Interprocess Communication 12

“Only a brain-damaged operating system would support task switching and not make the simple next step of
supporting multitasking.”

— Calvin Keegan

Processes
e Abstraction of a running program

e Unit of work in the system

Pseudoparallelism
e A process is traced by listing the sequence of instructions that execute for that process
e The process model

— Sequential Process/Task

x A program in execution
* Program code
x Current activity
* Process stack
- subroutine parameters
- return addresses
- temporary variables
Data section
- Global variables

*

e Concurrent Processes

— Multiprogramming
— Interleaving of traces of different processes characterizes the behavior of the cpU
— Physical resource sharing
* Required due to limited hardware resources
— Logical resource sharing
x Concurrent access to the same resource like files
— Computation speedup

+ Break each task into subtasks
* Execute each subtask on separate processing element

— Modularity

* Division of system functions into separate modules
— Convenience

x Perform a number of tasks in parallel

— Real-time requirements for I/0
e Process Hierarchies

— Parent-child relationship
— fork(2) call in Unix

— In MS-DOS, parent suspends itself and lets the child execute

e Process states
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— Running

— Ready (Not running, waiting for the cpU)

— Blocked / Wait on an event (other than cPU) (Not running)

— Two other states complete the five-state model — New and Exit

x A process being created can be said to be in state New; it will be in state Ready after it has been
created

x A process being terminated can be said to be in state Exit
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— Above model suffices for most of the discussion on process management in operating systems; however,
it is limited in the sense that the system screeches to a halt (even in the model) if all the processes are
resident in memory and they all are waiting for some event to happen

— Create a new state Suspend to keep track of blocked processes that have been temporarily kicked out of
memory to make room for new processes to come in

— The state transition diagram in the revised model is
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— Which process to grant the CPU when the current process is swapped out?

x Preference for a previously suspended process over a new process to avoid increasing the total load
on the system

* Suspended processes are actually blocked at the time of suspension and making them ready will just
change their state back to blocked

* Decide whether the process is blocked on an event (suspended or not) or whether the process has
been swapped out (suspended or not)

— The new state transition diagram is
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Process control
e Modes of execution

— 0S8 execution vs user process execution

— 0S may prevent execution of some instructions in user mode and allow them to be executed only in
privileged mode (also called kernel mode, system mode, or control mode)

* Read/write a control register, such as PSW
* Primitive 1/0 and memory management

— The two modes protect the 0S data structures from interference by user code

— Kernel mode provides full control of the system that may not be needed for user programs

— The kernel mode can be entered by setting a bit in the psSw

— The system can enter privileged mode as a result of a request from user code and returns to user mode
after completing the request

e Implementation of processes

— Process table
* One entry for each process
% program counter
* stack pointer
* memory allocation
* open files
* accounting and scheduling information
— Interrupt vector
*x Contains address of interrupt service procedure
- saves all registers in the process table entry
- services the interrupt

e Process creation
— Assign a unique process identifier to the new process; add this process to the system process table that

contains one entry for each process

— Allocate space for all elements of process image — space for code, data, and user stack; values can be set
by default or based on parameters entered at job creation time

— Allocation of resources (CPU time, memory, files) — use either of the following policies

* New process obtains resources directly from the 0s
x New process constrained to share resources from a subset of the parent process

Build the data structures that are needed to manage the process, especially process control block
— When is a process created? — job submission, login, application such as printing

— Static or dynamic process creation

Initialization data (input)

Process execution

* Parent continues to execute concurrently with its children
* Parent waits until all its children have terminated

e Process switching

— Interrupt a running process and assign control to a different process

— Difference between process switching and mode switching
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— When to switch processes
x Any time when the 0S has control of the system
* OS can acquire control by
- Interrupt — asynchronous external event; not dependent on instructions; clock interrupt
- Trap — Exception handling; associated with current instruction execution
- Supervisor call — Explicit call to 0S

e Processes in Unix

— Identified by a unique integer — process identifier
— Created by the fork(2) system call
* Copy the three segments (instructions, user-data, and system-data) without initialization from a
program

