decsUscenmio

mathematical
languages

handbook

second edition
Fortran basic algol

decsustcemio handbook series

dlilgliltiall

gecsysceno

mathematical
languages
handbook

second edition

Additional copies of this handbook may be ordered from:

decsystemio handbook series

The material in this handbook is for information purposes and is subject
to change without notice.

Copyright © 1967, 1968, 1969, 1970, 1971, 1972 by
Digital Equipment Corporation

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

Fortran i}

NOTICE

For the reader’s convenience:

1)

2)

3)

4)

5)

Consecutive page numbers have been added to the top center of each page in the handbook;
these numbers have the form —nn..— (for example —25—) and are supplied in addition to
the standard document numbers printed at the bottom center of each page.

The appropriate document name has been added to the top outside corner of each page of
the handbook.

A global index comprised of the merged and alphabetized entries of all of the indexes which
were previously part of the documents contained by the handbook is supplied at the end of
the handbook. The global index replaces the individual document indexes.

The entries of the global index and the Table of Contents for each document reference the
consecutive page numbers located at the top center of each page.

Black locator tabs are printed on the outside edge of the first ten pages of each document
in the handbook. A tab locator page on which each set of tabs is identified by the name of
the document which they represent is supplied at the front of the handbook.

DEC-10-AFDO-D

decsyscemic
FORTRAN IV
PROGRAMMER'’S

REFERENCE MANUAL

The information in this document reflects the software as of
Version 26 of the FORTRAN Compiler and Version 32 of the
run-time operating system (L1B40).

DIGITAL EQUIPMENT CORPORATION « MAYNARD, MASSACHUSETTS

FORTRAN

Ist Printing March 1967

2nd Printing (Rev) November 1967
3rd Printing (Rev) September 1968
4th Printing April 1969

5th Printing June 1969

6th Printing September 1969

7th Printing (Rev) February 1970
Update Pages October 1970
Update Pages February 1971

Update Pages October 1971
Update Pages May 1972

Copyright © 1967, 1968, 1969, 1970, 1971, 1972 by Digital Equipment Corporation

The material in this manual is for informa-
tion purposes and is subject to change with-
out notice.

The following are trademarks of Digital Equipment
Corporation, Maynard Massachusetts:

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

-3- FORTRAN

CONTENTS

Page
SECTION 1 THE PDP-10 FORTRAN LANGUAGE
CHAPTER 1 INTRODUCTION TO THE FORTRAN LANGUAGE
Il Line Format 15
1.1.1 Statement Number Field 15
1.1.2 Line Continuation Field 15
1.1.3 Statement Field 16
1.1.4 Comment Line 17
1.2 Character Set 17
CHAPTER 2 CONSTANTS, VARIABLES, AND EXPRESSIONS
2.1 Constants , 19
2.1.1 Integer Constants 19
2.1.2 Real Constants 19
2.1.3 Double Precision Constants 20
2.1.4 Octal Constants 20
2,1.5 Complex Constants 20
2.1.6 Logical Constants 2]
2,1.7 Literal Constants 2]
2.2 " Variables 22
2,2.1 Scalar Variables 22
2,2,2 Array Variables 22
2.3 Expressions 24
2.3.1 Numeric Expressions : 24
2.3.2 Logical Expressions 26
CHAPTER 3 THE ARITHMETIC STATEMENT
3.1 General Description 29
CHAPTER 4 CONTROL STATEMENTS
4.1 GO TO Statement 31
4.1.1 Unconditional GO TO Statements 31
4.1.2 Computed GO TO Statements 32
4.1.3 Assigned GO TO Statement 32
4.2 IF Statement 32
4.2.1 Numerical IF Statements 33
4.2.2 Logical IF Statements 33
4.3 DO Statement 34
4.4 CONTINUE Statement 38

4,5 PAUSE Statement 38

FORTRAN

4.6
4.7

CHAPTER 5

5.1
5.1.1
5.1.2
5.2

5.4
CHAPTER 6

6.1
6.1.1
6.1.2
6.1.3
6.1.4
6.2

6.2.1
6.2.2
6.3

6.3.1

CHAPTER 7

7.1
7.2
7.3
7.4
7.4.1
7.5
7.5.1

-l
CONTENTS (Cont)

STOP Statement
END Stotement

DATA TRANSMISSION STATEMENTS

Nonexecutable Statements
FORMAT Statement
NAMELIST Statement
Data Transmission Statements
Input/Output Lists
Input/Qutput Records
PRINT Statement

PUNCH Statement

TYPE Statement

WRITE Statement

READ Statement

REREAD Statement
ACCEPT Statement
Device Control Statements

Encode and Decode Statements
SPECIFICATION STATEMENTS

Storage Specification Statements
DIMENSION Statement
COMMON Statement
EQUIVALENCE Statement
EQUIVALENCE and COMMON
Data Specification Statements
DATA Statement

BLOCK DATA Statement

Type Declaration Statements
IMPLICIT Statement

SUBPROGRAM STATEMENTS

Dummy ldentifiers

Library Subprograms

Arithmetic Function Definition Statement
FUNCTION Subprograms

FUNCTION Statement

SUBROUTINE Subprogram

SUBROUTINE Statement

Page
39
39

4
41
53
55
56
57
57
58
58
58
59
61
62
62
63

66
66
68
69
70
70
70
72
72
73

75
75
75
76
76
78
78

-5- FORTRAN
CONTENTS (Cont)

Page

7.5.2 CALL Statement 81
7.5.3 RETURN Statement 81
7.6 BLOCK DATA Subprogram 82
7.6.1 BLOCK DATA Statement 82
7.7 EXTERNAL Statement 82
7.8 Summary of PDP-10 FORTRAN |V Statements 83
SECTION Il THE RUNTIME SYSTEM
CHAPTER 8 THE FORTRAN |V LIBRARY - LIB40
8.1 The FORTRAN Operating System 89
8.1.1 FORSE, 89
8.1.2 I/O Conversion Routines 90
8.1.3 FORTRAN UUOs A
8.2 Science Library and FORTRAN Utility Subprograms 92
8.2.1 FORTRAN |V Library Functions 92
8.2.2 FORTRAN |V Library Subroutines 96
CHAPTER 9 SUBPROGRAM CALLING SEQUENCES
9.1 Macro Subprogram Called by FORTRAN Main Programs 101
9.1.1 Calling Sequences 101
9.1.2 Returning of Answers 102
9.1.3 Use of Accumulators 102
9.1.4 Examples of Subprogram Linkage 102
9.2 Macro Main Programs Which Reference FORTRAN

Subprograms 109
9.2,1 Calling Sequences 109
9.2.2 Returning of Answers 109
9.2.3 Example of Subprogram Linkage - 110
CHAPTER 10 ACCUMULATOR CONVENTIONS FOR MAIN PROGRAMS

AND SUBPROGRAMS
10.1 Locations 117
10.2 Accumulators 117
10.2.1 Accumulators 0 and 1 117
10.2,2 Accumulators 2 through 15 118
10.2.3 Accumulators 16 and 17 118
10.3 UUOs 118
10.4 Subprograms Called by JSA 16, Address 118
10.5 Subprograms Called by PUSHJ 17, Address 118
10.6 Subprograms Calledby UUOs 119

FORTRAN

-6-
CONTENTS (Cont)

CHAPTER 11 SWITCHES AND DIAGNOSTICS

1.1

FORTRAN Switches and Diagnostics

CHAPTER 12 FORTRAN USER PROGRAMMING

121
12,2
12.3
12.3.1
12.3.2
12.3.3
12.4
12.4.1
12.4.2
12.4.3
12.5

ASCI| Character Set
PDP-10 Word Formats
FORTRAN Input/Output
Logical and Physical Peripheral Device Assignments
DECtape and Disk Usage
Magnetic Tape Usage
Random Access Programming
How to Use Random Access
Restrictions

Examples

PDP-10 Instruction Set

APPENDIX A THE SMALL FORTRAN |V COMPILER

Page

121

133
134
135
136
136
138
139
140
140
141
145

-7- FORTRAN
ILLUSTRATION'S

Page
1-1 Typical FORTRAN Coding Form 16
2-1 Array Storage 23
4-1 Nested DO Loops 37
TABLES
2-1 Types of Resultant Subexpressions 25
3-1 Allowed Assignment Statements 30
5-1 Magnitude of Intemal Data 43
5-2 Numeric Field Codes 44
5-3 Device Control Statements 62
8-1 1/O Conversion Routine 90
8-2 FORTRAN UUOs N
8-3 FORTRAN 1V Library Functions 93
8-4 FORTRAN IV Library Subroutines 96
10-1 Accumulator Conventions for PDP-10 FORTRAN |V
Compiler and Subprograms 119
11-1 FORTRAN Compiler Switch Options 121
11-2 FORTRAN Compiler Diagnostics (Command Errors) 122
11-3 FORTRAN Compiler Diagnostics (Compilation Errors) 123
11-4 FORTRAN Operating System Diagnostics (Execution Errors) 128
12-1 ASCII Character Set 133
12-2 PDP-10 FORTRAN IV Standard Peripheral Devices 135

12-3 Device Table for FORTRAN [V 137

FORTRAN

_o- FORTRAN

PREFACE

This is a reference manual describing the specific statements and features of the
FORTRAN 1V language for the PDP-10. It is written for the experienced
FORTRAN programmer who is interested in writing and running FORTRAN 1V pro-
grams alone or in conjunction with MACRO-10 programs in the single-user or
time-sharing environment. Familiarity with the basic concepts of FORTRAN pro-
gramming on the part of the user is assumed. PDP-10 FORTRAN IV conforms to
the requirements of the USA Standard FORTRAN.

FORTRAN

-10-

11 FORTRAN

INTRODUCTION TO THE FORTRAN 1V SYSTEM

The FORTRAN compiler translates source programs written in the FORTRAN 1V language into the machine
language of the PDP-10. This translated version of the FORTRAN program exists as a retrievable, relocatable
binary file on some storage device. All relocatable binary filenames have the extension .REL if they reside on
a directory-oriented device (disk or DECtape). Binary files may also be created by the MACRO-10 assembler
(see Chapter 9)] .

In order for the FORTRAN program to be processed, the Linking Loader must load the relocatable binary file
into core memory. Also loaded are any relocatable binary files found in the FORTRAN library (LIB40) which
are necessary for the program's execution. Within the FORTRAN source program, the library files may be called

explicitly, such as SIN, in the statement
X = SIN(Y)

or implicitly, such as FLOUT., the floating-point to ASCII conversion routine, which is implied in the follow-
ing statements.

PRINT 3,X
3 FORMAT(1X,F4.2)

A FORTRAN main program and its FORTRAN and/or MACRO-10 subprograms may be compiled or assembled sep-
arately and then linked together by the Linking Loader at load time. The core image may then be saved on a
storage device. When saved on a directory storage device, these files have the extension . SAV in a multipro-

gramming Monitor system and .SVE in a single-user Monitor system.

The Time-Sharing Monitors act as the interface between the user and the computer so that all users are protected
from one another and appedr to have system resources available to themselves. Several user programs are loaded
into core at once and the Time-Sharing Monitors schedule each program to run for a certain length of time. All
Monitors direct data flow between 1/0 devices and user programs, making the programs device independent, and

overlap 1/O operations concurrently with computations.

In a multiprogramming system, all jobs reside in core and the scheduler decides which of these jobs should run.

In a swapping system, jobs can exist on an external storage device (usually disk) as well as in core. The scheduler

‘For further information on the MACRO-10 assembler, see the MACRO-10 ASSEMBLER manual, DEC-10-AMZB-D.

Xi

FORTRAN -12-

decides not only which job is to run but also when a job is to be swapped out onto the disk or brought back into

core.

The number of users that can be handled by a given size time-sharing configuration is further increased by using
the reentrant user-programming capability. This means that a sequence of instructions may be entered by more
than one user job at a time. Therefore, a single copy of a reentrant program may be shared by a number of users

at the same time to increase system economy. The FORTRAN compiler and operating system are both reentrant.

X

-13- FORTRAN

SECTION 1
The PDP-10 FORTRAN 1V Language

The seven chapters of this section deal with the PDP-10 FORTRAN 1V language.
Included in these chapters are the language elements of FORTRAN 1V and the
five categories of FORTRAN 1V statements (arithmetic, control, input/output,

specification, and subprogram).

FORTRAN

-14-

-15- FORTRAN

CHAPTER 1
INTRODUCTION TO THE FORTRAN LANGUAGE

The term FORTRAN IV (FORmula TRANSslation) is used interchangeably to designate both the FORTRAN 1V
language and the FORTRAN 1V translator or compiler. The FORTRAN 1V language is composed of mathematical-
forrﬁ statements constructed in accordance with precisely formulated rules. FORTRAN 1V programs consist of
meaningful sequences of FORTRAN statements intended to direct the computer to perform the specified operations

and computations.

The FORTRAN 1V compiler is itself a computer program that examines FORTRAN 1V statements and tells the com-
puter how to translate the statements into machine language. The compiler runs in a minimum of 9K of core.

The program written in FORTRAN 1V language is called the source program. The resultant machine language
program is called the object program. Digital's small FORTRAN compiler, which runs in 5.5K of core, is vir-
tually identical to the larger compiler, except for differences explained in Appendix 2. Operating procedures

and diagnostic messages for both compilers are explained in the PDP-10 System Users Guide (DEC-10-NGCC-D).

1.1 LINE FORMAT

Each line of a FORTRAN program consists of three fields: statement number field, line continuation field, and

statement field. A typical FORTRAN program is shown in Figure 1-1.

1.1.1 Statement Number Field

A statement number consists of from one to five digits in columns 1-5. Leading zeros and all blanks in this field
are ignored. Statement numbers may be in any order and must be unique. Any statement referenced by another
statement must have a statement number. For source programs prepared on a teletypewriter, a horizontal tab may
be used to skip to the statement field with from 0 through 5 characters in the label field. This is the only place

a tab is not treated as a space.

1.1.2 Line Continuation Field

If a FORTRAN statement is so large that it cannot conveniently fit into one statement field, the statement fields
of up to 19 additional lines may be used to specify the complete statement. Any line which is not continued, or

the first line of a sequence of continued lines, must have a blank or zero in column 6. Continuation lines must

Version 24 FORTRAN

Version 31 LIB40 1-1 October 1971

FORTRAN -16-

FORTRAN cooer DATE PAGE
CODING FORM PROBLEM
CComment |5
S Symbotic |2
8 Booleon g FORTRAN STATEMENT IDENTIFICATION
STATEMENT ¢
NUMBER 5
1 2345[6]7891011121314151617181920212223242526272829303132333435363738394041424344454647484950 5152535455, 263 7071 72({7374757677 7879 80)
c THIS, PROGRAM CALCULATES PRIME NUMBERS FROM .11 TQO 50
DQ 10, =0l 500 2 e
=1
4, =42 .
=.d
=1/A
L=1/4
B=A-L

1LF, (B, Sy 100 5ot
5 LI (J. LT.SGRT (FLOAT (1))) GQ IO 4
TYPE 105, 1
10 C ONTI NUE

1,05, | [FORMAT, (1.4.' 1S PRIME. ")

................................

VI R TS S W N N W S S A S 0 S S N U S S S U T Y S S S S Y 4ttty bt TG RGN R 43 434
L o e LRI NS me e e e s H————+ + +—+ + t L e o o o = 4+
- ——t Attt
+ +—+—+—+—++ 4+ et
e P A A A S A A S S S A S U S R U ST A S S U W A i U U U A S S A T U A B A U A A A A A A A A B S A AW P "
12345(6/789101112131415161718192021222324 252627282930 31323334 15361738940 41 4241444546 47484950 5 263 886970 7\ 7247374737877 787980
PG-3 DIGITAL EQUIPMENT CORPORATION . MAYNARD, MASSACHUSETTS 100]2/64

Figure 1-1 Typical FORTRAN Coding Form

have a character other than blank or zero in column 6. If a continuation line is desired when a TAB is used in

the statement number field, a digit from 1 to 9 must immediately follow the TAB.

1.1.3 Statement Field

Any FORTRAN statement, as described in later sections, may appear in the statement field (columns 7-72). Ex-
cept for alphanumeric data within a FORMAT statement, DATA statement, or literal constant, blanks (spaces)
and TABS are ignored and may be used freely for appearance purposes. Thus the following statements are equiv-
alent.

END (tab) FILE (tab) 2

END (space) FILE (space) 2
ENDFILE2

Version 24 FORTRAN
Version 31 LIB40 October 1971

-17- FORTRAN

1.1.4 Comment Line

Any line that starts with one of the characters $ * / or the letter C in column 1 is interpreted as a line of com-
ments. Comment lines are printed onto any listings requested but are otherwise ignored by the compiler, Col-

umns 2-72 may be used in any format for comment purposes. A comment line must not immediately precede a

continuation line,

As an aid for program debugging, the letter D in column 1 causes the line to be interpreted as a comment unless
the /I switch appears in the command string. (Refer to Table 11-1 for Compile Switch options.) If the /I switch

is present, the letter D in column 1 is interpreted as a space and the line is compiled as a program statement.

1.2 CHARACTER SET

The following characters are used in the FORTRAN 1V language:

Blank 0 @ P
! 1 A Q
" 2 B R
3 C S
$ 4 D T
% 5 E U
& 6 F \
' 7 G w
(8 H X
) 9 I Y
* J y4
+ ; K t
, < L
- = M
. > N
/ ? o}

NOTE

ASCII characters greater than Z (132,) are replaced by
the error character "t". See Chapter 12 for the internal
representation of these characters.

Version 24 FORTRAN
Version 31 LIB40 1-3 February 1971

FORTRAN

-18-

-19- FORTRAN

CHAPTER 2
CONSTANTS, VARIABLES, AND EXPRESSIONS

The rules for defining constants and varidbles and for forming expressions are described in this chapter.

2.1 CONSTANTS

Seven types of constants are permitted in a FORTRAN 1V source program: integer or fixed point, real or single-

precision floating point, double-precision floating point, octal, complex, logical, and literal.

2.1.1 Integer Constants

An infeger constant consists of from one to eleven decimal digits written without a decimal point. A negative

constant must be preceded by a minus sign. A positive constant may be preceded by a plus sign.

Examples: 3
+10
-528

8085

An integer constant must fall within the range -235+l to 235-1. When used for the value of a subscript, the
value of the integer constant is taken as modulo 2]8.

2.1.2 Real Constants

Real constants are written as o string of decimal digits including a decimal point. A real constant may consist
of any number of digits but only the leftmost 9 digits appear in the compiled program. Real constants may be

given a decimal scale factor by appending an E followed by a signed integer constant. The field following the
letter E must not be blank, but may be zero.

Examples: 15.
0.0
579
-10.794
5.0E3(i.e., 5000.)
5.0E+3(i.e., 5000)
5.0E-3(i.e., 0.005)

2-1

FORTRAN -20-

A real constant has precision to eight digits. The magnitude must lie approximately within the range

0.14 x 10-38 to 1.7 x]038. Real constants occupy one word of PDP-10 storage.

