dlifgliltlall

Linker Reference Manual
Order No. AA-DO19A-TE
|
|

VAXII

August 1978

This document describes how the VAX-11 Linker works and how to use it.

VAX-11
Linker Reference Manual

Order No. AA-DO19A-TE g

SUPERSESSION/UPDATE INFORMATION: This is a new document for this release.
OPERATING SYSTEM AND VERSION: VAX/VMS V01

SOFTWARE VERSION: VAX/VMS V01

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, August 1978

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation.. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordarnce with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright () 1978 by Digital Equipment Corporatiqn

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET~-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI
DECnet IAS

4/79~14

TN

TN

CONTENTS

Page
PREFACE vii
CHAPTER 1 LINKER OVERVIEW 1-1
1.1 REASON FOR A LINKER 1-1
1.1.1 Modular Programming 1-2
1.1.2 Simplifying Compilation and Assembly 1-3
1.1.3 Debug Capability 1-4
1.2 LINKER OPERATION AND FUNCTIONS 1-4
1.2.1 Virtual Memory Allocation 1-4
1.2.2 Resolution of Symbolic References 1-5
1.2.3 Image Initialization 1-5
1.2.4 Image Map 1-5
1.2.5 Symbol Table File 1-5
CHAPTER 2 IMAGE CREATION 2-1
2.1 PROGRAM SECTIONS 2-1
2.2 IMAGE SECTIONS 2-1
2.3 CLUSTERS 2-1
2.4 OBJECT MODULE CONTENTS 2-2
2.5 PROGRAM SECTIONS 2-2
2.5.1 Program Section Name 2-3
2.5.2 Program Section Size 2-3
2.5.3 Program Section Alignment 2-3
2.5.4 Program Section Attributes 2-3
2.6 TYPES OF IMAGES 2-5
2.6.1 Executable Images 2-6
2.6.2 Shareable Images 2-6
2.6.3 System Images 2-7
2.7 GENERATION OF IMAGE SECTIONS 2-7
2.8 COMPRESSION OF UNINITIALIZED IMAGE SECTIONS 2-8
CHAPTER 3 SYMBOLS AND REFERENCES 3-1
3.1 DEFINITIONS: "SYMBOL" AND "REFERENCE" 3-1
3.2 TYPES OF SYMBOLS AND REFERENCES 3-1
3.2.1 Local Symbols 3-3
3.2.2 Global Symbols 3-3
3.2.3 Universal Symbols 3-4
3.3 SYMBOL TABLES 3-4
3.3.1 Global Symbol Table as Separate Output 3-5
CHAPTER 4 LIBRARIES 4-1
4.1 LIBRARY TABLES USED BY THE LINKER 4-1
4.2 LINKER'S USE OF LIBRARIES 4-2
4.3 DEFAULT SYSTEM LIBRARY 4-3
4.3.1 VMSRTL.EXE 4-3
4.3.2 STARLET.OLB 4-4
4.4 EXAMPLE OF USING LIBRARIES 4-4

iii

CONTENTS (Cont.)

w

CHAPTER THE LINK COMMAND

COMMAND FORMAT

COMMAND AND FILE QUALIFIERS
Command Qualifiers
File Qualifiers

EXAMPLES

P
N =

(O G, G, O, NS]
[V SN O3 S

CHAPTER

o

THE /OPTIONS FILE QUALIFIER

USES FOR AN OPTIONS FILE
Entering Frequently Used Input
Specifications
Identifying a Shareable Image as Input
Entering More Input Than the Command
Language Can Handle
Entering Non-Standard Link Instructions
CREATING AND SPECIFYING AN OPTIONS FILE
SPECIAL OPTIONS

oo
e
[

(o

[e)}e)]
. e
w N

.
S

[e)We)We))
o o e
wN -

CHAPTER

~

IMAGE MAP

IMAGE MAP CONTENTS

IMAGE MAP SECTIONS
Object Module Synopsis
Image Section Synopsis
Program Section Synopsis
Symbols by Name
Symbol Cross Reference
Symbols by Value
Image Synopsis
Link Run Statistics

NNNNNNNNNN
e o o s s s e s o
NNMNNMNDNMNDNMDNDNMDNDNDE
e o o e e o o @
OO UTds W

[eo}

CHAPTER SHAREABLE IMAGES
SHAREABLE IMAGES: BENEFITS AND USES
Conserving Physical Memory
Conserving Disk Storage Space
Reducing Paging I/O
Using Shared Memory-Resident Data Bases
Making Software Updates Compatible
CREATION OF SHAREABLE IMAGES
LINK Command and Pertinent Options
UNIVERSAL= Option
GSMATCH= Option
Transfer Vectors
Shareable and Nonshareable Data
Position Independence
Rules for Creating Upward-Compatible
Shareable Images
Example of Transfer Vector and Universal
Symbols
Example of FORTRAN Shared COMMON
USING SHAREABLE IMAGES :

e o o o s e e o o
¢« o e o o
U WN

« e .

©0 00 0O 00 00 CO 00 C0 0O 00 ©O0 0O OO ©O

NNMNMNNMNNMNNNMNNHEFERFRRFERFEF

[ee]

.

N

. e e o o o

o] Noutb W

o
“« e
w N
.
(]

iv

g
i o
(e}
o

oo u
[
H H WVOARNR

(<) B o))

[e)}e) e e o O
[I I ! I
N

~

| T T T T B B |
NP WWNNMNNMNMNOEHEEE [HEHEWOOOUUIWWH [(6,00 \O 3 V]

NN NNNNNIY
oo

[ee]

00 00 0O 00 00 0O 00 OO0 00 00 00 QO QO

«
N =

O o

APPENDIX

>

APPENDIX

APPENDIX |

=

e e o e & v s
“ o e e .
oAU WN -

APLWWWwwwwuwwwwNn ==

e o o o o

O QO o000 O O QN0 a0 6w
~ Noounut ot ur

(o]

.

CONTENTS (Cont.)

CLUSTERING

MECHANICS OF CLUSTERING
USAGE GUIDELINES

LINKER MESSAGES
IMAGE MAP ILLUSTRATIONS
VAX-11 OBJECT LANGUAGE

INTRODUCTION
Summary of Language
GLOBAL AND UNIVERSAL SYMBOLS AND NAME FORMAT
MODULE HEADER RECORDS (HDR)
Header Type
Structure Level OBJS$C_STRLVL
Maximum Record Size OBJ$C_MAXRECSIZ
Module Name
Module Version
Dates and Times
Other Header Records
Header Types 1 through 4 and 6
Maintenance Status Header Record (MTC)
GLOBAL SYMBOL DIRECTORY (GSD) RECORDS
(OBJS$C_GSD)
P-Section Definition (OBJS$C GSD PSC)
Global Symbol Specification OBJSC GSD SYM
Entry Point Symbol and Mask Definition
(OBJSC GSD EPM)
Procedure With Formal Argument Definition
(OBJ$C_GSD_PRO)
TEXT INFORMATION AND RELOCATION (TIR)
RECORDS (OBJSC_TIR)
Commands
Record Length
Differences From RSX-11
Side Effects And Optimization
END OF MODULE (EOM) RECORD (OBJ$C_EOM)
Error Severity
DEBUGGER INFORMATION (DBG) RECORDS
(OBJ$C DBG)
Traceback Information (TBT) Records
(OBJ$C_TBT)
LINK OPTION SPECIFICATION (LNK) RECORDS
(OBJ$C_LNK)

Q <(') [eNoNe! OOOOO(POOOOOOO Q w

Page

O
i
=

O
1

b
| | I

1 1
UL BRBEBRDRBRWWHRH H B

11
O d

1
[
[

1
—
N

O(;)O
N
N OB

Cc-22
c-22
Cc-23
C-23
C-24
C-24

Cc-24

FIGURES

Page
FIGURE 1-1 Modular Programming 1-3
3-1 Local and Global Symbols 3-2
4-1 Library Tables 4-2
7-1 Object Module Synopsis 7-4
7=-2 Image Section Synopsis 7-4
7-3 Program Section Synopsis 7-17
7-4 Symbols by Name Section 7-8
7-5 Symbol Cross Reference 7-9
7-6 Symbols By Value 7-9
7-7 Image Synopsis 7-10
7-8 Link Run Statistics 7-11
8-1 No Transfer Vectors 8-4
8-2 Transfer Vectors 8-5
8-3 Listing of CRF Transfer Vector 8-10
8-4 Command and Files to Create CRFSHR 8-12
8-5 Map of CRFSHR 8-13
8-6 Map Showing FORTRAN Shared Common 8-19
C-1 - General Structure of an Object Module c-2
TABLES
Page
TABLE - Command Qualifiers -

1 5-3
2 File Qualifiers 5-3
-1 Special Options 6-3
1 Image Map Sections 7-2
2 PSECT Attributes 7-6
1 Interpretation of SYM$V WK and SYMSV_DEF c-1

vi

P

PREFACE

MANUAL OBJECTIVES

The VAX-11 Linker Reference Manual describes how the VAX-11 Linker
works and how to use it. This manual has both an educational and a
reference function: it provides detailed explanations of significant

topics, yet it is also designed for quick look-up of important
information.

INTENDED AUDIENCE

This manual is intended for programming specialists and nonspecialists
alike. In general, the entire manual is intended to be informative
and useful to all readers; however, certain parts are designed
specifically to meet the needs of certain types of readers.

® If you are not yet proficient in programming under the VAX/VMS
system (for example, if you are a trainee programmer), or if
you do not need to become an expert, this manual is designed
to teach you the main concepts and techniques of linking as
clearly as possible. Chapters 1, 3 through 7, and Appendixes
A and B are aimed especially at this type of reader.

® If you are already proficient in programming under the VAX/VMS
system, this manual provides detailed information about some
of the more complex aspects of linking. Chapters 2, 8, 9, and
Appendix C are aimed especially at this type of reader.

STRUCTURE OF THIS DOCUMENT

Chapters 1 and 2 introduce the linker. Chapter 1 defines significant
terms, presents the reasons for the linker's existence, and discusses
in general terms how the linker works. Chapter 2 goes more deeply
into the process by which the linker creates images. Chapter 2 also
introduces new concepts and expands on concepts introduced in Chapter

.

Chapters 3 and 4 focus on concepts that are important to understanding
the linker's operation. The discussion of symbols and references in
Chapter 3 derives from the linker's function of resolving symbolic
references between modules. Chapter 4 explains 1libraries, which
normally contain frequently used modules that the linker can include
in user images.

Chapter 5 discusses the LINK command and its command and file

qualifiers. Chapter 6 focuses on the /OPTIONS file qualifier,
describing how to create and use a linker options file.

vii

Chapter 7 explains the different forms of the image map that the
linker produces on request. This map provides information about the
image that was created and about the linking process itself.

Chapter 8 and 9 present detailed explanations of shareable images and
image clusters. The complex information in these chapters is intended
mainly for more sophisticated programmers and application designers.

The appendixes provide supplementary information. Appendix A lists
the error messages that the 1linker can generate. Appendix B
illustrates complete brief, default, and full maps of the same image.
Appendix C 1is a specification of the object language accepted by the
linker; this information is useful to anyone designing a compiler or
assembler whose output must be acceptable to the VAX-11l Linker.

ASSOCIATED DOCUMENTS
The following documents contain information pertinent to linking:

e VAX-11 Information Directory

e VAX/VMS Primer

e VAX/VMS Command Language User's Guide

e VAX-11 Symbolic Debugger Reference Manual

e VAX/VMS System Manager's Guide

e VAX-11 MACRO Language Reference Manual

® VAX-11 MACRO User's Guide

e VAX-11 FORTRAN IV-PLUS Language Reference Manual

® VAX-11 FORTRAN IV-PLUS User's Guide

CONVENTIONS USED IN THIS DOCUMENT
The following conventions are used in this manual:

e Brackets ([]) enclose optional material, as in the following.
examples:

/ [NO] DEBUG

The positive form of the qualifier is /DUBUG, and the negative
form is /NODEBUG.

CLUSTER=cluster-name, [base-address], [pfc], file-spec [,e0.]
The base address, page fault cluster (pfc), and additional
file specifications are optional entries. Note, however, that
the commas following the base address and page fault cluster
are outside the brackets; therefore, if you omit these
entries, you must still enter the commas. For example:

CLUSTER=AUTHORS, , ,TWAIN,DICKENS

viii

’ ~

S

Uppercase letters in format illustrations show keywords that
you must enter as shown; lowercase letters show variable
data, with the letter "n" specifying numeric data. Examples:

/EXECUTABLE=file~-spec

/BASE=n
Horizontal ellipses (...) in a format illustration indicate
that the preceding entry can appear several times, as in the
following example:

UNIVERSAL=symbol-name [,...]

You can specify multiple symbol names.

Vertical ellipses indicate that lines of file contents or code
not pertinent to the example are not shown:

ix

CHAPTER 1

LINKER OVERVIEW

The VAX-11 Linker is a programming development tool that takes the
output of language translators, such as the VAX-11] MACRO assembler or
the VAX-11 FORTRAN IV-PLUS compiler, and binds it into a form that can
be executed on the VAX-11 hardware. The primary outputs of VAX-11
language translators, and the primary 1nputs to the linker, are files
that contain object modules. The primary output of the linker is a
file called an image.

The linker can produce three types of images. The most common type,
called executable, 1is activated in response to a command that you
enter (such as RUN). Another type of image, called system, is
intended for stand-alone execution on the VAX-11l hardware. The third
type, called shareable, provides a means for sharing procedures and
data among multiple processes within the system. Shareable images
also provide a way of linking a very large application program in a
number of smaller phases. Chapters 2 and 9 discuss image creation in
detail. Chapter 8 focuses on shareable images.

The linker assigns values and virtual addresses not only to symbols
defined within each module, but also to symbols defined outside the
module that refers to them. If a symbol is not defined in a module
named in the LINK command, the linker searches one or more libraries.
Chapter 3 discusses the different types of symbols (for example, local
and global, strong and weak), and Chapter 4 discusses the use of
libraries.

The linker is activated by the LINK command, which you can enter
interactively or within a command procedure. The LINK command permits
many command qualifiers and file qualifiers, most of which have
default values that are suitable for most cases. One input file
qualifier is /OPTIONS, which allows you to <convey additional input
file specifications and special instructions for the linker. Chapter
5 explains the LINK command and all its qualifiers. Chapter 6 focuses
on the /OPTIONS qualifier and the special items or options that can
appear in an options file.

In addition to the image itself, the linker can produce a printable
image map. You can control the level of detail provided in various
parts of the map. Chapter 7 explains and illustrates the image map.

1.1 REASON FOR A LINKER

The object modules that a VAX/VMS compiler or assembler creates are
nonexecutable. They must first be 1linked. The requirement that
object modules be linked contrasts with systems in which the output of
a compiler or assembler is directly executable.

1-1

LINKER OVERVIEW

The VAX-11 native translators require a linker for several reasons:
e Linking simplifies modular programming.

e The linker simplifies the job of each native compiler or
assembler.

e The VAX-11 Symbolic Debugger and other features can be
accessed easily.

1.1.1 Modular Programming

Modular programming is the process of combining separately compiled or
assembled modules into an executable program or image. Modular
programming has two aspects:

e Automatic modularity because many source language statements
generate calls to common functional routines developed by
DIGITAL

® Deliberate modular design implemented by some user sites

Most programs are automatically modular, because many source language
statements generate calls to routines that perform commonly needed
functions, such as opening and closing files. Examples of these
routines are the procedures in the VAX-11 Common Run-Time Procedure
Library, which is installed in the system as a shareable image. These
routines can be linked into different images regardless of the
programmer's original source language. At run time each routine can
be shared by a number of different processes, because ‘each routine is
relocatable and reentrant. (Reentrant means that the code does not
modify itself, and consequently can be reused by different processes.)

Users can also make their programs deliberately modular. Under this
practice, a single complex program is written as a number of smaller
program modules. The modules are compiled or assembled, and later
linked to create an executable image. Figure 1-1 illustrates program
development in this environment. In this example, two programmers
write two program modules, a main section in VAX-11l FORTRAN IV-PLUS to
perform different calculations, and a second section in VAX-11 MACRO
to handle specific exception conditions.

Modular programming offers several advantages over the traditional
practice of having one programmer write an entire complex program as a
single source module:

e Smaller modules are usually more manageable and easier to
write.

e Different modules of the same program can be written in
different languages. You can select the language that best
suits the nature of the module's function or your own personal
preference.

e Errors are easier to analyze and correct in smaller modules.

LINKER OVERVIEW

l CALC. | XCEPT.
FOR MAR
Y
FORTRAN MACRO
Compiler Assembler
CALC. XCEPT.
oBJ oBJ
CALC. CALC.
EXE MAP

Optional

Figure 1-1 Modular Programming

1.1.2 simplifying Compilation and Assembly

Having a linker perform certain essential functions eliminates the
need for every native compiler and assembler to handle these
functions. For example, the linker contains the logic to allocate
virtual memory and to provide the memory management interface between
the program and the operating system.

A program's virtual memory can be allocated efficiently only after all
its constituent modules are known. The linker contains the logic
necessary to group parts of programs according to specific attributes,
with the goal of conserving memory and reducing the amount of paging
activity at run time.

1-3

LINKER OVERVIEW

Each program usually interacts with the operating system. For
example, a program may use the stack within its process. The linker
can supply the program logic to access the stack and certain other
areas, rather than require each compiler and assembler to supply this
logic. The linker can also denerate the proper program-to-system
interfaces for program modules that call VAX/VMS system services.

1.1.3 Debug Capability

Use of the VAX-1ll Linker allows you to access the VAX-11 Symbolic
Debugger from the executable image. If you request the debugger, you
can choose whether to activate it at run time. The VAX-11 Symbolic

Debugger Reference Manual explains the capabilities and use of the
debugger. FORTRAN users should refer to the Debugging chapter in the
VAX-11 FORTRAN IV-PLUS User's Guide.

1.2 LINKER OPERATION AND FUNCTIONS
The linker performs the following operations when it creates an image:
® Allocates virtual memory for the image
® Resolves symbolic references among modules
e Initializes the image contents
® Generates the image map, if requested

® Generates a symbol table file, if requested

1.2.1 Virtual Memory Allocation

The language translators that produce object modules do not allocate
addresses for two reasons:

e They do not know how the modules and sections of modules will
be grouped in the final executable image.

e They do not know how much address space is required for many
of the external modules that are called by the module being
assembled or compiled.

The linker, then, must assume the task of allocating virtual memory
for the 1image. Each object file input to the linker consists of one
or more program sections. The linker groups program sections from
different object files according to various section attributes--for
example, whether the program section is concatenated or overlaid, and
what its memory protection requirements are (read-only, read/write,
etc.). For further information on how the linker maps the image, see
Chapter 2.

TN

LINKER OVERVIEW

1.2.2 Resolution of Symbolic References

When a module makes references to symbols outside itself, the linker
searches for these references in other modules explicitly named in the
LINK command. If you specify any libraries, the linker searches them
to resolve references made by preceding files named in the LINK
command. If any references still remain unresolved, the 1linker
searches the default system 1library. For a detailed discussion of
libraries, see Chapter 4.

1.2.3 1Image Initialization

After it maps virtual memory and resolves references, the linker fills
in the actual contents of the image. This image initialization
consists mainly of copying the binary data and code that was written
by the compiler or assembler. However, the linker must perform two
additional functions to initialize the image contents:

@ It must insert addresses into instructions that refer to
externally defined fields. For example, if a module contains
an instruction moving FIELDA to FIELDB, and if FIELDB 1is
defined in another module, the 1linker must determine the
virtual address of FIELDB and insert it into the instruction.

® It must compute values that depend on externally defined
fields. For example, if a module defines X as being equal to
Y plus Z, and if Y and Z are defined in an external module,

the linker must compute the value of Y plus Z and insert it in
X.

1.2.4 1Image Map
If you so request, the linker generates an image map. The actual
contents of the map depend on the map-related command qualifiers that
you enter with the LINK command; however, entering Jjust the /MAP
qualifier generates a default map with the following sections:

® An object module synopsis

® A program section synopsis

e A list of symbols, with the name and value of each

® An image synopsis

® Statistics of the link run

Chapter 7 discusses the command qualifiers that affect the image map.
It also illustrates the map sections and explains significant items.

1.2.5 Symbol Table File

If you so request, the linker produces a file that records the values
of symbols defined within the image. Section 3.3.1 contains further
information on the symbol table file.

CHAPTER 2

IMAGE CREATION

This chapter discusses the allocation of virtual memory and the
different kinds of images that the linker can produce. The concepts
of clustering, image sections, and program sections are introduced,
along with a description of the way in which the linker builds the
final image.

2.1 PROGRAM SECTIONS

The program section is the vehicle by which a language translator
describes the memory requirements of a particular object module.
Program sections are areas of memory that have a name, a length, and a
series of attributes describing the intended or permitted usage of
that memory. Section 2.5.4 provides a detailed description of these
attributes.

2.2 1IMAGE SECTIONS

The image section is the means that the linker uses to describe the
memory requirements of the whole image to the VAX-11l memory management
software. An image section is a named collection of pages which have
the same hardware protection characteristics and the same sharing
nature. An image section is dealt with as a unit when page faults
occur.

The linker creates image sections by collecting program sections that
have similar (but not necessarily identical) attributes. The manner
in which program sections are grouped into image sections depends upon
both the attributes of each program section and the type of image
being produced (see Section 2.7).

2.3 CLUSTERS

Experience with virtual memory systems has shown that 1locality of
reference within large application programs affects their performance.
Clustering provides a way for the designer of an application to
describe that locality. A cluster contains a group of highly-related
object modules that are separable from some other groups of modules
within the application.

For example, a compiler usually goes through a number of distinct
phases during 'a single compilation run. These phases are often
separable into groups of object modules that can be designated as
clusters. The relationship between the groups or clusters is defined
through internal data structures, such as the symbol table.

2-1

IMAGE CREATION

Chapter 9 is devoted to clustering. However, at this point it is
sufficient to describe a cluster as a list of related image sections;
these image sections are produced by sorting the program sections read
in from a collection of related object module files. Every image
consists of at least one cluster. Note, however, that the cluster is
relevant only to the linker itself; it does not appear as a structure
anywhere else (such as in the memory management software of the
executive).

2.4 OBJECT MODULE CONTENTS

Each object module contains several types of records. All object
modules have header records and an end-of-module record. Some also
have other kinds of records, depending on the options specified at
compile time. All object modules also contain the following records
for each of the program sections:

e A global symbol record that includes the program section's
attributes. (A global symbol record is also used to describe
each global symbol defined in the module.)

@ A text information and relocation record, containing the
section's binary data or code and certain commands to the
linker.

Appendix C contains a detailed specification of the object 1language
accepted by the linker.

2.5 PROGRAM SECTIONS

A program section is defined to the linker by the following:
® A name
e A size
e An alignment

e A series of single-bit attributes expressing whether the
program section is:

- Relocatable or absolute

- Concatenated or overlaid

- Local to a cluster or global across all clusters
- Executable or not

- Writeable or not

- Readable or not

- Position independent or not

- Potentially shareable or not

- Created by a user program or by the linker for internal use

IMAGE CREATION

2.5.1 Program Section Name

The program section name is an ASCII character string, one to fifteen
characters in 1length. You can use any printable ASCII character in
the name, but are cautioned against using the dollar sign ($), to
avoid possible naming conflicts with software supplied by DIGITAL.

Program sections with the same name but from different modules
normally must have the same attributes. Any exceptions to this rule
are noted in the discussions of specific attributes.

2.5.2 Program Section Size

The size field of a program section definition record is a 32-bit
count of the number of bytes that this module contributes to the
program section.

2.5.3 Program Section Alignment

The alignment field describes the address boundary at which the
module's contribution to the program section will be placed. The
alignment is expressed as a number from 0 to 9, representing a power
or exponent of the number 2. The base address of the program section
is rounded up to a multiple of that power of two.

In an overlaid program section, all contributing modules must specify
the same alignment; otherwise, the 1linker generates a diagnostic
error. In a concatenated program section, each contributing module
can specify a different alignment. The total allocation of the entire
concatenated program section will be aligned on a boundary which is a
multiple of the highest power of 2 specified by any of the
contributing modules.

2.5.4 Program Section Attributes

The following subsections explain the attributes that a program
section can have. Section 2.7 describes how the linker considers
certain significant attributes as it constructs different types of
images.

2.5.4.1 Relocatability (REL and ABS) - A program section can be
relocatable or absolute. A relocatable program section is one that
the linker can position in virtual memory according to the memory
allocation strategy for the type of image being produced.

Absolute program sections, on the other hand, are not considered in
the allocation of virtual memory. They contain no binary data or
code, and all appear as if they were based at a virtual address of
zero. Absolute program sections are used primarily to define global
symbols.

2.5.4.2 Concatenated versus Overlaid (CON and OVR) - This attribute
determines the relationship between the memory allocations when
several modules contribute program sections with the same name.

IMAGE CREATION

A concatenated program section contribution requires its own separate
address space in ‘the image. If two program sections in different
modules have the same name, the sections will be placed in separate
yet contiguous address spaces. For example, if PSECTA in MODULEl and
PSECTA in MODULE2 have the concatenated attribute, PSECTA from MODULEl
will be allocated first, followed by PSECTA from MODULE2. The final
total size of a concatenated program section is the sum of the
individual contributions, plus any padding allowed for the individual
alignments.

An overlaid program section - contribution, however, can share an
address space with other program sections that have the same name.
For example, if both PSECTA in MODULEl and PSECTA in MODULE2 have the
overlaid attribute, both program section contributions will be
allocated starting at the same base address in the image. The final
total size of an overlaid program section is that of the largest
contribution.

Note that any module can, initialize the contents of an overlaid
program section. In this situation, the order in which you specified
the input modules is important, because the contents of an overlaid
program section are determined by the 1last contributing module
specified.

FORTRAN common areas are the most frequent use of overlaid program
sections.

2.5.4.3 Scope - Local versus Global (LCL and GBL) - The 1local or
global attribute is significant for an image that has more than one
cluster. The attribute determines whether program sections with the
same name but from modules in different clusters are finally placed in
separate clusters (LCL attribute) or in the same cluster (GBL
attribute). The memory of a global program section is allocated in
the cluster that contains the first contributing module. This subject
is discussed further in the treatments of shareable images and
clustering (see Chapters 8 and 9).

FORTRAN common is implemented with global program sections.

2.5.4.4 Executability (EXE and NOEXE) - Although the current VAX-11
hardware does not implement any kind of execute protection, this
attribute is reserved for possible future implementation. Another
reason for this attribute is that it permits possible future extension
of link time error detection and of software security protection.

The current version of the linker takes this attribute into account in
only two ways:

e Error checking on an image start address. The linker issues a
diagnostic message if a program transfer -address is defined in
a nonexecutable program section.

e Sorting of program sections into image sections. Executable
program sections in executable and shareable images are placed
in separate image sections from program sections that are not
executable.

/—\\‘

IMAGE CREATION

2.5.4.5 Writeability (WRT and NOWRT) - This attribute determines
whether the program section contents will be protected against
modification when the image is executed. 1If the program attempts to
modify the contents of .a non-writeable program section during
execution, an access violation occurs.

For executable and shareable images, writeable and nonwriteable
program sections are placed in different image sections. For system
images, this attribute is ignored, since by definition the VAX/VMS
system is not normally in control of the memory management of a system
image.

2.5.4.6 Readability (RD and NORD) - The current .version of the linker
ignores this attribute. It is provided merely to allow the pos51ble
future implementation of a data security system.

2.5.4.7 Position Independence (PIC and NOPIC) - This attribute
-identifies whether the content of a program section depends on where
that program section or something that it refers to is allocated in
the virtual address space. For example, the following types of

" program sections are position independent:

® A program section that contains no virtual addresses

® A program section whose references to virtual memory are in

the form of a displacement from itself, if the targets of the

. references must always be at the same displacement from the
calls which refer to them

This attribute applies only to shareable images, which are discussed
in Chapter 8. ‘

2.5.4.8 Shareability (SHR and NOSHR) - As its name suggests, this
attribute is significant only for shareable image memory allocation
and memory management (see Chapter 8).

2.5.4.9 User versus Library (USR and LIB) - This attribute is
reserved for possible future enhancements to the linker. It is
ignored for the «current release, but should be set to zero to
guarantee future compatibility. '

2.6 TYPES OF IMAGES

The linker creates three types of images: executable, shareable, and
system. Each type has specific uses. System images differ
substantially in content and organization from executable images and
shareable images. The following subsections define each type.

IMAGE CREATION

2.6.1 Executable Images

An executable image is a program that you can activate by the RUN
command. The most common use of the linker is to create executable
images.

An executable image cannot be linked with other images. However, the
same object modules can be linked in different combinations or with
different link options to form different executable images.

2.6.2 Shareable Images
There are two major reasons for shareable images:

e To provide a means of sharing a single physical copy of a set
of procedures and/or data between multiple application
programs

e To facilitate the linking of very large applications (say,
hundreds of modules) in more manageable pieces, rather than as
one monolithic link

As with executable images, when the 1link of a shareable image is

complete, all symbolic references are resolved and memory is allocated
to a group of image sections. A description of each image section is
written to the image header. Unlike an executable image, however, a
shareable image normally has a symbol table appended to it.

A shareable image is not directly runnable. It is intended for
reprocessing by the linker--that is, to be included in a subsequent
image. In processing a shareable image, the linker reads the image
header and generates a separate image cluster from the set of image
sections it finds. :

After generating the cluster which is the incoming shareable image,
the linker processes the symbol table appended to the image just as if
it were an object module. This allows the shareable image to resolve
symbols (usually routine names) referred to by the modules with which
it is being linked. These symbols are called universal symbols (see
Section 3.2.3).

When you run a program that has been linked with a shareable image,
the VAX-11 image activator checks to see if the shareable image has
been installed by the system manager. If it has been installed, the
image activator sets a pointer that enables the process to use the
shareable image. Thus, whenever multiple processes request an
installed shareable image, the operating system makes the same
physical copy of the shareable image available to each requesting
process. Shareable images can therefore conserve physical memory at
run time.

Chapter 8 discusses shareable images further. At this point, however,
note the following information and conventions pertaining to shareable
images:

e The default common Run-Time Library provided with the VAX/VMS
system is a shareable image.

e You cannot link the VAX-11l Symbolic Debugger with a shareable

image; you must include at least one object module in the
link.

2-6

/‘\\\

IMAGE CREATION

® You can request that the linker produce a private copy of a
shareable image in an executable image file. By default,
however, the linker does not do so, thereby saving disk space.

e Chapters 5 and 6 describe LINK command qualifiers and 1link
time options specifically intended for dealing with shareable
images. See the following:

/SYSSHR

qualifiers
/SHAREABLE
UNIVERSAL=

options
GSMATCH=

2.6.3 System Images

A system image is a special type of image - intended for stand-alone
operation on the hardware; that is, it does not run under the control
of the VAX/VMS operating system.

The allocation of memory to a system image is much simpler than for
the other two types of images. The linker allocates memory to the
program sections based upon the alphabetical order of the program
section names. The only other factors that the linker considers are
program section size, alignment, and the following attributes:
concatenated or overlaid, and relocatable or absolute. These factors
are treated as described in Section 2.5.

The resulting image is a fixed-length record file, each record being a
512-byte block. A system image has no image header, no debug data,
and no symbol tables. It has no set format. That is to say, it
contains binary data and code just as they would appear in memory.

