N$(3Z0) ,F$CZ0) 6 (30

20 FOR X = 1 TO 30

=0 INFUT "MAME "jN$ (X)

40 INFUT "FRATERNITY "3;F$(X)

50 INFUT "AGE";A(X)

&HO NEXT X

70 REM

100 REM NOW WRITE TO THE FILE

110 OFEN "O0",1,"FRAT:z1"

120 FOR I = 1 TO Z0O

1320 FRINT #1,N&(I) ", "sFe(I)s","sA(I)
140 NEXT I

150 CLOSE 1

1 REM N$ = NAME

2 REM F$ = FRATERNITY

3 REM A = AGE

10 OFEN "I, 1,"FRAT:z 1"

20 OFEN "0V, 2,"SIGMAz LM

0 FOR X = 1 TO 30

4.0 INPUT #1,N$,F$,4

S50 IF F$ = "GIGMA CHI" THEN FRINT #2,NM$;",":1A
6O NEXT X

70 CLOSE 1,2

OFEN "I",1,"8ERQ:z1"
INFUT "WHICH FLACE IN THE SERUENCE";F
FOR T =1 TO F

INFUT #1.N

NEXT I

FRINT "THAT IS":N

5C.

TA.

IF

1 REM M$ = ARFKAY TO HOLD NAMES
2 REM Fooo= ARRAY TO HOLD A 1
10 DIM N$(Z0) ,F CE0)

20 OFEN "I, 1, "FRAT: 1"

0 FOR I = 1 TO 30

40 INFUT #1,N$(I),F4$,A

50 NEXT I

40 CLOSE 1

70 REM

100 REM NOW GET RANDOM SEATING
110 FOR ¥ = 1 TO 5

120 FOR Y = 1 TO 5

130 Fo= RND(ZO0)

140 IF F(R) = 1 THEN 130
150 FRINT N&(FR);" "3
160 NEXT Y

165 PRINT

170 NEXT X

1 REM M = ARRAY TO HOLD TIME
2 REM F = ARRAY TO HOLD TEMF
10 OFEN "0",1,"NIT:1"

20 FRINT “"ENTER NIT'S DATA"

0 FOR & = 1 TO &

40 INFUT "TIME";H(A)

=0 INFUT "TEMFERATURE"; F (A)
&0 NEXT A : PRINT

70 REM NOW FRINT TO THE FILE
80 FOR B = 1 TO &

90 FRINMT #1,H(E) 3", "3 F (ED
100 NEXT R

110 CLOSE 1

200 REM THIS IS WIT

210 OFEN "0",1,"WITz1"

220 PRINT "ENTER WIT'S DATA"
230 FOR &4 = 1 TO &

240 INFUT "TIME";H(A)

2H0 INFUT "TEMFERATURE";F (A)
260 NEXT A : FRINT

270 REM NOW FPRINT TO THE FILE
280 FOR B = 1 TO 6

290 FRINT #1,H(E);", ":F (E)
ZO0 NEXT E

%10 CLOSE 1

u
"

TN
IN

A STUDENT HAS EBEEN

REM SEE IF STUDENT I8

HOURS
FAHRENMHEIT DEGREES

SEATED

SEATED

7B.

7C.

9A.

