

VISUAL QUICKPRO GUIDE

PHP 6
AND MYSQL 5
FOR DYNAMIC WEB SITES

Larry Ullman

Peachpit Press

Visual QuickPro Guide

PHP 6 and MySQL 5 for Dynamic Web Sites
Larry Ullman

Peachpit Press
1249 Eighth Street

Berkeley, CA 94710

510/524-2178

510/524-2221 (fax)

Find us on the Web at: www.peachpit.com

To report errors, please send a note to: errata@peachpit.com

Peachpit Press is a division of Pearson Education.

Copyright © 2008 by Larry Ullman

Editor: Rebecca Gulick

Copy Editor: Bob Campbell

Production Coordinator: Becky Winter

Compositors: Myrna Vladic, Jerry Ballew, and Rick Gordon

Indexer: Rebecca Plunkett

Cover Production: Louisa Adair

Technical Reviewer: Arpad Ray

Notice of rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, elec-

tronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the pub-

lisher. For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution

has been taken in the preparation of the book, neither the author nor Peachpit Press shall have any liability

to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-

rectly by the instructions contained in this book or by the computer software and hardware products

described in it.

Trademarks
MySQL is a registered trademark of MySQL AB in the United States and in other countries. Macintosh and

Mac OS X are registered trademarks of Apple Computer, Inc. Microsoft and Windows are registered trade-

marks of Microsoft Corporation. Other product names used in this book may be trademarks of their own

respective owners. Images of Web sites in this book are copyrighted by the original holders and are used

with their kind permission. This book is not officially endorsed by nor affiliated with any of the above com-

panies, including MySQL AB.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as

trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark claim,

the designations appear as requested by the owner of the trademark. All other product names and services

identified throughout this book are used in editorial fashion only and for the benefit of such companies

with no intention of infringement of the trademark. No such use, or the use of any trade name, is intended

to convey endorsement or other affiliation with this book.

ISBN-13: 978-0-321-52599-4
ISBN-10: 0-321-52599-X

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

Dedication
Dedicated to the fine faculty at my alma

mater, Northeast Missouri State University.

In particular, I would like to thank: Dr. Monica

Barron, Dr. Dennis Leavens, Dr. Ed Tyler, and

Dr. Cole Woodcox, whom I also have the

pleasure of calling my friend. I would not be

who I am as a writer, as a student, as a

teacher, or as a person if it were not for the

magnanimous, affecting, and brilliant

instruction I received from these educators.

Special Thanks to:
My heartfelt thanks to everyone at Peachpit

Press, as always.

My gratitude to editor extraordinaire Rebecca

Gulick, who makes my job so much easier.

And thanks to Bob Campbell for his hard

work, helpful suggestions, and impressive

attention to detail. Thanks also to Rebecca

Plunkett for indexing and Becky Winter,

Myrna Vladic, Jerry Ballew, and Rick Gordon

for laying out the book, and thanks to Arpad

Ray for his technical review.

Kudos to the good people working on PHP,

MySQL, Apache, phpMyAdmin, and XAMPP,

among other great projects. And a hearty

“cheers” to the denizens of the various news-

groups, mailing lists, support forums, etc., who

offer assistance and advice to those in need.

Thanks, as always, to the readers, whose sup-

port gives my job relevance. An extra helping

of thanks to those who provided the transla-

tions in Chapter 15, “Example—Message

Board,” and who offered up recommendations

as to what they’d like to see in this edition.

Thanks to Nicole and Christina for enter-

taining and taking care of the kids so that

I could get some work done.

Finally, I would not be able to get through

a single book if it weren’t for the love and

support of my wife, Jessica. And a special

shout out to Zoe and Sam, who give me rea-

sons to, and not to, write books!

Introduction: ix

What Are Dynamic Web Sites? x

What You’ll Need . xvi

About This Book . xvii

Companion Web Site . xix

Chapter 1: Introduction to PHP 1
Basic Syntax . 2

Sending Data to the

Web Browser . 6

Writing Comments . 10

What Are Variables? . 14

Introducing Strings . 18

Concatenating Strings . 21

Introducing Numbers . 23

Introducing Constants . 27

Single vs. Double Quotation Marks 30

Chapter 2: Programming with PHP 33
Creating an HTML Form . 34

Handling an HTML Form . 38

Conditionals and Operators 42

Validating Form Data . 46

Introducing Arrays . 52

For and While Loops . 70

Chapter 3: Creating Dynamic Web Sites 73
Including Multiple Files . 74

Handling HTML Forms, Revisited 84

Making Sticky Forms . 89

Creating Your Own Functions 92

Chapter 4: Introduction to MySQL 107
Naming Database Elements 108

Choosing Your Column Types 110

Choosing Other Column Properties 114

Accessing MySQL . 116

v

T
a

b
l
e

 o
f
 C

o
n

t
e

n
t

s

Table of Contents

Chapter 5: Introduction to SQL 123
Creating Databases and Tables 124

Inserting Records . 127

Selecting Data . 131

Using Conditionals . 133

Using LIKE and NOT LIKE 136

Sorting Query Results . 138

Limiting Query Results . 140

Updating Data . 142

Deleting Data . 144

Using Functions . 146

Chapter 6: Advanced SQL and MySQL 157
Database Design . 158

Performing Joins . 173

Grouping Selected Results 178

Creating Indexes . 180

Using Different Table Types 185

Performing FULLTEXT Searches 188

Performing Transactions . 194

Chapter 7: Error Handling and Debugging 199
Error Types and Basic Debugging 200

Displaying PHP Errors . 206

Adjusting Error Reporting in PHP 208

Creating Custom Error Handlers 211

PHP Debugging Techniques 216

SQL and MySQL Debugging Techniques 220

Chapter 8: Using PHP with MySQL 223
Modifying the Template . 224

Connecting to MySQL . 226

Executing Simple Queries 230

Retrieving Query Results . 239

Ensuring Secure SQL . 243

Counting Returned Records 249

Updating Records with PHP 251

Chapter 9: Common Programming Techniques 259
Sending Values to a Script 260

Using Hidden Form Inputs 264

Editing Existing Records . 270

Paginating Query Results . 277

Making Sortable Displays 285

vi

T
a

b
l
e

 o
f
 C

o
n

t
e

n
t

s

Table of Contents

Chapter 10: Web Application Development 291
Sending Email . 292

Date and Time Functions 298

Handling File Uploads . 302

PHP and JavaScript . 315

Understanding HTTP Headers 322

Chapter 11: Cookies and Sessions 327
Making a Login Page . 328

Making the Login Functions 331

Using Cookies . 336

Using Sessions . 349

Improving Session Security 358

Chapter 12: Security Methods 361
Preventing Spam . 362

Validating Data by Type . 369

Preventing XSS Attacks . 374

Preventing SQL Injection Attacks 377

Database Encryption . 383

Chapter 13: Perl-Compatible
Regular Expressions 389
Creating a Test Script . 390

Defining Simple Patterns . 394

Using Quantifiers . 397

Using Character Classes . 400

Finding All Matches . 403

Using Modifiers . 407

Matching and Replacing Patterns 409

Chapter 14: Making Universal Sites 413
Character Sets and Encoding 414

Creating Multilingual Web Pages 416

Unicode in PHP . 420

Collation in PHP . 424

Transliteration in PHP . 427

Languages and MySQL . 430

Time Zones and MySQL . 434

Working with Locales . 437

vii

T
a

b
l
e

 o
f
 C

o
n

t
e

n
t

s

Table of Contents

Chapter 15: Example—Message Board 441
Making the Database . 442

Writing the Templates . 451

Creating the Index Page . 460

Creating the Forum Page . 461

Creating the Thread Page 466

Posting Messages . 471

Chapter 16: Example—User Registration 483
Creating the Templates . 484

Writing the Configuration Scripts 490

Creating the Home Page . 498

Registration . 500

Activating an Account . 509

Logging In and Logging Out 513

Password Management . 519

Chapter 17: Example—E-Commerce 529
Creating the Database . 530

The Administrative Side . 536

Creating the Public Template 553

The Product Catalog . 557

The Shopping Cart . 569

Recording the Orders . 579

Appendix A: Installation 587
Installation on Windows . 588

Installation on Mac OS X 591

MySQL Permissions . 594

Testing Your Installation . 598

Configuring PHP . 601

Index 603

viii

T
a

b
l
e

 o
f
 C

o
n

t
e

n
t

s

Table of Contents

Today’s Web users expect exciting pages that are updated frequently and provide a

customized experience. For them, Web sites are more like communities, to which

they’ll return time and again. At the same time, Web site administrators want sites

that are easier to update and maintain, understanding that’s the only real way to

keep up with visitors’ expectations. For these reasons and more, PHP and MySQL

have become the de facto standards for creating dynamic, database-driven Web sites.

This book represents the culmination of my many years of Web development experi-

ence coupled with the value of having written several previous books on the technologies

discussed herein. The focus of this book is on covering the most important knowledge

in the most efficient manner. It will teach you how to begin developing dynamic Web

sites and give you plenty of example code to get you started. All you need to provide

is an eagerness to learn.

Well, that and a computer.

ix

Introduction
i

I
n

t
r

o
d

u
c

t
i
o

n

What Are Dynamic
Web Sites?
Dynamic Web sites are flexible and potent

creatures, more accurately described as

applications than merely sites. Dynamic

Web sites

◆ Respond to different parameters (for

example, the time of day or the version of

the visitor’s Web browser)

◆ Have a “memory,” allowing for user regis-

tration and login, e-commerce, and simi-

lar processes

◆ Almost always have HTML forms, so that

people can perform searches, provide

feedback, and so forth

◆ Often have interfaces where administra-

tors can manage the site’s content

◆ Are easier to maintain, upgrade, and

build upon than statically made sites

There are many technologies available for

creating dynamic Web sites. The most com-

mon are ASP.NET (Active Server Pages, a

Microsoft construct), JSP (Java Server Pages),

ColdFusion, Ruby on Rails, and PHP. Dynamic

Web sites don’t always rely on a database,

but more and more of them do, particularly

as excellent database applications like

MySQL are available at little to no cost.

x

Introduction

W
h

a
t

 A
r

e
 D

y
n

a
m

i
c

 W
e

b
 S

i
t

e
s

?

Figure i.1 The home page for PHP.

What is PHP?
PHP originally stood for “Personal Home

Page” as it was created in 1994 by Rasmus

Lerdorf to track the visitors to his online

résumé. As its usefulness and capabilities

grew (and as it started being used in more

professional situations), it came to mean

“PHP: Hypertext Preprocessor.”

According to the official PHP Web site,

found at www.php.net (Figure i.1), PHP is a

“widely-used general-purpose scripting lan-

guage that is especially suited for Web devel-

opment and can be embedded into HTML.”

It’s a long but descriptive definition, whose

meaning I’ll explain.

Starting at the end of that statement, to say

that PHP can be embedded into HTML means

that you can take a standard HTML page,

drop in some PHP wherever you need it, and

end up with a dynamic result. This attribute

makes PHP very approachable for anyone

that’s done even a little bit of HTML work.

Also, PHP is a scripting language, as

opposed to a programming language: PHP was

designed to write Web scripts, not stand-

alone applications (although, with some extra

effort, you can now create applications in

PHP). PHP scripts run only after an event

occurs—for example, when a user submits

a form or goes to a URL.

I should add to this definition that PHP is

a server-side, cross-platform technology, both

descriptions being important. Server-side

refers to the fact that everything PHP does

occurs on the server. A Web server applica-

tion, like Apache or Microsoft’s IIS (Internet

Information Services), is required and all

PHP scripts must be accessed through a

URL (http://-something). Its cross-platform

nature means that PHP runs on most oper-

ating systems, including Windows, Unix

(and its many variants), and Macintosh.

More important, the PHP scripts written on

one server will normally work on another

with little or no modification.

At the time the book was written, PHP was

at version 5.2.4, with version 4.4.7 still being

maintained. Support for version 4 is being

dropped, though, and it’s recommended that

everyone use at least version 5 of PHP. This

edition of this book actually focuses on ver-

sion 6 of PHP, to be released in late 2007 or

in 2008. If you’re still using version 4, you

really should upgrade. If that’s not in your

plans, then please grab the second edition of

this book instead. If you’re using PHP 5,

either the second or this edition of the book

will work for you. In this edition, I will make

it clear which features and functions are

PHP 6–specific.

xi

Introduction

W
h

a
t

 A
r

e
 D

y
n

a
m

i
c

 W
e

b
 S

i
t

e
s

?

What’s new in PHP 6
Because of the planned extinction of PHP 4,

many users and Web hosting companies will

likely make a quick transition from PHP 4 to

PHP 5 to PHP 6. To discuss what’s new in

PHP 6, I’ll start with the even bigger differ-

ences between PHP 4 and 5.

PHP 5, like PHP 4 before it, is a major new

development of this popular programming

language. The most critical changes in PHP 5

involve object-oriented programming

(OOP).Those changes don’t really impact

this book, as OOP isn’t covered (I do so in

my book PHP 5 Advanced: Visual QuickPro

Guide). With respect to this book, the

biggest change in PHP 5 is the addition of

the Improved MySQL Extension, which is

used to communicate with MySQL. The

Improved MySQL Extension offers many

benefits over the older MySQL extension

and will be used exclusively.

The big change in PHP 6 is support for

Unicode, which is to say that PHP can now

handle characters in every language in the

world. This is huge, and it’s also one of the

reasons it’s taken a while to release PHP 6.

What this means in terms of programming

is covered in Chapter 14, “Making Universal

Sites.” The information in that chapter is

also used in Chapter 15, “Example—Message

Board.” Beyond Unicode support, PHP 6 cleans

up a lot of garbage that was left in PHP 5 even

though the recommendation was not to use

such things. The two biggest removals are the

“Magic Quotes” and “register globals” features.

Why use PHP?
Put simply, when it comes to developing

dynamic Web sites, PHP is better, faster, and

easier to learn than the alternatives. What

you get with PHP is excellent performance,

a tight integration with nearly every database

available, stability, portability, and a nearly

limitless feature set due to its extendibility.

All of this comes at no cost (PHP is open

source) and with a very manageable learning

curve. PHP is one of the best marriages I’ve

ever seen between the ease with which

beginning programmers can start using it

and the ability for more advanced program-

mers to do everything they require.

Finally, the proof is in the pudding: PHP has

seen an exponential growth in use since its

inception, overtaking ASP as the most pop-

ular scripting language being used today. It’s

the most requested module for Apache (the

most-used Web server), and by the time this

book hits the shelves, PHP will be on nearly

25 million domains.

Of course, you might assume that I, as the

author of a book on PHP (several, actually),

have a biased opinion. Although not nearly

to the same extent as PHP, I’ve also devel-

oped sites using Java Server Pages (JSP),

Ruby on Rails (RoR), and ASP.NET. Each has

its pluses and minuses, but PHP is the tech-

nology I always return to. You might hear

that it doesn’t perform or scale as well as

other technologies, but Yahoo! handles over

3.5 billion hits per day using PHP (yes, billion).

You might also wonder how secure PHP is.

But security isn’t in the language; it’s in how

that language is used. Rest assured that

a complete and up-to-date discussion of all

the relevant security concerns is provided

by this book!

xii

Introduction

W
h

a
t

 A
r

e
 D

y
n

a
m

i
c

 W
e

b
 S

i
t

e
s

?

How PHP works
As previously stated, PHP is a server-side

language. This means that the code you write

in PHP sits on a host computer called a server.

The server sends Web pages to the request-

ing visitors (you, the client, with your Web

browser).

When a visitor goes to a Web site written in

PHP, the server reads the PHP code and then

processes it according to its scripted direc-

tions. In the example shown in Figure i.2,

the PHP code tells the server to send the

appropriate data—HTML code—to the Web

browser, which treats the received code as it

would a standard HTML page.

This differs from a static HTML site where,

when a request is made, the server merely

sends the HTML data to the Web browser

and there is no server-side interpretation

occurring (Figure i.3). Because no server-

side action is required, you can run HTML

pages in your Web browser without using a

server at all.

To the end user and their Web browser there

is no perceptible difference between what

home.html and home.php may look like, but

how that page’s content was created will be

significantly different.

xiii

Introduction

W
h

a
t

 A
r

e
 D

y
n

a
m

i
c

 W
e

b
 S

i
t

e
s

?

URL Request

HTML

Client Server

PHP

HTML
Script

Request

Figure i.2 How PHP fits into the client/server model when a user requests
a Web page.

URL Request

HTML

Client Server

Figure i.3 The client/server process when a request for a static HTML page is
made.

What is MySQL?
MySQL (www.mysql.com, Figure i.4) is the

world’s most popular open-source database.

In fact, today MySQL is a viable competitor

to the pricey goliaths such as Oracle and

Microsoft’s SQL Server. Like PHP, MySQL

offers excellent performance, portability, and

reliability, with a moderate learning curve

and little to no cost.

MySQL is a database management system

(DBMS) for relational databases (therefore,

MySQL is an RDBMS). A database, in the

simplest terms, is a collection of interrelated

data, be it text, numbers, or binary files, that

are stored and kept organized by the DBMS.

There are many types of databases, from the

simple flat-file to relational and object-oriented.

A relational database uses multiple tables to

store information in its most discernable

parts. While relational databases may involve

more thought in the design and program-

ming stages, they offer an improvement to

reliability and data integrity that more than

makes up for the extra effort required.

Further, relational databases are more search-

able and allow for concurrent users.

By incorporating a database into a Web appli-

cation, some of the data generated by PHP

can be retrieved from MySQL (Figure i.5).

This further moves the site’s content from a

static (hard-coded) basis to a flexible one,

flexibility being the key to a dynamic Web site.

MySQL is an open-source application, like

PHP, meaning that it is free to use or even

modify (the source code itself is download-

able). There are occasions in which you

should pay for a MySQL license, especially if

you are making money from the sales or

incorporation of the MySQL product. Check

MySQL’s licensing policy for more informa-

tion on this.

xiv

Introduction

W
h

a
t

 A
r

e
 D

y
n

a
m

i
c

 W
e

b
 S

i
t

e
s

?

Figure i.4 The
home page for the
MySQL database
application.

otherwise. MySQL is used by NASA and

the United States Census Bureau, among

many others.

At the time of this writing, MySQL is on ver-

sion 5.0.45, with versions 5.1 and 6.0 in devel-

opment. The version of MySQL you have

affects what features you can use, so it’s

important that you know what you’re work-

ing with. For this book, MySQL 5.0.45 was used,

although you should be able to do everything

in this book as long as you’re using a version

of MySQL greater than 4.1. (My book MySQL:

Visual QuickStart Guide goes into the more

advanced and newer features of MySQL 5

that aren’t used in this book.)

xv

Introduction

W
h

a
t

 A
r

e
 D

y
n

a
m

i
c

 W
e

b
 S

i
t

e
s

?

Pronunciation Guide

Trivial as it may be, I should clarify up

front that MySQL is technically pronounced

“My Ess Que Ell,” just as SQL should be

said “Ess Que Ell.” This is a question many

people have when first working with

these technologies. While not a critical

issue, it’s always best to pronounce

acronyms correctly.

The MySQL software consists of several

pieces, including the MySQL server (mysqld,

which runs and manages the databases), the

MySQL client (mysql, which gives you an

interface to the server), and numerous utili-

ties for maintenance and other purposes.

PHP has always had good support for

MySQL, and that is even more true in the

most recent versions of the language.

MySQL has been known to handle databases

as large as 60,000 tables with more than five

billion rows. MySQL can work with tables as

large as eight million terabytes on some

operating systems, generally a healthy 4 GB

URL Request

HTML

Client Server

PHP
MySQL

HTML
Script Request

Query

Data

Figure i.5 How most of the dynamic Web applications in this book will work,
using both PHP and MySQL.

What You’ll Need
To follow the examples in this book, you’ll

need the following tools:

◆ A Web server application (for example,

Apache, Abyss, or IIS)

◆ PHP

◆ MySQL

◆ A Web browser (Microsoft’s Internet

Explorer, Mozilla’s Firefox, Apple’s Safari,

etc.)

◆ A text editor, PHP-capable WYSIWYG

application (Adobe’s Dreamweaver quali-

fies), or IDE (integrated development

environment)

◆ An FTP application, if using a remote

server

One of the great things about developing

dynamic Web sites with PHP and MySQL is

that all of the requirements can be met at no

cost whatsoever, regardless of your operating

system! Apache, PHP, and MySQL are each

free; most Web browsers can be had without

cost; and many good text editors are avail-

able for nothing.

The appendix discusses the installation

process on the Windows and Mac OS X

operating systems. If you have a computer,

you are only a couple of downloads away

from being able to create dynamic Web sites

(in that case, your computer would represent

both the client and the server in Figures i.2

and i.5). Conversely, you could purchase Web

hosting for only dollars per month that will

provide you with a PHP- and MySQL-enabled

environment already online.

xvi

Introduction

W
h

a
t

 Y
o

u
'
l
l
 N

e
e

d

About This Book
This book teaches how to develop dynamic

Web sites with PHP and MySQL, covering

the knowledge that most developers might

require. In keeping with the format of the

Visual QuickPro series, the information is

discussed using a step-by-step approach

with corresponding images. The focus has

been kept on real-world, practical examples,

avoiding “here’s something you could do but

never would” scenarios. As a practicing Web

developer myself, I wrote about the informa-

tion that I use and avoided those topics

immaterial to the task at hand. As a practic-

ing writer, I made certain to include topics

and techniques that I know readers are ask-

ing about.

The structure of the book is linear, and the

intention is that you’ll read it in order. It

begins with three chapters covering the fun-

damentals of PHP (by the second chapter,

you will have already developed your first

dynamic Web page). After that, there are

three chapters on SQL (Structured Query

Language, which is used to interact with all

databases) and MySQL. They teach the basics

of SQL, database design, and the MySQL

application in particular. Then there’s one

chapter on debugging and error manage-

ment, information everyone needs. This is

followed by a chapter introducing how to

use PHP and MySQL together, a remarkably

easy thing to do.

The following five chapters teach more

application techniques to round out your

knowledge. Security, in particular, is repeat-

edly addressed in those pages. Chapter 14,

“Making Universal Sites,” is entirely new to

this edition of the book, showing you how to

broaden the reach of your sites. Finally, I’ve

included three example chapters, in which

the heart of different Web applications are

developed, with instructions.

Is this book for you?
This book was written for a wide range of

people within the beginner-to-intermediate

range. The book makes use of XHTML for

future compatibility, so solid experience

with XHTML, or its forebear HTML, is a

must. Although this book covers many

things, it does not formally teach HTML or

Web page design. Some CSS is sprinkled

about these pages but also not taught.

Second, this book expects that you have one

of the following:

◆ The drive and ability to learn without

much hand holding, or…

◆ Familiarity with another programming

language (even solid JavaScript skills

would qualify), or…

◆ A cursory knowledge of PHP

Make no mistake: This book covers PHP and

MySQL from A to Z, teaching everything

you’ll need to know to develop real-world

Web sites, but particularly the early chapters

cover PHP at a quick pace. For this reason I

recommend either some programming expe-

rience or a curious and independent spirit

when it comes to learning new things. If you

find that the material goes too quickly, you

should probably start off with the latest edi-

tion of my book PHP for the World Wide

Web: Visual QuickStart Guide, which goes at

a more tempered pace.

No database experience is required, since

SQL and MySQL are discussed starting at a

more basic level.

xvii

Introduction

A
b

o
u

t
 T

h
i
s

 B
o

o
k

What’s new in this edition
The first two editions of this book have been

very popular, and I’ve received a lot of posi-

tive feedback on them (thanks!). In writing

this new edition, I wanted to do more than

just update the material for the latest ver-

sions of PHP and MySQL, although that is

an overriding consideration throughout the

book. Other new features you’ll find are:

◆ New examples demonstrating techniques

frequently requested by readers

◆ Some additional advanced MySQL and

SQL examples

◆ A dedicated chapter on thwarting com-

mon Web site abuses and attacks

◆ A brand-new chapter on working with

multiple languages and time zones

◆ A brand-new example chapter on creat-

ing a message board (or forum)

◆ Expanded and updated installation and

configuration instructions

◆ Removal of outdated content (e.g., things

used in older versions of PHP or not

applicable to PHP 6)

For those of you that also own the first

and/or second edition (thanks, thanks,

thanks!), I believe that these new features

will also make this edition a required fixture

on your desk or bookshelf.

How this book compares to my
other books
This is my fourth PHP and/or MySQL title,

after (in order)

◆ PHP for the World Wide Web: Visual

QuickStart Guide

◆ PHP 5 Advanced for the World Wide Web:

Visual QuickPro Guide

◆ MySQL: Visual QuickStart Guide

I hope this résumé implies a certain level of

qualification to write this book, but how do

you, as a reader standing in a bookstore,

decide which title is for you? Of course, you

are more than welcome to splurge and buy

the whole set, earning my eternal gratitude,

but…

The PHP for the World Wide Web: Visual

QuickStart Guide book is very much a begin-

ner’s guide to PHP. This title overlaps it

some, mostly in the first three chapters, but

uses new examples so as not to be redun-

dant. For novices, this book acts as a follow-

up to that one. The advanced book is really a

sequel to this one, as it assumes a fair

amount of knowledge and builds upon many

things taught here. The MySQL book focus-

es almost exclusively on MySQL (there are

but two chapters that use PHP).

With that in mind, read the section “Is this

book for you?” and see if the requirements

apply. If you have no programming experi-

ence at all and would prefer to be taught

PHP more gingerly, my first book would be

better. If you are already very comfortable

with PHP and want to learn more of its

advanced capabilities, pick up the second. If

you are most interested in MySQL and are

not concerned with learning much about

PHP, check out the third.

That being said, if you want to learn every-

thing you need to know to begin developing

dynamic Web sites with PHP and MySQL

today, then this is the book for you! It refer-

ences the most current versions of both

technologies, uses techniques not previously

discussed in other books, and contains its

own unique examples.

And whatever book you do choose, make sure

you’re getting the most recent edition or,

barring that, the edition that best matches

the versions of the technologies you’ll be using.

xviii

Introduction

A
b

o
u

t
 T

h
i
s

 B
o

o
k

Companion Web Site
I have developed a companion Web site

specifically for this book, which you may

reach at www.DMCinsights.com/phpmysql3/
(Figure i.6). There you will find every script

from this book, a text file containing lengthy

SQL commands, and a list of errata that

occurred during publication. (If you have

problem with a command or script, and you

are following the book exactly, check the

errata to ensure there is not a printing error

before driving yourself absolutely mad.) At

this Web site you will also find useful Web

links, a highly popular forum where readers

can ask and answer each other’s questions

(I answer many of them myself), and more!

Questions, comments, or
suggestions?
If you have any questions on PHP or MySQL,

you can turn to one of the many Web sites,

mailing lists, newsgroups, and FAQ reposito-

ries already in existence. A quick search online

will turn up virtually unlimited resources.

For that matter, if you need an immediate

answer, those sources or a quick Web search

will most assuredly serve your needs (in all

likelihood, someone else has already seen

and solved your exact problem).

You can also direct your questions, comments,

and suggestions to me. You’ll get the fastest

reply using the book’s corresponding forum

(I always answer those questions first). If

you’d rather email me, my contact informa-

tion is available on the Web site. I do try to

answer every email I receive, although I can-

not guarantee a quick reply.

xix

Introduction

C
o

m
p

a
n

i
o

n
 W

e
b

 S
i
t

e

Figure i.6 The companion Web site for this book.

This page intentionally left blank

To use an old chestnut, every journey starts with one small step, and the first step in

developing dynamic Web applications with PHP and MySQL is to learn the fundamen-

tals of the scripting language itself.

Although this book focuses on using MySQL and PHP in combination, you’ll do a

vast majority of your legwork using PHP alone. In this and the following chapter,

you’ll learn its basics, from syntax to variables, operators, and language constructs

(conditionals, loops, and whatnot). At the same time you are picking up these

fundamentals, you’ll also begin developing usable code that you’ll integrate into

larger applications later in the book.

This introductory chapter will cruise through most of the basics of the PHP language.

You’ll learn the syntax for coding PHP, how to send data to the Web browser, and

how to use two kinds of variables (strings and numbers) plus constants. Some of the

examples may seem inconsequential, but they’ll demonstrate ideas you’ll have to

master in order to write more advanced scripts further down the line.

1

Introduction
to PHP

1

I
n

t
r

o
d

u
c

t
i
o

n
 t

o
 P

H
P

Basic Syntax
As stated in the book’s introduction, PHP is

an HTML-embedded scripting language.

This means that you can intermingle PHP

and HTML code within the same file. So

to begin programming with PHP, start with

a simple Web page. Script 1.1 gives an

example of a no-frills, no-content XHTML

Transitional document, which will be used

as the foundation for every Web page in the

book (this book does not formally discuss

[X]HTML; see a resource dedicated to the

topic for more information).

To add PHP code to a page, place it within

PHP tags:

<?php

?>

Anything placed within these tags will be

treated by the Web server as PHP (meaning

the PHP interpreter will process the code).

Any text outside of the PHP tags is immedi-

ately sent to the Web browser as regular

HTML.

Along with placing PHP code within PHP

tags, your PHP files must have a proper

extension. The extension tells the server to

treat the script in a special way, namely, as a

PHP page. Most Web servers will use .html
or .htm for standard HTML pages, and nor-

mally, .php is preferred for your PHP files.

To make a basic PHP script:

1. Create a new document in your text

editor or Integrated Development

Environment (Script 1.2).

It generally does not matter what appli-

cation you use, be it Dreamweaver (a

fancy IDE), BBEdit (a great and popular

Macintosh plain-text editor), or vi (a plain-

text Unix editor, lacking a graphical

interface). Still, some text editors and

2

Chapter 1

B
a

s
i
c

 S
y

n
t
a

x

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional//EN” “http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd”>

2 <html xmlns=”http://www.w3.org/1999/
xhtml” xml:lang=”en” lang=”en”>

3 <head>

4 <meta http-equiv=”content-type” content=
”text/html; charset=iso-8859-1” />

5 <title>Page Title</title>

6 </head>

7 <body>

8 </body>

9 </html>

Script 1.1 A basic XHTML 1.0 Transitional Web page.

IDEs make typing and debugging HTML

and PHP easier (conversely, Notepad on

Windows does some things that makes

coding harder). If you don’t already have

an application you’re attached to, search

the Web or use the book’s corresponding

forum (www.DMCInsights.com/phorum/) to

find one.

2. Start a basic HTML document.

<!DOCTYPE html PUBLIC “-//W3C//
➝ DTD XHTML 1.0 Transitional//EN”“
➝ http://www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/
➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”
➝ content=”text/html; charset=
➝ iso-8859-1” />

<title>Basic PHP Page</title>

</head>

<body>

<p>This is standard HTML.</p>

</body>

</html>

Although this is the syntax being used

throughout the book, you can change

the HTML to match whichever standard

you intend to use (e.g., HTML 4.0 Strict).

Again, see a dedicated (X)HTML

resource if you’re unfamiliar with this

HTML code (see the first tip).

3

Introduction to PHP

B
a

s
i
c

 S
y

n
t
a

x

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional//EN” “http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd”>

2 <html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

3 <head>

4 <meta http-equiv=”content-type” content=
”text/html; charset=iso-8859-1” />

5 <title>Basic PHP Page</title>

6 </head>

7 <body>

8 <p>This is standard HTML.</p>

9 <?php

10 ?>

11 </body>

12 </html>

continues on next page

Script 1.2 This first PHP script doesn’t do anything,
per se, but does demonstrate how a PHP script is
written. It’ll also be used as a test, prior to getting
into elaborate PHP code.

3. Before the closing body tag, insert your

PHP tags.

<?php

?>

These are the formal PHP tags, also

known as XML-style tags. Although PHP

supports other tag types (see the second

tip), I recommend that you use the for-

mal type, and I will do so throughout

this book.

4. Save the file as first.php.

Remember that if you don’t save the file

using an appropriate PHP extension, the

script will not execute properly.

5. Place the file in the proper directory of

your Web server.

If you are running PHP on your own

computer (presumably after following

the installation directions in Appendix

A, “Installation”), you just need to move,

copy, or save the file to a specific folder

on your computer. Check the documen-

tation for your particular Web server to

identify the correct directory, if you don’t

already know what it is.

If you are running PHP on a hosted server

(i.e., on a remote computer), you’ll need

to use an FTP application to upload the

file to the proper directory. Your hosting

company will provide you with access

and the other necessary information.

6. Run first.php in your Web browser

(Figure 1.1).

Because PHP scripts need to be parsed

by the server, you absolutely must access

them via the URL. You cannot simply

open them in your Web browser as you

would a file in other applications.

If you are running PHP on your own

computer, you’ll need to go to something

like http://localhost/first.php,

http://127.0.0.1/first.php, or

4

Chapter 1

B
a

s
i
c

 S
y

n
t
a

x

Figure 1.1 While it seems like any other
(simple) HTML page, this is in fact a PHP
script and the basis for the rest of the
examples in the book.

http://localhost/~<user>/first.php
(on Mac OS X, using your actual user-

name for <user>). If you are using a

Web host, you’ll need to use http://
your-domain-name/first.php (e. g.,

http://www.example.com/first.php).

7. If you don’t see results like those in

Figure 1.1, start debugging.

Part of learning any programming lan-

guage is mastering debugging. It’s a

sometimes-painful but absolutely neces-

sary process. With this first example, if

you don’t see a simple, but perfectly

valid, Web page, follow these steps:

1. Confirm that you have a working

PHP installation (see Appendix A

for testing instructions).

2. Make sure that you are running the

script through a URL. The address

in the Web browser must begin with

http://. If it starts with file://,

that’s the problem (Figure 1.2).

3. If you get a file not found (or simi-

lar) error, you’ve likely put the file in

the wrong directory or mistyped

the file’s name (either when saving

it or in your Web browser).

If you’ve gone through all this and are

still having problems, turn to the book’s

corresponding forum (www.DMCInsights.
com/phorum/list.php?20).

5

Introduction to PHP

B
a

s
i
c

 S
y

n
t
a

x

Figure 1.2 If you see the actual PHP code (in this case, the tags) in the Web browser, this
means that the PHP Web server is not running the code for one reason or another.

✔ Tips

■ To find more information about HTML

and XHTML, check out Elizabeth

Castro’s excellent book HTML, XHTML,

and CSS, Sixth Edition: Visual QuickStart

Guide, (Peachpit Press, 2006) or search

the Web.

■ There are actually three different pairs

of PHP tags. Besides the formal

(<?php and ?>), there are the short tags

(<? and ?>), and the script style (<script
language=”php”> and </script>). This

last style is rarely used, and the formal

style is recommended.

■ Because I am running PHP on my own

computer, you will sometimes see URLs

like http://127.0.0.1:8000/first.php in

this book’s figures. The important thing

is that I’m running these scripts via

http://; don’t let the rest of the URL

confuse you.

■ You can embed multiple sections of PHP

code within a single HTML document

(i.e., you can go in and out of the two

languages). You’ll see examples of this

throughout the book.

Sending Data to the
Web Browser
To create dynamic Web sites with PHP, you

must know how to send data to the Web

browser. PHP has a number of built-in func-

tions for this purpose, the most common

being echo() and print(). I personally tend

to favor echo():

echo ‘Hello, world!’;

echo “What’s new?”;

You could use print() instead, if you prefer:

print “Hello, world!”;

print “What’s new?”;

As you can see from these examples, you

can use either single or double quotation

marks (but there is a distinction between

the two types of quotation marks, which

will be made clear by the chapter’s end).

The first quotation mark after the function

name indicates the start of the message to

be printed. The next matching quotation

mark (i.e., the next quotation mark of the

same kind as the opening mark) indicates

the end of the message to be printed.

Along with learning how to send data to the

Web browser, you should also notice that in

PHP all statements (a line of executed code,

in layman’s terms) must end with a semi-

colon. Also, PHP is case-insensitive when

it comes to function names, so ECHO(),

echo(), eCHo(), and so forth will all work.

The all-lowercase version is easiest to type,

of course.

6

Chapter 1

S
e

n
d

i
n

g
 D

a
t
a

 t
o

 t
h

e
 W

e
b

 B
r

o
w

s
e

r

Needing an Escape

As you might discover, one of the compli-

cations with sending data to the Web

involves printing single and double quo-

tation marks. Either of the following will

cause errors:

echo “She said, “How are you?””;

echo ‘I’m just ducky.’;

There are two solutions to this problem.

First, use single quotation marks when

printing a double quotation mark and

vice versa:

echo ‘She said, “How are you?”’;

echo “I’m just ducky.”;

Or, you can escape the problematic char-

acter by preceding it with a backslash:

echo “She said, \”How are you?\””;

print ‘I\’m just ducky.’;

As escaped quotation mark will merely

be printed like any other character.

Understanding how to use the backslash

to escape a character is an important

concept, and one that will be covered in

more depth at the end of the chapter.

Script 1.3 Using print() or echo(), PHP can send data
to the Web browser (see Figure 1.3).

To send data to the Web browser:

1. Open first.php (refer to Script 1.2) in

your text editor or IDE.

2. Between the PHP tags (lines 9 and 10),

add a simple message (Script 1.3).

echo ‘This was generated using
➝ PHP!’;

It truly doesn’t matter what message

you type here, which function you use

(echo() or print()), or which quotation

marks, for that matter—just be careful

if you are printing a single or double

quotation mark as part of your message

(see the sidebar “Needing an Escape”).

3. If you want, change the page title to bet-

ter describe this page (line 5).

<title>Using Echo()</title>

This change only affects the browser

window’s title bar.

4. Save the file as second.php, place it in

your Web directory, and test it in your

Web browser (Figure 1.3).

5. If necessary, debug the script.

If you see a parse error instead of your

message (see Figure 1.4), check that you

have both opened and closed your quota-

tion marks and escaped any problematic

characters (see the sidebar). Also be cer-

tain to conclude each statement with a

semicolon.

7

Introduction to PHP

S
e

n
d

i
n

g
 D

a
t
a

 t
o

 t
h

e
 W

e
b

 B
r

o
w

s
e

r

Figure 1.3 The results still aren’t
glamorous, but this page was in
part dynamically generated by PHP.

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional//EN” “http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd”>

2 <html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

3 <head>

4 <meta http-equiv=”content-type” content=
”text/html; charset=iso-8859-1” />

5 <title>Using Echo()</title>

6 </head>

7 <body>

8 <p>This is standard HTML.</p>

9 <?php

10 echo ‘This was generated using PHP!’;

11 ?>

12 </body>

13 </html>

Figure 1.4 This may be the first of many
parse errors you see as a PHP programmer
(this one is caused by an un-escaped
quotation mark).

continues on next page

If you see an entirely blank page, this is

probably for one of two reasons:

▲ There is a problem with your HTML.

Test this by viewing the source of

your page and looking for HTML

problems there (Figure 1.5).

▲ An error occurred, but display_errors

is turned off in your PHP configura-

tion, so nothing is shown. In this case,

see the section in Appendix A on how

to configure PHP so that you can turn

display_errors back on.

✔ Tips

■ Technically, echo() and print() are lan-

guage constructs, not functions. That

being said, don’t be flummoxed as I con-

tinue to call them “functions” for con-

venience. Also, I include the parentheses

when referring to functions—say echo(),

not just echo—to help distinguish them

from variables and other parts of PHP.

This is just my own little convention.

■ You can, and often will, use echo() and

print() to send HTML code to the Web

browser, like so (Figure 1.6):

echo ‘<p>Hello, world!</p>’;

■ Echo() and print() can both be used to

print text over multiple lines:

echo ‘This sentence is

printed over two lines.’;

What happens in this case is that the

return (created by pressing Enter or

Return) becomes part of the printed

message, which isn’t terminated until

the closing single quotation mark.

The net result will be the “printing” of

the return in the HTML source code

(Figure 1.7). This will not have an effect

on the generated page (Figure 1.8).

For more on this, see the sidebar

“Understanding White Space.”

8

Chapter 1

S
e

n
d

i
n

g
 D

a
t
a

 t
o

 t
h

e
 W

e
b

 B
r

o
w

s
e

r

Figure 1.5 One possible cause of a blank PHP
page is a simple HTML error, like the closing title
tag here (it’s missing the slash).

Figure 1.6 PHP can send HTML code (like
the formatting here) as well as simple text
(see Figure 1.3) to the Web browser.

9

Introduction to PHP

S
e

n
d

i
n

g
 D

a
t
a

 t
o

 t
h

e
 W

e
b

 B
r

o
w

s
e

r

Figure 1.7 Printing text and HTML over multiple PHP
lines will generate HTML source code that also
extends over multiple lines. Note that extraneous
white spacing in the HTML source will not affect the
look of a page (see Figure 1.8) but can make the
source easier to review.

Figure 1.8 The return in the HTML source
(Figure 1.7) has no effect on the rendered
result. The only way to alter the spacing of a
displayed Web page is to use HTML tags (like

 and <p></p>).

Understanding White Space

With PHP you send data (like HTML tags

and text) to the Web browser, which will,

in turn, render that data as the Web page

the end user sees. Thus, what you are

doing with PHP is creating the HTML

source of a Web page. With this in mind,

there are three areas of notable white

space (extra spaces, tabs, and blank

lines): in your PHP scripts, in your HTML

source, and in the rendered Web page.

PHP is generally white space insensitive,

meaning that you can space out your

code however you want to make your

scripts more legible. HTML is also gener-

ally white space insensitive. Specifically,

the only white space in HTML that

affects the rendered page is a single space

(multiple spaces still get rendered as

one). If your HTML source has text on

multiple lines, that doesn’t mean it’ll

appear on multiple lines in the rendered

page (see Figures 1.7 and 1.8).

To alter the spacing in a rendered Web

page, use the HTML tags
 (line

break,
 in older HTML standards)

and <p></p> (paragraph). To alter the

spacing of the HTML source created with

PHP, you can

◆ Use echo() or print() over the course

of several lines.

or

◆ Print the newline character (\n) with-

in double quotation marks.

Writing Comments
Creating executable PHP code is only a part

of the programming process (admittedly, it’s

the most important part). A secondary but

still crucial aspect to any programming

endeavor involves documenting your code.

In HTML you can add comments using

special tags:

<!-- Comment goes here. -->

HTML comments are viewable in the source

(Figure 1.9) but do not appear in the ren-

dered page.

PHP comments are different in that they

aren’t sent to the Web browser at all, mean-

ing they won’t be viewable to the end user,

even when looking at the HTML source.

10

Chapter 1

W
r

i
t

i
n

g
 C

o
m

m
e

n
t

s

Figure 1.9 HTML comments appear in the browser’s source code but
not in the rendered Web page.

PHP supports three comment types. The

first uses the pound or number symbol (#):

This is a comment.

The second uses two slashes:

// This is also a comment.

Both of these cause PHP to ignore every-

thing that follows until the end of the line

(when you press Return or Enter). Thus,

these two comments are for single lines only.

They are also often used to place a comment

on the same line as some PHP code:

print ‘Hello!’; // Say hello.

A third style allows comments to run over

multiple lines:

/* This is a longer comment

that spans two lines. */

Script 1.4 These basic comments demonstrate the
three syntaxes you can use in PHP.

To comment your scripts:

1. Begin a new PHP document in your text

editor or IDE, starting with the initial

HTML (Script 1.4).

<!DOCTYPE html PUBLIC “-//W3C//
➝ DTD XHTML 1.0 Transitional//EN”
➝ “http://www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/
➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”
content=”text/html; charset=iso-
8859-1” />

<title>Comments</title>

</head>

<body>

2. Add the initial PHP tag and write your

first comments.

<?php

Created August 26, 2007

Created by Larry E. Ullman

This script does nothing much.

One of the first comments each script

should contain is an introductory block

that lists creation date, modification

date, creator, creator’s contact informa-

tion, purpose of the script, and so on.

Some people suggest that the shell-style

comments (#) stand out more in a script

and are therefore best for this kind of

notation.

3. Send some HTML to the Web browser.

echo ‘<p>This is a line of text.
➝
This is another line of
➝ text.</p>’;

11

Introduction to PHP

W
r

i
t

i
n

g
 C

o
m

m
e

n
t

s

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional//EN” “http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd”>

2 <html xmlns=”http://www.w3.org/1999/
xhtml” xml:lang=”en” lang=”en”>

3 <head>

4 <meta http-equiv=”content-type” content=
”text/html; charset=iso-8859-1” />

5 <title>Comments</title>

6 </head>

7 <body>

8 <?php

9

10 # Created August 27, 2007

11 # Created by Larry E. Ullman

12 # This script does nothing much.

13

14 echo ‘<p>This is a line of text.
This
is another line of text.</p>’;

15

16 /*

17 echo ‘This line will not be executed.’;

18 */

19

20 echo “<p>Now I’m done.</p>”; // End of PHP

code.

21

22 ?>

23 </body>

24 </html>

continues on next page

Figure 1.10 The PHP comments in Script
1.4 don’t appear in the Web page or the
HTML source (Figure 1.11).

It doesn’t matter what you do here, just

so the Web browser has something to

display. For the sake of variety, I’ll have

the echo() statement print some HTML

tags, including a line break (
) to

add some spacing to the generated

HTML page.

4. Use the multiline comments to comment

out a second echo() statement.

/*

echo ‘This line will not be
➝ executed.’;

*/

By surrounding any block of PHP code

with /* and */, you can render that code

inert without having to delete it from

your script. By later removing the com-

ment tags, you can reactivate that sec-

tion of PHP code.

5. Add a final comment after a third echo()
statement.

echo “<p>Now I’m done.</p>”; // End
➝ of PHP code.

This last (superfluous) comment shows

how to place one at the end of a line, a

common practice. Note that I used dou-

ble quotation marks to surround the

message, as single quotation marks

would conflict with the apostrophe (see

the “Needing an Escape” sidebar, earlier

in the chapter).

6. Close the PHP section and complete the

HTML page.

?>

</body>

</html>

7. Save the file as comments.php, place it in

your Web directory, and test it in your

Web browser (Figure 1.10).

12

Chapter 1

W
r

i
t

i
n

g
 C

o
m

m
e

n
t

s

■ It’s nearly impossible to over-comment

your scripts. Always err on the side of

writing too many comments as you code.

That being said, in the interest of saving

space, the scripts in this book will not be

as well documented as I would suggest

they should be.

■ It’s also important that as you change a

script you keep the comments up-to-

date and accurate. There’s nothing more

confusing than a comment that says one

thing when the code really does some-

thing else.

13

Introduction to PHP

W
r

i
t

i
n

g
 C

o
m

m
e

n
t

s

Figure 1.11 The PHP comments from Script 1.4 are nowhere to be seen in the client’s browser.

8. If you’re the curious type, check the

source code in your Web browser to

confirm that the PHP comments do

not appear there (Figure 1.11).

✔ Tips

■ You shouldn’t nest (place one inside

another) multiline comments (/* */).

Doing so will cause problems.

■ Any of the PHP comments can be used

at the end of a line (say, after a function

call):

echo ‘Howdy’; /* Say ‘Howdy’ */

Although this is allowed, it’s far less

common.

What Are Variables?
Variables are containers used to temporarily

store values. These values can be numbers,

text, or much more complex data. PHP has

eight types of variables. These include four

scalar (single-valued) types—Boolean (TRUE
or FALSE), integer, floating point (decimals),

and strings (characters); two nonscalar (mul-

tivalued)—arrays and objects; plus resources

(which you’ll see when interacting with

databases) and NULL (which is a special

type that has no value).

Regardless of what type you are creating, all

variables in PHP follow certain syntactical

rules:

◆ A variable’s name—also called its

identifier—must start with a dollar

sign ($), for example, $name.

◆ The variable’s name can contain a combi-

nation of strings, numbers, and the

underscore, for example, $my_report1.

◆ The first character after the dollar sign

must be either a letter or an underscore

(it cannot be a number).

◆ Variable names in PHP are case-sensitive.

This is a very important rule. It means

that $name and $Name are entirely differ-

ent variables.

To begin working with variables, let’s make

use of several predefined variables whose

values are automatically established when a

PHP script is run. Before getting into this

script, there are two more things you should

know. First, variables can be assigned values

using the equals sign (=), also called the

assignment operator. Second, variables can

be printed without quotation marks:

print $some_var;

14

Chapter 1

W
h

a
t

 A
r

e
 V

a
r

i
a

b
l
e

s
?

Script 1.5 This script prints three of PHP’s many
predefined variables.

Or variables can be printed within double

quotation marks:

print “Hello, $name”;

You cannot print variables within single

quotation marks:

print ‘Hello, $name’; // Won’t work!

To use variables:

1. Begin a new PHP document in your text

editor or IDE, starting with the initial

HTML (Script 1.5).

<!DOCTYPE html PUBLIC “-//W3C//

DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”
➝ content=”text/html; charset=
➝ iso-8859-1” />

<title>Predefined Variables</
➝ title>

</head>

<body>

2. Add your opening PHP tag and your first

comment.

<?php # Script 1.5 - predefined.php

From here on out, my scripts will no

longer comment on the creator, creation

date, and so forth, although you should

continue to document your scripts thor-

oughly. I will, however, make a comment

listing the script number and filename

for ease of cross-referencing (both in

15

Introduction to PHP

W
h

a
t

 A
r

e
 V

a
r

i
a

b
l
e

s
?

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional//EN” “http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd”>

2 <html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

3 <head>

4 <meta http-equiv=”content-type” content=
”text/html; charset=iso-8859-1” />

5 <title>Predefined Variables</title>

6 </head>

7 <body>

8 <?php # Script 1.5 - predefined.php

9

10 // Create a shorthand version of the
variable names:

11 $file = $_SERVER[‘SCRIPT_FILENAME’];

12 $user = $_SERVER[‘HTTP_USER_AGENT’];

13 $server = $_SERVER[‘SERVER_

SOFTWARE’];

14

15 // Print the name of this script:

16 echo “<p>You are running the file:
$file.</p>\n”;

17

18 // Print the user’s information:

19 echo “<p>You are viewing this page using:

$user</p>\n”;

20

21 // Print the server’s information:

22 echo “<p>This server is running:

$server.</p>\n”;

23

24 ?>

25 </body>

26 </html>
continues on next page

the book and when you download them

from the book’s supporting Web site,

www.DMCInsights.com/phpmysql3/).

3. Create a shorthand version of the first

variable to be used in this script.

$file = $_SERVER[‘SCRIPT_FILENAME’];

This script will use three variables, each

of which comes from the larger and pre-

defined $_SERVER variable. $_SERVER
refers to a mass of server-related infor-

mation. The first variable the script uses

is $_SERVER[‘SCRIPT_FILENAME’]. This

variable stores the full path and name

of the script being run (for example,

C:\Program Files\Apache\htdocs\
predefined.php).

The value stored in $_SERVER[‘SCRIPT_
FILENAME’] will be assigned to the new

variable $file. Creating new variables

with shorter names and then assigning

them values from $_SERVER will make it

easier to refer to the variables when

printing them. (It also gets around some

other issues you’ll learn about in due

time.)

4. Create a shorthand version of the other

two variables.

$user = $_SERVER[‘HTTP_USER_AGENT’];

$server = $_SERVER[‘SERVER_
➝ SOFTWARE’];

$_SERVER[‘HTTP_USER_AGENT’] represents

the Web browser and operating system

of the user accessing the script. This

value is assigned to $user.

$_SERVER[‘SERVER_SOFTWARE’] represents

the Web application on the server that’s

16

Chapter 1

W
h

a
t

 A
r

e
 V

a
r

i
a

b
l
e

s
?

running PHP (e.g., Apache, Abyss, Xitami,

IIS). This is the program that must be

installed (see Appendix A) in order to

run PHP scripts on that computer.

5. Print out the name of the script being

run.

echo “<p>You are running the file:
➝
$file.</p>\n”;

The first variable to be printed is $file.

Notice that this variable must be printed

out within double quotation marks

and that I also make use of the PHP

newline (\n), which will add a line break

in the generated HTML source. Some

basic HTML tags—paragraph and bold—

are added to give the generated page

some flair.

6. Print out the information of the user

accessing the script.

echo “<p>You are viewing this page
➝ using:
$user</p>\n”;

This line prints the second variable,

$user. To repeat what’s said in the fourth

step, $user correlates to $_SERVER[‘HTTP_
USER_AGENT’] and refers to the operating

system, browser type, and browser ver-

sion being used to access the Web page.

7. Print out the server information.

echo “<p>This server is running:<br
➝ />$server.</p>\n”;

8. Complete the HTML and PHP code.

?>

</body>

</html>

9. Save your file as predefined.php, place it

in your Web directory, and test it in your

Web browser (Figure 1.12).

✔ Tips

■ If you have problems with this, or any

other script, turn to the book’s corre-

sponding Web forum (www.DMCInsights.
com/phorum/) for assistance.

■ If possible, run this script using a differ-

ent Web browser and/or on another

server (Figure 1.13).

■ The most important consideration when

creating variables is to use a consistent

naming scheme. In this book you’ll

see that I use all-lowercase letters for

my variable names, with underscores

separating words ($first_name). Some

programmers prefer to use capitalization

instead: $FirstName.

■ PHP is very casual in how it treats vari-

ables, meaning that you don’t need to

initialize them (set an immediate value)

or declare them (set a specific type), and

you can convert a variable among the

many types without problem.

17

Introduction to PHP

W
h

a
t

 A
r

e
 V

a
r

i
a

b
l
e

s
?

Figure 1.12 The predefined.php script reports back
to the viewer information about the script, the Web
browser being used to view it, and the server itself.

Figure 1.13 This is the book’s first truly dynamic
script, in that the Web page changes depending
upon the server running it and the Web browser
viewing it (compare with Figure 1.12).

Introducing Strings
The first variable type to delve into is strings.

A string is merely a quoted chunk of charac-

ters: letters, numbers, spaces, punctuation,

and so forth. These are all strings:

◆ ‘Tobias’

◆ “In watermelon sugar”

◆ ‘100’

◆ ‘August 2, 2006’

To make a string variable, assign a string

value to a valid variable name:

$first_name = ‘Tobias’;

$today = ‘August 2, 2006’;

When creating strings, you can use either

single or double quotation marks to encap-

sulate the characters, just as you would

when printing text. Likewise, you must use

the same type of quotation mark for the

beginning and the end of the string. If that

same mark appears within the string, it

must be escaped:

$var = “Define \”platitude\”, please.”;

To print out the value of a string, use either

echo() or print():

echo $first_name;

To print the value of string within a context,

use double quotation marks:

echo “Hello, $first_name”;

You’ve already worked with strings once—

when using the predefined variables in the

preceding section. In this next example,

you’ll create and use new strings.

18

Chapter 1

I
n

t
r

o
d

u
c

i
n

g
 S

t
r

i
n

g
s

Script 1.6 String variables are created and their values
sent to the Web browser in this introductory script.

To use strings:

1. Begin a new PHP document in your text

editor or IDE, starting with the initial

HTML and including the opening PHP

tag (Script 1.6).

<!DOCTYPE html PUBLIC “-//W3C//

➝ DTD XHTML 1.0 Transitional//EN”

➝ “http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”
➝ content=”text/html; charset=
➝ iso-8859-1” />

<title>Strings</title>

</head>

<body>

<?php # Script 1.6 - strings.php

2. Within the PHP tags, create three vari-

ables.

$first_name = ‘Haruki’;

$last_name = ‘Murakami’;

$book = ‘Kafka on the Shore’;

This rudimentary example creates

$first_name, $last_name, and $book
variables that will then be printed

out in a message.

3. Add an echo() statement.

echo “<p>The book $book
➝ was written by $first_name
➝ $last_name.</p>”;

19

Introduction to PHP

I
n

t
r

o
d

u
c

i
n

g
 S

t
r

i
n

g
s

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional//EN” “http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd”>

2 <html xmlns=”http://www.w3.org/1999/
xhtml” xml:lang=”en” lang=”en”>

3 <head>

4 <meta http-equiv=”content-type” content=
”text/html; charset=iso-8859-1” />

5 <title>Strings</title>

6 </head>

7 <body>

8 <?php # Script 1.6 - strings.php

9

10 // Create the variables:

11 $first_name = ‘Haruki’;

12 $last_name = ‘Murakami’;

13 $book = ‘Kafka on the Shore’;

14

15 //Print the values:

16 echo “<p>The book $book was

written by $first_name $last_name.</p>”;

17

18 ?>

19 </body>

20 </html>

continues on next page

All this script does is print a statement

of authorship based upon three estab-

lished variables. A little HTML format-

ting (the emphasis on the book’s title) is

thrown in to make it more attractive.

Remember to use double quotation

marks here for the variable values to be

printed out appropriately (more on the

importance of double quotation marks

at the chapter’s end).

4. Complete the HTML and PHP code.

?>

</body>

</html>

5. Save the file as strings.php, place it in

your Web directory, and test it in your

Web browser (Figure 1.14).

6. If desired, change the values of the three

variables, save the file, and run the script

again (Figure 1.15).

✔ Tips

■ If you assign another value to an existing

variable (say $book), the new value will

overwrite the old one. For example:

$book = ‘High Fidelity’;

$book = ‘The Corrections’;

/* $book now has a value of

‘The Corrections’. */

■ PHP has no set limits on how big a string

can be. It’s theoretically possible that

you’ll be limited by the resources of the

server, but it’s doubtful that you’ll ever

encounter such a problem.

20

Chapter 1

I
n

t
r

o
d

u
c

i
n

g
 S

t
r

i
n

g
s

Figure 1.14 The resulting Web page is based upon
printing out the values of three variables.

Figure 1.15 The output of the script is changed by
altering the variables in it.

Concatenating Strings
Concatenation is like addition for strings,

whereby characters are added to the

end of the string. It’s performed using the

concatenation operator, which is the

period (.):

$city= ‘Seattle’;

$state = ‘Washington’;

$address = $city . $state;

The $address variable now has the value

SeattleWashington, which almost achieves

the desired result (Seattle, Washington). To

improve upon this, you could write

$address = $city . ‘, ‘ . $state;

so that a comma and a space are added to

the mix.

Concatenation works with strings or num-

bers. Either of these statements will produce

the same result (Seattle, Washington 98101):

$address = $city . ‘, ‘ . $state .

‘ 98101’;

$address = $city . ‘, ‘ . $state .

‘ ‘ . 98101;

Let’s modify strings.php to use this new

operator.

To use concatenation:

1. Open strings.php (refer to Script 1.6) in

your text editor or IDE.

2. After you’ve established the $first_name
and $last_name variables (lines 11 and

12), add this line (Script 1.7):

$author = $first_name . ‘ ‘ .

$last_name;

21

Introduction to PHP

C
o

n
c

a
t

e
n

a
t

i
n

g
 S

t
r

i
n

g
s

continues on next page

Script 1.7 Concatenation gives you the ability to easily
manipulate strings, like creating an author’s name
from the combination of their first and last names.

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional//EN” “http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd”>

2 <html
xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

3 <head>

4 <meta http-equiv=”content-type” content=
”text/html; charset=iso-8859-1” />

5 <title>Concatenation</title>

6 </head>

7 <body>

8 <?php # Script 1.7 - concat.php

9

10 // Create the variables:

11 $first_name = ‘Melissa’;

12 $last_name = ‘Bank’;

13 $author = $first_name . ‘ ‘ . $last_name;

14

15 $book = ‘The Girls\’ Guide to Hunting and
Fishing’;

16

17 //Print the values:

18 echo “<p>The book $book was

written by $author.</p>”;

19

20 ?>

21 </body>

22 </html>

As a demonstration of concatenation, a

new variable—$author—will be created

as the concatenation of two existing

strings and a space in between.

3. Change the echo() statement to use this

new variable.

echo “<p>The book $book was
➝ written by $author.</p>”;

Since the two variables have been turned

into one, the echo() statement should be

altered accordingly.

4. If desired, change the HTML page title

and the values of the first name, last

name, and book variables.

5. Save the file as concat.php, place it in

your Web directory, and test it in your

Web browser (Figure 1.16).

✔ Tips

■ PHP has a slew of useful string-specific

functions, which you’ll see over the

course of this book. For example, to cal-

culate how long a string is (how many

characters it contains), use strlen():

$num = strlen(‘some string’);

■ You can have PHP convert the case of

strings with: strtolower(), which makes

it entirely lowercase; strtoupper(), which

makes it entirely uppercase; ucfirst(),

which capitalizes the first character; and

ucwords(), which capitalizes the first

character of every word.

22

Chapter 1

C
o

n
c

a
t

e
n

a
t

i
n

g
 S

t
r

i
n

g
s

Figure 1.16 In this revised script, the end result of
concatenation is not apparent to the user (compare
with Figures 1.14 and 1.15).

■ If you are merely concatenating one

value to another, you can use the con-

catenation assignment operator (.=).

The following are equivalent:

$title = $title . $subtitle;

$title .= $subtitle;

■ The initial example in this section could

be rewritten using either

$address = “$city, $state”;

or

$address = $city;

$address .= ‘, ‘;

$address .= $state;

Introducing Numbers
In introducing variables, I was explicit in

stating that PHP has both integer and float-

ing-point (decimal) number types. In my

experience, though, these two types can be

classified under the generic title numbers

without losing any valuable distinction (for

the most part). Valid number-type variables

in PHP can be anything like

◆ 8

◆ 3.14

◆ 10980843985

◆ -4.2398508

◆ 4.4e2

Notice that these values are never quoted—

in which case they’d be strings with numeric

values—nor do they include commas to

indicate thousands. Also, a number is

assumed to be positive unless it is preceded

by the minus sign (-).

Along with the standard arithmetic opera-

tors you can use on numbers (Table 1.1),

there are dozens of functions. Two common

ones are round() and number_format().

23

Introduction to PHP

I
n

t
r

o
d

u
c

i
n

g
 N

u
m

b
e

r
s

O p e r a t o r M e a n i n g

+ Addition
- Subtraction
* Multiplication
/ Division
% Modulus
++ Increment
-- Decrement

Arithmetic Operators

Table 1.1 The standard mathematical operators.

The former rounds a decimal to the nearest

integer:

$n = 3.14;

$n = round ($n); // 3

It can also round to a specified number of

decimal places:

$n = 3.142857;

$n = round ($n, 3); // 3.143

The number_format() function turns a num-

ber into the more commonly written version,

grouped into thousands using commas:

$n = 20943;

$n = number_format ($n); // 20,943

This function can also set a specified num-

ber of decimal points:

$n = 20943;

$n = number_format ($n, 2); // 20,943.00

To practice with numbers, let’s write a mock-

up script that performs the calculations one

might use in an e-commerce shopping cart.

To use numbers:

1. Begin a new PHP document in your text

editor or IDE (Script 1.8).

<!DOCTYPE html PUBLIC “-//W3C//

DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”
➝ content=”text/html; charset=
➝ iso-8859-1” />

<title>Numbers</title>

</head>

<body>

<?php # Script 1.8 - numbers.php

2. Establish the requisite variables.

$quantity = 30;

$price = 119.95;

$taxrate = .05;

This script will use three hard-coded

variables upon which calculations will be

made. Later in the book, you’ll see how

these values can be dynamically deter-

mined (i.e., by user interaction with an

HTML form).

3. Perform the calculations.

$total = $quantity * $price;

$total = $total + ($total * $taxrate);

The first line establishes the order total

as the number of widgets purchased

multiplied by the price of each widget.

24

Chapter 1

I
n

t
r

o
d

u
c

i
n

g
 N

u
m

b
e

r
s

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional//EN” “http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd”>

2 <html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

3 <head>

4 <meta http-equiv=”content-type” content=
”text/html; charset=iso-8859-1” />

5 <title>Numbers</title>

6 </head>

7 <body>

8 <?php # Script 1.8 - numbers.php

9

10 // Set the variables:

11 $quantity = 30; // Buying 30 widgets.

12 $price = 119.95;

13 $taxrate = .05; // 5% sales tax.

14

15 // Calculate the total:

16 $total = $quantity * $price;

17 $total = $total + ($total * $taxrate); //
Calculate and add the tax.

18

19 // Format the total:

20 $total = number_format ($total, 2);

21

22 // Print the results:

23 echo ‘<p>You are purchasing ’ .
$quantity . ‘ widget(s) at a cost
of $’ . $price . ‘ each. With
tax, the total comes to $’ . $total .
‘.</p>’;

24

25 ?>

26 </body>

27 </html>

Script 1.8 The numbers.php script demonstrates
basic mathematical calculations, like those used in an
e-commerce application.

25

Introduction to PHP

I
n

t
r

o
d

u
c

i
n

g
 N

u
m

b
e

r
s

Figure 1.17 The numbers PHP page (Script 1.8)
performs calculations based upon set values.

Figure 1.18 To change the generated Web page,
alter any or all of the three variables (compare with
Figure 1.17).

The second line then adds the amount

of tax to the total (calculated by multi-

plying the tax rate by the total).

4. Format the total.

$total = number_format ($total, 2);

The number_format() function will group

the total into thousands and round it to

two decimal places. This will make the

display more appropriate to the end user.

5. Print the results.

echo ‘<p>You are purchasing ’ .
➝$quantity . ‘ widget(s) at a cost
➝of $’ . $price . ‘ each. With
➝ tax, the total comes to $’ .
➝ $total . ‘.</p>’;

The last step in the script is to print out

the results. To use a combination of

HTML, printed dollar signs, and variables,

the echo() statement uses both single-

quoted text and concatenated variables.

You could also put this all within a

double-quoted string (as in previous

examples), but when PHP encounters,

for example, at a cost of $$price in

the echo() statement, the double dollar

sign would cause problems. You’ll see

an alternative solution in the last exam-

ple of this chapter.

6. Complete the PHP code and the HTML

page.

?>

</body>

</html>

7. Save the file as numbers.php, place it in

your Web directory, and test it in your

Web browser (Figure 1.17).

8. If desired, change the initial three vari-

ables and rerun the script (Figure 1.18).

continues on next page

✔ Tips

■ PHP supports a maximum integer of

around two billion on most platforms.

With numbers larger than that, PHP will

automatically use a floating-point type.

■ When dealing with arithmetic, the issue

of precedence arises (the order in which

complex calculations are made). While

the PHP manual and other sources tend

to list out the hierarchy of precedence, I

find programming to be safer and more

legible when I group clauses in parenthe-

ses to force the execution order (see line

17 of Script 1.8).

■ Computers are notoriously poor at deal-

ing with decimals. For example, the num-

ber 2.0 may actually be stored as 1.99999.

Most of the time this won’t be a problem,

but in cases where mathematical preci-

sion is paramount, rely on integers, not

decimals. The PHP manual has informa-

tion on this subject, as well as alternative

functions for improving computational

accuracy.

■ Many of the mathematical operators also

have a corresponding assignment opera-

tor, letting you create a shorthand for

assigning values. This line,

$total = $total + ($total *
$taxrate);

could be rewritten as

$total += ($total * $taxrate);

■ If you set a $price value without using

two decimals (e.g., 119.9 or 34), you

would want to apply number_format()
to $price before printing it.

26

Chapter 1

I
n

t
r

o
d

u
c

i
n

g
 N

u
m

b
e

r
s

Introducing Constants
Constants, like variables, are used to tem-

porarily store a value, but otherwise, con-

stants and variables differ in many ways. For

starters, to create a constant, you use the

define() function instead of the assignment

operator (=):

define (‘NAME’, ‘value’);

Notice that, as a rule of thumb, constants

are named using all capitals, although this is

not required. Most importantly, constants

do not use the initial dollar sign as variables

do (because constants are not variables).

A constant can only be assigned a scalar

value, like a string or a number. And unlike

variables, a constant’s value cannot be

changed.

To access a constant’s value, like when you

want to print it, you cannot put the con-

stant within quotation marks:

echo “Hello, USERNAME”; // Won’t work!

With that code, PHP would literally print

Hello, USERNAME and not the value of the

USERNAME constant (because there’s no indi-

cation that USERNAME is anything other than

literal text). Instead, either print the con-

stant by itself:

echo ‘Hello, ‘;

echo USERNAME;

or use the concatenation operator:

echo ‘Hello, ‘ . USERNAME;

PHP runs with several predefined constants,

much like the predefined variables used earlier

in the chapter. These include PHP_VERSION
(the version of PHP running) and PHP_OS
(the operating system of the server).

