DECSYSIEM

BATCH
Reference Manual
Order No. DEC-20-OBRMA-A-D

digital equipment corporation - maynard, massachusetts

First Printing, February 1976

The information in this document is subject to change without notice and should not be construed as a commit-
ment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors

that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance

with the terms of such license.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software on equipment

that is not supplied by DIGITAL.

Copyright @ 1976 by Digital Equipment Corporation

The postage prepaid READER’S COMMENTS form on the last page of this document requests the user’s critical
evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL

DEC

PDP

DECUS

UNIBUS
COMPUTER LABS
COMTEX

DDT

DECCOMM

DECsystem-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC

LAB-8
DECsystem-20

MASSBUS
OMNIBUS
0S/8

PHA

RSTS

RSX
TYPESET-8
TYPESET-10
TYPESET-11

2/76-15

CONTENTS

Page
PREFACE ... ittt it it ittt et e et e e e e e i i e vii
SYNOPSIS OF THE DECSYSTEM-20 BATCH REFERENCE MANUAL vii
CONVENTIONS USED IN THE DECSYSTEM-20 BATCH REFERENCEMANUAL vii
REFERENCES ..ottt it it ittt ettt ettt it ta e st ns s inenenenens viii
CHAPTER 1 INTRODUCTION ... ittt ittt et et ettt et e e 1-1
1.1 BATCH COMPONENT S it et et e e e 1-1
1.1.1 The Input Spoolert 1-1
1.1.2 The Quetue Managero it ittt i it e e ettt e 1-1
1.1.3 The Batch Controllerttt it ittt eee e 1-1
1.14 The Line-Printer Spooler ittt it 1-2
CHAPTER 2 SUBMITTING JOBS it ittt ettt 2-1
2.1 SUBMITTING A JOBWITHCARDS i 2-1
2.1.1 The SJOB Card i e e e e 2-1
2.1.2 The SPASSWORD Card, it 2-1
2.1.3 The SFORTRAN Card i e e e 2-1
2.14 The SEXECUTE Card00ttt ittt 22
2.1.5 The SEOQJ Card i i e e e e 2-2
2.1.6 QUL PUL L . e e e e e 2-2
2.2 SUBMITTING A JOB (CONTROL FILE) TO THE BATCH CONTROLLER . 2-2
2.3 SUBMITTING RELATED JOBS ittt i e e 2-3
CHAPTER 3 SPRINT — THE INPUT SPOOLERt iiiiinenn.n. 31
3.1 SPRINT CONTROL CARDS e 3-1
FCOBOL .. e e e 32
SCREATE . . it e e e e e 32
D AT A . . e e e e e 33
FEOD .. e 3.5
SEOT L e e e e e e e 3.5
$ERROR/SNOERROR i it ii i iii i 3-5
SEXECUTE ... it i et e et e e e 3-6
SINCLUDE . e e e 3-6
BJOB e e e e e 3.7
S-language e 39
SMESSAGE . .. e 3-10
SMODE e 3-11
SPASSWORD e e e 3-12
SSEQUENCE e 3-12
STOPS20 . .. e e e e 3-12
3.2 SPRINT OUTPUT i i e e et et e i 3-13
3.2.1 The Log File i 3-13
3.2.2 SPRINT MeSSaES v v i vttt et ettt et i e e e e et et 3-14
323 SPRINT Error Reportingt 3-14

iii

CHAPTER 4
4.1
4.1.1
4.2
43
4.3.1
4.4

4.5
45.1
4.5.1.1
45.1.2
4.6
4.6.1
4.6.2

CHAPTER 5
5.1
5.2
53
54

APPENDIX A

APPENDIX B

APPENDIX C

CONTENTS (Cont.)

Page
BATCON — THE BATCH CONTROLLERcovuuunn. 4-1
THE CONTROL FILE e 4-1
Interpretation of Line Identifiers 4-1
LABELS .. 4-3
ERROR PROCESSING, ... i 4-3
Reserved Labels i 4.3
BATCH CONTROLLER COMMANDS 4-5
@BACKTO . . .ottt 4-5
@CHKPNT . . e e 4-6
@ERROR ... 4-6
@GOTO . . . it 4-6
@IF 4.7
@MESSAGE 4.7
@NOERROR e 4-8
@NOOPERATOR e 4-8
@OPERATOR 4.8
@PLEASE e e 4.8
@REQUEUE 49
@REVIVE . .. 49
@SILENCE 49
OPERATOR — PROGRAM COMMUNICATIONccu.u... 4-10
Dialogue Mode e 4-10
The @OPERATOR Commandc.00uiiiiinnnnn... 4-10
The @NOOPERATOR Commandc.ouvuiuiunuununo.. 4-10
BATCH CONTROLLER OUTPUT i, 4-10
The LOG File i i 4-10
Batch Controller Messagescoi i in ittt 4-11
ERROR MESSAGES i e 5-1
BATCON MESSAGES e e 5-1
LPTSPL MESSAGES e 5-3
QUENCH MESSAGES e e 54
SPRINT MESSAGES e 5-7
SWITCH DESCRIPTIONS ittt it e A-l
MONITOR ERROR CODES i, B-1
CARD CODES e e e e C-1
.. Index-1

iv

CONTENTS (Cont.)

Page
FIGURES
FIGURE 2-1 Typical Jobon Cards i e e 22
TABLES
TABLE B-1 Monitor Error Codes B-1

PREFACE

The DECsystem-20 Batch Reference Manual is a complete reference document describing the commands for control-
ling jobs under the GALAXY Batch System. The reader of this manual is expected to be familiar with the monitor
commands available to timesharing jobs and familiar with the commands to the various system programs that he will
use. This reference material is not included in the Batch Reference manual. Therefore, it is recommended that this
manual be used in conjunction with the DECsystem-20 User’s Guide. References to all relevant material are given in
the REFERENCES section at the end of this PREFACE.

The information in this manual reflects the software of release 1A of the GALAXY Batch system. This release in-
cludes:

BATCON, version 101

LPTSPL, version 101

QUASAR, version 1A

SPRINT, version 2B

DECsystem-20 Operating System, release 1

SYNOPSIS OF THE DECSYSTEM-20
BATCH REFERENCE MANUAL

Chapter 1 contains a brief introduction to the Batch system and its various components. Chapter 2 describes the sev-
eral methods for submitting jobs to the Batch system. Chapter 3 gives a detailed description of each of the SPRINT
commands (control cards) and describes the output produced by SPRINT. Chapter 4 contains a discussion of the
Batch Controller (BATCON); its method of interpreting user input, error processing, BATCON output, and a descrip-
tion of each of the commands. Chapter 5 lists the Batch System error messages as well as a brief description of the
meaning of each message and the suggested corrective action.

CONVENTIONS USED IN THE DECSYSTEM-20
BATCH REFERENCE MANUAL

The following is a list of the symbols and conventions used in this manual:

a An alphabetic character.

n A decimal number.

o An octal number.

x An alphanumeric character.

vii

</ A carriage return.
Symbol indicating that one of the items enclosed within the braces must be selected.
Symbol indicating an optional element which the user may or may not include.

Therefore, the effect of a list enclosed within braces which are enclosed within brackets is that it is
acceptable to have any one or none of the elements.

0 o
=) L) =~

REFERENCES

This manual describes only the commands for controlling jobs in the Batch system. Those users who wish to have
more information about system commands can refer to the DECsystem-20 User’s Guide (DEC-20-OUGAA-A-D)
referred to within this document simply as the User’s Guide.

Error messages from system programs supplied by DEC that are invoked by the user’s job are explained in the approp-
riate manuals. For example, if a FORTRAN program fails to compile successfully, the descriptions of the error mes-
sages the user receives from the FORTRAN compiler can be found in the DECsystem-20 FORTRAN Reference
Manual (DEC-20-LFRMA-A-D).

Other documents referenced in this manual or which might prove useful to the Batch system user are:

DECsystem-20 MACRO Reference Manual (DEC-20-LMRMA-A-D)
DECsystem-20 COBOL Programmer’s Reference Manual (DEC-20-LCRMA-A-D)
DECsystem-20 BASIC User’s Guide (DEC-20-LBMAA-A-D)

DECsystem-20 APL Reference Manual (DEC-20-LARMA-A-D)

DECsystem-20 EDIT User’s Guide (DEC-20-UEUMA-A-D)

DECsystem-20 Batch Operator’s Guide (DEC-20-OBOGA-A-D)

DECsystem-20 Monitor Calls Reference Manual (DEC-20-OMRMA-A-D)

viii

CHAPTER 1
INTRODUCTION

The Batch System, operating under the control of the DECsystem-20 Operating System, increases system throughput
by processing jobs that do not require human interaction. Types of jobs best suited for a batch environment are: jobs
that are large and long-running, jobs that require large amounts of data, jobs that are frequently run for production,
and jobs that require little or no interaction with the user. Up to 127 Batch jobs can be processed concurrently by the
Batch System. Batch jobs may be entered from card readers and interactive terminals.

