

Imprint

Published in November 2011

Smashing Media GmbH, Freiburg, Germany

Cover Design: Ricardo Gimenes

Editing: Andrew Rogerson, Talita Telma

Proofreading: Andrew Lobo, Iris Ljesnjanin

Reviewing: Jeff Starr

Idea and Concept: Sven Lennartz, Vitaly Friedman

Founded in September 2006, Smashing Magazine delivers useful and
innovative information to Web designers and developers. Smashing
Magazine is a well-respected international online publication for
professional Web designers and developers. Our main goal is to support the
Web design community with useful and valuable articles and resources,
written and created by experienced designers and developers.

ISBN: 9783943075182

Version: December 16, 2011

Smashing eBook #11│Mastering WordPress │ 2

http://www.smashingmagazine.com
http://www.smashingmagazine.com

Table of Contents

Preface

!e Definitive Guide To WordPress Hooks

Custom Fields Hacks For WordPress

Power Tips For WordPress Template Developers

Advanced Power Tips For WordPress Template Developers

Advanced Power Tips for WordPress Template Developers: Reloaded

Ten !ings Every WordPress Plugin Developer Should Know

Create Perfect Emails For Your WordPress Website

Writing WordPress Guides for the Advanced Beginner

Advanced Layout Templates In WordPress’ Content Editor

!e Authors

Smashing eBook #11│Mastering WordPress │ 3

Preface
WordPress has many facets to show for those who like to explore its
possibilities. Well known as a free source blog-publishing platform,
WordPress also gained popularity because of its flexibility and development
options through plugins, hooks and custom fields ― just to name a few.

If you are already familiar with the fundamentals of WordPress, you might be
searching for specific knowledge in order to become a better expert. This
Smashing eBook #11: Mastering WordPress, which is packed with exclusive
advanced techniques, is probably what you are looking for. After reading
this eBook, you will be able to implement various hints which WordPress has
to offer for your upcoming projects.

This eBook contains 9 articles which brings topics that will help you work
with custom fields, understand coding with hooks, maintain plugins, create
emails for your website, write WordPress guides and administrate layout
content editor templates. Three whole chapters are destined to advise you
with power tips for WordPress template developers. For instance, you will
get tips which address common CMS implementation challenges without
plugin dependence and cover a handful of API calls and integration with
PHP codes. Also, these tips explain how to customize basic content
administration and add features to the post and page editor in WordPress.

The articles have been published on Smashing Magazine in 2010 and 2011,
and they have been carefully edited and prepared for this eBook.

We hope that you will find this eBook useful and valuable. We are looking
forward to your feedback on Twitter or via our contact form.

— Andrew Rogerson, Smashing eBook Editor

Smashing eBook #11│Mastering WordPress │ 4

http://twitter.com/smashingmag
http://twitter.com/smashingmag
http://www.smashingmagazine.com/contact/
http://www.smashingmagazine.com/contact/

!e Definitive Guide To WordPress
Hooks

Daniel Pataki

If you’re into WordPress development, you can’t ignore hooks for long
before you have to delve into them head on. Modifying WordPress core files
is a big no-no, so whenever you want to change existing functionality or
create new functionality, you will have to turn to hooks.

In this chapter, I would like to dispel some of the confusion around hooks,
because not only are they the way to code in WordPress, but they also
teach us a great design pattern for development in general. Explaining this

Smashing eBook #11│Mastering WordPress │ 5

in depth will take a bit of time, but bear with me: by the end, you’ll be able to
jumble hooks around like a pro.

Why Hooks Exist
I think the most important step in grasping hooks is to understand the need
for them. Let’s create a version of a WordPress function that already exists,
and then evolve it a bit using the “hooks mindset.”

function get_excerpt($text, $length = 150) {

 $excerpt = substr($text,$length)

 return $excerpt;

}

This function takes two parameters: a string and the length at which we
want to cut it. What happens if the user wants a 200-character excerpt
instead of a 150-character one? They just modify the parameter when they
use the function. No problem there.

If you use this function a lot, you will notice that the parameter for the text is
usually the post’s content, and that you usually use 200 characters instead
of the default 150. Wouldn’t it be nice if you could set up new defaults, so
that you didn’t have to add the same parameters over and over again? Also,
what happens if you want to add some more custom text to the end of the
excerpt?

These are the kinds of problems that hooks solve. Let’s take a quick look at
how.

Smashing eBook #11│Mastering WordPress │ 6

function get_excerpt($text, $length = 150) {

 $length = apply_filters("excerpt_length", $length);

 $excerpt = substr($text,$length)

 return $excerpt;

}

As you can see, the default excerpt length is still 150, but we’ve also applied
some filters to it. A filter allows you to write a function that modifies the
value of something — in this case, the excerpt’s length. The name (or tag) of
this filter is excerpt_length, and if no functions are attached to it, then its
value will remain 150. Let’s see how we can now use this to modify the
default value.

function get_excerpt($text, $length = 150) {

 $length = apply_filters("excerpt_length");

 $excerpt = substr($text,$length)

 return $excerpt;

}

function modify_excerpt_length() {

 return 200;

}

add_filter("excerpt_length", "modify_excerpt_length");

First, we have defined a function that does nothing but return a number. At
this point, nothing is using the function, so let’s tell WordPress that we want
to hook this into the excerpt_length filter.

Smashing eBook #11│Mastering WordPress │ 7

We’ve successfully changed the default excerpt length in WordPress,
without touching the original function and without even having to write a
custom excerpt function. This will be extremely useful, because if you
always want excerpts that are 200 characters long, just add this as a filter
and then you won’t have to specify it every time.

Suppose you want to tack on some more text, like “Read on,” to the end of
the excerpt. We could modify our original function to work with a hook and
then tie a function to that hook, like so:

function get_excerpt($text, $length = 150) {

 $length = apply_filters("excerpt_length");

 $excerpt = substr($text,$length)

 return apply_filters("excerpt_content", $excerpt);

}

function modify_excerpt_content($excerpt) {

 return $excerpt . "Read on…";

}

add_filter("excerpt_content", "modify_excerpt_content");

This hook is placed at the end of the function and allows us to modify its
end result. This time, we’ve also passed the output that the function would
normally produce as a parameter to our hook. The function that we tie to
this hook will receive this parameter.

All we are doing in our function is taking the original contents of $excerpt
and appending our “Read on” text to the end. But if we choose, we could
also return the text “Click the title to read this article,” which would replace
the whole excerpt.

Smashing eBook #11│Mastering WordPress │ 8

While our example is a bit redundant, since WordPress already has a better
function, hopefully you’ve gotten to grips with the thinking behind hooks.
Let’s look more in depth at what goes on with filters, actions, priorities,
arguments and the other yummy options available.

Filters And Actions
Filters and actions are two types of hooks. As you saw in the previous
section, a filter modifies the value of something. An action, rather than
modifying something, calls another function to run beside it.

A commonly used action hook is wp_head. Let’s see how this works. You
may have noticed a function at the bottom of your website’s head section
named wp_head(). Diving into the code of this function, you can see that it
contains a call to do_action(). This is similar to apply_filters(); it
means to run all of the functions that are tied to the wp_head tag.

Let’s put a copyright meta tag on top of each post’s page to test how this
works.

add_action("wp_head", "my_copyright_meta");

function my_copyright_meta() {

 if(is_singular()){

 echo "<meta name="copyright" content="© Me, 2011">";

 }

}

!e Workflow Of Using Hooks
While hooks are better documented nowadays, they have been neglected a
bit until recently, understandably so. You can find some good pointers in the

Smashing eBook #11│Mastering WordPress │ 9

Codex, but the best thing to use is Adam Brown’s hook reference, and/or
look at the source code.

Say you want to add functionality to your blog that notifies authors when
their work is published. To do this, you would need to do something when a
post is published. So, let’s try to find a hook related to publishing.

Can we tell whether we need an action or a filter? Sure we can! When a post
is published, do we want to modify its data or do a completely separate
action? The answer is the latter, so we’ll need an action. Let’s go to the
action reference on Adam Brown’s website, and search for “Publish.”

The first thing you’ll find is app_publish_post. Sounds good; let’s click
on it. The details page doesn’t give us a lot of info (sometimes it does), so
click on the “View hook in source” link next to your version of WordPress
(preferably the most recent version) in the table. This website shows only a
snippet of the file, and unfortunately the beginning of the documentation is
cut off, so it’s difficult to tell if this is what we need. Click on “View complete
file in SVN” to go to the complete file so that we can search for our hook.

In the file I am viewing, the hook can be found in the
_publish_post_hook() function, which — according to the
documentation above it — is a “hook to schedule pings and enclosures when
a post is published,” so this is not really what we need.

With some more research in the action list, you’ll find the publish_post
hook, and this is what we need. The first thing to do is write the function that
sends your email. This function will receive the post’s ID as an argument, so
you can use that to pull some information into the email. The second task is
to hook this function into the action. Look at the finished code below for the
details.

Smashing eBook #11│Mastering WordPress │ 10

http://adambrown.info/p/wp_hooks
http://adambrown.info/p/wp_hooks
http://core.trac.wordpress.org/browser/tags/
http://core.trac.wordpress.org/browser/tags/
http://adambrown.info/p/wp_hooks/hook/actions
http://adambrown.info/p/wp_hooks/hook/actions

function authorNotification($post_id) {

 global $wpdb;

 $post = get_post($post_id);

 $author = get_userdata($post->post_author);

 $message = "

 Hi ".$author->display_name.",

 Your post, ".$post->post_title." has just been published. Well
done!

 ";

 wp_mail($author->user_email, "Your article is online", $message);

}

add_action('publish_post', 'authorNotification');

Notice that the function we wrote is usable in its own right. It has a very
specific function, but it isn’t only usable together with hooks; you could use
it in your code any time. In case you’re wondering, wp_mail() is an
awesome mailer function — have a look at the WordPress Codex for more
information.

This process might seem a bit complicated at first, and, to be totally honest,
it does require browsing a bit of documentation and source code at first, but
as you become more comfortable with this system, your time spent
researching what to use and when to use it will be reduced to nearly
nothing.

Priorities
The third parameter when adding your actions and filters is the priority. This
basically designates the order in which attached hooks should run. We
haven’t covered this so far, but attaching multiple functions to a hook is, of
course, possible. If you want an email to be sent to an author when their

Smashing eBook #11│Mastering WordPress │ 11

post is published and to also automatically tweet the post, these would be
written in two separate functions, each tied to the same tag
(publish_post).

Priorities designate which hooked function should run first. The default
value is 10, but this can be changed as needed. Priorities usually don’t make
a huge difference, though. Whether the email is sent to the author before
the article is tweeted or vice versa won’t make a huge difference.

In rarer cases, assigning a priority could be important. You might want to
overwrite the actions of other plugins (be careful, in this case), or you might
want to enforce a specific order. I recently had to overwrite functionality
when I was asked to optimize a website. The website had three to four
plugins, with about nine JavaScript files in total. Instead of disabling these
plugins, I made my own plugin that overwrote some of the JavaScript-
outputting functionality of those plugins. My plugin then added the minified
JavaScript code in one file. This way, if my plugin was deactivated, all of the
other plugins would work as expected.

Specifying Arguments
The fourth argument when adding filters and actions specifies how many
arguments the hooked function takes. This is usually dictated by the hook
itself, and you will need to look at the source to find this information.

As you know from before, your functions are run when they are called by
apply_filters() or do_action(). These functions will have the tag as
their first argument (i.e. the name of the hook you are plugging into) and
then passed arguments as subsequent arguments.

For example, the filter default_excerpt receives two parameters, as
seen in includes/post.php.

Smashing eBook #11│Mastering WordPress │ 12

$post->post_excerpt = apply_filters('default_excerpt',
$post_excerpt, $post);

The arguments are well named — $post_excerpt and $post — so it’s
easy to guess that the first is the excerpt text and the second is the post’s
object. If you are unsure, it is usually easiest either to look further up in the
source or to output them using a test function (make sure you aren’t in a
production environment).

function my_filter_test($post_excerpt, $post) {

 echo "<pre>";

 print_r($post_excerpt);

 print_r($post);

 echo "</pre>";

}

add_filter("default_excerpt", "my_filter_test");

Variable Hook Names
Remember when we looked at the publish_post action? In fact, this is
not used anymore; it was renamed in version 2.3 to {$new_status}
_{$post->post_type}. With the advent of custom post types, it was
important to make the system flexible enough for them. This new hook now
takes an arbitrary status and post type (they must exist for it to work,
obviously).

As a result, publish_post is the correct tag to use, but in reality, you will
be using {$new_status}_{$post->post_type}. A few of these are
around; the naming usually suggests what you will need to name the action.

Smashing eBook #11│Mastering WordPress │ 13

Who Is Hooked On Who?
To find out which function hooks into what, you can use the neat script
below. Use this function without arguments to get a massive list of
everything, or add a tag to get functions that are hooked to that one tag.
This is a great one to keep in your debugging tool belt!

function	
 list_hooked_functions($tag=false){

 global	
 $wp_filter;

 if	
 ($tag)	
 {

 $hook[$tag]=$wp_filter[$tag];

 if	
 (!is_array($hook[$tag]))	
 {

 trigger_error("Nothing	
 found	
 for	
 '$tag'	
 hook",	
 E_USER_WARNING);

 return;

 }

 }

 else	
 {

 $hook=$wp_filter;

 ksort($hook);

 }

 echo	
 '<pre>';

 foreach($hook	
 as	
 $tag	
 =>	
 $priority){

 echo	
 "
$tag
";

 ksort($priority);

 foreach($priority	
 as	
 $priority	
 =>	
 $function){

 echo	
 $priority;

 foreach($function	
 as	
 $name	
 =>	
 $properties)	
 echo	
 "\t$name
";

 }

 }

 echo	
 '</pre>';

 return;
}

Smashing eBook #11│Mastering WordPress │ 14

Creating Your Own Hooks
A ton of hooks are built into WordPress, but nothing is stopping you from
creating your own using the functions we’ve looked at so far. This may be
beneficial if you are building a complex plugin intended for wide release; it
will make your and other developers’ jobs a lot easier! In the example
below, I have assumed we are building functionality for users to post short
blurbs on your website’s wall. We’ll write a function to check for profanity
and hook it to the function that adds the blurbs to the wall. Look at the full
code below. The explanation ensues.

function post_blurb($user_id, $text) {

 $text = apply_filters("blurb_text", $text);

 if(!empty($text)) {

 $wpdb->insert('my_wall', array("user_id" => $user_id, "date" =>
date("Y-m-d H:i:s"), "text" => $text), array("%d", %s", "%s"));

 }

}

function profanity_filter($text) {

 $text_elements = explode(" ", $text);

 $profanity = array("badword", "naughtyword",
"inappropriatelanguage");

 if(array_intersect($profanity, $text_elements)) {

 return false;

 }

 else {

 return $text;

 }

}

Smashing eBook #11│Mastering WordPress │ 15

add_filter("blurb_text", "profanity_filter");

The first thing in the code is the designation of the function that adds the
blurb. Notice that I included the apply_filters() function, which we will
use to add our profanity check.

Next up is our profanity-checking function. This checks the text as its
argument against an array of known naughty words. By using
array_intersect(), we look for array elements that are in both arrays — 
these would be the profane words. If there are any, then return false;
otherwise, return the original text.

The last part actually hooks this function into our blurb-adding script.

Now other developers can hook their own functions into our script. They
could build a spam filter or a better profanity filter. All they would need to do
is hook it in.

Mixing And Matching
The beauty of this system is that it uses functions for everything. If you want,
you can use the same profanity filter for other purposes, even outside of
WordPress, because it is just a simple function. Already have a profanity-
filter function? Copy and paste it in; all you’ll need to do is add the one line
that actually hooks it in. This makes functions easily reusable in various
situations, giving you more flexibility and saving you some time as well.

!at’s All
Hopefully, you now fully understand how the hooks system works in
WordPress. It contains an important pattern that many of us could use even
outside of WordPress.

Smashing eBook #11│Mastering WordPress │ 16

This is one aspect of WordPress that does take some time getting used to if
you’re coming to it without any previous knowledge. The biggest problem is
usually that people get lost in all of the filters available or in finding their
arguments and so on, but with some patience this can be overcome easily.
Just start using them, and you’ll be a master in no time!

Smashing eBook #11│Mastering WordPress │ 17

Custom Fields Hacks For WordPress

Jean-Baptiste Jung

The incredible flexibility of WordPress is one of the biggest reasons for its
popularity among bloggers worldwide. Custom fields in particular, which let
users create variables and add custom values to them, are one of the
reasons for WordPress’ flexibility.

In this chapter, we’ve compiled a list of 10 useful things that you can do
with custom fields in WordPress. Among them are setting expiration time
for posts, defining how blog posts are displayed on the front page,
displaying your mood or music, embedding custom CSS styles, disabling
search engine indexing for individual posts, inserting a “Digg this” button
only when you need it and, of course, displaying thumbnails next to your
posts.

1. Set An Expiration Time For Posts
The problem. Sometimes (for example, if you’re running a contest), you
want to be able to publish a post and then automatically stop displaying it
after a certain date. This may seem quite hard to do but in fact is not, using
the power of custom fields.

The solution. Edit your theme and replace your current WordPress loop with
this “hacked” loop:

Smashing eBook #11│Mastering WordPress │ 18

Image source: Richard Vantielcke

<?php

if (have_posts()) :

 while (have_posts()) : the_post(); ?>

 $expirationtime = get_post_custom_values('expiration');

 if (is_array($expirationtime)) {

 $expirestring = implode($expirationtime);

 }

 $secondsbetween = strtotime($expirestring)-time();

 if ($secondsbetween > 0) {

 // For example...

 the_title();

 the_excerpt();

 }

Smashing eBook #11│Mastering WordPress │ 19

 endwhile;

endif;

?>

To create a post set to expire at a certain date and time, just create a
custom field. Specify expiration as a key and your date and time as a value
(with the format mm/dd/yyyy 00:00:00). The post will not show up after the
time on that stamp.

Code explanation. This code is simply a custom WordPress loop that
automatically looks to see if a custom field called expiration is present. If
one is, its value is compared to the current date and time.

If the current date and time is equal to or earlier than the value of the
custom expiration field, then the post is not displayed.

Note that this code does not remove or unpublish your post, but just
prevents it from being displayed in the loop.

2. Define How Blog Posts Are Displayed On !e Home
Page

The problem I’ve always wondered why 95% of bloggers displays all of their
posts the same way on their home page. Sure, WordPress has no built-in
option to let you define how a post is displayed. But wait: with custom fields,
we can do it easily.

The solution. The following hack lets you define how a post is displayed on
your home page. Two values are possible:

• Full post

• Post excerpt only

Smashing eBook #11│Mastering WordPress │ 20

Once more, we’ll use a custom WordPress loop. Find the loop in your
index.php file and replace it with the following code:

<?php if (have_posts()) :

 while (have_posts()) : the_post();

 $customField = get_post_custom_values("full");

 if (isset($customField[0])) {

 //Custom field is set, display a full post

 the_title();

 the_content();

 } else {

 // No custom field set, let's display an excerpt

 the_title();

 the_excerpt();

 endwhile;

endif;

?>

Smashing eBook #11│Mastering WordPress │ 21

In this code, excerpts are displayed by default. To show full posts on your
home page, simply edit the post and create a custom field called full and
give it any value.

Code explanation. This code is rather simple. The first thing it does is look
for a custom field called full. If this custom field is set, full posts are
displayed. Otherwise, only excerpts are shown.

3. Display Your Mood Or !e Music You’re Listening
To

The problem. About five or six years ago, I was blogging on a platform
called LiveJournal. Of course it wasn’t great as WordPress, but it had nice
features that WordPress doesn’t have. For example, it allowed users to
display their current mood and the music they were listening to while
blogging.

Even though I wouldn’t use this feature on my blog, I figure many bloggers
would be interested in knowing how to do this in WordPress.

The solution. Open your single.php file (or modify your index.php file), and
paste the following code anywhere within the loop:

Smashing eBook #11│Mastering WordPress │ 22

$customField = get_post_custom_values("mood");

if (isset($customField[0])) {

 echo "Mood: ".$customField[0];

}

Save the file. Now, when you write a new post, just create a custom field
called mood, and type in your current mood as the value.

