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"Everyone will want this book because it provides a great mix of practical experience, historical
perspective, and a depth of understanding that only comes from being intimately involved in
the field. I've already enjoyed and learned from reading this book, and surely you will too."
-Sam Leffler

The classic guide to UNIX networking APIs... now completely updated!

To build today's highly distributed, networked applications and services, you need deep
mastery of sockets and other key networking APIs. One book delivers comprehensive, start-to-
finish guidance for building robust, high-performance networked systems in any environment:
UNIX Network Programming, Volume 1, Third Edition.

Building on the legendary work of W. Richard Stevens, this edition has been fully updated by
two leading network programming experts to address today's most crucial standards,
implementations, and techniques. New topics include:

e POSIX Single UNIX Specification Version 3

e IPv6 APIs (including updated guidance on IPv6/IPv4 interoperability)

e The new SCTP transport protocol

¢ |IPsec-based Key Management Sockets

e FreeBSD 4.8/5.1, Red Hat Linux 9.%, Solaris 9, AIX 5.x, HP-UX, and Mac OS X
implementations

¢ New network program debugging techniques

e Source Specific Multicast API, the key enabler for widespread IP multicast deployment



The authors also update and extend Stevens' definitive coverage of these crucial UNIX
networking standards and techniques:

TCP and UDP transport

e Sockets: elementary, advanced, routed, and raw

¢ 1/0: multiplexing, advanced functions, nonblocking, and signal-driven
e Daemons and inetd

e UNIX domain protocols

¢ joctl operations

¢ Broadcasting and multicasting

e Threads

e Streams

e Design: TCP iterative, concurrent, preforked, and prethreaded servers

Since 1990, network programmers have turned to one source for the insights and techniques
they need: W. Richard Stevens' UNIX Network Programming. Now, there's an edition
specifically designed for today's challenges-and tomorrow's.
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Foreword

When the original text of this book arrived in 1990, it was quickly recognized as the definitive
reference for programmers to learn network programming techniques. Since then, the art of
computer networking has changed dramatically. All it takes is a look at the return address for
comments from the original text ("uunet!hsi'netbook™) to make this clear. (How many readers
will even recognize this as an address in the UUCP dialup network that was commonplace in
the 1980s7?)

Today, UUCP networks are a rarity and new technologies such as wireless networks are
becoming ubiquitous! With these changes, new network protocols and programming paradigms
have been developed. But, programmers have lacked a good reference from which to learn the
intricacies of these new techniques.

This book fills that void. Readers who have a dog-eared copy of the original book will want a
new copy for the updated programming techniques and the substantial new material describing
next-generation protocols such as IPv6. Everyone will want this book because it provides a
great mix of practical experience, historical perspective, and a depth of understanding that only
comes from being intimately involved in the field.

I've already enjoyed and learned from reading this book, and surely you will, too.

Sam Leffler
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Introduction

This book is for people who want to write programs that communicate with each other using an
application program interface (APl) known as sockets. Some readers may be very familiar with
sockets already, as that model has become synonymous with network programming. Others
may need an introduction to sockets from the ground up. The goal of this book is to offer
guidance on network programming for beginners as well as professionals, for those developing
new network-aware applications as well as those maintaining existing code, and for people who
simply want to understand how the networking components of their system function.

All the examples in this text are actual, runnable code tested on Unix systems. However, many
non-Unix systems support the sockets APl and the examples are largely operating system-
independent, as are the general concepts we present. Virtually every operating system (OS)
provides numerous network-aware applications such as Web browsers, email clients, and file-
sharing servers. We discuss the usual partitioning of these applications into client and server
and write our own small examples of these many times throughout the text.

Presenting this material in a Unix-oriented fashion has the natural side effect of providing
background on Unix itself, and on TCP/IP as well. Where more extensive background may be
interesting, we refer the reader to other texts. Four texts are so commonly mentioned in this
book that we've assigned them the following abbreviations:

¢ APUE:Advanced Programming in the UNIX Environment [Stevens 1992]

e TCPV1:TCP/IP lllustrated, Volume 1 [Stevens 1994]

TCPv2:TCP/IP lllustrated, Volume 2 [Wright and Stevens 1995]
e TCPv3:TCP/IP lllustrated, Volume 3 [Stevens 1996]

TCPv2 contains a high level of detail very closely related to the material in this book, as it
describes and presents the actual 4.4BSD implementation of the network programming
functions for the sockets APl (socket ,bi nd,connect , and so on). If one understands the

implementation of a feature, the use of that feature in an application makes more sense.
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Changes from the Second Edition

Sockets have been around, more or less in their current form, since the 1980s, and it is a
tribute to their initial design that they have continued to be the network API of choice.
Therefore, it may come as a surprise to learn that quite a bit has changed since the second
edition of this book was published in 1998. The changes we've made to the text are
summarized as follows:

e This new edition contains updated information on IPv6, which was only in draft form at
the time of publication of the second edition and has evolved somewhat.

e The descriptions of functions and the examples have all been updated to reflect the most
recent POSIX specification (POSIX 1003.1-2001), also known as the Single Unix
Specification Version 3.

¢ The coverage of the X/Open Transport Interface (XTI) has been dropped. That APl has
fallen out of common use and even the most recent POSIX specification does not bother
to cover it.

e The coverage of TCP for transactions (T/TCP) has been dropped.

e Three chapters have been added to describe a relatively new transport protocol, SCTP.
This reliable, message-oriented protocol provides multiple streams between endpoints
and transport-level support for multihoming. It was originally designed for transport of
telephony signaling across the Internet, but provides some features that many
applications could take advantage of.

¢ A chapter has been added on key management sockets, which may be used with Internet
Protocol Security (IPsec) and other network security services.

e The machines used, as well as the versions of their variants of Unix, have all been
updated, and the examples have been updated to reflect how these machines behave. In
many cases, examples were updated because OS vendors fixed bugs or added features,
but as one might expect, we've discovered the occasional new bug here and there. The
machines used for testing the examples in this book were:

@)

Apple Power PC running MacOS/X 10.2.6
o HP PA-RISC running HP-UX 11i
o IBM Power PC running AIX 5.1
o Intel x86 running FreeBSD 4.8
o Intel x86 running Linux 2.4.7
o Sun SPARC running FreeBSD 5.1
O Sun SPARC running Solaris 9
SeeFigure 1.16 for details on how these machines were used.
Volume 2 of this UNIX Network Programming series, subtitled Interprocess Communications,

builds on the material presented here to cover message passing, synchronization, shared
memory, and remote procedure calls.



[ Team LiB ]



[ Team LiB ] [« Frevious [ nex

Using This Book

This text can be used as either a tutorial on network programming or as a reference for
experienced programmers. When used as a tutorial or for an introductory class on network
programming, the emphasis should be on Part 2, "Elementary Sockets" (Chapters 3 through
11), followed by whatever additional topics are of interest. Part 2 covers the basic socket
functions for both TCP and UDP, along with SCTP, 1I/0 multiplexing, socket options, and basic
name and address conversions. Chapter 1 should be read by all readers, especially Section 1.4,
which describes some wrapper functions used throughout the text. Chapter 2 and perhaps
Appendix A should be referred to as necessary, depending on the reader's background. Most of
the chapters in Part 3, "Advanced Sockets," can be read independently of the others in that
part of the book.

To aid in the use of this book as a reference, a thorough index is provided, along with
summaries on the end papers of where to find detailed descriptions of all the functions and
structures. To help those reading topics in a random order, numerous references to related
topics are provided throughout the text.
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Source Code and Errata Availability

The source code for all the examples that appear in the book is available on the Web at
www.unpbook.com. The best way to learn network programming is to take these programs,
modify them, and enhance them. Actually writing code of this form is the only way to reinforce
the concepts and techniques. Numerous exercises are also provided at the end of each
chapter, and most answers are provided in Appendix E.

A current errata for the book is also available from the same Web site.
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1.1 Introduction

When writing programs that communicate across a computer network, one must first invent a
protocol, an agreement on how those programs will communicate. Before delving into the
design details of a protocol, high-level decisions must be made about which program is
expected to initiate communication and when responses are expected. For example, a Web
server is typically thought of as a long-running program (or daemon) that sends network
messages only in response to requests coming in from the network. The other side of the
protocol is a Web client, such as a browser, which always initiates communication with the
server. This organization into client and server is used by most network-aware applications.
Deciding that the client always initiates requests tends to simplify the protocol as well as the
programs themselves. Of course, some of the more complex network applications also require
asynchronous callback communication, where the server initiates a message to the client. But
it is far more common for applications to stick to the basic client/server model shown in Figure
1.1.

Figure 1.1. Network application: client and server.

. application protocol
client |=g - server

Clients normally communicate with one server at a time, although using a Web browser as an
example, we might communicate with many different Web servers over, say, a 10-minute time
period. But from the server's perspective, at any given point in time, it is not unusual for a
server to be communicating with multiple clients. We show this in Figure 1.2. Later in this text,
we will cover several different ways for a server to handle multiple clients at the same time.

Figure 1.2. Server handling multiple clients at the same time.
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The client application and the server application may be thought of as communicating via a
network protocol, but actually, multiple layers of network protocols are typically involved. In
this text, we focus on the TCP/IP protocol suite, also called the Internet protocol suite. For
example, Web clients and servers communicate using the Transmission Control Protocol, or
TCP. TCP, in turn, uses the Internet Protocol, or IP, and IP communicates with a datalink layer
of some form. If the client and server are on the same Ethernet, we would have the



arrangement shown in Figure 1.3.

Figure 1.3. Client and server on the same Ethernet communicating
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Even though the client and server communicate using an application protocol, the transport
layers communicate using TCP. Note that the actual flow of information between the client and
server goes down the protocol stack on one side, across the network, and up the protocol stack
on the other side. Also note that the client and server are typically user processes, while the
TCP and IP protocols are normally part of the protocol stack within the kernel. We have labeled
the four layers on the right side of Figure 1.3.

TCP and IP are not the only protocols that we will discuss. Some clients and servers use the
User Datagram Protocol (UDP) instead of TCP, and we will discuss both protocols in more detail
inChapter 2. Furthermore, we have used the term "IP,"” but the protocol, which has been in
use since the early 1980s, is officially called IP version 4 (IPv4). A new version, IP version 6
(IPv6) was developed during the mid-1990s and could potentially replace IPv4 in the years to
come. This text covers the development of network applications using both IPv4 and IPv6.
Appendix A provides a comparison of IPv4 and IPv6, along with other protocols that we will
discuss.

The client and server need not be attached to the same local area network (LAN) as we show
inFigure 1.3. For instance, in Figure 1.4, we show the client and server on different LANs, with
both LANs connected to a wide area network (WAN) using routers.

Figure 1.4. Client and server on different LANs connected through a
WAN.
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Routers are the building blocks of WANs. The largest WAN today is the Internet. Many
companies build their own WANs and these private WANs may or may not be connected to the
Internet.

L

WAN

The remainder of this chapter provides an introduction to the various topics that are covered in
detail later in the text. We start with a complete example of a TCP client, albeit a simple one,
that demonstrates many of the function calls and concepts that we will encounter throughout
the text. This client works with IPv4 only, and we show the changes required to work with
IPv6. A better solution is to write protocol-independent clients and servers, and we will discuss
this in Chapter 11. This chapter also shows a complete TCP server that works with our client.

To simplify all our code, we define our own wrapper functions for most of the system functions
that we call throughout the text. We can use these wrapper functions most of the time to
check for an error, print an appropriate message, and terminate when an error occurs. We also
show the test network, hosts, and routers used for most examples in the text, along with their
hostnames, IP addresses, and operating systems.

Most discussions of Unix these days include the term "X," which is the standard that most
vendors have adopted. We describe the history of POSIX and how it affects the Application
Programming Interfaces (APIs) that we describe in this text, along with the other players in the
standards arena.
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1.2 A Simple Daytime Client

Let's consider a specific example to introduce many of the concepts and terms that we will
encounter throughout the book. Figure 1.5 is an implementation of a TCP time-of-day client.
This client establishes a TCP connection with a server and the server simply sends back the
current time and date in a human-readable format.

Figure 1.5 TCP daytime client.

intro/daytimetcpcli.c

1 #include "unp.h"

2 int

3 main(int argc, char **argv)

4 {

5 i nt sockfd, n;

6 char recvl i ne[ MAXLINE + 1];

7 struct sockaddr_in servaddr;

8 if (argc !'= 2)

9 err_quit("usage: a.out <lPaddress>");

10 if ( (sockfd = socket (AF_I NET, SOK_STREAM 0)) < 0)
11 err_sys("socket error");

12 bzero( &ervaddr, sizeof (servaddr));

13 servaddr.sin_fam |y = AF_I NET;

14 servaddr.sin_port = htons(13); /* daytine server */
15 if (inet_pton(AF_INET, argv[1l], &servaddr.sin_addr) <= 0)
16 err_quit("inet_pton error for %", argv[1]);

17 i f (connect(sockfd, (SA *) &servaddr, sizeof(servaddr)) < 0)
18 err_sys("connect error");

19 while ( (n = read(sockfd, recvline, MAXLINE)) > 0) {
20 recvline[n] = O; /* null termnate */

21 if (fputs(recvline, stdout) == EOF)

22 err_sys("fputs error");

23 }

24 if (n <0

25 err_sys("read error");

26 exit(0);

27 }

This is the format that we will use for all the source code in the text. Each nonblank line is
numbered. The text describing portions of the code notes the starting and ending line
numbers in the left margin, as shown shortly. Sometimes a paragraph is preceded by a
short, descriptive, bold heading, providing a summary statement of the code being
described.

The horizontal rules at the beginning and end of a code fragment specify the source code



filename: the file dayti met cpcl i . ¢ in the directory i nt ro for this example. Since the
source code for all the examples in the text is freely available (see the Preface), this lets
you locate the appropriate source file. Compiling, running, and especially modifying these
programs while reading this text is an excellent way to learn the concepts of network
programming.

Throughout the text, we will use indented, parenthetical notes such as this to describe
implementation details and historical points.

If we compile the program into the default a. out file and execute it, we will have the following
output:

solaris %. out 206.168.112. 96 our input
Mon May 26 20:58:40 2003 the program's output

Whenever we display interactive input and output, we will show our typed input in bol d
and the computer output | i ke t hi s.Comments are added on the right side in italics. We
will always include the name of the system as part of the shell prompt (sol ari s in this
example) to show on which host the command was run. Figure 1.16 shows the systems
used to run most of the examples in this book. The hostnames usually describe the
operating system (0OS) as well.

There are many details to consider in this 27-line program. We mention them briefly here, in
case this is your first encounter with a network program, and provide more information on
these topics later in the text.

Include our own header

1 We include our own header, unp. h, which we will show in Section D.1. This header includes

numerous system headers that are needed by most network programs and defines various
constants that we use (e.g., MAXLI NE).

Command-line arguments

2-3 This is the definition of the mai n function along with the command-line arguments. We

have written the code in this text assuming an American National Standards Institute (ANSI) C
compiler (also referred to as an ISO C compiler).

Create TCP socket

10-11 The socket function creates an Internet (AF_I NET) stream (SOCK_STREAM) socket, which

is a fancy name for a TCP socket. The function returns a small integer descriptor that we can
use to identify the socket in all future function calls (e.g., the calls to connect and r ead that
follow).

Thei f statement contains a call to the socket function, an assignment of the return
value to the variable named sockf d, and then a test of whether this assigned value is
less than 0. While we could break this into two C statements,

sockfd = socket (AF_I NET, SOCK STREAM 0);



if (sockfd < 0)

it is a common C idiom to combine the two lines. The set of parentheses around the
function call and assignment is required, given the precedence rules of C (the less-than
operator has a higher precedence than assignment). As a matter of coding style, the
authors always place a space between the two opening parentheses, as a visual indicator
that the left-hand side of the comparison is also an assignment. (This style is copied from
the Minix source code [Tanenbaum 1987].) We use this same style in the whi | e
statement later in the program.

We will encounter many different uses of the term "socket." First, the API that we are using is
called the sockets API. In the preceding paragraph, we referred to a function named socket
that is part of the sockets API. In the preceding paragraph, we also referred to a TCP socket,
which is synonymous with a TCP endpoint.

If the call to socket fails, we abort the program by calling our own err _sys function. It prints
our error message along with a description of the system error that occurred (e.g., "Protocol
not supported” is one possible error from socket ) and terminates the process. This function,
and a few others of our own that begin with err _, are called throughout the text. We will
describe them in Section D.3.

Specify server's IP address and port

12-16 We fill in an Internet socket address structure (a sockaddr _i n structure named

ser vaddr ) with the server's IP address and port number. We set the entire structure to O using
bzero, set the address family to AF_I NET, set the port number to 13 (which is the well-known
port of the daytime server on any TCP/IP host that supports this service, as shown in Figure
2.18), and set the IP address to the value specified as the first command-line argument

(argv[ 1]). The IP address and port number fields in this structure must be in specific formats:
We call the library function ht ons ("host to network short™) to convert the binary port number,
and we call the library function i net _pt on ("presentation to numeric") to convert the ASCII
command-line argument (such as 206. 62. 226. 35 when we ran this example) into the proper
format.

bzero is not an ANSI C function. It is derived from early Berkeley networking code.
Nevertheless, we use it throughout the text, instead of the ANSI C nenset function,
becausebzero is easier to remember (with only two arguments) than menset (with three
arguments). Almost every vendor that supports the sockets API also provides bzero, and
if not, we provide a macro definition of it in our unp. h header.

Indeed, the author of TCPv3 made the mistake of swapping the second and third
arguments to nenset in 10 occurrences in the first printing. A C compiler cannot catch
this error because both arguments are of the same type. (Actually, the second argument
is an i nt and the third argument is si ze_t , which is typically an unsi gned int, but the
values specified, 0 and 16, respectively, are still acceptable for the other type of
argument.) The call to mnenset still worked, but did nothing. The number of bytes to
initialize was specified as 0. The programs still worked, because only a few of the socket
functions actually require that the final 8 bytes of an Internet socket address structure be
set to 0. Nevertheless, it was an error, and one that could be avoided by using bzero,
because swapping the two arguments to bzero will always be caught by the C compiler if
function prototypes are used.

This may be your first encounter with the i net _pt on function. It is new with IPv6 (which
we will talk more about in Appendix A). Older code uses the i net _addr function to
convert an ASCII dotted-decimal string into the correct format, but this function has
numerous limitations that i net _pt on corrects. Do not worry if your system does not



(yet) support this function; we will provide an implementation of it in Section 3.7.

Establish connection with server

17-18 The connect function, when applied to a TCP socket, establishes a TCP connection with
the server specified by the socket address structure pointed to by the second argument. We
must also specify the length of the socket address structure as the third argument to connect ,
and for Internet socket address structures, we always let the compiler calculate the length
using C's si zeof operator.

In the unp. h header, we #defi ne SAto be struct sockaddr, that is, a generic socket
address structure. Everytime one of the socket functions requires a pointer to a socket
address structure, that pointer must be cast to a pointer to a generic socket address
structure. This is because the socket functions predate the ANSI C standard, so the voi d
* pointer type was not available in the early 1980s when these functions were developed.
The problem is that "struct sockaddr " is 15 characters and often causes the source
code line to extend past the right edge of the screen (or page, in the case of a book), so
we shorten it to SA. We will talk more about generic socket address structures when

explainingFigure 3.3.

Read and display server's reply

19-25 We r ead the server's reply and display the result using the standard 1/0 f puts function.
We must be careful when using TCP because it is a byte-stream protocol with no record
boundaries. The server's reply is normally a 26-byte string of the form

Mon May 26 20 : 58 : 40 2003\r\n

where\ r is the ASCII carriage return and \ n is the ASCII linefeed. With a byte-stream

protocol, these 26 bytes can be returned in numerous ways: a single TCP segment containing
all 26 bytes of data, in 26 TCP segments each containing 1 byte of data, or any other
combination that totals to 26 bytes. Normally, a single segment containing all 26 bytes of data
is returned, but with larger data sizes, we cannot assume that the server's reply will be
returned by a single r ead. Therefore, when reading from a TCP socket, we always need to code
ther ead in a loop and terminate the loop when either r ead returns O (i.e., the other end

closed the connection) or a value less than O (an error).

In this example, the end of the record is being denoted by the server closing the connection.
This technique is also used by version 1.0 of the Hypertext Transfer Protocol (HTTP). Other
techniques are available. For example, the Simple Mail Transfer Protocol (SMTP) marks the end
of a record with the two-byte sequence of an ASCII carriage return followed by an ASCII
linefeed. Sun Remote Procedure Call (RPC) and the Domain Name System (DNS) place a
binary count containing the record length in front of each record that is sent when using TCP.
The important concept here is that TCP itself provides no record markers: If an application
wants to delineate the ends of records, it must do so itself and there are a few common ways
to accomplish this.

Terminate program



26exi t terminates the program. Unix always closes all open descriptors when a process
terminates, so our TCP socket is now closed.

As we mentioned, the text will go into much more detail on all the points we just described.
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1.3 Protocol Independence

Our program in Figure 1.5 is protocol-dependent on IPv4. We allocate and initialize a
sockaddr _i n structure, we set the family of this structure to AF_I NET, and we specify the first
argument to socket as AF_I| NET.

To modify the program to work under IPv6, we must change the code. Figure 1.6 shows a
version that works under IPv6, with the changes highlighted in bold.

Figure 1.6 Version of Figure 1.5 for IPv6.

intro/daytimetcpclivé.c

1 #incl ude "unp. h"

2 int

3 main(int argc, char **argv)

4 {

5 i nt sockfd, n;

6 char recvl i ne[ MAXLINE + 1];

7 struct sockaddr _in6 servaddr;

8 if (argc !'= 2)

9 err_quit("usage: a.out <lPaddress>");

10 if ( (sockfd = socket (AF_INET6, SOQCK_STREAM 0)) < 0)
11 err_sys("socket error");

12 bzero( &ervaddr, sizeof (servaddr));

13 servaddr.sin6_famly = AF_I NET6;

14 servaddr.sin6_port = htons(13); /* daytinme server */
15 if (inet_pton(AF_INET6, argv[1l], &servaddr.sin6_addr) <= 0)
16 err_quit("inet_pton error for %", argv[1]);

17 i f (connect (sockfd, (SA *) &servaddr, sizeof(servaddr)) < 0)
18 err_sys("connect error");

19 while ( (n = read(sockfd, recvline, MAXLINE)) > 0) {
20 recvline[n] = 0; /* null term nate */

21 if (fputs(recvline, stdout) == ECF)

22 err_sys("fputs error");

23 }

24 if (n <0

25 err_sys("read error");

26 exit(0);

27 }

Only five lines are changed, but what we now have is another protocol-dependent program;
this time, it is dependent on IPv6. It is better to make a program protocol-independent.Figure
11.11 will show a version of this client that is protocol-independent by using the get addri nfo
function (which is called by t cp_connect).

Another deficiency in our programs is that the user must enter the server's IP address as a



dotted-decimal number (e.g., 206.168.112.219 for the IPv4 version). Humans work better with
names instead of numbers (e.g., ww. unpbook. conm). In Chapter 11, we will discuss the
functions that convert between hostnames and IP addresses, and between service names and
ports. We purposely put off the discussion of these functions and continue using IP addresses
and port numbers so we know exactly what goes into the socket address structures that we
must fill in and examine. This also avoids complicating our discussion of network programming
with the details of yet another set of functions.
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1.4 Error Handling: Wrapper Functions

In any real-world program, it is essential to check every function call for an error return. In
Figure 1.5, we check for errors from socket ,i net_pt on,connect ,r ead, and f puts, and when
one occurs, we call our own functions, err_quit and err_sys, to print an error message and
terminate the program. We find that most of the time, this is what we want to do.
Occasionally, we want to do something other than terminate when one of these functions
returns an error, as in Figure 5.12, when we must check for an interrupted system call.

Since terminating on an error is the common case, we can shorten our programs by defining a
wrapper function that performs the actual function call, tests the return value, and terminates
on an error. The convention we use is to capitalize the name of the function, as in

sockfd = Socket (AF_I NET, SOCK STREAM 0);

Our wrapper function is shown in Figure 1.7.
Figure 1.7 Our wrapper function for the socket function.

lib/wrapsock.c

236 int

237 Socket(int famly, int type, int protocol)

238 {

239 i nt n;

240 if ( (n = socket(famly, type, protocol)) < 0)
241 err_sys("socket error");

242 return (n);

243 }

Whenever you encounter a function name in the text that begins with an uppercase
letter, that is one of our wrapper functions. It calls a function whose name is the same
but begins with the lowercase letter.

