

Imprint

Published in November 2011

Smashing Media GmbH, Freiburg, Germany

Cover Design: Ricardo Gimenes

Editing: Andrew Rogerson, Talita Telma

Proofreading: Andrew Lobo, Iris Ljesnjanin

Idea and Concept: Sven Lennartz, Vitaly Friedman

Founded in September 2006, Smashing Magazine delivers useful and
innovative information to Web designers and developers. Smashing
Magazine is a well-respected international online publication for
professional Web designers and developers. Our main goal is to support the
Web design community with useful and valuable articles and resources,
written and created by experienced designers and developers.

ISBN: 9783943075168

Version: December 16, 2011

Smashing eBook #10│WordPress Essentials │ 2

http://www.smashingmagazine.com
http://www.smashingmagazine.com

Table of Contents

Preface

Building WordPress !emes You Can Sell

Developing WordPress Locally With MAMP

!e Developer’s Guide To Conflict-Free JavaScript And CSS In WordPress

Interacting With !e WordPress Database

How To Create A WordPress Plugin

How To Integrate Facebook With WordPress

How To Use AJAX In WordPress

Be"er Image Management With WordPress

Using HTML5 To Transform WordPress’ TwentyTen !eme

!e Authors

Smashing eBook #10│WordPress Essentials │ 3

Preface
The advanced flexibility of WordPress is one of the main reasons for its
popularity among online publishers as it is considered as the number one
blogging tool in its category. With its latest releases, it has extended its
potential well beyond blogging, moving toward an even more advanced,
robust and very powerful content management solution, and so much more.
However, where it falls short, there are a wealth of plugins, widgets and
themes that extend its limitations.

This Smashing eBook #10: WordPress Essentials is created to help Web
developers as well as designers how to extend the functionality of
WordPress with plugins and introduce techniques and methods for
customizing themes. Several new features were added which make
WordPress manage media even more practical, and this eBook is going to
show you just how.

The eBook contains 9 articles that will guide you on how to add and
organize media, to avoid problems with JavaScript and CSS, build themes,
interact with your database, and learn how to setup AJAX ― just to mention
a few techniques. Social networks are a wonderful marketing tool that
should not be ignored. Find out how to present your WordPress blog on
Facebook, as well!

The articles have been published on Smashing Magazine in 2010 and 2011,
and they have been carefully edited and prepared for this eBook.

We hope that you will find this eBook useful and valuable. We are looking
forward to your feedback on Twitter or via our contact form.

— Andrew Rogerson, Smashing eBook Editor

Smashing eBook #10│WordPress Essentials │ 4

http://www.twitter.com/smashingmag
http://www.twitter.com/smashingmag
http://www.smashingmagazine.com/contact/
http://www.smashingmagazine.com/contact/

Building WordPress !emes You Can Sell

Sawyer Hollenshead

When I took my first steps into the WordPress theme arena, I didn’t know
much about it. I wandered blindly into the business, not knowing whether I
was doing things correctly. Over time, through trial and error and making
rookie mistakes, I learned some valuable lessons and gained important
insights. To save you from going down the same winding path, I’ll share
some of the important takeaways that I’ve learned so far, like how to gain a
solid user base, what to include in your themes and, most importantly, what
to leave out.

Smashing eBook #10│WordPress Essentials │ 5

Gaining a Solid User Base
You could build the best WordPress theme in the world, but it won’t matter
unless people know about it and use it. One of the smartest things I did
when starting my theme business was to release a free theme. It took a
while for it to gain traction, but things took off once it got some attention
from being featured on other websites. Consumers are willing to download
a free theme from the new kid on the block and try it out because hardly any
financial risk is involved.

The free theme was unique and easy to use, and people liked it so much
that they began requesting a premium (i.e. commercial) version, with more
features (the free version had the bare essentials). To this day, the premium
version is still one of my best sellers. Consumers like to download the free
version to try it out, and then they typically purchase the commercial
version. Value is added to the commercial version with support, updates,
easier customization and a bundle of exclusive features. Releasing a free
theme enabled me to gain momentum and build on a solid user base as I
began creating commercial themes, and I’ll return to that strategy in the
future to increase sales.

MY FIRST MISTAKE

The first mistake I made when getting started, and one that I still kick myself
over, is that I didn’t implement a newsletter opt-in method for users who
downloaded my themes. This would have given me a long list of consumers
to whom I could market my premium themes, and it would have been
extremely valuable when I launched the commercial version of my theme a
year later. I’ve now gotten my act together and have a booming mailing list
that I email every time I release a new theme, thus generating sales that
would otherwise have been lost.

Smashing eBook #10│WordPress Essentials │ 6

YOU’VE GOT ’EM, NOW KEEP ’EM

Once I had a solid user base, I found that in order to keep them as returning
customers, I had to add value not only to my themes but to my services.
When you start a theme business, you’re not just selling themes; you’re also
providing support and updates. Some of the top brands make great
products and provide excellent support. Think of Apple, MediaTemple and
Zappos. Say what you want about these companies, but there’s no denying
that their user base is loyal because of both their products and their support
and services.

One way to provide great support is simply to be timely with your
responses. A customer loves nothing more than being responded to the
same day. If you don’t know the answer to their question, at least let them
know that you received it and are looking into it. You would think this is
common practice, but you’d be amazed at how long some companies take
to respond. If you can provide killer support, you’re already one step ahead
of a lot of the competition.

Another way to add value is to provide educational resources that teach
customers how to get the most out of your products. Some users will be
more advanced than others, and they are usually the ones who purchase
themes regularly. If you can provide a resource that enables those users to
derive extra value from your products, then they will be more likely to stay
with you and purchase more of your themes.

Streamline Your Process
Streamline and standardize your development process as much as possible.
One way to do this is to use a theme framework, whether your own or a
third party’s. Using a framework to quickly develop a theme is important
when an eager audience is waiting on you. Most importantly, when you use
the same framework, updating all of your themes after they’ve been
released is easier. For example, all of my themes display a notification in the
administration panel when an update becomes available.

The code that enables this notification is in a file named framework-init.php.
In this file is a bunch of other important blocks of code that add features,
such as the theme options panel and custom post fields, as well as common
functions used throughout all of my themes. When I need to update that
code, I simply make the change to my framework’s file and then that file
gets replaced in all of my themes. By knowing that the file is the same
throughout all of my themes, I don’t have to bother going through each
theme to find that block of code to update. You can see how this becomes
valuable when your inventory starts to accumulate.

Hybrid is one of the more popular theme frameworks, thanks to its extensive list
of features, including translations into 20+ languages and theme hooks.

CUSTOM VS. THIRD-PARTY FRAMEWORKS

From the beginning, I decided to build my own framework, mainly because I
would know it back to front, making it easier to maintain and build on (being
a control freak might have contributed to the decision as well). A custom
framework also meant that I wouldn’t have to rely on someone else, and the
framework would have exactly what I needed and nothing else.

Smashing eBook #10│WordPress Essentials │ 9

http://themehybrid.com/themes/hybrid
http://themehybrid.com/themes/hybrid

This is, of course, just personal preference, and many people prefer to use a
third-party framework. By using a third party’s, you save the time it takes to
develop a solid framework. It also means that you’re not solely responsible
for maintaining the framework, and you will usually have a support system to
turn to if you run into development issues. A lot of impressive frameworks
offer useful functionality, such as theme hooks, extensible layout options,
styling for popular plugins and much more. Lastly, there is a growing market
for child themes of such frameworks as Genesis, StartBox and Hybrid.

What To Include In Your !eme
Depending on the type of theme you’re creating, the expectations of
consumers will vary. But you should consider certain features and
functionality for the majority of your themes. You needn’t implement all of
these, but at least consider whether they would add value to your theme.

INTERNATIONALIZE THE THEME FOR OTHER LANGUAGES

Internationalizing your theme enables users to translate the text displayed
by your theme, and implementing it is fairly straightforward. This one is a
must-have. I was amazed at how many non-English-speaking users
downloaded my themes. Looking back, I should have internationalized my
themes from the beginning, knowing that millions of people all over the
world use WordPress. You would be silly not to internationalize your theme.
Look at the “Translating WordPress” section of the Codex and this helpful
tutorial by AppThemes for more information.

Smashing eBook #10│WordPress Essentials │ 10

http://www.studiopress.com/themes/genesis
http://www.studiopress.com/themes/genesis
http://wpstartbox.com/
http://wpstartbox.com/
http://themehybrid.com/themes/hybrid
http://themehybrid.com/themes/hybrid
http://codex.wordpress.org/Translating_WordPress
http://codex.wordpress.org/Translating_WordPress
http://www.appthemes.com/blog/how-to-translate-a-wordpress-theme/
http://www.appthemes.com/blog/how-to-translate-a-wordpress-theme/
http://www.appthemes.com/blog/how-to-translate-a-wordpress-theme/
http://www.appthemes.com/blog/how-to-translate-a-wordpress-theme/

SUPPORT WORDPRESS’ CODING STANDARDS AND PRACTICES

Develop your themes in a way that supports WordPress’ latest coding
standards and practices. In doing so, you ensure that the theme is
compatible with future versions of WordPress, and you’ll avoid a flood of
emails from customers who have run into conflicts. Also, avoid deprecated
functions, which are functions that are “no longer supported and may be
removed in future versions of WordPress.”

An easy way to check all of this is to install the Theme-Check plugin. This
great little plugin runs the same tests as those that WordPress.org runs on
submitted themes.

The Theme-Check plugin has saved me many times from leaving out important
details and using deprecated functions.

http://wordpress.org/extend/plugins/theme-check/
http://wordpress.org/extend/plugins/theme-check/
http://wordpress.org/extend/plugins/theme-check/
http://wordpress.org/extend/plugins/theme-check/

DOCUMENTATION AND READABLE CODE

Write thorough and helpful documentation for your themes. This will not
only help users, but also cut down on the number of support requests you
get from aggravated users. And trust me: the less support requests you get,
the happier you will be. Document everything that’s unique about your
theme that WordPress users might be unfamiliar with, as well as any built-in
features such as custom backgrounds and headers, menus, and post
formats. Also provide instructions on how to update the theme and on the
proper way to customize the code (in case a user wants to create a child
theme).

The Twenty Eleven theme is a good example of a theme with well-documented
code.

Smashing eBook #10│WordPress Essentials │ 12

Another important aspect of documentation is to make the code easy to
read and understand. Some advanced users will want to customize the
code, so it should be commented in a way that helps them understand what
you’ve done under the hood. For a good example of well-documented code,
check out the functions.php file in the default Twenty Eleven theme.

CHILD THEMEABLE

As noted, many users will want to customize the code. The trick is that,
when you release an update, the developer has to avoid overwriting the
files that they’ve customized. The solution is for them to make their
customizations in a child theme. So, make sure to support this functionality
by allowing child themes to be easily created.

If you don’t want users to have to worry about including a particular script
when creating a child theme, then use the
get_template_directory_uri(); function to reference the parent
theme’s folder. To allow the developer to overwrite this file, use
get_stylesheet_directory_uri(); instead, which references the
folder in the child theme, if one is being used.

PAGE TEMPLATES

Your theme should support the various page templates that a WordPress
website can have. Because you don’t know how each developer will use the
theme, you have to prepare for all possibilities. This is where testing comes
in. For a typical WordPress theme, you should at the very least support
these templates: page.php, archive.php, 404.php, search.php, single.php,
attachment.php and, of course, index.php, which is the ultimate fallback. For
a full list of templates, check out the “Template Hierarchy” section of the
WordPress Codex.

Smashing eBook #10│WordPress Essentials │ 13

http://codex.wordpress.org/Template_Hierarchy
http://codex.wordpress.org/Template_Hierarchy

WordPress’ “Template Hierarchy“ is a great reference to have on hand.

You can also provide users with custom page templates. The two most
common that I include with my themes is one with a widgetized sidebar (the
default page.php) and one with a full-width page. You’ll likely be able to
come up with other templates that users would benefit from once you’ve
designed the theme.

Smashing eBook #10│WordPress Essentials │ 14

http://codex.wordpress.org/File:Template_Hierarchy.png
http://codex.wordpress.org/File:Template_Hierarchy.png

Some theme developers use custom fields for this functionality, instead of
page templates. This seems counterintuitive because the functionality is
built into WordPress and is so simple to use. Creating your own page
template is as easy as creating a new PHP file in the theme’s folder and
adding the following PHP comment at the top (replacing “Full Width” with
the template name of your choice):

<?php
/*
Template	
 Name:	
 Full	
 Width
*/
?>

Of course, the code that follows the line above is up to you and will
determine what the template does.

A NOTE ON THEME OPTIONS

There seems to be a misunderstanding about what users of premium
themes expect. The common belief is that they expect an options panel that
looks like the control panel of a Boeing 747, where they can tweak the
smallest detail of the theme. Sure, users want to be able to control certain
aspects of their website, but simplicity and ease of use trump bloat and
complexity.

Smashing eBook #10│WordPress Essentials │ 15

Your options panel shouldn’t be this complicated. (Image: Fly For Fun)

When deciding whether to include an option in your theme, consider
whether it’s really necessary and whether that functionality is already built
into WordPress. The more options you add, the more complicated the code
becomes and the steeper the learning curve for users. I keep the options for
my themes to the bare essentials, and a goal of mine is to create a theme
for which an options panel isn’t even necessary. I challenge you to do the
same.

You can build your theme’s options on top of any one of the several great
options frameworks. These are the ones I’ve come across: Options
Framework, UpThemes-Framework, OptionTree.

Smashing eBook #10│WordPress Essentials │ 16

http://www.flickr.com/photos/flyforfun/2291522570/
http://www.flickr.com/photos/flyforfun/2291522570/
http://wptheming.com/options-framework-plugin/
http://wptheming.com/options-framework-plugin/
http://wptheming.com/options-framework-plugin/
http://wptheming.com/options-framework-plugin/
https://github.com/chriswallace/UpThemes-Framework
https://github.com/chriswallace/UpThemes-Framework
http://wordpress.org/extend/plugins/option-tree/
http://wordpress.org/extend/plugins/option-tree/

APPEARANCE OPTIONS

One reason to include an options panel is to enable the user to tweak the
appearance of the theme without having to mess with the code. The option
demanded by most users is surely to be able to upload a logo. Adding a
logo is the easiest way for a user to personalize their theme. I enable it in all
of my themes.

A snapshot of the options page in my latest commercial theme (based on the
Options Framework).

Smashing eBook #10│WordPress Essentials │ 17

http://wptheming.com/options-framework-plugin/
http://wptheming.com/options-framework-plugin/

Most theme buyers aren’t designers. They might not have an eye for color
or be able to make informed design decisions. So, in addition to providing
options to customize the theme’s main elements (like the color of text, the
color of the call-to-action button, etc.), I include a selection of “skins,” which
are basically just pre-defined palettes that a user can select from. This way,
if the user doesn’t have an eye for color, they at least have options and
aren’t restricted to one scheme. I usually provide several styles that cater to
a variety of audiences.

SOCIAL NETWORK OPTIONS

Most individuals and businesses have some type of presence on social
networks, whether on Twitter, Facebook, YouTube or whatever the next big
thing is. Because the design and placement of these social-network links
vary from theme to theme, you can provide an option that allows users to
customize the links.

Aside (and a little plug): I used to recommend including social-network
options in the theme’s panel, but having given it more thought, I now feel it’s
better suited to a plugin. New social networks pop up every day, and
anticipating which ones your theme’s users will be on is hard. You will never
be able to cover all bases, which is why I recently built a plugin that I’ll soon
be supporting in all of my themes, and I suggest you do the same if you plan
on including this feature. The plugin adds a new settings page where the
user can create a list of social-network links. Users can select from the
range of icons built into the plugin or built into the theme (if present) or
upload their own. If this interests you, the plugin is called Social Bartender
and is in the WordPress repository.

Smashing eBook #10│WordPress Essentials │ 18

http://shakenandstirredweb.com/plugins/social-bartender/
http://shakenandstirredweb.com/plugins/social-bartender/

ADVERTISING OPTIONS

You could also enable users to add advertisements, either through a widget
or through an option that positions the ads in certain spots (like following
the top blog post). Many people want to monetize their website and so
advertising options would be important to them. Being able to select the
locations of ads to suit the design is a selling point.

What To Leave Out
Almost as important as what to include in the theme is what to leave out.
Many themes have options and functionality that are better done as plugins
or that are already built into WordPress. Use the functionality that
WordPress already supports, such as custom backgrounds, headers, post
thumbnails and post formats. This is easier to implement because
WordPress does all of the heavy lifting, and many users are already familiar
with it. That being said, if your theme doesn’t need this functionality, then
don’t include it in the first place!

http://ottopress.com/2010/wordpress-3-0-theme-tip-custom-backgrounds/
http://ottopress.com/2010/wordpress-3-0-theme-tip-custom-backgrounds/
http://codex.wordpress.org/Custom_Headers
http://codex.wordpress.org/Custom_Headers
http://codex.wordpress.org/Function_Reference/add_theme_support#Post_Thumbnails
http://codex.wordpress.org/Function_Reference/add_theme_support#Post_Thumbnails
http://codex.wordpress.org/Function_Reference/add_theme_support#Post_Thumbnails
http://codex.wordpress.org/Function_Reference/add_theme_support#Post_Thumbnails
http://codex.wordpress.org/Post_Formats
http://codex.wordpress.org/Post_Formats

Shortcodes should not replace standard HTML tags. Many of the shortcodes
shown above are unnecessary.

SHORTCODES

Shortcodes are great for executing a set of functions, but they’re
unnecessary simply to embed a link or add a class to an element. Use
standard HTML tags for this. For example, don’t create a [quote]
shortcode when the HTML <blockquote> tag does a perfectly good job.

Smashing eBook #10│WordPress Essentials │ 20

I’ve seen themes that have shortcodes for quotes, citations and headers but
no support for the same styling with HTML tags. This is a big no-no. Many
users will switch from theme to theme and will already have content on their
website when they activate yours. HTML tags will stay the same, but
shortcodes vary from theme to theme. Don’t force the user to go back
through all of their content just to add your custom shortcodes. Use
shortcodes only to execute functions, not to apply styling. There may be a
few exceptions, such as to wrap a message in complicated HTML, but if
you’re simply adding a class, then adding it to the “Format” menu in the post
editor’s kitchen sink makes more sense.

A great tutorial was recently published by Luke McDonald that details how
to add your own styles to the drop-down menu in the visual editor, giving
you one more reason not to use shortcodes to style elements.

PLUGIN TERRITORY

Don’t include options for things that should really be added with existing
plugins; for example, Google Analytics and favicons. I hear someone in the
back asking, “Why not include such things?” Well, person in the back, what if
the user decides to switch themes, even to another of yours? They would
lose all of that information and have to figure out how to get it back. The
option is unnecessary, would make the code overly complicated, and would
cause trouble when the user switches themes. Include only options that
alter functionality that is unique to your theme; otherwise it’s better suited to
a plugin.

Smashing eBook #10│WordPress Essentials │ 21

http://theme.it/an-alternative-to-the-shortcode-madness-part-1/
http://theme.it/an-alternative-to-the-shortcode-madness-part-1/

Developing WordPress Locally With
MAMP

Ryan Olson

Local development refers to the process of building a website or Web
application from the comfort of a virtual server, and not needing to be
connected to the Internet in order to run PHP and MySQL or even to test a
contact form. One of the most annoying parts of development, at least for
me, is the constant cycle of edit, save, upload and refresh, which, depending
on bandwidth and traffic, can turn a menial task into a nightmare.