Code explanation. This is a very basic use of custom fields, not all that
different from the well-known hack for displaying thumbnails beside your
posts’ excerpts on the home page. It looks for a custom field called mood. If
the field is found, its value is displayed.

4. Add Meta Descriptions To Your Posts

The problem. WordPress, surprisingly, does not use meta description tags
by default.

Sure, for SEO, meta tags are not as important as they used to be. Yet still,
they can enhance your blog’s search engine ranking nevertheless.

Smashing eBook #11│Mastering WordPress │ 23

How about using custom fields to create meta description tags for individual
posts?

The solution. Open your header.php file. Paste the following code
anywhere within the <head> and </head> tags:

<meta name="description" content="

<?php if ((is_home()) || (is_front_page())) {

 echo ('Your main description goes here');

} elseif(is_category()) {

 echo category_description();

} elseif(is_tag()) {

 echo '-tag archive page for this blog' . single_tag_title();

} elseif(is_month()) {

 echo 'archive page for this blog' . the_time('F, Y');

} else {

 echo get_post_meta($post->ID, "Metadescription", true);

}?>">

Code explanation. To generate meta descriptions, this hack makes
extensive use of WordPress conditional tags to determine which page the
user is on.

For category pages, tag pages, archives and the home page, a static meta
description is used. Edit lines 3, 7 and 9 to define your own. For posts, the
code looks for a custom field called Metadescription and use its value for
the meta description.

Smashing eBook #11│Mastering WordPress │ 24

5. Link To External Resources

The problem. Many bloggers have asked me the following question: “How
can I link directly to an external source, rather than creating a post just to tell
visitors to visit another website?”

The solution to this problem is to use custom fields. Let’s see how we can
do that.

The solution. The first thing to do is open your functions.php file and
paste in the following code:

function print_post_title() {

 global $post;

 $thePostID = $post->ID;

 $post_id = get_post($thePostID);

 $title = $post_id->post_title;

 $perm = get_permalink($post_id);

 $post_keys = array(); $post_val = array();

Smashing eBook #11│Mastering WordPress │ 25

 $post_keys = get_post_custom_keys($thePostID);

 if (!empty($post_keys)) {

 foreach ($post_keys as $pkey) {

 if ($pkey=='url1' || $pkey=='title_url' || $pkey=='url_title')
{

 $post_val = get_post_custom_values($pkey);

 }

 }

 if (empty($post_val)) {

 $link = $perm;

 } else {

 $link = $post_val[0];

 }

 } else {

 $link = $perm;

 }

 echo '<h2>'.
$title.'</h2>';

}

Once that’s done, open your index.php file and replace the standard code
for printing titles…

<h2><a href="<?php the_permalink() ?>" rel="bookmark"
title="Permanent Link to <?php the_title(); ?>"><?php the_title(); ?
></h2>

… with a call to our newly created print_post_title() function:

<?php print_post_title() ?>

Now, whenever you feel like pointing one of your posts’ titles somewhere
other than your own blog, just scroll down in your post editor and create or

Smashing eBook #11│Mastering WordPress │ 26

select a custom key called url1 or title_url or url_title and put the
external URL in the value box.

Code explanation. This is a nice custom replacement function for the
the_title() WordPress function.

Basically, this function does the same thing as the good old the_title()
function, but also looks for a custom field. If a custom field called url1 or
title_url or url_title is found, then the title link will lead to the
external website rather than the blog post. If the custom field isn’t found, the
function simply displays a link to the post itself.

6. Embed Custom CSS Styles

The problem. Certain posts sometimes require additional CSS styling. Sure,
you can switch WordPress’ editor to HTML mode and add inline styling to
your post’s content. But even when inline styling is useful, it isn’t always the
cleanest solution.

With custom fields, we can easily create new CSS classes for individual
posts and make WordPress automatically add them to the blog’s header.

Smashing eBook #11│Mastering WordPress │ 27

The solution. First, open your header.php file and insert the following code
between the <head> and </head> HTML tags:

<?php if (is_single()) {

 $css = get_post_meta($post->ID, 'css', true);

 if (!empty($css)) { ?>

 <style type="text/css">

 <?php echo $css; ?>

 <style>

 <?php }

} ?>

Now, when you write a post or page that requires custom CSS styling, just
create a custom field called css and paste in your custom CSS styling as the
value. As simple as that!

Code explanation. First, the code above makes sure we’re on an actual
post’s page by using WordPress’ conditional tag is_single(). Then, it
looks for a custom field called css. If one is found, its value is displayed
between <style> and </style> tags.

Smashing eBook #11│Mastering WordPress │ 28

7. Re-Define !e <title> Tag

The problem. On blogs, as on every other type of website, content is king.
And SEO is very important for achieving your goals with traffic. By default,
most WordPress themes don’t have an optimized <title> tag.

Some plug-ins, such as the well-known “All in One SEO Pack,” override this,
but you can also do it with a custom field.

The solution. Open your header.php file for editing. Find the <title>
tag and replace it with the following code:

Smashing eBook #11│Mastering WordPress │ 29

<title>

<?php if (is_home ()) {

 bloginfo('name');

} elseif (is_category()) {

 single_cat_title(); echo ' - ' ; bloginfo('name');

} elseif (is_single()) {

 $customField = get_post_custom_values("title");

 if (isset($customField[0])) {

 echo $customField[0];

 } else {

 single_post_title();

 }

} elseif (is_page()) {

 bloginfo('name'); echo ': '; single_post_title();

} else {

 wp_title('',true);

} ?>

</title>

Then, if you want to define a custom title tag, simply create a custom field
called title, and enter your custom title as a value.

Code explanation. With this code, I have used lots of template tags to
generate a custom <title> tag for each kind of post: home page, page,
category page and individual posts.

If the active post is an individual post, the code looks for a custom field
called title. If one is found, its value is displayed as the title. Otherwise, the
code uses the standard single_post_title() function to generate the
post’s title.

Smashing eBook #11│Mastering WordPress │ 30

8. Disable Search Engine Indexing For Individual
Posts

The problem. Have you ever wanted to create semi-private posts,
accessible to your regular readers but not to search engines? If so, one easy
solution is to… you guessed it! Use a custom field.

The solution. First, get the ID of the post that you’d not like to be indexed
by search engines. We’ll use a post ID of 17 for this example.

Open your header.php file and paste the following code between the
<head> and </head> tags:

Smashing eBook #11│Mastering WordPress │ 31

<?php $cf = get_post_meta($post->ID, 'noindex', true);

 if (!empty($cf)) {

 echo '<meta name="robots" content="noindex"/>';

}

?>

That’s all. Pretty useful if you want certain info to be inaccessible to search
engines!

Code explanation. In this example, we used the get_post_meta()
function to retrieve the value of a custom field called noindex. If the
custom field is set, then a <meta name=”robots”
content=”noindex”/> tag is added.

Smashing eBook #11│Mastering WordPress │ 32

9. Get Or Print Any Custom Field Value Easily With A
Custom Function

The problem. Now that we’ve shown you lot of great things you can do with
custom fields, how about an automated function for easily getting custom
fields values?

Getting custom field values isn’t hard for developers or those familiar with
PHP, but can be such a pain for non-developers. With this hack, getting any
custom field value has never been easier.

The solution. Here’s the function. Paste it into your theme’s
functions.php file. If your theme doesn’t have this file, create it.

function get_custom_field_value($szKey, $bPrint = false) {

 global $post;

Smashing eBook #11│Mastering WordPress │ 33

 $szValue = get_post_meta($post->ID, $szKey, true);

 if ($bPrint == false) return $szValue; else echo $szValue;

}

Now, to call the function and get your custom field value, use the following
code:

<?php if (function_exists('get_custom_field_value')){

 get_custom_field_value('featured_image', true);

} ?>

Code explanation. First, we use the PHP function_exists() function to
make sure the get_custom_field_value function is defined in our
theme. If it is, we use it. The first argument is the custom field name (here,
featured_image), and the second lets you echo the value (true) or call it for
further PHP use (false).

Smashing eBook #11│Mastering WordPress │ 34

10. Insert A “Digg !is” Bu"on Only When You Need
It

The problem. To get traffic from well-known Digg.com, a good idea is to
integrate its “Digg this” button into your posts so that readers can contribute
to the posts’ success.

But do all of your posts need this button? Definitely not. For example, if you
write an announcement telling readers about improvements to your website,
submitting the post to Digg serves absolutely no value.

The solution. Custom fields to the rescue once again. Just follow these
steps to get started:

1. Open your single.php file and paste these lines where you want your
“Digg this” button to be displayed:

Smashing eBook #11│Mastering WordPress │ 35

<?php $cf = get_post_meta($post->ID, 'digg', true);

 if (!emptyempty($cf)) {

 echo 'http://digg.com/tools/diggthis.js " type="text/
javascript">'} ?>

2. Once you’ve saved the single.php file, you can create a custom field
called digg and give it any value. If set, a Digg button will appear in the
post.

Code explanation. This code is very simple. Upon finding a custom field
called digg, the code displays the “Digg this” button. The JavaScript used to
display the “Digg this” button is provided by Digg itself.

Bonus: Display !umbnails Next To Your Posts

Smashing eBook #11│Mastering WordPress │ 36

http://digg.com/tools/diggthis.js
http://digg.com/tools/diggthis.js

The problem Most people knows this trick and have implemented it
successfully on their WordPress-powered blogs. But I figure some people
still may not know how to display nice thumbnails right next to the posts on
their home page.

The solution.

1. Start by creating a default image in Photoshop or Gimp. The size in my
example is 200×200 pixels but is of course up to you. Name the image
default.gif.

2. Upload your default.gif image to the image directory in your
theme.

3. Open the index.php file and paste in the following code where you’d
like the thumbnails to be displayed:

<?php $postimageurl = get_post_meta($post->ID, 'post-img', true);

if ($postimageurl) {

?>

 <a href="<?php the_permalink(); ?>" rel="bookmark"><img src="<?php
echo $postimageurl; ?>" alt="Post Pic" width="200" height="200" /></
a>

<?php } else { ?>

 <a href="<?php the_permalink(); ?>" rel="bookmark"><img src="<?php
bloginfo('template_url'); ?>/images/wprecipes.gif" alt="Screenshot"
width="200" height="200" />

<?php } ?>

4. Save the file.

5. In each of your posts, create a custom field called post-img. Set its
value as the URL of the image you’d like to display as a thumbnail.

Code explanation The code looks for a custom field called post-img. If
found, its value is used to display a custom thumbnail.

Smashing eBook #11│Mastering WordPress │ 37

In case a post-img custom field is not found, the default image is used, so
you’ll never have any posts without thumbnails.

More Custom Field Resources
• Add Thumbnails to WordPress with Custom Fields

A very detailed article about adding thumbnails to your posts with
custom fields. A great follow-up to the last hack we showed!

• How to Use WordPress Custom Fields
Want to know more about custom fields? Then this article is definitely
for you.

• Creating Custom Write Panels in WordPress
A very detailed tutorial on creating custom write panels in WordPress
using custom fields.

• Custom Shortcodes
A cool WordPress plug-in for managing custom fields using the insert
shortcodes.

• More Fields
The More Fields plug-in allows you to create more user-friendly custom
fields. Definitely interesting for when you create WordPress-powered
websites for clients!

Smashing eBook #11│Mastering WordPress │ 38

http://www.tutorial9.net/web-tutorials/add-thumbnails-to-wordpress-with-custom-fields/
http://www.tutorial9.net/web-tutorials/add-thumbnails-to-wordpress-with-custom-fields/
http://www.kriesi.at/archives/how-to-use-wordpress-custom-fields
http://www.kriesi.at/archives/how-to-use-wordpress-custom-fields
http://wefunction.com/2008/10/tutorial-creating-custom-write-panels-in-wordpress/
http://wefunction.com/2008/10/tutorial-creating-custom-write-panels-in-wordpress/
http://wordpress.org/extend/plugins/custom-shortcodes/
http://wordpress.org/extend/plugins/custom-shortcodes/
http://wordpress.org/extend/plugins/more-fields/
http://wordpress.org/extend/plugins/more-fields/

Power Tips For WordPress Template
Developers

Jacob Goldman

With its latest releases, WordPress has extended its potential well beyond
blogging, moving toward an advanced, robust and very powerful content
management solution. By default, WordPress delivers a very lightweight,
minimal system that offers only basic functionalities. But where the
WordPress core falls short, there are a wealth of plug-ins that extend its
limitations.

Plug-ins often offer simple solutions, but they are not always elegant
solutions: in particular, they can add a noticeable overhead, e.g. if they offer
more functionality than needed. In fact, some general and frequently
needed WordPress-functionalities can be added to the engine without
bloated plugins, using the software itself.

This article presents 8 tips for WordPress template developers that
address common CMS implementation challenges, with little to no plug-in
dependence. These examples are written for WordPress 2.7+ and should
also work in the latest WordPress-version.

1. Associating pages with post categories
WordPress enables administrators to identify any page as the posts page:
this is ideal for CMS implementations featuring a single news or blog feed.
However, WordPress provides no simple, out-of-the-box mechanism to
configure a site with multiple, independent feeds.

Smashing eBook #11│Mastering WordPress │ 39

Here’s a common use case: a company wants a simple and casual blog, and
a separate and more formal feed for press releases inside their “About Us”
section. Let’s list a few requirements mandated by a sample client seeking
just that:

• At no point should these two feeds be displayed as one.

• Links to these feeds need to appear in page navigation.

• The Press Release page needs to have static, maintainable content
above its feed.

• For SEO purposes, these feeds should have a page-like permalink
structure: in other words, “mysite.com/category/press-releases” is
unacceptable; the goal is “mysite.com/about-us/press-releases”.

As is often the case, there are several approaches one can take. Major
considerations used to gauge the best approach include the number of
standalone feed pages (one, in this case: Press Releases) and the necessity
for a “primary” feed requiring multiple category support. For this example,
let us assume that “Our Blog” does need to behave like a full featured blog
with categories.

Smashing eBook #11│Mastering WordPress │ 40

PREPARING THE SITE

This approach to “pages with single feeds” is built upon an association
created between a page and a post category. The “primary” blog will
simply be the “posts page” with a few template adjustments that will
exclude posts from the “Press Releases” feed. To meet the SEO
requirement for a logical and consistent URL structure, we will need to
carefully configure and set permalinks.

• In the “Reading” settings, ensure that the “Front page displays” option
is set to “A static page”, and that the “Posts page” is set to “Our Blog”.

• In the “Permalinks” settings for WordPress, ensure that “Custom
Structure” is selected. The structure should be: /%category%/
%postname%/.

• In the page list, identify the the permalink (or slug) for the “About Us”
page (using our example sitemap: let’s say “about-us”). Identify the slug
for the Press Releases page (“press-releases”).

• Two corresponding categories must be added: an “About Us” category
with a matching permalink (“about-us”), and a “Press Releases”
category with a matching permalink (“press-releases”) and its parent
category set to “About Us”.

• Create a post in the “Press Releases” category for testing purposes.

Smashing eBook #11│Mastering WordPress │ 41

EXCLUDING A CATEGORY FROM THE BLOG PAGE

To exclude a category from the main blog page (which shows all posts
across categories), the post query used for the blog page template must be
modified.

The WordPress codex outlines the solution. Simply identify the category ID
for the “Press Releases” category (hovering the mouse over the category
name in the admin panel and looking at the URL in the status bar is an easy
way to find the ID – let’s use 5 for the example), and insert the following
code above the post loop:

query_posts("cat=-5");

Note that many templates also include a list of categories in the sidebar,
recent post lists, and other components that may not exclude posts from the
“press releases” category. These will also need to be modified to exclude
the category; this is easily supported by most WordPress calls.

Smashing eBook #11│Mastering WordPress │ 42

http://codex.wordpress.org/Template_Hierarchy%23Home_Page_display
http://codex.wordpress.org/Template_Hierarchy%23Home_Page_display
http://codex.wordpress.org/Template_Tags/query_posts%23Exclude_Categories_From_Your_Home_Page
http://codex.wordpress.org/Template_Tags/query_posts%23Exclude_Categories_From_Your_Home_Page

ENABLING THE INDIVIDUAL FEED PAGE

The feed page will require a custom page template. For this example, we
named the template “Press Release Feed”, and used the generic
“page.php” template as a starting point (copying it and renaming it
“page_press.php”).

Since the requirements mandate static, editable page content above the
feed, the first post loop – that drops in the page content – will be left as is.
Below the code for page content output, another post query and loop will
be executed. Once completed, the query should be reset using
“wp_reset_query” so that items appearing after the loop – such as side
navigation – can correctly reference information stored it the original page
query.

The general framework for the code is below. The query posts
documentation on the WordPress codex provides insight into great
customization.

query_posts('category_name=Press Releases');

if (have_posts()) : while (have_posts()) : the_post();

 //post output goes here... index.php typically provides a good
template

endwhile; endif;

wp_reset_query();

Of course, be certain to assign the “Press Releases” page the new template,
in the page editor.

THE DEVIL IS IN THE DETAILS

Depending on the characteristics of the individual site, many additional
template customizations – beyond those outlined above – will probably be
necessary. In particular, this “power tip” does not cover specific strategies
for handling individual post views within these isolated feeds. At the high

Smashing eBook #11│Mastering WordPress │ 43

http://codex.wordpress.org/Pages%23Creating_Your_Own_Page_Templates
http://codex.wordpress.org/Pages%23Creating_Your_Own_Page_Templates
http://codex.wordpress.org/Template_Tags/query_posts
http://codex.wordpress.org/Template_Tags/query_posts
http://codex.wordpress.org/Template_Tags/query_posts
http://codex.wordpress.org/Template_Tags/query_posts

level, using conditional in_category checks within the “single.php” template
(used for output of individual posts) should provide the foundation for
customizing post views based on their category. If you are interested, a
more detailed article may explore these strategies in greater detail (please
let us know in the comments!).

ALTERNATIVE SCENARIOS

Creating individual page templates for each standalone feed is an efficient
solution for a site with only a couple of such feeds. There are, however,
WordPress-powered sites like m62 visual communications that extend the
idea of category and even tag association with pages much more deeply.
m62 features dozens of pages associated with individual blog categories,
parent categories, and tags, seamlessly mixed in with standard, “feed-less”
pages. In these instances, a smarter solution would involve specialized
templates that match tag and category permalinks against page
permalinks to dynamically create associations.

This approach can also facilitate sites that require more than one
“primary” (multi-category) blog, through the use of hierarchical categories /
parent categories.

Again, if there is interest, a future article can discuss these methods in
detail.

2. “Friendly” member only pages
Out-of-the-box, WordPress includes an option to designate any page or post
as private. By default, these items do not show up in page or post lists
(including navigation) and generate 404 errors when visited directly – unless
the visitor is logged in. While utilitarian, more often than not, this is not ideal
for usability.

Smashing eBook #11│Mastering WordPress │ 44

http://codex.wordpress.org/Function_Reference/in_category
http://codex.wordpress.org/Function_Reference/in_category
http://www.m62.net/
http://www.m62.net/

Often times, sites intentionally make public visitors aware of pages or posts
whose full content is only visible to members. A friendly message alerting
visitors that they have reached a members-only page, with a prompt to log
in, may be a better solution. Content-centric websites may tease the public
with “above the fold” – or abbreviated – content for the entire audience,
while enticing the visitor to log in or sign up to read the entire article.

This example offers a framework for these “hybrid” member / public pages
using the latter scenario as an example. Content featured “above the fold” –
or above the “more” separator – will be visible to the general public.
Content below the fold will only be available to members. In place of
content below the fold, public visitors will be prompted to log in.

This approach to “hybrid” pages is built upon public, published pages with a
custom field used to identify the page content as “member exclusive”.

1. Create a page or post.

2. Start with a paragraph or two visible to the general public.

3. Insert the “more tag” at the end of the public content.

4. Enter content visible only to logged in members below the more tag.

Smashing eBook #11│Mastering WordPress │ 45

5. Add a custom field named “member_content”. Set its value to 1.

6. Publish the page with public visibility (the default).

The next step involves editing the applicable template files. Typically, this
will be “page.php” (pages) and “single.php” (posts). Note that if these hybrid
views will only apply to pages, a developer can create a “member content”
page template as an alternative to using a custom field. Doing so will
eliminate the need for the custom field check and alternative outputs inside
the same template.