*x New process is the copy of the address space of the original process to allow easy communication of
the parent process with its child

x Both processes continue execution at the instruction after the fork
* Return code for the fork is
- zero for the child process
- process id of the child for the parent process
— Use exec(2) system call after fork to replace the child process’s memory space with a new program
(binary file)
x Overlay the image of a program onto the running process
x Reinitialize a process from a designated program
* Program changes while the process remains
— exit(2) system call
* Finish executing a process
— wait(2) system call
x Wait for child process to stop or terminate
* Synchronize process execution with the exit of a previously forked process
— brk(2) system call
x Change the amount of space allocated for the calling process’s data segment
* Control the size of memory allocated to a process
— signal(3) library function
x Control process response to extraordinary events

* The complete family of signal functions (see man page) provides for simplified signal management
for application processes

Daemons

* Background processes to do useful work on behalf of the user
- Just sit in the machine, doing one or the other thing

* Differ from normal processes in the sense that daemons do not have a stdin or stdout, and sleep
most of the time

- Communication with humans achieved via logs

* Common daemons are
- update to synchronize the file system with its image in kernel memory
- cron for general purpose task scheduling

- 1pd or 1psched as a line printer daemon to pick up files scheduled for printing and distributing
them to the printers



Interprocess Communication 16

- init — the boss of it all
- swapper to handle kernel requests to swap pages of memory to/from disk

e MS-DOS Processes

— Created by a system call to load a specified binary file into memory and execute it

— Parent is suspended and waits for child to finish execution
e Process termination

— Normal termination

* Process terminates when it executes its last statement
x Upon termination, the 0s deletes the process
* Process may return data (output) to its parent

— Abnormal termination

* Process terminates by executing the library function abort(3C)
x All the file streams are closed and other housekeeping performed as defined in the signal handler
— Termination by another process
* Termination by the system call kill(2) with the signal SIGKILL
x Usually terminated only by the parent of the process because
- child may exceed the usage of its allocated resources
- task assigned to the child is no longer required
— Cascading termination

x Upon termination of parent process
* Initiated by the 0s

e cobegin/coend

— Also known as parbegin/parend

— Explicitly specify a set of program segments to be executed concurrently
cobegin
p-1;
P-2;
p_n;
coend;

(a+b) x (c+d)—(e/f)

cobegin
t_1 =
t_2 =
t_3 =

coend

t_4 =t_1 % t_2;

t.5=1t_4 - t_3;

© 0P
~ + +
Hh Qo o

e fork, join, and quit Primitives

— More general than cobegin/coend
— fork x

x Creates a new process q when executed by process p
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* Starts execution of process q at instruction labeled x
* Process p executes at the instruction following the fork

— quit

x Terminates the process that executes this command

— join t, y

* Provides an indivisible instruction

x Provides the equivalent of test-and-set instruction in a concurrent language

if (! --t ) goto y;

— Program segment with new primitives

pl :
p2 :
p3 :
pé :

m = 3;
fork
fork

t1
t2
t3
t4
t5

P2;

p3;

a + b; join m, p4; quit;
c + d; join m, p4; quit;
e / f; join m, p4; quit;
tl X t2;

t4 - t3;

Process Control Subsystem in Unix

e Significant part of the Unix kernel (along with the file subsystem)

e Contains three modules

— Interprocess communication

— Scheduler

— Memory management

Interprocess Communication

e Race conditions
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— A race condition occurs when two processes (or threads) access the same variable/resource without doing
any synchronization

— One process is doing a coordinated update of several variables

Example

The second process observing one or more of those variables will see inconsistent results

Final outcome dependent on the precise timing of two processes

x One process is changing the balance in a bank account while another is simultaneously observing the

account balance and the last activity date

* Now, consider the scenario where the process changing the balance gets interrupted after updating

the last activity date but before updating the balance

« If the other process reads the data at this point, it does not get accurate information (either in the
current or past time)

Critical Section Problem

e Section of code that modifies some memory /file/table while assuming its exclusive control

e Mutually exclusive execution in time



Interprocess Communication 18

e Template for each process that involves critical section

do
{
- /* Entry section; */
critical_section(); /* Assumed to be present */
/* Exit section */
remainder_section(); /* Assumed to be present */
}
while (1 );
You are to fill in the gaps specified by ... for entry and exit sections in this template and test the resulting

program for compliance with the protocol specified next
e Design of a protocol to be used by the processes to cooperate with following constraints
— Mutual Exclusion — If process p; is executing in its critical section, then no other processes can be executing
in their critical sections.

— Progress — If no process is executing in its critical section, the selection of a process that will be allowed
to enter its critical section cannot be postponed indefinitely.

