

Professional

Search Engine
Optimization with PHP

A Developer’s Guide to SEO

Jaimie Sirovich

Cristian Darie

00929ffirs.qxd:00929ffirs 3/13/07 10:36 AM Page iii

00929ffirs.qxd:00929ffirs 3/13/07 10:36 AM Page ii

Professional

Search Engine
Optimization with PHP

00929ffirs.qxd:00929ffirs 3/13/07 10:36 AM Page i

00929ffirs.qxd:00929ffirs 3/13/07 10:36 AM Page ii

Professional

Search Engine
Optimization with PHP

A Developer’s Guide to SEO

Jaimie Sirovich

Cristian Darie

00929ffirs.qxd:00929ffirs 3/13/07 10:36 AM Page iii

Professional Search Engine Optimization with PHP:
A Developer’s Guide to SEO
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada
ISBN: 978-0-470-10092-9
Manufactured in the United States of America
10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data:

Sirovich, Jaimie, 1981-
Professional search engine optimization with PHP : a developer's guide to SEO / Jaimie Sirovich, Cristian Darie.

p. cm.
Includes index.
ISBN 978-0-470-10092-9 (pbk.)
1. PHP (Computer program language) 2. Web sites--Design. 3. Search engines. I. Darie, Cristian. II. Title.
QA76.73.P224S525 2007
005.13'3--dc22

2007003317

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permis-
sion should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis,
IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTI CULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTAND-
ING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PRO-
FESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT
PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL
BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS
REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMA-
TION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE
ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READ-
ERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department within
the United States at (800) 762-2974, outside the United States at (317) 572-3993
or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. Microsoft and Excel are registered trademarks of
Microsoft Corporation in the United States and/or other countries. All other trademarks are the property of their
respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

00929ffirs.qxd:00929ffirs 3/13/07 10:36 AM Page iv

www.wiley.com

About the Authors
Jaimie Sirovich is a search engine marketing consultant. He works with his clients to build them power-
ful online presences. Officially Jaimie is a computer programmer, but he claims to enjoy marketing much
more. He graduated from Stevens Institute of Technology with a BS in Computer Science. He worked
under Barry Schwartz at RustyBrick, Inc., as lead programmer on e-commerce projects until 2005. At
present, Jaimie consults for several organizations and administrates the popular search engine market-
ing blog, SEOEgghead.com.

Cristian Darie is a software engineer with experience in a wide range of modern technologies, and the
author of numerous books and tutorials on AJAX, ASP.NET, PHP, SQL, and related areas. Cristian cur-
rently lives in Bucharest, Romania, studying distributed application architectures for his PhD. He’s get-
ting involved with various commercial and research projects, and when not planning to buy Google, he
enjoys his bit of social life. If you want to say “Hi,” you can reach Cristian through his personal web site
at http://www.cristiandarie.ro.

00929ffirs.qxd:00929ffirs 3/13/07 10:36 AM Page v

Credits
Acquisitions Editor
Kit Kemper

Developmental Editor
Kenyon Brown

Technical Editor
Bogdan Brinzarea

Production Editor
Angela Smith

Copy Editor
Kim Cofer

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Compositor
Laurie Stewart, Happenstance Type-O-Rama

Proofreader
Ian Golder

Indexer
Melanie Belkin

Anniversary Logo Design
Richard Pacifico

00929ffirs.qxd:00929ffirs 3/13/07 10:36 AM Page vi

Acknowledgments

The authors would like to thank the following people and companies, listed alphabetically, for their
invaluable assistance with the production of this book. Without their help, this book would not have
been possible in its current form.

Dan Kramer of Volatile Graphix for generously providing his cloaking database to the public — and even
adding some data to make our cloaking code examples work better.

Kim Krause Berg of The Usability Effect for providing assistance and insight where this book references
usability and accessibility topics.

MaxMind, Inc., for providing their free GeoLite geo-targeting data — making our geo-targeting code
examples possible.

Several authors of WordPress plugins including Arne Brachhold, Lester Chan, Peter Harkins, Matt Lloyd,
and Thomas McMahon.

Family and friends of both Jaimie and Cristian — for tolerating the endless trail of empty cans of
(caffeinated) soda left on the table while writing this book.

00929ffirs.qxd:00929ffirs 3/13/07 10:36 AM Page vii

00929ffirs.qxd:00929ffirs 3/13/07 10:36 AM Page viii

Contents

Acknowledgments vii
Introduction xvii

Chapter 1: You: Programmer and Search Engine Marketer 1

Who Are You? 2
What Do You Need to Learn? 3

SEO and the Site Architecture 4
SEO Cannot Be an Afterthought 5
Communicating Architectural Decisions 5
Architectural Minutiae Can Make or Break You 5

Preparing Your Playground 6
Installing XAMPP 7
Preparing the Working Folder 8
Preparing the Database 11

Summary 12

Chapter 2: A Primer in Basic SEO 13

Introduction to SEO 13
Link Equity 14
Google PageRank 15
A Word on Usability and Accessibility 16

Search Engine Ranking Factors 17
On-Page Factors 17
Visible On-Page Factors 18
Invisible On-Page Factors 20
Time-Based Factors 21
External Factors 22

Potential Search Engine Penalties 26
The Google “Sandbox Effect” 26
The Expired Domain Penalty 26
Duplicate Content Penalty 27
The Google Supplemental Index 27

Resources and Tools 28
Web Analytics 28

00929ftoc.qxd:00929ftoc 3/13/07 2:02 PM Page ix

x

Contents

Market Research 29
Researching Keywords 32
Browser Plugins 33
Community Forums 33
Search Engine Blogs and Resources 34

Summary 35

Chapter 3: Provocative SE-Friendly URLs 37

Why Do URLs Matter? 38
Static URLs and Dynamic URLs 38

Static URLs 39
Dynamic URLs 39
URLs and CTR 40
URLs and Duplicate Content 41

URLs of the Real World 42
Example #1: Dynamic URLs 42
Example #2: Numeric Rewritten URLs 43
Example #3: Keyword-Rich Rewritten URLs 44
Maintaining URL Consistency 44

URL Rewriting 46
Installing mod_rewrite 48
Testing mod_rewrite 49
Introducing Regular Expressions 54
URL Rewriting and PHP 60
Rewriting Numeric URLs with Two Parameters 61
Rewriting Keyword-Rich URLs 64
Building a Link Factory 66
Pagination and URL Rewriting 72
Rewriting Images and Streaming Media 72

Problems Rewriting Doesn’t Solve 75
A Last Word of Caution 75
Summary 76

Chapter 4: Content Relocation and HTTP Status Codes 77

HTTP Status Codes 78
Redirection Using 301 and 302 79

301 81
302 82

Removing Deleted Pages Using 404 83
Avoiding Indexing Error Pages Using 500 84

00929ftoc.qxd:00929ftoc 3/13/07 2:02 PM Page x

xi

Contents

Redirecting with PHP and mod_rewrite 84
Using Redirects to Change File Names 85
URL Correction 89
Dealing with Multiple Domain Names Properly 90
Using Redirects to Change Domain Names 90
URL Canonicalization: www.example.com versus example.com 91
URL Canonicalization: /index.php versus / 92

Other Types of Redirects 94
Summary 94

Chapter 5: Duplicate Content 95

Causes and Effects of Duplicate Content 96
Duplicate Content as a Result of Site Architecture 96
Duplicate Content as a Result of Content Theft 96

Excluding Duplicate Content 97
Using the Robots Meta Tag 97
robots.txt Pattern Exclusion 99

Solutions for Commonly Duplicated Pages 103
Print-Friendly Pages 103
Navigation Links and Breadcrumb Navigation 104
Similar Pages 106
Pages with Duplicate Meta Tag or Title Values 106
URL Canonicalization 106
URL-Based Session IDs 107
Other Navigational Link Parameters 107
Affiliate Pages 108
Redirecting Parameterized Affiliate URLs 109

Summary 118

Chapter 6: SE-Friendly HTML and JavaScript 119

Overall Architecture 120
Search Engine–Friendly JavaScript 120

JavaScript Links 121
DHTML Menus 121
Popup Windows 121
DHTML Popup Windows 129
Crawlable Images and Graphical Text 129

Search Engine–Friendly HTML 140
HTML Structural Elements 141
Copy Prominence and Tables 141

00929ftoc.qxd:00929ftoc 3/13/07 2:02 PM Page xi

xii

Contents

Frames 144
Using Forms 144

Using a Custom Markup Language to Generate SE-Friendly HTML 145
Flash and AJAX 149

The Blended Approach 149
Summary 150

Chapter 7: Web Feeds and Social Bookmarking 151

Web Feeds 151
RSS and Atom 152

Creating RSS Feeds 154
Syndicating RSS and Atom Feeds 160
Other Sources of Syndicated Content 164
Social Bookmarking 164
Summary 172

Chapter 8: Black Hat SEO 173

What’s with All the Hats? 174
Bending the Rules 175
Technical Analysis of Black-Hat Techniques 176

Attack Avoidance 177
HTML Insertion Attacks 177
Avoiding Comment Attacks Using Nofollow 180
Sanitizing User Input 184
Requesting Human Input 188
301 Redirect Attacks 194
Content Theft 196
On Buying Links 197
Digital Point Co-op, Link Vault 197

Summary 197

Chapter 9: Sitemaps 199

Traditional Sitemaps 199
Search Engine Sitemaps 200

Using Google Sitemaps 201
Using Yahoo! Sitemaps 203

Generating Sitemaps Programmatically 203
Informing Google about Updates 208

00929ftoc.qxd:00929ftoc 3/13/07 2:02 PM Page xii

xiii

Contents

The Sitemaps.org Standard Protocol 209
Summary 210

Chapter 10: Link Bait 211

Hooking Links 211
Informational Hooks 212
News Story Hooks 212
Humor/Fun Hooks 212
Evil Hooks 212

Traditional Examples of Link Bait 213
Interactive Link Bait: Put on Your Programming Hardhat! 213
Case Study: Fortune Cookies 214
Summary 218

Chapter 11: Cloaking, Geo-Targeting, and IP Delivery 219

Cloaking, Geo-Targeting, and IP Delivery 219
More on Geo-Targeting 220
A Few Words on JavaScript Redirect Cloaking 221
The Ethical Debate on Cloaking 221
Cloaking Dangers 222
Using the Meta Noarchive Tag 222

Implementing Cloaking 223
Cloaking Case Studies 232

Rendering Images as Text 233
Redirecting Excluded Content 233
Feeding Subscription-Based Content Only to Spiders 233
Disabling URL-Based Session Handling for Spiders 234
Other Cloaking Implementations 234

Implementing Geo-Targeting 234
Summary 241

Chapter 12: Foreign Language SEO 243

Foreign Language Optimization Tips 243
Indicating Language and Region 244
Server Location and Domain Name 244
Include the Address of the Foreign Location if Possible 245
Dealing with Accented Letters (Diacritics) 245

Foreign Language Spamming 248
Summary 248

00929ftoc.qxd:00929ftoc 3/13/07 2:02 PM Page xiii

xiv

Contents

Chapter 13: Coping with Technical Issues 249

Unreliable Web Hosting or DNS 249
Changing Hosting Providers 250
Cross-Linking 251
SEO-Aware Split Testing 253
Detecting Broken Links 254
Summary 259

Chapter 14: Case Study: Building an E-Commerce Store 261

Establishing the Requirements 262
Implementing the Product Catalog 262
Summary 281

Chapter 15: Site Clinic: So You Have a Web Site? 283

1. Creating Sitemaps 284
2. Creating News Feeds 284
3. Fixing Duplication in Titles and Meta Tags 284
4. Getting Listed in Reputable Directories 284
5. Soliciting and Exchanging Relevant Links 285
6. Buying Links 285
7. Creating Link Bait 285
8. Adding Social Bookmarking Functionality 286
9. Starting a Blog and/or Forum 286
10. Dealing with a Pure Flash or AJAX Site 286
11. Preventing Black Hat Victimization 286
12. Examining Your URLs for Problems 287
13. Looking for Duplicate Content 287
14. Eliminating Session IDs 287
15. Tweaking On-page Factors 287
Summary 288

Chapter 16: WordPress: Creating an SE-Friendly Blog 289

Installing WordPress 290
Turning On Permalinks 293
Akismet: Preventing Comment Spam 294
Sociable: Social Bookmarking Icons 295
WP-Email: Email a Friend 296
Chicklet Creator Plugin 298

00929ftoc.qxd:00929ftoc 3/13/07 2:02 PM Page xiv

xv

Contents

Sitemap Generator Plugin 299
Google Sitemaps Plugin 301
Digg Button Plugin 304
Pagerfix Plugin 305
Eliminating Duplicate Content 307

Pull-downs and Excluding Category Links 308
Excerpting Article Content 309

Making the Blog Your Home Page 309
Summary 310

Appendix A: Simple Regular Expressions 311

Matching Single Characters 312
Matching Sequences of Characters That Each Occur Once 317
Introducing Metacharacters 319
Matching Sequences of Different Characters 324

Matching Optional Characters 326
Matching Multiple Optional Characters 328

Other Cardinality Operators 332
The * Quantifier 332
The + Quantifier 334

The Curly-Brace Syntax 336
The {n} Syntax 336
The {n,m} Syntax 337
{0,m} 337
{n,m} 339
{n,} 340

Glossary 343

Index 351

00929ftoc.qxd:00929ftoc 3/13/07 2:02 PM Page xv

00929ftoc.qxd:00929ftoc 3/13/07 2:02 PM Page xvi

Introduction

Welcome to Professional Search Engine Optimization with PHP: A Developer’s Guide to SEO!

Search engine optimization has traditionally been the job of a marketing staff. With this book, we examine
search engine optimization in a brand new light, evangelizing that SEO should be done by the program-
mer as well.

For maximum efficiency in search engine optimization efforts, developers and marketers should work
together, starting from a web site’s inception and technical and visual design and moving throughout
its development lifetime. We provide developers and IT professionals with the information they need
to create and maintain a search engine–friendly web site and avoid common pitfalls that confuse search
engine spiders. This book discusses in depth how to facilitate site spidering and discusses the various
technologies and services that can be leveraged for site promotion.

Who Should Read This Book
Professional Search Engine Optimization with PHP: A Developer’s Guide to SEO is mainly geared toward web
developers, because it discusses search engine optimization in the context of web site programming. You
do not need to be a programmer by trade to benefit from this book, but some programming background
is important for fully understanding and following the technical exercises.

We also tried to make this book friendly for the search engine marketer with some IT background who
wants to learn about a different, more technical angle of search engine optimization. Usually, each chap-
ter starts with a less-technical discussion on the topic at hand and then develops into the more advanced
technical details. Many books cover search engine optimization, but few delve at all into the meaty tech-
nical details of how to design a web site with the goal of search engine optimization in mind. Ultimately,
this book does just that.

Where programming is discussed, we show code with explanations. We don’t hide behind concepts
and buzzwords; we include hands-on practical exercises instead. Contained within this reference are
fully functional examples of using XML-based sitemaps, social-bookmarking widgets, and even work-
ing implementations of cloaking and geo-targeting.

What Will You Learn from this Book?
In this book, we have assembled the most important topics that programmers and search engine marketers
should know about when designing web sites.

00929flast.qxd:00929flast 3/13/07 10:37 AM Page xvii

At the end of Chapter 1, You: Programmer and Search Engine Marketer, you create the environment
where you’ll be coding away throughout the rest of the book. Programming with PHP can be tricky at
times; in order to avoid most configuration and coding errors you may encounter, we will instruct you
how to prepare the working folder and your MySQL database.

If you aren’t ready for these tasks yet, don’t worry! You can come back at any time, later. All
programming-related tasks in this book are explained step by step to minimize the chances that
anyone gets lost on the way.

Chapter 2, A Primer in Basic SEO, is a primer in search engine optimization tailored for the IT profes-
sional. It stresses the points that are particularly relevant to the programmer from the perspective of the
programmer. You’ll also learn about a few tools and resources that all search engine marketers and web
developers should know about.

Chapter 3, Provocative SE-Friendly URLs, details how to create (or enhance) your web site with improved
URLs that are easier for search engines to understand and more persuasive for their human readers. You’ll
even create a URL factory, which you will be able to reuse in your own projects.

Chapter 4, Content Relocation and HTTP Status Codes, presents all of the nuances involved in using
HTTP status codes correctly to relocate and indicate other statuses for content. The proper use of these
status codes is essential when restructuring information on a web site.

Chapter 5, Duplicate Content, discusses duplicate content in great detail. It then proposes strategies for
avoiding problems related to duplicate content.

Chapter 6, SE-Friendly HTML and JavaScript, discusses search engine optimization issues that present
themselves in the context of rendering content using HTML, JavaScript and AJAX, and Flash.

Chapter 7, Web Feeds and Social Bookmarking, discusses web syndication and social bookmarking.
Tools to create feeds and ways to leverage social bookmarking are presented.

Chapter 8, Black Hat SEO, presents black hat SEO from the perspective of preventing black hat victim-
ization and attacks. You may want to skip ahead to this chapter to see what this is all about!

Getting the Most Out of this Book
You may choose to read this book cover-to-cover, but that is strictly not required.
We recommend that you read Chapters 1–6 first, but the remaining chapters can be
perused in any order. In case you run into technical problems, a page with chapter-
by-chapter book updates and errata is maintained by Jaimie Sirovich at http://
www.seoegghead.com/seo-with-php-updates.html. You can also search for
errata for the book at www.wrox.com, as is discussed later in this introduction.

If you have any feedback related to this book, don’t hesitate to contact either Jaimie
or Cristian! This will help to make everyone’s experience with this book more pleasant
and fulfilling.

Introduction

xviii

00929flast.qxd:00929flast 3/13/07 10:37 AM Page xviii

Chapter 9, Sitemaps, discusses the use of sitemaps — traditional and XML-based — for the purpose of
improving and speeding indexing.

Chapter 10, Link Bait, discusses the concept of link bait and provides an example of a site tool that could
bait links.

Chapter 11, Cloaking, Geo-Targeting, and IP Delivery, discusses cloaking, geo-targeting, and IP Delivery.
It includes fully working examples of all three.

Chapter 12, Foreign Language SEO, discusses search engine optimization for foreign languages and the
concerns therein.

Chapter 13, Coping with Technical Issues, discusses the various issues that an IT professional must
understand when maintaining a site, such as how to change web hosts without potentially hurting
search rankings.

Chapter 14, Case Study: Building an E-Commerce Store, rounds it off with a fully functional search
engine–optimized e-commerce catalog incorporating much of the material in the previous chapters.

Chapter 15, Site Clinic: So You Have a Web Site?, presents concerns that may face a preexisting web
site and suggests enhancements that can be implemented in the context of their difficulty.

Lastly, Chapter 16, WordPress: Creating an SE-Friendly Blog, documents how to set up a search
engine–optimized blog using WordPress 2.0 and quite a few custom plugins.

We hope that you will enjoy reading this book and that it will prove useful for your real-world search
engine optimization endeavors!

Contacting the Authors
Jaimie Sirovich can be contacted through his blog at http://www.seoegghead.com. Cristian Darie can
be contacted from his web site at http://www.cristiandarie.ro.

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Introduction

xix

00929flast.qxd:00929flast 3/13/07 10:37 AM Page xix

As for styles in the text:

❑ We highlight new terms and important words when we introduce them.

❑ We show keyboard strokes like this: Ctrl+A.

❑ We show file names, URLs, and code within the text like so: persistence.properties.

❑ We present code in two different ways:

In code examples we highlight new and important code with a gray background.
The gray highlighting is not used for code that’s less important in the present
context, or has been shown before.

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is
available for download at http://www.wrox.com. Once at the site, simply locate the book’s title (either
by using the Search box or by using one of the title lists) and click the Download Code link on the book’s
detail page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-470-10092-9.

Once you download the code, just decompress it with your favorite compression tool. Alternatively,
you can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/
download.aspx to see the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to http://www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this page
you can view all errata that has been submitted for this book and posted by Wrox editors. A complete
book list including links to each book’s errata is also available at www.wrox.com/misc-pages/
booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

Introduction

xx

00929flast.qxd:00929flast 3/13/07 10:37 AM Page xx

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based system
for you to post messages relating to Wrox books and related technologies and interact with other readers
and technology users. The forums offer a subscription feature to email you topics of interest of your choos-
ing when new posts are made to the forums. Wrox authors, editors, other industry experts, and your fellow
readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an email with information describing how to verify your account and complete
the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the web. If you would like to have new messages from a particular forum emailed
to you, click the Subscribe To This Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

Introduction

xxi

00929flast.qxd:00929flast 3/13/07 10:37 AM Page xxi

00929flast.qxd:00929flast 3/13/07 10:37 AM Page xxii

You: Programmer and
Search Engine Marketer

Googling for information on the World Wide Web is such a common activity these days that it
is hard to imagine that just a few years ago this verb did not even exist. Search engines are now
an integral part of our lifestyle, but this was not always the case. Historically, systems for finding
information were driven by data organization and classification performed by humans. Such
systems are not entirely obsolete — libraries still keep their books ordered by categories, author
names, and so forth. Yahoo! itself started as a manually maintained directory of web sites, organ-
ized into categories. Those were the good old days.

Today, the data of the World Wide Web is enormous and rapidly changing; it cannot be confined
in the rigid structure of the library. The format of the information is extremely varied, and the
individual bits of data — coming from blogs, articles, web services of all kinds, picture galleries,
and so on — form an almost infinitely complex virtual organism. In this environment, making
information findable necessitates something more than the traditional structures of data organiza-
tion or classification.

Introducing the ad-hoc query and the modern search engine. This functionality reduces the afore-
mentioned need for organization and classification; and since its inception, it has been become
quite pervasive. Google’s popular email service, GMail, features its searching capability that
permits a user to find emails that contain a particular set of keywords. Microsoft Windows Vista
now integrates an instant search feature as part of the operating system, helping you quickly find
information within any email, Word document, or database on your hard drive from the Start
menu regardless of the underlying file format. But, by far, the most popular use of this functional-
ity is in the World Wide Web search engine.

These search engines are the exponents of the explosive growth of the Internet, and an entire indus-
try has grown around their huge popularity. Each visit to a search engine potentially generates busi-
ness for a particular vendor. Looking at Figure 1-1 it is easy to figure out where people in Manhattan
are likely to order pizza online. Furthermore, the traffic resulting from non-sponsored, or organic,
search results costs nothing to the vendor. These are highlighted in Figure 1-1.

00929c01.qxd:00929c01 3/13/07 10:38 AM Page 1

Figure 1-1

The less obvious effect of the search engine explosion phenomenon is that web developers are now
directly involved in the search engine marketing process. To rank well in these organic results, it may not
be enough to “write relevant content,” as your typical search engine marketing tutorial drones. Rather,
the web application developer must work together with the marketing team, and he or she must build a
web site fully aware that certain features or technologies may interfere with a search engine marketing
campaign. An improperly designed web site can interfere with a search engine’s need to periodically
navigate and index the information contained therein. In the worst case, the search engine may not be
able to index the content at all.

So, ironically, while users are becoming less interested in understanding the structure of data on the
Internet, the structure of a web site is becoming an increasingly important facet in search engine mar-
keting! This structure — the architecture of a web site — is the primary focus of this book.

We hope that this brief introduction whets your appetite! The remainder of this chapter tells you what
to expect from this book. You will also configure your development machine to ensure you won’t have
any problems following the technical exercises in the later chapters.

Who Are You?
Maybe you’re a great programmer or IT professional, but marketing isn’t your thing. Or perhaps you’re a
tech-savvy search engine marketer who wants a peek under the hood of a search engine optimized web
site. Search engine marketing is a field where technology and marketing are both critical and interdepend-
ent, because small changes in the implementation of a web site can make you or break you in search engine
rankings. Furthermore, the fusion of technology and marketing know-how can create web site features that
attract more visitors.

The raison d’être of this book is to help web developers create web sites that rank well with the major search
engines, and to teach search engine marketers how to use technology to their advantage. We assert that nei-
ther marketing nor IT can exist in a vacuum, and it is essential that they not see themselves as opposing
forces in an organization. They must work together. This book aims to educate both sides in that regard.

2

Chapter 1: You: Programmer and Search Engine Marketer

00929c01.qxd:00929c01 3/13/07 10:38 AM Page 2

What Do You Need to Learn?
As with anything in the technology-related industry, one must constantly learn and research to keep
apprised of the latest news and trends. How exhausting! Fortunately, there are fundamental truths with
regard to search engine optimization that are both easy to understand and probably won’t change in
time significantly — so a solid foundation that you build now will likely stand the test of time.

We remember the days when search engine optimization was a black art of analyzing and improving
on-page factors. Search engine marketers were obsessed over keyword density and which HTML tags
to use. Many went so far as to recommend optimizing content for different search engines individually,
thusly creating different pages with similar content optimized with different densities and tags. Today,
that would create a problem called duplicate content.

The current struggle is creating a site with interactive content and navigation with a minimal amount
of duplicate content, with URLs that do not confuse web spiders, and a tidy internal linking structure.
There is a thread on SearchEngineWatch (http://www.searchenginewatch.com) where someone
asked which skill everyone reading would like to hone. Almost all of them enumerated programming
as one of the skills (http://forums.searchenginewatch.com/showthread.php?t=11945). This
does not surprise us. Having an understanding of both programming and search engine marketing
will serve one well in the pursuit of success on the Internet.

When people ask us where we’d suggest spending money in an SEO plan, we always recommend making
sure that one is starting with a sound basis. If your web site has architectural problems, it’s tantamount
to trumpeting your marketing message atop a house of cards. Professional Search Engine Optimization with
PHP: A Developer’s Guide to SEO aims to illustrate how to build a solid foundation.

To get the most out of this journey, you should be familiar with a bit of programming (PHP, preferably).
You can also get quite a bit out this book by only reading the explanations. And another strategy to
reading this book is to do just that — then hand this book to the web developer with a list of concerns
and directives in order to ensure the resulting product is search engine optimized. In that case, don’t
get bogged down in the exercises — just skim them.

The Story
So how do a search engine marketer from the USA (Jaimie) and a programmer from
Romania (Cristian) meet? To answer, we need to tell you a funny little story. A while
ago, Jaimie happened to purchase a book (that shall remain nameless) written by
Cristian, and was not pleased with one particular aspect of its contents. Jaimie
proceeded to grill him with some critical comments on a public web site. Ouch!

Cristian contacted Jaimie courteously, and explained most of it away. No, we’re not
going to tell you the name of the book, what the contents were, or whether it is still
in print. But things did eventually get more amicable, and we started to correspond
about what we do for a living. Jaimie is a web site developer and search engine mar-
keter, and Cristian is a software engineer who has published quite a few books in the
technology sector. As a result of those discussions, the idea of a technology-focused
search engine optimization book came about. The rest is more or less history.

3

Chapter 1: You: Programmer and Search Engine Marketer

00929c01.qxd:00929c01 3/13/07 10:38 AM Page 3

We cover a quick introduction to SEO in Chapter 2, which should nail down the foundations of that
subject. However, PHP and MySQL are vast subjects; and this book cannot afford to also be a PHP and
MySQL tutorial. The code samples are explained step by step, but if you have never written a line of
PHP or SQL before, and want to follow the examples in depth, you should also consider reading a PHP
and MySQL tutorial book, such as the following:

❑ PHP and MySQL for Dynamic Web Sites: Visual QuickPro Guide, 2nd edition (Larry Ulman,
Peachpit Press, 2005)

❑ Build Your Own Database Driven Website Using PHP & MySQL, 3rd Edition (Kevin Yank,
Sitepoint, 2005)

❑ Teach Yourself PHP in 10 Minutes (Chris Newman, Sams, 2005)

SEO and the Site Architecture
A web site’s architecture is what grounds all future search engine marketing efforts. The content rests on
top of it, as shown in Figure 1-2. An optimal web site architecture facilitates a search engine in traversing
and understanding the site. Therefore, creating a web site with a search engine optimized architecture is
a major contributing factor in achieving and maintaining high search engine rankings.

Architecture should also be considered throughout a web site’s lifetime by the web site developer, along-
side other factors such as aesthetics and usability. If a new feature does not permit a search engine to
access the content, hinders it, or confuses it, the effects of good content may be reduced substantially.
For example, a web site that uses Flash or AJAX technologies inappropriately may obscure the majority
of its content from a search engine.

Figure 1-2

We do not cover copywriting concepts in detail, or provide much coaching as to how to create persuasive
page titles. These are also very important topics, which are masterfully covered by Bryan and Jeffrey
Eisenberg in Persuasive Online Copywriting: How to Take Your Words to the Bank (Wizard Academy Press,
2002), and by John Caples and Fred E. Hahn in Tested Advertising Methods, 5th edition (Prentice Hall, 1998).
Shari Thurow also has an excellent section on creating effective titles in her book, Search Engine Visibility
(New Riders Press, 2002). Writing copy and titles that rank well are obviously not successful if they do
not convert or result in click-throughs, respectively. We do give some pointers, though, to get you started.

We also do not discuss concepts related to search engine optimization such as usability and user psy-
chology in depth, though they are strong themes throughout the book.

Content

Site Architecture

Search Engines

4

Chapter 1: You: Programmer and Search Engine Marketer

00929c01.qxd:00929c01 3/13/07 10:38 AM Page 4

Optimizing a site’s architecture frequently involves tinkering with variables that also affect usability
and the overall user perception of your site. When we encounter such situations, we alert you to why
these certain choices were made. Chapter 5, “Duplicate Content,” highlights a typical problem with
breadcrumbs and presents some potential solutions. Sometimes we find that SEO enhancements run
counter to usability. Likewise, not all designs that are user friendly are search engine friendly. Either
way, a compromise must be struck to satisfy both kinds of visitors — users and search engines.

SEO Cannot Be an Afterthought
One common misconception is that search engine optimization efforts can be made after a web site is
launched. This is frequently incorrect. Whenever possible, a web site can and should be designed to be
search engine friendly as a fundamental concern.

Unfortunately, when a preexisting web site is designed in a way that poses problems for search engines,
search engine optimization can become a much larger task. If a web site has to be redesigned, or partially
redesigned, the migration process frequently necessitates special technical considerations. For example,
old URLs must be properly redirected to new ones with similar relevant content.

The majority of this book documents best practices for design from scratch as well as how to mitigate
redesign problems and concerns. The rest is dedicated to discretionary enhancements.

Communicating Architectural Decisions
The aforementioned scenario regarding URL migration is a perfect example of how the technical team
and marketing team must communicate. The programmer must be instructed to add the proper redirects
to the web application. Otherwise existing search rankings may be hopelessly lost forever. Marketers
must know that such measures must be taken in the first place.

In a world where organic rankings contribute to the bottom line, a one-line redirect command in a web
server configuration file may be much more important than one may think. This particular topic, URL
migration, is discussed in Chapter 4.

Architectural Minutiae Can Make or Break You
So you now understand that small mistakes in implementation can be quite insidious. Another common
example would be the use of JavaScript-based navigation, and failing to provide an HTML-based alter-
native. Spiders would be lost, because they, for the most part, do not interpret JavaScript.

The search engine spider is “the third browser.” Many organizations will painstakingly test the effi-
cacy and usability of a design in Internet Explorer and Firefox with dedicated QA teams. Unfortunately,
many fall short by neglecting to design and test for the spider. Perhaps this is because you have to design in
the abstract for the spider; we don’t have a Google spider at our disposal after all; and we can’t inter-
view it afterward with regard to what it thought of our “usability.” However, that does not make its
assessment any less important.

The Spider Simulator tool located at http://www.seochat.com/seo-tools/spider-simulator/
shows you the contents of a web page from the perspective of a hypothetical search engine. The tool is
very simplistic, but if you’re new to SEO, using it can be an enlightening experience.

5

Chapter 1: You: Programmer and Search Engine Marketer

00929c01.qxd:00929c01 3/13/07 10:38 AM Page 5

Preparing Your Playground
This book contains many exercises, and all of them assume that you’ve prepared your environment as
explained in the next few pages. If you’re a PHP and MySQL veteran, here’s the quick list of software
requirements. If you have these, you can skip to the end of the chapter, where you’re instructed to create
a MySQL database for the few exercises in this book that use it.

❑ Apache 2 or newer, with the mod_rewrite module

❑ PHP 4.1 or newer

❑ MySQL

Your PHP installation should have these modules:

❑ php_mysql (necessary for the chapters that work with MySQL)

❑ php_gd2 (necessary for exercises in Chapter 5 and Chapter 10)

❑ php_curl (necessary for exercises in Chapter 11)

If you already have PHP but you aren’t sure which modules you have installed, view your php.ini
configuration file. On a default Windows installation, this file is located in the Windows folder; if you
install PHP through XAMPP as shown in the exercise that follows, the path is \Program Files\xampp\
apache\bin. To enable a module, remove the leading “;” from the extension=module_name.dll line,
and restart Apache.

After installing the necessary software, you’ll create a virtual host named seophp.example.com, which
will point to a folder on your machine, which will be your working folder for this book. All exercises you
build in this book will be accessible on your machine through http://seophp.example.com.

Lastly, you’ll prepare a MySQL database named seophp, which will be required for a few of the exer-
cises in this book. Creating the database isn’t a priority for now, so you can leave this task for when
you’ll actually need it for an exercise.

The next few pages cover the exact installation procedure assuming that you’re run-
ning Microsoft Windows. If you’re running Linux or using a web hosting account, we
assume you already have Apache, PHP, and MySQL installed with necessary modules.

The programming exercises in this book assume prior experience with PHP and
MySQL. However, if you follow the exercises with discipline, exactly as described,
everything should work as planned.

6

Chapter 1: You: Programmer and Search Engine Marketer

00929c01.qxd:00929c01 3/13/07 10:38 AM Page 6

Installing XAMPP
XAMPP is a package created by Apache Friends (http://www.apachefriends.org), which includes
Apache, PHP, MySQL, and many other goodies. If you don’t have these already installed on your machine,
the easiest way to have them running is to install XAMPP.

Here are the steps you should follow:

1. Visit http://www.apachefriends.org/en/xampp.html, and go to the XAMPP page specific
for your operating system.

2. Download the XAMPP installer package, which should be an executable file named like xampp-
win32-version-installer.exe.

3. Execute the installer executable. When asked, choose to install Apache and MySQL as services,
as shown in Figure 1-3. Then click Install.

4. You’ll be asked to confirm the installation of each of these as services. Don’t install the FileZilla
FTP Server service unless you need it for particular purposes (you don’t need it for this book),
but do install Apache and MySQL as services.

5. In the end, confirm the execution of the XAMPP Control Panel, which can be used for adminis-
tering the installed services. Figure 1-4 shows the XAMPP Control Panel.

Figure 1-3

Note that you can’t have more web servers working on port 80 (the default port used
for HTTP communication). If you already have a web server on your machine, such as
IIS, you should either make it use another port, uninstall it, or deactivate it. Otherwise,
Apache won’t work. The exercises in this book assume that your Apache server works
on port 80; they may not work otherwise.

7

Chapter 1: You: Programmer and Search Engine Marketer

00929c01.qxd:00929c01 3/13/07 10:38 AM Page 7

Figure 1-4

6. To test that Apache installed correctly, load http://localhost/ using your web browser. An
XAMPP welcome screen like the one in Figure 1-5 should load.

7. Finally, after you’ve tested that both Apache and PHP work, it’s recommended to turn on PHP
error reporting. Apache logs errors in a file named error.log, located in the xampp\apache\
logs folder; looking at the latest entries of this file when something goes wrong with your appli-
cation can be very helpful at times. To enable PHP error reporting, open for editing the php.ini
configuration file, located by default in the xampp\apache\bin\ folder. There, locate this entry:

display_errors = Off

and change it to:

display_errors = On

8. To configure what kind of errors you want reported, you can alter the value of the PHP
error_reporting value. We recommend the following setting to report all errors, except
for PHP notices:

error_reporting = E_ALL & ~E_NOTICE

Preparing the Working Folder
Now you’ll create a virtual host named seophp.example.com on your local machine, which will point
to a local folder named seophp. The seophp folder will be your working folder for all the exercises in
this book, and you’ll load the sample pages through http://seophp.example.com.

The seophp.example.com as virtual host won’t interfere with any existing online applications,
because example.com is a special domain name reserved by IANA to be used for documentation and
demonstration purposes. See http://example.com for the official information.

The XAMPP Control Panel is particularly useful when you need to stop or start the
Apache server. Every time you make a change to the Apache configuration files,
you’ll need to restart Apache.

8

Chapter 1: You: Programmer and Search Engine Marketer

00929c01.qxd:00929c01 3/13/07 10:38 AM Page 8

Figure 1-5

Follow these steps to create and test the virtual host on your machine:

1. First, you need to add seophp.example.com to the Windows hosts file. The following
line will tell Windows that all domain name resolution requests for seophp.example.com
should be handled by the local machine instead of your configured DNS. Open the hosts
file, which is located by default in C:\Windows\System32\drivers\etc\hosts, and add
this line to it:

127.0.0.1 localhost
127.0.0.1 seophp.example.com

2. Now create a new folder named seophp, which will be used for all the work you do in this
book. You might find it easiest to create it in the root folder (C:\), but you can create it any-
where else if you like.

3. Finally, you need to configure a virtual host for seophp.example.com in Apache. Right now,
all requests to http://localhost/ and http://seophp.example.com/ are handled by
Apache, and both yield the same result. You want requests to http://seophp.example.com/
to be served from your newly created folder, seophp. This way, you can work with this book
without interfering with the existing applications on your web server.

To create the virtual host, you need to edit the Apache configuration file. In typical Apache
installations there is a single configuration file named httpd.conf. XAMPP ships with more
configuration files, which handle different configuration areas. To add a virtual host, add the
following lines to xampp\apache\conf\extra\httpd-vhosts.conf. (If you installed XAMPP
with the default options, the xampp folder should be under \Program Files.)

9

Chapter 1: You: Programmer and Search Engine Marketer

00929c01.qxd:00929c01 3/13/07 10:38 AM Page 9

10

Chapter 1: You: Programmer and Search Engine Marketer

NameVirtualHost 127.0.0.1:80

<VirtualHost 127.0.0.1:80>
DocumentRoot “C:/Program Files/xampp/htdocs”
ServerName localhost

</VirtualHost>

<VirtualHost 127.0.0.1:80>
DocumentRoot C:/seophp/
ServerName seophp.example.com
<Directory C:/seophp/>
Options Indexes FollowSymLinks
AllowOverride All
Order allow,deny
Allow from all

</Directory>
</VirtualHost>

4. To make sure httpd-vhosts.conf gets processed when Apache starts, open xampp\apache\
conf\httpd.conf and make sure this line, located somewhere near the end of the file, isn’t
commented:

Virtual hosts
include conf/extra/httpd-vhosts.conf

5. Restart Apache for the new configuration to take effect. The easiest way to restart Apache is to
open the XAMPP Control Panel, and use it to stop and then start the Apache service.

In case you run into trouble, the first place to check is the Apache error log file. In the default XAMPP
installation, this is xampp\apache\logs\error.log.

6. To test your new virtual host, create a new file named test.php in your seophp folder, and
type this code in it:

<?php
phpinfo();
?>

7. Then load http://seophp.example.com/test.php and expect to see a page like the one in
Figure 1-6.

This way you’ve also tested that your PHP installation is working correctly.

In order for http://localhost/ to continue working after you create a virtual host,
you need to define and configure it as a virtual host as well — this explains why
we’ve included it in the vhosts file. If you have any important applications working
under http://localhost/, make sure they continue to work after you restart
Apache at the end of this exercise.

00929c01.qxd:00929c01 3/13/07 10:38 AM Page 10

11

Chapter 1: You: Programmer and Search Engine Marketer

Figure 1-6

Preparing the Database
The final step is to create a new MySQL database. You’re creating a database named seophp that you
will use for the exercises contained in this book. You’ll also create a user named seouser, with the
password seomaster, which will have full privileges to the seophp database.

You will be using this database only for the exercises in Chapter 11 and Chapter 14, so you can skip this
database installation for now if desired.

To prepare your database environment, follow these steps. Note that this exercise uses the MySQL
console application to send commands to the database server.

Follow these steps:

1. Load a Windows Command Prompt window by going to Start ➪ Run and executing cmd.exe.
In Windows Vista, you can type cmd or Command Prompt in the search box of the Start menu.

2. Change your current directory to the bin folder of your MySQL installation. With the default
XAMPP installation, that folder is \Program Files\xampp\mysql\bin. Change the directory
using the following command:

cd \Program Files\xampp\mysql\bin

00929c01.qxd:00929c01 3/13/07 10:38 AM Page 11

3. Start the MySQL console application using the following command (this loads an executable file
named mysql.exe located in the directory you have just browsed to):

mysql -u root

If you have a password set for the root account, you should also add the -p option, which will have the
tool ask you for the password. By default, after installing XAMPP, the root user doesn’t have a pass-
word. Needless to say, you may want to change this for security reasons.

4. Create the seophp database by typing this at the MySQL console:

CREATE DATABASE seophp;

MySQL commands, such as CREATE DATABASE, are not case sensitive. If you like, you can type cre-
ate database instead of CREATE DATABASE. However, database objects, such as the seophp data-
base, may or may not be case sensitive, depending on the server settings and operating system. For this
reason, it’s important to always use consistent casing. (This book uses uppercase for MySQL commands,
and lowercase for object names.)

5. Switch context to the seophp database.

USE seophp;

6. Create a database user with full access to the new seophp database:

GRANT ALL PRIVILEGES ON seophp.*
TO seouser@localhost IDENTIFIED BY “seomaster”;

7. Make sure all commands executed successfully, as shown in Figure 1-7.

8. Exit the console by typing:

exit;

Figure 1-7

Summary
Congratulations! You will soon be ready to write some code and delve into more advanced SEO
concepts! The next chapter takes you through a quick SEO tutorial, and builds the foundation for
the chapters to come.

12

Chapter 1: You: Programmer and Search Engine Marketer

00929c01.qxd:00929c01 3/13/07 10:38 AM Page 12

A Primer in Basic SEO

Although this book addresses search engine optimization primarily from the perspective of a web
site’s architecture, you, the web site developer, may also appreciate this handy reference of basic
factors that contribute to site ranking. This chapter discusses some of the fundamentals of search
engine optimization.

If you are a search engine marketing veteran, feel free to skip to Chapter 3. However, because
this chapter is relatively short, it may still be worth a skim. It can also be useful to refer back to
it, because our intent is to provide a brief guide about what does matter and what probably does
not. This will serve to illuminate some of the recommendations we make later with regard to web
site architecture.

This chapter contains, in a nutshell:

❑ A short introduction to the fundamentals of SEO.

❑ A list of the most important search engine ranking factors.

❑ Discussion of search engine penalties, and how you can avoid them.

❑ Using web analytics to assist in measuring the performance of your web site.

❑ Using research tools to gather market data.

❑ Resources and tools for the search engine marketer and web developer.

Introduction to SEO
Today, the most popular tool that the users employ to find products and information on the web
is the search engine. Consequentially, ranking well in a search engine can be very profitable. In a
search landscape where users rarely peruse past the first or second page of search results, poor
rankings are simply not an option.

00929c02.qxd:00929c02 3/13/07 10:39 AM Page 13

Knowing and understanding the exact algorithms employed by a search engine would offer an unas-
sailable advantage for the search engine marketer. However, search engines will never disclose their
proprietary inner workings — in part for that very reason. Furthermore, a search engine is actually
the synthesis of thousands of complex interconnected algorithms. Arguably, even an individual com-
puter scientist at Google could not know and understand everything that contributes to a search
results page. And certainly, deducing the exact algorithms is impossible. There are simply too many
variables involved.

Nevertheless, search engine marketers are aware of several ranking factors — some with affirmation
by representatives of search engine companies themselves. There are positive factors that are generally
known to improve a web site’s rankings. Likewise, there are negative factors that may hurt a web site’s
rankings. Discussing these factors is the primary focus of the material that follows in this chapter.

You should be especially wary of your sources in the realm of search engine optimization. There are
many snake oil salesmen publishing completely misleading information. Some of them are even trying
to be helpful — they are just wrong. One place to turn to when looking for answers is reputable contrib-
utors on SEO forums. A number of these forums are provided at the end of this chapter.

Many factors affect search engine rankings. But before discussing them, the next section covers the concept
of “link equity,” which is a fundamental concept in search engine marketing.

Link Equity
Without links, the World Wide Web would just be a collection of unrelated documents. Links provide
structure and provide both implicit and explicit information in the aggregate. For example, if a web page
is linked from many web sites, it usually implies that it is a more important page than one that has fewer
incoming links. Moreover, if the anchor text of those links contains the word “cookie,” this indicates to
search engines that the cited page is about cookies.

Links assign value to web pages, and as a result they have a fundamental role in search engine optimiza-
tion. This book frequently references a concept called URL equity or link equity. Link equity is defined as
the equity, or value, transferred to another URL by a particular link. For clarity, we will use the term link
equity when we refer to the assigning or transferring of equity, and URL equity when we refer to the actual
equity contained by a given URL.

Among all the factors that search engines take into consideration when ranking web sites, link equity
has become paramount. It is also important for other reasons, as we will make clear. Link equity comes
in the following forms:

1. Search engine ranking equity. Modern search engines use the quantity and quality of links to
a particular URL as a metric for its quality, relevance, and usefulness. A web site that scores
well in this regard will rank better. Thus, the URL contains an economic value in tandem with
the content that it contains. That, in turn, comprises its URL equity. If the content is moved to
a new URL, the old URL will eventually be removed from a search engine index. However,

Search engine optimization aims to increase the number of visitors to a web site
from unpaid, “organic” search engine listings by improving rankings.

14

Chapter 2: A Primer in Basic SEO

00929c02.qxd:00929c02 3/13/07 10:39 AM Page 14

doing so alone will not result in transference of the said equity, unless all the incoming links
are changed to target the new location on the web sites that contain the links (needless to say,
this is not likely to be a successful endeavor). The solution is to inform the search engines about
the change using redirects, which would also result in equity transference. Without a proper
redirect, there is no way for a search engine to know that the links are associated with the new
URL, and the URL equity is thusly entirely lost.

2. Bookmark equity. Users will often bookmark useful URLs in their browsers, and more recently
in social bookmarking web sites. Moving content to a new URL will forgo the traffic resulting
from these bookmarks unless a redirect is used to inform the browser that the content has moved.
Without a redirect, a user will likely receive an error message stating that the content is not
available.

3. Direct citation equity. Last but not least, other sites may cite and link to URLs on your web
site. That may drive a significant amount of traffic to your web site in itself. Moving content to
a new URL will forgo the traffic resulting from these links unless a redirect is used to inform
the browser that the content has moved.

Therefore, before changing any URLs, log files or web analytics should be consulted. One must under-
stand the value in a URL. Web analytics are particularly useful in this case because the information is
provided in an easy, understandable, summarized format. If a URL must be changed, one may want to
employ a 301-redirect. This will transfer the equity in all three cases. Redirects are discussed at length in
Chapter 4, “Content Relocation and HTTP Status Codes.”

Google PageRank
PageRank is an algorithm patented by Google that measures a particular page’s importance relative to
other pages included in the search engine’s index. It was invented in the late 1990s by Larry Page and
Sergey Brin. PageRank implements the concept of link equity as a ranking factor.

PageRank approximates the likelihood that a user, randomly clicking links throughout the Internet, will
arrive at that particular page. A page that is arrived at more often is likely more important — and has a
higher PageRank. Each page linking to another page increases the PageRank of that other page. Pages
with higher PageRank typically increase the PageRank of the other page more on that basis. You can
read a few details about the PageRank algorithm at http://en.wikipedia.org/wiki/PageRank.

To view a site’s PageRank, install the Google toolbar (http://toolbar.google.com/) and enable
the PageRank feature, or install the SearchStatus plugin for Firefox (http://www.quirk.biz/
searchstatus/). One thing to note, however, is that the PageRank indicated by Google is a cached
value, and is usually out of date.

PageRank values are published only a few times per year, and sometimes using out-
dated information. Therefore, PageRank is not a terribly accurate metric. Google
itself is likely using a more current value for rankings.

PageRank considers a link to a page as a vote, indicating importance.

15

Chapter 2: A Primer in Basic SEO

00929c02.qxd:00929c02 3/13/07 10:39 AM Page 15

PageRank is just one factor in the collective algorithm Google uses when building search results pages
(SERPs). It is still possible that a page with a lower PageRank ranks above one with a higher PageRank
for a particular query. PageRank is also relevance agnostic, in that it measures overall popularity using
links, and not the subject shrouding them. Google currently also investigates the relevance of links when
calculating search rankings, therefore PageRank should not be the sole focus of a search engine marketer.
Building relevant links will naturally contribute to a higher PageRank. Furthermore, building too many
irrelevant links solely for the purpose of increasing PageRank may actually hurt the ranking of a site,
because Google attempts to detect and devalue irrelevant links that are presumably used to manipulate it.

PageRank is also widely regarded by users as a trust-building factor, because users will tend to perceive
sites with a high value as more reputable or authoritative. Indeed, this is what PageRank is designed to
indicate. This perception is encouraged by the fact that Google penalizes spam or irrelevant sites (or
individual pages) by reducing or zeroing their PageRank.

Google PageRank isn’t the only link-related ranking algorithm, but it is one of the most popular. Other
algorithms include:

❑ The Hilltop algorithm (http://www.cs.toronto.edu/~georgem/hilltop/)

❑ ExpertRank of Ask.com (http://about.ask.com/en/docs/about/ask_technology.shtml)

❑ HITS (http://en.wikipedia.org/wiki/HITS_algorithm)

❑ TrustRank (http://en.wikipedia.org/wiki/TrustRank)

A Word on Usability and Accessibility
Web site usability is defined as the ease of use exhibited by a web site. Web site accessibility addresses
the same concerns, but focuses on those users who have impairments such as limited vision or hearing.
The search engine marketer can analogize usability and accessibility as “user optimization.”

Having a web site that ranks well is paramount. But the search engine is only one of the consumers of
a web site’s contents, and your users must also appreciate your web site once they arrive. Developers
especially tend to ignore this factor, and they often cower in fear when they hear words like “usability”
and “accessibility.” Kim Krause Berg of The Usability Effect (http://www.usabilityeffect.com) sug-
gests an explanation:

“This is because, and they [developers] are not alone in this belief, they fear someone is about to put some
serious limitations on their work. Graphic artists often react the same way.”

As a hybrid developer and search engine marketer, you must have a wiser reaction. The implementation
of a web site must incorporate search engine optimization concerns, as well as usability and accessibility
concerns. Where interests conflict, a careful compromise must be struck. “User optimization” must not
be forgotten.

Sometimes search engine optimization and usability concerns coincide; other times they hopelessly clash.
Ultimately, your users will appreciate attention to usability and accessibility in the form of more conver-
sions. If you want more information on this subject, Steve Krug’s Don’t Make Me Think, 2nd edition (New
Riders Press, 2005) is a classic that covers these concepts in detail. Prioritizing Web Usability (New Riders
Press, 2006) by Jakob Nielsen and Hoa Loranger is also a great book, addressing the areas where usabil-
ity problems typically present themselves.

16

Chapter 2: A Primer in Basic SEO

00929c02.qxd:00929c02 3/13/07 10:39 AM Page 16

Search Engine Ranking Factors
The algorithms used by Google, Yahoo!, or MSN Live Search to calculate search results can change at
any time, therefore we generally avoid citing specific details regarding particular search engines and
their algorithms. Search engines have been known to occasionally modify their algorithms and, as a
result, turn the SERPs upside down. Examples of this include Google’s Florida and BigDaddy updates.
A great place to peruse to see the latest trends are the forums mentioned at the end of this chapter.

Historically, search engine marketers created optimized pages for each particular search engine. This
is no longer viable, as mentioned in Chapter 1, because it yields duplicate content. Rankings must be
achieved in all search engines using the same web pages. Furthermore, calculations such as “optimal
keyword density” and “optimal page content length” for the various search engines are almost entirely
obsolete. Calculations like these demonstrate a gross oversimplification of modern search engine infor-
mation retrieval algorithms.

With these disclaimers out of the way, it is time to briefly discuss the most important and consistently
considered factors as a quick primer for the web site developer. We group the factors that affect search
engine rankings into the following general categories:

❑ Visible on-page factors

❑ Invisible on-page factors

❑ Time-based factors

❑ External factors

On-Page Factors
On-page factors are those criteria of a web page that are dictated by the contents of a web page itself.
They are critical to a search engine marketing campaign, but less so than they were historically, because
they are very easy to manipulate. Because there are obvious incentives for spammers to do so, search
engines have begun to place importance on other factors as well. That is not to say that on-page factors
are not important, however.

It is useful to further divide on-page factors into two categories — those that are visible and those that
are invisible. The former are much more important than the latter. Many search engine marketers
believe that the latter are now devalued to the extent that they are mostly not worth bothering with.
This is because they can be so easily manipulated without influencing page presentation at all. Spam
can be carefully hidden in a web page in this way. A search engine’s confidence in such factors being
honest or accurate, therefore, is low. In short, the search engine’s algorithms regard visible content
with more confidence, because the user will actually see this content.

Any content that is hidden using CSS or other forms of subterfuge, regardless of intent, may be regarded
as an invisible factor and devalued. At worst, if employed excessively, the page or site may be penalized as
a whole.

You can find a great synopsis of the relevance of the various factors, in the opinion
of a number of various experts, at http://www.seomoz.org/articles/search-
ranking-factors.php.

17

Chapter 2: A Primer in Basic SEO

00929c02.qxd:00929c02 3/13/07 10:39 AM Page 17

Visible On-Page Factors
The visible on-page factors covered here are the following:

❑ Page title

❑ Page headings

❑ Page copy

❑ Outbound links

❑ Keywords in URLs and domain name

❑ Internal link structure and anchors

❑ Overall site topicality

Page Title
The page title is a string of text, defined by contents of the <title> element in the <head> section
of the HTML document. The title is visible both in the title bar of a browser window, as well as the
headline of a search engine result. It is arguably one of the most important factors in search engine
optimization because it is both an important factor in search engine rankings, as well as a critical call
to action that can enhance the click-through rate (CTR). Vanessa Fox of Google states, “Make sure each
page has a descriptive <title> tag and headings. The title of a page isn’t all that useful if every page
has the same one.”

One of the biggest mistakes web developers make is to set the title for all pages on a web site to the same
generic text. Frequently, this text is the company name and/or a slogan. In this case, at best your pages
will be indexed poorly. At worst, the site could receive a penalty if the search engines see the pages as
duplicate content. Be sure all pages on a dynamic site have unique and relevant titles.

When writing titles, it is also wise to insert some targeted keywords. You should not lose sight, however,
that a title is also a call to action. Even if a title successfully influences a search engine to rank a page
highly, that ranking effectiveness is then multiplied by your CTR. Keyword stuffed titles are not always
effective for CTR, though they may rank well. As a reminder, these keywords should also appear in the
document’s copy.

People will also frequently use a page title for the anchor text of an inbound link. Anchor text is an
important off-page factor, and its beneficial effect is discussed later in this chapter.

Page Headings
Page headings are sections of text set off from web page copy to indicate overall context and meaning.
They are usually larger in size than the other copy within the document. They are typically created using
<Hx> tags in HTML, where x is a number between 1 and 6. They have been abused in the past to manip-
ulate search rankings, but they are still an important on-page factor, and they also serve to help the user
navigate a page.

Page Copy
It is intuitively clear that a page that contains the keywords that a user is looking for should be relevant
to his or her search query. Search engine algorithms take this into account as well. Keyword insertion,
however, should not be done in the excess. Mentioning the keywords in various inflections (plural,

18

Chapter 2: A Primer in Basic SEO

00929c02.qxd:00929c02 3/13/07 10:39 AM Page 18

singular, past, present, and so on) is likely beneficial, as well as varying word order (“chocolate
chip cookies” versus “cookies with chocolate chips”). Excessive and contrived keyword repetition —
“keyword stuffing” — however, could actually be perceived as spam.

Because the search engine algorithms are unknown, “excessive” is an unfortunately vague qualifier.
This is one of the times we will reference something requisitely in an imprecise manner.

SEO copywriting aims to produce content on a web site in such a way that it reads well for the surfer,
but also targets specific search terms in search engines. It is a process that legitimately, without the use
of spamming techniques, seeks to achieve high rankings in the search engines. SEO copywriting is an
art, and it takes time to master. There is no magic solution that will make it easy to create copy that is
persuasive, contains relevant keywords a few times, and sounds like it is not contrived specifically to
do so. There are a few tricks, and a few useful hints, however.

One of our favorite tricks is to use the end and beginning of a sentence to repeat a keyword subtly.
Example: “Miami Hotels: You may want to try one our fine hotels in Miami. Hotel accommodations at
the Makebelieve Hotel will exceed your wildest expectations.”

The copy should also contain words that are related, but not necessarily inflections of your targeted key
phrase. For example, a search engine algorithm would likely see a page on cookies that also contains the
words “chocolate chip” or “cakes” as relevant. This tends to happen naturally with well-written prose,
but it is worth mentioning.

Outbound Links
Search engines will evaluate the links that a document contains. A related link on a web page is valuable
content in and of itself, and is treated as such by search engines. However, links to totally irrelevant or
spam content can potentially hurt the rankings of a page. Linking to a “bad neighborhood” of spam sites
or even lots of irrelevant sites can hurt a site’s rankings.

Keywords in Page URL and Domain Name
It is likely that keywords contained by a URL, both in the domain name or in the file name, do have a
minor but apparently positive effect on ranking. It also likely has an effect on CTR because keywords in
the URL may make a user more likely to click a link due to an increase in perceived relevance. The URL,
like the page title, is also often selected as the anchor text for a link. This may have the same previously
mentioned beneficial effect.

Internal Link Structure and Anchors
Search engines may make the assumption that pages not linked to, or buried within a web site’s internal
link structure, are less important, just as they assume that pages that are not linked well from external
sources are less important than those that are. Linking from the home page to content that you would
like to rank can improve that page’s rankings, as well as linking to it from a sitemap and from various
related content within the site. This models real-world human behavior as well. Popular products are
often prominently featured in the front of a store.

One horrible way to push pages down the link hierarchy is to implement pagination using “< prev” and
“next >” links, without linking directly to the individual pages. Consider the example of the fourth page
of an article that is split into four parts. It is reached like this:

Home Page ➪ Article Part 1 ➪ Article Part 2 ➪ Article Part 3 ➪ Article Part 4

19

Chapter 2: A Primer in Basic SEO

00929c02.qxd:00929c02 3/13/07 10:39 AM Page 19

This fourth page is harder to reach not only by humans (who need to click at least four times), but also
by search engines, which would probably consider the content in that page as less important. We call the
effect of this link structure “death by pagination,” and we suggest two possible approaches for mitigat-
ing the problem:

1. Don’t use simple pagination. Page with “< prev” and “next >” links, but also add links to the
individual pages, that is, “< prev 1 2 3 4 next >.” This creates a better navigation scheme to all
pages.

2. Add a sitemap with links to all the pages.

Because this problem is pretty common with blogs, in Chapter 16 you create a WordPress plugin that
implements pagination with links to the individual pages. This technique is also demonstrated in the
e-commerce case study in Chapter 14. You learn more about sitemaps in Chapter 9.

Overall Site Topicality
The fact that a web page is semantically related to other pages within a web site may boost the rankings
of that particular page. This means other related pages linked within a site may be used to boost the
rankings of the web site as a whole. This tends to happen naturally when writing quality content for a
web site regardless.

Invisible On-Page Factors
Invisible on-page factors are, as you correctly guessed, parts of a web page that are not visible to the
human readers. They can be read, however, by a search engine parsing a web site. Invisible page factors
include:

❑ Meta description

❑ Meta keywords

❑ Alt and title attributes

❑ Page structure considerations

Meta Description
For the most part, the importance of a meta description lies in the fact that search engines may choose to
use it in the SERPs, instead of displaying relevant bits from the page (this is not guaranteed, however).
Speaking from a marketing point of view, this may improve CTR. A meta description may also have a
minor effect on search engine rankings, but it is definitely not a critical factor in that regard. Here is an
example:

<head>
<meta name=”description” value=”The secrets to baking fresh, chewy chocolate chip
cookies that make you wish thousands of calories were actually good for you!” />
...

</head>

20

Chapter 2: A Primer in Basic SEO

00929c02.qxd:00929c02 3/13/07 10:39 AM Page 20

Meta Keywords
This criterion is widely regarded as totally unimportant because it is completely invisible and subject
to manipulation. It is wise to place a few major keywords as well as their misspellings in the meta key-
words tag, but the effectiveness of targeting misspellings this way has been disputed:

<head>
<meta name=”keywords” value=”chocolate chip cookies, baking chocolate chip

cookies, choclate, cokies” />
...

</head>

Alt and Title Attributes
Because these tags are mostly invisible, they are likely not an important ranking factor. Many assert
that their value is higher on hyperlinked images. They are important, however, for screen readers and
text-based browsers — that is, for accessibility and usability in general, so they should not be ignored
for that reason alone. Neither of these attributes will make or break you, but blind visitors using screen
readers will thank you in any case. This is a case where accessibility, usability, and search engine opti-
mization coincide. The descriptions should be short. Keyword stuffing in an alt tag will irk blind
users using screen readers, and possibly “irk” the search engines as well. Alt tags can only be used in
image tags, whereas title attributes can be used in most tags. Here is an example of the alt attribute
in an image:

<img src=”/images/chocolate_chip_cookie.jpg” alt=”a picture of a really big
chocolate chip cookie”>

And the title attribute on a link:

Page Structure Considerations
Search engines use block-level elements, for example <div>, <p>, or <table> elements to group related
text. Using block-level elements indiscriminately for layout, as illustrated in the following example, may
be harmful:

<div>Dog</div>
<div>food</div> is likely to be less relevant than:
<div>dog food</div>.

Time-Based Factors
Try as you might, but the only criterion that cannot be manipulated in any way is time. Old men and
women are often sought for their knowledge and experience. And the price of wine is directly propor-
tional to its age for a reason.

This is a useful analogy. Because time cannot be cheated, an old site that slowly accumulates links over
time and regularly adds new knowledge is what we term “fine wine.” Search engines tend to agree, and
give the deserved credit to such fine wines.

21

Chapter 2: A Primer in Basic SEO

00929c02.qxd:00929c02 3/13/07 10:39 AM Page 21

Many users previously purchased expired domain names that used to house an older popular web site
in the interest of tricking search engines into thinking a site is not new. Search engines are now aware
of this practice and reset the “aging-value” of any site that is housed by an expired domain name,
as well as devalue its preexisting links. In fact, there may also be a penalty applied to such expired
domain names, as discussed later in this chapter in the section “The Expired Domain Penalty.” There
are still opportunities, however, in buying domains directly from users with old existing web sites.

The time-based factors that are used as ranking factors are the site and page age, and the age of the links
referring to it. The registration length of a domain name may also influence rankings.

Site and Page Age
A web site that has existed for many years is likely to rank better than a new site, all other variables held
constant. Over time, a web site that gradually adds valuable content acquires trust. This models human
behavior as well — a shopper is more likely to shop at a store that has existed for many years and pro-
vided good service than a new store with no reputation at all.

Likewise, a page that has existed for a long time may rank better, both because it probably acquired links
over the years, and because search engines may consider age a factor on the page level as well. There are
some conflicting views on this, however, and many also suggest changing and updating content on a page
over time as well, because it indicates that the site is active and includes fresh content.

Link Age
Links that are present on other sites pointing to a web site acquire more value over time. This is another
instance of the “fine wine” analogy. Over time, a link actually appreciates in value.

Domain Registration Length
Search engines may view a long domain name registration as an indication that a web site is not engaging
in spam. Domain names are relatively inexpensive on a yearly basis, and spammers frequently use them in
a disposable fashion. The domains eventually get permanently banned and must be abandoned. A search
engine spammer would typically not register a domain name for more than one year, because registering
for more than that disrupts the economics of spamming. Search engines are aware of this. Therefore, if
possible, it may be wise to register your domain name for more than one year. It certainly cannot hurt.

External Factors
Many external factors can influence the search engine rankings of a web site. The following pages discuss
these:

❑ Quantity, quality, and relevance of inbound links

❑ Link churn

❑ Link acquisition rate

❑ Link anchor text and surrounding copy

❑ Reciprocal links

❑ Number of links on a page

22

Chapter 2: A Primer in Basic SEO

00929c02.qxd:00929c02 3/13/07 10:39 AM Page 22

❑ Semantic relationships among links on a page

❑ IP addresses of cross-linked sites

❑ TLD of domain name for a link

❑ Link location

❑ Web standards compliance

❑ Detrimental “red-flag” factors

Quantity of Inbound Links
A site with many inbound links is likely to be relevant because many people voted for it by placing the
link on their sites. There are some caveats here with regard to whether the links are detected to be part of
an artificial link scheme, and quality is also a concern as explained in the next section. However, more is
generally better.

Quality of Inbound Links
A popular web site that links to you prominently that itself has many inbound links and a good repu-
tation is likely to mean more than a link from a random page from an unimportant web site with few
links. There is no absolute definition that describes “quality.” Search engines themselves struggle with
this definition and use very complicated algorithms that implement an approximation of the human
definition. Use your judgment and intuition.

There are certain exceptions to this rule, as MySpace.com (or other similar social web sites with
user-generated content) may have many links pointing to it as a whole, but a link, even from a
popular MySpace profile sub page, may not yield the results that would seem reasonable from a
direct interpretation of link popularity. The same may also be true for Blogger.com blogs and other
subdomain-based sites. This may be because search engines treat such sites as exceptions to stem
artificial manipulation.

Relevance of Inbound Links
A search engine is likely to view a link from a semantically related web page or site as more valuable than
a link from a random unrelated one. Usually, a series of links with very similar anchor text from unrelated
sources is an indicator of an artificial link scheme, and they may be devalued. Too many links from irrele-
vant sources may result in a penalty. This has led to speculation that competitors can hurt your web site
by pointing many such links to your web site. Google states in its Webmaster Help Center, however, that
there is “almost nothing a competitor can do to harm your ranking or have your site removed from our
index” (http://www.google.com/support/webmasters/bin/answer.py?answer=34449). The
verdict is out on MSN Live Search, as documented at http://www.seroundtable.com/archives/
006666.html.

Link Churn
Links that appear and disappear on pages are likely to be part of a linking scheme. The rate at which
these links appear and disappear is termed “link churn.” If this happens frequently, it may be regarded
as spam. Those links will either be devalued, or at worst your web site will be regarded as spam and
penalized. Unless you are participating in such a scheme, this should probably not be a concern.

23

Chapter 2: A Primer in Basic SEO

00929c02.qxd:00929c02 3/13/07 10:39 AM Page 23

Link Acquisition Rate
An algorithm may view the acquisition of many thousands of links by a new site as suspicious, if not
also accompanied by relevant highly ranked authority sites. Usually this is an indicator of a linking
scheme. This consideration was affirmed by Google engineer Matt Cutts in one of his videos at http://
www.mattcutts.com/blog/more-seo-answers-on-video/.

Link Anchor Text and Surrounding Copy
Inbound links that contain semantically related anchor text to the content they point to have a positive
effect on rankings. The copy surrounding the link, if present, may also do the same. Some even posit
that this copy is as important as the link anchor text itself. Links with such surrounding copy are widely
believed to be valued more by search engines, because links without copy surrounding it are frequently
purchased and/or less indicative of a vote.

Manipulating link anchor text and the surrounding copy, if done en masse, can be used to manipulate
search results by creating a phenomenon called “Google bombing” (http://en.wikipedia.org/
wiki/Google_bomb). One popular example of this is illustrated, at the time of writing, with a
query to Yahoo!, Google, or MSN, with the keyword “miserable failure.” The top result is the White
House’s official biographical page for President George W. Bush, which doesn’t contain either of the
words “miserable” or “failure” in the copy, but is linked from many sites that contain the words
“miserable failure.” This particular Google bomb, and a few related ones, are described at http://
en.wikipedia.org/wiki/Miserable_failure.

Reciprocal Links
A long time ago, webmasters used to trade links strategically to achieve radical improvements in rankings.
This created an artificial number of self-serving votes. Over time, search engines became wiser and they
devalued such reciprocal links. In response, search engine marketers created link-exchanging schemes with
multiple parties to avoid detection. Modern search engines can detect such simple subterfuge as well. That
is not to say that reciprocal linking is bad, but it should be balanced by several one-way links as well. The
combination of the two models something more natural-looking and will result in higher ranking.

Number of Links on a Page
A link on a page with few outbound links is generally worth more than a link on a page with many out-
bound links. This concept is also implied by the formula for Google’s PageRank.

Semantic Relationship among Links on a Page
A search engine may assume that a page with many links to pages that are not semantically related is a
links page, or some sort of page designed to manipulate rankings or trade links. It is also believed that
even naming a page with the word “links” in it, such as links.php, may actually devalue links contained
within that particular page.

IP Addresses of Cross-Linked Sites
It is sometimes useful to think of an IP address as you do a phone number. For this example’s sake, format
a hypothetical phone number, (123) 555-1212, differently — as if it were an IP:

123.555.1212

24

Chapter 2: A Primer in Basic SEO

00929c02.qxd:00929c02 3/13/07 10:39 AM Page 24

The first number, 123, is the area code, the second, 555, is the exchange, and the third, 1212, is the number
within that exchange. The numbers go from most significant to least significant. 123 probably indicates
“somewhere in this or that state.” 555 means “some county in the state,” and so on. So we can assert that
the person answering the phone at 123.555.1212 is in the same neighborhood as 123.555.1213.

Likewise, IP addresses located in the same C class — that is, addresses that match for the first three
octets (xxx.xxx.xxx.*) — are very likely to be nearby, perhaps even on the same server.

When sites are interlinked with many links that come from such similar IP addresses, they will be regarded
suspiciously, and those links may be devalued. For example, a link from domainA on 100.100.1.1 to
domainB on 100.100.1.2 is a link between two such sites. Done excessively, this can be an indicator
for artificial link schemes meant to manipulate the rankings of those web sites. Matt Cutts affirms that
Google scrutinizes this sort of interlinking in his video at http://www.mattcutts.com/blog/seo-
answers-on-google-video/.

Perhaps you host quite a few sites with similar themed content for whatever reason, and do not wish
to worry about this. There are a few vendors that offer hosting in multiple C classes. We don’t have
experience working with any of these providers, and do not make any recommendations. This is just
a list of hosting services that we’ve found that offer this particular service. Many of them also offer
custom nameserver and netblock information.

❑ http://www.dataracks.net/

❑ http://www.gotwebhost.com/

❑ http://www.seowebhosting.net/

❑ http://www.webhostforseo.com/

TLD of Domain Name for a Link
It is widely believed that .edu and .gov domain names are less susceptible to manipulation and there-
fore weighed more heavily. This is disputed by some search engine marketers as the actual factor, and
they assert that the same effect may be as a result of the age (most schools and governmental agencies
have had sites for a while), and amount of links that they’ve acquired over time. Matt Cutts coincides
with this view (http://www.mattcutts.com/blog/another-two-videos/). It is mostly irrelevant,
however, what the underlying reason is. Getting a link from a site that fits this sort of profile is very
desirable — and most .edu and .gov domains do.

Link Location
Links prominently presented in content near the center of the page may be regarded by the search
engines as more important. Links embedded in content presented near the bottom of a page are usually
less important; and external links at the bottom of a page to semantically unrelated sites may, at worst,
be a criterion for spam-detection. Presentation location is different than physical location. The physical
location within the document was historically important, but is less of a factor more recently. Ideally, the
primary content of a page should be early in the HTML source of a web page, as well as prominently
displayed in the center region of a web page. More on this topic is discussed in Chapter 6, “SE-Friendly
HTML and JavaScript.”

25

Chapter 2: A Primer in Basic SEO

00929c02.qxd:00929c02 3/13/07 10:39 AM Page 25

Web Standards Compliance
Standards compliance and cleanliness of code is historically unimportant, but the recent accessibility
work may eventually make it become a small ranking factor. That said, Matt Cutts downplays it because
40% of the web doesn’t validate (http://www.mattcutts.com/blog/more-seo-answers-on-video/).
Content on google.com itself does not validate, at the moment of writing this text. You can use the W3C
Markup Validation Service at http://validator.w3.org/ to test your web pages for compliance.

Detrimental “Red-Flag” Factors
Obviously writing spammy content, launching thousands of spammy doorway pages simultaneously, or
soliciting spammy links that actually get detected as such are detrimental in nature, but we will not con-
tinue in that vein. Some of these factors are discussed in more detail in Chapter 8, “Black Hat SEO.”

Potential Search Engine Penalties
A penalized web site is much less likely to show up in a SERP, and in some cases it may not appear at all.
This section discusses the following:

❑ The Google “sandbox effect”

❑ The expired domain penalty

❑ Duplicate content penalty

❑ The Google supplemental index

The Google “Sandbox Effect”
Many search engine optimization experts hypothesize that there is a virtual “purgatory” that all newly
launched sites must pass through in order to rank well in Google. In fact, many new sites seem to pass
through this stage, and many find that the period is remarkably close to six months. Matt Cutts states in
an interview with Barry Schwartz that there may be “things in the algorithm that may be perceived
as a sandbox that doesn’t apply to all industries” (http://www.seroundtable.com/archives/
002822.html).

We believe that while Google may not explicitly have a “sandbox,” the effect itself is real. For this reason
it is termed an “effect,” and not a “penalty.” It may be the collective side effect of several algorithms —
not an explicit “sandbox algorithm.” Some sites seem to be exceptions to the rule, especially those that
acquire links from several authority sites early on. A few links from CNN.com and other prominent web
sites, for example, may exempt a web site from the sandbox effect.

Some hypothesize that Yahoo! has a similar algorithmic factor, but that it is less severe and pronounced.
MSN Search does not appear to have anything similar implemented.

The Expired Domain Penalty
Using a previously expired domain to launch a new web site used to evade this dreaded “sandbox
effect.” This was likely because Google was unaware that the site was new. Google put a stop to this
loophole a while ago, and now it seems to be quite the opposite situation at times.

26

Chapter 2: A Primer in Basic SEO

00929c02.qxd:00929c02 3/13/07 10:39 AM Page 26

An expired domain name may now be subject to a temporary penalty. This is important, because it implies
an additional delay before a site begins to rank well. In some cases Google will even refuse to index the
pages at all during that period, leaving a web site vulnerable to content theft. Content theft is discussed
at length in Chapter 5, “Duplicate Content.”

It is also likely that Google devalues any links that are acquired before the re-registration of the domain.
At the time of writing, other search engines do not appear to penalize previously expired domains.

Duplicate Content Penalty
Search engines attempt to avoid indexing multiple copies of the same content — duplicate content. Many
search engine optimization experts hypothesize that not only does a search engine not index such pages,
but it also penalizes a site for having the duplicated content.

This is a subject of much debate, but in any case, having duplicate content will not improve the rankings
of a site in any of the major search engines. Therefore, duplicate content should be avoided, and this book
devotes an entire chapter to the subject.

The Google Supplemental Index
This is not strictly a penalty in and of itself, but it may be the result of one. Google stores its crawled
search data in two indexes: the primary index and the supplemental index. The supplemental index
stores pages that are less important to Google for whatever reason. Results from the supplemental
index typically appear at the end of the results for a Google query (unless the query is very specific),
and the results are marked as supplemental results.

Figure 2-1 shows how a supplemental result is denoted in a Google search results page. Factors that lead
to inclusion of that link in the supplemental index rather than the primary index are the lack of signifi-
cant unique content or a lack of inbound links to the said content. It may also be as a result of explicit
penalization.

Figure 2-1

27

Chapter 2: A Primer in Basic SEO

00929c02.qxd:00929c02 3/13/07 10:39 AM Page 27

Resources and Tools
There are many tools, web sites, and practices that serious search engine marketers must be aware of.
As a web developer concerned with SEO, you should also be knowledgeable of at least the most impor-
tant of them. The rest of this chapter highlights a few such resources that can be helpful in your search
engine marketing quest.

Web Analytics
Web analytics measure traffic and track user behavior on a particular web site. Typically web analytics
are used for the purpose of optimizing business performance based on various metrics such as conver-
sion rate and return on investment. They are particularly relevant for tracking return on investment
for PPC advertising, where there is a particular cost for each click. However, they are also used to track
which keywords from organic traffic are leading to conversions. This informs the search engine mar-
keter which key phrases he or she should target when performing search engine optimization — both
to improve and to maintain current positioning.

Google Analytics
Google Analytics is a free and robust web service that performs web analytics. It is located at http://
www.google.com/analytics/. The service is complex enough to merit its own book; feel free to check
out Google Analytics (Mary E. Tyler and Jerri L. Ledford, Wiley, 2006). Figure 2-2 shows one of the many
reports Google Analytics can deliver.