For this example, we shall assume that we created a post (not page) with
member exclusive content. Therefore, we will need to edit “single.php”.
Inside the template, find the the_content call used to drop in page and post
content. Here’s what this often looks like before the changes:

Smashing eBook #11│Mastering WordPress │ 46

the_content();

Here is the new code with the alternative “public” view:

if(!get_post_meta($post->ID, 'member_content', true) ||
is_user_logged_in()) {

 the_content('<p class="serif">Read the rest of this entry »</p>');

} else {

 global $more; // Declare global $more (before the loop).

 $more = 0; // Set (inside the loop) to display content above the
more tag.

 the_content(""); //pass empty string to avoid showing "more" link

 echo "<p>The complete article is only available to members.
Please log in to read the article in its entirely.</p>";

}

Combine this with the next tip to include a login form that sends members
right back to the current page or post.

3. Embedding a log-in form that returns to the
current location
Sometimes, sending members to the standard WordPress login form is not
ideal. It may, for instance, not be consistent with the look and feel a client is
seeking. There may also be instances where embedding a login form in a
page – as in tip 7 – offers superior usability compared to clicking a link for
the login page.

Smashing eBook #11│Mastering WordPress │ 47

The code below drops the WordPress login form into the template, and
sends the user back to the page they logged in from.

<?php if(!is_user_logged_in()) { ?>

 <form action="<?php echo wp_login_url(get_permalink()); ?>"
method="post">

 <label for="log"><input type="text" name="log" id="log" value="<?
php echo wp_specialchars(stripslashes($user_login), 1) ?>"
size="22" /> User</label>

 <label for="pwd"><input type="password" name="pwd" id="pwd"
size="22" /> Password</label>

 <input type="submit" name="submit" value="Send" class="button" />

 <label for="rememberme"><input name="rememberme" id="rememberme"
type="checkbox" checked="checked" value="forever" /> Remember me</
label>

 </form>

<?php } ?>

Smashing eBook #11│Mastering WordPress │ 48

Be aware of a pitfall of this easy-to-implement power tip: if the user fails to
login with the proper credentials, the log-in error will appear on the standard
WordPress login form. The visitor will, however, still be redirected back to
the original page upon successful log-in.

4. IDENTIFYING THE TOP LEVEL PAGE

The “top level page” is the highest level page within the current branch of
the sitemap. For example, if you consider the page below, you’ll find that
“Support & Resources”, “Finding Support”, and “Support for Patients” all
share the top level page “Support & Resources”.

There are some relatively new plug-ins that make “section”, or “top level
page” WordPress navigation a cinch, such as Simple Section Navigation.
However, there are plenty of instances (outside of navigation) where the
template may need to be aware of the current top level page.

For instance, you many want to be able to style certain design elements,
such as the navigation bar’s background image, depending on the currently
chosen section. This can be achieved by checking the page ID of the top

Smashing eBook #11│Mastering WordPress │ 49

http://www.thinkoomph.com/plugins-modules/wordpress-simple-section-navigation/
http://www.thinkoomph.com/plugins-modules/wordpress-simple-section-navigation/

level page inside the header, and dropping in additional styles when the IDs
for those top level pages were found.

Here is how it works. Although WordPress offers no built in call to determine
the top level page, it can be found with a single line of code in the
template:

$top_level = ($post->post_parent) ? end(get_post_ancestors($post)) :
$post->ID;

Using a ternary conditional, this line of code checks the value of $post-
>post_parent, which returns the current page’s parent page ID, if one exists.
If the conditional is evaluated as “true” (as any positive integer will), than the
current page has some “ancestory”; in other words, it is inside of a page
hierarchy or branch in the sitemap. If the conditional fails, the page is either
a top level page, or not in any page ancestory (i.e. a post on a site without a
blog “page” assigned).

If the current page has ancestory, an array containing the hierarchy “above”
the page (parents, grandparents, etc) can be retrieved using the
get_post_ancestors function. The last value in the array that function returns
is always the ID of the top level page. Jump right to the last value using
PHP’s end function. If the conditional fails (no ancestory), the code simply
grabs the current page ID.

Keep in mind that, in many instances, this information is only useful when
WordPress is working with an actual page (as opposed to a post, 404 page,
etc). Therefore, this function and code that uses the top_level variable, may

Smashing eBook #11│Mastering WordPress │ 50

http://www.addedbytes.com/lab/ternary-conditionals/
http://www.addedbytes.com/lab/ternary-conditionals/

need to be wrapped inside a check that confirms that WordPress is loading
a page: see the is_page() function.

5. Breadcrumb Navigation – without a plug-in

There are plenty of WordPress extensions that generate breadcrumb
navigation. But you can actually create custom breadcrumb navigation
with only a handful of lines of code in the template, opening up greater
control and, potentially, less overhead. This approach to breadcrumbs builds
on the get_post_ancestors function discussed in tip #4.

This tip won’t review formatting of breadcrumbs; for this example, the
breadcrumbs will be dropped in an unordered bullet list. As it happens, lists
of links tend to be a good format for search engines, and you can format
them almost any way you like.

To start with, here is a basic implementation of breadcrumbs that only deals
with pages and includes a breadcrumb for “home” (the front page of the
site) at the beginning of the list. Depending on the design of a particular
template, some checks may need to placed around this code. In this
example, it will be assumed that this code will be placed in the header.php
template file, that the crumbs should appear only on pages, and that it

Smashing eBook #11│Mastering WordPress │ 51

http://codex.wordpress.org/Function_Reference/is_page
http://codex.wordpress.org/Function_Reference/is_page

should not show up on the front page. The current page and front page link
will also be assigned special CSS classes for styling purposes.

if (is_page() && !is_front_page()) {

 echo '<ul id="breadcrumbs">';

 echo '<li class="front_page">Home';

 $post_ancestors = get_post_ancestors($post);

 if ($post_ancestors) {

 $post_ancestors = array_reverse($post_ancestors);

 foreach ($post_ancestors as $crumb)

 echo ''.get_the_title($crumb).'</
li>';

 }

 echo '<li class="current">'.get_the_title().'';

 echo '';

}

If the WordPress implementation has a static front page and has been
assigned a “blog” page, one might want to show the breadcrumb path to
the blog page. This can be accomplished by adding is_home() to the
conditional check at the top:

if ((is_page() && !is_front_page()) || is_home()) {

 ...

The next evolution of this code involves the inclusion of breadcrumbs for
individual category archives as well as individual posts. Note that WordPress
allows posts to be assigned to multiple categories; to avoid making our
breadcrumb trail unwieldily, the script will simply grab the first category
assigned to the post. For the sake of simplicity, the example will be
assumed that hierarchical categories are not in play.

Smashing eBook #11│Mastering WordPress │ 52

if ((is_page() && !is_front_page()) || is_home() || is_category()
|| is_single()) {

 echo '<ul id="breadcrumbs">';

 echo '<li class="front_page">Home';

 $post_ancestors = get_post_ancestors($post);

 if ($post_ancestors) {

 $post_ancestors = array_reverse($post_ancestors);

 foreach ($post_ancestors as $crumb)

 echo ''.get_the_title($crumb).'</
li>';

 }

 if (is_category() || is_single()) {

 $category = get_the_category();

 echo '<a href="'.get_category_link($category[0]-
>cat_ID).'">'.$category[0]->cat_name.'';

 }

 if (!is_category())

 echo '<li class="current">'.get_the_title().'';

 echo '';

}

There are many ways to extend the breadcrumb navigation further. For
instance, a developer might want breadcrumbs for different types of
archives (tags, months, etc), or may incorporate hierarchical categories.
While this article won’t walk through every possible implementation, the
samples above should provide you with a solid framework to work with.

Smashing eBook #11│Mastering WordPress │ 53

6. Creating sidebar content elements
Many websites feature distinct sidebars with common elements represented
throughout the site, such as section navigation, contact information, and
special badges (i.e. “Follow us on Twitter”). It is also common for sites to
feature more basic HTML blocks in the sidebar that are associated with a
single page, or several pages that may or may not be tied together in any
logical way.

Some content management systems enable the idea of multiple content
blocks out of the box. For instance, CitySoft Community Enterprise allows
the editor to select from a variety of page layouts, some of which include
multiple blocks of content that can be edited independently. This is
convenient for some, though it does have some limitations: (1) it can be hard
to integrate the prefabbed layout blocks into unusual areas in the overall
site template, and (2), reusing some of these content blocks for multiple
pages is not possible (without some additional, complicated custom
development).

Here’s how to implement reusable “sidebar elements” in WordPress. For
the sake of simplicity, this example assumes that only one sidebar element
can be assigned to a page.

Fundamentally, these sidebar elements will simply be pages. Although non-
essential, it can be a good organizational practice to create a page called
“sidebars” that will contain all of the sidebar pages. Be careful to exclude
this page in top level navigation and any other page lists or sitemaps.
Sidebar elements are then constructed as “private” pages (so they cannot
be searched or viewed independently by general visitors), with the “sidebar”
container page set as the parent page. The title of the sidebar page will be
used for the title of the sidebar element.

Smashing eBook #11│Mastering WordPress │ 54

http://www.citysoft.com/
http://www.citysoft.com/

Once the sidebar has been created, the editor will need the ID of the
sidebar page. The easiest way to find this is by rolling over the page title in
the admin page list, and looking for the “id” in the URL (typically in the status
bar).

To assign the sidebar to a page, a new custom field is assigned to the page
that will hold the sidebar called “sidebar”. The value for this field is the page
ID of the sidebar page.

Now, in the sidebar template file (or wherever the sidebar element should
appear), some code is included that checks for the custom field, and – if
found – drops in the referenced page. To make the process of dropping the
sidebar page content a bit more simple, the example will use the light
weight plug-in, Improved Include Page. Here’s the code, which also drops
“h2″ tags around the page title:

$sidebar_pg = get_post_meta($post->ID,'sidebar', true);

if (function_exists('iinclude_page') && $sidebar_pg) {

 include_page($sidebar_pg,'displayTitle=true&titleBefore=<h2>&titleA
fter=</h2>

 &displayStyle=DT_FULL_CONTENT&allowStatus=publish,private');

}

Smashing eBook #11│Mastering WordPress │ 55

http://codex.wordpress.org/Using_Custom_Fields
http://codex.wordpress.org/Using_Custom_Fields
http://www.vtardia.com/resources/improved-include-page/
http://www.vtardia.com/resources/improved-include-page/

7. Feature selected posts on the front page
Many CMS implementations feature some selected items from the blog feed
on the home page, or even throughout the site in a sidebar or footer
element. Content editors are, wisely, selective about what merits a front
page mention. Here’s how to implement a selective blog feed that can be
placed on a front page template or anywhere else in the design.

A special category is needed to classify posts as “Featured”; a category
named “Featured” or “Front Page” is a good convention. For the content
editor, marking a post as “featured” is as simple as adding it to this category
(remember: posts can have multiple categories). On the template side, the
ID of the “featured” category will be needed. The easiest way to find the
category ID is by rolling over the category “edit link” inside WordPress
administration and noting the ID in the URL (typically in the status bar).

Using this ID (“4″ in the example), and the number of posts to feature on the
home page (let’s say three), the following code will list the featured posts
beginning with the recent ones.

Smashing eBook #11│Mastering WordPress │ 56

echo "<h3>Featured Blog Posts</h3>";

echo "";

$feat_posts = get_posts('numberposts=4&category=71');

foreach ($feat_posts as $feat) {

 echo 'ID).'">'.$feat->
post_title.'';

}

echo "";

As with the other examples, this code can be extended in a number of ways.
For example, the SGE Corporation front page features the excerpt for the
most recent item. The excerpt can be manually entered in the “excerpt” field
or pulled automatically (if none is provided) by grabbing a certain number of
characters from the beginning of the post’s content.

8. Highlight current post’s category
WordPress page lists assign special classes to each item, including classes
that indicate whether a page is the current page, a parent page, an ancestor
page, and so forth. Category lists do assign a special class (current-cat) to
appropriate list items when the user is browsing a category’s archive.
Unfortunately, categories do not, by default, get this special class
assigned to them when the user is on a post inside the category.
However, one can override this default limitation by grabbing the current
category ID and passing it to the wp_list_categories function.

$category = get_the_category();

wp_list_categories('current_category='.$category[0]->cat_ID);

Note that there is one significant downside to this approach – only some
category can be passed to the list categories function. So if a post is
assigned to multiple categories, only the first category will be highlighted.
However, if a site has distinct categories (say a news feed and an editorial

Smashing eBook #11│Mastering WordPress │ 57

http://www.sge-corp.com/
http://www.sge-corp.com/

feed), this can help a template developer treat the category more like a
page navigation item.

Smashing eBook #11│Mastering WordPress │ 58

Advanced Power Tips For WordPress
Template Developers

Jacob Goldman

In the previous chapter, I presented 8 basic techniques for adding popular
features to the front end of a WordPress-powered website. The premise was
that WordPress has become an elegant, lightweight content management
solution that offers the fundamentals out of the box, atop a modular core
that offers incredible potential in the hands of a capable developer.

WordPress does not try to be an “everything to everyone” CMS right out of
the box. Many systems do an average job incorporating 99% of what the
potential CMS market might need, even if the last 15-20% is used only by a
fraction of the market and adds considerably to the system’s overall
“heft” (or bloat). At the other end of the spectrum are completely custom
solutions that are finely tailored to exact needs, at the cost of reinventing
wheels like polished content editing with media management and version
control.

The self-proclaimed WordPress “code poets” have, alternatively, focused on
doing an A+ job with the “fat middle”: the 80-85% of features that almost
everyone needs, and coupling those with a first rate framework and API that
enables capable developers to add in almost any niche or “long tail” feature.
In fact, the core WordPress framework is so capable that a handful of
“intermediary” frameworks that sit on top of it have already emerged.

That previous “Power Tips” entry scratched the surface, covering a handful
of API calls mixed in with some simple PHP code and configuration tips
intended to help beginner WordPress template developers kick their game
up a notch. This chapter takes power tips to the next level, expanding on

Smashing eBook #11│Mastering WordPress │ 59

http://livepage.apple.com/
http://livepage.apple.com/

some of the topics in the first chapter, and introducing more advanced
techniques and methods for customizing not only the front end, but the
content management (or back end) experience.

Multiple Column Content Techniques
The average blog or website has a single, clearly defined block of space for
a given page’s or post’s unique content. But there are plenty of creative
websites that don’t conform to this simple notion of “one unique block”
per page. A creative online portfolio layout might feature a screenshot and
project description in a left column, and a list of technologies used in a right
column. Both the left and right column are unique to each portfolio page.

Here’s a screenshot from an in-development website project, built on
WordPress. The “projects” area features portfolio-like layouts of green
building projects throughout the state. In addition to a specially designed
gallery visualization, note that the individual project profile has two distinct
columns.

Smashing eBook #11│Mastering WordPress │ 60

A more commonplace layout might feature an obvious, primary block of
page content, but also feature a sidebar element that is unique to the
current page: maybe a quote from a customer about a specific product or
service. The “Power Tips” article offered a method to associate sidebar
elements with multiple pages using custom fields and page IDs (tip #6). That
approach isn’t very effective or efficient for designs with a 1:1 relationship
between sidebars and pages (where each page has a unique sidebar
element).

Smashing eBook #11│Mastering WordPress │ 61

Yes, the developer could add table buttons to the WordPress editor, and let
content authors fend for themselves: a solution prone to problematic layouts
and bad output relied upon far too often. Here are a few simple options that
keep layout in the hands of the template developer while making content
management easier and problem-free.

SHORT, SIMPLE, AND HTML FREE? NO WORRIES.

Before we delve into solutions that assume a need for HTML formatting in
this second content block, let’s review a more basic solution. If the second
column does not need to be formatted – or maybe should not be formatted
by the editor for design reasons – then a simple custom field will do the
trick. In the case of a simple sidebar element, like a customer quote, this
may be just the trick.

There are already great tutorials and useful custom fields hacks that walk
through the WordPress custom fields feature, so if you are not familiar with
the basic idea behind custom fields, start there. Let’s go ahead and create a
custom field named “sidebar_content” (also known as the “key”), and put
some simple content in there. Just to shake things up, let’s assume we do
need a very basic HTML feature for our content authors, who know nothing
about HTML: line and paragraph breaks. Let’s also assume that we want to

Smashing eBook #11│Mastering WordPress │ 62

format this sidebar content on the front end with some of the basic
automatic niceties we get when we output post content, like curly quotation
marks.

Here’s how we can output this in any template file, using the “the_content”
filter to apply the WordPress content filter to our custom field. That filter
converts single line breaks to break tags, double line breaks to
paragraphing tags, and even transforms simple quotation marks to curly
quotes!

$sidebar_content = get_post_meta($post->ID, "sidebar_content",
true);

if ($sidebar_content) {

 echo '<div id="sidebar_content">';

 echo apply_filters("the_content", $sidebar_content);

 echo '</div>';

}

Of course, we can make this even more intuitive for the content authors by
creating a new meta field box for sidebar content instead of relying on the
generic “custom fields” box… which will be covered later in this article!

Smashing eBook #11│Mastering WordPress │ 63

http://codex.wordpress.org/Plugin_API/Filter_Reference/the_content
http://codex.wordpress.org/Plugin_API/Filter_Reference/the_content

USING THE MORE TAG FOR… MORE

The WordPress editor has a button “more tag” button that is primarily
intended to separate “above the fold” content from “below the fold”
content. If you are not already familiar with the “more” divider, read up on
that first.

If the pages or posts that need a two column layouts also rely on traditional
more separation, this tip will most likely not be effective, unless one of the
columns is also the intended “above the fold” content. However, most
instances where a two column layout is desirable don’t overlap with a
traditional above / below the fold need. It is fairly rare, for instance, for
pages (vs. posts) to actually make any use of the more tag. So let’s start
taking advantage of that feature!

The basic idea is that content above the more divider will represent one
block of HTML content, while content below the divider will represent a
second block (be it a sidebar element or column).

Here is how to retrieve content above and below the more divider as
separate blocks of HTML content in the corresponding page template file.

Smashing eBook #11│Mastering WordPress │ 64

http://codex.wordpress.org/Customizing_the_Read_More
http://codex.wordpress.org/Customizing_the_Read_More
http://codex.wordpress.org/Customizing_the_Read_More
http://codex.wordpress.org/Customizing_the_Read_More

global $more;

$more = 0;

echo '<div id="column_one">';

the_content('');

echo '</div>':

$more = 1;

echo '<div id="column_two">';

the_content('',true);

echo '</div>';

The global “more” variable lets WordPress know whether or not the content
is being rendered in an “above the fold” (or “teaser”) only view. By passing
an empty string to “the_content”, we prevent a “read more” link from
showing up below the HTML content. And, for column two, we pass a
second parameter to “the_content” – true – which instructs WordPress to
output the content without the teaser.

If the intent is to output the second block of content outside of the loop in
another template element, such as a sidebar, this approach is a bit trickier.
One option would be to store the second block of content in a uniquely
named variable, declare it as a global variable in the sidebar, and – if there
is any content inside the variable – output a new block. An alternative could
involve checking which page template is in use with the “is_page_template”
function, and, if the two column template is in use, calling “the_content” with
the second parameter set to true, as in the example above.

THE PLUG-IN SOLUTION: ADDING A SECOND HTML CONTENT BLOCK
TO THE EDITOR

The ideal solution, of course, might be a second HTML editor field on the
WordPress page or post editor. Unfortunately, no such plug-in existed… until
recently! While writing this article, we decided it was time such a solution did

Smashing eBook #11│Mastering WordPress │ 65

http://codex.wordpress.org/Template_Tags/the_content
http://codex.wordpress.org/Template_Tags/the_content
http://codex.wordpress.org/Conditional_Tags%23Is_a_Page_Template
http://codex.wordpress.org/Conditional_Tags%23Is_a_Page_Template
http://codex.wordpress.org/Conditional_Tags%23Is_a_Page_Template
http://codex.wordpress.org/Conditional_Tags%23Is_a_Page_Template

exist, and so the author of this article is happy to present a free, open
source plug-in that combines some savvy understanding of how TinyMCE
works (hint: it’s as simple as a class name) with the custom meta box tutorial
covered later in this article, and a little bit of extra customization and polish
thrown into the mix.