When describing the source code that is presented in the text, we always refer to the
lowest level function being called (e.g.,socket ),not the wrapper function (e.g.,Socket ).

While these wrapper functions might not seem like a big savings, when we discuss threads in
Chapter 26, we will find that thread functions do not set the standard Unix er r no variable when
an error occurs; instead, the err no value is the return value of the function. This means that
every time we call one of the pt hread_ functions, we must allocate a variable, save the return
value in that variable, and then set err no to this value before calling err _sys. To avoid
cluttering the code with braces, we can use C's comma operator to combine the assignment
intoer r no and the call of err _sys into a single statement, as in the following:



int n;

if ( (n = pthread_nutex_| ock(&done_mutex)) != 0)
errno = n, err_sys("pthread_nutex_| ock error");

Alternately, we could define a new error function that takes the system's error number as an
argument. But, we can make this piece of code much easier to read as just

Pt hread_nut ex_| ock( &done_nut ex) ;

by defining our own wrapper function, as shown in Figure 1.8.
Figure 1.8 Our wrapper function for pt hread_nut ex_| ock.

lib/wrappthread.c

72 void

73 Pthread_mutex_| ock(pthread_nutex_t *nptr)

74 {

75 i nt n;

76 if ( (n =pthread_nutex_|l ock(nptr)) == 0)
77 return;

78 errno = n;

79 err_sys("pthread_mutex_| ock error");

80 }

With careful C coding, we could use macros instead of functions, providing a little run-
time efficiency, but these wrapper functions are rarely the performance bottleneck of a
program.

Our choice of capitalizing the first character of a function name is a compromise. Many
other styles were considered: prefixing the function name with an "e" (as done on p. 182
of [Kernighan and Pike 1984]), appending "_e" to the function name, and so on. Our style
seems the least distracting while still providing a visual indication that some other
function is really being called.

This technique has the side benefit of checking for errors from functions whose error
returns are often ignored: cl ose and | i sten, for example.

Throughout the rest of this book, we will use these wrapper functions unless we need to check
for an explicit error and handle it in some way other than terminating the process. We do not
show the source code for all our wrapper functions, but the code is freely available (see the
Preface).



UniXerrno Value

When an error occurs in a Unix function (such as one of the socket functions), the global
variableer r no is set to a positive value indicating the type of error and the function normally
returns —1. Our err _sys function looks at the value of err no and prints the corresponding
error message string (e.g., "Connection timed out” if er r no equals ETI MEDOUT).

The value of errno is set by a function only if an error occurs. Its value is undefined if the

function does not return an error. All of the positive error values are constants with all-
uppercase names beginning with "E," and are normally defined in the <sys/ errno. h> header.

No error has a value of 0.

Storinger r no in a global variable does not work with multiple threads that share all global
variables. We will talk about solutions to this problem in Chapter 26.

Throughout the text, we will use phrases such as "the connect function returns ECONNREFUSED"

as shorthand to mean that the function returns an error (typically with a return value of —1),
wither r no set to the specified constant.
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1.5 A Simple Daytime Server

We can write a simple version of a TCP daytime server, which will work with the client from
Section 1.2. We use the wrapper functions that we described in the previous section and show
this server in Figure 1.9.

Figure 1.9 TCP daytime server.

intro/daytimetcpsrv.c

1 #incl ude "unp. h".

2 #incl ude <tinme.h>

3 int

4 main(int argc, char **argv)

5 {

6 i nt listenfd, connfd;

7 struct sockaddr_in servaddr;

8 char buf f [ MAXLI NE] ;

9 time_t ticks;

10 listenfd = Socket (AF_I NET, SOCK_STREAM 0);

11 bzer os(&servaddr, sizeof(servaddr));

12 servaddr.sin_fam |y = AF_I NET;

13 servaddr.si n_addr.s_addr = htonl (1 NADDR_ANY) ;

14 servaddr.sin_port = htons(13); /* daytime server */
15 Bind(listenfd, (SA *) &servaddr, sizeof(servaddr));
16 Li sten(listenfd, LISTENQ;

17 for (7 ;) {

18 connfd = Accept(listenfd, (SA *) NULL, NULL);
19 ticks = time(NULL);
20 snprintf(buff, sizeof(buff), "% 24s\r\n", ctinme(&icks));
21 Wite(connfd, buff, strlen(buff));
22 Cl ose(connfd);
23 }
24 }

Create a TCP socket

10 The creation of the TCP socket is identical to the client code.

Bind server's well-known port to socket

11-15 The server's well-known port (13 for the daytime service) is bound to the socket by
filling in an Internet socket address structure and calling bi nd. We specify the IP address as



I NADDR_ANY, which allows the server to accept a client connection on any interface, in case the
server host has multiple interfaces. Later we will see how we can restrict the server to
accepting a client connection on just a single interface.

Convert socket to listening socket

16 By calling | i sten, the socket is converted into a listening socket, on which incoming
connections from clients will be accepted by the kernel. These three steps, socket ,bi nd, and
| i sten, are the normal steps for any TCP server to prepare what we call the listening
descriptor (I i stenfd in this example).

The constant LI STENQ s from our unp. h header. It specifies the maximum number of client
connections that the kernel will queue for this listening descriptor. We say much more about
this queueing in Section 4.5.

Accept client connection, send reply

17-21 Normally, the server process is put to sleep in the call to accept , waiting for a client
connection to arrive and be accepted. A TCP connection uses what is called a three-way
handshake to establish a connection. When this handshake completes, accept returns, and the
return value from the function is a new descriptor (connf d) that is called the connected
descriptor. This new descriptor is used for communication with the new client. A new descriptor
is returned by accept for each client that connects to our server.

The style used throughout the book for an infinite loop is

for (5 ;) {

The current time and date are returned by the library function ti me, which returns the number

of seconds since the Unix Epoch: 00:00:00 January 1, 1970, Coordinated Universal Time
(UTC). The next library function, cti me, converts this integer value into a human-readable

string such as

Mon May 26 20:58:40 2003

A carriage return and linefeed are appended to the string by snpri nt f, and the result is
written to the client by write.

If you're not already in the habit of using snpri ntf instead of the older sprintf, now's
the time to learn. Calls to sprintf cannot check for overflow of the destination buffer.
snpri nt f, on the other hand, requires that the second argument be the size of the
destination buffer, and this buffer will not overflow.



snprintf was a relatively late addition to the ANSI C standard, introduced in the version
referred to as ISO C99. Virtually all vendors provide it as part of the standard C library,
and many freely available versions are also available. We use snpri nt f throughout the
text, and we recommend using it instead of sprintf in all your programs for reliability.

It is remarkable how many network break-ins have occurred by a hacker sending data to
cause a server's call to sprintf to overflow its buffer. Other functions that we should be
careful with are get s,strcat, and st rcpy, normally calling f gets,strncat, and

st rncpy instead. Even better are the more recently available functions strlcat and

st rlcpy, which ensure the result is a properly terminated string. Additional tips on
writing secure network programs are found in Chapter 23 of [Garfinkel, Schwartz, and
Spafford 2003].

Terminate connection

22 The server closes its connection with the client by calling cl ose. This initiates the normal
TCP connection termination sequence: a FIN is sent in each direction and each FIN is
acknowledged by the other end. We will say much more about TCP's three-way handshake and
the four TCP packets used to terminate a TCP connection in Section 2.6.

As with the client in the previous section, we have only examined this server briefly, saving all
the details for later in the book. Note the following points:

e As with the client, the server is protocol-dependent on IPv4. We will show a protocol-
independent version that uses the get addr i nf o function in Figure 11.13.

e Our server handles only one client at a time. If multiple client connections arrive at about
the same time, the kernel queues them, up to some limit, and returns them to accept
one at a time. This daytime server, which requires calling two library functions, ti nme and
cti ne, is quite fast. But if the server took more time to service each client (say a few
seconds or a minute), we would need some way to overlap the service of one client with
another client.

e The server that we show in Figure 1.9 is called an iterative server because it iterates
through each client, one at a time. There are numerous techniques for writing a
concurrent server, one that handles multiple clients at the same time. The simplest
technique for a concurrent server is to call the Unix f or k function (Section 4.7), creating
one child process for each client. Other techniques are to use threads instead of f or k
(Section 26.4), or to pre-f or k a fixed number of children when the server starts (Section
30.6).

e If we start a server like this from a shell command line, we might want the server to run
for a long time, since servers often run for as long as the system is up. This requires that
we add code to the server to run correctly as a Unix daemon: a process that can run in
the background, unattached to a terminal. We will cover this in Section 13.4.
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1.6 Roadmap to Client/Server Examples in the Text

Two client/server examples are used predominantly throughout the text to illustrate the
various techniques used in network programming:

¢ A daytime client/server (which we started in Figures 1.5,1.6, and 1.9)
e An echo client/server (which will start in Chapter 5)

To provide a roadmap for the different topics that are covered in this text, we will summarize
the programs that we will develop, and give the starting figure number and page number in
which the source code appears. Figure 1.10 lists the versions of the daytime client, two
versions of which we have already seen. Figure 1.11 lists the versions of the daytime server.
Figure 1.12 lists the versions of the echo client, and Figure 1.13 lists the versions of the echo
server.

Figure 1.10. Different versions of the daytime client developed in the

text.
Figure | Page Description
1.5 6 | TCP/TPv4, protocol-dependent
L& 10| TCP/1Pvé, protocol-dependent
114 313 TCP/1Pvd, protocol-dependent, calls gethostbyname and getservbyname
11.11 328 | TCFE protocol-independent, calls getaddrinfe and tep_connect
11.16 336 | UDPE protocol-independent, calls getaddrinfo and udp_client
16.11 450 | TCL, uses nonblocking connect
L& 8349 | TCE protocol-dependent, uses TI'Linstead of sockets
El 917 | TCLE protocol-dependent, generates SIGPIEE
BES G20 | TCP, protocol-dependent, prints socket receive bulfer sizes and MS5
E1l 931 | TCF, protwcol-dependent, allows hostname {gethostbynane) or [P address
El12 932 TCT, protocol-independent, allows hostmame (gethostbyname)

Figure 1.11. Different versions of the daytime server developed in

the text.
Figure | Page Description
1.9 14 | TCP/IPMv4, protocol-dependent

11.13 332 | TCE protocol-independent, calls getaddrinfo and top_listen
11.14 EX TCE, protocol-independent, calls getaddrinfo and tep listen
.19 aw LUDE protecol-independent, calls getaddrinfoand udp_server
135 A7l | TCE protocol-independent, runs as standalone daemon

13,12 A7s | TCE protocol-independent, spawned from inetd daemon

Figure 1.12. Different versions of the echo client developed in the
text.



Figure | Page Deseription
5.4 124 | TCP/IPv4, protocol-dependent
6.9 168 | TCE uses selact
613 174 | TCFE uses select and operates on buffers
8.7 244 | UDP/IPvY, protocol-dependent

B9 47 | UDF, verifies server's address
817 250 | UDP calls connect toobtain asynchronous errors
142 384 | UDE times out when reading server s reply using SIGRLEM
14.4 M6 | UDE times out when reading server's reply using seloct
14.5 37 | UDE times out when reading server's reply using 50_RCVTIMEG

154 4158 | Unix domain stream, protocol-dependent

15.6 419 | Unix domain datagram, protocol-dependent

16.3 435 | TCPE wses nonblocking 1/0

1610 447 | TCE uses two provesses (fork)

16.21 462 | TCP establishes connection then sends RST

14.15 4| TCT, wses fdev/poll for multiplexing

14.18 407 | TCE, uses kquene for multiplexing

0.5 537 | UDF, broadcasts with race condition

206 540 | UDE broadeasts with race condition

L7 542 | UDE broadeasts, race condition fived by using pselect

X9 544 | UDFP, broadcasts, race condition fixed by using sigset jmp and siglongjmp
.10 547 | UDP, broadeasts, race condition fised by using [PC from signal handler
X6 6| UDE reliable using timeout, retransmit, and sequence number

26.2 680 TCPE, uses two threads

2746 Tl6 | TCP/IPv4, specifies a source route

2713 729 | UDP/1Pvo, specifies a source route

Figure 1.13. Different versions of the echo server developed in the
text.

Figure | Page Descriphion

5.2 123 | TCP/IPv4, protocol-dependent
512 139 | TCP/1Pv4, protocol-dependent, reaps terminated children
621 178 | TCP/1IMv4, protocol-dependent, uses eelect, one process handles all clients
6.25 186 | TCP/IMv4, protocol-dependent, uses poll, one process handles all clients
83 242 | UDP/1Pv4, protocol-dependent
824 263 | TCP and UDP/TPv4, protocol-dependent, uses selast
1414 | 400 | TCE uses standard 1/0 library
15.3 417 | Unix domain stream, protocol-dependent
15.5 418 Unix domain datagram, protocol-dependent
1515 | 431 | Unix domain stream, with credential passing from client
24 5493 | UDF, receives destination address and received interface; truncated datagrams
2215 609 | UDP, binds all interface addresses
254 668 | UDPE uses signal-driven 1/0

6.3 682 | TCF one thread per client

264 684 | TCF one thread per client, portable argument passing
76 716 | TCP/IPv4, prints received source route

2714 730 | UDP/IPve, prints and reverses received source route
2531 773 | UDF, uses icmpd to receive asynchronous errors

E.15 43 | UDP binds all interface addresses
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1.7 OSI Model

A common way to describe the layers in a network is to use the International Organization for
Standardization (ISO) open systems interconnection (OSI) model for computer
communications. This is a seven-layer model, which we show in Figure 1.14, along with the
approximate mapping to the Internet protocol suite.

Figure 1.14. Layers in OSI model and Internet protocol suite.

o e application
application
! PPk details
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We consider the bottom two layers of the OSI model as the device driver and networking
hardware that are supplied with the system. Normally, we need not concern ourselves with
these layers other than being aware of some properties of the datalink, such as the 1500-byte
Ethernet maximum transfer unit (MTU), which we describe in Section 2.11.

The network layer is handled by the IPv4 and IPv6 protocols, both of which we will describe in
Appendix A. The transport layers that we can choose from are TCP and UDP, and we will
describe these in Chapter 2. We show a gap between TCP and UDP in Figure 1.14 to indicate
that it is possible for an application to bypass the transport layer and use IPv4 or IPv6 directly.
This is called a raw socket, and we will talk about this in Chapter 28.

The upper three layers of the OSI model are combined into a single layer called the application.
This is the Web client (browser), Telnet client, Web server, FTP server, or whatever application
we are using. With the Internet protocols, there is rarely any distinction between the upper
three layers of the OSI model.

The sockets programming interfaces described in this book are interfaces from the upper three
layers (the "application") into the transport layer. This is the focus of this book: how to write
applications using sockets that use either TCP or UDP. We already mentioned raw sockets, and
inChapter 29 we will see that we can even bypass the IP layer completely to read and write
our own datalink-layer frames.

Why do sockets provide the interface from the upper three layers of the OSI model into the
transport layer? There are two reasons for this design, which we note on the right side of
Figure 1.14. First, the upper three layers handle all the details of the application (FTP, Telnet,
or HTTP, for example) and know little about the communication details. The lower four layers
know little about the application, but handle all the communication details: sending data,
waiting for acknowledgments, sequencing data that arrives out of order, calculating and
verifying checksums, and so on. The second reason is that the upper three layers often form



what is called a user process while the lower four layers are normally provided as part of the
operating system (OS) kernel. Unix provides this separation between the user process and the

kernel, as do many other contemporary operating systems. Therefore, the interface between
layers 4 and 5 is the natural place to build the API.
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1.8 BSD Networking History

The sockets API originated with the 4.2BSD system, released in 1983. Figure 1.15 shows the
development of the various BSD releases, noting the major TCP/IP developments. A few
changes to the sockets API also took place in 1990 with the 4.3BSD Reno release, when the
OSI protocols went into the BSD kernel.

Figure 1.15. History of various BSD releases.

4.2B5D (1983)
first widely available
release of TCP/IP
and sockets APl

'

4.3BSD (1986)
TCP performance improvements

:

4.3BSD Tahoe (1958)
slow start,

congestion avoidance,
fast retransmit

BSD Networking Software

Release 1.0 (1989): Net/1
e . 4.3BSD Reno (1990)

fast recovery,
TCP header prediction,

SLIP header compression,
/ routing table changes;
length field added to seckaddr( };

BSD Networking Software control information added to meghdr{ }
Release 2.0 (1991): Net/2 l

4.4BSD (19493)

multicasting,
/ long fat pipe modifications

44BSD-Lite (1994}
referred to in text as Net/3 BSD/OS
FreeBSD
l MNetBsD
OpenBSD
4.4BSD-Lite2 (1995)

The path down the figure from 4.2BSD through 4.4BSD shows the releases from the Computer
Systems Research Group (CSRG) at Berkeley, which required the recipient to already have a
source code license for Unix. But all the networking code, both the kernel support (such as the
TCP/IP and Unix domain protocol stacks and the socket interface), along with the applications
(such as the Telnet and FTP clients and servers), were developed independently from the
AT&T-derived Unix code. Therefore, starting in 1989, Berkeley provided the first of the BSD
networking releases, which contained all the networking code and various other pieces of the



BSD system that were not constrained by the Unix source code license requirement. These
releases were "publicly available” and eventually became available by anonymous FTP to
anyone.

The final releases from Berkeley were 4.4BSD-Lite in 1994 and 4.4BSD-Lite2 in 1995. We note
that these two releases were then used as the base for other systems: BSD/OS, FreeBSD,
NetBSD, and OpenBSD, most of which are still being actively developed and enhanced. More
information on the various BSD releases, and on the history of the various Unix systems in
general, can be found in Chapter 01 of [McKusick et al. 1996].

Many Unix systems started with some version of the BSD networking code, including the
sockets API, and we refer to these implementations as Berkeley-derived implementations.
Many commercial versions of Unix are based on System V Release 4 (SVR4). Some of these
versions have Berkeley-derived networking code (e.g., UnixWare 2.x), while the networking
code in other SVR4 systems has been independently derived (e.g., Solaris 2.x). We also note
that Linux, a popular, freely available implementation of Unix, does not fit into the Berkeley-
derived classification: Its networking code and sockets APl were developed from scratch.
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1.9 Test Networks and Hosts

Figure 1.16 shows the various networks and hosts used in the examples throughout the text. For
show the OS and the type of hardware (since some of the operating systems run on more than o
hardware). The name within each box is the hostname that appears in the text.

The topology shown in Figure 1.16 is interesting for the sake of our examples, but the machines ¢
out across the Internet and the physical topology becomes less interesting in practice. Instead, v
networks (VPNs) or secure shell (SSH) connections provide connectivity between these machines
where they live physically.

Figure 1.16. Networks and hosts used for most examples in th
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The notation "/24" indicates the number of consecutive bits starting from the leftmost bit of the ¢
identify the network and subnet. Section A.4 will talk about the /n notation used today to designe
boundaries.

The real name of the Sun OS is SunOS 5.x and not Solaris 2.x, but everyone refers to it as .
given to the sum of the OS and other software bundled with the base OS.

Discovering Network Topology

We show the network topology in Figure 1.16 for the hosts used for the examples throughout this
need to know your own network topology to run the examples and exercises on your own networ
are no current Unix standards with regard to network configuration and administration, two basic
provided by most Unix systems and can be used to discover some details of a network: net st at
Check the manual (man) pages for these commands on your system to see the details on the infi
output. Also be aware that some vendors place these commands in an administrative directory, s
[ usr/ shi n, instead of the normal / usr/ bi n, and these directories might not be in your normal sl
(PATH).

1. netstat -i provides information on the interfaces. We also specify the - n flag to print num
instead of trying to find names for the networks. This shows us the interfaces and their nanr



l'inux % netstat -ni

Kernel Interface table

| face MIU Met RX- XK RX-ERR RX-DRP RX-OVR  TX-OK TX- ERR TX- DRP TX- O\
et hO 1500 049211085 0 0 040540958 0 0

l o 16436 098613572 0 0 098613572 0 0

The loopback interface is called | o and the Ethernet is called et h0. The next example
IPv6 support.

freebsd % netstat -ni

Nanme Mu Net wor k Addr ess | pkts lerrs Opkts Qerr
hme0 1500 <Li nk#1> 08:00: 20: a7: 68: 6b 29100435 35 46561488
hme0 1500 12.106.32/24 12.106. 32. 254 28746630 - 46617260

hme0 1500 fe80:1::a00:20ff:fea7: 686b/ 64
fe80: 1::a00: 20ff: fea7: 686b

0 - 0

hnme0 1500 3ffe: b80:1f8d: 1::1/64
3ffe: b80:1f8d: 1::1 0 - 0
hmel 1500 <Li nk#2> 08:00: 20: a7: 68: 6b 51092 0 31537

hmel 1500 fe80: 2::a00: 20ff:fea7: 686b/ 64
fe80: 2:: a00: 20ff: fea7: 686b

0 - 90

hmel 1500 192.168. 42 192.168.42. 1 43584 - 24173
hmel 1500 3ffe: b80:1f8d: 2::1/64

3ffe: b80:1f8d:2::1 78 - 8

| 00 16384 <Li nk#6> 10198 0 10198

| 00 16384 ::1/128 B 10 - 10

| 00 16384 fe80:6::1/64 fe80:6::1 0 - 0

| 00 16384 127 127.0.0.1 10167 - 10167

gifo 1280 <Li nk#8> 6 0 5
gifo 1280 3ffe: b80: 3:9adl::2/128

3f fe: b80:3: 9adl:: 2 0 - 0

gifo 1280 fe80: 8::a00: 20ff:fea7: 686b/ 64
f e80: 8::a00: 20ff: fea7: 686b
0 - 0

2. netstat -r shows the routing table, which is another way to determine the interfaces. We
the- n flag to print numeric addresses. This also shows the IP address of the default router.



freebad
Routi ng tabl es

I nternet:
Desti nati on
def aul t

12. 106. 32/ 24
12.106. 32.1
12. 106. 32. 253
12. 106. 32. 254
127.0.0.1
192.168. 42
192.168.42.1
192.168.42.2

I nt er net 6:
Desti nati on
1196
def aul t

01

o ffff:0.0.0.0/96
3:9adl::1
3:9adl ::2
1f 8d::/48
1. /64
1
1. /164
1
:204: acff:fel7:bf38 0

3ffe:
3ffe:
3ffe:
3ffe:
3ffe:
3ffe:
3ffe:
3ffe:
f e80:
f e80:
f e80:
f e80:

b80:
b80:
b80:
b80:
b80:
b80:
b80:
b80:
2/ 10
: %hne0/ 64
:a00: 20f f
: %hnel/ 64
f e80: : a00: 20f f
f e80: : % o0/ 64
fe80:: 1% o0
fe80:: %gi fO/ 64
f e80: : a00: 20f f
ff01::/32
ff02::/16
ff02:: %ne0/ 32
ff02:: %nel/ 32
ff02::% o0/ 32
ff02::%i fO/ 32

1f 8d:
| f8d:
| f 8d:
| f8d:
| f 8d:

% net st at

1
1
2
2
2

-nr

Gat eway
12.106.32.1
i nk#1

00: b0O: 8e: 92:
08:00: 20: b8:
08:00: 20: a7:

127.0.0.1
i nk#2

08:00: 20: a7:
00:04: ac: 17:

. fea7: 686b%ne0

. fea7: 686b%nel

:fea7: 686b%gi f O

linux %ifconfig ethO

et hO

Li nk encap: E her net

2c:
f7:
6e:

00
el
6b

68: 6b
bf : 38

(€]

3f

Ref s
10

Fl ags

UHLW
UHLW
UHLW
UH

UHLW
UHLW

NONEFEOO®
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1
fe:b80:3:9adl::1

01

01

3f
li
lo
li
08
li
08

li
08
li
08
fe
li
li
li

fe:b80:3:9adl ::2
nk#8

0

nk#1

1 00: 20: a7: 68: 6b
nk#2

- 00: 20: a7: 68: 6b
0: 04:ac: 17:bf: 38
1

nk#1

:00: 20: a7: 68: 6b
nk#2

: 00: 20: a7: 68: 6b
80:: 1% o0

nk#6

nk#8

nk#8

01

01

HWadd

nk#1
nk#2
1

nk#8

r 00:CO0: 9F: 06: BO: E1

Neti f Exg
hne0
0 hne0
7 hne0 1
1 hne0
2 I 00
| 00
0 hnel
| 00
hnel

Fl ags
UGRSCc
UGSc
WH
UGRSCc
WH
UHL
USc
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UHL
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UHL
UHLW
UGRSCc
uc
UHL
uc
UHL

U
UHL
uc
uc
u
UGRS
uc
uc
uc
uc

3. Given the interface names, we execute i f conf i g to obtain the details for each interface.



i net addr:206. 168. 112. 96 Bcast:206.168.112.127 Mask: 255. 255.
UP BRQOADCAST RUNNI NG MULTI CAST MruU: 1500 Metric:1

RX packets: 49214397 errors: 0 dropped:0 overruns: 0 frane:0

TX packet s: 40543799 errors: 0 dropped:0 overruns: 0 carrier:0
col l'isions: 0 txqueuel en: 100

RX bytes: 1098069974 (1047.2 M) TX bytes: 3360546472 (3204.8 M
Interrupt: 11 Base address: 0x6000

This shows the IP address, subnet mask, and broadcast address. The MULTI CAST flag i
indication that the host supports multicasting. Some implementations provide a - a flac
information on all configured interfaces.