Figure 2-2

28

Chapter 2: A Primer in Basic SEO

00929c02.qxd:00929c02 3/13/07 10:39 AM Page 28

Other Web Analytics Tools
Google Analytics is just one of the many analytics tools available today. Here are a few others:

❑ ClickTracks (http://www.clicktracks.com/)

❑ CoreMetrics (http://www.coremetrics.com/)

❑ HitTail (http://www.hittail.com/)

A detailed list of web analytics tools has been aggregated by Carsten Cumbrowski at http://www
.cumbrowski.com/webanalytics.html.

Market Research
Just as it is important to know data about your web site, it’s equally important to know the market and
your competitors. The first skill to learn is how to use the built-in features of the search engines. For
example, to find all the pages from http://www.seoegghead.com indexed by Google, Yahoo!, or
MSN, you’d need to submit a query for site:www.seoegghead.com. Figure 2-3 shows the results of
this query in Google.

Figure 2-3

Yahoo! Site Explorer
Yahoo! Site Explorer shows what pages of a web site were indexed by Yahoo!, and what other pages
link to it. A query of linkdomain:www.cristiandarie.ro brings you to the Yahoo! Site Explorer
page shown in Figure 2-4.

29

Chapter 2: A Primer in Basic SEO

00929c02.qxd:00929c02 3/13/07 10:39 AM Page 29

Figure 2-4

Google and MSN Live Search also contain this functionality. It can be accessed in both using the same
linkdomain: syntax, but at the time of writing they don’t provide very accurate information.

Google Trends
Google Trends is a tool from Google that provides the statistics regarding the volume of keyword searches
over various time periods. Data are available going back to 2004.

The Google Trends service lets you partition data by language and region and plot multiple key phrases
on one graph. This can be used to track and anticipate traffic for a particular period (see Figure 2-5). The
service is available at http://www.google.com/trends.

Figure 2-5 shows the Google Trends report for “SEO” as of 8/30/2006.

Alexa Rankings
Alexa Rankings attempt to rank all web sites globally by quantity of traffic. The traffic rankings use sta-
tistics based on data gathered from the Alexa Toolbar and other tools connected to the service. The serv-
ice is provided by Alexa Internet, a subsidiary of Amazon Incorporated. Yahoo! is ranked number one at
the time of this book’s writing.

The statistics aren’t generally accepted as accurate, and many speculate that the rankings are subject to
manipulation and skewing as a result of a limited dataset. In general, the statistics are more accurate with
higher ranking sites (those with lower numerical rankings). Despite these caveats, Alexa Rankings can be
used to get a handle on increasing traffic trends, and they are generally fun to watch.

Figure 2-6 shows the Alexa Rankings page for http://www.seoegghead.com, at the date of November
21, 2006.

30

Chapter 2: A Primer in Basic SEO

00929c02.qxd:00929c02 3/13/07 10:39 AM Page 30

Figure 2-5

Figure 2-6

31

Chapter 2: A Primer in Basic SEO

00929c02.qxd:00929c02 3/13/07 10:39 AM Page 31

Researching Keywords
Brainstorming keywords that seem relevant to your web site may help to identify keywords to target
in a search engine marketing campaign. However, the actual keywords used by web searchers may be
surprising more often than not. Fortunately, tools are available that mine available search data and
conveniently allow one to peruse both related keywords as well as their respective query volumes.
Such services include:

❑ Wordtracker (http://www.wordtracker.com)

❑ Keyword Discovery (http://www.keyworddiscovery.com)

❑ The Yahoo! Search Marketing Keyword Tool (http://inventory.overture.com/)

Both Wordtracker and Keyword Discovery are fee-based tools that tap into various smaller search engines
to assemble their data. The latter is a free tool that uses the data from Yahoo! Search Marketing’s pay-per-
click network; Figure 2-7 shows this tool in action for the keyword “seo.”

Because none of these tools are immune to data anomalies — and even deliberate manipulation — it may
be wise to use two tools and some intuition to assess whether the data is real. For more information on
using keyword research tools effectively, we recommend reading Search Engine Optimization An Hour a
Day (Wiley Publishing, Inc., 2006) by Jennifer Grappone and Gradiva Couzin.

Figure 2-7

32

Chapter 2: A Primer in Basic SEO

00929c02.qxd:00929c02 3/13/07 10:39 AM Page 32

Browser Plugins
The Search Engine Marketer may be aided by some Search Engine Optimization tools. Table 2-1 reveals
the ones that we’ve found particularly useful.

Table 2-1

Community Forums
There are a few great places you can ask your SEO-related questions. It is advisable to search and peruse
the forum archives before asking questions, because many of them are likely answered already. Table 2-2
shows resources we find consistently helpful.

Tool Name Browser Web Site Description

SearchStatus Firefox http://www.quirk.biz/
searchstatus/

This plugin shows both PageRank
and Alexa Ranking in the Firefox
status bar.

SEO for
Firefox

Firefox http://www.seobook.com/
archives/001741.shtml

This plugin modifies Google and
Yahoo! SERPs to display various
metrics regarding a site, such as
PageRank, Alexa Ranking, and
number of links broken down by
several criteria.

Web
Developer
Extension

Firefox http://chrispederick.com/
work/webdeveloper/

A must-have tool for all web
developers; the list of features is
too long to mention here.

RefControl Firefox http://www.stardrifter
.org/refcontrol/

The plugin lets you control what
gets sent as the HTTP Referer on
a per-site basis.

View HTTP
Headers

Firefox http://livehttpheaders
.mozdev.org/

Displays HTTP headers.

View HTTP
Headers

Internet
Explorer

http://www.blunck.info/
iehttpheaders.html or
http://www.blunck.se/
iehttpheaders/
iehttpheaders.html

Displays HTTP headers.

33

Chapter 2: A Primer in Basic SEO

00929c02.qxd:00929c02 3/13/07 10:39 AM Page 33

Table 2-2

Search Engine Blogs and Resources
Table 2-3 lists a number of blogs that are good to read to stay current. You’ll discover many more, and
eventually make your own list of favorites. This is just our list:

Table 2-3

Resource Link

SearchEngineWatch http://searchenginewatch.com/

SEO Book http://www.seobook.com/

Matt Cutts’ blog http://www.mattcutts.com/blog/

Search Engine Roundtable http://www.seroundtable.com/

ThreadWatch http://www.threadwatch.org/

SEO Black Hat http://seoblackhat.com/

Google Blog http://googleblog.blogspot.com/

Google Blogoscoped http://blog.outer-court.com/

John Battelle http://battellemedia.com/

Copyblogger http://www.copyblogger.com/

Yahoo! Search Blog http://www.ysearchblog.com/

Carsten Cumbrowski http://www.cumbrowski.com/

… and let’s not forget SEO Egghead http://www.seoegghead.com/

Resource Link

Digital Point Forums http://forums.digitalpoint.com/

Cre8asiteforums http://www.cre8asiteforums.com/

WebmasterWorld Forums http://www.webmasterworld.com/

SearchEngineWatch Forums http://forums.searchenginewatch.com/

Search Engine Roundtable Forums http://forums.seroundtable.com/

34

Chapter 2: A Primer in Basic SEO

00929c02.qxd:00929c02 3/13/07 10:39 AM Page 34

Summary
Although much of what you’ve read in this chapter is common sense, we are sure you have learned at
least a few new things about the factors that influence the rankings of your web site in modern search
engines.

Starting with Chapter 3, we’re putting on our programmer hats. So put on your hat and grab a can of
Red Bull. Lots of technical content is ahead!

35

Chapter 2: A Primer in Basic SEO

00929c02.qxd:00929c02 3/13/07 10:39 AM Page 35

00929c02.qxd:00929c02 3/13/07 10:39 AM Page 36

Provocative
SE-Friendly URLs

“Click me!” If the ideal URL could speak, its speech would resemble the communication of an
experienced salesman. It would grab your attention with relevant keywords and a call to action,
and it would persuasively argue that you should choose it instead of the other one. Other URLs
on the page would pale in comparison.

URLs are more visible than many realize, and are a contributing factor in CTR. They are often
cited directly in copy, and they occupy approximately 20% of the real estate in a given search
engine result page. Apart from “looking enticing” to humans, URLs must be friendly to search
engines. URLs function as the “addresses” of all content in a web site. If confused by them, a
search engine spider may not reach some of your content in the first place. This would clearly
reduce search engine friendliness.

Creating search engine friendly URLs becomes challenging and requires more forethought when
developing a dynamic web site. A dynamic web site with poorly architected URLs presents numer-
ous problems for a search engine. On the other hand, search engine friendly URLs containing rele-
vant keywords may both increase search engine rankings, as well as prompt a user to click them.

This chapter discusses how well-crafted URLs can make the difference between highly ranked web
pages and pages at the bottom of the search results. It then illustrates how to generate optimized
URLs for dynamic web sites using the Apache mod_rewrite module in coordination with applica-
tion code written in PHP. Lastly, this chapter considers some common caveats — and addresses how
to avoid them.

By the end of this chapter you will acquire the skills that will enable you to employ search engine
friendly URLs in a dynamic PHP-based web site. More specifically, in the rest of this chapter you will:

❑ Understand the differences between static URLs and dynamic URLs.

❑ Understand the benefits of URL rewriting.

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 37

❑ Use mod_rewrite and regular expressions to implement URL rewriting.

❑ Follow exercises to practice rewriting numeric and keyword-rich URLs.

❑ Create a PHP “link factory” library to help you keep the URLs in your site consistent.

Why Do URLs Matter?
Many search engine marketers have historically recommended placing relevant keywords in URLs. The
original rationale was that a URL’s contents are one of the major criteria in search engine ranking.

Over time, this has changed. It is now a less important criterion with regard to search engine ranking.
On top of that, dynamic sites make employing such URLs more difficult. That does not mean, however,
that creating such URLs with relevant keywords is obsolete and unnecessary!

So let’s enumerate all of the benefits of placing keywords in URLs:

1. Doing so still has a small beneficial effect on search engine ranking in and of itself.

2. The URL is roughly 20% of the real estate you get in a SERP result. It functions as a call to action
and increases perceived relevance.

3. The URL appears in the status bar of a browser when the mouse hovers over anchor text that
references it. Again — it functions as a call to action and increases perceived relevance.

4. Keyword-based URLs tend to be easier to remember than ?product_id=5&category_id=2.

5. Often, the URL is cited as the actual anchor text, that is:

http://www.example.com/foo.html

In the case mentioned at point 5:

❑ A user would likely click the anchor text including relevant keywords over a dynamic string.
Same story here — you know the effects.

❑ Because keywords in anchor text are a decisive ranking factor, having keywords in the URL
anchor text will help you rank better for “foos.”

Static URLs and Dynamic URLs
Initially, the World Wide Web was comprised predominantly of static web sites. Each URL within a web
site pointed to an actual physical file located on a web server’s file system. Therefore, a search engine
spider had very little to worry about. The spider would crawl throughout the web site and index every
URL in a relatively straightforward manner. Problems such as duplicate content and spider traps did not
typically exist.

Today, dynamic web sites dominate the World Wide Web landscape. Unfortunately, they frequently pres-
ent problems when one looks at their URLs from a search engine’s perspective — especially with regard
to spidering.

38

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 38

For example, many dynamic web sites employ query string parameters that generate different URLs
that host very similar or identical content. This is interpreted as duplicate content by search engines,
and this can get the pages penalized. The use of many URL parameters may also result in spider traps
(http://en.wikipedia.org/wiki/Spider_trap), or in linking structures that are hard to follow
by a search engine. Needless to say, both scenarios reduce the web site’s ranking performance with the
search engines. Duplicate content is discussed in Chapter 5.

Because the web developers reading this book are architecting dynamic sites, these subjects must be
examined in depth. And we start by categorizing URLs into two groups based on their anatomy:

❑ Static URLs

❑ Dynamic URLs

Static URLs
Static URLs do not include a query string. By this definition, a URL referencing a PHP script without
parameters is still static. Two examples of static URLs are as follows:

http://www.example.com/about-us.html
http://www.example.com/site-map.php

Static URLs — even those generated by a PHP script — typically pose no challenges for a search engine.

Dynamic URLs
Dynamic URLs are those that include a query string, set off by ?, a question mark. This string is used to
pass various parameters to a PHP script. Multiple parameters are delimited by & and then appended to
the query string. A typical dynamic URL looks like the following:

http://www.example.com/product.php?category_id=1&product_id=2

In this example, product.php is the name of a physical file containing a PHP script on a web server.
The highlighted section is the query string. When a web browser makes a request to the PHP script with
a particular query string, the script may then present differing content based on the various parameters.

However, the script does not necessarily have to present different content based on different permuta-
tions of the query string — which is the basis of the most common cause of duplicate content. The most
trivial example of this is when you add a parameter that does not change the presented content at all,
such as in these examples:

http://www.example.com/product.php?product_id=2&extra_param=123
http://www.example.com/product.php?product_id=2&another_extra_param=456

Because the query string values affect the script’s output, a search engine typically con-
siders the same file name with differing query strings as completely different web
pages, despite the fact that those pages originate from the same physical script file.

39

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 39

Session IDs and various other tracking IDs are two very common culprits. In the worst case, a search
engine may not index such URLs at all. Therefore, the use of such parameters should be avoided as
much as possible.

Dynamic URLs — especially those with more than two parameters — may pose problems for search
engines, due to the increased difficulty in ascertaining how to spider the site. Matt Cutts of Google
affirms all of this on his blog at http://www.mattcutts.com/blog/seo-answers-on-google-
video/. Lastly, a dynamic URL may look less appealing or relevant than a well-constructed static
URL to a human user.

In some cases, search engines may attempt to eliminate an extra parameter, such as a session-related
parameter, and index site URLs without it. Depending on this functionality is neither realistic nor
wise, however.

Fortunately, there are many ways to improve URLs with regard to indexability as well as aesthetics. This
typically involves eliminating any unnecessary parameters, and/or obscuring the dynamic parameters
using keyword-rich static URLs.

The solution to the latter is to employ Apache’s mod_rewrite module to present URLs that are static —
or at least appear to be static — but are, in actuality, mapped to dynamic URLs. This is a process called
URL-rewriting, and is detailed later in this chapter.

Note that URL rewriting is done differently depending on the server-side technology employed for a
web site. This book focuses on mod_rewrite, because this is the de facto standard in the PHP commu-
nity. You are introduced to working with mod_rewrite later in this chapter. For an ASP.NET implemen-
tation, check out the ASP.NET edition of this book, Professional Search Engine Optimization with
ASP.NET: A Developer’s Guide to SEO.

Dynamic URLs may also benefit from some of the concepts in this chapter, such as using functions
to generate URLs to enhance URL consistency, and strategies to reduce the number of parameters —
rewritten or not — required for site navigation.

URLs and CTR
It is clear that users are more likely to click a search result that looks more relevant. One way to do this
is to include relevant keywords — such as the product name in the URL. Although the effect on rankings
due to keywords in URLs may be small in current search engine algorithms, the effect of a better CTR
may be noticed.

Static-looking keyword-rich URLs are more aesthetically pleasing, and may enhance
your CTR. Query keywords are also highlighted in the results pages if their URLs
contain those keywords.

40

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 40

A better CTR means a better ad. The most important factor in a search engine result may be the page
title, but if you’re shopping for blue widgets, and you see the following two results, which one would
you click if you were looking for “blue widgets,” all other variables equal?

http://www.example.com/Products/Blue-Widget.html
http://www.example.com/product.php?id=1

For a real-world example, see Figure 3-1, where I was searching for “Mickey Mouse t-shirt.”

Figure 3-1

URLs and Duplicate Content
As mentioned earlier, if a search engine establishes that many different URLs in a web site contain the
same content, it may not index them at all; in the worst case, if it is done excessively, it may designate
the site as a spam site and penalize it.

Unfortunately, many web sites have been “forced” to create duplicate content because of technical con-
siderations and business rules. However, sometimes there are better solutions to these considerations
and rules. The concepts of the URLs and duplicate content are intimately related. This chapter and the
next discuss the technicalities related to URL rewriting and redirection, and Chapter 5 analyzes the con-
cept of duplicate content.

41

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 41

URLs of the Real World
Before proceeding to write code, this section looks at three examples of URLs that you’ll see frequently
while browsing, and discusses the technical details involved in creating these URLs. This will help you
understand where we’re heading, and why you’ll write the code from the exercises in this chapter. You
will see examples with:

❑ Dynamic URLs

❑ Numeric rewritten URLs

❑ Keyword-rich URLs

Example #1: Dynamic URLs
Data displayed by dynamic web sites is usually stored in some sort of backend database. Typically, a
numeric ID is associated with each data row of a database table, and all database operations with the
table (such as selecting, inserting, deleting, or updating rows) are done by referencing that ID.

More often than not, the same ID used to identify an item in the database is also used in PHP scripts
to refer to that particular item — such as a product in an e-commerce web site, an article of a blog, and
so on. In a dynamic URL, these IDs are passed via the query string to a script that presents differing
content accordingly.

Figure 3-2 shows a page from http://www.cristiandarie.ro/BalloonShop/. This is a demo
e-commerce site presented in one of Cristian’s books, and employs dynamic URLs. As you can see,
the page is composed using data from the database, and the ID that identifies the data item is taken
from the dynamic URL.

Figure 3-2

42

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 42

This is probably the most common approach employed by dynamic web sites at present, because you
frequently meet URLs such as the following:

❑ http://www.example.com/catalog.php?cat_id=1

❑ http://www.example.com/catalog.php?cat_id=2&prod_id=3&ref_id=4

This approach is certainly the easiest and most straightforward when developing a dynamic site. However,
it is frequently sub-optimal from a search engine spider’s point of view. It also doesn’t provide relevant
keywords or a call to action to a human viewing the URL.

Some programmers also tend to use extra parameters freely — as shown in the second URL example. For
example, if the parameter ref_id is used for some sort of tracking mechanism, and search engine friend-
liness is a priority, it should be removed. Lastly, any necessary duplicate content should be excluded from
search engines’ view using a robots.txt file or a robots meta tag. This topic is discussed in Chapter 5.

Example #2: Numeric Rewritten URLs
An improved version of the previous example is a modified URL that removes the dynamic parameters
and hides them in a static URL. This static URL is then mapped to a dynamic URL using an Apache
module called mod_rewrite. The ref_id parameter previously alluded to is also not present, because
those types of tracking parameters usually can and should be avoided:

❑ http://www.example.com/Products/1/

❑ http://www.example.com/Products/2/1/

The impact of numeric URL rewriting will likely be negligible on a page with one parameter, but on
pages with two parameters or more, URL-rewriting is desirable.

This form of URL is particularly well-suited to the adaptation of existing software. Retrofitting an
application for keyword-rich URLs, as discussed in the next section, may present additional difficulty
in implementation.

It is important to realize that rewriting a dynamic URL only obscures the parameters. It prevents a search
engine from perceiving that a URL structure is problematic as a result of having many parameters. If
underlying problems still exist on a web site — usually in the form of duplicate content — a search engine
still may still have difficulty indexing it effectively.

If URLs on your site are for the most part indexed properly, it may not be wise to
restructure URLs. However, if you decide that you must, please also read Chapter 4,
which teaches you how to make the transition smoother. Chapter 4 shows how to
preserve link equity by properly redirecting old URLs to new URLs. Also, not all
solutions to URL-based problems require restructuring URLs; as mentioned earlier,
duplicate content can be excluded using the robots.txt file or the robots meta tag,
which are discussed in Chapter 5.

43

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 43

Lastly, this improvement should not be implemented on a currently indexed site unless the old URLs
are redirected to their new counterparts. Other web sites may cite them even if you do not, and this
may create a duplicate content issue, as well as squander link equity.

Example #3: Keyword-Rich Rewritten URLs
Finally, here are two examples of ideal keyword-rich URLs:

❑ http://www.example.com/Products/High-Powered-Drill-P1.html

❑ http://www.example.com/Products/Tools-C2/High-Powered-Drill-P1.html

This is the best approach to creating URLs, but also presents an increased level of difficulty in implemen-
tation — especially if you are modifying preexisting source code for software. In that case this solution
may not have an easy and apparent implementation, and it requires more interaction with the database
to extract the copy for the URLs.

The decision whether to use the .html suffix in the URL is mostly a non-issue. You could also use a
URL such as http://www.example.com/Products/High-Powered-Drill-P1/ if you prefer
the look of directories.

This “ideal” URL presents a static URL that indicates both to the search engine and to the user that it is
topically related to the search query. Usually the keyword-rich URLs are created using keywords from
the name or description of the item presented in the page itself. Characters in the keyword string that are
not alphanumeric need to be removed, and spaces should be converted to a delimiting character. Dashes
are desirable over underscores as the delimiting character because most search engines treat the dash as
a space and the underscore as an actual character, though this particular detail is probably not terribly
significant. On a new site, dashes should be chosen as a word-delimiter.

Maintaining URL Consistency
Regardless of whether your URLs are static or dynamic, it’s important to maintain consistency. In the
case of dynamic URLs, it’s important to maintain consistent parameter order in URLs with more than
one parameter.

In PHP, the parameters of a query string are typically accessed by name rather than by ordinal. The
order in which the parameters appear does not affect the output of the PHP script, unless your script

Don’t get URL-obsessive! For example, it would not be recommended to change
underscores to dashes in existing URLs in an existing web site, all other things left
equal. However, in the initial design phase it would be wise to use the dash rather
than the programmer’s tendency to prefer the underscore character. The effects of
this “optimization” are marginal at best, and changing URLs for marginal gains is
not recommended because the side effects may cause more harm than the gains —
even if everything is done properly. Use your best judgment when deciding whether
to change your current URL structure.

44

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 44

is specifically written to take parameter order into consideration. Here is an example where a PHP web
site would generate the exact same content, but using different URLs:

http://www.example.com/catalog.php?product_id=1&category_id=2
http://www.example.com/catalog.php?category_id=2&product_id=1

If the catalog.php script accesses the parameters as $_GET[‘product_id’] and $_GET[‘category_
id’], respectively, these two different URLs would generate the same content. There’s no standard spec-
ifying that URL parameters are commutative. If both dynamic links are used within the web site, search
engines may end up parsing different URLs with identical content, which could get the site penalized.

In conclusion, it’s wise to be consistent and follow a standard parameter order to avoid problems and
improve your rankings. Consider an example where the parameter order may make a difference:

http://www.example.com/compare_products.php?item[]=1&item[]=2
http://www.example.com/compare_products.php?item[]=2&item[]=1

Here, the parameter name is item, and it’s used to populate a PHP array called $_GET[‘item’]. In the
former case the item array contains (1,2), and in the latter it contains (2,1). In this case, a search engine
cannot assume these URLs are equivalent — and indeed they may not be.

The programmer should also try to use consistent capitalization on file names and query strings. Search
engines resolve such simple differences, especially because file names in Windows are not case sensitive,
but the following URLs are technically different in both Windows and Unix operating systems:

http://www.example.com/products.php?color=red

and

http://www.example.com/PRODUCTS.php?color=RED

Your script may recognize the equivalence of those URLs, but a search engine may not. Again, main-
taining a consistent style is desirable. The developer should also try to reference directories in a web
site with the trailing “/” consistently. For example, if you’re using numeric rewritten URLs, it would
be best to avoid referencing a particular product using both of the following links, even if your script
can successfully parse them:

http://www.example.com/Products/1/

and

http://www.example.com/Products/1

In practice, search engines can resolve many of these ambiguities. Matt Cutts asserts that Google can “do
things like keeping or removing trailing slashes, [and try] to convert URLs with upper case to lower case” (http://
www.mattcutts.com/blog/seo-advice-url-canonicalization/), but this is only a subset of the
aforementioned ambiguities. It is best to remove all of the offending ambiguities regardless.

In order to enforce consistency as a whole, you can create a function for each type of URL required by
a site. Through the logic in that function URLs are consistently formatted. As you will see in Chapter 5,

45

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 45

consistency also makes it easier to exclude files in robots.txt, because the preceding problems having
to do with ordering and casing also apply there.

For example, if you’re building an e-commerce web site, you could create a function such as the following:

function create_link($category_id, $product_id)
{
return ‘product.php?category_id=’ . $category_id . ‘&product_id=’ . $product_id;

}

Calling this function providing 5 and 6 as parameters, it will return product.php?category_
id=5&product_id=6. Using this function throughout the web site will ensure all your links follow
a consistent format.

This implementation of create_link() is overly simplistic and not really useful for real-world scenarios.
If you want to improve your URLs more significantly, you need to utilize more advanced functions in
coordination with URL rewriting. The benefits of URL consistency will also apply there. So without
further ado, the next section discusses this subject.

URL Rewriting
Taking into consideration the guidelines and recommendations mentioned earlier, this section presents
solutions you can apply in your web applications to accomplish URL-rewriting using the mod_rewrite
Apache module.

The hurdle you must overcome when implementing the URLs shown earlier is that they don’t actually
exist anywhere in your web site. Your site still contains a script — named, say, product.php — which
expects to receive parameters through the query string and generate content depending on those param-
eters. This script would be ready to handle a request such as this:

http://seophp.example.com/product.php?product_id=123

But your web server would normally generate a 404 error if you tried any of the following:

http://seophp.example.com/Products/123.html
http://seophp.example.com/my-super-product.html

URL rewriting allows you to transform the URL of such an incoming request to a different URL accord-
ing to a defined set of rules. You could use URL rewriting to transform the previous non-existent URLs
to product.php?product_id=123, which does exist.

From now on, the chapter tends to be very technical. As a rule of thumb, most exer-
cises you’ll find in this book involve writing code, which at times can get quite
complex. We’ve done our best to explain it, but if you don’t have the technical back-
ground assumed by this book — experience with PHP develop ment — you may
need assistance in following the examples.

46

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 46

The URL rewriting service is provided by the Apache web server through the mod_rewrite module. PHP
does not have anything to do with it, because the PHP engine takes charge only once the .php file is exe-
cuted. The mod_rewrite module is the de-facto standard for URL rewriting in the Apache world, and is
typically supported by any Apache-based hosting package. It is used in the examples in this chapter and
throughout this book.

Figure 3-3 describes how mod_rewrite fits into the picture. Its role is to rewrite the URL of the incoming
requests, but doesn’t affect the output of the PHP script in any way.

At first sight, the rewriting rules can be added easily to an existing web site, but in practice there are other
issues to take into consideration. For example, as shown a bit later, you’d also need to modify the existing
links within the web site content. In Chapter 4 you’ll continue by learning how to properly redirect old links
to the new links in a preexisting web site.

Figure 3-3

The mod_rewrite Apache module is an invaluable tool to web developers tasked with architecting
complex dynamic sites that are still search engine friendly. It allows the programmer to declare a set
of rules that are applied by Apache on-the-fly to map static URLs requested by the visitor to dynamic
query strings sent to various PHP scripts. As far as a search engine spider is concerned, the URLs are static.

Learning how to properly use mod_rewrite involves a lot of work, but the final
result is beautiful and elegant. It allows visitors and search engines to access your
site using aesthetically pleasing and search engine friendly static URLs. However,
in the background your PHP scripts still work with query string parameters, in the
typical parameter-driven fashion. As you can see in Figure 3-3, the PHP script is
unaware that the initial user request was for a different URL.

Internet Visitor

User requests
http://www.example.com/my-super-product.html

mod_rewrite

product.php
script

mod_rewrite translates the request to
http://www.example.com/product.php?product_id=123

product.php executes
and generates output

Apache Web Server

The Internet

47

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 47

You can find the official documentation of mod_rewrite at http://httpd.apache.org/docs/2.2/
rewrite/. The introduction to mod_rewrite is located at http://httpd.apache.org/docs/
2.2/rewrite/rewrite_intro.html. There are multiple books dedicated to mod_rewrite. We
recommend The Definitive Guide to Apache mod_rewrite (Apress, 2006).

The rest of this chapter is dedicated to URL rewriting, using various exercises covering the following:

❑ Installing mod_rewrite

❑ Testing mod_rewrite

❑ Working with regular expressions

❑ Rewriting numeric URLs with two parameters

❑ Rewriting keyword-rich URLs

❑ Building a link factory

❑ Pagination and URL rewriting

❑ Rewriting images and streams

Installing mod_rewrite
If you’re implementing the exercises in this book using an external hosting provider, it’s very likely that
mod_rewrite is already installed and enabled. In that case, you can simply skip to the next section, “Testing
mod_rewrite.” Consult your web host for information regarding whether mod_rewrite is supported and
enabled.

If you’ve installed Apache yourself, read on. Because of its popularity, mod_rewrite is now included
with all common Apache distributions. If desired, you can verify if your Apache installation has the
mod_rewrite module by looking for a file named mod_rewrite.so under the modules folder in your
Apache installation directory.

However, mod_rewrite may not be enabled by default in your Apache configuration. To make sure,
open the Apache configuration file, named httpd.conf. If you’ve installed Apache using the XAMPP
package as instructed in Chapter 1, the full path of the file will be \Program Files\xampp\apache\
conf\httpd.conf.

Open httpd.conf and find the following line:

#LoadModule rewrite_module modules/mod_rewrite.so

The leading # means the line is commented, so remove it in order to have Apache load the mod_rewrite
module upon its startup:

LoadModule rewrite_module modules/mod_rewrite.so

After any change to httpd.conf, you need to restart the Apache server in order for the changes to take
effect. In case you run into trouble, you can check Apache’s error log file (/logs/error.log), which
should contain the details of the error.

48

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 48

Testing mod_rewrite
Once mod_rewrite is installed and enabled, you add the rewriting rules to the Apache configuration
file, httpd.conf. Apache also lets you save configuration options (including rewriting rules) on a
per-directory basis to a configuration file named .htaccess. All you have to do is create a file named
.htaccess into a directory of your application, and Apache will read it automatically when accessing
that directory.

As with mod_rewrite, .htaccess isn’t related to PHP in any way. The .htaccess file is strictly an
Apache configuration file. You’ll see how it works in the exercise that follows.

Using .htaccess is useful in the following scenarios:

❑ You don’t have access to the global configuration file, httpd.conf (this tends to be true in a
shared hosting account).

❑ You want to have customized configuration options for a particular directory of the application.

❑ You want to be able to change the configuration options without restarting Apache. You are
required to restart Apache after modifying httpd.conf, and this is problematic if you have
live applications running on the web server.

All of the exercises in this book are designed to work with the .htaccess file. This is the method we
generally recommend for defining rewriting rules, especially in the development stage when the rules
change frequently. This way you avoid restarting Apache every time you change a rewriting rule. It is
also the only solution in a shared hosting environment, where you do not have access to httpd.conf
and you cannot restart the server, either.

In the upcoming exercise you create a simple rewrite rule that translates my-super-product.html to
product.php?product_id=123. This is the exact scenario that was presented in Figure 3-3.

The product.php script is designed to simulate a real product page. The script receives a query string
parameter named product_id, and generates a very simple output message based on the value of
this parameter. Figure 3-4 shows the sample output that you’ll get by loading http://seophp.example
.com/product.php?product_id=123.

To improve search engine friendliness, you want to be able to access the same page through a static URL:
http://seophp.example.com/my-super-product.html. In order to implement this feature, you’ll
use — you guessed it! — mod_rewrite.

Older versions of Apache (1.3 and older) may also require you to add the following
line to httpd.conf:

AddModule mod_rewrite.c

For this reason, older mod_rewrite tutorials mention this line as obligatory, but it’s
no longer required by new versions of Apache.

49

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 49

Figure 3-4

As you know, what mod_rewrite basically does is to translate an input string (the URL typed by your
visitor) to another string (a URL that can be processed by your PHP scripts). In this exercise you make it
rewrite my-super-product.html to product.php?product_id=123.

This exercise, as all the other exercises in this book, assumes that you’ve installed
Apache and PHP as shown in Chapter 1.

Please visit Jaimie Sirovich’s web page dedicated to this book — http://www
.seoegghead.com/seo-with-php-updates.html — for updates and additional
information regarding the following code.

httpd.conf versus .htaccess
There are also some subtle differences in the way Apache handles rules for mod_rewrite
in .htaccess vs. httpd.conf. If for any reason you prefer using httpd.conf, you’ll
need to take this into consideration while going through the exercises:

1. You should place your rewrite rules inside the <VirtualHost> element of
the httpd.conf or vhosts.conf file instead of .htaccess.

2. When working with htppd.conf, the slash (/) that follows the domain
name in a URL is considered to be part of the URL.

In the next exercise, you are presented this URL rewriting code:

RewriteEngine On
RewriteRule ^my-super-product\.html$ /product.php?product_id=123

When using httpd.conf, the rule would need to contain an extra slash:

RewriteEngine On
RewriteRule ^/my-super-product\.html$ /product.php?product_id=123

50

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 50

Testing mod_rewrite
1. Create a file named product.php in your seophp folder, and add this code to it:

<?php

// display product details
echo ‘You have selected product #‘ . $_GET[‘product_id’];

?>

2. Test your simple PHP script by loading http://seophp.example.com/product.php?product_
id=3. The result should resemble Figure 3-4.

3. Create a file named .htaccess in your seophp folder, and add the following lines to it. Their
functionality is explained in the section that follows.

RewriteEngine On

Translate my-super.product.html to /product.php?product_id=123
RewriteRule ^my-super-product\.html$ /product.php?product_id=123

Here’s a little detail that’s worth a mention. The .htaccess file is technically a file with an empty
name, and the htaccess extension. Depending on the settings of your Windows system, this file
may not be easily visible in Windows Explorer.

4. Switch back to your browser again, and this time load http://seophp.example.com/
my-super-product.html. If everything works as it should, you should get the output
that’s shown in Figure 3-5.

If you get a server error at this point, most probably the mod_rewrite module isn’t correctly enabled.
Make sure you’ve restarted the Apache server after enabling mod_rewrite in httpd.conf. Open the
error.log file from the Apache logs directory to read details about the error.

Figure 3-5

51

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 51

Congratulations! You’ve taken your first step into the world of mod_rewrite! The example is indeed
very simplistic and without much practical value — at least compared with what you’ll learn next! But
you need to fully understand the basics of URL rewriting first.

You started by creating a very simple PHP script that takes a numeric parameter through the query
string. You could imagine this is a more involved page that displays lots of details about the product
with the ID mentioned by the product_id query string parameter, but in your case you’re simply
displaying a text message that confirms the ID has been correctly read from the query string. The
product.php script is indeed very simple! Here’s its code again:

<?php

// display product details
echo ‘You have selected product #‘ . $_GET[‘product_id’];

?>

This script is easy to understand even if you’re relatively new to PHP. The echo command is used to
output text, and $_GET[‘product_id’] tells PHP to access the value of product_id contained by
the query string.

For a visual example of how the predefined server variables are interpreted, see Figure 3-6.

After testing that product.php script works, you moved on to access this same script, but through a
URL that doesn’t physically exist on your server. This is done through URL rewriting, and you imple-
mented this by adding a rule to be processed by the mod_rewrite module.

The .htaccess file you’ve created in the phpseo folder contains two lines. The first enables the URL
rewriting engine:

RewriteEngine On

URL Rewriting and PHP
As Figure 3-3 describes, the PHP script is accessed after the original URL has been
rewritten. This explains why $_GET[‘product_id’] reads the value of product_id
from the rewritten version of the URL. This is helpful, because the script works fine
no matter whether you accessed product.php directly, or the initial request was for
another URL that was rewritten to product.php.

The $_GET predefined variable, as well as almost all the other predefined PHP variables,
work with the rewritten URL. The PHP documentation pages for the predefined variables
are http://www.php.net/reserved.variables and http://www.php.net”/
variables.predefined.

PHP, however, also allows you retrieve the originally requested URL through $_SERVER
[‘REQUEST_URI’], which returns the path (excluding the domain name) of the origi-
nal request. This is helpful whenever you need to know what was the original request
initiated by the client.

Table 3-1 describes the most commonly used server variables.

52

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 52

Figure 3-6

Table 3-1

Server Variable Description

$_SERVER[‘REQUEST_URI’] Returns the URI (Uniform Resource Identifier) of the original
request. In practice, this returns the path of the original request
excluding the domain name.

$_GET[‘parameter_name’] Returns the value of the parameter_name query string parameter
from the rewritten URL.

$_POST[‘parameter_name’] Returns the value of the parameter_name POST parameter of the
request.

$_COOKIES[‘cookie_name’] Returns the value of the cookie_name cookie.

$_SESSION[‘variable_name’] Returns the value of the variable_name session variable.

$_SERVER[‘QUERY_STRING’] Returns the query string from the rewritten URL.

$_SERVER[‘PHP_SELF’] Returns the file name of the running script.

Internet Visitor

User requests
http://www.example.com/my-super-product.html

mod_rewrite

product.php
script

mod_rewrite translates the request to
http://www.example.com/product.php?product_id=123

output from product.php

Apache Web Server

The Internet

$_SERVER[‘REQUEST_URI’]
$_SERVER[‘PHP_SELF’]
$_GET[‘product_id’]
$_SERVER[‘QUERY_STRING’]

/my-super-product.html
/product.php
123
product_id=123

53

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 53

The second line specifies the rewrite rule using the mod_rewrite RewriteRule command. You use this
to have mod_rewrite translate my-super-product.html to product.php?product_id=123. The line
that precedes the RewriteRule line is a comment; comments are marked using the pound (character)
at the beginning of the line, and are ignored by the parser:

Translate my-super.product.html to /product.php?product_id=123
RewriteRule ^my-super-product\.html$ /product.php?product_id=123

You can find the official documentation for RewriteRule at http://www.apacheref.com/
ref/mod_rewrite/RewriteRule.html.

In its basic form, RewriteRule takes two parameters. The first parameter describes the original URL that
needs to be rewritten, and the second specifies what it should be rewritten to. The pattern that describes the
original URL is delimited by ^ and $, which assert that the string has nothing before or after the matching
text (explained further in the following sections), and its contents are written using regular expressions,
which you learn about next.

In case you were wondering why the .html extension has been written as \.html in the rewrite rule,
we will explain it now. In regular expressions — the programming language used to describe the original
URL that needs to be rewritten — the dot is a character that has a special significance. If you want that
dot to be read as a literal dot, you need to escape it using the backslash character. As you’ll learn, this
is a general rule with regular expressions: when special characters need to be read literally, they need
to be escaped with the backslash character (which is a special character in turn — so if you wanted to
use a backslash, it would be denoted as \\).

Introducing Regular Expressions
Many love regular expressions, while others hate them. Many think they’re very hard to work with, while
many (or maybe not so many) think they’re a piece of cake. Either way, they’re one of those topics you can’t
avoid when URL rewriting is involved. We’ll try to serve a gentle introduction to the subject, although
entire books have been written on the subject. You can even find a book dedicated to mod_rewrite, which

Using RewriteBase
The regular expressions and scripts in this book assume that your application runs in
the root folder of their domain. This is the typical scenario. If, however, you host your
application in a subfolder of your domain, such as
http://www.example.com/seophp, you’d need to make a few changes to accommo-
date the new environment.

The most important change would be to use the RewriteBase directive of mod_rewrite
to specify the new location to act as a root of your rewriting rules. This directive is
explained at http://www.apacheref.com/ref/mod_rewrite/RewriteBase.html.
Also, the rewritten URL should lose its leading slash, because you’re not rewriting to
root any more. Basically, if you host your first example in a subfolder named seophp,
your .htaccess file for the previous exercise should look like this:

RewriteEngine On
RewriteBase /seophp
RewriteRule ^my-super-product\.html$ product.php?product_id=123

54

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 54

contains lots of theory on regular expressions as well. The Wikipedia page on regular expressions is great
for background information (http://en.wikipedia.org/wiki/Regular_expression).

A regular expression (sometimes referred to as a regex) is a special string that describes a text pattern.
With regular expressions you can define rules that match groups of strings, extract data from strings, and
transform strings, which enable very flexible and complex text manipulation using concise rules. Regular
expressions aren’t specific to mod_rewrite and URL rewriting. On the contrary, they’ve been around for a
while, and they’re implemented in many tools and programming languages, including PHP.

To demonstrate their usefulness with a simple example, assume your web site needs to rewrite links as
shown in Table 3-2.

Table 3-2

If you have 100,000 products, without regular expressions you’d be in a bit of a trouble, because you’d
need to write just as many rules — no more, no less. You don’t want to manage an .htaccess file with
100,000 rewrite rules! That would be unwieldy.

However, if you look at the Original URL column of the table, you’ll see that all entries follow the same
pattern. And as suggested earlier, regular expressions can come to rescue! Patterns are useful because
with a single pattern you can match a theoretically infinite number of possible input URLs, so you just
need to write a rewriting rule for every type of URL you have in your web site.

In the exercise that follows, you use a regular expression that matches Products/Pn.html, and use
mod_rewrite to translate URLs that match that pattern to product.php?productID=n. This will
implement exactly the rules described in Table 3-1.

Working with Regular Expressions
1. Open the.htaccess file you created earlier in your seophp folder, and add the following

rewriting rule to it:

RewriteEngine On

Translate my-super.product.html to /product.php?product_id=123
RewriteRule ^my-super-product\.html$ /product.php?product_id=123

Original URL Rewritten URL

Products/P1.html product.php?product_id=1

Products/P2.html product.php?product_id=2

Products/P3.html product.php?product_id=3

Products/P4.html product.php?product_id=4

… …

55

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 55

Rewrite numeric URLs
RewriteRule ^Products/P([0-9]*)\.html$ /product.php?product_id=$1 [L]

2. Switch back to your browser again, and this time load http://seophp.example.com/
Products/P1.html. If everything works as it should, you will get the output that’s shown
in Figure 3-7.

Figure 3-7

3. You can check that the rule really works, even for IDs formed of more digits. Loading
http://seophp.example.com/Products/P123456.html would give you the output
shown in Figure 3-8.

Figure 3-8

Congratulations! The exercise was quite short, but you’ve written your first regular expression! Take a
closer look at your new rewrite rule:

RewriteRule ^Products/P([0-9]*)\.html$ /product.php?product_id=$1 [L]

If this is your first exposure to regular expressions, it must look scary! Just take a deep breath and read
on: we promise, it’s not as complicated as it looks.

Appendix A contains a gentler introduction to regular expressions.

56

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 56

As you learned in the previous exercise, a basic RewriteRule takes two arguments. In this example it also
received a special flag — [L] — as a third argument. The meaning of these arguments is discussed next.

The first argument of RewriteRule is a regular expression that describes the matching URLs you
want to rewrite. The second argument specifies the destination (rewritten) URL. So, in geek-speak, the
RewriteRule line basically says: rewrite any URL that matches the ^Products/P([0-9]*)\.html$
pattern to /product.php?product_id=$1. In English, the same line can be roughly read as: “dele-
gate any request to a URL that looks like Products/Pn.html to /product.php?product_id=n”.

Let’s analyze in detail the regular expression that describes the matching URLs that need to be rewritten.
That regular expression is:

^Products/P([0-9]*)\.html$

Most characters, including alphanumeric characters, are read literally and simply match themselves.
Remember the first RewriteRule you’ve written in this chapter to match my-super-product.html,
which was mostly created of such “normal” characters.

What makes regular expressions so powerful (and sometimes complicated), are the special characters (or
metacharacters), such as ^, ., or *, which have special meanings. Table 3-3 describes the metacharacters
you’ll meet.

Remember that this theory applies to regular expressions in general. URL rewriting is just one of the
many areas where regular expressions are used.

Table 3-3

Table continued on following page

Metacharacter Description

^ Matches the beginning of the line. In our case, it will always match the beginning of
the URL. The domain name isn’t considered part of the URL, as far RewriteRule is
concerned. It is useful to think of ^ as “anchoring” the characters that follow to the
beginning of the string, that is, asserting that they be the first part.

. Matches any single character.

* Specifies that the preceding character or expression can be repeated zero or more
times — not at all to infinite.

+ Specifies that the preceding character or expression can be repeated one or more
times. In other words, the preceding character or expression must match at least
once.

? Specifies that the preceding character or expression can be repeated zero or one
time. In other words, the preceding character or expression is optional.

{m,n} Specifies that the preceding character or expression can be repeated between m
and n times; m and n are integers, and m needs to be lower than n.

57

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 57

Using Table 3-2 as reference, analyze the expression ^Products/P([0-9]*)\.html$. The expression
starts with the ^ character, matching the beginning of the requested URL (remember, this doesn’t include
the domain name). The characters Products/P assert that the next characters in the URL string match
those characters.

Let’s recap: the expression ^Products/P will match any URL that starts with Products/P.

The next characters, ([0-9]*), are the crux of this process. The [0-9] bit matches any character between
0 and 9 (that is, any digit), and the * that follows indicates that the pattern can repeat, so you can have an
entire number rather than just a digit. The enclosing parentheses around [0-9]* indicate that the regular
expression engine should store the matching string (which will be a number) inside a variable called $1.
(You’ll need this variable to compose the rewritten URL.)

Finally, you have \.html$, which means that string should end in .html. The \ is the escaping charac-
ter, which indicates that the . should be taken as a literal dot, not as “any character” (which is the signif-
icance of the . metacharacter). The $ matches the end of the string.

The second argument of RewriteRule, /product.php?product_id=$1, plugs the variables that you
stored into your script URL mapping, and indicates to the web server that requests by a browser for
URLs matching that previous pattern should be delegated to that particular script with those numbers
substituted for $1.

Metacharacter Description

() The parentheses are used to define a captured expression. The string matching the
expression between parentheses can then be read as a variable. The parentheses
can also be used to group the contents therein, as in mathematics, and operators
such as *, +, or ? can then be applied to the resulting expression.

[] Used to define a character class. For example, [abc] will match any of the charac-
ters a, b, c. The - character can be used to define a range of characters. For example,
[a-z] matches any lowercase letter. If - is meant to be interpreted literally, it should
be the last character before]. Many metacharacters lose their special function when
enclosed between [and], and are interpreted literally.

[^] Similar to [], except it matches everything except the mentioned character class.
For example, [^a-c] matches all characters except a, b, and c.

$ Matches the end of the line. In our case, it will always match the end of the URL.
It is useful to think of it as “anchoring” the previous characters to the end of the
string, that is, asserting that they be the last part.

\ The backslash is used to escape the character that follows. It is used to escape
metacharacters when you need them to be taken for their literal value, rather
than their special meaning. For example, \. will match a dot, rather than “any
character” (the typical meaning of the dot in a regular expression). The backslash
can also escape itself — so if you want to match C:\Windows, you’ll need to refer
to it as C:\\Windows.

58

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 58

The second argument of RewriteRule isn’t written using the regular expressions language. Indeed,
it doesn’t need to, because it’s not meant to match anything. Instead, it simply supplies the form of the
rewritten URL. The only part with a special significance here is the $1 variable, whose value is extracted
from the expression between parentheses of the first argument of RewriteRule.

As you can see, this rule does indeed rewrite any request for a URL that ends with Products/Pn.html
to product.php?productID=n, which can be executed by the product.php script you wrote earlier.

At the end of a rewrite rule you can also add special flags for the new URL by appending one or more
flag arguments. These arguments are specific the RewriteRule command, and not to regular expres-
sions in general. Table 3-4 lists the possible RewriteRule arguments. These rewrite flags must always
be placed in square brackets at the end of an individual rule.

Table 3-4

RewriteRule
Option

Significance Description

R Redirect Sends an HTTP redirect

F Forbidden Forbids access to the URL

G Gone Marks the URL as gone

P Proxy Passes the URL to mod_proxy

L Last Stops processing further rules

N Next Starts processing again from the first rule, but using the current
rewritten URL

C Chain Links the current rule with the following one

T Type Forces the mentioned MIME type

NS Nosubreq The rule applies only if no internal sub-request is performed

NC Nocase URL matching is case-insensitive

QSA Qsappend Appends a query string part to the new URL instead of replacing it

PT Passthrough Passes the rewritten URL to another Apache module for further
processing

S Skip Skips the next rule

E Env Sets an environment variable

59

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 59

Some of these flags are used in later chapters as well.

RewriteRule commands are processed in sequential order as they are written in the configuration file.
If you want to make sure that a rule is the last one processed in case a match is found for it, you need to
use the [L] flag as listed in the preceding table:

RewriteRule ^Products/P([0-9]*)\.html$./product.php?product_id=$1 [L]

This is particularly useful if you have a long list of RewriteRule commands, because using [L] improves
performance and prevents mod_rewrite from processing all the RewriteRule commands that follow once
a match is found. This is usually what you want regardless.

URL Rewriting and PHP
Regular expressions are also supported by PHP. Whenever you need to do string manipulation that is
too hard to implement using the typical PHP string functions (http://www.php.net/strings), the
regular expression functions can come in handy, as soon as you get accustomed to working with regular
expressions.

PHP has many regular expression functions, the most common of which are listed in Table 3-5 for your
convenience. The examples in this book use only preg_match and preg_replace, which are the most
frequently used, but it’s good to know there are others. For more information, visit http://www.php
.net/pcre.

Table 3-5

PHP Function Description

preg_grep Receives as parameters a regular expression, and an array of input
strings. The function returns an array containing the elements of the
input that match the pattern. More details at http://www.php.net/
preg_grep.

preg_match Receives as parameters a regular expression and a string. If a match
is found, the function returns 1. Otherwise, it returns 0. The function
doesn’t search for more matches: after one match is found, the execu-
tion stops. More details at http://www.php.net/preg_match.

One detail worth keeping in mind is that the regular PHP string manipulation
functions execute much faster than regular expressions, so you should use them
only when necessary. For example, if you simply want to check whether one string
literal is included in another, using strpos() or strstr() would be much more
efficient than using preg_match().

60

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 60

Unlike with mod_rewrite, when you supply a regular expression to a PHP function you need to enclose
the regular expression definition using a delimiter character. The delimiter character can be any character,
but if the same character needs to appear in the regular expression itself, it must be escaped using the
backslash (\) character. The examples here use # as the delimiter. So if your expression needs to express
a literal #, it should be indicated as \#.

Rewriting Numeric URLs with Two Parameters
What you’ve accomplished in the previous exercise is rewriting numeric URLs with one parameter. You
now expand that little example to rewrite URLs with two parameters.

The URLs with one parameter that you supported looked like http://seophp.example.com/
Products/Pn.html. Now assume that your links need to support a category ID as well, not only a
product ID. The new URLs will look like this:

http://seophp.example.com/Products/C2/P1.html

The existing product.php script will be modified to handle links such as:

http://seophp.example.com/product.php?category_id=2&product_id=1

For a quick reminder, here’s the rewriting rule you used for numeric URLs with one parameter:

RewriteRule ^Products/P([0-9]*)\.html$ /product.php?product_id=$1

PHP Function Description

preg_match_all Similar to preg_match, but all matches are searched. After one match
is found, the subsequent searches are performed on the rest of the
string. More details at http://www.php.net/preg_match_all.

preg_quote Escapes all special regular expression characters of the input string
using the backslash character. More details at http://www.php.net/
preg_quote.

preg_replace The function replacing matching parts of a string with a replacement
expression. It receives three non-optional parameters: the pattern
used for matching, the replacement expression, and the input string.
More details at http://www.php.net/preg_replace.

preg_replace_callback Similar to preg_replace, except instead of a replacement expression,
you specify a function that returns the replacement expression. More
details at http://www.php.net/preg_replace_callback.

preg_split Splits a string on the boundaries matched by a regular expression. The
resulting substrings are returned in the form of an array. More details
at http://www.php.net/preg_split.

61

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 61

For rewriting two parameters, the rule would be a bit longer, but not much more complex:

RewriteRule ^Products/C([0-9]*)/P([0-9]*)\.html$ i
/product.php?category_id=$1&product_id=$2 [L]

Go ahead and put this to work in a quick exercise.

Rewriting Numeric URLs
1. In your seophp folder, modify the product.php script that you created earlier like this:

<?php

// display product details
echo ‘You have selected product #‘ . $_GET[‘product_id’] .

‘ from category #‘ . $_GET[‘category_id’];

?>

2. Test your script by loading http://seophp.example.com/product.php?category_
id=5&product_id=99 in your web browser. You should get the expected output as shown
in Figure 3-9.

Figure 3-9

3. Change the current rewriting rule in your .htaccess file as shown in the following code. Also
remove any old rules, because they wouldn’t work well with the new product.php script,
which receives two parameters now.

RewriteEngine On

Rewrite numeric URLs
RewriteRule ^Products/C([0-9]*)/P([0-9]*)\.html$ i
/product.php?category_id=$1&product_id=$2 [L]

Note that the entire RewriteRule command and its parameters must be written on a single line in
your .htaccess file. If you split it in two lines as printed in the book, you’ll get a 500 error from the
web server when trying to load scripts from that folder.

62

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 62

4. Load http://seophp.example.com/Products/C5/P99.html, and expect to get the same
output as with the previous request, as shown in Figure 3-10.

Figure 3-10

In this example you started by modifying product.php to accept product URLs that accept a product
ID and a category ID. Then you added URL rewriting support for URLs with two numeric parameters.
You created a rewriting rule to your .htaccess file, which handles URLs with two parameters:

RewriteRule ^Products/C([0-9]*)/P([0-9]*)\.html$ i
/product.php?category_id=$1&product_id=$2 [L]

The rule looks a bit more complicated, but if you look carefully, you’ll see that it’s not so different from
the rule handling URLs with a single parameter. The rewriting rule has now two parameters — $1 is the
number that comes after Products/C, and is defined by ([0-9]*), and the second parameter, $2, is
the number that comes after /P.

Figure 3-11 is a visual representation of how this rewrite rule matches the incoming link.

The result is that you now delegate any URL that looks like Products/Cm/Pn.html to
product.php?category_id=m&product_id=n.

Figure 3-11

Client requests URL

http://seophp.example.com/Products/C5/P99.html

^Products/C([0–9]*)/P([0–9]*)\.html$

/product.php?category_id=$1&product_id=$2

PHP script executes

/product.php?category_id=5&product_id=99

mod_rewrite
translates request

63

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 63

Rewriting Keyword-Rich URLs
Here’s where the real fun begins! This kind of URL rewriting is a bit more complex, and there are more
strategies you could take. When working with rewritten numeric URLs, it was relatively easy to extract
the product and category IDs from a URL such as /Products/C5/P9.html, and rewrite the URL to
product.php?category_id=5&product_id=9.

A keyword-rich URL doesn’t necessarily have to include any IDs. Take a look at this one:

http://www.example.com/Products/Tools/Super-Drill.html

(You met a similar example in the first exercise of this chapter, where you handled the rewriting of
http://seophp.example.com/my-super-product.html.)

This URL refers to a product named “Super Drill” located in a category named “Tools.” Obviously, if
you want to support this kind of URL, you need some kind of mechanism to find the IDs of the cate-
gory and product the URL refers to.

One solution that comes to mind is to add a column in the product information table that associates such
beautified URLs to “real” URLs that your application can handle. In such a request you could look up
the information in the Category and Product tables, get their IDs, and use them.

However, we propose an easier solution that is more easily implemented and still brings the benefits of a
keyword-rich URL. Look at the following URLs:

http://www.products.com/Products/Super-Drill-P9.html
http://www.products.com/Products/Tools-C5/Super-Drill-P9.html

These URLs include keywords. However, we’ve sneaked IDs in these URLs, in a way that isn’t unpleasant
to the human eye, and doesn’t distract attention from the keywords that matter, either.

In the case of the first URL, the rewriting rule can simply extract the number that is tied at the end of the
product name (-P9), and ignore the rest of the URL. For the second URL, the rewriting rule can extract
the category ID (-C5) and product ID (-P9), and then use these numbers to build a URL such as product
.php?category_id=5&product_id=9.

The rewrite rule for keyword-rich URLs with a single parameter looks like this:

RewriteRule ^Products/.*-P([0-9]+)\.html?$ /product.php?product_id=$1 [L]

The rewrite rule for keyword-rich URLs with two parameters looks like this:

RewriteRule ^Products/.*-C([0-9]+)/.*-P([0-9]+)\.html$ i
/product.php?category_id=$1&product_id=$2 [L]

Take a look at this latter rule at work in an exercise.

As you will see in Chapter 14 in the e-commerce demo, you will use one-parameter URLs to imple-
ment the category pages (which contain lists of products), and two-parameter URLs to implement

64

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 64

the individual product pages. These URLs are “hackable,” in that the products will be placed in an
intuitive-looking directory structure. Users can intuitively modify such URLs to navigate the site.

Rewriting Keyword-Rich URLs
1. Modify the .htaccess file in your seophp folder like this:

RewriteEngine On

Rewrite numeric URLs
RewriteRule ^Products/C([0-9]*)/P([0-9]*)\.html$ i
/product.php?category_id=$1&product_id=$2 [L]

Rewrite keyword-rich URLs
RewriteRule ^Products/.*-C([0-9]+)/.*-P([0-9]+)\.html$ i
/product.php?category_id=$1&product_id=$2 [L]

2. Load http://seophp.example.com/Products/Tools-C5/Super-Drill-P9.html, and
voila, you should get the result that’s shown in Figure 3-12.

Figure 3-12

You currently have two rules in your .htaccess file, and they are working beautifully!

The new rule matches URLs that start with the string Products/, then contain a number of zero or more
characters (.*) followed by –C. This is expressed by ^Products/.*-C. The next characters must be one
or more digits, which as a whole are saved to the $1 variable, because the expression is written between
parentheses — ([0-9]+). This first variable in the URL, $1, is the category ID.

After the category ID, the URL must contain a slash, then zero or more characters (.*), then -P, as expressed
by /.*-P. Afterward, another captured group follows, to extract the ID of the product, ([0-9]+), which
becomes the $2 variable. The final bit of the regular expression, \.html$, specifies the URL needs to end
in .html.

The two extracted values, $1 and $2, are used to create the new URL, /product.php?category_id=
$1&product_id=$2. Figure 3-13 describes the process visually.

65

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 65

Figure 3-13

Building a Link Factory
Back in the days when you worked only with dynamic URLs, it was easy to build the URLs right in
the application code without much planning. You cannot do that here. If you want to use keyword-rich
URLs in your web site, just having a RewriteRule in your .htaccess file isn’t enough! You also need
to ensure that all the links in your web site use these keyword-rich versions consistently throughout the
web site. Obviously, including the URLs manually in the web site is not an option — it’s a dynamic site
after all, and the link management task would quickly become impossible to handle when you have a
large number of products in your catalog!

Fortunately, there’s a very straightforward solution to this problem, which as soon as it’s put in place,
takes away any additional link management effort. The solution we’re proposing is to use a function to
generate the new URLs based on data already existing in your database, such as product or category
names. As mentioned before, this also enforces consistency.

Say that you have a product called Super Drill, located in the category Tools. You know the product ID
is 9, and the category ID is 5. It’s quite easy to create a PHP function that uses this data to generate a link
such as /Products/Tools-C5/Super-Drill-P9.html.

In the exercise that follows you create and then use two PHP functions:

❑ _prepare_url_text receives as a parameter a string that will be included into the beautified
URL, such as a product or category name, and transforms it into a form that can be included in
a URL. For example, this function would transform Super Drill to Super-Drill.

❑ make_product_url takes as parameters the names of a product and a category, and their IDs,
and uses the _prepare_url_text function to generate a URL such as /Products/Tools-C5/
Super-Drill/P9.html.

^Products/.*–C([0–9]+)/.*–P([0–9]+)\.html$

/product.php?category_id=$1&product_id=$2

/product.php?category_id=5&product_id=99

mod_rewrite
translates request

PHP script executes

Client requests URL

http://seophp.example.com/Products/Tools-C5/Super-Drill-P99.html

66

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 66

You create these functions and put them to work step by step in the following exercise.

Building the Link Factory
1. In your seophp folder, create a new folder named include.

2. In the include folder, create a file named config.inc.php, and add this code to it:

<?php

// site domain; no trailing ‘/‘ !
define(‘SITE_DOMAIN’, ‘http://seophp.example.com’);

?>

3. Also in the include folder, create a file named url_factory.inc.php, and add the _prepare_
url_text() and make_product_url() functions to it as shown in the code listing:

<?php

// include config file
require_once ‘config.inc.php’;

// prepares a string to be included in an URL
function _prepare_url_text($string)
{
// remove all characters that aren’t a-z, 0-9, dash, underscore or space
$NOT_acceptable_characters_regex = ‘#[^-a-zA-Z0-9_]#‘;
$string = preg_replace($NOT_acceptable_characters_regex, ‘’, $string);

// remove all leading and trailing spaces
$string = trim($string);

// change all dashes, underscores and spaces to dashes
$string = preg_replace(‘#[-_]+#‘, ‘-‘, $string);

// return the modified string
return $string;

}

If you’re a PHP OOP (object-oriented programming) fan, you might like to place these
functions into a class. In this case, the _prepare_url_text() function should be a
private method because it’s only intended for internal use, and the make_product_
url() would be a public method. OOP features are not used in this chapter to keep
the examples simple and brief, but the underscore character is used to prefix func-
tions that are meant for internal use only — such as in _prepare_url_text() — to
make an eventual migration to object-oriented code easier. Later the book uses PHP
OOP features when that is recommended by the specifics of the exercises.

67

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 67

// builds a link that contains a category and a product
function make_category_product_url($category_name, $category_id,

$product_name, $product_id)
{
// prepare the product name and category name for inclusion in URL
$clean_category_name = _prepare_url_text($category_name);
$clean_product_name = _prepare_url_text($product_name);

// build the keyword-rich URL
$url = SITE_DOMAIN . ‘/Products/‘ .

$clean_category_name . ‘-C’ . $category_id . ‘/‘ .
$clean_product_name . ‘-P’ . $product_id . ‘.html’;

// return the URL
return $url;

}

?>

4. In your seophp folder, create a file named catalog.php with these contents:

<?php
// load the URL factory library
require_once ‘include/url_factory.inc.php’;
?>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html>
<head>
<title>The SEO Egghead Shop</title>

</head>
<body>
<h1>Products on Promotion at SEO Egghead Shop</h1>

<a href=”<?php echo make_category_product_url(“Carpenter’s Tools”, 12, i

“Belt Sander”, 45); ?>”>
Carpenter’s Tools: Belt Sander

<a href=”<?php echo make_category_product_url(“SEO Toolbox”, 6, “Link i

Juice”, 31); ?>”>
SEO Toolbox: Link Juice

<a href=”<?php echo make_category_product_url(“Friends’ Shed”, 2, “AJAX i

PHP Book”, 42); ?>”>
Friends’ Shed: AJAX PHP Book

68

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 68

</body>
</html>

5. You’re making use of the product.php file you created in the previous exercise. Here’s its code
again for your reference:

<?php

// display product details
echo ‘You have selected product #‘ . $_GET[‘product_id’] .

‘ from category #‘ . $_GET[‘category_id’];

?>

6. Add one last rule to your .htaccess file:

RewriteEngine On

Rewrite numeric URLs
RewriteRule ^Products/C([0-9]*)/P([0-9]*)\.html$
/product.php?category_id=$1&product_id=$2 [L]

Rewrite keyword-rich URLs
RewriteRule ^Products/.*-C([0-9]+)/.*-P([0-9]+)\.html$
/product.php?category_id=$1&product_id=$2 [L]

Rewrite catalog.html
RewriteRule ^catalog.html$ /catalog.php [L]

7. Load http://seophp.example.com/catalog.html in your web browser. You should be
shown a page like the one shown in Figure 3-14.

8. Click one of the links, and ensure the rewriting correctly loads the product.php script as
shown in Figure 3-15.

9. Just for the fun of it, or if you want to refresh your memory about how the product.php script
works, load http://seophp.example.com/product.php?category_id=6&product_id=31.
You should get the same output that’s shown in Figure 3-15, but this time through a dynamic URL.

Figure 3-14

69

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 69

Figure 3-15

Congratulations! You’ve just implemented a very organized and powerful strategy that you can use to
rewrite all the URLs in your catalog, and you’ve also implemented the URL rewriting scheme that makes
them work.

Let’s analyze the code you’ve written piece by piece, starting with the _prepare_url_text() function.
This function prepares a string such as a product name or a category name to be included into a URL,
by either deleting or changing to dashes those characters in a string that are invalid or not aesthetically
pleasing in a URL. It retains all alphanumeric characters as-is. For example, if the function receives as a
parameter the string “Friends’ Shed”, it will return “Friends-Shed.”

The _prepare_url_text() function starts by using preg_replace()to delete all characters that aren’t
alphanumerical, a dash, a space, or an underscore, ensuring there are no characters left that could break
your URL:

// remove all characters that aren’t a-z, 0-9, dash, underscore or space
$NOT_acceptable_characters_regex = ‘#[^-a-zA-Z0-9_]#‘;
$string = preg_replace($NOT_acceptable_characters_regex, ‘’, $string);

The preg_replace() PHP function allows for string manipulation using regular expressions. The origi-
nal string is supplied as the third parameter. The function replaces the string portions matched by the
regular expression supplied as the first parameter, with the string supplied as the second parameter.

In this case, the regular expression [^-a-zA-Z0-9_] matches all characters not (^) in the set of letters,
numbers, dashes, underscores, or spaces. You indicate that the matching characters should be replaced
with ‘’, the empty string, effectively removing them. The pound (#) character used to enclose the regu-
lar expression is the delimiter character that you need to use with regular expressions in PHP functions.

Then you continue by removing the leading and trailing spaces from the string it receives as parameter,
using the PHP trim() function:

// remove all leading and trailing spaces
$string = trim($string);

70

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 70

Finally, you use preg_replace() once again to transform any groups of spaces, dashes, and underscores
to dashes. For example, a string such as SEO___Toolbox (note there are three underscores) would be
replaced to SEO-Toolbox. Then you return the transformed URL string:

// change all dashes, underscores and spaces to dashes
$string = preg_replace(‘#[-_]+#‘, ‘-‘, $string);

// return the modified string
return $string;

Here are some examples of this transformation:

// displays Carpenters-Tools
echo _prepare_url_text(“Carpenter’s Tools”);

// displays Black-And-White
echo _prepare_url_text(“Black and White”);

_prepare_url_text() is used by make_category_product_url()to create product URLs. The
make_category_product_url() function receives as parameters a category name, a product name,
a category ID, and a product ID, and it uses this data to create the keyword-rich URL. The code in this
function is pretty straightforward. It starts by using _prepare_url_text() to prepare the product and
category names for inclusion in a URL:

// builds a link that contains a category and a product
function make_category_product_url($category_name, $category_id,

$product_name, $product_id)
{
// prepare the product name and category name for inclusion in URL
$clean_category_name = _prepare_url_text($category_name);
$clean_product_name = _prepare_url_text($product_name);

Then it simply joins strings to create a string of the form ./Products/Category-Name-Cm/Product-
Name/Pn.html. Finally, it returns this string:

// build the keyword-rich URL
$url = ‘./Products/‘ .

$clean_category_name . ‘-C’ . $category_id . ‘/‘ .
$clean_product_name . ‘-P’ . $product_id . ‘.html’;

// return the URL
return $url;

}

Here are some examples of this function’s use, and the results:

// display /Products/Carpenters-Tools-C12/Belt-Sander-P45.html
echo make_product_url(“Carpenter’s Tools”, 12, ‘Belt Sander’, 45);

// display /Products/Hammers-C3/Big-and-Mighty-Hammer-P4.html
echo make_product_url(‘Hammers’, 3, ‘Big and Mighty Hammer’, 4);

71

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 71

The web site application should be retrofitted with make_product_url(). All instances of a web site
application’s code where URLs are displayed should be replaced. For example (assume the following
variables refer to product database information):

echo “/products.php?category_id=$category_id&product_id=$product_id”;

These kinds of instances should be changed to:

echo make_product_url($category_name, $category_id, $product_name, $product_id);

We’ve demonstrated how you can do this by creating a fictional catalog page of an e-commerce web site,
catalog.php, and we’ve even created a rewrite rule for it so you could access it using a static URL.

In a real-world web site the product and category names and IDs would be retrieved from the database,
but for the purposes of this exercise we’ve typed them by hand to simplify the example.

<a href=”<?php echo make_category_product_url(“Carpenter’s Tools”, 12, ‘Belt i
Sander’, 45); ?>”>
Carpenter’s Tools: Belt Sander

Pagination and URL Rewriting
It is often necessary to paginate series of pages on a web site. Ideally, the URLs of those the pages should
also be rewritten. This rule is not illustrated in action until the e-commerce store in Chapter 14, but here
is the rule to whet your appetite:

RewriteRule ^Products/.*-C([0-9]+)/Page-([0-9]+)/?$ i
category.php?category_id=$1&page_num=$2 [L]

Rewriting Images and Streaming Media
Some recommend using keywords not only in HTML document names, but also embedded in the image
and media file names. Especially if you are in the image and streaming media distribution business, this
may be more important.

Depending on your particular application, you may find it easier to use proper physical file names.
However, if the solution is more complex, rewriting image file URLs may make sense. Rewriting can be
accomplished here with little effort. All files should be placed in one directory with only ids as their file
names, that is, (“1”, “2”, “3”) — no extensions. You delegate the requests directly to physical files on the
file system — and not through a PHP application. You do this because streaming media use extensions
in a web server that cannot be easily implemented in PHP scripts. The URLs are generated using a PHP
function as in previous examples.

Rewriting Image Files
1. Copy the media folder from the code download to your seophp folder. In your seophp/media

folder, you should have five files named 1, 2, 3, 4, and 5. These are jpeg image files.

72

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 72

2. Add the following rewrite rule to the .htaccess file:

RewriteEngine On

Rewrite numeric URLs
RewriteRule ^Products/C([0-9]*)/P([0-9]*)\.html$ i
/product.php?category_id=$1&product_id=$2 [L]

Rewrite keyword-rich URLs
RewriteRule ^Products/.*-C([0-9]+)/.*-P([0-9]+)\.html$ i
/product.php?category_id=$1&product_id=$2 [L]

Rewrite catalog.html
RewriteRule ^catalog.html$ /catalog.php [L]

Rewrite cartoons.html
RewriteRule ^cartoons.html$ /cartoons.php [L]

Rewrite media files
RewriteRule ^.*-M([0-9]+)\..*$ /media/$1 [L]

3. Create a new file named cartoons.php in your seophp folder, and add the following code to it:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html>
<head>
<title>URL Rewriting Media Files</title>

</head>
<body>

<img src=”http://seophp.example.com/Tweety-Sylvester-M3.jpg” alt=”Tweety & i

Sylvester” />

</body>
</html>

4. Load http://seophp.example.com/cartoons.html, and expect to see five images, as
shown in Figure 3-16.

Figure 3-16

73

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 73

5. At this moment the image rewriting works perfectly. However, in order to implement it in a
real-world web site you also need to extend the URL factory to build the image file names for
you. Open the URL factory file, url_factory.inc.php, and add this function to it:

// builds a link to a media file
function make_media_url($id, $name, $extension)
{
// prepare the medium name for inclusion in URL
$clean_name = _prepare_url_text ($name);

// build the keyword-rich URL
$url = SITE_DOMAIN . ‘/‘ . $clean_name . ‘-M’ . $id . ‘.’ . $extension;

// return the URL
return $url;

}

6. Open cartoons.php, and change the hard-coded file names to calls to the make_media_url()
function, like this:

<?php
// load the URL factory library
require_once ‘include/url_factory.inc.php’;
?>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html>
<head>
<title>URL Rewriting Media Files</title>

</head>
<body>
<img src=”<?php echo make_media_url(1, “Tweety”, “jpg”); ?>” alt=”Tweety” />
<img src=”<?php echo make_media_url(2, “Toy Story”, “jpg”); ?>” alt=”Toy Story”i

/>
<img src=”<?php echo make_media_url(3, “Tweety & Sylvester”, “jpg”); ?>” i

alt=”Tweety & Sylvester” />
<img src=”<?php echo make_media_url(4, “Mickey”, “jpg”); ?>” alt=”Mickey” />
<img src=”<?php echo make_media_url(5, “Minnie”, “jpg”); ?>” alt=”Minnie” />

</body>
</html>

7. Load http://seophp.example.com/cartoons.html again. Expect to get the same links as
before, and the results shown in Figure 3-16.

The exercise was pretty much similar to the previous ones, except Apache rewrites the image URLs to
physical files on your disk. The regular expression looks a bit more complicated this time, but it’s really
not very different from the other ones you’ve dealt with:

RewriteRule ^.*-M([0-9]+)\..*$ /media/$1 [L]

74

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 74

The rule matches any random set of characters followed by -M (^.*-M), followed by a group of digits
that is captured as $1 — ([0-9]+). Next you have a literal dot — \. (note that it’s escaped using the
backslash), and followed again by a random set of characters — (.*).

In English, the rule matches URLs such as Some-Media-Name-Mn.some-extension, and rewrites them
directly to a physical file /media/n.

The new function you’ve added to the URL factory generates such beautified URLs. In case you want to
use search engine friendly image file names, you should either give them proper names from the start,
or use the URL factory together with the rewriting rule to ensure consistency throughout the web site.

Problems Rewriting Doesn’t Solve
URL-rewriting is not a panacea for all dynamic site problems. In particular, URL-rewriting in and of
itself does not solve any duplicate content problems. If a given site has duplicate content problems with
a dynamic approach to its URLs, the problem would likely also be manifest in the resulting rewritten
static URLs as well. In essence, URL-rewriting only obscures the parameters — however many there
are, from the search engine spider’s view. This is useful for URLs that have many parameters as we
mentioned. Needless to say, however, if the varying permutations of obscured parameters do not dic-
tate significant changes to the content, the same duplicate content problems remain.

A simple example would be the case of rewriting the page of a product that can exist in multiple cate-
gories. Obviously, these two pages would probably show duplicate (or very similar content) even if
accessed through static-looking links, such as:

http://www.example.com/Products/College-Books-C1/Some-Book-Title-P2.html
http://www.example.com/Products/Out-of-Print-Books-C2/Some-Book-Title-P2.html

Additionally, in the case that you have duplicate content, using static-looking URLs may actually exacer-
bate the problem. This is because whereas dynamic URLs make the parameter values and names obvious,
rewritten static URLs obscure them. Search engines are known to, for example, attempt to drop a parame-
ter they heuristically guess is a session ID and eliminate duplicate content. If the session parameter were
rewritten, a search engine would not be able to do this at all.

There are solutions to this problem. They typically involve removing any parameters that can be avoided,
as well as excluding any of the remaining the duplicate content. These solutions are explored in depth in
Chapter 5.

A Last Word of Caution
URLs are much more difficult to revise than titles and descriptions once a site is launched and indexed.
Thus, when designing a new site, special care should be devoted to them. Changing URLs later requires
you to redirect all of the old URLs to the new ones, which can be extremely tedious, and has the poten-
tial to influence rankings for the worse if done improperly and link equity is lost. Even the most trivial
changes to URL structure should be accompanied by some redirects, and such changes should only be
made when it is absolutely necessary.

75

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 75

This is relatively simple process. In short, you use the URL factory that you just created to create the new
URLs based on the parameters in the old dynamic URLs. Then you employ what is called a “301-redirect”
to the new URLs. The various types of redirects are discussed in the following chapter.

So, if you are retrofitting a web application that is powering a web site that is already indexed by search
engines, you must redirect the old dynamic URLs to the new rewritten ones. This is especially important,
because without doing this every page would have a duplicate and result in a large quantity of duplicate
content. You can safely ignore this discussion, however, if you are designing a new web site.

Summary
This chapter covered a lot of material! It detailed how to employ static-looking URLs in a dynamic
web site step-by-step. Such URLs are both search engine friendly and more enticing to the user. This
is accomplished by using mod_rewrite in coordination with a “URL factory.” This also enforces consis-
tency in URLs. It is important to realize, however, that URL rewriting is not a panacea for all dynamic
site problems — in particular, duplicate content problems. That is the focus of Chapter 5, “Duplicate
Content.”

76

Chapter 3: Provocative SE-Friendly URLs

00929c03.qxd:00929c03 3/13/07 10:39 AM Page 76

Content Relocation and
HTTP Status Codes

One of the perks of PHP is that it abstracts away many low-level implementation details from the
web developer. It does such a great job, in fact, that you can typically build complex web applica-
tions without understanding much at all about the protocol web servers used to speak to the world,
HTTP (HyperText Transport Protocol).

Though most of the time this ignorance is bliss, it is sometimes not so with regard to search engine
optimization. Using the protocol improperly has the potential to wreak havoc for search engine rank-
ings. On the other hand, knowing how to use it effectively can be of great help to the very same end.

HTTP status codes are a small but critical part of this protocol. They provide information regard-
ing the state of an HTTP request. You can use them, for example, to indicate that the requested
information should be retrieved from a different location henceforth. In modern search engines,
doing so also may also result in a transference of link equity to that new location. This example
alone highlights the importance of knowing how to use these codes.

In this chapter you will:

❑ Learn about the HTTP status codes that are pertinent to the search engine marketer.