2.7 GENERATION OF IMAGE SECTIONS

The linker makes two passes over the input object modules. The first
pass builds the symbol table and the program section tables. The
second pass writes the binary contents of the image. Memory
allocation 1is performed between the two passes; the linker uses the
program section table of each cluster and generates an image section
table for each cluster.

When the first pass is complete, the linker has determined the sizes
of all the relocatable program sections by considering specific
attributes (concatenated versus overlaid, local versus global) and the
alignment, as discussed 1in Section 2.5. The linker has also
determined relative addresses of each module's contribution to a
particular program section. What remains to be done is 'to group the
program sections into image sections, and to position the whole image
cluster in the virtual address space.

IMAGE CREATION

Depending on the type of image being produced, the linker establishes
a mask for the program section attributes that it will consider:

e For an executable image, this mask includes only the
writeablity (WRT and NOWRT) and executability (EXE and NOEXE)
attributes.

® For a shareable image, this mask includes the writeability,
executability, position independence (PIC and NOPIC), and
shareability (SHR and NOSHR) attributes.

Then, for each possible combination of the significant attributes, the
linker searches the program section list of a cluster. If the linker
finds any program section with this combination of attributes, it
generates an 1image section. Each matching program section in the
image section is assigned an address relative to the base of the image
section, in alphabetical order by program section name.

All combinations of significant attributes are handled in this way,
until the complete set of image sections for the particular cluster is
generated. The next cluster (if there is one) is then treated in the
same way.

At this point, all image sections have cluster-relative base
addresses, and all program sections have image section-relative
addresses. The next step consists of allocating virtual address space
to the <cluster and then relocating all image sections and program
sections within the cluster.

The choice of address space for the cluster is described in Chapter 9.
However, the choice depends on whether you specified an address in the
CLUSTER= option, and whether the cluster contains a shareable image.
It also depends upon the order in which you specified the clusters.

2.8 COMPRESSION OF UNINITIALIZED IMAGE SECTIONS

At the end of its first pass across the object modules, the 1linker
sorts all the program sections into a group of distinct image
sections. The sorting is determined by program section attributes,
and results in the complete allocation of the user virtual space.

In its second pass, the linker writes the binary contents of the
image. During this image initialization, the linker keeps track of
which program section is being initialized and to which of the image
sections that program section has been allocated. The first attempt
to initialize a part of an image section causes the linker to allocate
a buffer 1in 1its own program region to contain the generated image
binary contents. This allocation is achieved by the expand region
system service, and it requires that the linker have available a
virtually contiguous region of its own memory at least as large as the
image section being initialized.

After completing the second pass across the object modules, the linker
scans the list of 1image sections in an attempt to compress
uninitialized pages from the image, which is about to be written. The
linker attempts to perform this compression by creating demand zero
image sections.

2-8

IMAGE CREATION

If the linker finds an image section that does not have a buffer
allocated, it considers splitting the section into multiple image
sections, some demand zero and others copy on reference. To be
eligible for splitting, the image section must be writeable to the
user and larger than the minimum compression threshold size (see the
DZRO_MIN= option in Chapter 6). If the image section can be split,
the linker calls a memory management system service, passing it a
description of the image section buffer and the compression threshold
value. By calling this service in a loop, the linker finds out which
segments of the buffer are both larger than the threshold number of
pages and previously unmodified by the linker. This process results
in a single image section being replaced by a potentially large number
of alternating demand zero and copy on reference image sections.

The linker continues this splitting process, scanning the 1list of
image sections until it reaches the end or until the total number of
image sections reaches the 1limit specified or defaulted for the
ISD_MAX= option (see Chapter 6). During the entire process, the
linker keeps track of the size of the image header (where descriptors
of the image sections will be written) and of the image binary
contents. Thus, at the end of the scan the linker knows the precise
size of the image header and the contents, and it can now create the
image file.

When the image file is successfully created, the linker makes another
scan of the image section descriptor list. During this scan it writes
the contents of all existing image section buffers to the image file,
assigning them virtual block numbers as it does so. Finally, the
linker writes the image header, starting at virtual block number 1 of
the image file.

By default, the 1linker «creates the image with the attribute
"contiguous best try," which becomes a permanent attribute of the
image file. However, you can specify the /CONTIGUOUS qualifier to
force the image file to be created contiguously (see Chapter 5).

2-9

CHAPTER 3

SYMBOLS AND REFERENCES

One of the 1linker's functions is to resolve symbolic references
between modules. The 1linker recognizes different types of symbols,
and follows guidelines for each type when it tries to supply addresses
or values to statements that refer to these symbols.

3.1 DEFINITIONS: "SYMBOL" AND "REFERENCE"

A symbol is a name associated with a coding statement or with a data
area or field. A reference 1is the use of a symbol in a coding
statement or a data definition. Consider the following examples (not
tied to a specific programming language):

® A coding statement identified as ROUTINEA moves FIELDA to
FIELDB. ROUTINEA 1is the symbol associated with the coding
statement. FIELDA and FIELDB are references made by the
statement.

® A data definition statement defines FIELDA as being equal to
(A+B) /2. FIELDA is the symbol associated with the computed
value of (A+B)/2. A and B are references.

3.2 TYPES OF SYMBOLS AND REFERENCES
Each symbol is local, global, or universal:

® Local symbols are available for reference only within the
program module that defines them.

® Global symbols can be referred to by modules outside the
module that defines them. A global symbol has a strong or a
weak definition. Another module can make a strong or a weak
reference to a global symbol (regardless of whether the
symbol's definition is weak or strong).

® Universal symbols are a special type of global symbol. You
can specify universal symbols only for shareable images.

Figure 3-1 illustrates references to local and global symbols in three
modules. (The statements do not reflect a specific programming
language.) An arrow is drawn between each reference and the symbol to
which it refers.

SYMBOLS AND REFERENCES

‘MODULEA
LOCAL1-e—
LOCAL2=
—»GLOBAL1
GLOBAL2=
/\/_/’\/\’-
Move LOCAL1 to LOCAL2
Call GLOBAL3
—\/\/j/\/v\—

MODULEB MODULEC
LOCAL1 LOCAL1 -=—
LOCAL2 - LOCAL2 =

WM
Add GLOBAL1 —— Subtract GLOBAL2
Move LOCALI1 ———————————»~GLOBAL3 /
to LOCAL2 Move LOCAL2
to LOCAL1
— T S ——

Figure 3-1 Local and Global Symbols

Local and global symbols can be designated either automatically by the
language translator or by qualifiers in program statements. You can
specify the local or global symbol type only in certain languages. In
VAX-11 MACRO, for example, you can define a symbol as local or global
by using one or two equal signs or colons, as the following statements
show. Note that the term "local symbol" in this context has a
different meaning from the term in the context of a MACRO program (for
example, 10S$:).

CRFC_MAXREC=292 Assigns a value of 292 to the 1local symbol
CRFC_MAXREC

CRFC_MAXREC==292 Assigns a value of 292 to the global symbol
CRFC_MAXREC

ERR_BRANCH: Makes the coding statement label ERR_BRANCH a
: local symbol

ERR_BRANCH:: Makes the coding statement label ERR_BRANCH a
global symbol

In certain other languages, the compiler determines whether a symbol
is local or global. For example, the FORTRAN compiler makes statement
numbers local symbols, and module entry points and common areas global
symbols. For information about designating symbol type in a specific
programming language, see the appropriate language reference manual.

Universal symbols must be specified by the UNIVERSAL= option in the
linker options file. Chapter 6 explains the use of the /OPTIONS
qualifier with the LINK command.

SYMBOLS AND REFERENCES

3.2.1 Local Symbols

You can refer to local symbols only within the program module that
defines them. Most symbols in a typical program are local.

The compiler or assembler resolves references to local symbols, and
therefore they are not passed on to the linker.

3.2.2 Global Symbols

Global symbols can be referred to by object modules other than the
module that defines them.

Each global symbol has either a strong or a weak definition. An
external module can make a strong reference or a weak reference to any
global symbol.

3.2.2.1 strong Definition - A global symbol with a strong definition
is available for reference if the module that defines it is either
explicitly named in the LINK command or contained in a library that is
searched by the 1linker. Global symbols wusually have a strong
definition, and strong is the default if neither weak nor strong is
specified.

The librarian utility makes an entry for each global symbol with a
strong definition in the global symbol table of a library. Libraries
are discussed in Chapter 4.

3.2.2.2 Weak Definition - A global symbol with a weak definition is
available for reference only if the module that defines it is
explicitly included in the linking operation; that is, the module is
listed as an input file, specified with the /INCLUDE qualifier, or
included from a library because another (strong) symbol in the module
is needed.

The librarian utility routine does not make entries for global symbols
with weak definitions in the global symbol table of a library.

3.2.2.3 Strong Reference - A strong reference is one whose resolution
is «critical to the linking operation. If the linker cannot resolve
all strong references by searching named input modules and 1libraries
and the default system library, it reports errors and assumes that the
symbol referred to has a value of zero.

Most references to global symbols are strong, and strong is the
default. ‘

3.2.2.4 Weak Reference - A weak reference is one whose resolution is
not critical to the 1linking operation. For a weak reference, the
linker searches only named input modules, but not user libraries or
the default system library. The linker does not treat an unresolved
weak reference as an error, but it does assume that the symbol
referred to has a value of zero.

SYMBOLS AND REFERENCES

An example of the use of weak references might occur in a program that
you want to link now, but that you want to add to and relink later.
In a particular subroutine you might make a weak reference to a symbol
in an external module that will not be written until later. You can
link the image and run it, as long as it does not try to use the
nonexistent symbol during the run.

3.2.3 Universal Symbols

A universal symbol is a special type of global symbol in a shareable
image. A universal symbol is accessible by other modules when they
link with the shareable image. Universal symbols in a shareable image
contrast with ordinary global symbols in the modules that make up the
shareable image; the ordinary global symbols are available only when
the modules are being linked to create the shareable image.

The VAX-11 MACRO assembler language provides the .TRANSFER directive
to identify an important class of universal symbols, namely transfer
vectors. Otherwise, you must identify wuniversal symbols with the
UNIVERSAL= option in a 1linker options file (see Chapter 6). For
example, the following LINK command shows how to designate A and B as
universal symbols in the shareable image ABBOTT. COSTELLO is an
options file that includes the record UNIVERSAL=A,B.

$ LINK/SHAREABLE ABBOTT,COSTELLO/OPTIONS

COSTELLO.OPT

UNIVERSAL=A,B

An example of the need for universal symbols might occur if you write
an error-handling routine with several modules to be linked as a
shareable image. You define global symbols for references between the
modules. However, you must designate as universal any global symbols
that are to be available when the shareable image 1is linked with
object files or other shareable images: for example, entry points of
routines and perhaps some constants for defining possible errors.

3.3 SYMBOL TABLES

An image can have none, one, or both of the following symbol tables:
e A debug symbol table
e A global symbol table

The debug symbol table is included only if you specify /DEBUG at link
time. This table normally contains the following types of
information:

e Module names

® Routine names and/or program section names

e All local symbols

TN

TN

SYMBOLS AND REFERENCES

However, the local symbols are included only if you request debug at
both compilation time and link time.

The global symbol table is included in an executable image whenever
you include debug in the 1link. The global symbol table is always
included in a shareable image, regardless of the qualifiers you
specify at 1link time. The global symbol table contains an entry for
each global symbol in an executable image and for each universal
symbol in a shareable image. These symbols are listed in the Symbols
by Name section of the image map.

3.3.1 Global Symbol Table aé Separate Output

You can output a copy of the image's global symbol table as a separate
file by wusing the /SYMBOL_TABLE qualifier at link time. The symbol
table file is a sequential file containing variable-length records.
Its format is identical to that of object modules (Appendix C explains
this format in detail).

You can specify a symbol table file as input to a 1linking operation.
This makes the global symbols in the symbol table file and their
values available to the object modules being 1linked, without also
linking in the entire image with which the global symbols are
associated. One primary use for specifying STB files at link time is
to make global symbols in a system image available to a number of
other images without binding the system image into each of the other
images.

- CHAPTER 4

LIBRARIES

The linker searches one or more libraries to resolve references to
global symbols that are not defined in the object files specified
previously in the LINK command. A library contains object modules and
related information, including a list of the names of the modules and
a list of the global symbols contained in the modules. (A library can
also contain macros instead of object modules; however, the linker is
not concerned with macro libraries.)

When the linker matches a global symbol having an unresolved strong
reference with an entry in a library's table of global symbols, it
binds the module that defines the symbol into the image. You can also
explicitly include modules from a 1library in an image, thus
eliminating the need for the linker to search the global symbol table
of the 1library. In addition to any libraries that you specify, the
linker automatically searches the default system library for any
unresolved strong references.

To create a library, you must use the LIBRARY command, which is
explained in the VAX/VMS Command Language User's Guide.

4.1 LIBRARY TABLES USED BY THE LINKER

Each object module library contains two 1lists or tables that the
linker uses to resolve symbolic references:

e A module name table, containing an entry for each object
module in the 1library. Each entry includes the name of the
module and its address within the library file.

® A global symbol table, containing an entry for each global "
symbol in the modules in the library. Each entry includes the
name of the symbol and the location of the module that defines
the symbol.

For example, in a hypothetical library named MINE2, one of the modules
is MODULEZ, which contains the global symbols TAGl and TAG2. Although
it is not intended as an exact schematic illustration, Figure 4-1
shows the relationship of the module name table and the global symbol
table to the rest of the library.

LIBRARIES

MINE2.0LB
LIBRARY
HEADER
MODULE NAME
TABLE
MODULEZ One entry in the module name table for
each object module in the library.
GLOBAL SYMBOL
Pointers to TABLE
the associated
module TAG1 —One entry in the global symbol table
TAG2 for each global symbol in each module.
MODULEZ
MODULEB OBJECT MODULES

Figure 4-1 Library Tables

4.2 LINKER'S USE OF LIBRARIES

You can include library modules in the image either implicitly or

explic

itly:

Implicit inclusion occurs when a module specified in the LINK
command refers to a global symbol defined in a library that
the linker searches. For example, an instruction in a module
named MODULEl moves FIELDA to FIELDB, yet FIELDB is defined
only in the module LIBMOD3 in the library BOBLIB.OLB. You can
specify:

$ LINK MODULEl,BOBLIB/LIBRARY

This causes the linker to search BOBLIB for any unresolved
references from MODULEL. When it discovers that FIELDB is
defined in LIBMOD3, the linker includes that module in the
image.

Explicit inclusion occurs when you name a module with the
/INCLUDE qualifier after the library name. To use the example
in the explanation of implicit inclusion, if you know that
FIELDB is defined in module LIBMOD3 in BOBLIB, you can
simplify the linker's search and explicitly include LIBMOD3 in
the final executable image by specifying:

$ LINK MODULEl,BOBLIB/INCLUDE=LIBMOD3

.

~

LIBRARIES

The linker follows these conventions in using libraries:

@ It processes all input files, including 1libraries, in the
sequence in which you name them. Thus, the linker searches a
library for unresolved strong references only from previously
named input files. For example, assume that you enter the
following command:

$ LINK A,B,C/LIBRARY,D,E

The linker searches library C for unresolved strong references
from object modules A and B, but not D and E. The search of
library C continues until no more symbols can be resolved.
For example, if module X is included from library C and module
X also has some unresolved strong references, the linker makes
another search of library C.

e If you specify both the /LIBRARY and /INCLUDE qualifiers after
a library's file specification, the linker includes the named
modules first and then, if necessary, searches the library.
This is true regardless of the order of the two gualifiers.
For example, the following two commands cause the 1linker to
perform identical actions:

$ LINK A,B/INCLUDE=(MOD1,MOD2)/LIBRARY
$ LINK A,B/LIBRARY/INCLUDE=(MOD1,MOD2)

@ The linker searches the default system library for unresolved
strong references after it has processed all named input
files, including user libraries. (See Section 4.3 for a
discussion of the default system library.)

These conventions allow you considerable choice when the same global
symbol name is defined differently in modules in different libraries.
For example, if you know that a particular symbol is defined as you
need it in a particular module, but that the same symbol is defined
differently in another module (in one of your libraries or the default
system library), you can choose the desired definition by specifying
the module with the /INCLUDE qualifier. If you know that your own
library has global symbols that are defined differently in the default
system library, you can include your own symbols by specifying your
library with the /LIBRARY qualifier.

4.3 DEFAULT SYSTEM LIBRARY

If any unresolved strong references remain after the linker has
processed all your input, it begins a search of the default system
library. This "library" is in fact two files: one a shareable image
called VMSRTL.EXE and the other an object library called STARLET.OLB.
Both files reside on the device and directory given by the translation
of SYSSLIBRARY.

4.3.1 VMSRTL.EXE

If the linker needs to search the default system library, it searches
the VMSRTL shareable image first. This shareable image contains most
of the procedures described in the VAX-11l Common Run-Time Procedure
Library Reference Manual, including many routines required by almost
all FORTRAN programs.

LIBRARIES

If the linker finds no symbols that it needs in the shareable image,
it proceeds to search the object library STARLET and does not include
the shareable image VMSRTL in the image being created.

You can use the /NOSYSSHR qualifier to the LINK command to suppress
the linker's search of this shareable image (see Chapter 5).

4.3.2 STARLET.OLB

STARLET.OLB is an object module library in the form discussed in this
chapter. It contains all of the object files that were used to create
the shareable image version of the Run-Time Library, as well as many
less frequently used procedures of the same class. This object
library also contains modules for interfacing to VAX/VMS system
services.

The linker searches SYSSLIBRARY:STARLET.OLB if any unresolved strong
references remain after it has searched SYS$LIBRARY:VMSRTL.EXE.

You can use the /NOSYSLIB qualifier to the LINK command to suppress
the 1linker's search of both STARLET.OLB and VMSRTL.EXE (see Chapter
5).

4.4 EXAMPLE OF USING LIBRARIES

The following example shows how you can specify both explicit and
implicit inclusion of modules from libraries. (The file types need
not be entered, but are included here for clarity.)

$ LINK LAUREL.OBJ,HARDY.OBJ,-
MINE2.0LB/INCLUDE=MODULEZ,-
MINE3.OLB/LIBRARY

These statements tell the linker:
1. Link the object modules LAUREL and HARDY.

2. Extract MODULEZ from the library MINE2 and link it with the
object modules LAUREL and HARDY.

3. If any unresolved strong references remain in LAUREL, HARDY,
or MODULEZ, search the library MINE3, and extract and link in
any modules needed to resolve these references.

4, For any strong references that are still unresolved, search
the default system library.

Note that the linker will not search MINE3.OLB and the default system
library if the only unresolved references are weak references. For a
discussion of weak references, see Section 3.2.2.4.

CHAPTER 5

THE LINK COMMAND

To invoke the VAX-11l Linker, use the DIGITAL Command Language (DCL)
LINK command. You can enter the LINK command interactively, or you
can include it in a command procedure.

The LINK command recognizes a number of command qualifiers and file
qualifiers. A command qualifier conveys information about the linking
operation and the image to be created -- for example, whether to
generate an image map, or whether to include a debugger in the image.
A file qualifier specifies information about a file that is input to
the linker =-- for example, identifying the file as a library. Some
qgualifiers are valid only if they are used with other qualifiers, and
some qualifiers are incompatible with other .qualifiers.

This chapter discusses the LINK command and its qualifiers; however,
it 1is not concerned with command syntax. Syntax deals with the rules
for entering commands, such as how to specify a continuation line, or
the number of characters you must enter before the command interpreter
can recognize the entry. This chapter discusses matters of syntax
only where necessary to avoid errors or misunderstanding, and uses
spellings that most clearly suggest a qualifier's function. For
detailed information .on command syntax, see the VAX/VMS Command
Language User's Guide.

5.1 COMMAND FORMAT
The LINK command has the following format:
$ LINK/command-qualifier... file-spec/file-qualifer,...

You must enter at least the LINK command name and one input file name.
You can enter multiple command qualifiers and file specifications, and
one or more file qualifiers for each file specification.

Slashes (/) separate qualifiers from each other and from the command
name or file specification with which they are associated. One or
more spaces normally separate the 1last command qualifier from the
first input file specification. Commas precede the second and
subsequent input file specifications.

5-1

THE LINK COMMAND

The following examples show some acceptable formats of the LINK
command (Section 5.3 explains these examples).

$ LINK PROGA
$ LINK/MAP/DEBUG PAYROLL,FICA,PAYLIB/LIBRARY

$ LINK/MAP/FULL/EXECUTABLE=STOOGES CURLY,-
LARRY ,MOE,TVLIB/INCLUDE=OLDIES, -
GOODIES/LIBRARY ,SLAPSTICK/OPTIONS

The names assigned to the image file, the map file, and other output
files depend on the first input £file name, unless you specify
differently. 1In the second of the preceding examples, the image file
and the map file will be named PAYROLL. 1In the third example, the
image file will be named STOOGES, because you so specified with the
/EXECUTABLE qualifier, but the map file will be named CURLY. (To name
the map file STOOGES, you must specify /MAP=STOOGES.)

5.2 COMMAND AND FILE QUALIFIERS

You can enter many command and file qualifiers, but normally you will
not need to, because most qualifiers have default values that the
linker uses if you omit the qualifier.

Some qualifiers are incompatible with certain other qualifiers. The
linker takes one of two actions with incompatible qualifiers;
-depending on the specific case, it might display an error message and
invalidate the entire LINK command, or it might ignore or override
certain qualifiers (generally accepting only the last valid one) and
allow the 1link to continue. For example, if you specify /FULL and
/BRIEF for the map, the linker rejects the entire command. But if you
specify the positive and negative forms of a qualifier (say,
/EXECUTABLE and /NOEXECUTABLE), the 1linker accepts the 1last one
entered.

Tables 5-1 and 5-2 list the command and file qualifiers, the default
value for each, and any incompatible qualifiers. A [NO] indicates
that the qualifier can be negated by prefixing NO (without
brackets) -- for example, /NODEBUG or /NOEXECUTABLE. Any entry after
the qualifier is valid only for the positive form of the gualifier;
for example, it would be nonsense to enter /NOEXECUTABLE=PAYROLL.

S

THE LINK COMMAND

Table 5-1
Command Qualifiers

Incompatible
Command Qualifier Default Qualifiers
/BRIEF Default map /NOMAP , /FULL,
/CROSS_REFERENCE
/ [NO] CONTIGUOUS /NOCONTIGUOUS /NOEXECUTABLE
/[NO]CROSS_REFERENCE /NOCROSS‘REFERENCE /NOMAP , /BRIEF
/[NO]DEBUG[=file~-spec] /NODEBUG /NOTRACEBACK,
/SHAREABLE, /SYSTEM
/ [NO]EXECUTABLE [=file-spec] /EXECUTABLE /SHAREABLE
/FULL Default map /NOMAP , /BRIEF
/[NO]MAP [=file-spec] /NOMAP
/ [NO] SHAREABLE [=file-spec] /NOSHAREABLE /SYSTEM, /DEBUG,
/EXECUTABLE
/[NO] SYMBOL_TABLE [=file-spec] | /NOSYMBOL_TABLE
/ [NO] SYSLIB /SYSLIB
/ [NO] SYSSHR /SYSSHR /NOSYSLIB
/[NO] SYSTEM[=base-address] /NOSYSTEM /DEBUG , /SHAREABLE
/ [NO] TRACEBACK /TRACEBACK
Table 5-2
File Qualifiers
Incompatible
File Qualifier Default Qualifiers

/INCLUDE=module-name[,...] | (Does not apply)

All others, except

/LIBRARY
/LIBRARY File is an object All others, except
module. /INCLUDE
/OPTIONS : File is an object All others
module.
/SELECTIVE_SEARCH Include all module | A1l others, except
global symbols in /SHAREABLE

/SHAREABLE

the image's global
symbol table.

File is an object
module.

All others, except
/SELECTIVE_SEARCH

THE LINK COMMAND

Sections 5.2.1 and 5.2.2 discuss the command qualifiers and file
qualifiers individually. Within each section the qualifiers are
presented in alphabetical order.

5.2.1 Command Qualifiers
/BRIEF

/BRIEF produces a brief form of the image map. A brief map
contains only the following sections:

® Object Module Synopsis
e Image Synopsis
e Link Run Statistics

A brief map does not contain the Program Section Synopsis and the
Symbols by Name sections, which are included in the default map.

/BRIEF is valid only if you specified /MAP previously in the LINK
command. /BRIEF is incompatible with /FULL and /CROSS_REFERENCE.

/CONTIGUOUS
/NOCONTIGUOUS

/CONTIGUOUS forces the entire image to be placed 1in consecutive
disk blocks. If sufficient contiguous space is not available on
the output disk, the linker reports the error and terminates the
link operation without generating an image.

You can use the /CONTIGUOUS qualifier to improve paging
performance for -all types of images, because an image usually
runs slower if it is not contiguous. You can also use the
/CONTIGUOUS qualifier to satisfy the requirement of bootstrap
programs for certain system images, since many bootstrap programs
cannot handle discontiguous images.

If you do not specify /CONTIGUOUS, the linker assumes
/NOCONTIGUOUS by default. That 1is, 1if sufficient contiguous
space is not available, the 1image 1is divided and placed in
different areas on disk. (However, the operating system still
tries to make the image as contiguous as possible.)

/CROSS_REFERENCE
/NOCROSS_REFERENCE

/CROSS_REFERENCE causes the Symbols by Name section of the image
map to be replaced by a Symbol Cross Reference section, which
lists global symbols in alphabetical order and the following
information about each symbol:

e Its value

e The name of the first module that defines it

® The name of each module that refers to it
The number of symbols listed in the cross reference depends on

whether you specified /FULL for the map or accepted the default
map. A full map contains global symbols from all modules in the

SN

THE LINK COMMAND

image, including modules extracted from libraries. The default
map generally excludes global symbols that are defined and
referred to only within the default system library.

/CROSS_REFERENCE is valid only if you specified MAP previously in
the LINK command. /CROSS_REFERENCE is incompatible with /BRIEF.

If you do not request a cross reference, none is provided; the
map still 1lists global symbols in alphabetical order, but gives
only the value for each one.

/DEBUG[=file~-spec]

/NODEBUG
/DEBUG tells the linker to bind a debugging module into the
image. When the image 1is run, the debugger receives control
first.

If you specify /DEBUG, you can also enter the file specification
of a user-written debug module. If you enter a debugging module
file specification without specifying the file type, the linker
assumes OBJ.

If you specify /DEBUG without entering a file specification, the
linker uses the VAX-11l Symbolic Debugger. This debugger includes
a debug symbol table (discussed in Section 4.2) and coding logic
to help 1in debugging the image at run time. For further
information, see the VAX-11l Symbolic Debugger Reference Manual.

/DEBUG automatically includes /TRACEBACK. If you specify /DEBUG
and /NOTRACEBACK, the 1linker overrides your specification and
includes traceback information. '

If you do not specify /DEBUG, the linker assumes /NODEBUG.

/EXECUTABLE[=file-spec]
/NOEXECTABLE

/EXECUTABLE tells the linker to create an executable image, as
opposed to a shareable image or a system image. You can also
enter a file specification for the image; however, if you do not
enter one, the linker uses the file name of the first input file
and the file type of EXE.

/NOEXECUTABLE tells the 1linker to perform all the actions
involved in creating an executable image, but not to output it.
You can use /NOEXECUTABLE to test combinations of files and
qualifiers without actually creating an image.

If you do not specify /NOEXECUTABLE, /SHAREABLE, or /SYSTEM, the
linker assumes /EXECUTABLE.

/FULL

/FULL produces the most complete map of the image. The full map
contains all the sections found in the default map, although
several sections contain more detailed information. The full map
also contains two sections not found in the default map.

THE LINK COMMAND

The following sections of a full map contain information about
all modules in the image. (In the default map, these sections
generally omit information about modules from the default system

~library.)
® Object Module Synopsis
e Program Section Synopsis

® Symbols by Name

The following sections are included in a full map, but not in the

default map:
® Image Section Synopsis
e Symbols by Value

For illustrations and explanations of the image map sections,
Chapter 7.

/FULL is valid only if you specified /MAP previously in the
command. /FULL 1s incompatible with /BRIEF, but not
/CROSS_REFERENCE.

/MAP [=file-spec]
/NOMAP

see

LINK
with

/MAP causes the linker to create an image map as a separate file.
You can enter a file specification for the image map file;

however, if you do not enter one, the linker uses the file

name

of the first input file. If you do not enter a file type after

the file name, the linker assumes a file type of MAP.

If you enter /MAP, you can further specify the contents of
map with the /BRIEF, /FULL, and /CROSS REFERENCE qualifiers.

the
If

you enter /MAP and no related qualifier, the linker produces a

default map that contains the following sections:
® Object Module Synopsis
e Program Section Synopsis
e Symbols by Name
e Image Synopsis
® Link Run Statistics

For illustrations and explanations of the image map sections,
Chapter 7.

If you do not specify /MAP, the default is /NOMAP; that is,
linker does not generate an image map.

/SHAREABLE [=file-spec]
/NOSHAREABLE

see

the

/SHAREABLE tells the linker to create a shareable image. (For an
explanation of shareable 1images, see Section 2.6.2 and Chapter
8.) You can also enter a file specification for the shareable
image; however, if you do not enter one, the linker uses the

file specification of the first input file.

THE LINK COMMAND

You cannot run a shareable image, but you can link it with object
modules or other shareable images. (See the explanation of the
/SHAREABLE file qualifier in Section 6.1.2.)

If you specify /SHAREABLE, vyou cannot specify /EXECUTABLE,
/SYSTEM, or /DEBUG.

If you do not specify /SHAREABLE, the linker assumes
/NOSHAREABLE; that is, the image is not a shareable image. (See
the explanation of the /EXECUTABLE command qualifier in this
section.)

/SYMBOL_TABLE [=file-spec]
/NOSYMBOL_TABLE

/SYMBOL_TABLE tells the linker to create a separate file, with a
default file type of STB, containing the image's global symbol
table. This qualifier does not affect the global symbol table in
the image itself; rather, it causes an additional global symbol
table to be created in object module format. You can also enter
a file specification for the global symbol table file; however,
if you do not make this entry, the linker uses the name of the
first input file. '

You can include the symbol table file as input to future 1linking
operations, Jjust as if it were an object module. For further
information, see Section 3.3.1.

If you do not specify /SYMBOL_TABLE, the linker assumes
/NOSYMBOL_TABLE; that is, it does not generate a symbol table
file.

/SYSLIB
/NOSYSLIB

/SYSLIB tells the linker to search the default system library for
unresolved strong references to global symbols after it has
searched any specified user libraries. You will probably want
the 1linker to search the default system library for almost all
linking operations. If you do not specify /NOSYSLIB, the 1linker
assumes /SYSLIB by default.

/NOSYSLIB tells the linker not to search the default system
library. You should specify /NOSYSLIB only if you know that
other specified 1libraries allow the linker to resolve all
symbolic references, and if you have a good reason for
suppressing the system library search.

/SYSSHR
/NOSYSSHR

/SYSSHR tells the linker to search the default system run time
library shareable image (SYSSLIBRARY:VMSRTL.EXE). If any symbol
within this image resolves an outstanding . reference, the
shareable image is included in your program as the
highest-addressed part of the program region.