4. One way to find the IP address of many hosts on the local network is to pi ng the broadcast
found in the previous step).

linux % ping -b 206.168.112. 127
WARN NG pi ngi ng broadcast address
PI NG 206. 168. 112. 127 (206.

64
64
64
64
64
64
64
64
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byt es
byt es
byt es
byt es
byt es
byt es
byt es
byt es

from 206. 168.
from 206. 168.
from 206. 168.
from 206. 168.
from 206. 168.
from 206. 168.
from 206. 168.
from 206. 168.

112.
112.
112.
112.
112.
112.
112.
112.

168.112.127) from 206. 168. 112. 96 : 56(84) byte
96: icnp_seq=0 ttl =255 time=241 usec

40: icnp_seq=0 ttl =255 tinme=2.566 nsec (DUP!)
118: icnp_seq=0 ttl =255 tinme=2.973 nsec (DUP!)
14: icnp_seq=0 ttl =255 tine=3.089 nmsec (DUP!)
126: icnp_seq=0 ttl =255 tinme=3.200 nsec (DUP!)
71: icnp_seq=0 ttl =255 tinme=3.311 nsec (DUP!)
31: icnp_seq=0 ttl =64 time=3.541 nsec (DUP!)

7: icnp_seq=0 ttl =255 tine=3.636 nsec (DUP!)
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1.10 Unix Standards

At the time of this writing, the most interesting Unix standardization activity was being done by
The Austin Common Standards Revision Group (CSRG). Their efforts have produced roughly
4,000 pages of specifications covering over 1,700 programming interfaces [Josey 2002]. These
specifications carry both the IEEE POSIX designation as well as The Open Group's Technical
Standard designation. The net result is that you'll likely encounter references to the same
standard by various names: ISO/IEC 9945:2002, IEEE Std 1003.1-2001, and the Single Unix
Specification Version 3, for example. In this text, we will refer to this standard as simply The
POSIX Specification, except in sections like this one where we are discussing specifics of
various older standards.

The easiest way to acquire a copy of this consolidated standard is to either order it on CD-ROM
or access it via the Web (free of charge). The starting point for either of these methods is

htt p: // www UNI X. or g/ ver si on3

Background on POSIX

POSIX is an acronym for Portable Operating System Interface. POSIX is not a single standard,
but a family of standards being developed by the Institute for Electrical and Electronics
Engineers, Inc., normally called the IEEE. The POSIX standards have also been adopted as
international standards by ISO and the International Electrotechnical Commission (IEC), called
ISO/IEC. The POSIX standards have an interesting history, which we cover only briefly here:

IEEE Std 1003.1-1988 (317 pages) was the first POSIX standard. It specified the C
language interface into a Unix-like kernel and covered the following areas: process
primitives (f or k,exec, signals, and timers), the environment of a process (user I1Ds and
process groups), files and directories (all the 1/0 functions), terminal 1/0, system
databases (password file and group file), and the t ar and cpi o archive formats.

The first POSIX standard was a trial-use version in 1986 known as "IEEE-IX." The
name "POSIX" was suggested by Richard Stallman.

e |IEEE Std 1003.1-1990 (356 pages) was next, and it was also known as ISO/IEC 9945-1:
1990. Minimal changes were made from the 1988 to the 1990 version. Appended to the
title was "Part 1: System Application Program Interface (API) [C Language]," indicating
that this standard was the C language API.

e IEEE Std 1003.2—-1992 came next in two volumes (about 1,300 pages). Its title contained
"Part 2: Shell and Utilities." This part defined the shell (based on the System V Bourne
shell) and about 100 utilities (programs normally executed from a shell, from awk and
basenane to vi and yacc). Throughout this text, we will refer to this standard as
POSIX.2.

e |EEE Std 1003.1b—-1993 (590 pages) was originally known as IEEE P1003.4. This was an
update to the 1003.1-1990 standard to include the real-time extensions developed by the
P1003.4 working group. The 1003.1b—1993 standard added the following items to the
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1990 standard: file synchronization, asynchronous 1/0, semaphores, memory
management (mmap and shared memory), execution scheduling, clocks and timers, and
message queues.

e |EEE Std 1003.1, 1996 Edition [IEEE 1996] (743 pages) came next and included
1003.1-1990 (the base API), 1003.1b—1993 (real-time extensions), 1003.1c—1995
(pt hreads), and 1003.1i—1995 (technical corrections to 1003.1b). This standard was also
called ISO/IEC 9945—1: 1996. Three chapters on threads were added, along with
additional sections on thread synchronization (mutexes and condition variables), thread
scheduling, and synchronization scheduling. Throughout this text, we will refer to this
standard as POSIX.1. This standard also contains a Foreword stating that 1SO/IEC 9945
consists of the following parts:

o Part 1: System API (C language)
o Part 2: Shell and utilities
o Part 3: System administration (under development)

Parts 1 and 2 are what we call POSIX.1 and POSIX.2.

Over one-quarter of the 743 pages are an appendix titled "Rationale and Notes."
This appendix contains historical information and reasons why certain features were
included or omitted. Often, the rationale is as informative as the official standard.

e |EEE Std 1003.1g: Protocol-independent interfaces (PIl) became an approved standard in
2000. Until the introduction of The Single Unix Specification Version 3, this POSIX work
was the most relevant to the topics covered in this book. This is the networking API
standard and it defines two APls, which it calls Detailed Network Interfaces (DNIs):

1. DNI/Socket, based on the 4.4BSD sockets API
2. DNI/XTI, based on the X/Open XPG4 specification

Work on this standard started in the late 1980s as the P1003.12 working group (later
renamed P1003.1g). Throughout this text, we will refer to this standard as POSIX.1g.

The current status of the various POSIX standards is available from

http://www.pasc.org/standing/sd11.html

Background on The Open Group

The Open Group was formed in 1996 by the consolidation of the X/Open Company (founded in
1984) and the Open Software Foundation (OSF, founded in 1988). It is an international
consortium of vendors and end-user customers from industry, government, and academia.
Here is a brief background on the standards they produced:

e X/Open published the X/Open Portability Guide, Issue 3 (XPG3) in 1989.

¢ Issue 4 was published in 1992, followed by Issue 4, Version 2 in 1994. This latest version
was also known as "Spec 1170," with the magic number 1,170 being the sum of the
number of system interfaces (926), the number of headers (70), and the number of
commands (174). The latest name for this set of specifications is the "X/Open Single Unix
Specification,™ although it is also called "Unix 95."

e In March 1997, Version 2 of the Single Unix Specification was announced. Products
conforming to this specification were called "Unix 98." We will refer to this specification as
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just "Unix 98" throughout this text. The number of interfaces required by Unix 98
increases from 1,170 to 1,434, although for a workstation this jumps to 3,030, because it
includes the Common Desktop Environment (CDE), which in turn requires the X Window
System and the Motif user interface. Details are available in [Josey 1997] and at
http://www.UNIX.org/version2. The networking services that are part of Unix 98 are
defined for both the sockets and XTI APIs. This specification is nearly identical to
POSIX.1g.

Unfortunately, Unix 98 referred to networking standards as XNS: X/Open
Networking Services. The version of this document that defines sockets and XTI for
Unix 98 ([Open Group 1997]) is called "XNS Issue 5." In the networking world XNS
has always been an abbreviation for the Xerox Network Systems architecture. We
will avoid this use of XNS and refer to this X/Open document as just the Unix 98
network API standard.

Unification of Standards

The above brief backgrounds on POSIX and The Open Group both continue with The Austin
Group's publication of The Single Unix Specification Version 3, as mentioned at the beginning of
this section. Getting over 50 companies to agree on a single standard is certainly a landmark in
the history of Unix. Most Unix systems today conform to some version of POSIX.1 and
POSIX.2; many comply with The Single Unix Specification Version 3.

Historically, most Unix systems show either a Berkeley heritage or a System V heritage, but
these differences are slowly disappearing as most vendors adopt the standards. The main
differences still existing deal with system administration, one area that no standard currently
addresses.

The focus of this book is on The Single Unix Specification Version 3, with our main focus on the
sockets APl. Whenever possible we will use the standard functions.

Internet Engineering Task Force (IETF)

The Internet Engineering Task Force (IETF) is a large, open, international community of
network designers, operators, vendors, and researchers concerned with the evolution of the
Internet architecture and the smooth operation of the Internet. It is open to any interested
individual.

The Internet standards process is documented in RFC 2026 [Bradner 1996]. Internet standards
normally deal with protocol issues and not with programming APls. Nevertheless, two RFCs
(RFC 3493 [Gilligan et al. 2003] and RFC 3542 [Stevens et al. 2003]) specify the sockets API
for IPv6. These are informational RFCs, not standards, and were produced to speed the
deployment of portable applications by the numerous vendors working on early releases of
IPv6. Although standards bodies tend to take a long time, many APIs were standardized in The
Single Unix Specification Version 3.
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1.11 64-Bit Architectures

During the mid to late 1990s, the trend began toward 64-bit architectures and 64-bit software.
One reason is for larger addressing within a process (i.e., 64-bit pointers), which can address
large amounts of memory (more than 232 bytes). The common programming model for
existing 32-bit Unix systems is called the ILP32 model, denoting that integers (1), long integers
(L), and pointers (P) occupy 32 bits. The model that is becoming most prevalent for 64-bit Unix
systems is called the LP64 model, meaning only long integers (L) and pointers (P) require 64
bits.Figure 1.17 compares these two models.

Figure 1.17. Comparison of number of bits to hold various datatypes
for the ILP32 and LP64 models.

Datatype | ILP32 model | LP64 model
char 8 8
short 16 16
int 32 32
long 32 64
pointer 32 64

From a programming perspective, the LP64 model means we cannot assume that a pointer can
be stored in an integer. We must also consider the effect of the LP64 model on existing APIs.

ANSI C invented the si ze_t datatype, which is used, for example, as the argument to nal | oc
(the number of bytes to allocate), and as the third argument to r ead and wri te (the number
of bytes to read or write). On a 32-bit system, si ze_t is a 32-bit value, but on a 64-bit
system, it must be a 64-bit value, to take advantage of the larger addressing model. This
means a 64-bit system will probably contain at ypedef of si ze_t to be an unsi gned | ong.
The networking API problem is that some drafts of POSIX.1g specified that function arguments
containing the size of a socket address structures have the si ze_t datatype (e.g., the third
argument to bi nd and connect ). Some XTI structures also had members with a datatype of

| ong (e.g., thet _infoandt_opt hdr structures). If these had been left as is, both would
change from 32-bit values to 64-bit values when a Unix system changes from the ILP32 to the
LP64 model. In both instances, there is no need for a 64-bit datatype: The length of a socket
address structure is a few hundred bytes at most, and the use of | ong for the XTI structure
members was a mistake.

The solution is to use datatypes designed specifically to handle these scenarios. The sockets
APl uses the sockl en_t datatype for lengths of socket address structures, and XTI uses the

t _scal ar_t and t_uscal ar _t datatypes. The reason for not changing these values from 32
bits to 64 bits is to make it easier to provide binary compatibility on the new 64-bit systems for
applications compiled under 32-bit systems.
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1.12 Summary

Figure 1.5 shows a complete, albeit simple, TCP client that fetches the current time and date
from a specified server, and Figure 1.9 shows a complete version of the server. These two
examples introduce many of the terms and concepts that are expanded on throughout the rest
of the book.

Our client was protocol-dependent on IPv4 and we modified it to use IPv6 instead. But this just
gave us another protocol-dependent program. In Chapter 11, we will develop some functions
to let us write protocol-independent code, which will be important as the Internet starts using
IPV6.

Throughout the text, we will use the wrapper functions developed in Section 1.4 to reduce the
size of our code, yet still check every function call for an error return. Our wrapper functions all
begin with a capital letter.

The Single Unix Specification Version 3, known by several other names and called simply The
POSIX Specification by us, is the confluence of two long-running standards efforts, finally
drawn together by The Austin Group.

Readers interested in the history of Unix networking should consult [Salus 1994] for a
description of Unix history, and [Salus 1995] for the history of TCP/IP and the Internet.
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Exercises

1.1

1.2
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Go through the steps at the end of Section 1.9 to discover information about your
network topology.

Obtain the source code for the examples in this text (see the Preface). Compile and
test the TCP daytime client in Figure 1.5. Run the program a few times, specifying a
different IP address as the command-line argument each time.

Modify the first argument to socket in Figure 1.5 to be 9999. Compile and run the
program. What happens? Find the er r no value corresponding to the error that is
printed. How can you find more information on this error?

ModifyFigure 1.5 by placing a counter in the whi | e loop, counting the number of
timesr ead returns a value greater than 0. Print the value of the counter before
terminating. Compile and run your new client.

ModifyFigure 1.9 as follows: First, change the port number assigned to the

si n_port member from 13 to 9999. Next, change the single call towri te into a
loop that calls wri te for each byte of the result string. Compile this modified server
and start it running in the background. Next, modify the client from the previous
exercise (which prints the counter before terminating), changing the port number
assigned to the si n_port member from 13 to 9999. Start this client, specifying the
IP address of the host on which the modified server is running as the command-line
argument. What value is printed as the client's counter? If possible, also try to run
the client and server on different hosts.
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2.1 Introduction

This chapter provides an overview of the protocols in the TCP/IP suite that are used in the
examples throughout the book. Our goal is to provide enough detail from a network
programming perspective to understand how to use the protocols and provide references to
more detailed descriptions of their actual design, implementation, and history.

This chapter focuses on the transport layer: TCP, UDP, and Stream Control Transmission
Protocol (SCTP). Most client/server applications use either TCP or UDP. SCTP is a newer
protocol, originally designed for transport of telephony signaling across the Internet. These
transport protocols use the network-layer protocol IP, either IPv4 or IPv6. While it is possible
to use IPv4 or IPv6 directly, bypassing the transport layer, this technique, often called raw
sockets, is used much less frequently. Therefore, we have a more detailed description of IPv4
and IPv6, along with ICMPv4 and ICMPv6, in Appendix A.

UDP is a simple, unreliable datagram protocol, while TCP is a sophisticated, reliable byte-
stream protocol. SCTP is similar to TCP as a reliable transport protocol, but it also provides
message boundaries, transport-level support for multihoming, and a way to minimize head-of-
line blocking. We need to understand the services provided by these transport protocols to the
application, so that we know what is handled by the protocol and what we must handle in the
application.

There are features of TCP that, when understood, make it easier for us to write robust clients
and servers. Also, when we understand these features, it becomes easier to debug our clients
and servers using commonly provided tools such as net st at . We cover various topics in this
chapter that fall into this category: TCP's three-way handshake, TCP's connection termination
sequence, and TCP's TIME_WAIT state; SCTP's four-way handshake and SCTP's connection
termination; plus SCTP, TCP, and UDP buffering by the socket layer, and so on.
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2.2 The Big Picture

Although the protocol suite is called "TCP/IP," there are more members of this family than just
TCP and IP. Figure 2.1 shows an overview of these protocols.

Figure 2.1. Overview of TCP/IP protocols.
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We show both IPv4 and IPv6 in this figure. Moving from right to left, the rightmost five
applications are using IPv6; we will talk about the AF_I NET6 constant in Chapter 3, along with
thesockaddr _i n6 structure. The next six applications use IPv4.

The leftmost application, t cpdunp, communicates directly with the datalink using either the
BSD packet filter (BPF) or the datalink provider interface (DLPI). We mark the dashed line
beneath the nine applications on the right as the API, which is normally sockets or XTI. The
interface to either BPF or DLPI does not use sockets or XTI.

There is an exception to this, which we will describe in more detail in Chapter 28: Linux
provides access to the datalink using a special type of socket called SOCK_PACKET.

We also note in Figure 2.1 that the t r acer out e program uses two sockets: one for IP and
another for ICMP. In Chapter 28, we will develop IPv4 and IPv6 versions of both pi ng and
traceroute.

We now describe each of the protocol boxes in this figure.



IPv4

IPv6

TCP

UDP

SCTP

ICMP

IGMP

ARP

RARP

ICMPVv6

BPF

DLPI

Internet Protocol version 4. IPv4, which we often denote as just IP, has been the
workhorse protocol of the IP suite since the early 1980s. It uses 32-bit addresses
(Section A.4). IPv4 provides packet delivery service for TCP, UDP, SCTP, ICMP, and
IGMP.

Internet Protocol version 6. IPv6 was designed in the mid-1990s as a replacement
for IPv4. The major change is a larger address comprising 128 bits (Section A.5), to
deal with the explosive growth of the Internet in the 1990s. IPv6 provides packet
delivery service for TCP, UDP, SCTP, and ICMPV6.

We often use the word "IP" as an adjective, as in IP layer and IP address, when the
distinction between IPv4 and IPv6 is not needed.

Transmission Control Protocol. TCP is a connection-oriented protocol that provides a
reliable, full-duplex byte stream to its users. TCP sockets are an example of stream
sockets. TCP takes care of details such as acknowledgments, timeouts,
retransmissions, and the like. Most Internet application programs use TCP. Notice
that TCP can use either IPv4 or IPv6.

User Datagram Protocol. UDP is a connectionless protocol, and UDP sockets are an
example of datagram sockets. There is no guarantee that UDP datagrams ever
reach their intended destination. As with TCP, UDP can use either IPv4 or IPVv6.

Stream Control Transmission Protocol. SCTP is a connection-oriented protocol that
provides a reliable full-duplex association. The word "association" is used when
referring to a connection in SCTP because SCTP is multihomed, involving a set of IP
addresses and a single port for each side of an association. SCTP provides a
message service, which maintains record boundaries. As with TCP and UDP, SCTP
can use either IPv4 or IPv6, but it can also use both IPv4 and IPv6 simultaneously
on the same association.

Internet Control Message Protocol. ICMP handles error and control information
between routers and hosts. These messages are normally generated by and
processed by the TCP/IP networking software itself, not user processes, although we
show the pi ng and t r acer out e programs, which use ICMP. We sometimes refer to
this protocol as ICMPv4 to distinguish it from ICMPV6.

Internet Group Management Protocol. IGMP is used with multicasting (Chapter 21),
which is optional with IPv4.

Address Resolution Protocol. ARP maps an IPv4 address into a hardware address
(such as an Ethernet address). ARP is normally used on broadcast networks such as
Ethernet, token ring, and FDDI, and is not needed on point-to-point networks.

Reverse Address Resolution Protocol. RARP maps a hardware address into an 1Pv4
address. It is sometimes used when a diskless node is booting.

Internet Control Message Protocol version 6. ICMPv6 combines the functionality of
ICMPv4, IGMP, and ARP.

BSD packet filter. This interface provides access to the datalink layer. It is normally
found on Berkeley-derived kernels.

Datalink provider interface. This interface also provides access to the datalink layer.
It is normally provided with SVR4.

Each Internet protocol is defined by one or more documents called a Request for Comments
(RFC), which are their formal specifications. The solution to Exercise 2.1 shows how to obtain

RFCs.

We use the terms "IPv4/IPv6 host" and "dual-stack host" to denote hosts that support both
IPv4 and IPv6.



Additional details on the TCP/IP protocols themselves are in TCPv1. The 4.4BSD
implementation of TCP/IP is described in TCPv2.
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2.3 User Datagram Protocol (UDP)

UDP is a simple transport-layer protocol. It is described in RFC 768 [Postel 1980]. The
application writes a message to a UDP socket, which is then encapsulated in a UDP datagram,
which is then further encapsulated as an IP datagram, which is then sent to its destination.
There is no guarantee that a UDP datagram will ever reach its final destination, that order will
be preserved across the network, or that datagrams arrive only once.

The problem that we encounter with network programming using UDP is its lack of reliability. If
a datagram reaches its final destination but the checksum detects an error, or if the datagram
is dropped in the network, it is not delivered to the UDP socket and is not automatically
retransmitted. If we want to be certain that a datagram reaches its destination, we can build
lots of features into our application: acknowledgments from the other end, timeouts,
retransmissions, and the like.

Each UDP datagram has a length. The length of a datagram is passed to the receiving
application along with the data. We have already mentioned that TCP is a byte-stream
protocol, without any record boundaries at all (Section 1.2), which differs from UDP.

We also say that UDP provides a connectionless service, as there need not be any long-term
relationship between a UDP client and server. For example, a UDP client can create a socket
and send a datagram to a given server and then immediately send another datagram on the
same socket to a different server. Similarly, a UDP server can receive several datagrams on a
single UDP socket, each from a different client.
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2.4 Transmission Control Protocol (TCP)

The service provided by TCP to an application is different from the service provided by UDP.
TCP is described in RFC 793 [Postel 1981c], and updated by RFC 1323 [Jacobson, Braden, and
Borman 1992], RFC 2581 [Allman, Paxson, and Stevens 1999], RFC 2988 [Paxson and Allman
2000], and RFC 3390 [Allman, Floyd, and Partridge 2002]. First, TCP provides connections
between clients and servers. A TCP client establishes a connection with a given server,
exchanges data with that server across the connection, and then terminates the connection.

TCP also provides reliability. When TCP sends data to the other end, it requires an
acknowledgment in return. If an acknowledgment is not received, TCP automatically
retransmits the data and waits a longer amount of time. After some number of
retransmissions, TCP will give up, with the total amount of time spent trying to send data
typically between 4 and 10 minutes (depending on the implementation).

Note that TCP does not guarantee that the data will be received by the other endpoint, as
this is impossible. It delivers data to the other endpoint if possible, and notifies the user
(by giving up on retransmissions and breaking the connection) if it is not possible.
Therefore, TCP cannot be described as a 100% reliable protocol; it provides reliable
delivery of data or reliable notification of failure.

TCP contains algorithms to estimate the round-trip time (RTT) between a client and server
dynamically so that it knows how long to wait for an acknowledgment. For example, the RTT
on a LAN can be milliseconds while across a WAN, it can be seconds. Furthermore, TCP
continuously estimates the RTT of a given connection, because the RTT is affected by variations
in the network traffic.

TCP also sequences the data by associating a sequence number with every byte that it sends.
For example, assume an application writes 2,048 bytes to a TCP socket, causing TCP to send
two segments, the first containing the data with sequence numbers 1-1,024 and the second
containing the data with sequence numbers 1,025-2,048. (A segment is the unit of data that
TCP passes to IP.) If the segments arrive out of order, the receiving TCP will reorder the two
segments based on their sequence numbers before passing the data to the receiving
application. If TCP receives duplicate data from its peer (say the peer thought a segment was
lost and retransmitted it, when it wasn't really lost, the network was just overloaded), it can
detect that the data has been duplicated (from the sequence numbers), and discard the
duplicate data.

There is no reliability provided by UDP. UDP itself does not provide anything like
acknowledgments, sequence numbers, RTT estimation, timeouts, or retransmissions. If a
UDP datagram is duplicated in the network, two copies can be delivered to the receiving
host. Also, if a UDP client sends two datagrams to the same destination, they can be
reordered by the network and arrive out of order. UDP applications must handle all these
cases, as we will show in Section 22.5.

TCP provides flow control. TCP always tells its peer exactly how many bytes of data it is willing
to accept from the peer at any one time. This is called the advertised window. At any time, the
window is the amount of room currently available in the receive buffer, guaranteeing that the
sender cannot overflow the receive buffer. The window changes dynamically over time: As data
is received from the sender, the window size decreases, but as the receiving application reads
data from the buffer, the window size increases. It is possible for the window to reach 0: when
TCP's receive buffer for a socket is full and it must wait for the application to read data from
the buffer before it can take any more data from the peer.