27

Introduction to PHP

I
n

t
r

o
d

u
c

i
n

g
 C

o
n

s
t
a

n
t

s

To use constants:

1. Begin a new PHP document in your text

editor or IDE (Script 1.9).

<!DOCTYPE html PUBLIC “-//W3C//DTD
➝ XHTML 1.0 Transitional//EN”
➝ “http://www.w3.org/TR/xhtml1/
➝ DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/
➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”
➝ content=”text/html; charset=
➝ iso-8859-1” />

<title>Constants</title>

</head>

<body>

<?php # Script 1.9 - constants.php

2. Create a new date constant.

define (‘TODAY’, August 28, 2007’);

An admittedly trivial use of constants,

but this example will illustrate the point.

In Chapter 8, “Using PHP with MySQL,”

you’ll see how to use constants to store

your database access information.

3. Print out the date, the PHP version, and

operating system information.

echo ‘<p>Today is ‘ . TODAY . ‘.<br
➝ />This server is running version
➝ ’ . PHP_VERSION . ‘ of PHP
➝ on the ’ . PHP_OS . ‘
➝ operating system.</p>’;

Since constants cannot be printed within

quotation marks, use the concatenation

operator to create the echo() statement.

28

Chapter 1

I
n

t
r

o
d

u
c

i
n

g
 C

o
n

s
t
a

n
t

s

Script 1.9 Constants are another temporary storage
tool you can use in PHP, distinct from variables.

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional//EN” “http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd”>

2 <html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

3 <head>

4 <meta http-equiv=”content-type” content=
”text/html; charset=iso-8859-1” />

5 <title>Constants</title>

6 </head>

7 <body>

8 <?php # Script 1.9 - constants.php

9

10 // Set today’s date as a constant:

11 define (‘TODAY’, ‘August 28, 2007’);

12

13 // Print a message, using predefined
constants and the TODAY constant:

14 echo ‘<p>Today is ‘ . TODAY . ‘.
This
server is running version ’ . PHP_
VERSION . ‘ of PHP on the ’ . PHP_
OS . ‘ operating system.</p>’;

15

16 ?>

17 </body>

18 </html>

29

Introduction to PHP

I
n

t
r

o
d

u
c

i
n

g
 C

o
n

s
t
a

n
t

s

4. Complete the PHP code and the HTML

page.

?>

</body>

</html>

5. Save the file as constants.php, place it in

your Web directory, and test it in your

Web browser (Figure 1.19).

✔ Tips

■ If possible, run this script on another

PHP-enabled server (Figure 1.20).

■ In Chapter 11, “Cookies and Sessions,”

you’ll learn about another constant, SID
(which stands for session ID).

Figure 1.19 By making use of PHP’s constants, you
can learn more about your PHP setup.

Figure 1.20 Running the same script (refer to Script
1.9) on different servers garners different results.

Single vs. Double
Quotation Marks
In PHP it’s important to understand how

single quotation marks differ from double

quotation marks. With echo() and print(),

or when assigning values to strings, you can

use either, as in the examples uses so far. But

there is a key difference between the two

types of quotation marks and when you

should use which. I’ve introduced this differ-

ence already, but it’s an important enough

concept to merit more discussion.

In PHP, values enclosed within single quota-

tion marks will be treated literally, whereas

those within double quotation marks will be

interpreted. In other words, placing variables

and special characters (Table 1.2) within

double quotes will result in their represented

values printed, not their literal values. For

example, assume that you have

$var = ‘test’;

The code echo “var is equal to $var”; will

print out var is equal to test, whereas the

code echo ‘var is equal to $var’; will print

out var is equal to $var. Using an escaped

dollar sign, the code echo “\$var is equal to
$var”; will print out $var is equal to test,

whereas the code echo ‘\$var is equal to
$var’; will print out \$var is equal to $var.

As these examples should illustrate, double

quotation marks will replace a variable’s

name ($var) with its value (test) and a

special character’s code (\$) with its repre-

sented value ($). Single quotes will always

display exactly what you type, except for the

escaped single quote (\’) and the escaped

backslash (\\), which are printed as a single

quotation mark and a single backslash,

respectively.

As another example of how the two

quotation marks differ, let’s modify the

numbers.php script as an experiment.

30

Chapter 1

S
i
n

g
l
e

 v
s

.
D

o
u

b
l
e

 Q
u

o
t
a

t
i
o

n
 M

a
r

k
s

C o d e M e a n i n g

\” Double quotation mark
\’ Single quotation mark
\\ Backslash
\n Newline
\r Carriage return
\t Tab
\$ Dollar sign

Escape Sequences

Table 1.2 These characters have special meanings
when used within double quotation marks.

To use single and double quotation
marks:

1. Open numbers.php (refer to Script 1.8)

in your text editor or IDE.

2. Delete the existing echo() statement

(Script 1.10).

3. Print a caption and then rewrite the

original echo() statement using double

quotation marks.

echo ‘<h3>Using double quotation
➝ marks:</h3>’;

echo “<p>You are purchasing $
➝ quantity widget(s) at a cost
➝ of \$$price each. With tax,
➝ the total comes to \$$total</
➝ b>.</p>\n”;

In the original script, the results were

printed using single quotation marks and

concatenation. The same result can be

achieved using double quotation marks.

When using double quotation marks, the

variables can be placed within the string.

There is one catch, though: trying to

print a dollar amount as $12.34 (where

12.34 comes from a variable) would sug-

gest that you would code $$var. That will

not work; instead, escape the initial dol-

lar sign, resulting in \$$var, as you see

31

Introduction to PHP

S
i
n

g
l
e

 v
s

. D
o

u
b

l
e

 Q
u

o
t
a

t
i
o

n
 M

a
r

k
s

continues on next page

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional//EN” “http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd”>

2 <html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

3 <head>

4 <meta http-equiv=”content-type” content=
”text/html; charset=iso-8859-1” />

5 <title>Quotation Marks</title>

6 </head>

7 <body>

8 <?php # Script 1.10 - quotes.php

9

10 // Set the variables:

11 $quantity = 30; // Buying 30 widgets.

12 $price = 119.95;

13 $taxrate = .05; // 5% sales tax.

14

15 // Calculate the total.

16 $total = $quantity * $price;

17 $total = $total + ($total * $taxrate); //
Calculate and add the tax.

18

19 // Format the total:

20 $total = number_format ($total, 2);

21

22 // Print the results using double quotation
marks:

23 echo ‘<h3>Using double quotation
marks:</h3>’;

24 echo “<p>You are purchasing $quantity
 widget(s) at a cost of \$$price
each. With tax, the total comes to \
$$total.</p>\n”;

25

26 // Print the results using single quotation
marks:

27 echo ‘<h3>Using single quotation
marks:</h3>’;

Script 1.10 This, the final script in the chapter,
demonstrates the differences between using
single and double quotation marks.

(script continues)

28 echo ‘<p>You are purchasing $quantity
 widget(s) at a cost of \$$price
each. With tax, the total comes to
\$$total.</p>\n’;

29

30 ?>

31 </body>

32 </html>

Script 1.10 continued

twice in this code. The first dollar sign

will be printed, and the second becomes

the start of the variable name.

4. Repeat the echo() statements, this time

using single quotation marks.

echo ‘<h3>Using single quotation
marks:</h3>’;

echo ‘<p>You are purchasing $
➝ quantity widget(s) at a cost
➝ of \$$price each. With tax,
➝ the total comes to \$$total
➝ .</p>\n’;

This echo() statement is used to high-

light the difference between using single

or double quotation marks. It will not

work as desired, and the resulting page

will show you exactly what does happen

instead.

5. If you want, change the page’s title.

6. Save the file as quotes.php, place it in

your Web directory, and test it in your

Web browser (Figure 1.21).

7. View the source of the Web page to see

how using the newline character (\n)

within each quotation mark type also

differs.

You should see that when you place the

newline character within double quota-

tion marks it creates a newline in the

HTML source. When placed within

single quotation marks, the literal

characters \ and n are printed instead.

32

Chapter 1

S
i
n

g
l
e

 v
s

.
D

o
u

b
l
e

 Q
u

o
t
a

t
i
o

n
 M

a
r

k
s

Figure 1.21 These results demonstrate when and
how you’d use one type of quotation mark as
opposed to the other. If you’re still unclear as to the
difference between the types, use double quotation
marks and you’re less likely to have problems.

✔ Tips

■ Because PHP will attempt to find vari-

ables within double quotation marks,

using single quotation marks is theoreti-

cally faster. If you need to print the value

of a variable, though, you must use dou-

ble quotation marks.

■ As valid HTML often includes a lot of

double-quoted attributes, it’s often easi-

est to use single quotation marks when

printing HTML with PHP:

echo ‘<table width=”80%” border=”0”
➝ cellspacing=”2” cellpadding=”3”
➝ align=”center”>’;

If you were to print out this HTML using

double quotation marks, you would have

to escape all of the double quotation

marks in the string:

echo “<table width=\”80%\” border=\
➝ ”0\” cellspacing=\”2\” cellpadding
➝ =\”3\” align=\”center\”>”;

Now that you have the fundamentals of the PHP scripting language down, it’s time

to build on those basics and start truly programming. In this chapter you’ll begin

creating more elaborate scripts while still learning some of the standard constructs,

functions, and syntax of the language.

You’ll begin by creating an HTML form, then learning how you can use PHP to handle

the submitted values. From there, the chapter covers conditionals and the remaining

operators (Chapter 1, “Introduction to PHP,” presented the assignment, concatenation,

and mathematical operators), arrays (another variable type), and one last language

construct, loops.

33

Programming
with PHP

2

P
r

o
g

r
a

m
m

i
n

g
 w

i
t

h
 P

H
P

Creating an HTML Form
Handling an HTML form with PHP is perhaps

the most important process in any dynamic

Web site. Two steps are involved: first you

create the HTML form itself, and then you

create the corresponding PHP script that

will receive and process the form data.

It would be outside the realm of this book to

go into HTML forms in any detail, but I will

lead you through one quick example so that

it may be used throughout the chapter. If

you’re unfamiliar with the basics of an

HTML form, including the various types of

elements, see an HTML resource for more

information.

An HTML form is created using the form
tags and various elements for taking input.

The form tags look like

<form action=”script.php” method=”post”>

</form>

In terms of PHP, the most important attribute

of your form tag is action, which dictates to

which page the form data will be sent. The

second attribute—method—has its own

issues (see the “Choosing a Method” side-

bar), but post is the value you’ll use most

frequently.

The different inputs—be they text boxes,

radio buttons, select menus, check boxes,

etc.—are placed within the opening and

closing form tags. As you’ll see in the next

section, what kinds of inputs your form has

makes little difference to the PHP script

handling it. You should, however, pay atten-

tion to the names you give your form inputs,

as they’ll be of critical importance when it

comes to your PHP code.

34

Chapter 2

C
r

e
a

t
i
n

g
 a

n
 H

T
M

L
F
o

r
m

Choosing a Method

The method attribute of a form dictates

how the data is sent to the handling page.

The two options—get and post—refer to

the HTTP (Hypertext Transfer Protocol)

method to be used. The get method sends

the submitted data to the receiving page

as a series of name-value pairs appended

to the URL. For example,

http://www.example.com/script. php?
➝ name=Homer&gender=M&age=35

The benefit of using the get method is

that the resulting page can be book-

marked in the user’s Web browser (since

it’s a URL). For that matter, you can also

click Back in your Web browser to return

to a get page, or reload it without prob-

lems (none of which is true for post). But

there is a limit in how much data can be

transmitted via get, and this method is

less secure (since the data is visible).

Generally speaking, get is used for

requesting information, like a particular

record from a database or the results of a

search (searches almost always use get).

The post method is used when an action

is required, as when a database record

will be updated or an email should be

sent. For these reasons I will primarily

use post throughout this book, with

noted exceptions.

To create an HTML form:

1. Begin a new HTML document in your

text editor (Script 2.1).

<!DOCTYPE html PUBLIC “-//W3C//

➝ DTD XHTML 1.0 Transitional//EN”

➝ “http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”
➝ content=”text/html; charset=
➝ iso-8859-1” />

<title>Simple HTML Form</title>

</head>

<body>

<!-- Script 2.1 - form.html -->

There’s nothing significantly new here.

The document still uses the same basic

syntax for an HTML page as in the

previous chapter. An HTML comment

indicates the file’s name and number.

2. Add the initial form tag.

<form action=”handle_form.php”
➝ method=”post”>

Since the action attribute dictates to

which script the form data will go, you

should give it an appropriate name (han-

dle_form to correspond with this script:

form.html) and the .php extension (since

a PHP page will handle this form’s data).

3. Begin the HTML form.

<fieldset><legend>Enter your
➝ information in the form
➝ below:</legend>

35

Programming with PHP

C
r

e
a

t
i
n

g
 a

n
 H

T
M

L
F
o

r
m

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional//EN” “http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd”>

2 <html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

3 <head>

4 <meta http-equiv=”content-type” con-
tent=”text/html; charset=iso-8859-1” />

5 <title>Simple HTML Form</title>

6 </head>

7 <body>

8 <!-- Script 2.1 - form.html -->

9

10 <form action=”handle_form.php”
method=”post”>

11

12 <fieldset><legend>Enter your
information in the form below:</legend>

13

14 <p>Name: <input type=”text”
name=”name” size=”20” maxlength=”40”
/></p>

15

16 <p>Email Address: <input
type=”text” name=”email” size=”40”
maxlength=”60” /></p>

17

18 <p>Gender: <input type=”radio”
name=”gender” value=”M” /> Male <input
type=”radio” name=”gender” value=”F” />
Female</p>

19

20 <p>Age:

21 <select name=”age”>

22 <option value=”0-29”>Under
30</option>

23 <option value=”30-60”>Between 30 and
60</option>

Script 2.1 This simple HTML form will be used for
several of the examples in this chapter.

(script continues on next page)
continues on next page

I’m using the fieldset and legend
HTML tags because I like the way they

make the HTML form look (they add a

box around the form with a title at top).

This isn’t pertinent to the form itself,

though.

4. Add two text inputs.

<p>Name: <input type=”text”
➝ name=”name” size=”20” maxlength=
➝ ”40” /></p>

<p>Email Address: <input
➝ type=”text” name=”email” size=”40”
➝ maxlength=”60” /></p>

These are just simple text inputs, allow-

ing the user to enter their name and

email address (Figure 2.1). In case you

are wondering, the extra space and

slash at the end of each input’s tag are

required for valid XHTML. With stan-

dard HTML, these tags would conclude,

for instance, with maxlength=”40”> or

maxlength=”60”> instead.

5. Add a pair of radio buttons.

<p>Gender: <input type=
➝ ”radio” name=”gender” value=
➝ ”M” /> Male <input type=
➝ ”radio” name=”gender” value=
➝ ”F” /> Female</p>

The radio buttons (Figure 2.2) both

have the same name, meaning that

only one of the two can be selected.

They have different values, though.

6. Add a pull-down menu.

<p>Age:

<select name=”age”>

<option value=”0-29”>Under 30</
➝ option>

<option value=”30-60”>Between 30
➝ and 60</option>

36

Chapter 2

C
r

e
a

t
i
n

g
 a

n
 H

T
M

L
F
o

r
m

24 <option value=”60+”>Over 60</option>

25 </select></p>

26

27 <p>Comments: <textarea
name=”comments” rows=”3”
cols=”40”></textarea></p>

28

29 </fieldset>

30

31 <div align=”center”><input type=
”submit” name=”submit” value=
”Submit My Information” /></div>

32

33 </form>

34

35 </body>

36 </html>

Script 2.1 continued

Figure 2.1 Two text inputs.

Figure 2.2 If multiple radio buttons
have the same name, only one can
be chosen by the user.

<option value=”60+”>Over 60</
➝ option>

</select></p>

The select tag starts the pull-down

menu, and then each option tag

will create another line in the list of

choices (Figure 2.3).

7. Add a text box for comments.

<p>Comments: <textarea name=
➝ ”comments” rows=”3” cols=”40”></
➝ textarea></p>

Textareas are different from text inputs;

they are presented as a box (Figure 2.4),

not as a single line. They allow for much

more information to be typed and are

useful for taking user comments.

8. Complete the form.

</fieldset>

<div align=”center”><input type=
➝ ”submit” name=”submit” value=
➝ ”Submit My Information” /></div>

</form>

The first tag closes the fieldset that

was opened in Step 3. Then a submit
button is created and centered using a

div tag. Finally the form is closed.

9. Complete the HTML page.

</body>

</html>

10. Save the file as form.html, place it in

your Web directory, and view it in your

Web browser (Figure 2.5).

✔ Tip

■ Since this page contains just HTML, it

uses an .html extension. It could instead

use a .php extension without harm (since

code outside of the PHP tags is treated

as HTML).

37

Programming with PHP

C
r

e
a

t
i
n

g
 a

n
 H

T
M

L
F
o

r
m

Figure 2.3 The pull-down
menu offers three options,
of which only one can be
selected (in this example).

Figure 2.4 The textarea form element type allows for
lots and lots of text to be entered.

Figure 2.5 The complete form, which requests some
basic information from the user.

Handling an HTML Form
Now that the HTML form has been created,

it’s time to write a bare-bones PHP script

to handle it. To say that this script will be

handling the form means that the PHP page

will do something with the data it receives

(which is the data the user entered into the

form). In this chapter, the scripts will simply

print the data back to the Web browser. In

later examples, form data will be stored in a

MySQL database, compared against previ-

ously stored values, sent in emails, and more.

The beauty of PHP—and what makes it so

easy to learn and use—is how well it inter-

acts with HTML forms. PHP scripts store

the received information in special variables.

For example, say you have a form with an

input defined like so:

<input type=”text” name=”city” />

Whatever the user types into that element

will be accessible via a PHP variable named

$_REQUEST[‘city’]. It is very important

that the spelling and capitalization match

exactly! PHP is case-sensitive when it comes

to variable names, so $_REQUEST[‘city’]
will work, but $_Request[‘city’] or

$_REQUEST[‘City’] will have no value.

This next example will be a PHP script that

handles the already-created HTML form

(Script 2.1). This script will assign the form

data to new variables (to be used as short-

hand, just like in Script 1.5, predefined.php).

The script will then print the received values.

To handle an HTML form:

1. Create a new PHP document in your text

editor or IDE, beginning with the HTML

(Script 2.2).

<!DOCTYPE html PUBLIC “-//W3C//

➝ DTD XHTML 1.0 Transitional//EN”

➝ “http://www.w3.org/TR/xhtml1/DTD/

38

Chapter 2

H
a

n
d

l
i
n

g
 a

n
 H

T
M

L
F
o

r
m

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional//EN” “http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd”>

2 <html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

3 <head>

4 <meta http-equiv=”content-type” con-
tent=”text/html; charset=iso-8859-1” />

5 <title>Form Feedback</title>

6 </head>

7 <body>

8 <?php # Script 2.2 - handle_form.php

9

10 // Create a shorthand for the form data:

11 $name = $_REQUEST[‘name’];

12 $email = $_REQUEST[‘email’];

13 $comments = $_REQUEST[‘comments’];

14 /* Not used:

15 $_REQUEST[‘age’]

16 $_REQUEST[‘gender’]

17 $_REQUEST[‘submit’]

18 */

19

20 // Print the submitted information:

21 echo “<p>Thank you, $name, for the
following comments:

22 <tt>$comments</tt></p>

23 <p>We will reply to you at
<i>$email</i>.</p>\n”;

24

25 ?>

26 </body>

27 </html>

Script 2.2 This script receives and prints out the
information entered into an HTML form (Script 2.1).

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”
➝ content=”text/html; charset=
➝ iso-8859-1” />

<title>Form Feedback</title>

</head>

<body>

2. Add the opening PHP tag and create

a shorthand version of the form data

variables.

<?php # Script 2.2 - handle_form.php

$name = $_REQUEST[‘name’];

$email = $_REQUEST[‘email’];

$comments = $_REQUEST[‘comments’];

Following the rules outlined before, the

data entered into the first form input,

which is called name, will be accessible

through the variable $_REQUEST[‘name’]
(Table 2.1). The data entered into the

email form input, which has a name value

of email, will be accessible through

$_REQUEST[‘email’]. The same applies to

the comments data. Again, the spelling

and capitalization of your variables here

must exactly match the corresponding

name values in the HTML form.

3. Print out the received name, email, and

comments values.

echo “<p>Thank you, $name,
➝ for the following comments:

<tt>$comments</tt></p>

<p>We will reply to you at <i>
➝ $email</i>.</p>\n”;

39

Programming with PHP

H
a

n
d

l
i
n

g
 a

n
 H

T
M

L
F
o

r
m

E l e m e n t N a m e Va r i a b l e N a m e

name $_REQUEST[‘name’]
email $_REQUEST[‘email’]
comments $_REQUEST[‘comments’]
age $_REQUEST[‘age’]
gender $_REQUEST[‘gender’]
submit $_REQUEST[‘submit’]

Form Elements to PHP Variables

Table 2.1 The HTML form elements and their
corresponding PHP variables.

continues on next page

The submitted values are simply printed

out using the echo() statement, double

quotation marks, and a wee bit of HTML

formatting.

4. Complete the HTML page.

?>

</body>

</html>

5. Save the file as handle_form.php and

place it in the same Web directory as

form.html.

6. Test both documents in your Web

browser by loading form.html through a

URL and then filling out and submitting

the form (Figures 2.6 and 2.7).

Because the PHP script must be run

through a URL (see Chapter 1), the form

must also be run through a URL.

Otherwise, when you go to submit the

form, you’ll see PHP code (Figure 2.8)

instead of the proper result (Figure 2.7).

✔ Tips

■ $_REQUEST is a special variable type,

known as a superglobal. It stores all of

the data sent to a PHP page through

either the GET or POST method, as well as

data accessible in cookies. Superglobals

will be discussed later in the chapter.

■ If you have any problems with this script,

apply the debugging techniques suggest-

ed in Chapter 1. If those don’t solve the

problem, check out the extended debug-

ging techniques listed in Chapter 7, “Error

Handling and Debugging.” If you’re still

stymied, turn to the book’s supporting

forum for assistance (www.DMCInsights.
com/phorum/).

40

Chapter 2

H
a

n
d

l
i
n

g
 a

n
 H

T
M

L
F
o

r
m

Figure 2.6 To test handle_form.php, you must load the
form through a URL, then fill it out and submit it.

Figure 2.7 Your script should display results like this.

Figure 2.8 If you see the PHP code itself after submitting
the form, the problem is likely that you did not access
the form through a URL.

■ If the PHP script shows blank spaces

where a variable’s value should have been

printed, it means that the variable has no

value. The two most likely causes are: you

failed to enter a value in the form; or you

misspelled or mis-capitalized the vari-

able’s name.

■ If you see any Undefined variable: vari-

ablename errors, this is because the

variables you refer to have no value and

PHP is set on the highest level of error

reporting. The previous tip provides sug-

gestions as to why a variable wouldn’t

have a value. Chapter 7 discusses error

reporting in detail.

■ For a comparison of how PHP handles

the different form input types, print out

the $_REQUEST[‘age’] and $_REQUEST
[‘gender’] values (Figure 2.9).

41

Programming with PHP

H
a

n
d

l
i
n

g
 a

n
 H

T
M

L
F
o

r
m

Magic Quotes

Earlier versions of PHP had a feature called Magic Quotes, which was removed in PHP 6. Magic

Quotes—when enabled—automatically escapes single and double quotation marks found in

submitted form data (there were actually three kinds of Magic Quotes, but this one kind is

most important here). So the string I’m going out would be turned into I\’m going out.

The escaping of potentially problematic characters can be useful and even necessary in some

situations. But if Magic Quotes are enabled on your PHP installation (which means you’re

using a pre–PHP 6 version), you’ll see these backslashes when the PHP script prints out the

form data. You can undo its effect using the stripslashes() function:

$var = stripslashes($var);

This function will remove any backslashes found in $var. This will have the effect of turning

an escaped submitted string back to its original, non-escaped value.

To use this in handle_form.php (Script 2.2), you would write:

$name = stripslashes($_REQUEST[‘name’]);

If you’re using PHP 6 or later, you no longer need to worry about this, as Magic Quotes has

been removed (for several good reasons).

Figure 2.9 The values of gender and age correspond
to those defined in the form’s HTML.

Conditionals and Operators
PHP’s three primary terms for creating con-

ditionals are if, else, and elseif (which

can also be written as two words, else if).

Every conditional begins with an if clause:

if (condition) {

// Do something!

}

An if can also have an else clause:

if (condition) {

// Do something!

} else {

// Do something else!

}

An elseif clause allows you to add more

conditions:

if (condition1) {

// Do something!

} elseif (condition2) {

// Do something else!

} else {

// Do something different!

}

If a condition is true, the code in the follow-

ing curly braces ({}) will be executed. If not,

PHP will continue on. If there is a second

condition (after an elseif), that will be

checked for truth. The process will continue—

you can use as many elseif clauses as you

want—until PHP hits an else, which will be

automatically executed at that point, or

until the conditional terminates without an

else. For this reason, it’s important that the

else always come last and be treated as the

default action unless specific criteria (the

conditions) are met.

42

Chapter 2

C
o

n
d

i
t

i
o

n
a

l
s

 a
n

d
 O

p
e

r
a

t
o

r
s

A condition can be true in PHP for any

number of reasons. To start, these are true

conditions:

◆ $var, if $var has a value other than 0, an

empty string, FALSE, or NULL

◆ isset($var), if $var has any value other

than NULL, including 0, FALSE, or an

empty string

◆ TRUE, true, True, etc.

In the second example, a new function,

isset(), is introduced. This function checks

if a variable is set, meaning that it has a value

other than NULL (as a reminder, NULL is a

special type in PHP, representing no set value).

You can also use the comparative and logical

operators (Table 2.2) in conjunction with

parentheses to make more complicated

expressions.

S y m b o l M e a n i n g Ty p e E x a m p l e

== is equal to comparison $x == $y
!= is not equal to comparison $x != $y
< less than comparison $x < $y
> greater than comparison $x > $y
<= less than or comparison $x <= $y

equal to
>= greater than comparison $x >= $y

or equal to
! not logical !$x
&& and logical $x && $y
|| or logical $x || $y
XOR and not logical $x XOR $y

Comparative and Logical Operators

Table 2.2 These operators are frequently used when
writing conditionals.

To use conditionals:

1. Open handle_form.php (refer to Script 2.2)

in your text editor or IDE.

2. Before the echo() statement, add a con-

ditional that creates a $gender variable

(Script 2.3).

if (isset($_REQUEST[‘gender’])) {

$gender = $_REQUEST[‘gender’];

} else {

$gender = NULL;

}

This is a simple and effective way to vali-

date a form input (particularly a radio

button, check box, or select). If the user

checks either gender radio button, then

$_REQUEST[‘gender’] will have a value,

meaning that the condition isset($_
REQUEST[‘gender’]) is true. In such a

case, the shorthand version of this vari-

able—$gender—is assigned the value

of $_REQUEST[‘gender’], repeating the

technique used with $name, $email, and

$comments. If the user does not click one

of the radio buttons, then this condition

is not true, and $gender is assigned the

value of NULL, indicating that it has no

value. Notice that NULL is not in quotes.

43

Programming with PHP

C
o

n
d

i
t

i
o

n
a

l
s

 a
n

d
 O

p
e

r
a

t
o

r
s

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional//EN”

2 “http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd”>

3 <html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

4 <head>

5 <meta http-equiv=”content-type” con-
tent=
”text/html; charset=iso-8859-1” />

6 <title>Form Feedback</title>

7 </head>

8 <body>

9 <?php # Script 2.3 - handle_form.php #2

10

11 // Create a shorthand for the form data:

12 $name = $_REQUEST[‘name’];

13 $email = $_REQUEST[‘email’];

14 $comments = $_REQUEST[‘comments’];

15

16 // Create the $gender variable:

17 if (isset($_REQUEST[‘gender’])) {

18 $gender = $_REQUEST[‘gender’];

19 } else {

20 $gender = NULL;

21 }

22

23 // Print the submitted information:

24 echo “<p>Thank you, $name, for the
following comments:

25 <tt>$comments</tt></p>

26 <p>We will reply to you at <i>$email</i>.
</p>\n”;

Script 2.3 Conditionals allow a script to modify
behavior according to specific criteria. In this remade
version of handle_form.php, two conditionals are
used to validate the gender radio buttons.

(script continues on next page)

continues on next page

3. After the echo() statement, add another

conditional that prints a message based

upon $gender’s value.

if ($gender == ‘M’) {

echo ‘<p>Good day, Sir!
➝ </p>’;

} elseif ($gender == ‘F’) {

echo ‘<p>Good day, Madam!
➝ </p>’;

} else {

echo ‘<p>You forgot to enter
➝ your gender!</p>’;

}

This if-elseif-else conditional looks

at the value of the $gender variable and

prints a different message for each possi-

bility. It’s very important to remember

that the double equals sign (==) means

equals, whereas a single equals sign (=)

assigns a value. The distinction is

important because the condition

$gender == ‘M’ may or may not be true,

but $gender = ‘M’ will always be true.

Also, the values used here—M and F—

must be exactly the same as those in the

HTML form (the values for each radio

button). Equality is a case-sensitive

comparison with strings, so m will not

equal M.

4. Save the file, place it in your Web direc-

tory, and test it in your Web browser

(Figures 2.10, 2.11, and 2.12).

44

Chapter 2

C
o

n
d

i
t

i
o

n
a

l
s

 a
n

d
 O

p
e

r
a

t
o

r
s

27

28 // Print a message based upon the gender
value:

29 if ($gender == ‘M’) {

30 echo ‘<p>Good day, Sir!</p>’;

31 } elseif ($gender == ‘F’) {

32 echo ‘<p>Good day, Madam!</p>’;

33 } else { // No gender selected.

34 echo ‘<p>You forgot to enter your

gender!</p>’;

35 }

36

37 ?>

38 </body>

39 </html>

Script 2.3 continued

Figure 2.10 The gender-based conditional prints a
different message for each choice in the form.

Figure 2.11 The same script will produce different
salutations (compare with Figure 2.10) when the
gender values change.

✔ Tips

■ Although PHP has no strict formatting

rules, it’s standard procedure and good

programming form to make it clear when

one block of code is a subset of a condi-

tional. Indenting the block is the norm.

■ You can—and frequently will—nest con-

ditionals (place one inside another).

■ The first conditional in this script (the

isset()) is a perfect example of how to

use a default value. The assumption (the

else) is that $gender has a NULL value

unless the one condition is met: that

$_REQUEST[‘gender’] is set.

■ The curly braces used to indicate the

beginning and end of a conditional are

not required if you are executing only

one statement. I would recommend that

you almost always use them, though, as

a matter of clarity.

45

Programming with PHP

C
o

n
d

i
t

i
o

n
a

l
s

 a
n

d
 O

p
e

r
a

t
o

r
s

Switch

PHP has another type of conditional,

called the switch, best used in place of a

long if-elseif-else conditional. The

syntax of switch is

switch ($variable) {

case ‘value1’:

// Do this.

break;

case ‘value2’:

// Do this instead.

break;

default:

// Do this then.

break;

}

The switch conditional compares the

value of $variable to the different cases.

When it finds a match, the following code

is executed, up until the break. If no match

is found, the default is executed, assuming

it exists (it’s optional). The switch condi-

tional is limited in its usage in that it can

only check a variable’s value for equality

against certain cases; more complex con-

ditions cannot be easily checked.

Figure 2.12 If no gender was selected, a message is
printed indicating to the user their oversight.

Validating Form Data
A critical concept related to handling HTML

forms is that of validating form data. In terms

of both error management and security, you

should absolutely never trust the data being

entered in an HTML form. Whether erro-

neous data is purposefully malicious or just

unintentionally inappropriate, it’s up to

you—the Web architect—to test it against

expectations.

Validating form data requires the use of

conditionals and any number of functions,

operators, and expressions. One standard

function to be used is isset(), which tests

if a variable has a value (including 0, FALSE,

or an empty string, but not NULL). You saw

an example of this in the preceding script.

One issue with the isset() function is that

an empty string tests as TRUE, meaning that

isset() is not an effective way to validate

text inputs and text boxes from an HTML

form. To check that a user typed something

into textual elements, you can use the

empty() function. It checks if a variable has

an empty value: an empty string, 0, NULL,

or FALSE.

The first aim of form validation is seeing if

something was entered or selected in form

elements. The second goal is to ensure that

submitted data is of the right type (numeric,

string, etc.), of the right format (like an email

address), or a specific acceptable value (like

$gender being equal to either M or F). As

handling forms is a main use of PHP,

validating form data is a point that will be

re-emphasized time and again in subse-

quent chapters. But first, let’s create a new

handle_form.php to make sure variables have

values before they’re referenced (there will

be enough changes in this version that sim-

ply updating Script 2.3 doesn’t make sense).

46

Chapter 2

V
a

l
i
d

a
t

i
n

g
 F

o
r

m
 D

a
t
a

To validate your forms:

1. Begin a new PHP script in your text

editor or IDE (Script 2.4).

<!DOCTYPE html PUBLIC “-//W3C//DTD
➝ XHTML 1.0 Transitional//EN” “http:
➝ //www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/
➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”
➝ content=”text/html; charset=
➝ iso-8859-1” />

<title>Form Feedback</title>

</head>

<body>

<?php # Script 2.4 - handle_
➝ form.php #3

2. Within the HTML head, add some CSS

(Cascading Style Sheets) code.

<style type=”text/css” title=”text/
➝ css” media=”all”>

.error {

font-weight: bold;

color: #C00

}

</style>

CSS is the preferred way to handle many

formatting and layout issues in an HTML

page. You’ll see a little bit of CSS here

and there in this book; if you’re not

familiar with the subject, check out a

dedicated CSS reference.

continues on page 49

47

Programming with PHP

V
a

l
i
d

a
t

i
n

g
 F

o
r

m
 D

a
t
a

(script continues on next page)

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN” “http://www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd”>

2 <html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>

3 <head>

4 <meta http-equiv=”content-type” content=”text/html; charset=iso-8859-1” />

5 <title>Form Feedback</title>

6 <style type=”text/css” title=”text/css” media=”all”>

7 .error {

8 font-weight: bold;

9 color: #C00

10 }

11 </style>

12 </head>

13 <body>

14 <?php # Script 2.4 - handle_form.php #3

15

16 // Validate the name:

17 if (!empty($_REQUEST[‘name’])) {

18 $name = $_REQUEST[‘name’];

19 } else {

20 $name = NULL;

21 echo ‘<p class=”error”>You forgot to enter your name!</p>’;

22 }

23

24 // Validate the email:

25 if (!empty($_REQUEST[‘email’])) {

26 $email = $_REQUEST[‘email’];

27 } else {

28 $email = NULL;

29 echo ‘<p class=”error”>You forgot to enter your email address!</p>’;

30 }

31

32 // Validate the comments:

33 if (!empty($_REQUEST[‘comments’])) {

34 $comments = $_REQUEST[‘comments’];

35 } else {

36 $comments = NULL;

Script 2.4 Validating HTML form data before you use it is critical to Web security and achieving professional results.
Here, conditionals check that every referenced form element has a value.

48

Chapter 2

V
a

l
i
d

a
t

i
n

g
 F

o
r

m
 D

a
t
a

37 echo ‘<p class=”error”>You forgot to enter your comments!</p>’;

38 }

39

40 // Validate the gender:

41 if (isset($_REQUEST[‘gender’])) {

42

43 $gender = $_REQUEST[‘gender’];

44

45 if ($gender == ‘M’) {

46 echo ‘<p>Good day, Sir!</p>’;

47 } elseif ($gender == ‘F’) {

48 echo ‘<p>Good day, Madam!</p>’;

49 } else { // Unacceptable value.

50 $gender = NULL;

51 echo ‘<p class=”error”>Gender should be either “M” or “F”!</p>’;

52 }

53

54 } else { // $_REQUEST[‘gender’] is not set.

55 $gender = NULL;

56 echo ‘<p class=”error”>You forgot to select your gender!</p>’;

57 }

58

59 // If everything is OK, print the message:

60 if ($name && $email && $gender && $comments) {

61

62 echo “<p>Thank you, $name, for the following comments:

63 <tt>$comments</tt></p>

64 <p>We will reply to you at <i>$email</i>.</p>\n”;

65

66 } else { // Missing form value.

67 echo ‘<p class=”error”>Please go back and fill out the form again.</p>’;

68 }

69

70 ?>

71 </body>

72 </html>

Script 2.4 continued

echo ‘<p class=”error”>You forgot
➝ to enter your comments!</p>’;

}

Both variables receive the same treat-

ment as $_REQUEST[‘name’] in Step 3.

5. Begin validating the gender variable.

if (isset($_REQUEST[‘gender’])) {

$gender = $_REQUEST[‘gender’];

The validation of the gender is a two-step

process. First, check if it has a value or

not, using isset(). This starts the main

if-else conditional, which otherwise

behaves like those for the name, email

address, and comments.

6. Check $gender against specific values.

if ($gender == ‘M’) {

echo ‘<p>Good day, Sir!
➝ </p>’;

} elseif ($gender == ‘F’) {

echo ‘<p>Good day, Madam!
➝ </p>’;

} else {

$gender = NULL;

echo ‘<p class=”error”>Gender
➝ should be either “M” or “F”!
➝ </p>’;

}

Within the gender if clause is a nested

if-elseif-else conditional that tests the

variable’s value against what’s acceptable.

This is the second part of the two-step

gender validation.

49

Programming with PHP

V
a

l
i
d

a
t

i
n

g
 F

o
r

m
 D

a
t
a

In this script I’m defining one CSS class,

called error. Any HTML element that has

this class name will be formatted in a

bold, red color (which will be more

apparent in your Web browser than

in this black-and-white book).

3. Check if the name was entered.

if (!empty($_REQUEST[‘name’])) {

$name = $_REQUEST[‘name’];

} else {

$name = NULL;

echo ‘<p class=”error”>You forgot
➝ to enter your name!</p>’;

}

A simple way to check that a form text

input was filled out is to use the empty()
function. If $_REQUEST[‘name’] has a

value other than an empty string, 0, NULL,

or FALSE, assume that their name was

entered and a shorthand variable is

assigned that value. If $_REQUEST[‘name’]
is empty, the $name variable is set to NULL
and an error message printed. This error

message uses the CSS class.

4. Repeat the same process for the email

address and comments.

if (!empty($_REQUEST[‘email’])) {

$email = $_REQUEST[‘email’];

} else {

$email = NULL;

echo ‘<p class=”error”>You forgot
to enter your email address!</p>’;

}

if (!empty($_REQUEST[‘comments’])) {

$comments = $_REQUEST[‘comments’];

} else {

$comments = NULL;

continues on next page

The conditions themselves are the same

as those in the last script. If gender does

not end up being equal to either M or F,

a problem occurred and an error mes-

sage is printed. The $gender variable is

also set to NULL in such cases, because it

has an unacceptable value.

If $gender does have a valid value, a

gender-specific message is printed.

7. Complete the main gender if-else
conditional.

} else {

$gender = NULL;

echo ‘<p class=”error”>You forgot
➝ to select your gender!</p>’;

}

This else clause applies if $_REQUEST
[‘gender’] is not set. The complete,

nested conditionals (see lines 41–57

of Script 2.4) successfully check every

possibility:

▲ $_REQUEST[‘gender’] is not set

▲ $_REQUEST[‘gender’] has a value

of M

▲ $_REQUEST[‘gender’] has a value

of F

▲ $_REQUEST[‘gender’] has some

other value

You may wonder how this last case may

be possible, considering the values are

established in the HTML form. If a mali-

cious user creates their own form that

gets submitted to your handle_form.php
script (which is very easy to do), they

could give $_REQUEST[‘gender’] any

value they want.

50

Chapter 2

V
a

l
i
d

a
t

i
n

g
 F

o
r

m
 D

a
t
a

8. Print the message if all of the tests have

been passed.

if ($name && $email && $gender &&
➝ $comments) {

echo “<p>Thank you, $name,
➝ for the following comments:
➝

<tt>$comments</tt></p>

<p>We will reply to you at <i>$
➝ email</i>.</p>\n”;

} else { // Missing form value.

echo ‘<p class=”error”>Please go
➝ back and fill out the form
➝ again.</p>’;

}

This main condition is true if every listed

variable has a true value. Each variable

will have a value if it passed its test but

have a value of NULL if it didn’t. If every

variable has a value, the form was com-

pleted, so the Thank you message will

be printed. If any of the variables are

NULL, the second message will be print-

ed (Figures 2.13 and 2.14).

9. Close the PHP section and complete

the HTML code.

?>

</body>

</html>

10. Save the file as handle_form.php,

place it in the same Web directory

as form.html, and test it in your Web

browser (Figures 2.13 and 2.14).

Fill out the form to different levels of

completeness to test the new script

(Figure 2.15).

✔ Tips

■ To test if a submitted value is a number,

use the is_numeric() function.

■ In Chapter 13, “Perl-Compatible Regular

Expressions,” you’ll see how to validate

form data using regular expressions.

■ The $age variable is still not used or

validated for the sake of saving book

space. To validate it, repeat the $gender
validation routine, referring to

$_REQUEST[‘age’] instead. To test

$age’s specific value, use an

if-elseif-elseif-else, checking

against the corresponding pull-down

options (0-29, 30-60, 60+).

■ It’s considered good form (pun intended)

to let a user know which fields are

required when they’re filling out the form,

and where applicable, the format of that

field (like a date or a phone number).

51

Programming with PHP

V
a

l
i
d

a
t

i
n

g
 F

o
r

m
 D

a
t
a

Figure 2.13 The script now checks
that every form element was filled out
(except the age) and reports on those
that weren’t.

Figure 2.14 If even one or two fields
were skipped, the Thank you message
is not printed…

Figure 2.15 …but if everything was entered
properly, the script behaves as it previously had
(although the gender-specific message now
appears at the top of the results).

Introducing Arrays
The final variable type covered in this book

is the array. Unlike strings and numbers

(which are scalar variables, meaning they

can store only a single value at a time), an

array can hold multiple, separate pieces of

information. An array is therefore like a list

of values, each value being a string or a

number or even another array.

Arrays are structured as a series of key-value

pairs, where one pair is an item or element of

that array. For each item in the list, there is a

key (or index) associated with it (Table 2.3).

PHP supports two kinds of arrays: indexed,

which use numbers as the keys (as in Table

2.3), and associative, which use strings as

keys (Table 2.4). As in most programming

languages, with indexed arrays, your arrays

will begin with the first index at 0, unless

you specify the keys explicitly.

An array follows the same naming rules as

any other variable. So offhand, you might

not be able to tell that $var is an array as

opposed to a string or number. The impor-

tant syntactical difference arises when

accessing individual array elements.

To refer to a specific value in an array, start

with the array variable name, followed by

the key in square brackets:

echo $artists[2]; // Wilco

echo $states[‘MD’]; // Maryland

You can see that the array keys are used like

other values in PHP: numbers (e.g., 2) are

never quoted, whereas strings (MD) must be.

52

Chapter 2

I
n

t
r

o
d

u
c

i
n

g
 A

r
r

a
y

s

K e y Va l u e

0 Death Cab for Cutie
1 Postal Service
2 Wilco
3 Damien Rice
4 White Stripes

Array Example 1: $artists

Table 2.3 The $artists array uses numbers for its keys.

K e y Va l u e

MD Maryland
PA Pennsylvania
IL Illinois
MO Missouri
IA Iowa

Array Example 2: $states

Table 2.4 The $states array uses strings (specifically
the state abbreviation) for its keys.

Because arrays use a different syntax than

other variables, printing them can be

trickier. First, since an array can contain

multiple values, you cannot easily print

them (Figure 2.16):

echo “My list of states: $states”;

However, printing an individual element’s

value is simple if it uses indexed (numeric)

keys:

echo “The first artist is $artists[0].”;

But if the array uses strings for the keys, the

quotes used to surround the key will muddle

the syntax. The following code will cause a

parse error:

echo “IL is $states[‘IL’].”; // BAD!

To fix this, wrap the array name and key in

curly braces when an array uses strings for

its keys:

echo “IL is {$states[‘IL’]}.”;

If arrays seem slightly familiar to you already,

that’s because you’ve already worked with

two: $_SERVER (in Chapter 1) and $_REQUEST
(in this chapter). To acquaint you with

another array and how to print array values

directly, one final basic version of the

handle_form.php page will be created using

the more specific $_POST array (see the

sidebar on “Superglobal Arrays”).

53

Programming with PHP

I
n

t
r

o
d

u
c

i
n

g
 A

r
r

a
y

s

Superglobal Arrays

PHP includes several predefined arrays

called the superglobal variables. They are:

$_GET, $_POST, $_REQUEST, $_SERVER, $_ENV,

$_SESSION, and $_COOKIE.

The $_GET variable is where PHP stores all

of the values sent to a PHP script via the

get method (possibly but not necessarily

from an HTML form). $_POST stores all

of the data sent to a PHP script from an

HTML form that uses the post method.

Both of these—along with $_COOKIE—

are subsets of $_REQUEST, which you’ve

been using.

$_SERVER, which was used in Chapter 1,

stores information about the server PHP

is running on, as does $_ENV. $_SESSION
and $_COOKIE will both be discussed in

Chapter 11, “Cookies and Sessions.”

One aspect of good security and pro-

gramming is to be precise when referring

to a variable. This means that, although

you can use $_REQUEST to access form

data submitted through the post method,

$_POST would be more accurate.

Figure 2.16 Attempting to print an
array by just referring to the array
name results in the word Array
being printed instead.

To use arrays:

1. Begin a new PHP script in your text

editor (Script 2.5).

<!DOCTYPE html PUBLIC “-//W3C//DTD
➝ XHTML 1.0 Transitional//EN”
➝ “http://www.w3.org/TR/xhtml1/
➝ DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/
➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”
➝ content=”text/html; charset=
➝ iso-8859-1” />

<title>Form Feedback</title>

<style type=”text/css” title=
➝ ”text/css” media=”all”>

.error {

font-weight: bold;

color: #C00

}

</style>

</head>

<body>

<?php # Script 2.5 - handle_
➝ form.php #4

As with the previous handle_form.php
(Script 2.4), this one defines a CSS class.

2. Perform some basic form validation.

if (!empty($_POST[‘name’]) &&
➝ !empty($_POST[‘comments’]) &&
➝ !empty($_POST[‘email’])) {

In the previous version of this script, the

values are accessed by referring to the

$_REQUEST array. But since these variables

come from a form that uses the post
method (see Script 2.1), $_POST would be

a more exact, and therefore more secure,

reference (see the sidebar).

54

Chapter 2

I
n

t
r

o
d

u
c

i
n

g
 A

r
r

a
y

s

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional//EN” “http://www.w3.
org/TR/xhtml1/DTD/xhtml1-transitional.
dtd”>

2 <html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

3 <head>

4 <meta http-equiv=”content-type”
content=”text/html; charset=
iso-8859-1” />

5 <title>Form Feedback</title>

6 <style type=”text/css” title=”text/css”
media=”all”>

7 .error {

8 font-weight: bold;

9 color: #C00

10 }

11 </style>

12 </head>

13 <body>

14 <?php # Script 2.5 - handle_form.php #4

15

16 // Print the submitted information:

17 if (!empty($_POST[‘name’]) && !empty
($_POST[‘comments’]) && !empty($_POST
[‘email’])) {

18 echo “<p>Thank you, {$_POST[‘name’]}
, for the following comments:

19 <tt>{$_POST[‘comments’]}</tt></p>

20 <p>We will reply to you at <i>
{$_POST [‘email’]}</i>.</p>\n”;

21 } else { // Missing form value.

22 echo ‘<p class=”error”>Please go back
and fill out the form again.</p>’;

23 }

24 ?>

25 </body>

26 </html>

Script 2.5 The superglobal variables, like $_POST here,
are just one type of array you’ll use in PHP.

4. Complete the conditional begun in Step 2.

} else {

echo ‘<p class=”error”>Please go
➝ back and fill out the form
➝ again.</p>’;

}

If any of the three subconditionals in

Step 2 is not true (which is to say, if any

of the variables has an empty value), then

this else clause applies and an error

message is printed (Figure 2.17).

5. Complete the PHP and HTML code.

?>

</body>

</html>

6. Save the file, place it in the same Web

directory as form.html, and test it in your

Web browser (Figure 2.18).

✔ Tips

■ Because PHP is lax with its variable

structures, an array can even use a com-

bination of numbers and strings as its

keys. The only important rule is that the

keys of an array must each be unique.

■ If you find the syntax of accessing super-

global arrays directly to be confusing

(e.g., $_POST[‘name’]), you can use the

shorthand technique at the top of your

scripts as you have been:

$name = $_POST[‘name’];

In this script, you would then need to

change the conditional and the echo()
statement to refer to $name et al.

55

Programming with PHP

I
n

t
r

o
d

u
c

i
n

g
 A

r
r

a
y

s

This conditional checks that these three

text inputs are all not empty. Using the

and operator (&&), the entire conditional

is only true if each of the three subcondi-

tionals is true.

3. Print the message.

echo “<p>Thank you, {$_POST
➝ [‘name’]}, for the following
➝ comments:

<tt>{$_POST[‘comments’]}</tt></p>

<p>We will reply to you at <i>{$_
➝ POST[‘email’]}</i>.</p>\n”;

After you comprehend the concept of an

array, you still need to master the syntax

involved in printing one. When printing

an array element that uses a string

for its key, use the curly braces (as in

{$_POST[‘name’]} here) to avoid parse

errors.

Figure 2.17 If any of the three tested
form inputs is empty, this generic
error message is printed.

Figure 2.18 The fact that the script now uses the
$_POST array has no effect on the visible result.

Creating arrays
The preceding example uses a PHP-generated

array, but there will frequently be times

when you want to create your own. There

are two primary ways to define your own

array. First, you could add an element at a

time to build one:

$band[] = ‘Jemaine’;

$band[] = ‘Bret’;

$band[] = ‘Murray’;

Now $band[0] has a value of Jemaine;

$band[1], Bret, and $band[2], Murray

(because arrays are indexed starting at 0).

Alternatively, you can specify the key when

adding an element. But it’s important to

understand that if you specify a key and

a value already exists indexed with that

same key, the new value will overwrite the

existing one.

$band[‘fan’] = ‘Mel’;

$band[‘fan’] = ‘Dave’; // New value

$array[2] = ‘apple’;

$array[2] = ‘orange’; // New value

Instead of adding one element at a time, you

can use the array() function to build an

entire array in one step:

$states = array (‘IA’ => ‘Iowa’, ‘MD’ =>
➝ ‘Maryland’);

This function can be used whether or not

you explicitly set the key:

$artists = array (‘Clem Snide’, ‘Shins’,
➝ ‘Eels’);

Or, if you set the first numeric key value, the

added values will be keyed incrementally

thereafter:

$days = array (1 => ‘Sun’, ‘Mon’, ‘Tue’);

echo $days[3]; // Tue

56

Chapter 2

I
n

t
r

o
d

u
c

i
n

g
 A

r
r

a
y

s

The array() function is also used to initial-

ize an array, prior to referencing it:

$tv = array();

$tv[] = ‘Flight of the Conchords’;

Initializing an array (or any variable) in PHP

isn’t required, but it makes for clearer code

and can help avoid errors.

Finally, if you want to create an array of

sequential numbers, you can use the

range() function:

$ten = range (1, 10);

Accessing arrays
You’ve already seen how to access indi-

vidual array elements using its keys (e.g.,

$_POST[‘email’]). This works when you

know exactly what the keys are or if you

want to refer to only a single element.

To access every array element, use the

foreach loop:

foreach ($array as $value) {

// Do something with $value.

}

The foreach loop will iterate through every

element in $array, assigning each element’s

value to the $value variable. To access both

the keys and values, use

foreach ($array as $key => $value) {

echo “The value at $key is $value.”;

}

(You can use any valid variable name in

place of $key and $value, like just $k and $v,

if you’d like.)

Using arrays, I’ll show how easy it is to make

a set of form pull-down menus for selecting

a date (Figure 2.19).

57

Programming with PHP

I
n

t
r

o
d

u
c

i
n

g
 A

r
r

a
y

s

Figure 2.19 These pull-down menus will be
created using arrays and the foreach loop.

To create and access arrays:

1. Create a new PHP document in your text

editor or IDE (Script 2.6).

<!DOCTYPE html PUBLIC “-//W3C//

➝ DTD XHTML 1.0 Transitional//EN”

➝ “http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”
➝ content=”text/html; charset=
➝ iso-8859-1” />

<title>Calendar</title>

</head>

<body>

<form action=”calendar.php”

method=”post”>

<?php # Script 2.6 - calendar.php

One thing to note here is that even

though the page won’t contain a com-

plete HTML form, the form tags are still

required to create the pull-down menus.

58

Chapter 2

I
n

t
r

o
d

u
c

i
n

g
 A

r
r

a
y

s

1 <!DOCTYPE html PUBLIC “-//W3C//DTD
XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd”>

2 <html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

3 <head>

4 <meta http-equiv=”content-type”
content=”text/html; charset=
iso-8859-1” />

5 <title>Calendar</title>

6 </head>

7 <body>

8 <form action=”calendar.php” method=”post”>

9 <?php # Script 2.6 - calendar.php

10

11 // This script makes three pull-down
menus

12 // for an HTML form: months, days, years.

13

14 // Make the months array:

15 $months = array (1 => ‘January’,
‘February’, ‘March’, ‘April’, ‘May’,
‘June’, ‘July’, ‘August’, ‘September’,
‘October’, ‘November’, ‘December’);

16

17 // Make the days and years arrays:

18 $days = range (1, 31);

19 $years = range (2008, 2018);

20

21 // Make the months pull-down menu:

22 echo ‘<select name=”month”>’;

23 foreach ($months as $key => $value) {

24 echo “<option value=\”$key\”>$value
</option>\n”;

25 }

26 echo ‘</select>’;

27

Script 2.6 Arrays are used to dynamically create three
pull-down menus (see Figure 2.19).

(script continues on next page)

2. Create an array for the months.

$months = array (1 => ‘January’,
➝ ‘February’, ‘March’, ‘April’,
➝ ‘May’, ‘June’, ‘July’, ‘August’,
➝ ‘September’, ‘October’,
➝ ‘November’, ‘December’);

This first array will use numbers for the

keys, from 1 to 12. Since the value of the

first key is specified, the following values

will be indexed incrementally (in other

words, the 1 => code creates an array

indexed from 1 to 12, instead of from

0 to 11).

3. Create the arrays for the days of the

month and the years.

$days = range (1, 31);

$years = range (2008, 2018);

Using the range() function, you can

easily make an array of numbers.

4. Generate the month pull-down menu.

echo ‘<select name=”month”>’;

foreach ($months as $key => $value) {

echo “<option value=\”$key\”>
➝ $value</option>\n”;

}

echo ‘</select>’;

59

Programming with PHP

I
n

t
r

o
d

u
c

i
n

g
 A

r
r

a
y

s

continues on next page

28 // Make the days pull-down menu:

29 echo ‘<select name=”day”>’;

30 foreach ($days as $value) {

31 echo “<option value=\”$value\”>$value
</option>\n”;

32 }

33 echo ‘</select>’;

34

35 // Make the years pull-down menu:

36 echo ‘<select name=”year”>’;

37 foreach ($years as $value) {

38 echo “<option value=\”$value\”>$value
</option>\n”;

39 }

40 echo ‘</select>’;

41

42 ?>

43 </form>

44 </body>

45 </html>

Script 2.6 continued

The foreach loop can quickly generate

all of the HTML code for the month

pull-down menu. Each execution of the

loop will create a line of code like

<option value=”1”>January</option>
(Figure 2.20).

5. Generate the day and year pull-down

menus.

echo ‘<select name=”day”>’;

foreach ($days as $value) {

echo “<option value=\”$value\”>
➝ $value</option>\n”;

}

echo ‘</select>’;

echo ‘<select name=”year”>’;

foreach ($years as $value) {

echo “<option value=\”$value\”>
➝ $value</option>\n”;

}

echo ‘</select>’;

Unlike the month example, both the

day and year pull-down menus will use

the same thing for the option’s value

and label (a number, Figure 2.20).

6. Close the PHP, the form tag, and the

HTML page.

?>

</form>

</body>

</html>

7. Save the file as calendar.php, place it in

your Web directory, and test it in your

Web browser.

60

Chapter 2

I
n

t
r

o
d

u
c

i
n

g
 A

r
r

a
y

s

✔ Tips

■ To determine the number of elements

in an array, use the count()function.

$num = count($array);

■ The range() function can also create an

array of sequential letters:

$alphabet = range (‘a’, ‘z’);

■ An array’s key can be multiple-worded

strings, such as first name or phone

number.

■ The is_array() function confirms that

a variable is of the array type.

■ If you see an Invalid argument supplied

for foreach() error message, that means

you are trying to use a foreach loop on

a variable that is not an array.

Figure 2.20 Most of the HTML source was generated
by just a few lines of PHP.

Multidimensional arrays
When introducing arrays, I mentioned that

an array’s values could be any combination of

numbers, strings, and even other arrays. This

last option—an array consisting of other

arrays—creates a multidimensional array.

Multidimensional arrays are much more

common than you might expect but remark-

ably easy to work with. As an example, start

with an array of prime numbers:

$primes = array(2, 3, 5, 7, …);

Then create an array of sphenic numbers

(don’t worry: I had no idea what a sphenic

number was either; I had to look it up):

$sphenic = array(30, 42, 66, 70, …);

These two arrays could be combined into

one multidimensional array like so:

$numbers = array (‘Primes’ => $primes,
➝ ‘Sphenic’ => $sphenic);

Now, $numbers is a multidimensional array.

To access the prime numbers sub-array, refer

to $numbers[‘Primes’]. To access the prime

number 5, use $numbers[‘Primes’][2] (it’s

the third element in the array, but the array

starts indexing at 0). To print out one of

these values, surround the whole construct

in curly braces:

echo “The first prime number is
➝ {$numbers[‘Prime’][0]}.”;

Of course, you can also access multidimen-

sional arrays using the foreach loop, nesting

one inside another if necessary. This next

example will do just that.

To use multidimensional arrays:

1. Create a new PHP document in your text

editor (Script 2.7).

61

Programming with PHP

I
n

t
r

o
d

u
c

i
n

g
 A

r
r

a
y

s

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional//EN” “http://www.w3.
org/TR/xhtml1/DTD/xhtml1-transitional.
dtd”>

2 <html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

3 <head>

4 <meta http-equiv=”content-type”
content=”text/html; charset=
iso-8859-1” />

5 <title>Multidimensional Arrays</title>

6 </head>

7 <body>

8 <p>Some North American States, Provinces,
and Territories:</p>

9 <?php # Script 2.7 - multi.php

10

11 // Create one array:

12 $mexico = array(

13 ‘YU’ => ‘Yucatan’,

14 ‘BC’ => ‘Baja California’,

15 ‘OA’ => ‘Oaxaca’

16);

17

18 // Create another array:

19 $us = array (

20 ‘MD’ => ‘Maryland’,

21 ‘IL’ => ‘Illinois’,

22 ‘PA’ => ‘Pennsylvania’,

23 ‘IA’ => ‘Iowa’

24);

25

26 // Create a third array:

27 $canada = array (

28 ‘QC’ => ‘Quebec’,

Script 2.7 The multidimensional array is created by
using other arrays for its values. Two foreach loops,
one nested inside of the other, can access every
array element.

(script continues on next page)

continues on next page

<!DOCTYPE html PUBLIC “-//W3C//DTD
➝ XHTML 1.0 Transitional//EN” “http:
➝ //www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/
➝ 1999/xhtml” xml:lang=”en”
➝ lang=”en”>

<head>

<meta http-equiv=”content-type”
➝ content=”text/html; charset=
➝ iso-8859-1” />

<title>Multidimensional Arrays
➝ </title>

</head>

<body>

<p>Some North American States,
➝ Provinces, and Territories:</p>

<?php # Script 2.7 - multi.php

This PHP page will print out some of the

states, provinces, and territories found in

the three North American countries

(Mexico, the United States, and Canada,

Figure 2.21).

2. Create an array of Mexican states.

$mexico = array(

‘YU’ => ‘Yucatan’,

‘BC’ => ‘Baja California’,

‘OA’ => ‘Oaxaca’

);

This is an associative array, using the

state’s postal abbreviation as its key. The

state’s full name is the element’s value.

This is obviously an incomplete list, just

used to demonstrate the concept.

Because PHP is generally whitespace-

insensitive, the creation of the array can

be written over multiple lines, which

makes it easier to read.

62

Chapter 2

I
n

t
r

o
d

u
c

i
n

g
 A

r
r

a
y

s

29 ‘AB’ => ‘Alberta’,

30 ‘NT’ => ‘Northwest Territories’,

31 ‘YT’ => ‘Yukon’,

32 ‘PE’ => ‘Prince Edward Island’

33);

34

35 // Combine the arrays:

36 $n_america = array(

37 ‘Mexico’ => $mexico,

38 ‘United States’ => $us,

39 ‘Canada’ => $canada

40);

41

42 // Loop through the countries:

43 foreach ($n_america as $country => $list)
{

44

45 // Print a heading:

46 echo “<h2>$country</h2>”;

47

48 // Print each state, province, or
territory:

49 foreach ($list as $k => $v) {

50 echo “$k - $v\n”;

51 }

52

53 // Close the list:

54 echo ‘’;

55

56 } // End of main FOREACH.

57

58 ?>

59 </body>

60 </html>

Script 2.7 continued

4. Combine all of the arrays into one.

$n_america = array(

‘Mexico’ => $mexico,

‘United States’ => $us,

‘Canada’ => $canada

);

You don’t have to create three arrays

and then assign them to a fourth in

order to make the desired multidimen-

sional array. But I think it’s easier to

read and understand this way (defining

a multidimensional array in one step

makes for some ugly code).

The $n_america array now contains three

elements. The key for each element is a

string, which is the country’s name. The

value for each element is the list of states,

provinces, and territories found within

that country.

5. Begin the primary foreach loop.

foreach ($n_america as $country =>
➝ $list) {

echo “<h2>$country</h2>”;

Following the syntax outlined earlier,

this loop will access every element of

$n_america. This means that this loop

will run three times. Within each itera-

tion of the loop, the $country variable

will store the $n_america array’s key

(Mexico, Canada, or United States). Also

within each iteration of the loop, the

$list variable will store the element’s

value (the equivalent of $mexico, $us,

and $canada).

To print out the results, the loop begins

by printing the country’s name within

H2 tags. Because the states and so forth

should be displayed as an HTML list, the

initial unordered list tag () is printed

as well.

63

Programming with PHP

I
n

t
r

o
d

u
c

i
n

g
 A

r
r

a
y

s

continues on next page

Figure 2.21 The end result of running this PHP page
(Script 2.7), where each country is printed, followed
by an abbreviated list of its states, provinces, and
territories.

3. Create the second and third arrays.

$us = array (

‘MD’ => ‘Maryland’,

‘IL’ => ‘Illinois’,

‘PA’ => ‘Pennsylvania’,

‘IA’ => ‘Iowa’

);

$canada = array (

‘QC’ => ‘Quebec’,

‘AB’ => ‘Alberta’,

‘NT’ => ‘Northwest Territories’,

‘YT’ => ‘Yukon’,

‘PE’ => ‘Prince Edward Island’

);

6. Create a second foreach loop.

foreach ($list as $k => $v) {

echo “$k - $v\n”;

}

This loop will run through each sub-

array (first $mexico, then $us, and then

$canada). With each iteration of this

loop, $k will store the abbreviation and

$v the full name. Both are printed out

within HTML list tags. The newline

character is also used, to better format

the HTML source code.

7. Complete the outer foreach loop.

echo ‘’;

} // End of main FOREACH.

After the inner foreach loop is done,

the outer foreach loop has to close

the unordered list begun in Step 5.

8. Complete the PHP and HTML.

?>

</body>

</html>

9. Save the file as multi.php, place it in

your Web directory, and test it in your

Web browser (Figure 2.21).

10. If you want, check out the HTML

source code to see what PHP created.

64

Chapter 2

I
n

t
r

o
d

u
c

i
n

g
 A

r
r

a
y

s

✔ Tips

■ Multidimensional arrays can also come

from an HTML form. For example, if a

form has a series of checkboxes with the

name interests[]—

<input type=”checkbox” name=
➝ ”interests[]” value=”Music”
➝ /> Music

<input type=”checkbox” name=
➝ ”interests[]” value=”Movies”
➝ /> Movies

<input type=”checkbox” name=
➝ ”interests[]” value=”Books”
➝ /> Books

—the $_POST variable in the receiving

PHP page will be multidimensional.

$_POST[‘interests’] will be an array,

with $_POST[‘interests’][0] storing

the value of the first checked box (e.g.,

Movies), $_POST[‘interests’][1]
storing the second (Books), etc. Note

that only the checked boxes will get

passed to the PHP page.

■ You can also end up with a multidimen-

sional array if an HTML form’s select

menu allows for multiple selections:

<select name=”interests[]” multiple=
➝ ”multiple”>

<option value=”Music”>Music
➝ </option>

<option value=”Movies”>Movies
➝ </option>

<option value=”Books”>Books
➝ </option>

<option value=”Napping”>Napping
➝ </option>

</select>

Again, only the selected values will be

passed to the PHP page.

Sorting arrays
One of the many advantages arrays have

over the other variable types is the ability

to sort them. PHP includes several functions

you can use for sorting arrays, all simple

in syntax:

$names = array (‘Moe’, ‘Larry’,
➝ ‘Curly’);

sort($names);

The sorting functions perform three kinds

of sorts. First, you can sort an array by value,

discarding the original keys, using sort().

It’s important to understand that the array’s

keys will be reset after the sorting process,

so if the key-value relationship is important,

you should not use this function.

Second, you can sort an array by value while

maintaining the keys, using asort(). Third,

you can sort an array by key, using ksort().

Each of these can sort in reverse order if you

change them to rsort(), arsort(), and

krsort() respectively.

To demonstrate the effect sorting arrays

will have, I’ll create an array of movie titles

and ratings (how much I liked them on a

scale of 1 to 10) and then display this list in

different ways.

65

Programming with PHP

I
n

t
r

o
d

u
c

i
n

g
 A

r
r

a
y

s

Arrays and Strings

Because arrays and strings are so com-

monly used, PHP has two functions for

converting between them.

$array = explode (separator,
➝ $string);

$string = implode (glue, $array);

The key to using and understanding these

two functions is the separator and glue

relationships. When turning an array into

a string, you set the glue—the characters

or code that will be inserted between

the array values in the generated string.

Conversely, when turning a string into

an array, you specify the separator, which

is the token that marks what should

become separate array elements. For

example, start with a string:

$s1 = ‘Mon-Tue-Wed-Thu-Fri’;

$days_array = explode (‘-’, $s1);

The $days_array variable is now a five-

element array, with Mon indexed at 0,

Tue indexed at 1, etc.

$s2 = implode (‘, ‘, $days_array);

The $string2 variable is now a comma-

separated list of days: Mon, Tue, Wed,

Thu, Fri.

To sort arrays:

1. Create a new PHP document in your text

editor or IDE (Script 2.8).

<!DOCTYPE html PUBLIC “-//W3C//DTD
➝ XHTML 1.0 Transitional//EN” “http:
➝ //www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.
➝ org/1999/xhtml” xml:lang=”en”
➝ lang=”en”>

<head>

<meta http-equiv=”content-type”
➝ content=”text/html; charset=
➝ iso-8859-1” />

<title>Sorting Arrays</title>

</head>

<body>

2. Create an HTML table.

<table border=”0” cellspacing=”3”
➝ cellpadding=”3” align=”center”>

<tr>

<td><h2>Rating</h2></td>

<td><h2>Title</h2></td>

</tr>

To make the ordered list easier to read,

it’ll be printed within an HTML table.

The table is begun here.