1.1 BATCH COMPONENTS
The Batch System consists of a group of programs. Some of these programs arc used for Batch operations only; others
are available for various operations of the total computing system.

The individual Batch components are: the input spooler, SPRINT; the Queue Manager, QUASAR; the Batch Control-
ler, BATCON; and the line-printer spooler, LPTSPL.

1.1.1 The Input Spooler
The Spooling Processor for Input (SPRINT)

1. reads a sequential input stream from a card reader,

2. separates the input by placing it in files according to the SPRINT control cards contained in the input
stream,

3. creates the job’s log file and enters a report of its processing,

4. spools card decks to disk with no Batch job created, and

5. enters the job into the Batch input queue (if the job requires it) for subsequent processing by the Batch
controller.

SPRINT provides the facility for reading ASCII and image cards. (Refer to Appendix C for a table of card codes.)

1.1.2 The Queue Manager

QUASAR, the Batch and spooling system queue manager, is the program that builds and maintains the system queues
of tasks to be processed by the Batch Controller and the output spooler. QUASAR communicates with other compon-
ents in the Batch system through the Inter Process Communication Facility (IPCF). QUENCH (when it has been re-
quested to queue a job) or SPRINT (when it completes reading in a job) informs QUASAR, which makes an entry into
the Batch input queue. QUASAR schedules the jobs in the Batch input queue to be run by BATCON.

Scheduling consists of computing and dynamically revising priorities for the job, according to the job’s parameters and
the priorities established by the system. While the job is running, its queue entry is flagged to show it is in use, but the
entry is not deleted from the queue until the job terminates. When the job is logged off the system, an output queue
entry is usually made; and the entry in the input queue is deleted. QUASAR schedules jobs in the output queues to be
processed by LPTSPL. The job’s output queue entry is deleted only when the output is completely finished.

1.1.3 The Batch Controller

The Batch Controller, BATCON, controls all jobs entered into the Batch System. It reads the control file created either
by SPRINT or by the user and initiates and controls the running of the job by passing data and system program com-
mands directly to the job.

The Batch Controller makes entries to the log file to record its processing of the control file and the job.

1-1

Introduction

1.1.4 The Line-Printer Spooler
The output spooler, LPTSPL, is the program that drives the line printer. This program processes a queue (or list) of
requests wiich is maintained by QUASAR. Instead of sending output directly to the line printer, the user or program
sends output to the disk and the output spooler later transfers the information to the line printer.
One advantage of this procedure is that if the output device is unavailable (for example, because another program is
using it), the user need not know; his program simply sends its output to the disk. Another advantage is that since the
disk is a high speed device, the user’s program is not delayed while it is writing on a slow speed device.
There are two methods of entering jobs into a queue for processing by LPTSPL.

1. Spooling output to a device — this is simply writing to a spooled line printer. For example,

@LIST MYPROG.FOR
(this is equivalent to the command @COPY (FROM) MYPROG.FOR (TO) LPT:)

2. Explicitly queuing output to a device — this method involves using the queue-class command PRINT,
which runs the QUENCH program. For example,

@PRINT MYPROG.FOR

1-2

CHAPTER 2
SUBMITTING JOBS

A job is a unit that consists of one step or a group of steps that the user initiates. It can contain

1. asingle program and its related data, or several programs and their data, and/or
2. the system and program-level commands that are required to control the programs or supply information
to the user.

The Batch System allows the user to submit his job by one of the following two methods:

1. The user punches his job on cards, inserts control cards to SPRINT, and leaves his cards at the designated
place for the operator to run (refer to paragraph 2.1).

2. The user bypasses SPRINT by creating his own control file on disk for the Batch Controller and then en-
ters his job into the Batch input queue from his terminal (refer to Paragraph 2.2).

2.1 SUBMITTING A JOBWITH CARDS

With this method a job is submitted via a deck of cards, bounded by the control cards that mark its beginning and end.
Other control cards to SPRINT are interspersed among the card deck to direct SPRINT’s processing. Figure 2-1 shows
a job containing the appropriate control cards to SPRINT. This job compiles, loads, executes, and lists a FORTRAN
program.

The SPRINT control cards shown in Figure 2-1 are just a few of the control cards available to the user. For a complete
description of all the SPRINT control cards, refer to Chapter 3.

2.1.1 The $JOB Card

This card notifies SPRINT that a job is to be processed. SPRINT creates a control file into which commands are placed
for the Batch Controller and it creates a log file on the disk. The first argument (BATCH-USER) shown on this card

is the user name. The first switch (/JOBNAME:TEST) establishes the user-assigned name for the job. TEST will be

the name used for both the control and log files with file types of .CTL and .LOG respectively. The /ACCOUNT switch
and the account number are required. If the switch is omitted, an error message is issued and the job is not processed.
For a description of switches which can be used on this card, refer to Chapter 3.

2.1.2 The $PASSWORD Card

This card contains the PASSWORD associated with the user name and account number specified on the $JOB card.
In Figure 2-1, the PASSWORD is ABCD, which was assigned to the user by the system manager. Refer to Chapter 3
for more information on the SPASSWORD card.

2.1.3 The $FORTRAN Card

This card causes SPRINT to insert a COMPILE monitor command (refer to the User’s Guide) into the control file to
cause the program to be compiled. Immediately following the SFORTRAN card is the FORTRAN source program to
be compiled. The source program is read into a disk file with a unique filename created by SPRINT and with a file
type of .FOR to indicate that the source program is a FORTRAN program. Refer to Chapter 3 for more information
on the $FORTRAN card.

2-1

Submitting Jobs

This figure illustrates, and Paragraph 2.1.3
describes, a job which happens to contain
SEOJ a FORTRAN program. With the substitu-
tion of the appropriate $-language card for
the SFORTRAN card, this arrangement
would be equally valid for other supported
languages.

$SEXECUTE

FORTRAN PROGRAM

$FORTRAN

$PASSWORD ABCD

$JOB BATCH-USER/JOBN:TEST/ACC:103

DP-10-0002

Figure 2-1 Typical Job on Cards

2.1.4 The SEXECUTE Card

The card after the FORTRAN program is the SEXECUTE card. This card causes SPRINT to insert an EXECUTE sys-
tem command (refer to the User’s Guide) into the control file in order to load and then execute the previously com-
piled program. Refer to Chapter 3 for additional information on this card.

2.1.5 The $EOJ Card
The last card shown in the example is the $EOJ card. It signals the end of the job. Refer to Chapter 3 for more in-
formation about this card.

2.1.6 Output

Once the program is punched on cards, the card deck is submitted to the operator, who in turn stacks the job in the
card reader. The user receives his output in the form of line printer listings. Refer to Chapter 3, section 3.2 for an
explanation of the job output.

2.2 SUBMITTING A JOB (CONTROL FILE) TO THE BATCH CONTROLLER

A job (i.e., a control file) may be submitted directly to the Batch Controller. The file must be a disk file and must
be created with the system editor, EDIT. The control file consists of system commands, Batch commands, user pro-
gram commands, comments, and sequence control statements. Refer to Chapter 4, section 4.4 for a description of
Batch control file commands. The following is an example of creating a control file. It assumes that a file named
DATA FOR already cxists on disk.

RUREATE (FILE)Y JOB.CTL </

Treut JOB.CTL .1

00100 REXECUTE /COMPILE FPROG.FOR /LISTS
*E </

CJOBLOTL 1

(Note that the dollar sign at the end of line 00100 is what is echoed by the system when the
user types ESCape.)

2-2

Submitting Jobs

The control file here is named JOB.CTL. Once the control file is created, the user enters the job into the Batch input
queue with the SUBMIT system command. (Refer to the User’s Guide for a more detailed description of the SUBMIT
command.) The general form of the SUBMIT command is

SUBMIT jobname = control file, logfile

The control file created in the previous example could be submitted to the Batch system using the following abbrevi-
ated form of the SUBMIT command.

@SUBM JOB.CTL

2.3 SUBMITTING RELATED JOBS

Jobs are not necessarily run in the order that they are read into the Batch System. Priorities stipulated by the user on
the $JOB card (refer to Chapter 3) and additional parameters set by the Batch System are dynamically computed by
QUASAR to determine in what order the jobs are run. However, it is often useful to submit several jobs that must be
run in a specific order; for example, one job updates a master file and another job processes it. Therefore, the running
of one job is dependent upon the running of the other. Although these jobs could be combined into one large job, it
is sometimes more convenient to keep them distinct; i.e., they might be submitted by different people at different
times.

Because the jobs in the Batch System are run in order of priority, the user specifies an additional priority called an
initial dependency count on the $JOB card of the dependent job. This dependency count becomes part of the queue
entry. Any input queue entry that has a dependency count greater than zero cannot be scheduled. When the count
becomes zero, the job becomes eligible to be run by the Batch Controller. The dependency count can be altered by
including the QUEUE command as part of any job upon which the dependent job is waiting. Refer to the SUBMIT
command in the User’s Guide for more information.