2.1.3 Double Precision Constants

A double precision constant is specified by a string of decimal digits, including a decimal point, which are
followed by the letter D and a signed decimal scale factor. The field following the letter D must not be blank,
but may be zero.

Examples: 24.671325982134D0
3.6D2 (i.e., 360.)
3.6D-2 (i.e., .036)
3.0D0

Double precision constants have precision to 16 digits. The magnitude of a double precision constant must lie

approximately between 0.14 x 10-38 and 1.7 x 1038. Double-precision constants occupy two words of PDP-10

storage.

2.1.4 Octal Constants

A number preceded by a double quote represents an octal constant. An octal constant may appear in an arith-
metic or logical expression or a DATA statement. Only the digits 0-7 may be used and only the last twelve
digits are significant. A minus sign may precede the octal number, in which case the number is negated. A

maximum of 12 octal digits are stored in each 36-bit word.

Examples: 7777
"-31563

2.1.5 Complex Constants

FORTRAN 1V provides for direct operations on complex numbers. Complex constants are written as an ordered

pair of real constants separated by a comma and enclosed in parentheses.

Examples: (.70712, -.70712)
(8.763E3,2.297)

The first constant of the pair represents the real part of the complex number, and the second constant represents
the imaginary part. The real and imaginary parts may each be signed. The enclosing parentheses are part of
the constant and always appear, regardless of context. Each part is internally represented by one single-

precision floating point word. They occupy consecutive locations of PDP-10 storage.

-21- FORTRAN

FORTRAN 1V arithmetic operations on complex numbers, unlike normal arithmetic operations, must be of the

form:

A+B = al*b]+i(02*b2)

A*B = (a]bl-02b2)+i(a2b]+a]b2)
_ (Olbl+°2b2)+i (°2b'|_°]b2)
T2 2 2, 2

b] +b2 b] +b2

where A=a] + ia2, B =b] + ibz, and i =A /1.

A/B

2.1.6 Logical Constants

The two logical constants, .TRUE. and .FALSE., have the internal values -1and 0, respectively. The en-

closing periods are part of the constant and always appear.

Logical constants may be entered in DATA or input statements as signed octal integers (~1 and 0). Logical

quantities may be operated on in either arithmetic or logical statements. Only the sign is tested to determine the

truth value of a logical variable.

2.1.7 Literal Constants

A literal constant may be in either of two forms:

a. Astring of alphanumeric and/or special characters enclosed in single quotes; two adjacent single
quotes within the constant are treated as one single quote.

b. A string of characters in the form

on]xz. X

where XXgeooX s the literal constant, and n is the number of characters following the H.

Literal constants may be entered in DATA statements or input statements as a string of up to 5 7-bit ASCII char-
acters per variable (10 characters if the variable is double-precision or complex). Literal constants may be

operated on in either arithmetic or logical statements.

NOTE

Literal constants used as subprogram arguments will have a
zero word as an end-of=string indicator.

FORTRAN -22-

Examples: CALL SUB ('LITERAL CONSTANT')
'DONT"'T'
5HDON'T
A ="FIVE' + 42
B = (SHABCDE .AND. ''376)/2

2.2 VARIABLES

A varidble is a quantity whose value may change during the execution of a program. Variables are specified

by name and type. The name of a variable consists of one or more alphanumeric characters, the first one of
which must be alphabetic. Only the first six characters are interpreted as defining the variable name. The

type of variable (integer, real, logical, double precision, or complex) may be specified explicitly by a type
declaration statement or implicitly by the IMPLICIT statement. If the variable is not specified in this manner,
then a first letter of I, J, K, L, M or N indicates a fixed point (integer) variable; any other first letter indi-
cates a floating-point (real) variable. Variables of any type may be either scalar or array variables. When used

in a subscript or as an index to a DO Statement, the value of the integer variable is taken as modulo 2]8.

2.2.1 Scalar Variables

A scalar variable represents a single quantity.

Examples: A
G2
POPULATION

2.2.2 Array Variables

An array variable represents a single element of an n dimensional array of quantities. The variable is denoted

by the array name followed by a subscript list enclosed in parentheses. The subscript list is a sequence of in-
teger expressions, separated by commas. The expressions may be of any form or type providing they are explicitly
changed to type integer when each is completely evaluated. Each expression represents a subscript, and the
values of the expressions determine the array element referred to. For example, the row vector A, would be
represented by the subscripted variable A(J), and the element, in the second column of the first row of the square

matrix A, would be represented by A(1,2). Arrays may have any number of dimensions.

Examples: Y(1)
STATION (K)
A (3* K+2, 1, J-1)

The three arrays above (Y, STATION, and A) would have to be dimensioned by a DIMENSION, COMMON,
or type declaration statement prior to their first appearance in an executable statement or in a DATA or

NAMELIST statement. (Array dimensioning is discussed in Chapter 6).

2-4

-23- FORTRAN
1-Dimensional Array A(10)
|i“)[ac2) [a3 | A(4)|A(5)|A(s) [am) |A(s)|A(9) [a00)
CONSECUTIVE STORAGE LOCATIONS
2-Dimensional Array B(5,5)
LB, e]B,2)]11|B(1,3) |16 B(1,4)[21] B(1,5)
2 |B(2,1)]7 [B(2,2)|12|B(2,3)|17 | B(2,4)|22] B(2,5)
38(3.1)| 8 |8(3,2)|13]|B(3,3) 18| B(3,4)[23] B(3,5)
4 18(4,1)] 9 |B(a,2)]14| B(4,3)|19]|B(4,4)[24] B(4.5)
5 [B(S, 1)]i0]B(5,2)]15] B(5,3)]20] B(5,4)| 21| B(5,5)
B(3,1) IS THE THIRD STORAGE WORD IN SEQUENCE
B(3,4) IS THE EIGHTEENTH STORAGE WORD IN SEQUENCE
3-Dimensional Array C(5,5,5)
1o feti,1,8)] 106[c(1,25) 111]c1,35) 116 [c(1,4,5)] 121]ci1,55)
102c(2,1,5) 107 lc(2,25)0 112 [c(2,38) 117 [c(2,4.5)[122]c(2,5,5)
76 Jc(l,14)] 81 |c(1,2,4)] 86 [c(1,3,9] 91 [c(14.9] 96 C(1,5,4)] 118 |C(3,4,5)[123 [C(3,5,5)
77 [C(2,1,4)] 82 [c(2.2,4)] 87 [c(2,3,4] 92 [C(2,4,4] 97 [c(2,54)] 119 [c(aa,5)]124 C(4,5,5)
51_Jcu.1,3)] 56 [c(,2,3)] 61 _]c(1,3,3)] 66 [c01,4,3)] 71 |ou,5, 3).28_C(3.54)| 120]c(5,9,5)[125[c(5,5,5)
52 |02,1,3)] 57 |c2,2,3] 62 [C(2,3,3)] 67 [C(2,4,3] 72 [C(2,5,9] 99 [C(454)
26 e, 1, 2| 31_fcu,2,2] 36 [ci1,3,2)] 41 [c(1,4,2)] 46 |c(16.2)] 73 C(353)]100 |C(554)
27 1c(2)2) 1 32 1d(2,2,2)] 37 [c232)[42 [c(23.2) | 47 [c2,5,2)] 74 [c45.3)
Lfea,np e Jot,2,0] 11 Jea,3,0[16 [co,4,0)] 21 [c(i.5.1)] 28 c(35.2)] 75 [c(55,3)
2 je@)] 7 jc2n] 12 [a23,0 [17 [c2a,0] 22 Jc2,50) 49 [C(452)
3 1¢B3,1,0] 8 [c32)] 13 [c330 |18 [c34,0] 23 [cB.51) 50 [C(55.2)
4 Jc4,1)] 9 lc42n] 14 [ca3.n |19 [caan] 24 oasi)
5 IS] 10 Jots2,0] 15 Jo5,3,0 [20 [o54,) | 25 [cis.5,)
C(1,3,2) is the 36th storage word in sequence.
C(1,1,5) is the 101st storage word in sequence.
Figure 2-1 Array Storage

FORTRAN =24~

Arrays are stored in increasing storage locations with the first subscript varying most rapidly and the last subscript
varying least rapidly. For example, the 2-dimensional array B(I, J) is stored in the following order: B (1,1),
B(1,...,8(1,1,8(1,2),8(,2,...,8(1,2),...,B(1,J).

2.3 EXPRESSIONS

Expressions may be either numeric or logical. To evaluate an expression, the object program performs the

calculations specified by the quantities and operators within the expression.

2.3.1 Numeric Expressions

A numeric expression is a sequence of constants, variables, and function references separated by numeric

operators and parentheses in accordance with mathematical convention and the rules given below.

The numeric operators are +, -, *, /, **, denoting, respectively, addition, subtraction, multiplication,

division, and exponentiation.

In addition to the basic numeric operators, function references are also provided to facilitate the evaluation
of functions such as sine, cosine, and square root. A function is a subprogram which acts upon one or more
quantities, called arguments, to produce a single quantity called the function value. Function references are
denoted by the identifier, which names the function (such as SIN, COS, etc.), followed by an argument list

enclosed in parentheses:
idenﬁﬁer(aygumenf, argument, ..., argument)

At least one argument must be present. An argument may be an expression, an array identifier, a subprogram

identifier, or an alphanumeric string.

Function type is given by the type of the identifier which names the function. The fype of the function is inde~
pendent of the types of its arguments. (See Chapter 7, Section 7.4.1.1.)

A numeric expression may consist of a single element (constant, variable, or function reference):

2.71828
Z(N)
TAN(THETA)

Compound numeric expressions may be formed by using numeric operations to combine basic elements:

X+3.

TOTAL/A

TAN(PI*M)

(X+3.) -(TOTAL/A) * TAN (PI*M)

2-6

_95.- FORTRAN

Compound numeric expressions must be constructed according to the following rules:

a. With respect to the numeric operators +, -, *, /, any type of quantity (logical, octal, integer,
real, double precision, complex or literal) may be combined with any other, with one exception:
a complex quantity cannot be combined with a double precision quantity.

The resultant type of the combination of any two types may be found in Table 2-1. The conversions
between data types will occur as follows:

(1) A literal constant will be combined with any integer constant as an integer and with a real
or double word as a real or double word quantity. (Double word refers to both double precision
and complex.)

(2) An integer quantity (constant, variable, or function reference) combined with a real or double
word quantity results in an expression of the type real or double word respectively; e.g., an integer
variable plus a complex variable will result in a complex subexpression. The integer is converted
to floating point and then added to the real part of the complex number. The imaginary part is
unchanged.

(3) A real quantity (constant, variable, or function reference) combined with a double word quan-
tity results in an expression that is of the same type as the double word quantity.

(4) A logical or octal quantity is combined with an integer, real, or double word quantity as if
it were an integer quantity in the integer case, or a real quantity in the real or double word case
(i.e., no conversion takes place).

b. Any numeric expression may be enclosed in parentheses and considered to be a basic element.

(X+Y)/2
(ZETA)
(COS(SIN(PI*M)+X))
Table 2-1
Types of Resultant Subexpressions
- Type of Quantity
Logical,
+,=,%,/ Real Integer Complex Dou.b!e Octal, or
Precision .
Literal
—-
Real Real Real Complex Double Real
Precision
Integer Real Integer Complex Double Integer
Precision
Complex Complex Complex Complex Not Complex
T)’Pe of A”OWed
Quantity ["Doyble Double Double Not Double Double
Precision Precision Precision Allowed Precision Precision
Logical, Real Integer Complex Double Logical,
Octal, or Precision Octal, or
Literal Literal

FORTRAN -26-

c. Numeric expressions which are preceded by a + or — sign are also numeric expressions:

+X
-(ALPHA*BETA)
-SQRT(-GAMMA)

d. If the precedence of numeric operations is not given explicitly by parentheses, it is understood
to be the following (in order of decreasing precedence):

Operator Explanation

** numeric exponentiation

*and/ numeric multiplication and division
+and- numeric addition and subtraction

In the case of operations of equal hierarchy, the calculation is performed from left to right.
e. No two numeric operators may appear in sequence. For instance:
X*=Y
is improper. Use of parentheses yields the correct form:
X*(-Y)
By use of the foregoing rules, all permissible numeric expressions may be formed. As dh example of a typical

numeric expression using numeric operators and a function reference, the expression for one of the roots of the

general quadratic equation:

b+ /b2 - 4ac

2a

would be coded as:

(-B+SQRT(B**2-4.*A*C))/(2.*A)

2.3.2 Logical Expressions

A logical expression consists of constants, variables, function references, and arithmetic expressions, separated
by logical operators or relational operators. Logical expressions are provided in FORTRAN IV to permit the im-
plementation of various forms of symbolic logic. Logical masks may be represented by using octal constants.

The result of a logical expression has the logical value TRUE (negative) or FALSE (positive or zero) and therefore,

only uses one word.

Version 24 FORTRAN

Version 31 LIB40 October 1971

-27- FORTRAN

2,3.2.1 Logical Operators - The logical operators, which include the enclosing periods and their definitions,

I are as follows, where P and Q are expressions:

.NOT.P Has the value .TRUE. only if P is .FALSE., and has the
value .FALSE. only if P is .TRUE.
P.AND.Q Has the value .TRUE. only if P and Q are both . TRUE.,
and has the value .FALSE, if either P or Q is .FALSE.
P.OR.Q (Inclusive OR) Has the value .TRUE. if either P or Q is .TRUE. ,
and has the value .FALSE. only if both P and Q are .FALSE.
P.XOR.Q (Exclusive OR) Has the value .TRUE. if either P or Q but not
both are .TRUE., and has the value .FALSE. otherwise.
P.EQV.Q (Equivalence) Has the value .TRUE, if P and Q are both

«TRUE. or both .FALSE., and has the value .FALSE. otherwise.

Logical expressions are evaluated by combining the full word values of P and Q (only the high-order part if P
and Q are double precision, only the real part if P and Q are complex) using the appropriate logical operator.

The result is TRUE if it is arithmetically negative and FALSE if it is arithmetically positive or zero.

Logical operators may be used to form new variables, for example,

X=Y.AND,Z
E = E.XOR. "400000000000

2.3.2.2 Relational Operators - The relational operators are as follows:

Operator Relation
.GT. greater than
.GE. greater than or equal to
LT, less than
.LE. less than or equal to
.EQ. equal to
. NE. not equal to

The enclosing periods are part of the operator and must be present.

Mixed expressions involving integer, real, and double precision types may be combined with relationals.
| The value of such an expression will be .TRUE. (-1) or .FALSE. (0).

The relational operators .EQ. and . NE. may also be used with COMPLEX expressions. (Double word quantities
are equal if the corresponding parts are equal.)

Version 24 FORTRAN
Version 31 LIB40 2-9 October 1971

FORTRAN 98-

A logical expression may consist of a single element (constant, variable, function reference, or relation):

.TRUE.
X.GE.3.14159

Single elements may be combined through use of logical operators to form compound logical expressions, such as:

TVAL.AND.INDEX
BOOL(M). OR.K.EQ.LIMIT

Any logical expression may be enclosed in parentheses and regarded as an element:

(T.XOR.S).AND. (R.EQV.Q)
CALL PARITY ((2.GT.Y.OR.X.GE.Y).AND. NEVER)

Any logical expression may be preceded by the unary operator . NOT. as in:

.NOT.T
.NOT.X+7.GT.Y+Z
BOOL(K).AND. . NOT. (TVAL.OR.R)

No two logical operators may appear in sequence, except in the case where .NOT. appears as the second of
two logical operators, as in the example above. Two decimal points may appear in sequence, as in the

example above, or when one belongs to an operator and the other to a constant.

When the precedence of operators is not given explicitly by parentheses, it is understood to be as follows (in

order of decreasing precedence):

*%

*/

+,-
.GT.,.GE.,.LT.,.LE.,.EQ.,.NE.
.NOT.

.AND.

.OR.

.EQV., .XOR.

For example, the logical expression
.NOT. ZETA**2+Y*MASS.GT.K-2. OR.PARITY .AND.X.EQ.Y
is interpreted as

(. NOT. (((ZETA**2)+(Y *MASS)).GT.(K-2))). OR.(PARITY .AND. (X .EQ.Y))

2-10

-29- FORTRAN

CHAPTER 3
THE ARITHMETIC STATEMENT

3.1 GENERAL DESCRIPTION

One of the key features of FORTRAN 1V is the ease with which arithmetic computations can be coded. Compu-
tations to be performed by FORTRAN 1V are indicated by arithmetic statements, which have the general form:

A=B

where A is a variable, B is an expression, and = is a replacement operator. The arithmetic statement causes the
FORTRAN 1V object program to evaluate the expression B and assign the resultant value to the variable A.

Note that the = sign signifies replacement, not equality. Thus, expressions of the form:

A=A+B and
A=A*B

are quite meaningful and indicate that the value of the variable A is to be replaced by the result of the expres-

sion to the right of the = sign.

Examples: Y=1xY
P=.TRUE.
X (N)=N+ZETA(ALPHA+*M/PI)}+(1.,-1.)

Table 3-1 indicates which type of expression may be equated to each type of variable in an arithmetic statement.
D indicates that the assignment is performed directly (no conversion of any sort is done); R indicates that only
the real part of the variable is set to the value of the expression (the imaginary part is set to zero); C means that

the expression is converted to the type of the variable; and H means that only the high-order portion of evaluated

expression is assigned to the variable.

The expression value is made to agree in type with the assignment variable before replacement occurs. For ex-

ample, in the statement:
THETA=W= (ABETA+E)

if THETA is an integer and the expression is real, the expression value is truncated to an integer before assign-
ment to THETA.

3-1

FORTRAN -30-
Table 3-1
Allowed Assignment Statements
Expression
Logical,

. Double Octal, or
Variable Real Integer Complex Precision Literal
» ' Constant
Real D C R,D H,D D
Integer C D R,C H,C D
Complex D,R,I C,R,1 D H,D,R,1 D,R,I
Double
Precision D,H,L C,H,L R,D,H,L D D,H,L
Logical D D R,D H,D D

D - Direct Replacement

C - Conversion between integer and floating point

R - Real only

I - Set imaginary part to 0

H - High order only

L - Set low order part to 0

-31- FORTRAN

CHAPTER 4
CONTROL STATEMENTS

FORTRAN compiled programs normally execute statements sequentially in the order in which they were presented
to the compiler. However, the following control statements are available to alter the normal sequence of state-
ment execution: GO TO, IF, DO, PAUSE, STOP, END, CALL, RETURN. CALL and RETURN are used to en-

ter and retumn from subroutines.

4.1 GO TO STATEMENT

The GO TO statement has three forms: unconditional, computed, and assigned.

4.1.1 Unconditional GO TO Statements

Unconditional GO TO statements are of the form:
GOTOn

where n is the number of an executable statement. Control is transferred to the statement numbered n. An un-
conditional GO TO statement may appear anywhere in the source program, except as the terminal statement of

a DO loop.

