

WordPress 2.8 Themes
Cookbook

Over 100 simple but incredibly effective recipes for
creating powerful, custom WordPress themes

Lee Jordan

Nick Ohrn

BIRMINGHAM - MUMBAI

WordPress 2.8 Themes Cookbook

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: June 2010

Production Reference: 1220610

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847198-44-0

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

Credits

Authors
Lee Jordan

Nick Ohrn

Reviewers
Jose Argudo Blanco

Taeke Reijenga

Acquisition Editor
Sarah Cullington

Development Editor
Ved Prakash Jha

Technical Editor
Dayan Hyames

Copy Editors
Janki Mathuria

Lakshmi Menon

Editorial Team Leader
Akshara Aware

Project Team Leader
Lata Basantani

Project Coordinator
Srimoyee Ghoshal

Indexers
Tejal Daruwale

Monica Ajmera Mehta

Proofreader
Dirk Manuel

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Authors

Lee Jordan is a web designer and new media developer who designs and maintains
websites, web-based applications, templates, and social media for a privately-held technical
services company. She brings a strong design background and concern for the visual and
emotional impact of media to web-based projects. Experienced in multiple CMS platforms
including Expression Engine, Plone, WordPress, PostNuke, and Google’s Blogger, she has
maintained, explored, and used most of them on a day-to-day basis. She spends her spare
time as the leader of a local scout troop, taking long hikes with her family in the beautiful
North Georgia woods, trying to taste every variety of chocolate that exists, and playing with
code and pixels. Design topics, or whatever she can think of at the time, are posted on her
blog at http://leejordan.net.

Lee has previously written two books with Packt Publishing: Project Management with
dotProject, and Blogger: Beyond the Basics.

A big thank you to my family: Brian, Celeste, Jason and Mom for looking over
my shoulder and giving hugs when I needed encouragement, knowing when
to give me space, and learning way more than they ever wanted to about
this “WordPress theme stuff”. They are responsible for helping me keep my
reader’s point of view in mind. I love you all.

Nick Ohrn holds a bachelors degree in Computer Science from the Rose-Hulman Institute
of Technology. He graduated in 2008 and has been running his own independent software
development company ever since.

As an independent business owner, Nick has had the pleasure of working on a variety of high
profile projects. He enjoys creating applications that are both usable and have a high-quality
codebase. Nick specializes in custom WordPress development and web applications.

Nick balances his time between programming, managing others, reading, writing on a variety
of technical platforms, and contributing to open source software. When he isn’t working, he
enjoys weight training, bodybuilding, and other athletic endeavors.

Find Nick’s custom WordPress development business at http://plugin-developer.com.
You can find his personal site at http://nickohrn.com.

I’d like to first thank my wonderful fiancee and soon to be wife, Angela
Tokarz. Without her gentle prompting along the way, this book may never
have been finished. Thanks also to Peter Chester and Shane Pearlman for
introducing me to the Packt Publishing team.

Finally, a big thank you to my entire family who showed interest throughout
the process and were constantly asking when the book would be done. It
is because of them that I have the skills to be able to write this book in the
first place.

About the Reviewers

Jose Argudo is a web developer from Valencia, Spain. After finishing his studies,
he started working for a web design company. Then, six years later, he decided to start
working as a freelancer.

Now that some years have passed as a freelancer, he thinks it’s the best decision he has
ever taken—a decision that lets him work with the tools he likes, such as Joomla!, Codeigniter,
Cakephp, Jquery and other known open source technologies.

His desire to learn and share his knowledge has led him to be a regular reviewer of books
from Packt, including Drupal E-commerce, Joomla! with Flash, Joomla! 1.5 SEO, Magento 1.3
Theme Design or Symfony 1.3 WebApplication Development.

Recently he has even published his own book, Codeigniter 1.7, which you can also find at
Packt’s site. If you work with PHP, take a look at it!

Jose is currently working on a new book for Packt, this time Joomla! related; check for it soon!

If you want to know more about Jose, you can check his site at www.joseargudo.com.

To my Brother.

Taeke Reijenga is the co-founder of Level Level, a young and versatile graphic and web
design agency from Rotterdam, The Netherlands.

Level Level is well known for their WordPress expertise. From a small-scale personal blog to a
multilingual corporate website or e-commerce website, Level Level does it all.

In his spare time Taeke loves to travel, cook a nice meal, and enjoy a good glass of wine
with friends.

You can contact Taeke via http://level-level.com.

Table of Contents
Preface 1
Chapter 1: WordPress Theme Basics 5

Introduction 5
Finding documentation on WordPress.org 6
Downloading themes from the WordPress theme repository 8
Downloading themes from third-party websites 11
Installing and activating a theme 13
Displaying the blog name 16
Getting the absolute directory path of the active theme 18
Creating a theme from scratch 18
Creating a child theme 21
Creating a theme by using a theme framework 24
Adding expected WordPress hooks 26
Including PHP files from your theme 27

Chapter 2: Creating Navigation 29
Introduction 29
Listing all of the pages that exist on a blog 30
Listing all of the categories defined for a blog 32
Listing all of the tags in use on a blog 35
Highlighting the current page in the navigation 38
Adding a search function to a theme 39
Getting the category page link from a category name 40
Displaying page links only if the destination page exists 41
Creating a category drop-down menu 42
Creating drop-downs using child pages 44

ii

Table of Contents

Chapter 3: The Loop 47
Introduction 47
Creating a basic Loop 48
Displaying ads after every third post 50
Removing posts in a particular category 52
Removing posts with a particular tag 53
Highlighting sticky posts 54
Creating multiple loops in a single template 56
Displaying only posts in a particular category 58
Styling every other post differently 59
Styling posts in a particular category differently 61
Showing every post in a category on a category archive page 62

Chapter 4: Template Tags 63
Introduction 63
Displaying the post title 64
Automatically limiting the number of words of content 65
Determining if the user is on a specific page 68
Determining if the user is viewing a post in a particular category 69
Displaying the post date for each post 70
Highlighting search terms in post content 71
Displaying login/logout links 73
Adding navigation through older/newer posts 74
Displaying an edit link for posts 75
Displaying custom field content 76
Displaying a post author's avatar 78

Chapter 5: Comments 81
Introduction 81
Displaying a comment form on a post 81
Displaying comments on a post 84
Displaying the latest comments on your blog 87
Highlighting the post author's comments 88
Alternating the style for comments 90
Displaying threaded comments properly 92

Chapter 6: Sidebars 95
Introduction 95
Using the Text widget for custom sidebar content 96
Including a dynamic sidebar in your theme 98
Including multiple dynamic sidebars in your theme 100
Setting the default widgets for a sidebar in your theme 105
Positioning multiple sidebars in your theme by using CSS 108

iii

Table of Contents

Styling the appearance of sidebars in your theme by using CSS 112
Displaying different widgets on different pages by using the
Widget Logic plugin and conditional tags 114
Showing asides in the sidebar by using the Miniposts plugin 118
Adding an interactive Facebook-style wall to a sidebar by using jQuery 120

Chapter 7: Custom Page Templates 123
Introduction 123
Creating a simple page template 124
Creating an archives page template 127
Creating a taxonomy navigation template 133
Displaying author avatars and descriptions 137
Creating a table of contents page template 142
Showing your pictures from Flickr 148
Displaying a special template for a specific category 152

Chapter 8: Integrating Media 155
Introduction 155
Aligning images properly within a post 156
Styling image galleries 159
Styling image captions 162
Creating a media template 165
Creating a media template for a specific media type 167
Displaying a related image for every post 170
Creating video posts by using the Viper's Video QuickTags plug-in 172

Chapter 9: Showing Author Information 175
Introduction 175
Getting author data via an author's ID 176
Dynamically displaying the author's name and linked e-mail address 177
Listing all of the published authors on a site 179
Listing the authors who most recently published a post 182
Listing authors by the total number of comments that their
posts have received 184
Adding a custom user field to display an author's Twitter link 187

Chapter 10: Adding JavaScript Effects 191
Introduction 191
Linking to your theme's JavaScript files directly 192
Adding JavaScript files to your theme programmatically 193
Adding a bundled library to your theme programmatically 198
Creating a featured post slider 201
Making sidebar widgets toggle-able 206
Adding a font size toggle 209

iv

Table of Contents

Chapter 11: Advanced WordPress Themes 213
Introduction 213
Adding a theme options page 214
Allowing for multiple theme color schemes 219
Changing the default Gravatar icon for your theme 226
Registering shortcodes for your theme 230
Localizing your theme 233
Displaying information based on the logged-in user's role 237
Packaging your theme for distribution 240
Uploading your theme to the WordPress.org theme repository 242

Chapter 12: Layout 245
Introduction 245
Adding a skip navigation link for usability 245
Centering your site's layout in the browser window 249
Setting up a randomly-rotating header image 252
Making theme components drag-and-drop 257
Creating a global toolbar for your theme 267
Creating tabbed navigation for your theme 275

Index 285

Preface

In the last few years, WordPress has exploded in popularity. What started as simple blogging
software has become an amazingly-capable content management system. As the capabilities
of the software have grown, so have the unique and novel ways in which WordPress data
is displayed.

Nowadays, developers and designers utilize the WordPress theme system to build everything
from simple blogs to fully-fledged news sites. You can display different content in unique ways,
highlight your most important posts and pages, and engage your users by allowing them to
comment on and share your content, quickly and easily.

In short, WordPress makes it easy for people to show the world what they have to offer.
Theming WordPress is easy, and template files are readily-modifiable by users of any skill
level. However, if you’re willing to put in the time, you will find a powerful system hidden by this
simplicity that allows you to build almost anything you want. This book will teach you how to
use that power to build robust and high-quality themes that take full advantage of WordPress
and the WordPress ecosystem.

What this book covers
Chapter 1, WordPress Theme Basics gets you started with developing WordPress themes
teaching you about the documentation and finding, creating and installing themes.

Chapter 2, Creating Navigation shows you how to implement a variety of techniques that
allow your users to navigate around your site.

Chapter 3, The Loop teaches you about The Loop, the main building block of WordPress. It
shows you how to display your content in unique and interesting ways, and shows you how to
change the data that is fetched and presented.

Preface

�

Chapter 4, Template Tags shows you how to display the content that the user enters in the
administrative back-end. It teaches you to use unique WordPress functions to show titles,
content, and other post data.

Chapter 5, Comments shows you how to start the conversation on your blog by allowing users
to view and post comments. It teaches you to modify how the comments are shown and the
information shown for each comment.

Chapter 6, Sidebars covers how to display secondary content on your blog by using WordPress’
fabulous widget and sidebar system.

Chapter 7, Custom Page Templates shows you unique content and unique needs for displaying
it. It teaches you how to use the powerful template system to make WordPress display the
content that you want and the way you want it.

Chapter 8, Integrating Media discusses multimedia types, such as audio and video, which
are now commonplace on blogs. It teaches you to take control of how images and media are
displayed and create custom media templates for images, audio, video, or any other file type.

Chapter 9, Showing Author Information introduces why your site’s authors are important. It
teaches you how to display author bios, latest posts, and custom data.

Chapter 10, Adding JavaScript Effects shows you how to make your theme interactive and
easy to use, by adding small pieces of JavaScript functionality.

Chapter 11, Advanced WordPress Themes covers how to take your theme to the next level, by
adding theme options, creating multiple color schemes, and packaging and uploading your
theme to the WordPress.org theme repository.

Chapter 12, Layout shows you how to extend your theme layout options through global toolbar
navigation, centered theme design, tabbed navigation, drag-and-droppable components, and
added accessibility through the use of skip navigation links.

What you need for this book
You need to have the following:

PHP, Apache and MySQL (MAMP or WAMP for local development)

WordPress (latest release)

Who this book is for
This book is intended for people interested in working with WordPress themes. Some
experience with PHP and HTML is assumed, but no prior knowledge of the way in which
WordPress works is needed. Users with a background in WordPress themes will still be
able to learn from the more advanced recipes in this book.

•

•

Preface

�

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: “Locate the title tag and remove whatever value is
contained within it".

A block of code is set as follows:

<div class="notice-snippet">
Thanks for visiting my site!
</div>

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

<?php get_sidebar(); ?>
<?php get_footer(); ?>

New terms and important words are shown in bold. Words that you see on the screen, in
menus, or dialog boxes for example, appear in the text like this: “If you don’t wish to preview
your new theme, you can click on the Activate link directly".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note via
the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book on, see our author guide on www.packtpub.com/authors.

Preface

�

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code for this book
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com.
If you purchased this book elsewhere, you can visit http://www.
PacktPub.com/support and register to have the files emailed
directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we
would be grateful if you would report this to us. By doing so, you can save other readers from
frustration, and help us to improve the subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/support, selecting your book,
clicking on the let us know link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata
can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately, so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
WordPress Theme

Basics

In this chapter, we will cover:

Finding documentation on WordPress.org

Downloading themes from the WordPress theme repository

Downloading themes from third-party websites

Installing and activating a theme

Displaying the blog name

Getting the absolute directory path of the active theme

Creating a theme from scratch

Creating a child theme

Creating a theme by using a theme framework

Adding expected WordPress hooks

Including PHP files from your theme

Introduction
If you're going to be creating or modifying a WordPress theme, it pays to start with the basics.
That's what this chapter is all about. By reviewing the recipes contained within, you'll learn
how to find useful documentation, how to download and install themes from various places,
and what is required if you want to create your own theme from scratch.

WordPress Theme Basics

�

As you progress through the recipes in this book, you'll need a theme to work with. If you're an
experienced WordPress developer, you'll probably want to create your own theme by using the
recipe Creating a theme from scratch contained later in this chapter. If you're just starting out,
I recommend using either of the two themes distributed with the base install of WordPress.
Both "WordPress Default" and "WordPress Classic" offer solid bases on which you can build
your custom theme.

Finding documentation on WordPress.org
This book will help you through the most common tasks you may encounter when
developing a WordPress theme. However, you'll certainly have questions along the way
that need further investigation. When these questions arise, you should consult the official
WordPress documentation.

Getting ready
A web browser with Internet access is required to access the documentation.

How to do it...
First fire up your browser and go to http://codex.wordpress.org. This is the home
page for the codex, where you'll spend a lot of time as a WordPress developer. The page
looks like the following screenshot:

Chapter 1

�

From the home page, you can browse to a topic that you are interested in. In the following
screenshot, you can see the topic page for the WordPress Database Description:

How it works...
The WordPress Codex is a user-generated set of documentation for the WordPress system.
Most functions and functionality are well-documented, and most theme-related questions can
be answered through careful browsing and reading.

For questions related to specific topics, it may be useful to consult that topic's page. Here is a
short guide:

Theme development—http://codex.wordpress.org/Theme_Development

Template tags—http://codex.wordpress.org/Template_Tags

Conditional tags—http://codex.wordpress.org/Conditional_Tags

Function reference—http://codex.wordpress.org/Function_Reference

WordPress Theme Basics

8

Downloading themes from the WordPress
theme repository

The best place to find reputable WordPress themes free for use is the official WordPress
theme repository. Every theme in the official repository is licensed under the GPL, which
means that you can download it, modify it, and distribute your changes as you please.

You'll find themes for almost every use in the repository. There are themes for business sites,
blogs, and even team communication. If you look hard, you'll probably find a theme you can
use, or at least one you can modify to look the way that you want.

Getting ready
A web browser with Internet access is required to download themes from the official
theme repository.

How to do it...
First fire up your browser and visit http://wordpress.org/extend/themes/. This is the
theme repository home page, and looks like the following screenshot:

Chapter 1

�

From the home page, you can browse themes by several different sorting criteria. Of note are
the most popular, the newest, and the most recently-updated themes. If a theme appeals to
you and you want to try it out, click on the name of the theme and then click on the download
button on the resulting page. Be sure to read the theme's description to determine the type
and placement of the dynamic sidebars, default widgets, and the different options that you
can configure for the theme. As an example, you can see Arjuna X's theme page in the
following image:

How it works...
The WordPress Theme Repository hosts WordPress themes submitted by individual theme
developers and that conform to the GPL—the same license that ships with WordPress. This
means that all themes contained within the theme repository are free to use, modify, and
redistribute as you wish.

When downloading items from the theme repository, you are almost guaranteed a stable
well-developed theme that will work when you first install it. In addition, the themes that you
download from there will not contain affiliate links or other malicious or obfuscated code that
could negatively affect your WordPress blog.

WordPress Theme Basics

10

There's more...
Although browsing the repository by theme type or one of the special categories (like featured,
new, or popular) is great in some instances, there are other ways to find a theme that will
fit your exact needs. The following techniques will help you in your search for the perfect
WordPress theme.

Try search
The Theme Repository includes a basic search function. Simply type in the search terms that
you're looking for and the system will return the best-matched results. This is great if you're
looking for a theme built for a particular purpose, such as photoblogging, podcasting, content
aggregation, or business. The following image shows the search results page when searching
for "2 column":

Chapter 1

11

Tag filter
Another great way to find a theme that fits your particular needs is to use the WordPress
theme repository's tag filter functionality. You can find this at http://wordpress.org/
extend/themes/tag-filter/. After checking your desired filtering criteria, click
on the Find Themes button. You'll be presented with a screen like the one shown in
the following screenshot:

Downloading themes from third-party
websites

Another place to find good, sometimes great, WordPress themes is on third-party websites.
You have to be careful, though. Although most themes released to the public are done with
the best intentions, there have been some instances where people have released themes full
of backdoors into your site and spam links.

As such, care needs to be taken to make sure that the theme you are downloading doesn't
give hackers and crackers a backdoor into your website, or populate your blog with hidden
spam links.

WordPress Theme Basics

12

How to do it...
The first thing that you need to do is find a theme you'd like to download. A search on Google
or Bing for best free WordPress themes will return a list of results that should get you started.
You can try more specific searches, such as best one column WordPress themes or best
business WordPress themes, if you already have a good idea of what you want.

After you find a theme that you'd like to download, you have some due diligence to perform.
You need to check the reputation of the theme developer to ensure that the theme is safe to
download. Some things to look for are:

Does the theme developer have support forums for their themes?

Does the developer have a blog that is updated somewhat frequently?

Have other users commented on the theme, either on the theme's website
or their own?

If you're comfortable with the reputation of the theme developer, it is usually safe to download
the theme and try it out. Just remember that you're taking a risk every time you download
software from the web. You should test the theme in a non-critical environment before
deploying it to a site that you actually care about.

How it works...
Developers release WordPress themes on their site instead of on the official theme repository
for a variety of reasons. The theme may use a different license than the GPL, the author may
be trying to garner publicity, or market themselves, and so on. Be sure to read any materials
distributed with the theme to make sure that you know your rights in regards to it.

Be cautious with themes that you download from third-party sites. Again, most themes are
safe, but it never hurts to have a friend or colleague familiar with WordPress check it out to
make sure. If that is not an option, you can always try contacting the developer before using
his theme and ask him if there is anything that you should watch out for. No matter what,
make sure that you test the theme in a non-critical environment before deploying it
somewhere important.

There's more...
There are several trusted developers who release high-quality themes on a regular basis. You
can find them at the following places:

Justin Tadlock—http://justintadlock.com/

Ian Stewart—http://themeshaper.com/

Ptah Dunbar—http://ptahdunbar.com/

Chapter 1

13

In addition, there are several sites available where you can purchase high-quality WordPress
themes at very reasonable prices. Some of the best sites to visit are:

ThemeForest Marketplace—http://themeforest.net

Thesis Theme—http://diythemes.com

WooThemes—http://woothemes.com

It is important to point out that paying $30-$100 for a theme (the average price range across
these and similar sites) is much less costly than taking an entire week to build a theme from
scratch. Although you may lose some of the individual flavor that you might have had if you
had developed a theme from scratch, the cost and time savings may be worth it to you.

Installing and activating a theme
Once you find or create a theme that is right for you, there is a need to install and activate it
so that it can start providing the output for your WordPress install. Installation is easy once
you know where WordPress expects theme files to be located, and activation is done through
the administration panel with a few clicks. In this recipe, you'll learn exactly how to do both.

Getting ready
Download or create a theme that you wish to install. The theme's files should be contained in
a single directory, exactly like the default WordPress themes are packaged.

How to do it...
First, you need to get your theme into the proper location in your WordPress install. Unless
you've configured your installation in an unusual way, the correct directory to install your
theme is wp-content/themes/. If you're working with a fresh install of WordPress, the
directory should contain two subdirectories: default and classic. This is shown in the
following screenshot:

WordPress Theme Basics

14

Once you get to the correct place, you need to create a new subdirectory for your theme. Here
we create a directory called wordpress-themes-cookbook that will hold all of the files for
the new theme:

After you've created the directory, place all of your theme's files into the new directory.
At this point, if your theme has been constructed properly and contains the necessary files,
you can activate the theme for use on your site. Open up your WordPress administrative area
and click on the Appearance menu item. You'll see the Manage Themes page, as shown in
the screenshot below:

Chapter 1

15

If you need to preview your theme before activating it, click on the Preview link under the
theme that you're interested in. After confirming that the view is correct, click on the Activate
link in the upper-right corner of the preview box, as shown in the next screenshot:

If you don't wish to preview your new theme, you can click on the Activate link directly. After
activation, the page will refresh and you'll be greeted with a message regarding the switch:

WordPress Theme Basics

1�

How it works...
When you activate a new theme, WordPress stores two values in the database, indicating
which theme is active, and what template files should be used. Whenever a page is viewed
on the website, WordPress looks up the active theme and uses the correct template files to
display the appropriate output.

The two values are located in the WordPress options table for your install and have keys of
stylesheet and template. In most circumstances, these two values will be the same.
However, if you are using a child theme, the template option will be the name of the folder
in which the parent theme is located.

Displaying the blog name
A variety of information about a blog can be entered in the WordPress administration panel.
Displaying that information publicly is the responsibility of the active theme. One piece of
information that you may want to display is the name of the blog.

How to do it...
First, you must locate the position at which the blog name should be displayed in your theme.
Open the appropriate theme file (header.php is a good place to start) and place your cursor
at the desired location. For the purposes of this recipe, you'll be inserting the blog's name as
the value of the title tag.

Locate the title tag and remove whatever value is contained within it. Now, insert the
bloginfo function and make the markup look like the following:

<title><?php bloginfo('name'); ?></title>

How it works...
When the blog name is set in the administrative panel, the value that the user enters is stored
in the options table within the WordPress database. When you call bloginfo with name as
the argument, the name of the blog is retrieved from the options table and displayed.

Benefits of open source
WordPress is open source software. As such, you can examine the code
base directly when you want to see how things are implemented. To get
the most out of WordPress, you should look up functions that you use
frequently, and bloginfo is a great place to start. It gives you a good
idea of the way WordPress stores and retrieves miscellaneous information,
and can be found in wp-includes/general-template.php.

Chapter 1

1�

There's more...
Template tags, of which bloginfo is one, often take one or more parameters that modify the
output produced. With bloginfo, the single parameter you can pass determines which piece
of information about the blog should be displayed.

Blog info available
The sole parameter accepted by the bloginfo function is a simple string. The following
strings are supported, and must be passed in place of name in the above code sample:

String Data Displayed
name The blog's title
description The blog's tag line
url The URL to the blog's home page
wpurl The URL to the WordPress installation
rdf_url The URL for the blog's RDF/RSS 1.0 feed
rss_url The URL for the blog's RSS 0.92 feed
atom_url The URL for the blog's ATOM feed
comments_rss2_url The URL for the blog's comments RSS 2.0 feed
pingback_url The URL for the pingback XML-RPC file
stylesheet_url The URL for the primary CSS file of the active theme
stylesheet_
directory

The URL of the style sheet directory of the active theme

template_directory

template_url

The URL of the active theme's directory

admin_email The e-mail address of the blog administrator
charset The blog's encoding for pages and feeds
version The blog's version of WordPress
html_type The content type of WordPress HTML pages

Retrieving information without displaying it
To retrieve a piece of information for storage in a variable or for further manipulation, use the
get_bloginfo function instead of bloginfo. get_bloginfo returns information instead
of printing it, and supports the same parameters as bloginfo.

As an example, perhaps you want to capitalize the blog name for some reason. The following
would allow you to do so:

<?php echo strtoupper(get_bloginfo('name')); ?>

WordPress Theme Basics

18

Getting the absolute directory path of the
active theme

It sometimes becomes necessary to directly access files within the active theme's directory.
Binary file loading, PHP or HTML includes, and iteration over custom file structures (as used in
some theme frameworks) are some of the reasons for using direct access.

How to do it...
You can access the STYLESHEETPATH constant from any PHP file in your theme. The
STYLESHEETPATH constant is defined when WordPress first loads.

To give you an idea of how the constant works, consider the case where you want to load a
file containing some variable declarations for your theme. Create a new file in your theme's
directory called config-variables.php, and add the following code to it:

<?php
$blue = 1;
$red = 2;
$green = 3;

Next, open up your theme's header file—header.php—and add the following code at the very
beginning of the file:

<?php include (STYLESHEETPATH . '/config-variables.php '); ?>

Now, anywhere inside of your theme, you'll be able to access the variables defined within
config-variables.php.

How it works...
The STYLESHEETPATH constant contains the absolute directory path to the file system
location that contains the active theme. This is true for both regular themes and child themes.
The STYLESHEETPATH constant does not contain a trailing slash, so one will need to be
appended when accessing individual files within the directory.

Creating a theme from scratch
Creating a great theme from scratch is a challenging task. You have to define markup and
behaviour, and add all of the necessary styles yourself. That being said, building from the
ground up is sometimes the only thing that makes sense if you're building something
really special.

Chapter 1

1�

Although making sure everything works correctly when you're finished will be difficult,
getting started with your theme is not. There are only a few files required to get you going.
After that, though, you'll be on your own as far as making sure that all of the appropriate
information gets displayed.

How to do it...
First, create a new directory to contain your theme, and name it whatever you want. If you
need help figuring out where to place your theme, see the recipe Installing and activating
a theme.

Next, create the following files inside your newly-created directory:

style.css

index.php

The theme's main stylesheet (style.css) is required to contain information about the theme
in a particular format. This is very important. Without this information, WordPress will not be
able to correctly recognize your theme. Open style.css and insert the following:

/*
Theme Name: Your Theme Name
Theme URI: http://example.com
Description: Write a short description.
Author: Your Name
Author URI: http://example.com
*/

After inserting the base structure, you are free to change it to whatever you see fit. For my
purposes, I've changed the code to read as follows:

/*
Theme Name: WordPress Themes Cookbook
Theme URI: http://plugin-developer.com/wordpress-themes-cookbook-
theme/
Description: A demonstration theme for the WordPress Themes Cookbook.
Author: Nick Ohrn
Author URI: http://plugin-developer.com
*/

WordPress Theme Basics

20

Now, to test that you correctly entered all the information, you need to visit the Manage
Themes section of the WordPress administration panel. Open up the WordPress
administration interface and click on Appearance. Scroll down, and you should see
a box that contains all of the information for your newly-created theme. Given the
information that I entered, my box looks like the following:

Your Manage Themes page should display the information that you entered. For
more information on the different items that your style.css file can contain, see
the official WordPress documentation at http://codex.wordpress.org/Theme_
Development#Theme_Style_Sheet.

There's more...
WordPress themes generally contain a variety of different files to display data of different
types and organizations. In addition to the required style.css and index.php files, you
can create specially-named files that will handle certain situations.

Recognized WordPress files
WordPress recognizes and uses a variety of files for different situations. A full list
of files and their use can be found at http://codex.wordpress.org/Theme_
Development#Theme_Template_Files_List. The following list describes the
most common files and the purposes for which they are used:

home.php—used to display the home page

single.php—used to display a single post

page.php—used to display a single page

Chapter 1

21

category.php—used to display a category archive

author.php—used to display an author archive

date.php—used to display a date- or time-based archive

archive.php—used to display a generic archive if category.php, author.php,
or date.php are not present

search.php—used to display search results

404.php—used when no results match a query

Organizing a theme
WordPress recognizes that a good theme will be well-organized and often has a consistent
header, sidebar, footer, and comments section. As such, the following files are supported for
separating those elements out, and are included with special WordPress functions:

header.php—get_header()

footer.php—get_footer()

sidebar.php—get_sidebar()

comments.php—comment_form()

For more information on these functions,
see http://codex.wordpress.org/Theme_Development#Basic_Templates.

See also
Installing and activating a theme

Creating a child theme
One of the features that is really gaining traction in the WordPress theme development
community is the concept of child themes. A child theme is a theme that has a unique
stylesheet but inherits the template files from a parent theme. That is, the parent theme is
largely responsible for producing the template output, and the child theme is responsible for
styling that output.

In addition, a child theme can selectively override certain template files. So, if a child theme
wishes to have a special home page or wants to list a specific archive type in a unique way,
it can override only those pages and everything else will still display as defined by the
parent theme.

WordPress Theme Basics

22

Getting ready
Before creating a child theme, you must choose a parent to base it on. You can use any
existing WordPress theme as your parent when creating a child theme. When deciding on a
parent theme, remember that the child theme can both style the output of the parent and use
its own template files to override the parent theme's display of information.

How to do it...
First, you need to determine which theme you want to use as the parent. Pick a theme that
generates markup that you're happy with and feel that you can style appropriately. For the
purposes of this recipe, we'll use the WordPress Default theme.

When you choose your parent theme, you need to make a note of the name of the
directory containing the parent theme. The directory for the WordPress Default theme
is named default.

Now create a new a directory to contain your child theme. You can name the new directory
whatever you want. Create a new file—style.css—inside your newly-created directory. Then
insert the following code:

/*
Theme Name: Your Child Theme Name
Theme URI: http://example.com
Description: Write a short description.
Template: Parent Theme Directory Name
Author: Your Name
Author URI: http://example.com
*/

Replace the information in the above code snippet with your desired theme information. For
example purposes, we've modified this code snippet to read as follows:

/*
Theme Name: WordPress Themes Cookbook Child
Theme URI: http://plugin-developer.com/wordpress-themes-cookbook-
theme/
Description: A demonstration child theme for the WordPress Themes
Cookbook.
Template: default
Author: Nick Ohrn
Author URI: http://plugin-developer.com
*/

Chapter 1

23

After creating the child theme's style.css file, visit the Manage Themes page in your
WordPress administration panel. If you've done everything correctly and put the correct
string next to the Template: item, you'll see something like the following:

However, if you put a nonexistent or incorrect folder name next to the Template: item, you'll
see an error message like the following:

How it works...
When you activate a child theme, WordPress reads the style.css file for that theme and
recognizes that it has a parent. It then stores the values as discussed in the recipe Installing
and activating a theme. The parent theme's folder name is stored in the template option,
whereas the child theme's folder name is stored in the stylesheet option.

When WordPress starts to render a page, it looks for appropriate templates first in the
directory defined by the stylesheet option, and then falls back to the directory specified by
the template option. Other than that, there isn't that much difference between a child theme
and a regular theme.

WordPress Theme Basics

24

There's more...
The concept of child themes is a really powerful one. As a theme developer, you can create a
base theme with good markup and a layout that you're happy with, and then make small style
tweaks by using a child theme. If you're doing this, then there is one trick in particular that
you'll want to use.

Maintaining default styling
If you've got a carefully-styled base theme, you can choose to selectively override styling while
maintaining the basic look of the parent theme. To do so, you include an import statement in
the style.css file. Insert the following statement after the theme definition header that you
copied earlier in the recipe:

@import url('../folder-name/style.css');

Replace folder-name with the directory name of your parent theme. At this point, refresh
your browser and you'll notice that the child theme looks exactly the same as the parent
theme. Individual styles can then be selectively overridden in the child theme's style sheet
by placing style declarations after the import statement.

See also
Installing and activating a theme

Creating a theme by using a theme
framework

Creating a theme by using a theme framework allows for the ultimate in customization. Theme
frameworks tend to allow easy modification of template output in addition to customization of
element styles. This puts more power into the hands of the derivative theme developer.

Getting ready
Download and install the theme framework of your choice. For more information on this,
please see the recipe Installing and activating a theme.

How to do it...
First, you need to pick a theme framework to build on. There are several theme frameworks
listed in the There's more... section of this recipe, and all of them consist of quality markup
and carefully chosen styles, making them a snap to build on top of.

Chapter 1

25

After you've chosen a theme framework, it is time to create a theme based on that framework.
To do so, you'll use the technique described in Creating a child theme. After you've created the
base child theme, you can start to customize it.

In most cases, you override the markup of a parent theme by supplying template files directly
in your child theme. With a theme framework, things generally work a little differently. You
supply your custom markup by attaching callbacks to custom action and filter hooks, as
defined by the theme framework. To find out what the custom hooks are, you need to
read the theme framework's documentation.

To add appropriate functionality via the custom hooks, you create a functions.php file
inside your child theme, and use the Plugin API to add callbacks to the theme framework's
custom hooks.

How it works...
A theme framework is a theme created for the sole purpose of being extended by child
themes. They are built to be modified by users for use on their own websites. Although most
theme frameworks can be used out of the box, it is the personalization and customization
that end users and developers perform that really allow their particular use of the framework
to shine.

There's more...
There are several quality theme frameworks in existence at the time of writing this book. The
best are as follows:

Thematic—http://themeshaper.com/thematic/

Hybrid—http://themehybrid.com/archives/2008/11/hybrid-wordpress-
theme-framework

Carrington—http://carringtontheme.com/

Vanilla—http://code.google.com/p/vanilla-theme/

Whiteboard—http://plainbeta.com/2008/05/20/whiteboard-a-free-
wordpress-theme-framework/

WPFramework—http://wpframework.com/

See also
Installing and activating a theme

Creating a child theme

WordPress Theme Basics

2�

Adding expected WordPress hooks
WordPress themes should possess a number of different hooks by default, allowing active
plugins to alter or add output when pages are rendered. WordPress development guidelines
specify the names and locations of the expected WordPress hooks in themes.

How to do it...
There are three WordPress hooks that you need to add to almost every custom theme.
They are:

wp_head

wp_footer

comment_form

First, add the wp_head hook. Find the end tag of the HTML head element (</head>, often
in header.php) and place your cursor on the line before it. Insert the following:

<?php do_action('wp_head'); ?>

Next, add the wp_footer hook. Find the end tag of the HTML body element (</body>, often
in footer.php) and place your cursor on the line before it. Insert the following:

<?php do_action('wp_footer'); ?>

Finally, insert the comment_form hook. Locate the end tag of the HTML form element for the
comment form (</form>, often in comments.php and comments-popup.php) and place
your cursor on the line before it. Insert the following:

<?php do_action('comment_form', $post->ID); ?>

If you are using the default comments form layout, you won't have to explicitly add the
comment_form hook because it is provided in the default theme's comments.php file.

How it works...
Plugins use these hooks to add to or modify the rendered output of a theme's template files.
Often the modification includes linking to or outputting JavaScript, CSS, or HTML code. Many
popular plugins use the above hooks, and making sure that they are present is essential to
the plugin's proper operation.

Chapter 1

2�

There's more...
Although wp_head, wp_footer, and comment_form are the only hooks necessary for a
complete theme, it is possible to add many more custom hooks that allow individuals to
customize a theme after it has been fully developed by its author.

Including PHP files from your theme
For organizational or reuse purposes, you will often separate components of your theme into
separate files to be used in several different places.

Getting ready
Before getting started, you need to identify the pieces of output that will be reused throughout
your theme, and separate them into different PHP files. You may wish to separate common
post listing structures or advertisement blocks.

How to do it...
First, you should identify the piece of output that you wish to reuse and separate it into a new
file. For this recipe, we'll say that you have a notice snippet that you may wish to include in
several places. Place the following code in a new file called notice-snippet.php:

<div class="notice-snippet">
Thanks for visiting my site!
</div>

After you've separated it, you need to decide where you want to display the snippet. Wherever
you want to display the snippet, insert the following:

<?php include TEMPLATEPATH . '/notice-snippet.php'; ?>

You'll notice that your snippet is now shown in the template wherever you inserted the
above statement.

How it works...
The include function does exactly what you would think it does: it includes the contents of
the separate file wherever you use it. The important thing to remember about this example is
the TEMPLATEPATH constant used in the include statement.

TEMPLATEPATH is a constant defined by WordPress that holds the directory path to the
directory that contains the template used to render output for the theme. You should use
the TEMPLATEPATH constant whenever you need to have PHP access files from your theme.

WordPress Theme Basics

28

There's more...
In addition to the TEMPLATEPATH constant, WordPress provides a STYLESHEETPATH
constant. Generally, these two constants hold the same variable. However, if a child theme is
active, then the STYLESHEETPATH constant will contain the file system path to the style sheet
in use, whereas the TEMPLATEPATH constant will contain the file system path to the parent
theme directory.

2
Creating Navigation

In this chapter, we will cover:

Listing all of the pages that exist on a blog

Listing all of the categories defined for a blog

Listing all of the tags in use on a blog

Highlighting the current page in the navigation

Adding a search function to a theme

Getting the category page link from a category name

Displaying page links only if the destination page exists

Creating a category drop-down menu

Creating drop-downs using child pages

Introduction
One of the most important aspects of any website is navigation. Making sure that a visitor can
get around is paramount to increasing traffic, user engagement, and visit length. By offering a
variety of navigation methods, you give the user multiple ways to find the content that interests
them. There are several techniques built into WordPress that you can use to build the navigation
that lets your users find what they need on your site.

When thinking about the topic of navigation in the context of this chapter, it is important to
also consider the subject as a whole. Don't limit yourself to the concept of a top or side main
navigation item. Those types of navigation are very important, but for the purposes of this
chapter, you'll consider navigation as a whole—meaning any way that helps the user to get
around your site.

Creating Navigation

30

Listing all of the pages that exist on a blog
WordPress pages often contain static content that should be reachable at any time. Common
uses for WordPress pages are website and author descriptions, contact forms, affiliate
information, and more. Making sure that these pages can be found and navigated to
quickly is paramount.

How to do it...
First, decide where you want to generate a linked list of all your pages. If you're comfortable
using pages for navigation, then you probably want to put the pages listing directly below your
main site identification elements, in header.php. Open your chosen template file and insert
the following:

 <?php wp_list_pages(); ?>

Next, open your theme in your browser and take a look at the spot where you inserted the
appropriate code. Depending on your site's styles and the pages that you've created, the
output for this function call should look like the main content area in the following screenshot:

Chapter 2

31

How it works...
When you call wp_list_pages, WordPress performs a database query, fetching the
appropriate pages based on the parameters that you pass to the function. After fetching the
pages, WordPress builds the markup for the list. The markup consists of an tag containing
a link to the page for each page that was fetched. If the title_li parameter is not empty,
then the entire list is wrapped in a containing . By default, the previous code will produce
markup that is similar to the following:

<li class="pagenav">Pages
 <li class="page_item page-item-271">
 <a title="Affiliates"
 href="http://themes.local/affiliates/">Affiliates

 <li class="page_item page-item-269">
 <a title="Authors"
 href="http://themes.local/authors/">Authors

 <li class="page_item page-item-267">
 <a title="Contact"
 href="http://themes.local/contact/">Contact

 <li class="page_item page-item-273">
 <a title="Terms & Conditions"
 href="http://themes.local/terms-conditions/">Terms &
 Conditions

 <li class="page_item page-item-256 current_page_item">
 <a title="WP List Pages"
 href="http://themes.local/list-pages/">WP List Pages

There's more...
The default output for wp_list_pages might not fit your specific use cases. Luckily,
modifying the output from wp_list_pages is easy.

Passing parameters
The wp_list_pages output can be changed by passing different values for a wide array of
parameters, as follows:

<?php
wp_list_pages(array('parameter_name' => 'parameter_value'));
?>

Creating Navigation

32

Some of the more important parameters are as follows:

Parameter Name Effect
echo Set to false to cause wp_list_pages to return a string containing

HTML markup instead of printing the markup
child_of Pass a numeric ID to only retrieve child pages of the page with that ID
exclude Pass a comma-delimited list of page IDs (for example: '#,#,#') to

exclude them from the pages displayed

Taking this into account, consider the case where you only want to display pages that are a
child of the affiliate information page. If the affiliate information page has an ID of 4, then
you would use wp_list_pages as follows:

<?php wp_list_pages(array('child_of'=>4)); ?>

For more information on the available parameters, visit http://codex.wordpress.org/
Template_Tags/wp_list_pages.

Listing all of the categories defined for a blog
Proper categorization of posts is a great way to help visitors find what they are looking for. To
make it even easier, a theme could include a list of all of the categories in which there are
posts. This technique works best on blogs with a small number of categories.

Alternatively, you can use category drill-downs that change based on the category level that
you're at. If you're writing a site about music, you might have Rock, Hip Hop, and Country as top-
level categories, each containing second-level categories such as Reviews, Recommendations,
and News. In this way, your users can navigate directly to the information that they're looking for,
quickly and easily.

How to do it...
First, decide where you want to generate a linked list of all of your categories. If you're taking
a drill-down approach as talked about in the introduction to this recipe, then you may wish to
put the list of links in the header of your site. Otherwise, category links would be best
served in a sidebar or footer. Open the appropriate template file and insert the following:

 <?php wp_list_categories(); ?>

Next, open your theme in your browser and take a look at the spot where you inserted the
appropriate code. Depending on your site's styles, and the categories that you've created, the
output for this function call should look like the following:

Chapter 2

33

How it works...
When you call wp_list_categories, WordPress performs a database query, fetching all
of the categories that match the parameters that you pass to the function. After fetching the
categories, WordPress builds the markup for the list. The markup consists of an tag
containing a link to the categories archive page for each category that was fetched. If the
title_li parameter is not empty, then the entire list is wrapped in a containing . By
default, the previous code will produce markup that is similar to the following:

<li class="categories">Categories
 <li class="cat-item cat-item-3">
 <a title="View all posts filed under aciform"
 href="http://themes.local/category/aciform/">aciform
 <ul class="children">
 <li class="cat-item cat-item-41">
 <a title="View all posts filed under sub"
 href="http://themes.local/category/aciform/sub/">sub
 <ul class="children">
 <li class="cat-item cat-item-102">

Creating Navigation

34

 <a title="View all posts filed under sub sub"
 href="http://themes.local/category/aciform/sub/sub-sub/"
 >sub sub

 <li class="cat-item cat-item-4">
 <a title="View all posts filed under antiquarianism"
 href="http://themes.local/category/antiquarianism/"
 >antiquarianism

 <li class="cat-item cat-item-5">
 <a title="View all posts filed under arrangement"
 href="http://themes.local/category/arrangement/">arrangement

 <li class="cat-item cat-item-6">
 <a title="View all posts filed under asmodeus"
 href="http://themes.local/category/asmodeus/">asmodeus

 <li class="cat-item cat-item-7">
 <a title="View all posts filed under broder"
 href="http://themes.local/category/broder/">broder

 <li class="cat-item cat-item-8">
 <a title="View all posts filed under buying"
 href="http://themes.local/category/buying/">buying

There's more...
The default output for wp_list_categories might not fit your specific use cases. Luckily,
modifying the output is easy.

