RXO2 Floppy Disk System User's Guide # RX02 Floppy Disk System User's Guide ### Copyright © 1978 by Digital Equipment Corporation The material in this manual is for informational purposes and is subject to change without notice. Digital Equipment Corporation assumes no responsibility for any errors which may appear in this manual. Printed in U.S.A. This document was set on DIGITAL's DECset-8000 computerized typesetting system. The following are trademarks of Digital Equipment Corporation, Maynard, Massachusetts: | DIGITAL | DECsystem-10 | MASSBUS | |---------|--------------|---------| | DEC | DECSYSTEM-20 | OMNIBUS | | PDP | DIBOL | OS/8 | | DECUS | EDUSYSTEM | RSTS | | UNIBUS | VAX | RSX | | | VMS | IAS | ### **CONTENTS** | | | Page | |-----------|--|------| | PREFACE | | | | CHAPTER 1 | GENERAL INFORMATION | | | 1.1 | INTRODUCTION | 1-1 | | 1.2 | GENERAL DESCRIPTION | 1-2 | | 1.2.1 | Interface Modules | 1-2 | | 1.2.2 | Microprogrammed Controller | 1-5 | | 1.2.3 | Read/Write Electronics | 1-5 | | 1.2.4 | Electromechanical Drive | | | 1.2.5 | Power Supply | 1-6 | | 1.3 | OPTION DESCRIPTION | | | 1.3.1 | Operation For Single Density Recording Only (RX8E, RX11, | | | | RXV11) | 1-7 | | 1.3.1.1 | PDP-8 Operation | | | 1.3.1.2 | PDP-11 Operation | 1-7 | | 1.3.1.3 | LSI-11 Operation | | | 1.3.2 | Operation For Single or Double Density Recording (RX28, | | | | RX211, RXV21) | 1-7 | | 1.3.2.1 | PDP-8 Operation | | | 1.3.2.2 | PDP-11 Operation | | | 1.3.2.3 | LSI-11 Operation | | | 1.4 | SPECIFICATIONS | 1-7 | | 1.5 | SYSTEMS COMPATIBILITY | | | 1.5.1 | Media | 1-9 | | 1.5.2 | Recording Scheme | 1-10 | | 1.5.2.1 | Double Frequency (FM) | | | 1.5.2.2 | Miller Code (MFM) | | | 1.5.3 | Logical Format | | | 1.5.3.1 | Header Field Description | | | 1.5.3.2 | Data Field Description | | | 1.5.3.3 | Track Usage | | | 1.5.3.4 | CRC Capability | 1-13 | | CHAPTER 2 | INSTALLATION | | | 2.1 | SITE PREPARATION | 2-1 | | 2.1.1 | Space | 2-1 | | 2.1.2 | Cabling | | | 2.1.3 | AC Power | | | 2 1 3 1 | Power Requirements | 2_2 | ## CONTENTS (Cont) | | | Page | |---------------------------------------|--|------| | 2.1.3.2 | Input Power Modification Requirements | 2-3 | | 2.1.4 | Fire and Safety Precautions | | | 2.2 | CONFIGURATION GUIDELINES | | | 2.3 | ENVIRONMENTAL CONSIDERATIONS | | | 2.3.1 | General | | | 2.3.2 | Temperature, Relative Humidity | | | 2.3.3 | Heat Dissipation | | | 2.3.4 | Radiated Emissions | | | 2.3.4 | Cleanliness | | | 2.3.3 | UNPACKING AND INSPECTION | | | | | | | 2.4.1 | General | | | 2.4.2 | Tools | | | 2.4.3 | Unpacking | | | 2.4.3.1 | Cabinet-Mounted | | | 2.4.3.2 | Separate Container | | | 2.4.3.3 | Inspection | | | 2.5 | INSTALLATION | | | 2.5.1 | PDP8-A Modification | | | 2.6 | TESTING | 2-10 | | CHAPTER 3 | USER INFORMATION | | | 3.1 | CUSTOMER RESPONSIBILITY | 3-1 | | 3.2 | CARE OF MEDIA | | | 3.2.1 | Handling Practices and Precautions | | | 3.2.2 | Diskette Storage | | | 3.2.2.1 | Short Term (Available for Immediate Use) | | | 3.2.2.2 | Long Term | | | 3.2.3 | Shipping Diskettes | | | 3.3 | OPERATING INSTRUCTIONS | 3-3 | | 3.4 | OPERATOR TROUBLESHOOTING | | | 3. 4 | OTENTION TROODELSTICOTITIO | | | CHAPTER 4 | PROGRAMMING | | | 4.1 | RX8E AND RX28 Programming Information | 4-1 | | 4.1.1 | Device Codes | | | 4.1.2 | Instruction Set | 4-2 | | 4.1.2.1 | RX8E Load Command (LCD) | 4-2 | | 4.1.2.2 | RX28 Load Command | | | 4.1.2.3 | Transfer Data Register (XDR) | | | 4.1.2.4 | STR | 4-3 | | 4.1.2.5 | SER | | | 4.1.2.6 | SDN | | | 4.1.2.7 | INTR | | | 4.1.2.8 | INIT | | | · · · · · · · · · · · · · · · · · · · | | | ## CONTENTS (Cont) | | | Page | |----------|---|------| | 4.1.3 | Register Description | 4-4 | | 4.1.3.1 | Command Register | 4-4 | | 4.1.3.2 | Error Code Register | 4-5 | | 4.1.3.3 | RX2TA – RX Track Address | 4-6 | | 4.1.3.4 | RX2SA – RX Sector Address | | | 4.1.3.5 | RX2DB – RX Data Buffer | | | 4.1.3.6 | RX8E – RX Error and Status | | | 4.1.3.7 | RX28 – RX Error and Status | 4-7 | | 4.1.4 | Function Code Description | 4-8 | | 4.1.4.1 | Fill Buffer (000) | 4-9 | | 4.1.4.2 | Empty Buffer (001) | 4-9 | | 4.1.4.3 | Write Sector (010) | 4-9 | | 4.1.4.4 | Read Sector (011) | 4-10 | | 4.1.4.5 | Set Media Density (100) for RX28 only | 4-10 | | 4.1.4.6 | Maintenance Read Status (101) for RX28 only | 4-10 | | 4.1.4.7 | Read Status (101) for RX8E only | 4-10 | | 4.1.4.8 | Write Deleted Data Sector (110) | | | 4.1.4.9 | Read Error Code Function (111) | | | 4.1.4.10 | Power Fail | | | 4.1.5 | Error Recovery | 4-11 | | 4.1.5.1 | RX8E | | | 4.1.5.2 | RX28 | | | 4.1.6 | RX8E Programming Examples | 4-13 | | 4.1.6.1 | Write/Write Deleted Data/Read Functions | 4-13 | | 4.1.6.2 | Empty Buffer Function | 4-13 | | 4.1.6.3 | Fill Buffer Function | 4-13 | | 4.1.7 | RX28 Programming Examples | 4-17 | | 4.1.8 | Restrictions and Programming Pitfalls | 4-22 | | 4.2 | RX11 AND RXV11 PROGRAMMING INFORMATION | | | 4.2.1 | Register and Vector Addresses | | | 4.2.2 | Register Description | 4-24 | | 4.2.2.1 | RXCS - Command and Status (177170) | 4-24 | | 4.2.2.2 | RXDB – Data Buffer Register (177172) | 4-25 | | 4.2.2.3 | RXTA – RX Track Address | 4-25 | | 4.2.2.4 | RXSA – RX Sector Address | 4-25 | | 4.2.2.5 | RXDB - RX Data Buffer | 4-25 | | 4.2.2.6 | RXES – RX Error and Status | | | 4.2.3 | Function Codes | 4-27 | | 4.2.3.1 | Fill Buffer (000) | 4-27 | | 4.2.3.2 | Empty Buffer (001) | 4-27 | | 4.2.3.3 | Write Sector (010) | 4-28 | | 4.2.3.4 | Read Sector (011) | 4-28 | | 4.2.3.5 | Read Status (101) | 4-29 | | 4.2.3.6 | Write Sector with Deleted Data (110) | 4-29 | | 4.2.3.7 | Read Error Code Function (111) | 4-29 | ## CONTENTS (Cont) | | | Page | |---------|---|------| | 4.2.3.8 | Power Fail | 4-29 | | 4.2.4 | Programming Examples | 4-30 | | 4.2.4.1 | Read Data/Write Data | | | 4.2.4.2 | Empty Buffer Function | | | 4.2.4.3 | Fill Buffer Function | | | 4.2.5 | Restrictions and Programming Pitfalls | | | 4.2.6 | Error Recovery | | | 4.3 | RX211 AND RXV21 PROGRAMMING INFORMATION | 4-34 | | 4.3.1 | Register and Vector Addresses | 4-35 | | 4.3.2 | Register Description | | | 4.3.2.1 | RX2CS - Command and Status (177170) | | | 4.3.2.2 | RX2DB – Data Buffer Register (177172) | | | 4.3.2.3 | RX2TA – RX Track Address | | | 4.3.2.4 | RX2SA – RX Sector Address | 4-37 | | 4.3.2.5 | RX2WC - RX Word Count Register | 4-37 | | 4.3.2.6 | RX2BA - RX Bus Address Register | | | 4.3.2.7 | RX2DB – RX Data Buffer | | | 4.3.2.8 | RX2ES – RX Error and Status | | | 4.3.3 | Function Codes | 4-39 | | 4.3.3.1 | Fill Buffer (000) | 4-39 | | 4.3.3.2 | Empty Buffer (001) | 4-39 | | 4.3.3.3 | Write Sector (010) | 4-39 | | 4.3.3.4 | Read Sector (011) | 4-40 | | 4.3.3.5 | Set Media Density (100) | | | 4.3.3.6 | Maintenance Read Status (101) | 4-41 | | 4.3.3.7 | Write Sector with Deleted Data (110) | | | 4.3.3.8 | Read Error Code (111) | | | 4.3.3.9 | RX02 Power Fail | 4-42 | | 4.3.4 | Error Recovery | | | 4.3.5 | RX211/RXV21 Programming Examples | | | 4.3.5.1 | Write/Fill Buffer | | | 4.3.5.2 | Read/Empty Buffer | 4-45 | ## **FIGURES** | Title | Page | |---|--| | Floppy Disk Configuration | 1-3 | | • | | | Interface Modules | | | Top View of RX02 | 1-5 | | | Floppy Disk Configuration Front View of the Floppy Disk System Interface Modules | ## FIGURES (Cont) | Figure No. | Title | Page | |------------|--|------| | 1-5 | Underside View of Drive | 1-6 | | 1-6 | Diskette Media | 1-9 | | 1-7 | Flux Reversal Patterns for FM | 1-10 | | 1-8 | FM versus MFM Encoding | 1-11 | | 1-9 | Track Format (Each Track) | 1-12 | | 1-10 | Sector Format (Each Sector) | 1-12 | | 2-1 | RX02 Outline Dimensions | 2-1 | | 2-2 | Cabinet Layout Dimensions | 2-2 | | 2-3 | RX02 Rear View | 2-3 | | 2-4 | RX02 Unpacking | 2-7 | | 2-5 | RX02 Cabinet Mounting Information | 2-7 | | 2-6 | KM8-A Modification | 2-10 | | 4-1 | LCD Word Format (RX8E) | | | 4-2 | Command Word Format (RX28) | | | 4-3 | Command Register Format (RX8E) | 4-4 | | 4-4 | Command Register Format (RX28) | 4-4 | | 4-5 | Error Code Register Format (RX8E/RX28A) | 4-5 | | 4-6 | RX2TA Format (RX8E/RX28A) | | | 4-7 | RX2SA Format (RX8E/RX28) | | | 4-8 | RX2DB Format (RX8E/RX28) | | | 4-9 | RXES Format (RX8E) | | | 4-10 | RX2ES Format (RX28) | | | 4-11 | RX8E Write/Write Deleted Data/Read Example | | | 4-12 | RX8E Empty Buffer Example | | | 4-13 | RX8E Fill Buffer Example | | | 4-14 | RX28 Write/Write Deleted Data/Read Example | | | 4-15 | RX28 Fill Buffer Example | | | 4-16 | RX28 Empty Buffer Example | | | 4-17 | RXCS Format (RX11/RXV11) | | | 4-18 | RXTA Format (RX11/RXV11) | | | 4-19 | RXSA Format (RX11/RXV11) | | | 4-20 | RXDB Format (RX11/RXV11) | | | 4-21 | RXES Format (RX11/RXV11) | | | 4-22 | RX11/RXV11 Write/Write Deleted Data/Read Example | | | 4-23 | RX11/RXV11 Empty Buffer Example | | | 4-24 | RX11/RXV11 Fill Buffer Example | | | 4-25 | RX2CS Format (RX211/RXV21) | | | 4-26 | RX2TA Format (RX211/RXV21) | | | 4-27 | RX2SA Format (RX211/RXV21) | | | 4-28 | RX2WC Format (RX211/RXV21) | | | 4-29 | RX2BA and RX2DB Format (RX211/RXV21) | | | 4-30 | RX2ES Format (RX211/RXV21) | 4-39 | | 4-31 | RX211/RXV21 Write/Fill Buffer Example | | | 4-32 | RX211/RXV21 Read/Empty Buffer Example | 4-46 | ### **TABLES** | Table No. | Title | Page | |-----------|---|------| | 1-1 | Data Address Mark Code | 1-13 | | 2-1 | RX02 Configurations | | | 2-2 | Controller Configuration Switch Positions | 2-4 | | 2-3 | Interface Code/Jumper Configuration | | | 3-1 | Operator Troubleshooting Guide | | | 4-1 | Device Code Switch Selection. | | ### **PREFACE** This manual is intended to provide the user with sufficient information to
correctly set up and operate the RX02 Floppy Disk System in any of the various configurations that are available for use with the PDP-8, PDP-11, or LSI-11 computers. The manual presents general, installation, user, and programming information for the RX02 Floppy Disk System and the interface options associated with the PDP-8, PDP-11, and LSI-11 computer systems. ## CHAPTER 1 GENERAL INFORMATION ### 1.1 INTRODUCTION The RX02 is a low cost, random access mass memory device that stores data in fixed length blocks on flexible diskettes with preformatted industry standard headers. The RX02 interfaces with either a PDP-8, a PDP-11, or an LSI-11 system. Various interface modules are selected according to the computer being used and either single or double density recording. The various configurations are: | Designation | Computer | Interface
Module | Recording
Density | |-------------|----------|---------------------|--| | RX8E | PDP-8 | M8357 | Single Single or Double Single Single or Double Single Single Single or Double | | RX28 | PDP-8 | M8357 | | | RX11 | PDP-11 | M7846 | | | RX211 | PDP-11 | M8256 | | | RXV11 | LSI-11 | M7946 | | | RXV21 | LSI-11 | M8029 | | ### NOTE The single density recording configurations RX8E, RX11, and RXV11 are compatible with the RX01 Floppy Disk System when the M7744 controller module has been switched to be compatible with these configurations. (See Table 2-2.) The RX02 consists of two flexible disk drives, a single read/write electronics module, a microprogrammed controller module, and a power supply, enclosed in a rack-mountable, 10-1/2 inch, self-cooled chassis. A cable is included for connection to either a PDP-8 interface module, a PDP-11 interface module, or an LSI-11 interface module. The amount of data that can be stored on the RX02 varies according to the configuration. The recording density can be different for each drive. For each drive system using double density recording, up to 512K 8-bit bytes of data (PDP-8, PDP-11, LSI-11) or 256K 12-bit words (PDP-8) can be stored and retrieved. For each drive system using single density recording, up to 256K 8-bit bytes of data or 128K 12-bit words (PDP-8) can be stored and retrieved. The RX02 interfaces with IBM-compatible devices when single density data recording is used. For single or double density recording, the RX02 is used with either an M8357 interface module (PDP-8), an M8256 interface module (PDP-11), or an M8029 interface module (LSI-11). The interface modules convert the RX02 I/O bus to the bus structure of the computer being used. Each module controls the interrupts to the CPU initiated by the RX02 and handles the data interchange between the RX02 and the host computer. Each interface module is powered by the host processor. In addition, the RX02 is used for single density recording when it is configured to be compatible with the RX01. The interface module used is either an M8357 (PDP-8), an M7846 (PDP-11), or an M7946 (LSI-11). To record or retrieve data the RX02 performs implied seeks. Given an absolute sector address, the RX02 locates the desired sector and performs the indicated function, including automatic head position verification and hardware calculation and verification of the cyclic redundancy check (CRC) character. The CRC character that is read and generated is compatible with IBM 3740 equipment. ### 1.2 GENERAL DESCRIPTION An RX02 Floppy Disk System consists of the following components: M7744 Controller Module M7745 Read/Write Electronics Module H771-A, -C, or -D Power Supply RX02-CA Floppy Disk Drive (60 Hz max of 2) RX02-CC Floppy Disk Drive (50 Hz max of 2) One interface module is used: M8357 (PDP-8, Programmed I/O) M7846 (PDP-11, Programmed I/O) M7946 (LSI-11, Programmed I/O) M8256 (PDP-11 with DMA) M8029 (LSI-11 with DMA) All components except the interface modules are housed in a 10-1/2 inch rack-mountable box. The power supply, M7744 module, and M7745 module are mounted above the drives. Interconnection from the RX02 to the interface is with a 40-conductor BC05L-15 cable of standard length (15 ft). Figure 1-1 is a configuration drawing of the system: part A shows the configuration for a bus interface with DMA; part B shows the configuration for all Omnibus interfaces (programmed I/O); part C shows the configuration for a bus interface (programmed I/O) that is RX01 compatible. Figure 1-2 is a front view of a dual drive system. ### 1.2.1 Interface Modules The interface modules plug into a slot on the bus for PDP-8, PDP-11, and LSI-11 computers. Figure 1-3 shows the outline of the various modules and areas of interest on each module. Figure 1-1 Floppy Disk Configuration Figure 1-2 Front View of the Floppy Disk System Figure 1-3 Interface Modules 1.2.2 Microprogrammed Controller The M7744 microprogrammed controller module is located in the RX02 cabinet as shown in Figure 1-4. The M7744 is hinged on the left side and lifts up for access to the M7745 read/write electronics module. 1.2.3 Read/Write Electronics The M7745 read/write electronics module is located in the RX02 cabinet as shown in Figure 1-4. Figure 1-4 Top View of RX02 ### 1.2.4 Electromechanical Drive A maximum of two drives can be attached to the read/write electronics. The electromechanical drives are mounted side by side under the read/write electronics board (M7745). Figure 1-5 is an underside view of the drive showing the drive motor connected to the spindle by a belt. (This belt and the drive pulley are different on the 50 Hz and 60 Hz units; see Paragraph 2.1.3.2 for complete input power modification requirements.) Figure 1-5 Underside View of Drive ### 1.2.5 Power Supply The H771 power supply is mounted at the rear of the RX02 cabinet as shown in Figure 1-4. The H771-A is rated at 60 Hz $\pm 1/2$ Hz over a voltage range of 90–128 Vac. The H771-C and -D are rated at 50 Hz + 1/2 Hz over four voltage ranges: Two configuration plugs are provided to adapt the H771-C or -D to each voltage range. This is not applicable to the H771-A. ### 1.3 OPTION DESCRIPTION The optional interface modules that are used to interface the RX02 with a PDP-8, PDP-11, and LSI-11 are listed in Paragraphs 1.1 and 1.2. (Each module is powered by the host processor.) The module selected is determined by the computer being used and whether the data interchange is between either IBM system 3740 compatible devices or DIGITAL system double density devices. Also, when an M7744 controller module's configuration switch is set to be compatible, the RX02 can operate as an RX01. The RX02 interfaces with IBM compatible devices when single density data recording is used. The RX02 interfaces with DIGITAL system double density recording devices when the controller module configuration switch is positioned to be compatible with RX28, RX211, and RXV21 configurations. ### 1.3.1 Operation For Single Density Recording Only (RX8E, RX11, RXV11) - 1.3.1.1 PDP-8 Operation The RX02 connects to the M8357 Omnibus interface module. This module converts the RX02 I/O bus to PDP-8 family Omnibus structure. It controls interrupts to the CPU initiated by the RX02, controls data interchange between the RX02 and the host CPU by programmed I/O, and handles input/output transfers used for maintenance status conditions. - **1.3.1.2** PDP-11 Operation The RX02 connects to the M7846 Unibus interface module. This module converts the RX02 I/O bus to PDP-11 Unibus structure. It controls interrupts to the CPU initiated by the RX02, decodes Unibus addresses for register selection, and handles data interchange between the RX02 and the host CPU main memory by programmed I/O. - 1.3.1.3 LSI-11 Operation The RX02 connects to the M7946 LSI-11 bus interface module. This module converts the RX02 I/O bus to the LSI-11 bus structure. It controls interrupts to the CPU initiated by the RX02, decodes LSI-11 bus addresses for register selection, and transfers data between the RX02 and the host CPU main memory by programmed I/O. ### 1.3.2 Operation For Single or Double Density Recording (RX28, RX211, RXV21) - 1.3.2.1 PDP-8 Operation The RX02 connects to the M8357 Omnibus interface module. This module converts the RX02 I/O bus to PDP-8 family Omnibus structure. It controls interrupts to the CPU initiated by the RX02, controls transfer of data between the RX02 and host CPU by programmed I/O, and handles input/output transfer used to test status conditions. - 1.3.2.2 PDP-11 Operation The RX02 connects to the M8256 Unibus interface module. This module converts the RX02 I/O bus to PDP-11 Unibus structure. It controls interrupts to the CPU initiated by the RX02, decodes Unibus addresses for register selection, and initiates NPR requests to transfer data between the RX02 and the host CPU main memory. - 1.3.2.3 LSI-11 Operation The RX02 connects to the M8029 LSI-11 bus interface module. This module converts the RX02 I/O bus to the LSI-11 bus structure. It controls interrupts to the CPU initiated by the RX02, decodes LSI-11 bus addresses for register selection, and initiates NPR requests to transfer data between the RX02 and the host CPU main memory. ### 1.4 SPECIFICATIONS System Reliability Minimum number of revo- lutions per track Seek error rate Soft data error rate Hard data error rate 3 million/media (head loaded) 1 in 10⁶ seeks 1 in 109 bits read or written 1 in 10¹² bits read or written ### **NOTE** The above error rates only apply to DEC approved media that is properly cared for. Seek error and soft data errors are usually attributable to random effects in the head/media interface, such as electrical noise, dirt, or dust. Both are called "soft" errors if the error is recoverable in 10 additional tries or less. "Hard" errors cannot be recovered. Seek error retries should be preceded by a recalibrate. ### Drive Performance | Capacity | Recording | 8-bit bytes | 12-bit words | |--------------|-----------|-------------|--------------| | Per
diskette | FM | 256,256 | 128,128 | | | MFM | 512,512 | 256,256 | | Per track | FM | 3,328 | 1,664 | | | MFM | 6,656 | 3,328 | | Per sector | FM | 128 | 64 | | | MFM | 256 | 128 | Data transfer rate Diskette to controller buffer 4 μs/data bit (FM) 2 μs/data bit (MFM) Buffer to CPU interface $1.2 \mu s/bit$ ### NOTE PDP-8 interface can operate in 8- or 12-bit modes under software control. Track-to-track move Head settle time Rotational speed Recording surfaces per disk Tracks per disk Sectors per track Recording technique Bit density maximum on inner track Track density Average access 6 ms/track maximum 25 ms maximum 360 rpm \pm 2.5%; 166 ms/rev nominal 1 77 (0-76) or (0-114₈) 26 (1-26) or (0-32₈) Double frequency (FM) or modified MFM 3200 bpi (FM) or modified (MFM) 48 tracks/inch 262 ms, computed as follows: $7 \text{ tks/3} \times 6 \text{ ms}$ + 25 ms Rotate 66 ms/2 = 262 ms ### **Environmental Characteristics** Temperature RX02, operating RX02, nonoperating Media, nonoperating 15° to 32° C (59° to 90° F) ambient; maximum temperature gradient = 11° C/hr (20° F/hr) -35° to +60° C (-30° to +140° F) -35° to +52° C (-30° to +125° F) **NOTE** Media temperature must be within operating temperature range before use. Heat Dissipation (RX02 System) Less than 225 Btu/hr Relative humidity RX02, operating 25° C (77° F) maximum wet bulb 2° C (36° F) minimum dew point 20% to 80% relative humidity RX02, nonoperating Media, nonoperating Magnetic field 5% to 98% relative humidity (no condensation) 10% to 80% relative humidity Media exposed to a magnetic field strength of 50 oersteds or greater may lose data. Interface modules Operating temperature Relative humidity Maximum wet bulb Minimum dew point 5° to 50° C (41° to 122° F) 10% to 90% 32° C (90° F) 2° C (36° F) ### Electrical Power consumption RX02 5 A at +5 Vdc, 25 W; 0.14 A at -5 Vdc, 0.7 W; 1.3 A t +24 Vdc, 31 W PDP-11 interface (M7846, M8256) PDP-8 interface (M8357) LSI-11 interface (M7946, 1.5 A at 5 Vdc 1.8 A at 5 Vdc 1.8 A at 5 Vdc M8029) AC power 4 A at 115 Vac 2 A at 230 Vac ### 1.5 SYSTEMS COMPATIBILITY This section describes the physical, electrical, and logical aspects of compatibility for data interchange with IBM system 3740 devices and for data interchange with double density devices. #### 1.5.1 Media The media used on the RX02 Floppy Disk system is compatible with the IBM 3740 family of equipment and is shown in Figure 1-6. The "diskette" media was designed by applying tape technology to disk architecture, resulting in a flexible oxide-on-mylar surface. The diskette is encased in a plastic envelope with a hole for the read/write head, a hole for the drive spindle hub, and a hole for the hard index mark. The envelope is lined with a fiber material that cleans the diskette surface. The media is supplied to the customer preformatted and pretested. Figure 1-6 Diskette Media 1.5.2 Recording Scheme There are two recording schemes used in the RX02: double frequency (FM) and modified Miller code (MFM). The FM scheme is used for single density data recording which is compatible with IBM system 3740 devices. (When this recording scheme is used and the RX02 is configured as shown in Figure 1-1 part C, the RX02 is compatible with the RX01.) The MFM scheme is used for double density data recording which is compatible with DIGITAL double density devices but is not compatible with other manufacturers. 1.5.2.1 Double Frequency (FM) – For the double frequency recording scheme data is recorded between bits of a constant clock stream. The clock stream consists of a continuous pattern of one flux reversal every four μ s (Figure 1-7). A data "one" is indicated by an additional reversal between clocks (i.e., doubling the bit stream frequency; hence the name). A data "zero" is indicated by no flux reversal between clocks. A continuous stream of ones, shown in the bottom waveform in Figure 1-7, would appear as a "2F" bit stream, and a continuous stream of zeros, shown in the top waveform in Figure 1-7, would appear as a "IF" or fundamental frequency bit stream. Figure 1-7 Flux Reversal Patterns for FM 1.5.2.2 Miller Code (MFM) – MFM or Miller code encodes clocks between data bits of a continuous data stream. The data stream consists of flux reversals for a data "one" and no flux reversal for a data "zero." A clock is recorded only between data "zeros." Because it is possible to have double density data fields map into a preamble and ID mark, the MFM encoding is modified slightly to prevent a false header from being detected within a double density data field. # NOTE The modified MFM encoding is not compatible with other manufacturers. The encoding algorithms for implementing modified MFM are: Encoding Algorithm #1 (MFM or Miller Code Algorithm) | D | Data | Encoded | l D- 11 | | |----|------------|---------|---------|--------| | Dn | Dn + 1 | Dn | Cn | Dn + 1 | | 0 | 0 | 0 | 1 | 0 | | 1 | 0 | 1 | 0 | 0 | | 0 | 1 | 0 | 0 | 1 | | 1 | $1 \leq 1$ | 1 | 0 | 1 | Encoding Algorithm #2 (MFM Modified Algorithm) | | | Data | en e | | | |----|--------|--------|--|--------|--------| | Dn | Dn + 1 | Dn + 2 | Dn + 3 | Dn + 4 | Dn + 5 | | 0 | 1 | 1 | 1 | 1 | 0 | | Encoded Data | | | | | | | | | | | |--------------|----|--------|--------|--------|--------|--------|--------|--------|--------|--------| | Dn | Cn | Dn + 1 | Cn + 1 | Dn + 2 | Cn + 2 | Dn + 3 | Cn + 3 | Dn + 4 | Cn + 4 | Dn + 5 | | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | The decoding algorithm used in data separation is: | | Encoded | Deco | ded | | |----|---------|--------|--------|--------| | Dn | Cn | Dn + 1 | Dn | Dn + 1 | | 0 | 0 | 0 | 1
