DECSYSIEM

FORTRAN
Reference Manual

FORTRAN
Reference Manual

Order No. DEC-20-LFRMA-A-D

digital equipment corporation - maynard. massachusetts

First Printing, January 1976

The information in this document is subject to change without notice and should not be construed as a commit-
ment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors

that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance

with the terms of such license.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software on equipment

that is not supplied by DIGITAL.

Copyright (© 1976 by Digital Equipment Corporation

The postage prepaid READER’S COMMENTS form on the last page of this document requests the user’s critical
evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL

DEC

PDP

DECUS

UNIBUS
COMPUTER LABS
COMTEX

DDT

DECCOMM

DECsystem-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC

LAB-8
DECsystem-20

MASSBUS
OMNIBUS
0S/8

PHA

RSTS

RSX
TYPESET-8
TYPESET-10
TYPESET-11

CHAPTER 1
1.1

CHAPTER 2

2.1

2.2

2.2.1
2.2.2
223
224
23

2.3.1
23.2
233
234
235
2.3.6
24

CHAPTER 3

3.1
3.2

3.2.1
322
3.23
3.24
3.2.5
3.26
3.2.7
3.2.8
33

34

35

35.1
3.5.2
3.53

CHAPTER 4

4.1
4.1.1
4.2
4.2.1
4.3
43.1
43.2
433
434

CONTENTS

Page
INTRODUCTION
INTRODUCTION e e e e e e e e e e 1-1
CHARACTERS AND LINES
CHARACTER SET e et e e e e 2-1
STATEMENT, DEFINITION, AND FORMAT 2-3
Statement Label Field and Statement Numbers 2-3
Line Continuation Field 2-3
Statement Field e 2-3
Remarks e e e e e 2-3
LINETYPES o e e 24
Initial and Continuation Line Types 2-4
Multi-Statement Lines L. 2-5
Comment Linesand Remarks 2-5
Debug Lines e e e e e e e 2-6
Blank Lines e e e e e 2-6
Line-Sequenced Input oL oL 2-6
ORDERING OF DECSYSTEM-20 FORTRAN STATEMENTS 2-6
DATA TYPES, CONSTANTS, SYMBOLIC NAMES, VARIABLES, AND ARRAYS
DATA TYPES . . . e e e e 3-1
CONSTANTS . . . e 3-1
Integer Constants L L e e e 3-2
Real Constants i i e e e e 3-2
Double Precision Constants 3-3
Complex Constants e 34
Octal Constants e e e 34
Logical Constants e e e 3-5
Literal Constants o 0 i i e e e e e 3-5
Statement Label Constants 3-6
SYMBOLIC NAMES e 3-6
VARIABLES e e 3-6
ARRAYS e e 3-7
Array Element Subscripts L L e e 3-7
Dimensioning Arrayso e e e e e e 3-8
Order of Stored Array Elements 39
EXPRESSIONS
ARITHMETIC EXPRESSIONS e 4-1
Rules for Writing Arithmetic Expressions 4-2
LOGICAL EXPRESSIONS e e 4-2
Relational Expressions e 4-6
EVALUATION OF EXPRESSIONS e 4-8
Parenthesized Subexpressions Lo 4-8
Hierarchy of Operators i ittt 4-8
Mixed Mode Expressions e 4-9
Use of Logical Operands in Mixed Mode Expressions 4-10

iii

CHAPTER 5

5.1
5.2
53
54

CHAPTER 6

6.1
6.2
6.2.1
6.3
6.4
6.5
6.5.1
6.6
6.7
6.8

CHAPTER 7
7.1

CHAPTER 8

8.1
8.2
8.3
8.4

CHAPTER 9

9.1
9.2
9.2.1
9.2.2
9.23
9.3
9.3.1
9.3.2
9.33
94
9.4.1
94.2
94.3
9.5
9.6
9.7
9.7.1

CONTENTS (Cont)

Page
COMPILATION CONTROL STATEMENTS
INTRODUCTION e s 5-1
PROGRAM STATEMENT e 5-1
INCLUDE STATEMENT e e 5-1
END STATEMENT e e 5-2
SPECIFICATION STATEMENT
INTRODUCTION e e e e e e e e e e e 6-1
DIMENSION STATEMENT e e 6-1
Adjustable Dimensions L. 6-2
TYPE SPECIFICATION STATEMENTS e 6-3
IMPLICIT STATEMENTS e 64
COMMON STATEMENT e et 6-5
Dimensioning Arrays in COMMON Statements 6-6
EQUIVALENCE STATEMENT i .. 6-6
EXTERNAL STATEMENT i 6-7
PARAMETER STATEMENT i 6-8
DATA STATEMENT
INTRODUCTION . . . e e e e e e e e e e e e 7-1
ASSIGNMENT STATEMENTS
INTRODUCTION e e e e e e 8-1
ARITHMETIC ASSIGNMENT STATEMENT 8-1
LOGICAL ASSIGNMENT STATEMENTS 8-3
ASSIGN (STATEMENT LABEL) ASSIGNMENT STATEMENT 8-3
CONTROL STATEMENTS
INTRODUCTION e e e e e s s s s e e 9-1
GO TO CONTROL STATEMENTS 9-1
Unconditional GO TO Statements 9-2
Computed GO TO Statements v 9-2
Assigned GO TO Statements nini... 9-2
IF STATEMENTS e e e e 9-3
Arithmetic IF Statements, 9-3
Logical IF Statements e 94
Logical Two-Branch IF Statements 94
DO STATEMENT e e e e 9-5
Nested DO Statements 9-6
Extend Range 9-7
Permitted Transfer Operations 9-8
CONTINUE STATEMENTt 9-9
STOP STATEMENT e e e e e 9-9
PAUSE STATEMENT e e e e 9-10
T(TRACE) Option e e e e e e i 9-10

iv

CHAPTER 10

10.1
10.2
10.2.1
10.2.2
10.2.3
10.3
10.3.1
10.3.2
1033
1034
103.4.1
10.3.5
103.6
10.3.7
10.4
10.5
10.5.1
10.5.2
10.5.3
10.54
10.5.5
10.5.6
10.6
10.7
10.8
10.8.1
10.8.2
10.8.3
10.84
10.8.5
10.8.6
10.9
10.10
10.10.1
10.10.2
10.11
10.12
10.13
10.14
10.14.1
10.14.2
10.14.3
10.15

CONTENTS (Cont)

1/0 STATEMENTS

DATA TRANSFER OPERATIONS e
TRANSFERMODES e e
Sequential Mode L. e
Random AccessMode e
Append Mode
1/0 STATEMENTS, BASIC FORMATS AND COMPONENTS
I/O Statement Keywords
Logical Unit Numbers
FORMAT Statement References
IJOLiSt . . . e e e e
Implied DO Constructs
The Specification of Records for Random Access
List-Directed I/O
NAMELISTI/O Lists e e e e e e i
OPTIONAL READ/WRITE ERROR EXIT AND END-OF-FILE ARGUMENTS
READ STATEMENTS e
Sequential Formatted READ Transfers
Sequential Unformatted Binary READ Transfers
Sequential List-Directed READ Transfers
Sequential NAMELIST-Controlled READ Transfers
Random Access Formatted READ Transfers
Random Access Unformatted READ Transfers
SUMMARY OF READ STATEMENTS
REREAD STATEMENT e e
WRITE STATEMENTS e
Sequential Formatted WRITE Transfers
Sequential Unformatted WRITE Transfer
Sequential List-Directed WRITE Transfers
Sequential NAMELIST-Controlled WRITE Transfers
Random Access Formatted WRITE Transfers
Random Access Unformatted WRITE Transfers
SUMMARY OF WRITE STATEMENTS
ACCEPT STATEMENT et
Formatted ACCEPT Transfers
ACCEPT Transfers Into FORMAT Statement
PRINT STATEMENT e
TYPE STATEMENT
FIND STATEMENT
ENCODE AND DECODE STATEMENTS
ENCODE Statement
DECODE Statement
Example of ENCODE/DECODE Operations
SUMMARY OF 1/O STATEMENTS

CHAPTER 11

11.1
11.2
11.2.1
11.2.2

CHAPTER 12

12.1
12.2
12.2.1
12.2.2

CHAPTER 13

13.1
13.1.1
13.2
13.2.1
13.2.2
13.2.3
13.24
13.2.5
13.2.6
13.2.7
13.2.8
13.2.9
13.2.10
13.2.11
13.3

CHAPTER 14

14.1
14.2
14.3
144
14.5
14.6
14.7
14.8
14.9

CHAPTER 15

15.1
15.1.1
15.2
153
154
154.1
154.2

CONTENTS (Cont)

NAMELIST STATEMENTS

INTRODUCTION e e e e e s s e e
NAMELIST STATEMENT e
NAMELIST-Controlled Input Transfers
NAMELIST-Controlled Output Transfers

FILE CONTROL STATEMENTS

INTRODUCTION e et e e e e et et e e e et
OPEN AND CLOSE STATEMENTS i
Options for OPEN and CLOSE Statements
Summary of OPEN/CLOSE Statement Options

FORMAT STATEMENT

INTRODUCTION e e e e i e e e e e
FORMAT Statement, General Form

FORMAT DESCRIPTORS st
Numeric Field Descriptors o
Interaction of Field Descriptors With I1/O List Variables During Transfer
G, General Numeric Conversion Code
Numeric Fields with Scale Factors
Logical Field Descriptors e
Variable Numeric Field Widths oo 0oL
Alphanumeric Field Descriptors oo
Transferring Alphanumeric Data Directly Into or From FORMAT Statements
Mixed Numeric and Alphanumeric Fields
Multiple Record Specifications 0oL
Record Formatting Field Descriptors

CARRIAGE CONTROL CHARACTERS FOR PRINTING ASCII RECORDS

DEVICE CONTROL STATEMENTS

INTRODUCTION o e e e e e e e
REWIND STATEMENT e
UNLOAD STATEMENT e
BACKSPACE STATEMENT
END FILE STATEMENT e
SKIP RECORD STATEMENT
SKIP FILE STATEMENT e
BACKFILE STATEMENT e,
SUMMARY OF DEVICE CONTROL STATEMENTS

SUBPROGRAM STATEMENTS

INTRODUCTION e e e e e e
Dummy and Actual Arguments Lo
STATEMENT FUNCTIONS
INTRINSIC FUNCTIONS (DECsystem-20 FORTRAN DEFINED FUNCTIONS)
EXTERNAL FUNCTIONS e
Basic External Functions (DECsystem-20 FORTRAN Defined Functions)
Generic Function Names oL

vi

15.5
15.5.1
15.5.2
15.6
15.6.1
15.7

CHAPTER 16

16.1
16.2

APPENDIX A

APPENDIX B

B.1
B.1.1
B.1.2
B.2
B.2.1
B.2.2

APPENDIX C

C.1
C.1.1
C.1.1.1
C.1.2
C.2
C.2.1
C.3
C3.1
C3.2
C4

APPENDIX D

D.1
D.1.1
D.1.2
D.1.3
D.1.4
D.1.5
D.1.6
D.1.7
D.2
D.2.1
D.2.1.1
D.2.1.2
D.2.1.3
D.2.1.4

CONTENTS (Cont)

Page
SUBROUTINE SUBPROGRAMS 15-7
Referencing Subroutines (CALL Statement) 15-9
DECsystem-20 FORTRAN Supplied Subroutines 15-10
RETURN STATEMENT AND MULTIPLE RETURNS 15-10
Referencing External FUNCTION Subprograms 15-12
MULTIPLE SUBPROGRAM ENTRY POINTS (ENTRY STATEMENT) 15-13
BLOCK DATA SUBPROGRAMS
INTRODUCTION e e e e e e 16-1
BLOCK DATA STATEMENT 16-1
ASCII-1968 CHARACTER CODE SET
SPECIFYING DIRECTORY AREAS
USING LOGICAL NAMES e B-1
Giving The DEFINE Command B-1
Using The Logical Name B-2
USING PROJECT-PROGRAMMER NUMBERS B-2
Running The TRANSL Program B-2
Using The Project-Programmer Number B-2
USING THE COMPILER
RUNNING THE COMPILER C-1
Switches Available with DECsystem-20 FORTRAN C-1
The /DEBUG Switch C-2
LOAD Class Commands C-4
READING A DECsystem-20 FORTRAN LISTING C-5
Compiler Generated Variables, C-6
ERROR REPORTING C-10
Fatal Errors and Warning Messages C-10
Message Summary C-11
CREATE A REENTRANT FORTRAN PROGRAM WITHLINK C-11
WRITING USER PROGRAMS
GENERAL PROGRAMMING CONSIDERATIONS D-1
Accuracy and Range of Double Precision Numbers,.DlI
Writing FORTRAN Programs for Execution on Non-DEC Machines D-1
Using Floating Point DO Loops D-1
Computation of DO Loop Iterations D-1
Subroutines — Programming Considerations D-2
Reordering of Computations n-2
Dimensioning of Formal Arrays D-3
DECsystem-20 FORTRAN GLOBAL OPTIMIZATION D-4
Optimization Techniques D-4
Elimination of Redundant Computations D-4
Reduction of Operator Strength D-5
Removal of Constant Computation From Loops D-6
Constant Folding and Propagation D-7

Vil

D.2.1.5
D.2.1.6
D.2.1.7
D.2.1.8
D.2.1.9
D.2.2
D.2.3
D.3
D.3.1
D.3.2
D.3.3
D.3.4
D.3.5
D.3.6

D.3.7
D.3.7.1
D3.7.2

APPENDIX E

E.l
E.2
E.3
E.3.1
E.3.2
E.3.2.1
E.3.2.2
E.4
E.4.1
E.4.2
E.4.2.1
E.4.3
E.4.4
E.5
E.5.1
E.5.2
E.5.3
E.5.3.1

E.5.3.2

E.5.3.3
E53.4

E.5.3.5
E.5.3.6

E.5.3.7

CONTENTS (Cont)

Page
Removal of Inaccessible Code D-7
Global Register Allocation D-7
I/0 Optimization D-7
Uninitialized Variable Detection D-8
Test Replacement D-8
Improper Function References D-8
Programming Techniques for Effective Optimization D-8
INTERFACING WITH NON-DECsystem-20 FORTRAN PROGRAMS AND FILES D-8
Calling Sequences, D-9
Accumulator Usage D-10
Argument Listso D-10
Argument Types L D-12
Description of Arguments D-12
Converting Existing MACRO Libraries for Use with DECsystem-20
FORTRAN e, D-13
Interaction with COBOL D-18
Calling FORTRAN Subprograms from COBOL Programs D-18
Calling COBOL Subroutines from FORTRAN Programs D-19
FOROTS
FEATURES OF FOROTS et e E-1
ERRORPROCESSING e E-2
INPUT/OUTPUT FACILITIES E-2
Input/Output Channels Used Internally by FOROTS E-2
File AccessModes L E-2
Sequential TransferMode E-2
Random AccessMode E-3
ACCEPTABLE TYPES OF DATA FILES AND THEIR FORMATS E-3
ASCHI DataFiles e E-3
FORTRAN Binary Data Files E-3
Format of Binary Files E-4
Mixed Mode Data Files E-11
Image Files E-11
USING FOROTS e E-12
FOROTS Entry Points E-12
Calling Sequences e e E-12
MACRO Calls for FOROTS Functions E-13
Formatted/Unformatted Transfer Statements, Sequential Access
Calling Sequences E-14
NAMELIST Data Transfer Statements, Sequential Access
CallingSequences e e E-15
Array Offsetsand Factoring E-16
Formatted/Unformatted Data Transfer Statements,
Random Access Calling Sequences E-17
Calling Sequences for Statements Which Use Default Devices E-18
Calling Sequences for Statements Which Position Magnetic
Tape Units L e E-19
List Directed Input/Output Statements E-20

viii

E.5.3.8
E.5.3.9
E.5.3.10
E.6

APPENDIX F

F.1
F.1.1
F.1.2
F.1.3
F.2
F.2.1
F.3
F.4
F.5
F.0
F.7
F.8
F.9

APPENDIX G

APPENDIX H

CONTENTS (Cont)

Page
Input/Output Data Lists E-20
OPEN and CLOSE Statements, Calling Sequences E-23
Software Channel Allocation and De-allocation Routines E-24
LOGICAL/PHYSICAL DEVICE ASSIGNMENTS E-25
FORDDT
INPUT FORMAT F-2
Variablesand Arrays F-2
Numeric Conventions F-3
Statement Labels and Source Line Numbers F-3
NEWUSER TUTORIAL F-3
Basic Commands F-3
FORDDT AND THE FORTRAN /DEBUG SWITCH F-6
LOADING AND STARTING FORDDT F-7
SCOPE OF NAME AND LABEL REFERENCES F-8
FORDDT COMMANDS F-8
ENVIRONMENT CONTROL F-16
FORTRAN /OPTIMIZE SWITCH F-16
FORDDT MESSAGES F-16
COMPILER MESSAGES

DECsystem-10 COMPATIBILITY

ix

Table No.

