
Interprocess Communication 12

“Only a brain-damaged operating system would support task switching and not make the simple next step of
supporting multitasking.”

– Calvin Keegan

Processes

• Abstraction of a running program

• Unit of work in the system

• Pseudoparallelism

• A process is traced by listing the sequence of instructions that execute for that process

• The process model

– Sequential Process/Task

∗ A program in execution
∗ Program code
∗ Current activity
∗ Process stack
· subroutine parameters
· return addresses
· temporary variables

∗ Data section
· Global variables

• Concurrent Processes

– Multiprogramming

– Interleaving of traces of different processes characterizes the behavior of the cpu

– Physical resource sharing

∗ Required due to limited hardware resources

– Logical resource sharing

∗ Concurrent access to the same resource like files

– Computation speedup

∗ Break each task into subtasks
∗ Execute each subtask on separate processing element

– Modularity

∗ Division of system functions into separate modules

– Convenience

∗ Perform a number of tasks in parallel

– Real-time requirements for I/O

• Process Hierarchies

– Parent-child relationship

– fork(2) call in Unix

– In ms-dos, parent suspends itself and lets the child execute

• Process states

Interprocess Communication 13

– Running

– Ready (Not running, waiting for the cpu)

– Blocked / Wait on an event (other than cpu) (Not running)

– Two other states complete the five-state model – New and Exit

∗ A process being created can be said to be in state New; it will be in state Ready after it has been
created
∗ A process being terminated can be said to be in state Exit

��
��

New -��
��

Ready
-Dispatch

�
Timeout ��
��
Running -��
��

Exit

��
��
Blocked

�
�
�	 @

@
@I Event

wait
Event
occurs

– Above model suffices for most of the discussion on process management in operating systems; however,
it is limited in the sense that the system screeches to a halt (even in the model) if all the processes are
resident in memory and they all are waiting for some event to happen

– Create a new state Suspend to keep track of blocked processes that have been temporarily kicked out of
memory to make room for new processes to come in

– The state transition diagram in the revised model is

��
��

New -��
��

Ready
-Dispatch

�
Timeout ��
��
Running -��
��

Exit

��
��
Blocked

�
�
�	 @

@
@I Event

wait
Event
occurs

��
��
Suspended�

@
@
@R

Suspend

Activate

– Which process to grant the cpu when the current process is swapped out?

∗ Preference for a previously suspended process over a new process to avoid increasing the total load
on the system
∗ Suspended processes are actually blocked at the time of suspension and making them ready will just

change their state back to blocked
∗ Decide whether the process is blocked on an event (suspended or not) or whether the process has

been swapped out (suspended or not)

– The new state transition diagram is

��
��

New -��
��

Ready
-Dispatch

�
Timeout ��
��
Running -��
��

Exit

��
��
Blocked

�
�
�	 @

@
@I Event

wait
Event
occurs

��
��

Ready
Suspended

@
@
@I

@
@
@R

Activate

Activate

��
��
Blocked

Suspended

@
@
@@R

Suspend
�

�
�	

Event
occurs

Interprocess Communication 14

Process control

• Modes of execution

– os execution vs user process execution

– os may prevent execution of some instructions in user mode and allow them to be executed only in
privileged mode (also called kernel mode, system mode, or control mode)

∗ Read/write a control register, such as psw

∗ Primitive i/o and memory management

– The two modes protect the os data structures from interference by user code

– Kernel mode provides full control of the system that may not be needed for user programs

– The kernel mode can be entered by setting a bit in the psw

– The system can enter privileged mode as a result of a request from user code and returns to user mode
after completing the request

• Implementation of processes

– Process table

∗ One entry for each process
∗ program counter
∗ stack pointer
∗ memory allocation
∗ open files
∗ accounting and scheduling information

– Interrupt vector

∗ Contains address of interrupt service procedure

· saves all registers in the process table entry
· services the interrupt

• Process creation

– Assign a unique process identifier to the new process; add this process to the system process table that
contains one entry for each process