0 | 1 0 | | 1 | 0 0 | 0 | 1
0 | 0 | | 1 | 0 | 1 | 1 | I | Figure 1-8 shows the waveforms that are generated for a data stream of zeros and ones when FM code, MFM code, and modified MFM code are used. Figure 1-8 FM versus MFM Encoding 1.5.3 Logical Format Data is recorded on only one side of the diskette. This surface is divided into 77 concentric circles or "tracks" numbered 0-76. Each track is divided into 26 sectors numbered 1-26 (Figure 1-9). Each sector contains two major fields: the header field and the data field (Figure 1-10). Figure 1-9 Track Format (Each Track) Figure 1-10 Sector Format (Each Sector) **1.5.3.1** Header Field Description – The header field is broken into seven bytes (eight bits/byte) of information and is preceded by a field of at least six bytes of zeros for synchronization. The header and its preamble are always recorded in FM. - 1. Byte No. 1: ID Address Mark This is a unique stream of flux reversals (not a string of data bits) that is decoded by the controller to identify the beginning of the header field. (Data = FE hex, clock = C7 hex.) - 2. Byte No. 2: Track Address This is the absolute (0–114₈) binary track address. Each sector contains track address information to identify its location on 1 of the 77 tracks. - 3. Byte No. 3: Zeros - 4. Byte No. 4: Sector Address This is the absolute binary sector address (1-32₈). Each sector contains sector address information to identify its circumferential position on a track. There is no sector 0. - 5. Byte No. 5: Zeros - 6,7. Bytes No. 6 and 7: CRC This is the cyclic redundancy check character that is calculated for each sector from the first five header bytes using the IBM 3740 polynomial. - 1.5.3.2 Data Field Description The data field contains either 131_{10} or 259_{10} bytes of information depending on the recording scheme. This field is preceded by a field of zeros for synchronization and the header field (Figure 1-10). - 1. Byte No. 1: Data or Deleted Data Address mark This byte is always recorded in FM and is unique because it contains missing clocks. It is decoded by the controller to identify the beginning of a data field. The deleted data mark is not used during normal operation but the RX02 can identify and write deleted data marks under program control as required. There is a unique address mark for each density as shown in the following table. One of these marks is the first byte of each data field. Hex Byte Clock Mark Density Data **C**7 FB FM Data MFM mod. FD **C**7 **C**7 **DELETED** FMF8 F9 **C**7 MFM mod. DATA Table 1-1 Data Address Mark Code 2. Bytes No. 2: -129 (FM) or -257 (MFM modified) - This is the data field and it can be recorded in either FM or MFM (modified). It is used to store 128₁₀ or 256₁₀ (depending upon encoding) 8-bit bytes of information. ## NOTE Partial data fields are not recorded. - 3. Bytes No. 130 and 131 or 258 and 259 These bytes comprise the CRC character that is calculated for each sector from the first 129 or 257 data field bytes using the industry standard polynomial division algorithm designed to detect the types of failures most likely to occur in recording on the floppy media. These bytes will be recorded with the same encoding scheme as the data field. - 1.5.3.3 Track Usage In the IBM 3740 system, some tracks are commonly designated for special purposes such as error information, directories, spares, or unused tracks. The RX02 is capable of recreating any system structure through the use of special systems programs, but normal operation will make use of all the available tracks as data tracks. Any special file structures must be accomplished through user software. - 1.5.3.4 CRC Capability Each sector has a two-byte header CRC character and a two-byte data CRC character to ensure data integrity. The CRC characters are generated by the hardware during a write operation and checked to ensure all bits were read correctly during a read operation. The CRC character is the same as that used in IBM 3740 series equipment. ## CHAPTER 2 INSTALLATION This chapter contains information that is required for site preparation, unpacking, installation, and testing of the RX02 Floppy Disk System. Information is also provided to identify the various system configurations that are available. ### 2.1 SITE
PREPARATION **2.1.1** Space The RX02 is a cabinet-mountable unit that may be installed in a standard Digital Equipment Corporation cabinet. This rack-mountable version is approximately 28 cm high, (10-1/2 inches), 48 cm wide, (19 inches) and 42 cm deep (16-1/2 inches) as shown in Figure 2-1. Figure 2-1 RX02 Outline Dimensions When the RX02 is mounted in a cabinet (Figure 2-2), provision should be made for service clearances of approximately 56 cm (22 inches) at the front and rear of the cabinet so that the RX02 can be extended or the cabinet rear door opened. Figure 2-2 Cabinet Layout Dimensions ### 2.1.2 Cabling The standard interface cable provided with an RX02 (BC05L-15) is 4.6 m (15 ft) in length; the positioning of the RX02 in relation to the central processor should be planned to take this into consideration. The RX02 should be placed near the control console or keyboard so that the operator will have easy access to load or unload disks. The position immediately above the CPU is preferred. The ac power cord is about 2.7 m (9 ft) long. ### 2.1.3 AC Power 2.1.3.1 Power Requirements – The RX02 is designed to use either a 60 Hz or a 50 Hz power source. The 60 Hz version will operate from 90–128 Vac, without modifications, and will use less than 4 A operating. The 50 Hz version will operate within four voltage ratings and will require field verification/modification to ensure that the correct voltage option is selected. The voltage ranges of 90–120 Vac and 184–240 Vac will use less than 4 A operating. The voltage ranges of 100–128 Vac and 200–256 Vac will use less than 2 A. Both versions of the RX02 will be required to receive the input power from an ac source (e.g., 861 power control) that is controlled by the system's power switch. 2.1.3.2 Input Power Modification Requirements – The 60 Hz version of the RX02 uses the H771-A power supply and will operate on 90–128 Vac, without modification. To convert to operate on a 50 Hz power source in the field, the H771-A supply must be replaced with an H771-C or -D (Figure 1-4) and the drive motor belt and drive motor pulley must be replaced (Figure 1-5). The H771-C operates on a 90–120 Vac or 100–128 Vac power source. The H771-D operates on a 184–240 Vac or 200–256 Vac power source. To convert the H771-C to the higher voltage ranges or the H771-D to the lower voltage ranges, the power harness and circuit breaker must be changed. See Figure 2-3 for the appropriate jumper and circuit breaker. Figure 2-3 RX02 Rear View ### 2.1.4 Fire and Safety Precautions The RX02 Floppy Disk System presents no additional fire or safety hazards to an existing computer system. Wiring should be carefully checked, however, to ensure that the capacity is adequate for the added load and for any contemplated expansion. ### 2.2 CONFIGURATION GUIDELINES The most common RX02 Floppy Disk System configurations available are listed in Table 2-1. Each interface module listed in the table plugs into a computer bus; it is compatible with the applicable computer so that there is adequate power to operate each module. The interconnections between each interface module and the RX02 controller for each of the configurations in Table 2-1 is by a BC05L-15 cable which is 4.6 m (15 ft) maximum. (See Table 2-2 for the controller module configuration switch positions.) Table 2-1 RX02 Configurations | Computer | System
Designation | μCPU
Controller | Interface
Module | RX02
Model No. | Power
Supply | |----------|-----------------------|--------------------|---------------------|----------------------------------|--| | | RX8E | M7744 | M8357 | RX02-BA
RX02-BC | 115 V, 60 Hz
115 V, 50 Hz | | | | | | RX02-BD | 230 V, 50 Hz | | PDP-8 | RX28E | M7744 | M8357 | RX02-BA
RX02-BC
RX02-BD | 115 V, 60 Hz
115 V, 50 Hz
230 V, 50 Hz | | | RX11 | M7744 | M7846 | RX02-BA
RX02-BD
RX02-BD | 115 V, 60 Hz
230 V, 50 Hz
230 V, 50 Hz | | PDP-11 | RX211 | M7744 | M8256 | R X02-BA
R X02-BC
R X02-BD | 115 V, 60 Hz
115 V, 50 Hz
230 V, 50 Hz | | - | RXV11 | M7744 | M7946 | R X02-BA
R X02-BC
R X02-BD | 115 V, 60 Hz
115 V, 50 Hz
230 V, 50 Hz | | LSI-11 | RXV21 | M7744 | M8029 | RX02-BA
RX02-BC
RX02-BD | 115 V, 60 Hz
115 V, 50 Hz
230 V, 50 Hz | Table 2-2 Controller Configuration Switch Positions | Interface | S1-1 | S1-2 | 2 | | S1 | |---|------------------|------------------|----|--------------|----------| | RX211, RXV21,
RX8E, RX11, RXV11,
RX28 | OFF
ON
OFF | ON
OFF
OFF | ON | - | Top View | ### 2.3 ENVIRONMENTAL CONSIDERATIONS #### 2.3.1 General The RX02 is capable of efficient operation in computer environments; however, the parameters of the operating environment must be determined by the most restrictive facets of the system, which in this case are the diskettes. ### 2.3.2 Temperature, Relative Humidity The operating ambient temperature range of the diskette is 15° to 32° C (59° to 90° F) with a maximum temperature gradient of 11° C/hr (20° F/hr). The media nonoperating temperature range (storage) is increased to -34.4° to 51.6° C (-30° to 125° F), but care must be taken to ensure that the media has stabilized within the operating temperature range before use. This range will ensure that the media will not be operated above its absolute temperature limit of 51.6° C (125° F). Humidity control is important in any system because static electricity can cause errors in any CPU with memory. The RX02 is designed to operate efficiently within a relative humidity range of 20 to 80 percent, with a maximum wet bulb temperature of 25° C (77° F) and a minimum dew point of 2° C (36° F). 2.3.3 Heat Dissipation The heat dissipation factor for the RX02 Floppy Disk System is less than 225 Btu/hr. By adding this figure to the total heat dissipation for the other system components and then adjusting the result to compensate for such factors as the number of personnel, the heat radiation from adjoining areas, and sun exposure through windows, the approximate cooling requirements for the system can be determined. It is advisable to allow a safety margin of at least 25 percent above the maximum estimated requirements. 2.3.4 Radiated Emissions Sources of radiation, such as FM, vehicle ignitions, and radar transmitters located close to the computer system, may affect the performance of the RX02 Floppy Disk System because of the possible adverse effects magnetic fields can have on diskettes. A magnetic field with an intensity of 50 oersteds or greater might destroy all or some of the information recorded on the diskette. 2.3.5 Cleanliness Although cleanliness is important in all facets of a computer system, it is particularly important in the case of moving magnetic media, such as the RX02. Diskettes are not sealed units and are vulnerable to dirt. Such minute obstructions as dust specks or fingerprint smudges may cause data errors. Therefore, the RX02 should not be subjected to unusually contaminated atmospheres, especially one with abrasive airborne particles. ### **NOTE** Removable media involve use, handling, and maintenance which are beyond DIGITAL's direct control. DIGITAL disclaims responsibility for performance of the equipment when operated with media not meeting DIGITAL specifications or with media not maintained in accordance with procedures approved by DIGITAL. DIGITAL shall not be liable for damages to the equipment or to media resulting from such operation. ### 2.4 UNPACKING AND INSPECTION 2.4.1 General The RX02 Floppy Disk System can be shipped in a cabinet as an integral part of a system or in a separate container. If the RX02 is shipped in a cabinet, the cabinet should be positioned in the final installation location before proceeding with the installation. #### **2.4.2** Tools Installation of an RX02 Floppy Disk System requires no special tools or equipment. Normal hand tools are all that are necessary. However, a forklift truck or pallet handling equipment may be needed for receiving and installing a cabinet-mounted system. ### 2.4.3 Unpacking ### 2.4.3.1 Cabinet-Mounted - 1. Remove the protective covering over the cabinet. - 2. Remove the restraint on the rear door latch and open the door. - 3. Carefully roll the cabinet off the pallet; if a forklift is available, it should be used to lift and move the cabinet. - 4. Remove the shipping restraint from the RX02 and save it for possible reuse. - 5. Slide the RX02 out on the chassis slides and visually inspect for any damage as indicated in Paragraph 2.4.3.3. ### 2.4.3.2 Separate Container - 1. Open the carton (Figure 2-4) and remove the packing pieces. - 2. Lift the RX02 out of the carton. - 3. Remove the shipping fixtures from both sides of the RX02 and inspect for shipping damage as indicated in Paragraph 2.4.3.3. - 4. Attach the inside tracks of the chassis slides provided in the carton to the RX02 (Figure 2-1). - 5. Locate the proper holes in the cabinet rails (Figure 2-5) and attach the outside tracks to the cabinet. - 6. Place the tracks attached to the RX02 inside the extended cabinet tracks and slide the unit in until the tracks lock in the extended position. - 7. Attach the front bezel with the screws supplied. - 8. Locate the RX02 cover in the cabinet above the unit and secure it to the cabinet rails (Figure 2-5). Figure 2-4 RX02 Unpacking Figure 2-5 RX02 Cabinet Mounting Information ### 2.4.3.3 Inspection - 1. Inspect the front cover(s) of the RX02 to be sure it operates freely. Compress the latch which allows the spring-loaded front cover to open. - 2. Inspect the rear of the RX02 chassis to be sure there are no broken or bent plugs. Also, be sure the fuse is not damaged. - 3. Visually inspect the interior of the unit for damaged wires or loose hardware. - 4. Loosen the screws securing the hinged upper module (M7744) and raise the module so that modules M7744 and M7745 can be inspected for
damaged components or wires. - 5. Verify that the items listed on the shipping order are included in the shipment. Be sure the interface cable (BC05L-15) and the appropriate interface module are included. ### NOTE If any shipping damage is found, the customer should be notified at this time so he can contact the carrier and record the information on the acceptance form. ### 2.5 INSTALLATION - 1. Ensure that power for the system is off. - 2. Loosen the screws securing the upper module (M7744) and swing it up on the hinge. - 3. Inspect the wiring and connectors for proper routing and ensure that they are seated correctly. - 4. This step is for 50 Hz versions only. Check the power configuration to ensure that the proper jumpers and the correct circuit breaker are installed (Figure 2-3). - 5. Connect the BC05L-15 cable to the M7744 module and route it along the near side of the chassis through the back of the RX02 to the CPU; then connect it to the interface module for the PDP-8, PDP-11, or LSI-11. The cable is connected to the M7744 module with the red stripe on the left, looking from the component side of board; the cable is connected to the interface module with the red stripe toward the center of the module. - 6. Refer to Table 2-2 for the correct controller configuration switch positions. - 7. Refer to Table 2-3 for correct device code or addressing jumpers on the interface module. - 8. Insert the interface module into the Omnibus (PDP-8), available SPC slot (PDP-11), or LSI bus (LSI-11). The PDP-11 and LSI-11 interface modules must be inserted in the lowest numbered available option location. Modules that use DMA processing should have a higher priority than programmed I/O devices. For modules using DMA processing in the PDP-11 SPC slot, ensure that the NPG (NPG IN, NPG OUT) line (CA1-CB1) is cut on the backplane. - 9. Connect the RX02 ac power cord into a switched power source. - 10. Turn the power on, watching for head movement on the drive(s) during the power up, initialize phase. The head(s) should move one track toward the center and back to track zero. Table 2-3 Interface Code/Jumper Configuration | PDP-8 (M8357) | |---------------| |---------------| | Device Codes | | | | | | | | | | |--------------|-----|-----|-------|-----|-----|-----|--|--|--| | | SW1 | SW2 | SW3 | SW4 | SW5 | SW6 | | | | | 670X* | ON | ON | ON | OFF | OFF | OFF | | | | | 671X | ON | ON | OFF. | OFF | OFF | ON | | | | | 672X | ON | OFF | ON | OFF | ON | OFF | | | | | 673X | ON | OFF | OFF | OFF | ON | ON | | | | | 674X | OFF | ON | ON | ON | OFF | OFF | | | | | 675X | OFF | ON | OFF | ON | OFF | ON | | | | | 676X | OFF | OFF | ON | ON | ON | OFF | | | | | 677X | OFF | OFF | OFF : | ON | ON | ON | | | | | | i i | ł | | | 1 | | | | | ### PDP-11 (M7846) (M8256) | BR Priority | Unibus Address 17717X* | | Vector Address (264 ₈)* | | | |---|--|--|---|---|--| | BR7 - 54-08782
BR6 - 54-08780
BR5 - 54-08778*
BR4 - 57-08776 | A12/W18 - Removed
A11/W17 - Removed
A10/W16 - Removed
A9/W15 - Removed
A8/W14 - Installed
A7/W13 - Installed
A6/W12 - Removed
A5/W11 - Removed
A4/W10 - Removed
A3/W9 - Removed | SW1 OFF
SW2 OFF
SW3 OFF
SW4 OFF
SW5 ON
SW6 ON
SW7 ON
SW8 OFF
SW9 OFF | V2/W1 – Installed
V3/W2 – Removed
V4/W3 – Installed
V5/W4 – Installed
V6/W5 – Removed
V7/W6 – Installed
V8/W7 – Removed | SWI ON
SW2 OFF
SW3 ON
SW4 ON
SW5 OFF
SW6 ON
SW7 OFF | | ### LSI-11 | (| M7946) | (M8029) | | | | |--|---|---|--|--|--| | Register Address* (17717X ₈) | Vector Address* (264 ₈) | Register Address* (17717X ₈) | Vector Address* (264 ₈) | | | | A-1 – CPU Selectable
W-7/A-2 – Installed
W-8/A-3 – Removed
W-9/A-4 – Removed
W-10/A-5 – Removed
W-11/A-6 – Removed
W-12/A-7 – Installed
W-13/A-8 – Installed
W-14/A-9 – Removed
W-15/A-10 – Removed
W-16/A-11 – Removed
W-17/A-12 – Removed | W-1/V-2 - Removed W-2/V-3 - Installed W-3/V-4 - Removed W-4/V-5 - Removed W-5/V-6 - Installed W-6/V-7 - Removed | A-1 – CPU Selectable A-2 – Hardwired A-3 – Installed A-4 – Installed A-5 – Installed A-6 – Installed A-7 – Removed A-8 Removed A-9 – Installed A-10 – Installed A-11 – Installed A-12 – Installed | V2 – Installed
V-3 – Removed
V-4 – Installed
V-5 – Installed
V-6 – Removed
V-7 – Installed
V-8 – Removed | | | ^{*}Standard ### 2.5.1 PDP8-A Modification In order to bootload from an RX02 on a PDP8-A system, it is necessary to modify the KM8-A (M8317) extended option module (if present) as follows (Figure 2-6): - replace E82 with prom #23-465A2 - replace E87 with prom #23-469A2 - set SW#1 and SW#2 according to the bootload device as shown below. | Program | S2-5 | S2-6 | S2-7 | S2-8 | S1-1 | S1-2 | S1-3 | |---------|------|------|------|------|------|------|------| | H/L PTR | ON | ON | ON | OFF | ON | ON | ON | | RK8-E | ON | OFF | ON | OFF | ON | OFF | ON | | RX8-E | ON | OFF | OFF | ON | OFF | ON | ON | | RL8A | OFF | ON | OFF | OFF | OFF | ON | OFF | Figure 2-6 KM8-A Modification ### 2.6 TESTING To test the operation of RX02, run the DEC diagnostics supplied. Perform the diagnostics in the sequence listed for the number of passes (time) indicated. RX8 or RX11 Diagnostic - 2 passes Data Reliability/Exerciser - 3 passes DECX-8 or DECX-11 - 10 minutes If any errors occur contact Field Service. ## CHAPTER 3 USER INFORMATION #### 3.1 CUSTOMER RESPONSIBILITY It is the user's responsibility to ensure that the RX02 is located and operated in an area that is free from excessive dust and dirt, and meets or exceeds the environmental conditions listed in Paragraph 1.4. The exterior of the RX02 should be kept clean. Also, it is the user's responsibility to ensure that the diskettes are handled and stored properly in order to prevent errors or data loss which might occur when recording or reading data; diskette handling procedures are described in Paragraph 3.2. #### 3.2 CARE OF MEDIA 3.2.1 Handling Practices and Precautions To prolong the diskette life and prevent errors when recording or reading, reasonable care should be taken when handling the media. The following handling recommendations should be followed to prevent unnecessary loss of data or interruptions of system operation. - 1. Do not write on the envelope containing the diskette. Write any information on a label prior to affixing it to the diskette. - 2. Paper clips should not be used on the diskette. - 3. Do not use writing instruments that leave flakes, such as lead or grease pencils, on the jacket of the media. - 4. Do not touch the disk surface exposed in the diskette slot or index hole. - 5. Do not clean the disk in any manner. - 6. Keep the diskette away from magnets or tools that may have become magnetized. Any disk exposed to a magnetic field may lose information. - 7. Do not expose the diskette to a heat source or sunlight. - 8. Always return the diskette to the envelope supplied with it to protect the disk from dust and dirt. Diskettes not being used should be stored in a file box if possible. - 9. When the diskette is in use, protect the empty envelope from liquids, dust, and metallic materials. - 10. Do not place heavy items on the diskette. - 11. Do not store diskettes on top of computer cabinets or in places where dirt can be blown by fans into the diskette interior. - 12. If a diskette has been exposed to temperatures outside the operating range, allow five minutes for thermal stabilization before use. The diskette should be removed from its packaging during this time. #### **CAUTION** - Do not use paper clips on diskettes. - Do not expose the diskette to a heat source or sunlight. - Keep the diskettes from magnetic fields. - Do not write on the diskette with an instrument that leaves an impression or flakes. ## 3.2.2 Diskette Storage ## 3.2.2.1 Short Term (Available for Immediate Use) - 1. Store diskettes in their envelopes. - 2. Store horizontally, in piles of ten or less. If vertical storage is necessary, the diskettes should be supported so that they do not lean or sag, but should not be subjected to compressive forces. *Permanent deformation may result from improper storage*. - 3. Store in an environment similar to that of the operating system; at a minimum, store within the operating environment range. - 3.2.2.2 Long Term When diskettes do not need to be available for immediate use, they should be stored in their original shipping containers within the nonoperating range of the media. 3.2.3 Shipping Diskettes Data recorded on disks may be degraded by exposure to any sort of small magnet brought into close contact with the disk surface. If diskettes are to be shipped in the cargo hold of an aircraft, take precautions against
possible exposure to magnetic sources. Because physical separation from the magnetic source is the best protection against accidental erasure of a diskette, diskettes should be packed at least 3 inches within the outer box. This separation should be adequate to protect against any magnetic sources likely to be encountered during transportation, making it generally unnecessary to ship diskettes in specially shielded boxes. When shipping, be sure to label the package: #### DO NOT EXPOSE TO PROLONGED HEAT OR SUNLIGHT. When received, the carton should be examined for damage. Deformation of the carton should alert the receiver to possible damage of the diskette. The carton should be retained, if it is intact, for storage of the diskette or for future shipping. ## 3.3 OPERATING INSTRUCTIONS ## NOTE The left drive is always identified as drive 0. The RX02 has no operator controls and indicators. The diskette is inserted on a drive after compressing the latch to allow the spring-loaded front cover to open. Place the diskette with the label or top up (the jacket seams are on the bottom) on the drive spindle. Close the front cover which will automatically lock when it is pushed down. Initialize the system (from the computer) and listen for audible clicking sounds which indicate the head is moving over the diskette; the RX02 is ready for use. Data storage and retrieval is controlled by the user's program. ### **CAUTION** Do not open the drive door while the diskette is in use; this results in errors. ## 3.4 OPERATOR TROUBLESHOOTING Table 3-1 is a list of possible problems and some probable causes the operator may encounter. If the problem cannot be corrected, refer to the RX02 Floppy Disk System Technical Manual if available. Table 3-1 Operator Troubleshooting Guide | Problem | Probable Cause | | Correction | | | |---------------------------------|----------------|--|----------------|--|--| | No power
(drive inoperative) | a.