66

Chapter 2

I
n

t
r

o
d

u
c

i
n

g
 A

r
r

a
y

s

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional//EN” “http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd”>

2 <html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

3 <head>

4 <meta http-equiv=”content-type”
content=”text/html; charset=
iso-8859-1” />

5 <title>Sorting Arrays</title>

6 </head>

7 <body>

8 <table border=”0” cellspacing=”3”
cellpadding=”3” align=”center”>

9 <tr>

10 <td><h2>Rating</h2></td>

11 <td><h2>Title</h2></td>

12 </tr>

13 <?php # Script 2.8 - sorting.php

14

15 // Create the array:

16 $movies = array (

17 10 => ‘Casablanca’,

18 9 => ‘To Kill a Mockingbird’,

19 2 => ‘The English Patient’,

20 8 => ‘Stranger Than Fiction’,

21 5 => 'Story of the Weeping Camel',

22 7 => ‘Donnie Darko’

23);

24

25 // Display the movies in their original
order:

26 echo ‘<tr><td colspan=”2”>In their
original order:</td></tr>’;

Script 2.8 An array is defined, then sorted in two
different ways: first by value, then by key (in
reverse order).

(script continues on next page)

Script 2.8 continued 3. Add the opening PHP tag and create a

new array.

<?php

$movies = array (

10 => ‘Casablanca’,

9 => ‘To Kill a Mockingbird’,

2 => ‘The English Patient’,

8 => ‘Stranger Than Fiction’,

5 => 'Story of the Weeping Camel',

7 => ‘Donnie Darko’

);

This array uses movie titles as the values

and their respective ratings as their key.

This structure will open up several

possibilities for sorting the whole list.

Feel free to change the movie listings

and rankings as you see fit (just don’t

chastise me for my taste in films).

4. Print out the array as is.

echo ‘<tr><td colspan=”2”>In
➝ their original order:</td>
➝ </tr>’;

foreach ($movies as $key => $value)
➝ {

echo “<tr><td>$key</td>

<td>$value</td></tr>\n”;

}

At this point in the script, the array is

in the same order as it was defined. To

verify this, print it out. A caption is first

printed across both table columns.

Then, within the foreach loop, the key is

printed in the first column and the value

in the second. A newline is also printed

to improve the readability of the HTML

source code.

67

Programming with PHP

I
n

t
r

o
d

u
c

i
n

g
 A

r
r

a
y

s

27 foreach ($movies as $key => $value) {

28 echo “<tr><td>$key</td>

29 <td>$value</td></tr>\n”;

30 }

31

32 // Display the movies sorted by title:

33 asort($movies);

34 echo ‘<tr><td colspan=”2”>Sorted by
title:</td></tr>’;

35 foreach ($movies as $key => $value) {

36 echo “<tr><td>$key</td>

37 <td>$value</td></tr>\n”;

38 }

39

40 // Display the movies sorted by rating:

41 krsort($movies);

42 echo ‘<tr><td colspan=”2”>Sorted by
rating:</td></tr>’;

43 foreach ($movies as $key => $value) {

44 echo “<tr><td>$key</td>

45 <td>$value</td></tr>\n”;

46 }

47

48 ?>

49 </table>

50 </body>

51 </html>

continues on next page

5. Sort the array alphabetically by title and

print it again.

asort($movies);

echo ‘<tr><td colspan=”2”>Sorted
➝ by title:</td></tr>’;

foreach ($movies as $key => $value)
➝ {

echo “<tr><td>$key</td>

<td>$value</td></tr>\n”;

}

The asort() function sorts an array by

value while maintaining the key-value

relationship. The rest of the code is a

repetition of Step 4.

6. Sort the array numerically by descending

rating and print again.

krsort($movies);

echo ‘<tr><td colspan=”2”>Sorted
➝ by rating:</td></tr>’;

foreach ($movies as $key => $value)
➝ {

echo “<tr><td>$key</td>

<td>$value</td></tr>\n”;

}

The ksort() function will sort an array

by key, but in ascending order. Since the

highest-ranking films should be listed

first, the order must be reversed, using

krsort(). This function, like asort(),

maintains the key-value relationships.

68

Chapter 2

I
n

t
r

o
d

u
c

i
n

g
 A

r
r

a
y

s

7. Complete the PHP, the table, and the

HTML.

?>

</table>

</body>

</html>

8. Save the file as sorting.php, place it in

your Web directory, and test it in your

Web browser (Figure 2.22).

✔ Tips

■ If you want to use decimal ratings for

the movies, the rating numbers must

be quoted or else PHP would drop the

decimal points (numeric keys are always

integers).

■ To randomize the order of an array, use

shuffle().

■ PHP’s natsort() function can be used

to sort arrays in a more natural order

(primarily handling numbers in strings

better).

■ Multidimensional arrays can be sorted

in PHP with a little effort. See the PHP

manual for more information on the

usort() function or check out my PHP 5

Advanced: Visual QuickPro Guide book.

■ PHP will sort arrays as if they were in

English by default. If you need to sort

an array in another language, use PHP’s

setlocale() function to change the

language setting. Chapter 14, “Making

Universal Sites,” goes into using different

languages.

69

Programming with PHP

I
n

t
r

o
d

u
c

i
n

g
 A

r
r

a
y

s

Figure 2.22 This page demonstrates the different
ways arrays can be sorted.

For and While Loops
The last language construct to discuss in

this chapter is loops. You’ve already used

one, foreach, to access every element in

an array. The next two types of loops you’ll

use are for and while.

The while loop looks like this:

while (condition) {

// Do something.

}

As long as the condition part of the loop

is true, the loop will be executed. Once it

becomes false, the loop is stopped (Figure

2.23). If the condition is never true, the

loop will never be executed. The while loop

will most frequently be used when retrieving

results from a database, as you’ll see in

Chapter 8, “Using PHP with MySQL.”

The for loop has a more complicated

syntax:

for (initial expression; condition;

closing expression) {

// Do something.

}

Upon first executing the loop, the initial

expression is run. Then the condition is

checked and, if true, the contents of the

loop are executed. After execution, the

closing expression is run and the condition

is checked again. This process continues

until the condition is false (Figure 2.24).

As an example,

for ($i = 1; $i <= 10; $i++) {

echo $i;

}

70

Chapter 2

F
o

r
 a

n
d

 W
h

i
l
e

 L
o

o
p

s

Figure 2.23 A flowchart representation of
how PHP handles a while loop.

Figure 2.24 A flowchart representation of how
PHP handles the more complex for loop.

The first time this loop is run, the $i variable

is set to the value of 1. Then the condition is

checked (is 1 less than or equal to 10?). Since

this is true, 1 is printed out (echo $i). Then,

$i is incremented to 2 ($i++), the condition

is checked, and so forth. The result of this

script will be the numbers 1 through 10

printed out.

The functionality of both loops is similar

enough that for and while can often be

used interchangeably. Still, experience will

reveal that the for loop is a better choice for

doing something a known number of times,

whereas while is used when a condition will

be true an unknown number of times.

In this chapter’s last example, the calendar

script created earlier will be rewritten using

for loops in place of two of the foreach
loops.

To use loops:

1. Open calendar.php (refer to Script 2.6) in

your text editor or IDE.

2. Delete the creation of the $days and

$years arrays (lines 18–19).

Using loops, the same result of the two

pull-down menus can be achieved with-

out the extra code and memory overhead

involved with an array. So these two

arrays will be deleted, while still keeping

the $months array.

3. Rewrite the $days foreach loop as a for
loop (Script 2.9).

for ($day = 1; $day <= 31; $day++) {

echo “<option value=\”$day\”>$day
➝ </option>\n”;

}

71

Programming with PHP

F
o

r
 a

n
d

 W
h

i
l
e

 L
o

o
p

s

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional//EN”

2 “http://www.w3.org/TR/xhtml1/
DTD/xhtml1-transitional.dtd”>

3 <html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

4 <head>

5 <meta http-equiv=”content-type”
content=”text/html; charset=
iso-8859-1” />

6 <title>Calendar</title>

7 </head>

8 <body>

9 <form action=”calendar.php” method=”post”>

10 <?php # Script 2.9 - calendar.php #2

11

12 // This script makes three pull-down menus

13 // for an HTML form: months, days, years.

14

15 // Make the months array:

16 $months = array (1 => ‘January’,
‘February’, ‘March’, ‘April’, ‘May’,
‘June’, ‘July’, ‘August’, ‘September’,
‘October’, ‘November’, ‘December’);

17

18 // Make the months pull-down menu:

19 echo ‘<select name=”month”>’;

20 foreach ($months as $key => $value) {

21 echo “<option value=\”$key\”>$value</
option>\n”;

22 }

23 echo ‘</select>’;

24

25 // Make the days pull-down menu:

26 echo ‘<select name=”day”>’;

Script 2.9 Loops are often used in conjunction with or
in lieu of an array. Here, two for loops replace the
arrays and foreach loops used in the script previously.

(script continues on next page)

continues on next page

Script 2.9 continuedThis standard for loop begins by initial-

izing the $day variable as 1. It will

continue the loop until $day is greater

than 31, and upon each iteration, $day
will be incremented by 1. The content

of the loop itself (which is executed 31

times) is an echo() statement.

4. Rewrite the $years foreach loop as a

for loop.

for ($year = 2008; $year <= 2018;
➝ $year++) {

echo “<option value=\”$year\”>$year
➝ </option>\n”;

}

The structure of this loop is fundamen-

tally the same as the previous for loop,

but the $year variable is initially set to

2008 instead of 1. As long as $year is less

than or equal to 2018, the loop will be

executed. Within the loop, the echo()
statement is run.

5. Save the file, place it in your Web direc-

tory, and test it in your Web browser

(Figure 2.25).

✔ Tips

■ PHP also has a do…while loop with a

slightly different syntax (check the man-

ual). This loop will always be executed at

least once.

■ When using loops, watch your parame-

ters and conditions to avoid the dreaded

infinite loop, which occurs when a loop’s

condition is never going to be false.

72

Chapter 2

F
o

r
 a

n
d

 W
h

i
l
e

 L
o

o
p

s

27 for ($day = 1; $day <= 31; $day++) {

28 echo “<option value=\”$day\”>$day</

option>\n”;

29 }

30 echo ‘</select>’;

31

32 // Make the years pull-down menu:

33 echo ‘<select name=”year”>’;

34 for ($year = 2008; $year <= 2018;

$year++) {

35 echo “<option value=\”$year\”>$year</

option>\n”;

36 }

37 echo ‘</select>’;

38

39 ?>

40 </form>

41 </body>

42 </html>

Figure 2.25 The calendar form looks
quite the same as it had previously
(see Figure 2.19) but was created with
two fewer arrays (compare Script 2.9
with Script 2.6).

With the fundamentals of PHP under your belt, it’s time to begin building truly

dynamic Web sites. Dynamic Web sites, as opposed to the static ones on which the

Web was first built, are easier to maintain, are more responsive to users, and can

alter their content in response to differing situations. This chapter introduces three

new ideas, all commonly used to create more sophisticated Web applications

(Chapter 10, “Web Application Development,” covers another handful of topics

along these same lines).

The first subject involves using external files. This is an important concept, as more

complex sites often demand compartmentalizing some HTML or PHP code. Then

the chapter returns to the subject of handling HTML forms. You’ll learn some new

variations on this standard process. Finally, you’ll learn how to define and use your

own functions.

73

Creating
Dynamic
Web Sites

3

C
r

e
a

t
i
n

g
 D

y
n

a
m

i
c

 W
e

b
 S

i
t

e
s

Including Multiple Files
To this point, every script in the book has

consisted of a single file that contains all of

the required HTML and PHP code. But as

you develop more complex Web sites, you’ll

see that this methodology has many limita-

tions. PHP can readily make use of external

files, a capability that allows you to divide

your scripts and Web sites into distinct

parts. Frequently you will use external files

to extract your HTML from your PHP or to

separate out commonly used processes.

PHP has four functions for using external

files: include(), include_once(), require(),

and require_once(). To use them, your PHP

script would have a line like

include_once(‘filename.php’);

require(‘/path/to/filename.html’);

Using any one of these functions has the

end result of taking all the content of the

included file and dropping it in the parent

script (the one calling the function) at that

juncture. An important consideration with

included files is that PHP will treat the

included code as HTML (i.e., send it directly

to the browser) unless the file contains code

within the PHP tags.

In terms of functionality, it also doesn’t mat-

ter what extension the included file uses, be

it .php or .html. However, by giving the file a

symbolic name, it helps to convey its pur-

pose (e.g., an included file of HTML might

use .inc.html). Also note that you can use

either absolute or relative paths to the

included file (see the sidebar for more).

74

Chapter 3

I
n

c
l
u

d
i
n

g
 M

u
l
t

i
p

l
e

 F
i
l
e

s

Absolute vs. Relative Paths

When referencing any external item, be it

an included file in PHP, a CSS document

in HTML, or an image, you have the

choice of using either an absolute or a rel-

ative path. An absolute path says where a

file is starting from the root directory of

the computer. Such paths are always cor-

rect, no matter the location of the refer-

encing (parent) file. For example, a PHP

script can include a file using

include (‘C:/php/includes/file.php’);

include(‘/usr/xyz/includes/file.php’)
;

Assuming file.php exists in the named

location, the inclusion will work (barring

any permissions issues). The second

example, in case you’re not familiar with

the syntax, would be a Unix (and Mac

OS X) absolute path. Absolute paths

always start with something like C:/ or /.

A relative path uses the referencing (par-

ent) file as the starting point. To move up

one folder, use two periods together. To

move into a folder, use its name followed

by a slash. So assuming the current script

is in the www/ex1 folder and you want to

include something in www/ex2, the code

would be:

include(‘../ex2/file.php’);

A relative path will remain accurate, even

if moved to another server, as long as the

files keep their current relationship.

75

Creating Dynamic Web Sites

I
n

c
l
u

d
i
n

g
 M

u
l
t

i
p

l
e

 F
i
l
e

s

The include() and require() functions are

exactly the same when working properly but

behave differently when they fail. If an

include() function doesn’t work (it cannot

include the file for some reason), a warning

will be printed to the Web browser (Figure

3.1), but the script will continue to run. If

require() fails, an error is printed and the

script is halted (Figure 3.2).

Both functions also have a *_once() version,

which guarantees that the file in question is

included only once regardless of how many

times a script may (presumably inadver-

tently) attempt to include it.

require_once(‘filename.php’);

include_once(‘filename.php’);

In this next example, included files will sep-

arate the primary HTML formatting from

any PHP code. Then, the rest of the exam-

ples in this chapter will be able to have the

same appearance—as if they are all part of

the same Web site—without the need to

rewrite the HTML every time. This tech-

nique creates a template system, an easy

way to make large applications consistent

and manageable. The focus in these exam-

ples is on the PHP code itself; you should

also read the sidebar later in the chapter

on “Site Structure” so that you understand

the organizational scheme on the server.

If you have any questions about the CSS

(Cascading Style Sheets) or (X)HTML used

in the example, see a dedicated resource on

those topics.

Figure 3.1 Two failed include() calls generate these
four error messages (assuming that PHP is configured
to display errors), but the rest of the page continues
to execute.

Figure 3.2 The failure of a require() function call will
print an error and terminate the execution of the
script. If PHP is not configured to display errors, then
the script will terminate without printing the problem
first (i.e., it’d be a blank page).

To include multiple files:

1. Design an HTML page in your text or

WYSIWYG editor (Script 3.1 and

Figure 3.3).

To start creating a template for a Web

site, design the layout like a standard

HTML page, independent of any PHP

code. For this chapter’s example, I’m

using a slightly modified version of the

“Plain and Simple” template created by

Christopher Robinson (www.edg3.co.uk)

and used with his kind permission.

2. Mark where any page-specific content

goes.

Almost every Web site has several com-

mon elements on each page—header,

navigation, advertising, footer, etc.—and

one or more page-specific sections. In

the HTML page (Script 3.1), enclose the

section of the layout that will change

from page to page within HTML com-

ments to indicate its status.

76

Chapter 3

I
n

c
l
u

d
i
n

g
 M

u
l
t

i
p

l
e

 F
i
l
e

s

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN” “http://www.w3.org/TR/xhtml1/DTD/
xhtml1-strict.dtd”>

2 <html xmlns=”http://www.w3.org/1999/xhtml”>

3 <head>

4 <title>Page Title</title>

5 <link rel=”stylesheet” href=”includes/style.css” type=”text/css” media=”screen” />

6 <meta http-equiv=”content-type” content=”text/html; charset=utf-8” />

7 </head>

8 <body>

9 <div id=”header”>

10 <h1>Your Website</h1>

11 <h2>catchy slogan...</h2>

12 </div>

13 <div id=”navigation”>

Script 3.1 The HTML template for this chapter’s Web pages. Download the style.css file it uses from the book’s
supporting Web site (www.DMCInsights.com/phpmysql3/).

(script continues on next page)

Figure 3.3 The HTML and CSS design as it appears in
the Web browser (without using any PHP).

continues on page 78

77

Creating Dynamic Web Sites

I
n

c
l
u

d
i
n

g
 M

u
l
t

i
p

l
e

 F
i
l
e

s

14

15 Home Page

16 Calculator

17 Date Form

18 link four

19 link five

20

21 </div>

22 <div id=”content”><!-- Start of the page-specific content. -->

23 <h1>Content Header</h1>

24

25 <p>This is where the page-specific content goes. This section, and the corresponding
header, will change from one page to the next.</p>

26

27 <p>Volutpat at varius sed sollicitudin et, arcu. Vivamus viverra. Nullam turpis. Vestibulum
sed etiam. Lorem ipsum sit amet dolore. Nulla facilisi. Sed tortor. Aenean felis.
Quisque eros. Cras lobortis commodo metus. Vestibulum vel purus. In eget odio in sapien
adipiscing blandit. Quisque augue tortor, facilisis sit amet, aliquam, suscipit vitae,
cursus sed, arcu lorem ipsum dolor sit amet.</p>

28

29 <!-- End of the page-specific content. --></div>

30

31 <div id=”footer”>

32 <p>Copyright © Plain and Simple 2007 | Designed by <a href=”http://
www.edg3.co.uk/”>edg3.co.uk | Sponsored by Open
Designs | Valid CSS & XHTML</p>

33 </div>

34 </body>

35 </html>

Script 3.1 continued

3. Copy everything from the first line of the

layout’s HTML source to just before the

page-specific content and paste it in a

new document (Script 3.2).

<!DOCTYPE html PUBLIC “-//W3C//DTD
➝ XHTML 1.0 Strict//EN” “http://
➝ www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/
➝ 1999/xhtml”>

<head>

<title>Page Title</title>

<link rel=”stylesheet” href=
➝ ”includes/style.css” type=”text/
➝ css” media=”screen” />

<meta http-equiv=”content-type”
➝ content=”text/html; charset=utf-8”
/>

</head>

<body>

<div id=”header”>

<h1>Your Website</h1>

<h2>catchy slogan...</h2>

</div>

<div id=”navigation”>

Home
➝ Page

➝ Calculator

➝ Date Form

link four
➝

link
five

78

Chapter 3

I
n

c
l
u

d
i
n

g
 M

u
l
t

i
p

l
e

 F
i
l
e

s

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Strict//EN” “http://www.w3.org/TR/
xhtml1/DTD/xhtml1-strict.dtd”>

2 <html xmlns=”http://www.w3.org/1999/
xhtml”>

3 <head>

4 <title><?php echo $page_title; ?>
</title>

5 <link rel=”stylesheet” href=”includes/
style.css” type=”text/css” media=
”screen” />

6 <meta http-equiv=”content-type”
content=”text/html; charset=utf-8” />

7 </head>

8 <body>

9 <div id=”header”>

10 <h1>Your Website</h1>

11 <h2>catchy slogan...</h2>

12 </div>

13 <div id=”navigation”>

14

15 Home Page

16
Calculator

17 Date
Form

18 link four

19 link five

20

21 </div>

22 <div id=”content”><!-- Start of the
page-specific content. -->

23 <!-- Script 3.2 - header.html -->

Script 3.2 The initial HTML for each Web page is
stored in a header file.

</div>

<div id=”content”><!-- Start of the
➝ page-specific content. -->

<!-- Script 3.2 - header.html -->

This first file will contain the initial

HTML tags (from DOCTYPE through the

head and into the beginning of the page

body). It also has the code that makes

the Web site name and slogan, plus the

horizontal bar of links across the top

(see Figure 3.3). Finally, as each page’s

content goes within a DIV whose id value

is content, this file includes that code

as well.

4. Change the page’s title line to read

<title><?php echo $page_title; ?>
➝ </title>

The page title (which appears at the top

of the Web browser; see Figure 3.3)

should be changeable on a page-by-page

basis. For that to be possible, this value

will be based upon a PHP variable, which

will then be printed out. You’ll see how

this plays out shortly.

5. Save the file as header.html.

As stated already, included files can use

just about any extension for the file-

name. So this file is called header.html,

indicating that it is the template’s header

file and that it contains (primarily) HTML.

6. Copy everything in the original template

from the end of the page-specific content

to the end of the page and paste it in a

new file (Script 3.3).

<!-- Script 3.3 - footer.html -->

<!-- End of the page-specific
➝ content. --></div>

79

Creating Dynamic Web Sites

I
n

c
l
u

d
i
n

g
 M

u
l
t

i
p

l
e

 F
i
l
e

s

continues on next page

1 <!-- Script 3.3 - footer.html -->

2 <!-- End of the page-specific
›content. --></div>

3

4 <div id=”footer”>

5 <p>Copyright © Plain
and Simple 2007 | Designed by
<a href=”http://www.edg3.co.uk/
”>edg3.co.uk | Sponsored by <a
href=”http://www.opendesigns.org/
”>Open Designs | Valid <a
href=”http://jigsaw.w3.org/
css-validator/”>CSS &
XHTML</p>

6 </div>

7 </body>

8 </html>

Script 3.3 The concluding HTML for each Web page is
stored in this footer file.

<div id=”footer”>

<p>Copyright © <a href=
➝ ”#”>Plain and Simple 2007
➝ | Designed by <a href=”http://
➝ www.edg3.co.uk/”>edg3.co.uk
➝ | Sponsored by <a href=
➝ ”http://www.opendesigns.org/”>
➝ Open Designs | Valid <a
➝ href=”http://jigsaw.w3.org/
➝ css-validator/”>CSS &
➝ <a href=”http://validator.
➝ w3.org/”>XHTML</p>

</div>

</body>

</html>

The footer file starts by closing the con-

tent DIV opened in the header file (see

Step 3). Then the footer is added, which

will be the same for every page on the

site, and the HTML document itself is

completed.

7. Save the file as footer.html.

8. Begin a new PHP document in your text

editor or IDE (Script 3.4).

<?php # Script 3.4 - index.php

Since this script will use the included

files for most of its HTML, it can begin

and end with the PHP tags.

9. Set the $page_title variable and include

the HTML header.

$page_title = ‘Welcome to this
➝ Site!’;

include (‘includes/header.html’);

The $page_title variable will store the

value that appears in the top of the

browser window (and therefore, is also

the default value when a person book-

marks the page). This variable is printed

80

Chapter 3

I
n

c
l
u

d
i
n

g
 M

u
l
t

i
p

l
e

 F
i
l
e

s

1 <?php # Script 3.4 - index.php

2 $page_title = ‘Welcome to this Site!’;

3 include (‘includes/header.html’);

4 ?>

5

6 <h1>Content Header</h1>

7

8 <p>This is where the page-specific
content goes. This section, and the
corresponding header, will change
from one page to the next.</p>

9

10 <p>Volutpat at varius sed sollicitudin
et, arcu. Vivamus viverra. Nullam
turpis. Vestibulum sed etiam. Lorem
ipsum sit amet dolore. Nulla
facilisi. Sed tortor. Aenean felis.
Quisque eros. Cras lobortis commodo
metus. Vestibulum vel purus. In eget
odio in sapien adipiscing blandit.
Quisque augue tortor, facilisis sit
amet, aliquam, suscipit vitae, cursus
sed, arcu lorem ipsum dolor sit
amet.</p>

11

12 <?php

13 include (‘includes/footer.html’);

14 ?>

Script 3.4 This script generates a complete Web page
by including a template stored in two external files.

For most pages, PHP will generate this

content, instead of having static text.

This information could be sent to the

browser using echo(), but since there’s

no dynamic content here, it’s easier

and more efficient to exit the PHP tags

temporarily.

11. Create a final PHP section and include

the footer file.

<?php

include (‘includes/footer.html’);

?>

12. Save the file as index.php, and place it

in your Web directory.

13. Create an includes directory in the

same folder as index.php. Then place

header.html, footer.html, and

style.css (downloaded from

www.DMCInsights.com/phpmysql3/),

into this includes directory.

Note: in order to save space, the CSS

file for this example (which controls

the layout) is not included in the book.

You can download the file through the

book’s supporting Web site (see the

Extras page) or do without it (the

template will still work, it just won’t

look as nice).

81

Creating Dynamic Web Sites

I
n

c
l
u

d
i
n

g
 M

u
l
t

i
p

l
e

 F
i
l
e

s

continues on next page

in header.html (see Script 3.2). By defin-

ing the variable prior to including the

header file, the header file will have

access to that variable. Remember that

this include() line has the effect of

dropping the contents of the included

file into this page at this spot.

The include() function call uses a

relative path to header.html (see the

sidebar, “Absolute vs. Relative Paths”).

The syntax states that in the same

folder as this file is a folder called

includes and in that folder is a file

named header.html.

10. Close the PHP tags and add the page-

specific content.

?>

<h1>Content Header</h1>

<p>This is where the page-specific
➝ content goes. This section, and
➝ the corresponding header, will
➝ change from one page to the
➝ next.</p>

<p>Volutpat at varius sed
➝ sollicitudin et, arcu. Vivamus
➝ viverra. Nullam turpis.
➝ Vestibulum sed etiam. Lorem
➝ ipsum sit amet dolore. Nulla
➝ facilisi. Sed tortor. Aenean
➝ felis. Quisque eros. Cras
➝ lobortis commodo metus.
➝ Vestibulum vel purus. In eget
➝ odio in sapien adipiscing
➝ blandit. Quisque augue tortor,
➝ facilisis sit amet, aliquam,
➝ suscipit vitae, cursus sed, arcu
➝ lorem ipsum dolor sit amet.</p>

14. Test the template system by going

to the index.php page in your Web

browser (Figure 3.4).

The index.php page is the end result of

the template system. You do not need

to access any of the included files

directly, as index.php will take care of

incorporating their contents. As this is

a PHP page, you still need to access it

through a URL.

15. If desired, view the HTML source of the

page (Figure 3.5).

82

Chapter 3

I
n

c
l
u

d
i
n

g
 M

u
l
t

i
p

l
e

 F
i
l
e

s

Figure 3.4 Now the same layout (see Figure 3.3) has
been created using external files in PHP.

Figure 3.5 The generated HTML source of the Web page should replicate the code in
the original template (refer to Script 3.1).

■ As you’ll see in Chapter 8, “Using PHP

with MySQL,” any included file that con-

tains sensitive information (like database

access) should be stored outside of the

Web document directory so it can’t be

viewed within a Web browser.

■ Since require() has more impact on a

script when it fails, it’s recommended for

mission-critical includes (like those that

connect to a database). The include()
function would be used for less impor-

tant inclusions. The *_once() versions

provide for nice redundancy checking in

complex applications, but they may be

unnecessary in simple sites.

■ Because of the way CSS works, if you

don’t use the CSS file or if the browser

doesn’t read the CSS, the generated result

is still functional, just not aesthetically as

pleasing (see Figure 3.6).

83

Creating Dynamic Web Sites

I
n

c
l
u

d
i
n

g
 M

u
l
t

i
p

l
e

 F
i
l
e

s

Figure 3.6 This is the same HTML page without using
the corresponding CSS file (compare with Figure 3.4).

✔ Tips

■ In the php.ini configuration file, you can

adjust the include_path setting, which

dictates where PHP is and is not allowed

to retrieve included files.

Site Structure

When you begin using multiple files in your Web applications, the overall site structure

becomes more important. When laying out your site, there are three considerations:

◆ Ease of maintenance

◆ Security

◆ Ease of user navigation

Using external files for holding standard procedures (i.e., PHP code), CSS, JavaScript, and the

HTML design will greatly improve the ease of maintaining your site because commonly

edited code is placed in one central location. I’ll frequently make an includes or templates
directory to store these files apart from the main scripts (the ones that are accessed directly

in the Web browser).

I recommend using the .inc or .html file extension for documents where security is not an

issue (such as HTML templates) and .php for files that contain more sensitive data (such as

database access information). You can also use both .inc and .html or .php so that a file is

clearly indicated as an include of a certain type: db.inc.php or header.inc.html.

Finally, try to structure your sites so that they are easy for your users to navigate, both by click-

ing links and by manually typing a URL. Try to avoid creating too many nested folders or using

hard-to-type directory names and filenames containing both upper- and lowercase letters.

Handling HTML Forms,
Revisited
A good portion of Chapter 2, “Programming

with PHP,” involves handling HTML forms

with PHP. All of those examples use two

separate files: one that displays the form

and another that receives it. While there’s

certainly nothing wrong with this method,

there are advantages to putting the entire

process into one script.

To have one page both display and handle a

form, a conditional must check which action

(display or handle) should be taken:

if (/* form has been submitted */) {

// Handle it.

} else {

// Display it.

}

To determine if the form has been submitted,

check if a $_POST variable is set (assuming

that the form uses the POST method, of

course). For example, create a hidden form

input with a name of submitted and any

value:

84

Chapter 3

H
a

n
d

l
i
n

g
 H

T
M

L
F
o

r
m

s
,

R
e

v
i
s

i
t

e
d

Figure 3.7 The interactions between the user and this PHP script on the server involves the user making
two requests of this script. The first is a standard request (a GET request); where the form has not been
submitted, $_POST is therefore empty, and so the script displays the form. When the form is submitted,
the same script is requested again (a POST request this time), $_POST[‘submitted’] has a value, and so
the form is handled.

<input type=”hidden” name=”submitted”
➝ value=”1” />

Then the condition testing for form submis-

sion would be (Figure 3.7)

if (isset($_POST[‘submitted’])) {

// Handle it.

} else {

// Display it.

}

If you want a page to handle a form and

then display it again (e.g., to add a record to

a database and then give an option to add

another), lose the else clause:

if (isset($_POST[‘submitted’])) {

// Handle it.

}

// Display the form.

Using that code, a script will handle a form

if it has been submitted and display the

form every time the page is loaded.

To demonstrate this important technique (of

having the same page both display and handle

a form), let’s create a simple sales calculator.

To handle HTML forms:

1. Create a new PHP document in your text

editor or IDE (Script 3.5).

<?php # Script 3.5 - calculator.php

$page_title = ‘Widget Cost
Calculator’;

include (‘includes/header.html’);

This, and all the remaining examples in

the chapter, will use the same template

system as index.php (Script 3.4). The

beginning syntax of each page will there-

fore be the same, but the page titles will

differ.

2. Write the conditional for handling the

form.

if (isset($_POST[‘submitted’])) {

As suggested already, checking if a form

element, like $_POST[‘submitted’], is set

can test if the form has been submitted.

This variable will be correlate to a hidden

input in the form.

3. Validate the form.

if (is_numeric($_POST[‘quantity’])
➝ && is_numeric($_POST[‘price’]) &&
➝ is_numeric($_POST[‘tax’])) {

The validation here is very simple: it mere-

ly checks that three submitted variables

are all numeric types. You can certainly

elaborate on this, perhaps checking that

the quantity is an integer and that all

values are positive (in fact, Chapter 12,

“Security Methods,” has a variation on

this script that does just that).

If the validation passes all of the tests,

the calculations will be made; otherwise,

the user will be asked to try again.

85

Creating Dynamic Web Sites

H
a

n
d

l
i
n

g
 H

T
M

L
F
o

r
m

s
, R

e
v

i
s

i
t

e
d

1 <?php # Script 3.5 - calculator.php

2

3 $page_title = ‘Widget Cost Calculator’;

4 include (‘includes/header.html’);

5

6 // Check for form submission:

7 if (isset($_POST[‘submitted’])) {

8

9 // Minimal form validation:

10 if (is_numeric($_POST[‘quantity’]) &&
is_numeric($_POST[‘price’]) &&
is_numeric($_POST[‘tax’])) {

11

12 // Calculate the results:

13 $total = ($_POST[‘quantity’] *
$_POST[‘price’]);

14 $taxrate = ($_POST[‘tax’] / 100); //
Turn 5% into .05.

15 $total += ($total * $taxrate); // Add
the tax.

16

17 // Print the results:

18 echo ‘<h1>Total Cost</h1>

19 <p>The total cost of purchasing ‘ .
$_POST[‘quantity’] . ‘ widget(s) at $’ .
number_format ($_POST[‘price’], 2) . ‘
each, including a tax rate of ‘ .
$_POST[‘tax’] . ‘%, is $’ .
number_format ($total, 2) . ‘.</p>’;

20

21 } else { // Invalid submitted values.

22 echo ‘<h1>Error!</h1>

23 <p class=”error”>Please enter a valid
quantity, price, and tax.</p>’;

24 }

25

26 } // End of main isset() IF.

Script 3.5 The calculator.php script both displays a
simple form and handles the form data: performing
some calculations and reporting upon the results.

(script continues on next page)

continues on next page

Script 3.5 continued4. Perform the calculations.

$total = ($_POST[‘quantity’] *
➝ $_POST[‘price’]);

$taxrate = ($_POST[‘tax’] / 100);

$total += ($total * $taxrate);

The first line calculates the before-tax

total as the quantity times the price. The

second line changes the tax value from a

percentage (say, 5%) to a decimal (.05),

which will be needed in the subsequent

calculation. The third line adds to the

total the amount of tax, calculated by

multiplying the total by the tax rate. The

addition assignment operator (+=) makes

the code a bit shorter. Alternatively you

could write

$total = $total + ($total *
➝ $taxrate);

5. Print the results.

echo ‘<h1>Total Cost</h1>

<p>The total cost of purchasing ‘ .
➝ $_POST[‘quantity’] . ‘ widget(s)
➝ at $’ . number_format ($_POST
➝ [‘price’], 2) . ‘ each, including
➝ a tax rate of ‘ . $_POST[‘tax’] .
➝ ‘%, is $’ . number_format ($total,
➝ 2) . ‘.</p>’;

All of the values are printed out, format-

ting the price and total with the

number_format() function. Using the

concatenation operator (the period)

allows the formatted numeric values to

be appended to the printed message.

86

Chapter 3

H
a

n
d

l
i
n

g
 H

T
M

L
F
o

r
m

s
,

R
e

v
i
s

i
t

e
d

27

28 // Leave the PHP section and create the
HTML form:

29 ?>

30 <h1>Widget Cost Calculator</h1>

31 <form action=”calculator.php” method=
”post”>

32 <p>Quantity: <input type=”text” name=
”quantity” size=”5” maxlength=”5” /></p>

33 <p>Price: <input type=”text” name=
”price” size=”5” maxlength=”10” /></p>

34 <p>Tax (%): <input type=”text” name=
”tax” size=”5” maxlength=”5” /></p>

35 <p><input type=”submit” name=”submit”
value=”Calculate!” /></p>

36 <input type=”hidden” name=”submitted”
value=”1” />

37 </form>

38 <?php // Include the footer:

39 include (‘includes/footer.html’);

40 ?>

7. Display the HTML form.

<h1>Widget Cost Calculator</h1>

<form action=”calculator.php”
➝ method=”post”>

<p>Quantity: <input type=”text”
➝ name=”quantity” size=”5”
➝ maxlength=➝ ”5” /></p>

<p>Price: <input type=”text” name=
➝ ”price” size=”5” maxlength=”10”
➝ /></p>

<p>Tax (%): <input type=”text”
➝ name=”tax” size=”5” maxlength=”5”
➝ /></p>

<p><input type=”submit” name=
➝ ”submit” value=”Calculate!”
➝ /></p>

<input type=”hidden” name=
➝ ”submitted” value=”1” />

</form>

The form itself is fairly obvious, contain-

ing only two new tricks. First, the action
attribute uses this script’s name, so that

the form submits back to this page

instead of to another. Second, there is a

hidden input called submitted with a

value of 1. This is the flag variable whose

existence will be checked to determine

whether or not to handle the form (see

the main conditional in Step 2 or on line

7). Because this is just a flag variable, it

can be given any value (I’ll normally use

either 1 or TRUE).

8. Include the footer file.

<?php

include (‘includes/footer.html’);

?>

87

Creating Dynamic Web Sites

H
a

n
d

l
i
n

g
 H

T
M

L
F
o

r
m

s
, R

e
v

i
s

i
t

e
d

6. Complete the conditionals and close the

PHP tag.

} else {

echo ‘<h1>Error!</h1>

<p class=”error”>Please enter
➝ a valid quantity, price, and
➝ tax.</p>’;

}

}

?>

The else clause completes the validation

conditional (Step 3), printing an error if

the three submitted values aren’t all

numeric. The final closing curly brace

closes the isset($_POST[‘submitted’])
conditional. Finally, the PHP section is

closed so that the form can be created

without using echo() (see Step 7).

9. Save the file as calculator.php, place

it in your Web directory, and test it in

your Web browser (Figures 3.8, 3.9,

and 3.10).

✔ Tips

■ Another common method for checking

if a form has been submitted is to see

if the submit button’s variable—

$_POST[‘submit’] here—is set. The only

downside to this method is that it won’t

work in some browsers if the user sub-

mits the form by pressing Return or

Enter.

■ If you use an image for your submit but-

ton, you’ll also want to use a hidden

input to test for the form’s submission.

■ You can also have a form submit back

to itself by using no value for the action
attribute:

<form action="" method="post">

By doing so, the form will always submit

back to this same page, even if you later

change the name of the script.

88

Chapter 3

H
a

n
d

l
i
n

g
 H

T
M

L
F
o

r
m

s
,

R
e

v
i
s

i
t

e
d

Figure 3.8 The HTML form, upon first
viewing it in the Web browser. The
CSS style sheet gives the inputs and the
submit button a more subtle appearance
(in Firefox, at least). To save space, I’ve
captured only the form and not the page
header or footer.

Figure 3.9 The page performs the calculations,
reports on the results, and then redisplays the form.

Figure 3.10 If any of the submitted values is
not numeric, an error message is displayed.

To preset the value of a textarea, place the

value between the textarea tags:

<textarea name=”comments” rows=”10”
➝ cols=”50”><?php echo $comments;
➝ ?></textarea>

Note hear that the textarea tag does not

have a value attribute like the standard

text input.

To preselect a pull-down menu, add

selected=”selected” to the appropriate

option. This is really easy if you also use

PHP to generate the menu:

echo ‘<select name=”year”>’;

for ($y = 2008; $y <= 2018; $y++) {

echo “<option value=\”$y\”;

if ($year == $y) {

echo ‘ selected=”selected”’;

}

echo “>$y</option>\n”;

}

echo ‘</select>’;

With this new information in mind, let’s

rewrite calculator.php so that it’s sticky.

89

Creating Dynamic Web Sites

M
a

k
i
n

g
 S

t
i
c

k
y

 F
o

r
m

s

Making Sticky Forms
A sticky form is simply a standard HTML

form that remembers how you filled it out.

This is a particularly nice feature for end

users, especially if you are requiring them to

resubmit a form after filling it out incorrect-

ly in the first place, as in Figure 3.10. (Some

Web browsers will also remember values

entered into forms for you; this is a separate

but potentially overlapping issue from using

PHP to accomplish this.)

To preset what’s entered in a text box, use

its value attribute:

<input type=”text” name=”city” size=”20”
➝ value=”Innsbruck” />

To have PHP preset that value, print the

appropriate variable (this assumes that the

referenced variable exists):

<input type=”text” name=”city” size=”20”
➝ value=”<?php echo $city; ?>” />

(This is also a nice example of the benefit of

PHP’s HTML-embedded nature: you can

place PHP code anywhere, including within

form elements.)

To preset the status of radio buttons or

check boxes (i.e., to precheck them), add the

code checked=”checked” to their input tag.

Using PHP, you might write:

<input type=”radio” name=”gender” value=
➝ ”F” <?php if ($gender == ‘F’)) {

echo ‘checked=”checked”’;

} ?>/>

To make a sticky form:

1. Open calculator.php (refer to Script 3.5)

in your text editor or IDE.

2. Change the quantity input to read

(Script 3.6)

<p>Quantity: <input type=”text”
➝ name=”quantity” size=”5”
➝ maxlength=”5” value=”<?php if
➝ (isset($_POST[‘quantity’])) echo
➝ $_POST[‘quantity’]; ?>” /></p>

The first change is to add the value
attribute to the input. Then, print out the

value of the submitted quantity variable

($_POST[‘quantity’]). Since the first time

the page is loaded, $_POST[‘quantity’]
has no value, a conditional ensures that

the variable is set before attempting to

print it. The end result for setting the

input’s value is the PHP code

<?php

if (isset($_POST[‘quantity’])) {

echo $_POST[‘quantity’];

}

?>

This can be condensed to the more

minimal form used in the script (you

can omit the curly braces if you have

only one statement within a conditional

block, although I very rarely recommend

that you do so).

3. Repeat the process for the price and tax.

<p>Price: <input type=”text” name=
➝ ”price” size=”5” maxlength=”10”
➝ value=”<?php if (isset($_POST
➝ [‘price’])) echo $_POST[‘price’];
➝ ?>” /></p>

90

Chapter 3

M
a

k
i
n

g
 S

t
i
c

k
y

 F
o

r
m

s

1 <?php # Script 3.6 - calculator.php #2

2

3 $page_title = ‘Widget Cost Calculator’;

4 include (‘includes/header.html’);

5

6 // Check for form submission:

7 if (isset($_POST[‘submitted’])) {

8

9 // Minimal form validation:

10 if (is_numeric($_POST[‘quantity’]) &&
is_numeric($_POST[‘price’]) &&
is_numeric($_POST[‘tax’])) {

11

12 // Calculate the results:

13 $total = ($_POST[‘quantity’] *
$_POST[‘price’]);

14 $taxrate = ($_POST[‘tax’] / 100); //
Turn 5% into .05.

15 $total += ($total * $taxrate); // Add
the tax.

16

17 // Print the results:

18 echo ‘<h1>Total Cost</h1>

19 <p>The total cost of purchasing ‘ .
$_POST[‘quantity’] . ‘ widget(s) at $’ .
number_format ($_POST[‘price’], 2) . ‘
each, including a tax rate of ‘ .
$_POST[‘tax’] . ‘%, is $’ .
number_format ($total, 2) . ‘.</p>’;

20

21 } else { // Invalid submitted values.

22 echo ‘<h1>Error!</h1>

23 <p class=”error”>Please enter a valid
quantity, price, and tax.’;

24 }

25

26 } // End of main isset() IF.

27

Script 3.6 The calculator’s form now recalls the
previously entered values (creating a sticky form).

(script continues on next page)

<p>Tax (%): <input type=”text”
➝ name=”tax” size=”5” maxlength=”5”
➝ value=”<?php if (isset($_POST
➝ [‘tax’])) echo $_POST[‘tax’]; ?>”
➝ /></p>

4. Save the file as calculator.php, place it

in your Web directory, and test it in your

Web browser (Figures 3.11 and 3.12).

✔ Tips

■ Because some PHP code in this example

exists inside of the HTML form value
attributes, error messages may not be

obvious. If problems occur, check the

HTML source of the page to see if PHP

errors are printed within the value
attributes.

■ You should always double-quote HTML

attributes, particularly the value attrib-

ute of a form input. If you don’t, multi-

word values like Elliott Smith will appear

as just Elliott in the Web browser.

■ On account of a limitation in how HTML

works, you cannot preset the value of a

password input type.

91

Creating Dynamic Web Sites

M
a

k
i
n

g
 S

t
i
c

k
y

 F
o

r
m

s

28 // Leave the PHP section and create the
HTML form:

29 ?>

30 <h1>Widget Cost Calculator</h1>

31 <form action=”calculator.php”
method=”post”>

32 <p>Quantity: <input type=”text” name=

”quantity” size=”5” maxlength=”5”

value=”<?php if (isset($_POST[‘quantity’]

)) echo $_POST[‘quantity’]; ?>” /></p>

33 <p>Price: <input type=”text” name=”price”

size=”5” maxlength=”10” value=”<?php if

(isset($_POST[‘price’])) echo $_POST

[‘price’]; ?>” /></p>

34 <p>Tax (%): <input type=”text” name=”tax”

size=”5” maxlength=”5” value=”<?php if

(isset($_POST[‘tax’])) echo $_POST

[‘tax’]; ?>” /></p>

35 <p><input type=”submit” name=”submit”
value=”Calculate!” /></p>

36 <input type=”hidden” name=”submitted”
value=”TRUE” />

37 </form>

38 <?php // Include the footer:

39 include (‘includes/footer.html’);

40 ?>

Script 3.6 continued

Figure 3.11 The form now recalls the previously
submitted values…

Figure 3.12 …whether or not the form
was completely filled out.

Creating Your Own
Functions
PHP has a lot of built-in functions, address-

ing almost every need you might have. More

importantly, though, PHP has the capability

for you to define and use your own func-

tions for whatever purpose. The syntax for

making your own function is

function function_name () {

// Function code.

}

The name of your function can be any com-

bination of letters, numbers, and the under-

score, but it must begin with either a letter

or the underscore. You also cannot use an

existing function name for your function

(print, echo, isset, and so on). One perfectly

valid function definition is

function do_nothing() {

// Do nothing.

}

In PHP, as mentioned in the first chapter,

function names are case-insensitive (unlike

variable names), so you could call that func-

tion using do_Nothing() or DO_NOTHING() or

Do_Nothing(), etc (but not donothing() or

DoNothing()).

The code within the function can do nearly

anything, from generating HTML to per-

forming calculations. This chapter runs

through a couple of examples and you’ll see

some others throughout the rest of the book.

92

Chapter 3

C
r

e
a

t
i
n

g
 Y

o
u

r
 O

w
n

 F
u

n
c

t
i
o

n
s

1 <?php # Script 3.7 - dateform.php

2

3 $page_title = ‘Calendar Form’;

4 include (‘includes/header.html’);

5

6 // This function makes three pull-down
menus

7 // for selecting a month, day, and year.

8 function make_calendar_pulldowns() {

9

10 // Make the months array:

11 $months = array (1 => ‘January’,
‘February’, ‘March’, ‘April’, ‘May’,
‘June’, ‘July’, ‘August’, ‘September’,
‘October’, ‘November’, ‘December’);

12

13 // Make the months pull-down menu:

14 echo ‘<select name=”month”>’;

15 foreach ($months as $key => $value) {

16 echo “<option value=\”$key\”>
$value</option>\n”;

17 }

18 echo ‘</select>’;

19

20 // Make the days pull-down menu:

21 echo ‘<select name=”day”>’;

22 for ($day = 1; $day <= 31; $day++) {

23 echo “<option value=\”$day\”>$day
</option>\n”;

24 }

25 echo ‘</select>’;

26

27 // Make the years pull-down menu:

28 echo ‘<select name=”year”>’;

29 for ($year = 2008; $year <= 2018;
$year++) {

Script 3.7 This user-defined function creates a series
of pull-down menus (see Figure 3.13).

(script continues on next page)

To create your own function:

1. Create a new PHP document in your text

editor or IDE (Script 3.7).

<?php # Script 3.7 - dateform.php

$page_title = ‘Calendar Form’;

include (‘includes/header.html’);

This page will use the same HTML tem-

plate as the previous two.

2. Begin defining a new function.

function make_calendar_pulldowns() {

The function to be written here will gen-

erate the form pull-down menus neces-

sary for selecting a month, day, and a

year, just like calendar.php (refer to

Script 2.9). The function’s name clearly

states its purpose.

Although not required, it’s conventional

to place a function definition near the

very top of a script or in a separate file.

3. Generate the pull-down menus.

$months = array (1 => ‘January’,
➝ ‘February’, ‘March’, ‘April’,
➝ ‘May’, ‘June’, ‘July’, ‘August’,
➝ ‘September’, ‘October’, ‘November’,
➝ ‘December’);

echo ‘<select name=”month”>’;

foreach ($months as $key => $value) {

echo “<option value=\”$key\”>$value
➝ </option>\n”;

}

93

Creating Dynamic Web Sites

C
r

e
a

t
i
n

g
 Y

o
u

r
 O

w
n

 F
u

n
c

t
i
o

n
s

30 echo “<option value=\”$year\”>
$year</option>\n”;

31 }

32 echo ‘</select>’;

33

34 } // End of the function definition.

35

36 // Create the form tags:

37 echo ‘<h1>Select a Date:</h1>

38 <form action=”dateform.php” method=
”post”>’;

39

40 // Call the function.

41 make_calendar_pulldowns();

42

43 echo ‘</form>’;

44

45 include (‘includes/footer.html’);

46 ?>

Script 3.7 continued

continues on next page

echo ‘</select>’;

echo ‘<select name=”day”>’;

for ($day = 1; $day <= 31; $day++) {

echo “<option value=\”$day\”>$day
➝ </option>\n”;

}

echo ‘</select>’;

echo ‘<select name=”year”>’;

for ($year = 2008; $year <= 2018;
➝ $year++) {

echo “<option value=\”$year\”>$year
➝ </option>\n”;

}

echo ‘</select>’;

This code is exactly as it was in the origi-

nal script, only it’s now placed within a

function definition.

4. Close the function definition.

} // End of the function definition.

It’s helpful to place a comment at the

end of a function definition so that you

know where a definition starts and stops.

5. Create the form and call the function.

echo ‘<h1>Select a Date:</h1>

<form action=”dateform.php”
➝ method=”post”>’;

make_calendar_pulldowns();

echo ‘</form>’;

This code will create a header tag, plus

the tags for the form. The call to the

make_calendar_pulldowns() function

will have the end result of creating the

code for the three pull-down menus.

94

Chapter 3

C
r

e
a

t
i
n

g
 Y

o
u

r
 O

w
n

 F
u

n
c

t
i
o

n
s

6. Complete the PHP script by including

the HTML footer.

include (‘includes/footer.html’);

?>

7. Save the file as dateform.php, place it in

your Web directory (in the same folder as

index.php), and test it in your Web

browser (Figure 3.13).

✔ Tips

■ If you ever see a call to undefined function

function_name error, this means that you

are calling a function that hasn’t been

defined. This can happen if you misspell

the function’s name (either when defin-

ing or calling it) or if you fail to include

the file where the function is defined.

■ Because a user-defined function takes up

some memory, you should be prudent

about when to use one. As a general rule,

functions are best used for chunks of

code that may be executed in several

places in a script or Web site.

Figure 3.13 These pull-down
menus are generated by a
user-defined function.

Creating a function that
takes arguments
Just like PHP’s built-in functions, those

you write can take arguments (also called

parameters). For example, the isset()
function takes as an argument the name of

a variable to be tested. The strlen() func-

tion takes as an argument the string whose

character length will be determined.

A function can take any number of argu-

ments, but the order in which you list them

is critical. To allow for arguments, add vari-

ables to a function’s definition:

function print_hello ($first, $last) {

// Function code.

}

The variable names you use for your argu-

ments are irrelevant to the rest of the script

(more on this in the “Variable Scope” sidebar

toward the end of this chapter), but try to

use valid, meaningful names.

Once the function is defined, you can then

call it as you would any other function in

PHP, sending literal values or variables to it:

print_hello (‘Jimmy’, ‘Stewart’);

$surname = ‘Stewart’;

print_hello (‘Jimmy’, $surname);

As with any function in PHP, failure to send

the right number of arguments results in an

error (Figure 3.14).

To demonstrate this concept, let’s rewrite

the calculator process as a function.

95

Creating Dynamic Web Sites

C
r

e
a

t
i
n

g
 Y

o
u

r
 O

w
n

 F
u

n
c

t
i
o

n
s

Figure 3.14 Failure to send a function the proper number (and sometimes type) of arguments creates an error.

To define functions that take
arguments:

1. Open calculator.php (Script 3.6) in your

text editor or IDE.

2. After including the header file, define the

calculate_total() function (Script 3.8).

function calculate_total ($qty,
➝ $cost, $tax) {

$total = ($qty * $cost);

$taxrate = ($tax / 100);

$total += ($total * $taxrate);

echo ‘<p>The total cost of
➝ purchasing ‘ . $qty . ‘ widget(s)
➝ at $’ . number_format ($cost, 2)
➝ . ‘ each, including a tax rate of
➝ ‘ . $tax . ‘%, is $’ . number_
➝ format ($total, 2) . ‘.</p>’;

}

This function performs the same calcula-

tions as it did before and then prints out

the result. It takes three arguments: the

quantity being ordered, the price, and the

tax rate. Notice that the variables used as

arguments are not $_POST[‘quantity’],

$_POST[‘price’], and $_POST[‘tax’].

The function’s argument variables are

particular to this function and have their

own names. Notice as well that the cal-

culations, and the printed result, use

these function-specific variables, not

those in $_POST (which will actually be

sent to this function when it’s called).

3. Change the contents of the validation

conditional (where the calculations were

previously made) to read

echo ‘<h1>Total Cost</h1>’;

calculate_total ($_POST[‘quantity’],
➝ $_POST[‘price’], $_POST[‘tax’]);

96

Chapter 3

C
r

e
a

t
i
n

g
 Y

o
u

r
 O

w
n

 F
u

n
c

t
i
o

n
s

1 <?php # Script 3.8 - calculator.php #3

2

3 $page_title = ‘Widget Cost Calculator’;

4 include (‘includes/header.html’);

5

6 /* This function calculates a total

7 and then prints the results. */

8 function calculate_total ($qty, $cost,

$tax) {

9

10 $total = ($qty * $cost);

11 $taxrate = ($tax / 100); // Turn 5%

into .05.

12 $total += ($total * $taxrate); //

Add the tax.

13

14 // Print the results:

15 echo ‘<p>The total cost of purchasing ‘

. $qty . ‘ widget(s) at $’ . number_

format ($cost, 2) . ‘ each, including a

tax rate of ‘ . $tax . ‘%, is $’ .

number_format ($total, 2) . ‘.</p>’;

16

17 } // End of function.

18

19 // Check for form submission:

20 if (isset($_POST[‘submitted’])) {

21

22 // Minimal form validation:

23 if (is_numeric($_POST[‘quantity’]) &&
is_numeric($_POST[‘price’]) &&
is_numeric($_POST[‘tax’])) {

24

25 // Print the heading:

26 echo ‘<h1>Total Cost</h1>’;

Script 3.8 The calculator.php script now uses a
function to perform its calculations. Unlike the
make_calendar_pulldowns() user-defined function,
this one takes arguments.

(script continues on next page)

Again, this is just a minor rewrite of the

way the script worked before. Assuming

that all of the submitted values are

numeric, a heading is printed (this is not

done within the function) and the func-

tion is called (which will calculate and

print the total).

When calling the function, three argu-

ments are passed to it, each of which

is a $_POST variable. The value of

$_POST[‘quantity’] will be assigned to

the function’s $qty variable; the value of

$_POST[‘price’] will be assigned to the

function’s $cost variable; and the value of

$_POST[‘tax’] will be assigned to the

function’s $tax variable.

4. Save the file as calculator.php, place it

in your Web directory, and test it in your

Web browser (Figure 3.15).

97

Creating Dynamic Web Sites

C
r

e
a

t
i
n

g
 Y

o
u

r
 O

w
n

 F
u

n
c

t
i
o

n
s

Script 3.8 continued

27

28 // Call the function:

29 calculate_total ($_POST[‘quantity’],

$_POST[‘price’], $_POST[‘tax’]);

30

31 } else { // Invalid submitted values.

32 echo ‘<h1>Error!</h1>

33 <p class=”error”>Please enter a valid
quantity, price, and tax.</p>’;

34 }

35

36 } // End of main isset() IF.

37

38 // Leave the PHP section and create the
HTML form:

39 ?>

40 <h1>Widget Cost Calculator</h1>

41 <form action=”calculator.php” method=
”post”>

42 <p>Quantity: <input type=”text” name=
”quantity” size=”5” maxlength=”5” value=
”<?php if (isset($_POST[‘quantity’]))
echo $_POST[‘quantity’]; ?>” /></p>

43 <p>Price: <input type=”text” name=
”price” size=”5” maxlength=”10” value=
”<?php if (isset($_POST[‘price’])) echo
$_POST[‘price’]; ?>” /></p>

44 <p>Tax (%): <input type=”text” name=
”tax” size=”5” maxlength=”5” value=
”<?php if (isset($_POST[‘tax’])) echo
$_POST[‘tax’]; ?>” /></p>

45 <p><input type=”submit” name=”submit”
value=”Calculate!” /></p>

46 <input type=”hidden” name=”submitted”
value=”TRUE” />

47 </form>

48 <?php // Include the footer:

49 include (‘includes/footer.html’);

50 ?>

Figure 3.15 Although a user-defined function is used
to perform the calculations (see Script 3.8), the end
result is no different to the user (see Figure 3.11).

Setting default argument values
Another variant on defining your own func-

tions is to preset an argument’s value. To do

so, assign the argument a value in the func-

tion’s definition:

function greet ($name, $msg = ‘Hello’) {

echo “$msg, $name!”;

}

The end result of setting a default argument

value is that that particular argument

becomes optional when calling the function.

If a value is passed to it, the passed value is

used; otherwise, the default value is used.

You can set default values for as many of the

arguments as you want, as long as those

arguments come last in the function defini-

tion. In other words, the required arguments

should always be listed first.

With the example function just defined, any

of these will work:

greet ($surname, $message);

greet (‘Zoe’);

greet (‘Sam’, ‘Good evening’);

However, just greet() will not work. Also,

there’s no way to pass $greeting a value

without passing one to $name as well (argu-

ment values must be passed in order, and

you can’t skip a required argument).

To set default argument values:

1. Open calculator.php (refer to Script 3.8)

in your text editor or IDE.

2. Change the function definition line (line 9)

so that only the quantity and cost are

required (Script 3.9).

function calculate_total ($qty,
➝ $cost, $tax = 5) {

98

Chapter 3

C
r

e
a

t
i
n

g
 Y

o
u

r
 O

w
n

 F
u

n
c

t
i
o

n
s

1 <?php # Script 3.9 - calculator.php #4

2

3 $page_title = ‘Widget Cost Calculator’;

4 include (‘includes/header.html’);

5

6 /* This function calculates a total

7 and then prints the results.

8 The $tax argument is optional (it has a
default value). */

9 function calculate_total ($qty, $cost, $tax

= 5) {

10

11 $total = ($qty * $cost);

12 $taxrate = ($tax / 100); // Turn 5% into
.05.

13 $total += ($total * $taxrate); // Add
the tax.

14

15 // Print the results:

16 echo ‘<p>The total cost of purchasing ‘
. $qty . ‘ widget(s) at $’ . number_
format ($cost, 2) . ‘ each, including a
tax rate of ‘ . $tax . ‘%, is $’ .
number_format ($total, 2) . ‘.</p>’;

17

18 } // End of function.

19

20 // Check for form submission:

21 if (isset($_POST[‘submitted’])) {

22

23 // Minimal form validation:

24 if (is_numeric($_POST[‘quantity’]) &&

is_numeric($_POST[‘price’])) {

25

26 // Print the heading:

Script 3.9 The calculate_total() function now
assumes a set tax rate unless one is specified when
the function is called.

(script continues on next page)

continues on page 100

99

Creating Dynamic Web Sites

C
r

e
a

t
i
n

g
 Y

o
u

r
 O

w
n

 F
u

n
c

t
i
o

n
s

Script 3.9 continued

27 echo ‘<h1>Total Cost</h1>’;

28

29 // Call the function, with or without tax:

30 if (is_numeric($_POST[‘tax’])) {

31 calculate_total ($_POST[‘quantity’], $_POST[‘price’], $_POST[‘tax’]);

32 } else {

33 calculate_total ($_POST[‘quantity’], $_POST[‘price’]);

34 }

35

36 } else { // Invalid submitted values.

37 echo ‘<h1>Error!</h1>

38 <p class=”error”>Please enter a valid quantity and price.</p>’;

39 }

40

41 } // End of main isset() IF.

42

43 // Leave the PHP section and create the HTML form:

44 ?>

45 <h1>Widget Cost Calculator</h1>

46 <form action=”calculator.php” method=”post”>

47 <p>Quantity: <input type=”text” name=”quantity” size=”5” maxlength=”5” value=”<?php if
(isset($_POST[‘quantity’])) echo $_POST[‘quantity’]; ?>” /></p>

48 <p>Price: <input type=”text” name=”price” size=”5” maxlength=”10” value=”<?php if
(isset($_POST[‘price’])) echo $_POST[‘price’]; ?>” /></p>

49 <p>Tax (%): <input type=”text” name=”tax” size=”5” maxlength=”5” value=”<?php if

(isset($_POST[‘tax’])) echo $_POST[‘tax’]; ?>” /> (optional)</p>

50 <p><input type=”submit” name=”submit” value=”Calculate!” /></p>

51 <input type=”hidden” name=”submitted” value=”TRUE” />

52 </form>

53 <?php // Include the footer:

54 include (‘includes/footer.html’);

55 ?>

The value of the $tax variable is now

hard-coded in the function definition,

making it optional.

3. Change the form validation to read

if (is_numeric($_POST[‘quantity’])

&& is_numeric($_POST[‘price’])) {

Because the tax value will be optional,

only the other two variables are required

and need to be validated.

4. Change the function call line to

if (is_numeric($_POST[‘tax’])) {

calculate_total ($_POST
➝ [‘quantity’], $_POST
➝ [‘price’], $_POST[‘tax’]);

} else {

calculate_total ($_POST
➝ [‘quantity’], $_POST[‘price’]);

}

If the tax value has also been submitted

(and is numeric), then the function

will be called as before, providing the

user-submitted tax rate. Otherwise, the

function is called providing just the two

arguments, in which case the default

value will be used for the tax rate.

5. Change the error message to only report

on the quantity and price.

echo ‘<h1>Error!</h1>

<p class=”error”>Please enter a valid
➝ quantity and price.</p>’;

Since the tax will now be optional, the

error message is changed accordingly.

100

Chapter 3

C
r

e
a

t
i
n

g
 Y

o
u

r
 O

w
n

 F
u

n
c

t
i
o

n
s

Figure 3.16 If no tax value is entered, the default
value of 5% will be used in the calculation.

6. If you want, mark the tax value in the

form as optional.

<p>Tax (%): <input type=”text”

name=”tax” size=”5” maxlength=”5”

value=”<?php if (isset($_POST

[‘tax’])) echo $_POST[‘tax’]; ?>”

/> (optional)</p>

A parenthetical is added to the tax input,

indicating to the user that this value is

optional.

7. Save the file, place it in your Web direc-

tory, and test it in your Web browser

(Figures 3.16 and 3.17).

✔ Tips

■ To pass a function no value for an argu-

ment, use either an empty string (‘’),

NULL, or FALSE.

■ In the PHP manual, square brackets ([])

are used to indicate a function’s optional

parameters (Figure 3.18).

Returning values from a function
The final attribute of a user-defined func-

tion to discuss is that of returning values.

Some, but not all, functions do this. For

example, print() will return either a 1 or

a 0 indicating its success, whereas echo()
will not. As another example, the strlen()
function returns a number correlating to

the number of characters in a string.

To have a function return a value, use the

return statement.

function find_sign ($month, $day) {

// Function code.

return $sign;

}

A function can return a value (say a string

or a number) or a variable whose value has

been created by the function. When calling a

function that returns a value, you can assign

the function result to a variable:

$my_sign = find_sign (‘October’, 23);

or use it as an argument when calling anoth-

er function:

print find_sign (‘October’, 23);

Let’s update the calculate_total() function

one last time so that it returns the calculat-

ed total instead of printing it.

101

Creating Dynamic Web Sites

C
r

e
a

t
i
n

g
 Y

o
u

r
 O

w
n

 F
u

n
c

t
i
o

n
s

Figure 3.17 If the user enters a tax value, it will be
used instead of the default value.

Figure 3.18 The PHP manual’s description of the number_format() function shows that only the
first argument is required.

continues on next page

To have a function return a value:

1. Open calculator.php (refer to Script 3.9)

in your text editor or IDE.

2. Remove the echo() statement from the

function definition and replace it with a

return statement (Script 3.10)

return number_format($total, 2);

This version of the function will not

print the results. Instead it will return

just the calculated total, formatted to

two decimal places.

3. Change the function call lines to

if (is_numeric($_POST[‘tax’])) {

$sum = calculate_total ($_POST
➝ [‘quantity’], $_POST[‘price’],
➝ $_POST[‘tax’]);

} else {

$sum = calculate_total ($_POST
➝ [‘quantity’], $_POST[‘price’]);

}

Since the function now returns instead

of prints the calculation results, the invo-

cation of the function needs to be

assigned to a variable so that the total

can be printed later in the script.

102

Chapter 3

C
r

e
a

t
i
n

g
 Y

o
u

r
 O

w
n

 F
u

n
c

t
i
o

n
s

1 <?php # Script 3.10 - calculator.php #5

2

3 $page_title = ‘Widget Cost Calculator’;

4 include (‘includes/header.html’);

5

6 /* This function calculates a total

7 and then returns the results.

8 The $tax argument is optional (it has a
default value). */

9 function calculate_total ($qty, $cost,
$tax = 5) {

10

11 $total = ($qty * $cost);

12 $taxrate = ($tax / 100); // Turn 5% into
.05.

13 $total += ($total * $taxrate); // Add
the tax.

14

15 return number_format($total, 2);

16

17 } // End of function.

18

19 // Check for form submission:

20 if (isset($_POST[‘submitted’])) {

21

22 // Minimal form validation:

23 if (is_numeric($_POST[‘quantity’]) &&
is_numeric($_POST[‘price’])) {

24

25 // Print the heading:

26 echo ‘<h1>Total Cost</h1>’;

27

28 // Call the function, with or without
tax:

29 if (is_numeric($_POST[‘tax’])) {

Script 3.10 The calculate_total() function
now performs the calculations and returns the
calculated result.

(script continues on next page)

continues on page 104

103

Creating Dynamic Web Sites

C
r

e
a

t
i
n

g
 Y

o
u

r
 O

w
n

 F
u

n
c

t
i
o

n
s

Script 3.10 continued

30 $sum = calculate_total ($_POST[‘quantity’], $_POST[‘price’], $_POST[‘tax’]);

31 } else {

32 $sum = calculate_total ($_POST[‘quantity’], $_POST[‘price’]);

33 }

34

35 // Print the results:

36 echo ‘<p>The total cost of purchasing ‘ . $_POST[‘quantity’] . ‘ widget(s) at $’ . number_

format ($_POST[‘price’], 2) . ‘ each, with tax, is $’ . $sum . ‘.</p>’;

37

38 } else { // Invalid submitted values.

39 echo ‘<h1>Error!</h1>

40 <p class=”error”>Please enter a valid quantity and price.</p>’;

41 }

42

43 } // End of main isset() IF.

44

45 // Leave the PHP section and create the HTML form:

46 ?>

47 <h1>Widget Cost Calculator</h1>

48 <form action=”calculator.php” method=”post”>

49 <p>Quantity: <input type=”text” name=”quantity” size=”5” maxlength=”5” value=”<?php if
(isset($_POST[‘quantity’])) echo $_POST[‘quantity’]; ?>” /></p>

50 <p>Price: <input type=”text” name=”price” size=”5” maxlength=”10” value=”<?php if
(isset($_POST[‘price’])) echo $_POST[‘price’]; ?>” /></p>

51 <p>Tax (%): <input type=”text” name=”tax” size=”5” maxlength=”5” value=”<?php if
(isset($_POST[‘tax’])) echo $_POST[‘tax’]; ?>” /> (optional)</p>

52 <p><input type=”submit” name=”submit” value=”Calculate!” /></p>

53 <input type=”hidden” name=”submitted” value=”TRUE” />

54 </form>

55 <?php // Include the footer:

56 include (‘includes/footer.html’);

57 ?>

4. Add a new echo() statement that prints

the results.

echo ‘<p>The total cost of
➝ purchasing ‘ . $_POST[‘quantity’]
➝ . ‘ widget(s) at $’ . number_
➝ format ($_POST[‘price’], 2) . ‘
➝ each, with tax, is $’ . $sum .
➝ ‘.</p>’;

Since the function just returns a value, a

new echo() statement must be added to

the main code. This statement uses the

quantity and price from the form (both

found in $_POST) and the total returned

by the function (assigned to $sum). It

does not, however, report on the tax rate

used (see the final tip).

