57 PRACTICAL PROGRAMS & GAMES IN BASIC

BY KEN TRACTON

Programs for Everything from Space War Games to Blackjack... from Craps to I Ching!
57 PRACTICAL PROGRAMS & GAMES IN BASIC
57 PRACTICAL PROGRAMS & GAMES IN BASIC

BY KEN TRACTON

Radio Shack
A DIVISION OF TANDY CORPORATION
Preface

These programs are intended for the computer hobbyist or user who has access to a computer system with standard BASIC language available.

The various programs are written in such a manner that they will operate even with a simplified subset of full BASIC. The advanced programmer, with full BASIC available, can easily modify the programs to take advantage of the functions and capabilities of the full instruction set.

The programs were chosen not just for their intrinsic qualities, but also for their role as teaching aids.

I would like to take this opportunity to thank the following people who helped to make this book possible. Alec Grynspan, who supplied the Bubble-Sort program; Tom McRoberts, who was able to read my notes and typed the manuscript; Laura Semple, who drew the final drafts of the flow charts; Jane, who said programming is simple; and David, who named my Iguana.

I would like to extend a special thank you to Construction Data Systems, who allowed me access to their time-sharing facility on an IBM 370-158 computer systems.

Ken Tracton
Contents

Preface ..5
Basic Statements ..9
Annular Sections ...12
Arithmetic Mean ...15
Arithmetic Progression ..18
Blackjack ..21
Bubble Sort ...26
Chi-Square Evaluation ...27
Circle Determined by Three Points ..30
Circular Sections ...33
Compounded Amounts ...36
Coordinate Translation and/or Rotation ..41
Craps ..44
Curve Tables (Plotting) ..48
Day of the Week ...51
Determinant and Inverse of a 2×2 Matrix ...54
Determinate Inverse of a 3×3 Matrix ...57
Factorials ..60
Fibonacci Numbers ..62
First Derivative ...66
Gamma Function and Generalized Factorial ...69
BASIC STATEMENTS

BASIC (Beginners’ All-purpose Symbolic Instruction Code) was invented and developed between 1963 and 1964 by John Kemeny and Thomas Kurtz of Dartmouth College. Since its first use in 1964, BASIC has steadily gained popularity as a high-level computer language which the user can easily master. The essential vocabulary is below:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Example</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHANGE</td>
<td>CHANGE N$ TO N</td>
<td>assigns to the elements of N the ASCII numeric value of the string N$</td>
</tr>
<tr>
<td>DATA</td>
<td>DATA 15, -8, 76,...</td>
<td>the DATA statement assigns appropriate values to the variables listed in the READ statement</td>
</tr>
<tr>
<td>DEF</td>
<td>DEF FNR (X, Y) = (X 2 + Y 8)</td>
<td>a single line function is defined by the DEF statement</td>
</tr>
<tr>
<td>DIM</td>
<td>DIM Z(3, 4)</td>
<td>dimensions the elements of X as a 3 by 4 matrix</td>
</tr>
<tr>
<td>END</td>
<td>END</td>
<td>ends program execution</td>
</tr>
<tr>
<td>FNEND</td>
<td>FNEND</td>
<td>a multiline DEF statement must end with a FNEND (function end) statement</td>
</tr>
<tr>
<td>FOR-TO</td>
<td>FOR X = 2 TO 66</td>
<td>defines the FOR, NEXT loop</td>
</tr>
<tr>
<td>GOTO</td>
<td>GOTO 100</td>
<td>transfers execution to line 100</td>
</tr>
<tr>
<td>GOSUB</td>
<td>GOSUB 100</td>
<td>transfers program control to a subroutine commencing at 100</td>
</tr>
<tr>
<td>IF-THEN</td>
<td>IF A = X THEN 100</td>
<td>transfers program execution to 100 if the relational test is true</td>
</tr>
<tr>
<td>INPUT</td>
<td>INPUT X, Y,...</td>
<td>assigns to the variable(s) the values presented by the user from a user defined device</td>
</tr>
<tr>
<td>LET</td>
<td>LET A = V</td>
<td>assigns the value of V to A</td>
</tr>
<tr>
<td>NEXT</td>
<td>NEXT X</td>
<td>returns control to the beginning of the FOR-TO loop</td>
</tr>
<tr>
<td>ON-GO TO</td>
<td>ON M GO TO 10, 20, 30</td>
<td>as M ranges in values from 1 up to 1st, 2nd,... line number is transferred control, as follows to GO TO statement</td>
</tr>
<tr>
<td>PRINT</td>
<td>PRINT “LESLIE”</td>
<td>prints the alphanumeric string within quotation marks</td>
</tr>
<tr>
<td>RANDOMIZE</td>
<td>RANDOMIZE</td>
<td>assures each call to the RND produces a different order of random numbers</td>
</tr>
<tr>
<td>READ</td>
<td>READ L, K,...</td>
<td>reads values from the DATA statement found in the same program</td>
</tr>
<tr>
<td>REM</td>
<td>REM AREA</td>
<td>remark is placed in the program to be used only during listing as a debugging aid</td>
</tr>
<tr>
<td>Statement</td>
<td>Example</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>RESTORE</td>
<td>RESTORE</td>
<td>restores the data pointer</td>
</tr>
<tr>
<td>RETURN</td>
<td>RETURN</td>
<td>returns program execution to the next instruction following the subroutine call</td>
</tr>
<tr>
<td>RND</td>
<td>RND</td>
<td>produced a random number</td>
</tr>
<tr>
<td>STOP</td>
<td>STOP</td>
<td>stops program execution</td>
</tr>
</tbody>
</table>
LIBRARY FUNCTIONS

ABS absolute value
ATN arctangent
ASC converts a ASCII character to its numeric value and assigns it
CHR$ converts a numeric value to its ASCII character and assigns it
COS cosine
COT cotangent
DET determinant
EXP raise e to the x power
INT truncates to an integer
LOC determines the position of the pointer
LOF determines the last storage location in a file
LOG returns the log (base e) of the argument
RND produces a random variable
SGN determines the sign of a variable
SIN sine
SQR square root
TAB positions printing head of a printer (CRT or LINE)
TAN tangent

BASIC COMMAND FUNCTIONS

BYE terminates time-sharing session
CATALOG lists names of all files saved
GOOD-BYE same as BYE
LIST produced a listing of the current file
NEW specifies that a new file is being formed
OLD accesses an existing file
RENAME allows the name of a current file to be changed
RUN causes current program to be executed
SAVE causes current program to be saved (stored)
SCRATCH deletes the current file
SYSTEM transfers control from BASIC to the system's monitor
UNSAVE cancels storage of a file

exponential ↑
multiplication ●

PROGRAMS

The programs appear in alphabetical order. Each one contains any applicable formulae, followed by an example of using the Program, the Flow Chart, and lastly, the Program itself.
ANNULAR SECTIONS

This program computes the various parameters; moment of inertia, polar moment of inertia and area; connected with an annular section.

FORMULAE

\[I = \pi \frac{(d_2^4 - d_1^4)}{64} \]

\[A = \pi \frac{(d_2^2 - d_1^2)}{4} \]

\[J = \pi \frac{(d_2^4 - d_1^4)}{32} \]

where \(I \) and \(J \) is in (in.\(^3\)) and \(A \) is in (in.\(^2\)).

EXAMPLE

INSIDE DIAMETER (D1) =
?
3
OUTSIDE DIAMETER (D2) =
?
4.11
MOMENT OF INERTIA = 10
POLAR MOMENT OF INERTIA = 20
AREA OF SECTION = 6.18
TYPE 1 TO CONTINUE, 0 TO STOP
?
0
* END
ANNULAR SECTIONS

10 REM THIS PROGRAM COMPUTES THE VARIOUS
20 REM PARAMETERS CONNECTED WITH AN ANNU-
30 REM SECTION
40 PRINT "INSIDE DIAMETER (D1) = ";
50 INPUT D1
60 PRINT "OUTSIDE DIAMETER (D2) = ";
65 INPUT D2
70 LET P = 3.14159
80 LET I = (P*((D2↑4) - (D1↑4)))/64
90 LET J = I^2
100 LET A = (P*((D2↑2) - (D1↑2)))/4
110 PRINT "MOMENT OF INERTIA = ";I
120 PRINT "POLAR MOMENT OF INERTIA = ";J
130 PRINT "AREA OF SECTION = ";A
140 PRINT
150 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
160 INPUT L
170 IF L = 1 THEN 190
180 STOP
190 PRINT
200 GO TO 40
210 END
ARITHMETIC MEAN

After each sample is entered the computer responds with sample number and the current mean. The program will continue to run until the operator types an exit or a break command.

FORMULA

\[\bar{A} = \frac{1}{N} \sum_{i = 1}^{N} a_i \]

EXAMPLE

ENTER SAMPLE
?
5

N = 1 SAMPLE = 5 CURRENT MEAN = 5

ENTER SAMPLE
?
67

N = 2 SAMPLE = 67 CURRENT MEAN = 36

ENTER SAMPLE
?
5

N = 3 SAMPLE = 5 CURRENT MEAN = 25.6666

ENTER SAMPLE
?
45

N = 4 SAMPLE = 45 CURRENT MEAN = 30.5

ENTER SAMPLE
?
12

N = 5 SAMPLE = 12 CURRENT MEAN = 26.8000

ENTER SAMPLE
?
123

N = 6 SAMPLE = 123 CURRENT MEAN = 42.8333

ENTER SAMPLE
?
0

N = 7 SAMPLE = 0 CURRENT MEAN = 36.7142

ENTER SAMPLE
*
END
ARITHMETIC MEAN

START

ASSIGN 0 TO X AND N

PROMPT + INPUT SAMPLE

CALCULATE SAMPLE NUMBER + CURRENT MEAN

OUTPUT CURRENT MEAN
ARITHMETIC MEAN

10 REM THIS PROGRAM COMPUTES THE ARITHMETIC
20 REM MEAN
30 LET X = 0
40 LET N = 0
50 PRINT "ENTER SAMPLE";
60 INPUT W
70 LET N = N + 1
80 LET X = X + W
90 LET A = X/N
100 PRINT "N = "; N, "SAMPLE = "; W, "CURRENT MEAN = "; A
110 GOTO 50
120 END
ARITHMETIC PROGRESSION

From the following information; first term, common difference and number of terms, this program computes the arithmetic progression.

FORMULA

\[A, A + D, A + 2D, \ldots A + ((N - 1)D) \]

EXAMPLE

FIRST TERM =
?
10
COMMON DIFFERENCE =
?
2
NUMBER OF TERMS =
?
5
FOR TABLE TYPE 1, IF NOT TYPE 0
?
1

ARITHMETIC PROGRESSION

<table>
<thead>
<tr>
<th>TERM NUMBER</th>
<th>TERM PROGRESSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
</tr>
</tbody>
</table>

SUM = 70
TYPE 1 TO CONTINUE, 0 TO STOP
?
0
*END
ARITHMETIC PROGRESSION

10 REM THIS PROGRAM COMPUTES ARITHMETIC PROGRESSION
20 PRINT "FIRST TERM = ";
30 INPUT A
40 PRINT "COMMON DIFFERENCE = ";
50 INPUT D
60 PRINT "NUMBER OF TERMS = ";
INPUT N
PRINT "FOR TABLE TYPE 1, IF NOT TYPE 0";
INPUT C
IF C = 1 THEN 120
GOTO 140
PRINT "ARITHMETIC PROGRESSION"
PRINT "TERM NUMBER", "TERM VALUE"
LET J = 0
FOR I = 0 TO N - 1
LET K = I + 1
LET L = A + (I*D)
LET J = J + L
IF C = 1 THEN 210
GOTO 220
PRINT K, L
NEXT I
PRINT "SUM = "; J
PRINT
PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
INPUT X
IF X = 1 THEN 290
STOP
PRINT
GOTO 20
END
BLACKJACK

Blackjack, or the game of 21, is played against the computer, it being the dealer. Cards are dealt from a self-replenishing deck. Standard rules are as follows:

- Blackjack wins unless the dealer also gets blackjack, in which case there is no winning player.
- The highest score below 21 wins.
- The dealer must draw a card if he is below 17, but must stand if he has 17 or greater.
- Aces count as 11 unless it would force a hand over 21, in which case the ace counts as 1.

EXAMPLE

RUN
IF INSTRUCTIONS ARE REQUIRED TYPE YES
IF NOT TYPE NO
?
NO
GOOD-LUCK-----MAY THE BEST ONE WIN
THE DEALER HAS A 9 SHOWING
YOU HAVE A 5 AND A 11
YOUR TOTAL IS 16
DO YOU WANT A HIT, OR DO YOU STAND
?
HIT
YOUR CARD IS 4
DO YOU WANT A HIT, OR DO YOU STAND
?
STAND
THE DEALER HAS 12
THE DEALER DRAW A 5
HIS TOTAL IS 17
YOU HAVE 20
YOU HAVE WON!!!
DO YOU WISH TO PLAY AGAIN
TYPE YES OR NO
?
NO
BLACKJACK SAYS GOOD-BYE
*END
BLACKJACK

10 REM BLACKJACK
20 PRINT "IF INSTRUCTIONS ARE REQUIRED TYPE YES"
30 PRINT "IF NOT TYPE NO"
40 INPUT C$
50 IF C$ = "YES" THEN 90
60 IF C$ = "NO" THEN 340
70 PRINT "INVALID RESPONSE"
80 GOTO 20
90 PRINT
100 PRINT "**********************************BLACKJACK**********************************"
110 PRINT
120 PRINT "THE COMPUTER AS THE DEALER, DEALS TWO CARDS TO ITSELF"
130 PRINT "AND TWO CARDS TO THE PLAYER. THE PLAYER'S TWO CARDS"
140 PRINT "ARE SHOWN FACE UP, WHILE ONLY ONE OF THE DEALER'S"
150 PRINT "CARDS IS SHOWN. BOTH THE DEALER AND THE PLAYER"
160 PRINT "MAY DRAW ADDITIONAL CARDS."
170 PRINT "THE PLAYER'S GOAL IS TO REACH 21 OR LESS, BUT"
180 PRINT "BE CLOSER TO 21 THAN THE DEALER'S HAND."
190 PRINT "IF THE PLAYER'S OR THE DEALER'S HAND TOTALS"
200 PRINT "GREATER THAN 21 HE IS BUSTED! THE KING"
210 PRINT "THE QUEEN AND THE JACK ALL COUNT AS 10 POINTS."
220 PRINT "ALL OTHER CARDS EXCEPT THE ACE COUNT AS THEIR FACE"
230 PRINT "VALUE SHOWS. THE ACE COUNTS AS 11 UNLESS THIS"
240 PRINT "WOULD CAUSE THE HAND TO BE OVER 21, IN THAT"
250 PRINT "CASE THE ACE COUNTS AS 1."
260 PRINT "IF BOTH THE DEALER AND THE PLAYER GET BLACKJACK"
270 PRINT "WHICH IS A TWO CARD HAND TOTALING 21"
280 PRINT "NEITHER WINS, IT IS A PUSH"
290 PRINT "IF THE DEALER'S HAND IS BELOW OR EQUAL TO 16"
300 PRINT "HE MUST DRAW, AFTER 17 THE DEALER MUST STAND"
310 PRINT "TO RECEIVE A CARD YOU WANT A HIT-"
320 PRINT "TO STOP WHERE YOU ARE, YOU STAND-"
330 PRINT
PRINT"***GOOD-LUCK-----MAY THE BEST ONE
WIN***"
REM 1ST HAND
RANDOMIZE
LET D = 0
LET P = D
GOSUB 820
LET D1 = C
GOSUB 820
LET D2 = C
GOSUB 890
LET P1 = C
GOSUB 890
LET P2 = 3
PRINT
PRINT "THE DEALER HAS A ";D1;" SHOWING"
PRINT "YOU HAVE A ";P1;" AND A ";P2
PRINT "YOUR TOTAL IS ";P1 + P2
LET D = D1 + D2
LET P = P1 + P2
IF P = 21 THEN 640
GOSUB 960
IF L = 1 THEN 690
IF D< = 16 THEN 740
PRINT "THE DEALER HAS ";D
PRINT "YOU HAVE ";P
IF P > D THEN 620
REM WIN OR LOSS STATEMENTS
PRINT "THE DEALER HAS WON!!!"
GOTO 1060
PRINT "YOU HAVE WON!!!
GOTO 1060
PRINT "***YOU HAVE BLACKJACK***"
IF D = 21 THEN 670
GOTO 560
IF P > 21 THEN 600
GOTO 530
PRINT "THE DEALER ALSO HAS BLACKJACK,
SORRY NO WINNER"
GOTO 1060
GOSUB 890
PRINT "YOUR CARD IS ";C
IF P > 21 THEN 600
GOTO 530
PRINT "THE DEALER HAS ";D
750 GOSUB 820
760 LET D = D + C
770 PRINT "THE DEALER DRAWS A ", C
780 PRINT "HIS TOTAL IS ", D
790 IF D > 21 THEN 620
800 IF D <= 16 THEN 750
810 GOTO 560
820 LET C = 1 + INT(11*RND)
830 IF C = 11 THEN 850
840 GOTO 880
850 IF D + C > 21 THEN 870
860 GOTO 880
870 LET C = 1
880 RETURN
890 LET C = 1 + INT(11*RND)
900 IF C = 11 THEN 920
910 GOTO 950
920 IF P + C > 21 THEN 940
930 GOTO 950
940 LET C = 1
950 RETURN
960 PRINT "DO YOU WANT A HIT, OR DO YOU STAND"
970 INPUT Q$
980 IF Q$ = "HIT" THEN 1020
990 IF Q$ = "STAND" THEN 1040
1000 PRINT "INVALID RESPONSE"
1010 GOTO 960
1020 LET L = 1
1030 GOTO 1050
1040 LET L = 0
1050 RETURN
1060 PRINT
1070 PRINT "DO YOU WISH TO PLAY AGAIN"
1080 PRINT "TYPE YES OR NO"
1090 INPUT L$
1100 IF L$ = "YES" THEN 1130
1110 PRINT "BLACKJACK SAYS GOOD-BYE"
1120 STOP
1130 PRINT
1140 GOTO 20
1150 END
BUBBLE SORT

This program is actually a subroutine rather than a stand-alone program. It is intended to be used in conjunction with larger programs which require that data be placed in an array in ascending sequence.

BUBBLE SORT

10 REM THIS PROGRAM IS A BUBBLE SORT, WHICH PLACES THE
20 REM VALUES IN AN ARRAY IN ASCENDING SEQUENCE
30 REM IT IS INTENDED TO BE AN EXAMPLE AND NOT A
40 REM SPECIFIC CASE.
50 REM THIS PROGRAM MAY BE CONVERTED INTO A SUBROUTINE
60 REM FOR USE IN A LARGER PROGRAM
70 REM THE ARRAY IS Z OF LENGTH N
80 REM Z IS ASSUMED TO HAVE BEEN DECLARED IN A DIM
90 REM STATEMENT AND N SET AHEAD OF TIME
100 LET I = N - 1
110 FOR J = 1 TO I
120 LET K = J + 1
130 FOR L = N TO K STEP - 1
140 IF Z(L) > Z(J) THEN 210
150 REM SAVE FIRST VALUE
160 LET T = Z(L)
170 LET Z(L) = Z(J)
180 LET Z(J) = T
190 REM IF Z IS THE KEY FOR SORTING MULTIPLE ARRAYS AND EXTRA CODE HERE
210 NEXT L
220 NEXT J
230 RETURN
CHI-SQUARE EVALUATION

This program computes the chi-square evaluation from the inputed observed and expected frequencies. To terminate the evaluation the use simply inputs a 0 for the last expected frequency.

FORMULA

\[X^2 = \sum_{i=1}^{N} \frac{(O_i - E_i)^2}{E_i} \]

EXAMPLE

OBSERVED FREQUENCIES =
? 10
EXPECTED FREQUENCIES =
? 10
OBSERVED FREQUENCIES =
? 0
OBSERVED FREQUENCIES =
? 0
CHI-SQUARE = 0

TYPE 1 TO CONTINUE, 0 TO STOP
?
0
*END
CHI-SQUARE EVALUATION

10 REM THIS PROGRAM COMPUTES CHI-SQUARE
20 REM EVALUATION ON THE OBSERVED TO
30 REM EXPECTED FREQUENCIES
40 LET J = 0
50 PRINT "OBSERVED FREQUENCIES ="
60 INPUT D
70 PRINT "EXPECTED FREQUENCIES ="
80 INPUT E
90 IF E = 0 THEN 130
100 LET K = ((D - E)^2)/E
110 LET J = J + K
120 GOTO 50
130 PRINT "CHI-SQUARE =", J
140 PRINT "**************************"
150 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
160 INPUT L
170 IF L = 1 THEN 190
180 STOP
190 PRINT
200 GOTO 40
210 END
CIRCLE DETERMINED BY THREE POINTS

The user inputs three noncolinear points, and the program responds with the center and the radius of the circle thus generated.