The primary use of this qualifier, however, 1is to express its
negative form. /NOSYSSHR tells the linker not to try to resolve
symbolic references by including the default system shareable
image. Note, however, that /NOSYSSHR has no effect upon the
search of the default system object library
(SYSSLIBRARY:STARLET.OLB).

THE LINK COMMAND

You might specify /NOSYSSHR, for example, when you need only one
library routine for a particular program. Since the shareable
image VMSRTL contains many routines, all of which would be
mapped, it would be inefficient to include all the routines if
you need only one. /NOSYSSHR directs the linker to use only the
default object library, which includes all the routines found in
VMSRTL.

/SYSTEM[=base-address]
/NOSYSTEM

/SYSTEM tells the linker to create a system image. (For an
explanation of system images, see Section 2.6.3.) You can also
specify a base address at which the system image will be loaded
at run time, and you can express this address in decimal (%D),
hexadecimal (%X), or octal (%0). If you specify /SYSTEM without
a base address, the linker assumes %X80000000.

If you specify /SYSTEM, you cannot specify /SHAREABLE or /DEBUG.

If you do not specify /SYSTEM, the 1linker assumes /NOSYSTEM;
that 1is, the image is not a system image. (See the explanation
of the /EXECUTABLE command qualfier in this section.)

/TRACEBACK
/NOTRACEBACK

/TRACEBACK tells the linker to include traceback information 1in
the image. Traceback is a facility that automatically displays
information from the «call stack when a fatal program error
occurs. The - output shows which modules were called before the
error occurred.

The linker assumes /TRACEBACK unless you exclude the facility by
specifying /NOTRACEBACK. If you enter /DEBUG, the 1linker
automatically includes traceback also; therefore, if you specify
both /DEBUG and /NOTRACEBACK, you receive a warning that
/NOTRACEBACK has been ignored.

5.2.2 File Qualifiers
/INCLUDE=module-namel[,...]

/INCLUDE tells the linker to include the named module or modules
from the associated library in the image. (To specify more than
one module, enclose the list in parentheses and separate module
names with commas.) /INCLUDE does not cause the linker to search
the rest of the associated 1library for wunresolved references,
unless you also specify /LIBRARY. For further information on
libraries, see Chapter 4. ‘

The following two examples show uses of the /INCLUDE gqualifier
with a library named REDS that contains many modules, among them
ROSE, MORGAN, and BENCH.
$ LINK TEAM,REDS/INCLUDE=(ROSE,MORGAN,BENCH)

This example tells the linker to extract modules ROSE, MORGAN,
and BENCH from the 1library REDS and include them in the
executable image which will be named TEAM (since that is the name
of the first input file).

$ LINK TEAM,REDS/LIBRARY/INCLUDE= (ROSE ,MORGAN ,BENCH)

5-8

THE LINK COMMAND

This example also tells the linker to include ROSE, MORGAN, and
BENCH in TEAM. However, the /LIBRARY qualifier tells the linker
to search the rest of the library REDS and 1link in any other
modules needed to resolve strong symbolic references in TEAM,
ROSE, MORGAN, and BENCH.

/LIBRARY

/LIBRARY identifies a file as a library. The linker searches
libraries that you specify if any unresolved strong symbolic
references between modules remain after it 1links in the named
input files and any library modules specified with the /INCLUDE
qualifier. For further information on libraries, see Chapter 4.

/LIBRARY cannot be the only qualifier on the first input file,
since there are as yet no outstanding references to be resolved
from this library.

/OPTIONS

/OPTIONS identifies a file as a linker options file. This file
can contain input file specifications, as well as special
instructions recognized only by the linker and not by the command
interpreter.

Chapter 6 explains how to create an options file and what it can
contain. Chapter 6 also discusses each of the special
instructions you can include in the options file.

/SELECTIVE_SEARCH

/SELECTIVE_SEARCH tells the linker to include in the image's
global symbol table only those global symbols in the associated
file that previously named input files refer to. If you do not
specify /SELECTIVE SEARCH for an input file, all of its global
symbols are included in the global symbol table of the image.

/SHAREABLE

/SHAREABLE as an input file qualifier is valid only within a
linker options file. Section 6.1.2 explains the use of the
/SHAREABLE file qualifier.

EXAMPLES
1. $ LINK PROGA

The linker binds the object module PROGA and creates an
executable image named PROGA. The linker searches only the
default system library for any unresolved strong symbolic
references in PROGA.OBJ. All linker defaults are used.

2. S LINK/MAP/DEBUG PAYROLL,FICA,PAYLIB/LIBRARY

The linker binds object modules PAYROLL and FICA, searching
the library PAYLIB for unresolved strong references in the
two object modules before searching the default system
library. The 1linker also includes the VAX-11 Symbolic
Debugger in the image.

The name of the executable image is PAYROLL. The linker also

generates an image map (in the default map format) with a
file name of PAYROLL and a file type of MAP.

5-9

3.

THE LINK COMMAND

$ LINK/MAP/FULL/EXECUTABLE=STOOGES CURLY,-
LARRY ,MOE,TVLIB/INCLUDE=OLDIES,-
GOODIES/LIBRARY ,SLAPSTICK/OPTIONS

The linker binds object modules CURLY, LARRY, and MOE, as
well as the module OLDIES from the library TVLIB. The linker
searches the library GOODIES for any unresolved symbolic
references in CURLY, LARRY, MOE, and OLDIES, before searching
the default system library. The linker uses the options file
SLAPSTICK for additional input file specifications or special
instructions.

The linker generates a full map, with the default file name
of CURLY and the file type of MAP. The executable image is
named STOOGES.

CHAPTER 6

THE /OPTIONS FILE QUALIFIER

The /OPTIONS file gqualifier identifies a linker options file. You can
include two types of information in this file:

e Input file specifications and associated file qualifiers, in
addition to any that you enter in the LINK command itself

® Special instructions to the 1linker that are not available
through the standard command language

When you specify an options file at link time, the 1linker reads the
file before performing the linking operation.

6.1 USES FOR AN OPTIONS FILE

You can create an options file and use the /OPTIONS qualifier for .a
number of reasons:

® To give the linker a series of file specifications and file
qualifiers that you use frequently in linking operations

e To identify a shareable image as an input file to the 1link
operation

® To enter a longer list of files and file qualifiers than the
VAX/VMS command interpreter can hold 1in its command input
buffers

® To specify information that applies only to LINK and' to no
other command

6.1.1 Entering Frequently Used Input Specifications

You <can create an options file containing a group of file
specifications and file qualifiers that you link frequently, and you
can specify this options file as input to the linker. The advantages
of this method are convenience and flexibility. Consider the
following two examples.

1. You want to <create an executable image named PAYROLL
containing modules named PAYCALC, FICA, FEDTAX, STATETAX, and
OTHERDED. You also want to be able to make changes to any of
the modules and conveniently relink the image.

THE /OPTIONS FILE QUALIFIER

To accomplish these goals, you can use the EDIT command to
create the file PAYROLL.OPT containing the file
specifications of the five modules. Then, to link the image
initially or to relink it any time thereafter, you can simply
enter $ LINK PAYROLL/OPTIONS, instead of having to enter the
/EXECUTABLE=PAYROLL qualifier and the file specifications of
all the input modules each time. (Note that wusing the
options file in this example produces an image named
PAYROLL.) The more file specifications and file qualifiers
you have in an options file, the greater is the convenience
of using it.

2. Two programmers, one writing PROGX and the other PROGY, both
need to include the modules MODA, MODB, and MODC, and to
search the library LIBZ. Someone can create an options file
(say, [G1l5]GROUP15.0PT) containing the file specifications
for MODA, MODB, and MODC, and the specification for LIBZ
followed by /LIBRARY. At link time, then, each programmer
needs to specify only the name of his or her module and the
options file-- for example:

$ LINK/MAP PROGX, [G15] GROUP15/0OPTIONS

6.1.2 1Identifying a Shareable Image as Input

To identify a shareable image as an input file to the linker, you must
use the /SHAREABLE file qualifier within an options file. (If you
include /SHAREABLE in the LINK command, the command interpreter
assumes that it is a command qualifier, not an input file qualifier.)

The format for /SHAREABLE as an input file qualifier is as follows:
/SHAREABLE [=[NO] COPY]

e /SHAREABLE identifies the associated input file as a shareable
image.

® You can optionally specify COPY or NOCOPY as keywords. COPY
causes the 1linker to produce a private copy of the shareable
image in the image being «created. NOCOPY, which 1is the
default, causes the linker not to produce a private copy.

6.1.3 Entering More Input Than the Command Language Can Handle

At times you may need to link a series of input files and file
gualifiers that exceeds the buffer capacity of the command
interpreter. The maximum number of entries depends on the specific
entries themselves and how much of each line you use. However, as a
general guideline, if your LINK command statement exceeds six or seven
lines, the command interpreter may not be able to process it. In this
case, you must put some or all of the input file specifications and
file qualifiers in an options file.

6.1.4 Entering Non-Standard Link Instructions

The linker is more complex than most VAX/VMS wutilities; it can
perform a number of optional functions in creating an image. Although
the LINK command could have been designed to accept a very large

S

THE /OPTIONS FILE QUALIFIER

number of command qualifiers, some of these optional functions are not
frequently used and apply only to the linker-- for example, specifying
the image's base address or the number of I/O channels it can use.

Therefore, to keep the size of the command interpreter's internal
tables and code to a manageable level, the /OPTIONS qualifier was
developed. /OPTIONS is recognizable to the command interpreter, but
the special functions that the options file can specify are
recognizable only to the linker. When you specify an options file,
then, the command interpreter passes the file to the linker, which
reads and interprets its contents.

Table 6-1 lists the special functions that you can request only in an
options file, giving the following information for each: its format,
the default value, and a brief explanation. Section 6.3 provides
detailed explanations of each special function.

Table 6-1
Special Options

Format Default Explanation
BASE=n $X200 for executable Base virtual
and shareable address for the
$X80000000 for image
system
CHANNELS=n At least 32 Maximum number of

I/0 channels the
image can use
during execution

CLUSTER=cluster-name,- | (See explanation Identifies a
[base-address], - in Section 6.3.) cluster
[pfc],file~-spec[,...]

DZRO MIN=n 5 Minimum number of

- initialized pages

before compression
can occur

GSMATCH=keyword,- LEQUAL,0,0 Sets match control
major-id,minor-id parameters of a -
shareable image

IOSEGMENT=n, - 32, POBUFS Number of pages for
[[NO] POBUFS] the image I/0
segment
ISD_MAX=n Approximately 96 Maximum number of
image sections
STACK=n 20 Number of pages for
the user mode stack
UNIVERSAL=symbol-name Global symbol Identifies a global
[,e0.]] is not universal symbol as universal

- THE /OPTIONS FILE QUALIFIER

6.2 CREATING AND SPECIFYING AN OPTIONS FILE

To use the /OPTIONS qualifier, you must first create the options file.
Use the EDIT command, specifying any valid file name and a file type
of OPT. (You can use any file type, but the linker uses a default
file type of OPT with the /OPTIONS qualifier.)

The options file can contain input file specifications and associated
file qualifiers, or the special link options outlined in Table 6-1, or
both types of information. The following rules apply to the contents
of a linker options file:

1. You must enter any input file specifications and associated
file qualifiers before any special options (see Table 6-1 for
the available special options).

2. You cannot enter command qualifiers.

3. You cannot enter the /OPTIONS file qualifier.

4. You can enter /SHAREABLE as an input file qualifier only in
an options file (see Section 6.1.2).

5. You cannot enter more than one special option on a line.

6. You can continue a file specification 1line or a special
option line.

7. You can enter comments after an exclamation point (!).
8. You can shorten the name of a special option, as long as you
enter at least the first four characters (for example,
CHAN=50 instead of CHANNELS=50).
The following example shows a file named PROJECT3.0PT that contains
both input file specifications and special options:

PROJECT3.0PT

MOD1 ,MOD7,LIB3/LIBRARY,-
LIB4/LIBRARY/INCLUDE= (MODX,MODY, MODZ) ,-
MOD12/SELECTIVE_SEARCH

CHANNELS=40 !THIS IS A COMMENT.

STACK=75

IOSEG=50

To include all the specifications and options in this example at link
time, you need specify only the file name followed by /OPTIONS. For
example:

$ LINK/MAP/CROSS_REFERENCE PROGA, PROGB,-
PROGC, PROJECT3/OPTIONS

If you have enter the SET VERIFY command, the contents of the options
file are displayed as the file is processed.

You can specify one or several options files in a LINK command
statement.

e

THE /OPTIONS FILE QUALIFIER

6.3 SPECIAL OPTIONS

This section lists the available special options in alphabetical order
and explains each one. Each option has the general format:

option_name=parameter(,...]

If the parameter is a number (indicated by "n"), you can express it in
decimal (%D, the default radix), hexadecimal (%X), or octal (%0).
However, the default and maximum numeric values 1in this manual are
usually expressed in decimal, as are the values in any linker error or
warning messages relating to these options.

.BASE=n

BASE= specifies the base virtual address of the default
cluster. If you do not define any clusters with the CLUSTER=
option, the BASE= option value also specifies the base virtual
address of the whole image. If you specify an address that is
not divisible by 512, the 1linker automatically adjusts it
upward to the next multiple of 512 (that is, the next highest
page boundary).

The default base address is hexadecimal 200 (decimal 512) for
executable and shareable images, and hexadecimal 80000000 for
system images.

CHANNELS=n

CHANNELS= specifies the maximum number of I/0 channels that
the image can use while it is running.

The default number of channels is determined by the operating
system, but it is at least 32. You cannot specify less than
32 or more than 64. 1If you specify from 0 to 32, the 1linker
uses the default; and if you specify more than 64, the linker
uses 64.

CLUSTER=cluster-name, [base-address], [pfc],file-spec[,...]

CLUSTER= defines a <cluster. (Clusters are discussed 1in
Chapters 2, 8, and 9.) The CLUSTER= option specifies the
following information:

e The name the linker will assign to it
e Optionally, the base virtual address of the cluster

e Optionally, the page fault cluster (pfc) -- that is,
the number of pages to be read into memory when:a
fault occurs for a page in the cluster

® Specifications for the file or files that the 1linker
is to wuse in creating the cluster. Note that you
should not specify in the LINK command itself any
files that you specify with the CLUSTER= option
(unless you want two copies of each file included 1in
the final image).

If you omit the base address or the page fault cluster, or
both, you must still enter the comma after each omitted
parameter. For example:

CLUSTER=AUTHORS,, ,TWAIN,DICKENS

THE /OPTIONS FILE QUALIFIER

The linker uses the following defaults in connection with the
CLUSTER= option:

e If you do not use the CLUSTER= option, the 1linker
creates a default cluster, as described in Chapter 9.

e If you use the CLUSTER= option but do not specify a
base address, the 1linker allocates the cluster
according to the. procedure described in Chapter 9.

e If you use the CLUSTER= option but do not specify a
page fault cluster, VAX/VMS memory management
determines the value.

DZRO_MIN=n

DZRO_MIN= is an option that gives you some control over the
linker's compression of uninitialized pages in an executable
image. Before the linker writes the binary data and code of
the image, it attempts to compress certain uninitialized areas
by converting them to demand zero image sections. ("Demand
zero" means that the area does not occupy physical space in
the image on disk; but when the area 1is accessed during
execution, a portion of memory is allocated for it and
initially filled with binary zeroes.) An uninitialized area is
eligible for this compression if it can be written in by the
user and if its size is equal to or greater than a threshold
value: that 1is, the DZRO MIN= value. The linker will not,
however, continue creating demand zero sections after the
total number of image sections reaches the maximum (see the
ISD_MAX= option in this section).

The default value for DZRO_MIN= is 5; that is, an
uninitialized, writeable area is not eligible for compression
unless it occupies five or more contiguous pages. A DZRO_MIN=
value less than 5 might cause the linker to compress more
sections and create a greater number of image sections,
possibly reducing the 1image size on disk but decreasing its
paging performance. A value greater than 5 might cause the
linker to compress fewer sections and create a smaller number
of image sections, possibly increasing the image size on disk
but providing better performance during execution.

GSMATCH=keyword,major-id,minor-id

GSMATCH= sets the match control parameters for a shareable
image that you are now creating. After the shareable image
_has been linked with an executable image, and when the
executable image 1is being run, these parameters guide the
VAX/VMS image activator in choosing global sections. For
further information on this process, see Section 8.2.3.

The GSMATCH= option specifies the following information:

e A keyword expressing the match relationship between
the minor identifications in the user shareable image
section and in the installed global section. This
keyword is one of the following:

- EQUAL The minor identification of the user
shareable image section must be identical to that
of the installed shareable image section.

THE /OPTIONS FILE QUALIFIER

- LEQUAL The minor identification of the user
shareable image section must be less than or equal
to that of the installed shareable image section.
LEQUAL is the default, since it permits the creator
of a shareable image to update it (increasing the
minor identification) and install it, and yet avoid
the need for programs using that shareable image to
be relinked. (The minor identification of that
shareable image section in programs that are linked
to it will be less than the minor identification of
the updated installed shareable image section.)

- NEVER The linker is to assume that global sections
will never match (perhaps because the shareable
image will never be installed). Therefore, the
linker will always create a private copy of this
shareable image in any image -that links to it.
(This keyword overrides any stated or defaulted
NOCOPY keyword in the /SHAREABLE file qualifier in
any subsequent 1link operation that names this
shareable image as an input file.)

- ALWAYS This keyword causes the image activator to
match image sections only by name and to ignore the
major and minor identifications. (However, the
syntax of this option requires that you still enter
‘major and minor identifications.)

® The major identification of the user shareable image
section, expressed as a number from 0 to 255.

® The minor identification of the user shareable image
section, expressed as a number from 0 to 2*%24-1,

The linker wuses the following defaults for the GSMATCH=
option:

GSMATCH=LEQUAL,0,0
IOSEGMENT=n/[, [NO] POBUFS]

IOSEGMENT= specifies the number of pages for the image 1I/0
segment, which holds the buffers and VAX-1l1 RMS control
information for all files that the image's process uses. If
the process needs more space than the IOSEGMENT value during
execution, VAX-11l RMS adds space for it at the end of the
program (P0) region.

You can also specify POBUFS or NOPOBUFS as parameters.
POBUFS, which 1is the default, permits RMS to use the program
region (P0) for any additional buffers that it needs.
NOP(OBUFS denies RMS the option of wusing PO space for
additional buffers.

The default value for IOSEGMENT= is 32,P0BUFS. The only
reason to specify a number of pages greater than the default
is to guarantee that the program region will be contiguous 1if
you need to extend it and if the total size of your program's
buffers and VAX-11] RMS control information exceeds 32 pages.
In this case, you would also want to specify NOPOBUFS.

ISD_MAX=

STACK=n

THE /OPTIONS FILE QUALIFIER

n

ISD_MAX= is an option that gives you some control over the
linker's compression of uninitialized pages in an executable
image. (For an explanation of compression, see the DZRO_MIN=
option in this section.) The ISD MAX= value specifies the
maximum number of image sections allowed in the image. If the
linker is compressing the 1image by .creating demand zero
sections and the total number of image sections reaches the
ISD_MAX= value, the compresson ceases at that point.

The default value for ISD MAX= is approximately 96. Note that
any value you specify 1s also an approximation. The linker
determines an exact ISD_MAX= value based on certain
characteristics of the image, 1including the different
combinations of section attributes. The exact value, however,
will be equal to or slightly greater than what you specify;
it will never be less.

STACK= specifies the number of pages to be allocated for the
image's user mode stack area.

The default value is 20. You may need to increase the stack
size 1if the program fails to run using the default value --
for example, if the stack is used for temporary storage of
data that exceeds 20 pages.

UNIVERSAL=symbol-name[,...]

UNIVERSAL= identifies one or more global symbols of a
shareable image as universal symbols. For a discussion of
universal symbols, see Section 3.2.3.

/ N

CHAPTER 7

IMAGE MAP

If you so request, the 1linker: produces an image map containing
information about the contents of the image and about the linking
process itself.

The map is placed on your output disk and assigned a file type of MAP.

" You can specify a file name with the MAP qualifier, or you can let the

VAX~11l software assign a default. You can print a copy of the map
with the PRINT command.

To obtain a map, you must include the /MAP qualifier in the LINK
command. You can further specify the type of map with the /BRIEF or
/FULL qualifier. If you enter either /MAP alone or /MAP with /FULL,
you can also include a symbol cross reference in the map by specifying
/CROSS REFERENCE. However, if you enter /MAP and no other map-related
qualifiers, the linker generates its default map.

The following examples show the LINK command qualifiers necessary to
produce different types of maps:

Command Qualifiers Type of Map Produced
$ LINK/MAP/BRIEF Brief map
$ LINK/MAP Default map

$ LINK/MAP/CROSS_REFERENCE Default map with symbol
cross reference

$ LINK/MAP/FULL Full map
$ LINK/MAP/FULL/- Full map with symbol
CROSS_REFERENCE cross reference

7.1 TIMAGE MAP CONTENTS

A listing of the image map contains several sections; however, the
number of sections and the contents of certain sections depend on the
qualifiers that you enter.

Table 7-1 lists all the possible section names in the order in which
they can appear, the types of map in which each appears, and a brief
explanation of each section. A section shown as appearing in "all" is
included 1in all types of image maps; "default" and "full" identify
sections appearing in default and full maps, respectively. A Dbrief
map thus contains only the map sections designated as "all." For
detailed explanations and illustrations of map sections, see Section
7.2.

7-1

IMAGE MAP

Table 7-1
Image Map Sections

Section Name Appears In Explanation
Object Module Synopsis All Object modules in the image
Image Section Synopsis Full Image sections and clusters
Program Section Synopsis | Default, Program sections and the

Full modular contributions

Symbols by Name Default, Symbols by Name lists
or Full global symbol names and
Symbol Cross Reference R values. However, if you
specify /CROSS_REFERENCE,
Symbol Cross Reference
appears instead, 1listing
symbol names, values,
defining modules, and

referring modules.

Symbols by Value Full Hexadecimal symbol values

and names of symbols with
those values

Image Synopsis All Statistics and other

information about the
output image

Link Run Statistics All Statistics about the link

run that created the image

The contents of the following sections vary depending on whether the
map type is default or full:

Object Module Synopsis
Program Section Synopsis
Symbols by Name

Symbol Cross Reference

The difference between these sections in a default map and in a full
map is in the number of items:

A default map generally includes only information that applies
to modules and shareable images that you name as input to the
linker or that are extracted from 1libraries you name. A
default map normally does not list information that applies
only to modules taken from the default system library.

A full map includes information that applies to all modules
and shareable images, 1including those extracted from the
default system library.

N

IMAGE MAP

7.2 1IMAGE MAP SECTIONS

The rest of this chapter explains and illustrates each available image
map section. The sections are presented in the order in which they
appear in a full map. Brief and default maps do not have all of these
sections, but the sections that they do have are in the order
presented here.

The illustrations reflect an 1image created from a simple FORTRAN
program (similar to the example developed in the VAX/VMS Primer).
Each illustration is from a full map. Headings and items in each
illustration are explained only if they are not self-explanatory.

Appendix B illustrates the complete brief, default, and full forms of
the map whose sections appear in this chapter.

7.2.1 Object Module Synopsis

The Object Module Synopsis lists object modules in the order in which
the linker processed them. This section appears in all types of maps.

The Object Module Synopsis provides the following information about
each module listed:

® Module name

@ Module identification as it appears in the module header

e Module length in bytes

e Complete file specification for the module

® Module creation date

e Language translator that created the module
The Object Module Synopsis also 1lists any errors that the linker
detected when it wrote the binary data and code--for example, a
warning message that a module refers to an undefined symbol. The
message appears immediately below the line that indicates the module

that the linker was processing when the error occurred.

Figure 7-1 illustrates the Object Module Synopsis section.

IMAGE MAP

HIALSNTI™LINV43d

//\W\ //.‘r\ _//l\ b /l\\
stsdoudg uor3joas abew] -, 2i1nbrd
66 0 vNH3a/ss3n £OOTILUSHA 43N NO A40D 3LIMM av3aN 0 0 00220000 z ¥
66 0 WNH3A/56837 200 1LMSHN ATNO Q934 0 0 00210000 8t £
66 0 WNHI/S83T TOO0 ™ 1LYSHA AIND 1938 0 O 00Y¥00000 v £
OM3Z OINVYWAT 3LIMM Q¥3¥ 0 O 00814444 oe £88
438 NO A4OD JLIMM Q93N 0 5 00800000 T 0
AIND I¥3¥ 0 ¢ 00900000 1 0
438 NO AdJOJ 3LIMM OI¥3M 0 £ 00¥ 00000 1]
ATNO I¥3M 0 T 00200000 1 0
nwmosz aIMOrvu HOLUW IWYN *03S ‘149 ONIOYL INY NOILDILOMA O4d NAA NSIN MIIY 3Svd §399d FdAl
+ -4
i SISJONAS NOILJ3AS FOUWI i
+ ————
stsdoudg STnpoW 399[q0 T-, 2anbtd
LI°TOX TE-NNIT IZ:00 8L&6T-INM-0T C4AXI*TLNSUALAIISASIZadT O PT43x3* TLNSHA
TI-£°0X 0¥IUW TI-X¥UA TIST BLET-NNM-GE £4470° LITNVISCAIISASIICAIT O 20 HOLJIIANSAS
TI-£°0X OMIVW TI-XVA £:vT BLOT-NNC-ST C4910°LINNVLSCIIISASIICHAT € £-0 JIYNNII$SL0
OT-£*0X OMIVYW TI-XUN Z30T BL&T-NNM-ZO T4rd0°oNdANCAITISASIICIIT 8 10 10049n43a
T6H—£*01 SNTId-NI NUMLNOA TTI-XUN T3160 BLOT-REW-TT Z4rd0*3OYNINVLAVNENWILTIT ZOE 10 NIYW$3IgVNIAY
NOLY3IND AL9T NOTLWIND 3114 S3LAT LN3II IWYN 3INTOW
+ ——

i SISJONAS 3IT7NI0W 133rdo

+

+
+
i
+ ———t

43LSNTI

7-4

IMAGE MAP

7.2.2 1Image Section Synopsis

The Image Section Synopsis lists information about the image sections
in the order in which they are mapped in the image. The Image Section
Synopsis appears only in a full map.

The Image Section Synopsis lists the following information about each
image section:

® Cluster in which the sections were allocated or found

e Type code (used internally by the linker)

e Number of pages

® Base virtual address within the image

@ Base virtual block number within the image file on disk

® Page Fault Cluster (PFC) (Zero indicates that VAX/VMS memory
management determines the value.)

e Protection characteristic ("read-only" or "read/write") and
paging information ("copy on reference," "demand zero," or
blank for standard handling)

® Global section name if the cluster is a shareable image
® Match control of global sections
® Major and minor identification of global sections

Figure 7-2 illustrates the Image Section Synopsis.

7.2.3 Program Section Synopsis

The Program Section Synopsis lists information about program sections
(PSECTs), including relative addresses within the image and PSECT
attributes. This section appears in default and full maps.

The address information enables you to translate an address from a
program module 1listing into a virtual address in the image, and vice
versa. This ability can help you isolate errors or problems in the
image at run time--for example, by allowing you to relate an address
in an error message to a specific location within a specific module.

The attributes of each program section are also 1listed. The linker
considers certain attributes when it groups PSECTs into image sections
(ISECTs). For further information on this process, see Section 2.7.

The Program Section Synopsis lists the following information about
each program section:

® Program section name, in order of increasing base virtual
addresses

e Name of the module or modules that contribute binary data or
code to the program section

® Base and ending virtual addresses, in hexadecimal, of each
module's contribution to the PSECT

IMAGE MAP

Alignment for the start of each module that contributes to the
PSECT. The number that follows the alignment description is
the power of 2 that expresses the 1length in bytes. (For
example, 2 to the power of 2 equals 4, the number of bytes in
a longword.) The alignment column can contain these entries:

- BYTE 0 - Byte alignment (1 byte)

- WORD 1 - Word alignment (2 bytes)

- LONG 2 - Longword alignment (4 bytes)
- QUAD 3 - Quadword alignment (8 bytes)
- PAGE 9 - Page alignment (512 bytes)

Attributes of the PSECT. Most attributes are parts of
contrasting pairs; that is, the PSECT is normally one or the
other. Table 7-2 1lists the attribute abbreviations (in
alphabetical order), their meanings, and any contrasting
attributes. Section 2.5.4 explains the attributes.

Table 7-2
PSECT Attributes
Abbreviation Meaning Contrasts With

ABS Absolute REL
CON Concatenated OVR
EXE Executable NOEXE
GBL Global LCL
LCL Local GBL
LIB Library (from USR

shareable image)
NOEXE Not executable EXE
NOPIC Not position PIC

independent code
NORD Not readable RD
NOSHR Not shareable SHR
NOWRT Not writeable WRT
OVR Overlaid CON
PIC Position independent NOPIC

code ‘ ‘
RD Readable NORD
REL Relocétable ABS
SHR Shareable NOSHR
USR User LIB
WRT Writeable NOWRT

Figure 7-3 illustrates the Program Section Synopsis.

7-6

N

IMAGE MAP

1dm ‘O

LUMON4TY

LHUMON 40

lam 40y

LHUMON ¢ Ty

s1sdou&s

0 3LAd

0 3lAd

0 31A3

3X3 CHMHSONCTITATIHENOI“HSN4IILJON O JLAA
< ONOT

43X3 SMHS 4074738 4NOD4MSN4OIA € 9NOT
< 9NOT

3X3 CMHS 10714 T13M4NODMSN4 DI < 9NOT
< 9NOT

3AXIONCMHSONTDT4 138 4NOD“NSN4 1A < ONOT
€ 9NOT

$3XIONCMHS €T71077473M4N0D4NSN4DIA < 9NOT
SALNAIYNLIIY NOITY

uoT3109g weiboig

€0) 00000000
0) 00000000
('8 Y 80000000
(‘8) 80000000
(‘g) £0000000
('t) £0000000
(*8£T) ¥8000000
(*8gT) ¥8000000
C*z1) 90000000
'zI) 20000000
(*zs) $£000000
(*zg) ¥£000000

HLONT

80800000
80800000
£0800000
£0800000

38200000
38900000

48900000
468900000

q0¥ 00000
0¥ 00000

££200000
££200000

IN3

-+

SISHONAS NOILJ3S WYM90MA i

+ -+

————t

- €=(9anbtg

80800000
80800000
00800000
00800000

38900000
28900000

00200000
00900000

00+ 00000
00¥ 00000

00200000
00200000

3svy

HOLJ3ANSAS

JOUNNITI$SL0

10099n930
* NNVIg

JQUNNIT$SL0
31034510

NIVW$IOWHINY
3a03%

NIVW$3998INY
wanTs

NIVW$3I9VHIANY
Vivilds
(S)3TNIOW WYN 1035-d

7-7

IMAGE MAP

7.2.4 Symbols by Name

The Symbols by Name section lists global symbols in alphabetical order
and gives the hexadecimal value of each one. The value may have one
of the following suffixes: -R for a relocatable symbol, -U for a
universal symbol, =-RU for a relocatable universal symbol, -W for a
weak definition, or -* for an undefined ‘symbol. (The linker assigns a
value of zero to undefined global symbols.)

The Symbols by Name section appears only in a default or full map that
does not have a cross reference. If you include /CROSS_REFERENCE in
the LINK command, this section is replaced- by the Symbol Cross
Reference section.