With application platforms such as WordPress, which require a server back
end to work, you would normally be constrained to develop on a live server,
with the headaches that go along with that. MAMP and its Windows
counterpart, WAMP, are tools that allow you to locally develop applications
that require a server on the back end.

!e Local Server
MAMP, which stands for Macintosh, Apache, MySQL and PHP, is an
application that allows you to install a local server-type environment in order
to construct websites that would normally require you be on a live server
somewhere.

Smashing eBook #10│WordPress Essentials │ 22

http://www.mamp.info/en/index.html
http://www.mamp.info/en/index.html
http://www.wampserver.com/en/
http://www.wampserver.com/en/

Ever opened a contact form in a browser from your desktop and wondered
why it doesn’t work? The server-side components cannot operate without
(in this case) the PHP back end, and this is where MAMP comes in. By
installing this application, we can have a virtual server locally as our
development sandbox. It is worth noting, from a portability standpoint, that
this component can be run only from your desktop environment and cannot
be installed on a USB drive. With that all settled, let’s get to it.

In order to be able to work with MAMP, we must first obtain it. So, head over
to the project page and download the disc image. Double-click to begin the
installation, and you will be presented with a choice:

Both MAMP and MAMP Pro come in the same download. You need to install
only one, and for most scenarios, MAMP is more than adequate. The pro
version costs $59.00 USD and offers more options, and you can compare
the two versions for yourself.

Drag the MAMP folder onto the “Application” shortcut, and the installation
will be underway. Once it’s completed, feel free to eject the disc image.
Open up your “Applications” folder, and locate the new MAMP directory.
Inside you’ll find MAMP.app, so — you guessed it — open it up. The program
should start right away and open up your default browser, pointing to the
start page. Congratulations, you now have a local server!

Smashing eBook #10│WordPress Essentials │ 23

http://documentation.mamp.info/en/mamp/faq/if-it-is-possible-to-install-mamp-on-a-usb-drive
http://documentation.mamp.info/en/mamp/faq/if-it-is-possible-to-install-mamp-on-a-usb-drive
http://www.mamp.info/en/index.html
http://www.mamp.info/en/index.html

MAMP and MAMP Pro are on the installation disc image.

Preferences
From the main MAMP app screen, you will notice a “Preferences” button.
Feel free to click on it to view the few options available.

Smashing eBook #10│WordPress Essentials │ 24

The MAMP app.

1. START/STOP

From here, you have the option to tell MAMP when to start and stop the
servers. If you choose to not start the servers automatically, then you will
need to explicitly tell them to run each time you open the app. You may also
set your home page, which defaults to the MAMP start screen, giving you
quick access to phpMyAdmin; but you may set it to something like a
WordPress directory.

Smashing eBook #10│WordPress Essentials │ 25

Configuring the server.

2. PORTS

In the “Ports” tab, the default Apache port will usually be 8888, and the
default MySQL port will be 8889. I, for one, do not change these because
they do not interfere with any of my other settings and do not require me to
enter my password every time I start and stop the servers.

Smashing eBook #10│WordPress Essentials │ 26

You must include the port number in your URL this way; so, it would be
localhost:8888/. To avoid this, you could change the ports to what
general Web servers operate on: ports 80 and 3306. This will allow your
URL to simply be localhost/; but you will most likely need to enter your
password when switching the servers on and off. Another factor to consider
is whether you are installing WordPress “multisite”; if you are, then you are
required to set the ports to the default Apache and SQL ports of 80 and
3306, respectively.

Setting up MAMP ports.

Smashing eBook #10│WordPress Essentials │ 27

3. PHP

The “PHP” tab allows you to choose which version of PHP to run in the set-
up. It will default to 5.3, and I do not change this because most applications I
run either require PHP 5.3 or do not care. Just know that this option is
available if you need it to run something such as legacy software.

Setting up the MAMP PHP version.

Smashing eBook #10│WordPress Essentials │ 28

4. APACHE

The “Apache” tab is one that I like to mess with, to change the document
root directory. The root is where all of your websites and directories will be
stored and accessed by MAMP, and it defaults to /Applications/MAMP/
htdocs, which I find annoying to get to. So, I change mine to my sites
folder. From the MAMP app window, click on “Preferences,” then on
“Apache.” You can click “Select” and then set the installation to use the
location of your choice for your websites. Again, I set mine to the sites
folder for easier access.

Setting up MAMP Apache.

Installing WordPress
Now it is time to install WordPress. Head to the WordPress website and
download the latest version, 3.2 as of this writing. Unzip the folder, and then
simply drag it to your sites folder, (or wherever you chose to set the
document root for MAMP). WordPress requires PHP and MySQL to operate,
which is why we needed MAMP to develop locally; so, we now need need
to make a database. Fear not: it is simple!

Open the MAMP start page — you can access it via the button in the main
app — and click on “phpMyAdmin” in the top menu. Creating a new
database is as simple as typing a name in the field and hitting the “Create”
button. You can see below that I am creating a new database aptly named
“wordpress.” Once that’s done, feel free to close phpMyAdmin, and
navigate to the WordPress directory in your document root.

Smashing eBook #10│WordPress Essentials │ 30

Simply type a name for the database, and hit “Create.”

BASIC CONFIGURATION

Find the file named wp-config-sample.php, and open it in your favorite text
editor. We have to configure a few settings. The default values for MAMP
installations make this really easy to fill out, so follow the table below to see
what to type where:

Smashing eBook #10│WordPress Essentials │ 31

Variable Value
DB_NAME wordpress
DB_USER root
DB_PASSWORD root

Change the values of the variables to match the table above.

You should not need to alter anything else in this file, at least for now. You
could add in the unique keys and salts, but I recommend doing that once
you move the website into production.

Save and close wp-config-sample.php. We’re nearly done. Rename this file
to wp-config.php — removing the -sample — and we are ready to complete
the installation. You should now be able to point your browser to http://
localhost:8888/wordpress and see the WordPress installation screen.
Enter in your basic data and install the app. You are now ready to log into
the admin section and get going!

Smashing eBook #10│WordPress Essentials │ 32

Enter your information… but choose a stronger password.

Smashing eBook #10│WordPress Essentials │ 33

Permalinks
Always follow WordPress’ permalink structure. In order for you to get these
“pretty URLs,” Apache will need mod_rewrite to update your .htaccess
file, so let’s make sure that is set up.

The file we have to edit is httpd.conf, and you can find it in Applications →
MAMP → conf → apache → /. Open this file, and search for a line like this:

LoadModule rewrite_module modules/mod_rewrite.so

Note that a hash (#) may or may not be in front of it. The hash indicates a
comment, and if you see it, you must remove it to allow the mod_rewrite
module to load. If the line is not commented out, then congratulations: you
are already done! Close the file, and permalinks should now work in your
local installation.

THE FINAL COUNTDOWN

By now, a local server set up with WordPress should be installed and
running. The remaining steps are both short and crucial to sharing your
creation with the Internet. All that remains is to transfer your local
accomplishments to a global environment by moving both our WordPress
files and our content. So, let’s finish this up!

Going Live
The time has finally arrived. So, how do you bring your WordPress creation
to the live server? Well, we have two options.

Smashing eBook #10│WordPress Essentials │ 34

http://codex.wordpress.org/Using_Permalinks#Using_.22Pretty.22_permalinks
http://codex.wordpress.org/Using_Permalinks#Using_.22Pretty.22_permalinks

JUST GRAB THE CONTENT

A sometimes simpler way, with only a few steps, is to just grab all of your
content. This is easiest if WordPress is already installed and you just need to
import your theme and content. To do this, head to the admin dashboard, to
the “Tools” section in the sidebar. Click on “Export,” and choose “All
content.” This will export a file that you can then import into your new
installation.

Exporting WordPress content.

You can now upload your WordPress theme files to the live location. Head
to the “Tools” section of the dashboard again, and choose “Import.” Simply
point to the file that you just exported, and bring in your content.

BRINGING IN EVERYTHING

I use this method if I have done everything locally from the ground up. I’ll
upload my entire local WordPress directory (in this case, http://
localhost:8888/wordpress) to the live server and then grab the
database file and transfer that from local to live as well.

Because you could certainly build nearly the entire website in your
development environment, bear in mind that WordPress uses absolute
paths for URLs. So, every image and link will be prepended with http://
localhost:8888/ (depending on your set-up). We need a way to alter
this to fit the live website. We have a few options.

1. EXPORT, SEARCH AND REPLACE

Using this method, we export our local database as a text file and run a
“Find and replace” on the text to replace all occurrences of the localhost
URL with the production URL.

Begin by opening phpMyAdmin and clicking on your WordPress database
on the left. Click on the “Export” tab in the top menu, and be sure to choose
“Select all” when choosing which tables to export. At the bottom, check the
box to “Save as file,” and then hit “Go.” Open the resulting file in your
favorite text editor, and simply run a “Find and replace” to replace all
instances of http://localhost:8888/wordpress with http://
www.YOUR_SITE_URL.com.

Smashing eBook #10│WordPress Essentials │ 36

Exporting the WordPress database (click image for full-size view).

Save the edited file, and visit phpMyAdmin on your live server. Again, click
on your WordPress database, and this time choose the “Import” option from
the top menu, and browse for your newly edited file.

Once it successfully imports, upload your WordPress directory to the live
server. If WordPress is already installed, simply upload your theme, any
plugins you have installed locally and the contents of your wp-content/
uploads folder; or else, upload the entire local directory to your live
website’s root. Once that’s uploaded, be sure you can log into wp-admin,
and browse around to make sure everything made it in. Update your
permalink’s structure to something friendlier, and you are off!

Smashing eBook #10│WordPress Essentials │ 37

2. USING SQL QUERIES

A second way to alter URL paths is to first bring everything into the live
server version, and then use a few SQL queries to find and replace the
necessary strings. Open phpMyAdmin on your local server, and export the
database, again making sure to select all tables and to save it as a file. Go to
your live server, and import the .sql file that you just saved. In the top menu,
click on the tab for “SQL,” whereupon you will see a text area. You will need
to enter some query syntax; be sure to replace the URLs in these code
fragments with the ones that pertain to your set-up — namely, the localhost’s
path and the URL of your new live website.

Running SQL queries to update the URL paths (click image for full-size view).

Replacing WordPress’ base URL path:

UPDATE wp_options SET option_value = replace(option_value, 'http://
localhost:8888/wordpress ', '') WHERE option_name = 'home' OR
option_name = 'siteurl';

Update the GUID that controls WordPress’ translating paths and post
locations:

UPDATE wp_posts SET guid = REPLACE (guid, 'http://localhost:8888/
wordpress ', '');

Update the URL paths in the content:

UPDATE wp_posts SET post_content = REPLACE (post_content, 'http://
localhost:8888/wordpress ', '');

Update the URLs in the meta data of posts, such as attachments:

UPDATE wp_postmeta SET meta_value = REPLACE (meta_value, 'http://
localhost:8888/wordpress ','');

Final !oughts
We have managed to install MAMP to set up a local server sandbox to
develop in, and we’ve configured and installed a WordPress platform to
develop in, saving the need for purely online development tactics.

I hope this has given you some insight into setting up a local environment to
work with WordPress. Keep in mind that this is just scratching the surface;
WordPress is versatile. Now that we have this faster new way to develop,
the next time we’ll get into some custom WordPress configurations.

HELPFUL LINKS

You may be interested in these related resources:

• “MAMP vs. MAMP Pro”
A chart comparing the two versions of MAMP.

• MAMP Documentation

• “Installing WordPress”
The walkthrough to install WordPress.

• “13 Useful WordPress SQL Queries You Wish You Knew Earlier”
A few SQL queries to aid with your WordPress development.

• “WordPress MultiSite with Subdomains on MAMP”
3-step tutorial on setting up subdomains with WordPress on MAMP.

http://www.mamp.info/en/mamp-pro/features/matrix.html
http://www.mamp.info/en/mamp-pro/features/matrix.html
http://documentation.mamp.info/en
http://documentation.mamp.info/en
http://codex.wordpress.org/Installing_WordPress
http://codex.wordpress.org/Installing_WordPress
http://www.onextrapixel.com/2010/01/30/13-useful-wordpress-sql-queries-you-wish-you-knew-earlier/
http://www.onextrapixel.com/2010/01/30/13-useful-wordpress-sql-queries-you-wish-you-knew-earlier/
http://perishablepress.com/wordpress-multisite-subdomains-mamp/
http://perishablepress.com/wordpress-multisite-subdomains-mamp/

!e Developer’s Guide To Conflict-Free
JavaScript And CSS In WordPress

Peter Wilson

Imagine you’re playing the latest hash-tag game on Twitter when you see
this friendly tweet:

You might want to check your #WP site. It includes two copies of jQuery.
Nothing’s broken, but loading time will be slower.

You check your source code, and sure enough you see this:

<script	
 src="/wp-­‐includes/js/jquery/jquery.js?ver=1.6.1"	
 type="text/
javascript"></script>
<script	
 src="/wp-­‐content/plugins/some-­‐plugin/jquery.js"></script>

WHAT WENT WRONG?

The first copy of jQuery is included the WordPress way, while some-
plugin includes jQuery as you would on a static HTML page.

A number of JavaScript frameworks are included in WordPress by default,
including:

• Scriptaculous,

• jQuery (running in noConflict mode),

• the jQuery UI core and selected widgets,

• Prototype.

Smashing eBook #10│WordPress Essentials │ 41

http://api.jquery.com/jQuery.noConflict/
http://api.jquery.com/jQuery.noConflict/

A complete list can be found in the Codex. On the same page are
instructions for using jQuery in noConflict mode.

AVOIDING THE PROBLEM

WordPress includes these libraries so that plugin and theme authors can
avoid this problem by using the wp_register_script and wp_enqueue_script
PHP functions to include JavaScript in the HTML.

Registering a file alone doesn’t do anything to the output of your HTML; it
only adds the file to WordPress’s list of known scripts. As you’ll see in the
next section, we register files early on in a theme or plugin where we can
keep track of versioning information.

To output the file to the HTML, you need to enqueue the file. Once you’ve
done this, WordPress will add the required script tag to the header or footer
of the outputted page. More details are provided later in this article.

Smashing eBook #10│WordPress Essentials │ 42

http://codex.wordpress.org/Function_Reference/wp_enqueue_script#Default_scripts_included_with_WordPress
http://codex.wordpress.org/Function_Reference/wp_enqueue_script#Default_scripts_included_with_WordPress
http://codex.wordpress.org/Function_Reference/wp_enqueue_script#jQuery_noConflict_wrappers
http://codex.wordpress.org/Function_Reference/wp_enqueue_script#jQuery_noConflict_wrappers

Registering a file requires more complex code than enqueueing the files; so,
quickly parsing the file is harder when you’re reviewing your code.
Enqueueing the file is far simpler, and you can easily parse how the HTML is
being affected.

For these techniques to work, the theme’s header.php file must include the
line <?php wp_head(); ?> just before the </head> tag, and the
footer.php file must include the line <?php wp_footer(); ?> just before
the </body> tag.

Registering JavaScript
Before registering your JavaScript, you’ll need to decide on a few additional
items:

• the file’s handle (i.e. the name by which WordPress will know the file);

• other scripts that the file depends on (jQuery, for example);

• the version number (optional);

• where the file will appear in the HTML (the header or footer).

This article refers to building a theme, but the tips apply equally to building a
plugin.

EXAMPLES

We’ll use two JavaScript files to illustrate the power of the functions:

The first is base.js, which is a toolkit of functions used in our example
website.

Smashing eBook #10│WordPress Essentials │ 43

function	
 makeRed(selector){

 var	
 $	
 =	
 jQuery;	
 //enable	
 $	
 alias	
 within	
 this	
 scope

 $(function(){

 $(selector).css('color','red');

 });
}

The base.js file relies on jQuery, so jQuery can be considered a
dependency.

This is the first version of the file, version 1.0.0, and there is no reason to run
this file in the HTML header.

The second file, custom.js, is used to add the JavaScript goodness to our
website.

makeRed('*');

This custom.js file calls a function in base.js, so base.js is a dependency.

Like base.js, custom.js is version 1.0.0 and can be run in the HTML footer.

The custom.js file also indirectly relies on jQuery. But in this case, base.js
could be edited to be self-contained or to rely on another framework. There
is no need for jQuery to be listed as a dependency of custom.js.

It’s now simply a matter of registering your JavaScript using the function
wp_register_script. This takes the following arguments:

• $handle
A string

• $source
A string

• $dependancies
An array (optional)

Smashing eBook #10│WordPress Essentials │ 44

• $version
A string (optional)

• $in_footer
True/false (optional, default is false)

When registering scripts, it is best to use the init hook and to register
them all at once.

To register the scripts in our example, add the following to the theme’s
functions.php file:

function	
 mytheme_register_scripts()	
 {

 //base.js	
 –	
 dependent	
 on	
 jQuery

 wp_register_script(

 'theme-­‐base',	
 //handle

 '/wp-­‐content/themes/my-­‐theme/base.js',	
 //source

 array('jquery'),	
 //dependencies

 '1.0.0',	
 //version

 true	
 //run	
 in	
 footer

);
	

 //custom.js	
 –	
 dependent	
 on	
 base.js

 wp_register_script(

 'theme-­‐custom',

 '/wp-­‐content/themes/my-­‐theme/custom.js',

 array('theme-­‐base'),

 '1.0.0',

TRUE

);
}
add_action('init',	
 'mytheme_register_scripts');

There is no need to register jQuery, because WordPress already has. Re-
registering it could lead to problems.

Smashing eBook #10│WordPress Essentials │ 45

YOU HAVE ACHIEVED NOTHING!

All of this registering JavaScript files the WordPress way has, so far,
achieved nothing. Nothing will be outputted to your HTML files.

To get WordPress to output the relevant HTML, we need to enqueue our
files. Unlike the relatively long-winded commands required to register the
functions, this is a very simple process.

Outpu"ing the JavaScript HTML
Adding the <script> tags to your HTML is done with the
wp_enqueue_script function. Once a script is registered, it takes one
argument, the file’s handle.

Adding JavaScript to the HTML is done in the wp_print_scripts hook
with the following code:

function	
 mytheme_enqueue_scripts(){

 if	
 (!is_admin()):

 wp_enqueue_script('theme-­‐custom');	
 //custom.js

 endif;	
 //!is_admin
}
add_action('wp_print_scripts',	
 'mytheme_enqueue_scripts');

Of our two registered JavaScript files (base.js and custom.js), only the
second adds JavaScript functionality to the website. Without the second file,
there is no need to add the first.

Having enqueued custom.js for output to the HTML, WordPress will figure
out that it depends on base.js being present and that base.js, in turn,
requires jQuery. The resulting HTML is:

Smashing eBook #10│WordPress Essentials │ 46

<script	
 src="/wp-­‐includes/js/jquery/jquery.js?ver=1.6.1"	
 type="text/
javascript"></script>
<script	
 src="/wp-­‐content/themes/my-­‐theme/base.js?ver=1.0.0"	
 type="text/
javascript"></script>
<script	
 src="/wp-­‐content/themes/my-­‐theme/custom.js?ver=1.0.0"	
 type="text/
javascript"></script>

Registering Style Sheets
Both of the functions for adding JavaScript to our HTML have sister PHP
functions for adding style sheets to the HTML: wp_register_style and
wp_enqueue_style.