FORMULAE

\[
y_0 = \frac{K_2 - K_1}{N_2 - N_1} \quad X_0 = K_2 - N_2Y_0
\]

\[
r = (X_3 - X_0)^2 + (Y_3 - Y_0)^2
\]

\[
K_1 = \frac{(X_2 - X_1)(X_2 + X_1) + (Y_2 - Y_1)(Y_2 + Y_1)}{2(X_2 - X_1)}
\]

\[
K_2 = \frac{(X_3 - X_1)(X_3 + X_1) + (Y_3 - Y_1)(Y_3 + Y_1)}{2(X_3 - X_1)}
\]

\[
N_1 = \frac{Y_2 - Y_1}{X_2 - X_1} \quad N_2 = \frac{Y_3 - Y_1}{X_3 - X_1}
\]

EXAMPLES

INPUT X1,Y1
?
2,3
INPUT X2,Y2
?
5,4
INPUT X3,Y3
?
6,4,5
CENTER X0,Y0 = -1.25,17.25
RADIUS = 15.10
TO CONTINUE TYPE 1, IF NOT TYPE 0
?
0
*END
CIRCLE DETERMINED BY THREE POINTS

START

PROMPT AND INPUT POINTS

COMPUTE X₀, Y₀, R

PRINT X₀, Y₀, R

PRINT AND INPUT CONTINUE COMMAND

IS L = 1?

YES

NO

STOP
CIRCLE DETERMINED BY THREE POINTS

10 REM THIS PROGRAM COMPUTES THE CENTER AND RADIUS
20 REM OF A CIRCLE FROM 3 NON-COLLINEAR POINTS
30 PRINT "INPUT X1,Y1";
40 INPUT X1, Y1
50 PRINT "INPUT X2,Y2";
60 INPUT X2,Y2
70 PRINT "INPUT X3,Y3";
80 INPUT X3,Y3
90 LET A = (Y2 - Y1)/(X2 - X1)
100 LET B = (Y3 - Y1)/(X3 - X1)
110 LET C = ((X2 - X1)*(X2 + X1))*
+ ((Y2 - Y1)*(Y2 + Y1))
120 LET D = C/(2*(X2 - X1))
130 LET E = ((X3 - X1)*(X3 + X1)) + ((Y3 - Y1)*
(Y3 + Y1))
140 LET F = E/(2*(X3 - X1))
150 LET Y0 = (F - D)/(B - A)
160 LET X0 = F - (B*Y0)
170 LET R = SQR((X3 - X0)^2 + (Y3 - Y0)^2)
180 PRINT "CENTER X0,Y0 = ";X0"", ";Y0
190 PRINT "RADIUS = ";R
200 PRINT
210 PRINT "TO CONTINUE TYPE 1, IF NOT TYPE 0"
220 INPUT L
230 IF L = 1 THEN 250
240 STOP
250 PRINT
260 GOTO 30
270 END
CIRCULAR SECTIONS

This program computes the various parameters: moment of inertia, polar moment of inertia and area connected within a circular section.

FORMULAE

\[
\begin{align*}
I &= \frac{\pi D^4}{64} \\
A &= \frac{\pi D^2}{4} \\
J &= \frac{\pi D^4}{32}
\end{align*}
\]

\textit{where } I \textit{ & } J \textit{ are in } \text{in}^4 \textit{ and } A = \text{in}^2

EXAMPLE

RADIUS
?
5
MOMENT OF INERTIA = 490.873
POLAR MOMENT OF INERTIA = 981.746
AREA OF SECTION = 78.5397

TYPE 1 TO CONTINUE, 0 TO STOP
?
0
*END
CIRCULAR SECTIONS

START

PROMPT + INPUT RADIUS

CALCULATE PARAMETERS

OUTPUT PARAMETERS

CONTINUE MESSAGE + INPUT

IS L = 1?

YES

NO

STOP
CIRCULAR SECTION

10 REM THIS PROGRAM COMPUTES THE PARAMETERS
20 REM CONNECTED WITH A CIRCULAR SECTION
30 PRINT "RADIUS"
40 INPUT R
50 LET P = 3.14159
60 LET D = 2*R
70 LET I = (P*(D↑4))/64
80 LET J = I*2
90 LET A = (P*(D↑2))/4
100 PRINT "MOMENT OF INERTIA = ";I
110 PRINT "POLAR MOMENT OF INERTIA = ";J
120 PRINT "AREA OF SECTION = ";A
130 PRINT "***"
140 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
150 INPUT L
160 IF L = 1 THEN 180
170 STOP
180 PRINT
190 GOTO 30
200 END
COMPOUNDED AMOUNTS

This program applies to an amount of principle placed into an account and compounded periodically, with no further deposits.

FORMULAE

\[X = Y(1 + I)^N \]
\[N = \frac{\ln(X/Y)}{\ln(1 + I)} \]
\[Y = X(1 + I)^{-N} \]
\[L = Y((I + I)^N - 1) \]

where \(N \) = number of Time periods
\(I \) = interest rate (decimal) \(L \) = interest
\(Y \) = present value
\(X \) = future value

EXAMPLE

FUTURE VALUE (1)
PRESENT VALUE (2)
INTEREST (3)
PERIODIC INTEREST RATE (4)
NUMBER OF TIME PERIODS (5)
ENTER 1 TO 5
?
1
PRESENT VALUE =
?
100
INTEREST RATE =
?
10
NUMBER OF TIME PERIODS =
?
4
FUTURE VALUE = 146.41
TYPE 1 TO CONTINUE, 0 TO STOP
?
1
ENTER 1 TO 5
?
2
FUTURE VALUE =
?
200
INTEREST RATE =
?
.1
NUMBER OF TIME PERIODS =
?
5
PRESENT VALUE = 124.18
TYPE 1 TO CONTINUE, 0 TO STOP
?
1
ENTER 1 TO 5
?
3
PRESENT VALUE =
?
300
INTEREST RATE =
?
.2
NUMBER OF TIME PERIODS =
?
6
INTEREST = 595.80
TYPE 1 TO CONTINUE, 0 TO STOP
?
1
ENTER 1 TO 5
?
4
PRESENT VALUE =
?
100
FUTURE VALUE =
?
200
NUMBER OF TIME PERIODS =
?
5
INTEREST RATE = .15
TYPE 1 TO CONTINUE, 0 TO STOP
?
1
ENTER 1 TO 5
?
5
FUTURE VALUE =
?
500
PRESENT VALUE =
?
250
INTEREST RATE =
?
.2
NUMBER OF TIME PERIODS = 3.8
TYPE 1 TO CONTINUE, 0 TO STOP
?
0
*END
COMPOUNDED AMOUNTS

10 REM COMPOUNDED AMOUNTS
20 PRINT "FUTURE VALUE (1)"
30 PRINT "PRESENT VALUE (2)"
40 PRINT "INTEREST (3)"
50 PRINT "PERIODIC INTEREST RATE (4)"
60 PRINT "NUMBER OF TIME PERIODS (5)"
70 PRINT "ENTER 1 TO 5";
80 INPUT A
90 ON A GOTO 100,160,220,280,340
100 GOSUB 410
110 GOSUB 440
120 GOSUB 470
130 LET X = Y*((1 +I)^N)
140 PRINT "FUTURE VALUE = ";X
150 GOTO 390
160 GOSUB 500
170 GOSUB 440
180 GOSUB 470
190 LET Y = X*((1 +I)^N)
200 PRINT "PRESENT VALUE = ";Y
210 GOTO 390
220 GOSUB 410
230 GOSUB 440
240 GOSUB 470
250 LET L = Y*((1 +I^N) - 1)
260 PRINT "INTEREST = ";L
270 GOTO 390
280 GOSUB 410
290 GOSUB 500
300 GOSUB 470
310 LET I = ((X/Y)^(1/N)) - 1
320 PRINT "INTEREST RATE = ";I
330 GOTO 390
340 GOSUB 500
350 GOSUB 410
360 GOSUB 440
370 LET N = (LOG(X/Y))/(LOG(1 + I))
380 PRINT "NUMBER OF TIME PERIODS = ";N
390 PRINT
400 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
401 INPUT L
402 IF L = 1 THEN 404
403 STOP
404 PRINT
405 GOTO 70
410 PRINT "PRESENT VALUE = ";
420 INPUT Y
430 RETURN
440 PRINT "INTEREST RATE = ";
450 INPUT I
460 RETURN
470 PRINT "NUMBER OF TIME PERIODS = ";
480 INPUT N
490 RETURN
500 PRINT "FUTURE VALUE = ";
510 INPUT X
520 RETURN
530 END
COORDINATE TRANSLATION AND/OR ROTATION

This program will compute rectangular-coordinate translation and/or rotation. The origin is translated from (0,0) to a new point (X,Y) and the X,Y axes are rotated to an angle A to give new axes X',Y'.

FORMULAE

\[
X' = (X - X_0)\cos \alpha + (Y - Y_0)\sin \alpha \\
Y' = -(X - X_0)\sin \alpha + (Y - Y_0)\cos \alpha
\]

EXAMPLES

ANGLE OF ROTATION IN DEGREES =

? 45

COORDINATES OF NEW ORIGIN (X0,Y0) =

? 5,6

OLD COORDINATES OF DATA POINT (X1, Y1) =

? 8,9

SPECIFIED ROTATION = 45

NEW COORDINATES OF DATA POINT

X2 = 4.24

Y2 = 0

TYPE 1 TO CONTINUE, 0 TO STOP

? 0

*END
COORDINATE TRANSLATION AND/OR ROTATION

START

PROMPT AND INPUT ANGLE OF ROTATION

PROMPT AND INPUT NEW ORIGIN

PROMPT AND INPUT OLD DATA POINTS

CALCULATE NEW DATA POINTS

PRINT SPECIFIED ROTATION

PRINT NEW COORDINATES

PROMPT AND INPUT CONTINUE COMMAND

IS L = 1?

YES

NO

STOP
COORDINATE TRANSLATION AND/OR ROTATION

10 REM THIS PROGRAM COMPUTES RECTANGULAR COORDINATE
20 REM TRANSLATION AND/OR ROTATION
30 PRINT "ANGLE OF ROTATION IN DEGREES = ";
40 INPUT A
50 LET B = (A*3.14159)/180
60 PRINT "COORDINATES OF NEW ORIGIN (X0,Y0) = ";
70 INPUT X,Y
80 PRINT "OLD COORDINATES OF DATA POINT (X1,Y1) = ";
90 INPUT F,C
100 LET Z = F - X
110 LET W = C - Y
120 LET D = (Z*COS(B)) + (W*SIN(B))
130 LET E = -(Z*SIN(B)) + (W*COS(B))
140 PRINT
150 PRINT "SPECIFIED ROTATION = "; A
160 PRINT "NEW COORDINATES OF DATA POINT"
170 PRINT "X2 = "; D
180 PRINT "Y2 = "; E
190 PRINT
200 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
210 INPUT L
220 IF L = 1 THEN 240
230 STOP
240 PRINT
250 GOTO 30
260 END
CRAPS

The following game-simulation is that of craps. Craps is a game that is played with two dice. The object of the game is to either win by throwing a 7 or an 11 on the first throw, or by matching your throw on the following throws. If on the first throw a 2, 3, or a 12 comes up you lose automatically; also, if you throw a 7 when looking for a match you lose too.

EXAMPLE

RUN
FOR RULES, TYPE RULES, OTHERWISE TYPE GO
?
GO
6
8
4
YOU THROW A 6 YOU WIN BY MATCHING TO CONTINUE TYPE Y, IF NOT TYPE N
?
Y
FOR RULES, TYPE RULES, OTHERWISE TYPE GO
?
GO
YOU THROW A 7 YOU WIN TO CONTINUE TYPE Y, IF NOT TYPE N
N
*END
CRAPS

10 REM THIS PROGRAM SIMULATES THE GAME OF CRAPS
20 RANDOMIZE
30 PRINT "FOR RULES, TYPE RULES, OTHERWISE TYPE GO"
40 INPUT R$
50 IF R$ = "RULES" THEN 90
60 IF R$ = "GO" THEN 140
70 PRINT "INVALID COMMAND"
80 GOTO 30
90 PRINT "A 7 OR 11 ON THE FIRST THROW WINS"
100 PRINT "YOU CAN ALSO WIN BY THROWING A
4,5,6,8,9,10"
110 PRINT "AND MATCHING IT BEFORE THROWING A
7. IF ON"
120 PRINT "THE FIRST THROW A 2,3 OR A 12 COMES UP"
130 PRINT "YOU LOSE AUTOMATICALLY"
140 LET J = 0
150 GOSUB 460
160 LET D1 = N
170 GOSUB 460
180 LET D2 = N
190 LET D3 = D1 + D2
200 LET J = J + 1
210 IF J = 1 THEN 260
220 IF D3 = D4 THEN 420
230 IF D3 = 7 THEN 440
240 PRINT "YOU THROW A "; D3
250 GOTO 150
260 IF D3 = 7 THEN 320
270 IF D3 = 2 THEN 340
280 IF D3 = 3 THEN 340
290 IF D3 = 12 THEN 340
300 IF D3 = 11 THEN 320
310 LET D4 = D3
315 GOTO 240
320 PRINT "YOU THROW A "; D3; " YOU WIN"
330 GOTO 350
340 PRINT "YOU THROW A "; D3; " YOU LOSE"
350 PRINT
360 PRINT "TO CONTINUE TYPE Y, IF NOT TYPE N"
370 INPUT L$
380 IF L$ = "Y" THEN 400
390 STOP
400 PRINT
410 GOTO 30
420 PRINT "YOU THROW A "; D3; "YOU WIN BY MATCHING"
430 GOTO 350

46
440 PRINT "YOU THROW A ";D3;" SORRY YOU LOSE"
450 GOTO 350
460 LET N = 1 + INT(6*RND)
470 RETURN
480 END
CURVE TABLES (PLOTTING)
This program generates a series of data points, with which the user can plot curves. The data points generated lie between the values given for the starting value and the end point of X. Step size may be changed by using a step statement in conjunction with the FOR statement. The user must supply the equation of the curve in line 140.

EXAMPLE
(ASSUMING THE EQUATION IS (2*X) + 6)
STARTING VALUE OF X =
?
5
END VALUE OF X =
?
10
TABLE
X Y
5 16
6 18
7 20
8 22
9 24
10 26
TYPE 1 TO CONTINUE, 0 TO STOP
?
0
*END
CURVE TABLES
10 REM THIS PROGRAM GENERATES A SERIES OF
20 REM DATA POINTS, WITH WHICH THE USER CAN
30 REM PLOT CURVES. THE DATA POINTS GENERATED
40 REM LIE BETWEEN THE VALUES GIVEN FOR X
50 REM IF A STEP SIZE OTHER THAN 1 IS DERIVED
60 REM USE A STEP STATEMENT WITH THE FOR
70 PRINT "STARTING VALUE OF X = ";
80 INPUT X
90 PRINT "END VALUE OF X = ";
100 INPUT W
110 PRINT "TABLE"
120 PRINT "X", "Y"
130 FOR I = X TO W
140 LET Y =
150 PRINT I, Y
160 NEXT I
170 PRINT
180 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
190 INPUT L
200 IF L = 1 THEN 220
210 STOP
220 PRINT
230 GOTO 70
240 END
DAY OF THE WEEK

This computer program computes the day of the week (e.g., Monday) from the date entered. The date entered must not be prior to 1753, this is due to changes involving the switch-over from the Julian to the Gregorian Calendar.

EXAMPLE

RUN
ENTER DAY(D), MONTH(M) AND YEAR(Y)
?
16,02,1977
THE DAY OF THE WEEK IS WEDNESDAY FOR NEXT DATE IN YES, IF NOT
TYPE NO
?
NO
DAY OF THE WEEK SAYS GOOD-BYE
*END
DAY OF THE WEEK

10 REM THIS PROGRAM COMPUTES THE DAY OF THE WEEK
20 REM RESTRICTION: THE DATE MUST BE AFTER 1752
30 LET J$(1) = "SUNDAY"
40 LET J$(2) = "MONDAY"
50 LET J$(3) = "TUESDAY"
60 LET J$(4) = "WEDNESDAY"
70 LET J$(5) = "THURSDAY"
80 LET J$(6) = "FRIDAY"
90 LET J$(7) = "SATURDAY"
100 PRINT "ENTER DAY(D), MONTH(M) and YEAR(Y)"
110 INPUT D, M, Y
120 IF Y > 1752 THEN 150
130 PRINT "YEAR MUST NOT BE PRIOR TO 1753"
140 GOTO 100
150 LET K = INT(0.6 + (1/M))
160 LET L = Y - K
170 LET O = M + 12*K
180 LET P = L/100
190 LET Z1 = INT(P/4)
200 LET Z2 = INT(P)
210 LET Z3 = INT((5*L)/4)
220 LET Z4 = INT (13*(O + 1)/5)
230 LET Z = Z4 + Z3 - Z2 + Z1 + D - 1
240 LET Z=Z - (7*INT(Z/7)) + 1
250 PRINT "THE DAY OF THE WEEK IS "; J$(Z)
260 PRINT
270 PRINT "FOR NEXT DATE TYPE IN YES, IF NOT"
280 PRINT "TYPE NO"
290 INPUT L$
300 IF L$ = "YES" THEN 340
310 IF L$ = "NO" THEN 360
320 PRINT "INVALID COMMAND"
330 GOTO 270
340 PRINT
350 GOTO 30
360 PRINT "DAY OF THE WEEK SAYS GOOD-BYE"
370 END
DETERMINANT AND INVERSE OF A 2 × 2 MATRIX

The computer computes the inverse and determinant of a 2 × 2 matrix supplied by the user.

EXAMPLE

ENTER A11,A12
?
5,3
ENTER A21,A22
?
2,1
ORIGINAL MATRIX
5 3
2 1
INVERSE OF MATRIX
– 1 4
 2 – 5
DETERMINANT = – 1
TYPE 1 TO CONTINUE, 0 TO STOP
?
0
*END
DETERMINANT AND INVERSE OF 2 × 2 MATRIX

10 REM THIS PROGRAM COMPUTES THE DETERMINANT AND
20 REM INVERSE OF A 2 × 2 MATRIX
30 PRINT "ENTER A11, A12";
40 INPUT A,B
50 PRINT "A21, A22";
60 INPUT C,D
70 LET E = (D*A) - (B*C)
80 LET F = D/E
90 LET G = - B/E
100 LET H = - C/E
110 LET I = A/E
120 PRINT "ORIGINAL MATRIX"
130 PRINT A,B
140 PRINT C,D
150 PRINT
160 PRINT "INVERSE OF MATRIX"
170 PRINT F,G
180 PRINT H,I
190 PRINT
200 PRINT "DETERMINANT = ",E
210 PRINT
220 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
230 INPUT L
240 IF L = 1 THEN 30
250 STOP
260 PRINT
270 GOTO 30
280 END
DETERMINATE INVERSE OF A 3×3 MATRIX

The user inputs his original matrix, and the computer responds with the determinate and the inverse.

FORMULAE

$$\text{MATRIX} = \begin{pmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{pmatrix}$$

$$\text{DET A} = A_1B_2C_3 + B_1C_2A_3 + C_1B_3A_2 - C_1B_2A_3 - C_2B_3A_1 - C_3A_2B_1$$

$$\text{INVERSE OF MATRIX A} = \begin{pmatrix} \alpha_1 & \beta_1 & \gamma_1 \\ \alpha_2 & \beta_2 & \gamma_2 \\ \alpha_3 & \beta_3 & \gamma_3 \end{pmatrix}$$

$$\alpha_1 = (B_2C_3 - B_3C_2)/\text{DET A}$$
$$\alpha_2 = (A_3C_2 - A_2C_3)/\text{DET A}$$
$$\alpha_3 = (A_2B_3 - A_3B_2)/\text{DET A}$$
$$\beta_1 = (B_3C_1 - B_1C_3)/\text{DET A}$$
$$\beta_2 = (A_1C_3 - A_3C_1)/\text{DET A}$$
$$\beta_3 = (A_3B_1 - A_1B_3)/\text{DET A}$$
$$\gamma_1 = (B_1C_2 - B_2C_1)/\text{DET A}$$
$$\gamma_2 = (A_2C_1 - A_1C_2)/\text{DET A}$$
$$\gamma_3 = (A_1B_2 - A_2B_1)/\text{DET A}$$

EXAMPLE

ENTER 3X3 MATRIX
?
1,4,2,2,4,2,3,5,1
ORIGINAL MATRIX
1 4 2
2 4 2
3 5 1
DETERMINANT = 6
INVERSE OF MATRIX
-1 1 0
.67 -.83 .33
-.33 1.17 -.67
TYPE 1 TO CONTINUE, 0 TO STOP
?
0
*END
DETERMINANT AND INVERSE OF 3×3 M

START

PROMPT AND INPUT 3×3 MATRIX

CALCULATE DETERMINANT AND INVERSE

PRINT ORIGINAL MATRIX

PRINT DETERMINANT

PRINT INVERSE OF MATRIX

PROMPT AND INPUT CONTINUE COMMAND

IS L = 1?

YES

STOP

NO
DETERMINANT AND INVERSE OF 3 × 3 MATRIX

10 REM THIS PROGRAM COMPUTES 3 × 3 MATRIX OPERATIONS
20 PRINT "ENTER 3 × 3 MATRIX"
30 INPUT A,B,C,D,E,F,G,H,I
40 REM COMPUTE DETERMINANT OF 3×3
50 LET M = (A*E*D) + (B*F*G) + (C*H*D)
60 LET N = M - (C*E*G) - (F*H*A) - (I*D*B)
70 REM COMPUTE INVERSE
80 LET O = ((F*I) - (H*F))/N
90 LET P = ((G*F) - (D*I))/N
100 LET Q = ((D*H) - (G*E))/N
110 LET R = ((H*C) - (B*I))/N
120 LET S = ((A*I) - (G*C))/N
130 LET T = ((G*B) - (A*H))/N
140 LET U = ((B*F) - (E*C))/N
150 LET V = ((D*C) - (A*F))/N
160 LET W = ((A*E) - (D*B))/N
170 PRINT "ORIGINAL MATRIX"
180 PRINT A,B,C
190 PRINT D,E,F
200 PRINT G,H,I
210 PRINT
220 PRINT "DETERMINANT = ";N
230 PRINT
240 PRINT "INVERSE OF MATRIX"
250 PRINT O,R,U
260 PRINT P,S,V
270 PRINT Q,T,W
280 PRINT
290 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
300 INPUT L
310 IF L = 1 THEN 20
320 END
FACTORIALS

This program computes by iterative multiplication of the factorial of X.