Secondary HTML Content adds a second HTML editor to pages, posts, or
both (customizable with a simple settings panel). You can output the content
in a sidebar with an included widget, or integrate it more tightly with the
template by using “the_content_2″ and “get_the_content_2″ functions.

Smashing eBook #11│Mastering WordPress │ 66

http://wordpress.org/extend/plugins/secondary-html-content/
http://wordpress.org/extend/plugins/secondary-html-content/

Associating Pages with Post Content: Reloaded
The chapter on “Power Tips” covered the basic foundation for associating
different WordPress pages with different post categories. The basic premise
was that many sites require, effectively, different post “feeds” on different
pages. For instance, there may be a company blog, but there may also be
an independent news feed.

This continuation offers specific tips that extend the core concept
introduced in part 1, making it easier to have multiple page / category
associations, preventing entrance into the “real” category archive, and
ensuring that individual post views retain a visual and architectural
association with their parent “category page” layout.

Be sure to to read part 1 before proceeding.

A REVIEW OF THE BASICS & THE TWO FUNDAMENTAL APPROACHES

At the heart of the category / page association (covered in part one) was:

• A matching of the “page slug” with the “category slug.”

• Using “query_posts” and the category parameter to exclude standalone
page categories from the primary feed

• Using a dedicated page template with “query_posts” and the “category
name” parameter to create a page featuring a feed for a single
category.

Smashing eBook #11│Mastering WordPress │ 67

http://codex.wordpress.org/Template_Tags/query_posts
http://codex.wordpress.org/Template_Tags/query_posts

Before delving into the tips that extend those ideas, it is important to make a
distinction between two common but fundamentally different use cases for
page / category association. The more typical use case, which the first part
was tailored to, is a website that has a primary feed, like a blog, but also
has one or two distinct feeds, most often for a formal news or press feed.

The second use case is a bit more esoteric: there is no primary feed. The
site has many pages, and many (but not all) of those top level pages are
individual feeds of posts. The example, at the end of this power tip, m62.net,
is one such use case. Another common use case might be – again – a
portfolio centric website.

Let’s say we want to create “Joe’s Portfolio”, and Joe wants to feature 4
distinct areas of expertise. Each area of expertise should be a top level
page, say, joes-portfolio.com/web-design, joes-portfolio.com/graphic-
design, etc. Joe wants to have a little write-up about each service area at
the top of the page, followed by a feed of case studies. Why a feed instead
of sub-pages? Maybe Joe wants prospects to be able to subscribe to an
RSS feed for each area of expertise; maybe he wants to easily cross-tag
case studies based on industry; maybe he plans to update frequently and

Smashing eBook #11│Mastering WordPress │ 68

http://www.m62.net/
http://www.m62.net/

doesn’t want a huge page sitemap or wants visitors to page through a date-
organized collection of case studies. There are many reasons to use posts
instead of pages.

The following tips provide solutions for both use cases.

AUTOMATICALLY DETERMINING THE PAGE / CATEGORY
ASSOCIATION

Part one suggested that a unique page template be created for any page
associated with a category. That page template would then query for posts
using a hardcoded category name or category ID. If there are only one or
two standalone “category pages”, this is an efficient and effective solution.

However, if there are many page / category associations, as in use case #2
(no primary feed), the process of manually creating page templates for each
association is tedious to build and maintain, and not realistic if content
editors who don’t program need to be able to create more page / category
associations on demand.

An alternative would be to create a generic page template, let’s say
“template-category-connector.php”, that is assigned to all pages associated
with a category, and automatically determines the right category to query.

The following code performs the matching and executes the post query.
The magic happens by taking advantage of our matching page and
category slugs. Once again, if the website does not use permalinks, an
alternative approach will be required (one permalink-free alternative could
involve a custom field with the associated category ID).

$cat = get_category_by_slug($post->post_name);

query_posts('cat='.$cat->term_id);

That’s all there is to it… just proceed on with the post loop to output the
applicable category’s posts. Note that the template should probably check

Smashing eBook #11│Mastering WordPress │ 69

http://codex.wordpress.org/Pages%23Creating_Your_Own_Page_Templates
http://codex.wordpress.org/Pages%23Creating_Your_Own_Page_Templates
http://codex.wordpress.org/The_Loop
http://codex.wordpress.org/The_Loop

for an actual return value from line 1, and output a graceful error in the event
there is no match.

HANDLING ENTRY INTO THE “REAL” CATEGORY ARCHIVE

Now that there is a dedicated page layout that handles the category feed,
we will want to be make certain that the visitor doesn’t land on WordPress’
default category “archive” view. For instance, when using permalinks with
the default “category base” value, the archive view for a category with a top
level category assigned a “web-design” slug would be: mysiteurl.com/
category/web-design. However, the intent is for visitors to view this category
at our top level page: mysiteurl.com/web-design.

By combining the WordPress category template file with some smart
redirects, we can prevent entry into the default category archive. Out of
the box, the WordPress template system allows developers to create global
category archive templates as well as templates for individual category
archives.

If we are in use case #1 – a site with a traditional blog feed and a standalone
news feed on a “press releases” page – we will want to use the latter
solution. Let’s say, as in part one, the category ID for “press releases” is 5.
We create a template file in our theme folder named category-5.php. Under
use case #2 (no primary feed), we will want to redirect all category archive
traffic, in which case we need to work with the category.php template file.

A few lines of code in either template file will redirect visitors to the right
place. We’ll also pass HTTP error / redirect code “301″ – which will tell
search engines to permanently redirect their link to the right location. Note
that this particular code assumes we are using a permalink configuration.
Line 2 can be modified to accomodate that situation.

$destination = get_bloginfo('url');

Smashing eBook #11│Mastering WordPress │ 70

http://codex.wordpress.org/Template_Hierarchy%23Category_display
http://codex.wordpress.org/Template_Hierarchy%23Category_display
http://www.checkupdown.com/status/E301.html
http://www.checkupdown.com/status/E301.html

$destination .=
str_replace('/'.get_option('category_base').'/','/',
$_SERVER['REQUEST_URI']);

wp_redirect($destination, 301);

In effect, that code removes the category base (“/category” by default) from
the overall relative URL, and safely redirects the visitor to the page with the
matching slug. Of course, if the site falls under use case #1 (one or two stand
alone feeds), the line three could dropped into a specific category template
(i.e. category-5.php) with a hardcoded absolute URL for the redirect
destination.

HIDING STANDALONE CATEGORIES FROM THE CATEGORY LIST &
PRIMARY SITE FEED

In the first use case (only isolating one or two categories from a primary
feed), it may be necessary to prevent isolated categories or the posts
within those categories from appearing in some common theme elements
that would traditionally include them.

Consider the example from part one: a site with a traditional blog and a
standalone press release feed. Assume the owners of the site want the RSS
feed for the blog to be persistently available throughout the site (typically
manifesting itself as an RSS icon in the browser location bar), but don’t want
the press release items included in that primary feed. By default, the
WordPress primary feed is available at “/feed”, and includes all published
posts, regardless of category or any other post property.

Smashing eBook #11│Mastering WordPress │ 71

http://codex.wordpress.org/Function_Reference/wp_redirect
http://codex.wordpress.org/Function_Reference/wp_redirect

To exclude categories from the primary RSS feed, we need to filter the
WordPress function that retrieves the posts. Let’s again assume that the
category ID for Press Releases is 5. The following code should be placed in
the template’s “functions.php” file.

add_filter('pre_get_posts','exclude_press');

function exclude_press($query) {

 if($query->is_feed && !$query->is_category) $query-
>set('cat','-5');

}

To summarize, we use the “pre_get_posts” filter to modify the post query
before it executes. Within a new filter – named “exclude_press” – a
conditional confirms that the post query is for a feed, and that the query is
not for an individual category. If the check pans out, the query is modified to
exclude category 5 before execution.

The notion of globally filtering the post query may have broader implications
depending on the site’s unique requirements. With some smart conditional
checking, the filter could be extended to prevent the category from
appearing anywhere except within the category or isolated post view. But
be careful when extending the filter, and be sure to consider all possible
views, including administrative views!

Smashing eBook #11│Mastering WordPress │ 72

http://codex.wordpress.org/Function_Reference/add_filter
http://codex.wordpress.org/Function_Reference/add_filter
http://codex.wordpress.org/Theme_Development%23Theme_Functions_File
http://codex.wordpress.org/Theme_Development%23Theme_Functions_File

The category list is another frequently used site element that isolated
categories should, in most cases, be excluded from. If the template calls the
category list in only one or two places by code (as opposed to using the
categories widget), excluding categories from the list is straight forward.
However, if the categories widget is in use, or the category list is used
throughout the template, an alternative approach is required. Enter the
“list_terms_exclusions” filter. Again, the following code should be placed in
the “functions.php” template file.

add_filter('list_terms_exclusions', 'filter_press');

function filter_press($exclusions) {

 $exclusions .= " AND t.term_id != 5 ";

 return $exclusions;

}

The return value of a “terms exclusions” filter is tacked onto the “where”
clause in the SQL query that retrieves the terms. Without digging too deep
here, the reason for discussing “terms” as opposed to, say, “categories” is
because WordPress abstracts a variety of different taxonomies (link
categories, post categories, tags, custom taxonomies, etc) into a unified
database model that handles all taxonomies. Calls to “get categories”, “get
tags”, and so forth, are all referring back to general “terms” behind the
scenes. Ever wonder why category, tag, and other IDs tend to jump around?
They are all being added to the same table. Assuming a fairly clean install,
try adding a new post category, and note the ID. Then add a tag, and note
its ID… one greater than the new post category.

Smashing eBook #11│Mastering WordPress │ 73

http://codex.wordpress.org/Template_Tags/wp_list_categories
http://codex.wordpress.org/Template_Tags/wp_list_categories
http://codex.wordpress.org/Template_Tags/wp_list_categories
http://codex.wordpress.org/Template_Tags/wp_list_categories

RETAINING THE PAGE LAYOUT FOR POST VIEWS WITHIN A
CATEGORY PAGE

One of the most common challenges to tackle with page / category
association is retaining a sense that the visitor is still within the “category
page” hierarchy – and not a global feed hierarchy – when a visitor is
reading an individual post. Part one hinted at this challenge under “The devil
is in the details,” and started to suggest a path that incorporated using the
“in_category” function. We will explain how to use “in_category” within
templates, as well as how to trick functions that reference the original
query object into thinking that they are “within” the category page.

Let’s start with case #1, and building on the example in the first article,
assume we only need to contend with one isolated feed, “Press
Releases” (category ID 5).

Say the theme has a sidebar template that lists post categories when
rendering the blog part of the site, and when rendering a standalone page,
shows a page list instead. Here’s an extremely simplified version of what
that might look inside the sidebar template file.

Smashing eBook #11│Mastering WordPress │ 74

if (is_page())

{

 wp_list_pages();

}

else

{

 wp_list_categories();

}

Of course, there may be alternative widget sets for pages or posts, and
there is likely to be more than just one element in the sidebar. But the
concept should hold. Now going back to the example, the theme should
render posts in category 5 (Press Releases) as if the visitor were on a page
(not the blog). Leveraging the “in_category” check, the code above would
now like the following:

if (is_page() || in_category(5))

{

 wp_list_pages();

}

else

{

 wp_list_categories();

}

Note that if there are multiple categories whose posts should resemble
page output, the “in_category” function should be passed an array of IDs,
like so:

in_category(array(5,7));

The need for a “in category” check is probably moot in case #2 (multiple
page/category associations, without a primary feed): the template is
probably structured to output the same elements on pages and posts from

Smashing eBook #11│Mastering WordPress │ 75

the get go. In other words, everything is handled as if it is a page since there
is no primary feed. However, the following tip – that dynamically looks up
the faux parent page ID (the page associated with the category) – is
necessary for the next part of this tip. Just amend the code to check if
“faux_parent_page” has a valid value: if it does, then the post is inside an
isolated category associated with a page.

Once again, this approach to dynamically seeking the faux parent page (the
category page) depends on taking advantage of the matching permalink
structure between post categories and pages that is at the heart of this
association. If the site is unable to use permalinks, a more complex
alternative look up of the faux parent page will be necessary.

foreach(get_the_category() as $category) {

 $faux_parent_path = '/'.get_category_parents($category, FALSE, '/',
TRUE);

}

$faux_parent_page = get_page_by_path($faux_parent_path)->ID;

Now that we have the ID of the category’s associated page, we can trick
“black box” theme elements that determine page or post properties on their
own (by referencing the post query) into thinking they are actually working
with the category page.

The most common use case is page navigation. Whether its breadcrumbs, a
top level page menu that should retain “current” (on) states, or a side
navigation menu that should display the current section, there are many
“black box” navigation functions that need to be tricked into rendering
themselves as if on the category page.

Let’s use a simple top level page list, which should maintain proper
“current_page”, “current_page_parent” (and so on) classes when on a post
under a category page. Here’s what that simple function might look like
before our changes:

Smashing eBook #11│Mastering WordPress │ 76

wp_list_pages('depth=1');

Of course, posts do not normally have parent pages, so there will be no
“current” classes assigned to that output when reading a post. Here is how
to trick that function into thinking it is rendering the navigation for the
“parent” category page.

//retrieve faux parent page dynamically… can skip and hard code in
case 1

foreach(get_the_category() as $category) {

 $faux_parent_path = '/'.get_category_parents($category, FALSE,
'/', TRUE);

}

$faux_parent_page = get_page_by_path($faux_parent_path)->ID;

//reset the post query as if on the faux parent page

query_posts('page_id='.$faux_parent_page);

//execute our "faked out" function

wp_list_pages('depth=1');

//reset the query back to the initial state

wp_reset_query();

If there are multiple elements that need be “tricked,” a best practice would
be to put the “faux parent page” retriever at the top of the template, and
declare it a global in any template files that need it. This would avoid
repeated look ups of the faux parent page.

AN EXAMPLE: SEEING IT ALL PUT TOGETHER

A great example of a WordPress-powered CMS that pushes use case #2 to
its limits can be seen at the home of m62 visual communications, at http://
www.m62.net.

Smashing eBook #11│Mastering WordPress │ 77

http://www.m62.net/
http://www.m62.net/
http://www.m62.net/
http://www.m62.net/

All of the navigation items across the top (Presentation Theory, PowerPoint
Slides, etc) are pages associated with post categories. The sub-navigation
on the right contains sub-pages that are also associated with sub-
categories. For example, in the screenshot above (available here), the visitor
is on the “Pharmaceutical Templates” page (faux category), which is a child
of the “PowerPoint Templates” page (also a faux category). The content
starting with “Download free” (below the page title) is the content from the
“Pharmaceutical Templates” page. The posts below the “Next Steps” bar,
titled “Latest in Pharmaceutical Templates”, are the posts inside that
category. The applicable related category is automatically discovered by the
WordPress template, populating the category name “Latest in X” and recent
posts. Now let’s look at one of the posts inside that category.

Smashing eBook #11│Mastering WordPress │ 78

http://www.m62.net/powerpoint-templates/pharmaceutical-templates/
http://www.m62.net/powerpoint-templates/pharmaceutical-templates/

Using the tips outlined above, the individual post retains the feel of being
within the “Pharmaceutical Templates” page, right down to the breadcrumb
navigation and “current” states in the navigation.

But not only does m62.net use category / page associations for most top
and second level navigation items, it actually extends the concept to tags.
The 5 “tabs” on the top right actually represent post tags, and each has a
“tag page.”

Smashing eBook #11│Mastering WordPress │ 79

Advanced Power Tips for WordPress
Template Developers: Reloaded

Jacob Goldman

In the previous chapter we covered multiple column content techniques and
associating pages with post content and also discussed how to use the
“More”-tag, hide standalone categories from the category list and retain the
page layout for post views within a category page. This chapter presents
techniques on how to customize basic content administration and add
features to the post and page editor in WordPress.

Customizing Basic Content Administration
Many template developers have learned the art of making beautiful, highly
customized front end templates for WordPress. But the real wizards know
how to tailor the WordPress administrative console to create a tailored,
customized experience for content managers.

CUSTOMIZING THE DASHBOARD WIDGETS

The dashboard is the first screen presented to registered visitors when they
visit WordPress administration (/wp-admin). Tailoring the dashboard to a
client can be the difference between a great first impression and a
confused one, particularly if the theme customizes the administrative
experience.

The dashboard is comprised of a number of widgets that can be
repositioned and toggled using the “screen options” tab. WordPress has a
hook – wp_dashboard_setup – that can be used to customize the

Smashing eBook #11│Mastering WordPress │ 80

dashboard widgets, as well as a function – wp_add_dashboard_widget –
that allows developers to easily add new widgets.

The WordPress codex documents the process of adding and removing
widgets.

Here is a practical use case based on that documentation: let’s remove all of
the default widgets that don’t pertain to managing a typical site, and add
one simple widget that welcomes the administrator and reminds them how
to contact the developer for support.

add_action('wp_dashboard_setup', 'my_custom_dashboard_widgets');

function my_custom_dashboard_widgets() {

 global $wp_meta_boxes;

 unset($wp_meta_boxes['dashboard']['normal']['core']
['dashboard_plugins']);

 unset($wp_meta_boxes['dashboard']['side']['core']
['dashboard_primary']);

 unset($wp_meta_boxes['dashboard']['side']['core']
['dashboard_secondary']);

 wp_add_dashboard_widget('custom_help_widget', 'Help and Support',
'custom_dashboard_help');

}

function custom_dashboard_help() {

 echo '<p>Welcome to your custom theme! Need help? Contact the
developer here.</p>';

}

Smashing eBook #11│Mastering WordPress │ 81

http://codex.wordpress.org/Dashboard_Widgets_API
http://codex.wordpress.org/Dashboard_Widgets_API
http://codex.wordpress.org/Dashboard_Widgets_API
http://codex.wordpress.org/Dashboard_Widgets_API

CUSTOMIZING THE CONTEXTUAL HELP DROPDOWN

Throughout its administrative panel, WordPress has a small “Help” tab just
below the administrative header. Clicking this tab rolls down contextual help
for the current administrative page.

Smashing eBook #11│Mastering WordPress │ 82

If your theme has some special functionality that might not be intuitive, it’s a
good practice to add some additional contextual help. For example
purposes, let’s assume that the theme has been customized to use the
“more divider” to separate content into two columns, as described in the
first tip. That’s probably not an obvious feature for your average content
editor. To accomplish this, hook the contextual help text when on the “new
page” and “edit page” administrative pages, and add a note about that
feature.

//hook loading of new page and edit page screens

add_action('load-page-new.php','add_custom_help_page');

add_action('load-page.php','add_custom_help_page');

function add_custom_help_page() {

 //the contextual help filter

 add_filter('contextual_help','custom_page_help');

}

function custom_page_help($help) {

Smashing eBook #11│Mastering WordPress │ 83

 //keep the existing help copy

 echo $help;

 //add some new copy

 echo "<h5>Custom Features</h5>";

 echo "<p>Content placed above the more divider will appear in
column 1. Content placed below the divider will appear in column
2.</p>";

}

DROPPING IN YOUR OWN LOGO

Providing the client some administrative branding can be quick and easy.
Here’s how to replace the default WordPress “W” logo in the
administrative header with a custom alternative.

First, create an image that fits the allocated space. As of WordPress 2.8, the
logo is a 30 pixels wide and 31 pixels tall transparent GIF. When using a

Smashing eBook #11│Mastering WordPress │ 84

transparent GIF or 8-bit PNG, ensure that the image matte matches the
header background color: hex value 464646.

A logo named “custom_logo.gif” inside the template directory’s image
subfolder can substitute the default WordPress logo with the following code
inside the theme’s “functions.php” file.