As with the JavaScript example, we’ll use a couple of CSS files throughout
this article, employing the mobile-first methodology for responsive Web
design.

The mobile.css file is the CSS for building the mobile version of the website.
It has no dependencies. The desktop.css file is the CSS that is loaded for
desktop devices only. The desktop version builds on the mobile version, so
mobile.css is a dependency.

Once you’ve decided on version numbers, dependencies and media types,
it’s time to register your style sheets using the wp_register_style
function. This function takes the following arguments:

• $handle
A string

• $source
A string

• $dependancies
An array (optional, default is none)

Smashing eBook #10│WordPress Essentials │ 47

• $version
A string (optional, the default is the current WordPress version number)

• $media_type
A string (optional, the default is all)

Again, registering your style sheets using the init action is best. To your
theme’s functions.php, you would add this:

function	
 mytheme_register_styles(){

 //mobile.css	
 for	
 all	
 devices

 wp_register_style(

 'theme-­‐mobile',	
 //handle

 '/wp-­‐content/themes/my-­‐theme/mobile.css',	
 //source

 null,	
 //no	
 dependencies

 '1.0.0'	
 //version

);
	

 //desktop.css	
 for	
 big-­‐screen	
 browsers

 wp_register_style(

 'theme-­‐desktop',

 '/wp-­‐content/themes/my-­‐theme/desktop.css',

 array('theme-­‐mobile'),

 '1.0.0',

 'only	
 screen	
 and	
 (min-­‐width	
 :	
 960px)'	
 //media	
 type

);
	

 /*	
 *keep	
 reading*	
 */
}
add_action('init',	
 'mytheme_register_styles');

We have used CSS3 media queries to prevent mobile browsers from
parsing our desktop style sheet. But Internet Explorer versions 8 and below
do not understand CSS3 media queries and so will not parse the desktop
CSS either.

Smashing eBook #10│WordPress Essentials │ 48

IE8 is only two years old, so we should support its users with conditional
comments.

CONDITIONAL COMMENTS

When registering CSS using the register and enqueue functions, conditional
comments are a little more complex. WordPress uses the object
$wp_styles to store registered style sheets.

To wrap your file in conditional comments, add extra information to this
object.

For Internet Explorer 8 and below, excluding mobile IE, we need to register
another copy of our desktop style sheet (using the media type all) and
wrap it in conditional comments.

In the code sample above, /* *keep reading* */ would be replaced
with the following:

global	
 $wp_styles;
wp_register_style(

 'theme-­‐desktop-­‐ie',

 '/wp-­‐content/themes/my-­‐theme/desktop.css',

 array('theme-­‐mobile'),

 '1.0.0'
);
	

$wp_styles-­‐>add_data(

 'theme-­‐desktop-­‐ie',	
 //handle

 'conditional',	
 	
 //is	
 a	
 conditional	
 comment

 '!(IEMobile)&(lte	
 IE	
 8)'	
 //the	
 conditional	
 comment
);

Smashing eBook #10│WordPress Essentials │ 49

Unfortunately, there is no equivalent for wrapping JavaScript files in
conditional comments, presumably due to the concatenation of JavaScript in
the admin section.

If you need to wrap a JavaScript file in conditional comments, you will need
to add it to header.php or footer.php in the theme. Alternatively, you could
use the wp_head or wp_footer hooks.

Outpu"ing !e Style Sheet HTML
Outputting the style sheet HTML is very similar to outputting the JavaScript
HTML. We use the enqueue function and run it on the wp_print_styles
hook.

In our example, we could get away with telling WordPress to queue only the
style sheets that have the handles theme-desktop and theme-
desktop-ie. WordPress would then output the mobile/all media
version.

However, both style sheets apply styles to the website beyond a basic
reset: mobile.css builds the website for mobile phones, and desktop.css
builds on top of that. If it does something and I’ve registered it, then I should
enqueue it. It helps to keep track of what’s going on.

Here is the code to output the CSS to the HTML:

function	
 mytheme_enqueue_styles(){

 if	
 (!is_admin()):

 wp_enqueue_style('theme-­‐mobile');	
 //mobile.css

 wp_enqueue_style('theme-­‐desktop');	
 //desktop.css

 wp_enqueue_style('theme-­‐desktop-­‐ie');	
 //desktop.css	
 lte	
 ie8

 endif;	
 //!is_admin
}
add_action('wp_print_styles',	
 'mytheme_enqueue_styles');

Smashing eBook #10│WordPress Essentials │ 50

What’s !e Point?
You may be wondering what the point is of going through all of this extra
effort when we could just output our JavaScript and style sheets in the
theme’s header.php or using the wp_head hook.

In the case of CSS in a standalone theme, it’s a valid point. It’s extra work
without much of a payoff.

But with JavaScript, it helps to prevent clashes between plugins and themes
when each uses a different version of a JavaScript framework. It also makes
page-loading times as fast as possible by avoiding file duplication.

WORDPRESS FRAMEWORKS

This group of functions can be most helpful when using a framework for
theming. We’ve built a framework to speed up our production of websites in
our agency.

As with most agencies, we have internal conventions for naming JavaScript
and CSS files.

When we create a bespoke WordPress theme for a client, we develop it as a
child theme of our framework. In the framework itself, we register a number
of JavaScript and CSS files in accordance with our naming convention.

In the child theme, we then simply enqueue files to output the HTML.

Smashing eBook #10│WordPress Essentials │ 51

function	
 clienttheme_enqueue_css()	
 {

 if	
 (!is_admin()):

 wp_enqueue_style('theme-­‐mobile');

 wp_enqueue_style('theme-­‐desktop');

 wp_enqueue_style('theme-­‐desktop-­‐ie');

 endif;	
 //!is_admin
}
add_action('wp_print_styles',	
 'clienttheme_enqueue_css');
	

function	
 clienttheme_enqueue_js()	
 {

 if	
 (!is_admin()):

 wp_enqueue_script('theme-­‐custom');

 endif;	
 //!is_admin
}
add_action('wp_print_scripts',	
 'clienttheme_enqueue_js');

Adding CSS and JavaScript to our themes the WordPress way enables us to
keep track of exactly what’s going on at a glance.

A Slight Limitation
If you use a JavaScript framework in your theme or plugin, then you’re stuck
with the version that ships with the current version of WordPress, which
sometimes falls a version or two behind the latest official release of the
framework. (Upgrading to a newer version of the framework is technically
possible, but this could cause problems with other themes or plugins that
expect the version that ships with WordPress, so I’ve omitted this
information from this chapter.)

While this prevents you from using any new features of the framework that
were added after the version included in WordPress, the advantage is that
all theme and plugin authors know which version of the framework to
expect.

Smashing eBook #10│WordPress Essentials │ 52

A Single Point Of Registration
Register your styles and scripts in a single block of code, so that when you
update a file, you will be able to go back and update the version number
easily.

If you use different code in different parts of the website, you can wrap the
logic around the enqueue scripts.

If, say, your archive pages use different JavaScript than the rest of the
website, then you might register three files:

• base JavaScript (registered as theme-base),

• archive JavaScript (registered as theme-archive),

• general JavaScript (registered as theme-general).

Again, the base JavaScript adds nothing to the website. Rather, it is a group
of default functions that the other two files rely on. You could then enqueue
the files using the following code:

function	
 mytheme_enqueue_js(){

 if	
 (is_archive())	
 {

 wp_enqueue_script('theme-­‐archive');

 }

 elseif	
 (!is_admin())	
 {

 wp_enqueue_script('theme-­‐general');

 }
}
add_action('wp_print_scripts',	
 'mytheme_enqueue_js');

Using !e Google AJAX CDN

Smashing eBook #10│WordPress Essentials │ 53

While using JavaScript the WordPress way will save you the problem of
common libraries conflicting with each other, you might prefer to serve
these libraries from Google’s server rather than your own.

Using Jason Penny’s Use Google Libraries plugin is the easiest way to do
this. The plugin automatically keeps jQuery in noConflict mode.

Pu"ing It All Together
Once you’ve started registering and outputting your scripts and styles the
WordPress way, you will find that managing these files becomes a series of
logical steps:

1. Registration to manage:

• version numbers,

• file dependencies,

• media types for CSS,

• code placement for JavaScript (header or footer);

2. Enqueue/output files to HTML:

• logic targeting output to specific WordPress pages,

• WordPress automating dependencies.

Eliminating potential JavaScript conflicts from your WordPress theme or
plugin frees you to get on with more important things, such as following up
on sales leads or getting back to that hash-tag game that was so rudely
interrupted.

Smashing eBook #10│WordPress Essentials │ 54

http://wordpress.org/extend/plugins/use-google-libraries/
http://wordpress.org/extend/plugins/use-google-libraries/

Interacting With !e WordPress
Database

Daniel Pataki

While you already use many functions in WordPress to communicate with
the database, there is an easy and safe way to do this directly, using the
$wpdb class. Built on the great ezSQL class by Justin Vincent, $wpdb
enables you to address queries to any table in your database, and it also
helps you handle the returned data. Because this functionality is built into
WordPress, there is no need to open a separate database connection (in
which case, you would be duplicating code), and there is no need to
perform hacks such as modifying a result set after it has been queried.

The $wpdb class modularizes and automates a lot of database-related tasks.

Smashing eBook #10│WordPress Essentials │ 55

In this chapter, I will show you how to get started with the $wpdb class, how
to retrieve data from your WordPress database and how to run more
advanced queries that update or delete something in the database. The
techniques here will remove some of the constraints that you run into with
functions such as get_posts() and wp_list_categories(), allowing
you to tailor queries to your particular needs. This method can also make
your website more efficient by getting only the data that you need — nothing
more, nothing less.

Ge"ing Started
If you know how MySQL or similar languages work, then you will be right at
home with this class, and you will need to keep only a small number of
function names in mind. The basic usage of this class can be best
understood through an example. So let’s query our database for the IDs and
titles of the four most recent posts, ordered by comment count (in
descending order).

<?php

 $posts	
 =	
 $wpdb-­‐>get_results("SELECT	
 ID,	
 post_title	
 FROM	
 $wpdb-­‐>posts	

WHERE	
 post_status	
 =	
 'publish'

 AND	
 post_type='post'	
 ORDER	
 BY	
 comment_count	
 DESC	
 LIMIT	
 0,4")
?>

As you can see, this is a basic SQL query, with some PHP wrapped around
it. The $wpdb class contains a method (a method is a special name for
functions that are inside classes), named get_results(), which will not
only fetch your results but put them in a convenient object.

You might have noticed that, instead of using wp_posts for the table’s
name, I have used $wpdb->posts, which is a helper to access your core
WordPress tables. More on why to use these later.

Smashing eBook #10│WordPress Essentials │ 56

The $results object now contains your data in the following format:

Retrieving Results From !e Database
If you want to retrieve some information from the database, you can use one
of four helper functions to structure the data.

Smashing eBook #10│WordPress Essentials │ 57

Array
(

 [0]	
 =>	
 stdClass	
 Object

 (

 [ID]	
 =>	
 6

 [post_title]	
 =>	
 The	
 Male	
 Angler	
 Fish	
 Gets	
 Completely	
 Screwed

)
	

 [1]	
 =>	
 stdClass	
 Object

 (

 [ID]	
 =>	
 25

 [post_title]	
 =>	
 10	
 Truly	
 Amazing	
 Icon	
 Sets	
 From	
 Germany

)
	

 [2]	
 =>	
 stdClass	
 Object

 (

 [ID]	
 =>	
 37

 [post_title]	
 =>	
 Elderberry	
 Is	
 Awesome

)
	

 [3]	
 =>	
 stdClass	
 Object

 (

 [ID]	
 =>	
 60

 [post_title]	
 =>	
 Gathering	
 Resources	
 and	
 Inspiration	
 With	
 Evernote

)
	

)

GET_RESULTS()

This is the function that we looked at earlier. It is best for when you need
two-dimensional data (multiple rows and columns). It converts the data into
an array that contains separate objects for each row.

<?php

 $posts = $wpdb->get_results("SELECT ID, post_title FROM wp_posts
WHERE post_status = 'future' AND post_type='post' ORDER BY post_date
ASC LIMIT 0,4")

 // Echo the title of the first scheduled post

 echo $posts[0]->post_title;

?>

GET_ROW

When you need to find only one particular row in the database (for example,
the post with the most comments), you can use get_row(). It pulls the data
into a one-dimensional object.

GET_COL

This method is much the same as get_row(), but instead of grabbing a
single row of results, it gets a single column. This is helpful if you would like
to retrieve the IDs of only the top 10 most commented posts. Like
get_row(), it stores your results in a one-dimensional object.

Smashing eBook #10│WordPress Essentials │ 58

<?php

 $posts = $wpdb->get_row("SELECT ID, post_title FROM wp_posts WHERE
post_status = 'publish'

 AND post_type='post' ORDER BY comment_count DESC LIMIT 0,1")

 // Echo the title of the most commented post

 echo $posts->post_title;

?>

<?php

 $posts = $wpdb->get_col("SELECT ID FROM wp_posts WHERE post_status
= 'publish'

 AND post_type='post' ORDER BY comment_count DESC LIMIT 0,10")

 // Echo the ID of the 4th most commented post

 echo $posts[3]->ID;

?>

GET_VAR

In many cases, you will need only one value from the database; for example,
the email address of one of your users. In this case, you can use get_var
to retrieve it as a simple value. The value’s data type will be the same as its
type in the database (i.e. integers will be integers, strings will be strings).

<?php

 $email = $wpdb->get_var("SELECT user_email FROM wp_users WHERE
user_login = 'danielpataki' ")

 // Echo the user's email address

 echo $email;

?>

Inserting Into !e Database
To perform an insert, we can use the insert method:

$wpdb->insert($table, $data, $format);

Smashing eBook #10│WordPress Essentials │ 59

This method takes three arguments. The first specifies the name of the table
into which you are inserting the data. The second argument is an array that
contains the columns and their respective values, as key-value pairs. The
third parameter specifies the data type of your values, in the order you have
given them. Here’s an example:

<?php

 $wpdb->insert($wpdb->usermeta, array("user_id" => 1, "meta_key" =>
"awesome_factor", "meta_value" => 10), array("%d", %s", "%d"));

 // Equivalent to:

 // INSERT INTO wp_usermeta (user_id, meta_key, meta_value) VALUES
(1, "awesome_factor", 10);

?>

If you’re used to writing out your inserts, this may seem unwieldy at first, but
it actually gives you a lot of flexibility because it uses arrays as inputs.

Specifying the format is optional; all values are treated as strings by default,
but including this in the method is a good practice. The three values you can
use are %s for strings, %d for decimal numbers and %f for floats.

Updating Your Data
By now, you won’t be surprised to hear that we also have a helper method
to update our data — shockingly, called update().

Its use resembles what we saw above; but to handle the where clause of
our update, it needs two extra parameters.

$wpdb->update($table, $data, $where, $format = null, $where_format
= null);

Smashing eBook #10│WordPress Essentials │ 60

The $table, $data and $format parameters should be familiar to you;
they are the same as before. Using the $where parameter, we can specify
the conditions of the update. It should be an array in the form of column-
value pairs. If you specify multiple parameters, then they will be joined with
AND logic. The $where_format is just like $format: it specifies the format
of the values in the $where parameter.

$wpdb->update($wpdb->posts, array("post_title" => "Modified Post
Title"), array("ID" => 5), array("%s"), array("%d"));

Other Queries
While the helpers above are great, sometimes performing different or more
complex queries than the helpers allow is necessary. If you need to perform
an update with a complex where clause containing multiple AND/OR logic,
then you won’t be able to use the update() method. If you wanted to do
something like delete a row or set a connection character set, then you
would need to use the “general” query() method, which let’s you perform
any sort of query.

$wpdb->query("DELETE FROM wp_usermeta WHERE meta_key = 'first_login'
OR meta_key = 'security_key' ");

Protection And Validation
I hope I don’t have to tell you how important it is to make sure that your data
is safe and that your database can’t be tampered with! Data validation is a
bit beyond the scope of this article, but do take a look at what the
WordPress Codex has to say about “Data Validation” at some point.

Smashing eBook #10│WordPress Essentials │ 61

In addition to validating, you will need to escape all queries. Even if you are
not familiar with SQL injection attacks, still use this method and then read up
on it later, because it is critical.The good news is that if you use any of the
helper functions, then you don’t need to do anything: the query is escaped
for you. If you use the query() method, however, you will need to escape
manually, using the prepare() method.

$sql = $wpdb->prepare('query' [, value_parameter,
value_parameter ...]);

To make this a bit more digestible, let’s rewrite this basic format a bit.

$sql = $wpdb->prepare("INSERT INTO $wpdb->postmeta (post_id,
meta_key, meta_value) VALUES (%d, %s, %d)", 3342, 'post_views',
2290)

$wpdb->query($sql);

As you can see, this is not that scary. Instead of adding the actual values
where you usually would, you enter the type of data, and then you add the
actual data as subsequent parameters.

Class Variables And Other Methods
Apart from these excellent methods, there are quite a few other functions
and variables to make your life easier.

I’ll show you some of the most common ones, but please do look at the
WordPress Codex page linked to above for a full list of everything that
$wpdb has to offer.

INSERT_ID()

Whenever you insert something into a table, you will very likely have an
auto-incrementing ID in there. To find the value of the most recent insert
performed by your script, you can use $wpdb->insert_id.

Smashing eBook #10│WordPress Essentials │ 62

$sql = $wpdb->prepare("INSERT INTO $wpdb->postmeta (post_id,
meta_key, meta_value) VALUES (%d, %s, %d)", 3342, 'post_views',
2290)

 $wpdb->query($sql);

 $meta_id = $wpdb->insert_id;

NUM_ROWS()

If you’ve performed a query in your script, then this variable will return the
number of results of your last query. This is great for post counts, comment
counts and so on.

TABLE NAMES

All the core table names are stored in variables whose names are exactly
the same as their core table equivalent. The name of your posts table
(probably wp_posts) would be stored in the $posts variable, so you could
output it by using $wpdb->posts.

We use this because we are allowed to choose a prefix for our WordPress
tables. While most people use the default wp, some users want or need a
custom one. For the sake of flexibility, this prefix is not hardcoded, so if you
are writing a plugin and use wp_postmeta in a query instead of $wpdb->
postmeta, your code will not work on some websites.

If you want to get data from a non-core WordPress table, no special variable
will be available for it. In this case, you can just write the table’s name as
usual.

Smashing eBook #10│WordPress Essentials │ 63

ERROR HANDLING

By calling the show_errors() or hide_errors() methods, you can turn
error-reporting on or off (it’s off by default) to get some more info about
what’s going on. Either way, you can also use the print_error() method
to print the errors for the latest query.

$wpdb->show_errors();

 $wpdb->query("DELETE FROM wp_posts WHERE post_id = 554 ");

 // When run, because show_errors() is set, the error message will
tell you that the "post_id" field is an unknown

 // field in this table (since the correct field is ID)

Building Some Basic Tracking With Our New $wpdb
Knowledge
If you’re new to all of this, you probably get what I’m going on about but may
be finding it hard to implement. So, let’s take the example of a simple
WordPress tracking plugin that I made for a website.