UDP provides no flow control. It is easy for a fast UDP sender to transmit datagrams at a
rate that the UDP receiver cannot keep up with, as we will show in Section 8.13.



Finally, a TCP connection is full-duplex. This means that an application can send and receive
data in both directions on a given connection at any time. This means that TCP must keep
track of state information such as sequence numbers and window sizes for each direction of
data flow: sending and receiving. After a full-duplex connection is established, it can be turned
into a simplex connection if desired (see Section 6.6).

UDP can be full-duplex.
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2.5 Stream Control Transmission Protocol (SCTP)

SCTP provides services similar to those offered by UDP and TCP. SCTP is described in RFC 2960
[Stewart et al. 2000], and updated by RFC 3309 [Stone, Stewart, and Otis 2002]. An
introduction to SCTP is available in RFC 3286 [Ong and Yoakum 2002]. SCTP provides
associations between clients and servers. SCTP also provides applications with reliability,
sequencing, flow control, and full-duplex data transfer, like TCP. The word "association" is used
in SCTP instead of "connection" to avoid the connotation that a connection involves
communication between only two IP addresses. An association refers to a communication
between two systems, which may involve more than two addresses due to multihoming.

Unlike TCP, SCTP is message-oriented. It provides sequenced delivery of individual records.
Like UDP, the length of a record written by the sender is passed to the receiving application.

SCTP can provide multiple streams between connection endpoints, each with its own reliable
sequenced delivery of messages. A lost message in one of these streams does not block
delivery of messages in any of the other streams. This approach is in contrast to TCP, where a
loss at any point in the single stream of bytes blocks delivery of all future data on the
connection until the loss is repaired.

SCTP also provides a multihoming feature, which allows a single SCTP endpoint to support
multiple IP addresses. This feature can provide increased robustness against network failure.
An endpoint can have multiple redundant network connections, where each of these networks
has a different connection to the Internet infrastructure. SCTP can work around a failure of one
network or path across the Internet by switching to another address already associated with
the SCTP association.

Similar robustness can be obtained from TCP with help from routing protocols. For
example, BGP connections within a domain (iBGP) often use addresses that are assigned
to a virtual interface within the router as the endpoints of the TCP connection. The
domain’'s routing protocol ensures that if there is a route between two routers, it can be
used, which would not be possible if the addresses used belonged to an interface that
went down, for example. SCTP's multihoming feature allows hosts to multihome, not just
routers, and allows this multihoming to occur across different service providers, which the
routing-based TCP method cannot allow.
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2.6 TCP Connection Establishment and Termination

To aid in our understanding of the connect ,accept, and cl ose functions and to help us debug
TCP applications using the net st at program, we must understand how TCP connections are
established and terminated, and TCP's state transition diagram.

Three-Way Handshake

The following scenario occurs when a TCP connection is established:

1. The server must be prepared to accept an incoming connection. This is normally done by
callingsocket ,bi nd, and | i sten and is called a passive open.

2. The client issues an active open by calling connect . This causes the client TCP to send a
"synchronize™ (SYN) segment, which tells the server the client's initial sequence number
for the data that the client will send on the connection. Normally, there is no data sent
with the SYN; it just contains an IP header, a TCP header, and possible TCP options
(which we will talk about shortly).

3. The server must acknowledge (ACK) the client's SYN and the server must also send its
own SYN containing the initial sequence number for the data that the server will send on
the connection. The server sends its SYN and the ACK of the client's SYN in a single
segment.

4. The client must acknowledge the server's SYN.

The minimum number of packets required for this exchange is three; hence, this is called TCP's
three-way handshake. We show the three segments in Figure 2.2.

Figure 2.2. TCP three-way handshake.
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We show the client’s initial sequence number as J and the server's initial sequence number as
K. The acknowledgment number in an ACK is the next expected sequence number for the end
sending the ACK. Since a SYN occupies one byte of the sequence number space, the
acknowledgment number in the ACK of each SYN is the initial sequence number plus one.
Similarly, the ACK of each FIN is the sequence number of the FIN plus one.

An everyday analogy for establishing a TCP connection is the telephone system [Nemeth
1997]. The socket function is the equivalent of having a telephone to use. bi nd is telling
other people your telephone number so that they can call you. | i sten is turning on the



ringer so that you will hear when an incoming call arrives. connect requires that we know
the other person's phone number and dial it. accept is when the person being called
answers the phone. Having the client's identity returned by accept (where the identify is
the client's IP address and port number) is similar to having the caller ID feature show
the caller's phone number. One difference, however, is that accept returns the client's
identity only after the connection has been established, whereas the caller ID feature
shows the caller's phone number before we choose whether to answer the phone or not.
If the DNS is used (Chapter 11), it provides a service analogous to a telephone book.

get addri nf o is similar to looking up a person’s phone number in the phone book.

get nanei nf o would be the equivalent of having a phone book sorted by telephone
numbers that we could search, instead of a book sorted by name.

TCP Options

Each SYN can contain TCP options. Commonly used options include the following:

e MSS option. With this option, the TCP sending the SYN announces its maximum segment
size, the maximum amount of data that it is willing to accept in each TCP segment, on
this connection. The sending TCP uses the receiver's MSS value as the maximum size of a
segment that it sends. We will see how to fetch and set this TCP option with the
TCP_MAXSEGsocket option (Section 7.9).

e Window scale option. The maximum window that either TCP can advertise to the other
TCP is 65,535, because the corresponding field in the TCP header occupies 16 bits. But,
high-speed connections, common in today's Internet (45 Mbits/sec and faster, as
described in RFC 1323 [Jacobson, Braden, and Borman 1992]), or long delay paths
(satellite links) require a larger window to obtain the maximum throughput possible. This
newer option specifies that the advertised window in the TCP header must be scaled (left-
shifted) by 0-14 bits, providing a maximum window of almost one gigabyte (65,535 x
214y Both end-systems must support this option for the window scale to be used on a
connection. We will see how to affect this option with the SO_RCVBUF socket option
(Section 7.5).

To provide interoperability with older implementations that do not support this
option, the following rules apply. TCP can send the option with its SYN as part of an
active open. But, it can scale its windows only if the other end also sends the option
with its SYN. Similarly, the server's TCP can send this option only if it receives the
option with the client's SYN. This logic assumes that implementations ignore options
that they do not understand, which is required and common, but unfortunately, not
guaranteed with all implementations.

e Timestamp option. This option is needed for high-speed connections to prevent possible
data corruption caused by old, delayed, or duplicated segments. Since it is a newer
option, it is negotiated similarly to the window scale option. As network programmers
there is nothing we need to worry about with this option.

These common options are supported by most implementations. The latter two are sometimes
called the "RFC 1323 options," as that RFC [Jacobson, Braden, and Borman 1992] specifies the
options. They are also called the "long fat pipe options," since a network with either a high
bandwidth or a long delay is called a long fat pipe. Chapter 24 of TCPv1 contains more details
on these options.

TCP Connection Termination

While it takes three segments to establish a connection, it takes four to terminate a
connection.



1. One application calls cl ose first, and we say that this end performs the active close. This
end's TCP sends a FIN segment, which means it is finished sending data.

2. The other end that receives the FIN performs the passive close. The received FIN is
acknowledged by TCP. The receipt of the FIN is also passed to the application as an end-
of-file (after any data that may have already been queued for the application to receive),
since the receipt of the FIN means the application will not receive any additional data on
the connection.

3. Sometime later, the application that received the end-of-file will cl ose its socket. This
causes its TCP to send a FIN.

4. The TCP on the system that receives this final FIN (the end that did the active close)
acknowledges the FIN.

Since a FIN and an ACK are required in each direction, four segments are normally required.
We use the qualifier "normally"” because in some scenarios, the FIN in Step 1 is sent with data.
Also, the segments in Steps 2 and 3 are both from the end performing the passive close and
could be combined into one segment. We show these packets in Figure 2.3.

Figure 2.3. Packets exchanged when a TCP connection is closed.
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A FIN occupies one byte of sequence number space just like a SYN. Therefore, the ACK of each
FIN is the sequence number of the FIN plus one.

Between Steps 2 and 3 it is possible for data to flow from the end doing the passive close to
the end doing the active close. This is called a half-close and we will talk about this in detail
with the shut down function in Section 6.6.

The sending of each FIN occurs when a socket is closed. We indicated that the application calls
cl ose for this to happen, but realize that when a Unix process terminates, either voluntarily
(callingexi t or having the nmai n function return) or involuntarily (receiving a signal that
terminates the process), all open descriptors are closed, which will also cause a FIN to be sent
on any TCP connection that is still open.

Although we show the client in Figure 2.3 performing the active close, either end—the client or
the server—can perform the active close. Often the client performs the active close, but with
some protocols (notably HTTP/1.0), the server performs the active close.

TCP State Transition Diagram

The operation of TCP with regard to connection establishment and connection termination can



be specified with a state transition diagram. We show this in Figure 2.4.

Figure 2.4. TCP state transition diagram.
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There are 11 different states defined for a connection and the rules of TCP dictate the
transitions from one state to another, based on the current state and the segment received in
that state. For example, if an application performs an active open in the CLOSED state, TCP
sends a SYN and the new state is SYN_SENT. If TCP next receives a SYN with an ACK, it sends
an ACK and the new state is ESTABLISHED. This final state is where most data transfer occurs.

The two arrows leading from the ESTABLISHED state deal with the termination of a connection.
If an application calls cl ose before receiving a FIN (an active close), the transition is to the
FIN_WAIT_1 state. But if an application receives a FIN while in the ESTABLISHED state (a
passive close), the transition is to the CLOSE_WAIT state.

We denote the normal client transitions with a darker solid line and the normal server
transitions with a darker dashed line. We also note that there are two transitions that we have
not talked about: a simultaneous open (when both ends send SYNs at about the same time
and the SYNs cross in the network) and a simultaneous close (when both ends send FINs at



the same time). Chapter 18 of TCPv1 contains examples and a discussion of both scenarios,
which are possible but rare.

One reason for showing the state transition diagram is to show the 11 TCP states with their
names. These states are displayed by net st at , which is a useful tool when debugging
client/server applications. We will use net st at to monitor state changes in Chapter 5.

Watching the Packets

Figure 2.5 shows the actual packet exchange that takes place for a complete TCP connection:
the connection establishment, data transfer, and connection termination. We also show the
TCP states through which each endpoint passes.

Figure 2.5. Packet exchange for TCP connection.

client server
socket.bind, listen

gocket LISTEN {passive open)

connect [blocks) SYN ') MSs - 814
{active open) SYN_SENT q——?l{_;]_' SYN RCVD
SYN FC-;'\_EK r;[,ME-. 3
ESTABLISHED e——""
connect relums "“-—-—-_.___"_"'_C_FS_E::

! ESTABLISHED

accept rehurns

accept (blocks)

<rlwent forns reguests

WELEE S data (request) read (blocks)
saad (ol e vl relums
<SPV JOCSSSes pegiesis
data (reply) write
LR o request read (blocks)

read relums il 3
——ACK of ply

closa —.-______________f_'l}"ﬂ_-
{actve close) FIN_WAIT_1 e — CLOSE_WAIT IF"L'I"'\-."'-i'r'L' close)

ACKMsl e road retumns
FIN_WAIT_2 a—""
] CLlOBE
LAST_ACK

FINN___
TIME_WAIT
P _ACK Nug

T cLoseD

The client in this example announces an MSS of 536 (indicating that it implements only the
minimum reassembly buffer size) and the server announces an MSS of 1,460 (typical for IPv4
on an Ethernet). It is okay for the MSS to be different in each direction (see Exercise 2.5).

Once a connection is established, the client forms a request and sends it to the server. We
assume this request fits into a single TCP segment (i.e., less than 1,460 bytes given the
server's announced MSS). The server processes the request and sends a reply, and we assume
that the reply fits in a single segment (less than 536 in this example). We show both data
segments as bolder arrows. Notice that the acknowledgment of the client's request is sent with
the server's reply. This is called piggybacking and will normally happen when the time it takes
the server to process the request and generate the reply is less than around 200 ms. If the
server takes longer, say one second, we would see the acknowledgment followed later by the
reply. (The dynamics of TCP data flow are covered in detail in Chapters 19 and 20 of TCPv1.)

We then show the four segments that terminate the connection. Notice that the end that
performs the active close (the client in this scenario) enters the TIME_WAIT state. We wiill
discuss this in the next section.



It is important to notice in Figure 2.5 that if the entire purpose of this connection was to send a
one-segment request and receive a one-segment reply, there would be eight segments of
overhead involved when using TCP. If UDP was used instead, only two packets would be
exchanged: the request and the reply. But switching from TCP to UDP removes all the
reliability that TCP provides to the application, pushing lots of these details from the transport
layer (TCP) to the UDP application. Another important feature provided by TCP is congestion
control, which must then be handled by the UDP application. Nevertheless, it is important to
understand that many applications are built using UDP because the application exchanges
small amounts of data and UDP avoids the overhead of TCP connection establishment and

connection termination.
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2.7 TIME_WAIT State

Undoubtedly, one of the most misunderstood aspects of TCP with regard to network
programming is its TIME_WAIT state. We can see in Figure 2.4 that the end that performs the
active close goes through this state. The duration that this endpoint remains in this state is
twice the maximum segment lifetime (MSL), sometimes called 2MSL.

Every implementation of TCP must choose a value for the MSL. The recommended value in RFC
1122 [Braden 1989] is 2 minutes, although Berkeley-derived implementations have
traditionally used a value of 30 seconds instead. This means the duration of the TIME_WAIT
state is between 1 and 4 minutes. The MSL is the maximum amount of time that any given IP
datagram can live in a network. We know this time is bounded because every datagram
contains an 8-bit hop limit (the IPv4 TTL field in Figure A.1 and the IPv6 hop limit field in Figure
A.2) with a maximum value of 255. Although this is a hop limit and not a true time limit, the
assumption is made that a packet with the maximum hop limit of 255 cannot exist in a network
for more than MSL seconds.

The way in which a packet gets "lost" in a network is usually the result of routing anomalies. A
router crashes or a link between two routers goes down and it takes the routing protocols
seconds or minutes to stabilize and find an alternate path. During that time period, routing
loops can occur (router A sends packets to router B, and B sends them back to A) and packets
can get caught in these loops. In the meantime, assuming the lost packet is a TCP segment,
the sending TCP times out and retransmits the packet, and the retransmitted packet gets to
the final destination by some alternate path. But sometime later (up to MSL seconds after the
lost packet started on its journey), the routing loop is corrected and the packet that was lost in
the loop is sent to the final destination. This original packet is called a lost duplicate or a
wandering duplicate. TCP must handle these duplicates.

There are two reasons for the TIME_WAIT state:

1. To implement TCP's full-duplex connection termination reliably
2. To allow old duplicate segments to expire in the network

The first reason can be explained by looking at Figure 2.5 and assuming that the final ACK is
lost. The server will resend its final FIN, so the client must maintain state information, allowing
it to resend the final ACK. If it did not maintain this information, it would respond with an RST
(a different type of TCP segment), which would be interpreted by the server as an error. If TCP
is performing all the work necessary to terminate both directions of data flow cleanly for a
connection (its full-duplex close), then it must correctly handle the loss of any of these four
segments. This example also shows why the end that performs the active close is the end that
remains in the TIME_WAIT state: because that end is the one that might have to retransmit
the final ACK.

To understand the second reason for the TIME_WAIT state, assume we have a TCP connection
between 12.106.32.254 port 1500 and 206.168.112.219 port 21. This connection is closed and
then sometime later, we establish another connection between the same IP addresses and
ports: 12.106.32.254 port 1500 and 206.168.112.219 port 21. This latter connection is called
anincarnation of the previous connection since the IP addresses and ports are the same. TCP
must prevent old duplicates from a connection from reappearing at some later time and being
misinterpreted as belonging to a new incarnation of the same connection. To do this, TCP will
not initiate a new incarnation of a connection that is currently in the TIME_WAIT state. Since
the duration of the TIME_WAIT state is twice the MSL, this allows MSL seconds for a packet in
one direction to be lost, and another MSL seconds for the reply to be lost. By enforcing this
rule, we are guaranteed that when we successfully establish a TCP connection, all old
duplicates from previous incarnations of the connection have expired in the network.



There is an exception to this rule. Berkeley-derived implementations will initiate a new
incarnation of a connection that is currently in the TIME_WAIT state if the arriving SYN
has a sequence number that is "greater than"” the ending sequence number from the
previous incarnation. Pages 958-959 of TCPv2 talk about this in more detail. This requires
the server to perform the active close, since the TIME_WAIT state must exist on the end
that receives the next SYN. This capability is used by the r sh command. RFC 1185
[Jacobson, Braden, and Zhang 1990] talks about some pitfalls in doing this.
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2.8 SCTP Association Establishment and Termination

SCTP is connection-oriented like TCP, so it also has association establishment and termination
handshakes. However, SCTP's handshakes are different than TCP's, so we describe them here.

Four-Way Handshake

The following scenario, similar to TCP, occurs when an SCTP association is established:

1. The server must be prepared to accept an incoming association. This preparation is
normally done by calling socket ,bi nd, and | i sten and is called a passive open.

2. The client issues an active open by calling connect or by sending a message, which
implicitly opens the association. This causes the client SCTP to send an INIT message
(which stands for "initialization™) to tell the server the client's list of IP addresses, initial
sequence number, initiation tag to identify all packets in this association, number of
outbound streams the client is requesting, and number of inbound streams the client can
support.

3. The server acknowledges the client's INIT message with an INIT-ACK message, which
contains the server's list of IP addresses, initial sequence number, initiation tag, number
of outbound streams the server is requesting, number of inbound streams the server can
support, and a state cookie. The state cookie contains all of the state that the server
needs to ensure that the association is valid, and is digitally signed to ensure its validity.

4. The client echos the server's state cookie with a COOKIE-ECHO message. This message
may also contain user data bundled within the same packet.

5. The server acknowledges that the cookie was correct and that the association was
established with a COOKIE-ACK message. This message may also contain user data
bundled within the same packet.

The minimum number of packets required for this exchange is four; hence, this process is
called SCTP's four-way handshake. We show a picture of the four segments in Figure 2.6.

Figure 2.6. SCTP four-way handshake.
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The SCTP four-way handshake is similar in many ways to TCP's three-way handshake, except



for the cookie generation, which is an integral part. The INIT carries with it (along with its
many parameters) a verification tag, Ta, and an initial sequence number, J. The tag Ta must
be present in every packet sent by the peer for the life of the association. The initial sequence
number] is used as the starting sequence number for DATA messages termed DATA chunks.
The peer also chooses a verification tag, Tz, which must be present in each of its packets for
the life of the association. Along with the verification tag and initial sequence number, K, the
receiver of the INIT also sends a cookie, C. The cookie contains all the state needed to set up
the SCTP association, so that the server's SCTP stack does not need to keep information about
the associating client. Further details on SCTP's association setup can be found in Chapter 4 of
[Stewart and Xie 2001].

At the conclusion of the four-way handshake, each side chooses a primary destination address.
The primary destination address is used as the default destination to which data will be sent in
the absence of network failure.

The four-way handshake is used in SCTP to avoid a form of denial-of-service attack we will
discuss in Section 4.5.

SCTP's four-way handshake using Cookies formalizes a method of protection against this
attack. Many TCP implementations use a similar method; the big difference is that in TCP,
the cookie state must be encoded into the initial sequence number, which is only 32 bits.
SCTP provides an arbitrary-length field, and requires cryptographic security to prevent
attacks.

Association Termination

Unlike TCP, SCTP does not permit a "half-closed" association. When one end shuts down an
association, the other end must stop sending new data. The receiver of the shutdown request
sends the data that was queued, if any, and then completes the shutdown. We show this

exchange in Figure 2.7.

Figure 2.7. Packets exchanged when an SCTP association is closed.
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SCTP does not have a TIME_WAIT state like TCP, due to its use of verification tags. All chunks
are tagged with the tag exchanged in the INIT chunks; a chunk from an old connection will
arrive with an incorrect tag. Therefore, in lieu of keeping an entire connection in TIME_WAIT,
SCTP instead places verification tag values in TIME_WAIT.

SCTP State Transition Diagram

The operation of SCTP with regard to association establishment and termination can be
specified with a state transition diagram. We show this in Figure 2.8.



Figure 2.8. SCTP state transition diagram.
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As in Figure 2.4, the transitions from one state to another in the state machine are dictated by
the rules of SCTP, based on the current state and the chunk received in that state. For
example, if an application performs an active open in the CLOSED state, SCTP sends an INIT
and the new state is COOKIE-WAIT. If SCTP next receives an INIT ACK, it sends a COOKIE
ECHO and the new state is COOKIE-ECHOED. If SCTP then receives a COOKIE ACK, it moves to
the ESTABLISHED state. This final state is where most data transfer occurs, although DATA
chunks can be piggybacked on COOKIE ECHO and COOKIE ACK chunks.

The two arrows leading from the ESTABLISHED state deal with the termination of an
association. If an application calls cl ose before receiving a SHUTDOWN (an active close), the
transition is to the SHUTDOWN-PENDING state. However, if an application receives a
SHUTDOWN while in the ESTABLISHED state (a passive close), the transition is to the
SHUTDOWN-RECEIVED state.

Watching the Packets

Figure 2.9 shows the actual packet exchange that takes place for a sample SCTP association:
the association establishment, data transfer, and association termination. We also show the



SCTP states through which each endpoint passes.

Figure 2.9. Packet exchange for SCTP association.
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In this example, the client piggybacks its first data chunk on the COOKIE ECHO, and the server
replies with data on the COOKIE ACK. In general, the COOKIE ECHO will often have one or
more DATA chunks bundled with it when the application is using the one-to-many interface
style (we will discuss the one-to-one and one-to-many interface styles in Section 9.2).

The unit of information within an SCTP packet is a "chunk."™ A "chunk" is self-descriptive and
contains a chunk type, chunk flags, and a chunk length. This approach facilitates the bundling
of chunks simply by combining multiple chunks into an SCTP outbound packet (details on
chunk bundling and normal data transmission procedures can be found in Chapter 5 of
[Stewart and Xie 2001]).

SCTP Options

SCTP uses parameters and chunks to facilitate optional features. New features are defined by
adding either of these two items, and allowing normal SCTP processing rules to report
unknown parameters and unknown chunks. The upper two bits of both the parameter space
and the chunk space dictate what an SCTP receiver should do with an unknown parameter or
chunk (further details can be found in Section 3.1 of [Stewart and Xie 2001]).

Currently, two extensions for SCTP are under development:

1. The dynamic address extension, which allows cooperating SCTP endpoints to dynamically
add and remove IP addresses from an existing association.

2. The partial reliability extension, which allows cooperating SCTP endpoints, under
application direction, to limit the retransmission of data. When a message becomes too
old to send (according to the application's direction), the message will be skipped and
thus no longer sent to the peer. This means that not all data is assured of arrival at the



other end of the association.
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2.9 Port Numbers

At any given time, multiple processes can be using any given transport: UDP, SCTP, or TCP. All
three transport layers use 16-bit integer port numbers to differentiate between these
processes.

When a client wants to contact a server, the client must identify the server with which it wants
to communicate. TCP, UDP, and SCTP define a group of well-known ports to identify well-
known services. For example, every TCP/IP implementation that supports FTP assigns the well-
known port of 21 (decimal) to the FTP server. Trivial File Transfer Protocol (TFTP) servers are
assigned the UDP port of 69.

Clients, on the other hand, normally use ephemeral ports, that is, short-lived ports. These port
numbers are normally assigned automatically by the transport protocol to the client. Clients
normally do not care about the value of the ephemeral port; the client just needs to be certain
that the ephemeral port is unique on the client host. The transport protocol code guarantees
this uniqueness.

Thelnternet Assigned Numbers Authority (IANA) maintains a list of port number assignments.
Assignments were once published as RFCs; RFC 1700 [Reynolds and Postel 1994] is the last in
this series. RFC 3232 [Reynolds 2002] gives the location of the online database that replaced
RFC 1700: http://www.iana.org/. The port numbers are divided into three ranges:

1. Thewell-known ports: 0 through 1023. These port numbers are controlled and assigned
by the IANA. When possible, the same port is assigned to a given service for TCP, UDP,
and SCTP. For example, port 80 is assigned for a Web server, for both TCP and UDP, even
though all implementations currently use only TCP.