— Bounded Waiting — There must exist a bound on the number of times that other processes are allowed to
enter their critical sections after a process has made a request to enter its critical section and before that
request is granted.

Assumptions

— No assumption about the hardware instructions
— No assumption about the number of processors supported

— Basic machine language instructions executed atomically

Disabling interrupts

— Brute-force approach
— Not proper to give users the power to disable interrupts

x User may not enable interrupts after being done
x Multiple CPU configuration

Lock variables

— Share a variable that is set when a process is in its critical section

Strict alternation

extern int turn; /* Shared variable between both processes */

do
{
while ( turn != i ) /* do nothing */ ;
critical_section();
turn = j;
remainder_section();
} while ( 1 );

— Does not satisfy progress requirement

— Does not keep sufficient information about the state of each process
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e Use of a flag

extern int flag[2]; /* Shared variable; one for each process */
do
{

flagli] = 1; /* true */

while ( flagljl );
critical_section();
flagl[il = 0; /* false */
remainder_section();

} while ( 1 );

— Satisfies the mutual exclusion requirement

— Does not satisfy the progress requirement

Time Ty po sets flag[0] to true
Time T;  p; sets flag[1] to true

Processes py and p; loop forever in their respective while statements

— Critically dependent on the exact timing of two processes
— Switch the order of instructions in entry section

* No mutual exclusion

e Peterson’s solution

— Combines the key ideas from the two earlier solutions

/* Code for process 0; similar code exists for process 1 */

extern int flagl[2]; /* Shared variables */

extern int turn; /* Shared variable

void process_0()

{
do
/* Entry section */
flag[0] = true; /* Raise my flag */
turn = 1; /* Cede turn to other process */
while ( flag[l] && turn == 1) ;
critical_section();
/* Exit section */
flagl[0] = false;
remainder_section();
while ( 1 );
}

e Multiple Process Solution — Solution 4

— The array flag can take one of the three values (idle, want-in, in-cs)

19
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enum state { idle, want_in, in_cs };
extern int turn;

extern state flag[n];

// Code for process i

// Flag corresponding to each process (in shared memory)

>

>

own flag to idle

int  j; // Local to each process
do
{
do
{
flag[i] = want_in; // Raise my flag
j = turn; // Set local variable
while ( § !'=1i)
j = ( flag[j] !'=idle ) ? turn : ( j+ 1) % n
// Declare intention to enter critical section
flagl[i] = in_cs;
// Check that no one else is in critical section
for ( j =0; j <mn; j++ )
if ( (j'=1i) & ( flagl[j]l == in_cs ) )
break;
}
while ( j <n ) || ( turn != i && flag[turn] !'= idle );
// Assign turn to self and enter critical section
turn = 1i;
critical_section();
// Exit section
j = (turn + 1) % n;
while (flaglj] == idle) do
j=({G + 1) % n;
// Assign turn to the next waiting process and change
turn = j;
flagl[i]l = idle;
remainder_section();
}
while (1 );

— p; enters the critical section only if flag[j] # in-cs for all j # 1.

20

— turn can be modified only upon entry to and exit from the critical section. The first contending process
enters its critical section.

— Upon exit, the successor process is designated to be the one following the current process.
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— Mutual Exclusion
* p; enters the critical section only if flag[j] # in_cs for all j # i.
* Only p; can set flag[i] = in_cs.
* p; inspects flag[j] only while flag[i] = in_cs.
— Progress
* turn can be modified only upon entry to and exit from the critical section.
x No process is executing or leaving its critical section = turn remains constant.

* First contending process in the cyclic ordering (turn, turn+1, ..., n-1, 0, ..., turn-1) enters
its critical section.

— Bounded Wait

x Upon exit from the critical section, a process must designate its unique successor the first contending
process in the cyclic ordering turn+1, ..., n-1, 0, ..., turn-1, turn.