1 REM T ARRAY WHICH HOLDS TMF INM FOSITION TIMEX1O
2 REM H TIME IN HOURS

I REM F TMF IN FAHRENMHEIT DEGREES

10 DIM T(100)

20 OFEN "IN, 1,"NIT:z1"

0 O0OPEN "IN, 2,"WITsL"

40 OFEN "0, 3, "MERGE: L"

S50 FOR L= 1 TQ &

&HO INFUT #1,H,F @ GOSUR f0 @ REM FUT DATA IN ARRAY T
70 INFUT #2,H,F @ GOSUR 20

B8O NEXT L @ GOTO 200

0 REM IF TOHX1O0) IS EMPTY THEM FUT THE TEMF IN

100 REM ELSE AVERAGE THE VALUES

110 IF T(HX1IO) = O

I

THEN T(Hk1¢) = F
ELSE T(H¥10) = (T(H¥10)+F) /2

120 RETURN
130 REM

200 REM NOW FRINT TQ THE FILE MERGE

210 FOR Z = O TO 100

R0 IF T(Z) <% O THEN PRINT #3, Z/103","3;T(I)
230 NEXT Z

240 CLOSE 1,2,3

10 OFEN "I",1, "MERGE: 1"
20 IF EOF (1) THEN CLOSE 1 : END
=0 INFUT #1,H,F

40 FRINT H,F

50 GOTO 20

10 DIM SHE(10,5)
15 O ERROR GOTO 200
20 0OFEN "I",1,"SHOW: L"
FOOFOR T = 1 TO &1
40 INFLUT #1, X, Y. 8%0X,Y)
50 IF EQF L) THEN 80
HO MEXT T
TO OCLOSE 1 ¢ PRIMT "I AM S0ORRY, WE HAVE A FACKED HOUSE." @ END
80 CLOSE 1 o ITNPUT "YOUR NAME"3;F&
0 INFUT "WHAT SEAT WOULD YOU LITEE (ROW, COLUMNY ":X1,Y1
IF S&(X1,Y1y <= "" THEN FRINT "THAT SEAT IS TAREN" 3§ GOTO 20
FRINT "DRAMA CLUEB SHOW" @ FPRINMT F&3" HASY
O PRINT "RESERVED ROW"3 X1 ¢ PRINT "SEAT";Y1ls"FOR"
DOFRINT "JULY 4, 19837 ¢ PRINT
OFEMN "E", L, "BeSHOW. TXT" ¢ REM APPEND THE LIST W/NEW PERSON
AT HL, Xl ey, s FS
=MD
MROOCCURRED THERE MUST BE MO FILE S0 MAEE ONE
CLOSE 1 ¢ OFEN "0V, 1,"SHOW: 1"
FRINT 41, "0, 0, 5"
CLOSE 1 ¢ RESUME

9B. 1 REM X = ROW OF FPERSON SEAT AS INFUT FROM THE FILE SHOW
2 REM Y = COLUMN OF FERSONS SEAT AS INFUT FROM THE FILE SHOW
I REM 8% = ARRAY TO HOLD THE FERSONS NAME AT ROW X, COLUMN Y
10 CLEAR 500
20 DIM 8$(10,5)
0 0OPEN "I, 1, "SHOW: 1"
40 FOR I = 1 TO S

50 IF EOF(1) THEN 80
&0 INFUT #1,%,Y,5%(X,Y)
70 NEXT I

80 CLOSE 1
100 FRINT "EMPTY SEATS FOR JULY 4TH DRAMA SHOW. ":FRINT
110 FOR R = 1 TO 10

120 FOR 8 = 1 TO 5

1320 IF 8% (R,585) <& "" THEN 150
140 FRINT "ROW";R; "SEAT"3S
150 NEXT S

160 NEXT R

9C. 10 CLEAR S00 : DIM S$(10,5)
20 OFEN "I",1,"SHOW:1"

30 FOR I = 1 TO S1
40 IF EOF (1) THEN 70

50 INFUT #1,X,Y,5%(X,Y)

&0 NEXT I

70 PRINT "ROWS DOWN, SEATS ACROSS":FRINT
75 FOR R = 1 TO 10

80 FOR § = 1 TO 5
85 IF S$(R,S) = "" THEN S#%(R,S) = "EMPTY"
90 FRINT TAB(14 % (S-1));5% (R, S);

100 NEXT S
105 PRINT
110 NEXT R
120 CLOSE 1

CRAFTER TEN

1A. 1 REM L%,L1% = LETTER (1 CHARACTER)
2 REM
% REM
10 CLEAR 75
20 OFEN "R, 1, "ALFHABET/TXT:1",1
=0 FIELD 1, 1 AS L%
40 FOR L = 1 TO 26
50 READ L.1%
50 LSET L% = L1%
70 FUT 1
80 NEXT L
90 CLOSE 1
100 DATA A, B, G0, B F, G Hy T Ju bk, Ly Ma My O, F B R S, T U, VoW, X, Y, 2

1B. 1 REM L%,L1% = LETTER (1 CHARACTER)
2 REM
I REM
10 CLEAR 75
20 OFEN "R",1, "ALFHABET/TXT:1",1
20 FIELD 1, 1 AS L%
40 FOR L = 1 TO 5
50 GET 1, RND(24)
b0 FRINT L#;
70 NEXT L
80 CLOSE 1