4.1.2 Computed GO TO Statements

Computed GO TO statements have the form:
GO TO (n],nz,. .. ,nk),i
where n],n2, P ,nk are statement numbers, and i is an integer expression.

This statement transfers control to the statement numbered TAUYRRRLY if i has the value 1, 2, ...k, respec-
tively. If i exceeds the size of the list of statement numbers or is less than one, execution will proceed to the
next executable statement. Any number of statement numbers may appear in the list. There is no restriction on

other uses for the integer variable i in the program.

FORTRAN -32-

In the example
GO TO (20,10,5),K

the variable K acts as a switch, causing a transfer to statement 20 if K=1, to statement 10 if K=2, or to state-
ment 5 if K=3.

A computed GO TO statement may appear anywhere in the source program, except as the terminal statement of
a DO loop.

4.1.3 Assigned GO TO Statement

Assigned GO TO statements have two equivalent forms:
GO TO k
and

GO TO k, (n],nz,ns, ...)

where k is a variable or array element and Nys Nys...n are statement numbers. Any number of statement numbers
may appear in the list. Both forms of the assigned GO TO have the effect of transferring control to the statement
whose number is currently associated with the variable k. The second form of the assigned GO TO statement passes
control to the next executable statement if k is not associated with one of the statement numbers in the list. This

association is established through the use of the ASSIGN statement, the general form of which is:

ASSIGN i TO k

where i is a statement number and k is a variable or array element. If more than one ASSIGN statement refers to

the same integer variable name, the value assigned by the last executed statement is the current value.

Examples: ASSIGN 21 TO INT ASSIGN 1000 TO INT

GO TO INT GO TO INT, (2,21,1000,310)

An assigned GO TO statement may appear anywhere in the source program, except as the terminal statement of

a DO loop.

4.2 IF STATEMENT

IF statements have two forms in FORTRAN IV: numerical and logical.

Version 24 FORTRAN
Version 31 LIB40 4-2 October 1971

-33- FORTRAN

4.2.1 Numerical IF Statements

Numerical IF statements are of the form:

IF (expression) nysNo/ng

where nysngsng are statement numbers. This statement transfers control to the statement numbered nysNgng if
the value of the numeric expression is less than, equal to, or greater than zero, respectively. All three state-

ment numbers must be present. The expression may not be complex.

Examples: IF (ETA) 4,7,12
IF (KAPPA-L (10)) 20,14, 14

4.2.2 Logical IF Statements

Logical IF statements have the form:
IF (expression)$

where S is a complete statement. The expression must be logical. S may be any executable statement other than
a DO statement or another logical IF statement (see Chapter 2, Section 2.3.2). If the value of the expression is
-FALSE. (positive or zero), control passes to the next sequential statement. I value of the expression is .TRUE,
(negative), statement S is executed. After execution of S, control passes to the next sequential statement unless
S is a numerical IF statement ora GO TO statement; in these cases, control is transferred as indicated. If the

expression is .TRUE. (negative) and S is a CALL statement, control is transferred to the next sequential state-

ment upon return from the subroutine.

Numbers are present in the logical expression:

IF (B)Y=X=SIN(Z)
W=Y %22

If the value of B is .TRUE., the statements Y=X *SIN(Z) and W=Y+42 are executed in that order. If the value of
B is .FALSE., the statement Y=XSIN(Z) is not executed.

Examples: IF (T.OR.S)X=Y+1
IF (Z.GT.X(K)) CALL SWITCH S,Y)
IF (K.EQ.INDEX) GO TO 15

NOTE

Care should be taken in testing floating point numbers
for equality in IF statements as rounding may cause
unexpected results.

Version 24 FORTRAN
Version 31 LIB40 4-3 February 1971

FORTRAN -34-

4.3 DO STATEMENT

The DO statement simplifies the coding of iterative procedures. DO statements are of the form:

DO n i=m,,m,y,my
where n is a statement number, i is a nonsubscripted integer variable, and My /My, m, are any integer expressions.

If my is not specified, it is understood to be 1.

The DO statement causes the statements which follow, up to and including the statement numbered n, to be ex-
ecuted repeatedly. This group of statements is called the range of the DO statement. The integer variable i of
the DO statement is called the index. The values of m,,m,, and m, are called, respectively, the initial, limit

’
and increment values of the index.

A zero increment (m3) is not allowed. The increment ma may be negative if m]Zmz. If m]sz, the increment

m4 must be positive. The index variable can assume legal values only if (m2-mi)*m320. (mi is the current value

of the index variable m, .)

Examples: Form Restriction
DO 101=1,5,2
DO 101=5,1, -1

DO 101=J,K,5 J<K
DO 101=J,K, -5 I>K
DO 10 L1, J, K 1<J,K<0 or I>J,K>0
DO 10 L=1, J,K 1<J,K>0 o 1>J,K>0

Initially, the statements of the range are executed with the initial valve assigned to the index. This initial ex-
‘ecution is always performed, regardless of the values of the limit and increment. After each execution of the
range, the increment value is added to the value of the index and the result is compared with the limit value.
If the value of the index is not greater than the limit value, the range is executed again using the new value

of the index. When the increment value is negative, another-execution will be performed if the new value of

the index is not less than the limit value.

After the last execution of the range, control passes to the statement immediately following the range. This

exit from the range is called the normal exit. Exit may also be accomplished by a transfer from within the range.

The range of a DO statement may include other DO statements, provided that the range of each contained DO
statement is entirely within the range of the containing DO statement. When one DO loop is completely con-
tained in another, it is said to be nested. DO loops can be nested to any depth. A transfer into the range of

a DO statement from outside the range is not allowed.

Version 24 FORTRAN
Version 31 LIB40 4-4 October 1971

-35- FORTRAN

More than one DO loop within a nest of DO loops can end on the same statement. This terminal statement is
considered to belong to the innermost DO loop that ends on the terminal statement. The statement label of
such a terminal statement cannot be used in any GO TO or arithmetic IF statements except those that occur

within the DO loop to which the terminal statement belongs.

Version 24 FORTRAN
Version 31 LIB40 4-4a October 1971

FORTRAN

-36-

-37- FORTRAN

Valid DO Loop Nest Invalid DO Loop Nest
B A
B
C A
D
C

Control must not pass from within loop A Loop C is not fully within the range of
or loop B into loop D, or from loop D into loop B even though it is within the range
loop A or loop B. of loop A. '

Figure 4-1 Nested DO Loops

Within the range of a DO statement, the index is available for use as an ordinary variable. After a transfer
from within the range, the index retains its current value and is available for use as a variable. The value of
the index variable becomes undefined when the DO loop it controls is satisfied. The values of the initial, limit,

and increment variables for the index and the index of the DO loop, may not be altered within the range of the

DO statement.

The range of a DO statement must not end with a GO TO type statement or a numerical IF statement. If an
assigned GO TO statement is in the range of a DO loop, all the statements to which it may transfer must be
either in the range of the DO loop or all must be outside the range. A logical IF statement is allowed as the
last statement of the range. In this case, control is transferred as follows. The range is considered ended when,

and if, control would normally pass to the statement following the entire logical IF statement.

As an example, consider the sequences:

DO 5K = 1,4
5 IFX(K).GT. Y(K)Y(K) = X(K)
6 ...

Statement 5 is executed four times whether the statement Y(K) = X(K) is executed or not. Statement 6 is not ex-

ecuted until statement 5 has been executed four times.

4-5

FORTRAN -38-

Examples: DO 22L=1,30
DO 45K = 2,LIMIT, -3
DO 7X =T,MAX,L

4.4 CONTINUE STATEMENT

The CONTINUE statement has the form:

CONTINUE

This statement is a dummy statement, used primarily as a target for transfers, particularly as the last statement in

the range of a DO statement. For example, in the sequence:

DO 7 K = START,END

IF&«»nA&7

7 CONTINUE

a positive value of X (K) begins another execution of the range. The CONTINUE provides a target address for
the IF statement and ends the range of the DO statement.

4.5 PAUSE STATEMENT

The PAUSE statement enables the program to incorporate operator activity into the sequence of automatic events.

The PAUSE statement assumes one of three forms:

PAUSE
PAUSE n
PAUSE "xxxxx'

where n is an unsigned string of six or less octal digits, and 'xxxxx' is a literal message-.

Execution of the PAUSE statement causes the message or the octal digits, if any, to be typed on the user's tele-
typewriter. Program execution may be resumed (at the next executable FORTRAN statement) from the console

by typing "G, " followed by a carriage retum. Program execution may be terminated by typing "X, " followed

by carriage return.

Example: PAUSE 167
PAUSE 'NOW IS THE TIME'

4-6

-30- FORTRAN
4.6 STOP STATEMENT

The STOP statement has the forms:

STOP or
STOP n

where n is an unsigned string of one to five octal digits.

The STOP statement terminates the program and returns control to the monitor system. (Termination of a program
may also be accomplished by a CALL to the EXIT or DUMP subroutines.) Use of the STOP statement implies a
call to the EXIT subroutine.

4.7 END STATEMENT

The END statement has the form:

END

The END statement informs the compiler to terminate compilation and must be the physically last statement of
the program. The END statement implies a STOP statement in a main program or a RETURN statement in a sub-

routine or a function. The END statement is implied by an end-of-file.

4-7

FORTRAN

-40-

41- FORTRAN

CHAPTER 5
DATA TRANSMISSION STATEMENTS

Data transmission statements are used to control the transfer of data between computer memory and either
peripheral devices or other locations in computer memory. These statements are also used to specify the format
of the output data. Data transmission statements are divided into the following four categories.

a. Nonexecutable statements that enable conversions between infernal form data within core memory

and external form data (FORMAT), or specify lists of arrays and variables for input/output transfer
(NAMELIST).

b. Statements that specify transmission of data between computer memory and I/O devices: READ,
WRITE, PRINT, PUNCH, TYPE, ACCEPT.

c. Statements that control magnetic tape unit mechanisms: REWIND, BACKSPACE, END FILE,
UNLOAD, SKIP RECORD.

d. Statements that specify transmission of data between series of locations in memory: ENCODE,
DECODE.

5.1 NONEXECUTABLE STATEMENTS

The FORMAT statement enables the user to specify the form and arrangement of data on the selected external
medium. The NAMELIST statement provides for conversion and input/output transmission of data without
reference to a FORMAT statement.

5.1.1 FORMAT Statement

FORMAT statements may be used with any appropriate input/output medium or ENCODE/DECODE statement.
FORMAT statements are of the form:

1.1 1
n FORMAT (S],Sz,. . .Sn/S],Sz, vee ,Sn/. ..)
where n is a statement number, and-each $ is a data field specification.

FORMAT statements may be placed anywhere in the source program. Unless the FORMAT statement contains

only alphanumeric data for direct input/output transmission, it will be used in conjunction with the list of q

data transmission statement.

5-1

FORTRAN -42-

Slashes are used to specify unit records, which must be one of the following:

a. A tape or disk record with a maximum length corresponding to a line buffer (135 ASCII characters).

b. A punched card with a maximum of 80 characters.

c. A printed line with a maximum of 72 characters for a Teletype ®and either 120 or 132 characters
for the line printer.

During transmission of data, the object program scans the designated FORMAT statement. If a specification

for a numeric field is present (see Section 5.2.1 of this chapter) and the data transmission statement contains
items remaining to be transmitted, transmission takes place according to the specifications. This process ceases
and execution of the data transmission statement is terminated as soon as all specified items have been transmitted.
Thus, the FORMAT statement may contain specifications for more items than are specified by the data transmis-
sion statement. Conversely, the FORMAT statement may contain specifications for fewer items than are specified

by the data transmission statement.

The following types of field specifications may appear in a FORMAT statement: numeric, numeric with scale
factors, logical, alphanumeric. The FORMAT statement also provides for handling multiple record formats,
formats stored as data, carriage control, skipping characters, blank insertion, and repetition. If an input list

requires more characters than the input device supplies for a given unit record, blanks are supplied.

5.1.1.1 Numeric Fields - Numeric field specification codes designate the type of conversion to be performed.

These codes and the corresponding internal and external forms of the numbers are listed in Table 5-2.
The conversions are specified by the forms:

1. Dw.d
2. Ew.d
3. Fw.d
4, Iw
5. Ow
6. Gw.d (fFor real or double precision)
Gw (For integer or logical)
Gw.d,Gw.d (For complex)

respectively. The letter D, E, F, I, O, or G designates the conversion type; w is an integer specifying the
field width, which may be greater than required to provide for blank columns between numbers; d is an integer
specifying the number of decimal places to the right of the decimal point or, for G conversion, the number of
significant digits. (For D, E, F, and G input, the position of the decimal point in the external field takes

precedence over the value of d in the format.)

® Teletype is a registered trademark of Teletype Corporation.
5-2

-43- FORTRAN

For example,

FORMAT (15,F10.2,D18.10)
could be used to output the line,

bbb32bbbb~17 . 60bbb . 596254768 1D+03
on the output listing.

The G format is the general format code that is used to transmit real, double precision, integer, logical, or
complex data. The rules for input depend on the type specification of the corresponding variable in the data
list. The form of the output conversion also depends on the individual variable except in the case of real and
double-precision data. In these cases the form of the output conversion is a function of the magnitude of the
data being converted. The following table shows the magnitude of the external data, ‘M, and the resulting

method of conversion.

Table 5-1

Magnitude of Internal Data
Magnitude of Data Resulting Conversion
0.1<M< 1 F(w-4).d, 4x
1< M<10 F(w-4).(d-1), 4x
1092 M < 109! Fiw—4). 1, 4x
10+ <M< 109 F(w~4). 0, 4x
All others Ew.d

The field width w should always be large enough to include spaces for the decimal point, sign, and exponent.
In all numeric field conversions if w is not large enough to accommodate the converted number, the excess

digits on the left will be lost; if the number is less than w spaces in length, the number is right-adjusted in the
field.

5-3

FORTRAN 44
Table 5-2
Numeric Field Codes
Conversion Internal F External F
Code rnal Form xternal Form
D Binary floating point Decimal floating point
double-precision with D exponent
E Binary floating point Decimal floating point
with E exponent
F Binary floating point Decimal fixed point
I Binary integer Decimal integer
0] Binary integer Octal integer
G One of the following: Single precision
single precision decimal floating point
binary floating point, integer, logical (T or
binary integer, F), or complex (two
binary logical, or decimal floating point
binary complex numbers), depending
upon the internal form

5.1.1.2 Numeric Fields with Scale Factors - Scale factors may be specified for D, E, F, and G conversions.
A scale factor is written nP where P is the identifying character and n is a signed or unsigned integer that
specifies the scale factor.

For F type conversions (or G type, if the extemal field is decimal fixed point), the scale factor specifies a
power of ten so that

external number = (internal number)* jo(scale factor)

For D, E, and G (external field not decimal fixed point) conversions, the scale factor multiplies the number by
a power of ten, but the exponent is changed accordingly leaving the number unchanged except in form. For

example, if the statement:
FORMAT (F8.3,E16.5)
corresponds to the line
bb26.451bbbb—0.41321E-01
then the statement

FORMAT (~1PF8.3,2PE16.5)

5-4

-45- FORTRAN

might correspond to the line
bbb2.645bbb-41.32157E-03

In input operations, F type (and G type, if the external field is decimal fixed point) conversions are the only
types affected by scale factors.

When no scale factor is specified, it is understood to be zero. However, once a scale factor is specified, it
holds for all subsequent D, E, F, and G type conversions within the same format unless another scale factor is
encountered. The scale factor is reset to zero by specifying a scale factor of zero. Scale factors have no

effect on I and O type conversions.

5.1.1.3 Logical Fields - Logical data can be transmitted in a manner similar to numeric data by use of the

specification:
Lw

where L is the control character and w is an integer specifying the field width. The data is transmitted as the

value of a logical variable in the input/output list.

If on input, the first nonblank character in the data field is T or F, the value of the logical variable will be

stored as true or false, respectively. If the entire data field is blank or empty, a value of false will be stored.

On output, w minus 1 blanks followed by T or F will be output if the value of the logical variable is true or

false, respectively.

5.1.1.4 Variable Field Width - The D, E, F, G, I, and O conversion types may appear in a FORMAT state-
ment without the specification of the field width (w) or the number of places after the decimal point (d). In
the case of input, omitting the w implies that the numeric field is delimited by any character which would
otherwise be illegal in the field, in addition to the characters =+ +, ., E, D, and blank provided they follow

the numeric field. For example, input according to the format
10 FORMAT (21,F ,E, Q)
might appear on the input medium as

-10,3/15.621-.0016E-10,777.

FORTRAN -l46-

In this case, commas delimit the numeric fields, blanks may also be used as field delimiters. On output,

omitting the w has the following effect:

D D25.16

E E15.7

F F15.7

G G15.7 o G25.16
I I15

) O15

5.1.1.5 Alphanumeric Fields - Alphanumeric data can be transmitted in a manner similar to numeric data by
use of the form Aw, where A is the control character and w is the number of characters in the field. The alpha-
numeric characters are transmitted as the value of a variable in an input/output list. The variable may be of any

type. For the sequence:

READ 5,V
5 FORMAT (A4)

causes four characters to be read and placed in memory as the value of the variable V.

Although w may have any value, the number of characters transmitted is limited by the maximum number of
characters which can be stored in the space allotted for the variable. This maximum depends upon the variable
type. For a double precision variable the maximum is ten characters; for all other variables, the maximum is
five characters. If w exceeds the maximum, the leftmost characters are lost on input and replaced with blanks
on output. If, on input, w is less than the maximum, blanks are filled in fo the right of the given characters
until the maximum is reached. If, on output, w is less than the maximum, the leftmost w characters are trans-
mitted to the external medium. Since for complex variables each word requires a separate field specification,

the maximum value for w is 5. For example,

COMPLEX C
ACCEPT 1, C
1 FORMAT (2A5)

could be used to transmit ten alphanumeric characters into complex variable C.

5.1.1.6 Alphanumeric Data Within Format Statements - Alphanumeric data may be transmitted directly into or

from the format statement by two different methods: H-conversion, or the use of single quotes.

5-6

-47- FORTRAN

In H-conversion, the alphanumeric string is specified by the form nH. H is the control character and n is the
number of characters in the string counting blanks. For example, the format in the statement below can be used
to print PROGRAM COMPLETE on the output listing.

FORMAT (17H PROGRAM COMPLETE)
The statement

FORMAT (16HPROGRAM COMPLETE)
causes ROGRAM COMPLETE to be printed.

Referring to this format in a READ statement would cause the 17 characters to be replaced with a new string

of characters.