The QUEUE command switch that allows the user to change the dependency count of another job is the
/MODIFY/DEPEND:n switch. If the user specifies a plus or minus sign before the count (), that number is added
to or subtracted from the dependent job’s count. If the subtraction results in a negative number, then it is treated
as if it were zero. If the user does not specify a sign, the dependent job’s count is changed to the count specified
in the /MODIFY/DEPEND:n switch.

2-3

CHAPTER 3
SPRINT—THE INPUT SPOOLER

SPRINT reads a sequential input stream and separates the input into appropriate files, according to the control cards
supplied by the user. SPRINT prepares the user’s input for processing, but it does not initiate any processing itself.
This processing is accomplished by the Batch Controller.

The input to SPRINT can include user programs and data, system commands, Batch Controller commands and SPRINT
control cards.

SPRINT creates three types of files during its copying of the input data: the user’s data files and source programs, the
Batch control file, and the job’s log file. SPRINT creates the data files and source programs according to the control
cards in the input and places them into the user’s directory. Programs and data are acted upon by the contents of the
control file and are passed to the running job by the Batch Controller. Refer to section 3.1 for the description of the
control cards that cause SPRINT to copy information into these files.

A user control file is created for each valid job and is subsequently processed by the Batch Controller. This file con-
tains all system level and user level commands encountered in the input. SPRINT enters commands resulting from the
processing of its control cards and the control file is placed in the user’s directory. Refer to Chapter 4, section 4.4 for
a description of the Batch Controller commands that can be entered into the control file.

The job’s log file contains a report of SPRINT’s processing, along with a record of any operator intervention during
its operation. This file is in the user’s disk area along with the other SPRINT-created files and usually is deleted after
it is printed by the line-printer spooler.

3.1 SPRINT CONTROL CARDS

Control cards are interspersed through the input stream to direct SPRINT in separating the input into the appropriate
files, either the user’s data files or the control file processed by the Batch Controller. The control cards contain a dol-
lar sign (§) in column 1 and an alphabetic character in column 2. These are the only cards read and interpreted by
SPRINT, the remainder of the input is separated and placed into the appropriate file. Of these control cards, the
$DATA, $CREATE, and $-language without a filename specified cards are also referred to collectively as File Cards,
in that they all cause subsequent cards up to the next SPRINT control card (except SMODE) to be placed into a disk
file. Note that if the user creates his own control file, he bypasses SPRINT and, therefore, cannot use these control
cards.

Only the first few letters of the card name or switch need be specified; as long as the name is unique within its class,
itis accpeted. The first three characters of a card name are generally sufficient to ensure uniqueness, However, it is
recommended that card and switch names be spelled out completely in Batch jobs since if any of the programs change
(e.g.,add a new card or command), existing card decks may be come invalid. The standard comment and continuation
conventions for the system can be used on the control card. The exclamation point (!) indicates the beginning of a
comment and all the characters following the exclamation point through the end of card are treated as a comment.
While a comment field cannot actually be continued, the same effect can be accomplished by the use of an additional
card that contains only a comment. Some examples follow:

SPRINT - The Input Spooler

FORESTE MYFILE FOR PEEGINNING OF SOQURCE FILE
& } FORTRAN source deck
FE0T PEMD OF S0URCE FILE

i FaN HYFTLE FOR
$UREGTN COMPILATION

iy

The user may continue operative information by placing a hyphen as the last non-TAB, non-space character before
the end-of-card or before the beginning of a comment (if present). That is, the hyphen will indicate continuation on
the next card if it immediately precedes one of the following:

1. the end of the card, or

2. a string of spaces and/or TABs followed by the end of card, or
3. an exclamation point followed by a comment, or

4. a string of spaces and/or TABs followed by a comment.

The following two examples illustrate the continuation of operative information, first without comments and then
with comments, respectively: :

1. SCREATE MYFIL1.DAT/ASCII—
/SUPPRESS

2. SCREATE MYFIL2.DAT—!THIS IS A COMMENT
/ASCII/SUPPRESS

All defaults for control card parameters are installation parameters.

The following pages describe the SPRINT control cards. The cards are listed in alphabetical order with the exception
of the $-language cards (e.g., SCOBOL) which are all grouped together under the heading, $-language.

$COBOL

See the $-language card for information about the SCOBOL card.

$CREATE

Function

The SCREATE card directs the Input Spooler to copy all cards following it into a data file. Copying is terminated by
different cards depending on whether the /DOLLARS or the /NODOLLARS switch is specified. Refer to the brief
switch descriptions below, or to Appendix A for a more detailed explanation. The $CREATE card also has the capa-
bility of placing the specified file into the line-printer output queue.

The $CREATE card followed immediately by a $EOD or any other appropriate terminator will create a null file on
disk.

3-2

SPRINT - The Input Spooler

Card Format

$CREATE dev:name.typ/sw [sw,. .. [sw,

dev: = a device name which may be either DSK: or a system logical name. The default is DSK:.

name.typ = the user-assigned name and type of the file to be created. If omitted, the name CRxxx
(where x represents a character arbitrarily chosen by SPRINT to produce a unique name)
is created by SPRINT.

The following is a brief description of each of the switches which can be used on the SCREATE card. These switches
are explained in detail in Appendix A.

Switch Meaning
/ASCII The input is read in ASCII card code.
/DOLLARS Only the $SEQUENCE, $JOB, $EOD, and $EOJ control cards are recognized. All other

cards with a dollar sign in column 1 are treated as user data.

/NODOLLARS If a card has a dollar sign in column 1, the contents of column 2 determine whether it
is treated as a SPRINT control card or user data.

/IMAGE:nn The card deck is read in image mode. The switch must be followed by a decimal num-
ber in the range 2 through 80.

/PRINT SPRINT places the disk file created by the SCREATE card into the line printer output
queue.

/SUPPRESS Trailing blanks are suppressed.

/NOSUPPRESS Trailing blanks are not suppressed.

/WIDTH:nn Columns 1 through nn (inclusive) of each card are read.

SDATA
Function

This card is a File Card which precedes a data deck and causes SPRINT to copy the data into a file on the user’s disk
area and to insert an EXECUTE system command into the control file.

SPRINT maintains a list of filenames of all source or relocatable programs that have been processed since the begin-
ning of the job or since the last SDATA or$EXECUTE card was read. Each time a program is copied by SPRINT,
its name is placed in the list. When the $DATA card is read, SPRINT places an EXECUTE command into the control
file and copies the filenames of the programs into the EXECUTE command string. When the next $-language or
$INCLUDE card is encountered, SPRINT clears the list of filenames so that the next entries into the list reflect only
those filenames copied since the last SDATA or $SEXECUTE command was read.

When the job is run, the programs are loaded and executed. No compilation is performed because the programs are

either in relocatable binary form or have been previously compiled because of the $-language card. If two $DATA
cards appear in a row, the same programs are reloaded and executed again.

33

SPRINT - The Input Spooler

Card Format
$DATA dev:name.typ/sw, [sw,. . . [sw,
dev: = a device name which can be either DSK: or a system logical name. If omitted, DSK: is
assumed.
name.typ = the name of the file to be created. If omitted, SPRINT creates the name xxx (where x
represents a character arbitrarily chosen by SPRINT to produce a unique filename)
with the type .CDR and creates a spooled card-reader file. That is, the user may read
the data file simply by referencing the card-reader from his program. However, when
a name is specified, the user must specifically read the data file from disk.
[sw, [sw,. .. /swn = switches that control the mode of reading and interpreting of the input stream.

The following is a brief description of the switches which can be used on the $DATA card. These switches are explained
in detail in Appendix A.

Switch Meaning
/ASCII The input is read in ASCII card code.
/DOLLARS ' Only the $SEQUENCE, $JOB, $EOD, and $EOJ control cards are recognized. All other

cards with a dollar sign in column 1 are treated as user data.

/NODOLLARS If a card has a dollar sign in column 1, the contents of column 2 determine whether it
is treated as a SPRINT control card or user data.

/IMAGE:nn The card deck is read in image mode. The switch must be followed by a decimal number
in the range 2 through 80.

/MAP This switch causes a loader map to be generated and printed.
/NOMAP A loader map will not be generated.

/SUPPRESS Trailing blanks are suppressed.

/NOSUPPRESS Trailing blanks are not suppressed.

/WIDTH:nn Columns 1 through nn (inclusive) of each card are read.

The defaults for all modes are reset by the next $MODE card or by individual switches in other control cards such as
in the $CREATE card and $JOB card.

Restrictions

This card can be used only when the programs in the job have been entered with a $-language or SINCLUDE card,
since SPRINT maintains a list of the filenames of programs that are input with these commands. If the user wishes
only to have the programs compiled, no SDATA or SEXECUTE card or EXECUTE command should appear in the
job.

SPRINT - The Input Spooler

SEOD
Function

This card terminates the input that is being copied into a data file by SPRINT because of a preceding File Card. If in-
put is not being copied and this card is read, SPRINT ignores it.

Card Format
$EOD

Function .
This card is the last card in a job deck and it terminates the job.