– Allocate space for all elements of process image – space for code, data, and user stack; values can be set
by default or based on parameters entered at job creation time

– Allocation of resources (cpu time, memory, files) – use either of the following policies

∗ New process obtains resources directly from the os

∗ New process constrained to share resources from a subset of the parent process

– Build the data structures that are needed to manage the process, especially process control block

– When is a process created? – job submission, login, application such as printing

– Static or dynamic process creation

– Initialization data (input)

– Process execution

∗ Parent continues to execute concurrently with its children
∗ Parent waits until all its children have terminated

• Process switching

– Interrupt a running process and assign control to a different process

– Difference between process switching and mode switching

Interprocess Communication 15

– When to switch processes

∗ Any time when the os has control of the system
∗ os can acquire control by
· Interrupt – asynchronous external event; not dependent on instructions; clock interrupt
· Trap – Exception handling; associated with current instruction execution
· Supervisor call – Explicit call to os

• Processes in Unix

– Identified by a unique integer – process identifier

– Created by the fork(2) system call

∗ Copy the three segments (instructions, user-data, and system-data) without initialization from a
program
∗ New process is the copy of the address space of the original process to allow easy communication of

the parent process with its child
∗ Both processes continue execution at the instruction after the fork

∗ Return code for the fork is
· zero for the child process
· process id of the child for the parent process

– Use exec(2) system call after fork to replace the child process’s memory space with a new program
(binary file)

∗ Overlay the image of a program onto the running process
∗ Reinitialize a process from a designated program
∗ Program changes while the process remains

– exit(2) system call

∗ Finish executing a process

– wait(2) system call

∗ Wait for child process to stop or terminate
∗ Synchronize process execution with the exit of a previously forked process

– brk(2) system call

∗ Change the amount of space allocated for the calling process’s data segment
∗ Control the size of memory allocated to a process

– signal(3) library function

∗ Control process response to extraordinary events
∗ The complete family of signal functions (see man page) provides for simplified signal management

for application processes

– Daemons

∗ Background processes to do useful work on behalf of the user
· Just sit in the machine, doing one or the other thing

∗ Differ from normal processes in the sense that daemons do not have a stdin or stdout, and sleep
most of the time
· Communication with humans achieved via logs

∗ Common daemons are
· update to synchronize the file system with its image in kernel memory
· cron for general purpose task scheduling
· lpd or lpsched as a line printer daemon to pick up files scheduled for printing and distributing

them to the printers

Interprocess Communication 16

· init – the boss of it all
· swapper to handle kernel requests to swap pages of memory to/from disk

• ms-dos Processes

– Created by a system call to load a specified binary file into memory and execute it

– Parent is suspended and waits for child to finish execution

• Process termination

– Normal termination

∗ Process terminates when it executes its last statement
∗ Upon termination, the os deletes the process
∗ Process may return data (output) to its parent

– Abnormal termination

∗ Process terminates by executing the library function abort(3C)
∗ All the file streams are closed and other housekeeping performed as defined in the signal handler

– Termination by another process

∗ Termination by the system call kill(2) with the signal SIGKILL
∗ Usually terminated only by the parent of the process because
· child may exceed the usage of its allocated resources
· task assigned to the child is no longer required

– Cascading termination

∗ Upon termination of parent process
∗ Initiated by the os

• cobegin/coend

– Also known as parbegin/parend

– Explicitly specify a set of program segments to be executed concurrently

cobegin
p_1;
p_2;
...
p_n;

coend;

(a+ b)× (c+ d)− (e/f)

cobegin
t_1 = a + b;
t_2 = c + d;
t_3 = e / f;

coend
t_4 = t_1 * t_2;
t_5 = t_4 - t_3;