❑ Understand how to use the redirection status codes properly, how to signal deleted pages,
and how to avoid indexing errors.

❑ Learn how to implement redirection using PHP and mod_rewrite.

❑ Follow step-by-step exercises to implement automatic URL correction and canonicalization.

00929c04.qxd:00929c04 3/13/07 10:40 AM Page 77

HTTP Status Codes
Each time a user agent requests a URL from a web site, the server replies with a set of HTTP headers;
the requested content follows after them. Most users never see this part of the communication, how-
ever, because web browsers do not normally display them.

If you’ve never seen how these headers look, it’s time to get your feet wet. The easiest way to get started
is to use a web-based tool that does all of the work for you. One such tool is located at http://www
.seoegghead.com/tools/view-http-headers.php.

Figure 4-1 shows the results of using this tool for http://www.cristiandarie.ro. The status code is
highlighted.

A more convenient way to view these headers is by using a plugin for your browser. One plugin you can
use with Firefox is LiveHTTPHeaders (http://livehttpheaders.mozdev.org/). For Internet Explorer
you can use ieHTTPHeaders (http://www.blunck.se/iehttpheaders/iehttpheaders.html).

Figure 4-2 shows LiveHTTPHeaders in action.

The part of the HTTP headers you’re predominantly interested in for the purpose of this chapter is the
line containing the status code of the request, as indicated in the figure. The most common status code is
200, which specifies the request was processed by your web server successfully without any surprises,
and that the content the user requested follows.

Figure 4-1

78

Chapter 4: Content Relocation and HTTP Status Codes

00929c04.qxd:00929c04 3/13/07 10:40 AM Page 78

Figure 4-2

However, there are many other status codes you need to know about as a search engine marketer. The
status codes considered in this chapter are:

❑ Redirection: 301 and 302

❑ Removal: 404

❑ Server Error: 500

The official descriptions for all HTTP status codes are available at http://www.w3.org/Protocols/
rfc2616/rfc2616-sec10.html.

Redirection Using 301 and 302
The 301 and 302 codes are the HTTP status codes used for redirection. These codes indicate that another
request must be made in order to fulfill the HTTP request — the content is located elsewhere. When a web
page replies with either of these codes, it does not return any HTML content, but includes an additional
Location: HTTP header that indicates another URL where the content is found.

Figure 4-3 shows an example of how redirects occur in practice. As you can see, when a redirect occurs,
the URL that issues the redirect doesn’t return any content, but indicates the new URL that should be
referenced instead.

79

Chapter 4: Content Relocation and HTTP Status Codes

00929c04.qxd:00929c04 3/13/07 10:40 AM Page 79

Figure 4-3

Note that in case the user agent is a search engine spider or a software application, there is not a user
involved in the process, as shown in Figure 4-3. Search engines follow the same basic process to update
SERPs when they encounter a redirect.

Redirections can be chained, that is, one redirect can point to a page that, in turn, redirects again. However,
multiple redirects should be avoided to the extent that it is possible. A maximum of five redirections was
stipulated by an older version of RFC 2616, but that limit was later lifted. Regardless, it is wise to avoid
chained redirects because they can slow down site spidering — spiders may only schedule the result of
the redirection for spidering instead of immediately fetching it.

We recommend chaining no more than three redirects.

The HTTP standard actually contains many redirection status codes. They are listed in Table 4-1.

In practice only the 301 and 302 status codes are used for redirection. Furthermore, because browsers are
known to struggle with certain of the other status codes, it is probably wise to avoid them, even if they
seem more relevant or specific. It can only be assumed that search engines may also struggle with them,
or at least that it is not entirely understood how they should be interpreted.

Web clientUser

URL A replies with a
status code indicating
a redirect to URL B

Web server at URL A

URL B replies with a
status code of 200 and
some HTML content

Web server at URL B

User requests URL A

User is displayed
the content received
from URL B

Web client requests URL A

Web client requests URL B,
updating the address bar to
display URL B

Web client reads the
content received from
URL B

80

Chapter 4: Content Relocation and HTTP Status Codes

00929c04.qxd:00929c04 3/13/07 10:40 AM Page 80

Table 4-1

301
The 301 status code indicates that a resource has been permanently moved to the new location specified
by the Location: header that follows. It indicates that the old URL is obsolete and should replace any
references to the old URL with the indicated URL.

Take as an example a fictional page named http://www.example.com/old_page.php, which returns
this header:

HTTP/1.1 301 Moved Permanently
Date: Wed, 14 Jun 2006 09:50:39 GMT
Server: Apache/2.0.54 (Unix)
X-Powered-By: PHP/5.0.4
Location: http://www.example.com/new_page.php
Content-Length: 0
Connection: close
Content-Type: text/html; charset=ISO-8859-1

When loading the page in a web browser, the response will be automatically redirected to the new loca-
tion specified by the Location header. After the redirection, the back button in your browser won’t ref-
erence the initially requested page, as a result of the old page being permanently redirected.

The 301 status code also indicates to search engines that link equity from the previous URL should be
credited to the new one. In theory, the new page will inherit the rankings of the original page. In prac-
tice, however, it may take some time for this to occur. It would be wise not to frivolously change URLs
regardless, if this is a concern.

Status Code Description

300 Multiple choices

301 Moved permanently

302 Found

303 See other

304 Not modified

305 Use Proxy

307 Temporary Redirect

81

Chapter 4: Content Relocation and HTTP Status Codes

00929c04.qxd:00929c04 3/13/07 10:40 AM Page 81

The 301 status code is arguably the most important one when it comes to search engine optimization. The
largest part of this chapter is dedicated to this status code, and to exercises demonstrating its use. But
before getting to the exercises, the following sections examine the 302, 404, and 500 status codes. These
are important to understand as well.

302
The 302 status code is a bit ambiguous in meaning. It indicates that a resource is “temporarily” moved. The
old URL is not obsolete at all, and clients will not cache the result unless indicated explicitly by a Cache-
Control or Expires header. To confuse things even further, 302 is also used for some paid advertising
links, but that is not the usage discussed here.

The big problem with the 302 status code is that its meaning for search engines depends on its context.
In practice, it is worth dividing them into internal temporary redirects, that is, from a page on domain A
to another page on domain A, and external temporary redirects, from a page on domain A to a page on
domain B.

Browsers always abide by the definitions for interpreting a 302 redirect — both internal and external.
However, today, most search engines (Google and Yahoo! included) only use it for an internal 302. For
an internal 302 redirect, then, search engines will not cache the result of the redirect, and continue to
list domain A in the SERPs. This is consistent with the definition.

External 302 redirects are more of a problem. Matt Cutts of Google states that more than 99% of the time,
Google will list the result with the destination result, that is, domain B, instead of domain A. This is against
the standard, and Google behaves like this to mitigate a vulnerability called “302 hijacking.”

302 hijacking refers to the practice of using a page on domain A to link to a page on domain B, which
has fresh quality content. Typically, that page would rank well based on that “stolen” fresh content
from domain B, and employ a form of cloaking to redirect users to another page. This practice became
prevalent enough to warrant a change in policy from both Google and Yahoo!, and, according to Matt
Cutts, “Google is moving to a set of heuristics that return the destination page more than 99% of the time. Why
not 100% of the time? Most search engines reserve the right to make exceptions when we think the source page
will be better for users, even though we’ll only do that rarely.”

In the article at http://www.mattcutts.com/blog/seo-advice-discussing-302-redirects/,
Matt Cutts discusses external 302s. In this case, the RFC definition is not the rule — it is the exception!
For the most part, external 302s are treated as 301s, but they do not affect the transference of link equity.

In practice, on a dynamic site, you should evaluate whether 302s are necessary anyway. If you want a URL
to host some different content than the usual temporarily, it is better to change the content transparently.
Possible implementations include using an include(), or fetching and displaying the alternative content
remotely, obviating the need for the 302 in the first place. To do this you can use the cURL functions in
PHP — Client URL Library.

Supposing the old page was called old_page.php, and the page that contains the required content is
called new_page.php, you could simply include the content from the latter page as follows:

include(‘new_page.php’);

82

Chapter 4: Content Relocation and HTTP Status Codes

00929c04.qxd:00929c04 3/13/07 10:40 AM Page 82

To include the content from a different server using cURL, you could do something like this:

$ch = curl_init();
curl_setopt($ch, CURLOPT_URL,’http://www.example.com/new_page.php’);
curl_setopt($ch, CURLOPT_RETURNTRANSFER,1);
echo curl_exec($ch);

Removing Deleted Pages Using 404
Everyone with “fat fingers” has seen the 404 status code at some point. It means that the URL you
requested does not exist. However, there are a few technical details related to this status code that are
less obvious.

First of all, it’s less understood that along with a 404 status code, the web server can also deliver any
HTML content — just like it does with the 200 status code. Indeed, people usually associate 404 with the
generic Apache error page; but this is not necessarily the case. Some web sites customize their 404 pages
to enhance the user experience. Advanced web sites may even try to give the visitors suggestions as to
what they might have meant based on the keywords in the invalid URL.

Regardless of whether a 404 page is generic or custom, it always tells search engines the page does not
exist; and if so, that it should be removed from the index.

For a static site, presenting a 404 error is automatic — simply delete the file. Unfortunately, many dynamic
sites abandon the concept of 404s, because it takes some extra effort to implement. Typically when a prod-
uct is deleted from a database, the product’s page is no longer linked from the other pages of the web site.
The product’s page may, however, be linked from pages of external web sites, have acquired link equity,
and remain indexed by search engines.

The worst thing you can do is return a blank page with a 200 status code — as happens often when a
product ID no longer exists in a database. This will result in a number of blank pages indexed by a
search engine over time, resulting in duplicate content. Instead, you should return a 404 status code,
perhaps with a friendly error message as well.

A common mistake is to deliver a “page not found” message that is meant to handle
404, but with a 200 status code instead. Web hosting services often allow setting a cus-
tom 404 page — that is, the page that is to be fed when a non-existent URL is requested.
However, they may not set the 404 status code correctly. This can result in a theoreti-
cally infinite number of duplicate pages in your web site. You can verify that the
correct headers are sent using the tools cited earlier in this chapter.

Search engines never index a page that arrives with the 404 status code.

83

Chapter 4: Content Relocation and HTTP Status Codes

00929c04.qxd:00929c04 3/13/07 10:40 AM Page 83

The moral of the story? Keep a tidy shop. Return 404s for all deleted pages. Some search engine marketers
suggest redirecting old products to semantically related products instead of 404ing. This preserves link
equity, whereas a 404 does not. This can be done in .htaccess or PHP with a 301 redirect, and is demon-
strated later in this chapter.

Avoiding Indexing Error Pages Using 500
Once upon a time, in a place far away, your web server is chugging along; everything is fine and dandy.
Then, all of a sudden, something terrible happens, and the database goes down. Because this is an unan-
ticipated error condition (all of us could do better error checking!), many pages return erroneous blank
pages or perhaps 404s. Perhaps the web server goes down altogether. Worse still, you don’t have a hot
standby to replace it. Meanwhile, search engines are trying to index your pages, not finding anything,
getting blank pages, and so on. Here are the possibilities:

❑ Returning 404s or blank pages. This is a real problem. If a server returns a 404, a search engine
will de-list your pages. If a search engine sees blank pages, or pages full of errors, it may do the
same. This should be avoided at all costs.

❑ Not finding anything (no connection). This is actually more desirable than it sounds in terms
of indexing. Although it may look extremely unprofessional, a search engine is likely to assume
that there are intermittent connectivity problems and try again later. Your users may, however,
be annoyed. At least from a spider’s point of view, though, as long as this is resolved in a day
or so, there is no major problem.

It’s actually fairly simple. A “500” status code can be returned, along with a custom page describing the
error. This indicates to search engines that there is a temporary technical problem. Perhaps the site is
down for maintenance. Say it politely and provide the time it will be back up. Or perhaps there was a
national disaster as in the case of certain web servers in the New Orleans area in 2006. Put up a global
error page for every URL with a polite message, and wait for things to clear up.

To do this in PHP use this line of PHP, and then add whatever content you wish:

header(‘HTTP/1.0 500 Internal Server Error’);
echo ‘The bank is closed until the scary aliens leave on their space ship; sorry
for the inconvenience, thank you for being a Bank of Mars customer.’;
exit();

Redirecting with PHP and mod_rewrite
From now on, this chapter primarily discusses uses of the 301 HTTP status code. You can implement it
with either mod_rewrite or PHP.

When using mod_rewrite, redirecting is implemented similarly to URL rewriting, except that you spec-
ify a redirection status code as a parameter. The following rule does a 301 redirect to bar.php when the
initial request is for foo.php:

RewriteRule ^foo\.php$ /bar.php [R=301,L]

84

Chapter 4: Content Relocation and HTTP Status Codes

00929c04.qxd:00929c04 3/13/07 10:40 AM Page 84

Except for the new R option at the end, there’s nothing new for you here — but that option represents
an important difference! With or without the R option, the visitor would end up transparently seeing
the content provided by bar.php. However, when redirection is used, the user’s web client actually
makes two calls to the web server. First it asks for foo.php; as a response, it gets a 301 redirect code in
the HTTP header, indicating bar.php as the new location. Then the web client requests bar.php, and
informs the user that a new URL has been loaded by updating the URL displayed in the address bar.

In PHP, you redirect by adding HTTP headers using the header() function. If you want foo.php to do
a 301 redirect to bar.php, your foo.php should look like this:

<?php

header(‘HTTP/1.1 301 Moved Permanently’);
header(‘Location: http://www.example.com/bar.php’);

?>

In practice, when a site redesign involves changing URLs, the webmaster should at least 301 redirect the
most important URLs to their new counterparts. Otherwise link equity will be lost.

Using a series of 301 redirects mitigates this problem. If your site is already indexed by search engines,
you need to systematically rewrite old URLs to new URLs.

Using Redirects to Change File Names
In the exercise that follows you update the product pages you created in Chapter 3 to redirect all
the dynamic URLs to their keyword-rich versions. Currently, the same content can be retrieved using
both dynamic URLs and keyword-rich URLs (see Figure 3-9 and Figure 3-12 from Chapter 3); the follow-
ing two links would get to the same content:

http://seophp.example.com/Products/SEO-Toolbox-C6/Link-Juice-P31.html

and

http://seophp.example.com/product.php?category_id=6&product_id=31

To avoid any problems that can result from two links generating this duplicate content, make sure that
the visitor is always redirected to the proper keyword-rich URL, if a different URL was used. This is crit-
ical during a migration to such URLs on a preexisting web site, because the old URLs will be definitely
indexed.

Alright, we’re sure you’re eager to write some code!

When just the Location header is mentioned without explicitly mentioning the
status code, a 302 temporary redirect is implied. Keep this in mind.

85

Chapter 4: Content Relocation and HTTP Status Codes

00929c04.qxd:00929c04 3/13/07 10:40 AM Page 85

Redirecting Dynamic URLs to Keyword-Rich URLs
1. Add this code to your config.inc.php file. These global associative arrays define a line of

products and categories, simulating a real product database. You’ll need the data from these
arrays to generate the keyword-rich versions of URLs automatically, using PHP code. (Arrays
are used instead of a real database to keep the exercise easier for you to follow.)

<?php

// site domain; no trailing ‘/‘ !
define(‘SITE_DOMAIN’, ‘http://seophp.example.com);

// create a fictional database with products and categories
$GLOBALS[‘products’] = array

(“45” => “Belt Sander”,
“31” => “Link Juice”,
“42” => “AJAX PHP Book”);

$GLOBALS[‘categories’] = array
(“12” => “Carpenter’s Tools”,
“6” => “SEO Toolbox”,
“2” => “Friend’s Shed”);

?>

2. Create include/url_redirect.inc.php and type this code:

<?php

// load the URL factory library
require_once ‘url_factory.inc.php’;

// redirects to proper URL if not already there
function fix_category_product_url()
{
// obtain the proper URL of the current category/product page
$proper_url = get_proper_category_product_url();

// 301 redirect to the proper URL if necessary
if (SITE_DOMAIN . $_SERVER[‘REQUEST_URI’] != $proper_url)
{
header(‘HTTP/1.1 301 Moved Permanently’);
header(‘Location: ‘ . $proper_url);
exit();

}
}

// returns the proper keyword-rich URL
function get_proper_category_product_url()
{

86

Chapter 4: Content Relocation and HTTP Status Codes

00929c04.qxd:00929c04 3/13/07 10:40 AM Page 86

// retrieve product and category IDs from the query string
$product_id = $_GET[‘product_id’];
$category_id = $_GET[‘category_id’];

// retrieve product and category names from fictional database
$product_name = $GLOBALS[‘products’][$product_id];
$category_name = $GLOBALS[‘categories’][$category_id];

// create keyword-rich URL
$proper_url = make_category_product_url($category_name, $category_id,

$product_name, $product_id);

// redirect to keyword-rich URL if not already there
return $proper_url;

}

?>

3. Add these lines to product.php:

<?php

// load library that handles redirects
require_once ‘include/url_redirect.inc.php’;

// redirect requests proper keyword-rich URLs when not already there
fix_category_product_url();

// display product details
echo ‘You have selected product #‘ . $_GET[‘product_id’] .

‘ from category #‘ . $_GET[‘category_id’];

?>

4. Load http://seophp.example.com/product.php?category_id=2&product_id=42 in
your web browser, and see some magic happen to the URL! Figure 4-4 shows how this request
was redirected to its keyword-rich (“proper”) version of the URL.

Figure 4-4

87

Chapter 4: Content Relocation and HTTP Status Codes

00929c04.qxd:00929c04 3/13/07 10:40 AM Page 87

You start by modifying product.php to include a reference to url_redirect.inc.php, and then call its
fix_category_product_url() function:

<?php

// load library that handles redirects
require_once ‘include/url_redirect.inc.php’;

// redirect requests proper keyword-rich URLs when not already there
fix_category_product_url();

The fix_category_product_url() function is executed every time a product page is loaded, and verifies
if the URL used to reach the page is the “proper” one. The “proper” version of the URL is composed using a
helper function named get_proper_category_product_url():

// redirects to proper URL if not already there
function fix_category_product_url()
{
// obtain the proper URL of the current category/product page
$proper_url = get_proper_category_product_url();

How get_proper_category_product_url() works is discussed in a second. For now, just assume the
$proper_url variable contains something like http://seophp.example.com/Products/Friends-
Shed-C2/AJAX-PHP-Book-P42.html. As soon as you obtain this “proper” URL, you verify that the URL
used by the visitor to reach the product page matches:

// 301 redirect to the proper URL if necessary
if (SITE_DOMAIN . $_SERVER[‘REQUEST_URI’] != $proper_url)
{

The $_SERVER[‘REQUEST_URI’] returns the URL used to reach the page, without the domain name. For
example, if you navigate to http://seophp.example.com/product.php?category_id=2&product_
id=42, $_SERVER[‘REQUEST_URI’] will return /product.php?category_id=2&product_id=42. By
joining the domain name with this value, you obtain a complete URL.

If there is no match, you do a 301 redirect to the proper URL by setting the necessary header values:

// 301 redirect to the proper URL if necessary
if (SITE_DOMAIN . $_SERVER[‘REQUEST_URI’] != $proper_url)
{
header(‘HTTP/1.1 301 Moved Permanently’);
header(‘Location: ‘ . $proper_url);
exit();

}

Now look at get_proper_category_product_url(). This function starts by loading the product and
category IDs passed through the URL in the $_GET variable:

// returns the proper keyword-rich URL
function get_proper_category_product_url()
{
// retrieve product and category IDs from the query string
$product_id = $_GET[‘product_id’];
$category_id = $_GET[‘category_id’];

88

Chapter 4: Content Relocation and HTTP Status Codes

00929c04.qxd:00929c04 3/13/07 10:40 AM Page 88

Then you read the names of the product and the category from your fictional database:

// retrieve product and category names from fictional database
$product_name = $GLOBALS[‘products’][$product_id];
$category_name = $GLOBALS[‘categories’][$category_id];

The fictional database consists of two global associative arrays, associating IDs with names. These are defined
in config.inc.php, and simulate a real database of products. This example uses associative arrays to keep
things simple. You would need a real database in production scenario, however.

// create a fictional database with products and categories
$GLOBALS[‘products’] = array

(“45” => “Belt Sander”,
“31” => “Link Juice”,
“42” => “AJAX PHP Book”);

$GLOBALS[‘categories’] = array
(“12” => “Carpenter’s Tools”,
“6” => “SEO Toolbox”,
“2” => “Friend’s Shed”);

With this data at hand, get_proper_category_product_url() continues by creating the keyword-rich
URL using the make_category_product_url() function of the URL factory:

// create keyword-rich URL
$proper_url = make_category_product_url($category_name, $category_id,

$product_name, $product_id);

Finally, the function returns this value:

// redirect to keyword-rich URL if not already there
return $proper_url;

URL Correction
The great advantage with your current keyword-rich URLs is that you aren’t really relying on the product
or category names to find their data, but rather only on their IDs, which are subtly inserted in the URLs.
This works great because the text in the URL can change without disabling it.

One potential problem with these links, though, is that when the text for a product or category name
changes, its link will automatically be changed as well. As you already know, this has the potential to
generate duplicate content problems, and that’s certainly not something that you want!

With your current site, there are an infinite number of variations that lead to the same content. Take
these two “different” links:

http://seophp.example.com/Products/SEO-Toolbox-C6/Link-Juice-P31.html

and

http://seophp.example.com/Products/SEO-Toolbox-C6/New-Link-Juice-With-Vitamin-L-P31
.html

89

Chapter 4: Content Relocation and HTTP Status Codes

00929c04.qxd:00929c04 3/13/07 10:40 AM Page 89

The solution we’re proposing is to do 301 redirects to a single “standard” version of the link. Lucky you,
the functionality is already there! The fix_category_product_url() function from url_redirect
.inc.php already takes care to redirect any errant or outdated link to its “proper” version, in case the
URL isn’t already what it should be.

Trying to load any of the two previously mentioned links would simply redirect you to:

http://seophp.example.com/Products/SEO-Toolbox-C6/Link-Juice-P31.html

Dealing with Multiple Domain Names Properly
Though it’s less popular these days, some people desire to have multiple domain names pointing to the
same site. For example, say you have three domain names:

www.example.com
www.example.org
www.example.net

The problem is that, especially if you market all three domains, people are free to link to any of these
domains. That’s a major duplicate content issue. You must pick a “standard” domain and permanently
redirect the other domains to that domain.

Let’s pick www.example.com. This is how to do it with mod_rewrite:

RewriteEngine on
RewriteCond %{HTTP_HOST} !^www\.example\.com
RewriteRule ^(.*)$ http://www.example.com/$1 [R=301,L]

Done! Now everything will get redirected to www.example.com. Let’s analyze the rules in detail.

This is the first time you’re using RewriteCond. You use RewriteCond to place a condition for the
rule that follows. In this case, you’re interested in verifying that the site has been accessed through
www.example.com. Take another look at the RewriteCond line:

RewriteCond %{HTTP_HOST} !^www\.example\.com

This line specifies a condition that is true when the host name (HTTP_HOST) is not (!) www.example
.com. The rewrite rule captures the entire query string of the original URL, as (.*), and passes it to
http://www.example.com, doing a 301 redirect to the new location. This way, for example, a query
to http://www.example.org?query=string would be 301 redirected to http://www.example
.com?query=string.

Using Redirects to Change Domain Names
Sometimes you have to change your domain name. Usually this happens in M&A (mergers and acquisi-
tions) cases. Although undesirable, there is a right way to do this, and many wrong ones. Typically both
domains need to point to the same web site now that the merger occurred. The worst thing you can do is
simply point both domains to the same content via DNS. This will result in search engines not knowing

90

Chapter 4: Content Relocation and HTTP Status Codes

00929c04.qxd:00929c04 3/13/07 10:40 AM Page 90

which is authoritative. Many links have presumably built up over the years for both domain names, and
a search engine will have considerable difficulty ascertaining which version to index. The result is a
massive duplicate content problem. You could also take down the old domain, or put a page up on the
old domain indicating to users that they should visit the new domain. Both of these methods avert the
duplicate content penalty, but do not result in transference of link equity. The proper way to handle
such a necessity is to use a 301 redirect to the new domain.

Simply place this in your .htaccess file:

RewriteEngine on
RewriteCond %{HTTP_HOST} ^old\.example\.com [OR]
RewriteCond %{HTTP_HOST} ^www\.old\.example\.com
RewriteRule ^(.*)$ http://www.new.example.com/$1 [R=301,L]

This says that if a request for old.example.com or www.old.example.com comes in, it should be per-
manently redirected to www.new.example.com, keeping all the query string parameters. Note the way
the RewriteRule is only executed if one of the RewriteCond rules is satisfied.

Alternatively, you can assert something with another (similar) meaning:

RewriteEngine on
RewriteCond %{HTTP_HOST} !^www\.new.example\.com
RewriteRule ^(.*)$ http://www.new.example.com/$1 [R=301,L]

This says, similar to the canonicalization situation, anything that’s not the right domain should be
redirected.

URL Canonicalization: www.example.com
versus example.com

This is another topic that comes up again and again. Because every search engine (including Google —
even after the BigDaddy update) has issues when a web site is accessible under both www.example.com
and example.com domains, we should be responsible webmasters and remove the ambiguity altogether.
Otherwise both versions may be indexed and cause duplicate content problems. This is a fairly simple task.

Simply place this in your .htaccess file:

RewriteCond %{HTTP_HOST} ^example\.com
RewriteRule ^(.*)$ http://www.example.com/$1 [R=301,L]

This says that if a request for example.com[path] comes in, it should be permanently redirected to
www.example.com[path].

Alternatively, you can assert something with another (similar meaning):

RewriteEngine on
RewriteCond %{HTTP_HOST} !^www\.example\.com
RewriteRule ^(.*)$ http://www.example.com/$1 [R=301,L]

91

Chapter 4: Content Relocation and HTTP Status Codes

00929c04.qxd:00929c04 3/13/07 10:40 AM Page 91

This says that if any request designated to this site comes in with something other than www.example.com,
it should be changed to that. This is a slightly broader definition, and may or may not be desirable. It will
also redirect any other domains that resolve to your site to www.example.com.

Please note: It is not a good idea to use a site removal tool to remove the example.com pages for a site,
even after these changes have been applied! This can result in complete site removal. Matt Cutts of Google
says “If you remove one of the www vs. non-www hostnames, it can end up removing your whole
domain for six months. Definitely don’t do this” (http://www.mattcutts.com/blog/seo-advice-
url-anonicalization/). Instead, simply 301 the non-desirable domain to the desirable one, and the
problem should slowly be resolved over time.

URL Canonicalization: /index.php versus /
Unfortunately, the concept of index pages (index.php, Default.aspx, and so on) causes yet another
duplicate content problem. If no file name in a directory is provided to a web server, the “index” page
is typically provided by default, but without redirection to this page. The problem arises when both
URLs are linked, either internally or from other sites. This results in the duplicate content because there
are two URLs that are used to access the same content. Strictly speaking, neither URL is more correct,
though shorter URLs are usually desirable, and hence we favor / over /index.php.

The solution is similar to the one for the www.example.com vs. example.com issue. You must use a 301
redirect to the containing directory whenever you get a request for a file path ending in index.php or
index.html. The redirection code can simply be implemented using a mod_rewrite rule or in PHP.

Using mod_rewrite, you’d just need to add these lines to the .htaccess file:

RewriteCond %{THE_REQUEST} ^GET\ .*/index\.(php|html)\ HTTP
RewriteRule ^(.*)index\.(php|html)$ /$1 [R=301,L]

After making this change, trying to load http://seophp.example.com/index.php should redirect
you to http://seophp.example.com/.

Alternatively, you can take care of the redirection in PHP code. You do that in the next exercise.

Eliminating index.php
1. Add a file named index.php to your seophp folder, with the following code:

<?php
// redirect the current request if necessary
require_once ‘include/url_redirect.inc.php’;

// redirect requests to index.php and index.html to the root
fix_index_url();
?>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html>

92

Chapter 4: Content Relocation and HTTP Status Codes

00929c04.qxd:00929c04 3/13/07 10:40 AM Page 92

<head>
<title>SEO Egghead: SEO for Nerds</title>

</head>
<body>
<h1>Welcome to SEO Egghead!</h1>

</body>
</html>

2. Add this code to your url_redirect.inc.php file:

<?php

// load the URL factory library
require_once ‘url_factory.inc.php’;

// redirect requests to index.php and index.html to the root
function fix_index_url()
{
// if the request is for index.php we redirect to ./
if (preg_match(‘#(.*)index\.(html|php)$#‘, $_SERVER[‘REQUEST_URI’], $captures))
{
// perform a 301 redirect to the new URL
header(‘HTTP/1.1 301 Moved Permanently’);
header(‘Location: ‘ . $captures[1]);

}
}

...
?>

3. Load http://seophp.example.com/index.php, and expect to be redirected to
http://seophp.example.com/ (see Figure 4-5).

The code is pretty straightforward. You started by creating a very simple version of index.php., which
contains only a title. However, what’s special about this index.php file is that in the beginning it loads the
url_redirect.inc.php script. This script checks if the page was accessed through a URL that ends either
with index.php or index.html:

// if the request ends in index.php we redirect to the same path without it.
if (preg_match(‘#(.*)index\.(html|php)$#‘, $_SERVER[‘REQUEST_URI’], $captures))

Figure 4-5

93

Chapter 4: Content Relocation and HTTP Status Codes

00929c04.qxd:00929c04 3/13/07 10:40 AM Page 93

Here you use a regular expression to check if the URL ends with the aforementioned file names. You use
the preg_match() function, and instruct it to store any characters that precede the file name by placing .*
within parentheses — (.*). These characters, now stored in $captures[1], will be the location you want
to redirect to.

If you have a match, you then perform the 301 redirect:

{
// perform a 301 redirect to the new URL
header(‘HTTP/1.1 301 Moved Permanently’);
header(‘Location: ‘ . $captures[1]);

}

Other Types of Redirects
Although there are other types of redirects, such as meta refresh and JavaScript redirects, we do not
generally recommend their use. Spammers have historically abused them, and for this reason their use
is almost always suspect. It is recommended that a meta refresh is never used with a delay of less than
10 seconds. A typical meta refresh is illustrated here:

<!-- Redirect to SEO Egghead in 10 seconds -->
<meta http-equiv=”refresh” content=”10;url=http://www.seoegghead.com/“>

We do not recommend using JavaScript-based redirects at all. If discovered, it will most likely result in
some sort of penalty.

Summary
This chapter has illustrated that a fundamental understanding of relevant HTTP status codes is vital to
the search engine marketer. Business decisions dictate that pages move, domains change, or that content
is removed. Informing the search engine of these decisions using these status codes can avert a very
costly “misunderstanding.”

94

Chapter 4: Content Relocation and HTTP Status Codes

00929c04.qxd:00929c04 3/13/07 10:40 AM Page 94

Duplicate Content

We humans often find it frustrating to listen to people repeat themselves. Likewise, search engines
are “frustrated” by web sites that do the same. This problem is called duplicate content, which is
defined as web content that is either exactly duplicated or substantially similar to content located
at different URLs. Duplicate content clearly does not contain anything original.

This is important to realize. Originality is an important factor in the human perception of value,
and search engines factor such human sentiments into their algorithms. Seeing several pages of
duplicated content would not please the user. Accordingly, search engines employ sophisticated
algorithms that detect such content and filter it out from search engine results.

Indexing and processing duplicate content also wastes the storage and computation time of a search
engine in the first place. Aaron Wall of http://www.seobook.com/ states that “if pages are too sim-
ilar, then Google [or other search engines] may assume that they offer little value or are of poor con-
tent quality.” A web site may not get spidered as often or as comprehensively as a result. And though
it is an issue of contention in the search engine marketing community as to whether there is an
explicit penalty applied by the various search engines, everyone agrees that duplicate content can
be harmful.

Knowing this, it would be wise to eliminate as much duplicate content as possible from a web site.
This chapter documents the most common causes of duplicate content as a result of web site archi-
tecture. It then proposes methods to eliminate or remove it from a search engine’s view. You will:

❑ Understand the potential negative effects of duplicate content.

❑ Examine the most common types of duplicate content.

❑ Learn how to exclude duplicate content using robots.txt and meta tags.

❑ Use PHP code to properly implement an affiliate program.

A common question asked by search engine marketers is “how much duplicate content is too
much?” There is no good answer to that question, as you may have predicted. It is best to simply
take the conservative approach of eliminating as much of it as possible.

00929c05.qxd:00929c05 3/13/07 10:40 AM Page 95

Causes and Effects of Duplicate Content
You know duplicate content can have a negative effect on web site rankings. But how do you examine
whether a particular web site exhibits this problem, and how do you mitigate or avoid it?

To begin, you can divide duplicate content into two main categories:

❑ Duplicate content as a result of site architecture

❑ Duplicate content as a result of content theft

These are discussed separately, because they are essentially completely different problems.

Duplicate Content as a Result of Site Architecture
Some examples of site architecture itself leading to duplicate content are as follows:

❑ Print-friendly pages

❑ Pages with substantially similar content that can be accessed via different URLs

❑ Pages with items that are extremely similar, such as a series of differently colored shirts in
an e-commerce catalog having similar descriptions

❑ Pages that are part of an improperly configured affiliate program tracking application

❑ Pages with duplicate title or meta tag values

❑ Using URL-based session IDs

❑ Canonicalization problems

All of these scenarios are discussed at length in this chapter.

To look for duplicate content as a result of site architecture, you can use a “site:www.example.com” query
to examine the URLs of a web site that a search engine has indexed. All major search engines (Google,
Yahoo!, Microsoft Live Search) support this feature. Usually this will reveal quickly if, for example, “print-
friendly” pages are being indexed.

Google frequently places content it perceives as duplicate content in the “supplemental index.” This is
noted at the bottom of a search engine result with the phrase “supplemental result.” If your web site has
many pages in the supplemental index, it may mean that those pages are considered duplicate content —
at least by Google. Investigate several pages of URLs if possible, and look for the aforementioned cases.
Look especially at the later pages of results. It is extremely easy to create duplicate content problems with-
out realizing it, so viewing from the vantage point of a search engine may be useful.

Duplicate Content as a Result of Content Theft
Content theft creates an entirely different problem. Just as thieves can steal tangible goods, they can also
steal content. This, unsurprisingly, is the reason why it is called content theft. It creates a similar problem
for search engines, because they strive to filter duplicate content from search results — across different web

96

Chapter 5: Duplicate Content

00929c05.qxd:00929c05 3/13/07 10:40 AM Page 96

sites as well — and will sometimes make the wrong assumption as to which instance of the content is
the original, authoritative one.

This is an insidious problem in some cases, and can have a disastrous effect on rankings. CopyScape
(http://www.copyscape.com) is a service that helps you find content thieves by scanning for similar
content contained by a given page on other pages. Sitemaps can also offer help by getting new content
indexed more quickly and therefore removing the ambiguity as to who is the original author. Sitemaps
are discussed at length in Chapter 9.

If you are a victim of content theft, and want to take action, first present the individual using the content
illicitly with a cease and desist letter. Use the contact information provided on his web site or in the WHOIS
record of the domain name. Failing that, the major search engines have procedures to alert them of stolen
content. Here are URLs with the directions for the major search engines:

❑ Google: http://www.google.com/dmca.html

❑ Yahoo!: http://docs.yahoo.com/info/copyright/copyright.html

❑ MSN: http://search.msn.com/docs/siteowner.aspx?t=SEARCH_WEBMASTER_CONC_
AboutDMCA.htm

Unfortunately, fighting content theft is ridiculously time-consuming and expensive — especially if
lawyers get involved. Doing so for all instances is probably unrealistic; and search engines generally
do accurately assess who is the original author and display that one preferentially. In Google, the illicit
duplicates are typically relegated to the supplemental index. However, it may be necessary to take this
action in the unlikely case that the URLs with the stolen content actually rank better than yours.

Excluding Duplicate Content
When you have duplicate content on your site, you can remove it entirely by altering the architecture of
a web site. But sometimes a web site has to contain duplicate content. The most typical scenario of this is
when the business rules that drive the web site require the said duplicate content.

To address this, you can simply exclude it from the view of a search engine. Here are the two ways of
excluding pages:

❑ Using the robots meta tag

❑ robots.txt pattern exclusion

In the following sections, you learn about the robots meta tag and about robots.txt.

Using the Robots Meta Tag
This is addressed first, not because it’s universally the optimal way to exclude content, but rather because
it has virtually no limitations as to its application. Using the robots meta tag you can exclude any HTML-
based content from a web site on a page-by-page basis, and it is frequently an easier method to use when
eliminating duplicate content from a preexisting site for which the source code is available, or when a site
contains many complex dynamic URLs.

97

Chapter 5: Duplicate Content

00929c05.qxd:00929c05 3/13/07 10:40 AM Page 97

To exclude a page with meta-exclusion, simply place the following code in the <head> section of the
HTML document you want to exclude:

<meta name=”robots” content=”noindex, nofollow” />

This indicates that the page should not be indexed (noindex) and none of the links on the page should
be followed (nofollow). It is relatively easy to apply some simple programming logic to decide whether
or not to include such a meta tag on the pages of your site. It will always be applicable, so long as you
have access to the source code of the application, whereas robots.txt exclusion may be difficult or
even impossible to apply in certain cases.

To exclude a specific spider, change “robots” to the name of the spider — for example googlebot,
msnbot, or slurp. To exclude multiple spiders, you can use multiple meta tags. For example, to
exclude googlebot and msnbot:

<meta name=”googlebot” content=”noindex, nofollow” />
<meta name=”msnbot” content=”noindex, nofollow” />

Table 5-1 shows the common user agent names used by the various major search engines.

In theory, this method is equivalent to the next method that is discussed, robots.txt. The only downside
is that the page must be fetched in order to determine that it should not be indexed in the first place. This is
likely to slow down indexing. Dan Thies also notes in The Search Engine Marketing Kit that “if your site serves
10 duplicate pages for every page of unique content, spiders may still give up indexing ... you can’t count
on the search engines to fish through your site looking for unique content.”

As mentioned, two technical limitations are associated with using the meta-exclusion method:

❑ It requires access to the source code of the application. Otherwise, meta tag exclusion becomes
impossible because the tag must be placed in the web pages generated by the application.

❑ It only works with HTML files, not with clear text, CSS, or binary/image files.

These limitations can be addressed by using the robots.txt file, which is discussed next. However,
robots.txt also has some limitations as to its application. If you do not have access to the source code
of a web application, however, robots.txt is your only option.

Table 5-1

Search Engine User Agent

Google Googlebot

Yahoo! Slurp

MSN Search Msnbot

Ask Teoma

98

Chapter 5: Duplicate Content

00929c05.qxd:00929c05 3/13/07 10:40 AM Page 98

robots.txt Pattern Exclusion
robots.txt is a text file located in the root directory of a web site that adheres to the robots.txt stan-
dard. Taking the risk of repeating ourselves and generating a bit of “duplicate content,” here are three
basic things to keep in mind regarding robots.txt:

❑ There can be only one robots.txt file.

❑ The proper location of robots.txt is in the root directory of a web site.

❑ robots.txt files located in subdirectories will not be accessed (or honored).

The official resource with the official documentation of robots.txt is http://www.robotstxt
.org/. There you can find a Frequently Asked Questions page, the complete reference, and a list with
the names of the robots crawling the web.

If you peruse your logs, you will see that search engine spiders visit this particular file very frequently. This
is because they make an effort not to crawl or index any files that are excluded by robots.txt and want to
keep a very fresh copy cached. robots.txt excludes URLs from a search engine on a very simple pattern-
matching basis, and it is frequently an easier method to use when eliminating entire directories from a site,
or, more specifically, when you want to exclude many URLs that start with the same characters.

Sometimes for various internal reasons within a (usually large) company, it is not possible to gain access
to modify this file in the root directory. In that case, so long as you have access to the source code of the
part the application in question, use the meta robots tag.

A robots.txt file includes User-agent specifications, which define your exclusion targets, and
Disallow entries for one or more URLs you want to exclude therein. Lines in robots.txt that start
with # are comments, and are ignored.

The following robots.txt file, placed in the root folder of your site, would not permit any robots (*) to
access any files on the site:

Forbid all robots from browsing your site
User-agent: *
Disallow: /

robots.txt is not a form of security! It does not prevent access to any files. It does
stop a search engine from indexing the content, and therefore prevents users from
navigating to those particular resources via a search engine results page. However,
users could access the pages by navigating directly to them. Also, robots.txt itself
is a public resource, and anyone who wants to peruse it can do so by pointing their
browser to /robots.txt. If anything, using it for “security” would only make those
resources even more obvious to potential hackers if used for that incorrect purpose.
To protect content, you should use the traditional ways of authenticating users, and
authorizing them to visit resources of your site.

99

Chapter 5: Duplicate Content

00929c05.qxd:00929c05 3/13/07 10:40 AM Page 99

The next example disallows any URLs that start with /directory from being indexed by Google:

Disallow googlebot from indexing anything that starts with /directory
User-agent: googlebot
Disallow: /directory

googlebot is Google’s user-agent name. It is useful to think of each Disallow as matching prefixes,
not files or URLs. Notably, /directory.html (because /directory is a prefix of /directory.html)
would also match that rule, and be excluded. If you want only the contents of the directory folder to
be excluded, you should specify /directory/ instead. That last / prevents /directory.html from
matching. Note also that the leading / is always necessary on exclusions. The following would be invalid:

Disallow: directory

The * we used for User-agent doesn’t function as a wildcard “glob” operator. Not that it would be
useful for anything, but goo*bot would not match googlebot, and is invalid.

Wildcard “glob” operators are also not officially valid in the Disallow: directive either, but Google, MSN,
and more recently Yahoo!, support this non-standard form of wildcard matching. We generally do not
recommend its use, however, both because it is not part of the standard, and because various other search
engines do not support it.

For information regarding the implementations of wildcard matching from search engine vendors, read:

❑ Google: http://www.google.com/support/webmasters/bin/answer.py?answer=35303

❑ MSN: http://search.msn.com.sg/docs/siteowner.aspx?t=SEARCH_WEBMASTER_REF_
RestrictAccessToSite.htm#b

❑ Yahoo!: http://www.ysearchblog.com/archives/000372.html

Using wildcards, the following robots.txt file would tell Google not to index any URL containing the
substring print= anywhere within the URL:

User-agent: googlebot
Disallow: /*print=

It may seem counterintuitive and rather annoying that there is no Allow directive to complement
Disallow. Certain search engines (Google and Yahoo! included) do indeed permit its use, but nuances
of their interpretations may vary, and it is not part of the standard. We strongly recommend not using
this directive.

To elaborate, a string specified after Disallow: is equivalent to the regular expres-
sion ^<your string>.*$ — which means that it matches anything that begins with
that string.

If you must use wildcards in the Disallow clause, it is wise to do so only under a
specific user-agent clause; for example, User-agent: googlebot.

100

Chapter 5: Duplicate Content

00929c05.qxd:00929c05 3/13/07 10:40 AM Page 100

More robots.txt Examples
One strange-looking edge case is where you don’t place any restrictions on the robot explicitly. In the
following snippet, the empty Disallow directive means “no exclusion” for any robot. It is equivalent
to having no robots.txt file at all:

User-agent: *
Disallow:

To exclude multiple URLs, simply enumerate them under a single User-agent directive. For example:

User-agent: *
Disallow: /directory
Disallow: /file.html

This will exclude any file that begins with /directory, and any file that begins with /file.html.

To use the same rules for multiple search engines, list the User-agent directives before the list of
Disallow entries. For example:

User-agent: googlebot
User-agent: msnbot
Disallow: /directory
Disallow: /file.html

robots.txt Tips
In theory, according to the robots.txt specification, if a Disallow: for user agent * exists, as well a
Disallow: for a specific robot user agent, and that robot accesses a web site, only the more specific rule
for that particular robot should apply, and only one Disallow: would be excluded. Accordingly, it is
necessary to repeat all rules in * under, for example, googlebot’s user agent as well to exclude the items
listed for User-agent: *.

Thus, the following rules would only exclude Z from googlebot, not X, Y, and Z as you may think:

User-agent: *
Disallow: X
Disallow: Y

User-agent: googlebot
Disallow: Z

If you want X, Y, and Z excluded for googlebot, you should use this:

User-agent: *
Disallow: X
Disallow: Y

User-agent: googlebot
Disallow: X
Disallow: Y
Disallow: Z

101

Chapter 5: Duplicate Content

00929c05.qxd:00929c05 3/13/07 10:40 AM Page 101

One last example:

User-agent: googlebot
Disallow:

User-agent: *
Disallow: /

These rules would only allow Google to spider your site. This is because the more specific rule for
googlebot overrides the rule for *.

We recommend that webmasters place the exclusions for the default rule, *, last. According to the stan-
dard, this should not matter. However, there is some ambiguity as to whether a web spider picks the first
matching rule, or the most specific matching rule. In the former case, if the * rule is placed first, it could
be applied. Listing the * rules last removes that ambiguity.

Generating robots.txt On-the-Fly
Nothing prevents a site developer from programmatically generating the robots.txt file on-the-fly,
dynamically. Include the following rule in .htaccess to map robots.php to robots.txt, and use
the robots.php script to generate it. In this fashion, you can use program logic similar to that used
for meta tag exclusion in order to generate a robots.txt file.

The following rule in .htaccess delegates the requests for robots.txt to robots.php:

RewriteEngine On
RewriteRule ^robots.txt$ /robots.php

The robots.php file could look like this:

<?
header(‘Content-type: text/plain’);
...
...
?>
static parts of robots.txt can be added here

You will see a real-life example of generating robots.txt on the fly in Chapter 14.

Handling robots.txt Limitations
Suppose a site has a number of products at URLs that look like /products.php?product_id=
<number>, and a number of print-friendly product pages at the URL /products.php?product_
id=<number>&print=1.

A standard robots.txt file cannot be used to eliminate these print-friendly pages, because the
match has to be from the left. There would have to be a robots.txt entry for every page, and at
that point it degenerates into a case similar to meta tag exclusion. In that case it is simpler to use
meta-exclusion. Furthermore, it is reported that there is a limit of 5000 characters for a robots.txt

102

Chapter 5: Duplicate Content

00929c05.qxd:00929c05 3/13/07 10:40 AM Page 102

file in Google (http://www.seroundtable.com/archives/003932.html), so if the list gets too
long, it may be problematic.

Wildcard matching can be used to accomplish this as mentioned earlier in this chapter, but its use is not
standard.

However, in this case there is a solution. If you reverse the order of the parameters, such that the print-
friendly URLs look like /products.php?print=1&product_id=<number>, you can easily exclude
/products.php?print=1 in robots.txt.

In general, reordering parameters can make robots.txt more palatable for dynamic sites. However, in
the case of preexisting sites, it can involve changing your URLs, may involve redirects, and that may be
undesirable for many reasons. This topic was covered in Chapter 4.

When dealing with an entire directory, on static files, or, in general, cases where many fully qualified file
names have the same prefix, it is usually advisable to use robots.txt exclusion. Doing so is simpler
and reduces stress on your server as well as the robot. In cases where the “left-pattern-matching”
logic of a robots.txt exclusion will not work, a meta-exclusion will usually work. These methods
can complement each other, so feel free to mix and match them as you see fit.

Solutions for Commonly Duplicated Pages
So you’ve got the tools. Now where can you use them, and when are they appropriate? Sometimes the
solution is exclusion, other times there are more fundamental solutions addressing web site architecture.
And though there are an infinite number of causes for duplicate content, there are a number of common
culprits worth mentioning. Some of the most frequently observed are the following:

❑ Print-friendly pages

❑ Navigation links and breadcrumb navigation

❑ Affiliate pages

❑ Pages with similar content

❑ Pages with duplicate meta tag or title values

❑ URL canonicalization problems

❑ Pages with URL-based session IDs

Print-Friendly Pages
One of the most common sources of duplicate content is the “print-friendly” page. A throwback from
the day where CSS did not provide a means to provide multiple media for formatting (print, screen,
and so on), many programmers simply provided two versions for every page — the standard one and
the printable one.

103

Chapter 5: Duplicate Content

00929c05.qxd:00929c05 3/13/07 10:41 AM Page 103

In fact, many programmers still do this today. And though it is not wrong to do so — unless you’re a
CSS zealot, all print-friendly pages should be excluded using either exclusion method, otherwise a
search engine will see two versions of those pages on your site.

Navigation Links and Breadcrumb Navigation
Friendly navigation is clearly desirable for any web site. Unfortunately, it sometimes creates duplicate
content. Take the example of a web site that inserts category IDs in URLs of products that are in multiple
categories in order to provide breadcrumb navigation. In this way the developer creates many different
URLs (one per category, actually) of substantially duplicate content. This section examines breadcrumb
navigation now in more detail.

Breadcrumbs are navigational aid elements, usually found on the top of a web page that look some-
thing like home > products > fortune cookies. They especially help users navigate when they
are deeply within a web site. In this case, using the back button is typically frustrating. And in the
case that a user arrives from a search engine results page, the back button also certainly doesn’t do
what you wish it would!

It’s worth noting that breadcrumb navigation is not the only problematic site navigation scheme around.
Matrix, faceted, and dynamic drill-down navigation systems are gaining rapidly in popularity. A consid-
erable number of large retailers, such as Wal-Mart, eToys, The Home Depot, and the Discovery Channel
Store implement these types of site navigation, and show where the industry is heading.

The duplicate content issues resulting from these complex systems are problematic as well, but this is
outside the scope of this book. The same general principles apply.

The SEO consequences of breadcrumb navigation are none when a site product is in only one category. The
category can be implied by the database, because there is a 1:1 relationship of product to category. There -
fore, there is no need to pass the category ID in the URL — but even if it is present, there will be only one
permutation of product and category. Hence there is no duplicated content.

Rewriting the URLs does nothing to resolve this.

/Products/Category-A-C1/Product-A-P10.html and

/Products/Category-B-C2/Product-A-P10.html and

/Products/Category-C-C3/Product-A-P10.html

These three URLs are just as duplicated as

/Products.php?category_id=1&product_id=10 and

/Products.php?category_id=2&product_id=10 and

/Products.php?category_id=3&product_id=10

It’s just obscured in the former version.

104

Chapter 5: Duplicate Content

00929c05.qxd:00929c05 3/13/07 10:41 AM Page 104

The problem arises when a product is in more than one category, and a parameter must be passed in order
to build the breadcrumb programmatically. Without breadcrumbs, the parameter would be unnecessary,
and presumably the user would navigate back to the category page using his or her back button, but now
you have a problem. If every product is in an average of three categories, you have three essentially dupli-
cated pages for every product on the site.

The only difference on your pages is the breadcrumb:

Home > products > fortune cookies > frosted fortune cookie
Home > products > novelty cookies > frosted fortune cookie

This creates a particularly sticky problem. The benefits of friendly site navigation cannot be denied, but
it also causes duplicate content issues. This is a topic that we feel is largely ignored by the SEM commu-
nity. Breadcrumbs are clearly a help for navigation, but can cause problems with regard to duplicate
content. In general, using tracking variables in URLs that do not effect changes in the content creates
duplicate content.

There are other ways to cope with this issue. Following is a presentation of the ways that you can
address the duplicate content issues associated with breadcrumbs if you do want to address it.

Using One Primary Category and robots.txt or Meta-Exclusion
This involves setting one category that a product falls into as “primary.” It involves adding a field to a
database in the application to indicate as such. This is the idea espoused by Dan Thies in his SEM book
The Search Engine Marketing Kit as well. The upside is that it’s bulletproof, in that you will never be
penalized by a search engine for having duplicated pages. But there are two downsides:

1. Very often the keywords from your products placed in multiple categories (in the title, perhaps
under the breadcrumb, or in the “suggested” products) may yield unexpected rankings for what
we call “permutation” keywords. Obviously, with this solution, you only get one of the permu-
tations — the primary one.

Example: Assume a cake is in two categories: “birthday” and “celebration.” The resulting titles
are “Super Cheesecake: Birthdays” and “Super Cheesecake: Celebration.” If the webmaster picks
“birthday” as the primary category, a search engine will never see the other page that may rank
better for the hypothetical less-competitive keywords “celebration cheesecake,” because that
page is excluded via robots.txt or meta-exclusion.

2. Users may passively “penalize” you by linking the non-primary page. A link to an excluded
page has questionable link-value, arguably none for that page — but perhaps also none to the
domain in general.

Changing Up the Content on the Various Permutations
Done right this can also work, but it must be done carefully. If done inadequately, it can, in the worst
case, result in a penalty. You could change the description of a hypothetical product on a per-category
basis, or add different related products to the page. As you may have guessed, the exact threshold for
how much unique content is required is elusive. Use this technique with caution.

105

Chapter 5: Duplicate Content

00929c05.qxd:00929c05 3/13/07 10:41 AM Page 105

Some Thoughts
Which method do we suggest in most cases? The first method — exclusion. If you look closely at the fol-
lowing two links on a web site created by one of the authors of this book:

http://www.lawyerseek.com/Practice/In-the-News-C20/Protopic-P38/
http://www.lawyerseek.com/Practice/Pharmaceutical-Injury-C1/Protopic-P38/

There are two URLs, but one is excluded in the robots.txt file. The former is excluded. The robots.txt
file at http://www.lawyerseek.com/ contains the following entry that excludes the following URL:

User-agent: *
...
...
Disallow: /Practice/In-The-News-C20/Protopic-P38/

Similar Pages
If you have several very similar products that exist on multiple URLs, think about changing your web
application to contain the various permutations of the products on one page. Consider the example of a
product that comes in several different colors. The resulting product pages would typically contain differ-
ent pictures but substantially duplicate descriptions. The business logic may dictate that these are different
products with different SKUs, but you can still present them on one page with a pull-down menu to select
the color/SKU to be added to the shopping cart.

The shopping cart page of an e-commerce site, login pages, and other like pages should also not be
indexed, because there is typically no valuable content on such pages. For example, it is easy to see
how the following shopping cart URLs could create duplicate content:

http://www.example.com/cart.php?product_id=1
...
...
http://www.example.com/cart.php?product_id=99

Pages with Duplicate Meta Tag or Title Values
A common mistake is to set the meta keywords, meta description, or title values on a web site to the
same default value programmatically for every page. Aaron Wall of SEOBook states “If you have complete
duplication of any element (page title, meta keywords, meta description) across your site then it is at best a wasted
opportunity, but may also hurt your ability to get your site indexed or ranked well in some search engines.” If
time and resources cannot be dedicated to creating unique meta tags, they should probably not be
created at all, because using the same value for every page is certainly not beneficial. Having identical
titles for every page on a web site is also particularly detrimental. Many programmers make this mis-
take, because it is very easy not to notice it.

URL Canonicalization
Many web sites exhibit subtle but sometimes insidious duplicate problems due to URL canonicalization
problems. The two most common of such problems are documented in Chapter 4 in the sections “URL
Canonicalization: www.example.com versus example.com,” and “URL Canonicalization: /index.php
versus /.”

106

Chapter 5: Duplicate Content

00929c05.qxd:00929c05 3/13/07 10:41 AM Page 106

URL-Based Session IDs
URL-based session management causes major problems for search engines, because each time a search
engine spiders your web site, it will receive a different session ID and hence a new set of URLs with the
same content. Needless to say, this creates an enormous amount of duplicate content. The PHP feature
that automatically tracks user sessions using a query string parameter is named trans_sid. You can
disable this feature, and permit only cookie-based session support.

To turn off URL-based session IDs, you’d need to add these lines to your .htaccess file:

php_value session.use_only_cookies 1
php_value session.use_trans_sid 0

The same effect can be achieved using this PHP code:

<?php

// store the session ID using cookies
@ini_set (‘session.use_only_cookies’, 1);
// disable trans_sid
@ini_set (‘session.use_trans_sid’, 0);

?>

The URL factory you created in Chapter 3, together with the redirect library from Chapter 4, can be used
to redirect any URLs that contain the session ID to the “proper” versions of the URLs in case this feature
was inadvertently left on and such URLs are indexed by a search engine.

Chapter 11 also discusses a method using cloaking that dynamically turns URL-based session IDs off for
search engines, but leaves it on for human users.

Other Navigational Link Parameters
In general, parameters in URLs such as those that indicate that a user came from a particular page can
create a large amount of duplicate content. Covering all examples would be impossible, but consider the
following imaginary URLs:

http://www.example.com/Some-Product.html?from_url=about-us.php
http://www.example.com/Some-Product.html?from_url=contact-us.php

The list could get quite long depending on how many pages link to that product. In practice, whenever
possible, it may be advisable to use session-based or HTTP_REFERER-based data to track things such as
these, even if imperfect solutions.

URL-based sessions may be important on large e-commerce sites, or in certain demo-
graphics, because a small number of users disable cookies in their browsers.

107

Chapter 5: Duplicate Content

00929c05.qxd:00929c05 3/13/07 10:41 AM Page 107

Affiliate Pages
Imagine that you have a product, The Ultimate Widget. You set up a great web affiliate program that
pays 50% of revenue on the product, and everyone wants to join. Soon, you have thousands of affiliates
applying. To indicate to your application which affiliate it was, you add a parameter ?aff=<aff_id>.

In this scenario, your main page for The Ultimate Widget would be located at an URL such as this:

http://www.example.com/Products/The-Ultimate-Widget/

Your associates would sell the exact same product, which has (naturally) the same product details,
through links like these:

http://www.example.com/Products/The-Ultimate-Widget/?aff=123
http://www.example.com/Products/The-Ultimate-Widget/?aff=456

Unfortunately, assuming all these links were spidered, you now have thousands of pages of duplicate
content. This can be a profound problem. As mentioned in the introduction to this chapter, in the worst
case, excessive duplicate content can get a site penalized. Special care must be taken to mitigate this
problem. Fortunately, there are a few fairly easy solutions.

Using Referrers and Cookies instead of Query String Parameters
Using referrers is effective in that it completely transparently informs your application of where the traffic
comes from; simply match the $_SERVER[‘HTTP_REFERER‘] variable against a domain name (or a com-
plete URL if desired), and if there is a match, set a session variable or a cookie accordingly.

One major caveat of this method is that certain security software deliberately masks the content of HTTP_
REFERER, and thus a small amount of affiliate traffic will be unaccounted for. Whether this is acceptable
is between you and your affiliates. The obvious upside is that all links are entirely without parameters,
and to a search engine it looks like a natural link, not an affiliate link. This is potentially great for a link-
building campaign.

Such a system also presents more maintenance if a particular affiliate wants to promote your product on
more than one site, and by the same token such links could not be used effectively on public forums such
as bulletin boards and blog comments.

This method is not demonstrated here because it is typically not a viable solution.

Using Excluded Affiliate URLs
You can also use robots.txt or meta-exclusion, as previously discussed, to exclude all URLs that are
associated with the affiliate program. For example, you could add the following tag to every affiliate page:

<meta name=”robots” content=”noindex, nofollow”>

Alternatively, you could place the affiliate script in a subdirectory and exclude it in robots.txt:

User-agent: *
Disallow: /aff/

108

Chapter 5: Duplicate Content

00929c05.qxd:00929c05 3/13/07 10:41 AM Page 108

Redirecting Parameterized Affiliate URLs
It is also possible to use parameterized affiliate URLs, so long as the URLs are redirected to the “main”
URL after setting a cookie or session variable for your reference. This section presents two examples,
implementing them step-by-step in exercises.

One common theme in these presented solutions is that when a URL containing an affiliate ID is requested,
you retain the affiliate ID somewhere else, and then do a 301 redirect to the URL without the affiliate infor-
mation. The examples use the visitor’s session to store the affiliate ID, but you may choose to use cookies
instead.

In Chapter 4 you learned that the 301 status code means “Moved permanently,” so the page you redi-
rect to is interpreted as the new permanent location of the requested page. This eliminates any potential
duplicate content problems.

Example #1
This example assumes that you have affiliate URLs that look like http://seophp.example.com/
Products/SEO-Toolbox-C6/Link-Juice-P31.html?aff_id=987. The URL you’re finally redirect -
ing to is http://seophp.example.com/Products/SEO-Toolbox-C6/Link-Juice-P31.html.

Redirecting Keyword-Rich Affiliate URLs
1. Open .htaccess and find the line that rewrites keyword-rich product URLs:

Rewrite keyword-rich URLs
RewriteRule ^Products/.*-C([0-9]+)/.*-P([0-9]+)\.html$ i
/product.php?category_id=$1&product_id=$2 [L]

Modify this line by adding this bit to its end, like this:

Rewrite keyword-rich URLs
RewriteRule ^Products/.*-C([0-9]+)/.*-P([0-9]+)\.html$ i
/product.php?category_id=$1&product_id=$2&%{QUERY_STRING} [L]

2. Modify product.php like this:

<?php

// load library that handles redirects
require_once ‘include/url_redirect.inc.php’;

// start PHP session
session_start();

// save affiliate ID
if (isset($_REQUEST[‘aff_id’]))
{
$_SESSION[‘aff_id’] = $_REQUEST[‘aff_id’];

}

// redirect requests proper keyword-rich URLs when not already there
fix_category_product_url();

109

Chapter 5: Duplicate Content

00929c05.qxd:00929c05 3/13/07 10:41 AM Page 109

// display product details
echo ‘You have selected product #‘ . $_GET[‘product_id’] .

‘ from category #‘ . $_GET[‘category_id’];

// display affiliate details
echo ‘

 You got here through affiliate: ‘;
if (!isset($_SESSION[‘aff_id’]))
{
echo ‘(no affiliate)‘;

}
else
{
echo $_SESSION[‘aff_id’];

}

?>

3. Test your new script now. The first test consists of loading a product page without an affiliate
ID, such as http://seophp.example.com/Products/SEO-Toolbox-C6/Link-Juice-
P31.html. Figure 5-1 shows the result.

Figure 5-1

4. Now add an affiliate ID. Load http://seophp.example.com/Products/SEO-Toolbox-C6/
Link-Juice-P31.html?aff_id=987. Expect to be correctly redirected to the main product
page, and still get the affiliate ID retained. Figure 5-2 shows the expected output.

Figure 5-2

110

Chapter 5: Duplicate Content

00929c05.qxd:00929c05 3/13/07 10:41 AM Page 110

As you can see in Figure 5-2, the URL doesn’t include any affiliate IDs any more, yet the page retained
the affiliate ID. And you achieved this with only a few lines of PHP code! Everything starts, again, with
a mod_rewrite rule:

RewriteRule ^Products/.*-C([0-9]+)/.*-P([0-9]+)\.html$ i
/product.php?category_id=$1&product_id=$2&%{QUERY_STRING} [L]

The {QUERY_STRING} bit is a special variable provided by mod_rewrite that represents the query string in
the URL. The RewriteRule would still match for keyword-rich URLs that contain query string parameters
(such as http://seophp.example.com/Products/SEO-Toolbox-C6/Link-Juice-P31.html?aff_
id=987), but this time you append those parameters to the rewritten URL.

This way, when product.php is executed, it’ll have access to the aff_id parameter. The only code you’ve
added to product.php is minimal, and it consists of verifying if the aff_id parameter exists in the query
string. In case it does, you save the affiliate ID value in the user session:

// start PHP session
session_start();

// save affiliate ID
if (isset($_REQUEST[‘aff_id’]))
{
$_SESSION[‘aff_id’] = $_REQUEST[‘aff_id’];

}

The redirection itself is done by our old friend, the fix_category_product_url() function. This function
verifies if the URL is identical to a clean product URL, and in case it’s not, it does an automatic 301 redirect
to the “proper” URL; in this case, that proper URL will be a product URL that doesn’t contain the aff_id
parameter.

// redirect requests proper keyword-rich URLs when not already there
fix_category_product_url();

The first time a product page is loaded with an affiliate ID, it will be redirected to its proper version that
doesn’t contain any query string parameters. When product.php reloads, it will reach the code that dis-
plays the product details, and the affiliate ID. This time, the affiliate ID is read from the session:

// display affiliate details
echo ‘

 You got here through affiliate: ‘;
if (!isset($_SESSION[‘aff_id’]))
{
echo ‘(no affiliate)‘;

}
else
{
echo $_SESSION[‘aff_id’];

}

Example #2
The second technique involves dynamic URLs. When working with dynamic URLs, the solution is slightly
different. In this case you don’t need to deal with mod_rewrite anymore, but you need a way to read and
remove the affiliate IDs from a dynamic URL, and then redirect to this version of the URL.

111

Chapter 5: Duplicate Content

00929c05.qxd:00929c05 3/13/07 10:41 AM Page 111

In the exercise that follows you create a simple affiliate page named aff_test.php. When this script
will be loaded with an aff_id query string parameter, you’ll retain the affiliate ID value, then remove
the aff_id parameter and do a 301 redirect to the new URL.

When removing query string parameters, special care needs to be taken not to alter the already existing
parameters, so you’ll create a few specialized functions that perform these tasks.

Redirecting Dynamic Affiliate URLs
1. Create a new file named url_utils.inc.php in your seophp/include folder, and type this

code in:

<?php

// transforms a query string into an associative array
function parse_query_string($query_string)
{
// split the query string into individual name-value pairs
$items = explode(‘&‘, $query_string);

// initialize the return array
$qs_array = array();

// create the array
foreach($items as $i)
{
// split the name-value pair and save the elements to $qs_array
$pair = explode(‘=’, $i);
$qs_array[urldecode($pair[0])] = urldecode($pair[1]);

}

// return the array
return $qs_array;

}

// removes a parameter from the query string
function remove_query_param($url, $param)
{
// extract the query string from $url
$tokens = explode(‘?’, $url);
$url_path = $tokens[0];
$query_string = $tokens[1];

// transform the query string into an associative array
$qs_array = parse_query_string($query_string);

// remove the $param element from the array
unset($qs_array[$param]);

// create the new query string by joining the remaining parameters
$new_query_string = ‘’;
if ($qs_array)
{
foreach ($qs_array as $name => $value)

112

Chapter 5: Duplicate Content

00929c05.qxd:00929c05 3/13/07 10:41 AM Page 112

{
$new_query_string .= ($new_query_string == ‘’ ? ‘?’ : ‘&‘)

. urlencode($name) . ‘=’ . urlencode($value);
}

}

// return the URL that doesn’t contain $param
return $url_path . $new_query_string;

}

?>

2. In your seophp folder, create a new script named aff_test.php and type the following code:

<?php

// include URL utils library
require_once ‘include/url_utils.inc.php’;

// load configuration script
require_once ‘include/config.inc.php’;

// start PHP session
session_start();

// redirect affiliate links
if (isset($_REQUEST[‘aff_id’]))
{
// save the affiliate ID
$_SESSION[‘aff_id’] = $_REQUEST[‘aff_id’];

// obtain the URL with no affiliate ID
$clean_url = SITE_DOMAIN . remove_query_param($_SERVER[‘REQUEST_URI’], ‘aff_id’);

// 301 redirect to the new URL
header(‘HTTP/1.1 301 Moved Permanently’);
header(‘Location: ‘ . $clean_url);

}

// display affiliate details
echo ‘You got here through affiliate: ‘;
if (!isset($_SESSION[‘aff_id’]))
{
echo ‘(no affiliate)‘;

}
else
{
echo $_SESSION[‘aff_id’];

}

?>

3. Load http://seophp.example.com/aff_test.php and expect to get the results displayed in
Figure 5-3.

113

Chapter 5: Duplicate Content

00929c05.qxd:00929c05 3/13/07 10:41 AM Page 113

Figure 5-3

4. Load http://seophp.example.com/aff_test.php?a=1&aff_id=34&b=2, and expect to
be redirected to http://localhost/seophp/aff_test.php?a=1&b=2, with the affiliated ID
being retained, as shown in Figure 5-4.

Figure 5-4

Although you’ve written quite a bit of code, it’s pretty straightforward. There’s no URL rewriting involved,
so you’re working with plain-vanilla PHP scripts this time.

Your aff_test.php script starts by loading url_utils.inc.php and config.inc.php, and starting the
PHP session:

<?php

// include URL utils library
require_once ‘include/url_utils.inc.php’;

// load configuration script
require_once ‘include/config.inc.php’;

// start PHP session
session_start();

Then you verify if the aff_id query string parameter is present. In case it is, you save its value to the user’s
session, and redirect to a version of the URL that doesn’t contain aff_id. The remove_query_param()
function from the URL utils library is very handy, because it correctly preserves all existing parameters:

// redirect affiliate links
if (isset($_REQUEST[‘aff_id’]))

114

Chapter 5: Duplicate Content

00929c05.qxd:00929c05 3/13/07 10:41 AM Page 114

{
// save the affiliate ID
$_SESSION[‘aff_id’] = $_REQUEST[‘aff_id’];

// obtain the URL with no affiliate ID
$clean_url = SITE_DOMAIN . remove_query_param($_SERVER[‘REQUEST_URI’], ‘aff_id’);

// 301 redirect to the new URL
header(‘HTTP/1.1 301 Moved Permanently’);
header(‘Location: ‘ . $clean_url);

}

Finally, aff_test.php checks whether there’s a session parameter named aff_id set. In case it is, your
user got to the page through an affiliate link, and you’ll need to take this into account when dealing with
this particular user. For the purposes of this simple exercise, you’re simply displaying the affiliate ID, or
(no affiliate) in case the page was first loaded without an aff_id parameter.

// display affiliate details
echo ‘You got here through affiliate: ‘;
if (!isset($_SESSION[‘aff_id’]))
{
echo ‘(no affiliate)‘;

}
else
{
echo $_SESSION[‘aff_id’];

}

?>

It’s also worth analyzing what happens inside the remove_query_param() function from url_utils
.inc.php. The strategy you took for removing one query string parameter is to transform the existing
query string to an associative array, and then compose the associative array back to a query string, after
removing the aff_id element.

To keep the code cleaner, you have a separate function that transforms a query string to an associative
array. This function is named parse_query_string(), and receives as parameter a query string, such
as a=1&aff_id=34&b=2, and returns an associative array with these elements:

‘a’ => ‘1’
‘aff_id’ => ‘34’
‘b’ => ‘2’

The function starts by using explode() to split the query string on the & character:

// transforms a query string into an associative array
function parse_query_string($query_string)
{
// split the query string into individual name-value pairs
$items = explode(‘&‘, $query_string);

115

Chapter 5: Duplicate Content

00929c05.qxd:00929c05 3/13/07 10:41 AM Page 115

If $query string is a=1&aff_id=34&b=2, then the items array will have these three elements:

$items[0] => ‘a=1’
$items[1] => ‘aff_id=34’
$items[2] => ‘b=2’

You then parse each of these items using the foreach, and you split each item on the = character using
explode. Using the resulting data you build an associative array named $qs_array, which is returned at
the end. You use the urldecode() function when saving each query string parameter, because special
characters may have been encoded:

// initialize the return array
$qs_array = array();

// create the array
foreach($items as $i)
{
// split the name-value pair and save the elements to $qs_array
$pair = explode(‘=’, $i);
$qs_array[urldecode($pair[0])] = urldecode($pair[1]);

}

// return the array
return $qs_array;

}

We looked at parse_query_string() because it’s used by remove_query_param(), which is the
function of interest — as you remember, it’s called from aff_test.php to remove the aff_id parameter
from the query string.

The remove_query_param() function receives two parameters: the URL and the parameter you want to
remove from that URL. The URL will be something like /aff_test.php?a=1&b=2. Because the query
string is what you need for further processing, remove_query_param() starts by splitting the $url
parameter into an $url_path and a $query_string:

// removes a parameter from the query string
function remove_query_param($url, $param)
{
// extract the query string from $url
$tokens = explode(‘?’, $url);
$url_path = $tokens[0];
$query_string = $tokens[1];

Next, you use the parse_query_string() function to transform the query string into an associative array:

// transform the query string into an associative array
$qs_array = parse_query_string($query_string);

As mentioned earlier, the associative array will be something like this:

‘a’ => ‘1’
‘aff_id’ => ‘34’
‘b’ => ‘2’

116

Chapter 5: Duplicate Content

00929c05.qxd:00929c05 3/13/07 10:41 AM Page 116

The good thing with associative arrays, and the reason for which it’s sometimes worth using them, is
that they’re easy to manipulate. Now that you have the query string broken into an associative array,
you only need to unset() the parameter you want to remove. In this case, $param will be ‘aff_id’:

// remove the $param element from the array
unset($qs_array[$param]);

You now have an associative array that contains the elements you need in the new query string, so you
join these elements back in a string formatted like a query string. Note that you only do this if the asso-
ciative array is not empty, and that you use the ternary operator to compose the query string:

// create the new query string by joining the remaining parameters
$new_query_string = ‘’;
if ($qs_array)
{
foreach ($qs_array as $name => $value)
{
$new_query_string .= ($new_query_string == ‘’ ? ‘?’ : ‘&‘)

. urlencode($name) . ‘=’ . urlencode($value);
}

}

As soon as the new query string is composed, you join in back with the URL path you initially stripped
(which in this case is /aff_test.php), and return it:

// return the URL that doesn’t contain $param
return $url_path . $new_query_string;

}

We hope this has proven to be an interesting string handling exercise. For those of you in love with regu-
lar expressions, we’re sure you may guess they can be successfully used to strip the aff_id parameter
from the query string. Here it is if you’re curious:

function remove_query_param($url, $param)
{
// remove $param
$new_url = preg_replace(“#aff_id=?(.*?(&|$))?#“, ‘’, $url);

// remove ending ? or &, in case it exists
if (substr($new_url, -1) == ‘?’ || substr($new_url, -1) == ‘&‘)
{
$new_url = substr($new_url, 0, strlen($new_url) - 1);

}

What about the ternary operator? If you aren’t familiar with it, here’s a quick expla-
nation. The ternary operator has the form (condition ? valueA : valueB). In
case the condition is true, it returns valueA, otherwise it returns valueB.

In your case, you verify if $new_query_string is empty; if this is true, then you first
add the ? character to it, which is the delimiter for the first query string parameter.
For all the subsequent parameters you use the & character.

117

Chapter 5: Duplicate Content

00929c05.qxd:00929c05 3/13/07 10:41 AM Page 117

// return the new URL
return $new_url;

}

We’ll leave understanding this regular expression for you as homework.

Summary
We would summarize the entire chapter right here in this paragraph, but that would be duplicate content!
Because we don’t wish to frustrate our readers, we will keep it short.

Ideally, every URL on a web site would lead to a page that is unique. Unfortunately, it is rarely possible
to accomplish this in reality. You should simply eliminate as much duplication as possible. Parameters in
URLs that do not effect significant changes in presentation should be avoided. Failing that, as in the prob-
lems posed by using breadcrumb navigation, URLs that yield duplicate content should be excluded. The
two tools in your arsenal you can use to accomplish this are robots.txt exclusion and meta-exclusion.

118

Chapter 5: Duplicate Content

00929c05.qxd:00929c05 3/13/07 10:41 AM Page 118

SE-Friendly HTML
and JavaScript

In a perfect world, a web site’s presentation details would not affect its search engine rankings
more so than it affects a human visitor’s perception of value — his “rankings.” Relevant content
is what users are after, and the goal of a search engine is to provide it. In this perfect world,
web pages that contain the same information would rank similarly regardless of the on-page
technologies used in their composition.

Unfortunately, in many cases, quite the opposite is true. Using Flash or AJAX to present informa-
tion, for example, may render much of your web site invisible to search engines. Likewise, using
JavaScript-based links for navigation may bring about the same unfortunate result.

The good news, however, is that applying a deep understanding of these presentation concerns
will yield an advantage for you over other web sites that exhibit more naiveté. This chapter explores
these concerns. It provides solutions and outlines best practices for web site content presentation.

By the end of this chapter you will acquire knowledge that will enable you to use on-page technolo-
gies effectively without detriment to search engine rankings. This chapter will teach you how to:

❑ Implement SE-friendly JavaScript site functionality.

❑ Generate crawlable images and graphical text using two techniques.

❑ Improve the search engine-friendliness of your HTML.

❑ Analyze when and how to use AJAX and Flash in your web site.

00929c06.qxd:00929c06 3/13/07 10:55 AM Page 119

Overall Architecture
Before diving into gory technical details, it is worth mentioning that there are certain architectural deci-
sions that are categorically problematic for any search engine optimization campaign. If upper manage-
ment, for example, demands a web site be entirely built in Flash, the search engine marketer will not
have much leg room to the end of achieving search engine friendliness.

Likewise, if business logic requires that user agents log in before they can see any content, it is easy
to anticipate the problems that will cause for search engine optimization. A spider will not log in, and
therefore see nothing except the login page.

Technically, you could employ cloaking to detect the presence of spiders and deliver the content to them
without requiring them to log in. However, this is an especially controversial use of an already contro-
versial technique, cloaking. See Chapter 11 for more details on cloaking.