* Any process waiting to enter its critical section will do so in at most n-1 turns.
e Bakery Algorithm

— Each process has a unique id

— Process id is assigned in a completely ordered manner

extern bool choosing[n]; /* Shared Boolean array x/
extern int number[n]; /* Shared integer array to hold turn number */
void process_i ( const int i ) /* ith Process x/
{
do
choosing[i] = true;
number [i] = 1 + max(number[0], ..., number[n-1]);

choosing[i] false;

for ( int j = 0; j < n; j++ )

{
while ( choosingl[j] ); /* Wait while someone else is choosing */
while ( ( number[j] ) && (number[jl,j) < (number[il,i) );

}

critical_section();
number[i] = 0;

remainder_section();
while ( 1 );
}

— If p; is in its critical section and py (k # ) has already chosen its number[k] # 0, then (number[i],i) <
(number[k] k).
Synchronization Hardware

e test_and_set instruction

int test_and_set (int& target )
{

int tmp;

tmp = target;
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target = 1; /* True */
return ( tmp );

}
e Implementing Mutual Exclusion with test_and_set
extern bool lock ( false );

do
while ( test_and_set ( lock ) );
critical_section();
lock = false;
remainder_section();

while (1 );

Semaphores
e Producer-consumer Problem

Shared buffer between producer and consumer
Number of items kept in the variable count

— Printer spooler

— The | operator

— Race conditions

e An integer variable that can only be accessed through two standard atomic operations — wait (P) and signal

V)
Operation | Semaphore | Dutch Meaning
Wait P proberen | test
Signal A% verhogen | increment

e The classical definitions for wait and signal are

wait ( S ): while ( S <=0 );

S--3
signal ( S ): S++;
e Mutual exclusion implementation with semaphores

do
wait (mutex);
critical_section();
signal (mutex);
remainder_section();
while ( 1 );

e Synchronization of processes with semaphores

p1 St
signal (synch);
p2  wait (synch);
Sa;
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e Implementing Semaphore Operations

— Binary semaphores using test_and_set
x Check out the instruction definition as previously given

— Implementation with a busy-wait

class bin_semaphore

{
private:
bool S; /* Binary semaphore */
public:
bin_semaphore () // Default constructor
: s ( false )
{3
void P() // Wait on semaphore
{
while ( test_and_set (s ) );
}
void V () // Signal the semaphore
{
s = false;
}
};

— General semaphore

class semaphore

{
private:
bin_semaphore mutex;
bin_semaphore delay;
int count;
public:
void semaphore ( const int num = 1 ) // Constructor
: count ( num )
{
delay.PQ);
3
void P()
{
mutex.P();
if ( --count < 0 )
{
mutex.V();
delay.PQ);
}
mutex.V();
}

void V(O
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{
mutex.P();
if ( ++count <= 0 )
delay.VQ);
else
mutex.V();
}

}

— Busy-wait Problem — Processes waste CPU cycles while waiting to enter their critical sections

x Modify wait operation into the block operation. The process can block itself rather than busy-
waiting.

x Place the process into a wait queue associated with the critical section

*x Modify signal operation into the wakeup operation.

x Change the state of the process from wait to ready.

— Block-Wakeup Protocol

// Semaphore with block wakeup protocol

class sem_int

{
private:
int value; // Number of resources
queue<pid_t> 1; // List of processes
public:
void sem_int ( const int n =1 ) // Constructor
: value (n )
{
1 = queue<pid_t>( 0 ); // Empty queue
}
void P()
{
if ( --value < 0 )
{
pid_t p = getpid();
l.enqueue ( p ); // Enqueue the invoking process
block ( p );
}
}
void V()
{
if ( ++value <= 0 )
{
process p = l.dequeue();
wakeup ( p );
}
}
3

Producer-Consumer problem with semaphores

extern semaphore mutex; // To get exclusive access to buffers
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extern semaphore empty ( n ); // Number of available buffers
extern semaphore full ( 0 ); // Initialized to O

void producer()

{
do

{
produce ( item );
empty.PQ); // empty is semaphore
mutex.P(); // mutex is semaphore
put ( item );
mutex.V()
full.vQ

} while (1 );

}

void consumer()

{
do

{
full.PQ);
mutex.P();
remove ( item );
mutex.V();
empty.VQ);
consume ( item );

} while (1 );

}

Problem: What if order of wait is reversed in producer

Event Counters
e Solve the producer-consumer problem without requiring mutual exclusion
e Special kind of variable with three operations

1. E.read(): Return the current value of E
2. E.advance(): Atomically increment E by 1

3. E.await(v): Wait until E has a value of v or more

e Event counters always start at 0 and always increase

class event_counter

{

int ec; // Event counter

public:
event_counter () // Default constructor
:ec (0)
{3
int read() const { return ( ec ); }
void advance() { ect+; }
void await ( const int v ) const { while ( ec < v ); }
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extern event_counter in, out; // Shared event counters

void producer()