b.
c. | Power cord disconnected Blown fuse Circuit breaker open | a.
b.
c. | Connect power cord Replace fuse Close circuit breaker | | | Drive not ready | a.
b. | Drive door open Diskette improperly installed | a.
b. | Close door
Properly seat diskette | | | Error in recording | a.
b.
c. | Diskette wear Diskette mounting hole Mismatch in recording density on a diskette | a.
b.
c. | If worn, replace If the hole is not concentric, replace diskette If diskette data density is not compatible with data to be recorded, replace diskette with a new preformatted diskette. | | ## CHAPTER 4 PROGRAMMING This chapter contains programming information for the following interface options: RX8E, RX28, RX11, RXV11, RX211, and RXV21. The RX8E and RX28 programming information is presented followed by the RX11 and RXV11 information and then the RX211 and RXV21 information is presented. The RX8E, RX11, and RXV11 options are used for single density recording and are compatible with the RX01 Floppy Disk System. The RX28E, RX211, and RXV21 can be used for either single or double density recording. ## 4.1 RX8E AND RX28 PROGRAMMING INFORMATION The RX8E interface allows two modes of data transfer: 8-bit word length and 12-bit word length. In the 12-bit mode, 64 words are written in a diskette sector, thus requiring 2 sectors to store 1 page of information. The diskette capacity in this mode is 128,128 12-bit words (1001 pages). In the 8-bit transfer mode, 128 8-bit words are written in each sector. Disk capacity is 256,256 8-bit words, which is a 33 percent increase in disk capacity over the 12-bit mode. The 8-bit mode must be used for generating IBM-compatible diskettes, since 12-bit mode does not fully pack the sectors with data. The hardware puts in the extra 0s. Data transfer requests occur 23 ms after the previous request was serviced for 12-bit mode (18 ms for 8-bit mode). There is no maximum time between the transfer request from the RX02 and servicing of that request by the host processor. This allows the data transfer to and from the RX02 to be interrupted without loss of data. The RX28 interface allows two modes of data transfer: 8-bit word length and 12-bit word length. For each mode of data transfer there can be either single density or double density storage of data. In the 12-bit mode single density recording, 64 words are written in a diskette sector, and the diskette capacity is 128,128 12-bit words; for double density, there are 128 words written in a sector with a diskette capacity of 256,256 12-bit words. In the 8-bit word mode single density recording, 128 8-bit bytes are written in each sector and the diskette capacity is 256,256 8-bit bytes; for double density, there are 256 8-bit bytes written in a sector with a diskette capacity of 512,512 8-bit bytes. (For the 12-bit mode, all 12-bit data words are loaded into the buffer and then the hardware forces zeros to add extra bits to the end of the buffer so that the buffer is filled.) #### 4.1.1 Device Codes The eight possible device codes that can be assigned to the interface are 70–77. These device codes define address locations of a specific device and allow up to eight RX8E/RX28 interfaces to be used on a single PDP-8. These multiple device codes are also shared with other devices. Depending on what other devices are on the system, the RX8E/RX28 device code can be selected to avoid conflicts. (Refer to the PDP-8 Small Computer Handbook for specific device codes.) The device codes are selected by switches according to Table 4-1. These switches control ac bits 6-8, while ac bits 3-5 are fixed at 1s. The device code is initially selected to be 70. Switches 7 and 8 are not connected and will not affect the device selection code. The switches are all located on a single DIP switch package that is located on the M8357 RX8E/RX28 interface board. Table 4-1 Device Code Switch Selection | Device
Code | S1 | S2 | S3 | S4 | S5 | S 6 | S7 | S8 | |----------------|----|----|-----|-----|----|------------|----|----| | 77 | 0 | 0 | 0 | 1 | 1 | 1 | X | X | | 76 | 0 | 0 | 1 | 1 | 1 | 0 | X | X | | 75 | 0 | 1 | 0 | 1 | 0 | 1 | X | X | | 74 | 0 | 1 | 1 | 1 . | 0 | 0. | X | X | | 73 | 1 | 0 | 0 | 0 | 1 | 1 | X | X | | 72 | 1 | 0 | 1 | 0 | 1 | 0 ' | X | X | | 71 | 1 | 1 | 0 | 0 | 0 | 1 | X | X | | 70 | 1 | 1 | . 1 | 0 | 0 | 0 | X | X | | | 1 | | | | | | | | | 0 (OFF) | 1 (ON) | |---------|----------------| | | S1
S2
S3 | | | S4
S5 | | | S 6 | | | S7
S8 | #### 4.1.2 Instruction Set The RX8E/RX28 instruction set is listed below and described in the following paragraphs. When operating as an RX28, for the 8-bit mode, all instruction set commands are transferred in two 8-bit bytes. | IOT | Mnemonic | Description | |------|----------|---| | 67x0 | | No Operation | | 67x1 | LCD | Load Command, Clear AC | | 67x2 | XDR | Transfer Data Register | | 67x3 | STR | Skip on Transfer Request Flag, Clear Flag | | 67x4 | SER | Skip on Error Flag, Clear Flag | | 67x5 | SDN | Skip on Done Flag, Clear Flag | | 67x6 | INTR | Enable or Disable Disk Interrupts | | 67x7 | INIT | Initialize Controller and Interface | **4.1.2.1 RX8E Load Command (LCD)** – **67x1** – This command transfers the contents of the AC to the interface register and clears the AC. The RX02 begins to execute the function specified in AC 8, 9, and 10 on the drive specified by AC 7. A new function cannot be initiated unless the RX02 has completed the previous function. The command word is defined as shown in Figure 4-1. The command word is described in greater detail in Paragraph 4.1.3.1. Figure 4-1 LCD Word Format (RX8E) **4.1.2.2** RX28 Load Command – (First byte 67x1, second byte – 67x2) – This command transfers the contents of the AC to the interface register and clears the AC. The RX02 begins to execute the function specified in AC 8, 9, and 10 on the drive specified by AC 7. A new function cannot be initiated unless the RX02 has completed the previous function. The command word is defined as shown in Figure 4-2 and is described in greater detail in Paragraph 4.1.3.1. Figure 4-2 Command Word Format (RX28) When operating in the 8-bit mode, the Load command is stored in two 8-bit transfers. The first 8 bits of the command word (shown as bits 4-11 in Figure 4-2) are stored; then TR is asserted and an XDR is performed to transfer the remaining bits of data (bit 3, DEN, and bit 2, as shown in Figure 4-2) right-justified. The extra bits in the second 8-bit transfer are filled with zeros. Upon completing the transfer of the second 8-bit byte, Done is asserted to end the function. - **4.1.2.3** Transfer Data Register (XDR) 67x2 With the maintenance flip-flop cleared, this instruction operates as follows. A word is transferred between the AC and the interface register. The direction of transfer is governed by the RX02 and the length of the word transferred is governed by the mode selected (8-bit or 12-bit). When Done is negated, executing this instruction indicates to the RX02 that: - 1. The last data word supplied by the RX02 has been accepted by the PDP-8, and the RX02 can proceed, or - 2. The data or address word requested by the RX02 has been provided by the PDP-8, and the RX02 can proceed. A data transfer (XDR) from the AC always leaves the AC unchanged. If operation is in 8-bit mode, AC 0-3 are transferred to the interface register but are ignored by the RX02. Transfers into the AC are 12-bit jam transfers when in 12-bit mode. When in 8-bit mode, the 8-bit word is ORed into AC 4-11 and AC 0-3 remain unchanged. When the RX02 is done, this instruction can be used to transfer the RXES status word from the interface register to the AC. The selected mode controls this
transfer as indicated above. 4.1.2.4 STR - 67x3 - This instruction causes the next instruction to be skipped if the transfer request (TR) flag has been set by RX02 and clears the flag. The TR flag should be tested prior to transferring data or address words with the XDR instruction to ensure the data or address has been received or transferred, or after an LCD instruction to ensure the command is in the interface register. In cases where an XDR follows an LCD, the TR flag needs to be tested only once between the two instructions. - **4.1.2.5** SER -67x4 This instruction causes the next instruction to be skipped if the error flag has been set by an error condition in the RX02 and clears the flag. An error also causes the done flag to be set (Paragraph 4.1.3.6). - **4.1.2.6** SDN -67x5 This instruction causes the next instruction to be skipped if the done flag has been set by the RX02, indicating the completion of a function or detection of an error condition. If the done flag is set, it is cleared by the SDN instruction. This flag will interrupt if interrupts are enabled. - **4.1.2.7** INTR 67x6 This instruction enables interrupts by the done flag if AC 11=1. It disables interrupts if AC 11=0. - **4.1.2.8** INIT 67x7 The instruction initializes the RX02 by moving the head position mechanism of drive 1 (if drive 1 is available) to track 0. It reads track 1, sector 1 of drive 0. It zeros the error and status register and sets Done upon successful completion of Initialize. Up to 1.8 seconds may elapse before the RX02 returns to the Done state. Initialize can be generated by the program or by the Omnibus Initialize. ## 4.1.3 Register Description Only one physical register (the interface register) exists in the RX8E/RX28, but it may represent one of the six RX02 registers described in the following paragraphs, according to the protocol of the function in progress. **4.1.3.1** Command Register (Figures 4-3 and 4-4) – The command is loaded into the interface register by the LCD instruction for RX8E and by a load command (LCD and XDR) for the RX28 (Paragraphs 4.1.2.1 and 4.1.2.2). Figure 4-3 Command Register Format (RX8E) Figure 4-4 Command Register Format (RX28) The function codes (bits 8, 9, 10) are summarized below and described in Paragraph 4.1.4. | Code | Function | |------|--------------------------------------| | 000 | Fill Buffer | | 001 | Empty Buffer | | 010 | Write Sector | | 011 | Read Sector | | 100 | Not used (RX8E) – Set Density (RX28) | | 101 | Read Status | | 110 | Write Deleted Data Sector | | 111 | Read Error Register | The DRV (UNIT) SEL bit (bit 7) selects one of the two drives upon which the function will be performed: | AC 7 = 0 | Select drive 0 | |----------|----------------| | AC7 = 1 | Select drive 1 | The 8/12 bit (bit 5) selects the length of the data word. | AC 5 = 0 | 12-bit mode selected | |----------|----------------------| | AC 5 = 1 | 8-bit mode selected | The DEN bit (bit 3) for RX28 indicates the density for the function to be performed (0 = single, 1 = double). The RX8E/RX28 will initialize into 12-bit mode. **4.1.3.2** Error Code Register (Figure 4-5) – Specific error codes can be accessed by use of the read error code function (111) (Paragraph 4.1.4.9). The specific octal error codes are given in Paragraph 4.1.5. Figure 4-5 Error Code Register Format (RX8E/RX28A) The maintenance bit (M bit) can be used to diagnose the RX8E interface under off-line and on-line conditions. The off-line condition exists when the BC05L-15 cable is disconnected from the RX02; the on-line condition exists when the cable is connected to the RX02. If an LCD IOT (I/O transfer) is issued with AC 4 = 1, the maintenance flip-flop is set. When the maintenance flip-flop is set, the assertion of RUN following XDR instructions is inhibited, and all data register transfers (XDR) are forced into the AC. The maintenance bit allows the interface register to be written and read for maintenance checks. The maintenance flip-flop is cleared by Initialize or by a Load Command IOT with AC 4 = 0. The following paragraphs describe more explicitly how to use the maintenance bit in an off-line mode. The contents of the interface buffer cannot be guaranteed immediately following the first Load Command IOT, which sets the maintenance flip-flop. However, successive Load Command IOTs will guarantee the contents of the interface register. The contents of the interface register can then be verified by using the XDR IOT to transfer those contents into the AC. In addition, the maintenance flip-flop directly sets the skip flags, which will remain set as long as the maintenance flip-flop is set. Skipping on these flags as long as the maintenance flip-flop is set will not clear the flags. Setting and then clearing the maintenance flip-flop will leave the skip flags in a set condition. The skip IOTs can then be issued to determine whether or not a large portion of the interface skip logic is working correctly. With the maintenance flip-flop set, it can be determined if the interface is capable of generating an interrupt on the Omnibus. When the maintenance flip-flop is set, the done flag is set, and the interrupt enable flip-flop can be set by issuing an INTR IOT with AC bit 11=1. The combination of done and interrupt enable should generate an interrupt. The maintenance flip-flop can also be used to test the INIT IOT. The maintenance flip-flop is set and cleared to generate the flags, and INIT IOT is then executed. If execution of INIT IOT is internally successful, all of the flags and the interrupt enable flip-flop should be cleared if they were previously set. In the on-line mode, use of the maintenance bit should be restricted to writing and reading the interface register. The same procedure described to write and read the interface register in the off-line mode should be implemented in the on-line mode. Exiting from the on-line maintenance bit mode should be finalized by an initialize to the RX02. - **4.1.3.3** RX2TA RX Track Address (Figure 4-6) This register is loaded to indicate on which of the 77 (0-76) tracks a given function is to operate. It can be addressed only under the protocol of the function in progress (Paragraph 4.1.4). Bits 0-3 are unused and are ignored by the control. - **4.1.3.4** RX2SA RX Sector Address (Figure 4-7) This register is loaded to indicate on which of the 26 (1-26) sectors a given function is to operate. It can be addressed only under the protocol of the function in progress (Paragraph 4.1.4). Bits 0-3 are unused and are ignored by the control. - **4.1.3.5 RX2DB RX Data Buffer** (**Figure 4-8**) All information transferred to and from the floppy media passes through this register and is addressable only under the protocol of the function in progress. The length of data transfer is either 8 or 12 bits, depending on the state of bit 5 of the command register when the Load Command IOT is issued (Paragraph 4.1.3.1). - **4.1.3.6** RX8E RX Error and Status (Figure 4-9) The RXES contains the current error and status conditions of the selected drive. This read-only register can be accessed by the read status function (101). The RXES is also available in the interface register upon completion of any function. The RXES is accessed by the XDR instruction. The meaning of the error bits is given below. Figure 4-6 RX2TA Format (RX8E/RX28) Figure 4-7 RX2SA Format (RX8E/RX28) Figure 4-8 RX2DB Format (RX8E/RX28) Figure 4-9 RXES Format (RX8E) ## Bit No. Description - 11 CRC Error The cyclic redundancy check at the end of the data field has indicated an error. The data must be considered invalid; it is suggested that the data transfer be retried up to 10 times, as most data errors are recoverable (soft). - Initialize Done This bit indicates completion of the Initialize routine. It can be asserted due to RX02 power failure, system power failure, or programmable or bus Initialize. This bit is not available within the RXES from a read status function. - Deleted Data (DD) In the course of reading data, a deleted data mark was detected in the identification field. The data following will be collected and transferred normally as the deleted data mark has no further significance within the RX02. Any alteration of files or actual deletion of data due to this mark must be accomplished by user software. This bit will be set if a successful or unsuccessful Write Deleted Data function is performed. - Drive Ready This bit is asserted if the unit currently selected exists, is properly supplied with power, has a diskette installed properly, has its door closed, and has a diskette up to speed. #### NOTE 1 This bit is only valid for either drive when retrieved via a Read Status function or for drive 0 upon completion of an Initialize. #### NOTE 2 If the error bit was set in the RX2CS but error bits are not set in the RXES, specific error conditions can be accessed via a read error register function. **4.1.3.7** RX28 – RX Error and Status (Figure 4-10) – The RX2ES contains the current error and status conditions of the selected drive. This read-only register can be accessed by the read status function (101). The RX2ES is also available in the interface register upon completion of any function. The RX2ES is accessed by the XDR instruction. The meaning of the error bits is given below. Figure 4-10 RX2ES Format (RX28) ## Bit No. Description - 11 CRC Error The cyclic redundancy check at the end of the data field has indicated an error. The data must be considered invalid; it is suggested that the data transfer be retried up to 10 times; as most data errors are recoverable (soft). - 10 Reserved. - Initialize Done This bit indicates completion of the Initialize routine. It can be asserted due to RX02 power failure, system power failure, or programmable or bus Initialize. This bit is not available within the RX2ES from a read status function. ## Bit No. Description - 8 RX02 This bit is asserted if an RX02 system is being used. - DEN ERR This
bit indicates that the density of the function does not agree with the drive density. Upon detection of this error the control terminates the operation and asserts error and done. - DRV DEN This bit indicates the density of the diskette in the drive selected (0 = single, 1 = double). - Deleted Data (DD) In the course of reading data, a deleted data mark was detected in the identification field. The data following will be collected and transferred normally, as the deleted data mark has no further significance within the RX02. Any alteration of files or actual deletion of data due to this mark must be accomplished by user software. This bit will be set if a successful or unsuccessful write deleted data function is performed. - Drive Ready This bit is asserted if the unit currently selected exists, is properly supplied with power, has a diskette installed properly, has its door closed, and has a diskette up to speed. #### NOTE 1 This bit is only valid for either drive when retrieved via a read status function or for drive 0 upon completion of an Initialize. #### NOTE 2 If the error bit was set in the RX2CS but error bits are not set in the RX2ES, specific error conditions can be accessed via a read error code function. ### 4.1.4 Function Code Description The RX8E/RX28 functions are initiated by means of the Load command described in Paragraphs 4.1.2.1 and 4.1.2.2. The done flag should be tested and cleared with the SDN instruction in order to verify that the RX8E/RX28 is in the Done state prior to issuing the command instruction. Upon receiving a command instruction while in the Done state, the RX8E/RX28 enters the Not Done state while the command is decoded. Each of the eight functions summarized below requires that a strict protocol be followed for the successful transfer of data, status, and address information. The protocol for each function is described in the following sections. A summary table is presented below. | | | AC | | | |-------|---|----|----|-------------------------------------| | Octal | 8 | 9 | 10 | Function | | 0 | 0 | 0 | 0 | Fill Buffer | | 2 | 0 | 0 | 1 | Empty Buffer | | 4 | 0 | 1 | 0 | Write Sector | | 6 | 0 | 1 | 1 | Read Sector | | 10 | 1 | 0 | 0 | Not Used (RX8E), Set Density (RX28) | | 12 | 1 | 0 | 1 | Read Status | | 14 | 1 | 1 | 0 | Write Deleted Data Sector | | 16 | 1 | 1 | 1 | Read Error Register | #### **NOTE** AC bit 11 is assumed to be 0 in the above octal codes since AC bit 11 can be 0 or 1. 