For simplicity’s sake, I won’t describe every detail of the plugin. I’ll just show
the database’s structure and some queries.

OUR TABLE’S STRUCTURE

To keep track of ad clicks and impressions, I created a table; let’s call it
“tracking.” This table records user actions in real time. Each impression and
click is recorded in its own row in the following structure:

• ID
The auto-incremented ID.

Smashing eBook #10│WordPress Essentials │ 64

• time
The date and time that the action occurred.

• deal_id
The ID of the deal that is connected to the action (i.e. the ad that was
clicked or viewed).

• action
The type of action (i.e. click or impression).

• action_url
The page on which the action was initiated.

• user_id
If the user is logged in, their ID.

• user_ip
The IP of the user, used to weed out any naughty business.

This table will get pretty big pretty fast, so it is aggregated into daily
statistics and flushed periodically. But let’s just work with this one table for
now.

Inserting Data Into Our Tables
When a user clicks an ad, it is detected, and the information that we need is
sent to our script in the form of a $_POST array, with the following data:

Smashing eBook #10│WordPress Essentials │ 65

Array

(

 [deal_id] => 643

 [action] => click

 [action_url] => http://thisiswhereitwasclicked.com/about/

 [user_id] => 223

 [user_ip] = 123.234.223.12

)

We can then insert this data into the database using our helper method, like
so:

$wpdb->insert('tracking', array("deal_id" => 643, "action" =>
"click", "action_url" => "http://thisiswhereitwasclicked.com/about/
",

"user_id" => 223, "user_ip" => "123.234.223.12"), array("%d", %s",
"%s", "%d", "%s"));

At the risk of going on a tangent, I’ll address some questions you might have
about this particular example. You may be thinking, what about data
validation? The click could have come from a website administrator, or a
user could have clicked twice by mistake, or a bunch of other things might
have happened.

We decided that because we don’t need real-time stats (daily stats is
enough), there is no point to check the data at every insert.

Data is aggregated into a new table every day around midnight, a low traffic
time. Before aggregating the data, we take care to clean it up, taking out
duplicates and so on. The data is, of course, escaped before being inserted
into the table, because we are using a helper function; so, we are safe there.

Just deleting in bulk all at once the ones that are made by administrators is
easier than checking at every insert. This takes a considerable amount of
processing off our server’s shoulders.

Smashing eBook #10│WordPress Essentials │ 66

DELETING ACTIONS FROM A BLACKLISTED IP

If we find that the IP address 168.211.23.43 is being naughty-naughty,
we could blacklist it. In this case, when we aggregate the daily data, we
would need to delete all of the entries by this IP.

$sql = $wpdb->prepare("DELETE FROM tracking WHERE user_ip = %s ",
'168.211.23.43');

 $wpdb->query($sql);

You have probably noticed that I am still escaping the data, even though the
IP was received from a secure source. I would suggest escaping your data
no matter what. First of all, proper hackers are good at what they do,
because they are excellent programmers and can outsmart you in ways that
you wouldn’t think of. Also, I personally have done more to hurt my own
websites than hackers have, so I do these things as a safety precaution
against myself as well.

UPDATING TOTALS

We store our ads as custom post types; and to make statistical reporting
easier, we store the total amount of clicks that an ad receives separately as
well. We could just add up all of the clicks in our tracking database for the
given deal as well, so let’s look at that first.

$total = $wpdb->get_var("SELECT COUNT(ID) WHERE deal_id = 125 ");

Because getting a single variable is easier than always burdening ourselves
with a more complex query, whenever we aggregate our data, we would
store the current total separately. Our ads are stored as posts with a custom
post type, so a logical place to store this total is in the postmeta table.
Let’s use the total_clicks meta key to store this data.

Smashing eBook #10│WordPress Essentials │ 67

$wpdb->update($wpdb->postmeta, array("meta_value" => $total),
array("ID" => 125), array("%d"), array("%d"));

 // note that this should be done with update_post_meta(), I just
did it the way I did for example's sake

Final !oughts And Tips
I hope you have gained a better understanding of the WordPress $wpdb
class and that you will be able to use it to make your projects better. To
wrap up, here are some final tips and tricks for using this class effectively.

• I urge you to be cautious: with great power comes great responsibility.
Make sure to escape your data and to validate it, because improper use
of this class is probably a leading cause of hacked websites!

• Ask only for the data that you need. If you will only be displaying an
article’s title, there is no need to retrieve all of the data from each row.
In this case, just ask for the title and the ID: SELECT title, ID
FROM wp_posts ORDER BY post_date DESC LIMIT 0,5.

• While you can use the query() method for any query, using the helper
methods (insert, update, get_row, etc.) is better if possible. They
are more modular and safer, because they escape your data
automatically.

• Take care when deleting records from a WordPress (or any other)
database. When WordPress deletes a comment, a bunch of other
actions also take place: the comment count in the wp_posts table
needs to be reduced by one, all of the data in the comment_meta table
needs to be deleted as well, and so on. Make sure to clean up properly
after yourself, especially when deleting things.

Smashing eBook #10│WordPress Essentials │ 68

• Look at all of the class variables and other bits of information in the
official documentation. These will help you use the class to its full
potential. I also recommend looking at the ezSQL class for general use
in your non-WordPress projects; I use it almost exclusively for
everything I do.

Smashing eBook #10│WordPress Essentials │ 69

How To Create A WordPress Plugin

Daniel Pataki

WordPress plugins are PHP scripts that alter your website. The changes
could be anything from the simplest tweak in the header to a more drastic
makeover (such as changing how log-ins work, triggering emails to be sent,
and much more).

Whereas themes modify the look of your website, plugins change how it
functions. With plugins, you can create custom post types, add new tables to
your database to track popular articles, automatically link your contents
folder to a “CDN” server such as Amazon S3… you get the picture.

Smashing eBook #10│WordPress Essentials │ 70

!eme Or Plugin?
If you’ve ever played around with a theme, you’ll know it has a functions.php
file, which gives you a lot of power and enables you to build plugin-like
functionality into your theme. So, if we have this functions.php file, what’s
the point of a plugin? When should we use one, and when should we create
our own?

The line here is blurrier than you might think, and the answer will often
depend on your needs. If you just want to modify the default length of your
posts’ excerpts, you can safely do it in functions.php. If you want something
that lets users message each other and become friends on your website,
then a plugin would better suit your needs.

The main difference is that a plugin’s functionality persists regardless of
what theme you have enabled, whereas any changes you have made in
functions.php will stop working once you switch themes. Also, grouping
related functionality into a plugin is often more convenient than leaving a
mass of code in functions.php.

Creating Our First Plugin
To create a plugin, all you need to do is create a folder and then create a
single file with one line of content. Navigate to the wp-content/plugins
folder, and create a new folder named awesomeplugin. Inside this new
folder, create a file named awesomeplugin.php. Open the file in a text
editor, and paste the following information in it:

Smashing eBook #10│WordPress Essentials │ 71

<?php

 /*

 Plugin Name: Awesomeness Creator

 Plugin URI: http://my-awesomeness-emporium.com

 Description: a plugin to create awesomeness and spread joy

 Version: 1.2

 Author: Mr. Awesome

 Author URI: http://mrtotallyawesome.com

 License: GPL2

 */

?>

Of all this information, only the plugin’s name is required. But if you intend to
distribute your plugin, you should add as much data as possible.

With that out of the way, you can go into the back end to activate your
plugin. That’s all there is to it! Of course, this plugin doesn’t do anything; but
strictly speaking, it is an active, functioning plugin.

Structuring Plugins
When creating complex functionality, splitting your plugin into multiple files
and folders might be easier. The choice is yours, but following a few good
tips will make your life easier.

If your plugin focuses on one main class, put that class in the main plugin
file, and add one or more separate files for other functionality. If your plugin
enhances WordPress’ back end with custom controls, you can create the
usual CSS and JavaScript folders to store the appropriate files.

Smashing eBook #10│WordPress Essentials │ 72

Generally, aim for a balance between layout structure, usability and
minimalism. Split your plugin into multiple files as necessary, but don’t go
overboard. I find it useful to look at the structure of popular plugins such as
WP-PageNavi and Akismet.

Naming Your Plugin And Its Functions
When creating a plugin, exercise caution in naming the functions, classes
and plugin itself. If your plugin is for generating awesome excerpts, then
calling it “excerpts” and calling its main function “the_excerpt” might seem
logical. But these names are far too generic and might clash with other
plugins that have similar functionality with similar names.

The most common solution is to use unique prefixes. You could use
“acme_excerpt,” for example, or anything else that has a low likelihood of
matching someone else’s naming scheme.

Plugin Safety
If you plan to distribute your plugin, then security is of utmost importance,
because now you are fiddling with other people’s websites, not just your
own. All of the security measures you should take merit their own article, so
keep an eye out for an upcoming piece on how to secure your plugin. For
now, let’s just look at the theory in a nutshell; you can worry about
implementation once you grasp that.

Smashing eBook #10│WordPress Essentials │ 73

http://wordpress.org/extend/plugins/wp-pagenavi/
http://wordpress.org/extend/plugins/wp-pagenavi/
http://wordpress.org/extend/plugins/akismet/
http://wordpress.org/extend/plugins/akismet/

The safety of your plugin usually depends on the stability of its two legs.
One leg makes sure that the plugin does not help spread naughty data.
Guarding against this entails filtering the user’s input, escaping queries to
protect against SQL injection attacks and so on. The second leg makes sure
that the user has the authority and intention to perform a given action. This
basically means that only users with the authority to delete data (such as
administrators) should be able to do it. Guarding intention ensures that
visitors aren’t misled by a hacker who has managed to place a malicious link
on your website.

All of this is much easier to do than you might think, because WordPress
gives you many functions to handle it. A number of other issues and best
practices are involved, however, so we’ll cover those in a future article.
There is plenty to learn and do until then; if you’re just starting out, don’t
worry about all that for now.

Cleaning Up A#er Yourself
Many plugins are guilty of leaving a lot of unnecessary data lying around.
Data that only your plugin uses (such as meta data for posts or comments,
database tables, etc.) can wind up as dead weight if the plugin doesn’t clean
up after itself.

WordPress offers three great hooks to help you take care of this:

• register_activation_hook()
This hook allows you to create a function that runs when your plugin is
activated. It takes the path to your main plugin file as the first argument,
and the function that you want to run as the second argument. You can
use this to check the version of your plugin, do some upgrades
between versions, check for the correct PHP version and so on.

Smashing eBook #10│WordPress Essentials │ 74

http://codex.wordpress.org/Function_Reference/register_activation_hook
http://codex.wordpress.org/Function_Reference/register_activation_hook

• register_deactivation_hook()
The name says it all. This function works like its counterpart above, but
it runs whenever your plugin is deactivated. I suggest using the next
function when deleting data; use this one just for general
housekeeping.

• register_uninstall_hook()
This function runs when the website administrator deletes your plugin in
WordPress’ back end. This is a great way to remove data that has been
lying around, such as database tables, settings and what not. A
drawback to this method is that the plugin needs to be able to run for it
to work; so, if your plugin cannot uninstall in this way, you can create an
uninstall.php file. Check out this function’s documentation for more
information.

If your plugin tracks the popularity of content, then deleting the tracked data
when the user deletes the plugin might not be wise. In this case, at least
point the user to the location in the back end where they can find the
plugin’s data, or give them the option to delete the data on the plugin’s
settings page before deleting the plugin itself.

The net result of all our effort is that a user should be able to install your
plugin, use it for 10 years and then delete it without leaving a trace on the
website, in the database or in the file structure.

Documentation And Coding Standards
If you are developing for a big community, then documenting your code is
considered good manners (and good business). The conventions for this are
fairly well established — phpDocumentor is one example. But as long as your
code is clean and has some documentation, you should be fine.

Smashing eBook #10│WordPress Essentials │ 75

http://codex.wordpress.org/Function_Reference/register_deactivation_hook
http://codex.wordpress.org/Function_Reference/register_deactivation_hook
http://codex.wordpress.org/Function_Reference/register_uninstall_hook
http://codex.wordpress.org/Function_Reference/register_uninstall_hook
http://www.phpdoc.org/
http://www.phpdoc.org/

I document code for my own benefit as well, because I barely remember
what I did yesterday, much less the purpose of functions that I wrote months
back. By documenting code, you force good practices on yourself. And if
you start working on a team or if your code becomes popular, then
documentation will be an inevitable part of your life, so you might as well
start now.

While not quite as important as documentation, following coding standards
is a good idea if you want your code to comply with WordPress’ guidelines.

Pu"ing It Into Practice
All work and no play makes Jack a dull boy, so let’s do something with all of
this knowledge that we’ve just acquired. To demonstrate, let’s build a quick
plugin that tracks the popularity of our articles by storing how many times
each post has been viewed. I will be using hooks, which we’ll cover in an
upcoming installment in this series. Until then, as long as you grasp the logic
behind them, all is well; you will understand hooks and plugins before long!

PLANNING AHEAD

Before writing any code, let’s think ahead and try to determine the functions
that our plugin will need. Here’s what I’ve come up with:

• A function that registers a view every time an individual post is shown,

• A function that enables us to retrieve the raw number of views,

• A function that enables us to show the number of views to the user,

• A function that retrieves a list of posts based on their view count.

Smashing eBook #10│WordPress Essentials │ 76

http://codex.wordpress.org/WordPress_Coding_Standards
http://codex.wordpress.org/WordPress_Coding_Standards

PREPARING OUR FUNCTION

The first step is to create the folder and file structure. Putting all of this into
one file will be fine, so let’s go to the plugins folder and create a new
folder named awesomely_popular. In this folder, create a file named
awesomely_popular.php. Open your new file, and paste some meta data at
the top, something like this:

<?php

 /*

 Plugin Name: Awesomely Popular

 Plugin URI: http://awesomelypopularplugin.com

 Description: A plugin that records post views and contains
functions to easily list posts by popularity

 Version: 1.0

 Author: Mr. Awesome

 Author URI: http://mayawesomefillyourbelly.com

 License: GPL2

 */

?>

RECORDING POST VIEWS

Without delving too deep, WordPress hooks enable you to (among other
things) fire off one of your functions whenever another WordPress function
runs. So, if we can find a function that runs whenever an individual post is
viewed, we are all set; all we would need to do is write our own function that
records the number of views and hook it in. Before we get to that, though,
let’s write the new function itself. Here is the code:

Smashing eBook #10│WordPress Essentials │ 77

/**

 * Adds a view to the post being viewed

 *

 * Finds the current views of a post and adds one to it by updating

 * the postmeta. The meta key used is "awepop_views".

 *

 * @global object $post The post object

 * @return integer $new_views The number of views the post has

 *

 */

function awepop_add_view() {

 if(is_single()) {

 global $post;

 $current_views = get_post_meta($post->ID, "awepop_views", true);

 if(!isset($current_views) OR empty($current_views) OR !
is_numeric($current_views)) {

 $current_views = 0;

 }

 $new_views = $current_views + 1;

 update_post_meta($post->ID, "awepop_views", $new_views);

 return $new_views;

 }

}

As you can see, I have added phpDocumentor-style documentation to the
top of the function, and this is a pretty good indication of what to expect
from this convention. First of all, using a conditional tag, we determine
whether the user is viewing a post on a dedicated page.

Smashing eBook #10│WordPress Essentials │ 78

If the user is on a dedicated page, we pull in the $post object, which
contains data about the post being shown (ID, title, posting date, comment
count, etc.). We then retrieve the number of views that the post has already
gotten. We will add 1 to this and then overwrite the orignal value with the
new one. In case something goes wrong, we first check whether the current
view count is what it should be.

The current view count must be set; it cannot be empty. And it must be
numeric in order for us to be able to add 1 to it. If it does not meet these
criteria, then we could safely bet that the current view count is 0. Next, we
add 1 to it and save it to the database. Finally, we return the number of
views that the post has gotten, together with this latest number.

So far, so good. But this function is never called, so it won’t actually be used.
This is where hooks come in. You could go into your theme’s files and call
the function manually from there. But then you would lose that functionality
if you ever changed the theme, thus defeating the entire purpose. A hook,
named wp_head, that runs just before the </head> tag is present in most
themes, so we can just set our function to run whenever wp_head runs, like
so:

add_action("wp_head", "awepop_add_view");

That’s all there is to the “mysticism” of hooks. We are basically saying,
whenever wp_head runs, also execute the awepop_add_view function.
You can place the code before or after the function itself.

RETRIEVING AND SHOWING THE VIEWS

In the function above, I already use the WordPress get_post_meta()
function to retrieve the views, so writing a separate function for this might
seem a bit redundant. In this case, it might well be redundant, but it
promotes some object-oriented thinking, and it gives us greater flexibility
when further developing the plugin. Let’s take a look:

Smashing eBook #10│WordPress Essentials │ 79

/**

 * Retrieve the number of views for a post

 *

 * Finds the current views for a post, returning 0 if there are none

 *

 * @global object $post The post object

 * @return integer $current_views The number of views the post has

 *

 */

function awepop_get_view_count() {

 global $post;

 $current_views = get_post_meta($post->ID, "awepop_views", true);

 if(!isset($current_views) OR empty($current_views) OR !
is_numeric($current_views)) {

 $current_views = 0;

 }

 return $current_views;

}

This is the same piece of code that we used in the awepop_add_view()
function, so you could just use this to retrieve the view count there as well.
This is handy, because if you decide to handle the 0 case differently, you
only need to change it here. You will also be able to extend this easily and
provide support for cases when we are not in the loop (i.e. when the $post
object is not available).

Smashing eBook #10│WordPress Essentials │ 80

So far, we have just retrieved the view count. Now, let’s show it. You might
be thinking this is daft — all we need is echo
awepop_get_view_count() . "views", no? That would certainly work, but
what if there is only 1 view. In this case, we would need to use the singular
“view.” You might also want the freedom to add some leading text or some
other tidbit, which would be difficult to do otherwise. So, to allow for these
scenarios, let’s write another simple function:

Smashing eBook #10│WordPress Essentials │ 81

/**

 * Shows the number of views for a post

 *

 * Finds the current views of a post and displays it together with
some optional text

 *

 * @global object $post The post object

 * @uses awepop_get_view_count()

 *
 * @param string $singular The singular term for the text

 * @param string $plural The plural term for the text

 * @param string $before Text to place before the counter

 *
 * @return string $views_text The views display

 *
 */
function awepop_show_views($singular = "view", $plural = "views",
$before = "This post has: ") {

 global $post;

 $current_views = awepop_get_view_count();

 $views_text = $before . $current_views . " ";

 if ($current_views == 1) {

 $views_text .= $singular;

 }
 else {

 $views_text .= $plural;

 }

 echo $views_text;

}

Smashing eBook #10│WordPress Essentials │ 82

SHOW A LIST OF POSTS BASED ON VIEWS

To show a list of posts based on view count, we create a function that we
can place anywhere in our theme. The function will use a custom query and
loop through the results, displaying a simple list of titles.