FORMULA

\((X)(X - 1)(X - 2)\ldots (X - X + 1)\)

EXAMPLE

\(X = \) ?
5
\(X = 5 \times 1! = 120\)
TYPE 1 TO CONTINUE, 0 TO STOP
?
1
\(X = \) ?
7
\(X = 7 \times 1! = 5040\)
TYPE 1 TO CONTINUE, 0 TO STOP
?
1
\(X = \) ?
18
\(X = 18 \times 1! = 6.40237E15\)
TYPE 1 TO CONTINUE, 0 TO STOP
?
0
*END
FACTORIALS

REM THIS PROGRAM COMPUTES THE FACTORIALS OF X
REM BY ITERATIVE MULTIPLICATIONS
PRINT "X = ";
INPUT X
LET Z = 1
FOR I = 1 TO X
LET Z = Z*I
NEXT I
PRINT "X = ",X,"X! = ",Z
PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
INPUT L
IF L = 1 THEN 140
STOP
PRINT
GOTO 30
END
FIBONACCI NUMBERS

This program computes a table of Fibonacci numbers from the first two terms entered by the user, who may also specify the maximum number of terms.

FORMULA

\[F_i = \text{ith term in the sequence}; \quad \text{For any two terms the} \]

\[\text{first term} = f_i - 2, \quad \text{second term} = f_i - 1 \]

\[f_i = f_{i-1} + f_{i-2} \]

EXAMPLE

ENTER 1ST TERM
?
1

ENTER 2ND TERM
?
1

MAXIMUM NUMBER OF TERMS = ?
10

TABLE OF FIBONACCI NUMBERS

<table>
<thead>
<tr>
<th>TERM NO.</th>
<th>FIBONACCI NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td>9</td>
<td>34</td>
</tr>
<tr>
<td>10</td>
<td>55</td>
</tr>
</tbody>
</table>

MAXIMUM NUMBER OF TERMS REACHED

TYPE 1 TO CONTINUE, 0 TO STOP
?
1

ENTER FIRST TERM
?
27
ENTER SECOND TERM
?
963
MAXIMUM NUMBER OF TERMS =
?
5

TABLE OF FIBONACCI NUMBERS

<table>
<thead>
<tr>
<th>TERM NO.</th>
<th>FIBONACCI NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>963</td>
</tr>
<tr>
<td>3</td>
<td>990</td>
</tr>
<tr>
<td>4</td>
<td>1953</td>
</tr>
<tr>
<td>5</td>
<td>2943</td>
</tr>
</tbody>
</table>

MAXIMUM NUMBER OF TERMS REACHED
TYPE 1 TO CONTINUE, 0 TO STOP
?
0
*END
FIBONACCI NUMBERS

START

PROMPT AND INPUT VARIABLES

PRINT TABLE OF NUMBERS

PRINT "TERM NO." AND "FIBONACCI NO."

PRINT K, A

PRINT K, B

CALCULATE NEXT NUMBER

PRINT K, Q.

IS K ≥ N?

YES

NO

PRINT "MAX TERMS REACHED"

PROMPT AND INPUT CONTINUE COMMAND

IS L = 1?

YES

NO

STOP
FIBONACCI NUMBERS

10 REM THIS PROGRAM COMPUTES A TABLE OF FIBONACCI NUMBERS
20 PRINT "ENTER FIRST TERM"
30 INPUT A
40 PRINT "ENTER SECOND TERM"
50 INPUT B
60 PRINT "MAXIMUM NUMBER OF TERMS = "
70 INPUT N
80 PRINT
90 PRINT "TABLE OF FIBONACCI NUMBERS"
100 PRINT "TERM NO.",”FIBONACCI NUMBER"
110 LET K = 1
120 PRINT K,A
130 LET K = 2
140 PRINT K,B
150 LET K = K + 1
160 LET Q = A + B
170 PRINT K,Q
180 LET A = B
190 LET B = Q
200 IF K > = N THEN 220
210 GOTO 150
220 PRINT "MAXIMUM NUMBER OF TERMS REACHED"
230 PRINT
240 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
250 INPUT L
260 IF L = 1 THEN 280
270 STOP
280 PRINT
290 GOTO 20
300 END
FIRST DERIVATIVE

The user must supply the expression to complete the assignment statement in line 280. The computer will then derive the first derivative of the supplied equation.

FORMULA

\[f'(x) = \frac{f(x + \Delta x/2) - f(x - \Delta x/2)}{\Delta x} \]

\[x > 0 \]

EXAMPLE

(ASSUMING THE EQUATION IS X^2)
VALUE OF X =
?
10
IF X = 10 THEN F(X) = 100
AND F'(X) = 20
TYPE 1 TO CONTINUE, 0 TO STOP
?
1
VALUE OF X =
?
20
IF X = 20 THEN F(X) = 400
AND F'(X) = 40
TYPE 1 TO CONTINUE, 0 TO STOP
?
0
*END
FIRST DERIVATIVE

START

PROMPT AND INPUT X

CALCULATE DERIVATIVE AND F(X)

PRINT X, F(X), and F'(X)

PROMPT AND INPUT CONTINUE COMMAND

IS L = 1?

YES

STOP

NO

SUBROUTINE FOR FUNCTION

FIRST DERIVATIVE

10 REM THIS PROGRAM COMPUTES THE FIRST DERIVATIVE
20 REM OF A FUNCTION ENTERED BY THE USER
30 PRINT “VALUE OF X = ”;
40 INPUT X
50 LET Y = X
60 LET Z = (X*(1E - 04))/2
70 LET W = X + Z
80 LET V = X - Z
90 LET X = W
100 GOSUB 280
110 LET A = P
120 LET X = V
130 GOSUB 280
140 LET B = P
150 LET X = Y
160 GOSUB 280
170 LET C = P
180 LET F = (A - B)/2*Z
190 PRINT "IF X = ";Y,"THEN F(X) = ";C
200 PRINT "AND F'(X) = ";F
210 PRINT
220 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
230 INPUT L
240 IF L = 1 THEN 260
250 STOP
260 PRINT
270 GOTO 40
280 LET P =
290 RETURN
300 END
GAMMA FUNCTION AND GENERALIZED FACTORIAL

This program computes both the gamma function and the generalized factorial via polynomial approximation.

FORMULAE

\[\Gamma (X) = \int_0^\infty t^{x-1}e^{-t}dt \]

\[\Gamma (X) \approx (1 + A_1(Y) + A_2(Y)^2 \ldots \ldots A_n(Y)^n)Z \]

where \(Y \) = fractional part of \(X \)
where \(Z = (X - 1)(X - 2) \ldots \ldots (X - N) \)
and \(X - N = 1 + Y \)

EXAMPLE

RUN

TYPE G FOR THE GAMMA FUNCTION OR

TYPE F FOR THE GENERALIZED FACTORIAL

? G

ENTER VALUE OF X

? 5

GAMMA (5) = 24

TO CONTINUE TYPE Y, IF NOT TYPE N

? Y

TYPE G FOR THE GAMMA FUNCTION OR

TYPE F FOR THE GENERALIZED FACTORIAL

? F

ENTER VALUE OF X

? 5

5! = 120

TO CONTINUE TYPE Y, IF NOT TYPE N

? N

*END
GAMMA FUNCTION AND GENERALIZED FACTORIAL

10 REM THIS PROGRAM GENERATES VIA POLYNOMIAL
20 REM APPROXIMATION THE GAMMA FUNCTION
30 REM AND THE GENERALIZED FACTORIALS
40 LET A = 0.57717
50 LET B = 0.98821
60 LET C = 0.89706
70 LET D = 0.91821
80 LET E = 0.7567
90 LET F = 0.4822
100 LET G = 0.19353

70
110 LET H = 0.03587
120 PRINT "TYPE G FOR THE GAMMA FUNCTION OR"
130 PRINT "TYPE F FOR THE GENERALIZED FACTORIAL"
140 INPUT A$
150 IF A$ = "G" THEN 190
160 IF A$ = "F" THEN 300
170 PRINT "INVALID RESPONSE"
180 GOTO 120
190 PRINT "ENTER VALUE OF X"
200 INPUT X
210 LET K = X
220 LET K = K - 1
230 IF K >= 0 THEN 260
240 PRINT "X MUST BE EQUAL TO OR GREATER THAN 1"
250 GOTO 190
260 GOSUB 490
270 IF (X - 1) = INT(X - 1) THEN 410
280 GOSUB 570
290 GOTO 410
300 PRINT "ENTER VALUE OF X"
310 INPUT X
320 LET K = X
330 IF K >= 0 THEN 360
340 PRINT "X MUST BE GREATER THAN OR EQUAL TO 0"
350 GOTO 300
360 GOSUB 490
370 IF X = INT(X) THEN 390
380 GOSUB 570
390 PRINT X;"! = ";K
400 GOTO 420
410 PRINT "GAMMA (";X;") = ";K
420 PRINT
430 PRINT "TO CONTINUE TYPE Y, IF NOT TYPE N"
440 INPUT L$
450 IF L$ = "Y" THEN 470
460 STOP
470 PRINT
480 GOTO 120
490 LET J = 1
500 LET J = J*K
LET K = K - 1
IF K < 1 THEN 540
GOTO 500
LET L = K
LET K = J
RETURN
LET A1 = 1 + (A*L) + (B*(L↑2)) + (C*(L↑3))
LET A1 = A1 + (D*(L↑4)) + (E*(L↑5)) + (F*(L↑6))
LET A1 = A1 + (G*(L↑7)) + (H*(L↑8))
LET K = A1*K
RETURN
END
GAUSSIAN PROBABILITY FUNCTION

This program computes the Gaussian probability function of \(X \).

FORMULA

\[
f(X) = \frac{1}{\sqrt{2\pi}} e^{-\frac{X^2}{2}}
\]

EXAMPLES

\(X = \)

?
3.2
\(F(X) = .00238 \)

TO CONTINUE TYPE 1, 0 TO STOP

?
1
\(X = \)

?
4
\(F(X) = .000133 \)

TO CONTINUE TYPE 1, 0 TO STOP

?
1
\(X = \)

?
1.2
\(F(X) = .19418 \)

TO CONTINUE TYPE 1, 0 TO STOP

?
0
*END
GAUSSIAN PROBABILITY FUNCTION

10 REM THIS PROGRAM COMPUTES THE GAUSSIAN PROBABILITY
20 REM FUNCTION OF X
30 PRINT "X = ";
40 INPUT X
50 LET A = EXP(- (X^2)/2)
60 LET B = .398942
70 LET C = B*A
80 PRINT "F(X) = ";C
90 PRINT
100 PRINT "TO CONTINUE TYPE 1, 0 TO STOP"
110 INPUT L
120 IF L = 1 THEN 140
130 STOP
140 PRINT
150 GOTO 30
160 END
GAUSSIAN QUADRATURE

This program computes the integral \(f(x)dx \) for a finite \(A \) by the 6-point Gaussian-Legendre quadrature formula. It should be noted that \(f(x) \) must be a single-valued function.

FORMULA

\[
\int_{A}^{\infty} f(x)dx = \frac{1}{2} \sum_{i=1}^{6} \frac{4D_i}{(1 + C_i)^2} f \left(\frac{2}{1 + C_i} + A - 1 \right)
\]

EXAMPLE

ENDPOINT A =
0
INTEGRAL = 0.92
TYPE 1 TO CONTINUE, 0 TO STOP
0

*END

The LET Q statement in line 470 must be completed by the user. Any single-valued expression may be used for \(f(x) \).
GAUSSIAN QUADRATURE

10 REM THIS PROGRAM COMPUTES THE INTEGRAL BETWEEN A
20 REM AND INFINITY BY GAUSSIAN QUADRATURE
30 LET C1 = .238619
40 LET C2 = - C1
50 LET C3 = .661209
60 LET C4 = - C3
70 LET C5 = .932470
80 LET C6 = - C5
90 LET D1 = .467914
100 LET D2 = .360762
110 LET D3 = .171324
120 LET J = 0
130 PRINT "ENDPOINT A = ";
140 INPUT A
150 LET X = (2/(1 + C1)) + (A - 1)
160 GOSUB 470
170 LET N = ((4*D1)/(1 + C1)*2)^Q
180 LET J = J + N
190 LET X = (2/(1 + C2)) + (A - 1)
200 GOSUB 470
210 LET N = ((4*D1)/(1 + C2)*2)^Q
220 LET J = J + N
230 LET X = (2/(1 + C3)) + (A - 1)
240 GOSUB 470
250 LET N = ((4*D2)/(1 + C3)*2)^Q
260 LET J = J + N
270 LET X = (2/(1 + C4)) + (A - 1)
280 GOSUB 470
290 LET N = ((4*D2)/(1 + C4)*2)^Q
300 LET J = J + N
310 LET X = (2/(1 + C5)) + (A - 1)
320 GOSUB 470
330 LET N = ((4*D3)/(1 + C5)*2)^Q
340 LET J = J + N
350 LET X = (2/(1 + C6)) + (A - 1)
360 GOSUB 470
370 LET N = ((4*D3)/(1 + C6)*2)^2
380 LET J = J + N
390 LET G = J/2
400 PRINT "INTEGRAL = "; G

76
410 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
420 INPUT L
430 IF L = 1 THEN 450
440 STOP
450 PRINT
460 GOTO 120
470 LET Q =
480 RETURN
490 END
GENERALIZED MEAN

This program computes the generalized mean, which becomes equal to the arithmetic mean if the T entered by the user is 1, and equal to the harmonic mean if the user enters -1.

FORMULA

$$M(T) = \left(\frac{1}{N} \sum_{k=1}^{N} \frac{T}{k} \right)^{\frac{1}{T}}$$

where $X > 0$

EXAMPLE

$T =$
?
4
INPUT SAMPLE
?
5
GENERALIZED MEAN

$M(T) = 5$ WHERE $T = 4$

TYPE 1 TO CONTINUE, 0 TO STOP
?
0

*END
GENERALIZED MEAN

10 REM THIS PROGRAM COMPUTES THE GENERALIZED MEAN
20 REM IF T = 1, THEN THE GENERALIZED MEAN
 M(T)
30 REM IS EQUAL TO THE ARITHMETIC MEAN. IF
 T = − 1
40 REM THEN M(T) IS EQUAL TO THE HARMONIC
 MEAN
50 LET J = 0
60 LET N = 0
70 PRINT "T = ";
80 INPUT T
90 PRINT "INPUT SAMPLE";
100 INPUT X
110 IF X = 0 THEN 150
120 LET J = J + (X^T)
130 LET N = N + 1
140 GOTO 90
150 LET G = (J/N)^(1/T)
160 PRINT "GENERALIZED MEAN"
170 PRINT "M(T) = ";G, "WHERE T = ";T
180 PRINT
190 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
200 INPUT L
210 IF L = 1 THEN 230
220 STOP
230 PRINT
240 GOTO 50
250 END
GEOMETRIC MEAN

This program computes the geometric mean of the sample entered by the user until a 0 is entered for the sample.

FORMULA

\[G = \sqrt[n]{(a_1)(a_2)\ldots(a_n)} \]

EXAMPLE

SAMPLE =
?
2
NUMBER OF SAMPLES = 1 CURRENT SAMPLE = 2
CURRENT MEAN = 2
SAMPLE =
?
5
NUMBER OF SAMPLES = 2 CURRENT SAMPLE = 5
CURRENT MEAN = 3.1623
SAMPLE =
?
0
TYPE 1 TO CONTINUE, 0 TO STOP
?
0
END
GEOMETRIC MEAN

10 REM THIS PROGRAM COMPUTES THE GEOMETRIC MEAN
20 REM AFTER EACH SAMPLE IS ENTERED, THE NUMBER OF
30 REM SAMPLES, THE CURRENT SAMPLE AND CURRENT MEAN
40 REM IS PRINTED.
50 LET Y = 1
60 LET N = 0
70 PRINT "SAMPLE = ";
80 INPUT W
90 IF W = 0 THEN 160
100 LET N = N + 1
110 LET Y = Y*W
120 LET G = Y^(1/N)
130 PRINT "NUMBER OF SAMPLES = ";N,"CURRENT SAMPLE = ";W
140 PRINT "CURRENT MEAN = ";G
150 GOTO 70
160 PRINT
170 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
180 INPUT L
190 IF L = 1 THEN 210
200 STOP
210 PRINT
220 GOTO 50
230 END
GEOMETRIC PROGRESSION

From the following information: first term, ratio of terms, and number of terms, this program computes the geometric progression.

FORMULA

\[a, ar, ar^2, \ldots, ar^{n-1} \]

EXAMPLE

FIRST TERM =
10
RATIO OF TERMS =
2
NUMBER OF TERMS =
5
FOR TABLE, TYPE 1, IF NOT TYPE 0
1

<table>
<thead>
<tr>
<th>TERM NUMBER</th>
<th>TERM VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>160</td>
</tr>
</tbody>
</table>

SUM = 310
TYPE 1 TO CONTINUE, 0 TO STOP
0

*END
GEOMETRIC PROGRESSION

10 REM THIS PROGRAM COMPUTES THE VALUES AND THEIR SUM
20 REM OF A GEOMETRIC PROGRESSION
30 PRINT "FIRST TERM = ";
40 INPUT A
50 PRINT "RATIO OF TERMS = ";
60 INPUT R
70 PRINT "NUMBER OF TERMS = ";
80 INPUT N
90 PRINT "FOR TABLE TYPE 1, IF NOT TYPE 0"
100 INPUT C
110 IF C = 1 THEN 130
120 GOTO 160
130 PRINT
140 PRINT "GEOMETRIC PROGRESSION"
150 PRINT "TERM NUMBER", "TERM VALUE"
160 LET J = 0
170 FOR I = 0 TO N - 1
180 LET K = I + 1
190 LET L = A*(R^K)
200 LET J = J + L
210 IF C = 1 THEN 230
220 GOTO 240
230 PRINT K, L
240 NEXT I
250 PRINT "SUM = "; J
260 PRINT
270 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
280 INPUT X
290 IF X = 1 THEN 310
300 STOP
310 PRINT
320 GOTO 30
330 END
HARMONIC MEAN

This program computes the harmonic mean of the samples entered by the user, until a 0 is entered for the sample.

FORMULA

\[H = \frac{N}{\sum_{i=1}^{N} \frac{1}{a_i}} \]

EXAMPLE

SAMPLE =
?
2
N = 1 SAMPLE = 2 CURRENT MEAN = 2
SAMPLE =
?
5
N = 2 SAMPLE = 5 CURRENT MEAN = 2.86
SAMPLE =
?
7
N = 3 SAMPLE = 7 CURRENT MEAN = 3.56
SAMPLE =
?
0
TYPE 1 TO CONTINUE, 0 TO STOP
?
0
*END
HARMONIC MEAN

10 REM THIS PROGRAM COMPUTES THE HARMONIC MEAN
20 REM OF THE SAMPLES ENTERED BY THE USER
30 LET Z = 0
40 LET N = 0
50 PRINT "SAMPLE = ";
60 INPUT X
70 IF X = 0 THEN 130
80 LET N = N + 1
90 LET Z = Z + (1/X)
100 LET H = N/Z
110 PRINT "N = ";N,"SAMPLE = ";X,"CURRENT MEAN = ";H
120 GOTO 50
130 PRINT
140 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
150 INPUT L
160 IF L = 1 THEN 180
170 STOP
180 PRINT
190 GOTO 30
200 END
HARMONIC NUMBERS

This program computes the first N harmonic numbers where N is entered by the user.

FORMULA

\[1, 1 + 1/2, 1 + 1/2 + 1/3, 1 + 1/2 + 1/3 + 1/4, \ldots\]

EXAMPLE

MAXIMUM TERM NUMBER

? 35

TERM NUMBER	TERM VALUE
1 | 1
2 | 1.5
3 | 1.83333
4 | 2.08333
5 | 2.28333
6 | 2.45
7 | 2.59285
8 | 2.71785
9 | 2.82896
10 | 2.92896
11 | 3.01987
12 | 3.10321
13 | 3.18013
14 | 3.25156
15 | 3.31822
16 | 3.38072
17 | 3.43955
18 | 3.49510
19 | 3.54774
20 | 3.59773
21 | 3.64535
22 | 3.69081
23 | 3.73429
24 | 3.77595
25 | 3.81595
26 | 3.85442
27 | 3.89145
28 | 3.92717
29 | 3.96165
30 | 3.99498
<table>
<thead>
<tr>
<th>TERM NUMBER</th>
<th>TERM VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>4.02724</td>
</tr>
<tr>
<td>32</td>
<td>4.05849</td>
</tr>
<tr>
<td>33</td>
<td>4.08879</td>
</tr>
<tr>
<td>34</td>
<td>4.11821</td>
</tr>
<tr>
<td>35</td>
<td>4.14678</td>
</tr>
<tr>
<td>36</td>
<td>4.17456</td>
</tr>
</tbody>
</table>

END
HARMONIC NUMBERS

10 REM THIS PROGRAM COMPUTES HARMONIC NUMBERS
20 PRINT "MAXIMUM TERM NUMBER"
30 INPUT N
40 LET K = 0
50 LET D = 0
60 PRINT "TERM NUMBER", "TERM VALUE"
70 FOR I = 0 TO N
80 LET K = I + 1
90 LET C = 1/K
100 LET D = D + C
110 PRINT K,D
120 NEXT I
130 PRINT
140 END
HARMONIC PROGRESSIONS

This program computes from the following information the values of A and B, the difference and the number of terms desired. At the user’s option a table of progressions may be generated. In either case the sum of the number of terms is produced.