4.1.4.1 Fill Buffer (000) – For RX8E this function is used to load the RX02 sector buffer from the host processor with 64 12-bit words if in 12-bit mode or 128 8-bit words if in 8-bit mode. For RX28 this function loads the sector buffer in 12-bit mode with 64 12-bit words for single density or 128 12-bit words for double density; in the 8-bit mode, the buffer is loaded with 128 8-bit bytes for single density or 256 8-bit bytes for double density. This instruction only loads the sector buffer. In order to complete the transfer to the diskette, another function, write sector, must be performed. The buffer may also be read back by means of the empty buffer function in order to verify the data. Upon decoding the fill buffer function, the RX02 will set the transfer request (TR) flag, signaling a request for the first data word. The TR flag must be tested and cleared by the host processor with the STR instructions prior to each successive XDR IOT (Paragraph 4.1.2.4). The data word can then be transferred to the interface register by means of the XDR IOT. The RX02 next moves the data word from the interface register to the sector buffer and sets the TR flag as a request for the next data word. The sequence above is repeated, until the sector buffer has been loaded (64 data transfers for 12-bit mode or 128 data transfers for 8-bit mode). After the 64th (or 128th) word has been loaded into the sector buffer, the RX2ES is moved to the interface register, and the RX02 sets the done flag to indicate the completion of the function. Therefore, it is unnecessary for the host processor to keep a count of the data transfers. Any XDR commands after Done is set will result in the RX2ES status word being loaded in the AC. The sector buffer must be completely loaded before the RX8E/RX28 will set Done and recognize a new command. An interrupt would now occur if Interrupt Enable were set. **4.1.4.2** Empty Buffer (001) – This function moves the contents of the sector buffer to the host processor. Upon decoding this function RX2ES bits are cleared and the TR flag is set with the first data word in the interface register. This TR flag signifies the request for a data transfer from the RX8E/RX28 to the host processor. The flag must be tested and cleared; then the word can be moved to the AC by an XDR command. The direction of transfer for an XDR command is controlled by the RX02. The TR flag is set again with the next word in the interface register. The above sequence is repeated until all words or bytes have been transferred, thus emptying the sector buffer. The done flag is then set after the RX2ES is moved in the interface register to indicate the end of the function. An interrupt would now occur if Interrupt Enable were set. #### NOTE The empty buffer function does not destroy the contents of the sector buffer. 4.1.4.3 Write Sector (010) – This function transfers the contents of the sector buffer to a specific track and sector on the diskette. Upon decoding this function, the RX8E/RX28 clears the RX2ES and sets the TR flag, signifying a request for the sector address. The TR flag must be tested and cleared before the binary sector address can be loaded into the interface register by means of the XDR command. The sector address must be within the limits 1–328. The TR flag is set, signifying a request for the track address. The TR flag must be tested and cleared; then the binary track address may be loaded into the interface register by means of the XDR command. The track address must be within the limits 0–1148. The RX02 tests the supplied track address to determine if it is within the allowable limits. If it is not, the RX2ES is moved to the interface register, the error and done flags are set, and the function is terminated. If the track address is legal, the RX02 moves the head of the selected drive to the selected track, locates the requested sector, transfers the contents of the sector buffer and a CRC character to that sector, and sets Done. Any errors encountered in the seek operation will cause the function to cease, the RX2ES to be loaded into the interface register, and the error and done flags to be set. If no errors are encountered, the RX2ES is loaded into the interface register and only the done flag is set. #### NOTE The write sector function does not destroy the contents of the sector buffer. - 4.1.4.4 Read Sector (011) This function moves a sector of data from a specified track and sector to the sector buffer. Upon decoding this function, the RX8E/RX28 clears RX2ES and sets the TR flag, signifying the request for the sector address. The flag must be tested and cleared. The sector address is then loaded into the interface register by means of the XDR command. The TR flag is set, signifying a request for the track address. The flag is tested and cleared by the host processor and the track address is then loaded into the interface register by an XDR command. The legality of the track address is checked by the RX02. If illegal, the error and done flags are set with the RX2ES moved to the interface register and the function is terminated. Otherwise, the RX02 moves the head to the specified track, locates the specified sector, transfers the data to the sector buffer, computes and checks CRC for the data. If no errors occur, the done flag is set with the RX2ES in the interface register. If an error occurs anytime during the execution of the function, the function is terminated by setting the error and done flags with RX2ES in the interface register. A detection of CRC error results in RX2ES bit 11 being set. If a deleted data mark was encountered at the beginning of the desired data field, RX2ES bit 5 is set. - **4.1.4.5** Set Media Density (100) for RX28 only This function causes the entire diskette to be reassigned to a new density. The density bit (bit 3 RX2CS) indicates the new density of the diskette. The control reformats the diskette by writing new data address marks (double or single density) and zeroing out all data fields on the diskette. Before executing the command the control will look for a protective key word of 01001001 (ASCII'I'). The control starts at sector 1, track 0 and reads the header information, then starts a write operation, writing the new data address mark and data field as well as CRC characters. If the header information is damaged, the control will abort the operation and assert DONE and ERROR. This operation takes about 15 seconds and should not be interrupted. If for any reason the operation is interrupted, an illegal diskette has been generated which may have data marks of both densities. This diskette should again be completely reformatted. - **4.1.4.6** Maintenance Read Status (101) for RX28 only This function updates the drive ready and drive density status of the selected drive, clears the INIT DONE bit, updates the Unit Sel, possibly sets the density error bit and leaves the remainder of the RX2ES unchanged. The drive density is updated by loading the head on the selected drive (without changing head and reading position) with the first header and data mark that randomly appears under the head. The control will then generate the appropriate number of shift pulses which will transfer the RX2ES (error and status) register over the interface. Upon completion of the RX2ES transfer, the control asserts Done to complete the operation. - **4.1.4.7** Read Status (101) for RX8E only Upon decoding this function, the RX02 moves the RXES to the RX8E interface register and
sets the done flag. The RXES can then be read by the transfer data register (XDR) command. The bits are defined in Paragraph 4.1.3.6. ## **NOTE** The average time for this function is 250 ms. Excessive use of this function will result in substantially reduced throughput. - 4.1.4.8 Write Deleted Data Sector (110) This function is identical to the write data function except that a deleted data mark is written prior to the data field rather than the normal data mark (Paragraph 1.5.3.2). RX2ES bit 5 (Deleted Data) will be set in the interface register upon completion of the function. - **4.1.4.9** Read Error Code Function (111) The read error code function can be used to retrieve explicit error information upon detection of the error flag. Upon receiving this function, the RX02 moves an error code to the interface register and sets Done. The interface register can then be read via an XDR command and the code interrogated to determine which type of failure occurred (Paragraph 4.1.5). #### NOTE Care should be exercised in the use of this function. The program must perform this function before a read status because the error register is always modified by a read status function. **4.1.4.10** Power Fail – There is no actual function code associated with power fail. When the RX02 senses a loss of power, it will unload the head and abort all controller action. All status signals are invalid while power is low. When the RX02 senses the return of power, it will remove Done and begin a sequence to: - 1. Move drive 1 head position mechanism to track 0. - 2. Clear any active error bits. - 3. Read sector 1 of track 1 of drive 0 into the buffer. - 4. Set Initialize Done bit of the RX2ES, after which Done is again asserted. There is no guarantee that information being written at the time of a power failure will be retrievable. However, all other information on the diskette will remain unaltered. INIT IOT is a method of aborting an incomplete function (Paragraph 4.1.2.7). ## 4.1.5 Error Recovery **4.1.5.1** RX8E – There are two error indications given by the RX8E system. The read status function (Paragraph 4.1.4.7) will assemble the current contents of the RXES (Paragraph 4.1.3.6), which can be sampled to determine errors. The read error register function (Paragraph 4.1.4.9) can also be used to retrieve explicit error information. The results of the read status function or the read error register function are in the interface register when Done sets, indicating the completion of the function. The XDR IOT must be issued to transfer the contents of the interface register to the PDP-8's AC. #### NOTE A read status function is not necessary if the DRV READY bit is not going to be interrogated because the RXES is in the interface register at the completion of every function. The error codes for the read error register function are presented below. | Octal
Code | Error Code Meaning | |---------------|--| | 0010 | Drive 0 failed to see home on Initialize. | | 0020 | Drive 1 failed to see home on Initialize. | | 0030 | Found home when stepping out 10 tracks for INIT | | 0040 | Tried to access a track greater than 77 | | 0050 | Home was found before desired track was reached | | 0070 | Desired sector could not be found after looking at 52 headers (2 revolutions) | | 0110 | More than 40 μs and no SEP clock seen | | 0120 | A preamble could not be found. | | 0130 | Preamble found but no I/O mark found within allowable time span | | 0150 | The header track address of a good header does not compare with the desired track. | | 0160 | Too many tries for an IDAM (identifies header) | | 0170 | Data AM not found in allotted time | | 0200 | CRC error on reading the sector from the disk. No code appears in the ERREG. | | 0210 | All parity errors | | 0220 | Self diagnostic error on Initialize | | 0240 | Density Error | **4.1.5.2** RX28 – There are two error indications given by the RX28 system. The read status function will assemble the current contents of the RX2ES which can be sampled to determine errors. The read error register function can also be used to retrieve explicit error information. The results of the read status function or the read error register function are in the interface register when Done sets, indicating the completion of the function. The XDR IOT must be issued to transfer the contents of the interface register to the PDP-8's AC. #### NOTE A read status function is not necessary if the DRV RDY bit is not going to be interrogated because the RX2ES is in the interface register at the completion of every function. The error codes for the read error register function are presented below. | Octal
Code | Error Code Meaning | |---------------|--| | 0010 | Drive 0 failed to see home on Initialize. | | 0020 | Drive 1 failed to see home on Initialize. | | 0040 | Tried to access a track greater than 76 | | 0050 | Home was found before desired track was reached. | | 0070 | Desired sector could not be found after looking at 52 headers (2 revolutions). | | 0110 | More than 40 μs and no SEP clock seen | | 0120 | A preamble could not be found. | | 0130 | Preamble found but no ID mark found within allowable time span | | 0150 | The header track address of a good header does not compare with the desired track. | | 0160 | Too many tries for an IDAM (identifies header) | | 0170 | Data AM not found in allotted time | | 0200 | CRC error on reading the sector from the disk | | 0220 | R/W electronics failed maintenance mode test. | | 0240 | Density error | | 0250 | Wrong key word for Set Media Density command | ## 4.1.6 RX8E Programming Examples 4.1.6.1 Write/Write Deleted Data/Read Functions – Figure 4-11 presents a program for implementing a write, write deleted data, or a read function with interrupts turned off (IOF). The first 3 steps preset the PTRY, CTRY, and STRY retry counters, which are set at 10 retries but can be changed to any number. Starting at RETRY, the program tests for 8- or 12-bit mode, type of function, and drive. Once the command is loaded, the program waits in a loop for the controller to respond with transfer request (TR). When TR is set, the sector address is loaded and the AC is cleared. The program loops while waiting for the controller to respond with another TR. When TR is reset, the track address is loaded and the AC is cleared again. The program loops to wait for the Done condition. When the done flag is set, the program checks for an error condition, indicated by the error flag being set. If the AC=0000, the error is a seek error; if bit 11 of the AC is set, the error is a CRC error. Error status from the RXES is saved and tested to determine the error (Paragraph 4.1.3.6). The RXES will not include the select drive ready bit. If a parity error is detected, the program increments and tests the PTRY retry counter. If a parity error persists after 10 tries, it is considered a hard error. If 10 retries have not occurred, a branch is made to RETRY and the sequence is repeated. After a parity test, the program tests to see if the CRC error bit is set. If a CRC error is detected, the program increments and tests the CTRY retry counter. If a CRC error persists after 10 retries, it is considered a hard error. If 10 retries have not occurred, a branch is made to RETRY and the sequence repeated. A seek error is assumed if neither a CRC nor a parity error is detected. An Initialize (INIT) instruction is performed (Paragraph 4.1.2.8). During a write or write deleted data function, the sector buffer must be refilled because INIT will cause sector 1 of track 1 of drive 0 to be read, which will destroy the previous contents of the sector buffer. The instruction sequence for a fill buffer function is not included in Figure 4-11, but is presented in Figure 4-13. After the system has been initialized, the program increments and tests the STRY retry counter. If a seek error persists after 10 tries, it is considered a hard error. If 10 retries have not occurred, a branch is made to RETRY and the sequence repeated. **4.1.6.2** Empty Buffer Function – Figure 4-12 shows a program for implementing an empty buffer function with interrupts turned off (IOF). The first instruction sets the number of retries at 10. A 2 is set in the AC to indicate an Empty Buffer command and the command is loaded. When TR is set, the program jumps to EMPTY to transfer a word to the BUFFER location. A jump is made back to loop to wait for another TR. This process continues until either 64 words or 128 bytes have been emptied from the sector buffer. When Done is set, the program tests to see if the error bit is set. If the error bit is set, the program retries 10 times. If the error persists, a hard parity error is assumed, indicating a problem in the interface cable. **4.1.6.3** Fill Buffer Function – Figure 4-13 presents a program to implement a fill buffer function. It is very similar to the empty buffer example. ``` /PROGRAMMING EXAMPLES FOR THE RX8/RXØ1 FLEXIBLE DISKETTE THE FOLLOWING ARE RXØ1 TOT CODE DEFINITIONS /IOT TO LOAD THE COMMAND, (AC) IS THE COMMAND /IOT TO LOAD OR READ THE TRANSFER REGISTER /IOT TO SKIP ON A TRANSFER REQUEST FLAG /IOT TO SKIP ON AN ERROR FLAG /IOT TO SKIP ON THE DONE FLAG /IOT TO SKIP ON THE DONE FLAG /IOT TO INITIALIZE THE RESERVAT SUBSYSTEM 6701 6702 6703 6704 6705 6706 6707 SER=6704 THE FOLLOWING IS A PROGRAMMING EXAMPLE OF THE PROTOCOL REQUIRED /TO WRITE, WRITE DELETED DATA, OR READ AT SECTOR "S" (THE CONTENTS OF PROGRAM /LOCATION SECTOR) OF TRACK "T" (THE CONTENTS OF PROGRAM LOCATION TRACK) /IN 8 OR 12 BIT MODE TAD KM1Ø DCA PTRY TAD KM1Ø DCA CTRY TAD KM1Ø DCA STRY 0200 0231 0202 0203 0204 1254 3255 1254 3256 1254 3257 / =10 /PARITY RETRY COUNTER /CRC RETRY COUNTER /WRITE, WRITE DELETED DATA, OR READ /Ø IF 12-BIT, 100 IF 8-BIT / 4 IF WRITE, 14 IF WRITE DELETED
/DATA, OR 6 IF READ / 8 IF UNIT 0, 20 IF UNIT 1 /IOT 67X1 TO LOAD THE COMMAND TAD MODE TAD COMMAND Ø206 Ø207 1260 1261 0210 TAD UNIT 1262 6701 /WAIT FOR THE TRANSFER REQUEST FLAG THEN TRANSFER THE SECTOR ADDRESS /IOT 67X3 TO /HAIT FOR TRANSFER REQUEST FLAG / 1 TO 32(OCTAL) /IOT TO LOAD SECTOR /CLA BECAUSE IOT XOR DOESN'T 6703 5212 1263 6702 7200 STR JMP TAD XDR CLA Ø212 Ø213 Ø214 Ø215 /WAIT FOR THE TRANSFER REQUEST FLAG THEN TRANSFER THE TRACK ADDRESS Ø217 Ø22Ø Ø221 Ø222 Ø223 STR JMP TAD XDR 6703 5217 1264 /IOT 67X3 TO /WAIT FOR TRANSFER REQUEST / 0 TO 114(OCTAL) /IOT TO LOAD TRACK /CLA BECAUSE TOT XDR DOESN'T /THE SECTOR AND TRACK ADDRESSES HAVE BEEN TRANSFERRED TO THE RX01 VIA THE XDR IOT / /Mait for the Done flag and check for any errors /IOT 67X5 TO /WAIT FOR DONE FLAG /IOT 67X4 SAMPLES ERROR FLAG / OK - COMPLETED Ø224 Ø225 Ø226 6705 5224 6704 7402 HLT THE ERROR FLAG IS SET / /THE CONTENTS OF THE TRANSFER REGISTER IS THE ERROR STATUS TRANSFER REGISTER BITS 10, AND 11 = 0 THEN SOME TYPE OF SEEK ERROR HAS OCCURED, TRANSFER REGISTER BIT 11 = 1 THEN A CRC ERROR HAS OCCURED, TRANSFER REGISTER BIT 10 = 1 THEN A PARITY ERROR HAS OCCURED 6702 3265 7305 0265 7650 5241 0230 0231 0232 0233 0234 0235 XDR DCA CLL AND SNA JMP /GET CONTENTS OF TR (ERROR STATUS) ASTATUS CLA IAC RAL ASTATUS CLA TCRC / 2 / TEST FOR PARITY ERROR /SKIP IF PARITY ERROR /NOT A PARITY ERROR - MAYBE CRO A PARITY ERROR HAS OCCURED. // INCREMENT AND TEST THE PARITY ERROR RETRY COUNTER PROGRAM LOCATION " PTRY AND RETRY THE " COMMAND " UNTIL THE PARITY ERROR RECOVERS OR UNTIL THE PTRY COUNTER OVERFLOWS TO Ø 2255 5206 7402 ISE PTRY JMP RETRY THE ERROR FLAG IS SET BUT THE ERROR IS NOT A PARITY ERROR TEST FOR A GRC ERROR Ø241 Ø242 Ø243 Ø244 7301 2265 7650 5250 TCRC, CLL CLA IAC AND ASTATUS / 1 /TEST FOR A CRC ERROR /SKIP IF A CRC ERROR /NOT A CRC - MUST BE A SEEK ``` Figure 4-11 RX8E Write/Write Deleted Data/Read Example (Sheet 1 of 2) ``` 99 100 101 102 103 /A CRC ERROR HAS OCCURED VINCREMENT AND TEST THE CRC ERROR RETHY COUNTER PROGRAM LOCATION " CTRY " VAND RETRY THE COMMAND UNTIL THE CRC ERROR RECOVERS 104 105 106 107 108 109 OR UNTIL THE CTRY COUNTER OVERFLOWS TO 0 ISE CTRY JMP RETRY HLT /RETRY THE COMMAND /HARD CRC ERROR 110 111 112 113 114 115 116 117 118 119 120 THE ERROR FLAG IS SET THE ERROR IS ENOTE A PARITY ERROR AND IS ENOTE A CRC ERROR THEREFORE IS MUST BE A SEEK ERROR / (CONTENTS OF THE TRANSFER REGISTER BITS 10, AND 11 . 0) SEEK. INIT VINCREMENT AND TEST THE SEEK ERROR RETRY COUNTER PROGRAM LOCATION " STRY " 121 122 123 124 VAND RETRY THE COMMAND UNTIL THE SEEK ERROR RECOVERS 125 126 127 128 129 OR UNTIL THE CTRY COUNTER OVERFLOWS TO Ø ISE STRY JMP RETRY HLT 2257 5206 7402 /RETRY THE COMMAND /HARD SEEK ERROR THE FOLLOWING PROGRAM LOCATIONS ARE REFERENCED WITHIN THIS EXAMPLE 1312 1333 1335 1336 1337 1338 1441 1442 1443 1447 1448 1459 1551 1554 1554 1664 1667 1664 1667 1669 1671 1772 1772 0254 7770 KM10, THE FOLLOWING 3 PROGRAM LOCATIONS ARE THE ERROR RETRY COUNTERS /PARITY ERROR RETRY COUNTER /CRC ERROR RETRY COUNTER /SEEK ERROR RETRY COUNTER PTRY, 0 7 0 0 0 0 3 0 0 7 0 0 / OPROGRAM LOCATION " MODE " CONTAINS A Ø IF 12-BIT MODE, OR /CONTAINS A 100 IF 8-BIT MODE MODE, 0260 0000 PROGRAM LOCATION " COMMAND " CONTAINS THE COMMAND TO BE ISSUED VIA THE LCD 10T /HRITE (4), WRITE DELETED DATA (14), OR READ (6), OR EMPTY BUFFER (2) COMMAND, Ø 0261 0000 APROGRAM LOCATION " UNIT " CONTAINS THE UNIT DESIGNATION /UNIT Ø (Ø), OR UNIT 1 (20) UNIT, PROGRAM LOCATION " SECTOR " CONTAINS THE SECTOR ADDRESS (1 TO 32 OCTAL) / 1 TO 32 OCTAL 0200 PROGRAM LOCATION " TRACK " CONTAINS THE TRACK ADDRESS (2 TO 114 OCTAL) TRACK, Ø PROGRAM LOCATION " ASTATUS " CONTAINS THE CONTENTS OF THE TRANSFER REGISTER VAT THE DETECTION OF AN ERROR (ERROR FLAG = 1) WHICH CORRESPONDS TO THE ZERROR STATUS / = Ø IF SEEK ERROR, 1 IF CRC ERROR, 2 IF PARITY ERROR /STATUS AT ERROR ``` Figure 4-11 RX8E Write/Write Deleted Data/Read Example (Sheet 2 of 2) ``` /THE FOLLOWING IS A PROGRAMMING EXAMPLE OF PROTOCOL REQUIRED TO 228 229 23Ø /EMPTY THE SECTOR BUFFER OF 64 12-BIT WORDS (12 BIT HODE), OR 231 232 / /EMPTY THE SECTOR BUFFER OF 128 8-BIT BYTES (8 BIT MODE) 23345 223567 3898 224445 224445 22445 2555 2557 8986 2661 0312 0313 0314 0315 0316 0317 0320 EENTRY, TAD TAD KM10 DCA PTRY TAD (BUFFER-1) / 8 TRYS TO EMPTY THE SECTOR BUFFER /PARITY ERROR RETRY COUNTER /PROGRAMS DATA BUFFER 1254 3255 1377 3010 ESETUP, /AUTO INDEX REGISTER 10 / Ø IF 12-BIT, 100 IF 8 BIT / 2 MEANS EMPTY BUFFER /IOT TO ISSUE THE COMMAND DCA A10 TAD MODE 1260 1261 6701 TAD COMMAND LCD WHAIT FOR A TRANSFER REQUEST FLAG BEFORE TRANSFERRING DATA TO THE PROGRAMS / /DATA BUFFER FROM THE RXØ1 SECTOR BUFFER WAIT FOR A DONE FLAG TO INDICATE THE COMPLETION OF THE EMPTY BUFFER COMMAND PRIOR TO / /TESTING THE ERROR FLAG STR SKP JMP EMPTY /TEST FOR TR FLAG /TR NOT SET, TEST FOR DONE FLAG /TR FLAG SET /TEST FOR DONE FLAG /NOT TR, OR DONE YET 0321 0322 0323 67Ø3 741Ø 5333 ELOOP. 