The same effect is achieved by merely enclosing the alphanumeric data in quotes. The result is the same as in
H-conversion; on input, the characters between the quotes are replaced by input characters, and, on output,
the characters between the quotes (including blanks) are written as part of the output data. A quote character

within the data is represented by two successive quote marks. For example, referring to:
FORMAT (' DON''T")
with an output statement would cause DON'T to be printed. Referring to

FORMAT (‘DON'"T')

causes ON'T to be printed. The first character referenced by the FORMAT statement for output is interpreted
as a carriage control character (see 5.1.1.13). TAB characters in FORMAT statements are converted fo single

blanks at runtime by the FORTRAN operating system.

5.1.1.7 Mixed Fields - An alphanumeric format field may be placed among other fields of the format. For

example, the statement:
FORMAT (15,7H FORCE=F10. 5)
can be used to output the line:
bbb22bFORCE=bb17.68901

The separating comma may be omitted after an alphanumeric format field, as shown above.

FORTRAN -48-

5.1.1.8 Complex Fields - Complex quantities are transmitted as two independent real quantities. The format

specification consists of two successive real specifications or one repeated real specification. For instance,

the statement:
FORMAT (2E15.4,2(F8.3,F8.5))
could be used in the transmission of three complex quantities.
5.1.1.9 Repetition of Field Specifications - Repetition of a field specification may be specified by preceding

the control character D, E, F, 1, O, G, L, or A by an unsigned infeger giving the number of repetitions de-

sired. For example:
FORMAT (2E12.4,315) .
is equivalent to:
FORMAT (E12.4,E12.4,15,15,15)
5.1.1.10 Repetition of Groups - A group of field specifications may be repeated by enclosing the group in
parentheses and preceding the whole with the repetition number. For example:
FORMAT (218,2(E15.5,2F8.3))
is equivalent to:
FORMAT {218,E15.5,2F8.3,E15.5,2F8.3)

5.1.1.11 Multiple Record Formats - To handle a group of input/output records where different records have

different field specifications, a slash is used to indicate a new record. For example, the statement:
FORMAT (308/15,2F8.4)

is equivalent to
FORMAT (308)

for the first record and
FORMAT (I5,2F8.4)

for the second record.

5-8

-49- FORTRAN

The separating comma may be omitted when a slash is used. When n slashes appear at the end or beginning of
a format, n blank records may be written on output or records skipped on input. When n slashes appear in the

middle of a format, n-1 blank records are written or n-1 records skipped.

Both the slash and the closing parenthesis at the end of the format indicate the termination of a record. If the
list of an input/output statement dictates that fransmission of data is to continue after the closing parenthesis
of the format is reached, the format is repeated starting with that group repeat specification terminated by the

last right parenthesis of level one or level zero if no level one group exists.
Thus, the statement

FORMAT (F7.2,(2(E15.5,E15.4),17))

level 0—I —I JL level 0.
level 1 level 1

causes the format
F7.2,2(E15.5,E15.4),17

to be used on the first record, and the format
2(E15.5,E15.4),17

to be used on succeeding records.

As a further example , consider the statement
FORMAT (F7.2/(2(E15.5,E15.4),17))

The first record has the format
F7.2

and successive records have the format

2(E15.5,E15.4),17

5.1.1.12 Formats Stored as Data - The ASCII character string comprising a format specification may be stored
as the values of an array. Input/output statements may refer to the format by giving the array name, rather than
the statement number of a FORMAT statement. The stored format has the same form as a FORMAT statement ex-
cluding the word "FORMAT." The enclosing parentheses are included.

FORTRAN

As an example, consider the sequence:

DIMENSION SKELETON (2)

-50-

READ 1, (SKELETON(), I=1,2)
1 FORMAT (2A4)

READ SKELETON,K,X

The first READ statement enters the ASCII string into the array SKELETON. In the second READ statement,

SKELETON is referred to as the format governing conversion of K and X.

5.1.1.13 Carriage Control - The first character of each ASCII record controls the spacing of the line printer

or Teletype. This character is usually set by beginning a FORMAT statement for an ASCII record with 1Ha,

where a is the desired control character. The line spacing actions, listed below, occur before printing:

FORTRAN
Character

space

1 one
+ plus

asterisk

1
3
3
G

N W N
F
o
o

Printer

Character

LF

LF,LF
FF

DC3

LF,LF,LF
DLE
vT
DC4
DC2

DC1

Octal

Value

012

012
014

023

012
020
013
024
022

021

Effect

Skip to next line
with form feed after
60 lines

Skip a line

Form feed - go to
top of next page

Suppress skipping -
overprint the line

Skip to next line
with no form feed

Skip two lines

Space 1/2 of a page
Space 1/3 of a page
Space 1/6 of a page

Triple spacveith a
form feed after every
20 lines printed

Double space with a
form feed after every
30 lines printed

Printer
Channel

8

S 00 NN ©

NOTE: Printer control characters DLE, DC1, DC2, DC3, and DC4 affect only the line printer.

Version 24 FORTRAN
Version 31 LIB40

5-10

October 1971

-51- FORTRAN

A $ (dollar sign) as a format field specification code suppresses the carriage return at the end of the Teletype or

line printer line.

5.1.1.14 Spacing - Input and output can be made to begin at any position within a FORTRAN record by use
of the format code

Tw

where T is the control character and w is an unsigned infeger constant specifying the character position in a
FORTRAN record where the transfer of data is to begin. When the output is printed, w corresponds to the (w-1)th
print position. This is because the first character of the output buffer is a carriage control character and is not
printed. It is recommended that the first field specification of the output format be 1x, except where a carriage

control character is used.

Version 24 FORTRAN
Version 31 LIB40 5-10a October 1971

FORTRAN

-52-

-53- FORTRAN

For example,
2 FORMAT (T50, 'BLACK'T30, "WHITE")
would cause the following line to be printed

Print Position 29 Print Position 49

WHITE BLACK
For input, the statement

1 FORMAT(T35,'MONTH")
READ (3,1)

cause the first 34 characters of the input data to be skipped, and the next 5 characters would replace the char-

acters M, O, N, T, and H in storage. If an ihpuf record containing
ABCbbbXYZ
is read with the format specification
10 FORMAT (T7,A3,T1,A3)
then the characters XYZ and ABC are read, in that order.
5.1.1.15 Blank or Skip Fields - Blanks may be introduced into an output record or characters skipped on an

input record by use of the specification nX. The control character is X; n is the number of blanks or characters

skipped and must be greater than zero. For example, the statement
- FORMAT (5H STEPI5, 10X2HY=F7.3)
may be used to output the line

bSTE Pbbb28bbbbbbbbbbY=h-3 . 872

5.1.2 NAMELIST Statement

The NAMELIST statement, when used in conjunction with special forms of the READ and WRITE statements,
provides a method for transmitting and converting data without using a FORMAT statement or an I/O list. The
NAMELIST statement has the form

FORTRAN -54-
NAMELIST/X /A Ay, oo A/X /81 By, Ben /X /C1.Cy, 0 C

where the X's are NAMELIST names, and the A's, B's, and C's are variable or array names.

Each list or variable mentioned in the NAMELIST statement is given the NAMELIST name immediately preceding
the list. Thereafter, an 1/O statement may refer to an entire list by mentioning its NAMELIST name. For

example:

NAMELIST/FRED/A,B,C/MARTHA/D, E
states that A, B, and C belong to the NAMELIST name FRED, and D and E belong to MARTHA.
The use of NAMELIST statements must obey the following rules:

a. A NAMELIST name may not be longer than six characters; it must start with an alphabetic char-
acter; it must be enclosed in slashes; it must precede the list of entries to which it refers; and it must
be unique within the program.

b. A NAMELIST name may be defined only once and must be defined by a NAMELIST statement.
After a NAMELIST name has been defined, it may only appear in READ or WRITE statements. The
NAMELIST name must be defined in advance of the READ or WRITE statement.

c. A variable used in a NAMELIST statement cannot be used as a dummy argument in a subroutine
definition.

d. Any dimensioned variable contained in NAMELIST statement must have been defined in a
DIMENSION statement preceding the NAMELIST statement .

5.1.2.1 Input Data For NAMELIST Statements - When a READ statement refers to a NAMELIST name, the

first character of all input records is ignored. Records are searched until one is found with a $ or & as the
second character immediately followed by the NAMELIST name specified. Data is then converted and placed

in memory until the end of a data group is signaled by a $ or & either in the same record as the NAMELIST name,
or in any succeeding record as long as the $ or & is the second character of the record. Data items must be

separated by commas and be of the following form:

V=K],K2,. . ’Kn

where V may be a variable name or an array name, with or without subscripts. The K's are constants which may
be integer, real, double precision, complex (written as (A, B) where A and B are real), or logical (written as
T for true and F for false). A series of J identical constants may be represented by J*K where J is an unsigned
integer and K is the repeated constant. Logical and complex constants must be equated to logical and complex

variables, respectively. The other types of constants (real, double precision, and integers) may be equated to

5-12

-55- FORTRAN
any other type of variable (except logical or complex), and will be converted to the variable type. For
example, assume A is a two-dimensional real array, B is a one-dimensional integer array, C is an integer

variable, and that the input data is as follows:

$FRED A(7,2)=4, B=3,6*2.8, C=3.32%
t
Column 2
A READ statement referring to the NAMELIST name FRED will result in the following: the integer 4 will be

converted to floating point and placed in A(7,2). The integer 3 will be placed in B(1) and the floating point

number 2.8 will be placed in B(2), B(3),..., B(7). The floating point number 3.32 will be converted to the
integer 3 and placed in C.

5.1.2.2 Output Data For NAMELIST Statements - When a WRITE statement refers to a NAMELIST name, all
variables and arrays and their values belonging to the NAMELIST name will be written out, each according to

its type. The complete array is written out by columns. The output data will be written so that:

a. The fields for the data will be large enough to contain all the significant digits.
b. The output can be read by an input statement referencing the NAMELIST name.

For example, if JOE is a 2x3 array, the statement

NAMELIST/NAM1/JOE,K1,ALPHA
WRITE (v, NAMT)

generate the following form of output.

Column 2
]
$NAM1
JOE = -6.75, .234E-04, 68.0,
-17.8, 0.0, -.197E+07,
K1=73.1, ALPHA=3,$

5.2 DATA TRANSMISSION STATEMENTS

The data transmission statements accomplish input/output transfer of data that may be listed in a NAMELIST
statement or defined in a FORMAT statement. When a FORMAT statement is used to specify formats, the data

transmission statement must contain a list of the quantities to be transmitted. The data appears on the external

media in the form of records.

5-13

FORTRAN _56-
5.2.1 Input/Output Lists

The list of an input/output statement specifies the order of transmission of the variable values. During input,
the new values of listed variables may be used in subscript or control expressions for variables appearing later

in the list. For example:
READ 13,L,A(L),B(L+1)
reads a new value of L and uses this value in the subscripts of A and B.

The transmission of array variables may be controlled by indexing similar to that used in the DO statement. The

list of copfrolled variables, followed by the index control, is enclosed in parentheses. For example,
READ 7, (X(K),K=1,4),A

is equivalent to:
READ 7, X(1),X(2),X(3),X(4),A

As in the DO statement, the initial, limit, and increment values may be given as integer expressions:
READ 5, N, (GAIN(K),K=1,M/2,N)

The indexing may be compounded as in the following:
READ 11, ((MASS(K,L),K=1,4),L=1,5)

The above statement reads in the elements of array MASS in the following order:
MASS(1,1), MASS(2,1),...,MASS(4,1),MASS(1,2),...,MASS(4,5)

If an entire array is to be transmitted, the indexing may be omitted and only the array identifier written. The
array is transmitted in order of increasing subscripts with the first subscript varying most rapidly. Thus, the

example above could have been written:
READ 11, MASS

Entire arrays may also be designated for transmission by referring to a NAMELIST name (see description of
NAMELIST statement).

-57- FORTRAN
5.2.2 Input/Output Records

All information appearing on external media is grouped into records. The maximum amount of information in
one record and the manner of separation between records depends upoﬁ the medium. For punched cards, each
card constitutes one record; on a feletypewriter a record is one line, and so forth. The amount of information
contained in each ASCII record is specified by the FORMAT reference and the 1/0 list. For magnetic tape
binary records, the amount of information is specified by the 1/0 list.

Each execution of an input or output statement initiates the transmission of a new data record. Thus, the

statement
READ 2, FIRST,SECOND, THIRD
is not necessarily equivalentto the statements

READ 2, FIRST
READ 2, SECOND
READ 2, THIRD

since, in the second case, at least three separate records are required, whereas, the single statement
READ 2, FIRST,SECOND, THIRD
may require one, two, three, or more records depending upon FORMAT statement 2.

If an input/output statement requests less than a full record of information, the unrequested part of the record

is lost and cannot be recovered by another input/output statement without repositioning the record.

If an input/output list requires more than one ASCII record of information, successive records are read.

5.2.3 PRINT Statement

The PRINT statement assumes one of two forms

PRINT f, list
PRINT f

where f is a format reference.

The data is converted from internal to external form according to the designated format. If the data to be

transmitted is contained in the specified FORMAT statement, the second form of the statement is used. '

5-15

FORTRAN -58-

Examples: PRINT 16,T,(B(K),K=1,M)
PRINT F106,SPEED, MISS

In the second example, the format is stored in array F106.

5.2.4 PUNCH Statement

The PUNCH statement assumes one of two forms

PUNCH f, list
PUNCH f

where f is a format reference.

Conversion from internal to external data forms is specified by the format reference. If the data to be trans-

mitted is contained in the designated F ORMAT statement, the second form of the statement is used.

Examples: PUNCH 12,A,B(A),C(B(A))
PUNCH 7

5.2.5 TYPE Statement

The TYPE statement assumes one of two forms

TYPE f, list
TYPE f

where f is a format reference.

This statement causes the values of the variables in the list to be read from memory and listed on the user's
teletypewriter. The data is converted from internal to external form according to the designated format. If
_the data to be transmitted is contained in the designated F ORMAT statement, the second form of the statement

is used.

Examples: TYPE 14,K,(A(L),L=1,K)
TYPE FMT

5.2.6 WRITE Statement

The WRITE statement assumes one of the following forms

5-16

-59- FORTRAN
WRITE (u,f) list
WRITE(u,f)
WRITE(u, N)
WRITE(u) list
WRITE(u#R, f) list

where u is a unit designation, f is a format reference, N is a NAMELIST name, and R is a record number where

1/O is to start.

The first form of the WRITE statement causes the values of the variables in the list to be read from memory and

written on the unit designated in ASCII form. The data is converted to external form as specified by the desig-
nated FORMAT statement.

The second form of the WRITE statement causes information to be read directly from the specified format and
written on the unit designated in ASCII form.

The third form of the WRITE statement causes the names and values of all variables and arrays belonging to the
NAMELIST name, N, to be read from memory and written on the unit designated. The data is converted to

external form according to the type of each variable and array.

The fourth form of the WRITE statement causes the values of the variables in the list to be read from memory

and written on the unit designated in binary form.

The fifth form of the WRITE statement causes the variables in the list to be wfiffen in the specified record of the
file on the disk unit designated. Either a pound sign *) or a single quote (') can be used to separate the unit
and the record. This allows a programmer to access fixed-length records directly, and eliminates the sequential
writing of data to access one or more records within the file. The file must first be defined properly by a CALL
to DEFINE FILE (see Section 12,4). Output begins when the random WRITE specifying the record to which the

writing is desired is given in the correct format.

5.2.7 READ Statement

The READ statement assumes one of the following forms:

READ f, list

READ f

READ(u,f) tist

READ(u, f)

READ(u, N)

READ(u)list

READ(u*R,f) list
READ(u,f,END=C, ERR=d) list
READ(u,f,END=C) list
READ(u,f, ERR=d) list

Version 24 FORTRAN
Version 31 LIB40 5-17 February 1971

FORTRAN -60-
where f is a format reference, u is a unit designation, N is a NAMELIST name, R is d record number where I/0
is to start, C is a statement number to which control is transferred upon encountering an end-of-file, and d is

the statement number to which control is transferred upon encountering an error condition on the input data,

The first form of the READ statement causes informafion‘ to be read from cards and put in memory as values of the

variables in the list. The data is converted from external to internal form as specified by the referenced
FORMAT statement.

Example: READ 28,71,72,Z3

The second form of the READ statement is used if the data read from cards is to be transmitted directly into the

specified format.
Example: READ 10

The third form of the READ statement causes ASCII information to be read from the unit designated and stored
in memory as values of the variables in the list. The data is converted to internal form as specified by the

referenced FORMAT statement.

Example: READ(1,15)ETA, P1

The fourth form of the READ statement causes ASCII information to be read from the unit designated and trans-
mitted directly into the specified format.

Example: READ(N, 105)

The fifth form of the READ statement causes data of the form described in the discussion of input data for
NAMELIST statements to be read from the unit designated and stored in memory as values of the variables or

arrays specified.
Example: READ(2, FRED)

The sixth form of the READ statement causes binary information to be read from the unit designated and stored

in memory as values of the variables in the list.
Example: READ (M)GAIN, Z, Al

The seventh form of the READ statement causes information to be read from the specified record in a disk file
into the variables of the list. This allows random access of fixed-length records in a disk file. The file from

which records are to be read is defined by the DEFINE FILE call (see Section 12.4).

5-18

-61- FORTRAN

Example: DOUBLE PRECISION FIL
DIMENSION A(6)
DATA FIL/'FILE.ONE'/
CALL DEFINE FILE (4,30,NV,FIL, "11, "23)
READ (4#54,5)A

This example reads the 54th record from FILE.ONE on the disk area belonging to programmer [11,23] into the
list variables A(1) through A(6).

The eighth form of the READ statement causes control to be transferred if an end-of-file or error condition is
encountered on the input data. The arguments END=c and ERR=d are optional and if both are included, either
may appear first. If an end-of-file is encountered, control transfers to the statement specified by END=c. If
an END parameter is not specified, 1/O on that device terminates and the program halts with an error message
to the user's TTY. If an error on input is encountered, control transfers to the statement specified by ERR=d.

If an ERR=d parameter is not specified, the program halts with an error message to the user's TTY,

Example: READ (7,7 ,END=888, ERR=999) A
888 (.control transfers here if an end-of-file is encountered)

999 (control transfers here if an error on input is encountered)

5.2.8 REREAD Statement

The reread feature allows a FORTRAN program to reread information from the last used input file. The format
used during the reread need not correspond to the original read format, and the information may be read as

many times as desired.

a. To reread from an input device, the following coding would be used:

READ (16,100)A

REREAD 105,A
The REREAD 105, A statement causes the last input device used to be reread according to format state-
ment 105. The original read format and a subsequent reread format need not be the same.

b. The reread feature cannot be used until an input from a file has been accomplished. If the feature
is used prematurely, an error message will be generated.

¢. Information may be reread as many times as desired using either the same or a new format statement
each time.

d. The reread feature must be used with some forethought and care since it rereads from the last input
file used, i.e.:

5-19

FORTRAN -62-

The following example will reread from the file on Device No. 10, not Device No. 16:

READ (16, 100)A
READ (10,200)B

REREAD 110,A

5.2.9 ACCEPT Statement

The ACCEPT statement assumes one of two forms

ACCEPT f, list
ACCEPT f

where f is a format reference.