FORMULA

\[\frac{A}{B}, \frac{A}{B + D}, \frac{A}{B + 2D}, \ldots, \frac{A}{B + (N - 1)D}\]

EXAMPLE

VALUE OF A = ?
10
VALUE OF B = ?
2
DIFFERENCE = ?
3
NUMBER OF TERMS = ?
20
FOR TABLE TYPE 1, IF NOT TYPE 0 ?
1
HARMONIC PROGRESSION
TERM NUMBER TERM VALUE
1 5
2 2
3 1.25
4 .90901
5 .714286
6 .588235
7 .5
8 .434783
9 .384615
10 .344828
11 .3125
12 .285714
<table>
<thead>
<tr>
<th>TERM NUMBER</th>
<th>TERM VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>.263158</td>
</tr>
<tr>
<td>14</td>
<td>.243802</td>
</tr>
<tr>
<td>15</td>
<td>.227273</td>
</tr>
<tr>
<td>16</td>
<td>.212766</td>
</tr>
<tr>
<td>17</td>
<td>.2</td>
</tr>
<tr>
<td>18</td>
<td>.188679</td>
</tr>
<tr>
<td>19</td>
<td>.178571</td>
</tr>
<tr>
<td>20</td>
<td>.169492</td>
</tr>
</tbody>
</table>

SUM = 14.4078

TYPE 1 TO CONTINUE, 0 TO STOP
?
0
*END
HARMONIC PROGRESSIONS

10 REM THIS PROGRAM COMPUTES A SERIES OF HARMONIC
20 REM PROGRESSIONS
30 PRINT "VALUE OF A =
40 INPUT A
50 PRINT "VALUE OF B =
60 INPUT B
70 PRINT "DIFFERENCE =
80 INPUT D
90 PRINT "NUMBER OF TERMS =
100 INPUT N
110 PRINT "FOR TABLE TYPE 1, IF NOT TYPE 0"
120 INPUT C
130 IF C = 1 THEN 150
140 GOTO 170
150 PRINT "HARMONIC PROGRESSION"
160 PRINT "TERM NUMBER","TERM VALUE"
170 LET J = 0
180 FOR I = 0 to N - 1
190 LET K = I + 1
200 LET L = A/(B + (I*D))
210 LET J = J + L
220 IF C = 1 THEN 240
230 GOTO 250
240 PRINT K,L
250 NEXT I
260 PRINT "SUM = ",J
270 PRINT "*******************************"
280 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
290 INPUT X
300 IF X = 0 THEN 320
310 STOP
320 PRINT
330 GOTO 30
340 END
HYDROCARBON COMBUSTION

This program simulates the burning of a hydrocarbon compound; complete combustion is assumed, and the option of excess air is available.

FORMULAE
AIR = 1 + % EXCESS AIR/100
O_2 = C + S + H/4 - O/2
AF(MOLES) = O_2(4.762)AIR
AF(MASS) = 1.8094(AF MOLES)/.7507C + 0.063H + 2.004S + 0.875N + O
TOTAL MOLES = O_2(4.762 AIR) + H/4 + O/2 + N/2
VOLUME % CO_2 = 100C/M
VOLUME % SO_2 = 100S/M
VOLUME % H_2O = 100H/2M
VOLUME % O_2 = 100(AIR - 1)O_2/M
VOLUME % N_2 = (100((3.762)AIR(02) + N/2)/M

EXAMPLE

RUN
FOR INSTRUCTIONS TYPE YES, IF NOT TYPE NO
?
NO
ENTER CARBON(C), HYDROGEN(H), OXYGEN(O), SULPHUR(S), NITROGEN(N) IN THAT ORDER
?
1,4,0,0,0
ENTER PERCENTAGE EXCESS AIR, IF ZERO
ENTER 0, EXAMPLE: 34% ENTER AS 34
?
0
AIR-FUEL RATIO WITH RESPECT TO MOLES = 9.52
AIR-FUEL RATIO WITH RESPECT TO MASS = 17.19
TOTAL MOLES OF PRODUCTION = 10.52
*******PERCENTAGE OF VOLUME OF PRODUCETS*******
CARBON DIOXIDE = 9.50%
SULPHUR DIOXIDE = 0.0%
WATER = 19.0%
OXYGEN = 0.0%
NITROGEN = 71.49%
*******COMPLETE COMBUSTION ASSUMED*******
TO TRY NEXT COMPOUND TYPE YES
TO STOP TYPE NO
?
NO
COMBUSTION SAYS GOOD-BYE
*END
HYDROCARBON COMBUSTION

10 REM THIS PROGRAM COMPUTES THE PERCENTAGES OF THE
20 REM PRODUCTS PRODUCED BY HYDROCARBON COMBUSTION
30 PRINT "FOR INSTRUCTIONS TYPE YES, IF NOT TYPE NO"
40 INPUT I$
50 IF I$ = "YES" THEN 90
60 IF I$ = "NO" THEN 130
70 PRINT "INVALID COMMAND"
80 GOTO 30
90 PRINT "THE AMOUNTS OF EACH ELEMENT MUST BE"
100 PRINT "ENTERED, EVEN IF THE AMOUNT IS ZERO"
110 PRINT "EXAMPLE: METHANE (CH4) MUST BE ENTERED AS"
120 PRINT "C;1, H;4, O;0, S;0, N;0"
130 PRINT
140 PRINT "ENTER CARBON(C), HYDROGEN(H), OXYGEN(O)"
150 PRINT "SULPHUR(S), NITROGEN(N) IN THAT ORDER"
160 INPUT C,H,O,S,N
170 PRINT "ENTER PERCENTAGE EXCESS AIR, IF ZERO"
180 PRINT "ENTER 0, EXAMPLE: 34% ENTER AS 34"
190 INPUT E
200 LET E = 1 + (E/100)
210 LET O2 = C + S + (H/4) - (O/2)
220 LET A = O2*E*4.762
230 LET A1 = 1.8094*A
240 LET F = (0.7507*C) + (0.063*H) + (2.004*S)
250 LET F = (0.875*N) + O + F
260 LET A1 = A1/F
270 LET M = A + (HP4) + (O/2) + (N/2)
280 LET C2 = (C*100)/M
290 LET S2 = (S*100)/M
300 LET H2 = (H*100)/(2*M)
310 LET O3 = (100*E - 1)*O2/M
320 LET N2 = (100*(3.762*E*O2 + (N/2)))/M
330 PRINT
340 PRINT "AIR-FUEL RATIO WITH RESPECT TO MOLES = "; A
350 PRINT "AIR-FUEL RATIO WITH RESPECT TO MASS = "; A1
360 PRINT "TOTAL MOLES OF PRODUCT = "; M
370 PRINT "*****PERCENTAGE VOLUME OF PRODUCTS*****"
380 PRINT "CARBON DIOXIDE = "; C2; " % "
390 PRINT "SULPHUR DIOXIDE = "; S2; " % "
400 PRINT "WATER = "; H2; " % "
410 PRINT "OXYGEN = "; O3; " % "
420 PRINT "NITROGEN = "; N2; " % "
430 PRINT "*****COMPLETE COMBUSTION ASSUMED*****"
440 PRINT
450 PRINT "TO TRY NEXT COMPOUND TYPE YES"
460 PRINT "TO STOP TYPE NO"
470 INPUT L$
480 IF L$ = "YES" THEN 510
490 PRINT "COMBUSTION SAYS GOOD-BYE"
500 STOP
510 PRINT
520 GOTO 30
530 END
HYPERBOLIC FUNCTIONS

This program computes the following hyperbolic trigonometric functions: \(\sinH x, \cosH x, \tanH x, \cscH x, \secH x, \cotH x \).

FORMULAE

\[
\sinH x = \frac{e^x - e^{-x}}{2} \quad \cscH x = \frac{1}{\sinH x}
\]

\[
\cosH x = \frac{e^x + e^{-x}}{2} \quad \secH x = \frac{1}{\cosH x}
\]

\[
\tanH x = \frac{e^x - e^{-x}}{e^x + e^{-x}} \quad \cotH x = \frac{1}{\tanH x}
\]

EXAMPLE

TYPE A NUMBER 1 TO 6 FOR FUNCTION DESIRED

1
X =

4
SINH 4 = 27.2899

TYPE 1 TO CONTINUE, 0 TO STOP

1

TYPE A NUMBER 1 TO 6 FOR FUNCTION DESIRED

2
X =

5
COSH 5 = 74.2099

TYPE 1 TO CONTINUE, 0 TO STOP

1

TYPE A NUMBER 1 TO 6 FOR FUNCTION DESIRED

3
X =

.02
TANH .02 = .019997
TYPE 1 TO CONTINUE, 0 TO STOP
?
1
TYPE A NUMBER 1 TO 6 FOR FUNCTION DESIRED
?
4
X =
?
3.5
CSCH 3.5 = .060449
TYPE 1 TO CONTINUE, 0 TO STOP
?
1
TYPE A NUMBER 1 TO 6 FOR FUNCTION DESIRED
?
5
X =
12
SECH 12 = .000012
TYPE 1 TO CONTINUE, 0 TO STOP
?
1
TYPE A NUMBER 1 TO 6 FOR FUNCTION DESIRED
?
6
X =
?
.3
COTH .3 = 3.43273
TYPE 1 TO CONTINUE, 0 TO STOP
?
0
*END
HYPERBOLIC FUNCTIONS

10 REM THIS PROGRAM COMPUTES HYPERBOLIC FUNCTIONS
20 PRINT "SINH (1)"
30 PRINT "COSH (2)"
40 PRINT "TANH (3)"
50 PRINT "CSCH (4)"
60 PRINT "SECH (5)"
70 PRINT "COTH (6)"
80 PRINT "TYPE A NUMBER 1 TO 6 FOR FUNCTION DESIRED"
90 INPUT C
100 ON C GOTO 110,160,200,270,320,370
110 GOSUB 490
120 GOSUB 520
130 LET Z = Y/2
140 PRINT "SINH";X; =" ;Z
150 GOTO 420
160 GOSUB 490
170 GOSUB 540
180 LET Z = B/2
190 PRINT "COSH";X;" = ";Z
200 GOTO 420
210 GOSUB 490
220 GOSUB 520
230 GOSUB 540
240 LET Z = Y/B
250 PRINT "TANH";X;" = ";Z
260 GOTO 420
270 GOSUB 490
280 GOSUB 520
290 LET Z = 1/(Y/2)
300 PRINT "CSCH";X;" = ";Z
310 GOTO 420
320 GOSUB 490
330 GOSUB 540
340 LET Z = 1/(B/2)
350 PRINT "SECH";X;" = ";Z
360 GOTO 420
370 GOSUB 490
380 GOSUB 520
390 GOSUB 540
400 LET Z = 1/(Y/B)
410 PRINT "COTH";X;" = ";Z
420 PRINT
430 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
440 INPUT L
450 IF L = 1 THEN 470
460 STOP
470 PRINT
480 GOTO 80
490 PRINT "X = "
500 INPUT X
510 RETURN
520 LET Y = EXP(X) - EXP(- X)
530 RETURN
540 LET B = EXP(X) + EXP(- X)
550 RETURN
560 END
I CHING (THE CHINESE BOOK OF CHANGES)

The I Ching is a collection of 64 hexagrams used to determine possible future events. It was inspired by the ancient Chinese. Each hexagram consists of six lines which may be broken (- -) or unbroken(---). The user of the I Ching may throw coins or sticks to produce the six lines. This program computes the six lines randomly on an algorithm using the date and time. The meanings of each of the possible 64 hexagrams may be looked up in the Chinese Book of Changes (The I Ching).

EXAMPLE

RUN
ENTER DATE AS M,D,Y
?
8,28,1977
ENTER TIME AS H,M(24 HOUR CLOCK)
?
9,56

TO CONTINUE TYPE Y, IF NOT TYPE N
?
N
THE I CHING SAYS GOOD-BYE
*END
I CHING

10 REM THIS PROGRAM SIMULATES THE I CHING
20 RANDOMIZE
30 PRINT "ENTER DATE AS M,D,Y"
40 INPUT M,D,Y
50 PRINT "ENTER TIME AS H,M(24 HOUR CLOCK)"
60 INPUT H,M1
70 LET N = M + (D/30) + (Y/100) + H + (M1/60)
80 FOR I = 1 TO 6
90 LET K = N*RND(0)
100 LET K = K - INT(K)
110 LET C(I) = 1 + INT(2*K)
120 NEXT I
130 FOR I = 1 TO 6
140 IF C(I) = 1 THEN 170
150 PRINT "---"
160 GOTO 180
170 PRINT "- -"
180 NEXT I
190 PRINT
200 PRINT "TO CONTINUE TYPE Y, IF NOT TYPE N"
210 INPUT L$
220 IF L$ = "Y" THEN 250
230 PRINT "THE I CHING SAYS GOOD-BYE"
240 STOP
250 PRINT
260 GOTO 30
270 END
INTEGRAL BETWEEN TWO LIMITS

This program computes the integral between the limits of finite points A and B for single-valued function $f(x)$ by the six-point Gauss-Legendre quadrature formula.

FORMULA

$$\int_{a}^{b} f(x)dx = \frac{b - a}{2} \sum_{i=1}^{b} D_i f \left(\frac{C_i (b - a) + b + a}{2} \right)$$

EXAMPLE

Where $f(x) = 13x^2 - 6x^2 + \sin(x) + 1/x$

ENTER ENDPOINTS A,B

? - 1,1

INTEGRAL = 4.28786

TYPE 1 TO CONTINUE, 0 TO STOP

? 0

*END
INTEGRAL BETWEEN TWO LIMITS

10 REM THIS PROGRAM COMPUTES THE INTEGRAL BETWEEN
20 REM THE LIMITS A AND B OF F(X)
30 LET C1 = .238619
40 LET C2 = C1
50 LET C3 = .661209
60 LET C4 = C3
70 LET C5 = .932470
80 LET C6 = C5
90 LET D1 = .467914
LET D2 = .360762
LET D3 = .171324
LET J = 0
PRINT "ENTER ENDPOINTS A,B"
INPUT A,B
LET Y = B – A
LET Z = B + A
LET X = ((C1*Y) + Z)/2
GOSUB 500
LET N = D1*Q
LET J = J + N
LET X = ((C2*Y) + Z)/2
GOSUB 500
LET N = D1*Q
LET J = J + N
LET X = ((C3*Y) + Z)/2
GOSUB 500
LET N = D2*Q
LET J = J + N
LET X = ((C4*Y) + Z)/2
GOSUB 500
LET N = D2*Q
LET J = J + N
LET X = ((C5*Y) + Z)/2
GOSUB 500
LET N = D3*Q
LET J = J + N
LET X = ((C6*Y) + Z)/2
GOSUB 500
LET N = D3*Y
LET J = J + N
LET G = (Y/2)*J
PRINT "INTEGRAL = ";G
PRINT
PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
INPUT L
IF L = 1 THEN 480
STOP
PRINT
GOTO 120
LET Q = 13*X↑2 – 6*X↑2 + SIN(X) + 1/X
RETURN
END
INTERACTIVE GROWTH PATTERN

This program computes a growth pattern between two quantities called X and Y, where the existence of Y depends on the destruction of an X, but to be just, X can propagate.

EXAMPLE

NUMBER OF DESTROYERS (Y) =
?
201
NUMBER OF CREATORS (X) =
?
347
PROPAGATION RATE OF X =
?
6
CHANCE OF MEETING BETWEEN X AND Y =
?
.01
TIME BETWEEN SAMPLE DISPLAYED =
?
.5
MAXIMUM GENERATIONS =
?
10

INTERACTIVE GROWTH PATTERN

<table>
<thead>
<tr>
<th>CREATOREN</th>
<th>DESTROYER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1039</td>
<td>449</td>
</tr>
<tr>
<td>1822</td>
<td>2558</td>
</tr>
<tr>
<td>0</td>
<td>24600</td>
</tr>
<tr>
<td>0</td>
<td>12300</td>
</tr>
<tr>
<td>0</td>
<td>6150</td>
</tr>
<tr>
<td>0</td>
<td>3075</td>
</tr>
<tr>
<td>0</td>
<td>1537</td>
</tr>
<tr>
<td>0</td>
<td>768</td>
</tr>
<tr>
<td>0</td>
<td>384</td>
</tr>
<tr>
<td>0</td>
<td>192</td>
</tr>
</tbody>
</table>

MAXIMUM NUMBER OF GENERATIONS REACHED
FOR FURTHER GENERATIONS, TYPE 1, IF NOT 0
?
1
MAXIMUM GENERATIONS =
?
ALL GROWTH ENDED
NUMBER OF GENERATIONS = 18
FOR NEXT PATTERN TYPE 1, 0 TO STOP
?
0
*END
INTERACTIVE GROWTH PATTERN

10 REM THIS PROGRAM COMPUTES THE GROWTH PATTERN BETWEEN
20 REM A QUANTITY Y THE DESTROYER AND A QUANTITY X
30 REM THE CREATOR. X CAN PROPAGATE, AND ON A
40 REM CHANCE METTING BETWEEN X AND Y, X IS DESTROYED,
50 REM THUS INCREASING THE NUMBER OF YS.
60 PRINT "NUMBER OF DESTROYERS (Y) = ";
70 INPUT Y
80 PRINT "NUMBER OF CREATORS (X) = ";
90 INPUT X
100 PRINT "PROPAGATION RATE OF X = ";
110 INPUT Z
120 PRINT "CHANCE OF METTING BETWEEN X AND Y = ";
130 INPUT A
140 PRINT "TIME BETWEEN SAMPLES = ";
150 INPUT H
160 PRINT "MAXIMUM GENERATIONS = ";
170 INPUT K
180 LET J = 0
190 PRINT
200 PRINT "INTERACTIVE GROWTH PATTERN"
210 PRINT
220 PRINT "CREATOR","DESTROYER"
230 IF J = K THEN 470
240 LET J = J + 1
250 LET B = A*X*Y
260 LET C = ((Y - B)*H) + Y
270 IF C < 0 THEN 390
280 LET Y = C
290 LET D = (((X*Z) - B)*H) + X
300 IF D < 0 THEN 140
310 LET X = D
320 LET M = INT(X)
330 LET N = INT(Y)
340 PRINT M,N
350 IF M = 0 THEN 370
360 GOTO 230
370 IF N = 0 THEN 430
380 GOTO 230

111
390 LET Y = 0
400 GOTO 290
410 LET X = 0
420 GOTO 320
430 PRINT "ALL GROWTH ENDED"
440 PRINT "NUMBER OF GENERATIONS = ", J
450 PRINT
460 GOTO 560
470 PRINT "MAXIMUM NUMBER OF GENERATIONS REACHED"
480 PRINT
490 PRINT "FOR FURTHER GENERATIONS TYPE 1, IF NOT 0"
500 INPUT W
510 IF W = 1 THEN 530
520 GOTO 560
530 PRINT "MAXIMUM GENERATIONS = ";
540 INPUT K
550 GOTO 230
560 PRINT
570 PRINT "FOR NEXT PATTERN TYPE 1, 0 TO STOP"
580 INPUT W
590 IF W = 1 THEN 610
600 STOP
610 PRINT
620 GOTO 60
630 END
INVERSE HYPERBOLIC FUNCTIONS

This program computes the following hyperbolic trigonometric functions: \(\sin^{-1} \), \(\cosh^{-1} \), \(\tan^{-1} \), \(\csc^{-1} \), \(\sec^{-1} \), \(\coth^{-1} \)

FORMULAE

\[
\sin H^{-1}x = \ln(x + (x^2 + 1)^{\frac{1}{2}}) \\
\cos H^{-1}x = \ln(x + (x^2 - 1)^{\frac{1}{2}}) \\
\tan H^{-1}x = \frac{1}{2} \ln \left(\frac{1 + x}{1 - x}\right) \\
\csc H^{-1}x = \sin H^{-1} \left(\frac{1}{x}\right) \\
\sec H^{-1}x = \cos H^{-1} \left(\frac{1}{x}\right) \\
\cot H^{-1}x = \tan H^{-1} \left(\frac{1}{x}\right)
\]

EXAMPLE

TYPE A NUMBER 1 TO 6 FOR FUNCTION DESIRED
?
1
X =
?
12
SINH – 1 12 = 3.17979
TYPE 1 TO CONTINUE, 0 TO STOP
?
1
TYPE A NUMBER 1 TO 6 FOR FUNCTION DESIRED
?
2
X =
?
45
COSH – 1 45 = 4.49969
TYPE 1 TO CONTINUE, 0 TO STOP
?
1
TYPE A NUMBER 1 TO 6 FOR FUNCTION DESIRED
?
3
X =
?
.00055
TANH - 1.00055 = .00055
TYPE 1 TO CONTINUE, 0 TO STOP
?
1
TYPE A NUMBER 1 TO 6 FOR FUNCTION DESIRED
?
4
X =
?
23
CSCH - 1.23 = .04346
TYPE 1 TO CONTINUE, 0 TO STOP
?
1
TYPE A NUMBER 1 TO 6 FOR FUNCTION DESIRED
5
X =
?
.125
SECH - 1.125 = 2.76866
TYPE 1 TO CONTINUE, 0 TO STOP
?
1
TYPE A NUMBER 1 TO 6 FOR FUNCTION DESIRED
?
6
X =
?
8
COTH - 1.8 = .12566
TYPE 1 TO CONTINUE, 0 TO STOP
?
0
*END
INVERSE HYPERBOLIC FUNCTIONS

10 REM THIS PROGRAM COMPUTES INVERSE HYPERBOLIC FUNCTIONS
20 PRINT "SINH - 1 (1)"
30 PRINT "COSH - 1 (2)"
40 PRINT "TANH - 1 (3)"
50 PRINT "CSCH - 1 (4)"
60 PRINT "SECH - 1 (5)"
70 PRINT "COTH - 1 (6)"
PRINT "TYPE A NUMBER 1 TO 6 FOR FUNCTION DESIRED"
INPUT C
ON C GOTO 110,150,190,230,280,330
GOSUB 440
GOSUB 470
PRINT "SINH - 1";X;" = ";Z
GOTO 370
GOSUB 440
GOSUB 490
PRINT "COSH - 1";X;" = ";Z
GOTO 370
GOSUB 440
GOSUB 510
PRINT "TANH - 1";X;" = ";Z
GOTO 370
GOSUB 530
GOSUB 470
LET X = A
PRINT "CSCH - 1";X;" = ";Z
GOTO 370
GOSUB 530
GOSUB 490
LET X = A
PRINT "SECH - 1";X;" = ";Z
GOTO 370
GOSUB 530
GOSUB 510
LET X = A
PRINT "COTH - 1";X;" = ";Z
PRINT
PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
INPUT L
IF L = 1 THEN 420
STOP
PRINT
GOTO 80
PRINT "X = ";
INPUT X
RETURN
LET Z = LOG(X + SQR((X^2) + 1))
RETURN
LET Z = LOG(X + SQR((X^2) - 1))
500 RETURN
510 LET Z = (LOG((1 + X/(1 - X)))/2
520 RETURN
530 PRINT "X = ";
540 INPUT X
550 LET A = X
560 LET X = 1/X
570 RETURN
580 END
L-PAD MINIMUM LOSS SYSTEM

In systems where two resistive stages must be coupled, a minimum loss L-pad can be used for matching. A typical application for this pad would be to couple inputs and outputs of audio circuits. The user inputs the two impedances Z_1 and Z_2; the program responds with the L-pad resistors R_1 and R_2, and also the system loss in decibels.