3A. 1 REM 4,914 = SAYING (128 CHARACTERS)
2 REM N = NUMBER OF SAYINGS
5 OREM
4 REM
10 CLEAR S00
20 0OFEN "R",1,"SAYINGS/TXT:1",128
200 FIELD 1, 128 A5 S%
40 INFUT "HOW MANY SAYINGS"j
50 FOR S = 1 TO N
&HO LINE INFUT 914 @ LSET S% = S1%
70 FUT 1
80 FRINT
0 NEXT &
100 CLOSE 1

3B.

5A.

1 REM 8% = SAYING (128 CHARACTERS)
=

2 REM

= NUMBER OF SAYING

3 REM
4 REM

CLEAR S00
OFEN "R",1,"SAYINGS/TXT:1",128
FIELD 1, 128 A8 GS%

GOTO 40

40 INPUT "WHICH SAYING":S

50 IF § * LOF(1) THEN FRINT "THERE AREN'T THAT MANY" &
60 GET 1, S

70 FRINT S%

80 CLOSE 1

1 REM F,F$ = FULL-SIZED CARS (2 CHARACTERS)

2 REM M,M$ = MID-SIZED CARS (2 CHARACTERS)

T REM C,C% = COMFACT CARS (2 CHARACTERS)

4 REM M1,M1$ = MONT

5 REM

6 REM

10 OPEN "R",1,"CARSALES/TXT:1",&

20 FIELD 1, 2 AS F$, 2 AS M$, 2 AS C$

IO OFOR ML = 1 TO 12

40 READ M1%

50 FRINT Mi%;" SALES"

b0 INFUT "FULL~SIZED";F : LSET F$ = MKI%$(F)
70 INFUT "MID-SIZED";M : LSET M$ = MHI$(M)
80 INFUT "COMPACT":C : LSET C$ = MKI%(C)

90 FUT 1

100 PRINT

110 NEXT M1

120 CLOSE 1

130 DATA JANUARY , FEERUARY , MARCH, AFRIL, MAY, JUNE
140 DATA JULY, AUGUST, SEFTEMEER, OCTOBER, NOVEMBER, DECEMEER

5B.

TA.

1 REM F&
2 REM M
I REM Cs
4 REM M1

FULL-8IZED (2 CHARACTERS)
MID-SIZED (2 CHARACTERS)
COMFACT (2 CHARACTERS)
MONTH

HI

#ou

10 OFEN "R",1,"CARSALES/TXT:1",6

20 FIELD
20 PRINT
40 INFUT
50 IF M1
&0 CLS

70 GET 1,
80 FRINT
Q0O FRINT
100 FRINT
110 FOR F
120 FOR M
130 FOR C
140 FRINT

1, 2 AS F$, 2 A8 M$, 2 AB C%
"ENTER A NEGATIVE NUMEBER TO STOF"
"WHICH MONTH (1-12)"3;Ml1

0O THEN 160

M1

PI20, "FULL-SIZED: "

2448, " MID-SIZED:"

576, " COMPACT:"

= 1 TO CVI(F$) : SET(24 + F,15) 3
1 TO CVI(M$) : SET(24 + M,21)

1 TO CVI(CS) : SET(24 + C,27)

D768, "

I

150 GOTO 40

160 CLOSE

1

1 REM MNE = NAME (12 CHARACTERS)

2 REM &l
3 OREM 81

4 REM GR%

S5 REM 53

b REM A%

7 REM 54

% = ADDRESS (15 CHARACTERS)

% = GTATE 2 CHARACTERS)
= SALARY (4 CHARACTERS)

% = BAVINGS (4 CHARACTERS)
= ABE (2 CHARACTERS)

% = HBEX (1 CHARACTER)

8 REM C%g = MAKE OF CAR (8 CHARACTERS)

7 REM Y%
19 REM

11 REM

20 CLEAR 5
20 0OFENM "R
40 FIELD 1
S0 OFENM "R
HO FIELD 2
70 OFEN "R
80 FIELD 3
0 0FEM "R
100 FIELD

110 FOR ID
1320 GET
1730 IF

140 GET
150 IF

160 GET
170 IF

1830 GET
190 FRT
200 NEXT I
210 CLOSE

= YEAR OF CAR (2 CHARACTERS)