67Ø5 5274 SDN JMP ELOUP THE DONE PLAG IS SET /TEST FOR ANY ERRORS (ONLY ERROR POSSIBLE IS A PARITY ERROR) /TEST FOR THE ERROR FLAG /NO ERRORS - OK Ø326 67Ø4 Ø327 74Ø2 262 263 264 265 266 267 268 271 273 274 275 277 277 278 279 INCREMENT AND TEST THE PARITY ERROR RETRY PROGRAM LOCATION " PTRY " VAND RETRY THE COMMAND UNTIL THE ERROR RECOVERS YOR UNTIL THE PTRY COUNTER OVERFLOWS TO Ø 2255 5314 7402 ISE PTRY JMP ESETUP HLT Ø33Ø /RETRY TO EMPTY THE SECTOR BUFFER HARD PARITY ERROR THE TRANSFER REQUEST FLAG IS SET . /TRANSFER DATA TO THE PROGRAMS DATA BUFFER FROM THE RX01 SECTOR BUFFER 6702 3410 5321 0377 Ø333 Ø334 Ø335 XDR DCA I A1Ø JMP ELOOP /FROM THE RXØ1 SECTOR BUFFER /TO THE PROGRAMS DATA BUFFER /LOOP UNTIL THE DONE FLAG SETS EMPTY, 280 PAGE THE FOLLOWING PROGRAM LOCATIONS ARE RESERVED FOR THE PROGRAMS DATA BUFFER 281 282 283 284 285 BUFFER, Ø 0000 *BUFFER+200 0600 ``` Figure 4-12 RX8E Empty Buffer Example ``` THE FOLLOWING IS A PROGRAMMING EXAMPLE OF PROTOCOL REQUIRED TO /FILL THE SECTOR BUFFER WITH 64 12-BIT WORDS (12 BIT MODE), OR 178 179 /FILL THE SECTOR BUFFER WITH 128 8-BIT BYTES (8 BIT MODE) 0010 A10=10 180 181 TAD KM10 DCA PTRY TAD (BUFFER-1) DCA A10 TAD MODE / 8 TRYS TO FILL THE SECTOR BUFFER /PARITY ERROR RETRY COUNTER /PROGRAMS DATA BUFFER FENTRY, 3255 1377 183 SETUP. /AUTO INDEX REGISTER 10 / 0 IF 12-BIT, 100 IF 8 BIT 185 186 Ø271 Ø272 3010 1260 /IOT TO ISSUE THE COMMAND 187 188 189 190 LCD WHAIT FOR A TRANSFER REQUEST FLAG BEFORE TRANSFERRING DATA FROM THE PROGRAMS ZDATA BUFFER TO THE RX01 SECTOR BUFFER WALT FOR A DONE FLAG TO INDICATE THE COMPLETION OF THE FILL BUFFER COMMAND PRIOR TO 195 196 TESTING THE ERROR FLAG /TEST FOR TR FLAG /TR NOT SET, TEST FOR DONE FLAG /TR FLAG SET 6703 7410 5306 6705 197 198 STR LOOP, SKP JMP FILL 199 TEST FOR DONE FLAG JMP LOOP 202 203 THE DONE FLAG IS SET 204 TEST FOR ANY ERRORS (ONLY ERROR POSSIBLE IS A PARITY ERROR) 206 207 208 /TEST FOR THE ERROR FLAG VINCREMENT AND TEST THE PARITY ERROR HETRY PROGRAM LOCATION " PTRY " /AND RETRY THE COMMAND UNTIL THE ERROR RECOVERS YOR UNTIL THE PTRY COUNTER OVERFLOWS TO B 2255 5270 7402 216 217 0303 JMP SETUP /RETRY TO FILL THE SECTOR BUFFER THE TRANSFER REQUEST FLAG IS SET /TRANSFER DATA FROM THE PROGRAMS DATA BUFFER TO THE RX01 SECTOR BUFFER /VIA AUTO INDEX REGISTER 10 /TO THE RX01 SECTOR BUFFER 1410 6702 7200 5274 TAD I A10 Ø3Ø7 Ø31Ø /CLA BECAUSE IOT XDR DOESN'T /LOOP UNTIL THE DONE FLAG SETS LOOP ``` Figure 4-13 RX8E Fill Buffer Example ## 4.1.7 RX28 Programming Examples Figures 4-14, 4-15, and 4-16 are programming examples for write, write deleted data or read functions, for fill buffer functions, and for empty buffer functions, respectively. These examples are very similar to the RX8E programming examples described in Paragraph 4.1.6. Basically, there are two differences between the RX8E and RX28 examples. First, for the RX28 when a command is transferred in the 8-bit mode of operation, it is transferred in two 8-bit words using an XDR to transfer the second command word (see location 0225 in Figure 4-14); second, for the RX28, there is no parity error check as there is in the RX8E; instead there is a density error check. ``` PROGRAMING EXAMPLES FOR THE RX28/E FLEXIBLE DISKETTE THE FOLLOWING ARE RX01 TOT CODE DEFINITIONS THE STANDARD IOT DEVICE CODE IS 675- /IDT TO LOAD THE COMMAND, (AC) IS THE COMMAND /IDT TO LOAD OR MEAD THE TRANSFER REGISTER /IDT TO SKIP ON TRANSFER REQUEST FLAG /IDT TO SKIP ON ERROR FLAG /IDT TO SKIP ON DONE FLAG /IDT TO SKIP ON DONE FLAG /IDT TO SKIP ON DONE FLAG /IDT TO INTERLED FRAGE OFF/(AC)=1 MEANS ON /IDT TO INITIALIZE THE RX SUBSYSTEM 6701 6702 6703 6704 6705 6706 6707 LCO= XDR= STR= SER= 6703 6704 6705 11 SON INTR: 45678901234567890123456789012345678901234567 ITHE FOLLOWING IS A PROGRAMING EXAMPLE OF THE PROTOCOL REQUIRED ATO MRITE, WRITE DELETED DATA, OR READ AT SECTOR "S" (THE CONTENTS OF PROGRAM /LOCATION "SECTOR") OF TRACK "I" (THE CONTENTS OF PROGRAM LOCATION / PHTRACK*) IN B OR 12 BIT MODE. 3230 1266 3278 +270 KM18 CTRY KM18 /GET RETRY CONSTANT /SET UP CRC RETRY COUNT 0230 0231 ISET UP SEEK RETRY COUNT DCA /WRITE, WRITE DELETED DATA, DR /MAKE SURE DRIVE READY FOR US /IF NOT WAIT /# IF 12-BIT MODE, 100 IF 8-BIT MODE /GET FUNCTION CODE 0204 0205 0206 0207 6725 5224 1273 1274 SDN JMP TAD ..1 400E RETRY. FUNCUN DRIVEP /GET FUNCTION CODE /GET DRIVE PARAMETERS; UNIT, #, /DENSITY /SAVE ENTIRE COMMAND /GET COMMAND /LJAD COMMAND REGISTER /GET COMMAND /MAS IT 8-81T MODE /IF YES SKIP AND DO 8-81T PROTOCOL /IF 12-81T DONE LCD PROTOCOL /GET UPPER 4 81TS OF /COMMAND WJRD TO LOWER /4 81TS OF AC 9210 1275 0211 0212 0213 0214 TAD LCD TAD 1100 3267 7452 5226 7136 7336 7334 6733 5223 6732 AND CLL RTL 8555 8551 /4 BITS OF AC /WAIT FOR A TRANSFER REQUEST IGIVE SECOND COMMAND WORD /WAIT FOR TRANSFER REQUEST FLAG THEN TRANSFER SECTOR ADDRESS 0226 0227 0230 5226 1277 /IDT TO SKIP ON TRANSFER REQUEST JHP /LOOP UNTIL TR. /1 TO 32 (OCTAL) SECTOR /LDAD THE SECTOR CLA / /WAIT FOR TRANSFER REQUEST FLWS THEN TRANSFER TRACK ADDRESS / 5590123456568901233456789 /SKIP
ON TRANSFER REQUEST /LOOP UNTIL TR /a to 114 (OCTAL) /LOAD THE TRACK /CLEAR AC 2233 2234 2235 2236 2237 6723 5233 1300 6722 7222 ITHE COMMAND PROTOCOL HAS BEEN COMPLETED. NOW /WAIT FOR DONE AND CHECK FOR ERRORS /IDT TO SKIP ON DONE FLAG /LDOP UNTIL DONE /IDT TO SKIP ON ERROR FLAG 6785 5248 6784 7482 2543 2545 2545 2545 8 D N SER HLT THE ERROR FLAG IS SET / /THE ERROR STATUS IS LOCATED IN THE TRANSFER REGISTER /IF STATUS = 1 THEN CRC ERROR DCCURED /IF STATUS = 20 THEN DENSITY ERROR DCCURED . 2 THEN SEEK ERROR OCCURED 82 84 85 86 88 89 99 99 99 99 STATUS /GET CONTENTS OF TRANSFER REGISTER /STATUS AT DONE /AND SAVE IT /MASK FOR CRC ERROR BIT /IF AC NOT EQUAL TO ZERO CRC /ERROR OCCJRED SO SKIP //F AC = 0 THEN CHECK FOR DENSITY ERROR /*EEP COUNT OF RETRIES IF = 10 THEN SKIP /IF RETRIES <10 THEN DO IT AGAIN /*HALT XDR 8245 DCA ASTATUS IAC AND SNA CLA JMP ISZ JMP HLT 7246 0247 2250 7251 7252 0253 7 2 2 1 2 3 3 2 1 7 5 2 2 7 2 5 2 3 5 5 2 3 5 5 7 4 3 2 DENSIT CTRY RETRY ``` Figure 4-14 RX28 Write/Write Deleted Data/Read Example (Sheet 2 of 2) ``` ITHE ERROR WAS NOT A CRC SO CHECK FOR WRUNG DENSITY. IF DENSITY ERROR 95 96 97 98 100 101 102 103 104 107 108 109 110 PODES EXIST THEN HALT. IF THIS ERROR OCCURS IT COULD JUST HAVE BEEN BECAUSE WE FORGOT TO SET THE RIGHT DENSITY IN THE COMMAND WORD YOR IT COULD BE THE WRONG DISKETTE HAS BEEN INSERTED IN THE DRIVE OR ZIT COULD BE SOME OTHER REASON BUT WE SHOULD KNOW WHAT CAUSED IT /BEFORE WE PROCEED. DENSIT, CLA CLL IAC RTL RTR AND ASTATUS 0255 0256 0257 0260 7307 7312 3301 7443 7402 /AC = 4 /AC = 20, MASK FOR DENSITY ERROR /IN STATUS WORD IF SET SKIP /IF NOT DENSITY ERROR MUST BE SEEK ERROR 111 112 113 114 115 SZA WITH DENSITY ERROR BIT SET IN AC ITHE ERROR MUST HAVE BEEN A SEEK ERROR IF HE GOT THIS FAR. / /ISSJE AN INITIALIZE TO DRIVE SO WE START FROM TRACK Ø 116 117 118 AND TRY AGAIN INIT ISZ JMP /IOT TO INITIALIZE RX /KEEP COUNT OF SEEK ERRORS /RETRY COMMAND 10 TIMES /THEN HALT SEEK. HLT /CONSTANTS USED BY THIS CODE KM10. 100 / /ERROR RETRY COUNTERS /CRC ERROR RETRY COUNTER /SEEK ERROR RETRY COUNTER /FILL AND EMPTY BUFFER RETYR COUNTER CTRY, STRY, ETRY, PROGRAM LOCATION "MODE" CONTAINS & IF 12-BIT MODE, OR 100 IF 8-BIT MODE море. И 0273 2222 / /LOCATION MEUNCUMM CONTAINS 4 IF WRITE, 14 IF WRITE DELETED DATA, OR /6 IF READ FUNCTION 1111444567899 11555345567899 1166645656 1166645656 1166645656 0274 0000 /LOCATION "DRIVER" HAS BIT ASSIGNMENTS JULI W SINGLE DENSITY INTERIOR STREET JULI W DRIVEP. 0 0275 2222 /LOCATION "COMMAND IS WHERE THE ASSEMBLED COMMAND IS STORED COMMEND. & 0276 3733 PLOCATION "SECTOR" MUST BE 1 TO 32 OCTAL SECTOR, P 0277 2222 PLOCATION "TRACK" MUST BE 7 TO 114 OCTAL / / LOCATION "ASTATUS" IS USED TO STORE THE CONTENTS OF THE STATUS / REGISTER IF AN ERROR OCCURS. THE STATUS IS IN THE TRANSFER / REGISTER WHEN "JONE" IS SET. ASTATUS, 0 0301 0000 MA-1872 ``` Figure 4-14 RX28 Write/Write Deleted Data/Read Example (Sheet 2 of 2) ``` 171 172 173 174 175 176 177 177 181 183 183 185 188 188 188 188 ITHE FOLLOWING IS A PROGRAMMING EXAMPLE FO PROTOCOL REQUIRED TO / /FILL THE SECTOR BUFFER 8810 / 8 THYS TO FILL THE SECTOR BUFFER /ERRON RETRY COUNTER /PROGRAMS DATA BUFFER /AJTO INDEX RESISTER 10 /Ø IF 12-91T, 100 IF 8 BIT /GET DENSITY /STORE ASSEMBLED COMMAND /GET COMMAND TO AC /ISSUE COMMAND TO AC /ISSUE COMMAND TO RX /GET SAVED COMMAND /MASK FOR 8-BIT MODE /IF 8-BIT MODE SET DO 8-MODE PROTOCOL /IF 12-BIT MODE SET DO 8-MODE PROTOCOL /IF 12-BIT MODE GO STRAIGHT TO FILL LOOP /GET SAVED COMMAND NORD /GET 4 MS8'S (BITS 0,1,2,3) OF /COMMAND WORD DOWN TO THE /4 LSB'S (RITS 8,9,12,11) OF AC /IJT TO SKIP ON TRANSFER READY /IF TRANSFERENCE COMMAND WORD /ISSUE SECOND COMMAND WORD /CLEAR THE AC AND DO FILL LOOP FENTRY, TAD K410 DCA EFRY TAD (SUFFER=1) DCA A10 TAD MODE TAD DRIVEP DCA COMMANI TAD COMMANI TAD COMMANI TAD COMMANI AND CIA TAD KHIE SETUP, 0376 0377 0310 0311 DRIVEP CDMMAND COMMAND 0313 0314 0315 COMMAND SNA CLA JMP TAD 0316 0317 0320 0321 0322 0323 0324 0325 0326 LOJP COMMAND TAD CLL RTL RTL STR JMP XDR CLA WAIT FOR A TRANSFER REQUEST FLAG BEFORE TRANSFERRING DATA FROM THE PROGRAMS /DATA BUFFER TO THE RXZ1 SECTOR BUFFER , walt for a none flag to indicate the completion of the fill auffer command prior to 0327 0330 0331 0332 0333 6723 7412 5341 6785 5327 /TEST FOR TR FLAG /TR NOT SET, TEST FOR DONE FLAG /TR FLAG SET /TEST FOR DONE FLAG /NOT TR, OR DONE YET LOJP. SKP JMP FILL THE DONE FLAG IS SET / /TEST FOR ANY ERRORS 216 217 218 219 220 /TEST FOR THE ERROR FLAG VINCREMENT AND TEST THE ERROR RETRY PROGRAM LOCATION "ETRY" 553 / /AND RETRY THE COMMAND UNTIL THE ERROR RECOVERS YOR JUTIL THE ETRY COUNTER OVERFLOWS TO U 22567890123345672337 0336 0337 0340 /RETRY TO FILL THE SECTOR BUFFER /HARD PARITY ERROR ITHE TRANSFER REQUEST FLAG IS SET ATTAMSFER DATA FROM THE PROGRAMS DATA BUFFER TO THE RX21 SECTOR BUFFER TAD I A18 XDR CLA JMP LDOP 0341 0342 0343 0344 /VIA AUTO INDEX REGISTER 10 /TO THE RX01 SECTOR BUFFER /CLA BECAUSE IDT XOR DOESN'T /LUOP UNTIL THE DONE FLAG SETS FILL. ``` Figure 4-15 RX28 Fill Buffer Example ``` /THE FOLLOWING IS A PROGRAMMING EXAMPLE OF PROTOCOL REQUIRED TO / 8 TRYS TO EMPTY THE SECTOR BUFFER /ERROR RETRY COUNTER /PROGRAMS DATA BUFFER /AUTO INDEX REGISTER 10 / 2 IF 12-81T, 120 IF 8 BIT / 2 MEANS EMPTY BUFFER /GET DENSITY STORE ASSEMBLED COMMAND /GET SAVED COMMAND TO AC /ISSUE COMMAND TO AC /ISSUE COMMAND TO AC /ISSUE COMMAND TO AC /ISSUE COMMAND TO AC /IF 8-81I MODE SET DO 8-MODE PROTOCOL /IF 12-81I MODE GO STRAIGHT TO EMPTY LOOP /GET SAVED COMMAND WORD /GET 4 MSB'S (BITS 0,1,2,3) OF /CJMMAND WORD DOWN TO THE /4 LSB'S (BITS 8,9,10,1) OF AC /IDT TO SKIP ON TRANSFER READY /IF TR NOT SET LOOP UNTIL IT DOES /ISSUE SECOND COMMAND WORD /CLEAR THE AC AND DO EMPTY LOOP PEMPTY THE SECTOR BUFFER EENTRY, TAD KM10 DCA ETRY ESETUP, TAD (8UFFER=1) DCA A10 TAD MODE TAD FUNCUN TAD PUNCUN TAD COMMAND LCD TAD COMMAND LCD TAD COMMAND AND AND SNA CLA 0345 0346 0347 1266 3272 1377 0350 0351 0352 0353 251 252 253 254 255 256 257 SNA CLA JMP TAD ELOOP COMMAND 0353 0354 0355 CLL RTL RAL STR 0366 0367 0370 0371 258 259 260 261 262 263 264 . - 1 ELOOP PAGE 266 267 268 269 270 271 272 273 274 / /WAIT FOR A TRANSFER REQUEST FLAG BEFORE TRANSFERRING DATA TO THE PROGRAMS / /WAIT FOR A DONE FLAG TO INDICATE THE COMPLETION OF THE EMPTY BUFFER COMMAND PRIOR TO / /TESTING THE ERROR FLAG /TEST FOR TR FLAG /TR NOT SET, TEST FOR DONE FLAG /TR FLAG SET /TEST FOR DONE FLAG /NOT TR, OR DONE YET ELOOP. SON JMP ELOOP THE DONE FLAG IS SET / /TEST FOR ANY ERRORS /TEST FOR THE ERROR FLAG 0435 6734 VINCREMENT AND TEST THE ERROR RETRY PROGRAM LOCATION "ETRY" AND RETRY THE COMMAND UNTIL THE ERROR RECOVERS FOR JUTIL THE ETRY COUNTER OVERFLOWS TO B ISZ ETRY VRETRY TO EMPTY THE SECTOR BUFFER JMP ESETJP HARD ERROR THE TRANSFER REQUEST FLAG IS SET /TRANSFER DATA TO THE PROGRAMS DATA BUFFER FROM THE RX21 SECTOR BUFFER /FROM THE RX01 SECTOR BUFFER /TO THE PROGRAMS DATA BUFFER /LOOP UNTIL THE DONE FLAG SETS EMPTY, XDR DCA I A13 JMP ELOOP 6722 3412 5220 0412 0413 3347 3272 3632 ITHE FOLLOWING PROGRAM LOCATIONS ARE RESERVED FOR THE PROGRAMS DATA BUFFER 308 309 310 311 312 2622 2222 *BUFFER+400 ``` Figure 4-16 RX28 Empty Buffer Example ## 4.1.8 Restrictions and Programming Pitfalls A set of 11 restrictions and programming pitfalls for the RX8E is presented below. 1. When performing the following sequence of instructions, interrupts must be off. If interrupts are not off, the following sequence of events will occur. Assume interrupts are enabled and the RX8E issues an interrupt request just before the SDN instruction; the SDN instruction will be executed as the last legal instruction before the processor takes over. However, since the done flag is cleared by the SDN instruction, the processor will not find the device that issued the interrupt. - 2. The program must issue an SER instruction to test for errors following an SDN instruction. - 3. For maximum data throughput for consecutive writes or reads in 8-bit mode, interleave every three sectors; in 12-bit mode, interleave every two sectors. (This of course depends on program overhead.) - 4. When issuing the IOT XDR at the end of a function to test the status, the instruction AND 377 must be given because the most significant bits (0-3) contain part of the previous command word. - 5. If an error occurs and the program executes a read error register function (111) (Paragraph 4.1.4.9), a parity error may occur for that command. The error code coming back would not be for the original error in which the read error register function was issued, but for the parity error resulting from the read error register function. Therefore, check for parity error with the read status function (101) before checking for errors with the read error register function (111). - 6. The SEL DRV RDY bit is present only at the time of the read status function (101) for either drive, or at completion of an Initialize for drive 0. - 7. It is not necessary to load the drive select bit into the command word when the command is Fill Buffer (000) or Empty Buffer (001). - 8. Sector Addressing: 1-26 or 1-32₈ (No sector 0) Track Addressing: 0-76 or 1-114₈ - 9. If a read error register function (111) is desired, the program must perform this function before a read status function (101), because the content of the error register is always modified by a read status function. - 10. The instructions STR, SDN, SER also clear the respective flags after testing so that the software must store these flags if future reference to them is needed after performing one of these instructions. - 11. Excessive use of the read status function (101) will result in drastically decreased throughput because a read status function requires between one and two diskette revolutions or about 250 ms to complete. ## 4.2 RX11 AND RXV11 PROGRAMMING INFORMATION This section describes device registers, register and vector address assignments, programming specifications, and programming examples for the RX11 and RXV11
interfaces. All software control of the RX11/RXV11 is performed by means of two device registers: the command and status (RXCS) register and a multipurpose data buffer (RXDB) register. These registers have been assigned bus addresses (Paragraph 4.2.1) and can be read or loaded, with certain exceptions, using any instruction referring to their addresses. The RX02, which includes the mechanical drive(s), read/write electronics, and μ CPU controller, contains all the control circuitry required for implied seeks, automatic head position verification, and calculation and verification of the CRC; it has a buffer large enough to hold one full sector of diskette data (128 8-bit bytes). Information is serially passed between the interface and the RX02. A typical diskette write sequence, which is initiated by a user program, would occur in two steps: - 1. Fill Buffer A command to fill the buffer is moved into the RXCS. The Go bit (Paragraph 4.2.2.1) must be set. The program tests for transfer request (TR). When TR is detected, the program moves the first of 128 bytes of data to the RXDB. TR goes false while the byte is moved into the RX02. The program retests TR and moves another byte of data when TR is true. When the RX02 sector buffer is full, the Done bit will set, and an interrupt will occur if the program has enabled interrupts. - 2. Write Sector A command to write the contents of the buffer onto the disk is issued to the RXCS. Again the Go bit must be set. The program tests TR, and when TR is true, the program moves the desired sector address to the RXDB. TR goes false while the RX02 handles the sector address. The program again waits for TR and moves the desired track address to the RXDB, and again TR is negated. The RX02 locates the desired track and sector, verifies its location, and writes the contents of the sector buffer onto the diskette. When this is done, an interrupt will occur if the program has enabled interrupts. A typical diskette read occurs in just the reverse way: first locating and reading a sector into the buffer (read sector) and then unloading the buffer into core (empty buffer). In either case, the content of the buffer is not valid if Power Fail or Initialize follows a fill buffer or read sector function. 