Smashing eBook #10│WordPress Essentials │ 83

/**

 * Displays a list of posts ordered by popularity

 *

 * Shows a simple list of post titles ordered by their view count

 *

 * @param integer $post_count The number of posts to show

 *

 */

function awepop_popularity_list($post_count = 10) {

 $args = array(

 "posts_per_page" => 10,

 "post_type" => "post",

 "post_status" => "publish",

 "meta_key" => "awepop_views",

 "orderby" => "meta_value_num",

 "order" => "DESC"

);

 $awepop_list = new WP_Query($args);

 if($awepop_list->have_posts()) {

 echo "

";

 }

 while ($awepop_list->have_posts()) : $awepop_list->the_post();

 echo "

ID)."">".the_title('', '',
false)."

";

 endwhile;

Smashing eBook #10│WordPress Essentials │ 84

 if($awepop_list->have_posts()) {

 echo "

";

 }

}

We start by passing a bunch of parameters to the WP_Query class, in order
to create a new object that contains some posts. This class will do the heavy
lifting for us: it finds 10 published posts that have awepop_views in the
meta table, and orders them according to this property in descending order.

If posts meet this criterion, we create an unordered list element. Then, we
loop through all of the posts that we have retrieved, showing each title as a
link to the relevant post. We cap things off by adding a closing tag to the list
when there are posts to show. The code is below, and the explanation
follows. Placing the awepop_popularity_list() function anywhere in
your theme should now generate a simple list of posts ordered by
popularity.

As an added precaution, place the call to this function in your theme, like so:

if (function_exists("awepop_popularity_list")) {

 awepop_popularity_list();

}

This ensures that if the plugin is disabled (and thus the function becomes
undefined), PHP won’t throw a big ol’ error. It just won’t show the list of most
popular posts.

Overview

Smashing eBook #10│WordPress Essentials │ 85

By following the theory laid down in this article and using only a handful of
functions, we have created a rudimentary plugin to track our most popular
posts. It could be vastly improved, but it shows the basics of using plugins
perfectly well. Moreover, by learning some patterns of WordPress
development (plugins, hooks, etc.), you are gaining skills that will serve you
in non-WordPress environments as well.

You should now be able to confidently follow tutorials that start with “First,
create a WordPress plugin…” You now understand things not just on a need-
to-know basis, but at a deeper level, which gives you more flexibility and
power when coding your own plugins. Stay tuned for the upcoming article
on hooks, actions and filters for an even more in-depth resource on the
innards of plugins.

Smashing eBook #10│WordPress Essentials │ 86

How To Integrate Facebook With
WordPress

Thiemo Fetzer

Facebook is one of those Web phenomena that impress everyone with
numbers. To cite some: about 250 million users are on Facebook, and
together they spend more than 5 billion minutes on Facebook… every day.
These numbers suggest that we should start thinking about how to use
Facebook for blogging or vice versa.

We did some research to find out how the integration of Facebook with
WordPress and vice versa works, or — in other words — how you can
present your WordPress blog on Facebook or use the functionality of
Facebook on your WordPress-powered blog. Both of these can be achieved
with a set of WordPress plug-ins, a couple of which we’ll present here in
detail.

1. Integrating A WordPress Blog Into Facebook
Integrating a WordPress blog into Facebook is actually quite simply
achieved via the Facebook API. The Facebook API makes programming
applications that can be spread via Facebook almost a piece of cake. A lot
of interactive browser games are on Facebook, such as the currently
popular “Mafia Wars.” This game allows users to start a mafia family with
their friends, with the goal of becoming an important figure in the virtual
underground crime scene. To start a clan, you invite other friends on the
network to join. This is the growth strategy of any application on Facebook:
the simple snowball effect.

Smashing eBook #10│WordPress Essentials │ 87

The applications sustain themselves through earnings generated by
displaying advertisements, which also makes Facebook an even more
attractive platform to develop on. This symbiosis generates growth for both
Facebook and its applications.

PLUG-IN INSTALLATION AND CONFIGURATION

John Eckman developed the WordPress plug-in Wordbook in early 2009.
This plug-in allows WordPress blog owners to integrate their blog in
Facebook. This gives a blog two lives: one as an application on Facebook
(such as, for example, my private FreigeistBlog) and one at the original URL
(http://freigeist.devmag.net).

To access a blog via Facebook, you need to first grant access to the
application. To do this, go to the so-called “canvas” page, which is where
the Facebook twin of the blog lives (my example). However, granting access
to the blog’s application means that the administrator of the blog also has
access to information about you as a user (this is what most applications aim
for: information such as date of birth, gender and educational status allows
them to display quite targeted ads).

The application we’re dealing with is a simple blog and, in this sense, quite
innocent, but we should state outright that the Facebook API as it is now
treats blogs and websites as applications, which may not be appropriate,
given the issue mentioned above. Facebook users who authorize the blog
application can now easly send comments and share posts from within
Facebook. The data, however, is still stored in the original database on the
server where the blog is installed.

Smashing eBook #10│WordPress Essentials │ 88

http://www.openparenthesis.org/code/wp
http://www.openparenthesis.org/code/wp
http://freigeist.devmag.net
http://freigeist.devmag.net
http://apps.facebook.com/freigeistblog/
http://apps.facebook.com/freigeistblog/

This makes it look as though Facebook serves merely as a simple feed
reader. Yet, we get some other benefits. The blog on Facebook can be used
to create a community around it by taking advantage of Facebook’s
snowball effect, because friends of the blog’s users will see in their activity
stream that they have been participating on the blog. Furthermore, it means
that Facebook users will see new posts from your blog whenever they sign
in to Facebook and can easily follow comments, making your blog more
accessible.

To create a Facebook twin of your blog, first you have to set up a new
application. To do this, you need a Facebook account and have to register
as a developer using the preceding link. All of this can be done in a few
minutes.

Create a new Facebook application

Once you have agreed to the terms of use, give your application a name.
Then you will receive your API key and a secret, which you will need later.

Smashing eBook #10│WordPress Essentials │ 89

https://www.facebook.com/login/reauth.php?next=https://www.facebook.com/developers/
https://www.facebook.com/login/reauth.php?next=https://www.facebook.com/developers/
https://www.facebook.com/login/reauth.php?next=https://www.facebook.com/developers/
https://www.facebook.com/login/reauth.php?next=https://www.facebook.com/developers/

Settings for the Facebook application. Large view.

Then, you have to submit a so-called “post-authorize callback URL.” This is
the address on your server to which Facebook will send a notice whenever
a user authorizes access to the application. By the same logic, there is also
the “post-remove callback URL,” which receives a notice when a user
removes the application. Both of these events are handled by the Wordbook
plug-in. You merely need to write the address of the blog’s root directory
with a trailing slash.

Smashing eBook #10│WordPress Essentials │ 90

http://media.smashingmagazine.com/wp-content/uploads/2009/09/wp-facebook-application-settings_1.png
http://media.smashingmagazine.com/wp-content/uploads/2009/09/wp-facebook-application-settings_1.png

Facebook application settings: Define callback URLs.

The third step is to claim your canvas page, which is the page through which
a Facebook user accesses your blog, and a canvas callback URL, which is
the page from which content is retrieved. Again, include a trailing slash, or
else internal links on your blog won’t work with their Facebook twin.

Now you have some choices to make, namely, how to set up your canvas
page. You have a choice between iFrame and FBML. FBML is a Facebook
XML scheme with which you can use specific Facebook tags (such as tags
to display user profiles). You can also use it to access certain Facebook
procedures. However, the Wordbook plug-in works with iFrames, which
allow Javascript and other tags, and which FBML does not support.

Smashing eBook #10│WordPress Essentials │ 91

Facebook application settings: Define canvas page.

To distinguish between them rather crudely, you can say that iFrames give
the developer more flexibility but, unlike FBML, restrict access to Facebook
procedures.

Smashing eBook #10│WordPress Essentials │ 92

Another advantage of iFrames is that code that Facebook retrieves from the
canvas callback URL need not be parsed by the FBML parser, which could
yield a performance gain. With iFrames, only internal links on the blog need
to be adjusted. And the “resizable” option allows Facebook’s JavaScript
code to adjust the size of the iFrame to Facebook’s layout.

Now the hard work is done. All that’s left is to install the Wordbook plug-in
using the standard WordPress method: install and activate. Then you can
change the plug-in’s settings on the settings panel, and here you will need
your application ID and the secret. You also have to tell the plug-in where
the canvas page is located, so that internal links can be adjusted.

Smashing eBook #10│WordPress Essentials │ 93

http://www.openparenthesis.org/code/wp
http://www.openparenthesis.org/code/wp
http://www.openparenthesis.org/code/wp
http://www.openparenthesis.org/code/wp

Adjusting the settings of the Wordbook plug-in

Smashing eBook #10│WordPress Essentials │ 94

And that’s it! If you want, you could activate or deactivate some other
options, such as the commenting function and whether users can add your
application to their profile by displaying the latest posts from your blog in
their profile.

Browsing through the blog via Facebook. Large view.

Smashing eBook #10│WordPress Essentials │ 95

http://media.smashingmagazine.com/wp-content/uploads/2009/09/wp-facebook-application-add-profile.png
http://media.smashingmagazine.com/wp-content/uploads/2009/09/wp-facebook-application-add-profile.png

The plug-in allows you to play around a little bit. But as we said, you are
somewhat limited in how fully you can integrate your blog into the Facebook
canvas. But the next plug-in we’ll look at integrates a bit of Facebook into
your blog.

2. Integrating Facebook In A WordPress Blog
To begin, a little history lesson is needed. Many users do not like having to
register for each blog where they would like to post comments, especially if
they already have accounts on so many other social networks, such as
Facebook and MySpace. So a single online ID for several purposes would
be ideal, wouldn’t it? That’s the idea behind the OpenID protocol, which
started in 2005. It decentralizes the identification of users for various
providers and services. In essence, you can create an account on Facebook
and connect it to services such as MySpace or even a personal blog. If you
want to change your profile for all of these services, that too is
decentralized: you simply change the settings on your Facebook account.
OpenID is a chance to make the Web and its services more easily
accessible. There are reasonable risks and concerns involved, but also
many opportunities.

Facebook announced in 2007 that it would implement OpenID, and others
followed, which explains why we now find more and more buttons that say
“Connect with Facebook” or “Google Friend Connect.” This leads us to our
second plug-in, Facebook Connect WordPress plug-in, which almost
seamlessly integrates Facebook into your blog.

Smashing eBook #10│WordPress Essentials │ 96

http://www.sociable.es/facebook-connect/
http://www.sociable.es/facebook-connect/

The plug-in allows users to comment on a blog using their Facebook
account; and if they are already signed in or on Facebook, they need not
sign in again. Users do not have to register for a unique account on the blog
because the plug-in retrieves the user’s information directly from the
Facebook API. With access to the user profiles on Facebook, you can
display your users’ profile pictures, which adds a personal touch to your
blog.

The plug-in integrates a lot of Facebook functions: for example, users can
send invitations and share stories and comments on Facebook, which gives
your blog the benefit of word-of-mouth marketing. To do this, you need to
activate the plug-in option that publishes a user’s activity in their respective
activity feed. Last but not least, you can enable a gadget that displays the
profile pictures of your blog’s most recent visitors, similar to “Google Friend
Connect.”

Facebook Connect implemented on sociable.es (in Spanish)

Smashing eBook #10│WordPress Essentials │ 97

This plug-in essentially does the opposite of Wordbook (which integrates
Facebook functionality into your blog).

PLUG-IN INSTALLATION AND CONFIGURATION

Again, as in the previous section, you will need to create a new Facebook
application.

Creating a new Facebook application.

You will also have to define the callback URLs, which point to the root of
your blog.

Defining callback URLs for the new application.

Smashing eBook #10│WordPress Essentials │ 98

Again, most of the work is now done, and you can soon start having fun and
being creative. Just a few steps remain. First, download the plug-in from the
website (see link above) and upload and enable it. A big part of the plug-in
consists of the “Facebook Connect” library, which is provided by Facebook.
You might stumble over the two xd_reciever files, one in HTML and one in
PHP. They play a key role: enabling the so-called cross-domain
communication (hence, the xd) between your blog and Facebook.

So why are these needed? Typically, HTTP requests are sent with the
XMLHttpRequest object. However, the typical security settings on browsers
allow XMLHttpRequest to send requests only to the domain where the
original request was sent to. In our case, requests are send to and from
Facebook. This cross-domain communication is achieved with iFrame cross-
domain communication. With this, the application opens an iFrame on
facebook.com with the relevant requests; for example, to retrieve
information on whether a user is logged into Facebook.

These requests are sent to Facebook through the iFrame via the URL, with
which the iFrame is opened. The request is checked, and now the Facebook
script that was called via the iFrame opens an iFrame on the application
page, where the outcome of the request is sent to, again with the query
string of the URL. The result of any requests lands in the query string of the
xd_receiver.htm file on your own server. This circumvents the problem of
being unable to use XMLHttpRequest.

Now back to the plug-in. Once you have installed and activated the plug-in,
you can add the plug-in as a widget to your blog’s sidebar. However, you
first need to enter your API key and secret.

Smashing eBook #10│WordPress Essentials │ 99

Settings for Facebook Connect WordPress plug-in.

As you will see, a whole lot of options are enabled by default, such as
automatically publishing comments if they are posted through a Facebook
account (the rationale being that you don’t have to moderate them because
they come from actual people using Facebook and not spambots).

Smashing eBook #10│WordPress Essentials │ 100

If you activate the sharing function, the plug-in adds a “Share” button
automatically below each post. You can also activate the option that
publishes a user’s comments in their activity feed on Facebook, thus making
their activity on your blog visible to their friends.

After you have adjusted the settings, you will be notified that you need to
define templates for the presentation. These need to be “synchronized” with
Facebook. Scroll down a bit to generate and activate these templates. You
can change the language manually here as well.

Adjust Facebook Connect’s template settings.

Smashing eBook #10│WordPress Essentials │ 101

The first template controls how a user’s activity is posted in their activity
feed on Facebook. However, you can also include the activity feed of your
users in your gadget, as done on sociable.es (see link above). The last step
is to go to the widget set-up page and include the gadget as a widget in
your sidebar.

Including the Facebook Connect widget in the sidebar

Smashing eBook #10│WordPress Essentials │ 102

Here again, you have some choice over the configuration, especially with
regard to changing the language, showing a big or small “Connect to
Facebook” button, etc. After installing the plug-in, you may want to see what
else you can do with it. The implementation on sociable.es is quite a nice
one.

Further Resources
These two plug-ins are quite specific in what they do. However, a wide
variety of Facebook plug-ins are available for platforms other WordPress.
Here is a list, certainly not comprehensive:

• Movable Type
A plug-in by Six Apart for adding Facebook Connect to a Movable Type
blog, allowing any Facebook user to sign in. It is still in beta.

• WordPress-FacebookConnect
This plug-in is quite similar to the one on sociable.es. It has the same
features, such as single sign-on, publishing comments to news feeds
and displaying profile pictures. However, it has not been updated since
the beginning of the year. Still, there is a nice tutorial by the developer
Adam Breckler.

• WordPress Fotobook
With this WordPress plug-in, you can import all of your photo albums
from Facebook onto a WordPress page.

• Drupal’s Facebook Connect module
With this Drupal module, you can allow Facebook users to connect to
your blog through their account. Similar to the plug-in by sociable.es.

• Gigya WordPress plug-in
This plug-in integrates not only Facebook but Twitter, MySpace and
other OpenID providers into your blog for community building.

Smashing eBook #10│WordPress Essentials │ 103

http://plugins.movabletype.org/facebook-connect-commenters/
http://plugins.movabletype.org/facebook-connect-commenters/
http://developers.facebook.com/
http://developers.facebook.com/
http://wordpress.org/extend/plugins/fotobook/
http://wordpress.org/extend/plugins/fotobook/
http://vishalsood.com/projects/drupal/facebook
http://vishalsood.com/projects/drupal/facebook
http://developers.gigya.com/030_Gigya_Socialize_API_2.0/050_Socialize_Plugins/Wordpress_plugin
http://developers.gigya.com/030_Gigya_Socialize_API_2.0/050_Socialize_Plugins/Wordpress_plugin

• StatusPress
This small plug-in displays your Facebook, Twitter or Last.fm status on
your blog.

• Quailpress
Integrate Facebook-sharing functionality on your blog with this plug-in.
However, it has not been actively developed for some time. And with
the sociable.es plug-in, it is practically redundant.

Smashing eBook #10│WordPress Essentials │ 104

http://wordpress.org/extend/plugins/status-press-widget/
http://wordpress.org/extend/plugins/status-press-widget/
http://wordpress.org/extend/plugins/quailpress/
http://wordpress.org/extend/plugins/quailpress/

How To Use AJAX In WordPress

Daniel Pataki

In the last few years, AJAX has crept onto websites and slowly become the
way to create dynamic, user-friendly, responsive websites. AJAX is the
technology that lets you update the contents of a page without actually
having to reload the page in the browser. For example, Google Docs utilizes
this technology when saving your work every few minutes.

While there are a number of ways to use AJAX in WordPress — and all are
“correct,” in the loose sense of the word — there is one method that you
should follow for a few reasons: WordPress supports it, it is future-proof, it is
very logical, and it gives you numerous options right out of the box.

Smashing eBook #10│WordPress Essentials │ 105

What Is AJAX?
If you’re not familiar with AJAX, I suggest continuing to the end of this article
and then reading the Wikipedia article on AJAX, followed by some tutorials.
This is a rare case when I recommend reading as little about it as possible
before trying it out, because it confused the heck out of me at first; and the
truth is, you will rarely interact with AJAX in its “raw” state — you will usually
use helpers such as jQuery.

In a nutshell, AJAX is a combination of HTML, CSS and JavaScript code that
enables you to send data to a script and then receive and process the
script’s response without needing to reload the page.

If you are creating a page on your website where users can modify their
profile, you could use AJAX to update a user’s profile without needing to
constantly reload the page whenever they submit the form. When the user
clicks the button, the data they have entered into the form is sent via AJAX
to the processing script, which saves the data and returns the string “data
saved.” You can then output that data to the user by inserting it onto the
page.

The thing to grasp about AJAX is how not different it is from what you’re
already doing. If you have a contact form, chances are that the form is
marked up with HTML, some styles are applied to it, and a PHP script
processes the information. The only difference between this and AJAX is
how the information that the user inputs gets to the script and back to the
user — everything else is the same.

To exploit the full potential of AJAX and get the most out of this article, you
will need to be familiar with JavaScript (jQuery will suffice), as well as HTML,
CSS and PHP. If your JavaScript knowledge is a bit iffy, don’t worry; you’ll
still be able to follow the logic. If you need a hand, just submit a comment,
and I’ll try to help out.

Smashing eBook #10│WordPress Essentials │ 106

http://en.wikipedia.org/wiki/Ajax_(programming)
http://en.wikipedia.org/wiki/Ajax_(programming)
http://www.tizag.com/ajaxTutorial/
http://www.tizag.com/ajaxTutorial/

HOW NOT TO USE AJAX

One method that has been around, and which I used myself back in the bad
old days, is to simply load the wp-load.php file at the top of your PHP script.
This let’s you use WordPress functions, detect the current user and so on.
But this is basically a hack and so is not future-proof. It is much less secure
and does not give you some of the cool options that the WordPress system
does.