5. Save the file, place it in your Web direc-

tory, and test it in your Web browser

(Figure 3.19).

✔ Tips

■ Although this last example may seem

more complex (with the function per-

forming a calculation and the main code

printing the results), it actually demon-

strates better programming style. Ideally,

functions should perform universal, obvi-

ous tasks (like a calculation) and be

independent of page-specific factors like

HTML formatting.

■ The return statement terminates the

code execution at that point, so any code

within a function after an executed

return will never run.

104

Chapter 3

C
r

e
a

t
i
n

g
 Y

o
u

r
 O

w
n

 F
u

n
c

t
i
o

n
s

Figure 3.19 The calculator’s user-defined function
now returns, instead of prints, the results, but this
change has little impact on what the user sees.

■ A function can have multiple return
statements (e.g., in a switch statement or

conditional) but only one, at most, will

ever be invoked. For example, functions

commonly do something like this:

function some_function () {

if (/* condition */) {

return TRUE;

} else {

return FALSE;

}

}

■ To have a function return multiple val-

ues, use the array() function to return

an array. By changing the return line in

Script 3.10 to

return array ($total, $tax);

the function could return both the total

of the calculation and the tax rate used

(which could be the default value or a

user-supplied one).

■ When calling a function that returns an

array, use the list() function to assign

the array elements to individual vari-

ables:

list ($sum, $taxrate) = calculate_
➝ total ($_POST[‘quantity’],
➝ $_POST[‘price’], $_POST[‘tax’]);

105

Creating Dynamic Web Sites

C
r

e
a

t
i
n

g
 Y

o
u

r
 O

w
n

 F
u

n
c

t
i
o

n
s

106

Chapter 3

C
r

e
a

t
i
n

g
 Y

o
u

r
 O

w
n

 F
u

n
c

t
i
o

n
s

Variable Scope

Every variable in PHP has a scope to it, which is to say a realm in which the variable

(and therefore its value) can be accessed. For starters, variables have the scope of the page

in which they reside. So if you define $var, the rest of the page can access $var, but other

pages generally cannot (unless you use special variables).

Since included files act as if they were part of the original (including) script, variables

defined before an include() line are available to the included file (as you’ve already seen

with $page_title and header.html). Further, variables defined within the included file are

available to the parent (including) script after the include() line.

User-defined functions have their own scope: variables defined within a function are not

available outside of it, and variables defined outside of a function are not available within it.

For this reason, a variable inside of a function can have the same name as one outside of it

but still be an entirely different variable with a different value. This is a confusing concept for

many beginning programmers.

To alter the variable scope within a function, you can use the global statement.

function function_name() {

global $var;

}

$var = 20;

function_name(); // Function call.

In this example, $var inside of the function is now the same as $var outside of it. This

means that the function $var already has a value of 20, and if that value changes inside

of the function, the external $var’s value will also change.

Another option for circumventing variable scope is to make use of the superglobals: $_GET,

$_POST, $_REQUEST, etc. These variables are automatically accessible within your functions

(hence, they are superglobal). You can also add elements to the $GLOBALS array to make

them available within a function.

All of that being said, it’s almost always best not to use global variables within a function.

Functions should be designed so that they receive every value they need as arguments and

return whatever value (or values) need to be returned. Relying upon global variables within

a function makes them more context-dependent, and consequently less useful.

Because this book discusses how to integrate several technologies (primarily PHP,

SQL, and MySQL), a solid understanding of each individually is important before you

begin writing PHP scripts that use SQL to interact with MySQL. This chapter is a

departure from its predecessors in that it temporarily leaves PHP behind to delve

into MySQL.

MySQL is the world’s most popular open-source database application (according to

MySQL’s Web site, www.mysql.com) and is commonly used with PHP. The MySQL soft-

ware comes with the database server (which stores the actual data), different client

applications (for interacting with the database server), and several utilities. In this

chapter you’ll see how to define a simple table using MySQL’s allowed data types and

other properties. Then you’ll learn how to interact with the MySQL server using two

different client applications. All of this information will be the foundation for the

SQL taught in the next two chapters.

This chapter assumes you have access to a running MySQL server. If you are working

on your own computer, see Appendix A, “Installation,” for instructions on installing

MySQL, starting MySQL, and creating MySQL users (all of which must already be

done in order to finish this chapter). If you are using a hosted server, your Web host

should provide you with the database access.

107

Introduction
to MySQL

4

I
n

t
r

o
d

u
c

t
i
o

n
 t

o
 M

y
S

Q
L

Naming Database
Elements
Before you start working with databases, you

have to identify your needs. The purpose of

the application (or Web site, in this case)

dictates how the database should be designed.

With that in mind, the examples in this chap-

ter and the next will use a database that

stores some user registration information.

When creating databases and tables, you

should come up with names (formally called

identifiers) that are clear, meaningful, and

easy to type. Also, identifiers

◆ Should only contain letters, numbers, and

the underscore (no spaces)

◆ Should not be the same as an existing key-

word (like an SQL term or a function name)

◆ Should be treated as case-sensitive

◆ Cannot be longer than 64 characters

(approximately)

◆ Must be unique within its realm

This last rule means that a table cannot have

two columns with the same name and a data-

base cannot have two tables with the same

name. You can, however, use the same column

name in two different tables in the same

database (in fact, you often will do this). As

for the first three rules, I use the word should,

as these are good policies more than exact

requirements. Exceptions can be made to

these rules, but the syntax for doing so can

be complicated. Abiding by these sugges-

tions is a reasonable limitation and will help

avoid complications.

108

Chapter 4

N
a

m
i
n

g
 D

a
t
a

b
a

s
e

 E
l
e

m
e

n
t

s

C o l u m n N a m e E x a m p l e

user_id 834
first_name Larry
last_name David
email ld@example.com
pass emily07
registration_date 2007-12-31 19:21:03

users Table

To name a database’s elements:

1. Determine the database’s name.

This is the easiest and, arguably, least

important step. Just make sure that the

database name is unique for that MySQL

server. If you’re using a hosted server, your

Web host will likely provide a database

name that may or may not include your

account or domain name.

For this first example, the database will be

called sitename, as the information and

techniques could apply to any generic site.

2. Determine the table names.

The table names just need to be unique

within this database, which shouldn’t be

a problem. For this example, which stores

user registration information, the only

table will be called users.

3. Determine the column names for

each table.

The users table will have columns to

store a user ID, a first name, a last name,

an email address, a password, and the

registration date. Table 4.1 shows these

columns, with sample data, using proper

identifiers. As MySQL has a function

called password, I’ve changed the name

of that column to just pass. This isn’t

strictly necessary but is really a good idea.

✔ Tips

■ Chapter 6, “Advanced SQL and MySQL,”

discusses database design in more detail,

using a more complex example.

■ To be precise, the length limit for the

names of databases, tables, and columns

is actually 64 bytes, not characters. While

most characters in many languages require

one byte apiece, it’s possible to use a multi-

byte character in an identifier. But 64 bytes

is still a lot of space, so this probably

won’t be an issue for you.

■ Whether or not an identifier in MySQL is

case-sensitive actually depends upon

many things. On Windows and normally

on Mac OS X, database and table names

are generally case-insensitive. On Unix

and some Mac OS X setups, they are case-

sensitive. Column names are always

case-insensitive. It’s really best, in my

opinion, to always use all lowercase letters

and work as if case-sensitivity applied.

109

Introduction to MySQL

N
a

m
i
n

g
 D

a
t
a

b
a

s
e

 E
l
e

m
e

n
t

s

Table 4.1 The users table will have these six columns,
to store records like the sample data here.

110

Chapter 4

C
h

o
o

s
i
n

g
 Y

o
u

r
 C

o
l
u

m
n

 T
y

p
e

s

Ty p e S i z e D e s c r i p t i o n

CHAR[Length] Length bytes A fixed-length field from 0 to 255 characters long
VARCHAR[Length] String length + 1 or 2 bytes A variable-length field from 0 to 65,535 characters long
TINYTEXT String length + 1 bytes A string with a maximum length of 255 characters
TEXT String length + 2 bytes A string with a maximum length of 65,535 characters
MEDIUMTEXT String length + 3 bytes A string with a maximum length of 16,777,215 characters
LONGTEXT String length + 4 bytes A string with a maximum length of 4,294,967,295 characters
TINYINT[Length] 1 byte Range of –128 to 127 or 0 to 255 unsigned
SMALLINT[Length] 2 bytes Range of –32,768 to 32,767 or 0 to 65,535 unsigned
MEDIUMINT[Length] 3 bytes Range of –8,388,608 to 8,388,607 or 0 to 16,777,215 unsigned
INT[Length] 4 bytes Range of –2,147,483,648 to 2,147,483,647 or 0 to

4,294,967,295 unsigned
BIGINT[Length] 8 bytes Range of –9,223,372,036,854,775,808 to

9,223,372,036,854,775,807 or 0 to
18,446,744,073,709,551,615 unsigned

FLOAT[Length, Decimals] 4 bytes A small number with a floating decimal point
DOUBLE[Length, Decimals] 8 bytes A large number with a floating decimal point
DECIMAL[Length, Decimals] Length + 1 or 2 bytes A DOUBLE stored as a string, allowing for a fixed decimal point
DATE 3 bytes In the format of YYYY-MM-DD
DATETIME 8 bytes In the format of YYYY-MM-DD HH:MM:SS
TIMESTAMP 4 bytes In the format of YYYYMMDDHHMMSS; acceptable range ends in

the year 2037
TIME 3 bytes In the format of HH:MM:SS
ENUM 1 or 2 bytes Short for enumeration, which means that each column can have

one of several possible values
SET 1, 2, 3, 4, or 8 bytes Like ENUM except that each column can have more than one of

several possible values

MySQL Data Types

Within each of these, there are a number

of variants—some of which are MySQL-

specific—you can use. Choosing your column

types correctly not only dictates what infor-

mation can be stored and how but also

affects the database’s overall performance.

Table 4.2 lists most of the available types

for MySQL, how much space they take up,

and brief descriptions of each type.

Choosing Your
Column Types
Once you have identified all of the tables

and columns that the database will need,

you should determine each column’s data

type. When creating a table, MySQL requires

that you explicitly state what sort of infor-

mation each column will contain. There are

three primary types, which is true for almost

every database application:

◆ Text (aka strings)

◆ Numbers

◆ Dates and times

Table 4.2 The common MySQL data types you can use for defining columns. Note: some of these limits may change
in different versions of MySQL, and the character set may also impact the size of the text types.

Many of the types can take an optional Length

attribute, limiting their size. (The square

brackets, [], indicate an optional parameter

to be put in parentheses.) For performance

purposes, you should place some restrictions

on how much data can be stored in any col-

umn. But understand that attempting to

insert a string five characters long into a

CHAR(2) column will result in truncation of

the final three characters (only the first two

characters would be stored; the rest would

be lost forever). This is true for any field in

which the size is set (CHAR, VARCHAR, INT, etc.).

So your length should always correspond to

the maximum possible value (as a number)

or longest possible string (as text) that might

be stored.

The various date types have all sorts of

unique behaviors, which are documented in

the MySQL manual. You’ll use the DATE and

TIME fields primarily without modification,

so you need not worry too much about their

intricacies.

There are also two special types—ENUM and

SET—that allow you to define a series of

acceptable values for that column. An ENUM
column can have only one value of a possible

several thousand, while SET allows for sever-

al of up to 64 possible values. These are

available in MySQL but aren’t present in

every database application.

111

Introduction to MySQL

C
h

o
o

s
i
n

g
 Y

o
u

r
 C

o
l
u

m
n

 T
y

p
e

s

To select the column types:

1. Identify whether a column should be a text,

number, or date/time type (Table 4.3).

This is normally an easy and obvious step,

but you want to be as specific as possible.

For example, the date 2006-08-02 (MySQL

format) could be stored as a string—

August 2, 2006. But if you use the proper

date format, you’ll have a more useful

database (and, as you’ll see, there are

functions that can turn 2006-08-02 into

August 2, 2006).

2. Choose the most appropriate subtype for

each column (Table 4.4).

For this example, the user_id is set as

a MEDIUMINT, allowing for up to nearly

17 million values (as an unsigned, or non-

negative, number). The registration_date

will be a DATETIME. It can store both the

date and the specific time a user regis-

tered. When deciding among the date

types, consider whether or not you’ll

want to access just the date, the time, or

possibly both. If unsure, err on the side

of storing too much information.

The other fields will be mostly VARCHAR,

since their lengths will differ from record

to record. The only exception is the pass-

word column, which will be a fixed-length

CHAR (you’ll see why when inserting

records in the next chapter). See the side-

bar “CHAR vs. VARCHAR” for more informa-

tion on these two types.

112

Chapter 4

C
h

o
o

s
i
n

g
 Y

o
u

r
 C

o
l
u

m
n

 T
y

p
e

s

C o l u m n N a m e Ty p e

user_id number
first_name text
last_name text
email text
pass text
registration_date date/time

users Table

C o l u m n N a m e Ty p e

user_id MEDIUMINT

first_name VARCHAR

last_name VARCHAR

email VARCHAR

pass CHAR

registration_date DATETIME

users Table

C o l u m n N a m e Ty p e

user_id MEDIUMINT

first_name VARCHAR(20)

last_name VARCHAR(40)

email VARCHAR(60)

pass CHAR(40)

registration_date DATETIME

users Table

Table 4.3 The users table with assigned generic data
types.

Table 4.4 The users table with more specific data types.

Table 4.5 The users table with set length attributes.

3. Set the maximum length for text columns

(Table 4.5).

The size of any field should be restricted

to the smallest possible value, based upon

the largest possible input. For example, if

a column is storing a state abbreviation,

it would be defined as a CHAR(2). Other

times you might have to guess some-

what: I can’t think of any first names

longer than about 10 characters, but just to

be safe I’ll allow for up to 20.

✔ Tips

■ The length attribute for numeric types

does not affect the range of values that

can be stored in the column. Columns

defined as TINYINT(1) or TINYINT(20)
can store the exact same values. Instead,

for integers, the length dictates the dis-

play width; for decimals, the length is the

total number of digits that can be stored.

■ Many of the data types have synony-

mous names: INT and INTEGER, DEC and

DECIMAL, etc.

■ The TIMESTAMP field type is automatically

set as the current date and time when an

INSERT or UPDATE occurs, even if no value

is specified for that particular field. If

a table has multiple TIMESTAMP columns,

only the first one will be updated when

an INSERT or UPDATE is performed.

■ MySQL also has several variants on the

text types that allow for storing binary

data. These types are BINARY, VARBINARY,

TINYBLOB, MEDIUMBLOB, and LONGBLOB.

Such types are used for storing files or

encrypted data.

113

Introduction to MySQL

C
h

o
o

s
i
n

g
 Y

o
u

r
 C

o
l
u

m
n

 T
y

p
e

s

CHAR vs. VARCHAR

Both of these types store strings and can

be set with a maximum length. One pri-

mary difference between the two is that

anything stored as a CHAR will always be

stored as a string the length of the column

(using spaces to pad it; these spaces will

be removed when you retrieve the stored

value from the database). Conversely,

strings stored in a VARCHAR column will

require only as much space as the string

itself. So the word cat in a VARCHAR(10)
column requires four bytes of space (the

length of the string plus 1), but in a

CHAR(10) column, that same word requires

10 bytes of space. So, generally speaking,

VARCHAR columns tend to take up less

disk space than CHAR columns.

However, databases are normally faster

when working with fixed-size columns,

which is an argument in favor of CHAR.

And that same three-letter word—cat—

in a CHAR(3) only uses 3 bytes but in a

VARCHAR(10) requires 4. So how do you

decide which to use?

If a string field will always be of a set length

(e.g., a state abbreviation), use CHAR; other-

wise, use VARCHAR. You may notice, though,

that in some cases MySQL defines a column

as the one type (like CHAR) even though

you created it as the other (VARCHAR). This

is perfectly normal and is MySQL’s way of

improving performance.

Choosing Other
Column Properties
Besides deciding what data types and sizes

you should use for your columns, you should

consider a handful of other properties.

First, every column, regardless of type, can be

defined as NOT NULL. The NULL value, in data-

bases and programming, is equivalent to

saying that the field has no value. Ideally, in

a properly designed database, every column of

every row in every table should have a value,

but that isn’t always the case. To force a field

to have a value, add the NOT NULL description

to its column type. For example, a required

dollar amount can be described as

cost DECIMAL(5,2) NOT NULL

When creating a table, you can also specify

a default value for any column, regardless of

type. In cases where a majority of the records

will have the same value for a column, pre-

setting a default will save you from having to

specify a value when inserting new rows

(unless that row’s value for that column is

different from the norm).

gender ENUM('M', 'F') default 'F'

With the gender column, if no value is specified

when adding a record, the default will be used.

If a column does not have a default value and

one is not specified for a new record, that field

will be given a NULL value. However, if no

value is specified and the column is defined

as NOT NULL, an error will occur.

The number types can be marked as UNSIGNED,
which limits the stored data to positive

numbers and zero. This also effectively dou-

bles the range of positive numbers that can

be stored (because no negative numbers will

be kept, see Table 4.2). You can also flag the

number types as ZEROFILL, which means that

any extra room will be padded with zeros

(ZEROFILLs are also automatically UNSIGNED).

Finally, when designing a database, you’ll

need to consider creating indexes, adding

keys, and using the AUTO_INCREMENT property.

Chapter 6 discusses these concepts in greater

detail, but in the meantime, check out the

sidebar “Indexes, Keys, and AUTO_INCREMENT”

to learn how they affect the users table.

To finish defining your columns:

1. Identify your primary key.

The primary key is quixotically both arbi-

trary and critically important. Almost

always a number value, the primary key

is a unique way to refer to a particular

record. For example, your phone number

has no inherent value but is unique to

you (your home or mobile phone).

In the users table, the user_id will be the

primary key: an arbitrary number used to

refer to a row of data. Again, Chapter 6

will go into the concept of primary keys

in more detail.

2. Identify which columns cannot have

a NULL value.

In this example, every field is required

(cannot be NULL). If you stored peoples’

addresses, by contrast, you might have

address_line1 and address_line2, with

the latter one being optional (it could

have a NULL value). In general, tables that

have a lot of NULL values suggest a poor

design (more on this in…you guessed

it…Chapter 6).

3. Make any numeric type UNSIGNED if it

won’t ever store negative numbers.

The user_id, which will be a number,

should be UNSIGNED so that it’s always

positive. Other examples of UNSIGNED
numbers would be the price of items in

an e-commerce example, a telephone

extension for a business, or a zip code.

114

Chapter 4

C
h

o
o

s
i
n

g
 O

t
h

e
r

 C
o

l
u

m
n

 P
r

o
p

e
r

t
i
e

s

4. Establish the default value for any

column.

None of the columns here logically

implies a default value.

5. Confirm the final column definitions

(Table 4.6).

Before creating the tables, you should

revisit the type and range of data you’ll

store to make sure that your database

effectively accounts for everything.

✔ Tip

■ Text columns can also have defined char-

acter sets and collations. This will mean

more once you start working with multi-

ple languages (see Chapter 14, “Making

Universal Sites”).

115

Introduction to MySQL

C
h

o
o

s
i
n

g
 O

t
h

e
r

 C
o

l
u

m
n

 P
r

o
p

e
r

t
i
e

s

Indexes, Keys, and AUTO_INCREMENT

Two concepts closely related to database design are indexes and keys. An index in a database

is a way of requesting that the database keep an eye on the values of a specific column or

combination of columns (loosely stated). The end result of this is improved performance

when retrieving records but marginally hindered performance when inserting records or

updating them.

A key in a database table is integral to the normalization process used for designing more

complicated databases (see Chapter 6). There are two types of keys: primary and foreign.

Each table should have one primary key, and the primary key in one table is often linked as

a foreign key in another.

A table’s primary key is an artificial way to refer to a record and should abide by three rules:

1. It must always have a value.

2. That value must never change.

3. That value must be unique for each record in the table.

In the users table, the user_id will be designated as a PRIMARY KEY, which is both a descrip-

tion of the column and a directive to MySQL to index it. Since the user_id is a number

(which primary keys almost always will be), also add the AUTO_INCREMENT description to the

column, which tells MySQL to use the next-highest number as the user_id value for each

added record. You’ll see what this means in practice when you begin inserting records.

C o l u m n N a m e Ty p e

user_id MEDIUMINT UNSIGNED
NOT NULL

first_name VARCHAR(20) NOT NULL

last_name VARCHAR(40) NOT NULL

email VARCHAR(60) NOT NULL

pass CHAR(40) NOT NULL

registration_date DATETIME NOT NULL

users Table

Table 4.6 The final description of the users table. The
user_id will also be defined as an auto-incremented
primary key.

Accessing MySQL
In order to create tables, add records, and

request information from a database, some

sort of client is necessary to communicate

with the MySQL server. Later in the book,

PHP scripts will act in this role, but being

able to use another interface is necessary.

Although there are oodles of client applica-

tions available, I’ll focus on two: the mysql

client (or mysql monitor, as it is also called)

and the Web-based phpMyAdmin. A third

option, the MySQL Query Browser, is not dis-

cussed in this book but can be found at the

MySQL Web site (www.mysql.com), should

you not be satisfied with these two choices.

Using the mysql Client
The mysql client is normally installed with

the rest of the MySQL software. Although

the mysql client does not have a pretty

graphical interface, it’s a reliable, standard

tool that’s easy to use and behaves consis-

tently on many different operating systems.

The mysql client is accessed from a command-

line interface, be it the Terminal application

in Linux or Mac OS X (Figure 4.1), or a DOS

prompt in Windows (Figure 4.2). If you’re not

comfortable with command-line interactions,

you might find this interface to be challeng-

ing, but it becomes easy to use in no time.

116

Chapter 4

A
c

c
e

s
s

i
n

g
 M

y
S

Q
L

Figure 4.1 A Terminal window in Mac OS X. Figure 4.2 A Windows DOS prompt or console (although
the default is for white text on a black background).

To start an application from the command

line, type its name and press Return or Enter:

mysql

When invoking this application, you can add

arguments to affect how it runs. The most

common arguments are the username, pass-

word, and hostname (computer name or URL)

you want to connect using. You establish these

arguments like so:

mysql -u username -p -h hostname

The -p option will cause the client to

prompt you for the password. You can also

specify the password on this line if you pre-

fer—by typing it directly after the -p
prompt—but it will be visible, which is inse-

cure. The -h hostname argument is optional,

and you can leave it off unless you cannot

connect to the MySQL server without it.

Within the mysql client, every statement

(SQL command) needs to be terminated by

a semicolon. These semicolons are an indi-

cation to the client that the query is com-

plete and should be run. The semicolons are

not part of the SQL itself (this is a common

point of confusion). What this also means is

that you can continue the same SQL state-

ment over several lines within the mysql

client, which makes it easier to read and to

edit, should that be necessary.

As a quick demonstration of accessing and

using the mysql client, these next steps will

show you how to start the mysql client,

select a database to use, and quit the client.

Before following these steps,

◆ The MySQL server must be running.

◆ You must have a username and password

with proper access.

Both of these ideas are explained in

Appendix A.

As a side note, in the following steps and

throughout the rest of the book, I will con-

tinue to provide images using the mysql

client on both Windows and Mac OS X.

While the appearance differs, the steps and

results will be identical. So in short, don’t be

concerned about why one image shows the

DOS prompt and the next a Terminal.

To use the mysql client:

1. Access your system from a command-

line interface.

On Unix systems and Mac OS X, this is

just a matter of bringing up the Terminal

or a similar application.

If you are using Windows and followed

the instructions in Appendix A, you can

choose Start > Programs > MySQL >

MySQL Server X.X > MySQL Command

Line Client (Figure 4.3). Then you can

skip to Step 3. If you don’t have a MySQL

Command Line Client option available,

you’ll need to choose Run from the Start

menu, type cmd in the window, and press

Enter to bring up a DOS prompt (then

follow the instructions in the next step).

117

Introduction to MySQL

A
c

c
e

s
s

i
n

g
 M

y
S

Q
L

Figure 4.3 The MySQL Windows installer creates a link in your Start menu so that you can easily get
into the mysql client.

continues on next page

2. Invoke the mysql client, using the appro-

priate command (Figure 4.4).

/path/to/mysql/bin/mysql -u username -p

The /path/to/mysql part of this step will

be largely dictated by the operating sys-

tem you are running and where MySQL

was installed. This might therefore be

▲ /usr/local/mysql/bin/mysql - u
➝ username -p (on Mac OS X and

Unix)

or

▲ C:\mysql\bin\mysql -u username -p
(on Windows)

The basic premise is that you are run-

ning the mysql client, connecting as

username, and requesting to be prompt-

ed for the password. Not to overstate the

point, but the username and password

values that you use must already be

established in MySQL as a valid user (see

Appendix A).

3. Enter the password at the prompt and

press Return/Enter.

The password you use here should be for

the user you specified in the preceding

step. If you used the MySQL Command

Line Client link on Windows (Figure 4.3),

the user is root, so you should use that

password (probably established during

installation and configuration, see

Appendix A).

If you used the proper username/pass-

word combination (i.e., someone with

valid access), you should be greeted as

shown in Figure 4.5. If access is denied,

you’re probably not using the correct val-

ues (see Appendix A for instructions on

creating users).

118

Chapter 4

A
c

c
e

s
s

i
n

g
 M

y
S

Q
L

Figure 4.4 Access the mysql client by entering the full
path to the utility, along with the proper arguments.

Figure 4.5 If you are successfully able to log in, you’ll
see a welcome message like this.

4. Select the database you want to use

(Figure 4.6).

USE test;

The USE command selects the database

to be used for every subsequent com-

mand. The test database is one that

MySQL installs by default. Assuming it

exists on your server, all users should be

able to access it.

5. Quit out of mysql (Figure 4.7).

quit

You can also use the command exit to

leave the client. This step—unlike most

other commands you enter in the mysql

client—does not require a semicolon at

the end.

If you used the MySQL Command Line

Client, this will also close the DOS

prompt window.

✔ Tips

■ If you know in advance which database

you will want to use, you can simplify

matters by starting mysql with

/path/to/mysql/bin/mysql -u username
➝ -p databasename

■ To see what else you can do with the

mysql client, type

/path/to/mysql/bin/mysql --help

■ The mysql client on most systems allows

you to use the up and down arrows to

scroll through previously entered com-

mands. If you make a mistake in typing

a query, you can scroll up to find it, and

then correct the error.

■ If you are in a long statement and make

a mistake, cancel the current operation

by typing c and pressing Return or Enter.

If mysql thinks a closing single or double

quotation mark is missing (as indicated by

the '> and "> prompts), you’ll need to

enter the appropriate quotation mark first.

119

Introduction to MySQL

A
c

c
e

s
s

i
n

g
 M

y
S

Q
L

Figure 4.6 After getting into the mysql client, run a
USE command to choose the database with which you
want to work.

Figure 4.7 Type either exit or quit to terminate your
session and leave the mysql client.

Using phpMyAdmin
phpMyAdmin (www.phpmyadmin.net) is one

of the best and most popular applications

written in PHP. Its sole purpose is to provide

an interface to a MySQL server. It’s some-

what easier and more natural to use than

the mysql client but requires a PHP installa-

tion and must be accessed through a Web

browser. If you’re running MySQL on your

own computer, you might find that using the

mysql client makes more sense, as installing

and configuring phpMyAdmin constitutes

unnecessary extra work (although all-in-one

PHP and MySQL installers may do this for

you). If using a hosted server, your Web host

is virtually guaranteed to provide phpMyAdmin

as the primary way to work with MySQL

and the mysql client may not be an option.

Using phpMyAdmin isn’t hard, but the next

steps run through the basics so that you’ll

know what to do in the following chapters.

120

Chapter 4

A
c

c
e

s
s

i
n

g
 M

y
S

Q
L

Figure 4.8 The first phpMyAdmin page (when connected as a MySQL user that can access
multiple databases).

To use phpMyAdmin:

1. Access phpMyAdmin through your Web

browser (Figure 4.8).

The URL you use will depend upon your

situation. If running on your own com-

puter, this might be http://localhost/
phpMyAdmin/. If running on a hosted site,

your Web host will provide you with the

proper URL. In all likelihood, phpMyAdmin

would be available through the site’s con-

trol panel (should one exist).

Note that phpMyAdmin will only work if

it’s been properly configured to connect to

MySQL with a valid username/password/

hostname combination. If you see a mes-

sage like the one in Figure 4.9, you’re

probably not using the correct values

(see Appendix A for instructions on

creating users).

databases, or every database. On a hosted

site where you have just one database, that

database will probably already be selected

for you (Figure 4.11). On your own com-

puter, with phpMyAdmin connecting as

the MySQL root user, you would see a pull-

down menu (Figure 4.10) or a simple list

of available databases (Figure 4.8).

121

Introduction to MySQL

A
c

c
e

s
s

i
n

g
 M

y
S

Q
L

Figure 4.9 Every client application requires a proper username/password/
hostname combination in order to interact with the MySQL server.

Figure 4.10 Use the list of
databases on the left side
of the window to choose
with which database you
want to work. This is the
equivalent of running a
USE databasename query
within the mysql client
(see Figure 4.6).

Figure 4.11 If phpMyAdmin only has access to one
database, it’ll likely already be selected when you load
the page.

2. If possible and necessary, use the menu

on the left to select a database to use

(Figure 4.10).

What options you have here will vary

depending upon what MySQL user

phpMyAdmin is connecting as. That user

might have access to one database, several

continues on next page

3. Use the SQL tab (Figure 4.12) or the SQL

query window (Figure 4.13) to enter

SQL commands.

The next two chapters, and the occasion-

al one later in the book, will provide SQL

commands that must be run to create,

populate, or alter tables. These might

look like

INSERT INTO tablename (col1, col2)
➝ VALUES (x, y)

These commands can be run using the

mysql client, phpMyAdmin, or any

other interface. To run them within

phpMyAdmin, just type them into one

of the SQL prompts and click Go.

✔ Tips

■ There’s a lot more that can be done with

phpMyAdmin, but full coverage would

require a chapter in its own right (and

a long chapter at that). The information

presented here will be enough for you

to follow any of the examples in the

book, should you not want to use the

mysql client.

■ phpMyAdmin can be configured to use

a special database that will record your

query history, allow you to bookmark

queries, and more.

■ One of the best reasons to use phpMyAdmin is

to transfer a database from one comput-

er to another. Use the Export tab in

phpMyAdmin connected to the source

computer to create a file of data. Then, on

the destination computer, use the Import

tab in phpMyAdmin (connected to that

MySQL server) to complete the transfer.

122

Chapter 4

A
c

c
e

s
s

i
n

g
 M

y
S

Q
L

Figure 4.12 The SQL tab, in
the main part of the window,
can be used to run any SQL
command.

Figure 4.13 The SQL window can also be used to run
commands. It pops up after clicking the SQL icon at the
top of the left side of the browser (see the second icon
from the left in Figure 4.10).

The preceding chapter provides a quick introduction to MySQL. The focus there is on

two topics: using MySQL’s rules and data types to define a database, and how to interact

with the MySQL server. This chapter moves on to the lingua franca of databases: SQL.

SQL, short for Structured Query Language, is a group of special words used exclusively

for interacting with databases. Every major database uses SQL, and MySQL is no

exception. There are multiple versions of SQL and MySQL has its own variations on

the SQL standards, but SQL is still surprisingly easy to learn and use. In fact, the

hardest thing to do in SQL is use it to its full potential!

In this chapter you’ll learn all the SQL you need to know to create tables, populate

them, and run other basic queries. The examples will all use the users table discussed

in the preceding chapter. Also, as with that other chapter, this chapter assumes you

have access to a running MySQL server and know how to use a client application to

interact with it.

123

Introduction
to SQL

5

I
n

t
r

o
d

u
c

t
i
o

n
 t

o
 S

Q
L

Creating Databases
and Tables
The first logical use of SQL will be to create

a database. The syntax for creating a new

database is simply

CREATE DATABASE databasename

That’s all there is to it (as I said, SQL is easy

to learn)!

The CREATE term is also used for making

tables:

CREATE TABLE tablename (

column1name description,

column2name description

…)

As you can see from this syntax, after nam-

ing the table, you define each column within

parentheses. Each column-description pair

should be separated from the next by a comma.

Should you choose to create indexes at this

time, you can add those at the end of the

creation statement, but you can add indexes

at a later time as well. (Indexes are more for-

mally discussed in Chapter 6, “Advanced SQL

and MySQL,” but Chapter 4, “Introduction to

MySQL,” introduced the topic.)

In case you were wondering, SQL is case-

insensitive. However, I strongly recommend

making it a habit to capitalize the SQL key-

words as in the preceding example syntax

and the following steps. Doing so helps to

contrast the SQL terms from the database,

table, and column names.

To create databases and tables:

1. Access MySQL using whichever client

you prefer.

Chapter 4 shows how to use two of the

most common interfaces—the mysql

client and phpMyAdmin—to communi-

cate with a MySQL server. Using the steps

in the last chapter, you should now con-

nect to MySQL.

Throughout the rest of this chapter, most

of the SQL examples will be entered using

the mysql client, but they will work just

the same in phpMyAdmin or any other

client tool.

2. Create and select the new database

(Figure 5.1).

CREATE DATABASE sitename;

USE sitename;

This first line creates the database (assum-

ing that you are connected to MySQL as

a user with permission to create new data-

bases). The second line tells MySQL that

you want to work within this database

from here on out. Remember that within

the mysql client, you must terminate

every SQL command with a semicolon,

although these semicolons aren’t techni-

cally part of SQL itself. If executing mul-

tiple queries at once within phpMyAdmin,

they should also be separated by semi-

colons (Figure 5.2). If running only a

single query within phpMyAdmin, no

semicolons are necessary.

If you are using a hosting company’s

MySQL, they will probably create the

database for you. In that case, just con-

nect to MySQL and select the database.

124

Chapter 5

C
r

e
a

t
i
n

g
 D

a
t
a

b
a

s
e

s
 a

n
d

 T
a

b
l
e

s

3. Create the users table (Figure 5.3).

CREATE TABLE users (

user_id MEDIUMINT UNSIGNED NOT NULL

AUTO_INCREMENT,

first_name VARCHAR(20) NOT NULL,

last_name VARCHAR(40) NOT NULL,

email VARCHAR(60) NOT NULL,

pass CHAR(40) NOT NULL,

registration_date DATETIME NOT NULL,

PRIMARY KEY (user_id)

);

The design for the users table is developed

in Chapter 4. There, the names, types,

and attributes of each column in the

table are determined based upon a num-

ber of criteria (see that chapter for more

information). Here, that information is

placed within the CREATE table syntax to

actually make the table in the database.

Because the mysql client will not run a

query until it encounters a semicolon,

you can enter statements over multiple

lines as in Figure 5.3 (by pressing Return

or Enter at the end of each line). This

often makes a query easier to read and

debug. In phpMyAdmin, you can also run

queries over multiple lines, although they

will not be run until you click Go.

125

Introduction to SQL

C
r

e
a

t
i
n

g
 D

a
t
a

b
a

s
e

s
 a

n
d

 T
a

b
l
e

s

Figure 5.1 A new database, called sitename, is created
in MySQL. It is then selected for future queries.

Figure 5.2 The same commands for creating and
selecting a database can be run within phpMyAdmin’s
SQL window.

Figure 5.3 This CREATE SQL command will make the
users table.

continues on next page

4. Confirm the existence of the table

(Figure 5.4).

SHOW TABLES;

SHOW COLUMNS FROM users;

The SHOW command reveals the tables in

a database or the column names and

types in a table.

Also, you might notice in Figure 5.4 that

the default value for user_id is NULL, even

though this column was defined as NOT
NULL. This is actually correct and has to

do with user_id being an automatically

incremented primary key. MySQL will

often make minor changes to a column’s

definition for better performance or

other reasons.

In phpMyAdmin, a database’s tables are

listed on the left side of the browser window,

under the database’s name (Figure 5.5).

Click a table’s name to view its columns

(Figure 5.6).

✔ Tips

■ The rest of this chapter assumes that you

are using the mysql client or comparable

tool and have already selected the site-

name database with USE.

■ The order you list the columns when cre-

ating a table has no functional impact,

but there are stylistic suggestions for

how to order them. I normally list the

primary-key column first, followed by

any foreign-key columns (more on this

subject in the next chapter), followed by

the rest of the columns, concluding with

any date columns.

■ When creating a table, you have the

option of specifying its type. MySQL sup-

ports many table types, each with its

own strengths and weaknesses. If you do

not specify a table type, MySQL will

automatically create the table using the

default type for that MySQL installation.

Chapter 6 discusses this in more detail.

■ When creating tables and text columns,

you have the option to specify its colla-

tion and character set. Both come into

play when using multiple languages or

languages not native to the MySQL server.

Chapter 14, “Making Universal Sites,”

covers these subjects.

■ DESCRIBE tablename is the same state-

ment as SHOW COLUMNS FROM tablename.

126

Chapter 5

C
r

e
a

t
i
n

g
 D

a
t
a

b
a

s
e

s
 a

n
d

 T
a

b
l
e

s

Figure 5.4 Confirm the existence of, and columns in, a table using the
SHOW command.

Figure 5.5

phpMyAdmin
shows that
the sitename
database
contains one
table, named
users.

Figure 5.6 phpMyAdmin shows a table’s definition
on this screen (accessed by clicking the table’s
name in the left-hand column).

Inserting Records
After a database and its table(s) have been

created, you can start populating them using

the INSERT command. There are two ways

that an INSERT query can be written. With

the first method, you name the columns to

be populated:

INSERT INTO tablename (column1, column2
➝ …) VALUES (value1, value2 …)

INSERT INTO tablename (column4, column8)
➝ VALUES (valueX, valueY)

Using this structure, you can add rows of

records, populating only the columns that

matter. The result will be that any columns

not given a value will be treated as NULL (or

given a default value, if one was defined).

Note that if a column cannot have a NULL
value (it was defined as NOT NULL) and does

not have a default value, not specifying a

value will cause an error.

The second format for inserting records is

not to specify any columns at all but to

include values for every one:

INSERT INTO tablename VALUES (value1,
➝ NULL, value2, value3, …)

If you use this second method, you must

specify a value, even if it’s NULL, for every col-

umn. If there are six columns in the table,

you must list six values. Failure to match the

number of values to the number of columns

will cause an error. For this and other rea-

sons, the first format of inserting records is

generally preferable.

127

Introduction to SQL

I
n

s
e

r
t

i
n

g
 R

e
c

o
r

d
s

Quotes in Queries

In every SQL command:

◆ Numeric values shouldn’t be quoted.

◆ String values (for CHAR, VARCHAR, and

TEXT column types) must always be

quoted.

◆ Date and time values must always be

quoted.

◆ Functions cannot be quoted.

◆ The word NULL must not be quoted.

Unnecessarily quoting a numeric value

normally won’t cause problems (although

you still shouldn’t do it), but misusing

quotation marks in the other situations

will almost always mess things up. Also, it

does not matter if you use single or double

quotation marks, so long as you consis-

tently pair them (an opening mark with

a matching closing one).

And, as with PHP, if you need to use a

quotation mark in a value, either use the

other quotation mark type to encapsulate

it or escape the mark by preceding it with

a backslash:

INSERT INTO tablename (last_name)
➝ VALUES ('O\'Toole')

continues on next page

MySQL also allows you to insert multiple

rows at one time, separating each record by

a comma.

INSERT INTO tablename (column1, column4)
➝ VALUES (valueA, valueB),

(valueC, valueD),

(valueE, valueF)

While you can do this with MySQL, it is not

acceptable within the SQL standard and is

therefore not supported by all database

applications.

Note that in all of these examples, placeholders

are used for the actual table names, column

names, and values. Furthermore, the exam-

ples forgo quotation marks. In real queries,

you must abide by certain rules to avoid

errors (see the “Quotes in Queries” sidebar).

To insert data into a table:

1. Insert one row of data into the users table,

naming the columns to be populated

(Figure 5.7).

INSERT INTO users

(first_name, last_name, email, pass,
➝ registration_date)

VALUES ('Larry', 'Ullman',
➝ 'email@example.com',
➝ SHA1('mypass'), NOW());

Again, this syntax (where the specific

columns are named) is more foolproof

but not always the most convenient. For

the first name, last name, and email

columns, simple strings are used for the

values (and strings must always be quoted).

For the password and registration date

columns, two functions are being used to

generate the values (see the sidebar “Two

MySQL Functions”). The SHA1() function

will encrypt the password (mypass in

this example). The NOW() function will set

the registration_date as this moment.

When using any function in an SQL state-

ment, do not place it within quotation

marks. You also must not have any spaces

between the function’s name and the fol-

lowing parenthesis (so NOW() not NOW ()).

2. Insert one row of data into the users

table, without naming the columns

(Figure 5.8).

INSERT INTO users VALUES

(NULL, 'Zoe', 'Isabella',
➝ 'email2@example.com',
➝ SHA1('mojito'), NOW());

In this second syntactical example, every

column must be provided with a value.

The user_id column is given a NULL value,

which will cause MySQL to use the next

logical number, per its AUTO_INCREMENT
description. In other words, the first

record will be assigned a user_id of 1, the

second, 2, and so on.

128

Chapter 5

I
n

s
e

r
t

i
n

g
 R

e
c

o
r

d
s

Figure 5.7 This query inserts a single record into the
users table. The 1 row affected message indicates the
success of the insertion.

Figure 5.8 Another record is inserted into the table, this
time by providing a value for every column in the table.

3. Insert several values into the users table

(Figure 5.9).

INSERT INTO users (first_name,
➝ last_name, email, pass,
➝ registration_date) VALUES

('John', 'Lennon',
➝ 'john@beatles.com',
➝ SHA1('Happin3ss'), NOW()),

('Paul', 'McCartney',
➝ 'paul@beatles.com',
➝ SHA1('letITbe'), NOW()),

('George', 'Harrison',
➝ 'george@beatles.com',
➝ SHA1('something'), NOW()),

('Ringo', 'Starr',
➝ 'ringo@beatles.com',
➝ SHA1('thisboy'), NOW());

Since MySQL allows you to insert multi-

ple values at once, you can take advantage

of this and fill up the table with records.

129

Introduction to SQL

I
n

s
e

r
t

i
n

g
 R

e
c

o
r

d
s

continues on next page

Figure 5.9 This one query—which MySQL allows but other databases will not—inserts several records
into the table at once.

Two MySQL Functions

Although functions are discussed in more detail later in this chapter, two need to be intro-

duced at this time: SHA1() and NOW().

The SHA1() function is one way to encrypt data. This function creates an encrypted string

that is always exactly 40 characters long (which is why the users table’s pass column is

defined as CHAR(40)). SHA1() is a one-way encryption technique, meaning that it cannot be

reversed. It’s useful for storing sensitive data that need not be viewed in an unencrypted form

again, but it’s obviously not a good choice for sensitive data that should be protected but later

seen (like credit card numbers). SHA1() is available as of MySQL 5.0.2; if you are using an earlier

version, you can use the MD5() function instead. This function does the same task, using a dif-

ferent algorithm, and returns a 32-character long string (if using MD5(), your pass column

could be defined as a CHAR(32) instead).

The NOW() function is handy for date, time, and timestamp columns, since it will insert the cur-

rent date and time (on the server) for that field.

4. Continue Steps 1 and 2 until you’ve thor-

oughly populated the users table.

Throughout the rest of this chapter I will

be performing queries based upon the

records I entered into my database.

Should your database not have the same

specific records as mine, change the par-

ticulars accordingly. The fundamental

thinking behind the following queries

should still apply regardless of the data,

since the sitename database has a set

column and table structure.

✔ Tips

■ On the downloads page of the book’s

supporting Web site (www.DMCInsights.
com/phpmysql3/), you can download all of

the SQL commands for the book. Using

some of these commands, you can popu-

late your users table exactly as I have.

■ The term INTO in INSERT statements is

optional in current versions of MySQL.

■ phpMyAdmin’s INSERT tab allows you to

insert records using an HTML form

(Figure 5.10).

130

Chapter 5

I
n

s
e

r
t

i
n

g
 R

e
c

o
r

d
s

Figure 5.10 phpMyAdmin’s INSERT form shows a table’s columns and provides text boxes for entering values.
The pull-down menu lists functions that can be used, like SHA1() for the password or NOW() for the
registration date.

Selecting Data
Now that the database has some records in

it, you can retrieve the stored information

with the most used of all SQL terms, SELECT.

A SELECT query returns rows of records

using the syntax

SELECT which_columns FROM which_table

The simplest SELECT query is

SELECT * FROM tablename

The asterisk means that you want to view

every column. The alternative would be to

specify the columns to be returned, with

each separated from the next by a comma:

SELECT column1, column3 FROM tablename

There are a few benefits to being explicit

about which columns are selected. The first

is performance: There’s no reason to fetch

columns you will not be using. The second is

order: You can return columns in an order

other than their layout in the table. Third—

and you’ll see this later in the chapter—naming

the columns allows you to manipulate the

values in those columns using functions.

To select data from a table:

1. Retrieve all the data from the users table

(Figure 5.11).

SELECT * FROM users;

This very basic SQL command will retrieve

every column of every row stored within

that table.

131

Introduction to SQL

S
e

l
e

c
t

i
n

g
 D

a
t
a

continues on next page

Figure 5.11 The SELECT * FROM tablename query returns every column for every record stored in the table.

2. Retrieve just the first and last names

from users (Figure 5.12).

SELECT first_name, last_name

FROM users;

Instead of showing the data from every

column in the users table, you can use

the SELECT statement to limit the results

to only the fields you need.

✔ Tips

■ In phpMyAdmin, the Browse tab runs

a simple SELECT query.

■ You can actually use SELECT without

naming tables or columns. For example,

SELECT NOW(); (Figure 5.13).

■ The order in which you list columns in

your SELECT statement dictates the order

in which the values are presented (com-

pare Figure 5.12 with Figure 5.14).

■ With SELECT queries, you can even retrieve

the same column multiple times, a fea-

ture that enables you to manipulate the

column’s data in many different ways.

132

Chapter 5

S
e

l
e

c
t

i
n

g
 D

a
t
a

Figure 5.12 Only two of the
columns for every record in the
table are returned by this query.

Figure 5.13 Many queries
can be run without
specifying a database or
table. This query selects
the result of calling the
NOW() function, which
returns the current date
and time (according to
MySQL).

Figure 5.14 If a SELECT query
specifies the columns to be
returned, they’ll be displayed in
that order.

Using Conditionals
The SELECT query as used thus far will always

retrieve every record from a table. But often

you’ll want to limit what rows are returned,

based upon certain criteria. This can be

accomplished by adding conditionals to

SELECT queries. These conditionals use the

SQL term WHERE and are written much as

you’d write a conditional in PHP.

SELECT which_columns FROM which_table
➝ WHERE condition(s)

Table 5.1 lists the most common operators

you would use within a conditional. For

example, a simple equality check:

SELECT name FROM people WHERE

birth_date = '2008-01-26'

The operators can be used together, along

with parentheses, to create more complex

expressions:

SELECT * FROM items WHERE

(price BETWEEN 10.00 AND 20.00) AND

(quantity > 0)

SELECT * FROM cities WHERE

(zip_code = 90210) OR (zip_code = 90211)

To demonstrate using conditionals, let’s run

some more SELECT queries on the sitename

database. The examples that follow will be

just a few of the nearly limitless possibilities.

Over the course of this chapter and the

entire book you will see how conditionals

are used in all types of queries.

133

Introduction to SQL

U
s

i
n

g
 C

o
n

d
i
t

i
o

n
a

l
s

O p e r a t o r M e a n i n g

= Equals
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
!= (also < >) Not equal to
IS NOT NULL Has a value
IS NULL Does not have a value
BETWEEN Within a range
NOT BETWEEN Outside of a range
IN Found within a list of values
OR (also ||) Where one of two conditionals is true
AND (also &&) Where both conditionals are true
NOT (also !) Where the condition is not true

MySQL Operators

Table 5.1 These MySQL operators are frequently (but
not exclusively) used with WHERE expressions.

To use conditionals:

1. Select all of the users whose last name is

Simpson (Figure 5.15).

SELECT * FROM users

WHERE last_name = 'Simpson';

This simple query returns every column

of every row whose last_name value is

Simpson.

2. Select just the first names of users whose

last name is Simpson (Figure 5.16).

SELECT first_name FROM users

WHERE last_name = 'Simpson';

Here only one column (first_name) is being

returned for each row. Although it may

seem strange, you do not have to select

a column on which you are performing

134

Chapter 5

U
s

i
n

g
 C

o
n

d
i
t

i
o

n
a

l
s

Figure 5.15 All of the Simpsons who have registered.

Figure 5.16 Just
the first names
of all of the
Simpsons who
have registered.

Figure 5.17 No records
are returned by this
query because the
email column cannot
have a NULL value. So
this query did work; it
just had no matching
records.

a WHERE. The reason for this is that the

columns listed after SELECT dictate only

what columns to return and the columns

listed in a WHERE dictate which rows

to return.

3. Select every column from every record in

the users table that does not have an

email address (Figure 5.17).

SELECT * FROM users

WHERE email IS NULL;

The IS NULL conditional is the same as

saying does not have a value. Keep in

mind that an empty string is different

than NULL and therefore would not match

this condition. Such a case would, how-

ever, match

SELECT * FROM users WHERE email='';

4. Select the user ID, first name, and last

name of all records in which the pass-

word is mypass (Figure 5.18).

SELECT user_id, first_name, last_name

FROM users

WHERE pass = SHA1('mypass');

Since the stored passwords were encrypted

with the SHA1() function, you can match

it by using that same encryption function

in a conditional. SHA1() is case-sensitive,

so this query will work only if the pass-

words (stored vs. queried) match exactly.

5. Select the user names whose user ID is less

than 10 or greater than 20 (Figure 5.19).

SELECT first_name, last_name

FROM users WHERE

(user_id < 10) OR (user_id > 20);

This same query could also be written as

SELECT first_name, last_name FROM

users WHERE user_id

NOT BETWEEN 10 and 20;

or even

SELECT first_name, last_name FROM

users WHERE user_id NOT IN

(10, 11, 12, 13, 14, 15, 16, 17, 18,
➝ 19, 20);

✔ Tip

■ You can perform mathematical calculations

within your queries using the mathematic

addition (+), subtraction (-), multiplica-

tion (*), and division (/) characters.

135

Introduction to SQL

U
s

i
n

g
 C

o
n

d
i
t

i
o

n
a

l
s

Figure 5.18 Conditionals can make use of
functions, like SHA1() here.

Figure 5.19 This query uses two
conditions and the OR operator.

Using LIKE and NOT LIKE
Using numbers, dates, and NULLs in condi-

tionals is a straightforward process, but

strings can be trickier. You can check for

string equality with a query such as

SELECT * FROM users

WHERE last_name = 'Simpson'

However, comparing strings in a more liberal

manner requires extra operators and charac-

ters. If, for example, you wanted to match

a person’s last name that could be Smith or

Smiths or Smithson, you would need a more

flexible conditional. This is where the LIKE
and NOT LIKE terms come in. These are

used—primarily with strings—in conjunc-

tion with two wildcard characters: the

underscore (_), which matches a single char-

acter, and the percentage sign (%), which

matches zero or more characters. In the last-

name example, the query would be

SELECT * FROM users

WHERE last_name LIKE 'Smith%'

This query will return all rows whose

last_name value begins with Smith. Because

it’s a case-insensitive search by default, it

would also apply to names that begin

with smith.

To use LIKE:

1. Select all of the records in which the last

name starts with Bank (Figure 5.20).

SELECT * FROM users

WHERE last_name LIKE 'Bank%';

136

Chapter 5

U
s

i
n

g
 L

I
K

E
 a

n
d

 N
O

T
L

I
K

E

Figure 5.20 The LIKE SQL term adds flexibility to your conditionals. This query matches any record where the
last name value begins with Bank.

2. Select the name for every record whose

email address is not of the form some-

thing@authors.com (Figure 5.21).

SELECT first_name, last_name

FROM users WHERE

email NOT LIKE '%@authors.com';

To rule out the presence of values in a

string, use NOT LIKE with the wildcard.

✔ Tips

■ Queries with a LIKE conditional are gen-

erally slower because they can’t take

advantage of indexes, so use this format

only if you absolutely have to.

■ The wildcard characters can be used

at the front and/or back of a string in

your queries.

SELECT * FROM users

WHERE user_name LIKE '_smith%'

■ Although LIKE and NOT LIKE are normally

used with strings, they can also be applied

to numeric columns.

■ To use either the literal underscore or the

percentage sign in a LIKE or NOT LIKE
query, you will need to escape it (by pre-

ceding the character with a backslash) so

that it is not confused with a wildcard.

■ The underscore can be used in combina-

tion with itself; as an example, LIKE '_ _'
would find any two-letter combination.

■ In the next chapter you’ll learn about

FULLTEXT searches, which can be better

than LIKE searches.

137

Introduction to SQL

U
s

i
n

g
 L

I
K

E
 a

n
d

 N
O

T
L

I
K

E

Figure 5.21 A NOT LIKE conditional returns records
based upon what a value does not contain.

Sorting Query Results
By default, a SELECT query’s results will be

returned in a meaningless order. To sort

them in a meaningful way, use an ORDER
BY clause.

SELECT * FROM tablename ORDER BY column

SELECT * FROM orders ORDER BY total

The default order when using ORDER BY is

ascending (abbreviated ASC), meaning that

numbers increase from small to large, dates go

from older to most recent, and text is sorted

alphabetically. You can reverse this by speci-

fying a descending order (abbreviated DESC).

SELECT * FROM tablename

ORDER BY column DESC

You can even order the returned values by

multiple columns:

SELECT * FROM tablename

ORDER BY column1, column2

You can, and frequently will, use ORDER BY
with WHERE or other clauses. When doing so,

place the ORDER BY after the conditions:

SELECT * FROM tablename WHERE conditions

ORDER BY column

To sort data:

1. Select all of the users in alphabetical

order by last name (Figure 5.22).

SELECT first_name, last_name FROM

users ORDER BY last_name;

If you compare these results with those

in Figure 5.12, you’ll see the benefits of

using ORDER BY.

138

Chapter 5

S
o

r
t

i
n

g
 Q

u
e

r
y

 R
e

s
u

l
t

s

Figure 5.22 The records in alphabetical
order by last name.

Figure 5.23 The records in alphabetical
order, first by last name, and then by first
name within that.

2. Display all of the users in alphabetical

order by last name and then first name

(Figure 5.23).

SELECT first_name, last_name FROM

users ORDER BY last_name ASC,

first_name ASC;

In this query, the effect would be that

every row is returned, first ordered by the

last_name, and then by first_name with-

in the last_names. The effect is most evi-

dent among the Simpsons.

3. Show all of the non-Simpson users by

date registered (Figure 5.24).

SELECT * FROM users

WHERE last_name != 'Simpson'

ORDER BY registration_date DESC;

You can use an ORDER BY on any column

type, including numbers and dates. The

clause can also be used in a query with a

conditional, placing the ORDER BY after

the WHERE.

✔ Tips

■ Because MySQL works naturally with any

number of languages, the ORDER BY will

be based upon the collation being used

(see Chapter 14).

■ If the column that you choose to sort

on contains NULL values, those will

appear first, both in ascending and

descending order.

139

Introduction to SQL

S
o

r
t

i
n

g
 Q

u
e

r
y

 R
e

s
u

l
t

s

Figure 5.24 All of the users not named Simpson, displayed by date registered, with the most recent listed first.

Limiting Query Results
Another SQL clause that can be added to

most queries is LIMIT. In a SELECT query,

WHERE dictates which records to return, and

ORDER BY decides how those records are

sorted, but LIMIT states how many records

to return. It is used like so:

SELECT * FROM tablename LIMIT x

In such queries, only the initial x records

from the query result will be returned. To

return only three matching records, use:

SELECT * FROM tablename LIMIT 3

Using this format

SELECT * FROM tablename LIMIT x, y

you can have y records returned, starting

at x. To have records 11 through 20 returned,

you would write

SELECT * FROM tablename LIMIT 10, 10

Like arrays in PHP, result sets begin at 0 when

it comes to LIMITs, so 10 is the 11th record.

You can use LIMIT with WHERE and/or ORDER
BY clauses, always placing LIMIT last.

SELECT which_columns FROM tablename WHERE

conditions ORDER BY column LIMIT x

To limit the amount of data returned:

1. Select the last five registered users

(Figure 5.25).

SELECT first_name, last_name

FROM users ORDER BY

registration_date DESC LIMIT 5;

To return the latest of anything, sort the

data by date, in descending order. Then,

to see just the most recent five, add

LIMIT 5 to the query.

140

Chapter 5

L
i
m

i
t

i
n

g
 Q

u
e

r
y

 R
e

s
u

l
t

s

Figure 5.25 Using the LIMIT clause, a query can return
a specific number of records.

2. Select the second person to register

(Figure 5.26).

SELECT first_name, last_name

FROM users ORDER BY

registration_date ASC LIMIT 1, 1;

This may look strange, but it’s just a

good application of the information

learned so far. First, order all of the

records by registration_date ascending,

so the first people to register would be

returned first. Then, limit the returned

results to start at 1 (which is the second

row) and to return just one record.

✔ Tips

■ The LIMIT x, y clause is most frequently

used when paginating query results

(showing them in blocks over multiple

pages). You’ll see this in Chapter 9,

“Common Programming Techniques.”

■ A LIMIT clause does not improve the exe-

cution speed of a query, since MySQL

still has to assemble the entire result and

then truncate the list. But a LIMIT clause

will minimize the amount of data to han-

dle when it comes to the mysql client or

your PHP scripts.

■ The LIMIT term is not part of the SQL

standard and is therefore (sadly) not

available on all databases.

■ The LIMIT clause can be used with most

types of queries, not just SELECTs.

141

Introduction to SQL

L
i
m

i
t

i
n

g
 Q

u
e

r
y

 R
e

s
u

l
t

s

Figure 5.26 Thanks to the LIMIT clause, a query can
even return records from the middle of a group, using
the LIMIT x, y format.

Updating Data
Once tables contain some data, you have the

potential need to edit those existing records.

This might be necessary if information was

entered incorrectly or if the data changes

(such as a last name or email address). The

syntax for updating records is

UPDATE tablename SET column=value

You can alter multiple columns at a single time,

separating each from the next by a comma.

UPDATE tablename SET column1=valueA,

column5=valueB…

You will almost always want to use a WHERE
clause to specify what rows should be updat-

ed; otherwise, the change would be applied

to every record.

UPDATE tablename SET column2=value

WHERE column5=value

Updates, along with deletions, are one of the

most important reasons to use a primary key.

This value—which should never change—

can be a reference point in WHERE clauses,

even if every other field needs to be altered.

To update a record:

1. Find the primary key for the record to be

updated (Figure 5.27).

SELECT user_id FROM users

WHERE first_name = 'Michael'

AND last_name='Chabon';

In this example, I’ll change the email for

this author’s record. To do so, I must first

find that record’s primary key, which this

query accomplishes.

2. Update the record (Figure 5.28).

UPDATE users

SET email='mike@authors.com'

WHERE user_id = 18;

To change the email address, I use an

UPDATE query, using the primary key

(user_id) to specify to which record the

update should apply. MySQL will report

upon the success of the query and how

many rows were affected.

142

Chapter 5

U
p

d
a

t
i
n

g
 D

a
t
a

Figure 5.27 Before updating a record, determine
which primary key to use in the UPDATE’s WHERE clause.

Figure 5.28 This query altered the value of one
column in just one row.

3. Confirm that the change was made

(Figure 5.29).

SELECT * FROM users

WHERE user_id=18;

Although MySQL already indicated the

update was successful (see Figure 5.28), it

can’t hurt to select the record again to

confirm that the proper changes occurred.

✔ Tips

■ Be extra certain to use a WHERE conditional

whenever you use UPDATE unless you

want the changes to affect every row.

■ If you run an update query that doesn’t

actually change any values (like UPDATE
users SET first_name='mike' WHERE
first_name='mike'), you won’t see any

errors but no rows will be affected.

More recent versions of MySQL would

show that X rows matched the query but

that 0 rows were changed.

■ To protect yourself against accidentally

updating too many rows, apply a LIMIT
clause to your UPDATEs:

UPDATE users SET

email='mike@authors.com'

WHERE user_id = 18 LIMIT 1

■ You should never perform an UPDATE on a

primary-key column, because this value

should never change. Altering the value

of a primary key could have serious

repercussions.

■ To update a record in phpMyAdmin, you

can run an UPDATE query using the SQL

window or tab. Alternatively, run a SELECT
query to find the record you want to

update, and then click the pencil next to

the record (Figure 5.30). This will bring

up a form similar to Figure 5.10, where

you can edit the record’s current values.

143

Introduction to SQL

U
p

d
a

t
i
n

g
 D

a
t
a

Figure 5.29 As a final step, you can confirm the update by selecting the record again.

Figure 5.30 A partial view of browsing records in phpMyAdmin. Click the
pencil to edit a record; click the X to delete it.

Deleting Data
Along with updating existing records, another

step you might need to take is to entirely

remove a record from the database. To do

this, you use the DELETE command.

DELETE FROM tablename

That command as written will delete every

record in a table, making it empty again.

Once you have deleted a record, there is no

way of retrieving it.

In most cases you’ll want to delete individ-

ual rows, not all of them. To do so, use a

WHERE clause

DELETE FROM tablename WHERE condition

To delete a record:

1. Find the primary key for the record to be

deleted (Figure 5.31).

SELECT user_id FROM users

WHERE first_name='Peter'

AND last_name='Tork';

Just as in the UPDATE example, I first need

to determine which primary key to use

for the delete.

144

Chapter 5

D
e

l
e

t
i
n

g
 D

a
t
a

Figure 5.31 The user_id will be used to
refer to this record in a DELETE query.

Figure 5.32 To preview the effect of a DELETE query, first run a syntactically similar SELECT query.

2. Preview what will happen when the

delete is made (Figure 5.32).

SELECT * FROM users

WHERE user_id = 8;

A really good trick for safeguarding against

errant deletions is to first run the query

using SELECT * instead of DELETE. The

results of this query will represent which

row(s) will be affected by the deletion.

3. Delete the record (Figure 5.33).

DELETE FROM users

WHERE user_id = 8 LIMIT 1;

As with the update, MySQL will report

on the successful execution of the query

and how many rows were affected. At

this point, there is no way of reinstating

the deleted records unless you backed up

the database beforehand.

Even though the SELECT query (Step 2

and Figure 5.32) only returned the one

row, just to be extra careful, a LIMIT 1
clause is added to the DELETE query.

4. Confirm that the change was made

(Figure 5.34).

SELECT user_id, first_name, last_name

FROM users ORDER BY user_id ASC;

You could also confirm the change by

running the query in Step 1.

✔ Tips

■ The preferred way to empty a table is to

use TRUNCATE:

TRUNCATE TABLE tablename

■ To delete all of the data in a table, as well

as the table itself, use DROP TABLE:

DROP TABLE tablename

■ To delete an entire database, including

every table therein and all of its data, use

DROP DATABASE databasename

145

Introduction to SQL

D
e

l
e

t
i
n

g
 D

a
t
a

Figure 5.33 Deleting one record from the
table.

Figure 5.34 The record whose user_id was 8 is
no longer part of this table.

Using Functions
To wrap up this chapter, you’ll learn about a

number of functions that you can use in

your MySQL queries. You have already seen

two—NOW() and SHA1()—but those are just

the tip of the iceberg. Most of the functions

you’ll see here are used with SELECT queries

to format and alter the returned data, but

you may use MySQL functions other types

of queries as well.

To apply a function to a column’s values, the

query would look like

SELECT FUNCTION(column) FROM tablename

To apply a function to one column’s values

while also selecting some other columns,

you can write a query like either of these:

◆ SELECT *, FUNCTION(column) FROM
➝ tablename

◆ SELECT column1, FUNCTION(column2),
➝ column3 FROM tablename

Before getting to the actual functions, make

note of a couple more things. First, functions

are often applied to stored data (i.e., columns)

but can also be applied to literal values. Either

of these applications of the UPPER() function

(which capitalizes a string) is valid:

SELECT UPPER(first_name) FROM users

SELECT UPPER('this string')

Second, while the function names them-

selves are case-insensitive, I will continue to

write them in an all-capitalized format, to

help distinguish them from table and col-

umn names (as I also capitalize SQL terms).

Third, an important rule with functions is

that you cannot have spaces between the

function name and the opening parenthesis

in MySQL, although spaces within the

parentheses are acceptable. And finally,

when using functions to format returned

data, you’ll often want to make uses of aliases,

a concept discussed in the sidebar.

146

Chapter 5

U
s

i
n

g
 F

u
n

c
t

i
o

n
s Aliases

An alias is merely a symbolic renaming

of a thing in a query. Normally applied

to tables, columns, or function calls,

aliases provide a shortcut for referring to

something. Aliases are created using the

term AS:

SELECT registration_date AS reg

FROM users

Aliases are case-sensitive strings composed

of numbers, letters, and the underscore

but are normally kept to a very short length.

As you’ll see in the following examples,

aliases are often reflected in the headings

of the returned results. For the preceding

sample, the query results returned will

contain one column of data, named reg.

If you’ve defined an alias on a table or a

column, the entire query must consis-

tently use that same alias rather than the

original name. For example,

SELECT first_name AS name FROM users
➝ WHERE name='Sam'

This differs from standard SQL, which

doesn’t support the use of aliases in WHERE
conditionals.

Text functions
The first group of functions to demonstrate

are those meant for manipulating text. The

most common of the functions in this cate-

gory are listed in Table 5.2.

CONCAT(), perhaps the most useful of the

text functions, deserves special attention.

The CONCAT() function accomplishes con-

catenation, for which PHP uses the period

(see Chapter 1, “Introduction to PHP”). The

syntax for concatenation requires you to

place, within parentheses, the various values

you want assembled, in order and separated

by commas:

SELECT CONCAT(t1, t2) FROM tablename

While you can—and normally will—apply

CONCAT() to columns, you can also incorpo-

rate strings, entered within quotation marks.

For example, to format a person’s name as

First<SPACE>Last, you would use

SELECT CONCAT(first_name, ' ', last_name)

FROM users

Because concatenation normally returns val-

ues in a new format, it’s an excellent time to

use an alias (see the sidebar):

SELECT CONCAT(first_name, ' ', last_name)

AS Name FROM users

147

Introduction to SQL

U
s

i
n

g
 F

u
n

c
t

i
o

n
s

F u n c t i o n U s a g e R e t u r n s

CONCAT() CONCAT(t1, t2, ...) A new string of the form t1t2.
CONCAT_WS() CONCAT(S, t1, t2, ...) A new string of the form t1St2S…
LENGTH() LENGTH(t) The number of characters in t.
LEFT() LEFT(t, y) The leftmost y characters from t.
RIGHT() RIGHT(t, x) The rightmost x characters from t.
TRIM() TRIM(t) t with excess spaces from the beginning and end removed.
UPPER() UPPER(t) t capitalized.
LOWER() LOWER(t) t in all-lowercase format.
SUBSTRING() SUBSTRING(t, x, y) y characters from t beginning with x (indexed from 0).

Text Functions

Table 5.2 Some of MySQL’s functions for working with text. As with most functions, these can be applied to either
columns or literal values (both represented by t, t1, t2, etc).

To format text:

1. Concatenate the names without using an

alias (Figure 5.35).

SELECT CONCAT(last_name, ', ',
➝ first_name) FROM users;

This query will demonstrate two things.