00

v, "NAME/TXT: 1", 29

. 17 A8 N&, 15 AS Als, 2 AS S1%
"R "SALARY /TXT: 1", 8

. 4 AB §2%, 4 AS S3%

v, "AGESEX/TXT: 1", 3

. 2 OAS AR, 1 AS 54%

"4, TAUTO/TXT: 1", 10

4, 8 AS G, 2 AS Y&

= 1 TO 10

4, 1D

C$ <> "FORD "OTHEN 200

%, 1D

Sa% = "FU' OR CVI(AZS)
2, ID

CVS (S2%) <= 20000 THEN 200
1, ID

NT N&, AlSs, S1

D

-
1,7.75,

i

NEXT F
NEXT ™
MEXT C

F0 THEN 2060

1 REM N% = NAME (12 CHARACTERS)

2 KREM Ale = ADDRESS (15 CHARACTERS)

2 REM 8l% = STATE (2 CHARACTERS)

4 REM 532% = GALARY (4 CHARACTERS)

S5 REM 8534 = SAVINGS (4 CHARACTERS)

&H REM C$e = MAKE OF CAR (8 CHARACTERS)
7 REM Y4 = YEAR OF CAR (2 CHARACTERS)
8 REM

9 REM

10 CLEAR S00

20 DFENM "R".1,"MAME/TXTs1", 29

A0 FIELD 1, 12 A8 N%, 15 A5 Als, 2 A8 61%
40 OFEN "R",2,"SALARY/TXTz21",8

S0 FIELD 1. 4 AS 82%, 4 A8 575%

60 OFEN "R", 3, "AUTO/TXT:1", 10

70 FIELD %, 8 A8 C$, 2 A5 Y$

80 FOR ID = 1 TO 10

90 GET 2, ID

100 IF CVS(52%) <= 15000 OR CVS(S3$) = 2000 THEN 150

110 GET 3, ID

120 IF €% <> "CHEVY" AND C$% <> "FORD" AND C# <> "VW"
THEN 150

130 GET 1, ID

140 FRINT N

150 NEXT ID
160 CLOSE 1,2,3

REM N$ = NAME (12 CHARACTERS)
REM Al$ = ADDRESS (15 CHARACTERS)
REM S1% = STATE (2 CHARACTERS)
REM AZ% = AGE (2 CHARACTERS)
REM S4% = SEX (1 CHARACTER)
REM C% = MAKE OF CAR (8 CHARACTERS)
REM Y# = YEAR OF CAR (2 CHARACTERS)
REM
REM
CLEAR 500
20 OFEN "R",1,"NAME/TXT:l",29
IO FIELD 1, 12 AS N$, 15 AS Al$, 2 AS Si%
40 OFEN "R",2, "AGESEX/TXT:z1",3
50 FIELD 2, 2 AS A%, 1 AS S4%
60 DFEN "R", 3, "AUTO/TXT:1",10
70 FIELD 3, 8 AS C$%, 2 AS Y8
80 FOR ID = 1 TO 10

o i

= 00N O ULk

b

90 GET 2, ID

100 IF S4% = "F" DR CVI(A2$) »= 35 THEN 160
110 GET 3, ID

120 IF C% <% "FORD" THEN 160

130 GET 1, ID

1460 IF S1% < "NJ" THEN 160

150 PRINT N%, Als$

160 NEXT ID
170 CLOSE 1,2,3

9A.

9B.

1 REM N& . N1% = NAME (20 CHARACTERS)

2 REM A, Ale = STREET ADDRESS (25 CHARACTERS)

I REM C%,.Cld = CITY (13 CHARACTERS)

4 REM 5%,51% = SGTATE (2 CHARACTERS)

5 REM I%$,721% = ZIF CODE (5 CHARACTERS)

& REM B.B% = BALANCE (4 CHARACTERS)