1-1
21
31
3.2
4-1
4-2
43
4-4
4.5
4-6
4.7
4-8
8-1
101
10-2
103
104
12-1
13-1
13-2
133
134

13-5
14-1
15-1
15-2
15-3
C-1
C-2
D-1
D-2
D-3
E-2
F-1

TABLES

Title Page
FORTRAN Statement Categories v v v i it it e oo 1-2
DECsystem-20 FORTRAN Character Set 2-1
Constants L L e e e e e e e e e e e e e e e e e 3-2
Use of Symbolic Names e 3-6
Arithmetic Operations and Operators 4-1
Type of the Resultant Obtained From Mixed Mode Operations 4-3
Permitted Base/Exponent Type Combinations 44
Logical Operators i e e e e e e e 44
Logical Operations, Truth Table 4-5
Binary Logical Operations, Truth Table 4-6
Relational Operators and Operations 4-7
Hierarchy of FORTRAN Operators 49
Rules for Conversion in Mixed Mode Assignments 8-2
DECsystem-20 FORTRAN Logical Device Assignments 104
Summary of Read Statements 10-12
Summary of WRITE Statements 10-15
Summary of DECsystem-20 FORTRAN [/O Statements 10-21
OPEN/CLOSE Statement Arguments 129
DECsystem-20 FORTRAN Conversion Codes 13-3
Action of Field Descriptors On Sample Data 13-5
Numeric Field Codes 13-6
Descriptor Conversion of Real and Double Precision Data
According to Magnitude L L. 13-8
FORTRAN Print Control Characters 13-14
Summary of DECsystem-20 FORTRAN Device Control Statements 14-3
Intrinsic Functions (DECsystem-20 FORTRAN Defined Functions) 154
Basic External Functions (DECsystem-20 FORTRAN Defined Functions) 15-8
FORTRAN Library Subroutines 15-15
FORTRAN Compiler Switches o . .. C-2
Modifiers to /[DEBUG Switch C-3
Argument Types and Type Codes, D-12
Upward Compatibility (FORSE TO FOROTS) D-21
Downward Compatibility (FOROTSTOFORSE) D-22
FORTRAN Device Table E-27
Table of Commands F-1

PREFACE

The DECsystem-20 FORTRAN Reference Manual describes the FORTRAN language as
implemented for the DECsystem-20 FORTRAN Language Processing System (referred to as
DECsystem-20 FORTRAN).

The language manual is intended for reference purposes only; tutorial type text has becn
minimized. The reader is expected to have some experience in writing FORTRAN programs
and to be familiar with the standard FORTRAN language set and terminology as defined in
the American National Standard FORTRAN, X3.9-19606.

The descriptions of the DECsystem-20 FORTRAN extensions and additions to the standard
IFORTRAN language sct are printed in bold face italic type.

Operating procedurcs and descriptions of the DECsystem-20 programming environment are
included in the appendices.

Xi

CHAPTER 1 Introduction

DECsystem-20 FORTRAN extensions to the 1966
ANSI standard set are printed in boldface italic type.

CHAPTER 1
INTRODUCTION

1.1 INTRODUCTION

The DECsystem-20 FORTRAN language sct is compatible with and encompasses the standard set described in
““American National Standard FORTRAN, X3.9-1966” (referred to as the 1966 ANSI standard set). DECsystem-20
FORTRAN also provides many extensions and additions to the standard set which greatly enhance the usefulness of
DECsystem-20 FORTRAN and increases its compatibility with FORTRAN language sets implemented by other
major computer manufacturers. In this manual the DECsystem-20 FORTRAN extensions and additions to the 1966
ANSI standard set are printed in boldface iralic type.

A DECsystem-20 FORTRAN source program consists of a set of statements constructed using the language elements
and the syntax described in this manual. A given FORTRAN statement will perform anyone of the following functions:

a. It will cause operations such as multiplication, division, and branching to be carried out.
b. It will specify the type and format of the data being processed.
c. It will specify the characteristics of the source program.

FORTRAN statements arc comprised of key words (i.e., words which are recognized by the compiler) used with

elements of the language set: constants, variables, and expressions. There are two basic types of FORTRAN
statements: executable and nonexecutable.

Executable statements specify the action of the program; nonexecutable statements describe the characteristics and
arrangement of data, editing information, statement functions, and the kind of subprograms that may be included in
the program. The compilation of executable statements results in the creation of executable code in the object
program. Nonexecutable statements provide information only to the compiler, they do not create executable code.

In this manual the FORTRAN statements are grouped into twelve categories, each of which is described in a separate
chapter. The name, definition, and chapter reference for each statement category are given in Table 1-1.

The basic FORTRAN language elements (i.e., constants, variables, and expressions), the character set from which
they may be formed, and the rules which govern their construction and use are described in Chapters 2 through 4.

1-1

CHAPTER 1

Table 1-1
FORTRAN Statement Categories

Statement Categories

Category Name

Description

Chapter Reference

Compilation Control
Statements

Specification Statements

DATA Statement

Assignment Statements

Control Statements

Input/Output Statements

NAMELIST Statement

File Control Statements

FORMAT Statement

Device Control Statements

SUBPROGRAM
Statements

BLOCK DATA Statements

Statements in this category identify programs
and indicate their end.

Statements in this category declare the
properties of variables, arrays, and functions.

This statement assigns initial values to variables
and array elements.

Statements in this category cause named
variables and/or array elements to be replaced
by specified (assigned) values.

Statements in this category determine the order
of execution of the object program and
terminate its execution.

Statements in this category transfer data
between internal storage and a specified input
or output medium.

This statement establishes lists that are used
with certain input/output statements to
transfer data which appears in a special type of
record.

Statements in this category identify, open and
close files and establish parameters for input
and output operations between files and the
processor.

This statement is wused with certain
input/output statements to specify the form in
which data appears in a FORTRAN record on a
specified input/output medium.

Statements in this category enable the
programmer to control the positioning of
records or files on certain peripheral devices.

Statements in this category enable the
programmer to define functions and
subroutines and their entry points.

Statements in this category are used to declare
data specification subprograms which may
initialize common storage areas.

5

10

11

12

13

14

15

16

1-2

CHAPTER 2

DECsystem-20 FORTRAN extensions to the 1966
ANSI standard set are printed in boldface italic type.

2.1 CHARACTER SET

Character Set

CHAPTER 2

CHARACTERS AND LINES

The digits, letters, and symbols recognized by DECsystem-20 FORTRAN are listed in Table 2-1. The remainder of
the ASCII-1968 character set], although acceptable within literal constants or comment text, causes a fatal error in
other contexts. An exception is CTRL/Z which, when used in terminal input, means end-of-file.

NOTE

Lower case alphabetic characters are treated as upper case
outside the context of Hollerith constants, literal strings, and

comments.

Table 2-1

DECsystem-20 FORTRAN Character Set

Letters

Aa Jj S;s
B,b K,k T,t
C,c L, U,u
Dd M,m A\"AY
E,e N,n Ww
F,f 0,0 X,x
G,g P,p Y,y
H,h Qq Zz
Li R,r

(continued)

! The complete ASCII-1968 character set is defined in the X3.4-1968 version of the “American National Standard for Information

Interchange,” and is given in Appendix A.

2-1

CHAPTER 2

Table 2-1 (Cont)

DECsystem-20 FORTRAN Character Set

Character Set

Digits

AW~ O
O 00 N N W

Symbols

Exclamation Point
” Quotation Marks
Number Sign

Dollar Sign
Ampersand
Apostrophe
Opening Parenthesis
Closing Parenthesis
Asterisk

Plus

VQQ%#

+ %=~

., Comma

- Hyphen (Minus)

. Period (Decimal Point)
/ Slant (slash)

Colon

Semicolon

Less Than

Equals

Greater Than

/N Circumflex

v n /\,. .o

Line Termination Characters

Line Feed
Form Feed
Vertical Tab

Line Formatting Characters

Carriage Return
Horizontal Tab
Blank

Note that horizontal tabs normally advance the character position pointer to the next position that is an even
multiple of 8. An exception to this is the initial tab which is defined as a tab that includes or starts in character
position 6. (Refer to Section 2.3.1 for a description of initial and continuation line types.) Tabs within literal
specifications count as one character even though they may advance the character position pointer as many as eight

places.

Statement LABEL,
CONTINUATION and STATEMENT
CHAPTER 2 Fields and Remarks

2.2 STATEMENT, DEFINITION, AND FORMAT

Source program statements are divided into physical lines. A line is defined as a string of adjacent character
positions, terminated by the first occurrence of a line termination character regardless of context. Each line is
divided into four fields:

|< Line Character Positions =||
1 2 3 4 5 6 7 8 70 71 72 73 .
N v J__Y_/P ~ Y] “ v
Statement Continuation Statement Field Remarks
Label Field Field

2.2.1 Statement Label Field and Statement Numbers

A one to five digit number may be placed in the statement label field of an initial line to identify the statement. Any
source program statement that is referenced by another statement must have a statement number. Statement
numbers may be any number from 1 to 99999; leading zeroes and all blanks in the label field are ignored (e.g., the
numbers 00105 and 105 are both accepted as statement number 105). The statement numbers given in a source
program may be assigned in any order; however, each statement number must be unique with respect to all other
statements in the program. Non executable statements, with the exception of FORMAT statements, cannot be
labeled.

When source programs are entered into the system via a standard user terminal, an initial tab may be used to skip
all or part of the label field.

If an initial tab is encountered during compilation, FORTRAN examines the character immediately following the
tab to determine the type of line being entered. If the character following the tab is one of the digits 1 through 9,
FORTRAN considers the line as a continuation line and the second character after the tab as the first character
of the statement field. If the character following the tal) is other than one of the digits 1 through 9, FORTRAN
considers the line to be an initial line and the character following the tab is considered to be the first character of the
statement field. The character following the initial tab is considered to be in character position 6 in a continuation
line, and in character position 7 in an initial line.

2.2.2 Line Continuation Field

Any alphanumeric character (except a blank or a zero) placed in this field (position 6) identifies the line as a
continuation line (see Paragraph 2.3.1 for description).

Whenever a tab is used to skip all or part of the label field of a continuation line, the next character entered must be
one of the digits 1 through 9 to identify the line as a continuation line.

2.2.3 Statement Field

Any FORTRAN statement may appear in this field. Blanks (spaces) and tabs do not affect compilation of the state-
ment and may be used freely in this field for appearance purposes, with the exception of textual data given within
either a literal or Hollerith specification where blanks and tabs are significant characters.

2.2.4 Remarks

In lines comprised of 73 or more character positions, only the first 72 characters are interpreted by FORTRAN.
(Note that tabs generally occupy more than one character position, advancing the counter to the next character
position that is an even multiple of eight.) All other characters in the line (character positions 73, 74 ... etc.) are
treated as remarks and do not affect compilation.

2-3

LINE TYPES
Initial and Continuation Lines

Note that remarks may also be added to a line in character positions 7 through 72 provided the text of the remark is
preceded by the symbol ! (refer to Paragraph 2.3.3).
2.3 LINE TYPES
A line in a DECsystem-20 FORTRAN source program can be
a. aninitial line
b. acontinuation line
C. amulti-statement line
d. acomment line
e. adebug line
f. ablank line.

Each of the foregoing line types is described in the following paragraphs.

2.3.1 Initial and Continuation Line Types

A FORTRAN statement may occupy the statement fields of up to 20 consecutive lines. The first line in a multi-
line statement group is referred to as the “initial” line; the succeeding lines are referred to as continuation
lines.

Initial lines may be assigned a statement number and must have either a blank or a zero in their continuation line
field (i.e., character position 6).

If an initial line is entered via a keyboard input device, an initial tab may be used to skip all or part of the label field.
An initial tab used for this purpose must be followed immediately by a nonnumeric character (i.e., the first character
of the statement field must be nonnumeric).

Continuation lines cannot be assigned statement numbers: they are identified by any alphanumeric character (ex-
cept for a blank or zero) placed in character position 6 of the line (i.e., continuation line field). The label field of a
continuation line is treated as remark text.

If a continuation line is being entered via a keyboard, an initial tab may be used to skip all or part of the label field;
however, the tab must be followed immediately by a numeric character other than zero. The tab-numeric
combination identifies the line as a continuation line.

Note that blank lines, comments, and debug lines that are treated like comments, i.e., debug lines that are not
compiled with the rest of the program (refer to section 2.3.4), terminate a continuation sequence.

Following is an example of a four line FORTRAN FORMAT statement using initial tabs:

185 FORMAT (I1H!,l THINITIAL CHARGE = ,F10.6,10H COULOME, 6X,
21 3HRESISTANCE = ,F9S,3,6H OHM/15H CAPACITANCE = ,Fl10.6,
38H FARAD,11X,13HINDUCTANCE = ,F7.3,8H HENERY///

421 H TI ME CURRENT/7TH MS,10X.2HMA// /)

Continuation Line Characters (i.e., 2, 3, and 4)

24

Multi-Statement Comment,
and Remark Lines

2.3.2 Multi-Statement Lines

More than one FORTRAN statement may be written in the statement field of one line. The rules for structuring a
multi-statement line are:

a. successive statements must be separated by a semicolon (;)

b. only the first statement in the series can have a statement number

c. statements following the first statement cannot be a continuation of the preceding statement

d. the last statement in a line may be continued to the next line if the line is made a continuation line.

An example of a multi-statement line is:

450 DIST=RATE * TIME $TIME=TIME+0.85 ;CALL PRIMECTIME,DIST)

2.3.3 Comment Lines and Remarks

Lines that contain descriptive text only are referred to as comment lines. Comment lines are commonly used to
identify and introduce a source program, to describe the purpose of a particular set of statements, and to introduce
subprograms.

The rules for structuring a comment line are:

a. One of the characters C (or ¢), $,/,*, or ! must be in character position 1 of the line to identify it as a
comment line.

b. The text may be written into character positions 2 through the end of the line.

¢. Comment lines may appear anywhere in the source program, but may not precede a continuation line
because comments terminate a continuation sequence.

d. A large comment may be written as a sequence of any number of lines. However, each line must carry
the identifying character (C,$,/,*, or !) in its first character position.

The following is an example of a comment that occupies more than one line.

CSUBROUTINE - Al2

CTHE PURPOSE OF THIS SUBROUTINE IS
CTO FORMAT AND STORE THE RESULTS OF
CTEST PROGRAM HEAT TEST-1101

Comment lines are printed on all listings but are otherwise ignored by the compiler.

2-5

Debug and Blank Lines
Line-Sequenced Input
Ordering of Statements

A remark may be added to any statement field, in character positions 7 through 72, provided the symbol ! precedes
the text. For example, in the line

IF(N.EQ.8)STOP! STOP IF CARD IS BLANK

the character group “Stop if card is blank” is identified as a remark by the preceding ! symbol. Remarks do not
result in the generation of object program code, but they will appear on listings. The symbol !, indicating a remark,
must appear outside the context of a literal specification.

Note that characters appearing in character positions 73 and beyond are automatically treated as remarks, so that
the symbol ! need not be used (refer to Paragraph 2.2.4).

2.3.4 Debug Lines

As an aid in program debugging a D (or d) in character position 1 of any line causes the line to be interpreted as a
comment line, i.e., not compiled with the rest of the program unless the / Include switch appears in the command
string. (Refer to Appendix C for a description of the compile switch options.) When the / Include switch is present
in the command string the D (or d) in character position 1 is treated as a blank so that the remainder of the line is
compiled as an ordinary (noncomment) line. Note that the initial and all continuation lines of a debug statement
must contain a D (or d) in character position 1.

2.3.5 Blank Lines

Lines consisting of only blanks, tabs, or no characters may be inserted anywhere in a FORTRAN source program
except immediately preceding a continuation line, because blank lines are by definition initial lines and as such
terminate a continuation sequence. Blank lines are used for formatting purposes only; they cause blank lines to
appear in their corresponding positions in object program listings; otherwise, they are ignored by the compiler.

2.3.6 Line-Sequenced Input

FORTRAN optionally accepts line-sequenced files as produced by EDIT, the DECsystem-20 editor. These sequence
numbers are used in place of the listing line numbers normally generated by FORTRAN.