4.2.1 Register and Vector Addresses The RXCS register is normally assigned Unibus address 177170 and the RXDB register is assigned Unibus address 177172. The normal BR priority level is 5, but it can be changed by insertion of a different priority plug located on the interface module. The vector address is 264. ## 4.2.2 Register Description **4.2.2.1** RXCS – Command and Status (177170) – Loading this register while the RX02 is not busy and with bit 0=1 will initiate a function as described below and indicated in Figure 4-17. Bits 0-4 are write-only bits. Figure 4-17 RXCS Format (RX11, RXV11) ## Bit No. Description - O Go Initiates a command to RX02. This is a write-only bit. - Function Select These bits code one of the eight possible functions listed below and described in Paragraph 4.2.3. These are write-only bits. | Code | Function | |------|---------------------------| | 000 | Fill Buffer | | 001 | Empty Buffer | | 010 | Write Sector | | 011 | Read Sector | | 100 | Not used | | 101 | Read Status | | 110 | Write Deleted Data Sector | | 111 | Read Error Register | | | | - 4 Unit select This bit selects one of the two possible disks for execution of the desired function. This is a write-only bit. - Done This bit indicates the completion of a function. Done will generate an interrupt when asserted if Interrupt Enable (RX2CS bit 6) is set. This is a read-only bit. - Interrupt Enable This bit is set by the program to enable an interrupt when the RX02 has completed an operation (Done). The condition of this bit is normally determined at the time a function is initiated. This bit is cleared by Initialize and is a read/write bit. - 7 Transfer Request This bit signifies that the RX11 or RXV11 needs data or has data available. This is a read-only bit. #### 8–13 Unused RX Initialize – This bit is set by the program to initialize the RX11 or RXV11 without initializing all devices on the Unibus. This is a write-only bit. #### **CAUTION** Loading the lower byte of the RXCS will also load the upper byte of the RXCS. Upon setting this bit in the RXCS, the RX11 or RXV11 will negate Done and move the head position mechanism of drive 1 (if two are available) to track 0. Upon completion of a successful Initialize, the RX02 will zero the error and status register, set Initialize Done, and set RXES bit 7 (DRV RDY) if unit 0 is ready. It will also read sector 1 of track 1 on drive 0. - Error This bit is set by the RX02 to indicate that an error has occurred during an attempt to execute a command. This read-only bit is cleared by the initiation of a new command or an Initialize (Paragraph 4.2.6). - 4.2.2.2 RXDB Data Buffer Register (177172) This register serves as a general purpose data path between the RX02 and the interface. It may represent one of four RX02 registers according to the protocol of the function in progress (Paragraph 4.2.3). This register is read/write if the RX02 is not in the process of executing a command; that is, it may be manipulated without affecting the RX02 subsystem. If the RX02 is actively executing a command, this register will only accept data if RXCS bit 7 (TR) is set. In addition, valid data can only be read when TR is set. ## CAUTION Violation of protocol in manipulation of this register may cause permanent data loss. **4.2.2.3** RXTA – RX Track Address (Figure 4-18) – This register is loaded to indicate on which of the 77 (114₈) tracks a given function is to operate. It can be addressed only under the protocol of the function in progress (Paragraph 4.2.3). Bits 8-15 are unused and are ignored by the control. Figure 4-18 RXTA Format (RX11/RXV11) **4.2.2.4** RXSA – RX Sector Address (Figure 4-19) – This register is loaded to indicate on which of the 26 (32₈) sectors a given function is to operate. It can be addressed only under the protocol of the function in progress (Paragraph 4.2.3). Bits 8-15 are unused and are ignored by the control. Figure 4-19 RXSA Format (RX11/RXV11) 4.2.2.5 RXDB – RX Data Buffer (Figure 4-20) – All information transferred to and from the floppy media passes through this register and is addressable only under the protocol of the function in progress (Paragraph 4.2.3). Figure 4-20 RXDB Format (RX11/RXV11) **4.2.2.6** RXES – RX Error and Status (Figure 4-21) – This register contains the current error and status conditions of the drive selected by bit 4 (Unit Select) of the RXCS. This read-only register can be addressed only under the protocol of the function in progress (Paragraph 4.2.3). The RXES content is located in the RXDB upon completion of a function. Figure 4-21 RXES Format (RX11, RXV11) ## RXES bit assignments are: ## Bit No. Description 3 - O CRC Error A cyclic redundancy check error was detected as information was retrieved from a data field of the diskette. The RXES is moved to the RXDB, and Error and Done are asserted. - Initialize Done This bit is asserted in the RXES to indicate completion of the Initialize routine which can be caused by RX02 power failure, system power failure, or programmable or Unibus Initialize. Density Error – This bit is asserted to indicate the density of the function in progress does not match the drive density. Upon detection of this error the control terminates the operation and Error and Done are asserted. # NOTE Bits 4 and 5 are asserted for the occurrence of double density when the system is RX01-compatible. - Drive Density This bit indicates the density of the diskette in the drive selected. When asserted, double density is indicated. - Deleted Data Detected During data recovery, the identification mark preceding the data field was decoded as a deleted data mark (Paragraph 1.5.3.2). Drive Ready – This bit is asserted if the unit currently selected exists, is properly supplied with power, has a diskette installed correctly, has its door closed, and has a diskette up to speed. #### NOTE 1 The drive ready bit is only valid when retrieved via a read status function or at completion of Initialize when it indicates status of drive 0. #### NOTE 2 If the error bit was set in the RXCS but error bits are not set in the RXES, specific error conditions can be accessed via a read error register function (Paragraph 4.2.3.7). 8 Unit Select – Drive 0 is selected if this bit is "0"; drive 1 is selected if this bit is a "1." ## 4.2.3 Function Codes Following the strict protocol of the individual function, data storage and recovery on the RX11 and RXV11 occur with careful manipulation of the RXCS and RXDB registers. The penalty for violation of protocol can be permanent data loss. A summary of the function codes is presented below: | 000 | Fill Buffer | |-----|---------------------------| | 001 | Empty Buffer | | 010 | Write Sector | | 011 | Read Sector | | 100 | Not used | | 101 | Read Status | | 110 | Write Deleted Data Sector | | 111 | Read Error Register | The following paragraphs describe in detail the programming protocol associated with each function encoded and written into RXCS bits 1-3 if Done is set. **4.2.3.1** Fill Buffer (000) – This function is used to fill the RX02 buffer with 128 8-bit bytes of data from the host processor. Fill buffer is a complete function in itself; the function ends when the buffer has been filled. The contents of the buffer can be written onto the diskette by means of a subsequent write sector function, or the contents can be returned to the host processor by an empty buffer function. RXCS bit 4 (Unit Select) does not affect this function since no diskette drive is involved. When the command has been loaded, RXES, OUT, and Done are cleared. When the TR bit is asserted, the first byte of the data may be loaded into the data buffer. The control then clears TR and after supplying the
appropriate number of shift pulses to store the data, again asserts TR. The same TR cycle will occur as each byte of data is loaded. The RX02 counts the bytes transferred; it will not accept less than 128 bytes and will ignore those in excess. Any read of the RXDB during the cycle of 128 transfers is ignored by the RX11/RXV11. When the complete buffer has been filled, the control asserts Done. **4.2.3.2** Empty Buffer (001) – This function is used to empty into the interface the buffer of the 128 data bytes loaded from a previous Read Sector or Fill Buffer command. This function will ignore RXCS bit 4 (Unit Select) and negate Done. For this function, TR and shift pulses are generated in the same manner as for the fill buffer but the buffer is emptied. When TR sets, the program may unload the first of 128 data bytes from the RXDB. Then the RX11/RXV11 again negates TR. When TR resets, the second byte of data may be unloaded from the RXDB, which again negates TR. Alternate checks on TR and data transfers from the RXDB continue until 128 bytes of data have been moved from the RXDB. Done sets, ending the operation. #### NOTE The empty buffer function does not destroy the contents of the sector buffer. **4.2.3.3** Write Sector (010) – This function is used to locate a desired track and sector and write the sector with the contents of the internal sector buffer. The initiation of this function clears TR and Done. When TR is asserted, the program must move the desired sector address into the RXDB, which will negate TR. When TR is again asserted, the program must load the desired track address into the RXDB, which will negate TR. If the desired track is not found, the RX11/RXV11 will abort the operation, move the contents of the RXES to the RXDB, set RXCS bit 15 (Error), assert Done, and initiate an interrupt if RXCS bit 6 (Interrupt Enable) is set. TR will remain negated while the RX02 attempts to locate the desired sector. If the RX02 is unable to locate the desired sector within two diskette revolutions, the RX11/RXV11 will abort the operation, move the contents of the RXES to the RXDB, set RXCS bit 15 (Error), assert Done, and initiate an interrupt if RXCS bit 6 (Interrupt Enable) is set. If the desired sector is successfully located, the RX11/RXV11 will write the 128 bytes stored in the internal buffer followed by a 16-bit CRC character that is automatically calculated by the RX02. The RX11/RXV11 ends the function by asserting Done and initiating an interrupt if RXCS bit 6 (Interrupt Enable) is set. #### NOTE 1 The contents of the sector buffer are not valid data after a power loss has been detected by the RX02. The write sector function, however, will be accepted as a valid function, and the random contents of the buffer will be written, followed by a valid CRC. #### NOTE 2 The write sector function does not destroy the contents of the sector buffer. **4.2.3.4** Read Sector (011) – This function is used to locate a desired track and sector and transfer the contents of the data field to the μ CPU controller sector buffer. The initiation of this function clears RXES, Done, and OUT. When TR is asserted, the program must load the desired sector address into the RXDB, which will negate TR. When TR is again asserted, the program must load the desired track address into the RXDB, which will negate TR. If the desired track is not found, the RX11/RXV11 will abort the operation, move the contents of the RXES to the RXDB, set RXCS bit 15 (Error), assert Done, and initiate an interrupt if RXCS bit 6 (Interrupt Enable) is set. TR and Done will remain negated while the RX02 attempts to locate the desired track and sector. If the RX02 is unable to locate the desired sector within two diskette revolutions after locating the presumably correct track, the RX11/RXV11 will abort the operation, move the contents of the RXES to the RXDB, set RXCS bit 15 (Error), assert Done, and initiate an interrupt if RXCS bit 6 (Interrupt Enable) is set. If the desired sector is successfully located, the control will attempt to locate a standard data address mark or a deleted data address mark. If either mark is properly located, the control will read data from the sector into the sector buffer. If the deleted data address mark was detected, the control will assert RXES bit 6 (DD). As data enters the sector buffer, a CRC is computed, based on the data field and CRC bytes previously recorded. A non-zero residue indicates that a read error has occurred. The control sets RXES bit 0 (CRC Error) and RXCS bit 15 (Error). The RX11/RXV11 ends the operation by moving the contents of the RXES to the RXDB, sets Done, and initiates an interrupt if RXCS bit 6 (Interrupt Enable) is set. 4.2.3.5 Read Status (101) – The RX11/RXV11 will negate RXCS bit 5 (Done) and begin to assemble the current contents of the RXES into the RXDB. RXES bit 7 (Drive Ready) will reflect the status of the drive selected by RXCS bit 4 (Unit Select) at the time the read status function was given. All other RXES bits will reflect the conditions created by the last command. RXES may be sampled when RXCS bit 5 (Done) is again asserted. An interrupt will occur if RXCS bit 6 (Interrupt Enable) is set. RXES bits are defined in Paragraph 4.2.2.6. #### NOTE The average time for this function is 250 ms. Excessive use of this function will result in substantially reduced throughput. - **4.2.3.6** Write Sector with Deleted Data (110) This operation is identical to function 010 (write sector) with the exception that a deleted data address mark precedes the data field instead of a standard data address mark (Paragraph 1.5.3.2). - 4.2.3.7 Read Error Code Function (111) The read error code function can be used to retrieve explicit error information provided by the μ CPU controller upon detection of the general error bit. The function is initiated, and bits 0–6 of the RXES are cleared. Out is asserted and Done is negated. The controller then generates the appropriate number of shift pulses to transfer the specific error code to the interface register and completes the function by asserting Done. The interface register can now be read and the error code interrogated to determine the type of failure that occurred (Paragraph 4.2.6). #### NOTE Care should be exercised in the use of this function, since under certain conditions, erroneous error information may result (Paragraph 4.2.5). **4.2.3.8** Power Fail – There is no actual function code associated with Power Fail. When the RX02 senses a loss of power, it will unload the head and abort all controller action. All status signals are invalid while power is low. When the RX02 senses the return of power, it will remove Done and begin a sequence to: - 1. Move drive 1 head position mechanism to track 0. - 2. Clear any active error bits. - 3. Read sector 1 of track 1 of drive 0 into the sector buffer. - 4. Set RXES bit 2 (Initialize Done) (Paragraph 4.2.2.6) after which Done is again asserted. - 5. Set Drive Ready of the RXES according to the status of drive 0. There is no guarantee that information being written at the time of a power failure will be retrievable. However, all other information on the diskette will remain unaltered. A method of aborting a function is through the use of RXCS bit 14 (RX Initialize). Another method is through the use of the system Initialize signal that is generated by the PDP-11 RESET instruction, the console START key, or system power failure. ## 4.2.4 Programming Examples **4.2.4.1** Read Data/Write Data – Figure 4-22 presents a program for implementing a write, write deleted data, or a read function, depending on the function code that is used. The first instructions set up the error retry counters, PTRY, CTRY, and STRY. The instruction RETRY moves the command word for a write, write deleted data, or read into the RXCS. The set of three instructions beginning at the label 1\$ moves the sector address to the RX11/RXV11 after transfer request (TR), which is bit 7, has been set. The three instructions beginning at the label 2\$ move the track address to the RX11/RXV11 after TR has been set. The group of instructions beginning at the label 3\$ looks for the done flag to set and checks for errors. An error condition, indicated by bit 15 setting, is checked beginning at ERFLAG. If bit 0 is set, a CRC error has occurred, and a branch is made to CRCER. If a parity error has occurred, a branch is made to PARER. If neither of the above occurs, a seek error is assumed to have occurred and a branch is made to SEEKER, where the system is initialized. In the case of a write function, the sector buffer is refilled by a JMP to FILLBUF. In the case of a read function, a JMP is made to EMPBUFF. In each of the PAR, CRC, and SEEK routines, the command sequence is retried 10 times by decrementing the respective retry counter. If an error persists after 10 tries, it is a hard error. The retry counters can be set up to retry as many times as desired. #### NOTE A fill buffer function is performed before a write function, and an empty buffer function is performed after a read function. **4.2.4.2** Empty Buffer Function – Figure 4-23 shows a program for implementing an empty buffer function. The first instruction sets the number of error retries to 10. The address of the memory buffer is placed in register R0, and the Empty Buffer command is placed in the RXCS. Existence of a parity error is checked starting at instruction 3\$. If a parity error is detected, the Empty Buffer command is loaded again. If an error persists for 10 retries, the error is considered hard. If no error is indicated, the program looks for the transfer request (TR) flag to set. The error flag is retested if TR is not set. Once TR sets, a byte is moved from the RX11/RXV11 sector buffer to the core locations of BUFFER. The process continues until the sector buffer is empty and the Done bit is set. **4.2.4.3** Fill Buffer Function – Figure 4-24 presents a program to
implement a fill buffer function. It is very similar to the empty buffer example. #### 4.2.5 Restrictions and Programming Pitfalls A set of restrictions and programming pitfalls for the RX11/RXV11 is presented below. 1. Depending on how much data handling is done by the program between sectors, the minimum interleave of two sectors may be used, but to be safe a three-sector interleave is recommended. ``` PROGRAMMING EXAMPLES FOR THE RX11/RX81 FLEXIBLE DISKETTE 12345678911123456789012234567 THE FOLLOWING IS THE RX11 STANDARD DEVICE ADDRESS AND VECTOR ADDRESS ; COMMAND STATUS REGISTER ; DATA BUFFER REGISTER ; SECTOR ADDRESS REGISTER ; TRACK ADDRESS REGISTER ; ERROR STATUS REGISTER 177170 177172 177172 177172 177172 RXDB=177172 ; THE FOLLOWING IS A PROGRAMMING EXAMPLE OF THE PROTOCOL REQUIRED ;TO WRITE, WRITE DELETED DATA, OR READ AT SECTOR WEW (THE CONTENTS OF PROGRAM ;LOCATION SECTOR) OF TRACK "T" (THE CONTENTS OF PROGRAM LOCATION TRACK) ; PARITY RETRY COUNTER ; CRC RETRY COUNTER ; SEEK RETRY COUNTER START: MOV #-10, PTRY MOV #-10, CTRY WRITE, WRITE DELETED DATA, OR READ BITS 4 THRU 1 OF PROGRAM LOCATION COMMAND CONTAIN THE FUNCTION # 1 MEANS UNIT 1 (# # MEANS UNIT #) BITS 3 THRU 1 IS THE COMMAND (4 = WRITE, 14 = WRITE DELETED DATA, 6 = READ) ; UNIT + (WRITE, WRITE DELETED DATA, OR READ) 000022 016767 000306 177140 RETRY: MOV COMMAND, RXCS HALT FOR THE TRANSFER REQUEST FLAG THEN TRANSFER THE SECTOR ADDRESS ; TEST FOR THE TRANSFER REQUEST FLAG ; BEQ UNTIL THE TRANSFER REQUEST FLAG SETS ; LOAD SECTOR ADDRESS 15: TSTB RXCS 177134 BEQ 15 MOVB SECTOR, RXSA 030274 177126 34 35 36 37 38 39 40 HALT FOR THE TRANSFER REQUEST FLAG THEN TRANSFER THE TRACK ADDRESS ; TEST FOR THE TRANSFER REQUEST FLAG ; BEQ UNTIL THE TRANSFER REQUEST FLAG SETS ; LOAD TRACK ADDRESS TSTB RXCS BEQ 25 177120 41 42 43 44 45 46 47 48 49 50 51 52 THE SECTOR AND TRACK ADDRESSES HAVE BEEN TRANSFERRED TO THE RX81 HEALT FOR THE DONE FLAG AND CHECK FOR ANY ERRORS IF THE FUNCTION HAS COMPLETED SUCCESSFULLY (NO ERROR FLAG) THEN HALT ; TEST FOR THE DONE FLAG ; BEQ UNTIL THE DONE FLAG SETS ; TEST FOR THE ERROR FLAG ; BNE IF AN ERROR HAS OCCURED ; OK = COMPLETED BIT #DONEBIT, RXCS BEG 3$ TST RXCS BNE ERFLAG 032767 001774 005767 001001 100040 177102 35: 000060 000066 000070 000074 177074 THE ERROR FLAG IS SET THE CONTENTS OF THE RXES IS THE ERROR STATUS ; IF THE RXES BITS 1 AND 0 * 0 THEN SOME TYPE OF SEEK ERROR OCCURED IFF THE RXES BIT 0 * 1 THEN A CRC ERROR HAS OCCURED IFF THE RXES BIT 1 * 1 THEN A PARITY ERROR HAS OCCURED TEST FOR CRC AND PARITY ERRORS NOT A PARITY OR CRC [HUST] BE A SEEK TEST FOR PARITY ERROR NOT A PARITY ERROR [HUST] BE A CRC ; ERFLAG! BIT #3, RXES BEQ SEEK BIT #2, RXES BEQ CRC 001404 A PARITY ERROR HAS OCCURED INCREMENT AND TEST THE PARITY ERROR RETRY COUNTER PROGRAM LOCATION " PTRY AND RETRY THE " COMMAND " UNTIL THE PARITY ERROR RECOVERS FOR UNTIL THE PTRY COUNTER OVERFLOWS TO B INC PTRY BNE RETRY HALT ; RETRY THE COMMAND ; HARD PARITY ERROR A CRC ERROR HAS OCCURED FINCREMENT AND TEST THE CRC ERROR RETRY COUNTER PROGRAM LOCATION " CTRY " AND RETRY THE COMMAND UNTIL THE CRC ERROR RECOVERS FOR UNTIL THE CTRY COUNTER OVERFLOWS TO 8 INC CTRY BNE RETRY HALT 000174 ; RETRY THE COMMAND : HARD CRC ERROR THE ERROR FLAG IS SET 91 92 93 94 95 96 98 99 THE ERROR IS [NOT] A PARITY ERROR AND IS CHOT] A GRC ERROR THEREFORE IT MUST BE A SEEK ERROR (STATE OF RXCS BITS Ø AND 1 ARE Ø) 000140 012767 040000 177022 MOV #INIT, RXCS ; INITIALIZE INCREMENT AND TEST THE SEEK ERROR RETRY COUNTER PROGRAM LOCATION " STRY " AND RETRY THE COMMAND UNTIL THE SEEK ERROR RECOVERS OR UNTIL THE CTRY COUNTER OVERFLOWS TO 8 000146 000152 000154 000160 ; RETRY THE COMMAND; HARD SEEK ERROR ``` Figure 4-22 RX11/RXV11 Write/Write Deleted Data/Read Example ``` THE FOLLOWING IS A PROGRAMMING EXAMPLE OF PROTOCOL REQUIRED TO 160 161 162 163 JEMPTY THE SECTOR BUFFER OF 128 8-817 BYTES 164 165 EENTRY: MOV #-10, PTRY ESETUP: MOV #BUFFER, H 000242 000250 012767 012700 000056 ; 8 TRYS TO EMPTY THE SECTOR BUFFER; PROHGRAMS DATA BUFFER; ISSUE THE COMMAND 090342 MOV COMMAND, RXCS 167 SHALL FOR A TRANSFER REQUEST FLAG BEFORE TRANSFERRING DATA TO THE PROGRAMS 169 17Ø 171 DATA BUFFER FRON THE RXØ1 SECTOR BUFFER 172 173 WALT FOR A DONE FLAG TO INDICATE THE COMPLETION OF THE EMPTY BUFFER COMMAND 174 175 PRIOR TO TESTIN G THE ERROR FLAG 176 177 ; TEST FOR TRANSFER REQUEST FLAG ; BNE IF TRANSFER REQUEST FLAG IS SET ; TEST FOR DONE FLAG ; BEQ UNTIL THE DONE FLAG BETS 000262 105767 176702 ELOOP: TSTB RXCS 001014 332767 000266 BMI EMPTY BIT #DONEBIT, RXCS 178 000040 176672 179 000276 001771 181 THE DONE FLAG IS SET 182 183 TEST FOR ANY ERRORS (ONLY ERROR POSSIBLE IS A PARITY ERROR) 184 185 000300 aa5767 176664 BNE 15 187 000306 000000 ; NO ERRORS - OK - COMPLETE INCFEMENT AND TEST THE PARITY ERROR RETRY PROGRAM LOCATION " PTRY " 189 190 191 JAND RETRY THE COMMAND UNTIL THE ERROR RECOVERS 192 193 OR UNTIL THE PTRY CUNTER OVERFLOWS TO B 194 195 000310 005267 000314 001355 INC PTRY BNE ESETUP HALT 030012 15: ; RETRY TO EMPTY THE SECTOR BUFFER 197 220316 000000 ; HARD PARITY ERROR 198 199 THE TRANSFER REQUEST FLAG IS SET 200 201 STRANSFER DATA TO THE PROGRAM. DATA SUFFER FROM THE RXØ1 SECTOR BUFFER 202 000320 116730 MOVB RXDB, #(RØ)+ BR ELOOP 203 176646 206 207 THE FOLLOWING 3 PROGRAM LOCATIONS ARE THE ERROR RETRY COUNTERS ; PARITY ERROR RETRY COUNTER ; CRC ERROR RETRY COUNTER ; SEEK ERROR RETRY COUNTER 208 000326 000330 220000 220000 PTRY: CTRY: 209 210 200332 330000 STRY: 211 PROGRAM LOCATION " COMMAND " CONTAINS THE COMMAND TO BE ISSUED VIA THE LCD LOT 212 213 214 215 ;WRITE (4), WRITE DELETED DATA (14), OR READ (6), OR EMPTY BUFFER (2) 000334 000000 COMMANDE ; 4, 14, 6, 0R 2 + (GO BIT 1 = 1) 217 ;PROGRAM LOCATION " SECTOR " CONTAINS THE SECTOR ADDRESS (1 TO 32 OCTAL) 219 000336 000000 SECTOR: Ø ; 1 TO 32 OCTAL 222 PROGRAM LOCATION " TRACK " CONTAINS THE TRACK ADDRESS (# TO 114 OCTAL) 223 224 000340 000000 TRACK: Ø ; Ø TO 114 OCTAL 226 227 PROGRAM EQUIVALENTS 228 000040 DONEBIT#40 240000 229 INIT = 40000 BUFFER=. 