Figure 7-4 illustrates the Symbols by Name section.

SYMBOLS RY NAME

-+ -+
+ -

SYMBOL VALUE SYMBOL VALUE
AVERAGES$MAIN 00000600~K
FOR$IO._END 00000CAB-RU
FORS$IO_F.R 00000CRO~-RU
FOR$IO.L.R 00000CDO~-RU
FOR$REAL..SF 00000C50~-RU
FOR$STOF 00000E&60-RU

FORSWRITE.SF 00000C88-RU
LIB$K_VERSION 00000600
OTS$LINKAGE 00000468C-R
SYS$IMGSTA 80000148

Figure 7-4 Symbols by Name Section

7.2.5 Symbol Cross Reference

The Symbol Cross Reference section lists global symbols in
alphabetical order and gives the following information about each one:

e Value in hexadecimal. The value can have one of the following
suffixes: -R for relocatable, -W for a weak definition, -*
for undefined, -U for universal, or RU for relocatable
universal.

® Name of the first module that defines the symbol (blank if the
symbol is undefined). '

e Name of each module that refers to the symbol. The name has
the prefix WK- if the module makes a weak reference to the
symbol.

The Symbol Cross Reference appears only in a default or full map for
which you specify /CROSS_REFERENCE. It replaces the Symbols by Name
section.

A primary value of the Symbol Cross Reference is that it shows which
modules are affected by each symbol. For example, if you want to
change a symbol definition, the Symbol Cross Reference tells you where
it is defined and what other modules may be affected by the change.

Figure 7-5 illustrates the Symbol Cross Reference section.

/- N

—,
N

IMAGE MAP

4
T

SYMEOL CROSS REFERENCE !

+ -+

SYMBOL VALUE DEFINED RY REFERENCED BY ...
AVERAGES$MAIN 00000600-R AVERAGE$MAIN

FOR$SIO_END 00000CAB-RU UMSRTL AVERAGE$MAIN
FOR$IO.F_R 00000CEO-RU UMSRTL: AVERAGE$MAIN
FOR$IO_.L_R 00000CII0-RU UMSRTL AVERAGE$MAIN
FOR$READ..SF 00000CS0—-RU UMSRTL AVERAGE$MAIN
FOR$STOF 00000E&0-RU UMSRTL AVERAGE$MAIN
FOR$SWRITE..SF 00000C88-RU UMSRTL AVERAGE$SMAIN
LIB$K_VERSION 00000600 OTS$LINKAGE

OTS$LINKAGE 0000068C-R 0TS$LINKAGE AVERAGE$MAIN
-SYS$IMGSTA 80000168 SYSVECTOR

Figure 7-5 Symbol Cross Reference

7.2.6 Symbols by Value

The Symbols by Value section lists the hexadecimal values of global
symbols in ascending numeric sequence, with the symbol or symbols that
correspond to each value. An R- prefix to the symbol name indicates
that the symbol .is relocatable, and a U- prefix indicates that the
symbol is universal. :

This section appears only in a full image map.

Figure 7-6 illustrates the Symbols by Value section,

+ 4

T T

! SYMBOLS EY VALUE !

b= +
VALUE SYMEOLS. . .
00000600 R-AVERAGE $MAIN LIB$K_VERSION
0000068C R-0TS$L INKAGE

00000CS0 RU-FOR$REAL._SF
00000C88 RU~FOR$WRITE.SF
00000CA8 RU-FOR$IO_END
00000CRO RU-FOR$IO.F_R
00000CD0 RU-FOR$IO.L_R
00000E&60 RU-FOR$STOF
80000148 SYS$IMGSTA

KEY FOR SFECIAL CHARACTERS AROVE:

e e e o e sttt +
! X - UNDEFINED !
! U - UNIVERSAL !
! R - RELOCATABLE !
I WK - WEAK !
+ ——=t

Figure 7-6 Symbols By Value

7.2.7 Image Synopsis

IMAGE MAP

The Image Synopsis, which appears in all maps, gives miscellaneous
information about the output image. The items are self-explanatory.
Numbers are decimal if they are followed by a point (.); otherwise,

they are hexadecimal.

Figure 7-7 illustrates the Image Synopsis section.

VIRTUAL MEMORY ALLOCATED?

STACK SIZE:

IMAGE HEADER VIRTUAL ELOCK LIMITS?
IMAGE BINARY VIRTUAL EBLOCK LIMITS?
IMAGE NAME AND IDENTIFICATION:?
NUMBER OF FILES?

NUMBER OF MODULES?

NUMBER OF FROGRAM SECTIONS:

NUMEBER OF GLORAL SYMEOLS:

NUMBER OF IMAGE SECTIONS?

USER TRANSFER ADDRESS?

DEBUGGER TRANSFER ADDRESS:

IMAGE TYPE?

MAF FORMAT!

ESTIMATED MAF LENGTH?

00000200 00007S5FF 00007400 (294946. RYTES, 58. FAGES)
20. PAGES
1. 1. ¢ 1. BLOCK)
2. Se (4, RBLOCKS)
AVERAGE 01
40
50
9‘
10.
80
00000600
00000800
EXECUTAELE.,
FULL IN FILE "DR1?!LCMURRAYIAVERAGE.MAF3;3*®
26. BLOCKS

Figure 7-7 1Image Synopsis

7.2.8 Link Run Statistics

The Link Run Statistics section, which appears in all maps, gives

statistics of the 1link
self-explanatory.

run that produced the image. The items are

Figure 7-8 illustrates the Link Run Statistics section.

IMAGE MAP

SOT3ST3ILIS uny YUIrT g-, =2Inbtd

NALLIMM SUM SIMOJAM 3TEYL "I09WAS 990719 0 40 wl0lL v
TIAHINYIS AMUMEIT FHL NI LON ST109WAS MOA4 3AM3IM S3IHIMVAS AMYMAITT O

STI0GWAS TANIAIINN INT0SEM 0L d3LIVMLXT € HLIM
0 = ATLIOINAXT T3LIVMLXT SITNIOW 40 MIAWNN

SNJ0TE 0T 40 MOINIM ¥ ONISN
SNJ0TE Té6 40 WLI0L ¥ JISSYLWOINT HIIHM
SNOILYNIL0 IV3IN NIOTT AMYMHIT OT 3M3IM 3IM¥3HL

T3LVI0TTIV SNJ0TT T HLIM 9 NIA LV ONILMYLS SNILLIMM 343M vivil 9Nd3T 40 S3ILAL £L9C
S3LAT ¥46E ONINIVINOD SIMOI3IM VIV 9NI3T 3IN3IM 8 1INV SITHVYMEAIT NI 3M¥3IM €9 HIIHM 40
64T $(5385Vd H10d) Iv3aM SIM0J3M 123rd0 M3IFWNN Y10l

(JOUHI ONIINTIXI) 39VNOLS VIV 40 S39¢d Of 1INV S39vd4 08T 0L I3ILIWIT LIS ONINMOM ¢ ONISN

£4°C0200200 £6°00:00200 £8 =183N79A NNM V10l
€T*00:00:00 0000200200 0 =+1lN4LN0 3Tg9L T09HAS
¥1°00:00:00 ST1°00:00:00 T =3SIS4ONAS FTNIOW LI3rd0 Y314V vivd duW
88°00:00:00 12°00:00:00 L ~-:C 58vd
€£°00:00:00 £0°00:00:00 < =INOILYI0T3IN/NOILYI0TIV
£T°T0:00:00 Ly 00200200 8t : ~:T 58vd
£1°00:00:00 £0°00:00:00 =8 =31ONISSII0NI INVYWWOD
3WIL J3549713 WIL Nd4D S1INvd 39vd SHOLVIIAINI JONVWMOAMN3d

SJILSILIVLIS NNM MNIT

-+

-+ -

+ -

RN

7-11

TN

CHAPTER 8

SHAREABLE IMAGES

This chapter describes in detail the nature and use of shareable
images. The material in this chapter is more complex than much of the
earlier material. Therefore, you are presumed to be familiar with the
earlier chapters of this manual, and particularly with Chapter 2.

8.1 SHAREABLE IMAGES: BENEFITS AND USES

The following subsections expand on and add to the discussion 1in
Section 2.6 of the benefits you can obtain from the use of shareable
images. These subsections also discuss the conceptual nature of
shareable images.

8.1.1 Conserving Physical Memory

Main physical memory is one of the prime resources that any operating
system has to control. The installation of shareable images produces
a set of global sections of memory--one for each image section built
in the shareable image. These global sections are the mechanism by
which sharing is realized, for they can be mapped into the address
space of many processes. The fact that the same physical pages of a
global section are mapped 1into many processes means that the
requirements for physical memory are reduced.

8.1.2 Conserving Disk Storage Space

All programs that are executed under the VAX/VMS system must - be disk
resident. The use of shareable images, however, provides a way of
reducing the amount of disk space required.

When a shareable image is linked into an executable image, it 1is not
necessary to copy the physical content of the shareable image. The
installation of a shareable image causes the location of that image on
disk to be recorded in the global section data base. The subsequent
running of a program which uses that shareable image causes the
VAX/VMS memory management software to load the copy from the separate
shareable image file. Thus, many programs can reside on disk and be
bound with a particular shareable image, and only one physical copy of
that shareable image file need exist on disk.

SHAREABLE IMAGES

8.1.3 Reducing Paging I/0

Paging occurs when a process attempts to access a virtual address
which is not in the process working set. When the fault occurs, the
page either is in a disk file (in which case paging I/O is required)
or is already in physical memory. One of the causes for a page to be
resident when a fault occurs is that it 1is a shared page, already
faulted by some other process which is sharing it. In this case, no
I/0 operation is required before mapping the page into the working
sets of subsequent processes. Thus, if many processes are using a
shareable image, it 1is very 1likely that its pages are already
physically resident.

8.1.4 Using Shared Memory-Resident Data Bases

There are many applications, particularly in data acquisition and
control systems, in which response times are so critical that control
variables and data readings must remain in central memory.
Frequently, many programs must make use of this data.

Shareable images help to simplify the implementation of such
applications. The shared data base may be a named FORTRAN common area
built into a shareable image. The shareable image may also include
routines to synchronize access to such data. When programs of the
application bind with the shareable image, they have easy access to
the data (and routines) at the FORTRAN level.

It is possible, moreover, for such data bases to contain initial
values, and for the most recent values to be written back to disk on
system shutdown or at regular intervals. Recording the values at
regular intervals makes it possible for a system restart to use the
most recent values of the variables of an online process.

8.1.5 Making Software Updates Compatible

A major problem in maintaining a large software installation is how to

incorporate a new version of a piece of software in all programs that
use it. Packaging software facilities as shareable images can help
alleviate the problem.

By carefully organizing a shareable image and by using position
independent coding techniques, you can make significant changes and
enhancements to the content of the shareable image and yet -eliminate
the need for all images bound with it to be relinked.

8.2 CREATION OF SHAREABLE IMAGES

The previous section described some features of shareable images and
some reasons for their development. This section deals with how to
produce a shareable image.

8.2.1 LINK Command and Pertinent Options

The LINK command for creating a shareable image is similar to that for
any other type of image, except that you must use the
/SHAREABLE [=file-spec] qualifier, which is described in Chapter 5.

SHAREABLE IMAGES

The UNIVERSAL= and GSMATCH= options are provided specifically to
control characteristics of shareable images. Chapter 6 describes the
syntax of these options. Sections 8.2.2 and 8.2.3 describe their
purpose. .

8.2.2 UNIVERSAL= Option

Universal symbols are the global symbols of a shareable image which
are of use to the programs that subsequently link with the shareable
image. It is possible for none or all of the global symbols of a
shareable image to be universal symbols. However, typically a very
small set of the global symbols of the image are universal, since
these -are all that are of use outside the shareable image. Universal
symbols are the only symbols written to the symbol table of a
shareable image.

Most programming languages provide no way of characterizing a symbol
-as universal. (VAX-1ll MACRO, however, has a declaration for building
transfer vectors--see Section 8.2.4.) Thus, to tell the linker which
symbols are to be universal, the option UNIVERSAL= is provided.

Normally, all the entry points (routine names) provided in a shareable
image are universal symbols. Sometimes, however, other constants are
of interest to users of the facility, and these can also be declared
as universal symbols. Section 8.2.8 contains an example showing the
declaration of several such constants in the Cross Reference Facility
as universal symbols.

8.2.3 GSMATCH= Option

When a shareable image is bound into a user executable image, its
image sections are promoted to global sections. (The VAX/VMS system
uses the same algorithm when a shareable image is installed.) When the
user 1image is activated, a search is made of the global section data
base for each of the global sections described in the wuser image
header.

Associated with the global section name, and forming a part of the
name for the search, is a two-part identification field containing a
major identification and a minor identification. During the search
for a global section at image activation time, the global section name
and the major part of the identification must match exactly. The
behavior of the comparison with the minor part of the identification
is determined by a control code which has the following possibilities:

® The minor identifications must match.

® The minor identification of the global section in the user
image must be 1less than or eqgual to that in the global data
base.

The GSMATCH= option is provided to set these parameters when the
shareable 1image is being linked. See Chapter 6 for the format of the
GSMATCH= option.

Another match control available with the GSMATCH= option is "NEVER".
The purpose of this is to specify that the linker must always produce
a private copy of the shareable image in each user image file.

SHAREABLE IMAGES

8.2.4 Transfer Vectors

In its simplest form, a transfer vector is a labeled virtual memory
location that contains an address of, or a displacement to, a second
location in virtual memory. This second location is the start of the
instruction stream that 1is of actual interest. In the use of
shareable images under VAX/VMS, such transfer vectors are normally
displacements rather than actual- virtual addresses, for reasons of
position independence.

There are two main reasons for transfer vectors in shareable images:

e They make it easy to modify and enhance the contents of the
shareable image.

e They allow you to avoid relinking other programs that are
bound to the shareable image.

In Figure 8-1, the two routines A and B are bound into a shareable
image, which is then bound into a user program. No transfer vectors
are used. The user program calls both A and B. Thus, the user
program contains a representation of the addresses of both A and B.

User Program
Routine A
Routine A CALL A
is expanded .
CALL B
__________ 1
|
|
Routine B | .
| New position of
| Routine B for
: larger A
1
1 |
e e e o - — - — and

Shareable Image

Figure 8-1 No Transfer Vectors

Using the example in Figure 8-1, assume that it becomes necessary to
alter routine A, adding more code to it. When the shareable image is
relinked, routine A will have the same address; but because it has
increased in size, routine B must be given a "higher" address--higher
by the amount of code added to A. If the user program is not
relinked, it «can successfully call A, since its address has not
changed. However, the call to B would result in a transfer of control
to the o0ld address of B (which 1is now somewhere in the enlarged
routine A), and the desired result would not occur.

In Figure 8-2, the same routines are built into a shareable image, but
this time with transfer vectors at the beginning.

VY

SHAREABLE IMAGES

BRW A-X X — User Program
Transfer Vectors ¢ | — — — — — — — —
BRW B-Y Y -
CALL A
A :
CALL B
Routine A :

The transfer vector contains
a branch instruction which

B uses a displacement from
vector address to actual
routine.

Routine B The user program -actually
calls the appropriate vector
instruction.

Shareable Image
Figure 8-2 Transfer Vectors

In the case of Figure 8-2, if routine A is expanded and the shareable
image is relinked, the contents of the vector will change with no
adverse effect on the user program. This is true so long as the user
program calls the appropriate vector and the vector addresses do not
change.

The use of transfer vectors also allows you to add new routines to a
shareable image without needing to relink programs that use existing
routines. If a third routine (C) were to be added, it would be
desirable not to have to relink a user program that used only A and B.
Without a vector, you would need to link the three routines in the
address sequence A,B,C; for otherwise A or B may be in a different
place and all user programs linked to the shareable image would need
to be relinked. If you use a transfer vector, however, you can
allocate a new vector location to C (after those for A and B). You
can then link the three routines in any order.

Although you cannot create transfer vectors with FORTRAN, you can do
so easily with VAX-11 MACRO. However, before you can build transfer
vectors, you must define or permit the compiler to define entry
points. With FORTRAN, the definition of entry points is done
automatically, but with VAX-1l1l MACRO, you must explicitly define them.
As an illustration, assume in the example above that routines A and B
are written in FORTRAN. 1In this case, the two global symbols A and B
are defined as entry points, and the definitions given to the linker
include a description of the registers to be saved by the call
instruction. (You can achieve the same effect by the MACRO directive
.ENTRY. See the VAX-11 MACRO Language Reference Manual.)

To create the transfer vector, you must use the VAX-11 MACRO assembler
language. Consider the following fragment of MACRO code:

.TRANSFER A ;Begin transfer vector to A
.MASK A ;Store register save mask
BRW A+2 ;BR to routine, beyond the

; register save mask

8-5

SHAREABLE IMAGES

As the example suggests, register save masks (required at the target
of a CALL instruction) occupy two bytes of memory. Thus, since it is
the vector that you actually call, the register save mask is stored in
the vector. The .MASK directive in the above example allocates the
two bytes and directs the linker to (1) find the register save mask
accompanying symbol A, and (2) write the word as the first two bytes
of the vector. This mask is followed by a branch instruction that
transfers control to the routine A, at the instruction beyond the
entry mask. (This example assumes that A is within 32K bytes of the
vector; otherwise a JMP instruction would be required.)

The .TRANSFER directive has two purposes:

e It is an implicit universal declaration of symbol A if you are
building a shareable image.

@ It causes the linker to assign the wuniversal symbol A the
address of the vector, rather than the address of the routine
within the image. This occurs after all uses of A within the
shareable image have been given the value within the image.

Thus, all entry points of a shareable image are universal when
vectored in this way. The user program outside the shareable image
can call the routine A in the same way as it would an ordinary object
module.

8.2.5 Shareable and Nonshareable Data

The sharing of routines between two or more processes must address the
issue of whether each process has access to data that one or more
other processes are using. Sometimes this sharing is a requirement,
as in the case of industrial data acquisition applications. However,
if a piece of data used by a routine is, say, a loop counter, each
process must have a separate counter, or the routine cannot be shared
simultaneously. Users familiar with this situation recognize this as
part of the problem referred to as reentrancy.

It is for this situation that the shareable (SHR) attribute of program
sections was introduced. As was mentioned in Chapter 2, the linker
allocates program sections with the SHR attribute in separate image
sections from program sections with the NOSHR attribute.

The image activator also treats image sections containing SHR program
sections differently from image sections containing NOSHR program
sections. The linker indicates this difference by an image section
attribute called ‘"copy on reference" in the case of writeable NOSHR
program sections. (If the program section 1is not writeable, all
processes can use the same copy regardless of SHR/NOSHR, since no form
of data privacy or security is currently implemented.)

A copy on reference image section is thus one whose initial contents
are established from the copy contained in the shareable image file,
but which from then on during program execution is treated just like a
user private 1image section. For each wuser, completely separate
physical copies are produced for the copy on reference image sections
contained in shareable images, and the system paging file is used to
contain the pages of such sections when they are removed from the
working set.

8-6

~ N,

L

SHAREABLE IMAGES

On the other hand, if an image section is not copy on reference, each
user has access to the same physical copy of its pages. 1In addition,
when a page of such an image is removed from all user working sets, it
is eventually written back into the shareablle image file on disk.
This last aspect makes it possible to rerun such applications as data
acquisition or transaction processing with the most recent values of
shareable, modifiable data.

Note that the cooperating user programs in such applications are
responsible for synchronizing access to such data. Note further that
should it be necessary to revert to the initial values of such data,
you must have made a separate copy before running the application the
first time.

The FORTRAN example in Section 8.2.9 shows both of these kinds of
data: variables generated by the compiler and the program are in copy
on reference image sections, whereas the common areas are in shared
data regions.’

8.2.6 Position Independence

A position independent piece of code will execute correctly no matter
where it is placed in the virtual address space after it is linked.
That is, it can éxecute at an address different from that at which the
linker placed it. This section deals with position independence only
as it concerns shareable images.

A shareable image is position independent if all of the following
conditions are true:

e The only addresses that appear in the image are known to be
fixed in the virtual address space (for example, the system
service vectors of VAX/VMS).

@ All instruction stream references to such addresses use
absolute addressing mode (autoincrement deferred off the PC).

e All data references to such fixed addresses contain the
complete actual virtual address.

e All references to any other location inside or outside the
image are relative to some base that is added to the address
computation at execution time. For example, in the
instruction stream, PC relative (or displacement from the PC)
addressing mode would be used.

e There is no possibility that, after linking, the relationship
between the target of a reference and the base to which it was
made relative can be changed.

The current version of the linker is unable to verify that all of the
above conditions have been met. Therefore, the following strategy has
been adopted:

e If any base address has been specified, the resultant
shareable image is not position independent.

SHAREABLE IMAGES

e The state of the position independence attribute of the
program sections 1is left to the user, and is considéred only
in gathering program sections into image sections. That is,
the 1linker simply places PIC program sections in separate
image sections from NOPIC program sections.

e With assistance from the compiler or assembler, the 1linker
produces position independent instruction stream references.
(Refer to the discussion of the general addressing mode in the
VAX-11 MACRO Language Reference Manual.) Basically, this means
that the Llinker will choose the addressing mode (if so
directed) based on the relocatability of the target of the
reference.

e A shareable image that is not position independent 1is placed
at its 1link time base address when it is subsequently bound
into a user image.

e A shareable image that is position independent is allocated
the first (lowest addressed) space sufficient to contain it
when it is subsequently bound into a user image.

® Shareable images that are not position independent are
considered first by the linker.

If shareable images are to be most useful among many processes, they
should be position independent. The VAX-11 instruction set and
addressing modes lend themselves to convenient generation position
independent code. Much of the code generated by the FORTRAN IV-PLUS
- compiler is position independent. However, if there are addresses in
data regions (for example, precompiled argument lists), the VAX-11
FORTRAN IV-PLUS compiler indicates the existence of such NOPIC data,
and the 1linker produces a NOPIC shareable image. The only problem
area in MACRO assembler coding is the initalization of a data
structure with an address; you are advised to use a self-relative
technique in such cases.

8.2.7 Rules for Creating Upward-Compatible Shareable Images

To be able to make changes to shareable images and not have to relink
users of that shareable image, you must observe the following rules:

® Transfer vectors must not be rearranged or removed.

e The new shareable image must have exactly the same number of
image sections.

8-8

e \,

T

SHAREABLE IMAGES

8.2.8 Example of Transfer Vector and Universal Symbols

Figure 8-3 is a listing of the source for the module which 1is the
transfer vector for the Cross Reference Facility. Figure 8-4 shows
the LINK command and options files used to create the shareable image
CRFSHR on the 1logical device EXECS$:. Figure 8-5 shows the map that
resulted from this link operation.

Note that of the 27 global symbols in the image, only 14 are of
interest outside the image-- 3 vectored entry points and 11 constants.
Note also that the transfer vector is placed in its own cluster. As
you can see from the example, explicitly defined «clusters are
allocated first in the address space. The reason for putting the
transfer vector 1in its own cluster is to ensure that it is allocated
at the low-addressed end of the address space.

As was discussed in Section 8.2.4, the values of the transfer vector
symbols retain the values of the routine addresses. (See the listing
of the relocatable universal symbols in the map.)

An example of copy on reference data (described in Section 8.2.5) is
contained in the program section CRFS$SDATA.

SHAREABLE IMAGES

I0309\ I9FSuexl J¥O FO HPUTISTI ¢£-8

SINIOd A¥IN3 3dNLIN4 404 WOO4 ¢

AHVARNS 3IINIYI43¥ SSOHI SiNndino ¢

A3¥ v 0l 3In34343y V gra3snI ¢

A3¥ IIN3HI43 S60¥T V SINISND ¢

anN3*

Loh axly*

2+1N0%442 LE-1]

1N0s 442 HEVW®
iNoedud ¥3I4SNVHL®
2+4301USNIS 4D LE1]
EELTE I & FL] HSTwW®
438L8SNIS44D d34snval®
C+AINLUSNIE HD "8
AINLuSNI$ 44D) SVwW*®
AIni¥SnIg 4 ¥3dSnvyl®
IXILHMONHHS ‘ITd 40T 801433 ¢s 12384°
ERTL]

"39VWI 316VHVHS ¥V SV QINNIT 38 01 48D $3719vN3I 3InUOw SIHL

aanbta

$$133443 3QIS

INON

$8300J NOTL137dn0D

INON

$S4Ndin0 1I31%awl

ANON

18y¥313wWwvavd LNdiNO

3NON

1S1NGN] L11DI7dw]

3INON

$S¥313Wvavd LndNI

3INON

13INING3S INITNTVI

“4¥3 40 ¥38N v AW

4377v] SUINIOd A¥IN3 3W1 304 SHOLI3A H434SNVEL FHL S3INIII0 37N00w SIML

INOTL1dINIS3a TYNOTLINNS

SH0133ATHIASNV AL

RPOY:-I

+*
+*

o su on en on s oo

@ 54 @ Sa 6n Gu @t Gm Su Sn G4 8a Be Su Se Sa Se Gu e S 6u Sn Oa On ba Sa Sa 8

€1
et
11
R
69l
LIRS
Lol
9ul
Sal

dnan

J000 V02700000
d9de

Jeew 1T ,84d4d
véuy L,B8ndw
vaun

vuuay

leow 1§ ,8444
SGan ,neBp
Sean

Sevw

egdvn 18,0444
aney ,urde
urna

a0uy
aNnanne
'dd'ad

ks

Aavn

aedi

vaea

G

A1

Juow

vuvn

NG

("1 Td

Il

Agun

o

AN

ween

Ny

ean

wanu

anyn

(L2

uaun

["I'd"13

veoey

enay

VBdn

"oy

nedu

agui

pevn

ARy

ey

2¢Bw

a0

wna

A

AvSa

Adv

8-10

I0309A ISFSuUeIL JYD JO BurlSTTI

(*3u0)) ¢-g @2anbtg

3MI1430 UL S139 @ = SQ¥ HIQ 97w @
JIANM41 48089045 =2dS=/03ANAL4HISSTITIAANIL 4HIESLEO

“100d ANNWIW 3344 NI 1437 s3iag *22562
*SONINNYM 850 gu0ud3 ON 3y¥3w 3I43HUL

*S31Tav 3714

aa0N IX3ON ¥WSON 121

SHAREABLE IMAGES

6n2euneb 443T2TH0LI3IASS
2a0ANRAN R AR
©eBoRvnbh . " sav °

SISdONAS NOILJ3S WVN90Hd

rRERERRE 1N0%3ud
I TT L 434L4SNIS4YD
ST YYY) AIMLASNIS NI

8-11

SHAREABLE IMAGES

YHSIgD ©3es1d o3

O33N AVW
S¥3ISN LVHL ST0®¥WAS INIOd
AdINI WON 3HL IZITvSHIAINN

2 = SUNIW ‘2 = JI HOCWW
ONV TONLINOI HILVW 1348

soTTd

P

——

pue puRWWO) §-8 SInbTJI

3ZISLINITNHG 44D
=/3ZI1SQONTHE 44D
=fIAySTHS NI 3137130 g 48D
=¢5434764307%e 48
=54347 8 IVAT Ne 28D
=83NTvATHE 4U)
=434 HE480 430V NEUD
~f26NTNIAT N 4HD

=43T2SYTnE44I=TIVSHIAIND

22'vn03T1=HILVWSD

1

HIASNVHLT 4802300 1INT /4828 SPH0 40 L2IANTEIASNYL=43L1SNATD

“SH0123A ¥I4SNVRL

IH1 ¥4 ON3 Q3SS3uAAV 0T LV HILSNTI ILVaV4IS V ILvIND

(X187v/A3INONT S

= 1N04¥D 3QONGIINE * IAONHIBS ‘ LXINLIDAINLNSNT
= aSnIHINS 169440 AINSNI 48D 43 uSNT4NI) $30NTINI/ JHIESM 80

NI LI ¥NIT Ol Sldgw3llv 39vwl

ONISN ANV 380438 Q3IWNIT 38 LSNW 39vWI 37av3I¥VHS SIHL
LYKL 310N *H3NNIT 341 ST IN3IS3dd LV ¥3ISN NMONX ATNO 3HL

*adXx3°¥HE4¥I83X3w @31V

39yl I78VIUVHS ¥ SV ALLTIOVvd IINI¥IdTa4 s804I WNIT 0L 3714 SNOILdO

1 d0 " Y¥N1T39HS 483 [wWw0O0I"* 4531

i

R

B e e R

SNOILAO/MNTHHS 4¥IFH0D SSONI/ NN/ HHSAEI VA dVN/HHSANIE¢IXI=IYVHE/HHSSASON/XNIS

CALLITLIN 3IN3INIAIY Ss0¥)

3HL 40 39vWI 376V3I¥VHS 3IHL 33NA0¥d 0L 3714 ANVWWOI

WwDJ*HWNTHEHSIEI[WOI SN I]

18
s
1¢
s
1%
s

3-12

SHAREABLE IMAGES

gHSA¥D Fo dey G-g °2Inbra

QIHONIW alyorve HILlvw Jwyn *I23S *I69
2 39vd 611X dINNIT
T1=8°2X 0¥3vw DlexVA 11212 @Lel=901v=sp
T1=8°3X 0¥IVA TTexvA L1290 wl6Tl=9)veny
T1eg®AX O4IVW TlexvA 9119n QL= lv=nin
TI=E°AX 04IvW Tl=XVA 91292 gLeT=9Nvenp
TI=8°3x O¥IVA TT1=XVA 9129, gl61=9NY=hu
T1=2®dX 043V I1=xVA 91:i94 wlol=9Nveny
TI=€°AX 0¥IVH TlaxvA L1394 6L6T=9NV=hHy
T1=€°6X 0¥IVW TlaxyA 9329: GL61=9NVenn
T1=€°AX 0¥IvW TTexvA 9139¢ gL6l=9NVveny
T1=€°3x 0¥IvW 1T=XVA G394 glel=9NVeany
TTeg®3X 08IVW TilexvA G392 Glala9Nveni
TI=€%dx UdIVA TlexvA G129¢ wl61=9Nvens
T1ag®ax 0¥IVA TTe=xvA SI29¢ @/e6l=9NV=n¢
40Lv3¥d 31Y4 NOILVIND
1 39vd 6T°Tux diwnlin

N

tmman

W0 AdO0JD 3LTdx Gv3IY @ 6 BI AT
ATIND QV3Y ¢ € BT
NO Ad0D 3LTdaw Qv3y @ 4 vanpeecen
AING avIy @ 2 nA2NYoNY
~0 Ad0D ALTAv Qv @ %] 1g2navue

INIIVd UNV NOILJI3L0Ydd Jd4d NHA ¥SIJ 8ddv ISvE

1T SISAUNAS NUTLJ3S F9%WI !