Passing parameters
Similar to wp_list_pages, the categories retrieved by wp_list_categories can be
modified by passing parameters to the function. Parameters are passed as follows:

<?php
wp_list_categories(array('parameter_name' => 'parameter_value'));
?>

Chapter 2

35

Some of the more important ones are as follows:

Parameter Name Effect
Number Pass a numeric value to limit the number of categories retrieved. This

is especially helpful for blogs with a large number of categories.
Feed Pass true to cause a link to each category's feed to be printed
current_
category

Pass the ID of a category to force the output to contain the
current-cat class on a particular category.

For example, say you wanted to limit your category list to the first five categories. To do so, you
would use the following code:

<?php
wp_list_categories(array('number' => 5));
?>

For more information on the available parameters,
visit http://codex.wordpress.org/Template_Tags/wp_list_categories.

Listing all of the tags in use on a blog
Generally, tags are used liberally to indicate the subject matter of a post. For this reason, a list
of tags is a great way to help visitors to get around a blog and view a wide array of posts that
they're interested in. By default, WordPress lists tags in a cloud, varying the size of each tag
according to the number of times it was used. However, this default output can be modified
to produce a list that might make more sense to your users.

How to do it...
First, decide where you want to generate a linked list of all of your tags. Open the appropriate
template file, and insert the following:

<?php
wp_tag_cloud(array(
 'format' => 'list',
 'unit' => ''
));
?>

Creating Navigation

3�

Next, open your theme in your browser and take a look at the spot where you inserted the
appropriate code. Depending on your site's styles, the output for this function call should look
like the example shown in following screenshot:

How it works...
When you call wp_tag_cloud, WordPress performs a database query, fetching all of the
tags that match the parameters you pass to the function. After fetching the tags, WordPress
builds the markup for the list. Using the parameters in the previous code, the markup consists
of an tag containing a link to the categories archive page for each category that was
fetched. The entire list is then wrapped in a containing tag, producing output similar
to the following:

<ul class="wp-tag-cloud">

 <a style="" title="1 topic" class="tag-link-53"
 href="http://themes.local/tag/chattels/">chattels

 <a style="" title="1 topic" class="tag-link-54"

Chapter 2

3�

 href="http://themes.local/tag/cienaga/">cienaga

 <a style="" title="1 topic" class="tag-link-55"
 href="http://themes.local/tag/claycold/">claycold

 <a style="" title="1 topic" class="tag-link-56"
 href="http://themes.local/tag/crushing/">crushing

 <a style="" title="1 topic" class="tag-link-58"
 href="http://themes.local/tag/dinarchy/">dinarchy

 <a style="" title="1 topic" class="tag-link-59"
 href="http://themes.local/tag/doolie/">doolie

You'll notice that each of the <a> tags that link to the tag archive page has an empty in-line
style attribute. This is a consequence of the processing that wp_tag_cloud does internally.
You'll also notice that unlike wp_list_pages and wp_list_categories, this function
produces a surrounding element for its items.

There's more...
In most cases, the default display of wp_tag_cloud will not be the one that is most
beneficial to your users. This is especially true for business blogs and professional
sites. Luckily, there is an easy way to change how wp_tag_cloud displays.

Passing parameters
As seen earlier, the output from wp_tag_cloud can be modified by using parameters with
the function call. Parameters are passed in the same way as with many other WordPress
functions, which is in the following format:

<?php
wp_tag_cloud(array('parameter_name' => 'parameter_value'));
?>

You've already seen a couple of the parameters that wp_tag_cloud supports. Another
important one is the number parameter, which limits the number of tags placed in the
cloud. If you wanted to limit the number of tags to 5, then you'd call the function as follows:

<?php
wp_tag_cloud(array('number' => 5));
?>

Creating Navigation

38

For more information on the available parameters,
visit http://codex.wordpress.org/Template_Tags/wp_tag_cloud.

Highlighting the current page in the
navigation

One easy way to provide a great user experience is to make sure that the user's current location
on a website is plainly visible to them. The best way to accomplish this is to visibly highlight the
navigation item for the page that the user is on.

How to do it...
First, ensure that you have used wp_list_pages to generate a list of links for use in
navigation. Most likely, you'll do this in the site header where your main navigation is located.
After you've done this, open your theme's stylesheet (style.css) and add the following CSS:

.current_page_item a {
 color: #fff;
 background: #000;
}

If you've done everything correctly, depending on your theme's styles, you'll see something like
the following on your home page:

After you navigate to the page with the title Lorem Ipsum, you'll see the following on
your home page:

How it works...
When wp_list_pages creates output, it adds the current_page_item class to the list
item for the page that is currently being viewed. You style this class to ensure that the current
page appears differently from other pages.

The previous CSS code simply changes the background color of the list item to black, while
changing the text color to white. However, you can use any CSS declarations to customize the
style of the highlighted item to your heart's content.

Chapter 2

3�

There's more...
If your blog has a small number of top-level categories and you are using wp_list_
categories for your main navigation items, you might want to take advantage of the
highlighting capabilities demonstrated for pages. Doing so is easy, because you can use
the earlier-featured code in full. You just have to change the targeted class from
current_page_item to current-cat, as follows:

.current-cat a {
 color: #fff;
 background: #000;
}

Adding a search function to a theme
In spite of your best efforts, static navigation for a website will always be left wanting when a
user wants to quickly and easily find content matching a specific term or phrase. That is where
search comes in, and with WordPress, it is easy to implement.

How to do it...
Open your theme and decide where you want to place the search form. The best place for a
search form is either in the header or at the top of a sidebar in the site. When you figure out
where you want to place the search form, insert the following code at the appropriate place:

<form method="get" id="searchform" action="<?php echo site_url('/');
?>">
<label class="hidden" for="s"><?php _e('Search for:'); ?></label>
 <div>
 <input type="text"
 value="<?php echo attribute_escape(get_search_query()); ?>"
 name="s" id="s" />
 <input type="submit" id="searchsubmit"
 value="<?php _e('Search'); ?>" />
 </div>
</form>

After you've inserted the search form markup, style the form elements as desired. By default,
you'll end up with output that looks like the following:

Creating Navigation

40

How it works...
In this recipe, you've created the standard markup for a WordPress search form. In the markup,
there is a label describing the search input, the search text input itself, and the submit button
for the form. When a user types text into the form and submits it, WordPress detects the
parameters contained in the query and responds accordingly.

Of particular note in this recipe is the use of two WordPress functions. The first is get_search_
query. This function retrieves the search query text that a user submitted, so that the user can
see what they searched for. In addition, the site_url function is used to output the home page
for the blog. This function is a handy utility that lets you easily construct URLs to your site.

There's more...
Searching is a complicated thing, and many developers feel that the default search functionality
in WordPress is inadequate. Luckily, because of WordPress' extensive plugin system, there is a
solution. That solution is the Search Everything plugin by Dan Cameron of Sprout Venture.

The Search Everything plugin, found at http://wordpress.org/extend/plugins/
search-everything/, allows for searching tags, categories, pages, comments, and
more. It might be a great addition to your WordPress installation, so check it out.

Getting the category page link from a
category name

There are several situations where a particular category should be linked to directly. If the
name of the category is known, but the ID of the category could differ (for instance, between
production and development environments), then it is useful to be able to retrieve the category
page link directly from the category name. In addition, it is helpful to not display the link at all if
the category doesn't exist.

How to do it...
For this recipe, consider the situation where you need to link to three different categories:
Testimonials, Portfolio, and Thoughts. You've established each of these categories in your
local development environment and in your staging environment, but you haven't yet created
them on the blog where you'll be launching your theme. This is a good situation to use
conditional linking.

Chapter 2

41

Given this situation, you need code similar to the following:

<?php
$nav_categories = array('Testimonials','Portfolio','Thoughts');
?>
<ul id="site-nav">
 <?php
 foreach($nav_categories as $cat_name) {
 $cat_id = get_cat_ID($cat_name);
 if($cat_id) {
 ?>

 <a href="<?php echo get_category_link($cat_id); ?>">
 <?php echo $cat_name; ?>

 <?php
 }
 }
 ?>

This code produces a nice list of links for the categories that exist. You remove the chance
of fatal errors from using non-existent categories, and you provide your users with a
better experience.

How it works...
The get_cat_ID function returns the ID for a specific category name. If a category with that
name does not exist, the function returns the value 0. Therefore, the condition that checks the
$cat_id variable will prevent the system from trying to retrieve a link for categories that do not
exist. If the category does exist, the category link will be displayed appropriately.

Displaying page links only if the destination
page exists

In themes intended for distribution, you may want to provide a link to an About or Contact
page somewhere in the theme template. However, you won't want to display the link if the
page doesn't actually exist. To get around this, you can use some WordPress functions to
see if the destination page exists.

Creating Navigation

42

How to do it...
Identify all of the pages that you wish to link to individually in your theme. For each of them,
insert the following code, replacing Page Name with the name of the page you're referencing:

<?php
$page = get_page_by_title('Page Name');
if(null !== $page) {
 echo 'ID) . '">Page Name';
}
?>

How it works...
The get_page_by_title function returns an object containing all of the information about
the page with the specified title if the page exists. If the page does not exist, the function returns
null. In this recipe, you check the value of the $page variable to make sure that the page
exists. If it does, a link to the page is printed, utilizing get_page_link to retrieve the correct
URL for the page.

get_page_link respects the front page options of WordPress and bypasses a lot of checks
that get_permalink has for non-page links. If you know that you are linking to a page and
not a post, you should use get_page_link.

Creating a category drop-down menu
For highly-categorized and deeply-hierarchical sites, showing a full list of categories and
subcategories can take up a lot of space in your design. To get around this, you can change
your categories list from static to dynamic by using a simple JavaScript technique.

How to do it...
First, download the Superfish package from http://users.tpg.com.au/j_birch/
plugins/superfish/ and place all of the JavaScript files contained within it in your theme
directory. Next, insert the following code in your theme's <head> section, above the wp_head
function call:

<?php
wp_enqueue_script('superfish',
get_bloginfo('stylesheet_directory') . '/superfish.js',
array('jquery'));
?>

Chapter 2

43

Place the following code after the wp_head call:

<script type="text/javascript">
// <![CDATA[
jQuery(document).ready(function() { jQuery('ul.superfish').
superfish(); });
//]]>
</script>

Now, open the template file in which you wish to display your Category drop-down.
Insert the following:

<ul class="nav superfish">
 <?php wp_list_categories(array('title_li'=>'','hide_empty'=>false));
?>

Finally, load your page. Unstyled, you'll see something like the following:

When you hover over a category name that has a child, you'll see the following:

How it works...
The Superfish script is a JavaScript solution to realize true cross-browser drop-downs. It takes
advantage of the semantic markup generated by the wp_list_categories function to create
drop-downs with fully-realized submenus for subcategories. The internals of Superfish are
beyond the scope of this recipe.

Creating Navigation

44

The empty title_li parameter in this recipe prevents a separate list item containing a title
string from being generated and displayed. This extra list item could prove confusing to users
and should generally be removed with this parameter, when using categories for navigation.

Creating drop-downs using child pages
Complex sites can be created with WordPress by using only the system of pages and
subpages. In order to allow the user to easily drill down through a topic, it can be
beneficial to create drop-downs from the parent-child page relationship.

Getting started
For this recipe to be useful, you must first create a series of pages and subpages that you'll be
using for your site's content. An example of a desirable hierarchical content organization that
would be useful to structure in this way would be a top-level "Teams" page with subpages for
each team in the league that you're writing about.

How to do it...
Follow the steps for the recipe Creating a category drop-down menu until you get to the point
where you use the function wp_list_categories. Then insert the following code:

<ul class="nav superfish">
 <?php wp_list_pages(array('title_li'=>'')); ?>

Depending on your theme's styles, you should see something similar to the following, before
hovering over a parent page:

And you should see the following after hovering over a parent page:

Chapter 2

45

How it works...
Again, the semantic markup output by the wp_list_pages function is the real star here.
The Superfish JavaScript takes the nested lists generated by WordPress and transforms them
into easy-to-use and efficient drop-down menus. The internals of the Superfish JavaScript
is beyond the scope of this recipe, but the basic idea is that it uses hover events on the
hierarchical list items to make the drop-downs work appropriately.

See also
Creating a category drop-down menu

3
The Loop

In this chapter, we will cover:

Creating a basic Loop

Displaying ads after every third post

Removing posts in a particular category

Removing posts with a particular tag

Highlighting sticky posts

Creating multiple loops in a single template

Displaying only posts in a particular category

Styling every other post differently

Styling posts in a particular category differently

Showing every post in a category on a category archive page

Introduction
The Loop is the basic building block of WordPress template files. You'll use The Loop when
displaying posts and pages, both when you're showing multiple items or a single one. Inside
of The Loop you use WordPress' template tags to render information in whatever manner your
design requires.

WordPress provides the data required for a default Loop on every single page load. In addition,
you're able to create your own custom Loops that display post and page information that you
need. This power allows you to create advanced designs that require a variety of information to
be displayed. This chapter will cover both basic and advanced Loop usage and you'll see exactly
how to use this most basic WordPress structure.

The Loop

48

Creating a basic Loop
The Loop nearly always takes the same basic structure. In this recipe, you'll become
acquainted with this structure, find out how The Loop works, and get up and running
in no time.

How to do it...
First, open the file in which you wish to iterate through the available posts. In general, you use
The Loop in every single template file that is designed to show posts. Some examples include
index.php, category.php, single.php, and page.php. Place your cursor where you
want The Loop to appear, and then insert the following code:

<?php
if(have_posts()) {
 while(have_posts()) {
 the_post();
 ?>
 <h2><?php the_title(); ?></h2>
 <?php
 }
}
?>

Using the WordPress theme test data with the above Loop construct, you end up with
something that looks similar to the example shown in following screenshot:

Chapter 3

4�

Depending on your theme's styles, this output could obviously look very different. However,
the important thing to note is that you've used The Loop to iterate over available data from the
system and then display pieces of that data to the user in the way that you want to. From here,
you can use a wide variety of template tags in order to display different information depending
on the specific requirements of your theme.

How it works...
A deep understanding of The Loop is paramount to becoming a great WordPress designer and
developer, so you should understand each of the items in the above code snippet fairly well.

First, you should recognize that this is just a standard while loop with a surrounding if
conditional. There are some special WordPress functions that are used in these two items, but
if you've done any PHP programming at all, you should be intimately familiar with the syntax
here. If you haven't experienced programming in PHP, then you might want to check out the
syntax rules for if and while constructs at http://php.net/if and http://php.net/
while, respectively.

The next thing to understand about this generic loop is that it depends directly on the global
$wp_query object. $wp_query is created when the request is parsed, request variables are
found, and WordPress figures out the posts that should be displayed for the URL that a visitor
has arrived from. $wp_query is an instance of the WP_Query object, and the have_posts
and the_post functions delegate to methods on that object.

The $wp_query object holds information about the posts to be displayed and the type of
page being displayed (normal listing, category archive, date archive, and so on). When
have_posts is called in the if conditional above, the $wp_query object determines
whether any posts matched the request that was made, and if so, whether there are any
posts that haven't been iterated over.

If there are posts to display, a while construct is used that again checks the value of
have_posts. During each iteration of the while loop, the the_post function is called.
the_post sets an index on $wp_query that indicates which posts have been iterated over.
It also sets up several global variables, most notably $post.

Inside of The Loop, the the_title function uses the global $post variable that was set up
in the_post to produce the appropriate output based on the currently-active post item. This
is basically the way that all template tags work.

If you're interested in further information on how the WP_Query class works, you should read
the documentation about it in the WordPress Codex at http://codex.wordpress.org/Function_
Reference/WP_Query. You can find more information about The Loop at http://codex.
wordpress.org/The_Loop.

The Loop

50

Displaying ads after every third post
If you're looking to display ads on your site, one of the best places to do it is mixed up with
your main content. This will cause visitors to view your ads, as they're engaged with your
work, often resulting in higher click-through rates and better paydays for you.

How to do it...
First, open the template in which you wish to display advertisements while iterating over the
available posts. This will most likely be a listing template file like index.php or category.
php. Decide on the number of posts that you wish to display between advertisements. Place
your cursor where you want your loop to appear, and then insert the following code:

<?php
if(have_posts()) {
 $ad_counter = 0;
 $after_every = 3;
 while(have_posts()) {
 $ad_counter++;
 the_post();
 ?>
 <h2><?php the_title(); ?></h2>
 <?php

 // Display ads
 $ad_counter = $ad_counter % $after_every;
 if(0 == $ad_counter) {
 echo '<h2 style="color:red;">Advertisement</h2>';
 }
 }
}
?>

Chapter 3

51

If you've done everything correctly, and are using the WordPress theme test data, you should
see something similar to the example shown in the following screenshot:

Obviously, the power here comes when you mix in paying ads or images that link to products
that you're promoting. Instead of a simple heading element for the Advertisement text, you
could dynamically insert JavaScript or Flash elements that pull in advertisements for you.

How it works...
As with the basic Loop, this code snippet iterates over all available posts. In this recipe, however,
a counter variable is declared that counts the number of posts that have been iterated over.
Every time that a post is about to be displayed, the counter is incremented to track that another
post has been rendered. After every third post, the advertisement code is displayed because the
value of the $ad_counter variable is equal to 0.

It is very important to put the conditional check and display code after the post has been
displayed. Also, notice that the $ad_counter variable will never be greater than 3
because the modulus operator (%) is being used every time through The Loop.

Finally, if you wish to change the frequency of the ad display, simply modify the
$after_every variable from 3 to whatever number of posts you want to
display between ads.

The Loop

52

Removing posts in a particular category
Sometimes you'll want to make sure that posts from a certain category never implicitly show
up in the Loops that you're displaying in your template. The category could be a special one
that you use to denote portfolio pieces, photo posts, or whatever else you wish to remove from
regular Loops.

How to do it...
First, you have to decide which category you want to exclude from your Loops. Note the name
of the category, and then open or create your theme's functions.php file. Your functions.
php file resides inside of your theme's directory and may contain some other code. Inside of
functions.php, insert the following code:

add_action('pre_get_posts', 'remove_cat_from_loops');

function remove_cat_from_loops($query) {
 if(!$query->get('suppress_filters')) {
 $cat_id = get_cat_ID('Category Name');
 $excluded_cats = $query->get('category__not_in');
 if(is_array($excluded_cats)) {
 $excluded_cats[] = $cat_id;
 } else {
 $excluded_cats = array($cat_id);
 }
 $query->set('category__not_in', $excluded_cats);
 }
 return $query;

}

How it works...
In the above code snippet, you are excluding the category with the name Category Name. To
exclude a different category, change the Category Name string to the name of the category
you wish to remove from loops.

Chapter 3

53

You are filtering the WP_Query object that drives every Loop. Before any posts are fetched
from the database, you dynamically change the value of the category__not_in variable in
the WP_Query object. You append an additional category ID to the existing array of excluded
category IDs to ensure that you're not undoing work of some other developer. Alternatively,
if the category__not_in variable is not an array, you assign it an array with a single item.
Every category ID in the category__not_in array will be excluded from The Loop, because
when the WP_Query object eventually makes a request to the database, it structures
the query such that no posts contained in any of the categories identified in the
category__not_in variable are fetched.

Please note that the denoted category will be excluded by default from all Loops that you
create in your theme. If you want to display posts from the category that you've marked to
exclude, then you need to set the suppress_filters parameter to true when querying
for posts, as follows:

query_posts(
 array(
 'cat'=>get_cat_ID('Category Name'),
 'suppress_filters'=>true
)
);

Removing posts with a particular tag
Similar to categories, it could be desirable to remove posts with a certain tag from The Loop.
You may wish to do this if you are tagging certain posts as asides, or if you are saving posts
that contain some text that needs to be displayed in a special context elsewhere on your site.

How to do it...
First, you have to decide which tag you want to exclude from your Loops. Note the name of the
tag, and then open or create your theme's functions.php file. Inside of functions.php,
insert the following code:

add_action('pre_get_posts', 'remove_tag_from_loops');

function remove_tag_from_loops($query) {
 if(!$query->get('suppress_filters')) {
 $tag_id = get_term_by('name','tag1','post_tag')->term_id;
 $excluded_tags = $query->get('tag__not_in');
 if(is_array($excluded_tags)) {
 $excluded_tags[] = $tag_id;
 } else {
 $excluded_tags = array($tag_id);
 }

The Loop

54

 $query->set('tag__not_in', $excluded_tags);
 }
 return $query;
}

How it works...
In the above code snippet, you are excluding the tag with the slug tag1. To exclude a different
tag, change the string tag1 to the name of the tag that you wish to remove from all Loops.

When deciding what tags to exclude, the WordPress system looks at a query parameter
named tag__not_in, which is an array. In the above code snippet, the function appends
the ID of the tag that should be excluded directly to the tag__not_in array. Alternatively, if
tag__not_in isn't already initialized as an array, it is assigned an array with a single item,
consisting of the ID for the tag that you wish to exclude. After that, all posts with that tag will
be excluded from WordPress Loops.

Please note that the chosen tag will be excluded, by default, from all Loops that you create in
your theme. If you want to display posts from the tag that you've marked to exclude, then you
need to set the suppress_filters parameter to true when querying for posts, as follows:

query_posts(
 array(
 'tag'=>get_term_by('name','tag1','post_tag')->term_id,
 'suppress_filters'=>true
)
);

Highlighting sticky posts
Sticky posts are a feature added in version 2.7 of WordPress and can be used for a variety of
purposes. The most frequent use is to mark posts that should be "featured" for an extended
period of time. These posts often contain important information or highlight things (like a
product announcement) that the blog author wants to display in a prominent position for a
long period of time.

How to do it...
First, place your cursor inside of a Loop where you're displaying posts and want to single out
your sticky content. Inside The Loop, after a call to the_post, insert the following code:

<?php
if(is_sticky()) {
 ?>

Chapter 3

55

 <div class="sticky-announcer">
 <p>This post is sticky.</p>
 </div>
 <?php
}
?>

Create a sticky post on your test blog and take a look at your site's front page. You should see
text appended to the sticky post, and the post should be moved to the top of The Loop. You
can see this in the following screenshot:

How it works...
The is_sticky function checks the currently-active post to see if it is a sticky post. It does
this by examining the value retrieved by calling get_option('sticky_posts'), which is
an array, and trying to find the active post's ID in that array.

The Loop

5�

In this case, if the post is sticky then the sticky-announcer div is output with a message.
However, there is no limit to what you can do once you've determined if a post is sticky.
Some ideas include:

Displaying a special icon for sticky posts

Changing the background color of sticky posts

Adding content dynamically to sticky posts

Displaying post content differently for sticky posts

Creating multiple loops in a single template
In advanced themes, there are often situations where you would want to display multiple
Loops consisting of posts with different criteria. When doing so, you should make sure not
to alter the normal default Loop or else some template tags will not work appropriately.

How to do it...
First, decide what kind of Loops you want to create. Perhaps you want to create two Loops,
based on different categories. Perhaps one Loop should have featured posts while the other
has the default posts based on the page URL. For this example, we're going to create two
category Loops.

To create the two category Loops, you need to create two separate instances of the
WP_Query class. Copy the following code snippet into one of your template files:

<?php
$query1 = new WP_Query(array('cat'=>get_cat_ID('aciform')));
if($query1->have_posts()) {
 ?><h1>Aciform Posts</h1><?php
 while($query1->have_posts()) {
 $query1->the_post();
 ?><h2><?php the_title(); ?></h2><?php
 }
}
echo '<hr />';
$query2 = new WP_Query(array('cat'=>get_cat_ID('Cat B')));
if($query2->have_posts()) {
 ?><h1>Cat B Posts</h1><?php
 while($query2->have_posts()) {
 $query2->the_post();
 ?><h2><?php the_title(); ?></h2><?php
 }
}
?>

Chapter 3

5�

The above snippet renders output that looks something like the example shown in
following screenshot:

You can see in the above image that there are two major sections. The first consists of the
titles of all posts with the category aciform. The second section consists of the titles of all
posts with the category Cat B

How it works...
In the above code sample, two new instances of the WP_Query class are created. The first
instance is created with parameters specifying that it should contain posts in the category
Aciform. The second instance is created with parameters specifying that it should contain
posts in the category Cat B

The parameters passed in each case direct the content of the SQL query, which is passed
to the underlying WordPress database. You don't really need to know about all of that, but
you can learn a lot by looking at how WordPress constructs the query inside of the
WP_Query class.

After the instances are created, the basic Loop construct is used. However, you should note
that all Loop functions are prefixed with the new object's name. So, when you're using the first
WP_Query object that contains posts in Aciform, each Loop function call is preceded with
the string $myquery1->. This ensures that the new query object's data is used instead of
the global $wp_query object's data.

The Loop

58

There's more…
The WP_Query constructor takes a variety of parameters as an array or formatted query
string. The parameters are the same as those for the query_posts and get_posts
WordPress functions, but there are far too many to even begin to dive into in this recipe. For
more information on the available parameters, please see http://codex.wordpress.
org/Template_Tags/query_posts#Parameters.

Displaying only posts in a particular
category

Often there will be a category that needs to be called on specifically in your WordPress
theme. If you don't know the category's ID, you can use the category name to retrieve
the correct posts.

How to do it...
First, open the template file that you wish to insert the category Loop into. If you want
to highlight a certain category in your theme's sidebar, for example, you would open
sidebar.php. Insert your cursor at the appropriate spot, and then add the following code:

<?php
$cat_name = 'My Category Name';
query_posts(array('category_name'=>$cat_name));
if(have_posts()) {
 while(have_posts()) {
 the_post();
 }
}
?>

How it works...
The available parameters for the query_posts function are varied and many. In this instance,
you take advantage of the category_name parameter to ensure that only posts in the specified
category (in this instance, My Category Name) are returned for the Loop. Want to use a
different category? Change the value of the $cat_name parameter.

Chapter 3

5�

Styling every other post differently
Styling every other post differently is a powerful technique for creating interest in your theme
and leading a visitor's eye down the page. The options for styling are endless, but some of
the most popular and pervasive options include changing background images, colors, layout
items, and more.

How to do it...
Open the template file in which you wish to style posts differently as they are iterated over.
In general, you'll insert this functionality into a template like index.php or category.php.
Place your cursor where you wish to insert The Loop. Insert the following code:

<?php
if(have_posts()) {
 $alt_post = 'alt-post';
 while(have_posts()) {
 the_post();
 $alt_post = $alt_post == 'alt-post' ? '' : 'alt-post';
 ?>
 <div class="post <?php echo $alt_post; ?>">
 <h2><?php the_title(); ?></h2>
 </div>
 <?php
 }
}
?>

Now open your theme's stylesheet, style.css, and insert the following styles:

/** Styling for alternating posts **/

.post {
 background: #990000;
 color: #ffffff;
 padding: 5px;
}

.alt-post {
 background: #000099;
}

The Loop

�0

Assuming that your stylesheet is linked to your theme appropriately, you should see something
like the example shown in the following screenshot:

How it works...
Each time The Loop is iterated over, PHP checks to see if the $alt_post variable indicates
whether an alternate post was rendered on the previous run. If it does, it switches the
variable back to the empty string. Otherwise, it sets the variable to alt-post.

When the post container is being printed, it includes a class of post by default, and then
prints out the value of the $alt_post variable. If the $alt_post variable was set, the
post container then has a class of alt-post in addition to post.

In the theme's stylesheet, you can change the style for the alternate post. In this instance,
the background of a regular post will be dark red whereas every alternate post will have a
background of royal blue.

Chapter 3

�1

Styling posts in a particular category
differently

In WordPress, one of the best ways to differentiate content is via the use of categories. In your
theme, styling posts from different categories in unique ways will help visitors find what they
want quickly and easily.

How to do it...
Decide where you want to check for a particular category. For this example, you'll be checking
for the Featured category and appending a little snippet of text. Insert your cursor inside of
your Loop, and then add the following code:

<?php
$category_name = 'Featured';
if(in_category($category_name)) {
 echo '<div class="featured-icon">Featured</div>';
}
?>

After you detect the special category and print the extra piece of content, you can style it
however you want. In this particular case, you may want to use absolute positioning to add a
star icon or badge to the post's main content container. Alternatively, you could add a large
header that makes the post stand out. There is no limit to what you can do.

How it works...
The in_category function operates on the currently-active post in The Loop. In this
instance, you are checking to see if the post is in a category named Featured. If it is, then
an extra piece of HTML markup is displayed. This piece of markup could be styled in a way
that makes it readily apparent that the post is a featured piece of content.

This technique can be easily adopted for use with other content types: highlighted posts, code
snippets, and more. The limit is your imagination.

The Loop

�2

Showing every post in a category on a
category archive page

If you want your category pages to operate as a complete archive of all posts in that category
(basically removing any type of pagination), you can make some simple changes to the
basic Loop.

How to do it...
Open or create your theme's category.php file. This template file is used to display your
category archives. Create a basic Loop by following the directions from the recipe Creating
a basic Loop.

Above your Loop, insert the following code:

global $wp_query;
query_posts(
 array_merge(
 array('nopaging' => true),
 $wp_query->query
)
);

How it works...
In the above code snippet, the query_posts function is used to modify the global query object.
To ensure that all of the appropriate query parameters are preserved from the original query, the
new parameters are merged with the old parameters. The old parameters are kept in the array
$wp_query->query.

The nopaging parameter is set to true to indicate that all posts should be returned, and any
post limit should be ignored.

See also
Creating a basic Loop

4
Template Tags

In this chapter, we will cover:

Displaying the post title

Automatically limiting the number of words of content

Determining if the user is on a specific page

Determining if the user is viewing a post in a particular category

Displaying the post date for each post

Highlighting search terms in post content

Displaying login/logout links

Adding navigation through older/newer posts

Displaying an edit link for posts

Displaying custom field content

Displaying a post author's avatar

Introduction
The most important part of any website is its content. Your content and its presentation is the
reason people visit and stick around, the thing that search engines index, and the way you get
your unique message out to the world.

Luckily for you, WordPress offers a variety of interesting ways to display content for all of the
data it manages. As a theme developer, you can also modify the content before WordPress
displays it, allowing you to produce some pretty interesting effects, such as search term
highlighting, automatic appending of static content to all posts, or truncation of content for
non-logged-in users.

Template Tags

�4

In this chapter, you'll learn about some of WordPress' built-in content display functions, create
your own unique content mashups, and learn how to exploit the power of WordPress to display
the data that you want to display where you want to display it.

Displaying the post title
For a blog, one of the most important pieces of content that you can display is a post's
title. The title should be interesting; it should grab attention, it should provide great linking
material, and it should make your readers want more. In this recipe, we'll start talking about
template tags by describing how you would display a post's title.

How to do it...
First, open a template file for your theme that contains a variation on The Loop. You can learn
more about The Loop in Chapter 3. As a reminder, it looks something like this:

<?php
if(have_posts()) {
 while(have_posts()) {
 // Display content here
 }
}

Inside of your instance of The Loop, insert the following code, in order to display each
post's title:

<?php the_title(); ?>

To see this in action, you can refer back to the recipe Creating a basic Loop. There you
used the_title inside of The Loop, successfully displaying the title of each of the posts.

How it works...
the_title is one of a variety of functions that are used to display information about the
post data currently held in the global $post object. To do this, they look at the value of the
$post variable and apply the necessary filters to the appropriate content before sending it
to the browser. In the function the_title, WordPress looks at the post_title property of
the $post object and applies all of the filters hooked to the_title. The application of these
filters allows the WordPress core code, as well as third-party plugins, to modify the title value
for any post.

If you're interested in diving deeper into the template tag function definitions, you can find
most of them inside a file contained in your WordPress installation at wp-includes/post-
template.php. This is something that I highly recommend, as it can help you tremendously
as you try to do more and more complex things with WordPress.

Chapter 4

�5

There's more...
WordPress defines a wide variety of PHP functions that retrieve or print information about
the currently-active post. The following functions are the most frequently-used functions in
any template:

the_ID

the_title

the_title_attribute

the_content

the_excerpt

the_category

the_tags

next_post_link

next_posts_link

previous_post_link

previous_posts_link

The purpose of most of these functions is self-explanatory, but you should try each of them in
a template to see what kind of output you end up with. In addition, you can see the complete
list of template tags and the corresponding documentation, for posts and otherwise, at
http://codex.wordpress.org/Template_Tags/.

See also
Creating a basic Loop

Automatically limiting the number of words
of content

In some instances, you may wish to display a specific number of words from a post's content,
perhaps in a compact loop for older posts or as part of an asides section in a blog's sidebar.
This recipe shows you how to go about it.

Template Tags

��

How to do it...
First, open or create your functions.php file. This file resides in your theme's root directory.
You're going to create a custom template tag for your theme, and the functions.php file is
the proper place to do so. Inside of your functions.php file, place the following code:

<?php
function limited_the_content($number_words = 200) {
 global $post;
 $stripped_content = strip_tags($post->post_content);
 $words = explode(' ', $stripped_content);
 if(count($words) < $number_words) {
 echo $stripped_content;
 } else {
 $words = array_slice($words, 0, $number_words);
 echo implode(' ', $words);
 }
}
?>

You'll use this function in place of the_content to display your post's content. Open one of
your theme's template files (such as index.php) and insert the following code inside
The Loop:

<?php limited_the_content($number_words); ?>

Replace the $number_words variable in the above code snippet with whatever number
of words you wish to display. You can check the difference between the_content and
limited_the_content by using the following Loop:

<?php
if(have_posts()) {
 while(have_posts()) {
 the_post();
 ?>
 <div class="post <?php echo $alt_post; ?>">
 <h2><?php the_title(); ?></h2>
 <h3>Content</h3>
 <div><?php the_content(); ?></div>
 <h3>Limited to 25 Words</h3>
 <div><?php limited_the_content(25); ?></div>
 </div>
 <?php
 }
}
?>

Chapter 4

��

When viewing the output of the above snippet, you'll see something like the example shown in
the following screenshot:

How it works...
The limited_the_content function accesses the currently-active post by globalizing the
$post variable. The global $post variable always contains the value of the post currently being
displayed in The Loop.

After that, the active post's contents are retrieved from the $post variable's post_content
property, and all HTML tags are removed. Finally, the modified post contents are split apart
into separate words by exploding the contents on the space character (this means that you
are assuming that every time there is a space, we should break off the previously-seen
characters as a new word). If the total number of words present in the post's content is less
than the maximum allowed, then the tag-less content is returned intact. Otherwise, the
number of words is pared down to the number allowed. The words are re-joined by
replacing the spaces removed earlier, and the newly-constructed string is returned.

As seen in this chapter, almost every single instance where you're modifying PHP output involves
concatenation and other string operations. If you're unfamiliar with these concepts, then you
should check out the official PHP reference manual at http://php.net/strings/.

Template Tags

�8

Again, it is important to note here that all HTML tags have been stripped out from the post's
content before doing this manipulation. This is to avoid a scenario where HTML tags become
mismatched, messing up the display of your carefully-constructed theme.

Determining if the user is on a specific page
There will come a time when your theme should do something special for a certain page.
Maybe your About page should display the author biographies or avatars, or perhaps you
want your Contact page to include your phone number and address at the top, in addition
to whatever other content appears.

How to do it...
Decide on the page that you want to customize, and remember its name. Open your theme's
page.php file. This template file is used when displaying a single page. Place the cursor
in the template where you want your custom content to be displayed, and then insert the
following code:

<?php
if(is_page('Page Name')) {
 // Put special content code here
}
?>

Replace Page Name with the name that you previously determined. Save the file and view the
special page in your browser. Whatever content you added specifically for that page should
appear. However, if you navigate to a different page, then the special content will not appear.

How it works...
The is_page function utilizes the global $wp_query variable and its data to verify that a
page is being viewed and that the page being viewed matches the conditions specified by
the function's parameter.

By default, the is_page function only checks to see if a page is currently being displayed.
However, by passing it a parameter, you can check to see if a specific page is being viewed.
The parameter could be the page name, page slug, or page ID, whichever is most convenient.
I recommend using the page slug or page name over the page ID, as the ID has little chance
of being the same on your development and production installations, whereas the name and
slug will almost certainly be identical between the two environments.

Chapter 4

��

Determining if the user is viewing a post in
a particular category

Many WordPress users utilize categories to differentiate between different types of content
or to show their intent with regard to a particular post. As a theme author, it is sometimes
useful to differentiate between categories by using an image or special text. To do so, you
must first determine if the user is viewing a post in a special category. Then you can take
the appropriate action or render the appropriate output.

How to do it...
First, decide on the category that you wish to display special content for, and remember its
name. Open a template file where you are displaying posts in a Loop and you wish to add
special content for posts in a certain category. Place your cursor where you want to display
special output, and then insert the following code:

<?php
if(in_category('Category Name')) {
 // Output appropriate code here
}
?>

Replace Category Name with the name of the category that you wish to use.

How it works...
Every post can be in many different categories. For example, a post might be about
programming and more specifically about WordPress. Thus, you'd put that post into the
Programming category and the WordPress category.

In this recipe, you're checking to see if the currently-active post is in the Category Name
category. If it is, whatever output you render between the braces ({}) will be shown. If the
active post is not in that category, nothing will happen.

The parameter to in_category can be a category name, slug, or ID. In most cases, you'll
want to use a name or slug, as those items will likely match on your development and
production installations, whereas the category ID will not.

Template Tags

�0

There's more...
in_category can also check multiple categories. If you have Category 1 and Category
2 on your blog, you can check to see if a post is in either of these categories by using the
following code:

<?php
if(in_category(array('Category 1','Category 2'))) {
 // Output appropriate code here
}
?>

If you need to check if a post is in both Category 1 and Category 2, then you would use
the following code:

<?php
if(in_category('Category 1') && in_category('Category 2')) {
 // Output appropriate code here
}
?>

Displaying the post date for each post
Generally speaking, blogs run chronologically. One blog post follows another and they are
often sorted by date. Several similar-sounding template tags seem like they would show the
date for a post, but only one does it for each post.

How to do it...
Open one of your theme's template files that contain The Loop. Inside The Loop, place
your cursor at the point where you want to output the time and date on which the post
was published. Insert the following code:

<?php the_time('F j, Y'); ?>

How it works...
Looking at the list of template tags, many theme developers believe that the_date will
output the date for each post. However, it will only display the date once for each unique date
in The Loop. That is, if you had multiple posts on a single day, the_date would only render
output for the first one. To display the date for each post, use the_time with a date format
string that specifies that the month, day, and year should be displayed.

Chapter 4

�1

You can modify the date and time components that are output from the_time by modifying
the date format parameter. Find out more about date format strings by visiting http://us2.
php.net/manual/en/function.date.php.

Highlighting search terms in post content
If a user utilizes the WordPress search function to scour your site for something, then you
know that their query is probably pretty specific. You can make it easier on your visitors by
highlighting search terms in their search results. This way, they'll be able to immediately scan
to the appropriate places in your content.

How to do it...
First, open or create your theme's functions.php file. You'll be creating a custom filter that
latches onto post content and excerpts, and the functions.php file is the correct place to
do so. Insert the following code in this file:

<?php
function highlight_search_terms($content) {
 if(is_search()) {
 $search_term = get_query_var('s');
 $content = preg_replace("/\b($search_term)\b/i",
 '$1', $content);
 }

 return $content;
}

add_action('the_content', 'highlight_search_terms');
add_action('the_excerpt', 'highlight_search_terms');
?>

Open your theme's stylesheet (style.css) and insert the following style declarations:

.search-result {
 background: #0000ff;
 color: #ffffff;
 padding: 0 3px;
}

Template Tags

�2

Finally, ensure that your theme file has a search field on it somewhere. Search for a term
on your site and you should see that the term is highlighted in blue in the content that is
displayed. In the following example, I've searched for the string this:

How it works...
You'll see that after you search every instance of your search term is wrapped in a new
 tag that is styled by the search-result declaration in your stylesheet. These
specially-styled tags will appear as long as the output is being rendered by using either
the_content or the_excerpt.

To start, you create a new function that accepts a string of content and performs an operation
on that content before returning it. In this instance, you use a conditional tag to check if a
search page is being displayed. If it is, the search term is fetched (it is stored in the WordPress
query variable s) and then the content is run through a simple regular expression.

Chapter 4

�3

In this instance, the regular expression seeks out each instance of the search term that
appears in the $content string. When it finds one, it surrounds it in a tag by doing a
match replacement. This regular expression usage is case insensitive, so a search for Test will
match both Test and test. Please note that this will only match whole words, so a search for
Test will not cause the first part of Testing to be highlighted.

The style declaration here simply highlights the word by giving it a background of blue, making
the color of the text white, and spacing it out a bit from surrounding words. The possibilities
with this method are endless, however.

Displaying login/logout links
One of the most important actions that your theme's users will take is to log in and out of your
WordPress installation. Many installations limit certain content to logged-in users, so login
and logout links must be prominent and correct.

For security purposes, logout links must contain a specially-constructed nonce (basically, a
secure key), so it isn't good enough to point to the login page with a specific action argument.
Using the WordPress functions, you can display login and logout links with one simple
function call.

How to do it...
Open a template file that you wish to insert the login/logout link into. Generally, you want
login/logout functionality to be available across your entire site, so a good place for this code
is in your header or sidebar. Place your cursor wherever you want the login/logout link to
appear, and then insert the following code:

<?php wp_loginout(); ?>

How it works...
This super handy utility function does a few things. First, it checks to see if a user is currently
logged in. If the user is logged in, it prints a link containing a security nonce to the logout page
with the text Log out (localized as necessary). Conversely, if a user is not logged in, a link to
the login page is printed with the text Log in (again, localized as necessary).

Template Tags

�4

There's more...
You may wish to have different text for the login and logout links than the default that is
provided. Unfortunately, there is no parameter that lets you change the text directly through
the wp_loginout function. As such, you need to get slightly more creative, and replace the
above code with the following piece of code:

<?php
if (! is_user_logged_in()) {
 $link = '' . __('Log in text') .
'';
} else {
 $link = '' . __('Log out text') .
'';
}
print $link;
?>

From there, you can replace the Log in text and Log out text as appropriate
for your site.

Adding navigation through older/newer posts
If users are properly engaged, they'll want to navigate through your archives, reading old posts
that you published long before the ones on the front page of your site. Luckily, WordPress has
functions built in to allow you to easily print these navigation links.