Card Format
$EOJ

$SERROR

$NOERROR

Function

These cards are used to aid the Batch Controller in processing errors. They cause SPRINT to insert an @IF statement
into the control file; e.g., @ F (ERROR) or @IF (NOERROR). Refer to Chapter 4, section 4.4 for an explanation of
the @IF statement. These cards must appear at the points where possible errors are anticipated.

Card Formats
$ERROR statement

$NOERROR statement

statement an executable system or Batch command preceded by an at sign (@). If the statement
directs the Batch Controller to go to a statement label, the statement label line and any
related lines must be included in the sequence of commands at the place the user wants

the commands executed. For example,

$FORTRAN TEST!
$ERROR @GOTO A
$DATA TEST1.DAT

$ERROR @GOTO A
$TOPS20

A:: 'RESUME HERE
$FORTRAN TEST2

35

SPRINT - The Input Spooler

SEXECUTE

Function

This card causes SPRINT to insert an EXECUTE system command into the control file. It performs the same func-
tion as the SDATA only it does not have a data deck following it. The SEXECUTE card is used when there is no
data or when the data file already exists on disk (for example, through the previous use of a SCREATE card). The
files to be placed in the EXECUTE command string are determined in the same way as they are for the $DATA.

Card Format
$SEXECUTE { /MAP }
/NOMAP
Switch Meaning
/MAP A loader map will be generated and printed.
/NOMAP This is the complement of the /MAP switch. /[NOMAP is the default.

I $FORTRAN

See the $-language card for information about the SFORTRAN card.

$SINCLUDE

Function

This card causes relocatable binary files that already exist on disk to be loaded with the user’s programs. A file speci-
fied on a $INCLUDE card is added to the list of filenames remembered by SPRINT and included in the EXECUTE
command string generated by a $DATA or by a SEXECUTE card.

Card Format
$INCLUDE dev:name. typ [[SEARCH]

dey: = the name of the device that contains the file to be loaded. This name may be either DSK:

or a system logical name. If dev: is omitted, DSK: is assumed.

name.typ = the name of the file to be loaded. The type is normally .REL. If the filename is omitted,
an error message is issued and the job is terminated.
Switch Meaning
/SEARCH This switch specifies that the file is to be loaded in library search mode. This switch is
optional.
Restrictions

The file specified on the $INCLUDE card must be a relocatable binary file and must already exist.

3-6

SPRINT - The Input Spooler

$JOB
Function

This card, in conjunction with the SPASSWORD card (if required), causes SPRINT to create a control file in the user’s
directory into which commands are placed for the Batch Controller, In addition, SPRINT creates a LOG file in the
user’s directory.

SPRINT uses the name specified on the $JOB card for the control and log files with the types .CTL and .LOG respec-
tively. If the jobname is omitted, SPRINT creates a unique name for the job. Refer to the /JJOBNAME switch below
for a more detailed description. In general, the jobname used on input appears in the output queues.

Card Format
$JOB user name/sw [sw,. .. [sw,

The assigned user name of the person who submitted the job. This field can contain
from 1-39 alphanumeric and special characters. This argument is required.

user name

/swl [sw,. .. /swn switches taken from the following group. These switches are optional except for the
/ACCOUNT switch.

The following is a brief description of each of the switches which can be used on the $JOB card. These switches are
explained in detail in Appendix A.

Switch Meaning
J/ACCOUNT :xxx This switch specifies the account to which the resources used by this job are to be
billed.
NOTE

This switch is required.
/|AFTER :date time The job cannot be run until after the specified date and time.
/AFTER:thh:mm The job cannot be run until after the input time plus the amount of time specified.
/DEADLINE: date time The job must be started by the specified date and time.

/DEADLINE:+hh:mm The job must be started by the indicated amount of time after it is input.

/DEPEND:nn Initial interjob dependency count (in decimal).

/ERROR:nn Specifies the number of Hollerith errors permitted before the job is terminated.
/JOBNAME:xxx Specifies a 1-6 character user-assigned name for the job.

/LOGDISP:arg This switch specifies the disposition of the LOG file after the Batch job has been proc-

essed. The arguments are DELETE (default) and PRESERVE.

J/OUTPUT: xxx This switch determines whether or not the LOG file is printed. The valid arguments are
LOG (default), NOLOG, and ERROR.

/PAGES:nn The maximum number of pages (in decimal) that can be printed by the job.

3-7

SPRINT - The Input Spooler

Switch Meaning
/PRIORITY :nn The external priority of the job.
/RESTART Specifies that the job may be restarted.
/NORESTART Specifies that the job may not be restarted.
/SEQUENCE:nn The job’s sequence number within the input queue.

/TIME:hh:mm:ss The limit placed on the amount of CPU time used by the job. The default is 5 minutes.

J/UNIQUE:n Specifies how jobs are to be protected from the effects of other jobs running in the
same directory. An argument of O means no protection and 1 (the default) means only
one Batch job at a time may be run.

The following rules apply to all the switches in the above list that require a time and/or date to be specified.
When specifying a time of day (hh:mm.:ss)

1. The colon (:) or colons must be included.

2. Times will be right-aligned before they are interpreted. That is, if all fields are not present, the right-most
field is interpreted as the number of seconds in the case where an argument of sh:mm:ss is required, and
the right-most field is interpreted as the number of minutes when an argument of h:mm is required.
Some examples are given below.

/TIME:30 means 30 seconds,
/TIME:45:00 means 45 minutes and
/TIME:1:15:00 means 1 hour and 15 minutes

When specifying a date, the format is dd-mm-yy and:

1. The hyphen (-) must be included.
2. Atleast the day and the month are required.

NOTE
The month, “mmm”, must be a 3-letter month abbrevi-
ation (e.g., JAN for January). Other date formats (such
as 07 for July) are accepted but are not recommended
since they could be ambiguous.

3. If the year is omitted, the date (and its associated time, if present) will be interpreted to mean the next
occurrence of that date (and time).

4. If the time argument is omitted from a date specification, the time is assumed to be midnight on the speci-
fied date.

In the examples below the current date of 6-JAN-75 will be assumed.

/AFTER:17-0OCT-75 means midnight on October 17, 1975
/AFTER:17-OCT means midnight on October 17, 1975
/DEADLINE:3-JAN 18:00 means 6 P.M. on January 3, 1976

Requirements
The $JOB card must immediately follow the $SSEQUENCE card or be the first card if the $SSEQUENCE card is not
required.

3-8

SPRINT - The Input Spooler

$-language
Function

The $-language cards direct the Input Spooler to compile the user’s programs using the appropriate language processor
or interpreter. The $-language cards and the types they use are:

Card Name Default File Type
$COBOL .CBL
$FORTRAN .FOR
$MACRO MAC

The following description applies to all the $-language cards; the user need only substitute the name of the language
desired (from the above list) immediately after the dollar sign.

The $-language card can be used with two different input conditions.

1. The source code immediately follows the $-language card and the $-language card does not have a filename
specified. In this case, the $-language card directs the Input Spooler to copy the program onto disk, assign
the program a unique filename of the form LNxxxx with the type shown in the above table, and insert a
COMPILE system command into the control file. The file being copied onto disk is terminated by differ-
ent cards depending on whether the /DOLLARS or /NO-DOLLARS switch is specified. Refer to the brief
switch descriptions below, or to Appendix A for a more detailed explanation. The source and object files
will be explicitly deleted at LOGOUT time.

2. The source code of the program is already on disk and the user has specified a filename on the $-language
card. In this case, the $-language card directs the Input Spooler to insert a COMPILE system command in-
to the control file.

NOTE
A $-language card with a filename specified, followed
by a deck containing the source code, will cause an er-
ror message to be issued.

The $-language card does not cause execution of the program. Execution is initiated by an EXECUTE system com-
mand or by a $DATA or a SEXECUTE card.

Card Format
If the source deck follows the $-language card, the format is:

$-language(processor switches)/sw, [sw,. .. /sw,,

If the source code already exists on disk and if only compilation is desired, the format is:

$-language dev:name.typ(processor switches) B ;II:JI(?ITI ST}:I

dev: = the name of the device that contains the program to be compiled if the program already
exists. Otherwise, this is the name of the device onto which the program is copied. If
dev: is omitted, DSK: is assumed.

SPRINT - The Input Spooler

name.typ = the name of the file to be compiled. The name is specified only when the file already
exists. If a filename is specified and there is a card deck to follow the $-language card,
an error message will be used.

(processor switches) = the switches to be passed to the compiler. (Refer to appropriate language manual and
to the COMPILE command for a description of the processor switches.) They must be

enclosed in parentheses and must not be preceded by a slash.

the switches that control the mode of input interpretation and the listing of the com-
piled program. The only switch available when the program is already on disk is either
the /LIST or the /NOLIST switch.

[sw,[swy. .. [swy,

The following is a brief description of the switches that can be used with the $-language cards. These switches are ex-
plained in detail in Appendix A. Each of the $-language cards can contain any of the following switches, except in
the case of the /CREF switch which can be used only with the SFORTRAN and $MACRO cards.