This statement causes information to be input from the user's teletypewriter and put in memory as values of the
variables in the list. The data is converted to internal form as specified by the format. If the transmission of -

data is directly into the designated format, the second form of the statement is used.

Examples: ACCEPT 12,ALPHA,BETA
ACCEPT 27

5.3 DEVICE CONTROL STATEMENTS

Device control statements and their corresponding effects are listed in Table 5-3.

Table 5-3
Device Control Statements
Statement Effect
BACKSPACE u Backspaces designated tape one ASCII record or one
logical binary record.
ENDFILE u Writes an end-of-file.
REWIND u Rewinds tape on designated unit.
SKIP RECORD u Causes skipping of one ASCII record or one logical
binary record.
UNLOAD v Rewinds and unloads the designated tape.

5.4 ENCODE AND

-63- FORTRAN

DECODE STATEMENTS

ENCODE and DECODE statements transfer data, according to format specifications, from one section of user's

core to another. No peripheral equipment is involved. DECODE is used to change data in ASCII format to

data in another format. ENCODE changes data of another format into data in ASCII format.

The two statements are of the form

ENCODE(c,f,v),L(1),...,L(N)
DECOBDE(c,f,v),L(1),...,L(N)

where

c =
f =
v =
L(n,.

I A slash cannot appear in the FORMAT statement referenced by an ENCODE or DECODE statement.

Example:
A(1)
A(2)
J
B
C

DO 2

the number of ASCII characters
the format statement number
the starting address of the ASCH record referenced

.+ ,L(N) = the list of variables.

Assume the contents of the variables to be as follows:
contains the floating—-point binary number 300.45
contains the floating-point binary number 3.0
contains the binary integer value 1.

is a four-word array of indeterminate contents

contains the ASCII string 12345

J=1,2

ENCODE (16, 10,B) J, A(J)
10 FORMAT (1X,2HA(,11,4H) = ,F8.2)

TYPE 11,B
1 FORMAT (4A5)
2 CONTINUE
DECODE (4, 12, C) B

12 FORMAT (3F1.0,1X,F1.0)
TYPE 13,B
13 FORMAT (4F5.2)

END

Array B can contain 20 ASCII characters. The result of the ENCODE statement ofter the first iteration of the

DO loop is:
B(1) A1) Typed as
B(2) =
B(3) 300.4 A(1) = 300.45
B(4) 5
Version 26 FORTRAN
Version 32 LIB40 5-21

May 1972

FORTRAN

The result after the second iteration is:

B(1)
B(2)
B(3)
B(4)

A(2)

3.0

-64-

Typed as
A2)=3.0

The result of the DECODE statement is to extract the digits 1, 2, and 3 from C and convert them to floating-
point binary values and store them in B(1), B(2), and B(3). Then skip the next character (4) and extract the

digit 5 from C, convert it to a floating-point binary value, and store it in B(4).

5-22

-65- FORTRAN

CHAPTER 6
SPECIFICATION STATEMENTS

Specification statements allocate storage and furnish information about variables and constants to the compiler.

Specification statements may be divided into three categories, as follows:

a. Storage specification statements: DIMENSION, COMMON, and EQUIVALENCE.
b. Data specification statements: DATA and BLOCK DATA.

c. Type declaration statements: INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL,
SUBSCRIPT INTEGER, and IMPLICIT.

By extending the USA Standard in regard to specification statements, PDP-10 FORTRAN 1V allows the following
statements fo be used anywhere in the program, provided that the variables they specify appear in executable

statements only after the particular specification statement. The specification statement must not appear in the

range of a DO loop.

DIMENSION statement

EXTERNAL statement (described in Chapter 7)
COMMON statement

EQUIVALENCE statement

Type declaration statements

DATA statement

A sample program that incorporates these statements follows.

DOUBLE PRECISION D
DIMENSION Y(10), D(5)
Y(1)=-1.0
INTEGER XX (5)
Y(2) = ABS(Y(1))
DATA XX/1,2,3,4,5
DO 101=3,7

10 Y()=XX(1-2)
COMMON Z
Z=Y(1)*Y(2)/(Y(3) + Y(5))
END

Only IMPLICIT statements and arithmetic function definition statements (described in Chapter 7) must appear in

the program before any executable statement.

6-1

FORTRAN -66-
In addition, arrays must be dimensional before being referenced in a NAMELIST, EQUIVALENCE, or DATA

statement. DOUBLE PRECISION and COMPLEX arrays must be declared before they are dimensioned.
6.1 STORAGE SPECIFICATION STATEMENTS

6.1.1 DIMENSION Statement

The DIMENSION statement is used to declare identifiers to be array identifiers and to specify the number and
bounds of the array subscripts. The information supplied in a DIMENSION statement is required for the alloca-

tion of memory for arrays. Any number of arrays may be declared in a single DIMENSION statement. The
DIMENSION statement has the form

DIMENSION S.,S_,...,S
1772 n

where S is an array specification.

Each array variable appearing in the program must represent an element of an array declared in a DIMENSION
statement, unless the dimension information is given in a COMMON or TYPE statement. Dimension information

may appear only once for a given variable.

Each array specification gives the array identifier and the minimum and maximum values which each of its sub-

scripts may assume in the following form:
identifier(min/max, min/max, . ..,min/max)

The minima and maxima must be integers. The minimum must not exceed the maximum. For example, the state-

ment
DIMENSION EDGE(-1/1,4/8)

specifies EDGE to be a two-dimensional array whose first subscript may vary from -1 to 1 inclusive, and the sec-

ond from 4 to 8 inclusive.

Minimum values of 1 may be omitted. For example,
NET(5, 10)

is interpreted as:

NET(1/5,1/10)

-67- FORTRAN
Examples: DIMENSION FORCE(-1/1,0/3,2,2,-7/3)
' DIMENSION PLACE(3, 3, 3), JI1(2, 2/4),K(256)

Arrays may also be declared in the COMMON or type declaration statements in the same way:

COMMON X(10,4),Y,Z
INTEGER A(7, 32),B
DOUBLE PRECISION K(-2/6,10)

6.1.1.1 Adjustable Dimensions - Within either a FUNCTION or SUBROUTINE subprogram, DIMENSION and
TYPE statements may use integer variables in an array specification, provided that the array name and variable
dimensions are dummy arguments of the subprogram. The actual array name and values for the dummy variables
are given by the calling program when the subprogram is called. The variable dimensions may not be altered

within the subprogram (i.e., typing the array DOUBLE PRECISION or COMPLEX after it has been dimensioned)

and must be less than or equal to the explicit dimensions declared in the calling program.

Example: SUBROUTINE SBR(ARRAY, M1, M2, M3, M4)
DIMENSION ARRAY (M1/M2,M3/M4)

DO 27 L=M3, M4 _
DO 27 K=MF, M2

27 ARRAY(K, L)=VALUE

END
The calling program for SBR might be:

DIMENSION A1(10,20),A2(1000, 4)
CALL SBR(A1, 5,10, 10, 20)
CALL SBR(A2, 100, 250, 2, 4)

END

FORTRAN -68-
6.1.2 COMMON Statement

The COMMON statement causes specified variables or arrays to be stored in an area available to other programs.

By means of COMMON statements, the data of a main program and/or the data of its subprograms may share a

common storage area.

The common area may be divided into separate blocks which are identified by block names. A block is specified

as follows:
/block identifier/identifier, identifier, ... sidentifier

The identifier enclosed in slashes is the block name. The identifiers which follow are the names of the variables
or arrays assigned fo the block and are placed in the block in the order in which they appear in the block spec-

ification. A common block may have the same name as a variable in the same program.
The COMMON statement has the general form
COMMON/BLOCK1/A,B,C/BLOCK2/D,E,F/...

where BLOCK1,BLOCK?2, ... are the block names, and A,B,C, ... are the variables to be assigned to each

block. For example, the statement
COMMONAR/X,Y,T/CMJ,V,W,Z

indicates that the elements X,Y, and T are to be placed in block R in that order, and that U,V,W, and Z are
to be placed in block C.

Block entries are linked sequentially throughout the program, beginning with the first COMMON statement. For

example, the statements

COMMON/D/ALPHA/R/A,B/C/S
COMMON/C/X,Y/R/U,V,W

have the same effect as the statement
COMMON/D/ALPHAR/A,B,U,V,W/C/S,X,Y

One block of common storage, referred to as blank common, may be left unlabeled. Blank common is indicated

by two consecutive slashes. For example,
COMMONAR/X,Y//B,C,D

indicates that B, C, and D are placed in blank common. The slashes may be omitted when blank common is the

first block of the statement.

6-4

-69- FORTRAN
COMMON B,C,D

Storage allocation for blocks of the same name begins at the same location for all programs executed together.

For example, if a program contains
COMMON A,BR/X,Y,Z

as its first COMMON statement, and a subprogram has
COMMONAR/U, V,W//D,E,F

as its first COMMON statement, the quantities represented by X and U are stored in the same location. A sim-

ilar correspondence holds for A and D in blank common.

Common blocks may be any length provided that no program attempts to enlarge a given common block declared

by a previously loaded program.

Array names appearing in COMMON statements may have dimension information appended if the arrays are not

declared in DIMENSION or type declaration statements. For example,
COMMON ALPHA,T(15,10,5), GAMMA

specifies the dimensions of the array T while entering T in blank common. Variable dimension array identifiers
may not appear in a COMMON statement, nor may other dummy identifiers. Each array name appearing in a

COMMON statement must be dimensioned somewhere in the program containing the COMMON statement.

6.1.3 EQUIVALENCE Statement

The EQUIVALENCE statement causes more than one variable within a given program to share the same storage
location. The EQUIVALENCE statement has the form

EQUIVALENCE(V],VZ, ed) (Vk’vk+l' R R
where the V's are variable names.

The inclusion of two or more references in a parenthetical list indicates that the quantities in the list are fo share

the same memory location. For example,
EQUIVALENCE(RED, BLUE)

specifies that the variables RED and BLUE are stored in the same location.

6-5

FORTRAN -70-

The relation of equivalence is transitive; e.g., the two statements,

EQUIVALENCE(A, B), (8,C)
EQUIVALENCE(A, B, C)

have the same effect.
The subscripts of array variables must be integer constants.

Example: EQUIVALENCE(X,A(3),Y(2,1,4)), (BETA(2,2),ALPHA)

6.1.4 EQUIVALENCE and COMMON

Identifiers may appear in both COMMON and EQUIVALENCE statements provided the following rules are ob-
served.

a. No two quantities in common may be set equivalent to one another.

b. Quantities placed in a common block by means of EQUIVALENCE statements may cause the end of
the common block to be extended. For example, the statements

COMMONAR/X,Y,Z
DIMENSION A(4)
EQUIVALENCE(A,Y)

causes the common block R to extend from X to A(4), arranged as follows:

X
Y A(1) (same location)
Z A(2) (same location)
A@3)
A(4)

c. EQUIVALENCE statements which cause extension of the start of a common block are not allowed.
For example, the sequence

COMMONAR/X,Y,Z
DIMENSION A(4)
EQUIVALENCE(X,A(3))

is not permitted, since it would require A(1) and A(2) to extend the starting location of block R.

6.2 DATA SPECIFICATION STATEMENTS

The DATA statement is used to specify initial or constant values for variables. The specified values are compiled

into the object program, and become the values assumed by the variables when program execution begins.

6.2.1 DATA Statement

The data to be compiled into the object program is specified in a DATA statement. The DATA statement has the

form

6-6

, - FORTRAN
DATA I|st/d.',d2,.. ./,hsi'/dk,dk_'_.I Y S

where each list is in the same form as an input/output list, and the d's are data items for each list.

Indexing may be used in a list provided the initial, limit, and increment (if any) are given as constants, Expres-

sions used as subscripts must have the form

c.'s\-i:bt:2

where <y and ¢, are integer constants and i is the induction variable. If an entire array is to be defined, only
the array identifier need be listed. Variables in COMMON may appear on the lists only if the DATA statement
occurs in a BLOCK DATA subprogram. (See Chapter 7, Section 7.6)

The data items following each list correspond one-to-one with the variables of the list. Each item of the data
specifies the value given to its corresponding variable with no implied type conversion. Thus, integer variables
can only be defined numerically by integer constants, real variables by real constants, double precision variables
by double precision constants, and so forth. Refer to Section 2.1 for definitions of the various constants. Data

items may be numeric constants, alphanumeric strings, octal constants, or logical constants. For example,

DATA ALPHA, BETA/.5, 16.E-2/

specifies the value .5 for ALPHA and the value .16 for BETA,

Alphanumeric data is packed into words according to the data word size in the manner of A conversion; however,
excess characters are not permitted. The specification is written as nH followed by n characters or is imbedded
in single quotes. Double precision variables must have at least six characters assigned to them in DATA state-

ments.

Octal data is specified by the letter O or the character ", followed by a signed or unsigned octal integer of one
to twelve digits.

Logical constants are written as . TRUE. , ,FALSE., T, orF.

Example: DATA NOTE,K/4HFOOT, O-7712/
DATA QUOTE/'QUOTE'/

Any item of the data may be preceded by an integer followed by an asterisk. The integer indicates the number of

times the item is to be repeated. For example,
DATA(A(K),K=1,20)/61E2, 19.32E1/

specifies 20 values for the array A; the value 6100 for A(1); the value 320 for A(2) through A(20). To cause an
array or part of an array to be initialized to blanks, the blank areas must be specified explicitly in the DATA
statement, For example,

DATA(A(),1=1,10)/'12345' ,9*' '/
causes the first word of A to contain 12345 in ASCII and the next nine words of the array to be blank.

Version 24 FORTRAN
Version 31 LIB40 6-7 October 1971

FORTRAN -72-
6.2,2 BLOCK DATA Statement

The BLOCK DATA statement has the form:
BLOCK DATA

This statement declares the program which follows to be a data specification subprogram. Data may be entered

into labeled or hlank common.

The first statement of the subprogram must be the BLOCK DATA statement. The subprogram may contain only the
declarative statements associated with the data being defined.
Example: BLOCK DATA
COMMON/R/S,Y/C/Z , W,V
DIMENSION Y(3)

COMPLEX Z

DATA Y/1E-1,2.3E2/,X,Z/11.877D0,(-1.41421,1 41421)/
END

Data may be entered into more than one block of common in one subprogram.

6.3 TYPE DECLARATION STATEMENTS

The type declaration statements INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, IMPLICIT, and
SUBSCRIPT INTEGER are used to specify the type of identifiers appearing in a program. An identifier may ap-

pear in only one type statement. Type statements may be used to give dimension specifications for arrays.

The explicit type declaration statements have the general form
type identifier identifier,identifier. ..
where type is one of the following:

INTEGER,REAL,DOUBLE PRECISION,COMPLEX ,LOGICAL,
SUBSCRIPT INTEGER

In addition, for the sake of compatibility the following types have been made equivalent:

SUBSCRIPT INTEGER is equivalent to INTEGER,2
INTEGER is equivalent to INTEGER«4

REAL is equivalent to REAL+4

DOUBLE PRECISION is equivalent to REAL«8

LOGICAL is equivalent to LOGICAL+1 and LOGICAL+4
COMPLEX is equivalent to COMPLEX+8

The listed identifiers are declared by the statement to be of the stated fype. Fixed-point variables in a SUB-

SCRIPT INTEGER statement must fall between -2/ and 22,

Version 24 FORTRAN
- Version 31 LIB40 6-8 February 1971

-73- FORTRAN
6.3.1 IMPLICIT Statement

The IMPLICIT statement has the form
IMPLICIT fype](ul,cz, S T ,Iype2(03,a4,. os)

where type represents INTEGER, REAL, LOGICAL, COMPLEX, DOUBLE PRECISION, or one of the equivalent
types listed in Section 6.3, and a8y« represent single alphabetic characters, each separated by commas, or

a range of characters (in alphabetic sequence) denoted by the first and last characters of the range separated by
a minus sign (e.g., (A-D)).

This statement causes any program variable which is not mentioned in a type statement, and whose first character
is one of those listed in the IMPLICIT statement, to be classified according to the type appearing before the list

in which the character appears. As an example, the statement
IMPLICIT REAL(A-D,L,N-P)

causes all variables starting with the letters A through D, L, and N through P to be typed as real, unless they are
explicitly declared otherwise.

The initial state of the compiler is set as if the statement
IMPLICIT REAL(A-H,0-Z), INTEGER(I-N)

were at the beginning of the program. This state is in effect unless an IMPLICIT statement changes the above

interpretation; i.e., identifiers, whose types are not explicitly declared, are typed as follows.

a. Identifiers beginning with I, J, K, L, M, or N are assigned interger type.
b. Identifiers not assigned integer type are assigned real type.

If the program contains an IMPLICIT statement, this statement will override throughout the program the implicit

state initially set by the compiler. No program may contain more than one IMPLICIT declaration for the same
letter.

Version 24 FORTRAN
Version 31 LIB40 6-9 February 1971

FORTRAN

-74-

-75- FORTRAN

CHAPTER 7
SUBPROGRAM STATEMENTS

FORTRAN subprograms may be either internal or external. Internal subprograms are defined and may be used
only within the program containing the definition. The arithmetic function definition statement is used to define

internal functions.

External subprograms are defined separately from (i.e., external to) the programs that call them, and are com-
plete programs which conform to all the rules of FORTRAN programs. They are compiled as closed subroutines;
i.e., they appear only once in the object program regardless of the number of times they are used. Extemal sub-
programs are defined by means of the statements FUNCTION and SUBROUTINE. |

7.1 DUMMY IDENTIFIERS

Subprogram definition statements contain dummy identifiers, representing the arguments of the subprogram. They
are used as ordinary identifiers within the subprogram definition and indicate the sort of arguments that may ap-

pear and how the arguments are used. The dummy identifiers are replaced by the actual arguments when the sub-

program is executed.

7.2 LIBRARY SUBPROGRAMS

The standard FORTRAN 1V library for the PDP-10 includes built-in functions, FUNCTION subprograms, and
SUBROUTINE subprograms, listed and described in Chapter 8. Built-in functions are open subroutines; that is,
they are incorporated into the object program each time they are referred to by the source program. FUNCTION
and SUBROUTINE subprograms are closed subroutines; their names derive from the types of subprogram statements

used to define them.

7.3 ARITHMETIC FUNCTION DEFINITION STATEMENT

The arithmetic function definition statement has the form:

identifier(identifier, identifier, . . .)=expression

FORTRAN -76-

This statement defines an internal subprogram. The entire definition is contained in the single statement. The

first identifier is the name of the subprogram being defined.

Arithmetic function subprograms are single-valued functions with at least one argument. The type of the function

is determined by the type of the function identifier.

The identifiers enclosed in parentheses represent the arguments of the function. These are dummy identifiers;
they may appear only as scalar variables in the defining expression. Dummy identifiers have meaning and must
be unique only within the defining statement. Dummy identifiers must agree in order, number, and type with

the actual arguments given at execution time.