Unless there are circumstances that impose contradictory restrictions, we would advise that the follow-
ing general guidelines be followed:

❑ Do not require visitors to log in before they can view your content. A search engine spider
cannot fill out forms to create an account or log in!

❑ Present copy as clear text, not images. Use an HTML/CSS-based design — do not use AJAX
or Flash pervasively.

❑ Do not require visitors to support JavaScript for navigation to be functional.

The rest of this chapter details how to improve the search engine friendliness of a web site by example,
through the appropriate use of HTML, JavaScript, and Flash. It explores specific problems, and proposes
their solutions.

Search Engine–Friendly JavaScript
Search engines are designed to index content rather than execute application code. Therefore, Java -
Script, when used the wrong way, can degrade a web site’s search engine friendliness. On the other
hand, JavaScript is not categorically problematic, and has its appropriate uses.

This section discusses JavaScript’s use in the context of the following:

❑ Links

❑ DHTML menus

❑ Popups

❑ Crawlable images and graphical text

120

Chapter 6: SE-Friendly HTML and JavaScript

00929c06.qxd:00929c06 3/13/07 10:55 AM Page 120

JavaScript Links
The first scenario discussed is the use of JavaScript code for navigation. A JavaScript link is any button
or text that, when clicked, navigates to another page. A typical JavaScript link looks like this:

Some
Text Here

The primary objection to using this sort of link is its use of JavaScript where a regular link would suffice.
Doing so will typically prevent a search engine spider from following the links, and also prevent users who
disable JavaScript from navigating your site. Using them for all navigation may prevent a site from being
spidered at all. If you must use such links, provide alternative navigation somewhere else on the site.

The same issues would also be apparent in navigation involving other client-side dynamic technologies
such as Java applets, AJAX content, and Flash. In general, any navigation not achieved using a standard
anchor (<a>) tag will hinder site spidering.

Some webmasters have reported that spiders, especially Google, seem to be following some obvious-looking
JavaScript links in their sites. However, because this is the exception rather than the rule, depending on
this is not recommended.

By the same token, using JavaScript as a sort of page exclusion protocol, that is, assuming spiders do not
see or crawl links in JavaScript, is also unwise. Even if the JavaScript does achieve the end of obscuring
the link from spiders, other sites may link to the URL, which would likely get the page indexed regard-
less. If you don’t want a link to be indexed, you should exclude it using robots.txt or using the meta
exclusion tag.

DHTML Menus
Because they’re based on JavaScript, DHTML drop-down menus present problems for search engines
as well. It is wise to provide alternative navigation to all elements listed in the menus. You can do this
using a set of links at the bottom of the page, a sitemap, or a combination thereof. This way not only
search engines, but visitors with JavaScript support disabled, will be able to navigate the site with ease.

Many drop-down menus are somewhat spider-friendly, whereas others are not at all. The ones that are
not tend to generate and display HTML on-the-fly using JavaScript. The ones that are typically hide and
unhide an HTML div element dynamically. The key here is that the HTML and links are actually pres-
ent, though hidden, in the document. Search engine algorithms may not, however, appreciate the hidden
aspect — rendering it an invisible on-page factor. It is wise to list the links visibly elsewhere in either case.

Popup Windows
The typical method of displaying popups employs JavaScript. And, as you learned, a search engine will
likely not spider a page only referred to by JavaScript. So what if you do want a popup to be indexed?

121

Chapter 6: SE-Friendly HTML and JavaScript

00929c06.qxd:00929c06 3/13/07 10:55 AM Page 121

The solution is pretty simple. A typical popup link looks like this:

<a href=”#“ onClick=”window.open(‘page.html’, ‘mywindow’, ‘width=800,height=600’);i
return false;”>Click here.

You could make the popup spiderable by changing the link to this:

<a href=”page.html” onclick=”window.open(this.href, ‘mywindow’, ‘width=800,heighti
=600’); return false;” target=”_blank”>Click here.

This still presents a popup in a JavaScript-enabled browser. The onclick event uses the window.open
method to open this.href — the href attribute of that link. Then it returns false to prevent the link
itself from being honored. On the other hand, the link is still present, so a search engine is able to navi-
gate to it without executing the JavaScript code.

Alternatively, you could simulate a popup by using a regular link that opens a new window via the
target=”_blank” attribute, and have the page itself automatically resize after it displays. Technically,
it’s not really a popup. It’s a new window that automatically resizes — but the effect is similar. The link
for such a “popup” would look like this:

Click here

You must include JavaScript on the linked page to resize the window. To do so, place the following code
in the onload attribute of the document’s body tag with the appropriate parameters:

<body onload=”window.resizeTo(800, 600);”>

Additionally, you can handle the window’s resize event to keep the window’s size constant:

<body onresize=’setTimeout(“window.resizeTo(800, 600);”, 100);’>

Using setTimeout (which in this example causes the window to be resized after 100 milliseconds)
ensures the code will work with all browsers.

In addition to improving search engine visibility for your popups, you have also accomplished a usability
enhancement, because both of these popup varieties will degrade to opening content in a new browser
window via the target=”_blank” attribute if a user’s JavaScript functionality is disabled.

These techniques are demonstrated in the upcoming exercise. You’ll also explore a usability concern
with spiderable popups.

Implementing Popup Navigation
Some sort of navigation should be present to allow the user to get back to the parent page if he or she
arrives at the popup through a search engine, or from an external web site. Because popups are not
usually created to contain contextual and navigational elements, this presents a problem.

122

Chapter 6: SE-Friendly HTML and JavaScript

00929c06.qxd:00929c06 3/13/07 10:55 AM Page 122

You should at least provide a link back to the home page, and ideally to some more relevant parent
page. Otherwise, the user may be completely lost and will proceed to the nearest back button.

It is not always desirable to have a popup spidered by a search engine. Between the navigational con-
cerns, and the fact that popups very often do not contain substantial information, it may be wiser not
to. Unless the popup has substantial information, we advise excluding the popups from the spiders’
view entirely.

You can obtain the page from which the user navigated to the popup by reading the $_SERVER[‘HTTP_
REFERER’] header value. This information allows you to show navigational elements only if the user
has arrived from an external web site, such as a SERP.

This method is not 100% reliable, because some firewall applications block the REFERER information.
Also, if the referring page is secured via HTTPS, the REFERER information won’t be available. In this
exercise, when there is no REFERER data, err on the safe side and display the navigational elements.

You can try out this technique by going through a short exercise.

Implementing Spiderable Popups
1. Add a link to your popup file in your catalog.php script, as highlighted in the following code

snippet. Note that this assumes you’re working on the code that you built in the previous chap-
ters. If you don’t have it ready, feel free to use the code download of this chapter.

<?php
// load the URL factory library
require_once ‘include/url_factory.inc.php’;
?>
...
...
...

<a href=”<?php echo make_category_product_url(“Friends’ Shed”, 2, “PHP

E-Commerce Book”, 42); ?>”>
Friends’ Shed: PHP E-Commerce Book

<center>
Find more about Professional Search

Engine Optimization with PHP!
</center>

</body>
</html>

2. Load http://seophp.example.com/catalog.html to ensure your script loads correctly and
displays the new link, as shown in Figure 6-1. Note that this exercise assumes you have built
your simple catalog as shown in Chapter 3.

123

Chapter 6: SE-Friendly HTML and JavaScript

00929c06.qxd:00929c06 3/13/07 10:55 AM Page 123

Figure 6-1

3. Create a new file named popup.php in your seophp folder, and type this code in:

<?php
// load the popup utils library
require_once ‘include/popup_utils.inc.php’;
?>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html>
<head>
<title>Professional Search Engine Optimization with PHP: Table of

Contents</title>
</head>
<body onload=”window.resizeTo(800, 600);”

onresize=’setTimeout(“window.resizeTo(800, 600);”, 100);’>
<h1>Professional Search Engine Optimization with PHP: Table of Contents</h1>

<?php
// display popup navigation only when visitor comes from a SERP
display_navigation();
?>

You: Programmer and Search Engine Marketer
A Primer in Basic SEO
Provocative SE-Friendly URLs
Content Relocation and HTTP Status Codes
Duplicate Content
SE-Friendly HTML and JavaScript
Web Syndication and Social Bookmarking
Black Hat SEO

124

Chapter 6: SE-Friendly HTML and JavaScript

00929c06.qxd:00929c06 3/13/07 10:55 AM Page 124

Sitemaps
Link Bait
IP Cloaking, Geo-Targeting, and IP Delivery
Foreign Language SEO
Coping with Technical Issues
Case Study: Building an E-Commerce Catalog
Site Clinic: So You Have a Web Site?
WordPress: Creating a SE-Friendly Weblog?
Introduction to Regular Expressions

</body>

</html>

4. Create a new file named popup_utils.inc.php in your seophp/include folder, and write
this code:

<?php

// include config file
require_once ‘config.inc.php’;

// display popup navigation only when visitor comes from a SERP
function display_popup_navigation()
{
// display navigation?
$disp_nav = false;

// if there is no REFERER (visitor loaded popup directly), display navigation
if (!isset($_SERVER[‘HTTP_REFERER’]))
{
$disp_nav = true;

}
// if the REFERER not from our domain, display navigation
else
{
// parse the REFERER and the local site using parse_url()
$parsed_referer = parse_url($_SERVER[‘HTTP_REFERER’]);
$parsed_local = parse_url(SITE_DOMAIN);

// extract the domain of the referer, and that of the local site
$referer_host = $parsed_referer[‘host’];
$local_host = $parsed_local[‘host’];

// display navigation if the REFERER URL is not from the local domain
if ($referer_host != $local_host)
{
$disp_nav = true;

}
}

125

Chapter 6: SE-Friendly HTML and JavaScript

00929c06.qxd:00929c06 3/13/07 10:55 AM Page 125

// display navigation if necessary
if ($disp_nav == true)
{
echo ‘Visit our catalog page!’;

}
}

?>

5. This is the moment of truth. Load http://seophp.example.com/catalog.html, and click
the popup link. No navigation should show up. If you get to the popup page through Google,
Yahoo!, or MSN, or if you load http://seophp.example.com/popup.php directly from the
address bar of your browser, the navigation link should appear (see Figure 6-2).

6. Now is a great time to test the RefControl Firefox plugin mentioned in Chapter 2. This plugin
allows you to display and modify REFERER information. Install the plugin and navigate to
http://seophp.example.com/catalog.html. In the page, click the link that opens the
popup window, and note the HTTP REFERER displayed in the status bar (see Figure 6-3). You
can see that the catalog link doesn’t show up when the popup is opened as a result of naviga-
tion from within your site.

Figure 6-2

126

Chapter 6: SE-Friendly HTML and JavaScript

00929c06.qxd:00929c06 3/13/07 10:55 AM Page 126

Figure 6-3

That was quite a bit of code, but this is a useful technique! Once your popup library is in place, it
becomes really easy to make the navigation link show up whenever it is needed. Here you use the
simulated popup window method, but you could have also used a regular JavaScript popup with
the same results.

In order to add the navigational link to any popup, there are only two steps you need to take. First,
you need to include the popup_utils.inc.php script in your popup script. This is what you did in
popup.php:

<?php
// load the popup utils library
require_once ‘include/popup_utils.inc.php’;
?>

Then, you need to call the display_popup_navigation() function that’s defined in popup_ -
utils.inc.php, in the place where you want the navigational link included:

<?php
// display popup navigation only when visitor comes from a SERP
display_popup_navigation();
?>

127

Chapter 6: SE-Friendly HTML and JavaScript

00929c06.qxd:00929c06 3/13/07 10:55 AM Page 127

This function verifies if the REFERER is from the local domain, and if it is, it doesn’t display the naviga-
tion link. If the REFERER is from any other domain, or if it is empty, the navigation link is displayed.

The function starts by telling if a REFERER does exist. If it doesn’t, you set a temporary variable, named
$display_nav, to true. The default value of this variable is false. At the end of the function you ver-
ify its value and decide whether or not to display the navigation links:

// display popup navigation only when visitor comes from a SERP
function display_popup_navigation()
{
// display navigation?
$disp_nav = false;

// if there is no REFERER (visitor loaded popup directly), display navigation
if (!isset($_SERVER[‘HTTP_REFERER’]))
{
$disp_nav = true;

}

If there is a REFERER, you verify if the host name of the REFERER is the same one as the host of the
SITE_DOMAIN constant, which you’ve defined in config.inc.php. If the host names are different, the
visitor arrived at the popup from an external web site, and you must display the navigation link:

// if the REFERER not from our domain, display navigation
else
{
// parse the REFERER and the local site using parse_url()
$parsed_referer = parse_url($_SERVER[‘HTTP_REFERER’]);
$parsed_local = parse_url(SITE_DOMAIN);

// extract the domain of the referer, and that of the local site
$referer_host = $parsed_referer[‘host’];
$local_host = $parsed_local[‘host’];

// display navigation if the REFERER URL is not from the local domain
if ($referer_host != $local_host)
{
$disp_nav = true;

}
}

In the end, if $disp_nav is true, you display the navigation link:

// display navigation if necessary
if ($disp_nav == true)
{
echo ‘Visit our catalog page!’;

}

128

Chapter 6: SE-Friendly HTML and JavaScript

00929c06.qxd:00929c06 3/13/07 10:55 AM Page 128

DHTML Popup Windows
As a last alternative, popups can be simulated using DHTML. To accomplish this you can place an invisible
<div> element at a particular location, then use JavaScript events to hide and unhide it. A robust example
is beyond the scope of this book, but the following code is a proof of concept:

<span onmouseover=”document.getElementById(‘dhtml_popup_test’).style.visibility=i
‘visible’;” onmouseout=”document.getElementById(‘dhtml_popup_test’).style.i
visibility=’hidden’;”>put your mouse here

<div style=”position:absolute; visibility:hidden; border:1px solid black”i
id=”dhtml_popup_test”>This is only visible if your mouse is over the abovei
text</div>

One caveat with this method is that although the text is spiderable, it will likely be regarded as an invisible
on-page factor because it is not visible by default.

Crawlable Images and Graphical Text
This is a topic that frequently puts designers and search engine marketers at war! Designers tend to
balk at the thought of not having graphical text at their disposal. But spiders cannot read any text that
is embedded in an image, regardless of how clear and obvious it may be to a human reader. Therefore
regular text styled by CSS should be employed whenever possible.

Unfortunately, CSS does not always provide all the flexibility that a designer needs for typesetting. Further -
more, users do not have a uniform set of fonts installed on all computers. This restricts the fonts that can be
used reliably in CSS typesetting substantially. Table 6-1 lists the common fonts that are available on typical
Windows and Mac installations.

Table 6-1

Table continued on following page

Font Type Font Name

Cursive Comic Sans MS

Monospace Courier New

Serif Times New Roman

Georgia

Sans-serif Andale Mono

Arial

Arial Black

Impact

129

Chapter 6: SE-Friendly HTML and JavaScript

00929c06.qxd:00929c06 3/13/07 10:55 AM Page 129

For further reference, you can check out the more detailed list you can find at http://www.kdweb-
pagedesign.com/tut_4.asp.

So in lieu of depending completely on CSS typesetting, a number of techniques can be used to imple-
ment “crawlable images.” Using client-side JavaScript, you can walk the document tree of an HTML
file and selectively replace text portions with graphical elements after it loads. This is called “text
replacement.”

The following few pages introduce you to two of the most common implementations of text replacement:

❑ The “sIFR” replacement method works by replacing specified text with Flash files. This method is
documented at length at http://www.mikeindustries.com/sifr/.

❑ Stewart Rosenberger’s text replacement implementation does the same thing, but replaces the text
with images instead. The images are generated at the server-side by a PHP script. The method
is described at http://www.alistapart.com/articles/dynatext.

Using these techniques, spiders will be able to read the text present in the document (because spiders do
not execute the JavaScript code), and human visitors will see either a Flash file or an image containing
the text. This keeps both humans and robots happy.

The “sIFR” Replacement Method
We must admit, we love sIFR! sIFR is an acronym for “Scalable Inman Flash Replacement.” It functions
by replacing specified portions of plain text from a web page with a parameterized Flash file on the
client side.

sIFR brings these benefits:

❑ sIFR doesn’t require users to have the necessary fonts installed, because the fonts are included
in the Flash file.

❑ If a font is used in multiple pages or headings, it’s downloaded by the user’s browser only once.

❑ sIFR doesn’t hurt search engine rankings, because the plain text is still right there in your web page.

❑ If the user doesn’t have Flash or JavaScript installed, the text is simply rendered as normal text.

Before attempting to use sIFR, here’s what you need to keep in mind:

❑ For testing purposes, you can use the two Flash files that ship with sIFR — tradegothic.swf
and vandenkeere.swf. However, if you want to embed your own fonts into .swf files,

Font Type Font Name

Sans-serif Trebuchet MS

Verdana

130

Chapter 6: SE-Friendly HTML and JavaScript

00929c06.qxd:00929c06 3/13/07 10:55 AM Page 130

you’ll need Macromedia Flash. At the time of writing, Macromedia Flash 8 Basic costs $349
and Macromedia Flash 8 Professional costs $699. You can download a trial version from
http://www.adobe.com/downloads/ after you register with Adobe; the download size is
about 100MB.

❑ You need to have a license to distribute the fonts you’re using for the replacement.

You put sIFR to work in the next exercise, where you modify your product catalog to use a font that isn’t
supported by default by many web browsers. Look ahead at Figures 6-8 and 6-9 to see the difference
between the “before” and “after” versions of the catalog’s title.

Using sIFR
1. Start by creating a subfolder in your site where you store the sIFR code. Create a folder named

sifr under your seophp folder, so the complete path to it will be /seophp/sifr/.

2. Download sIFR. Navigate to http://www.mikeindustries.com/sifr/ and find the Down -
load link at the bottom of the page. At the time of writing, the direct link to the latest zip package
is http://www.mikeindustries.com/blog/files/sifr/2.0/sIFR2.0.2.zip.

3. Unzip the package into your /seophp/sifr folder. The contents of the folder should look the
same as Figure 6-4.

4. You need to open the sifr.fla file located in your sifr folder with Macromedia Flash (not the
Flash Player!). If you don’t have it, you can find the trial download at http://www.adobe.com/
downloads/, or at a software catalog web site such as http://www.softpedia.com.

5. If you installed Macromedia Flash correctly, it should open up sifr.fla (see Figure 6-5).

Using sIFR Properly
If you decide to use sIFR for your projects, we recommend that you also check its
documentation at http://wiki.novemberborn.net/sifr/, and its description at
http://www.mikeindustries.com/sifr/, because they contain more tips and
hints that we could not include in the book. You can find a very useful walkthrough
at http://wiki.novemberborn.net/sifr/How+to+use. This quote is particularly
pertinent: “sIFR is for headlines, pull quotes, and other small swaths of text. In other words,
it is for display type — type which accents the rest of the page. Body copy should remain
browser text. Additionally, we recommend not replacing over about 10 blocks of text per page.
A few more is fine, but once you get into the 50s or so, you’ll notice a processor and speed hit.”

In this exercise you learn how to embed a font into an .swf file. If you don’t have
Macromedia Flash, or you don’t want to install a trial version, you can use one of the
two Flash files that ship with sIFR. To do that, instead of following steps 4 through 9
of the exercise, simply rename tradegothic.swf or vandenkeere.swf from the
sirf folder to super_font.swf.

131

Chapter 6: SE-Friendly HTML and JavaScript

00929c06.qxd:00929c06 3/13/07 10:55 AM Page 131

Figure 6-4

Figure 6-5

132

Chapter 6: SE-Friendly HTML and JavaScript

00929c06.qxd:00929c06 3/13/07 10:55 AM Page 132

6. The sifr.fla script that you’ve just loaded allows you to embed fonts into the.swf files that
render your graphical text. You’ll need to follow the same procedure for each font you want to
use. For the purpose of this example choose the Trebuchet MS font (but you can use the font of
your choice if you prefer). Double-click the white box in the center of the stage. The “Do not
remove this text.” text should appear, and the Properties window should be highlighted. Click
the font combo box from the Properties window, and choose the font you want to use. This
process is shown in Figure 6-6.

7. Export the new file to an .swf file by going to File ➪ Export ➪ Export Movie. When asked
for the name, you should name the file depending on the font you’ve chosen, because that’s
what the exported file is used for — to store the font. For the purpose of this exercise, choose
super_font.swf and click Save (see Figure 6-7).

Figure 6-6

Figure 6-7

133

Chapter 6: SE-Friendly HTML and JavaScript

00929c06.qxd:00929c06 3/13/07 10:55 AM Page 133

8. In the options form that shows up after clicking Save, leave the default options, making sure
you’re exporting to Flash Player 6 format, and click OK.

9. After exporting your file, it’s OK to close Macromedia Flash. You don’t need to save any
changes to sifr.fla.

10. Open catalog.php and add a reference to the sifr.js file. Note that you’re working on the
catalog.php file you created in the previous chapters. Use the code provided by the book’s
code download if you didn’t follow the first six chapters in sequence.

<?php
// load the URL factory library
require_once ‘include/url_factory.inc.php’;
?>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html>
<head>
<title>The SEO Egghead Shop</title>
<script src=”sifr/sifr.js” type=”text/javascript”></script>
<link rel=”stylesheet” href=”sifr/sIFR-screen.css” type=”text/css” i

media=”screen” />
<link rel=”stylesheet” href=”sifr/sIFR-print.css” type=”text/css” i

media=”print” />
</head>

11. The final step required to see sIFR in action is to select the strings you want replaced. You do
this by including JavaScript code that makes the changes when the page loads. Add this code
before the closing </body> tag in catalog.php, as shown in the following code snippet. (Note
there are additional ways to do this, as explained in sIFR’s documentation.)

<!-- sIFR replacement code -->
<script type=”text/javascript”>

// continue only if the sIRF code has been loaded
if(typeof sIFR == “function”)
{
// replace the <h1> text
sIFR.replaceElement(named({sSelector:”body h1”, sFlashSrc:”./sifr/super_font.i

swf”}));
};

</script>

</body>
</html>

12. You’re done! If you disable JavaScript and load http://seophp.example.com/
catalog.html, you get to your catalog page that uses the default heading font, which
you can see in Figure 6-8.

13. Loading the very same page with JavaScript and Flash enabled, you get your title drawn
with the new font! (See Figure 6-9.)

134

Chapter 6: SE-Friendly HTML and JavaScript

00929c06.qxd:00929c06 3/13/07 10:55 AM Page 134

Figure 6-8

Figure 6-9

After all the configuration work is done, sIFR is really easy to use! For starters, you needed to create a
Flash application that contains the font you want to distribute to your users. You could use different
fonts for various elements, but for the purposes of this exercise just one font was enough.

In order to be able to effectively use sIFR, you needed to reference the sIFR JavaScript library and its
two CSS files in your catalog.php script:

<script src=”sifr/sifr.js” type=”text/javascript”></script>
<link rel=”stylesheet” href=”sifr/sIFR-screen.css” type=”text/css”i

media=”screen” />
<link rel=”stylesheet” href=”sifr/sIFR-print.css” type=”text/css”i

media=”print” />

After referencing the JavaScript library, you need, of course, to use it. Just referencing sifr.js doesn’t
have any effect by itself — and here the fun part comes. The following code, which you added at the end

135

Chapter 6: SE-Friendly HTML and JavaScript

00929c06.qxd:00929c06 3/13/07 10:55 AM Page 135

of catalog.php, uses the sIFR.replaceElement() function to replace all <h1> tags with Flash files
that render text:

<!-- sIFR replacement code -->
<script type=”text/javascript”>

// continue only if the sIRF code has been loaded
if(typeof sIFR == “function”)
{
// replace the <h1> text
sIFR.replaceElement(named({sSelector:”body h1”, sFlashSrc:”./sifr/super_font.i

swf”}));
};

</script>

The (typeof sIFR == “function”) condition verifies that the sIFR library has been loaded success-
fully, so the script won’t attempt to call sIFR.replaceElement() in case you forgot to reference the
sIFR JavaScript library.

The replaceElement() function supports more parameters, but the necessary ones are sSelector
(which defines which HTML elements should be replaced), and sFlashSrc (which references the Flash
movie containing the font to be used). However, many more parameters are supported, and can be used
when you need to fine-tune the replacement options. Table 6-2 contains the list of parameters that you
can use with replaceElement().

Table 6-2

replaceElement() Parameter Description

sSelector The CSS element you want to replace. Include whitespace in the
string only when selecting descendants, such as in body h1. You
can separate multiple CSS elements using commas.

sFlashSrc The Flash file that contains the font.

sColor The text color using hex notation.

sLinkColor The link color using hex notation.

sHoverColor The hover link color using hex notation.

sBgColor The background color using hex notation.

nPaddingTop Top padding in pixels.

nPaddingRight Right padding in pixels.

nPaddingBottom Bottom padding in pixels.

136

Chapter 6: SE-Friendly HTML and JavaScript

00929c06.qxd:00929c06 3/13/07 10:55 AM Page 136

See the “How to use” documentation at http://wiki.novemberborn.net/sifr/How+to+use for
more details about using sIFR.

After adding this last bit of code, you’re done! Your page will now work by default with replaced text. If
Flash or JavaScript aren’t supported by the user agent, it falls back gracefully to the default page font.

Stewart Rosenberger’s Text Replacement Method
This method uses JavaScript to replace page headings with images. The images are created by a PHP
script on-the-fly, so you don’t have to build the images yourself. It is otherwise very similar to sIFR.

For this technique to work, there are two prerequisites:

❑ The PHP server must have the GD2 library installed. This is PHP’s image manipulation library,
and you can learn more about it at http://www.php.net/image/.

❑ You need to have access to the font file of the font you want to use, because you’ll need to copy
it in your web site folder.

Assuming these two conditions are met, you can go on and modify the popup.php script that you
created earlier in this chapter, and have its header replaced by graphically rendered text when the page
loads. Figure 6-10 shows how the page will look after the exercise is completed, and Figure 6-2 shows
how the page looks right now.

Replacing Text with Images
1. Start by enabling the GD2 PHP library, which you need for generating images on-the-fly with

PHP. If you set up your machine as described in Chapter 1, you have GD2 already installed, but
it may not be enabled by default. Open for editing the php.ini configuration file. In the typical
XAMPP configuration, this file is located in the \xampp\apache\bin folder. In other scenarios,
you’ll find it in your Windows folder.

replaceElement() Parameter Description

nPaddingLeft Left padding in pixels.

sFlashVars Parameters to send to the Flash movie. When multiple parameters
are used, separate them by &. Supported parameters are textalign,
offsetLeft, offsetTop, and underline.

sCase Set this to upper to transform the text to uppercase, and lower to
transform the text to lowercase.

sWmode Supported values are opaque (the default) and transparent (to
enable transparent background).

137

Chapter 6: SE-Friendly HTML and JavaScript

00929c06.qxd:00929c06 3/13/07 10:55 AM Page 137

2. In php.ini, remove the leading semicolon in the front of the following line. The semicolon
comments the line; if there is no semicolon, then GD2 is already enabled on your system.

extension=php_gd2.dll

3. Restart the Apache web server for the new configuration to take effect.

4. Create a folder named dynatext in your seophp folder.

5. Copy the font files you want to use for headers to your dynatext folder. On a Windows machine,
you can find the font files in the hidden \Windows\Fonts folder, or via the Fonts applet that you
can find in Control Panel. For the purposes of this exercise, copy trebuc.ttf to the dynatext
folder.

For legal reasons, we’re not including any font files in the code download of this book. If you use the
code download, you’ll still need to copy a font file to your dynatext folder before this exercise will
work properly.

6. Download http://www.alistapart.com/d/dynatext/heading.php.txt and save it as
heading.php in your dynatext folder.

7. Modify heading.php by setting $font_file to the font file name that you copied earlier to
the dynatext folder, and change $font_size to 23:

<?php
/*

Dynamic Heading Generator
By Stewart Rosenberger
http://www.stewartspeak.com/headings/

This script generates PNG images of text, written in
the font/size that you specify. These PNG images are passed
back to the browser. Optionally, they can be cached for later use.
If a cached image is found, a new image will not be generated,
and the existing copy will be sent to the browser.

Additional documentation on PHP’s image handling capabilities can
be found at http://www.php.net/image/

*/

$font_file = ‘trebuc.ttf’ ;
$font_size = 23 ;
$font_color = ‘#000000’ ;
$background_color = ‘#ffffff’ ;
$transparent_background = true ;
$cache_images = true ;
$cache_folder = ‘cache’ ;

8. Download http://www.alistapart.com/d/dynatext/replacement.js and save the file to
your dynatext folder.

9. Modify the replaceSelector function call at the beginning of replacement.js by changing
h2 to h1, and changing the value of hideFlickerTimeout to a small value, such as 100. Also,

138

Chapter 6: SE-Friendly HTML and JavaScript

00929c06.qxd:00929c06 3/13/07 10:55 AM Page 138

alter the references to heading.php and test.tif to reflect their location under the dynatext
folder, as shown here:

function com_stewartspeak_replacement() {
/*

Dynamic Heading Generator
By Stewart Rosenberger
http://www.stewartspeak.com/headings/

This script searches through a web page for specific or general elements
and replaces them with dynamically generated images, in conjunction with
a server-side script.

*/

replaceSelector(“h1”,”dynatext/heading.php”,true);
var testURL = “dynatext/test.tif” ;

var doNotPrintImages = false;
var printerCSS = “replacement-print.css”;

var hideFlicker = false;
var hideFlickerCSS = “replacement-screen.css”;
var hideFlickerTimeout = 100;

10. You now need to create a PNG image file named test.tif in your seophp folder. This file
can contain anything, but it’s best if it’s as small as possible — such as a 1x1 pixel image. This
is a probe file used by the scripts for testing browser features. If test.tif is not present, your
text won’t be replaced. You can copy this file from the code download of this chapter.

11. Modify popup.php by adding a reference to the replacement.js script:

<?php
// load the popup utils library
require_once ‘include/popup_utils.inc.php’;
?>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html>
<head>
<title>Professional Search Engine Optimization with PHP: Table of

Contents</title>
<script src=”dynatext/replacement.js” type=”text/javascript”></script>

</head>
<body onload=”window.resizeTo(800, 600);”

onresize=’setTimeout(“window.resizeTo(800, 600);”, 100);’>
<h1>Professional Search Engine Optimization with PHP: Table of Contents</h1>

12. Load http://seophp.example.com/popup.php. If you followed the steps correctly and your
machine is configured with GD2 support, you should get your title replaced with an image as
shown in Figure 6-10. Compare Figure 6-10 with Figure 6-2 in order to see the difference!

139

Chapter 6: SE-Friendly HTML and JavaScript

00929c06.qxd:00929c06 3/13/07 10:55 AM Page 139

Figure 6-10

Both the PHP script that generates (and eventually caches) the images for text elements on the server,
and the JavaScript script that handles the client-side replacing, can be configured to fine-tune the image
replacement to your tastes.

We’re leaving the subtle configuration options to you as an exercise in case you intend to use Stewart’s
library in your projects. The next section moves on to discuss improving HTML itself.

Search Engine–Friendly HTML
With some JavaScript-related issues out of the way, there are a number of HTML issues to explore:

❑ HTML structural elements

❑ Copy prominence and tables

❑ Frames

❑ Forms

140

Chapter 6: SE-Friendly HTML and JavaScript

00929c06.qxd:00929c06 3/13/07 10:55 AM Page 140

HTML Structural Elements
In general, HTML provides structural elements that may help a search engine understand the overall
topicality of documents, as well as where logical divisions and important parts are located, such as <h1>
and <h2> tags, tags, and so on. If you don’t include these elements in your HTML code, the search
engine must make such decisions entirely itself.

Although most hand-coded sites do well in this regard, especially when a search engine marketer is
involved, many content management systems are abysmally bad at it. Also, WYSIWYG (What You See Is
What You Get) editors typically do not use these tags, and tend to generate HTML with CSS embedded
pervasively in style tags. This is not ideal with regard to search engine optimization. For example, this
structure:

Item 1
Item 2
Item 3

provides more semantic information than this:

Item 1

Item 2

Item 3

even if they look entirely identical onscreen.

If you’ve developed web content using a WYSIWYG editor, it may be wise to hand-edit the generated
HTML to optimize the content after the fact. You may also choose to create your HTML directly instead
of using such an editor. An additional solution of using a custom markup language is explored later in
this chapter.

Copy Prominence and Tables
Copy prominence is the physical depth — that is, the actual position (counted in bytes) in the HTML
document where the copy starts within your document. Because search engines may consider the con-
tent closest to the top of the HTML document more important, it is wise to avoid placing repetitive or
irrelevant content before the primary content on a page.

A common form of content that doesn’t need to be at the top of an HTML file is JavaScript code. It is
wise to move any JavaScript code located at the top of an HTML document either to the bottom, or to
a separate file, because JavaScript has a large footprint and is mostly uninteresting to a spider. You can
reference external JavaScript files as follows:

<script language=”JavaScript” src=”my_script.js”></script>

When referencing external JavaScript files, don’t omit the </script> tag. If you do that, Internet
Explorer won’t parse your script.

141

Chapter 6: SE-Friendly HTML and JavaScript

00929c06.qxd:00929c06 3/13/07 10:55 AM Page 141

The other common manifestation of this problem is that many tables-based sites place their site naviga-
tion element on the left. This use of tables tends to push the primary content further down physically,
and because of this, may contribute to poorer rankings. If there are many navigational elements above
the primary content, it may confuse the search engine as to what is actually the primary content on the
page, because the navigational elements are higher physically in the document.

Search engines do try to detect repetitive elements, such as a navigation elements placed physically
before the primary content on a page, and at least partially ignore them. Modern search engines also
examine the actual displayed location of content rather than just their physical location in a source doc-
ument. However, avoiding the situation entirely may improve the odds of proper indexing regardless.

There are three solutions for this:

❑ Instead of using a tables-based layout, use a pure CSS-type layout where presentation order is
arbitrary. An in-depth discussion of CSS is beyond the scope of this book. For more information,
you can consult one of the many books on CSS, such as Beginning CSS: Cascading Style Sheets for
Web Design (Wiley Publishing, Inc., 2004).

❑ Place the navigation to the right side of the page in a tables-based layout. Figure 6-11 shows an
example from http://www.lawyerseek.com.

❑ Apply a technique that designers typically call the table trick, which uses an HTML sleight-of-hand
to reverse the order of table cells physically in the document without reversing their presentation.

Even if your site uses tables, typically, parts of a document can be rendered using CSS layout on a
selective basis. Doing so does not force you to abandon a tables-based layout completely. A good place
to look is in repetitive elements (that is, those generated within loops), such as navigational elements
and repeated blocks to shrink HTML size, because tables tend to have a large footprint.

Figure 6-11

142

Chapter 6: SE-Friendly HTML and JavaScript

00929c06.qxd:00929c06 3/13/07 10:55 AM Page 142

The Table Trick Explained
The table trick basically boils down to employing a two-by-two table with an empty first cell, using a
second cell with a rowspan set to two, and then putting the navigation in the second row “under” the
empty first cell.

Take this simple HTML example:

<table>
<tr>
<td valign=”top”>Navigation</td>
<td valign=”top”>Content</td>

</tr>
</table>

The rendered content would look like Figure 6-12.

Figure 6-12

Now, you could rewrite the HTML code to place the relevant content closer to the beginning in the docu-
ment, while keeping the visual appearance equivalent, this way:

<table>
<tr>
<td><!-- empty table cell --></td>
<td rowspan=”2” valign=”top”>Content</td>

</tr>
<tr>
<td valign=”top”>Navigation</td>

</tr>
</table>

Figure 6-13 shows the result.

This way, the navigation code appears below the content in the physical file, yet it displays on the left
when loaded in a browser.

Figure 6-13

143

Chapter 6: SE-Friendly HTML and JavaScript

00929c06.qxd:00929c06 3/13/07 10:55 AM Page 143

Frames
There have been so many problems with frames since their inception that it bewilders us as to why any-
one would use them at all. Search engines have a lot of trouble spidering frames-based sites. A search
engine cannot index a frames page within the context of its other associated frames. Only individual
pages can be indexed. Even when individual pages are successfully indexed, because another frame is
often used in tandem for navigation, a user may be sent to a bewildering page that contains no naviga-
tion. There is a workaround for that issue (similar to the popup navigation solution), but it creates still
other problems. The noframes tag also attempts to address the problem, but it is an invisible on-page
factor and mercilessly abused by spammers. Any site that uses frames is at such a disadvantage that
we must simply recommend not using them at all.

Jacob Nielsen predicted these problems in 1996, and recommended not to use them at the same date.
Now, more than ten years later, there is still no reason to use them, and, unlike the also relatively
benign problems associated with tables, there is no easy fix. See http://www.useit.com/alertbox/
9612.html.

Using Forms
A search engine spider will never submit a form. This means that any content that is behind form navi-
gation will not be visible to a spider. There is simply no way to make a spider fill out a form; unless the
form were to consist of only pull-downs, radios, and checkboxes — where the domain is defined by per-
mutations of preset values, it could not know what combinations it submits regardless. This is not done
in practice, however.

There are some reports that Google, in particular, does index content behind very simple forms.
Forms that consist of one pull-down that directs the user to a particular web page are in this
category. However, as with the example of JavaScript links being spidered, we do not recommend
depending on this behavior. As a corollary, if such a form points to content that should be excluded,
it may be wise to exclude the content with an explicit exclusion mechanism, such as robots.txt
or the robots meta tag!

There is no magic solution for this problem. However, there is a workaround. As long as your script
is configured to accept the parameters from a GET request, you can place the URLs of certain form
requests in a sitemap or elsewhere in a site.

So if a form submits its values and creates a dynamic URL like the following:

/search.php?category_id=1&color=red

that same link could be placed on a sitemap and a spider could follow it.

144

Chapter 6: SE-Friendly HTML and JavaScript

00929c06.qxd:00929c06 3/13/07 10:55 AM Page 144

Using a Custom Markup Language
to Generate SE-Friendly HTML

As mentioned earlier, using a WYSIWYG editor frequently presents a problem with regard to on-page
optimization. Frequently, these editors do not generate HTML that uses tags that adequately delineate
the structural meaning of elements on a page.

If you are developing a large web site where non-technical personnel contribute content frequently,
you could add support for a simple custom markup language. The markup language can ease the
management of content for copywriters who are not familiar with HTML. Additionally, it gives the
site developer total control over what the HTML looks like after you transform the custom markup
language into HTML.

To implement this you use a simple parser. As a bonus, this parser can implement programmatic fea-
tures and make global changes that are well beyond the scope and possibilities of the CSS realm.

Here is an example snippet of copy using a custom markup language:

{HEADING}Using a Custom Markup Language to Generate Optimized HTML{/HEADING}
As we mentioned earlier, using a WYSIWYG editor frequently presents a problem with
regard to on-page optimization. Frequently, the editors do not generate HTML that
uses tags that adequately delineate the structural meaning of elements on a page.
Since heading tags, such as h1, ul, and strong are indicators of the structure
within a document, not using them will probably {BOLD}{ITALIC}decrease{/ITALIC}
{/BOLD} the rankings of a page, especially when a search engine is relying on
on-page factors.

Which can be automatically translated to this:

<h1 class=”custom_markup”>Using a Custom Markup Language to Generate Optimized
HTML</h1>
As we mentioned earlier, using a WYSIWYG editor frequently presents a problem with
regard to on-page optimization. Frequently, the editors do not generate HTML that
uses tags that adequately delineate the structural meaning of elements on a page.
Since heading tags, such as h1, ul, and strong are indicators of the structure
within a document, not using them will probably decrease
the rankings of a page, especially when a search engine is relying on on-page
factors.

In this way, you accomplish two goals. You create very clean and optimized HTML. And you do
it without making a copywriter run for the hills. In fact, using a markup language like this, which
only presents a copywriter with the necessary elements and styles them according to a set of transla-
tion rules, may be even easier than using a WYSIWYG tool in our opinion. Whenever needed, the

145

Chapter 6: SE-Friendly HTML and JavaScript

00929c06.qxd:00929c06 3/13/07 10:55 AM Page 145

markup language allows the copywriter to break into HTML for particularly complex cases by using
an “{HTML}” tag.

This solution is employed later in the example e-commerce site, but try a quick example of its use now.

Implementing a Custom Markup Translator
1. Create a new file named custom_markup.inc.php in your seophp/include folder, and type

this code in:

<?php
function custom_markup_translate($str)
{
// array with regular expressions that match custom tags
$search = array(
‘#\{bold}(.*?)\{/bold}#is’,
‘#\{italic}(.*?)\{/italic}#is’,
‘#\{underline}(.*?)\{/underline}#is’,
‘#\{heading}(.*?)\{/heading}#is’,
‘#\{subheading}(.*?)\{/subheading}#is’,
‘#\{link:(.*?)}(.*?)\{/link}#is’,
‘#\{elink:(.*?)}(.*?)\{/elink}#is’,
‘#\{unordered-list}(.*?)\{/unordered-list}\s*#is’,
‘#\{ordered-list}(.*?)\{/ordered-list}\s*#is’,
‘#\\s*{list-element}(.*?)\{/list-element}\s*#is’,
‘#\{picture:(.*?)}#is’,
‘#\t#‘,
‘#\{comment}(.*?)\{/comment}#is’
);

// array with HTML replacements
$replace = array(
‘\\1’,
‘<i>\\1</i>’,
‘<u>\\1</u>’,
‘<h1 class=some_class>\\1</h1>’,
‘<h2 class=some_other_class>\\1</h2>’,
‘\\2’,
‘\\2’,
‘\\1’,
‘\\1’,
‘\\1’,
‘’,
‘’,
‘’
);

// perform the replacement
$step_1 = preg_replace($search, $replace, $str);
$step_2 = preg_split(‘#(\{HTML\}.*?\{/HTML\})#is’, $step_1, -1,

PREG_SPLIT_DELIM_CAPTURE);

$return = ‘’;

146

Chapter 6: SE-Friendly HTML and JavaScript

00929c06.qxd:00929c06 3/13/07 10:55 AM Page 146

foreach ($step_2 as $s2)
{
if (preg_match(‘#\{HTML\}#‘, $s2))
{
$return .= preg_replace(‘#\{/?HTML\}#is’, ‘’, $s2);

}
else
{
$return .= nl2br($s2);

}
}

// return HTML markup
return $return;

}
?>

2. Create a file named markup.txt in your seophp folder, and type this code in:

{HEADING}Using a Custom Markup Language to Generate Optimized HTML{/HEADING}As we
mentioned earlier, using a WYSIWYG editor frequently presents a problem with regard
to on-page optimization. Frequently, the editors do not generate HTML that uses
tags that adequately delineate the structural meaning of elements on a page. Since
heading tags, such as h1, ul, and strong are indicators of the structure within a
document, not using them will probably {BOLD}{ITALIC}decrease{/ITALIC}{/BOLD} the
rankings of a page, especially when a search engine is relying on on-page factors.

3. Create a file named test_markup.php in your seophp folder, and write this code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html>
<head>
<title>Testing HTML Markup Translator</title>

</head>
<body>

<?php

// include custom markup library
require_once ‘include/custom_markup.inc.php’;

// set input file name
$file_name = ‘markup.txt’;

// open markup file from disk
$handle = fopen($file_name, ‘r’);

// check if the files was opened successfully
if ($handle)
{
// read file contents
$markup = fread($handle, filesize(“markup.txt”));

// translate and display custom markup

147

Chapter 6: SE-Friendly HTML and JavaScript

00929c06.qxd:00929c06 3/13/07 10:55 AM Page 147

$translated = custom_markup_translate($markup);
echo $translated;

}
else
{
// display error message
echo “Couldn’t open $file_name!”;

}

?>

</body>
</html>

4. Load http://seophp.example.com/test_markup.php, and expect to get the results shown
in Figure 6-14.

Figure 6-14

This was a simple example, but we’re sure you can intuit how useful this system can be when building a
more complex content management system. This little script currently knows how to handle these custom
markup tags, whose significance is obvious: {bold}, {italic}, {underline}, {heading}, {subhead-
ing}, {link}, {elink} (this is a link that opens a new window), {unordered-list}, {ordered-list},
{list-element}, {picture}, and {comment}.

The markup file, markup.txt, doesn’t contain any HTML elements, but custom markup elements. How -
ever, with the help of a simple (but quite long) custom markup library, you’re replacing on-the-fly all the
custom markup elements with standard HTML tags.

The custom_markup_translate() function consists mainly of a number of regular expression replace-
ments, which transform the custom markup code to HTML. We’re leaving understanding this function
for you as an exercise.

148

Chapter 6: SE-Friendly HTML and JavaScript

00929c06.qxd:00929c06 3/13/07 10:55 AM Page 148

Flash and AJAX
Unfortunately, both Flash and AJAX technologies can pose major problems for search engines when
used pervasively. Sites that are entirely Flash or AJAX based will not be indexed very well, if it all.
The rationale is fairly simple. Search engines are designed to index pages, not applications.

Furthermore, even if a search engine could figure out how to interpret a Flash file or AJAX application
adequately, parsing and indexing its pertinent content, there would be no way to navigate to that par-
ticular part of the application using a URL. Therefore, because the primary goal of a search engine is
to provide relevant results to a user, a search engine will be hesitant to rank content in those media
well. Lastly, both Flash and AJAX would invite several more innovative and harder-to-detect forms
of spam.

The Blended Approach
But before you assume that we vilify Flash and AJAX completely, there is somewhat of a solution. A site
designer should only use Flash and AJAX for the areas of the site that require it. This is called the blended
approach. He or she should design an HTML-based site, and employ Flash and AJAX technologies where
they will provide a tangible benefit to the user. He or she should attempt to keep as much of the textual
content HTML-based as possible.

Frequently, a mix of HTML and JavaScript (DHTML) can also approximate most of the interactivity of
these technologies. For example, clicking a button could hide or unhide an HTML div element. This will
involve employing the use of smaller Flash or AJAX elements placed inside a traditional HTML layout.
In other words, you should use Flash and AJAX as elements on a page, not as the page itself.

Some SEM authorities also recommend providing a non-Flash or AJAX version of content using
<noembed> or <noscript>, respectively. Unfortunately, because those tags are invisible (and have
been used so pervasively for spam), their efficacy is questionable. Search engines may choose to ignore
the content therein completely. They may, however, enhance usability for users with disabilities, so it is
not unwise to employ them for that purpose.

This solution also misses the mark for another reason — a typical Flash or AJAX site exists on a single
“page,” therefore further limiting the utility of the tag, because all content would presumably have to
exist on that one page!

Figure 6-15 shows an image of a site that looks like a full Flash application, but was changed to HTML
with DHTML and hidden layers. The presented link is http://www.xactcommunication.com/
WristLinx-9/X33XIF-WristLinx-TwoWay-Wristwatch-Radio-35.html.

Sites built entirely with Flash or entirely with AJAX involve a huge paradigm shift.
They do not employ pages for the various elements of a site; rather, they are, more or
less, an application embedded on a single page.

149

Chapter 6: SE-Friendly HTML and JavaScript

00929c06.qxd:00929c06 3/13/07 10:55 AM Page 149

Figure 6-15

Summary
On-page technologies are a double-edged sword. New technologies — such as Flash and AJAX — may
be boons for usability and have a certain “cool factor,” but may make a site entirely invisible to a search
engine spider if not used properly. Even seemingly superficial things like the structure of a link may
severely impact web site spiderability, and hence search engine friendliness. Lastly, as stated in Chapter 2,
invisible on-page factors are not regarded with any confidence by search engines. So despite the fact that
tags such as <noembed> and <noscript> were created to address these issues, your success with them
will likely be limited.

150

Chapter 6: SE-Friendly HTML and JavaScript

00929c06.qxd:00929c06 3/13/07 10:55 AM Page 150

Web Feeds and
Social Bookmarking

You’ve just added some great new content to your web site. Now what? Of course, your current visi-
tors will appreciate the content. They may even tell a few friends about it. But there are technologies
that you can leverage to facilitate and encourage them to do some free marketing for you.

This chapter explores web feeds and social bookmarking, two technologies that web site visitors
can use to access and promote content that they enjoy. Encouraging visitors to do so is a vital part
of viral marketing. This chapter discusses various ways to accomplish this, and walks you through
three exercises where you:

❑ Create your own RSS feeds.

❑ Syndicate RSS and Atom feeds.

❑ Add social bookmarking icons to your pages and feeds.

Web Feeds
The web feed is a mechanism used to distribute content over the web, in XML-based formats, with-
out attaching any visual presentation to it. The typical way for a person to read your content is to
visit your web pages, retrieving their content laid out in HTML format. This doesn’t work with
web feeds, because they contain no presentation. Instead, people use specialized programs that
retrieve and display the data.

Web feeds are used to disseminate information automatically — to humans as well as other web
sites. They are a very effective vehicle for information distribution, and they’ve become very pop-
ular because they make it easy for somebody to read news, or recent blog posts, from his or her
favorite sources. Web feeds are also nicely described at http://en.wikipedia.org/wiki/
Web_feed.

00929c07.qxd:00929c07 3/13/07 10:42 AM Page 151

Feeds encouraged the development of several applications for their consumption. Modern web browsers
(including Internet Explorer 7 and Firefox 2.0), desktop applications such as Microsoft Office 2007, and
web applications such as Google Reader (http://www.google.com/reader/) allow users to access the
feeds they subscribe to from one convenient location. These applications are called aggregators, or feed
readers.

Your web site can provide access to some or all of its content through web feeds. They may include links to
the actual content as well as other links to elsewhere within your site. Over time, this will garner traffic and
links from users who subscribe to your feeds, as well as the various sites that syndicate the information.

Web syndication permits other web sites to promote your content. Other webmasters have an incentive to
syndicate feeds on their sites as fresh content, because including relevant syndicated content in moderation
can be a useful resource. It may, however, be wise to abbreviate the amount of information you provide in
a feed, because the full content appearing on various sites may present duplicate content problems. You
may also choose to syndicate others web sites’ content.

Moderation means that the web site could stand on its own without the syndicated content as well. If it
cannot, it is probably a spam site.

Today, all major blogging platforms provide feeds of some sort. Most other types of content manage-
ment systems provide them as well. The custom applications that you develop may also benefit from
their addition. This chapter demonstrates how to do so.

In order to be usable by everyone, feeds must be provided in a standardized format. RSS and Atom are
the most popular choices.

RSS and Atom
Unfortunately, as usual, there are the requisite format wars. There are many competing formats for web
syndication. Two of them are discussed here — RSS and Atom.

Both RSS and Atom are XML-based standards. The virtue of XML is that it provides a common frame-
work that applications can use to communicate among multiple architectures and operating system
platforms. RSS and Atom feeds can be viewed as plain text files, but it doesn’t make much sense to use
them like that, because they are meant to be read by a feed reader or specialized software that uses it in
the scheme of a larger application. Figure 7-1 shows Jamie Sirovich’s SEO Egghead feed in Cristian’s
Google Reader list.

RSS has a long and complicated history, with many versions and substantial modifications to the stan-
dard. There are two fundamental branches of RSS with two different names. RDF Site Summary (RSS 0.9)
was created by Netscape in the late nineties. In response to criticism that it was too complex, a simpli-
fied and substantially different version, RSS 0.91, was released. To make things even more interesting,
RSS 1.0 is largely a descendant of RSS 0.9, whereas RSS 2.0 is closer to RSS 0.91. RSS 2.0 now stands for
Really Simple Syndication, and RSS 1.0 still stands for RDF Site Summary. Because this is not a history
book on RSS, we will stop here and state that RSS 2.0 is by far the most popular and most adopted at
this point. The standard is also now frozen, and no new changes are underway. The standard for RSS
2.0 is located at http://blogs.law.harvard.edu/tech/rss.

152

Chapter 7: Web Feeds and Social Bookmarking

00929c07.qxd:00929c07 3/13/07 10:42 AM Page 152

Figure 7-1

Atom was created because of the standards issues that have plagued RSS over time. It was born in 2003.
There are two versions, Atom 0.3 and Atom 1.0. It is far more standardized but also more complicated
and less commonly used. It has recently been gaining ground, however. For a more detailed comparison
of RSS and Atom, consult http://www.intertwingly.net/wiki/pie/Rss20AndAtom10Compared.

We are ambivalent about which standard is employed. RSS 2.0 does have a higher adoption rate, it is
simpler by most metrics, and that is the format demonstrated here when you create a web feed. To syn-
dicate feeds, however, you will employ the use of a PHP library called SimplePie, which reads all ver-
sions of RSS and Atom feeds transparently.

A typical RSS 2.0 feed might look like this:

<rss version=”2.0”>
<channel>
<title>example.com breaking news</title>
<link>http://www.example.org</link>
<description>A short description of this feed</description>
<language>en</language>
<pubDate>Tue, 12 Sep 2006 07:56:23 EDT</pubDate>
<item>
<title>Catchy Title</title>
<link>http://www.example.org/catchy-title.html</link>
<description>

153

Chapter 7: Web Feeds and Social Bookmarking

00929c07.qxd:00929c07 3/13/07 10:42 AM Page 153

The description can hold any content you wish, including XHTML.
</description>
<pubDate>Tue, 12 Sep 2006 07:56:23 EDT</pubDate>

</item>
<item>
<title>Another Catchy Title</title>
<link>http://www.example.org/another-catchy-title.html</link>
<description>
The description can hold any content you wish, including XHTML.

</description>
<pubDate>Tue, 12 Sep 2006 07:56:23 EDT</pubDate>

</item>
</channel>

</rss>

The feed may contain any number of <item> elements, each item holding different news or blog entries —
or whatever content you want to store.

You can either create feeds for others to access, or you can syndicate feeds that others create. The follow-
ing section discusses how to create feeds, and the next demonstrates the use of a third-party library called
SimplePie to syndicate feeds.

Creating RSS Feeds
To make generating feeds for your content easier, create a class called the “RSS Factory.” For the first
time, you’ll use object-oriented programming (OOP).

Previous exercises avoided using PHP’s object-oriented programming support. It’s used for this one
because it actually makes things easier. Some explanations on its usage follow the exercise.

The class is aptly named RSSFactory, and it will provide all necessary functionality for generating RSS
feeds. You’ll implement this class and then use it to create a feed for “new SEO Egghead products” in the
exercise that follows.

Creating the RSS Factory
1. Create a new file named rss_factory.inc.php in your seophp/include folder. You’ll keep

your RSS Factory class in this file. Type this code in rss_factory.inc.php:

<?php

class RSSFactory
{
var $_title;
var $_link;
var $_description;
var $_language;
var $_items;

// escape string characters for inclusion in XML structure

154

Chapter 7: Web Feeds and Social Bookmarking

00929c07.qxd:00929c07 3/13/07 10:42 AM Page 154

function _escapeXML($str)
{
$translation = get_html_translation_table(HTML_ENTITIES, ENT_QUOTES);
foreach ($translation as $key => $value)
{
$translation[$key] = ‘&#‘ . ord($key) . ‘;’;

}
$translation[chr(38)] = ‘&‘;
return preg_replace(“/&(?![A-Za-z]{0,4}\w{2,3};|#[0-9]{2,3};)/“,”&”,

strtr($str, $translation));
}

// the class constructor is executed when creating an instance of the class
function RSSFactory($title, $link, $description,

$language = ‘en-us’, $items = array())
{
// save feed data to local class members
$this->_title = $title;
$this->_link = $link;
$this->_description = $description;
$this->_language = $language;
$this->_items = $items;

}

// adds a new feed item
function addItem($title, $link, $description, $additional_fields = array())
{
// add feed item
$this->_items[] =
array_merge(array(‘title’ => $title,

‘link’ => $link,
‘description’ => $description),

$additional_fields);
}

// generates feed
function get()
{
// initial preparations
ob_start();
header(‘Content-type: text/xml’);

// generate feed header
echo ‘<rss version=”2.0”>’ .

‘<channel>’ .
‘<title>’ . RSSFactory::_escapeXML($this->_title) . ‘</title>’ .
‘<link>’ . RSSFactory::_escapeXML($this->_link) . ‘</link>’ .
‘<description>’ .
RSSFactory::_escapeXML($this->_description) .

‘</description>’;

// add feed items
foreach ($this->_items as $feed_item)
{

155

Chapter 7: Web Feeds and Social Bookmarking

00929c07.qxd:00929c07 3/13/07 10:42 AM Page 155

// add a feed item and its contents
echo ‘<item>’;
foreach ($feed_item as $item_name => $item_value)
{
echo “<$item_name>” .

RSSFactory::_escapeXML($item_value) .
“</$item_name>”;

}
echo ‘</item>’;

}

// close channel and rss elements
echo ‘</channel></rss>’;

// return feed data
return ob_get_clean();

}
}

?>

2. Create a new file in your seophp folder named feed.php, and type this code in it:

<?php

// load the URL factory library
require_once ‘include/rss_factory.inc.php’;

// create feed
$rss_feed = new RSSFactory(‘SEOEgghead.com New Products Feed’,

‘http://www.seoegghead.com/seo-with-php-updates.html’,
‘Exciting new products, updated daily’);

// add feed item
$rss_feed->addItem(‘New Link Juice with Orange Flavor!’,
‘http://seophp.example.com/Products/SEO-Toolbox-C6/Link-Juice-P31.html’,
‘The new Link Juice product of SEOEgghead.com can do wonders for your website!’);

// add feed item
$rss_feed->addItem(‘Enhance Your PHP Applications with AJAX!’,
‘http://seophp.example.com/Products/Friends-Shed-C2/AJAX-PHP-Book-P42.html’,
‘Check out this AJAX tutorial for PHP developers!’);

// display feed
echo $rss_feed->get();

?>

3. Load http://seophp.example.com/feed.php. A modern web browser will ask if you want
to subscribe to this feed, as shown in Figure 7-2.

156

Chapter 7: Web Feeds and Social Bookmarking

00929c07.qxd:00929c07 3/13/07 10:42 AM Page 156

4. Clicking the “Subscribe to this feed” link displays a dialog where you can choose subscription
options. In Internet Explorer 7 that dialog looks like Figure 7-3, but it will vary depending on
the application used.

5. After subscribing to the feed, you will have quick access to the latest entries through your
particular feed reader application.

Figure 7-2

Figure 7-3

You have just created the RSSFactory class, and then did a quick test by having an RSSFactory object
($rss_feed) generate a simple feed in RSS format.

157

Chapter 7: Web Feeds and Social Bookmarking

00929c07.qxd:00929c07 3/13/07 10:42 AM Page 157

Using this class is simple — you start by referencing the rss_factory.inc.php file (which contains the
class), and creating your $rss_feed object:

<?php

// load the URL factory library
require_once ‘include/rss_factory.inc.php’;

// create feed
$rss_feed = new RSSFactory(‘SEOEgghead.com New Products Feed’,

http://www.seoegghead.com/seo-with-php-updates.html’,
‘Exciting new products, updated daily’);

Your class is named RSSFactory, and the object you create is named $rss_feed. You create the
object using the new operator, and, as you can see, you provide parameters in parentheses after the
class name.

Class? Object? An OOP Primer
The term class comes from the lexicon of object-oriented programming (OOP). If you
do not know much about OOP, here is a very quick primer that will help you under-
stand the RSSFactory, as well as other examples in this book that use this language
feature.

As the name implies, OOP puts objects at the center of the programming model. The
object is the most important concept in the world of OOP — a self-contained entity that
has state and behavior, just like a real-world object.

A class acts as a blueprint for the object, and an object represents an instance of the
class defined by its state. You may have objects of class Car, for example, and create as
many Car objects as desired — named $myCar, $johnsCar, $davesCar, and so on.
But $davesCar may be stopped while John is busy outrunning a police officer on the
freeway at 100MPH.

So you get the idea; the class defines the functionality provided by the objects. All objects
of type Car will have the same basic capabilities — for example, the ability to accelerate
to a new speed. However, each individual Car object may register a different speed on
its speedometer at any particular time.

The object’s state is described by its variable fields, also called “properties.” Its func-
tionality is defined by its “methods.” These methods are functions inside a class, except
that they are called through (->) an object and reference the functions in the context of
the state provided by its properties.

In the particular example of the RSS Factory exercise, the class is named RSSFactory,
and the object you create is named $rss_feed. When you needed to call the addItem
method of the $rss_feed object, you typed $rss_feed->addItem to add an item to
the object. You did this twice to add two feed items. Finally, to output the feed you
called echo $rss_feed->get(), which displays the feed in accordance with the
items that you added to it.

158

Chapter 7: Web Feeds and Social Bookmarking

00929c07.qxd:00929c07 3/13/07 10:42 AM Page 158

These parameters you provide when creating an object are passed to the class constructor upon object
creation. The constructor is a special method inside the class that gets called automatically when the
object is created. You use it to set up some things based on the parameters. In this case, when creating
an RSSFactory object, you pass the feed title, link, and description. These are the attributes that are
associated with the overall feed itself, not its individual elements. The constructor definition looks like
this, in the RSSFactory class:

// the class constructor is executed when creating an instance of the class
function RSSFactory($title, $link, $description,

$language = ‘en-us’, $items = array())
{
// save feed data to local class members
$this->_title = $title;
$this->_link = $link;
$this->_description = $description;
$this->_language = $language;
$this->_items = $items;

}

So the constructor saves the parameter values to its properties, setting the object’s state. Note the usage of
$this, which means “the current class instance” when used inside a class. (If you create more objects of
type RSSFactory, the $this reference in each of those objects will be different.)

Back in feed.php, after the $rss_feed object is created, its addItem method is called twice to add two
feed items:

// create feed
$rss_feed = new RSSFactory(‘SEOEgghead.com New Products Feed’,

‘http://www.seoegghead.com/seo-with-php-updates.html’,
‘Exciting new products, updated daily’);

// add feed item
$rss_feed->addItem(‘New Link Juice with Orange Flavor!’,
‘http://localhost/seophp/Products/SEO-Toolbox-C6/Link-Juice-P31.html’,
‘The new Link Juice product of SEOEgghead.com can do wonders for your website!’);

// add feed item
$rss_feed->addItem(‘Enhance Your PHP Applications with AJAX!’,
‘http://seophp.example.com/Products/Friends-Shed-C2/AJAX-PHP-Book-P42.html’,
‘Check out this AJAX tutorial for PHP developers!’);

Finally, the get() method is called to echo the RSS feed structure. The output of this particular exercise
will be as follows:

<rss version=”2.0”>
<channel>
<title>SEOEgghead.com New Products Feed</title>
<link>http://www.seoegghead.com/new-products.html</link>
<description>Exciting new products, updated daily</description>
<item>
<title>New Exciting Product</title>

159

Chapter 7: Web Feeds and Social Bookmarking

00929c07.qxd:00929c07 3/13/07 10:42 AM Page 159

<link>
http://localhost/seophp/Products/SEO-Toolbox-C6/Link-Juice-P31.html

</link>
<description>
The new Link Juice product of SEOEgghead.com can do wonders for your

website!
</description>

</item>
<item>
<title>Learn PHP E-Commerce Programming with PostgreSQL</title>
<link>

http://localhost/seophp/Products/Friends-Shed-C2/PHP-E-Commerce-Book-P42.html
</link>
<description>
This book will teach you PHP E-Commerce programming step by step!

</description>
</item>

</channel>
</rss>

To promote your web feed, you should prominently feature it on your web site. In Chapter 16 you will
also see how to place “chicklets” on a WordPress blog to facilitate the addition of your web site to spe-
cific web application–based feed readers.

Syndicating RSS and Atom Feeds
As explained earlier, many differing format standards are used for web feeds. Luckily, as you saw, there
are many tools that help you keep track of your favorite feeds. These tools let you forget about the for-
mat wars entirely. However, when you need to programmatically read and parse external feeds for syn-
dication, things get complicated.

Thankfully, Skyzyx Technologies (http://www.skyzyx.com/) has developed a PHP library called
SimplePie (http://simplepie.org/) that abstracts the details from the programmer’s view and
provides a common API used for all feed types and versions. They say:

“SimplePie is a very fast and easy-to-use class, written in PHP, for reading RSS and Atom syndication
feeds. By keeping it simple, and focusing on what’s important, we’ve built a pretty sweet little API.
SimplePie’s focus has been two-fold: speed and ease of use, and has been very successful on both fronts.”

You can find installation instructions at http://simplepie.org/docs/installation/getting-
started/ and you can find a guide at http://simplepie.org/docs/installation/from-scratch/.

Here you use SimplePie in a quick exercise. You’ll build a page that uses SimplePie to read the feed
you’ve just created, and display it for your visitors.

160

Chapter 7: Web Feeds and Social Bookmarking

00929c07.qxd:00929c07 3/13/07 10:42 AM Page 160

Reading Feeds using SimplePie
1. To function properly, SimplePie needs a few libraries, as shown in Figure 7-4. If you’ve pre-

pared Apache and PHP as instructed in Chapter 1, you should have all the necessary libraries
installed and enabled, except cURL. To enable cURL, open the php.ini configuration file
(located by default in \xampp\apache\bin), uncomment the following line by removing
the leading semicolon, and then restart Apache:

extension=php_curl.dll

2. Download the SimplePie package from http://simplepie.org/downloads/.

3. Unzip the downloaded file, which should be called something like simplepie_ver.zip, some-
where on your disk. Then copy simplepie.inc, which is the PHP file you’re interested in, to
your seophp/include folder.

4. SimplePie is very developer friendly. Apart from the excellent documentation, SimplePie also
ships with a script that tests if your PHP installation supports SimplePie. If you are not sure if
your machine supports SimplePie, copy sp_compatiliby_test.php from the downloaded
package to your seophp folder. Then, loading sp_compatibility_test.php in your web
browser would provide a useful assessment — see Figure 7-4.

5. Create a folder named cache under your seophp folder. The seophp/cache folder will be used
by SimplePie for caching purposes.

Figure 7-4

161

Chapter 7: Web Feeds and Social Bookmarking

00929c07.qxd:00929c07 3/13/07 10:42 AM Page 161

6. Create a new file in your seophp folder, named read_feed.php, and type the following code:

<?php
// load the SimplePie library
require_once ‘include/simplepie.inc’;

// create and configure SimplePie object
$feed = new SimplePie();
$feed->feed_url(‘http://seophp.example.com/feed.php’);
$feed->cache_location(‘cache’);
$feed->init();
$feed->handle_content_type();
?>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html>
<head>
<title>Feed Reading Test</title>

</head>
<body>

<?php
if ($feed->data)
{
// display the title
echo ‘<h1>’ .

‘get_feed_link() . ‘“>’ .
$feed->get_feed_title() .

‘’ .
‘</h1>’;

// display a maximum of 5 feed items
$max = $feed->get_item_quantity(5);
for ($x=0; $x<$max; $x++)
{
$item = $feed->get_item($x);

// display feed link and title
echo ‘<h2>’ .

‘get_permalink() . ‘“>’ .
$item->get_title() .

‘’ .
‘</h2>’;

// display feed description
echo ‘<p>’ . $item->get_description() . ‘</p>’;

}
}
?>

</body>
</html>

162

Chapter 7: Web Feeds and Social Bookmarking

00929c07.qxd:00929c07 3/13/07 10:42 AM Page 162

7. Load http://seophp.example.com/read_feed.php, and you should get the results shown
in Figure 7-5.

Figure 7-5

So far, so good! Using SimplePie, it was almost too easy to read data from an external feed.

Again, you meet the advantages that OOP brings. The whole SimplePie library is based on a class
named SimplePie: all you have to do is to create an object of this class, and then start using the
appropriate methods:

<?php
// load the SimplePie library
require_once ‘include/simplepie.inc’;

// create and configure SimplePie object
$feed = new SimplePie();
$feed->feed_url(‘http://seophp.example.com/feed.php’);
$feed->cache_location(‘cache’);
$feed->init();
$feed->handle_content_type();
?>

For a detailed reference, please consult the SimplePie documentation at http://simplepie.org/
docs/installation/getting-started/.

163

Chapter 7: Web Feeds and Social Bookmarking

00929c07.qxd:00929c07 3/13/07 10:42 AM Page 163

Other Sources of Syndicated Content
Various other sources of syndicated content are available, usually in the form of web services. These are
outside the scope of this book; they are just mentioned for completeness.

Somewhat similar to RSS or Atom feeds in that they deliver data to external sources upon request,
web services provide more complex communication mechanisms. Communication between clients
and web services also occurs in XML-based formats; the most common protocols for web services
communication are SOAP and REST.

Many major web-based companies, such as Amazon, eBay, Yahoo!, Google, MSN, and Alexa offer access
to their vast amount of content through their web services. You can also provide your own web services to
the same end. Numerous books have been written to cover some of these services. For more information
on web services, consider Professional Web APIs with PHP: eBay, Google, Paypal, Amazon, FedEx plus Web
Feeds (Wiley Publishing, Inc., 2006).

Social Bookmarking
Social bookmarking web sites offer users convenient storage of their bookmarks remotely for access
from any location. Examples of these sites include del.icio.us, digg, Reddit, and so on. These sites usu-
ally allow these bookmarks to be private, but many choose to leave them public. And when a particu-
lar web page is publicly bookmarked by many users, that is a major positive contributing factor in the
ranking algorithm of the search function on a social bookmarking site. Ranking well in these searches
presents another great source of organic traffic. Furthermore, if a web page is bookmarked by a large
number of people, it may result in a front page placement on such a site. This usually results in a land-
slide of traffic.

Many blogs present links to streamline the process of bookmarking a page. As is typical with facilitating
any action desired from a web site user, this may increase the number of bookmarks achieved by a page
on your web site. Figure 7-6 shows an example of SEO Egghead with icons for bookmarking a page; high-
lighted (from left to right) are del.icio.us, digg, Furl, and Reddit.

These little icons make it easy for people browsing a web site to do some free marketing for you — in
case they like the content at that particular URL and want to bookmark it. To make adding these icons
easy, you create a class that will work for any web application. We referenced the icons and list of social
bookmarking sites from Sociable, a plugin for WordPress (it’s the same plugin used for that purpose
on the SEO Egghead blog) and it’s explored in Chapter 16; kudos to Peter Harkins for putting all those
icons together.

You create the social bookmarking library in the following exercise, where you’ll add those icons to
your catalog page, catalog.php. You created this script back in Chapter 3, but if you skipped that
chapter, feel free to use the code download for Chapter 7. The catalog page is accessible through
http://seophp.example.com/catalog.html.

Note that you wouldn’t normally add social bookmarking items on e-commerce catalog pages — except
perhaps if it’s a very new and exciting product. We’ve chosen this example to keep the implementation
simple for the purposes of the demonstration.

164

Chapter 7: Web Feeds and Social Bookmarking

00929c07.qxd:00929c07 3/13/07 10:42 AM Page 164

Figure 7-6

Adding Social Bookmarking Support
1. Create a folder named social_icons in your seophp folder.

2. Download the code archive of this book, and copy the social bookmarking images from the
archive to your social_icons folder. (The welcome.html document from the code download
contains details about the exact locations of the necessary files.)

3. Create a new file named social_bookmarking.inc.php in your seophp/include folder, and
type this code in:

<?php
// +---+
// | SocialBookmarking |
// | Displays links for various social bookmarking services |
// +---+
// | Copyright (c) 2005 Jaimie Sirovich |
// +---+
// | Author: Jaimie Sirovich <jsirovic@gmail.com> |
// | Icons taken from WordPress Plugin Sociable by Peter Harkins |
// | (http://push.cx) |
// +---+

class SocialBookmarking
{
var $_link;
var $_title;
var $_site_name;

var $_templates = array(
‘blinkbits’ => array(
‘icon’ => ‘blinkbits.tif’,

165

Chapter 7: Web Feeds and Social Bookmarking

00929c07.qxd:00929c07 3/13/07 10:42 AM Page 165

‘url’ => ‘http://www.blinkbits.com/bookmarklets/save.php?v=1&source_url=i
{LINK}&title={TITLE}&body={TITLE}‘),

‘BlinkList’ => array(
‘icon’ => ‘blinklist.tif’,
‘url’ => ‘http://www.blinklist.com/index.php?Action=Blink/addblink.php&i

Description=&Url={LINK}&Title={TITLE}‘),

‘blogmarks’ => array(
‘icon’ => ‘blogmarks.tif’,
‘url’ => ‘http://blogmarks.net/my/new.php?mini=1&simple=1&url={LINK}&i

title={TITLE}‘),

‘co.mments’ => array(
‘icon’ => ‘co.mments.gif’,
‘url’ => ‘http://co.mments.com/track?url={LINK}&title={TITLE}‘),

‘connotea’ => array(
‘icon’ => ‘connotea.tif’,
‘url’ => ‘http://www.connotea.org/addpopup?continue=confirm&uri={LINK}&i

title={TITLE}‘),

‘del.icio.us’ => array(
‘icon’ => ‘delicious.tif’,
‘url’ => ‘http://del.icio.us/post?url={LINK}&title={TITLE}‘),

‘De.lirio.us’ => array(
‘icon’ => ‘delirious.tif’,
‘url’ => ‘http://de.lirio.us/rubric/post?uri={LINK}&title={TITLE};i

when_done=go_back’),

‘digg’ => array(
‘icon’ => ‘digg.tif’,
‘url’ => ‘http://digg.com/submit?phase=2&url={LINK}&title={TITLE}‘),

‘Fark’ => array(
‘icon’ => ‘fark.tif’,
‘url’ =>

‘http://cgi.fark.com/cgi/fark/edit.pl?new_url={LINK}&new_comment={TITLE}&new_comment
={SITENAME}&linktype=Misc’),

‘feedmelinks’ => array(
‘icon’ => ‘feedmelinks.tif’,
‘url’ => ‘http://feedmelinks.com/categorize?from=toolbar&op=submit&i

url={LINK}&name={TITLE}‘),

‘Furl’ => array(
‘icon’ => ‘furl.tif’,
‘url’ => ‘http://www.furl.net/storeIt.jsp?u={LINK}&t={TITLE}‘),

‘LinkaGoGo’ => array(

166

Chapter 7: Web Feeds and Social Bookmarking

00929c07.qxd:00929c07 3/13/07 10:42 AM Page 166

‘icon’ => ‘linkagogo.tif’,
‘url’ => ‘http://www.linkagogo.com/go/AddNoPopup?url={LINK}&title={TITLE}‘),

‘Ma.gnolia’ => array(
‘icon’ => ‘magnolia.tif’,
‘url’ => ‘http://ma.gnolia.com/beta/bookmarklet/add?url={LINK}&i

title={TITLE}&description={TITLE}‘),

‘NewsVine’ => array(
‘icon’ => ‘newsvine.tif’,
‘url’ => ‘http://www.newsvine.com/_tools/seed&save?u={LINK}&h={TITLE}‘),

‘Netvouz’ => array(
‘icon’ => ‘netvouz.tif’,
‘url’ => ‘http://www.netvouz.com/action/submitBookmark?url={LINK}&i

title={TITLE}&description={TITLE}‘),

‘Reddit’ => array(
‘icon’ => ‘reddit.tif’,
‘url’ => ‘http://reddit.com/submit?url={LINK}&title={TITLE}‘),

‘scuttle’ => array(
‘icon’ => ‘scuttle.tif’,
‘url’ => ‘http://www.scuttle.org/bookmarks.php/maxpower?action=add&i

address={LINK}&title={TITLE}&description={TITLE}‘),

‘Shadows’ => array(
‘icon’ => ‘shadows.tif’,
‘url’ => ‘http://www.shadows.com/features/tcr.htm?url={LINK}&title={TITLE}‘),

‘Simpy’ => array(
‘icon’ => ‘simpy.tif’,
‘url’ => ‘http://www.simpy.com/simpy/LinkAdd.do?href={LINK}&title={TITLE}‘),

‘Smarking’ => array(
‘icon’ => ‘smarking.tif’,
‘url’ => ‘http://smarking.com/editbookmark/?url={LINK}&description={TITLE}‘),

‘Spurl’ => array(
‘icon’ => ‘spurl.tif’,
‘url’ => ‘http://www.spurl.net/spurl.php?url={LINK}&title={TITLE}‘),

‘TailRank’ => array(
‘icon’ => ‘tailrank.tif’,
‘url’ => ‘http://tailrank.com/share/?text=&link_href={LINK}&title={TITLE}‘),

‘Wists’ => array(
‘icon’ => ‘wists.tif’,
‘url’ => ‘http://wists.com/r.php?c=&r={LINK}&title={TITLE}‘),

‘YahooMyWeb’ => array(

167

Chapter 7: Web Feeds and Social Bookmarking

00929c07.qxd:00929c07 3/13/07 10:42 AM Page 167

‘icon’ => ‘yahoomyweb.tif’,
‘url’ => ‘http://myweb2.search.yahoo.com/myresults/bookmarklet?u={LINK}i

&t={TITLE}‘)
);

// the constructor
function SocialBookmarking($link, $title, $site_name)
{
$this->_link = $link;
$this->_title = $title;
$this->_site_name = $site_name;

}

// returns the HTML with social bookmarking symbols
function getHTML($sites =

array(‘del.icio.us’, ‘digg’, ‘Furl’, ‘Reddit’, ‘YahooMyWeb’))
{
// build the output
$html_feed = ‘<ul class=”social_bookmarking”>’;
// create HTML for each of the sites received as parameter
foreach($sites as $s)
{
if ($_site_info = $this->_templates[$s])
{
$html_feed .= ‘<li class=”social_bookmarking”>’;
$url = str_replace(array(‘{LINK}‘, ‘{TITLE}‘, ‘{SITENAME}‘),

array(urlencode($this->_link),
urlencode($this->_title),
urlencode($this->_site_name)),
$_site_info[‘url’]);

$html_feed .= ‘’;
$html_feed .= ‘<img src=”‘ . SITE_DOMAIN .