//hook the administrative header output

add_action('admin_head', 'my_custom_logo');

function my_custom_logo() {

 echo '

 <style type="text/css">

 #header-logo { background-image:
url('.get_bloginfo('template_directory').'/images/custom-
logo.gif) !important; }

 </style>

 ';

}

Smashing eBook #11│Mastering WordPress │ 85

HIDING FIELDS BASED ON USER ROLE

Basic contributors might be confused or distracted by some of the boxes
that surround the page or post editor, particularly if there are a handful of
plug-ins that have added their own meta boxes. Alternatively, the content
editor might simply want to keep author and contributor hands off of some
special fields or features.

Let’s say the content editor wants to keep authors and contributors way
from the “custom fields” box. We can use the “remove_meta_box” function
– regardless of user role – to remove that from all post editing screens like
so:

//hook the admin init

add_action('admin_init','customize_meta_boxes');

function customize_meta_boxes() {

 remove_meta_box('postcustom','post','normal');

}

The “remove_meta_box” function takes three parameters. The first is the ID
of the box. The easiest way to discover the ID of the meta box is to look for
the ID attribute of the corresponding DIV “postbox” in the source code. The
second parameter determines which the context the function applies to:
page, post, or link. Finally, the context attribute determines the position
within its context: normal, or advanced (in most cases, just setting this to
“normal” will work fine).

Smashing eBook #11│Mastering WordPress │ 86

The next step is to extend the “customize_meta_boxes” function so that the
“custom fields” box – ID “postcustom” – is only hidden from users with
author role or lower. We’ll use get_currentuserinfo to retrieve the user level.
According to the WordPress codex, authors represent level 2.

Smashing eBook #11│Mastering WordPress │ 87

http://codex.wordpress.org/Function_Reference/get_currentuserinfo
http://codex.wordpress.org/Function_Reference/get_currentuserinfo
http://codex.wordpress.org/Roles_and_Capabilities%23Author
http://codex.wordpress.org/Roles_and_Capabilities%23Author

//hook the admin init

add_action('admin_init','customize_meta_boxes');

function customize_meta_boxes() {

 //retrieve current user info

 global $current_user;

 get_currentuserinfo();

 //if current user level is less than 3, remove the postcustom meta
box

 if ($current_user->user_level < 3)

 remove_meta_box('postcustom','post','normal');

}

Adding Features to the Post & Page Editor
WordPress provides a “custom fields” box that makes it quick and easy to
start adding new metadata to your pages and posts. For a tech-savvy client
or low budget customization, this is a great, inexpensive method to start
adding some unique fields for a custom implementation.

Smashing eBook #11│Mastering WordPress │ 88

But there are plenty of times when something more specialized than a
generic “custom fields” box may be appropriate. A less savvy client may be
confused by the generic fields that lack any documentation. A checkbox for
a Boolean field may be more intuitive for a client than instructions to choose
the custom field name from a drop down and type in “1” or “true” under the
value. column Or maybe the field should be limited, in select box like
fashion, to a few different choices.

The WordPress API can be used to add custom meta boxes to pages and /
or posts. And with WordPress 2.8, adding new, tag-like taxonomies is a
cinch.

ADDING A CUSTOM META BOX

Let’s say a hyper-local journalist has hired us to build a news blog that
covers politics in New York City. The journalist has a few writers on her
team, none of whom are particularly tech-savvy, but they will all be set up as
authors and posting their reports directly in WordPress. Our imaginary client
wants each article associated with a single borough, in addition to a “city-

Smashing eBook #11│Mastering WordPress │ 89

wide” option. Articles will never be associated with 2 boroughs, and the staff
is prone to typos.

A developer accustomed to basic WordPress administrative customization
would probably go to “categories” first. Make a “city-wide” category, with
sub-categories for each borough. However, categories are multi-select, and
there’s no obvious way to prevent authors from selecting several.
Furthermore, the client wants the borough named at the beginning of the
article, and if categories are used in other ways (like news topics), extracting
the borough name would be a bit tricky.

So how about a “custom field” for “borough”? The authors never remember
to look in that generic custom fields box, and in their rush to meet deadlines,
occasionally spell the borough wrong, breaking the “filter by borough”
feature on the front end.

The right answer is a new custom “meta box,” with a drop down “Borough”
field. The WordPress Codex documents the “add_meta_box” function in
detail.

Let’s apply the code discussed in the codex to this use case, assuming we
want the “Borough” field to only appear on posts (not pages), and be shown
on the top-right of the post editor page.

/* Use the admin_menu action to define the custom boxes */

add_action('admin_menu', 'nyc_boroughs_add_custom_box');

/* Adds a custom section to the "side" of the post edit screen */

function nyc_boroughs_add_custom_box() {

 add_meta_box('nyc_boroughs', 'Applicable Borough',
'nyc_boroughs_custom_box', 'post', 'side', 'high');

}

/* prints the custom field in the new custom post section */

function nyc_boroughs_custom_box() {

Smashing eBook #11│Mastering WordPress │ 90

http://codex.wordpress.org/Function_Reference/add_meta_box
http://codex.wordpress.org/Function_Reference/add_meta_box

 //get post meta value

 global $post;

 $custom = get_post_meta($post->ID,'_nyc_borough',true);

 // use nonce for verification

 echo '<input type="hidden" name="nyc_boroughs_noncename"
id="nyc_boroughs_noncename" value="'.wp_create_nonce('nyc-
boroughs').'" />';

 // The actual fields for data entry

 echo '<label for="nyc_borough">Borough</label>';

 echo '<select name="nyc_borough" id="nyc_borough" size="1">';

 //lets create an array of boroughs to loop through

 $boroughs = array('Manhattan','Brooklyn','Queens','The
Bronx','Staten Island');

 foreach ($boroughs as $borough) {

 echo '<option value="'.$borough.'"';

 if ($custom == $borough) echo ' selected="selected"';

 echo '>'.$borough.'</option>';

 }

 echo "</select>";

}

/* use save_post action to handle data entered */

add_action('save_post', 'nyc_boroughs_save_postdata');

/* when the post is saved, save the custom data */

function nyc_boroughs_save_postdata($post_id) {

 // verify this with nonce because save_post can be triggered at
other times

Smashing eBook #11│Mastering WordPress │ 91

 if (!wp_verify_nonce($_POST['nyc_boroughs_noncename'], 'nyc-
boroughs')) return $post_id;

 // do not save if this is an auto save routine

 if (defined('DOING_AUTOSAVE') && DOING_AUTOSAVE) return $post_id;

 $nyc_borough = $_POST['nyc_borough'];

 update_post_meta($post_id, '_nyc_borough', $nyc_borough);

}

Take another look at the second to last line in that code block, where the
post metadata is updated (update_post_meta will also add the meta if it
does not exist). That function stores the field key and value (second and
third parameters), assigned to the designated post (first parameter) in the
same generic “way” that custom fields are stored. Notice that the field key
name was prefaced with an underscore: “_nyc_borough”. Meta fields with
keys beginning with an underscore are not shown in the generic “custom
fields” box. All other meta fields are shown in that box.

We can use this field value in our template just as we would embed generic
custom fields.

Smashing eBook #11│Mastering WordPress │ 92

echo get_post_meta($post->ID, '_nyc_borough', true);

If we want to do a post query that only includes posts in the “Queens”
borough, we can execute the query with the following code:

query_posts('meta_key=_nyc_borough&meta_value=Queens');

ADDING CUSTOM TAXONOMIES

A taxonomy, generically defined, is a “classification.” Post tags and
categories in WordPress are both types of taxonomies, one of which –
categories – has a “hierarchical” proprietary: categories can have child and
parent categories. The ability to define new taxonomies has actually been
around in some basic form since WordPress 2.3 – but WordPress 2.8 ups
the ante, making it incredibly easy for template developers to add and
manage tag-like taxonomies.

At the core API level, taxonomies may be hierarchical (or not, a la “tags”) ,
associated with pages or posts, and have a few other more esoteric
properties related to allowing post queries and permalink structures. The
potential for custom taxonomies is considerable – posts could easily have
two types of categories, pages could have multiple tags, and sites could
have multiple tag clouds based on groupings more specific that a generic
“tag.”

While the architecture for all of this is all there, the real magic of custom
taxonomies – introduced in 2.8 – has only been enabled for posts and non-
hierarchical types. But if those qualifications aren’t a show stopper, a
developer can get a lot of value out of just a few lines of code: a new tag-
like meta box added to posts, a new “posts menu” option for managing
those values, and the ability to easily output clouds, filter by taxonomies,
design taxonomy templates, and do just about anything one could do with
generic “tags” on the front end.

The WordPress Codex outlines the “register_taxonomy” function.

Smashing eBook #11│Mastering WordPress │ 93

http://codex.wordpress.org/Function_Reference/register_taxonomy
http://codex.wordpress.org/Function_Reference/register_taxonomy

Let’s go back to that hyper-local New York City politics blog. Say the editor
wants authors to be able to “tag” articles with a distinct “people” taxonomy,
but still wants to retain generic tagging. The new “people” taxonomy will
highlight the names of political leaders mentioned in articles. On the front
end the editor envisions a “tag cloud” that will help the most active
politicians get recognized (for better or worse!). Clicking on a leader’s name
in the cloud should bring up a list of articles “tagged” with the given
politician.

The following few lines of code will add the new “people” meta box to posts
and add a new option to the “posts” menu where the taxonomy values can
be managed.

//hook into the init action to add the taxonomy

add_action('init', 'create_nyc_people_taxonomy');

//create nyc people taxonomy

function create_nyc_people_taxonomy() {

 register_taxonomy('people', 'post', array('hierarchical' => false,
'label' => 'people'));

}

Smashing eBook #11│Mastering WordPress │ 94

To output a cloud for this custom taxonomy highlighting the 40 most-tagged
politicians, the generic “wp_tag_cloud” function can be used with a few
parameters.

wp_tag_cloud(array('taxonomy' => 'people', 'number' => 40));

To list the highlighted leaders in a single post

echo get_the_term_list($post->ID, 'people', 'People: ', ', ');

Clicking on a person’s name will automatically take the visitor to an archive
for that taxonomy. Custom template files can also be built for the custom
taxonomy. A “taxonomy.php” template file in the theme folder can be used
for all custom taxonomies. A “taxonomy-people.php” template file could be
used for the “people” taxonomy in the example. As with all archives, if no
taxonomy-specific template files are available, WordPress will fall back to
the generic “archive” and “index” template files.

Smashing eBook #11│Mastering WordPress │ 95

http://codex.wordpress.org/Template_Tags/wp_tag_cloud
http://codex.wordpress.org/Template_Tags/wp_tag_cloud

Ten !ings Every WordPress Plugin
Developer Should Know

Dave Donaldson

Plugins are a major part of why WordPress powers millions of blogs and
websites around the world. The ability to extend WordPress to meet just
about any need is a powerful motivator for choosing WordPress over other
alternatives. Having written several plugins myself, I’ve come to learn many
(but certainly not all) of the ins-and-outs of WordPress plugin development,
and this chapter is a culmination of the things I think every WordPress plugin
developer should know. Oh, and keep in mind everything you see here is
compatible with WordPress 3.0+.

Don’t Develop Without Debugging
The first thing you should do when developing a WordPress plugin is to
enable debugging, and I suggest leaving it on the entire time you’re writing
plugin code. When things go wrong, WordPress raises warnings and error
messages, but if you can’t see them then they might as well have not been
raised at all.

Enabling debugging also turns on WordPress notices, which is important
because that’s how you’ll know if you’re using any deprecated functions.
Deprecated functions may be removed from future versions of WordPress,
and just about every WordPress release contains functions slated to die at a
later date. If you see that you are using a deprecated function, it’s best to
find its replacement and use that instead.

Smashing eBook #11│Mastering WordPress │ 96

HOW TO ENABLE DEBUGGING

By default, WordPress debugging is turned off, so to enable it, open wp-
config.php (tip: make a backup copy of this file that you can revert to later if
needed) in the root of your WordPress installation and look for this line:

define('WP_DEBUG', false);

Replace that line with the following:

// Turns WordPress debugging on

define('WP_DEBUG', true);

Smashing eBook #11│Mastering WordPress │ 97

// Tells WordPress to log everything to the /wp-content/debug.log
file

define('WP_DEBUG_LOG', true);

// Doesn't force the PHP 'display_errors' variable to be on

define('WP_DEBUG_DISPLAY', false);

// Hides errors from being displayed on-screen

@ini_set('display_errors', 0);

With those lines added to your wp-config.php file, debugging is fully
enabled. Here’s an example of a notice that got logged to /wp-content/
debug.log for using a deprecated function:

[15-Feb-2011 20:09:14] PHP Notice: get_usermeta is deprecated since
version 3.0! Use get_user_meta() instead. in C:\Code\Plugins\wordpress
\wp-includes\functions.php on line 3237

With debugging enabled, keep a close eye on /wp-content/debug.log as
you develop your plugin. Doing so will save you, your users, and other
plugin developers a lot of headaches.

HOW TO LOG YOUR OWN DEBUG STATEMENTS

So what about logging your own debug statements? Well, the simplest way
is to use echo and see the message on the page. It’s the quick-and-dirty-
hack way to debug, but everyone has done it one time or another. A better
way would be to create a function that does this for you, and then you can
see all of your own debug statements in the debug.log file with everything
else.

Here’s a function you can use; notice that it only logs the message if
WP_DEBUG is enabled:

Smashing eBook #11│Mastering WordPress │ 98

function log_me($message) {

 if (WP_DEBUG === true) {

 if (is_array($message) || is_object($message)) {

 error_log(print_r($message, true));

 } else {

 error_log($message);

 }

 }

}

And then you can call the log_me function like this:

log_me(array('This is a message' => 'for debugging purposes'));

log_me('This is a message for debugging purposes');

USE THE BLACKBOX DEBUG BAR PLUGIN

I only recently discovered this plugin, but it’s already been a huge help as I
work on my own plugins. The BlackBox plugin adds a thin black bar to the
top of any WordPress post or page, and provides quick access to errors,
global variables, profile data, and SQL queries.

Clicking on the Globals tab in the bar shows all of the global variables and
their values that were part of the request, essentially everything in the
$_GET, $_POST, $_COOKIE, $_SESSION, and $_SERVER variables:

Smashing eBook #11│Mastering WordPress │ 99

The next tab is the Profiler, which displays the time that passed since the
profiler was started and the total memory WordPress was using when the
checkpoint was reached:

You can add your own checkpoints to the Profiler by putting this line of
code anywhere in your plugin where you want to capture a measurement:

apply_filters('debug', 'This is a checkpoint');

Smashing eBook #11│Mastering WordPress │ 100

Perhaps the most valuable tab in the BlackBox plugin is the SQL tab, which
shows you all of the database queries that executed as part of the request.
Very useful for determining long-running database calls:

And finally we have the Errors tab, which lists all of the notices, warnings,
and errors that occurred during the request:

By providing quick access to essential debug information, the BlackBox
plugin is a big-timer when it comes to debugging your WordPress plugin.

Prefix Your Functions
One of the first things that bit me when I started developing WordPress
plugins was finding out that other plugin developers sometimes use the
same names for functions that I use. For example, function names like
copy_file(), save_data(), and database_table_exists() have a
decent chance of being used by other plugins in addition to yours.

Smashing eBook #11│Mastering WordPress │ 101

The reason for this is because when WordPress activates a plugin, PHP
loads the functions from the plugin into the WordPress execution space,
where all functions from all plugins live together. There is no separation or
isolation of functions for each plugin, which means that each function must
be uniquely named.

Fortunately, there is an easy way around this, and it’s to name all of your
plugin functions with a prefix. For example, the common functions I
mentioned previously might now look like this:

function myplugin_copy_file() {

}

function myplugin_save_data() {

}

function myplugin_database_table_exists() {

}

Another common naming convention is to use a prefix that is an
abbreviation of your plugin’s name, such as “My Awesome WordPress
Plugin”, in which case the function names would be:

function mawp_copy_file() {

}

function mawp_save_data() {

}

function mawp_database_table_exists() {

}

There is one caveat to this, however. If you use PHP classes that contain
your functions (which in many cases is a good idea), you don’t really have to
worry about clashing with functions defined elsewhere. For example, let’s

Smashing eBook #11│Mastering WordPress │ 102

say you have a class in your plugin named “CommonFunctions” with a
copy_file() function, and another plugin has the same copy_file()
function defined, but not in a class. Invoking the two functions would look
similar to this:

// Calls the copy_file() function from your class

$common = new CommonFunctions();

$common->copy_file();

// Calls the copy_file() function from the other plugin

copy_file();

By using classes, the need to explicitly prefix your functions goes away. Just
keep in mind that WordPress will raise an error if you use a function name
that’s already taken, so keep an eye on the debug.log file to know if you’re
in the clear or not.

Global Paths Are Handy
Writing the PHP code to make your plugin work is one thing, but if you want
to make it look and feel good at the same time, you’ll need to include some
images, CSS, and perhaps a little JavaScript as well (maybe in the form of a
jQuery plugin). And in typical fashion, you’ll most likely organize these files
into their own folders, such as “images”, “css”, and “js”.

That’s all well and good, but how should you code your plugin so that it can
always find those files, no matter what domain the plugin is running under?
The best way that I’ve found is to create your own global paths that can be
used anywhere in your plugin code.

For example, I always create four global variables for my plugins, one each
for the following:

• The path to the theme directory

Smashing eBook #11│Mastering WordPress │ 103

• The name of the plugin

• The path to the plugin directory

• The url of the plugin

For which the code looks like this:

if (!defined('MYPLUGIN_THEME_DIR'))

 define('MYPLUGIN_THEME_DIR', ABSPATH . 'wp-content/themes/' .
get_template());

if (!defined('MYPLUGIN_PLUGIN_NAME'))

 define('MYPLUGIN_PLUGIN_NAME',
trim(dirname(plugin_basename(__FILE__)), '/'));

if (!defined('MYPLUGIN_PLUGIN_DIR'))

 define('MYPLUGIN_PLUGIN_DIR', WP_PLUGIN_DIR . '/' .
MYPLUGIN_PLUGIN_NAME);

if (!defined('MYPLUGIN_PLUGIN_URL'))

 define('MYPLUGIN_PLUGIN_URL', WP_PLUGIN_URL . '/' .
MYPLUGIN_PLUGIN_NAME);

Having these global paths defined lets me write the code below in my
plugin anywhere I need to, and I know it will resolve correctly for any
website that uses the plugin:

$image = MYPLUGIN_PLUGIN_URL . '/images/my-image.jpg';

$style = MYPLUGIN_PLUGIN_URL . '/css/my-style.css';

$script = MYPLUGIN_PLUGIN_URL . '/js/my-script.js';

Smashing eBook #11│Mastering WordPress │ 104

Store the Plugin Version for Upgrades
When it comes to WordPress plugins, one of the things you’ll have to deal
with sooner or later is upgrades. For instance, let’s say the first version of
your plugin required one database table, but the next version requires
another table. How do you know if you should run the code that creates the
second database table?

I suggest storing the plugin version in the WordPress database so that you
can read it later to decide certain upgrade actions your plugin should take.
To do this, you’ll need to create a couple more global variables and invoke
the add_option() function:

if (!defined('MYPLUGIN_VERSION_KEY'))

 define('MYPLUGIN_VERSION_KEY', 'myplugin_version');

if (!defined('MYPLUGIN_VERSION_NUM'))

 define('MYPLUGIN_VERSION_NUM', '1.0.0');

add_option(MYPLUGIN_VERSION_KEY, MYPLUGIN_VERSION_NUM);

I certainly could have simply called
add_option('myplugin_version', '1.0.0'); without the need for
the global variables, but like the global path variables, I’ve found these just
as handy for using in other parts of a plugin, such as a Dashboard or About
page.

Also note that update_option() could have been used instead of
add_option(). The difference is that add_option() does nothing if the
option already exists, whereas update_option() checks to see if the
option already exists, and if it doesn’t, it will add the option to the database
using add_option(); otherwise, it updates the option with the value
provided.

Smashing eBook #11│Mastering WordPress │ 105

Then, when it comes time to check whether or not to perform upgrade
actions, your plugin will end up with code that looks similar to this:

$new_version = '2.0.0';

if (get_option(MYPLUGIN_VERSION_KEY) != $new_version) {

 // Execute your upgrade logic here

 // Then update the version value

 update_option(MYPLUGIN_VERSION_KEY, $new_version);

}

Use dbDelta() to Create/Update Database Tables
If your plugin requires its own database tables, you will inevitably need to
modify those tables in future versions of your plugin. This can get a bit tricky
to manage if you’re not careful, but WordPress helps alleviate this problem
by providing the dbDelta() function.