How to do it...
Open a template file that you wish to add post navigation to. The most likely candidates
for this are your index.php template file or any of the archive-based template files
(category.php, tag.php, author.php, and so on). Place your cursor where you
want the navigation links to appear, and then insert the following code:

<div class="navigation">
 <div><?php
 next_posts_link('« Older Entries')
 ?></div>
 <div><?php
 previous_posts_link('Newer Entries »')
 ?></div>
</div>

Chapter 4

�5

How it works...
The next_posts_link and previous_posts_link functions each print a link that
allows users to navigate through the archives of a site. Interestingly, previous_posts_link
navigates forward through posts chronologically, whereas next_posts_link navigates
backward through posts chronologically. While this is counterintuitive to many people,
it has yet to be changed, and probably won't be, due to concerns over legacy themes.

In addition, the lone parameter to these functions allows you to customize the text that is
displayed with the link. Simply change the parameter value to change the links' text in
your theme.

There's more...
Archive navigation isn't just for big loops with multiple posts. Single pages can be navigated
through similarly, by using functions named almost exactly the same. In single.php or
page.php, insert the following wherever you want navigation links to appear:

<div class="navigation">
 <div><?php previous_post_link('« %link') ?></div>
 <div><?php next_post_link('%link »') ?></div>
</div>

Displaying an edit link for posts
After you publish a post, you'll often want to go back and update facts as more becomes
available on a developing story, or to correct spelling and grammar errors that you've noticed
after reading through it. Rather than force your theme's users to log in and search to find the
post to edit, you can provide a link to the editing page directly in your theme.

How to do it...
Open a template file where you are displaying posts in the The Loop. Decide where you want
the edit link to appear. It can appear anywhere inside The Loop. Place your cursor at that point
and insert the following code:

<?php edit_post_link('Edit this entry','','.'); ?>

How it works...
The edit_post_link function detects the currently logged in user's role and capabilities.
If the user is logged in and he or she has the ability to modify the post that is currently being
displayed, then the Edit link appears.

Template Tags

��

Three parameters are used to format the link. The first parameter allows for customization of
the text of the link. The second parameter is displayed before the link and the third parameter
is displayed after the link.

Use this function in your theme! Your users will thank you for it when they don't have to go
searching for an old post in the admin system.

Displaying custom field content
As WordPress is used for an increasingly varied array of content, users often add extra meta
information to posts that should be displayed in a theme. This metadata includes things like
post thumbnail URLs, ratings, or even entirely new blocks of content like callouts or
something similar.

How to do it...
First, you need to determine the name of the meta information that the user has entered via
the Write Post or Write Page interface. As a theme developer, you'll probably want to give some
instructions to your users on what custom meta keys are supported. The meta information
entry interface looks like the following example to WordPress users:

Chapter 4

��

You can see the meta key field on the left and the Value field on the right. The meta key is
generally more important to you as a theme developer, so instruct your users on what to
enter there. If they had previously used a meta key, it will appear in a drop-down list as
shown in the following:

After you've determined what meta key you want to display on the blog's frontend, it is simple
to make it appear. Open a theme file that contains The Loop and place your cursor where you
want to display the meta information. Insert the following code:

<?php
echo get_post_meta(get_the_ID(), 'meta_name', true);
?>

Replace the string meta_name in the above code sample with the name of the meta key field
that you wish to display the value for.

How it works...
WordPress stores meta information in the post meta table in the WordPress database. When
you call get_post_meta in your theme, it looks for metadata named by the string passed as
the second parameter to the function related to the post specified by the ID passed in the first
parameter. The third parameter tells WordPress to return only one result, so that you can print
it immediately.

There's more...
A user can enter multiple post meta values for a single key. In order to retrieve and fetch all of
these, use the following code:

<?php
global $post;
$post_meta = get_post_meta($post->ID, 'meta_name');
foreach($post_meta as $meta_item) {
 echo $meta_item . '
';
}

Template Tags

�8

Replace the string 'meta_name' in the above code sample with the name of the meta key field
that you wish to display the value for.

Here the omission of the third parameter instructs WordPress to return all post meta with
the key meta_name as an array. After that, you iterate over each post meta item and print it,
followed by a line break.

Displaying a post author's avatar
Visitors are more likely to engage with your post authors if they can identify them quickly and
easily. One of the best ways to allow this is to build support for displaying avatars directly into
your theme.

This technique is best for multi-author blogs where authors for different posts vary. If your blog
expects only a single user to be writing, then this tip might not be for you.

How to do it...
Open a theme file that contains The Loop. Place your cursor inside the loop where you want
the author's avatar to appear, and then insert the following code:

<?php
global $post;
echo get_avatar($post->post_author);
?>

This code will produce markup like the following:

<img
width="96"
height="96"
class="avatar avatar-96 photo"
src="http://www.gravatar.com/avatar/
252ed115afcb3c69546ed891b8eddddf?s=96&d=http%3A%2F%2Fwww.gravatar.
com%2Favatar%2Fad516503a11cd5ca435acc9bb6523536%3Fs%3D96&r=G"
alt=""/>

This markup will display as a small image like the following:

Chapter 4

��

How it works...
When you pass a user ID to the get_avatar function, it recognizes the numeric value and
looks up the user in the WordPress database. It then assigns the e-mail to use for Gravatar
retrieval as the e-mail set for that user in the WordPress back-end. By default, the function
then contacts Gravatar to fetch the appropriate image for the user (although this functionality
can be overridden by plugins).

5
Comments

In this chapter, we will cover:

Displaying a comment form on a post

Displaying comments on a post

Displaying the latest comments on your blog

Highlighting the post author's comments

Alternating the style for comments

Displaying threaded comments properly

Introduction
Comments are one of the most important parts of blogging. In fact, some say that a blog isn't
really a blog without comments. As such, it is very important to pay attention to the way that
comments are styled and the way that they function in your theme.

This chapter starts with the basic tenets of comment display and formatting, and
later expands on some really interesting things that you can do with the WordPress
comment system.

Displaying a comment form on a post
Because comments are so important on a blog, it stands to reason that the best place to start
is with how to display an appropriate comment form on each post. The comment form allows
the appropriate visitors to leave comments with their name, e-mail address, and URL. The form
presented in this recipe is the standard comment form that the default WordPress theme uses.

Comments

82

How to do it...
The first thing you need to do here is to open your single content template, either
single.php or page.php, and insert the appropriate template tag. Scroll to the
end of your post display code, and insert the following function call:

<?php comments_template(); ?>

Open up your site and browse to a single post. Upon arriving there, you should see one of two
things. If you are logged in, you'll see a notice indicating your username and a Log out link, as
well as the comment input box. This is shown as follows:

Chapter 5

83

If you are not logged in, you'll see a Name, Mail, and Website field, in addition to the
comment input box. You can see an example here:

How it works...
The code above is quite simple. It consists of a single template tag, but produces a whole
boatload of content. Where does this content come from? Well, you haven't created a
comments template yet, so this output comes from the default theme, and is contained in
a file called comments.php. This comments.php contains all of the proper inputs, checks
for comment registration requirements, and ensures that comments are rendered in an
appropriately semantic and purposeful manner.

In addition to rendering the appropriate output, the comments_template function also does
some behind-the-scenes work that determines the comments to display, whether to display
comments and trackbacks separately, and gets the information for the current commenter.
This is the reason you use the comments_template function instead of including
comments.php directly.

Comments

84

There's more...
The base comments.php file is great for most purposes, and very rarely needs to be
changed. If you do want to display your comments in a vastly different way, you can do so
quite easily. First, copy the comments.php file from the default WordPress theme to your
custom theme. Then make the modifications that you need to the output in your local file.
WordPress will automatically use your new comments.php file instead of the default
theme's comments.php file.

Displaying comments on a post
After users leave comments on your posts, you'll obviously want to display them. The most
frequent use case for displaying comments is to list all of the comments on a single post, and
there is a template tag that does this quickly and easily. In this recipe, we'll take a look at
the template tags used to display comments and where you would use them.

How to do it...
First, you'll need to decide where you want to display your comments. The most obvious place
to use comment template tags would be in a custom comments template. Alternatively, you
could just list comments directly on a post without concern for the other things that a
comments template provides (appropriate inputs and more).

Here we'll use the default comments.php file as an example. Copy the comments.php
file from the default theme to your custom theme's directory. Scroll down to line 28 (as of
WordPress 2.9) of the file and see that the following code is present:

<ol class="commentlist">
<?php wp_list_comments(); ?>

Here you're using the wp_list_comments function, which iterates over the comments on a
post and renders the appropriate output based on the comment display callback. A default
callback is used if you do not explicitly pass one.

How it works...
wp_list_comments is a special template tag that looks at the comments for the current post
and displays them by using a special callback function. Calling the template tag without any
parameters tells it to use the default options, which will generally produce markup compatible
with your theme. The output is, by default, a list of elements containing various comment
metadata as well as the comment author's avatar. You can see an example of a few comments
in the following screenshot from the default theme:

Chapter 5

85

There's more...
The number of parameters available to customize your comment's display is vast and varied.
Let's look at some of the important ones and the interesting things you can do with only a few
characters of code.

Separating comments and trackbacks
Comments on blog posts are generally left by a person with an opinion on the post in question.
Trackbacks occur when another blog links to a particular post or page. By default, WordPress
displays these different types of post commentary together, with comments and trackbacks
occurring side by side.

One of the easiest and most useful modifications to make to your post comment listings is to
separate these two items. You can do this using only one parameter. Replace the code from
the recipe above with the following:

<h3>Trackbacks</h3>
<ol class="commentlist">
<?php wp_list_comments(array('type'=>'pings')); ?>

Comments

8�

<h3>Comments</h3>
<ol class="commentlist">
<?php wp_list_comments(array('type'=>'comment')); ?>

You can see here that you're using the type parameter for the wp_list_comments function
to only output comments of a certain type in each list. You also added some headers to
indicate the type of content to follow. You can see the resulting output as follows:

Changing the Avatar size
One of the things that you'll want to customize is the avatar size displayed next to comments.
By default, the size is set to 32 pixels square. For a lot of themes, this is just not enough. To
change the size of the avatar, you simply change the avatar_size parameter as follows:

<ol class="commentlist">
<?php wp_list_comments(array('avatar_size'=>80)); ?>

Chapter 5

8�

When you refresh your comments list, you'll see that all of your avatars have been resized to
80 pixels square.

Available parameters
Although we've touched on a couple of the available parameters for wp_list_comments,
there are many more available. You can find the complete list of all wp_list_comments
parameters at http://codex.wordpress.org/Template_Tags/wp_list_comments.

Displaying the latest comments on your blog
Sometimes you might want to display the latest comments on the blog regardless of post. This
could be useful in an expanded footer or the sidebar of a blog that receives a lot of comments.
You might even put an excerpt from the latest comment near the header, in order to provide
something for frequent visitors to observe.

Regardless of how you want to display the latest comments, actually doing it couldn't be easier.

How to do it...
First, open any theme file and place your cursor where you want the latest comments to appear.
You could do this in sidebar.php, footer.php, or anywhere else where secondary content
could be expected.

In your chosen theme file, insert the following code:

<?php
$number_comments = 5;
$comments = get_comments(array('number' => $number_comments));
?>
<ol class="commentlist">
<?php wp_list_comments(array(), $comments); ?>

How it works...
The get_comments function fetches a number of different comments from the database,
based on the parameters passed to it. In the previous example, five comments are being
requested, and get_comments is allowed to otherwise use the default options for the
function. This leads to the five latest comments being fetched, regardless of the post on
which they were made.

wp_list_comments, described in the previous recipe, takes an optional second parameter,
which must be an array of comment objects. Here we are passing the comments returned from
get_comments along with an empty array, in order to ensure that wp_list_comments uses
its default display parameters.

Comments

88

There's more...
The get_comments function takes a wide variety of parameters that can be used to affect
the comment results that are returned. You should be familiar with some of the most
commonly-used ones, which are outlined in the following sections.

Getting only certain comment types
By default, get_comments returns comment objects regardless of type. However, you can
easily change this by passing a single parameter. This might be useful when you want to get the
last five trackbacks, or if you're using a custom comment type to represent some information
(like user reviews or something similar).

<?php $trackbacks = get_comments(array('type'=>'pings')); ?>

Getting only comments for a particular post
If you specify a post id when calling get_comments, you can retrieve comments for that
post only. The following code will do just that, specifying a post ID of 34:

<?php
$post_34_comments = get_comments(array('post_id'=>34));
?>

Available parameters
While we've touched on a couple of the available parameters for get_comments, there are
many more available. You can find the complete list of all of the get_comments parameters
at http://codex.wordpress.org/Function_Reference/get_comments.

Highlighting the post author's comments
Because of their authority on the subject (they wrote the post in the first place, after all), it is
often reasonable to assume that an author's opinions in the comments of a post are more
important or pertinent than others'. As such, it is beneficial to readers of a blog for a theme
for the author's comments to be highlighted in a noticeable way.

While there are many ways to make an author's comment stand out, the most common way
is to have the background color be different for the author's comments.

Chapter 5

8�

How to do it...
First, you need to make sure that comments are being displayed for your posts. As such,
follow the recipe Displaying comments on a post and add a comment loop to your theme for
your single.php or page.php template files. This makes sure that the appropriate HTML
code is output so that your browser can render the comments on your site.

Next, you need to style your theme's comments in a way that makes it apparent when an
author is commenting on your site. To do so, open your theme's stylesheet (style.css)
and insert the following CSS:

.comment { background: #fff; color: #000; }

.comment.bypostauthor { background: #000; color: #fff }

How it works...
The default comment display callback assigns special classes to the containing element for a
comment. Examples of these classes include comment, odd, byuser, alt, and many more.
The following is a sample of code showing the containing elements that WordPress outputs
for comments. This sample shows many of these different identifying classes:

<ol class="commentlist">
 <li class="pingback even thread-even depth-1"
 id="comment-45">
 <!-- Comment Content -->

 <li class="pingback odd alt thread-odd
 thread-alt depth-1"
 id="comment-48">
 <!-- Comment Content -->

 <li class="pingback even thread-even depth-1"
 id="comment-47">
 <!-- Comment Content -->

 <li class="comment byuser comment-author-admin
 bypostauthor odd alt thread-odd thread-alt
 depth-1"
 id="comment-59">
 <!-- Comment Content -->

Comments

�0

If a comment is made by the post author, then the containing element is assigned a class
of bypostauthor. In the above CSS snippet, elements with both the comment and
bypostauthor classes are assigned a different background color and text color than
the regular comment containers. You can see this in action in the following screenshot:

See also
Displaying comments on a post

Alternating the style for comments
Comments are often displayed in a list form, with each comment being displayed one after
another. Each comment includes the same title, a similar-looking avatar, and paragraphs of
comment content. The format can get monotonous and cause eye strain and confusion in
users who find it hard to differentiate between comments. Luckily, reconciling this issue is a
simple matter of adding a small amount of styling using CSS. Due to the semantic nature of
comment HTML output by WordPress, this is a snap.

Chapter 5

�1

How to do it...
First, you need to make sure that comments are being displayed for your posts. As such,
follow the recipe Displaying comments on a post, and add a comment loop to your theme in
your single.php or page.php template files. This makes sure that the appropriate HTML
code is output so that your browser can render the comments on your site.

Next, you need to style your theme's comments in a way that makes it apparent when a new
comment begins in the comment list. To do this, open your theme's stylesheet (style.css)
and insert the following CSS:

.comment { background: #fff; color: #000; }

.comment.alt { background: #eee; color: #000; }

How it works...
As with the method used to style a post author's comments separately, here you rely on a
class that is automatically assigned by WordPress to comments, based on their position in
the list. Every other comment has the class alt assigned to it. As you can see, it is a simple
matter to declare some new styles that help differentiate between subsequent comments.

In this particular instance, the effect that you implemented was subtle. You provide a light
grey background for every other comment, while the rest have plain white backgrounds. A
screenshot of this can be seen below:

Comments

�2

See also
Displaying comments on a post

Displaying threaded comments properly
Comments provide a way for a conversation to develop between the post author and visitors.
Sometimes, visitors to the blog engage in discussions with each other directly.

In older versions of WordPress, displaying these discussions was something that couldn't
be done without the help of plugins. In newer versions of WordPress, however, threaded
comments are something that is provided right out of the box. Given this, it is easy and
straightforward to implement the correct display of comment threads.

How to do it...
First, you must enable comments on a post and display them properly. Follow the Displaying
a comment form on a post recipe to make sure that your comment form shows up and that
comments on particular posts are displayed in a list.

Next, open your theme's header.php file and place the following code above your call to
wp_head. This code enables the comment reply JavaScript functionality, allowing your
users to easily and quickly form threaded conversations.

<?php
if(is_singular()) {
 wp_enqueue_script('comment-reply');
}
?>

Next, you need to add the appropriate styles that will effectively display your conversations.
Open your theme's stylesheet, style.css, and insert the following style declaration:

.children {
 margin-left: 10px;
}

Now refresh a single post view on your blog and add a threaded comment by clicking on the
reply button for a comment and filling in the appropriate information. After you submit the
comment, you should see something that looks like the following, depending on your styles:

Chapter 5

�3

How it works...
The default wp_list_comments function displays threaded comments to a depth specified
in the WordPress administrative back-end. The markup technique used is to nest lists inside
of list items in order to produce the threaded effect.

By enqueuing the appropriate JavaScript file, you're allowing WordPress's built-in comment reply
ability to be used by anyone visiting the blog. The style declaration that you added simply says
that child comments should be indented to the right by 10px when they are being displayed. This
provides a distinct visual hierarchy.

See also
Displaying a comment form on a post

�
Sidebars

In this chapter, we will cover:

Using the Text widget for custom sidebar content

Including a dynamic sidebar in your theme

Including multiple dynamic sidebars in your theme

Setting the default widgets for a sidebar in your theme

Positioning multiple sidebars in your theme by using CSS

Styling the appearance of sidebars in your theme by using CSS

Displaying different widgets on different pages by using the Widget Logic plugin and
conditional tags

Showing asides in the sidebar by using the Miniposts plugin

Adding an interactive Facebook-style wall to a sidebar by using jQuery

Introduction
Most WordPress themes follow a fairly standard structure: there is a header with some type of
navigation, a main content area where post contents are read, and one or more sidebars that
display auxiliary information about the post being displayed or about the blog as a whole.

WordPress has quite a bit of functionality built in that supports the sidebar paradigm.
Dynamic sidebars and widgets are included in many of the most popular themes. The power
for end users to change the content displayed in the theme's sidebar without involving a
programmer is one of the best developments in the history of the WordPress platform.

In addition to widgets provided by WordPress core and various plugins, sidebars can be
created to display various data, including posts, comments, or links. Anything that isn't a
main piece of content, but that you want to show to your site's visitors, is a great item to
put in a sidebar.

Sidebars

��

Using the Text widget for custom sidebar
content

Sometimes you need to include code from a Facebook badge, or promote your latest book if
you happen to be a book author. Whatever it may be, if a block of HTML or text is provided,
you can probably use it in the versatile Text widget.

Getting ready
For this recipe, you'll need to have a basic theme installed, preferably a default theme or
one that has a Widgets panel underneath the Appearance section of your WordPress admin
control screen. If you don't, a recipe for adding one is given in just a few pages. Oh, and make
sure that the theme that you download or create has a place set aside for your sidebar on the
left or right side of your design. You could also place it at the top or bottom of the design—I'm
not judging. Lost? Download the companion code for this book at Packt Publishing's website
to follow along.

How to do it...
Log into your Wordpress admin area, and then click on the Appearance tab on the left
side of the screen. Select Widgets from the menu that appears. You will now see a whole
lot of available widgets. Drag the Text widget to your Sidebar panel, as shown in the
next screenshot:

Chapter 6

��

For the Title of the widget, enter Shameless Plug. Type the following code into the big text
area as shown in the following screenshot:

The Wordpress Themes Cookbook is now available for preorder!

<img src =http://wordpressbook.leesjordan.net/wp-content/
uploads/2010/03/wordpress-themes-book.png alt="wordpress cookbook
cover"/>

Preorder now or learn more >>

Place a checkmark in the Automatically add paragraphs checkbox, and then click on the
Save button, as shown in the next screenshot:

View your blog to admire the snazzy new sidebar widget. You can see a screenshot of what it
should look like, in the following screenshot:

Sidebars

�8

Including a dynamic sidebar in your theme
If you are creating your own custom theme for a more recent version of WordPress, or are
updating an old theme, then you will need a dynamic sidebar to take advantage of WordPress'
visual widget administration features.

Getting ready
For this recipe, you'll need to have a basic theme installed, or be in the process of building
your own theme. Oh, and make sure that the theme that you downloaded or created has a
place set aside for your sidebar on the left or right side of your design. You could also place it
at the top or bottom of the design—you decide. Lost? Download the companion code for this
book at Packt Publishing's website to follow along.

How to do it...
First, download and open up the index.php file of your theme. Paste the code,
<?php get_sidebar(); ?>, just above the footer code, near or at the end of your
index.php file, so it should now look like:

<?php get_sidebar(); ?>

<?php get_footer(); ?>

Save your changes to the index.php file.

Next, we need to create a sidebar.php file, and as a bonus, we will add a search box at
the same time. Create a new file in your favorite PHP or HTML editor. Save the file as
sidebar.php. You need the same basic information at the top of this file as you do for
all other WordPress theme files, so paste the following code into your sidebar.php file:

<?php
/**
 * @package WordPress
 * @subpackage MyAwesome_Theme
 */ ?> <!-- begin sidebar -->
<!-- begin sidebar -->
<div id="menu">

 <?php /* Widgetized sidebar, if you have the plugin installed. */
 if (!function_exists('dynamic_sidebar') || !dynamic_sidebar()) :
?>

 <li id="search">
 <label for="s"><?php _e('Search:'); ?></label>

Chapter 6

��

 <form id="searchform" method="get" action="<?php bloginfo('home');
?>">
 <div>
 <input type="text" name="s" id="s" size="15" />

 <input type="submit" value="<?php esc_attr_e('Search'); ?>" />
 </div></form>
<?php endif; ?></div>
<!-- end sidebar -->

Save the changes. Next, look in your theme folder for a file called functions.php. If it exists,
the code for the sidebar function should look like this:

<?php
/**
 * @package WordPress
 * @subpackage My_Awesome_Theme
 */
if (function_exists('register_sidebar'))
 register_sidebar(array(
 'before_widget' => '<li id="%1$s" class="widget %2$s">',
 'after_widget' => '',
 'before_title' => '',
 'after_title' => '',
));?>

If you don't have a functions.php file, paste the previous code into an empty file and name
it functions.php. Save the files, and then upload them to your theme folder.

How it works...
The get_sidebar function is a special template tag that, just like get_header and
get_footer, calls a specific template file in the current theme. When the main theme
file, such as index.php, loads in a browser, all of the functions within it are called. The
functions.php file is checked as a part of the process. The code that we placed in the
functions.php file notifies the theme and WordPress that if it finds a sidebar.php file
with the correct sidebar code, to go ahead and load it. WordPress then looks in the current
theme folder for a file named sidebar.php, and if it is found, includes the content specified
within sidebar.php in place of the get_sidebar() template tag.

Unlike a regular PHP include, you will not have access to local variables
inside your sidebar when including it by using get_sidebar, because
of a scope difference.

Sidebars

100

There's more...
Because of the standard header, content, sidebar, and footer format, WordPress supplies
theme authors with a standard function to quickly and easily include a separate sidebar
template into your main design. You can also search for themes with sidebars similar to
what you want, for inspiration.

Finding inspiring sidebars for your theme design
We are using the Thematic theme as our inspiration in this chapter, and as you can see in
the following screenshot, it contains a lot of default sidebars. It can be freely downloaded
from the WordPress.org theme repository at http://wordpress.org/extend/themes/
thematic/ if you want all of the sidebars and none of the sweat equity, If you are determined
to add your own sidebars, check out the next recipe for more details.

Including multiple dynamic sidebars in your
theme

Although many themes are two-column, with only a single sidebar and corresponding
sidebar.php file, there are a number of instances where you'll want two, three, or even four
sidebars surrounding your main content. Visit sites such as http://divitodesign.com/
for inspiration on how to use multiple sidebars with your theme.

Chapter 6

101

In older versions of WordPress, having multiple sidebars meant resorting to using PHP's
include function, or in-lining the sidebar's contents into your main template files. Luckily,
with newer versions of WordPress, you can specify the name of the sidebar to include, by
using the get_sidebar function.

Getting ready
We are using a basic template based on the Classic WordPress theme. You should already
have a sidebar.php file, and your theme layout should support at least one sidebar.

How to do it...
We're going to give our current sidebar, which was created in the first recipe of this chapter, a
name, and then create additional sidebars in which to store WordPress widgets.

Create a file for each sidebar, naming them by appending a descriptor to the string
sidebar-. For this example, let's go ahead and plan to have two sidebars:
sidebar-one.php and sidebar-two.php. Start by renaming your current
sidebar.php file to sidebar-one.php. Copy that file, and name the new file
sidebar-two.php.

Open up the index.php file of your current theme, and then insert the following code above
the get_footer tag:

<?php get_sidebar('one'); ?>
<?php get_sidebar('two'); ?>

Save the index.php file, and then open up your functions.php file. If you don't have one,
refer to the last recipe. You will see the code:

if (function_exists('register_sidebar'))
 register_sidebar(array(
 'before_widget' => '<li id="%1$s" class="widget %2$s">',
 'after_widget' => '',
 'before_title' => '',
 'after_title' => '',
));?>

Replace it with:

if (function_exists('register_sidebars'))
 register_sidebars(2);
?>

Sidebars

102

Don't worry about the extra widget or style code; we will work on that in another recipe. Save
the file and then open your sidebar-one.php file:

<!-- begin sidebar -->
<div id="menu">
<?php /* Widgetized sidebar, if you have the plugin installed. */
 if (!function_exists('dynamic_sidebar') || !dynamic_sidebar(1))
: ?>
 <li id="search">
 <label for="s"><?php _e('Search:'); ?></label>
 <form id="searchform" method="get" action="<?php bloginfo('home');
?>">
 <div><input type="text" name="s" id="s" size="15" />

 <input type="submit" value="<?php esc_attr_e('Search'); ?>" />
 </div></form>
<?php endif; ?>
</div>
<!-- end sidebar -->

Save the sidebar-one.php file and open up the sidebar-two.php file. Paste the
following code into the file, replacing the existing content:

<!-- begin sidebar -->
<div id="menu">

<?php /* Widgetized sidebar, if you have the plugin installed. */
 if (function_exists('dynamic_sidebar') && dynamic_sidebar(2)) :
else : ?>
<?php endif; ?>
</div>
<!-- end sidebar -->

Save the sidebar-two.php file. Back up your current theme folder, and then upload the
files index.php, functions.php, sidebar-one.php, and sidebar-two.php into your
current theme folder on your server. Delete the old sidebar.php file from the server.

You should now have two sidebars showing up when you select Appearance | Widgets in your
control panel, as shown in the next screenshot:

Chapter 6

103

Now, if you view your site, you should see two sidebars. By default, they will usually appear
on the right and the bottom without any extra CSS styles applied, as shown in the following
screenshot. We will adjust the layout of our theme by using CSS styles in a later recipe.

How it works...
WordPress will automatically look for a file named sidebar-one.php in the theme folder
when it encounters <? get_sidebar('one');?> in the index.php file. WordPress will
check the functions.php file for a register_sidebars function, and use it to determine
how many sidebars should be available. WordPress will then examine sidebar-one.php and
include the content of sidebar-one.php if it exists. If you use the name of a sidebar that
does not exist, the theme's code will either throw an error message or the WordPress back-end
code will detect the sidebar hook and substitute an automatically-generated sidebar.

Notice that we've gone ahead and used dynamic sidebars, as most WordPress 2.8 and 2.9
themes will have them.

There's more...
You can set defaults for sidebar names, and affect the appearance of widgets in a particular
sidebar, by using parameters when you register your sidebar.

Sidebars

104

Sidebar parameters
When calling register_sidebar, there are a number of different parameters that you can
pass in the following form:

<?php
dynamic_sidebar(
 array('parameter_name' => 'parameter_value')
);
?>

The important parameters are as follows:

Name—allows you to change the name of the sidebar that is displayed in the admin
interface on the widgets management page. In themes with multiple sidebars, the
use of the name parameter can really help your theme's end users.

ID—the ID assigned to the sidebar, mostly for styling use. You can generally leave this
parameter with its default setting.

before_widget—the HTML to display before printing the contents of a widget. You can
use two placeholders here:

%1$s will be replaced by the widget's ID.

%2$s will be replaced by the widget's class name.

after_widget—the HTML to display after printing the contents of a widget.

before_title—the HTML to display before the title of the widget.

after_title—the HTML to display after the title of the widget.

Although the defaults are fairly well thought out, they assume a certain structure to your
sidebar and your theme. It is good to examine the register_sidebar function for yourself,
and decide if the defaults are okay. If not, change them to make it easier for you to style by
adding different class tags or removing list item tags.

Default content
If your user has not added any widgets to their sidebars, your theme may look extraordinarily
blank. For this reason, it is a good idea to include default content that will be displayed if the
sidebar does not have any active widgets. If you noticed in the last example, we went ahead
and placed search box code in sidebar-one.php.

Chapter 6

105

You can add your own placeholder content or default widgets by adding the relevant code just
below the dynamic_sidebar function in a sidebar.php file. In the following example,
the Archives widget has been added as a default widget, and will show the 15 most
recent posts:

<?php if(!dynamic_sidebar(1)); ?>
 // Insert default content here
<li id="archives"><?php _e('Archives:'); ?>

<?php wp_get_archives(type=postbypost&limit=15'); ?>

</ul

Learn more about parameters and options for sidebars at the WordPress codex
http://codex.wordpress.org/Customizing_Your_Sidebar.

Setting the default widgets for a sidebar in
your theme

Your theme may have a particular purpose, or serve a certain niche group. You may bundle a
number of different widgets with your theme that provide the best possible experience when
using it. If so, you'll likely want to have these widgets inserted into your sidebars when the
theme is activated.

Getting ready
You need to have a theme with a sidebar.php template, and at least one of your main
theme files must use the get_sidebar function to include the sidebar. In addition, your
sidebar must be dynamic. Finally, you must know the unique IDs of your sidebars and of the
widgets that you wish to pre-set in those sidebars. To make your sidebar dynamic, see the
earlier recipes in this chapter. Back up your current theme, and be aware that using this
recipe will reset the widgets of the active theme.

Sidebars

10�

How to do it...
Open or create your theme's functions.php file. In this example, we will be inserting default
widgets for default search, pages, categories, and recent comments. Insert the following block
of code immediately before the closing ?> tag within the file:

$current_theme = get_option('template');
$target_theme = 'Widgety_Theme';

if (is_admin() &&
 current_user_can('switch_themes') &&
 isset($_GET['activated']) &&
 $current_theme == $target_theme
){
$preset_widgets = array ('sidebar-one' => array(
 'widget-search-2', 'widget-pages-3'),
 'sidebar-two'=> array('widget-categories-4',
 'widget-recent-comments-3'));
 update_option('sidebars_widgets', $preset_widgets);}

You will need to substitute the correct values for the following variables before the code will
work with your theme:

$target_theme—replace Widgety_Theme with the name of the folder in which
your theme resides
$preset_widgets—replace the array with a multidimensional array in which each
of your sidebar IDs is a key to an array of widget IDs that you wish to have in the
sidebar, as shown in the example above

Save the functions.php file. Remember, this code only works when a theme is activated; so
deactivate this theme if it is your current theme, then upload the updated functions.php file
and reactivate your theme, or install it on a test site to see the changes to the sidebars in the
Widgets area of the admin panel as seen in the next screenshot:

Chapter 6

10�

Now that you have the basic idea down, you can create your sets of default widgets for the
sidebars of your theme.

How it works...
You accomplished a lot in this example! Let's take a closer look at what happened. First, the
name of the currently-active template is stored in a variable. Then, the name of the target
template (the name of the folder that your theme is stored in) is stored in another variable.

Following this, a comparison is made. A check is performed to confirm that an administrative
interface page is being displayed. Next, the code confirms that the currently logged-in
user has the ability to switch themes and manage widgets. Without these two checks,
any anonymous user would be able to reset all of your widgets.

The next two parts of the conditional are equally important. The third condition checks that a
new theme is being activated. Obviously, the widget reset should only happen when the theme
has been switched to. The final condition checks that the currently-active theme is the same
as the target theme (your theme, in this case).

If all of these conditions hold true, then it is time for the real work of setting the predefined
widgets. First, an associative array is defined. Looking at this in more detail may be helpful:

$preset_widgets =
 array
('sidebar-one' => array('widget-search-2', 'widget-pages-3'
),'sidebar-two'=> array('widget-categories-4', 'widget-recent-
comments-3'));

In this example, the assumption is made that a sidebar with the ID sidebar-one exists in
your theme and that there are at least two widgets present, one with the ID search-2 and
one with the ID pages-3. This array basically says that the sidebar sidebar-one should
have the widget search-2 and pages-3 inside of it, and that the sidebar sidebar-two
should have the widgets categories-4 and recent-comments-3 without any further
configuration from the user.

The next line updates the sidebars_widgets option in the WordPress database, where
information regarding the content of dynamic sidebars is stored. After that is done, the
widgets will be set appropriately.

There's more...
Widget IDs can be found in several ways. Read on for two options on how to discover the IDs
of your widgets.

Sidebars

108

Widget IDs
To find the ID of a particular widget, you have a few options. The first option is to look at
the code of the plugin that provides the widget (if it comes from a plugin) or examine the
WordPress source for plugins that come with the default distribution.

The second option may be easier. Install a test blog and use the WordPress Classic theme,
adding the widgets that you want to know the IDs for, to the only sidebar available. Then, view
the source of the front page of the blog and look for the sidebar HTML. Each widget's ID will
be displayed as the id attribute of a list item in the sidebar, as follows:

<li id="widget-id">

Make a note of the IDs of the widgets that you want to use and you're all set.

Positioning multiple sidebars in your theme
by using CSS

As you may have seen previously in this chapter, just because you add a second or third
sidebar to your theme does not mean that it will be placed where you want it in your layout.
We will adjust the layout of a two-column theme to a three-column theme with a sidebar on
each side, by using only CSS, in your style.css file.

Getting ready
We will be using a basic theme customized from the WordPress Classic theme. If you are
already using the Classic theme, the measurements should work precisely. You may have to
adjust the width, padding, or margins from the examples in this recipe to fit your layout. We
will be spending most of our time in the style.css file of the theme, so if you are unfamiliar
with CSS, you may want to visit www.w3schools.com to learn more about it, as this recipe
assumes a basic knowledge of CSS and stylesheets.

How to do it...
First, open up the sidebar-two.php file, or whatever file is your secondary sidebar file, in
your editor. It may already have a div tag wrapped around the sidebar code that looks like:
<div id="menu">. Rename the id to <div id="menu-left"> and make sure there is a
closing div tag </div> at the end of the file. Save the file.

Next, we will begin adding the positioning information to the styles.css file, so open that
file up. Find the #menu{} rule and copy it and all the others below it that have #menu. The
last one should be #menu ul ul ul.children {font-size: 142%;padding-left:
4px;}. There are too many to list here, but you can refer to the styles.css file included in
the companion code of this book.

Chapter 6

10�

Paste the #menu{} rules below the closing bracket of the last #menu ul ul ul.children{}
style. Add -left to each of the newly pasted #menu style rules so that they all begin with
#menu-left.

Now adjust the declarations within #menu-left{} to add more padding, set the width and
height, and align sidebar-two to the left , so that your CSS looks like the following:

#menu-left {
 position: absolute;
 background: #fff;
 border-left: 1px dotted #ccc;
 border-right: 1px dotted #ccc;
 border-top: 10px solid #e0e6e0;
 padding: 20px 0 10px 10px;
 color:#333;
 left: 2px;
 top: 0;
 width: 12.5em;
 height:75%;
}

We now need to adjust the height, padding, right alignment amount, and width of the #menu
rule that controls the positioning of the main (right) sidebar:

#menu {
 position: absolute;
 background: #fff;
 border-left: 1px dotted #ccc;
 border-top: 10px solid #e0e6e0;
 padding: 20px 0 10px 30px;
 margin:0;
 right: 1px;
 top: 0;
 width: 12.5em;
 height:75%
}

We do not need to adjust any of the other #menu or #menu-left style rules at this time. The
body, #header, and #content rules will need their declarations adjusted to make room for
the two sidebars. Scroll up to the body selector. Add the declaration width:100%; to the
bottom of the styles, just before the closing bracket so that the body style rule now looks like
the following code:

body {
 background: #fff;
 border: 2px solid #565;

Sidebars

110

 border-bottom: 1px solid #565;
 border-top: 3px solid #565;
 color: #000;
 font-family: 'Lucida Grande', 'Lucida Sans Unicode', Verdana, sans-
serif;
 margin: 0;
 padding: 0;
 width:100%;
}

The #content styles now need their padding, margin, and width adjusted. Adjust the margins
and padding, and add a width declaration as shown in the next block of code:

#content {
 margin: 5px 13em 0 13em;
 background:transparent;
 padding-right:30px;
 padding-left:30px;
 width:46em;
}

The #header styles are in the last section of the style sheet that needs adjusting, in order
to control the positioning of the sidebars. Add a width selector of 25.5em, change the
border-top to none and set the padding declaration to 20px 40px 20px 60px as
shown in the code example below:

#header {
 background: #333;
 font: italic normal 230% 'Times New Roman', Times, serif;
 letter-spacing: 0.2em;
 margin: 0 6em 0 5em;
 padding: 20px 40px 20px 60px;
 width:25.5em;
 border-bottom: 3px double #aba;
 border-left: 1px solid #9a9;
 border-right: 1px solid #565;
 border-top: none;
}

Chapter 6

111

Save and then upload the secondary sidebar file (sidebar-two.php) and the style.css file.
When you view the result in your browser, the blog should now look like the next screenshot:

How it works...
In a basic WordPress theme, the #menu or #sidebar styles control the positioning of the
sidebar on the screen. Adding a secondary div to control the secondary sidebar, and making
adjustments to the layout creates an area for the secondary sidebar, and gives the theme
user greater control over the layout. The style.css file controls the presentation and
positioning of the objects within the screen, including the posts, widgets, header, footer, and
sidebars. First, we added a new div style to the secondary sidebar in its sidebar file, assigning
that CSS style to the sidebar. Then, the new style rule was created in the style.css file
that told WordPress the height, width, and location of the sidebar within the layout. The
positioning for the other key elements, primary sidebar, header, and content area, also
had to be adjusted.

There's more...
You can make room for additional sidebars, or have one sidebar be wider than the
other, depending on how you adjust the width, margins, and padding of the styles in your
styles.css file, and how you apply them in the other files of your theme. Also, check
the .feedback class and .story class in your stylesheet, as you may have to adjust
padding in those as well.

Sidebars

112

Position: absolute versus float
We kept the sidebar styles set to absolute positioning in order to keep this recipe focused
on its core purpose: adjusting the layout of the sidebars. In most cases, you will want to
explore using the float property, as this gives you more options as a designer, and allows
your layout to be flexible instead of fixed.

Doing more with design and layout
If this recipe sparked your interest in doing more positioning actions through the use of CSS in
your theme, you will want to visit the Blog Design and Layout section of the WordPress codex,
at http://codex.wordpress.org/Blog_Design_and_Layout.

Styling the appearance of sidebars in your
theme by using CSS

WordPress themes use the style.css file to control both the layout (positioning) of objects
as well as how they look (appearance). We will create a different appearance for each sidebar
of the theme, by using the color and background declarations of each sidebar selector.

Getting ready
We'll be using a variation of the Classic Wordpress theme in this example. You can use any
theme you like, but the names of the selectors (such as #sidebar instead of #menu) may
vary depending on the theme.

How to do it…
Open up your style.css file and find the #menu{} style. Change the background color to
#ff9966, a peachy pink color. Next, change the border-top declaration to none, and the
border-left declaration to 5px dotted #ff3333;. The #ff3333 hexidecimal code is
a dark orange. Add the declaration color:#333; to the #menu style. Your style should now
look like the example shown below:

#menu {
 position: absolute;
 background: #FF9966;
 border-left: 5px dotted #FF3333;
 border-top: none;
 padding: 20px 0 10px 30px;
 margin:0;
 right: 1px;
 top: 0;
 width: 12.5em;
 height:100%;
 color:#333; }

Chapter 6

113

Upload the style.css file, and then view the change in your browser window. It should look
as shown in the following screenshot:

How it works…
WordPress relies heavily on the style.css file to control the appearance of widgets, pages,
and other objects in a theme. When a page or other object is loaded, Wordpress checks the
style.css file for any special instructions regarding text color, background color, borders,
and so on. Starting with the larger default tags such as body, WordPress then moves down
the stylesheet from larger to smaller elements.

For example, it will check the body statement first for any background color declarations,
then moves on to custom style rules like #menu. If menu declares a different background
color, as it did in our recipe, then WordPress will display that color when the sidebar is called.
If there are no smaller elements such as custom widget style rules with specific background
color declarations, WordPress stops there and you now have a peachy colored default sidebar
instead of a white one.

Sidebars

114

There's more…
There is much more that you can do to change the appearance of your sidebars. Adding
background images and customizing list items with graphics or other list-style-types (circles,
squares, and so on) is just the beginning. Going more in-depth about the possibilities of CSS is
beyond the scope of this book, but in the paragraphs below you will find additional resources
to take it further.

Design and Layouts: The WordPress codex
There is a wealth of information about WordPress theme design in the WordPress codex. Start
with http://codex.wordpress.org/Developing_a_Colour_Scheme to begin your
journey into altering the appearance of the sidebars in your theme.

Sandbox: The theme for maximum appearance options
The Sandbox theme comes with multiple layout options and examples, and is a very clean
theme to use when you want to focus on styling its appearance without touching anything
in the theme other than the stylesheet. It was also featured in "WordPress for Business
Bloggers", Paul Thewlis, Packt Publishing. You can download the theme from:
http://www.plaintxt.org/themes/sandbox/.

Displaying different widgets on different
pages by using the Widget Logic plugin and
conditional tags

Given the different contexts for different page displays, you may wish to display different
widgets in sidebars for places like the home page, category archive, or single-post display
pages. With dynamic sidebars and the Widget Logic plugin, this is easy to accomplish.

Getting ready
You need to have a theme that uses dynamic sidebars with a sidebar.php template,
and at least one of your main theme files must use the get_sidebar function to include
the sidebar.

How to do it...
Download the Widget Logic plugin from http://wordpress.org/extend/plugins/
widget-logic/. Upload the widget_logic.php file to the plugins directory of your
theme's folder.