2.4 ORDERING OF DECSYSTEM-20 FORTRAN STATEMENTS

The order in which FORTRAN Statements appear in a program unit is important. That is, certain types of
statements have to be processed before others in order to guarantee that compilation takes place as expected. The
proper sequence for FORTRAN statements is summarized by the following diagram.

2-6

Ordering of Statements

PROGRAM, FUNCTION, Subprogram, or
BLOCK DATA Statements

IMPLICIT Statements

PARAMETER Statements

DIMENSION, COMMON,
Comment Lines FORMAT Statements EQUIVALENCE, EXTERNAL,
NAMELIST, or Type
Specification Statements

Statement
Function

DATA Statements Definitions

Executable
Statements

END Statement

Horizontal lines indicate the order in which FORTRAN statements must appear. That is, the statements in the
horizontal sections cannot be interspersed. For example, all PARAMETER statements must appear after all
IMPLICIT statements and before any DATA statements, i.e., PARAMETER, IMPLICIT, and DATA statements
cannot be interspersedx Statement function definitions must appear after IMPLICIT statements and before
executable statements.

Vertical lines indicate the way in which certain types of statements may be interspersed. For example, DATA
statements may be interspersed with statement function definitions and executable statements. FORMAT
statements may be interspersed with IMPLICIT statements, parameter statements, other specification statements,
DATA statements, statement function definitions, and executable statements. The only restrictions on the
placement of FORMAT statements are that they must appear after any PROGRAM, FUNCTION, SUBPROGRAM,
and BLOCK DATA statements, and before the END statement.

Special Cases:
a. The placement of an INCLUDE statement is dictated by the types of statements to be INCLUDEd.
b. The ENTRY statement is allowed only in functions or subroutines. All executable references to any of
the dummy parameters must physically follow the ENTRY statement unless the references appear in the

function definition statement, the subroutine, or in a preceding ENTRY statement.

¢. BLOCK DATA subprograms cannot contain any executable statements, statement functions, FORMAT
statements, EXTERNAL statements, or NAMELIST statements. (Refer to section 16.1.)

FORTRAN expects users to adhere to the foregoing ordering guidelines and issues warning messages when
statements are out of place.

2-7

CHAPTER 3 Data Types, Constants

DECsystem-20 FORTRAN extensions to the 1966
ANSI standard set are printed in boldface italic type.

CHAPTER 3

DATA TYPES, CONSTANTS, SYMBOLIC NAMES,
VARIABLES, AND ARRAYS

3.1 DATA TYPES
The data types permitted in DECsystem-20 FORTRAN source programs are
a. integer
b. real
c. double precision
d. complex
e. octal
f. double octal
g literal
h. statement label, and
i. logical.

The use and format of each of the foregoing data types are discussed in the descriptions of the constant having the
same data type (Paragraphs 3.2.1 through 3.2.8).

3.2 CONSTANTS
Constants are quantities that do not change value during the execution of the object program.

The constants permitted in DECsystem-20 FORTRAN are listed in Table 3-1.

3-1

CHAPTER 3 INTEGER and REAL Constants

Table 3-1
Constants
Category Constant(s) Types
Numeric Integer, real, double precision, complex, and octal
Truth Values Logical
Literal Data Literal
Statement Label Address of FORTRAN statement label

3.2.1 Integer Constants

An integer constant is a string of from one to eleven digits which represents a whole decimal number (i.e., a number
without a fractional part). Integer constants must be within the range of -23°~1 to +235-1 (i.e.,-34359738367 to
+34359738367). Positive integer constants may optionally be signed; negative integer constants must be signed.
Decimal points, commas, or other symbols are not permitted on integer constants (except for a preceding sign, + or
-). Examples of valid integer constants are:

345
+345
-345

Examples of invalid integer constants are:

+345. (use of decimal point)
3,450 (use of comma)
34.5 (use of decimal point; not a whole number)

3.2.2 Real Constants

A real constant may have any of the following forms:

a. A basic real constant: a string of decimal digits followed immediately by a decimal point which may
optionally be followed by a fraction (e.g., 1557.00).

b. A basic real constant followed immediately by a decimal integer exponent written in E notation (i.e.,
exponential notation) form (e.g., 1559.E2).

c. An integer constant (no decimal point) followed by a decimal integer exponent written in E notation
(e.g., 1559E2).

Real constants may be of any size; however, each will be rounded to fit the precision of 27 bits (i.e., 7 to 9 decimal
digits).

Precision for real constants is maintained (approximately) to eight digits.’

! This is an approximation, the exact precision obtained will depend on the numbers involved.

32

CHAPTER 3 DOUBLE PRECISION Constants

The exponent field of a real constant written in E notation form cannot be empty (i.e., blank), it must be either a
zero or an integer constant. The magnitude of the exponent must be greater than -38 and equal to or less than +38
(i-e., -38 <n < 38). The following are examples of valid real constants.

-98.765

7.0E+0 (ie., 7.)
7E-3 (i.e., .0007)
S5E+5 (i.e., 500000.)
50115.

50.E1 (i.e., 500.)

The following are examples of invalid real constants.

72.6E75 (exponent is too large)
.375E (exponent incorrectly written)
500 (no decimal point given)

3.2.3 Double Precision Constants

Constants of this type are similar to real constants written in E notation form; the direct differences between these
two constants are:

a. Double precision constants depending on their magnitude have precision to 16 or 18 places, rather than
the 8-digit precision obtained for real constants.

b. Each double precision constant occupies two storage locations.

¢. Theletter D, instead of E, is used in double precision constants to identify a decimal exponent.
Both the letter D and an exponent (even of zero) are required in writing a double precision constant. The exponent
given need only be signed if it is negative; its magnitude must be greater than -38 and equal to or less than +38 (i.e.,
-38 <n<+38). The range of magnitude permitted a double precision constant depends on the type of processor

present in the system on which the source program is to be compiled and run. The permitted range is 0.14 X 1038
to 3.4 X 10*38,

The following are valid examples of double precision constants.

7.9D03 (i.e., 7900)
7.9D+03 (i-e., 7900)
7.9D-3 (i.e., .0079)
79D03 (i.e., 79000)
79D0 (ie., 79)

The following are invalid examples of double precision constants.

7.9D99 (exponent is too large)
7.9ES (denotes a single precision constant)

33

CHAPTER 3 COMPLEX and OCTAL Constants

3.2.4 Complex Constants

A complex constant can be represented by an ordered pair of integer, real or octal constants written within
parentheses and separated by a comma. For example, (.70712, -.70712) and (8.763E3, 2.297) are complex
constants.

In a complex constant the first (leftmost) real constant of the pair represents the real part of the number, the second
real constant represents the imaginary part of the number. Both the real and imaginary parts of a complex constant
can be signed.

The real constants that represent the real and imaginary parts of a complex constant occupy two consecutive storage
locations in the object program.

3.2.5 Octal Constants

Octal numbers (radix 8) may be used as constants in arithmetic expressions, logical expressions, and data statements.
Octal numbers up to 12 digits in length are considered standard octal constants; they are stored right-justified in one
processor storage location. When necessary, standard octal constants are padded with leading zeroes to fill their
storage location.

If more than 12 digits are specified in an octal number, it is considered a double octal constant. Double octal
constants occupy two storage locations and may contain up to 24 right-justified octal digits; zeroes are added to fill
any unused digits.

If a single octal constant is to be assigned to a double precision or complex variable, it is stored, right-justified, in the
high order word of the variable. The low order portion of the variable is set to zero.

If a double octal constant is to be assigned to a double precision or complex variable, it is stored right-justified
starting in the low order (rightmost) word and precedes leftwards into the high order word.

All octal constants must be
a. preceded by a double quote (*) to identify the digits as octal (e.g., “777), and
b. signed if negative but optionally signed if positive.
The following are examples of valid octal constants:
“123456700007
“123456700007
+“12345
-“7777
“-7777

The following are examples of invalid octal constants:

“12368 (contains a radix digit)
7777 (no identifying double quotes)

When an octal constant is used as an operand in an expression, its form (i.e., bit pattern) is not converted to
accommodate it to the type of any other operand. For example, the subexpression (A+'202 400 000 000) has as its
result the sum of A with the floating point number 2.0; while the subexpression (I+*202 400 000 000) has as its
result the sum of I with a large integer.

34

CHAPTER 3 LOGICAL and LITERAL Constants,
Statement Labels, Symbolic Names

When a double octal constant is combined in an expression with either an integer or real variable, only the contents
of the high order location (leftmost) are used.

3.2.6 Logical Constants

The Boolean values of truth and falsehood are represented in FORTRAN source programs as the logical constants
.TRUE. and .FALSE.. Logical constants are always written enclosed by periods as in the preceding sentence.

Logical quantities may be operated on in arithmetic and logical statements. Only the sign bit of a numeric used in a
logical IF statement is tested to determine if it is true (sign is negative) or false (sign is positive).

3.2.7 Literal Constants

A literal constant may be either of the following:
a. A string of alphanumeric and/or special characters contained within apostrophes (e.g., ‘TEST#S5’).

b. A Hollerith literal, which is written as a string of alphanumeric and/or special characters preceded by nH
(e.g., nHstring). In the prefix nH, the letter n represents a number which specifies the exact number of
characters (including blanks) that follow the letter H; the letter H identifies the literal as a Hollerith
literal. The following are examples of Hollerith literals:

2HAB,
14HLOAD TEST #124,
6H#124-A
NOTE
A tab () in a Hollerith literal is counted as one character

{e.g., 3SH-=1AB).

Literal constants may be entered into DATA statements as a string of
a. up to ten 7-bit ASCII characters for complex or double precision type variables, and
b. up to five 7-bit ASCII characters for all other type variables.

The 7-bit ASCII characters which comprise a literal constant are stored left-justified (starting in the high order word
of a 2-word precision or complex literal) with blanks placed in empty character positions. Literal constants that
occupy more than one variable are stored in successive variables in the list. The following example illustrates how the
string of characters

A LITERAL OF MANY CHARACTERS
is stored in a six-element array called A.

DIMENSION A(6)
DATA A /'A LITERAL OF MANY CHARACTERS’/

A(l) is set to ‘A_LIT’
A(2) is set to ‘ERAL_’
A(3) is set to ‘OF_MA’
A(4) is set to ‘NY_CH’
A(S5) is set to ‘ARACT’
A(6) is set to ‘ERS__’

35

CHAPTER 3 Symbolic Names, Variables

3.2.8 Statement Label Constants

Statement labels are numeric identifiers that represent program statement numbers.

Statement label constants are written as a string of from one to five decimal digits which are preceded by either a
dollar sign (8) or an ampersand (&). For example, either $11992 or & 11992 may be used as statement labels.

Statement label constants are used only in the argument list of CALL statements to define the statement to return
to in a multiple RETURN statement. (Refer to Chapter 15.)

3.3 SYMBOLIC NAMES

Symbolic names may consist of any alphanumeric combination of from one to six characters. More than six
characters may be given but FORTRAN ignores all but the first six. The first character of a symbolic name must be
an alphabetic character.

The following are examples of legal symbolic names:

A12345
TIAMBIC
ABLE

The following are examples of illegal symbolic names:

#AMBIC (symbol used as first character)
1AB (number used as first character)

Symbolic names are used to identify specific items of a FORTRAN source program; these items, together with an

example of a symbolic name and text reference for each, are listed in Table 3-2.

Table 3-2
Use of Symbolic Names

Symbolic Names For Example For a detailed description
Can Identify See Paragraph
1. A Variable PI, CONST, LIMIT 34
2. An Array TAX 3.5
3. An Array element TAX (NAME,INCOME) 3.5.1
4. Functions MYFUNC, VALFUN 15.2
5. Subroutines CALCSB, SUB2, LOOKUP 15.5
6. External SIN, ATAN, COSH 15.4
7. COMMON Block Names DATAR, COMDAT 6.5

3.4 VARIABLES

A variable is a datum (i.e., storage location) that is identified by a symbolic name and is not an array or an array
element. Variables specify values which are assigned to them by either arithmetic statements (Chapter 8), DATA
statements (Chapter 7), or at run time via I/O references (Chapter 10). Before a variable is assigned a value, it is
termed an undefined variable and should not be referenced except to assign a value to it.

If an undefined variable is referenced, an unknown value is obtained.

3-6

CHAPTER 3 ARRAYS, ARRAY Element Subscripts

The value assigned a variable may be either a constant or the result of a calculation which is performed during the
execution of the object program. For example, the statement IAB=5 assigns the constant 5 to the variable IAB; in
the statement IAB=5+B, however, the value of IAB at a given time will depend on the value of variable B at the time
the statement was last executed.

The type of a variable is the type of the contents of the datum which it identifies. Variables may be

a. integer
b. real
c. logical

d. double precision, or
e. complex.

The type of a variable may be declared using either implicit or explicit type declaration statements (Chapter 6).
However, if type declaration statements are not used, the following convention is assumed by FORTRAN:

a. Variable names which begin with the letters I, J, K, L, M, or N are integer variables.
b. Variable names which begin with any letter other than 1, J, K, L, M, or N are real variables.

Examples of determining the type of a variable according to the foregoing convention are given in the following
table.

Variable Beginning Letter Assumed Data Type
ITEMP I Integer
OTEMP 0) Real

KA123 K Integer
AABLE A Real

3.5 ARRAYS

An array is an ordered set of data identified by an array name. Array names are symbolic names and must conform
to the rules given in Paragraph 3.3 for writing symbolic names.

Each datum within an array is called an array element. Like variables, array elements may be assigned values; before
an array element is assigned a value it is considered to be undefined and should not be referenced until it has been
assigned a value. If a reference is made to an undefined array element the value of the element will be unknown and
unpredictable.

Each element of an array is named by using the array name together with a subscript that describes the position of
the element within the array.

3.5.1 Array Element Subscripts

The subscript of an array element identifier is given, within parentheses, as either one subscript quantity or a set of
subscript quantities delimited by commas. The parenthesized subscript is written immediately after the array name.
The general form of an array element name is AN (S1, S2,...Sn), where AN is the array name and SI through Sn
represent n number of subscript quantities. Any number of subscript quantities may be used in an element name;
however, the number used must always equal the number of dimensions (Paragraph 3.5.2) specified for the array.

3-7

CHAPTER 3 Dimensioning Arrays

A subscript can be any compound expression (Chapter 4), for example:

a. Subscript quantities may contain arithmetic expressions that involve addition, subtraction,
multiplication, division, and exponentiation. For example, (A+B,C*5,D/2) and (A**3, (B/4+C) *E,3)
are valid subscripts.

b. Arithmetic expressions used in array subscripts may be of any type but noninteger expressions
(including complex) are converted to integer when the subscript is evaluated.

c. A subscript may contain function references (Chapter 14). For example: TABLE (SIN (A) *B, 2, 3)isa
valid array element identifier.

d. Subscripts may contain array element identifiers nested to any level as subscripts. For example, in the
subscript (I(J(K(L))),A+B,C) the first subscript quantity given is a nested 3-level subscript.

The following are examples of valid array element subscripts:

a. 1AB(1,53)
b. ABLE(A)

c. TABLEI (10/C+K**2,A,B)

d. MAT(A,AB(2*L), 3*TAB(A,M+1,D),55)

3.5.2 Dimensioning Arrays

The size (i.e., number of elements) of an array must be declared in order to enable FORTRAN to reserve the
needed amount of locations in which to store the array. Arrays are stored as a series of sequential storage locations.
Arrays, however, are visualized and referenced as if they were single or multi-dimensional rectilinear matrices,
dimensioned on a row, column, and plane basis. For example, the following figure represents a 3-row, 3-column,
2-plane array.

3 ROWS 4

Qf_v
™
\y

—¥"

3 COLUMNS

10-1058

The size (i.e., number of elements) of an array is specified by an array declarator written as a subscripted array
name. In an array declarator, however, each subscript quantity is a dimension of the array and must be either an
integer, a variable, or an integer constant.

For example, TABLE (I,J,K) and MATRIX (10,7,3,4) are valid array declarators.