A useful feature of the dbDelta() function is that it can be used for both
creating and updating tables, but according to the WordPress codex page
“Creating Tables with Plugins”, it’s a little picky:

• You have to put each field on its own line in your SQL statement.

• You have to have two spaces between the words PRIMARY KEY and
the definition of your primary key.

• You must use the keyword KEY rather than its synonym INDEX and you
must include at least one KEY.

Knowing these rules, we can use the function below to create a table that
contains an ID, a name, and an email:

Smashing eBook #11│Mastering WordPress │ 106

function myplugin_create_database_table() {

 global $wpdb;

 $table = $wpdb->prefix . 'myplugin_table_name';

 $sql = "CREATE TABLE " . $table . " (

 id INT NOT NULL AUTO_INCREMENT,

 name VARCHAR(100) NOT NULL DEFAULT '',

 email VARCHAR(100) NOT NULL DEFAULT '',

 UNIQUE KEY id (id)

);";

 require_once(ABSPATH . 'wp-admin/includes/upgrade.php');

 dbDelta($sql);

}

Important: The dbDelta() function is found in wp-admin/includes/upgrade.php,
but it has to be included manually because it’s not loaded by default.

So now we have a table, but in the next version we need to expand the size
of the name column from 100 to 250. Fortunately dbDelta() makes this
straightforward, and using our upgrade logic previously, the next version of
the plugin will have code similar to this:

$new_version = '2.0.0';

if (get_option(MYPLUGIN_VERSION_KEY) != $new_version) {

 myplugin_update_database_table();

 update_option(MYPLUGIN_VERSION_KEY, $new_version);

}

function myplugin_update_database_table() {

 global $wpdb;

 $table = $wpdb->prefix . 'myplugin_table_name';

Smashing eBook #11│Mastering WordPress │ 107

 $sql = "CREATE TABLE " . $table . " (

 id INT NOT NULL AUTO_INCREMENT,

 name VARCHAR(250) NOT NULL DEFAULT '', // Bigger name column

 email VARCHAR(100) NOT NULL DEFAULT '',

 UNIQUE KEY id (id)

);";

 require_once(ABSPATH . 'wp-admin/includes/upgrade.php');

 dbDelta($sql);

}

While there are other ways to create and update database tables for your
WordPress plugin, it’s hard to ignore the flexibility of the dbDelta()
function.

Know the Difference Between include, include_once,
require, and require_once
There will come a time during the development of your plugin where you
will want to put code into other files so that maintaining your plugin is a bit
easier. For instance, a common practice is to create a functions.php file that
contains all of the shared functions that all of the files in your plugin can use.

Let’s say your main plugin file is named myplugin.php and you want to
include the functions.php file. You can use any of these lines of code to do
it:

include 'functions.php';

include_once 'functions.php';

require 'functions.php';

Smashing eBook #11│Mastering WordPress │ 108

include 'functions.php';

include_once 'functions.php';

require 'functions.php';

But which should you use? It mostly depends on your expected outcome of
the file not being there.

• include: Includes and evaluates the specified file, throwing a warning
if the file can’t be found.

• include_once: Same as include, but if the file has already been
included it will not be included again.

• require: Includes and evaluates the specified file (same as include),
but instead of a warning, throws a fatal error if the file can’t be found.

• require_once: Same as require, but if the file has already been
included it will not be included again.

My experience has been to always use include_once because a) how I
structure and use my files usually requires them to be included once and
only once, and b) if a required file can’t be found I don’t expect parts of the
plugin to work, but it doesn’t need to break anything else either.

Your expectations may vary from mine, but it’s important to know the subtle
differences between the four ways of including files.

Use bloginfo(‘wpurl’) Instead of bloginfo(‘url’)
By and large, WordPress is installed in the root folder of a website; it’s
standard operating procedure. However, every now and then you’ll come
across websites that install WordPress into a separate subdirectory under
the root. Seems innocent enough, but the location of WordPress is critically

Smashing eBook #11│Mastering WordPress │ 109

settings, and for sites where WordPress is installed into the root directory,
they will have the exact same values:

But for sites where WordPress is installed into a subdirectory under the root
(in this case a “wordpress” subdirectory), their values will be different:

At this stage it’s important to know the following:

• bloginfo(‘wpurl’) equals the “WordPress address (URL)” setting

• bloginfo(‘url’) equals the “Site address (URL)” setting

Where this matters is when you need to build URLs to certain resources or
pages. For example, if you want to provide a link to the WordPress login
screen, you could do this:

// URL will be http://mydomain.com/wp-login.php

<a href="<?php bloginfo('url') ?>/wp-login.php">Login

But that won’t resolve to the correct URL in the scenario such as the one
above where WordPress is installed to the “wordpress” subdirectory. To do
this correctly, you must use bloginfo('wpurl') instead:

// URL will be http://mydomain.com/wordpress/wp-login.php

<a href="<?php bloginfo('wpurl') ?>/wp-login.php">Login

Smashing eBook #11│Mastering WordPress │ 110

http://mydomain.com/wp-login.php
http://mydomain.com/wp-login.php
http://mydomain.com/wordpress/wp-login.php
http://mydomain.com/wordpress/wp-login.php

Using bloginfo('wpurl') instead of bloginfo('url') is the safest
way to go when building links and URLs inside your plugin because it works
in both scenarios: when WordPress is installed in the root of a website and
also when it’s installed in a subdirectory. Using bloginfo('url') only
gets you the first one.

How and When to Use Actions and Filters
WordPress allows developers to add their own code during the execution of
a request by providing various hooks. These hooks come in the form of
actions and filters:

• Actions: WordPress invokes actions at certain points during the
execution request and when certain events occur.

• Filters: WordPress uses filters to modify text before adding it to the
database and before displaying it on-screen.

The number of actions and filters is quite large, so we can’t get into them all
here, but let’s at least take a look at how they are used.

Here’s an example of how to use the admin_print_styles action, which
allows you to add your own stylesheets to the WordPress admin pages:

add_action('admin_print_styles', 'myplugin_admin_print_styles');

function myplugin_admin_print_styles() {

 $handle = 'myplugin-css';

 $src = MYPLUGIN_PLUGIN_URL . '/styles.css';

 wp_register_style($handle, $src);

 wp_enqueue_style($handle);

}

Smashing eBook #11│Mastering WordPress │ 111

And here’s how you would use the the_content filter to add a “Follow me
on Twitter!” link to the bottom of every post:

add_filter('the_content', 'myplugin_the_content');

function myplugin_the_content($content) {

 $output = $content;

 $output .= '<p>';

 $output .= 'Follow me on
Twitter!';

 $output .= '</p>';

 return $output;

}

It’s impossible to write a WordPress plugin without actions and filters, and
knowing what’s available to use and when to use them can make a big
difference. See the WordPress codex page “Plugin API/Action Reference”
for the complete list of actions and the page “Plugin API/Filter Reference”
for the complete list of filters.

Tip: Pay close attention to the order in which the actions are listed on its
codex page. While not an exact specification, my experimentation and
trial-and-error has shown it to be pretty close to the order in which
actions are invoked during the WordPress request pipeline.

Add Your Own Se"ings Page or Admin Menu
Many WordPress plugins require users to enter settings or options for the
plugin to operate properly, and the way plugin authors accomplish this is by
either adding their own settings page to an existing menu or by adding their
own new top-level admin menu to WordPress.

Smashing eBook #11│Mastering WordPress │ 112

http://twitter.com/username
http://twitter.com/username

HOW TO ADD A SETTINGS PAGE

A common practice for adding your own admin settings page is to use the
add_menu() hook to call the add_options_page() function:

add_action('admin_menu', 'myplugin_admin_menu');

function myplugin_admin_menu() {

 $page_title = 'My Plugin Settings';

 $menu_title = 'My Plugin';

 $capability = 'manage_options';

 $menu_slug = 'myplugin-settings';

 $function = 'myplugin_settings';

 add_options_page($page_title, $menu_title, $capability,
$menu_slug, $function);

}

function myplugin_settings() {

 if (!current_user_can('manage_options')) {

 wp_die('You do not have sufficient permissions to access this
page.');

 }

 // Here is where you could start displaying the HTML needed for
the settings

 // page, or you could include a file that handles the HTML
output for you.

}

By invoking the add_options_page() function, we see that the “My
Plugin” option has been added to the built-in Settings menu in the
WordPress admin panel:

Smashing eBook #11│Mastering WordPress │ 113

The add_options_page() function is really just a wrapper function on
top of the add_submenu_page() function, and there are other wrapper
functions that do similar work for the other sections of the WordPress admin
panel:

• add_dashboard_page()

• add_posts_page()

• add_media_page()

• add_links_page()

• add_pages_page()

• add_comments_page()

• add_theme_page()

• add_plugins_page()

• add_users_page()

• add_management_page()

Smashing eBook #11│Mastering WordPress │ 114

HOW TO ADD A CUSTOM ADMIN MENU

Those wrapper functions work great, but what if you wanted to create your
own admin menu section for your plugin? For example, what if you wanted
to create a “My Plugin” admin section with more than just the Settings page,
such as a Help page? This is how you would do that:

add_action('admin_menu', 'myplugin_menu_pages');

function myplugin_menu_pages() {

 // Add the top-level admin menu

 $page_title = 'My Plugin Settings';

 $menu_title = 'My Plugin';

 $capability = 'manage_options';

 $menu_slug = 'myplugin-settings';

 $function = 'myplugin_settings';

 add_menu_page($page_title, $menu_title, $capability, $menu_slug,
$function);

 // Add submenu page with same slug as parent to ensure no
duplicates

 $sub_menu_title = 'Settings';

 add_submenu_page($menu_slug, $page_title, $sub_menu_title,
$capability, $menu_slug, $function);

 // Now add the submenu page for Help

 $submenu_page_title = 'My Plugin Help';

 $submenu_title = 'Help';

 $submenu_slug = 'myplugin-help';

 $submenu_function = 'myplugin_help';

 add_submenu_page($menu_slug, $submenu_page_title, $submenu_title,
$capability, $submenu_slug, $submenu_function);

}

Smashing eBook #11│Mastering WordPress │ 115

function myplugin_settings() {

 if (!current_user_can('manage_options')) {

 wp_die('You do not have sufficient permissions to access this
page.');

 }

 // Render the HTML for the Settings page or include a file that
does

}

function myplugin_help() {

 if (!current_user_can('manage_options')) {

 wp_die('You do not have sufficient permissions to access this
page.');

 }

 // Render the HTML for the Help page or include a file that does

}

Notice that this code doesn’t use any of the wrapper functions. Instead, it
calls add_menu_page() (for the parent menu page) and
add_submenu_page() (for the child pages) to create a separate “My
Plugin” admin menu that contains the Settings and Help pages:

Smashing eBook #11│Mastering WordPress │ 116

One advantage of adding your own custom menu is that it’s easier for users
to find the settings for your plugin because they aren’t buried within one of
the built-in WordPress admin menus. Keeping that in mind, if your plugin is
simple enough to only require a single admin page, then using one of the
wrapper functions might make the most sense. But if you need more than
that, creating a custom admin menu is the way to go.

Provide a Shortcut to Your Se"ings Page with Plugin
Action Links
In much the same way that adding your own custom admin menu helps give
the sense of a well-rounded plugin, plugin action links work in the same
fashion. So what are plugin action links? It’s best to start with a picture:

Smashing eBook #11│Mastering WordPress │ 117

See the “Deactivate” and “Edit” links underneath the name of the plugin?
Those are plugin action links, and WordPress provides a filter named
plugin_action_links for you to add more. Basically, plugin action links
are a great way to add a quick shortcut to your most commonly used
admin menu page.

Keeping with our Settings admin page, here’s how we would add a plugin
action link for it:

add_filter('plugin_action_links', 'myplugin_plugin_action_links',
10, 2);

function myplugin_plugin_action_links($links, $file) {

 static $this_plugin;

 if (!$this_plugin) {

 $this_plugin = plugin_basename(__FILE__);

 }

 if ($file == $this_plugin) {

 // The "page" query string value must be equal to the slug

 // of the Settings admin page we defined earlier, which in

 // this case equals "myplugin-settings".

 $settings_link = '<a href="' . get_bloginfo('wpurl') . '/wp-
admin/admin.php?page=myplugin-settings">Settings';

 array_unshift($links, $settings_link);

 }

 return $links;

}

With this code in place, now when you view your plugins list you’ll see this:

Smashing eBook #11│Mastering WordPress │ 118

Here we provided a plugin action link to the Settings admin page, which is
the same thing as clicking on Settings from our custom admin menu. The
benefit of the plugin action link is that users see it immediately after they
activate the plugin, thus adding to the overall experience.

Smashing eBook #11│Mastering WordPress │ 119

Create Perfect Emails For Your
WordPress Website

Daniel Pataki

Whatever type of website you operate, its success will probably hinge on
your interaction with your audience. If executed well, one of the most
effective tools can be a simple email.

WordPress users are in luck, since WordPress already has easy-to-use and
extendable functions to give you a lot of power and flexibility in handling
your website’s emails.

In order to create our own system, we will be doing four things. First, we will
create a nice email template to use. We will then modify the mailer function
so that it uses our new custom template. We will then modify the actual text
of some of the built-in emails. Then we will proceed to hook our own emails
into different events in order to send some custom emails. Let’s get started!

How WordPress Sends Emails
WordPress has a handy function built in called wp_mail(), which handles
the nitty-gritty of email sending. It is able to handle almost anything you
throw at it, from custom HTML emails to modifications to the “From” field.

WordPress itself uses this function, and you can, too, by using WordPress
hooks. You can read all about how hooks work in WordPress, but here is the
nutshell version, and we will be working with them in this chapter so much
that you’ll learn it by the end.

Smashing eBook #11│Mastering WordPress │ 120

http://codex.WordPress.org/Plugin_API#Hooks.2C_Actions_and_Filters
http://codex.WordPress.org/Plugin_API#Hooks.2C_Actions_and_Filters

Hooks enable you to add your own functions to WordPress without
modifying core files. Without hooks, if you wanted to send a publication
notice to the author of a post, you would have to find the function that
published the post and add your own code directly to it. With hooks, you
write the function for sending the email, and then hook it into the function
that publishes the post. Basically, you are telling WordPress to run your
custom function whenever the function for publishing posts runs.

Se"ing Up Shop
The first thing we’ll have to do is create a plugin. We could get away without
it and just use our theme’s functions file, but this would become clunky in
the long run. Don’t worry: setting up a plugin is super-easy.

Go to your website’s plugins folder, which can be found under wp-
content. Create a new folder named my_awesome_email_plugin. If
you want a different name, use something unique, not email or
email_plugin; otherwise, conflicts might arise with other plugins.

Create a file named my_awesome_email_plugin.php in the new folder.
The name of the file (without the extension) must be the same as the name
of the folder.

Edit the contents of my_awesome_email_plugin.php by copying and
pasting the code below and modifying it where necessary. This is just some
default information that WordPress uses to show the plugin in the plugins
menu in the admin area.

Smashing eBook #11│Mastering WordPress │ 121

<?php
/*
Plugin	
 Name:	
 My	
 Awesome	
 Email	
 Plugin
Plugin	
 URI:	
 http://myawesomewebsite.com
Description:	
 I	
 created	
 this	
 plugin	
 to	
 rule	
 the	
 world	
 via	
 awesome	

WordPress	
 email	
 goodness
Version:	
 1.0
Author:	
 Me
Author	
 URI:	
 http://myself.me
*/
	

?>

Once that’s done, save the file, go to the WordPress admin section, and
activate your new plugin. If you’re new to this, then congratulations! You
have just created your first working WordPress plugin! It doesn’t really do
anything yet, but don’t let that bother you. Just read on, because we’ll be
adding some functionality after the next section.

Creating An Email Template
Creating good email templates is worth a chapter on its own. I will just share
the method that I use, which does not mean that doing it differently is not
allowed. Feel free to experiment!

I am not a big fan of using images in emails, so we will be building an HTML
template using only CSS. Our goal is to come up with a template to which
we can add a header and footer section. We will send our emails in
WordPress by pulling in the header, putting the email text under that and
then pulling in the footer. This way, you can change the design of your
emails very easily just by modifying the templates.

Without further ado, here’s the code for the email template that I made. Or
you can download it as an HTML file (right-click, and then select “Save as”).
If you want a quick preview of what it looks like, just click the link.

Smashing eBook #11│Mastering WordPress │ 122

http://coding.smashingmagazine.com/wp-content/uploads/2011/07/email_template.html
http://coding.smashingmagazine.com/wp-content/uploads/2011/07/email_template.html

<html>

 <head>
	

 <title>The	
 Subject	
 of	
 My	
 Email</title>
	

 </head>

 <body>

 <div	
 id="email_container"	
 style="background:#444">

 <div	
 style="width:570px;	
 padding:0	
 0	
 0	
 20px;	
 margin:50px	
 auto	
 12px	

auto"	
 id="email_header">

 <span	
 style="background:#585858;	
 color:#fff;	
 padding:12px;font-­‐
family:trebuchet	
 ms;	
 letter-­‐spacing:1px;

 -­‐moz-­‐border-­‐radius-­‐topleft:5px;	
 -­‐webkit-­‐border-­‐top-­‐left-­‐radius:
5px;

 border-­‐top-­‐left-­‐radius:5px;moz-­‐border-­‐radius-­‐topright:5px;	
 -­‐
webkit-­‐border-­‐top-­‐right-­‐radius:5px;

 border-­‐top-­‐right-­‐radius:5px;">

 MyAwesomeWebsite.com

 </div>

 </div>
	

 <div	
 style="width:550px;	
 padding:0	
 20px	
 20px	
 20px;	
 background:#fff;	

margin:0	
 auto;	
 border:3px	
 #000	
 solid;

 moz-­‐border-­‐radius:5px;	
 -­‐webkit-­‐border-­‐radius:5px;	
 border-­‐radius:
5px;	
 color:#454545;line-­‐height:1.5em;	
 "	
 id="email_content">
	

 <h1	
 style="padding:5px	
 0	
 0	
 0;	
 font-­‐family:georgia;font-­‐weight:
500;font-­‐size:24px;color:#000;border-­‐bottom:1px	
 solid	
 #bbb">

 The	
 subject	
 of	
 this	
 email

 </h1>
	

 <p>

 Lorem	
 ipsum	
 dolor	
 sit	
 amet,	
 consectetuer	
 adipiscing

 elit.	
 Aenean	
 commodo	
 ligula	
 eget	
 dolor.	
 Aenean	
 massa

 strong.	
 Cum	
 sociis	
 natoque	
 penatibus

Smashing eBook #11│Mastering WordPress │ 123

 et	
 magnis	
 dis	
 parturient	
 montes,	
 nascetur	
 ridiculus

 mus.	
 Donec	
 quam	
 felis,	
 ultricies	
 nec,	
 pellentesque

 eu,	
 pretium	
 quis,	
 sem.	
 Nulla	
 consequat	
 massa	
 quis

 enim.	
 Donec	
 pede	
 justo,	
 fringilla	
 vel,	
 aliquet	
 nec,

 vulputate	
 eget,	
 arcu.	
 In	
 enim	
 justo,	
 rhoncus	
 ut.

 </p>

 <p>

 Imperdiet	
 a,	
 venenatis	
 vitae,	
 justo.	
 Nullam	
 dictum

 felis	
 eu	
 pede	
 <a	
 style="color:#bd5426"	
 href="#">link

 mollis	
 pretium.	
 Integer	
 tincidunt.	
 Cras	
 dapibus.

 Vivamus	
 elementum	
 semper	
 nisi.	
 Aenean	
 vulputate

 eleifend	
 tellus.	
 Aenean	
 leo	
 ligula,	
 porttitor	
 eu,

 consequat	
 vitae,	
 eleifend	
 ac,	
 enim.	
 Aliquam	
 lorem	
 ante,

 dapibus	
 in,	
 viverra	
 quis,	
 feugiat	
 a,	
 tellus.	
 Phasellus

 viverra	
 nulla	
 ut	
 metus	
 varius	
 laoreet.	
 Quisque	
 rutrum.