Chapter 6

115

Log into your WordPress administration panel, and then click on Plugins. The Widget Logic
plugin should appear in the Manage Plugins list. Click on the Activate link for this plugin. A
message should appear at the top of the page verifying that the plugin is now activated. Now,
if you visit the Active area of your Manage Plugins screen, you should see it listed, as seen in
the next screenshot:

Next, go to Appearance | Widgets, in order to add an Archives widget that will only display
on single-post pages. Drag an Archives widget over to Sidebar 1, then enter the relevant
information in the widget. For example, for the Title, enter the text Recipes by Date, place a
checkmark in the Show post counts checkbox, and type the conditional statement is_single()
in the Widget logic text field. Click on the Save button in the widget form.

The Archives widget should now look like the screenshot below:

Sidebars

11�

When we view the blog, we should now see this Archives widget only on our single posts page,
as shown in the next screenshot:

How it works...
Here you are using the various conditional tags supplied by WordPress to check for the context
of the current page. Then, depending on the context, a specified widget is displayed in the
dynamic sidebar, without you creating any additional sidebar files. Instead, the Widget Logic
plugin allows you to use existing sidebars and add conditional behaviours to the widgets that
you assign to them with the convenience of using the existing widgets panel.

This allows your theme's users to display widgets conditionally depending on their needs given
the different contexts. Erring on the side of giving your users more control is always a great
way to go.

Find the category ID (or a post ID, and so on) by hovering your mouse over
the Edit link of your category or other item. The category ID will appear in the
status bar of your browser.

Chapter 6

11�

There's more...
In this recipe, we focused on controlling the content that appeared in existing sidebars, by
using a plugin that accepted conditional tags. This is an area of WordPress that you can dive
into and customize the display of widgets in your sidebars as much as you like.

Getting more out of conditional tags
There is much more that you can do with both the Widget Logic plugin and conditional tags.
To learn more, visit:

http://codex.wordpress.org/Conditional_Tags/

http://wordpress.org/extend/plugins/widget-logic/faq/

Specific sidebars for custom theme pages
An alternate method in cases where you want to explicitly use specific pages in your theme
pack and provide them to users (such as a gallery, table of contents, and so on) is to create a
unique sidebar page for each corresponding template page, and then call the sidebar in the
appropriate page. You may also want to assign default widgets to the different sidebars,
as well.

For example, create a sidebar page called sidebar-toc.php, adding a dynamic sidebar
function call:

<?php if (function_exists (dynamic_sidebar(1))) : ?>
<div id="my-sidebar-div">
<ul id="my-sidebar-ulstyle">
<?php dynamic_sidebar (1); ?>

//table of contents conditional statements or other content here

</div>
<?php endif; ?>

The 1 in dynamic_sidebar(1) is the number that WordPress uses to
identify the sidebar. It considers the default sidebar (sidebar.php) to
be sidebar(0). If you already have other sidebars before adding one, like in
this example, you will need to number it appropriately.

In functions.php, you register the sidebar by the name toc:

<?php if (function_exists ('register_sidebar')) {
 register_sidebar ('toc');
} ?>

Sidebars

118

Finally, open the table-contents.php (or whatever you name that page) and place a
get_sidebar tag:

<? get_sidebar('toc'); ?>

Save all files, and then upload them to your theme. Visit http://codex.wordpress.org/
Customizing_Your_Sidebar to learn more.

Showing asides in the sidebar by using the
Miniposts plugin

Asides are a concept unique to blogging. When a blogger wants to say something, but there
isn't enough content to constitute an entire post, they can put it in a special "Aside" category
that is displayed in the sidebar, or use a plugin to assign posts as "asides".

Getting ready
You will need a theme that contains a sidebar.php file, or else you can create one using
earlier recipes in this book. We will be using a variation of the Classic WordPress theme in
this recipe.

How to do it...
Download the Miniposts plugin from http://wordpress.org/extend/plugins/
miniposts/, and unzip the folder. Look for the miniposts folder inside the wrapper folder,
and upload it to the plugins folder of your theme. Log into your WordPress administration
panel, and then click on Plugins. Click on the Activate link to activate the Miniposts plugin.

Next, go to Appearance | Widgets and drag the Miniposts widget to the main sidebar. There
is no additional default configuration for this widget.

Finally, go to the Posts panel and create a new post to be an aside. Place text in the main
post and the excerpt textfield. Place a check against any categories that you like. The most
important step at this point is to place a check in the Miniposts This is a mini post checkbox.

Chapter 6

11�

You can see an example post in the following screenshot:

Any posts that you create and mark as Miniposts will now appear in your sidebar. The next
screenshot shows an example of how an aside post will appear in a sidebar:

Sidebars

120

How it works...
Miniposts singles out any post that you identify as a minipost from the regular posts on your
blog and causes them to be displayed in your sidebar. Read more about the Miniposts plugin
at http://www.piepalace.ca/blog/projects/miniposts/.

There's more…
You can also create your own custom asides.

Creating custom asides
Back in the dark ages of WordPress, before version 2.8, creating asides often meant hacking
into code. If you are interested in asides and want to customize them for your theme, you can
learn more about them at http://codex.wordpress.org/Adding_Asides.

Adding an interactive Facebook-style wall to
a sidebar by using jQuery

Visitors love interactive features on blogs. This recipe will help you create a Facebook-style
interactive wall so that you can communicate quickly, in a sidebar.

Getting ready
You will need a WordPress theme that uses a widgetized sidebar, meaning that you should be
able to manage your widgets under the Appearance panel of your administration area.

How to do it...
Download WP Wall from http://www.prelovac.com/vladimir/wordpress-plugins/
wp-wall. Unzip the folder, and then upload the wp-wall folder (be careful to upload the
inner wp-wall folder and not the outside download wrapper folder, in which also named
wp-wall) to your /wp-content/plugins/ folder.

Log in to your administration panel and go to the Plugins page. Click on the Activate link for
the plugin to activate it. Add the widget to a sidebar, and then expand the widget to view the
Options link (you can also find the options for WP Wall in your administration panel under
Settings | WP Wall). Click on it to view the options page.

Chapter 6

121

Next, we set the options. There is a long list of options for this plugin, so we will focus on
the most important ones. Under the General Options heading, set the Title for the widget
to Say What? and change the Leave a reply text to Say it. Next, enter 10 in the Number of
comments to show box. Finally, place a check in the following checkboxes: Show 'All' link,
Show email field in the form, Show gravatar images, Show post comment box expanded by
default, and Reverse order of displayed comments. Select two checkboxes in the Comments
heading: Only registered users can post and Treat admin deleted comments as spam.

An example of how many of the settings for WP Wall should appear is shown in the
following screenshot:

Sidebars

122

Save your settings, and then go back to your widgets panel to verify that the widget has been
placed on your preferred sidebar and that the title is correct. Save the widget, and then view it
in your browser window. Add a comment or two (invite a few friends over to try it out as well),
and you should see something similar to the next screenshot:

How it works...
The WP Wall creates a site-wide comments system for your blog. When you install and
activate the plugin, it creates additional hooks into the existing WordPress comments by
adding additional functions. Configuring a WP Wall widget allows you to leverage the security
features of WordPress comments and the flexibility to add the wall to all of the pages of your
blog, or restrict it to specific sidebars or areas.

There's more...
WP Wall allows you to create a simple wall to define complex options and behaviours.

Doing more with WP Wall
Read up on the many additional options and discover more ways to use WP Wall with your blog
by visiting http://www.prelovac.com/vladimir/wordpress-plugins/wp-wall.

�
Custom Page

Templates

In this chapter, we will cover:

Creating a simple page template

Creating an archives page template

Creating a taxonomy navigation template

Displaying author avatars and descriptions

Creating a table of contents page template

Showing your pictures from Flickr

Displaying a special template for a specific category

Introduction
One of the most important reasons for the proliferation of WordPress-based sites is the ease
with which the software allows web developers and designers to display different content in
a myriad of different ways. This starts in the core and extends to the theming system.

First, there is the concept of core template files. Out of the box, WordPress will attempt to load
predetermined template files for different types of content. For example, the author.php file,
if it exists, is used when a user visits an author's post listing page. Likewise, the home.php
file is used when a visitor happens upon the root of the site.

Custom Page Templates

124

On top of this base system, there is a whole additional level available to theme developers. The
developers can create specific page templates that display a variety of content in a very specific
way. The templates are created individually when the theme is being developed, and they may
or may not rely upon user-supplied content. These types of templates are activated, per page, by
the user, from the WordPress administrative area. These types of template files are particularly
useful for static page content or when you need to completely override the appearance of a
particular piece of content.

Creating a simple page template
The first thing that we'll cover in this chapter is creating a simple page template. This recipe
shows the specific markup that you need to include in a PHP file in order to make sure that
WordPress recognizes it as a page template. In addition, we'll demonstrate how to choose a
page template when creating a page. When you get to the end of this recipe, you'll be fully
equipped to create and use new page templates with your custom themes.

Getting ready
To properly use the techniques in this recipe, you'll need to be working with a theme that you
previously acquired or developed. If you haven't started developing a custom theme yet, I
recommend using the Thematic theme. It can be freely downloaded from the WordPress.org
Theme Repository at http://wordpress.org/extend/themes/thematic/.

How to do it...
To create a custom page template, you start by creating a single file. In general, the filename
should be descriptive of its content or purpose and should clearly delineate it as a page
template. Open your theme's directory and create a new file called hello-world-page-
template.php.

Next, you need to add the appropriate markup that lets WordPress recognize the file as a
page template. Open the file that you just created (hello-world-page-template.php)
for editing, and insert the following code at the very top of the file:

<?php
/*
Template Name: Hello World
*/
?>

If you've worked with PHP before, you'll immediately recognize this as a standard comment
block. Inside of the comment block is a specially-formatted string that tells WordPress that
this is a page template. We'll go over the details of how WordPress works with this file later,
but for now let's move on to displaying content.

Chapter 7

125

For the sake of remaining simple, this page template will only display a simple string. Directly
after the piece of markup that you added earlier, insert the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <title>
 Hello World!
 </title>
 </head>
 <body>
 <h1 style="text-align:center;">Hello World!</h1>
 </body>
</html>

This simple piece of markup defines a standard HTML document with appropriate head and
body elements. Inside of the body is a single heading element that reads Hello World!. Save
your file at this point to make sure that WordPress will be able to detect it for the next few steps.

Pat yourself on the back! You've just created your first custom page template. Although it may
be simple, the new page template will serve well for demonstration purposes. Now you just
need to see it in action, by creating a new page.

Open the WordPress administrative area, and navigate to the Add New Page interface. Once
there, add a title of some sort (it doesn't matter what, but you need to have a title). Next,
locate the Attributes meta box. It looks like the following:

Custom Page Templates

12�

As you can see, this meta box allows you to change the page template for the page that you
are editing. Select the page template Hello World from the drop-down menu underneath the
Template heading.

If you can't find the Attributes meta box, then it may be hidden from the
screen. At the top right, click on the Screen Options link and make sure
that the checkbox next to Attributes is selected.

After selecting the appropriate page template from the drop-down menu, publish your page by
clicking on the Publish button in the Publish meta box. After a few brief moments, your page
should refresh, and you'll be greeted with a View Page link at the top of the screen. Click on
this link and your browser will navigate to and display your new page, showing off your custom
page template. Your page should look like the example shown in the following screenshot:

How it works...
You created a simple page template that displays the text Hello World!, and immediately after
creating your new file, WordPress made it available as an option in the Template drop-down
menu in the Attributes meta box. How did WordPress know about your new page template
and how did it know to display it for your newly created page?

It all starts with the comment header that you added at the very beginning of this recipe. That
header looked like the following:

<?php
/*
Template Name: Hello World
*/
?>

Chapter 7

12�

When it comes down to it, this header is the only thing separating your custom page
template from any other WordPress template file. When you visit the Edit Page interface
in the WordPress administrative area, the Attributes meta box dynamically populates the
Template drop-down menu by following a multistep process.

First, a list of all files contained in the currently-active theme's directory is generated and
returned from the get_current_theme function. Next, WordPress iterates over each file,
reading its contents and attempting to find the Template Name: header. If such a header is
found in a file, then the file is stored as an available page template that can be chosen from
the drop-down menu on the Edit Page interface.

Once a page has been saved, the selected page template is stored as a meta item for the
post, with a key of _wp_page_template. When WordPress displays a page, it checks to see
if a custom page template was selected. If so, then WordPress attempts to fetch and display
the specified template file. If that file cannot be loaded for some reason, WordPress reverts to
the default display hierarchy.

Creating an archives page template
After learning how to create a simple page template in the recipe Creating a simple page
template, you're probably brimming with ideas for custom page templates that you can provide
for your theme. However, if you're going to take the time to create any page templates at all, you
should make sure that you provide your users with a useful Archives template.

The Archives template can contain many things, but its main purpose is to help your users
navigate around your blog in a way that makes sense to them. As such, it should almost always
include a post archive by month, and a list of the categories on your blog. In this recipe, we'll be
providing just that.

Getting ready
To properly use the techniques in this recipe, you'll need to be working with a theme that you
previously acquired or developed. If you haven't started developing a custom theme yet, I
recommend using the Thematic theme. It can be freely downloaded from the WordPress.org
Theme Repository at http://wordpress.org/extend/themes/thematic/.

Custom Page Templates

128

How to do it...
First, follow the steps in the recipe Creating a simple page template until you reach the point
at which you start adding custom content. While following that recipe, modify the filename
from hello-world-page-template.php to archives-page-template.php and
change the value of the Template Name: header from Hello World to Archives.

Now, you're ready to start adding the appropriate content. After the page template comment
header, add the following markup to your page template, and then save the file:

<?php get_header(); ?>
<div id="container">
 <div id="content">
 <h2>Archives by Month</h2>

 <?php
 wp_get_archives(array(
 'type'=>'monthly',
 'show_post_count'=>true
));
 ?>

 <h2>Archives by Category</h2>

 <?php
 wp_list_categories(array(
 'title_li'=>'',
 'show_count'=>true
));
 ?>

 </div>
</div>
<?php get_sidebar(); ?>
<?php get_footer(); ?>

At this point, your Archives page template is ready for use. Go and create a new page in the
WordPress administrative area and make sure that it uses the Archives page template. If you
need more information on how to do this, see the recipe Creating a simple page template.
Visit your newly-created page. You should see output similar to the example shown in the
following screenshot:

Chapter 7

12�

Here you can clearly see the month and category archives produced via your custom Archives
page template.

How it works...
To learn more about the ways in which WordPress stores and displays custom page templates,
see the How it works... section in the recipe Creating a simple page template.

Here, you're using two new functions that are particularly valuable in an Archives page template.
The functions are wp_get_archives and wp_list_categories. Both of these functions are
great because they:

Automatically produce a list of sorted links
Provide a means for visitors to browse content in a way that makes sense to them
Shield you, as a theme developer, from future WordPress API changes

Custom Page Templates

130

There's more...
Both of the new functions that you are using, wp_get_archives and wp_list_categories,
take a variety of parameters that can be used to modify their output. Let's look at some of these
parameters in detail.

Listing archive links
wp_get_archives supports a wide variety of parameters that greatly change the way that
the output is produced. The most important parameter is definitely type, as this completely
modifies the output by providing a different level of granularity for the archive.

The values available to be used for type are:

monthly
yearly
daily
weekly
postbypost
alpha

Each of the time-based values for type produces a list that contains an item for each of
those timeframes that contains a post. For example, you can see the output for a weekly
list as follows:

Chapter 7

131

On the other hand, postbypost and alpha produce a list of each post on the blog, sorted
alphabetically. You can see a partial list in the following screenshot:

For a full list of parameters supported by wp_get_archive, visit the WordPress Codex page for
the function, at http://codex.wordpress.org/Template_Tags/wp_get_archives.

Listing Categories
One of the best ways to browse a site's archive and really find what you want is to follow the
categories that interest you. The wp_list_categories function makes it easy for you, as
a theme developer, to provide this capability. The wide array of parameters that wp_list_
categories allows you to modify the output from the function in many different ways.

Custom Page Templates

132

Some of the most used parameters for wp_list_categories are number, show_count,
and child_of. The number parameter limits the number of items output in the category
list. The show_count parameter is a Boolean value that determines whether the number of
posts in a particular category should be output as a part of the list items produced for that
category. Finally, the child_of parameter indicates which categories should be retrieved and
displayed based on their parent category. If you wanted to display four child categories of the
category with ID 3 and show the number of posts in each category, you'd use something like
the following code:

<?php
wp_list_categories(array(
'title_li'=>'',
'show_count'=>true,
'number'=>4,
'child_of'=>3
));
?>

This code would display output very similar to the example shown in the following screenshot:

Chapter 7

133

For a full list of parameters supported by wp_list_categories, visit the WordPress
Codex page for the function at http://codex.wordpress.org/Template_Tags/
wp_get_archives.

See also
Creating a simple page template

Creating a taxonomy navigation template
Similar to the Archives page template created in Creating an archives page template, a
Taxonomy Navigation page template can be very useful to your site visitors. With the introduction
of custom post taxonomies in WordPress 2.8, WordPress users have more options than ever
when it comes to classifying their content. A car enthusiast's site may have posts classified by
Make, Model, or Transmission Type. Wouldn't it be useful to be able to navigate by those things
in addition to the standard post tags and categories?

Custom taxonomies are amazingly powerful and quite easy to put in place.
We'll use a small snippet of code for testing purposes later, but if you
want more information on how to use them, see Justin Tadlock's excellent
post about custom taxonomies at http://justintadlock.com/
archives/2009/05/06/custom-taxonomies-in-wordpress-28.

In this recipe, you'll learn how to create a page template that allows visitors to browse by any
taxonomy that the system has in place. The best part is that you don't need to know ahead of
time what taxonomies are available.

Getting ready
To properly use the techniques in this recipe, you'll need to be working with a theme that you
previously acquired or developed. If you haven't started developing a custom theme yet, I
recommend using the Thematic theme. It can be freely downloaded from the WordPress.org
Theme Repository at http://wordpress.org/extend/themes/thematic/.

In addition to properly testing the custom taxonomy navigation for this recipe, we need to add
a new taxonomy. Open up your theme's functions.php file and insert the following:

<?php
add_action('init', 'wptc_taxonomies');
function wptc_taxonomies() {
 register_taxonomy(
 'genres',
 'post',

Custom Page Templates

134

 array(
 'hierarchical'=>false,
 'label'=>'Genres',
 'query_var'=>true,
 'rewrite' => true
)
);
}

This little snippet adds a new taxonomy for Genres, something that might be right at home
on a book or movie review site. Go to the WordPress administrative interface and navigate to
the Add New Post interface, and then make sure that the new Genres meta box appears. It
should look like the following:

Now go ahead and add some genres to a post and publish it, to ensure that there is data to
pull for your custom taxonomy.

How to do it...
First, follow the steps in the recipe Creating a simple page template until you reach the point
at which you start adding custom content. While following that recipe, modify the filename
from hello-world-page-template.php to taxonomies-page-template.php, and
change the value of the Template Name: header from Hello World to Taxonomies.

Now you're ready to start adding the appropriate content. After the page template comment
header, add the following markup to your page template, and then save the file:

<?php get_header(); ?>
<div id="container">
 <div id="content">
 <?php
 $taxonomies = get_object_taxonomies('post');
 foreach($taxonomies as $tax) {
 $obj = get_taxonomy($tax);
 ?>
 <h2><?php echo esc_html($obj->label); ?></h2>
 <?php

Chapter 7

135

 wp_tag_cloud(array(
 'number'=>3,
 'unit'=>'',
 'format'=>'list',
 'orderby'=>'count',
 'order'=>'DESC',
 'taxonomy'=>$tax
));
 }
 ?>
 </div>
</div>
<?php get_sidebar(); ?>
<?php get_footer(); ?>

You can now use your Taxonomies page template. Go and create a new page in the WordPress
administrative area, and make sure that it uses the Taxonomies page template. If you need
more information on how to do this, see the recipe Creating a simple page template. Visit
your newly-created page. You should see output similar to the example shown in the
following screenshot:

Custom Page Templates

13�

How it works...
By this time, you should have a pretty good idea of the way in which custom page templates
work. If you need a refresher, see the How it works... section of the Creating a simple page
template recipe.

Here you're taking advantage of the taxonomy system that has been built into WordPress
since Version 2.3, as well as the custom taxonomy capabilities built into WordPress since
Version 2.8. The taxonomy system essentially lets you classify objects in your system in ways
that makes sense for your particular content. If you're reviewing movies, it makes sense to
classify them in Genres. If you're looking at art, it makes sense to classify them by Periods.

After you've classified your content, you need to somehow let visitors navigate according to your
custom taxonomies. That is where this recipe comes into play. In this recipe, you use a couple
of new functions. First, you take advantage of the get_object_taxonomies function. This
function takes a single parameter that indicates the type of object that you want to retrieve
taxonomies for, and returns an array of registered taxonomy names for that object type. Next,
you iterate over each taxonomy name, retrieve the appropriate taxonomy object, and then
display the taxonomy label, and a list of all items in that taxonomy that have been used to
classify objects.

The function that you use to display the items in taxonomy is wp_tag_cloud. Most people
don't realize the full potential of this function, believing that it is only used for displaying
post tags. However, you can use wp_tag_cloud to display items from any taxonomy, by
passing a taxonomy name in as a parameter.

You pass other parameters as well, and it is important to know why you provide the values
that you do:

number—used to limit the number of taxonomy items present in the list output

unit—setting this parameter to an empty string ensures that all items are the
same size

format—setting this parameter to the value list causes the output to be an
unordered list

orderby—you can use different values here, but using count ensures that your
taxonomy items are sorted by the number of objects they are assigned to

order—setting this to DESC makes the taxonomy items order themselves from
high to low

taxonomy—the value here determines which object classification will be looked
at inside of the function

Internal to wp_tag_cloud is a complicated SQL query that looks at different taxonomy tables
and the posts table, applies the options that you pass, and generates the appropriate output.
An investigation into the internals of this function is beyond the scope of this book.

Chapter 7

13�

See also
Creating an archives page template

Creating a simple page template

Displaying author avatars and descriptions
Multi-author blogs are gaining momentum in the professional and business blogging world. As
such, if you're producing a business theme for WordPress, you might want to take special care
to produce a page template that displays information about each of the authors on a blog.

In this recipe, you'll create such as page template. This will show the author's display name,
avatar, biography, and the number of posts that they've written for the site. It will also contain
a link to that author's posts.

Getting ready
To properly use the techniques in this recipe, you'll need to be working with a theme that you
previously acquired or developed. If you haven't started developing a custom theme yet, I
recommend using the Thematic theme. It can be freely downloaded from the WordPress.org
Theme Repository at http://wordpress.org/extend/themes/thematic/.

How to do it...
First, follow the steps in the recipe Creating a simple page template until you reach the point
at which you start adding custom content. While following that recipe, modify the filename
from hello-world-page-template.php to authors-page-template.php, and
change the value of the Template Name: header from Hello World to Authors.

Now you're ready to start adding the appropriate content. After the page template comment
header, add the following markup to your page template, and then save the file:

<?php get_header(); ?>
<div id="container">
 <div id="content">
 <?php
 $authors = get_users_of_blog();
 foreach($authors as $author) {
 $num_posts = get_usernumposts($author->ID);
 if($num_posts>0) {
 $id = $author->ID;
 $author = new WP_User($id);
 ?>

Custom Page Templates

138

 <div class="author" id="author-<?php echo $id; ?>">
 <h2 class="author-name">
 <?php
 the_author_meta('display_name',$id);
 ?>
 </h2>
 <div class="author-gravatar">
 <?php
 echo get_avatar($id);
 ?>
 </div>
 <div class="author-description">
 <?php
 the_author_meta('description',$id);
 ?>
 </div>
 <div class="author-posts-link">
 <a href="<?php
 echo get_author_posts_url($id); ?>">
 <?php
 printf(
 '%s has written %d posts. Check \'em out!',
 get_the_author_meta('display_name'),
 $num_posts
);
 ?>

 </div>
 </div>
 <?php
 }
 }
 ?>
 </div>
</div>
<?php get_sidebar(); ?>
<?php get_footer(); ?>

You can now use your Authors page template. Go and create a new page in the WordPress
administrative area, and make sure that it uses the Authors page template. If you need more
information on how to do this, see the recipe Creating a simple page template. Visit your
newly-created page. You should see output similar to the following, depending on the
authors that you have on your site:

Chapter 7

13�

In the above screenshot, you see numerous authors with their name, description, avatar,
and a link to their posts. The information could be expanded upon, but this is a good
starting point.

How it works...
By this point you should have a pretty good idea of the way that custom page templates
work. If you need a refresher, see the How it works... section of the Creating a simple page
template recipe.

There are a few functions of note in this recipe, nearly all of them dealing with the retrieval
of author data. The code listing starts with the get_users_of_blog function. This function
returns an array of user objects, one for each user currently in the system. Next, you iterate
over the array of users, checking to see whether they have published any posts or not. If an
author has published at least one post, then you proceed with displaying various user data.

Custom Page Templates

140

Here, user data is displayed by using the the_author_meta function with different parameters
and the value of the user ID for the author currently being iterated over. In addition, the get_
avatar function is used to display the appropriate image for each author. All of the data for
each author is wrapped in a nice set of HTML tags that provide proper formatting and display.

There's more...
If you're going to display information for each author on a dedicated page, you should probably
redisplay that information on their individual author listings as well. You already have the proper
markup, so this will be a piece of cake.

First, separate out the display code for an author into its own file. You could call this file
something like author-expanded.php. It will contain the following code:

<div class="author" id="author-<?php echo $id; ?>">
 <h2 class="author-name">
 <?php
 the_author_meta('display_name',$id);
 ?>
 </h2>
 <div class="author-gravatar">
 <?php
 echo get_avatar($id);
 ?>
 </div>
 <div class="author-description">
 <?php
 the_author_meta('description',$id);
 ?>
 </div>
 <div class="author-posts-link">
 <a href="<?php echo get_author_posts_url($id); ?>">
 <?php
 printf(
 '%s has written %d posts. Check \'em out!',
 get_the_author_meta('display_name',$id),
 $num_posts
);
 ?>

 </div>
</div>

Chapter 7

141

Now go back to your authors-page-template.php, and change it to use the
newly-created file, leaving you with something like the following:

<div id="container">
 <div id="content">
 <?php
 $authors = get_users_of_blog();
 foreach($authors as $author) {
 $num_posts = get_usernumposts($author->ID);
 if($num_posts>0) {
 $id = $author->ID;
 $author = new WP_User($id);
 include(STYLESHEETPATH.'/author-expanded.php');
 }
 }
 ?>
 </div>
</div>

After that, open up your theme's author.php file (if you don't have one, just create one
and copy the contents of index.php into the new file). Immediately before the posts listing,
insert a call for the expanded author information. Your code should look something like the
following example:

<?php
 global $wp_query;
 $id = $wp_query->get_queried_object_id();
 $author = new WP_User($id);
 $num_posts = get_usernumposts($id);
 include(STYLESHEETPATH.'/author-expanded.php');
 if(have_posts()) { while(have_posts()) {
 the_post();

Custom Page Templates

142

Call up an author's post page, and you'll see the expanded author information, followed by a
list of that user's posts:

See also
Creating a simple page template

Creating a table of contents page template
Let's say you're writing a book where you publish each chapter as it is finished. You're going to
use WordPress pages for your content organization, with a top-level page describing the book
and then a subpage for each of the chapters in your book.

On the top-level page, in addition to the book title and description, you want to display links to
each of the chapters, and a brief description of their content. This task would be difficult with
a lot of other content management systems, but not with WordPress.

Chapter 7

143

Getting ready
To properly use the techniques in this recipe, you'll need to be working with a theme that you
previously acquired or developed. If you haven't started developing a custom theme yet, I
recommend using the Thematic theme. It can be freely downloaded from the WordPress.org
Theme Repository, at http://wordpress.org/extend/themes/thematic/.

How to do it...
First, follow the steps in the recipe Creating a simple page template until you reach the point
at which you start adding custom content. While following that recipe, modify the filename
from hello-world-page-template.php to toc-page-template.php and change the
value of the Template Name: header from Hello World to Table of Contents.

Now you need to create the appropriate content that will be displayed when using this page
template. Create a top-level page for your book with the work's title as the post title, and choose
the Table of Contents template from the Template drop-down menu in the Attributes meta box.
Then create several child pages, using the chapter's title as the post title. For each child page,
make sure that you choose your main book page from the Parent dropdown and the Table of
Contents option from the Template dropdown. When you're done, visit the Edit Pages interface,
and you should see something like the example shown in the following screenshot:

Custom Page Templates

144

Chapter order
When you're creating your book's chapters, make sure that you set the
Order property in the Attributes meta box (the same place that you change
the page template) to the number of the chapter. This ensures that your
chapters appear in the correct order.

Now you're ready to write the code to generate your table of contents. After the comment
header, add the following markup to your page template, and then save the file:

<?php get_header(); ?>
<div id="container">
 <div id="content">
 <?php
 if(have_posts()) {
 while(have_posts()) {
 the_post();
 ?>
 <h2 class="book-title"><?php the_title(); ?></h2>
 <div class="book-description">
 <?php the_content(); ?>
 </div>
 <h2>Chapters</h2>

 <?php
 $chapters_query = new WP_Query(array(
 'post_type'=>'page',
 'post_parent'=>get_the_ID(),
 'orderby'=>'menu_order',
 'order'=>'ASC'
));
 if($chapters_query->have_posts()) {
 while($chapters_query->have_posts()) {
 $chapters_query->the_post();
 ?>
 <li class="chapter">
 <h3 class="chapter-title">
 <a href="<?php the_permalink(); ?>">
 <?php the_title(); ?>

 </h3>
 <?php the_excerpt(); ?>

 <?php

Chapter 7

145

 }
 }
 ?>

 <?php
 }
 }
 ?>
 </div>
</div>
<?php get_sidebar(); ?>
<?php get_footer(); ?>

When this page template is used, the book's title will be displayed as the main heading and
will be followed by an ordered list of chapter titles and excerpts. If you've added your content
correctly, and selected the Table of Contents page template for your main book page, you
should be seeing something similar to the example shown in the following screenshot:

Custom Page Templates

14�

You'll see here that you have your book title at the very top of the page, followed by the full
content of your book's description. After that, you have a link to each chapter, along with the
chapter title and an excerpt.

How it works...
By this point you should have a pretty good idea of the way that custom page templates work.
If you need a refresher, see the How it works... section of the Creating a simple page template
recipe. In addition, you'll notice that we've used a custom Loop in this page template. For more
on custom and multiple Loop constructs, see the recipe Creating multiple loops on a single
page in Chapter 3, The Loop.

There aren't too many new and novel things in this recipe, but there is one particular item to
note. Check out the get_the_ID function usage in the recipe code. Rather than hard-coding
a parent ID to fetch the book's chapters, you're dynamically applying the ID from the
currently-viewed page. This means that you can reuse the Table of Contents page
template for multiple books on a single site.

There's more...
You've created a page template that links to each of the chapters in a book and this should
prove quite useful to your site's visitors. However, wouldn't it be great if your chapters showed
your visitor's progress through the book that they're reading? It's easy with another custom
page template. Create a new file called chapter-page-template.php, insert and then
save the following code, and then assign to each chapter the Chapter page template:

<?php get_header(); ?>
<div id="container">
 <div id="content">
 <?php
 global $post;
 if(have_posts()) {
 while(have_posts()) {
 the_post();
 $current_chapter = $post;
 ?>
 <h2 class="chapter-title"><?php the_title(); ?></h2>
 <ol class="table-of-contents">
 <?php
 $chapters_query = new WP_Query(array(
 'post_type'=>'page',
 'post_parent'=>$current_chapter->post_parent,
 'orderby'=>'menu_order',
 'order'=>'ASC'

Chapter 7

14�

));
 if($chapters_query->have_posts()) {
 while($chapters_query->have_posts()) {
 $chapters_query->the_post();
 $viewing = $current_chapter->ID == get_the_ID();
 ?>
 <li class="chapter">
 <?php if($viewing) { ?>

 <?php } ?>
 <a href="<?php the_permalink(); ?>">
 <?php the_title(); ?>

 <?php if($viewing) { ?>

 <?php } ?>

 <?php
 }
 }
 setup_postdata($current_chapter);
 ?>

 <div class="chapter-contents">
 <?php the_content(); ?>
 </div>
 <?php
 }
 }
 ?>
 </div>
</div>
<?php get_sidebar(); ?>
<?php get_footer(); ?>

Custom Page Templates

148

With this template, you're generating a list of all chapters that are using the currently-viewed
chapter's post_parent property. You're also highlighting the current chapter by checking
the currently-viewed chapter's ID against the ID of each chapter in the list generation Loop. If
you've done everything correctly, you'll be greeted with a short Table of Contents at the top of
every chapter page, with the current chapter in bold. It should look like the example shown in
the following screenshot:

See also
Creating a simple page template

Creating multiple loops on a single page

Showing your pictures from Flickr
Flickr is a very popular photo upload and sharing site. Flickr has an excellent tagging, storage,
and viewing system, and a lot of bloggers use Flickr for sharing pictures with friends and
colleagues. In this chapter, you'll create a page template that pulls in a WordPress user's
photos from their Flickr account, and displays these photos in a simple list.

Chapter 7

14�

Getting ready
To properly use the techniques in this recipe, you'll need to be working with a theme that you
previously acquired or developed. If you haven't started developing a custom theme yet, I
recommend using the Thematic theme. It can be freely downloaded from the WordPress.org
Theme Repository, at http://wordpress.org/extend/themes/thematic/.

How to do it...
First, follow the steps in the recipe Creating a simple page template until you reach the point
at which you start adding custom content. While following that recipe, modify the filename
from hello-world-page-template.php to flickr-page-template.php, and change
the value of the Template Name: header from Hello World to Flickr.

Next, you need to find your Flickr feed URL. You can do this by navigating to your Flickr
photos page, scrolling to the bottom, and clicking on the Feed icon, as shown in the
following screenshot:

Copy the resulting URL from your browser's address bar. It should be in the following format:

http://api.flickr.com/services/feeds/photos_public.
gne?id=44124424984@N01&lang=en-us&format=rss_200

Next, change the format parameter from rss_200 to json, resulting in a URL like
the following:

http://api.flickr.com/services/feeds/photos_public.
gne?id=44124424984@N01&lang=en-us&format=json

Now that you have your Flickr URL, you're ready to start adding the appropriate content. After
the page template comment header, add the following markup to your page template, and
then save the file:

<?php get_header(); ?>
<div id="container">
 <div id="content">
 <?php
 $flickr_username = 'nickohrn';
 ?>
 <h2>Latest Photos</h2>
 <?php
 $url = 'http://api.flickr.com/services/feeds/photos_public.
 gne?id=44124424984@N01&lang=en-us&format=rss_200';

Custom Page Templates

150

 $feed = fetch_feed($url);
 if(is_wp_error($items)) {
 ?>
 <h2>Error</h2>
 <p>Could not retrieve photos from Flickr.</p>
 <?php
 } else {
 ?>

 <?php
 foreach($feed->get_items() as $item) {
 ?>

 <a href="<?php echo $item->get_link(); ?>">
 <?php
 echo esc_html($item->get_title());
 ?>

 <a href="<?php echo esc_attr(
 $item->get_enclosure()->get_link()); ?>">
 <img
 src="<?php echo $item->get_enclosure()->get_link(); ?>"
 />

 <?php
 }
 ?>

 <?php
 }
 ?>
 </div>
</div>
<?php get_sidebar(); ?>
<?php get_footer(); ?>

Make sure that you replace the value of the $url variable with your own feed URL. That way
your photos are seen instead of Matt Mullenweg's photos. You can now use your Flickr page
template. Go create a new page in the WordPress administrative area, and make sure that
you've selected Flickr from the Template drop-down. If you need more information on how to
do this, see the recipe Creating a simple page template. Visit your newly-created page. You
should see an output similar to the following screenshot, depending on the photos that you
have in your Flickr account:

Chapter 7

151

How it works...
By this point you should have a pretty good idea of the way in which custom page templates
work. If you need a refresher, see the How it works... section of the Creating a simple page
template recipe.

In this recipe, you used a few cool functions that you might want to use in other parts of
your theme. The most obvious is fetch_feed: this is a utility function that WordPress
provides, which gives access to the bundled SimplePie RSS library. The function
returns a SimplePie object, which contains various methods and data.

The SimplePie library is very powerful, but in this recipe you're only using a few methods
from the library. First, you use the get_items method on the main SimplePie feed
returned from fetch_feed. This method returns an array of SimplePie_Item objects.

Custom Page Templates

152

You then iterate over the array of items returned from get_items, and use a couple of
different methods. You use get_title to retrieve the item title, get_link to retrieve the
item link, and then you get access to the Flickr media enclosure (the image itself) by using
get_enclosure. A deep dive into the SimplePie library is beyond the scope of this
 book, but you're encouraged to learn more by visiting the official API reference at
http://simplepie.org/wiki/reference/start.

See also
Creating a simple page template

Displaying a special template for a
specific category

If you're running a professional or business blog, you may have specific categories that are
required to fit in with the rest of your blog in general, but that need to stand out in some
special way. For example, if you are using WordPress to power a design company's website,
you'll probably have a portfolio category that needs to be displayed differently to the other blog
categories (perhaps by showing images from each particular design).

Getting ready
To properly use the techniques in this recipe, you'll need to be working with a theme that you
have previously acquired or developed. If you haven't started developing a custom theme yet,
I recommend using the Thematic theme. It can be freely downloaded from the WordPress.org
Theme Repository, at http://wordpress.org/extend/themes/thematic/.

How to do it...
Before you can create the special category template, you need to have some information
about the category that it is going to be displayed. Open the WordPress administrative area
and go to the Categories interface. Find the category that you wish to display in your new
template, and take a look at the slug column in the Categories table. I've highlighted it in
the following screenshot:

Chapter 7

153

Remember the value of that slug. Now you need to create the special category template. The
template should be named category-CATEGORY_SLUG.php, replacing CATEGORY_SLUG
with the value from earlier. If you were using the category from the screenshot, you'd name
your file category-aciform.php.

After creating your file, you have to populate it with content. In general, you'd probably copy
the contents of category.php into your custom category template (alternatively using
archive.php or index.php if category.php didn't exist) and work from there. To show
the very basics of this technique, however, we're going to work with a small HTML skeleton for
our custom category template. Open your new file and enter the following:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <title>
 Hello World!
 </title>
 </head>
 <body>
 <h1 style="text-align:center;"><?php
 global $wp_query;
 echo $wp_query->get_queried_object()->name;
 ?></h1>
 </body>
</html>

Custom Page Templates

154

Now visit your blog and navigate to the URL for the category that you customized. When you
visit that page, you should now see the category name and nothing else, as shown in the
following screenshot:

How it works...
When WordPress is attempting to determine what template to display, it goes through a big long
process that is encapsulated in the file located at wp-includes/template-loader.php.
Once WordPress determines that a category listing is being shown, it calls the
get_category_template function to retrieve the correct template filename.

Inside of get_category_template, WordPress calls the locate_template function with
an array of strings, as follows:

category-slug.php

category-id.php

category.php

locate_template scans the file system for each of these files in turn. If it finds one, then it
returns that string immediately, and WordPress loads that template file.

8
Integrating Media

In this chapter, we will cover:

Aligning images properly within a post

Styling image galleries

Styling image captions

Creating a media template

Creating a media template for a specific media type

Displaying a related image for every post

Creating video posts by using the Viper's Video Quicktags plug-in

Introduction
They say a picture is worth a thousand words. If that is the case, then audio must be worth
a million, and video worth a billion. Luckily, WordPress provides users with great tools that
allow you to quickly and easily attach different types of media directly to posts and, if desired,
display that media in special ways directly in posts.

In this chapter, we're going to go over the different ways in which you can use media such
as images, music, and video files in your theme. We'll look both at how to correctly display
images for users based on WordPress conventions, and how to dig deeper and manipulate
the display of media without user input.

You should know that if you are using the default Kubrick theme that it is not designed well for
the display of videos or images within posts. We will be using the WordPress Classic theme,
which is available with all new Wordpress downloads from http://wordpress.org/
download/, for styling and displaying media in this chapter, but you can use any WordPress
2.8 or 2.9 compatible theme that you like, or apply these recipes to your own custom theme.

Integrating Media

15�

Aligning images properly within a post
One of the most important things for your theme to get right when it comes to displaying
media is also one of the easiest. WordPress uses a certain set of markup to decorate images
displayed in posts, and this markup includes instructions on how to align the images within a
post. The class declarations shown below cover cases where images are inserted into a post
by using the WordPress tools. This is very important to theme users, and forgetting to properly
account for aligning images will give a very poor impression of your theme. Luckily,
it is one of the easiest things to account for.

Getting started
For this recipe, you need to have a basic theme created already. It should have a template file
that displays posts created by a user in their entirety.

How to do it...
First, we need to open up the theme's style.css file and place our cursor just after the
introductory comment. Then, insert the following class declarations:

img.centered {
 display: block;
 margin-left: auto;
 margin-right: auto;
 padding: 4px;
}

img.alignright {
 padding: 4px;
 margin: 0 0 5px 5px;
 display: inline;
}

img.alignleft {
 padding: 4px;
 margin: 0 5px 5px 0;
 display: inline;
}

.alignright {
 float: right;
}

.alignleft {
 float: left;
}

Chapter 8

15�

Be on the look-out for other similar tags. If you spot them, comment them out, beginning
with /* and ending with */. As an example, see how similar code was commented out in
the Sandbox style.css theme:

/* This is the standard layout Sandbox comes with
.alignright,img.alignright{
 float:right;
 border:none;
 margin:1em 0 0 1em;

} */

Save your changes, and then upload the style.css file to the current theme folder on
your server. Upload three images into a post by using the media toolbar. Align each one
to a different direction, and click on the Insert into Post button.