FORMULAE

L PAD MIN LOSS

\[R_1 = Z_1 \sqrt{1 - \frac{Z_2}{Z_1}} \]

\[R_2 = \sqrt{1 - \frac{Z_2}{Z_1}} \]

\[\text{LOSS} = 20 \log \left(\sqrt{\frac{Z_1}{Z_2}} + \sqrt{\frac{Z_1}{Z_2} - 1} \right) \]

EXAMPLE

1ST IMPEDANCE
?
300
2ND IMPEDANCE
?
75

COMPONENTS OF THE L-PAD
RESISTOR 1 = 259.807
RESISTOR 2 = 86.6025
LOSS IN DECIBELS = 11.4389
TYPE 1 TO CONTINUE, 0 TO STOP
?
0
*END
L-PAD MINIMUM LOSS SYSTEM

10 REM THIS PROGRAM COMPUTES THE VALUES OF
20 REM THE TWO RESISTANCES REQUIRED TO CON-
 STRUCT A
30 REM L-PAD OF MINIMUM LOSS
40 PRINT "1ST IMPEDANCE"
50 INPUT Z1
60 PRINT "2ND IMPEDANCE"
70 INPUT Z2
80 LET R1 = Z1*SQR(1 - (Z2/Z1))
90 LET R2 = Z2/SQR(1 - (Z2/Z1))
100 LET M = SQR(Z1/Z2) + SQR((Z1/Z2) - 1)
110 LET L = 20*(LOG(M)/LOG(10))
120 PRINT "COMPONENTS OF THE L-PAD"
130 PRINT "RESISTOR 1 = ";R1
140 PRINT "RESISTOR 2 = ";R2
150 PRINT "LOSS IN DECIBELS = ";L
160 PRINT
170 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
180 INPUT X
190 IF X = 1 THEN 210
200 STOP
210 PRINT
220 GOTO 40
230 END
LINEAR INTERPOLATION

If Y is a function of X, and $Y_1 - Y_2$ are the values of the function at $X_1 - X_2$, respectively, Y may be computed for any value of X.

FORMULA

![Linear Interpolation Diagram]

$$f(x) = f(x_1) + (x - x_1) \left(\frac{f(x_2) - f(x_1)}{x_2 - x_1} \right)$$

EXAMPLE

KNOWN VALUE OF X (X1,X2) =

? 10,50

KNOWN VALUES OF Y (F(X1),F(X2)) =

? 15,55

INTERPOLATE F(X) AT X =

? 60

INTERPOLATED F(X) = 65

TYPE 1 TO CONTINUE, 0 TO STOP

? 1

KNOWN VALUE OF X (X1,X2) =

? 43,98

KNOWN VALUES OF Y (F(X1),F(X2)) =

? 86,196

INTERPOLATE F(X) AT X =

? 1234

INTERPOLATED F(X) = 2468

TYPE 1 TO CONTINUE, 0 TO STOP

? 0

END
LINEAR INTERPOLATION

START

PROMPT + INPUT
KNOWN VALUES

PROMPT + INPUT
x

CALCULATE
F(x)

OUTPUT
F(x)

PROMPT + INPUT
CONTINUE COMMAND

IS L = 1?

YES

NO

STOP
LINEAR INTERPOLATION

10 REM THIS PROGRAM COMPUTES LINEAR INTERPOLATION
20 PRINT "KNOWN VALUE OF X (X1,X2) = ";
30 INPUT X1,X2
40 PRINT "KNOWN VALUES OF Y (F(X1),F(X2)) = ";
50 INPUT Y1,Y2
60 PRINT "INTERPOLATE F(X) AT X = ";
70 INPUT X
80 LET G = (X2 - X)*Y1 + (X - X1)*Y2
90 LET F = G/(X2 - X1)
100 PRINT "INTERPOLATED F(X) = ";F
110 PRINT
120 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
130 INPUT L
140 IF L = 1 THEN 160
150 STOP
160 PRINT
170 GOTO 20
180 END
LOGARITHMS OF ANY BASE

This simple program allows the user to compute the value of a logarithm to any base. The number X and the base Y must both be positive if machine error is not to occur.

FORMULA

\[\log_y x = \frac{\ln x}{\ln y} \]

EXAMPLES

BASE =
?
16
X =
?
54
LOG 54 = 1.43872
TYPE 1 TO CONTINUE, 0 TO STOP
?
1
BASE =
?
567
X =
?
23
LOG 23 = .494529
TYPE 1 TO CONTINUE, 0 TO STOP
?
0
*END
LOGARITHMS OF ANY BASE

START

PROMPT + INPUT BASE

PROMPT + INPUT X

CALCULATE LOG Y^X

OUTPUT LOG X

PROMPT + INPUT CONTINUE COMMAND

IS L = 1?

YES

NO

STOP
LOGARITHMS OF ANY BASE

10 REM THIS PROGRAM WILL COMPUTE THE LOG
20 REM OF ANY POSITIVE NUMBER X, TO ANY POSI-
30 TIVE
40 PRINT "BASE = "
50 INPUT Y
60 PRINT "X = "
70 INPUT X
80 LET J = LOG(X)/LOG(Y)
90 PRINT "LOG";"X;" = ";J
100 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
110 INPUT L
120 IF L = 1 THEN 140
130 STOP
140 PRINT
150 GOTO 40
160 END
MEAN, STANDARD DEVIATION, STANDARD ERROR FOR GROUPED DATA

This program generates the mean, standard deviation and standard error for grouped data until the user enters a 0 for the value of the frequency.

FORMULAE

\[
Mean \, \bar{x} = \frac{\Sigma f_i x_i}{\Sigma f_i}
\]

\[
Standard \, error \, S\bar{x} = \frac{S}{\sqrt{\Sigma f_i}}
\]

\[
Standard \, deviation \, S = \frac{\sqrt{\Sigma f_i x_i^2 - (\Sigma f_i \bar{x}^2)}}{\Sigma f_i - 1}
\]

EXAMPLE

ENTER SAMPLE VALUE AND FREQUENCY
?
5,2
ENTER SAMPLE VALUE AND FREQUENCY
?
10,3
ENTER SAMPLE VALUE AND FREQUENCY
?
6,1
ENTER SAMPLE VALUE AND FREQUENCY
?
0,0
NUMBER OF SAMPLES ENTERED = 3
MEAN = 7.67
STANDARD DEVIATION = 5.77
STANDARD ERROR = 2.36
TYPE 1 TO CONTINUE, 0 TO STOP
?
0
*END
MEAN, STANDARD DEVIATION, AND STANDARD ERROR FOR GROUPED DATA

START

INITIALIZE VARIABLES

PROMPT = INPUT
SAMPLE = FREQ

IS F <= 0?

YES

UPDATE CALCULATIONS

NO

COMPUTE OUTPUT

OUTPUT "STAT" DATA

PROMPT + INPUT
CONTINUE COMMAND

IS L = 1?

YES

NO

STOP
MEAN, STANDARD DEVIATION, AND STANDARD ERROR FOR GROUPED DATA

10 REM THIS PROGRAM COMPUTES THE MEAN, STANDARD
20 REM DEVIATION AND STANDARD ERROR FOR GROUPED DATA
30 LET A = 0
40 LET B = 0
50 LET C = 0
60 LET D = 0
70 PRINT "ENTER SAMPLE VALUE AND FREQUENCY";
80 INPUT X,F
90 IF F <= 0 THEN 170
100 LET A = A + 1
110 LET B = B + F
120 LET G = X*F
130 LET C = C + G
140 LET E = (X^2)*F
150 LET D = D + E
160 GOTO 70
170 LET H = C/B
180 LET I = SQR(D - (B*(H^2)))
190 LET J = I/SQR(B)
200 PRINT
210 PRINT "NUMBER OF SAMPLES ENTERED = ";A
220 PRINT "MEAN = ";H
230 PRINT "STANDARD DEVIATION = ";I
240 PRINT "STANDARD ERROR = ";J
250 PRINT
260 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
270 INPUT L
280 IF L = 1 THEN 300
290 STOP
300 PRINT
310 GOTO 30
320 END
MOMENTS, SKEWNESS AND KURTOSIS

This program computes the first four moments where the first moment is the mean of the distribution and the second moment is the variance. Skewness is the departure of a frequency distribution from symmetry, and kurtosis is a property of distribution that expresses its relative peakedness.

FORMULAE

1st M = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i

2nd M = M_2 = \frac{1}{n} \sum x_i^2 - \bar{x}^2

3rd M = M_3 = \frac{1}{n} \sum x_i^3 - 3 \bar{x} \sum x_i^2 + 2 \bar{x}^3

4th M = M_4 = \frac{1}{n} \sum x_i^4 - 4 \bar{x} \sum x_i^3 + 6 \bar{x}^2 \sum x_i^2 - 3 \bar{x}^4

SKEWNESS \quad \gamma_1 = \frac{M_3}{M_2^{3/2}}

KURTOSIS \quad \gamma_2 = \frac{M_4}{M_2^2}

EXAMPLE

NUMBER OF SAMPLES =

? 5
SAMPLE =

? 12
SAMPLE =

? 3
SAMPLE =

? 4

130
SAMPLE =
?
5
SAMPLE =
?
4
1ST MOMENT = 5.6
2ND MOMENT = 10.64
3RD MOMENT = 47.2319
4TH MOMENT = 347.331
MOMENT COEFFICIENTS
SKEWNESS = 1.36089 KURTOSIS = 3.06803

TYPE 1 TO CONTINUE, 0 TO STOP
?
0
*END
MOMENTS, SKEWNESS, AND KURTOSIS

START

INITIALIZE A, B, C,... TO 0

PROMPT + INPUT NUMEROF SAMPLES

PROMPT + INPUT SAMPLES

CALCULATE A, B, C, D...

IS I = N?

YES

CALCULATE MOMENTS + COEFFICIENTS

OUTPUT MOMENTS + COEFFICIENTS

CONTINUE MESSAGE + INPUT

IS Z = 1?

NO

STOP
MOMENTS, SKEWNESS, AND KURTOSIS

10 REM THIS PROGRAM COMPUTES THE VALUES OF THE
20 REM FIRST 4 MOMENTS, SKEWNESS AND KURTOSIS
30 LET A = 0
40 LET B = 0
50 LET C = 0
60 LET D = 0
70 PRINT "NUMBER OF SAMPLES = "
80 INPUT N
90 FOR I = 1 TO N
100 PRINT "SAMPLE = "
110 INPUT X
120 LET A = A + X
130 LET B = B + (X^2)
140 LET C = C + (X^3)
150 LET D = D + (X^4)
160 NEXT I
170 LET J = A/N
180 LET E = (B/N) - (J^2)
190 LET F = (C/N) - ((3*J*B)/N) + (2*J^3))
200 LET G = (D/N) - ((4*J*C)/N)
210 LET H = G + ((6*(J^2)*B)/N) - (3*J^4))
220 LET K = F/(E^(3/2))
230 LET L = H/(E^2)
240 PRINT "1ST MOMENT = ";J
250 PRINT "2ND MOMENT = ";E
260 PRINT "3RD MOMENT = ";F
270 PRINT "4TH MOMENT = ";H
280 PRINT "MOMENT COEFFICIENTS"
290 PRINT "SKEWNESS = ";K,"KURTOSIS = ";L
300 PRINT "**************""
310 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
320 INPUT Z
330 IF Z = 1 THEN 350
340 STOP
350 PRINT
360 GOTO 30
370 END
NO REPETITIONS PROBABILITY

The user dictates the size of a population to be determined for a “No Repetitions” probability.

FORMULA

\[P = \left(1 - \frac{1}{M}\right) \left(1 - \frac{2}{M}\right) \ldots \left(1 - \frac{N - 1}{M}\right) \]

where \(M \geq N \geq 1 \)

EXAMPLE

TOTAL POPULATION
?
56
SIZE OF SAMPLE
?
2
PROBABILITY = .982143
TYPE 1 TO CONTINUE, 0 TO STOP
?
1

TOTAL POPULATION
?
9
SIZE OF SAMPLE
?
4
PROBABILITY = .460905
TYPE 1 TO CONTINUE, 0 TO STOP
?
0
*END
NO REPETITIONS PROBABILITY

START

PROMPT + INPUT TOTAL POPULATION

PROMPT + INPUT SIZE OF SAMPLE

CALCULATE PROBABILITY

NO

IS i = N - 1?

YES

OUTPUT PROBABILITY

PROMPT + INPUT CONTINUE COMMAND

IS L = 1?

YES

NO

STOP
NO-REPETITIONS PROBABILITY
10 REM THIS PROGRAM COMPUTES THE "NO REP-
 ETITIONS"
20 REM PROBABILITY OF A SAMPLE
30 PRINT "***"
35 PRINT "TOTAL POPULATION"
40 INPUT M
50 PRINT "SIZE OF SAMPLE"
60 INPUT N
70 LET J = 1
80 FOR I = 1 TO N - 1
90 LET K = 1 - (I/M)
100 LET J = J*K
110 NEXT I
120 PRINT "PROBABILITY = ";J
130 PRINT
140 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
150 INPUT L
160 IF L = 1 THEN 30
170 STOP
180 END
NUMBER GUESS GAME

The object of this game is to guess in as few tries as possible the number chosen at random by the computer. (Hint: Use a binary search pattern.)

EXAMPLE

A RANDOM NUMBER HAS BEEN PICKED
TRY GUESSING IT, HINT THE NUMBER
IS FROM 1 TO 100
GOOD LUCK!!!
YOUR GUESS IS =
?
50
TOO HIGH, TRY AGAIN
YOUR GUESS IS =
?
25
TOO HIGH, TRY AGAIN
YOUR GUESS IS =
?
12
TOO LOW, TRY AGAIN
YOUR GUESS IS =
?
18
TOO LOW, TRY AGAIN
YOUR GUESS IS =
?
20
NOT BAD!!!-YOU GOT IT!!!
YOUR NUMBER OF TRIES WERE 5
IF YOU WANT TO TRY AGAIN TYPE 1
IF NOT TYPE 0
?
0
*END
NUMBER GUESS GAME

10 REM THE COMPUTER CHOOSES A NUMBER FROM
20 REM 1 TO 100 AT RANDOM, THE OBJECT OF
30 REM THE GAME IS TO GUESS THE CHOSEN
40 REM NUMBER IN AS FEW GUESSES AS POSSIBLE
50 LET R = 1 + INT(100*RND)
60 LET Y = 0
70 PRINT "A RANDOM NUMBER HAS BEEN PICKED"
80 PRINT "TRY GUESSING IT, HINT THE NUMBER"
90 PRINT "IS FROM 1 TO 100"
100 PRINT "GOOD LUCK!!!"
110 PRINT
120 PRINT "YOUR GUESS IS = ";
130 INPUT X
140 LET Y = Y + 1
150 IF X = R THEN 180
160 IF X > R THEN 280
170 GOTO 300
180 PRINT "NOT BAD!!!-YOU GOT IT!!!"
190 PRINT "YOUR NUMBER OF TRIES WERE";Y
200 PRINT
210 PRINT "IF YOU WANT TO TRY AGAIN, TYPE 1"
220 PRINT "IF NOT TYPE 0"
230 INPUT L
240 IF L = 1 THEN 260
250 STOP
260 PRINT
270 GOTO 50
280 PRINT "TOO HIGH, TRY AGAIN"
290 GOTO 120
300 PRINT "TOO LOW, TRY AGAIN"
310 GOTO 120
320 END
ONE-ARM BANDIT

This computer program simulates the one-arm bandits that use three mechanical wheels. For detailed instructions, type yes to the instruction question in the program.

EXAMPLE

RUN
ARE INSTRUCTIONS REQUIRED
TYPE EITHER YES OR NO
?
NO
CHERRY CHERRY CHERRY
YOUR TOTAL EARNINGS ARE NOW $89
TO CONTINUE TYPE Y, IF NOT TYPE N
?
N
ONE-ARM BANDIT SAYS GOOD-BYE
*END
ONE-ARM BANDIT
10 REM THIS PROGRAM SIMULATES THE MECHANICAL
20 REM THREE WHEEL ONE-ARM BANDIT
30 PRINT “ARE INSTRUCTIONS REQUIRED”
40 PRINT “TYPE EITHER YES OR NO”
50 INPUT L$
60 IF L$ = “YES” THEN 100
70 IF L$ = “NO” THEN 170
80 PRINT “INVALID COMMAND”
90 GOTO 30
100 PRINT “SCORING IS SIMPLE; 3 ORANGES, LEMONS OR”
110 PRINT “BANANAS EARN $10. 3 CHERRIES EARN $90.”
120 PRINT “IF THE FIRST FRUIT IS AN APPLE YOU EARN $2”
130 PRINT “IF THE 1ST AND 2ND ARE APPLES YOU EARN $3”
140 PRINT “IF THE LAST FRUIT IS A CHERRY AND THE”
150 PRINT “OTHER TWO ARE THE SAME BUT NOT APPLES YOU”
160 PRINT “EARN $10. EACH TURN COSTS $1. GOOD-LUCK”
170 LET J = 0
180 PRINT
190 GOSUB 590
200 LET S1 = S
210 GOSUB 590
220 LET S2 = S
230 GOSUB 590
240 LET S3 = S
250 LET S = S1
260 GOSUB 610
270 LET S1$ = S$
280 LET S = S2
290 GOSUB 610
300 LET S2$ = S$
310 LET S = S3
320 GOSUB 610
330 LET S3$ = S$
340 IF S1$ = “CHERRY” THEN 380
350 IF S1$ = “APPLE” THEN 420
360 IF S1$ = S2$ THEN 440
370 GOTO 460
380 IF S1$ = S2$ THEN 400
390 GOTO 460
400 IF S2$ = S3$ THEN 480
410 GOTO 460
420 IF S1$ = S2$ THEN 500
430 GOTO 520
440 IS S2$ = S3$ THEN 540
450 IF S3$ = “CHERRY” THEN 540
460 LET J = J - 1
470 GOTO 550
480 LET J = J + 89
490 GOTO 550
500 LET J = J + 2
510 GOTO 550
520 LET J = J + 1
530 GOTO 550
540 LET J = J + 9
550 PRINT
560 PRINT S1$; “;S2$; “;S3$
570 PRINT “YOUR TOTAL EARNINGS ARE NOW $”;J
580 GOTO 720
590 LET S = 1 + INT(5*RND)
600 RETURN
610 ON S GOTO 620, 640, 660, 680, 700
620 LET S$ = “CHERRY”
630 GOTO 710
640 LET S$ = “APPLE”
650 GOTO 710
660 LET S$ = “LEMON”
670 GOTO 710
680 LET S$ = “ORANGE”
690 GOTO 710
700 LET S$ = “BANANA”
710 RETURN
720 PRINT
730 PRINT “TO CONTINUE TYPE Y, IF NOT TYPE N”
740 INPUT Z$
750 IF Z$ = “Y” THEN 780
760 PRINT “ONE-ARM BANDIT SAYS GOOD-BYE”
770 STOP
780 PRINT
790 GOTO 190
800 END
PERMUTATIONS AND COMBINATIONS

This program computes permutations and combinations, where \(N \) is the number of items available and \(R \) is the size of the groups under consideration.