The total number of elements which comprise an array is the product of the dimension quantities given in its array
declarator. For example, the array IAB dimensioned as IAB (2,3,4) has 24 elements (2 X 3 X 4 = 24),

3-8

CHAPTER 3 Dimensioning Arrays,
Order of Stored Array Elements
Arrays are dimensioned only in the specification statements DIMENSION, COMMON, and type declaration (Chapter
6). Subscripted array names appearing in any of the foregoing statements are array declarators; subscripted array
names appearing in any other statements are always array element identifiers. In array declarators the position of a
given subscript quantity determines the particular dimension of the array (e.g., row, column, plane) which it
represents. The first three subscript positions specify the number of rows, columns, and planes which comprise the
named array; each following subscript given then specifies a set comprised of n-number (value of the subscript) of
the previously defined sets. For example:

The Dimension Declarator Specifies the Array(s)
AR 7]
TAB(22) A0 1,2
2,122
TAB (2,2,2) _ - —”’, la192 1,2,2
1,1’1 1,2’1 27192 2:2:2’
271vl 2,2,1 —”,—“
TAB (2,2,2,2) - 2,1 12,20 - [1122]1222
1,1,1,11,2,1,1 2,1,2,1 2,2,:?,1 1112] 1212 2,122 2,2,?:%
215112201 __--"" 2012[2202] __---~
NOTE

DECsystem-20 FORTRAN permits any number of dimensions
in an array declarator.

3.5.3 Order of Stored Array Elements

The elements of an array are arranged in storage in ascending order, with the value of the first subscript quantity
varying between its maximum and minimum values most rapidly, and the value of the last given subscript quantity
increasing to its maximum value least rapidly. For example, the elements of the array dimensioned as 1(2,3) are
stored in the following order:

I(1,1) > 1(2,1) »1(1,2) > (2,2) = (1,3} > (2,3)

The following list describes the order in which the elements of the three-dimensional array (B(3,3,3)) are stored:

B(1,1,1) B(2,1,1) B(3,1,1) -
LeB(21) B@2D BG2) --
“-+B(1,3,1) B(23,1) B(33,1) -+
STRM) BGID 36D -
L8022 B@222) BG22) --
-+B(132) B(232) BG3) -4
“=B(L13) BQ13) BG13) - -
“+B(123) B(223) BG23) -+
“+B(133) B(233) BG33)

39

CHAPTER 4 Arithmetic Expressions

DECsystem-20 FORTRAN extensions to the 1966 ANSI and Operators

standard set are printed in boldface italic type.

CHAPTER 4
EXPRESSIONS

4.1 ARITHMETIC EXPRESSIONS

Arithmetic expressions may be either simple or compound. Simple arithmetic expressions consist of an operand
which may be

a. a constant

b. avariable

c. an array element

d. afunction reference (see Chapter 14 for description), or

e. an arithmetic or logical expression written within parentheses.
Operands may be of type integer, real, double precision, complex, octal, or literal.

The following are valid examples of simple arithmetic expressions:

105 (integer constant)

IAB (integer variable)

TABLE (3, 4, 5) (array element)

SIN (X) (function reference)

(A+B) (a parenthesized expression)

A compound arithmetic expression consists of two or more operands combined by arithmetic operators. The
arithmetic operations permitted in FORTRAN and the operator recognized for each are given in Table 4-1.

Table 4-1
Arithmetic Operations and Operators

Operation Operator Example
1. Exponentiation **or A**Bor ATB
2. Multiplication * A*B
3. Division / A/B
4. Addition + A+B
5. Subtraction - A-B

4-1

CHAPTER 4 Rules for Arithmetic
Expressions, Logical Expressions
4.1.1 Rules for Writing Arithmetic Expressions

The following rules must be observed in structuring compound arithmetic expressions:

a. The operands comprising a compound arithmetic expression may be of different types. Table 4-2
illustrates all permitted combinations of data types and the type assigned to the result of each.

NOTE

Only one combination of data types, double precision with
complex, is.prohibited in DECsystem-20 FORTRAN.

b. An expression cannot contain two adjacent and unseparated operators. For example, the expression
A*/B is not permitted.

c. All operators must be included, no operation is implied. For example, the expression A(B) does not
specify multiplication although this is implied in standard algebraic notation. The expression A* (B) is
required to obtain a multiplication of the elements.

d. In using exponentiation the base quantity and its exponent may be of different types. For example, the

expression ABC**13 involves a real base and an integer exponent. The permitted base/exponent type
combination and the type of the result of each combination is given in Table 4-3.

4.2 LOGICAL EXPRESSIONS

Logical expressions may be either simple or compound. Simple logical expressions consist of a logical operand which
may be a logical type

a. constant

b. variable

c. array element

d. function reference (see Chapter 15), or

e. another expression written within parentheses.

Compound logical expressions consist of two or more operands combined by logical operators.

The logical operators permitted by DECsystem-20 FORTRAN and a description of the operation each provides are
given in Table 4-4.

pusvuot sit
SpIom Iayuny
tA[30211p pasn st

palouat st
PIOM 13P10 MO]
1Ap2anp pasn st

teay

Z wawndry

piom-19pIo Y3y 4 plom 1apio ydiy AUON 't JUON b UON b auoN ‘t auoN b 0 Jadaju] wou, UO UOISIZAUO) “p
‘019z 81 ‘0197 St pIom
1ed Areurdewn 19pI0 MO] | pIoMm
‘Med [eay oyl 1apI0 Y3y oYy [wswndry reay
AUON ¢ AUON ¢ auoN ¢ QUON Y S A112211p pasn ¢ Se A[393p pas) ‘€ 3UON ¢ auoN UO UOISIAAUO) °§
JNsal yum
eay T ey 7 < eay ¢ xodwo) g uorIsalg dlqnoq ‘¢ ey T oy pajerdosse adA] 7
pasn
B3y 1 eay | ey | JLEN I xadwo)y ‘| uoIsIdaLg 3qno(] | ey | eay uonerado jo adA |
‘patousd are “patoudr st
spIom Jaylng pIom 13p1o mo|
1A[32anp pasn st tAndanp pasn st 7 wawndry
plom 1apIo ydiy 'y plom 1opio ydiy ¢ auoN p JUON b AUON P JUON P uox JuoN UO UOISIZAUOD "
1ed [RaY se pasn
anfep xaduo)) uors1alg ajqnoQq eay 1 wswndry 13823uj
AUON € auox ¢ AUON f auoN ¢ 0} 1a821u] wotg ¢ 0} 1a821uf wolyg ‘¢ 01 1980)u] woly ¢ auoN UO UOISIZAUO) ¢
Hnsal y3m
13 ¢ 13y ¢ 12301u] T 1333y 7 xaidwo) 7 uoisIaLg 3[qnoq ‘¢ ey ¢ 13823u] pajerdosse adA | ‘¢
pasn
198au] | 130 | 130U | 130up 7| xapdwo) | uors1alg a|qno(‘| ey 1 1a8a1u] uonesado joadA | |
[e1a31] 8120 3)qnoq 18190 [ea130 xajduio) uolsialg eay 18a)up [
3|qnoq s10je1ado 104

< dwndiy jo odA g

suonerddQ spoyy paxip wod,g
paurejqQ jue}nsay ay3 jo adAJ

b 3lqelL

Logical Operation Truth Table

CHAPTER 4
Table 4-5
Logical Operations, Truth Table
The result of When Is:
the expression: Pis: and Q is:
.NOT.P True (Not False
False Applicable) True
P.AND.Q True True True
True False False
False True False
False False False
P.OR.Q True True True
True False True
False True True
False False False
P.XOR.Q True True False
True False True
False True True
False False False
P.EQV.Q True True True
True False False
False True False
False False True
Examples
Assume the following variables:
Variable Type
REAL, RUN Real
IJK Integer
DP, D Double Precision
L,AB Logical
CPX, C Complex

Examples of valid logical expressions comprised of the foregoing variables are:

L.AND.B
(REAL*I) .XOR. (DP+K)
L.AND. A .OR. .NOT. (I-K)

45

CHAPTER 4 Binary Truth Table,
Relational Expressions

Logical functions are performed bit-wise on the full 36-bit binary processor representation of the operands involved.
The result of a logical operation is found by performing the specified function, simultaneously, for each of the
corresponding bits in each operand. For example, consider the expression A=C.OR.D, where C= “456 and D= “201.

The operation performed by the processor and the result is:

Word Bits 01l —24 25 26 27 28 29 30 31 32 33 34 35
OperandC 0 0 — O 0 0 1 0] 0 1 0 1 1 1 0
OperandD 0 0 — 0 0 0 0 1 0 0 0 0 0 0 1
Result A 00— 0 0 0 1 1 0 1 0 1 1 1 1

Table 4-6 is a truth table that illustrates all possible logical combinations of two one-bit binary operands (P and Q)

and gives the result of each combination.

Table 4-6
Binary Logical Operations, Truth Table
The result of When Is:
the expression: Pis: And Q is:
.NOT.P 1 - 0
- 1
P.AND.Q 1 1 1
1 0 0
0 1 0
0 0 0
P.OR.Q 1 1 1
1 0 1
0 1 1
0 0 0
P.XOR.Q 1 1 0
1 0 1
0 1 1
0 0 0
P.EQV.Q 1 1 1
1 0 0
0 1 0
0 0 1

4.2.1 Relational Expressions

Relational expressions are comprised of two expressions combined by a relational operator. The relational operator

permits the programmer to test, quantitatively, the relationship between two arithmetic expressions.

The result of a relational expression is always a logically true or false value.

46

CHAPTER 4

Relational Operators

In FORTRAN, relational operators may be written either as a two-letter mnemonic enclosed within periods (e.g.,
.GT.) or symbolically using the symbols >, <, =and #. Table 4-7 lists both the mnemonic and symbolic forms of the
FORTRAN relational operators and specifies the type of quantitative test performed by each operator.

Table 4-7
Relational Operators and Operations

Operators

Mnemonic Symbolic

Relation Tested

.GT.
.GE.
.LT.
.LE.
.EQ.
.NE.

#+#UAAVYV

Greater than

Greater than or equal to
Less than

Less than or equal to
Equal to

Not equal to

Relational expressions are written in the general form A; .OP. A,, where A represents an arithmetic operand and

.OP. is a relational operator.

Arithmetic operands of type integer, real, and double precision may be mixed in relational expressions.

Complex operands may be compared using only the operators .EQ (= =) and .NE. (#). Complex quantities are equal

if the corresponding parts of both words are equal.

Examples

Assume the following variables:

Variables
REAL, RON
IJ,K
DP,D
L,AB
CPX, C

Type

Real

Integer

Double Precision
Logical

Complex

Examples of valid relational expressions comprised of the foregoing variables are:

(REAL) .GT. 10

C .EQ.CPX

Examples of invalid relational expressions comprised of the foregoing variables are:

(REAL).GT 10 (closing period missing from operator)

C>CPX (complex operands can only be combined by .EQ. and .NE. operators)

4.7

CHAPTER 4 Evaluation of Expressions

Examples of valid expressions in which both logical and relational operators are used to combine the foregoing
variables are:

(1.GT. 10) .AND. (J< =K)

((I*RON) = = (1)) .OR. K

(I .AND. K) # ((REAL) .OR. (RON))
C #CPX .OR. RON

4.3 EVALUATION OF EXPRESSIONS
The order of computation of a FORTRAN expression is determined by

a. the use of parentheses
b. an established hierarchy for the execution of arithmetic, relational, and logical operations and
c. thelocation of operators within an expression.

4.3.1 Parenthesized Subexpressions

In an expression all subexpressions written within parentheses are evaluated first. When parenthesized subexpressions
are nested (one contained within another) the most deeply nested subexpression is evaluated first, the next most
deeply nested subexpression is evaluated second and so on, until the value of the final parenthesized expression is
computed. When more than one operator is contained by a parenthesized subexpression, the required computations
are performed according to the hierarchy assigned operators by FORTRAN (Paragraph 4.3.2).

Example:

The separate computations performed in evaluating the expression

A+B/((A/B)*+C)-C are:
a. A/B=RI

b. RI+C=R2

c. B/R2=R3

d. R3-C=R4

e. A+R4=RS5

NOTE
R1 through RS represent the interim and final results of the
computations performed.

4.3.2 Hierarchy of Operators

The following hierarchy (i.e., order of execution) is assigned to the classes of FORTRAN operators:

first — arithmetic operators
second — relational operators
third — logical operators

CHAPTER 4 Hierarchy of Arithmetic,
Relational and Logical Operators,
Mixed Mode Expressions

The precedence assigned to the individual operators of the foregoing classes is specified (from highest to lowest) in
Table 4-8.

With the exception of integer division and exponentiation, all operations on expressions or subexpressions involving
operators of equal precedence are computed in any order that is algebraically correct.

A subexpression of a given expression may be computed in any order. For example, in the expression (F(X) + A*B)
the function reference may be computed either before or after A*B.

Table 4-8
Hierarchy of FORTRAN Operators
Class Level Symbol or Mnemonic
First *k
ARITHMETIC Sec:ond = (unary minus) and + (unary plus)
Third */
Fourth +,-
RELATIONAL Fifth .GT., .GE., .LT,, .LE., .EQ., .NE.
or >,>=<,<===#
Sixth .NOT.
Seventh .AND.
LOGICAL Eighth .OR.
Ninth .EQV., .XOR.

Operations specifying integer division are evaluated from left to right. For example, the expression I/J*K is
evaluated as if it had been written as (I/J)*K.

When a series of exponentiation operations occurs in an expression, they are evaluated in order from right to left.
For example, the expression A**2**B is evaluated in the following order:

first 2**B = R1 (intermediate result)
second A**R1 = R2 (final result).

4.3.3 Mixed Mode Expressions

Mixed mode expressions are evaluated on a subexpression by subexpression basis with the type of the results
obtained converted and combined with other results or terms according to the conversion procedures described in
Table 4-2.

Example

Assume the following:

Variable Type
D Double Precision
X Real
ILJ Integer

49

CHAPTER 4 Mixed Mode Expressions,

Using Logical Operands
The mixed mode expression D+X* (I/J) is evaluated in the following manner:
NOTE

R1, R2, and R3 represent the interim and final results of the

computations performed.
a. (AJ)=R1 R1 is integer
b. X*R1=R2 R1 is converted to type real and is multiplied by X to produce R2
c. D+R2=R3 R2 is converted to type double precision and is added to D to produce R3

4.3.4 Use of Logical Operands in Mixed Mode Expressions

When logical operands are used in mixed mode expressions, the value of the logical operand is not converted in any
way to accommodate it to the type of the other operands in the expression. For example, in L*R, where L is type
logical and R is type real, the expression is evaluated without converting L to type real.

4-10

CHAPTER § PROGRAM Statement

DECsystem-20 FORTRAN extensions to the 1966 INCLUDE Statement
ANSI standard set are printed in boldface italic type.

CHAPTER 5
COMPILATION CONTROL STATEMENTS

5.1 INTRODUCTION

Compilation control statements are used to identify DECsystem-20 FORTRAN programs and to specify their termi-
nation. Statements of this type do not affect either the operations performed by the object program or the manner
in which the object program is executed. The three compilation control statements described in this chapter are:
PROGRAM statement, INCLUDE statement, and END statement.

5.2 PROGRAM STATEMENT

This statement allows the user to give the main program a name other than “MAIN.” The general form of a
PROGRAM statement is

PROGRAM name
where

name is a user-formulated symbolic name that begins with an alphabetic character and contains
a maximum of six characters. (Refer to section 3.3 for a description of symbolic names.)

The following rule governs the use of the PROGRAM statement:

The PROGRAM statement must be the first statement in a program unit. (Refer to section 2.4 for a discussion
of the ordering of DECsystem-20 FORTRAN statements.)

5.3 INCLUDE STATEMENT

This statement allows the user to include code segments or predefined declarations in a program unit without having
them reside in the same physical file as the primary program unit. The general form of the INCLUDE statement is

INCLUDE dev.filename.type[proj,prog] INOLIST

where
dev: is a device name. When no device is specified, DSK: is assumed.
filename.type is the filename and type of the FORTRAN statements that the user wishes to include.
The name of the file is required; the type is optional. If only the filename is specified,
then .FOR (for FORTRAN) is the assumed type.
[proj,prog] is the project-programmer number. The user’s connected directory is assumed if none is

specified. (Refer to Appendix B.)

5-1

END Statement

/NOLIST is an optional switch that indicates that the included statements are not to be included
in the compilation listing.

The following rules govern the use of the INCLUDE statement:

a. The INCLUDEU file may contain any iegal FORTRAN statement except another INCLUDE statement,
or a statement that terminates the current program unit, such as the END, PROGRAM, FUNCTION,
SUBROUTINE, or BLOCK DATA statements.

b. The proper placement of the INCLUDE statement within a program unit depends upon the types of
statements to be INCLUDEd. (Refer to section 2.4 for information on the ordering of DECsystem-20
FORTRAN statements.)