First, the users’ last names, a comma and

a space, plus their first names are con-

catenated together to make one string

(in the format of Last, First). Second, as

the figure shows, if you don’t use an alias,

the returned data’s column heading will

be the function call. In the mysql client

or phpMyAdmin, this is just unsightly;

when using PHP to connect to MySQL,

this will likely be a problem.

2. Concatenate the names while using an

alias (Figure 5.36).

SELECT CONCAT(last_name, ', ',
➝ first_name)

AS Name FROM users ORDER BY Name;

To use an alias, just add AS aliasname
after the item to be renamed. The alias

will be the new title for the returned

data. To make the query a little more

interesting, the same alias is also used in

the ORDER BY clause.

148

Chapter 5

U
s

i
n

g
 F

u
n

c
t

i
o

n
s

Figure 5.35 This simple concatenation returns every
registered user’s full name. Notice how the column
heading is the use of the CONCAT() function.

Figure 5.36 By using an alias, the returned
data is under the column heading of Name
(compare with Figure 5.35).

3. Find the longest last name (Figure 5.37).

SELECT LENGTH(last_name) AS L,

last_name FROM users

ORDER BY L DESC LIMIT 1;

To determine which registered user’s last

name is the longest (has the most char-

acters in it), use the LENGTH() function.

To find the name, select both the last

name value and the calculated length,

which is given an alias of L. To then find

the longest name, order all of the results

by L, in descending order, but only return

the first record.

✔ Tips

■ A query like that in Step 3 (also Figure 5.37)

may be useful for helping to fine-tune

your column lengths once your database

has some records in it.

■ MySQL has two functions for performing

regular expression searches on text:

REGEXP() and NOT REGEXP(). Chapter 13,

“Perl-Compatible Regular Expressions,”

introduces regular expressions using PHP.

■ CONCAT() has a corollary function called

CONCAT_WS(), which stands for with sepa-

rator. The syntax is CONCAT_WS(separator,
t1, t2, …). The separator will be inserted

between each of the listed columns or

values. For example, to format a person’s

full name as First<SPACE>Middle<SPACE>

Last, you would write

SELECT CONCAT_WS(' ', first, middle,
➝ last) AS Name FROM tablename

CONCAT_WS() has an added advantage over

CONCAT() in that it will ignore columns

with NULL values. So that query might

return Joe Banks from one record but

Jane Sojourner Adams from another.

149

Introduction to SQL

U
s

i
n

g
 F

u
n

c
t

i
o

n
s

Figure 5.37 By using the LENGTH() function, an alias, an
ORDER BY clause, and a LIMIT clause, this query returns
the length and value of the longest stored name.

Numeric functions
Besides the standard math operators that

MySQL uses (for addition, subtraction, mul-

tiplication, and division), there are a couple

dozen functions for formatting and per-

forming calculations on numeric values.

Table 5.3 lists the most common of these,

some of which will be demonstrated shortly.

I want to specifically highlight three of these

functions: FORMAT(), ROUND(), and RAND().

The first—which is not technically number-

specific—turns any number into a more

conventionally formatted layout. For example,

if you stored the cost of a car as 20198.20,

FORMAT(car_cost, 2) would turn that num-

ber into the more common 20,198.20.

ROUND() will take one value, presumably from

a column, and round that to a specified

number of decimal places. If no decimal

places are indicated, it will round the num-

ber to the nearest integer. If more decimal

places are indicated than exist in the original

number, the remaining spaces are padded

with zeros (to the right of the decimal point).

The RAND() function, as you might infer, is used

for returning random numbers (Figure 5.38).

SELECT RAND()

A further benefit to the RAND() function is

that it can be used with your queries to

return the results in a random order.

SELECT * FROM tablename ORDER BY RAND()

150

Chapter 5

U
s

i
n

g
 F

u
n

c
t

i
o

n
s

Figure 5.38 The RAND()
function returns a
random number
between 0 and 1.0.

F u n c t i o n U s a g e R e t u r n s

ABS() ABS(n) The absolute value of n.
CEILING() CEILING(n) The next-highest integer

based upon the value
of n.

FLOOR() FLOOR(n) The integer value of n.
FORMAT() FORMAT(n1, n2) n1 formatted as a number

with n2 decimal places
and commas inserted
every three spaces.

MOD() MOD(n1, n2) The remainder of dividing
n1 by n2.

POW() POW(n1, n2) n1 to the n2 power.
RAND() RAND() A random number

between 0 and 1.0.
ROUND() ROUND(n1, n2) n1 rounded to n2 decimal

places.
SQRT() SQRT(n) The square root of n.

Numeric Functions

Table 5.3 Some of MySQL’s functions for working with
numbers. As with most functions, these can be applied
to either columns or literal values (both represented
by n, n1, n2, etc.).

To use numeric functions:

1. Display a number, formatting the amount

as dollars (Figure 5.39).

SELECT CONCAT('$', FORMAT(5639.6, 2))

AS cost;

Using the FORMAT() function, as just

described, with CONCAT(), you can turn

any number into a currency format as

you might display it in a Web page.

2. Retrieve a random email address from

the table (Figure 5.40).

SELECT email FROM users

ORDER BY RAND() LIMIT 1;

What happens with this query is: All of

the email addresses are selected; the order

they are in is shuffled (ORDER BY RAND());

and then the first one is returned. Running

this same query multiple times will pro-

duce different random results. Notice

that you do not specify a column to

which RAND() is applied.

✔ Tips

■ Along with the mathematical functions

listed here, there are several trigonometric,

exponential, and other types of numeric

functions available.

■ The MOD() function is the same as using

the percent sign:

SELECT MOD(9,2)

SELECT 9%2

It returns the remainder of a division (1

in these examples).

151

Introduction to SQL

U
s

i
n

g
 F

u
n

c
t

i
o

n
s

Figure 5.39 Using an arbitrary example, this query
shows how the FORMAT() function works.

Figure 5.40 Subsequent executions
of the same query return different
random results.

Date and time functions
The date and time column types in MySQL

are particularly flexible and useful. But

because many database users are not familiar

with all of the available date and time func-

tions, these options are frequently underused.

Whether you want to make calculations based

upon a date or return only the month name

from a value, MySQL has a function for that

purpose. Table 5.4 lists most of these; see

the MySQL manual for a complete list.

MySQL supports two data types that store

both a date and a time (DATETIME and

TIMESTAMP), one type that stores just the date

(DATE), one that stores just the time (TIME),

and one that stores just a year (YEAR). Besides

allowing for different types of values, each

data type also has its own unique behaviors

(again, I’d recommend reading the MySQL

manual’s pages on this for all of the details).

But MySQL is very flexible as to which func-

tions you can use with which type. You can

apply a date function to any value that con-

tains a date (i.e., DATETIME, TIMESTAMP, and

DATE), or you can apply an hour function

to any value that contains the time (i.e.,

DATETIME, TIMESTAMP, and TIME). MySQL will

use the part of the value that it needs and

ignore the rest. What you cannot do, however,

is apply a date function to a TIME value or

a time function to a DATE or YEAR value.

152

Chapter 5

U
s

i
n

g
 F

u
n

c
t

i
o

n
s

F u n c t i o n U s a g e R e t u r n s

HOUR() HOUR(dt) The hour value of dt.
MINUTE() MINUTE(dt) The minute value of dt.
SECOND() SECOND(dt) The second value of dt.
DAYNAME() DAYNAME(dt) The name of the day for dt.
DAYOFMONTH() DAYOFMONTH(dt) The numerical day value of dt.
MONTHNAME() MONTHNAME(dt) The name of the month of dt.
MONTH() MONTH(dt) The numerical month value of dt.
YEAR() YEAR(column) The year value of dt.
CURDATE() CURDATE() The current date.
CURTIME() CURTIME() The current time.
NOW() NOW() The current date and time.
UNIX_TIMESTAMP() UNIX_TIMESTAMP(dt) The number of seconds since the epoch until the current moment

or until the date specified.

Date and Time Functions

Table 5.4 Some of MySQL’s functions for working with dates and times. As with most functions, these can be applied
to either columns or literal values (both represented by dt, short for datetime).

To use date and time functions:

1. Display the date that the last user regis-

tered (Figure 5.41).

SELECT DATE(registration_date) AS

Date FROM users ORDER BY

registration_date DESC LIMIT 1;

The DATE() function returns the date

part of a value. To see the date that the

last person registered, an ORDER BY clause

lists the users starting with the most

recently registered and this result is lim-

ited to just one record.

2. Display the day of the week that the first

user registered (Figure 5.42).

SELECT DAYNAME(registration_date) AS

Weekday FROM users ORDER BY

registration_date ASC LIMIT 1;

This is similar to the query in Step 1 but

the results are returned in ascending

order and the DAYNAME() function is

applied to the registration_date column.

This function returns Sunday, Monday,

Tuesday, etc., for a given date.

3. Show the current date and time, accord-

ing to MySQL (Figure 5.43).

SELECT CURDATE(), CURTIME();

To show what date and time MySQL cur-

rently thinks it is, you can select the

CURDATE() and CURTIME() functions,

which return these values. This is another

example of a query that can be run with-

out referring to a particular table name.

153

Introduction to SQL

U
s

i
n

g
 F

u
n

c
t

i
o

n
s

Figure 5.42 This query returns the name of the day
that a given date represents.

Figure 5.41 The date functions can be used to extract
information from stored values.

Figure 5.43 This query, not run on any particular table,
returns the current date and time on the MySQL server.

continues on next page

4. Show the last day of the current month

(Figure 5.44).

SELECT LAST_DAY(CURDATE()),

MONTHNAME(CURDATE());

As the last query showed, CURDATE()
returns the current date on the server.

This value can be used as an argument to

the LAST_DAY() function, which returns

the last date in the month for a given

date. The MONTHNAME() function returns

the name of the current month.

✔ Tips

■ The date and time returned by MySQL’s

date and time functions correspond to

those on the server, not on the client

accessing the database.

■ Not mentioned in this section or in Table

5.4 are ADDDATE(), SUBDATE(), ADDTIME(),

and SUBTIME(). Each can be used to per-

form arithmetic on date and time values.

These can be very useful (for example, to

find everyone registered within the past

week) but their syntax is cumbersome.

As always, see the MySQL manual for

more information.

■ As of MySQL 5.0.2, the server will also

prevent invalid dates (e.g., February 31,

2009) from being inserted into a date or

date/time column.

154

Chapter 5

U
s

i
n

g
 F

u
n

c
t

i
o

n
s

Figure 5.44 Among the many things MySQL can do
with date and time types is determine the last date in
a month or the name value of a given date.

Formatting the date and time
There are two additional date and time

functions that you might find yourself using

more than all of the others combined:

DATE_FORMAT() and TIME_FORMAT(). There is

some overlap between the two and when

you would use one or the other.

DATE_FORMAT() can be used to format both the

date and time if a value contains both (e.g.,

YYYY-MM-DD HH:MM:SS). Comparatively,

TIME_FORMAT() can format only the time

value and must be used if only the time value

is being stored (e.g., HH:MM:SS). The syntax is

SELECT DATE_FORMAT(datetime, formatting)

The formatting relies upon combinations of

key codes and the percent sign to indicate

what values you want returned. Table 5.5

lists the available date- and time-formatting

parameters. You can use these in any combi-

nation, along with literal characters, such as

punctuation, to return a date and time in a

more presentable form.

Assuming that a column called the_date has

the date and time of 1996-04-20 11:07:45

stored in it, common formatting tasks and

results would be

◆ Time (11:07:45 AM)

TIME_FORMAT(the_date, '%r')

◆ Time without seconds (11:07 AM)

TIME_FORMAT(the_date, '%l:%i %p')

◆ Date (April 20th, 1996)

DATE_FORMAT(the_date, '%M %D, %Y')

155

Introduction to SQL

U
s

i
n

g
 F

u
n

c
t

i
o

n
s

Te r m U s a g e E x a m p l e

%e Day of the month 1-31
%d Day of the month, 01-31

two digit
%D Day with suffix 1st-31st
%W Weekday name Sunday-Saturday
%a Abbreviated Sun-Sat weekday name
%c Month number 1-12
%m Month number, 01-12

two digit
%M Month name January-December
%b Month name, Jan-Dec

abbreviated
%Y Year 2002
%y Year 02
%l Hour 1-12

(lowercase L)
%h Hour, two digit 01-12
%k Hour, 24-hour clock 0-23
%H Hour, 24-hour clock, 00-23

two digit
%i Minutes 00-59
%S Seconds 00-59
%r Time 8:17:02 PM
%T Time, 24-hour clock 20:17:02
%p AM or PM AM or PM

*_FORMAT() Parameters

Table 5.5 Use these parameters with the DATE_FORMAT()
and TIME_FORMAT() functions.

To format the date and time:

1. Return the current date and time as

Month DD, YYYY - HH:MM (Figure 5.45).

SELECT DATE_FORMAT(NOW(),'%M %e, %Y
➝ - %l:%i');

Using the NOW() function, which returns

the current date and time, you can prac-

tice formatting to see what results are

returned.

2. Display the current time, using 24-hour

notation (Figure 5.46).

SELECT TIME_FORMAT(CURTIME(),'%T');

3. Select the email address and date regis-

tered, ordered by date registered, format-

ting the date as Weekday (abbreviated)

Month (abbreviated) Day Year, for the last

five registered users (Figure 5.47).

SELECT email,
➝ DATE_FORMAT(registration_date,
➝ '%a %b %e %Y')

AS Date FROM users

ORDER BY registration_date DESC

LIMIT 5;

This is just one more example of how

you can use these formatting functions

to alter the output of an SQL query.

✔ Tips

■ In your Web applications, you should

almost always use MySQL functions to for-

mat any dates coming from the database.

■ The only way to access the date or time

on the client (the user’s machine) is to

use JavaScript. It cannot be done with

PHP or MySQL.

156

Chapter 5

U
s

i
n

g
 F

u
n

c
t

i
o

n
s

Figure 5.46 The current time, in a 24-hour format.

Figure 5.47 The DATE_FORMAT() function is used to
pre-format the registration date when selecting
records from the users table.

Figure 5.45 The current date and time, formatted.

This chapter picks up where its predecessor left off, discussing more advanced SQL and

MySQL topics. While the basics of both technologies will certainly get you by, it’s these

more complex ideas that make sophisticated applications possible.

The chapter begins by discussing database design in greater detail, using a message

board as the example. More elaborate databases like a forum require SQL queries

called joins, so that subject will follow. From there, the chapter introduces a category

of functions that are specifically used when grouping query results.

After that, the subjects turn to advanced MySQL concepts: indexes, changing the

structure of existing tables, and table types. The chapter concludes with two more

MySQL features: performing full text searches and transactions.

157

Advanced
SQL and MySQL

6

A
d

v
a

n
c

e
d

 S
Q

L
a

n
d

 M
y

S
Q

L

Database Design
Whenever you are working with a relational

database management system such as MySQL,

the first step in creating and using a data-

base is to establish the database’s structure

(also called the database schema). Database

design, aka data modeling, is crucial for suc-

cessful long-term management of informa-

tion. Using a process called normalization,

you carefully eliminate redundancies and

other problems that will undermine the

integrity of your database.

The techniques you will learn over the next

few pages will help to ensure the viability, use-

fulness, and reliability of your databases. The

specific example to be discussed—a forum

where users can post messages—will be more

explicitly used in Chapter 15, “Example—

Message Board,” but the principles of nor-

malization apply to any database you might

create. (The sitename example as created in

the past two chapters was properly normal-

ized, even though that was never discussed.)

Normalization
Normalization was developed by an IBM

researcher named E.F. Codd in the early 1970s

(he also invented the relational database).

A relational database is merely a collection

of data, organized in a particular manner,

and Dr. Codd created a series of rules called

normal forms that help define that organiza-

tion. In this chapter I will discuss the first

three of the normal forms, which are suffi-

cient for most database designs.

Before you begin normalizing your database,

you must define the role of the application

being developed. Whether it means that you

thoroughly discuss the subject with a client

or figure it out for yourself, understanding

how the information will be accessed dictates

the modeling. Thus, this process will require

paper and pen rather than the MySQL soft-

ware itself (although database design is

applicable to any relational database, not

just MySQL).

In this example I want to create a message

board where users can post messages and

other users can reply. I imagine that users

will need to register, then log in with a user-

name/password combination, in order to

post messages. I also expect that there could

be multiple forums for different subjects. I

have listed a sample row of data in Table 6.1.

The database itself will be called forum.

✔ Tips

■ One of the best ways to determine what

information should be stored in a data-

base is to think about what questions

will be asked of the database and what

data would be included in the answers.

■ Normalization can be hard to learn if you

fixate on the little things. Each of the

normal forms is defined in a very cryptic

way; even when put into layman’s terms,

they can still be confounding. My best

advice is to focus on the big picture as you

follow along. Once you’ve gone through

normalization and see the end result, the

overall process should be clear enough.

158

Chapter 6

I t e m E x a m p l e

username troutster
password mypass
actual name Larry Ullman
user email email@example.com
forum MySQL
message subject Question about normalization.
message body I have a question about…
message date February 2, 2008 12:20 AM

Sample Forum Data

D
a

t
a

b
a

s
e

 D
e

s
i
g

n

Table 6.1 Representative data for the kind of
information to be stored in the database.

I t e m E x a m p l e

message ID 325
username troutster
password mypass
actual name Larry Ullman
user email email@example.com
forum MySQL
message subject Question about normalization.
message body I have a question about…
message date February 2, 2008 12:20 AM

Sample Forum Data

Keys
As briefly mentioned in Chapter 4,

“Introduction to MySQL,” keys are integral

to normalized databases. There are two

types of keys: primary and foreign. A pri-

mary key is a unique identifier that has to

abide by certain rules. They must

◆ Always have a value (they cannot be NULL)

◆ Have a value that remains the same

(never changes)

◆ Have a unique value for each record in

a table

The best real-world example of a primary key

is the U.S. Social Security number: each indi-

vidual has a unique Social Security number,

and that number never changes. Just as the

Social Security number is an artificial con-

struct used to identify people, you’ll frequently

find creating an arbitrary primary key for

each table to be the best design practice.

The second type of key is a foreign key. Foreign

keys are the representation in Table B of the

primary key from Table A. If you have a cine-

ma database with a movies table and a direc-

tors table, the primary key from directors

would be linked as a foreign key in movies.

You’ll see better how this works as the nor-

malization process continues.

The forum database is just a simple table as

it stands (Table 6.1), but before beginning

the normalization process, identify at least

one primary key (the foreign keys will come

in later steps).

To assign a primary key:

1. Look for any fields that meet the three

tests for a primary key.

In this example (Table 6.1), no column

really fits all of the criteria for a primary

key. The username and email address will

be unique for each forum user but will

not be unique for each record in the data-

base (because the same user could post

multiple messages). The same subject

could be used multiple times as well. The

message body will likely be unique for

each message but could change (if edited),

violating one of the rules of primary keys.

2. If no logical primary key exists, invent

one (Table 6.2).

Frequently, you will need to create a pri-

mary key because no good solution pres-

ents itself. In this example, a message ID

is manufactured. When you create a pri-

mary key that has no other meaning or

purpose, it’s called a surrogate primary key.

✔ Tips

■ As a rule of thumb, I name my primary

keys using at least part of the table’s

name (e.g., message) and the word id.

Some database developers like to add the

abbreviation pk to the name as well.

■ MySQL allows for only one primary key

per table, although you can base a primary

key on multiple columns (this means the

combination of those columns must be

unique and never change).

■ Ideally, your primary key should always

be an integer, which results in better

MySQL performance.

159

Advanced SQL and MySQL

D
a

t
a

b
a

s
e

 D
e

s
i
g

n

Table 6.2 A primary key is added to the table as an
easy way to reference the records.

Relationships
Database relationships refer to how the data

in one table relates to the data in another.

There are three types of relationships between

any two tables: one-to-one, one-to-many, or

many-to-many. (Two tables in a database

may also be unrelated.)

A relationship is one-to-one if one and only

one item in Table A applies to one and

only one item in Table B. For example, each

U.S. citizen has only one Social Security num-

ber, and each Social Security number applies

to only one U.S. citizen; no citizen can have

two Social Security numbers, and no Social

Security number can refer to two citizens.

A relationship is one-to-many if one item in

Table A can apply to multiple items in Table

B. The terms female and male will apply to

many people, but each person can be only

one or the other (in theory). A one-to-many

relationship is the most common one

between tables in normalized databases.

Finally, a relationship is many-to-many if

multiple items in Table A can apply to mul-

tiple items in Table B. A record album can

contain songs by multiple artists, and artists

can make multiple albums. You should try to

avoid many-to-many relationships in your

design because they lead to data redundancy

and integrity problems. Instead of having

many-to-many relationships, properly

designed databases use intermediary tables

that break down one many-to-many relation-

ship into two one-to-many relationships.

Relationships and keys work together in that

a key in one table will normally relate to a key

in another, as mentioned earlier.

✔ Tips

■ Database modeling uses certain conven-

tions to represent the structure of the

database, which I’ll follow through a

series of images in this chapter. The sym-

bols for the three types of relationships

are shown in Figure 6.1.

■ The process of database design results in

an ERD (entity-relationship diagram) or

ERM (entity-relationship model). This

graphical representation of a database

uses boxes for tables, ovals for columns,

and the symbols from Figure 6.1 to repre-

sent the relationships.

■ There are many programs available to help

create a database schema, including

MySQL Workbench (www.mysql.com),

which is in alpha release at the time of

this writing.

■ The term “relational” in RDBMS actually

stems from the tables, which are techni-

cally called relations.

160

Chapter 6

D
a

t
a

b
a

s
e

 D
e

s
i
g

n

Figure 6.1 These symbols, or variations on them, are
commonly used to represent relationships in
database modeling schemes.

First Normal Form
As already stated, normalizing a database is

the process of adjusting the database’s struc-

ture according to several rules, called forms.

Your database should adhere to each rule

exactly, and the forms must be followed

in order.

Every table in a database must have the fol-

lowing two qualities in order to be in First

Normal Form (1NF):

◆ Each column must contain only one

value (this is sometimes described as

being atomic or indivisible).

◆ No table can have repeating groups of

related data.

A table containing one field for a person’s

entire address (street, city, state, zip code,

country) would not be 1NF compliant, because

it has multiple values in one column, violating

the first property above. As for the second, a

movies table that had columns such as

actor1, actor2, actor3, and so on would fail

to be 1NF compliant because of the repeat-

ing columns all listing the exact same kind

of information.

I’ll begin the normalization process by check-

ing the existing structure (Table 6.2) for 1NF

compliance. Any columns that are not atomic

will be broken into multiple columns. If a table

has repeating similar columns, then those

will be turned into their own, separate table.

To make a database 1NF compliant:

1. Identify any field that contains multiple

pieces of information.

Looking at Table 6.2, one field is not 1NF

compliant: actual name. The example

record contained both the first name and

the last name in this one column.

The message date field contains a day,

a month, and a year, plus a time, but sub-

dividing past that level of specificity is

really not warranted. And, as the end of

the last chapter shows, MySQL can handle

dates and times quite nicely using the

DATETIME type.

Other examples of problems would be if

a table used just one column for multiple

phone numbers (mobile, home, work), or

stored a person’s multiple interests (cook-

ing, dancing, skiing, etc.) in a single column.

2. Break up any fields found in Step 1 into

distinct fields (Table 6.3).

To fix this problem, I’ll create separate

first name and last name fields, each of

which contains only one value.

161

Advanced SQL and MySQL

D
a

t
a

b
a

s
e

 D
e

s
i
g

n

continues on next page

I t e m E x a m p l e

message ID 325
username troutster
password mypass
first name Larry
last name Ullman
user email email@example.com
forum MySQL
message subject Question about normalization.
message body I have a question about…
message date February 2, 2008 12:20 AM

Forum Database, Atomic

Table 6.3 The actual name column has been broken in
two to store data more atomically.

3. Turn any repeating column groups into

their own table.

The forum database doesn’t have this

problem currently, so to demonstrate

what would be a violation, consider

Table 6.4. The repeating columns (the

multiple actor fields) introduce two

problems. First of all, there’s no getting

around the fact that each movie will be

limited to a certain number of actors

when stored this way. Even if you add

columns actor 1 through actor 100, there

will still be that limit (of a hundred).

Second, any record that doesn’t have the

maximum number of actors will have

NULL values in those extra columns. You

should generally avoid columns with

NULL values in your database schema. As

another concern, the actor and director

columns are not atomic.

To fix the problems in the movies table, a

second table would be created (Table 6.5).

This table uses one row for each actor in

a movie, which solves the problems men-

tioned in the last paragraph. The actor

names are also broken up to be atomic.

Notice as well that a primary-key column

should be added to the new table. The

notion that each table has a primary key

is implicit in the First Normal Form.

4. Double-check that all new columns and

tables created in Steps 2 and 3 pass the

1NF test.

✔ Tips

■ The simplest way to think about 1NF is

that this rule analyzes a table horizontally.

You inspect all of the columns within a

single row to guarantee specificity and

avoid repetition of similar data.

■ Various resources will describe the nor-

mal forms in somewhat different ways,

likely with much more technical jargon.

What is most important is the spirit—and

end result—of the normalization process,

not the technical wording of the rules.

162

Chapter 6

D
a

t
a

b
a

s
e

 D
e

s
i
g

n

C o l u m n Va l u e

movie ID 976
movie title Casablanca
year released 1943
director Michael Curtiz
actor 1 Humphrey Bogart
actor 2 Ingrid Bergman
actor 3 Peter Lorre

Movies Table

Table 6.4 This movies table violates the 1NF rule for
two reasons. First, it has repeating columns of similar
data (actor 1 etc.). Second, the actor and director
columns are not atomic.

I D M o v i e A c t o r F i r s t N a m e A c t o r L a s t N a m e

1 Casablanca Humphrey Bogart
2 Casablanca Ingrid Bergman
3 Casablanca Peter Lorre
4 The Maltese Falcon Humphrey Bogart
5 The Maltese Falcon Peter Lorre

Movies-Actors Table

Table 6.5 To make the movies table (Table 6.4) 1NF
compliant, the association of actors with a movie
would be made in this table.

Second Normal Form
For a database to be in Second Normal Form

(2NF), the database must first already be in

1NF (you must normalize in order). Then,

every column in the table that is not a key

(i.e., a foreign key) must be dependent upon

the primary key. You can normally identify

a column that violates this rule when it has

non-key values that are the same in multiple

rows. Such values should be stored in their

own table and related back to the original

table through a key.

Going back to the cinema example, a movies

table (Table 6.4) would have the director

Martin Scorsese listed twenty-plus times.

This violates the 2NF rule as the column(s)

that store the directors’ names would not be

keys and would not be dependent upon the

primary key (the movie ID). The fix is to cre-

ate a separate directors table that stores the

directors’ information and assigns each

director a primary key. To tie the director

back to the movies, the director’s primary

key would also be a foreign key in the

movies table.

Looking at Table 6.5 (for actors in movies),

both the movie name and the actor names

are also in violation of the 2NF rule (they

aren’t keys and they aren’t dependent on the

table’s primary key). In the end, the cinema

database in this minimal form requires four

tables (Figure 6.2). Each director’s name,

movie name, and actor’s name will be stored

only once, and any non-key column in a

table is dependent upon that table’s primary

key. In fact, normalization could be summa-

rized as the process of creating more and

more tables until potential redundancies

have been eliminated.

163

Advanced SQL and MySQL

D
a

t
a

b
a

s
e

 D
e

s
i
g

n

Figure 6.2 To make the cinema database 2NF compliant
(given the information being represented), four tables
are necessary. The directors are represented in the
movies table through the director ID key; the movies
are represented in the movies-actors table through
the movie ID key; and the actors are represented in the
movies-actors table through the actor ID key.

To make a database 2NF compliant:

1. Identify any non-key columns that aren’t

dependent upon the table’s primary key.

Looking at Table 6.3, the username, first

name, last name, email, and forum values

are all non-keys (message ID is the only

key column currently), and none are

dependent upon the message ID.

Conversely, the message subject, body,

and date are also non-keys, but these do

depend upon the message ID.

2. Create new tables accordingly (Figure 6.3).

The most logical modification for the

forum database is to make three tables:

users, forums, and messages.

In a visual representation of the database,

create a box for each table, with the table

name as a header and all of its columns

(also called its attributes) underneath.

3. Assign or create new primary keys

(Figure 6.4).

Using the techniques described earlier in

the chapter, ensure that each new table

has a primary key. Here I’ve added a user

ID field to the users table and a forum ID

field to forums. These are both surrogate

primary keys. Because the username field

in the users table and the name field in

the forums table must be unique for each

record and must always have a value, you

could have them act as the primary keys

for their tables. However, this would mean

that these values could never change (per

the rules of primary keys) and the data-

base will be a little slower, using text-

based keys instead of numeric ones.

164

Chapter 6

D
a

t
a

b
a

s
e

 D
e

s
i
g

n

Figure 6.3 To make the forum database 2NF compliant,
three tables are necessary.

Figure 6.4 Each table needs its own primary key.

■ A properly normalized database should

never have duplicate rows in the same table

(two or more rows in which the values in

every non–primary key column match).

■ To simplify how you conceive of the nor-

malization process, remember that 1NF

is a matter of inspecting a table horizon-

tally, and 2NF is a vertical analysis (hunt-

ing for repeating values over multiple rows).

4. Create the requisite foreign keys and

indicate the relationships (Figure 6.5).

The final step in achieving 2NF compli-

ance is to incorporate foreign keys to

link associated tables. Remember that

a primary key in one table will most likely

be a foreign key in another.

With this example, the user ID from

the users table links to the user ID column

in the messages table. Therefore, users

has a one-to-many relationship with mes-

sages (because each user can post multi-

ple messages but each message can only

be posted by one user).

Also, the two forum ID columns are linked,

creating a one-to-many relationship

between messages and forums (each mes-

sage can only be in one forum but each

forum can have multiple messages).

There is no relationship between the users

and forums tables.

165

Advanced SQL and MySQL

D
a

t
a

b
a

s
e

 D
e

s
i
g

n

Figure 6.5 To relate the three tables, two foreign
keys are added to the messages table, each key
representing one of the other two tables.

✔ Tips

■ Another way to test for 2NF is to look at

the relationships between tables. The

ideal is to create one-to-many situations.

Tables that have a many-to-many rela-

tionship may need to be restructured.

■ Looking back at Figure 6.2, the movies-

actors table is an intermediary table, which

turns the many-to-many relationship

between movies and actors into two one-

to-many relationships. You can often tell

a table is acting as an intermediary when

all of its columns are keys. In fact, in this

table, no ID column would be required, as

the primary key could be the combina-

tion of the movie ID and the actor ID.

Third Normal Form
A database is in Third Normal Form (3NF) if

it is in 2NF and every non-key column is

mutually independent. If you followed the

normalization process properly to this point,

you may not have 3NF issues. You would

know that you have a 3NF violation if chang-

ing the value in one column would require

changing the value in another. In the forum

example (see Figure 6.5), there aren’t any 3NF

problems, but I’ll explain a hypothetical sit-

uation where this rule would come into play.

Take, as a common example, a single table

that stores the information for a business’

clients: first name, last name, phone number,

street address, city, state, zip code, and so on.

Such a table would not be 3NF compliant

because many of the columns would be

interdependent: the street would actually be

dependent upon the city; the city would be

dependent upon the state; and the zip code

would be an issue, too. These values are sub-

servient to each other, not to the person

whose record it is. To normalize this data-

base, you would have to create one table for

the states, another for the cities (with a for-

eign key linking to the states table), and

another for the zip codes. All of these would

then be linked back to the clients table.

If you feel that all that may be overkill, you are

correct. To be frank, this higher level of nor-

malization is often unnecessary. The point is

that you should strive to normalize your data-

bases but that sometimes you’ll make conces-

sions to keep things simple (see the sidebar

“Overruling Normalization”). The needs of

your application and the particulars of your

database will help dictate just how far into

the normalization process you should go.

As I said, the forum example is fine as is,

but I’ll outline the 3NF steps just the same,

showing how to fix the clients example

just mentioned.

To make a database 3NF compliant:

1. Identify any fields in any tables that are

interdependent.

As I just stated, what you look for are

columns that depend more upon each

other (like city and state) than they do

on the record as a whole. In the forum

database, this isn’t an issue. Just looking

at the messages table, each subject will be

specific to a message ID, each body will

be specific to that message ID, and so forth.

2. Create new tables accordingly.

If you found any problematic columns in

Step 1, like city and state in a clients

example, you would create separate cities

and states tables.

3. Assign or create new primary keys.

Every table must have a primary key, so

add city ID and state ID to the new tables.

4. Create the requisite foreign keys that link

any of the relationships (Figure 6.6).

Finally, add a state ID to the cities table

and a city ID to the clients table. This

effectively links each client’s record to

the city and state in which they live.

166

Chapter 6

D
a

t
a

b
a

s
e

 D
e

s
i
g

n

Figure 6.6 Going with a minimal version of a
hypothetical clients database, two new tables are
created for storing the city and state values.

✔ Tips

■ As a general rule, I would probably not

normalize the clients example to this

extent. If I left the city and state fields in

the Clients table, the worst thing that would

happen is that a city would change its

name and this fact would need to be

updated for all of the users living in that

city. But this—cities changing their

names—is not a common occurrence.

■ Despite there being these set rules for how

to normalize a database, two different

people could normalize the same exam-

ple in slightly different ways. Database

design does allow for personal preference

and interpretations. The important thing

is that a database has no clear and obvi-

ous NF violations. Any of those will likely

lead to problems down the road.

167

Advanced SQL and MySQL

D
a

t
a

b
a

s
e

 D
e

s
i
g

n

Overruling Normalization

As much as ensuring that a database is in

3NF will help guarantee reliability and

viability, you won’t fully normalize every

database with which you work. Before

undermining the proper methods, though,

understand that doing so may have dev-

astating long-term consequences.

The two primary reasons to overrule nor-

malization are convenience and perform-

ance. Fewer tables are easier to manipulate

and comprehend than more. Further,

because of their more intricate nature, nor-

malized databases will most likely be slower

for updating, retrieving data from, and

modifying. Normalization, in short, is a

trade-off between data integrity/scalability

and simplicity/speed. On the other hand,

there are ways to improve your database’s

performance but few to remedy corrupted

data that can result from poor design.

Practice and experience will teach you

how best to model your database, but do

try to err on the side of abiding by the

normal forms, particularly as you are still

mastering the concept.

Creating the database
There are three final steps in designing the

database:

1. Double-checking that all the requisite

information is being stored.

2. Identifying the column types.

3. Naming all database elements.

Table 6.6 shows the final database design.

One column has been added to those shown

in Figure 6.5. Because one message might be

a reply to another, some method of indicating

that relationship is required. The solution is

to add a parent_id column to messages. If a

message is a reply, its parent_id value will be

the message_id of the original message (so

message_id is acting as a foreign key in this

same table). If a message has a parent_id of

0, then it’s a new thread, not a reply.

If you make any changes to the tables, you

must run through the normal forms one more

time to ensure that the database is still

normalized.

In terms of choosing the column types and

naming the tables and columns, this is cov-

ered in Chapter 4.

Once the schema is fully developed, it can be

created in MySQL, using the commands

shown in Chapter 5, “Introduction to SQL.”

To create the database:

1. Access MySQL using whatever client you

prefer.

Like the preceding chapter, this one will

also use the mysql client for all of its exam-

ples. You are welcome to use phpMyAdmin

or other tools as the interface to MySQL.

2. Create the forum database (Figure 6.7).

CREATE DATABASE forum;

USE forum;

Depending upon your setup, you may not

be allowed to create your own databases.

If not, just use the provided database and

add the following tables to it.

168

Chapter 6

D
a

t
a

b
a

s
e

 D
e

s
i
g

n

Figure 6.7 The first steps are to create and select the
database.

C o l u m n N a m e Ta b l e C o l u m n Ty p e

forum_id forums TINYINT

name forums VARCHAR(60)

message_id messages INT

forum_id messages TINYINT

parent_id messages INT

user_id messages MEDIUMINT

subject messages VARCHAR(100)

body messages LONGTEXT

date_entered messages TIMESTAMP

user_id users MEDIUMINT

username users VARCHAR(30)

pass users CHAR(40)

first_name users VARCHAR(20)

last_name users VARCHAR(40)

email users VARCHAR(80)

The forum Database with Types

Table 6.6 The final plan for the forum database. Note
that every integer column is UNSIGNED, the three primary
key columns are also designated as AUTO_INCREMENT,
and every column is set as NOT NULL.

3. Create the forums table (Figure 6.8).

CREATE TABLE forums (

forum_id TINYINT UNSIGNED NOT NULL
➝ AUTO_INCREMENT,

name VARCHAR(60) NOT NULL,

PRIMARY KEY (forum_id)

);

It does not matter in what order you cre-

ate your tables, but I’ll make the forums

table first. Remember that you can enter

your SQL queries over multiple lines for

convenience.

This table only contains two columns

(which will happen frequently in a nor-

malized database). Because I don’t expect

there to be a lot of forums, the primary

key is a really small type (TINYINT). If you

wanted to add descriptions of each

forum, a VARCHAR(255) column could be

added to this table.

4. Create the messages table (Figure 6.9).

CREATE TABLE messages (

message_id INT UNSIGNED

NOT NULL AUTO_INCREMENT,

forum_id TINYINT UNSIGNED NOT NULL,

parent_id INT UNSIGNED NOT NULL,

user_id MEDIUMINT UNSIGNED NOT NULL,

subject VARCHAR(100) NOT NULL,

body LONGTEXT NOT NULL,

date_entered TIMESTAMP NOT NULL,

PRIMARY KEY (message_id)

);

The primary key for this table has to be

big, as it could have lots and lots of

records. The three foreign key columns—

forum_id, parent_id, and user_id—will all

be the same size and type as their pri-

mary key counterparts. The subject is

limited to 100 characters and the body of

each message can be a lot of text. The

date_entered field is a TIMESTAMP type. It

will store both the date and the time that

a record is added, and be automatically

updated to the current date and time

when the record is inserted (this is how

TIMESTAMP behaves).

169

Advanced SQL and MySQL

D
a

t
a

b
a

s
e

 D
e

s
i
g

n

Figure 6.8 Creating the first table.

continues on next page

Figure 6.9 Creating the second table.

5. Create the users table (Figure 6.10).

CREATE TABLE users (

user_id MEDIUMINT UNSIGNED NOT NULL
›AUTO_INCREMENT,

username VARCHAR(30) NOT NULL,

pass CHAR(40) NOT NULL,

first_name VARCHAR(20) NOT NULL,

last_name VARCHAR(40) NOT NULL,

email VARCHAR(80) NOT NULL,

PRIMARY KEY (user_id)

);

Most of the columns here mimic those in

the sitename database’s users table, created

in the preceding two chapters. The pass

column is defined as CHAR(40), because

the SHA1() function will be used and it

always returns a string 40 characters long

(see Chapter 5).

6. If desired, confirm the database’s struc-

ture (Figure 6.11).

SHOW TABLES;

SHOW COLUMNS FROM forums;

SHOW COLUMNS FROM messages;

SHOW COLUMNS FROM users;

This step is optional because MySQL

reports on the success of each query as it

is entered. But it’s always nice to remind

yourself of a database’s structure.

✔ Tip

■ When you have a primary key–foreign

key link (like forum_id in forums to

forum_id in messages), both columns

should be of the same type (in this case,

TINYINT UNSIGNED NOT NULL).

170

Chapter 6

D
a

t
a

b
a

s
e

 D
e

s
i
g

n

Figure 6.10 The database’s third and final table. Figure 6.11 Check the structure of any database or table
using SHOW.

Populating the database
In Chapter 15, a Web-based interface to the

message board will be written in PHP. That

interface will be the standard way to popu-

late the database (i.e., register users and post

messages). But there’s still a lot to learn to get

to that point, so the database has to be pop-

ulated using a MySQL client application. You

can follow these steps or download the SQL

commands from the book’s corresponding

Web site (www.DMCInsights.com/phpmysql3/,

click Downloads).

To populate the database:

1. Add some new records to the forums

table (Figure 6.12).

INSERT INTO forums (name) VALUES

('MySQL'), ('PHP'), ('Sports'),

('HTML'), ('CSS'), ('Kindling');

Since the messages table relies on values

retrieved from both the forums and users

tables, those two need to be populated

first. With this INSERT command, only the

name column must be provided a value

(the table’s forum_id column will be given

an automatically incremented integer

by MySQL).

2. Add some records to the users table

(Figure 6.13).

INSERT INTO users (username, pass,

first_name, last_name, email) VALUES

('troutster', SHA1('mypass'),

'Larry', 'Ullman', 'lu@example.com'),

('funny man', SHA1('monkey'),

'David', 'Brent', 'db@example.com'),

('Gareth', SHA1('asstmgr'), 'Gareth',

'Keenan', 'gk@example.com');

If you have any questions on the INSERT
syntax or use of the SHA1() function here,

see Chapter 5.

171

Advanced SQL and MySQL

D
a

t
a

b
a

s
e

 D
e

s
i
g

n

Figure 6.12 Adding records to the forums table.

Figure 6.13 Adding records to the users table. continues on next page

3. Add new records to the messages table

(Figure 6.14).

SELECT * FROM forums;

SELECT user_id, username FROM users;

INSERT INTO messages (forum_id,
➝ parent_id, user_id, subject, body)
➝ VALUES

(1, 0, 1, 'Question about
➝ normalization.', 'I\'m confused
➝ about normalization. For the second
➝ normal form (2NF), I read...'),

(1, 0, 2, 'Database Design', 'I\'m
➝ creating a new database and am
➝ having problems with the structure.
➝ How many tables should I have?...'),

(1, 2, 1, 'Database Design', 'The
➝ number of tables your database
➝ includes...'),

(1, 3, 2, 'Database Design', 'Okay,
➝ thanks!'),

(2, 0, 3, 'PHP Errors', 'I\'m using
➝ the scripts from Chapter 3 and I
➝ can\'t get the first calculator
➝ example to work. When I submit the
➝ form...');

Because two of the fields in the messages

table (forum_id and user_id) relate to

values in other tables, you need to know

those values before inserting new records

into this table. For example, when the

troutocity user creates a new message in

the MySQL forum, it will have a forum_id

of 1 and a user_id of 1.

This is further complicated by the parent_id

column, which should store the message_id

to which the new message is a reply. The

second message added to the database

will have a message_id of 2, so replies to

that message need a parent_id of 2.

With your PHP scripts—once you’ve cre-

ated an interface for this database, this

process will be much easier, but it’s

important to comprehend the theory in

SQL terms first.

You should also notice here that you don’t

need to enter a value for the date_entered
field. MySQL will automatically insert the

current date and time for this TIMESTAMP
column.

4. Repeat Steps 1 through 3 to populate the

database.

The rest of the examples in this chapter will

use the populated database. You’ll probably

want to download the SQL commands from

the book’s corresponding Web site, although

you can populate the tables with your own

examples and then just change the queries

in the rest of the chapter accordingly.

172

Chapter 6

D
a

t
a

b
a

s
e

 D
e

s
i
g

n

Figure 6.14 Normalized
databases will often require
you to know values from one
table in order to enter records
into another. Populating the
messages table requires
knowing foreign key values
from users and forums.

Performing Joins
Because relational databases are more com-

plexly structured, they sometimes require

special query statements to retrieve the

information you need most. For example, if

you wanted to know what messages are in

the kindling forum, you would need to first

find the forum_id for kindling, and then use

that number to retrieve all the records from

the messages table that have that forum_id.

This one simple (and, in a forum, often nec-

essary) task would require two separate

queries. By using a join, you can accomplish

all of that in one fell swoop.

A join is an SQL query that uses two or more

tables, and produces a virtual table of results.

The two main types of joins are inner and

outer (there are subtypes within both).

An inner join returns all of the records from

the named tables wherever a match is made.

For example, to find every message in the

kindling forum, the inner join would be writ-

ten as (Figure 6.15)

SELECT * FROM messages INNER JOIN forums

ON messages.forum_id = forums.forum_id

WHERE forums.name = 'kindling'

This join is selecting every column from

both tables under two conditions. First, the

forums.name column must have a value of

kindling (this will return the forum_id of 6).

Second, the forum_id value in the forums

table must match the forum_id value in the

messages table. Because of the equality com-

parison being made across both tables

(messages.forum_id = forums.forum_id),

this is known as an equijoin.

Inner joins can also be written without for-

mally using the term INNER JOIN:

SELECT * FROM messages, forums WHERE

messages.forum_id = forums.forum_id

AND forums.name = 'kindling'

When selecting from multiple tables, you

must use the dot syntax (table.column) if the

tables named in the query have columns

with the same name. This is normally the

case when dealing with relational databases

because a primary key from one table will

have the same name as a foreign key in

another. If you are not explicit when refer-

encing your columns, you’ll get an error

(Figure 6.16).

173

Advanced SQL and MySQL

P
e

r
f
o

r
m

i
n

g
 J

o
i
n

s

continues on next page

Figure 6.15 This join returns every column from both tables where the forum_id values represent the kindling forum (6).

Figure 6.16 Generically referring to a column name present
in multiple tables will cause an ambiguity error. In this query,
referring to just name instead of forums.name would be
fine, but it’s still best to be precise.

An outer join differs from an inner join in

that an outer join could return records not

matched by a conditional. There are three

outer join subtypes: left, right, and full. An

example of a left join is

SELECT * FROM forums LEFT JOIN messages
➝ ON forums.forum_id = messages.forum_id

The most important consideration with left

joins is which table gets named first. In this

example, all of the forums records will be

returned along with all of the messages infor-

mation, if a match is made. If no messages

records match a forums row, then NULL values

will be returned instead (Figure 6.17).

In both inner and outer joins, if the column

in both tables being used in the equality

comparison has the same name, you can

simplify your query with USING:

SELECT * FROM messages INNER JOIN forums

USING (forum_id)

WHERE forums.name = 'kindling'

SELECT * FROM forums LEFT JOIN messages
➝ USING (forum_id)

Before running through some examples, two

last notes. First, because of the complicated

syntax with joins, the SQL concept of an

alias—introduced in Chapter 5—will come

in handy when writing them. Second, because

joins often return so much information, it’s

normally best to specify exactly what columns

you want returned, instead of selecting them

all (Figure 6.17, in its uncropped form, couldn’t

even fit within my 22" monitor’s screen!).

174

Chapter 6

P
e

r
f
o

r
m

i
n

g
 J

o
i
n

s

Figure 6.17 An outer join returns more records than an inner join because all of the first table’s
records will be returned. This join returns every forum name, even if there are no messages in a
forum (like Modern Dance at bottom). Also, to make it legible, I’ve cropped this image, omitting
the body and date_entered columns from the result.

To use joins:

1. Retrieve the forum name and message

subject for every record in the messages

table (Figure 6.18).

SELECT f.name, m.subject FROM forums

AS f INNER JOIN messages AS m

USING (forum_id) ORDER BY f.name;

This query, which contains an inner join,

will effectively replace the forum_id value

in the messages table with the correspon-

ding name value from the forums table

for each of the records in the messages

table. The end result is that it displays

the textual version of the forum name for

each message subject.

Notice that you can still use ORDER BY
clauses in joins.

2. Retrieve the subject and date entered

value for every message posted by the

user funny man (Figure 6.19).

SELECT m.subject,
➝ DATE_FORMAT(m.date_entered, '%M %D,
➝ %Y') AS Date FROM users

AS u INNER JOIN messages AS m

USING (user_id)

WHERE u.username = 'funny man';

This join also uses two tables, users and

messages. The linking column for the

two tables is user_id, so that’s placed in

the USING clause. The WHERE conditional

identifies the user being targeted, and

the DATE_FORMAT() function will help for-

mat the date_entered value.

175

Advanced SQL and MySQL

P
e

r
f
o

r
m

i
n

g
 J

o
i
n

s

Figure 6.18 A basic inner join that returns only two
columns of values.

Figure 6.19 A slightly more complicated version of an
inner join, using the users and messages tables.

continues on next page

3. Retrieve the message ID, subject, and

forum name for every message posted by

the user troutster (Figure 6.20).

SELECT m.message_id, m.subject,

f.name FROM users AS u INNER JOIN

messages AS m USING (user_id)

INNER JOIN forums AS f

USING (forum_id)

WHERE u.username = 'troutster';

This join is similar to the one in Step 2,

but takes things a step further by incor-

porating a third table. Take note of how a

three-table inner join is written and how

the aliases are used for shorthand when

referring to the three tables and their

columns.

4. Retrieve the username, message sub-

ject, and forum name for every user

(Figure 6.21).

SELECT u.username, m.subject,

f.name FROM users AS u LEFT JOIN

messages AS m USING (user_id)

LEFT JOIN forums AS f

USING (forum_id);

If you were to run an inner join similar to

this, a user who had not yet posted a

message would not be listed (Figure 6.22).

So an outer join is required to be inclusive

of all users. Note that the fully included

table (here, users), must be the first table

listed in a left join.

176

Chapter 6

P
e

r
f
o

r
m

i
n

g
 J

o
i
n

s

Figure 6.21 This left join returns for every user, every posted
message subject, and every forum name. If a user hasn’t
posted a message (like finchy at the bottom), their subject
and forum name values will be NULL.

Figure 6.20 An inner join across all three tables.

✔ Tips

■ You can even join a table with itself

(a self-join)!

■ Joins can be created using conditionals

involving any columns, not just the pri-

mary and foreign keys, although that’s

most common.

■ You can perform joins across multiple

databases using the database.table.column

syntax, as long as every database is on

the same server (you cannot do this

across a network) and you’re connected

as a user with permission to access every

database involved.

■ Joins that do not include a WHERE clause

(e.g., SELECT * FROM urls, url_associations)

are called full joins and will return every

record from both tables. This construct

can have unwieldy results with larger tables.

■ A NULL value in a column referenced in

a join will never be returned, because

NULL matches no other value, includ-

ing NULL.

177

Advanced SQL and MySQL

P
e

r
f
o

r
m

i
n

g
 J

o
i
n

s

Figure 6.22 This inner join will not return any users who
haven’t yet posted messages (see finchy at the bottom of
Figure 6.21).

Grouping Selected Results
In the preceding chapter, two different

clauses—ORDER BY and LIMIT—were intro-

duced as ways of affecting the returned

results. The former dictates the order in

which the selected rows are returned; the

latter dictates which of the selected rows are

actually returned. This next clause, GROUP
BY, is different in that it works by grouping

the returned data into similar blocks of

information. For example, to group all of the

messages by forum, you would use

SELECT * FROM messages GROUP BY forum_id

The returned data is altered in that you’ve

now aggregated the information instead of

returned just the specific itemized records.

So where you might have lots of messages in

each forum, the GROUP BY would return all

those messages as one row. That particular

example is not particularly useful, but it

demonstrates the concept.

You will often use one of several aggregate

functions either with a GROUP BY clause or

without. Table 6.7 lists these.

You can apply combinations of WHERE, ORDER
BY, and LIMIT conditions to a GROUP BY, nor-

mally structuring your query like this:

SELECT what_columns FROM table

WHERE condition GROUP BY column

ORDER BY column LIMIT x, y

To group data:

1. Count the number of registered users

(Figure 6.23).

SELECT COUNT(user_id) FROM users;

COUNT() is perhaps the most popular group-

ing function. With it, you can quickly

count records, like the number of records

in the users table here. Notice that not all

queries using the aggregate functions

necessarily have GROUP BY clauses.

178

Chapter 6

G
r

o
u

p
i
n

g
 S

e
l
e

c
t

e
d

 R
e

s
u

l
t

s

Figure 6.23 This grouping query counts the
number of user_id values in the users table.

F u n c t i o n R e t u r n s

AVG() The average of the values in the
column.

COUNT() The number of values in a column.
GROUP_CONCAT() The concatenation of a column’s

values.
MAX() The largest value in a column.
MIN() The smallest value in a column.
SUM() The sum of all the values in a

column.

Grouping Functions

Table 6.7 MySQL’s grouping functions.

3. Find the top two users that have posted

the most (Figure 6.25).

SELECT username,

COUNT(message_id) AS Number

FROM users LEFT JOIN messages AS m

USING (user_id) GROUP BY (m.user_id)

ORDER BY Number DESC LIMIT 2;

With grouping, you can order the results

as you would with any other query.

Assigning the value of COUNT(*) as the

alias Number facilitates this process.

✔ Tips

■ NULL is a peculiar value, and it’s interest-

ing to know that GROUP BY will group

NULL values together, since they have the

same nonvalue.

■ You have to be careful how you apply the

COUNT() function, as it only counts non-

NULL values. Be certain to use it on either

every column (*) or on columns that will

not contain NULL values (like the primary

key). That being said, if the query in

Step 2 and Figure 6.24 applied COUNT() to

every column (*) instead of just message_id,

then users who did not post would erro-

neously show a COUNT(*) of 1, because the

whole query returns one row for that user.

■ The GROUP BY clause, and the functions

listed here, take some time to figure out,

and MySQL will report an error whenever

your syntax is inapplicable. Experiment

within the mysql client to determine the

exact wording of any query you might

want to run from a PHP script.

■ A related clause is HAVING, which is like

a WHERE condition applied to a group.

179

Advanced SQL and MySQL

G
r

o
u

p
i
n

g
 S

e
l
e

c
t

e
d

 R
e

s
u

l
t

s

Figure 6.24 This GROUP BY query counts the number of
times each user has posted a message.

2. Count the number of times each user has

posted a message (Figure 6.24).

SELECT username,

COUNT(message_id) AS Number

FROM users LEFT JOIN messages AS m

USING (user_id) GROUP BY (m.user_id);

This query is an extension of that in Step

1, but instead of counting users, it counts

the number of messages associated with

each user. A join allows the query to

select information from both tables. An

inner join is used so that users who have

not yet posted will also be represented.

Figure 6.25 An ORDER BY clause is added to sort the
most frequent posters by their number of listings. A
LIMIT clause cuts the result down to two.

Creating Indexes
Indexes are a special system that databases

use to improve the performance of SELECT
queries. Indexes can be placed on one or

more columns, of any data type, effectively

telling MySQL to pay particular attention to

those values.

MySQL allows for a minimum of 16 indexes

for each table, and each index can incorpo-

rate up to 15 columns. While a multicolumn

index may not seem obvious, it will come in

handy for searches frequently performed on

the same combinations of columns (e.g., first

and last name, city and state, etc.).

Although indexes are an integral part of any

table, not everything needs to be indexed.

While an index does improve the speed of

reading from databases, it slows down queries

that alter data in a database (because the

changes need to be recorded in the index).

Indexes are best used on columns

◆ That are frequently used in the WHERE
part of a query

◆ That are frequently used in an ORDER BY
part of a query

◆ That are frequently used as the focal

point of a join

◆ That have many different values (columns

with numerous repeating values ought

not to be indexed)

MySQL has four types of indexes: INDEX (the

standard), UNIQUE (which requires each row

to have a unique value for that column),

FULLTEXT (for performing FULLTEXT searches,

discussed later in this chapter), and PRIMARY
KEY (which is just a particular UNIQUE index

and one you’ve already been using). Note

that a column should only ever have a single

index on it, so choose the index type that’s

most appropriate.

With this in mind, let’s modify the forum

database tables by adding indexes to them.

Table 6.8 lists the indexes to be applied to

each column. Adding indexes to existing

tables requires use of the ALTER command,

as described in the sidebar.

180

Chapter 6

C
r

e
a

t
i
n

g
 I

n
d

e
x

e
s

C o l u m n N a m e Ta b l e I n d e x Ty p e

forum_id forums PRIMARY

name forums UNIQUE

message_id messages PRIMARY

forum_id messages INDEX

parent_id messages INDEX

user_id messages INDEX

body/subject messages FULLTEXT

date_entered messages INDEX

user_id users PRIMARY

username users UNIQUE

pass/username users INDEX

email users UNIQUE

The forum Database with Indexes

Table 6.8 The indexes to be used in the forum database.
Not every column will be indexed, and there are two
indexes created on a pair of columns: user.pass plus
user.username and messages.body plus messages.
subject.

Altering Tables

The ALTER SQL term is primarily used to modify the structure of an existing table. Commonly

this means adding, deleting, or changing the columns therein, but it also includes the addition

of indexes. An ALTER statement can even be used for renaming the table as a whole. While

proper database design should give you the structure you need, in the real world, making

alterations is commonplace. The basic syntax of ALTER is

ALTER TABLE tablename CLAUSE

There are many possible clauses; Table 6.9 lists the most common ones. As always, the MySQL

manual covers the topic in exhaustive detail.

To add an index to an existing table:

1. Add an index on the name column in the

forums table (Figure 6.26).

ALTER TABLE forums ADD UNIQUE(name);

The forums table already has a primary

key index on the forum_id. Since the name

may also be a frequently referenced field

and since its value should be unique for

every row, add a UNIQUE index to the table.

181

Advanced SQL and MySQL

C
r

e
a

t
i
n

g
 I

n
d

e
x

e
s

Table 6.9 Common variants on the ALTER command (where t represents the table’s name, c a column’s name, and i an
index’s name). See the MySQL manual for the full specifications.

ALTER TABLE Clauses
C l a u s e U s a g e M e a n i n g

ADD COLUMN ALTER TABLE t ADD COLUMN c TYPE Adds a new column to the end of the table.
CHANGE COLUMN ALTER TABLE t CHANGE COLUMN c c TYPE Allows you to change the data type and prop-

erties of a column.
DROP COLUMN ALTER TABLE t DROP COLUMN c Removes a column from a table, including all

of its data.
ADD INDEX ALTER TABLE t ADD INDEX i (c) Adds a new index on c.
DROP INDEX ALTER TABLE t DROP INDEX i Removes an existing index.
RENAME AS ALTER TABLE t RENAME AS new_t Changes the name of a table.

Figure 6.26 A unique index is placed on the name
column. This will improve the efficiency of certain
queries and protect against redundant entries.

continues on next page

2. Add indexes to the messages table

(Figure 6.27).

ALTER TABLE messages

ADD INDEX(forum_id),

ADD INDEX(parent_id),

ADD INDEX(user_id),

ADD FULLTEXT(body, subject),

ADD INDEX(date_entered);

This table contains the most indexes,

because it’s the most important table

and has three foreign keys (forum_id,

parent_id, and user_id), all of which

should be indexed. The body and subject

columns get a FULLTEXT index, to be used

in FULLTEXT searches later in this chapter.

The date_entered column is indexed, as

it will be used in ORDER BY clauses (to

sort messages by date).

If you get an error message that the table

type doesn’t not support FULLTEXT indexes

(Figure 6.28), omit that one line from this

query and then see the next section of the

chapter for how to change a table’s type.

182

Chapter 6

C
r

e
a

t
i
n

g
 I

n
d

e
x

e
s

Figure 6.27 Several indexes are added to the
messages table. MySQL will report on the success of
the alteration and how many rows were affected
(which should be every row in the table).

Figure 6.28 FULLTEXT indexes cannot be used on all table types. If you see this error
message, read “Using Different Table Types” in this chapter for the solution.

3. Add indexes to the users table

(Figure 6.29).

ALTER TABLE users

ADD UNIQUE(username),

ADD INDEX(pass, username),

ADD UNIQUE(email);

The users table has two UNIQUE indexes

and one multicolumn index. UNIQUE
indexes are important here because you

don’t want two people trying to register

with the same username (which, among

other things, would make it impossible

to log in), nor do you want the same user

registering multiple times with the same

email address.

The index on the combination of the pass-

word and username columns will improve

the efficiency of login queries, when the

combination of those two columns will

be used in a WHERE conditional.

4. View the current structure of each table

(Figure 6.30).

DESCRIBE forums;

DESCRIBE messages;

DESCRIBE users;

The DESCRIBE SQL term will tell you infor-

mation about a table’s column names

and order, column types, and index types

(under Key). It also indicates whether or

not a field can be NULL, what default

value has been set (if any), and more.

183

Advanced SQL and MySQL

C
r

e
a

t
i
n

g
 I

n
d

e
x

e
s

Figure 6.29 The requisite indexes are added to the
third and final table.

Figure 6.30 To view the details of a
table’s structure, use DESCRIBE.
The Key column indicates the
indexes.

continues on next page

✔ Tips

■ You’ll get an error and the index will not

be created if you attempt to add a UNIQUE
index to a column that has duplicate values.

■ Indexes can be named when they

are created:

ALTER TABLE tablename

ADD INDEX indexname (columnname)

If no name is provided, the index will

take the name of the column to which it

is applied.

■ The word COLUMN in most ALTER statements

is optional.

■ Suppose you define an index on multiple

columns, like this:

ALTER TABLE tablename

ADD INDEX (col1, col2, col3)

This effectively creates an index for

searches on col1, on col1 and col2 together,

or on all three columns together. It does

not provide an index for searching just

col2 or col3 or those two together.

184

Chapter 6

C
r

e
a

t
i
n

g
 I

n
d

e
x

e
s

Using Different Table Types
The MySQL database application supports

several different types of tables (a table’s

type is also called its storage engine). Each

table type supports different features, has

its own limits (in terms of how much data

it can store), and even performs better or

worse under certain situations. Still, how

you interact with any table type—in terms

of running queries—is generally consistent

across them all.

The most important table type is MyISAM,

which is the default table type on all operating

systems except for Windows. MyISAM tables

are great for most applications, handling

SELECTs and INSERTs very quickly. The MyISAM

storage engine cannot handle transactions,

though, which is its main drawback.

After MyISAM, the next most common

storage engine is InnoDB, which is also the

default table type for Windows installations

of MySQL. InnoDB tables can be used for

transactions and perform UPDATEs nicely. But

the InnoDB storage engine is generally slower

than MyISAM and requires more disk space

on the server. Also, an InnoDB table does

not support FULLTEXT indexes (which is why,

if you’re running Windows, you might have

seen the error message in Figure 6.28).

To specify the storage engine when you define

a table, add a clause to the end of the crea-

tion statement:

CREATE TABLE tablename (

column1name COLUMNTYPE,

column1name COLUMNTYPE…

) ENGINE = INNODB

If you don’t specify a storage engine when

creating tables, MySQL will use the default

type for that MySQL server.

To change the type of an existing table—

which is perfectly acceptable—use an ALTER
command:

ALTER TABLE tablename ENGINE = MYISAM

Because the next example in this chapter

will require a MyISAM table, let’s run through

the steps necessary for making sure that the

messages table is the correct type. The first

couple of steps will show you how to see the

current storage engine being used (as you may

not need to change the messages table’s type).

185

Advanced SQL and MySQL

U
s

i
n

g
 D

i
f
f
e

r
e

n
t

 T
a

b
l
e

 T
y

p
e

s

To change a table’s type:

1. View the current table information

(Figure 6.31).

SHOW TABLE STATUS;

The SHOW TABLE STATUS command returns

all sorts of useful information about a

database’s tables. The returned result will

be hard to read, though, as it is a wide

table displayed over multiple lines. What

you’re looking for is this: The first item

on each row is the table’s name, and the

second item is the table’s engine, or table

type. The engine will most likely be

either MyISAM (Figure 6.31) or InnoDB

(Figure 6.32).

2. If necessary, change the messages table

to MyISAM (Figure 6.33).

ALTER TABLE messages ENGINE=MYISAM;

If the results in Step 1 (Figures 6.31 and

6.32) indicate that the engine is anything

other than MyISAM, you’ll need to change

it over to MyISAM using this command

(capitalization doesn’t matter). For me,

using the default MySQL installation and

configuration, changing the table’s type

wasn’t necessary on Mac OS X but was

on Windows.

186

Chapter 6

U
s

i
n

g
 D

i
f
f
e

r
e

n
t

 T
a

b
l
e

 T
y

p
e

s

Figure 6.31 Before altering a table’s type, view its current type
with the SHOW TABLE STATUS command. This is a cropped version
of the results using MySQL on Mac OS X.

Figure 6.32 The SHOW TABLE STATUS query (using MySQL on Windows) shows that all three
tables are, in fact, InnoDB, not MyISAM.

3. If desired, confirm the engine change by

rerunning the SHOW TABLE STATUS command.

✔ Tips

■ To make any query’s results easier to view

in the mysql client, you can add the \G
parameter (Figure 6.34):

SHOW TABLE STATUS \G

This flag states that the table of results

should be displayed vertically instead of

horizontally. Notice that you don’t need

to use a terminating semicolon now,

because the \G ends the command.

■ The same database can have tables of

different types. This may be true for your

forum database now (depending upon

your default table type). You may also see

this with an e-commerce database that

uses MyISAM for customers and prod-

ucts but InnoDB for orders (to allow

for transactions).

187

Advanced SQL and MySQL

U
s

i
n

g
 D

i
f
f
e

r
e

n
t

 T
a

b
l
e

 T
y

p
e

s

Figure 6.34 For a more legible version of a query’s results, add
the \G option in the mysql client.

Figure 6.33 Successfully changing a table’s type (or
storage engine) using an ALTER command.

Performing FULLTEXT
Searches
In Chapter 5, the LIKE keyword was introduced

as a way to perform somewhat simple string

matches like

SELECT * FROM users

WHERE last_name LIKE 'Smith%'

This type of conditional is effective enough

but is still very limiting. For example, it would

not allow you to do Google-like searches

using multiple words. For those kinds of sit-

uations, you need FULLTEXT searches.

FULLTEXT searches require a FULLTEXT index,

which itself requires a MyISAM table. These

next examples will use the messages table in

the forum database. If your messages table is

not of the MyISAM type and/or does not have

a FULLTEXT index on the body and subject

columns, follow the steps in the previous few

pages to make that change before proceeding.

✔ Tips

■ Inserting records into tables with FULLTEXT
indexes can be much slower because of

the complex index that’s required.

■ You can add FULLTEXT indexes on multiple

columns, if those columns will all be

used in searches.

■ FULLTEXT searches can successfully be

used in a simple search engine. But a

FULLTEXT index can only be applied to

a single table at a time, so more elaborate

Web sites, with content stored in multi-

ple tables, would benefit from using more

formal search engines.

Performing Basic FULLTEXT
Searches
Once you’ve established a FULLTEXT index on

a column or columns, you can start query-

ing against it, using MATCH…AGAINST in a

WHERE conditional:

SELECT * FROM tablename WHERE MATCH

(columns) AGAINST (terms)

MySQL will return matching rows in order

of a mathematically calculated relevance,

just like a search engine. When doing so,

certain rules apply:

◆ Strings are broken down into their indi-

vidual keywords.

◆ Keywords less than four characters long

are ignored.

◆ Very popular words, called stopwords,

are ignored.

◆ If more than fifty percent of the records

match the keywords, no records are

returned.

This last fact is problematic to many users

as they begin with FULLTEXT searches and

wonder why no results are retrieved. When

you have a sparsely populated table, there

just won’t be sufficient records for MySQL

to return relevant results.

188

Chapter 6

P
e

r
f
o

r
m

i
n

g
 F

U
L

L
T

E
X

T
S

e
a

r
c

h
e

s

This is a very simple example that will

return some results as long as at least one

and less than fifty percent of the records

in the messages table have the word

“database” in their body or subject. Note

that the columns referenced in MATCH
must be the same as those on which the

FULLTEXT index was made. In this case,

you could use either body, subject or

subject, body, but you could not use

just body or just subject (Figure 6.36).

189

Advanced SQL and MySQL

P
e

r
f
o

r
m

i
n

g
 F

U
L

L
T

E
X

T
S

e
a

r
c

h
e

s

Figure 6.35 A basic FULLTEXT search.

Figure 6.36 A FULLTEXT query can only be run on the same column or
combination of columns that the FULLTEXT index was created on. With
this query, even though the combination of body and subject has a
FULLTEXT index, attempting to run the match on just subject will fail.

continues on next page

To perform FULLTEXT searches:

1. Thoroughly populate the messages table,

focusing on adding lengthy bodies.

Once again, SQL INSERT commands can

be downloaded from this book’s corre-

sponding Web site.

2. Run a simple FULLTEXT search on the

word database (Figure 6.35).

SELECT subject, body FROM messages

WHERE MATCH (body, subject)

AGAINST('database');

3. Run the same FULLTEXT search while also

showing the relevance (Figure 6.37).