 Aenean	
 imperdiet.	
 Etiam	
 ultricies	
 nisi	
 vel	
 augue.

 Curabitur	
 ullamcorper	
 ultricies	
 nisi.

 </p>
	

 <p	
 style="">

 Warm	
 regards,

 The	
 MyAwesomeWebsite	
 Editor

 </p>
	

 <div	
 style="text-­‐align:center;	
 border-­‐top:1px	
 solid	
 #eee;padding:
5px	
 0	
 0	
 0;"	
 id="email_footer">

 <small	
 style="font-­‐size:11px;	
 color:#999;	
 line-­‐height:14px;">

 You	
 have	
 received	
 this	
 email	
 because	
 you	
 are	
 a	
 member	
 of	

MyAwesomeSite.com.

 If	
 you	
 would	
 like	
 to	
 stop	
 receiving	
 emails	
 from	
 us,	
 feel	
 free	

to

 <a	
 href=""	
 style="color:#666">unregister	
 from	
 our	
 mailing	

list

 </small>

Smashing eBook #11│Mastering WordPress │ 124

 </div>
	

 </div>

 </div>

 </body>
</html>

Remember that this is an email, so the HTML won’t be beautiful. The safest
styling method is inline, so the fewer frills you can get away with, the better.

Let’s split this into two parts. The header part of the email is everything from
the top right up to and including the h1 heading on row 23 (i.e. lines 01 to
23). Copy that bit and paste it into a new file in your my_email_plugin folder,
and name it email_header.php. The footer part of the email is everything
from the paragraph tag before “Warm regards” right until the end (i.e. lines
48 to 64). The text between the header and footer is just a placeholder so
that you can see what the finished product will look like. We will fill it with
whatever content we need to send at the time.

Preparing !e WordPress System For Our Emails
By default, WordPress sends plain-text emails. In order to accommodate our
fancy HTML email, we need to tell the wp_mail() function to use the
HTML format. We will also set up a custom “From” name and “From”
address in the process, so that the email looks good in everyone’s inbox. To
accomplish this, we’ll be using the previously mentioned hooks. Let’s look at
the code; explanation follows.

add_filter	
 ("wp_mail_content_type",	
 "my_awesome_mail_content_type");
function	
 my_awesome_mail_content_type()	
 {

 return	
 "text/html";
}
	

add_filter	
 ("wp_mail_from",	
 "my_awesome_mail_from");

Smashing eBook #11│Mastering WordPress │ 125

function	
 my_awesome_mail_from()	
 {

 return	
 "hithere@myawesomesite.com";
}
	

add_filter	
 ("wp_mail_from_name",	
 "my_awesome_mail_from_name");
function	
 my_awesome_email_from_name()	
 {

 return	
 "MyAwesomeSite";
}

On line 01, we have defined that we are adding a filter to the WordPress
function wp_mail_content_type(). Our filter will be called
my_awesome_mail_content_type. A filter is nothing more than a
function, so we need to create the function
my_awesome_mail_content_type().

Remember that actions are functions called from within other functions? We
add an action to the wp_insert_user() function, and the action is
performed whenever wp_insert_user() runs. Filters are specified in
much the same way; but, instead of running alongside the function that it is
called from, it modifies the value of the entity that it is called on.

In our case, this means that somewhere inside the wp_mail() function is a
variable that holds the email type, which is by default text/plain. The
filter hook wp_mail_content_type is called on this variable, which
means that all attached filters will be run. We happen to have attached a
filter to it on line 01, so our function will perform its task. All we need to do is
return the value text/html, which will modify the value of the variable in
the wp_mail function to text/html.

The logic behind the rest of the code is exactly the same. Adding a filter to
wp_mail_from enables us to change the sender’s address to
hithere@myawesomewebsite.com, and adding a filter to
wp_mail_from_name enables us to change the sender’s name.

Smashing eBook #11│Mastering WordPress │ 126

Modifying Existing WordPress System Emails

WELCOMING NEW USERS

This is the content of the default WordPress email.

As mentioned, WordPress has a bunch of built-in emails that can be easily
controlled (using hooks, of course). Let’s modify the default greeting email
that WordPress sends out to new users. This email is sent out using a so-
called “pluggable function.” This function is supplied by WordPress, but,
contrary to the usual core functions, you are allowed to overwrite it with
your own code.

The function in question is called wp_new_user_notification(). To
modify it, all we need to do is create a function with the same name. Due to
the method by which WordPress calls pluggable functions, there will not be
any conflict, even though you are creating a function with the same name.
Below is the function that I wrote. See the explanation and preview of it
further below.

function	
 wp_new_user_notification($user_id,	
 $plaintext_pass)	
 {

 $user	
 =	
 new	
 WP_User($user_id);
	

 $user_login	
 =	
 stripslashes($user-­‐>user_login);

 $user_email	
 =	
 stripslashes($user-­‐>user_email);
	

 $email_subject	
 =	
 "Welcome	
 to	
 MyAwesomeSite	
 ".$user_login."!";
	

 ob_start();

Smashing eBook #11│Mastering WordPress │ 127

	

 include("email_header.php");
	

 ?>
	

 <p>A	
 very	
 special	
 welcome	
 to	
 you,	
 <?php	
 echo	
 $user_login	
 ?>.	
 Thank	
 you	

for	
 joining	
 MyAwesomeSite.com!</p>
	

 <p>

 Your	
 password	
 is	
 <strong	
 style="color:orange"><?php	
 echo	

$plaintext_pass	
 ?>	

 Please	
 keep	
 it	
 secret	
 and	
 keep	
 it	
 safe!

 </p>
	

 <p>

 We	
 hope	
 you	
 enjoy	
 your	
 stay	
 at	
 MyAwesomeSite.com.	
 If	
 you	
 have	
 any	

problems,	
 questions,	
 opinions,	
 praise,

 comments,	
 suggestions,	
 please	
 feel	
 free	
 to	
 contact	
 us	
 at	
 any	
 time

 </p>
	

 <?php

 include("email_footer.php");
	

 $message	
 =	
 ob_get_contents();

 ob_end_clean();
	

 wp_mail($user_email,	
 $email_subject,	
 $message);

As you can see, the function is passed two arguments: the ID of the new
user and the generated password. We will be using these to generate the
variable parts of our message. On line 2, we’ve built a user object that will
contain the data of the user in question. On line 7, we’ve created an email
subject using the variable $email_subject.

Smashing eBook #11│Mastering WordPress │ 128

Before we move on, let’s go back to our email_header.php file. Replace
“The Subject of My Email” and “The subject of this email” (lines 04 and 22 if
you’re looking at the code here) with <?php echo $email_subject ?>.
We don’t want all of our subjects to be “The Subject of My Email,” so we
need to pull that data from the email that we are building.

From lines 09 to 31, we are using a handy technique called “output
buffering.” Because the content email_header.php is not stored inside a
variable, it is included directly; this would result in it being printed right
away, and we would not be able to use it in our function. To get around this
problem, we output buffering. When it is turned on (using ob_start()), no
output is sent from the script; instead, it is stored in an internal buffer.

So, first, we include the header, then we write our our message content,
then include the footer. Because we are buffering the content, we can
simply close our PHP tags and use regular HTML for our message, which I
find much cleaner than storing all of it in a variable. On line 30, we pull the
contents of the buffer into a variable; and on line 31, we discard the buffer’s
content, since we don’t need it anymore.

With that done, we have all of the information needed to use wp_mail().
So, on line 33, we send our email to the user, which should look something
like this:

Smashing eBook #11│Mastering WordPress │ 129

PASSWORD RETRIEVAL EMAILS

For some reason, WordPress doesn’t use the same pluggable functions to
handle all emails. For example, to modify the look and feel of the password
retrieval emails, we have to resort to hooks. Let’s take a look.

add_filter	
 ("retrieve_password_title",	

"my_awesome_retrieve_password_title");
	

function	
 my_awesome_retrieve_password_title()	
 {

 return	
 "Password	
 Reset	
 for	
 MyAwesomeWebsite";
}

Smashing eBook #11│Mastering WordPress │ 130

	

add_filter	
 ("retrieve_password_message",	

"my_awesome_retrieve_password_message");
function	
 my_awesome_retrieve_password_message($content,	
 $key)	
 {

 global	
 $wpdb;

 $user_login	
 =	
 $wpdb-­‐>get_var("SELECT	
 user_login	
 FROM	
 $wpdb-­‐<users	
 WHERE	

user_activation_key	
 =	
 '$key'");
	

 ob_start();
	

 $email_subject	
 =	
 imp_retrieve_password_title();
	

 include("email_header.php");

 ?>
	

 <p>

 It	
 likes	
 like	
 you	
 (hopefully)	
 want	
 to	
 reset	
 your	
 password	
 for	
 your	

MyAwesomeWebsite.com	
 account.

 </p>
	

 <p>

 To	
 reset	
 your	
 password,	
 visit	
 the	
 following	
 address,	
 otherwise	
 just	

ignore	
 this	
 email	
 and	
 nothing	
 will	
 happen.

 <?php	
 echo	
 wp_login_url("url")	
 ?>?action=rp&key=<?php	
 echo	
 $key	
 ?
>&login=<?php	
 echo	
 $user_login	
 ?>

 <p>
	

 ?>
	

 include("email_footer.php");
	

 $message	
 =	
 ob_get_contents();
	

 ob_end_clean();
	

Smashing eBook #11│Mastering WordPress │ 131

 return	
 $message;
}

First, we’ve added a filter to retrieve_password_title, which will
modify the default value of the email’s title to our own. Then, we’ve added a
filter to retrieve_password_message, which will modify the contents of
the message.

On line 10, we’ve used the $wpdb object to query the database for the
user’s name based on the key that was generated when the retrieval was
initiated. We then do the same thing as before: we start the content
buffering, pull our email header, add our message content, and pull our
email footer.

One fantastic part about using hooks can be seen on line 14. Our password
title needs to be “Password Reset for MyAwesomeWebsite.” We could well
have typed that in, but instead we created a function
(imp_retrieve_password_title()) that outputs exactly the same
thing. It should be clear by now that all we are doing with these hooks is
creating regular ol’ functions that can just be plugged into WordPress as
actions (which run when initiated by something) or filters (which run and
modify data when they are initiated).

This time, instead of using wp_mail(), all we need to do is return the
message’s content. This is because we are creating a filter that modifies the
contents of the password-retrieval email, nothing else. WordPress will do
whatever it usually does to send that email, but now it will use our content.

PLUGGABLE FUNCTION AND HOOKS

This question is not easily answered, because this is not too well
documented yet. Your best bet is looking in the file pluggable.php (in your
wp-includes folder) to see which emails are controlled from there.

Smashing eBook #11│Mastering WordPress │ 132

Remember not to edit this file; use the plugin we are creating here. You can
scan the list of WordPress filters to find filters that control email content.

Right now, most emails are handled through pluggable functions; only the
password-retrieval email and some WordPress MU emails are handled using
hooks. This might change, as development is quite active, but I would guess
that if any new emails are added, you will be able to use pluggable
functions.

Here is a list of emails that you can modify using pluggable functions:

• Notify authors of comments: wp_notify_postauthor()

• Notify moderator of comments waiting for approval:
wp_notify_moderator()

• Notify administrator of password changes on the website:
wp_password_change_notification()

• Notify administrator of new registrations:
wp_new_user_notification()

Adding New Emails To !e System
So far, we’ve just been modifying what WordPress has to offer. Now it’s time
to add some emails of our own! Let’s implement an email that will notify an
author when you have published their post.

To accomplish this, we need to find the WordPress action hook that
publishes a post when we press the “Publish” button. We then have to hook
our own function into that, which will perform the task of sending the email.

Looking at the list of action hooks, we can see that the hook we are looking
for is called {$new_status}_{$post->post_type}. This looks a bit
different than what we’re used to, but it’s really very simple. A post can go

Smashing eBook #11│Mastering WordPress │ 133

http://adambrown.info/p/wp_hooks/hook/filters
http://adambrown.info/p/wp_hooks/hook/filters
http://adambrown.info/p/wp_hooks/hook/actions
http://adambrown.info/p/wp_hooks/hook/actions

through numerous statuses. It can be a draft, it can be private, published
and so on. There are also a lot of potential post types, such as “Post” and
“Page,” not to mention that you can create custom post types. This hook
simply enables us to put a status and a post type together and then get the
hook that runs when that post’s type changes to the indicated status. So,
our hook will be called publish_post.

add_action("publish_post",	
 "my_awesome_publication_notification");
	

function	
 my_awesome_publication_notification($post_id)	
 {

 $post	
 =	
 get_post($post_id);

 $author	
 =	
 get_userdata($post-­‐>post_author);
	

 $author_email	
 =	
 $author-­‐>user_email;

 $email_subject	
 =	
 "Your	
 article	
 has	
 been	
 published!";
	

 ob_start();
	

 include("email_header.php");
	

 ?>
	

 <p>

 Hi,	
 <?php	
 echo	
 $author-­‐>display_name	
 ?>.	
 I've	
 just	
 published	
 one	
 of	

your	
 articles

 (<?php	
 echo	
 $post-­‐>post_title	
 ?>)	
 on	
 MyAwesomeWebsite!

 </p>
	

 <p>

 If	
 you'd	
 like	
 to	
 take	
 a	
 look,	
 <a	
 href="<?php	
 echo	
 get_permalink($post-­‐
>ID)	
 ?>">click	
 here.

 I	
 would	
 appreciate	
 it	
 if	
 you	
 could	
 come	
 back	
 now	
 and	
 again	
 to	
 respond	

to	
 some	
 comments.

 </p>
	

Smashing eBook #11│Mastering WordPress │ 134

 <?php
	

 include("email_footer.php");
	

 $message	
 =	
 ob_get_contents();
	

 ob_end_clean();
	

 wp_mail($author_email,	
 $email_subject,	
 $message);
	

}

By now, this should be second nature to you. The only real difference here
is that we have to retrieve the data of the post, and the author’s data on
lines 4 and 5, so that we have the necessary data for the email.

One thing you might be wondering is how I know that my function takes the
ID of this post as its argument. I cannot freely choose this value, of course; it
is dictated by how WordPress is built. Every hook supplies different
arguments; some even supply more than one. To find out what arguments
are at your disposal, you will have to go into some core files.

I suggest browsing the hooks database, clicking on the hook that you need,
and then clicking on “View hook in source” next to your version of
WordPress (preferably the latest one). Once there, scroll down, and find the
highlighted line, which is where the hook is called. It will be in the form of
do_action($tag, $arg_a, $arg_b, $etc) or
apply_filters($tag, $arg_a, $arg_b, $etc).

Extending Our Functions
Interestingly, the wp_mail() function itself is a pluggable function, so you
can completely override how it works. This may be going a bit over the top,
but if you need some serious email-sending power (for example, you want a

Smashing eBook #11│Mastering WordPress │ 135

http://adambrown.info/p/wp_hooks/
http://adambrown.info/p/wp_hooks/

system that notifies your 120,000 registered users about new posts), you
can completely modify it to use your mass-mailer application.

Because we are using a template for email headers and footers, a lot can be
done to extend our emails. We can distinguish between emails to staff and
emails to users by using different header files; we can add the latest three
posts to the bottom of each email by using footer templates; and so on.

We can add a table to our database that holds information about which
users are emailed the most, who responds to emails, and so on. Whenever
you plug a function into something, it can contain any sort of code you’d
like. You could include code for increasing the email count for user #112
inside the function that sends them the email, for example. This is not a
good practice (you should create separate functions and plug them both in),
but getting to grips with the vast power that this methodology offers is
important.

A Word Of Warning
While the method described here is great, I am not an expert in creating
HTML emails. The code for the HTML email above is tested to work in Gmail
and some other applications, but each email application handles email
differently. Some strip out all CSS, some strip out just background colors,
and so on.

Before using the template, please test it with the most common applications
(Gmail, Yahoo Mail, Apple Mail, Outlook, Entourage, Thunderbird, etc.) to
make sure it works as expected.

Smashing eBook #11│Mastering WordPress │ 136

Conclusion
Hopefully by now you have learned how to modify the emails that
WordPress sends out, how to create your own emails, and how to plug them
into different actions.

I also hope that your knowledge of WordPress hooks has expanded,
because they are the tool for creating great plugins and add-ons for
WordPress, and the thinking behind them is a glimpse into the world of
object-oriented programming.

Smashing eBook #11│Mastering WordPress │ 137

Writing WordPress Guides For !e
Advanced Beginner

Sco! Meaney

Creating WordPress tutorials is a fantastic way to help build the WordPress
community and to increase your Web traffic. That’s no secret. Just Google
“wordpress tutorial” and you’ll see hundreds of results. The complete novice
will find scores of well-written tutorials clearly demonstrating the basics of
the WordPress dashboard and of activating the default template, in simple
jargon-free language.

Smashing eBook #11│Mastering WordPress │ 138

Unfortunately, after the first few “Hello World!” tutorials, they are in for a bit
of a learning curve. Suddenly, the guides start to skip a lot of details,
assuming that the reader “already knows this stuff.” Others are simply
written exclusively for advanced WordPress users.

So, where does a new developer go after square one?

In this chapter, we’ll explore how to create clear easy-to-navigate tutorials,
and tailor them to the underserved “advanced beginner” Web developer.
The entire goal of this chapter is to make sure we see many more tutorials
written for budding new coders who are ready to jump to the next level.

Who Exactly Is An “Advanced Beginner”?
Advanced beginners are people who generally understand how WordPress
works but don’t fully understand how to implement its concepts. They are
stuck in that awkward stage where a “For Dummies” book has nothing new
to offer but raw code is still vaguely confusing. In your tutorials, you should
strive to eliminate this common “tough it out” phase.

For our purposes, let’s assume that we are writing for someone who has a
reasonably good grasp on the following:

• Can read and write XHTML and CSS, but probably sits with a cheat
sheet open to get through those tricky spots;

• Knows little to nothing about PHP;

• Can navigate the WordPress dashboard and has basic knowledge of
image resizing and editing;

• Understands the basic idea and principles of WordPress, but not
necessarily how to execute them;

• Appreciates the simplicity of WordPress templates but wants to learn
how to create or tweak their own.

Smashing eBook #11│Mastering WordPress │ 139

Admi"ing !at WordPress Can Be Tough
We all need to stop pretending that WordPress is this magical dirt-simple
Web development solution. Yes, using it is much easier than designing a
custom CMS, but for new users looking to get under the hood, the tool can
still be daunting and complicated.

For the average coder who is still just getting a grip on fundamental CSS,
even the strange-looking batch of official WordPress folders that come in
the installation ZIP file can be intimidating.

Smashing eBook #11│Mastering WordPress │ 140

This is way more confusing for a beginner than seeing a simple HTML file, a CSS
file and some images.

When you refer to a file such as style.css or an image, be sure to tell readers
exactly where to look and where to save these files.

Smashing eBook #11│Mastering WordPress │ 141

Basic Guide-Writing Principles
Before we delve into WordPress-specific tips, let’s go over some basic
principles for any tutorial.

KEEP IT TIDY

Readers have sought your advice because they are confused. Don’t add to
their troubles with a cluttered how-to chapter. Use plenty of bullet points,
and keep paragraphs short. If you’re tackling a complex idea, split it up into
sections.

Take the format of Smashing Magazine’s articles. Articles are broken up so
that each sub-topic has its own section. This simplifies the navigation,
makes the content more visually appealing and clearly guides the reader
through the process.

MAKE SURE READERS ARE FULLY PREPARED

Any good tutorial includes all of the resources it recommends. Don’t just say
“make a blue image” — give it to them. Otherwise you risk over-complicating
things for the reader. Provide sample files, and explain that your lesson will
deal exclusively with these readily available resources. You wouldn’t want
them to suddenly have to read a Photoshop tutorial when they’re only
interested in learning how to customize their header.

Smashing eBook #11│Mastering WordPress │ 142

This tutorial includes everything a reader needs to get started, including a visual
demo and easily accessible sample files.