Switch Meaning
/ASCII The input is read in ASCII card code.
/CREF A cross-referenced listing is created to be processed by the CREF program. This switch

is available only on the $FORTRAN and $MACRO cards.

/DOLLARS Only the $SSEQUENCE, $JOB, $SEOD, and $EOJ control cards are recognized. All other
cards with a dollar sign in column 1 are treated as user data.

/NODOLLARS If a card has a dollar sign in column 1, the contents of column 2 determine whether it
is treated as a SPRINT control card or as user data.

JLIST A compilation listing will be generated. /LIST is the default.
/NOLIST No listing file of the program will be created.

/SUPPRESS Trailing blanks are suppressed.

/NOSUPPRESS Trailing blanks are not suppressed. /NOSUPPRESS is the default.
/WIDTH:nn Columns 1 through nn (inclusive) of each card are read.

SMACRO

See the $-language card for information about the SMACRO card.

SMESSAGE

Function
The SMESSAGE card causes the supplied text to be output to the system operator’s terminal at the time the job is
run.

3-10

SPRINT - The Input Spooler

Card Format
SMESSAGE/sw, text
W, = switch to indicate whether operator response is required or not. The switch is optional
but, if present, must immediately follow the command (SMESSAGE) with no interven-
ing blanks. Otherwise, an error message will be issued and the job will be terminated.
text = the message to be output to the system operator.
Switch Meaning
/WAIT The job will wait for a response from the operator before resuming its processing.
/NOWAIT The job will continue after typing the message without waiting for a response from the
operator, This is the default.
SMODE
Function

This card causes SPRINT to change the mode in which it is interpreting the input stream. The $MODE card can be
placed anywhere after the SPASSWORD card in the command sequence. All the switches take effect immediately
after the SMODE card is read. The /ASCII switch remains in effect until the next control card is read but the effects
of the /NOSUPPRESS, /SUPPRESS and /WIDTH switches are not terminated until either the end of the job or until
they are changed by another SMODE card.

Card Format
SMODE /sw_/sw,... [sw,

/swl/swz. .. /swn = switches that control the mode of reading and interpreting of the input stream.
Switch Meaning
/ASCII The input is read in ASCII card code.
/SUPPRESS Trailing blanks are suppressed.
/NOSUPPRESS Trailing blanks are not suppressed.
/WIDTH:nn Columns 1 through nn (inclusive) of each card are read. The remaining columns are
truncated.
NOTE

There are no defaults for switches on a SMODE
card because if a switch is not specified, the previ-
ously established value remains unchanged.

3-11

SPRINT - The Input Spooler

I $PASSWORD I

Function

This card contains the password associated with the user name specified on the $JOB card. If the password does not
match the password stored in the system for the specified user name, SPRINT does not create any files, issues an
error message on the LOG file, and cancels the job. This card may not be required at all installations.

Card Format
$PASSWORD password
password = a password comprised of from 1-39 alphanumeric characters.
NOTE

There must be exactly one space between the end of the
card name ($PASSWORD) and the first character of the
actual password.

Requirements

If the SPASSWORD card is required, it must immediately follow the $JOB card.

l $SEQUENCE |

Function
This card specifies the job’s unique sequence number, The use of this card depends on the requirements in effect
at the individual installation.

Card Format
$SEQUENCE n

n = a decimal number.

Requirements
If the installation requires this command, it must be the first card in the input stream.

$TOPS20

Function

The $TOPS20 card directs the Input Spooler to copy all cards following it into the Batch control file. The cards fol-
lowing a $TOPS20 card are expected to contain Batch Controller and system commands. These cards will not be
processed by SPRINT. Copying of the deck is terminated by different cards depending on whether the /DOLLARS
or the /NODOLLARS switch is specified. Refer to the brief switch descriptions below, or to Appendix A, for a more
detailed description.

3-12

SPRINT - The Input Spooler

NOTE
A single system or Batch command or a group of consecu-
tive system and/or Batch commands must be preceded by
a $TOPS20 card and followed by the appropriate termina-
ting card. If such commands are placed into the SPRINT
input stream but are not properly delimited, an error mes-
sage will be issued.

Card Format
$TOPS20/sw, /sw,.. . [sw,,

/sw1 [sW,. .. /swn = switches that control the modes in which the input is read and interpreted.

The following is a brief description of each of the switches which can be used on the $TOPS20 card. These switches
are explained in detail in Appendix A,

Switch Meaning
/ASCII The input is read in ASCII card code.
/DOLLARS Only the $SSEQUENCE, $JOB, $EOD, and $EOJ control cards are recognized. All

other cards with a dollar sign in column 1 are treated as user data.

/NODOLLARS If a card has a dollar sign in column 1, the contents of column 2 determine whether
it is treated as a SPRINT control card or user data.

/SUPPRESS Trailing blanks are suppressed.
/NOSUPPRESS Trailing blanks are not suppressed.
/WIDTH:nn Columns 1 through nn (inclusive) of each card are read.

3.2 SPRINT OUTPUT

The output from a SPRINT job is normally in the form of printed listings containing the user’s job output, compila-
tion listings, and the LOG file indicating the processing performed by the programs in the Batch system, The results
from the job and the LOG file are automatically placed in the queue for the line printer spooler, LPTSPL, unless the
job was submitted with the /OUTPUT switch. However, the user can output to any device in the system.

Compilation listings are produced from the $-language control cards unless the user specifies otherwise. These listings
are automatically spooled to the line printer. The user can also include the COMPILE system command in his job with
switches to produce listings.

3.2.1 The Log File

As part of its processing, SPRINT creates a LOG file for each job so that the user can examine the processing performed
by the Batch system. The LOG file contains a record of SPRINT’s processing, control cards, any errors detected, and
any operator actions.

When the job is run, the Batch Controller places additional messages into the LOG file. (Refer to Chapter 4, Section
4.6.) These messages contain a record of each line of the control file as passed to the job, every line of output that the
user job sends to its controlling terminal, Batch Controller messages, and a record of most operator actions affecting
the job. Note that the LOG file is appended to for jobs of the same name; thus it may be necessary to delete this file
before running another job with the same name.

3-13

SPRINT - The Input Spooler

3.2.2 SPRINT Messages

SPRINT places six kinds of messages into the LOG file. The first part of each message, in columns 1 through 8, con-
tains the time of day that SPRINT places the message into the file; an identifying word is located in columns 10
through 14. The body of the message is in columns 17 through 132. The identifying word for each kind of message
is taken from the following group:

STDAT — gives the date, system name, SPRINT version and the input device.
STMSG — identifies any SPRINT non-error message.

STERR — identifies any SPRINT error message.

STCRD — identifies SPRINT control cards.

STSUM — identifies the summary message at the end of the job.

STOPR — identifies any operator actions that occurred during SPRINT’s processing.

The first entry in the LOG file always contains the identifier STDAT and a message giving the date, the system name,
the current version of SPRINT, and the input device.

The STDAT entry is followed by two STCRD lines containing the $SEQUENCE (if present) and the $JOB cards, re-
spectively. For security reasons, the $PASSWORD card is never printed.

Each SPRINT control card is written into the LOG on an STCRD line and, if the card is a File Card, the line immedi-
ately following contains a message of the form.

14:17:40 STMSG file.typ Created - nn Cards read - nn Pages written

When the $EOJ card is read, SPRINT prints a summary message indicating the status of the job (whether it was com-
pleted or aborted) and giving the number of cards read, the number of files and pages written, and the number of
errors that occurred. The summary is also placed in the system accounting file, Two examples of job summaries are
given below.

1. 14217042 STSEUM End of Job Encountered
14317342 STSUM 423 Cards Read
14317242 STEUM 4 Hollerith errors
14317843 STSHSUM Bateh Inrut Recuest Crested

STSUM Job aborted due to Fatal Ervor
TSUM 10 Cards Read
3TSUM 10 Hollerith Errors

2 1HIBIR2E
L&e18222 ¢
16318123 ¢

Between the beginning and ending messages, SPRINT prints any operator actions as they occur, some nonerror mes-
sages, and reports of errors it has detected.

3.2.3 SPRINT Error Reporting
SPRINT places messages in the LOG file which describe errors that have occurred during its processing.

3.14

SPRINT - The Input Spooler

The messages fall into three categories:

1. 7 at the beginning of a message indicates a fatal error. No further processing will be done and the job will
be terminated. For example, an unrecognizable control card would generate a fatal error message.

2. % at the beginning of a message indicates an advisory or warning message. Processing will continue in this
case. For example, an unrecognizable switch, which can be ignored, would generate a warning message.

3. [at the beginning of a message indicates a comment from SPRINT to the user. It is for the user’s informa-
tion only and does not affect the running of the job.

In the LOG file, SPRINT error messages are preceded by the identifier STERR, followed by the message type indica-
tor (?, %, or [). Next is a 6-character prefix of the form SPTxxx. SPT indicates that SPRINT issued the message and
xxx is an abbreviation of the text of the message. The remainder of the line contains the message itself. For example,

STERR ?SPTTMH TOO MANY HOLLERITH ERRORS

Chapter 5 contains a complete list of SPRINT messages.