• fork, join, and quit Primitives

– More general than cobegin/coend

– fork x

∗ Creates a new process q when executed by process p

Interprocess Communication 17

∗ Starts execution of process q at instruction labeled x

∗ Process p executes at the instruction following the fork

– quit

∗ Terminates the process that executes this command

– join t, y

∗ Provides an indivisible instruction
∗ Provides the equivalent of test-and-set instruction in a concurrent language

if (! --t) goto y;

– Program segment with new primitives

m = 3;
fork p2;
fork p3;

p1 : t1 = a + b; join m, p4; quit;
p2 : t2 = c + d; join m, p4; quit;
p3 : t3 = e / f; join m, p4; quit;
p4 : t4 = t1 × t2;

t5 = t4 - t3;

Process Control Subsystem in Unix

• Significant part of the Unix kernel (along with the file subsystem)

• Contains three modules

– Interprocess communication

– Scheduler

– Memory management

Interprocess Communication

• Race conditions

– A race condition occurs when two processes (or threads) access the same variable/resource without doing
any synchronization

– One process is doing a coordinated update of several variables

– The second process observing one or more of those variables will see inconsistent results

– Final outcome dependent on the precise timing of two processes

– Example

∗ One process is changing the balance in a bank account while another is simultaneously observing the
account balance and the last activity date

∗ Now, consider the scenario where the process changing the balance gets interrupted after updating
the last activity date but before updating the balance

∗ If the other process reads the data at this point, it does not get accurate information (either in the
current or past time)

Critical Section Problem

• Section of code that modifies some memory/file/table while assuming its exclusive control

• Mutually exclusive execution in time

Interprocess Communication 18

• Template for each process that involves critical section

do
{

... /* Entry section; */
critical_section(); /* Assumed to be present */
... /* Exit section */
remainder_section(); /* Assumed to be present */

}
while (1);

You are to fill in the gaps specified by ... for entry and exit sections in this template and test the resulting
program for compliance with the protocol specified next

• Design of a protocol to be used by the processes to cooperate with following constraints

– Mutual Exclusion – If process pi is executing in its critical section, then no other processes can be executing
in their critical sections.

– Progress – If no process is executing in its critical section, the selection of a process that will be allowed
to enter its critical section cannot be postponed indefinitely.

– Bounded Waiting – There must exist a bound on the number of times that other processes are allowed to
enter their critical sections after a process has made a request to enter its critical section and before that
request is granted.

• Assumptions

– No assumption about the hardware instructions

– No assumption about the number of processors supported

– Basic machine language instructions executed atomically

• Disabling interrupts

– Brute-force approach

– Not proper to give users the power to disable interrupts

∗ User may not enable interrupts after being done
∗ Multiple cpu configuration

• Lock variables

– Share a variable that is set when a process is in its critical section

• Strict alternation

extern int turn; /* Shared variable between both processes */

do
{

while (turn != i) /* do nothing */ ;
critical_section();
turn = j;
remainder_section();

} while (1);

– Does not satisfy progress requirement

– Does not keep sufficient information about the state of each process

Interprocess Communication 19

• Use of a flag

extern int flag[2]; /* Shared variable; one for each process */

do
{

flag[i] = 1; /* true */
while (flag[j]);
critical_section();
flag[i] = 0; /* false */
remainder_section();

} while (1);

– Satisfies the mutual exclusion requirement

– Does not satisfy the progress requirement

Time T0 p0 sets flag[0] to true
Time T1 p1 sets flag[1] to true

Processes p0 and p1 loop forever in their respective while statements

– Critically dependent on the exact timing of two processes

– Switch the order of instructions in entry section

∗ No mutual exclusion

• Peterson’s solution

– Combines the key ideas from the two earlier solutions

/* Code for process 0; similar code exists for process 1 */

extern int flag[2]; /* Shared variables */
extern int turn; /* Shared variable */

void process_0()
{

do
/* Entry section */
flag[0] = true; /* Raise my flag */
turn = 1; /* Cede turn to other process */
while (flag[1] && turn == 1) ;

critical_section();