SELECT subject, body, MATCH (body,

subject) AGAINST('database') AS R

FROM messages WHERE MATCH (body,
➝ subject) AGAINST('database');

If you use the same MATCH…AGAINST
expression as a selected value, the actual

relevance will be returned.

4. Run a FULLTEXT search using multiple

keywords (Figure 6.38).

SELECT subject, body FROM messages

WHERE MATCH (body, subject)

AGAINST('html xhtml');

With this query, a match will be made if

the subject or body contains either word.

Any record that contains both words will

be ranked higher.

✔ Tips

■ Remember that if a FULLTEXT search returns

no records, this means that either no

matches were made or that over half of

the records match.

■ For sake of simplicity, all of the queries in

this section are simple SELECT statements.

You can certainly use FULLTEXT searches

within joins or more complex queries.

■ MySQL comes with several hundred stop-

words already defined. These are part of

the application’s source code.

■ The minimum keyword length—four

characters by default—is a configuration

setting you can change in MySQL.

■ FULLTEXT searches are case-insensitive

by default.

190

Chapter 6

P
e

r
f
o

r
m

i
n

g
 F

U
L

L
T

E
X

T
S

e
a

r
c

h
e

s

Figure 6.37 The relevance of a FULLTEXT search can be selected, too. In this case, you’ll see that the two records with
the word “database” in both the subject and body have higher relevance than the record that contains the word in
just the subject.

Figure 6.38 Using the FULLTEXT search, you can easily find messages that contain multiple keywords.

Performing Boolean FULLTEXT
Searches
The basic FULLTEXT search is nice, but a

more sophisticated FULLTEXT search can be

accomplished using its Boolean mode. To do

so, add the phrase IN BOOLEAN MODE to the

AGAINST clause:

SELECT * FROM tablename WHERE

MATCH(columns) AGAINST('terms' IN BOOLEAN

MODE)

Boolean mode has a number of operators

(Table 6.10) to tweak how each keyword is

treated:

SELECT * FROM tablename WHERE

MATCH(columns) AGAINST('+database

-mysql' IN BOOLEAN MODE)

In that example, a match will be made if the

word database is found and mysql is not

present. Alternatively, the tilde (~) is used as

a milder form of the minus sign, meaning

that the keyword can be present in a match,

but such matches should be considered

less relevant.

The wildcard character (*) matches variations

on a word, so cata* matches catalog, catalina,

and so on. Two operators explicitly state

what keywords are more (>) or less (<) impor-

tant. Finally, you can use double quotation

marks to hunt for exact phrases and paren-

theses to make subexpressions.

The following query would look for records

with the phrase Web develop with the word

html being required and the word JavaScript

detracting from a match’s relevance:

SELECT * FROM tablename WHERE

MATCH(columns) AGAINST('>"Web develop"

+html ~JavaScript' IN BOOLEAN MODE)

When using Boolean mode, there are several

differences as to how FULLTEXT searches work:

◆ If a keyword is not preceded by an opera-

tor, the word is optional but a match will

be ranked higher if it is present.

◆ Results will be returned even if more

than fifty percent of the records match

the search.

◆ The results are not automatically sorted

by relevance.

Because of this last fact, you’ll also want to

sort the returned records by their relevance,

as demonstrated in the next sequence of

steps. One important rule that’s the same

with Boolean searches is that the minimum

word length (four characters by default) still

applies. So trying to require a shorter word

using a plus sign (+php) still won’t work.

191

Advanced SQL and MySQL

P
e

r
f
o

r
m

i
n

g
 F

U
L

L
T

E
X

T
S

e
a

r
c

h
e

s

O p e r a t o r M e a n i n g

+ Must be present in every match
- Must not be present in any match
~ Lowers a ranking if present
* Wildcard
< Decrease a word’s importance
> Increase a word’s importance
"" Must match the exact phrase
() Create subexpressions

Boolean Mode Operators

Table 6.10 Use these operators to fine-tune your
FULLTEXT searches.

To perform FULLTEXT Boolean
searches:

1. Run a simple FULLTEXT search that

finds HTML, XHTML, or (X)HTML

(Figure 6.39).

SELECT subject, body FROM

messages WHERE MATCH(body, subject)

AGAINST('*HTML' IN BOOLEAN MODE)\G

The term HTML may appear in messages

in many formats, including HTML,

XHTML, or (X)HTML. This Boolean mode

query will find all of those, thanks to the

wildcard character (*).

To make the results easier to view, I’m using

the \G trick mentioned earlier in the chap-

ter, which tells the mysql client to return

the results vertically, not horizontally.

2. Find matches involving databases,

with an emphasis on normal forms

(Figure 6.40).

SELECT subject, body FROM messages

WHERE MATCH (body, subject)

AGAINST('>"normal form"* +database*'

IN BOOLEAN MODE)\G

This query first finds all records that have

database, databases, etc. and normal

form, normal forms, etc. in them. The

database* term is required (as indicated

by the plus sign), but emphasis is given

to the normal form clause (which is pre-

ceded by the greater-than sign).

192

Chapter 6

P
e

r
f
o

r
m

i
n

g
 F

U
L

L
T

E
X

T
S

e
a

r
c

h
e

s

Figure 6.39 A simple
Boolean-mode
FULLTEXT search.

Figure 6.40 This
search looks for
variations on two
different keywords,
ranking the one
higher than the other.

✔ Tips

■ MySQL 5.1.7 added another FULLTEXT
search mode: natural language. This is

the default mode, if no other mode (like

Boolean) is specified.

■ The WITH QUERY EXPANSION modifier can

increase the number of returned results.

Such queries perform two searches and

return one result set. It bases a second

search on terms found in the most rele-

vant results of the initial search. While a

WITH QUERY EXPANSION search can find

results that would not otherwise have

been returned, it can also return results

that aren’t at all relevant to the original

search terms.

193

Advanced SQL and MySQL

P
e

r
f
o

r
m

i
n

g
 F

U
L

L
T

E
X

T
S

e
a

r
c

h
e

s

Database Optimization

The performance of your database is pri-

marily dependent upon its structure and

indexes. When creating databases, try to

◆ Choose the best storage engine

◆ Use the smallest data type possible for

each column

◆ Define columns as NOT NULL whenever

possible

◆ Use integers as primary keys

◆ Judiciously define indexes, selecting

the correct type and applying them to

the right column or columns

◆ Limit indexes to a certain number of

characters, if applicable

Along with these tips, there are two simple

techniques for optimizing databases. One

way to improve MySQL’s performance is

to run an OPTIMIZE command on such

tables. This query will rid a table of any

unnecessary overhead, thereby speeding

any interactions with it.

OPTIMIZE TABLE tablename

Running this command is particularly

beneficial after changing a table via an

ALTER command.

To improve a query’s efficiency, it helps to

understand how exactly MySQL will run

that query. This can be accomplished using

the EXPLAIN SQL keyword. Explaining

queries is a very advanced topic, so see

the MySQL manual or search the Web for

more information.

Performing Transactions
A database transaction is a sequence of queries

run during a single session. For example, you

might insert a record into one table, insert

another record into another table, and

maybe run an update. Without using trans-

actions, each individual query takes effect

immediately and cannot be undone. With

transactions, you can set start and stop

points and then enact or retract all of the

queries as needed (for example, if one query

failed, all of the queries can be undone).

Commercial interactions commonly require

transactions, even something as basic as

transferring $100 from my bank account to

yours. What seems like a simple process is

actually several steps:

◆ Confirm that I have $100 in my account.

◆ Decrease my account by $100.

◆ Increase the amount of money in your

account by $100.

◆ Verify that the increase worked.

If any of the steps failed, I would want to

undo all of them. For example, if the money

couldn’t be deposited in your account, it

should be returned to mine until the entire

transaction can go through.

To perform transactions with MySQL, you

must use the InnoDB table type (or storage

engine). To begin a new transaction in the

mysql client, type

START TRANSACTION;

Once your transaction has begun, you can

now run your queries. Once you have fin-

ished, you can either enter COMMIT to enact

all of the queries or ROLLBACK to undo the

effect of all of the queries.

After you have either committed or rolled

back the queries, the transaction is considered

complete, and MySQL returns to an autocom-

mit mode. This means that any queries you

execute take immediate effect. To start another

transaction, just type START TRANSACTION.

It is important to know that certain types of

queries cannot be rolled back. Specifically

those that create, alter, truncate (empty), or

delete tables or that create or delete databases

cannot be undone. Furthermore, using such

a query has the effect of committing and

ending the current transaction.

Finally, you should understand that transac-

tions are particular to each connection. So

one user connected through the mysql client

has a different transaction than another

mysql client user, both of which are different

than a connected PHP script.

With this in mind, I’ll run through a very

trivial use of transactions within the mysql

client here. In Chapter 17, “Example—

E-Commerce,” transactions will be run

through a PHP script.

194

Chapter 6

P
e

r
f
o

r
m

i
n

g
 T

r
a

n
s

a
c

t
i
o

n
s

To perform transactions:

1. Connect to the mysql client and select

the test database.

Since this is just a demonstration, I’ll use

the all-purpose test database.

2. Create a new accounts table (Figure 6.41).

CREATE TABLE accounts (

id INT UNSIGNED NOT NULL
➝ AUTO_INCREMENT,

name VARCHAR(40) NOT NULL,

balance DECIMAL(10,2) NOT NULL
➝ DEFAULT 0.0,

PRIMARY KEY (id)

) ENGINE=InnoDB;

Obviously this isn’t a complete table or

database design. For starters, normaliza-

tion would require that the user’s name

be separated into multiple columns, if

not stored in a separate table altogether.

But for demonstration purposes, this will

be fine.

The most important aspect of the table

definition is its engine—InnoDB, which

allows for transactions.

3. Populate the table.

INSERT INTO accounts (name, balance)

VALUES ('Sarah Vowell', 5460.23),

('David Sedaris', 909325.24),

('Kojo Nnamdi', 892.00);

You can use whatever names and values

here that you want. The important thing

to note is that MySQL will automatically

commit this query, as no transaction has

begun yet.

195

Advanced SQL and MySQL

P
e

r
f
o

r
m

i
n

g
 T

r
a

n
s

a
c

t
i
o

n
s

Figure 6.41 A new table is created within the test database for the
purposes of demonstrating transactions.

continues on next page

4. Begin a transaction and show the table’s

current contents (Figure 6.42).

START TRANSACTION;

SELECT * FROM accounts;

5. Subtract $100 from David Sedaris’ (or any

user’s) account.

UPDATE accounts

SET balance = (balance-100)

WHERE id=2;

Using an UPDATE query, a little math, and

a WHERE conditional, I can subtract 100

from a balance. Although MySQL will

indicate that one row was affected, the

effect is not permanent until the transac-

tion is committed.

6. Add $100 to Sarah Vowell’s account.

UPDATE accounts

SET balance = (balance+100)

WHERE id=1;

This is the opposite of Step 5, as if $100

were being transferred from the one per-

son to the other.

7. Confirm the results (Figure 6.43).

SELECT * FROM accounts;

As you can see in the figure, the one bal-

ance is 100 more and the other is 100 less

then they originally were (Figure 6.42).

196

Chapter 6

P
e

r
f
o

r
m

i
n

g
 T

r
a

n
s

a
c

t
i
o

n
s

Figure 6.42 A transaction is begun and the existing
table records are shown.

Figure 6.43 Two UPDATE queries are executed and the
results are viewed.

8. Roll back the transaction.

ROLLBACK;

To demonstrate how transactions can

be undone, I’ll undo the effects of these

queries. The ROLLBACK command

returns the database to how it was prior

to starting the transaction. The com-

mand also terminates the transaction,

returning MySQL to its autocommit

mode.

9. Confirm the results (Figure 6.44).

SELECT * FROM accounts;

The query should reveal the contents of

the table as they original were.

10. Repeat Steps 4 through 6.

To see what happens when the transac-

tion is committed, the two UPDATE queries

will be run again. Be certain to start the

transaction first, though, or the queries

will automatically take effect!

11. Commit the transaction and confirm

the results (Figure 6.45).

COMMIT;

SELECT * FROM accounts;

Once you enter COMMIT, the entire trans-

action is permanent, meaning that any

changes are now in place. COMMIT also

ends the transaction, returning MySQL

to autocommit mode.

197

Advanced SQL and MySQL

P
e

r
f
o

r
m

i
n

g
 T

r
a

n
s

a
c

t
i
o

n
s

Figure 6.44 Because I used the ROLLBACK command,
the potential effects of the UPDATE queries were ignored.

Figure 6.45 Invoking the COMMIT command makes the
transaction’s effects permanent.

continues on next page

✔ Tips

■ One of the great features of transactions

is that they offer protection should a ran-

dom event occur, such as a server crash.

Either a transaction is executed in its

entirety or all of the changes are ignored.

■ To alter MySQL’s autocommit nature, type

SET AUTOCOMMIT=0;

Then you do not need to type START
TRANSACTION and no queries will be per-

manent until you type COMMIT (or use an

ALTER, CREATE, etc., query).

■ You can create savepoints in transactions:

SAVEPOINT savepoint_name;

Then you can roll back to that point:

ROLLBACK TO SAVEPOINT savepoint_name;

198

Chapter 6

P
e

r
f
o

r
m

i
n

g
 T

r
a

n
s

a
c

t
i
o

n
s

If you’re working through this book sequentially (which would be for the best), the

next subject to learn is how to use PHP and MySQL together. However, that process

will undoubtedly generate errors, errors that can be tricky to debug. So before moving

on to new concepts, these next few pages address the bane of the programmer:

errors. As you gain experience, you’ll make fewer errors and pick up your own debug-

ging methods, but there are plenty of tools and techniques the beginner can use to

help ease the learning process.

This chapter has three main threads. One focus is on learning about the various

kinds of errors that can occur when developing dynamic Web sites and what their

likely causes are. Second, a multitude of debugging techniques are taught, in a step-

by-step format. Finally, you’ll see different techniques for handling the errors that

occur in the most graceful manner possible.

Before reading on, a word regarding errors: they happen to the best of us. Even the

author of this here book sees more than enough errors in his Web development

duties (but rest assured that the code in this book should be bug-free). Thinking that

you’ll get to a skill level where errors never occur is a fool’s dream, but there are tech-

niques for minimizing errors, and knowing how to quickly catch, handle, and fix

errors is a major skill in its own right. So try not to become frustrated as you make

errors; instead, bask in the knowledge that you’re becoming a better debugger!

199

Error
Handling
and Debugging

7

E
r

r
o

r
 H

a
n

d
l
i
n

g
 a

n
d

 D
e

b
u

g
g

i
n

g

Error Types and Basic
Debugging
When developing Web applications with

PHP and MySQL, you end up with potential

bugs in one of four or more technologies. You

could have HTML issues, PHP problems,

SQL errors, or MySQL mistakes. To be able

to stop the bugs, you must first find the

crack they’re sneaking in through.

HTML problems are often the least disrup-

tive and the easiest to catch. You normally

know there’s a problem when your layout is

all messed up. Some steps for catching and

fixing these, as well as general debugging

hints, are discussed in the next section.

PHP errors are the ones you’ll see most

often, as this language will be at the heart of

your applications. PHP errors fall into three

general areas:

◆ Syntactical

◆ Run time

◆ Logical

Syntactical errors are the most common and

the easiest to fix. You’ll see them if you merely

omit a semicolon. Such errors stop the script

from executing, and if display_errors is on in

your PHP configuration, PHP will show an

error, including the line PHP thinks it’s on

(Figure 7.1). If display_errors is off, you’ll

see a blank page. (You’ll learn more about

display_errors later in this chapter.)

Run-time errors include those things that

don’t stop a PHP script from executing (like

parse errors do) but do stop the script from

doing everything it was supposed to do.

Examples include calling a function using the

wrong number or types of parameters. With

these errors, PHP will normally display a mes-

sage (Figure 7.2) indicating the exact prob-

lem (again, assuming that display_errors is on).

200

Chapter 7

E
r

r
o

r
 T

y
p

e
s

 a
n

d
 B

a
s

i
c

 D
e

b
u

g
g

i
n

g

Figure 7.1 Parse errors—which you’ve probably
seen many times over by now—are the most
common sort of PHP error, particularly for
beginning programmers.

Figure 7.2 Misusing a function (calling it with
improper parameters) will create errors during
the execution of the script.

201

Error Handling and Debugging

The final category of error—logical—is

actually the worst, because PHP won’t

necessarily report it to you. These are out-

and-out bugs: problems that aren’t obvious

and don’t stop the execution of a script.

Tricks for solving all of these PHP errors

will be demonstrated in just a few pages.

SQL errors are normally a matter of syntax,

and they’ll be reported when you try to run

the query on MySQL. For example, I’ve done

this many times (Figure 7.3):

DELETE * FROM tablename

The syntax is just wrong, a confusion

with the SELECT syntax (SELECT * FROM
tablename). The right syntax is

DELETE FROM tablename

Again, MySQL will raise a red flag when you

have SQL errors, so these aren’t that difficult

to find and fix. With dynamic Web sites, the

catch is that you don’t always have static

queries, but rather ones dynamically gener-

ated by PHP. In such cases, if there’s a syntax

problem, the issue is probably in your

PHP code.

Besides reporting on SQL errors, MySQL has

its own errors to consider. An inability to

access the database is a common one and a

showstopper at that (Figure 7.4). You’ll also

see errors when you misuse a MySQL func-

tion or ambiguously refer to a column in a

join. Again, MySQL will report any such

error in specific detail. Keep in mind that

when a query doesn’t return the records or

otherwise have the result you expect, that’s

not a MySQL or SQL error, but rather a logi-

cal one. Toward the end of this chapter you’ll

see how to solve SQL and MySQL problems.

But as you have to walk before you can run,

the next section covers the fundamentals of

debugging dynamic Web sites, starting with

the basic checks you should make and how

to fix HTML problems.

Basic debugging steps
This first sequence of steps may seem obvi-

ous, but when it comes to debugging, missing

one of these steps leads to an unproductive

and extremely frustrating debugging experi-

ence. And while I’m at it, I should mention

that the best piece of general debugging

advice is this:

When you get frustrated, step away from the

computer!

I have solved almost all of the most perplex-

ing issues I’ve come across by taking a break,

clearing my head, and coming back to the

E
r

r
o

r
 T

y
p

e
s

 a
n

d
 B

a
s

i
c

 D
e

b
u

g
g

i
n

g

Figure 7.3 MySQL will report any errors found in the syntax of an SQL command.

Figure 7.4 An inability to connect to a MySQL server or a specific
database is a common MySQL error.

continues on next page

code with fresh eyes. Readers in the book’s

supporting forum (www.DMCInsights.com/
phorum/) have frequently found this to be true

as well. Trying to forge ahead when you’re

frustrated tends to make things worse.

To begin debugging any problem:

◆ Make sure that you are running the

right page.

It’s altogether too common that you try

to fix a problem and no matter what you

do, it never goes away. The reason: you’ve

actually been editing a different page

than you thought.

◆ Make sure that you have saved your

latest changes.

An unsaved document will continue to

have the same problems it had before

you edited it (because the edits haven’t

been enacted).

◆ Make sure that you run all PHP pages

through the URL.

Because PHP works through a Web serv-

er (Apache, IIS, etc.), running any PHP

code requires that you access the page

through a URL (http://www.example.
com/page.php or http://localhost/
page.php). If you double-click a PHP page

to open it in a browser (or use the brows-

er’s File > Open option), you’ll see the

PHP code, not the executed result. This

also occurs if you load an HTML page

without going through a URL (which will

work on its own) but then submit the

form to a PHP page (Figure 7.5).

◆ Know what versions of PHP and MySQL

you are running.

Some problems are specific to a certain

version of PHP or MySQL. For example,

some functions are added in later versions

of PHP, and MySQL added significant new

features in versions 4, 4.1, and 5. Run a

phpinfo() script (Figure 7.6, see

Appendix A, “Installation,” for a script

example) and open a mysql client session

202

Chapter 7

E
r

r
o

r
 T

y
p

e
s

 a
n

d
 B

a
s

i
c

 D
e

b
u

g
g

i
n

g

Figure 7.5 PHP code will only be executed if run through a URL. This means that forms that
submit to a PHP page must also be loaded through http://.

(Figure 7.7) to determine this informa-

tion. phpMyAdmin will often report on

the versions involved as well (but don’t

confuse the version of phpMyAdmin,

which will likely be 2.something with the

versions of PHP or MySQL).

I consider the versions being used to be

such an important, fundamental piece of

information that I won’t normally assist

people looking for help until they provide

this information!

203

Error Handling and Debugging

E
r

r
o

r
 T

y
p

e
s

 a
n

d
 B

a
s

i
c

 D
e

b
u

g
g

i
n

g

Figure 7.6 A phpinfo() script is one of your best tools
for debugging, informing you of the PHP version and
how it’s configured.

Book Errors

If you’ve followed an example in this book and something’s not working right, what should

you do?

1. Double-check your code or steps against those in the book.

2. Use the index at the back of the book to see if I reference a script or function in an earlier

page (you may have missed an important usage rule or tip).

3. View the PHP manual for a specific function to see if it’s available in your version of PHP

and to verify how the function is used.

4. Check out the book’s errata page (through the supporting Web site, www.DMCInsights.com/
phpmysql3/) to see if an error in the code does exist and has been reported. Don’t post

your particular problem there yet, though!

5. Triple-check your code and use all the debugging techniques outlined in this chapter.

6. Search the book’s supporting forum to see if others have had this problem and if a solu-

tion has already been determined.

7. If all else fails, use the book’s supporting forum to ask for assistance. When you do, make

sure you include all the pertinent information (version of PHP, version of MySQL, the

debugging steps you took and what the results were, etc.).

Figure 7.7 When you connect to a MySQL server, it should let you
know the version number.

continues on next page

◆ Know what Web server you are running.

Similarly, some problems and features are

unique to your Web serving application—

Apache, IIS, or Abyss. You should know

which one you are using, and which

version, from when you installed the

application.

◆ Try executing pages in a different Web

browser.

Every Web developer should have and

use at least two Web browsers. If you test

your pages in different ones, you’ll see if

the problem has to do with your script or

a particular browser.

◆ If possible, try executing the page using a

different Web server.

PHP and MySQL errors sometimes stem

from particular configurations and ver-

sions on one server. If something works

on one server but not another, then you’ll

know that the script isn’t inherently at

fault. From there it’s a matter of using

phpinfo() scripts to see what server set-

tings may be different.

✔ Tips

■ If taking a break is one thing you should

do when you become frustrated, here’s

what you shouldn’t do: send off one or

multiple panicky and persnickety emails

to a writer, to a newsgroup or mailing

list, or to anyone else. When it comes to

asking for free help from strangers,

patience and pleasantries garner much

better and faster results.

■ For that matter, I would highly advise

against randomly guessing at solutions.

I’ve seen far too many people only com-

plicate matters further by taking stabs at

solutions, without a full understanding of

what the attempted changes should or

should not do.

■ There’s another different realm of errors

that you could classify as usage errors:

what goes wrong when the site’s user

doesn’t do what you thought they would.

These are very difficult to find on your

own because it’s hard for the program-

mer to use an application in a way other

than she intended. As a golden rule,

write your code so that it doesn’t break

even if the user doesn’t do anything right!

Debugging HTML
Debugging HTML is relatively easy. The

source code is very accessible, most prob-

lems are overt, and attempts at fixing the

HTML don’t normally make things worse (as

can happen with PHP). Still, there are some

basic steps you should follow to find and fix

an HTML problem.

To debug an HTML error:

◆ Check the source code.

If you have an HTML problem, you’ll

almost always need to check the source

code of the page to find it. How you view

the source code depends upon the

browser being used, but normally it’s a

matter of using something like View >

Page Source.

◆ Use a validation tool (Figure 7.8).

Validation tools, like the one at

http://validator.w3.org, are great for

finding mismatched tags, broken tables,

and other problems.

◆ Add borders to your tables.

Frequently layouts are messed up because

tables are incomplete. To confirm this,

add a prominent border to your table to

make it obvious where the different

columns and rows are.

204

Chapter 7

E
r

r
o

r
 T

y
p

e
s

 a
n

d
 B

a
s

i
c

 D
e

b
u

g
g

i
n

g

✔ Tip

■ The first step toward fixing any kind of

problem is understanding what’s causing

it. Remember the role each technology—

HTML, PHP, SQL, and MySQL—plays as

you debug. If your page doesn’t look right,

that’s an HTML problem. If your HTML

is dynamically generated by PHP, it’s still

an HTML problem but you’ll need to

work with the PHP code to make it right.

◆ Use Firefox or Opera.

I’m not trying to start a discussion on

which is the best Web browser, and as

Internet Explorer is the most used one,

you’ll need to eventually test using it, but I

personally find that Firefox (available for

free from www.mozilla.com) and Opera

(available for free from www.opera.com)

are the best Web browsers for Web devel-

opers. They offer reliability and debugging

features not available in other browsers.

If you want to stick with IE or Safari for

your day-to-day browsing, that’s up to

you, but when doing Web development,

start with either Firefox or Opera.

◆ Use Firefox’s add-on widgets (Figure 7.9).

Besides being just a great Web browser,

the very popular Firefox browser has a

ton of features that the Web developer

will appreciate. Furthermore, you can

expand Firefox’s functionality by

installing any of the free widgets that are

available. The Web Developer widget in

particular provides quick access to great

tools, such as showing a table’s borders,

revealing the CSS, validating a page, and

more. I also frequently use these add-ons:

DOM Inspector, Firebug, and HTML

Validator, among others.

◆ Test the page in another browser.

PHP code is generally browser-independ-

ent, meaning you’ll get consistent results

regardless of the client. Not so with

HTML. Sometimes a particular browser

has a quirk that affects the rendered

page. Running the same page in another

browser is the easiest way to know if it’s

an HTML problem or a browser quirk.

205

Error Handling and Debugging

E
r

r
o

r
 T

y
p

e
s

 a
n

d
 B

a
s

i
c

 D
e

b
u

g
g

i
n

g

Figure 7.8 Validation tools like the one provided by
the W3C (World Wide Web Consortium) are good for
finding problems and making sure your HTML
conforms to standards.

Figure 7.9 Firefox’s Web Developer widget provides
quick access to lots of useful tools.

Displaying PHP Errors
PHP provides remarkably useful and descrip-

tive error messages when things go awry.

Unfortunately, PHP doesn’t show these errors

when running using its default configuration.

This policy makes sense for live servers, where

you don’t want the end users seeing PHP-

specific error messages, but it also makes

everything that much more confusing for the

beginning PHP developer. To be able to see

PHP’s errors, you must turn on the display_

errors directive, either in an individual script

or for the PHP configuration as a whole.

To turn on display_errors in a script, use the

ini_set() function. As its arguments, this

function takes a directive name and what

setting that directive should have:

ini_set('display_errors', 1);

Including this line in a script will turn on

display_errors for that script. The only

downside is that if your script has a syntax

error that prevents it from running at all,

then you’ll still see a blank page. To have

PHP display errors for the entire server,

you’ll need to edit its configuration, as is

discussed in the “Configuring PHP” section

of Appendix A.

To turn on display_errors:

1. Create a new PHP document in your text

editor or IDE (Script 7.1).

<!DOCTYPE html PUBLIC "-//W3C//DTD
➝ XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/
➝ xhtml" xml:lang="en" lang="en">

<head>

206

Chapter 7

D
i
s

p
l

a
y

i
n

g
 P

H
P

E
r

r
o

r
s

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type"
content="text/html; charset=
iso-8859-1" />

6 <title>Display Errors</title>

7 </head>

8 <body>

9 <h2>Testing Display Errors</h2>

10 <?php # Script 7.1 - display_errors.php

11

12 // Show errors:

13 ini_set('display_errors', 1);

14

15 // Create errors:

16 foreach ($var as $v) {}

17 $result = 1/0;

18

19 ?>

20 </body>

21 </html>

Script 7.1 The ini_set() function can be used to tell a
PHP script to reveal any errors that might occur.

<meta http-equiv="content-type"
➝ content="text/html; charset=
➝ iso-8859-1" />

<title>Display Errors</title>

</head>

<body>

<?php # Script 7.1 - display_
➝ errors.php

2. After the initial PHP tags, add

ini_set('display_errors', 1);

From this point in this script forward,

any errors that occur will be displayed.

3. Create some errors.

foreach ($var as $v) {}

$result = 1/0;

To test the display_errors setting, the

script needs to have an error. This first

line doesn’t even try to do anything, but

it’s guaranteed to cause an error. There

are actually two issues here: first, there’s a

reference to a variable ($var) that doesn’t

exist; second, a non-array ($var) is being

used as an array in the foreach loop.

The second line is a classic division by

zero, which is not allowed in program-

ming languages or in math.

4. Complete the page.

?>

</body>

</html>

5. Save the file as display_errors.php,

place it in your Web directory, and test it

in your Web browser (Figure 7.10).

6. If you want, change the first line of PHP

code to read

ini_set('display_errors', 0);

and then save and retest the script

(Figure 7.11).

✔ Tips

■ There are limits as to what PHP settings

the ini_set() function can be used to

adjust. See the PHP manual for specifics

as to what can and cannot be changed

using it.

■ As a reminder, changing the display_

errors setting in a script only works so

long as that script runs (i.e., it cannot

have any parse errors). To be able to

always see any errors that occur, you’ll

need to enable display_errors in PHP’s

configuration file (again, see the appendix).

207

Error Handling and Debugging

D
i
s

p
l

a
y

i
n

g
 P

H
P

E
r

r
o

r
s

Figure 7.10 With display_errors turned on (for
this script), the page reports the errors when
they occur.

Figure 7.11 With display_errors
turned off (for this page), the same
errors (Script 7.1 and Figure 7.10)
are no longer reported.
Unfortunately, they still exist.

Adjusting Error Reporting
in PHP
Once you have PHP set to display the errors

that occur, you might want to adjust the

level of error reporting. Your PHP installa-

tion as a whole, or individual scripts, can be

set to report or ignore different types of

errors. Table 7.1 lists most of the levels, but

they can generally be one of these three

kinds:

◆ Notices, which do not stop the execution

of a script and may not necessarily be a

problem.

◆ Warnings, which indicate a problem but

don’t stop a script’s execution.

◆ Errors, which stop a script from continu-

ing (including the ever-common parse

error, which prevent scripts from running

at all).

As a rule of thumb, you’ll want PHP to report

on any kind of error while you’re developing

a site but report no specific errors once the

site goes live. For security and aesthetic

purposes, it’s generally unwise for a public

user to see PHP’s detailed error messages.

Frequently, error messages—particularly

those dealing with the database—will reveal

208

Chapter 7

A
d

j
u

s
t

i
n

g
 E

r
r

o
r

 R
e

p
o

r
t

i
n

g
 i

n
 P

H
P

N u m b e r C o n s t a n t R e p o r t O n

1 E_ERROR Fatal run-time errors (that stop execution of the script)
2 E_WARNING Run-time warnings (non-fatal errors)
4 E_PARSE Parse errors
8 E_NOTICE Notices (things that could or could not be a problem)
256 E_USER_ERROR User-generated error messages, generated by the trigger_error() function
512 E_USER_WARNING User-generated warnings, generated by the trigger_error() function
1024 E_USER_NOTICE User-generated notices, generated by the trigger_error() function
2048 E_STRICT Recommendations for compatibility and interoperability
8191 E_ALL All errors, warnings, and recommendations

Error-Reporting Levels

Table 7.1 PHP’s error-reporting settings, to be used with the error_reporting() function or in the php.ini file. Note
that E_ALL’s number value was different in earlier versions of PHP and did not include E_STRICT (it does in PHP 6).

Suppressing Errors with @

Individual errors can be suppressed in

PHP using the @ operator. For example,

if you don’t want PHP to report if it

couldn’t include a file, you would code

@include ('config.inc.php');

Or if you don’t want to see a “division by

zero” error:

$x = 8;

$y = 0;

$num = @($x/$y);

The @ symbol will work only on expres-

sions, like function calls or mathematical

operations. You cannot use @ before con-

ditionals, loops, function definitions, and

so forth.

As a rule of thumb, I recommend that @
be used on functions whose execution,

should they fail, will not affect the func-

tionality of the script as a whole. Or you

can suppress PHP’s errors when you will

handle them more gracefully yourself (a

topic discussed later in this chapter).

certain behind-the-scenes aspects of your

Web application that are best not shown.

While you hope all of these will be worked

out during the development stages, that may

not be the case.

You can universally adjust the level of error

reporting following the instructions in

Appendix A. Or you can adjust this behavior

on a script-by-script basis using the

error_reporting() function. This function

is used to establish what type of errors PHP

should report on within a specific page. The

function takes either a number or a con-

stant, using the values in Table 7.1 (the PHP

manual lists a few others, related to the core

of PHP itself).

error_reporting(0); // Show no errors.

A setting of 0 turns error reporting off

entirely (errors will still occur; you just won’t

see them anymore). Conversely,

error_reporting (E_ALL) will tell PHP to

report on every error that occurs. The num-

bers can be added up to customize the level

of error reporting, or you could use the bit-

wise operators—| (or), ~ (not), & (and)—with

the constants. With this following setting

any non-notice error will be shown:

error_reporting (E_ALL & ~E_NOTICE);

To adjust error reporting:

1. Open display_errors.php (Script 7.1) in

your text editor or IDE.

To play around with error reporting levels,

use display_errors.php as an example.

2. After adjust the display_errors setting,

add (Script 7.2)

error_reporting (E_ALL);

For development purposes, have PHP

notify you of all errors, notices, warnings,

and recommendations. This line will

209

Error Handling and Debugging

A
d

j
u

s
t

i
n

g
 E

r
r

o
r

 R
e

p
o

r
t

i
n

g
 i

n
 P

H
P

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content=
"text/html; charset=iso-8859-1" />

6 <title>Report Errors</title>

7 </head>

8 <body>

9 <h2>Testing Error Reporting</h2>

10 <?php # Script 7.2 - report_errors.php

11

12 // Show errors:

13 ini_set('display_errors', 1);

14

15 // Adjust error reporting:

16 error_reporting(E_ALL);

17

18 // Create errors:

19 foreach ($var as $v) {}

20 $result = 1/0;

21

22 ?>

23 </body>

24 </html>

Script 7.2 This script will demonstrate how error
reporting can be manipulated in PHP.

continues on next page

accomplish that. In short, PHP will let

you know about anything that is, or may

be, a problem.

Because E_ALL is a constant, it is not

enclosed in quotation marks.

3. Save the file as report_errors.php, place

it in your Web directory, and run it in

your Web browser (Figure 7.12).

I also altered the page’s title and the

heading, but both are immaterial to the

point of this exercise.

4. Change the level of error reporting to

something different and retest (Figures

7.13 and 7.14).

✔ Tips

■ Because you’ll often want to adjust the

display_errors and error_reporting for

every page in a Web site, you might want

to place those lines of code in a separate

PHP file that can then be included by

other PHP scripts.

■ In case you are curious, the scripts in

this book were all written with PHP’s

error reporting on the highest level (with

the intention of catching every possible

problem).

210

Chapter 7

A
d

j
u

s
t

i
n

g
 E

r
r

o
r

 R
e

p
o

r
t

i
n

g
 i

n
 P

H
P

Figure 7.12 On the highest level of error reporting,
PHP has two warnings and one notice for this page
(Script 7.2).

Figure 7.13 The same page (Script 7.2) after disabling
the reporting of notices.

Figure 7.14 The same page again
(Script 7.2) with error reporting
turned off (set to 0). The result is
the same as if display_errors was
disabled. Of course, the errors still
occur; they’re just not being
reported.

Creating Custom Error
Handlers
Another option for error management with

your sites is to alter how PHP handles errors.

By default, if display_errors is enabled and

an error is caught (that falls under the level

of error reporting), PHP will print the error,

in a somewhat simplistic form, within some

minimal HTML tags (Figure 7.15).

You can override how errors are handled by

creating your own function that will be

called when errors occur. For example,

function report_errors (arguments) {

// Do whatever here.

}

set_error_handler ('report_errors');

The set_error_handler() function is used

to name the function to be called when an

error occurs. The handling function (report_

errors, in this case) will, at that time, receive

several values that can be used in any possi-

ble manner.

This function can be written to take up to

five arguments. In order, these arguments

are: an error number (corresponding to

Table 7.1), a textual error message, the name

of the file where the error was found, the

specific line number on which it occurred,

and the variables that existed at the time of

the error. Defining a function that accepts

all these arguments might look like

function report_errors ($num, $msg,
$file, $line, $vars) {…

To make use of this concept, the report_
errors.php file (Script 7.2) will be rewritten

one last time.

211

Error Handling and Debugging

C
r

e
a

t
i
n

g
 C

u
s

t
o

m
 E

r
r

o
r

 H
a

n
d

l
e

r
s

Figure 7.15 The HTML source code for the errors shown in Figure 7.12.

To create your own error handler:

1. Open report_errors.php (Script 7.2) in

your text editor or IDE.

2. Remove the ini_set() and error_
reporting() lines (Script 7.3).

When you establish your own error han-

dling function, the error reporting levels

no longer have any meaning, so that line

can be removed. Adjusting the display_

errors setting is also meaningless, as the

error handling function will control

whether errors are displayed or not.

3. Before the script creates the errors, add

define ('LIVE', FALSE);

This constant will be a flag used to indi-

cate whether or not the site is currently

live. It’s an important distinction, as how

you handle errors and what you reveal in

the browser should differ greatly when

you’re developing a site and when a site

is live.

This constant is being set outside of the

function for two reasons. First, I want to

treat the function as a black box that does

what I need it to do without having to go

in and tinker with it. Second, in many

sites, there might be other settings (like

the database connectivity information)

that are also live versus development-

specific. Conditionals could, therefore,

also refer to this constant to adjust those

settings.

4. Begin defining the error handling function.

function my_error_handler ($e_number,
➝ $e_message, $e_file, $e_line,
➝ $e_vars) {

The my_error_handler() function is set

to receive the full five arguments that a

custom error handler can.

212

Chapter 7

C
r

e
a

t
i
n

g
 C

u
s

t
o

m
 E

r
r

o
r

 H
a

n
d

l
e

r
s

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content=
"text/html; charset=iso-8859-1" />

6 <title>Handling Errors</title>

7 </head>

8 <body>

9 <h2>Testing Error Handling</h2>

10 <?php # Script 7.3 - handle_errors.php

11

12 // Flag variable for site status:

13 define('LIVE', FALSE);

14

15 // Create the error handler:

16 function my_error_handler ($e_number,
$e_message, $e_file, $e_line, $e_vars) {

17

18 // Build the error message:

19 $message = "An error occurred in script
'$e_file' on line $e_line: $e_message\
n";

20

21 // Append $e_vars to $message:

22 $message .= print_r ($e_vars, 1);

23

24 if (!LIVE) { // Development (print the
error).

25 echo '<pre>' . $message . "\n";

26 debug_print_backtrace();

27 echo '</pre>
';

28 } else { // Don't show the error.

Script 7.3 By defining your own error handling
function, you can customize how errors are treated
in your PHP scripts.

(script continues on next page)

5. Create the error message using the

received values.

$message = "An error occurred in
➝ script '$e_file' on line $e_line:
➝ $e_message\n";

The error message will begin by referenc-

ing the filename and number where the

error occurred. Added to this is the actu-

al error message. All of these values are

passed to the function when it is called

(when an error occurs).

6. Add any existing variables to the error

message.

$message .= print_r ($e_vars, 1);

The $e_vars variable will receive all of

the variables that exist, and their values,

when the error happens. Because this

might contain useful debugging informa-

tion, it’s added to the message.

The print_r() function is normally used

to print out a variable’s structure and

value; it is particularly useful with arrays.

If you call the function with a second

argument (1 or TRUE), the result is

returned instead of printed. So this line

adds all of the variable information to

$message.

7. Print a message that will vary, depending

upon whether or not the site is live.

if (!LIVE) {

echo '<pre>' . $message . "\n";

debug_print_backtrace();

echo '</pre>
';

} else {

echo '<div class="error">A
➝ system error occurred. We
➝ apologize for the
➝ inconvenience.</div>
';

}

213

Error Handling and Debugging

C
r

e
a

t
i
n

g
 C

u
s

t
o

m
 E

r
r

o
r

 H
a

n
d

l
e

r
s

29 echo '<div class="error">A system
error occurred. We apologize for
the inconvenience.</div>
';

30 }

31

32 } // End of my_error_handler() definition.

33

34 // Use my error handler:

35 set_error_handler ('my_error_handler');

36

37 // Create errors:

38 foreach ($var as $v) {}

39 $result = 1/0;

40

41 ?>

42 </body>

43 </html>

Script 7.3 continued

continues on next page

If the site is not live (if LIVE is false),

which would be the case while the site is

being developed, a detailed error message

should be printed (Figure 7.16). For ease

of viewing, the error message is printed

within HTML PRE tags (which aren’t

XHMTL valid but are very helpful here).

Furthermore, a useful debugging func-

tion, debug_print_backtrace(), is also

called. This function returns a slew of

information about what functions have

been called, what files have been includ-

ed, and so forth.

If the site is live, a simple mea culpa will

be printed, letting the user know that an

error occurred but not what the specific

problem is (Figure 7.17). Under this

situation, you could also use the error_
log() function (see the sidebar) to have

the detailed error message emailed or

written to a log.

8. Complete the function and tell PHP to

use it.

}

set_error_handler('my_error_handler'
➝);

This second line is the important one,

telling PHP to use the custom error

handler instead of PHP’s default handler.

9. Save the file as handle_errors.php,

place it in your Web directory, and test

it in your Web browser (Figure 7.16).

10. Change the value of LIVE to TRUE, save,

and retest the script (Figure 7.17).

To see how the error handler behaves

with a live site, just change this one

value.

214

Chapter 7

C
r

e
a

t
i
n

g
 C

u
s

t
o

m
 E

r
r

o
r

 H
a

n
d

l
e

r
s

Figure 7.16 During the development phase, detailed error messages are printed in the Web browser.
(In a more real-world script, with more code, the messages would be more useful.)

✔ Tips

■ If your PHP page uses special HTML for-

matting—like CSS tags to affect the lay-

out and font treatment—add this infor-

mation to your error reporting function.

■ Obviously in a live site you’ll probably

need to do more than apologize for the

inconvenience (particularly if the error

significantly affects the page’s functional-

ity). Still, this example demonstrates how

you can easily adjust error handling to

suit the situation.

■ If you don’t want the error handling

function to report on every notice, error,

or warning, you could check the error

number value (the first argument sent to

the function). For example, to ignore

notices when the site is live, you would

change the main conditional to

if (!LIVE) {

echo '<pre>' . $message . "\n";

debug_print_backtrace();

echo '</pre>
';

} elseif ($e_number != E_NOTICE) {

echo '<div class="error">A
➝ system error occurred. We
➝ apologize for the
➝ inconvenience.</div>
';

}

■ You can invoke your error handling func-

tion using trigger_error().

215

Error Handling and Debugging

C
r

e
a

t
i
n

g
 C

u
s

t
o

m
 E

r
r

o
r

 H
a

n
d

l
e

r
s

Figure 7.17 Once a site has gone live, more user-
friendly (and less revealing) errors are printed.
Here, one message is printed for each of the three
errors in the script.

Logging PHP Errors

In Script 7.3, errors are handled by simply

printing them out in detail or not.

Another option is to log the errors: make

a permanent note of them somehow. For

this purpose, the error_log() function

instructs PHP how to file an error. It’s

syntax is

error_log (message, type,
➝ destination,

extra headers);

The message value should be the text of

the logged error (i.e., $message in Script

7.3). The type dictates how the error is

logged. The options are the numbers 0

through 3: use the computer’s default log-

ging method (0), send it in an email (1),

send to a remote debugger (2), or write it

to a text file (3).

The destination parameter can be either

the name of a file (for log type 3) or an

email address (for log type 1). The extra

headers argument is used only when

sending emails (log type 1). Both the des-

tination and extra headers are optional.

PHP Debugging
Techniques
When it comes to debugging, what you’ll

best learn from experience are the causes of

certain types of errors. Understanding the

common causes will shorten the time it

takes to fix errors. To expedite the learning

process, Table 7.2 lists the likely reasons for

the most common PHP errors.

The first, and most common, type of error

that you’ll run across is syntactical and will

prevent your scripts from executing. An

error like this will result in messages like the

one in Figure 7.18, which every PHP devel-

oper has seen too many times. To avoid

making this sort of mistake when you pro-

gram, be sure to:

◆ End every statement (but not language

constructs like loops and conditionals)

with a semicolon.

◆ Balance all quotation marks, parenthe-

ses, curly braces, and square brackets

(each opening character must be closed).

◆ Be consistent with your quotation marks

(single quotes can be closed only with

single quotes and double quotes with

double quotes).

◆ Escape, using the backslash, all single-

and double-quotation marks within

strings, as appropriate.

One thing you should also understand about

syntactical errors is that just because the

PHP error message says the error is occur-

ring on line 12, that doesn’t mean that the

mistake is actually on that line. At the very

least, it is not uncommon for there to be

216

Chapter 7

P
H

P
D

e
b

u
g

g
i
n

g
 T

e
c

h
n

i
q

u
e

s

E r r o r L i k e ly C a u s e

Blank Page HTML problem, or PHP error and display_errors or error_reporting is off.

Parse error Missing semicolon; unbalanced curly braces, parentheses, or quotation marks; or use of an
unescaped quotation mark in a string.

Empty variable value Forgot the initial $, misspelled or miscapitalized the variable name, or inappropriate variable
scope (with functions).

Undefined variable Reference made to a variable before it is given a value or an empty variable value (see those
potential causes).

Call to undefined function Misspelled function name, PHP is not configured to use that function (like a MySQL function),
or document that contains the function definition was not included.

Cannot redeclare function Two definitions of your own function exist; check within included files.

Headers already sent White space exists in the script before the PHP tags, data has already been printed, or a file
has been included.

Common PHP Errors

Table 7.2 These are some of the most common errors you’ll see in PHP, along with their most probable causes.

Figure 7.18 The parse error prevents a script from
running because of invalid PHP syntax. This one
was caused by failing to enclose $array['key']
within curly braces when printing its value.

a difference between what PHP thinks is

line 12 and what your text editor indicates

is line 12. So while PHP’s direction is useful

in tracking down a problem, treat the line

number referenced as more of a starting

point than an absolute.

If PHP reports an error on the last line of

your document, this is almost always

because a mismatched parenthesis, curly

brace, or quotation mark was not caught

until that moment.

The second type of error you’ll encounter

results from misusing a function. This error

occurs, for example, when a function is

called without the proper arguments. This

error is discovered by PHP when attempting

to execute the code. In later chapters you’ll

probably see such errors when using the

header() function, cookies, or sessions.

To fix errors, you’ll need to do a little detec-

tive work to see what mistakes were made

and where. For starters, though, always thor-

oughly read and trust the error message

PHP offers. Although the referenced line

number may not always be correct, a PHP

error is very descriptive, normally helpful,

and almost always 100 percent correct.

To debug your scripts:

◆ Turn on display_errors.

Use the earlier steps to enable display_

errors for a script, or, if possible, the

entire server, as you develop your

applications.

◆ Use comments.

Just as you can use comments to docu-

ment your scripts, you can also use them

to rule out problematic lines. If PHP is

giving you an error on line 12, then com-

menting out that line should get rid of

the error. If not, then you know the error

is elsewhere. Just be careful that you

don’t introduce more errors by improper-

ly commenting out only a portion of a

code block: the syntax of your scripts

must be maintained.

◆ Use the print() and echo() functions.

In more complicated scripts, I frequently

use echo() statements to leave me notes

as to what is happening as the script is

executed (Figure 7.19). When a script

has several steps, it may not be easy to

know if the problem is occurring in step 2

or step 5. By using an echo() statement,

you can narrow the problem down to the

specific juncture.

217

Error Handling and Debugging

P
H

P
D

e
b

u
g

g
i
n

g
 T

e
c

h
n

i
q

u
e

s

Figure 7.19 More complex debugging can be accomplished by leaving
yourself notes as to what the script is doing.

continues on next page

◆ Check what quotation marks are being

used for printing variables.

It’s not uncommon for programmers to

mistakenly use single quotation marks

and then wonder why their variables are

not printed properly. Remember that sin-

gle quotation marks treat text literally

and that you must use double quotation

marks to print out the values of variables.

◆ Track variables (Figure 7.20).

It is pretty easy for a script not to work

because you referred to the wrong vari-

able or the right variable by the wrong

name or because the variable does not

have the value you would expect. To

check for these possibilities, use the

print() or echo() statements to print

out the values of variables at important

points in your scripts. This is simply a

matter of

echo "<p>\$var = $var</p>\n";

The first dollar sign is escaped so that

the variable’s name is printed. The sec-

ond reference of the variable will print

its value.

◆ Print array values.

For more complicated variable types

(arrays and objects), the print_r() and

var_dump() functions will print out their

values without the need for loops. Both

functions accomplish the same task,

although var_dump() is more detailed in

its reporting than print_r().

218

Chapter 7

P
H

P
D

e
b

u
g

g
i
n

g
 T

e
c

h
n

i
q

u
e

s

Figure 7.20 Printing the names and values of
variables is the easiest way to track them over the
course of a script.

✔ Tips

■ Many text editors include utilities to

check for balanced parentheses, brackets,

and quotation marks.

■ If you cannot find the parse error in a

complex script, begin by using the /* */
comments to render the entire PHP code

inert. Then continue to uncomment sec-

tions at a time (by moving the opening

or closing comment characters) and

rerun the script until you deduce what

lines are causing the error. Watch how

you comment out control structures,

though, as the curly braces must contin-

ue to be matched in order to avoid parse

errors. For example:

if (condition) {

/* Start comment.

Inert code.

End comment. */

}

■ To make the results of print_r() more

readable in the Web browser, wrap it

within HTML <pre> (preformatted) tags.

This one line is my absolute favorite

debugging tool:

echo '<pre>' . print_r ($var, 1) .
➝ '</pre>';

219

Error Handling and Debugging

P
H

P
D

e
b

u
g

g
i
n

g
 T

e
c

h
n

i
q

u
e

s

Using die() and exit()

Two functions that are often used with

error management are die() and exit(),

(they’re technically language constructs,

not functions, but who cares?). When a

die() or exit() is called in your script,

the entire script is terminated. Both are

useful for stopping a script from continu-

ing should something important—like

establishing a database connection—

fail to happen. You can also pass die()
and exit() a string that will be printed

out in the browser.

You’ll commonly see die() or exit()
used in an OR conditional. For example:

include('config.inc.php') OR die
➝ ('Could not open the file. ');

With a line like that, if PHP could not

include the configuration file, the die()

statement will be executed and the

“Could not open the file.” message will be

printed. You’ll see variations on this

throughout this book and in the PHP

manual, as it’s a quick (but potentially

excessive) way to handle errors without

using a custom error handler.

SQL and MySQL
Debugging Techniques
The most common SQL errors are caused by

the following issues:

◆ Unbalanced use of quotation marks or

parentheses

◆ Unescaped apostrophes in column values

◆ Misspelling a column name, table name,

or function

◆ Ambiguously referring to a column in a

join

◆ Placing a query’s clauses (WHERE, GROUP
BY, ORDER BY, LIMIT) in the wrong order

Furthermore, when using MySQL you can

also run across the following:

◆ Unpredictable or inappropriate query

results

◆ Inability to access the database

Since you’ll be running the queries for your

dynamic Web sites from PHP, you need a

methodology for debugging SQL and MySQL

errors within that context (PHP will not

report a problem with your SQL).

Debugging SQL problems
To decide if you are experiencing a MySQL

(or SQL) problem rather than a PHP one,

you need a system for finding and fixing the

issue. Fortunately, the steps you should take

to debug MySQL and SQL problems are easy

to define and should be followed without

thinking. If you ever have any MySQL or

SQL errors to debug, just abide by this

sequence of steps.

To hammer the point home, this next sequence

of steps is probably the most useful debugging

technique in this chapter and the entire book.

You’ll likely need to follow these steps in any

PHP-MySQL Web application when you’re not

getting the results you expected.

To debug your SQL queries:

1. Print out any applicable queries in your

PHP script (Figure 7.21).

As you’ll see in the next chapter, SQL

queries will often be assigned to a vari-

able, particularly when you use PHP to

dynamically write them. Using the code

echo $query (or whatever the query vari-

able is called) in your PHP scripts, you

can send to the browser the exact query

being run. Sometimes this step alone will

help you see what the real problem is.

220

Chapter 7

S
Q

L
a

n
d

 M
y

S
Q

L
D

e
b

u
g

g
i
n

g
 T

e
c

h
n

i
q

u
e

s

Figure 7.21 Knowing exactly what query a PHP script
is attempting to execute is the most useful first step
for solving SQL and MySQL problems.

2. Run the query in the mysql client or

other tool (Figure 7.22).

The most foolproof method of debugging

an SQL or MySQL problem is to run the

query used in your PHP scripts through

an independent application: the mysql

client, phpMyAdmin, or the like. Doing

so will give you the same result as the

original PHP script receives but without

the overhead and hassle.

If the independent application returns

the expected result but you are still not

getting the proper behavior in your PHP

script, then you will know that the prob-

lem lies within the script itself, not your

SQL or MySQL database.

3. If the problem still isn’t evident, rewrite

the query in its most basic form, and

then keep adding dimensions back in

until you discover which clause is caus-

ing the problem.

Sometimes it’s difficult to debug a query

because there’s too much going on. Like

commenting out most of a PHP script,

taking a query down to its bare mini-

mum structure and slowly building it

back up can be the easiest way to debug

complex SQL commands.

✔ Tips

■ Another common MySQL problem is try-

ing to run queries or connect using the

mysql client when the MySQL server isn’t

even running. Be sure that MySQL is

available for querying!

■ As an alternative to printing out the

query to the browser, you could print it

out as an HTML comment (viewable

only in the HTML source), using

echo "<!-- $query -->";

221

Error Handling and Debugging

S
Q

L
a

n
d

 M
y

S
Q

L
D

e
b

u
g

g
i
n

g
 T

e
c

h
n

i
q

u
e

s

Figure 7.22 To understand what result a PHP script is receiving, run the same
query through a separate interface. In this case the problem is the reference
to the password column, when the table’s column is actually called just pass.

Debugging access problems
Access denied error messages are the most

common problem beginning developers

encounter when using PHP to interact with

MySQL. These are among the common

solutions:

◆ Reload MySQL after altering the privi-

leges so that the changes take effect.

Either use the mysqladmin tool or run

FLUSH PRIVILEGES in the mysql client.

You must be logged in as a user with

the appropriate permissions to do this

(see Appendix A for more).

◆ Double-check the password used. The

error message Access denied for user:

‘user@localhost’ (Using password: YES)

frequently indicates that the password is

wrong or mistyped. (This is not always

the cause but is the first thing to check.)

◆ The error message Can’t connect to…

(error number 2002) indicates that

MySQL either is not running or is not

running on the socket or TCP/IP port

tried by the client.

✔ Tips

■ MySQL keeps its own error logs, which

are very useful in solving MySQL prob-

lems (like why MySQL won’t even start).

MySQL’s error log will be located in the

data directory and titled hostname.err.

■ The MySQL manual is very detailed,

containing SQL examples, function

references, and the meanings of error

codes. Make the manual your friend and

turn to it when confusing errors pop up.

222

Chapter 7

S
Q

L
a

n
d

 M
y

S
Q

L
D

e
b

u
g

g
i
n

g
 T

e
c

h
n

i
q

u
e

s

Now that you have a sufficient amount of PHP, SQL, and MySQL experience under

your belt, it’s time to put all of the technologies together. PHP’s strong integration with

MySQL is just one reason so many programmers have embraced it; it’s impressive

how easily you can use the two together.

This chapter will use the existing sitename database—created in Chapter 5, “Introduction

to SQL”—to build a PHP interface for interacting with the users table. The knowledge

taught and the examples used here will be the basis for all of your PHP-MySQL Web

applications, as the principles involved are the same for any PHP-MySQL interaction.

Before heading into this chapter, you should be comfortable with everything covered in

the first six chapters. Also, understanding the error debugging and handling techniques

covered in Chapter 7 will make the learning process less frustrating, should you

encounter snags. Finally, remember that you need a PHP-enabled Web server and access

to a running MySQL server in order to test the following examples.

223

Using PHP
with MySQL

8

U
s

i
n

g
 P

H
P

w
i
t

h
 M

y
S

Q
L

Modifying the Template
Since all of the pages in this chapter and the

next will be part of the same Web applica-

tion, it’ll be worthwhile to use a common

template system. Instead of creating a new

template from scratch, the layout from

Chapter 3, “Creating Dynamic Web Sites,”

will be used again, with only a minor modifi-

cation to the header file’s navigation links.

To make the header file:

1. Open header.html (Script 3.2) in your

text editor.

2. Change the list of links to read (Script 8.1)

Home
➝ Page

<a
➝ href="register.php">Register

View
➝ Users

Change
➝ Password

link five

All of the examples in this chapter will

involve the registration, view users, and

change password pages. The date form

and calculator links from Chapter 3 can

be deleted.

3. Save the file as header.html.

4. Place the new header file in your Web

directory, within the includes folder

along with footer.html (Script 3.3) and

style.css (available for download from

the book’s supporting Web site,

www.DMCInsights.com/phpmysql3/).

224

Chapter 8

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-
strict.dtd">

2 <html
xmlns="http://www.w3.org/1999/xhtml">

3 <head">

4 <title><?php echo $page_title;
?></title>

5 <link rel="stylesheet"
href="includes/style.css"
type="text/css" media="screen" />

6 <meta http-equiv="content-type"
content="text/html; charset=utf-8" />

7 </head>

8 <body>

9 <div id="header">

10 <h1>Your Website</h1>

11 <h2>catchy slogan...</h2>

12 </div>

13 <div id="navigation">

14

15 Home

Page

16 Register

17 View

Users

18 Change

Password

19 link five

20

21 </div>

22 <div id="content"><!-- Start of the
page-specific content. -->

23 <!-- Script 8.1 - header.html -->

Script 8.1 The site’s header file, used for the pages’
template, modified with new navigation links.

M
o

d
i
f
y

i
n

g
 t

h
e

 T
e

m
p

l
a

t
e

WARNING: READ THIS!

PHP and MySQL have gone through many changes over the past decade. Of these, the most

important for this chapter and one of the most important for the rest of the book involves

what PHP functions you use to communicate with MySQL. For years, PHP developers used

the standard MySQL functions (called the mysql extension). As of PHP 5 and MySQL 4.1, you

can use the newer Improved MySQL functions (called the mysqli extension). These functions

provide improved performance and take advantage of added features (among other benefits).

As this book assumes you’re using at least PHP 6 and MySQL 5, all of the examples will only

use the Improved MySQL functions. If your server does not support this extension, you will not

be able to run these examples as they are written! Most of the examples in the rest of the book

will also not work for you.

If the server or home computer you’re using does not support the Improved MySQL func-

tions, you have three options: upgrade PHP and MySQL, read the second edition of this book

(which teaches and primarily uses the older functions), or learn how to use the older func-

tions and modify all the examples accordingly. For questions or problems, see the book’s cor-

responding forum (www.DMCInsights.com/phorum/).

5. Test the new header file by running

index.php in your Web browser

(Figure 8.1).

✔ Tips

■ For a preview of this site’s structure, see the

sidebar “Organizing Your Documents” in

the next section.

■ Remember that you can use any file exten-

sion for your template files, including

.inc or .php.

■ To refresh your memory on the template-

creation process or the specifics of this

layout, see the first few pages of Chapter 3.

225

Using PHP with MySQL

M
o

d
i
f
y

i
n

g
 t

h
e

 T
e

m
p

l
a

t
e

Figure 8.1 The dynamically generated home page with new navigation links.

Connecting to MySQL
The first step for interacting with MySQL—

connecting to the server—requires the

appropriately named mysqli_connect()
function:

$dbc = mysqli_connect (hostname,
➝ username, password, db_name);

The first three arguments sent to the func-

tion (host, username, and password) are

based upon the users and privileges set up

within MySQL (see Appendix A, “Installation,”

for more information). Commonly (but not

always), the host value will be localhost.

The fourth argument is the name of the data-

base to use. This is the equivalent of saying

USE databasename within the mysql client.

If the connection was made, the $dbc variable,

short for database connection, will become

a reference point for all of your subsequent

database interactions. Most of the PHP func-

tions for working with MySQL will take this

variable as its first argument.

Before putting this knowledge to the test,

there’s one more function to learn about. If a

connection problem occurred, you can call

mysqli_connect_error(), which returns the

connection error message. It takes no argu-

ments, so would be called using just

mysqli_connect_error();

To start using PHP with MySQL, let’s create

a special script that makes the connection.

Other PHP scripts that require a MySQL

connection can then include this file.

To connect to and select a database:

1. Create a new PHP document in your text

editor or IDE (Script 8.2).

<?php # Script 8.2 -
➝ mysqli_connect.php

This file will be included by other PHP

scripts, so it doesn’t need to contain any

HTML.

226

Chapter 8

C
o

n
n

e
c

t
i
n

g
 t

o
 M

y
S

Q
L

1 <?php # Script 8.2 - mysqli_connect.php

2

3 // This file contains the database access
information.

4 // This file also establishes a connection
to MySQL

5 // and selects the database.

6

7 // Set the database access information as
constants:

8 DEFINE ('DB_USER', 'username');

9 DEFINE ('DB_PASSWORD', 'password');

10 DEFINE ('DB_HOST', 'localhost');

11 DEFINE ('DB_NAME', 'sitename');

12

13 // Make the connection:

14 $dbc = @mysqli_connect (DB_HOST, DB_USER,
DB_PASSWORD, DB_NAME) OR die ('Could not
connect to MySQL: ' .
mysqli_connect_error());

15

16 ?>

Script 8.2 The mysqli_connect.php script will be used
by every other script in this chapter. It establishes a
connection to MySQL and selects the database.

2. Set the MySQL host, username, pass-

word, and database name as constants.

DEFINE ('DB_USER', 'username');

DEFINE ('DB_PASSWORD', 'password');

DEFINE ('DB_HOST', 'localhost');

DEFINE ('DB_NAME', 'sitename');

I prefer to establish these values as con-

stants for security reasons (they cannot be

changed this way), but that isn’t required.

In general, setting these values as some

sort of variable or constant makes sense

so that you can separate the configuration

parameters from the functions that use

them, but again, this is not obligatory.

When writing your script, change these

values to ones that will work on your

setup. If you have been provided with

a MySQL username/password combina-

tion and a database (like for a hosted

site), use that information here. Or, if

possible, follow the steps in Appendix A

to create a user that has access to the

sitename database, and insert those val-

ues here. Whatever you do, don’t just use

these values unless you know for certain

they will work on your server.

3. Connect to MySQL.

$dbc = @mysqli_connect (DB_HOST,
➝ DB_USER, DB_PASSWORD, DB_NAME) OR
➝ die ('Could not connect to MySQL: ' .
➝ mysqli_connect_error());

The mysqli_connect() function, if it suc-

cessfully connects to MySQL, will return

a resource link that corresponds to the

open connection. This link will be assigned

to the $dbc variable, so that other func-

tions can make use of this connection.

The function call is preceded by the error

suppression operator (@). This prevents

the PHP error from being displayed in the

Web browser. This is preferable, as the error

will be handled by the OR die() clause.

If the mysqli_connect() function cannot

return a valid resource link, then the OR
die() part of the statement is executed

(because the first part of the OR will be

false, so the second part must be true).

As discussed in the preceding chapter,

the die() function terminates the execu-

tion of the script. The function can also

take as an argument a string that will be

printed to the Web browser. In this case,

the string is a combination of Could not

connect to MySQL: and the specific MySQL

error (Figure 8.2). Using this blunt error

management system makes debugging

much easier as you develop your sites.

227

Using PHP with MySQL

C
o

n
n

e
c

t
i
n

g
 t

o
 M

y
S

Q
L

Figure 8.2 If there were problems connecting to
MySQL, an informative message is displayed and the
script is halted.

continues on next page

4. Save the file as mysqli_connect.php.

Since this file contains information—the

database access data—that must be kept

private, it will use a .php extension. With

a .php extension, even if malicious users

ran this script in their Web browser, they

would not see the page’s actual content.

5. Place the file outside of the Web docu-

ment directory (Figure 8.3).

Because the file contains sensitive MySQL

access information, it ought to be stored

securely. If you can, place it in the direc-

tory immediately above or otherwise out-

side of the Web directory. This way the file

will not be accessible from a Web browser.

See the “Organizing Your Documents”

sidebar for more.

6. Temporarily place a copy of the script

within the Web directory and run it in

your Web browser (Figure 8.4).

In order to test the script, you’ll want to

place a copy on the server so that it’s

accessible from the Web browser (which

means it must be in the Web directory).

If the script works properly, the result

should be a blank page (see Figure 8.4).

If you see an Access denied… or similar

message (see Figure 8.2), it means that

the combination of username, password,

and host does not have permission to

access the particular database.

7. Remove the temporary copy from the

Web directory.

228

Chapter 8

C
o

n
n

e
c

t
i
n

g
 t

o
 M

y
S

Q
L

Organizing Your Documents

I introduced the concept of site structure

back in Chapter 3 when developing the first

Web application. Now that pages will begin

using a database connection script, the

topic is more important.

Should the database connectivity informa-

tion (username, password, host, and data-

base) fall into malicious hands, it could

be used to steal your information or wreak

havoc upon the database as a whole.

Therefore, you cannot keep a script like

mysqli_connect.php too secure.

The best recommendation for securing

such a file is to store it outside of the

Web documents directory. If, for example,

the htdocs folder in Figure 8.3 is the root

of the Web directory (in other words, the

URL www.example.com leads there), then

not storing mysqli_connect.php anywhere

within the html directory means it will

never be accessible via the Web browser.

Granted, the source code of PHP scripts

is not viewable from the Web browser

(only the data sent to the browser by the

script is), but you can never be too careful.

If you aren’t allowed to place documents

outside of the Web directory, placing

mysqli_connect.php in the Web directory is

less secure, but not the end of the world.

Secondarily, I would recommend using

a .php extension for your connection

scripts. A properly configured and work-

ing server will execute rather than display

code in such a file. Conversely, if you use

just .inc as your extension, that page’s

contents would be displayed in the Web

browser if accessed directly.

✔ Tips

■ The same values used in Chapter 5 to log

in to the mysql client should work from

your PHP scripts.

■ If you receive an error that claims

mysqli_connect() is an undefined func-

tion, it means that PHP has not been

compiled with support for the Improved

MySQL Extension. See the appendix for

installation information.

■ If you see a Can’t connect… error message

when running the script (see Figure 8.5),

it likely means that MySQL isn’t running.

■ In case you are curious, Figure 8.6 shows

what would happen if you didn’t use @
before mysqli_connect() and an error

occurred.

■ If you don’t need to select the database

when establishing a connection to

MySQL, omit that argument from the

mysqli_connect() function:

$dbc = mysqli_connect (hostname,
➝ username, password);

Then, when appropriate, you can select

the database using

mysqli_select_db($dbc, db_name);

229

Using PHP with MySQL

C
o

n
n

e
c

t
i
n

g
 t

o
 M

y
S

Q
L

Figure 8.3 A visual representation of a server’s Web
documents, where mysqli_connect.php is not stored
within the main directory (htdocs).

Figure 8.4 If the MySQL connection script works
properly, the end result will be a blank page (no HTML
is generated by the script).

Figure 8.5 Another reason why PHP might not be able
to connect to MySQL (besides using invalid username/
password/hostname/database information) is if
MySQL isn’t currently running.

Figure 8.6 If you don’t use the error suppression
operator (@), you’ll see both the PHP error and the
custom OR die() error.