4racenmssnsrccncnacancannad

L1382 8L61=9NV=r

14d0°1374v1S[AISAS I invag @
1470 4431080 442) snveg §62
14870482 (Fud " 382] 8nvaa 951
TEHT0% 480 [P0 3801 $nvaq £9¢€1
VERT0 443 (080° 48] 2nva0 ¢l
1£670" 382 (ad %3821 8nvaC T8
1EeT0 483 (rud 4u0) tnvea s2@
1iuT0°442(ra0°480) SnveG g6¢
F4RT10° 443 (ra0*482) invud e
14670480 (L0 483) 30VEQ @
PEET0" 442 (080°380) tnvun gie
18870 483 (rg0"442) snvaq L2
18670480 (Lud 4431870 218

314 $31Ad

teccscsnccsccnacsanncsnana}

1 SISJONAS 37NQua 1331E0 ¥

4ecscenccssnncacanncasanad

L1282 8L6T=9NV=D

-
3

12
4

$39vd 3dAL

¥31sn1371nv43d

HOL23ATHIASNY YL

¥318N13

T43X3°4HS4¥I[r90"443) tnvad

2y
[PARYA
po* 10X
12 18X
2 10x
2010
pue18x
Ao*10x
v 10x
I'ARTD
[SARTSY
Tu*10x
po°* 10X

IN30I

H0LI3IASAS
X187y
AdNANT 4
1N04¥3
3q0NG11INE
3Q0NHIYS
1x3INL39
A3INLHSNI
LNSNIHIYS
89489
AINSNI 48
434SNT 448
HI4SNVELT NI

IWYN 3TINAOW

¥HS4¥I883X3

8-13

SHAREABLE IMAGES

£

39vd

Ly ‘Qd

LYMONYQN ‘3Xx3 ‘¥HS ‘1074738 NGI‘HSNYDTd

1am 0y
lam ‘Qy
LYMON‘QY

3XIONHHSON 127138 NCDYHSNY 01 d

‘3x13

‘3x3

‘3x3

fYHSON ‘13747138 n0D8SN D1 dON

YHSIID JFO den

Toasa s

=

AT CLA SRS

HE I IICCE IS

PHHSON ‘1274738 NDD ‘uSN Y ITdON B

%}

‘YRS 127147139802 8SN Y01 d 2

s3Lin8Iylly

61°Tux HINNIT

EFN
31AY
EFON-]

"31AY

3144
3lAs
3LA8

3lA8
EFRN-]
EFUN]
31A8
3148
3lAd
AlA8
EPUN°]
31A8
3LA8
3lAd

ALA8
31A8
EFN°]
3LAH
3LAH
31A8
31A8
EFRN-]
EFYN’]
31AY
EFUNC]
LAY
3LA8

EFON:]
EFYNC]

EFUN]
3lAd

NOIV

tencenan

(*°91
(*112
(*91
QA
(211
(“ow
(resy

(*ree
(*9g1
(*estt
(*g6
(*1s
(*ge2?
(*9L%
(*eer
(*g21
(*se2
(*s982

R

aldvodee
£Qqudv00YL
Winvubne
11v06ndee
wivewpoe
vSUdnope
ndldedoe

STivovee
BYVWUVZVBYY
GEnIBNe
QSvungoe
1SnBvoeoe
400000
g9L1000d0
VLéwldoe
VEAIN0AY
¢1Tuvove
42932020

Y8000
CUAd8ue
MNP GBEL
JOVI0end
AduAadae
28I 00BdE
wRovuoee
tu2naave
D4VYEBYL
vdanaoa0
AAMNEded
cudnavoe
viunvde

nanaBIve
(LI F YA
¥d2deBdd
JdN2uBneey

HL9NTT

(*3u0D) G-8 2INbTJ

[AT ITy
tgltovaa
vicianen
e6Quldvee
499128a¢0
dpvlonea
[R R O T1]

324¢0¢ud
6l3v0ney
16Q2vvied
11608400
L P
£98dvuY
neLBBYbY
Jegdduee
265UV
2lsvievn
3240 e

INNABVRA
vONuANLd
AenvaneY
unnaviesd
Bonvdopa
avnudnee
wannvC2e
wenuangd
ALhudvok
avnvgaea
0ANAVuRiE
voanvLVrBo
wANIVIve

na2naveo
veenoiing

348008420
44820008

an3

-+

1 SISHONAS NOILJD3S wvy90dd !

+=

Liigp gL61=9NV=N

csacaesassssssasd

hellooed
13uievee
1antuecad
(e TS X 171"
WeNTYnan
eRsTewed
ABGTeBoe

vi3ivneoe
26UdvRBy
eloevoone
SggaLeen
h98ALEPD
SHLAOY0Y
Gu9ae0nd
§6SQ00LY
s1sunera
vunduea
Qundnie

wonndLvY
6ANOVBL0
vunaeoae
2InoCend
nondvodn
AL Yd]
aonanoed
Yonoened
vondooen
wanddode
aunaneee
vUNdLano
WINdBvve

BH22000Y
vo2opoee
ne2ouoee
wp2aeued

jsve

%197y

IULELE]

3Q0NU9INE

AINLHSNI

LYSNIHIYS

AINSNT 44
vivas4ud

%18y
A3xnanly
IGLFLE]
300NGA1INE
3Q0NKHIBS
1x3Inl39
AINLINSNI
LY4SNIHIYS
AINSNT 48D
434SNT YD
3003$443

401JI3IASAS
%18y
A3Ngnld
IGLEL D]
300NQ71NE
3JQ0NHIYS
lx3Inl39
AINLNHSNI
1¥SNInJES
18948)
AINSNT 48D
JIUSNT 48D
* wNvig *

HISSNVYLT 48D
* yNNvIE *

4I4SNVYLTIY)
44372TH0LI3ASS

($)37nA0NW

JWYN LJD36=d

143X3*uHS482(rgo® 4831 3nvaa

8-14

SHAREABLE IMAGES

YHSMD Fo dew (°3uo)) G-8 oanbta

AINLESNI LX3INL3D ¥=3284pU60 AdINITONVEL

1N04Y2 dULIIASAS 2stueude Ovi§SAS

- FRERL 40133ASAS anivpade 934dXI$SAS

LUSNIHIAHS 300NHIYS H=n98d¢:AVA J00NTHIuS

434SN 38D A3NSNI 48D LESNIHINS HeE6GAPNND LY¥SNITHIHS

A3MLUSNI 1x3NL39 y=1vidp3vQ ERLETMET

1Xx3N139 H=6BLONAND A9vdsT I3y

%1gv d=nelinvde £¥18TISMaN

AIniaSNI 1X3INL39 d=4E88000Q TTASLNIT3AON

A3I¥1uSNI 1x3IN139 ¥=3290a099 AYINITIAON

AINLUSNI LX3NL39 u=43.00802 AINTLIYSNIT90

1X3INL3I9 ¥=24LAp0Y8 A3¥T3IL37307901

438SNI 44D AINSN] 483 A3NLdSNT y=QB9VRANY AINTLASNI

AINLAHSNI AINONT 4 INNEER] 1x3IN139 ¥=SELURUNG A¥dTLXNTL39
IGOEER] AINUNI 4 y=26707092 ATHINTANT 8

IGLEED] A3INONT A ey VQAQRubd AT LXINTONI 4

L1X3NL139 AIALHSNI ¥=6J01AB0a LYSNITdn3L1T4¥I

1x3INL139 AINANT 4 100483 AInLHSNI =20V 10308 9vI14TLYSNIT NI
1N0449 4348N1 48D AINSNI 44T LdSNIHIuS u=0S21nade AMOLSIHT 4¥)D
434SNVl TaA) 1N04y2 Ny=2l6vrudap 1N0$ 44

434881349 AINSNT 4D =B8N IRBYE AINAWILTISIND

%161V 4=2811¢u00 W3IWNAQTIS 48D

10442 139442 N=3upBPBYe SANTIVATHS4HD

189482 NeTYnBraNE S43uTSTIVAT XS 44D

1N0443 199442 N=1000¢DY0 IAVSTHSAYD

199489 N=2200pYYd FEEM T PLE]

9442 © Nedd4122002 3ZISAONT%S4¥D

199483 n=g2vvpnde® 371SIN3ITHS4HI

RECEEE] N=2003pv0e 313730758449

100442 199442 N=2000¢3"8 S43x475430T NS 3HD

Te944) Ne}BavoYe 4307WS44I

189442 N=1vdveved 2SNTNIBT XS 44D

3Q0NHINS 4a0N0TINE 189449 N=20920400 I AT PT k]

#34SNVHLT 44D 43¥SNI 4D Ny=2anepada 438LUSNISAND

¥34SnvaLT 48D AINSNI 8D © o na=gisvande AINLUSNIS D

1N04xD 434SN 49D FRERL 4=3630p200 FRERAEIEFT k]

LNo4xd 4348NI1 48D 00NUTINY ¥4y d=vijopang ¥18Ivs48I
AINLdSNI 30083 INY Y=SHEBNIRR 3ao0nTaIne

*** A9 Q3IINIFuILIY A8 Q3INI&3Q ANTIVA T08RAS

+
T 3ON3IY343y SSO¥I T0YWAS 1
-4
f 39vd 61T°1UX 4NIT L1362 B8L61=9NV=n 183X3°uHS4u3(ra0* 4421 thved

cccsccmncansanay

toame

8-15

SHAREABLE IMAGES

S

19vd

¥HSIYD Fo dew (°3uo)) -8 2anbTg

61°Tex d3INNIT

tmmm
!
131
!
1

bosm

$3A08v S¥ILIvAvKHI TvId3ds H04 A3

S434TSIVATHE J0d =N IAVS TS dud=N FEIME I FTER
SINTIVATHS S8 =N 438THg44I=N 3137307 %8 440=n

casceans

**'s708nAS

temcancan

cmand

1 3NIvA Ad ST0EwWAS 1

tenncccsncncna Y

L1382 9L6l=9NV=n

cosnsanscsasg,e®

HY3IM = yM T
6yLvI013y = ¥y !
AVSHIAIND = N T
g3NI4FUNN - * 1

e T 3

0V4$SAS

934dX3$SAS
WIKNAQTYSd00=y
S IEMINY
9vI4TLUSNT T du D=
LUSNITdWI 1 T48d=y
A80LSIHTA¥I=y
AINAWI LTSy =y
¥l Ivingdnd=y
ERCRIZ EE L]
AIRTLIXINTANT d=y
AINTHINTONT d=d
1N0Sd8d=y
300N Ing=-y
JUONTHIYS =
TTANINITIAON=Y
ABINITIAQUW=Y
AHINITENVY Loy
A3XT3137130790 1=y
AINTLESNTTI0 1=y
3dvds T 13y-y
3Ivdg 034
A¥dTLXNT 1394
AINT USNI =y
LESNITHIyS =y
AINLIUSNISINI=Y
4IULYSNIS Y=Y
32I1SAONT%$44I=n
3ZISINITHE4¥I=N
CPEEMYE T ENEL
HOMICIT EERE]
2128y ws4u3=n

25120008
enianeos
J8112800
ngli00ed
waeloeoe
23210000

200610000
36329000
vi3aveee
vvaeaeoo
26Qu0e0D
2le00000
S8828000
h98vB0R0G
41800000
32900000
30800000
24L00000
43ip0000
68.20000
tvioeseo
Selovero
Q0902000
£6500000
£1504000
(L LI D11
e4l20000
82000000
2000000
10000000
20000000

3NvA

143Xx3*uHS 483 (ra0" 4421 3nveEQ

8-16

SHAREABLE IMAGES

9

(S39vd °*8 ‘S3LAd °*963n) 0r@TeAde 431100k 092viadur

6T 1ax 4INIT

YHSIIO Fo dey (°3uo)) -8 92Inb1g

NILLT¥~ SV SU%033¥ 3I18VL 108WAS V8019 t 40 vLIOL V
Q3IHIYVIS AYVHEIT 3L NI 10N STOWWAS M04 3¥3m S3IKINVIS AnvNEIT @

SI10HWAS UINT43IANN 3AT0S3¥ 0L QILIVvHLIXI T Hilm
el = ATLIJITdX3 Q34JVaix3 SITINAOW 40 ¥IBWNN

S»2C78 ¥l 40 MOANIM Vv INISN
$»J07d K@l 40 IVLI0L v Q3SSVAWOINI HIIHM
SNOTLvH¥3d0 Av3d ¥I078 AmvHEIT n1 3J53IM 3¥3IHL

S3LAG LETT OININIVINOD SUM0NIIY vIivd INE30 343Im 2 ANV SITavdull NI Inam 292 HIIMM 40
has $(S3SSvd HL108) av3I¥ SO¥0JI3IY LIALQ0 NiHWNN TVIOL

(39VWI 9NIGNTIX3) 39VHOLS VIVJ 40 $39vd €5 ONV S39vd @@L 0L QILIWIT L3S ONI¥HOM VvV ONISH

9¢ LAt L6 =$1S3N7TvA NAY VIO0L
9l*amiaasen [T EED @ *tiNd1NU 378VL T08KWAS
‘rplepiay LEteataeing €1 =1S1SdONAS 31NA0W 123180 ¥3Ll4v vivd dvw

2\l =12 g8vd

21 =iNOILVI0T134/N0ILVI0T Y
yseeatanine 12 -1 sSvVd
gn'tatenian 6f «19NISS3I08d ANVWWOI
IwIl Q3sdvi3 IWIL Nd3 S1Inv4 39vd SH¥OLVIIANI 3INVWH04¥3d

tmccancna mmmand

T SOILSTLIVLIS wny ¥NIT

teccscanancsannncnnnnss

§¥J018 *s¢ $HLUN3IT dvw Q3LVWILS3

wlddvw dHSI4I([SI1°442) 5hvaUw 3714 NI 3IN3H3I43N SSO¥I HLIIM 104 11lvad¥0d dVNW
2=40NIW ‘2=40fV« ‘IN3QT °*S°9 ‘4VNH3/SS3ITw = HILVW NOLILI3IS IVE0T9 *ATdv3avesS ‘Ild $3dAL 39VWI
. °S 1SNOIL23S 39VWI 40 ¥3AWNN

*LL $83INIEI43Y SS0HI 40 ¥IAWNN

*Le 1S708WwAS v8019 40 ¥3AWNN

‘e ESNOILIIS WVHI0Ud 40 ¥IAWNN

‘gt 163INA0W 40 ¥3EWNN

‘¢ £§3714 40 H3EnWNN

T43x3° yHS 44D SNOILVII4IIN3AI ANV 3IWVYN 3IVAWI

($»2078 °¢) ‘e *e ESLIWIT %3078 VNL¥IA ABYNIE 39VWI

(w078 *1) °1 TSLINIT XJ078 IVOLEIA H3IUVIH I9VKI

$39vg ‘0 13718 %IViS

$031v30717V A¥OWIW TVNLYEIA

4tmmmcccncsccannanst

i SISHONAS 39vwI !t

PP

L1892 8l6l=9Nnven 143X3"uHS44I(rg0* 4401 2hveaq

tmemccncnas

N

8-17

SHAREABLE IMAGES

8.2.9 Example of FORTRAN Shared COMMON

Figure 8-6 shows a global common (FORTRAN BLOCKDATA subprogram) linked
with a routine that modifies it (CHANGE) and one that displays its
contents (DISPLAY). There are actually three common areas, ‘shown by
the program sections $BLANK, NAMEDCOMNl, and NAMEDCOMN2, which
correspond to blank common of FORTRAN and two named common areas.
Note the attributes of such program sections-- in particular, GBL,
OVR, and SHR:

e The GBL attribute causes the program section to be recorded in
the symbol table of this shareable image for later use by a
subsequent program.

® The OVR attribute ensures that all modules contributing to the
program section contribute (or in this case, map) to the same
address space.

e The SHR attribute indicates that only one copy of this
writeable data is to appear in memory.

TN

N

SHAREABLE IMAGES

on [RAOUEVAYTER)
an 2 A CEYA T ER]
an] Ivne3sssi3n
QIHEONIW [hg-Toful 2] HILVA

4 39vd az*1ax

61°1ax 25=)NIT

T1=£°2x 0¥IVW TlexvA

pl=g°2L SNId=AI NV4L¥04 Pl=XVA
N1=8°31 SNId=Al NV41I¥04 Tl=XxVA
nT=9°AL SNId=Al NVNLl¥0d4 TlexvA

q0Llv3iyd

1 39vd v 1ex

uourwo) paIeys NYILYod butmoys dew 9-8 =2anbta

feuTILHSHA 438 NO Ag0D ALIdm Uv3Iy v @ 10212000
2eRTILESHA AIND QVIa ¥ w» saelzore
TARTILHSHA - AING av3e 1 5 NA8aRBeL
434 w0 AdLD 31Iy» uviy v ¢ BRI TP

AIND Qv3Iy ¢ n BEET 1)

I1Tym Qv © 1 AONReoYn

A0 QV3y @ 2 a2unaee

434 N0 AdO3 3113w Uvay 7] ¢dersnine

Iwyn *238 ‘49

9NI9Vd ONY NODL3310dd Jd4d NHA ¥SIU ¥Qav 3sva

o

-4
T SISdONAS NUTLI3IS 39wwl

4emcssccanssccasanasccsanad

d3»nIA LG22 QL6T=9Nve=n

SUigd Hlel=9NV=p
Eniel wlel=9Nv=¢o
8EiLl glel=|nf=nl
§E3L1 @lL6l=iNLen]
nniLl QLel=LNl=n]

T13x3°7LuSWA[811SAS] 324880 v
14870°1319v1S[6118AS1 22980 €
14rd0°w0dviasIafet ‘2si)tigg 2ee
Tira0*wDJ39NVHI (21 2S1] 8180 m&e
14080°w0231v8079 (21 40S1) 8180 21

3iV0 NOILVIND ERD ¥

S3L1AH

fecemcccsnnccnsacccsacnaad

! SISdONAS 37NQA0W 123040 1

toa

LS3i21 wlel=9Nve=n

cesscccccsacssncsne}

YINNIT

et et &
N

csece ge"e

$39vd 3JaAl

TLUSHA

¥318n7371Inv43Q

43180717

n1é3x3*w02TvE019 [T ‘251) 8100

TLESHA
39vuNITgSL0
Av1dSIQ
3IINVHI
W02va019

3INYN 3TNAONW

K0JvE019

8-19

SHAREABLE IMAGES

£

39vd

lyw ‘g
LamMoN ‘0l
LymOnN‘QY
Lam 0y
lav ‘0¥
lyM ‘ax
lav ‘au
L¥MON ‘QY

uouno) peoIeys NVILJod butmoys

#3X30N‘HHSON‘TDT1 138 N0 ‘HSN*DId

727738 H02 88N Y14

‘1374734.N03 788N 1 d

1997134 4A0 ' HSN 214

3IX3ION‘UHS ‘189134 8A0YHSND1d

19941344A0°4SN“ITd

‘AHSONYT12714738 /N0 P 8SN Y IT dON

IXION‘HHS ‘1D T3 N0 SN DT

s3inaIullv

w2 lax ¥3INNIT

n (AU, VR4

[AVNA VA VAN NN LAURAVNA VN n N oo

[-TIRN

[4
e
4

INOT (
9N0T (
ano (

9wn0
9no (*

INGT (1T
INOT (621
aNp (*gn2

9807 (°*n
IaNu (°n
IGNo Y (Cw
gn0 (*n

In0 (
INoT (
IN0T (
InoT (

INOT C°
anpl (°
aNgY (°
9no1 (°*
31A6 (e
LA (@
INOT (6L

INOT (*bil
INOT (°T161

NOIV

Lsier

~

(RN (R

~

)

dew (°3uo0D) 9-8 INbTI

dunRvooe
WavYveRe
BAUNYRYe

LaMBR
LI rLIT)

49600000

1890020
§dvvadde

L L]
nAwIEANY
LB]
nRVAdYE

rYvneapn
nadvAvou
nGVvUUNAR
LAY TL

nAvunRoD
nVMVAneYs
nYEURdoo
nANBAANY

COLT L)
ANinGiedne

ANeNdbeo
980
441084900

H19N3T

vegIvEerny
dugvvaed
QeRBARA

943uvvnied
94942000

Z490dnng
089V
2490au0eY

|aneddny
gvinvaaed
genvdady
ganadobe

Lanlvdaegn
Longowdw
Lenndnve
Léenadoue

Ern0oang
genduvane
g£anaduue
L LA

ve2vncee
vo2uevave

42909008
J92ednew
382A0n09

(L E]

¢mccmmcacssanccsccnnanscaant

1 SISdONAS NOILI3S wWv¥90Hd 1

4=
8L61=9NV=n

eecsemaq

wgAvYAn
98NV
(s P11

n49980€d
7494000

LEEP Ty
BT
dv9d0vvd

BunAvIng
KRUNAVA2Y
EUAR TN
8UNIROVG

nenandnn
nanovaap
nunALLAY
nrnidvese

avnaeera
viananvade
wundneve
nandwvace

Au2abnoY
vn2adevea

“igwowvue
wyv2adeew
vY2o00es

asve

Avig4sIa
JINVHI

J9vuNITeSLO

Avid4sla
3J9NVHI

Avilasla
39NVHD
Wo3veuls

Avidsla
JINVHI
W021vg019

Aviasla
JINVHI
wW031vgo19

39vHNITgSL0

INAPTL]
JINVHI

($)37000W

Ivios

30028810

3G0Js

2NWOJQINVYN

INWOJIQ3nVYN

ANVIIES

* invie !

vivads

JNYN 1J3S=d

n183x3*W02va0 19 [2T ‘BST] 280

8-20

uouIo) paxeys NVII¥OJd burmoys depr

(*3uod) 9-8 2INbTg

SHAREABLE IMAGES

8-21

h

39vd

e2°Tex dDINIT

-

L4SHA Ny=8f6anu¥e SQTATLIT0Isu04
TLYSWA Nu=04802002 saT1v0Is¥04
FLESWA Ny=8Q88700Q ATIT013404
AvVIdSIQ 39NVHI T1aSWA Nu=20g0unfo ¥T1T0I5u04
TLHSHA ny=856MpovY ATN1TOISH04
TIHSWA Ny=8S66nade ¥TN1Tolsu04
T1HSHA Ny=g888nRUe AT4T01s¥04
TLUSWA Ny=2880a002 474701%404
V1 d48WA Ny=8nedpuvd ATI4TOISH04
V18SWA Ny=2n6RpN0e 473470I%u04
Av1dSlIo 39NVHD TLaSWA Nu=8vevpene an370Isu04
1L8SHA Ne=w2eunode ATQ01su804
T13SKA Ny=plgdpnfe ¥TaT0Isu04
T1uSwA Ny=g3genave AT8T0Is804
T14SHA Nu=2388n000 4787015804
FLESHA Nu=dnvaneva 98738307 INISH04
TLHSWA Nu=gEvonovy §47283aTINISH04
TLHSHA Nu=dgyd¢aPe 237 1S30TINIS04
T14SWA Nu=gUvBPOYY aNI43804
TLASWA Ny=g160p0ve »TLIX33u04
V1 dSHA Ny=2360pave 1Ix3%v04
T1USHA Ny=9462p000 mTSNSH¥ISA04
TLHSWA Ny=236820200 SNS¥¥3ISH04
TLESWA Ny=9Qs6ekndle 371 4ANIS304
TLuSKHA Ny=0282nv8e Ow'3Q0INISH04
TLHSHA Ny=81300892 JwT300INI$H04
TLaSHA NY=2Q60n2R8 MT31147430%504
TLESHA Ny=8l6lrube 371474305204
TLuSwA Ny=8180a0P3 Ow* 3002303804
TLESKHA Ny=808dnvYy 1wT30073035204
VLUSWA nNy=2veupalp 2TINOTANIS®O04
FLaSWA Nu=g66vro¥2 0TINOTANISH0J
JLUSKA Nu=2660p022 1TLNOTANISH0S
V1 4SWA NY=86620A08 ITLNOTANISHO4
TLHSKA Ny=pl68pa8@ 9TLNOTANISNO4
VLYSHA Ny=8d6Ba2AY 4TLN0TANISHOS
ALESKHA Ny=2d6dpudn 3T4NOTANIS 04
TLdSWA Na=8vednPd QTLNOTANISHO0L
T18SwA Nd=g2vidpude 7"NITANISH0 4
TLUSKA Nuy=a2vanvidy OTNITANISHOS
TLNSKHA Ny=8lydnaca 1NITANISHOS
TLHSWA Ny=0tyapdde ITNITANISHO 4
TLYSHA Ny=22vepwde 93430 NIVANISHO4
TLaSwA Ny=0090pAYE 3807Jsu04
1dSWA Nu=0868n@02 3IvVdS¥IVESHO04
TLHSWA NY=8238038d AVSTSNSHYISSUOJ
TLHSWA Ny=8i3epobe 13878385304
VLESHA Na=gu30n00e HSNdTAI8$304
TLUSHA Na=013000%0 d0d¥8I8$804
TLUSWA Ny=02320090 139782355404
Av1dSIQ Ny=ng9apuve AvidSIQ
29nNYHD Ny=0098pava 3INVHI
"t% A8 03IN3u343y A8 Q3n143Q 3NVA

jecccccccnsnscccncnananand

T 30N34¥3438 SS0¥D T08wAS !

femcccccancnscacnsaunnacet

L5321 dlol=9Nven

08WAS

n1¢3x3°wodTve019 (21 ‘0S1] 180

SHAREABLE IMAGES

A2 1ax ¥3IWNIT

N2

uouwnwIo) paIeys NYIINod burtmoys depn

Avlasld

JONVHI

AR A3IN34343Y

LG321 8LeT=9Nve=n

~—

(*3uoD) 9-8 2INbTJ

TLHSHWA
TLHESHA
TLHSWA
TLYSWA
ALYSWA
TLHSWA
TLASHA
TLESWA
TLUSHA
TLESKHA
TLESHA
TLASKWA
TLdSKA
TLHSKA
TLHSKWA
T1dSWA
TLASKHA
1LHSHA
TLESWA
TLHSWA
TLUSKHA
TLHSWA
ALASWA
TLHSWA
TLUSWA
TL48SWA
TLESWA
TLNSKWA
TLASHA
TLHSWA
TLESWA
TLYSWA
TLESKWA
ALHSWA
TLHSWA
TLHSHA
TLASWA
TLUSHWA
TLHSWA
TLHSWA
TLUSHA
TLUSKWA
T1uSKA
TLUSKA
TLHSWA
T1USWA
TLHUSKWA
TI¥EWA
TLESKWA
1L 8SKA
TLHSHWA
T1YSKA
TLUSHWA
TLHSHA
TLdSWA

A8 Q3NI43Q

NY=2vQoe0dd
Ny=88Q22000
NYy=08000nN00
NY=8LQqdrddy
Ny=2.Q0pRY0
Nu=89041vdd
Ny=09Qqunnde
Ny=85Q0nane
Nd=05QAR00Y
Ny=8nQ@n0de
Ny=dndoenve
NY=8£QuAR0Y
Nu=3£Q2pvde
ny=8200nede
Ny=020dnave
Ny=g109pave
nNy=84QvnaNa
Ny=88adpndy
Ny=2106p0Y0
Ny=2400n000
Na=42Q80600
Ny=84J3ap00dQ
Nu=2420n000
Ny=83J0n008
Ny=0320c0u00
Ny=8028n0B02
Ny=80J00aAva
Nd=82200n09Y9
N¥=3334pN00
Nu=88J30¢:090
Nuy=2829n0d0
Ny=2veopade
Ne=868000BVY
Ny=26eaApnRa
Ny=888000BYA
Ny=288vpVLY
Nu=8.80n0vd
Nd=oL807000
Na=RA9vunoon
Ny=gSvApale
Ny=2Svona0e
Ny=89gBpRRd
N¥=29800n089%0
Ny=85800pdYp
Ny=6Sq0EVR02
Na=8ngoRAoY
Nu=0ngdenda
Ny=9¢8vALRY
Ny=8nvRpeuda
Ny=8L68p0vde
Ny=0L68pv00
Nu=20600002
Ny=848080000
Ny=8960p000
Ny=096020000

Egwmma

ELRANY

aQT133¥484817
9XAT¥TAQ0288817
XQTHTAd0ISSEIN
9XGXATA0ISSAIN
xdxaTA40238$817
INVISSEIN
1¥3A34$817
1NdLN0TLINd$8IY
INLAOWSEIT
J1AOWSEIN
ANOITHILYWSEIN
JHILVWSEIT
2207%617
¥3IA0TINISBIN

~ ASNISEIT
X3ANI$8IN
WAT139%817
lndnNITL1398810
ANVWK0IT 1398811
WAT3I3H48817
¥3ANNTLI48810
1147 dnx1 48817
$44¢817
3448811
AZLx38811
ALX3881I1
HSITaviS3seln
¥3A07230%811
399viTo8I8810
243861

9044 NITLSVEBIN
NST3ILIymMsA04
0ST3LTHMSN04
18731 TumsH04
487311 uMsu04
naT31I1uMsH04
0073LTuMEN0
40731IxmMs804
40163304
SONJ3S3804
ANIM3dSHO4
NsSTavINsu04
0sTav3usu04
IsTavINgu0d
48TQv3INSH04
naTav3ys04
0aTav3Iusy04
407gv3Iysu04
38NVdsS¥04
N3d0$¥04
vaTxTOIsN04
ATMTOISHO0 4
4TMTOISH04
ATNTOIs¥04
dTNMT0Isy04

J08KWAS

n143x3*wn2vE019 (8T ’RST] 2180

8-22

SHAREABLE IMAGES

9

39vd

uoumo) paxeys NYYILIOod butmoys del

22°Tux 43NN

*** A8 Q3IN3¥3I43N

L5221 8L61=9NVe=n

(*3uoD) 9-8 °2INbTJ

TLUSKHA
TLUSWA
TLHSHWA
TLUSKA
TLHSWA
TLHSWA
TLHSKWA
T1aSWA
TL8SWA
TLUSWA
TLHSWA
TLHSHA
T1HSWA
TLUSWA
718SWA
TLESHA
TLYSHA
T1dSKHA
ALaSHA
TLHSWA
TLESWA
TLASHA
TL8SWA
L 8SWA
TLESWA
TLASKA
TLYSKHA
TL8SWA
TLUSWA
TL4SwWA
TLYSWA
TLASWA
TL8SKWA
TLESWA
TLUASKWA
TLHSWA
TLESKWA
TLNSKWA
TLUSWA
TLHUSWA
118SKA
TLASKHA
TLUSWA
TLASWA
ALASKWA
TLHSWA
TLHSHA
TLUSKHA
TLESHA
TLHSHA
TLYSWA
TLYSHA
TLYSWA
TLHSKHA
TLUSHA

A8 Q3NI43Q

Ny=0980A000
Ny=8580nvbA
Ny=88200vY8
Ny=88Jup0BYe
Nd=0S920p24R

Ny=8ngugnie .