7 REM A = ACCOUNT NUMBER

g8 REM

9 REM

10 CLEAR 500

20 OFEN "R",1,"CHARGE/TXT:1",71

20 FIELLD 1, 20 A8 N$, 25 AS A%, 15 A8 C$, 2 AS Os%,
3 A8 Z%, 4 AS B4

40 FOR A = 1 TO 10

=0 FRINT "THIS WILL BE ACCOUNT #":A

&0 INFUT "NAME":;Ni$ @ LSET N% = NI1%

70 INFUT "STREET ADDRESS":Al% : LSET A% = Al$

80 INFUT "CITY":1% ¢ LSET C% = Cl%

PO INFUT "STATE":;S1% : LSET 84 = 51%

100 INFUT "ZIF CODE":;Z1i% @ LSET 76 = Z1%

110 LLSET B% = MES$ (0)

120 FUT 1

1350 FRINT

140 NEXT A

150 CLOSE 1

1 REM N&,Mls = NAME (20 CHARACTERS)

2 REM A%,A1ls = STREET ADDRESS (25 CHARACTERS)

= REM Ce,C1% = CITY (15 CHARACTERS)

4 REM 54,81% = STATE (2 CHARACTERS)

5 REM Z%,71% = ZIF CODE (5 CHARACTERS)

s REM B, B$ = BALANCE (4 CHARACTERS)

7 REM A = ACCOUNT NMUMBER

8 REM Te = TRAMSACTION FLAG

@ REM Al = TRANSACTION AMOUNT

10 REM

11 REM

20 CLEAR 500

IO 0OFEN "R",1,"CHARGE/TXT:z1",71

40 FIELD 1, 20 A5 N%, 25 A5 A%, 15 AS C$, 2 A 5%,
3 A% 2%, 4 A5 B4

S50 PRINT "ENTER A NEGATIVE NUMBER TO STOF THE FROGRAM"

&HO O INFUT "ACCOUNT #"3A

70 IF A < O THEN 180

80 INFUT "CHARGE (C) OR FAYMENT (P)Y":T%

G0 INFUT "AMOUNT" ;AL

100 GET 1., A

110 B = CVS(ES)

120 IF T$ = "C" THEN B = B + A1 ELSE B = B ~ Al

120 LSET B% = MESS (RB)

140 FUT 1., A

150 FRINT "TRANSACTION RECORDED"

160 FRINT

170 GOTD &0

180

CLOSE 1

9C.

REM
REM
REM
REM
REM
REM
REM
REM
10 CLE
20 OFE

ONOO R

N = NAME (20 CHARACTERS)

A% = ADDRESS (25 CHARACTERS)

Cs = CITY (15 CHARACTERS)

5% = STATE (2 CHARACTERS)

Z% = ZIF CODE (5 CHARACTERS)

B% = BALANCE (4 CHARACTERS)
AR 500

N "R",1,"CHARGE/TXT:1",71

30 FIELD 1, 20 AS N%, 25 AS A%, 15 AS C$, 2 AS S%,

4¢ IF
50

&0

70

80

0

100

110

120

1320

140

150

160

170 GOT
180 END
190 FRI
200 PRI
210 PRI
220 6OT
230 CLO

e

5 AS Z%, 4 AS Rs$

EOF (1) THEN 230

GET 1

IF N$ = STRINGS(20," ") THEN S0

FRINT "FROM: EUY LOW DEFARTMENT STORE"
PRINT "TO: "jNs&

FRINT "ACCOUNT #";L0OC (1)

FRINT

FRINT "YOU HAVE CHARGED $";CVS(E$);"AGAINST YOUR"
FRINT “"ACCOUNT. THIS AMOUNT IS NOW DUE. "
IF CVS(E$) » 8OO THEN GOTO 190

FRINT

PRINT " THANE YOUu"
FRINT : FRINT

0 40

NT

NT "YDOUR ACCOUNT EXCEEDS YDOUR CHARGE LIMIT."
NT "FAY IMMEDIATELY'"

0 140

SE 1

REM N NAME (20 CHARACTERS)