Executing Simple Queries
Once you have successfully connected to

and selected a database, you can start per-

forming queries. These queries can be as

basic as inserts, updates, and deletions or as

involved as complex joins returning numer-

ous rows. In any case, the PHP function for

executing a query is mysqli_query():

result = mysqli_query(dbc, query);

The function takes the database connection

as its first argument and the query itself as

the second. I normally assign the query to

another variable, called $query or just $q. So

running a query might look like

$r = mysqli_query($dbc, $q);

For simple queries like INSERT, UPDATE, DELETE,

etc. (which do not return records), the $r
variable—short for result—will be either

TRUE or FALSE, depending upon whether the

query executed successfully. Keep in mind

that “executed successfully” means that it

ran without error; it doesn’t mean it neces-

sarily had the desired result; you’ll need to

test for that.

For complex queries that return records

(SELECT, SHOW, DESCRIBE, and EXPLAIN), $r will

be a resource link to the results of the query

230

Chapter 8

E
x

e
c

u
t

i
n

g
 S

i
m

p
l
e

 Q
u

e
r

i
e

s

Figure 8.7 The registration form.

if it worked or be FALSE if it did not. Thus,

you can use this line of code in a conditional

to test if the query successfully ran:

$r = mysqli_query ($dbc, $q);

if ($r) { // Worked!

If the query did not successfully run, some

sort of MySQL error must have occurred.

To find out what that error was, call the

mysqli_error() function:

echo mysqli_error($dbc);

One final, albeit optional, step in your script

would be to close the existing MySQL con-

nection once you’re finished with it:

mysqli_close($dbc);

This function is not required, because PHP

will automatically close the connection at

the end of a script, but it does make for

good programming form to incorporate it.

To demonstrate this process, let’s create

a registration script. It will show the form

when first accessed (Figure 8.7), handle the

form submission, and, after validating all the

data, insert the registration information into

the users table of the sitename database.

To execute simple queries:

1. Create a new PHP script in your text edi-

tor or IDE (Script 8.3).

<?php # Script 8.3 - register.php

$page_title = 'Register';

include ('includes/header.html');

The fundamentals of this script—using

included files, having the same page both

display and handle a form, and creating

a sticky form—come from Chapter 3. See

that chapter if you’re confused about any

of these concepts.

2. Create the submission conditional and

initialize the $errors array.

if (isset($_POST['submitted'])) {

$errors = array();

This script will both display and handle

the HTML form. This conditional will

check for the presence of a hidden form

element to determine whether or not to

process the form. The $errors variable

will be used to store every error message

(one for each form input not properly

filled out).

231

Using PHP with MySQL

E
x

e
c

u
t

i
n

g
 S

i
m

p
l
e

 Q
u

e
r

i
e

s

continues on next page

1 <?php # Script 8.3 - register.php

2

3 $page_title = ‘Register’;

4 include (‘includes/header.html’);

5

6 // Check if the form has been submitted:

7 if (isset($_POST[‘submitted’])) {

8

9 $errors = array(); // Initialize an
error array.

10

11 // Check for a first name:

12 if (empty($_POST[‘first_name’])) {

13 $errors[] = ‘You forgot to enter your
first name.’;

14 } else {

15 $fn = trim($_POST[‘first_name’]);

16 }

17

18 // Check for a last name:

19 if (empty($_POST[‘last_name’])) {

20 $errors[] = ‘You forgot to enter your
last name.’;

21 } else {

22 $ln = trim($_POST[‘last_name’]);

23 }

24

25 // Check for an email address:

26 if (empty($_POST[‘email’])) {

27 $errors[] = ‘You forgot to enter your
email address.’;

28 } else {

29 $e = trim($_POST[‘email’]);

30 }

31

32 // Check for a password and match
against the confirmed password:

33 if (!empty($_POST[‘pass1’])) {

34 if ($_POST[‘pass1’] !=
$_POST[‘pass2’]) {

Script 8.3 The registration script adds a record to the
database by running an INSERT query.

(script continues on next page)

3. Validate the first name.

if (empty($_POST['first_name'])) {

$errors[] = 'You forgot to enter
➝ your first name.';

} else {

$fn =
➝ trim($_POST['first_name']);

}

As discussed in Chapter 3, the empty()
function provides a minimal way of ensur-

ing that a text field was filled out. If the

first name field was not filled out, an error

message is added to the $errors array.

Otherwise, $fn is set to the submitted value,

after trimming off any extraneous spaces.

By using this new variable—which is obvi-

ously short for first_name—I make it syn-

tactically easier to write the query later.

4. Validate the last name and email address.

if (empty($_POST['last_name'])) {

$errors[] = 'You forgot to enter
➝ your last name.';

} else {

$ln = trim($_POST['last_name']);

}

if (empty($_POST['email'])) {

$errors[] = 'You forgot to enter
➝ your email address.';

} else {

$e = trim($_POST['email']);

}

These lines are syntactically the same as

those validating the first name field. In

both cases a new variable will be created,

assuming that the minimal validation

was passed.

232

Chapter 8

E
x

e
c

u
t

i
n

g
 S

i
m

p
l
e

 Q
u

e
r

i
e

s

35 $errors[] = ‘Your password did not
match the confirmed password.’;

36 } else {

37 $p = trim($_POST[‘pass1’]);

38 }

39 } else {

40 $errors[] = ‘You forgot to enter your
password.’;

41 }

42

43 if (empty($errors)) { // If everything’s
OK.

44

45 // Register the user in the
database...

46

47 require_once
(‘../mysqli_connect.php’); // Connect
to the db.

48

49 // Make the query:

50 $q = “INSERT INTO users (first_name,
last_name, email, pass,
registration_date) VALUES (‘$fn’,
‘$ln’, ‘$e’, SHA1(‘$p’), NOW())”;

51 $r = @mysqli_query ($dbc, $q); // Run
the query.

52 if ($r) { // If it ran OK.

53

54 // Print a message:

55 echo ‘<h1>Thank you!</h1>

56 <p>You are now registered. In Chapter
11 you will actually be able to log
in!</p><p>
</p>’;

57

58 } else { // If it did not run OK.

59

60 // Public message:

61 echo ‘<h1>System Error</h1>

62 <p class=”error”>You could not be
registered due to a system error.
We apologize for any
inconvenience.</p>’;

63

Script 8.3 continued

(script continues on next page)

5. Validate the password.

if (!empty($_POST['pass1'])) {

if ($_POST['pass1'] !=
➝ $_POST['pass2']) {

$errors[] = 'Your password
➝ did not match the
➝ confirmed password.';

} else {

$p = trim($_POST['pass1']);

}

} else {

$errors[] = 'You forgot to enter
➝ your password.';

}

To validate the password, the script needs

to check the pass1 input for a value and

then confirm that the pass1 value matches

the pass2 value (so the password and

confirmed password are the same).

6. Check if it’s OK to register the user.

if (empty($errors)) {

If the submitted data passed all of the

conditions, the $errors array will have

no values in it (it will be empty), so this

condition will be TRUE and it’s safe to add

the record to the database. If the $errors
array is not empty, then the appropriate

error messages should be printed (see

Step 10) and the user given another

opportunity to register.

233

Using PHP with MySQL

E
x

e
c

u
t

i
n

g
 S

i
m

p
l
e

 Q
u

e
r

i
e

s

64 // Debugging message:

65 echo ‘<p>’ . mysqli_error($dbc) .
‘

Query: ‘ . $q .
‘</p>’;

66

67 } // End of if ($r) IF.

68

69 mysqli_close($dbc); // Close the
database connection.

70

71 // Include the footer and quit the
script:

72 include (‘includes/footer.html’);

73 exit();

74

75 } else { // Report the errors.

76

77 echo ‘<h1>Error!</h1>

78 <p class=”error”>The following
error(s) occurred:
’;

79 foreach ($errors as $msg) { // Print
each error.

80 echo “ - $msg
\n”;

81 }

82 echo ‘</p><p>Please try
again.</p><p>
</p>’;

83

84 } // End of if (empty($errors)) IF.

85

86 } // End of the main Submit conditional.

87 ?>

88 <h1>Register</h1>

89 <form action=”register.php” method=”post”>

90 <p>First Name: <input type=”text”
name=”first_name” size=”15”
maxlength=”20” value=”<?php if
(isset($_POST[‘first_name’])) echo
$_POST[‘first_name’]; ?>” /></p>

91 <p>Last Name: <input type=”text”
name=”last_name” size=”15”
maxlength=”40” value=”<?php if
(isset($_POST[‘last_name’])) echo
$_POST[‘last_name’]; ?>” /></p>

Script 8.3 continued

(script continues on next page)

continues on next page

7. Add the user to the database.

require_once
➝ ('../mysqli_connect.php');

$q = "INSERT INTO users (first_name,
➝ last_name, email, pass,
➝ registration_date) VALUES ('$fn',
➝ '$ln', '$e', SHA1('$p'), NOW())";

$r = @mysqli_query ($dbc, $q);

The first line of code will insert the con-

tents of the mysqli_connect.php file into

this script, thereby creating a connection

to MySQL and selecting the database.

You may need to change the reference to

the location of the file as it is on your

server (as written, this line assumes that

mysqli_connect.php is in the parent fold-

er of the current folder).

The query itself is similar to those demon-

strated in Chapter 5. The SHA1() function

is used to encrypt the password, and

NOW() is used to set the registration date

as this moment.

After assigning the query to a variable, it is

run through the mysqli_query() function,

which sends the SQL command to the

MySQL database. As in the mysqli_
connect.php script, the mysqli_query()
call is preceded by @ in order to suppress

any ugly errors. If a problem occurs, the

error will be handled more directly in the

next step.

234

Chapter 8

E
x

e
c

u
t

i
n

g
 S

i
m

p
l
e

 Q
u

e
r

i
e

s

92 <p>Email Address: <input type=”text”
name=”email” size=”20” maxlength=”80”
value=”<?php if (isset($_POST[‘email’]))
echo $_POST[‘email’]; ?>” /> </p>

93 <p>Password: <input type=”password”
name=”pass1” size=”10” maxlength=”20”
/></p>

94 <p>Confirm Password: <input
type=”password” name=”pass2” size=”10”
maxlength=”20” /></p>

95 <p><input type=”submit” name=”submit”
value=”Register” /></p>

96 <input type=”hidden” name=”submitted”
value=”TRUE” />

97 </form>

98 <?php

99 include (‘includes/footer.html’);

100 ?>

Script 8.3 continued

The $r variable, which is assigned the

value returned by mysqli_query(), can be

used in a conditional to indicate the suc-

cessful operation of the query.

If $r is TRUE, then a Thank you! message

is displayed (Figure 8.8). If $r is FALSE,

error messages are printed. For debug-

ging purposes, the error messages will

include both the error spit out by MySQL

(thanks to the mysqli_error() function)

and the query that was run (Figure 8.9).

This information is critical to debugging

the problem.

235

Using PHP with MySQL

E
x

e
c

u
t

i
n

g
 S

i
m

p
l
e

 Q
u

e
r

i
e

s

continues on next page

8. Report on the success of the registration.

if ($r) {

echo '<h1>Thank you!</h1>

<p>You are now registered. In
➝ Chapter 11 you will actually be
➝ able to log in!</p><p><br
➝ /></p>';

} else {

echo '<h1>System Error</h1>

<p class="error">You could not be
➝ registered due to a system
➝ error. We apologize for any
➝ inconvenience.</p>';

echo '<p>' . mysqli_error($dbc) .
➝ '

Query: ' . $q .
➝ '</p>';

}

Figure 8.9 Any MySQL errors
caused by the query will be
printed, as will the query that
was being run.

Figure 8.8 If the user could be
registered in the database, this
message is displayed.

9. Close the database connection and

complete the HTML template.

mysqli_close();

include ('includes/footer.html');

exit();

Closing the connection isn’t required

but is a good policy. Then the footer is

included and the script terminated

(thanks to the exit() function). If those

two lines weren’t here, then the registra-

tion form would be displayed again

(which isn’t necessary after a successful

registration).

10. Print out any error messages and close

the submit conditional.

} else {

echo '<h1>Error!</h1>

<p class="error">The
➝ following ››error(s)
➝ occurred:
';

foreach ($errors as
$msg) {

echo " - $msg
\n";

}

echo '</p><p>Please try
➝ ›again.</p><p>
</p>';

}

}

The else clause is invoked if there were

any errors. In that case, all of the errors

are displayed using a foreach loop

(Figure 8.10).

The final closing curly brace closes the

main submit conditional. The main con-

ditional is a simple IF, not an if-else, so

that the form can be made sticky (again,

see Chapter 3).

236

Chapter 8

E
x

e
c

u
t

i
n

g
 S

i
m

p
l
e

 Q
u

e
r

i
e

s

Figure 8.10 Each form validation error is reported to
the user so that they may try registering again.

11. Close the PHP section and begin the

HTML form.

?>

<h1>Register</h1>

<form action="register.php"
➝ method="post">

<p>First Name: <input
➝ type="text" name="first_name"
➝ size="15" maxlength="20"
➝ value="<?php if
➝ (isset($_POST['first_name']))
➝ echo $_POST['first_name']; ?>"
➝ /></p>

<p>Last Name: <input type="text"
➝ name="last_name" size="15"
➝ maxlength="40" value="<?php if
➝ (isset($_POST['last_name']))
➝ echo $_POST['last_name']; ?>"
➝ /></p>

The form is really simple, with one text

input for each field in the users table

(except for the user_id column, which

will automatically be populated). Each

input is made sticky, using the code

value="<?php if
➝ (isset($_POST['first_name']))
echo
➝ $_POST['first_name']; ?>"

Also, I would strongly recommend that

you use the same name for your form

inputs as the corresponding column in

the database where that value will be

stored. Further, you should set the max-

imum input length in the form equal to

the maximum column length in the

database. Both of these habits help to

minimize errors.

12. Complete the HTML form.

<p>Email Address: <input
➝ type="text" name="email"
➝ size="20" maxlength="80"
➝ value="<?php if
➝ (isset($_POST['email'])) echo
➝ $_POST['email']; ?>" /> </p>

<p>Password: <input
➝ type="password" name="pass1"
➝ size="10" maxlength="20" /></p>

<p>Confirm Password: <input
➝ type="password" name="pass2"
➝ size="10" maxlength="20" /></p>

<p><input type="submit"
➝ name="submit" value="Register"
➝ /></p>

<input type="hidden"
➝ name="submitted" value="TRUE"
/>

</form>

This is all much like that in Step 11. A

submit button and a hidden input are

in the form as well. The hidden input

trick is discussed in (you guessed

it…Chapter 3).

As a side note, I don’t need to follow my

maxlength recommendation (from Step 11)

with the password inputs, because they

will be encrypted with SHA1(), which

always creates a string 40 characters

long. And since there are two of them,

they can’t both use the same name as

the column in the database.

13. Complete the template.

<?php

include ('includes/footer.html');

?>

237

Using PHP with MySQL

E
x

e
c

u
t

i
n

g
 S

i
m

p
l
e

 Q
u

e
r

i
e

s

continues on next page

14. Save the file as register.php, place it in

your Web directory, and test it in your

Web browser.

Note that if you use an apostrophe in

one of the form values, it will likely break

the query (Figure 8.11). The section

“Ensuring Secure SQL” later in this

chapter will show how to protect

against this.

✔ Tips

■ After running the script, you can always

ensure that it worked by using the mysql

client or phpMyAdmin to view the values

in the users table.

■ You should not end your queries with a

semicolon in PHP, as you did when using

the mysql client. When working with

MySQL, this is a common, albeit harm-

less, mistake to make. When working

with other database applications (Oracle,

for one), doing so will make your queries

unusable.

■ As a reminder, the mysqli_query() func-

tion returns TRUE if the query could be

executed on the database without error.

This does not necessarily mean that the

result of the query is what you were

expecting. Later scripts will demonstrate

how to more accurately gauge the suc-

cess of a query.

■ You are not obligated to create a $q variable

as I tend to do (you could directly insert

your query text into mysqli_query()).

However, as the construction of your

queries becomes more complex, using

a variable will be the only option.

■ Practically any query you would run in

the mysql client can also be executed

using mysqli_query().

■ Another benefit of the Improved MySQL

Extension over the standard extension is

that the mysqli_multi_query() function

lets you execute multiple queries at one

time. The syntax for doing so, particularly

if the queries return results, is a bit more

complicated, so see the PHP manual if

you have this need.

238

Chapter 8

E
x

e
c

u
t

i
n

g
 S

i
m

p
l
e

 Q
u

e
r

i
e

s

Figure 8.11 Apostrophes in form values (like the last name here) will conflict with the apostrophes used to
delineate values in the query.

Retrieving Query Results
The preceding section of this chapter demon-

strates how to execute simple queries on a

MySQL database. A simple query, as I’m call-

ing it, could be defined as one that begins

with INSERT, UPDATE, DELETE, or ALTER. What

all four of these have in common is that they

return no data, just an indication of their

success. Conversely, a SELECT query generates

information (i.e., it will return rows of

records) that has to be handled by other

PHP functions.

The primary tool for handling SELECT query

results is mysqli_fetch_array(), which uses

the query result variable (that I’ve been call-

ing $r) and returns one row of data at a time,

in an array format. You’ll want to use this

function within a loop that will continue to

access every returned row as long as there

are more to be read. The basic construction

for reading every record from a query is

while ($row = mysqli_fetch_array($r)) {

// Do something with $row.

}

You will almost always want to use a while loop

to fetch the results from a SELECT query.

The mysqli_fetch_array() function takes

an optional second parameter specifying

what type of array is returned: associative,

indexed, or both. An associative array allows

you to refer to column values by name,

whereas an indexed array requires you to use

only numbers (starting at 0 for the first col-

umn returned). Each parameter is defined by

a constant listed in Table 8.1. The MYSQLI_NUM
setting is marginally faster (and uses less

memory) than the other options. Conversely,

MYSQLI_ASSOC is more overt ($row['column']
rather than $row[3]) and may continue to

work even if the query changes.

An optional step you can take when using

mysqli_fetch_array() would be to free up

the query result resources once you are done

using them:

mysqli_free_result ($r);

This line removes the overhead (memory)

taken by $r. It’s an optional step, since

PHP will automatically free up the resources

at the end of a script, but—like using

mysqli_close()—it does make for good pro-

gramming form.

To demonstrate how to handle results

returned by a query, let’s create a script for

viewing all of the currently registered users.

239

Using PHP with MySQL

R
e

t
r

i
e

v
i
n

g
 Q

u
e

r
y

 R
e

s
u

l
t

s

C o n s t a n t E x a m p l e

MYSQLI_ASSOC $row['column']

MYSQLI_NUM $row[0]

MYSQLI_BOTH $row[0] or $row['column']

mysqli_fetch_array() Constants

Table 8.1 Adding one of these constants as an
optional parameter to the mysqli_fetch_array()
function dictates how you can access the values
returned. The default setting of the function is
MYSQLI_BOTH.

To retrieve query results:

1. Create a new PHP document in your text

editor or IDE (Script 8.4).

<?php # Script 8.4 - view_users.php

$page_title = 'View the Current Users';

include ('includes/header.html');

echo '<h1>Registered Users</h1>';

2. Connect to and query the database.

require_once
➝ ('../mysqli_connect.php');

$q = "SELECT CONCAT(last_name, ', ',
➝ first_name) AS name,
➝ DATE_FORMAT(registration_date, '%M
➝ %d, %Y') AS dr FROM users ORDER BY
➝ registration_date ASC";

$r = @mysqli_query ($dbc, $q);

The query here will return two columns

(Figure 8.12): the users’ names (format-

ted as Last Name, First Name) and the

date they registered (formatted as Month

DD, YYYY). Because both columns are

formatted using MySQL functions, aliases

are given to the returned results (name

and dr, accordingly). See Chapter 5 if you

are confused by any of this syntax.

3. Display the query results.

if ($r) {

echo '<table align="center"
➝ cellspacing="3"
cellpadding="3"
➝ width="75%">

<tr><td
➝ align="left">Name</td><
td
➝ align="left">Date
➝ Registered</td></tr>

';

240

Chapter 8

R
e

t
r

i
e

v
i
n

g
 Q

u
e

r
y

 R
e

s
u

l
t

s

1 <?php # Script 8.4 - view_users.php

2 // This script retrieves all the records
from the users table.

3

4 $page_title = 'View the Current Users';

5 include ('includes/header.html');

6

7 // Page header:

8 echo '<h1>Registered Users</h1>';

9

10 require_once ('../mysqli_connect.php'); //
Connect to the db.

11

12 // Make the query:

13 $q = "SELECT CONCAT(last_name, ', ',
first_name) AS name,
DATE_FORMAT(registration_date, '%M %d,
%Y') AS dr FROM users ORDER BY
registration_date ASC";

14 $r = @mysqli_query ($dbc, $q); // Run the
query.

15

16 if ($r) { // If it ran OK, display the
records.

17

18 // Table header.

19 echo '<table align="center"
cellspacing="3" cellpadding="3"
width="75%">

20 <tr><td align="left">Name</td><td
align="left">Date
Registered</td></tr>

21 ';

22

23 // Fetch and print all the records:

24 while ($row = mysqli_fetch_array($r,
MYSQLI_ASSOC)) {

Script 8.4 The view_users.php script runs a static query
on the database and prints all of the returned rows.

(script continues on next page)

while ($row =
➝ mysqli_fetch_array($r,
➝ MYSQLI_ASSOC)) {

echo '<tr><td align="left">' .
➝ $row['name'] . '</td><td
➝ align="left">' . $row['dr'] .
➝ '</td></tr>

';

}

echo '</table>';

To display the results, make a table and

a header row in HTML. Then loop through

the results using mysqli_fetch_array()
and print each fetched row. Finally, close

the table.

Notice that within the while loop, the

code refers to each returned value using

the proper alias: $row['name'] and

$row['dr']. The script could not refer

to $row['first_name'] or $row['date_
registered'] because no such field

name was returned (see Figure 8.12).

241

Using PHP with MySQL

R
e

t
r

i
e

v
i
n

g
 Q

u
e

r
y

 R
e

s
u

l
t

s

25 echo '<tr><td align="left">' .
$row['name'] . '</td><td align="left">'
. $row['dr'] . '</td></tr>

26 ';

27 }

28

29 echo '</table>'; // Close the table.

30

31 mysqli_free_result ($r); // Free up the
resources.

32

33 } else { // If it did not run OK.

34

35 // Public message:

36 echo '<p class="error">The current users
could not be retrieved. We apologize for
any inconvenience.</p>';

37

38 // Debugging message:

39 echo '<p>' . mysqli_error($dbc) . '

Query: ' . $q . '</p>';

40

41 } // End of if ($r) IF.

42

43 mysqli_close($dbc); // Close the database
connection.

44

45 include ('includes/footer.html');

46 ?>

Script 8.4 continued

Figure 8.12 The query results as run
within the mysql client.

continues on next page

4. Free up the query resources.

mysqli_free_result ($r);

Again, this is an optional step but a good

one to take.

5. Complete the main conditional.

} else {

echo '<p class="error">The
➝ current users could not be
➝ retrieved. We apologize for
any
➝ inconvenience.</p>';

echo '<p>' . mysqli_error($dbc)
.
➝ '

Query: ' . $q .
➝ '</p>';

}

As in the register.php example, there

are two kinds of error messages here. The

first is a generic message, the type you’d

show in a live site. The second is much

more detailed, printing both the MySQL

error and the query, both being critical

for debugging purposes.

6. Close the database connection and finish

the page.

mysqli_close($dbc);

include ('includes/footer.html');

?>

7. Save the file as view_users.php, place it

in your Web directory, and test it in your

browser (Figure 8.13).

✔ Tips

■ The function mysqli_fetch_row()is the

equivalent of mysqli_fetch_array ($r,
MYSQLI_NUM);

■ The function mysqli_fetch_assoc() is

the equivalent of mysqli_fetch_array
($r, MYSQLI_ASSOC);

■ As with any associative array, when you

retrieve records from the database, you

must refer to the columns exactly as they

are defined in the database. This is to say

that the keys are case-sensitive.

■ If you are in a situation where you need

to run a second query inside of your

while loop, be certain to use different

variable names for that query. For exam-

ple, the inner query would use $r2 and

$row2 instead of $r and $row. If you don’t

do this, you’ll encounter logical errors.

■ I frequently see beginning PHP develop-

ers muddle the process of fetching query

results. Remember that you must exe-

cute the query using mysqli_query(),

and then use mysqli_fetch_array() to

retrieve a single row of information. If

you have multiple rows to retrieve, use

a while loop.

242

Chapter 8

R
e

t
r

i
e

v
i
n

g
 Q

u
e

r
y

 R
e

s
u

l
t

s

Figure 8.13 All of the user records are
retrieved from the database and displayed
in the Web browser.

You can accomplish the first objective by

securing the MySQL connection script outside

of the Web directory so that it is never view-

able through a Web browser (see Figure 8.3).

I discuss this in some detail earlier in the

chapter. The second objective is attained by

not letting the user see PHP’s error messages

or your queries (in these scripts, that infor-

mation is printed out for your debugging

purposes; you’d never want to do that on

a live site).

For the third objective, there are numerous

steps you can and should take, all based

upon the premise of never trusting user-

supplied data. First, validate that some value

has been submitted, or that it is of the prop-

er type (number, string, etc.). Second, use

regular expressions to make sure that sub-

mitted data matches what you would expect

it to be (this topic is covered in Chapter 13,

“Perl-Compatible Regular Expressions”).

Third, you can typecast some values to

guarantee that they’re numbers (discussed

in Chapter 12, “Security Methods”). A

fourth recommendation is to run user-

submitted data through the mysqli_real_
escape_string() function. This function

cleans data by escaping what could be prob-

lematic characters. It’s used like so:

$clean = mysqli_real_escape_string($dbc,
➝ data);

For security purposes, mysqli_real_escape_
string() should be used on every text input

in a form. To demonstrate this, let’s revamp

register.php (Script 8.3).

243

Using PHP with MySQL

E
n

s
u

r
i
n

g
 S

e
c

u
r

e
 S

Q
L

Ensuring Secure SQL
Database security with respect to PHP

comes down to three broad issues:

1. Protecting the MySQL access information

2. Not revealing too much about the database

3. Being cautious when running queries,

particularly those involving user-

submitted data

To use mysqli_real_escape_string():

1. Open register.php (Script 8.3) in your

text editor or IDE.

2. Move the inclusion of the mysqli_
connect.php file (line 46 in Script 8.3)

to just after the main conditional

(Script 8.5).

Because the mysqli_real_escape_
string() function requires a database

connection, the mysqli_connect.php
script must be required earlier in the script.

244

Chapter 8

E
n

s
u

r
i
n

g
 S

e
c

u
r

e
 S

Q
L

1 <?php # Script 8.5 - register.php #2

2

3 $page_title = ‘Register’;

4 include (‘includes/header.html’);

5

6 // Check if the form has been submitted:

7 if (isset($_POST[‘submitted’])) {

8

9 require_once (‘../mysqli_connect.php’);

// Connect to the db.

10

11 $errors = array(); // Initialize an
error array.

12

13 // Check for a first name:

14 if (empty($_POST[‘first_name’])) {

15 $errors[] = ‘You forgot to enter your
first name.’;

16 } else {

17 $fn = mysqli_real_escape_string($dbc,

trim($_POST[‘first_name’]));

18 }

19

20 // Check for a last name:

21 if (empty($_POST[‘last_name’])) {

22 $errors[] = ‘You forgot to enter your
last name.’;

23 } else {

24 $ln = mysqli_real_escape_string($dbc,

trim($_POST[‘last_name’]));

25 }

26

27 // Check for an email address:

28 if (empty($_POST[‘email’])) {

29 $errors[] = ‘You forgot to enter your
email address.’;

30 } else {

31 $e = mysqli_real_escape_string($dbc,

trim($_POST[‘email’]));

Script 8.5 The register.php script now uses the
mysqli_real_escape_string() function to clean the
submitted data.

(script continues on next page)

3. Change the validation routines to use the

mysqli_real_escape_string() function,

replacing each occurrence of $var =
trim($_POST['var']) with $var =
mysqli_real_escape_string($dbc,
trim($_POST['var'])).

$fn = mysqli_real_escape_string($dbc,
➝ trim($_POST['first_name']));

$ln = mysqli_real_escape_string($dbc,
➝ trim($_POST['last_name']));

$e = mysqli_real_escape_string($dbc,
➝ trim($_POST['email']));

$p = mysqli_real_escape_string($dbc,
➝ trim($_POST['pass1']));

Instead of just assigning the submitted

value to each variable ($fn, $ln, etc.),

the values will be run through the

mysqli_real_escape_string() function

first. The trim() function is still used to

get rid of any unnecessary spaces.

245

Using PHP with MySQL

E
n

s
u

r
i
n

g
 S

e
c

u
r

e
 S

Q
L

continues on next page

32 }

33

34 // Check for a password and match
against the confirmed password:

35 if (!empty($_POST[‘pass1’])) {

36 if ($_POST[‘pass1’] !=
$_POST[‘pass2’]) {

37 $errors[] = ‘Your password did not
match the confirmed password.’;

38 } else {

39 $p = mysqli_real_escape_string($dbc,

trim($_POST[‘pass1’]));

40 }

41 } else {

42 $errors[] = ‘You forgot to enter your
password.’;

43 }

44

45 if (empty($errors)) { // If everything’s
OK.

46

47 // Register the user in the
database...

48

49 // Make the query:

50 $q = “INSERT INTO users (first_name,
last_name, email, pass,
registration_date) VALUES (‘$fn’,
‘$ln’, ‘$e’, SHA1(‘$p’), NOW())”;

51 $r = @mysqli_query ($dbc, $q); // Run
the query.

52 if ($r) { // If it ran OK.

53

54 // Print a message:

55 echo ‘<h1>Thank you!</h1>

56 <p>You are now registered. In Chapter
11 you will actually be able to log
in!</p><p>
</p>’;

57

58 } else { // If it did not run OK.

59

60 // Public message:

(script continues on next page)

Script 8.5 continued

4. Add a second call to mysqli_close()
before the end of the main conditional.

mysqli_close($dbc);

To be consistent, since the database con-

nection is opened as the first step of the

main conditional, it should be closed as

the last step of this same conditional. It

still needs to be closed before including

the footer and terminating the script

(lines 72 and 73), though.

246

Chapter 8

E
n

s
u

r
i
n

g
 S

e
c

u
r

e
 S

Q
L

61 echo ‘<h1>System Error</h1>

62 <p class=”error”>You could not be
registered due to a system error.
We apologize for any
inconvenience.</p>’;

63

64 // Debugging message:

65 echo ‘<p>’ . mysqli_error($dbc) .
‘

Query: ‘ . $q .
‘</p>’;

66

67 } // End of if ($r) IF.

68

69 mysqli_close($dbc); // Close the
database connection.

70

71 // Include the footer and quit the
script:

72 include (‘includes/footer.html’);

73 exit();

74

75 } else { // Report the errors.

76

77 echo ‘<h1>Error!</h1>

78 <p class=”error”>The following
error(s) occurred:
’;

79 foreach ($errors as $msg) { // Print
each error.

80 echo “ - $msg
\n”;

81 }

82 echo ‘</p><p>Please try
again.</p><p>
</p>’;

83

84 } // End of if (empty($errors)) IF.

85

86 mysqli_close($dbc); // Close the

database connection.

87

88 } // End of the main Submit conditional.

89 ?>

(script continues on next page)

Script 8.5 continued

247

Using PHP with MySQL

E
n

s
u

r
i
n

g
 S

e
c

u
r

e
 S

Q
L

5. Save the file as register.php, place it in

your Web directory, and test it in your

Web browser (Figures 8.14 and 8.15).

continues on next page

90 <h1>Register</h1>

91 <form action=”register.php” method=”post”>

92 <p>First Name: <input type=”text”
name=”first_name” size=”15”
maxlength=”20” value=”<?php if
(isset($_POST[‘first_name’])) echo
$_POST[‘first_name’]; ?>” /></p>

93 <p>Last Name: <input type=”text”
name=”last_name” size=”15”
maxlength=”40” value=”<?php if
(isset($_POST[‘last_name’])) echo
$_POST[‘last_name’]; ?>” /></p>

94 <p>Email Address: <input type=”text”
name=”email” size=”20” maxlength=”80”
value=”<?php if (isset($_POST[‘email’]))
echo $_POST[‘email’]; ?>” /> </p>

95 <p>Password: <input type=”password”
name=”pass1” size=”10” maxlength=”20”
/></p>

96 <p>Confirm Password: <input
type=”password” name=”pass2” size=”10”
maxlength=”20” /></p>

97 <p><input type=”submit” name=”submit”
value=”Register” /></p>

98 <input type=”hidden” name=”submitted”
value=”TRUE” />

99 </form>

100 <?php

101 include (‘includes/footer.html’);

102 ?>

Script 8.5 continued

Figure 8.14 Values
with apostrophes in
them, like a person’s
last name, will no
longer break the
INSERT query,
thanks to the
mysqli_real_
escape_string()
function.

Figure 8.15 Now the registration process will handle
problematic characters and be more secure.

✔ Tips

■ The mysqli_real_escape_string() func-

tion escapes a string in accordance with

the language being used, which is an added

advantage over alternative solutions.

■ If you see results like those in Figure 8.16,

it means that the mysqli_real_escape_
string() function cannot access the

database (because it has no connection,

like $dbc).

248

Chapter 8

E
n

s
u

r
i
n

g
 S

e
c

u
r

e
 S

Q
L

Figure 8.16 Since the mysqli_real_escape_string() requires a database connection, using
it without that connection (e.g., before including the connection script) can lead to other errors.

Modifying register.php

The mysqli_num_rows() function could be applied to register.php to prevent someone from

registering with the same email address multiple times. Although the UNIQUE index on that

column in the database will prevent that from happening, such attempts will create a MySQL

error. To prevent this using PHP, run a SELECT query to confirm that the email address isn’t

currently registered. That query would be simply

SELECT user_id FROM users WHERE email='$e'

You would run this query (using the mysqli_query() function) and then call mysqli_num_rows().

If mysqli_num_rows() returns 0, you know that the email address hasn’t already been regis-

tered and it’s safe to run the INSERT.

■ If Magic Quotes is enabled on your server

(which means you’re using a version of

PHP prior to 6), you’ll need to remove

any slashes added by Magic Quotes, prior

to using the mysqli_real_escape_string()
function. The code (cumbersome as it is)

would look like:

$fn = mysqli_real_escape_string
➝ ($dbc, trim (stripslashes
➝ ($_POST['first_name'])));

If you don’t use stripslashes() and

Magic Quotes is enabled, the form values

will be doubly escaped.

Counting Returned Records
The next logical function to discuss is

mysqli_num_rows(). This function returns

the number of rows retrieved by a SELECT
query. It takes one argument, the query

result variable:

$num = mysqli_num_rows($r);

Although simple in purpose, this function is

very useful. It’s necessary if you want to pag-

inate your query results (an example of this

can be found in the next chapter). It’s also a

good idea to use this function before you

attempt to fetch any results using a while
loop (because there’s no need to fetch the

results if there aren’t any, and attempting to

do so may cause errors). In this next sequence

of steps, let’s modify view_users.php to list

the total number of registered users. For

another example of how you might use

mysqli_num_rows(), see the sidebar.

To modify view_users.php:

1. Open view_users.php (refer to Script 8.4)

in your text editor or IDE.

2. Before the if ($r) conditional, add this

line (Script 8.6)

$num = mysqli_num_rows ($r);

This line will assign the number of rows

returned by the query to the $num variable.

3. Change the original $r conditional to

if ($num > 0) {

The conditional as it was written before

was based upon whether the query did or

did not successfully run, not whether or

not any records were returned. Now it

will be more accurate.

249

Using PHP with MySQL

C
o

u
n

t
i
n

g
 R

e
t

u
r

n
e

d
 R

e
c

o
r

d
s

1 <?php # Script 8.6 - view_users.php #2

2 // This script retrieves all the records
from the users table.

3

4 $page_title = 'View the Current Users';

5 include ('includes/header.html');

6

7 // Page header:

8 echo '<h1>Registered Users</h1>';

9

10 require_once ('../mysqli_connect.php'); //
Connect to the db.

11

12 // Make the query:

13 $q = "SELECT CONCAT(last_name, ', ',
first_name) AS name,
DATE_FORMAT(registration_date, '%M %d,
%Y') AS dr FROM users ORDER BY
registration_date ASC";

14 $r = @mysqli_query ($dbc, $q); // Run the
query.

15

16 // Count the number of returned rows:

17 $num = mysqli_num_rows($r);

18

19 if ($num > 0) { // If it ran OK, display

the records.

20

21 // Print how many users there are:

22 echo "<p>There are currently $num

registered users.</p>\n";

23

24 // Table header.

25 echo '<table align="center"
cellspacing="3" cellpadding="3"
width="75%">

Script 8.6 Now the view_users.php script will display
the total number of registered users, thanks to the
mysqli_num_rows() function.

(script continues on next page)

continues on next page

4. Before creating the HTML table, print

the number of registered users.

echo "<p>There are currently $num
➝ registered users.</p>\n";

5. Change the else part of the main condi-

tional to read

echo '<p class="error">There are
➝ currently no registered users.</p>';

The original conditional was based upon

whether or not the query worked.

Hopefully you’ve successfully debugged

the query so that it is working and the

original error messages are no longer

needed. Now the error message just indi-

cates if no records were returned.

6. Save the file as view_users.php, place it

in your Web directory, and test it in your

Web browser (Figure 8.17).

250

Chapter 8

C
o

u
n

t
i
n

g
 R

e
t

u
r

n
e

d
 R

e
c

o
r

d
s

26 <tr><td align="left">Name</td><td
align="left">Date
Registered</td></tr>

27 ';

28

29 // Fetch and print all the records:

30 while ($row = mysqli_fetch_array($r,
MYSQLI_ASSOC)) {

31 echo '<tr><td align="left">' .
$row['name'] . '</td><td align="left">' .
$row['dr'] . '</td></tr>

32 ';

33 }

34

35 echo '</table>'; // Close the table.

36

37 mysqli_free_result ($r); // Free up the
resources.

38

39 } else { // If no records were returned.

40

41 echo '<p class="error">There are

currently no registered users.</p>';

42

43 }

44

45 mysqli_close($dbc); // Close the database
connection.

46

47 include ('includes/footer.html');

48 ?>

Script 8.6 continued

Figure 8.17 The number of registered users is now
displayed at the top of the page.

Updating Records with PHP
The last technique in this chapter shows how

to update database records through a PHP

script. Doing so requires an UPDATE query, and

its successful execution can be verified with

PHP’s mysqli_affected_rows() function.

While the mysqli_num_rows() function will

return the number of rows generated by a

SELECT query, mysqli_affected_rows() returns

the number of rows affected by an INSERT,

UPDATE, or DELETE query. It’s used like so:

$num = mysqli_affected_rows($dbc);

Unlike mysqli_num_rows(), the one argument

the function takes is the database connection

($dbc), not the results of the previous

query ($r).

The following example will be a script that

allows registered users to change their pass-

word. It demonstrates two important ideas:

◆ Checking a submitted username and

password against registered values (the

key to a login system as well)

◆ Updating database records using the pri-

mary key as a reference

As with the registration example, this one PHP

script will both display the form (Figure 8.18)

and handle it.

251

Using PHP with MySQL

U
p

d
a

t
i
n

g
 R

e
c

o
r

d
s

 w
i
t

h
 P

H
P

Figure 8.18 The form for changing a user’s password.

To update records with PHP:

1. Create a new PHP script in your text edi-

tor or IDE (Script 8.7).

<?php # Script 8.7 - password.php

$page_title = 'Change Your Password';

include ('includes/header.html');

2. Start the main conditional.

if (isset($_POST['submitted'])) {

Since this page both displays and

handles the form, it’ll use the standard

conditional.

3. Include the database connection and

create an array for storing errors.

require_once ('../mysqli_connect.php');

$errors = array();

The initial part of this script mimics the

registration form.

252

Chapter 8

U
p

d
a

t
i
n

g
 R

e
c

o
r

d
s

 w
i
t

h
 P

H
P

1 <?php # Script 8.7 - password.php

2 // This page lets a user change their
password.

3

4 $page_title = ‘Change Your Password’;

5 include (‘includes/header.html’);

6

7 // Check if the form has been submitted:

8 if (isset($_POST[‘submitted’])) {

9

10 require_once (‘../mysqli_connect.php’);
// Connect to the db.

11

12 $errors = array(); // Initialize an
error array.

13

14 // Check for an email address:

15 if (empty($_POST[‘email’])) {

16 $errors[] = ‘You forgot to enter your
email address.’;

17 } else {

18 = mysqli_real_escape_string($dbc,
trim($_POST[‘email’]));

19 }

20

21 // Check for the current password:

22 if (empty($_POST[‘pass’])) {

23 $errors[] = ‘You forgot to enter your
current password.’;

24 } else {

25 $p = mysqli_real_escape_string($dbc,
trim($_POST[‘pass’]));

26 }

27

28 // Check for a new password and match

29 // against the confirmed password:

Script 8.7 The password.php script runs an UPDATE query
on the database and uses the mysqli_affected_rows()
function to confirm the change.

(script continues on next page)

4. Validate the email address and current

password fields.

if (empty($_POST['email'])) {

$errors[] = 'You forgot to enter
➝ your email address.';

} else {

$e =
➝ mysqli_real_escape_string($dbc
,
➝ trim($_POST['email']));

}

if (empty($_POST['pass'])) {

$errors[] = 'You forgot to enter
➝ your current password.';

} else {

$p =
➝ mysqli_real_escape_string($dbc
,
➝ trim($_POST['pass']));

}

The form (Figure 8.18) has four inputs:

the email address, the current password,

and two for the new password. The process

for validating each of these is the same as

it is in register.php. Any data that passes

the validation test will be trimmed and

run through the mysqli_real_escape_
string() function, so that it is safe to use

in a query.

253

Using PHP with MySQL

U
p

d
a

t
i
n

g
 R

e
c

o
r

d
s

 w
i
t

h
 P

H
P

30 if (!empty($_POST[‘pass1’])) {

31 if ($_POST[‘pass1’] !=
$_POST[‘pass2’]) {

32 $errors[] = ‘Your new password did
not match the confirmed password.’;

33 } else {

34 $np =
mysqli_real_escape_string($dbc,
trim($_POST[‘pass1’]));

35 }

36 } else {

37 $errors[] = ‘You forgot to enter your
new password.’;

38 }

39

40 if (empty($errors)) { // If everything’s
OK.

41

42 // Check that they’ve entered the
right email address/password
combination:

43 $q = “SELECT user_id FROM users WHERE
(email=’$e’ AND pass=SHA1(‘$p’))”;

44 $r = @mysqli_query($dbc, $q);

45 $num = @mysqli_num_rows($r);

46 if ($num == 1) { // Match was made.

47

48 // Get the user_id:

49 $row = mysqli_fetch_array($r,
MYSQLI_NUM);

50

51 // Make the UPDATE query:

52 $q = “UPDATE users SET
pass=SHA1(‘$np’) WHERE
user_id=$row[0]”;

53 $r = @mysqli_query($dbc, $q);

54

55 if (mysqli_affected_rows($dbc) ==
1) { // If it ran OK.

56

(script continues on next page)

Script 8.7 continued

continues on next page

5. Validate the new password.

if (!empty($_POST['pass1'])) {

if ($_POST['pass1'] !=
➝ $_POST['pass2']) {

$errors[] = 'Your new password
➝ did not match the confirmed
➝ password.';

} else {

$np =
➝ mysqli_real_escape_string($
➝ dbc, trim($_POST['pass1']));

}

} else {

$errors[] = 'You forgot to enter
➝ your new password.';

}

This code is also exactly like that in the

registration script, except that a valid

new password is assigned to a variable

called $np (because $p represents the

current password).

254

Chapter 8

U
p

d
a

t
i
n

g
 R

e
c

o
r

d
s

 w
i
t

h
 P

H
P

57 // Print a message.

58 echo ‘<h1>Thank you!</h1>

59 <p>Your password has been
updated. In Chapter 11 you
will actually be able to log
in!</p><p>
</p>’;

60

61 } else { // If it did not run OK.

62

63 // Public message:

64 echo ‘<h1>System Error</h1>

65 <p class=”error”>Your
password could not be
changed due to a system
error. We apologize for any
inconvenience.</p>’;

66

67 // Debugging message:

68 echo ‘<p>’ .
mysqli_error($dbc) . ‘

Query: ‘ . $q .
‘</p>’;

69

70 }

71

72 // Include the footer and quit the
script (to not show the form).

73 include (‘includes/footer.html’);

74 exit();

75

76 } else { // Invalid email
address/password combination.

77 echo ‘<h1>Error!</h1>

78 <p class=”error”>The email address
and password do not match those on
file.</p>’;

79 }

80

81 } else { // Report the errors.

(script continues on next page)

Script 8.7 continued

6. If all the tests are passed, retrieve the

user’s ID.

if (empty($errors)) {

$q = "SELECT user_id FROM users
➝ WHERE (email='$e' AND
➝ pass=SHA1('$p'))";

$r = @mysqli_query($dbc, $q);

$num = @mysqli_num_rows($r);

if ($num = = 1) {

$row = mysqli_fetch_array($r,
➝ MYSQLI_NUM);

This first query will return just the

user_id field for the record that matches

the submitted email address and pass-

word (Figure 8.19). To compare the sub-

mitted password against the stored one,

encrypt it again with the SHA1() function.

If the user is registered and has correctly

entered both the email address and pass-

word, exactly one row will be selected

(since the email value must be unique

across all rows). Finally, this one record is

assigned as an array (of one element) to

the $row variable.

255

Using PHP with MySQL

U
p

d
a

t
i
n

g
 R

e
c

o
r

d
s

 w
i
t

h
 P

H
P

82

83 echo ‘<h1>Error!</h1>

84 <p class=”error”>The following
error(s) occurred:
’;

85 foreach ($errors as $msg) { // Print
each error.

86 echo “ - $msg
\n”;

87 }

88 echo ‘</p><p>Please try
again.</p><p>
</p>’;

89

90 } // End of if (empty($errors)) IF.

91

92 mysqli_close($dbc); // Close the
database connection.

93

94 } // End of the main Submit conditional.

95 ?>

96 <h1>Change Your Password</h1>

97 <form action=”password.php” method=”post”>

98 <p>Email Address: <input type=”text”
name=”email” size=”20” maxlength=”80”
value=”<?php if (isset($_POST[‘email’]))
echo $_POST[‘email’]; ?>” /> </p>

99 <p>Current Password: <input
type=”password” name=”pass” size=”10”
maxlength=”20” /></p>

100 <p>New Password: <input type=”password”
name=”pass1” size=”10” maxlength=”20”
/></p>

101 <p>Confirm New Password: <input
type=”password” name=”pass2” size=”10”
maxlength=”20” /></p>

102 <p><input type=”submit” name=”submit”
value=”Change Password” /></p>

103 <input type=”hidden” name=”submitted”
value=”TRUE” />

104 </form>

105 <?php

106 include (‘includes/footer.html’);

107 ?>

Script 8.7 continued

Figure 8.19 The result when running
the SELECT query from the script (the
first of two queries it has) within the
mysql client.

continues on next page

If this part of the script doesn’t work for

you, apply the standard debugging meth-

ods: remove the error suppression opera-

tors (@) so that you can see what errors, if

any, occur; use the mysqli_error() func-

tion to report any MySQL errors; and

print, then run the query using another

interface (as in Figure 8.19).

7. Update the database.

$q = "UPDATE users SET
➝ pass=SHA1('$np') WHERE
➝ user_id=$row[0]";

$r = @mysqli_query($dbc, $q);

This query will change the password—

using the new submitted value—where

the user_id column is equal to the num-

ber retrieved from the previous query.

8. Check the results of the query.

if (mysqli_affected_rows($dbc) = = 1) {

echo '<h1>Thank you!</h1>

<p>Your password has been
➝ updated. In Chapter 11 you
will
➝ actually be able to log
➝ in!</p><p>
</p>';

} else {

echo '<h1>System Error</h1>

<p class="error">Your password
➝ could not be changed due to a
➝ system error. We apologize for
➝ any inconvenience.</p>';

echo '<p>' . mysqli_error($dbc)
.
➝ '

Query: ' . $q .
➝ '</p>';

}

This part of the script again works simi-

lar to register.php. In this case, if

mysqli_affected_rows() returns the

number 1, the record has been updated,

and a success message will be printed.

If not, both a public, generic message

and a more useful debugging message

will be printed.

9. Include the footer and terminate the

script.

include ('includes/footer.html');

exit();

At this point in the script, the UPDATE
query has been run. It either worked or

it did not (because of a system error). In

both cases, there’s no need to show the

form again, so the footer is included (to

complete the page) and the script is ter-

minated, using the exit() function.

10. Complete the if ($num = = 1) conditional.

} else {

echo '<h1>Error!</h1>

<p class="error">The email
➝ address and password do not
➝ match those on file.</p>';

}

If mysqli_num_rows() does not return a

value of 1, then the submitted email

address and password do not match

those on file and this error is printed.

In this case, the form will be displayed

again so that the user can enter the

correct information.

256

Chapter 8

U
p

d
a

t
i
n

g
 R

e
c

o
r

d
s

 w
i
t

h
 P

H
P

11. Print any validation error messages.

} else {

echo '<h1>Error!</h1>

<p class="error">The following
➝ error(s) occurred:
';

foreach ($errors as $msg) {

echo " - $msg
\n";

}

echo '</p><p>Please try
➝ again.</p><p>
</p>';

}

This else clause applies if the $errors
array is not empty (which means that

the form data did not pass all the vali-

dation tests). As in the registration

page, the errors will be printed.

12. Close the database connection and

complete the PHP code.

mysqli_close($dbc);

}

?>

13. Display the form.

<h1>Change Your Password</h1>

<form action="password.php"
➝ method="post">

<p>Email Address: <input
➝ type="text" name="email"
➝ size="20" maxlength="80"
➝ value="<?php if
➝ (isset($_POST['email'])) echo
➝ $_POST['email']; ?>" /> </p>

<p>Current Password: <input
➝ type="password" name="pass"
➝ size="10" maxlength="20" /></p>

<p>New Password: <input
➝ type="password" name="pass1"
➝ size="10" maxlength="20" /></p>

<p>Confirm New Password: <input
➝ type="password" name="pass2"
➝ size="10" maxlength="20" /></p>

<p><input type="submit"
➝ name="submit" value="Change
➝ Password" /></p>

<input type="hidden"
➝ name="submitted" value="TRUE"
➝ />

</form>

The form takes three different inputs of

type password—the current password, the

new one, and a confirmation of the new

password—and one text input for the

email address. The email address input

is sticky (password inputs cannot be).

257

Using PHP with MySQL

U
p

d
a

t
i
n

g
 R

e
c

o
r

d
s

 w
i
t

h
 P

H
P

continues on next page

14. Include the footer file.

<?php

include ('includes/footer.html');

?>

15. Save the file as password.php, place it in

your Web directory, and test it in your

Web browser (Figures 8.20 and 8.21).

✔ Tips

■ If you delete every record from a table

using the command TRUNCATE tablename,

mysqli_affected_rows() will return 0, even

if the query was successful and every row

was removed. This is just a quirk.

■ If an UPDATE query runs but does not actu-

ally change the value of any column (for

example, a password is replaced with the

same password), mysqli_affected_rows()
will return 0.

■ The mysqli_affected_rows() conditional

used here could (and maybe should) also

be applied to the register.php script to

confirm that one record was added. That

would be a more exacting condition to

check than if ($r).

258

Chapter 8

U
p

d
a

t
i
n

g
 R

e
c

o
r

d
s

 w
i
t

h
 P

H
P

Figure 8.20 The password was changed in the database.

Figure 8.21 If the entered email address and
password don’t match those on file, the
password will not be updated.

Now that you have a little PHP and MySQL interaction under your belt, it’s time to

take things up a notch. This chapter is similar to Chapter 3, “Creating Dynamic Web

Sites,” in that it covers myriad independent topics. But what all of these have in

common is that they demonstrate common PHP-MySQL programming techniques.

You won’t learn new functions here; instead, you’ll see how to use the knowledge

you already possess to create standard Web functionality.

The examples themselves will broaden the Web application started in the preceding

chapter by adding new, popular features. You’ll see several tricks for managing data-

base information, in particular editing and deleting records using PHP. At that same

time a couple new ways of passing data to your PHP pages will be introduced. The

final sections of the chapter add features to the view_users.php page.

259

Common
Programming
Techniques

9

C
o

m
m

o
n

 P
r

o
g

r
a

m
m

i
n

g
 T

e
c

h
n

i
q

u
e

s

Sending Values to a Script
In the examples so far, all of the data received

in the PHP script came from what the user

entered in a form. There are, however, two

different ways you can pass variables and

values to a PHP script, both worth knowing.

The first method is to make use of HTML’s

hidden input type:

<input type="hidden" name="do"

value="this" />

As long as this code is anywhere between

the form tags, the variable $_POST['do'] will

have a value of this in the handling PHP

script (assuming that the form uses the POST
method). You’ve already been using this

technique in the book with a hidden input

named submitted, used to test when a form

should be handled.

The second method for sending values to a

PHP script is to append it to the URL:

www.example.com/page.php?do=this

This technique emulates the GET method

of an HTML form. With this specific exam-

ple, page.php receives a variable called

$_GET['do'] with a value of this.

To demonstrate this GET method trick, a

new version of the view_users.php script,

first created in the last chapter, will be writ-

ten. This one will provide links to pages that

will allow you to edit or delete an existing

user’s record. The links will pass the user’s ID

to the handling pages, both of which will

also be written in this chapter.

To manually send values to a PHP
script:

1. Open view_users.php (Script 8.6) in your

text editor or IDE.

260

Chapter 9

S
e

n
d

i
n

g
 V

a
l
u

e
s

 t
o

 a
 S

c
r

i
p

t

1 <?php # Script 9.1 - view_users.php #3

2

3 // This script retrieves all the records
from the users table.

4 // This new version links to edit and
delete pages.

5

6 $page_title = 'View the Current Users';

7 include ('includes/header.html');

8

9 echo '<h1>Registered Users</h1>';

10

11 require_once ('../mysqli_connect.php');

12

13 // Make the query:

14 $q = "SELECT last_name, first_name,

DATE_FORMAT(registration_date, '%M %d,

%Y') AS dr, user_id FROM users ORDER BY

registration_date ASC";

15 $r = @mysqli_query ($dbc, $q);

16

17 // Count the number of returned rows:

18 $num = mysqli_num_rows($r);

19

20 if ($num > 0) { // If it ran OK, display
the records.

21

22 // Print how many users there are:

23 echo "<p>There are currently $num
registered users.</p>\n";

24

25 // Table header.

26 echo '<table align="center" cellspacing=

"3" cellpadding="3" width="75%">

27 <tr>

28 <td align="left">Edit</td>

29 <td align="left">Delete</td>

Script 9.1 The view_users.php script, started in
Chapter 8, “Using PHP with MySQL,” now modified
so that it presents Edit and Delete links, passing the
user’s ID number along in each URL.

(script continues on next page)

261

Common Programming Techniques

S
e

n
d

i
n

g
 V

a
l
u

e
s

 t
o

 a
 S

c
r

i
p

t

2. Change the SQL query to read (Script 9.1).

$q = "SELECT last_name, first_name,
➝ DATE_FORMAT(registration_date, '%M
➝ %d, %Y') AS dr, user_id FROM users
➝ ORDER BY registration_date ASC";

The query has been changed in a couple

of ways. First, the first and last names are

selected separately, not concatenated

together. Second, the user_id is also now

being selected, as that value will be nec-

essary in creating the links.

3. Add three more columns to the main table.

echo '<table align="center"
➝ cellspacing="3" cellpadding="3"
➝ width="75%">

<tr>

<td align="left">Edit
➝ </td>

<td align="left">Delete
➝ </td>

<td align="left">Last Name
➝ </td>

<td align="left">First Name
➝ </td>

<td align="left">Date
➝ Registered</td>

</tr>

';

In the previous version of the script,

there were only two columns: one for the

name and another for the date the user

registered. The name column has been

separated into its two parts and two new

columns added: one for the Edit link and

another for the Delete link.

Script 9.1 continued

30 <td align="left">Last Name</td>

31 <td align="left">First Name</td>

32 <td align="left">Date Registered

</td>

33 </tr>

34 ';

35

36 // Fetch and print all the records:

37 while ($row = mysqli_fetch_array($r,
MYSQLI_ASSOC)) {

38 echo '<tr>

39 <td align="left"><a href="edit_user.

php?id=' . $row['user_id'] . '">Edit

</td>

40 <td align="left"><a href="delete_user.

php?id=' . $row['user_id'] . '">Delete

</td>

41 <td align="left">' . $row['last_name']

. '</td>

42 <td align="left">' . $row['first_

name'] . '</td>

43 <td align="left">' . $row['dr'] .

'</td>

44 </tr>

45 ';

46 }

47

48 echo '</table>';

49 mysqli_free_result ($r);

50

51 } else { // If no records were returned.

52 echo '<p class="error">There are
currently no registered users.</p>';

53 }

54

55 mysqli_close($dbc);

56

57 include ('includes/footer.html');

58 ?>

continues on next page

4. Change the echo statement within the

while loop to match the table’s new

structure.

echo '<tr>

<td align="left"><a href=
➝ "edit_user.php?id=' . $row
➝ ['user_id'] . '">Edit</td>

<td align="left"><a href=
➝ "delete_user.php?id=' .
➝ $row['user_id'] . '">Delete
➝ </td>

<td align="left">' . $row
➝ ['last_name'] . '</td>

<td align="left">' . $row
➝ ['first_name'] . '</td>

<td align="left">' . $row['dr']
➝ . '</td>

</tr>

';

For each record returned from the data-

base, this line will print out a row with

five columns. The last three columns are

obvious and easy to create: just refer to

the returned column name.

For the first two columns, which provide

links to edit or delete the user, the syntax

is slightly more complicated. The desired

end result is HTML code like <a href=
"edit_user.php?id=X">Edit, where X

is the user’s ID. Knowing this, all the PHP

code has to do is print $row['user_id']
for X, being mindful of the quotation

marks to avoid parse errors.

Because the HTML attributes use a lot of

double quotation marks and this echo()
statement requires a lot of variables to be

printed, I find it easiest to use single

quotes for the HTML and then to con-

catenate the variables to the printed text.

5. Save the file as view_users.php, place it

in your Web directory, and run it in your

Web browser (Figure 9.1).

262

Chapter 9

S
e

n
d

i
n

g
 V

a
l
u

e
s

 t
o

 a
 S

c
r

i
p

t

Figure 9.1 The revised version of the view_users.php page, with new
columns and links.

6. If you want, view the HTML source of

the page to see each dynamically gener-

ated link (Figure 9.2).

✔ Tips

■ To append multiple variables to a URL,

use this syntax: page.php?name1=value1
&name2=value2&name3=value3. It’s simply

a matter of using the ampersand, plus

another name=value pair.

■ One trick to adding variables to URLs is

that strings should be encoded to ensure

that the value is handled properly. For

example, the space in the string Elliott

Smith would be problematic. The solution

then is to use the urlencode() function:

$url = 'page.php?name=' . urlencode
➝ ('Elliott Smith');

You only need to do this when program-

matically adding values to a URL. When

a form uses the GET method, it automati-

cally encodes the data.

263

Common Programming Techniques

S
e

n
d

i
n

g
 V

a
l
u

e
s

 t
o

 a
 S

c
r

i
p

t

Figure 9.2 Part of the HTML source of the page (see Figure 9.1) shows how the user’s
ID is added to each link’s URL.

Using Hidden Form Inputs
In the preceding example, a new version of

the view_users.php script was written. This

one now includes links to the edit_user.php
and delete_user.php pages, passing each a

user’s ID through the URL. This next example,

delete_user.php, will take the passed user

ID and allow the administrator to delete

that user. Although you could have this page

simply execute a DELETE query as soon as

the page is accessed, for security purposes

(and to prevent an inadvertent deletion),

there should be multiple steps:

1. The page must check that it received a

numeric user ID.

2. A message will confirm that this user

should be deleted.

3. The user ID will be stored in a hidden

form input.

4. Upon submission of this form, the user

will actually be deleted.

To use hidden form inputs:

1. Create a new PHP document in your text

editor or IDE (Script 9.2).

<?php # Script 9.2 - delete_user.php

2. Include the page header.

$page_title = 'Delete a User';

include ('includes/header.html');

echo '<h1>Delete a User</h1>';

This document will use the same tem-

plate system as the other pages in the

application.

264

Chapter 9

U
s

i
n

g
 H

i
d

d
e

n
 F

o
r

m
 I

n
p

u
t

s

1 <?php # Script 9.2 - delete_user.php

2

3 // This page is for deleting a user
record.

4 // This page is accessed through view_
users.php.

5

6 $page_title = 'Delete a User';

7 include ('includes/header.html');

8 echo '<h1>Delete a User</h1>';

9

10 // Check for a valid user ID, through GET
or POST:

11 if ((isset($_GET['id'])) && (is_numeric
($_GET['id']))) { // From view_users.php

12 $id = $_GET['id'];

13 } elseif ((isset($_POST['id'])) &&
(is_numeric($_POST['id']))) { // Form
submission.

14 $id = $_POST['id'];

15 } else { // No valid ID, kill the script.

16 echo '<p class="error">This page has
been accessed in error.</p>';

17 include ('includes/footer.html');

18 exit();

19 }

20

21 require_once ('../mysqli_connect.php');

22

23 // Check if the form has been submitted:

24 if (isset($_POST['submitted'])) {

25

26 if ($_POST['sure'] == 'Yes') { // Delete
the record.

27

28 // Make the query:

Script 9.2 This script expects a user ID to be passed
to it through the URL. It then presents a confirmation
form and deletes the user upon submission.

(script continues on next page)

continues on page 266

265

Common Programming Techniques

U
s

i
n

g
 H

i
d

d
e

n
 F

o
r

m
 I

n
p

u
t

s

29 $q = "DELETE FROM users WHERE
user_id=$id LIMIT 1";

30 $r = @mysqli_query ($dbc, $q);

31 if (mysqli_affected_rows($dbc) == 1) {
// If it ran OK.

32

33 // Print a message:

34 echo '<p>The user has been
deleted.</p>';

35

36 } else { // If the query did not run OK.

37 echo '<p class="error">The user could
not be deleted due to a system error.
</p>'; // Public message.

38 echo '<p>' . mysqli_error($dbc) . '
Query: ' . $q . '</p>'; // Debugging
message.

39 }

40

41 } else { // No confirmation of deletion.

42 echo '<p>The user has NOT been
deleted.</p>';

43 }

44

45 } else { // Show the form.

46

47 // Retrieve the user's information:

48 $q = "SELECT CONCAT(last_name, ', ',
first_name) FROM users WHERE
user_id=$id";

49 $r = @mysqli_query ($dbc, $q);

50

51 if (mysqli_num_rows($r) == 1) { // Valid
user ID, show the form.

52

53 // Get the user's information:

54 $row = mysqli_fetch_array ($r,
MYSQLI_NUM);

55
(script continues)

Script 9.2 continued

56 // Create the form:

57 echo '<form action="delete_user.php"
method="post">

58 <h3>Name: ' . $row[0] . '</h3>

59 <p>Are you sure you want to delete this
user?

60 <input type="radio" name="sure"
value="Yes" /> Yes

61 <input type="radio" name="sure" value=
"No" checked="checked" /> No</p>

62 <p><input type="submit" name="submit"
value="Submit" /></p>

63 <input type="hidden" name="submitted"
value="TRUE" />

64 <input type="hidden" name="id" value="'
. $id . '" />

65 </form>';

66

67 } else { // Not a valid user ID.

68 echo '<p class="error">This page has
been accessed in error.</p>';

69 }

70

71 } // End of the main submission
conditional.

72

73 mysqli_close($dbc);

74

75 include ('includes/footer.html');

76 ?>

Script 9.2 continued

3. Check for a valid user ID value.

if ((isset($_GET['id'])) && (is_
➝ numeric($_GET['id']))) {

$id = $_GET['id'];

} elseif ((isset($_POST['id'])) &&
➝ (is_numeric($_POST['id']))) {

$id = $_POST['id'];

} else {

echo '<p class="error">This page
➝ has been accessed in error.
➝ </p>';

include ('includes/footer.
➝ html');

exit();

}

This script relies upon having a valid

user ID, which will be used in a DELETE
query’s WHERE clause. The first time this

page is accessed, the user ID should be

passed in the URL (the page’s URL will

end with delete_user.php?id=X), after

clicking the Delete link in the view_
users.php page. The first if condition

checks for such a value and that the

value is numeric.

As you will see, the script will then store

the user ID value in a hidden form input.

When the form is submitted (back to

this same page), the page will receive the

ID through $_POST. The second condition

checks this and, again, that the ID value

is numeric.

If neither of these conditions are TRUE,

then the page cannot proceed, so

an error message is displayed and the

script’s execution is terminated

(Figure 9.3).

4. Include the MySQL connection script.

require_once ('../mysqli_connect.
➝ php');

Both of this script’s processes—showing

the form and handling the form—require

a database connection, so this line is

outside of the main submit conditional

(Step 5).

5. Begin the main submit conditional.

if (isset($_POST['submitted'])) {

6. Delete the user, if appropriate.

if ($_POST['sure'] == 'Yes') {

$q = "DELETE FROM users WHERE
➝ user_id=$id LIMIT 1";

$r = @mysqli_query ($dbc, $q);

The form (Figure 9.4) will make the

user click a radio button to confirm the

deletion. This little step prevents any

accidents. Thus, the handling process

266

Chapter 9

U
s

i
n

g
 H

i
d

d
e

n
 F

o
r

m
 I

n
p

u
t

s

Figure 9.3 If the page does not receive
a number ID value, this error is shown.

Figure 9.4 The page confirms the
user deletion using this simple form.

first checks that the right radio button

was selected. If so, a basic DELETE query

is defined, using the user’s ID in the

WHERE clause. A LIMIT clause is added to

the query as an extra precaution.

7. Check if the deletion worked and

respond accordingly.

if (mysqli_affected_rows($dbc) == 1)
➝ {

echo '<p>The user has been
➝ deleted.</p>';

} else {

echo '<p class="error">The user
➝ could not be deleted due to a
➝ system error.</p>';

echo '<p>' . mysqli_error($dbc)
➝ . '
Query: ' . $q .
➝ '</p>';

}

The mysqli_affected_rows() function

checks that exactly one row was affected

by the DELETE query. If so, a happy mes-

sage is displayed (Figure 9.5). If not, an

error message is sent out.

Keep in mind that it’s possible that no

rows were affected without a MySQL

error occurring. For example, if the query

tries to delete the record where the user

ID is equal to 42000 (and if that doesn’t

exist), no rows will be deleted but no

MySQL error will occur. Still, because of

the checks made when the form is first

loaded, it would take a fair amount of

hacking by the user to get to that point.

8. Complete the $_POST['sure'] conditional.

} else {

echo '<p>The user has NOT been
deleted.</p>';

}

If the user did not explicitly check the

Yes box, the user will not be deleted and

this message is displayed (Figure 9.6).

9. Begin the else clause of the main submit

conditional.

} else {

The page will either handle the form or

display it. Most of the code prior to this

takes effect if the form has been submit-

ted (if $_POST['submitted'] is set). The

code from here on takes effect if the

form has not yet been submitted, in

which case the form should be displayed.

267

Common Programming Techniques

U
s

i
n

g
 H

i
d

d
e

n
 F

o
r

m
 I

n
p

u
t

s

Figure 9.6 If you do not select
Yes in the form, no database
changes are made.

Figure 9.5 If you select Yes
in the form (see Figure 9.4)
and click Submit, this
should be the result.

continues on next page

10. Retrieve the information for the user

being deleted.

$q = "SELECT CONCAT(last_name, ', ',
➝ first_name) FROM users WHERE
➝ user_id=$id";

$r = @mysqli_query ($dbc, $q);

if (mysqli_num_rows($r) == 1) {

To confirm that the script received a

valid user ID and to state exactly who is

being deleted (refer back to Figure 9.4),

the to-be-deleted user’s name is retrieved

from the database (Figure 9.7).

The conditional—checking that a single

row was returned—ensures that a valid

user ID was provided.