000342 000542 230 . #BUFFER+200 231 000001 , END ``` Figure 4-23 RX11/RXV11 Empty Buffer Example ``` THE FOLLOWING IS A PROGRAMMING EXAMPLE OF THE PROTOCOL REQUIRED TO FILL THE SECTOR BUFFER WITH 128 8-BIT BYTES NOTE: THE DATA TO FILL THE SECTOR BUFFER CAN BE ASSEMBLED IN CORE IN THE EVEN ADDRESSES BYTES OF 128 WORDS OR IN BOTH BYTES OF 64 WORDS FENTRY: MOV #-10, PTRY SETUP: MOV #BUFFER, RØ MOV COMMAND, RXCS aaa156 ; PROGRAMS DATA BUFFER ; ISSUE THE COMMAND 012700 000342 176772 000170 016767 000140 120 HAIT FOR A TRANSFER HEQUEST FLAG BEFORE TRANSFERRING DATA FROM THE PROGRAMS DATA BUFFER TO THE RXØ1 SECTOR BUFFER HAIT FOR A DONE FLAT TO INDICATE THE COMPLETION OF THE FILL BUFFER COMMAND 126 PRIOR TO TESTING THE ERROR FLAG 128 129 ; TEST FOR TRANSFER REQUEST FLAG ; BCG IF TRANSFER REQUEST FLAG SET ; TEST FOR THE DONE FLAG ; BCG UNTIL THE DONE FLAG SETS TSTR RXCS 176766 130 BIT #DONEBIT, RXCS Ø01414 Ø32767 000202 000040 176756 132 BEG LOOP 001771 THE DONE PLAG IS SET 136 ITEST FOR ANY ERRORS (ONLY ERROR POSSIBLE IS A PARITY ERROR) 137 138 176750 000214 005767 140 : NO ERRORS . OK . COMPLETE 141 142 143 144 000000 INCREMENT AND TEST THE PARITY ERROR RETRY PROGRAM LOCATION " PTRY " AND RETRY THE COMMAND UNTIL THE ERROR RECOVERS 145 146 FOR UNTIL THE PTRY COUNTER OVERFLOWS TO 2 147 148 000076 149 15Ø 005267 ; RETRY TO FILL THE SECTOR BUFFER ; HARD PARITY ERROR BNE SETUP 000232 0000000 THE TRANSFER REQUEST FLAG IS SET TRANSFER DATA FROM THE PROGRAMS DATA BUFFER TO THE RX#1 SECTOR BUFFER ; PROGRAMS DATA BUFFER IS 64 WORDS IN LENGTH MOVB #(RØ)+, RXDB BR LOOP 176732 113067 000234 000240 000756 ``` Figure 4-24 RX11/RXV11 Fill Buffer Example - 2. If an error occurs and the program executes a read error code function (111), a parity error may occur for that command. The error status would not be for the error in which the read error code function was originally required. - 3. The DRV SEL RDY bit is only updated at the time of a read status function (101) for both drives, and after an Initialize, depending on the status of drive 0. At the termination of any other functions it reflects the drive status of the last Read Status or Initialize command. - 4. It is not required to load the Drive Select bit into the RXCS when the command is Fill Buffer (000) or Empty Buffer (010). - 5. Sector Addressing: 1-26 (No sector 0) Track Addressing: 0-76 - 6. A power failure causing the recalibration of the drives will result in a Done condition, the same as finishing reading a sector. However, during a power failure, RXES bit 2 (Initialize Done) will set. Checking this bit will indicate a power fail condition. - 7. Excessive use of the read status function (101) will result in drastically decreased throughput, because a read status function requires between one and two diskette revolutions or about 250 ms to complete. 4.2.6 Error Recovery There are two error indications given by the RX11/RXV11 system. The read status function (Paragraph 4.2.3.5) will assemble the current contents of the RXES (Paragraph 4.2.2.6), which can be sampled to determine errors. The read error code function (Paragraph 4.2.3.7) can also be used to retrieve explicit error information. The RX11/RXV11 interface register can be interrogated to determine the type of failure that occurred. A list of error codes follows. #### NOTE A read status function is not necessary if the DRV RDY bit is not going to be interrogated because the RX2ES is in the interface register at the completion of every function. | Octal
Code | Error Code Meaning | |---------------|---| | 0010 | Drive 0 failed to see home on Initialize | | 0020 | Drive 1 failed to see home on Initialize | | 0040 | Tried to access a track greater than 77 | | 0050 | Home was found before desired track was reached | | 0070 | Desired sector could not be found after looking at 52 headers (2 revolutions) | | 0110 |
More than 40 μs and no SEP clock seen | | 0120 | A preamble could not be found | | 0130 | Preamble found but no ID mark found within allowable time span | | 0140 | CRC error on what appeared to be a header. Error is not asserted | | 0150 | The header track address of a good header does not compare with the desired track | | 0160 | Too many tries for an IDAM (identifies header) | | 0200 | CRC error on reading the sector from the disk | | 0220 | R/W electronics failed maintenance mode test | | 0240 | Density Error | ## 4.3 RX211 AND RXV21 PROGRAMMING INFORMATION This section describes device registers, register and vector address assignments, programming specifications, and programming examples for the RX211 and RXV21 interfaces. All software control of the RX211/RXV21 is performed by means of two device registers: the command and status register (RX2CS) and a multipurpose data buffer register (RX2DB) which have been assigned bus addresses and can be read or loaded. The RX02 contains all the control circuitry required to read from and write on the disk and to calculate and verify the CRC. It has a buffer large enough to hold one full sector of diskette data (128 or 256 8-bit bytes). Information is serially passed between the interface and the RX02. A typical diskette write sequence, which is initiated by a user program, would occur in two steps: Fill Buffer – A command to fill the buffer is moved into the RX2CS. The Go bit must be set. The program tests for TR. When TR is detected, the program moves the desired word count into the RX2DB. TR goes false while the word count is moved to the RX02. The program retests TR and moves the bus address into the RX2DB. The device now requests bus mastership and DMA's one data word at a time into the RX2DB and shifts it across the RX02 data bus serially one 8-bit byte at a time into the sector buffer. When the word count register overflows (if necessary, the RX02 control zero-fills the remainder of the sector buffer) the Done bit is set, and an interrupt will occur if the program has enabled interrupts. Write Sector – A command to write the contents of the sector buffer onto the disk is moved into the RX2CS. The program tests TR and when TR is set, moves the desired sector address to the RX2DB. TR remains false while the sector address is shifted to the RX02 control. The control retests TR and when it is again set, moves the desired track address register to the RX2DB. Again TR is negated. The RX02 locates the desired track and sector and compares the diskette density against the assigned function density and writes the contents of the sector buffer onto the disk if the densities agree. When the write operation is completed, the Done bit is set and an interrupt will occur if the program has enabled interrupts. A typical disk read operation occurs in the reverse order. First, the desired track and sector are located and the contents of the sector are read into the sector buffer (read sector). Then the contents of the sector buffer is unloaded into memory (empty buffer). In either case, the contents of the sector buffer are not valid if either a Power Fail or Initialize follows a fill buffer or read sector function. 4.3.1 Register and Vector Addresses The RX211/RXV21 use two registers for communicating with the host computer: the command and status register (RX2CS) normally assigned bus address 177170 and the data buffer register (RX2DB) normally assigned bus address 177172. The vector address is 264. ## 4.3.2 Register Description **4.3.2.1** RX2CS – Command and Status (177170) – Loading this register while the RX02 is not busy and with bit 0=1 will initiate a function as described below and indicated in Figure 4-25. Figure 4-25 RX2CS Format RX211/RXV21 ## Bit No. Description - O Go Initiates a command to RX02. This is a write-only bit. - Function Select These bits code one of the eight possible functions described in Paragraph 4.3.3 and listed below. These are write-only bits. | Code | Function | |------|---------------------------| | 000 | Fill Buffer | | 001 | Empty Buffer | | 010 | Write Sector | | 011 | Read Sector | | 100 | Set Media Density | | 101 | Read Status | | 110 | Write Deleted Data Sector | | 111 | Read Error Code | 4 Unit select – This bit selects one of the two possible disks for execution of the desired function. This bit is readable only when Done is set, at which time it indicates the unit previously selected. This is a read/write bit. - Done This bit indicates the completion of a function. Done will generate an interrupt when asserted if Interrupt Enable (RX2CS bit 6) is set. This is a read-only bit. - Interrupt Enable This bit is set by the program to enable an interrupt when the RX02 has completed an operation (Done). The condition of this bit is normally determined at the time a function is initiated. This bit is cleared by Initialize and is a read/write bit. - 7 Transfer Request This bit signifies that the RX211/RXV21 needs data or has data available. This is a read-only bit. - Density This bit determines the density of the function to be executed. This bit is readable only when Done is set, at which time it indicates the density of the function previously executed. This is a read/write bit. - 9-10 Reserved for future use. Must be written as a zero. - 11 RX02 This bit is set by the interface to inform the programmer that this is an RX02 system. This is a read-only bit. - Extended address These bits are used to declare an extended bus address. These are write-only bits. - 14 RX211/RXV21 Initialize This bit is set by the program to initialize the RX211/RXV21 without initializing all devices on the Unibus. This is a write-only bit. # CAUTION Loading the lower byte of the RX2CS will also load the upper byte of the RX2CS. Upon setting this bit in the RX2CS, the RX211/RXV21 will negate Done and move the head position mechanism of both drives (if two are available) to track 0. Upon completion of a successful Initialize, the RX02 will zero the error and status register, and set Initialize Done. It will also read sector 1 of track 1 on drive 0 into the buffer. - Error This bit is set by the RX02 to indicate that an error has occurred during an attempt to execute a command. This read-only bit is cleared by the initiation of a new command or an Initialize. - **4.3.2.2** RX2DB Data Buffer Register (177172) This register serves as a general purpose data path between the RX02 and the interface. It may represent one of six RX02 registers according to the protocol of the function in progress (Paragraph 4.3.3). This register is read/write if the RX02 is not in the process of executing a command; that is, it may be manipulated without affecting the RX02 subsystem. If the RX02 is actively executing a command, this register will only accept data if RX2CS bit 7 (TR) is set. In addition, valid data can only be read when TR is set. ## **CAUTION** Violation of protocol in manipulation of this register may cause permanent data loss. **4.3.2.3** RX2TA – RX Track Address (Figure 4-26) – This register is loaded to indicate on which of the 114₈ (0-76₁₀) tracks a given function is to operate. It can be addressed only under the protocol of the function in progress (Paragraph 4.3.3). Bits 8-15 are unused and are ignored by the control. Figure 4-26 RX2TA Format (RX211/RXV21) **4.3.2.4** RX2SA – RX Sector Address (Figure 4-27) – This register is loaded to indicate on which of the 32₈ (1-26₁₀) sectors a given function is to operate. It can be addressed only under the protocol of the function in progress (Paragraph 4.3.3). Figure 4-27 RX2SA Format (RX211/RXV21) **4.3.2.5** RX2WC – RX Word Count Register (Figure 4-28) – For a double density sector the maximum word count is 128₁₀. For a single density sector the maximum word count is 64₁₀. If a word count is beyond the limit for the density indicated, the control asserts Word Count Overflow (bit 10 of RX2ES). This is a write-only register. The actual word count and not the 2's complement of the word count is loaded into the register. Figure 4-28 RX2WC Format (RX211/RXV21) 4.3.2.6 RX2BA – RX Bus Address Register (Figure 4-29) – This register specifies the bus address of data transferred during fill buffer, empty buffer, and read definitive error operations. Incrementation takes place after a memory transaction has occurred. The RX2BA, therefore, is loaded with the address of the first data word to be transferred. This is a 16-bit, write-only register (Paragraph 4.3.3). Figure 4-29 RX2BA and RX2DB Format (RX211/RXV21) **4.3.2.7 RX2DB** – **RX Data Buffer** (Figure 4-29) – All information transferred to and from the floppy media passes through this register and is addressable only under the protocol of the function in progress (Paragraph 4.3.3). **4.3.2.8** RX2ES – RX Error and Status (Figure 4-30) – This register contains the current error and status conditions of the drive selected by bit 4 (Unit Select) of the RX2CS. This read-only register can be addressed only under the protocol of the function in progress (Paragraph 4.3.3). The RX2ES is located in the RX2DB upon completion of a function. Figure 4-30 RX2ES Format (RX211/RXV21) ## RXES bit assignments are: ## Bit No. Description - O CRC Error A cyclic redundancy check error was detected as information was retrieved from a data field of the diskette. The data collected must be considered invalid. The RX2ES is moved to the RX2DB, and Error and Done are asserted. It is suggested that the data transfer be retried up to 10 times, as most errors are recoverable (soft). - Initialize Done This bit is asserted in the RX2ES to indicate completion of the Initialize routine which can be caused by RX02 power failure, system power failure, or programmable or bus Initialize. - RX AC LO This bit is set by the interface to indicate a power failure in the RX02 subsystem. - Density Error This bit indicates that the density of the function in progress does not match the drive density. Upon detection of
this error the control terminates the operation and asserts Error and Done. - Drive Density This bit indicates the density of the diskette in the drive selected (indicated by bit 8). The density of the drive is determined during read and write sector operations. - Deleted Data This bit indicates that in the course of recovering data, the "deleted data" address mark was detected at the beginning of the data field. The Drv Den bit indicates whether the mark was a single or double density deleted data address mark. The data following the mark will be collected and transferred normally, as the deleted data mark has no further significance other than to establish drive density. Any alteration of files or actual deletion of data due to this mark must be accomplished by user software. - Drive Ready This bit indicates that the selected drive is ready if bit 7=1 and all conditions for disk operation are satisfied, such as door closed, power okay, diskette up to speed, etc. The RX02 may be presumed to be ready to perform any operation. This bit is only valid when retrieved via a read status function or initialize. - 8 Unit Select This bit indicates that drive 0 is selected if bit 8=0. This bit indicates the drive that is currently selected. - Word Count Overflow This bit indicates that the word count is beyond sector size. The fill or empty buffer operation is terminated and Error and Done are set. - Nonexistent Memory Error This bit is set by the interface when a DMA transfer is being performed and the memory address specified in RX2BA is nonexistent. #### 4.3.3 Function Codes Following the strict protocol of the individual function, data storage and recovery on the RX211/RXV21 occur with careful manipulation of the RX2CS and RX2DB registers. The penalty for violation of protocol can be permanent data loss. A summary of the function codes is presented below: | 000 | Fill Buffer | |-----|---------------------------| | 001 | Empty Buffer | | 010 | Write Sector | | 011 | Read Sector | | 100 | Set Media Density | | 101 | Read Status | | 110 | Write Deleted Data Sector | | 111 | Read Error Code | The following paragraphs describe in detail the programming protocol associated with each function encoded and written into RX2CS bits 1-3 if Done is set. 4.3.3.1 Fill Buffer (000) – This function is used to fill the RX02 data buffer with the number of words of data specified by the RX2WC register. Fill buffer is a complete function in itself: the function ends when RX2WC overflows, and if necessary, the control has zero-filled the remainder of the buffer. The contents of the buffer may be written on the disk by means of a subsequent Write Sector command or returned to the host processor by an Empty Buffer command. If the word count is too large, the function is terminated, Error and Done are asserted, and the Word Count overflow bit is set in RX2ES. To initiate this function the RX2CS is loaded with the function. Bit 4 of the RX2CS (Unit Select) does not affect this function since no disk operation is involved. Bit 8 (Density) must be properly selected since this determines the word count limit. When the command has been loaded, the Done bit (RX2CS bit 5) goes false. When the TR bit is asserted the RX2WC may be loaded into the data buffer register. When TR is again asserted, the RX2BA may be loaded into the RX2DB. The data words are transferred directly from memory and when RX2WC overflows and the control has zero-filled the remainder of the sector buffer, if necessary, Done is asserted ending the operation. If bit 6 RX2CS (Interrupt Enable) is set, an interrupt is initiated. Any read of the RX2DB during the data transfer is ignored by the interface. After Done is true the RX2ES is located in the RX2DB register. **4.3.3.2** Empty Buffer (001) – This function is used to empty the contents of the internal buffer through the RX211/RXV21 for use by the host processor. This data is in the buffer as the result of a previous Fill Buffer or Read Sector command. The programming protocol for this function is identical to that for the Fill Buffer command. The RX2CS is loaded with the command to initiate the function. (This function will ignore bit 4 RX2CS, Unit Select). RX2CS bit 8 (Density) must be selected to allow the proper word count limit. When the command has been loaded, the Done bit (RX2CS bit 5) goes false. When the TR bit is asserted, the RX2WC may be loaded into the RX2DB. When TR is again asserted the RX2BA may be loaded into the RX2DB. The RX211/RXV21 assembles one word of data at a time and transfers it directly to memory. Transfers occur until word count overflow, at which time the operation is complete and Done goes true. If bit 6 RX2CS (Interrupt Enable) is set, an interrupt is initiated. After Done is true, the RX2ES is located in the data buffer register. **4.3.3.3** Write Sector (010) – This function is used to locate a desired sector on the diskette and fill it with the contents of the internal buffer. The initiation of the function clears RX2ES, TR, and Done. When TR is asserted, the program must load the desired sector address into RX2DB, which will drop TR. When TR is again asserted, the program must load the desired track address into the RX2DB, which will drop TR. TR will remain unasserted while the RX02 attempts to locate the desired sector. The diskette density is determined at this time and is compared to the function density. If the densities do not agree, the operation is terminated; bit 4 RX2ES is set, RX2ES is moved to the RX2DB, Error (bit 15 RX2CS) is set, Done is asserted, and an interrupt is initiated, if bit 6 RX2CS (Interrupt Enable) is set. If the densities agree but the RX02 is unable to locate the desired sector within two diskette revolutions, the interface will abort the operation, move the contents of RX2ES to the RX2DB, set Error (bit 15 RX2CS), assert Done, and initiate an interrupt if bit 6 RX2CS (Interrupt Enable) is set. If the desired sector has been reached and the densities agree, the RX211/RXV21 will write the 128₁₀ or 64₁₀ words stored in the internal buffer followed by a CRC character which is automatically calculated by the RX02. The RX211/RXV21 ends the function by asserting Done and if bit 6 RX2CS (Interrupt Enable) is set, initiating an interrupt. ## **CAUTION** The contents of the sector buffer are not valid data after a power loss has been detected by the RX02. However, write sector will be accepted as a valid instruction and the (random) contents of the buffer will be written, followed by a valid CRC. #### **NOTE** The contents of the sector buffer are not destroyed during a write sector operation. **4.3.3.4** Read Sector (011) – This function is used to locate the desired sector and transfer the contents of the data field to the internal buffer in the control. This function may also be used to retrieve rapidly (5 ms) the current status of the drive selected. The initiation of this function clears RX2ES, TR, and Done. When TR is asserted the program must load the desired sector address into the RX2DB, which will drop TR. When TR is again asserted, the program must load the desired track address into the RX2DB, which will drop TR. TR and Done will remain negated while the RX02 attempts to locate the desired sector. If the RX02 is unable to locate the desired sector within two diskette revolutions for any reason, the RXV21/RX211 will abort the operation, set Done and Error (bit 15 RX2CS), move the contents of the RX2ES to the RX2DB, and if bit 6 RX2CS (Interrupt Enable) is set, initiate an interrupt. If the desired sector is successfully located, the control reads the data address mark and determines the density of the diskette. If the diskette (drive) density does not agree with the function density the operation is terminated and Done and Error (bit 15 RX2CS) are asserted. Bit 4 RX2ES is set (Density Error) and the RX2ES is moved to the RX2DB. If bit 6 RX2CS (Interrupt Enable) is set, an interrupt is initiated. If a legal data mark is successfully located, and the control and densities agree, the control will read data from the sector into the internal buffer. If a deleted data address mark was detected, the control will set bit 6 RX2ES (DD). As data enters the internal buffer, a CRC is computed based on the data field and the CRC bytes previously recorded. A non-zero residue indicates that a read error has occurred and the control sets bit 0 RX2ES (CRC error) and bit 15 RX2CS (Error). The RX211/RXV21 ends the operation by asserting Done and moving the contents of the RX2ES into the RX2DB. If bit 6 RX2CS is set, an interrupt is initiated. If the desired sector is successfully located, the densities agree, and the data is transferred with no CRC error, Done will be set and if bit 6 RX2CS (Interrupt Enable) is set the RX211/RXV21 initiates an interrupt. **4.3.3.5** Set Media Density (100) – This function causes the entire diskette to be reassigned to a new density. Bit 8 RX2CS (Density) indicates the new density. The control reformats the diskette by writing new data address marks (double or single density) and zeroing all of the data fields on the diskette. The function is initiated by loading the RX2CS with the command. Initiation of the function clears RX2ES and Done. When TR is set, an ASCII "I" (111) must be loaded into the RX2DB to complete the protocol. This extra character is a safeguard against an error in loading the command. When the control recognizes this character it begins executing the command. The control starts at sector 1, track 0 and reads the header information, then starts a write operation. If the header information is damaged, the control will abort the operation. If the operation is successfully completed, Done is set and if bit 6 RX2CS (Interrupt Enable) is set an interrupt is initiated. #### **CAUTION** This operation takes about 15 seconds and should not be interrupted. If for any reason the operation is interrupted, an illegal diskette has been