1 =

2 REM A% = ADDRESS (25 CHARACTERS)
= REM 0% = CITY (15 CHARACTERS)

4 REM 8% = STATE (2 CHARACTERS)

5% REM Z% = ZIF CODE (5 CHARACTERS)
& REM R$ = BALANCE (4 CHARACTERS)
7 REM A = ACCOUNT NUMRER

8 REM

? REM

10 CLEAR 300

20 OPEN "R",1,"CHARGE/TXT:1",71

A0 FIELD 1, 20 AS N, 25 A5 A%, 15 AS 0%, 2 AS 5%,
9 A5 Z%, 4 AS B

4¢ INFUT "WHICH ACCOUNT IS BEING CLOSED":A

50 LSET N$ = STRING®% (20," ")
60 LSET A% = STRINGH(25," ")
70 LSET C% = STRING$(15," ")
80 LSET 8% = STRING®(2," ")

?0 LSET I%$ = STRINGH(S," ")

100 LSET B% = MES$ (0)

110 PUT 1, A
120 PRINT "ACCOUNT #";A;"HAS BEEN CLOSED"
130 CLOSE 1

2 REM At,AlEs = STREET ADDRESS (25 CHARACTERS)
I REM Cs,C1% = CITY (15 CHARACTERS)

4 REM 54,51% = STATE (2 CHARACTERS)

5 REM 7%$,2Z1% = ZIF CODE (5 CHARACTERS)

& REM B$% = BALANCE (4 CHARACTERS)

7 REM A = ACCOUNT NUMBER

8 REM

9 REM

10 CLEAR 300

20 OFEN "R",1,"CHARGE/TXTez1",71

0 FIELD 1, 20 AS N$, 25 AS A%, 15 A8 C%, 2 AS 5%,
5 AS 1%, 4 AE EBE%

49 FOR A = 1 TO LOF(L)

S50 GET 1, A
&0 IF N = STRING (20," ") THEN %0
70 NEXT A

80 A = LOF(1) + 1

90 INFPUT "MAME"3;N1$: LSET N% = NI$
100 INFUT "STREET ADDRESS";Al4 : LSET A% = Al%
110 INFUT "CITY"3C1l% : LSET C$ = (C1%

120 INFUT "STATE":S1¢ : LSET 5% = S1%

120 INFUT "ZIF CODE"3;Z1% : LSET I$% = 11%

140 LSET B = MES$(0)

150 PRINT "THIS FERSON WILL BE ASSIGNED ACCOUNT #":A
160 FUT 1, A

170 CLOSE 1

ABS

AND

APPEND

Arccosine

Arcsine

Arctangent

ASC

ASCIl, code
ASCII, table

ATN

BACKUP

Base ten

Binary code

Bit

BREAK

Byte

CHR$

CLEAR

CLOSE

CLS

CMD

Computer Memory and Processing
Conditional, extended use
Conditional, regular
CONT

Conversion, degrees, radians
Comparing strings
COPY

Correcting errors
CcoSs

CvD

CvI

CVSs

DATA

{NDEX

6.3 Data Types
2.5 Debugging

c.2 DEF
6.6 Degree conversion
6.6 DIM
6.6 DIR

8.5 Disk Operating System
8.2 Diskette Formatting

8.3 DUAL

6.6 ex

C.3 EDIT

8.1 END

8.1 EOF

8.2 ERL

1.10 ERR

8.2 Errors, correcting
8.5 Errors, Logic
4.10 Errors, rounding
9.2 Errors, Runtime

3.9 Errors, Syntax
B.1 Errors, trapping
8.2 Errors, typing
2.3 EXP
2.1 Exponentiation
5.9 Extended variable names
6.5 FIELD
2.2 Files, random-access