How AJAX Works In WordPress Natively
Because AJAX is already used in WordPress’ back end, it has been basically
implemented for you. All you need to do is use the functions available. Let’s
look at the process in general before diving into the code.

Every AJAX request goes through the admin-ajax.php file in the wp-admin
folder. That this file is named admin-ajax might be a bit confusing. I quite
agree, but this is just how the development process turned out. So, we
should use admin-ajax.php for back-end and user-facing AJAX.

Each request needs to supply at least one piece of data (using the GET or
POST method) called action. Based on this action, the code in admin-
ajax.php creates two hooks, wp_ajax_my_action and
wp_ajax_nopriv_my_action, where my_action is the value of the GET
or POST variable action.

Adding a function to the first hook means that that function will fire if a
logged-in user initiates the action. Using the second hook, you can cater to
logged-out users separately.

Smashing eBook #10│WordPress Essentials │ 107

Implementing AJAX In WordPress
Let’s build a rudimentary voting system as a quick example. First, create an
empty plugin and activate it. If you need help with this part, look at the
tutorial on creating a plugin. Also, find your theme’s single.php file, and
open it.

PREPARING TO SEND THE AJAX CALL

Let’s create a link that enables people to give a thumbs up to our articles. If
a user has JavaScript enabled, it will use JavaScript; if not, it will follow the
link. Somewhere in your single.php file, perhaps near the article’s title, add
the following code.

<?php

 $votes = get_post_meta($post->ID, "votes", true)

 $votes = ($votes == "") ? 0 : $votes;

?>

This post has <div id='vote_counter'><?php echo $votes ?></div>
votes

<?php

 $nonce = wp_create_nonce("my_user_vote_nonce");

 $link = admin_url('admin-ajax.php?action=my_user_vote&post_id='.
$post->ID.'&nonce='.$nonce);

 echo '<a class="user_vote" data-nonce="' . $nonce . '" data-
post_id="' . $post->ID . '" href="' . $link . '">vote for this
article';

?>

First, let’s pull the value of the votes meta key related to this post. This
meta field is where we will store the total vote count. Let’s also make sure
that if it doesn’t exist (i.e. its value is an empty string), we show 0.

Smashing eBook #10│WordPress Essentials │ 108

http://wp.smashingmagazine.com/2011/09/30/how-to-create-a-wordpress-plugin/
http://wp.smashingmagazine.com/2011/09/30/how-to-create-a-wordpress-plugin/

We’ve also created an ordinary link here. The only extra bit is a pinch of
security, using nonces, to make sure there is no foul play. Otherwise, this is
simply a link pointing to the admin-ajax.php file, with the action and the ID of
the post that the user is on specified in the form of a query string.

To cater to JavaScript users, we have added a user_vote class, to which
we will attach a click event, and a data-post_id property, which contains
the ID of the post. We will use these to pass the necessary information to
our JavaScript.

HANDLING THE ACTION WITHOUT JAVASCRIPT

If you click this link now, you should be taken to the admin-ajax.php script,
which will output -1. This is because no function has been created yet to
handle our action. So, let’s get cracking!

In your plugin, create a function, and add it to the new hook that was
created for us. Here’s how:

Smashing eBook #10│WordPress Essentials │ 109

add_action("wp_ajax_my_user_vote", "my_user_vote");

add_action("wp_ajax_nopriv_my_user_vote", "my_must_login");

function my_user_vote() {

 if (!wp_verify_nonce($_REQUEST['nonce'], "my_user_vote_nonce"))
{

 exit("No naughty business please");

 }

 $vote_count = get_post_meta($_REQUEST["post_id"], "votes", true);

 $vote_count = ($vote_count == '') ? 0 : $vote_count;

 $new_vote_count = $vote_count + 1;

 $vote = update_post_meta($_REQUEST["post_id"], "votes",
$new_vote_count);

 if($vote === false) {

 $result['type'] = "error";

 $result['vote_count'] = $vote_count;

 }

 else {

 $result['type'] = "success";

 $result['vote_count'] = $new_vote_count;

 }

 if(!empty($_SERVER['HTTP_X_REQUESTED_WITH']) &&
strtolower($_SERVER['HTTP_X_REQUESTED_WITH']) == 'xmlhttprequest')
{

 $result = json_encode($result);

 echo $result;

 }

 else {

Smashing eBook #10│WordPress Essentials │ 110

 header("Location: ".$_SERVER["HTTP_REFERER"]);

 }

 die();

}

function my_must_login() {

 echo "You must log in to vote";

 die();

}

First of all, we’ve verified the nonce to make sure that the request is nice
and legit. If it isn’t, we simply stop running the script. Otherwise, we move on
and get the vote count from the database; make sure to set it to 0 if there is
no vote count yet. We then add 1 to it to find the new vote count.

Using the update_post_meta() function, we add the new vote count to
our post. This function creates the post’s meta data if it doesn’t yet exist, so
we can use it to create, not just update. The function returns true if
successful and false for a failure, so let’s create an array for both cases.

I like to create these result arrays for all actions because they standardize
action handling, giving us good debugging information. And, as we’ll see in
a second, the same array can be used in AJAX and non-AJAX calls, making
error-handling a cinch.

This array is rudimentary. It contains only the type of result (error or success)
and the vote count. In the case of failure, the old vote count is used
(discounting the user’s vote, because it was not added). In the case of
success, we include the new vote count.

Smashing eBook #10│WordPress Essentials │ 111

Finally, we detect whether the action was initiated through an AJAX call. If
so, then we use the json_encode() function to prepare the array for our
JavaScript code. If the call was made without AJAX, then we simply send
the user back to where they came from; obviously, they should be shown
the updated vote count. We could also put the array in a cookie or in a
session variable to return it to the user the same way, but this is not
important for this example.

Always end your scripts with a die() function, to ensure that you get back
the proper output. If you don’t include this, you will always get back a -1
string along with the results.

The function to handle logged-out users is obviously poor, but it is meant
merely as an example. You can expand on it by having it redirect the user to
a registration page or by displaying more useful information.

ADDING JAVASCRIPT TO THE MIX

Because we’ve now handled the user’s action using regular methods, we
can start building in the JavaScript. Many developers prefer this order
because it ensures graceful degradation. In order for our system to use
AJAX, we will need to add jQuery, as well as our own JavaScript code. To
do this, WordPress-style, just go to your plugin and add the following.

Smashing eBook #10│WordPress Essentials │ 112

add_action('init', 'my_script_enqueuer');

function my_script_enqueuer() {

 wp_register_script("my_voter_script", WP_PLUGIN_URL.'/my_plugin/
my_voter_script.js', array('jquery'));

 wp_localize_script('my_voter_script', 'myAjax', array('ajaxurl'
=> admin_url('admin-ajax.php')));

 wp_enqueue_script('jquery');

 wp_enqueue_script('my_voter_script');

}

This is the WordPress way of including JavaScript files. First, we register the
JavaScript file, so that WordPress knows about it (so make sure to create
the file and place it somewhere in the plugin). The first argument to the
wp_register_script() function is the “handle” of our script, which is a
unique identifier. The second is the location of the script. The third argument
is an array of dependencies. Our script will require jQuery, so I have added
it as a dependency. WordPress has already registered jQuery, so all we
needed to add was its handle. For a detailed list of the scripts that
WordPress registers, look at the WordPress Codex.

Localizing the script is not strictly necessary, but it is a good way to define
variables for our script to use. We need to use the URL of our admin-
ajax.php file, but because this is different for every domain, we need to pass
it to the script. Instead of hard-coding it in, let’s use the
wp_localize_script() function. We add the script handle as the first
argument, an object name as the second argument, and we can add object
members as an array in the third parameter. What this all boils down to is
that, in our my_voter_script.js file, we will be able to use myAjax.ajaxurl,
which contains the URL of our admin-ajax.php file.

Smashing eBook #10│WordPress Essentials │ 113

http://codex.wordpress.org/Function_Reference/wp_enqueue_script#Default_scripts_included_with_WordPress
http://codex.wordpress.org/Function_Reference/wp_enqueue_script#Default_scripts_included_with_WordPress

Once our scripts have been registered, we can actually add them to our
pages by enqueueing them. We don’t need to follow any particular order;
WordPress will use the correct order based on the dependencies.

Once that’s done, in the my_voter_script.js JavaScript file, paste the
following code:

jQuery(document).ready(function() {

 jQuery(".user_vote").click(function() {

 post_id = jQuery(this).attr("data-post_id")

 nonce = jQuery(this).attr("data-nonce")

 jQuery.ajax({

 type : "post",

 dataType : "json",

 url : myAjax.ajaxurl,

 data : {action: "my_user_vote", post_id : post_id, nonce:
nonce},

 success: function(response) {

 if(response.type == "success") {

 jQuery("#vote_counter").html(response.vote_count)

 }

 else {

 alert("Your vote could not be added")

 }

 }

 })

 })

})

Smashing eBook #10│WordPress Essentials │ 114

Let’s go back to the basics. This would be a good time for those of us who
are new to AJAX to grasp what is going on. When the user clicks the vote
button without using JavaScript, they open a script and send it some data
using the GET method (the query string). When JavaScript is used, it opens
the page for them. The script is given the URL to navigate to and the same
parameters, so apart from some minor things, from the point of view of the
script being run, there is no difference between the user clicking the link
and an AJAX request being sent.

Using this data, the my_user_vote() function defined in our plugin should
process this and then send us back the JSON-encoded result array.
Because we have specified that our response data should be in JSON
format, we can use it very easily just by using the response as an object.

In our example, all that happens is that the vote counter changes its value to
show the new vote count. In reality, we should also include some sort of
success message to make sure the user gets obvious feedback. Also, the
alert box for a failure will be very ugly; feel free to tweak it to your liking.

Conclusion
This concludes our quick tutorial on using AJAX in WordPress. A lot of
functionality could still be added, but the main point of this article was to
show how to properly add AJAX functionality itself to plugins. To recap, the
four steps involved are:

1. Make the AJAX call;

2. Create the function, which will handle the action;

3. Add the function to the hook, which was dynamically created for us
with the action parameter;

4. Create success handlers as needed.

Smashing eBook #10│WordPress Essentials │ 115

As mentioned, make sure everything works well without JavaScript before
adding it, so that the website degrades properly for people who have
disabled it.

Keep in mind that, because we are using hooks, we can also tie existing
WordPress functions to our AJAX calls. If you already have an awesome
voting function, you could just tie it in after the fact by attaching it to the
action. This, and the ease with which we can differentiate between logged-
in states, make WordPress’ AJAX-handling system very powerful indeed.

Smashing eBook #10│WordPress Essentials │ 116

Be"er Image Management With
WordPress

Daniel Pataki

With the advent of sophisticated and user-friendly content management
systems like WordPress, textual content has become increasingly easier to
manage. The architecture of these systems aims to deliver a well-formed
code foundation; this means that if you are a good writer, then your content
will be just as awesome as the structure and quality of the code that runs it.

Smashing eBook #10│WordPress Essentials │ 117

However, media handling is, by nature, not the greatest. In many cases,
images are used merely to make the website look good, not to supplement
the content. Little care is usually taken to make these elements as useful as
their textual counterparts. They are often tacked on as an afterthought; the
owner thinks, “If all of my posts have an image, surely I should find
something quickly for this next one as well.”

Because the content of images cannot be parsed by search engines,
making sure they are rich in meta information before publishing them is
important. Here are a few ways to enrich your blog using some common
sense, best practices and the power of WordPress.

Understanding And Using Images
To get the most out of your graphic content, you’ll need to be familiar with
how they work in HTML. To put an image on a page, you would add an
image tag, with the appropriate attributes, like so:

<img title="A duck" src="http://myimages.com/theimage.jpg"
alt="A mallard duck landing in the water" >

As you can see, the tag has three attributes that contain information about
the image:

• src is the URL source of the image file;

• alt, or alternative, text is shown when an image can’t load (whether
because of a loading error, text-only browser, etc.);

• title is the title attribute, where you can add a short description of the
image, which will pop up after hovering over the image for a second.

Smashing eBook #10│WordPress Essentials │ 118

The src and alt attributes are both required; the HTML is invalid without
them. However, HTML is not a strict language. Your post will still render just
fine if you leave out the alt text, which is one of the negative aspect of
loose languages: it doesn’t force best practices.

WHY USE ALT AND TITLE ATTRIBUTES?

The most useful aspect of alt and title is that they allow you to add text-
based information to an element on your website that would otherwise be
invisible to search engines. If you sell umbrellas, Google won’t see that one
particular image on your page is of the coolest umbrella it’s ever seen. You’ll
have to add that information yourself.

Also, alt attribute can be a huge help to the disabled, because this is how
they know what is in an image. So, use the title attribute to write
something snappy about the image, and use the alt attribute to describe
it. Sticking with our umbrella example, the incorrect way to do this would be:

<img title="Awesome umbrella" src="awesomeumbrella.jpg"
alt="The most awesome umbrella ever" >

And the correct way would be:

<img title="Awesome umbrella" src="awesomeubrella.jpg"
alt="A matte black cane umbrella with a spruce handle and a tip" >

Remember, the alt attribute is descriptive not only for the visually impaired,
but for Google as well. Your website might even rank better if it’s image-
heavy.

Smashing eBook #10│WordPress Essentials │ 119

While not as critical, it is probably worth optimizing the file name as well.
The name o290rjf.jpg won’t get in the way showing the image, but super-
sleek-umbrella.jpg is a parsable bit of text, and there is a chance that some
search engines would take it into account. Also, if someone downloads the
image from your website, they will be able to find it more easily in their
“Downloads” folder. And user satisfaction translates into more visits.

ADDING IMAGES PROPERLY WITH WORDPRESS

WordPress allows you to attach media to posts very easily through the “Add
media” modal window, which you can access by clicking one of the icons
over the editing toolbar in a post. You can select multiple images and
upload them to the post with a click. Because this is so easy, adding the
meta attributes is often overlooked and regarded as a hassle.

When uploading images, make sure to fill out the form which is displayed.
Add the title and alt attribute at a bare minimum, but also consider
filling in the caption and description fields. If you want a short, nicely
formatted caption to appear under the image (which is a good idea), type
one in. We’ll look later at harnessing the description field, so writing a
paragraph or so about the image might be a good idea.

Once done, all you need to do is insert the image, and the correct HTML tag
will be plopped in by WordPress automatically. By taking an extra minute,
you will have added a sizable bit of text to your image, making it SEO-
friendly and in turn making your website that much more informative. If this
is all you have time for, then you have done the most important step. But
let’s look at some more advanced image-handling techniques.

Smashing eBook #10│WordPress Essentials │ 120

Managing Image Sizes
If you display an image at a size of 450×300 pixels, then having an image
file of roughly the same size is a good idea. If the source file is 2250×1500
pixels, the image will show up just fine, but instead of loading a 50 KB
image, you would be loading a 500 KB image, while achieving the same
effect.

WordPress is super-smart, though, taking care of this for you by churning
out different sizes for each image you upload. See the dimensions it creates
by going to the media settings in the back end. You can modify these once
you have the final layout, which I would advise.

For an image-centric website, you might want to add a couple of more sizes,
to make sure you never serve an image that is bigger than needed. By
putting the following code in your theme’s functions.php file, you create two
extra sizes:

add_image_size('large_thumb', 75, 75, true);

add_image_size('wider_image', 200, 150);

The first line defines an image that is cropped to exactly 75×75 pixels, and
the second line defines an image whose maximum dimension is 200×150,
while maintaining the aspect ratio. Note the name given in the first argument
of the function, because you will be referring to it when retrieving the
images, which you can do like so:

wp_get_attachment_image_src(325, 'wider_image');

The first argument is the ID of the attachment that we want to show. The
second argument is the size of the image.

Smashing eBook #10│WordPress Essentials │ 121

REBUILDING YOUR THUMBNAILS

If you have been blogging for a while now, you probably have a ton of
images. Adding an image size now will not create new thumbnails of your
existing images. If you specify an image size—for example, our wider_image
format—WordPress will fetch a resolution that is close to it, but it won’t
create a thumbnail especially for this size.

Using a plug-in, however, you can go back and regenerate the thumbnails
to make sure that all of the images are optimized, thus minimizing server
load. I can personally vouch for AJAX Thumbnail Rebuild, which goes
through all of your images and regenerates the selected sizes for you.

Using Featured Images
A featured image can capture the message of a post. Featured images have
many uses: for adding flare in a magazine-style layout, underlining a point
made in an article, or substituting for an article’s title (in the sidebar, for
example).

Featured images have been built into WordPress since version 2.9, so you
don’t need any special plug-ins. If you are using the new default WordPress
theme, TwentyTen, or the cutting-edge TwentyEleven (which is right now
only in development versions), then featured images are already enabled.
Otherwise, you might need to switch them on manually. To enable them, just
open your theme’s functions.php file, paste in the code below, and voila!

add_theme_support('post-thumbnails');

set_post_thumbnail_size(115, 115)

Smashing eBook #10│WordPress Essentials │ 122

http://livepage.apple.com/
http://livepage.apple.com/

The first line of code tells WordPress to enable featured images, while the
second sets the default size for featured thumbnails. The
set_post_thumbnail_size() bit works just like the
add_image_size() function we looked at above. You can give it a width,
a height and, optionally, a third boolean parameter (true or false) to
indicate whether it should be an exact crop.

Once that’s done, go into the back end and edit a post. You should see a
featured image widget in the right sidebar; click it to add an image. Or
navigate to the media section of the post, view an image’s details, and click
the “Use as featured image” link.

The only thing left to do is make these featured images show up! You will
need to edit the code for the loop in your theme’s files, which is usually
found in index.php or in some cases in loop.php. Look for something like
this:

<?php while (have_posts()) : the_post(); ?>

The code to display a post is inside here, it can be quite long

<?php endwhile; ?>

Wherever you want to show the images, add the following in the loop:

<?php the_post_thumbnail(); ?>

In some cases, you may want to show the featured image at a size different
than the default. If so, you can pass the desired size as an argument, like so:

<?php the_post_thumbnail("wider_image"); ?>

You can name a size that you have previously created using
add_image_size(), as I have done above, or you can use an array to
specify a size on the fly: array(225, 166).

Smashing eBook #10│WordPress Essentials │ 123

Creating Galleries
The easiest way to show multiple images in a post is to upload the images
to the post and then use the gallery short code to display them all.

Simply open the “Upload/insert” media screen, click on “Galleries,” and
scroll down to the gallery settings. Make sure the links point to the
attachment pages (more on this later), and then insert the gallery. Now,
thumbnails of all the images you have uploaded to that post will be
displayed, each linked to its attachment page.

INCLUDING AND EXCLUDING IMAGES

You can easily include images from other posts or exclude certain images
from the current post by modifying the gallery short code. If you switch the
editor to the HTML view, you should see [gallery] where the gallery
would show up. You can add options to it using the following format:

Smashing eBook #10│WordPress Essentials │ 124

 [gallery option_1="value" option_2="value"].

To include a specific image, you will need to know its attachment ID. You
can find that by going to the “Media” section of the WordPress admin area,
finding the image you need, hovering over it, and reading the target from
the URL or status bar. It should be something like http://
webtastique.net/wp-admin/media.php?
attachment_id=92&action=edit. The number after attachment_id
is what you need.

You can include multiple items like so: [gallery
include="23,39,45"]. And exclude items the same way: [gallery
exclude="87,11"].