{
int sequence ( 0 ); // Local to producer
do
{
produce ( item );
sequence++;
out.await ( sequence - num_buffers );
put ( item );
in.advance();
}
while ( 1 );
}
void consumer ()
{
int sequence ( 0 ); // Local to consumer
do
{
sequence++;
in.await ( sequence );
remove ( item );
out.advance() ;
consume ( item );
}
while ( 1 );
}

Higher-Level Synchronization Methods
e P and V operations do not permit a segment of code to be designated explicitly as a critical section.
e Two parts of a semaphore operation; should be treated as distinct

— Block-wakeup of processes

— Counting of semaphore
e Possibility of a deadlock — Omission or unintentional execution of a V operation.
e Monitors

— Implemented as a class with private and public functions
— Collection of data [resources] and private functions to manipulate this data
— A monitor must guarantee the following;:

x Access to the resource is possible only via one of the monitor procedures.

x Procedures are mutually exclusive in time. Only one process at a time can be active within the
monitor.

— Additional mechanism for synchronization or communication — the condition construct
condition x;

* condition variables are accessed by only two operations — wait and signal
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* x.wait () suspends the process that invokes this operation until another process invokes x.signal ()
* x.signal() resumes exactly one suspended process; it has no effect if no process is suspended

— Selection of a process to execute within monitor after signal

* x.signal() executed by process P allowing the suspended process Q to resume execution
1. P waits until Q leaves the monitor, or waits for another condition
2. Q waits until P leaves the monitor, or waits for another condition
Choice 1 advocated by Hoare

e The Dining Philosophers Problem — Solution by Monitors
enum state_type { thinking, hungry, eating };

class dining_philosophers

{
private:
state_type state[5]; // State of five philosophers
condition self[5]; // Condition object for synchronization
void test ( int i )
{
if ( ( state[ (i +4) % 5] != eating ) &&
( state[ i ] == hungry ) &&
( state[ (i +1) % 5] != eating ) )
{
state[ i ] = eating;
self[i] .signal();
}
}
public:
void dining_philosophers() // Constructor
{
for ( int i = 0; i < 5; state[i++] = thinking );
}
void pickup ( const int i ) // i corresponds to the philosopher
{
state[i] = hungry;
test (1 );
if ( state[i] != eating )
self[i] .wait();
}
void putdown ( const int i ) // i corresponds to the philosopher
{
state[i] = thinking;
test ( (1 +4) %5);
test ( (i+1)7%5);
}
}

— Philosopher ¢ must invoke the operations pickup and putdown on an instance dp of the
dining philosophers monitor
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dining_philosophers dp;

dp.pickup(i); // Philosopher i picks up the chopsticks
dp.eat(i); // Philosopher i eats (for random amount of time)
dp.putdown (i) ; // Philosopher i puts down the chopsticks

— No two neighbors eating simultaneously — no deadlocks

— Possible for a philosopher to starve to death

e Implementation of a Monitor

— Execution of procedures must be mutually exclusive

— A wait must block the current process on the corresponding condition

— If no process in running in the monitor and some process is waiting, it must be selected. If more than one

waiting process, some criterion for selecting one must be deployed.

Implementation using semaphores
* Semaphore mutex corresponding to the monitor initialized to 1
- Before entry, execute wait (mutex)
- Upon exit, execute signal (mutex)
* Semaphore next to suspend the processes unable to enter the monitor initialized to 0
x Integer variable next_count to count the number of processes waiting to enter the monitor

mutex.wait();
void'l;"() { ...} // Body of PO

if ( next_count > 0 )
next.signal();
else
mutex.signal();

x Semaphore x_sem for condition x, initialized to 0
* Integer variable x_count

class condition

{
int num_waiting_procs; // Processes waiting on this condition
semaphore sem; // To synchronize the processes
static int next_count; // Processes waiting to enter monitor

static semaphore next;
static semaphore mutex;

public:

condition() // Default constructor

: num_waiting_procs ( 0 ), sem ( 0 )

{3

void wait()

{
num_waiting_procs++; // # of processes waiting on this condition
if ( next_count > 0 ) // Someone waiting inside monitor?