Nu=0n8RM2Y0
N¥=gLl0nnnQ
Ny=8¢841QVYR
Ny=9280p2M9
Na=8192p000Q
Ny=01Qaapnve
Nu=8p8enae

Ny=p082PV0R
NYy=8dvorvve
Nu=2gauavvY
Nu=ALluandd
Ny=82A001B00
Ny=24vpuda
Ny=83vdpuvR
Ny=n3vopuha
Ny=8Qveprovo
NYy=a0vOpBNe
Ny=83vRpokyY
Ny=22vAnaYe
Ny=89200p0pde
Ny=29200290
Ny=2.98p200Q
Na=85200000
Nna=89q0puvd@
ny=gnJvn0ne
Ny=2nJvpnve
Ny=8520p00Q2
Ny=8€30pN00
Ny=88yRpALY
Ny=vavvnade
Ny=8vvervde
Ny=AYvyOnAdy
NH=86vundY
Ny=A6vopand
Ny=88vBaBYG
Mi=28vupnle
Ny=8LvBno9a
Nu=ALyoNRDY
Ny=89vapave
Ny=200va0Q
n¥=83Qunvld
Na=233000100
ny=gaqonade
Ny=83Q0n0020
Ny=86QepR0
Ny=06Q0n200
Ni=88QVEV0d
Nu=28Q0p000
Ny=8vaoaude

3NIVA

nHTdXISHIN
dX3SHIN
HNVLIQSHLNW
NVLQSHLINW
SuTLYCSASHLNW
L¥DSASHLINW
LYTNISASHIW
HNISASHINW
NISOSHINW
8¥T901ASHLN

B8yTAT901ASHIN

01907108HLN
907103HLINW
LYTdXIASHLNW
dX3IASHLN
L4TSO0IASHLW
HSOJQASHLNA
SO0JASHLINW
LYTNYLIVASHIN
CNYLVASHLINW
NYLIVASHLIW

64 NISVASHLN
NISVASHLW
68TS0IVASHLN
SOIVASHIKW
LYOSISHLINW
NISISHLIRN
nETSOISHIN
HSOJ$HLIN
SOJSHLKW
901I$HLN
dX3ISHINW
S0JISHINW
SAVISHLW
NETNVLIVSHLIW

ENVLIVSHINW -

NVLIVEHLNW
SYTNISVSHIN
NISVSHLINW
SHTI0IVEHLN

Sy OIS0 IVEHIN

B190IVSHIN
90 1VSHLNW
S¥TSOIVEHLN
SOIVSHLW
40488817
INVASSAIT
24388811

13¥701T9Iss8I

1vN91ss8lN

9¥7a@"1 13958811

007113988811

- 9007N33¥488817
a@a"N3II¥488817
9agT 1338488817

708KWAS

p143x3°W02TvE0T9 BT ‘05112180

8-23

SHAREABLE IMAGES

L

39vd

UOUIO) Ppoxeys NVILIOd burmoys dey

AVIdSIQ 3INVHI

**' A4 Q3IN3EI43Y

22°1ex ¥UNIT LS321 8L6T=9NV=p

(*3uo0D) 9-g °anbra

11 4SWA
ALASWA
TLUSKA
TLdSHA
TLASKHA
TLHSKWA
TLYSHA
TLHSKHA
TLHSHA
TLHSKWA
TLHSWA
TLHSWA
TLESWA
TLYSHWA
TLYSHA
ALASWA
1L4SWA
TLHSKHA
TLYSWA

I9vHNITSSIO

TLHSKHA
T1H8KWA
TLHSKA
TLHSWA
TLESHWA
T1HSHA
TLHSWA
TLASHA
T1dSwA

A8 Q3INI43Q

Ni=6130pvbo
Ny=82J0nuln
Ny=8¢lvanly
Ny=823002908
ny=@2J0p000e
Ny=81IBuBYY
Ny=0630@0YY
Nu=8490m000
Ny=349010900
Ny=g3008nad@
Ny=03800002
Ny=8agdn0?a
Ny=88a0000p
Ny=0080n2900
ny=8ladavde
Ny=0880rR00
Ny=2Ja3dande
Ny=8vaoprody
Ny=avgorobdo
y=n 4900000
Ny=8680pnda
NYy=gvIBppvY
Ny=9viveado
Ny=o6a0puide
NY¥=88gapRRd
Ny=0880nndY
Ny=86300003
ny=glapanee
Ny=06J0audn

3INVA

9470aT1139$8S10
adv11398$S10
90aTN3I 38488510
AgTN3344$$S40
9037 1338488540
aav1334458610
9XQT¥TAd0ISSSLO0
XQT4TAd0ISSS40
9XAXATA403S8SL0
XAXATA40I$$840
EELDEEE YL
ryM0d$S40
Qum0ds$S10
rrMOdSSL0
1IM0dSSL0
¥aM0dSSL0
ramodssio
aamModssL0
rIm0dssio
JIVNNIT$SLO
IA1USSL0
HNVL1SHLINW
NYLSHLW

2471 HOSSHLN
LYBSSHLR
NUTNISSHINW
MNISSHINW
NISSHiW
WOONVESHLN

T08WAS
n143x3'w0dveE0T9 (BT ‘pSTI8taq

8-24

SHAREABLE IMAGES

]

39vd

uouo) paxeys NYIINOd putmoys dey (°3uo)) 9-g =2anbtg

B2 T¥X ¥INNIT

**°8708nAS

Ex)
! 3N7IvA A8 ST08BAAS !

jeenccssasannaanannt

LSi21 glel=9NVe=n

csmascasncananmd

9TINOTANIS BUA=NY
4T1N0TANISED d=NY
3TINOTANISHOd=NY
ATLINOTAN)SE0d=NYy
ZTINOTANISHO4=NY
OTLNOTANISHD=NY
ATLNOTANISNO =Ny
ITINOTANISHO04=NY
3IVdSHIVASEOd=NY
N3do$¥0 =Ny
vaTXTOI3¥04=Ny
ATNAMTOTS804=NY
¥TNMTOTSH0 =Ny
ATNITOTI3H04=Ny
¥TNIT0IS804=Ny
ATI4T0T$304=Ny
47347018 804=Ny
SaTATLITOIS¥0 =Ny
ATMTOISHO =Ny
dTMTOISH04=NYy
SaTLTOTS404=NY
ATET0TS4d04=Ny
CMCM RS CIEELE]
ATITOI$804=NYy
8710180 4=NYy
ATATOISH0d=NY
¥T0ToT$804=NY
AT4TOTISH0 =Ny
¥T4T015804=Ny
AN3TOTSH04=NY
NSTILIumSUO4=NY
0STILIHmsu04=NY
REMEFS CTE - FELF]
4STILTamsu04=NY
NOT3LIumS¥0 =Ny
00TILIyMSU0d=NY
40730 TumSE0 =Ny
NSTAv3InS¥04=NYy
0STavInSU0A=NY
ISTUYINGHOA=NY
48TAYINSUO =Ny
NATAv3nsu04=NY
00Tav3INSE04=NY
40TAvINSH0I=NYy
OWT300INISH04=NY
4WTIQ0INISHOI=NY
0WT3002308804=Ny
4473009305804 =Ny
3507178404=Ny
JOVINITSSL0=d
AY1dSI1a=Ny
J9NVHI=NY

27600000
98080000
20600000
8v600000
2v600000
26600020
26600000
98600000
90600060
8600000
2L620080
89620000
29600020
25600000
25600008
2ned00oe
An620000
25600000
22600000
84800000
94600000
g3800000
23900000
9a80v0RR
20900800
8800200
0800200
99800200
28800000
8v800000
avepaeee
goa0e000
26808000
29800000
290002000
84800000
2L900000
29900000
29800000
25800000
25900000
gn800000
0280000
2800000
22900200
a1800000
ol1820000
22800000
20800000
ni900000
18900000
20902000

INvA

LALEER TR CIREICARE IR S RAL: 1]

~—

8-25

SHAREABLE IMAGES

NS N N

UOUMIOD PaI'YUS NVIILIOJd butmoys dewy (°3uo)d) 9-g =anbtg

NIGSHIN=NY

LML R LITENE]

SO2sHLn=NA

YT dXSHIn=NY

dXISHLIn=Ny

SYTLIHOSOSHLIWNY

L¥DSasHLIN=NY

LYTNISOSHLn=NY

NISQ$HIn=NY

L¥TS0dasHIn=NY

S0JASHLIW=NY

88790 NasHIw=Ny

83TPT1901asHLIN=NY

21907038HIW=NY

907a%HLW=NY

L¥Tdx3aSHLN=NY

dx3QsHLIn=NY

LYTNVLIVOSHLIW=NY

ENVLIVASHLIN=NA

NYLVAOSHLIN=NY

64 NISYQ3HLIW=NY

NISVASHin=NY

647 S0IVASHLIN=NY

S0IVASHLIW=NY

PYTNYLYEHIN=NY

eNVLIVSHLIN=NY

NVLVSH n=NYy

SETNISVSHLIWaNY

NISY$HLIW=NY

SuT9I0TIvSHLIn=NY

SHTRT190 vSHIW=NY

2190 vSHiIn=NY

90 Ty SHiW=NY

SuTS0JvSHIn=NY

S0JysHiW=NY

d0lgsu04=ny

SUNJI3g§¥0 =Ny

ANIMINSH0d=NY

35NV4SH0d=NY

957ISIATINISHOd=NY

£4T2830TINTSE04=NY

24T1S30TINISHDd=NY

ZTNITANISE04=NY

0TNITANISE04=Ny

TINTITANISEO =Ny

ITNITANDSH0d=NY

ONT 45804=Ny

. 9430TNITANISHE0 =Ny
MT1IX35404=NY
.. LIx35804eny
MTSNSYAISUO =Ny
SNSHHISV0 =Ny
37140N352804=NY
MT311474308804=Ny
37147 4305804=Ny

ST08KAS

6 39vd . 22°Tax 4INNIT LS221 8L61=9NV=h

gleoo0e
pLu0ovo0oR
896800000
v9822000
85820000
2820000

LT

2nadInNene
RE800000
2E802v00
82842000
22820000
glgv000e
2lgedvoe

" Boe0d000

20800000
84ve0000
24v00000
83vou000
B3ivooooe
8Qvavoee
oavonsou
gJvaooee
2Jvosoee
gavooBee
2avavese
avvaovoe
2vvoo000
s6va0000
P6vV20000
88vovLa0
AL T 1]
glvoveee
BLvVoRee0
g9voneeve
29v00000
asvepeee
BSvaoene
snvageoe
onvooeaw
gLvooeoe
egvadove
g2vaouvee
e2voeoue
glvaoene
21veaooe
sovoduee
aevevose
84600000
246230000
93600000
e36022000
80600000
20600000
83600000

~3NvA

n143x3°W03vE019 (BT ‘0ST]818Q

8-26

SHAREABLE IMAGES

uoumIo) paIeYS NWNINOd butmoys dey (*3uo)) 9-8 o2anbrg

3701881 V=ny 2£0Q00000
¥IAOTINTSEI =Ny 82000010
ASNTsHIT=ny v2Q20000
X3ONTSEITeny 21000000
ONYWA0IT 13958 VeNy 210000060
LNdNIT 139481 0=Ny 8000A000
4IANNT LT 48T NNy 20Qu2e00
1147dNxI 4891 1=Ny 84300000
S4448I =Ny 04J0v000
‘34488I7eny 83J00000
AZLiX3s¥INeny 23000000
ALX33dINeNy 80200200
HSITEVIS3IsHINeny 20300009
¥3A0TI3SEI NNy 83304000
EREL FOS LY LI SN 22202000
J43$EIN=NYy §8J00000
908d"NITLSYSEI TNy @8220000
HNV [SHLW=NYy 8vivudee
NYISHLW=NY ?vI02000
HNIGSHLn=NY 86200008
WOGNVNSH L WenY 26320000
HNYLOSH Lnw=Ny 89302000
NVLOSHLW=NY 29300000
HNISQ$HiIW=NY 84300000
HSOJ(SHLIN=NY 2LJ00000
L¥DSIsHLW=NY 89200208
NISISHLIW=NY 293000080
S0JJSHLIN=NY 85200000

HSOISH =Ny 25300000
90712%HIH=NY CUBTLLTL]
dX3JSHIN=NY 2anJauvder
SEVISHIN=NY 88200000
90QTN3IY498SL0=NY 2gloaden
QaTN3I3IY4cESL0=Ny 2200008
90aT1334498SL0=Ny 22200000
0071334485400 =ny 81204000
947QaT1L39688L0=Ny v120v200
4oTT139g4S10=Ny Q0200000
9IXxaTHTAd0ISSSL0=NY 2000000
XxaT8TAd0ISESL0O=NY g4a00000
9X0AX0TAd0IgSESL0=NY 04800000
XaX0TAd0Is$SL0=NY 83800000
44M04$SL0=Ny 23600000
LUMO4$SLO=NY 208022000
PPMOL$SLO=NY 20600000
IIMO4$S10=Ny 80800080
rAMO4$SL0=NY CRELLTTL)
QHM04$SL0=NY gg9as0000
HAMO4$SL0=NY 28800000
AQMOH$SL0=NYy 8ve0e0R0
FrIM049SL0=Ny 2vededee
JAIQ$SL10=ny 86800000
2uTLHOSSHIW=NY 26300000
Lu0gSHLIN=NY e9800000
nuTNIgSHLW=NY 28802000

L X} L L Y)

"*°ST08NAS anava

et 39vd 22°19x ¥INNIT LG9321 BL6T=9NV=n n143x3°wn2vE019 (4T ‘2ST) 8180

8-27

SHAREABLE IMAGES

uoumIo) peIeYS NVMINOd butmoys dew (*3uod) 9-8 9anbra

tuccane

! Wy3Am = yM 1
! 378VivI0I3y = ¥ I
1 TeSH3AINA = N Y
1 AaNI43aNA = % !

teemcncncancnnange"}

t3A0gY S¥ILIVHVHI TvIddds w04 AN

AVSTSNSHyIgSH0d=NY 92320000

1397g2854804=Ny 2300000

1387g3ss804=Ny 81300000

d0dT8Ig$804=NY al30a000

HSMNdTBIESH0 =Ny 80320000

WATL39S8I =Ny 840020080

WATIIN4$E] 1Ny 24000000

INVdESHIN=NY 93000000

JdXgsSaI =Ny 03000000

13470179I¢s8I 1Ny CLGEEETT)

d0lgS8Ieny 20000080

AVYNIIQSEI =Ny 83Q000008

! 90QYNIIy4gSHI1=Ny 868000000

GATNITu4gS8I =Ny 99000000

9007133446881 1=NY gvae2oee

00T13354g88I =Ny 2vaeevae

9¥TQQT1139g88I =Ny 86000000

aavTi39g88I=ny 26000000

9XxQTYTAdDISSBI TNy g8Q0B0000

XQT3TAd0Ig$8I NNy 08000000

- 9X0XATA40Ig$8I =Ny 8LQ00000
XAXdTAd0ISSHIT=NY piQo0000
INVISSEIN=NY 89000200
L¥3A3488T =Ny 29000000
LNd1N0TLIN4$8IN=NYy gsQdaene
INLAOWSEI NNy 250008000
JLAOWSEIVeny §nQ020A0
ANOITHILYWSBI =Ny eha20000
JHILYWSEI NNy gfaodeee

“SI08WAS 3NvA

11 39vd 22°10x ¥NINIT L5121 8L61=9NV=n n163x3°W02v8079 (BT ‘0ST) 318Q

8-28

SHAREABLE IMAGES

22°1ax HDINIT

uoumIo) pPaIeysS NVILIOd butmoys del

(*3u0D) 9-8 @anbta

N3LLIdm Svm SQ4023¥ 378VL T0EWAS VH0T9 21 40 viOol v

(3RJ47V4S AYVAHBIT 3IWL NI LON ST0EWAS H0d4 343w SIHINVIS AxvVHEIT ©

$IGEWAS G3NT43ANN 3AT0838 01 3LJvalix3 | HIIM

ATLI3I7dx3 a313vyix3 S3TNAOW 40 ¥3IBWNN

$%3078 a1 40 MOOUNIM vV INISN

SWI018 IL 40 Avi0l v 03ISSVAWOINIT HIIHM
SNOLL1va3d0 Qv3IN 2078 A¥VYBIT g 3Jd3am I¥3NL

S3LAH 122 ONINIVLINOD SCUH0JI3IM VIVU 9NHIC 3Y3IM 8 ONV SITAVHEIT NI 3Id3m ST WIIHmM 40
£(538Svd +106) Gv3y SUH0J3M LI3rg0 HIEWNN TviO0L

ne

(39vWI 9NIANTIX3I) 39VHULS VIVU 40 S39vd v ONV S39vd 49 Ol QILINIT L3S ONINMOM V ONISNH

frtsatud
a2t netunivg
9¢°10tadsnn
nLtaegidoing
ngtaRdvpian
2l1'tatnning
2¢1vtodtng

3WIl 03SdvI3

‘WIVN03/8837 =

(S39vd RS ‘S314AR

GA*2AipAdvw
LA*PRi0Lied
96°@Rivuing
L1%casantan
r2%potvLicw
LS*evtpaiice
62680V ing

Inll Nad

teeccn=

nel
']
sl
5

ee
(]
2g

ascsan

S1livs

39vd

_ =183NTvA NN TIVLOL
=1inNdiN0 378Vv] 0BWAS

=$SISa0ONAS 3TNAOW 1J3r8p ¥3Ll4v vivd dVW

-m4

1 SJILSILVIS Now XWNIT !

teccnnnsnenccnnenonnes

($%J018 °¢

(%3078 °*1

s

S

r143x3*

) °n
)

§39vd
*96962) 2ANLPORC 4450€3080 V2200400

%2018 °SS

w6 ldVW W0I1va019 (01251] 8 Ta0w 3714 NI 3IN3H3 434 SSOHI HLIIm N4

HJLVie NOILI3S 1vA019 *379v3dVHS ‘IId

'g

‘661

*6st

‘ol

'S

‘s
w0231vE8019
*2

°1

)

ccencnssasdt

1 SISdONAS 39VAl 1

frmcacecccscanannt

L5121 8L61=9NV=n

) =12 $8vd
=INOTLVI0T3A4/NOTLVIOT Y
-1} gSvd

«i9NISS3IJ0YHd ANVWWOI

SUNLVIIONT 3INVWAHO4¥3d

$ulIN3T dvW Q3ILVWILS3

LLVWHO04 dVW

. $3dALl 39VAWI

$1SNOIL23S 39vWl 40 ¥3BWNN
$63INIHI4IN SSOHI 40 HIBWNAN
18708wAS 1v8079 40 d¥3AwNN
ISNOTILJ3S WVYHI0Nd 40 ¥3BWNN
$63NA0W 40 ¥3BWNN

, 183714 40 ¥3BWNN
INOILVIIJLIIN3AI OGNV 3IWVN 39VYKWI
ISLIWIT %2078 VNLNIA AHYNIB 39VWI
SSLIWIT »J0718 AvNLI¥IA §3QYIH I9VNWI
N 13218 %IViS

13313071V AdOW3W TYNLYIA

n1t3x3*w02va079(21 ‘25113180

8-29

SHAREABLE IMAGES

8.3 USING SHAREABLE IMAGES

To be of use, shareable images are normally linked into another image.
Usually shareable images are also installed by the system manager, to
make them available to the cooperating users at run time.
Installation of shareable images is dealt with in the VAX/VMS System

Manager's Guide.

You must use an options file (see Chapter 6) to specify a shareable
image as input to the linker. In an options file the /SHAREABLE
qualifier becomes a legal input file gqualifier, identifying the
associated file as a shareable image. The /SHAREABLE qualifier
optionally accepts the keywords COPY or NOCOPY, specifying whether the
linker 1is to create a private copy of the shareable image in the user
image. The default value is that no copy is produced.

When an image containing a shareable image is activated, a search is

made - for the global section match, as described in Section 8.2.3. 1If
that match fails, one of two things occurs, depending on whether the
executable image has a private copy of the shareable image:

e If the executable image has a private copy, that copy is used
instead of the global sections.

e If the executable image does not have a private copy, an error
message is issued indicating that the required global sections
are not available.

/ \.

CHAPTER 9

CLUSTERING

The concept and main uses of 1image clustering were introduced in
Chapter 2. The present chapter expands on the earlier material,
describing the mechanics of clustering and some guidelines for usage.

9.1 MECHANICS OF CLUSTERING

Chapter 6 describes the CLUSTER= option, which is used to define the
position, character, and content of clusters. The cluster name is
merely for convenience in reading the Image Section Synopsis of the
image map.

Every image produced by the linker is automatically given a default
cluster., This cluster contains any object modules not explicitly
positioned in other clusters. The BASE= option serves to position the
default cluster in the address space.

Clusters are allocated virtual address space in the order in which -you
specify them, wunless you specify base addresses. In allocating
virtual address space, the linker first deals with clusters to which
you gave base addresses, and it considers them in the order of
specification. The linker reports an error if it detects any overlap.

A shareable image is treated as a cluster. If the image 1is not
position independent (NOPIC), it has a base address already assigned
and is treated in the same manner as 'a user-specified cluster that has
a base address.

After the linker has allocated virtual space to all user-specified
clusters and shareable images, it allocates space to the default
cluster, if it contains any modules. Finally, the 1linker allocates
address space to the Run-Time Library shareable image, if it has been
automatically acquired.

9.2 USAGE GUIDELINES

Clustering is not 1likely to have any performance advantage for
applications smaller than 200K bytes. The reason is that each cluster
contains a group of image sections, and thus the address space is more
fragmented. Fragmentation can reduce program performance under
certain circumstances.

=

APPENDIX A

LINKER MESSAGES

This appendix lists the code and text portions of messages that the
linker can issue. The messages are listed in alphabetical order by
code.

The messages are designed to give you all the necessary information
about the error. Brief explanations are included for a few messages
that are not self-explanatory.

BADCCC, Module "[name]" has bad compilation completion code = [code]

BADIMGHDR, Bad shareable image header in file "[file-spec]"

BADPSC, Module "[namel]" has transfer address in unknown P-section
" [number]"

BASESYM, Base address symbol "[name]" is undefined or relocatable
CLOSERR, Close failure on "[file-spec]" code = %$X[error code]

CONFMEM, Conflicting virtual memory requirement at %X[address] for
[number of] pages for cluster "[name]"

CRE8ERR, Failed to create file "[file-spec]"

CRFERR, Error code %X[error code] received from Cross Reference
Facility

DBGTFR, Image "[file-spec]" has no Debugger transfer address
DIAGSISUED, Completed but Qith diagnostics

EMPTYFILE, File "[file-spec]" contains no modules

ENDPRS, Parameter parse completion error, code = %X[error code]
EOMFTL, Module "[name]" specifies Linker abort

EOMSTK, Module "[name]" leaves [number of] items on Linker internal
stack

ERRORS, Module "[name]" has compilation errors - image deleted
EXCPSC, Module "[name]" defines more than 256 P-sections

EXCSPAR, Too many parameters in option: [option name] of file
"[file-spec]"

FAOBUG, FAO failure

LINKER MESSAGES

FATALERROR, Fatal error message issued
FIRSTMOD, First input being a library requires module extraction

FORMAT, File "[file-spec]" has illegal format

GSDTYP, File "[file-spec]" has an illegal GSD record (type = [type
code])
ILLFMLCNT, Min. arg. count of [number] exceeds max. ([number]) 1in

formal spec. of "[routine name]"
ILLKEY, Unrecognized keyword in parameter of option file "[file-spec]"
ILLQUALVAL, Illegal qualifier value

ILLREP, Module "[name]" has store repeated count [number] greater than
[number]

ILLTIR, Module "[name]" has illegal relocation command = [number]
ILLVAL, Illegal parameter value in option file "[file-spec]"
INITPRS, Parameter parse initialization error, code = %$X[error code]

INSVIRMEM, Insufficient virtual memory for [number of] pages for
cluster "[name]"

INTSTKOV, Linker internal stack of [number of] items overflowed by
module "[name]"

INTSTKUN, Linker internal stack of [number of] items underflows in
module "[name]"

IVCHAR, Invalid character in parameter - option file "[file-spec]"

LIBFIND, Failed to find valid lib. mod. or shr. image STB. at RFA
$X [address] %X[address]

LIBFMT, Library "[name]" (format = [bad format]) has incorrect format
(not =[correct format]) for this Linker

e Might be caused by a corrupt library or an attempt to wuse an
RSX~-11M library. .

LIBNAMLNG, Library module name length ([number of characters]) is
illegal

LINERR, Command line segment in error

\[error]\

MATCHID, Global section match ident ([number]) exceeds maximum
([number])

MAXCHANS, [number of] channels exceeds maximum allowed of 64

MAXIOSEG, [number of] I/O segment pages exceeds maximum allowed of
65535 '

MAXISDS, [number of] I-sections exceeds maximum allowed of 65535

MAXPFC, Page fault cluster factor of [number] exceeds maximum (255)

TN

LINKER MESSAGES

MAXSTACK, [number of] stack pages exceeds maximum allowed of 65535
MEMBUG, Memory (de)allocation bug [description] %X[address]
e Internal linker error

MEMFUL, Linker virtual address space insufficient to complete this
link

MINDZRO, [number of pages] as minimum I-section size exceeds maximum
allowed of 65535

e DZRO_MIN option value too high

MODNAM, Illegal module name of [number of] chars. = not 1 to [number
of] chars.

MSGERR, Linker has error message bug [hex data]
MULDEF, Symbol "[name]" multiply defined by module "[name]"

® The named module defines a symbol that another module has
already defined.

MULPSC, Module "[name]" has conflicting specifications for P-section
u[name]n

e A previously encountered module has already defined the
program section with other attributes.

MULTFR, Module "[name]" multiply defines transfer address
® The named module defines the image transfer address (starting
point), but a previously processed module has already defined
the transfer address.

SPNAMLNG, Illegal symbol/P-section name of [number of] chars. - not 1
to [number of] chars.

NOEOM, Module "[namel" not terminated with EOM record

NOEPM, Module "[name]" references wundefined entry mask of symbol
n[name]n

NONBTAB, Non blank/tab between continuation and comment or end of
record in "[file-spec]"

NOMODS, No input modules specified (or found)
NOPSCTS, No P-sections defined in module "[name]"
NOSUCHMOD, Library "[name]" does not contain module "[name]"

NOTPSECT, Module "[name]" sets relocation base to other than a
P-section base v

NOVALU Values not allowed in qualifier - option file "[file-spec]"
NUDFSYMS, "[number]" undefined symbol (s)
NULFIL, Null parameter in option file "[file-spec]"

NULPAR, Missing required parameter in option line [erroneous line] of
file "[file-spec]"

LINKER MESSAGES

OPIDERR, Pass [number] failed to open file "[file-spec]"

OPTREDERR, Read error (code=%X[error code]) on .option file
"[file-spec]"

OUTSIMG, Attempted store location %¥X[address] is outside "[region]"
($X[base address] to %X[ending' address])

® "Region" is expressed as either "image binary" or "Debug
Symbol Table."

OVRALI, Module "[name]" has conflicting alignment on overlayed
P-section "[name]"

PARMDEL, Invalid parameter delimiter in option file "[file-spec]”
PRIMIN, Input parameter parse error, code = %X[error code]

PRIMOUT, Image file specification error, code = %X[error code]

PSCALI, Illegal P-section alignment [number of bytes] - exceeds a page
PSCNXR, Transfer address in "[module-namel]" not in EXE/REL P-section

e The transfer address is normally in a program section with the
executable and relocatable attributes.

PSCOVFLO, P-section "[name]" overflows region to %X[address]

RECLNG, File "[file-spec]" contains record of illegal length ([number
of] bytes)

RECTYP, File "[file-spec]" has an illegal record (type = [type code])
REDERR, Read failure in pass [number] on file "[file-spec]"

SECOUT, Map file specification error, code = %X[error code]

SEQNCE, Illegalvrecord sequence

SHRINSYS, Shareable image(s) cannot be linked into a system image

STRLVL, LINK [version] does not implement OBJ level [structure 1level]
- only to [structure level]

® The version of the object language is not compatible with the
current version of the linker.

STKOVFLO, Stack of [number of] pages falls below control region to
%X [address]

TFRSYS, Transfer address in system image "[file-spec]" ignored

TIRLNG, Module "[name]" has relocation command data ([number of]
bytes) overflowing record

TIRNYI, TIR command [number or name] not yet implemented (module
] [name] n)

TRACIGN, Suppression of traceback overidden by DEBUG specification

e Occurs when you specify /NOTRACEBACK and /DEBUG.

TN

LINKER MESSAGES

TRIOUT, Symbol table file specification error, code = %X[error code]

TRUNC, Trunc. error in module "[name]", P-section "[name]", offset
$X[hex value]

TRUNCDAT, Computed value = %X[hex value], value written = %X[hex
value] at %X[address]-

UDEFPSC, Attempt to reference P-section no. [number] undefined in
" [module name]"

e Undefined program section
UDFSYM, "[symbol name]"
e Undefined symbol

UNMCOD, Initial file name was "[file-spec]", RMS error code = $X[error
code]

UNRECOPT, Unrecognized option in file "[file-spec]"

UNRECQUAL, Unrecognized qualifier in option file "[file-spec]"
USEUNDEF, Module "[name]" references undefined symbol "[name]"
USRTFR, Image "[file-spec]" has no user transfer address

WRNERS, Module "[name]" has compilation warnings

WRTERR, Write failure on file "[file-spec]", code = $X[error code]

VALREQ, Value required in qualifier - option file "[file-spec]"

A \\
i

TN

APPENDIX B

IMAGE MAP ILLUSTRATIONS

This appendix illustrates the complete brief, default, and full forms
of a map of the same image. These illustrations do not include a
Symbol Cross Reference map section; however, this section does appear
in Chapter 7 (Figure 7-5).

The illustrations in this appendix are forms of the map used in
Chapter 7.

IMAGE MAP ILLUSTRATIONS

BRIEF MAP

(
(-

@T=£°X 0NIVW TI=XVYA 214l BL6l=NAF=20
26=L°81 SNTd=Al NVHLIN04 TT=xXVA 28,/8 @QlLeleAvjall

¥0iv3yI 31vQ@ NOILV3INI

39vd L1%Tox ¥HINIT 11281

140r80°9Ne30(211SAS) 328u0 ©
2Ira0*39vaany [Avaannl 3180 2

3714

4vccncsnscanncnsasnansnsenad

1 SISdONAS 37NQOW 123rg0 1!

dessccncsasvacannsncnsncsaay)

elel=Nr=41

a2

3148

1Y)
19

i~3al

10089N83Q
NIVWSIOVHIAY

INVYN 3T7NA0K

39vH3AY

IMAGE MAP ILLUSTRATIONS

BRIEF MAP

N3LLIdM SYM SQN¥0J3¥ 378VL 708WAS vE0T9 @ 40 viol v

Q03IHIAVIS AMVHEIT 3HL NI LON $7108WAS ¥04 3u3u SAHINVIS Adv¥aId @

$708WAS GINIJIANN 3AT0S3Y¥ 0L A3LIviix3 2 HIIw
ATL10I7dX3 Q313vy¥lx3 $3INA0W 40 ¥3SWAN

§%207& @1 40 mOANIm v ONISN
$%3078 16 40 vi0l V QaSSVAWOINI HIIHmM
SNOILiv¥3d0 Qv3y¥ XJ018 Aava8IT 81 3d3M J¥3HL

Q3ILVI0T1IV §X2078 T HLIM 9 NBA Lv ONILAVIS‘NILLIWM 3d3m viva ang3d 30 S3ILAE 492

S31A8 162 ININIVINOI SUN¥0I3Y ViIVA 9NA83Q 3¥3IM 8 ANV SIIAVHAIT NI 4¥4M 29 HIIWM 40

6Lt $(S36Svd HL08) Qviy SA¥0J3¥ LI3r80 ¥3IAWNN TviOlL

(39VWI ONIGNTIX3) 39vVHOLS Viva 40 $39vd @€ OGNV S39vd @81 OL Q3LIWIT L3S ININ¥OM V ONISN

L1°20%00200
Lo*@0toastee
20°0pi00tvY
L8°p0tdRton
92°00ieaiaY
2e°1ptuoten
11°00t00200

IWIL 03sdVI3

w9 ldvN*3OVHIAV [AVEUNKW] 2180w 3714 NI 43]uw

(S39Yd *8S ‘S3LAB °96962) vonloApD 445.0000 80202000

2 9vd L1°18x ¥INIT

9L°003100100
2000100100
v2°e8ta0t00
22°00te0ten
S¢°00100100
2n°epieRien
L8°00120100

asse aas

3nIl ndd

€5
[}
0
9
4
14
e

s1nv4

=383NTVA NNY viOol
) ailndinu 378v.l T08WAS
al18ISdONAS 3INQOW LI3Q82 43,4V VIVQ dVW
=32 sSvd
=INOILVI034/NOILYVIO0TY
=1 9SVd
«19NLSS3J08d ANVWWOI

SHILVIIAONI 3INVWY04¥3d

39vd

tensanncssncccncnsassand

1 SJILSILVLIS NNY XMNIT T

joacns

(§%3018 °f

(®2018 °t

cscasd
§%J078 ‘8 $Mi9N3T dVW G3LVWILS3

1lVYWH04 dVA

*374v.ind3ax3 13dAL 39VNWI

20800000 168340ay ¥I4ENVEL d4399Nu3d

2900000 t19e3a0ay ¥3IASNVHL ¥IASN

‘g $SNOI123S 39VWI 40 ¥3IBWAN

‘et 187084A8 IVE0T9 40 d3LWNN

‘e $SNOILIAS WYH90dd 40 ¥3IBWNN

‘s $837NA0N 40 d3BWNN

i] 183714 40 ¥3IARWON

10 39VH3IAV INOILVIIAILNAATI ANV JWVN 39VWI

) *s 2 1SLIWIT %2078 WNLHIA AMYNIE 39VNWI
) 1 ‘1 $1SLIWIT %2078 WnL¥IA ¥3Av3AH 39VNWI
§39vd ‘02 13218 NIViS

1Q31VI20171V ANOW3W TVNLAEIA

tecmnconncannanand

! SISdONAS 39VWI !