3-15

CHAPTER 4
BATCON—THE BATCH CONTROLLER

The Batch Controller controls all jobs entered into the Batch System. It reads the control file and initiates and con-
trols the running of the job.

4.1 THE CONTROL FILE

The control (CTL) file is read and processed by the Batch Controller. (Refer to Chapter 2 for an explanation of con-
trol file creation and job submittal.) The control file can contain system commands, Batch commands, data for a user
or system program, or comments,

The Batch Controller passes the data and system commands to the appropriate program or to the system for action.
The Batch commands are interpreted and handled by the Batch Controller itself.

4.1.1 Interpretation of Line Identifiers

BATCON determines the destination of a line in a control file by interpreting the first character encountered after
each carriage return/line feed (CR/LF) in the control file. The Batch Controller interprets these “first characters” as
follows:

*(asterisk) This line is to be treated as user data or data to a system program (i.e., a user-level com-
mand). The Batch Controller suppresses the asterisk and sends the remainder of the line
to the job. However, if the job is currently at system command level, the line is treated
as a comment.

= (equals sign) This is interpreted in the same manner as the asterisk. However, the equals sign indicates

that the user wants to inhibit the Batch Controller from transmitting the CR/LF termina-
ting this line. For example, in the DDT sequence

=FOO0/
the *“/” is a terminator to DDT.
@ (at sign) The interpretation of the at sign depends on the next non-blank, non-TAB character.

If that character is numeric, the line, including the at sign, is treated as user data. If the
job is at system command level, the line is treated as a comment.

If that character is an alphabetic or a special character, the line is either a system com-
mand or a Batch command as defined in Section 4.4. If it is a system command, the job
is placed at system command level, the at sign is suppressed, and the line is sent to the
system. If it is a Batch command, it is processed by the Batch Controller. (Refer to Sec-
tion 4.4.) :

! (exclamation point) The exclamation point is used to identify a comment line. Comment lines are placed in
the LOG file and do not affect the running program.

% (percent sign) This character identifies the labels reserved for use in association with the occurrence
of errors. (Refer to Section 4.3.1.)

41

BATCON - The Batch Controller

FF (form-feed) If either of these characters appears as the “first character” in a line of a control file,

VT (vertical tab) that character is treated as user data and the character immediately following it is
treated as if it were in the “first character” position (i.e., examined by the Batch Con-
troller).

Form-feed and vertical tab do not affect the character that follows when they occur in
any position other than the “first character” position in a line in a control file.

NOTE
This interpretation enables the user to enter form-feed
and vertical tab into thecontrol file in order to align
the LOG file output.

Lines in the control file that begin with any other special character (including blank and TAB) are treated as user data,
and the initial character is considered part of that data. If the job is currently at system command level, the whole line
is treated as a comment.

Any line in the control file that begins with an alphabetic character (and that is not a label — refer to Section 4.2) is
interpreted as follows:

1. If the job is running a user or system program, the line is passed to the program.
2. If the job is at system command level, the line is treated as a Batch or command as defined in
Section 4.4.

NOTE
Because of the two possible interpretations, it is sug-

gested that users identify each line to clarify its meaning.

One other special character is used to denote control characters. It is the circumflex (7). It is interpreted as follows,
regardless of its position in a line in a control file.

If the character following the circumflex is numeric, the circumflex and the digit are passed to the job. For example:
™2 remains” 2

If the character following the circumflex is alphabetic, the result is the corresponding control character. (That is, the
character formed by taking the six least significant bits of the binary representation of the alphabetic character.) For
example:

” C becomes CTRL/C

If the character following the circumflex is another circumflex, the result is a single circumflex. For example:

~C becomes”C
~""C becomes ~ CTRL/C

Some of the special characters are also affected by the circumflex and result in the corresponding control character.
They are:

opening bracket ([),
reverse slant (\),
closing bracket (]) and
underscore (_).

4.2

BATCON - The Batch Controller

NOTE
The circumflex itself is not among the listed special char-
acters and CTRL/” cannot be generated with the above-
mentioned method.

Any combination other than those described above has no effect on the circumflex or the character following it.

4.2 LABELS

The control file can also contain labeled lines. Labels are used to identify particular lines in a control file so that they
can be referenced. A label is from one to six characters in length. The first character in a labeled line is alphabetic and
can be immediately followed by up to five additional alphanumeric characters. The label is terminated by two colons
(::). A single line in a control file must not contain more than one label.

NOTE
Upper and lower case alphabetic characters are equivalent.

Characters following the two colons are treated as if they were in the “first character” position as described in the pre-
ceding section. In normal processing, the label itself is skipped (it does not affect the processing, but is merely a refer-
ence point), and the remainder of the line is treated as if the label were not there.

NOTE

There are two exceptions to the 6-character labels. These
are the labels used in associated with the @CHKPNT and
@REQUEUE commands. (Refer to Section 4.4.) Labels
used with these two commands may not be more than
five characters.

7%ERR::, %TERR::, and %FIN:: are labels whosc meanings are predefined. They cannot be referenced by commands
such as @GOTO (refer to Section 4.4). These three labels are reserved for use upon the occurrence of an error indica-
tion as described below.

4.3 ERROR PROCESSING

The Batch Controller tests for error indications in lines of output sent from user programs, from system programs, and
the system. The error signal is the question mark (?) appearing as the first character of an output line. An additional
character-can be declared by using the Batch command, @ERROR. (Refer to Section 4.4.)

When the Batch Controller detects an error indicator, it waits for the job to request more input (that is, the job has

completed its current processing and is ready for another command or it has returned to system command level. At

this point, error processing begins. If the error was ?TIME LIMIT EXCEEDED, special handling is involved (see Sec-
tion 4.3.1). For all other errors detected, the Batch Controller bypasses all lines indicated to be user level input, and
it examines the next line in the control file to be interpreted as either a system or Batch command. If this line con-

tains an @IF command, it is processed and the error state is cleared.

NOTE
The Batch Controller does not search past the next execut-
able system command in the control file for the @IF com-
mand. Therefore, if this command is used, there must be
no intervening system level commands and it must be the
next Batch command in the control file.

4.3.1 Reserved Labels

“TIME LIMIT EXCEEDED?” is one type of error that can occur and is handled as follows. When the ?TIME LIMIT
EXCEEDED message is issued, BATCON gives the job an additional amount of time so that it can terminate its

4.3

BATCON - The Batch Controller

processing gracefully. This extra time is normally 10% of the job’s original time. (The value 10% is an installation op-
tion.) Next, a search is initiated for a %TERR:: label and, if it is found, processing resumes at that label. If the end
of the control file or a %FIN:: label is encountered during the search for a ZTERR:: label, then the appropriate error
message is issued (i.e., BTNECF or BTINFFS) and processing is continued from there. (See Chapter 5 for explanations
of the BATCON error messages.)

If the time limit is exceeded again during the 10% extra, no further time is allotted, and the job is terminated.

When an error other than ?TIME LIMIT EXCEEDED is detected, the Batch Controller determines whether or not the
next command is an @IF command. If it is not, the Batch Controller will then search for an error label. The label
%ERR:: begins an error “packet” that is to be executed when an error occurs. An error “packet” can contain only
one command or as many as the user wishes. These error “packets” may be placed anywhere in the control file. Once
the commands in the “packets’ have been processed, the Batch Controller continues from that point in the control
file; it does not read backwards over sections of the control file that it may have skipped during its search for error
“packets”.

When a % type error label is encountered, the resultant action depends on whether or not an error condition exists.
Non-error labels have no effect on the job; they are merely reference points. If an error condition exists at the time a
non-error label is encountered, then the action depends on the contents of the line. The figures below are intended to
illustrate what action is taken under these various conditions. Figure 4-1 shows the path taken under normal proc-
essing, and Figure 4-2 shows the action taken during error recovery.

When the user bypasses SPRINT and creates his own control file, he may place a %FIN:: near the end of the control
file. SPRINT, in creating the control file, automatically places a %FIN:: at a point in the control file corresponding

to the end of the user’s input deck. This label is used for cleanup purposes; e.g., deleting the input files. In creating
the control file, the user may place other %FIN::’s at various points in the file for periodic cleanup of his job. For ex-
ample, this label is used in a special kind of error recovery. If the time allocated to the job runs to the maximum limit
specified on the $JOB card (refer to Section 3.1) or by the Batch System, BATCON searches forward through the con-
trol file for a %TERR:: or a %FIN:: label (whichever it finds first). If either label is found, the job is given an addi-
tional 10% of its allocated time and processing resumes from that point. If the user includes a %FIN:: in his control
file and an error occurs on processing the job, he gets an opportunity to execute some additional commands to clean
up his job rather than having it terminated in an unknown state.

NOTE
The extra time is given only once for a job and if this ad-
ditional time is exceeded, the job is cancelled.