‘/social_icons/‘ . $_site_info[‘icon’] . ‘“ alt=”‘ . $s .
‘“ class=”social_bookmarking” />’;

$html_feed .= ‘’;
}

}
$html_feed .= ‘’;
return $html_feed;

}

// returns HTML with social bookmarking links for inclusion in feeds
function getFeedHTML($sites =

array(‘del.icio.us’, ‘digg’, ‘Furl’, ‘Reddit’, ‘YahooMyWeb’))
{
// initialize $html_feed
$html_feed = ‘’;

// build the HTML feed
foreach($sites as $s)
{
if ($_site_info = $this->_templates[$s])
{
$url = str_replace(array(‘{LINK}‘, ‘{TITLE}‘, ‘{SITENAME}‘),

array(urlencode($this->_link),

168

Chapter 7: Web Feeds and Social Bookmarking

00929c07.qxd:00929c07 3/13/07 10:42 AM Page 168

urlencode($this->_title),
urlencode($this->_site_name)),

$_site_info[‘url’]);
$html_feed .= ‘<a rel=”nofollow” href=”‘ . $url .

‘“ title=”‘ . $s . ‘“>’;
$html_feed .= ‘<img src=”/social_icons/‘ . $_site_info[‘icon’] .

‘“ alt=”‘ . $s . ‘“ class=”social_bookmarking” />’;
$html_feed .= ‘ ‘;

}
}

// return the HTML feed
return ‘<p>’ . $html_feed . ‘</p>’;

}
}
?>

4. Modify seophp/catalog.php like this:

<?php
// load the URL factory library
require_once ‘include/url_factory.inc.php’;
// load social bookmarking helper class
require_once ‘include/social_bookmarking.inc.php’;
?>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html>
...
...
...

<center>
<?php
// instantiate class by providing link, title, and site name
$social = new SocialBookmarking(‘http://seophp.example.com/catalog.html’,

‘Exciting SEOEgghead Products!’,
‘SEOEgghead’);

// display social bookmarking links
echo $social->getHTML();

?>
</center>
<center>
Find more about Professional Search

Engine Optimization with PHP!
</center>

...

...

...
</html>

5. Load http://seophp.example.com/catalog.html, and you should get the result you see in
Figure 7-7.

169

Chapter 7: Web Feeds and Social Bookmarking

00929c07.qxd:00929c07 3/13/07 10:42 AM Page 169

6. Now take a look at how to add the same functionality to feeds. The SocialBookmarking class
has a method named getFeedHTML(), which can be used for that purpose. Essentially, getHTML
and getFeedHTML are very similar, but your output will be a bit different for feeds. In this case,
getHTML() uses an unordered list to display the links, whereas getFeedHTML() simply sepa-
rates the links using spaces. Modify the code in rss_factory.inc.php to add social book-
marking links at the end of each feed, like this:

<?php

// load social bookmarking helper class
require_once ‘social_bookmarking.inc.php’;

class RSSFactory
{
...
...
...
// generates feed
function get()
{

...

...

...
// add feed items
foreach ($this->_items as $feed_item)
{
// add a feed item and its contents
echo ‘<item>’;
foreach ($feed_item as $item_name => $item_value)
{
// add social bookmarking icons to feed description
if ($item_name == ‘description’)
{
// instantiate class by providing link, title, and site name
$social = new SocialBookmarking($feed_item[‘link’],

$feed_item[‘title’],
$this->_title);

// add social bookmarking icons to the feed
$item_value = $item_value . $social->getFeedHTML();

}

// output feed item
echo “<$item_name>” .

RSSFactory::_escapeXML($item_value) .
“</$item_name>”;

}
...
...
...
}

}

?>

170

Chapter 7: Web Feeds and Social Bookmarking

00929c07.qxd:00929c07 3/13/07 10:42 AM Page 170

7. Load the feed at http://seophp.example.com/feed.php again in your browser, and notice
the new social bookmarking links, as shown in Figure 7-8.

Figure 7-7

Figure 7-8

The newly created library knows how to generate links for many social networking web sites: blinkbits,
blinklist, blogmarks, co.mments, connotea, del.icio.us, de.lirio.us, digg, Fark, feedmelinks, Furl, LinkaGoGo,
Ma.gnolia, NewsVine, NetVouz, Reddit, scuttle, Shadows, Simply, Smarking, Spurl, TailRank, Wists, and
YahooMyWeb. Wow, this is quite an impressive list, isn’t it?

171

Chapter 7: Web Feeds and Social Bookmarking

00929c07.qxd:00929c07 3/13/07 10:42 AM Page 171

Whenever you add something interesting that other people may want to talk about, you want to facili-
tate them in doing so. After creating the SocialBookmarking class and referencing it from the page
where your content is located, you simply need to use it like you did in catalog.php:

<center>
<?php
// instantiate class by providing link, title, and site name
$social = new SocialBookmarking(‘http://seophp.example.com/catalog.html’,

‘Exciting SEOEgghead Products!’,
‘SEOEgghead’);

// display social bookmarking links
echo $social->getHTML();

?>
</center>

The HTML output, of course, can be customized. We won’t insist on such customization here though.

Also, note the getHTML() method has an optional array parameter that contains the services for
which to create links. The default value is array(‘del.icio.us’, ‘digg’, ‘Furl’, ‘Reddit’,
‘YahooMyWeb’), but you can specify any of the known services if you don’t like the default list.

Summary
Feeds provide a streamlined method for users to access content, as well as allow other sites to syndicate
content. Links that are embedded in the feeds will both provide traffic directly as well as indirectly over
time. Users will click the embedded links in the syndicated content. And search engines will see a grad-
ually increasing number of links. This chapter demonstrated a class to easily create an RSS 2.0 feed, as
well as a third-party class to read all of the various formats employed today.

Social bookmarking services offer another sort of organic traffic that should also not be ignored. Stream -
lining the process of bookmarking on your web site will likely increase the number of bookmarks your
site receives, and hence its ranking in the social bookmarking site search function — and perhaps even
earn a place on its home page.

172

Chapter 7: Web Feeds and Social Bookmarking

00929c07.qxd:00929c07 3/13/07 10:42 AM Page 172

Black Hat SEO

It may sound quite obvious, but system administrators — those who manage the computers that
host your web site, for example, must be acutely aware of computer security concerns. When a
particular piece of software is indicated to be vulnerable to hackers, they should find out quickly
because it is their priority to do so. Then they should patch or mitigate the security risk on the
servers for which they are responsible as soon as possible. Consequently, it may also not surprise
you that some of the best system administrators used to be hackers, or are at least very aware of
what hacking entails.

Why is this relevant? Although it is totally unfair to compare “black hat” search engine marketers
to hackers on an ethical plane, the analogy is useful. The “white hat” search engine marketer — that
is, a search engine marketer who follows all the rules, must be aware of how a “black hat” operates.

Understanding black hat techniques can help a webmaster protect his or her web sites. Nobody,
after all, wants to be caught with his pants down advertising “cheap Viagra.” In this chapter you
learn how to avoid such problems. In this chapter you will:

❑ Learn about black hat SEO.

❑ Learn about the importance of properly escaping input data.

❑ Learn how to automatically add the nofollow attribute to comment links.

❑ Sanitize input data by removing unwanted tags and attributes.

❑ Request human input to protect against scripts adding comments automatically.

❑ Protect against redirect attacks.

There is quite a bit to go through, so we’d better get started!

00929c08.qxd:00929c08 3/13/07 10:59 AM Page 173

What’s with All the Hats?
The “hat” terminology, as just alluded to, has been borrowed from the lexicon of hackers. “White hat”
search engine marketers play by the rules, following every rule in a search engine’s terms of service to
the letter. They will never exploit the work of others. “Black hats,” on the other hand, to varying degrees,
do not follow the rules of a search engine, and may also exploit the work or property of others. In prac-
tice, few search engine marketers fit exactly in either “hat” classification. Rather, it is a spectrum, giving
rise to a further confusing “gray hat” classification for people on neither side of the fence exclusively.

The black hat versus white hat hacker terminology derives, in turn, from the practice in early Western
movies of dressing the bad cowboys in black hats, and the good cowboys in white hats. Hollywood has
since matured and no longer uses such simplistic symbolism, but its embarrassing memory lives on in
the search engine marketing community.

Dan Thies sums it up well in The Search Engine Marketing Kit. He states that it “… boils down to whether
you, as an SEO consultant, see yourself as a lawyer or an accountant.”

A lawyer, according to Mr. Thies, must put a client’s interests first. Lawyers do the best they can for a
client, and view the search engine as an adversary. A “black hat” search engine marketer is a lawyer. He
or she will do anything within reason to conquer the adversary — the search engines. The definition of
“within reason” varies by the individual’s ethical compass. Some of the various methods employed by
the “black hat” are discussed in this chapter.

An accountant, on the other hand, has a strict set of rules that are followed by rote. His rules are some-
what arbitrarily defined by a governmental agency. A search engine typically also publishes such rules.
And a “white hat” search engine marketer follows them just as an accountant does. He or she is dog-
matic about it. A site that does not rank well is assumed to be inadequate. And to fix it, only solutions
recommended by a search engine’s terms of service are employed.

The distinctions aren’t as black and white as the terminology seems to indicate. However, at least being
aware of “black hat” agenda and techniques is helpful to any search engine marketer, regardless of “hat
color” for many reasons. Despite the fact that this book primarily addresses the “accountants,” there may
be times when bending the rules is necessary due to technical or time constraints (though it usually entails
risk). At the same time, it is wise to know and understand your opponents’ search marketing strategies so
they can be analyzed.

Please be aware that this chapter is by no means a comprehensive manual on “black hat” techniques.
We have taken the approach of highlighting those areas that contain pertinent information for a web
developer. A printed reference on the topic would become stale rather quickly anyway because the meth-
ods change rapidly as the search engines and the cowboys in black hats duke it out on a perpetual basis.
And though it is possible to read this chapter cynically, it aims mostly to educate the web developer
with what he needs to do to beat the black hat cowboy in a duel. Some resources on “black hat” SEO
are SEO Black Hat (http://www.seoblackhat.com), and David Naylor’s blog (http://
www.davidnaylor.co.uk/).

Lastly, because many black hat practices exploit other sites’ security vulnerabilities, it is useful to know
some common vectors, because they typically improve the rankings of another (spam) web site at the
potential expense of your web site’s rankings. For that reason alone, a basic understanding of black hat
techniques is important to any search engine marketer.

174

Chapter 8: Black Hat SEO

00929c08.qxd:00929c08 3/13/07 10:59 AM Page 174

Bending the Rules
A typical situation when “bending the rules” may be useful is when a site already exists and presents a
flaw that cannot be overcome without a complete redesign. Usually a complete redesign, in the context
of a functioning web site, is a complex and arduous undertaking. At best, it cannot be done within the
time limits prescribed. At worst, it is completely impossible either due to budget or internal politics.

Perhaps the site is designed entirely in Flash (see Chapter 6), or it employs a URL-based session-handler
that could throw a spider into a spider-trap of circular, or infinite references. If a total application rewrite
is not an option — as is usually the case — cloaking may be employed. Cloaking implies delivering different
content depending on whether the user agent is a human or a search engine spider. In the former case, an
HTML-based version of the site could be presented to the search engine spiders instead of the Flash ver-
sion. In the latter case, when the user agent is a spider, the site could use cloaking to remove the session
ID and other potentially confusing parameters from the URL, hence removing the spider-trap.

A well-known example of cloaking is that employed by the New York Times. Essentially, the New York
Times web site requests users to create (and pay for) an account with them for certain premium content —
as shown in Figure 8-1.

However, this restriction isn’t imposed on search engines. Indeed, the New York Times allows search
engines to browse and index its content without an account, which most probably gets http://
www.nytimes.com/ a lot of incoming traffic from search engines. A full write-up is available at
http://searchenginewatch.com/showPage.html?page=3613561.

Figure 8-1

175

Chapter 8: Black Hat SEO

00929c08.qxd:00929c08 3/13/07 10:59 AM Page 175

A simple Google site: query shows that Google has indexed five million pages from nytimes.com —
see Figure 8-2. In this SERP, it’s interesting to note that the results don’t have the “view cache” link. This
is because nytimes.com is using a meta noarchive tag that prevents search engines from caching the
content (and clever users from circumventing the need for subscriptions). Upon close inspection, one
discovers that the search engines are indexing the content of many pages from nytimes.com to present
relevant results in the SERPs, but the content is not actually available to you.

This example does highlight quite well the concept that employing techniques that a search engine
considers “black hat” can be used for normatively acceptable purposes. It also highlights that Google
is willing to bend its rules for certain high-profile web sites.

Google’s stated policies are not ambiguous on the cloaking front — cloaking is considered “black hat”
and subject to site penalization. Examples like this one cloud the issue, however. Yahoo! and MSN are
less strict and allow cloaking so long as it is not misleading for the user. Cloaking, and the technical
and ethical issues it entails, is further explained in Chapter 11.

Figure 8-2

Technical Analysis of
Black-Hat Techniques

When you view the SERPs for keywords that you would like to acquire, it is often useful to compare your
site to the competitions’. If one of your competitors employs a black hat technique, the technique is worth-
while to understand just for that reason alone. Perhaps your competitor has several thousand spam sites
pointing at his site, or perhaps his web site is sending optimized content to the search engines via cloak-
ing methods. Some search engine marketers believe in reporting such sites to search engines, whereas
some would just like to be aware. That decision is yours.

This chapter details several black hat techniques that are pertinent to every site developer.

176

Chapter 8: Black Hat SEO

00929c08.qxd:00929c08 3/13/07 10:59 AM Page 176

Attack Avoidance
Search engine marketers must be aware of several things in black hat SEO from a security perspective.
Some black hat search engine marketers exploit faulty or lax software to place links from your site to
theirs in order to increase their rankings. This can be either through a bulletin board post, a blog com-
ment, or a generally faulty script. Frequently, black hat techniques employ automated software to seek
and exploit such weaknesses.

A black hat marketer may also use some sort of signature in a web application to find many sites using
a search engine, such as a version number or tagline. Therefore, it is imperative that any web developer
understands this, because being exploited may be to your detriment in rankings, not to mention corpo-
rate image. It’s clear that nobody wants hundreds of links to spam sites on their forums or comments.

Security notwithstanding, the first step to protect your web site is to keep software that is not under
your auspices, that is, third-party software, up-to-date. For example, not too long ago, many blogging
applications did not apply the rel=”nofollow” attribute to links in comments — because it had not
been adopted yet! This weakness had been exploited extensively in the past by black hat SEOs.

One more recent exploit was the HTML insertion flaw in Movable Type, a very popular blogging appli-
cation, and the problem has been documented at http://seoblackhat.com/2006/06/10/moveable-
type-backlink-exploit/.

Such problems can be avoided by manually patching the software for vulnerabilities, but updating your
software frequently would certainly help, because they are usually corrected on your behalf eventually
anyway.

HTML Insertion Attacks
A programmer must escape all data processed by your web application’s code. Escaping means altering
the text and other data received from a non-trusted source, such as a comment added by a visitor on your
web site, so that it doesn’t cause any unwanted side effects when that data is further processed by your
application.

Input data validation and escaping is a common security issue, but most web developers are only accus-
tomed to it, these days, in the context of SQL. Most experienced web developers know that they must
escape or sanitize data sent to a SQL database. Otherwise, carefully constructed input can form a mali-
cious query that exposes and/or vandalizes data. Despite this, many programmers forget to escape SQL
input; and even more of them forget to do the same for HTML input.

Even the terminology reflects the apathy. You “escape” SQL with the mysql_real_escape_string() PHP
function, but you “convert special characters” using the htmlspecialchars() or htmlentities() PHP
functions. In addition, there are huge glaring comments about why you should escape SQL.

The mysql_real_escape_string() documentation says that “This function must always (with few excep-
tions) be used to make data safe before sending a query to MySQL.”

But none of the documentation pages for the HTML escaping functions say anything along the lines of
“You must escape your user-generated HTML, otherwise people can use carefully crafted parameters
to tell the world you advocate and link to something terribly unethical.” Obviously, your site could also

177

Chapter 8: Black Hat SEO

00929c08.qxd:00929c08 3/13/07 10:59 AM Page 177

show support for other sites engaging questionable but otherwise mundane destinations; but either way,
you probably want to make sure you don’t advocate any of the above without actually knowing it.

Here is an example of code before and after the proper escaping practice. First, here’s the version that
doesn’t use a proper escaping technique:

<?php
// don’t try this at home
echo ‘Your query for ‘ .

$_GET[‘parameter’] .
‘ has no results.’;

?>

And here’s the version that correctly escapes the input data:

<?php
// proper escaping technique
echo ‘Your query for ‘ .

htmlspecialchars($_GET[‘parameter’]) .
‘ has no results.”;

?>

The following short exercise illustrates the difference.

Escaping Input Data
1. In your seophp folder, create a script named param_no_escape.php and type this code:

<?php
// don’t try this at home
echo ‘Your query for ‘ .

$_GET[‘parameter’] .
‘ has no results.’;

?>

2. Create a new script named param_escape.php with this code:

<?php
// proper escaping technique
echo ‘Your query for ‘ .

All the exercises assume that you have configured your machine as described in
Chapter 1. Visit http://www.seoegghead.com/seo-with-php-updates.html for
updates related to this code.

We cannot stress enough that this is a major problem that is largely ignored. You
must fix your vulnerable sites, or someone else will eventually make you fix it.

178

Chapter 8: Black Hat SEO

00929c08.qxd:00929c08 3/13/07 10:59 AM Page 178

htmlspecialchars($_GET[‘parameter’]) .
‘ has no results.’;

?>

3. Load http://seophp.example.com/param_no_escape.php?parameter=<a href=http://
too.much.spam>spam spam spam. Your innocent, but vulnerable script, nicely takes the
parameter and transforms it into an HTML link. You end up linking to http://too.much.spam,
as shown in Figure 8-3.

4. Now provide the same parameter to your other script, param_escape.php. The link would
be http://seophp.example.com/param_escape.php?parameter=<a href= http://
too.much.spam>spam spam spam, and the result is shown in Figure 8-4.

Figure 8-3

Figure 8-4

The escaping makes a difference, doesn’t it! Of course, you don’t want anyone to post anything like that
on your web site regardless of whether you escape your input data. However, you’re much better off
when escaping your data for three main reasons:

❑ Carefully escaped data is much less likely to cause damage when further processed by your scripts
in general. Doing so has security implications as well — preventing cross-site scripting attacks.

179

Chapter 8: Black Hat SEO

00929c08.qxd:00929c08 3/13/07 10:59 AM Page 179

❑ You aren’t providing free links to spammers.

❑ Spammers are less motivated to spend time on your site.

Avoiding Comment Attacks Using Nofollow
Many black hat spammers will use the comment section of a blog or guestbook, or forums, to post spam
messages and links that promote their web sites.

Adding the rel=”nofollow” attribute to a link will inform the search engine that that particular link is
not audited by your site, and should therefore not count as a trusted vote for the popularity of the linked
site. And though this strictly doesn’t prevent spam, it does remove a lot of the motivation that results in
a spammer targeting your site. The link will still work, but it will no longer be as desirable to a spammer
because it offers a diminished link equity value.

In reality, nofollow has far from eliminated comment and guestbook spamming. Unfortunately, it
does not eliminate the need for manual auditing and spam filtering. It is just a deterrent.

You can use the same technique when including links to sites that you don’t want to “vote.” Here’s an
example:

Bad site!

It is also important to realize that too many links without rel=”nofollow” may hurt your rankings if
they are linking to “bad neighborhoods” as well as damage your reputation and credibility. All major
search engines currently support this the nofollow feature.

Automated scripts may still target your site, only because, frequently, the spamming is done in bulk,
and the spammer has not investigated your site specifically. In practice, however, using nofollow is
likely to cut down on spam. Either way, if nofollow is employed, the damage is mitigated as it can
only damage visitor perception, not search engine rankings, because the links will not be seen as votes
to a bad neighborhood by a search engine. Collectively, because most web sites will begin using this
feature, it will yield inferior results, and spammers will use such techniques less frequently.

In the exercise that follows you create a little PHP “nofollow library,” which employs a regular expres-
sion that alters all links in a text buffer by adding the rel=”nofollow” attribute, but only to links that
are not in a predefined “white list.”

Creating and Using a Nofollow Library
1. If you haven’t already done so by following the previous chapters, create a folder named

include in your seophp folder. Then create a file named nofollow.inc.php in your
seophp/include folder, and add this code to it:

<?php

// include config file
require_once ‘config.inc.php’;

// finds all the links in $str and processes them using fixLink()
function noFollowLinks($str)

180

Chapter 8: Black Hat SEO

00929c08.qxd:00929c08 3/13/07 10:59 AM Page 180

{
// replaces every link with the version provided by fixLink()
return preg_replace_callback(
“#(<a.*?>)#i”,
create_function(‘$matches’, ‘return fixLink($matches[1]);’),
$str);

}

// receives a string that contains a link such as
// and adds the ref=”nofollow” attribute if the domain isn’t in the white list
function fixLink($input)
{
// retrieve the whitelist from the config file
$whitelist = $GLOBALS[‘whitelist’];

// if the link in $input already contains ref=”nofollow”, return it as it is
if (preg_match(‘#rel\s*?=\s*?[\‘“]?.*?nofollow.*?[\‘“]?#i’, $input))
{
return $input;

}

// extract the URL from $input
preg_match(‘#href\s*?=\s*?[\‘“]?([^\‘“]*)[\‘“]?#i’, $input, $captures);

// $href will contain the extracted URL, such as http://seophp.example.com
$href = $captures[1];

// if URL doesn’t contain http://, assume it’s a local link
if (!preg_match(‘#^\s*http://#‘, $href))
{
return $input;

}

// extract the host name of the URL, such as seophp.example.com
$parsed = parse_url($href);
$host = $parsed[‘host’];

// if the URL is in the whitelist, send $input back as it is
if (in_array($host, $whitelist))
{
return $input;

}

// assuming the URL already has a rel attribute, change its value to nofollow
$x = preg_replace(‘#(rel\s*=\s*([\‘“]?))((?(3)[^\‘“]*|[^\‘“]*))([\‘“]?)#i’,

‘\\1\\3,nofollow\\4’, $input);

// if the string has been modified, it means it already had a rel attribute,
// whose value has been changed to nofollow, so we return the new version
if ($x != $input)
{
return $x;

}
// if the link in the input string doesn’t have ref attribute, we add it

181

Chapter 8: Black Hat SEO

00929c08.qxd:00929c08 3/13/07 10:59 AM Page 181

else
{
return preg_replace(‘#<a#i’, ‘<a rel=”nofollow”‘, $input);

}
}

?>

2. Edit your existing include/config.inc.php file by adding the whitelist definition, as high-
lighted in the following code snippet. If you don’t have this file from previous exercises, create
it and write the necessary code. (Only the definition for $GLOBALS[‘whitelist’] is required
for this exercise.)

<?php

// site domain; no trailing ‘/‘ !
define(‘SITE_DOMAIN’, ‘http://seophp.example.com’);

// create a fictional database with products and categories
$GLOBALS[‘products’] = array

(“45” => “Belt Sander”,
“31” => “Link Juice”,
“42” => “AJAX PHP Book”);

$GLOBALS[‘categories’] = array
(“12” => “Carpenter’s Tools”,
“6” => “SEO Toolbox”,
“2” => “Friend’s Shed”);

// define array of accepted links
$GLOBALS[‘whitelist’] = array(‘seophp.example.com’, ‘www.seoegghead.com’);

?>

3. Create a file named comments.php in the seophp folder, with this code:

<?php
// load the nofollow library
require_once ‘include/nofollow.inc.php’;
?>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html>
<head>
<title>Professional Search Engine Optimization with PHP: Comments</title>

</head>
<body>
<h1>Old comments:</h1>

<?php

// display first comment
echo noFollowLinks(‘<p>Hello! Take a look at cool@@ta

182

Chapter 8: Black Hat SEO

00929c08.qxd:00929c08 3/13/07 10:59 AM Page 182

link!</p>’);

// display second comment
echo noFollowLinks(‘<p>We\‘ve just released our new product, <a href=”http://@@ta
seophp.example.com/Products/SEO-Toolbox-C6/Link-Juice-P31.html”>Link Juice@@ta
.</p>’);

?>

</body>
</html>

4. Load http://seophp.example.com/comments.php, and expect to get the result shown in
Figure 8-5.

5. Excellent, the links show up correctly on the web page. To verify this worked as expected,
view the HTML source. If you’re using Internet Explorer, right-click the page and choose View
Source. The HTML source should reveal you have generated nofollow just for the first link —
see Figure 8-6.

Figure 8-5

Figure 8-6

183

Chapter 8: Black Hat SEO

00929c08.qxd:00929c08 3/13/07 10:59 AM Page 183

Note that we’ve formatted the HTML code in Figure 8-6 manually in the file for better clarity. Web
browsers read the HTML code in the same way regardless of how it’s formatted.

The script gracefully handles modifying the rel attribute if it already exists. Your $whitelist should
include the host of the current site, or other sites that you you’re happy to link to. This allows fully quali-
fied internal links to work as they should. It also does not touch any link that does not start with http://
because those links, by definition, are from the current site.

Using the “nofollow library” is very simple. Instead of displaying content that may contain a link as-is,
you should filter it through the noFollowLinks function, as you did in comments.php:

<?php

// display first comment
echo noFollowLinks(‘<p>Hello! Take a look at cool@@ta
link!</p>’);

// display second comment
echo noFollowLinks(‘<p>We\‘ve just released our new product, <a href=”http://@@ta
seophp.example.com/Products/SEO-Toolbox-C6/Link-Juice-P31.html”>Link Juice@@ta
.</p>’);

?>

For this to work properly, you need to define the “white list,” which is the list of allowed hosts, in
config.inc.php. The exercise only defined seophp.example.com and www.seoegghead.com:

// define array of accepted links
$GLOBALS[‘whitelist’] = array(‘seophp.example.com’, ‘www.seoegghead.com’);

The logic of the code in the function is pretty clear, until you get into the details of the regular expres-
sions involved, which are more complex than those from the previous chapters. We leave understanding
the code to you as an exercise. If you haven’t already, you should read Chapter 3 for a practical introduc-
tion to regular expressions. Appendix A is an even more friendly and thorough introduction to regular
expressions.

Sanitizing User Input
A similar problem exists with regard to any user-provided content, such as blog comments, guest books,
and forum posts. In that case as well, you must take care to remove any potentially malicious content.
There are two approaches to achieving this.

You can entirely disable HTML by escaping it as you did in the exercise with htmlspecialchars().
Here’s an example:

echo htmlspecialchars($guest_book_post_content)

instead of

echo($guest_book_post_content);

184

Chapter 8: Black Hat SEO

00929c08.qxd:00929c08 3/13/07 10:59 AM Page 184

Sometimes, however, it is desirable to permit a limited dialect of HTML tags. To that end it is necessary
to sanitize the input by removing only potentially malicious tags and attributes (or, because achieving
security is easier as such — allow only tags and attributes that cannot be used maliciously).

Some applications take the approach of using a proprietary markup language instead of HTML. A simi-
lar topic was discussed in Chapter 6 in the section “Using a Custom Markup Language to Generate
SE-Friendly HTML,” but to a different end — enhancing on-page HTML optimization. It can also
be used to ensure that content is sanitized. In this case, you would execute htmlspecialchars()
over or strip the HTML, then also use a translation function and a limited set of proprietary tags such
as {link} and {/link}, {image} and {/image}, to permit only certain functionality. This is
the approach of many forum web applications such as vBulletin and phpBB. And indeed for specific
applications where users are constantly engaged in dialog and willing to learn the proprietary markup
language, this makes sense. However, for such things as a comment or guest book, HTML provides
a common denominator that most users know, and allowing a restrictive dialect is probably more
prudent with regard to usability. That is the solution discussed here.

As usual, in order to keep your code tidy, group the HTML sanitizing functionality into a separate file.
Go through the following quick exercise, where you create and use this new little library. The code is
discussed afterwards.

Sanitizing User Input
1. Create a new file named sanitize.inc.php in your seophp/include folder, and write

this code:

<?php

// sanitizes the HTML code in $inputHTML
function sanitizeHTML(

$inputHTML,
$allowed_tags = array(‘<h1>’, ‘’, ‘<i>’, ‘<a>’,

‘’, ‘’, ‘<pre>’, ‘<hr>’,
‘<blockquote>’, ‘’))

{
$_allowed_tags = implode(‘’, $allowed_tags);
$inputHTML = strip_tags($inputHTML, $_allowed_tags);
return preg_replace(‘#<(.*?)>#ise’, “‘<’ . removeBadAttributes(‘\\1’) . ‘>’“ ,

$inputHTML);
}

// removes the unallowed attributes from $inputHTML
function removeBadAttributes($inputHTML)
{
// define the list of unallowed attributes
$bad_attributes = ‘onerror|onmousemove|onmouseout|onmouseover|’ .

‘onkeypress|onkeydown|onkeyup|javascript:’;

// remove the bad attributes and return the result
return stripslashes(preg_replace(“#($bad_attributes)(\s*)(?==)#is” ,

‘SANITIZED’, $inputHTML));
}

?>

185

Chapter 8: Black Hat SEO

00929c08.qxd:00929c08 3/13/07 10:59 AM Page 185

2. Modify comments.php by adding a third comment that contains an unaccepted onerror
attribute. You’re also including a reference to sanitize.inc.php:

<?php
// load the nofollow library
require_once ‘include/nofollow.inc.php’;
// load the sanitize library
require_once ‘include/sanitize.inc.php’;
?>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html>
<head>
<title>Professional Search Engine Optimization with PHP: Comments</title>

</head>
<body>
<h1>Old comments:</h1>

<?php
// display first comment
echo noFollowLinks(‘<p>Hello! Take a look at cool
link!</p>’);

// display second comment
echo noFollowLinks(‘<p>We\‘ve just released our new product, Link
Juice.</p>’);

// display third comment
$inHTML = ‘<p>Sanitizing <img src=”INVALID-IMAGE”‘ .

‘onerror=”location.href=\‘http://too.much.spam/\‘“>!</p>’;
echo $inHTML;

?>

</body>
</html>

3. Note you haven’t sanitized the input $inHTML yet. Take a look at what happens without the
sanitizing function applied. Loading http://seophp.example.com/comments.php should
redirect you automatically to http://too.much.spam/, as shown in Figure 8-7. This address
doesn’t exist, obviously, but the exercise proved how easy is to implement such redirects if the
data isn’t escaped.

4. Now, try to take out the sanitizing function by updating comments.php. Find this line:

echo $inHTML;

and replace it with this line:

echo sanitizeHTML($inHTML);

5. Now load http://seophp.example.com/comments.php once again. Fortunately, this time
you will not be redirected to the spam site, as it happened earlier. You should get the output
shown in Figure 8-8.

186

Chapter 8: Black Hat SEO

00929c08.qxd:00929c08 3/13/07 10:59 AM Page 186

Figure 8-7

Figure 8-8

6. It’s also worth looking at the source code of the page. In Figure 8-9 you can see that your script
changed the onerror attribute to SANITIZED. (Once again, we’ve reformatted the HTML source
manually a little bit to make it more readable.)

Figure 8-9

187

Chapter 8: Black Hat SEO

00929c08.qxd:00929c08 3/13/07 10:59 AM Page 187

To sanitize user input, you simply call the sanitizeHTML() function on the user-provided input. It
will strip any tags that are not in the variable $allowed_tags, as well as common attributes that can
be cleverly used to execute JavaScript.

Without executing sanitizeHTML() over the input HTML, the cleverly constructed HTML would
redirect to http://too.much.spam. The event onerror is executed upon an error. Because the
image INVALID-IMAGE does not exist (which causes an error), it executes the onerror event,
location.href=‘http://www.spamsite.com’, causing the redirection.

After executing sanitizeHTML(), onerror is replaced with SANITIZED, and nothing occurs.

The sanitizeHTML function does not typically return valid HTML. In practice, this does not matter,
because this function is really designed as a stopgap method to prevent spam. The modified HTML code
will not likely cause any problems in browsers or search engines, either. Eventually, the content would
be deleted or edited by the site owner anyway.

Having such “black hat” content within a web site can damage both the human as well as a search engine
perception of reputation. Embedding JavaScript-based redirects can raise red flags in search engine algo-
rithms and may result in penalties and web site bans. It is therefore of the utmost importance to address
and mitigate these concerns.

Note that the nofollow library was not used in this latest example, but you could combine nofollow with
sanitize to obtain a better result, like this:

// display third comment
$inHTML = ‘<p>Sanitizing <img src=”INVALID-IMAGE”‘ .

‘onerror=”location.href=\‘http://too.much.spam/\‘“>!</p>’;
$sanitized = noFollowLinks(sanitizeHTML($inHTML));
echo $sanitized;

Lastly, your implementations — both noFollowLinks() and sanitizeHTML() — will not exhaustively
block every attack, or allow the flexibility some programmers require. They do, however, make a spam-
mer’s life much more difficult, and he or she will likely proceed to an easier target. A project called safe-
html by Pixel-Apes is a more robust solution. It is open-source and written in PHP. You can find it at
http://pixel-apes.com/safehtml/.

Requesting Human Input
One common problem webmasters and developers need to consider are the automatic spam robots,
which submit comments on unprotected blogs or other web sites that support comments.

The typical solution to this problem is to use what is called a “CAPTCHA” image that requires the
visitor to read a graphical version of text with some sort of obfuscation. A typical human can read the
image, but an automated script cannot. This approach, however, unfortunately presents usability prob-
lems, because blind users can no longer access the functionality therein. For more information on this
type of CAPTCHA, visit http://freshmeat.net/projects/kcaptcha/. An improvement on this

188

Chapter 8: Black Hat SEO

00929c08.qxd:00929c08 3/13/07 10:59 AM Page 188

scheme is an alternative recording of the same information. This is used to overcome the usability
issues presented by CAPTCHA.

As a more simple but effective example, in the following exercise you create a small library that asks
simple math questions with random operands. Call it SimpleCAPTCHA.

Using SimpleCAPTCHA
1. Start off by installing a required external library. Numbers_Words is a PEAR library that trans-

forms numbers to words, and you’re using it to make it harder for an automated script to parse
your forms and calculate the results. The official page of the package is
http://pear.php.net/package/Numbers_Words.

PEAR offers a simple installation script. Open a command-line editor in the folder that contains
pear.php. If you’re using XAMPP as instructed in Chapter 1, the folder will be \Program
Files\xampp\php. To browse to that folder using a command-line console, type this command:

cd \Program Files\xampp\php

At this moment your command-line console will look as shown in Figure 8-10.

Figure 8-10

2. To install the Numbers_Words package, you need to execute this command:

pear install Numbers_Words

If the Numbers_Words package hasn’t reached a stable version (as is the case at the moment of
writing this chapter), you need to explicitly mention the beta version that you want to install,
like this:

pear install channel://pear.php.net/Numbers_Words-0.15.0

You should get a package confirmation message such as the following:

>pear install channel://pear.php.net/Numbers_Words-0.15.0
downloading Numbers_Words-0.15.0.tgz ...
Starting to download Numbers_Words-0.15.0.tgz (44,854 bytes)
............done: 44,854 bytes
install ok: channel://pear.php.net/Numbers_Words-0.15.0

At this point you can close the command-line console.

189

Chapter 8: Black Hat SEO

00929c08.qxd:00929c08 3/13/07 10:59 AM Page 189

3. In your seophp/include library, create a file named simple_captcha.inc.php, and then
type this code in:

<?php
// load Words library
require_once(‘Numbers/Words.php’);

// SimpleCAPTCHA library
class SimpleCAPTCHA
{
// verify answer
function check_answer($answer, $hash)
{
return (md5(trim($answer) . $_SERVER[‘SERVER_ADDR’]) == $hash);

}

// generate question
function get_question($max_1, $max_2)
{
// define standard question formats
$question_formats = array(
‘What is %s plus %s?’,
‘What is the sum of %s and %s?’,
‘What is %s added to %s?’,
‘What is %s + %s?’
);

// generate random numbers
$number_1 = rand(0, $max_1);
$number_2 = rand(0, $max_2);

// transforms the numbers to words
$number_1_words = Numbers_Words::toWords($number_1);
$number_2_words = Numbers_Words::toWords($number_2);

// generate a random question
$question = sprintf($question_formats[rand(0,

sizeof($question_formats) - 1)],
$number_1_words,
$number_2_words);

// returns the question and the hash of the result
return array(‘question’ => $question,

‘hash’ => md5(($number_1 + $number_2) . $_SERVER[‘SERVER_ADDR’]));
}

// generates demo form
function display_demo_form()
{
$gq = SimpleCAPTCHA::get_question(1000, 10);
echo ‘<form>’;
echo $gq[‘question’];

190

Chapter 8: Black Hat SEO

00929c08.qxd:00929c08 3/13/07 10:59 AM Page 190

echo ‘<input type=”text” name=”response”>’;
echo ‘<input type=”hidden” name=”hash” value=”‘ . $gq[‘hash’] . ‘“>’;
echo ‘</form>’;
}

}

?>

4. Modify comments.php as highlighted:

<?php
// load the nofollow library
require_once ‘include/nofollow.inc.php’;
// load the sanitize library
require_once ‘include/sanitize.inc.php’;
// load simple CAPTCHA library
require_once ‘include/simple_captcha.inc.php’;
?>

...

...

// display third comment
$inHTML = ‘<p>Sanitizing <img src=”INVALID-IMAGE”‘ .

‘onerror=”location.href=\‘http://too.much.spam/\‘“>!</p>’;
echo sanitizeHTML($inHTML);

// display CAPTCHA question
SimpleCAPTCHA::display_demo_form();
// display answer
if (isset($_GET[‘response’]) && isset($_GET[‘hash’]))
{
if(SimpleCAPTCHA::check_answer($_GET[‘response’], $_GET[‘hash’]))
{
echo ‘Correct!’;

}
else
{
echo ‘Wrong answer!’;

}
}

?>

</body>
</html>

5. Load http://seophp.example.com/comments.php and type an answer in the text box, as
shown in Figure 8-11.

6. After hitting Enter, you should be told if the answer was correct or not, as shown in Figure 8-12.

191

Chapter 8: Black Hat SEO

00929c08.qxd:00929c08 3/13/07 10:59 AM Page 191

Figure 8-11

Figure 8-12

Using the simple CAPTCHA library, it’s quite easy to implement a simple “human” check before you
accept a comment submission.

This little script is still not bulletproof. It can be improved by implementing a more complex mechanism
such as the use of obfuscated images. However, the script does its job nicely and it’s appropriate to be
used on small web sites.

192

Chapter 8: Black Hat SEO

00929c08.qxd:00929c08 3/13/07 10:59 AM Page 192

To include the CAPTCHA question in a page, you simply need to include the simple CAPTCHA library,
and then call the display_demo_form() method somewhere on the page:

// display CAPTCHA question
SimpleCAPTCHA::display_demo_form();

This call will generate a form like this:

<form>What is six hundred fifty-seven + five?
<input type=”text” name=”response”>
<input type=”hidden” name=”hash” value=”be3159ad04564bfb90db9e32851ebf9c”>

</form>

The hidden hash field contains the hashed version of the correct answer.

When the form is submitted, the response typed by the visitor, together with the visitor’s IP address, are
hashed, and the hash value is compared to the known hashed version of the correct answer. When the
form is submitted, it passes through GET both the answer submitted by the visitor, and the hash value
of the known correct answer:

http://localhost/seophp/comments.php?response=662&hash=
be3159ad04564bfb90db9e32851ebf9c

What Is Hashing?
Hashing is a means by which you obtain a unique calculated value that repre -
sents another object. Different objects should always have different hash
values. The two most popular hashing algorithms are MD5 (Message Digest 5 —
http://en.wikipedia.org/wiki/MD5) and SHA (Secure Hash Algorithm —
http://en.wikipedia.org/wiki/SHA-1).

The hash value of a piece of data is calculated by applying a mathematical func-
tion (the hash algorithm) to that data. The property of these hashing algorithms
that makes it very useful when security is involved is that you can’t easily obtain
the original data from its hashed version (the algorithm is effectively one-way).

Take the example at hand: the hashed value of “662” is “be3159ad04564bfb90db -
9e32851ebf9c,” but you couldn’t obtain the original “662” value if someone told
you the hash value. This property makes hashing particularly useful when storing
user passwords into a database. When the user tries to authenticate, the typed pass-
word is hashed, and the resulting hash value is compared to the hash value of the
original (correct) password, which was stored when the user initially created his or
her password. If the two values are identical, the entered password is correct. You
do not even need to store the passwords to authenticate users.

193

Chapter 8: Black Hat SEO

00929c08.qxd:00929c08 3/13/07 10:59 AM Page 193

The IP address — retrieved using $_SERVER[‘SERVER_ADDR’] — was added to the mix, so that a poten-
tial attacker will not be able to take a known “good” URL, which has a matching answer and hash value,
and use it to submit information.

Your comments.php script calls the check_answer() method of SimpleCAPTCHA to check if the hashed
version of the provided answer is the same as the hashed version of the known correct answer:

// display answer
if (isset($_GET[‘response’]) && isset($_GET[‘hash’]))
{
if(SimpleCAPTCHA::check_answer($_GET[‘response’], $_GET[‘hash’]))
{
echo ‘Correct!’;

}
else
{
echo ‘Wrong answer!’;

}
}

The code of check_answer() itself is pretty simple. It returns true if the hash value of the answer plus
the visitor’s IP address is equal to the known hash value of the correct answer:

// SimpleCAPTCHA library
class SimpleCAPTCHA
{
// verify answer
function check_answer($answer, $hash)
{
return (md5(trim($answer) . $_SERVER[‘SERVER_ADDR’]) == $hash);

}

Note that you use the MD5 (Message Digest 5) hashing algorithm, which is the most widely used hashing
algorithm. Another popular hashing algorithm, which is generally agreed to be more secure (although a
bit slower) is SHA (Secure Hash Algorithm).

301 Redirect Attacks
A legitimate site will often employ a script that redirects URLs, as part of an internal linking scheme, using
URLs like this:

http://www.example.com/redirect.php?url=http://another.example.com

In this case, the redirect.php script would redirect to the URL specified by the url parameter. The
problem comes when a 301 redirect is used. The fact that such a redirection link can be altered to point
to any other URL is manifest from the URL itself. And a 301 redirect will be interpreted as a vote. Black
hat SEOs will link to such a URL from many spam sites so as to acquire a vote.

You may want to revisit Chapter 4 for more details on the HTTP status codes and redirection.

For example, someone from http://too.much.spam/ may post links, on their site or others, to URLs
such as http://www.example.com/redirect.php?url=http://too.much.spam/. If these links do

194

Chapter 8: Black Hat SEO

00929c08.qxd:00929c08 3/13/07 10:59 AM Page 194

301 redirects to http://too.much.spam/, a search engine would interpret that the content at http://
www.example.com was moved to http://too.much.spam/, effectively giving credit to the latter site.

If you use such a redirection script in your site, there are three possible solutions to prevent 301 attacks:

❑ Use a 302 redirect instead of 301

❑ Use robots.txt to exclude redirect.php

❑ Use a database-driven solution, so that http://www.example.com redirects only known links

Any of these solutions will suffice. The last is usually unnecessary for most sites, but it’s mentioned here
because, theoretically, leaving a script like that can be used by a social engineer to assert that your site
advocates any other site to a non-sophisticated layman — phishing.

Using a 302 Redirect
As discussed in Chapter 4, 302 redirects do not transfer any link equity, and therefore have little value from
a spammer’s perspective. However, they may potentially have a use to “phishers,” as mentioned later.

<?php
$new_url = $_GET[“url“];
header(‘HTTP/1.1 302 Found’);
header(“Location: $new_url”);
?>

Using robots.txt to Exclude redirect.php
This technique can be used in addition to using a 302 redirect. It, however, does not prevent “phishing,”
either. Read Chapter 5, if you haven’t already, for more details on the robots.txt file.

User-agent: *
Disallow: /redirect.php

Using a Database-Driven Solution
You could store the URL (either embedded in the script itself, or in a database), instead of embedding it
visibly in the URL:

<?php
// define URL lookup table
$lookup_table = array(

This practice can also be applied to humans, and, in that case, is called “phishing.”
The attacker tries to suggest, to human visitors and to search engines, that your
site (http://www.example.com/) is in some way is associated with http://
too.much.spam/. Popular, old web sites should be particularly careful, because
the potential benefits that can be achieved through phishing are significant.

An example involving a previous Google “phishing” vulnerability is cited here:

http://ha.ckers.org/blog/20060807/google-spam-redirects/

195

Chapter 8: Black Hat SEO

00929c08.qxd:00929c08 3/13/07 10:59 AM Page 195

0=>’http://www.example.com/0’,
1=>’http://www.example.com/1’,
2=>’http://www.example.com/2’);

// perform redirect
header(‘HTTP/1.1 302 Found’);
header(‘Location:’. $lookup_table[$_GET[‘url_id’]]);
?>

Your URLs in this case would look like http://www.example.com/redirect.php?redirect_id=
[number], and eliminate problems.

With this solution, you’re also free to use 301 redirects, which can be beneficial because 301 redirects
count as votes. (However, never do 301 redirects when the URL can be freely modified.)

If you already have a web site that redirects to the URL specified as query string parameter, you could
also simply verify that it’s a known URL before performing the redirect, like this:

<?php
// define URL lookup table
$lookup_table = array(
0=>’http://www.example.com/0’,
1=>’http://www.example.com/1’,
2=>’http://www.example.com/2’);

// extract destination URL
if (isset($_GET[‘url’]))
{
$url = $_GET[‘url’];

}

// perform redirect only if the target URL is known
if (isset($url) && in_array($url, $lookup_table))
{
header(‘HTTP/1.1 302 Found’);
header(‘Location: ‘.$url);

}
?>

Content Theft
This concept is detailed in Chapter 9, where the use of sitemaps is discussed. A black hat SEO may employ
the use of scripts to lift part or even all of another site’s content — using an RSS feed perhaps, or screen
scraping. Many take various pieces of content from many sites and glue them together, leading to what
Chris Boggs, director of online marketing of Cs Group terms as “Frankenstein content.” The spammers
who take a site’s content verbatim are more of a concern, however, and using sitemaps may prevent, or
at least reduce, the necessity of a cease and desist order.

196

Chapter 8: Black Hat SEO

00929c08.qxd:00929c08 3/13/07 10:59 AM Page 196

If you know the IP address of a script on a web server scraping the content, it can also be blocked with
the following .htaccess directives:

RewriteEngine on
RewriteCond %{REMOTE_HOST} ^xxx\.xxx\.xxx\.xxx$
RewriteRule .? - [F]

On Buying Links
As a result of the new focus on link-building to acquire relevant links, instead of the historical focus on
on-page factors (discussed in Chapter 2), an entire industry of link-buying sprung up. This is expected,
because it is a natural reaction by the search engine marketing industry to facilitate their jobs. It is Matt
Cutts’ (of Google) opinion that purchased links should include a rel=”nofollow” attribute. However,
in practice this has proven to be Matt Cutts’ wishful thinking, because this policy has never been widely
adopted for obvious reasons.

We consider buying links completely ethical, so long as the links are semantically related. Realistically, a
content provider can reject placing your link on their site if it is not relevant, and if they consider it as rel-
evant, there is no reason to include the rel=”nofollow” attribute. Therefore, in our opinion Matt Cutts’
argument doesn’t approximate an analogy of traditional marketing. Therefore, buying links, when done
properly, is not a black hat technique. When done aggressively and improperly, it may, however, be per-
ceived as spamming by a search engine.

Digital Point Co-op, Link Vault
Both Digital Point Co-op (http://www.digitalpoint.com/tools/ad-network/) and Link Vault
(http://www.link-vault.com) are advertising networks that operate on the premise that they are
promoting sites on other semantically related sites. In reality, however, their real purpose is questioned
by many. We will form no clear conclusion here, but using such techniques may be against the guide-
lines of search engines and can result in penalties when used in excess.

Link Vault is probably safe when used in small doses, but the other networks like Digital Point Co-op,
which advertise their existence with an invisible one-pixel image in the ad copy (for tracking), are extremely
dangerous in our opinion. And though it hasn’t provably gotten anyone into major trouble yet, it may in
the future. If we can write a regular expression with ease that detects Digital Point links, can anyone rea-
sonably conclude that Google cannot detect it? Google can clearly proceed to at least devalue those links.

Summary
This chapter summarizes the black hat techniques that are requisite background material for every search
engine marketer. We do not advocate the use of any of these techniques. Understanding them, however,
may provide insight as to how a competitor is ranking. It may also serve as an education, in that it will
prevent the inadvertent use of such questionable tactics in the future. Lastly, it prevents you from being
the victim of certain black hat techniques that can be detrimental to your web site.

197

Chapter 8: Black Hat SEO

00929c08.qxd:00929c08 3/13/07 10:59 AM Page 197

00929c08.qxd:00929c08 3/13/07 10:59 AM Page 198

Sitemaps

A sitemap provides an easy way for both humans and search engines to reference pages of your
web site from one central location. Usually, the sitemap enumerates all, or at least the important,
pages of a site. This is beneficial for humans in that it can be a navigational aide, and for search
engines, because it may help a web site get spidered more quickly and comprehensively.

In this chapter you learn about:

❑ The two types of sitemaps: traditional sitemaps and search engine sitemaps.

❑ The Google XML sitemaps standard.

❑ The Yahoo! plaintext sitemaps standard.

❑ The new sitemaps.org standard — soon to be implemented by all search engines.

You’ll implement PHP code that generates both Google and Yahoo! search engine sitemaps pro-
grammatically. But first, this chapter starts at the beginning and talks about traditional sitemaps.

Traditional Sitemaps
A traditional sitemap is simply an HTML web page that contains links to the various pages of your
web site. Typically the traditional sitemap breaks down the referenced pages into groupings for easy
reading. This kind of sitemap is generally designed to assist humans in navigating, but search engine
marketers realized early on that it had a beneficial side effect of helping spiders to crawl a site.

Historically, search engines did not crawl very deeply into a web site, and it helped to link pages
located deeper in the site hierarchy (that is, one must traverse many pages to arrive there) from a
sitemap page. Today, that particular problem is mostly squashed (search engines now do a much
better job at crawling more deeply), but a sitemap may still assist in getting such pages spidered
faster. It may also improve their rankings somewhat by providing an additional internal link.

00929c09.qxd:00929c09 3/13/07 10:43 AM Page 199

Traditional sitemaps, as well as search engine sitemaps (discussed next), are especially useful to cite pages
that are not linked anywhere else in a web site’s navigation. Indeed, the Google sitemap help page says
that “sitemaps are particularly beneficial when users can’t reach all areas of a website through a browseable interface.”

Creating a traditional sitemap is done as any other web page is. It can be created by hand, or generated
dynamically using PHP. The sitemap page should be linked to in the navigation or footer of every web
page in your web site — or at least on the home page. For larger sites, it may make sense to create a
multiple page sitemap, partitioned into sections somehow, because we recommend not having too
many links on a page. Please refer to Chapter 6, “SE-Friendly HTML and JavaScript,” for recommen-
dations regarding internal linking and pagination.

We used that unfortunate vague qualifier again — “too many.” As usual, there really is no concrete
definition for “too many,” and it varies by search engine, but search engine marketers usually cite an
upper limit of 50 to 100 links per page.

Search Engine Sitemaps
Search engine sitemaps are not for human consumption. Rather, they are specifically designed to facili-
tate search engines to spider a web site. Especially if a site has added or modified content deep within
its navigation, it may take many weeks before a search spider takes note of the changes without any
assistance. Likewise, if a web page is referenced nowhere in a web site’s navigational structure, it will
not get spidered without any assistance, either.

Search engine sitemaps provide this assistance. Google and Yahoo! both have implementations in that
vein. MSN search does not offer one at the time of writing. However, the end of this chapter points to a
new unified standard that all search engines will eventually adhere to.

Search engine sitemaps do not replace the traditional spidering of a site, so a site will continue to get
spidered normally. But if their systems notice changes via these sitemaps, a spider will visit the included
URLs more quickly.

You can see how a traditional sitemap accomplishes some of the same things that a search engine sitemap
does. Because the traditional sitemap is linked prominently on the web site, it is frequently spidered.
Thus, by linking deep content on a traditional sitemap page, you can accomplish most of the same goals,
but it is still advantageous to create a search engine sitemap.

For example, you can inform Google how often a page is likely to change, or that a change occurred with
a later timestamp on a web page. You can also “ping” Google to inform it of changes within the actual
sitemap.

By the same token, if the timestamps are out of date, providing a sitemap can actually be detrimental. If
you do choose to provide timestamps, you must dutifully update it when changes occur!

We do question how well such an orphaned page would rank (that is, one that is ref-
erenced only by a search engine sitemap), and we would recommend using a tradi-
tional sitemap in any case, because it does provide an internal link whereas a search
engine sitemap does not.

200

Chapter 9: Sitemaps

00929c09.qxd:00929c09 3/13/07 10:43 AM Page 200

We recommend using both traditional and search engine sitemaps.

The Yahoo! sitemap protocol is less popular than the Google protocol, but this chapter demonstrates
code that allows both to be created with the same PHP code. Thus, it is worthwhile to support both for-
mats, because it will require minimal effort. Because the Yahoo! sitemap protocol uses only a subset of
the information that the Google sitemap protocol does, if provided, that information will simply be
ignored when the Yahoo! sitemap is created.

Google and Yahoo! both also support reading news feeds in the formats of RSS and Atom. These for-
mats may suffice for blogs and certain content management systems; often, they are provided by such
applications by default. The problem with these implementations is that they usually only enumerate
the newest content, and this is only really suitable for a blog. If you are doing search engine optimiza-
tion for a blog, feel free to skip this chapter and use the feed functionality provided by your blog appli-
cation instead. Also, theoretically it would be possible to create an RSS or Atom feed with all URLs as
a sitemap for a site that is not a blog, but this is probably not what Yahoo! or Google expects, and we
would not recommend it.

Using Google Sitemaps
Google has a very elaborate standard for providing a sitemap. It allows a webmaster to provide informa-
tion in several formats, but the preferred format is an XML-based standard specified by Google. Google
claims that using Google Sitemaps will result in “a smarter crawl because you can tell [them] when a page
was last modified or how frequently a page changes.” For more information regarding Google Sitemaps,
visit http://www.google.com/webmasters/sitemaps/. There is also a Google-run Sitemaps blog at
http://sitemaps.blogspot.com/.

However, according to Google, “using this protocol does not guarantee that your web pages will be
included in search indexes,” and “… using this protocol will not influence the way your pages are
ranked by Google.” Creating a sitemap for your site entails the following:

1. Creating a Google account, if you don’t have one: https://www.google.com/accounts/
NewAccount.

2. Creating a sitemap file.

Let’s also note one lesser-known benefit of using sitemaps — mitigation of the dam-
age as a result of content theft and scraper sites. Unfortunately, on the web there are
unsavory characters who, without permission, lift content from your web site and
place it on theirs.

These sites are called most affectionately “scraper sites,” but when it happens to
you, they’re called much less affectionate terms. One of the most difficult challenges
search engines face is assigning the original author of content that is duplicated in
several places. As discussed in Chapter 5, search engines aim to filter duplicate con-
tent from their indices. When you get filtered as a result of scrapers stealing your
content, it can be particularly difficult to resolve. If a well-ranked scraper site (they
do exist) gets spidered with your content before you do, your web site content may be
deemed the duplicate! Because search engine sitemaps will get your new web pages
spidered more quickly, they may help in avoiding some of these content-theft snafus.

201

Chapter 9: Sitemaps

00929c09.qxd:00929c09 3/13/07 10:43 AM Page 201

3. Adding the sitemap to your account.

4. Verifying the site. This implies making a certain change to your site, so that Google will know
you’re a person authorized to modify the site. Doing so involves the addition of a randomly
named file or meta-tag to your web site. To maintain Google sitemap functionality, these must
not be removed once added.

Please see http://www.google.com/support/webmasters/bin/answer.py?answer=
34592&topic=8482 for more details about this procedure.

The Google Sitemaps service also allows you to see if there are any issues with the crawling of a site;
these include errors returned by your server (404, 500, and so on), errors as a result of networking,
and so on. It also gives you a list of URLs as restricted by robots.txt and various statistics useful
for analysis.

As soon as you’ve finished the registration process, you can create the sitemap file named sitemap.xml
in the root of your web site, and then submit this file using the Google Sitemaps page. sitemap.xml
could look like this:

<?xml version=”1.0” encoding=”UTF-8”?>
<urlset xmlns=”http://www.google.com/schemas/sitemap/0.84”>
<url>
<loc>http://www.cristiandarie.ro/</loc>
<lastmod>2006-09-17</lastmod>
<changefreq>weekly</changefreq>
<priority>0.5</priority>
</url>
<url>
<loc>http://www.cristiandarie.ro/books/</loc>
<lastmod>2006-09-17</lastmod>
<changefreq>weekly</changefreq>
<priority>0.8</priority>
</url>
<url>
<loc>http://www.cristiandarie.ro/forthcoming/</loc>
<lastmod>2006-09-17</lastmod>
<changefreq>weekly</changefreq>
<priority>0.2</priority>
</url>
</urlset>

The file contains a <url> element for each URL that you need to include. The children of this element
have these meanings:

❑ <loc> specifies the URL.

❑ <lastmod> specifies the last modification date for the URL. The date is written in ISO 8601
format, which is YYYY-MM-DD. The standard also supports a number of alternative notations,

202

Chapter 9: Sitemaps

00929c09.qxd:00929c09 3/13/07 10:43 AM Page 202

and also supports the inclusion of the time. ISO 8601 is very nicely described at http://
www.iso.org/iso/en/prods-services/popstds/datesandtime.html.

❑ <changefreq> tells Google how often the page changes. The possible values are always (for
pages that change with each request), hourly, daily, weekly, monthly, yearly, and never.

❑ <priority> lets you tell Google how you evaluate the importance of individual pages of your
web site as compared to the others. The value is a number between 0.0 and 1.0. Please note that
the <priority> element only has significance over the relative importance of pages within a
web site, and it does not affect the overall ranking of a web site!

Using Yahoo! Sitemaps
Yahoo!’s sitemap protocol is considerably simpler than Google’s protocol. It too supports several for-
mats including news feeds, but the format discussed here is the flat URL list plaintext file. It does not
utilize XML, nor does it ask for any information other than a list of URLs delimited by linefeeds. Yahoo!
requires that a file named urllist.txt appear in the root directory of a web site, and that you register
a Yahoo! account with them.

The site must then be added at http://submit.search.yahoo.com/free/request. Arguably, Yahoo!
accomplishes some of what Google does with its simpler approach — though it does not accept informa-
tion regarding last modified dates, estimates of update frequency, or the relative importance of the pages.
Yahoo! also cannot be pinged regarding sitemap updates.

The Yahoo! sitemaps equivalent of the previously shown Google sitemap would be a file named
urllist.txt in the root directory of a web site with the following contents:

http://www.cristiandarie.ro/
http://www.cristiandarie.ro/books/
http://www.cristiandarie.ro/forthcoming/

Like Google, using Yahoo!’s sitemap protocol will not influence a web site’s rankings, but it may get a
site spidered more quickly.

Generating Sitemaps Programmatically
It would be useful to have a library that can create Yahoo! and Google sitemaps programmatically using
the same information. The exercise that follows demonstrates such a library.

You’ll create a class named Sitemap, which can store a number of links from your site, and generate the
associated Yahoo! and Google sitemap files for you. (The notion of class, as well as the basic notions of
object-oriented programming with PHP, was explained in Chapter 7, when you used it for the first time
in this book.)

203

Chapter 9: Sitemaps

00929c09.qxd:00929c09 3/13/07 10:43 AM Page 203

Generating Sitemaps
1. In your seophp/include folder, create a new file named sitemap.inc.php, with this code:

<?php

// sitemap generator class
class Sitemap
{
// constructor receives the list of URLs to include in the sitemap
function Sitemap($items = array())
{
$this->_items = $items;

}

// add a new sitemap item
function addItem($url,

$lastmod = ‘’,
$changefreq = ‘’,
$priority = ‘’,
$additional_fields = array())

{
$this->_items[] = array_merge(array(‘loc’ => $url,

‘lastmod’ => $lastmod,
‘changefreq’ => $changefreq,
‘priority’ => $priority),

$additional_fields);
}

// get Google sitemap
function getGoogle()
{
ob_start();
header(‘Content-type: text/xml’);
echo ‘<?xml version=”1.0” encoding=”UTF-8”?>’;
echo ‘<urlset xmlns=”http://www.google.com/schemas/sitemap/0.84”>’;
foreach ($this->_items as $i)
{
echo ‘<url>’;
foreach ($i as $index => $_i)
{
if (!$_i) continue;
echo “<$index>” . $this->_escapeXML($_i) . “</$index>”;

}
echo ‘</url>’;

}
echo ‘</urlset>’;
return ob_get_clean();

}

// get Yahoo sitemap
function getYahoo()
{
ob_start();

204

Chapter 9: Sitemaps

00929c09.qxd:00929c09 3/13/07 10:43 AM Page 204

header(‘Content-type: text/plain’);
foreach ($this->_items as $i)
{
echo $i[‘loc’] . “\n”;

}
return ob_get_clean();

}

// escape string characters for inclusion in XML structure
function _escapeXML($str)
{
$translation = get_html_translation_table(HTML_ENTITIES, ENT_QUOTES);
foreach ($translation as $key => $value)
{
$translation[$key] = ‘&#‘ . ord($key) . ‘;’;

}
$translation[chr(38)] = ‘&‘;
return preg_replace(“/&(?![A-Za-z]{0,4}\w{2,3};|#[0-9]{2,3};)/“,”&” ,

strtr($str, $translation));
}

}
?>

2. You need to add the following two rewrite rules to the .htaccess file in /seophp. If you have
other entries in the file from previous exercises, just add the new rules; otherwise, create the file
from scratch. (If you haven’t already, see Chapter 3 for details on mod_rewrite.)

RewriteEngine On

Rewrite requests for sitemap.xml
RewriteRule ^sitemap.xml$ /sitemap.php?target=google [L]

Rewrite requests for urllist.txt
RewriteRule ^urllist.txt$ /sitemap.php?target=yahoo [L]

3. You need to have url_factory.inc.php and config.inc.php, which you created in Chapter 3,
in your seophp/include folder. Feel free to take them from the code download, if needed.

4. In the seophp folder, create a file named sitemap.php and type this code in it:

<?php
// redirect requests to dynamic to their keyword rich versions
require_once ‘include/sitemap.inc.php’;
// load configuration
require_once ‘include/config.inc.php’;
// load URL factory
require_once ‘include/url_factory.inc.php’;

// create the Sitemap object
$s = new Sitemap();

// add sitemap items
$s->addItem(SITE_DOMAIN . ‘/catalog.html’, ‘2006/10/27’, ‘weekly’);
$s->addItem(make_category_product_url(

“Carpenter’s Tools”, 12, “Belt Sander”, 45), ‘2006/10/27’, ‘weekly’);

205

Chapter 9: Sitemaps

00929c09.qxd:00929c09 3/13/07 10:43 AM Page 205

$s->addItem(make_category_product_url(
“SEO & Toolbox”, 6, “Link Juice”, 31), ‘2006/10/27’, ‘weekly’);

$s->addItem(make_category_product_url(
“Friends’ Shed”, 2, “AJAX PHP Book”, 42), ‘2006/10/27’, ‘weekly’);

// output sitemap
if (isset($_GET[‘target’]))
{
// generate Google sitemap
if (($target = $_GET[‘target’]) == ‘google’)
{
echo $s->getGoogle();

}
// generate Yahoo sitemap
else if ($target == ‘yahoo’)
{
echo $s->getYahoo();

}
}
?>

5. Load http://seophp.example.com/sitemap.xml. You should get a Google sitemap, as
shown in Figure 9-1.

Figure 9-1

206

Chapter 9: Sitemaps

00929c09.qxd:00929c09 3/13/07 10:43 AM Page 206

6. Load http://seophp.example.com/urllist.txt. You should get a Yahoo! sitemap, as
shown in Figure 9-2.

Figure 9-2

The Sitemap class creates both Yahoo! and Google sitemap formats via the same class interface. To use
it, you first create an object of the class Sitemap, then use the addItem() method to add each of your
URLs. That’s what you do in sitemap.php:

// create the Sitemap object
$s = new Sitemap();

// add sitemap items
$s->addItem(SITE_DOMAIN . ‘/catalog.html’, ‘2006/10/27’, ‘weekly’);
$s->addItem(make_category_product_url(

“Carpenter’s Tools”, 12, “Belt Sander”, 45), ‘2006/10/27’, ‘weekly’);
$s->addItem(make_category_product_url(

“SEO & Toolbox”, 6, “Link Juice”, 31), ‘2006/10/27’, ‘weekly’);
$s->addItem(make_category_product_url(

“Friends’ Shed”, 2, “AJAX PHP Book”, 42), ‘2006/10/27’, ‘weekly’);

Note that you use the make_category_product_url() function from the URL factory to obtain proper
URLs. In a real example, the information provided to this function would be pulled from records in a
database, and not specified directly in application code. But this example again illustrates how using
the URL factory eases programming and enhances consistency.

The last modified date, change frequency, and priority should be provided in the formats elicited by
Google sitemaps. These fields are not included in the Yahoo! sitemap. To create the sitemaps, simply
call the getGoogle() or getYahoo() methods of the Sitemap class, respectively. Your sitemap.php
script calls one of these methods depending on the value of the target query string parameter:

// output sitemap
if (isset($_GET[‘target’]))
{

207

Chapter 9: Sitemaps

00929c09.qxd:00929c09 3/13/07 10:43 AM Page 207

// generate Google sitemap
if (($target = $_GET[‘target’]) == ‘google’)
{
echo $s->getGoogle();

}
// generate Yahoo sitemap
else if ($target == ‘yahoo’)
{
echo $s->getYahoo();

}
}

However, the sitemap.php script will not be referenced directly, but through rewritten URLs. You
added two entries in .htaccess that use mod_rewrite to rewrite requests to the Yahoo! sitemap
file (urllist.txt) to sitemap.php?target=yahoo, and requests to the Google sitemap file
(sitemap.xml) to sitemap.php?target=google. Here are the rewrite rules:

RewriteRule ^sitemap.xml$ /sitemap.php?target=google [L]
RewriteRule ^urllist.txt$ /sitemap.php?target=yahoo [L]

The case study in Chapter 14 demonstrates all types of sitemaps.

Informing Google about Updates
In general, Google does a pretty good job at reading your sitemap at intervals and taking note of any
updates; however, you can tell Google that your sitemap has changed by making a request to this URL:

http://www.google.com/webmasters/sitemaps/ping?sitemap=http://seophp.example.com/
sitemap.xml

If you load this URL with a web browser you’ll simply be informed that your sitemap has been added to
the queue, and that you should register your sitemap through http://www.google.com/webmasters/
sitemaps if you haven’t already (see Figure 9-3).

Figure 9-3

208

Chapter 9: Sitemaps

00929c09.qxd:00929c09 3/13/07 10:43 AM Page 208

Creating such a request programmatically is simple. For example, using the cURL library, the following
code would do the trick:

$sitemapUrl = SITE_DOMAIN . SITE_FOLDER . ‘/sitemap.xml’;
$pingUrl = “http://www.google.com/webmasters/sitemaps/ping?sitemap=” .
urlencode($sitemapUrl);
$ch = curl_init();
curl_setopt($ch, CURLOPT_URL, $pingUrl);
curl_setopt($ch, CURLOPT_RETURNTRANSFER,1);
$result = curl_exec($ch);

Program logic can be implemented that executes the preceding code whenever changes occur to your
Google sitemap, such as whenever a product or content page is modified.

The Sitemaps.org Standard Protocol
At the time of writing, there is a brand new initiative in the works standardizing a search engine site -
maps protocol for all search engine vendors. The standard and information is available at http://
www.sitemaps.org/. It adheres mostly to the Google standard, but its XML namespace is different:

<urlset xmlns=”http://www.google.com/schemas/sitemap/0.84”>

becomes:

<urlset xmlns=”http://www.sitemaps.org/schemas/sitemap/0.9”>

Also, using this sitemaps protocol does not require creating any account with the particular search
engine vendors. Rather, you must simply “ping” a URL in the following format with the location of
the sitemap at least once (and optionally more when there are updates):

<searchengine_URL>/ping?sitemap=sitemap_url

At this time, the only search vendor adhering to this standard is Google — recognizing requests such as:

http://www.google.com/webmasters/sitemaps/ping?sitemap=www.example.com/sitemap.xml

MSN hasn’t implemented this functionality yet, but Yahoo! supports sitemap notification using this
(non-standard) request:

http://search.yahooapis.com/SiteExplorerService/V1/updateNotification?appid=[YOUR_Y
AHOO_APPLICATION_ID]&url=http://www.example.com/sitemap.xml

To get a Yahoo Application ID visit http://api.search.yahoo.com/webservices/
register_application.

209

Chapter 9: Sitemaps

00929c09.qxd:00929c09 3/13/07 10:43 AM Page 209

For more current information on this subject, we encourage you to visit the book’s updates page main-
tained by Jaimie Sirovich at http://www.seoegghead.com/seo-with-php-updates.html.

Summary
In this chapter you learned about the two forms of sitemaps — traditional and search engine based. Search
engine sitemaps, read only by search engines, help a web site get spidered more quickly and comprehen-
sively. Traditional sitemaps are designed for human consumption, but they are beneficial to the same end
as well.

There is no conflict in creating both forms of sitemaps. A properly designed traditional sitemap also bene-
fits human usability in ways a search engine sitemap cannot. We recommend creating both in the interest
of usability as well as speedy and comprehensive indexing.

210

Chapter 9: Sitemaps

00929c09.qxd:00929c09 3/13/07 10:43 AM Page 210

Link Bait

Link bait is any content or feature within a web site that is designed to bait viewers to place links to it
from other web sites. Matt Cutts defines link bait as “something interesting enough to catch people’s
attention.” Typically, users on bulletin boards, newsgroups, social bookmarking sites, or blogs will
place a link to a web site in some copy that further entices a fellow member or visitor to click. It is
an extremely powerful form of marketing because it is viral in nature, and links like these are exactly
what a search engine algorithm wants to see — that is, votes for a particular web site.

Soliciting links via link-exchanging is less effective than it once was to the end of improving rank-
ings, as discussed in Chapter 2. Link bait creation is one of the newer popularized concepts in link
building. In the article at http://www.seomoz.org/blogdetail.php?ID=703, Rand Fishkin of
SEOmoz states “… I’d guess that if Matt (from Google) or Tim (from Yahoo!) had their druthers,
this would be the type of tactic they’d prefer were used to achieve rankings.” It is frequently, with
a lot of luck and some skill, an economical and ethical way to get links to a web site; it is consid-
ered to be a white hat search engine optimization technique universally.

This chapter introduces the link bait concept, then shows an example of what we term “interactive
link bait,” which is an application that garners links naturally and virally.

As discussed in Chapter 2, building links is a crucial part of any search engine optimization
campaign. In general, a site that earns links over time will be seen as valuable by a search engine.
Link bait, in reality, is not a new concept. People have been linking to things that they like since
the inception of the World Wide Web. It is just a concise term that describes an extremely effec-
tive technique — “provide something useful or interesting in order to entice people to link to
your web site.”

Hooking Links
Link bait is a hit-or-miss technique. Do not expect success with every attempt. However, one
clever idea, when implemented, may yield thousands of links. Andy Hagans of BizNicheMedia

00929c10.qxd:00929c10 3/13/07 10:43 AM Page 211

launched a contest in January 2006, which perhaps is link bait itself, that offers $1,000.00 for what they
assess as the best link baiting idea (http://www.biznichemedia.com/2006/01/biznichemedia_
l.html). Good ideas are seemingly made of gold.

Link bait will be generated as a matter of course on any web site with quality content. However, learning
to recognize content as such is useful in itself. Social bookmarking sites such as the famed http://
del.icio.us and http://www.digg.com can help to promote content. Including hooks to such serv-
ices may provide an easy “call to action” for users to promote you. This is a popular technique especially
used to promote blogs. This topic was discussed at length in Chapter 7.

There are myriad ways to “hook” a link. There are many examples, but there are a few basic categories
of hooks that they tend to fall into. They are:

❑ Informational hooks

❑ News story hooks

❑ Humor/fun hooks

❑ “Evil” hooks

Informational Hooks
These are resources that people will tend to link to by virtue of the fact that they provide useful informa-
tion. For example, posting a “how-to” article for how to set up a web server is an informational hook.
A user will read the article one day, it will help him, and then the user will post a link to it somewhere
indicating that it was helpful. As time progresses, this may happen several times, and many links will
accumulate.

News Story Hooks
The early bird catches the worm — and perhaps the links, too. Being the first web site to report a perti-
nent news story will typically get your web site cited as a source via links as the news spreads. Posting
an op-ed with a different and refreshing opinion on news may also get some attention. Debate always
encourages dialogue, and it is viral in nature.

Humor/Fun Hooks
People love to laugh, and humorous content is very viral in nature. A good joke is always going to spread.
Alexa often highlights this when a blog with a funny post appears in the “Movers and Shakers” section
with an increase in traffic of quadruple-digit percents. Traffic increases like that are almost always accom-
panied by links as a lasting effect. Fun games also work, because people send those around as well.

Evil Hooks
Saying something unpopular or mean will likely get links and attention, but it may be the wrong type of
attention. Be careful with this technique.

212

Chapter 10: Link Bait

00929c10.qxd:00929c10 3/13/07 10:43 AM Page 212

Traditional Examples of Link Bait
One typical baiting scheme is a prank — or something otherwise extremely funny and/or controver-
sial. Typically, if a certain amount of momentum is created, that is, a few users see it and post it, the
rest becomes automatic, as hundreds or thousands of users spread the link about the Internet. One fine
example is Zug’s “Viagra Prank.” Viagra, one of the most queried key phrases in the search engine land-
scape, is also extremely competitive.

In Zug’s “Viagra Prank,” http://www.zug.com/pranks/viagra/, the author writes about a man who
attempts to order Viagra from a Viagra spam site, and reflects on his experience. It’s actually rather funny.
So funny, in fact, that we’ve decided to place it in this book. After reading this book, you may choose to tell
your friend and place it on your blog. And the cycle continues. That particular page has been in Google’s
top 10 for “viagra” for many months (at the time of writing), because there are many hundreds of high-
quality links linking to it.

Another example of link bait is Burger King’s “Subservient Chicken,” a funny game where you can tell
a man dressed up as a chicken what to do; and a more narcissistic example is a blog entry on the SEO
Egghead blog, http://www.seoegghead.com/blog/seo/mattcuttsarama-a-summary-of-useful-
stuff-matt-cutts-has-said-p112.html). Other traditionally successful examples of link bait include
contests, funny pictures, and cartoons.

Unfortunately, some of these link bait examples are not well-suited to straight-edge sites. A particular
scheme may look funny and hook links on a personal web site, but may simply look too unprofessional
in the context of a commercial site. One form of link bait that can be adapted to any kind of site — even
the more conservative ones — is the interactive web tool. These tools provide free, useful functionality to
users, but usually require at least some programming on the part of the web developer.

Lastly, do not forget that extremely valuable or insightful content is the original link bait. High-quality
content is important for many other reasons. Matt Cutts affirms this when he states “if everything you
ever say is controversial, it can be entertaining, but it’s harder to maintain credibility over the long haul.”
We could not agree more. And for some sites, being controversial is simply not an option.

Interactive Link Bait: Put on Your
Programming Hardhat!

Interactive link bait is an interactive application that attracts links. It’s typically useful, or at least cute.
Common examples of electronic link bait are RustyBrick’s Future Page Rank Predictor (http://www
.rustybrick.com/pagerank-prediction.php), which purports to be a tool to foretell your page
rank on the next update (but also notes that it’s entirely fictitious), and Text-Link-Ads’ Link Calculator
(http://www.text-link-ads.com/link_calculator.php).