Identifiers, appearing in the defining expression, which do not represent arguments are treated as ordinary var-

iables. The defining expression may include external functions or other previously defined arithmetic statement

functions.

All arithmetic function definition statements must precede the first executable statement of the program.

Examples: SSQR(K =K #(K+1)*(2+K+1)/6
ACOSH(X)=(EXP(X/AHEXP(-X /A))/2

In the last example above, X is a dummy identifier and A is an ordinary identifier. At execution time, the

function is evaluated using the current value of the quantity represented by A.

7.4 FUNCTION SUBPROGRAMS

A FUNCTION subprogram is a single-valued function that may be called by using its name as a function name
in an arithmetic expression, such as FUNC(N), where FUNC is the name of the subprogram that evaluates the
corresponding function of the argument N. A FUNCTION subprogram begins with a FUNCTION statement and

ends with an END statement. It retums control to the calling program by means of one or more RETURN state-

ments.

7.4.1 FUNCTION Statement

The FUNCTION statement has the form:
FUNCTION identifier(argument,argument, . ..)

This statement declares the program which follows to be a FUNCTION subprogram. The identifier is the name of

the function being defined. This identifier must not be used as a dummy argument or appear in any nonexecutable
statement in the program other than as a scalar variable in a TYPE statement. It must appear as a scalar variable

and be assigned a value during execution of the subprogram which is the function value.

Version 24 FORTRAN
Version 31 LIB40 7-2 October 1971

-77- FORTRAN

Arguments appearing in the list enclosed in parentheses are dummy arguments representing the function argument.
The arguments must agree in number, order, and type with the actual arguments used in the calling program.
FUNCTION subprogram arguments may be expressions, alphanumeric strings, array names, statement labels pre-

ceded by an asterisk (*) or dollar sign ($), or subprogram names.

Dummy arguments may appear in the subprogram as scalar identifiers, array identifiers, subprogram identifiers, or
an asterisk (*) or dollar sign ($), denoting statement labels in the calling program. A functfion must have at least
one dummy argument. Dummy arguments representing array names must appear within the subprogram in a
DIMENSION statement, or one of the type statements that provide dimension information. Dimensions given as
constants must equal the dimensions of the corresponding arrays in the calling program. In a DIMENSION state-

ment, dummy identifiers may be used to specify adjustable dimensions for array name arguments. For example, in

the statement sequence:

FUNCTION TABLE(A, M,N,B,X,Y)

DIMENSION A(M,N),B(10),C(50)

The dimensions of array A are specified by the dummies M and N, while the dimension of array B is given as a
constant. The various values given for M and N by the calling program must be those of the actual arrays which
the dummy A represents. The arrays may each be of different size but must have two dimensions. The arrays are

~ dimensioned in the programs that use the function.

Dummy dimensions may be given only for dummy arrays. In the example above the array C must be given abso-
lute dimensions, since C is not a dummy identifier. A dummy identifier may not appear in an EQUIVALENCE
statement in the FUNCTION subprogram.

Dummy arguments representing statement labels can be used only in connection with the RETURN statement .
When the value of the function is not required, a FUNCTION subprogram can be used as a SUBROUTINE subpro-
gram by utilizing the optional return. When the optional return appears in a FUNCTION subprogram, the value
of the function is stored on return only if RETURN or RETURN i (where i = 0) is used.

Example: FUNCTION LIST (A, $,C)

A function must not modify any arguments which appear in the FORTRAN arithmetic expression calling the func-
tion. Modification of implicit arguments from the calling program, such as variables in COMMON and DO loop
indexes, is not allowed. The only FORTRAN statements not allowed in a FUNCTION subprogram are SUBROU-

TINE, BLOCK DATA, and another FUNCTION statement.

7.4.1.1 Function Type - The type of the function is the type of identifier used to name the function. This iden-

tifier may be typed, implicitly or explicitly, in the same way as any other identifier. Alternatively, the function

7-3

FORTRAN -78-
may be explicitly typed in the FUNCTION statement itself by preceding the word FUNCTION with one of the

types or equivalent types described in Section 6.3. For example:

INTEGER FUNCTION

REAL FUNCTION

COMPLEX FUNCTION
LOGICAL FUNCTION

DOUBLE PRECISION FUNCTION
REAL+8 FUNCTION

Thus, the statement

COMPLEX FUNCTION HPRIME(S, N)

is equivalent to the statements

FUNCTION HPRIME(S, N)
COMPLEX HPRIME

Examples: FUNCTION MAY(RANGE, EP,YP,ZP)
COMPLEX FUNCTION COT(ARG)

DOUBLE PRECISION FUNCTION LIMIT(X /Y)
FUNCTION WORK (A, $,C)

7.5 SUBROUTINE SUBPROGRAMS

A SUBROUTINE subprogram may be multivalued and can be referred to only by a CALL statement. A SUBROU-

TINE subprogram begins with @ SUBROUTINE statement and returns control to the calling program by means of
one or more RETURN statements.

7.5.1 SUBROUTINE Statement
The SUBROUTINE statement has the form:

SUBROUTINE. identifier(argument,argument, . ..)

This statement declares the program which follows to be a SUBROUTINE subprogram. The first identifier is the
subroutine name. This identifier cannot be used as a dummy argument or appear in any nonexecutable statement
in the program other than as a scalar variable in a TYPE statement. The subroutine name can, however, be used
as a scalar variable in any executable statement in the program. The arguments in the list enclosed in parenthe-
ses are dummy arguments representing the arguments of the subprogram. The dummy arguments must agree in num-

ber, order, and type with the actual arguments used by the calling program.

SUBROUTINE subprograms may have expressions, alphanumeric strings, array names, statement labels, and sub-

program names as arguments. The dummy arguments may appear as scalar, array, subprogram identifiers, or an

Version 24 FORTRAN
Version 31 LIB40 7-4 October 1971

-79- FORTRAN

asterisk (*) or dollar sign ($) denoting a statement label in the calling program. Dummy arguments representing

statement labels can be used only in connection with the RETURN statement.

Dummy identifiers which represent array names must be dimensioned within the subprogram by a DIMENSION or

type declaration statement. As in the case of a FUNCTION subprogram, either constants or dummy identifiers

Version 24 FORTRAN
Version 31 LIB40 7-4a October 1971

FORTRAN

-80-

_8]- FORTRAN

may be used to specify dimensions in a DIMENSION statement. The dummy arguments must not appear in an
EQUIVALENCE or COMMON statement in the SUBROUTINE subprogram.

A SUBROUTINE subprogram may use one or more of its dummy identifiers to represent results. The subprogram
name is not used for the return of results. A SUBROUTINE subprogram need not have any argument at all.

Examples: SUBROUTINE FACTOR(COEFF,N,ROOTS)
SUBROUTINE RESIDU(NUM, N, DEN,M, RES)
SUBROUTINE SERIES
SUBROUTINE TYPE(A, $,B, *)

The only FORTRAN statements not allowed in a function subprogram are FUNCTION, BLOCK DATA, and an-
other SUBROUTINE statement.

7.5.2 CALL Statement
The CALL statement assumes one of two forms:

CALL identifier
CALL identifier (argument,argument, . .., argument)

The CALL statement is used to transfer control to SUBROUTINE subprogram. The identifier is the subprogram

name.

The arguments may be expressions, array identifiers, alphanumeric strings, subprogram identifiers, or statement
labels of the calling program preceded by an asterisk (*), dollar sign ($), or ampersand (&). Arguments may be
of any type, but must agree in number, order, type, and array size (except for adjustable arrays, as discussed
under the DIMENSION statement) with the corresponding arguments in the SUBROUTINE statement of the

called subroutine. Unlike a function, a subroutine may produce more than one value and cannot be referred

to as a basic element in an expression.

A subroutine may use one or more of its arguments to return results to the calling program. If no arguments at all

are required, the first form is used.

Examples: CALL EXIT
CALL SWITCH(SIN, 2. LE.BETA,X**4,Y)
CALL TEST(VALUE, 123, 275)
CALL TYPE(A,$10, B, *20, &30)

The identifier used to name the subroutine is not assigned a type and has no relation to the types of the arguments.

Arguments which are constants or formed as expressions must not be modified by the subroutine.

7.5.3 RETURN Statement
The RETURN statement has one of two forms:

Version 24 FORTRAN
Version 31 LIB40 7-5 October 1971

FORTRAN -82-
RETURN
RETURN i
where i is an integer constant or an interger variable. The value of i must be positive, and specifies that the
return is o the i-th argument of the referencing statement (where the i-th argument is a statement number pre-

ceded by a § or *). If i=0, the return is the same as with the first form of the RETURN statement.

This statement returns control from a subprogram to the calling program. Normally, the last statement executed
in a subprogram is a RETURN statement. Any number of RETURN statements may appear in a subprogram. For
purposes of debugging functions and subroutines originally written as main programs, the RETURN statement has

been made equivalent to the STOP statement in a main program.

7.6 BLOCK DATA SUBPROGRAMS

A BLOCK DATA subprogram is a data specification subprogram and is used to enter initial values into variables
in COMMON for use by FORTRAN subprograms and MACRO-10 main programs (see Chapter 9). No executable
statements may appear in a BLOCK DATA subprogram.

7.6.1 BLOCK DATA Statement
The BLOCK DATA statement has the form:
BLOCK DATA

This statement declares the program which follows to be a data specification subprogram and it must be the first

statement of the subprogram (see Chapter 6, Section 6.2.2).

7.7 EXTERNAL STATEMENT

FUNCTION and SUBROUTINE subprogram names may be used as the actual arguments of subprograms. Such sub-

program names must be distinguished from ordinary variables by their appearance in an EXTERNAL statement.
The EXTERNAL statement has the form:

EXTERNAL identifier, identifier,...,identifier

This statement declares the listed identifiers to be subprogram names. Any subprogram name given as an argument
to another subprogram must have previously appeared in an external declaration in the calling program (i.e., as

an identifier in an EXTERNAL or CALL statement or as a function name in an expression).

Example: EXTERNAL SIN,COS
CALL TRIGF(SIN, 1.5, ANSWER)

CALL TRIGF(COS, .87, ANSWER)
END

Version 24 FORTRAN
Version 31 LIB40 7-6 February 1971

-83-

SUBROUTINE TRIGF(FUNC, ARG, ANSWER)

ANSWER = FUNC(ARG)

RETURN
END

FORTRAN

To reference external variables from a MACRO-10 program by name, place the variables in named COMMON.

Use the name of the variable as the name of the COMMON block:

COMMON /A/A/B/B(13)/C/C(6,7)

7.8 SUMMARY OF PDP-10 FORTRAN 1V STATEMENTS

CONTROL STATEMENTS

General Form

ASSIGN i tom
CALL name (a
CONTINUE
DO i m=m, ,m
GOTOi

GO TOm
GO TO m, (il,iz,.. J)
GO TO (i],iz,. ..),m
IF (el)i
IF (e2)s
PAUSE
PAUSE
PAUSE ‘h!
RETURN
RETURN i
STOP
END

1,02,...)

2'™3

17ipri3

DATA TRANSMISSION STATEMENTS

Section References

General Form

ACCEPT f

ACCEPT f, list
BACKSPACE unit
DECODE (n,f,v)list
END FILE unit

Version 24 FORTRAN 7-7
Version 31 LIB40

4.1.3
7.5.2
4.4
4.3
4.1.1
4.1.3
4.1.3
4.1.2
4.2.1
4.2.2
4.5
4.5
4.5
7.5.3
7.5.3
4.6
4.7

Section References

5.2.9
5.2.9
5.3
5.4
5.3

February 1971

FORTRAN -84-

General Form Section References
ENCODE (n,f,v)list 5.4
FORMAT (g) 5.1.1
PRINT f 5.2.3
PRINT f, list 5.2.3
PUNCH f 5.2.4
READ f 5.2.7
READ f, list 5.2.7
READ (unit, f) 5.2.7
READ (unit,f)list 5.2.7
READ (unit)list 5.2.7
READ (unii',name]) 5.2.7
READ (unit #R,flist 5.2.7
READ (unit,f,END=c,ERR=d)list 5.2.7
READ (unit,f, END=c)list 5.2.7
READ (unit,f, ERR=d)list | 5.2.7
REREAD f, list 5.2.8
REWIND unit 5.3
SKIP RECORD unit 5.3
TYPE f 5.2,5
TYPE f,list 5.2.5
WRITE (unit,f) 5.2.6
WRITE (unit, f)list 5.2,6
WRITE (unit)list 5.2.6
WRITE (unif,name]) 5.2.6
WRITE (unit #R,f)list 5.2.6
UNLOAD unit 5.3

SPECIFICATION STATEMENTS

General Form Section References
BLOCK DATA 6.2.2
COMMON a(n],nz,...),b(na,n4,...),... 6.1.2
COMMON lk1/a,b/blk2/c,d/ ... 6.1.2
COMPLEX a(n],nz,...),b(ns,n4,...),... 6.3
DATA f,u,.../kl,kz,ks,.../ 6.2.1

v,w,.../|<4,k5,k6,.../...

Version 24 FORTRAN
Version 31 LIB40 7-8 February 1971

-85- FORTRAN

General Form Section References
DIMENSION a(n],n2,...),b(n',nz,...),... 6.1.1
DOUBLE PRECISION a(n],n2, .. .),b(n3,n4, S DR 6.3
EQUIVALENCE (a(n],...),b(nz,...),...),... 6.1.3

(c(n3,...),d(n4,...),...),...
EXTERNAL y, z,... 7.7
IMPLICIT type (1,-1,) type,(15-1,), ... 6.3.1
INTEGER a(n],nz,...),b(ns,n4,...),... 6.3
LOGICAL a(n.',nz,...),b(n3,n4,...),... 6.3
NAMELIST /name]/o,b,.../namez/c,d,... 5.1.2
REAL a(n],nz,_...)b(n3,n4\,...),... 6.3
SUBSCRIPT INTEGER a(n],n sos .),b(ns,. I 6.3

ARITHMETIC STATEMENT FUNCTION DEFINITION

General Form Section Reference
name(a,b,...)=e , 7.3

NOTE:

S YLUVIRE are expressions

a,b,c,d are variable names

blk1,blk2 are block names

c is the statement number to which

control is transferred upon en-
countering an end-of-file

d is the statement number to which
control is transferred upon en-
countering an error condition on
the input data.

e is an expression

e is a noncomplex expression

ey is a logical expression

f is a format number

9 is a format specification

'h! . is an alphanumeric

i,i i ,i2, eee are statement numbers

i is an integer constant

k] ,k2,. .. are constants of the general form jxk
where k is any constant

l],lz,... are letters

Version 24 FORTRAN 7-9 February 1971

Version 31 LIB40

FORTRAN ~ -86-

General Form Section Reference

list is an input/output list

m is an integer variable name

my /my,mg are integer expressions

nyMyreee are dimension specifications

n are the number of ASCII characters

name is a subroutine or function name

name, ,name,, are NAMELIST names

#R is a record number where I/O begins

s is a statement (not DO or logical IF)

t,u,v,w are variable names or input/output lists

fype] ,I'ypez,. oo are type specifications

unit is an integer variable or constant specifying
a logical device number

v is the starting address of the ASCII record
referenced

¥,z are external subprogram names

7-10

-87- FORTRAN

SECTION II
THE RUN TIME SYSTEM

The five chapters of this section contain information on LIB40, SUBPROGRAM

calling sequences, accumulator usage, compiler switches and diagnostic messages,

and FORTRAN user programming.

FORTRAN

-88-

_89- FORTRAN

CHAPTER 8
LIB40

LIB40 is a single file which contains all of the programs in the FORTRAN library. It is composed of three groups

of programs:

(1) The FORTRAN Operating System.
(2) Science Library.
(3) FORTRAN Utility Subprograms.

There are two forms of LIB40, one for the KA-10 and the other for the KI-10. The KA-10 library will run on the
K1-10, but will not take advantage of the speed of the KI-10. The KI-10 library will not run on the KA-10 be-
cause of the hardware differences. Also, the library used must match the compiler used, i.e., KA-10 compiled

code must use the KA=10 LIB40 and the KI-10 compiled code must use the KI-10 LIB40.

8.1 THE FORTRAN OPERATING SYSTEM

The system programs in the FORTRAN Operating System act as the interface between the user's program and the
PDP-10. All of these programs are invisible to the user's program. The FORTRAN Operating System is loaded
automatically from LIB40 and resides in the user's core area along with the user's main programs and any library

functions and subroutines that his programs reference.

8.1.1 FORSE.

FORSE. is the main program of the FORTRAN Operating System and is loaded whenever a FORTRAN main pro-

gram is in core. The primary functions of FORSE. are

a. FORMAT statement processing,
b. Dispatching of all UUOs, and

c. Control of 1/O devices at runtime.

8.1.1.1 FORMAT Processing - FORSE. assumes that all FORMAT statements are syntactically correct since the
syntax of each statement is checked by the compiler. FORSE. scans the FORMAT statements and performs the
indicated 1/O operations. FORSE. invokes the required conversion routine to actually do data conversion. The

conversion routine that is used is a function of the conversion indicated in the FORMAT statement and of the

data type of the element in the 1/0 list.

Version 26 FORTRAN 8-1 May 1972
Version 32 LIB40

FORTRAN -90-

8.1.1.2 UUO Dispatching - Some UUOs are handled minimally by FORSE. (NLIN, NLOUT, MTOP), but the
others are handled almost entirely within FORSE.

8.1.1.3 1/O Device Control - FORSE. executes the required carriage control of output devices that are phys-
ical listing devices (LPT, TTY) and stores the carriage control character at the beginning of each line if the out-
put is going to a retrievable medium for deferred listing. When listings are deferred, the appropriate switch in

PIP can be used to list the file and execute the required carriage control.

8.1.1.4 Additional Functions of FORSE. - FORSE. is responsible for the following:

a. Control of REREAD and ENCODE/DECODE features.

b. Interaction with EOFTST and READ (unit,f,END=C)list to handle end-of-file testing.
c. Control of the assignment of devices to software channels.

d. Control of the handling of filenames for 1/O associated with directory devices.

e. Control of the opening and closing of data files.

f. Control the handling of the functions associated with the MAGDEN, BUFFER, IBUFF, OBUFF,
DEFINE FILE, TRAPS, and RELEASE subroutines.

8.1.2 1/O Conversion Routines

The 1/O conversion routines convert data from internal PDP-10 format to external format or vice versa. The
calls to these routines are implied by FORMAT and data transfer statements in the FORTRAN source program.
The routines reside as relocatable binary files in LIB40. REL.

Table 8-1
1/O Conversion Routines
Routine Description
ALPHI. Alphanumeric ASCII input conversion
ALPHO. Alphanumeric ASCII output conversion
FLIRT.* Floating point and double precision
input conversion
FLOUT.* Floating point and double precision
output conversion
INTI. Integer input conversion
INTO. Integer output conversion
LINT. Logical input conversion
LOUT. Logical output conversion

*FLIRT. contains two entry points, FLIRT and DIRT.
FLOUT. contains two entry points, FLOUT and DOUBT.