EXCLUDING THE FEATURED IMAGE

Sometimes you will want to use all of the images attached to a post except
the featured one. You could find the ID of the image and enter it in the
exclude options of the gallery shortcode every time, but that would be a
hassle (especially if you change the featured image later). Let’s automate
this.

Regrettably, the only way to do this is by replacing a core function in
WordPress with our own, using the remove_shortcode() and
add_shortcode() functions. The large chunk of code below may be off-
putting, but implementing it is as easy as copying, pasting and adding two
lines of code. The reason we need to add all this is that we can’t just go
around editing a WordPress core file; we need to replace core functions
with built-in functions.

First, open your theme’s functions.php file (if it doesn’t exist, simply create
it), and add the following code to it:

Smashing eBook #10│WordPress Essentials │ 125

// remove the WordPress function

remove_shortcode('gallery', 'gallery_shortcode');

// add our own replacement function

add_shortcode('gallery', 'myown_gallery_shortcode');

This removes the gallery_shortcode() function that WordPress uses to
display galleries and replaces it with our own function, called
myown_gallery_shortcode().

The code below is almost exactly the same as the default, but we are
adding a line to exclude our featured image. Paste the code below into the
functions.php file, and then read the explanation further down:

Smashing eBook #10│WordPress Essentials │ 126

function myown_gallery_shortcode($attr) {

 global $post, $wp_locale;

 static $instance = 0;

 $instance++;

 // Allow plugins/themes to override the default gallery
template.

 $output = apply_filters('post_gallery', '', $attr);

 if ($output != '')

 return $output;

 // We’re trusting author input, so let’s at least make sure it
looks like a valid orderby statement

 if (isset($attr['orderby'])) {

 $attr['orderby'] = sanitize_sql_orderby($attr['orderby']);

 if (!$attr['orderby'])

 unset($attr['orderby']);

 }

 extract(shortcode_atts(array(

 'order' => 'ASC',

 'orderby' => 'menu_order ID',

 'id' => $post->ID,

 'itemtag' => 'dl',

 'icontag' => 'dt',

 'captiontag' => 'dd',

 'columns' => 3,

 'size' => 'thumbnail',

 'include' => '',

 'exclude' => $default_exclude

), $attr));

Smashing eBook #10│WordPress Essentials │ 127

 $default_exclude = get_post_thumbnail_id($post->ID);

 $exclude .= ",".$default_exclude;

 $id = intval($id);

 if ('RAND' == $order)

 $orderby = 'none';

 if (!empty($include)) {

 $include = preg_replace('/[^0-9,]+/', '', $include);

 $_attachments = get_posts(array('include' => $include,
'post_status' => 'inherit', 'post_type' => 'attachment',
'post_mime_type' => 'image', 'order' => $order, 'orderby' =>
$orderby));

 $attachments = array();

 foreach ($_attachments as $key => $val) {

 $attachments[$val->ID] = $_attachments[$key];

 }

 } elseif (!empty($exclude)) {

 $exclude = preg_replace('/[^0-9,]+/', '', $exclude);

 $attachments = get_children(array('post_parent' => $id,
'exclude' => $exclude, 'post_status' => 'inherit', 'post_type' =>
'attachment', 'post_mime_type' => 'image', 'order' => $order,
'orderby' => $orderby));

 } else {

 $attachments = get_children(array('post_parent' => $id,
'post_status' => 'inherit', 'post_type' => 'attachment',
'post_mime_type' => 'image', 'order' => $order, 'orderby' =>
$orderby));

 }

 if (empty($attachments))

 return '';

Smashing eBook #10│WordPress Essentials │ 128

 if (is_feed()) {

 $output = "\n";

 foreach ($attachments as $att_id => $attachment)

 $output .= wp_get_attachment_link($att_id, $size, true) .
"\n";

 return $output;

 }

 $itemtag = tag_escape($itemtag);

 $captiontag = tag_escape($captiontag);

 $columns = intval($columns);

 $itemwidth = $columns > 0 ? floor(100/$columns) : 100;

 $float = is_rtl() ? 'right' : 'left';

 $selector = "gallery-{$instance}";

 $output = apply_filters('gallery_style', "

 <!-- #{$selector} { margin:
auto; } #{$selector} .gallery-item {
float: {$float}; margin-top: 10px;
text-align: center; width: {$itemwidth}
%; } #{$selector} img { border:
2px solid #cfcfcf; } #{$selector} .gallery-
caption { margin-left: 0; } -->

 <!-- see gallery_shortcode() in wp-includes/media.php -->

<div id="$selector" class="gallery galleryid-{$id}">

");

 $i = 0;

 foreach ($attachments as $id => $attachment) {

 $link = isset($attr['link']) && 'file' == $attr['link'] ?
wp_get_attachment_link($id, $size, false, false) :
wp_get_attachment_link($id, $size, true, false);

Smashing eBook #10│WordPress Essentials │ 129

 $output .= "<{$itemtag} class='gallery-item'>";

 $output .= "

 <{$icontag} class='gallery-icon'>

 $link

 <!--{$icontag}-->";

 if ($captiontag && trim($attachment->post_excerpt)) {

 $output .= "

 <{$captiontag} class='gallery-caption'>

 " . wptexturize($attachment->post_excerpt) . "

 <!--{$captiontag}-->";

 }

 $output .= "<!--{$itemtag}-->";

 if ($columns > 0 && ++$i % $columns == 0)

 $output .= '<br style="clear: both;">';

 }

 $output .= "

 <br style="clear: both;"></div>

\n";

 return $output;

}

In lines 18 through 29, WordPress is determining the default attributes. By
default, nothing is excluded; so under this bit of code, we add two more
lines, and that’s it:

$default_exclude = get_post_thumbnail_id($post->ID);

$exclude .= ",".$default_exclude;

Smashing eBook #10│WordPress Essentials │ 130

The first line here finds the featured image of the post in question, while the
second appends it to the exclude list. The rest of the code is the same as
the default.

Using A"achment Pages

In my opinion, attachment pages are the single best tool for creating richer,
more informative image-driven websites. They enable you to create
separate pages for each and every media item you have, affording you
considerably more power in managing them.

Smashing eBook #10│WordPress Essentials │ 131

Attachment pages exist in WordPress by default, but people seem to rarely
link to them. Linking thumbnails directly to their full-sized versions (i.e.
without the website framework) is much more common. I am not a huge fan
of this because it throws the user into a completely new environment
without prior warning. Attachment pages allow you to show the user a
wealth of information about the image; and for those who need a bigger
version, you can display download links for different sizes.

ENABLING ATTACHMENT PAGES

As stated, you don’t need to do anything to enable attachment pages. Just
make sure to link your images to them instead of to the original files. For
galleries, link to the attachment page using the radio buttons before
inserting them. When inserting a single image, point the link’s URL field to
the “Post URL” by clicking the relevant button below it.

STYLING ATTACHMENT PAGES

If your theme doesn’t have an attachment.php file, then single.php will
handle the display of attachment pages by default. If you have a decent
theme, chances are this will work fine without your needing to touch any
code. When clicking on an image, you should arrive on a page that shows
the title and description of the image and the image itself.

To add additional information to this page, you will need an attachment.php
file. I suggest duplicating single.php and going from there, because in most
cases it will have most of what you need.

Smashing eBook #10│WordPress Essentials │ 132

Adding Image Data
To make the attachment pages more informative, add a bunch of meta data
to your images. To help with this, I have created a plug-in especially for
Smashing Magazine readers, which you can download from the WordPress
Plugins page, or just search for “media custom fields” in WordPress’ back
end where you “Add new” plug-ins.

This plug-in lets you create your own custom fields, like the photographer’s
name, coordinates, color palette, etc. What you add is up to you. You can
easily manage all of the information on the plug-in’s admin page.

In the video below, I’ll walk you through how I did this on my own blog.
You’ll learn about basic usage and see an example.
“Better Media Management With WordPress Using the Media Custom Fields
Plugin,” by Daniel Pataki.

Creative A"achment Page Uses

DOWNLOAD LINKS FOR IMAGE SIZES

Using the add_image_size() function mentioned above, you could
create five or six image sizes and show Flickr-style download options that
allow users to choose the dimensions of their preference. This is helpful
when showcasing desktop backgrounds and large photographs. So, let’s do
that:

Smashing eBook #10│WordPress Essentials │ 133

http://vimeo.com/18757227
http://vimeo.com/18757227
http://vimeo.com/18757227
http://vimeo.com/18757227
http://vimeo.com/webtastique
http://vimeo.com/webtastique

// If we are on an attachment page, the $post object will be
available and the $post->ID variable will contain the ID of the
image in question.

// Find the meta data field from the postmeta table, which contains
the sizes for a given image. This is the '_wp_attachment_metadata'
field, which contains a serialized array. Take care, because if you
use 'true' as the third parameter, the function will unserialize
the string for you, so that you don’t need to do it.

$image_meta = get_post_meta($post->ID, '_wp_attachment_metadata',
true);

// Put all the image sizes and file names into an array for ease of
use

$image_sizes = $image_meta['sizes'];

$image_sizes['original']['width'] = $image_meta['width'];

$image_sizes['original']['height'] = $image_meta['height'];

$image_sizes['original']['file'] = $image_meta['file'];

// Display a list of links for these images

echo '

<h3>This image is available in the following formats</h3>

'

;

echo '

';

foreach ($image_sizes as $size_name => $size) {

 $url = wp_get_attachment_image_src($post->ID, $size_name);

 $anchortext = $size['width'] . 'x' . $size['height'];

 echo "".$anchortext."";

}

echo '

'

;

Smashing eBook #10│WordPress Essentials │ 134

Adding Color Pale"es

By adding some creativity to the mix, you can come up with some nifty
features. The screencast above and the code below shows you how to
display color blocks of the dominant colors in each of your photos.

To accomplish this, you will first need to create a custom field using the
Media Custom Fields plug-in and name it something like “Color Palette.”
Remember to look at the field name that the system generates; it is
displayed in parentheses next to the title you chose. It should be something
like tqmcf_color-palette.

Once that’s done, edit the image you’d like, and add the following in the
custom field: color_1,color_2,color_3, where colors_x should be
hex values. In my case, I entered the following string:
f0e9bf,e4dc99,000000.

Open up the attachment.php file in a code editor. Wherever you want to
display the colors, you’ll need to add something like this:

Smashing eBook #10│WordPress Essentials │ 135

// Retrieve the field value from the database

$color_palette = get_post_meta($post->ID, 'tqmfc_color-palette',
true);

// Turn the string into an array of values, where each value is one
of the colors

$colors = explode(',', $color_palette);

echo '

<h2>Logo Colors</h2>

'

;

// Loop through all the colors and create the color blocks, which
will actually be links pointing the the color's page on
Colourlovers.com

foreach ($colors as $color) {

 $link = 'http://www.colourlovers.com/color/ '.$color.'/';

 echo '<a class="color-block" style="background: #'.$color.';"
href="'.$link.'">';

}

You will also need to style the link element so that it shows up. Because
anchors are inline elements by default, if they have no content, they won’t
show up. Here’s the CSS I used, but you’ll need to change it to match your
website:

.color-block {

 display: block;

 float: left;

 height: 20px;

 margin-right: 3px;

 width: 30px;

}

Smashing eBook #10│WordPress Essentials │ 136

Conclusion
As you can see, even with minimal effort, you can create a much more
robust system for storing and showing images. And with some copying and
pasting, you can take it one step further.

The first and most important step is to add meta data like alt text to images,
give them meaningful file names and so on. By doing so, you lay a
foundation for any media management system. You can easily add other
meta data to your files by using the Media Custom Fields plugin for
WordPress.

With this foundation in place and a few simple code tweaks, you can show
images based on any of the custom fields you wish, displaying relevant
and interesting information about them. Creating download buttons for
multiple sizes and creating multiple color palettes are only the tip of the
iceberg. The techniques showcased here can be used for so much more!

Smashing eBook #10│WordPress Essentials │ 137

http://wordpress.org/extend/plugins/media-custom-fields/
http://wordpress.org/extend/plugins/media-custom-fields/

Using HTML5 To Transform WordPress’
TwentyTen !eme

Richard Shepherd

Last year, WordPress launched arguably its biggest update ever: WordPress
3.0. Accompanying this release was the brand new default theme,
TwentyTen, and the promise of a new default theme every year. Somewhat
surprisingly, TwentyTen declares the HTML5 doctype but doesn’t take
advantage of many of the new elements and attributes that HTML5 brings.

Smashing eBook #10│WordPress Essentials │ 138

Now, HTML5 does many things, but you can’t just add <!doctype html>
to the top of a document and get excited that you’re so 2011. Mark-up, as
they say, is meaning, and HTML5 brings a whole bunch of meaning to our
documents.

In a recent survey by Chris Coyier over at CSS-Tricks, almost two thirds of
respondents said they would not use HTML5 in new projects. In a similar
survey by Smashing Magazine the results were almost identical: only 37% of
voters said they use HTML5. This is depressing reading. Perhaps
developers and designers are scared off by cross-browser incompatibility
and the chore of learning new mark-up. The truth is that with a pinch of
JavaScript, HTML5 can be used safely today across all browsers, back to
IE6.

WordPress seems to sympathize with the majority of CSS-Tricks’ readers.
TwentyTen is a fine theme that already validates as HTML5; but in order to
cater to users without JavaScript, it has to forgo a large chunk of HTML5
elements. The reason? Our old friend Internet Explorer doesn’t support
most of them prior to version 9.

Smashing eBook #10│WordPress Essentials │ 139

The default TwentyTen WordPress Theme.

For example, you’ve probably already heard of the <section> and
<article> tags, both of which are champing at the bit to be embedded in
a WordPress template. But to use these HTML5 elements in IE8 (and its
predecessors), you need JavaScript in order to create them in the DOM. If
you don’t have JavaScript, then the elements can’t be styled with CSS. Turn
off JavaScript and you turn off the styling for these elements; invariably, this
will break the formatting of your page.

I assume that WordPress decided to exclude these problematic tags so that
its default theme would be supported by all browsers — not just those with
JavaScript turned on.

Smashing eBook #10│WordPress Essentials │ 140

While I understand this decision, I also think it’s a mistake. Three core
technologies make the Web work: HTML, CSS and JavaScript. All desktop
browsers support them (to some degree), so if any one of them off is
disabled the user will have to expect a degraded experience. JavaScript is
now fundamental to the user experience and while we should support users
who turn off JavaScript, or have it turned off for them and have no chance to
turn it on again as they don’t have the right to do so, I question just how far
we should support them.

WHY USING JAVASCRIPT MAKES SENSE

Yahoo gives compelling evidence that less than 1.5% of its users turn off
JavaScript. My own research into this, ably assisted by Greig Daines at
eConversions, puts the figure below 0.5% (based on millions of visitors to a
UK retail website).

Whilst it’s true that JavaScript should be separated from a site’s content,
design and structure the reality is no longer black and white. I strongly
believe that the benefits and opportunities HTML5 brings, together with
related technologies such as CSS3 and media queries (both of which
sometimes rely on JavaScript for cross-browser compatibility), is more than
enough reason to use JavaScript to ‘force’ new elements to work in Internet
Explorer. I am a passionate advocate for standards-based design that
doesn’t rely on JavaScript; HTML5 is the one structural exception.

Yes, we should respect a user’s decision to deactivate JavaScript in their
browser. However, I don’t believe that this is a good enough reason for not
using modern technologies, which would provide the vast majority of users
with a richer user experience. After all, in the TwentyTen example, if the
theme had HTML5 tags in it, everything would look fine in modern browsers
(latest versions of Safari, Firefox, Opera, Chrome and IE9), with or without
JavaScript.

Smashing eBook #10│WordPress Essentials │ 141

If the browser is IE6 – IE8, and JavaScript is turned off, then users would see
the content but it will not be styled correctly. If the content would not be
displayed at all, we’d have a completely different discussion. If you are still
not convinced, I will briefly discuss another option for those who absolutely
must support users with JavaScript turned off.

To make TwentyTen play fair with IE, I suggest Remy Sharp’s HTML5 shim
or, if you want to sink your teeth into CSS3, Modernizr. Modernizr not only
adds support for HTML5 elements in IE but also tells you which CSS3
properties are supported by the user’s browser by adding special classes to
the <html> element.

Mordernizr.js

Smashing eBook #10│WordPress Essentials │ 142

So, let’s assume you’ve rightly banished non-JavaScript users with a polite
message in a <noscript> tag. We can now start tinkering under the hood
of TwentyTen to bring some more HTML5 to WordPress.

Upgrading To HTML5
TwentyTen gets a number of things spot on. First of all, it declares the right
doctype and includes the abbreviated meta charset tag. It also uses other
semantic goodness like Microformats and great accessibility features like
WAI-ARIA. But we can go further.

Important notes:

• I am referencing the HTML generated at http://wp-themes.com/
twentyten/, rather than the simple “Hello World” clean installation of
WordPress 3.

• For this article, I’ll be editing the files directly in the /wp-content/
themes/twentyten/ directory. I’ve provided all the updated HTML5
theme source files for you to download from TwentyTen Five.

• Line numbers may change over time, so when I reference one, I’ll
usually say “on or around line…” The version of WordPress at the time
of writing is 3.0.4.

ARTICLES

One of the more confusing parts of the HTML5 spec is the <section> and
<article> tags. Which came first, the chicken or the egg? The easiest way
to remember is to refer to the specification. The HTML5 spec may be dry at
the best of times, but its explanation of articles will always point you in the
right direction:

Smashing eBook #10│WordPress Essentials │ 143

http://wp-themes.com/twentyten/
http://wp-themes.com/twentyten/
http://wp-themes.com/twentyten/
http://wp-themes.com/twentyten/

The article element represents a self-contained composition in a
document, page, application, or site and that is, in principle,
independently distributable or reusable, e.g. in syndication.

If the piece of content in question can be, and most likely will be, syndicated
by RSS, then there’s a good chance it’s an <article>. A blog post in
WordPress fits the bill perfectly.

On the TwentyTen home page, we get the following HTML:

<div id="post-19">

…

</div>

Semantically this means very little. But with the simple addition of an
article tag, we’re able to transform it into mark-up with meaning.

<article id="post-19">

…

</article>

Note that we retain the id to ensure that this <article> remains unique.

To make this change in the TwentyTen theme, open loop.php, which is in /
wp-content/themes/twentyten/. On or around line 61, you should find
the following code:

<div id="post-<?php the_ID(); ?>" <?php post_class(); ?>>

We’ll need to change that <div> to an <article>, so that it reads:

<article id="post-<?php the_ID(); ?>" <?php post_class(); ?>>

And then we close it again on or around line 97, so that…

</div><!-- #post-## -->

Smashing eBook #10│WordPress Essentials │ 144

… becomes:

</article><!-- #post-## -->

There are also instances on lines 32, 101 and 124. Opening some of the
other pages in the theme, for example single.php, and making the same
change is worthwhile. Thus, line 22 in single.php would change from…

<div id="post-<?php the_ID(); ?>" <?php post_class(); ?>>

… to

<article id="post-<?php the_ID(); ?>" <?php post_class(); ?>>

And line 55 would change from…

</div><!-- #post-## -->

… to:

</article><!-- #post-## -->

So far, so good. These are simple changes, but they already serve to
overhaul the semantics of the website.