FORMULAE

\[
P = \frac{N!}{(N - R)!} \quad \quad \quad C = \frac{N!}{R!(N - R)!}
\]

EXAMPLE

ENTER N,R

? 12,5
PERMUTATIONS = 95040
COMBINATIONS = 792
TYPE 1 TO CONTINUE, 0 TO STOP

? 1
ENTER N,R

? 23,21
PERMUTATIONS = 1.2926E22
COMBINATIONS = 253
TYPE 1 TO CONTINUE, 0 TO STOP

? 0
*END
PERMUTATIONS AND COMBINATIONS

10 REM THIS PROGRAM COMPUTES PERMUTATIONS
20 REM AND COMBINATIONS, WHERE N = NUMBER
 OF
30 REM ITEMS AND R = SIZE OF GROUP SELECTED
40 PRINT "ENTER N,R";
50 INPUT N,R
60 IF N < R THEN 270
70 IF R < 0 THEN 290
80 LET T = N
90 GOSUB 310
100 LET A = T
110 LET T = N - R
120 GOSUB 310
130 LET B = T
140 LET P = A/B
150 LET T = R
160 GOSUB 310
170 LET C = A/(T*B)
180 PRINT "PERMUTATIONS = ";P
190 PRINT "COMBINATIONS = ";C
200 PRINT
210 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
220 INPUT L
230 IF L = 1 THEN 250
240 STOP
250 PRINT
260 GOTO 40
270 PRINT "N < R,INVALID INPUT"
280 GOTO 40
290 PRINT "R < 0,INVALID INPUT"
300 GOTO 40
310 IF T = 0 THEN 390
320 IF T = 1 THEN 390
330 LET J = 1
340 FOR I = 2 TO T
350 LET J = J*I
360 NEXT I
370 LET T = J
380 GOTO 400
390 LET T = 1
400 RETURN
410 END
PI-NETWORK IMPEDANCE MATCHING

Often between two resistive impedances Z_1 and Z_2 a lossless network is desired. The computer expects the following information: $Z_1 - Z_2$, desired system Q and the operating frequency.

FORMULAE

$Z_1 > Z_2$, $f = \text{frequency and } Q \text{ is desired system } Q$

$$C_1 = \frac{1}{2\pi fX_{C1}} \quad C_2 = \frac{1}{2\pi fX_{C2}} \quad L = \frac{X_1}{Z_2} (Q^2 + 1) > 1$$

and where

$$X_{C1} = \frac{Z_1}{Q}, \quad X_{C2} = \frac{Z_2}{\left(\frac{Z_2}{Z_1} (Q^2 + 1) - 1\right)^5}$$

$$X_L = \frac{QZ_1}{Q^2 + 1} \left(1 + \frac{Z_2}{QX_{C2}}\right)$$

EXAMPLE

ENTER 1ST IMPEDANCE
?
345
ENTER 2ND IMPEDANCE
?
300
ENTER DESIRED SYSTEM Q
?
20

146
ENTER OPERATING FREQUENCY
?
500
COMPONENTS OF PI-NETWORK
CAPACITOR 1 = 1.84527 E - 5
CAPACITOR 2 = 1.97846 E - 5
INDUCTOR = 1.05836 E - 2
TO CONTINUE TYPE 1, IF NOT 0
?
0
*END

START

PROMPT + INPUT
SYSTEM VARIABLES

COMPUTE
COMPONENTS
OF NETWORK

OUTPUT
COMPONENT-VALUES

PROMPT + INPUT
CONTINUE
COMMAND

IS X = 1?
YES

NO

PI-NETWORK IMPEDANCE MATCHING

STOP
PI-NETWORK IMPEDANCE MATCHING
10 REM THIS PROGRAM COMPUTES THE COMPONENTS
20 REM OF A PI-NETWORK. TO MATCH TWO
30 REM IMPEDANCES
40 PRINT "ENTER 1ST IMPEDANCE"
50 INPUT Z1
60 PRINT "ENTER 2ND IMPEDANCE"
70 INPUT Z2
80 PRINT "ENTER DESIRED SYSTEM Q"
90 INPUT Q
100 PRINT "ENTER OPERATING FREQUENCY"
110 INPUT A
120 LET A = Z1/Q
130 LET C = ((Z2/Z1)*((Q^2) + 1)) - 1
140 LET B = Z2/SQR(C)
150 LET E = (Z2/(Q*B)) + 1
160 LET D = E*((Q*Z1)/((Q^2) + 1))
170 LET P = 6.28319
180 LET C1 = 1/(P*A)
190 LET C2 = 1/(P*B)
200 LET L = D/(P*B)
210 PRINT "COMPONENTS OF PI-NETWORK"
220 PRINT "CAPACITOR 1 =", C1
230 PRINT "CAPACITOR 2 =", C2
240 PRINT "INDUCTOR =", L
250 PRINT
260 PRINT " TO CONTINUE TYPE 1, IF NOT 0"
270 INPUT X
280 IF X = 1 THEN 300
290 STOP
300 PRINT
310 GOTO 40
320 END
POINTS ON THE CIRCUMFERENCE

This program computes N equally spaced points on the circumference of a circle. Given radius and center of the circle, this program computes the rectangular coordinates of equally spaced points \(X_i, Y_i\).

FORMULAE

\[
\begin{align*}
X_{i+1} & = X_0 + R \cos(\Theta + Zi) \\
Y_{i+1} & = Y_0 + R \sin(\Theta + Zi)
\end{align*}
\]

where \(Z = 2\pi / N\)

EXAMPLE

CENTER OF CIRCLE\((X_0, Y_0) = \)?
2, 2
ANGLE IN DEGREES OF FIRST POINT = ?
90
NUMBER OF POINTS DESIRED = ?
2
RADIUS OF CIRCLE = ?
1
COORDINATES
POINT 1 \(X = 3\) \(Y = 2\)
POINT 2 \(X = 2\) \(Y = 1\)
POINTS ON THE CIRCUMFERENCE

10 REM THIS PROGRAM COMPUTES N EQUALLY SPACED
20 REM POINTS ON THE CIRCUMFERENCE OF A CIRCLE
30 PRINT "CENTER OF CIRCLE (X0,Y0) = ";
40 INPUT X0,Y0
50 PRINT "ANGLE IN DEGREES OF 1ST POINT = ";
60 INPUT W
70 LET W = (W*3.14159)/180
80 PRINT "NUMBER OF POINTS DESIRED = ";
90 INPUT N
100 PRINT "RADIUS OF A CIRCLE = ";
110 INPUT R
120 LET Z = 6.28319/N
130 PRINT
140 PRINT "COORDINATES"
150 FOR I = 0 TO N - 1
160 LET X = X0 + (R*COS(W + Z*I))
170 LET Y = Y0 + (R*SIN(W + (Z*I))
180 LET P = I + 1
190 PRINT "POINT;";P,"X = ";X,"Y = ";Y
200 NEXT I
210 PRINT
220 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
230 INPUT L
240 IF L = 1 THEN 260
250 STOP
260 PRINT
270 GOTO 30
280 END
POLAR TO RECTANGULAR CONVERSION
This program converts given polar coordinates into rectangular coordinates.

FORMULAE

POLAR TO RECTANGULAR

\[X = R \cos \theta \]
\[Y = R \sin \theta \]

EXAMPLE

POLAR COORDINATES
ANGLE W IN DEGREES =
?
45
MAGNITUDE R =
?
5
RECTANGULAR COORDINATES
X = 3.53553 Y = 3.53553
TYPE 1 TO CONTINUE, 0 TO STOP
?
POLAR COORDINATES
ANGLE W IN DEGREES =
?
20
MAGNITUDE R =
?
1
RECTANGULAR COORDINATES
X = .939693 Y = .34202
TYPE 1 TO CONTINUE, 0 STOP
?
0
*END
POLAR TO RECTANGULAR CONVERSION

START

PRINT POLAR COORDINATES

PROMPT + INPUT ANGLE

PROMPT + INPUT MAGNITUDE

compute P→R

PRINT RECT. COORDINATES

OUTPUT X, Y

PROMPT + INPUT CONTINUE COMMAND

IS L ≤ 1?

YES

NO

STOP
POLAR TO RECTANGULAR CONVERSION
10 REM THIS PROGRAM CONVERTS GIVEN POLAR COORDINATES
20 REM INTO RECTANGULAR COORDINATES
30 PRINT "POLAR COORDINATES"
40 PRINT "ANGLE W IN DEGREES = ";
50 INPUT W
60 LET W = (W*3.14159)/180
70 PRINT "MAGNITUDE R = ";
80 INPUT R
90 LET X = R*COS(W)
100 LET Y = R*SIN(W)
110 PRINT "RECTANGULAR COORDINATES"
120 PRINT "X = ";X,"Y = ";Y
130 PRINT
140 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
150 INPUT L
160 IF L = 1 THEN 180
170 STOP
180 PRINT
190 GOTO 30
200 END
PRIME TEST

This program tests a given number to see whether or not it is prime. If so, it is thus indicated and if not, the smallest factor returned. The program will continue to cycle until a zero is entered as a test number.

EXAMPLES

ENTER THE TEST NUMBER,ZERO TO STOP
?
45
45 IS NOT A PRIME 3 IS THE SMALLEST FACTOR
ENTER THE TEST NUMBER,ZERO TO STOP
?
120078
120078 IS NOT A PRIME 2 IS THE SMALLEST FACTOR
ENTER THE TEST NUMBER,ZERO TO STOP
?
121
121 IS NOT A PRIME 11 IS THE SMALLEST FACTOR
ENTER THE TEST NUMBER,ZERO TO STOP
?
179
179 IS A PRIME
ENTER THE TEST NUMBER,ZERO TO STOP
?
0
GOOD-BYE FROM THE PRIME TESTER
*END
PRIME TESTER

10 REM THIS PROGRAM TESTS IF A NUMBER IS PRIME
20 REM IT CONTINUES TO CYCLE UNTIL ZERO IS ENTERED
30 PRINT "ENTER THE TEST NUMBER, ZERO TO STOP"
INPUT N
LETN = INPUT (N)
IF N = 0 THEN 220
IF N < 4 THEN 180
LET I = 0
LET T = 2
LET J = INT(N/T)
LET K = J*T
IF N = K THEN 200
LET I = I + 1
LET L = T*T
IF L > N THEN 180
LET T = (I*2) + 1
GOTO 100
PRINT N; "IS A PRIME"
GOTO 30
PRINT N; "IS NOT A PRIME"; T; "IS THE SMALLEST FACTOR"
GOTO 30
PRINT "GOOD-BYE FROM THE PRIME TESTER"
END
QUADRATIC EQUATIONS

This program solves for x in a quadratic equation where a, b and c are given. Both real and complex roots are found.

FORMULAE

$$ax^2 + bx + c = \phi$$

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$D = \frac{b^2 - 4ac}{4a^2}$$

$D \geq \phi$ roots are real $D < \phi$ roots are complex

$$D \geq \phi$$

IF $\frac{b}{2a} \geq \phi$
$$X_1 = -\frac{b}{2a} + \sqrt{D}$$

IF $\frac{b}{2a} < \phi$
$$X_1 = -\frac{b}{2a} - \sqrt{D}$$

$$X_2 = \frac{C}{X_1 a}$$

$D < O$

$$U + Vi = \frac{-b}{2a} \pm \frac{\sqrt{4ac - b^2}}{2a} i$$

EXAMPLES

ENTER VALUES FOR A, B AND C

? 1, 1, 0
ROOTS ARE REAL
1ST ROOT = -1
2ND ROOT = 0
**
TYPE 1 TO CONTINUE, 0 TO STOP
?
1
ENTER VALUES FOR A, B AND C
?
10, 10, 10
ROOTS ARE COMPLEX
REAL PART = – 50
IMAGINARY PART = 86.6025

TYPE 1 TO CONTINUE, 0 TO STOP
?
0
*END
QUADRATIC EQUATION
10 REM THIS PROGRAM COMPUTES THE SOLUTION TO A
20 REM QUADRATIC EQUATION
30 PRINT "ENTER VALUES FOR A, B AND C"
40 INPUT A,B,C
50 LET D = ((B^2) - (4*A*C))/(4*A^2)
60 IF D >= 0 THEN 130
70 LET X = B/(2*A)
80 LET Y = (SQR((4*A*C) - B 2))/(2*A)
90 PRINT "ROOTS ARE COMPLEX"
100 PRINT "REAL PART = ";X
110 PRINT "IMAGINARY PART = ";Y
120 GOTO 220
130 LET E = - B/(2*A)
140 IF E >= 0 THEN 170
150 LET Z = E - SQR(D)
160 GOTO 180
170 LET Z = E + SQR(D)
180 LET W = C/(Z*A)
190 PRINT "ROOTS ARE REAL"
200 PRINT 1ST ROOT = ";Z
210 PRINT 2ND ROOT = ";W
220 PRINT "**
230 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
240 INPUT L
250 IF L = 1 THEN 270
260 STOP
270 PRINT
280 GOTO 30
290 END
RECTANGULAR TO POLAR CONVERSION

This program computes rectangular coordinates that are supplied by the user into polar coordinates.

FORMULAE

\[\phi = TAN^{-1} \frac{Y}{X}, \quad R = \sqrt{X^2 + Y^2} \]

EXAMPLES

X =
?
10
Y =
?
10
POLAR COORDINATES
ANGLE IN DEGREES = 45.0000
MAGNITUDE = 14.1421

TYPE 1 TO CONTINUE, 0 TO STOP
?
1
X =
?
34
Y =
?
32
POLAR COORDINATES
ANGLE IN DEGREES = 43.2643
MAGNITUDE = 46.6904

TYPE 1 TO CONTINUE, 0 TO STOP
?
0
*END
RECTANGULAR TO POLAR CONVERSION

10 REM THIS PROGRAM CONVERTS GIVEN RECTANGULAR
20 REM COORDINATES INTO POLAR COORDINATES
30 PRINT "RECTANGULAR COORDINATES"
40 PRINT "X = "
50 INPUT X
60 PRINT "Y = "

STOP
70 INPUT Y
80 IF X + Y = 0 THEN 150
90 IF X = 0 THEN 180
100 IF Y = 0 THEN 250
110 LET W = ATN(Y/X)
120 LET W = (W*180)/3.14159
130 LET R = SQR(X^2 + Y^2)
140 GOTO 310
150 LET W = 0
160 LET R = 0
170 GOTO 310
180 IF Y > 0 THEN 220
190 LET W = -90
200 LET R = ABS(Y)
210 GOTO 310
220 LET W = 90
230 LET R = Y
240 GOTO 310
250 X > 0 THEN 290
260 LET W = 180
270 LET R = ABS(X)
280 GOTO 310
290 LET W = 0
300 LET R = X
310 PRINT "POLAR COORDINATES"
320 PRINT "ANGLE IN DEGREES = "; W
330 PRINT "MAGNITUDE = "; R
340 PRINT "**"
350 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
360 INPUT L
370 IF L = 1 THEN 390
380 STOP
390 PRINT
400 GOTO 40
410 END
RECTANGULAR SECTIONS

This program computes various parameters: moment of inertia, polar moment of inertia, and area of section connected with a rectangular section.

FORMULAE

\[I = \frac{bh^3}{12} \quad I \text{ and } J \text{ is in}(in^4) \]
\[J = \frac{bh(b^2 + h^2)}{12} \]
\[A = bH \]

EXAMPLE

BASE =
?
3
HEIGHT =
?
5
MOMENT OF INERTIA = 31.25
POLAR MOMENT OF INERTIA = 42.50
AREA OF SECTION = 15
TYPE 1 TO CONTINUE, 0 TO STOP
?
0
*END
RECTANGULAR SECTIONS

START

PROMPT + INPUT BASE + HEIGHT

COMPUTE I, J, A

OUTPUT I, J, A

PROMPT + INPUT CONTINUE COMMAND

IS L = 1?

YES

NO

STOP
RECTANGULAR SECTIONS
10 REM THIS PROGRAM COMPUTES THE VARIOUS PARAMETERS
20 REM CONNECTED WITH A RECTANGULAR SECTION
30 PRINT "BASE = ";
40 INPUT B
50 PRINT "HEIGHT = ";
60 INPUT H
70 LET I = (B*(H^3))/12
80 LET J = (B*H*(B^2 + H^2))/12
90 LET A = B*H
100 PRINT "MOMENT OF INERTIA = ";I
110 PRINT "POLAR MOMENT OF INERTIA = ";J
120 PRINT "AREA OF SECTION = ";A
130 PRINT
140 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
150 INPUT L
160 IF L = 1 THEN 180
170 STOP
180 PRINT
190 GOTO 30
200 END
RESISTIVE ATTENUATOR DESIGN

This program computes the required three resistors to form either a Pi- or T-type resistive attenuator. This type of attenuator allows the user to choose a loss other than that of minimum.

FORMULAE

\[R_{IN} > R_o, \text{ and } N = \text{desired loss} \geq \text{minimum loss} \]

\[\text{minimum loss} = \frac{1}{\pi} \log \left(\sqrt{\frac{R_{IN}}{R_o}} + \sqrt{\frac{R_{IN}}{R_o} - 1} \right)^2 \]

T-type

\[R_3 = \frac{2 \sqrt{N R_{IN} R_o}}{N - 1} \]

\[R_1 = R_{IN} \left(\frac{N + 1}{N - 1} \right) - R_3 \]

\[R_2 = R_{IN} \left(\frac{N + 1}{N - 1} \right) - R_3 \]

π-type

\[R_3 = \frac{1}{2} (N - 1) \left(\frac{R_{IN} R_o}{N} \right)^{1/2} \]

\[R_1 = \frac{1}{R_{IN} \left(\frac{N + 1}{N - 1} \right) - \frac{1}{R_3}} \]

\[R_2 = \frac{1}{R_o \left(\frac{N + 1}{N - 1} \right) - \frac{1}{R_3}} \]
EXAMPLE

INPUT RESISTANCE R(IN) = ?
500
OUTPUT RESISTANCE R(0) = ?
100
MINIMUM SYSTEM LOSS IN DECIBELS = 12.54
ENTER DESIRED LOSS IN DECIBELS ?
20
R(IN) = 500 R(0) = 100
DESIRED LOSS = 20
T ATTENUATOR
RESISTOR 1 = 464.9
RESISTOR 2 = 56.85
RESISTOR 3 = 45.17
PI ATTENUATOR
RESISTOR 1 = 879.6
RESISTOR 2 = 107.5
RESISTOR 3 = 1107
TYPE 1 TO CONTINUE, 0 TO STOP ?
0
*END
RESISTIVE ATTENUATOR DESIGN

START

PROMPT + INPUT
R(IN) + R(OUT)

COMPUTE
MINIMUM
LOSS

OUTPUT
MINIMUM LOSS

PROMPT + INPUT
DESIRED LOSS

COMPUTE
COMPONENTS

OUTPUT
LOSS

OUTPUT
T-TYPE
COMPONENTS

OUTPUT
T-TYPE
COMPONENTS

PROMPT + INPUT
CONTINUE COMMAND

IS Q = 1?

YES

NO

STOP
RESISTIVE ATTENUATOR DESIGN

10 REM THIS PROGRAM COMPUTES THE COMPONENTS
20 REM REQUIRED FOR A PI OR T TYPE
30 REM RESISTIVE ATTENUATOR
40 PRINT "INPUT RESISTANCE R(IN) = ";
50 INPUT X
60 PRINT "OUTPUT RESISTANCE R(0) = ";
70 INPUT Y
80 LET Z = X/Y
90 LET Q = (SQR(Z) + SQR(Z - 1))^2
100 LET M = 10*(LOG(Q)/LOG(10))
110 PRINT "MINIMUM SYSTEM LOSS IN DECIBELS = "; M
120 PRINT "ENTER DESIRED LOSS IN DECIBELS";
130 INPUT L
140 LET N = 10 (L/10)
150 LET W = N - 1
160 LET U = N + 1
170 LET A = 2*(SQR(X*Y*N))
180 LET B = (X*(U/W)) - A
190 LET C = (Y*(U/W)) - A
200 LET D = (W*SQR((X*Y)/N))/2
210 LET E = 1/((U/W)/X) - (1/D)
220 LET F = 1/((U/W)/Y) - (1/D)
230 PRINT "R(IN) = "; X, "R(0) = "; Y
240 PRINT "DESIRED LOSS = "; L
250 PRINT
260 PRINT "T ATTENUATOR"
270 PRINT "RESISTOR 1 = "; B
280 PRINT "RESISTOR 2 = "; C
290 PRINT "RESISTOR 3 = "; A
300 PRINT
310 PRINT "PI ATTENUATOR"
320 PRINT "RESISTOR 1 = "; E
330 PRINT "RESISTOR 2 = "; F
340 PRINT "RESISTOR 3 = "; D
350 PRINT
360 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
370 INPUT Q
380 IF Q = 1 THEN 400
390 STOP
400 PRINT
410 GOTO 40
420 END
SIMULTANEOUS EQUATIONS IN TWO Unknowns

The user supplies the components of two $AX + BY = C$ type equations, also giving the computer the opportunity to state if the solution is impossible.