At the time that port 80 was assigned, SCTP did not yet exist. New port assignments
are made for all three protocols, and RFC 2960 states that all existing TCP port
numbers should be valid for the same service using SCTP.

2. Theregistered ports: 1024 through 49151. These are not controlled by the IANA, but the
IANA registers and lists the uses of these ports as a convenience to the community. When
possible, the same port is assigned to a given service for both TCP and UDP. For example,
ports 6000 through 6063 are assigned for an X Window server for both protocols, even
though all implementations currently use only TCP. The upper limit of 49151 for these
ports was introduced to allow a range for ephemeral ports; RFC 1700 [Reynolds and
Postel 1994] lists the upper range as 65535.

3. Thedynamicorprivateports, 49152 through 65535. The IANA says nothing about these
ports. These are what we call ephemeral ports. (The magic number 49152 is three-
fourths of 65536.)

Figure 2.10 shows this division, along with the common allocation of the port numbers.

Figure 2.10. Allocation of port numbers.
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We note the following points from this figure:

¢ Unix systems have the concept of a reserved port, which is any port less than 1024.
These ports can only be assigned to a socket by an appropriately privileged process. All
the 1ANA well-known ports are reserved ports; hence, the server allocating this port
(such as the FTP server) must have superuser privileges when it starts.

e Historically, Berkeley-derived implementations (starting with 4.3BSD) have allocated
ephemeral ports in the range 1024-5000. This was fine in the early 1980s, but it is easy
today to find a host that can support more than 3977 connections at any given time.
Therefore, many newer systems allocate ephemeral ports differently to provide more
ephemeral ports, either using the IANA-defined ephemeral range or a larger range (e.g.,
Solaris as we show in Figure 2.10).

As it turns out, the upper limit of 5000 for the ephemeral ports, which many older
systems implement, was a typo [Borman 1997a]. The limit should have been
50,000.

e There are a few clients (not servers) that require a reserved port as part of the
client/server authentication: the rl ogi n and r sh clients are common examples. These
clients call the library function rresvport to create a TCP socket and assign an unused
port in the range 513-1023 to the socket. This function normally tries to bind port 1023,
and if that fails, it tries to bind 1022, and so on, until it either succeeds or fails on port
513.

Notice that the BSD reserved ports and the rr esvport function both overlap with
the upper half of the IANA well-known ports. This is because the IANA well-known
ports used to stop at 255. RFC 1340 (a previous "Assigned Numbers" RFC) in 1992
started assigning well-known ports between 256 and 1023. The previous "Assigned
Numbers" document, RFC 1060 in 1990, called ports 256—-1023 the Unix Standard
Services. There are numerous Berkeley-derived servers that picked their well-known
ports in the 1980s starting at 512 (leaving 256-511 untouched). The rr esvport
function chose to start at the top of the 512—-1023 range and work down.

Socket Pair

Thesocket pair for a TCP connection is the four-tuple that defines the two endpoints of the
connection: the local IP address, local port, foreign IP address, and foreign port. A socket pair
uniquely identifies every TCP connection on a network. For SCTP, an association is identified by
a set of local IP addresses, a local port, a set of foreign IP addresses, and a foreign port. In its
simplest form, where neither endpoint is multihomed, this results in the same four-tuple socket
pair used with TCP. However, when either of the endpoints of an association are multihomed,
then multiple four-tuple sets (with different IP addresses but the same port numbers) may
identify the same association.

The two values that identify each endpoint, an IP address and a port number, are often called



asocket.

We can extend the concept of a socket pair to UDP, even though UDP is connectionless. When
we describe the socket functions (bi nd,connect ,get peer nane, etc.), we will note which
functions specify which values in the socket pair. For example, bi nd lets the application specify
the local IP address and local port for TCP, UDP, and SCTP sockets.

[ Team LiB ]
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2.10 TCP Port Numbers and Concurrent Servers

With a concurrent server, where the main server loop spawns a child to handle each new
connection, what happens if the child continues to use the well-known port number while
servicing a long request? Let's examine a typical sequence. First, the server is started on the
hostf r eebsd, which is multihomed with IP addresses 12.106.32.254 and 192.168.42.1, and

the server does a passive open using its well-known port number (21, for this example). Itis
now waiting for a client request, which we show in Figure 2.11.

Figure 2.11. TCP server with a passive open on port 21.

12.106.32.254
192.168.42.1

server

{*:21, *:*} ——0—m=listening socket
|

We use the notation {*: 21, *:*} to indicate the server's socket pair. The server is waiting for
a connection request on any local interface (the first asterisk) on port 21. The foreign IP
address and foreign port are not specified and we denote them as *: *. We also call this a
listening socket.

We use a colon to separate the IP address from the port number because that is what
HTTP uses and is commonly seen elsewhere. The net st at program uses a period to
separate the IP address and port, but this is sometimes confusing because decimal points
are used in both domain names (f r eebsd. unpbook. com 21) and in IPv4 dotted-decimal
notation (12. 106. 32. 254. 21).

When we specify the local IP address as an asterisk, it is called the wildcard character. If the
host on which the server is running is multihomed (as in this example), the server can specify
that it wants only to accept incoming connections that arrive destined to one specific local
interface. This is a one-or-any choice for the server. The server cannot specify a list of multiple
addresses. The wildcard local address is the "any" choice. In Figure 1.9, the wildcard address
was specified by setting the IP address in the socket address structure to | NADDR_ANY before
callingbi nd.

At some later time, a client starts on the host with IP address 206.168.112.219 and executes
an active open to the server's IP address of 12.106.32.254. We assume the ephemeral port
chosen by the client TCP is 1500 for this example. This is shown in Figure 2.12. Beneath the
client we show its socket pair.

Figure 2.12. Connection request from client to server.
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When the server receives and accepts the client's connection, it f or ks a copy of itself, letting
the child handle the client, as we show in Figure 2.13. (We will describe the f or k function in
Section 4.7.)

Figure 2.13. Concurrent server has child handle client.
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At this point, we must distinguish between the listening socket and the connected socket on
the server host. Notice that the connected socket uses the same local port (21) as the listening
socket. Also notice that on the multihomed server, the local address is filled in for the
connected socket (12.106.32.254) once the connection is established.

The next step assumes that another client process on the client host requests a connection
with the same server. The TCP code on the client host assigns the new client socket an unused
ephemeral port number, say 1501. This gives us the scenario shown in Figure 2.14. On the
server, the two connections are distinct: the socket pair for the first connection differs from the
socket pair for the second connection because the client's TCP chooses an unused port for the
second connection (1501).

Figure 2.14. Second client connection with same server.
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Notice from this example that TCP cannot demultiplex incoming segments by looking at just
the destination port number. TCP must look at all four elements in the socket pair to determine
which endpoint receives an arriving segment. In Figure 2.14, we have three sockets with the
same local port (21). If a segment arrives from 206.168.112.219 port 1500 destined for
12.106.32.254 port 21, it is delivered to the first child. If a segment arrives from
206.168.112.219 port 1501 destined for 12.106.32.254 port 21, it is delivered to the second
child. All other TCP segments destined for port 21 are delivered to the original server with the
listening socket.
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2.11 Buffer Sizes and Limitations

Certain limits affect the size of IP datagrams. We first describe these limits and then tie them
all together with regard to how they affect the data an application can transmit.

¢ The maximum size of an IPv4 datagram is 65,535 bytes, including the IPv4 header. This
is because of the 16-bit total length field in Figure A.1.

¢ The maximum size of an IPv6 datagram is 65,575 bytes, including the 40-byte IPv6
header. This is because of the 16-bit payload length field in Figure A.2. Notice that the
IPv6 payload length field does not include the size of the IPv6 header, while the IPv4 total
length field does include the header size.

IPv6 has a jumbo payload option, which extends the payload length field to 32 bits, but
this option is supported only on datalinks with a maximum transmission unit (MTU) that
exceeds 65,535. (This is intended for host-to-host interconnects, such as HIPPI, which
often have no inherent MTU.)

e Many networks have an MTU which can be dictated by the hardware. For example, the
Ethernet MTU is 1,500 bytes. Other datalinks, such as point-to-point links using the Point-
to-Point Protocol (PPP), have a configurable MTU. Older SLIP links often used an MTU of
1,006 or 296 bytes.

The minimum link MTU for IPv4 is 68 bytes. This permits a maximum-sized IPv4 header
(20 bytes of fixed header, 30 bytes of options) and minimum-sized fragment (the
fragment offset is in units of 8 bytes). The minimum link MTU for IPv6 is 1,280 bytes.
IPv6 can run over links with a smaller MTU, but requires link-specific fragmentation and
reassembly to make the link appear to have an MTU of at least 1,280 bytes (RFC 2460
[Deering and Hinden 1998]).

e The smallest MTU in the path between two hosts is called the path MTU. Today, the
Ethernet MTU of 1,500 bytes is often the path MTU. The path MTU need not be the same
in both directions between any two hosts because routing in the Internet is often
asymmetric [Paxson 1996]. That is, the route from A to B can differ from the route from
B to A.

e When an IP datagram is to be sent out an interface, if the size of the datagram exceeds
the link MTU, fragmentation is performed by both IPv4 and IPv6. The fragments are not
normallyreassembled until they reach the final destination. IPv4 hosts perform
fragmentation on datagrams that they generate and IPv4 routers perform fragmentation
on datagrams that they forward. But with IPv6, only hosts perform fragmentation on
datagrams that they generate; IPv6 routers do not fragment datagrams that they are
forwarding.

We must be careful with our terminology. A box labeled as an IPv6 router may
indeed perform fragmentation, but only on datagrams that the router itself
generates, never on datagrams that it is forwarding. When this box generates IPv6
datagrames, it is really acting as a host. For example, most routers support the
Telnet protocol and this is used for router configuration by administrators. The IP
datagrams generated by the router's Telnet server are generated by the router, not
forwarded by the router.

You may notice that fields exist in the IPv4 header (Figure A.1) to handle IPv4
fragmentation, but there are no fields in the IPv6 header (Figure A.2) for
fragmentation. Since fragmentation is the exception, rather than the rule, IPv6
contains an option header with the fragmentation information.



Certain firewalls, which usually act as routers, may reassemble fragmented packets
to allow inspection of the entire packet contents. This allows the prevention of
certain attacks at the cost of additional complexity in the firewall device. It also
requires the firewall device to be part of the only path to the network, reducing the
opportunities for redundancy.

e If the "don't fragment" (DF) bit is set in the IPv4 header (Figure A.1), it specifies that this
datagram must not be fragmented, either by the sending host or by any router. A router
that receives an IPv4 datagram with the DF bit set whose size exceeds the outgoing link's
MTU generates an ICMPv4 "destination unreachable, fragmentation needed but DF bit
set” error message (Figure A.15).

Since IPv6 routers do not perform fragmentation, there is an implied DF bit with every
IPv6 datagram. When an IPv6 router receives a datagram whose size exceeds the
outgoing link's MTU, it generates an ICMPv6 "packet too big" error message (Eigure
A.16).

The IPv4 DF bit and its implied IPv6 counterpart can be used for path MTU discovery (RFC
1191 [Mogul and Deering 1990] for IPv4 and RFC 1981 [McCann, Deering, and Mogul
1996] for IPVv6). For example, if TCP uses this technique with IPv4, then it sends all its
datagrams with the DF bit set. If some intermediate router returns an ICMP "destination
unreachable, fragmentation needed but DF bit set” error, TCP decreases the amount of
data it sends per datagram and retransmits. Path MTU discovery is optional with IPv4, but
IPv6 implementations all either support path MTU discovery or always send using the
minimum MTU.

Path MTU discovery is problematic in the Internet today; many firewalls drop all
ICMP messages, including the fragmentation required message, meaning that TCP
never gets the signal that it needs to decrease the amount of data it is sending. As
of this writing, an effort is beginning in the IETF to define another method for path
MTU discovery that does not rely on ICMP errors.

¢ IPv4 and IPv6 define a minimum reassembly buffer size, the minimum datagram size that
we are guaranteed any implementation must support. For IPv4, this is 576 bytes. IPv6
raises this to 1,500 bytes. With IPv4, for example, we have no idea whether a given
destination can accept a 577-byte datagram or not. Therefore, many IPv4 applications
that use UDP (e.g., DNS, RIP, TFTP, BOOTP, SNMP) prevent applications from generating
IP datagrams that exceed this size.

¢ TCP has a maximum segment size (MSS) that announces to the peer TCP the maximum
amount of TCP data that the peer can send per segment. We saw the MSS option on the
SYN segments in Figure 2.5. The goal of the MSS is to tell the peer the actual value of the
reassembly buffer size and to try to avoid fragmentation. The MSS is often set to the
interface MTU minus the fixed sizes of the IP and TCP headers. On an Ethernet using
IPv4, this would be 1,460, and on an Ethernet using IPv6, this would be 1,440. (The TCP
header is 20 bytes for both, but the I1Pv4 header is 20 bytes and the IPv6 header is 40
bytes.)

The MSS value in the TCP MSS option is a 16-bit field, limiting the value to 65,535. This is
fine for IPv4, since the maximum amount of TCP data in an IPv4 datagram is 65,495
(65,535 minus the 20-byte IPv4 header and minus the 20-byte TCP header). But with the
IPv6 jumbo payload option, a different technique is used (RFC 2675 [Borman, Deering,
and Hinden 1999]). First, the maximum amount of TCP data in an IPv6 datagram without
the jumbo payload option is 65,515 (65,535 minus the 20-byte TCP header). Therefore,
the MSS value of 65,535 is considered a special case that designates "infinity." This value
is used only if the jumbo payload option is being used, which requires an MTU that
exceeds 65,535. If TCP is using the jumbo payload option and receives an MSS
announcement of 65,535 from the peer, the limit on the datagram sizes that it sends is
just the interface MTU. If this turns out to be too large (i.e., there is a link in the path
with a smaller MTU), then path MTU discovery will determine the smaller value.



e SCTP keeps a fragmentation point based on the smallest path MTU found to all the peer's
addresses. This smallest MTU size is used to split large user messages into smaller pieces
that can be sent in one IP datagram. The SCTP_MAXSEG socket option can influence this

value, allowing the user to request a smaller fragmentation point.

TCP Output

Given all these terms and definitions, Figure 2.15 shows what happens when an application
writes data to a TCP socket.

Figure 2.15. Steps and buffers involved when an application writes
to a TCP socket.
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Every TCP socket has a send buffer and we can change the size of this buffer with the
SO_SNDBUF socket option (Section 7.5). When an application calls wri t e, the kernel copies all
the data from the application buffer into the socket send buffer. If there is insufficient room in
the socket buffer for all the application's data (either the application buffer is larger than the
socket send buffer, or there is already data in the socket send buffer), the process is put to
sleep. This assumes the normal default of a blocking socket. (We will talk about nonblocking
sockets in Chapter 16.) The kernel will not return from the wri t e until the final byte in the
application buffer has been copied into the socket send buffer. Therefore, the successful return
from awite toa TCP socket only tells us that we can reuse our application buffer. It does not
tell us that either the peer TCP has received the data or that the peer application has received
the data. (We will talk about this more with the SO_LI NGER socket option in Section 7.5.)

TCP takes the data in the socket send buffer and sends it to the peer TCP based on all the rules
of TCP data transmission (Chapter 19 and 20 of TCPv1). The peer TCP must acknowledge the
data, and as the ACKs arrive from the peer, only then can our TCP discard the acknowledged
data from the socket send buffer. TCP must keep a copy of our data until it is acknowledged by
the peer.

TCP sends the data to IP in MSS-sized or smaller chunks, prepending its TCP header to each
segment, where the MSS is the value announced by the peer, or 536 if the peer did not send
an MSS option. IP prepends its header, searches the routing table for the destination IP
address (the matching routing table entry specifies the outgoing interface), and passes the
datagram to the appropriate datalink. IP might perform fragmentation before passing the
datagram to the datalink, but as we said earlier, one goal of the MSS option is to try to avoid



fragmentation and newer implementations also use path MTU discovery. Each datalink has an
output queue, and if this queue is full, the packet is discarded and an error is returned up the
protocol stack: from the datalink to IP and then from IP to TCP. TCP will note this error and try
sending the segment later. The application is not told of this transient condition.

UDP Output

Figure 2.16 shows what happens when an application writes data to a UDP socket.

Figure 2.16. Steps and buffers involved when an application writes
to a UDP socket.
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This time, we show the socket send buffer as a dashed box because it doesn't really exist. A
UDP socket has a send buffer size (which we can change with the SO _SNDBUF socket option,
Section 7.5), but this is simply an upper limit on the maximum-sized UDP datagram that can
be written to the socket. If an application writes a datagram larger than the socket send buffer
size, EMSGSI ZE is returned. Since UDP is unreliable, it does not need to keep a copy of the
application's data and does not need an actual send buffer. (The application data is normally
copied into a kernel buffer of some form as it passes down the protocol stack, but this copy is
discarded by the datalink layer after the data is transmitted.)

UDP simply prepends its 8-byte header and passes the datagram to IP. IPv4 or IPv6 prepends
its header, determines the outgoing interface by performing the routing function, and then
either adds the datagram to the datalink output queue (if it fits within the MTU) or fragments
the datagram and adds each fragment to the datalink output queue. If a UDP application sends
large datagrams (say 2,000-byte datagrams), there is a much higher probability of
fragmentation than with TCP, because TCP breaks the application data into MSS-sized chunks,
something that has no counterpart in UDP.

The successful return from a wri te to a UDP socket tells us that either the datagram or all

fragments of the datagram have been added to the datalink output queue. If there is no room
on the queue for the datagram or one of its fragments, ENOBUFS is often returned to the
application.

Unfortunately, some implementations do not return this error, giving the application no



indication that the datagram was discarded without even being transmitted.

SCTP Output

Figure 2.17 shows what happens when an application writes data to an SCTP socket.

Figure 2.17. Steps and buffers involved when an application writes
to an SCTP socket.
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SCTP, since it is a reliable protocol like TCP, has a send buffer. As with TCP, an application can
change the size of this buffer with the SO_SNDBUF socket option (Section 7.5). When the
application calls wri t e, the kernel copies all the data from the application buffer into the socket
send buffer. If there is insufficient room in the socket buffer for all of the application's data
(either the application buffer is larger than the socket send buffer, or there is already data in
the socket send buffer), the process is put to sleep. This sleeping assumes the normal default
of a blocking socket. (We will talk about nonblocking sockets in Chapter 16.) The kernel will not
return from the wri t e until the final byte in the application buffer has been copied into the
socket send buffer. Therefore, the successful return from aw i te to an SCTP socket only tells
the sender that it can reuse the application buffer. It does not tell us that either the peer SCTP
has received the data, or that the peer application has received the data.

SCTP takes the data in the socket send buffer and sends it to the peer SCTP based on all the
rules of SCTP data transmission (for details of data transfer, see Chapter 5 of [Stewart and Xie
2001]). The sending SCTP must await a SACK in which the cumulative acknowledgment point
passes the sent data before that data can be removed from the socket buffer.
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2.12 Standard Internet Services

Figure 2.18 lists several standard services that are provided by most implementations of
TCP/IP. Notice that all are provided using both TCP and UDP and the port number is the same

for both protocols.

Figure 2.18. Standard TCP/IP services provided by most

implementations.
Mame TCP port | UDPport | REC Description
echo 7 7 862 | Server metums whatever the client sends.
discard 9 9 i Server discards whatever the elient sends.
daytime 13 13 B67 | Server returns the time and date in a human-readable
formaal
chargen 1% 19 &4 | TCP server sends a continual stream of characters, until the
connection is terminated by the client. UDP server
semds a datagram containing a random number of
characters (between 0 and 512) cach time the client
sendds a datagram,
time 37 37 68 | Server returms the time as a 22-bit binary number. This
number represents the number of seconds since
micdnight Jamuary 1, 1900, UTC

Often these services are provided by the i netd daemon on Unix hosts (Section 13.5). These
standard services provide an easy testing facility using the standard Telnet client. For example,
the following tests both the daytime and echo servers:

aix %elnet freebsd daytime
Trying 12.106. 32. 254. ..

Connected to freebsd. unpbook.com
Escape character is '""]".

Mon Jul 28 11:56:22 2003

Connection cl osed by foreign
host.

ai x %elnet freebsd echo

Trying 12.106. 32. 254. ..

Connected to freebsd. unpbook.com
Escape character is '"7]".

hel lo, world

hello,worl d

"

tel net >qui t

Connecti on cl osed.

output by Telnet client
output by Telnet client
output by Telnet client
output by daytime server

output by Telnet client (server closes connection)

output by Telnet client

output by Telnet client

output by Telnet client

we type this

and it is echoed back by the server

we type control and right bracket to talk to Telnet
client

and tell client we are done

client closes the connection this time



In these two examples, we type the name of the host and the name of the service (dayti ne
andecho). These service names are mapped into the port numbers shown in Figure 2.18 by
the/ et ¢/ ser vices file, as we will describe in Section 11.5.

Notice that when we connect to the dayti nme server, the server performs the active close, while
with the echo server, the client performs the active close. Recall from Figure 2.4 that the end
performing the active close is the end that goes through the TIME_WAIT state.

These "simple services" are often disabled by default on modern systems due to denial-of-
service and other resource utilization attacks against them.
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2.13 Protocol Usage by Common Internet Applications

Figure 2.19 summarizes the protocol usage of various common Internet applications.

Figure 2.19. Protocol usage of various common Internet

applications.

Application P ICMP | UDP TCP SCTP
ping .
traceroute . .
OSPF (routing protocol) .
RII" {routing protocol) .
BGE (routing protocol) .
BOOTD (bootstrap protocol) .
DHCP (bootstrap protocol ) .
NTP (time protocol) "
TFIr .
SNMP (network management) .
SMTT (electronic mail) .
Telnet (remote login) .
S5H (secure remote loging .
FIP .
HTTP (the Web) .
MNNTF (network news) .
LPR (remote printing) .
DNs . .
NFS (network filesystem) . .
Sun RPC . .
D}CE RPC s .
IUA (ISDN over IP) .
M2ZUA M3LUA (S57 telephony signaling) .
H 248 (media gateway conltrol) . . .
H.323 (IP wlephony) . . .
SIP (P telephony) . . .

The first two applications, pi ng and t r acer out e, are diagnostic applications that use ICMP.
t racer out e builds its own UDP packets to send and reads ICMP replies.

The three popular routing protocols demonstrate the variety of transport protocols used by
routing protocols. OSPF uses IP directly, employing a raw socket, while RIP uses UDP and BGP
uses TCP.

The next five are UDP-based applications, followed by seven TCP applications and four that use

both UDP and TCP. The final five are IP telephony applications that use SCTP exclusively or
optionally UDP, TCP, or SCTP.
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2.14 Summary

UDP is a simple, unreliable, connectionless protocol, while TCP is a complex, reliable,
connection-oriented protocol. SCTP combines some of the features of both protocols, providing
additional features beyond those found in TCP. While most applications on the Internet use TCP
(the Web, Telnet, FTP, and email), there is a need for all three transport layers. In Section
22.4, we will discuss the reasons to choose UDP instead of TCP. In Section 23.12, we will
discuss the reasons to choose SCTP instead of TCP.

TCP establishes connections using a three-way handshake and terminates connections using a
four-packet exchange. When a TCP connection is established, it goes from the CLOSED state to
the ESTABLISHED state, and when it is terminated, it goes back to the CLOSED state. There
are 11 states in which a TCP connection can be, and a state transition diagram gives the rules
on how to go between the states. Understanding this diagram is essential to diagnosing
problems using the net st at command and understanding what happens when an application
calls functions such as connect ,accept, and cl ose.

TCP's TIME_WAIT state is a continual source of confusion with network programmers. This
state exists to implement TCP's full-duplex connection termination (i.e., to handle the case of
the final ACK being lost), and to allow old duplicate segments to expire in the network.

SCTP establishes an association by using a four-way handshake and terminates connections
using a three-packet exchange. When an SCTP association is established, it goes from the
CLOSED state to the ESTABLISHED state, and when it is terminated, it goes back to the
CLOSED state. There are eight states in which an SCTP association can be, and a state
transition diagram gives the rules on how to go between the states. SCTP does not need the
TIME_WAIT state as TCP does due to its use of verification tags.
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Exercises
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We have mentioned IP versions 4 and 6. What happened to version 5 and what
were versions 0, 1, 2, and 3? (Hint: Find the IANA's "Internet Protocol” registry.
Feel free to skip ahead to the solution if you cannot visit http://www.iana.org.)