/* Exit section */
flag[0] = false;

remainder_section();

while (1);
}

• Multiple Process Solution – Solution 4

– The array flag can take one of the three values (idle, want-in, in-cs)

Interprocess Communication 20

enum state { idle, want_in, in_cs };
extern int turn;
extern state flag[n]; // Flag corresponding to each process (in shared memory)

// Code for process i

int j; // Local to each process

do
{

do
{

flag[i] = want_in; // Raise my flag
j = turn; // Set local variable
while (j != i)

j = (flag[j] != idle) ? turn : (j + 1) % n;

// Declare intention to enter critical section

flag[i] = in_cs;

// Check that no one else is in critical section

for (j = 0; j < n; j++)
if ((j != i) && (flag[j] == in_cs))

break;

}
while (j < n) || (turn != i && flag[turn] != idle);

// Assign turn to self and enter critical section

turn = i;
critical_section();

// Exit section

j = (turn + 1) % n;
while (flag[j] == idle) do

j = (j + 1) % n;

// Assign turn to the next waiting process and change own flag to idle

turn = j;
flag[i] = idle;

remainder_section();
}
while (1);

– pi enters the critical section only if flag[j] 6= in-cs for all j 6= i.

– turn can be modified only upon entry to and exit from the critical section. The first contending process
enters its critical section.

– Upon exit, the successor process is designated to be the one following the current process.

Interprocess Communication 21

– Mutual Exclusion

∗ pi enters the critical section only if flag[j] 6= in cs for all j 6= i.
∗ Only pi can set flag[i] = in cs.
∗ pi inspects flag[j] only while flag[i] = in cs.

– Progress

∗ turn can be modified only upon entry to and exit from the critical section.
∗ No process is executing or leaving its critical section ⇒ turn remains constant.
∗ First contending process in the cyclic ordering (turn, turn+1, . . ., n-1, 0, . . ., turn-1) enters

its critical section.

– Bounded Wait

∗ Upon exit from the critical section, a process must designate its unique successor the first contending
process in the cyclic ordering turn+1, . . ., n-1, 0, . . ., turn-1, turn.
∗ Any process waiting to enter its critical section will do so in at most n-1 turns.

• Bakery Algorithm

– Each process has a unique id

– Process id is assigned in a completely ordered manner

extern bool choosing[n]; /* Shared Boolean array */
extern int number[n]; /* Shared integer array to hold turn number */

void process_i (const int i) /* ith Process */
{

do
choosing[i] = true;
number[i] = 1 + max(number[0], ..., number[n-1]);
choosing[i] = false;
for (int j = 0; j < n; j++)
{

while (choosing[j]); /* Wait while someone else is choosing */
while ((number[j]) && (number[j],j) < (number[i],i));

}

critical_section();

number[i] = 0;

remainder_section();
while (1);

}

– If pi is in its critical section and pk (k 6= i) has already chosen its number[k] 6= 0, then (number[i],i) <
(number[k],k).

Synchronization Hardware

• test_and_set instruction

int test_and_set (int& target)
{

int tmp;
tmp = target;

Interprocess Communication 22

target = 1; /* True */
return (tmp);

}

• Implementing Mutual Exclusion with test and set

extern bool lock (false);

do
while (test_and_set (lock));
critical_section();
lock = false;
remainder_section();

while (1);

Semaphores

• Producer-consumer Problem

– Shared buffer between producer and consumer

– Number of items kept in the variable count

– Printer spooler

– The | operator

– Race conditions

• An integer variable that can only be accessed through two standard atomic operations – wait (P) and signal
(V)

Operation Semaphore Dutch Meaning
Wait P proberen test
Signal V verhogen increment

• The classical definitions for wait and signal are

wait (S): while (S <= 0);
S--;

signal (S): S++;

• Mutual exclusion implementation with semaphores

do
wait (mutex);
critical_section();
signal (mutex);
remainder_section();

while (1);

• Synchronization of processes with semaphores

p1 S1;
signal (synch);

p2 wait (synch);
S2;