FORMULAE

$$X = \frac{ED - BF}{AD - BC} = \begin{vmatrix} E & B \\ F & D \end{vmatrix}, \quad Y = \frac{AF - EC}{AD - BC} = \begin{vmatrix} A & E \\ C & F \end{vmatrix}$$

EXAMPLE

$AX + BY = E$
$CX + DY = F$

ENTER PARAMETERS, A,B,C,D,E,F

? 10,20,45,23,56,78

SOLUTION $X = 9.6, Y = -2.55$

TYPE 1 TO CONTINUE, 0 TO STOP

? 1

$AX + BY = E$
$CX + DY = F$

ENTER PARAMETERS A,B,C,D,E,F

10,10,789,2,2,6

NO SOLUTION, OR NO UNIQUE SOLUTION EXISTS

TYPE 1 TO CONTINUE, 0 TO STOP

? 0

*END
SIMULTANEOUS EQUATIONS IN TWO Unknowns

10 REM THIS PROGRAM COMPUTES SIMULTANEOUS EQUATIONS
20 REM IN TWO Unknowns
30 PRINT "AX + BY = E"
40 PRINT "CX + DY = F"
50 PRINT "ENTER PARAMETERS A,B,C,D,E,F"
60 INPUT A,B,C,D,E,F
70 LET M = (A*D) - (B*C)
80 IF M = 0 THEN 140
90 LET X = ((E*D) - (B*F))/M
100 LET Y = ((A*F) - (E*C))/M
110 PRINT "SOLUTION","X = ";X,"Y = ";Y
120 PRINT "***************************"
130 GOTO 160
140 PRINT "NO SOLUTION, OR NO UNIQUE SOLUTION EXISTS"
150 PRINT "***************************"
160 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
170 INPUT L
180 IF L = 1 THEN 200
190 STOP
200 PRINT
210 GOTO 30
220 END
SIMULTANEOUS EQUATIONS IN THREE UNKNOWNS

The computer solves a system of three equations in three unknowns with the parameters supplied by the user.

EXAMPLE

SOLVE FOR 3 EQUATIONS IN 3 UNKNOWNS
OF THE TYPE AX + BY + CZ = D
ENTER FIRST EQUATION(A,B,C,D)
?
1,4,6,3
ENTER SECOND EQUATION(A,B,C,D)
?
−3,8,0,−2
ENTER THIRD EQUATION(A,B,C,D)
?
4,−5,2,6
SOLUTION
X = 2.65516 Y = .741935 Z = −.435483
TYPE 1 TO CONTINUE, 0 TO STOP
?
0
*END
SIMULTANEOUS EQUATIONS IN THREE UNKNOWNS

10 REM THIS PROGRAM COMPUTES THE SOLUTION TO
20 REM A SYSTEM OF 3 EQUATIONS IN 3 UNKNOWNS
30 PRINT "SOLVE FOR 3 EQUATIONS IN 3 UNKNOWNS"
40 PRINT "OF THE TYPE AX + BY + CZ = D"
50 PRINT "ENTER 1ST EQUATION (A,B,C,D)"
60 INPUT A1,B1,C1,D1
70 PRINT "ENTER 2ND EQUATION (A,B,C,D)"
80 INPUT A2,B2,C2,D2
90 PRINT "ENTER 3RD EQUATION (A,B,C,D)
100 INPUT A3,B3,C3,D3
110 LET E1 = ((B1*A2)/A1) - B2
120 LET E2 = ((C1*A2)/A1) - C2
130 LET E3 = ((B1*A3)/A1) - B3
140 LET E4 = ((C1*A3)/A1) - C3
150 LET E5 = ((E1*E4) - (E2*E3))
160 IF E5 = 0 THEN 250
170 LET E6 = ((D1*A2)/A1) - D2
180 LET E7 = ((D1*A3)/A1) - D3
190 LET Y = ((E6*E4) - (E2*E7))/E5
200 LET Z = ((E1*E7) - (E6*E3))/E5
210 LET X = (D1/A1) - ((B1/A1*Y) - ((C1/A1)*Z)
220 PRINT "SOLUTION"
230 PRINT "X = ";X,"Y = ";Y,"Z = ";Z
240 GOTO 260
250 PRINT "INSUFFICIENT OR ERRONEOUS DATA ENTERED"
260 PRINT
270 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
280 INPUT L
290 IF L = 1 THEN 310
300 STOP
310 PRINT
320 GOTO 30
330 END
SPACE WARS (1)

The game of Space Wars, as simulated by this program, is a battle between two ships, one the enemy, the other the player. The player has the following options: rotate the ship, move the ship, fire the laser cannon, fire the laser, or self-destruct. The object of this game is to destroy the enemy. The enemy, also being armed with a laser cannon and a laser, fires on you, so be careful.

EXAMPLE

RUN
ARE INSTRUCTIONS REQUIRED? TYPE EITHER YES OR NO
?
YES
THERE ARE 5 EXECUTIVE COMMANDS; TURN THE SHIP(1), MOVE(2), FIRE LASER CANNON(3), FIRE LASER(4) AND SELF-DESTRUCT(5)
THE CANNON MUST BE FIRED WITHIN 10 DEGREES OF 90 TO BE EFFECTIVE. NEGATIVE DEG TURNS TOWARDS 0 AND POSITIVE DEG TOWARDS 180. ENTERING NEGATIVE KM MOVES YOU TOWARDS THE ENEMY, WHILE POSITIVE MOVES YOU AWAY. LASER EFFECTIVENESS IS RANDOM, DUE TO SHIELDING, DISTANCE AND INTERSTELLAR DEBRIS
******************GOOD-LUCK**************
MAY THE FORCE BE WITH YOU
DISTANCE TO ENEMY 3.7 E0 3KM
BEARING IS 87 DEGREES
THE SKY FIGHTER HAS FIRED HIS LASER
YOUR TOTAL ENERGY IS NOW 9.75E03 UNITS
THE ENEMY HAS 9.5E03 UNITS OF ENERGY LETS WHICH COMMAND DO YOU WISH TO EXECUTE
?
2
HOW MANY KM TO TRANSVERSE
?
- 3.3E03
DISTANCE TO ENEMY 400KM
BEARING IS 87 DEGREES
THE SKY FIGHTER HAS FIRED HIS LASER
YOUR TOTAL ENERGY IS NOW 9.32E03 UNITS
THE ENEMY HAS 9.0E03 UNITS OF ENERGY LEFT
WHICH COMMAND DO YOU WISH TO EXECUTE?

5
YOU HAVE INSTRUCTED THE ON-BOARD COMPUTER
TO SELF-DESTRUCT, THE REACTOR HAS GONE
CRITICAL, YOU HAVE GONE TO MEET THE FORCE
YOUR DESTRUCTION HAS ALSO DESTROYED
THE SKY FIGHTER, YOU WILL BE REMEMBERED
AS A HERO
SPACE WARS IS OVER
TO PLAY SPACE WARS AGAIN TYPE GO,
OTHERWISE TYPE NO
?

NO
SPACE WARS SAYS GOOD-BYE
*END
SPACEd WARS (1)

10 REM THIS PROGRAM IS THE GAME OF SPACE WARS
20 REM TWO SHIPS BATTLE, YOU MUST DESTROY THE
30 REM ENEMY TO SAVE THE REPUBLIC
40 RANDOMIZE
50 PRINT "ARE INSTRUCTIONS REQUIRED? TYPE EITHER"
60 PRINT "YES OR NO"
70 INPUT A$
80 IF A$ = "YES" THEN 120
90 IF A$ = "NO" THEN 250
100 PRINT "INVALID RESPONSE"
110 GOTO 50
120 PRINT
130 PRINT "THERE ARE 5 EXECUTIVE COMMANDS; TURN THE"
140 PRINT "SHIP(1), MOVE(2), FIRE LASER CANNON(3),"
150 PRINT "FIRE LASER(4) AND SELF-DESTRUCT(5)"
160 PRINT "THE CANNON MUST BE FIRED WITHIN 10 DEGREES"
170 PRINT "OF 90 TO BE EFFECTIVE. NEGATIVE DEG TURNS TOWARDS"
180 PRINT "0 AND POSITIVE DEG TOWARDS 180. ENTERING NEGATIVE KM"
190 PRINT "MOVES YOU TOWARDS THE ENEMY, WHILE POSITIVE MOVES"
200 PRINT "YOU AWAY. LASER EFFECTIVENESS IS RANDOM, DUE TO"
210 PRINT "SHIELDING, DISTANCE AND INTERSTELULAR DEBRIS"
220 PRINT
230 PRINT "***************GOOD-LUCK***************"
240 PRINT "MAY THE FORCE BE WITH YOU"
250 LET E1 = 1E04
260 LET E2 = E1
270 LET D = 1E03 + INT(5E05*RND)
280 LET B = 1 + INT(180*RND)
290 GOSUB 340
300 GOSUB 390
310 LET E1 = E1 - D1
320 GOSUB 500

180
330 GOTO 690
340 IF D >= 1E05 THEN 370
350 LET L = 1
360 GOTO 380
370 LET L = 0
380 RETURN
390 IF L = 0 THEN 440
400 LET H2 = (1 + INT(100*RND))/100
410 LET D1 = 500*H2
420 LET E2 = E2 - 500
430 GOTO 490
440 LET M1 = 1 + INT(2*RND)
450 IF M1 = 1 THEN 470
455 LET D1 = 1000
460 GOTO 480
470 LET D1 = 0
480 LET E2 = E2 - 1000
490 RETURN
500 PRINT
510 PRINT "DISTANCE TO ENEMY ";D;"KM"
520 PRINT "BEARING IS ";B;" DEGREES"
530 IF L = 1 THEN 560
540 PRINT "THE SKY FIGHTER HAS FIRED THE LASER CANNON"
550 GOTO 570
560 PRINT "THE SKY FIGHTER HAS FIRED HIS LASER"
570 PRINT "YOUR TOTAL ENERGY IS NOW";E1;" UNITS"
580 PRINT "THE ENEMY HAS ";E2;" UNITS OF ENERGY LEFT"
590 IF E1 <= 0 THEN 620
600 IF E2 <= 0 THEN 650
610 GOTO 680
620 PRINT "YOUR ENERGY LEVEL IS ZERO, THE ENEMY"
630 PRINT "HAS WON, YOU HAVE BECOME ONE WITH THE FORCE!"
640 GOTO 1180
650 PRINT "THE ENEMY HAS RUN OUT OF ENERGY, YOU"
660 PRINT "HAVE WON"
670 GOTO 1180
680 RETURN
PRINT
PRINT "WHICH COMMAND DO YOU WISH TO EXECUTE"
INPUT C
ON C GOTO 730, 840, 1010, 1100, 1140
PRINT "HOW MANY DEGREES OF ROTATION"
INPUT B1
IF B + B1 = 0 THEN 800
IF B + B1 > 180 THEN 820
LET B = B + B1
LET E1 = E1 - (10*ABS(B1))
GOTO 290
PRINT "YOUR ANGLE MUST BE GREATER THAN 0 DEGREES"
GOTO 730
PRINT "YOUR ANGLE MUST BE LESS THAN 181 DEGREES"
GOTO 730
PRINT "HOW MANY KM TO TRANSVERSE"
INPUT K
IF D + K = 0 THEN 910
IF D + K > 1E06 THEN 960
LET D = D + K (K/1000)
LET E1 = E1 - (ABS(
GOTO 290
PRINT "YOU HAVE TRIED TO CLOSE THE DISTANCE TO ZERO"
PRINT "BETWEEN YOU AND THE ENEMY, THE ON-BOARD"
PRINT "COMMAND COMPUTER WILL NOT EXECUTE THIS MANEUVER"
PRINT
GOTO 840
PRINT "YOU HAVE TRIED TO EXCEED THE DISTANCE WHERE"
PRINT "ANY OF YOUR WEAPONS ARE EFFECTIVE"
PRINT "THE ON-BOARD COMPUTER WILL NOT"
PRINT "EXECUTE THIS MANEUVER"
GOTO 840
LET E1 = E1 - 1000
IF B >= 80 THEN 1050
PRINT "YOUR ANGLE IS TOO SMALL, YOU HAVE MISSED"
GOTO 290
IF B <= 100 THEN 1080
PRINT "YOUR ANGLE IS TOO GREAT, YOU HAVE MISSED"
GOTO 290
LET E2 = E2 - 1000
GOTO 290
LET E1 = E1 - 500
LET D2 = (1 + INT(100*RND))/100
LET E2 = E2 - (D2*500)
GOTO 290
PRINT "YOU HAVE INSTRUCTED THE ON-BOARD COMPUTER"
PRINT "TO SELF-DESTRUCT, THE REACTOR HAS GONE"
PRINT "CRITICAL, YOU HAVE GONE TO MEET THE FORCE"
IF D <= 500 THEN 1200
PRINT "SPACE WARS IS OVER"
GOTO 1240
PRINT "YOUR DESTRUCTION HAS ALSO DESTROYED"
PRINT "THE SKY FIGHTER, YOU WILL BE REMEMBERED"
PRINT "AS A HERO"
GOTO 1180
PRINT
PRINT "TO PLAY SPACE WARS AGAIN TYPE GO,"
PRINT "OTHERWISE TYPE NO"
INPUT Z$
IF Z$ = "GO" THEN 1310
PRINT "SPACE WARS SAYS GOOD-BYE"
STOP
PRINT
GOTO 50
END
SPACE WARS (2)

This computer simulation requires considerably more memory than any other program in the book. For the user who is memory limited, the following may be done. Deleting the REM statements, removing the instructions, and reducing the string lengths in the messages will reduce the memory requirement by about 50 percent.

EXAMPLE

RUN
ARE INSTRUCTIONS FOR SPACE WARS REQUIRED? TYPE EITHER YES OR NO?
YES
***************SPACE WARS***************

THE DEATH STAR SPACE STATION, YOUR GOAL, IS HEAVILY SHIELDED AND MOUNTS MORE FIREPOWER THAN HALF THE IMPERIAL FLEET. BUT, ITS DEFENSES WERE PRIMARILY DESIGNED TO FEND OFF LARGE-SCALE CAPITAL SPACE-SHIP ASSAULTS. A SMALL, ONE- OR TWO-MAN X-WING FIGHTER SHOULD BE ABLE TO SLIP THROUGH ITS DEFENSIVE SCREENS. YOUR MISSION IS TO DESTROY THE DEATH STAR!!! ON ITS SURFACE THERE IS A SMALL THERMAL EXHAUST PORT. ITS SIZE BELIES ITS IMPORTANCE AS IT APPEARS TO BE AN UNSHIELDED SHAFT THAT RUNS DIRECTLY INTO THE MAIN REACTOR SYSTEM POWERING THE DEATH STAR SPACE STATION. SINCE THIS SERVES AS AN EMERGENCY OUTLET FOR WASTE HEAT IN THE EVENT OF REACTOR OVERPRODUCTION, ITS USEFULNESS WOULD BE ELIMINATED BY ENERGY-PARTICLE SHIELDING.

A DIRECT HIT WOULD INITIATE A CHAIN REACTION THAT WOULD DESTROY THE STATION, THUS PROTECTING THE REPUBLIC

**********EXECUTIVE COMMANDS ARE**********

(1) FIRE HIGH-ENERGY TORPEDO
(2) FIRE LASER CANNON
(3) FIRE LASER
(4) PROPULSION OF X-WING
THE BATTLE COMPUTER OPTION MAY BE USED WITH COMMANDS 2 AND 3. THE ENERGY TORPEDO IS USED TO DESTROY THE DEATH STAR WITH, EACH TORPEDO EXPENDS 20,000 UNITS OF ENERGY. THE LASER CANNON MAY BE USED AGAINST THE SKY FIGHTERS, IT REQUIRES 5,000 UNITS THE LASER USES 1,000 ENERGY UNITS PER SHOT AND IT IS ALSO USED AGAINST THE SKY FIGHTERS. THE BATTLE COMPUTER REQUIRES 500 ENERGY UNITS, BUT, GUARANTEES A DIRECT HIT ON A SKY FIGHTER. TO DESTROY A SKY FIGHTER YOU MUST DEPLETE IT OF ENERGY.

MOVING THE X-WING SPACE CRAFT IS IMPERATIVE AS THE ENERGY TORPEDO MUST BE FIRED WITHIN 1000KM OF THE DEATH STAR. X-WING PROPULSION REQUIRES 1 ENERGY UNIT PER KM

GOOD-LUCK
MAY THE FORCE BE WITH YOU

DISTANCE TO DEATH STAR IS NOW 1E05KM THE SKY FIGHTER HAS FIRED HIS LASER CANNON THE DARK LORD IS EXTREMELY DANGEROUS!!! THE SMITH LORD HAS USED A LASER CANNON ENERGY BEAM YOUR TOTAL ENERGY IS NOW 4.98E05 WHICH COMMAND DO YOU WISH TO EXECUTE ?

4 HOW MANY UNITS OF ENERGY DO YOU WISH TO FEED TO THE HYPER-ATOMIC DRIVE UNIT, (1 UNIT/1KM) **CAUTION** TOO MUCH ENERGY WILL OVER-HEAT THE REACTOR, INPUT NO MORE THAN 22,500 UNITS AT ANY ONE TIME ?
30,000 IN WHICH DIRECTION, AWAY (A) OR TOWARDS (T) THE DEATH STAR ?
T YOU HAVE WASTED 3.0E04 UNITS OF ENERGY THE REACTOR IS CRITICALLY OVERHEATED
DISTANCE TO DEATH STAR IS NOW 1E05KM
THE SKY FIGHTER HAS FIRED HIS LASER CANNON
RADER'S ON-BOARD ATTACK COMPUTER HAS MATCHED
YOUR COURSE, HIS WEAPONS ARE READY
THE SMITH LORD HAS USED A LASER CANNON ENERGY
BEAM
YOUR TOTAL ENERGY IS NOW 4.39E05 UNITS
WHICH COMMAND DO YOU WISH TO EXECUTE
?
4
HOW MANY UNITS OF ENERGY DO YOU WISH TO FEED TO
THE HYPER-ATOMIC DRIVE UNIT, (1 UNIT/1KM)
CAUTION TOO MUCH ENERGY WILL OVER-HEAT
THE REACTOR, INPUT NO MORE THAN 22,500 UNITS
AT ANY ONE TIME
?
20,000
IN WHICH DIRECTION, AWAY (A) OR TOWARDS (T)
THE DEATH STAR
?
T
DISTANCE TO DEATH STAR IS NOW 8.0E04KM
THE SKY FIGHTER HAS FIRED HIS LASER CANNON
CAUTION GARTH RADER IS THE BEST SHOT IN THE
IMPERIAL FLEET, PLUS HE USES THE BAD SIDE OF THE
FORCE
THE SMITH LORD HAS USED A LASER CANNON ENERGY
BEAM
YOUR TOTAL ENERGY IS NOW 4.1E05 UNITS
WHICH COMMAND DO YOU WISH TO EXECUTE
?