LY T

T18€T gL6T=Nr=a%

msssnasasd

983x3°3avyIAv [AVHENK] 218

IMAGE MAP ILLUSTRATIONS

DEFAULT MAP

1

c

anva 708nWAS 3anva
ldM ‘Gd ‘3Ix3 “AHSON’TITT3H’NOI‘NSN‘ITCON
LMMON’QY ‘3X3 ‘dHS ‘13747134 /NOJ‘¥SNYIId
lyw ‘Qy f3IXION‘YHBON‘TITT14NOI‘H¥SN*J1d
L¥MON‘QY 3X30N‘dHS ‘7274734 /NOJ‘HSN*I1d
s3LneruLiv

2T2€°3X ONIVYW TT=XVA
26=L°0L SNYd=Al NVYLNO4 TTexvVA

40iv3yd

2321 glel=NNr=2p
2170 Blele=ARpely

31va NOILV3NWD

39vd L1°18X HAINIT

NN NNS S

N

AVIM = M 1
T 378vLivi0N3y = ¥t
1 AVYSHIAINN = N 1
1 QaNIJIANN « » 1

jmcncasscennsscansany}

13A08v S¥3LIVAVHI TVII34S

JOEWAS NvA T08WAS
donnssan ssnasé
T 3WYN A8 S708wAS I
jecnscesscscscsanansd
31Ad (8) €P0VA20Y LO8WBALY VEY00VYD 10069n84Q
3148 (°¢) . B0VVVYORD LOBROVOD VORARDER
9NDOT ("8l) VEoUOoRP0d 68920000 20900R0D NIVWS39VMIAY
INOT (°8E1) VeBYOBOL 689000400 VR9200BY
9NOT (21) 22200208 8LUNOBYDY QDNAGROR NIVWS39VMIAAY
9NDT (21) JBBUYOBOY 80NVLRBY VUNOBROY
9NOT (28) nEPBAA0Y §$5200000 CV200R0D NIVWS39VNIAY
9NOT (28) nEVPPBRd §£5200020 PN280000
L L X T] - - L X] -an -
917Y HLIONIT an3 3sve ($)37nQuw
1 SISdONAS NOILJI3S WVH90dd !
deacssssscncscanasansansanand
14ra0®9ne3a(al1sas)12esq ¢ 0
20ra0°39vu3Av [Avaanwl 1180 2082 10
sSseae ;mesen Seses
3714 S31A8 LIn3ul

pmcas

VIlEl 8L6T=Nr=21

¢teccosvcsanssscsenssscaanad

1 SISdONAS 37NQOW 13080 ¢

esaé

404 Adx

NIVASIOVHIAY
108WAS

* YNyt
30038
v201s
vivads

AWVN 1J3S=d

10089n830
NIVNSIOVHIAY

INVYN 3NAON

39va3AY

IMAGE MAP ILLUSTﬁATIONS

DEFAULT MAP

L1°18X ¥9INIT

N3LLIYM SVM SQ30J3d 378VL T08WAS TVEOTS @ 40 viOol Vv

Q3HIY¥V3S AYVHEIT 3HL NI LON STOEWAS ¥04 3I¥3Iu SIHIYVIS ANVHEIT @

S$708WAS JG3INIJ43UNN 3AT0S3¥ OL A31IvHix3 2 HLIM
2= ATLIIITdX3 @31dvalx3 $3TNAON 40 HIHWNN

$MJ078 @1 43 mMOQNImM v INISN

§%J078 16 40 TvIOL Vv Q3ISSVAWOINI HIIHM
SNOILVY¥3d0 QV3d %018 AavHell 21 3y3Im Jd3IHL

A31v3077Y S$XJ078 T HLAIM 9 NBA Lv ONILNVLIS/NILLINM 3d3m viva ang3d 40 S3ILAE L92

S31A8 162 ONINIVINOD €Q¥0JI3IY VIVO 9N83Q 3I¥3M 8 ANV SIINVHAIT NI 4¥4m 29 HIIHM 40
6L1 $(83SSvd H108) Qv3Y¥ SQ¥0JI3¥ L23r80 ¥3AWNN Tvi0lL

(39VWI INIANTIX3) 39VHOLS VIVQ 40 839vd 6% ONv S39vd 081 0L Q3LIWIT L3S ONINHOM Vv ONISN

29°20tvoieo
1128200800
96°p0tp0ten
98°00:00800
s2'eotvaten
L1*tloteaten
21°00t00100

IWIL Q3sdVI3

CACLRELRT T
do°*02tvoton
So*eeigetod
L2°001p0t00
no*eotoetoe
thepdivoter
no*eatevton

INIL Ndd

Poancvscssssan

Si
[}

=183NTIvA NNY TviO0L
=ilndino 378vL T08WAS

S =1SISdONAS ITINAOW L1I3LHU H3[d4V VLIVA dVW

S
4
€
ee

817Nvd 39vd

T SJIILSILVLIS NNY MNIT 1

tsccavssas

aasassssed

s$xJ078 °*Lt

uSIdVW 39vHIAV [AVHYNW]2T8As 3714 NI LINVA3Q

($X3078 °n
(%2078 °1

*374viNnJ3x3
008030V0R
22900000

‘e
‘et

10 39va3AY
) *s *2
) 't
$39vd ‘@2

(839vd °8S ’S831A8 °96962) 0ONLBOOO 44SL0002 BD2QA0A0R

dnsnssccnsscnancané

! SISdONAS 39VWI !

¢tnonunsasan

BTIET 8L61=N0r=01

N /!\\

=aéd

=12 8Svd
=INOILVI034/NOILYVI0N Y
=il sevd

=319N1S8330ud ANVWWOD

seesescata cesascdanas

SHILVIIANT FINVWHO4¥3d

$ulIN3T dvW QILVWILS3

LlyWy¥04 dVNW

$3dAl 39VNl

£SS3¥Qay ¥IASNVHEL ¥399N83Q
1923400y ¥34SNvHL ¥3SN

ISNOILJI3S 3I9VWI 30 H3IAWNN

1S871084A8 1VE0T9 40 ¥3IHWNN
SSNOILI3S WVY90¥d 40 ¥IGWNN
1S37NA0W 40 ¥IGWNN

283714 40 ¥3IAWNN

INOILVIIAIAINIAI ANV 3AVN 39VWI
$SLIWIT %3078 IWNLNIA ANYNIS 39VWI
8SLIWIT %2078 IvNI¥IA ¥3Qv3IH 39VWI
13218 XIvViS

$Q3LVI077V ANOW3IW TVNLNIA

S13ax3°3avyaAY [Avyann]) 2180

IMAGE MAP ILLUSTRATIONS

FULL MAP

1

LT1°TBX 2€=)NIT

T1=€°aX OMIVW TTexvA

T1=€°0X O¥IVHW TTexvA

BI=E°BX O¥IVW TT=XVA

26=L°0L SNTdeAl NVHLNOd TTexVA

¥0lv3iyd

39vd L1°TeXx ¥DINIT

12708 8L61=1Nr=01

2tcy
§int
2tut
21lp

8L6T=NNr=52
8L61=NNr=S1
8L6T=NNr=20
8LoT=ARKHalT

31vad NOILV3ND

243x3°1LuSWA[B118AS) 32880 @
24870°1374vLS[aI1SA8) 32680 @
24870°13T4v1S[(8]1715A6) 12080 €
14ra0°*9n83q[eI1SAS] 32860 @
20ra0°39vy3Av [Avadnn] 1180 202

314 S3iA8

decnccacsssnscasnscsonasansd

t SISJONAS 37NAON 133080 !

boscasnsuan cassasé

60181 8l61=N1 =01

nyddxa’®

TLUSKHA
H0LJI3ASAS
39VXNITSSLO
loo89n83q
NIVANSIOVHIAY

IWYN 3TNAOK

JIVAIAY

IMAGE MAP ILLUSTRATIONS

FULL MAP

66
66
66

QINONINW

39vd

aT¥orve

RLLCEVAT KR £80TVLHEWA
BALLEVAT EN 280711 4SHA
AL LEVATER] 1087 1LESHA

HILVW 3IWYN 238 *189

L1°10x ¥aNNIT

438 NO AdO) EFSE-L]
AINO

AINO

0d3Z ONVYW3IQ 3LTam
434 NO AdOJ 3LIum
ATINO

434 NO AdOd 3llum
AINO

aviy
avIy
Qvay

av3ay
Gvay
avay
aviy
av3y

INI9Vd ANV NOILI3LO¥d

va2loe00e
0a210000
23vooeo0

[N

2080444l
200000008
009002000
vonoooeR
00280000

ssees ass
NI NS

J4d N8A XSIQ ¥aav 3sve

¢usccscccacaccagsaasacanacd

! SISdONAS NOILI3S 3IOVWI !

dsccacccanccscncnassascasayd

68181 gL6T=INr=01

FoON
—r

et~
n

$39v4d

n

£

£ TLUSWA
(474

A

a

A

a 4348N71374nv430
ddAl ¥3lsn1d

£13x3*3avy3Av [AvyanWl tiga

IMAGE MAP ILLUSTRATIONS

FULL MAP

£

39vd

lym ‘qy
LYMON ‘Qd
LY¥MON QY
ldm ‘qy

LymON‘Qy

s s

-~ s

2pvve0ee
vuovBevee
9v0ovee0e
800BRRV0

fe0p0eeL
too00000

veeepoee
V8000009

Jovvanes
J220peoe

hgoveoee
ngE20NA20

HI9N3T

/(‘\

90800000
g0800bU0L
LOBUVLOR
LOBOVYEY

38940000
39900000

68920002
689087300

4onLvvevd
a@nooene

£1200000
§£200000

an3

doatosasnsncssssvsancanenssad

! SISdONAS NOILJ3S Wvd90dd !

2 31A8 (°0
2 31A8 (°0
B 3LA8 (°8
‘3X3 ‘HHSON‘IIT‘T3UNDI‘HSNYIIHON @ 3148 (°8
2 9N0T (°S
Y3X3 ‘¥HS ‘71371134 UNGI‘HENYIId 2 9NOT (°%
2 9NO0T (°egl
3X3 ‘¥HS ‘7197°73¥NOJ‘¥SN‘IId 2 9NOT (°eEl
2 9NDT (2}
3IXION‘UHSON’T1IT 134N ‘HBNYITd 2 INOD (°21
2 9NOT ('es
‘IXION‘YHS ‘T1I71713¥INOD‘¥SNYITId 2 9NDT (°2s
s3inalaliy NIV
becsmecna
L1°10X d9INIT 601351 8L6T=Nr=0T

g0800VE0
808020000
20800000
0egvBavY

Jg9seoove
Je9eenon

20900000
20900000

2vhoeeoe
Bohveooe

08200000
00200000

ssse

3sve

¥01J3A84S
J9VXNITI&SIO
10089n83g@

J9VHNIT€SLO

NIVWSIOVNIAY

NIVWS39vmIayY

NIVWS3OVNIAY

($)37nQoN

* %NVi8 *

30038810

30038

Iv307s

vivdads

AWYN 1J3S=d

£03x3°39vaIAY [AvyaNW] 2TEQ

IMAGE MAP ILLUSTRATIONS

FULL MAP

L

INvA

39vd

T08WAS

L1°10x ¥ANNIT

T08WAS

bronanscsssncanaand

! 3WVN A8 ST08AWAS !

domsncacnssccsaansan$

601ET 8l61=Nr=01

108wWAS

N

891042048
¥=389¥nvuvY
0B90LRuvY
NY=86204040
NY=29304du
NY=0S2040ul
NYy=0QJévduve
NY=28J304040
NY=8vIBABLY
U=PV9BuBud

InTvA

VLSOWISSAS
39VHNITESLO0
NOISH3IATHSAIN
48T3ILIyMs 04
d0LSS¥04
487Qv3ysu04
471T0IsH04
474T0IsH04
ON3ITOISu04
NIVWSI9VHIAY

T08RWAS

£43x3°3avuIAV [AVEANK] 218G

/I\\.,

IMAGE MAP ILLUSTRATIONS

FULL MAP

S

39vd

L1°TaX 3DINIT

tenanscacsccscsananad

1

XY3IM = uM

1 376vivi0l3y = ¥ 1

1
!
‘=

$3A08Y SHILIVHVHI TvID3aS 404 AN

NOISHIATHSEIN

***s708nAS

¢onscsccsscacacnnnané

1 3NTYA A8 ST08WAS 1

L cscscsssus

608181 8L6T=TN=01

vS¥3IAINN =« N T
Q3NI 430NN = = 1

seascnssasd

ViISONTESAS
d0LRSH0 4=NY
¥TIT0TSu04=NY
dT4T0T8H0 =Ny
QN3T0rSH04=NY
48T3ILINusu04=NY
487TQy3 A4S0 4=NY
39VHINISSL0=Y
NIVWS39vyaAVe=yY

89100008
29300000
2000000
2800009
8vJeoeee
8600000
2500000
J8900000
209000800

NvA

£43x3*39vy3AV [Avaann] 8180

B-10

IMAGE MAP ILLUSTRATIONS

FULL MAP

9

3isvd

N3LLIdM SYM SQ¥OJ3YW 378VL T0BWAS vE0TS @ 40 IViOL ¥
G3HJAV3S A¥VN¥EIT 3HL NI LON ST08WAS ¥Od4 3I¥3w S3IHIUVIS A¥vHEIT @

S8708WAS O3NIJ3IONN 3AT083Y 0L N3idv¥lXx3 2 HIIM
e s ATLIJINdX3 Q31Ivyix3 $3TNA0W 40 ¥IEWNN

$X30778 @1 42 mOQNIM v ONISN
$3%3078 16 40 TviOL YV QISSVAWOINI HIIHM
SNOILvVH3d0 dv3y X018 AavagI? o1 3Jy3m 3d3HL

Q31V3I07TY $XJ07€ T HAIIM 9 NEBA LV ONILHVIS'NILLIYM 3¥3m ViVa ang3d 40 $3.A8 492

mmw»@ 762 ONINIVINOD £Q¥023¥ vivQ 9NE83Q 3¥3M 8 ONV SIIUVHAIT NI d¥3m 29 HIIWM 40

6Ll 1(S3SSvd H108) Qv3¥ SA¥0J3Y¥ LI23r80 ¥38WNAN viOl

(39YWI 9NIQNTIIXI) I9VHOLS VviVA 40 839vd UE ANV $39vd @81 OL QILIWIT 148 ONINHOM Vv INISN

LL*20%088100
21'eotavton
(AR VAT H-T)
CEMCER-IRTL
2€°0uionton
g1%1atv0t00
gl°entonton

3INIL Q38dvI3

f6°00t02100
po*ontooien
Sl‘optpotop
12°00tpoten
fu°Botupton
Lhopotooton
Lo 00100800

NIl Ndd

£8 =3S3NTAVA NNY VLIO0L
2 =1iNndiNo 378vi T08WAS
13 =1§ISdONAS 3TINAOW L1J3r80 #4314V VIVA dVW
L =12 gsvd
[4 =INOILVI0134/NOILYVI0TTV
14 =31 sSvd
st =319NTES3I04d ANVKAWO)D

S¥NLVITANI 3IINVWHO4Y¥3d

§.7nv4 39vd '

¢msnssessscsscsncasancsad

1 SITLSILVLS NNY XNIT ¥

bocacanccssaccsscscacanad

$X2018 *92 Pl9N3T dVW Q3LVWILS3I

wEldVA 39VHIAY [AVHENN]TBA. 3714 NI 17N4 1ivWd0d dVW
*378vind3x3 t3dAl 39VNWI

oesooo0d 1883¥0avy ¥34SNVHL ¥399N83Q

009000820 $1SR34007 HIASNVYL ¥3SN

‘e ESNOI 1338 39VWI 40 ¥3IGWNN

"1 187084A8 VE0T9 40 ¥3IEWNN

) TSNOILI3S WYYI0Ud 40 ¥IHWNN

‘s $$37INA0W 40 ¥3IEWNN

*n) 193714 40 d3GWNN

18 39VH3AY INOILVIIAIINAQI QONY 3WVYN 39VKWI

($»2078 °n) .m. b ESLIWIT %3078 IVNLHIA AYYNIE 39VYNWI
(%2078 °*1) °t ‘'t ISLIWIT %3078 WWNLHIA ¥3AV3IH 39VNWI
$39vd ‘@2 $3Z1IS ¥JViS

(839Vd *8S ‘S3ILAB °96962) 0BNLOPBO 14S.0000 20200000

cssccsasacsssd

'
1 SISJdONAS 39VWI I

XTI YT YT Y Y Y Y Y YY)

L1°18Xx ¥9INIT 603ET §L6T=Nr=01

$A3LVI017V AYOWIW TVNLHIA

g63x3*3avyIAY [AvEann] 3TaQ

B-11

APPENDIX C

VAX-11 OBJECT LANGUAGE

The object language description in this appendix is taken from DIGITAL
software specifications.

C.1 INTRODUCTION

This document is a specification of the Object Language accepted by
VAX-11 Linkers, Object Module Librarians, and Object Patch Utilities.

The Object Language specified herein is for use by all VAX-11] family
software -~ i.e., no subsetting will occur. All language processors
which produce code for execution in native mode are free to use any or
all of the described functionality.

C.l1.1 Summary of Language

Object modules are the input to the Linker and are obtained from the
various language processors as individual files or as object library
files. All symbol table files created by the Linker are also in the
format specified here.

An object module consists of an ordered set of variable-length
records, of which the following types are defined:

OBJSC_HDR

0 - Header Record (HDR)
OBJSC_GSD = 1 - Global Symbol Directory Record (GSD)

OBJSC_TIR = 2 - Text Information and Relocation Record (TIR)

OBJ$C_EOM = 3 - End of Module Record (EOM)
OBJ$C_DBG = 4 - Debugger Information Record (DBG)
OBJ$SC_TBT = 5 - Traceback Information Record (TBT)

OBJ$C_LNK = 6 - Link Option Specification Record (LNK) (Ignored
by Release 1 of VMS Linker)

Refer to Figure C-1 for an illustration of the order in which record
types appear in the object module.

It is mandatory that there be at least two HDR records and exactly one
EOM Record. These records must begin and end the module,
respectively. Within the module, there must be -at 1least one GSD
record and there may be any number of TIR, DBG, TBK and LNK records.

VAX-11 OBJECT LANGUAGE

As is described below, some ordering is implicit within the set of GSD
records.

In this document, the term "reserved" implies that the item must not
be present, as ‘it is reserved for possible future use by the Linker
and DEC. If the particular implementation of the Linker does not have
a specification of wuse of such items, an error will be produced if
such an item is encountered.

All unused and ignored fields of records must be padded to conform to
the block 1lengths specified herein. The content of such fields will
be completely ignored by the Linker, and any other processors.
The remaining possible language record types are allocated as follows
but not defined in this specification:

Type 7-100 Reserved for future use by Linker

Type 101-200 Ignored always and completely

Type 201-255 Reserved for CSS and customer use
(Ignored by initial implementation)

MHD Module Header Record
GSDi Global Symbol Directory Record
TIR Text Information and Relocation
TIR \ Records
GSD Additional Global Symbol Directory
DBG Debugger Information Record
TBT Traceback Information Record
TIR More Text Information and Relocation
GSD More global symhol information
TIR More text
EM End of Module
Figure C-1

General Structure of an Object Module

This language is a development from RSX-11 systems. The reader who is
not familiar with the RSX-11 Task Builders 1is referred to the
documents listed.

VAX-11 OBJECT LANGUAGE

C.2 GLOBAL AND UNIVERSAL SYMBOLS AND NAME FORMAT
The Linker deals with two types of symbols, global and universal.

Global symbols are those symbols which are accessible to more than one
module of the set being linked. Universal symbols are a subset of the
global symbols. They are ones which the Linker retains when 1linking
an image to which another set of object modules and/or images will
subsequently be bound.

As well as the names of symbols, the Object Language deals with the
names of p-sections and object modules and may contain the names of
language processors and utilities. All such names are represented by
a l-byte character count followed by the ASCII character string.

The first customer ship (FCS) implementation of the Linker limits such
name strings to 15 characters, except in the case of header record
types 1-255 (see below). The size of symbols and names, etc., is
given by the parameter OBJS$C_SYMSIZ,

C.3 MODULE HEADER RECORDS (HDR)

This is a new type of record that is additional to the 1language used
in RSX-11. Its purposes are to collect in one place all module-wide
information, to include information never included by RSX-11, to
permit more functionality in the Librarian and Patch utilities, and to
permit extensibility of the language.

The MHD (Main Header Record) record contains the following information
in the format shown:

RECORD TYPE 0 1 byte
HEADER TYPE 0 1 byte
STRUCTURE LEVEL 1 byte
MAX RECORD SIZE 2 bytes
MODULE
NAME Variable (2-16 for FCS)
MODULE
VERSION . Variable (2-16 for FCS)
CREATION
TIME 17 bytes
AND DATE
TIME AND
DATE OF 17 bytes
LAST PATCH

All entries are required. Detailed descriptions of the fields follow.

VAX-11 OBJECT LANGUAGE

C.3.1 Header Type
The language defines a gdeneral class of header records. Type O

(OBJ$C_HDR_MHD) is the record depicted above and is required in every
object module. Other types are described below.

C.3.2 Structure Level OBJSC_STRLVL

It is intended that the format of the MHD record remain fixed from
first implementation onward. The structure level is provided such
that extensions to the language, which require changes to other record
formats, can be dealt with without requiring recompilation of every

module which conforms to the previous format. The structure level is
zero FCS. .

C.3.3 Maximum Record Size OBJ$C_MAXRECSIZ
The size in bytes of the longest record that can occur within this

object module. Limited by file system only. The FCS implementation
sets a practical limit of 512 bytes.

C.3.4 Module Name
The module name conforms to the format of all other names, i.e.,
length contained in a byte followed by an ASCII string. If the module

is a symbol table created by the Linker, the name will be the image
name assigned at link time.

C.3.5 Module Version

The module version conforms to the format of all names in the object
language.

C.3.6 Dates And Times
There are two date and time fields - that for module creation and that
of the 1last modification to the module (e.g., by an object module
patch utility). The format is a fixed 17-character ASCII string:
dd-mmm-yyyy hh:mm
where:
dd = day of month
mmm = standard 3-character abbreviation of month.

yyyy = year. Note the space that follows.

hh

hour of day 00 to 23.

minute of hour 00 to 59.

mm

TN

VAX-11 OBJECT LANGUAGE

C.3.7- Other Header Records

The purpose of sub-header records is primarily to contain optional
textual information in printable form. Each record consists of a byte
which is zero to indicate a header record, followed by a sub-type
byte. The following sub-types are defined.

OBJ$C_HDR_LNM = 1 - Language Processor (LNM) Name and Version.
One record is required and limited for FCS
implementation to 35 characters. The content

of this record appears on the 1link map

output.

OBJ$SC_HDR_SRC = 2 - List of file-specifications for the source
files from which object module was created.
Multiple records are permitted. (Ignored by
FCS)

OBJ$C_HDR_TTL = 3 - Title text (e.g., brief module description).
Only one record permitted. (Ignored by FCS)

OBJ$C_HDR_CPR = 4 - A copyright statement. Only one record
permitted. (Ignored by FCS)

OBJ$SC_HDR_MTC = 5 - Maintenance Status. (MTC) Multiple records
permitted. (Ignored by FCS)

OBJSC_HDR_GTX = 6 - General Text. Multiple records permitted.

(Ignored by FCS)
Types 7-100 are reserved.

Types 101-255 always ignored.

C.3.8 Header Types 1 through 4 And 6

The purpose of these records is to allow the language processors to
provide printable information within the object modules for
documentation purposes. The only format definition is that the record
contain printing ASCII characters. Types 4 and 6 may be generated by
users, whereas types 1 through 3 are restricted to the language
processors.

C.3.9 Maintenance Status Header Record (MTC)

This record is of concern only to the object module patch utility. It
is ignored by the Librarian and the Linker.

VAX-11l OBJECT LANGUAGE

The format is as follows:

RECORD TYPE 0 1 byte
HEADER TYPE 5 1 byte
PATCH variable
UTILITY NAME 2-16 bytes
UTILITY variable
VERSION 2-16 bytes
UIC 2 bytes
INPUT FILE variable
SPECIFICATION 2-42 bytes
CORRECTION FILE variable
SPECIFICATION 2-42 bytes
DATE + TIME 17 bytes
SEQUENTIAL PATCH 1 byte

C.3.9.1 Record Type - Zero signifies a header record.

C.3.9.2 Header Type - The type is 5 signifying a maintenance status
record.

C.3.9.3 Patch Utility Name - This name identifies the patch utility
used to perform this patch on the module.

C.3.9.4 Utility Version - The patch utility is further identified by
its version number.

C.3.9.5 U.I.C. - This is the user identification code under which the
patch was made.

C.3.9.6 Inut File Specification - This filename identifies the input
file for this patch.

C.3.9.7 Correction File Specification - This filename identifies the
correction file for this patch.

TN

L

VAX-11 OBJECT LANGUAGE

C.3.9.8 Date & Time - This 17-byte field contains the date and time
that this patch was performed. Format is as described above.

C.3.9.9 Sequential Patch Number - This number is a sequential count
of the patches made to this module.

C.4 GLOBAL SYMBOL DIRECTORY (GSD) RECORDS (OBJ$C_GSD)

Global symbol directory records contain all the information necessary
to allocate virtual address space and to combine all the program
sections into the separately protectable sections (image sections) of
the image being created.

GSD records are of the following types:
OBJ$SC_GSD_PSC

OBJ$C_GSD_SYM
OBJ$C_GSD_EPM

0 - P-section definition.

1 - Global Symbol Specification.

2 - Entry Point Symbol and Mask
Definition.

3 - Procedure and Formal Argument
Definition.

OBJS$C_GSD_PRO

Within any GSD record, there may be many entry types. 1In such cases,
a single record -appears as the concatenation of many, with the
omission of the byte containing the Object Language record type (the
value OBJ$C_GSD).

C.4.1 P-Section Definition (OBJ$C_GSD_PSC)

The format of a p-section definition is as follows:

RECORD TYPE 1 1 byte
GSD TYPE 0 1 byte
ALIGNMENT 1 byte
FLAGS 2 bytes
ALLOCATION 4 bytes
P-SECTION Variable
NAME 2-16 bytes

C.4.1.1 P-Section Name - This name has same format as all other
symbol names.

VAX-11 OBJECT LANGUAGE

C.4.1.2 Alignment - This field specifies the virtual address boundary
at which the p-section will be placed.

0 BYTE

1 WORD

2 LONGWORD

3 QUADWORD

i.e., n 2**N BYTES

Where n=0 to 9

Nine 1indicates ©page alignment and is the 1limit for p-section
alignment.

Each module contributing to a p-section can specify its own local
alignment with the restriction that p-sections whose contributions
overlay each other must all have the same alignment. It should also
be noted that an alignment specified within a p-section (e.g.,
assembler .ALIGN directive) must be 1less than or equal to the
p-section alignment to be guaranteed. For example, byte alignment of
the p-section may or may not cause longword aligned elements within
the p-section.

C.4.1.3 -Flags -

Bit Name Use (meaning if set)

0 PSCS$V_PIC P-section defined as position independent.

1 PSC$V_LIB The p-section was defined in the symbol table
of a shareable image, to which this image is
bound.

2 PSC$V_OVL Contributions to the same p-section are

overlaid. (The complement is concatenation).

3 PSCS$V_REL P-section requires relocation (complement,
i.e., bit=0, means absolute and contains only
symbol definitions, thus the allocation of an
absolute p-section is zero).

4 PSCSV_GBL Scope of p-section is global. (Complement is
local).

5 : PSCS$SV_SHR P-section is potentially shareable between
two or more active processes.

6 PSC$V_EXE The content of p-section is executable.

7 PSCS$V_RD The content of the p-section may be read.

8 PCS$V_WRT The content of the p-section may be written.

9-15 Reserved.

Discussions of p-section attributes may be found in the related
documents. [See also Section 2.5.4 of this manual.]

TN

\
(\7 }

TN

Y N,

VAX-11 OBJECT LANGUAGE

C.4.1.4 Allocation Field - The allocation field contains the length
contribution to the p-section in bytes. It must be zero for an
absolute p-section.

P-sections are assigned an identifying sequence number as their
respective GSD records are encountered. The p-section number ranges
from 0 through 255 within any single module. Note, however, that the
total number of p-sections in a single link operation is bounded only
by the Linker's virtual memory requirements. This p-section number is
used as an index in all references to the p-section. Note that this
permits any mixture of GSD records, as long as p-sections are defined
to the Linker in the same order as the index used by symbol
definitions.

C.4.2 Global Symbol Specification OBJ$SC_GSD_SYM

Global symbol specification records may appear anywhere between the
MHD and EOM records and in any order.

The format of a global symbol specification is as follows:

RECORD TYPE 1 1 byte
GSD TYPE 1 1 byte
DATA TYPE 1 byte

FLAGS 2 bytes
PSECT INDEX 1 byte

5 bytes omitted
- for a reference

VALUE 4 bytes (i.e. when

SYM$V_DEF=0)

SYMBOL Variable
NAME 2-16 bytes

C.4.2.1 Data Type - The data type record is encoded as described in
Appendix C of the VAX-11/780 Architecture Handbook.

NOTE

The first implementation of the Linker
ignores the data type field.

VAX-11 OBJECT LANGUAGE

C.4.2.2 Flags -

Bit Name Use

0 SYM$V_WEAK 0 for strong resolution.
1 for weak resolution.
Table C-1 describes the usage of SYM$V_WEAK
in conjunction with the definition bit
(SYM$V_DEF) .