next.signal(); // Yes, wake him up

else
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mutex.signal(); // No, free mutex so others can enter
sem.wait(); // Start waiitng for condition
num_waiting_procs--; // Wait over, decrement variable
}
void signal()
{
if ( num_waiting_procs <= 0 ) // Nobody waiting?
return;
next_count++; // Number of ready processes inside monitor
sem.signal(); // Send the signal
next.wait(); // You wait; let signalled process run
next_count--; // One less process in monitor
}

+;
e Conditional Critical Regions (CCRs)

— Explicitly designate a portion of code to be critical section

— Specify the variables (resource) to be protected by the critical section

resource r :: v_1, v_2, ..., v_n

Designed by Hoare and Brinch-Hansen to overcome the deficiencies of semaphores
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— Specify the conditions under which the critical section may be entered to access the elements that form

the resource
region r when B do S

* B is a condition to guard entry into critical section S

x At any time, only one process is permitted to enter the code segment associated with resource r

The statement region r when B do S is implemented by

semaphore mutex ( 1 ), delay ( 0 );
int delay_cnt ( 0 );

mutex.P();
del_cnt++;
while ( !B )
{
mutex.V();
delay.P();
mutex.P();
}
del_cnt——;
S; // Critical section code
for (int 1 ( 0 ); i < del_cnt; i++ )
delay.VQ);
mutex.V();

Message-Based Synchronization Schemes
e Communication between processes is achieved by:

— Shared memory (semaphores, CCRs, monitors)

— Message systems
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* Desirable to prevent sharing, possibly for security reasons or no shared memory availability due to
different physical hardware

e Communication by Passing Messages

— Processes communicate without any need for shared variables
— Two basic communication primitives

* send message

* receive message

send (P, message) Send a message to process P
receive(Q, message) Receive a message from process Q

— Messages passed through a communication link

e Producer/Consumer Problem

void producer ( void ) void consumer ( void )
{ {
while ( 1) while (1)
{ {
produce ( data ); receive ( producer, data );
send ( consumer, data ); consume ( data );
} }
} }

e Issues to be resolved in message communication

— Synchronous v/s Asynchronous Communication

* Upon send, does the sending process continue (asynchronous or nonblocking communication), or does
it wait for the message to be accepted by the receiving process (synchronous or blocking communica-
tion)?

* What happens when a receive is issued and there is no message waiting (blocking or nonblocking)?

— Implicit v/s Explicit Naming

* Does the sender specify exactly one receiver (explicit naming) or does it transmit the message to all
the other processes (implicit naming)?
send (p, message) Send a message to process p
send (A, message) Send a message to mailbox A
* Does the receiver accept from a certain sender (explicit naming) or can it accept from any sender
(implicit naming)?
receive (p, message) Receive a message
from process p
receive (id, message) Receive a message
from any process;
id is the process id
receive (A, message) Receive a message
from mailbox A

Ports and Mailboxes

e Achieve synchronization of asynchronous process by embedding a busy-wait loop, with a non-blocking receive
to simulate the effect of implicit naming

— Inefficient solution
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e Indirect communication avoids the inefficiency of busy-wait

mailboxes

— Unique identification for each mailbox

— A process may communicate with another process by a number of different mailboxes

— Two processes may communicate only if they have a shared mailbox

Properties of a communication link

— A link is established between a pair of processes only if they have a shared mailbox

— A link may be associated with more than two processes

Messages are sent to and received from mailboxes

Most general communication facility between n senders and m receivers
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Make the queues holding messages between senders and receivers visible to the processes, in the form of

— Between each pair of communicating processes, there may be a number of different links, each correspond-

ing to one mailbox

— A link may be either unidirectional or bidirectional

Ports

— In a distributed environment, the receive referring to same mailbox may reside on different machines

— Port is a limited form of mailbox associated with only one receiver

— All messages originating with different processes but addressed to the same port are sent to one central

place associated with the receiver

Remote Procedure Calls

High-level concept for process communication, allowing functions to be called without using send /receive prim-

itives

— send/receive work like semaphores, taking attention away from the task at hand

— RPCs allow the called function to be perceived as a service request
Transfers control to another process, possibly on a different computer, while suspending the calling process
Called procedure resides in separate address space and no global variables are shared

Return statement executed by called function returns control to the caller

Communication strictly by parameters

send (RP_guard, parameters);
receive (RP_guard, results);

The remote procedure guard is implemented by

void RP_guard ( void )

{
do
receive (caller, parameters);
send (caller, results);
while (1 );
+

Static versus dynamic creation of remote procedures

rendezvous mechanism in Ada