You can see an example of the image upload settings and button in the following screenshot:

In the previous example, Center alignment has been selected. Clicking on the Insert into Post
button inserts generated markup, similar to the following, into the post editor text area:

<img src="rockcity1.jpg" alt="rocks" title="rock formations"
width="300" height="225" class="aligncenter size-medium wp-image-1" />

Copy this markup twice, and change aligncenter to alignright and alignleft
respectively, to allow you to see each alignment in action. Your revised markup should look
like the following:

<img class="alignleft size-medium
wp-image-39" title="05-06-07_1214" src="05-06-07_12142-300x225.jpg"
alt="a tight squeeze" width="300" height="225" />
<img src="05-06-07_1328.jpg" alt="real
rock formations in a Rock City cave?" title="Rock City Cave #1"
width="160" height="120" class="aligncenter size-full wp-image-27"
/>
<img src=" 05-06-07_1228.jpg" alt="view
from the top of rock city" title="View from the top of Rock City"
width="160" height="120" class="alignright size-full wp-image-28" />

Integrating Media

158

After publishing the post, view it in your theme and you should see something similar to the
following screenshot:

How it works...
When you click on the Insert into Post button, the WordPress system runs a JavaScript
function that sends an HTML snippet to the post editor. This HTML snippet is formed in
the function get_image_tag, before being sent to the post editor.

In the get_image_tag, the alignment is combined with the word align in order to produce one
of four possible classes: alignnone, alignright, alignleft, and aligncenter. In the
previous CSS that we wrote for our theme, the alignright, alignleft, and aligncenter
classes are all accounted for, using the CSS float property and appropriate margin and
padding values to ensure that the images align themselves properly within post containers.

Chapter 8

15�

Styling image galleries
Styling individual images is great when a user is uploading one or two images and manually
inserting them. However, WordPress' real image-displaying prowess comes in the form of its
gallery capabilities.

A WordPress gallery is output by using the gallery shortcode within a post. It collects all of
the images attached to a post via the media uploader, and then outputs them using standard
markup. Because the markup is consistent, styling it is easy.

Getting started
For this recipe, you need to have a basic theme created already. It should include a
page.php or single.php file that displays full post content. If you don't have one,
use the Default WordPress theme as a guide, or visit http://codex.wordpress.com/
Theme_Development to learn more.

How to do it...
First, we need to open up the theme's style.css file and place our cursor just after the
introductory comment. Then insert the following class declarations:

.gallery {
 border: 1px solid #f88;
}

.gallery-item {
 background: #000;
}

.gallery-icon {
 border: 1px solid #fff;
}

.gallery-caption {
 border: 1px solid #00f;
}

These style declarations will allow you to see where the different parts of the gallery markup
start and end, so you can further style them as you wish. To see the gallery styles in action,
you'll need to create a gallery. Go to the administrative interface, and create a new post. Click
on the Add an Image button in the media toolbar, and upload multiple images. Then click on
the Save all changes button.

Integrating Media

1�0

After clicking on the Save changes button, you'll be presented with the gallery settings, as
shown in the following screenshot:

Select your desired gallery settings, and then click on the Insert gallery button. Something
similar to the following markup will be sent to your post editor:

[gallery columns="2"]

After this has been inserted into the post editor, publish the post, and then view it in your
theme. You should see something similar to the following screenshot:

Chapter 8

1�1

How it works...
To understand how to style a gallery appropriately, we first have to understand how the gallery
markup is output in the first place, and what exactly that markup looks like. Let's start with
how it is generated and output.

When WordPress sees the shortcode [gallery] inside of a post's content, it auto-expands
this, based on the images attached to that post. This expansion happens inside the
gallery_shortcode function found in wp-includes/media.php.

The gallery_shortcode function does a few things when it is invoked. First, it determines
if the post that the gallery is being called for has any image attachments. If it does, then
the function starts to generate output. The output starts with a style tag that declares some
basic layout information about the gallery. These styles include margin, width, and border
declarations for the main elements of the gallery, and were defined in the style.css file
earlier in the example.

Then, the function iterates over each of the image attachments, and outputs an HTML tag for
it. The tag can be changed through the use of shortcode parameters, but the class attributes
used in the tags will always be the same. The pertinent classes to pay attention to are:

gallery

gallery-item

gallery-icon

gallery-caption

So, at the very least, you should style these elements. After all of the image attachments
have been iterated over, the gallery_shortcode function returns the HTML that has been
produced, and this HTML is inserted wherever the gallery_shortcode is present in the
post content.

For a simple four image, two-column gallery, the output would look something like this:

<style type='text/css'>
 #gallery-1 {
 margin: auto;
 }
 #gallery-1 .gallery-item {
 float: left;
 margin-top: 10px;
 text-align: center;
 width: 50%;
 }
 #gallery-1 img {
 border: 2px solid #cfcfcf;
 }

Integrating Media

1�2

 #gallery-1 .gallery-caption {
 margin-left: 0;
 }
</style>
<!-- see gallery_shortcode() in wp-includes/media.php -->
<div id='gallery-1' class='gallery galleryid-97'>
 <dl class='gallery-item'>
 <dt class='gallery-icon'>
 <img width="150" height="150"
src="" class="attachment-thumbnail" alt="" title="Hydrangeas" />
 </dt>
 </dl>
 <dl class='gallery-item'>
 <dt class='gallery-icon'>
 <img width="150" height="150"
src="" class="attachment-thumbnail" alt="" title="Jellyfish" />
 </dt>
 </dl>
 <br style="clear: both"/>
 <dl class='gallery-item'>
 <dt class='gallery-icon'>
 <img width="150" height="150" src=""
class="attachment-thumbnail" alt="" title="Koala" />
 </dt>
 </dl>
 <dl class='gallery-item'>
 <dt class='gallery-icon'>
 <img width="150" height="150"
src="" class="attachment-thumbnail" alt="" title="Lighthouse" />
 </dt>
 </dl>
 <br style="clear: both"/>
</div>

Please keep in mind that the previous sample uses the default tags for gallery items, captions,
and icons. These tags can be changed by changing the shortcode attributes. To learn more
about this and all the parameters that a user can change in their gallery shortcode, see
http://codex.wordpress.org/Gallery_Shortcode.

Styling image captions
Although some images are self-explanatory, many require a note about their contents in order
to be relevant to the surrounding article. Luckily, this functionality is baked into WordPress,
allowing users to enter a short caption when uploading an image.

These captions are marked up with a special format, and can be styled appropriately
quite easily.

Chapter 8

1�3

Getting started
For this recipe, you need to have a basic theme created already. This should include a
page.php or single.php file that displays full post content.

How to do it...
First, we need to open the theme's style.css file and place our cursor just after the
introductory comment.

Then, insert the following class declarations:

.wp-caption {
 border: 1px solid #ddd;
 text-align: center;
 background-color: #f3f3f3;
 padding-top: 4px;
 margin: 10px;
 border-radius: 3px;
}

.wp-caption img {
 margin: 0;
 padding: 0;
 border: 0 none;
}

.wp-caption p.wp-caption-text {
 font-size: 11px;
 line-height: 17px;
 padding: 0 4px 5px;
 margin: 0;
}

To see the captioning styles in action, you'll need to create a captioned image. Go to the
administrative interface, and create a new post. Click on the Add an Image button in the
media toolbar, and upload a single image.

Enter a short caption in the Caption field, as shown in the following screenshot:

Then, click on the Insert into Post button, and publish your post.

Integrating Media

1�4

Viewing the post on the front-end, you should see something similar to the example shown in
the following screenshot:

How it works...
The style declarations that were added to the style.css file will surround the image with
a light gray box and a gentle border that gives the image and caption a sense of unity. The
caption and image are centered in the caption container.

To understand how to appropriately style an image caption, it helps to understand how the
caption markup is output, and what exactly that markup looks like.

When WordPress sees the shortcode [caption] inside of a post's content, it auto-expands
this based on the parameters passed to the shortcode, and the image tag contained
within it. This expansion happens inside the img_caption_shortcode function found in
wp-includes/media.php.

The img_caption_shortcode function is really simple. It examines the parameters passed
to the shortcode, and uses those parameters to build a surrounding div for the image and
the caption, and appends a caption paragraph to the content within the shortcode. The
surrounding div includes a couple of classes and an inline style declaration. The caption
paragraph has the class wp-caption-text.

As such, the following shortcode:

[caption width="300" caption="Test Caption"]
<img src="http://wp.local/wp-content/uploads/2009/10/Tulips2-300x225.
jpg" alt="Test Caption" title="Tulips" width="300" height="225"
class="size-medium wp-image-105" />
[/caption]

Chapter 8

1�5

results in the following HTML:

<div class="wp-caption alignnone" style="width: 310px"><img
src="http://wp.local/wp-content/uploads/2009/10/Tulips2-300x225.
jpg" alt="Test Caption" title="Tulips" width="300" height="225"
class="size-medium wp-image-105" />
<p class="wp-caption-text">Test Caption</p>
</div>

Here, the pertinent classes to style are:

wp-caption

wp-caption-text

Both of them are styled in this recipe's instructions.

See also
Aligning images properly within a post

Creating a media template
Although in-line images and other media can be great in some circumstances, sometimes you
really want to be able to highlight the importance of an attachment by placing the item on its
own page and linking to it. Luckily, WordPress has support for attachment templates, allowing
you to emphasize attachments appropriately.

Getting started
The only requirement for this recipe is that you are working on a modern WordPress theme
that works with WordPress 2.8 or 2.9.

How to do it...
First, we need to create the attachment template. The basic attachment template that we
are going to create must be called attachment.php. This template will be used to serve all
attachment links.

Open attachment.php, and insert the following template code:

<html>
 <head>
 <title><?php the_title(); ?></title>
 </head>
 <body>

Integrating Media

1��

 <?php
 $meta = wp_get_attachment_metadata($post->ID);
 $size = 'medium';
 ?>
 <div
 style="margin: 0 auto;
 width: <?php echo $meta['sizes'][$size]['width'] + 20; ?>;
 text-align: left;
 padding: 10px;
 border: 5px solid #000;">
 <?php echo wp_get_attachment_link($post->ID,$size); ?>
 </div>
 </body>
</html>

Save the file, and upload it to your current theme folder.

You can see what the uploaded image would look like, by viewing the screenshot below:

How it works...
The above example effectively highlights the attachment image by surrounding it with a simple
bordered div, and aligning it to the left within the browser window. Here, the medium version
of the image is used, and the full version is linked to directly, so that users can download it
easily if they wish.

Chapter 8

1��

When WordPress is attempting to determine what template to display, it goes through a long
process that is encapsulated in the file located at wp-includes/template-loader.php.
Once WordPress determines that an attachment listing is being shown, it calls the get_
attachment_template function, in order to retrieve the correct template filename.

Inside of get_attachment_template, WordPress defaults to looking for the
attachment.php file that we have provided. The attachment information is provided
in the global $post object. We can use that, and WordPress' template functions such as
wp_get_attachment_metadata and wp_get_attachment_link, to display the
attachment appropriately. This attachment template will work most effectively for images,
but can handle other attachment types as well.

You can easily replace the value of the $size
parameter with one of thumbnail, small,
medium, or full.

For more information on the attachment functions, see http://codex.wordpress.org/
Function_Reference#Attachments.

See also
Creating a media template for a specific media type

Creating a media template for a specific
media type

Not all attachments are images, and so we shouldn't display them in the same way as we
would display images. Perhaps you wish to link directly to a video or audio file, or you have
a special Flash player that can read these files from the web and play them. Whatever your
desired usage, it is easy to make sure that WordPress loads a specific template for certain
media types.

Getting started
The only requirement for this recipe is that you are working on a modern WordPress theme
(2.8 or 2.9). You will need to decide how granular you want your media type templates to be.
For example, do you just want to display a certain attachment for all images, or do you want to
display a specific template for JPEGs, GIFs, or PNGs? For now, we're going to assume that you
want a different template for audio, video, and image files.

Integrating Media

1�8

How to do it...
Back up any attachment.php file that you may have already created. Create image.php,
audio.php, and video.php in your theme's folder. Copy and paste any media-specific
attachment information, such as those used in the last recipe, into the appropriate file.

Add content to each of the specific media templates, starting with image.php:

<p>Image:</p>
<?php echo wp_get_attachment_link($post->ID); ?>

Add the content in the code below to the audio.php file:

<p>Audio:</p>
<?php echo wp_get_attachment_link($post->ID); ?>

Finally, add the following content to the video.php file:

<p>Video: </p>
<?php echo wp_get_attachment_link($post->ID); ?>

To test that the proper templates are being displayed, go to the administrative interface, and
then click on Add New under the Media heading. Click on the Select Files button, and select
an image, an audio file, and a video file. Then, click on Save all changes.

On the next screen, hover over each of the attachments that you just uploaded, and open
their page by clicking on the View link that appears. You will see each template in action.
The audio page will look like the following screenshot:

And the image template will appear as follows:

Chapter 8

1��

How it works...
After WordPress determines that it is displaying an attachment, it queries the file system to
see if a template file exists for that attachment's specified mime type. If you're not familiar
with mime types, you can find a good reference at http://www.w3schools.com/media/
media_mimeref.asp.

Checking for a template is a three-step process, going from very broad to very narrow. Given a
mime type of image/jpg, WordPress looks for the following files, in this order:

1. image.php

2. jpg.php

3. image_jpg.php

For a mime type of text/plain, the template file search would be for:

1. text.php

2. plain.php

3. text_plain.php

As you can see, you can get very specific with what you do for certain content types. Perhaps
you have a player that can handle the mp3 audio format, but can't handle any other audio
formats. Given this, you could create an mp3 template that handles that specific type of audio
file, and a general attachment template that simply links to the attachment. In this way, you
let WordPress handle what template code to display, and you focus simply on getting your
implementation and presentation correct.

There's more…
It's worth taking the time to learn more about attachments and how they are handled in
WordPress.

Using file and image attachments in WordPress
The main purpose of the attachment.php file, from a WordPress perspective, is to tie the
media file (whether it is an image, audio file, document, or video) to its respective comments
when the link to page option is chosen on file upload, or when creating or editing a post. You
can learn more about it on the WordPress codex, at: http://codex.wordpress.org/
Using_Image_and_File_Attachments.

See also
Creating a media template

Integrating Media

1�0

Displaying a related image for every post
As blogs become more and more like news magazines, it has become common to ensure that
each post has an image associated with it, giving a clue to its contents. Before WordPress 2.9,
retrieving this image for each post required a custom plug-in or some custom theme code.
Now, it is built-in, and is easier than ever (refer to http://markjaquith.wordpress.
com/2009/12/23/new-in-wordpress-2-9-post-thumbnail-images/).

Getting started
You need to have a basic theme created for this recipe, including index.php,
function.php, and single.php template files.

How to do it...
First, open up your theme's functions.php file, and type the following code just below the
comments section:

Add_theme_support('post-thumbnails');

Now the size of the thumbnails in the post and the corresponding image in a single page need
to be set. Just below the code entered above, paste the following code:

set_post_thumbnail_size(50, 50, true);
// Normal post thumbnails (cropped)
add_image_size('single-post-thumbnail', 400, 9999);
// Permalink thumbnail size

Next, open up the index.php file, and look for the beginning of the WordPress Loop. Paste
the following code just below <?php while (have_posts()) : the_post() ?> and
any opening entry content div tag, such as <div class="entry-content">:

<!-- the image for each post or page function call -->
 <?php
if (has_post_thumbnail()) {
 // the current post has a thumbnail
} else {
 // the current post lacks a thumbnail
 } ?>

Finally, insert a tag to call the image on the single post page by opening up the single.php
file (or page.php) and inserting the following tag below <?php the_post(); ?>:

<?php the_post_thumbnail('single-post-thumbnail'); ?>

Chapter 8

1�1

Save the changes, and then upload the files to the current theme folder on your server.

Create a new post, and then upload an image, to see the post thumbnail code in action.
On the upload form in the Size section, you now have the option to Use as thumbnail.
Click on the link to use the Post Thumbnail feature. An example of the form is shown
in the screenshot below:

Save the post, and then view it in your browser.

Your post should look similar to the example shown in the next screenshot:

How it works...
Adding the function call add_theme_support('post-thumbnails'); to functions.php
enables the post thumbnail UI on the image upload form for all post and page content. The
post_thumbnail() function outputs the post thumbnail if it exists (in the loop). Next, the
dimensions of the post thumbnails need to be specified by using set_post_thumbnail_
size, which shrinks the image to a specific width and height. In this example, the height
and width are both set to 50 pixels in the tag. Directly after that, the image size on a single
post page is set by using add_image_size, which is set to a default width of 400 and an
overstated maximum height of 9999, which will allow for an image of any almost height
needed in the post.

Integrating Media

1�2

When an image is uploaded to a post and Use thumbnail is selected from the upload form,
the thumbnail resize code automatically generates two sizes for the image: one for the index
area on the site and one for the single post page. It does not matter what image size you
choose if Use thumbnail link is selected. The code that we entered earlier will override all
other size settings on the form. You will now have consistently-sized images on the index
and post pages.

There's more…
Currently in the 2.9 version of WordPress, it is not possible to resize or use the above example
for images that have already been uploaded to the media gallery.

Using Viper's Regenerate Thumbnails plug-in
Viper007Bond has created a thumbnail regeneration plug-in that can be downloaded from
http://wordpress.org/extend/plugins/regenerate-thumbnails/.

Creating video posts by using the Viper's
Video QuickTags plug-in

Getting started
You will need to have a modern WordPress theme installed that uses <?php get_wphead ?>
on one of the theme pages, preferably in the header or index files.

How to do it…
Download the plugin files from http://wordpress.org/extend/plugins/vipers-
video-quicktags/. Unzip the folder, and then upload it to the plugins folder under
/wp-content/. Activate the plug-in, by navigating to the Plugins section of your WordPress
administration panel and clicking on the Activate link.

After activating the plugin, visit the Settings link to configure default aspect ratios, remove or
add video sites such as YouTube and Google Video, and even set alternate text for feeds. For
example, click on the Google Video link. Under Dimensions, change the width to 300. This
will automatically update the aspect ratio.

Chapter 8

1�3

Click on the Save Changes button, and leave the settings as they are, to test the plugin with a
new post. You can see an example of these settings in the following screenshot:

Gather the link to the video you that want to use, and create a new post. Click on the Google
Video button in the post editor. The form to insert the video link will appear. Paste your own
video link, or use the default video URL for testing.

Click on Dimensions to verify that they are correct, and then click on the Okay button to finish
inserting the video. You can see the form in the next screenshot:

Integrating Media

1�4

Finish the post, and then publish it. View the site to see how the video post appears to visitors.

An example of a completed video post is shown in the next screenshot:

How it works...
The Viper's Video Quicktags plug-in eliminates the need to use embedded code in every video
post, and gives you greater control on the layout and dimensions of videos. Viper contains
highly-customized blocks of code that integrate with the WordPress post editor and provide
a highly-customizable control panel area to manage video settings.

There's more…
Many people now use smart phones or other mobile devices to browse the web. To make your
media content shine in those situations, you may want to consider using a specialized theme
to control how your site will display on one of those devices.

Adapting your site for mobile content viewing by using the
WPtouch theme
Visitors who reach your site from an iPhone, iPod touch, Android, or Blackberry device with
touch screen capabilities will have an interactive experience, including AJAX loading articles
and effects. The theme includes a theme switcher so that mobile visitors can view your site
in the WPtouch theme or your standard site theme. The theme can be downloaded from
http://wordpress.org/extend/plugins/wptouch/.

�
Showing Author

Information

In this chapter, we will cover:

Getting author data via an author's ID

Dynamically displaying the author's name and linked e-mail address

Listing all of the published authors on a site

Listing the authors who most recently published a post

Listing authors by the total number of comments that their posts have received

Adding a custom user field to display an author's Twitter link

Introduction
The authors and editors of any reputable news source are almost as important as the content
that they write. Often, readers try to identify with the authors whose material they like, and will
gravitate towards their future works.

As such, it is very important that any serious, multi-author site run on WordPress should
try to incorporate the display of author data (such as their name, biographical background
information, posts or other blogs they participate in, and so on) in an interesting and useful
way for the user. In this chapter, we are going to examine how you get at that data, and the
different ways in which you might use it.

Showing Author Information

1��

Getting author data via an author's ID
An author ID is the unique numeric identifier for any user on a WordPress site. The first user
created on a new WordPress site generally has an ID with a value of 1.

Although it is rare that you'll have a numeric user ID without direct programmatic input, you
can use this technique when defining custom template tags. We're going to create a custom
function that prints a user's username and their e-mail address.

Getting started
You will need a theme that already has an author.php file created, such as Sandbox from
plaintxt.org, or you can create your own basic author.php theme file by adding the
code provided in this recipe.

How to do it...
First, open or create your theme's author.php file.

Place your cursor at the beginning of the author.php file, and then insert the following code:

<p>
Our guest author this week
<?php $user_info = get_userdata(2);
echo($user_info->user_nicename . ' has this email address:' .
$user_info->user_email . "\n"); ?>
</p>

Save the file and upload it to the current theme folder on your server.

When visitors go to the author page now, they should see a message about the guest author,
as shown in the screenshot below:

Chapter 9

1��

How it works…
When someone visits the author page, the $user_info variable calls the get_userdata
function, passing the user_id with a value of 2 for the second user/author listed in the
WordPress backend. It tries to retrieve user data by using the user ID, and will then display
the "nice name" of the user and their e-mail address on the screen.

Dynamically displaying the author's name
and linked e-mail address

It is useful to know how to dynamically display a post author's name and e-mail address
(and potentially, other user data such as their author bio/description) on the author page.

Getting started
You will need a modern WordPress theme, such as Sandbox from http://plaintxt.org,
and an author.php page.

How to do it…
First, open or create your theme's author.php file

Place your cursor at the beginning of the author.php file, immediately below the comments
block, and insert the following code:

<h2 class="page-title author">
<?php printf(__('Author Archives: %s',
'sandbox'), "user_url'
title='$authordata->display_name' rel='me'>$authordata->display_name
") ?>
</h2>
<div id="authorinfo">
Author Email: <a href="mailto:<?php echo
antispambot($curauth->user_email); ?>">Contact Author
</div>

Save the author.php file, and upload it to the current theme on your server.

Showing Author Information

1�8

You can see an example of how the changes we just made will look to blog visitors, in the
screenshot below:

How it works...
When visitors click on the nickname of the author in a post, the $authordata WordPress
variable is called. The code that was placed in the author.php file will attempt to display
the text Author Archives, along with the friendly author nickname, the text Author Email:, and
their e-mail address, using the ID of the author whose nickname was clicked on in the post.
This information is retrieved by WordPress via the get_userdata function. If the author ID
is found, and their nickname and e-mail address are stored in the WordPress database, then
an object is returned containing all of the information about the author, and the information
requested in the code block is displayed on the screen. Information that can be used about
users (and authors) on author pages includes their WordPress "nice name", nickname, e-mail
address, website URL, display name, and their user ID. You can display or manipulate the
user's name, description, level, and more.

There's more…
You can use $authordata and get_userdata to customize your theme in many ways.

Dive deeper into data
To learn more about ways to manipulate the display of information by using get_userdata,
visit the WordPress codex: http://codex.wordpress.org/Function_Reference/
get_userdata.

Find your author ID by hovering your mouse over the
nickname link below any post.

Chapter 9

1��

Listing all of the published authors on a site
The most common place to see author data is adjacent to content written by that author.
However, it can be beneficial for both your site visitors and your site metrics to display a list
of all authors somewhere on your site. The information displayed can range from a simple
list of names with links to their posts, to their name, biography, and the last few posts that
they made.

Getting started
For this recipe, you need to have a basic theme created already with a sidebar.php file.
Also, you need to know where you want to put your list of authors. This could be within a page
template or a sidebar. For this recipe, we'll assume that you want to display the listing inside
of a sidebar.

How to do it...
Open up a sidebar file, and enter the following code into it:

 <?php
 $all_users = get_users_of_blog();
 foreach($all_users as $user) {
 $num_authors_posts = get_usernumposts($user->ID);
 if(0 < $num_authors_posts) {
 $url = get_author_posts_url($user->ID);
 ?>

 <a href="<?php echo $url; ?>">
 <?php echo get_the_author_meta('display_name',
 $user->ID); ?>

 has published <?php printf(_n('%d post.', '%d posts.',
 $num_authors_posts),$num_authors_posts); ?>

 <?php
 }
 }
 ?>

Showing Author Information

180

Save the sidebar file and upload it to the theme folder on your server. You should see
something similar to the following:

As you can see, the code listing above creates a list of all of the authors who have published
at least one post. The author's name links to their posts page (which lists all of their posts)
and there is some descriptive text about how many posts they've published.

How it works...
There are a number of different functions in use in this example. First, we start by calling
get_users_of_blog. This function returns an array of objects of user data. Each object
contains a user's unique numeric identifier, login name, display name, user e-mail, and
metadata. A listing of the objects' contents is as follows:

stdClass Object
(
 [user_id] => 1
 [ID] => 1
 [user_login] => admin
 [display_name] => Nick Ohrn
 [user_email] => example@example.com
 [meta_value] => a:1:{s:13:"administrator";b:1;}
)

After this, we call get_usernumposts to determine how many posts the user has published.
get_usernumposts only includes posts that have actually been published, and does not
include pages or media uploads.

Chapter 9

181

If the user has published at least one post, we need to print their display name and a short
message about how many posts they've published. To retrieve the user's display name, we
use the get_the_author_meta function. This function accepts two arguments. The first
argument is the name of the user meta to retrieve. The second argument is the user's ID
whose information we are attempting to retrieve. The get_the_author_meta function
accepts a variety of values for the first argument, including the following:

user_login

user_pass

user_nicename

user_email

user_url

user_registered

user_activation_key

user_status

display_name

nickname

first_name

last_name

description

jabber

aim

yim

user_level

user_firstname

user_lastname

user_description

rich_editing

comment_shortcuts

admin_color

plugins_per_page

plugins_last_view

ID

For more information on the use of this function, see http://codex.wordpress.org/
Function_Reference/get_the_author_meta.

Showing Author Information

182

The final function in use in this example is _n. This is a localization function that we will cover
in a later recipe.

Listing the authors who most recently
published a post

Although listing all authors is certainly nice, you don't want to give undue attention to authors
who haven't been active in a while. In this recipe, we're going to develop a function that
returns information about the users who most recently published a post on the site.

Getting started
The only requirement for this recipe is that you are working on a valid theme and that you
have some place to put your author listing, ideally a sidebar file such as sidebar.php.

How to do it...
First, we need to create a couple of custom template tags. We'll call the first template tag
get_recently_published_author_ids, and have it accept a single parameter that
determines the number of author IDs to return. The second template tag is called get_last_
post_id_published_for_author, and it accepts a single parameter that defines the
author we are looking at.

Open or create your theme's functions.php file, and define the following functions in it:

function get_recently_published_author_ids($limit = 3) {
 global $wpdb;
 return $wpdb->get_col($wpdb->prepare(
 "SELECT DISTINCT {$wpdb->posts}.post_author
 FROM {$wpdb->posts}
 WHERE {$wpdb->posts}.post_type = 'post'
 AND {$wpdb->posts}.post_status = 'publish'
 ORDER BY {$wpdb->posts}.post_date_gmt DESC
 LIMIT %d", $limit));
}
function get_last_post_id_published_for_author($user_ID) {
 global $wpdb;
 return $wpdb->get_var($wpdb->prepare(
 "SELECT {$wpdb->posts}.ID
 FROM {$wpdb->posts}
 WHERE {$wpdb->posts}.post_type = 'post'
 AND {$wpdb->posts}.post_status = 'publish'
 AND {$wpdb->posts}.post_author = %d

Chapter 9

183

 ORDER BY {$wpdb->posts}.post_date_gmt DESC
 LIMIT 1", $user_ID));
}

Now we need to use these functions somewhere. Borrowing from the recipe Listing all
published authors on a site, we put the following code in one of our sidebars:

 Recent Authors

 <?php
 $recent = get_recently_published_author_ids();
 foreach($recent as $user_ID) {
 $num_authors_posts = get_usernumposts($user_ID);
 if(0 < $num_authors_posts) {
 $url = get_author_posts_url($user_ID);
 $pid = get_last_post_id_published_for_author($user_ID);
 $time = get_post_time('G', true, $pid);
 ?>

 <a href="<?php echo $url; ?>">
 <?php echo
 get_the_author_meta('display_name',$user_ID); ?>
 - <?php echo human_time_diff($time); ?>

 <?php
 }
 }
 ?>

If you've done everything correctly, you should have an output that looks something like
the following:

.

Showing Author Information

184

How it works...
At the heart of this recipe are our two custom functions. They both invoke some raw SQL
calls by using the wpdb class that WordPress provides. Our first function, get_recently_
published_author_ids, queries the posts table for distinct author IDs, ordering them by
the date on which the post was published. That function invokes the get_col method on the
$wpdb object. The get_col method returns an array of values from a database column. In
this case, that column is post_author.

The second custom function, get_last_post_id_published_for_author, simply
returns the unique identifier for the last post published by a particular author. The function
calls get_var on the $wpdb object. The get_var method returns a single value from a
database query.

We combine these two functions to get the data that we use to generate the listing. First,
we use a foreach loop to iterate over each of the user IDs returned from the call to get_
recently_published_author_ids. Inside our foreach loop, we pass to the get_last_
post_id_published_for_author function the user ID that we are currently working with
to retrieve the post ID for that author's last published post. We use this post ID to retrieve the
post's published time by using the get_post_time function. Then we pass the published
time to WordPress's built-in human_time_diff function. human_time_diff returns a
human readable time string, such as 9 days or 2 hours, detailing the difference between the
lone timestamp argument and the current system time.

In this example, we use the get_the_author_meta function. For more information on this
function and its use, please see Listing all published authors on a site.

See also
Listing all published authors on a site.

Listing authors by the total number of
comments that their posts have received

For most subject matters, one of the best ways to judge how interesting an author's posts are
is to look at the level of discussion surrounding them. In the context of a blog, the discussion
of a post happens in the comments designated for that post. In this recipe, we'll create a
custom function that lets us find the authors who have generated the most discussion on their
posts. Then we'll display some data about that author, along with the number of comments.

Chapter 9

185

Getting started
You need to have a basic theme containing a functions.php file, and a sidebar file such as
sidebar.php created for this recipe. You also need to know where you would like to place
the listing of the most discussed authors. In this example, we will be displaying the data in
a sidebar.

How to do it...
First, we need to create a custom template tag. We'll call the template tag get_most_
discussed_authors, and have it accept a single parameter that determines the number
of results to return. Open or create your theme's functions.php file, and define the function
as follows:

function get_most_discussed_authors($limit = 3) {
 global $wpdb;
 return $wpdb->get_results($wpdb->prepare(
 "SELECT COUNT({$wpdb->comments}.comment_ID) as
 number_comments,
 {$wpdb->users}.ID as user_ID
 FROM {$wpdb->comments}, {$wpdb->users}, {$wpdb->posts}
 WHERE {$wpdb->users}.ID = {$wpdb->posts}.post_author
 AND {$wpdb->posts}.ID = {$wpdb->comments}.comment_post_ID
 GROUP BY {$wpdb->users}.ID
 ORDER BY number_comments DESC
 LIMIT %d", $limit));
}

Now we need to use this function to display information to visitors. Borrowing from the recipe
Listing all published authors on a site, we put the following code in one of our sidebars:

 Most Discussed Authors

 <?php
 $discussed = get_most_discussed_authors();
 foreach($discussed as $item) {
 $user_ID = $item->user_ID;
 $num_comments = $item->number_comments;
 $url = get_author_posts_url($user_ID);
 ?>

 <a href="<?php echo $url; ?>">
 <?php echo get_the_author_meta
 ('display_name',$user_ID); ?>

Showing Author Information

18�

 <?php printf(_n
 ('%d comment', '%d comments', $num_comments),
 $num_comments); ?>

 <?php
 }
 ?>

Save the file, and then upload it to the current theme folder on your server.

If you've done everything correctly, you should have an output that looks something like the
following screenshot of the sidebar:

How it works...
As with the previous two recipes, we've created a template tag that basically acts as a
delegate for a raw SQL call, by using the $wpdb object that WordPress provides. In this
recipe, the get_most_discussed_authors function calls the wpdb class's get_results
method. This method returns an array of objects, including the authors, their related
posts, and the comments attached to those posts, formed from the rows returned from
a database call.

In our custom function, each item returned in the array has two properties: user_ID and
number_comments. When iterating over the results from our call to get_most_discussed_
authors, we use these two properties when displaying the nice list of author names and the
amount of comments that their posts have received.

See also
Listing all published authors on a site.

Chapter 9

18�

Adding a custom user field to display an
author's Twitter link

We can use the data that describes the author, their "metadata", to display a variety of
information, in most cases, the same as that retrieved by using $authordata or user_
data, as seen in previous examples in this chapter. However, sometimes a plugin gathers
additional custom metadata such as an IM username or a Twitter name. In that situation,
applying a special template tag called the_author_metadata to an author page is
very useful.

In this example, we will create a custom user field for the user profile page in the WordPress
control panel, and then use the Twitter metadata that it provides to display the author's Twitter
username on the author page.

Getting started
You will need an author.php file in a modern 2.9 compatible WordPress theme, and a
Twitter account (www.twitter.com).

How to do it...
Open up your functions.php file and insert the following code, in order to create the
custom field:

add_action('show_user_profile', 'my_show_extra_profile_fields');
add_action('edit_user_profile', 'my_show_extra_profile_fields');
function my_show_extra_profile_fields($user) { ?>
<h3>Extra profile information</h3>
 <table class="form-table">
 <tr><th><label for="twitter">Twitter</label></th>
 <td>
 <input type="text" name="twitter" id="twitter" value=
 "<?php echo esc_attr(get_the_author_meta
 ('twitter', $user->ID)); ?>" class="regular-text" />

 Twitter username
 </td>
 </tr>
 </table>
<?php }

Showing Author Information

188

Now we need to insert code into functions.php so that the data entered into the custom
field will be saved. Enter the following code directly below the code in step 1:

//save the custom field
add_action('personal_options_update', 'my_save_extra_profile_fields'
);
add_action('edit_user_profile_update', 'my_save_extra_profile_fields'
);
function my_save_extra_profile_fields($user_id) {
if (!current_user_can('edit_user', $user_id))
return false;
update_usermeta($user_id, 'twitter', $_POST['twitter']);}

Save the functions.php file, and then upload it to your server. You can now see the custom
field area within your author profile, and can use it. It should look like the example shown in
the screenshot below:

Next, a function to get the Twitter ID from the user profile needs to be created. Insert the
following code into functions.php:

//author box function
 function my_author_box() { ?>
 <div class="author-profile vcard">
 <?php if (get_the_author_meta('twitter')) { ?>
 <p class="twitter clear">
 <a href="http://twitter.com/<?php the_author_meta
 ('twitter'); ?>"
 title="Follow <?php the_author_meta
 ('display_name'); ?> on Twitter">
 Follow <?php the_author_meta
 ('display_name'); ?> on Twitter

 </p>
<?php } // End check for twitter ?></div><?php
}

Chapter 9

18�

Finally, we need to place a tag in author.php to call the my_author_box() function and
display the Follow on Twitter link:

<div id="authorinfo">
 Author Email:
 <a href="mailto:<?php echo antispambot($curauth->user_email);
 ?>">Contact Author
 <?php my_author_box(); ?>
</div>

Save the functions.php file and the author.php file, and then upload them to your server.

View the author page in your browser, and you should see a Follow link similar to the one
shown in the screenshot below:

How it works...
First, the add_action('show_user_profile', 'my_show_extra_profile_
fields'); and add_action('edit_user_profile', 'my_show_extra_
profile_fields'); code was added to functions.php to allow a new custom user
field to be created and edited as a part of the user profile form. Next, the form field and labels
were created within the function my_show_extra_profile_fields($user). This
added an input box label and description to the WordPress control panel's user profile screen.
We then added code to functions.php file, in order to save any data entered into the
custom field. We then created a function called my_author_box() that used the metadata
function get_author_meta() to retrieve data stored in the WordPress database. The
metadata function the_author_meta() displayed the display name and Twitter username
meta information retrieved from the user profile. Finally, we added a tag to author.php, in
order to call the my_author_box function and print the Follow on Twitter link on the screen.

Showing Author Information

1�0

There's more…
You can use the previous example to create custom fields to display other information,
including linking to podcasts, bookseller sites, and more.

Displaying an image next to the 'Follow' link
If you want to create a custom image, or use the default Twitter follow icon, you can add it to
the above code by adding a link to the image in the author box function:

 function my_author_box() { ?>
 <div class="author-profile vcard">
 <?php if (get_the_author_meta('twitter')) { ?>
 <p class="twitter clear">

 <a href="http://twitter.com/<?php the_author_meta
 ('twitter'); ?>" title="Follow
 <?php the_author_meta('display_name'); ?>
 on Twitter">Follow <?php the_author_meta
 ('display_name'); ?> on Twitter
 </p><?php } // End check for twitter ?>
 </div><?php
}

10
Adding JavaScript

Effects

In this chapter, we will cover:

Linking to your theme's JavaScript files directly

Adding JavaScript files to your theme programmatically

Adding a bundled library to your theme programmatically

Creating a featured post slider

Making sidebar widgets toggle-able

Adding a font-size toggle

Introduction
In the last couple of years, web users have become quite a bit more sophisticated. As this
happened, many came to expect a certain level of dynamic interaction with a web page.
The dynamic element can be many things, the most popular being animating elements
and dynamic content loads.

Luckily for developers, this rise in interest in dynamic elements coincided with the maturation
of JavaScript libraries and techniques. This makes creating fun and useful interactions on your
site simpler.

To make things even easier for a WordPress developer, the WordPress package comes
bundled with many popular JavaScript libraries built-in and ready-to-use. In this chapter, we'll
look at how to use those libraries, where they live, and some interesting things that you can
do with them in the context of your theme.

Adding JavaScript Effects

1�2

Linking to your theme's JavaScript files
directly

The easiest way to include JavaScript functionality in your theme is to link directly to the file
from the <head> element of your theme. In this recipe, we'll examine how you determine the
URL to link to and where to, put the linking element.

Getting started
You need to have created a WordPress theme that contains at least a style.css file and an
index.php file.

How to do it...
First, you're going to create a JavaScript file to link to. Open the folder that your theme lives in,
and create a new folder called js. This folder exists for the purposes of organization of your
JavaScript files.

Inside of the js folder, create a new file called my-theme.js. Open this file for editing, and
insert the following test script:

/*
 * Created for test purposes.
 */
alert('This is a test.');

Now you need to link to the JavaScript file from your theme, to ensure that the script is loaded
and run. To do so, open up the theme file where your <head> element is located. This will
most likely be header.php.

Between the <head> and </head> tags, insert a new line with the following content:

<script type="text/javascript" src="<?php bloginfo('stylesheet_
directory'); ?>/js/my-theme.js"></script>

After doing this, load your WordPress site with your theme active, and you'll be greeted by a
dialog box similar to the one pictured in the screenshot below:

Chapter 10

1�3

How it works...
There are two possible uses of an HTML script tag. The first is to add JavaScript directly to a
page. This would look something like the following:

<script type="text/javascript">
alert('This is a test.');
</script>

In this example, the visitor's browser of choice interprets the script as it parses the page,
taking whatever action is called for. If you followed along in the example, you noticed that the
alert appeared before the rest of the page loaded in the browser, and once the visitor clicked
on OK, the alert box disappeared and the page resumed loading.

However, in most instances, it is desirable to put JavaScript that is used throughout a site in
a separate file that can be used again and again. There are many reasons for this, including
smaller overall page size, and the fact that most browsers can—and wil —cache the external
file so that it doesn't have to be fetched multiple times for a single site.

To specify an external file, we use a <script> tag without any content, and add the src
attribute to tell the browser where to find the file. The browser reads the src attribute and
attempts to fetch and parse the file located at the specified URL.

In this particular case, the src attribute is dynamically-generated by using the bloginfo
function. As reviewed in the recipe Displaying the blog name from Chapter 1, the bloginfo
function has a variety of different parameter values that you can use to get different
information. Passing stylesheet_directory returns a URL that points to the directory
containing your theme's style.css file. The URL will often be something in the form
mysite.com/wp-content/themes/my-theme. Please note that no trailing slash is
included, so you need to include it yourself if necessary.

See also
Displaying the blog name

Adding JavaScript files to your theme
programmatically

Although you can certainly link to your JavaScript files directly (and in some cases, you may
need to, for one reason or another), the preferred method of generating script tags for your
theme is to add references programmatically. This allows for the reuse of popular scripts, and
ensures that a script is not linked to twice within the same page.

Adding JavaScript Effects

1�4

Getting started
You need to have created a WordPress theme that contains at least a style.css file and
an index.php file. Inside the template file containing your theme's <head> tag, you need
to call the wp_head function. If you have also completed the previous example, open up the
header.php file (or whichever file you placed the <script> tag code in) and remove the
code added in the last recipe.

How to do it...
First, you must create a JavaScript file to link to. This file will reside within your theme.
Open your theme's folder and create a js folder. Inside the js folder, create a file called
my-theme.js.

Open the my-theme.js file, and insert the following JavaScript, which will produce an alert
dialog box on page load:

/*
 * Created for test purposes.
 */
alert('This is an enqueue script test.');

Now, open or create your theme's functions.php file. In functions.php, add the
following code inside a PHP block:

if(!is_admin()) {
wp_enqueue_script(
 'my-theme',
 get_bloginfo('stylesheet_directory') . '/js/my-theme.js'
);
}

Upload the updated my-theme.js file and functions.php file. Go to your WordPress site
with your theme enabled, and you'll be greeted with something like the following screenshot,
in your browser:

Chapter 10

1�5

How it works...
When you call wp_enqueue_script, you're taking advantage of one of several JavaScript-
specific functions included with WordPress. Some of the others include wp_register_
script, wp_is_script, and wp_print_scripts.

The wp_enqueue_script function accepts the following parameters: $handle, $src,
$deps, $ver, and $in_footer. Let's talk about which ones are required, and which ones are
optional. Earlier in our example we used the following function to call a simple JavaScript file:

wp_enqueue_script('my-theme', get_bloginfo('stylesheet_
directory') . '/js/my-theme.js');

This contained a handle (the name of the script, a lowercase string) and the URL (also a
string) where the script could be found. When you call wp_enqueue_script, you must
pass in a string value for $handle as the first parameter, and the URL ($src) at which the
script can be found as the second parameter. These are the required parameters. Optionally,
you can pass in an array of script handles as a third parameter (the $dep parameter), a
version string as the fourth parameter (the $ver parameter), and a flag ($in_footer, a
Boolean value), indicating that the script should be printed in the footer, as the fifth and
final parameter.

After a script has been enqueued, WordPress knows that a link to it should be printed
whenever wp_print_scripts is called. Normally, this is called within the wp_head
function inside of the <head> tag.

When you are creating a theme using multiple JavaScript functions
or feature-rich libraries such as JQuery, it is a best practice to place
the wp_enqueue_script function in functions.php and use
the $in_footer parameter to automatically call the script in the
footer. We will cover that in the next section.