Note that an asterisk (*) is appended to the line numbers of the INCLUDEJ statements on the compilation listing.

5.4 END STATEMENT

This statement is used to signal FORTRAN that the physical end of a source program or subprogram has been
reached. END is a nonexecutable statement. The general form of an END statement is

END
The following rules govern the use of the END statement:
a. This statement must be the last physical statement of a source program or subprogram.

b. When used in a main program, the END statement implies a STOP statement operation, in a subprogram,
END implies a RETURN statement operation.

c. An END statement may be labeled.

CHAPTER 6 DIMENSION Statement

DECsystem-20 FORTRAN extensions to the 1966
ANSI standard set are printed in boldface italic type.

CHAPTER 6
SPECIFICATION STATEMENT

6.1 INTRODUCTION

Specification statements are used to specify the type characteristics, storage allocations, and data arrangement.
There are seven types of specification statements:

a. DIMENSION

b. Statements which specify, explicitly, type.
c. IMPLICIT

d. COMMON

e. EQUIVALENCE

f. EXTERNAL

g. PARAMETER

Specification statements are nonexecutable and are expected to conform to the ordering guidelines described in
section 2.4,

6.2 DIMENSION STATEMENT
DIMENSION statements providle FORTRAN with information needed to identify and allocate the space required

for source program arrays. Any number of subscripted array names may be specified as array declarators in a
DIMENSION statement. The general form of a DIMENSION statement is

DIMENSION S1, S2, ..., Sn
where Si is an array declarator. Array declarators are names of the following form:

name (min:max, min:max, min:max)

where name is the symbolic name of the array and each min:max value represents the lower and upper bounds of an
array dimension.

Each min:max value for an array dimension may be either an integer constant or, if the array is a dummy argument
to a subprogram, an integer variable. The value given the minimum specification for a dimension must not exceed
the value given the maximum specification. Minimum values of 1 with their following colon delimiter may be
omitted from a dimension subscript.

6-1

CHAPTER 6 DIMENSION Statements,
Specifying Adjustable Dimensions

Examples

DIMENSION EDGE (-1:1,4:8),NET(5,10,4), TABLE(567)
DIMENSION TABLE (IAB:J,K,M,10:20)

(where IAB, J, K, and M are of type integer).

Note that a slash may be used in place of a colon as the delimiter between the upper and lower bounds of an array
dimension.

6.2.1 Adjustable Dimensions

When used within a subprogram, an array declarator may use type integer parameters as dimension subscript
quantities. The following rules govern the use of adjustable dimensions in a subprogram:

a. For single entry subprograms, the array name and each subscript variable must be given by the calling
program when the subprogram is called. The subscript variables may also be in COMMON.

b. For multiple entry subprograms in which the array name is a parameter, any subscript variables may be
passed. If all subscript variables are not passed or in COMMON, the value of the subscript as passed for
a previous entry will be used.

c. The type of the array dimension variables cannot be altered within the program.

d. If the value of an array dimension variable is altered within the program, the dimensionality of the array
will not be affected.

e. The original size of the array cannot exceed the array dimensions assigned within a subprogram (i.e., the
size of an array is not dynamically expandable).

Examples

SUBROUTINE SBR (ARRAY ,M1,M2,M3,M4)
DIMENSION ARRAY (M1:M2,M3:M4)
DO 27 L=M3 M4
DO 27 K=M1,M2
ARRAY (K,L)=VALUE
27 CONTINUE
END

SUBROUTINE SB1 (ARR1,M,N)
DIMENSION ARR1(M,N)
ARR1(M,N)=VALUE

ENTRY SB2(ARRI,M)

ENTRY SB3(ARRI1,N)

ENTRY SB4(ARR1)

In the foregoing example, the first call made to the subroutine must be made to SB1. Assuming that the call is made

at SB1 with the values M=11 and N=13, any succeeding call to SB2 should give M a new value. If a succeeding call is
made to SB4, the last values passed through entries SUB1, SU_B2, or SUB3 will be used for M and N.

6-2

CHAPTER 6 Type Specification Statements
Note that for the calling program of the form:

CALL SB1(A,11,13)
M=15
CALL SB3(A,13)

the value of M used in the dimensionality of the array for the execution of SB3 will be 11 (i.e., the last value
passed).

6.3 TYPE SPECIFICATION STATEMENTS

Type specification statements declare explicitly the data type of variable, array, or function symbolic names. An
array name may be given in a type statement either alone (unsubscripted) to declare the type of all its elements or in
a subscripted form to specify both its type and dimensions.

Type specification statements are written in the following form:
type list
where type may be any one of the following declarators:
a. INTEGER
b. REAL
c. DOUBLE PRECISION
d. COMPLEX
e. LOGICAL

NOTE
In order to be compatible with the type statements used by
other manufacturers, the data type size modifier, *n, is
accepted by DECsystem-20 FORTRAN. This size modifier
may be appended to the declarators, causing some to elicit
messages warning users of the form of the variable specified by
DECsystem-20 FORTRAN:

Declarator Form of Variable Specified
INTEGER*2 Full word integer with waming message
INTEGER*4 Full word integer
LOGICAL¥*1 Full word logical with warning message
LOGICAL*4 Full word logical
REAL*4 Full word real
REAL*8 Double precision real
COMPLEX*8 Complex
COMPLEX*16 Complex with warning message

CHAPTER 6 Statements, IMPLICIT Statements

NOTE (Cont)
In addition, the data type size modifier may be appended to
individual variables, arrays, or function names. Its effect is to
override, for the particular element, the size modifier (explicit
or implicit) of the primary type. For example,

REAL*4 A, B*8, C*8(10), D

A and D are single precision (full word real), and B and C are
double precision real.

The list consists of any number of variable, array, or function names which are to be declared the specified type. The
names listed must be separated by commas, and can appear in only one type statement within a program unit.

Examples

INTEGER A, B, TABLE, FUNC
REAL R, M, ARRAY (5:10,10:20,5)

NOTE
Variables, arrays, and functions of a source program, which are
not typed either implicitly or explicitly by a specification
statement, are typed by FORTRAN according to the following
conventions:

a. Variable names, array names, and function names which
begin with the letters I, J, K, L, M, or N are type integer.

b. Variable names, array names, and function names which
begin with any letter other than I, J, K, L, M, or N are type
real.

If a name that is the same as a FORTRAN defined function name appears in a conflicting type statement, it is
assumed that the name refers to a user-defined routine of the given type. Placing a generic FORTRAN defined
function name in an explicit type statement causes it to lose its generic properties.

6.4 IMPLICIT STATEMENTS

IMPLICIT statements declare the data type of variables and functions according to the first letter of each variable
name. IMPLICIT statements are written in the following form:

IMPLICIT type(A1,A2,. . .,An)type(Bl1,B2,. . ..Bn),. . ..type.

As shown in the foregoing form statement, an IMPLICIT statement is comprised of one or more type declarators
separated by commas. Each type declarator has the form

type(Al,A2, . .. An)

where type represents one of the declarators listed in section 6.3, and the parenthesized list represents a list of
different letters.

Each letter in a type declarator list specifies that each source program variable (not declared in an explicit type
specification statement) which starts with that letter is assigned the data type named in the declarator. For example,
the IMPLICIT type declarator REAL (R,M,N,O) declares that all names which begin with the letters R, M, N, or O
are type REAL names, unless declared otherwise in an explicit type statement.

64

CHAPTER 6 COMMON Statement

NOTE
Type declarations given in an explicit type specification
override those also given in an IMPLICIT statement. IMPLICIT
declarations do not affect the DECsystem-20 FORTRAN
supplied functions.

A range of letters within the alphabet may be specified by writing the first and last letters of the desired range
separated by a dash (e.g., A—F for A,B,C,D,E). For example, the statement IMPLICIT INTEGER (I,L—P) declares
that all variables which begin with the letters I.L MN,O, and P are INTEGER variables.

More than one IMPLICIT statement may be used, but they must appear before any other declaration statement in
the program unit. Refer to section 2.4 for a discussion on ordering DECsystem-20 FORTRAN statements.

6.5 COMMON STATEMENT

The COMMON statement enables the user to establish storage which may be shared by two or more programs and/or
subprograms and to name the variables and arrays which are to occupy the common storage. The use of common
storage conserves storage and provides a means to implicitly transfer arguments between a calling program and a
subprogram. COMMON statements are written in the following form:

COMMON/A1/V1,V2,.. ., Vn.../An/V1, V2, . . Vn

where the enclosed letters /A1/, /A2/, and /An/ represent optional name constructs (referred to as common block
names when used).

The list (i.e., V1,V2...,Vn) appearing after each name construct lists the names of the variables and arrays that are
to occupy the common area identified by the construct. The items specified for a common area are ordered within
the storage area as they are listed in the COMMON statement.

COMMON storage area may be either labeled or blank (unlabeled). If the common area is to be labeled, a symbolic
name must be given within slashes immediately before the list of items that are to occupy the names area. For
example, the statement

COMMON/AREA1/A,B,C/AREA2/TAB(13,3,3)

establishes two labeled common areas (i.e., AREA1 and AREA2). Common block names bear no relation to internal
variables or arrays which have the same name.

If a common area is to be declared but is to be unlabeled (i.e., blank) either nothing or two sequential slashes (//) is
given immediately before the list of items that are to occupy blank common. For example, the statement

COMMON/AREA1/A,B,C//TAB(3,3,3)
establishes one labeled (AREA1) and one unlabeled (i.e., blank) common area.

A given labeled common name may appear more than once in the same COMMON statement and in more than one
COMMON statement within the same program or subprogram.

Each labeled common area is treated as a separate, specific storage area. The contents of a common area (i.e.,
variables and array) may be assigned initial values by DATA statements in BLOCK DATA subprograms. Declarations
of a given common area in different subprograms must contain the same number, size, and order of variable and
array name as the referenced area.

CHAPTER 6 Dimensioning Arrays In COMMON,
EQUIVALENCE Statement

Items to be placed in a blank common area may also be given in COMMON statements throughout the source
program.

During compilation of a source program, DECsystem-20 FORTRAN strings together all items listed for each labeled
common arca and for blank common in the order in which they appear in the source program statements. For
example, the series of source program statements

COMMON/ST1 /A,B,C/ST2/TAB(2,2)//C,D,E
COMMON/ST1/TST(3,4)//M,N

COMMON/ST2/X,Y,Z//0,P,Q
have the same effect as the single statement
COMMON/ST1/A,B,C,TST(3,4)/ST2/TAB(2,2),X,Y,Z//C,D,E,M,N,0,P,Q

All items specified for blank common are placed into one area. Items within blank common are ordered as they are
given throughout the source program. Common block names must be unique with respect to all subroutine,
function, and entry point names.

The largest definition of a given common area must be loaded first.

6.5.1 Dimensioning Arrays in COMMON Statements

Subscripted array names may be given in COMMON statements as array dimension declarators. However, variables
cannot be used as subscript quantities in a declarator appearing in a COMMON statement; variable dimensioning is
not permitted in COMMON.

Each array name given in a COMMON statement must be dimensioned either by the COMMON statement or by
another dimensioning statement within the program or subprogram which contains the COMMON statement.

Example

COMMON /A/B(100), C(10,10)
COMMON X(5,15),Y(5)

6.6 EQUIVALENCE STATEMENT

The EQUIVALENCE statement enables the user to control the allocation of shared storage within a program or
subprogram. This statement causes specific storage locations to be shared by two or more variables of either the
same or different types. The EQUIVALENCE statement is written in the following form:

EQUIVALENCE(V1,V2,.. .Vn),(WI,W2,. . .Wn),(X1,X2,...)

where each parenthesized list contains the names of variables and array elements which are to share the same storage
locations. For example, the statements

EQUIVALENCE (A,B,C)
EQUIVALENCE (LOC,SHARE(1))

specify that the variables named A, B, and C are to share the same storage location and the the variable LOC and
array element SHARE(1) are to share the same location.

6-6

CHAPTER 6 EQUIVALENCE Statement,
EXTERNAL Statement

The relationship of equivalence is transitive; for example, the two following statements have the same effect:

EQUIVALENCE (A,B), (B,C)
EQUIVALENCE (A,B,C)

Array elements, when used in EQUIVALENCE statements, must have either as many subscript quantities as
dimensions of the array or only one subscript quantity. In either of the foregoing cases, the subscripts must be
integer constants. Note that the single case treats the array as a one-dimensional array of the given type.

The items given in an EQUIVALENCE list may appear in both the EQUIVALENCE statement and in a COMMON
statement providing the following rules are observed:

a. No two quantities declared in a COMMON statement can be set equivalent to one another.

b. Quantities placed in a common area by means of an EQUIVALENCE statement are permitted to extend
the end of the common area forwards. For example, the statements

COMMON/R/X,Y,Z
DIMENSION A(4)
EQUIVALENCE (A)Y)

cause the common block R to extend from Z to A(4) arranged as follows:

X
Y A(1) (shared location)
Z AQ2) (shared location)
AQ3)
A@4)

c. EQUIVALENCE statements that cause the start of a common block to be extended backwards are not
allowed. For example, the invalid sequence '

COMMON/R/X,Y,Z
DIMENSION A(4)
EQUIVALENCE(X,A(3))

would require A(1) and A(2) to extend the starting location of block R in a backwards direction as
illustrated by the following diagram:

A(1)

A(2)
X AQG)
Y A®4)
Z

6.7 EXTERNAL STATEMENT

Any subprogram name to be used as an argument to another subprogram must appear in an EXTERNAL statement
in the calling subprogram. The EXTERNAL statement declares names to be subprogram names to distinguish them
from other variable or array names. The EXTERNAL statement is written in the following form:

EXTERNAL namel,name2,. . .,namen

6-7

EXTERNAL Statement
CHAPTER 6 PARAMETER Statement

where each name listed is declared to be a subprogram name. If desired, these subprogram names may be
DECsystem-20 FORTRAN defined functions.

It is also possible to utilize DECsystem-20 FORTRAN defined function names for user subprograms by prefixing the
names by an asterisk (*) or an ampersand (&) within an EXTERNAL statement. For example,

EXTERNAL *SIN, &COS

declares SIN and COS to be user subprograms. (If a prefixed name is not a DECsystem-20 FORTRAN defined
function, then the prefix is ignored.)

Note that specifying a DECsystem-20 FORTRAN defined function in an EXTERNAL statement without a prefix
(i.e., EXTERNAL SIN) has no effect upon the usage of the function name outside of actual argument lists. If the
name has generic properties, they are retained outside of the actual argument list. (The name has no generic

propeties within an argument list.)

The names declared in a program EXTERNAL statement are reserved throughout the compilation of the program
and cannot be used in any other declarator statement, with the exception of a type statement.

6.8 PARAMETER STATEMENT
The PARAMETER statement allows users to define constants symbolically during compilation.

The general form of the PARAMETER Statement is as follows:
PARAMETER P1=C1,P2=C2,....
where
Pi is a standard user-defined identifier (referred to in this section as a parameter name)

Ci is any type of constant (including literals) except a label or complex constant. (Refer to Chapter 3
for a description of FORTRAN constants.)

During compilation the parameter names are replaced by their associated constants provided the following rules are
observed:

a. Parameter names appear only within the statement field of an initial or continuation line type, i.e., not
within a comment line or literal text.

b. Parameter names are placed only where FORTRAN constants are acceptable.

c. Parameter name references appear after the PARAMETER statement definition.
d. Parameter names are unique with respect to all other names in the program unit.
e. Parameter names are not redefined in subsequent PARAMETER statements.

f. Parameter names are not used as part of some larger syntactical construct (such as a Hollerith constant
count, or a data type size modifier).

6-8

CHAPTER 7 DATA Statement

DECsystem-20 FORTRAN extensions to the 1966
ANSI standard set are printed in boldface italic type.

CHAPTER 7
DATA STATEMENT

7.1 INTRODUCTION

DATA statements are used to supply the initial values of variables, arrays, array elements, and labeled common.’
DATA statements are written in the following form:

DATA List 1/Data 1/,List 2/Data 2/,. . .,List n/Data n/

where the List portion of each List/Data/ pair identifies a set of items to be initialized and the /Data/ portion
contains the list of values to be assigned the items in the List. For example, the statement

DATA 1A/5/,1B/10/,IC/15/

initializes variable 1A as the value 5, variable IB as the value 10 and the variable IC as the value 15. The number of
storage locations specified in the list of variables must be less than or equal to the number of storage locations
specified in its associated list of values. If the list of variables is larger (specifies more storage locations) than its
associated value list, a warning message is output. When the value list specifies more storage locations than the
variable list the excess values are ignored.