The user should be careful in placing the %FIN:: in the control file because if the Batch Controller is searching for an
error recovery routine and %FIN:: is placed before a ZERR:: or #TERR::, the %FIN:: is executed and the Batch Con-
troller assumes the error recovery routine has been satisfied and does not search any longer for ZERR:: or %ZTERR::.
Furthermore, an @GOTO label cannot bypass a %FIN:: label. Therefore, the best place to put a %FIN:: is near the

end of the control file.

If an error occurs in the job and the user has not included an @IF command, the Batch Controller searches for %ZERR::.
Further processing depends on the success or failure of this search, as follows.

1. If %#ERR:: is found, the error “packet” is processed.

2. If %FIN:: is found, the Batch Controller resumes processing from that point.

3. If the end of the control file is reached before either ZERR:: or %FIN:: is encountered, the Batch Con-
troller issues an error message and the job is terminated.

When the Batch Controller detects an error in the Batch commands entered by the user, control is transferred to
%FIN::. Refer to Chapter 5 for the Batch Controller messages.

44

BATCON - The Batch Controller

1 START)

i

A NEW LINE
IN THE CTL
FILE IS
EXAMINED

IS 1T :
A LABELED__NO _
LINE

?

EXECUTE
THE LINE
]
SEARCH FOR
o NEXT LABEL
IN CTL FILE
OR EOF
ERROR
MESSAGE
ISSUED

@

Figure 4-1 Normal Processing

4.5

BATCON - The Batch Controller

Sursse001q 1011 -4 AIn31]

ONISS3004d
TYWHON 3WNS3Y

a

ANVWWOD
31® 3HL
31N03X3

(4
3INI 21138
ON N\ "VHdIV®
1181

ONISS3004d
IYWHON 3WNS3Y

a3nssi
3JOVSS3IW
H0oyHY3

2
ON
<
a3nssi 3714
39VSSIW 115 40
HOHY3 S3A N3
ro3
a3anssi a3nsst
39vSSIW
youy3
S3A

S3A

3714110 3HL
NI 138V 1X3N
404 HOYV3S
ros
3713 1LO NI 3WIL
138V LX3N AVYNOLLIQAY
404 HOHV3S 80r 3A19

3INIT 3HL 40
SANVWWOD SLN3LNOD 3HL
40 ONVWWOD INIWVYX3
3LN23X3
ON

3
ELVD
138V % v

1St

a3nsst
3OVSS3IW
H0"yY3

3714 110 40
3NIT LX3N
INIWVX3

@3Y98N200 SVH
HOUY3 NV

14vis

46

BATCON - The Batch Controller

4.4 BATCH CONTROLLER COMMANDS

The Batch Controller examines lines beginning with an at sign to determine whether the line is a Batch command or

a system command. If it is a system command, the job is placed at system command level before the command is sent
to the system for action. An important difference between these two types of commands is that Batch commands do
not affect the running job.

Comments may appear on lines containing Batch commands. Comments are identified by an exclamation point (!)
appearing after the command and before the text to be treated as a comment. For example:

@IF (ERROR) @GOTO A !SKIP THE FOLLOWING IF ERRORS

A:: 'BEGIN OWN ERROR ROUTINE

Batch commands may be abbreviated to as few letters as are necessary to uniquely identify a command. However, a
minimum of two letters is required since the system has single letter commands that could be construed as Batch com-
mands (e.g., G for GET and GOTO). Any command that is an ambiguous abbreviation, a single letter, or not one of
the following Batch commands, is transmitted to the system. If it is not a valid system command, the system will

issue an error message, and the Batch Controller will initiate error processing.
@BACKTO
Function

The @BACKTO command is used to direct the Batch Controller to search back in the control file for a line with the
specified label.

The search starts back at the first line of the control file and continues until the specified label is found. At this point,
the Batch Controller transfers control to the statement associated with the label. If the label is not found, the job is
terminated.

Command Format
@BACKTO label

label = a 1- to 6-character label as defined in Section 4.2.

NOTE
If an @BACKTO command occurs after a %FIN:: label
in the control file, the label specified in the @BACKTO
command may also be after the %FIN::.

Since the system has a BACKSPACE command, the on-
ly abbreviation of @BACKTO that will be recognized is
@BACKT (i.e., “BACK label” will be considered a TOPS-
20 BACKSPACE command and it will be passed to the
system).

BATCON - The Batch Controller

@CHKPNT

Function

This command directs the Batch Controller to save a potential restart point to be used in the event of a system failure.
As many @CHKPNT commands as desired may be placed in the control file. If the job is restarted, processing will be-
gin at the label specified in the last @CHKPNT command executed before the restart.

Command Format
@CHKPNT label

label = a 1-to S-character label as defined in Section 4.2.

The @CHKPNT command can affect the restarting of a job after a system failure. If no restart was specified for the
job, and there was a system failure, and if the job did not execute an @CHKPNT command, then the job will not be
restarted. If restart was specified, and the system failed, but no @CHKPNT command was executed, then the job will
be restarted at the beginning of the control file. If the job did execute an @CHKPNT command and there was a system
failure, then the job will be restarted regardless of the restart specification. The job will be restarted at the first occur-
rence of the label specified in the most recently executed @CHKPNT command.

NOTE
1. The restart parameter may be specified on the $JOB
card in SPRINT (refer to Section 3.1).or in the SUB-
MIT command (refer to the User’s Guide).
2. The label specified for an @CHKPNT may occur after
a %FIN:: label.

Function
This command causes the specified character to be recognized as an error signal by the Batch Controller. The question
mark (?) is always recognized as an error indicator irrespective of the use of the @ERROR command.

Command Format
@ERROR character

character = the beginning character of the line that is to be recognized as an error. If omitted, only
the question mark (?) will be recognized.

The character specified may not be a control character or an exclamation point (!). The exclamation point will be
interpreted as the comment character and will not function as the error signal character.

@GOTO

Function

The @GOTO command directs the Batch Controller to search the control filein a forward direction for the specified
label. When the label is found, control is transferred to the statement associated with the label. If the label is not
found, the search will be satisfied if a %FIN:: is encountered. If neither the label for a %FIN:: is found by the time

4.8

BATCON - The Batch Controller

the end of the control file is reached, the Batch Controller will issue the error message BTNCNF (refer to Chapter 5
for the Batch Controller messages) and the job will be terminated.

Command Format

@GOTO label
label = a l- to 6-character label as defined in Section 4.2.
NOTE
The search initiated by the @GOTO command cannot by-
pass a %FIN::.
@IF
Function

This command directs the Batch Controller to test for the condition specified in the command string. If the condition
is true, the object statement is executed. Otherwise, this command and its object statement are treated as comments
and the Batch Controller proceeds to the next line in the control file.

Command Format
@IF (condition)statement

(condition) = (ERROR) — determine if an error signal has been issued.
or
(NOERROR) — determine if no error signal has been issued.
The parentheses must be included.
statement = this parameter is optional but, if present, can be a Batch or system command, user or

system program data, or a comment.

The @IF command is used to assist the Batch user in processing errors. The Batch Controller recognizes the existence
of an error when it encounters a line beginning with a question mark (or with the character specified in the @ERROR
command) that is output from the job. When an error occurs, the @IF command must be the next Batch command in
the control file. There must be no intervening system commands.

NOTE
The @IF command cannot be used to intercept a 7TIME
LIMIT EXCEEDED error.

| @MESSAGE l
Function

When SPRINT encounters a SMESSAGE card (refer to Section 3.1), it creates an @MESSAGE command in the con-
trol file. Direct use of the @MESSAGE command is strongly discouraged (because of possible compatibility problems
with future versions of the Batch System) and for this reason, the syntax for the command is not specified here.

BATCON - The Batch Controller

@NOERROR

[

Function

The @NOERROR command instructs the Batch Controller to ignore all error signals except the ?TIME LIMIT EX-
CEEDED message and any error issued by the Batch Controller itself, (Refer to Chapter 5 for Batch Controller
messages.)

Command Format
@NOERROR

@NOOPERATOR

[

Function
This command directs the Batch Controller to terminate the dialogue mode between the job and the system operator.
(Refer to Section 4.5.)

Command Format
@NOOPERATOR

I @OPERATOR I

Function
This command directs the Batch Controller to initiate the dialogue mode between the user’s job and the system opera-
tor. (Refer to Section 4.5.)

Command Format
@OPERATOR character

character = The character that begins a line that is to be sent to the operator (e.g.,#). Specification
of the character is optional and if it is omitted, the dollar sign ($) will be assumed to be
the operator signal character.

NOTE
The character must not be a control character, a semi-
colon (;) or an exclamation point (!).

@PLEASE

Function
This command directs the Batch Controller to type the specified message to the system operator. The operation of
the @PLEASE command is not affected by the @OPERATOR and @NOOPERATOR commands.

Command Format
@PLEASE message ESCape (CR/LF)

4-10

BATCON - The Batch Controller

message = the message to be typed to the system operator.