The latter is an example of a useful tool. A tool to approximate the value of a link on a page should attract
many relevant links from the search engine marketing community. And, in our opinion, it does usually
manage to calculate reasonable ballpark estimations.

213

Chapter 10: Link Bait

00929c10.qxd:00929c10 3/13/07 10:43 AM Page 213

The former is an example of a cute tool. PageRank, more recently, is widely regarded as less important
than it used to be. However, in a time when the green bar in the toolbar meant everything to search
engine marketers, the idea of predicting PageRank was extremely appealing, and, despite the fact that the
tool itself stated it was fictitious, many people used and linked to it. According to Yahoo!, as of June 2006,
the page has more than 3,000 links (Yahoo! reports backlinks the most accurately of all search engines; see:
http://www.seroundtable.com/archives/002473.html).

Other traditional examples of interactive link bait include calorie counters, mortgage calculators, and
currency converters.

Case Study: For tune Cookies
Because the sample e-commerce catalog will sell cookies, this example will be a cute graphical fortune
cookie tool that tells a site visitor his or her fortune. This tool may be included by other web sites, so
that they too can provide their visitors with fortunes. It can include a logo for branding, and it contains
a link to your store in order to hook your links and encourage more users to use the tool. The fortunes
are stored in a list and returned randomly. A few sample fortunes are in the sample database script.
The fortune cookie image looks like Figure 10-1.

Figure 10-1

A page is placed on your site to showcase the tool, and you link to that page from your site menu with
the anchor text “free fortune cookies.” This affects some click-throughs. You show users how to add the
fortune cookie to their sites on the page, and the HTML to do so, in turn, is linked to your free fortune
cookie page. You also may place a link to another part of your site below that says, “Get your free cook-
ies at Cookie Ogre’s Warehouse.” The following is a quick exercise that demonstrates the technique.

Building the Fortune Cookie
1. In this exercise you’ll make use of the GD function imagecreatefromgif. This function is

supported in GD versions prior to version 1.6, or more recent than 2.0.28, as explained in the
documentation at http://www.php.net/imagecreatefromgif. You’ve already learned how
to enable the GD2 module in Chapter 6 — but if you haven’t here’s a quick refresher. To enable
GD2, you need to edit the php.ini configuration file, and uncomment the following line by
removing the leading semicolon. Afterwards, you need to restart the Apache server.

extension=php_gd2.dll

2. Create a folder named images under your seophp folder, and copy the fortune_cookie.gif
file from the book’s code download to the images folder.

3. You need a font that will be used to write the text to the fortune cookie. For legal reasons, we
can’t provide you with a font, but you should have plenty to choose from on your machine.

214

Chapter 10: Link Bait

00929c10.qxd:00929c10 3/13/07 10:43 AM Page 214

On a Windows machine, you can find the font files in the hidden \Windows\Fonts folder, or via
the Fonts applet that you can find in Control Panel. Create a folder named fonts under your
seophp folder, and copy comic.ttf (or another font) to the fonts folder you’ve just created.

4. Create fortune_cookie.php in the seophp folder, with this code:

<?php

class Fortunes
{
// Array with possible fortune predictions
var $_fortunes = array(
“Jaimie Sirovich will become your\r\nfavorite author.”,
“You will recommend this book to\r\nall your friends.”,
“Tomorrow you will make \r\nyour first million.”,
“You will read AJAX and PHP: \r\nBuilding Responsive Web Applications.”

);

// Member that will the generated image
var $_image_resource;

// Generate fortune cookie image
function MakeFortune()
{
$text = $this->_fortunes[rand(0, sizeof($this->_fortunes) - 1)];
$this->_image_resource = imagecreatefromgif(‘images/fortune_cookie.gif’);
imagettftext($this->_image_resource, 9, 0, 135, 64,

imagecolorallocate($this->_image_resource, 0, 0, 0),
‘fonts/comic.ttf’, $text);

imagegif($this->_image_resource);
}

}

// Set proper content type for GIF image
header(‘Content-type: image/gif’);

// Generate the GIF image
$f = new Fortunes();
$f->MakeFortune();

?>

5. Load http://seophp.example.com/fortune_cookie.php. The result should look like
Figure 10-2.

6. To be used as link bait, the fortune cookie needs to be easily placed in other pages. Assume that
one of your visitors has a page named linkbait.html, and that he or she wants to add your
fortune cookie to that page. Create a new file named linkbait.html in your seophp folder,
and type the following code. The highlighted piece of code is what you need to give your visi-
tors so that they can use your fortune cookie:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html>
<head>

215

Chapter 10: Link Bait

00929c10.qxd:00929c10 3/13/07 10:44 AM Page 215

<title>Professional Search Engine Optimization with PHP: LinkBait
Example</title>
</head>
<body>
<h1>Professional Search Engine Optimization with PHP: LinkBait Example</h1>

Get your free
cookies at Cookie Ogre’s Warehouse.

</body>
</html>

7. After adding the highlighted code, your visitor can load http://seophp.example.com/
linkbait.html to admire his or her new fortune cookie, as shown in Figure 10-3.

Figure 10-2

Figure 10-3

216

Chapter 10: Link Bait

00929c10.qxd:00929c10 3/13/07 10:44 AM Page 216

The basic idea is very simple. You need to tell your visitors that if they paste the following code into their
HTML pages, they get a free fortune cookie:

Get your free
cookies at Cookie Ogre’s Warehouse.

What’s interesting about this code is that it not only delivers the fortune cookie, but it also includes a link
to your web site (and the tool, so others may get fortunes). A small amount of users may remove the link,
but a significant amount will leave the link around the image. You’re providing your visitor with a free
service, in exchange for some publicity.

The code of the fortune cookie generator itself is simple. It simply takes a random text from an array, and
displays it over the cookie image contained in fortune_cookie.gif. If you had more entries, it would
make more sense to use a database, but for simplicity’s sake you store the possible fortune phrases into
an array:

class Fortunes
{
// Array with possible fortune predictions
var $_fortunes = array(
“Jaimie Sirovich will become your\r\nfavorite author.”,
“You will recommend this book to\r\nall your friends.”,
“Tomorrow you will make \r\nyour first million.”,
“You will read AJAX and PHP: \r\nBuilding Responsive Web Applications.”

);

The code that adds the text over the .gif image template is very simple as well. You used the image-
createfromgif, imagettftext, and imagegif functions of the GD2 library to generate and output
the fortune cookie image:

// Generate fortune cookie image
function MakeFortune()
{
$text = $this->_fortunes[rand(0, sizeof($this->_fortunes) - 1)];
$this->_image_resource = imagecreatefromgif(‘images/fortune_cookie.gif’);
imagettftext($this->_image_resource, 9, 0, 135, 64,

imagecolorallocate($this->_image_resource, 0, 0, 0),
‘fonts/comic.ttf’, $text);

imagegif($this->_image_resource);
}

Keep in mind that this is just one hypothetical example of link bait. Because we cannot possibly assist
readers with all of their ideas for link bait, we will suggest that if you do have a great idea, but cannot
implement it yourself, that you can use a service like eLance (http://www.elance.com/), which can
assist you in finding a freelance programmer. For simple projects this can be very effective.

217

Chapter 10: Link Bait

00929c10.qxd:00929c10 3/13/07 10:44 AM Page 217

Summary
Link bait is not a new concept; it is just a concise term that describes an effective search engine market-
ing technique. Although some search engine marketers shun the term as just another word for viral
marketing, we think the term and concept is quite useful. Deliberately creating link bait can provide
a large return on investment, and even learning to recognize link bait when it is created as a matter of
course is useful, because it can prompt a search engine marketer to provide hooks to services such as
social bookmarking services to aid in the propagation of the bait.

218

Chapter 10: Link Bait

00929c10.qxd:00929c10 3/13/07 10:44 AM Page 218

Cloaking, Geo-Targeting,
and IP Delivery

Cloaking is defined as the practice of providing different content to a search engine spider than is
provided to a human user. It is an extremely controversial technique in the realm of search engine
optimization. And like most things controversial, cloaking can be used for both good and evil. It is
discussed in depth in this chapter, along with a discussion of the controversy surrounding its use.
Geo-targeting is a similar practice, but it provides different content to both spiders and users on
the basis of their respective geographical regions — its use is far less controversial. Both practices
are typically implemented using a technology called IP delivery.

In this chapter, you:

❑ Learn the fundamentals of cloaking, geo-targeting, and IP delivery.

❑ Implement IP delivery–based cloaking and geo-targeting in step-by-step exercises.

Cloaking, Geo-Targeting, and IP Deliver y
Before writing any code, make sure you understand these important definitions:

❑ Cloaking refers to the practice of delivering different content to a search engine than
to human visitors browsing a web site. In practice, cloaking is implemented through
IP delivery. See http://en.wikipedia.org/wiki/Cloaking for more details.

❑ Geo-targeting is similar to cloaking in that it provides different content depending on
the type of visitor — but this time by their physical location on Earth. Search engine spi-
ders are not treated any differently than human visitors. This technique is useful when
you want to show different content to a user from France than to a user from the United
States, for example.

00929c11.qxd:00929c11 3/13/07 11:01 AM Page 219

Both cloaking and geo-targeting are covered in this same chapter because they’re usually imple-
mented in practice using the same technique — IP delivery.

❑ IP delivery is the practice of using the IP, the network address of the connecting computer,
whether robot or human, and sending different content based on that. A database is used to
assist with the process. In the case of cloaking, the database stores the IP addresses of the vari-
ous spiders that may hit your site. The cloaking script implementation scans the list to see if the
current IP is a spider, and the programmer can use this information to effect changes in presen-
tation or logic. In the case of geo-targeting, the database stores various ranges of IP addresses,
and indicates where these ranges of IPs are in the world. A geo-targeting script scans the list to
see in which country the current IP is located, and the programmer can use this value to effect
changes in presentation or logic.

Usually, implementations of IP delivery cloaking also look at the User-Agent header of the
request. The user agent header is a header sent by both browsers and spiders. It, however,
is not regarded as authoritative, because both users and spiders may not tell the truth about
who they really are. In the former case, spiders indicate that they are humans in order to detect
spamming employing cloaking as a means to provide optimized spam content to the spiders,
while providing different content to the users. In the latter case, users (usually competitors)
may actually set the user agent in their browser to see if a site is cloaking on the basis of user
agent. It provides a convenient method for people to see if your site employs cloaking by spoof-
ing their user agent. This is why many implementations of cloaking do not use it as a determining
factor.

To change your user agent in your browser, see http://johnbokma.com/mexit/2004/
04/24/changinguseragent.html (in Firefox) or http://winguides.com/registry/
display.php/799/ (for Internet Explorer).

More on Geo-Targeting
Geo-targeting is related to foreign search engine optimization in that it allows a site to tailor content to
various regions. For example, Google uses geo-targeting to redirect users of www.google.com to coun-
try-specific domains, which is a stated approval of IP delivery as an ethical practice. This is a stark con-
trast to Google’s current stated stance on cloaking.

Geo-targeting is regarded as ethical by all search engines. Matt Cutts of Google states (http://
www.mattcutts.com/blog/boston-pubcon-2006-day-1/#comment-22227) that “IP delivery
[for Geo-targeting] is fine, but don’t do anything special for Googlebot. Just treat it like a typical user visiting
the site.” However, because Google may use the actual physical location of your web server in the
ranking algorithms, it may be wise to use this technique to redirect your users to a server located
in their region, instead of simply changing the content. That is one example that is featured in this
chapter.

One obvious caveat with regard to geo-targeting is that it can be misled by VPNs and strange network
configurations in general that span multiple countries. This may be a concern, but it’s likely to affect a
small minority of users.

220

Chapter 11: Cloaking, Geo-Targeting, and IP Delivery

00929c11.qxd:00929c11 3/13/07 11:01 AM Page 220

A Few Words on JavaScript Redirect Cloaking
JavaScript cloaking is the (usually deceptive) use of redirecting a user to a different page with Java -
Script. Because spiders do not execute JavaScript, this used to be an effective method to feed spam
to search engines. Most notoriously, BMW of Germany was briefly removed from the German Google
search engine index. Matt Cutts states in his blog (http://www.mattcutts.com/blog/ramping-
up-on-international-webspam/) that “… our webspam team continued ramping up our anti-spam
efforts by removing bmw.de from our index …” And, although search engines do not generally execute
JavaScript, they do look for this technique.

Using JavaScript to implement cloaking is not advisable in our opinion, because it is really only useful for
spamming — in contrast to IP delivery–based cloaking. It also requires a totally new page to be imple-
mented, whereas IP delivery–based cloaking can effect small changes in presentation, as you’ll see in
the examples.

The most trivial implementation of Java redirect cloaking is one that simply changes the location of a
page via JavaScript. Following is an example of JavaScript redirect cloaking code:

<script language=’javascript’>
<!--
document.location = ‘http://www.example.com/new_location.html’;
-->
</script>

In practice, different methods are used to obscure this code from a search engine’s view to make it more
difficult to detect. Because this method is almost always used for spamming, it is not discussed further.

The Ethical Debate on Cloaking
Very few areas of search engine optimization evoke as much debate as cloaking. Dan Thies states that
“cloaking is a very risky technique.” He also states that “… the intent of cloaking is to deceive search engines.”
This is a statement with which we do not entirely agree. In the opinion of many, there are legitimate uses
of cloaking. In practice, Yahoo! and MSN are relatively ambivalent regarding cloaking for non-deceptive
purposes.

Google, at the time of writing this text, states unequivocally in its terms of service that cloaking is not
within its guidelines regardless of intent. In its webmaster guidelines at http://www.google.com/
support/webmasters/bin/answer.py?answer=40052 Google says that “… cloaking … may result
in removal from our index.”

Dan Thies states that “we do not consider IP cloaking to be an acceptable technique for professionals to
associate themselves with.” We take a milder view, especially in light of recent developments.

Recently, Google has also shown some ambivalence in actual enforcement of this principle. In particular,
the New York Times cloaks content. In short, it shows a search engine spider the entirety of a news article,
but only shows the abstract to a regular user. Human users must pay to be able to see the same content a
search engine can read. The New York Times uses IP delivery–based cloaking to do this.

221

Chapter 11: Cloaking, Geo-Targeting, and IP Delivery

00929c11.qxd:00929c11 3/13/07 11:01 AM Page 221

The New York Times clearly uses IP delivery–based cloaking, and does not pay attention to the user
agent. If that were not the case, users could spoof their user agent and get a free subscription. We tried
it. It doesn’t work.

Meanwhile, Matt Cutts of Google states “Googlebot and other search engine bots can only crawl the free por-
tions that non-subscribed users can access. So, make sure that the free section includes meaty content that offers
value.” Danny Sullivan, editor of SearchEngineWatch, states with regard to the New York Times:

“Do I think the NYT is spamming Google? No. Do I think they are cloaking? Yes. Do I think they
should be banned because Google itself warns against cloaking? No. I’ve long written that Google
guidelines on that are outdated. To be honest, it’s a pretty boring issue to revisit, very 2004. The
NYT is just the latest in a string of big companies showing that cloaking in and of itself isn’t
necessarily bad.”

We don’t necessarily agree with this statement. Clicking a link in a SERP that gets you to a subscription
page is deceiving to users. Results of a search engine query are supposed to contain data relevant to what
the user has searched for. We leave the assessment to you.

Cloaking may be becoming more normatively acceptable recently, but it should still be avoided as the first
choice for solving a problem. Solutions that do not involve cloaking should be applied instead. Some of
this was previously discussed in Chapter 8. Cloaking is often suggested as a solution to preexisting sites
that use Flash or AJAX, and it is also the only way to implement indexed subscription-based content, as
in the New York Times example.

Examples of legitimate uses of cloaking — in our opinion — are demonstrated in this chapter.

Cloaking Dangers
Clearly, despite the fact that certain uses of cloaking are becoming accepted, it is still a risk, and it is likely
that if you are caught by Google for doing cloaking that it deems as unethical, your site will be banned.
There fore, if you do not own an extremely popular site whose ban would elicit a public response, and
you’re not willing to take a risk, cloaking should be avoided — at least for Google. Minor changes are
probably safe, especially for Yahoo! and MSN, as implemented in the exercise that follows, where you
replace a figure with text.

It is, however, very difficult to define the meaning of “minor change,” and a ban may still occur in the
worst case. As aforementioned, http://bmw.de was reincluded in the index in a matter of days; how-
ever, in practice, for a smaller business, it would likely be much more devastating and take more time
to get reincluded after such a ban. The cloaking toolkit provided in this chapter allows you to cloak for
some search engines and not others. We cannot comment further, because it is a very complex set of
decisions. Use your own judgment.

Using the Meta Noarchive Tag
One problem that arises with cloaking is that the cache feature provided by most major search engines
would display the cloaked version to human visitors, instead of the version they are intended to see.
Need less to say, this is probably not what you want for several reasons — among them, that it conve-
niently indicates to your competitors that you are cloaking.

222

Chapter 11: Cloaking, Geo-Targeting, and IP Delivery

00929c11.qxd:00929c11 3/13/07 11:01 AM Page 222

To prevent this, the following meta tag should be added to the <head> section of all cloaked documents:

<meta name=”robots” content=”noarchive” />

If you are cloaking only for a specific spider, you can use a tag like the following. (This can also be applied
for noindex,nofollow, as shown in Chapter 5.)

<meta name=”googlebot” content=”noarchive” />

This prevents the cache from being stored or displayed to users. The New York Times also notably uses
this tag to prevent people from reading its content through the search engines’ cache.

Implementing Cloaking
In this upcoming exercise you’re implementing a simple cloaking library, in the form of a class named
SimpleCloak. This class will have two functions that you can access from your web applications:

❑ updateAll() updates your cloaking database with search engine IP and user agent data

❑ ipSpider() verifies if the visitor is a search engine spider

The cloaking data is retrieved from Dan Kramer’s iplists.com. Kudos to Dan to providing such a use-
ful set of data for everyone to use!

To test the SimpleCloak library, you’ll create a script named cloaking_test.php, which will have the
output shown in Figure 11-1 if read by a “normal” visitor, and the output shown in Figure 11-2 when
read by a search engine.

Figure 11-1

223

Chapter 11: Cloaking, Geo-Targeting, and IP Delivery

00929c11.qxd:00929c11 3/13/07 11:01 AM Page 223

Figure 11-2

Let’s write some code, then!

Implementing Cloaking
1. This example uses the cURL library. If you’ve prepared Apache and PHP as instructed in

Chapter 1, you should have cURL installed, otherwise it may not be enabled. To enable cURL,
open the php.ini configuration file (located by default in \xampp\apache\bin), uncomment
the following line by removing the leading semicolon, and then restart Apache:

extension=php_curl.dll

2. You need to prepare the simple_cloak database table, which still store the search engine IPs.
Make sure you’ve configured your MySQL database as described in Chapter 1. Then open a
Command Prompt window, and navigate to the mysql\bin folder using a command like this:

cd \Program Files\xampp\mysql\bin

3. Connect to your MySQL server using the following command, and type the seomaster pass-
word when asked. (If you chose another password when creating the user, type that password
instead.)

mysql -u seouser –p

Note that you can use your tool of choice to connect to the database server, instead of the command-line
utility. For example, you can use phpMyAdmin, which in a default XAMPP installation is accessible
via http://localhost/phpmyadmin/. The following steps will have the same effect no matter how
you’ve connected to MySQL.

4. Type the following command to connect to the seophp database:

use seophp;

5. Create the cloak_data and cloak_update tables by typing the following SQL command:

CREATE TABLE `cloak_data` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`spider_name` VARCHAR(255) NOT NULL DEFAULT ‘’,
`record_type` ENUM(‘UA’,’IP’) NOT NULL DEFAULT ‘UA’,
`value` varchar(255) NOT NULL DEFAULT ‘’,
PRIMARY KEY (`id`),
KEY `value` (`value`)

224

Chapter 11: Cloaking, Geo-Targeting, and IP Delivery

00929c11.qxd:00929c11 3/13/07 11:01 AM Page 224

);
CREATE TABLE `cloak_update` (
`version` VARCHAR(255) NOT NULL,
`updated_on` DATETIME NOT NULL

);

6. Type exit to exit the MySql console. After executing these commands, your console should
look like shown in Figure 11-3.

Figure 11-3

7. Add the following highlighted constants to your seophp/include/config.inc.php file. (If you
don’t have the file from the previous exercises in this book, create it now with these contents.)

<?php
// defines database connection data
define(“DB_HOST”, “localhost”);
define(“DB_USER”, “seouser”);
define(“DB_PASSWORD”, “seomaster”);
define(“DB_DATABASE”, “seophp”);
?>

8. Create a new file named simple_cloak.inc.php in your seophp/include folder, and type
the following code:

<?php

/*
// +---+
// | SimpleCloak |
// | Class for cloaking content |
// | http://www.SEOEgghead.com |
// +---+

225

Chapter 11: Cloaking, Geo-Targeting, and IP Delivery

00929c11.qxd:00929c11 3/13/07 11:01 AM Page 225

// | Copyright (c) 2005-2006 Jaimie Sirovich and Cristian Darie |
// +---+
*/

// load configuration file
require_once(‘config.inc.php’);

class SimpleCloak
{
// returns the confidence level
function isSpider($spider_name = ‘’, $check_uas = true, $check_ips = true)
{
// default confidence level to 0
$confidence = 0;

// matching user agent?
if ($check_uas)
if (SimpleCloak::_get(0, $spider_name, ‘UA’, $_SERVER[‘HTTP_USER_AGENT’]))
$confidence += 2;

// matching IP?
if ($check_ips)
if (SimpleCloak::_get(0, $spider_name, ‘IP’, ‘’, $_SERVER[‘REMOTE_ADDR’]))
$confidence += 3;

// return confidence level
return $confidence;

}

// retrieve cloaking data filtered by the supplied parameters
function _get($id = 0, $spider_name = ‘’, $record_type = ‘’,

$value = ‘’, $wildcard_value = ‘’)
{
// by default, retrieve all records
$q = “ SELECT cloak_data.* FROM cloak_data WHERE TRUE “;

// add filters
if ($id) {
$id = (int) $id;
$q .= “ AND id = $id “;

}
if ($spider_name) {
$spider_name = mysql_escape_string($spider_name);
$q .= “ AND spider_name = ‘$spider_name’ “;

}
if ($record_type) {
$record_type = mysql_escape_string($record_type);
$q .= “ AND record_type = ‘$record_type’ “;

}
if ($value) {
$value = mysql_escape_string($value);
$q .= “ AND value = ‘$value’ “;

}

226

Chapter 11: Cloaking, Geo-Targeting, and IP Delivery

00929c11.qxd:00929c11 3/13/07 11:01 AM Page 226

if ($wildcard_value) {
$wildcard_value = mysql_escape_string($wildcard_value);
$q .= “ AND ‘$wildcard_value’ LIKE CONCAT(value, ‘%‘) “;

}

// Connect to MySQL server
$dbLink = mysql_connect(DB_HOST, DB_USER, DB_PASSWORD)

or die(“Could not connect: “ . mysql_error());

// Connect to the seophp database
mysql_select_db(DB_DATABASE) or die(“Could not select database”);

// execute the query
$tmp = mysql_query($q);

// close database connection
mysql_close($dbLink);

// return the results as an associative array
$rows = array();
while ($_x = mysql_fetch_assoc($tmp)) {
$rows[] = $_x;

}
return $rows;

}

// updates the entire database with fresh spider data, but only if our data is
// more than 7 days old, and if the online version from iplists.org has changed
function updateAll()
{
// Connect to MySQL server
$dbLink = mysql_connect(DB_HOST, DB_USER, DB_PASSWORD)

or die(“Could not connect: “ . mysql_error());

// Connect to the seophp database
mysql_select_db(DB_DATABASE) or die(“Could not select database”);

// retrieve last update information from database
$q = “SELECT cloak_update.* FROM cloak_update”;
$tmp = mysql_query($q);
$updated = mysql_fetch_assoc($tmp);
$db_version = $updated[‘version’];
$updated_on = $updated [‘updated_on’];

// get the latest update more recent than 7 days, don’t attempt an update
if (isset($updated_on) &&

(strtotime($updated_on) > strtotime(“-604800 seconds”)))
{
// close database connection
mysql_close($dbLink);
// return false to indicate an update wasn’t performed
return false;

}

227

Chapter 11: Cloaking, Geo-Targeting, and IP Delivery

00929c11.qxd:00929c11 3/13/07 11:01 AM Page 227

// read the latest iplists version
$version_url = ‘http://www.iplists.com/nw/version.php’;
$latest_version = mysql_escape_string(file_get_contents($version_url));

// if no updated version information was retrieved, abort
if (!$latest_version)
{
// return false to indicate an update wasn’t performed
return false;

}

// save the update data
$q = “DELETE FROM cloak_update”;
mysql_query($q);
$q = “INSERT INTO cloak_update (version, updated_on) “ .

“VALUES(‘$latest_version’, NOW())“;
mysql_query($q);

// if we already have the current data, don’t attempt an update
if ($latest_version == $db_version)
{
// close database connection
mysql_close($dbLink);
// return false to indicate an update wasn’t performed
return false;

}

// update the database
SimpleCloak::_updateCloakingDB(‘google’,

‘http://www.iplists.com/nw/google.txt’);
SimpleCloak::_updateCloakingDB(‘yahoo’,

‘http://www.iplists.com/nw/inktomi.txt’);
SimpleCloak::_updateCloakingDB(‘msn’,

‘http://www.iplists.com/nw/msn.txt’);
SimpleCloak::_updateCloakingDB(‘ask’,

‘http://www.iplists.com/nw/askjeeves.txt’);
SimpleCloak::_updateCloakingDB(‘altavista’,

‘http://www.iplists.com/nw/altavista.txt’);
SimpleCloak::_updateCloakingDB(‘lycos’,

‘http://www.iplists.com/nw/lycos.txt’);
SimpleCloak::_updateCloakingDB(‘wisenut’,

‘http://www.iplists.com/nw/wisenut.txt’);

// close connection
mysql_close($dbLink);

// return true to indicate a successful update
return true;

}

// update the database for the mentioned spider, by reading the provided URL
function _updateCloakingDB($spider_name, $url,

$ua_regex = ‘/^# UA “(.*)“$/m’, $ip_regex = ‘/^([0-9.]+)$/m’)

228

Chapter 11: Cloaking, Geo-Targeting, and IP Delivery

00929c11.qxd:00929c11 3/13/07 11:01 AM Page 228

{
// use cURL to read the data from $url
// NOTE: additional settings are required when accessing the web through a proxy
$ch = curl_init();
curl_setopt ($ch, CURLOPT_URL, $url);
curl_setopt ($ch, CURLOPT_HEADER, 1);
curl_setopt ($ch, CURLOPT_RETURNTRANSFER, 1);
curl_setopt ($ch, CURLOPT_FOLLOWLOCATION, 1);
curl_setopt ($ch, CURLOPT_TIMEOUT, 60);
$result = curl_exec($ch);
curl_close($ch);

// use _parseListURL to parse the list of IPs and user agents
$lists = SimpleCloak::_parseListURL($result, $ua_regex, $ip_regex);

// if the user agents and IPs weren’t retrieved, we cancel the update
if (!$lists[‘ua_list’] || !$lists[‘ip_list’]) return;

// lock the cloack_data table to avoid concurrency problems
mysql_query(‘LOCK TABLES cloak_data WRITE’);

// delete all the existing data for $spider_name
SimpleCloak::_deleteSpiderData($spider_name);

// insert the list of user agents for the spider
foreach ($lists[‘ua_list’] as $ua) {
SimpleCloak::_insertSpiderData($spider_name, ‘UA’, $ua);

}

// insert the list of IPs for the spider
foreach ($lists[‘ip_list’] as $ip) {
SimpleCloak::_insertSpiderData($spider_name, ‘IP’, $ip);

}

// release the table lock
mysql_query(‘UNLOCK TABLES’);

}

// helper function used to parse lists of user agents and IPs
function _parseListURL($data, $ua_regex, $ip_regex)
{
$ua_list_ret = preg_match_all($ua_regex, $data, $ua_list);
$ip_list_ret = preg_match_all($ip_regex, $data, $ip_list);
return array(‘ua_list’ => $ua_list[1], ‘ip_list’ => $ip_list[1]);

}

// inserts a new row of data to the cloaking table
function _insertSpiderData($spider_name, $record_type, $value)
{
// escape input data
$spider_name = mysql_escape_string($spider_name);
$record_type = mysql_escape_string($record_type);
$value = mysql_escape_string($value);

229

Chapter 11: Cloaking, Geo-Targeting, and IP Delivery

00929c11.qxd:00929c11 3/13/07 11:01 AM Page 229

// build and execute the INSERT query
$q = “INSERT INTO cloak_data (spider_name, record_type, value) “ .

“VALUES (‘$spider_name’, ‘$record_type’, ‘$value’)“;
mysql_query($q);

}

// delete the cloaking data for the mentioned spider
function _deleteSpiderData($spider_name)
{
// escape input data
$spider_name = mysql_escape_string($spider_name);

// build and execute the DELETE query
$q = “DELETE FROM cloak_data WHERE spider_name=’$spider_name’“;
mysql_query($q);

}
}
?>

9. Create a file named cloaking_prepare.php in your seophp folder, and type the following
code. This script only tests the functionality of SimpleCloak::updateAll(), which updates
the database with fresh data:

<?php

// load the SimpleCloak library
require_once ‘include/simple_cloak.inc.php’;

// update cloaking data and indicate the success status
if (SimpleCloak::updateAll())
{
echo “Cloaking database updated!”;

}
else
{
echo “Cloaking database was already up to date, or the update failed.”;

}

?>

10. Load http://seophp.example.com/cloaking_prepare.php. If everything works okay, the
page will not simply output “Cloaking database updated!” On any subsequent requests (before
a week elapses), the message should read “Cloaking database was already up to date, or the
update failed.”

11. However, your simple_cloak table from the seophp database should be populated with search
engine data. To view the contents of your simple_cloak table, you can use the phpMyAdmin
utility that ships with XAMPP. Load the utility through http://localhost/phpmyadmin/,
select the seophp database from the left pane, and click the Browse button for the simple_
cloak table. If everything worked alright, you should see the list of IPs in your table, as shown
in Figure 11-4.

230

Chapter 11: Cloaking, Geo-Targeting, and IP Delivery

00929c11.qxd:00929c11 3/13/07 11:01 AM Page 230

Figure 11-4

12. Now, to make effective use of your cloaking library, create a new file in your seophp folder,
named cloaking_test.php, and type this code in it:

<?php

// load the SimpleCloak library
require_once ‘include/simple_cloak.inc.php’;

// Use cloaking to render text instead of images
if (SimpleCloak::isSpider() >= 3)
{
echo ‘Tweety and Sylvester’;

}
else
{
echo ‘’;

}

?>

13. Create a folder named images in your seophp folder, and copy the tweety.jpg image from
the code download of the book to this folder.

231

Chapter 11: Cloaking, Geo-Targeting, and IP Delivery

00929c11.qxd:00929c11 3/13/07 11:01 AM Page 231

14. Load http://seophp.example.com/cloaking_test.php. Because you’re not a search
engine, you will be shown the picture of Tweety and Sylvester, as shown in Figure 11-1.

15. The simplest way to test what happens if you’re a search engine is to add your local IP to the
simple_cloak table. Use either the MySQL console or phpMyAdmin to connect to the seophp
database, and execute this query:

INSERT INTO cloak_data (spider_name, record_type, value)
VALUES (‘localtest’, ‘IP’, ‘127.0.0.1’)

16. Load http://seophp.example.com/cloaking_test.php again. This time the script will
think you’re a search engine, and will output the text “Tweety and Sylvester” instead of the
picture, as shown in Figure 11-2.

Implementing cloaking is basically a three-step process.

First, you needed to prepare the cloaking database and the cloaking library. The cloak_data table stores
data about search engine IPs and user agents, and the cloak_update table stores data about the last data-
base update. You use this latter table to store the time and version of your last update.

The SimpleCloak class contains two methods that you can use in your programs: updateAll() and
isSpider(). The updateAll() method retrieves data from www.iplists.com and saves it into the
local database — but not more often than once a week, and only when the version information retrieved
from www.iplists.com is different than that stored in your cloak_update table.

In the pages that need to implement cloaking, you use SimpleCloak::isSpider(), which returns a
positive number representing the “confidence” it has in the request being that of a spider. The confi-
dence has one of these values:

❑ 0 if neither the user agent nor the IP match that of a spider

❑ 2 if the user agent is that of a spider

❑ 3 if the IP address is that of a spider

❑ 5 if both the IP address and the user agent are that of a spider

In this example, you verified that the value is greater or equal than 3 to ensure that the IP address is
from a spider. Also, note that isSpider() may optionally receive a number of optional parameters,
which you can use to have it verify if the visitor is a particular spider, and/or check only the user
agent or the IP address.

Cloaking Case Studies
Following are a few typical scenarios where cloaking could be used:

❑ Rendering text images as text

❑ Redirecting excluded content to a non-excluded equivalent

232

Chapter 11: Cloaking, Geo-Targeting, and IP Delivery

00929c11.qxd:00929c11 3/13/07 11:01 AM Page 232

❑ Feeding subscription-based content only to the spider (New York Times example)

❑ Using cloaking to disable URL-based session handling (trans_sid) for spiders

Rendering Images as Text
Unfortunately, as discussed in Chapter 6, the use of graphics containing text is detrimental to search
engine optimization. The reasoning is simple — search engines cannot read the graphics contained by
text. So one obvious ethical use of cloaking would be to detect if a user agent is a spider, and replace
the images with the text included by the said image. Using the cloaking toolkit in this chapter, it would
be implemented as follows:

require_once(‘include/simple_cloak.inc.php’);
if (SimpleCloak::isSpider())
{
echo ‘Wacky Widget Model XX’;

}
else
{
echo ‘’;

}

We will note, however, that sIFR is likely a better solution to this problem for text headings, because it
does not entail the same risk. sIFR is discussed in detail in Chapter 6.

Redirecting Excluded Content
As discussed in Chapter 5, if you have, for example, a product in three categories, it will usually result in
two almost identical pages with three different URLs. This is a fundamental duplicate content problem.
In Chapter 3 we suggested the concept of a “primary category,” and then proceeded to exclude the non-
primary pages using robots.txt or meta-exclusion. The cloaking variation is to simply 301 redirect all
non-primary pages to the primary page if the user agent is a spider.

This example is demonstrated in Chapter 14 in the sample e-commerce store catalog.

Feeding Subscription-Based Content Only to Spiders
This is the New York Times example. In this case, the code would detect if a user agent is a spider, then
echo either a substring of the content if the user agent is human, or the entire content if it is a spider.
Using the cloaking toolkit in this chapter, it would be implemented as follows:

if (SimpleCloak::isSpider())
{
echo $content;

}
else
{
echo substr($content, 0, 100);

}

233

Chapter 11: Cloaking, Geo-Targeting, and IP Delivery

00929c11.qxd:00929c11 3/13/07 11:01 AM Page 233

Disabling URL-Based Session Handling for Spiders
As discussed in Chapter 5, PHP’s trans_sid feature, which performs automatic modification of URLs
and forms to include session variables, is used to preserve session state for those users who do not
accept cookies. However, this has the side effect of sending spiders a potentially infinite amount of
duplicate content. For this reason, nowadays many web sites turn this feature off altogether.

However, because this feature can be turned on and off dynamically in PHP code, cloaking can be employed
to dynamically turn it on and off based on whether the visitor is a human or a search engine spider. This
allows the site to both accommodate users, but not confuse a spider when it visits with an infinite number
of semantically meaningless URL-variations containing different session IDs. Using the cloaking toolkit in
this chapter, it would be implemented as follows:

This code should be placed at the top of a PHP script, and before any headers or output is sent to the client.

if (SimpleCloak::isSpider())
{
ini_set (‘session.use_trans_sid’, 0);

}
else
{
ini_set (‘session.use_trans_sid’, 1);

}
session_start();

Obviously, your site must also not require a session to be functional either — because search engines will
not accept cookies regardless.

Other Cloaking Implementations
The preceding implementation of cloaking works if you have the source code to your application and you
are willing and able to modify it. If not, there are cloaking toolkits that allow you to easily and dynami-
cally serve different content to various user agents. One such toolkit is KloakIt from Volatile Graphix, Inc.
You can find it at http://www.kloakit.com. It is written by and utilizes the same cloaking data used as
provided by Dan Kramer.

Implementing Geo-Targeting
Geo-targeting isn’t very different than cloaking — so you’ll probably feel a little déjà vu as you read this
section. After creating the database table geo_target_data, you’ll create a class named SimpleGeoTarget
that includes the necessary geo-targeting features.

234

Chapter 11: Cloaking, Geo-Targeting, and IP Delivery

00929c11.qxd:00929c11 3/13/07 11:01 AM Page 234

The SimpleGeoTarget class contains three methods to be used by an application:

❑ getRegion() receives an optional IP address, and returns the country code of that IP. If no IP is
specified, the method returns the region of the current visitor.

❑ isRegion() receives a region code and an optional IP address. It returns true if the region code
corresponds to the region of the IP address, or false otherwise. If no IP address is provided, the
address of the current visitor is used.

❑ importGeoTargetingData() loads MaxMind’s geo-targeting file into your geo_target_data
database table.

Because the geo-targeting database isn’t likely to change as frequently as search engine spider data, in
this case you won’t implement an automatic update feature. Instead, the exercise assumes that you’ll
populate your database with geo-targeting data once, and then update periodically.

You’ll use the free geo-target database provided by MaxMind (http://www.maxmind.com/).

At the end of the exercise you’ll test your geo-targeting library by displaying a geo-targeted welcome mes-
sage to your visitor. A person from the United States would get the greeting that’s shown in Figure 11-5,
and a person from Romania would be shown the message that appears in Figure 11-6.

Put this to work in the following exercise.

Figure 11-5

Figure 11-6

235

Chapter 11: Cloaking, Geo-Targeting, and IP Delivery

00929c11.qxd:00929c11 3/13/07 11:01 AM Page 235

Implementing Geo-Targeting
1. Connect to your seophp database, as you did in the previous exercise, and execute the following

SQL command. It will create the geo_target_data table:

CREATE TABLE `geo_target_data` (
`id` int(11) NOT NULL auto_increment,
`start_ip_text` varchar(15) NOT NULL default ‘’,
`end_ip_text` varchar(15) NOT NULL default ‘’,
`start_ip_numeric` bigint(20) NOT NULL default ‘0’,
`end_ip_numeric` bigint(20) NOT NULL default ‘0’,
`country_code` char(2) NOT NULL default ‘’,
`country_name` varchar(50) NOT NULL default ‘’,
PRIMARY KEY (`id`),
KEY `start_ip_numeric` (`start_ip_numeric`,`end_ip_numeric`),
KEY `country_code` (`country_code`)

);

2. Create a folder named geo_target_data in your seophp folder. Then download http://
www.maxmind.com/download/geoip/database/GeoIPCountryCSV.zip, and unzip the
file in the geo_target_data folder you’ve just created. You should end up with a file named
GeoIPCountryWhois.csv in your geo_target_data folder.

Note that we’re not including the GeoIPCountryWhois.csv file in the book’s code download. You
need to download and unzip that file for yourself even when using the code download.

3. Add the following constant definitions to your include/config.inc.php file:

<?php
// defines database connection data
define(“DB_HOST”, “localhost”);
define(“DB_USER”, “seouser”);
define(“DB_PASSWORD”, “seomaster”);
define(“DB_DATABASE”, “seophp”);

// the geo-targeting file name
define(‘GEO_TARGETING_CSV’, ‘geo_target_data/GeoIPCountryWhois.csv’);
?>

4. Create a new file named simple_geo_target.inc.php in your include folder, and type
this code:

<?php

/*
// +--+
// | SimpleGeoTarget |
// | Class for targeting content for specific geographical regions |
// | http://www.SEOEgghead.com |
// +--+
// | Copyright (c) 2004-2006 Jaimie Sirovich <jsirovic@gmail.com> |
// +--+
*/

236

Chapter 11: Cloaking, Geo-Targeting, and IP Delivery

00929c11.qxd:00929c11 3/13/07 11:01 AM Page 236

// load configuration file
require_once(‘config.inc.php’);

// simple geo-targeting class
class SimpleGeoTarget
{

// returns true if the specified ip is located in $country_code, false otherwise
function getRegion($ip = ‘’)
{
// retrieve the IP of the visitor if one wasn’t provided
$ip = ($ip) ? $ip : $_SERVER[‘REMOTE_ADDR’];

// transform the IP into its long version
$ip = sprintf(“%u”, ip2long($ip));

// build the SQL query that obtains the country code of the specified IP
$q = “SELECT geo_target_data.* FROM geo_target_data WHERE “ .

“start_ip_numeric <= $ip AND end_ip_numeric >= $ip”;

// connect to MySQL server
$dbLink = mysql_connect(DB_HOST, DB_USER, DB_PASSWORD)

or die(“Could not connect: “ . mysql_error());

// connect to the seophp database
mysql_select_db(DB_DATABASE) or die(“Could not select database”);

// execute the query
$tmp = mysql_query($q);
$result = mysql_fetch_assoc($tmp);

// close database connection
mysql_close($dbLink);

// return false if no database records for that IP were found
if (!$result) return false;

// return the region
return ($result[‘country_code’]);

}

// returns true if the specified IP is located in $country_code, false otherwise
function isRegion($country_code, $ip = ‘’)
{
// retrieve the region
$visitor_country_code = SimpleGeoTarget::getRegion($ip);

// return false if the region code couldn’t be found
if (!$visitor_country_code) return false;

// return true if the IP and the country code match, false otherwise
return ($country_code == $visitor_country_code);

}

237

Chapter 11: Cloaking, Geo-Targeting, and IP Delivery

00929c11.qxd:00929c11 3/13/07 11:01 AM Page 237

/* methods used for importing the geo-targeting database */

// imports MaxMind’s geo-targeting database into the geo_target_data table
function importGeoTargetingData()
{
// open the geo-targeting file
$csv_file_handle = fopen(GEO_TARGETING_CSV, ‘r’);

// continue only if the geo db file was opened successfully
if (!$csv_file_handle)
{
echo “Could not open the geodb file.”;
return;

}

// Connect to MySQL server
$dbLink = mysql_connect(DB_HOST, DB_USER, DB_PASSWORD)

or die(“Could not connect: “ . mysql_error());

// Connect to the seophp database
mysql_select_db(DB_DATABASE) or die(“Could not select database”);

// lock the simple_geo_target file for writing
mysql_query(‘LOCK TABLES simple_geo_target WRITE’);

// remove all existing entries from the table
$q = “DELETE FROM geo_target_data”;
mysql_query($q);

// parse each record from the geo-targeting file and save it to the database
while (($data = fgetcsv($csv_file_handle, 10000, “,”)) !== false)
{
SimpleGeoTarget::_insert($data[0], $data[1], $data[2],

$data[3], $data[4], $data[5]);
}

// unlock the tables
mysql_query(‘UNLOCK TABLES’);

// close database connection
mysql_close($dbLink);

// close the file handler
fclose($csv_file_handle);

}

function _insert($start_ip_text, $end_ip_text, $start_ip_numeric,
$end_ip_numeric, $country_code, $country_name)

{
// escape input data
$start_ip_text = mysql_escape_string($start_ip_text);
$end_ip_text = mysql_escape_string($end_ip_text);
$start_ip_numeric = mysql_escape_string($start_ip_numeric);
$end_ip_numeric = mysql_escape_string($end_ip_numeric);

238

Chapter 11: Cloaking, Geo-Targeting, and IP Delivery

00929c11.qxd:00929c11 3/13/07 11:01 AM Page 238

$country_code = mysql_escape_string($country_code);
$country_name = mysql_escape_string($country_name);

// build and execute the INSERT query
$q = “INSERT INTO geo_target_data (start_ip_text, end_ip_text “ .

“, start_ip_numeric, end_ip_numeric, country_code, country_name)“ .
“VALUES (‘$start_ip_text’, ‘$end_ip_text’, ‘$start_ip_numeric’, “ .
“‘$end_ip_numeric’, ‘$country_code’, ‘$country_name’)“;

mysql_query($q);
}

}
?>

5. Create a file named geo_targeting_prepare.php in your seophp folder, and type this code:

<?php

// load the geo-targeting library
require_once ‘include/simple_geo_target.inc.php’;

// update the geo-targeting database
SimpleGeoTarget::importGeoTargetingData();
echo “Geo-targeting database updated!”

?>

6. Load http://seophp.example.com/geo_targeting_prepare.php. It will take a while until
the geo-targeting database is copied into your database, so be patient. At the moment of writing,
there are approximately 60,000 records in the database. Once the process is finished, you should
get a message saying “Geo-targeting database updated!”

Note that the sample script simply deletes the old data and refreshes it with new data whenever it is run.

To test that the geo_target_data table was populated correctly, you can open it for browsing
using phpMyAdmin, as shown in Figure 11-7.

7. Test the geo-targeting library now with a real example! Create a file named get_targeting_
test.php in your seophp folder, and type this code in:

<?php

// load the SimpleGeoTarget library
require_once ‘include/simple_geo_target.inc.php’;

// display geo-targeted welcome message
if (SimpleGeoTarget::isRegion(“RO”))
{
echo “Welcome, visitor from Romania!”;

}
else if (SimpleGeoTarget::isRegion(“US”))
{
echo “Welcome, visitor from United States!”;

}
else if (!SimpleGeoTarget::getRegion())

239

Chapter 11: Cloaking, Geo-Targeting, and IP Delivery

00929c11.qxd:00929c11 3/13/07 11:01 AM Page 239

{
echo “Welcome, visitor! We couldn’t find your country code!” ;

}
else
{
echo “Welcome, visitor! Your country code is: “ . SimpleGeoTarget::getRegion();

}

?>

8. Now, if Jaimie from the United States loaded this script, he would get the output shown in
Figure 11-5. If Cristian loaded the same script, he would get the output shown in Figure 11-6.

Figure 11-7

In this exercise you presented different output depending on the country the visitor is from. Another popu-
lar use of geo-targeting involves redirecting visitors to localized web sites depending on their region. This
example is analogous to the example of Google’s practice of redirecting visitors from foreign countries from
www.google.com to their respective local version of Google.

Note that when loading the script from your local machine, your IP is 127.0.0.1, which
doesn’t belong to any country — so the message you’d get is “Welcome, visitor! We
couldn’t find your country code!” To test your region, you need to supply your net-
work IP address as the second parameter of SimpleGeoTarget::isRegion(), or as
the first parameter to SimpleGeoTarget::getRegion().

240

Chapter 11: Cloaking, Geo-Targeting, and IP Delivery

00929c11.qxd:00929c11 3/13/07 11:01 AM Page 240

Here is an example of implementing this feature, using your simple geo-targeting library. To redirect
French users to http://fr.example.com, you’d need to do something like this:

if (SimpleGeoTarget::isRegion(‘FR’)) {
header(‘Location: http://fr.example.com’);
exit();

}

Summary
We hope you’ve had fun going through the exercises in this chapter! Although cloaking is a potential
minefield in search engine optimization, we have shown some of its relevant uses. Geo-targeting, on
the other hand, is a unanimously accepted practice that you can use to offer a more pleasant browsing
experience to your international visitors. Both, in turn, rely on IP-delivery technology to function.

241

Chapter 11: Cloaking, Geo-Targeting, and IP Delivery

00929c11.qxd:00929c11 3/13/07 11:01 AM Page 241

00929c11.qxd:00929c11 3/13/07 11:01 AM Page 242

Foreign Language SEO

Incidentally, the authors of this book are from two different countries. Jaimie is from the United
States and speaks English, along with some Hebrew and Spanish. Cristian is from Romania and
speaks Romanian, English, and some French. Why does this matter? There are concerns — both
from a language angle, as well as some interesting technical caveats — when one decides to target
foreign users with search engine marketing. This section reviews some of the most pertinent
factors in foreign search engine optimization.

As far as this book is concerned, “foreign” refers to anything other than the United States because
this book is published in the United States. We consider the UK to be foreign as well; and UK
English is a different language dialect, at least academically.

The Internet is a globalized economy. Web sites can be hosted and contain anything that the author
would like. Users are free to peruse pages or order items from any country. Regardless, for the most
part, a user residing in the United States would like to see widgets from the United States. And a user
in Romania would like to see widgets from Romania. It is also likely that a user in England would
prefer to see products from England, not the United States — regardless of the language being sub-
stantially the same. There are some exceptions, but in general, to enhance user experience, a search
engine may treat web sites from the same region in the same language as the user preferentially.

Foreign Language Optimization Tips
Needless to say, Internet marketing presents many opportunities; and nothing stops a search
engine marketer from targeting customers from other countries and/or languages. However,
he or she should be aware of a few things, and use all applicable cues to indicate properly to
the search engine which language and region a site is focused on.

First of all, if you aim at a foreign market, it is essential to employ a competent copywriting
service to author or translate your content to a particular foreign language. He or she should
know how to translate for the specific market you are targeting. American Spanish, for example,

00929c12.qxd:00929c12 3/13/07 10:45 AM Page 243

is somewhat different than Argentine Spanish. Even proper translation may be riddled with problems.
Foreign language search behavior often differs by dialect, and using the common terminology is key.

Indicating Language and Region
A webmaster should use the lang attribute in a meta tag, or inside an enclosing span or div tag in HTML.
Search engines may be able to detect language reasonably accurately, but this tag also provides additional
geographical information. The language codes es-mx, es-us, and es-es represent Spanish from Mexico,
the United States, and Spain, respectively. This is helpful, because a language dialect and region cannot be
detected easily, if at all, just by examining the actual copy. Here’s an example:

Use ‘CONTENT’ to indicate language in a particular text
region.

Or:

Use ‘<meta lang=”es-us”> in the header (“<head>”) section of the page to indicate
language of the entire page.

Table 12-1 lists a few examples of languages and region modifiers.

Table 12-1

You can find a complete list at http://www.i18nguy.com/unicode/language-identifiers.html.

Server Location and Domain Name
Search engines sometimes also use the actual geographic location of a web server as a cue in target market
identification, and hence determining rankings in that region. Therefore, it is desirable to locate your web
server in the same geographic region as is targeted. It is also desirable to use the country-code domain
applicable to your target country, but that is not necessary if a .com or .net domain is used.

Language Dialects

English en-AU (Australia), en-CA (Canada), en-GB (UK), en-US (United States), en-HK
(Hong Kong)

German de-AT (Austria), de-BE (Belgium), de-CH (Switzerland), de-DE (Germany)

French fr-CA (Canada), fr-CH (Switzerland), fr-FR (France), fr-MC (Monaco)

Spanish es-AR (Argentina), es-CU (Cuba), es-ES (Spain), es-MX (Mexico), es-US (United States)

Japanese ja (Japan)

244

Chapter 12: Foreign Language SEO

00929c12.qxd:00929c12 3/13/07 10:45 AM Page 244

The original domain suffixes — .com, .net, and so on — are not strictly U.S. domains and are somewhat
region-agnostic. For that reason, especially if the site is in English targeting UK individuals, it becomes
very important to use other cues to indicate what region the site targets. Using something other than a
.com or .net should be avoided for a differing region; that is, a .co.uk should probably not be used for
a Japanese site, despite the obvious language cues, and it certainly should not be used for an American
site, which would normally lack such cues.

A server’s physical location can be derived by IP using a database of IP range locations. You used such a
database in the geo-targeting example from Chapter 11. In the case of a UK site hosted on a .com domain,
it is important to check that the server is located in the UK, not just that the company has a presence in
the UK. You can check the location of a netblock using the tool at http://www.dnsstuff.com/tools/
ipall.ch?domain=xxx.xxx.xxx.xxx. Many hosting companies in the UK actually locate their servers
elsewhere in Europe due to high overhead in the UK.

Subdomains can be used on a .com or a .net domain name as a means to locate hosting elsewhere. So
instead of http://www.example.com/uk, http://uk.example.com could be used, and a sep-
arate server with a UK IP address could be employed. This is the only way to accomplish this, because
subfolders on a web server must be delivered by the same IP address/network.

Include the Address of the Foreign Location if Possible
This is an obvious factor that search engines are known to use for local search. Ideally, a web site would
have the address in the footer of every page.

Dealing with Accented Letters (Diacritics)
Many languages, including Spanish and most other European languages, have accented letters. In prac-
tice, especially on American keyboards, which lack the keys necessary to generate these characters, users
do not use the accented characters (that is, é vs. e). Yet some search engines, including Google, do distin-
guish, and they represent different words in an index, effectively.

Figure 12-1 shows a Google search on Mexico. You can access this page through http://www.google.com/
search?hl=en&q=Mexico. Figure 12-2 shows a search for México, through http://www.google.com/
search?hl=en&lr=&q=M%C3%A9xico. As you can see, the results are very different.

Google Trends also makes it clear that the two keywords have entirely different quantities of traffic, with
the unaccented version winning by a landslide. This is probably because Mexico itself is also an American
word, but it is clear that not all Spanish speakers use the accented spelling as well. Figure 12-3 shows
the Google Trends comparison between Mexico and México, which you can reach yourself at http://
www.google.com/trends?q=Mexico%2C+M%C3%A9xico.

URLs are particularly appropriate because it actually looks more professional to remove the accented
characters, because they are encoded in the URL and look confusing — that is, /Mexico.html versus
/M%C3%A9xico.html.

245

Chapter 12: Foreign Language SEO

00929c12.qxd:00929c12 3/13/07 10:45 AM Page 245

Figure 12-1

It may also be possible to use the unaccented characters in a misspelling in a heading, because that is nor-
matively acceptable in some languages. The following function normalizes accented characters in Western
European languages to their non-accented equivalents. It can be applied anywhere in code, including to
URL functions and code at the presentation level. You will apply it in the example e-commerce store for
URLs, both to make them more aesthetically pleasing, as well as to optimize for non-accent misspellings.
Following is a function that replaces accented characters with their non-accented equivalents. This func-
tion was originally found on http://us3.php.net/strtr:

function normalizeExtendedCharacters($str)
{
return strtr($str,
“\xe1\xc1\xe0\xc0\xe2\xc2\xe4\xc4\xe3\xc3\xe5\xc5”.
“\xaa\xe7\xc7\xe9\xc9\xe8\xc8\xea\xca\xeb\xcb\xed”.
“\xcd\xec\xcc\xee\xce\xef\xcf\xf1\xd1\xf3\xd3\xf2”.
“\xd2\xf4\xd4\xf6\xd6\xf5\xd5\x8\xd8\xba\xf0\xfa”.
“\xda\xf9\xd9\xfb\xdb\xfc\xdc\xfd\xdd\xff\xe6\xc6\xdf”,
“aAaAaAaAaAaAacCeEeEeEeEiIiIiIiInNoOoOoOoOoOoOoouUuUuUuUyYyaAs”);

}

246

Chapter 12: Foreign Language SEO

00929c12.qxd:00929c12 3/13/07 10:45 AM Page 246

Figure 12-2

Figure 12-3

247

Chapter 12: Foreign Language SEO

00929c12.qxd:00929c12 3/13/07 10:45 AM Page 247

Foreign Language Spamming
Google in particular has begun to focus more of its efforts on combating the foreign language
spamming that has been going on, mostly with impunity. Matt Cutts states in his blog at http://
www.mattcutts.com/blog/seo-mistakes-spam-in-other-languages/ that “In 2006, I expect
Google to pay a lot more attention to spam in other languages, whether it be German, French, Italian,
Spanish, Chinese, or any other language. For example, I have no patience for keyword-stuffed door-
way pages that do JavaScript redirects, no matter what the language.”

We expect all search engines to follow. Spanish, in particular, is the next front for search engine market-
ing, as well as Chinese; it would be wise, therefore, to avoid any spamming techniques in any language,
tempting though it may be. It may work now, but it will definitely be less successful in the future.

Summary
Ironically, one of the effects of globalization is the need for better localization efforts. The search engine
optimization strategies when dealing with foreign language web sites aren’t much different than with
dealing with .coms. Still, there are a few specific issues to keep in mind, and this chapter introduced
you to the most important of them.

248

Chapter 12: Foreign Language SEO

00929c12.qxd:00929c12 3/13/07 10:45 AM Page 248

Coping with
Technical Issues

This chapter deals with a few common technical issues that relate to SEO efforts:

❑ Unreliable hosting or DNS

❑ Changing hosting providers

❑ Cross-linking

❑ Split testing

❑ Broken links (and how to detect them)

Unreliable Web Hosting or DNS
It is common sense that if a web site is down it cannot get spidered, but we’ll state it regardless:
When a site is down, it cannot get spidered. And when your domain’s designated DNS is down, your
site cannot get spidered either — even if your web server is up. Reliable hosting and DNS, then, is
critical to your web site’s well-being. A web site that is down will irritate users and result directly
in fewer users visiting your web site. It may also reflect badly on your business, and users may not
be back. Likewise, if a search engine spider visits your web site and it does not respond after quite
a few unsuccessful attempts, it may result in your web site getting dropped from the index. For
this reason we recommend cutting costs elsewhere.

This underscores the need to find reliable hosting. In a field that is ultra-competitive, many web host-
ing providers choose to provide large amounts of bandwidth and features while compromising serv-
ice and support. Two dollars per month for hosting will likely get you just that — two dollars worth of
web hosting. A lot can be gleaned from the list compiled by NetCraft of “Hosting Providers’ Network

00929c13.qxd:00929c13 3/13/07 10:45 AM Page 249

Performance.” You can find this information at http://uptime.netcraft.com/perf/reports/
Hosters. There is also an abundance of specific information, including praises and gripes, at Web -
HostingTalk — http://www.webhostingtalk.com.

Most of the time, users opt to use a web hosting provider’s DNS. This may be wise, because they may
need to alter DNS records in order to move you to another server with another IP if the server your
web site is located on fails. However, domain providers (Network Solutions, GoDaddy, and so on)
have more recently begun to offer free managed DNS services as well. If you use managed DNS,
the hosting provider will not be able to change your domain’s records to reflect the new IP, and
your site will be down as a result. For this reason, we do not recommend using managed DNS
unless your provider is aware of it, and knows to notify you, so that you can change the records
yourself to reflect the new IP.

Changing Hosting Providers
Should the need exist to change hosting providers, the process must be completed in the proper order.
Not doing so may result in a time window where your site is unreachable; and this is clearly not desirable,
from both a general and SEO perspective. The focus of this elaborate process is to prevent both users and
search engines from perceiving that the site is gone — or in the case of virtual hosting, possibly seeing the
wrong site.

Virtual hosting means that more than one web site is hosted on one IP. This is commonplace,
because the world would run out of IPs very quickly if every web site had its own IP. The problem
arises when you cancel service at your old web hosting provider and a spider still thinks your site
is located at the old IP. In this case, it may see the wrong site or get a 404 error; and as you suspect,
this is not desirable.

The proper approach involves having your site hosted at both hosting providers for a little while. When
your site is 100% functional at the new hosting provider, DNS records should then be updated. If you
are using a managed DNS service, simply change the “A” records to reflect the new web server’s IP
address. This change should be reflected almost instantly, and you can cancel the web hosting service
at the old provider shortly thereafter. If you are using your old web hosting provider’s DNS, you
should change to the new hosting provider’s DNS. This change may take up to 48 hours to be fully
reflected throughout the Internet. Once 48 hours have passed, you can cancel your service at the old
hosting provider.

You do not have to follow these procedures exactly; the basic underlying concept is that there is a win-
dow of time where both users and spiders may still think your site is located at the old hosting provider’s
IP address. For this reason, you should only cancel after you are certain that that window of time has
elapsed.

One helpful hint to ease the process of moving your domain to a new web hosting provider is to edit
your hosts file to reflect the new IP on your local machine. This causes your operating system to use
the value provided in the file instead of using a DNS to get an IP address for the specified domains.

250

Chapter 13: Coping with Technical Issues

00929c13.qxd:00929c13 3/13/07 10:45 AM Page 250

This functionality was also used to set up the seophp.example.com domain. On Windows machines,
the file is located in C:\WINDOWS\system32\drivers\etc\hosts. Add the following lines:

xxx.xxx.xxx.xxx www.yourdomain.com
xxx.xxx.xxx.xxx yourdomain.com

This will let you access your web site at the new provider as if the DNS changes were already reflected.
Simply remove the lines after you are done setting up the site on the new web hosting provider’s server
to verify the changes have actually propagated.

If you have concerns about this procedure, or you need help, you may want to contact your new hosting
provider and ask for assistance. Explain your concerns, and hopefully they will be able to accommodate
you and put your mind at ease. If they are willing to work with you, it is a good indication that they are
a good hosting provider.

Cross-Linking
A typical spammer’s accoutrement consists of several thousand cross-linked web sites. These sites col-
lectively drive ad revenue from the aggregate of many usually obscure, but nevertheless queried search
terms. Many sites containing many key phrases have to be created to make his spam enterprise worth-
while. Originally, many spammers hosted all of the sites from one web hosting company, and, hence, the
same or similar IP addresses. Search engines caught on, and may have applied filters that devalue links
exchanged between the web sites within similar IP ranges. This made it much harder to spam, because a
spammer would need to host things at different ISPs to continue.

Similarly, it has been speculated that Google in particular, because it is a registrar that does not actually
sell domain names, looks at the records associated with domains. Yahoo! is also a registrar, so it may fol-
low suit; but it actually sells domains, so the intent is less clear.

In both cases, even if you are not a spammer, and you want to cross-link, it may be advisable to obscure the
relationship. Many larger web hosting companies have diverse ranges of IPs, and can satisfy your explicit
request for a different range. The information that is provided to a domain registrar is up to you, but if the
name and address do vary, the information must also be correct regardless. Otherwise you risk losing the
domain according to ICANN policies. There is also an option for private registration, which prevents
Google or Yahoo! from using an automated process to find relationships, at least. To check the registration
information for a domain, use a WHOIS tool such as the one at http://www.seoegghead.com/tools/
whois-search.php. Figure 13-1 shows the tool displaying the data for www.yahoo.com.

MSN Search has a useful feature that allows you to see all virtual hosts on one IP by the syntax of
IP:xxx.xxx.xxx.xxx. Multiple statements can be separated by OR to request a list of a range of IPs.
This lets you see who else is hosting in a range. Spam tends to travel in packs. Search engine algo-
rithms are also aware of this. The fact that the operator exists may be a tacit admission by Microsoft
that it does examine the sites in an IP range for some reason. See Figure 13-2 for an example, where
we examined the sites located at 66.39.117.78.

251

Chapter 13: Coping with Technical Issues

00929c13.qxd:00929c13 3/13/07 10:45 AM Page 251

Figure 13-1

Figure 13-2

252

Chapter 13: Coping with Technical Issues

00929c13.qxd:00929c13 3/13/07 10:45 AM Page 252

SEO-Aware Split Testing
Often, marketers want to create several variations on content for a particular URL in the interest of observ-
ing which one converts the best. It is typically an ongoing optimization process, and many different varia-
tions may be served over time to that end. This is called split testing.

The problem with split testing is that, if it isn’t implemented correctly, it may result in complex prob-
lems. When implementing changes on a page, there are actually three important effects to analyze:

1. The variation of the performance of the page in search results.

2. The variation in the page CTR.

3. The variation in the conversion rate for visitors that land on your page (the primary purpose of
split testing).

You don’t necessarily want to sacrifice CTR or rankings for higher conversion rates. But if you do split
testing, it’s good to be aware of these possible consequences.

This complicates matters, because it introduces other factors into the performance equation. For example,
if a page converts twice as well, but doesn’t rank at all, it may be a net loss for a web site that is driven by
organic search. Therefore, you must consider search engine optimization principles when making any
changes for split testing.

Ideally, all changes would be purely aesthetic. In most cases doing so would not affect the rankings or
CTR of the page — which would make it easier to analyze your results. If the changes are more profound,
such as changing the on-page content, the page search engine rankings can be influenced, and this must
also be taken into consideration as a performance factor.

One method employed to collect data for split testing is to randomly show page A or page B and track
conversion rates for each. Unfortunately, when done incorrectly, this practice can confuse search engines or
raise red flags. This is the other problem with split testing. At worst, implementing this will be perceived as
spamming and/or cloaking.

There are three different approaches to implement split testing:

1. Redirect requests for a page to other pages with variations randomly

2. Use internal program logic to display the variations randomly

3. Implement temporal split testing

The first two methods are similar in that they randomly display variations of a page. However, redirects
are not ideal in this situation because they may confuse search engines, and they should be avoided. There -
fore, we recommend using internal program logic. This is consistent with Matt Cutts’ recommendation in
his video http://video.google.com/videoplay?docid=1156145545372854697.

That implies some light programming. For example, if you have five versions of a web page, page[1..5]
.php, you can use include() to display its variations, like this:

$id = rand(1,5);
include(‘page’ . $id . ‘.php’);
// performance tracking code here

253

Chapter 13: Coping with Technical Issues

00929c13.qxd:00929c13 3/13/07 10:45 AM Page 253

The problem, regardless, is that if the pages are significantly different and served randomly, it might
actually be perceived as cloaking. Matt Cutts hinted at that in the aforementioned video.

Cloaking may be used to show only one version to a particular search engine. This eliminates the problem
whereby a certain version ranks better in search engines than others. It also eliminates the possibility that
it will be perceived as spam academically (so long as you’re not detected!). Yes, cloaking is being used
to prevent the perception of cloaking! However, we recommend doing this with a caution that Google
frowns upon it.

Either way, if you’re detected, you might be sent to the corner. For more information on cloaking, read
Chapter 11.

The last method, “temporal split testing,” is also safe, and extremely easy to implement. Simply collect
data for one timespan for A (perhaps a week), and again for B. However, doing so may be less accurate
and requires more time to make determinations.

So, in summary:

1. Don’t ignore the organic, possibly detrimental, effects of split testing.

2. Use internal program logic or temporal-based split testing. Do not use redirects.

3. You can use cloaking to show only one version to search engines, but Google frowns upon this
approach.

Detecting Broken Links
Broken links are telltale sign of a poorly designed site. The Google Webmaster Guidelines advise webmas-
ters to “Check for broken links and correct HTML.” There are a number of online tools that you can use
for checking links, such as the one at http://www.webmaster-toolkit.com/link-checker.shtml.

However, in many cases you’ll want to create your own tools for internal verification. To help you with
this task, in the following exercise you build a simple library in the form of a class named LinkChecker,
which verifies a given link for validity and provides additional information about that URL. The library
probably does more than would be strictly necessary for detecting broken links, but the extra functional-
ity may come in handy for other administrative purposes.

Because there’s quite a bit of code to write, the functionality is demonstrated through an exercise, and
how things work is explained afterwards.

Detecting Broken Links
1. Create a new file named link_checker.inc.php in the seophp/include folder. This file con-

tains the LinkChecker helper class. Type this code into the file:

<?php

$LINKCHECKER_total_str = ‘’;

254

Chapter 13: Coping with Technical Issues

00929c13.qxd:00929c13 3/13/07 10:45 AM Page 254

// +--+
// | LinkChecker |
// | Gets URL header data using cURL |
// +--+
// | Copyright (c) 2003 Jaimie Sirovich |
// +--+
// | Author: Jaimie Sirovich <jsirovic@gmail.com> |
// +--+

class LinkChecker
{
// helper function for the cURL request
function CURLOPT_WRITEFUNCTION($ch, $str)
{
global $LINKCHECKER_total_str;
$LINKCHECKER_total_str .= $str;
if (preg_match(‘/^(.*?)\r\n\r\n/s’, $LINKCHECKER_total_str, $matches))
{
echo $matches[1];
return -1;

}
else
{
return strlen($str);

}
}

// return the header data
function getHeader($url, $userAgent = “Mozilla/4.0”)
{
global $LINKCHECKER_total_str;
$LINKCHECKER_total_str = “”;
ob_start();
$ch = curl_init();
curl_setopt ($ch, CURLOPT_URL, $url);
curl_setopt ($ch, CURLOPT_USERAGENT, $userAgent);
curl_setopt ($ch, CURLOPT_HEADER, 1);
curl_setopt ($ch, CURLOPT_RETURNTRANSFER, 1);
curl_setopt ($ch, CURLOPT_FOLLOWLOCATION, 1);
curl_setopt ($ch, CURLOPT_TIMEOUT, 60);
curl_setopt ($ch, CURLOPT_WRITEFUNCTION,

array(“LinkChecker”, “CURLOPT_WRITEFUNCTION”));

$result = curl_exec($ch);
curl_close($ch);
return ob_get_clean();

}

// return response code
function parseResponseCode($str)
{
preg_match(‘/^HTTP\/\d\.\d (.{3})/‘, $str, $matches);
return (isset($matches[1]) ? $matches[1] : ‘(not available)‘);

}

255

Chapter 13: Coping with Technical Issues

00929c13.qxd:00929c13 3/13/07 10:45 AM Page 255

// return the MIME type
function parseMimeType($str)
{
preg_match(‘/Content-Type: (.*)/‘, $str, $matches);
return (isset($matches[1]) ? $matches[1] : ‘(not available)‘);

}

// return the Content-Length
function parseContentLength($str)
{
preg_match(‘/Content-Length: (.*)/‘, $str, $matches);
return (isset($matches[1]) ? $matches[1] : ‘(not available)‘);

}

// return the Location
function parseLocation($str)
{
preg_match(‘/Location: ?([^\r\n]*)/i’, $str, $matches);
return (isset($matches[1]) ? $matches[1] : ‘(not available)‘);

}

// return the path to the destination URL
function getPath($url, &$_response_code, $userAgent = ‘Mozilla/4.0’)
{
$_url = $url;
$path = array();
$path[] = ‘Initial destination ‘ . $_url;
$iterations = 0;

do
{
$_buffer = LinkChecker::getHeader($_url);
if (!$_buffer)
{
$path[] = ‘ERROR: Maximum number of redirections exceeded; aborting.’;
break;

}
$_url = LinkChecker::parseLocation($_buffer) ?

LinkChecker::parseLocation($_buffer) : $_url;
$_response_code = LinkChecker::parseResponseCode($_buffer);
$path[] = ($_response_code != 200 && $_response_code != 404) ?

(‘Redirect (‘ . $_response_code . ‘) to => ‘ . $_url) :
(‘Final destination (‘ . $_response_code . ‘) ‘ . $_url);

$iterations++;
if ($iterations > 10)
{
$path[] = ‘ERROR: Maximum number of redirections exceeded; aborting.’;
break;

}
}
while ($_response_code != ‘200’ && $_response_code != ‘404’);

256

Chapter 13: Coping with Technical Issues

00929c13.qxd:00929c13 3/13/07 10:45 AM Page 256

return $path;
}

}
?>

2. In the seophp folder, create a file named check_links.php with the following code. This is a
simple script created to demonstrate the functionality of the LinkChecker class:

<?php
// include link checker library
require_once ‘include/link_checker.inc.php’;
?>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd“>
<html>
<head>
<title>Professional Search Engine Optimization with PHP: Link Checker</title>

</head>
<body>
<h1>Professional Search Engine Optimization with PHP: Link Checker</h1>

<?php

// stablish the URL to analyze
$url = “http://www.cristiandarie.ro/pages/seophp.aspx“;

// retrieve URL data
$responseHeader = LinkChecker::getHeader($url);
$statusCode = LinkChecker::parseResponseCode($responseHeader);
$mimeType = LinkChecker::parseMimeType($responseHeader);
$contentLength = LinkChecker::parseContentLength($responseHeader);
$location = LinkChecker::parseLocation($responseHeader);
$path = LinkChecker::getPath($url, $responseCode);

// display URL request data
echo ‘URL: ‘ . $url . ‘
’;
echo ‘Response header: ‘ . $responseHeader . ‘
’;
echo ‘Response status code: ‘ . $statusCode . ‘
’;
echo ‘Response MIME type: ‘ . $mimeType . ‘
’;
echo ‘Response content length: ‘ . $contentLength . ‘
’;
echo ‘Response location: ‘ . $location . ‘
’;

// display the redirection path
echo ‘Path:
’;
for ($i = 0; $i < count($path); $i++)
{
echo ‘ ’ . $path[$i] . ‘
’;

}

// display the HTTP status code of the last request
echo ‘Final status code: ‘ . $responseCode . ‘
’;

257

Chapter 13: Coping with Technical Issues

00929c13.qxd:00929c13 3/13/07 10:45 AM Page 257

?>

</body>
</html>

3. It’s showtime! Feel free to change the value of the $url variable in check_links.php if you
want to check another URL, then load http://seophp.example.com/check_links.php.
The output should look like the one in Figure 13-3.

Figure 13-3

Figure 13-3 shows various data that the link library could provide about the input URL, http://
www.cristiandarie.ro/pages/seophp.aspx. As you can see, this URL does a 301 redirect to
http://www.cristiandarie.ro/seo-php/.

Basically, all you’re usually interested in is the final status code reached by this page. If it’s 200, then the
link is valid. This is the code that retrieves the last status code:

// stablish the URL to analyze
$url = “http://www.cristiandarie.ro/pages/seophp.aspx“;

// obtain redirection path
$path = LinkChecker::getPath($url, $responseCode);

// display the HTTP status code of the last request
echo ‘Final status code: ‘ . $responseCode . ‘
’;

258

Chapter 13: Coping with Technical Issues

00929c13.qxd:00929c13 3/13/07 10:45 AM Page 258

The getPath() method traces the path of a request and sets the second parameter to the final result
code subject to a limit of 10 redirections. You can use this class to audit lists of links around your site
or in a database and remove or flag dead links.

Apart from getPath(), the LinkChecker class has other useful methods as well, and the check_
links.php script uses them all. For example, the getHeader() method retrieves the header of the
URL sent as parameter. The result of this can be fed as parameter to parseResponseCode(), which
reads the header data and returns the HTTP status code by reading it from the header. Depending on
your requirements, an answer of 200, or a 301 or 302 that eventually leads to a 200 response, may be
acceptable.

Summary
This chapter talked about a few common technical problems that you may encounter when maintaining
your web sites. You’ve learned about the detrimental effects of unreliable web hosting providers (and
how to safely switch!), as well as the dangers of having cross-linked web sites in the same C class. You’ve
explored safe approaches to split-testing. At the end of the chapter you had your share of geek-fun, build-
ing the LinkChecker library. This chapter has finished covering all necessary background material. In the
next chapter you build a search engine–optimized cookie catalog. We hope you are hungry!

259

Chapter 13: Coping with Technical Issues

00929c13.qxd:00929c13 3/13/07 10:45 AM Page 259

00929c13.qxd:00929c13 3/13/07 10:45 AM Page 260

Case Study: Building
an E-Commerce Store

You’ve come a long way in learning how to properly construct a web site with regard to search
engine optimization. Now it is time to demonstrate and tie together what you have learned. This
chapter demonstrates an e-commerce store called “Cookie Ogre’s Warehouse.” This store sells all
sorts of cookies and pastries. You implement what relates to search engine optimization, but the
store will not have a functional shopping cart or checkout process.

In this chapter you:

❑ Develop a set of requirements for a simple product catalog

❑ Implement the product catalog using search engine–friendly methods

You’ll notice that the site you’re building in this chapter is very basic, and highlights only the most
important SEO-related principles taught in this book. The simplicity is necessary for the purposes
of this demonstration, because a complex implementation could easily be extended throughout an
entire book itself.

To learn how to build a real-world search engine–optimized product catalog from
scratch, and learn how to design its database and architectural foundations to allow
for future growth, see Cristian’s Beginning PHP and MySQL E-Commerce: From
Novice to Professional, 2nd edition (Apress, 2007).

00929c14.qxd:00929c14 3/13/07 10:46 AM Page 261

Establishing the Requirements
As with any other development project, you design your site based on a set of requirements. For Cookie
Ogre’s Warehouse, we’ve come up with this short list:

❑ The catalog contains products that are grouped into categories.

❑ A product can belong to any number of categories, and a category can contain many products.

❑ The properties of a product are name, price, description, the primary category that it is part of,
and an associated search engine brand.

❑ The properties of a category are: name.

❑ The properties of a brand are: name.

❑ The first page of the catalog contains links to the category pages. The page title should contain
the site name.

❑ A category page displays the category name, the site name, a link to the home page, and links to
the pages of the products in that category. The page title should contain the site name and the
category name.

❑ Category pages should have a maximum number of products it can display, and use a paging
feature to allow the visitors to browse the products on multiple pages.

❑ A product page must display the product name, price and a link to the storefront, a link to its
category, the product’s description, and the associated brand name and picture.

❑ All catalog pages must be accessible through keyword-rich URLs.