The List portion of each List/Data/ set may contain the names of one or more variables, arrays, array elements, or
labeled common variables. An entire array (unsubscripted array name) or a portion of an array may be specified in a
DATA statement List as an implied DO loop construct (see Paragraph 10.3.4.1 for a description of implied DO
loops). For example, the statement

DATA (NARY (1), I=1,5)/1,2,3,4,5/

initializes the first five elements of array NARY as NARY(1)=1, NARY(2)=2, NARY(3)=3, NARY(4)=4,
NARY(5)=5.

When an implied DO loop is used in a DATA statement, the loop index variable must be of type INTEGER and the
loop Initial, Terminal, and Increment parameters must also be of type INTEGER. In a DATA statement, references
to an array element must be integer expressions in which all terms are either integer constants or indices of
embracing implied DO loops. Integer expressions of the foregoing types cannot include the exponentiation operator.

! Refer to Paragraph 6.5 for a description of labeled common.

7-1

CHAPTER 7 DATA Statement

The /Data/ portion of each List/Data/ set may contain one or more numeric, logical, literal, or octal constants
and/or alphanumeric strings.

Octal constants must be identified as octal by preceding them with a double quote (*‘) symbol (e.g., “777).

Literal data may be specified as either a Hollerith specification (e.g., SHABCDE), or a string enclosed in single
quotes (e.g., ‘ABCDE’). Each ASCII datum is stored left-justified and is padded with blanks up to the right boundary
of the variable being initialized.

When the same value is to be assigned to more than one item in List, a repeat specification may be used. The repeat
specification is written as N*D wherc N is an integer that specifies how many times the value of item D is to be used.
For example, a /Data/ specification of /3*20/ specifies that the value 20 is to be assigned to the first three items
named in the preceding list. The statement

DATA M,N,L/3*20/
assigns the value 20 to the variables M, N, L.

In instances where the type of the data specified is not the same as that of the variable to which it is assigned,
DECsystem-20 FORTRAN converts the datum to the type of the variable. The type conversion is performed using
the rules given for type conversion in arithmetic assignments (refer to Chapter 8, Table 8-1). Octal, logical, and
literal constants are not converted.

Sample Statement Use
DATA PRINT,L,O/‘TEST’,30,“77/,TAB(J), J=1,30/30%5 The first 30 elements of array TAB are
initialized as S5.0.

DATA ((A(1,)),I=1,5),J=1,6)/30%1.0/ No conversion required.

DATA ((A(1,)),I=5,10),J=6,15)/60%2.0/ No conversion required.
When a literal string is specified which is longer than one variable can hold, the string will be stored left-justified
across as many variables as are needed to hold it. If necessary, the last variable used will be padded with blanks up to

its right boundary.

Example

Assuming that X, Y, and Z are single precision, the statement
DATA X,Y,Z/‘ABCDEFGHIJKL’/
will cause

X to be initialized to ‘ABCDE’
Y to be initialized to ‘FGHIJ’
Z to be initialized to ‘KLBpY’

When a literal string is to be stored in double precision and/or complex variables and the specified string is only one
word long, the second word of the variable is padded with blanks.

CHAPTER 7 DATA Statement

Example

Assuming that the variable C is complex, the statement

DATA C/‘ABCDE’,’FGHIJ’/

will cause the first word of C to be initialized to ‘ABCDE’ and its second word to be initialized to ‘BBBPY’. The
string ‘FGHIJ’ is ignored.

7-3

CHAPTER 8 Arithmetic Assignment Statements

DECsystem-20 FORTRAN extensions to the 1966
ANSI standard set are printed in boldface italic type.

CHAPTER 8
ASSIGNMENT STATEMENTS

8.1 INTRODUCTION

Assignment statements are used to assign a specific value to one or more program variables. There are three kinds of
assignment statements:

a. Arithmetic assignment statements
b. Logical assignment statements

c. Statement Label assignment (ASSIGN) statements.

8.2 ARITHMETIC ASSIGNMENT STATEMENT

Statements of this type are used to assign specific numeric values to variables and/or array elements. Arithmetic
assignment statements are written in the form

v=e

where v is the name of the variable or array element which is to receive the specified value and e is a simple or
compound arithmetic expression.

In assignment statements the equals symbol (=) does not imply equality as it would in algebraic expressions; it
implies replacement. For example, the expression v=e is correctly interpreted as “the current contents of the
location identified as v are to be replaced by the final value of expression e; the current contents of v are lost.”

When the type of the specified variable or array element name differs from that of its assigned value, FORTRAN

converts the value of the type of its assigned variable or array element. The type conversion operations performed by
FORTRAN for each possible combination of variable and value types are described in Table 8-1.

8-1

D = Direct replacement

C = Conversion between integer and floating-point with truncation
R = Real part only

I = Set imaginary part to 0

H = High order only

L = Set low order part to 0

CHAPTER 8 Mixed Mode Conversion Table
Table 8-1

Rules for Conversion in Mixed Mode Assignments
Expression Type (e) Variable Type (v)

Real Integer Complex Double Precision Logical
REAL D C R,I H,L D
INTEGER C D R,C,1 H,C,L D
COMPLEX R C,R D R
DOUBLE H CH,L D H
PRECISION
LOGICAL D D R,I H,L D,H
OCTAL D D R, H,C,L D
DOUBLE H H D *** D H
OCTAL*

Legend

Notes

* Octal numbers comprised of from 13 to 24 digits are termed double octal. Double octals require
two storage locations. They are stored right-justified and are padded with zeroes to fill the

locations.

** [Use the first two words of the literal. If the literal is only one word long, the second word is

padded with blanks.

#% Use the first word of the literal.

*kk% To convert double octal numbers to complex, the low order octal digits are assumed to be the
imaginary part and the high order digits are assumed to be the real part of the complex value.

8-2

CHAPTER 8 Logical Assignment Statements,
ASSIGN Statements

8.3 LOGICAL ASSIGNMENT STATEMENTS

This type of assignment statement is used to assign values to variables and array elements of type logical. The logical
assignment statement is written in the form

v=e
where v is one or more variables and/or array element names and e is a logical expression.

Examples

Assuming that the variables L, F, M, and G are of type logical, the following statements are valid:

Sample Statement
L=TRUE. The contents of L are replaced by logical truth.

F=NOT.G The contents of L are replaced by the logical complement of
the contents of G.

M=A>T If A is greater than T, the contents of M are replaced by logical
truth; if A is less than or equal to T, the contents of M are
replaced by logical false.

L=((1.GT.H).AND.(J < =K)) The contents of L is replaced by either the true or false
. resultant of the expression.

8.4 ASSIGN (STATEMENT LABEL) ASSIGNMENT STATEMENT

The ASSIGN statement is used to assign a statement label constant (i.e., a 1- to 5-digit statement number) to a
variable name. The ASSIGN statement is written in the following form

ASSIGNn TO 1
where n represents the statement number and I is a variable name. For example, the statement
ASSIGN 2000 TO LABEL
specifies that the variable LABEL represents the statement number 2000.
With the exception of complex and double precision, any type of variable may be used in an ASSIGN statement.

Once a variable has been assigned a statement number, FORTRAN considers it a label variable. If a label variable is
used in an arithmetic statement, the results are unpredictable.

The ASSIGN statement is used in conjunction with assigned GO TO control statements (Chapter 9); it sets up
statement label variables which are then referenced in subsequent GO TO control statements. The following
sequence illustrates the use of the ASSIGN statement:

CHAPTER 8 ASSIGN Statement

555 TAX=(A+B+C)*.05
ASSIGN 555 TO LABEL

GO TO LABEL

84

CHAPTER 9 GO TO Statements

DEC-system-20 FORTRAN extensions to the 1966
ANSI standard set are printed in boldface italic type.

CHAPTER 9
CONTROL STATEMENTS

9.1 INTRODUCTION

DECsystem-20 FORTRAN object programs are normally executed statement-by-statement in the order in which
they were presented to the compiler. The following source program control statements, however, enable the user to
alter the normal sequence of statement execution:

a. GOTO

b. IF

c. DO

d. CONTINUE
e. STOP

f. PAUSE

9.2 GO TO CONTROL STATEMENTS
There are three kinds of GO TO statements:
a. Unconditional
b. Computed
c. Assigned.

A GO TO control statement causes the statement which it identifies to be executed next, regardless of its position
within the program. Each type of GO TO statement is described in the following paragraphs.

9-1

CHAPTER 9 Unconditional, Computed and
Assigned GO TO Statements

9.2.1 Unconditional GO TO Statements
GO TO statements of this type are written in the form

GO TOn

where n is the label (i.e., statement number) of an executable statement (e.g., GO TO 555). When executed, an
unconditional GO TO statement causes control of the program to be transferred to the statement which it specifies.

An unconditional GO TO statement may be positioned anywhere in the source program except as the terminating
statement of a DO loop.

9.2.2 Computed GO TO Statements
GO TO statements of this type are written in the form

GO TO (N1,N2,.. .,NK)E

where the parenthesized list is a list of statement numbers and E is an arithmetic expression. Any number of
statement numbers may be included in the list of this type of GO TO statement; however, each number given must
be used as a label within the program or subprogram containing the GO TO statement.

NOTE
A comma may optionally follow the parenthesized list.

The value of the expression E must be reducible to an integer value that is greater than 0 and less than or equal to
the number of statement numbers given in the statement’s list. If E does not compute within the foregoing range,
the next statement is executed.

When a computed GO TO statement is executed, the value of its expression (i.e., E) is computed first. The value of E
specifies the position within the given list of statement numbers, of the number which identifies the statement to be
executed next. For example, in the statement sequence

GO TO (20, 10, 5)K
CALL XRANGE(K)

the variable K acts as a switch causing a transfer to statement 20 if K=1, to statement 10 if K=2, or to statement 5 if
K=3. The subprogram XRANGE is called if K is Iess than 1 or greater than 3.

9.2.3 Assigned GO TO Statements

GO TO statements of this type may be written in either of the following forms:

GOTOK
GO TOK, (L1,L2,.. .,Ln)

where K is a variable name and the parenthesized list of the second form contains a list of statement labels (i.e.,

statement numbers). The statement numbers given must be within the program or subprogram containing the GO
TO statement.

9-2

CHAPTER 9 Arithmetic IF Statements

Assigned GO TO statements of either of the foregoing forms must be logically preceded by an ASSIGN statement
that assigns a statement label to the variable name represented by K. The value of the assigned label variable must be
in the same program unit as the GO TO statement in which it is used. In statements written in the form

GO TOK, (L1,L2,...,Ln)

if K is not assigned one of the statement numbers given in the statement’s list, then the next sequential statement is
executed.

Examples

GO TO STATI
GO TO STAT1, (177,207,777)

9.3 IF STATEMENTS

There are three kinds of IF statements: arithmetic, logical, and logical two-branch.

9.3.1 Arithmetic IF Statements

IF statements of this type are written in the form
IF(E)L1,L2,L3

where (E) is an expression enclosed within parenthesis and L1, L2, L3 are the labels (i.e., statement numbers) of
three executable statements.

This type of IF statement causes control of the program to be transferred to one of the given statements, according
to the computed value of the given expressions. If the value of the expression is:

a. less than 0, control is transferred to the statement identified by L1;
b. equal to 0, control is transferred to the statement identified by L2;
¢. greater than O, control is transferred to the statement identified by L3.

All three statement numbers must be given in arithmetic IF statements; the expression given may not compute to a
complex value.

Examples
Sample Statement
IF (ETA) 4,7, 12 Transfer control to statement 4 if ETA is negative, to
statement 7 if ETA is 0 and to statement 12 if ETA is greater
than 0.
IF (KAPPA — 1L(10)) 20, 14, 14 Transfer control to statement 20 if KAPPA is less than the

10th element of array L and to statement 14 if KAPPA is
greater than or equal to the 10th element of array L.

9-3

Logical and Logical Two-Branch
CHAPTER 9 IF Statements, DO Statements

9.3.2 Logical IF Statements

IF statements of this type are written in the form
IF(E)S
where E is any expression enclosed in parentheses and S is a complete executable statement.

Logical IF statements cause control of the program to be transferred either to the next sequential executable
statement or the statement given in the IF statement (i.e., S) according to the computed logical value of the given
expression. If the value of the given logical expression is true (negative), control is given to the executable statement
within the IF statement. If the value of the expression is false (positive or zero), control is transferred to the next
sequential executable program statement.

The statement given in a logical IF statement may be any DECsystem-20 FORTRAN executable statement except
a DO statement or another logical IF statement.

Examples

Sample Statement
IF(TORS) X=Y+1 An arithmetic replacement operation is performed if the

result of IF is true.

IF (Z.GT.X(K)) CALL SWITCH (S,Y) A subprogram transfer is performed if the result of IF is
true.

IF (K.EQ.INDEX) GO TO 15 An unconditional transfer is performed if the result of
IF is true.

9.3.3 Logical Two-Branch IF Statements

IF statements of this type are written in the form
IF (E) NI, N2

where E is any expression enclosed in parentheses and N1 and N2 are statement labels defined within the program
unit.

Logical two-branch IF statements cause control of the program to be transferred to either statement NI or N2
depending on the computed value of the given expression. If the value of the given logical expression is true
(negative), control is transferred to statement NI. If the value of the expression is false (positive or zero), control is
transferred to statement N2.

Note that the statement immediately following the logical two-branch IF must be numbered so that control can later
be transferred to the portion of code that was skipped.

Examples
Sample Statement
IF (LOG1) 10,20 Transfer control to statement 10 if LOGI is negative;
otherwise transfer control to statement 20.
IF (A.LT.BAND.A.LT.C) 31, 32 Transfer control to statement 31 if A is less than both B and

C: transfer control to statement 32 if A is greater than or equal
to either Bor C.

94

CHAPTER 9

DO Statement Parameters, Nested DO’s

9.4 DO STATEMENT

DO statements simplify the coding of iterative procedures; they are written in the following form:

where

Indexing Parameters

—t—
DO N1=MI,M2,M3

Terminal Increment
Statement Parameter
Label Terminal
Index Parameter
Variable ¢
Initial
Parameter

Terminal Statement Label N is the statement number of the last statement of the DO statement range.
The range of a DO statement is defined as the series of statements which follows the DO statement up to
and including its specified terminal statement.

Index Variable I is an unsubscripted variable, the value of which is defined at the start of the DO
statement operations. The index variable is available for use throughout each execution of the range of
the DO statement but its value should not be altered within this range. It is also made available for use in
the program when

1. control is transferred outside the range of the DO loop by a GO TO, IF, or RETURN statement
located within the DO range,

2. a CALL is executed from within the DO statement range which uses the index variable as an
argument, and

3. if an Input—Output statement with either or both the options END= or ERR= (Chapter 10)
appear within the DO statement range.

Initial Parameter M1 assigns the index variable, V, its initial value. This parameter may be any variable,
array element, or expression.

Terminal Parameter M2 provides the value which determines how many repetitions of the DO statement
range are performed.

Increment Parameter M3 specifies the value to be added to the initial parameter (M1) on completion of
each cycle of the DO loop.

An indexing parameter may be any arithmetic expression which should result in either a positive or negative value.
The values of the indexing parameters are calculated only once, at the start of each DO-loop operation. The number
of times that a DO loop will be executed is specified by the formula:

(M2-M1)/M3+1

9-5

CHAPTER 9 DO Statement, Nested DO’s

Since the count is computed at the start of a DO loop operation, changing the value of the loop index variable
within the loop cannot affect the number of times that the loop is executed. At the start of a DO loop operation,
the index value is set to the value of the initial parameter (M1) and a count variable (generated by the compiler) is
set to the negative of the calculated count. At the end of each DO loop cycle the value of the increment parameter
(M3) is added to the index variable and the count variable is incremented. If the number of specified iterations have
not been performed, another cycle of the loop is initiated.

One execution of a DO loop range is always performed regardless of the initial values of the index variable and the
indexing parameters.

Exit from a DO loop operation on completion of the number of iterations specified by the loop count is referred to
as a normal exit. In a normal exit, control is passed to the first executable statement after the DO loop range
terminal statement and the value of the DO statement index variable is considered undefined.

Exit from a DO loop may also be accomplished by a transfer of control by a statement within the DO loop range to
a statement outside the range of the DO statement (Paragraph 9.4.3).

9.4.1 Nested DO Statements

One or more DO statements may be contained (i.e., nested) within the range of another DO statement. The
following rules govern the nesting of DO statements.

a. The range of each nested DO statement must be entirely within the range of the containing DO

statement.
Example
Valid Invalid
DO 1 DO 1
DO 2 DO 2 The range of
l: [DO 2 is outside

| that of DO 1.

b. The ranges of nested DO statements cannot overlap.