TIME AND DATE

According to the HTML5 spec:

The <time> element either represents a time on a 24-hour clock, or a
precise date on the proleptic Gregorian calendar, optionally with a time
and a time-zone offset.

This means we can give the date and time of an article’s publication more
context with HTML5’s <time> tag. Look at the code that WordPress
generates:

Smashing eBook #10│WordPress Essentials │ 145

<a href="http://wp-themes.com/?p=19" title="4:33 am"

rel="bookmark">October 17, 2008

We can add meaning to our mark-up by transposing this to:

<a href="http://wp-themes.com/?p=19" title="4:33 am"

rel="bookmark"><time datetime="2008-10-17T04:33Z"

pubdate>October 17, 2008</time>

This time is now machine-readable, and the browser can now interact with
the date in many ways should we so wish. I’ve also added the boolean
attribute pubdate, which designates this as the date on which the article or
content was published.

Time in the datetime attribute is optional, but because WordPress
includes it when you post an article, we can too. Implementing this in
TwentyTen requires us to dig a little deeper. In loop.php, the following
function on or around line 65 calls for the date to be included:

<?php twentyten_posted_on(); ?>

To make our HTML5 changes, let’s head over to /wp-content/themes/
twentyten/ and open functions.php. On or around line 441, you’ll see this:

function twentyten_posted_on() {

printf(__('Posted on %2$s by %3$s',
'twentyten'),

meta-prep meta-prep-author',

sprintf('%3$s</
span>',

get_permalink(),

esc_attr(get_the_time()),

get_the_date()

),

Smashing eBook #10│WordPress Essentials │ 146

http://wp-themes.com/?p=19
http://wp-themes.com/?p=19
http://wp-themes.com/?p=19
http://wp-themes.com/?p=19

If you don’t know what that means, don’t worry. We’re focusing on the
sprintf function, which basically takes a string and inserts the variables that
are returned by the three functions listed: that is, get_permanlink(),
get_the_time() and get_the_date() are inserted into %1$s, %2$s
and %3$s, respectively.

We need to change how the date is formatted, so we’ll have to add a fourth
function: get_the_date('c'). WordPress will then return the date in
Coordinated Universal Time (UTC) format, which is exactly what the <time>
element requires. Our finished code looks like this:

printf(__('Posted on %2$s by %3$s', 'twentyten'),

meta-prep meta-prep-author',

sprintf('<time datetime="%2$s"

pubdate>%3$s</time>',

get_permalink(),

get_the_date('c'),

get_the_date()

),

I’ve included get_the_date() twice because we need two different
formats: one for the <time> element and one that’s displayed to the user.
I’ve also removed title="[time published]" because that
information is already included in the <time> element.

For more details on WordPress’ date and time functions, check out:

• Function Reference/get the time,

• Formatting Date and Time.

Smashing eBook #10│WordPress Essentials │ 147

http://php.net/manual/en/function.sprintf.php
http://php.net/manual/en/function.sprintf.php
http://codex.wordpress.org/Function_Reference/get_the_time
http://codex.wordpress.org/Function_Reference/get_the_time
http://codex.wordpress.org/Formatting_Date_and_Time
http://codex.wordpress.org/Formatting_Date_and_Time

FIGURES

A figure—for our purposes at least—is a piece of media that you upload in
WordPress to embed in a post. The most obvious example would be an
image, but it could be a video, too, of course. WordPress 3 is helpful enough
to add captions to images when you first import the images, but it doesn’t
display those captions using the new HTML5 <figure> and
<figcaption> tags.

The spec defines <figure> as follows:

The figure element represents a unit of content, optionally with a
caption, that is self-contained, that is typically referenced as a single
unit from the main flow of the document, and that can be moved away
from the main flow of the document without affecting the document’s
meaning.

And it defines <figcaption> like so:

The figcaption element represents a caption or legend for the rest of
the contents of the figcaption element’s parent figure element, if
any.

Currently an image with a caption is rendered like this:

<div class="wp-caption" style="width: 445px;"><img alt="Boat"

src="http://wpdotorg.files.wordpress.com/2008/11/boat.jpg "

title="Boat" width="435" height="288" />

<p class="wp-caption-text">Boat</p>

</div>

Smashing eBook #10│WordPress Essentials │ 148

A
WordPress image with a caption.

Changing this HTML to include HTML5 elements requires us to first look at
media.php in the /wp-includes/ directory, where this code is generated.
On or around line 739, you’ll find:

return '<div ' . $id . 'class="wp-caption ' . esc_attr($align) . '"
style="width: ' . (10 + (int) $width) . 'px">'

. do_shortcode($content) . '<p>' . $caption . '</p></div>';

To upgrade this to HTML5, we need to define a new function that outputs
our <figure>-based HTML and assign this function to the same shortcode
that calls img_caption_shortcode(). I’ve done this in /wp-content/
themes/twentyten/functions.php by adding the following to the
bottom of the file:

Smashing eBook #10│WordPress Essentials │ 149

add_shortcode('wp_caption', 'twentyten_img_caption_shortcode');

add_shortcode('caption', 'twentyten_img_caption_shortcode');

function twentyten_img_caption_shortcode($attr, $content = null)
{

extract(shortcode_atts(array(

id' => '',

align' => 'alignnone',

width' => '',

caption' => ''

), $attr));

if (1 > (int) $width || empty($caption))

return $content;

if ($id) $idtag = 'id="' . esc_attr($id) . '" ';

 return '<figure ' . $idtag . 'aria-describedby="figcaption_' .
$id . '" style="width: ' . (10 + (int) $width) . 'px">'

 . do_shortcode($content) . '<figcaption id="figcaption_' .
$id . '">' . $caption . '</figcaption></figure>';

}

First, we point the shortcodes for wp-caption and caption to our new
function twentyten_img_caption_shortcode(). Then, we simply
copy the original function from media.php, and change the last few lines to
include our <figure> element. This now renders our boat.jpg example
from above like so:

Smashing eBook #10│WordPress Essentials │ 150

<figure id="attachment_64" style="width: 445px;">

<img title="boat" src="http://localhost/wp-content/uploads/2010/07/
boat.jpg"

alt="Screenshot" width="435" height="288" aria-
describedby="figcaption_attachment_64">

<figcaption id="figcaption_attachment_64">Boat</figcaption>

</figure>

THE COMMENTS FORM

One of the biggest improvements introduced in HTML5 is how form fields
work and respond to user input. We can take advantage of these changes
by using HTML5 form elements in the default WordPress comments form in
three ways:

1. We can set the text-input type to email and url for the relevant fields.
This not only more accurately describes the input field, but also adds
better keyboard functionality for the iPhone, for example.

2. We can add the boolean attribute required to our required form
fields. This goes beyond WAI-ARIA’s aria-required='true'
because it invokes the browser’s own required behavior.

3. We can add placeholder text to our form fields, a popular JavaScript
method that is now handled in-browser. Placeholder text allows you to
go into more detail about what information is required than a form label
generally allows.

Before adding HTML, a typical comment input field might look like this:

<label for="email">Email</label> *

<input id="email" name="email" type="text" value=""

size="30" aria-required='true' />

After our HTML5 changes, it would look like this:

Smashing eBook #10│WordPress Essentials │ 151

http://localhost/wp-content/uploads/2010/07/boat.jpg
http://localhost/wp-content/uploads/2010/07/boat.jpg
http://localhost/wp-content/uploads/2010/07/boat.jpg
http://localhost/wp-content/uploads/2010/07/boat.jpg

<label for="email">Email</label> *

<input id="email" name="email" type="email" value=""

size="30" aria-required='true'

placeholder="How can we reach you?" required />

To make these improvements in the code, we need to do two things. First,
we need to change the HTML for the default fields (name, email address
and website URL), and then we need to change it for the comment’s
<textarea>. We can achieve both of these changes with additional filters
and custom functions.

To change the HTML for the default form fields, we need to add the
following filter to the bottom of functions.php:

add_filter('comment_form_default_fields', 'twentytenfive_comments');

And then we have to create our custom function
twentytenfive_comments() to change how these fields are displayed.
We can do so by creating an array containing our new form fields and then
returning it to this filter. Here’s the function:

Smashing eBook #10│WordPress Essentials │ 152

function twentytenfive_comments() {

$req = get_option('require_name_email');

$fields = array(

author' => '<p>' . '<label for="author">' . __('Name') . '</label>
' . ($req ? '*' : '') .

<input id="author" name="author" type="text" value="' .
esc_attr($commenter['comment_author']) . '" size="30"' .
$aria_req . ' placeholder = "What should we call you?"' . ($req ? '
required' : '') . '/></p>',

email' => '<p><label for="email">' . __('Email') . '</label> ' .
($req ? '*' : '') .

<input id="email" name="email" type="email" value="' . esc_attr(
$commenter['comment_author_email']) . '" size="30"' . $aria_req . '
placeholder="How can we reach you?"' . ($req ? ' required' : '') .
' /></p>',

url' => '<p><label for="url">' . __('Website') . '</label>' .

<input id="url" name="url" type="url" value="' .
esc_attr($commenter['comment_author_url']) . '" size="30"
placeholder="Have you got a website?" /></p>'

);

return $fields;

}

You can see here that each element in the form has a name in the
array(): author, email and url. We then type in our custom code, which
contains the new HTML5 form attributes. We have added placeholder text
to each of the elements and, where required, added the boolean
required attribute (and we need to check if the admin has made these
fields required using the get_option() function). We’ve also added the
correct input type to the inputs for author, email address and website URL.

Smashing eBook #10│WordPress Essentials │ 153

Finally, we need to add some HTML5 to the <textarea>, which is home to
the user’s comments. We have to use another filter here, also in
functions.php:

add_filter('comment_form_field_comment',
'twentytenfive_commentfield');

We follow this with another custom function:

function twentytenfive_commentfield() {

$commentArea = '<p><label for="comment">' . _x('Comment',
'noun') . '</label><textarea id="comment" name="comment" cols="45"
rows="8" aria-required="true" required placeholder="What\'s on your
mind?" ></textarea></p>';

return $commentArea;

}

This is more or less the same as the default <textarea>, except with
placeholder and required attributes.

You can control exactly which fields appear in your form with these two
filters, so feel free to add more if you want to collect more information.

Although relatively simple, these changes to the comment form provide
additional (and useful!) features to users with latest-generation browsers.
Look in Opera, Chrome (which doesn’t yet support required) or Firefox 4
to see the results.

HEADER, NAVIGATION AND FOOTER

We finally get around to inserting the new <header>, <nav> and
<footer> elements. Currently, the code in /wp-content/themes/
twentyten/header.php looks more or less like this:

Smashing eBook #10│WordPress Essentials │ 154

<div id="header">

<div id="masthead">

<div id="branding" role="banner">

…

</div><!-- #branding -->

<div id="access" role="navigation">

…

</div><!-- #access -->

</div><!-- #masthead -->

</div><!-- #header -->

It doesn’t take a genius to see that we can easily make this HTML5-ready by
changing some of those divs to include <header> and <nav>.

<header id="header">

<section id="masthead" >

<div id="branding" role="banner">

…

</div><!-- #branding -->

<nav id="access" role="navigation">

…

</nav><!-- #access -->

</section><!-- #masthead -->

</header><!-- #header -->

You can see that we’ve left the WAI-ARIA role of navigation assigned to
the nav element—simply to offer the broadest possible support to all
browsers and screen readers.

Smashing eBook #10│WordPress Essentials │ 155

I have replaced the #masthead div with a <section> because all of the
elements in this area relate to one another and are likely to appear in a
document outline. It seems you could delete this section altogether and just
apply 30 pixels of padding-top to the header to maintain the layout. I’ve
maintained the elements’ ids in case more than one of each are on the
page—multiple headers, footers and navs (and more) are all welcome in
HTML5.

While we’re editing the header, we can introduce the new <hgroup>
element. This element enables us to include multiple headings in a section
of our document, while they would be treated as just one heading in the
document outline. Currently, the code on or around line 65 in header.php
looks like this:

<?php $heading_tag = (is_home() || is_front_page()) ? 'h1' :
'div'; ?>

<<?php echo $heading_tag; ?> id="site-title">

<a href="<?php echo home_url('/'); ?>" title="<?php echo
esc_attr(get_bloginfo('name', 'display')); ?>" rel="home"><?php
bloginfo('name'); ?>

</<?php echo $heading_tag; ?>>

<div id="site-description"><?php bloginfo('description'); ?></
div>

We can edit this to include the <hgroup> tag, and also change <div
id="site-description"> to an <h2> element:

Smashing eBook #10│WordPress Essentials │ 156

<hgroup>

<?php $heading_tag = (is_home() || is_front_page()) ? 'h1' :
'div'; ?>

<<?php echo $heading_tag; ?> id="site-title">

<a href="<?php echo home_url('/'); ?>" title="<?php echo
esc_attr(get_bloginfo('name', 'display')); ?>" rel="home"><?php
bloginfo('name'); ?>

</<?php echo $heading_tag; ?>>

<h2 id="site-description"><?php bloginfo('description'); ?></h2>

</hgroup>

In /wp-content/themes/twentyten/footer.php, we have:

<div id="footer" role="contentinfo">

 <div id="colophon">

 <div id="site-info">

 <a href="<?php echo home_url('/') ?>" title="<?php echo
esc_attr(get_bloginfo('name', 'display')); ?>" rel="home">

 <?php bloginfo('name'); ?>

 </div><!-- #site-info -->

 <div id="site-generator">

 </div><!-- #site-generator -->

 </div><!-- #colophon -->

</div><!-- #footer -->

We can easily edit this to include a <footer> and another <section>
element:

Smashing eBook #10│WordPress Essentials │ 157

<footer role="contentinfo">

<section id="colophon">

…

<div id="site-info">

<a href="<?php echo home_url('/') ?>" title="<?php echo
esc_attr(get_bloginfo('name', 'display')); ?>" rel="home">

<?php bloginfo('name'); ?>

</div><!-- #site-info -->

<div id="site-generator">

…

</div><!-- #site-generator -->

</section><!-- #colophon -->

</footer><!-- #footer -->

JAVASCRIPT AND CSS

As mentioned, we should include an HTML5 shim or Modernizr.js to make
sure that all of our new elements render correctly in Internet Explorer prior
to version 9. I added the following line to header.php:

<script src="<?php bloginfo('stylesheet_directory'); ?>/js/
Modernizr-1.6.min.js"></script>

A couple of things to note here. First, we no longer need type="text/
javascript" because the browser will assume that a script is JavaScript
unless it’s told different. Secondly, we have to use the WordPress
bloginfo() function to point the source URL to our theme directory.

Although we are including Modernizr partly to make sure that IE can deal
with the new HTML5 elements, I am serving it to all browsers because of the
CSS3-checking functionality it provides.

Smashing eBook #10│WordPress Essentials │ 158

In style.css, we need to make sure that our HTML5 elements have a
display: block attribute, because some older browsers will treat them
as inline elements. For our purposes, the following line at the top of the CSS
file will do:

header, nav, section, article, aside, figure, footer {
display: block; }

While we’re talking about CSS, remember that we can now remove
type="text/css" from our <link> tags. The simplified code looks like
this:

<link rel="stylesheet" href="<?php bloginfo('stylesheet_url');
?>" />

That should be enough for now. Remember, though, that changing the
structure of the page by replacing older HTML elements with new ones
might require some additional CSS.

We should let the small minority of users know that we’ve stopped
supporting browsers that have JavaScript turned off. A polite message just
below the opening <body> tag in header.php should suffice:

<noscript>JavaScript is required for this website to be
displayed correctly. Please enable JavaScript before continuing...</
strong></noscript>

Add some very basic styling in style.css to make this message unmissable.

Smashing eBook #10│WordPress Essentials │ 159

/* A message for users with JavaScript turned off */

noscript strong {

display: block;

font-size: 18px;

line-height:1.5em;

padding: 5px 0;

background-color: #ccc;

color: #a00;

text-align: center; }

Still Not Convinced? A Cross-Browser Alternative
There is another option for those of you who absolutely must support users
with JavaScript turned off, as suggested by Christian Heilmann. Simply wrap
your HTML5 elements with divs which share the same ID name. For
example:

<article id="post-123">

...

</article>

becomes

<div class="article">

<article id="post-123">

...

</article>

</div>

Then it’s just a case of adding .article to your article CSS definition. It
might look like this:

.article,

article { display: block; background-color: #f7f7f7; }

Smashing eBook #10│WordPress Essentials │ 160

It’s worth noting that this adds another layer of markup to your code which
isn’t needed for most users. I’d only recommend it if non-JavaScript users
are a significant proportion of your users and/or sales.

Final !oughts
TwentyTen was a huge step forward for WordPress; and as a piece of
HTML, it is a beacon of best practice. By including some simple JavaScript,
we can now open up the theme to the world of HTML5—and the additional
meaning and simpler semantic code that it offers.

While we’ve addressed a good number of new HTML5 elements in this
article, it really is just a starting point and you can add many more yourself.
For example, you could add headers and footers to individual posts, or you
might like to add the new <aside> element.

DOWNLOAD TWENTYTEN WITH HTML5

To complement this article, I have created a new version of TwentyTen, with
the HTML5 elements we have discussed. Download this theme from
TwentyTen Five.

Smashing eBook #10│WordPress Essentials │ 161

http://www.twentytenfive.com/
http://www.twentytenfive.com/

Smashing eBook #10│WordPress Essentials │ 162

!e Authors

Daniel Pataki
Daniel Pataki is a guitar wielding web developer obsessed with web
technology, best practices and the awesomeness of WordPress. Take a look
at his personal page or follow him on twitter: @danielpataki

Peter Wilson
Peter Wilson is a Web developer based in Melbourne, Australia, and started
making Websites in 1994. Peter co-founded web production studio
Soupgiant in 2009 and forms opinions on all things web at Big Red Tin.

Ryan Olson
Ryan is a front-end developer who believes in an enjoyable web for all and
created BrowsingBetter. He loves WordPress, jQuery, learning new web
skills, and short walks far from beaches. Check out his newest project
TextMateUser and tweet with him @ryanolson.

Sawyer Hollenshead
Sawyer Hollenshead is a web designer and digital entrepreneur
— Freelancing all day and running Shaken & Stirred Web all night. Follow
him at @sawyerh.

Smashing eBook #10│WordPress Essentials │ 163

http://danielpataki.com/
http://danielpataki.com/
http://twitter.com/danielpataki
http://twitter.com/danielpataki
http://soupgiant.com/
http://soupgiant.com/
http://peterwilson.cc/
http://peterwilson.cc/
http://browsingbetter.com/
http://browsingbetter.com/
http://textmateuser.com/
http://textmateuser.com/
http://www.twitter.com/@ryanolson
http://www.twitter.com/@ryanolson
http://sawyerhollenshead.com/
http://sawyerhollenshead.com/
http://shakenandstirredweb.com/
http://shakenandstirredweb.com/
http://twitter.com/sawyerh
http://twitter.com/sawyerh

!iemo Fetzer
Thiemo Fetzer is pursuing a PhD in Economics at the London School of
Economics. He has been publishing on web development and data analysis
for more than 10 years in German print and online magazines such as
Dr.Web, his own website Devmag and on his blog Freigeist.

Smashing eBook #10│WordPress Essentials │ 164