Where would you look to find more information about the protocol that is assigned
IP version 5?

WithFigure 2.15, we said that TCP assumes an MSS of 536 if it does not receive an
MSS option from the peer. Why is this value used?

Draw a figure like Figure 2.5 for the daytime client/server in Chapter 1, assuming
the server returns the 26 bytes of data in a single TCP segment.

A connection is established between a host on an Ethernet, whose TCP advertises an
MSS of 1,460, and a host on a Token Ring, whose TCP advertises an MSS of 4,096.
Neither host implements path MTU discovery. Watching the packets, we never see
more than 1,460 bytes of data in either direction. Why?

InFigure 2.19, we said that OSPF uses IP directly. What is the value of the protocol
field in the IPv4 header (Figure A.1) for these OSPF datagrams?

In discussing SCTP output, we said that the SCTP sender must wait for the
cumulative acknowledgment point to pass sent data before the data could be freed
from the socket buffer. If a selective acknowledgment shows that data is
acknowledged beyond the cumulative acknowledgment point, why can't the data be
freed?



http://www.iana.org

[ Team LiB ]

Part 2. Elementary Sockets

Chapter 3. Sockets Introduction

Chapter 4. Elementary TCP Sockets

Chapter 5. TCP Client/Server Example

Chapter 6. 1/0 Multiplexing: The sel ect and pol | Functions

Chapter 7. Socket Options

Chapter 8. Elementary UDP Sockets

Chapter 9. Elementary SCTP Sockets

Chapter 10. SCTP Client/Server Example

Chapter 11. Name and Address Conversions

[ Team LiB ]




[ Team LiB ]

Chapter 3. Sockets Introduction

Section 3.1. Introduction

Section 3.2. Socket Address Structures

Section 3.3. Value-Result Arguments

Section 3.4. Byte Ordering Functions

Section 3.5. Byte Manipulation Functions

Section 3.6. i net aton,i net addr, and i net nt oa Functions

Section 3.7. inet pton andinet ntop Functions

Section 3.8. sock nt op and Related Functions

Section 3.9. readn,writen, and r eadl i ne Functions

Section 3.10. Summary

Exercises

[ Team LiB ]




[ Team LiB ] [+ previous Jine

3.1 Introduction

This chapter begins the description of the sockets APIl. We begin with socket address
structures, which will be found in almost every example in the text. These structures can be
passed in two directions: from the process to the kernel, and from the kernel to the process.
The latter case is an example of a value-result argument, and we will encounter other
examples of these arguments throughout the text.

The address conversion functions convert between a text representation of an address and the
binary value that goes into a socket address structure. Most existing IPv4 code uses

i net_addr and i net_nt oa, but two new functions, i net _pt on and i net_nt op, handle both
IPv4 and IPv6.

One problem with these address conversion functions is that they are dependent on the type of
address being converted: IPv4 or IPv6. We will develop a set of functions whose names begin
withsock_ that work with socket address structures in a protocol-independent fashion. We will
use these throughout the text to make our code protocol-independent.
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3.2 Socket Address Structures

Most socket functions require a pointer to a socket address structure as an argument. Each
supported protocol suite defines its own socket address structure. The names of these structures
begin with sockaddr _ and end with a unique suffix for each protocol suite.

IPv4 Socket Address Structure

An IPv4 socket address structure, commonly called an "Internet socket address structure," is
namedsockaddr _i n and is defined by including the <neti net/in. h> header. Figure 3.1 shows th

POSIX definition.

Figure 3.1 The Internet (1Pv4) socket address structure: sockaddr _in.

struct in_addr {
i n_addr t s_addr; /* 32-bit | Pv4 address */
/* network byte ordered */

b
struct sockaddr_in {
uint8_t sin_len; /* length of structure (16) */
sa famly_t sin_famly; [* AF_I NET */
i n_port _t sin_port; /* 16-bit TCP or UDP port number */
/* network byte ordered */
struct in_addr sin_addr; /* 32-bit | Pv4 address */
/* network byte ordered */
char sin_zero[8]; [/* unused */

}s

There are several points we need to make about socket address structures in general using this
example:

e The length member, si n_| en, was added with 4.3BSD-Reno, when support for the OSI
protocols was added (Eigure 1.15). Before this release, the first member was si n_fam |y,
which was historically an unsi gned short . Not all vendors support a length field for socket
address structures and the POSIX specification does not require this member. The datatype
that we show, ui nt8_t , is typical, and POSIX-compliant systems provide datatypes of this

form (Eigure 3.2).

Figure 3.2. Datatypes required by the POSIX specification.



Datatype Description Header
inte t Signed S-bit integer «3ys/types.h>
uines_t Unsigned S-bit integer <sys/types.h=
inti6_t Signed 16-bit integer «sys/types . hs
uinels_t Unsigned 16-bit integer =sya/types. h=
int32 t Signed 32-bit integer «Eys/types . ha
uinc3iz_t Unsigned 32-bit integer <8ys/types.h>
ga_family t | Address family of socket address structure <s8ys/socket . hs
socklen_t Length of socket address structure, normally uint32_t | <sys/socket.hs
in_addr_t IPv4 address, normally uint3z_t cnetinet/in.hs
in port_t TCP or UDTI port, normally uint16_t «netinet/in.h=

Having a length field simplifies the handling of variable-length socket address structures.

Even if the length field is present, we need never set it and need never examine it, unless w
are dealing with routing sockets (Chapter 18). It is used within the kernel by the routines th
deal with socket address structures from various protocol families (e.g., the routing table
code).

The four socket functions that pass a socket address structure from the process to the
kernel,bi nd,connect ,sendt o, and sendnsg, all go through the sockar gs function in a
Berkeley-derived implementation (p. 452 of TCPv2). This function copies the socket
address structure from the process and explicitly sets its si n_| en member to the size
the structure that was passed as an argument to these four functions. The five socket
functions that pass a socket address structure from the kernel to the process, accept,
recvf romrecvneg,get peer name, and get socknane, all set the si n_| en member
before returning to the process.

Unfortunately, there is normally no simple compile-time test to determine whether an
implementation defines a length field for its socket address structures. In our code, we
test our own HAVE _SOCKADDR_SA LEN constant (Figure D.2), but whether to define this
constant or not requires trying to compile a simple test program that uses this optiona
structure member and seeing if the compilation succeeds or not. We will see in Figure
3.4 that IPv6 implementations are required to define SI N6_LEN if socket address
structures have a length field. Some IPv4 implementations provide the length field of t
socket address structure to the application based on a compile-time option (e.g.,

_ SOCKADDR_LEN). This feature provides compatibility for older programs.

e The POSIX specification requires only three members in the structure: si n_fam | y,si n_add

andsi n_port. Itis acceptable for a POSIX-compliant implementation to define additional
structure members, and this is normal for an Internet socket address structure. Almost all
implementations add the si n_zer o member so that all socket address structures are at leas
16 bytes in size.

We show the POSIX datatypes for the s_addr ,si n_fam |y, and si n_port members. The

i n_addr _t datatype must be an unsigned integer type of at least 32 bits, i n_port _t must |
an unsigned integer type of at least 16 bits, and sa_fani | y_t can be any unsigned integer
type. The latter is normally an 8-bit unsigned integer if the implementation supports the
length field, or an unsigned 16-bit integer if the length field is not supported. Figure 3.2 lists
these three POSIX-defined datatypes, along with some other POSIX datatypes that we will
encounter.

You will also encounter the datatypes u_char ,u_short,u_i nt, and u_I ong, which are all
unsigned. The POSIX specification defines these with a note that they are obsolete. They art
provided for backward compatibility.

Both the IPv4 address and the TCP or UDP port number are always stored in the structure ii
network byte order. We must be cognizant of this when using these members. We will say
more about the difference between host byte order and network byte order in Section 3.4.



e The 32-bit IPv4 address can be accessed in two different ways. For example, if serv is defin
as an Internet socket address structure, then serv. si n_addr references the 32-bit IPv4
address as an i n_addr structure, while serv. si n_addr . s_addr references the same 32-bit
IPv4 address as ani n_addr _t (typically an unsigned 32-bit integer). We must be certain th
we are referencing the IPv4 address correctly, especially when it is used as an argument to
function, because compilers often pass structures differently from integers.

The reason the si n_addr member is a structure, and not justan i n_addr _t, is
historical. Earlier releases (4.2BSD) defined the i n_addr structure as a uni on of variol
structures, to allow access to each of the 4 bytes and to both of the 16-bit values
contained within the 32-bit IPv4 address. This was used with class A, B, and C address
to fetch the appropriate bytes of the address. But with the advent of subnetting and tr
the disappearance of the various address classes with classless addressing (Section A..
the need for the uni on disappeared. Most systems today have done away with the uni
and just define i n_addr as a structure with a single i n_addr _t member.

e Thesi n_zer o member is unused, but we always set it to O when filling in one of these

structures. By convention, we always set the entire structure to O before filling it in, not jus!
thesi n_zer o member.

Although most uses of the structure do not require that this member be 0, when bindi
a non-wildcard IPv4 address, this member must be 0 (pp. 731—732 of TCPv2).

e Socket address structures are used only on a given host: The structure itself is not
communicated between different hosts, although certain fields (e.g., the IP address and por
are used for communication.

Generic Socket Address Structure

A socket address structures is always passed by reference when passed as an argument to any
socket functions. But any socket function that takes one of these pointers as an argument must
deal with socket address structures from any of the supported protocol families.

A problem arises in how to declare the type of pointer that is passed. With ANSI C, the solution is
simple:voi d * is the generic pointer type. But, the socket functions predate ANSI C and the

solution chosen in 1982 was to define a generic socket address structure in the <sys/ socket . h>
header, which we show in Figure 3.3.

Figure 3.3 The generic socket address structure: sockaddr .

struct sockaddr {

uint8 t sa_| en;
sa famly_ t sa_famly; /* address fam |ly: AF_xxx val ue */
char sa_data[14]; /* protocol -specific address */

H

The socket functions are then defined as taking a pointer to the generic socket address structure,
as shown here in the ANSI C function prototype for the bi nd function:

int bind(int, struct sockaddr *, socklen_t);



This requires that any calls to these functions must cast the pointer to the protocol-specific socke
address structure to be a pointer to a generic socket address structure. For example,

struct sockaddr_in serv; /* 1 Pv4 socket address structure */
[* fill in serv{} */

bi nd(sockfd, (struct sockaddr *) &serv, sizeof(serv));

If we omit the cast "(struct sockaddr *)," the C compiler generates a warning of the form
"warning: passing arg 2 of 'bind’ from incompatible pointer type,"” assuming the system's headers
have an ANSI C prototype for the bi nd function.

From an application programmer's point of view, the only use of these generic socket address
structures is to cast pointers to protocol-specific structures.

Recall in Section 1.2 that in our unp. h header, we define SA to be the string "st r uct
sockaddr " just to shorten the code that we must write to cast these pointers.

From the kernel's perspective, another reason for using pointers to generic socket address
structures as arguments is that the kernel must take the caller's pointer, cast it to a struct
sockaddr *, and then look at the value of sa_fam | y to determine the type of the structure
But from an application programmer’s perspective, it would be simpler if the pointer type wi
voi d *, omitting the need for the explicit cast.

IPv6 Socket Address Structure

The IPv6 socket address is defined by including the <neti net/in. h> header, and we show itin
Figure 3.4.

Figure 3.4 1PVv6 socket address structure: sockaddr _in6.
struct in6_addr {

uint8 t s6_addr[16]; /* 128-bit | Pv6 address */
/* network byte ordered */

b
#define SIN6_LEN /* required for conpile-time tests */
struct sockaddr_i n6 {
uint8_t si n6_| en; /* length of this struct (28) */
sa famly_t sin6_famly; /* AF_I NET6 */
in_port _t Si n6_port; /* transport layer port# */
/* network byte ordered */
uint 32_t sin6_flowinfo; /* flowinfornation, undefined */
struct in6_addr sin6_addr; /* | Pv6 address */
/* network byte ordered */
uint 32_t sin6_scope_id; /* set of interfaces for a scope */



The extensions to the sockets API for IPv6 are defined in RFC 3493 [Gilligan et al. 2003].

Note the following points about Figure 3.4:

e TheSI N6_LEN constant must be defined if the system supports the length member for socke
address structures.

e The IPv6 family is AF_I NET6, whereas the 1Pv4 family is AF_I NET.

e The members in this structure are ordered so that if the sockaddr _i n6 structure is 64-bit
aligned, so is the 128-bit si n6_addr member. On some 64-bit processors, data accesses of
64-bit values are optimized if stored on a 64-bit boundary.

e Thesi n6_fl owi nf o member is divided into two fields:

o The low-order 20 bits are the flow label
o The high-order 12 bits are reserved

The flow label field is described with Figure A.2. The use of the flow label field is still a
research topic.

e Thesi n6_scope_i d identifies the scope zone in which a scoped address is meaningful, most
commonly an interface index for a link-local address (Section A.5).

New Generic Socket Address Structure

A new generic socket address structure was defined as part of the IPv6 sockets API, to overcome
some of the shortcomings of the existing st ruct sockaddr . Unlike the st ruct sockaddr, the ne
struct sockaddr_storage is large enough to hold any socket address type supported by the
system. The sockaddr _st or age structure is defined by including the <neti net/in. h> header,

which we show in Figure 3.5.

Figure 3.5 The storage socket address structure: sockaddr _st or age.

struct sockaddr_storage {

uint8_t ss_| en; /* length of this struct (inplenmentation dependent)
sa famly_t ss_fanmly; /* address fam |ly: AF_xxx value */
/* inplementation-dependent el enents to provide:

* a) alignment sufficient to fulfill the alignment requirements of

* all socket address types that the system supports.

* b) enough storage to hold any type of socket address that the

* system supports.

*/

}s

Thesockaddr _st or age type provides a generic socket address structure that is different from
struct sockaddr intwo ways:

a. If any socket address structures that the system supports have alignment requirements, the
sockaddr _st or age provides the strictest alignment requirement.

b. Thesockaddr _st orage is large enough to contain any socket address structure that the
system supports.



Note that the fields of the sockaddr _st or age structure are opaque to the user, except for
ss_fam |y and ss_| en (if present). The sockaddr _st or age must be cast or copied to the
appropriate socket address structure for the address giveninss_famn | y to access any other fielc

Comparison of Socket Address Structures

Figure 3.6 shows a comparison of the five socket address structures that we will encounter in this
text: IPv4, IPv6, Unix domain (Eigure 15.1), datalink (Eigure 18.1), and storage. In this figure, w
assume that the socket address structures all contain a one-byte length field, that the family fielc
also occupies one byte, and that any field that must be at least some number of bits is exactly th
number of bits.

Figure 3.6. Comparison of various socket address structures.
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Two of the socket address structures are fixed-length, while the Unix domain structure and the
datalink structure are variable-length. To handle variable-length structures, whenever we pass a
pointer to a socket address structure as an argument to one of the socket functions, we pass its
length as another argument. We show the size in bytes (for the 4.4BSD implementation) of the
fixed-length structures beneath each structure.

Thesockaddr _un structure itself is not variable-length (EFigure 15.1), but the amount of
information—the pathname within the structure—is variable-length. When passing pointers -
these structures, we must be careful how we handle the length field, both the length field in
the socket address structure itself (if supported by the implementation) and the length to ar
from the kernel.

This figure shows the style that we follow throughout the text: structure names are always
shown in a bolder font, followed by braces, as in sockaddr _in{}.

We noted earlier that the length field was added to all the socket address structures with thi
4.3BSD Reno release. Had the length field been present with the original release of sockets,
there would be no need for the length argument to all the socket functions: the third
argument to bi nd and connect , for example. Instead, the size of the structure could be
contained in the length field of the structure.
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3.3 Value-Result Arguments

We mentioned that when a socket address structure is passed to any socket function, it is
always passed by reference. That is, a pointer to the structure is passed. The length of the
structure is also passed as an argument. But the way in which the length is passed depends on
which direction the structure is being passed: from the process to the kernel, or vice versa.

1. Three functions, bi nd,connect , and sendt o, pass a socket address structure from the
process to the kernel. One argument to these three functions is the pointer to the socket
address structure and another argument is the integer size of the structure, as in

struct sockaddr_in serv;

[* fill in serv{} */
connect (sockfd, (SA *) &serv, sizeof(serv));

Since the kernel is passed both the pointer and the size of what the pointer points
to, it knows exactly how much data to copy from the process into the kernel. Figure
3.7 shows this scenario.

Figure 3.7. Socket address structure passed from process to
kernel.
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We will see in the next chapter that the datatype for the size of a socket address
structure is actually sockl en_t and not i nt, but the POSIX specification
recommends that sockl en_t be defined as ui nt32_t.

2. Four functions, accept ,r ecvf romget socknane, and get peer nane, pass a socket
address structure from the kernel to the process, the reverse direction from the previous
scenario. Two of the arguments to these four functions are the pointer to the socket
address structure along with a pointer to an integer containing the size of the structure,
as in

struct sockaddr _un cli; /* Uni x domain */
socklen_t |en;

I en = sizeof (cli); /* len is a value */
get peernane(uni xfd, (SA *) &cli, & en);
/* len may have changed */

The reason that the size changes from an integer to be a pointer to an integer is
because the size is both a value when the function is called (it tells the kernel the
size of the structure so that the kernel does not write past the end of the structure
when filling it in) and a result when the function returns (it tells the process how
much information the kernel actually stored in the structure). This type of argument
is called a value-result argument. Figure 3.8 shows this scenario.

Figure 3.8. Socket address structure passed from kernel to
process.
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We will see an example of value-result arguments in Figure 4.11.



We have been talking about socket address structures being passed between the process
and the kernel. For an implementation such as 4.4BSD, where all the socket functions are
system calls within the kernel, this is correct. But in some implementations, notably
System V, socket functions are just library functions that execute as part of a normal user
process. How these functions interface with the protocol stack in the kernel is an
implementation detail that normally does not affect us. Nevertheless, for simplicity, we
will continue to talk about these structures as being passed between the process and the
kernel by functions such as bi nd and connect . (We will see in Section C.1 that System V

implementations do indeed pass socket address structures between processes and the
kernel, but as part of STREAMS messages.)

Two other functions pass socket address structures: r ecvnsg and sendnsg (Section

14.5). But, we will see that the length field is not a function argument but a structure
member.

When using value-result arguments for the length of socket address structures, if the socket
address structure is fixed-length (Eigure 3.6), the value returned by the kernel will always be
that fixed size: 16 for an IPv4 sockaddr _in and 28 for an IPv6 sockaddr _i n6, for example.
But with a variable-length socket address structure (e.g., a Unix domain sockaddr _un), the
value returned can be less than the maximum size of the structure (as we will see with Figure

15.2).
With network programming, the most common example of a value-result argument is the
length of a returned socket address structure. But, we will encounter other value-result
arguments in this text:

¢ The middle three arguments for the sel ect function (Section 6.3)

e The length argument for the get sockopt function (Section 7.2)

e Thensg_nanel en and nsg_control | en members of the nsghdr structure, when used
withr ecvimsg (Section 14.5)

e Thei f c_| en member of the i f conf structure (Eigure 17.2)
e The first of the two length arguments for the sysct| function (Section 18.4)
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3.4 Byte Ordering Functions

Consider a 16-bit integer that is made up of 2 bytes. There are two ways to store the two
bytes in memory: with the low-order byte at the starting address, known as little-endian byte
order, or with the high-order byte at the starting address, known as big-endian byte order. We
show these two formats in Figure 3.9.

Figure 3.9. Little-endian byte order and big-endian byte order for a
16-bit integer.

increasing memory
addresses
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little-endian byte order: high-order byte low-crder byte
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T T

big-endian byte order: high-order byte low-order byte

address A address A+1
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addresses

In this figure, we show increasing memory addresses going from right to left in the top, and
from left to right in the bottom. We also show the most significant bit (MSB) as the leftmost bit
of the 16-bit value and the least significant bit (LSB) as the rightmost bit.

The terms "little-endian" and "big-endian" indicate which end of the multibyte value, the
little end or the big end, is stored at the starting address of the value.

Unfortunately, there is no standard between these two byte orderings and we encounter
systems that use both formats. We refer to the byte ordering used by a given system as the
host byte order. The program shown in Figure 3.10 prints the host byte order.

Figure 3.10 Program to determine host byte order.

intro/byteorder.c

1 #incl ude "unp. h"

2 int

3 main(int argc, char **argv)

4 {

5 union {

6 short S

7 char c[ si zeof (short)];



8 } oun;

9 un.s = 0x0102;

10 printf("9%: ", CPU_VENDOR OS);

11 if (sizeof(short) == 2) {

12 if (un.c[0] == 1 & un.c[1l] == 2)

13 printf("big-endian\n");

14 elseif (un.c[0] == 2 && un.c[1] == 1)
15 printf("little-endian\n");

16 el se

17 printf("unknown\n");

18 } else

19 printf("sizeof(short) = %l\n", sizeof (short));
20 exit(0);

21 }

We store the two-byte value 0x0102 in the short integer and then look at the two consecutive
bytes,c[ 0] (the address A in Figure 3.9) and c[ 1] (the address A+1 in Figure 3.9), to
determine the byte order.

The string CPU_VENDOR _CS is determined by the GNU aut oconf program when the software in
this book is configured, and it identifies the CPU type, vendor, and OS release. We show some
examples here in the output from this program when run on the various systems in Eigure

1.16.

freebsd4 % byt eor der
i 386- unknown-freebsd4.8: little-endi an

macosx % byt eor der
power pc- appl e-darwi n6.6: bi g-endi an

freebsd5 % byt eor der
sparc64- unknown-f reebsd5. 1: bi g- endi an

ai X % byt eor der
power pc-i bm ai x5. 1. 0. 0: bi g-endi an

hpux % byt eor der
hppal. 1- hp- hpux1l. 11: bi g-endi an

I'i nux % byt eor der
i 586- pc-linux-gnu: little-endi an

solaris % byt eorder
sparc-sun-sol aris2.9: big-endi an

We have talked about the byte ordering of a 16-bit integer; obviously, the same discussion

applies to a 32-bit integer.

There are currently a variety of systems that can change between little-endian and big-

endian byte ordering, sometimes at system reset, sometimes at run-time.



We must deal with these byte ordering differences as network programmers because
networking protocols must specify a network byte order. For example, in a TCP segment, there
is a 16-bit port number and a 32-bit IPv4 address. The sending protocol stack and the
receiving protocol stack must agree on the order in which the bytes of these multibyte fields
will be transmitted. The Internet protocols use big-endian byte ordering for these multibyte
integers.

In theory, an implementation could store the fields in a socket address structure in host byte
order and then convert to and from the network byte order when moving the fields to and from
the protocol headers, saving us from having to worry about this detail. But, both history and
the POSIX specification say that certain fields in the socket address structures must be
maintained in network byte order. Our concern is therefore converting between host byte order
and network byte order. We use the following four functions to convert between these two byte
orders.

#i ncl ude <netinet/in.h>

uintl6_t htons(uint16_t hostl6bitvalue) ;

uint32_t htonl (ui nt 32_t host32bitvalue) ;

Both return: value in network byte order

uintl6_t ntohs(uint16_t netl6bitvalue) ;

ui nt32_t ntohl (ui nt32_t net32bitvalue) ;

Both return: value in host byte order

In the names of these functions, h stands for host,n stands for network,s stands for short,
andl stands for long. The terms "short" and "long" are historical artifacts from the Digital VAX
implementation of 4.2BSD. We should instead think of s as a 16-bit value (such as a TCP or
UDP port number) and | as a 32-bit value (such as an IPv4 address). Indeed, on the 64-bit
Digital Alpha, a long integer occupies 64 bits, yet the ht onl and nt ohl functions operate on
32-bit values.

When using these functions, we do not care about the actual values (big-endian or little-
endian) for the host byte order and the network byte order. What we must do is call the
appropriate function to convert a given value between the host and network byte order. On
those systems that have the same byte ordering as the Internet protocols (big-endian), these
four functions are usually defined as null macros.

We will talk more about the byte ordering problem, with respect to the data contained in a
network packet as opposed to the fields in the protocol headers, in Section 5.18 and Exercise
5.8.

We have not yet defined the term "byte." We use the term to mean an 8-bit quantity since
almost all current computer systems use 8-bit bytes. Most Internet standards use the term
octet instead of byte to mean an 8-bit quantity. This started in the early days of TCP/IP
because much of the early work was done on systems such as the DEC-10, which did not use
8-bit bytes.