Example
Valid Invalid
DO 1 DO 1
DO 2 DO 2

1

The ranges of
loop DO 2 and
DO 3 DO 3 DO 3 overlap.

=

i

9-6

CHAPTER 9 DO Statement, Extended Range and
Transfer Operations

c. More than one DO loop within a nest of DO loops may end on the same statement. When this occurs,
the terminal statement is considered to belong to the innermost DO statement that ends on that
statement. The statement label 4 of the shared terminal statement cannot be used in any GO TO or
arithmetic IF statement that occurs anywhere but within the range of the DO statement to which it

belongs.
Example
DO 4
All the DO statements
DO 4 share the same terminal
. statement, however, it
DO 4 belongs to DO 4.

DO 4

9.4.2 Extend Range

The extended range of a DO statement is defined as the set of statements that are executed between the transfers
out of the innermost DO statement of a set of nested DO’s and the transfer back into the range of this innermost DO
statement. The extended range of a nested DO statement is illustrated as follows:

DO 1
DO 2

DO 3
———— (out)

——»— (in)

Extended Range

9-7

CHAPTER 9 DO Statement Transfers,
CONTINUE Statement

The following rules govern the use of a DO statement extended range:

a. The transfer out statement for an extended range operation must be contained by the most deeply
nested DO statement that contains the location to which the return transfer is to be made.

b. A transfer into the range of a DO statement is permitted only if the transfer is made from the extended
range of that DO statement.

c. The extended range of a DO statement must not contain another DO statement.

d. The extended range of a DO statement cannot change the index variable or indexing parameters of the
DO statement.

e. The use of and return from a subprogram from within an extended range is permitted.

9.4.3 Permitted Transfer Operations

The transfer of program control from within a DO statement range or the ranges of nested DO statements is
governed by the following rules:

a. A transfer out of the range of any DO loop is permitted at any time. When such a transfer is executed
the value of the controlling DO statement’s index variable is defined as the current value.

b. A transfer into the range of a DO statement is permitted if it is made from the extended range of the DO
statement.

c. The use of and return from a subprogram from within the range of any DO loop, nested DO loop, or
extended range is permitted.

The following examples illustrate the transfer operations permitted from within the ranges of nested DO statements.
Valid Transfers

D1

D2

P

9
~v

extended range

5

Invalid Transfers

D1

)

D3

CHAPTER 9 STOP Statement

9.5 CONTINUE STATEMENT

CONTINUE statements may be placed anywhere in the source program without affecting the program sequence of
execution. CONTINUE statements are commonly used as the last statement of a DO statement range in order to
avoid ending with a GO TO, PAUSE, STOP, RETURN, arithmetic IF, another DO statement, or a logical IF
statement containing any of the foregoing statements. This statement is written as

12 CONTINUE

Example

In the following sequence the labeled CONTINUE statement provides a legal termination for the range of the DO
loop.

DO 45 ITEM=1,1000

STOCK=NVNTRY (ITEM)

CALL UPDATE (STOCK,TALLY)

IF (ITEM.EQ.LAST) GO TO 77
45 CONTINUE

77 PRINT 20, HEADNG,PAGE NO

9.6 STOP STATEMENT

When executed, the STOP statement causes the execution of the object program to be terminated and the user
returned to command level. A descriptive message may, optionally, be included in the STOP statement to be out-
put to the user’s I/O terminal immediately before program execution is terminated. This statement may be written
as

STOP
STOP ‘N’

or
STOP n

where ‘N’ is a string of ASCII characters enclosed by single quotes and n is an octal string up to 12 digits. The string

N or the value n is printed at the user’s I/O terminal when the STOP statement is executed; it may be of any length,

continuation lines may be used for large messages.

Examples
STOP ‘Termination of the Program’

or

STOP 7777

99

CHAPTER 9 PAUSE Statement, TRACE Option

9.7 PAUSE STATEMENT

When executed, a PAUSE statement causes a suspension of the execution of the object program and gives the user
the option to:

a. Continue execution of the program
b. Exit

c. Initiate a TRACE operation (Paragraph 9.7.1).

The permitted forms of the PAUSE statement are:
a. PAUSE
b. PAUSE ‘literal string’
c. PAUSE n, where n is an octal string up to 12 digits.
The execution of a PAUSE statement of any of the foregoing forms causes the standard instruction:
TYPE G TO CONTINUE, X TO EXIT, T TO TRACE

to be printed at the user’s terminal. If the form of the PAUSE statement contains either a literal string or an integer
constant, the string or constant is printed on a line preceding the standard message. For example, the statement

PAUSE ‘TEST POINT A’
causes the following to be printed at the user’s terminal:

TEST POINT A
TYPE G TO CONTINUE, X TO EXIT, T TO TRACE

The statement
PAUSE 1

causes the following to be printed at the user’s terminal:

PAUSE 000001
TYPE G TO CONTINUE, X TO EXIT, T TO TRACE

9.7.1 T(TRACE) Option ‘
The entry of the character T in response to the message output by the execution of a PA USE statement starts a
TRACE routine. This routine causes the printing, at the user’s terminal, of a complete history of all subroutine calls
made during the execution of the program, up to the execution of the PAUSE statement. The history printed by the
TRACE routine consists of:

a. The names of all subroutines called, arranged in the reverse order of their call;

b. The absolute location (written within parentheses) of the called subroutine;

c. The name of the calling subroutine plus an offset factor and the absolute location (written within
parentheses) of the statement within the routine which initiated the call;

9-10

CHAPTER 9 PAUSE Statement, TRACE Option

d. The number of arguments involved (written within angle brackets);
e. An alphabetic code (written within square brackets) that specifies the type of each argument involved,
The alphabetic codes used and the meaning of each are:
Code Character Type Specified
U Undefined type; the use of the argument will determine its type.
L Logical
1 INTEGER
F Single precision REAL
o Octal
S Statement Number
D Double precision REAL
C COMPLEX
K A literal or constant
Example

The following printout illustrates the execution of the PAUSE statement “PAUSE ‘TEST POINT A, the entry of a
T character to initiate the TRACE routine, the resulting trace printout, and the entry of the character G to continue
the execution of the program.

TEST POINT A
TYPE @ TO CONTINUE, X To EXIT, T TO TRACE.

*T

NAME (LOC) <<=-== CALLER <(LOC) <#ARGS> [ARG TYPES]
TRACE., (411653) <<=== MAIN.+612(1832) <#1l> (ul
TYPE @ TO CONTINUE, X TO EXIT, T TO TRACE.

*G

In addition to its use with the PAUSE statement, the TRACE routine may be called directly, using the form

CALL TRACE

or as a function, using the form

X =TRACE (x)

Execution of the foregoing statements starts the TRACE routine which causes the printing of the history of all
subprogram calls made during the execution of the program, up to the execution of the CALL statement, or up to
the execution of the function, respectively. The history printed by the TRACE routine under these circumstances is

exactly

the same as described in the preceding paragraph.

CHAPTER 10 Data Transfer Operations and Modes

DEC-system-20 FORTRAN extension to the 1966
ANSI standard set are printed in boldface italic type.

CHAPTER 10
I/0 STATEMENTS

10.1 DATA TRANSFER OPERATIONS

FORTRAN 1/0 statements permit data to be transferred between processor storage (memory) and peripheral devices
and/or between storage locations. Data in the form of logical records may be transferred using an a) sequential, b)

random access, or c) append transfer mode. The areas in core from which data is to be taken during output (write)

operations and into which data is stored during input (read) operations are specified by

a. a list in the I/O statement which initiated the transfer
b. alist defined by a NAMELIST statement, or
c. between a specified FORMAT statement and the external medium.

The type and arrangement of transferred data may be specified by format specifications located in either a
FORMAT statement or an array (formatted I/O) or by the contents of an 1/O list (i.e., list-directed 1/0).

The transfer modes, 1/O lists, type conversion and arrangement of data, and the statements required to initiate I/O
transfer operations are described in the following paragraphs.

10.2 TRANSFER MODES

The characteristics and requirements of the a) sequential, b) random access, and ¢) append data modes are described
in the following paragraphs.

10.2.1 Sequential Mode

Records are transferred during a sequential mode of operation in the same order as they appear in the external data
file. Each I/O statement executed in a sequential mode transfers the record immediately following the last record
transferred from the accessed source file.

10.2.2 Random Access Mode

This mode permits records to be accessed and transferred from a file in any desired order. Random access transfers,
however, may be made only to (or from) a device that permits random-type data addressing operations (i.e., disk)
and to files that have previously been set up for random access transfer operation. Files for random access must
contain a specified number of identically sized records that may be accessed, individually, by a record number.

10-1

CHAPTER 10 Append Mode, 1/0 Statements
Form and Components

The OPEN statement or a subroutine call to DEFINE FILE may be used to set up random access
files.

The OPEN statement is used to establish a random access mode to permit the execution of random access data
transfer operations. The OPEN statement should logically precede the first I/O statement for the specified logical
unit in the user source program.

10.2.3 Append Mode

This mode is a special version of the sequential transfer mode: it may be used only for sequential output (write)
operations. The append mode permits the user to write a record immediately after the last logical record of the
accessed file. During an append transfer, the records already in the accessed file remain unchanged, the only function
performed is the appending of the transferred records to the end of the file.

An OPEN statement (Chapter 12) must be used to establish an append mode before append I/O operations can be
executed.

10.3 1/0 STATEMENTS, BASIC FORMATS AND COMPONENTS

The majority of the I/O statements described in this chapter are written in one of the following basic forms, or in
some modification of these forms:

Basic Statement Forms Use
Keyword (u,flist Formatted I/O Transfer
Keyword (u#R,f)list Random Access Formatted 1/0O Transfer
Keyword (u,*)list List-Directed I/O Transfer
Keyword (u,N) NAMELIST-Controlled 1/0O Transfer
Keyword (u)list Binary I/O Transfer
Keyword (u#R)list Random Access Binary 1/O Transfer
where
Keyword = the statement name (i.e., READ or WRITE)
u = logical unit number
f = FORMAT statement number or the name of an array that contains the desired format
specifications
list = 1/Olist
#R = the delimiter # followed by the number of a record in an established random-access file
* = symbol specifying a list-directed I/O transfer.
N = the name of an I/0 list defined by a NAMELIST statement.

Details of the foregoing statement components are given in the following paragraphs.

10-2

CHAPTER 10 1/0 Statements Key Word, Logical
Unit Numbers and FORMAT References

10.3.1 1/0O Statement Keywords
The keywords (i.c., names) of the DECsystem-20 FORTRAN I/O statements described in this chapter are:

a. READ
b. REREAD
¢. WRITE

d. ACCEPT

e. PRINT

£ TYPE

¢ FIND

h. ENCODE
i, DECODE
i DECODE

10.3.2 Logical Unit Numbers

The physical devices used for most FORTRAN /O operations are identified by decimal numbers. During
compilation, the compiler assigns default logical unit numbers for the REREAD, READ, ACCEPT, PRINT,
and TYPE statements. Default unit numbers are negatively signed decimal numbers that are inaccessible to the
user.

The logical device assignments may be made by the user at run time or the standard assignments contained by the
FORTRAN Object Time System (FOROTS) may be used. The standard logical device assignments are listed in
Table 10-1. It is recommended that the user specify the device explicitly in the OPEN statement.

10.3.3 FORMAT Statement References

A FORMAT statement contains a set of format specifications which define the structure of a record and the form of
the data fields which comprise the record. Format specifications may also be stored in an array rather than in a
FORMAT statement. (Refer to Chapter 13 for a complete description of the FORMAT statement.)

The execution of an I/O statement that includes either a FORMAT statement number or the name of an array which
contains format specifications causes the structure and data of the transferred record to assume the form specified in
the referenced statement or array. Records transferred under the control of a format specification are referred to as
“formatted” records. Conversely, records transferred by I/O statements that do not reference a format specification
are referred to as ‘“‘unformatted” records. During unformatted transfers, data is transferred on a one-to-one
correspondence between internal (processor) and external (device) locations, with no conversion or formatting
operations.

Unformatted files are binary files divided into records by DECsystem-20 FORTRAN embedded control words;
the control words are invisible to the user. Files of this type cannot be prepared by the user without utilizing
FOROTS. Unformatted files are intended to be used only within the DECsystem-20 FORTRAN environment.

10-3

CHAPTER 10 Table of Logical Device Assignments

Table 10-1
DECsystem-20 FORTRAN Logical Device Assignments
Device/Function Default Filename FORTRAN Logical Unit Number Use
Standard Devices*
0 FORxx.DAT 00 ILLEGAL
DSK «— Ty DISK
CDR 02 Card Reader
LPT 03 Line Printer
CcTY 04 Console Terminal
TTY 05 User’s Terminal
06 through 15 Not Valid
MTAO 16 Magnetic Tape
MTAl 17
MTA2 18
FORTR 19 Assignable Device
DSK 20 DISK
DSK 21
DSK 22
DSK 23
DSK 24
DEV1 25 Assignable Devices
DEV2 26
DEV3 27
DEV4 28
DEVS 29
! v
DEV63 FORG65.DAT 63 DISK
Default Devices (inaccessible to the user) l
REREAD Current file -6 REREAD statement
CDR FORCDR.DAT -5 READ statement
TTY FORTTY.DAT -4 ACCEPT statement
LPT FORLPT.DAT -3 PRINT statement
-2 Not Valid
1TY FORTTY.DAT -1 TYPE statement

*The total number of standard devices permitted is on installation parameter.

104

CHAPTER 10 1/0 Lists, Implied DO Constructs

10.3.4 1/0 List

An 1/0 list specifies the names of variables, arrays, and array elements to which input data is to be assigned or from
which data is to be output. Implied DO constructs (Paragraph 10.3.4.1), which specify specific sets of array
elements, may also be included in I/O lists. The number of items in a statement’s list determines the amount of data
to be transferred during each execution of the statement.

10.3.4.1 Implied DO Constructs — When an array name is given in an I/O list all elements of the array are
transferred in the order described in Chapter 3 (Paragraph 3.5.3). If only a specific set of array elements is involved,
they may be specified in the I/O list either individually or in the form of an implied DO construct.

Implied DO’s are written within parentheses in a format similar to that of DO statements. They may contain one or
more variable, array, and/or array element names, delimited by commas and followed by indexing parameters that
are defined as for DO statements.

The general form of an implied DO is

(name(SL),I=M1,M2,M3)

where
name = an array name
SL = the subscript list of an array name or an array element identifier
I = the index control variable that represents a subscript appearing in a preceding subscript
list
MIM2M3 = the indexing parameters that specify, respectively, the initial, terminal, and increment
values that control the range of I. If M3 is omitted (with its preceding comma), a value
of 1 is assumed.
Examples
(A(S),S=1,5) Specifies the first five elements of the one-dimension array A (ie., A(1),
A(2), AQ3), A(4), A(S)).
(A(2,9),5=1,10,2) Specifies the elements A(2,1), A(2,3), A(2,5), A(2,7), A(2,9) of array A.

As stated previously, implied DO constructs may also contain one or more variable names.

Example

I, J, B, and C must be integer variables.

((A(B,C),B=1,10),C=1,10),1.] Specifies a 10 X 10 set of elements of array A, the location identified
by I and the location identified by J.

Implied DO constructs may also be nested. Nested implied DO’s may share one or more sets of indexing parameters.

Example

((A(J K),J=1,5),D(K),K=1,10) Specifies a 5 X 10 set of elements of array A and the first 10
elements of array D.

10-5

CHAPTER 10 Records For Random Access,

List-Directed 1/0
When an array or set of array elements are specified as either a storage or transmitting area for 1/O purposes, the
array elements involved are accessed in ascending order with the value of the first subscript quantity varying most
rapidly and the value of the last given subscript increasing to its maximum value least rapidly. For example, the
elements of an array dimensional as TAB(2,3) are accessed in the order:

TAB(1,1)
TAB(2,1)
TAB(1,2)
TAB(2,2)
TAB(1,3)
TAB(2,3)

10.3.5 The Specification of Records for Random Access

Records to be transferred in a random access mode must be identified in an 1/0 statement by an integer expression
or variable preceded by a ’ delimiter (e.g., '101).

NOTE
A number sign (#) may be used in place of the 'delimiter (e.g., both
#101 and ’10] are accepted by DECsystem-20 FORTRAN).