1 SYM$V_DEF 0 for reference
1 for definition
2 SYM$V_UNI 0 for within facility
1 for universal symbol
This bit 1is only of significance on a
definition. It indicates the symbol is to
be retained if this facility is shareable.
3 SYMSV_REL 0 for absolute symbol value
1 for relative symbol and the value is
augmented by the indexed p-section base
address (of this module's contribution)
4-15 Reserved.

Table C-1
Interpretation of SYM$V WK and SYM$V_DEF

SYM$V_WEAK SYM$V_DEF - Interpretation.
0 0 Strong Reference - symbol must be
resolved
1 0 Weak Reference - only resolved if the

symbol 1is defined for some reason
other than this reference. Does not
incur any searches or module loads.
Has the value zero if undefined, with
no error report.

0 1 strong definition - will remain in all
required symbol tables/maps.

1 1 Weak definition - will - be discarded
from all symbol tables/maps unless
there was a reference. Will also not
appear 1in the global symbol table
index of an object module library.

C.4.2.3 P-Section index - The p-section index is a number between 0
and 255 to be used as an index into the sequence of p-section
definition records. This field exists only for symbol definition
records (SYMSV_DEF=1) and identifies the p-section in which the symbol
was defined. The index is also used in TIR commands (see Section
5.1.1) for reference to p-section base addresses.

/7 N

AN

- "

S~

an

VAX-11 OBJECT LANGUAGE

All symbols encountered must be defined within a p-section,
independently of the relocatability of p-sections or symbols. For
example, the Linker does not require the base address of the "owning"
p-section if the symbol is absolute. However, for the purposes of
generating a readable map, it is very useful to maintain the hierarchy
of symbol within p-section within module within file.

C.4.2.4 Value - This field contains the value assigned to the symbol
by the language processor. This field does not exist if the record is
a symbol reference (SYMS$SV_DEF=0).

C.4.3 Entry Point Symbol and Mask Definition (OBJ$C_GSD_EPM)

This format is an extended version of the global symbol definition
format above. Following the symbol value (which will be an entry
point address) is a two-byte field for the procedure's register save
mask (as used by CALL instructions). The format is as shown below.

RECORD TYPE 3 1 byte
GSD TYPE 2 1 byte
DATA TYPE 1 byte
FLAGS 2 bytes
PSECT INDEX 1 byte
VALUE 4 bytes
ENTRY MASK 2 bytes
SYMBOL variable
NAME 2-16 bytes

C.4.3.1 Entry Mask - The entry mask is written at the entry point of
a procedure entered via a CALLS or CALLG instruction, and in some
cases also is used in transfer vectors to such procedures. A TIR
command (see Section 5 of this appendix) is provided for the language
processor to direct the Linker to insert the mask at the procedure
entry point or at the transfer vector.

VAX-11 OBJECT LANGUAGE

C.4.4 Procedure With Formal Argument Definiton (OBJ$C_GSD_PRO)

This GSD format is an extension of the entry point and mask definition
format to define the formal arguments of the procedure. The format is
as shown below.

RECORD TYPE 1 1 byte
GSD TYPE 3 1 byte
DATA TYPE 1 byte
FLAGS 2 bytes
PSECT INDEX 1 byte
VALUE 4 bytes
ENTRY MASK 2 bytes
SYMBOL variable
NAME 2-16 bytes
MIN ACTUAL ARGS. 1 byte
MAX ACTUAL ARGS. 1 byte
FORMAL ARG 1)

DESCRIPTOR variable length
(2-256 byte)
descriptors of

> formal arguments
arg n is optionally
function return
FORMAL ARG n value.
DESCRIPTOR

Following is a description of the fields of a procedure definition
which are in addition to other GSD records.

C.4.4.1 Minimum and Maximum Actual Argument Counts - Permissible
values are 0 to 255 and specify, respectively, the minimum number and
the maximum number of arguments required for a valid call to this
procedure. The counts must include function return value if such
exists.

The FCS implementation does not validate procedure calls. However,
for its own integrity it validates that minimum number of actuals is
less than or equal to the maximum number of arguments. The maximum
number of actuals field is then used to process the formal argument
descriptors.

VAX-11 OBJECT LANGUAGE

C.4.4.2 Formal Argument Descriptors -

Each of the formal argument descriptors of the record shown above has
the following format:

ARG. VAL. CTL. 1 byte ARG$BVALCTL
REM. BYTE CNT. 1 byte ARG$SBBYTECNT
DETAILED variable
0-255 bytes
ARGUMENT
ignored by FCS
DESCRIPTION implementation

C.4.4.2.1 Argument Validation Control Byte - This (the first) byte of
each formal description 1is wused to control the validation of the
argument. The only field of this control byte used by the 1linker is
as follows:

Bits 0:1 ARGSVPASSMECH - Describes the mechanism by which the
argument of a valid call must be passed.

Bits 2:7 Reserved - Ignored by the FCS implementation.

The following argument passing mechanisms are defined:

ARGSK_UNKNOWN = 0 Unspecified
ARGSK_VALUE = 1 By value
ARGSK_REF = 2 By reference
ARGSK_DESC = 3 By descriptor

C.4.4.2.2 Remaining Byte Count - This field gives the length of the
remainder of this argument descriptor. For FCS implementation, it is
used as a count of bytes to be ignored by the linker. The content of
these remaining bytes is of a format not specified here and reserved
for possible future implementations.

NOTE: Any usage of formal argument descriptors in which
ARG$B_VALCTL bits 2:7 NEQ O

and/or V
ARGSB_BYTECNT NEQ O

means that, should argument validation be implemented in a future
VAX-11l linker, re-compilation of all such objects may be necessary.

VAX-11 OBJECT LANGUAGE

C.5 TEXT INFORMATION AND RELOCATION (TIR) RECORDS (OBJ$C_TIR)

Text information and relocation records contain a sequential series of
commands and data for the Linker to compute and record the contents of
the image. The general form of a TIR record is as follows:

RECORD TYPE 2 1 byte
COMMAND 1 1 byte
DATA 1 —
COMMAND 2 1 byte
byte
DATA 2 . count
implied
by command.
COMMAND N 1 byte
DATA N ~

C.5.1 Commands

The Linker's creation of the binary content of an image file is
completely driven by the language processor via the commands contained
in TIR records. To achieve this, the Linker maintains an internal
stack.

The commands available allow values to be placed on the stack and
operations to be performed on the items on top of the stack. These
commands also permit the writing of values from the stack to the
output image. Other commands permit the storing of a sequence of
bytes from object module to output image without alteration by the
Linker. They also provide for control of the relocation of the
position currently being written in the image.

In commands which refer to p-sections, the names are identified by the
sequence numbers assigned to them as described above. The p-section
indices are in the range 0 through 255.

The command byte has two formats:

76 0
1 -COUNT FORMAT 1
7 6 0
0 COMMAND FORMAT 2

(-

{ \

/’ \

VAX-11 OBJECT LANGUAGE

The only command with FORMAT 1 is the Store Immediate (STOIM), which
merely causes the copying of the following bytes (given by the
negative count in the range -1 to -128) into the output image.

All other commands are described by the second format. There are four
groups of commands:

Stack Group
Store Group
Operator Group
Control Group

The stack upon which these commands operate is longword aligned at all
times. Furthermore, it must be completely collapsed at end of module,
but is retained between all other record types. The minimum stack
space available will be not less than 25 longwords.

C.5.1.1 Stack Group - The stack group of commands provides the
capability to store bytes, words, and longwords on the stack. The
value placed on the stack may follow the command in the TIR record;
it may be found from a global symbol; or it may be computed from the
base address of a p-section. Except for stacking the value of global
symbols or stacking addresses (calculated from p-sections), both
signed extension to longword and zero extension to longword are
provided for byte and word stack operations.

Code Command Description/Interpretation
0. Stack Global Symbol specification follows. As
(TIR$SC_STA_GBL) with all other names, it consists

of the symbol 1length in a byte
followed by the ASCII string
defining the symbol:

LENGTH 1 byte

SYMBOL Variable
1-15 bytes

The value found from the symbol
table is a 32-bit quantity.

1. Stack Signed Byte Single signed byte constant
(TIR$SC_STA_SB) follows. Value 1is sign extended

to 32 bits.

2. Stack Signed Word Single signed word constant
(TIRSC_STA_SW) follows. Value is sign extended

to 32 bits.

3. Stack Longword Single longword constant follows.
(TIR$C_STA_LW)

4, Stack PSECT base l-byte p-section number followed
plus byte offset by single signed byte offset.
(TIRSC_STA_PB) A 32-bit quantity is computed by

addition of p-section base

address and the byte offset.

Code

5.

10.

11.

12.

VAX-11 OBJECT LANGUAGE

Command

Stack PSECT base
plus word offset
TIRS$C_STA_PW)

Stack PSECT base
plus long word offset
(TIR$SC_STA_PL)

Stack Unsigned Byte
(TIR$C_STA_UB)

Stack Unsigned Word
(TIR$C_STA_UW)

Stack Byte From Image
(TIR$C_STA_BFI)

Stack Word From Image
(TIR$C_STA_WFI)

Stack Longword From
Image (TIRSC_STA LFI)

Stack Entry Point Mask
(TIR$C_STA_EPM)

Description/Interpretation

l-byte p-section number followed
by single signed word offset. A
32-bit quantity 1is computed by
addition of p-section base
address and the word offset.

l1-byte p-section number followed
by signed longword offset. A
offset. A 32-bit quantity is
computed by addition of p-section
base address and the longword
offset.

Note that although the offsets in
the above three commands are
signed, negative values are very
rarely correct. Note also that
the base address is that of this
module's contribution to the
p-section.

As for TIRSC_STA_SB except that
the value is zero extended to 32
bits.

As for TIRSCSTASW except that the
value 1is zero extended to 32
bits.

The longword on top of the stack
is used as an address, in the
image, from which to retrieve a
byte. The byte is zero extended
and replaces top longword of
stack.

The word variant of previous
command. ‘

Analogous to above.

This command has the same format
as TIRSC_STA_ GBL. However,
instead of stacking the value of
the symbol, the entry point mask
(unsigned word) which accompanies
the symbol definition is stacked.
An error 1is produced 1if the
symbol referenced is not an entry
point.

VAX-11 OBJECT LANGUAGE

Code Command Description/Interpretation
13. Compare procedure The format of the command is as
arguments and stack follows:
TRUE or FALSE.
(TIR$C_STA_CKARG) COMMAND CODE
SYMBOL
NAME
ARG INDEX
ACTUAL
ARGUMENT
DESCRIPTOR

The purpose of this command is to
compare an actual = argument
descriptor with a formal
descriptor for a particular
procedure, stacking an indicator
based upon match or mismatch of
arguments. This indicator is
TRUE if match is found or if
there 1is no formal argument
description. The indicator is
FALSE if (and only if) the
specified formal is described by
a procedure definition but the
description does not match the
accompanying actual argument
description.

The argument that is checked is
given by the index, and is thus
number 0 through 255. The format
of the actual argument descriptor
is identical to that of the
procedure definition GSD record
described in section 4.4.2 above.
The FCS linker compares only the
fields ARGSVPASSMECH, stacking
the TRUE indicator if they agree,
FALSE if they do not.

14-19 Reserved Commands

C.5.1.2 Store Group - All commands of the store group pop the top
longword .from the stack upon completion of the command. Several of
the commands provide validation of the quantity being stored, with the
possibility of issuing truncation errors during the operation. Upon
completion of the command, the location counter is pointing to the
next byte in the output image.

VAX-11 OBJECT LANGUAGE

Code Command
20. Store Signed byte

(TIR$C_STO_SB)

21, Store Signed Word
(TIR$C_STO_SW)

22, Store Longword
(TIRSC_STO_LW)

23. Store Byte Displaced
(TIR$C_STO_BD)

24, Store Word Displaced
(TIR$C_STO_WD)

25. Store Longword
Displaced
(TIRSC_STO_LD)

26. Store Short Literal
(TIR$SC_STO_LI)

27. Store Position
Independent Data
Reference
(TIR$C_STO_PIDR)

28. Store Position
Independent Code
Reference
(TIR$C_STO_PICR)

C-18

Description/Interpretation

Bits 31:7 must be identical. Low
byte written to image.

Bits 31:15 must be identical.
Lower word written to image.

One longword written to image.

Location counter subtracted from
top of stack. Decrement value.
Bits 31:7 must be identical.
Byte is then written to image.

Location counter plus 2
subtracted from top of stack.
Bits 31:15 must be identical.
Word written to image.

Location counter plus 4
subtracted from top of stack.
Longword written to image.

One longword from stack, bits
31:6 MBZ. Single byte written to
image.

The longword on top of stack is
assumed to be the address of a
data item. It occurs in a
non-executable p-section. If the
address is absolute, command
behaves as store longword. If
address 1is relocatable, command
behaves as store longword
displaced and in addition
provides information in the image
header for subsequent Linker
processing.

The longword on top of the stack
is assumed to be the address of
address of an item to which a
a position independent
instruction makes reference. The
purpose of the command is to
generate a position independent
reference. If the top of stack
is absolute, the byte "9F" (hex)
is written (which is
autoincrement deferred addressing
mode on the PC and therefore
absolute) followed by the top as
for store longword. 1If, however,
top of stack is relocatable, the
byte "EF" (hex) is written (which
is longword displacement mode off
PC and therefore relative
addressing). Location counter is
incremented. Then the 1longword
is written just as for store
longword displaced.

Code

28.
(Cont.)

29.

30.

31.

32.

33.

34.

35.

36.

37.

VAX-11 OBJECT LANGUAGE

Command

Store Position
Independent Code
Reference
(TIR$C_STO_PICR)

Store Repeated

Signed Byte
(TIR$C_STO_RSB)

Store Repeated

‘Signed Word

(TIR$C_STO_RSW)

Store Repeated

Longword (TIR$SCSTORL)

Store Arbitrary
Field (TIRSCSTOVPS)

Store Unsigned Byte
(TIRSC_STO_USB)

Store Unsigned Word
(TIRSC_STO_USW)

Store Repeated
Unsigned Byte
(TIR$C_STO_RUB)

Store Repeated
Unsigned Word
(TIR$C_STO_RUW)

Store Byte
(TIRSC_STO_B)

Description/Interpretation

This and the previous command are
discussed further in the
references on generation of
position independent images.

The longword on top of the stack
is used as the repeat count. The
low order byte of next longword
on the stack is written to the
image the indicated number of
times. Both longwords are
cleaned off stack on completion.

As above except that words are
written.

Analogous to above.

The bits 0 to (s-1) of the top
longword are written to image
starting at bit p of the current
location. The command byte in
the object module is followed by
p and s (respectively) which are
unsigned bytes such that 0 LEQ
p+s LEQ 32. Only the specified
bits of the image are altered.
After the operation the 1location
counter 1is the ‘address of the
byte containing bit (p+s) of the
location modified.

Same as TIRSC_STO_SB except that
bits 31:8 must be zero.

Analogous to above (Bits 31:16
(Bits 31:16 MBZ).

Analogous to above.

Analogous to above.

If top longword on stack is
is negative, then bits 31:7 must
be 1. Else, bits 31:8 must be
zero. Low order byte is written
to image. This command permits
any 8 bit value from -128 to 255
to be written to the image.

VAX-11 OBJECT LANGUAGE

Code Command

- 38. Store Word
(TIR$SC_STO_W)

39. Store Repeated Byte
(TIR$C_STO_RB)

40. Store Repeated Word
' (TIR$C_STO_RW)

41-49., Reserved Commands

C.5.1.3
Polish form.
two's complement integers.
string or quadword computation.

Description/Interpretation

If top longword is negative, bits
bits 31:15 must be 1. Else bits
31:16 MBZ. One word is longword
is popped from stack. This
command permits any 16 bit value
from -32768 to 65535 to be
written to the image.

The repeated version of store
byte. See TIRSC_STO RSB for
description of repeat count.

Analogous to above.

Operator Group - The Linker evaluates expressions in Post Fix
All arithmetic operations are performed in signed 32-bit
There is no provision for floating point,

The commands of the operator group take as operands the top one or two

longwords on the stack.
is the top longword on the stack.

Upon completion of the operation, the result
Attempts to divide by zero

produce

a zero result, and a nonfatal diagnostic is issued.

Code Command
50, No-operation

(TIR$C_OPR_NOP)

51. Add. (TIR$C_OPR_ADD)

52. Subtract
(TIR$C_OPR_SUB)

53. Multiply
(TIR$C_OPR_MUL)

54. Divide
(TIR$SC_OPR_DIV)

55. Logical AND
(TIRSC_OPR_AND)

56. Logical Inclusive OR
(TIR$C_OPR_IOR)

57. Logical Exclusive OR
(TIR$C_OPR_EOR)

58. Negate
(TIR$C_OPR_NEG)

59. Complement

(TIR$C_OPR_COM)

Description/Interpretation

Top two longwords are added.

Top longword is subtracted from

next.
Top two longwords are multiplied.

Divisor is top longword.

Logical AND of top two longwords.

Inclusive OR of top two
longwords.
Exclusive OR of top two

longwords.

Top longword is negated.

Top longword is complemented.

VAX-11 OBJECT LANGUAGE

Code Command

(/ 60. Insert field
(TIR$C_OPR_INSV)

61. Arithmetic Shift
(TIR$SC_OPR_ASH)

62, Unsigned Shift
(TIR$C_OPR_USH)

P

63. Rotate
(TIR$C_OPR_ROT)

= 64. Select
((TIR$SC_OPR_SEL)
65. Re-define Symbol to

current location.
(TIR$C_OPR_REDEF)

66-79. Reserved Commands

Description/Interpretation’

This command is analogous to the
store of arbitrary bit field
above. The only difference is
that the target for bits from top
of stack is the next longword on
the stack, and location counter
is therefore unaffected. Note
that top longword is popped and
that p,s +are bytes following
command in the TIR record.

The longword on top of stack is
stack is the shift count to apply
to next longword. Negative
quantity causes a right shift
(with replication of sign bit).
Positive causes left shift with
zeroes moved into low order bits.

As above except that zeroes are
moved into high and low order.

Rotate count is top longword to
apply in a rotate (left if
positive,. else right) of next
long word on stack. Rotate count
must have an absolute value
between 0 and 32.

Remove the top longword from the
stack. If it has the value TRUE
(low bit set) remove and discard
the next longword on the stack.
If the first longword removed has
the value FALSE (low bit <clear)
copy the next 1longword on the
stack to the one that follows.
Thus, the command presumes there
are three longwords on the stack.
These are collapsed to a single
longword which is the value of
the second or third based on the
value of the first.

The command has the same format
as the TIRSCSTAGBL command.
Causes the symbol to be
re-defined on output of symbol
table(s) to have the value of the
location counter” when this
command is processed. The
re-definition does not occur
until after all image binary is
written. If no binary is
generated (or is aborted) the
re-definition does not occur.

VAX-1l OBJECT LANGUAGE

C.5.1.4 Control Group - The control group of commands is provided for
manipulation of the location counter.

Code Command Description/Interpretation

80. Set Relocation Base The value on top of the stack is
(TIRSC_CTL_SETRB) porped into the location counter.

81. Augment Relocation signedb longword which is an

Base (TIRSC_CTL_AUGRB) increment to 1location counter
follows the command.

82-127. Reserved Commands

C.5.2 Record Length

TIR records may be quite 1long. There 1is an implementation 1limit
defined by OBJ$SC_MAXRECSIZ. The maximum record size of the module is
recorded in ‘the header word.

C.5.3 Differences From RSX-11

Note that TIR Records combine the information and capabilities of two
types (TXT and RLD) of record used by the RSX-11l Task Builder. The
result is a sequential writing of the output image and a more
efficient object 1language. Note ‘also the omission of the End GSD
Record, the addition of Module Header Record, and the placement of
Transfer Address at the end of the module,

In this specification there is also no mechanism for handling the
RSX-11 assembler directive to obtain program limits. The usefulness
of the LIMIT directive in VAX systems is questionable, and no proposal
is made to deal with it in the Linker.

C.5.4 side Effects And Optimization

In the interest of performance of the Linker a few implementation
decisions and their possible side effects should be noted.

l. For all store repeated commands, if the guantity being stored
is zero, the linker does not write the zeroes into the bytes.
The reason for this is that the pages of an image are
guaranteed to be zero ‘unless otherwise initialized by the
compiler. To achieve this, demand zero pages are used within
the linker and were the linker to attempt to write zeroes, the
fact that these are still empty pages of the image 1is 1lost.
Thus, it becomes very difficult to compress from the image all
empty pages.

There is, however, a side effect to this behavior, in that if
a cell of an image had been previously initialized, it will
not be zeroed by any repeated store commands. This can occur
in multiple modules contributing to and attempting to
initialize the content of overlayed p-sections. Notice,
however, that the results of such multiple initialization are
then dependent on the order of processing of object modules.
This side effect is therefore considered to be acceptable.

C-22

VAX-11 OBJECT LANGUAGE

2. The Linker is a two-pass processor of object modules. The
content of TIR records is completely ignored on the first pass
but verified and acted upon on the second pass. However, if,
either due to the command or some Link time error, no image is
being produced, all TIR records (as well as DBG and TBT
records) are ignored. A side effect, considered quite
acceptable, is that errors (user or compiler) potentially
detectable on pass two will not be detected. Truncation
errors are the most 1likely example of such undetected
situations.

C.6 END OF MODULE (EOM) RECORD (OBJ$C_EOM)

This record declares the end of a module. It declares the severity of
errors encountered by language processor, and, optionally, it declares
a transfer address within a p-section in this module. The format is
as follows:

RECORD TYPE 3 1 byte

ERROR SEVERITY 1 byte

P-SECT INDEX 1 byte
TRANSFER 4 bytes
ADDRESS

This record will be two or seven bytes, depending on existence of a
transfer address. Note that the p-section specification is by its
index within the module, as used above. The transfer address 1is an
offset from the base of this module's contribution to the specified
p-section.

C.6.1 Error Severity

The error severity byte specifies to the Linker whether errors were
encountered in the source code. It also indicates the severity of any
errors encountered.

Value Interpretation by Linker
0 No errors
1 Warnings were generated by language processor. Proceed
with link but issue warning message.
2 Errors were severe, proceed with 1link, but do not
produce an executable image.
3 Abort the link.
4-10 ‘Reserved.
11-255 Ignored.

C-23

VAX-11 OBJECT LANGUAGE

C.7 DEBUGGER INFORMATION (DBG) RECORDS (OBJ$C_DBG)

The purpose of debugger information records is to allow the language
processors to pass information concerning local variables, etc., of
the compilation to the debugger. The transmission of this information
may make use of all the functions (commands) available in the TIR set.

The command stream in DGB records generates what is referred to as the
debug symbol table (DST). The DST follows immedjiately the binary of
the user image and the image header contains a descriptor of where in
the file such data has been written. The production of the DST in
memory makes use of a separate location counter within the Linker.
This location counter is initialized as if the DST were the highest
addressed part of the program region of the image. Note, however, the
DST is not in fact mapped into the user image.

The linker produces a DST only if the debugging qualifier was
specified at 1link time and only if an executable image is being
produced. If either of these is not true, DBG records are 'gnored

See the above discussion of the side effects in TIR record processing.

C.7.1 Traceback Information (TBT) Records (OBJ$C_TBT)

Traceback information records are the means by which language
processors pass information to the facility which produces a traceback
of the call stack. From the point of view of the Linker and its
processing of these records, they are identical to DBG records. That
is, they may be mixed with DBG records and all data generated goes
into the DST as if they were in fact DBG records.

The purpose of separating this information from that contained in DBG
records 1is to allow inclusion of a DST containing only traceback data
when no debugging is requested at link time. If the production of
traceback information is desabled at link time then these records are
ignored. See the above section on side effects in processing TIR
records. :

C.8 LINK OPTION SPECIFICATION (LNK) RECORDS (OBJS$C_LNK)

The link option specification records are defined for the purpose of
allowing the compiler to provide the Linker with default parameters
which are used if none were given by the wuser at 1link time. Such
options of interest are libraries to be searched to resolve undefined
symbols, modules to be included in the link, adjustment of stack and
buffer region sizes. '

The exact set of commands allowable will be supplied later, along with
the interaction of conflicting object module LNK records and user
commands. The general philosophy is to use the most recently
specified parameters unless there are good reasons to the contrary.
These records are ignored by the FCS Linker.

TN .

A

Attributes of program sections,

2-3 to 2-5, 7-6

concatenated (CON), 2-3 to
2-4

overlaid (OVR), 2-3 to 2-4

position independent code
(pIC), 2-5, 8-7 to 8-8

relocatable (REL), 2-3

shareable (SHR), 2-5, 8-6 to
8-7

BASE= option, 6-3, 6-5
/BRIEF command qualifier, 5-3,
5-4

C

CHANNELS= option, 6-3, 6-5
CLUSTER= option, 6-3, 6-5 to
6-6, 9-1
Clusters, 2-1 to 2-2, 6-5 to
6-6, 9-1
Command qualifiers, 5-1 to 5-8
/BRIEF, 5-3, 5-4
/CONTIGUOUS, 5-3, 5-4
/CROSS_REFERENCE, 5-3, 5-4
to 5-5
/DEBUG, 5-3, 5-5
/EXECUTABLE, 5-3, 5-5
/FULL, 5-3, 5-5 to 5-6
/MAP, 5-3, 5-6
/SHAREABLE, 5-3, 5-6 to 5-7
/SYMBOL_TABLE, 5-3, 5-7
/SYSLIB, 5-3, 5-7
/SYSSHR, 5-3, 5-7 to 5-8
/SYSTEM, 5-3, 5-8
/TRACEBACK, 5-3, 5-8
Compression, 2-8 to 2-9, 6-6
Copy on reference image sections,
2-9, 8-6 to 8-7
Concatenated attribute, 2-3 to
2-4
/CONTIGUOUS command qualifier,
5-3, 5-4
Cross reference, 7-8 to 7-9
/CROSS_REFERENCE command quali-
fier, 5-3, 5-4 to 5-5

INDEX
D
Debug capabilities, 1-4, 5-5,
C-24
/DEBUG command qualifier, 5-3,
5-5

Default system library, 4-3
to 4-4, 5-7 to 5-8
Demand zero image sections,

2-9
DZRO_MIN= option, 2-9, 6-3,
6-6

Error messages, A-1l to A-5
/EXECUTABLE command. qualifier,

5-3, 5-5
Executable images, 2-6, 5-5
F:
File qualifiers, 5-1 to 5-3,
5-8 to 5-9
/INCLUDE, 4-2 to 4-3, 5-3,
5-8 to 5-9
/LIBRARY, 4-2 to 4-3, 5-3,
5-9

/OPTIONS, 5-3, 5-9, 6-1, 6-4
/SELECTIVE_SEARCH, 5-3, 5-9
/SHAREABLE, 5-3, 6-2
/FULL command qualifier, 5-3,
5-5 to 5-6

G

Global symbols, 3-1 to 3-4,
C-3, C-7 to C-13

GSMATCH= option, 6-3, 6-6 to
6-7, 8-3

Image map, 1-5, 7-1 to 7-11,
B-1 to B-1l1
Images, 1-1
types of, 2-5 to 2-7
Image sections, 2-1, 2-7 to
2-8

Index-1

INDEX (Cont.)

/INCLUDE file qualifier, 4-2 P
to 4-3, 5-3, 5-8 to 5-9
Initialization of image, 1-5, Position independent code, 2-5,
2-7 to 2-9 8-7 to 8-8
IOSEGMENT= option, 6-3, 6-7 Program sections, 2-1, 2-2 to
ISD_MAX= option, 2-9, 6-3, 6-8 2-5

alignment, 2-3
attributes, 2-3 to 2-5
L name, 2-3
size, 2-3
Libraries, 4-1 to 4-4
default system library,

4-3 to 4-4, 5-7 to 5-8 Q
/LIBRARY file qualifier, 4-2
to 4-3, 5-3, 5-9 Qualifiers - See "Command
LINK command, 5-1 to 5-10 qualifiers" and "File
examples, 5-9 to 5-10 qualifiers."

format, 5-1 to 5-2
Local symbols, 3-1 to 3-3

R
hﬂ References, 3-1
strong, 3-3
Map, 1-5, 7-1 to 7-11, B-1 weak, 3-3 to 3-4
to B-1l1 Relocatable attribute, 2-3
/MAP command qualifier, 5-3,
5-6
Memory allocation, 1-4, 2-7 E;
to 2-8, 9-1
Messages, A-1 to A-5 /SELECTIVE_SEARCH file qualifier,
Modular programming, 1-2 5-3, 5-9
Shareable attribute, 2-5, 8-6
to 8-7
() /SHAREABLE command qualifier,
5-3, 5-6 to 5-7
Object language, 2-2, C-1 to /SHAREABLE file qualifier, 5-3,
Cc-24 6-2
Options, Shareable images, 2-6 to 2-7,
BASE=, 6-3, 6-5 8-1 to 8-30
CHANNELS=, 6-3, 6-5 benefits and uses of, 8-1
CLUSTER=, 6-3, 6-5 to 6-6, to 8-2
9-1 creating, 8-2 to 8-3
DZRO_MIN=, 2-9, 6-3, 6-6 using, 8-30
GSMATCH=, 6-3, 6-6 to 6-7, STACK= option, 6-3, 6-8
8-3 STARLET.OLB, 4-4
IOSEGMENT=, 6-3, 6-7 Strong reference, 3-3
ISD_MAX=, 2-9, 6-3, 6-8 Symbol cross reference, 7-8
STACK=, 6-3, 6-8 to 7-9
UNIVERSAL=, 3-4, 6-3, 6-8, /SYMBOL_TABLE command qualifier,
8-3 5-3, 5-7
/OPTIONS file qualifier, 5-3, Symbol tables, 3-4 to 3-5, 5-7
5-9, 6-1, 6-4 Symbols, 3-1
Options files, 6-1 to 6-8 global, 3-1 to 3-4, C-3, C-7
rules for creating, 6-4 to C-13
uses, 6-1 to 6-3 local, 3-1 to 3-3
Overlaid attribute, 2-3 to 2-4 universal, 3-4, 8-3, C-3

Index-2

e ~,

s

INDEX (Cont.)

/SYSLIB command qualifier, 5-3, 5-7 Universal symbols, 3-4, 8-3,

/SYSSHR command qualifier, 5-3, c-3
5-7 to 5-8
/SYSTEM command qualifier, 5-3, 5-8
System images, 2-7 V
T VAX-1l object language, 2-2,
L. C-1 to C-24
/TRACEBACK command qualifier, VAX-11 Symbolic Debugger, 1-4
5-3, 5-8 VMSRTL.EXE, 4-3 to 4-4
Transfer vectors, 8-4 to 8-6
U
w
UNIVERSAL= option, 3-4, 6-3,
6-8, 8-3 Weak reference, 3-3 to 3-4

Index-3

TN

Please cut along this line.

VAX-11
Linker Reference Manual
AA-DO19A-TE

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well—drganized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number. S

Please indicate the type of reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience.

Student programmer

ooooog

Other (please specify)

Name Date

Organization

Street

City - : State Zip Code
or
Country

Fold Here

‘Do Not Tear - Fold Here and Staple

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

Postage will be paid by:

dlilgliltlall

~ Software Documentation
© 146 Main Street ML5-5/E39
Maynard, Massachusetts 01754

dlilgliltlall

PRINTED IN USA