Interprocess Communication 23

• Implementing Semaphore Operations

– Binary semaphores using test_and_set

∗ Check out the instruction definition as previously given

– Implementation with a busy-wait

class bin_semaphore
{

private:
bool s; /* Binary semaphore */

public:
bin_semaphore() // Default constructor
: s (false)
{}

void P() // Wait on semaphore
{

while (test_and_set (s));
}

void V () // Signal the semaphore
{

s = false;
}

};

– General semaphore

class semaphore
{

private:
bin_semaphore mutex;
bin_semaphore delay;
int count;

public:
void semaphore (const int num = 1) // Constructor
: count (num)
{

delay.P();
}

void P()
{

mutex.P();
if (--count < 0)
{

mutex.V();
delay.P();

}
mutex.V();

}

void V()

Interprocess Communication 24

{
mutex.P();
if (++count <= 0)

delay.V();
else

mutex.V();
}

}

– Busy-wait Problem – Processes waste cpu cycles while waiting to enter their critical sections

∗ Modify wait operation into the block operation. The process can block itself rather than busy-
waiting.
∗ Place the process into a wait queue associated with the critical section
∗ Modify signal operation into the wakeup operation.
∗ Change the state of the process from wait to ready.

– Block-Wakeup Protocol

// Semaphore with block wakeup protocol

class sem_int
{

private:
int value; // Number of resources
queue<pid_t> l; // List of processes

public:
void sem_int (const int n = 1) // Constructor
: value (n)
{

l = queue<pid_t>(0); // Empty queue
}

void P()
{

if (--value < 0)
{

pid_t p = getpid();
l.enqueue (p); // Enqueue the invoking process
block (p);

}
}

void V()
{

if (++value <= 0)
{

process p = l.dequeue();
wakeup (p);

}
}

};

Producer-Consumer problem with semaphores

extern semaphore mutex; // To get exclusive access to buffers

Interprocess Communication 25

extern semaphore empty (n); // Number of available buffers
extern semaphore full (0); // Initialized to 0

void producer()
{

do
{

produce (item);
empty.P(); // empty is semaphore
mutex.P(); // mutex is semaphore
put (item);
mutex.V()
full.V()

} while (1);
}

void consumer()
{

do
{

full.P();
mutex.P();
remove (item);
mutex.V();
empty.V();
consume (item);

} while (1);
}

Problem: What if order of wait is reversed in producer

Event Counters

• Solve the producer-consumer problem without requiring mutual exclusion

• Special kind of variable with three operations

1. E.read(): Return the current value of E

2. E.advance(): Atomically increment E by 1

3. E.await(v): Wait until E has a value of v or more

• Event counters always start at 0 and always increase

class event_counter
{

int ec; // Event counter

public:
event_counter () // Default constructor
: ec (0)
{}
int read() const { return (ec); }
void advance() { ec++; }
void await (const int v) const { while (ec < v); }

};

Interprocess Communication 26

extern event_counter in, out; // Shared event counters

void producer()
{

int sequence (0); // Local to producer
do
{

produce (item);
sequence++;
out.await (sequence - num_buffers);
put (item);
in.advance();

}
while (1);

}

void consumer()
{

int sequence (0); // Local to consumer
do
{

sequence++;
in.await (sequence);
remove (item);
out.advance();
consume (item);

}
while (1);

}

Higher-Level Synchronization Methods

• P and V operations do not permit a segment of code to be designated explicitly as a critical section.

• Two parts of a semaphore operation; should be treated as distinct

– Block-wakeup of processes

– Counting of semaphore

• Possibility of a deadlock – Omission or unintentional execution of a V operation.

• Monitors

– Implemented as a class with private and public functions

– Collection of data [resources] and private functions to manipulate this data

– A monitor must guarantee the following:

∗ Access to the resource is possible only via one of the monitor procedures.
∗ Procedures are mutually exclusive in time. Only one process at a time can be active within the

monitor.