10.3.6 List-Directed I/O -

The use of an asterisk in an I/O statement in place of a FORMAT statement number causes the specified transfer
operation to be “list-directed.” In a list-directed transfer, the data to be transferred and the type of each transferred
datum are specified by the contents of an I/0 list included in the I/O command used. The transfer of data in this
mode is performed without regard for column, card, or line boundaries. The list-directed mode is specified by the
substitution of an asterisk (*) for the FORMAT statement reference (i.e., f) of an I/0 statement. The general form
of a list-directed I/O statement is

keyword (u,*)list

Example
READ (5,%)[IABM,L

List-directed transfers may be used to input data from any acceptable input device including an input keyboard
terminal.

NOTE
Device positioning commands, such as BACKSPACE, SKIP
RECORD, etc., should not be used in conjunction with
list-directed 1/O operations. If such a combination is used, the
results will be unpredictable.

Data for list-directed transfers should consist of alternate constants and delimiters. The constants used should have
the following characteristics:

a. Input constants must be of a type acceptable to DECsystem-20 FORTRAN. Octal constants, although
acceptable, are not permitted in list-directed I/O operations.

b. Literal constants must be enclosed within single quotes (e.g., ‘ABLE’).

10-6

CHAPTER 10 List-Directed 1/0

C.

d.

Blanks serve as delimiters; therefore, they are not permitted in any but literal constants.

Decimal points may be omitted from real constants which do not have a fractional part. FORTRAN
assumes that the decimal point follows the right-most digit of a real constant,

Delimiters in data for list-directed input must comply with the following:

a.

b.

Delimiters may be either commas or blanks,

Delimiters may be either preceded by or followed by any number of blanks, carriage returnfline feed
characters, tabs, or line terminators; any such combination is considered by FORTRAN as being only
a single delimiter.

A null, the complete absence of a datum, is represented by two consecutive commas which have no
intervening constant(s). Any number of blanks, tabs, carriage return/line feed characters, or end-of-input
conditions may be placed between the commas of a null. Each time a null item is specified in the input
data, its corresponding list element is skipped (i.e., unchanged). The following illustrates the effect of a
null input:

INPUT Items 101, ‘A’, tab, ‘NO1I’,
VoYY oy

Corresponding A , LITJAB,NUMNBER

1/0 List Items l l l l

Resulting 101. A un- NOI

Contents of changed

List Items IAB

Slashes (/) cause the current input operation to be terminated even if all the items of the directing list
are not filled. The contents of items of the directing I/0 list which either are skipped (by null inputs) or
have not received an input datum before the transfer is terminated remain unchanged. Once the I/0 list
of the controlling I/O statement is satisfied, the use of the / delimiter is optional.

Once the 1/O list has been satisfied (transfers have been made to each item of the list) any items
remaining in the input record are skipped.

Constants or nulls in data for list-directed input may be assigned a repetition factor to cause an item to be repeated.

The repetition of a constant is written as

r*K

where r is an integer constant that specifies the number of times the constant represented by K is to be repeated.

The repetition of a null is written as an integer followed by an asterisk.

Examples
10*5 represents 5,5,5,5,5,5,5,5,5,5
3*ABLE’ represents ‘ABLE’,‘ABLE’,'ABLE’
3* represents null,null null

10-7

CHAPTER 10 NAMELIST 1/O

10.3.7 NAMELIST1/O Lists

One or more lists may be defined by a NAMELIST statement (Chapter 11). Each I/O list defined in a NAMELIST
statement is identified by a unique (within the routine) 1 to 6 character name that may be referenced by one or
more READ or WRITE statements. The first character of each I/O list name must be alphabetic. Referencing a
NAMELIST-defined I/O list enables any of the foregoing statements to be written without an I/0 list and permits
the same list to be used by more than one statement.

1/O statements which reference a NAMELIST-defined I/0 list cannot contain either a FORMAT statement reference
or an I/0 list. NAMELIS T-controlled I/O operation cannot be used to transfer octal numbers or literal strings.

Records for NAMELIS T-controlled input operations must be formatted in the following manner:
SNAME D1,D2,D3. . .Dn$
where

a. $ symbols delimit the beginning and end of the record. The first $ must be in column 2 of the input
record; column I must be blank.

b. NAME is the name of a NAMELIST-defined input list. The named list identifies the processor storage
locations that are to receive the data items read from the accessed record.

c. DI through Dn are values of the items of data contained by the record; these items cannot be octal
numbers or literal strings.

Only NAMELIST-controlled READ statements may be used to input records formatted in the foregoing manner.
NAMELIST-controlled WRITE statements will output records in the foregoing format.

NOTE
Device positioning commands such as BACKSPACE, SKIP
RECORD, etc., should not be used in conjunction with
NAMELIST-controlled 1/0O operations. If such a combination
is used, the results are unpredictable.

10.4 OPTIONAL READ/WRITE ERROR EXIT AND END-OF-FILE ARGUMENTS

Either or both an error exit or an end-of-file argument may, optionally, be added to the parenthesized portion of
most forms of the READ and WRITE I/O statements.

The error exit argument is written as ERR=c where c is a statement number. The use of this argument causes the
current 1/O operation to be terminated and program control transferred to the statement identified by the argument
if a device error is detected. For example, the detection of an error during the execution of

READ(10,77,ERR=101)TABLE,IM,J

terminates the input operation and transfers program control to statement 101.

10-8

CHAPTER 10 Sequential Formatted
READ Statements

The end-of-file argument is written as END=d where d is a statement number. The use of this argument causes the
current I/O operation to be terminated and program control to be transferred to the statement identified by the
argument when an end-of-file condition is detected. For example, the detection of an end-of-file condition during
the execution of

READ(10,77,END=50)TABLE IM,J
transfers program control to statement 50.

If the END= argument is not present and an end of file (EOF) condition is detected, the file is closed, program
execution is terminated, and the user is returned to command level.

10.5 READ STATEMENTS

READ statements transfer data from peripheral devices into specified processor storage locations. The permitted
forms of this type of input statement permit READ statements to be used on both sequential and random access
transfer modes for formatted, unformatted, list-directed, and NAMELIST-controlled data transfers.

10.5.1 Sequential Formatted READ Transfers
Descriptions of the READ statements that may be used for the sequential transfer of formatted data follow:

a. Form: READ (u,flist

Use: Input data from logical unit u, formatted according to the specifications given in f, into
the processor storage locations identified in input list.

Example: READ (10,555)TABLE(10,20),ABLE,BAKER,CHARL
b. Form: READ (u,H)

Use: Input the data from logical unit u directly into either a Hollerith (H) field descriptor or a
literal field descriptor given within the format specifications of the referenced FORMAT
statement. If the referenced FORMAT statement does not contain either of the foregoing
types of format field descriptors, the input record is skipped. If a required field descriptor
is present, its contents are replaced by the input data.

Example: READ(15,101)
c. Form: READ f

Use: Input the data from the READ default device (card reader) directly into either a Hollerith
(H) field descriptor or a literal field descriptor given within the format specifications of
the referenced FORMAT statement. If the referenced FORMAT statement does not
contain either of the foregoing types of format field descriptors, the input record is
skipped. If a required field descriptor is present, its contents are replaced by the input
data.

Example: READ 66

10-9

CHAPTER 10 Sequential Binary and
List-Directed READ Statements

d. Form: READ f, list

Use: Input the data from the READ default device (card reader) into the processor storage
locations identified in the input list. The input data is formatted according to the
specifications given in f.

Example: READ 15, ARRAY (20,30)

10.5.2 Sequential Unformatted Binary READ Transfers

Only the following form of the READ statement may be used for the scquential transfer of unformatted input
FORTRAN binary data:

Form: READ (u)list

Use: Input one logical record of data from logical unit u into processor storage as the value of
the location identified in list. Only binary files that have been output by a DECsystem-20
FORTRAN unformatted WRITE statement may be read by this type of READ
statement.

NOTE
If the form READ (u) is used, it will cause one unformatted
input record to be skipped.

Example: READ (10) BINFIL (10,20,30)

10.5.3 Sequential List-Directed READ Transfers

The following forms of the READ statements may be used to control a sequential, list-directed input transfer:
a. Form: READ (u,*)list
Use: Input data from logical device u into processor storage or the value of the locations
identified in list. Each input datum is converted, if necessary, to the type of its assigned
list variable.
Example: READ (10,*) IARY (20,20), A,BM
b. Form: READ *, list
Use: Input the data from the READ default device (card reader, CDR) into the processor
storage locations identified in the input list. Each input datum is converted, if necessary,

to the type of its assigned list variable.

Example: READ *, ABEL(10,20),1,J K

10-10

CHAPTER 10 NAMELIST-Controlled and
Random Access READ Statements

10.5.4 Sequential NAMELIST-Controlled READ Transfers

Only the following form of the READ statement may be used to initiate a sequential NAMELIST-controlled input
transfer:

Form: READ (u,n)

Use: Input data from logical unit u into processor storage as the value of the location
identified by the NAMELIST input list specified by the name n. The input data is
converted to the type of assigned variable if type conflicts occur. Only input files that
contain records formatted and identified for NAMELIST operations (Paragraph 10.3.7)
may be read by READ statements of this form.

10.5.5 Random Access Formatted READ Transfers

Only the following form of the READ statement may be used to initiate a random access formatted input transfer:
Form: READ (u#R . f)list

Use: Input data from record R of logical unit u. Format each input datum according to the
format specifications of f and place into processor storage as values of the locations
identified in list. Only disk files that have been set up by either an OPEN or DEFINE
FILE statement may be accessed by a READ statement of this form. (If record R has
not been written, a fatal error results.)

10.5.6 Random Access Unformatted READ Transfers

Only the following form of the READ statement may be used to initiate a random-access unformatted input
transfer:

Form: READ (u#R)list
Use: Input data from record R of logical unit u. Place the input data into processor storage as
the value of the locations identified in list. Only binary files that have been output by an

unformatted random-access WRITE statement may be accessed by a READ statement of
this form. (If record R has not been written, a fatal error results.)

Example: READ (1#20) BINFIL
Read record number 20 into array BINFIL.
NOTE

If the form READ (u#R) is used, it will cause one logical input
record to be skipped.

10.6 SUMMARY OF READ STATEMENTS

The various forms of the READ statements are summarized in Table 10-2.

10-11

CHAPTER 10

Summary Of READ Statements
and REREAD Statement

Table 10-2
Summary of Read Statements

Type of Transfer Transfer Mode
Sequential Random Access

Formatted READ (u,f)list READ (u#R,f)list
READ (u,f)
READ flist
READ f

Unformatted READ (u)list READ (u#R)list
READ (u) READ (u#R)

List-Directed READ (u,*)list
READ * list

NAMELIST READ (u,N)

Note: The ERR=c and END=d arguments may be included in any
of the above READ statements. When included, the
foregoing arguments must be last, e.g., READ
(10,20,END=101,ERR=500) ARRAY (50,100).

10.7 REREAD STATEMENT

The REREAD statement causes the last record read from the last active input device to again be accessed and

processed.

The REREAD feature of DECsystem-20 FORTRAN cannot be used until an input (READ) transfer from a file has
been accomplished. If REREAD is used prematurely, an error message will be output by DECsystem-20 FORTRAN

at execution time.

Once a record has been accessed by a formatted READ statement the record transferred may be reread as many
times as desired. In a formatted transfer, the same or new format specification may be used by each successive

REREAD statement.

The REREAD statement may be used for sequential formatted data transfers only. The form of the REREAD

statement is:

Form:

Use:

REREAD f list
Reread the last record read during the last initiated READ operation and input the data

contained by the record into the processor storage locations specified in the input list.
Format the data read according to the format specifications given in statement f.

10-12

CHAPTER 10 Sequential Formatted WRITE Statements

Example: DIMENSION ARRAY(10,10),FORMA(10,10),FORMB(10,10),FORMC(10,10)
90 READ(16,100)JARRAY

100 FORMAT(__.__ __._)

110 REREAD 100,FORMA
115 REREAD 150,FORMB
120 REREAD 160,FORMC

150 FORMAT(________)
160 FORMAT(.______._)

In the above sequence, statement 90 inputs data formatted according to statement 100 into the array ARRAY.
Statement 110 reads the record read by statement 90 and inputs the data formatted as in the initial READ operation
into the array FORMA.

Statement 115 reads the record read by statements 90 and inputs the data formatted according to statement 150
into the array FORMB.

Statement 120 reads the record read by statement 90 and inputs the data formatted according to statement 160 into
the array FORMC.

10.8 WRITE STATEMENTS

WRITE statements transfer data from specified processor storage locations to peripheral devices. The various forms
of the WRITE statement enable it to be used in sequential, append and random access transfer modes for formatted,
unformatted, list-directed and NAMELIST-controlled data transfers.

10.8.1 Sequential Formatted WRITE Transfers

The following forms of the WRITE statement may be used for the sequential transfer of formatted data:

a. Form: WRITE (u,f) list

Use: Output the values of the processor storage locations identified in list, into the file
associated with logical unit u. Convert and arrange the output data according to the
specifications given in statement or array f.
Example: WRITE(06,500)0UT(10,20),A,B
b. Form: WRITE flist

Use: Output the values of the processor storage locations identified in list to the default device
(ie., line printer, LPT). Convert and arrange the output data according to the
specifications given in f.

Example: WRITE 10, SEND(5,10),A,B,C

10-13

Sequential, NAMELIST —Controlled
and Random Access WRITE Statements

CHAPTER 10

c. Form: WRITE f

Use: Output the contents of any Hollerith (H) or literal () field descriptor(s) contained by f
to the default device (i.e., line printer, LPT). If neither of the foregoing types of field
specifications are found in f, no output transfer is performed.

Example: WRITE 10

10.8.2 Sequential Unformatted WRITE Transfer
The following form of the WRITE statements may be used for the sequential transfer of unformatted data:

Form: WRITE (u) list

Use: Output the values of the processor storage locations identified in list into the file
associated with logical unit u. No conversion or arrangement of output data is performed.

Example: WRITE(12)ITAB(20,20),SUMS(10,5,2)

10.8.3 Sequential List-Directed WRITE Transfers
The following form of the WRITE statement may be used to initiate a sequential list-directed output transfer.

Form: WRITE (u, *)list

Use: Output the values of the processor storage locations identified in list into the file
associated with logical unit u. The conversion of each datum from internal to external
form is performed according to the type of the list variable from which the datum is read.

Example: ~ WRITE(12,*)C,X,Y,ITAB(10,10)

10.8.4 Sequential NAMELIST-Controlled WRITE Transfers
Only the following form of the WRITE statement may be used to initiate a sequential NAMELIST output transfer.

Form: WRITE(u,N)

Use: Output the values of the processor storage locations identified by the contents of the
NAMELIST-defined list specified by name N.

Example: WRITE(12,NMLST)

10.8.5 Random Access Formatted WRITE Transfers
Only the following form of the WRITE statement may be used to initiate a random access type formatted output
transfer:

Form: WRITE (u#R, f)list

Use: Output the values of the processor storage locations identified by the contents of list to
record R of logical device u. Only disk files which have been set up by either an OPEN or
a DEFINE FILE statement may be accessed by a WRITE rtransfer of this form. The data
transferred will be formatted according to the specifications given in statement or array f
Only those records which have been specifically written are available to be read.

10-14

CHAPTER 10 Random Access WRITE Statements,
Summary of WRITE Statements,
ACCEPT Statement

10.8.6 Random Access Unformatted WRITE Transfers

Only the following form of the WRITE statement may be used to initiate a random access unformatted output
transfer:

Form: WRITE (u#R)list

Use: Output the values of the processor storage locations identified by the contents of list to
record R of the logical device unit u. Only disk files which have been set up by either an
OPEN or a call to the DEFINE FILE subroutine may be accessed by a WRITE transfer of

this form. Only those records which have been specifically written are available to be read.

10.9 SUMMARY OF WRITE STATEMENTS

The various forms of the WRITE statements are summarized in Table 10-3.

Table 10-3
Summary of WRITE Statements
Type of Transfer Transfer Mode
Sequential Random Access
Formatted WRITE(u,f)list WRITE(u#R,list
WRITE flist
WRITE f
Unformatted WRITE(u)list WRITE(u#R)list
List-Directed WRITE (u,*)list
NAMELIST-controlled WRITE(u,N)

Note: The ERR=c and END=d arguments may be included in any
WRITE statement; however, they must be last.

10.10 ACCEPT STATEMENT

The ACCEPT statement enables the user to input data via either a terminal keyboard or a Batch control file directly
into specified processor storage locations. This statement is used only in the sequential transfer mode fo