❑ If a catalog page is accessed through a URL other than the proper version, it should be automat-
ically 301 redirected to the proper version.

❑ Requests for index.php and index.html should be automatically 301 redirected to /.

❑ Canadian users should see the product price in CAD currency. All the other visitors should see
the price in USD.

❑ Because a product that is in multiple categories can be reached through more than one category
link, all the links except the one associated with its primary category must be excluded through
robots.txt.

Implementing the Product Catalog
Starting from the basic list of requirements depicted earlier, you’ve come to implement three catalog pages,
whose functionality is sustained by numerous helper scripts. The first catalog page is index.php, and it
looks as shown in Figure 14-1.

Clicking one of the category links gets you to category.php, which displays the details of the category,
including links to its products. The script is accessed — obviously — through a keyword-rich URL, so
the user will never know it’s a script named category.php that does all the work. Figure 14-2 shows
this script at work.

Clicking a product link in the category page loads the details page of that product, which looks like
Figure 14-3.

262

Chapter 14: Case Study: Building an E-Commerce Store

00929c14.qxd:00929c14 3/13/07 10:46 AM Page 262

Figure 14-1

Figure 14-2

Figure 14-3

263

Chapter 14: Case Study: Building an E-Commerce Store

00929c14.qxd:00929c14 3/13/07 10:46 AM Page 263

Now you see what we’re up to. Follow the steps of the exercise to implement it.

Creating Cookie Ogre’s Warehouse
1. In order to display different prices for Canadian users, you need geo-targeting functionality,

which was covered in Chapter 11. Because the exercise is quite long, the steps are not repeated
here. Please follow the geo-targeting exercise in Chapter 11 to create and populate the geo_
target_data table, and create the simple_geo_target.inc.php library.

2. Inside your seophp folder, create a folder named media. This folder needs to contain four files
named 1, 2, 3, and 4, which are the pictures of the search engine company logos — Google, Yahoo!,
Microsoft, and Ask. Then take files from the code download of this book, and copy them to your
media folder.

3. Now create the new necessary database structures. Connect to your database using either
phpMyAdmin or the MySQL console, like you did in the other database exercises in this
book. Then execute the following SQL commands, which create and populate with data from
the brands table:

CREATE TABLE `brands` (
`id` int(11) NOT NULL auto_increment,
`name` varchar(50) NOT NULL default ‘’,
PRIMARY KEY (`id`)

);

INSERT INTO `brands` (`id`, `name`) VALUES (1, ‘Google’);
INSERT INTO `brands` (`id`, `name`) VALUES (2, ‘Yahoo’);
INSERT INTO `brands` (`id`, `name`) VALUES (3, ‘Microsoft’);
INSERT INTO `brands` (`id`, `name`) VALUES (4, ‘Ask’);

4. Continue by executing these SQL commands, which create and populate the categories data
table:

CREATE TABLE `categories` (
`id` int(11) NOT NULL auto_increment,
`name` varchar(50) NOT NULL default ‘’,
PRIMARY KEY (`id`)

);

INSERT INTO `categories` (`id`, `name`) VALUES (1, ‘Chanukah’);
INSERT INTO `categories` (`id`, `name`) VALUES (2, ‘Christmas’);
INSERT INTO `categories` (`id`, `name`) VALUES (3, ‘Frosted’);
INSERT INTO `categories` (`id`, `name`) VALUES (4, ‘Low Sugar’);
INSERT INTO `categories` (`id`, `name`) VALUES (5, ‘Low Fat’);
INSERT INTO `categories` (`id`, `name`) VALUES (6, ‘High Protein’);
INSERT INTO `categories` (`id`, `name`) VALUES (7, ‘Fortune’);
INSERT INTO `categories` (`id`, `name`) VALUES (8, ‘Organic’);

5. Next you’re creating and populating the product_categories table, which contains associa-
tions between products and categories. Each record is formed of a product ID and a category ID:

CREATE TABLE `product_categories` (
`product_id` int(11) NOT NULL default ‘0’,
`category_id` int(11) NOT NULL default ‘0’,
PRIMARY KEY (product_id, category_id)

);

264

Chapter 14: Case Study: Building an E-Commerce Store

00929c14.qxd:00929c14 3/13/07 10:46 AM Page 264

INSERT INTO `product_categories` (product_id, category_id) VALUES (1, 3);
INSERT INTO `product_categories` (product_id, category_id) VALUES (2, 4);
INSERT INTO `product_categories` (product_id, category_id) VALUES (2, 5);
INSERT INTO `product_categories` (product_id, category_id) VALUES (3, 6);
INSERT INTO `product_categories` (product_id, category_id) VALUES (4, 2);
INSERT INTO `product_categories` (product_id, category_id) VALUES (4, 3);
INSERT INTO `product_categories` (product_id, category_id) VALUES (5, 1);
INSERT INTO `product_categories` (product_id, category_id) VALUES (6, 7);
INSERT INTO `product_categories` (product_id, category_id) VALUES (6, 8);
INSERT INTO `product_categories` (product_id, category_id) VALUES (6, 3);

6. The last table you’re creating is products. This contains data about each product sold by the
Cookie Ogre’s Warehouse:

CREATE TABLE `products` (
`id` int(11) NOT NULL auto_increment,
`brand_id` int(11) NOT NULL default ‘0’,
`name` varchar(255) NOT NULL default ‘’,
`price` double(8,2) NOT NULL default ‘0.00’,
`desc` text NOT NULL,
`primary_category_id` int(11) NOT NULL default ‘0’,
PRIMARY KEY (`id`)

);

INSERT INTO `products` VALUES (1, 1, ‘Matt Cutts’‘ Spam Flavored Cookie’, 2.00,
‘This delicious cookie tastes exactly like spam.’, 3);

INSERT INTO `products` VALUES (2, 2, ‘Jeremy Zawodny’‘s Snickerdoodles’, 3.00,
‘These cookies are the Zawodny Family secret recipe, passed down throughout the
generations. They are low fat and low sugar.’, 4);

INSERT INTO `products` VALUES (3, 3, ‘Bill Gates’‘ Cookie’, 999999.99, ‘These
cookies taste like... a million bucks. Note: before consuming, these cookies must
be activated by Microsoft.’, 6);

INSERT INTO `products` VALUES (4, 4, ‘Jeeve’‘s Favorite Frosted Cookie’, 2.00,
‘Shaped like a butler, sugar coated. Now in Christmas holiday colors.’, 3);

INSERT INTO `products` VALUES (5, 1, ‘Google Menorah Cookies’, 3.00, ‘Snatched from
one of the famed snack bars at Google while all of the employees were home. ‘, 1);

INSERT INTO `products` VALUES (6, 2, ‘Frosted Fortune Cookie’, 2.00, ‘Dipped
organic sugar.’, 7);

7. Now you need to create a file named config.inc.php, in your seophp/include folder, with
the following code. You should already have this file from the geo-targeting exercise; make sure
it contains the following constant definitions:

<?php
// site domain; no trailing ‘/‘ !
define(‘SITE_DOMAIN’, ‘http://seophp.example.com’);

// defines database connection data
define(‘DB_HOST’, ‘localhost’);

265

Chapter 14: Case Study: Building an E-Commerce Store

00929c14.qxd:00929c14 3/13/07 10:46 AM Page 265

define(‘DB_USER’, ‘seouser’);
define(‘DB_PASSWORD’, ‘seomaster’);
define(‘DB_DATABASE’, ‘seophp’);

// defines the number of products for paging
define(‘PRODUCTS_PER_PAGE’, 1);

// the geo-targeting file name
define(‘GEO_TARGETING_CSV’, ‘geo_target_data/GeoIPCountryWhois.csv’);
?>

8. Add the following mod_rewrite rules to the .htaccess file in your seophp folder:

RewriteEngine On

Redirect to correct domain if incorrect to avoid canonicalization problems
RewriteCond %{HTTP_HOST} !^seophp\.example\.com
RewriteRule ^(.*)$ http://seophp.example.com/$1 [R=301,L]

Redirect URLs ending in /index.php or /index.html to /
RewriteCond %{THE_REQUEST} ^GET\ .*/index\.(php|html)\ HTTP
RewriteRule ^(.*)index\.(php|html)$ /$1 [R=301,L]

Rewrite keyword-rich URLs for paged category pages
RewriteRule ^Products/.*-C([0-9]+)/Page-([0-9]+)/?$ category.php?category_id=$1& i
page=$2 [L]

Rewrite keyword-rich URLs for category pages
RewriteRule ^Products/.*-C([0-9]+)/?$ category.php?category_id=$1&page=1 [L]

Rewrite keyword-rich URLs for product pages
RewriteRule ^Products/.*-C([0-9]+)/.*-P([0-9]+)\.html$ /product.php?category_id=$1& i
product_id=$2&%{QUERY_STRING} [L]

Rewrite media files
RewriteRule ^.*-M([0-9]+)\..*$ /media/$1 [L]

Rewrite robots.txt
RewriteRule ^robots.txt$ /robots.php

9. Create include/url_factory.inc.php and add the following code. This file contains helper
functions that create links to product pages, category pages, and media files. You can also find a
function that does 301 redirects to the proper version of a URL if the visitor isn’t already there.

<?php
// include config file
require_once ‘config.inc.php’;

// redirects to proper category URL if not already there
function fix_url($proper_url)
{
// 301 redirect to the proper URL if necessary
if (SITE_DOMAIN . $_SERVER[‘REQUEST_URI’] != $proper_url)
{

266

Chapter 14: Case Study: Building an E-Commerce Store

00929c14.qxd:00929c14 3/13/07 10:46 AM Page 266

header(‘HTTP/1.1 301 Moved Permanently’);
header(‘Location: ‘ . $proper_url);
exit();

}
}

// prepares a string to be included in an URL
function _prepare_url_text($string)
{
// remove all characters that aren’t a-z, 0-9, dash, underscore or space
$NOT_acceptable_characters_regex = ‘#[^-a-zA-Z0-9_]#‘;
$string = preg_replace($NOT_acceptable_characters_regex, ‘’, $string);

// remove all leading and trailing spaces
$string = trim($string);

// change all dashes, underscores and spaces to dashes
$string = preg_replace(‘#[-_]+#‘, ‘-‘, $string);

// return the modified string
return $string;

}

// builds a category link
function make_category_url($category_name, $category_id, $page = 1)
{
// prepare the category name for inclusion in URL
$clean_category_name = _prepare_url_text($category_name);

// build the keyword-rich URL
$url = SITE_DOMAIN . ‘/Products/‘ .

$clean_category_name . ‘-C’ . $category_id . ‘/‘;

// add page number if page is different than 1
$url = ($page == 1) ? $url : $url . ‘Page-‘ . $page . ‘/‘;

// return the URL
return $url;

}

// builds a product link
function make_category_product_url($category_name, $category_id,

$product_name, $product_id)
{
// prepare the product name and category name for inclusion in URL
$clean_category_name = _prepare_url_text($category_name);
$clean_product_name = _prepare_url_text($product_name);

// build the keyword-rich URL
$url = SITE_DOMAIN . ‘/Products/‘ .

$clean_category_name . ‘-C’ . $category_id . ‘/‘ .
$clean_product_name . ‘-P’ . $product_id . ‘.html’;

267

Chapter 14: Case Study: Building an E-Commerce Store

00929c14.qxd:00929c14 3/13/07 10:46 AM Page 267

// return the URL
return $url;

}

// builds a link to a media file
function make_media_url($id, $name, $extension)
{
// prepare the medium name for inclusion in URL
$clean_name = _prepare_url_text ($name);

// build the keyword-rich URL
$url = SITE_DOMAIN . ‘/‘ . $clean_name . ‘-M’ . $id . ‘.’ . $extension;

// return the URL
return $url;

}
?>

10. Create include/database_tools.inc.php, and type the following code. This file contains a
class named DatabaseTools, which includes common database functionality, such as opening
and closing database connections. These functions are called from other classes that need to
read data from the database.

<?php
// load configuration file
require_once(‘config.inc.php’);

// database related tools
class DatabaseTools
{
// helper function used to filter data for the database
function dbIdentifier($str)
{
$stripped = preg_replace(‘/[^A-Z0-9_.]/i’, ‘’, $str);
$tmp = preg_replace(‘/(.+?)(\.|$)/‘, ‘`\\1`\\2’, $stripped);
return $tmp;

}

// connect to the database and return the connection handler
function getConnection()
{
// connect to MySQL server
$db_link = mysql_connect(DB_HOST, DB_USER, DB_PASSWORD);

// throw a 500 error if the database couldn’t be reached
if ($db_link === false)
{
header(‘HTTP/1.0 500 Internal Server Error’);
echo ‘Sorry, the Cookie Ogre lost his beloved Cookie Ogress, went bingeing

and ate all of our cookies; consequentially, we will be closed until Friday.’;
}

// Connect to the seophp database
mysql_select_db(DB_DATABASE) or die(“Could not select database”);

268

Chapter 14: Case Study: Building an E-Commerce Store

00929c14.qxd:00929c14 3/13/07 10:46 AM Page 268

// return the connection handler
return $db_link;

}

// close the database connection
function closeConnection($db_handler)
{
mysql_close($db_handler);

}
}
?>

11. Save the following code in include/catalog.inc.php. This file contains three classes: Brands,
Categories, and Products, which contain the functionality to read brand, category, and prod-
uct data from the database:

<?php
// load configuration file
require_once(‘config.inc.php’);
// load database tools
require_once(‘database_tools.inc.php’);

// Database class for handling brands
class Brands
{

// retrieve cloaking data filtered by the supplied parameters
function get($id = 0, $name = ‘’, $order_by = ‘’, $order_dir = ‘’)
{
// by default, retrieve all records
$q = “ SELECT brands.* FROM brands WHERE TRUE “;

// filter by brand ID
if ($id) {
$id = (int) $id;
$q .= “ AND id = $id “;

}

// filter by brand name
if ($name) {
$name = mysql_escape_string($name);
$q .= “ AND name = ‘$name’ “;

}

// add sorting options
if ($order_by) {
if ($order_dir !== ‘’ && !$order_dir) {
$order_q = ‘ DESC ‘;

} else {
$order_q = ‘ ‘;

}
$q .= “ ORDER BY “ . db_identifier($order) . $order_q;

}

269

Chapter 14: Case Study: Building an E-Commerce Store

00929c14.qxd:00929c14 3/13/07 10:46 AM Page 269

// get a database connection
$db_link = DatabaseTools::getConnection();

// execute the query
$query_results = mysql_query($q);

// close database connection
DatabaseTools::closeConnection($db_link);

// return the results as an associative array
$rows = array();
while ($result = mysql_fetch_assoc($query_results)) {
$rows[] = $result;

}
return $rows;

}

}

// Database class for handling categories
class Categories
{
// retrieves categories data filtered by the supplied parameters
function get($id = 0, $name = ‘’, $order_by = ‘’, $order_dir = ‘’)
{
// by default, retrieve all records
$q = “ SELECT categories.* FROM categories WHERE TRUE “;

// filter by category id
if ($id) {
$id = (int) $id;
$q .= “ AND id = $id “;

}

// filter by category name
if ($name) {
$name = mysql_escape_string($name);
$q .= “ AND name = ‘$name’ “;

}

// add sorting options
if ($order_by) {
if ($order_dir !== ‘’ && !$order_dir) {
$order_q = ‘ DESC ‘;

} else {
$order_q = ‘ ‘;

}
$q .= “ ORDER BY “ . DatabaseTools::dbIdentifier($order_by) . $order_q;

}

// get a database connection
$db_link = DatabaseTools::getConnection();

270

Chapter 14: Case Study: Building an E-Commerce Store

00929c14.qxd:00929c14 3/13/07 10:46 AM Page 270

// execute the query
$query_results = mysql_query($q);

// close database connection
DatabaseTools::closeConnection($db_link);

// return the results as an associative array
$rows = array();
while ($result = mysql_fetch_assoc($query_results)) {
$rows[] = $result;

}
return $rows;

}
}

// Database class for handling products
class Products
{
// retrieves products data filtered by the supplied parameters
function get($id = 0, $category_id = 0, $brand_id = 0, $name = ‘’)
{
// by default, retrieve all records
$q = “SELECT products.* FROM products WHERE TRUE “;

// filter by ID if the $id parameter was provided
if ($id) {
$id = (int) $id;
$q .= “ AND id = $id “;

}

// filter by product name if the $name parameter was provided
if ($name) {
$name = mysql_escape_string($name);
$q .= “ AND name = ‘$name’ “;

}

// filter by category ID if the category_id parameter was provided
if ($category_id) {
$category_id = (int) $category_id;
$q .= “ AND (SELECT COUNT(*) FROM product_categories “ .

“ WHERE product_categories.product_id = products.id “ .
“ AND product_categories.category_id = $category_id) “;

}

// filter by brand ID if the $brand_id parameter was provided
if ($brand_id) {
$brand_id = (int) $brand_id;
$q .= “ AND brand_id = $brand_id “;

}

// get a database connection
$db_link = DatabaseTools::getConnection();

271

Chapter 14: Case Study: Building an E-Commerce Store

00929c14.qxd:00929c14 3/13/07 10:46 AM Page 271

// execute the query
$query_results = mysql_query($q);

// close database connection
DatabaseTools::closeConnection($db_link);

// return the results as an associative array
$rows = array();
while ($result = mysql_fetch_assoc($query_results)) {
$rows[] = $result;

}
return $rows;

}
}
?>

12. Create a new file named simple_pager.inc.php in your include folder. Then write the
following code, which contains the SimplePager class. This class includes the functionality
to generate pager text and links:

<?php

// generates pager links
class SimplePager
{
var $_rows;
var $_limit;
var $_function_callback;
var $_page_number_parameter_index;
var $_max_listed_pages;
var $_previous_prompt;
var $_next_prompt;
var $_show_disabled_links;

// constructor
function SimplePager($rows, $limit, $function_callback,

$page_number_parameter_index = 1)
{
$this->_rows = $rows;
$this->_limit = $limit;
$this->_function_callback = $function_callback;
$this->_page_number_parameter_index = $page_number_parameter_index;
$this->_max_listed_pages = 10;
$this->_previous_prompt = ‘<< back’;
$this->_next_prompt = ‘next >>’;

}

// displays the pager links
function display($page_number = 1, &$rows, $additional_parameters = ‘’)
{
$offset = ($page_number - 1) * $this->_limit;
$row_count = sizeof($this->_rows);
$total_pages = ceil($row_count / $this->_limit);
$rows = array_slice($this->_rows, $offset, $this->_limit);

272

Chapter 14: Case Study: Building an E-Commerce Store

00929c14.qxd:00929c14 3/13/07 10:46 AM Page 272

// will contain the pager links
$links = array();

// display the “<< back” link
if ($page_number > 1)
{
$prev_page = $page_number - 1;
$links[] =
“<a href=’“ .
call_user_func_array($this->_function_callback,
array_merge($additional_parameters,
array($this->_page_number_parameter_index => $prev_page))) .

“‘>$this->_previous_prompt”;
}
else
{
// no “<< back” link if the visitor is on the first page
$links[] = $this->_previous_prompt;

}

// calculate the first and last listed pages
$start = floor($page_number / ($this->_max_listed_pages))

* $this->_max_listed_pages;
if (!$start) $start = 1;
$end = ($total_pages < $start + $this->_max_listed_pages - 1) ?

$total_pages : $start + $this->_max_listed_pages - 1;

// display pager links
for ($i = $start; $i <= $end; $i++)
{
// display links for all pages except the current one
if ($i != $page_number)
{
$links[] =
“<a href=’“ .
call_user_func_array($this->_function_callback,
array_merge($additional_parameters,
array($this->_page_number_parameter_index => $i))) .

“‘>$i”;
}
else
{
// no link for the current page
$links[] = $i;

}
}

// display “next >>” link
if ($page_number < $total_pages)
{
$next_page = $page_number + 1;
$links[] =
“<a href=’“ .
call_user_func_array($this->_function_callback,
array_merge($additional_parameters,

273

Chapter 14: Case Study: Building an E-Commerce Store

00929c14.qxd:00929c14 3/13/07 10:46 AM Page 273

array($this->_page_number_parameter_index => $next_page))) .
“‘>$this->_next_prompt”;

}
else
{
// no “next >>” link if the visitor is on the last page
$links[] = $this->_next_prompt;

}

// return the pager text
return implode(‘ | ‘, $links);

}
}
?>

13. It’s time to create index.php in your seophp folder, with the following code. This file generates
the first page of the catalog, displaying all the existing categories of the catalog:

<?php
// load the catalog library
require_once ‘include/catalog.inc.php’;
// load the URL factory
require_once ‘include/url_factory.inc.php’;

// retrieve the list of categories ordered by name
$categories = Categories::get(0, ‘’, ‘name’);
?>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title>Cookie Ogre’s Warehouse</title>

</head>
<body>
<h1>Cookie Ogre’s Warehouse</h1>
Browse our catalog by choosing a category of products:

<?php
// display each category
echo “”;
foreach ($categories as $category)
{
$url = make_category_url($category[‘name’], $category[‘id’]);
echo ‘’ .

‘’ . $category[‘name’] . ‘’ .
‘’;

}
echo “”
?>

</body>
</html>

274

Chapter 14: Case Study: Building an E-Commerce Store

00929c14.qxd:00929c14 3/13/07 10:46 AM Page 274

14. Now create category.php in your seophp folder. This script displays category details:

<?php
// load the catalog library
require_once ‘include/catalog.inc.php’;
// load the URL factory library
require_once ‘include/url_factory.inc.php’;
// load pager library
require_once ‘include/simple_pager.inc.php’;

// retrieve the category details
$category_id = $_GET[‘category_id’];
$categories = Categories::get($category_id);
$category = $categories[0];
$category_name = $category[‘name’];

// retrieve the page number; if none is provided, assume 1
$page = isset($_GET[‘page’]) ? $_GET[‘page’] : 1;

// redirect to the proper URL if necessary
$proper_url = make_category_url($category[‘name’], $category_id, $page);
fix_url($proper_url);

// retrieve the products in the category
$products = Products::get(0, $category_id);

// send a 404 if the category does not exist.
if (!$products) {
header(“HTTP/1.0 404 Not Found”);
exit();

}
?>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title><?php echo $category_name ?> - Cookie Ogre’s Warehouse</title>

</head>
<body>
<h1>
<?php echo $category_name ?> -
Cookie Ogre’s Warehouse

</h1>
Find these extraordinary products in our
<?php echo $category_name ?> category:

<?php
// load the URL factory
require_once ‘include/url_factory.inc.php’;

// display each product
echo “”;

275

Chapter 14: Case Study: Building an E-Commerce Store

00929c14.qxd:00929c14 3/13/07 10:46 AM Page 275

// calculate which products to display on this page
$start = ($page - 1) * PRODUCTS_PER_PAGE;
$end = min ($start + PRODUCTS_PER_PAGE, count($products));

// display the products for the current page
for ($i = $start; $i < $end; $i++)
{
$url = make_category_product_url($category_name, $category_id,

$products[$i][‘name’], $products[$i][‘id’]);
echo ‘’ .

‘’ . $products[$i][‘name’] . ‘’ .
‘’;

}
echo “”;

// use the SimplePager library to display the pager
$simple_pager = new SimplePager($products, PRODUCTS_PER_PAGE, ‘make_category_url’);
echo $simple_pager->display($page, $products, array($category_name, $category_id));
?>

</body>
</html>

15. Finally, create product.php in your seophp folder. This is the page that individual products
appear on:

<?php
// load the catalog library
require_once ‘include/catalog.inc.php’;
// load the URL factory
require_once ‘include/url_factory.inc.php’;
// load the SimpleGeoTarget library
require_once ‘include/simple_geo_target.inc.php’;

// retrieve the product details
$product_id = $_GET[‘product_id’];
$products = Products::get($product_id);
$product = $products[0];

// retrieve the category details and create the category link
$category_id = $_GET[‘category_id’];
$categories = Categories::get($category_id);
$category = $categories[0];
$category_url = make_category_url($category[‘name’], $category[‘id’]);

// redirect to the proper URL if necessary
$proper_url = make_category_product_url($category[‘name’], $category_id,

$product[‘name’], $product_id);
fix_url($proper_url);

// retrieve the brand details
$brand_id = $product[‘brand_id’];
$brands = Brands::get($brand_id);
$brand = $brands[0];

276

Chapter 14: Case Study: Building an E-Commerce Store

00929c14.qxd:00929c14 3/13/07 10:46 AM Page 276

$brand_image_url = make_media_url($brand_id, $brand[‘name’], ‘jpg’);

// send a 404 if the product or category does not exist
if (!$product || !$category) {
header(“HTTP/1.0 404 Not Found”);
exit();

}
?>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html>
<head>
<title><?php echo $product[‘name’] ?> - Cookie Ogre Warehouse</title>

</head>
<body>
<!— Display title, which includes link to the home page —>
<h1>
<?php echo $product[‘name’] ?> -
Cookie Ogre Warehouse

</h1>

<!— Display the product description —>
<p><?php echo $product[‘desc’];?></p>

<!— Display the brand logo —>
<p>
This cookie is brought to you by <?php echo $brand[‘name’]; ?>.

<img src=”<?php echo $brand_image_url; ?>”/>

</p>

<!— Display the product price —>
<p>Price:

<?php
// display price in CAD for canadian visitors, or in USD otherwise
if (SimpleGeoTarget::isRegion(“CA”))
echo $product[‘price’] * 1.17 . ‘ CAD’;

else
echo $product[‘price’] . ‘ USD’;

?>
</p>

View more products in our
<a href=”<?php echo $category_url; ?>”>
<?php echo $category[‘name’]; ?>

category.
</body>

</html>

16. The final step is to exclude the product links that aren’t in the primary category. Obtaining this data
isn’t extremely complicated, but it does involve a longer-than-usual SQL query. Also, although you
do not have a shopping cart, assume that you do and deliberately exclude it using robots.txt.
Otherwise, assuming your add-to-cart URLs look like /cart.php?action=add&product_id=5,

277

Chapter 14: Case Study: Building an E-Commerce Store

00929c14.qxd:00929c14 3/13/07 10:46 AM Page 277

you will create a duplicate shopping cart page per product. Create the following robots.php
file in your seophp folder. This file is already mapped to handle robots.txt requests using a
mod_rewrite rule:

<?php
// set propert content type
header(‘Content-type: text/plain’);

// include config file
require_once ‘include/config.inc.php’;
// load database tools
require_once(‘include/database_tools.inc.php’);
// load the URL factory
require_once ‘include/url_factory.inc.php’;

// this query returns product_id and secondary_category_id data which needs to be
// excluded using robots.txt
$q = ‘SELECT products.*, ‘ .

‘product_categories.category_id AS secondary_category_id, ‘ .
‘categories.name AS secondary_category_name ‘ .
‘FROM products LEFT JOIN product_categories ‘ .
‘ON (product_categories.product_id = products.id) ‘ .
‘LEFT JOIN categories ‘ .
‘ON (product_categories.category_id = categories.id) ‘ .
‘WHERE products.primary_category_id <> product_categories.category_id’;

// get a database connection
$db_link = DatabaseTools::getConnection();

// execute the query
$query_results = mysql_query($q);

// close database connection
DatabaseTools::closeConnection($db_link);

// create an associative array with the results
$rows = array();
while ($result = mysql_fetch_assoc($query_results)) {
$rows[] = $result;

}

// User agent
echo “User-agent: * \r\n”;

// display the links that need to be excluded
foreach ($rows as $row)
{
// get the category and product IDs
$product_id = $row[‘id’];
$category_id = $row[‘secondary_category_id’];
$product_name = $row[‘name’];
$category_name = $row[‘secondary_category_name’];

278

Chapter 14: Case Study: Building an E-Commerce Store

00929c14.qxd:00929c14 3/13/07 10:46 AM Page 278

// create disallow definition
$url = make_category_product_url($category_name, $category_id,

$product_name, $product_id);

$disallow = str_replace(SITE_DOMAIN, ‘’, $url);
echo “Disallow: “ . $disallow . “\r\n”;

}

?>
Disallow: /cart.php

17. That’s it! Load http://seophp.example.com and expect to see the page shown in Figure 14-1.
Play around with your site a little bit to ensure it works. Also verify that loading http://
seophp.example.com/robots.txt yields the results shown in Figure 14-4.

Figure 14-4

Next, analyze how you made this work, and what design decisions you have made to implement the set
of requirements. To understand such an application, even a simple one, you need to start with the data-
base. You need to understand how the database works and how the data is organized.

Your database is comprised of four data tables:

❑ brands — Contains search engine company names.

❑ categories — Contains the categories in which your products are grouped.

❑ products — Contains data about the products in your catalog.

❑ product_categories — Contains associations between products and categories. This table is
required because a category is allowed to contain more products, so that multiple associations
can be created for each product, and for each category. (If each of your products belonged to
a single category, you could have referenced that category through a separate column in the
products table, instead of creating the product_categories table — just like you’re now
using the primary_category_id column in products.)

To visualize the relationship between these tables, see the diagram in Figure 14-5.

279

Chapter 14: Case Study: Building an E-Commerce Store

00929c14.qxd:00929c14 3/13/07 10:46 AM Page 279

Figure 14-5

When it comes to the code, you’ll find most of it familiar from the previous chapters. This section focuses
only on the new details.

The functions you’re using to display catalog data are located in the catalog.inc.php file. There you
can find the Brands, Categories, and Products classes — each of these classes have a method called
get(). The various parameters of get() allow you to either retrieve the complete list of brands, cate-
gories, and products, or to filter the results according to various criteria.

The get() methods return an associate array with the query results. If you’re expecting a single result,
then you need to read the first element of the returned array. Take the following example, which uses
Products::get() to retrieve the details of a single product:

// retrieve the product details
$product_id = $_GET[‘product_id’];
$products = Products::get($product_id);
$product = $products[0];

You can see the same function called in category.php to retrieve all the products in a category, like this:

// retrieve the products in the category
$products = Products::get(0, $category_id);

The other new material in this chapter is the implementation of the pager library. This library, located in
simple_pager.inc.php, contains the basic functionality for displaying a pager. You use this function-
ality in the category pages, where you want to display a limited number of products per page. You can
set the number of products by editing the PRODUCTS_PER_PAGE constant in config.inc.php. For the
purposes of this test this value is set to 1, but feel free to change it to any value:

// defines the number of products for paging
define(‘PRODUCTS_PER_PAGE’, 1);

A number of settings related to the pager are hard-coded in the constructor of the SimplePager class —
depending on how flexible you want this functionality to be, you may want to make these configurable.
Also, in a professional implementation you would need to add support for including CSS styles in the
pager output.

products
PK id

brand_id
name
price
desc
primary_category_id

brands
id
name

categories
PK id

name

product_categories
PK
PK

product_id
category_id

PK

280

Chapter 14: Case Study: Building an E-Commerce Store

00929c14.qxd:00929c14 3/13/07 10:46 AM Page 280

// constructor
function SimplePager($rows, $limit, $function_callback,

$page_number_parameter_index = 1)
{
$this->_rows = $rows;
$this->_limit = $limit;
$this->_function_callback = $function_callback;
$this->_page_number_parameter_index = $page_number_parameter_index;
$this->_max_listed_pages = 10;
$this->_previous_prompt = ‘<< back’;
$this->_next_prompt = ‘next >>’;

}

Once this library is in place, it’s fairly easy to use it, provided that the other parts of your web site are
aware of your paging feature. For example, you have a mod_rewrite rule in .htaccess to handle cate-
gory URLs that contain a pager parameter. The make_category_url() function of the URL factory also
takes an optional $page parameter, and uses it to add the page to the category link if $page is different
than 1.

The place where you use the pager is category.php:

// use the SimplePager library to display the pager
$simple_pager = new SimplePager($products, PRODUCTS_PER_PAGE, ‘make_category_url’);
echo $simple_pager->display($page, $products, array($category_name, $category_id));

As you see, first you need to create a SimplePager instance, providing as parameters the complete list
of items the page needs to display, and number of items per page, and the function that creates links to
the individual pages (in this case, that is make_category_url).

After creating the instance, you call its display() function, providing as parameters the current page,
the list of items, and the parameters to send to the function specified when creating the SimplePager
instance. In this case, make_category_url() needs to know the $category_name and $category_id
in order to create the category links. The page number parameter is added by your library.

The final technical aspect we need to highlight is the fact that your catalog can contain the same product
in more categories, and you can view its details with different URLs for each of those categories. As you
know, this generates duplicate content. To avoid duplicate content problems each product has a primary
category (identified by the primary_category_id column in the products table), and you eliminate
all the product URLs except the one associated with the primary category, in robots.txt. For example,
if you look at Figure 14-4, you’ll see that two Frosted Fortune Cookie URLs are mentioned. The third
one, which doesn’t appear there, is that of the primary category.

Summary
We hope you’ve had fun developing Cookie Ogre’s Warehouse! Even though the implemented function-
ality is very simplistic, it did demonstrate how to tie together the bits and pieces of code you met in
the previous chapters of the book. At this point your journey into the world of technical search engine
optimiza tion is almost complete. In the next chapter you’ll meet a checklist of details to look after when
improving the search engine friendliness of an existing site.

281

Chapter 14: Case Study: Building an E-Commerce Store

00929c14.qxd:00929c14 3/13/07 10:46 AM Page 281

00929c14.qxd:00929c14 3/13/07 10:46 AM Page 282

Site Clinic: So You
Have a Web Site?

Although we recommend otherwise, many web sites are initially built without any regard for search
engines. Consequently, they often have a myriad of architectural problems. These problems comprise
the primary focus of this book. Unfortunately, it is impossible to exhaustively and generally cover the
solutions to all web site architectural problems in one short chapter. But thankfully, there is quite a bit
of common ground involved.

Likewise, there are many feature enhancements that web sites may benefit from. Some only apply to
blogs or forums, whereas others apply generally to all sites. Here, too, there is quite a bit of common
ground involved. Furthermore, many such enhancements are easy to implement, and may even offer
instant results.

This chapter aims to be a useful list of common fixes and enhancements that many web sites would
benefit from. This list comprises two general kinds of fixes or enhancements:

❑ Items 1 through 9 in the checklist can be performed without disturbing site architecture.
These items are worthwhile for most web sites and should be tasked without concern for
detrimental effects.

❑ Items 10 through 15 come with caveats when implemented and should therefore be com-
pleted with caution — or not at all.

This chapter is not intended to be used alone. Rather, it is a sort of “alternative navigation” scheme
that one with a preexisting web site can use to quickly surf some of the core content of this book.
Appropriate references to the various chapters in this book are included with a brief description.
Eventually, we hope that you read the book from cover to cover. But until then, dive in to some
information that you can use right away!

00929c15.qxd:00929c15 3/13/07 10:46 AM Page 283

1. Creating Sitemaps
There are two types of sitemaps — traditional and search engine site maps. Both are relatively easy to add
to a web site. A traditional sitemap is created as any other HTML web page, whereas a search engine site -
map is formatted specifically according to a search engine’s specifications. Creating either will typically
increase the rate that your content gets indexed, as well as get deeper or otherwise unreferenced content
indexed. The former is important, not only because it gets you indexed faster in the first place, but it may
mitigate content theft. A well-organized traditional sitemap is also useful for the human user.

Both types of sitemaps are covered in detail in Chapter 9, “Sitemaps.”

2. Creating News Feeds
News feeds are a great way to streamline the process of content distribution. You can create news feeds
so that others can conveniently read or syndicate a web site’s content. Or you can programmatically use
news feeds to publish information provided by others.

Read more on this topic, and learn how to optimize your web site for social search in Chapter 7, “Web
Feeds and Social Bookmarking.”

3. F ixing Duplication in T itles
and Meta Tags

Using the same titles or meta tags on many pages of a web site can be detrimental to rankings. This may
be, in part, because a search engine does not want such redundant-looking results to be displayed in its
SERPs, as a user’s perceived relevance is consequentially lowered. Furthermore, a generic-looking title
will usually not prompt a user to click. This is usually a minor fix to an oversight made by a programmer.

More such commonly encountered SEO-related problems are mentioned in Chapter 2, “A Primer in
Basic SEO.” Duplicate content is discussed at length in Chapter 5, “Duplicate Content.”

4. Getting Listed in Reputable Directories
Getting back links from reputable directories can provide a boost in the rankings — or at least get a new
web site indexed to start. Best of the Web (http://botw.org), DMOZ (http://dmoz.org), Joe Ant
(http://joeant.com), and Yahoo! Directory (http://dir.yahoo.com) are the web site directories
we recommend.

DMOZ is free, but also notoriously difficult to get into. Though we will not espouse our opinion as to
why, we invite you to use Google to search for “get into DMOZ” and interpret the results.

284

Chapter 15: Site Clinic: So You Have a Web Site?

00929c15.qxd:00929c15 3/13/07 10:46 AM Page 284

5. Soliciting and Exchanging
Relevant Links

Sending a few friendly emails to get a link from a neighbor may result in a few high-quality links. Exchang -
ing links in moderation with various related relevant web sites may also help with search engine rankings.
“Moderation,” as usual, is difficult to define. However, a good metric is whether you believe that the link
could realistically appear on its own regardless. If not, or it’s on a “directory” page referenced at the bot-
tom of the page with a sea of other random links, probably not!

6. Buying Links
Because relevant links are a major factor in search engine rankings, they have an equity — a “link equity.”
Predictably, individuals and businesses are now in the business of selling links. There is some disagree-
ment, however, as to whether this is against the terms of service of the various search engines.

This topic is discussed in Chapter 8, “Black Hat SEO,” although we do not consider buying relevant
links a black hat practice. Several reputable companies are in the business of selling or brokering links.

We strongly recommend only buying relevant links. This is not only because it is definitely against the
terms of service of many search engines to buy irrelevant links, but also because such irrelevant links
do not work as well in the first place. Some reputable link brokers are listed here:

❑ Text Link Ads (http://www.text-link-ads.com)

❑ Text Link Brokers (http://www.textlinkbrokers.com)

❑ LinkAdage (http://www.linkadage.com/)

Text Link Ads also estimates the value of a link on a given web site. The tool is located at http://
www.text-link-ads.com/link_calculator.php.

Chapter 2, “A Primer in Basic SEO,” discusses the essentials of link building and related concepts at
length.

7. Creating Link Bait
Although link bait can be difficult and hit-or-miss as far as results, it can frequently be an extremely
economical way to build links. Link bait can vary from useful information and humor to intricate site
tools and browser toolbars. For example, the link value calculator cited in section 6 is a great example
of link bait.

Link bait is discussed in Chapter 10, “Link Bait.”

285

Chapter 15: Site Clinic: So You Have a Web Site?

00929c15.qxd:00929c15 3/13/07 10:46 AM Page 285

8. Adding Social Bookmarking Functionality
Social bookmarking web sites allow users to bookmark and tag content with keywords and commentary.
The aggregate of this information is used both to cite popular content within certain timeframes and
niches, as well as by query. Popular content may be featured on the home page of such a site or ranked
well for relevant keywords. Adding icons and buttons to web pages that facilitate the process of book-
marking will likely increase the number of users who bookmark your content.

Social bookmarking is discussed in Chapter 7, “Web Feeds and Social Bookmarking.”

9. Star ting a Blog and/or Forum
Blogs and forums both may attract traffic and links in droves if approached correctly. Bloggers readily
exchange links amongst themselves, and a blog may also afford a company a more casual place to post
less mundane, fun content. Whereas a humorous comment would not fit in a corporate site proper, it may
be more appropriate for a blog. Blogs work quite well in harmony with social bookmarking functionality.

Forums, once they gain momentum, also attract many links. The trick to a forum is building such momen-
tum. Once started, much of the content is generated by the users. If a web site does not already have many
thousands of unique visitors per day, though, a forum is most likely not going to be a success.

Chapter 16, “WordPress: Creating an SE-Friendly Blog,” shows you how to install and optimize
WordPress, a popular PHP-based blog application.

10. Dealing with a Pure Flash or AJAX Site
Flash sites present many problems from a search engine optimization perspective. There is really no way
to approach this problem, except to design a site that replaces or supplements the Flash design that is not
Flash-based. There are other less onerous “solutions,” but they are less than ideal.

Flash sites are discussed in Chapter 6, “SE-Friendly HTML and JavaScript.”

11. Preventing Black Hat Victimization
Black hat SEOs are always on the lookout for places to inject links, JavaScript redirects, and spam
content. Properly sanitizing and/or escaping foreign data can prevent or mitigate such attacks. Where
links are appropriate to post, if they are unaudited, they should be “nofollowed.” Known, problematic
anonymous proxies should be blocked. Vulnerabilities to such attacks are typically found in comments,
guestbooks, and forums.

This material is covered in detail in Chapter 8, “Black Hat SEO.”

286

Chapter 15: Site Clinic: So You Have a Web Site?

00929c15.qxd:00929c15 3/13/07 10:46 AM Page 286

12. Examining Your URLs for Problems
URLs with too many parameters or redirects can confuse a search engine. You should construct URLs
with both users and search engines in mind.

URLs are discussed in Chapter 3, “Provocative SE-Friendly URLs.” Redirects are discussed in
Chapter 4, “Content Relocation and HTTP Status Codes.” In Chapter 13, “Coping with Technical
Issues,” you learn how to build your own library that verifies the links within your web site are
functional.

13. Looking for Duplicate Content
Having many pages with the same or similar content in excess can result in poorer rankings. And though
it is a matter of contention as to whether an explicit penalty exists for having duplicate content, it is unde-
sirable for many reasons. Duplicate content is, however, not a simple problem with a single cause. Rather,
it is a complex problem with myriad causes.

Duplicate content is the subject of Chapter 5, “Duplicate Content” (aptly named).

14. Eliminating Session IDs
Use of URL-based session management may allow users with cookies turned off to use a web site that
requires session-related information, but it may also wreak havoc for the web site in search engines. For
this reason URL-based sessions should either be completely turned off, or cloaking should be employed
to turn off the URL-based session management if the user-agent is a spider.

Session IDs and their associated problems are discussed at length in Chapter 2, “A Primer in Basic SEO.”
This particular technique is discussed in Chapter 11,“Cloaking, Geo-Targeting, and IP Delivery.”

15. Tweaking On-page Factors
On-page factors may have diminished in effect over the years, but it is still advantageous to author
HTML that employs elements that mean something semantically. Especially if you author HTML
using a WYSIWYG editor, or use a content management system with a WYSIWYG editor, this may
not be occurring. Other problems may involve having a large navigation element physically before
the content.

Chapter 6 discusses the aforementioned topics as well as many other HTML and JavaScript-related
issues at length.

287

Chapter 15: Site Clinic: So You Have a Web Site?

00929c15.qxd:00929c15 3/13/07 10:46 AM Page 287

Summary
Wow, so much to do! And this chapter is only a guide covering some of the important points for those
who already have a preexisting web site. There is much more information throughout this book than
the 15 sections touched upon here. But covering these bases should go a long way in getting you started.
So grab that can of Red Bull and dive in!

288

Chapter 15: Site Clinic: So You Have a Web Site?

00929c15.qxd:00929c15 3/13/07 10:46 AM Page 288

WordPress: Creating
an SE-Friendly Blog

WordPress is a very feature-rich and extensible blogging application that, with a bit of tweaking,
can be search engine–friendly. It is entirely written in PHP, and it can be modified and extended
in the same. Duplicating even its core functionality in a custom application would take a lot of
time — so why reinvent the wheel? Furthermore, many plugins are readily available that extend
and enhance its functionality.

Because the blog has been mentioned as a vehicle for search engine marketing so many times in
this book, it seems fitting to document the process of setting up a blog with WordPress. You will
also install quite a few WordPress plugins on the way.

Please note that this is not a comprehensive WordPress tutorial: although we present step-by-step
installation and configuration instructions for the specific topics that we cover, we assume that you
will do your own additional research regarding additional customization and other plugins you
may require.

Note that we encountered a few problems with some of the presented plugins during our tests in
certain server configurations.

In this chapter, you learn how to:

❑ Install WordPress 2.0

❑ Turn on permalinks

At the time of this writing, WordPress 2.0 is the current generally available release.
WordPress 2.1 is on the way (in beta), and certain of these directions and plugins will
be obsolete or in error for version 2.1. Please visit http://www.seoegghead.com/
seo-with-php-updates.html for information regarding updated procedures for
WordPress 2.1.

00929c16.qxd:00929c16 3/13/07 11:04 AM Page 289

❑ Prevent comment spam with the Akismet plugin

❑ Add social bookmarking icons with the Sociable plugin

❑ Implement “Email a friend” functionality with the WP-Email plugin

❑ Add “chicklets” with the Chicklet Creator plugin

❑ Generate a traditional sitemap with the Sitemap Generator plugin

❑ Generate a Google sitemap with the Google Sitemap plugin

❑ Create a Digg button plugin

❑ Create a “Pagerfix” plugin, to add links to individual pages in the blog’s pagination

❑ Add a robots.txt file to your blog and exclude some content that should not be indexed

❑ Make the blog your home page and redirect /blog to / (if desired)

Much of these are optional, but you’ll want to implement at least some of them. This chapter tackles them
one by one.

Installing WordPress
To install WordPress, you need to create a database and extract its files to the web server directory. You will
use the seophp database you created in Chapter 1, but creating a separate database would suffice as well.

Following these steps, you’ll create a WordPress blog in the /blog/ folder of your seophp directory.
This will make your blog accessible via the URL http://seophp.example.com/blog/.

1. Download WordPress 2.0 from http://wordpress.org/download/, and unpack the archive
in your seophp folder.

2. The WordPress archive contains a folder named wordpress. Rename that folder to blog, so
that your WordPress installation will reside in /seophp/blog.

3. Open the blog folder, and copy the wp-config-sample.php file to wp-config.php.

4. Open wp-config.php, and change it to reflect the database connection data:

<?php
// ** MySQL settings ** //
define(‘DB_NAME’, ‘seophp’); // The name of the database
define(‘DB_USER’, ‘seouser’); // Your MySQL username
define(‘DB_PASSWORD’, ‘seomaster’); // ...and password
define(‘DB_HOST’, ‘localhost’); // 99% chance you won’t need to change this value

// You can have multiple installations in one database if you give each a unique i
prefix
$table_prefix = ‘wp_‘; // Only numbers, letters, and underscores please!

290

Chapter 16: WordPress: Creating an SE-Friendly Blog

00929c16.qxd:00929c16 3/13/07 11:04 AM Page 290

// Change this to localize WordPress. A corresponding MO file for the
// chosen language must be installed to wp-includes/languages.
// For example, install de.mo to wp-includes/languages and set WPLANG to ‘de’
// to enable German language support.
define (‘WPLANG’, ‘’);

/* That’s all, stop editing! Happy blogging. */

define(‘ABSPATH’, dirname(__FILE__).’/‘);
require_once(ABSPATH.’wp-settings.php’);
?>

5. You’re now ready to run the installation script, which configures the database for your
WordPress blog. The installation script is wp-admin/install.php. Loading http://
seophp.example.com/blog/wp-admin/install.php should open a page such as the
one in Figure 16-1.

6. Go through the single installation step that follows, and write down the password WordPress
generates for your WordPress admin account.

7. To test your login data, load http://seophp.example.com/blog/wp-admin/, and supply
the username admin and the generated password. You’ll be taken to the welcome screen, which
looks like Figure 16-2.

8. WordPress was friendly enough to write a first blog post for you. You can view it by loading
the http://seophp.example.com/blog/ folder — see Figure 16-3.

Figure 16-1

291

Chapter 16: WordPress: Creating an SE-Friendly Blog

00929c16.qxd:00929c16 3/13/07 11:04 AM Page 291

Figure 16-2

Figure 16-3

292

Chapter 16: WordPress: Creating an SE-Friendly Blog

00929c16.qxd:00929c16 3/13/07 11:04 AM Page 292

Turning On Permalinks
Next, you turn on permalinks. This changes the dynamic URLs to rewritten static URLs (that is, /this-
is-a-post/) in your blog.

1. Load the admin page (http://seophp.example.com/blog/wp-admin/), click the Options link
in the top menu, and select Permalinks. Choose the “Date and name based” entry, as shown in
Figure 16-4. This enables keyword-rich URLs for your blog.

Alternatively, you can choose to have only the post name and post ID in the link — without the
date, in which case you would type /%postname%/%post_id%/ in the Custom box.

2. After making your choice, verify that the.htaccess file in the blog folder (not in the root
seophp folder) is writable, and click the Update Permalink Structure button. This writes the
mod_rewrite rules necessary for the rewritten URLs to .htaccess. The rules for your particu-
lar configuration are listed here:

BEGIN WordPress
<IfModule mod_rewrite.c>

Figure 16-4

293

Chapter 16: WordPress: Creating an SE-Friendly Blog

00929c16.qxd:00929c16 3/13/07 11:04 AM Page 293

RewriteEngine On
RewriteBase /blog/
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule . /blog/index.php [L]
</IfModule>

END WordPress

3. Now you can visit your blog again, and notice the link for your first post changed to http://
seophp.example.com/blog/2006/12/19/hello-world/. Loading it would successfully
load the page shown in Figure 16-5.

Figure 16-5

Akismet: Preventing Comment Spam
As your blog becomes more popular, it will become more popular with spammers too. Thankfully,
WordPress comes with a plugin called Akismet — but you must configure it. The Akismet plugin filters
out most comment spam, so you do not have to do so manually. To enable it, follow these steps:

1. Load http://seophp.example.com/blog/wp-admin/.

2. Click the Plugins item from the menu.

3. Click the Activate link for Akismet.

294

Chapter 16: WordPress: Creating an SE-Friendly Blog

00929c16.qxd:00929c16 3/13/07 11:04 AM Page 294

4. After activating the plugin, a message will appear on the top of the window that reads “Akismet is
not active. You must enter your WordPress.com API key for it to work.” as shown in Figure 16-6.
Get your API key from http://wordpress.com/api-keys/.

5. After activating your WordPress account, you’ll receive the API key by email. Click the “enter
your WordPress.com API key” link at the top of the page, which sends you to a page where you
can enter the API key. Enter it. At that point, your plugin is enabled and ready for use! For more
information on using Akismet, visit http://codex.wordpress.org/Akismet.

Figure 16-6

Sociable: Social Bookmarking Icons
The Sociable plugin generates social bookmaking icons for your blog posts. Social bookmarking is
discussed at length in Chapter 7.

This plugin does not support adding icons to web feeds. If you want to do so, you
can apply the Sociable patch described at http://www.seoegghead.com/blog/
seo/patched-sociable-code-to-enable-feed-icons-p155.html.

295

Chapter 16: WordPress: Creating an SE-Friendly Blog

00929c16.qxd:00929c16 3/13/07 11:04 AM Page 295

Sociable can be installed using the following steps:

1. Download Sociable from http://push.cx/sociable. Unzip the archive, and copy the sociable
folder to the blog/wp-content/plugins folder.

2. Load the WordPress administration page, select Plugins, and click Activate for the Sociable plugin.

3. After enabling Sociable, you can configure it by clicking the Options menu item, then selecting
Sociable. We recommend turning on at least del.icio.us and Reddit for most sites, and Digg, in
addition, for technical sites.

4. After you select your options, don’t forget to click the Save Changes button. If you now visit a
blog entry, you should see the new social bookmarking links, as shown in Figure 16-7.

Figure 16-7

WP-Email: Email a Friend
The WP-Email plugin adds “email a friend” functionality to your blog. You can read more about the plugin
at http://www.lesterchan.net/wordpress/readme/wp-email.html. You can install WP-Email by
following these steps:

1. Download the latest version of WP-Email from http://dev.wp-plugins.org/wiki/
wp-email.

296

Chapter 16: WordPress: Creating an SE-Friendly Blog

00929c16.qxd:00929c16 3/13/07 11:04 AM Page 296

2. Copy the email folder from the archive to your blog/wp-content/plugins folder.

3. In WordPress, go to the plugins administration page, and activate the WP-Email plugin. Then
click the e-mail tab, select e-mail options, and set up your mail options as desired.

4. Now you need to alter the theme you’re using to include this new feature. For example,
assuming you’re using the default theme, open the blog/wp-content/themes/default/
index.php, and find the line that starts with:

<p class=”postmetadata”>Posted in <?php the_category(‘, ‘) ?>

This is the line that generates, by default, the links that follow each post. You can add the following
code to include an “e-mail this link” link:

<?php
if(function_exists(‘wp_email’))
{
email_link(‘e-mail this link’, ‘e-mail this page’);

}
?> |

5. Reloading the page displays a link as shown in Figure 16-8.

Figure 16-8

297

Chapter 16: WordPress: Creating an SE-Friendly Blog

00929c16.qxd:00929c16 3/13/07 11:04 AM Page 297

Chicklet Creator Plugin
To have feed reader buttons generated for you as shown in Figure 16-10, install and configure the Chicklet
Creator plugin.

1. Download the plugin from http://www.twistermc.com/shake/wordpress-chicklet.php,
and unpack the archive into a new folder named Chicklet-Creator. Then copy (or move) this
folder to your blog/wp-content/plugins folder.

2. Go to the Plugins section of your blog admin page, and activate the Chicklet Creator plugin.

3. In the same page, click the Config Instructions link to configure the plugin (you can also reach
the configuration page by going to Options ➪ Chicklet Creator). We recommend turning
on the XML chicklet if not already prominently advertised, as well as Google, My Yahoo!, and
Bloglines. The icon selection page looks like that shown in Figure 16-9; after making your selec-
tion, don’t forget to click the Update Feed Buttons button.

4. Finally, update your pages by adding the following piece of code where you want your new
buttons to show up:

<?php if (function_exists(‘chicklet_creator’)) { chicklet_creator(); } ?>

For example, I’m adding this line to my blog/wp-content/themes/Default/sidebar.php
file. You can see the result using the default plugin options in Figure 16-10. You can use the
plugin configuration page to fine-tune the icons and their layout.

Figure 16-9

298

Chapter 16: WordPress: Creating an SE-Friendly Blog

00929c16.qxd:00929c16 3/13/07 11:04 AM Page 298

Figure 16-10

Sitemap Generator Plugin
The Sitemap Generator plugin does exactly what its name implies — it generates a sitemap for your
blog as shown in Figure 16-11. See the official sitemap demo page at http://www.dagondesign.com/
sitemap/. To install this plugin:

1. Go to http://www.dagondesign.com/articles/sitemap-generator-plugin-for-word-
press/. Download dd-sitemap-gen.txt from the main page, and save it as dd-sitemap-
gen.php to your /blog/wp-content/plugins folder.

2. If you now load the Plugins section in the admin page, you’ll see the new entry named Dagon
Design Sitemap Generator. Click Activate to activate the plugin.

3. After activating the plugin, go to Options ➪ DDSitemapGen to configure the sitemap generator.
Set a permalink, sitemap, for the sitemap. Next, set “Items per page” to 0 so all items are on
one page. After you select your options, don’t forget to click the Update button.

4. To add the sitemap to your blog, navigate to the Write ➪ Write Page section to create a new
page for it. Set the page title to the value “Sitemap.” Add <!-- ddsitemapgen --> as shown
in Figure 16-12. (Note that when editing the page, the markup will not show up because it is an
HTML comment. To edit the markup or an existing page, you must edit the page in HTML
mode by clicking the HTML button of the editor.)

5. Visit the Sitemap page of your blog to see your new sitemap in action — see Figure 16-13.

299

Chapter 16: WordPress: Creating an SE-Friendly Blog

00929c16.qxd:00929c16 3/13/07 11:04 AM Page 299

Figure 16-11

Figure 16-12

300

Chapter 16: WordPress: Creating an SE-Friendly Blog

00929c16.qxd:00929c16 3/13/07 11:04 AM Page 300

Figure 16-13

Google Sitemaps Plugin
This plugin generates a Google sitemap for your blog. Download the plugin from http://
www.arnebrachhold.de/2006/01/07/google-sitemap-generator-for-wordpress-3-
beta. Unzip the archive, and copy sitemap.php to your /blog/wp-content/plugins folder.

Load the administration page, and activate the Google Sitemaps plugin from the Plugins page. Then
click the Configuration Page link to open the configuration page. Here you find a plethora of options
that let you configure your sitemap with many of the options that were described in Chapter 9. The
configuration options are grouped in nine sections (see Table 16-1).

Table 16-1

Table continued on following page

Configuration Group Description

Manual rebuild / Log Here you find a button that lets you manually rebuild the sitemap.
Note that this is not normally necessary, because by default the
sitemap is re-created automatically when you add new posts or
modify old ones.

Additional pages The Google Sitemaps plugin can include all the pages in your blog
automatically. In the case that your web site has content that is not
administered by WordPress, you can add those pages manually in
this section.

301

Chapter 16: WordPress: Creating an SE-Friendly Blog

00929c16.qxd:00929c16 3/13/07 11:04 AM Page 301

Remember to click the Update Options button if you make changes to options in this page. If you want
to test the functionality of this plugin, simply click the Rebuild Sitemap button. You will be shown a
message such as that in Figure 16-14, containing the sitemap generation report.

Figure 16-14

Configuration Group Description

Basic options Here you can check or uncheck a number of options regarding your
sitemap. The default settings are appropriate for most blogs.

Post priority As you learned in Chapter 9, you can give each page a priority. You
can set the plugin to calculate the priority automatically depending
on the Comment Count or Comment Average, or you can define the
priorities manually from the Priorities configuration section.

Location of the sitemap file By default the sitemap location is the root of your blog, but you can
change it here if you wish.

Sitemap content Here you can choose which pages of your blog should be included in
the sitemap.

Change frequencies As you learned in Chapter 9, you can assign an update frequency for
each sitemap item.

Priorities In case you decide to establish priorities manually rather than have
the plugin calculate them for you depending on the number of com-
ments, here you can customize the manual priority for each page type.

XML-Sitemap button This option shows you the code that generates an “XML Sitemap”
button. You can place this button on your blog if you want to adver-
tise the existence of a sitemap in your web site.

302

Chapter 16: WordPress: Creating an SE-Friendly Blog

00929c16.qxd:00929c16 3/13/07 11:04 AM Page 302

Checking the sitemap.xml file in your seophp/blog folder, you will find a sitemap generated using
the options you’ve chosen in the configuration page. In my case, with a new WordPress blog, I can see
these contents:

<?xml version=”1.0” encoding=”UTF-8”?>
<!-- generator=”wordpress/2.0.5” -->
<!-- sitemap-generator-url=”http://www.arnebrachhold.de”
sitemap-generator-version=”3.0b4” -->
<!-- generated-on=”December 30, 2006 8:09 pm” -->
<urlset xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.sitemaps.org/schemas/sitemap/0.9
http://www.sitemaps.org/schemas/sitemap/09/sitemap.xsd”
xmlns=”http://www.sitemaps.org/schemas/sitemap/0.9”>

<url>
<loc>http://seophp.example.com/blog/</loc>
<lastmod>2006-12-19T03:56:13+00:00</lastmod>
<changefreq>daily</changefreq>
<priority>1</priority>

</url>

<url>
<loc>http://seophp.example.com/blog/sitemap/</loc>
<lastmod>2006-12-29T21:03:32+00:00</lastmod>
<changefreq>weekly</changefreq>
<priority>0.6</priority>

</url>

<url>
<loc>http://seophp.example.com/blog/about/</loc>
<lastmod>2006-12-21T02:55:29+00:00</lastmod>
<changefreq>weekly</changefreq>
<priority>0.6</priority>

</url>

<url>
<loc>http://seophp.example.com/blog/2006/12/19/hello-world/</loc>
<lastmod>2006-12-19T05:56:13+00:00</lastmod>
<changefreq>monthly</changefreq>
<priority>1</priority>

</url>

<url>
<loc>http://seophp.example.com/blog/category/uncategorized/</loc>
<lastmod>2006-12-19T05:56:13+00:00</lastmod>
<changefreq>weekly</changefreq>
<priority>0.5</priority>

</url>

<url>
<loc>http://seophp.example.com/blog/2006/12/</loc>
<lastmod>2006-12-19T05:56:13+00:00</lastmod>
<changefreq>daily</changefreq>
<priority>0.5</priority>

</url>

</urlset>

303

Chapter 16: WordPress: Creating an SE-Friendly Blog

00929c16.qxd:00929c16 3/13/07 11:04 AM Page 303

Digg Button Plugin
Adding a Digg button to your site can encourage visitors to digg an article that has already been dugg. This
plugin has been presented at http://www.seoegghead.com/blog/seo/how-to-get-dugg-digg-for-
wordpress-plugin-p113.html. There you can also see how the Digg button looks in practice — see
Figure 16-15.

Figure 16-15

To add the Digg button to your blog, follow these steps:

1. Create a file named digg-button.php in your /blog/wp-content/plugins folder,
and type the following code. Alternatively, you can pick up the code from the book’s
code download.

<?php
/*
Plugin Name: Digg
Plugin URI: http://www.seoegghead.com/
Description: Creates an interactive Digg button.
Author: Jaimie Sirovich
Version: 1.0
Author URI: http://www.seoegghead.com/
*/
function _scrape_check_digg($digg_link, $the_permalink)
{

$ch = curl_init();
curl_setopt($ch, CURLOPT_URL, $digg_link);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
$http_result = curl_exec($ch);

304

Chapter 16: WordPress: Creating an SE-Friendly Blog

00929c16.qxd:00929c16 3/13/07 11:04 AM Page 304

curl_close($ch);
$_ = preg_match(‘#<h3 id=”title”>#is’, $http_result, $cap

tures);
return ($captures[1] == $the_permalink);

}
function digg_this()
{

global $id;
$digg_link = get_post_meta($id, ‘DIGG_CLASS_digg_link’, true);

if (is_single() && !$digg_link && preg_match(‘#^http://(www\.)?digg\.com/
.+#i’, $_SERVER[‘HTTP_REFERER’]) && !preg_match(‘#^http://(www\.)?digg\.com/(
view|users)#i’, $_SERVER[‘HTTP_REFERER’]) && _scrape_check_digg($_SERVER[‘HTT
P_REFERER’], get_permalink())) {

add_post_meta($id, ‘DIGG_CLASS_digg_link’, $_SERVER[‘HTTP_REFERER’]);
$digg_link = $_SERVER[‘HTTP_REFERER’];

}
if ($digg_link) {

?><iframe src=’http://digg.com/api/diggthis.php?u=<?php echo
urlencode($digg_link)?>’ height=’82’ width=’55’ frameborder=’0’ scrolling=’no
’></iframe><?php

}
}
?>

2. Load the admin page (http://seophp.example.com/blog/wp-admin/), go to the Plugins
section, and activate the Digg plugin.

3. Call the digg_this() function from your templates, in the place where you want your Digg
button to show up. For example, you can place this code in the index.php file of your template,
at the place you want the Digg button to show up:

<?php digg_this(); ?>

Pagerfix Plugin
In Chapter 2 you learned about the problems that pages deeply buried within your web site may present —
and one cause of this problem is pagination. You can implement a plugin that fixes the default pagina-
tion links, that is, “< prev” and “next >” to link to the individual pages as well. Figure 16-16 shows this
in action at http://www.seoegghead.com.

Note that the Digg button will only start to appear if a user visits a permalink post
page from a Digg page that refers to it in HTTP_REFERER.

305

Chapter 16: WordPress: Creating an SE-Friendly Blog

00929c16.qxd:00929c16 3/13/07 11:04 AM Page 305

Figure 16-16

The following plugin does the trick. Save it as pagerfix.php in your blog/wp-content/plugins
folder, then activate it from the WordPress administration page:

<?php
/*
Plugin Name: PagerFix
Plugin URI: http://www.seoegghead.com/
Description: Makes the paging in WP more SE-friendly.
Author: Jaimie Sirovich
Version: 1.0
Author URI: http://www.seoegghead.com/
*/
function pager_fix($separator = ‘ | ‘,

$after_previous = ‘ ’,
$before_next = ‘ ’,
$prelabel=’« Previous Page’,
$nxtlabel=’Next Page »’,
$current_page_tag = ‘b’)

{
global $request, $posts_per_page, $wpdb, $paged;

posts_nav_link(‘’,$prelabel,’‘);
echo $after_previous;
preg_match(‘#FROM (.*) GROUP BY#‘, $request, $matches);
$fromwhere = $matches[1];
$numposts = $wpdb->get_var(“SELECT COUNT(ID) FROM $fromwhere”);
$max_num_pages = ceil($numposts / $posts_per_page);
if ($max_num_pages > 1)
{

306

Chapter 16: WordPress: Creating an SE-Friendly Blog

00929c16.qxd:00929c16 3/13/07 11:04 AM Page 306

for ($cnt = 1; $cnt <= $max_num_pages; $cnt++)
{
if ($current_page_tag && $paged == $cnt)
{
$begin_link = “<$current_page_tag>”; $end_link = “</$current_page_tag>”;

}
else
{
$begin_link = ‘’; $end_link = ‘’;

}

$x[] = $begin_link .
‘’ .
$cnt . ‘’ . $end_link;

}

echo join($separator, $x);

}
echo $before_next;
posts_nav_link(‘’,’‘,$nxtlabel);

}
?>

After creating and activating this plugin, you need to call the function pager_fix() in your template
somewhere. For example, in the index.php file of your default template you can find this code (with
perhaps slightly different formatting):

<div class=”navigation”>
<div class=”alignleft”>
<?php next_posts_link(‘« Previous Entries’) ?>

</div>
<div class=”alignright”>
<?php previous_posts_link(‘Next Entries »’) ?>

</div>
</div>

To use the “pagerfix” version of the pager, you’d need to replace the highlighted code like this:

<div class=”navigation”>
<?php pager_fix() ?>

</div>

Eliminating Duplicate Content
A common problem with blogs — WordPress blogs included — is that they often generate quite a bit of
duplicate content by showing an article in more than one place on the blog. For example, a certain article
may be shown on the home page, on the page of the category it’s part of, as well as the archives. That is
a lot of duplication! This section examines and fixes some of these problems.

307

Chapter 16: WordPress: Creating an SE-Friendly Blog

00929c16.qxd:00929c16 3/13/07 11:04 AM Page 307

Pull-downs and Excluding Category Links
If you plan to use a pull-down list of categories in your interface, add the following to your robots.txt
file. This list does not use the permalinks (because it is a form, and cannot by design), and Google is capable
of crawling simple forms like these. Add the following lines to your robots.txt file:

User-agent: Googlebot
Disallow: /*?cat=

This pull-down is generated using <?php dropdown_cats(); ?>, as shown in Figure 16-17.

Figure 16-17

308

Chapter 16: WordPress: Creating an SE-Friendly Blog

00929c16.qxd:00929c16 3/13/07 11:04 AM Page 308

Excerpting Article Content
Another potential duplicate content problem occurs when you display the entire article in multiple pages
that enumerate articles — such as the home page, the category pages, and so on. A workaround that we
suggest is to show the full content only on the actual permalink page (the article’s page), and on the home
page for the most recent posts on the home page. All other pages will only show titles and excerpts.

There are many possible implementation solutions. One suggested method is to modify the index.php
file of your WordPress template — this is located in /wp-content/themes/{your-theme}/. There, you
have to look after the code that displays the post’s content, which is basically a call to the the_content()
function, like this:

<div class=”entry”>
<?php the_content(‘Read the rest of this entry »’); ?>

</div>

To display the entire content of posts only on the first page, and on the post’s permalink page, and excerpts
everywhere else, modify the code highlighted earlier like this:

<?php if (is_home() && (!$paged || $paged == 1)
|| is_search() || is_single() || is_page()): ?>

<div class=”entry”>
<?php the_content() ?>

<?php else: ?>
<small>Archived; click post to view.

Excerpt: <?php echo substr(strip_tags($post->post_content), 0, 300); ?>

...
</small>

<?php endif; ?>

This code makes the excerpts 300 characters long, but this feature is easy to customize to your liking.

Making the Blog Your Home Page
If you want the home page to also be the blog, follow the next steps. This will make / output the same as
/blog, and will redirect all the requests for /blog to /. This avoids the problem of having two duplicate
home pages, / and /blog/.

1. Copy this file to the seophp directory as index.php:

<?php

/* Short and sweet */
define(‘WP_USE_THEMES’, true);
define(‘WP_IN_ROOTDIR’, true);
require(‘.//blog/wp-blog-header.php’);

?>

309

Chapter 16: WordPress: Creating an SE-Friendly Blog

00929c16.qxd:00929c16 3/13/07 11:04 AM Page 309

2. Save the following code as blog301fix.php, and copy it to your /blog/wp-content/plugins
folder:

<?php

/*
Plugin Name: Blog301Fix
Plugin URI: http://www.seoegghead.com/
Description: Redirects /blog to /.
Author: Jaimie Sirovich
Version: 1.0
Author URI: http://www.seoegghead.com/
*/

if ($_SERVER[‘REQUEST_URI’] == ‘/blog/‘) {
header(“HTTP/1.1 301 Moved Permanently”);
header(‘Location: ‘ . preg_replace(‘#blog#‘, ‘’, get_bloginfo(‘url’), 1));
exit();

}

?>

3. Enable the plugin from the Plugins area of your WordPress admin page. Now, loading http://
seophp.example.com/ will display your blog, and loading http://seophp.example.com/
blog/ will 301 redirect you to http://seophp.example.com.

Summary
This chapter has shown you how to use WordPress as a basis for a successful blog by making some modifi-
cations and installing some plugins to the end of search engine optimization. Creating such an application
from scratch would be a task the size of — well, WordPress. Plugins are available to implement much of
the concerns discussed in this book. Therefore, using WordPress is a viable option if you decide to launch
a blog as part of your search engine marketing efforts. Please see http://www.seoegghead.com/
seo-with-php-updates.html for updates to this chapter, especially with regard to updated
WordPress releases.

310

Chapter 16: WordPress: Creating an SE-Friendly Blog

00929c16.qxd:00929c16 3/13/07 11:04 AM Page 310

Simple Regular Expressions

This appendix examines some basic aspects of constructing regular expressions. One reason for
working through the simple examples presented in this appendix is to illuminate the regular
expressions used in Chapter 3 and further extend your knowledge of them.

The following exercises use OpenOffice.org Writer — a free document editor that makes it easy to
apply regular expressions to text, and verify that they do what you expected. You can download
this tool from http://www.openoffice.org.

The examples used are necessarily simple, but by using regular expressions to match fairly simple
text patterns, you should become increasingly familiar and comfortable with the use of foundational
regular expression constructs that can be used to form part of more complex regular expressions.

One of the issues this appendix explores in some detail is the situation where you want to match
occurrences of characters other than those characters simply occurring once.

This appendix looks at the following:

❑ How to match single characters

❑ How to match optional characters

This appendix has been “borrowed” from the Wrox title Beginning Regular Expressions
(Wiley, 2005) by Andrew Watt. We recommend this book for further (and more com-
prehensive) reference into the world of regular expressions.

00929bapp01.qxd:00929bapp01 3/13/07 10:47 AM Page 311

❑ How to match characters that can occur an unbounded number of times, whether the characters
of interest are optional or required

❑ How to match characters that can occur a specified number of times

First, look at the simplest situation: matching single characters.

Matching Single Characters
The simplest regular expression involves matching a single character. If you want to match a single,
specified alphabetic character or numeric digit, you simply use a pattern that consists of that character
or digit. So, for example, to match the uppercase letter L, you would use the following pattern:

L

The pattern matches any occurrence of the uppercase L. You have not qualified the pattern in any way to
limit matching, so expect it to match any occurrence of uppercase L. Of course, if matching is being carried
out in a case-insensitive manner, both uppercase L and lowercase l will be matched.

Matching a Single Character
You can apply this pattern to the sample document UpperL.txt, which is shown here:

Excel had XLM macros. They were replaced by Visual Basic for Applications in later
versions of the spreadsheet software.

CMLIII

Leoni could swim like a fish.

Legal difficulties plagued the Clinton administration. Lewinski was the source of
some of the former president’s difficulties.

1. Open OpenOffice.org Writer, and open the file UpperL.txt.

2. Use the Ctrl+F keyboard shortcut to open the Find And Replace dialog box, and check the
Regular Expressions check box and the Match Case check box in the Options section.

3. Enter the regular expression pattern L in the Search For text box at the top of the Find And
Replace dialog box, and click the Find All button.

If all has gone well, each occurrence of an uppercase L should be highlighted.

Figure A-1 shows the matching of the pattern L in OpenOffice.org Writer against the sample document
UpperL.txt. Notice that there are five matches contained in the sequences of characters XLM, CMLIII,
Leoni, Legal, and Lewinski.

312

Appendix A: Simple Regular Expressions

00929bapp01.qxd:00929bapp01 3/13/07 10:47 AM Page 312

Figure A-1

The default behavior of OpenOffice.org Writer is to carry out a case-insensitive match. As you can see in
Figure A-1, the Match Case check box is checked so that only the same case as specified in the regular
expression is matched.

For each character in the document, OpenOffice.org Writer checks whether that character is an upper-
case L. If it is, the regular expression pattern is matched. In OpenOffice.org Writer, a match is indicated
by highlighting of the character(s) — in this case, a single character — for each match, assuming that
the Find All button has been clicked.

How can you match a single character using JavaScript?

313

Appendix A: Simple Regular Expressions

00929bapp01.qxd:00929bapp01 3/13/07 10:47 AM Page 313

Matching a Single Character in JavaScript
You want to find all occurrences of uppercase L. You can express the simple task that you want to use regular
expressions to do as follows:

Match any occurrence of uppercase L.

You can see, using JavaScript as a sample technology, how most regular expression engines will match the
pattern L using the XHTML file UpperL.html, shown here:

<html>
<head>
<title>Check for Upper Case L</title>
<script language=”javascript” type=”text/javascript”>
var myRegExp = /L/;

function Validate(entry){
return myRegExp.test(entry);
} // end function Validate()

function ShowPrompt(){
var entry = prompt(“This script tests for matches for the regular expression
pattern: “ + myRegExp + “.\nType in a string and click on the OK button.”, “Type
your text here.”);
if (Validate(entry)){
alert(“There is a match!\nThe regular expression pattern is: “ + myRegExp + “.\n
The string that you entered was: ‘“ + entry + “‘.”);
} // end if
else{
alert(“There is no match in the string you entered.\n” + “The regular expression
pattern is “ + myRegExp + “\n” + “You entered the string: ‘“ + entry + “‘.”);
} // end else

} // end function ShowPrompt()

</script>
</head>
<body>
<form name=”myForm”>

<button type=”Button” onclick=”ShowPrompt()“>Click here to enter text.</button>
</form>
</body>
</html>

1. Navigate in Windows Explorer to the directory that contains the file UpperL.html, and double-
click the file. It should open in your default browser.

2. Click the button labeled Click Here To Enter Text. A prompt window is shown, as you can see in
Figure A-2.

314

Appendix A: Simple Regular Expressions

00929bapp01.qxd:00929bapp01 3/13/07 10:47 AM Page 314

Figure A-2

3. Type a character or a string in the text box that contains the default text Type your text here, and
the JavaScript code will test whether or not there is a match for the regular expression pattern,
in this case L. Click the OK button.

4. Inspect the alert box that is displayed to assess whether or not a match is present in the string
that you entered. Figure A-3 shows the message when a successful match is made. Figure A-4
shows the message displayed when the string that you enter does not match the regular expres-
sion pattern.

Figure A-3

Figure A-4

315

Appendix A: Simple Regular Expressions

00929bapp01.qxd:00929bapp01 3/13/07 10:47 AM Page 315

The simple web page contains JavaScript code.

The JavaScript variable myRegExp is assigned the literal regular expression pattern L, using the following
declaration and assignment statement:

var myRegExp = /L/;

In JavaScript, the forward slash is used to delimit a regular expression pattern in a way similar to how
paired quotes are used to delimit a string. There is an alternate syntax, which is not discussed here.

When you click the button labeled Click Here to Enter Text, the ShowPrompt() function is called.

The entry variable is used to collect the string you enter in the prompt box:

var entry = prompt(“This script tests for matches for the regular expression
pattern: “ + myRegExp + “.\nType in a string and click on the OK button.”, “Type
your text here.”);

The output created depends on whether or not the text you entered contains a match for the regular expres-
sion pattern. Once the text has been entered and the OK button clicked, an if statement is executed, which
checks whether or not the text you entered (and which is stored in the entry variable) contains a match for
the regular expression pattern stored in the variable myRegExp:

if (Validate(entry)){

The if statement causes the Validate function to be called:

function Validate(entry){
return myRegExp.test(entry);
} // end function Validate()

The test() method of the myRegExp variable is used to determine whether or not a match is present.

If the if statement

if (Validate(entry))

returns the Boolean value true, the following code is executed

alert(“There is a match!\nThe regular expression pattern is: “ + myRegExp + “.\n
The string that you entered was: ‘“ + entry + “‘.”);

and uses the myRegExp and entry variables to display the regular expression pattern and the string that
you entered, together with explanatory text.