– Additional mechanism for synchronization or communication – the condition construct

condition x;

∗ condition variables are accessed by only two operations – wait and signal

Interprocess Communication 27

∗ x.wait() suspends the process that invokes this operation until another process invokes x.signal()
∗ x.signal() resumes exactly one suspended process; it has no effect if no process is suspended

– Selection of a process to execute within monitor after signal

∗ x.signal() executed by process P allowing the suspended process Q to resume execution
1. P waits until Q leaves the monitor, or waits for another condition
2. Q waits until P leaves the monitor, or waits for another condition

Choice 1 advocated by Hoare

• The Dining Philosophers Problem – Solution by Monitors

enum state_type { thinking, hungry, eating };

class dining_philosophers
{

private:
state_type state[5]; // State of five philosophers
condition self[5]; // Condition object for synchronization

void test (int i)
{

if ((state[(i + 4) % 5] != eating) &&
(state[i] == hungry) &&
(state[(i + 1) % 5] != eating))

{
state[i] = eating;
self[i].signal();

}
}

public:
void dining_philosophers() // Constructor
{

for (int i = 0; i < 5; state[i++] = thinking);
}

void pickup (const int i) // i corresponds to the philosopher
{

state[i] = hungry;
test (i);
if (state[i] != eating)

self[i].wait();
}

void putdown (const int i) // i corresponds to the philosopher
{

state[i] = thinking;
test ((i + 4) % 5);
test ((i + 1) % 5);

}
}

– Philosopher i must invoke the operations pickup and putdown on an instance dp of the
dining philosophers monitor

Interprocess Communication 28

dining_philosophers dp;

dp.pickup(i); // Philosopher i picks up the chopsticks
...

dp.eat(i); // Philosopher i eats (for random amount of time)
...

dp.putdown(i); // Philosopher i puts down the chopsticks

– No two neighbors eating simultaneously – no deadlocks

– Possible for a philosopher to starve to death

• Implementation of a Monitor

– Execution of procedures must be mutually exclusive

– A wait must block the current process on the corresponding condition

– If no process in running in the monitor and some process is waiting, it must be selected. If more than one
waiting process, some criterion for selecting one must be deployed.

– Implementation using semaphores

∗ Semaphore mutex corresponding to the monitor initialized to 1
· Before entry, execute wait(mutex)

· Upon exit, execute signal(mutex)

∗ Semaphore next to suspend the processes unable to enter the monitor initialized to 0
∗ Integer variable next count to count the number of processes waiting to enter the monitor
mutex.wait();

...
void P() { ... } // Body of P()

...
if (next_count > 0)

next.signal();
else

mutex.signal();

∗ Semaphore x sem for condition x, initialized to 0

∗ Integer variable x count

class condition
{

int num_waiting_procs; // Processes waiting on this condition
semaphore sem; // To synchronize the processes
static int next_count; // Processes waiting to enter monitor
static semaphore next;
static semaphore mutex;

public:
condition() // Default constructor
: num_waiting_procs (0), sem (0)
{}

void wait()
{

num_waiting_procs++; // # of processes waiting on this condition
if (next_count > 0) // Someone waiting inside monitor?

next.signal(); // Yes, wake him up
else

Interprocess Communication 29

mutex.signal(); // No, free mutex so others can enter
sem.wait(); // Start waiitng for condition
num_waiting_procs--; // Wait over, decrement variable

}

void signal()
{

if (num_waiting_procs <= 0) // Nobody waiting?
return;

next_count++; // Number of ready processes inside monitor
sem.signal(); // Send the signal
next.wait(); // You wait; let signalled process run
next_count--; // One less process in monitor

}
};

• Conditional Critical Regions (CCRs)