Cc.2 Files, sequential
1.3, 55 FIX

6.5 FOR ... TO, STEP ... NEXT

10.8 Formatting output

10.8 GET

10.8 GOSUB-RETURN

1.7 GOTO

o @
oA

NNOPMPoOOOOroo
QCQOON—_LA~NWLWW-LANOOI®

13,565

2.8

1.1, 3.7, DA

10.6
7.1
1.7

Graphics

Hand tracing

IF ... THEN
IF...THEN ... ELSE
Immediate Mode
INKEY$

INPUT

INPUT#

INPUT, LINE

INT

KILL

LEFT$

LEN

LINE INPUT
LINE INPUT#
Line numbers
LIST

LLIST

LOAD

LOC

LOF

LOG

Loops

LPRINT

LSET

MERGE

MID$

MKD$

MKI$

MKS$

Multiple files
Multiple statement lines
NAME

Nested loops
NEW

NEXT

ON ... GOSUB
ON ... GOTO

ON ERROR GOTO
OPEN

OR

Order of operations
POINT
Pointplotting

POS

PRINT

PRINT@

PRINT#

Print, formatting
Print, punctuation
PRINT TAB

Print, zones
PRINT USING
PUT

Quotation marks
Radian conversion

©
W 2=, 000w ©O 20!
NBERWRODODWWO DO

U a -

10.7

10.7

10.7
10.15, C.1
2.3

NN = A~D
(RS - N

7.8

9.1, 10.2
2.5

6.1

3.14
3.11

3.9

1.2

3.9

9.3
1.11, 3.7, DA
1.1

3.7

1.1

D.1

10.4

1.2

6.5

Raising to a power
Random-Access files
Random numbers

READ

REM

RENAME

RESET

RESTORE

RESUME

RETURN

RIGHT$

RND

Rounding decimals
Rounding errors

RSET

RUN

SAVE

Scientific Notation

SET

Sequential files

SGN

Shifting and scaling a graph
SIN

Sorting

STEP

STOP

STR$

STRING$

String manipulation

String variables
Structuring a program
Subroutines

Summation

SQR

TAB

TAN

TIME$

Trigonometric Functions
TROFF

TRON

TRSDOS

Truncating decimals
Typing errors
Unacceptable variable names
User defined functions
VAL

Variables, names
Variables, names, extended
Variables, numeric
Variables, precision, double
Variables, precision, single
Variables, string

Variables, subscripted, doubie
Variables, subscripted, single
Zones, printing

=N
LhwoL

N W =
WWwWw®eNNLLO
D WA 20— DD DO

10.

FPT

>%13.50

A GUIDE TO PROGRAMMING IN LEVEL Il BASIC is a comprehensive
guide to programming a TRS-80 computer. Appropriate for people with
a wide range of backgrounds, this manual is structured in a unique way.
Topics are discussed individually so that students may select the
sequence that interests them—for example, a mathematics student may
follow a different chapter progression than a home user or small
business owner.

Although the manual has been developed and extensively tested for

‘classroom use, it is also an effective tool for individual study. From the

beginning of the manual, students are taught good structured program-
ming techniques which are essential to writing logical, easy to read
programs. This manual also features review exercises scattered
throughout each chapter, and comprehensive problem sets which offer
the student programmer an opportunity to try out newly learned skills.
Solutions to most of the problems are given at the back of the manual.

Bruce Presley, a graduate of Yale University, has taught computer
programming at The Lawrenceville School for more than fifteen years
and is presently serving as a member of the Advanced Placement

Computer Science Committee of the College Entrance Examination
Board.

Other titles in this best-selling series include:

A GUIDE TO PROGRAMMING IN APPLESOFT

A GUIDE TO PROGRAMMING THE
IBM PERSONAL COMPUTER

A GUIDE TO PROGRAMMING IN BASIC-PLUS

ISBN 0-442-25892-5

VAN NOSTRAND REINHOLD COMPANY

NEW YORK CINCINNATI TORONTO LONDON MELBOURNE

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf
	207.pdf
	208.pdf
	209.pdf
	210.pdf
	211.pdf
	212.pdf
	213.pdf
	214.pdf
	215.pdf
	216.pdf
	217.pdf
	218.pdf
	219.pdf
	220.pdf
	221.pdf
	222.pdf
	223.pdf
	224.pdf
	225.pdf
	226.pdf
	227.pdf
	228.pdf
	229.pdf
	230.pdf
	231.pdf
	232.pdf
	233.pdf
	234.pdf
	235.pdf
	236.pdf
	237.pdf
	238.pdf
	239.pdf
	240.pdf
	241.pdf
	242.pdf
	243.pdf
	244.pdf
	245.pdf
	246.pdf
	247.pdf
	248.pdf
	249.pdf
	250.pdf
	251.pdf
	252.pdf
	253.pdf
	254.pdf
	255.pdf
	256.pdf
	257.pdf
	258.pdf
	259.pdf
	260.pdf
	261.pdf
	262.pdf
	263.pdf
	264.pdf
	265.pdf
	266.pdf
	267.pdf
	268.pdf