DEFINE YOUR GOAL

The best tutorials focus on a single topic. Plan the article before writing it.
You shouldn’t explain every aspect of CSS and WordPress on every page of
your website. What will readers get from this particular tutorial? A nice neat
list at the top of the article should clearly define its parameters.

LIST THE PREREQUISITE SKILLS

A tutorial should always list any skills that the reader will be expected to
have. Instead of cluttering an otherwise focused guide with extraneous
detail, provide links that direct readers to where they should go to learn

Smashing eBook #11│Mastering WordPress │ 143

http://net.tutsplus.com/tutorials/wordpress/how-to-create-a-wordpress-theme-from-scratch/
http://net.tutsplus.com/tutorials/wordpress/how-to-create-a-wordpress-theme-from-scratch/

about particular topics. This will help new developers who are nearly
clueless, while keeping the article clearly focused for more advanced
readers.

Tips Specifically For WordPress Guides
Now that we’ve discussed some fundamental organizational skills that will
make any tutorial clear and easy to follow, let’s delve into some WordPress-
related areas that many guides seem to miss.

TAMING THE CODEX

The WordPress Codex is a powerful tool that can give your tutorial a much-
needed jolt of clarification. Just be aware that to newbie designers, the
Codex can seem like a massive labyrinth of articles, with each topic
requiring that you read several earlier lessons in order to fully grasp. As the
experienced coder, you need to show that, when used properly, the Codex
presents the cleanest example of a concept.

Smashing eBook #11│Mastering WordPress │ 144

The Codex is one of the most useful tools available to a WordPress developer.

Don’t just say “Check the Codex” and drop in a link. Your readers need
context. Your main goal in writing a tutorial that refers to the Codex should
be to eliminate the reader’s need to plunge into its depths. Tell them what
they can expect to read on the page, illustrating exactly how they can use
the particular lesson you’re linking to.

It might even be to your benefit to point readers to a “beginner’s guide” to
understanding the codex. Here is my favorite.

KEEP THEM ON TARGET, VISUALLY

The most important thing to do to keep readers on track is to provide
constant updates throughout the article on what they should be seeing in

Smashing eBook #11│Mastering WordPress │ 145

http://lorelle.wordpress.com/2005/10/28/a-guide-to-the-wordpress-codex-the-online-manual-for-wordpress-users/
http://lorelle.wordpress.com/2005/10/28/a-guide-to-the-wordpress-codex-the-online-manual-for-wordpress-users/

their own implementation. For example, if your tutorial is multiple pages,
always start with an illustration of the finished product. After each milestone,
provide a “Here’s what you should be seeing right now” example. Whenever
possible, include working samples of the project or its parts for the reader to
experiment with. (These functional samples might have to be run from the
author’s server or a third-party website.)

A WordPress project could very easily require coding between a few files. If
someone isn’t following closely enough, they could miss something simple
that wildly alters their results. Your milestone examples will give readers up-
to-the-minute feedback on where they are going wrong. It’s the best way to
make sure you aren’t losing anyone.

MAKE YOUR CODE SELECTABLE

This is crucial to any WordPress tutorial. If you are explaining a concept in
code, allow the reader to copy and paste the examples whenever possible.
For curious readers, nothing is worse than wanting to test a sample line of
code, only to realize that they have to fully type it out. This principle seems
self-evident, but many guides simply explain an idea and say, “Add this
code,” alongside a screenshot of the finished style sheet. If the reader
misses one semicolon, all their work will be worthless. That’s infuriating.

While there may be some merit to having the reader actually write out the
code, most people probably won’t see it that way. They are much more
likely to seek out another tutorial, one that doesn’t force them to constantly
rewrite code that they don’t yet understand.

BE WARY OF PHP

While it’s a necessary part of WordPress, remember that to someone just
getting their footing with something as relatively basic as CSS, PHP code
can look like someone fell asleep at the keyboard. Too many tutorial

Smashing eBook #11│Mastering WordPress │ 146

providers assume that their readers understand even the first thing about
PHP. This is often not the case.

In the likely event that you are explaining low-level PHP to readers, be
mindful that they might be confused. Give a short description of exactly
what is happening in the code. As always, provide a link to a relevant PHP
tutorial.

CLARIFYING CUSTOM WIDGETS

Admittedly, this recommendation is pretty specific, but bear with me. When I
was getting started, one of the most infuriating things about WordPress
tutorials was when they said, “Write a quick widget with this code…”

Now, once a reader has created their first widget, it becomes completely
obvious that most of the time all they’ll need to do is drag the “Text Widget”
and add some basic HTML code to it. But first they need to get past this
initial step. Remember that to someone looking with fresh eyes, they may
not understand your shorthand.

Smashing eBook #11│Mastering WordPress │ 147

The blank text widget is a simple yet potentially deceptive name for a powerful
tool.

So, I always like to see a description such as, “Use the ‘Text’ widget to
create this option. You can simply add raw HTML into the blank box and
drag it to your sidebars. This will then work just like any other widget.”

ALWAYS PROVIDE DOCUMENTATION FOR VIDEO TUTORIALS

Without a doubt, video is a massive help for confused developers. It
provides detail-rich, play-by-play instruction that carefully guides the viewer
through the concepts in the tutorial. Just be sure to accompany the video
with detailed textual documentation. Otherwise, people will repeatedly have
to rewind and squint at the screen just to copy your instructions. That’s an
easy way to lose fans.

Smashing eBook #11│Mastering WordPress │ 148

Treat the video as an aid, not as the main event. This tutorial on Lifehacker,
though not specifically for WordPress, illustrates this principle perfectly.

UPDATE YOUR TUTORIAL AS NEEDED

Keep your guides relevant and dynamic. Too often, tutorial writers will clarify
major points in the comments section of their page, while the tutorial itself
remains static. Or they just ignore the page entirely, leaving now-irrelevant
guides to linger on the Internet.

Keeping in touch with your audience is wonderful, but giving new readers
the best possible experience is also important. Don’t expect people to comb
through two years’ worth of comments to find your changes.

Make sure your supplemental links remain relevant. Nothing is worse than
reading a tutorial from 2007 and seeing the words “With a simple change, it
should look like this!” Surely in 2007 that link was perfect, but if it leads to
an unrelated page in 2011, it will undermine your entire article.

TELL THEM WHERE TO CODE

Make sure that newbies are tweaking code in the right place. Point out that,
in general, they shouldn’t edit files from within the WordPress dashboard.
That leaves little room for error, and if the coder isn’t careful, they could lose
hours of progress.

Smashing eBook #11│Mastering WordPress │ 149

http://lifehacker.com/5790955/how-to-make-a-web-site-the-complete-guide/
http://lifehacker.com/5790955/how-to-make-a-web-site-the-complete-guide/
http://www.example.com/
http://www.example.com/

A brief glimpse at the SFTP- and FTP-enabled one-stop code editor, Coda.

Instead, teach them to use an SFTP- or FTP-enabled editor, such as Coda or
Dreamweaver. It’s a safer, fixable way to correct any mistakes that arise.

TEACH THEM HOW TO TEST

This last point is just a personal preference that I wish more people would
do. One of the best things about basic HTML and CSS is that you can easily
test them locally by simply reloading the browser. When you jump into
WordPress, this testing process becomes significantly more complicated.

Smashing eBook #11│Mastering WordPress │ 150

Advanced beginners will likely be lost once they realize that they can’t test
by simply dragging their WordPress creations into a browser. This leads
many new coders to test their unfinished creations on production websites.

Tutorial writers should stress the importance of not testing WordPress
changes on a live website. Explain the myriad benefits of designing on a
risk-free local server. Just point the reader to one of the many existing
server guides, and briefly mention the pitfalls of testing code on a live
website. Michael Doig’s article “Installing WordPress Locally Using MAMP” is
one of the most useful set-up guides.

Conclusion
Whether you’re writing a tutorial about WordPress or anything else, clarity is
paramount. Put yourself in the reader’s shoes. WordPress is built on the
efforts of a wonderfully helpful community that is full of excellent tutorials
and experts. But, as in any community, this has resulted in some confusing
jargon and common shortcuts.

These can overwhelm new developers. Tutorial writers should avoid
unnecessary jargon and always explain any references and functions that
they use, no matter how basic they seem. Remember that, as the guide,
your knowledge is likely far beyond that of your readers. What is obvious to
you could be brand new to them.

By making your tutorials easier to understand, you’ll greatly increase your
own Web traffic and enrich the greater WordPress community.

OTHER RESOURCES

Here are a few tutorials that are easy to follow and that adhere to many of
the points mentioned here.

Smashing eBook #11│Mastering WordPress │ 151

• “Complete WordPress Theme Guide,” Web Designer Wall
A great tutorial to help people get started in coding. Plus, it features an
eloquent section on installing WordPress locally.

• “How to Make a Website: The Complete Beginner’s Guide,” Lifehacker
An excellent blog across the board, Lifehacker has created some
absolutely phenomenal video tutorials. The documentation makes this
ones an expertly designed guide.

• “CSS Techniques: Using Sliding Doors with WordPress Navigation,” WP
Hacks
WP Hacks is a great resource for WordPress designers. This piece is
well organized and demonstrates the correct way to present code in a
tutorial.

• “Installing WordPress Locally Using MAMP,” Michael Doig
This is the excellent guide to setting up WordPress using MAMP that I
mentioned earlier.

• “How to Create a WordPress Theme from Scratch,” Nettuts+
Nettuts+ is always a great source of tutorials. In this one, you’ll see how
to present all relevant resources in a tutorial.

Smashing eBook #11│Mastering WordPress │ 152

http://webdesignerwall.com/tutorials/complete-wordpress-theme-guide
http://webdesignerwall.com/tutorials/complete-wordpress-theme-guide
http://lifehacker.com/5790955/how-to-make-a-web-site-the-complete-guide
http://lifehacker.com/5790955/how-to-make-a-web-site-the-complete-guide
http://wphacks.com/sliding-doors-wordpress-navigation-css-technique/
http://wphacks.com/sliding-doors-wordpress-navigation-css-technique/
http://michaeldoig.net/4/installing-wordpress-locally-using-mamp.htm
http://michaeldoig.net/4/installing-wordpress-locally-using-mamp.htm
http://net.tutsplus.com/tutorials/wordpress/how-to-create-a-wordpress-theme-from-scratch/
http://net.tutsplus.com/tutorials/wordpress/how-to-create-a-wordpress-theme-from-scratch/

Advanced Layout Templates In
WordPress’ Content Editor

David Hansen

As a Web designer, I often find myself building WordPress-based websites
that will ultimately be updated and maintained by clients who have little to
no experience working with HTML. While the TinyMCE rich-text editor is
great for giving Web content managers of any skill level the tools they need
to easily style and publish their posts to a degree, creating anything beyond
a single column of text with a few floated images generally requires at least
a basic understanding of HTML.

Smashing eBook #11│Mastering WordPress │ 153

This chapter shows you an easy-to-implement trick that enables even the
least tech-savvy of clients to manage multi-column content layouts within
the comfort of the WYSIWIG editor. And for you advanced users, it’s still a
great way to standardize and streamline your content entry.

Creating A Custom Layout
All we’re really going to do here is inject a few HTML elements into the
editing window and style them. WordPress’ default_content filter allows
us to insert set content into any post as soon as it’s created so that our
clients don’t have to. This filter is also great for adding boilerplate text to
posts.

THE BACK END

By adding the following to functions.php, each new post we create will
come pre-stocked with two divs, classed content-col-main and
content-col-side, respectively. I should note now that this code has
been tested only in WordPress version 3.0 and up:

<?php

 add_filter('default_content', 'custom_editor_content');

 function custom_editor_content($content) {

 $content = '

 <div class="content-col-main">

 This is your main page content

 </div>

 <div class="content-col-side">

Smashing eBook #11│Mastering WordPress │ 154

 This is your sidebar content

 </div>

 ';

 return $content;

 }

?>

A couple of things to note:

• The default_content filter is fired only when a new post is created;
any posts or pages that existed before you added this code will not
receive this content.

• The line spacing and additional are not essential, but I’ve found
them to be useful for preventing a few of TinyMCE’s little quirks.

Now we just need to give it some style. Add the following to functions.php:

<?php

 add_editor_style('editor-style.css');

?>

The add_editor_style() function looks for the specified style sheet and
applies any CSS it contains to the content in our TinyMCE editing window. If
you don’t specify the name of a style sheet, it will look for editor-style.css by
default, but for the purpose of this chapter, I’ve written it out. Create a style
sheet named editor-style.css, and place it in the theme folder, with the
following styles:

Smashing eBook #11│Mastering WordPress │ 155

body {

 background: #f5f5f5;

}

.content-col-main {

 float:left;

 width:66%;

 padding:1%;

 border: 1px dotted #ccc;

 background: #fff;

}

.content-col-side {

 float:right;

 width:29%;

 padding:1%;

 border: 1px dotted #ccc;

 background: #fff;

}

img { /* Makes sure your images stay within their columns */

 max-width: 100%;

 width: auto;

 height: auto;

}

Now, when you create a new post, you will see two columns that you can
type or paste your content into:

Smashing eBook #11│Mastering WordPress │ 156

This basic multi-column template will now appear any time you create a new
page or post.

And there you have it: a simple multi-column template in your content editor.
You can go back and edit the default_content and editor-styles.css to
adapt the content layout to your needs:

Smashing eBook #11│Mastering WordPress │ 157

Use this technique to create your own layout templates, customized to your
content.

Smashing eBook #11│Mastering WordPress │ 158

THE FRONT END

When your post is displayed on the front end of the website, the content will
still appear in a single column, as before. The styles you wrote out in editor-
style.css do not get passed to the front end of the website. However, by
viewing the page source, you’ll see that the divs we created with our
custom_editor_content() function have been passed through and are
wrapping the different sections of the content. Simply open style.css (or
whatever style sheet you’re using for your theme) and style to your heart’s
desire.

This technique applies not only to the visual layout of content. Use JavaScript to
target specific containers to make on-the-fly slideshows and other dynamic
effects.

Smashing eBook #11│Mastering WordPress │ 159

GET MORE FROM YOUR TEMPLATES

Beyond just opening up new styling possibilities, this technique can also be
used to create objects to target later with JavaScript.

In the example above, we were able to turn a series of content areas into
more easily digestible tabbed sections for the user, while still allowing the
administrator to update all of the information on one page. These are just a
few of the many ways you can take your WordPress templates further.

Smashing eBook #11│Mastering WordPress │ 160

Templates For Templates
The code above will simply apply the same layout and styling to all of your
posts, pages, custom posts… anywhere the TinyMCE editor appears. This is
probably not ideal. By adding conditional statements to the
custom_editor_content() function above, you can serve a different
default layout template to each of your post types:

<?php

 add_filter('default_content', 'custom_editor_content');

 function custom_editor_content($content) {

 global $current_screen;

 if ($current_screen->post_type == 'page') {

 $content = '

 // TEMPLATE FOR YOUR PAGES

 ';

 }

 elseif ($current_screen->post_type == 'POSTTYPE') {

 $content = '

 // TEMPLATE FOR YOUR CUSTOM POST TYPE

 ';

 }

 else {

 $content = '

 // TEMPLATE FOR EVERYTHING ELSE

 ';

Smashing eBook #11│Mastering WordPress │ 161

 }

 return $content;

 }

?>

You can style all of your default content elements in the editor-style.css file,
but if you’d like to use a different style sheet entirely for each post type, you
can do so with this snippet from WPStorm:

<?php

 function custom_editor_style() {

 global $current_screen;

 switch ($current_screen->post_type) {

 case 'post':

 add_editor_style('editor-style-post.css');

 break;

 case 'page':

 add_editor_style('editor-style-page.css');

 break;

 case '[POSTTYPE]':

 add_editor_style('editor-style-[POSTTYPE].css');

 break;

 }

 }

 add_action('admin_head', 'custom_editor_style');

?>

Add the above to your functions.php file, and then create the editor-style-
[POSTTYPE].css files to use different style sheets for the corresponding post
types. Just replace [POSTTYPE] with the name of your custom post type.
Extend the code above by adding new cases for each additional post type.

Smashing eBook #11│Mastering WordPress │ 162

http://wpstorm.net/2010/04/editor-styles-custom-post-types-wordpress-3-0/
http://wpstorm.net/2010/04/editor-styles-custom-post-types-wordpress-3-0/

Alternatively, you could use the following code to automatically look for a
style sheet named editor-style- followed by the name of the post type that
you’re currently editing. Again, just make sure that the suffix of the new style
sheet you create matches exactly the name of the post type.

<?php

 function custom_editor_style() {

 global $current_screen;

 add_editor_style(

 array(

 'editor-style.css',

 'editor-style-'.$current_screen->post_type.'.css'

)

);

 }

 add_action('admin_head', 'custom_editor_style');

?>

(In this snippet, editor-style.css will also be included on all post-editing
pages, in addition to the style sheet that is specific to that post type, which
will be named editor-style-[POSTTYPE].css.)

Conclusion
While this method does have its drawbacks — it assumes you already know
the layout that your client wants to give their content, and the layout
structures cannot be easily edited by the client themselves — it does enable
you to create more interesting sandboxes for your client to play in, while
encouraging a standardized format for the content.

Smashing eBook #11│Mastering WordPress │ 163

If the client decides they don’t want to use a pre-defined container for a
particular post, they can simply click inside the container and hit Backspace
until all the content is gone, and then hit Backspace once more, and
TinyMCE will delete the div wrapper, leaving a clean slate for them to work
with. I hope you’ve found this little technique useful.

Smashing eBook #11│Mastering WordPress │ 164

!e Authors

Daniel Pataki
Daniel Pataki is a guitar wielding web developer obsessed with web
technology, best practices and the awesomeness of WordPress. Take a look
at his personal page or follow him on twitter: @danielpataki

Dave Donaldson
Dave lives in Columbus, OH and is one of the founders of Max Foundry, a
company that makes WordPress plugins for landing pages, squeeze pages,
sales pages, and A/B testing. You can follow Dave on Twitter and on his
blog, where he writes about living the bootstrapped startup life.

David Hansen
David Hansen is a designer / front-end developer for Delta Systems Group
in Columbia, Missouri.

Jacob Goldman
Jacob M (Jake) Goldman is the owner of 10up LLC, a web development and
strategy agency with a focus on making content management easy and fun.
10up's clients range from small local businesses to major WordPress.com
VIP clients like TechCrunch. You can find his insights and development tips
by following him on Twitter @jakemgold

Smashing eBook #11│Mastering WordPress │ 165

http://danielpataki.com/
http://danielpataki.com/
http://twitter.com/danielpataki
http://twitter.com/danielpataki
http://maxfoundry.com/
http://maxfoundry.com/
http://maxfoundry.com/plugins/maxlanding/
http://maxfoundry.com/plugins/maxlanding/
http://maxfoundry.com/plugins/maxsqueeze/
http://maxfoundry.com/plugins/maxsqueeze/
http://maxfoundry.com/plugins/maxsales/
http://maxfoundry.com/plugins/maxsales/
http://maxfoundry.com/plugins/maxab/
http://maxfoundry.com/plugins/maxab/
http://twitter.com/arcware
http://twitter.com/arcware
http://arcware.net/
http://arcware.net/
http://arcware.net/
http://arcware.net/
http://www.deltasys.com/
http://www.deltasys.com/
http://www.get10up.com/
http://www.get10up.com/
http://WordPress.com/
http://WordPress.com/
http://www.twitter.com/jakemgold
http://www.twitter.com/jakemgold

Jean-Baptiste Jung
Jean-Baptiste Jung is a 29-year-old blogger from Belgium, who blogs about
Web Development on Cats Who Code, about WordPress at WpRecipes and
about blogging on Cats Who Blog . You can stay in touch with Jean by
following him on Twitter.

Sco" Meaney
I’m a web, social media and SEO publicist for several consumer electronics
companies. Additionally, I write tech and video game news and reviews for
Newegg.com’s official blog and several other outlets. Follow me on Twitter
@scottmeaney.

Smashing eBook #11│Mastering WordPress │ 166

http://www.catswhocode.com/
http://www.catswhocode.com/
http://www.wprecipes.com/
http://www.wprecipes.com/
http://www.catswhoblog.com/
http://www.catswhoblog.com/
http://twitter.com/catswhocode
http://twitter.com/catswhocode