TO PLAY SPACE WARS AGAIN TYPE GO, IF
NOT TYPE NO
?
NO
SPACE WARS SAY GOOD-BYE AND MAY THE FORCE
BE WITH YOU

*END
The ///// indicate where the program was terminated, this simula-
tion may be played for a considerable length of time. In the interest of
saving space and leaving the unexpected to the user only a portion of
a typical run has been shown.
SPACE WARS (2)

10 REM THIS COMPUTER SIMULATION IS AN AD-
20 VANCED VERSION OF
30 REM THE SPACE WARS GAME. YOUR MISSION IS
40 TO DESTROY THE
50 REM DEATH STAR. YOU MAY BE ATTACKED BY
60 THE DEATH STAR'S
70 REM DEFENSES AND BY THE SKY FIGHTERS
80 RANDOMIZE
90 PRINT "ARE INSTRUCTIONS FOR SPACE WARS
100 REQUIRED? TYPE"
110 PRINT "EITHER YES OR NO"
120 INPUT A$
130 IF A$ = "YES" THEN 130
140 IF A$ = "NO" THEN 540
150 PRINT "YOU HAVE ISSUED AN INVALID RE-
160 SPONSE"
170 GOTO 60
180 PRINT
190 PRINT "***************SPACE
200 WARS***************"
210 PRINT "THE DEATH STAR SPACE STATION, YOUR
220 GOAL, IS HEAVILY"
230 PRINT "SHIELDED AND MOUNTS MORE
240 FIREPOWER THAN HALF"
250 PRINT "THE IMPERIAL FLEET. BUT, ITS DE-
260 FENSES WERE"
270 PRINT "PRIMARILY DESIGNED TO FEND OFF
280 LARGE-SCALE CAPITAL"
290 PRINT "SPACE-SHIP ASSAULTS. A SMALL, ONE-OR
300 TWO-MAN"
310 PRINT "X-WING FIGHTER SHOULD BE ABLE TO
320 SLIP THROUGH"
330 PRINT "ITS DEFENSIVE SCREENS. YOUR MISSION,
340 IS TO DESTROY"
350 PRINT "THE DEATH STAR!!! ON ITS SURFACE
360 THERE IS A SMALL"
370 PRINT "THERMAL EXHAUST PORT. ITS SIZE BE-
380 LIES ITS IMPORTANCE"
390 PRINT "AS IT APPEARS TO BE AN UNSHIELDED
400 SHAFT THAT RUNS"
410 PRINT "DIRECTLY INTO THE MAIN REACTOR
420 SYSTEM, POWERING"
PRINT "THE DEATH STAR SPACE STATION. SINCE
THIS SERVES"
PRINT "AS AN EMERGENCY OUTLET FOR WASTE
HEAT IN THE"
PRINT "EVENT OF REACTOR OVERPRODUCTION,
ITS USEFULNESS"
PRINT "WOULD BE ELIMINATED BY ENERGY-
PARTICLE SHIELDING"
PRINT "A DIRECT HIT WOULD INITIATE A CHAIN
REACTION THAT"
PRINT "WOULD DESTROY THE STATION, THUS
PROTECTING THE"
PRINT "REPUBLIC"
PRINT "********EXECUTIVE COMMANDS
ARE********"
PRINT "(1) FIRE HIGH-ENERGY TORPEDO"
PRINT "(2) FIRE LASER CANNON"
PRINT "(3) FIRE LASER"
PRINT "(4) PROPULSION OF X-WING"
PRINT "THE BATTLE COMPUTER OPTION MAY BE
USED WITH COMMANDS"
PRINT "2 AND 3. THE ENERGY TORPEDO IS USED
to destroy"
PRINT "THE DEATH STAR WITH, EACH TORPEDO
EXPENDS 20,000"
PRINT "UNITS OF ENERGY. THE LASER CANNON
MAY BE USED"
PRINT "AGAINST THE SKY FIGHTERS, IT RE-
QUIRES 5,000 UNITS"
PRINT "THE LASER USES 1,000 ENERGY UNITS
PER SHOT AND IT"
PRINT "IS ALSO USED AGAINST THE SKY FIGHT-
ERS."
PRINT "THE BATTLE COMPUTER REQUIRES 500
ENERGY UNITS, BUT,"
PRINT "GUARANTEES A DIRECT HIT ON A SKY
FIGHTER. TO DESTROY"
PRINT "A SKY FIGHTER YOU MUST DEPLETED IT OF
ENERGY."
PRINT "MOVING THE X-WING SPACE CRAFT IS IM-
PERATIVE AS"
PRINT "THE ENERGY TORPEDO MUST BE FIRED
WITHIN 1000KM"
PRINT "OF THE DEATH STAR. X-WING PROPULSION REQUIRES"
PRINT "1 ENERGY UNIT PER KM"
PRINT "***"
PRINT "GOOD-LUCK"
PRINT "MAY THE FORCE BE WITH YOU"
PRINT "***"
REM X-WING ENERGY AND SKY ENERGY
LET X1 = 5E05
LET T1 = 1E04
LET T2 = 5E04
LET D = 1E05
GOSUB 630
GOSUB 730
GOSUB 830
GOSUB 1040
GOSUB 1500
GOTO 580
IF D > 1E04 THEN 660
LET L = 1
GOTO 700
LET L = 0
LET H = (1 + INT(100*RND))/100
LET E1 = 5000*H
GOTO 720
LET H = (1 + INT(100*RND))/100
LET E1 = 1000*H
RETURN
IF D > 5E03 THEN 760
LET K = 1
GOTO 800
LET K = 0
LET H = (1 + INT(100*RND))/100
LET E2 = 8000*H
GOTO 820
LET H = (1 + INT(100*RND))/100
LET E2 = 3000*H
RETURN
IF D < 3E03 THEN 860
LET E3 = 0
GOTO 880
LET H = (1 = INT(100*RND))/100
LET E3 = 2E04*H
880 LET T1 = T1 - E1
890 LET T2 = T2 - E2
900 IF T1 <= 0 THEN 920
910 GOTO 950
920 LET E1 = 0
930 LET Y = 1
940 GOTO 960
950 LET Y = 0
960 IF T2 <= 0 THEN 980
970 GOTO 1010
980 LET E2 = 0
990 LET Z = 1
1000 GOTO 1020
1010 LET Z = 0
1020 LET X1 = X1 - E1 - E2 - E3
1030 RETURN
1040 PRINT "DISTANCE TO DEATH STAR IS NOW";
 D;"KM"
1045 IF Y = 1 THEN 1100
1050 IF L = 0 THEN 1080
1060 PRINT "THE SKY FIGHTER HAS FIRED HIS LASER"
1070 GOTO 1110
1080 PRINT "THE SKY FIGHTER HAS FIRED HIS LASER CANNON"
1090 GOTO 1110
1100 PRINT "THE SKY FIGHTER IS OUT OF ACTION!!!"
1110 IF Z = 1 THEN 1180
1120 GOTO 1220
1130 IF K = 0 THEN 1160
1140 PRINT "THE DARK LORD HAS FIRED HIS HIGH ENERGY LASER"
1150 GOTO 1360
1160 PRINT "THE SMITH LORD HAS USED A LASER CANNON ENERGY BEAM"
1170 GOTO 1360
1180 PRINT "GARTH RADER HAS EXPENDED ALL HIS WEAPON'S ENERGY"
1190 PRINT "SUPPLY. HE IS CURRENTLY ESCAPING TO THE ENDS OF"
1200 PRINT "THE GALAXY. ***THE FORCE IS WITH YOU***"
1210 GOTO 1360
LET C = 1 + (5*RND)
ON C GOTO 1240, 1270, 1290, 1310, 1330
PRINT "*CAUTION*GARTH RADER IS THE BEST SHOT IN THE"
PRINT "IMPERIAL FLEET, PLUS HE USES THE BAD SIDE OF THE FORCE"
GOTO 1130
PRINT "THE DARK LORD IS EXTREMELY DANGEROUS!!"
GOTO 1130
PRINT "***CAUTION RADER IS INHUMANLY ACCURATE CAUTION***"
GOTO 1130
PRINT "THE SMITH LORD'S PRECISION IS AWESOME"
GOTO 1130
PRINT "RADER'S ON-BOARD ATTACK COMPUTER HAS MATCHED"
PRINT "YOUR COURSE, HIS WEAPONS ARE READY"
GOTO 1130
IF D <= 3E03 THEN 1380
GOTO 1410
PRINT "***YOU ARE CLOSER THAN 3000KM TO THE SPACE STATION"
PRINT "THE DEATH STAR'S AUTOMATIC DEFENSE NETWORK HAS BEEN"
PRINT "ACTIVATED. ***USE EXTREME CAUTION***"
PRINT "YOUR TOTAL ENERGY IS NOW "';X1;' UNITS"
IF X1 < 2E04 THEN 1140
GOTO 1490
PRINT "YOU HAVE DEPLETED YOUR ENERGY SUPPLY, THE DEATH"
PRINT "STAR WILL NOW DESTROY YOUR HOME PLANET"
PRINT "YOU WILL BE A HERO NOWHERE AND REMEMBERED BY NONE"
PRINT "*****YOU HAVE MISUSED THE FORCE*****"
GOTO 2690
RETURN
PRINT
PRINT "WHICH COMMAND DO YOU WISH TO EXECUTE"
INPUT B
ON B GOTO 1540, 1690, 2030, 2320
IF D <= 1000 THEN 1590
PRINT "YOU HAVE WASTED A TORPEDO, YOU ARE FARTHER"
PRINT "AWAY THAN 1000KM"
LET X1 = X1 - 2E04
GOTO 2680
LET H = 1 + (INT(100*RND))
IF H >= 50 THEN 1640
PRINT "YOU SHOULD HAVE USED THE FORCE, YOU HAVE MISSED"
LET X1 = X1 - 2E04
GOTO 2680
PRINT "THE FORCE WAS WITH YOU, YOU HAVE SINGLE-HANDED"
PRINT "DESTROYED THE DEATH STAR. YOU HAVE SAVED THE"
PRINT "REPUBLIC AND PRINCESS LEAH ARGONNA WILL LOVE"
PRINT "YOU FOREVER."
GOTO 2740
PRINT "THE CANNON IS READY, DO YOU WISH COMPUTER ASSISTANCE"
PRINT "ENTER EITHER YES OR NO"
INPUT C$
IF C$ = "YES" THEN 1820
IF C$ = "NO" THEN 1880
PRINT "INVALID RESPONSE"
GOTO 1700
PRINT "WHICH FIGHTER THE SKY "S" OR RADER "R"
INPUT C$
IF C$ = "T" THEN 1840
IF C$ = "V" THEN 1860
PRINT "WHICH????"
GOTO 1760
LET Q = 5000
GOTO 1760
1840 LET T1 = T1 - Q
1850 GOTO 1960
1860 LET T2 = T2 - Q
1870 GOTO 1960
1880 PRINT "DO YOU WISH TO FIRE ON GARTH RADER (R) OR"
1890 PRINT "ON THE SKY FIGHTER (S)"
1900 INPUT C$
1910 LET Q = 5000*((1 + INT(100*RND))/100)
1920 IF C$ = "S" THEN 1980
1930 IF C$ = "R" THEN 2000
1940 PRINT "WHICH ENEMY????"
1950 GOTO 1880
1960 LET X1 = X1 - 5500
1970 GOTO 2660
1980 LET T1 = T1 - Q
1990 GOTO 2010
2000 LET T2 = T2 - Q
2010 LET X1 = X1 - 5000
2020 GOTO 2660
2030 PRINT "YOU HAVE DECIDED ON USING THE LASER"
2040 PRINT "DO YOU WISH COMPUTER ASSISTANCE, YES OR NO"
2050 INPUT C$
2060 IF C$ = "YES" THEN 2100
2070 IF C$ = "NO" THEN 2120
2080 PRINT "THE COMPUTER RESPONSES ONLY TO A YES OR A NO"
2090 GOTO 2040
2100 LET J = 1
2110 GOTO 2130
2120 LET J = 0
2130 PRINT "WHICH FIGHTER THE SKY (S) OR RADER (R)"
2140 PRINT "DO YOU WISH TO FIRE ON"
2150 INPUT C$
2160 IF J = 1 THEN 2190
2170 LET Q = 1000*((1 + INT(100*RND))/100)
2180 GOTO 2200
2190 LET Q = 1000
2200 IF C$ = "S" THEN 2240
2210 IF C$ = "R" THEN 2260
PRINT "WHICH TARGET?????"
GOTO 2130
LET T1 = T1 - Q
GOTO 2270
LET T2 = T2 - Q
IF J = 1 THEN 2300
LET X1 = X1 - 1000
GOTO 2660
LET X1 = X1 - 1500
GOTO 2660
PRINT "HOW MANY UNITS OF ENERGY DO YOU
WISH TO FEED TO"
PRINT "THE HYPER-ATOMIC DRIVE UNIT, (1
UNIT/1KM)"
PRINT "**CAUTION** TOO MUCH ENERGY WILL
OVER-HEAT"
PRINT "THE REACTOR, INPUT NO MORE THAN
22,500 UNITS"
PRINT "AT ANY ONE TIME"
INPUT F
PRINT "IN WHICH DIRECTION, AWAY (A) OR TO-
WARDS (T)"
PRINT "THE DEATH STAR"
INPUT C$
IF F > 2.25E04 THEN 2470
IF C$ = "A" THEN 2500
IF C$ = "T" THEN 2620
PRINT "DON'T YOU KNOW WHICH DIRECTION YOU
WANT TO GO TO"
GOTO 2330
REM OVERHEATING THE REACTOR
PRINT "YOU HAVE WASTED ";F;" UNITS OF
ENERGY"
PRINT "THE REACTOR IS CRITICALLY OVER-
HEATED"
GOTO 2640
LET D = D + F
IF D > = 1.5E05 THEN 2540
GOTO 2640
REM WENT TOO FAR
PRINT "WHERE ARE YOU GOING?? THE BATTLE IS
IN THE"
PRINT "OPPOSITE DIRECTION"
GOTO 2640
PRINT "YOU HAVE SMASHED INTO THE DARK STAR******"
PRINT "WHERE DID YOU LEARN TO FLY, GARTH RADER"
PRINT "IS LAUGHING AT YOU;; OH!! BY THE WAY---"
PRINT "* * * * * YOU HAVE LOST * * * * * *"
GOTO 2690
LET D = D - F
IF D <= 0 THEN 2570
LET X1 = X1 - F
GOTO 2680
PRINT "THE SKY FIGHTER'S ENERGY IS NOW ";T1;"UNITS"
PRINT "THE DARK LORD'S ENERGY IS" ;T2;"UNITS"
RETURN
PRINT "YOU ARE AN INCOMPETENT GOOD KNIGHT"
PRINT "YOU HAVE DISGRACED THE MEMORY OF"
PRINT "OBI- SAN COYOTE! WHOSE SIDE ARE YOU ON??"
PRINT "WHY DON'T YOU PROVE YOUR WORTH AND TRY AGAIN"
GOTO 2760
PRINT "OBI- SAN COYOTE WOULD BE PROUD OF YOU"
PRINT "YOU ARE INDEED A **GOOD KNIGHT**"
PRINT
PRINT "TO PLAY SPACE WARS AGAIN TYPE GO, IF"
PRINT "NOT TYPE NO"
INPUT L$
IF L$ = "GO" THEN 2840
IF L$ = "NO" THEN 2860
PRINT "DO YOU WANT TO STOP OR PLAY AGAIN?????"
GOTO 2770
PRINT
GOTO 50
PRINT "SPACE WARS SAY GOOD-BYE AND MAY THE FORCE BE WITH YOU"
END
STRAIGHT LINE DEPRECIATION

This program computes the value depreciation of an item by the straight line method.

FORMULA

\[X_c = \text{last current value}, \quad D = \text{depreciation per year}, \quad X_1 = \text{new current value} \]

\[X_c - D = X_1 \]

EXAMPLE

ORIGINAL VALUE =

10000

LIFETIME IN YEARS =

12

YEARLY DEPRECIATION = 833.333

<table>
<thead>
<tr>
<th>YEAR</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9166.66</td>
</tr>
<tr>
<td>2</td>
<td>8333.33</td>
</tr>
<tr>
<td>3</td>
<td>7500.</td>
</tr>
<tr>
<td>4</td>
<td>6666.66</td>
</tr>
<tr>
<td>5</td>
<td>5833.33</td>
</tr>
<tr>
<td>6</td>
<td>5000.</td>
</tr>
<tr>
<td>7</td>
<td>4166.66</td>
</tr>
<tr>
<td>8</td>
<td>3333.33</td>
</tr>
<tr>
<td>9</td>
<td>2500.</td>
</tr>
<tr>
<td>10</td>
<td>1666.66</td>
</tr>
<tr>
<td>11</td>
<td>333.333</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
</tr>
</tbody>
</table>

**

TYPE 1 TO CONTINUE, 0 TO STOP

? 0

*END
STRAIGHT LINE DEPRECIATION

START

PROMPT + INPUT
LIFETIME + VALUE

CALCULATE
YEARLY
DEPRECIATION

OUTPUT
YEAR
DEPRECIATION

CALCULATE
VALUE AT END
OF YEAR X

IS A < 0?
YES

.F1 A + O

NO

OUTPUT
YEAR VALUE

IS X < B?
YES

NO

OUTPUT CONTINUE
MESSAGE + INPUT

IS L = 1?
YES

NO

STOP
STRAIGHT LINE DEPRECIATION
10 REM THIS PROGRAM COMPUTES VALUE DEPRECIATION
20 REM BY THE STRAIGHT LINE METHOD
30 PRINT "ORIGINAL VALUE = ";
40 INPUT A
50 PRINT "LIFETIME IN YEARS = ";
60 INPUT B
70 LET C = A/B
80 PRINT "YEARLY DEPRECIATION = ";C
90 PRINT
100 PRINT "YEAR", "VALUE"
110 LET X = 0
120 LET X = X + 1
130 LET A = A - C
140 IF A < 0 THEN 160
150 GOTO 170
160 LET A = 0
170 PRINT X, A
180 IF X < B THEN 120
190 PRINT "**************************"
200 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
210 INPUT L
220 IF L = 1 THEN 240
230 STOP
240 PRINT
250 GOTO 30
260 END
VECTOR CROSS PRODUCT

If \(\mathbf{A}(A_1, A_2, A_3) \) and \(\mathbf{B}(B_1, B_2, B_3) \) are two three-dimensional vectors then the cross product of \(\mathbf{A} \) and \(\mathbf{B} \) is denoted by \(\mathbf{A} \times \mathbf{B} \). The program responds with a solution represented by \(\mathbf{X}, \mathbf{Y} \) and \(\mathbf{Z} \).

FORMULAE

\[
\mathbf{A} \times \mathbf{B} = \begin{vmatrix} A_2A_3 & A_1A_3 & A_1A_2 \\ B_2B_3 & B_1B_3 & B_1B_2 \end{vmatrix} = (A_2B_3 - A_3B_2, A_3B_1 - A_1B_3, A_1B_2 - A_2B_1)
\]

EXAMPLES

ENTER 1ST VECTOR \((A_1, A_2, A_3)\)
?
10,11,10
ENTER 2ND VECTOR \((B_1, B_2, B_3)\)
?
4,3,4

VECTOR CROSS PRODUCT
\[X = 14 \quad Y = 0 \quad Z = -14\]

TYPE 1 TO CONTINUE, 0 TO STOP
?
1

ENTER 1ST VECTOR \((A_1, A_2, A_3)\)
?
12,23,34
ENTER 2ND VECTOR \((B_1, B_2, B_3)\)
?
23,41,67

VECTOR CROSS PRODUCT
\[X = 147 \quad Y = -22 \quad Z = -37\]

TYPE 1 TO CONTINUE, 0 TO STOP
?
0

*END
VECTOR CROSS PRODUCT

START

PROMPT + INPUT VECTORS

CALCULATE VECTOR CROSS PRODUCT

OUTPUT CROSS PRODUCT

OUTPUT MESSAGE + CONTINUE INPUT

IS L = 1?

YES

NO

STOP
VECTOR CROSS PRODUCT

10 REM THIS PRODUCT COMPUTES THE CROSS PRODUCT
20 REM OF TWO VECTORS
30 PRINT "ENTER 1ST VECTOR (A1,A2,A3)"
40 INPUT A1,A2,A3
50 PRINT "ENTER 2ND VECTOR (B1,B2,B3)
60 INPUT B1,B2,B3
70 LET X = (A2*B3) - (A3*B2)
80 LET Y = (A3*B1) - (A1*B3)
90 LET Z = (A1*B2) - (A2*B1)
100 PRINT "VECTOR CROSS PRODUCT"
110 PRINT "X = ";X,"Y = ";Y,"Z = ";Z
120 PRINT "++++++++++++++++++++++++++ "
130 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
140 INPUT L
150 IF L = 1 THEN 170
160 STOP
170 PRINT
180 GOTO 30
190 END
VECTOR DOT PRODUCT AND NORM
This program computes the vector dot product, also known as the scalar product and the norms of two vectors.

FORMULAE
\[\vec{A} = (A_1, A_2, A_3) \text{ and } \vec{B} = (B_1, B_2, B_3) \text{ are two vectors} \]

NORM of \(\vec{A} \) is denoted \(|\vec{A}| \) and \(\vec{B} \) is denoted \(|\vec{B}| \)

\[|\vec{A}| = \sqrt{A_1^2 + A_2^2 + A_3^2} \]
\[|\vec{B}| = \sqrt{B_1^2 + B_2^2 + B_3^2} \]
\[\vec{A} \cdot \vec{B} = A_1B_1 + A_2B_2 + A_3B_3 \]

EXAMPLE
ENTER FIRST VECTOR \((A_1, A_2, A_3)\)
? 2,3,4
ENTER SECOND VECTOR \((B_1, B_2, B_3)\)
? 5,6,7
DOT PRODUCT = 56
NORM OF 1ST VECTOR = 5.38516
NORM OF 2ND VECTOR = 10.4880

TYPE 1 TO CONTINUE, 0 TO STOP
?
0
*END
DOT PRODUCT AND NORM

START

PROMPT + INPUT VECTORS

CALCULATE NORM OF VECTORS

CALCULATE DOT PRODUCT

OUTPUT RESULTANTS

OUTPUT CONTINUE COMMAND + INPUT

IS L = 1?

YES

NO

STOP
VECTOR DOT PRODUCT AND NORM

10 REM THIS PROGRAM COMPUTES DOT PRODUCT AND
20 REM THE NORMS OF TWO VECTORS
30 PRINT "ENTER 1ST VECTOR (A1,A2,A3)"
40 INPUT A1,A2,A3
50 PRINT "ENTER 2ND VECTOR (B1,B2,B3)"
60 INPUT B1,B2,B3
70 REM CALCULATE NORM OF A VECTOR
80 LET X = SQR((A1^2) + (A2^2) + (A3^2))
90 REM CALCULATE NORM OF B VECTOR
100 LET Y = SQR((B1^2) + (B2^2) + (B3^2))
110 REM CALCULATE DOT PRODUCT
130 PRINT "DOT PRODUCT = ";Z
140 PRINT "NORM OF 1ST VECTOR = ";X
150 PRINT "NORM OF 2ND VECTOR = ";Y
160 PRINT "**"
170 PRINT "TYPE 1 TO CONTINUE, 0 TO STOP"
180 INPUT L
190 IF L = 1 THEN 210
200 STOP
210 PRINT
220 GOTO 30
230 END
57 PRACTICAL PROGRAMS & GAMES IN BASIC

From arithmetic progression to statistical permutations to one-arm bandits, here are 57 practical, useful and fun programs designed to help you really put your minicomputer to work!

Game programs include blackjack, one-arm bandit, craps, and two space war games. Math and accounting programs include compounding, straight-line depreciation, statistical permutations, instant derivatives, and solutions for integrals—even a whole section of geometric solutions for modern-day Euclids. For history buffs, there is a Day-of-the-Week program for any date back through 1753.

Each program begins with an introductory paragraph describing its capabilities, and continues with a typical program sequence and flowchart. All programs will run on any floating point BASIC.

The author is a veteran computer programmer with extensive experience in developing software in various languages for a wide range of hardware systems.