If you go back and check the source for your blog homepage after adding the code specified
previously, you'll see something like the following:

<script
type='text/javascript'
src='http://wp.local/wp-content/themes/my-theme/js/my-theme.
js?ver=2.8.5'></script>

You can see that WordPress parsed the relative path information provided in the $src
parameter of our example (get_bloginfo('stylesheet_directory') . '/js/my-
theme.js'), and printed an absolute path to the script when the page was called by
the browser.

Adding JavaScript Effects

1��

This may lead you to ask why you should use wp_enqueue_script instead of linking to the
file directly. There are several reasons, including the fact that wp_enqueue_script lets you
set up dependencies on other scripts, allows you to enqueue scripts bundled with WordPress,
and allows you to separate your determination of when a script should be referenced from the
actual reference point.

There's more...
There is much more that can be done with scripts in WordPress. Read on for two more ways to
improve your site by using the default WordPress JavaScript functions.

Placing wp_enqueue_script in the footer for better site
performance
WordPress recommends that script tags be called in the footer area of themes. The reason
for this is improved site performance, due to the way in which browsers load site files. Let's
look at an example:

Open up your my-theme.js file, and update the code so that it looks like the
following example:

/*
 * Created for test purposes.
 */
alert('An example of wp_enqueue_script and $in_footer! Click on Ok to
continue.');

Now we need to check for the WordPress footer function call, to make sure that it exists so
that the Boolean value for $in_footer will evaluate to true. Open the footer.php file.
You should have a WordPress footer function call that looks like <? php wp_footer() ?>.
If it is not located there, it is probably in the index file just above the closing </body> tag. The
tag needs to be present in your theme.

Paste the following code within the functions.php file, just below the comment area at the
beginning of the file:

if(!is_admin()) {
wp_enqueue_script('my-theme', get_bloginfo('stylesheet_directory') .
'/js/my-theme.js', $in_footer);
}

Save the my_theme.js file and the functions.php file, and upload them to your
current theme.

Chapter 10

1��

You should see an alert box appear, similar to the one shown below, when you visit your site:

The code that we just placed within the functions.php file will not load first in the head
of the theme when the page is first requested. Instead, it will load in the footer, after all of
the other scripts and images are ready. The alert box will then appear just before all other
page information has been displayed. You can learn more about the wp_enqueue_script
function in the WordPress codex, at: http://codex.wordpress.org/Function_
Reference/wp_enqueue_script.

Taking advantage of wp_register_script
As mentioned previously, WordPress includes a function called wp_register_script. This
function stores a script handle, URL, and options for use in the future.

This is useful in cases where you want to tell WordPress that a script is available for use,
without immediately requesting it. It also simplifies the wp_enqueue_script declaration,
making it easier to maintain multiple declarations, and reducing typos. The following code is
usually placed within functions.php:

<?php
/**
 * @package WordPress
 * @subpackage Classic_Theme
 */

automatic_feed_links();

if (function_exists('register_sidebar'))
 register_sidebar(array(
 'before_widget' => '<li id="%1$s" class="widget %2$s">',
 'after_widget' => '',
 'before_title' => '',
 'after_title' => '',
));
/* register script example */

Adding JavaScript Effects

1�8

wp_register_script('my-alerts', get_bloginfo('stylesheet_directory') .
'/js/my-alerts.js');
wp_register_script('my-colors', get_bloginfo('stylesheet_directory') .
'/js/my-colors.js');
wp_register_script('my-switch', get_bloginfo('stylesheet_directory') .
'/js/my-switch.js');

if(!is_admin()) {
 wp_enqueue_script('my-alerts');
}
?>

Here, we register three different script files that our theme can reference. Later on in the
code sample, we'll check to determine that we are not on an admin page. The statement
if (!is_admin()) must evaluate true for the my-alerts.js script to be called,
meaning we must be on a front-end page of the site

Adding a bundled library to your theme
programmatically

As mentioned in the introduction to this chapter, WordPress comes bundled with a bevy of
useful scripts and libraries. Because of WordPress' JavaScript functions (covered in the recipe
Adding JavaScript files to your theme programmatically), you can use these bundled scripts
with very little effort.

Getting started
You need to have created a WordPress theme that contains at least a style.css file and on
index.php file. Inside the template file containing your theme's <head> tag, you need to call
the wp_head function. For this recipe, we'll assume that you want to use the jQuery library in
your theme. jQuery is quite powerful, and is bundled with WordPress.

How to do it...
Open or create your theme's functions.php file, and add the following code inside a
PHP block:

If(!is_admin()) {
 wp_enqueue_script('jquery');
}

Chapter 10

1��

Now load your WordPress site with your theme activated. Go to View | Page Source, and you
should see a script reference similar to the following:

<script type='text/javascript' src='http://wp.local/wp-includes/js/
jquery/jquery.js?ver=1.3.2'></script>

How it works...
When WordPress loads, it automatically registers a wide range of JavaScript files that it
uses internally. By default, none of these scripts are enqueued on the front-end of the site.
However, as the theme author, you can make the decision to enqueue any one of them.

Here, you enqueued the jQuery framework for your theme. Because the jQuery framework
had been previously registered when WordPress loaded, all you had to do was pass the
handle name that WordPress had used when registering it. You did not have to specify the
location of the framework, or any other information about the script file, or how it should
be loaded.

There's more...
There are many more tools and JavaScript libraries that are available for use in WordPress.
Taking advantage of these tools can increase the appeal and functionality of your theme.

List of bundled scripts
As stated previously, WordPress comes bundled with a bevy of utility scripts and JavaScript
frameworks that you can use in your theme. At the time of writing, the following script
handles are registered when WordPress loads. You can use any one of them by simply
calling wp_enqueue_script($handle) in your functions.php file.

utils

common

sack

quicktags

colorpicker

editor

prototype

wp-ajax-response

autosave

wp-lists

scriptaculous-root

scriptaculous-builder

Adding JavaScript Effects

200

scriptaculous-dragdrop

scriptaculous-effects

scriptaculous-slider

scriptaculous-sound

scriptaculous-controls

scriptaculous

cropper

jquery

jquery-ui-core

jquery-ui-tabs

jquery-ui-sortable

jquery-ui-draggable

jquery-ui-droppable

jquery-ui-selectable

jquery-ui-resizable

jquery-ui-dialog

jquery-form

jquery-color

interface

suggest

schedule

jquery-hotkeys

jquery-table-hotkeys

thickbox

jcrop

swfobject

swfupload

swfupload-swfobject

swfupload-queue

swfupload-speed

comment-reply

If you want further information on the file that any particular handle refers to, you can examine
the source of the file located at wp-includes/script-loader.php.

Chapter 10

201

See also
Adding JavaScript files to your theme programmatically

Creating a featured post slider
One of the most popular uses of JavaScript on a WordPress site is to create a content slider
that shows particular types of posts or media. Some of the most popular sites use this effect,
including eBay, Amazon, and ESPN.

Getting started
For this recipe, you need to have already created a theme, and decided where you'd like to put
your featured content slider. In addition, you should have a special category that you assign to
posts that you want to be featured.

How to do it...
First, you need to identify which set of posts will be part of your featured content slider. For the
purposes of this recipe, we're going to assume that you assign all featured posts a category
of Featured, which has a category ID of 3. Next, you need to create a file to hold the code.
Create a file, and name it featured-slider-markup.php.

Now, to define the markup for the featured content slider, open the featured-slider-
markup.php file, and insert the following code:

<?php
$featured_query = new WP_Query(array('cat'=>3,'posts_per_page'=>4));
if($featured_query->have_posts()) { ?>
<div id="featured-posts-container">
 <ul id="featured-posts-tabs">
 <?php while($featured_query->have_posts()) {
 $featured_query->the_post(); ?>
 <a href="#featured-post-<?php the_ID(); ?>" id="featured-post-
 selector-<?php the_ID(); ?>"><?php the_title(); ?>
 <?php } ?>

 <?php $featured_query->rewind_posts(); ?>
 <?php while($featured_query->have_posts()) {
 $featured_query->the_post(); ?>
 <div id="featured-post-<?php the_ID(); ?>">
 <h3><a href="<?php the_permalink(); ?>"><?php the_title(); ?>
 </h3>
 <div>

Adding JavaScript Effects

202

 <?php the_excerpt(); ?>
 </div>
 </div>
 <?php } ?>
</div><?php } ?>

Save the file and upload it to the server.

The featured content slider code now needs to be called on a theme page. Most sliders are
either on the index page or in the sidebar. We will place it on the index page in this example,
just above the WordPress post loop and below the opening <body> tag and any <div
id="content"> opening tags. To do this, we need to call the featured-slider-
markup.php file that we created earlier. Insert the code shown next:

<!-- /featured content slider is called here/-->
<div id="featuredwrapper">
<?php if(is_home()){include('featured-slider-markup.php'); }?>
</div>
<!--/ featured content slider ends/ -->

Save the index.php file.

To enable the slider, you need to create a JavaScript file and then reference it. First, open
your theme's containing folder, and create a new directory called js. Inside of the js folder,
create a file named featured-slider.js. Open featured-slider.js, and insert the
following code:

jQuery(document).ready(function() {
 jQuery('#featured-posts-container').tabs(
 {
 fx: {
 opacity: 'toggle',
 duration: 'normal'
 }
 }
).tabs('rotate', 5000);
});

Now that the JavaScript file has been created, you need to reference it. You'll do this
the WordPress way, by using wp_enqueue_script. Insert the following code into your
functions.php file, inside a PHP block:

wp_enqueue_script('featured-slider', get_bloginfo('stylesheet_
directory') . '/js/featured-slider.js', array('jquery', 'jquery-ui-
core', 'jquery-ui-tabs'));

Chapter 10

203

Finally, you need to add the appropriate styles to get the content item looking good. Open your
theme's style.css file, and add the following style declarations:

#featuredpwrapper{
width: 30em;
border: 0.1em solid #2b2b2b;
margin-bottom: 2em;
}
.ui-tabs-hide {
 display: none;
}

#featured-posts-tabs {
 width: 20%;
 float: right;
 padding:5px;
 font-size:10px;}

Now load the page in your browser. If you've done everything correctly, you should see
something similar to the following screenshot:

In this example, the title and excerpt from each of the four featured posts fades in and
out in turn.

How it works...
There are a lot of moving parts in this recipe, so let's go through them one at a time.

First, you created the necessary markup in your template file. Generally, you'll want to
separate this markup into a new file, such as featured-slider-markup.php, and then
use the PHP include construct <?php if(is_home()){include('featured-slider-
markup.php'); }?> to check if the current page is the home page, by using is_home(),
and then include the featured-slider-markup.php file into the main template page.
This helps considerably with organization.

Adding JavaScript Effects

204

In the featured-slider-markup.php code, you created a new WP_Query object that
loads up to four posts from a category with the ID of 3 (in our recipe, we assumed this was
the Featured category; hover your mouse over the name of your preferred category in the
admin panel to verify your category ID). Then, you used the standard loop functions while(
$featured_query->have_posts()) to iterate over the posts in this query, creating a list
of items for the posts. Then, you called rewind_posts on the query object so that you can
iterate over the posts again. This time, you displayed the title and excerpt from each post
inside a <div> tag.

After the markup was complete, you created the JavaScript necessary for the operation of the
featured content slider, saving it in a separate folder within the theme. When the theme file is
rendered, the previous code outputs the appropriate markup that you need for the slider. If a
visitor does not have JavaScript enabled, then the links will show up as a nice set of post titles.

You took advantage of the jQuery and jQuery UI libraries bundled with WordPress, and
utilized the jQuery UI Tabs functionality. jQuery UI Tabs has a bundle of available
options. In this instance, you used the fx parameter to specify a custom animation, and the
rotate option to specify that the tabs should be rotated every 5000 milliseconds. For
more on using jQuery UI Tabs, please see http://docs.jquery.com/UI/Tabs.

Next, you needed to reference the JavaScript file that you created. You did this using the
wp_enqueue_script function. For more information on this function, please see the
recipe Adding JavaScript files to your theme programmatically.

Finally, you added a few styles to the style.css file in order to control the layout and
appearance of the content slider. The #featuredwrapper div positioned the content slider
and gave it a defined border. The .ui-tabs-hide class hid tabs that shouldn't be showing
at a particular time. The #featured-posts-tabs div floated the tab selector to the right
for a nice appearance, as well as adding padding to the tabs and decreasing the font size of
the text within the tabs. After all of these steps, you ended up with a functionally-complete
content-featured content rotator.

Building on this, you can style the content rotator however you want: add images and display
any post information that your heart desires. For inspiration, try searching on Google for
beautiful content sliders. The examples that you can find can help you to create a stunning
way to feature your best content.

There's more…
There is much more that can be done with this basic content slider. The jQuery UI Tabs
does come with its own styles, to create nice looking tabs, but you will probably want to create
your own look.

Chapter 10

205

Theming your slider with Themeroller
You can quickly generate great-looking designs for your content slider and other jQuery-based
objects, by using Themeroller.

Go to http://jqueryui.com/themeroller/ and begin clicking on the color pickers
and other tools on the left-hand side of the page to customize the widgets (including a
tabbed box) that appear on the right. You can also click on the Gallery link to choose from
an already-designed theme. After playing with several of the options, your screen should
look similar to the one shown next:

Now click on the Download theme button. It will take you to the Build Your Download
screen on which you can finalize your choices. Just stick to the default settings, and click on
Download on the right-hand side of the screen.

A window will appear to verify where you want to save the zipped theme file. Save it locally on
your computer. Open the zipped folder and you will find a complete bundle of sample scripts,
CSS theme files, and jQuery JavaScript files.

Adding JavaScript Effects

20�

Try out the different examples in your favourite HTML editor and browser. All of the examples
have an index page that will instantly load them so that you can test their behaviour locally.
Be sure to examine the CSS files contained within the /themes/base/ folder, particularly
jquery.ui.theme.css. This is where you can experiment by changing colors and other
style declarations.

Enjoy the many options that jQuery gives you to control the look and behaviour of your
interactive page elements.

See also
Adding JavaScript files to your theme programmatically

Making sidebar widgets toggle-able
The extensible nature of widgets and sidebars in WordPress opens those items up to a whole
range of possibilities when it comes to making them dynamic. One of the easiest and most
noticeable things that you can do is to modify your widgets so that users are able to interact
with them. Even the rudimentary interaction provided in this recipe can go a long way to
increasing user participation with the site that your theme is deployed on.

Getting started
You need to have a theme created with at least one sidebar registered.

How to do it...
First, you need to change the parameters that you are passing to your sidebar registration
function. Find the declaration for your sidebar (usually contained within the functions.php
file) and change the code to the following:

register_sidebar(array(
 'before_widget' => '<li id="%1$s" class="widget %2$s">',
 'after_widget' => '</div>',
 'before_title' => '<h2 class="widgettitle">',
 'after_title' => '</h2><div>',
));

You'll see that this differs from the default WordPress sidebar arguments in that a <div>
start tag has been appended to the after_title argument, and a </div> end tag has
been prepended to the after_widget argument. Doing this causes all widget contents
to be enclosed by a div tag that we can use for manipulation.

Chapter 10

20�

Now, you need to create the JavaScript code that controls slide toggling. First, create a new
folder in the directory containing your theme, called js. In the js directory, create and open a
new file called widget-slide-toggle.js. Inside the widget-slide-toggle.js file, put
the following code:

jQuery(document).ready(function() {
jQuery('.widget h2.widgettitle').click(function(event) {
 event.preventDefault();
 jQuery(this).siblings('div:first').toggle();
});
});

Now, to make sure this JavaScript gets run, we need to reference it. Ensure that your <head>
tag has a call to wp_head within it, and then open or create your theme's functions.php
file. Inside the functions.php file, place the following code:

<?php wp_enqueue_script('widget-slide-toggle', get_
bloginfo('stylesheet_directory') . '/js/widget-slide-toggle.js',
array('jquery')); ?>

Now, load your WordPress admin panel and put some widgets in the sidebar for your theme.
Load any page that displays your sidebar, and click on the widget title for any widget. You'll see
the content of the widget slide up or slide down, based on how many times you've clicked on
the title.

You can see the before and after results in the following screenshot:

How it works...
This is a perfect example of how a little bit of markup and a little bit of JavaScript can make
a big difference. First, you added a little bit of extra markup to your theme's sidebar. This
markup encloses each widget's content inside an extra <div> position, as a sibling to the
widget's title.

Adding JavaScript Effects

208

After this, you added a reference to a script that contained a small bit of jQuery. The jQuery
contains a statement binding an event handler to the click event on each widget's title. When
a user clicks on the title of a widget, the specified event handler fires, causing the browser
to toggle the state of the first div adjacent to the title. Because of the extra markup that we
registered with the sidebar in the functions.php file, this div is always guaranteed to
surround the content of the widget.

There's more...
The sidebar widgets expand again each time the page is reloaded. This is not ideal if you want
users to have the satisfaction of seeing their changes persist on the page.

Remembering the widget's state
As it is currently implemented, the slide toggle only persists during a single page load. If you
want to remember the widget's state between page loads, you can take advantage of a great
jQuery plugin called jQuery Cookie. Download the jQuery plugin from http://plugins.
jquery.com/project/cookie, and put the JavaScript file into your theme's js directory.
Then place the jQuery Cookie enqueue script below the widget slide toggle enqueue script:

wp_enqueue_script('jquery-cookie', get_bloginfo('stylesheet_
directory') . '/js/jquery.cookie.js', array('jquery'));

After enqueuing the Cookie plugin, change the contents of your widget-slide-toggle.js
file to the following code:

jQuery(document).ready(function() {
 jQuery('.widget').each(function() {
 var widgetId = jQuery(this).attr('id');
 var slideStatus = jQuery.cookie('slide-status-'+widgetId);
 if(slideStatus == 'hidden') {
 jQuery(this).find('h2.widgettitle').siblings('div:first').hide();
 }
 });
 jQuery('.widget h2.widgettitle').click(function(event) {
 event.preventDefault();
 jQuery(this).siblings('div:first').slideToggle('normal',
 function() {
 var widgetId = jQuery(this).parents('.widget').attr('id');
 if(jQuery(this).is(':visible')) {
 jQuery.cookie('slide-status-'+widgetId,'visible',{
 path: '/', expires: 10 });
 } else {
 jQuery.cookie('slide-status-'+widgetId,'hidden',{
 path: '/', expires: 10 });
 }
 });
 });
});

Chapter 10

20�

Now, when a user toggles a widget's state and returns to the page later, the state will be
restored. That is, if the user hid the widget, it will be hidden on page load. Otherwise, the
widget will be shown.

Adding a font size toggle
Using JavaScript to create fancy animations and add unnecessary but interesting interaction
is great. However, the real boon comes when you use it to provide users with something that
helps them to use your site, and that emphasizes your content.

How to do it...
First, you need to decide what text you want to be able to resize. For every element that
you want resizable text in, add the text-resizable class. In this example, let's set the
post content to be resizable, within the WordPress loop in the index.php file, placing the
font-resizable opening div tag just above the entry-content opening div tag, then
closing both tags, as shown in the following code:

<!-- make the content entry text resizable --> <div class="font-
resizable">
 <div class="entry-content">

<?php the_content(__('Read More »</
span>', 'sandbox')) ?>

 <?php wp_link_pages('before=<div class="page-link">'
 . __('Pages:', 'sandbox') . '&after=</div>') ?>
 </div><!-- end post content entry -->
 </div><!-- #text resize-->

In addition, you need to create two links with the IDs increase-font-size and
decrease-font-size. You can put these links anywhere on your page. We will place ours
just below the opening content div tag, within the index.php file. Do not place this within
the WordPress loop.

<p>Font Size:
 [+]/<a id="decrease-font-

size" href="#">[-] </p>

Let's have a quick preview of what the font resize links will look like once they are live on
the site:

Adding JavaScript Effects

210

Now you need to create the JavaScript code that controls text resizing. First, create a new folder
in the directory containing your theme, and call it js. Inside the js directory, create and open a
new file called text-resize.js. In the text-resize.js file, put the following code:

jQuery(document).ready(function() {
 jQuery('#increase-font-size').click(function(event) {
 event.preventDefault();
 jQuery('.font-resizable').each(function() {
 changeFontSize(this, change); });
 });
 jQuery('#decrease-font-size').click(function(event) {
 event.preventDefault();
 jQuery('.font-resizable').each(function() {
 changeFontSize(this, -change); });
 });
});

var min = 8, max = 32, change = 2;

function changeFontSize(element, value) {
 var currentSize = parseFloat(jQuery(element).css('font-size'));
 var newSize = currentSize + value;

 if (newSize <= max && newSize >= min) {
 jQuery(element).css('font-size', newSize + 'px');
 }
}

Now, to make sure that this JavaScript gets run, we need to reference it. Ensure that
your <head> tag has a call to wp_head within it, and then open or create your theme's
functions.php file. Inside the functions.php file, place the following code:

wp_enqueue_script('text-resize', get_bloginfo('stylesheet_directory')
. '/js/text-resize.js', array('jquery'));

Chapter 10

211

Then load your WordPress site and click on the [+] or [-] links. You'll see the text resize
appropriately for every element with the appropriate class, as seen in the following screenshot:

How it works…
In this example, we used jQuery to resize the text within posts on the home page. Whenever
the [-] or [+] font size links were clicked, the text resized from 8 to 32 pixels in increments
of 2 pixels. First, we identified an area that we wanted to be resizable—in this case, any post
content text on the home page—and created a div tag called text-resizable to wrap
around the entry-content tags. This created a container that jQuery could then affect.

Next, we added our font resize links to index.php, just below the main opening content
div, outside of the WordPress post loop. This placed the links near the top of the page, a
location where people are used to seeing resizable text links.

Then we created a JavaScript file named text-resize.js to contain the functions for
the resize actions. The (document).ready(function() verified that the page was
loaded, and then allowed the text size to be decreased or increased. Next, the variable
var min was created and defined, to control the range of font size values. The function
changeFontSize(element, value) accepted two parameters: element and
value. This allowed the function to determine what to resize and what size the
element should become.

Finally, we referenced the text-resize.js script within functions.php, by using
wp_enqueue_script. This contained the parameter array('jquery') that also indicated
to WordPress that the text-resize script had a dependency on the jQuery library in order for it
to function properly, and allowed us to make sure that the jQuery library was loaded to handle
any hard labor. Once the files were all uploaded, clicking on the text resize links clearly
caused all of the text within post entries on the home page to resize.

11
Advanced WordPress

Themes

In this chapter, we will cover:

Adding a theme options page

Allowing for multiple theme color schemes

Changing the default Gravatar icon for your theme

Registering shortcodes for your theme

Localizing your theme

Displaying information based on the logged-in user's role

Packaging your theme for distribution

Uploading your theme to the WordPress.org theme repository

Introduction
Creating a basic WordPress theme is great. You learn about The Loop, find the appropriate
template tags to display the information that you want, and then you write some HTML and
CSS to tie it all together. However, there comes a time when you're ready to take your themes
to the next level. That is what this chapter is all about.

In this chapter, you'll learn how to provide your theme's users with options about what
is displayed and how is displayed. You'll also learn about localizing your theme for an
international audience and showing users information based on their current role.

Advanced WordPress Themes

214

Finally, this chapter covers the essentials for packaging and distributing your theme via the
WordPress.org theme repository. You'll need to follow a few simple steps to make sure that
your theme is accepted and that it provides users with the best possible experience.

Adding a theme options page
As a theme developer, you have to make a lot of choices when you create a theme. What text
should be displayed in certain locations? Will that text always be appropriate? How many
posts should you display in a featured item carousel? How many levels should the nested
navigation menu have?

Part of being a good developer is knowing when to make these decisions for your theme's
users, and when to give the users a choice. Many WordPress users are not comfortable with
editing PHP files, so you need to provide some other way for users to make these choices.
The best way, in the context of a WordPress theme, is to provide the users with a theme
options panel.

Getting started
You need to have created a WordPress theme containing at least a style.css file and an
index.php file.

How to do it...
First, you need to decide what choice you want to give your users. In this recipe, we're going to
assume that you want users to be able to change the color of the name of their site, which is
located in the site header.

Next, you have to create the options page that lets users make their choice and save it.
Open your theme's directory and create a new directory inside it called admin. Inside the
admin directory, create a file called options.php.

Open the options.php file, and insert the following code:

<?php
$settings = $this->get_settings();
?>
<div class="wrap">
 <h2><?php _e('My Theme Options'); ?></h2>
 <?php if('1'==$_GET['updated']) { ?>
 <div id="my-theme-options-updated" class="updated fade"><p><?php _e(
'Settings saved!'); ?></p></div>
 <?php } ?>
 <form method="post">

Chapter 11

215

 <table class="form-table">
 <tbody>
 <tr>
 <th scope="row"><label for="custom-theme-header-color">
 <?php _e('Header Color'); ?></label></th>
 <td>
 #<input type="text" class="regular-text"
 name="custom-theme-header-color"
 id="custom-theme-header-color"
 value="<?php echo esc_attr($settings[
 'header-color']); ?>" />
 </td>
 </tr>
 </tbody>
 </table>
 <p class="submit">
 <?php wp_nonce_field('custom-theme-save-options'); ?>
 <input type="submit" class="button-primary"
 name="custom-theme-save-options"
 id="custom-theme-save-options"
 value="<?php _e('Save'); ?>" />
 </p>
 </form>
</div>

This file contains all of the code necessary for the theme options page.

The next thing that you need to do is to hook the admin page into the WordPress
administrative menu. Open or create your theme's functions.php file and insert the
following code:

if (!class_exists('My_Theme')) {
 class My_Theme {

 var $settings = null;

 function My_Theme() {
 add_action('admin_init', array(&$this, 'save_settings'));
 add_action('admin_menu', array(&$this, 'add_admin_stuff'));
 }

 function add_admin_stuff() {
 add_theme_page(__('My Theme'), __('My Theme'),
 'switch_themes', 'my-theme', array(&$this,
 'display_theme_admin_page'));
 }

 function display_theme_admin_page() {
 include (TEMPLATEPATH.'/admin/options.php');
 }

Advanced WordPress Themes

21�

 function save_settings() {
 if (isset($_POST['custom-theme-save-options']) &&
check_admin_referer('custom-theme-save-options') && current_user_
can('switch_themes')) {
 $settings = $this->get_settings();
 $settings['header-color'] = stripslashes($_
POST['custom-theme-header-color']);
 $this->set_settings($settings);
 wp_redirect(admin_url('themes.php?page=my-
theme&updated=1'));
 }
 }

 function get_settings() {
 if (null === $this->settings) {
 $this->settings = get_option('My Theme Custom
Settings', array());
 }
 return $this->settings;
 }

 function set_settings($settings) {
 if (is_array($settings)) {
 $this->settings = $settings;
 update_option('My Theme Custom Settings', $this-
>settings);
 }
 }

 }

 $my_theme = new My_Theme();
 function get_custom_theme_header_color() {
 global $my_theme;
 $settings = $my_theme->get_settings();
 $color = $settings['header-color'];
 if(empty($color)) {
 $color = '000000';
 }
 return $color;
 }
 function the_custom_theme_header_color() {
 echo get_custom_theme_header_color();
 }
}

Chapter 11

21�

This file hooks into two different WordPress administrative hooks. First, you add the
administrative menu page by hooking into admin_menu. Then, you hook to admin_init
to process and save the custom options present on the custom admin page.

After you save these files, go to your administrative menu and look at the sidebar on the
left-hand side under the Appearance heading. You should see a My Theme link, as shown
in the following screenshot:

Now, click on the My Theme link under the Appearance menu heading. If you've done
everything correctly, you should see a page that looks like the following screenshot:

Enter a value such as 99000 and click on the Save button, and you'll see a Settings saved!
success message, as seen in the following screenshot:

Now, you need to use your custom value somewhere in your theme. Open up your theme
header (usually header.php or index.php) and insert the following code between the
opening and closing <head> tags:

<h1 style="color:#<?php the_custom_theme_header_color(); ?>;"><?php
bloginfo(); ?></h1>

Advanced WordPress Themes

218

View your site in a browser to see the change in color of the site title (this is usually the only
text that uses the <h1> tag) with the custom option set to hexadecimal color value 990000:

Now, whatever value you set for the custom option that we created will be used as the color
for the site title.

How it works...
There are quite a few moving parts here, so let's go through them one by one. First, you created
the administrative page. This was saved to /yourthemefolder/admin/options.php. This
file contains all of the items contained on a typical WordPress admin page:

A containing <div> with the wrap class

A <h2> tag with the custom theme options title

A form that posts back to itself

Form elements arranged inside a <table> with the form-table class

With all of these elements in place, you get a slick looking administrative page that blends in
with the rest of the WordPress admin control panel.

Next, you created a small script within the functions.php file that hooks the administrative
menu into place and saves the options when the page is posted. You hooked to admin_menu
to add the administrative page and admin_init to save the options using the WordPress
add_action() function that accepts a key value pair of the named action as a descriptive
string and the actual action to take place. Your custom options are saved when three
conditions are met:

1. The form posts back to itself.

2. The system verifies the security nonce from the form.

3. The currently logged-in user has the ability to switch themes (usually just the
blog administrator).

The options are saved as an array to the WordPress options table by using the update_
option function. When you need to retrieve the options, you call get_option and pass the
appropriate key.

In addition to the hooks that provide the core functionality of this script, you created two
template tags. The tag the_custom_theme_header_color() allowed you to access, and
get_custom_theme_header_color() allowed you to print the values you stored on the
custom options page.

Chapter 11

21�

Finally, you used the template tags that you created to take advantage of your custom option
on the front-end by adding <?php _the_custom_theme_header_color(); ?>; to
the style of the <h1> tag that controls the color and size of the blog title. In this particular
instance, you're allowing your theme's users to modify the color of the theme's header.
However, endless possibilities exist as you become more familiar with WordPress, and by
expanding the options, you allow your users to modify your themes.

There's more…
You can add additional theme option settings to customize how users can edit your theme.

Diving into administrative settings for themes
Visit the WordPress codex at http://codex.wordpress.org/Function_Reference to
learn more about the functions available to you for creating custom theme edit forms in the
administrative area of WordPress.

Allowing for multiple theme color schemes
In the previous recipe, we covered the general way in which you provide your theme's users
with an options page. In this recipe, you'll implement one of the most straightforward features
that many premium themes possess: a theme color scheme chooser.

Getting started
You need to have created a WordPress theme containing at least a style.css file and an
index.php file. Inside the template file containing your theme's <head> tag, you need to call
the wp_head function.

How to do it...
You're going to be controlling the color schemes that users can select, by putting each
one in a different CSS file. As such, the first thing that you have to do is to create these files.
Open your theme's directory and create a new directory named schemes. Inside the schemes
directory, create the files blue.css, red.css, and green.css. They should contain the
following styles:

@charset "utf-8";
/* Blue.CSS Color Schemes Document Chapter 11 Example 2 */
body{
 color:#00f; /* very bright medium blue*/
 background-color:#99ccff; /* light blue*/}
/* theme links*/
a., a:link, a:hover, a:visited {}

Advanced WordPress Themes

220

a., a:link{color:#000099;} /* medium dark blue*/
a:hover{color: #0066FF;} /* bright medium blue*/
a:visited{color:#000099;}
/* blog title styles*/
h1.blog-title, h1.blog-title a{
 color:#000033; /* dark blue*/
 text-decoration:none;}

#header a {
 color: #000033;
 text-decoration: none;
}

#header a:hover {
 color: #0066FF;
 text-decoration: underline;}

#header a:visited{color:#000099;}

h2{
 color:#003399; /* medium blue*/
 text-decoration:none;}
 #header{
 background:none;
 font-family:arial, verdana, sans-serif;
 }

h2 a {
 color:#003399;/* medium blue */
 text-decoration:none;}
h3.storytitle, h3.storytitle a{
 color:#003399; /* medium blue*/
 text-decoration:none;}

@charset "utf-8";
/* Red.CSS Color Schemes Document Chapter 11 Example 2 */
body{
 color:#660000; /* dark red */
 background-color:#ffffcc; /* light orange-pink*/}
/* theme links*/
a., a:link, a:hover, a:visited {}
a., a:link{color:#ff0000;} /* bright red */
a:hover{color: #ff0033} /* bright pink */
a:visited{color:#ff0000;}

Chapter 11

221

/* blog title styles*/
h1.blog-title, h1.blog-title a{
 color:#ff3333; /* medium pink-red*/
 text-decoration:none;}
#header a {
 color: #ff3333;
 text-decoration: none;
}

#header a:hover {
 color: #ff0033;
 text-decoration: underline;}

#header a:visited{color:#ff3333;}
h2{
 color:#660000; /* medium medium dull red*/
 text-decoration:none;}
h2 a {
 color:#660000; /* medium medium dull red*/
 text-decoration:none;}

h3.storytitle, h3.storytitle a{
 color:#ff3333; /* medium pink-red*/
 text-decoration:none;}

@charset "utf-8";
/* Green.CSS Color Schemes Document Chapter 11 Example 2 */
body{
 color:#009933; /* dull medium green*/
 background-color:#005826; /* dull dark green */}
/* theme links*/
a., a:link, a:hover, a:visited {}
a., a:link{color:#00ff00;} /* bright light neon green*/
a:hover{color: #33ff00;} /* bright green*/
a:visited{color:#00ff00;}
/* blog title styles*/
h1.blog-title, h1.blog-title a{
 color:#99cc99; /* light pale green */
 text-decoration:none;}
h2{
 color:#33cc66; /* medium green */
 text-decoration:none;}

h2 a {

Advanced WordPress Themes

222

 color:#33cc66; /* medium green*/
 text-decoration:none;}

h3.storytitle, h3.storytitle a{
 color:#33cc66; /* medium green*/
 text-decoration:none;}

Next, you have to create the options page that lets users make their choice and save it. Open
your theme's directory and create a new directory inside it called admin. Inside the admin
directory, create a file called options.php.

Open the options.php file, and insert the following code:

<?php
$settings = $this->get_settings();
$custom_schemes = $this->get_custom_themes();
?>
<div class="wrap">
 <h2><?php _e('My Theme Options'); ?></h2>
 <?php if('1'==$_GET['updated']) { ?>
 <div id="my-theme-options-updated" class="updated fade">
 <p><?php _e('Settings saved!'); ?></p></div>
 <?php } ?>
 <form method="post">
 <table class="form-table">
 <tbody>
 <tr>
 <th scope="row"><label for="custom-theme-header-color">
 <?php _e('Custom Color Scheme'); ?></label></th>
 <td>
 <select name="custom-theme-color">
 <option <?php selected($settings['color'], ''); ?>
 value=""><?php _e('None'); ?></option>
 <?php foreach((array)$custom_schemes as $key =>
 $name) { ?>
 <option <?php selected($settings['color'], $key);
 ?> value="<?php echo esc_attr($key);
 ?>"><?php echo esc_html($name); ?></option>
 <?php } ?>
 </select>
 </td>
 </tr>
 </tbody>
 </table>
 <p class="submit">
 <?php wp_nonce_field('custom-theme-save-options'); ?>

Chapter 11

223

 <input type="submit" class="button-primary" name="custom-theme-
save-options" id="custom-theme-save-options" value="<?php _e('Save'
); ?>" />
 </p>
 </form>
</div>

This file contains all of the code necessary for the theme options page. This particular options
page contains a <select> drop-down menu that displays the available color schemes to the
theme's user.

The next thing that you need to do is to hook the admin page into the WordPress administrative
menu. Open or create your themes functions.php file, and insert the following code:

<?php
if (!class_exists('My_Theme')) {
 class My_Theme {

 var $settings = null;

 function My_Theme() {
 add_action('admin_init', array(&$this, 'save_settings'));
 add_action('admin_menu', array(&$this, 'add_admin_stuff'));
 add_action('init', array(&$this, 'enqueue_color_css'));
 }

 function add_admin_stuff() {
 add_theme_page(__('My Theme'), __('My Theme'),
 'switch_themes', 'my-theme', array(&$this,
 'display_theme_admin_page'));
 }

 function display_theme_admin_page() {
 include (TEMPLATEPATH.'/admin/options.php');
 }

 function enqueue_color_css() {
 $settings = $this->get_settings();
 if(!empty($settings['color']) && !is_admin()) {
 wp_enqueue_style('custom-theme-color',
 get_bloginfo('stylesheet_directory') . '/schemes/' .
 $settings['color']);
 }
 }

 function get_custom_themes() {
 $schemes_dir = TEMPLATEPATH . '/schemes/';

Advanced WordPress Themes

224

 $schemes = array();
 if(is_dir($schemes_dir) && is_readable($schemes_dir)) {
 $dir = opendir($schemes_dir);
 while(false !== ($file = readdir($dir))) {
 if('.' != $file && '..' != $file) {
 $scheme_name = ucwords(str_replace(
 array('-','_','.css'), array(' ',' ',''), $file));
 $schemes[$file] = $scheme_name;
 }
 }
 }
 return $schemes;
 }

 function save_settings() {
 if (isset($_POST['custom-theme-save-options'])
 && check_admin_referer('custom-theme-save-options')
 && current_user_can('switch_themes')) {
 $settings = $this->get_settings();
 $settings['color'] = stripslashes(
 $_POST['custom-theme-color']);
 $this->set_settings($settings);
 wp_redirect(admin_url(
 'themes.php?page=my-theme&updated=1'));
 }
 }

 function get_settings() {
 if (null === $this->settings) {
 $this->settings = get_option(
 'My Theme Custom Settings', array());
 }
 return $this->settings;
 }

 function set_settings($settings) {
 if (is_array($settings)) {
 $this->settings = $settings;
 update_option('My Theme Custom Settings',
 $this->settings);
 }
 }

 }

 $my_theme = new My_Theme();
}

Chapter 11

225

This file hooks into two different WordPress administrative hooks. First, you add the
administrative menu page by hooking to admin_menu. Then, you hook to admin_init to
process and save the custom options present on the custom admin page. Finally, you hook
to the init hook to enqueue the custom CSS stylesheet the user has selected.

After you save these files, go to your administrative menu and look at the sidebar on the
left-hand side, under the Appearance heading. You should see a My Theme link, as shown
in the following screenshot:

Now, click on the My Theme link under the Appearance menu heading. If you've done
everything correctly, you should see an administrative page that looks like the one shown
in the following screenshot:

Select a value, such as Red, from the drop-down selection menu, and then click on the Save
button. You'll see the Settings saved! message, as well as the chosen color scheme selected
in the Custom Color Scheme drop-down menu.

Finally, you can view the results of the color scheme change by opening up your site in a
browser window. In the following screenshot, you can see what the page header of each
of the three color schemes will look like:

Advanced WordPress Themes

22�

How it works...
You've done quite a few things in providing your theme's users with the ability to switch
color schemes. First, you hooked a custom admin menu into the WordPress administrative
interface, in order to provide a place for users to select their desired color scheme. You
did this by taking advantage of the WordPress plugin API and the hooks admin_menu
and admin_init.

You used the admin_menu hook to register your custom administrative page with a title of
My Theme. After getting your administrative page to display, you allowed the user to save the
values by using the admin_init hook to record the values in the WordPress database.

The most interesting part of the administrative menu that you created was the dynamic nature
of the possible values in the <select> element. The get_custom_themes method opens
the schemes directory located inside your theme. It then reads through all of the files in the
schemes directory, sanitizes the filename, and provides these custom CSS files as options
for the user to select. You can add or remove schemes in the future. Perhaps you want to
give your users the option of using an ochre or monochrome color scheme. This is as easy as
creating the files ochre.css and monochrome.css in your schemes directory. The system
will automatically detect and offer these files as options to your theme's users.

The final WordPress hook that you took advantage of in this recipe is init. The init hook
is fired after WordPress has initialized itself. Here, your hook callback checks to make sure
that the user has chosen a color scheme and that a front-end page is being displayed. If both
of these conditions are met, then the wp_enqueue_style function is used to enqueue the
custom CSS file that your theme's user has chosen for their color scheme.

See also
Adding a theme options page

Changing the default Gravatar icon for your
theme

A great way to build a community around a blog is to allow the users to personally identify
themselves, either as authors or when commenting. Luckily, WordPress has built-in support
for user avatars, by using the Gravatar service. Unfortunately, not all users have registered
their e-mail address with Gravatar.com and they get stuck with a boring mystery man outline.

Luckily, WordPress allows administrators to change the default Gravatar for users who don't
have them, and allows theme authors to provide custom defaults when their theme is active.

Chapter 11

22�

Getting started
You need to have created a WordPress theme containing at least a style.css file and an
index.php file. Also, you should be using the get_avatar function somewhere within your
theme. The wp_list_comments function uses the get_avatar function, so most themes
satisfy this requirement.

How to do it...
First, you have to decide what your custom avatar for unknown users is going to be. The
following smiley avatar will be used for the purposes of this recipe:

After you've selected the avatar that you'd like to use for unknown users, open your theme's
directory and create a subdirectory named images. Inside the images directory, place the
image file that you're going to use as your avatar, naming it something like avatar.jpg.

Next, open your administrative menu and go to Settings | Discussion. Scroll to the bottom
of the page and look at the current list of possible default avatars. This should look like the
example shown in the following screenshot:

Advanced WordPress Themes

228

Now, open or create your theme's functions.php file. Inside this file, insert the
following code:

add_filter('avatar_defaults', 'add_my_theme_default_avatar');

function add_my_theme_default_avatar($avatars) {
 $avatars[get_bloginfo('stylesheet_directory') . '/images/avatar.
jpg'] = __('My Theme Avatar');
 return $avatars;
}

Save the functions.php file and reload the Settings | Discussion page. You should see
something similar to the following screenshot:

The previous screenshot shows that your custom avatar has been added to the avatar options.

Select your theme avatar and save the discussion options. Then, when an unknown
user has their avatar displayed on the frontend of the site, it will look something like the
following screenshot:

Chapter 11

22�

How it works...
Providing a custom avatar is a simple matter of hooking to the correct filter and returning
the correct values. Here, you hook to the avatar_defaults filter. Your callback function
receives an array of avatars that WordPress and other plugins provide. You add an array
item by using your image location as the key and your avatar description string My Theme
Avatar as the array value.

In this instance, the key is a URL to an image located in the theme's images directory, and
the description is the string My Theme Avatar. Of course, after you provide the default
avatar, the theme's user still has to select it for it to become active.

There's more...
Sometimes, either for design purposes or as part of other project requirements, you may want
to have more control over when and how your avatar is used.

Forcing your theme to use your default avatar
Although it is great to give the user a choice, sometimes you just want to make sure that the
theme uses your custom default avatar. This is appropriate in cases where your end user
doesn't have a lot of technical expertise, or you are setting up a site for someone and don't
want to let them change the default avatar while your theme is active.