Another important convention in Internet standards is bit ordering. In many Internet
standards, you will see "pictures" of packets that look similar to the following (this is the first
32 bits of the IPv4 header from RFC 791):

0 1 2 3

0123456788012 3456723801234567888101
s Sl il S S e i Ak ok ek e Sk ik Rk il Rk s Sk Sk e al Bk ek ek R s Sl Sl St Rl ek |
|Version| IHL |Type of Service| Total Lenath |
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This represents four bytes in the order in which they appear on the wire; the leftmost bit is the
most significant. However, the numbering starts with zero assigned to the most significant bit.
This is a notation that you should become familiar with to make it easier to read protocol
definitions in RFCs.

A common network programming error in the 1980s was to develop code on Sun
workstations (big-endian Motorola 68000s) and forget to call any of these four functions.
The code worked fine on these workstations, but would not work when ported to little-
endian machines (such as VAXes).
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3.5 Byte Manipulation Functions

There are two groups of functions that operate on multibyte fields, without interpreting the
data, and without assuming that the data is a null-terminated C string. We need these types of
functions when dealing with socket address structures because we need to manipulate fields
such as IP addresses, which can contain bytes of 0, but are not C character strings. The
functions beginning with st r (for string), defined by including the <stri ng. h> header, deal
with null-terminated C character strings.

The first group of functions, whose names begin with b (for byte), are from 4.2BSD and are
still provided by almost any system that supports the socket functions. The second group of
functions, whose names begin with nem (for memory), are from the ANSI C standard and are
provided with any system that supports an ANSI C library.

We first show the Berkeley-derived functions, although the only one we use in this text is
bzero. (We use it because it has only two arguments and is easier to remember than the
three-argumentnenset function, as explained on p. 8.) You may encounter the other two
functions,bcopy and bcnp, in existing applications.

#i ncl ude <strings. h>

voi d bzero(voi d *dest,si ze_t nbytes) ;

voi d bcopy(const void *src,voi d *dest,si ze_t nbytes) ;

i nt bcnp(const void *ptrl,const void *ptr2,si ze_t nbytes);

Returns: O if equal, nonzero if unequal

This is our first encounter with the ANSI C const qualifier. In the three uses here, it
indicates that what is pointed to by the pointer with this qualification, src, ptrl, and ptr2,
is not modified by the function. Worded another way, the memory pointed to by the
const pointer is read but not modified by the function.

bzero sets the specified number of bytes to O in the destination. We often use this function to

initialize a socket address structure to 0. bcopy moves the specified number of bytes from the

source to the destination. bcnp compares two arbitrary byte strings. The return value is zero if
the two byte strings are identical; otherwise, it is nonzero.

The following functions are the ANSI C functions:

#i ncl ude <string. h>

voi d *nmenset (void *dest,i ntc,si ze_tlen);

voi d *nmencpy(void *dest,const void *src,si ze_t nbytes);

i nt mencnp(const void *ptrl,const void *ptr2,si ze_t nbytes);

Returns: O if equal, <0 or >0 if unequal (see text)

nenset sets the specified number of bytes to the value c in the destination. nentpy is similar to
bcopy, but the order of the two pointer arguments is swapped. bcopy correctly handles
overlapping fields, while the behavior of menctpy is undefined if the source and destination
overlap. The ANSI C mremmove function must be used when the fields overlap.



One way to remember the order of the two pointers for nencpy is to remember that they
are written in the same left-to-right order as an assignment statement in C:

dest = src;

One way to remember the order of the final two arguments to nenset is to realize that all
of the ANSI C memXXX functions require a length argument, and it is always the final
argument.

mencnp compares two arbitrary byte strings and returns O if they are identical. If not identical,

the return value is either greater than O or less than O, depending on whether the first unequal
byte pointed to by ptrl is greater than or less than the corresponding byte pointed to by ptr2.

The comparison is done assuming the two unequal bytes are unsi gned chars.
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3.6i net _at on,i net_addr, and i net_ntoa FunCtionS

We will describe two groups of address conversion functions in this section and the next. They
convert Internet addresses between ASCII strings (what humans prefer to use) and network
byte ordered binary values (values that are stored in socket address structures).

1. inet_aton,inet_ntoa, and i net_addr convert an IPv4 address from a dotted-decimal
string (e.g., "206. 168. 112. 96") to its 32-bit network byte ordered binary value. You will
probably encounter these functions in lots of existing code.

2. The newer functions, i net _pt on and i net _nt op, handle both IPv4 and IPv6 addresses.
We describe these two functions in the next section and use them throughout the text.

#i ncl ude <arpalinet. h>

int inet_aton(const char *strptr,struct in_addr *addrptr);

Returns: 1 if string was valid, O on error

in_addr _t inet_addr(const char *strptr);

Returns: 32-bit binary network byte ordered IPv4 address; | NADDR_NONE if error

char *inet_ntoa(struct in_addrinaddr);

Returns: pointer to dotted-decimal string

The first of these, i net _at on, converts the C character string pointed to by strptr into its 32-
bit binary network byte ordered value, which is stored through the pointer addrptr. If
successful, 1 is returned; otherwise, O is returned.

An undocumented feature of i net _at on is that if addrptr is a null pointer, the function
still performs its validation of the input string but does not store any result.

i net _addr does the same conversion, returning the 32-bit binary network byte ordered value
as the return value. The problem with this function is that all 232 possible binary values are
valid IP addresses (0.0.0.0 through 255.255.255.255), but the function returns the constant

| NADDR_NONE (typically 32 one-bits) on an error. This means the dotted-decimal string

255.255.255.255 (the IPv4 limited broadcast address, Section 20.2) cannot be handled by this
function since its binary value appears to indicate failure of the function.

A potential problem with i net _addr is that some man pages state that it returns —1 on
an error, instead of | NADDR_NONE. This can lead to problems, depending on the C
compiler, when comparing the return value of the function (an unsigned value) to a
negative constant.

Today,i net _addr is deprecated and any new code should use i net _at on instead. Better still
is to use the newer functions described in the next section, which handle both 1Pv4 and IPv6.

Thei net _nt oa function converts a 32-bit binary network byte ordered IPv4 address into its
corresponding dotted-decimal string. The string pointed to by the return value of the function
resides in static memory. This means the function is not reentrant, which we will discuss in
Section 11.18. Finally, notice that this function takes a structure as its argument, not a pointer
to a structure.

Functions that take actual structures as arguments are rare. It is more common to pass a



pointer to the structure.
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3.7i net_pton and i net_ntop FunCtionS

These two functions are new with IPv6 and work with both IPv4 and IPv6 addresses. We use
these two functions throughout the text. The letters "p" and "n" stand for presentation and
numeric. The presentation format for an address is often an ASCII string and the numeric
format is the binary value that goes into a socket address structure.

#i ncl ude <arpalinet. h>

i nt inet_pton(intfamily,const char *strptr,voi d *addrptr);

Returns: 1 if OK, O if input not a valid presentation format, -1 on error

const char *inet_ntop(intfamily,const voi d *addrptr,char *strptr,si ze_ tlen);

Returns: pointer to result if OK, NULL on error

Thefamily argument for both functions is either AF_I NET or AF_I NET6. If family is not
supported, both functions return an error with er r no set to EAFNOSUPPCRT.

The first function tries to convert the string pointed to by strptr, storing the binary result
through the pointer addrptr. If successful, the return value is 1. If the input string is not a valid
presentation format for the specified family, O is returned.

i net _nt op does the reverse conversion, from numeric (addrptr) to presentation (strptr). The
len argument is the size of the destination, to prevent the function from overflowing the caller's
buffer. To help specify this size, the following two definitions are defined by including the

<neti net/in. h>header:

#define | NET_ADDRSTRLEN 16 /* for 1Pv4 dotted-deci mal */
#define | NET6_ADDRSTRLEN 46 /* for IPv6 hex string */

Iflen is too small to hold the resulting presentation format, including the terminating null, a
null pointer is returned and err no is set to ENOSPC.

Thestrptr argument to i net _nt op cannot be a null pointer. The caller must allocate memory
for the destination and specify its size. On success, this pointer is the return value of the
function.

Figure 3.11 summarizes the five functions that we have described in this section and the
previous section.

Figure 3.11. Summary of address conversion functions.
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Even if your system does not yet include support for IPv6, you can start using these newer
functions by replacing calls of the form

foo.sin_addr.s_addr = inet_addr(cp);

with

i net_pton(AF_I NET, cp, &fo0o0.sin_addr);

and replacing calls of the form

ptr = inet_ntoa(foo.sin_addr);

with



char str[ I NET_ADDRSTRLEN] ;
ptr = inet_ntop(AF_I NET, &foo.sin_addr, str, sizeof(str));

Figure 3.12 shows a simple definition of i net _pt on that supports only IPv4. Similarly, Figure
3.13 shows a simple version of i net _nt op that supports only 1Pv4.

Figure 3.12 Simple version of i net_pt on that supports only 1Pv4.

libfree/inet_pton_ipv4.c

10 int

11 inet_pton(int famly, const char *strptr, void *addrptr)
12 {

13 if (famly == AF_I NET) {

14 struct in_addr in_val;

15 if (inet_aton(strptr, & n_val)) {

16 mencpy(addrptr, & n_val, sizeof (struct in_addr));
17 return (1);

18 }

19 return (0);

20 }

21 errno = EAFNOSUPPORT;

22 return (-1);

23}

Figure 3.13 Simple version of i net_nt op that supports only 1Pv4.

libfree/inet_ntop_ipv4.c

8 const char *
9 inet_ntop(int famly, const void *addrptr, char *strptr, size_t |en)

10 {

11 const u_char *p = (const u_char *) addrptr;
12 if (famly == AF_INET) {

13 char tenp[ | NET_ADDRSTRLEN] ;

14 snprintf(tenp, sizeof(temp), "%l. %.%. %", p[O], p[1], p[2], pP[3]);
15 if (strlen(temp) >= len) {

16 errno = ENOSPC

17 return (NULL);

18 }

19 strcpy(strptr, tenp);

20 return (strptr);

21 }

22 errno = EAFNOSUPPORT;

23 return (NJLL);

24}



N

static int read_cnt;
static char *read_ptr;
4 static char read_buf [ MAXLI NE] ;

w

5 static ssize_t

6 ny_read(int fd, char *ptr)

7 {

8 if (read_cnt <= 0) {

9 agai n:

10 if ( (read_cnt = read(fd, read_buf, sizeof(read_buf))) < 0) {
11 if (errno == EI NTR)

12 goto agai n;

13 return (-1);

14 } else if (read_cnt == 0)

15 return (0);

16 read_ptr = read_buf;

17 }

18 read_cnt--;

19 *ptr = *read_ptr ++;

20 return (1);

21 }

22 ssize_t

23 readline(int fd, void *vptr, size_t nmaxlen)

24 {

25 ssize_t n, rc;

26 char c, *ptr;

27 ptr = vptr;

28 for (n =1; n < maxlen;, n++) {

29 if ( (rc =nmy_read(fd, &)) == 1) {

30 *ptr++ = c;

31 if (c =="\n")

32 br eak; /* newine is stored, |like fgets() */
33 } else if (rc == 0) {

34 *ptr = 0;

35 return (n - 1); /* EOF, n - 1 bytes were read */
36 } else

37 return (-1); /* error, errno set by read() */
38 }

39 *ptr = 0; /* null termnate like fgets() */
40 return (n);

41 }

42 ssize_t
43 readl i nebuf (void **vptrptr)

44 {

45 if (read_cnt)

46 *vptrptr = read_ptr;
a7 return (read_cnt);

48 }

2-21 The internal function ny_read reads up to MAXLI NE characters at a time and then returns
them, one at a time.

29 The only change to the r eadl i ne function itself is to call ny_read instead of r ead.
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3.8s0ck ntop and Related Functions

A basic problem with i net _nt op is that it requires the caller to pass a pointer to a binary
address. This address is normally contained in a socket address structure, requiring the caller to
know the format of the structure and the address family. That is, to use it, we must write code
of the form

struct sockaddr _in addr ;

i net_ntop(AF_I NET, &addr.sin_addr, str, sizeof(str));

for IPv4, or

struct sockaddr _in6 addr 6;

i net_nt op(AF_I NET6, &addr6.sin6_addr, str, sizeof(str));

for IPv6. This makes our code protocol-dependent.

To solve this, we will write our own function named sock_nt op that takes a pointer to a socket
address structure, looks inside the structure, and calls the appropriate function to return the
presentation format of the address.

#i ncl ude "unp. h"

char *sock_ntop(const struct sockaddr *sockaddr,sockl en_taddrlen);

Returns: non-null pointer if OK, NULL on error

This is the notation we use for functions of our own (nonstandard system functions) that
we use throughout the book: the box around the function prototype and return value is
dashed. The header is included at the beginning is usually our unp. h header.

sockaddr points to a socket address structure whose length is addrlen. The function uses its
own static buffer to hold the result and a pointer to this buffer is the return value.

Notice that using static storage for the result prevents the function from being re-entrant
orthread-safe. We will talk more about this in Section 11.18. We made this design
decision for this function to allow us to easily call it from the simple examples in the book.

The presentation format is the dotted-decimal form of an IPv4 address or the hex string form of
an IPv6 address surrounded by brackets, followed by a terminator (we use a colon, similar to



URL syntax), followed by the decimal port number, followed by a null character. Hence, the
buffer size must be at least | NET_ADDRSTRLEN plus 6 bytes for IPv4 (16 + 6 = 22), or
| NET6_ ADDRSTRLEN plus 8 bytes for IPv6 (46 + 8 = 54).

We show the source code for only the AF_I NET case in Figure 3.14.
Figure 3.14 Our sock_nt op function.

lib/sock_ntop.c

5 char *

6 sock_ntop(const struct sockaddr *sa, socklen_t salen)

7 {

8 char portstr[8];

9 static char str[128]; /* Unix domain is largest */

10 switch (sa->sa_famly) {

11 case AF_INET:{

12 struct sockaddr _in *sin = (struct sockaddr_in *) sa;
13 if (inet_ntop(AF_I NET, &sin->sin_addr, str, sizeof(str)) == NULL)
14 return (NULL);

15 if (ntohs(sin->sin_port) !'=0) {

16 snprintf(portstr, sizeof(portstr), ":% ",

17 nt ohs(sin->sin_port));

18 strcat (str, portstr);

19 }

20 return (str);

21 }

There are a few other functions that we define to operate on socket address structures, and
these will simplify the portability of our code between IPv4 and IPv6.

#i ncl ude "unp. h"

i nt sock_bi nd_wil d(i ntsockfd,i nt family) ;

Returns: O if OK, -1 on error

i nt sock_cnp_addr (const struct sockaddr *sockaddrl,

const struct sockaddr *sockaddr2,sockl en_t addrlen);

Returns: O if addresses are of the same family and ports are equal, else nonzero

i nt sock_cnp_port(const struct sockaddr *sockaddrl,

const struct sockaddr *sockaddr2,sockl en_t addrlen);

Returns: O if addresses are of the same family and ports are equal, else nonzero

int sock_get_port(const struct sockaddr *sockaddr,sockl en_t addrlen);

Returns: non-negative port number for IPv4 or IPv6 address, else -1

char *sock_nt op_host (const struct sockaddr *sockaddr,sockl en_t addrlen);

Returns: non-null pointer if OK, NULL on error

voi d sock_set _addr(const struct sockaddr *sockaddr,sockl en_t addrlen,voi d *ptr);




voi d sock_set _port(const struct sockaddr *sockaddr,sockl en_t addrlen,i nt port) ;

voi d sock_set_wild(struct sockaddr *sockaddr,sockl en_t addrlen);

sock_bi nd_wi | d binds the wildcard address and an ephemeral port to a socket. sock_cnp_addr
compares the address portion of two socket address structures, and sock_cnp_port compares
the port number of two socket address structures. sock_get port returns just the port
number, and sock_nt op_host converts just the host portion of a socket address structure to
presentation format (not the port number). sock_set addr sets just the address portion of a
socket address structure to the value pointed to by ptr, and sock_set _port sets just the port
number of a socket address structure. sock_set _w | d sets the address portion of a socket
address structure to the wildcard. As with all the functions in the text, we provide a wrapper
function whose name begins with "S" for all of these functions that return values other than
voi d and normally call the wrapper function from our programs. We do not show the source
code for all these functions, but it is freely available (see the Preface).
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3.9readn,vvriten, and readl i ne FunCtionS

Stream sockets (e.g., TCP sockets) exhibit a behavior with the r ead and wri t e functions that
differs from normal file 1/0. Aread or wi te on a stream socket might input or output fewer
bytes than requested, but this is not an error condition. The reason is that buffer limits might
be reached for the socket in the kernel. All that is required to input or output the remaining
bytes is for the caller to invoke the r ead or wri t e function again. Some versions of Unix also
exhibit this behavior when writing more than 4,096 bytes to a pipe. This scenario is always a
possibility on a stream socket with r ead, but is normally seen with wri te only if the socket is
nonblocking. Nevertheless, we always call our wri t en function instead of wi te, in case the
implementation returns a short count.

We provide the following three functions that we use whenever we read from or write to a
stream socket:

#i ncl ude "unp. h"

ssize_t readn(intfiledes,voi d *buff,si ze_t nbytes) ;

ssize_t witen(intfiledes,const voi d *buff,si ze_t nbytes) ;

ssi ze_t readline(intfiledes,voi d *buff,si ze_t maxlen) ;

All return: number of bytes read or written, —1 on error

Figure 3.15 shows the r eadn function, Figure 3.16 shows the wri t en function, and Figure 3.17
shows the r eadl i ne function.

Figure 3.15 readn function: Read n bytes from a descriptor.

lib/readn.c

1 #incl ude “unp. h"

2 ssize_t /* Read "n" bytes froma descriptor. */
3 readn(int fd, void *vptr, size_t n)

4 {

5 size t nleft;

6 ssize_t nread;

7 char *ptr;

8 ptr = vptr;

9 nleft = n;

10 while (nleft > 0) {

11 if ( (nread = read(fd, ptr, nleft)) < 0) {

12 if (errno == E NTR)

13 nread = O; /* and call read() again */
14 el se

15 return (-1);

16 } else if (nread == 0)

17 br eak; /* EOF */

18 nl eft -= nread;

19 ptr += nread;



20 }
21 return (n - nleft); /[* return >= 0 */
22 }

Figure 3.16 witen function: Write n bytes to a descriptor.

lib/writen.c

1 #include "unp. h"

2 ssize_t /* Wite "n" bytes to a descriptor. */
3 witen(int fd, const void *vptr, size_t n)

4 {

5 size t nleft;

6 ssize_t nwitten;

7 const char *ptr;

8 ptr = vptr;

9 nleft = n;

10 while (nleft > 0) {

11 if ( (nwitten = wite(fd, ptr, nleft)) <=0) {
12 if (nwitten <0 & errno == EI NTR)

13 nwitten = 0; /* and call wite() again */
14 el se

15 return (-1); /* error */

16 }

17 nleft -= nwitten;

18 ptr += nwritten;

19 }

20 return (n);

21 }

Figure 3.17 readl i ne function: Read a text line from a descriptor, one
byte at a time.

test/readlinel.c

1 #include "unp. h"

2 [* PAINFULLY SLOW VERSI ON -- example only */

3 ssize t

4 readline(int fd, void *vptr, size_t naxlen)
5 {

6 ssize_t n, rc;

7 char c, *ptr,

8 ptr = vptr;

9 for (n =1; n < maxlen;, n++) {

10 agai n:

11 if ( (rc =read(fd, &, 1)) ==1) {
12 *ptr++ = c;

13 if (c ="'"\n")

14 br eak; /* newine is stored, like fgets() */

15 } else if (rc == 0) {



16 *ptr = 0;

17 return (n - 1); /* EOF, n - 1 bytes were read */
18 } else {

19 if (errno == EI NTR)

20 goto agai n;

21 return (-1); /* error, errno set by read() */
22 }

23 }

24 *ptr = 0; /* null termnate like fgets() */
25 return (n);

26 }

Our three functions look for the error El NTR (the system call was interrupted by a caught
signal, which we will discuss in more detail in Section 5.9) and continue reading or writing if the
error occurs. We handle the error here, instead of forcing the caller to call readn or wri ten
again, since the purpose of these three functions is to prevent the caller from having to handle
a short count.

InSection 14.3, we will mention that the MSG WAl TALL flag can be used with the r ecv function
to replace the need for a separate r eadn function.

Note that our r eadl i ne function calls the system's r ead function once for every byte of data.
This is very inefficient, and why we've commented the code to state it is "PAINFULLY SLOW."
When faced with the desire to read lines from a socket, it is quite tempting to turn to the
standard 1/0 library (referred to as "stdio™). We will discuss this approach at length in Section
14.8, but it can be a dangerous path. The same stdio buffering that solves this performance
problem creates numerous logistical problems that can lead to well-hidden bugs in your
application. The reason is that the state of the stdio buffers is not exposed. To explain this
further, consider a line-based protocol between a client and a server, where several clients and
servers using that protocol may be implemented over time (really quite common; for example,
there are many Web browsers and Web servers independently written to the HTTP
specification). Good "defensive programming" techniques require these programs to not only
expect their counterparts to follow the network protocol, but to check for unexpected network
traffic as well. Such protocol violations should be reported as errors so that bugs are noticed
and fixed (and malicious attempts are detected as well), and also so that network applications
can recover from problem traffic and continue working if possible. Using stdio to buffer data for
performance flies in the face of these goals since the application has no way to tell if
unexpected data is being held in the stdio buffers at any given time.

There are many line-based network protocols such as SMTP, HTTP, the FTP control connection
protocol, and finger. So, the desire to operate on lines comes up again and again. But our
advice is to think in terms of buffers and not lines. Write your code to read buffers of data, and
if a line is expected, check the buffer to see if it contains that line.

Figure 3.18 shows a faster version of the r eadl i ne function, which uses its own buffering
rather than stdio buffering. Most importantly, the state of r eadl i ne's internal buffer is
exposed, so callers have visibility into exactly what has been received. Even with this feature,
readl i ne can be problematic, as we'll see in Section 6.3. System functions like sel ect still
won't know about r eadl i ne's internal buffer, so a carelessly written program could easily find
itself waiting in sel ect for data already received and stored in r eadl i ne's buffers. For that
matter, mixing r eadn and r eadl i ne calls will not work as expected unless r eadn is modified to
check the internal buffer as well.

Figure 3.18 Better version of readl i ne function.

lib/readline.c

1 #incl ude "unp. h"



N

static int read_cnt;
static char *read_ptr;
4 static char read_buf [ MAXLI NE] ;

w

5 static ssize_t

6 ny_read(int fd, char *ptr)

7 {

8 if (read_cnt <= 0) {

9 agai n:

10 if ( (read_cnt = read(fd, read_buf, sizeof(read_buf))) < 0) {
11 if (errno == EI NTR)

12 goto agai n;

13 return (-1);

14 } else if (read_cnt == 0)

15 return (0);

16 read_ptr = read_buf;

17 }

18 read_cnt--;

19 *ptr = *read_ptr ++;

20 return (1);

21 }

22 ssize_t

23 readline(int fd, void *vptr, size_t nmaxlen)

24 {

25 ssize_t n, rc;

26 char c, *ptr;

27 ptr = vptr;

28 for (n =1; n < maxlen;, n++) {

29 if ( (rc =nmy_read(fd, &)) == 1) {

30 *ptr++ = c;

31 if (¢ =="\n")

32 br eak; /* newine is stored, like fgets() */
33 } else if (rc == 0) {

34 *ptr = 0;

35 return (n - 1); /* EOF, n - 1 bytes were read */
36 } else

37 return (-1); /* error, errno set by read() */
38 }

39 *ptr = 0; /* null termnate like fgets() */
40 return (n);

41 }

42 ssize_t
43 readl i nebuf (void **vptrptr)

44 {

45 if (read_cnt)

46 *vptrptr = read_ptr;
47 return (read_cnt);

48 }

2-21 The internal function ny_read reads up to MAXLI NE characters at a time and then returns
them, one at a time.