generated which may have data marks of both densities. This diskette should again be completely reformatted. - **4.3.3.6 Maintenance Read Status** (101) This function is initiated by loading the RX2CS with the command. Done is cleared. The Drive Ready bit (bit 7 RX2ES) is updated by counting index pulses in the control. The Drive Density is updated by loading the head of the selected drive and reading the first data mark. The RX2ES is moved into the RX2DB. The RX2CS may be sampled when Done (bit 5 RX2CS) is again asserted and if bit RX2CS (Interrupt Enable) is set, an interrupt will occur. This operation requires approximately 250 ms to complete. - **4.3.3.7** Write Sector with Deleted Data (110) This operation is identical to function 010 (write sector) with the exception that a deleted data address mark is written preceding the data rather than the standard data address mark. The Density bit associated with the function indicates whether a single or double density deleted data address mark will be written. - **4.3.3.8 Read Error Code** (111) The read error code function implies a read extended status. In addition to the specific error code a dump of the control's internal scratch pad registers also occurs. This is the only way that the word count register can be retrieved. This function is used to retrieve specific information as well as drive status information depending upon detection of the general Error bit. The transfer of the registers is a DMA transfer. The function is initiated by loading the RX2CS with the command and then Done goes false. When TR is true, the RX2BA may be loaded into the RX2DB and TR goes false. The registers are assembled one word at a time and transferred directly to memory. ## **Register Protocol** | Definitive Error Codes | | |--|---| | | | | Current Track Address of Drive 0 | | | Current Track Address of Drive 1 | | | | | | | | | Unit Select Bit | * | | Head Load Bit | * | | Drive Density Bit of Both Drives | * | | Density of Read Error Register Command | * | | Track Address of Selected Drive | † | | | Current Track Address of Drive 1 Target Track of Current Disk Access Target Sector of Current Disk Access Unit Select Bit Head Load Bit Drive Density Bit of Both Drives Density of Read Error Register Command | ^{*} For DMA interfaces the controller status soft register is sent to the interface at the end of the command. The four status bits are included in an 8-bit word. Unit Select = bit 7, Density of Drive 1 = bit 6, Head Load = bit 5, Density of Drive 0 = bit 4, Density of Read Error Register Command = bit 0. When the RX02 senses the return of power, it will remove Done and begin a sequence to: - 1. Move each drive head position mechanism to track 0 - 2. Clear any active error bits - 3. Read sector 1 of track 1, on drive 0 - 4. Assert Initialize Done in the RXES. Upon completion of the power up sequence, Done is again asserted. There is no guarantee that information being written at the time of a power failure will be retrievable; however, all other information on the diskette will remain unaltered. **4.3.3.9** RX02 Power Fail – When the RX02 control senses a loss of power within the RX02, it will unload the head and abort all controller action. The RXAC L line is asserted to indicate to the RX211/RXV21 that subsystem power is gone. The RX211/RXV21 asserts Done and Error and sets the RXAC L bit in the RX2ES. [†]The Track Address of the Selected Drive – Error is only meaningful on a code 150 error. The register contains the address of the cylinder that the head reached on a seek error. 4.3.4 Error Recovery There are two error indications given by the RX211/RXV21 system. The maintenance read status function (Paragraph 4.3.3.6) will assemble the current contents of the RX2ES which can be sampled to determine errors. The read error code function (Paragraph 4.3.3.8) can also be retrieved for explicit error information. The RX211/RXV21 interface register can be interrogated to determine the type of failure that occurred. The error codes and their meaning are listed below. | Octal
Code | | |---------------|--| | 0010 | Drive 0 failed to see home on Initialize. | | 0020 | Drive 1 failed to see home on Initialize. | | 0040 | Tried to access a track greater than 76 | | 0050 | Home was found before desired track was reached. | | 0070 | Desired sector could not be found after looking at 52 headers (2 revolutions). | | 0110 | More than 40 μ s and no SEP clock seen | | 0120 | A preamble could not be found. | | 0130 | Preamble found but no ID mark found within allowable time span | | 0150 | The header track address of a good header does not compare with the desired track. | | 0160 | Too many tries for an IDAM (identifies header) | | 0170 | Data AM not found in allotted time | | 0200 | CRC error on reading the sector from the disk. No code appears in the ERREG. | | 0220 | R/W electronics failed maintenance mode test. | | 0230 | Word count overflow | | 0240 | Density Error | | 0250 | Wrong key word for set media density command | | | | # 4.3.5 RX211/RXV21Programming Examples #### 4.3.5.1 Write/Fill Buffer Figure 4-31 illustrates a program to write data on a disk by performing write and fill buffer subroutines. Initially, the write subroutine tests to see if there is an error from the last operation. If there is an error, a branch is made and the write subroutine is not performed; otherwise a jump is made to the fill buffer subroutine. (Before data can be written the RX02 sector buffer must be filled.) The Fill Buffer command is set, the density (single or double) is set, and the command is loaded in the RX02/RXCS. After a TR is received, the word count (for either 128 or 256 bytes of data) is loaded in the RX02/RXDB. After another TR is received, the starting address where data will be retrieved from memory is loaded in the RX02/RXDB. The RX02 controller fills the sector buffer with the number of bytes indicated then the RX02 controller sets the Done bit. (If an Error is detected, the Error bit is set in the RXCS and the program halts.) The program returns to the write subroutine, the drive is selected, the write command and interrupt enable are set, the density is set, and the command is loaded in the RX02/RXCS. There is a wait for TR, then the sector address is loaded in the RX02/RXDB; there is another wait for TR and the track address is loaded in the RX02/RXDB. The data loaded in the sector buffer is written by the RX02 controller on the selected drive (disk) at the selected track and sector. While the controller writes the data, the program waits for an interrupt (which signifies the completion of write data) to occur in order to return to the main program. | WW1166 | 005767 | 061076 | | OUTPUT: | TST | FIN | IF FINI FLAG | |--|--|--|------------------|---------|--|--|--| | | 001041 | , | | | | ENDOUT | EQUALS ZERO THEN | | | 004767 | 00100 | | | | | IFILL RXU2 BUFFER | | 001200 | 000240 | 555.55 | | | NOP | 10,000012 | TITED KNOZ BOTTER | | | 016767 | 001032 | 001026 | | | UTI, CMD | SELECT DRIVE | | 001210 | 052767 | | 001020 | | | | SET TO WRITE SECTOR + INT ENABL | | | Ø56767 | | 001012 | | | | SET DENSITY | | | Ø16777 | | 001076 | | | | LOAD CUMMAND | | | 004767 | 000710 | | | | | IGO AWAIT TRANSFER READY | | v1236 | 005767 | 001026 | | | | | IIF FINI FLAG | | | 001015 | 201020 | | | | | EQUALS ZERO THEN | | | Ø16777 | 041464 | 001060 | | | | LOAD SECTOR ADDRESS | | | 010777 | UU 2670 | 201000 | | | | IGO AWAIT TRANSFER READY | | | Ø05767 | 001006 | | | | | IF FINI FLAG | | | 001005 | 261000 | | | | | EQUALS ZERO THEN | | | Ø16777 | 000762 | 441440 | | | | LOAD TRACK ADDRESS | | | 004767 | | 001040 | | 150 | PC, INTER | WALT FOR INTERRUPT | | | 000207 | 202200 | | ENDOUT: | | PC TNIER | RETURN | | 01716 | | | | | | | | | ου1276
 | 800201 | | | SETIL | MODULE 4 | .1 = FILL RXV2 | BÜFFER | | 12/6 | 800201 | | | SETIL | MODULE 4 | .1 = FILL RX02 | BÜFFER | | ν1276
 | 000201 | | | .SBTIL | MODULE 4 | .1 = FİLL RXUZ | BÜFFER | | 0130¢ | υ12767 | | | ; | MOV | #1.CMD | SET FILL BUFFER COMMAND | | 01300
01300 | υ12767
υ56767 | 000762 | 000722 | ; | MOV
BIS | #1,CMD
DENSTY,CMD | | | 01300
01306
01314 | υ12767 | 000762 | | ; | MOV
BIS
MOV | #1,CMD
DENSTY,CMD
CMD,@RXCS | JSET FILL BUFFER COMMAND JSET DENSITY JLOAD COMMAND | | 01300
01300
01314
01322 | 012767
056767
016777
004767 | 000762
000716
000620 | 000722 | ; | MOV
BIS
MOV
JSR | #1,CMD
DENSTY,CMD
CMD,@RXCS
PC.AWTR | JSET FILL BUFFER COMMAND
JSET DENSITY
JLOAD COMMAND
IWAIT FOR "TR" | | 01300
01300
01314
01322
01326 | 012767
056767
01677
004767
005767 |
600762
600716 | 000722 | ; | MOV
BIS
MOV
JSR
TST | #1,CMD
DENSTY,CMD
CMD,@RXCS
PC,ANTR
FIN | ;SET FILL BUFFER COMMAND
;SET DENSITY
;LOAD COMMAND
;WAIT FOR "TR"
;IF FINI FLAG | | 01308
01306
01314
01322
01326
01332 | 012767
056767
016777
004767
005767
001024 | 000762
000716
000620
000736 | 000722
001006 | ; | MOV
BIS
MOV
JSR
TST | #1,CMD
DENSTY,CMD
CML,@FXCS
PC,AWTR
FIN | JSET FILL BUFFER COMMAND JSET DENSITY JLOAD COMMAND JWAIT FOR "TR" JIF FINI FLAG JEQUALS ZERO THEN | | 01306
01314
01322
01326
01332 | 012767
056767
016777
004767
005767
001024
016777 | 000762
000716
000620
000736 | 000722 | ; | MOV
BIS
MOV
JSR
TST | #1,CMD
DENSTY,CMD
CML,@FXCS
PC,AWTR
FIN | JSET FILL BUFFER COMMAND JSET DENSITY JLOAD COMMAND JWAIT FOR "TR" JIF FINI FLAG JEGUALS ZERO THEN JLOAD WORD COUNT | | 01300
01314
01314
01322
01326
01336
01334 | 012767
056767
016777
004767
005767
001024 | 000762
000716
000620
000736 | 000722
001006 | ; | MOV
BIS
MOV
JSR
TST
BNE
MOV | *1,CMD DENSTY,CMD CMC,GHXCS PC,ANTR FIN ENDOU2 WDCNT,GHXDB PC,ANTR | JSET FILL BUFFER COMMAND JSET DENSITY JLOAD COMMAND JWAIT FOR "TR" JIF FINI FLAG JEGUALS ZERO THEN JLOAD WORD COUNT JWAIT FOR "TR" | | 01308
01306
01314
01322
01326
01332 | 012767
056767
016777
004767
005767
001024
016777 | 000762
000716
000620
000736 | 000722
001006 | ; | MOV
BIS
MOV
JSR
TST
BNE
MOV
JSK | *1,CMD DENSTY,CMD CMC,GHXCS PC,ANTR FIN ENDOU2 WDCNT,GHXDB PC,ANTR | JSET FILL BUFFER COMMAND JSET DENSITY JLOAD COMMAND JWAIT FOR "TR" JIF FINI FLAG JEQUALS ZEFO THEN JLOAD WORD COUNT JWAIT FOR "TR" JIF FINI FLAG | | 01300
01314
01314
01322
01326
01336
01334 | 012767
056767
016777
004767
005767
001024
016777
004767 | 000762
000716
000620
000736
000726
000660 | 000722
001006 | ; | MOV
BIS
MOV
JSR
TST
BNE
MOV
JSR
TST | *1,CMD DENSTY,CMD CMC,GHXCS PC,ANTR FIN ENDOU2 WDCNT,GHXDB PC,ANTR | JSET FILL BUFFER COMMAND JSET DENSITY JLOAD COMMAND JWAIT FOR "TR" JIF FINI FLAG JEQUALS ZERO THEN JLOAD HORD COUNT JWAIT FOR "TR" JIF FINI FLAG JEQUALS ZERO THEN | | 01306
1314
01322
01326
01332
01334
01334
01352 | 012767
056767
016777
004767
005767
001024
016777
004767
005767 | 000762
000716
000620
000736
000726
000660 | 000722
001006 | ; | MOV
BIS
MOV
JSR
TST
BNE
MOV
JSR
TST
BIE | #1,CMD DEMSTY,CMD CMD, @HXCS PC,AWIR FIN ENDOU2 WDCNT,@RXDB PC,AWIR FIN | JSET FILL BUFFER COMMAND JSET DENSITY JLOAD COMMAND JWAIT FOR "TR" JIF FINI FLAG JEGUALS ZERO THEN JLOAD WORD COUNT JWAIT FOR "TR" JIF FINI FLAG JEGUALS ZERO THEN JLOAD BASE AUR FOR OUTPUT BUFFLR | | 1300
1300
1314
1326
1332
1334
1342
1346
1352 | 012767
056767
016777
004767
0051024
016777
004767
004767
001014 | 000762
000762
000620
000736
000726
000600
000716 | 000722
001006 | ; | MOV
BIS
MOV
JSR
TST
BNE
MOV
JSK
TST
BHE
MOV | #1,CMD
DEMSTY,CMD
CCM, #ERXCS
PC, AWTR
FIN
ENDOU2
WDCNT, #ERXDB
PC, AWTR
FIN | JSET FILL BUFFER COMMAND JSET DENSITY JLOAD COMMAND JWAIT FOR "TR" JIF FINI FLAG JEQUALS ZERO THEN JLOAD HORD COUNT JWAIT FOR "TR" JIF FINI FLAG JEQUALS ZERO THEN | | 31300
31314
31314
31326
313326
31334
31342
31352
31352 | 012767
056767
016777
004767
005767
001024
016777
004767
005767
001014
012777 | 000762
000716
000620
000736
000726
000716
000716 | 000722
001006 | ; | MOV
BIS
MOV
JSR
TST
BNE
MOV
JSK
TST
BNE
BNE
MOV
JSR | #1,CMD
DEMSTY,CMD
CMC, PHYCS
PC, AWTR
FIN
WDCNT, PRYDB
PC, AWTR
FIN
ENDOU2
#WBUT, PRYDB | JSET FILL BUFFER COMMAND JSET DENSITY JLOAD COMMAND JWAIT FOR "TR" JIF FINI FLAG JEGUALS ZERO THEN JLOAD WORD COUNT JWAIT FOR "TR" JIF FINI FLAG JEGUALS ZERO THEN JLOAD BASE AUR FOR OUTPUT BUFFLR | | 01300
01314
01322
01326
01332
01334
01342
01352
01366 | 012767
056767
016777
004767
005767
001024
016777
004767
001014
012777
004767 | 000762
000716
000620
000736
000726
000716
002342
000500 | 000722
001006 | ; | MOV
BIS
MOV
JSR
TST
BNE
MOV
JSK
TST
BHE
MOV
JSR
TST | #1,CMD DEMSTY,CMD CML,@FXCS PC,AWTR FIN ENDOU2 WDCNT,@FXDB PC,AWTR FIN ENDOU2 ###BUF,@FXDB | JSET FILL BUFFER COMMAND JSET DENSITY JLOAD COMMAND JLOAD COMMAND JIF FINI FLAG JEQUALS ZERO THEN JLOAD WORD COUNT JWAIT FOR "TR" JIF FINI FLAG JEQUALS ZERO THEN JLOAD BASE ADR FOR OUTPUT BUFFER JWAIT FOR "DONNE" | | 21306
21314
21322
21332
21334
21334
21352
21354
21356
21356
21372 | 012767
056767
004767
004767
005767
001024
016777
004767
001014
012777
004767
005767 | 000762
000716
000620
000736
000726
000716
002342
000500 | 000722
001006 | ; | MOV
BIS
MOV
JSR
TST
BNE
MOV
JSR
TST
BHOV
JSR
TSR | #1,CMD DEMSTY,CMD CMF,@HXCS PC,AWTR FIN ENDOU2 WDCNT,@RXDB PC,AWTR FIN ENDOU2 #WBUF,@RXDB | JSET FILL BUFFER COMMAND JSET DENSITY JLOAD COMMAND JWAIT FOR "TR" JIF FINI FLAG JEGUALS ZERO THEN JLOAD WORD COUNT JWAIT FOR "TR" JIF FINI FLAG JEGUALS ZERO THEN JLOAD BASE ADR FOR OUTPUT BUFFER JWAIT FOR "TR" | | 01300
013140
013122
01326
01332
01334
01334
01354
01354
01354
01357 | 612767
656767
6167767
608767
608767
601024
616777
601677
601614
612777
604767
605767
605767
605767 | 000762 000762 000716 000620 000736 000620 000716 000342 000500 000676 | 000722
001006 | ; | MOV
BIS
MOV
JSR
TST
BNE
MOV
JSR
TST
BNE
MOV
JSR
TST
BNE
TST | #1,CMD DEMSTY,CMD CML, @RXCS PC, AWTR FIN ENDOU2 WDCNT, @RXDB PC, AWTR FIN ENDOU2 **BUBTF, @RXDB PC, AWDN FIN ENDOU2 **BUBTF, @RXDB PC, AWDN FIN ENDOU2 | JSET FILL BUFFER COMMAND JSET DENSITY JLOAD COMMAND JWAIT FOR "TR" JIF FINI FLAG JEQUALS ZERO THEN JLOAD WORD COUNT JWAIT FOR "TR" JIF FINI FLAG JEQUALS ZERO THEN JLOAD BASE AUR FOR OUTPUT BUFFER JWAIT FOR "DONE" JWAIT FOR "DONE" JIF FINI FLAG JEQUALS ZERO THEN JIF JEVILE ERROR BIT | | 21308
21314
21322
21322
21322
21332
21334
21334
21334
21336
21352
21366
21372
21372
21372
21372 | 012767
056767
016777
004767
005767
001024
016777
004767
001014
012777
004767
005767
001024
005767
001024 | 000762 000762 000716 000620 000736 000620 000716 000342 000500 000676 | 000722
001006 | ; | MOV
BIS
MOV
JSR
TST
BNE
MOV
JSR
TST
BHE
MOV
JSR
TST
BNE
TST
BNE
TST
BNE
TST
BNE | #1,CMD DENSTY,CMD CCM, #4KXCS PC,AWTR FIN ENDOU2 WHOU2 WHOHF,FIN ENDOU2 ***BBF, #RXDB PC,AWTR FIN ENDOU2 ***BBF, #RXDB FIN ENDOU2 ***BBF, #RXDB FIN ENDOU2 | JSET FILL BUFFER COMMAND JSET DENSITY JLOAD COMMAND JWAIT FOR "TR" JIF FINI FLAG JEQUALS ZERO THEN JLOAD WORD COUNT JWAIT FOR "TR" JIF FINI FLAG JEQUALS ZERO THEN JLOAD HASE AUR FOR OUTPUT BUFFER JWAIT FOR "DONE" JIF FINI FLAG JEGUALS ZERO THEN | Figure 4-31 RX211/RXV21 Write/Fill Buffer Example 4.3.5.2 Read/Empty Buffer Figure 4-32 illustrates a program to read data from the disk by performing read and empty buffer subroutines. The drive to be read is selected, the read command and interrupt enable are set, the density is set, and the command is loaded in the RX02/RXCS. There is a wait for TR and then the sector address is loaded in the RX02/RXDB; there is another wait for TR, and the track address is loaded in the RX02/RXDB. While the RX02 controller reads data from the selected location on the selected disk into the RX02 sector buffer, the program waits for an interrupt to occur and then there is a jump to the empty buffer subroutine. The empty buffer command is set, the density is set, and the command is loaded into the RX02/RXCS. After a TR is received, the word count is loaded into the RX02/RXDB; there is another wait for TR and the address in memory where the data is to be stored is loaded into the RX02/RXDB. The data is emptied from the sector buffer by the RX02 controller, and when the buffer is emptied, there is a return to the main program. Figure 4-32 RX211/RXV21 Read/Empty Buffer Example **RX02 FLOPPY DISK SYSTEM USER'S GUIDE** EK-RX02-UG-001 Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of our publications. | | · · · · · · · · · · · · · · · · · · · | | |---
---|------------------------| | | | | | | | | | | | | | what leatures are most ascial. | 1 Anglin and a second a second and | | | | | | | | | | | What faults or errors have you found in | n the manual? | | | | | | | | | | | | think it was intended to satisfy? | | | Does this manual satisfy the need you t | tillink it was intended to satisfy: | | | Does it satisfy your needs? | Why? | | | | <u></u> | | | | | | | | | | | | the Lackseinal December at the Latalog Which Co | ontains information of | | ☐ Please send me the current copy of the remainder of DIGITAL's techn | | | | the remainder of DIGITAL's techn | nical documentation. | | | the remainder of DIGITAL's technique. | nical documentation. Street | | | the remainder of DIGITAL's technology Name Title | nical documentation. Street City | | | the remainder of DIGITAL's technology Name Title | Street City State/Country | | Digital Equipment Corporation 444 Whitney Street Northboro, Ma 01532 Attention: Communications Services (NR2/M15) Customer Services Section | Order | Ma | EK-RX02-UG-001 | |-------|------|----------------| | Oruer | INU. | | | | en e | | | And Alberta Book 1 | | |--|--|--------------------------|--------------------|--------------------|--| | | | fold Here — — | $(x_1, x_2, \dots, x_n) = (x_1, \dots, x_n) \cdot (x_1, \dots, x_n)$ | en e | Do Not Toom | | | | | | | - Do Not Tear - | rold nere and Stap | ie — — — | | | | | | | | | | | | | | | FIRST CLASS | | | | | | | PERMIT NO. 33 | | | | | | *** | MAYNARD, MASS. | | | BUSINESS REPLY MAIL | | | L. | | | | NO POSTAGE STAMP NECE | SSARY IF MAILED IN | THE UNITED STA | ATES | | | | | | No. of the second second | | | | | Postage will be paid by: | | | en Augusta en en e | Digital Equipment C | orporation | | | | | | Technical Document Maynard, Massachus | etts 01754 | | | | | | ,, | | • | | |