If there is no match, the following code is executed, because it is contained in the else clause of the if
statement:

alert(“There is no match in the string you entered.\n” + “The regular expression
pattern is “ + myRegExp + “\n” + “You entered the string: ‘“ + entry + “‘.”);

316

Appendix A: Simple Regular Expressions

00929bapp01.qxd:00929bapp01 3/13/07 10:47 AM Page 316

Again, the myRegExp and entry variables are used to give feedback to the user about what is to be matched
and the string that he or she entered.

Of course, in practice, you typically want to match a sequence of characters rather than a single character.

Matching Sequences of Characters That Each Occur Once
When the regular expression pattern L was matched, you made use of the default behavior of the regu-
lar expression engine, meaning that when there is no indication of how often a character (or sequence
of characters) is allowed to occur, the regular expression engine assumes that the character(s) in the
pattern occur exactly once, except when you include a quantifier in the regular expression pattern that
specifies an occurrence other than exactly once. This behavior also allows the matching of sequences
of the same character.

To match two characters that are the same character and occur twice without any intervening characters
(including whitespace), you can simply use a pattern with the desired character written twice in the pattern.

Matching Doubled Characters
As an example, look at how you can match sequences of characters where a character occurs exactly twice —
for example, the doubled r that can occur in words such as arrow and narrative.

A problem definition for the desired match can be expressed as follows:

Match any occurrence of the lowercase character r immediately followed by another lowercase r.

An example file, DoubledR.txt, is shown here:

The arrow flew through the air at great speed.

This is a narrative of great interest to many readers.

Apples and oranges are both types of fruit.

Asses and donkeys are both four-legged mammals.

Several million barrels of oil are produced daily.

The following pattern will match all occurrences of rr in the sample file:

rr

1. Open OpenOffice.org Writer, and open the sample file DoubledR.txt.

2. Use the keyboard shortcut Ctrl+F to open the Find And Replace dialog box.

3. Check the Regular Expressions check box and the Match Case check box.

4. Enter the pattern rr in the Search For text box, and click the Find All button.

Figure A-5 shows DoubledR.txt opened in OpenOffice.org Writer, as previously described. Notice that all
occurrences of rr are matched, but single occurrences of r are not matched.

317

Appendix A: Simple Regular Expressions

00929bapp01.qxd:00929bapp01 3/13/07 10:47 AM Page 317

Figure A-5

The pattern rr indicates to the regular expression engine that an attempt should be made to match the
lowercase alphabetic character r; then, if that first match is successful, an attempt should be made to
match the next character. The entire match is successful if the second character is also a lowercase r.

If the attempt to match the first character fails, the next character is tested to see if it is a lowercase r. If it
is not a lowercase r, the match fails, and a new attempt is made to match the following character against
the first r of the regular expression pattern.

You can also try this out in the Komodo Regular Expression Toolkit, as shown in Figure A-6, which matches
successive lowercase ms. You can download the latest trial version of the Komodo IDE, which includes the
Regular Expression Toolkit, from http://activestate.com/Products/Komodo. Komodo version 2.5
is used in this appendix. Clear the regular expression and the test text from the Komodo Toolkit. Enter
mammals in the area for the string to be matched, and type m in the area for the regular expression. At that
point, the initial m of mammals is matched. Then type a second m in the area for the regular expression, and
the highlight indicating a match moves to the mm in the middle of mammals, as you can see in Figure A-6.

318

Appendix A: Simple Regular Expressions

00929bapp01.qxd:00929bapp01 3/13/07 10:47 AM Page 318

Figure A-6

These two examples have shown how you can match doubled characters using one of the syntax options
that are available. Later in this appendix, you will look at an alternative syntax that can match an exact
number of successive occurrences of a desired character, which can be exactly two or can be a larger num-
ber. The alternative syntax uses curly braces and, in addition to allowing matches of an exact number of
occurrences, allows variable numbers of occurrences to be matched.

Introducing Metacharacters
To match three characters, you can simply write the character three times in a row to form a pattern. For
example, to match part numbers that take the form ABC123 (in other words, three alphabetic characters
followed by three numeric digits, which will match the alphabetic characters AAA), simply use the fol-
lowing pattern:

AAA

To match the other part of such part numbers, you need to introduce the concept of a metacharacter. The
patterns you have seen so far include characters that stand, literally, for the same character. A metachar-
acter can be a single character or a pair of characters (the first is typically a backslash) that has a meaning
other than the literal characters it contains.

There are several ways in which you can match the 123 part of a part number of the form ABC123. One
is to write the following:

\d\d\d

Each \d is a metacharacter that stands for a numeric digit 0 through 9, inclusive. The \d metacharacter
does not stand for a backslash followed by a lowercase d.

319

Appendix A: Simple Regular Expressions

00929bapp01.qxd:00929bapp01 3/13/07 10:47 AM Page 319

Notice that the \d metacharacter differs significantly in meaning from the literal characters used in pat-
terns so far. The character L in a pattern could match only an uppercase L, but the metacharacter \d can
match any of the numeric digits 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9.

A metacharacter often matches a class of characters. In this case, the metacharacter \d matches the class
of characters that are numeric digits.

When you have the pattern \d\d\d, you know that it matches three successive numeric digits, but it will
match 012, 234, 345, 999 and hundreds of other numbers.

Matching Triple Numeric Digits
Suppose that you want to match a sequence of three numeric digits. In plain English, you might say that you
want to match a three-digit number. A slightly more formal way to express what you want to do is this: Match
a numeric digit. If the first character is a numeric digit, attempt to match the next character as a numeric digit.
If both the characters are numeric digits, attempt to match a third successive numeric digit.

The metacharacter \d matches a single numeric digit; therefore, as described a little earlier, you could use
the pattern

\d\d\d

to match three successive numeric digits.

If all three matches are successful, a match for the regular expression pattern has been found.

The test file, ABC123.txt, is shown here:

ABC123

A234BC

A23BCD4

Part Number DRC22

Part Number XFA221

Part Number RRG417

For the moment, aim to match only the numeric digits using the pattern \d\d\d shown earlier.

This example uses JavaScript, for reasons that will be explained in a moment.

1. Navigate to the directory that contains the file ABC123.txt and ThreeDigits.html. Open
ThreeDigits.html in a web browser.

2. Click the button labeled Click Here To Enter Text.

3. When the prompt box opens, enter a string to test. Enter a string copied from ABC123.txt.

4. Click the OK button and inspect the alert box to see if the string that you entered contained a
match for the pattern \d\d\d.

Figure A-7 shows the result after entering the string Part Number RRG417.

320

Appendix A: Simple Regular Expressions

00929bapp01.qxd:00929bapp01 3/13/07 10:47 AM Page 320

Figure A-7

Try each of the strings from ABC123.txt. You can also create your own test string. Notice that the pattern
\d\d\d will match any sequence of three successive numeric digits, but single numeric digits or pairs of
numeric digits are not matched.

The regular expression engine looks for a numeric digit. If the first character that it tests is not a numeric
digit, it moves one character through the test string and then tests whether that character matches a
numeric digit. If not, it moves one character further and tests again.

If a match is found for the first occurrence of \d, the regular expression engine tests if the next character is
also a numeric digit. If that matches, a third character is tested to determine if it matches the \d metachar-
acter for a numeric digit. If three successive characters are each a numeric digit, there is a match for the
regular expression pattern \d\d\d.

You can see this matching process in action by using the Komodo Regular Expressions Toolkit. Open the
Komodo Regular Expression Toolkit, and clear any existing regular expression and test string. Enter the
test string A234BC; then, in the area for the regular expression pattern, enter the pattern \d. You will see
that the first numeric digit, 2, is highlighted as a match. Add a second \d to the regular expression area,
and you will see that 23 is highlighted as a match. Finally, add a third \d to give a final regular expres-
sion pattern \d\d\d, and you will see that 234 is highlighted as a match. See Figure A-8.

You can try this with other test text from ABC123.txt. I suggest that you also try this out with your own
test text that includes numeric digits and see which test strings match. You may find that you need to add
a space character after the test string for matching to work correctly in the Komodo Regular Expression
Toolkit.

Why was JavaScript used for the preceding example? Because you can’t use OpenOffice.org Writer to
test matches for the \d metacharacter.

Matching numeric digits can pose difficulties. Figure A-9 shows the result of an attempted match in
ABC123.txt when using OpenOffice.org Writer with the pattern \d\d\d.

321

Appendix A: Simple Regular Expressions

00929bapp01.qxd:00929bapp01 3/13/07 10:47 AM Page 321

Figure A-8

Figure A-9

322

Appendix A: Simple Regular Expressions

00929bapp01.qxd:00929bapp01 3/13/07 10:47 AM Page 322

As you can see in Figure A-9, no match is found in OpenOffice.org Writer. Numeric digits in OpenOffice.org
Writer use nonstandard syntax in that OpenOffice.org Writer lacks support for the \d metacharacter.

One solution to this type of problem in OpenOffice.org Writer is to use character classes. For now, it is
sufficient to note that the regular expression pattern

[0-9][0-9][0-9]

gives the same results as the pattern \d\d\d, because the meaning of [0-9][0-9][0-9] is the same as
\d\d\d. The use of that character class to match three successive numeric digits in the file ABC123.txt
is shown in Figure A-10.

Another syntax in OpenOffice.org Writer uses POSIX metacharacters.

The findstr utility also lacks the \d metacharacter, so if you want to use it to find matches, you must
use the preceding character class shown in the command line, as follows:

findstr /N [0-9][0-9][0-9] ABC123.txt

Figure A-10

323

Appendix A: Simple Regular Expressions

00929bapp01.qxd:00929bapp01 3/13/07 10:47 AM Page 323

You will find matches on four lines, as shown in Figure A-11. The preceding command line will work
correctly only if the ABC123.txt file is in the current directory. If it is in a different directory, you will
need to reflect that in the path for the file that you enter at the command line.

The next section combines the techniques that you have seen so far to find a combination of literally
expressed characters and a sequence of characters.

Figure A-11

Matching Sequences of Different Characters
A common task in simple regular expressions is to find a combination of literally specified single charac-
ters plus a sequence of characters.

There is an almost infinite number of possibilities in terms of characters that you could test. This section
focuses on a very simple list of part numbers and look for part numbers with the code DOR followed by
three numeric digits. In this case, the regular expression should do the following:

Look for a match for uppercase D. If a match is found, check if the next character matches uppercase O. If
that matches, next check if the following character matches uppercase R. If those three matches are pres-
ent, check if the next three characters are numeric digits.

Finding Literal Characters and Sequences of Characters
The file PartNumbers.txt is the sample file for this example:

BEF123

RRG417

DOR234

DOR123

CCG991

First, try it in OpenOffice.org Writer, remembering that you need to use the regular expression pattern
[0-9] instead of \d.

1. Open the file PartNumbers.txt in OpenOffice.org Writer, and open the Find And Replace
Dialog box by pressing Ctrl+F.

2. Check the Regular Expression check box and the Match Case check box.

3. Enter the pattern DOR[0-9][0-9][0-9] in the Search For text box and click the Find All button.

324

Appendix A: Simple Regular Expressions

00929bapp01.qxd:00929bapp01 3/13/07 10:47 AM Page 324

The text DOR234 and DOR123 is highlighted, indicating that those are matches for the regular expression.

The regular expression engine first looks for the literal character uppercase D. Each character is examined in
turn to determine if there is or is not a match.

If a match is found, the regular expression engine then looks at the next character to determine if the follow-
ing character is an uppercase O. If that too matches, it looks to see if the third character is an uppercase R. If
all three of those characters match, the engine next checks to see if the fourth character is a numeric digit.
If so, it checks if the fifth character is a numeric digit. If that too matches, it checks if the sixth character is a
numeric digit. If that too matches, the entire regular expression pattern is matched. Each match is displayed
in OpenOffice.org Writer as a highlighted sequence of characters.

You can check the PartNumbers.txt file for lines that contain a match for the pattern

DOR[0-9][0-9][0-9]

using the findstr utility from the command line, as follows:

findstr /N DOR[0-9][0-9][0-9] PartNumbers.txt

As you can see in Figure A-12, lines containing the same two matching sequences of characters, DOR234 and
DOR123, are matched. If the directory that contains the file PartNumbers.txt is not the current directory in
the command window, you will need to adjust the path to the file accordingly.

The Komodo Regular Expression Toolkit can also be used to test the pattern DOR\d\d\d. As you can see in
Figure A-13, the test text DOR123 matches.

Figure A-12

Figure A-13

325

Appendix A: Simple Regular Expressions

00929bapp01.qxd:00929bapp01 3/13/07 10:47 AM Page 325

Now that you have looked at how to match sequences of characters, each of which occur exactly once,
the next section moves on to look at matching characters that can occur a variable number of times.

Matching Optional Characters
Matching literal characters is straightforward, particularly when you are aiming to match exactly one lit-
eral character for each corresponding literal character that you include in a regular expression pattern. The
next step up from that basic situation is where a single literal character may occur zero times or one time.
In other words, a character is optional. Most regular expression dialects use the question mark (?) charac-
ter to indicate that the preceding chunk is optional. I am using the term “chunk” loosely here to mean the
thing that precedes the question mark. That chunk can be a single character or various, more complex reg-
ular expression constructs. For the moment, you will deal with the case of the single, optional character.

For example, suppose you are dealing with a group of documents that contain both U.S. English and
British English.

You may find that words such as color (in U.S. English) appear as colour (British English) in some
documents. You can express a pattern to match both words like this:

colou?r

You may want to standardize the documents so that all the spellings are U.S. English spellings.

Matching an Optional Character
Try this out using the Komodo Regular Expression Toolkit:

1. Open the Komodo Regular Expression Toolkit and clear any regular expression pattern or text
that may have been retained.

2. Insert the text colour into the area for the text to be matched.

3. Enter the regular expression pattern colou?r into the area for the regular expression pattern.
The text colour is matched, as shown in Figure A-14.

Try this regular expression pattern with text such as that shown in the sample file Colors.txt:

Red is a color.

His collar is too tight or too colouuuurful.

These are bright colours.

These are bright colors.

Calorific is a scientific term.

“Your life is very colorful,” she said.

The word color in the line Red is a color. will match the pattern colou?r.

326

Appendix A: Simple Regular Expressions

00929bapp01.qxd:00929bapp01 3/13/07 10:47 AM Page 326

Figure A-14

When the regular expression engine reaches a position just before the c of color, it attempts to match a lower-
case c. This match succeeds. It next attempts to match a lowercase o. That too matches. It next attempts to
match a lowercase l and a lowercase o. They match as well. It then attempts to match the pattern u?, which
means zero or one lowercase u characters. Because there are exactly zero lowercase u characters following the
lowercase o, there is a match. The pattern u? matches zero characters. Finally, it attempts to match the final
character in the pattern — that is, the lowercase r. Because the next character in the string color does match
a lowercase r, the whole pattern is matched.

There is no match in the line His collar is too tight or too colouuuurful. The only possible match
might be in the sequence of characters colouuuurful. The failure to match occurs when the regular expres-
sion engine attempts to match the pattern u?. Because the pattern u? means “match zero or one lowercase u
characters,” there is a match on the first u of colouuuurful. After that successful match, the regular expres-
sion engine attempts to match the final character of the pattern colou?r against the second lowercase u in
colouuuurful. That attempt to match fails, so the attempt to match the whole pattern colou?r against the
sequence of characters colouuuurful also fails.

What happens when the regular expression engine attempts to find a match in the line These are bright
colours.?

When the regular expression engine reaches a position just before the c of colours, it attempts to match
a lowercase c. That match succeeds. It next attempts to match a lowercase o, a lowercase l, and another
lowercase o. These also match. It next attempts to match the pattern u?, which means zero or one lower-
case u characters. Because exactly one lowercase u character follows the lowercase o in colours, there is
a match. Finally, the regular expression engine attempts to match the final character in the pattern, the
lowercase r. Because the next character in the string colours does match a lowercase r, the whole pattern
is matched.

The findstr utility can also be used to test for the occurrence of the sequence of characters color and
colour, but the regular expression engine in the findstr utility has a limitation in that it lacks a metachar-
acter to signify an optional character. For many purposes, the * metacharacter, which matches zero, one, or
more occurrences of the preceding character, will work successfully.

327

Appendix A: Simple Regular Expressions

00929bapp01.qxd:00929bapp01 3/13/07 10:47 AM Page 327

To look for lines that contain matches for colour and color using the findstr utility, enter the following
at the command line:

findstr /N colo*r Colors.txt

The preceding command line assumes that the file Colors.txt is in the current directory.

Figure A-15 shows the result from using the findstr utility on Colors.txt.

Notice that lines that contain the sequences of characters color and colour are successfully matched,
whether as whole words or parts of longer words. However, notice, too, that the slightly strange “word”
colouuuurful is also matched due to the * metacharacter’s allowing multiple occurrences of the lower-
case letter u. In most practical situations, such bizarre “words” won’t be an issue for you, and the * quanti-
fier will be an appropriate substitute for the ? quantifier when using the findstr utility. In some situations,
where you want to match precisely zero or one specific characters, the findstr utility may not provide
the functionality that you need, because it would also match a character sequence such as colonifier.

Figure A-15

Having seen how you can use a single optional character in a regular expression pattern, take a look at
how you can use multiple optional characters in a single regular expression pattern.

Matching Multiple Optional Characters
Many English words have multiple forms. Sometimes, it may be necessary to match all of the forms of
a word. Matching all those forms can require using multiple optional characters in a regular expression
pattern.

Consider the various forms of the word color (U.S. English) and colour (British English). They include
the following:

color (U.S. English, singular noun)

colour (British English, singular noun)

colors (U.S. English, plural noun)

328

Appendix A: Simple Regular Expressions

00929bapp01.qxd:00929bapp01 3/13/07 10:47 AM Page 328

colours (British English, plural noun)

color’s (U.S. English, possessive singular)

colour’s (British English, possessive singular)

colors’ (U.S. English, possessive plural)

colours’ (British English, possessive plural)

The following regular expression pattern, which includes three optional characters, can match all eight
of these word forms:

colou?r’?s?’?

If you tried to express this in a semiformal way, you might have the following problem definition:

Match the U.S. English and British English forms of color (colour), including the singular noun,
the plural noun, and the singular possessive and the plural possessive.

Try it out, and then I will explain why it works and what limitations it potentially has.

Matching Multiple Optional Characters
Use the sample file Colors2.txt to explore this example:

These colors are bright.

Some colors feel warm. Other colours feel cold.

A color’s temperature can be important in creating reaction to an image.

These colours’ temperatures are important in this discussion.

Red is a vivid colour.

To test the regular expression, follow these steps:

1. Open OpenOffice.org Writer, and open the file Colors2.txt.

2. Use the keyboard shortcut Ctrl+F to open the Find And Replace dialog box.

3. Check the Regular Expressions check box and the Match Case check box.

4. In the Search For text box, enter the regular expression pattern colou?r’?s?’?, and click the Find
All button. If all has gone well, you should see the matches shown in Figure A-16.

329

Appendix A: Simple Regular Expressions

00929bapp01.qxd:00929bapp01 3/13/07 10:47 AM Page 329

Figure A-16

As you can see, all the sample forms of the word of interest have been matched.

This description focuses initially on matching of the forms of the word colour/color.

How does the pattern colou?r’?s?’? match the word color? Assume that the regular expression
engine is at the position immediately before the first letter of color. It first attempts to match lower-
case c, because one lowercase c must be matched. That matches. Attempts are then made to match a
subsequent lowercase o, l, and o. These all also match. Then an attempt is made to match an optional
lowercase u. In other words, zero or one occurrences of the lowercase character u is needed. Because
there are zero occurrences of lowercase u, there is a match. Next, an attempt is made to match lower-
case r. The lowercase r in color matches. Then an attempt is made to match an optional apostrophe.
Because there is no occurrence of an apostrophe, there is a match. Next, the regular expression engine

330

Appendix A: Simple Regular Expressions

00929bapp01.qxd:00929bapp01 3/13/07 10:47 AM Page 330

attempts to match an optional lowercase s — in other words, to match zero or one occurrence of lower-
case s. Because there is no occurrence of lowercase s, again, there is a match. Finally, an attempt is made
to match an optional apostrophe. Because there is no occurrence of an apostrophe, another match is
found. Because a match exists for all the components of the regular expression pattern, there is a match
for the whole regular expression pattern colour?r’?s?’?.

Now, how does the pattern colou?r’?s?’? match the word colour? Assume that the regular expression
engine is at the position immediately before the first letter of colour. It first attempts to match lowercase c,
because one lowercase c must be matched. That matches. Next, attempts are made to match a subse-
quent lowercase o, l, and another o. These also match. Then an attempt is made to match an optional
lowercase u. In other words, zero or one occurrences of the lowercase character u are needed. Because
there is one occurrence of lowercase u, there is a match. Next, an attempt is made to match lowercase r.
The lowercase r in colour matches. Next, the engine attempts to match an optional apostrophe. Because
there is no occurrence of an apostrophe, there is a match. Next, the regular expression engine attempts
to match an optional lowercase s — in other words, to match zero or one occurrences of lowercase s.
Because there is no occurrence of lowercase s, a match exists. Finally, an attempt is made to match an
optional apostrophe. Because there is no occurrence of an apostrophe, there is a match. All the compo-
nents of the regular expression pattern have a match; therefore, the entire regular expression pattern
colour?r’?s?’? matches.

Work through the other six word forms shown earlier, and you’ll find that each of the word forms does,
in fact, match the regular expression pattern.

The pattern colou?r’?s?’? matches all eight of the word forms that were listed earlier, but will the
pattern match the following sequence of characters?

colour’s’

Can you see that it does match? Can you see why it matches the pattern? If each of the three optional
characters in the regular expression is present, the preceding sequence of characters matches. That rather
odd sequence of characters likely won’t exist in your sample document, so the possibility of false matches
(reduced specificity) won’t be an issue for you.

How can you avoid the problem caused by such odd sequences of characters as colour’s’? You want
to be able to express it something like this:

Match a lowercase c. If a match is present, attempt to match a lowercase o. If that match is
present, attempt to match a lowercase l. If there is a match, attempt to match a lowercase o.
If a match exists, attempt to match an optional lowercase u. If there is a match, attempt to
match a lowercase r. If there is a match, attempt to match an optional apostrophe. And if
a match exists here, attempt to match an optional lowercase s. If the earlier optional apostrophe
was not present, attempt to match an optional apostrophe.

With the techniques that you have seen so far, you aren’t able to express ideas such as “match
something only if it is not preceded by something else.” That sort of approach might help achieve
higher specificity at the expense of increased complexity.

331

Appendix A: Simple Regular Expressions

00929bapp01.qxd:00929bapp01 3/13/07 10:47 AM Page 331

Other Cardinality Operators
Testing for matches only for optional characters can be very useful, as you saw in the colors example,
but it would be pretty limiting if that were the only quantifier available to a developer. Most regular
expression implementations provide two other cardinality operators (also called quantifiers): the
* operator and the + operator, which are described in the following sections.

The * Quantifier
The * operator refers to zero or more occurrences of the pattern to which it is related. In other words,
a character or group of characters is optional but may occur more than once. Zero occurrences of the
chunk that precedes the * quantifier should match. A single occurrence of that chunk should also match.
So should two occurrences, three occurrences, and ten occurrences. In principle, an unlimited number of
occurrences will also match.

Try this out in an example using OpenOffice.org Writer.

Matching Zero or More Occurrences
The sample file, Parts.txt, contains a listing of part numbers that have two alphabetic characters followed
by zero or more numeric digits. In the simple sample file, the maximum number of numeric digits is three,
but because the * quantifier will match three occurrences, you can use it to match the sample part numbers. If
there is a good reason why it is important that a maximum of three numeric digits can occur, you can express
that notion by using an alternative syntax, which is discussed a little later in this appendix. Each of the part
numbers in this example consists of the sequence of uppercase characters ABC followed by zero or more
numeric digits:

ABC

ABC123

ABC12

ABC889

ABC8899

ABC34

You can express what you want to do as follows:

Match an uppercase A. If there is a match, attempt to match an uppercase B. If there is a match,
attempt to match an uppercase C. If all three uppercase characters match, attempt to match zero or
more numeric digits.

Because all the part numbers begin with the literal characters ABC, you can use the pattern

ABC[0-9]*

to match part numbers that correspond to the description in the problem definition.

1. Open OpenOffice.org Writer and open the sample file, Parts.txt.

332

Appendix A: Simple Regular Expressions

00929bapp01.qxd:00929bapp01 3/13/07 10:47 AM Page 332

2. Use Ctrl+F to open the Find And Replace dialog box.

3. Check the Regular Expression check box and the Match Case check box.

4. Enter the regular expression pattern ABC[0-9]* in the Search For text box.

5. Click the Find All button, and inspect the matches that are highlighted.

Figure A-17 shows the matches in OpenOffice.org Writer. As you can see, all of the part numbers match the
pattern.

Figure A-17

Before working through a couple of the matches, briefly look at part of the regular expression pattern,
[0-9]*. The asterisk applies to the character class [0-9], which I call a chunk.

Why does the first part number ABC match? When the regular expression engine is at the position imme-
diately before the A of ABC, it attempts to match the next character in the part number with an uppercase A.
Because the first character of the part number ABC is an uppercase A, there is a match. Next, an attempt is
made to match an uppercase B. That too matches, as does an attempt to match an uppercase C. At that

333

Appendix A: Simple Regular Expressions

00929bapp01.qxd:00929bapp01 3/13/07 10:47 AM Page 333

stage, the first three characters in the regular expression pattern have been matched. Finally, an attempt
is made to match the pattern [0-9]*, which means “Match zero or more numeric characters.” Because
the character after C is a newline character, there are no numeric digits. Because there are exactly zero
numeric digits after the uppercase C of ABC, there is a match (of zero numeric digits). Because all compo-
nents of the pattern match, the whole pattern matches.

Why does the part number ABC8899 also match? When the regular expression engine is at the position
immediately before the A of ABC8899, it attempts to match the next character in the part number with an
uppercase A. Because the first character of the part number ABC8899 is an uppercase A, there is a match.
Next, attempts are made to match an uppercase B and an uppercase C. These too match. At that stage, the
first three characters in the regular expression pattern have been matched. Finally, an attempt is made to
match the pattern [0-9]*, which means “Match zero or more numeric characters.” Four numeric digits
follow the uppercase C. Because there are exactly four numeric digits after the uppercase C of ABC, there
is a match (of four numeric digits, which meets the criterion “zero or more numeric digits”). Because all
components of the pattern match, the whole pattern matches.

Work through the other part numbers step by step, and you’ll find that each ought to match the pattern
ABC[0-9]*.

The + Quantifier
There are many situations where you will want to be certain that a character or group of characters
is present at least once but also allow for the possibility that the character occurs more than once. The
+ cardinality operator is designed for that situation. The + operator means “Match one or more occur-
rences of the chunk that precedes me.”

Take a look at the example with Parts.txt, but look for matches that include at least one numeric digit.
You want to find part numbers that begin with the uppercase characters ABC and then have one or more
numeric digits.

You can express the problem definition like this:

Match an uppercase A. If there is a match, attempt to match an uppercase B. If there is a match,
attempt to match an uppercase C. If all three uppercase characters match, attempt to match one or
more numeric digits.

Use the following pattern to express that problem definition:

ABC[0-9]+

Matching One or More Numeric Digits
1. Open OpenOffice.org Writer, and open the sample file Parts.txt.

2. Use Ctrl+F to open the Find And Replace dialog box.

3. Check the Regular Expressions and Match Case check boxes.

4. Enter the pattern ABC[0-9]+ in the Search For text box; click the Find All button, and inspect
the matching part numbers that are highlighted, as shown in Figure A-18.

334

Appendix A: Simple Regular Expressions

00929bapp01.qxd:00929bapp01 3/13/07 10:47 AM Page 334

Figure A-18

As you can see, the only change from the result of using the pattern ABC[0-9]* is that the pattern
ABC[0-9]+ fails to match the part number ABC.

When the regular expression engine is at the position immediately before the uppercase A of the part
number ABC, it attempts to match an uppercase A. That matches. Next, subsequent attempts are made
to match an uppercase B and an uppercase C. They too match. At that stage, the first three characters
in the regular expression pattern have been matched. Finally, an attempt is made to match the pattern
[0-9]+, which means “Match one or more numeric characters.” There are zero numeric digits follow-
ing the uppercase C. Because there are exactly zero numeric digits after the uppercase C of ABC, there is
no match (zero numeric digits fails to match the criterion “one or more numeric digits,” specified by the
+ quantifier). Because the final component of the pattern fails to match, the whole pattern fails to match.

Why does the part number ABC8899 match? When the regular expression engine is at the position imme-
diately before the A of ABC8899, it attempts to match the next character in the part number with an upper-
case A. Because the first character of the part number ABC8899 is an uppercase A, there is a match. Next,

335

Appendix A: Simple Regular Expressions

00929bapp01.qxd:00929bapp01 3/13/07 10:47 AM Page 335

attempts are made to match an uppercase B and an uppercase C. They too match. At that stage, the first
three characters in the regular expression pattern have been matched. Finally, an attempt is made to
match the pattern [0-9]+, which means “Match one or more numeric characters.” Four numeric digits
follow the uppercase C of ABC, so there is a match (of four numeric digits, which meets the criterion “one
or more numeric digits”). Because all components of the pattern match, the whole pattern matches.

Before moving on to look at the curly-brace quantifier syntax, here’s a brief review of the quantifiers
already discussed, as listed in Table A-1.

Table A-1

These quantifiers can often be useful, but there are times when you will want to express ideas such as
“Match something that occurs at least twice but can occur an unlimited number of times” or “Match
something that can occur at least three times but no more than six times.”

You also saw earlier that you can express a repeating character by simply repeating the character in a
regular expression pattern.

The Curly-Brace Syntax
If you want to specify large numbers of occurrences, you can use a curly-brace syntax to specify an exact
number of occurrences.

The {n} Syntax
Suppose that you want to match part numbers with sequences of characters that have exactly three
numeric digits. You can write the pattern as

ABC[0-9][0-9][0-9]

by simply repeating the character class for a numeric digit. Alternatively, you can use the curly-brace
syntax and write

ABC[0-9]{3}

to achieve the same result.

Most regular expression engines support a syntax that can express ideas like that. The syntax uses curly
braces to specify minimum and maximum numbers of occurrences.

Quantifier Definition

? 0 or 1 occurrences

* 0 or more occurrences

+ 1 or more occurrences

336

Appendix A: Simple Regular Expressions

00929bapp01.qxd:00929bapp01 3/13/07 10:47 AM Page 336

The {n,m} Syntax
The * operator that was described a little earlier in this appendix effectively means “Match a minimum
of zero occurrences and a maximum occurrence, which is unbounded.” Similarly, the + quantifier means
“Match a minimum of one occurrence and a maximum occurrence, which is unbounded.”

Using curly braces and numbers inside them allows the developer to create occurrence quantifiers that
cannot be specified when using the ?, *, or + quantifiers.

The following subsections look at three variants that use the curly-brace syntax. First, look at the syntax
that specifies “Match zero or up to [a specified number] of occurrences.”

{0,m}
The {0,m} syntax allows you to specify that a minimum of zero occurrences can be matched (specified
by the first numeric digit after the opening curly brace) and that a maximum of m occurrences can be
matched (specified by the second numeric digit, which is separated from the minimum occurrence indi-
cator by a comma and which precedes the closing curly brace).

To match a minimum of zero occurrences and a maximum of one occurrence, you would use the pattern

{0,1}

which has the same meaning as the ? quantifier.

To specify matching of a minimum of zero occurrences and a maximum of three occurrences, you would
use the pattern

{0,3}

which you couldn’t express using the ?, *, or + quantifiers.

Suppose that you want to specify that you want to match the sequence of characters ABC followed by a
minimum of zero numeric digits or a maximum of two numeric digits.

You can semiformally express that as the following problem definition:

Match an uppercase A. If there is a match, attempt to match an uppercase B. If there is a match, attempt
to match an uppercase C. If all three uppercase characters match, attempt to match a minimum of zero
or a maximum of two numeric digits.

The following pattern does what you need:

ABC[0-9]{0,2}

The ABC simply matches a sequence of the corresponding literal characters. The [0-9] indicates that a
numeric digit is to be matched, and the {0,2} is a quantifier that indicates a minimum of zero occur-
rences of the preceding chunk (which is [0-9], representing a numeric digit) and a maximum of two
occurrences of the preceding chunk is to be matched.

337

Appendix A: Simple Regular Expressions

00929bapp01.qxd:00929bapp01 3/13/07 10:47 AM Page 337

Match Zero to Two Occurrences
1. Open OpenOffice.org Writer, and open the sample file Parts.txt.

2. Use Ctrl+F to open the Find And Replace dialog box.

3. Check the Regular Expressions and Match Case check boxes.

4. Enter the regular expression pattern ABC[0-9]{0,2} in the Search For text box; click the Find All
button, and inspect the matches that are displayed in highlighted text, as shown in Figure A-19.

Figure A-19

Notice that on some lines, only parts of a part number are matched. If you are puzzled as to why that is,
refer back to the problem definition. You are to match a specified sequence of characters. You haven’t
specified that you want to match a part number, simply a sequence of characters.

338

Appendix A: Simple Regular Expressions

00929bapp01.qxd:00929bapp01 3/13/07 10:47 AM Page 338

How does it work with the match for the part number ABC? When the regular expression engine is at the
position immediately before the uppercase A of the part number ABC, it attempts to match an uppercase A.
That matches. Next, an attempt is made to match an uppercase B. That too matches. Next, an attempt is
made to match an uppercase C. That too matches. At that stage, the first three characters in the regular
expression pattern have been matched. Finally, an attempt is made to match the pattern [0-9]{0,2},
which means “Match a minimum of zero and a maximum of two numeric characters.” Zero numeric
digits follow the uppercase C in ABC. Because there are exactly zero numeric digits after the uppercase C
of ABC, there is a match (zero numeric digits matches the criterion “a minimum of zero numeric digits”
specified by the minimum-occurrence specifier of the {0,2} quantifier). Because the final component
of the pattern matches, the whole pattern matches.

What happens when matching is attempted on the line that contains the part number ABC8899? Why do
the first five characters of the part number ABC8899 match? When the regular expression engine is at the
position immediately before the A of ABC8899, it attempts to match the next character in the part number
with an uppercase A and finds it is a match. Next, an attempt is made to match an uppercase B. That too
matches. Then an attempt is made to match an uppercase C, which also matches. At that stage, the first
three characters in the regular expression pattern have been matched. Finally, an attempt is made to match
the pattern [0-9]{0,2}, which means “Match a minimum of zero and a maximum of two numeric charac-
ters.” Four numeric digits follow the uppercase C. Only two of those numeric digits are needed for a suc-
cessful match. Because there are four numeric digits after the uppercase C of ABC, there is a match (of two
numeric digits, which meets the criterion “a maximum of two numeric digits”), but the final two numeric
digits of ABC8899 are not needed to form a match, so they are not highlighted. Because all components of
the pattern match, the whole pattern matches.

{n,m}
The minimum-occurrence specifier in the curly-brace syntax doesn’t have to be 0. It can be any number
you like, provided it is not larger than the maximum-occurrence specifier.

Look for one to three occurrences of a numeric digit. You can specify this in a problem definition as follows:

Match an uppercase A. If there is a match, attempt to match an uppercase B. If there is a match, attempt
to match an uppercase C. If all three uppercase characters match, attempt to match a minimum of one
and a maximum of three numeric digits.

So if you wanted to match one to three occurrences of a numeric digit in Parts.txt, you would use the
following pattern:

ABC[0-9]{1,3}

Figure A-20 shows the matches in OpenOffice.org Writer. Notice that the part number ABC does not
match, because it has zero numeric digits, and you are looking for matches that have one through
three numeric digits. Notice, too, that only the first three numeric digits of ABC8899 form part of
the match.

The explanation in the preceding section for the {0,m} syntax should be sufficient to help you under-
stand what is happening in this example.

339

Appendix A: Simple Regular Expressions

00929bapp01.qxd:00929bapp01 3/13/07 10:47 AM Page 339

Figure A-20

{n,}
Sometimes, you will want there to be an unlimited number of occurrences. You can specify an unlimited
maximum number of occurrences by omitting the maximum-occurrence specifier inside the curly braces.

To specify at least two occurrences and an unlimited maximum, you could use the following problem
definition:

Match an uppercase A. If there is a match, attempt to match an uppercase B. If there is a match, attempt
to match an uppercase C. If all three uppercase characters match, attempt to match a minimum of two
occurrences and an unlimited maximum occurrence of three numeric digits.

You can express that using the following pattern:

ABC[0-9]{2,}

Figure A-21 shows the appearance in OpenOffice.org Writer. Notice that now all four numeric digits in
ABC8899 form part of the match, because the maximum occurrences that can form part of a match are
unlimited.

340

Appendix A: Simple Regular Expressions

00929bapp01.qxd:00929bapp01 3/13/07 10:47 AM Page 340

Figure A-21

341

Appendix A: Simple Regular Expressions

00929bapp01.qxd:00929bapp01 3/13/07 10:47 AM Page 341

00929bapp01.qxd:00929bapp01 3/13/07 10:47 AM Page 342

Glossary

This glossary contains a list of terms that may be useful to a web developer or search engine mar-
keter reading this book. Glossary entries contained within other entries are presented in italics.

200 A web server status code that indicates the requested URL has been retrieved successfully.
See Chapter 4 for more details.

301 A type of redirect sent by a web server that indicates the content of a URL has been relocated
permanently. See Chapter 4 for more details.

302 A type of redirect sent by a web server that indicates the content of a URL has been relocated
temporarily. See Chapter 4 for more details.

404 A web server status code returned when the requested URL does not exist on the server. See
Chapter 4 for more details.

500 A web server status code returned when the server is encountering temporary technical prob-
lems. See Chapter 4 for more details.

Accessibility The ease of use exhibited by a web site with regard to users who have disabilities
or impairments.

Ad-hoc query A search request that retrieves information without knowledge of the underlying
storage structures of the database.

Aggregator See feed reader.

AJAX An acronym for Asynchronous JavaScript and XML. It is a technology that uses DOM,
JavaScript, and the XMLHttpRequest object to create interactive web applications within a web
page. With an AJAX application, users do not navigate through different pages of content — instead,
the application executes (and displays updated content when necessary) inside a single web page.
For a practical tutorial, we recommend Cristian Darie’s AJAX and PHP: Building Responsive Web
Applications (Packt Publishing, 2006). SEO implications of AJAX are discussed in Chapter 6.

00929bgloss.qxd:00929bgloss 3/13/07 10:48 AM Page 343

Algorithm A set of instructions that directs a computer to complete a task or solve a problem; in search
engines, a series of such algorithms is used to create the list of search results for a particular user query,
ranking the results in order of relevance.

Anchor text The text a user clicks when he or she follows a link; in HTML it is the text contained by
<a>....

Apache A popular open-source web server; it is the web server used in this book.

Application programming interface (API) Functions of a computer program that can be accessed and
used by other programs. For example, many shipping companies use application programming inter-
faces to allow applications to query shipping prices over the Internet.

ASP.NET A development framework created by Microsoft for creating dynamic web applications and
web services. It is part of Microsoft’s .NET platform and shares very little with “classic” ASP. See the
companion Wrox title Professional Search Engine Optimization with ASP.NET: A Developer’s Guide to SEO
(Wiley, 2007) for details on optimizing ASP.NET web sites.

Asynchronous JavaScript and XML See AJAX.

Atom A web feed standard based on XML. For more details, see Chapter 7.

BigDaddy An update to Google’s ranking algorithms for web sites that occurred in early 2006. It is
similar in scope to the Florida update.

Black hat The use of techniques that to varying degrees do not follow the guidelines of search engines
and may also exploit the work or property of others. For more details, see Chapter 8.

Blog A content management system that presents articles in reverse chronological order. Blogs are
explored in Chapter 16 when you set one up using WordPress.

Bot See spider.

Breadcrumb navigation Navigational links appearing on a web page that show the path taken to reach
that particular page; for example, “home ➪ products ➪ cookies.”

Cascading Style Sheets A language that defines the presentation and aesthetics of a markup language
such as HTML.

Class A blueprint for an object in object-oriented programming.

Click through The act of a user clicking a particular ad or SERP.

Click through rate The ratio of click-throughs per number of visitors who view the advertisement
or SERP.

Cloaking The (sometimes deceptive) practice of delivering different content to a search engine than to
human visitors browsing a web site.

344

Glossary

00929bgloss.qxd:00929bgloss 3/13/07 10:48 AM Page 344

Content theft The practice of stealing another individual’s web content.

Conversion rate The ratio of conversions or sales per the number of visitors.

CSS See Cascading Style Sheets.

CTR See click through rate.

Data escaping Altering the text and other data received from a non-trusted source, such as a comment
added with a form on your web site, so that it doesn’t cause any unwanted side effects when that data is
further processed by your application.

Delist To remove a web site from a search engine’s index.

Directory A human-edited catalog of web sites organized into categories; examples include the Yahoo!
directory and DMOZ.

DNS Acronym for Domain Name Server.

Document Object Model The representation of a hierarchical structure such as that of an XML or HTML
document. Most programming languages provide a Document Object Model (DOM) object that allows
loading and manipulating such structures. In particular, AJAX web applications use DOM to create web
applications inside of a web page.

DOM See Document Object Model.

Domain Name Server A server that stores various data about domain names and translates them to
their designated IP addresses.

Duplicate content Substantially identical content located on different web pages.

Extensible Markup Language Better known as XML, this is a general-purpose text-based document
structure that facilitates the sharing of data across diverse applications. See http://en.wikipedia.org/
wiki/Xml for more information.

Feed See web feed.

Feed reader An application that reads and displays web feeds for human consumption.

.FLA A source script file used to generate Flash .SWF files.

Flash A technology developed by Adobe that can be used to add animation and interactive content to
web pages using vector graphics.

Florida An update to Google’s ranking algorithms for web sites that occurred in late 2003.

Geo-targeting The practice of providing different content depending on a user’s or spider’s physical
location on Earth.

345

Glossary

00929bgloss.qxd:00929bgloss 3/13/07 10:48 AM Page 345

Google Sandbox The virtual “purgatory” that many newly launched sites must pass through in order
to rank well in Google. This concept is described in Chapter 2.

HTTP status codes Numeric codes that provide information regarding the state of an HTTP request.
You can use them, for example, to indicate that the information requested is not available or has been
moved.

Inbound link A link to your web site from an external web site.

IP address The unique numerical address of a particular computer or network device on the Internet;
it can be analogized to a phone number in purpose.

IP delivery The practice of using the IP address of the connecting computer, whether robot or human,
and sending different content based on that. It is the technology behind both geo-targeting and cloaking.

JavaScript A scripting language implemented by all modern web browsers, best known for its use as a
client-side programming language embedded within web pages. Some common uses of JavaScript are to
open popup windows, validate data on web forms, and more recently to create AJAX applications.

Link bait Any content or feature within a web site that is designed to bait viewers to place links to it
from other web sites.

Link equity The equity, or value, transferred to another URL by a particular link. This concept is
discussed in Chapter 2.

Link farm A web page or set of web pages that is contrived for the express purpose of manipulating
link popularity by strategically interlinking web sites.

Keyword density A metric that calculates how frequently a certain keyword appears in web page copy
to calculate relevance to a query.

Keyword stuffing Excessive and contrived keyword repetition for the purpose of manipulating search
results.

Matt Cutts An outspoken Google engineer who runs a blog at http://www.mattcutts.com/blog.

mod_rewrite An Apache module that performs URL rewriting. See Chapter 3 for more details.

MySQL A free open-source relational database that uses SQL to specify requests or queries for data
contained therein.

Natural See organic.

Nofollow An attribute that can be applied to links to specify that search engines shouldn’t count them
as a vote, with regard to link equity, for the specified URL. The concept is discussed in Chapter 8.

Object-oriented programming (OOP) A feature implemented by modern programming languages
(including PHP) that allows the programmer to create data types that are modeled after real-world
behavior — objects; the object is a self-contained entity that has state and behavior, just like a real-world

346

Glossary

00929bgloss.qxd:00929bgloss 3/13/07 10:48 AM Page 346

object. The concept of OOP is introduced in Chapter 7, when using this feature in PHP for the first time
in the book.

Organic An adjective that describes the results from unpaid results in a search engine.

Outbound link A link from a web page to an external web site.

PageRank (PR) An algorithm patented by Google that measures a particular page’s importance relative
to other pages included in the search engine’s index. It was invented in the late 1990s by Larry Page and
Sergey Brin.

Pay Per Click (PPC) An advertising method whereby advertisers competitively bid for clicks resulting
particular keywords or contextually placed advertisement blocks. These advertisements are called “spon-
sored ads” and appear above or next to the organic results in SERPs.

PHP A programming language designed primarily for producing dynamic web pages, originally written
by Rasmus Lerdorf. PHP is a recursive acronym of “PHP: Hypertext Preprocessor.”

Redirect The process of redirecting requests for a web page to another page. Redirecting is discussed
in Chapter 4.

REFERER A header sent by a web browser indicating where it arrived from — or where it was referred
from. Our misspelling of “referer” is deliberate and in the specification.

Regex See regular expression.

Regular expression A string written in a special language that matches text patterns. Regular expres-
sions are used in text manipulation and are discussed in Chapter 3 and Appendix A.

Return on investment (ROI) A metric for the benefit attained by a particular investment.

Robot In the context of this book, a robot refers to a spider.

robots.txt A text file located in the root directory of a web site that adheres to the robots.txt standard,
described at http://www.robotstxt.org. The standard specifies files that should not be accessed by a
search engine spider.

ROI Acronym for return on investment.

RSS A web feed standard based on XML. For more details, see Chapter 7.

Screen scraping The practice of using a program to parse out information from an HTML document.

Search engine optimization The subset of search engine marketing that aims to improve the organic
rankings of a web site for relevant keywords.

SEM An acronym for search engine marketing or search engine marketer.

SEO An acronym for search engine optimization.

347

Glossary

00929bgloss.qxd:00929bgloss 3/13/07 10:48 AM Page 347

SEO copywriting The practice of authoring content in such a way that it not only reads well for the
surfer, but additionally targets specific search terms in search engines.

SERP An acronym for search engine results page.

Sitemap A file that provides an easy way for both humans and search engines to reference pages of
your web site from one central location. Sitemaps are covered in Chapter 9.

Social bookmarking Offers users convenient storage of their bookmarks remotely for access from any
location. Examples of web sites that offer this service include del.icio.us, Digg, Reddit, and so on. Social
bookmarking is covered in Chapter 7.

Spam (search engine) Web page(s) that are contrived to rank well in search engines but actually
contain no valuable content.

Spider A computer program that performs the process of spidering.

Spider trap A set of web pages that cause a web spider to make an infinite number of requests without
providing any substantial content and/or cause it to crash.

Spidering The process of traversing and storing the content of a web site performed by the spider.

Spoofing Sending of incorrect information deliberately.

SQL An acronym for Structured Query Language.

Status code See HTTP status codes.

Structured Query Language A computer language used to create, update, select, and delete data from
(relational) databases.

Supplemental index A secondary index provided by Google that is widely believed to contain content
that it regards as less important. See more details in Chapter 2.

Supplemental result A result in the supplemental index.

.SWF A vector graphics format created by Macromedia (now owned by Adobe) used to publish anima-
tions and interactive applications on the web. Although technically incorrect, SWF files are frequently
referred to as “Flash movies.”

URL rewriting The practice that translates incoming URL requests to requests for other URLs. You
use URL rewriting to serve pages with search-engine friendly URLs from dynamic scripts written in
PHP (or another programming language). This topic is discussed in Chapter 3.

Usability The ease of use exhibited by a web site.

User agent Any user or web spider accessing a web site; also refers to the string sent by a user’s web
browser or a web spider indicating what or who it is, that is, “Mozilla/5.0 (Windows; U; Windows NT
5.1; en-US; rv:1.8.1) Gecko/20061010 Firefox/2.0.”

348

Glossary

00929bgloss.qxd:00929bgloss 3/13/07 10:48 AM Page 348

Viral marketing Marketing techniques that use social phenomena to spread a message through self-
replicating viral processes — not unlike those of computer viruses.

Web analytics A software package that tracks various web site data and statistics used for analyzing
and interpreting results of marketing efforts.

Web feed Provides automated access to content contained by a web site via some sort of software
application. XML is typically used to transport the information in a structured format.

Web log See blog.

Web spider See spider.

Web syndication Permits and facilitates other web sites to publish your web content.

White hat Describes the use of techniques that follow the guidelines of a search engine.

WordPress A popular open-source blogging application written in PHP.

XML See Extensible Markup Language.

349

Glossary

00929bgloss.qxd:00929bgloss 3/13/07 10:48 AM Page 349

00929bgloss.qxd:00929bgloss 3/13/07 10:48 AM Page 350

In
de

x

Index

A
Advertising networks, 197
Affiliate URLs

dynamic affiliates, redirecting, 112–18
excluding, 108
keyword-rich, redirecting, 109–12
query string parameters, avoiding, 108

Age of page, as ranking factor, 22
Aggregators, 152
AJAX

blended approach, 145
search engine problems, 145

Akismet, 294–95
Alexa Rankings, 30
Alt tag, as ranking factor, 21
Anchors, as ranking factor, 19–20, 24
Apache

error reporting, 8
on port 80, 7
restart, 10
virtual host, 9–11

Architecture of site
duplicate content problem, 96
optimizing, factors in, 4–5

Arguments, RewriteRule, 57–59
Associative arrays

transform query string parameters, 115–77
usefulness of, 117

* operator, regular expressions, 332–34
Atom, 160–64

development of, 153
syndication of, 160–64

B
Best of the Web, 284
Black hat, 173–97

301 redirect attacks, 194–96

advertising networks, 197
attack avoidance, 177
black hat, meaning of, 174
CAPTCHA, 188–94
content theft, 196–97
HTML insertion attacks, 177–80
link-buying, 197
nofollow library, constructing, 180–84
user input, removing malicious content,

184–88
Blank pages, 404 status code, 84
Block-elements, avoiding, 21
Blogs

bookmarking, 164
to increase traffic to site, 286
search engine-related, 34
WordPress, 289–310

Bookmark equity, 15
Breadcrumb navigation

duplicate content solution, 104–6
functions of, 104

Broken links, 254–59
detecting, 254–59

Brokers, buying links, 285
Browser plugins, market research tools, 33
Buying links, 197, 285

link brokers, 285

C
CAPTCHA, 188–94

simpleCAPTCHA, 189–94
Cascading Style Sheets (CSS), fonts used,

129–30
Catalog, e-commerce store, 262–81
Catalog page, access to, 164
Character class, metacharacters to define, 58
Character matching. See Regular expressions

00929bindex.qxd:00929bindex 3/13/07 10:48 AM Page 351

Chicklet Creator, 298
Class

constructor, 159
OOP use, 158
RSS factory, 158–59

Click-through rate (CTR)
and title of page, 18, 41
and URLs, 40

ClickTracks, 29
Cloaking, 219–34

dangers of, 222
ethical issues, 221–22
excluded content, redirecting, 233
functions of, 175, 219
images replaced with text, 233
implementing, 223–32
IP delivery, 220–22
JavaScript redirect, 221
meta noarchive tag, 222–23
New York Times use, 175–76, 221–22, 233
subscription-based content, 233
toolkits, 234
URL-based sessions, disabling, 234

Comment attacks
Akismet, comment span prevention, 294–95
nofollow solution, 180–84

Consistency, URLs, 44–46
Constructor, class, 159
Content relocation. See Redirects
Content theft

actions to take, 97
black hat approach, 196–97
and duplicate content problem, 96–97
locating thieves, 97
scraper sites, 201
sitemaps usefulness, 201

Control panel, XAMPP, 7–8
Cookies, versus query string parameters, 107
Copy of page, as ranking factor, 18–19, 24
Copy prominence, and tables, 141–43
CopyScape, 97
CoreMetrics, 29
Crawlable images, JavaScript, 129–30
Cre8asiteforums, 34
Cross-linking, 251–52

CSS. See Cascading Style Sheets (CSS)
CTR. See Click-through rate (CTR)

and URLs, 40–41
Custom markup language, optimized HTML gener-

ation, 145–48

D
Database, MySQL, 11–12
Deleted pages, removing, 404 status code for,

83–84
Del.icio.us, 164
Delimiters, PHP, 61
DHTML

menus and JavaScript problem, 121
popups and JavaScript, 129

Diacritics, foreign language SEO, 245–47
Digg, 164
Digg button, WordPress, 304–5
Digital Point Co-op, 197
Digital Points Forums, 34
Directories, web list listing in, 284
DMOZ, 284
DNS. See Web host
Domain name

changing with redirects, 90–91
expired and penalty, 27
geographic area suffixes, 245
multiple. See Multiple domain names
registration as ranking factor, 22
TLD as ranking factor, 22

Duplicate content, 95–118
and content theft, 96–97
content theft, actions to take, 97
dealing with. See Duplicate content solutions
defined, 95
in Google supplemental index, 96
and index pages, 92
keyword-rich URLs, 89–90
meta tag duplicates, 106
and navigational link parameters, 107
penalty, 27
and query string parameters, 39
site architecture issues, 96
site designated as spam, 41
title duplicates, 106

352

Chicklet Creator

00929bindex.qxd:00929bindex 3/13/07 10:48 AM Page 352

and URL canonicalization, 106
URL rewriting problems, 75
viewing for web sites, 96

Duplicate content solutions, 99–103
affiliate URLs, excluding/redirecting, 108–19
article content, excerpting, 309
breadcrumb navigation, 104–6
one category, use of, 105
print-friendly pages, excluding, 103–4
robots meta tag, 97–98
robots.txt, 99–103
for similar pages, 106
URL-based session IDs, turning-off, 107
WordPress, 307–9

Dynamic URLs, 18, 42–43
affiliates, redirecting, 112–18
changing to static, permalinks, 293–94
defined, 39
example of, 42–43
IDs, 42
query string parameters, avoiding, 39–40
redirect to keyword-rich URLs, 85–89

E
E-commerce store construction, 261–81

data tables, types of, 279–80
pager library, 280–81
product catalog, 262–81
requirements, 262

e-mail, WordPress, 296–97
Error reporting

Apache, 8
PHP, 8

Escaping practice, input data, 178–80
Ethical issues

cloaking, 221–22
See also Content theft

ExpertRank, 16
Expressions
captured, 58

See also Regular expressions

F
File names, changing with directs, 85–89
Firefox, market research tools, 33

500 status code, indexing error pages, avoiding,
84

Flash
blended approach, 145
search engine problems, 145, 286
sIFR text replacement, 130–37

Fonts
in CSS typesetting, 129–30
sIFR text replacement, 130–37

Foreign language SEO, 243–48
diacritics, 245–47
domain suffixes, 245
language/dialects, 244
and server location, 244–45
spam, 248

Forms, content indexing issue, 144
Fortune cookie, link bait, 214–17
Forums

to increase traffic to site, 286
search engine-related, 33–34

404 status code
errors, 46
removing deleted pages, 83–84

Frames
noframes tag, 144
problems with, 144

Furl, 164

G
GD2 PHP library, text replacement method,

137–40
Geo-targeting, 219–20, 234–41

class, methods in, 235
defined, 219
as ethical practice, 220
implementing, 236–41

Glob operators, wildcard, 100
Google

Analytics, 28
on cloaking, 220, 221–22
on geo-targeting, 220
Googlebot, 98, 100
PageRank, 15–16
phishing vulnerability, 195
sandbox effect, 26
sitemap plugin for WordPress, 301–3

353

Google

In
de

x

00929bindex.qxd:00929bindex 3/13/07 10:48 AM Page 353

Google (continued)
sitemaps, 200–208
sitemaps notification, 208–9
supplemental index, 27, 96
Trends, 30, 245

Graphical text, text replacement, 130–37
Gray hat, 174

H
Hashing

MD5 algorithms, 193
SHA algorithm, 193

Headings of page, as ranking factor, 18
Hilltop, 16
HITS, 16
HitTail, 29
Home page, WordPress blog as, 309–10
.htaccess, and mod_rewrite rules, 50
HTML, 140–49, 177

copy prominence and tables, 141–43
custom markup translator, 145–48
dynamic. See DHTML
forms, 144
frames, 144
insertion attacks, 177–80
structural elements, 141

httpd.com, and mod_rewrite rules, 50
HTTP status codes, 78–84

301-redirect, 79–82, 92
302-redirect, 82–83
404, removing deleted pages, 83–84
500, indexing error pages, 84
functions of, 77
redirect process, 80

Humor, as link bait, 212
Hypertext Preprocessor (PHP). See PHP
HyperText Transport Protocol. See HTTP

I
IDs, dynamic URLs, 43
Image file URLs, rewriting, 72–75
Images

crawlable, 129–30

rendered as text, cloaking, 233
text replacement, 130–37

Index pages
duplicate content problem, 92
error pages, adding description to, 84
error pages, avoiding, 500 status code, 84
URL canonicalization, 92–94

Informational hooks, as link bait, 212
Input data, escaping, 178–80
Interactive link bait, 213–17

fortune cookie example, 214–17
Internet Explorer, market research tools, 33
IP addresses, as ranking factor, 24–25
IP delivery

cloaking, 220–22
elements of, 220

J
JavaScript, 120–40

cloaking, 221
crawlable images, 129–30
DHTML menus, 121
links, 121
navigation limitations, 121
popups, 121–29
redirects, cautions about, 94
sIFR text replacement, 130–37
single character matching, regular expressions,

314–17
Stewart Rosenberg text replacement method,

130, 137–40
Joe Ant, 284

K
Keyword(s)

meta keywords, 21
permutation keywords, 105
research tools, 32

Keyword Discovery, 32
Keyword-rich URLs, 19, 38, 44

affiliates, redirecting, 109–12
and duplicate content problem, 89–90
dynamic URLs redirect to, 85–89
examples of, 44

354

Google

00929bindex.qxd:00929bindex 3/13/07 10:48 AM Page 354

rewrite procedure, 65
rewrite with one parameter, 64
rewrite with two parameter, 64–65

KloakIt, 234

L
Link(s)

broken, 254–59
buying, 197, 285
JavaScript, 121
link equity, 14–15
navigation. See Navigation links
and page ranking. See Links and ranking

LinkAdage, 285
Link bait, 211–18

defined, 211
humor/fun hooks, 212
informational hooks, 212
interactive link bait, 213–17
news story hooks, 212
traditional, examples of, 213
usefulness of, 211, 285

Link equity
bookmark equity, 15
defined, 14
direct citation equity, 15
forms of, 14–15
search engine ranking equity, 14–15

Link factory, 66–72
building, 67–72
functions of, 66
PHP functions, 66–67

Links and ranking
inbound links, 23–24
IP addresses, 24–25
link acquisition rate, 23
link age, 22
link anchor text, 24
link churn, 23
link location, 25
link ranking algorithms, 16
link structure, 19–20
location of link, 25
number of links per page, 24
outbound links, 19

reciprocal links, 24
semantic relationships among links, 24
TLD of link domain name, 25

Link Vault, 197

M
Market research

Alexa Rankings, 30
browser plugins, 33
Google Trends, 30
Yahoo! Site Explorer, 29–30

MD5 algorithms, 193
Menus

DHTML menus, 121
spider-friendly, 121

Metacharacters
regular expressions, 57–58
table of, 57–58

Meta description, as ranking factor, 20
Meta-exclusion, for duplicate content, 97–98
Meta keywords, as ranking factor, 21
Meta noarchive tag, an cloaking, 222–23
Meta refresh, 94
Mod_rewrite, 47–54

301 redirect code implementation, 92
functions of, 47
httpd.conf versus .htaccess, 50
installing, 48–49
redirecting, 84–85
RewriteBase, 54
rewrite rules, creating, 49–54
and static-appearing URLs, 40
testing, 51

Moveable Type, 177
Msnbot, 98
MSN Search, 251–52
Multiple domain names, URL correction, 90
MySQL

database, creating, 11–12
password, 12

N
{n,} syntax, regular expressions, 340–41
{n} syntax, regular expressions, 336

355

{n} syntax

In
de

x

00929bindex.qxd:00929bindex 3/13/07 10:48 AM Page 355

Navigation links
breadcrumb navigation, 104–6
JavaScript limitations, 121
popups, 122–29
and spidering, 121
and tables, 142–43

News feeds, 284
News story hooks, as link bait, 212
New York Times, cloaking by, 175–76, 221–22, 233
{n, m} syntax, regular expressions, 337, 339
nofollow library, construction of, 180–84
noframes tag, 144
Numbers_Words, 189–91
Numeric URL rewriting, 43–44

example of, 43–44
with one parameter, 61
with two parameters, 61–62

O
Object, and class in OOP, 158
Object-oriented programming (OOP)

class in, 158
PHP functions, placing in class, 67
RSS factory, construction of, 154–60

{O, m} syntax, regular expressions, 337–39
OOP. See Object-oriented programming (OOP)
OpenOffice.org Writer, 311–13

P
Page not found, 404 status code, 83–84
PageRank, 15–16, 214

viewing rank for sites, 15
Pagerfix plugin, WordPress, 305–7
Pager library, e-commerce store, 280–81
Pagination, and URL rewriting, 72
Parameters, query strings. See Query string

parameters
Password, MySQL database, 12
PEAR, Numbers_Words, 189–91
Penalties

duplicate content, 27
expired domain name, 27
sandbox effect, Google, 26
supplemental index, Google, 27

Permalinks, Working folder (sesphp), 293–94
Permutation keywords, 105
Phishing, meaning of, 195
PHP

delimiter characters, 61
error reporting, 8
expression functions, 60–61
image manipulation library, 137–40
indexing errors, avoiding, 84
regular expression functions, 60–61
required modules, 6
SimplePie, 160–63
URL rewriting. See URL rewriting
virtual host, 9–11
working folder (seophp), 8–9
XAMPP, installing, 7–11

+ operator, regular expressions, 334–36
Popups

DHTML, 129
JavaScript, 121–29
search engine visibility, implementing,

122–29
simulation of, 122, 129

Print-friendly pages, excluding, duplicate content
solution, 103–4

Product catalog, e-commerce store, 262–81
Properties, objects, 158

Q
Query string parameters

avoiding, dynamic URLs, 39–40
cookies instead of, 107
referrers instead of, 107
ternary operator, new string, 117
transform and associative arrays, 115–77

R
RDF Site Summary, 152
Really simple syndication (RSS), 152–64

feed, example of, 153–54
RSS factory, construction of, 154–60
standard, location of, 152
syndication of, 160–64

Reddit, 164

356

Navigation links

00929bindex.qxd:00929bindex 3/13/07 10:48 AM Page 356

Redirects, 77–94
affiliate URLs, 109–18
cautions about, 94
cloaking variation, 233
domain name, changing with, 90–91
file name changes, 85–89
mod_rewrite, 84–85
PHP, 84–89
redirect attacks, 301 status code, preventing,

194–95
split testing, 253
status codes. See HTTP status codes
URL canonicalization, 91–94
URL correction, 89–91

RefControl, 33, 126
Referrers

popup navigation links, 126–28
versus query string parameters, 107

Regex. See Regular expressions
Regular expressions, 55–60, 311–41

arguments, 57–59
* operator, 332–34
doubled characters matching, 317–19
JavaScript single character matching, 314–17
metacharacters, 57–58
multiple numeric digits matching, 334–36
multiple optional characters matching, 329–31
{n} syntax, 336
{n,} syntax, 340–41
{n, m} syntax, 337, 339
{O, m} syntax, 337
optional character matching, 326–28
PHP expression functions, 60–61
PHP functions, 60–61
+ operator, 334–36
rewrite flags, 59–60
rewritten URL examples, 55
sequence of characters, matching, 324–26
single character matching, 312–17
triple numeric digits matching, 320–24
usefulness of, 55
working with, 55–60
zero/more occurrences matching, 332–34
zero to two occurrences matching, 338–39

RewriteBase, 54

robots meta tag, duplicate content, excluding,
97–98

robots.txt
duplicate content solution, 97–103
excluding redirect.php, 195
exclusions, types of, 101–2
functions of, 99
generating on-the-fly, 102
limitations of, 102–3
location of file, 99
WordPress duplicate content solution, 308

S
Sanitizing, user input, 184–85
Scalable Inman Flash Replacement. See sIFR

text replacement
Scraper sites, sitemaps usefulness, 201
Search engine(s)

content theft, reporting to, 97
link equity, 14–15
PageRank, Google, 15–16
ranking. See Search engine ranking factors
sitemaps, 200–203
user agent names, 98
wildcard matching information, 100

Search engine optimization (SEO)
and architecture of site, 4–5
black hat SEO, 173–97
blogs on, 34
browser plugins, 33
cloaking, 219–34
directory listings, 284
duplicate content, 95–118
e-commerce store example, 261–81
foreign language SEO, 243–48
forums for information, 33–34
geo-targeting, 219–20, 234–41
goals of, 14
and HTML, 140–49
IP delivery, 220
and JavaScript, 120–40
keywords, researching, 32
link bait, 211–18
market research tools, 29–31
redirects, 77–94

357

Search engine optimization (SEO)

In
de

x

00929bindex.qxd:00929bindex 3/13/07 10:48 AM Page 357

Search engine optimization (SEO) (continued)
sitemaps, 199–210
social bookmarking, 164–72
technical issues. See Technical problems
Web analytics tools, 28–29
web feeds, 151–64

Search engine ranking factors
age of page, 22
alt tag, 21
anchors, 19–20, 24
copy, 18–19
domain name registration, 22
domain name TLD, 25
IP addresses, 24–25
link-related. See Links and ranking
meta description, 20
meta keywords, 21
page headings, 18
page structure, 21
page title, 18
ranking equity, 14–15
standards compliance, 26
title attributes, 21
topicality, 20

Search Engine Roundtable Forums, 34
Search engine sitemaps, 200–203

Google sitemaps, 200–208
usefulness of, 201
Yahoo! sitemaps, 203–8

SearchEngineWatch Forums, 34, 222
Search results pages (SERPs), and PageRank, 16
SearchStatus, 15, 33
SEO for Firefox, 33
Server error, 500 status code, 84
Server variables, URL rewriting, 52–53
Session IDs, 286

URL-based, turning-off, 107, 287
SHA algorithm, 193
Shopping cart URLs, and duplicate content prob-

lem, 106
sIFR text replacement, 130–37

documentation for, 131
downloading sIFR, 131–33
JavaScript library referencing, 135–37
replaceElement parameters, list of, 136–37
usefulness of, 130

SimplePie, 153, 160–63
documentation, site for, 163
RSS/Atom syndication, 160–63

Sitemap Generator, 299–300
Sitemaps, 199–210

content theft information, 97
generating, 204–8
Google, reporting updates to, 208–9
HTML web page as, 199–200
search engine sitemaps, 200–203
standard protocol, 209–10
usefulness of, 200–201, 284
Yahoo, reporting updates, 209

Slurp, 98
Social bookmarking, 164–72

adding support for, 165–72
catalog page, access to, 164
public bookmarks, 164
web sites for, 164
WordPress icons, 295–96

Social networking, Web sites for, 171
Spam

automatic span robots, 188
comment attacks, 180
content theft, 196–97
and cross-linking, 251–52
and duplicate content, 41
foreign language spamming, 248
JavaScript cloaking, 221
link churn, 23
and meta refresh, 94
prevention, WordPress, 294–95

Spider(s)
and drop-down menus, 121
excluding, robots meta tag, 98
forms, ignoring, 144
images, embedded text, 129
and navigation links, 121
popup visibility, 122–29
robots.txt visits, 99
traps, and query string parameters, 39
URL-based sessions, disabling, 234

Spider Simulator, 5
Split testing, 253–54

problems with, 253

358

Search engine optimization (SEO)

00929bindex.qxd:00929bindex 3/13/07 10:48 AM Page 358

redirect requests, 253
temporal, 254

Standards compliance, as ranking factor, 26
Static URLs, 39
Stewart Rosenberg text replacement method,

137–40
Subscription-based content, New York Times and

cloaking, 175–76, 221–22, 233
Supplemental index

duplicate content information, 96
Google, penalty, 27

T
Tables

and copy prominence, 141–43
navigation links for, 142–43
table-trick method, 143

Technical problems
broken links, 254–59
cross-linking, 251–52
hosting providers, changing, 250–51
split testing, 253–54
unreliable Web hosting/DNS, 249–50

Temporal split testing, 254
Teoma, 98
Ternary operator, functions of, 117
Text Link Ads, 285
Text Link Brokers, 285
Text replacement

sIFR method, 130–37
Stewart Rosenberg’s method, 129–30

Theft, content. See Content theft
300 status code, 81
301 status code

importance of, 82
mod_rewrite implementation, 92
redirect attacks, preventing, 194–96
redirect with, 76, 79–82, 92
URLs, changing, 15

302 status code, 82–83
302 hijacking, 82
issues related to, 82
and phishing, 195

303 status code, 81
304 status code, 81
307 status code, 81

Title attributes, as ranking factor, 21
Title of page

and click-through rate (CTR), 18, 41
duplication, avoiding, 284
as ranking factor, 18

Topicality of site, as ranking factor, 20
200 status code, 83

U
URL(s), 287

and click-through rate, 40–41
common examples, 42–44
consistency, factors in, 44–46
duplicate content, 39, 41
dynamic URLs, 39–40, 42–43
keywords in, 19, 38, 44
numeric URL rewriting, 43–44
rewriting. See URL rewriting
static URLs, 39
storing versus embedding, 195–96
URL equity, defined, 14

URL-based sessions, IDs, turning off, 107, 287
URL canonicalization, 91–94

duplicate content problem, 91–92, 106
examples of, 91–92
index.php, eliminating, 92–94

URL correction, 89–91
domain name, changing with redirects, 90–91
for multiple domain names, 90

URL rewriting, 44–46, 46–76, 70–71
301-redirect, 15, 76
duplicate content problem, 75
image file URLs, 72–75
keyword-rich URLs, 44, 64–66
link factory, 66–72
mod_rewrite, 40, 47–54
numeric rewriting, 43–44
numeric rewriting with two parameters, 61–62
and pagination, 72
PHP expression functions, 60–61
PHP server variables, 52–53
regular expressions, 55–60
string preparation function, 70–71

User agent names, search engine listing, 98
User input, malicious content, removing, 184–88

359

User input

In
de

x

00929bindex.qxd:00929bindex 3/13/07 10:48 AM Page 359

V
View HTTP Headers, 33
Virtual host, in Apache, 9–11
Virtual hosting, 250

W
Web analytics

ClickTracks, 29
CoreMetrics, 29
Google Analytics, 28
HitTail, 29
Spider Simulator, 5

Web Developer Extension, 33
Web feeds, 151–64

Atom, 152–53, 160–64
feed readers, 152
functions of, 151
really simple syndication (RSS), 152–64
SimplePie, 153, 160–63

Web host
changing providers, 250–51
unreliable, 249–50
virtual hosting, 250

WebHostingTalk, 250
WebmasterWorld Forums, 34
Web services, functions of, 164
Web sites

accessibility, defined, 16
common problems/solutions, 283–88
usability, defined, 16
web page as sitemap, 199–200

Web syndication
defined, 152
See also Atom; Really simple syndication (RSS)

White hat, 174
WHOIS tool, 251–52

Wildcards
glob operators, 98
matching, search engine information on, 100

Word delimiters, dashes as, 44
WordPress, 289–310

Akismet, comment span prevention, 294–95
blog as home page, 309–10
Chicklet Creator, 298
Digg button, 304–5
duplicate content solutions, 307–9
Google Sitemaps plugin, 301–3
installing, 290–92
Pagerfix plugin, 305–7
permalinks, turning on, 293–94
Sitemap Generator, 299–300
social bookmarking icons, 295–96
WP-Email, 296–97

Wordtracker, 32
Working folder (sesphp), creating, 8–9
WP-Email, 296–97
WYSIWYG editor, 145, 287

X
XAMPP

control panel, 7–8
installing, 7–11

XML, really simple syndication (RSS), 152–64

Y
Yahoo!

Directory, 284
Search Marketing Keyword Tool, 32
Site Explorer, 29–30
sitemaps, 203–8
sitemaps notification, 209

360

View HTTP Headers

00929bindex.qxd:00929bindex 3/13/07 10:48 AM Page 360

00929badvert.qxd:00929badvert 3/16/07 10:28 AM Page 361

00929badvert.qxd:00929badvert 3/16/07 10:28 AM Page 362

	Search Engine Optimization with PHP
	About the Authors
	Credits
	Acknowledgments
	Contents
	Introduction
	Who Should Read This Book
	What Will You Learn from this Book?
	Contacting the Authors
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Chapter 1: You: Programmer and Search Engine Marketer
	Who Are You?
	What Do You Need to Learn?
	Preparing Your Playground
	Summary

	Chapter 2: A Primer in Basic SEO
	Introduction to SEO
	Search Engine Ranking Factors
	Potential Search Engine Penalties
	Resources and Tools
	Summary

	Chapter 3: Provocative SE-Friendly URLs
	Why Do URLs Matter?
	Static URLs and Dynamic URLs
	URLs of the Real World
	URL Rewriting
	Problems Rewriting Doesn’t Solve
	A Last Word of Caution
	Summary

	Chapter 4: Content Relocation and HTTP Status Codes
	HTTP Status Codes
	Redirection Using 301 and 302
	Removing Deleted Pages Using 404
	Avoiding Indexing Error Pages Using 500
	Redirecting with PHP and mod_ rewrite
	Other Types of Redirects
	Summary

	Chapter 5: Duplicate Content
	Causes and Effects of Duplicate Content
	Excluding Duplicate Content
	Solutions for Commonly Duplicated Pages
	Summary

	Chapter 6: SE-Friendly HTML and JavaScript
	Overall Architecture
	Search Engine– Friendly JavaScript
	Search Engine– Friendly HTML
	Using a Custom Markup Language to Generate SE-Friendly HTML
	Flash and AJAX
	Summary

	Chapter 7: Web Feeds and Social Bookmarking
	Web Feeds
	Creating RSS Feeds
	Syndicating RSS and Atom Feeds
	Other Sources of Syndicated Content
	Social Bookmarking
	Summary

	Chapter 8: Black Hat SEO
	What’s with All the Hats?
	Bending the Rules
	Technical Analysis of Black-Hat Techniques
	Summary

	Chapter 9: Sitemaps
	Traditional Sitemaps
	Search Engine Sitemaps
	Generating Sitemaps Programmatically
	Informing Google about Updates
	The Sitemaps. org Standard Protocol
	Summary

	Chapter 10: Link Bait
	Hooking Links
	Traditional Examples of Link Bait
	Interactive Link Bait: Put on Your Programming Hardhat!
	Case Study: For tune Cookies
	Summary

	Chapter 11: Cloaking, Geo-Targeting, and IP Delivery
	Cloaking, Geo-Targeting, and IP Delivery
	Implementing Cloaking
	Cloaking Case Studies
	Implementing Geo-Targeting
	Summary

	Chapter 12: Foreign Language SEO
	Foreign Language Optimization Tips
	Foreign Language Spamming
	Summary

	Chapter 13: Coping with Technical Issues
	Unreliable Web Hosting or DNS
	Changing Hosting Providers
	Cross-Linking
	SEO-Aware Split Testing
	Detecting Broken Links
	Summary

	Chapter 14: Case Study: Building an E-Commerce Store
	Establishing the Requirements
	Implementing the Product Catalog
	Summary

	Chapter 15: Site Clinic: So You Have a Web Site?
	1. Creating Sitemaps
	2. Creating News Feeds
	3. Fixing Duplication in Titles and Meta Tags
	4. Getting Listed in Reputable Directories
	5. Soliciting and Exchanging Relevant Links
	6. Buying Links
	7. Creating Link Bait
	8. Adding Social Bookmarking Functionality
	9. Starting a Blog and/or Forum
	10. Dealing with a Pure Flash or AJAX Site
	11. Preventing Black Hat Victimization
	12. Examining Your URLs for Problems
	13. Looking for Duplicate Content
	14. Eliminating Session IDs
	15. Tweaking On-page Factors
	Summary

	Chapter 16: WordPress: Creating an SE-Friendly Blog
	Installing WordPress
	Turning On Permalinks
	Akismet: Preventing Comment Spam
	Sociable: Social Bookmarking Icons
	WP-Email: Email a Friend
	Chicklet Creator Plugin
	Sitemap Generator Plugin
	Google Sitemaps Plugin
	Digg Button Plugin
	Pagerfix Plugin
	Eliminating Duplicate Content
	Making the Blog Your Home Page
	Summary

	Appendix A: Simple Regular Expressions
	Matching Single Characters
	Matching Optional Characters
	Other Cardinality Operators
	The Curly-Brace Syntax

	Glossary
	Index