ESCape = the ESCape character. If this character is present, processing continues normally after
the message has been output to the operator. If the character is omitted, the job will
wait for a response from the operator before resuming its normal processing. The
ESCape character may be generated via the sequence " [(circumflex-opening bracket).

l @REQUEUE I
Function

The @REQUEUE command indicates to the Batch Controller that the job is to be requeued for processing at a later
time.

CR/LF the carriage-return/line-feed is required.

Command Format
@REQUEUE label

label = a l-to 5-character label as defined in Section 4.2.

When the job is requeued, processing will continue at the specified label. If the label is omitted, the job will be re-
queued at the label specified in the last @CHKPNT command executed before the @REQUEUE. If the label is omitted
and no @CHKPNT command has been executed, the job will be restarted at the beginning of the control file.

NOTE
The label specified for an @REQUEUE may be after a
%FIN:: label.

@REVIVE
Function

The @REVIVE command directs the Batch Controller to resume normal listing in the LOG file (i.e., all output from
the job is placed in the LOG file). The initial state of the Batch Controller is to list all output and the @REVIVE com-
mand is used to clear the effect of the @SILENCE command.

Command Format
@REVIVE

@SILENCE
Function

The @SILENCE command directs the Batch Controller to suppress all input and output except error messages from
the LOG file. This suppression of output is cleared by the @REVIVE command.

Command Format
@SILENCE

4-11

BATCON - The Batch Controller

NOTE
Batch commands are always printed in the LOG file.

4.5 OPERATOR — PROGRAM COMMUNICATION

The Batch Controller provides capabilities for communication between a running program and the system operator,
Two methods for this type of communication are available. With the first method, it is possible for the Batch Con-
troller to enter a conversational or “dialogue” mode (refer to paragraph 4.5.1) with the system operator. The second
method provides a facility for the program to send a 1-line comment to the operator (refer to paragraph 4.5.2).

4.5.1 Dialogue Mode

When dialogue mode is active (refer to paragraph 4.5.1.1), it is possible for a running program to “converse” with the
system operator. In this mode, lines of output from the program are entered on the terminal controlling the Batch
Controller (usually the system operator’s terminal) as well as entered in the job’s LOG file. Requests for input (initi-
ated by the job) are handled from the same terminal, rather than from the control file. Whether the input entered by
the operator is interpreted at system level or user level is determined by the level at which input is requested. The
operator cannot enter Batch Controller commands, such as @GOTO, to alter the sequence of the user’s control file.

There are two commands associated with dialogue mode: @OPERATOR, which initiates dialogue mode and
@NOOPERATOR, used to terminate dialogue mode.

4.5.1.1 The @OPERATOR Command - This command causes the Batch Controller to enter dialogue mode.
(Refer to Section 4.4 for a description of the command format.) While BATCON is in this mode, any line of output
from the job that begins with the character specified in the command is entered on the controlling terminal as well
as written in the job’s LOG file. In addition, all subsequent lines, regardless of their initial character, are copied in
the same manner. This copying continues until the job requests input or it returns to the system (the system requests
input).

At this point, rather than reading the next line from the control file, the Batch Controller notifies the operator of
the request, and the job is suspended until the operator has responded. When the operator responds, the job is re-
sumed and the response is sent to the job as if it had appeared on the control file. The LOG file contains this line

and it is identified as an operator response. Also, output to the operator is discontinued until the job outputs another
line beginning with the specified character. The process described above is then repeated.

4.5.1.2 The @NOOPERATOR Command — This command causes the Batch Controller to terminate dialogue mode.
(Refer to Section 4.4 for a description of the command format.) The @NOOPERATOR command is in effect at the
time BATCON is initialized.

4.6 BATCH CONTROLLER OUTPUT

As part of the Batch job’s output, a transaction log is produced by the Batch Controller. This file contains a record of
each line of the control file as passed to the job, every line of output sent by the user job, Batch Controller messages,
and any operator actions.

4.6.1 The LOG File

The contents of the LOG file appear exactly as they would have if the user had been running at a timesharing terminal,
with the following exception: each line begins with a time stamp to indicate the time at which the line was processed
and a notation to indicate the type of the line.

The time stamp has the format hh:mm:ss to indicate the time of day on a 24-hour clock. The notation is next, followed
by the line of input or output. The notation is one of the following:

BAJOB identifies the start of a new job. Information on this line is the job name, sequence number,
user’s name, and internal stream number.

BAFIL contains the file specification for the control file or the LOG file.

4-12

BLABL

BATCH

TRUE

FALSE

BAOPR

MONTR

USER

BASUM

BAUSR

BATCON - The Batch Controller

identifies a label found in the control file. The rest of the line is listed in the LOG file as a
separate line.

indicates a Batch Controller command that was processed.

indicates that the condition tested in the Batch Controller command @IF was true. The object
statement is listed in the LOG file on a separate line.

indicates that the condition tested in the Batch Controller command @IF was false. The object
statement is listed as a comment on the same line with the @IF statement.

identifies a line entered by the system operator. Further identification carries the specific opera-
tor command and comments from the operator. This identification can be TELL, KILL, STOP,
GO, and OPERATOR.

indicates that the output line was from the system or that the input requested was to be proc-
essed as a system command.

indicates that the output was sent from a user or system program or that the input requested
was to be sent to a running program.

indicates a summary line of the job parameters.

indicates that the job was cancelled at the user’s request.

Any lines in the LOG file that do not appear as described above are comments, error messages from the Batch Con-
troller, or lines of the control file that were skipped because of errors.

4.6.2 Batch Controller Messages

Messages issued by the Batch Controller are entered into the LOG file as comments. Blank lines surrounding the mes-
sage isolate it for convenient recognition. In addition, each message issued by the Batch Controller has a 6-letter pre-
fix of the form BTNxxx. BTN identifies it as a message from the Batch Controller and xxx represents a 3-letter abbre-
viation of the text of the message. For example:

BTNJRQ Job Requeued

A complete list of the Batch Controller messages can be found in Chapter 5.

CHAPTER 5
ERROR MESSAGES

The following conventions are used in describing the Batch system messages:

Scardname a control card name

dev a device name

file.typ a filename and file type

n a decimal number

X an alphanumeric character
[switch a switch name

Most messages returned to the user fall in one of three categories. These categories are determined by the beginning
character of the message.

? at the start of the message indicates a fatal error message.
% at the start of the message represents an advisory or warning message.
[at the beginning of the message indicates a comment line.

In addition, each message issued has a 6-letter prefix. The first three letters indicate the program that issucd the
message. The last three letters represent an abbreviation of the text of the message. For example:

?LPTPLE PAGE LIMIT EXCEEDED
5.1 BATCON MESSAGES
BTNBLA BEGINNING PROCESSING AT LABEL xxxxx
The job is restarting at the indicated label. This is an advisory message which occurs after a system reload when
the user has specified a CHKPNT label and the CHKPNT has been taken. (Refer also to the description of the
/TAG: switch for SUBMIT in the User’s Guide.)
BTNBLI BEGINNING PROCESSING ON LINE n
The job is restarting at the specified line in the control file.

BTNBPL YOUR USE OF BACKTO HAS CAUSED A POSSIBLE LOOP

It is possible that the user has created a loop in his control file through improper use of the BACKTO command.
For example, A::@BACKTO is a loop and would generate this message.

5-1

Error Messages

BTNCFC CANNOT FIND THE CTL FILE. ERROR CODE = xxxxxx

The specified control file could not be found on the disk structure specified. The notation “xxxxxx’’is the
error code returned by the GTJFN or OPENF monitor call. (Refer to Appendix A of the DECsystem-20
Monitor Calls Reference Manual.)

BTNCNF COULD NOT FIND LABEL xxxxxx

The label specified in an @GOTO or an @BACKTO command could not be found in the control file. A com-
mon occurrence of this error is:

@GO TO label

There is a space between GO and TO. GO is a valid abbreviation for GOTO, and the label specified is TO.
Another example is:

@BACKTO ABCD
ABCD::@command

The label specified in the BACKTO command must be before the occurrence of the BACKTO command in
the control file.

BTNCRL CHKPNT OR REQUEUE LABELS CANNOT BE OVER 5 CHARACTERS LONG

The label specified in a CHKPNT or REQUEUE command was greater than five characters in length. The
maximum number of characters for the labels associated with these two commands is five.

BTNECF END OF THE CONTROL FILE WHILE SEARCHING FOR %xxxx

The end of the control file was reached while the Batch Controller was searching for %xxxx, where xxxx
is one of the error recovery labels (%ERR::, %TERR::, or %FIN::).

BTNFFS FOUND %FIN WHILE SEARCHING FOR xxxxxx, PROCEEDING FROM %FIN
A %FIN:: was encountered during a search initiated by an @GOTO command or an implicit @GOTO
(searches for ZERR:: or %TERR::). %FIN:: takes precedence during searches for ZERR::, %#TERR::,
or a label specified in an @GOTO command. The xxxxxx is the label the Batch Controller was searching

for at the time it encountered the %FIN::.

This message could be issued instead of either BTNCNF or BTNECF, depending on the construction of the
control file.

BTNICS ILLEGAL CHARACTER SPECIFIED FOR xxx<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>