Open or create a functions.php file, and insert the following code:

add_filter('avatar_defaults', 'add_my_theme_default_avatar');
add_filter('pre_option_avatar_default', 'force_my_theme_default_
avatar');
function add_my_theme_default_avatar($avatars) {
 return array();
}
function force_my_theme_default_avatar($value) {
 return get_bloginfo('stylesheet_directory') . '/images/avatar.jpg';
}

Save and upload the functions.php file to your server.

Within the functions.php file, you're doing a few things. First, with the preceding
code, you remove all the options from the default avatar options selection on the
Settings | Discussion menu.

Advanced WordPress Themes

230

This results in the screen displaying no avatar choices to the user as shown in the
following screenshot:

Next, you're overriding the get_option return value when the option being fetched is
default_avatar. In this case, you're overriding the return value by providing the URL
to your own custom avatar.

Registering shortcodes for your theme
If you've ever used forum bbcode, then WordPress shortcodes should look very familiar
to you. In an earlier chapter recipe, we used the [gallery] shortcode to specify the
number of columns for a post photo gallery. You can add your own custom shortcodes to
the functions.php file of your theme in order to add easy functionality for theme users.

In this recipe, we will create a permalink shortcode so that the theme users can quickly add
permalinks to posts that will automatically update if those links change.

How to do it…
First, open up or create a functions.php file. This is where we will add the permalink
shortcode function and register our permalink shortcode.

Next, enter the following code to create the permalink shortcode:

/* Chapter 11 permalink shortcode starts here */
function do_permalink($atts) {
 extract(shortcode_atts(array(
 'id' => 1,
 'text' => "" // default value if none supplied
), $atts));

 if ($text) {
 $url = get_permalink($id);
 return "$text";
 } else {
 return get_permalink($id);
 }

Chapter 11

231

 }
 add_shortcode('permalink', 'do_permalink');

/* closing shortcode example */

Now, register the shortcode within the functions.php file, so that it can be added to posts,
by placing the add_shortcode() tag below the preceding code. It will accept two parameters:
the value of the shortcode itself (permalink) and do_permalink, which is the name of the
function creating the shortcode. The following example shows how they should look:

add_shortcode('permalink','do_permalink');

The custom shortcode permalink is now ready to be added to posts. To test it, create a new
post and enter a link by using the permalink id of another post:

Creating Post Thumbnail Images for Every
Post

View the post in your browser. The custom permalink shortcode will now cause the permalink
to appear in the post as shown in the next screenshot:

There's more…
You can examine the shortcodes.php file provided by WordPress in the wp-includes folder.
There is a lot more to learn about shortcodes, and a great place to dig deeper is the shortcode
API in the WordPress codex, at: http://codex.wordpress.org/Shortcode_API.

Displaying Twitter trends by using shortcodes in posts
Aaron Jorbin has created a series of shortcodes that you can use to add quick Twitter
functionality to the post pages of your theme.

Advanced WordPress Themes

232

First, open up your functions.php file, and create the custom shortcode function by adding
the following code to the file:

<?php
/*
Name: Jorbin Twitter Trends Shortcodes URI: http://aaron.jorb.in/
Description: Shortcodes I use - Twitter Trends
Author: Aaron Jorbin Version: 0.0
Author URI: http://aaron.jorb.in/ License: GPL2
*/
function jorbin_twitter_trends(){

 $transient='twitter-trends';
 $url = 'http://search.twitter.com/trends.json';

 if ($tweet_display = get_transient($transient)){

 }
 else{
 $search = wp_remote_get($url);

 $results = json_decode($search['body']);
 $trends = $results->trends;
 ob_start();
 echo "<ul class='twitter-trends'>";
 foreach ($trends as $trend){
 echo 'url) .
 '"> '. esc_html($trend->name) . '';
 }
 echo "";
 $tweet_display = ob_get_clean();
 set_transient($transient, $tweet_display, 120);
 }
 return $tweet_display;
}
?>

Now register the shortcode by placing the add_shortcode() function in the functions.
php file. It accepts two parameters: the shortcode value as a string, and the name of the
shortcode function as a string.

add_shortcode(__('twitter-trends'),'jorbin_twitter_trends');

Chapter 11

233

Save the file, and upload it to your server. You can now include the shortcode [twitter-
trends] in a post. It should result in a post that looks similar to the following screenshot:

Visit http://aaron.jorb.in to learn more about using shortcodes with WordPress themes.

Localizing your theme
WordPress themes are used by people all over the world. Luckily, it is relatively easy to
localize your theme by modifying code. We will be adding localization functions to text strings,
then creating a .po file, adding a tag within our theme so that WordPress knows the theme
is localized, then optionally converting any translated .po files to .mo files, and changing
the language setting of our theme. The GNU gettext localization system (also referred to as
GetText) is used by WordPress to allow strings of text to be tagged as translatable and then
looked up in a dictionary. GetText is available by default on all web servers.

How to do it…
Back up your theme files. In this recipe, we will be updating text seen on the administration
side of WordPress and the front-end side, by using the localization functions __() and _e().

Go through all customized files and look for any existing text strings that are already contained
within <php ?> tags. Add two underscores (__), and surround any output text string with
parentheses. As an example, we will use the localization function __($text) to flag the
Edit link in the WordPress posts loop as translatable text. Open up your index.php file, and
find the Edit link within the posts loop: edit_post_link('Edit'); and add the __()
function so that it looks like the following example:

edit_post_link (__('Edit'));

Advanced WordPress Themes

234

Next, check your template files for any text strings that print to the front-end screen view of
your WordPress site and that are not currently contained within PHP tags. These will need to
be flagged as translatable, by using the _e() function.

Open up your index.php file, or any other file such as author.php or single.php, and
find a block of display text. As an example, we will use the localization function _e($text)
to flag the Author Email: text from an author.php page example
created in Chapter 9 as translatable text. Add the _e() function, along with any needed PHP
tags, so that it now looks like the following example:

<?php _e('Author Email:') ?>

Create a folder named translation, and save it in your theme folder. This is where any
translation files should be kept for users and translators.

Now a localization tool must be run over the code in order to compile all of the marked text
into a specialized file called a PO (Portable Object) file. The PO file is a text file that is organized
so that each instance of translatable text is identified by using comments. The easiest way to
create the file is to use the .po file generator at http://www.icanlocalize.com/tools/
php_scanner. Navigate to the site, and you will be able to upload one of your PHP files, or a
.po file if you already have one:

Save the .po file, and upload any more PHP files and the .po file, until all of the translatable
text is processed. Save the final .po file to your translation folder so that it is available
to translators.

Chapter 11

235

Check your PO file. It should have each text string block formatted like the following example,
which shows the text string Dashboard from the administration panel, along with a comment
block directly above it that describes where the text string is located within the template:

#: wp-admin/menu.php: 10
msgid "Dashboard"
msgstr ""

Add a comment to the readme file of your theme about the availability of the PO file, and
specifying that your theme is prepared for translation and localization. You may also want to
add an additional readme file in your translation folder that describes the purpose of the PO file.

Now that the template has been localized, you will need to add a tag to either your
functions.php file or header.php file, so that any translated text will be loaded, if desired
by the user. Open up or create a functions.php file, and add the following code, contained
within PHP tags, where themename is the name of your theme folder on your server:

// Translate, if applicable
load_theme_textdomain('themename');

As an extra step, you can also create your own localization files. Open your PO file and
augment the msgstr for each item so that it now contains the translated text. Following
is an example of the text string Dashboard translated to Spanish:

#: wp-admin/menu.php: 10
msgid "Dashboard"
msgstr "Tablero de instrumentos"

Save the file with the extension .po within your translation folder, using the language
abbreviation as the file name. For example, if your .po file is in Spanish, it would usually be
called es_ES.po, where the lowercase text represents the dialect or regional language and
the uppercase text represents the core language abbreviation.

The .po file now needs to be formatted as an .mo (Machine Object) file in order for the text
to be properly read by the server side GetText translation utility used by WordPress. You can
download the free editor POEdit from http://www.poedit.net, so that you can make any
additional translation changes and then save the file in .mo format.

Next, you will need to upload a copy of the .mo file to your languages folder within
wp-content, if you would like to test your previous localization edits. Otherwise, you
can place the file within your main theme folder. If your theme does not already have a
languages folder within the wp-content folder, you will need to create one so that the
path to the .mo file is /wordpress installation root folder/wp-content/
languages/.

Advanced WordPress Themes

23�

Next you need to edit the WPLANG setting in the wp-config.php file, in order to add a
language parameter. By default, if your WordPress installation is currently English, it will look
like: define ('WPLANG','');. Notice that WPLANG accepts an additional string parameter,
which by default is empty. To specify a language, add the name of the .mo file as a string to
WPLANG. In the following example, the it_IT.mo file is being referenced to set the language
of the WordPress site to Italian:

define ('WPLANG', 'it_IT');

Save the wp-config.php file, and upload it to your server. When you view your WordPress
site, you should now see any text strings that were identified as translatable in your theme,
and translated within the .mo file, displayed in Italian (or other language that you specified).
You can see an example of translated theme text in the following screenshot, where the
author, category identification, edit, and comments link text have been translated:

How it works…
__($text) is a WordPress function that takes a text string as a parameter, and looks for a
translated version of $text within a provided dictionary file and returns the result, if any. It
is used for controlling the display of text already contained within PHP tags. If no localization
files other than English exist, then the text will remain the same.

There is a second localization function used to print text to the screen so that it is visible to
site visitors. The _e($text) WordPress function looks for a translated version of $text and
echoes the result to the screen. This should be used for titles and headings that will display
on the screen and are not already contained within PHP tags (pay special attention to text in
plugins, and the index.php, functions.php, header.php, and sidebar.php files).

Once all text within a theme is localized, it can then be processed into a .po file or POT
(Portable Object Template) file for translation. The structure of these types of files makes
it easy for translators to quickly translate text strings into another language by listing only
the text strings and brief comments explaining the location of the text in the theme. After
a .po file is created, it can then be made available to translators in the theme package,
or the theme creator can work with someone to translate the strings (or translate the file
themselves). The translated .po file should be saved in a translation folder so that
other users can use it as a reference, or edit it later as they make changes to the template.

Chapter 11

23�

The WordPress back-end now needs to know that the theme has been localized. This is done
by using the WordPress tag load_theme_textdomain($text), which accepts a text string
that is the short name (the name of your theme's folder on the server) of your theme. Any
translatable text will now be looked up and processed into a specified language, as necessary.

If no other steps are taken, the theme will be localized, but will not be able to display the
theme text in another language, as it still needs a special object file for GetText to read, in
wp-content/languages/. As a theme author, you can stop at this point and let other
volunteers take over, or you can provide any .po files that have already been translated as
.mo files.

Converting a file to Machine Object (.mo) format so that it can be read by the server-side
translation utility GetText, which is provided by default on all web servers and leveraged by
WordPress to process translation files, creates a library that can be referenced by the utility
to replace text strings in the old language with text strings in the new language. GetText will
automatically look in the /wp-content/languages/ folder for any .mo files.

There's more…
Translating themes for other WordPress users is a great way to give back to the WordPress
community. Who knows, your participation may encourage others to help provide translations
for your theme as well!

Becoming a WordPress theme translator
If you are fluent in multiple languages, you may want to consider giving back to the WordPress
community as a translation volunteer. You can learn more about active translation projects at
http://codex.wordpress.org/Translating_WordPress.

Displaying information based on the
logged-in user's role

Sometimes you want to be able to display messages to new users or users with specific roles,
such as authors or contributors. This recipe will display a message to users of the site based
on their user role.

Advanced WordPress Themes

238

How to do it…
Open the index.php file of your theme. We are going to create a message area on the home
page. Paste the following code below the content div tag and above the WordPress loop:

<?php
/*
* Chapter 11 Example 6
* Creates a user message area on the home page. Paste above the
WordPress loop.
*/
function get_my_user_message() {

 if (is_user_logged_in() && current_user_can('level_1')){
 echo "Remember we publish posts on Tuesdays, Wednesdays, and
 Thursdays!";
 } /* closing contributer role or higher text bracket */
 else if (is_user_logged_in() && current_user_can('level_0')){
 echo "Let us know if you see any grammatical errors in any
 posts!";
 } /* closing else if subscriber text */
 else { /*here is a paragraph that is shown to anyone not
 logged in*/
 echo "Howdy! Thanks for visiting. Please leave a comment.";
 } /* closing else visitor text bracket */

} /* closing bracket for function my_user_message */
?>

Next, we need to create an area on the home page for the message to be displayed and call
the get_my_user_message function. Enter the following code before the WordPress loop:

<!-- display the message on the home page -->
<div class="mymessagearea">

<?php if (function_exists ('get_my_user_message'))
 echo get_my_user_message(); ?> </div>

Save the file, and upload it to your server. Next, the style.css file should be edited so that
the message will be noticed by visitors. Open your style.css file, and create a new class
called div.mymessagearea{}.

Chapter 11

23�

Now specify the background-color, padding, border, color, and positioning of the
class. Insert the following code between the opening and closing brackets of the class:

display:block;
background-color:#ffffff;
padding-left:10px;
color:#990000;
font-weight:bold;
font-size:small;
border-left:#FF3300 5px solid;
border-right:#FF3300 5px solid;
height: 50px;
width:400px;

Save the CSS file, and upload it to your server. Now, the next time that a person visits your
site, they will see different messages if they are logged in and have user-level privileges
than if they are site visitors and are not logged in.

To view the message yourself, view the home page in your browser. It should look similar to
the next screenshot:

How it works…
First, a div class called mymessagearea is created to contain the user message. Then a
function call, current_user_can('level_1'), is made that accepts the WordPress user
level as a string parameter. If a user is logged-in and has a WordPress user role of contributor
or higher (levels 1-10), they will be able to see the message text that begins with Remember…
on the home page. The next else if statement checks to see if a user is logged in and has
a user level of level_0. If both of these statements are true, then the user is a subscriber
and can read, but not edit posts. An additional else statement then provides the option to
display a different message if the visitor is not logged-in. This is the simplest way to determine
the user role. Even though the use of user levels is not the preferred method to determine
user roles, the process to grab a user's role is very clunky. In fact, if you go to the WordPress
codex via the link provided in the following section, you will notice that there is no direct user
data for a user's role.

Advanced WordPress Themes

240

Finally, the display of the message text is styled by using the div class mymessagearea
created earlier. The positioning and size of the div are controlled using the display,
padding-left, width, and height declarations, while the border-left, border-
right, color, and background-color declarations control the look of the message box.

There's more…
There is much more that can be done to create custom messages within your theme, for users
of different roles. Visit http://codex.wordpress.org/Function_Reference/get_
currentuserinfo to learn more about user roles and levels.

Easier ways to use user roles in WordPress 3.0
Currently, users of WordPress 2.9 or earlier have no easy way to leverage user roles in the
way they do other user data. That will be changing somewhat in WordPress 3.0, when roles
are supposed to act as containers of permissions. Check out the WordPress forums
(http://wordpress.org/support/) to learn more.

Packaging your theme for distribution
In this recipe, we will go over the steps necessary to package your theme for distribution. Even
if you never share your theme with the public, following these steps can help you organize your
theme better, and test for any potential compatibility issues with plugins or other code.

How to do it…
First, you need to prepare any plug-ins or custom functions that you have created, so that any
tags or callbacks that were inserted into template files will not "break" or corrupt the theme.
To do this, the function function_exists() can be used to check for a plug-in or function,
and detect if it exists or is active. If function_exists() returns a value of false or not
found, the plugin tag or function callback will be ignored and the page will continue loading.
For example, earlier in this chapter we used the function check for a user message function.
The code used was:

<?php if (function_exists ('get_my_user_message'))
 echo get_my_user_message(); ?>

The previous example function uses get_my_user_message() to print out information to
the screen. Check all of your core template files, along with any other custom template files
that you have created; otherwise don't be surprised if things break!

Make sure that you include all of the core WordPress template files, like index.php,
sidebar.php, single.php, comments.php, header.php, and footer.php. Your
template folder should also contain a style.css file. Using a functions.php file to
contain loose functions (that is, those that are not plug-ins) is also preferred.

Chapter 11

241

Test your template files, including the comments functionality, for any weird layout issues.
You may want to visit the WordPress Forums, or review the basics of HTML, PHP, and CSS at
http://www.w3schools.com, for most issues.

Organize your theme structure to match the way that other themes are set up. This means
keeping your style.css file in the main theme folder, and adding any additional styles for
schemes and others to a special subfolder, for neatness. If you will have multiple files of the
same type, such as .po files, then you should put them in a translations subfolder. Other
files, such as.mo files, should be left in the main theme folder, where WordPress expects to
find them.

Don't rename default WordPress style definitions just to be different. Keep any main structural
styles such as #header and #content named the same. Be aware that many people use
.primary and .secondary to denote the main sidebar and secondary sidebar, if you are
styling more than one. It is a best practice to add any new classes that you create below the
standard WordPress classes in your style.css sheet, and use /**/ to comment liberally
about the purpose of your styles.

Comment, comment, and comment some more. Remember: your more adventurous users
will be reading your code. They may be looking to do something similar, or may just want to
understand what you were thinking.

Test, test, test, and then test your theme some more, using various test blogs, different
plug-ins, when the theme is active and inactive, and in other instances. You cannot test your
theme enough.

Double-check that you have documented any custom tweaks, tips, plug-ins, or other things
that the user must know, in a readme file.

Put all of your theme files, including a readme text file with information and description, in a
ZIP file for easy downloading. If possible, provide two or more file compression types, such as
RAR, ZIP, GZIP, and so on, in order to maximize user choices.

There's more…
Releasing a theme for public use is not for the faint of heart. Read on for more information
about letting your theme go public.

Is your theme really ready for public release?
Packaging your theme is one thing, but exposing your efforts to public view and criticism
is another. Are you ready for the requests for support, e-mails about grammatical errors,
and complaints about things you never even considered before? If so, then you may have
the courage to release your theme to the public. Visit http://codex.wordpress.org/
Designing_Themes_for_Public_Release for more ways to prepare your little theme for
the great big WordPress community.

Advanced WordPress Themes

242

Uploading your theme to the WordPress.org
theme repository

This recipe covers uploading your theme to WordPress.org, and promoting your theme on the
codex and the WordPress.org forum.

Getting started
You will need to have tested, validated, and packaged your theme for distribution. Learn more
about packaging your theme in the recipe Packaging your theme for distribution.

How to do it…
Create a page on your site by logging in to your WordPress control panel and selecting Pages
and then Add New on the control panel menu. Using the screenshot shown below, follow
along with the next step in order to create a page for your theme:

Chapter 11

243

Name your page descriptively, such as Download Awesome Theme in the page title field.
Use the main content area field to describe your theme, and include the following: demo or
screenshot of various page views (capture screenshots using Ctrl + F5 on the PC or Cmd
+ Shift + 4 on a Mac), and link to a downloadable ZIP file. (Don't forget—the easiest way to
show off multiple screenshots is to use the Gallery feature of the WordPress Media Library to
insert a gallery into your page). The new page should now look like the example shown in the
following screenshot:

Go to the Free Themes Directory (http://wordpress.org/extend/themes/upload/)
and log in (register if you haven't done so; it is quick and easy). Under Add Your Theme To
The Directory, click the Browse button to select the ZIP file of your packaged theme from
your computer. Click on the Upload button to upload your theme. It will be reviewed and
then posted on the Free Themes Directory if the review team is satisfied with the quality
of the theme.

Post a note about your new theme on the WordPress Forum, under Themes and Templates
(http://wordpress.org/support/forum/5), describing the theme. The more
descriptive keywords you use, the more likely people's search for themes will turn up
your theme. Include links to your theme and the downloadable ZIP file.

Visit the WordPress theme repository at http://www.wordpress.org/extend/themes to
view other themes, and then log in to upload your own.

Advanced WordPress Themes

244

How it works…
Previously, everyone uploaded their WordPress themes to a central repository on WordPress.
org. Times have changed, and as themes have grown more complex, so has sharing your
theme. Even though you can still go to http://www.wordpress.org/extend/themes
to find themes, your theme may not make it to that list until after it has been through a
gauntlet of testing and commentary by other WordPress users. Test, test, and test your
theme, and then share it with others on the WordPress forums, making edits when you
receive constructive criticism and suggestions. In the end, you will benefit by having a
more stable theme to offer.

12
Layout

In this chapter, we will cover:

Adding a skip navigation link for usability

Centering your site's layout in the browser window

Setting up a randomly-rotating header image

Making theme components drag-and-drop

Creating a global toolbar for your theme

Creating tabbed navigation for your theme

Introduction
The basis of any good WordPress theme is a solid layout. The layout that you choose will be
used throughout the site. So picking one suitable for your particular purposes is important.

It is also important to recognize the standard conventions of a blog layout. You want to make
sure that visitors know how to navigate your site and can recognize where different elements,
such as search forms and main content, should be. Following long-standing conventions
regarding blog design makes this a snap.

Adding a skip navigation link for usability
In general, most blog themes have four main sections:

Header with site title and logo
Navigation links and other navigation aids, such as search forms
Main content; the main focus of the page
Site footer, containing extra site information

Layout

24�

If a sighted user navigates to a page, they'll often be able to immediately locate and start
consuming the content. They can click on links, scroll though articles, and find the information
that they want, quickly and easily.

However, for non-sighted users, or other users who make use of browsing aids (such as screen
readers), a large navigation section with scores of links can have a highly detrimental effect.
These users can't get to your content and read about your services, products, or opinions.
To solve this problem, you'll rely on a simple technique that has been around for quite a
while—the skip navigation link.

Getting started
You should have created the basic structure of your WordPress theme before starting this
recipe. You need to have the basic skeleton of your site implemented in HTML, so that you
know where your main content lives and can effectively link to it.

How to do it...
There are two parts to the skip navigation link technique. The first part is the link itself. This
link should be the first link within the <body> tag of your theme. It should go after your page's
main heading or company name, but before anything else. To implement this, open up the
file containing your theme's header (this should be the header.php file), and add something
similar to the following code:

<div id="header">
 <h1><?php bloginfo('name'); ?></h1>
 Skip Navigation
</div>

Styling Skip Navigation
You'll probably want to style your skip navigation links very discreetly. Try to
incorporate the link into your design and use the :focus and :active
CSS modifiers to style it for tabbed navigation. Examples of styling skip
navigation links for usability and accessibility can be found at http://www.
section508.gov/SSA_BestPractices/lessons/css/skipnav.htm.

Chapter 12

24�

The second part of this technique is the target for the skip link. When a user selects the skip
link, the target receives the browser's focus, and the user should be able to immediately read
and peruse your content. To create the appropriate target for your skip navigation link, find
the HTML element in your theme files that contains the majority of your article content. Most
designers like to name their content containers with an ID of content, so you might want to
start looking for something like that. If you can't find an element with an appropriate ID, you'll
have to add one. You are looking to have something like this:

<div id="content">
 <!--content goes here --></div> <!--end content -->

Save your changes, and update the files on your server. As soon as you have implemented the
two parts of this technique, you should have a functional skip navigation link. If you styled the
skip navigation link such that it is visible, you'll probably have something that looks like the
example shown in the following screenshot:

When users who rely on screen readers or prefer to use their keyboard for navigation visit your
page, they'll be able to instantly skip your navigation links and reach your content.

Layout

248

Try it out by visiting your page and clicking on the link. You'll be able to scroll down to your
content immediately. The following screenshot shows our example theme after clicking on
the Skip Navigation link:

How it works...
When a hyperlink (<a>) tag contains a string consisting of a hash sign (#) and then some
other characters, the browser looks within the page for a series of things, in order. First, it
looks for any element in the page that has its id attribute equal to the characters after the
hash sign. If an element is found, then the browser scrolls the viewable area so that the top
of the viewable area coincides with the found element.

If no element with the id attribute equal to the characters after the hash sign is found, then
the browser looks for an element with its name attribute equal to the characters after the
hash sign. If it finds one, the browser scrolls to that element.

Chapter 12

24�

In this example, you're using a hyperlink tag to link to your main content so that non-sighted or
other users relying on alternative navigation technologies can quickly and easily bypass your
navigation menu and reach the element containing the majority of your content. You used
a container with an id attribute equal to content that matches up with the href attribute
equal to #content on your skip navigation link.

Centering your site's layout in the browser
window

One of the most popular ways to classify designs on the web is to delineate them as either
fixed-width or elastic. Designers who want maximum control over the layout of text, images,
and other site elements generally created fixed-width designs. Current trends dictate that
fixed-width designs belong in the center of the browser viewing window.

In this recipe, you'll learn how to center your design and make certain that your content is
going where you want it to.

Getting started
You should have started writing the basic skeleton HTML of your theme. You need to make
sure you have The Loop somewhere in your theme and an overall containing element that
wraps all your content: header, main content, and footer.

How to do it...
First, you need to discern what the ID of the containing element for your content is. Take the
following header code, which is usually contained within the header.php file, as a starting
point, as it is fairly typical of a simple WordPress theme. The <div id="wrap"> tag is the
key to using CSS to center the theme. If your file does not contain a site layout wrapping div
tag above the header tag, then you will need to add one to your theme. In this example, the
div is named wrap, but you may also see the same type of div named wrapper or rap or
container, depending on the theme:

<body <?php body_class(); ?>
 <div id="wrap">
 <?php /*note: the wrapper div may be called "rap",
 "wrapper","wrap", or "container" in your theme. The book example
 uses the standard "wrap". */ ?>
 <h1 id="header">
 <a href="<?php bloginfo('url'); ?>/">
 <?php bloginfo('name'); ?>

 </h1>

Layout

250

Now, we take a look at the footer.php file and add a closing </div> tag for the wrap div:

<div id="footer">

 <p class="credit">
 <!--<?php echo get_num_queries(); ?> queries. <?php
 timer_stop(1); ?> seconds. -->
 <cite><?php echo sprintf(__("Powered by

 WordPress"), __("Powered by WordPress,
 state-of-the-art semantic personal publishing platform."));
 ?>
 </cite></p>

<?php wp_footer(); ?></div>
<!--- close footer --->
</div><!-- close wrap (wrapper div) -->
</body>
</html>

In this code sample, you can see that all of the content for the theme is wrapped in an
element with an id attribute of wrap. Seeing this, we can start to correctly style the theme
to center the theme in the browser.

Next we need to style the wrap div in the style.css file. We need to decide on a fixed
width, and for simplicity's sake, you'll use 860 pixels for this example. Open up your
theme's stylesheet (style.css), and enter the following styles:

/* note: WordPress Classic calls it "rap" but many themes refer to
it as "wrapper" or "wrap". It is ok to change it here as long as you
change it in your other files. */
#wrap{background-color:#ebe8b1;/* if you are not sure what is actually
wrapped, set the background color to something easy to see and
different from the rest of the theme colors */
 border:1px solid #666666;
 margin:0 auto;
 width:860px;
}

Chapter 12

251

After you enter the styles in the stylesheet, you should upload your theme and display your site
in a browser and you'll see a bordered fixed-width design similar to the following screenshot:

How it works...
In this example, you've created a div element with an id attribute of wrap and explicitly set
the width to 860 pixels. Then, you've declared the margin property for the element and
added some other styles so that you could see the centering in action.

The centering works because of the CSS box model that is defined by the W3C and followed
by all major browsers. A discussion of the box model is beyond the scope of this book, but the
basics of this technique are as follows:

Set an explicit width so that the browser knows exactly how much space the element
will occupy

Set the top and bottom margins of the wrap element to 0

Set the left and right margins of the wrap element to auto, and the browser calculates
the correct margin to allow the element to remain centered

Layout

252

The browser applies the margins it previously calculated

The element is centered

Please note that this technique will work with all block-level elements that have a specified
width. For example, you can center images or blockquotes in posts, or center widgets within
your sidebar.

Setting up a randomly-rotating header image
To add some real design pizzazz to your WordPress theme, every time the page loads, you
can randomly display different photos or other images in the header section of your theme.
You can use this as a technique to generate interest for your visitors, or just as a fun personal
experiment. With the method in this recipe, you'll be up and running in no time.

Getting started
You should have a basic theme skeleton created, in order to take advantage of this recipe.
In addition, you should also have created a variety of possible header background images,
preferably each of the same size.

How to do it...
For the purpose of this recipe, you'll be working under the assumption that you want to
randomly rotate the image displayed in the header section of your theme each time the
page reloads. The blog title will sit on top of the random image.

First, you need to place the images in the correct place so that the code we're going to write
can get to them.

Open the directory that your theme lives in, and create a new subdirectory called
header-images. Inside this directory, place all of the images you want to rotate through your
header. The following are some examples of images you could use for an application like this:

Chapter 12

253

After gathering the images, you need to write the function that will return the appropriate
image URL. Open or create your theme's functions.php file, and insert the following code
into this file:

function wptc_get_header_image() {
 $headers_path = TEMPLATEPATH . '/header-images/';
 $headers = array();
 if(file_exists($headers_path)&&is_dir($headers_path)) {
 $dir = opendir($headers_path);
 $stylesheet_dir = get_bloginfo('stylesheet_directory');
 while(false !== ($file = readdir($dir))) {
 if('.' == $file || '..' == $file) {
 continue;
 }
 $image_info = getimagesize($headers_path.$file);
 if(false !== $image_info) {
 $headers[]="$stylesheet_dir/header-images/$file";
 }
 }
 }
 if(!empty($headers)) {
 $rand = array_rand($headers);
 return $headers[$rand];
 } else {
 return false;
 }
}

This function returns the URL to one of the images in the header-images directory that you
created. Alternatively, if there are no images in the header-images directory, the function
returns false.

Layout

254

Next, after creating this function, you're ready to write the appropriate HTML and CSS. You
should know ahead of time what size your images are, so this part is pretty straightforward.
First, write the header HTML (this may belong in either the index.php file or the
header.php file):

<?php
$header_image = wptc_get_header_image();
if($header_image) {
 $style = "background-image:url('{$header_image}');";
}
?>
<div id="wrap">
 <div id="header" style="<?php echo $style; ?>">
 <h1><?php bloginfo('name'); ?></h1>
 </div>
</div>

Then follow up with the appropriate CSS in the style.css file:

.wrap {
 margin: 0 auto;
 width: 960px;
}

#header {
 background-repeat: no-repeat;
 color: #000000;
 text-align: center;
 height: 120px;
 line-height: 120px;
 width: 960px;
}

In this code sample, you can see that you first attempt to retrieve a random image from the
header-images directory, using the new function that you wrote, you then assign a style
declaration to the $style variable. When you create the header element, you assign an
inline style with the random image as the background image. In addition to the inline style,
the header element has some styles applied that color the text contained within and center it,
both vertically and horizontally, to increase the aesthetic appeal.

Chapter 12

255

After you do all of this, you get a nice random header. The following screenshots show a
random header image:

Layout

25�

How it works...
The most important part of this recipe is the random image determination function. You make
the function available throughout your theme by creating it in the functions.php file that
WordPress loads as part of its startup process.

First, the wptc_get_header_image function checks to make sure that the appropriate
directory exists in your theme and is available for reading. After these conditions are verified,
PHP opens the header-images directory and iterates over each file in the directory. The
filenames . and .. are excluded because they have special meanings in the context of the file
system and do not need to be considered in this case. Every other filename in the directory is
verified to be an image, and if it is, it's added to an array of header image possibilities.

After the array of possible image URLs is complete, the function verifies that at least one item
is present in the array. If the array is not empty, a random key is retrieved from the array using
array_rand, and the array item for that key is returned. If the array does not have any items
in it, then the false literal is returned.

Chapter 12

25�

On the front-end, directly above the markup for the header, you call wptc_get_header_
image to get a random URL for an image. If an image URL is returned, you populate the value
of the $style variable with the appropriate background-image declaration. Otherwise, the
$style variable remains undeclared.

In the declaration for the header div, you add the contents of the $style variable as an
inline style, in order to make the background image of the header change at render time.
When the page is displayed, the image is fetched and placed in the background of the
header div, and the header text (in this case the blog's name) renders on top of the image.

Making theme components drag-and-drop
The best websites provide means for their users to shape a custom experience, allowing them
to interact with site content and components in the way that they want to. In this recipe, you'll
learn how to create a drag-and-drop interface for site components. You'll let users order your
content in the way that they want to experience it, letting each individual user decide what is
most important.

Getting started
To start, you should have a basic theme skeleton created with at least a style.css file, and
an index.php file. For this recipe, you'll create a custom page template to demonstrate the
technique, so you should have some knowledge of page templates.

How to do it...
The first component of the drag-and-drop interface you're going to create is the custom page
template. Create a new file in your theme's directory and name it category-overview.php.
This template will display the six most used categories with up to five posts for each. It will let
the visitor easily sort the categories they want to view by dragging the category name. Open
the category-overview.php file, and insert the following code:

<?php
/*
Template Name: Category Overview
*/
?>
 <?php get_header(); ?>

 <body <?php body_class('wptc-theme'); ?>>
 <div id="wrap">
 <div id="content">
 <?php
 $categories = get_categories(

Layout

258

 array(
 'number'=>6,
 'hide_empty'=>false,
 'orderby'=>'count',
 'order'=>'DESC'
)
);
 foreach($categories as $category) {
 $category_posts = new WP_Query(
 array(
 'cat'=>$category->term_id,
 'posts_per_page'=>5
)
);
 if($category_posts->have_posts()) {
 ?>
 <div
 class="piece"
 id="user_cat_<?php echo $category->term_id; ?>"
 >
 <h2>
 <?php echo esc_html($category->name); ?>
 </h2>

 <?php
 while($category_posts->have_posts()) {
 $category_posts->the_post();
 ?>

 <a
 href="<?php the_permalink(); ?>"
 title="<?php the_title(); ?>">
 <?php the_title(); ?>

 <?php
 }
 ?>

 </div>
 <?php
 }
 }
 ?>

Chapter 12

25�

 </div>
 </div>
 </body>
</html>

After you've inserted this code, save the file and go to your WordPress administrative panel.
Create a new page, and change the Template to Category Overview. If you need more
information on page templates and how to activate them, see the recipe Creating a simple
page template in Chapter 7.

Next, you need to create the CSS to properly display each category and its posts. Currently,
unstyled, your category items should look something like the example shown in the
following screenshot:

Layout

2�0

Open up your theme's stylesheet, style.css, and insert the following styles:

#wrap {
 margin: 0 auto;
 width: 960px;
}

#content {
 width: 100%;
}

#content .piece {
 border: 5px solid #666666;
 float: left;
 height: 290px;
 margin: 5px;
 overflow: hidden;
 padding: 5px;
 width: 290px;
}

#content .piece h2 {
 text-align: center;
 cursor: move;
}

#content .piece.ui-sortable-helper {
 border: 2px dashed #ff0000;
}

#content .piece.ui-sortable-placeholder {
 background: #dddddd;
 border-color: #aaaaaa;
}

#content .clear {
 clear: both;
 height: 0;
 width: 0;
}

Chapter 12

2�1

Now, reload your category overview page, and view it in your browser. It should look something
like the example shown in the following screenshot:

Now that you've got your basic styles set up, it is time to write the JavaScript that will enable
the drag-and-drop functionality that you're looking for. Create a new sub-directory in your
theme's directory and name it js. Inside this new directory, create a file named scripts.js,
and insert the following JavaScript code:

jQuery(document).ready(function($) {
 $('#content').sortable({
 items:'div.piece',
 handle:'h2',
 placeholder:'piece ui-sortable-placeholder'
 });
});

Layout

2�2

This script is quite simple, but you should recognize a few things. First, this snippet uses the
jQuery and jQuery UI libraries, so they are dependencies that we will have to take into account
shortly. Second, you're targeting the element with id equal to content and telling the browser
that you want to make the items inside sortable. Finally, you're passing a few options that
make the sorting behave in a certain way:

Only div elements with the piece class are sortable

To drag an item, the user needs to grab the h2 element and drag

The placeholder that the library creates has the classes piece and
ui-sortable-placeholder

Now that you have written the appropriate JavaScript, you just need to get WordPress to
include the script in the page with the proper dependencies. First, ensure that your theme's
head element has a wp_head function call within it. Then, open or create your theme's
functions.php file, and insert the following code:

add_action('init','wptc_enqueue_site_scripts');
function wptc_enqueue_site_scripts() {
 if(!is_admin()) {
 wp_enqueue_script(
 'wptc-scripts',
 get_bloginfo('stylesheet_directory').'/js/scripts.js',
 array('jquery','jquery-ui-sortable')
);
 }
}

This snippet tells WordPress to print a link to your custom JavaScript file in the head of the
theme, and to make sure that the jQuery and jQuery UI Sortable libraries are loaded first.

Chapter 12

2�3

After saving the functions.php file, reload your category overview page, and then click and
drag on a category title. You should see something like the following screenshot:

You can see in the preceding screenshot that the placeholder is styled as a simple gray box
with a light gray border, and the element you're currently dragging has a red dashed border so
that you can easily see where you are with the drag.

How it works...
There are a lot of elements at play in this recipe, so let's go through them one by one. First,
you created the markup necessary to display your top categories in a page template. You
called the get_categories function with specific parameters, in order to retrieve the six
most used categories and then created a custom loop for each category to list the latest five
posts from that category.

The markup for each category box is simple, consisting of a containing div with a class of
piece, a second-level heading for the category name, and an unordered list of links to posts
from that category.

Layout

2�4

After creating the markup, you opened up your main stylesheet, and made the category
sections look nice. The styles that you entered created a simple grid of 290 by 290 pixel
boxes, with a centered header for the category name and an unstyled list. You also created
some styles, that were specific to the dragging capabilities that you will add later.

Then, after checking out the category grid that you styled, it was time to create the actual
dragging functionality. You created a custom JavaScript file that takes advantage of the jQuery
and jQuery UI libraries. Inside of the JavaScript file, you wrote a single statement specifying
that the items with a class of piece inside the div with an id of content should be
sortable. The sortable items' handle is the h2 element contained within the item, which
in this case, is the category name.

Learn more about jQuery UI
The jQuery UI library is very powerful and can help you to create some
stunning effects. To learn more, consult the official jQuery UI documentation
at http://jqueryui.com/demos/.

Finally, you enqueued the custom JavaScript file that you wrote, and specified that it depended
on the jQuery and jQuery UI Sortable libraries. Loading up the category overview page, you can
now grab any category name and drag the box around, observing the styles that you entered
earlier coming into play.

There's more...
Putting some draggable items on your site is great, but so far it doesn't really benefit your
users at all. Let's change that by giving them the ability to save the order of the boxes after
they sort them.

Saving the category order
There are only a few things that you need to add to your current set-up to allow a user to save
a custom order for their categories. First, open up your functions.php file and add the
following code to it:

/* here is the code for the drag and drop of category boxes */
add_action('init','wptc_enqueue_site_scripts');
function wptc_enqueue_site_scripts() {
 if(!is_admin()) {
 wp_enqueue_script(
 'wptc-scripts',
 get_bloginfo('stylesheet_directory').'/js/scripts.js',
 array('jquery','jquery-ui-sortable')
);
 }
}

Chapter 12

2�5

add_action('parse_request','wptc_save_user_cat_order');
function wptc_save_user_cat_order($wp) {
 if(isset($_POST['save-user-cat-order'])) {
 $args = wp_parse_args(stripslashes($_POST['user-cat-order']));
 $cats = (array)$args['user_cat'];
 setcookie('user-cat-
 order',maybe_serialize($cats),time()+3600*24*31);
 exit();
 }
}

global $user_cat_order;
$user_cat_order = unserialize(stripslashes($_COOKIE['user-cat-
order']));
$user_cat_order = is_array($user_cat_order) ? $user_cat_order : false;

function wptc_sort_categories($categories) {
 global $user_cat_order,$current_categories;
 if(!$user_cat_order) {
 $current_categories = array();
 foreach($categories as $category) {
 $current_categories[] = $category->term_id;
 }
 $user_cat_order = $current_categories;
 }
 usort($categories,'wptc_order_category_overview');
 return $categories;
}

function wptc_order_category_overview($catA, $catB) {
 global $user_cat_order,$current_categories;
 if($user_cat_order) {
 $posA = array_search($catA->term_id,$user_cat_order);
 if(false === $posA) {
 $posA = -1;
 }

 $posB = array_search($catB->term_id,$user_cat_order);
 if(false === $posB) {
 $posB = -1;
 }

 return $posA - $posB;
 } else {
 return -1;
 }
}

Layout

2��

This code intercepts the save request that you'll make use of when a user finishes sorting the
categories. Also, you've added a custom sorting function that makes sure that the categories
are in the correct order before rendering them to the browser.

Next, open up your JavaScript file scripts.js, and change your code to the following. This
code adds an event handler that fires when your user finishes sorting the categories on the
front-end. The handler fires off a request when the user finishes sorting. The request contains
the necessary variables to save the categories being sorted. Particular areas of interest have
been marked in bold:

jQuery(document).ready(function($) {
 $('#content').sortable({
 stop:wptc_user_cat_order,

 items:'div.piece',
 handle:'h2',
 placeholder:'piece ui-sortable-placeholder'
 });

 function wptc_user_cat_order(event,ui) {

 jQuery.post(

 '/',

 {

 'save-user-cat-order':1,

 'user-cat-order':$(this).sortable('serialize')

 }

);

 }

});

To test this functionality, refresh the category overview page that you've been working on.
You'll notice that the categories are in the order that they were before. We took special care
to ensure that if the user hasn't sorted the categories previously, they'll be rendered in the
order determined by number of posts in a category. Next, sort the categories by dragging and
dropping them into the position that you desire. Refresh the page, and the category boxes
should remain in their custom-sorted positions.

See also
Creating a simple page template

Chapter 12

2��

Creating a global toolbar for your theme
Having a great site is one thing, but building a community is quite another. To really push your
site's community efforts, it can pay to put the most desirable actions right at the top of your
site's theme. This is what WordPress.com does, and in this recipe, is what you'll do.

Getting started
You need to have a basic theme constructed and, for the best experience, you need to have
separated your header elements out into header.php.

How to do it...
First, you need to decide what components you wish to put into your site's toolbar. For this
recipe, we'll follow the lead of WordPress.com. The toolbar on that site allows users to perform
the following actions:

Access the currently logged-in user's profile

Log in and log out

Search the site

Access a random post

The WordPress.com toolbar also allows for a variety of other actions, but these won't be
discussed in this recipe.

Next, you need to create the HTML for the toolbar. To keep the toolbar markup as clear as
possible, you'll create a new file and then include it where necessary. Inside your theme's
directory, create a subdirectory called components. Inside this new subdirectory create a file
called toolbar.php.