– Designed by Hoare and Brinch-Hansen to overcome the deficiencies of semaphores

– Explicitly designate a portion of code to be critical section

– Specify the variables (resource) to be protected by the critical section

resource r :: v_1, v_2, ..., v_n

– Specify the conditions under which the critical section may be entered to access the elements that form
the resource

region r when B do S

∗ B is a condition to guard entry into critical section S

∗ At any time, only one process is permitted to enter the code segment associated with resource r

– The statement region r when B do S is implemented by

semaphore mutex (1), delay (0);
int delay_cnt (0);

mutex.P();
del_cnt++;
while (!B)
{

mutex.V();
delay.P();
mutex.P();

}
del_cnt--;
S; // Critical section code
for (int i (0); i < del_cnt; i++)

delay.V();
mutex.V();

Message-Based Synchronization Schemes

• Communication between processes is achieved by:

– Shared memory (semaphores, CCRs, monitors)

– Message systems

Interprocess Communication 30

∗ Desirable to prevent sharing, possibly for security reasons or no shared memory availability due to
different physical hardware

• Communication by Passing Messages

– Processes communicate without any need for shared variables

– Two basic communication primitives

∗ send message
∗ receive message

send(P, message) Send a message to process P
receive(Q, message) Receive a message from process Q

– Messages passed through a communication link

• Producer/Consumer Problem

void producer (void) void consumer (void)
{ {

while (1) while (1)
{ {

produce (data); receive (producer, data);
send (consumer, data); consume (data);

} }
} }

• Issues to be resolved in message communication

– Synchronous v/s Asynchronous Communication

∗ Upon send, does the sending process continue (asynchronous or nonblocking communication), or does
it wait for the message to be accepted by the receiving process (synchronous or blocking communica-
tion)?

∗ What happens when a receive is issued and there is no message waiting (blocking or nonblocking)?

– Implicit v/s Explicit Naming

∗ Does the sender specify exactly one receiver (explicit naming) or does it transmit the message to all
the other processes (implicit naming)?

send (p, message) Send a message to process p
send (A, message) Send a message to mailbox A

∗ Does the receiver accept from a certain sender (explicit naming) or can it accept from any sender
(implicit naming)?

receive (p, message) Receive a message
from process p

receive (id, message) Receive a message
from any process;
id is the process id

receive (A, message) Receive a message
from mailbox A

Ports and Mailboxes

• Achieve synchronization of asynchronous process by embedding a busy-wait loop, with a non-blocking receive
to simulate the effect of implicit naming

– Inefficient solution

Interprocess Communication 31

• Indirect communication avoids the inefficiency of busy-wait

– Make the queues holding messages between senders and receivers visible to the processes, in the form of
mailboxes

– Messages are sent to and received from mailboxes
– Most general communication facility between n senders and m receivers
– Unique identification for each mailbox
– A process may communicate with another process by a number of different mailboxes
– Two processes may communicate only if they have a shared mailbox

• Properties of a communication link

– A link is established between a pair of processes only if they have a shared mailbox
– A link may be associated with more than two processes
– Between each pair of communicating processes, there may be a number of different links, each correspond-

ing to one mailbox
– A link may be either unidirectional or bidirectional

• Ports

– In a distributed environment, the receive referring to same mailbox may reside on different machines
– Port is a limited form of mailbox associated with only one receiver
– All messages originating with different processes but addressed to the same port are sent to one central

place associated with the receiver

Remote Procedure Calls

• High-level concept for process communication, allowing functions to be called without using send/receive prim-
itives

– send/receive work like semaphores, taking attention away from the task at hand
– rpcs allow the called function to be perceived as a service request

• Transfers control to another process, possibly on a different computer, while suspending the calling process

• Called procedure resides in separate address space and no global variables are shared

• Return statement executed by called function returns control to the caller

• Communication strictly by parameters

send (RP_guard, parameters);
receive (RP_guard, results);

• The remote procedure guard is implemented by

void RP_guard (void)
{

do
receive (caller, parameters);
...
send (caller, results);

while (1);
}

• Static versus dynamic creation of remote procedures

• rendezvous mechanism in Ada