29 The only change to the r eadl i ne function itself is to call ny_read instead of r ead.



42-48 A new function, r eadl i nebuf , exposes the internal buffer state so that callers can check
and see if more data was received beyond a single line.
Unfortunately, by using st ati ¢ variables in r eadl i ne. ¢ to maintain the state information

across successive calls, the functions are not re-entrant or thread-safe. We will discuss
this in Sections 11.18 and 26.5. We will develop a thread-safe version using thread-

specific data in Figure 26.11.
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3.10 Summary

Socket address structures are an integral part of every network program. We allocate them, fill
them in, and pass pointers to them to various socket functions. Sometimes we pass a pointer
to one of these structures to a socket function and it fills in the contents. We always pass these
structures by reference (that is, we pass a pointer to the structure, not the structure itself),
and we always pass the size of the structure as another argument. When a socket function fills
in a structure, the length is also passed by reference, so that its value can be updated by the
function. We call these value-result arguments.

Socket address structures are self-defining because they always begin with a field (the
"family") that identifies the address family contained in the structure. Newer implementations
that support variable-length socket address structures also contain a length field at the
beginning, which contains the length of the entire structure.

The two functions that convert IP addresses between presentation format (what we write, such
as ASCII characters) and numeric format (what goes into a socket address structure) are

i net_pton and i net_nt op. Although we will use these two functions in the coming chapters,
they are protocol-dependent. A better technique is to manipulate socket address structures as
opaque objects, knowing just the pointer to the structure and its size. We used this method to
develop a set of sock_ functions that helped to make our programs protocol-independent. We
will complete the development of our protocol-independent tools in Chapter 11 with the

get addr i nfo and get nanei nfo functions.

TCP sockets provide a byte stream to an application: There are no record markers. The return
value from a r ead can be less than what we asked for, but this does not indicate an error. To
help read and write a byte stream, we developed three functions, r eadn,w i ten, and

readl i ne, which we will use throughout the text. However, network programs should be
written to act on buffers rather than lines.
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Exercises

3.1 Why must value-result arguments such as the length of a socket address structure
be passed by reference?

3.2 Why do both the readn and wri t en functions copy the voi d* pointer into a char*
pointer?

3.3 Theinet_aton and i net_addr functions have traditionally been liberal in what they
accept as a dotted-decimal IPv4 address string: allowing from one to four numbers
separated by decimal points, and allowing a leading Ox to specify a hexadecimal
number, or a leading O to specify an octal number. (Try t el net Oxe to see this
behavior.)i net _pt on is much stricter with IPv4 address and requires exactly four
numbers separated by three decimal points, with each number being a decimal
number between O and 255. i net _pt on does not allow a dotted-decimal number to
be specified when the address family is AF_I NET6, although one could argue that
these should be allowed and the return value should be the IPv4-mapped IPv6
address for the dotted-decimal string (Figure A.10).

Write a new function named i net _pt on_| oose that handles these scenarios: If the
address family is AF_I NET and i net _pt on returns O, call i net _at on and see if it
succeeds. Similarly, if the address family is AF_I NET6 and i net _pt on returns 0, call
i net_at on and if it succeeds, return the IPv4-mapped IPv6 address.
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4.1 Introduction

This chapter describes the elementary socket functions required to write a complete TCP client
and server. We will first describe all the elementary socket functions that we will be using and
then develop the client and server in the next chapter. We will work with this client and server
throughout the text, enhancing it many times (Figures 1.12 and 1.13).

We will also describe concurrent servers, a common Unix technique for providing concurrency
when numerous clients are connected to the same server at the same time. Each client
connection causes the server to f or k a new process just for that client. In this chapter, we
consider only the one-process-per-client model using f or k, but we will consider a different one-
thread-per-client model when we describe threads in Chapter 26.

Figure 4.1 shows a timeline of the typical scenario that takes place between a TCP client and
server. First, the server is started, then sometime later, a client is started that connects to the
server. We assume that the client sends a request to the server, the server processes the
request, and the server sends a reply back to the client. This continues until the client closes its
end of the connection, which sends an end-of-file notification to the server. The server then
closes its end of the connection and either terminates or waits for a new client connection.

Figure 4.1. Socket functions for elementary TCP client/server.
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4.2s0cket FUNCLION

To perform network 1/0, the first thing a process must do is call the socket function,
specifying the type of communication protocol desired (TCP using IPv4, UDP using IPv6, Unix
domain stream protocoal, etc.).

#i ncl ude <sys/socket . h>

i nt socket (intfamily,i nttype,i ntprotocol) ;

Returns: non-negative descriptor if OK, -1 on error

family specifies the protocol family and is one of the constants shown in Figure 4.2. This
argument is often referred to as domain instead of family. The socket type is one of the
constants shown in Figure 4.3. The protocol argument to the socket function should be set to
the specific protocol type found in Figure 4.4, or O to select the system's default for the given
combination of family and type.

Figure 4.2. Protocol family constants for socket function.

fainily Description

AF_TINET IPvd protocols

AF INETé | IPv6 protocols

AF_LocaL | Unix domain protocols (Chapter 15)
AF_ROUTE | Routing sockets (Chapter 18)

AF KEY Key socket (Chapter 19)

Figure 4.3. type of socket for socket function.

Lype Description
S0CK_STREAM stream sockel
SOCK_DGRAM datagram socket
SOCK_SEQPRCKET | sequenced packet socket
SOCK_RAW raw socket

Figure 4.4. protocol of sockets for AF_INET Or AF_I NET6.

Protocol Drescription

1pproTO _TCE | TCP transport protocol
IPPROTO_UDE UDP transport protocol
IPPROTO_SCTP | SCTP transport protocol

Not all combinations of socket family and type are valid. Figure 4.5 shows the valid
combinations, along with the actual protocols that are valid for each pair. The boxes marked
"Yes" are valid but do not have handy acronyms. The blank boxes are not supported.

Figure 4.5. Combinations of family and type for the socket function.



AF_INET AF_INETS AF _LOCAL AF_ROUTE AF EKEY

SOCK_STREAM TCPsCTr | TP | S0 Yes
S0CK_DSRAM Lo Lo Yes
S0OCK_SEQPACKET SCTr sCTr Yes
SOCK_RAW IPvd IPvia Yes Yes

You may also encounter the corresponding PF_xxx constant as the first argument to
socket . We will say more about this at the end of this section.

We note that you may encounter AF_UNI X (the historical Unix name) instead of AF_LOCAL
(the POSIX name), and we will say more about this in Chapter 15.

There are other values for the family and type arguments. For example, 4.4BSD supports
bothAF_NS (the Xerox NS protocols, often called XNS) and AF_| SO (the OSI protocols).
Similarly, the type of SOCK_SEQPACKET, a sequenced-packet socket, is implemented by
both the Xerox NS protocols and the OSI protocols, and we will describe its use with SCTP
inSection 9.2. But, TCP is a byte stream protocol, and supports only SOCK_STREAM
sockets.

Linux supports a new socket type, SOCK_PACKET, that provides access to the datalink,
similar to BPF and DLPI in Figure 2.1. We will say more about this in Chapter 29.

The key socket, AF_KEY, is newer than the others. It provides support for cryptographic
security. Similar to the way that a routing socket (AF_ROUTE) is an interface to the
kernel's routing table, the key socket is an interface into the kernel's key table. See
Chapter 19 for details.

On success, the socket function returns a small non-negative integer value, similar to a file
descriptor. We call this a socket descriptor, or a sockfd. To obtain this socket descriptor, all we
have specified is a protocol family (IPv4, IPv6, or Unix) and the socket type (stream,
datagram, or raw). We have not yet specified either the local protocol address or the foreign
protocol address.

AF_XXXVersusprF_XXXx

The "AF_" prefix stands for "address family” and the "PF_" prefix stands for "protocol family."
Historically, the intent was that a single protocol family might support multiple address families
and that the PF_ value was used to create the socket and the AF_ value was used in socket
address structures. But in actuality, a protocol family supporting multiple address families has
never been supported and the <sys/ socket . h> header defines the PF_ value for a given
protocol to be equal to the AF_ value for that protocol. While there is no guarantee that this
equality between the two will always be true, should anyone change this for existing protocols,
lots of existing code would break. To conform to existing coding practice, we use only the AF_
constants in this text, although you may encounter the PF_ value, mainly in calls to socket .

Looking at 137 programs that call socket in the BSD/OS 2.1 release shows 143 calls that
specify the AF_ value and only 8 that specify the PF_ value.

Historically, the reason for the similar sets of constants with the AF_ and PF_ prefixes
goes back to 4.1cBSD [Lanciani 1996] and a version of the socket function that predates
the one we are describing (which appeared with 4.2BSD). The 4.1¢cBSD version of socket
took four arguments, one of which was a pointer to a sockpr ot o structure. The first
member of this structure was named sp_fam | y and its value was one of the PF_ values.
The second member, sp_pr ot ocol , was a protocol number, similar to the third argument
tosocket today. Specifying this structure was the only way to specify the protocol family.
Therefore, in this early system, the PF_ values were used as structure tags to specify the
protocol family in the sockpr ot o structure, and the AF_ values were used as structure
tags to specify the address family in the socket address structures. The sockprot o
structure is still in 4.4BSD (pp. 626—627 of TCPv2), but is only used internally by the



kernel. The original definition had the comment "protocol family" for the sp_fam |y
member, but this has been changed to "address family” in the 4.4BSD source code.

To confuse this difference between the AF_ and PF_ constants even more, the Berkeley
kernel data structure that contains the value that is compared to the first argument to
socket (the dom fam |y member of the donai n structure, p. 187 of TCPv2) has the
comment that it contains an AF_ value. But, some of the donai n structures within the
kernel are initialized to the corresponding AF_ value (p. 192 of TCPv2) while others are
initialized to the PF_ value (p. 646 of TCPv2 and p. 229 of TCPv3).

As another historical note, the 4.2BSD man page for socket , dated July 1983, calls its
first argument af and lists the possible values as the AF_ constants.

Finally, we note that the POSIX standard specifies that the first argument to socket be a
PF_value, and the AF_ value be used for a socket address structure. But, it then defines
only one family value in the addri nf o structure (Section 11.6), intended for use in either
a call to socket or in a socket address structure!
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4.3conmect FUNCLION

Theconnect function is used by a TCP client to establish a connection with a TCP server.

#i ncl ude <sys/socket. h>

i nt connect (i nt sockfd,const struct sockaddr *servaddr,sockl en_t addrlen) ;

Returns: 0 if OK, -1 on error

sockfd is a socket descriptor returned by the socket function. The second and third arguments
are a pointer to a socket address structure and its size, as described in Section 3.3. The socket
address structure must contain the IP address and port number of the server. We saw an
example of this function in Figure 1.5.

The client does not have to call bi nd (which we will describe in the next section) before calling
connect : the kernel will choose both an ephemeral port and the source IP address if
necessary.

In the case of a TCP socket, the connect function initiates TCP's three-way handshake (Section
2.6). The function returns only when the connection is established or an error occurs. There
are several different error returns possible.

1. If the client TCP receives no response to its SYN segment, ETI MEDOUT is returned.
4.4BSD, for example, sends one SYN when connect is called, another 6 seconds later,
and another 24 seconds later (p. 828 of TCPv2). If no response is received after a total of
75 seconds, the error is returned.

Some systems provide administrative control over this timeout; see Appendix E of TCPv1.

2. If the server's response to the client's SYN is a reset (RST), this indicates that no process
is waiting for connections on the server host at the port specified (i.e., the server process
is probably not running). This is a hard error and the error ECONNREFUSED is returned to
the client as soon as the RST is received.

An RST is a type of TCP segment that is sent by TCP when something is wrong. Three
conditions that generate an RST are: when a SYN arrives for a port that has no listening
server (what we just described), when TCP wants to abort an existing connection, and
when TCP receives a segment for a connection that does not exist. (TCPv1 [pp. 246—250]
contains additional information.)

3. If the client's SYN elicits an ICMP "destination unreachable"” from some intermediate
router, this is considered a soft error. The client kernel saves the message but keeps
sending SYNs with the same time between each SYN as in the first scenario. If no
response is received after some fixed amount of time (75 seconds for 4.4BSD), the saved
ICMP error is returned to the process as either EHOSTUNREACH or ENETUNREACH. It is also
possible that the remote system is not reachable by any route in the local system's
forwarding table, or that the connect call returns without waiting at all.

Many earlier systems, such as 4.2BSD, incorrectly aborted the connection
establishment attempt when the ICMP "destination unreachable” was received. This
is wrong because this ICMP error can indicate a transient condition. For example, it
could be that the condition is caused by a routing problem that will be corrected.



Notice that ENETUNREACH is not listed in Figure A.15, even when the error indicates
that the destination network is unreachable. Network unreachables are considered
obsolete, and applications should just treat ENETUNREACH and EHOSTUNREACH as the

same error.

We can see these different error conditions with our simple client from Figure 1.5. We first
specify the local host (127.0.0.1), which is running the daytime server, and see the output.

solaris % daytinetcpcli 127.0.0.1
Sun Jul 27 22:01:51 2003

To see a different format for the returned reply, we specify a different machine's IP address (in
this example, the IP address of the HP-UX machine).

solaris % daytimetcpcli 192.6.38.100
Sun Jul 27 22:04:59 PDT 2003

Next, we specify an IP address that is on the local subnet (192.168.1/24) but the host ID (100)
is nonexistent. That is, there is no host on the subnet with a host ID of 100, so when the client
host sends out ARP requests (asking for that host to respond with its hardware address), it will
never receive an ARP reply.

solaris % dayti netcpcli 192.168.1.100
connect error: Connection tined out

We only get the error after the connect times out (around four minutes with Solaris 9). Notice
that our err _sys function prints the human-readable string associated with the ETI MEDOUT
error.

Our next example is to specify a host (a local router) that is not running a daytime server.

solaris % daytimetcpcli 192.168.1.5
connect error: Connection refused



The server responds immediately with an RST.

Our final example specifies an IP address that is not reachable on the Internet. If we watch the
packets with t cpdunp, we see that a router six hops away returns an ICMP host unreachable
error.

solaris % daytinmetcpcli 192.3.4.5
connect error: No route to host

As with the ETI MEDOUT error, in this example, connect returns the EHOSTUNREACH error only
after waiting its specified amount of time.

In terms of the TCP state transition diagram (Eigure 2.4),connect moves from the CLOSED
state (the state in which a socket begins when it is created by the socket function) to the
SYN_SENT state, and then, on success, to the ESTABLISHED state. If connect fails, the socket
is no longer usable and must be closed. We cannot call connect again on the socket. In Figure
11.10, we will see that when we call connect in a loop, trying each IP address for a given host
until one works, each time connect fails, we must cl ose the socket descriptor and call socket
again.
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4.4, na Function

Thebi nd function assigns a local protocol address to a socket. With the Internet protocols, the

protocol address is the combination of either a 32-bit IPv4 address or a 128-bit IPv6 address,
along with a 16-bit TCP or UDP port number.

#i ncl ude <sys/socket. h>

int bind (intsockfd,const struct sockaddr *myaddr,sockl en_t addrlen);

Returns: O if OK,-1 on error

Historically, the man page description of bi nd has said "bi nd assigns a name to an
unnamed socket." The use of the term "name" is confusing and gives the connotation of
domain names (Chapter 11) such as f 0o. bar. com The bi nd function has nothing to do
with names. bi nd assigns a protocol address to a socket, and what that protocol address
means depends on the protocol.

The second argument is a pointer to a protocol-specific address, and the third argument is the
size of this address structure. With TCP, calling bi nd lets us specify a port number, an IP
address, both, or neither.

e Servers bind their well-known port when they start. We saw this in Figure 1.9. If a TCP
client or server does not do this, the kernel chooses an ephemeral port for the socket
when either connect or | i sten is called. Itis normal for a TCP client to let the kernel
choose an ephemeral port, unless the application requires a reserved port (Figure 2.10),
but it is rare for a TCP server to let the kernel choose an ephemeral port, since servers
are known by their well-known port.

Exceptions to this rule are Remote Procedure Call (RPC) servers. They normally let
the kernel choose an ephemeral port for their listening socket since this port is then
registered with the RPC port mapper. Clients have to contact the port mapper to
obtain the ephemeral port before they can connect to the server. This also applies
to RPC servers using UDP.

e A process can bi nd a specific IP address to its socket. The IP address must belong to an
interface on the host. For a TCP client, this assigns the source IP address that will be used
for IP datagrams sent on the socket. For a TCP server, this restricts the socket to receive
incoming client connections destined only to that IP address.

Normally, a TCP client does not bi nd an IP address to its socket. The kernel chooses the
source IP address when the socket is connected, based on the outgoing interface that is
used, which in turn is based on the route required to reach the server (p. 737 of TCPv2).

If a TCP server does not bind an IP address to its socket, the kernel uses the destination
IP address of the client's SYN as the server's source IP address (p. 943 of TCPv2).

As we said, calling bi nd lets us specify the IP address, the port, both, or neither. Figure 4.6
summarizes the values to which we set si n_addr and si n_port, or si n6_addr and
si n6_port, depending on the desired result.

Figure 4.6. Result when specifying IP address and/or port number to
bi nd.
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If we specify a port number of O, the kernel chooses an ephemeral port when bi nd is called.
But if we specify a wildcard IP address, the kernel does not choose the local IP address until
either the socket is connected (TCP) or a datagram is sent on the socket (UDP).

With IPv4, the wildcard address is specified by the constant | NADDR_ANY, whose value is
normally O. This tells the kernel to choose the IP address. We saw the use of this in Figure 1.9
with the assignment

struct sockaddr_in servaddr;
servaddr. si n_addr.s_addr = htonl (1 NADDR_ANY); /* wildcard */

While this works with IPv4, where an IP address is a 32-bit value that can be represented as a
simple numeric constant (O in this case), we cannot use this technique with IPv6, since the
128-bit IPv6 address is stored in a structure. (In C we cannot represent a constant structure
on the right-hand side of an assignment.) To solve this problem, we write

struct sockaddr i n6 serv;

serv.si n6_addr = in6addr_any; /* wildcard */

The system allocates and initializes the i n6addr _any variable to the constant
I N6ADDR_ANY_I NI T. The <neti net/in. h> header contains the ext er n declaration for
i n6addr _any.

The value of | NADDR_ANY (0) is the same in either network or host byte order, so the use of

ht onl is not really required. But, since all the | NADDR_constants defined by the

<neti net/in. h>header are defined in host byte order, we should use ht onl with any of these
constants.

If we tell the kernel to choose an ephemeral port number for our socket, notice that bi nd does
not return the chosen value. Indeed, it cannot return this value since the second argument to
bi nd has the const qualifier. To obtain the value of the ephemeral port assigned by the kernel,
we must call get socknane to return the protocol address.

A common example of a process binding a non-wildcard IP address to a socket is a host that
provides Web servers to multiple organizations (Section 14.2 of TCPv3). First, each
organization has its own domain name, such as ww. organization. com Next, each
organization's domain name maps into a different IP address, but typically on the same subnet.
For example, if the subnet is 198.69.10, the first organization's IP address could be



198.69.10.128, the next 198.69.10.129, and so on. All these IP addresses are then aliased
onto a single network interface (using the al i as option of the i f confi g command on 4.4BSD,
for example) so that the IP layer will accept incoming datagrams destined for any of the
aliased addresses. Finally, one copy of the HTTP server is started for each organization and
each copy bi nds only the IP address for that organization.

An alternative technique is to run a single server that binds the wildcard address. When a
connection arrives, the server calls get socknane to obtain the destination IP address
from the client, which in our discussion above could be 198.69.10.128, 198.69.10.129,
and so on. The server then handles the client request based on the IP address to which
the connection was issued.

One advantage in binding a non-wildcard IP address is that the demultiplexing of a given
destination IP address to a given server process is then done by the kernel.

We must be careful to distinguish between the interface on which a packet arrives versus
the destination IP address of that packet. In Section 8.8, we will talk about the weak end
system model and the strong end system model. Most implementations employ the
former, meaning it is okay for a packet to arrive with a destination IP address that
identifies an interface other than the interface on which the packet arrives. (This assumes
a multihomed host.) Binding a non-wildcard IP address restricts the datagrams that will
be delivered to the socket based only on the destination IP address. It says nothing about
the arriving interface, unless the host employs the strong end system model.

A common error from bi nd is EADDRI NUSE ("Address already in use"). We will say more about
this in Section 7.5 when we talk about the SO REUSEADDR and SO _REUSEPCRT socket options.
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4.5 isten FUNCLION

Thel i sten function is called only by a TCP server and it performs two actions:

1. When a socket is created by the socket function, it is assumed to be an active socket,
that is, a client socket that will issue a connect . The | i st en function converts an
unconnected socket into a passive socket, indicating that the kernel should accept
incoming connection requests directed to this socket. In terms of the TCP state transition
diagram (Eigure 2.4), the call to | i sten moves the socket from the CLOSED state to the
LISTEN state.

2. The second argument to this function specifies the maximum number of connections the
kernel should queue for this socket.

#i ncl ude <sys/socket. h>

#int listen (intsockfd,i ntbacklog);

Returns: 0 if OK, -1 on error

This function is normally called after both the socket and bi nd functions and must be called
before calling the accept function.

To understand the backlog argument, we must realize that for a given listening socket, the
kernel maintains two queues:

1. Anincomplete connection queue, which contains an entry for each SYN that has arrived
from a client for which the server is awaiting completion of the TCP three-way handshake.
These sockets are in the SYN_RCVD state (Eigure 2.4).

2. Acompleted connection queue, which contains an entry for each client with whom the
TCP three-way handshake has completed. These sockets are in the ESTABLISHED state
(Eigure 2.4).

Figure 4.7 depicts these two queues for a given listening socket.

Figure 4.7. The two queues maintained by TCP for a listening socket.
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When an entry is created on the incomplete queue, the parameters from the listen socket are
copied over to the newly created connection. The connection creation mechanism is completely
automatic; the server process is not involved. Figure 4.8 depicts the packets exchanged during
the connection establishment with these two queues.

Figure 4.8. TCP three-way handshake and the two queues for a
listening socket.
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When a SYN arrives from a client, TCP creates a new entry on the incomplete queue and then
responds with the second segment of the three-way handshake: the server's SYN with an ACK
of the client's SYN (Section 2.6). This entry will remain on the incomplete queue until the third
segment of the three-way handshake arrives (the client's ACK of the server's SYN), or until the
entry times out. (Berkeley-derived implementations have a timeout of 75 seconds for these
incomplete entries.) If the three-way handshake completes normally, the entry moves from
the incomplete queue to the end of the completed queue. When the process calls accept ,
which we will describe in the next section, the first entry on the completed queue is returned to
the process, or if the queue is empty, the process is put to sleep until an entry is placed onto
the completed queue.

There are several points to consider regarding the handling of these two queues.

e Thebacklog argument to the | i st en function has historically specified the maximum
value for the sum of both queues.

There has never been a formal definition of what the backlog means. The 4.2BSD
man page says that it "defines the maximum length the queue of pending
connections may grow to." Many man pages and even the POSIX specification copy
this definition verbatim, but this definition does not say whether a pending



connection is one in the SYN_RCVD state, one in the ESTABLISHED state that has
not yet been accepted, or either. The historical definition in this bullet is the
Berkeley implementation, dating back to 4.2BSD, and copied by many others.

¢ Berkeley-derived implementations add a fudge factor to the backlog: It is multiplied by
1.5 (p. 257 of TCPv1 and p. 462 of TCPV2). For example, the commonly specified backlog
of 5 really allows up to 8 queued entries on these systems, as we show in Figure 4.10.

The reason for adding this fudge factor appears lost to history [Joy 1994]. But if we
consider the backlog as specifying the maximum number of completed connections
that the kernel will queue for a socket ([Borman 1997b], as discussed shortly), then
the reason for the fudge factor is to take into account incomplete connections on the
queue.

e Do not specify a backlog of 0, as different implementations interpret this differently
(Eigure 4.10). If you do not want any clients connecting to your listening socket, close the
listening socket.

¢ Assuming the three-way handshake completes normally (i.e., no lost segments and no
retransmissions), an entry remains on the incomplete connection queue for one RTT,
whatever that value happens to be between a particular client and server. Section 14.4 of
TCPv3 shows that for one Web server, the median RTT between many clients and the
server was 187 ms. (The median is often used for this statistic, since a few large values
can noticeably skew the mean.)

e Historically, sample code always shows a backlog of 5, as that was the maximum value
supported by 4.2BSD. This was adequate in the 1980s when busy servers would handle
only a few hundred connections per day. But with the growth of the World Wide Web
(WWW), where busy servers handle millions of connections per day, this small number is
completely inadequate (pp. 187—192 of TCPv3). Busy HTTP servers must specify a much
largerbacklog, and newer kernels must supp