Insert the following markup into the new toolbar.php file:

<ul id="toolbar">
 <?php if(is_user_logged_in()) { ?>

 <a href="<?php echo esc_url(admin_url('profile.php')); ?>">
 <?php _e('My Profile'); ?>

 <a href="<?php echo esc_url(wp_logout_url(site_url('/'))); ?>">
 <?php _e('Log Out'); ?>

Layout

2�8

 <?php } else { ?>

 <form
 name="loginform"
 id="loginform"
 action="<?php echo site_url('wp-login.php', 'login_post'); ?>"
 method="post">
 <label><?php _e('Username'); ?>
 <input type="text" name="log"
 id="user_login" class="input" />

 </label>

 <label><?php _e('Password') ?>
 <input type="password" name="pwd"
 id="user_pass" class="input" />
 </label>

 <input type="submit" name="wp-submit"
 id="wp-submit" class="button-primary"
 value="<?php esc_attr_e('Log In'); ?>" />

 <label>
 <input name="rememberme" type="checkbox"
 id="rememberme" value="forever" />
 <?php esc_attr_e('Remember Me'); ?>
 </label>

 <input type="hidden" name="redirect_to"
 value="<?php echo esc_attr(site_url('/')); ?>" />
 <input type="hidden" name="testcookie" value="1" />
 </form>

 <?php } ?>

Chapter 12

2��

 <?php
 $random_posts = get_posts(array('orderby'=>'rand'));
 if(!empty($posts)) {
 $random_post = array_shift($random_posts);
 ?>

 <a href="<?php echo esc_url(get_permalink($random_post->ID)); ?>">
 <?php _e('Random Post'); ?>

 <?php } ?>

 <li class="right">
 <form method="get">
 <input type="text" name="s" id="s" />
 <input type="submit" name="search"
 id="search-submit" value="<?php _e('Search'); ?>" />
 </form>

The markup does a few things. First, it checks to see if a user is logged in. If they are, then
a link to the logged-in user's account profile page, and a link for logging out, are rendered.
Otherwise, a login form is output to the browser. Next, the toolbar retrieves a random post that
has been published and links to it. Finally, a search form is placed in the toolbar, allowing the
user to search the blog.

After you've constructed your toolbar, it is time to put it in the appropriate place. Open up
header.php file (or the index.php file, depending on your template structure) and insert
the following code directly after the opening body tag:

<?php include(TEMPLATEPATH . '/components/toolbar.php'); ?>

This line references the toolbar file, and makes PHP include it in line with the rest of your
template's content.

Layout

2�0

Open your site in a browser window (making sure that you are not logged in) and take a look at
the results. If you've done everything correctly up to this point, you're likely to have something
that looks like the following, if you're logged out:

Chapter 12

2�1

Now log in to your site to test the view when users are logged in. If you're logged in, your site
should look like the following screenshot:

Now that the markup is complete, it's time to style the toolbar. Open up your theme's
stylesheet, style.css file, and insert the following styles. These styles will fix the toolbar to
the top of the browser window, and ensure that, as the user scrolls down, the toolbar always
remains in place. In addition, the styles define text, background colors and appropriate margin
and padding for all elements:

/*note: you may have to increase the padding (top) of the header div
as shown below:*/

#header {
 background: #90a090;
 border-bottom: 3px double #aba;
 border-left: 1px solid #9a9;
 border-right: 1px solid #565;
 border-top: 1px solid #9a9;

Layout

2�2

 font: italic normal 230% 'Times New Roman', Times, serif;
 letter-spacing: 0.2em;
 margin: 0;
 padding: 50px 10px 15px 60px;
}
/* menu top changed from 0 to 120px;*/
#menu {
 background: #fff;
 border-left: 1px dotted #ccc;
 border-top: 3px solid #e0e6e0;
 padding: 20px 0 10px 30px;
 position: absolute;
 right: 2px;
 top: 120px;
 width: 11em;
}
/* note: you may have to adjust the placement of the top of your
sidebar /side menu since this toolbar runs across the top of the
theme. */
#toolbar a {
 color: #ffffff;
 display: block;
 text-decoration: none;
 padding: 4px 6px;
}

#toolbar a:hover {
 background: #666666;
}

#toolbar form {
 padding: 0 5px;
}

#toolbar li {
 display: block;
 float: left;

 margin: 0;
 padding: 0;
}

#toolbar .right {
 float: right;

Chapter 12

2�3

}

#toolbar .hidden {
 display: none;
}

Refresh your browser, and you should see something similar to the following screenshot,
assuming that you are logged out:

Layout

2�4

When you're logged in, your display should resemble the following screenshot:

How it works...
The concepts here are simple, but we'll go through them one by one. First, you created a
separate PHP file that contains the entire toolbar component. In this case, you made the
toolbar relevant both to site functions (logging in and out) and to site content (random post
and search toolbar).

To do so, you took advantage of a few WordPress functions to get the necessary conditions
and content. First, you used is_user_logged_in to determine whether to show the log-in
form, or to give the user the option to modify their profile, or log out. You used wp_logout_
url to retrieve the appropriate log-out URL for the site in question, rather than manually
constructing it.

You also created two forms. The first was a log-in form mimicking the one shown at your site's
wp-login.php page. The second was a search form containing a single input, as required by
WordPress.

Chapter 12

2�5

Finally, you included this component into your header.php file so that it shows across every
page of your site. Once it was included appropriately, you styled it by using some good looking
colors and layout.

Creating tabbed navigation for your theme
One of the easiest visual clues that you can offer your users is that of active and inactive tabs.
This lets them know exactly where they are on your site at any moment. In this recipe, you'll
learn the markup and styles you need to bring an easy tabbed interface to life.

Getting started
You need to have a basic theme constructed, and need to have separated your main
navigation items into their own pages in the WordPress back-end.

How to do it...
For this recipe, we're going to concern ourselves with a simple, one-column site with
horizontal, tabbed navigation. While this technique can be applied to a variety of situations,
the horizontal tabs are definitely the easiest. Your index.php file should look something like
the following:

<?php
get_header();
?>
<div id="content">
 <?php
 if(have_posts()) {
 while(have_posts()) { the_post(); ?>
 <div <?php post_class('post-container'); ?>>
 <h2 <?php post_class('post-title'); ?>>
 <?php the_title(); ?>
 </h2>
 <div <?php post_class('post-excerpt'); ?>>
 <?php the_excerpt(); ?>
 </div>
 <div <?php post_class('post-controls'); ?>>
 <a href="<?php comments_link(); ?>">
 <?php
 comments_number(
 __('No Comments'),
 __('1 Comment'),
 __('% Comments')

Layout

2��

);
 ?>

 <?php if(is_user_logged_in()) { ?>
 <?php edit_post_link('Edit'); ?>
 <?php } ?>
 </div>
 </div>
 <?php } } ?>
</div>
<?php
get_footer();
?>

Next, make sure that your header.php file resembles the following:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" <?php language_
attributes(); ?>>

<head profile="http://gmpg.org/xfn/11">
 <meta http-equiv="Content-Type" content="<?php
 bloginfo('html_type'); ?>; charset=<?php bloginfo('charset'); ?>"
 />

 <title> <?php bloginfo('name');
 wp_title('—', true, ''); ?></title>

 <style type="text/css" media="screen">
 @import url(<?php bloginfo('stylesheet_url'); ?>);
 </style>

 <?php wp_head(); ?>
</head>

<body <?php body_class('classic'); ?>>

<div id="wrap">
<div id="header">
<h1><?php bloginfo('name'); ?></h1>
<?php wp_page_menu(array('depth'=>1, 'show_home'=>true)); ?>
</div><!-- closing of the header div -->
<!-- end header -->

Chapter 12

2��

Open your browser to view the changes. Assuming that you haven't added any styles yet, your
theme will resemble the following screenshot:

Now to make the magic happen, and get those tabs aiding your users, you need to add some
styles. For now, you'll just get the basic tabs down. In the future, you can use variations on this
technique to make your sites' navigation beautiful. First, let's establish a solid container that
wraps all of the content. Luckily, you already have an element to style that wraps everything.
Add the following code to your theme's stylesheet, style.css:

.wrap {
 margin: 0 auto;
 width: 960px;
}

Layout

2�8

Now let's separate the content by setting up a border around it. Here, we'll use a
simple black border that surrounds the entire content div. Insert the following code
into your stylesheet:

#content {
 border: 1px solid #000000;
 padding: 10px;
 clear: left;
}

If you've got everything done correctly, you should have something that resembles the
following screenshot, which shows a standard vertical list of links:

Chapter 12

2��

Now you can style the header navigation links to look like tabs. For the purposes of this recipe,
the active tab will be shown by removing the border between the tab and the main content
area. Inactive tabs will be gray, but will brighten to a slight off-white color on hover. For now,
we just need to get the items in the correct positions, though. We'll start by styling the list and
list elements. Insert the following code into your stylesheet:

#header {
 float: left;
}

#header .menu {
 border: 1px solid #000000;
 border-width: 1px 0 0 1px;
 float: left;
 margin-bottom: -1px;
}

#header .menu ul, #header .menu li {
 float: left;
 list-style: none;
 list-style-type: none;
 margin: 0;
 padding: 0;
}

#header .menu li {
 border: 1px solid #000000;
 border-width: 0 1px 1px 0;
 display: block;
 font-weight: bold;
 text-align: center;
}

#header .menu li a{
 display:block;
 padding:10px;
 text-decoration:none;
 background: #dedede;
}

This code floats the list items appropriately, and makes them display along the top edge of the
content div.

Layout

280

Save your changes, and then open your browser to view the results. The result is something
like the example shown in the following screenshot, which shows the list items now in a
horizontal row, surrounded by rectangular shapes, and no list-style type (bullet or number):

All that's left to do at this point is to handle the colors and the active tab. Insert the
following code into your stylesheet:

#header .menu li a{
 background: #dedede;

#header .menu li a:hover{
 background: #efefef;
}
#header .menu li.current_page_item{
 border-bottom-color:#ffffff; /*note: you can use a different color
 here as needed */
}
#header .menu li.current_page_item a{
 background:#ffffff; /*note: you can use a different color here as
 needed */
}

Chapter 12

281

At this point, you should have some fully-styled tabs. Try them out by hovering over and
clicking on another tab. You'll see the active tab changes on page reload. The following
screenshot shows the end result when you're visiting the About page and hovering over
another tab:

How it works...
The key to this recipe is the styles applied in your theme's stylesheet. Most of the techniques
used are not worth a rehash. However, there is one important set of styles that deserves to
be highlighted.

In the markup generated when WordPress renders this template, you end up with something
that looks like the following code:

<div id="header">
 <h1>Theme Testing Platform – 5</h1>
 <div class="menu">

Layout

282

 <a href="http://5.themes.local"
 title="Home">Home

 <li class="page_item page-item-2">
 <a href="http://5.themes.local/about/"
 title="About">About

 <li class="page_item page-item-119">
 <a href="http://5.themes.local/about-2/"
 title="About">About

 </div>
 </div>
<div id="content">
<!-- Lots of stuff -->
</div>

Ordinarily, this markup would cause the menu div to sit directly on top of the content div.
If you were to apply a border to the bottom of the items in the menu div and the top of the
content div, you would get a doubled-up border.

However, you'll notice the following style declaration was created in your style.css file:

#header .menu {
 margin-bottom: -1px;
}

This declaration tells the browser to overlap the menu and content divs by moving the
menu div down 1 pixel on top of the content div. Now, the items inside the menu div that
have bottom borders don't double up with the content div; they overlap the border of the
content div.

Later on in your stylesheet, you'll notice that the current page list item is styled differently to
the rest:

#header .menu li.current_page_item {
 border-bottom-color: #ffffff;
}

This declaration tells the list item of the current page to style its bottom border with the
same color as the background of the main content area. Because this bottom border overlaps
the top border of the content div, this style effectively makes the border seem to disappear
underneath the active item.

Chapter 12

283

There's more…
Maybe you want to use images as backgrounds on your menu items, or learn about other
ways to structure your navigation in order to make your theme more unique. There are many
more resources on the web to help you out.

Many menus, many resources
Due to the flexibility of WordPress, you can use many different kinds of CSS and JavaScript
driven menus, with a dash of PHP if you like. Visit the following resources to learn more about
different types of menus and other navigation structures:

http://www.alistapart.com/topics/code/css/

http://www.w3schools.com/css/css_navbar.asp

http://codex.wordpress.org/Dynamic_Menu_Highlighting

http://www.alistapart.com/topics/code/css/
http://www.alistapart.com/topics/code/css/
http://www.w3schools.com/css/css_navbar.asp
http://www.w3schools.com/css/css_navbar.asp

Index
Symbols
#content styles 110, 249
#featured-posts-tabs div 204
#header styles 110
#menu styles 111, 113
#sidebar styles 111
$ad_counter variable 51
$after_every variable 51
$alt_post variable 60
$cat_id variable 41
$cat_name parameter 58
$content string 73
$deps parameter 195
$handle parameter 195
$in_footer parameter 195, 196
$myquery1-> string 57
$number_words variable 66
$page variable 42
$post object 64, 167
$post variable 49, 64
$preset_widgets variable 106
$size parameter 167
$src parameter 195
$style variable 254, 257
$target_theme variable 106
$url variable 150
$user_info variable 177
$ver parameter 195
$wp_query->query array 62
$wp_query object 49
$wp_query variable 68
$wpdb object 184, 186
(document).ready(function() 211
(Machine Object) file. See .mo file
.mo file 233

.po file 233, 234

.ui-tabs-hide class 204
:active CSS modifier 246
:focus CSS modifier 246
<a> tag 37, 248
<body> tag 246
<div id= "wrap"> tag 249
<h2> tag 218
<head> element 192
 tag 31, 33, 36
<script> tag 193
 tag 72
 tag 36
[caption] shortcode 164
[gallery] shortcode 161, 230
[twitter-trends] shortcode 233
__($text) function 233, 236
__() function 233
_e($text) function 234, 236
_e() function 233
_wp_page_template 127
404.php 21

A
absolute directory path, active theme

accessing 18
absolute positioning

versus float positioning 112
Aciform category 57
active tab 279, 280
active theme

absolute directory path, accessing 18
add_action() function 218
add_shortcode() function 232
add_shortcode() tag 231

�86

add_theme_support('post_thumbnails');
function call 171

Add New Page interface 125
admin_email string 17
admin_init hook 217, 218, 225, 226
admin_menu hook 217, 218, 225, 226
ads

displaying, after third post 50, 51
after_title parameter 104
after_widget parameter 104
aligncenter class 158
alignleft class 158
alignnone class 158
alignright class 158
archive.php 21
archive links, archives page template

listing 130, 131
archives page template

archive links, listing 130, 131
categories, listing 131, 132
creating 127-129
working 129

asides
creating 120
displaying in sidebar, Miniposts plugin used

118-120
URL 120

atom_url string 17
Attributes meta box 125
author's Twitter link

displaying, custom user field added 187-189
image, displaying next to Follow link 190

author.php 21
author avatars

displaying 137-141
author data

getting, from author's ID 176
author descriptions

displaying 137-141
author ID

about 176
author data, getting from 176

author linked e-mail address
displaying 177

author name
displaying 177

authors, listing
by most recent published post 182, 183
by total number of comments, on posts

184-186
avatar_defaults filter 229
avatar_size parameter 86
avatar size, comments

changing 86

B
basic loop

creating 48, 49
before_title parameter 104
before_widget parameter 104
blog

categories, listing 32-35
latest comments, displaying 87
pages, listing 30, 31
tags, listing 35-37

bloginfo function
about 16, 193
strings 17

bloginfo function, strings
admin_email string 17
atom_url string 17
charset string 17
comments_rss2_url string 17
description string 17
html_type string 17
name string 17
pingback_url string 17
rdf_url string 17
rss_url string 17
stylesheet_directory string 17
stylesheet_url string 17
template_directory string 17
template_url string 17
url string 17
version string 17
wpurl string 17

blog name
bloginfo function 16
displaying 16

blog themes
sections 245

�87

bundled library
adding, to theme 198, 199

bundled scripts
list 199, 200

bypostauthor class 90

C
Carrington

URL 25
Cat B category 57
categories

listing, on blog 32-35
categories, archives page template

listing 131, 132
category-id.php 154
category-slug.php 154
category.php file 21, 62, 154
category_name parameter 58
category_not_in array 53
category archive page

post, displaying from category 62
category drop-down menu

creating 42, 43
Superfish package, downloading 42
Superfish script 43

category name
category page link, getting 40, 41

Category Name string 52
category page link

getting, from category name 40, 41
changeFontSize function 211
charset string 17
child_of parameter, wp_list_categories

function 132
child_of parameter, wp_list_pages function

32
child pages

used, for creating drop-downs 44, 45
child theme

about 21
activating 23
creating 21
creating, steps 22
default style, maintaining 24

comment_form() function 21

comment_form hook 26
comment form

displaying, on post 81, 82
comments

about 81
and trackbacks, separating 85, 86
avatar size, changing 86
displaying, on post 84
form, displaying on post 81, 82
getting, for particular post 88
post author's comments, highlighting 88-90
style, alternating 90, 91
threaded comments, displaying 92, 93

comments.php
about 21, 83
uses 84

comments_rss2_url string 17
comments_template function 83
conditional tags

different widgets, displaying on different
pages 114-117

URL 117
content

number of words, limiting automatically
65, 67

content div 282
CSS

multiple sidebars, positioning in theme
108-111

sidebars appearance in theme, styling
112-114

CSS box model
techniques 251, 252

current_category parameter,
wp_list_categories function 35

current_page_item class 38
current_user_can('level_1') function 239
custom field content

displaying 76, 77
custom page template, drag-and-drop

interface
creating 257-259

custom taxonomies 133
custom taxonomies, Justin Tadlock

URL 133

�88

D
date.php 21
decrease-font-size link 209
default Gravatar icon

changing 226-229
default widgets

setting, for sidebar 105-107
description string 17
div.mymessagearea{} class 238
div tag 108
do_permalink function 231
drag-and-drop interface

creating, for theme components 257-264
drop downs

creating, child pages used 44, 45
dynamic_sidebar function 105
dynamic sidebar

including, in theme 98, 99

E
echo parameter, wp_list_pages function 32
edit_post_link function 75
Edit Page interface 127
else if statement 239
else statement 239
entry-content tags 211
exclude parameter, wp_list_pages function

32

F
Featured category 61
featured content slider

creating 201-204
feed parameter, wp_list_categories function

35
fetch_feed function 151
files, WordPress

404.php 21
archive.php 21
author.php 21
category.php 21
date.php 21
home.php 20
page.php 20

search.php 21
single.php 20

Flickr
about 148
pictures, displaying from 148-150
URL 149

float positioning
versus absolute positioning 112

font-resizable opening div tag 209
font size toggle

adding 209-211
footer.php 21
foreach loop 184
format parameter, wp_tag_cloud function

136
Free Themes Directory

URL 243
function reference

URL 49
function_exists() function 240
functions.php file 52, 53, 71, 99, 106, 196,

215, 253

G
gallery-caption class 161
gallery-icon class 161
gallery-item class 161
gallery_shortcode function 161
gallery class 161
get_attachment_template function 167
get_author_meta 189
get_avatar function 79, 140, 227
get_bloginfo function

about 17
example 17
used, for retrieving information 17

get_cat_ID function 41
get_categories function 263
get_category_template function 154
get_col method 184
get_comments function 87, 88
get_comments parameters

list, URL 88
get_current_theme function 127

�89

get_custom_theme_header_color() function
218

get_custom_themes method 226
get_enclosure method 152
get_footer() function 21
get_footer tag 99, 101
get_header() function 21
get_header tag 99
get_image_tag function 158
get_items method 151
get_last_post_id_published_for_author

function 184
get_most_discussed_authors, template tag

185
get_most_discussed_authors function 186
get_my_user_message() function 238, 240
get_object_taxonomies function 136
get_option('sticky_posts') array 55
get_option function 218
get_page_by_title function 42
get_page_link function 42
get_permalink function 42
get_post_meta function 77
get_post_time function 184
get_recently_published_author_ids, template

tag 182
get_recently_published_author_ids function

184
get_results method 186
get_search_query function 40
get_sidebar() function 21
get_sidebar function 99, 101, 105
get_the_author_meta function

about 181
URL 181
values 181

get_the_ID function 146
get_userdata function 177, 178
get_usernumposts function 180
get_users_of_blog function 139, 180
get_var method 184
GetText 233
global $post variable 67
global toolbar

creating, for theme 267-275
GNU gettext localization system. See GetText

H
have_posts function 49
header.php file 21, 30, 92
home.php 20
href attribute 249
html_type string 17
human_time_diff function 184
Hybrid

URL 25

I
Ian Stewart

URL 12
id attribute 248, 249
ID parameter 104
if (!is_admin()) statement 198
if conditional 49
image

aligning, in post 156-158
related image, displaying for post 170, 171

image caption
styling 162-164

image galleries
styling 159-162

img_caption_shortcode function 164
in_category function 61, 70
inactive tab 279
include function

about 27, 101
PHP files, including 27

increase-font-size link 209
index.php file 98, 99
installation, theme

about 13
steps 13, 14

is_home() function 203
is_page function 68
is_sticky function 55
is_user_logged_in function 274

J
JavaScript files

adding, to theme 193-195
linking 192, 193

�90

jQuery
Facebook-style interactive wall, adding to

sidebar 120, 122
jQuery Cookie

downloading, URL 208
jQuery library 262
jQuery UI library 204, 262, 264
jQuery UI Sortable library 262
jQuery UI Tabs

URL 204
Justin Tadlock

post, URL 133
URL 12

K
Kubric theme 155

L
latest comments

displaying, on blog 87
limited_the_content function 66, 67
load_theme_textdomain($text) tag 237
locate_template function 154
locate_template function, strings

about 154
category-id.php 154
category-slug.php 154
category.php 154

login links
displaying 73

logout links
displaying 73

Loop
basic loop, creating 48, 49

M
media template

creating 165, 166
creating, for specific media type 167, 169

media type
media template, creating 167, 169

menu div 282
message, user role based

displaying 237-240
miniposts folder 118

Miniposts plugin
downloading, URL 118
URL 120
used, for displaying asides in sidebars

118-120
multiple dynamic sidebars

including, in theme 100-103
multiple loops

creating, in single template 56, 57
multiple sidebars

positioning in theme, with CSS 108-111
my_author_box() function 189
my_show_extra_profile_fields($user)

function 189

N
name attribute 248
name parameter 104
name string 17
navigation

adding, through newer post 74, 75
adding, through older post 74, 75
current page, highlighting 38

next_post_link function 65
next_posts_link function 65, 75
nopaging parameter 62
number_comments property 186
number parameter, wp_list_categories

function 35, 132
number parameter, wp_tag_cloud function

37, 136

O
options.php file 214
orderby parameter, wp_tag_cloud function

136
order parameter, wp_tag_cloud function 136

P
page.php file 20, 68
page links

displaying 41, 42
pages

listing, on blog 30, 31

�91

page specification
verifying 68

page template
about 124
creating 124-126
working 126, 127

parent theme 21
PHP files

including, from theme 27
PHP functions

next_post_link function 65
next_posts_link function 65
previous_post_link function 65
previous_posts_link function 65
the_category function 65
the_content function 65
the_excerpt function 65
the_ID function 65
the_tags function 65
the_title_attribute function 65
the_title function 65

pictures
displaying, from Flickr 148-150

pingback_url string 17
plugins folder 118
PO (Portable Object) file. See .po file
POEdit

URL 235
post

comment form, displaying 81, 82
comments, displaying 84
displaying from category, on category archive

page 62
edit link, displaying for 75
images, aligning 156-158
in particular category, displaying 58
in particular category, removing 52, 53
in particular category, styling 61
post date, displaying for 70
related image, displaying 170, 171
styling 59, 60
viewing, in particular category 69
with particular tag, removing 53, 54

post_content property 67
post_parent property 148
post_thumbnail() function 171
post_title property 64

post author's
avatar, displaying 78

post content
search terms, highlighting 71, 72

post title
displaying 64

previous_post_link function 65
previous_posts_link function 65, 75
Ptah Dunbar

URL 12
published authors

listing, on site 179, 180

Q
query_posts function 58, 62

R
rdf_url string 17
register_sidebar function 104
register_sidebars function 103
rewind_posts 204
rss_url string 17

S
Sandbox, WordPress theme

about 114
URL 114, 177

search-result 72
search.php 21
Search Everything plugin

URL 40
search function, WordPress theme repository

10
shortcode API

URL 231
shortcodes

URL 233
show_count parameter, wp_list_categories

function 132
sidebar

appearance in theme, styling with CSS
112-114

asides displaying, Miniposts plugin used
118-120

default content, including 104

�9�

default widgets, setting 105-107
Facebook-style interactive wall, adding with

jQuery 120-122
finding, for theme design 100
for custom theme pages 117, 118
URL 105

sidebar, parameters
about 104
after_title 104
after_widget 104
before_title 104
before_widget 104
ID 104
name 104

sidebar.php file 21, 58, 98, 99
sidebar content

text widget, using 96, 97
sidebars_widgets option 107
sidebar widgets

making toggle-able 206, 207
SimplePie_Item objects 151
SimplePie library

about 151
URL 152

SimplePie object 151
SimplePie RSS library 151
single.php 20
single template

multiple loops, creating 56, 57
site_url function 40
skip navigation link technique

about 245-247
non-sighted user 246
sighted user 246
URL 246
working 248, 249

src attribute 193
sticky-announcer div 56
sticky posts

highlighting 54
style.css file 59, 111, 113
stylesheet_directory string 17
stylesheet_url string 17
STYLESHEETPATH constant

about 18, 28
working 18

Superfish script 43
suppress_filters parameter 53, 54

T
tabbed navigation

creating, for theme 275-282
table of contents page template

creating 142-146
working 146

Table of Contents template 143
tag__not_in array 54
tag filter, WordPress theme repository

about 11
URL 11

tags
listing, on blog 35-37

taxonomy navigation template
creating 133-135
working 136

taxonomy parameter, wp_tag_cloud function
136

template
displaying, for specific category 152, 153

template_directory string 17
template_url string 17
template option 23
template tags

URL 32
TEMPLATEPATH constant 27
text-resizable class 209
text widget

using, for custom sidebar content 96, 97
the_author_meta() function 189
the_author_meta function 140
the_category function 65
the_content function 65
the_custom_theme_header_color() tag 218
the_date function 70
the_excerpt function 65
the_ID function 65
the_post function 49, 54
the_tags function 65
the_time function 71
the_title_attribute function 65
the_title function 49, 64, 65
The Loop

�9�

about 47
basic loop, creating 48, 49

theme
activating 16
activating, steps 15
bundled library, adding 198, 199
category order, saving 264-266
color schemes, selecting 219-226
creating, from scratch 18-20
creating, theme framework used 24, 25
default Gravatar icon, changing 226-229
default widgets, setting for sidebar 105-107
developers, examples 12
downloading, from third-party websites

11, 12
downloading, from WordPress theme

repository 8, 9
dynamic sidebar, including 98, 99
global toolbar, accessing permissions 267
global toolbar, creating 267-275
installing 13
installing, steps 14
JavaScript files, adding 193-195
JavaScript files, linking 192, 193
localizing 233-237
Manage Themes page 14, 20
multiple dynamic sidebars, including

100-103
multiple sidebars positioning in theme, with

CSS 108-111
options page, adding 214-218
organizing 21
packaging, for distribution 240, 241
PHP files, including from 27
post author's comments, highlighting 88-90
public release 241
rotating header image, setting up 252-257
search, adding 39, 40
shortcodes, registering 230, 231
sidebars appearance, styling with CSS

112-114
tabbed navigation, creating 275-282
theme development, URL 159
uploading, to WordPress theme repository

242-244
WordPress hooks, adding 26

theme, installing
about 13
steps 13, 14

theme components
drag-and-drop interface, creating 257-264

theme design
sidebars, finding 100

ThemeForest Marketplace
URL 13

theme framework
Carrington 25
Hybrid 25
Thematic 25
Vanilla 25
used, for creating theme 24, 25
Whiteboard 25
WPFramework 25

Themeroller
slider, theming 205, 206
URL 205

theme rotating header image, setting up 254
Thesis Theme

URL 13
third-party websites

theme, downloading from 11, 12
threaded comments

displaying 92
working 93

title_li parameter 31-33, 44
trackbacks

and comments, separating 85, 86
Twitter trends

displaying, shortcodes used 231, 233

U
unit parameter, wp_tag_cloud function 136
update_option function 218
url string 17
user_id 177
user_ID property 186

V
Vanilla

URL 25
version string 17

�9�

video posts
creating, Viper's Video QuickTags plugin used

172-174
example 174

Viper's Video QuickTags plugin
used, for creating video posts 172-174
working 174

W
while($featured_query->have_posts()

function 204
while loop 49
Whiteboard

URL 25
widget

default widgets, setting for sidebar 105-107
displaying on different pages, conditional tags

used 114-117
displaying on different pages, Widget Logic

plugin used 114-117
ID, finding 108
text widget using, for custom sidebar content

96, 97
Widget Logic plugin

different widgets, displaying on different
pages 114-117

downloading, URL 114
URL 117

Woo Themes
URL 13

WordPress
ads, displaying after third post 50, 51
archives page template, creating 127-129
author avatars, displaying 137-141
author descriptions, displaying 137-141
basic loop, creating 48, 49
benefits 16
bundled library, adding to theme 198, 199
categories, listing on blog 32-35
category drop-down menu, creating 42, 43
current page, highlighting in navigation 38
custom field content, displaying 76, 77
default Gravatar icon, changing 226-229
default widgets, setting for sidebar 105-107
dynamic sidebar, including in theme 98, 99
drop-downs creating, child pages used 44, 45

edit link, displaying for post 75
featured content slider, creating 201-204
files 20
font size toggle, adding 209-211
global toolbar, creating for theme 267-275
image attachments, using 169
image caption, styling 162-164
image galleries, styling 159-162
images, aligning in post 156-158
JavaScript files, adding to theme 193-195
JavaScript files, linking 192, 193
login links, displaying 73
logout links, displaying 73
multiple dynamic sidebars, including in theme

100-103
multiple loops, creating in single template 56,

57
multiple sidebars positioning in theme, with

CSS 108-111
navigation, adding through newer post 74, 75
navigation, adding through older post 74, 75
number of words in content, limiting

automatically 65, 67
options page, adding in theme 214-218
rotating header image, setting up 252-257
page links, displaying 41, 42
pages, listing on blog 30, 31
page specification, verifying 68
page template 124
page template, creating 124-126
PHP functions 65
post author's avatar, displaying 78
post date, displaying for post 70
post in particular category, styling 61
posts in particular category, displaying 58
posts in particular category, removing 52, 53
posts with particular tag, removing 53, 54
post title, displaying 64
post, styling 59, 60
post, viewing in particular category 69
search, adding to theme 39, 40
search terms in post content, highlighting 71,

72
shortcodes, registering for theme 230, 231
sidebars, finding for theme design 100
sidebars appearance in theme, styling with

CSS 112-114

�95

skip navigation link, adding 245-249
slider, theming with Themeroller 205, 206
sticky posts, highlighting 54
tabbed navigation, creating for theme

275-282
table of contents page template, creating

142-146
tags, listing on blog 35-37
taxonomy navigation template, creating

133-135
template tag function definitions, URL 64
template tags list, URL 65
text widget, using for custom sidebar content

96, 97
theme, localizing 233-237
The Loop 47
wp_enqueue_script function, placing in footer

area 196
wp_register_script function 197

Wordpress
theme, packaging for distribution 240, 241

WordPress.org
documentation, finding 6, 7
theme, uploading 242-244
WordPress Codex, homepage 6

WordPress 2.8
file attachments, using 169
media template, creating 165, 166
media template, creating for specific media

type 167, 169
WordPress 3.0

user role 240
WordPress Codex

attachment functions, URL 167
colour scheme, URL 114
design and layouts, URL 112
gallery shortcode, URL 162
image and file attachments, URL 169
WordPress Codexabout 7
WordPress Codexget_userdata, URL 178
WordPress Codexhomepage, URL 6
wp_enqueue_script function, URL 197

WordPress Forum
URL 243

WordPress hooks
adding, to themes 26
comment_form 26

wp_footer 26
swp_head 26

WordPress site
adapting for mobile content view, WPtouch

theme used 174
layout, centering in browser window 249-252
published authors, listing 179, 180

WordPress theme
downloading, from third-party websites

11, 12
Sandbox 114

WordPress theme repository
menus, URL 283
resources, URL 283
Thematic theme, URL 100
theme, uploading 242-244
theme development, URL 159
Viper's Video QuickTags plugin, URL 172
homepage, URL 8
search function 10
tag filter, URL 11
Thematic theme, URL 124
themes, downloading from 8
working 9
wptouch theme, URL 174

WordPress theme translator
URL 237

wp-caption-text class 164, 165
wp-caption class 165
wp_enqueue_script function

about 195, 211
placing, in footer area 196
URL 197

wp_enqueue_script function, parameters
$deps 195
$handle 195
$in_footer 195
$src 195
$ver 195

wp_enqueue_style function 226
wp_footer hook 26
wp_get_archive function, parameters

list, URL 131
wp_get_archives function

about 130
benefits 129

�96

wp_get_archives function, parameters
type 130
type, values 130

wp_get_attachment_link function 167
wp_get_attachment_metadata function 167
wp_head function 194, 198, 219, 262
wp_head hook 26
wp_list_categories function

about 33, 43, 131
benefits 129
parameters 132

wp_list_categories function, parameters
child_of parameter 132
number parameter 132
show_count parameter 132
URL 35

wp_list_categories function, parameters
passing

about 34
current_category parameter 35
feed parameter 35
number parameter 35

wp_list_comments, template tag 84
wp_list_comments function 84, 87, 93, 227
wp_list_comments parameters

list, URL 87
wp_list_pages function 31, 38, 45
wp_list_pages function, parameters

URL 32
wp_list_pages function, parameters passing

about 31
child_of parameter 32
echo parameter 32
exclude parameter 32

wp_loginout function 74
wp_logout_url function 274
wp_print_scripts function 195
WP_Query class 57

WP_Query constructor 58
WP_Query object 49, 53, 57, 204
wp_register_script function

advantages 197
wp_tag_cloud function 36

about 136
parameters 136

wp_tag_cloud function, parameters
format parameter 136
number parameter 136
order 136
orderby parameter 136
taxonomy 136
unit parameter 136
URL 38

wp_tag_cloud function, parameters passing
about 37
number parameter 37

wpdb class 184
WPFramework

URL 25
wptc_get_header_image function 256, 257
WPtouch theme

site, adapting for mobile content view 174
wpurl string 17
WP Wall

downloading, URL 120
URL 122
working 122

X
XML-RPC file 17

Z
ZIP file 241

Thank you for buying

WordPress 2.8 Themes Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

WordPress 2.8 Theme Design
ISBN: 978-1-849510-08-0 Paperback: 292 pages

Create flexible, powerful, and professional themes for
your WordPress blogs and web sites

1. Take control of the look and feel of your
WordPress site by creating fully functional unique
themes that cover the latest WordPress features

2. Add interactivity to your themes using Flash and
AJAX techniques

3. Expert guidance with practical step-by-step
instructions for custom theme design

4. Includes design tips, tricks, and
troubleshooting ideas

WordPress 2.� Complete
ISBN: 978-1-847196-56-9 Paperback: 296 pages

Create your own complete blog or web site from scratch
with WordPress

1. Everything you need to set up your own feature-
rich WordPress blog or web site

2. Clear and practical explanations of all aspects of
WordPress

3. In-depth coverage of installation, themes,
syndication, and podcasting

4. Explore WordPress as a fully functioning content
management system

5. Concise, clear, and easy to follow; rich
with examples

Please check www.PacktPub.com for information on our titles

WordPress 2.� E-Commerce
ISBN: 978-1-84719-850-1 Paperback: 284 pages

Build a proficient online store to sell products and
services

1. Earn huge profits by transforming WordPress into
an intuitive and capable platform for e-Commerce

2. Build and control a vast product catalog to sell
physical items and digital downloads

3. Configure and integrate various payment gateways
into your store for your customers’ convenience

4. Promote and market your store online for
increased profits

WordPress 3 Site Blueprints
ISBN: 978-1-847199-36-2 Paperback: 230 pages

Ready-made plans for 9 different professional
WordPress sites

1. Everything you need to build a varied collection of
feature-rich customized WordPress websites for
yourself

2. Transform a static website into a dynamic
WordPress blog

3. In-depth coverage of several WordPress themes
and plugins

4. Packed with screenshots and step-by-step
instructions to help you complete each site

Please check www.PacktPub.com for information on our titles

WordPress 2.� Cookbook
ISBN: 978-1-847197-38-2 Paperback: 316 pages

100 simple but incredibly useful recipes to take control
of your WordPress blog layout, themes, widgets, plug-ins,
security, and SEO

1. Take your WordPress blog to the next level with
solutions to common WordPress problems that
make your blog better, smarter, faster, and
more secure

2. Add interactivity to your themes using Flash and
AJAX techniques

3. Expert guidance with practical step-by-step
instructions for custom theme design

4. Includes design tips, tricks, and
troubleshooting ideas

WordPress MU 2.8: Beginner’s
Guide
ISBN: 978-1-847196-54-5 Paperback: 268 pages

Build your own blog network with unlimited users and
blogs, forums, photo galleries, and more!

1. Design, develop, secure, and optimize a blog
network with a single installation of WordPress

2. Add unlimited users and blogs, and give different
permissions on different blogs

3. Add social networking features to your blogs using
BuddyPress

4. Create a bbPress forum for your users to
communicate with each other

Please check www.PacktPub.com for information on our titles

Choosing an Open Source
CMS: Beginner’s Guide
ISBN: 978-1-847196-22-4 Paperback: 340 pages

Find the best CMS and start working with it to create
web sites, blogs, communities, e-commerce sites, and
intranets

1. Understand different types of CMSs and select the
one that best fits your needs

2. Install and customize a CMS with themes and
plug-ins

3. Learn key concepts of Content Management
Systems and how to systematically assess your
requirements

4. Introduction to the major CMSs including Joomla!,
Drupal, WordPress, Plone, Magento, Alfresco,
and more

WordPress and Flash 10x
Cookbook
ISBN: 978-1-847198-82-2 Paperback: 268 pages

Over 50 simple but incredibly effective recipes to take
control of dynamic Flash content in Wordpress

1. Learn how to make your WordPress blog or
website stand out with Flash

2. Embed, encode, and distribute your video content
in your Wordpress site or blog

3. Build your own .swf files using various plugins

4. Develop your own Flash audio player using audio
and podcasting plugins

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: WordPress Theme Basics
	Introduction
	Finding documentation on WordPress.org
	Downloading themes from the WordPress theme repository
	Downloading themes from third-party websites
	Installing and activating a theme
	Displaying the blog name
	Getting the absolute directory path of the active theme
	Creating a theme from scratch
	Creating a child theme
	Creating a theme by using a theme framework
	Adding expected WordPress hooks
	Including PHP files from your theme

	Chapter 2: Creating Navigation
	Introduction
	Listing all of the pages that exist on a blog
	Listing all of the categories defined for a blog
	Listing all of the tags in use on a blog
	Highlighting the current page in the navigation
	Adding a search function to a theme
	Getting the category page link from a category name
	Displaying page links only if the destination page exists
	Creating a category drop-down menu
	Creating drop-downs using child pages

	Chapter 3: The Loop
	Introduction
	Creating a basic Loop
	Displaying ads after every third post
	Removing posts in a particular category
	Removing posts with a particular tag
	Highlighting sticky posts
	Creating multiple loops in a single template
	Displaying only posts in a particular category
	Styling every other post differently
	Styling posts in a particular category differently
	Showing every post in a category on a category archive page

	Chapter 4: Template Tags
	Introduction
	Displaying the post title
	Automatically limiting the number of words of content
	Determining if the user is on a specific page
	Determining if the user is viewing a post in a particular category
	Displaying the post date for each post
	Highlighting search terms in post content
	Displaying login/logout links
	Adding navigation through older/newer posts
	Displaying an edit link for posts
	Displaying custom field content
	Displaying a post author's avatar

	Chapter 5: Comments
	Introduction
	Displaying a comment form on a post
	Displaying comments on a post
	Displaying the latest comments on your blog
	Highlighting the post author's comments
	Alternating the style for comments
	Displaying threaded comments properly

	Chapter 6: Sidebars
	Introduction
	Using the Text widget for custom sidebar content
	Including a dynamic sidebar in your theme
	Including multiple dynamic sidebars in your theme
	Setting the default widgets for a sidebar in your theme
	Positioning multiple sidebars in your theme by using CSS
	Styling the appearance of sidebars in your theme by using CSS
	Displaying different widgets on different
	pages by using the Widget Logic plugin and conditional tags
	Showing asides in the sidebar by using the Miniposts plugin
	Adding an interactive Facebook-style wall to a sidebar by using jQuery

	Chapter 7: Custom Page Templates
	Introduction
	Creating a simple page template
	Creating an archives page template
	Creating a taxonomy navigation template
	Displaying author avatars and descriptions
	Creating a table of contents page template
	Showing your pictures from Flickr
	Displaying a special template for a specific category

	Chapter 8: Integrating Media
	Introduction
	Aligning images properly within a post
	Styling image galleries
	Styling image captions
	Creating a media template
	Creating a media template for a specific media type
	Displaying a related image for every post
	Creating video posts by using the Viper's Video QuickTags plug-in

	Chapter 9: Showing Author Information
	Introduction
	Getting author data via an author's ID
	Dynamically displaying the author's name and linked e-mail address
	Listing all of the published authors on a site
	Listing the authors who most recently published a post
	Listing authors by the total number of comments that their posts have received
	Adding a custom user field to display an author's Twitter link

	Chapter 10: Adding JavaScript Effects
	Introduction
	Linking to your theme's JavaScript files directly
	Adding JavaScript files to your theme programmatically
	Adding a bundled library to your theme programmatically
	Creating a featured post slider
	Making sidebar widgets toggle-able
	Adding a font size toggle

	Chapter 11: Advanced WordPress Themes
	Introduction
	Adding a theme options page
	Allowing for multiple theme color schemes
	Changing the default Gravatar icon for your theme
	Registering shortcodes for your theme
	Localizing your theme
	Displaying information based on the logged-in user's role
	Packaging your theme for distribution
	Uploading your theme to the WordPress.org theme repository

	Chapter 12: Layout
	Introduction
	Adding a skip navigation link for usability
	Centering your site's layout in the browser window
	Setting up a randomly-rotating header image
	Making theme components drag-and-drop
	Creating a global toolbar for your theme
	Creating tabbed navigation for your theme

	Index