Version 26 FORTRAN 8-2 May 1972
Version 32 LIB40

g1 FORTRAN
Table 8-1 (Cont)

1/O Conversion Routines

Routine ‘ Description
BINWR. Binary 1/0

OCTI. Octal input conversion
OCTO. Octal output conversion
NMLST. Namelist

8.1.3 FORTRAN UUOs

Operation codes 000 through 077 in the PDP-10 are programmed operators, sometimes referred to as UUO's (Un-
implemented User Operators) since from a hardware point of view their function is not prespecified. Some of

these op-codes trap to the Monitor and the rest trap to the user program. FORTRAN UUO's trap to the FORTRAN
Operating System UUO Handler and are then processed.

Table 8-2
FORTRAN UUOs
(@] .

uuo Coble Meaning

RESET. 015 Resets all devices, clears tables and flags.

IN. 016 Initializes device for formatted input, does a LOOKUP.
OuUT. 017 Initializes device for formatted output, does an ENTER.
DATA. 020 Converts one data element from external to internal for-

mat or vice versa depending upon whether input or out-
put is being done. Actual data transfer takes place.

FIN. 021 Terminates data transfer statements.

RTB. 022 Initializes device for unformatted input, similar to IN.
WTB. 023 Initializes device for unformatted output, similar to OQUT.
MTOP. 024 Performs Magtape operations, rewind, rewind and unload,

backspace, end file, skip, write blank record.

SLIST. 025 Converts entire arrays from external to internal format or
vice versa depending upon whether input or output is
being done. Actual data transfer takes place.

INF. 026 IFILE. Sets up input filename, similar to IN, but with
specified filename.

OUTF. 027 OFILE. Sets up output filename, similar to OUT. but
with specified filename.

RERED. 030 REREAD. Reread last record.

NLI. 031 Namelist input.

FORTRAN -92-

Table 8-2 (Cont)
FORTRAN UUOs

Uuo C?)Ze Meaning
NLO. 032 Namelist output.

DEC. 033 DECODE.

ENC. 034 ENCODE.

8.2 SCIENCE LIBRARY AND FORTRAN UTILITY SUBPROGRAMS

The Science Library and FORTRAN Utility Subprograms extend the capabilities of the FORTRAN language. These
subprograms are called explicitly by the user. The subprograms include the built-in FORTRAN math functions
and the user-called utility subroutines which provide optional 1/O capabilities and control of and information
about the program's environment. The optional 1/O capabilities and environmental control are achieved by the

subroutines from interactions with the FORTRAN Operating System.

8.2.1 FORTRAN 1V Library Functions

This section contains descriptions of all standard function subprograms provided with the FORTRAN IV library for
the PDP-10. These functions are called by using the function mnemonic as a function name in an arithmetic ex-
pression. The function mnemonics in Table 8-3 have the types specified unless their types are explicitly or im-
plicitly changed. (Refer to Section 6.3, "Type Declaration Statements" and Section 6.3.1, "IMPLICIT State-

ment. ")

Version 24 FORTRAN
Version 31 LIB40 8-4 February 1971

FORTRAN

* Aipss@oauun alo \AOr_.. asnNpdaq O|-|) 3Y4 uo pasn jou 84D suoljduny asay|,

S[grog | e19noq INIWG
X141 19bajug |3y _ INIW
sebajuy 196a4uf Z< (- ~Nm._<\ —m._<v:_<< ONIW
o9y 1P3y LNIWV
1vOld o3y 1abaju ONIWY
19N|DA WNWIUIW
8|9neqg 8jqneg L XVYWQ
X1 1aBajug [o°y _ z LXVW
Jabajui 10baju Z< (**"“Bay’ —m._<vxo<< OXVYW
|psy P9y L XYWV
lvoid ooy | JebBaqu OXVWY
19N|DA WNWIXDW
ajqnoq 9jqnoq Z Z6ay Aq pepialp aowa uoisioaud sjqnoq
1abayu] J9bayu] Z st | Bay uaym aow Jobaju
Sdvil ‘" 30o¥3 o9y 109y [4 Jspuipwal 8y) aQOwWv |Psy
:Buiepuibway
J9bayu] 8|gqnoQg 1 |610] > INIal Jabayuy o4 ajqnoQg
19bayug - ooy L 1oBajul ysebip| ¥ I NI sebajul o4 |pay
ooy |9y L * Buo jo ubig INIV |pat o4 ooy
:uoypounl |
xo|dwo) |09y b4 Nm._<1+—m._<uo Y1dWD xo|dwod o} |pay
(#pd
|oay | xe|dwo) 1 OVWIV Aupuibpwi uipiqo)
|pa1 0} xajdwo?
(440d |D31 uIpqO)
jpay | xs|dwo) L vy pe1 0 xo)duion
8|9neqQ 18Ba4u) L 1vO1l4d 3|qnop oy Jabajuj
8jqnog ooy L 3140 3|qnop o4 [PeY
|Poy 2[qnoeq l _ TONS |pat o4 8|qnog
19bsyuj [LEN 1 D> 1abaju) 4sabipj s j|nsay « XIdI 1abajuy o} |pay
|0y Jobaju L «1VO4 joad o4 1ebajul
:UoIsIaAUOD)
1308 |oay | xo|dwo) L y AN>+ Nxvuo savd |pa1 o4 xa|dwo)
s|qnoq s|qnog l 4 | Bip | sgva uoisioaud ajgnoq
1abojug Jabojui 1 | B1o | savi sobajug
|P3y o3y L | Bio sav |pey
:aN[pA 9n|osqy
s||PD |PuIeyX uooung | juswinbly siuouinbly uojiulye d1uowau uotjoun
11RO |pulsix]y j0 odA] J0 JoquinN Huysqg ! uw Houng

suoyyouny A1piqi A1 NVYLYOL

£€-8 ®|9°L

May 1972

Version 26 FORTRAN

Version 32 LIB40

-94-

FORTRAN

dX3‘901v
“HSOD“HNIS‘NIS xs|dwo) [xajdwo) L SO2D A wo_%_ou
s|gnog | s|qnoq L onld supipoJ) 3|qnoq
ooy ooy L A (Biv) s02 v asod (se01Bop) [poY
|03y |09y L o)) (suptpoy) [poy
1auls0n)
dX3'901v J
‘HSOD“HNIS‘NIS xs|dwo) | xs|dwo) L NISD : wo_ smu
s|gnog | 3|qnoq L NISQ supipoJ) 3|qnoq
ooy ooy L ﬁ (Bav) uis v aNis (se0uBp) |poY
|ooy |09y L NIS (supipod) |y
iaulg
L8 xsjdwoy [xajdwo) L 2 (K1 4+x)=2 1¥OS$D x3|dwo)
s|gnog | ?|gnog L 2/ (Bay) osa 3|qneq
R[eXXE| |09y |09y L (Bay) L¥OS |09y
/1 :Jo0y alonbg
YOI LIOS .
‘INVLV 901V xsjdwo) | xajdwo) L (Bay) 6oy 901D x3|dwo)
s|qnog | e|qnog L (Bay) OlBo} | 019010
s|gnog | s|qnoQ L (Bry) 360 9014 3|qnoq
ROXNE] |02y |09y L (B1y) OlBo; | 01907V
RITEE | |02y |ooy L (Bay) “6oj 201V __ow_U
‘wy4tinboq
“YOU¥I 901V
‘SOD’NIS‘dXa xs|dwo) | xsjdwor L dx3d x3|dwo)
sjgnog | sjqnog , A 5 iov dx3aa s|qnoQ
R [OXNE] [0y |09y L dx3 |09y
:|p1jusuodxy
Jabayug 1abajug yA el _lg v wial 10ba4u
ooy ooy z ("oay*"Bav)uiw- "By wia ooy
19dualvy41(q dA4ISOY
a|qnoq | e|gnog z NOISQ | uoisiosud sjgnog
19bayu Jobayui b4 m —9<_ *ANm._<vcmm v NOISI s9ba4uf
|02y [Poy 4 NOIS |09y
:ubig jo toysupa)
uoijoun jJuswnbu sjuswnBuay
m__UU _Uc._m.—Xm. ..Mu QQ%._. v j ._UAEDZ uoyiuyag UEOEOC«Z uotjouny

suolouny Aipiqi] AT NVYILYOA

(u0D) g-8 °|qpL

May 1972

Version 26 FORTRAN

Version 32 LIB40

FORTRAN

xa|dwor
Jo‘3|qno(
‘|oay *0°| ©4 0 $0 @bupi 8y ul
[CEN “19Baju] 1 JaquiNu WopUD. D 1 §|NSaI NVY Jaquin N wopuby
xo|dwos | xsjdwor L Al=X=D' Al + X=B1y OrNOD 9yobnjuor xa|dwo)
YOI 'NVIVa d|9n0Q | 3|9neq z (CBay/leay) uoie | ZNvLVQ
Sdvil z L
‘" 4O¥¥I‘NVIV [ooy |02y z (“Bay/"B1y) upyo INVLY syuswnBip omy

jo juayjonb

djqneg | @|qnoq L (Bay) upyo Nvivad 3|9noq

102y 102y L (Bay) uso NVLV ooy
juabupy oy

R:[02-}-E]
‘14OS‘NV1V Py P9y l (Bay) soop SOJV 8ulsod - dly
YOI

 L4OS ‘NV 1V 103y ie3y L (Bay) uiso NISV suls - dly

dxa [ooy |09y L (Biy) yuoy HNVL jusbup

*40¥¥3‘dX3 o9y 109y L (Bay) ysoo HSOD sulso)

yo¥¥I‘dxa IPey 109y L (Bay) yuis HNIS suls
:21joquadAy

uoloun juswnba sjuawnbu

s||pD |pulalx] h_un_v) Ai o Lwasau uoytuyyeq | 2iuowaupy uoljouny

suoyyoung A1paqi AT NVYLYOA

(1u0D) £-8 8|9P1L

May 1972

8-7

Version 26 FORTRAN

Version 32 LIB40

FORTRAN -96-
8.2.2 FORTRAN 1V Library Subroutines

This section contains descriptions of all standard subroutine subprograms provided within the FORTRAN IV library

for the PDP-10. These subprograms are closed subroutines and are called with a CALL statement.

Table 8-4
FORTRAN 1V Library Subroutines
Subroutine Name Effect
BUFFER Allows the programmer to specify buffering for a

device at one of fifteen levels.
CALL BUFFER (unit*, in/out, number)

where in/out is 1 for input buffering only, 2 for
output buffering only, or 3 for both, and number is
the level of buffering (1 < number < 15). If number
is not specified, 2 is assumed. In calls to two en-
tries in BUFFER, IBUFF and OBUFF, the programmer
can specify a non-standard buffer size if the records
in his data files exceed standard buffer sizes set by
the Monitor. (See Table 12-1.) The programmer
cannot change buffer sizes for the disk; IBUFF

and OBUFF are designed primarily for Magtape.

CALL IBUFF (d,n,s)

where d is the device nuomber, n is the number of
buffers, and s is the size of buffer.

CHAIN , Reads a segment of coding (Chain file) into core
and links it to a program already residing in core.

CALL CHAIN (type,device,file)

where type is 0 (the next Chain file is read into core
immediately above the permanent resident area) or
type is 1 (the next Chain file is read into core im-
mediately above the FORTRAN 1V program which
marks the end of the removable resident). Device
is0,1,2,... FORTRAN 1V logical device number
(Chain files can be stored on DSK, MTA, or DTA
only) corresponding to the device where the Chain
file can be found. File is O for reading the next
file from the selected magnetic tape or 1,2, ... for
the number of the magnetic tape unit where the
Chain file is located.

DATE Places today's date as left-justified ASCII characters
into a dimensioned 2-word array.

CALL DATE (array)

where array is the 2-word array. The date is in the
form

dd-mmm-yy

*For explanation, see page 7-10.

8-8

_97..
Table 8-4 (Cont)

FORTRAN 1V Library Subroutines

FORTRAN

Subroutine Name

Effect

DATE (cont)

DUMP

EOF1 (unit*)

EOFC(unit*)

ERRSET

EXIT

IFILE

where dd is a 2-digit day (if the first digit is 0, it
is converted to a blank), mmm is a 3-digit month
(e.g., MAR), and yy is a 2-digit year. The date
is stored in ASCII code, left-justified in the two
words.

Causes particylar portions of core to be dumped and
is referred to in the following form:

CALL DUMP (L],U],F], . .,Ln,Un,Fn)

where L. and U, are the variable names which give
the limils of core memory to be dumped. Either

L; or U; may be upper or lower limits. F; isa
number indicating the format in which the dump is
to be performed: O=octal, 1=real, 2=integer, and
3=ASCII.

If Fisnot 0,1,2,3, the dump is in octal. If Fo is
missing, the last section is dumped in octal. If

Un and F, are missing, an octal dump is made from
L to the end of the job area. If L, U,, and F,,
are missing, the entire job area is dumped in octal.

The dump is terminated by a call to EXIT.

Skips one end-of-file terminator when found and
returns the value TRUE if an end-of-file was found
and FALSE if it was not found. Subsequent termi-
nators produce an error message.

Skips more than one end-of-file terminators when
found and returns the value TRUE if an end-of-file
was found or FALSE if it was not found.

Allows the user to control the typeout of execution-
time arithmetic error messages, ERRSET is called
with one argument in integer mode.

CALL ERRSET(N)

Typeout of each type of error message is suppressed
after N occurances of that error message. IF ERRSET
is not called, the default value of N is 2.

Returns control to the Monitor and, therefore, ter-
minates the execution of the program.

Performs LOOKUPs for files to be read from DECtape
and disk.

CALL IFILE(unit*, filnam)

where filnam is a filename consisting of five or fewer
ASCII characters enclosed in single quotes ('). e.g.,
CALL IFILE (12, 'FILET")

*For explanation, see page 7-10.

Version 26 FORTRAN
Version 32 LIB40

May 1972

FORTRAN

98
Table 8-4 (Cont)

FORTRAN 1V Library Subroutines

Subroutine Name

Effect

ILL

LEGAL

MAGDEN

OFILE

PDUMP

RELEAS

SAVRAN

SETRAN

Sets the ILLEG flag. If the flag is set and an illegal
character is encountered in floating-point/double-
precision input, the corresponding word is set to zero.

CALL ILL

Clears the ILLEG flag. If the flag is set and an
illegal character is encountered in floating-point/
double-precision input, the corresponding word is
set to zero.

CALL LEGAL

Allows specification of magnetic tape density and
parity.

CALL MAGDEN(unit*,density, parity)

where density is the tape density desired (200=200
bpi, 556 =556 bpi, or 800=800 bpi) and parity is
the tape parity desired (0=odd, 1=even). Even
parity-is intended for use with BCD-coded tapes
only.

Performs ENTERs for files to be written on DECtape
and disk.

CALL OFILE (unit*, filnam)

where filnam is a filename consisting of five ASCII
characters.

Is referred to in the following form:
CALL PDUMP(L,,U.,F.,...,L ,U ,F)
177171 n""n’'n

where the arguments are the same as those for DUMP.
PDUMP is the same as DUMP except that control
returns to the calling program after the dump has
been executed.

Closes out I/O on a device initialized by the
FORTRAN Operating System and returns it to the
uninitialized state.

CALL RELEAS (unit*)

SAVRAN is called with one argument in integer mode.
SAVRAN sets its argument to the last random number
(interpreted as an integer) that has been generated

by the function RAN.

SETRAN has one argument which must be a non-
negative integer <2°'. The starting value of the
function RAN is set to the value of this argument,
unless the argument is zero. In this case, RAN uses
its normal starting value.

*For explanation, see page 7-10.

8-10

-99- FORTRAN

Table 8-4 (Cont)
FORTRAN 1V Library Subroutines

Subroutine Name Effect

SLITE() Turns sense lights on or off. i is an integer expres-
sion. For 1<i<36 sense light i will be turned on.
If i=0, all sense lights will be turned off.

SLITEG, {) Checks the status of sense light i and sets the var-
iable | accordingly and turns off sense light i. If
iison, jissetto1; and if i is off, | is set to 2.

SSWTCH(, |) Checks the status of data switch 1(0<i<35) and sets
the variable j accordingly. If i is set down, | is
set to 1; and, if i is up, | is set to 2.

TIME Returns the current time in its argument(s) in left-
justified ASCII characters. If TIME is called with

one argument,
CALL TIME(X)
the time is in the form
hh : mm

where hh is the hours (24-hour time) and mm is the
minutes. If a second argument is requested,

CALL TIME(X,Y)

the first argument is returned as before and the sec-
ond has the form

ss.t

where ss is the seconds and t is the tenths of a sec-
ond.

FORTRAN -100-

-101- FORTRAN

CHAPTER 9
SUBPROGRAM CALLING SEQUENCES

This chapter describes the conventions used in writing MACRO subprograms which can be called by FORTRAN IV
programs, and FORTRAN subprograms which can be linked to MACRO main programs. The reader is assumed to

be familiar with the following texts:

MACRO-10 Assembler (DEC-10-AMZB-D)
Section 2.5.8 "Linking Subroutines"
Figure 7-1, "Sample Program, CLOG"

TOPS-10 Monitor Calls (DEC-10-MRRA-D)
Section 1.2.2 "Loading Relocatable Binary Files"

Science Library and FORTRAN Utility Subprograms
(DEC-10-SFLE-D)

How to Use This Manual - FORTRAN calling sequences

9.1 MACRO SUBPROGRAMS CALLED BY FORTRAN MAIN PROGRAMS

9.1.1 Calling Sequences
The FORTRAN calling sequence, in the main program, for a subroutine is

FORTRAN Code MACRO Code (Generated by Compiler)

CALL subprog (adr] , adr) JSA 16, subprog
ARG codeq, adrj
ARG codes, adrp

PARE

where
subprog is the name of the subprogram
adr] , adr2, - are the addresses of the arguments
codey, code2 are the accumulator fields of the ARG instructions

which indicate the type of argument being passed
to the subprogram. These codes are as follows:

0 Integer argument 4 Octal argument
1 Unused 5 Hollerith argument
2 Real argument 6 Double -precision
3 Logical argument argument

7 Complex argument

9-1

FORTRAN -102-
An example of a FORTRAN calling sequence for a subroutine and the MACRO-10 coding generated by the

compiler is given below.

FORTRAN Code MACRO Code
CALL PROGI (REAL,INT) JSA 16, PROGI1

ARG 02, REAL

ARG 00, INT

The MACRO code generated by the compiler is the same for subroutines and functions; however, the FORTRAN
code is different.

9.1.2 Returning of Answers

A subroutine returns to its answers in specified locations in the main program. These locations are often given

as argument names or as variable names.

A function returns its answer in accumulator 0 (if a single word result) or in accumulators 0 and 1 (if a double-
precision or complex result). A function may also return its answer in specified locations (given by argument
names in the CALL) or variable names; in any event, however, it must return an answer in accumulator 0 (or

accumulators 0 and 1).

A MACRO subprogram access COMMON by declaring as external common block names for labelled
COMMON and by declaring . COMM. as external for blank common. A common block name always refers
to the same core location as the first element following the block name in a COMMON statement. MACRO

subprograms may refer to the remainder of the variables in the common block through additive globals.

9.1.3 Use of Accumulators

For accumulator usage, see Chapter 10, Accumulator Conventions for PDP=10 Main Programs and Subprograms.

9.1.4 Examples of Subprogram Linkage

Three examples of subprogram linkage, one of a subroutine, one of a function subprogram, and one of a

FORTRAN main program and MACRO subprogram both referencing COMMON, are given below.

9.1.4.1 Example of a Subroutine Linkage - The coding of the subroutine in this example is followed by the

calling sequence.

ENTRY SUBA

SUBA: 0
MOVE 1,@0(16)
IMULI 1, 12
MOVEM 1,@0(16)
JRA 16, 1(16)

FORTRAN Calling Sequence

CALL SUBA(INT)

-103- FORTRAN

;GET FIRST ARGUMENT
;MULTIPLY BY 10

;RETURN RESULT IN ARGUMENT
;RETURN TO MAIN PROGRAM

MACRO Code (Generated by Compiler)

JSA 16, SUBA
ARG 00, INT

9.1.4.2 Example of a Function Subprogram Linkage - The coding of the function subprogram in this example

is followed by the calling sequence.

ENTRY FNC

FNC: 0
MOVE 00,@0(16)
MOVE 01,@1(16)
IMUL 00, 01
JRA 16, 2(16)

FORTRAN Calling Sequence

X =FNC (I, 10

;PICK UP FIRST ARGUMENT
;PICK UP SECOND ARGUMENT
;MULTIPLY BOTH ARGUMENTS
;RESULT IN ACO

;RETURN WITH ANSWER IN ACO

MACRO Code (Generated by Compiler)

JSA 16, FNC
ARG 00, 1
ARG 00, CONST.

9.1.4.3 Example of a FORTRAN Main Program and a MACRO Subprogram Both Referencing COMMON.

-104-

FORTRAN

AaN13

<dns 11vd

aHe)DHe'2)a=(2)v
a/4/4/8/v/¥/NOWWOD
D NOWWO)D

(€)2'(¥'€)8’ (S)Vv NOISNIWIQ

[eNeoNe]

WL
0’00
11x3‘sl

2aNs ‘9l
1+v‘20
T+D'20

£+49°20
a’zo

el 69-AON-82 ELOA

SAVHIV

0 a

SYVIVIS

11x3

zans

4490r

35404

SWYIO0¥dENs

/a/ a

/8/ d

VAZ4 v

/"WWOD"/ o)

NOWWOD
lsyr

" 1353 % NIVW
vsr
VSl
W3IAOW
¥av4
¥avid
JAOW

ND01e Wl

ord 1

9-4

FORTRAN

1X3,¥00000

anNz!

WYIOO0¥d NVILIO4 OL NINLRY’

-105-

d NI oS!

D 139!

(2*1)9 NI ¥OLS?
(v 1397

1X3 ,£00000
a 1X3 000000
aNi

(91)'91 vir
ao W3IAOW
"WWOD' ‘0 IAOW
£+8'0 WIAOW
0 JAOW

0

zans AYINZ

a‘e’v’ *wwoo" 1vN¥aLxa

"WWOD' 1NI, 000000 2ans
! 1X3 000000 v

319v1 TOIWAS
900000 SI Vg WvIOOud

d31D2313Q SYOYY3 ON

000000 914492 G00000
000000 0002¢0¢ 00000
000000 000002 €00000
€00000 000¢0¢ ¢00000
200000 00000C 100000
‘eans 000000 000000 000000
69-AON-8C €Z¢cl 9eA"O¥OVW NIVW*

a3asn OO ¢
0 Q3123130 SYOWP3 ‘NIVW
0 o
0 !
0 v

9-5

-106-

FORTRAN

LE¥000

445200

¥2¥000
000000
¥¢0200
YECL00
05200
§0SZ00
¢€el1zoo
€€1200
€€2200
£0S200
905200
¥4£100
000000
§S/100
020200
000000
§¥2000
000000
000000
105200
941200
¢0z200
€10200
000000
000000
¥02200
¢/Zl100
¢oLLoo
€0¢200
£00200
000000
000000
Ly1100

€02000
000000

000000
0€0200
000000
¥€0200
¥€€000

B[O} NE!
"OIX

‘LIVM
‘HONN
‘3dAL
"YINdL
"CWNVL
‘IWVNL
‘dWiL
"¢INDL
“LINDL
Lv1s
1S11S
‘no13s
'V1s3S
“aLy
NIy
"13S3Y
NCELER
‘AQYIY
NENLZ
*ST4AO
*11nO
Eifge)
‘1nO
‘LAINO
‘NILXN

“YDLXN
‘AQdNI

‘dNI
*dNI
"NI
‘an

*3S¥04
‘O1IN

‘TIN
"ZdIW
‘dOIW

2001
"41Y01

LsZL00
€£2200
¥£2200
000000
Zlitoo
SLT200
y1eloo
§02Z00
Z¥0L00
9G€200
¢leeoo
2/1200
£Ly200
¥00100
000000
942200
044100
€9£100
000200
¢00200
L¢lLoo
LEEZ00
¥29100

¥£€200 €02000
000000 £02000
§Z1000
900000 G£1000
¥£1000
091000
€51000
051000
971000

S€0000 0ov1000

*NLONA
‘NILWAL
*O41IWA
‘NI4

‘Id
‘103
'§14013
‘144013
‘NIAN3

"ANNAQ

‘AINAd
‘ONA3IQ
*OIA3Q
*10d3d
‘viva
*3aava
"ASYT1D
‘NOY¥1D
‘I1SOT1D
*SO1D
‘NNIHD
‘QHdNg
‘v2o4n4

*35404
Lvagor
zans
NIVW*
a

g

v
"WWOD*
"NIVW

‘NIVW

dVW 3OVYOLS

AV IS WYIOOUd IHL SI 99¥€00

FORTRAN

-107-

€00000

¢00000

¢00000

¢00000

200000

¢00000

¢00000

¢00000

¢00000

200000

200000

9/2€00
¥£2€00
¥£2€00
242¢00
¢£2e00
0£2€00
0£2€00
99¢¢€00
99¢€00

¥9¢€00
¥92€00

¢92€00
¢92€00
092€00
092€00
96¢€00
962€00
¥S2€00
¥S2€00
¢5¢e00
¢Gee00

05¢€00

1STWNQ
*1NO1
1no1a
“INIT
INITd
joliee
0120d
"OINI
OINIaQ

‘1120
I1250a

‘IINI
IINIQ
‘1n0O14
1NO14d
RIE]
Lin4a
*19n0d
19n0aa
*1¥1d
Ly1aa

‘OHdTV

200000

<00000

¥10000

200000

05¢€00
9¥¢€00
9¥¢€00
¢€ee00
TAXANVY

L€C¢e00
0€2E00

0€2€00

L€4¢00
£90€00
004200
9 £L200
0£1€00
¥€0€00
0¢£¢00
020€00
£04200
429200
£€4200
¥59200
150€00
GZ0€00
£00€00
¥€9200
££5200
¢/L200
L¥0€00
£9£200
£99200
£4£200

OHd1va
‘IHdVY
IHdTva

¥AVOI
“4avol

“1IX3
1IX3

1IX3

AIANIM
wonn
R-ERLT]
R-ECEY
LALO
RENL]
‘WOYUON
YIIWN
‘ONSW
‘NIO01
‘g1sI11
“¥3INI
‘onnii
Q|
TOWTI
"HOTI
O3
‘d1dN3
*¥3wna
"434da
RENEC
*3ISHd g

-108-

FORTRAN

4 SQYOM G221 XYW JMe+e
OO e ¥3avo1l

Z9ve00
§9¥€00

Tvol
*OI1I

£00000

$20000

€21000

200000

¢00000

¢00000

LSYE00
£5¥€00
CEYE00
ZEYE00

29€€00
€9€€00
€00000
£00000
£00000

S00000
LZy€00

€5€€00
¢SEE00
S€0000
£0€E00
¢G€e00
¥¥€€00
£9€€00

£0€E00

_S0€E00

S0€E00
€0€€00
€0€€00
€0€€00
€0€€00
€0€€00
LOEE00
Loge00

9£2€00
00€€00

111

11
“*187ad
*1574d

‘1davi
‘ldavi
"6OIN
‘€O3N
‘¢OIN
*1O3AN
“TOVIW
TJAVIW
RLELY
‘1O1AQ
‘41lA3Q
‘ANA3Q
‘S1AxQ
‘allva

"8LA3a
"NDHL
ND3d.a
"1dNI
“WMNIE
"NaNIg
*1aNIg
YMNIEQ
"IW4L
1w4la

‘LSTWN
‘WIT3a

9-8

-109- FORTRAN
9.2 MACRO MAIN PROGRAMS WHICH REFERENCE FORTRAN SUBPROGRAMS

9.2.1 Calling Sequences

The MACRO code which calls the FORTRAN subprogram should be the same as that produced by the
FORTRAN IV compiler when it calls a subroutine. That is:

MACRO Code

JSA 16, subprog
ARG codej, adry
ARG codey, adry

where
subprog is the name of the subprogram
c:drl ,adr,,... are the addresses of the arguments
code] , code2 are the accumulator fields of the ARG instruction

which indicate the type of argument being passed
to the subprogram. These codes are as follows:

Integer argument

Unused

Real argument

Logical argument

Octal argument

Hollerith argument
Double-precision argument
Complex argument

NO O AWN—=O

Both subroutines and functions are called in this manner.

9.2.2 Returning of Answers

A FORTRAN subroutine returns its answers in specified locations in the main program. These locations mdy be

given as variable names in COMMON or as argument names.

A FORTRAN function returns its answer in accumulator 0, if asingle word result, or in accumulators 0 and 1,
if a double-precision or complex result. A function may also return its answer in specified locations given by

argument names in the CALL, or variable names in COMMON; in any event, however, it must return an answer

in accumulator 0 (or accumulators 0 and 1).

If it is desired to reference a common block of data in both the MACRO main program and the F ORTRAN sub-

program, it is necessary to set up the common area first by loading @ FORTRAN BLOCK DATA program before
the MACRO main program and the FORTRAN subprogram.

FORTRAN -110-
9.2.3 Example of Subprogram Linkage

The following is an example of a FORTRAN subroutine being called by a MACRO main program. Both programs
reference common data. Read and write statements have been omitted for simplification. Because the FORTRAN
operating system, FORSE. , sets up 1/O channels at run time, the MACRO programmer must be sure not to ini-
tialize a device on a channel that FORSE. will then try to use, unless he releases the device before FORSE. is
called. FORSE. initializes the first device encountered in the user program on software channel 1, the second

on channel 2, etc.

It is possible to release a device from its associated channel in a FORTRAN program by a call to the subroutine
RELEAS. Channels one through seventeen are available for I/O. If g FORTRAN user wishes to write MACRO
programs which do 1/O, he may use either FORTRAN UUO's or the channel numbers less than or equal to seven-
teen but greater than the largest number used by FORSE.

The FORTRAN RESET. UUO should be the first instruction executed in any program which accesses FORTRAN
subroutines. For this reason the FORTRAN operating system, which contains the FORTRAN UUO handler
routine, must be declared external in the MACRO main program. This causes FORSE. to be loaded. In general,
any program in the FORTRAN library referenced in a MACRO program must be declared external. This results

in the searching of LIB40 by the Linking Loader and loading the referenced program.

9-10

FORTRAN

-111-

ansi

(€'2)a’(S)v NOISN3IWIA
a NOWWOD
2/2/8/8/%/¥/NOWWOD
viva %2014

sl

a3asn WO 42

0 *Q31D03130 SYOyd ‘lva

0 g

0 v

SAVYYY

0 a

0 o)

SYVIVIS

44901

SWVID0UENS

0 /"WWO0D*/ a
0 /o/ o)

0 /9/ |

0 N/ v
NOWWOD

0 D014 lva

0 D018 Wl
0/-NVr-2Z 910A or4 v4°viadig

9-1

1X3 ,#00000

1X3 000000 =N [OF 1X3 ,0L0000

1X3 ,200000 d 1X3 ,£00000
|
N
—
—
I

ang

IHLE!
3SN Ol1 NOILJO SVH ¥3SN "ONN LIxX3 13A3Y°

JOLINOW STTVvD OSTV ANV SIRVYWWNS LNO!
SINI¥d HOIHM INILNOY 11X3 NVYLIOS " LIX3’

SO¥V INILNOYINS NVYLYIOL Ol 09!

(e’2)9 NI OULs!

(e 139!

d NI OLs!

D 139!

(1'1)4 NI O1s!

(v 139!

3S¥04 NI ANNO4 ‘13534 ONN NVYLIO4 Oa!
"LIX3Y°3SY04‘SOUV D eV "WWOD*

FORTRAN

‘WWOD*

AV E

SO¥V

Liv1s aN3
*LIX3'91 vsr
SOYV’9L vsr

S+8’'l WIAOW
AL JAOW

"'WWOD' ‘0 W3AOW

20 JAOW
20 W3IAOW

v'o IAOW
0°00 ENEN
TVNY3ILX3

Livi1S AYLN3

QR LARY

IN3,000000
1X3,€00000
1X3 100000

119V1L TOIWAS

000000

000000
G00000
¢00000
000000
000000
000000
000000
000000

LavIS
o}
v

JVW* LIvis

LLOO000 SI JVIT WY¥OOUd

d31203130 SYO¥¥3I ON

004992

004992
0¥0202
00002
000¢0c
00000¢
000202
000002
000s10

010000

£00000
900000
$00000
¥00000
€00000
€00000
100000
000000

OVW* L¥vVIS

0£-NVr-2Z S0°9L OVA"O¥DVW NIVW*

9-12

FORTRAN

-113-

aN3

NJNL3

a++(L’ Da=(l)v

(€'2)8’ (S)v NOISNIwIa
a NOWWOD
3/2/8/8/¥/¥/ NOWWOD

SO¥V INILNOYINS

(91)o’91
1+°dWiaL‘9l
*dWal‘sl
Wi

1+ dWaL‘9L
*dWiaL’sl
0’00

WZ

0

MGl 04-Nvr-ce 9L0A

0 a
0)
YA SOV
SIVIVOS
WWOD*/ a
/3 o)
/%/ q
VAZ4 v
NOWWOD
vir
JAOW
JIAOW W2
1syr
WIAOW
WIAOW

OV %SOUV

1s9r
WIAOW
¥avd

yavd
IAOW

20074 WL

Ovd ¥4°SOdV

9-13

-114-

FORTRAN

¥05200
000000
g9L100
000000
¢10200
902000
000000
0Lzzoo
G£1200
L0€200
S00Z00

£€51000

‘AQYH
*41NO
"YOLXN
‘dOIW
*dNI
=N [OF
"NId
‘144013
‘ONA3d
‘4aava
‘SO1D

o)

L0c¢eoo
000000
000000
£€0200
000000
¥SZ100
GLLLOO
250100
¢05¢00
€100
¥Zi100

S¥1000

“1vd
“1no
‘O1IN

‘001

*dNI
‘NLONA
'Id
‘NIAN3
*JIA3Q
*ASY1D
‘NNIHD

!

§02200
£02¢00
000000
£EE000
000000
942200
00€200
19€200
£00100
994100
Zyeecoo

0¥ 1000

‘ST4AO
"LAINO
‘TIN
“YLY0I
*NI
‘N3ILWA4
1013
"ANNAQ
'10d3a
‘nNoY¥1D
‘dHd4Ng

210200
SZL100
€€0200
902200
71100
££2200
Zlzl00
G12200
000000
€00200
£29100

¥£€200

000000
¥£1000
020000
$51000
110000

51000
0¥1000

G10000

*11n0 .
"N1LXN
‘ZdIW
‘AQdNI
all
"O9IWAd
'S14013
*AONAQ
‘viva
‘ISOT1D
‘vo4ne

90000 "3ISYOA

90¢000 Lvasor

SOV

991000 SOV
Liv1S

GGl000 NIVW®
"WWOD*

‘1va

0¥1000 *lva

L3VLS 371d NIVW® ©0Yd 61000 SSIIAAY ONILIVLS
dVW 39VY0I1S NIVW®

04-NVr-¢Z

AVIIE INIWOIS MOT IHL SI L£¥€00

aasn O e

0 :@31D313Q SYO¥1 SO¥Y

0 4
0 v

SAVYEY

9-14

FORTRAN

-115-

€04£200
€¢L200
¢¥£200
¢10€00
¥v¥0€00

£EC100
9€1200
£/4L100
000000

R-EFLIE
‘WOYON
*41S11
TOWTII
“¥4IWNAa

"HONN
"ITWVYNL
‘1v1S

any

1S£200
€20€00
£59200
£€9200
¢./200

£Zv000
£05200
G€2Z00
000000
052000

RECEN
RERAIN
R:EIO
"HO11I
R-ENE[C

‘OIX
"IdAL
‘dW3l
*1S11S

‘NIY

Y€2E00

¥€4£200
€£1€00
¢1£200
¥S0€00
¢09200
¢£9200

000000
015200
¢15200
09£100
000000

*1IX3

YINIM

LALD
"ONSW
‘onNni
R [} RE|
R-ELEL

‘9IM
“YINdL
"CINDL
‘NOL3s

“13S3Y

$92€00
200000
£92€00
200000
192€00
200000
£52€00
200000
§52€00
200000
£62€00
200000
152€00
200000

G€CE00
¥10000
£€2€00
£00000

¢/0€00
£EOE00
2€6200
0€0€00
§4/200
200€00

LE¥000

420200
G€1200
116200
£20200
000000

*IINI
§9¢€00
*1nO14
€92€00
RRINE
192€00
*14nod
£SC€00
*1¥1a
§SCE00
‘OHdTVY
€62€00
‘IHdTV
1SZ€00

¥avol
G€TEO0
1IX3
£€2€00

wonn
RENNL
‘N3I901
‘a3l
*dlaN3
EN L

209200

‘LIVM
"CWVNL
“LINDL
‘V1S3s
NeELEL

ILNIQ

1NO1«a

IR-1QF ¢

18n0aqaq

Liaa

OHd1va

IHdTva

yavol

11X3

AOYY3

9-15

-116-

FORTRAN

<00000
¥Zye00
¢LEE00

90€€00

‘GOIN
“1OVIW
‘41A3Q

“1dNI

G9¥€00

£00000
95€€00
GGEE00

920€€00

vOoIl

"€OIN
TdEVIW
‘ANA3d<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>