11. Display the form.

$row = mysqli_fetch_array ($r,
➝ MYSQLI_NUM);

echo '<form action="delete_user.php"
➝ method="post">

<h3>Name: ' . $row[0] . '</h3>

<p>Are you sure you want to delete
➝ this user?

<input type="radio" name="sure"
➝ value="Yes" /> Yes

<input type="radio" name="sure"
➝ value="No" checked="checked" />
➝ No</p>

<p><input type="submit" name=
➝ "submit" value="Submit" /></p>

<input type="hidden" name=
➝ "submitted" value="TRUE" />

<input type="hidden" name="id"
➝ value="' . $id . '" />

</form>';

268

Chapter 9

U
s

i
n

g
 H

i
d

d
e

n
 F

o
r

m
 I

n
p

u
t

s

Figure 9.7 Running the same SELECT query in the
mysql client.

The closing brace finishes the main

submission conditional. Then the

MySQL connection is closed and the

footer is included.

14. Save the file as delete_user.php and

place it in your Web directory (it

should be in the same directory as

view_users.php).

15. Run the page by first clicking a Delete

link in the view_users.php page.

✔ Tips

■ Another way of writing this script would

be to have the form use the GET method.

Then the validation conditional (lines

10–19) would only have to validate

$_GET['id'], as the ID would be passed

in the URL whether the page was first

being accessed or the form had been

submitted.

■ Hidden form elements don’t display in

the Web browser but are still present in

the HTML source code (Figure 9.8). For

this reason, never store anything there

that must be kept truly secure.

■ Using hidden form inputs and appending

values to a URL are just two ways to

make data available to other PHP pages.

Two more methods—cookies and ses-

sions—are thoroughly covered in

Chapter 11, “Cookies and Sessions.”

269

Common Programming Techniques

U
s

i
n

g
 H

i
d

d
e

n
 F

o
r

m
 I

n
p

u
t

s

Figure 9.8 The user ID is stored as a hidden input so that it’s available when the form is submitted.

First, the database record returned by

the SELECT query is retrieved using the

mysqli_fetch_array() function. Then

the form is printed, showing the name

value retrieved from the database at the

top. An important step here is that the

user ID ($id) is stored as a hidden form

input so that the handling process can

also access this value (Figure 9.8).

12. Complete the mysqli_num_rows()
conditional.

} else {

echo '<p class="error">This
➝ page has been accessed in
➝ error.</p>';

}

If no record was returned by the SELECT
query (because an invalid user ID was

submitted), this message is displayed.

If you see this message when you test

this script but don’t understand why,

apply the standard debugging steps

outlined at the end of Chapter 7,

“Error Handling and Debugging.”

13. Complete the PHP page.

}

mysqli_close($dbc);

include ('includes/footer.html');

?>

Editing Existing Records
A common practice with database-driven

Web sites is having a system in place so that

you can easily edit existing records. This

concept seems daunting to many beginning

programmers, but the process is surprisingly

straightforward. For the following example—

editing registered user records—the process

combines skills the book has already taught:

◆ Making sticky forms

◆ Using hidden inputs

◆ Validating registration data

◆ Running simple queries

This next example is generally very similar

to delete_user.php and will also be linked

from the view_users.php script (when a per-

son clicks Edit). A form will be displayed

with the user’s current information, allowing

for those values to be changed (Figure 9.9).

Upon submitting the form, if the data passes

all of the validation routines, an UPDATE
query will be run to update the database.

To edit an existing database record:

1. Create a new PHP document in your text

editor or IDE (Script 9.3).

<?php # Script 9.3 - edit_user.php

$page_title = 'Edit a User';

include ('includes/header.html');

echo '<h1>Edit a User</h1>';

2. Check for a valid user ID value.

if ((isset($_GET['id'])) &&
➝ (is_numeric($_GET['id']))) {

$id = $_GET['id'];

} elseif ((isset($_POST['id'])) &&
➝ (is_numeric($_POST['id']))) {

$id = $_POST['id'];

} else {

echo '<p class="error">This
➝ page has been accessed in
➝ error.</p>';

include ('includes/
➝ footer.html');

exit();

}

This validation routine is exactly the

same as that in delete_user.php, con-

firming that a numeric user ID has been

received, whether the page has first been

accessed from view_users.php (the first

condition) or upon submission of the

form (the second condition).

270

Chapter 9

E
d

i
t

i
n

g
 E

x
i
s

t
i
n

g
 R

e
c

o
r

d
s

Figure 9.9 The form for editing a
user’s record. continues on page 273

271

Common Programming Techniques

E
d

i
t

i
n

g
 E

x
i
s

t
i
n

g
 R

e
c

o
r

d
s

1 <?php # Script 9.3 - edit_user.php

2

3 // This page is for editing a user record.

4 // This page is accessed through
view_users.php.

5

6 $page_title = 'Edit a User';

7 include ('includes/header.html');

8

9 echo '<h1>Edit a User</h1>';

10

11 // Check for a valid user ID, through GET
or POST:

12 if ((isset($_GET['id'])) && (is_numeric
($_GET['id']))) { // From view_users.php

13 $id = $_GET['id'];

14 } elseif ((isset($_POST['id'])) &&
(is_numeric($_POST['id']))) { // Form
submission.

15 $id = $_POST['id'];

16 } else { // No valid ID, kill the script.

17 echo '<p class="error">This page has
been accessed in error.</p>';

18 include ('includes/footer.html');

19 exit();

20 }

21

22 require_once ('../mysqli_connect.php');

23

24 // Check if the form has been submitted:

25 if (isset($_POST['submitted'])) {

26

27 $errors = array();

28

29 // Check for a first name:

30 if (empty($_POST['first_name'])) {

31 $errors[] = 'You forgot to enter
your first name.';

Script 9.3 The edit_user.php page first displays the
user’s current information in a form. Upon submission
of the form, the record will be updated in the database.

(script continues)

Script 9.3 continued

32 } else {

33 $fn = mysqli_real_escape_string($dbc,
trim($_POST['first_name']));

34 }

35

36 // Check for a last name:

37 if (empty($_POST['last_name'])) {

38 $errors[] = 'You forgot to enter your
last name.';

39 } else {

40 $ln = mysqli_real_escape_string($dbc,
trim($_POST['last_name']));

41 }

42

43 // Check for an email address:

44 if (empty($_POST['email'])) {

45 $errors[] = 'You forgot to enter your
email address.';

46 } else {

47 $e = mysqli_real_escape_string($dbc,
trim($_POST['email']));

48 }

49

50 if (empty($errors)) { // If everything's
OK.

51

52 // Test for unique email address:

53 $q = "SELECT user_id FROM users WHERE
email='$e' AND user_id != $id";

54 $r = @mysqli_query($dbc, $q);

55 if (mysqli_num_rows($r) == 0) {

56

57 // Make the query:

58 $q = "UPDATE users SET first_name=
'$fn', last_name='$ln', email='$e'
WHERE user_id=$id LIMIT 1";

59 $r = @mysqli_query ($dbc, $q);

60 if (mysqli_affected_rows($dbc) == 1)
{ // If it ran OK.

61

(script continues on next page)

272

Chapter 9

E
d

i
t

i
n

g
 E

x
i
s

t
i
n

g
 R

e
c

o
r

d
s

Script 9.3 continued

62 // Print a message:

63 echo '<p>The user has been edited.
</p>';

64

65 } else { // If it did not run OK.

66 echo '<p class="error">The user could
not be edited due to a system error.
We apologize for any inconvenience.
</p>'; // Public message.

67 echo '<p>' . mysqli_error($dbc) . '
Query: ' . $q . '</p>'; // Debugging
message.

68 }

69

70 } else { // Already registered.

71 echo '<p class="error">The email
address has already been registered.
</p>';

72 }

73

74 } else { // Report the errors.

75

76 echo '<p class="error">The following
error(s) occurred:
';

77 foreach ($errors as $msg) { // Print
each error.

78 echo " - $msg
\n";

79 }

80 echo '</p><p>Please try again.</p>';

81

82 } // End of if (empty($errors)) IF.

83

84 } // End of submit conditional.

85

86 // Always show the form...

87

88 // Retrieve the user's information:

89 $q = "SELECT first_name, last_name, email
FROM users WHERE user_id=$id";

(script continues)

Script 9.3 continued

90 $r = @mysqli_query ($dbc, $q);

91

92 if (mysqli_num_rows($r) == 1) { // Valid
user ID, show the form.

93

94 // Get the user's information:

95 $row = mysqli_fetch_array ($r,
MYSQLI_NUM);

96

97 // Create the form:

98 echo '<form action="edit_user.php"
method="post">

99 <p>First Name: <input type="text"
name="first_name" size="15" maxlength="15"
value="' . $row[0] . '" /></p>

100 <p>Last Name: <input type="text"
name="last_name" size="15" maxlength="30"
value="' . $row[1] . '" /></p>

101 <p>Email Address: <input type="text"
name="email" size="20" maxlength="40"
value="' . $row[2] . '" /> </p>

102 <p><input type="submit" name="submit"
value="Submit" /></p>

103 <input type="hidden" name="submitted"
value="TRUE" />

104 <input type="hidden" name="id" value="' .
$id . '" />

105 </form>';

106

107 } else { // Not a valid user ID.

108 echo '<p class="error">This page has
been accessed in error.</p>';

109 }

110

111 mysqli_close($dbc);

112

113 include ('includes/footer.html');

114 ?>

3. Include the MySQL connection script

and begin the main submit conditional.

require_once
('../mysqli_connect.php');

if (isset($_POST['submitted'])) {

$errors = array();

Like the registration examples you have

already done, this script makes use of an

array to track errors.

4. Validate the first name.

if (empty($_POST['first_name'])) {

$errors[] = 'You forgot to
➝ enter your first name.';

} else {

$fn = mysqli_real_escape_
➝ string($dbc, trim($_POST
➝ ['first_name']));

}

The form (Figure 9.9) is like a registration

page but without the password fields. The

form data can therefore be validated

using the same methods used in the reg-

istration scripts. As with the registration

examples, the validated data is trimmed

and then run through mysqli_real_
escape_string() for security.

5. Validate the last name and email address.

if (empty($_POST['last_name'])) {

$errors[] = 'You forgot to
|➝ enter your last name.';

} else {

$ln = mysqli_real_escape_
➝ string($dbc, trim($_POST
➝ ['last_name']));

}

if (empty($_POST['email'])) {

$errors[] = 'You forgot to
➝ enter your email address.';

} else {

$e = mysqli_real_escape_
➝ string($dbc, trim($_POST
➝ ['email']));

}

6. If there were no errors, check that the

submitted email address is not already

in use.

if (empty($errors)) {

$q = "SELECT user_id FROM users
➝ WHERE email='$e' AND user_id
➝ != $id";

$r = @mysqli_query($dbc, $q);

if (mysqli_num_rows($r) == 0) {

The integrity of the database and of the

application as a whole partially depends

upon having unique email address values

in the users table. That requirement

guarantees that the login system, which

uses a combination of the email address

and password (to be developed in

Chapter 11), works. Because the form

allows for altering the user’s email

address (see Figure 9.9), special steps

have to be taken to ensure uniqueness.

To understand this query, consider two

possibilities....

In the first, the user’s email address is

being changed. In this case you just need

to run a query making sure that that

particular email address isn’t already reg-

istered (i.e., SELECT user_id FROM users
WHERE email='$e').

273

Common Programming Techniques

E
d

i
t

i
n

g
 E

x
i
s

t
i
n

g
 R

e
c

o
r

d
s

continues on next page

In the second possibility, the user’s

email address will remain the same. In

this case, it’s okay if the email address

is already in use, because it’s already in

use for this user.

To write one query that will work for

both possibilities, don’t check to see if

the email address is being used, but

rather see if it’s being used by anyone

else, hence:

SELECT user_id FROM users WHERE

email='$e' AND user_id != $id

7. Update the database.

$q = "UPDATE users SET first_name=
➝ '$fn', last_name='$ln', email='$e'
➝ WHERE user_id=$id LIMIT 1";

$r = @mysqli_query ($dbc, $q);

The UPDATE query is similar to examples

you may have seen in Chapter 5, “Intro-

duction to SQL.” The query updates all

three fields—first name, last name, and

email address—using the values submit-

ted by the form. This system works

because the form is preset with the exist-

ing values. So, if you edit the first name

in the form but nothing else, the first

name value in the database is updated

using this new value, but the last name

and email address values are “updated”

using their current values. This system is

much easier than trying to determine

which form values have changed and

updating just those in the database.

8. Report on the results of the update.

if (mysqli_affected_rows($dbc) == 1)
➝ {

echo '<p>The user has been
edited.</p>';

} else {

echo '<p class="error">The user
➝ could not be edited due to a
➝ system error. We apologize for
➝ any inconvenience.</p>';

echo '<p>' . mysqli_error($dbc)
➝ . '
Query: ' . $q .
➝ '</p>';

}

The mysqli_affected_rows() function

will return the number of rows in the

database affected by the most recent

query. If any of the three form values was

altered, then this function should return

the value 1. This conditional tests for

that and prints a message indicating

success or failure.

Keep in mind that the mysqli_affected_
rows() function will return a value of 0 if

an UPDATE command successfully ran but

didn’t actually affect any records. So if

you submit this form without changing

any of the form values, a system error

is displayed, which may not technically

be correct. Once you have this script

effectively working, you could change

the error message to indicate that

no alterations were made if mysqli_
affected_rows() returns 0.

9. Complete the email conditional.

} else {

echo '<p class="error">The email
➝ address has already been
➝ registered.</p>';

}

This else completes the conditional that

checked if an email address was already

being used by another user. If so, that

message is printed.

274

Chapter 9

E
d

i
t

i
n

g
 E

x
i
s

t
i
n

g
 R

e
c

o
r

d
s

10. Complete the $errors and submission

conditionals.

} else { // Report the errors.

echo '<p class=
➝ "error">The following
➝ error(s) occurred:<br
➝ />';

foreach ($errors as
➝ $msg) {

echo " - $msg<br
➝ />\n";

}

echo '</p><p>Please try
➝ again.</p>';

} // End of if (empty($errors))
➝ IF.

} // End of submit conditional.

The first else is used to report any

errors in the form (namely, a lack of a

first name, last name, or email address).

The final closing brace completes the

main submit conditional.

In this example, the form will be dis-

played whenever the page is accessed.

So after submitting the form, the data-

base will be updated, and the form will

be shown again, now displaying the lat-

est information.

11. Retrieve the information for the user

being edited.

$q = "SELECT first_name, last_name,
➝ email FROM users WHERE user_
➝ id=$id";

$r = @mysqli_query ($dbc, $q);

if (mysqli_num_rows($r) == 1) {

In order to pre-populate the form ele-

ments, the current information for the

user must be retrieved from the data-

base. This query is similar to the one in

delete_user.php. The conditional—

checking that a single row was

returned—ensures that a valid user ID

was provided.

12. Display the form.

$row = mysqli_fetch_array ($r,
➝ mysqli_NUM);

echo '<form action="edit_user.php"
➝ method="post">

<p>First Name: <input type="text"
➝ name="first_name" size="15"
➝ maxlength="15" value="' . $row[0]
➝ . '" /></p>

<p>Last Name: <input type="text"
➝ name="last_name" size="15"
➝ maxlength="30" value="' . $row[1]
➝ . '" /></p>

<p>Email Address: <input type="text"
➝ name="email" size="20" maxlength=
➝ "40" value="' . $row[2] . '" />
➝ </p>

<p><input type="submit" name=
➝ "submit" value="Submit" /></p>

<input type="hidden" name=
➝ "submitted" value="TRUE" />

<input type="hidden" name="id"
➝ value="' . $id . '" />

</form>';

The form has but three text inputs,

each of which is made sticky using the

data retrieved from the database. Again,

the user ID ($id) is stored as a hidden

form input so that the handling process

can also access this value.

275

Common Programming Techniques

E
d

i
t

i
n

g
 E

x
i
s

t
i
n

g
 R

e
c

o
r

d
s

continues on next page

13. Complete the mysqli_num_rows() condi-

tional.

} else {

echo '<p class="error">This
➝ page has been accessed in
➝ error.</p>';

}

If no record was returned from the data-

base, because an invalid user ID was sub-

mitted, this message is displayed.

14. Complete the PHP page.

mysqli_close($dbc);

include ('includes/footer.html');

?>

15. Save the file as edit_user.php and place

it in your Web directory (in the same

folder as view_users.php).

16. Run the page by first clicking an Edit

link in the view_users.php page

(Figures 9.10 and 9.11).

■ This edit page does not include the func-

tionality to change the password. That

concept was already demonstrated in

password.php (Script 8.7). If you would

like to incorporate that functionality

here, keep in mind that you cannot dis-

play the current password, as it is

encrypted. Instead, just present two

boxes for changing the password (the

new password input and a confirmation).

If these values are submitted, update the

password in the database as well. If these

inputs are left blank, do not update the

password in the database.

276

Chapter 9

E
d

i
t

i
n

g
 E

x
i
s

t
i
n

g
 R

e
c

o
r

d
s

Figure 9.10 The new values are
displayed in the form after successfully
updating the database (compare with
the form values in Figure 9.9).

Figure 9.11 If you try to change a record to an
existing email address or if you omit an input,
errors are reported.

✔ Tips

■ As written, the sticky form always shows

the values retrieved from the database.

This means that if an error occurs, the

database values will be used, not the

ones the user just entered (if those are

different). To change this behavior, the

sticky form would have to check for the

presence of $_POST variables, using those

if they exist, or the database values if not.

Paginating Query Results
Pagination is a concept you’re familiar with

even if you don’t know the term. When you

use a search engine like Google, it displays

the results as a series of pages and not as one

long list. The view_users.php script could

benefit from this same feature.

Paginating query results makes extensive

use of the LIMIT SQL clause introduced in

Chapter 5. LIMIT restricts which subset of

the matched records are actually returned.

To paginate the returned results of a query,

each page will run the same query using

different LIMIT parameters. So the first page

will request the first X records; the second

page, the second group of X records; and so

forth. To make this work, an indicator of

which records the page should display needs

to be passed from page to page in the URL,

like the user IDs passed from the

view_users.php page.

Another, more cosmetic technique will be

demonstrated here: displaying each row of

the table—each returned record—using an

alternating background color (Figure 9.12).

This effect will be achieved with ease, using

the ternary operator (see the sidebar “The

Ternary Operator”).

There’s a lot of good, new information here,

so be careful as you go through the steps

and make sure that your script matches this

one exactly. To make it easier to follow

along, let’s write this version from scratch

instead of trying to modify Script 9.1.

277

Common Programming Techniques

P
a

g
i
n

a
t

i
n

g
 Q

u
e

r
y

 R
e

s
u

l
t

s

Figure 9.12 Alternating the table row colors makes this list of users more legible (every other row
has a light gray background).

To paginate view_users.php:

1. Begin a new PHP document in your text

editor or IDE (Script 9.4).

<?php # Script 9.4 - #4

$page_title = 'View the Current
➝ Users';

include ('includes/header.html');

echo '<h1>Registered Users</h1>';

require_once ('../mysqli_
➝ connect.php');

2. Set the number of records to display

per page.

$display = 10;

By establishing this value as a variable

here, you’ll make it easy to change the

number of records displayed on each

page at a later date. Also, this value will

be used multiple times in this script, so

it’s best represented as a single variable.

3. Check if the number of required pages

has been determined.

if (isset($_GET['p']) && is_numeric
➝ ($_GET['p'])) {

$pages = $_GET['p'];

} else {

For this script to display the users over

several pages, it will need to determine

how many total pages of results will be

required. The first time the script is run,

this number has to be calculated. For

every subsequent call to this page, the

total number of pages will be passed

to the script in the URL, so it will be

available in $_GET['p']. If this variable

is set and is numeric, its value will be

assigned to the $pages variable. If not,

then the number of pages will need to

be calculated.

278

Chapter 9

P
a

g
i
n

a
t

i
n

g
 Q

u
e

r
y

 R
e

s
u

l
t

s

1 <?php # Script 9.4 - #4

2

3 // This script retrieves all the records
from the users table.

4 // This version paginates the query
results.

5

6 $page_title = 'View the Current Users';

7 include ('includes/header.html');

8 echo '<h1>Registered Users</h1>';

9

10 require_once ('../mysqli_connect.php');

11

12 // Number of records to show per page:

13 $display = 10;

14

15 // Determine how many pages there are...

16 if (isset($_GET['p']) && is_numeric($_GET

['p'])) { // Already been determined.

17

18 $pages = $_GET['p'];

19

20 } else { // Need to determine.

21

22 // Count the number of records:

23 $q = "SELECT COUNT(user_id) FROM users";

24 $r = @mysqli_query ($dbc, $q);

25 $row = @mysqli_fetch_array ($r,

MYSQLI_NUM);

26 $records = $row[0];

27

28 // Calculate the number of pages...

29 if ($records > $display) { // More than

1 page.

30 $pages = ceil ($records/$display);

31 } else {

Script 9.4 This new version of view_users.php
incorporates pagination so that the users are listed
over multiple Web browser pages.

(script continues)

continues on page 280

279

Common Programming Techniques

P
a

g
i
n

a
t

i
n

g
 Q

u
e

r
y

 R
e

s
u

l
t

s

Script 9.4 continued

32 $pages = 1;

33 }

34

35 } // End of p IF.

36

37 // Determine where in the database to
start returning results...

38 if (isset($_GET['s']) && is_numeric

($_GET['s'])) {

39 $start = $_GET['s'];

40 } else {

41 $start = 0;

42 }

43

44 // Make the query:

45 $q = "SELECT last_name, first_name, DATE_

FORMAT(registration_date, '%M %d, %Y')

AS dr, user_id FROM users ORDER BY

registration_date ASC LIMIT $start,

$display";

46 $r = @mysqli_query ($dbc, $q);

47

48 // Table header:

49 echo '<table align="center" cellspacing=
"0" cellpadding="5" width="75%">

50 <tr>

51 <td align="left">Edit</td>

52 <td align="left">Delete</td>

53 <td align="left">Last Name</td>

54 <td align="left">First Name</td>

55 <td align="left">Date
Registered</td>

56 </tr>

57 ';

58

59 // Fetch and print all the records....

60

61 $bg = '#eeeeee'; // Set the initial

background color.

(script continues)

Script 9.4 continued

62

63 while ($row = mysqli_fetch_array($r,
MYSQLI_ASSOC)) {

64

65 $bg = ($bg=='#eeeeee' ? '#ffffff' :

'#eeeeee'); // Switch the background

color.

66

67 echo '<tr bgcolor="' . $bg . '">

68 <td align="left"><a
href="edit_user.php?id=' .
$row['user_id'] . '">Edit</td>

69 <td align="left"><a href="delete_user.
php?id=' . $row['user_id'] . '">Delete
</td>

70 <td align="left">' . $row['last_name'] .
'</td>

71 <td align="left">' . $row['first_name']
. '</td>

72 <td align="left">' . $row['dr'] . '</td>

73 </tr>

74 ';

75

76 } // End of WHILE loop.

77

78 echo '</table>';

79 mysqli_free_result ($r);

80 mysqli_close($dbc);

81

82 // Make the links to other pages, if
necessary.

83 if ($pages > 1) {

84

85 // Add some spacing and start a
paragraph:

86 echo '
<p>';

87

88 // Determine what page the script is on:

89 $current_page = ($start/$display) + 1;

90
(script continues on next page)

4. Count the number of records in the data-

base.

$q = "SELECT COUNT(user_id) FROM
➝ users";

$r = @mysqli_query ($dbc, $q);

$row = @mysqli_fetch_array ($r,
➝ MYSQLI_NUM);

$records = $row[0];

Using the COUNT() function, introduced in

Chapter 6, “Advanced SQL and MySQL,”

you can easily see the number of records

in the users table. This query will return

a single row with a single column: the

number of records (Figure 9.13).

5. Mathematically calculate how many

pages are required.

if ($records > $display) {

$pages = ceil ($records/
➝ $display);

} else {

$pages = 1;

}

} // End of np IF.

The number of pages required to display

all of the records is based upon the total

number of records to be shown and the

number to display per page (as assigned

280

Chapter 9

P
a

g
i
n

a
t

i
n

g
 Q

u
e

r
y

 R
e

s
u

l
t

s

Script 9.4 continued

91 // If it's not the first page, make a
Previous button:

92 if ($current_page != 1) {

93 echo '<a href="view_users.php?s=' .

($start - $display) . '&p=' . $pages .

'">Previous ';

94 }

95

96 // Make all the numbered pages:

97 for ($i = 1; $i <= $pages; $i++) {

98 if ($i != $current_page) {

99 echo '<a href="view_users.php?s=' .

(($display * ($i - 1))) . '&p=' .

$pages . '">' . $i . ' ';

100 } else {

101 echo $i . ' ';

102 }

103 } // End of FOR loop.

104

105 // If it's not the last page, make a
Next button:

106 if ($current_page != $pages) {

107 echo '<a href="view_users.php?s=' .

($start + $display) . '&p=' . $pages .

'">Next';

108 }

109

110 echo '</p>'; // Close the paragraph.

111

112 } // End of links section.

113

114 include ('includes/footer.html');

115 ?>

Figure 9.13 The result of running the counting query
in the mysql client.

to the $display variable). If there are

more rows than there are records to be

displayed per page, multiple pages will be

required. To calculate exactly how many

pages, take the next highest integer from

the division of the two (the ceil() func-

tion returns the next highest integer).

For example, if there are 25 records

returned and 10 are being displayed per

page, then 3 pages are required (the first

page will display 10, the second page 10,

and the third page 5). If $records is not

greater than $display, only one page is

necessary.

6. Determine the starting point in the

database.

if (isset($_GET['s']) && is_numeric
➝ ($_GET['s'])) {

$start = $_GET['s'];

} else {

$start = 0;

}

The second parameter the script will

receive—on subsequent viewings of the

page—will be the starting record. This

corresponds to the first number in a

LIMIT x, y clause. Upon initially calling

the script, the first ten records should

be retrieved (because $display has a

value of 10). The second page would

show records 10 through 20; the third,

20 through 30; and so forth.

The first time this page is accessed, the

$_GET['s'] variable will not be set, and so

$start should be 0 (the first record in a

LIMIT clause is indexed at 0). Subsequent

pages will receive the $_GET['s'] variable

from the URL, and it will be assigned to

$start.

7. Write the query with a LIMIT clause.

$q = "SELECT last_name, first_name,
➝ DATE_FORMAT(registration_date, '%M
➝ %d, %Y') AS dr, user_id FROM users
➝ ORDER BY registration_date ASC
➝ LIMIT $start, $display";

$r = @mysqli_query ($dbc, $q);

The LIMIT clause dictates which record

to begin retrieving ($start) and how

many to return ($display) from that

point. The first time the page is run, the

query will be SELECT last_name, first_
name … LIMIT 0, 10. Clicking to the next

page will result in SELECT last_name,
first_name … LIMIT 10, 10.

8. Create the HTML table header.

echo '<table align="center"
➝ cellspacing="0" cellpadding="5"
➝ width="75%">

<tr>

<td align="left">Edit
➝ </td>

<td align="left">Delete
➝ </td>

<td align="left">Last Name
➝ </td>

<td align="left">First Name
➝ </td>

<td align="left">Date
➝ Registered</td>

</tr>

';

In order to simplify this script a little bit,

I’m assuming that there are records to be

displayed. To be more formal, this script,

prior to creating the table, would invoke

the mysqli_num_rows() function and

have a conditional that confirms that

some records were returned.

281

Common Programming Techniques

P
a

g
i
n

a
t

i
n

g
 Q

u
e

r
y

 R
e

s
u

l
t

s

continues on next page

9. Initialize the background color variable.

$bg = '#eeeeee';

To make each row have its own back-

ground color, a variable will be used to

store that color. To start, the $bg vari-

able is assigned a value of #eeeeee, a

light gray. This color will alternate with

white (#ffffff).

10. Begin the while loop that retrieves

every record.

while ($row = mysqli_fetch_array($r,
➝ MYSQLI_ASSOC)) {

$bg = ($bg=='#eeeeee' ?
➝ '#ffffff' : '#eeeeee');

The background color used by each

row in the table is assigned to the $bg
variable. Because I want this color to

alternate, I use this line of code to

assign the opposite color to $bg. If it’s

equal to #eeeeee, then it will be assigned

the value of #ffffff and vice versa (again,

see the sidebar for the syntax and

explanation of the ternary operator).

For the first row, $bg is equal to #eeeeee

and will therefore be assigned #ffffff,

making a white background. For the

second row, $bg is not equal to #eeeeee,

so it will be assigned that value, making

a gray background.

11. Print the records in a table row.

echo '<tr bgcolor="' . $bg . '">

<td align="left"><a href="edit_
➝ user.php?id=' . $row['user_id'] .
➝ '">Edit</td>

<td align="left"><a href="delete_
➝ user.php?id=' . $row['user_id'] .
➝ '">Delete</td>

<td align="left">' . $row['last_
➝ name'] . '</td>

<td align="left">' . $row['first_
➝ name'] . '</td>

<td align="left">' . $row['dr'] .
➝ '</td>

</tr>

';

This code only differs in one way from

that in the previous version of this

script. The initial TR tag now includes

the bgcolor attribute, whose value will

be the $bg variable (so #eeeeee and

#ffffff, alternating).

12. Complete the while loop and the table,

free up the query result resources, and

close the database connection.

}

echo '</table>';

mysqli_free_result ($r);

mysqli_close($dbc);

13. Begin a section for displaying links to

other pages, if necessary.

if ($pages > 1) {

echo '
<p>';

$current_page = ($start/
➝ $display) + 1;

if ($current_page != 1) {

echo '<a href="view_users.
➝ php?s=' . ($start -
➝ $display) . '&p=' .
➝ $pages . '">Previous
➝ ';

}

282

Chapter 9

P
a

g
i
n

a
t

i
n

g
 Q

u
e

r
y

 R
e

s
u

l
t

s

If the script requires multiple pages to

display all of the records, it needs the

appropriate links at the bottom of the

page (Figure 9.14). To make these

links, first determine the current page.

This can be calculated as the start

number divided by the display number,

plus 1. For example, on the second

instance of this script, $start will be

10 (because on the first instance,

$start is 0), so the current page is

2 (10/10 + 1 = 2).

If the current page is not the first page,

it also needs a Previous link to the earli-

er result set (Figure 9.15). This isn’t

strictly necessary, but is nice.

Each link will be made up of the script

name, plus the starting point and the

number of pages. The starting point for

the previous page will be the current

starting point minus the number being

displayed. These values must be passed

in every link, or else the pagination

will fail.

283

Common Programming Techniques

P
a

g
i
n

a
t

i
n

g
 Q

u
e

r
y

 R
e

s
u

l
t

s

The Ternary Operator

This example uses an operator not introduced before, called the ternary operator. Its structure is

(condition) ? valueT : valueF

The condition in parentheses will be evaluated; if it is TRUE, the first value will be returned

(valueT). If the condition is FALSE, the second value (valueF) will be returned.

Because the ternary operator returns a value, the entire structure is often used to assign a

value to a variable or used as an argument for a function. For example, the line

echo (isset($var)) ? 'SET' : 'NOT SET';

will print out SET or NOT SET, depending upon the status of the variable $var.

In this version of the view_users.php script, the ternary operator assigns a different value to

a variable than its current value. The variable itself will then be used to dictate the back-

ground color of each record in the table. There are certainly other ways to set this value, but

the ternary operator is the most concise.

Figure 9.15 The Previous link will appear only if the
current page is not the first one.

Figure 9.14 After all of the returned records, links are
generated to the other result pages.

14. Make the numeric links.

for ($i = 1; $i <= $pages; $i++) {

if ($i != $current_page) {

echo '<a href="view_users.
➝ php?s=' . (($display *
➝ ($i - 1))) . '&p=' .
➝ $pages . '">' . $i .
➝ ' ';

} else {

echo $i . ' ';

}

}

The bulk of the links will be created by

looping from 1 to the total number of

pages. Each page will be linked except

for the current one.

15. Create a Next link.

if ($current_page != $pages) {

echo '<a href="view_users.
➝ php?s=' . ($start + $display)
➝ . '&p=' . $pages . '">Next
➝ ';

}

Finally, a Next page link will be dis-

played, assuming that this is not the

final page (Figure 9.16).

16. Complete the page.

echo '</p>';

}

include ('includes/footer.html');

?>

17. Save the file as view_users.php, place

it in your Web directory, and test it in

your Web browser.

✔ Tips

■ This example paginates a simple query,

but if you want to paginate a more com-

plex query, like the results of a search, it’s

not that much more complicated. The

main difference is that whatever terms

are used in the query must be passed

from page to page in the links. If the

main query is not exactly the same from

one viewing of the page to the next, the

pagination will fail.

■ If you run this example and the pagina-

tion doesn’t match the number of results

that should be returned (for example,

the counting query indicates there are

150 records but the pagination only

creates 3 pages, with 10 records on each),

it’s most likely because the main query

and the COUNT() query are too different.

These two queries will never be the same,

but they must perform the same join

(if applicable) and have the same WHERE
and/or GROUP BY clauses to be accurate.

■ No error handling has been included in

this script, as I know the queries func-

tion as written. If you have problems,

remember your MySQL/SQL debugging

steps: print the query, run it using

the mysql client or phpMyAdmin to

confirm the results, and invoke the

mysqli_error() function as needed.

284

Chapter 9

P
a

g
i
n

a
t

i
n

g
 Q

u
e

r
y

 R
e

s
u

l
t

s

Figure 9.16 The final results page will not display a
Next link.

Making Sortable Displays
To wrap up this chapter, there’s one final fea-

ture that could be added to view_users.php.

In its current state the list of users is dis-

played in order by the date they registered.

It would be nice to be able to view them by

name as well.

From a MySQL perspective, accomplishing

this task is easy: just change the ORDER BY
clause. Therefore, all that needs to be done is

to add some functionality in PHP that will

change the ORDER BY clause. The logical way

to do this is to link the column headings so

that clicking them changes the display order.

As you hopefully can guess, this involves

using the GET method to pass a parameter

back to this page indicating the preferred

sort order.

To make sortable links:

1. Open view_users.php (Script 9.4) in your

text editor or IDE.

2. After determining the starting point,

define a $sort variable (Script 9.5).

$sort = (isset($_GET['sort'])) ?
➝ $_GET['sort'] : 'rd';

The $sort variable will be used to deter-

mine how the query results are to be

ordered. This line uses the ternary

operator (see the sidebar earlier in the

chapter) to assign a value to $sort. If

$_GET['sort'] is set, which will be the

case after the user clicks any link, then

$sort should be assigned that value. If

$_GET['sort'] is not set, then $sort is

assigned a default value of rd (short for

registration date).

285

Common Programming Techniques

M
a

k
i
n

g
 S

o
r

t
a

b
l
e

 D
i
s

p
l

a
y

s

1 <?php # Script 9.5 - #5

2

3 // This script retrieves all the records
from the users table.

4 // This new version allows the results to
be sorted in different ways.

5

6 $page_title = 'View the Current Users';

7 include ('includes/header.html');

8 echo '<h1>Registered Users</h1>';

9

10 require_once ('../mysqli_connect.php');

11

12 // Number of records to show per page:

13 $display = 10;

14

15 // Determine how many pages there are...

16 if (isset($_GET['p']) &&
is_numeric($_GET['p'])) { // Already been
determined.

17 $pages = $_GET['p'];

18 } else { // Need to determine.

19 // Count the number of records:

20 $q = "SELECT COUNT(user_id) FROM users";

21 $r = @mysqli_query ($dbc, $q);

22 $row = @mysqli_fetch_array ($r,
MYSQLI_NUM);

23 $records = $row[0];

24 // Calculate the number of pages...

25 if ($records > $display) { // More than
1 page.

26 $pages = ceil ($records/$display);

27 } else {

28 $pages = 1;

29 }

30 } // End of p IF.

31

Script 9.5 This latest version of the view_users.php
script creates clickable links out of the table’s column
headings.

(script continues on next page)

continues on page 287

286

Chapter 9

M
a

k
i
n

g
 S

o
r

t
a

b
l
e

 D
i
s

p
l

a
y

s

32 // Determine where in the database to
start returning results...

33 if (isset($_GET['s']) && is_numeric
($_GET['s'])) {

34 $start = $_GET['s'];

35 } else {

36 $start = 0;

37 }

38

39 // Determine the sort...

40 // Default is by registration date.

41 $sort = (isset($_GET['sort'])) ? $_GET

['sort'] : 'rd';

42

43 // Determine the sorting order:

44 switch ($sort) {

45 case 'ln':

46 $order_by = 'last_name ASC';

47 break;

48 case 'fn':

49 $order_by = 'first_name ASC';

50 break;

51 case 'rd':

52 $order_by = 'registration_date ASC';

53 break;

54 default:

55 $order_by = 'registration_date ASC';

56 $sort = 'rd';

57 break;

58 }

59

60 // Make the query:

61 $q = "SELECT last_name, first_name, DATE_

FORMAT(registration_date, '%M %d, %Y') AS

dr, user_id FROM users ORDER BY $order_by

LIMIT $start, $display";

62 $r = @mysqli_query ($dbc, $q); // Run the
query.

63
(script continues)

Script 9.5 continued

64 // Table header:

65 echo '<table align="center" cellspacing=

"0" cellpadding="5" width="75%">

66 <tr>

67 <td align="left">Edit</td>

68 <td align="left">Delete</td>

69 <td align="left"><a href="view_users.

php?sort=ln">Last Name</td>

70 <td align="left"><a href="view_users.

php?sort=fn">First Name</td>

71 <td align="left"><a href="view_users.

php?sort=rd">Date Registered

</td>

72 </tr>

73 ';

74

75 // Fetch and print all the records....

76 $bg = '#eeeeee';

77 while ($row = mysqli_fetch_array($r,
MYSQLI_ASSOC)) {

78 $bg = ($bg=='#eeeeee' ? '#ffffff' :
'#eeeeee');

79 echo '<tr bgcolor="' . $bg . '">

80 <td align="left"><a href="edit_user.
php?id=' . $row['user_id'] . '">Edit
</td>

81 <td align="left"><a href="delete_user.
php?id=' . $row['user_id'] . '">Delete
</td>

82 <td align="left">' . $row['last_name'] .
'</td>

83 <td align="left">' . $row['first_name']
. '</td>

84 <td align="left">' . $row['dr'] . '</td>

85 </tr>

86 ';

87 } // End of WHILE loop.

88

89 echo '</table>';

90 mysqli_free_result ($r);

91 mysqli_close($dbc);

92
(script continues on next page)

Script 9.5 continued

3. Determine how the results should be

ordered.

switch ($sort) {

case 'ln':

$order_by = 'last_name ASC';

break;

case 'fn':

$order_by = 'first_name
➝ ASC';

break;

case 'rd':

$order_by = 'registration_
➝ date ASC';

break;

default:

$order_by = 'registration_
➝ date ASC';

$sort = 'rd';

break;

}

The switch checks $sort against several

expected values. If, for example, it is

equal to ln, then the results should be

ordered by the last name in ascending

order. The assigned $order_by variable

will be used in the SQL query.

If $sort has a value of fn, then the results

should be in ascending order by first

name. If the value is rd, then the results

will be in ascending order of registration

date. This is also the default case. Having

this default case here protects against a

malicious user changing the value of

$_GET['sort'] to something that could

break the query.

287

Common Programming Techniques

M
a

k
i
n

g
 S

o
r

t
a

b
l
e

 D
i
s

p
l

a
y

s

93 // Make the links to other pages, if
necessary.

94 if ($pages > 1) {

95

96 echo '
<p>';

97 $current_page = ($start/$display) + 1;

98

99 // If it's not the first page, make a
Previous button:

100 if ($current_page != 1) {

101 echo '<a href="view_users.php?s=' .

($start - $display) . '&p=' . $pages .

'&sort=' . $sort . '">Previous ';

102 }

103

104 // Make all the numbered pages:

105 for ($i = 1; $i <= $pages; $i++) {

106 if ($i != $current_page) {

107 echo '<a href="view_users.php?s=' .

(($display * ($i - 1))) . '&p=' .

$pages . '&sort=' . $sort . '">' . $i

. ' ';

108 } else {

109 echo $i . ' ';

110 }

111 } // End of FOR loop.

112

113 // If it's not the last page, make a
Next button:

114 if ($current_page != $pages) {

115 echo '<a href="view_users.php?s=' .

($start + $display) . '&p=' . $pages .

'&sort=' . $sort . '">Next';

116 }

117

118 echo '</p>'; // Close the paragraph.

119

120 } // End of links section.

121

122 include ('includes/footer.html');

123 ?>

Script 9.5 continued

continues on next page

4. Modify the query to use the new

$order_by variable.

$q = "SELECT last_name, first_name,
➝ DATE_FORMAT(registration_date, '%M
➝ %d, %Y') AS dr, user_id FROM users
➝ ORDER BY $order_by LIMIT $start,
➝ $display";

By this point, the $order_by variable has

a value indicating how the returned

results should be ordered (for example,

registration_date ASC), so it can be easily

added to the query. Remember that the

ORDER BY clause comes before the LIMIT
clause. If the resulting query doesn’t run

properly for you, print it out and inspect

its syntax.

5. Modify the table header echo() state-

ment to create links out of the column

headings.

echo '<table align="center"
cellspacing="0" cellpadding="5"
width="75%">

<tr>

<td align="left">Edit
➝ </td>

<td align="left">Delete
➝ </td>

<td align="left"><a href=
➝ "view_users.php?sort=ln">
➝ Last Name</td>

<td align="left"><a href=
➝ "view_users.php?sort=fn">
➝ First Name</td>

<td align="left"><a href=
➝ "view_users.php?sort=rd">Date
➝ Registered</td>

</tr>

';

288

Chapter 9

M
a

k
i
n

g
 S

o
r

t
a

b
l
e

 D
i
s

p
l

a
y

s

✔ Tip

■ A very important security concept was

also demonstrated in this example. Instead

of using the value of $_GET['sort']
directly in the query, it’s checked against

assumed values in a switch. If, for some

reason, $_GET['sort'] has a value other

than would be expected, the query uses a

default sorting order. The point is this:

don’t make assumptions about received

data, and don’t use unvalidated data in

an SQL query.

To make the column headings clickable

links, just surround them with the <a>
tags. The value of the href attribute for

each link corresponds to the acceptable

values for $_GET['sort'] (see the switch
in Step 3).

6. Modify the echo() statement that creates

the Previous link so that the sort value is

also passed.

echo '<a href="view_users.php?s=' .
➝ ($start - $display) . '&p=' .
➝ $pages . '&sort=' . $sort .
➝ '">Previous ';

Add another name=value pair to the

Previous link so that the sort order is

also sent to each page of results. If you

don’t, then the pagination will fail, as the

ORDER BY clause will differ from one page

to the next.

7. Repeat Step 6 for the numbered pages

and the Next link.

echo '<a href="view_users.php?s=' .
➝ (($display * ($i - 1))) . '&p=' .
➝ $pages . '&sort=' . $sort . '">' .
➝ $i . ' ';

echo '<a href="view_users.php?s=' .
➝ ($start + $display) . '&p=' .
➝ $pages . '&sort=' . $sort .
➝ '">Next';

8. Save the file as view_users.php, place it

in your Web directory, and run it in your

Web browser (Figures 9.17 and 9.18).

289

Common Programming Techniques

M
a

k
i
n

g
 S

o
r

t
a

b
l
e

 D
i
s

p
l

a
y

s

Figure 9.17 The first time viewing the page, the
results are shown in ascending order of registration
date. After clicking the first name column, the results
are shown in ascending order by first name (as
seen here).

Figure 9.18 Clicking the Last Name column displays
the results in order by last name ascending.

This page intentionally left blank

The preceding two chapters focus on using PHP and MySQL together (which is, after

all, the primary point of this book). But there’s still a lot of PHP-centric material to be

covered. Taking a quick break from using PHP with MySQL, this chapter covers a

handful of techniques that are often used in more complex Web applications.

The first topic covered in this chapter is sending email using PHP. It’s a very common

thing to do and is surprisingly simple (assuming that the server is properly set up).

After that, the chapter touches upon some of the date and time functions present in

PHP. The third subject demonstrates how to handle file uploads in an HTML form. This

in turn leads to a discussion of using PHP and JavaScript together, then how to use

the header() function to manipulate the Web browser.

291

Web
Application
Development

10

W
e

b
 A

p
p

l
i
c

a
t

i
o

n
 D

e
v

e
l
o

p
m

e
n

t

Sending Email
One of my absolute favorite things about

PHP is how easy it is to send an email. On

a properly configured server, the process is

as simple as using the mail() function:

mail (to, subject, body, [headers]);

The to value should be an email address or

a series of addresses, separated by commas.

Any of these are allowed:

◆ email@example.com

◆ email1@example.com,

email2@example.com

◆ Actual Name <email@example.com>

◆ Actual Name <email@example.com>,

This Name <email2@example.com>

The subject value will create the email’s

subject line, and body is where you put the

contents of the email. To make things more

legible, variables are often assigned values

and then used in the mail() function call:

$to = 'email@example.com';

$subject = 'This is the subject';

$body = 'This is the body.

It goes over multiple lines.';

mail ($to, $subject, $body);

As you can see in the assignment to the $body
variable, you can create an email message

that goes over multiple lines by having the

text do exactly that within the quotation

marks. You can also use the newline charac-

ter (\n) within double quotation marks to

accomplish this:

$body = "This is the body.\nIt goes over
➝ multiple lines.";

This is all very straightforward, and there are

only a couple of caveats. First, the subject line

cannot contain the newline character (\n).

Second, each line of the body should be no

longer than 70 characters in length. You can

accomplish this using the wordwrap() function.

It will insert a newline into a string every X

number of characters. To wrap text to 70

characters, use

$body = wordwrap($body, 70);

The mail() function takes a fourth, optional

parameter for additional headers. This is

where you could set the From, Reply-To, Cc,

Bcc, and similar settings. For example,

mail ($to, $subject, $body, 'From:
➝ reader@example.com');

To use multiple headers of different types in

your email, separate each with \r\n:

$headers = "From: John@example.com\r\n";

$headers .= "Cc: Jane@example.com,
➝ Joe@example.com\r\n";

mail ($to, $subject, $body, $headers);

Although this fourth argument is optional,

it is advised that you always include a From

value (although that can also be established

in PHP’s configuration file).

To demonstrate this, let’s create a page that

shows a contact form (Figure 10.1) and then

handles the form submission, validating the

data and sending it along in an email. This

example will also contain a nice variation on

the sticky form technique used in this book.

292

Chapter 10

S
e

n
d

i
n

g
 E

m
a

i
l

Figure 10.1 A
standard (but not
very attractive)
contact form.

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type"
content="text/html; charset=iso-8859-1"
/>

6 <title>Contact Me</title>

7 </head>

8 <body>

9 <h1>Contact Me</h1>

10 <?php # Script 10.1 - email.php

11

12 // Check for form submission:

13 if (isset($_POST['submitted'])) {

14

15 // Minimal form validation:

16 if (!empty($_POST['name']) &&
!empty($_POST['email']) &&
!empty($_POST['comments'])) {

17

18 // Create the body:

19 $body = "Name:

{$_POST['name']}\n\nComments:

{$_POST['comments']}";

20

21 // Make it no longer than 70
characters long:

22 $body = wordwrap($body, 70);

23

24 // Send the email:

25 mail('your_email@example.com',

'Contact Form Submission', $body,

"From: {$_POST['email']}");

Script 10.1 This page displays a contact form that,
upon submission, will send an email with the form
data to an email address.

(script continues on next page)

Note two things before running this script:

First, for this example to work, the computer

on which PHP is running must have a work-

ing mail server. If you’re using a hosted site,

this shouldn’t be an issue; on your own com-

puter, you’ll likely need to take preparatory

steps (see the sidebar). Second, this example,

while functional, could be manipulated by

bad people, allowing them to send spam

through your contact form (not just to you

but to anyone). The steps for preventing such

attacks are provided in Chapter 12, “Security

Methods.” Following along and testing this

example is just fine; relying upon it as your

long-term contact form solution is a bad idea.

To send email:

1. Begin a new PHP script in your text editor

or IDE (Script 10.1).

<!DOCTYPE html PUBLIC "-//W3C//DTD
➝ XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtm
➝ l1-transitional.dtd">

<html
➝ xmlns="http://www.w3.org/1999/xhtml"
➝ xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type"
➝ content="text/html;
➝ charset=iso-8859-1" />

<title>Contact Me</title>

</head>

<body>

<h1>Contact Me</h1>

<?php # Script 10.1 - email.php

None of the examples in this chapter will

use a template, like those in the past two

chapters, so it starts with the standard

HTML.

293

Web Application Development

S
e

n
d

i
n

g
 E

m
a

i
l

continues on next page

2. Create the conditional for checking if the

form has been submitted and validate

the form data.

if (isset($_POST['submitted'])) {

if (!empty($_POST['name']) &&
➝ !empty($_POST['email']) &&
➝ !empty($_POST['comments'])) {

The form contains three text inputs (tech-

nically one is a textarea). The empty()
function will confirm that something

was entered into each. In Chapter 13,

you’ll learn how to use regular expressions

to confirm that the supplied email

address has a valid format.

3. Create the body of the email.

$body = "Name:
➝ {$_POST['name']}\n\nComments:
➝ {$_POST['comments']}";

$body = wordwrap($body, 70);

The email’s body will start with the prompt

Name:, followed by the name entered

into the form. Then the same treatment

is given to the comments. The wordwrap()
function then formats the whole body so

that each line is only 70 characters long.

294

Chapter 10

S
e

n
d

i
n

g
 E

m
a

i
l

26

27 // Print a message:

28 echo '<p>Thank you for
contacting me. I will reply some
day.</p>';

29

30 // Clear $_POST (so that the form's
not sticky):

31 $_POST = array();

32

33 } else {

34 echo '<p style="font-weight: bold;
color: #C00">Please fill out the
form completely.</p>';

35 }

36

37 } // End of main isset() IF.

38

39 // Create the HTML form:

40 ?>

41 <p>Please fill out this form to contact
me.</p>

42 <form action="email.php" method="post">

43 <p>Name: <input type="text" name="name"
size="30" maxlength="60" value="<?php if
(isset($_POST['name'])) echo
$_POST['name']; ?>" /></p>

44 <p>Email Address: <input type="text"
name="email" size="30" maxlength="80"
value="<?php if (isset($_POST['email']))
echo $_POST['email']; ?>" /></p>

45 <p>Comments: <textarea name="comments"
rows="5" cols="30"><?php if
(isset($_POST['comments'])) echo
$_POST['comments']; ?></textarea></p>

46 <p><input type="submit" name="submit"
value="Send!" /></p>

47 <input type="hidden" name="submitted"
value="TRUE" />

48 </form>

49 </body>

50 </html>

Script 10.1 continued

4. Send the email and print a message in

the Web browser.

mail('your_email@example.com',
➝ 'Contact Form Submission', $body,
➝ "From: {$_POST['email']}");

echo '<p>Thank you for contacting
➝ me. I will reply some day.</p>';

Assuming the server is properly config-

ured, this one line will send the email.

You will need to change the to value to

your actual email address. The From

value will be the email address from the

form. The subject will be a literal string.

There’s no way of confirming that the

email was successfully sent, let alone

received, but a generic message is printed.

5. Clear the $_POST array.

$_POST = array();

In this example, the form will always be

shown, even upon successful submission.

The form will be sticky in case the user

omitted something (Figure 10.2). However,

if the mail was sent, there’s no need to

show the values in the form again. To avoid

that, the $_POST array can be cleared of

its values using the array() function.

6. Complete the conditionals.

} else {

echo '<p style="font-weight:
➝ bold; color: #C00">Please
➝ fill out the form
➝ completely.</p>';

}

} // End of main isset() IF.

?>

The error message contains some inline

CSS, so that it’s in red and made bold.

7. Begin the form.

<p>Please fill out this form to
➝ contact me.</p>

<form action="email.php"
➝ method="post">

<p>Name: <input type="text"
➝ name="name" size="30"
➝ maxlength="60" value="<?php if
➝ (isset($_POST['name'])) echo
➝ $_POST['name']; ?>" /></p>

<p>Email Address: <input
➝ type="text" name="email"
➝ size="30" maxlength="80"
➝ value="<?php if
➝ (isset($_POST['email'])) echo
➝ $_POST['email']; ?>" /></p>

The form will submit back to this same

page using the POST method. The first

two inputs are of type text; both are made

sticky by checking if the corresponding

$_POST variable has a value. If so, that

value is printed as the current value for

that input.

295

Web Application Development

S
e

n
d

i
n

g
 E

m
a

i
l

Figure 10.2 The
contact form will
remember the user-
supplied values in
case it is not
completely filled out.

continues on next page

8. Complete the form.

<p>Comments: <textarea
➝ name="comments" rows="5"
➝ cols="30"><?php if
➝ (isset($_POST['comments']))
➝ echo $_POST['comments'];
➝ ?></textarea></p>

<p><input type="submit"
➝ name="submit" value="Send!"
➝ /></p>

<input type="hidden"
➝ name="submitted" value="TRUE" />

</form>

The comments input is a textarea,

which does not use a value attribute.

Instead, to be made sticky, the value is

printed between the opening and clos-

ing textarea tags.

9. Complete the HTML page.

</body>

</html>

10. Save the file as email.php, place it in

your Web directory, and test it in your

Web browser (Figure 10.3).

11. Check your email to confirm that you

received the message (Figure 10.4).

If you don’t actually get the email, you’ll

need to do some debugging work. With

this example, you should confirm with

your host (if using a hosted site) or your-

self (if running PHP on your server), that

there’s a working mail server installed.

You should also test this using different

email addresses (for both the to and

from values). Also watch that your spam

filter isn’t eating up the message.

296

Chapter 10

S
e

n
d

i
n

g
 E

m
a

i
l

Figure 10.3 Successful completion and
submission of the form.

Figure 10.4 The resulting email (from the data
in Figure 10.1).

✔ Tips

■ On some—primarily Unix—systems, the

\r\n characters aren’t handled properly.

If you have problems with them, use just

\n instead.

■ The mail() function returns a 1 or a 0

indicating the success of the function call.

This is not the same thing as the email

successfully being sent or received. You

cannot easily test for either using PHP.

■ While it’s easy to send a simple message

with the mail() function, sending HTML

emails or emails with attachments involves

more work. I discuss how you can do both

in my book PHP 5 Advanced: Visual

QuickPro Guide (Peachpit Press, 2007).

■ Using a contact form that has PHP send

an email is a great way to minimize the

spam you receive. With this system, your

actual email address is not visible in the

Web browser, meaning it can’t be har-

vested by spambots.

297

Web Application Development

S
e

n
d

i
n

g
 E

m
a

i
l

PHP mail() Dependencies

PHP’s mail() function doesn’t actually

send the email itself. Instead, it tells the

mail server running on the computer to

do so. What this means is that the com-

puter on which PHP is running must

have a working mail server in order for

this function to work.

If you have a computer running a Unix

variant or if you are running your Web

site through a professional host, this should

not be a problem. But if you are running

PHP on your own desktop or laptop com-

puter, you’ll probably need to make

adjustments.

If you are running Windows and have an

Internet service provider (ISP) that pro-

vides you with an SMTP server (like

smtp.comcast.net), this information can

be set in the php.ini file (see Appendix A,

“Installation,” for how to edit this file).

Unfortunately, this will only work if your

ISP does not require authentication—a

username and password combination—

to use the SMTP server. Otherwise, you’ll

need to install an SMTP server on your

computer. There are plenty available, and

they’re not that hard to install and use:

just search the Internet for free windows

smtp server and you’ll see some options.

There are also threads on this subject

in the book’s corresponding forum

(www.DMCInsights.com/phorum/).

If you are running Mac OS X, you’ll need

to enable the built-in SMTP server (either

sendmail or postfix, depending upon the

specific version of Mac OS X you are run-

ning). You can find instructions online

for doing so (search with enable sendmail

“Mac OS X”).

Date and Time Functions
Chapter 5, “Introduction to SQL,” demonstrates

a handful of great date and time functions

that MySQL supports. Naturally, PHP has its

own date and time functions. To start, there’s

date_default_timezone_set(). This function

is used to establish the default time zone

(which can also be set in PHP’s configura-

tion file).

date_default_timezone_set(tz);

The tz value is a string like America/New_York

or Pacific/Auckland. There are too many to

list here (Africa alone has over 50), but see

the PHP manual for them all. Note that as of

PHP 5.1, the default time zone must be set

prior to calling any of the date and time func-

tions, or else you’ll see an error (Figure 10.5).

Next up, the checkdate() function takes

a month, a day, and a year and returns a

Boolean value indicating whether that date

actually exists (or existed). It even takes into

account leap years. This function can be

used to ensure that a user supplied a valid

date (birth date or other):

if (checkdate(month, day, year)) { // OK!

Perhaps the most frequently used function is

the aptly named date(). It returns the date

and/or time as a formatted string. It takes

two arguments:

date (format, [timestamp]);

The timestamp is an optional argument rep-

resenting the number of seconds since the

Unix Epoch (midnight on January 1, 1970)

for the date in question. It allows you to get

information, like the day of the week, for a

particular date. If a timestamp is not speci-

fied, PHP will just use the current time on

the server.

There are myriad formatting parameters

available (Table 10.1), and these can be

used in conjunction with literal text. For

example,

echo date('F j, Y'); // January 26, 2008

echo date('H:i'); // 23:14

echo date('D'); // Sat

You can find the timestamp for a particular

date using the mktime() function.

$stamp = mktime (hour, minute, second,
➝ month, day, year);

If called with no arguments, mktime() returns

the current timestamp, which is the same as

calling the time() function.

Finally, the getdate() function can be used

to return an array of values (Table 10.2) for

a date and time. For example,

$today = getdate();

echo $today['month']; // October

This function also takes an optional time-

stamp argument. If that argument is not

used, getdate() returns information for the

current date and time.

These are just a handful of the many date and

time functions PHP has. For more, see the

PHP manual. To practice working with these

functions, let’s modify email.php (Script 10.1)

in an admittedly superfluous way.

298

Chapter 10

D
a

t
e

 a
n

d
 T

i
m

e
 F

u
n

c
t

i
o

n
s

Figure 10.5 If running PHP 5.1 and later and error_reporting is set on its highest
level, PHP will generate a notice when a date or time function is used without the
time zone being set.

To use the date and time functions:

1. Open email.php (Script 10.1) in your text

editor or IDE.

2. As the first line of code after the open-

ing PHP tag, establish the time zone

(Script 10.2).

date_default_timezone_set
➝ ('America/New_York');

Before calling any of the date and time

functions (and this script will call two

different ones, twice each), the time zone

has to be established. To find your time

zone, see www.php.net/timezones.

299

Web Application Development

D
a

t
e

 a
n

d
 T

i
m

e
 F

u
n

c
t

i
o

n
s

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type"
content="text/html; charset=iso-8859-1" />

6 <title>Contact Me</title>

7 </head>

8 <body>

9 <h1>Contact Me</h1>

10 <?php # Script 10.2 - datetime.php

11

12 // Set the default timezone:

13 date_default_timezone_set

('America/New_York');

14

15 // Check for form submission:

16 if (isset($_POST['submitted'])) {

Script 10.2 This modified version of email.php (Script
10.1) invokes three of PHP’s date and time functions in
order to report some information (both useful and
useless) to the user.

(script continues on next page)

continues on next page

C h a r a c t e r M e a n i n g E x a m p l e

Y year as 4 digits 2008
y year as 2 digits 05
n month as 1 or 2 digits 2
m month as 2 digits 02
F month February
M month as 3 letters Feb
j day of the month as 1 or 2 digits 8
d day of the month as 2 digits 08
l
(lowercase
L) day of the week Monday
D day of the week as 3 letters Mon
g hour, 12-hour format as 1 or 2 digits 6
G hour, 24-hour format as 1 or 2 digits 18
h hour, 12-hour format as 2 digits 06
H hour, 24-hour format as 2 digits 18
i minutes 45
s seconds 18
a am or pm am
A AM or PM PM

Date Function Formatting

Table 10.1 The date() function can take any combination
of these parameters to format its returned results. A
couple more parameters are listed in the PHP manual.

K e y Va l u e E x a m p l e

year year 2007
mon month 12
month month name December
mday day of the month 25
weekday day of the week Tuesday
hours hours 11
minutes minutes 56
seconds seconds 47

The getdate() Array

Table 10.2 The getdate() function returns this
associative array.

3. In the HTML form, add another hidden

input.

<input type="hidden" name="start"
➝ value="<?php echo time(); ?>" />

Just to try something interesting, this

script will time how long it takes for the

user to receive, fill out, and submit the

form. Timing this is just a matter of sub-

tracting the time the form was sent to

the Web browser from the time it was

submitted back to the server. The time()
function will return a timestamp (the

number of seconds since the epoch). This

value will be stored in the HTML form so

that it can be used in the calculation

upon submission (Figure 10.6).

4. Change the form’s action attribute so

that it points to this new script.

<form action="datetime.php"
➝ method="post">

This file will be named datetime.php, so

the action has to be changed as well.

5. Going back up a few lines in the script to

where the form is submitted, change the

message so that it includes the current

date and time.

echo '<p>Thank you for contacting
➝ me at ' . date('g:i a (T)') . ' on ' .
➝ date('l F j, Y') .'. I will reply
➝ some day.</p>';

Two invocations of the date() function

are added to this message. The first will

return the current time formatted as

HH:MM am/pm (XXX), where XXX rep-

resents the time zone identifier. The sec-

ond call to date() will return the day of

the week, month, day, and year, in the

format Day Month D, YYYY.

300

Chapter 10

D
a

t
e

 a
n

d
 T

i
m

e
 F

u
n

c
t

i
o

n
s

17

18 // Minimal form validation:

19 if (!empty($_POST['name']) &&
!empty($_POST['email']) &&
!empty($_POST['comments'])) {

20

21 // Create the body:

22 $body = "Name:
{$_POST['name']}\n\nComments:
{$_POST['comments']}";

23 $body = wordwrap($body, 70);

24

25 // Send the email:

26 mail('your_email_address@example.com',
'Contact Form Submission', $body,
"From: {$_POST['email']}");

27

28 // Print a message:

29 echo '<p>Thank you for contacting

me at ' . date('g:i a (T)') . ' on ' .

date('l F j, Y') .'. I will reply

some day.</p>';

30

31 // How long did it all take?

32 echo '<p>It took ' .

(time() - $_POST['start']) . '

seconds for you to complete and

submit the form.</p>';

33

34 // Clear $_POST (so that the form's
not sticky):

35 $_POST = array();

36

37 } else {

38 echo '<p style="font-weight: bold;
color: #C00">Please fill out the
form completely.</p>';

39 }

40

41 } // End of main isset() IF.

42

43 // Create the HTML form:

44 ?>

(script continues on next page)

Script 10.2 continued

6. Add another message indicating how

long the whole process took.

echo '<p>It took ' . (time()
➝ - $_POST['start']) . ' seconds for
➝ you to complete and submit the
➝ form.</p>';

This message includes the calculation of

the current timestamp (returned by

time()) minus the timestamp stored in

the HTML form.

7. Save the file as datetime.php, place it in

your Web directory, and test it in your

Web browser (Figures 10.7 and 10.8).

✔ Tips

■ The date() function has some parameters

that are used for informative purposes,

not formatting. For example, date('L')
returns 1 or 0 indicating if it’s a leap year;

date('t') returns the number of days in

the current month; and date('I') returns

a 1 if it’s currently daylight saving time.

■ PHP’s date functions reflect the time on

the server (because PHP runs on the

server); you’ll need to use JavaScript if

you want to determine the date and time

on the user’s computer.

301

Web Application Development

D
a

t
e

 a
n

d
 T

i
m

e
 F

u
n

c
t

i
o

n
s

Figure 10.6 The HTML source code of the page reveals
the timestamp stored in a hidden input called start.

Figure 10.7 The form itself does not
seem to be that much different from the
original in email.php (see Figure 10.1).

Figure 10.8 The response message now
uses two date and time functions for a
more customized reply.

45 <p>Please fill out this form to contact
me.</p>

46 <form action="datetime.php" method="post">

47 <p>Name: <input type="text" name="name"
size="30" maxlength="60" value="<?php if
(isset($_POST['name'])) echo
$_POST['name']; ?>" /></p>

48 <p>Email Address: <input type="text"
name="email" size="30" maxlength="80"
value="<?php if (isset($_POST['email']))
echo $_POST['email']; ?>" /></p>

49 <p>Comments: <textarea name="comments"
rows="5" cols="30"><?php if
(isset($_POST['comments'])) echo
$_POST['comments']; ?></textarea></p>

50 <p><input type="submit" name="submit"
value="Send!" /></p>

51 <input type="hidden" name="start"

value="<?php echo time(); ?>" />

52 <input type="hidden" name="submitted"
value="TRUE" />

53 </form>

54 </body>

55 </html>

Script 10.2 continued

Handling File Uploads
Chapters 2, “Programming with PHP,” and 3,

“Creating Dynamic Web Sites,” go over the

basics of handling HTML forms with PHP.

For the most part, every type of form element

can be handled the same in PHP, with one

exception: file uploads. The process of upload-

ing a file has two dimensions. First the HTML

form must be displayed, with the proper code

to allow for file uploads. Then upon submis-

sion of the form, the PHP script must copy

the uploaded file to its final destination.

However, for this process to work, several

things must be in place:

◆ PHP must run with the right settings.

◆ A temporary storage directory must exist

with the correct permissions.

◆ The final storage directory must exist with

the correct permissions.

With this in mind, this next section will cover

the server setup to allow for file uploads;

then a PHP script will be created that actually

does the uploading.

Allowing for file uploads
As I said, certain settings must be established

in order for PHP to be able to handle file

uploads. I’ll first discuss why or when you’d

need to make these adjustments before

walking you through the steps.

The first issue is PHP itself. There are several

settings in PHP’s configuration file (php.ini)

that dictate how PHP handles uploads, spe-

cifically stating how large of a file can be

uploaded and where the upload should tem-

porarily be stored (Table 10.3). Generally

speaking, you’ll need to edit this file if any of

these conditions apply:

302

Chapter 10

H
a

n
d

l
i
n

g
 F

i
l
e

 U
p

l
o

a
d

s

S e t t i n g Va l u e Ty p e I m p o r t a n c e

file_uploads Boolean Enables PHP support
for file uploads

max_input_time integer Indicates how long, in
seconds, a PHP script is
allowed to run

post_max_size integer Size, in bytes, of the
total allowed POST data

upload_max_filesize integer Size, in bytes, of the
largest possible file
upload allowed

upload_tmp_dir string Indicates where
uploaded files should
be temporarily stored

File Upload Configurations

Table 10.3 These PHP configuration settings each
impact file upload capabilities.

◆ file_uploads is disabled.

◆ PHP has no temporary directory to use.

◆ You will be uploading very large files

(larger than 2 MB).

If you don’t have access to your php.ini file—

like if you’re using a hosted site, presumably

the host has already configured PHP to allow

for file uploads. If you installed PHP on Mac

OS X or Unix, you should also be good to go

(assuming reasonable-sized files).

The second issue is the location of, and per-

missions on, the temporary directory. This is

where PHP will store the uploaded file until

your PHP script moves it to its final destina-

tion. If you installed PHP on your own

Windows computer, you might need to take

steps here (I had no problems with the default

PHP 6 installation on Windows XP, but I

don’t want to assume that’ll be the same for

everyone). Mac OS X and Unix users need

not worry about this, as a temporary direc-

tory already exists for such purposes.

Finally, the destination folder must be created

and have the proper permissions established

on it. This is a step that everyone must take

for every application that handles file uploads.

Because there are important security issues

involved in this step, please also make sure

that you read and understand the sidebar,

“Secure Folder Permissions.”

With all of this in mind, let’s go through

the steps.

To prepare the server:

1. Run the phpinfo() function to confirm

your server settings (Figure 10.9).

The phpinfo() function prints out a slew

of information about your PHP setup. It’s

one of the most important functions in

PHP, if not the most (in my opinion). Search

for the settings listed in Table 10.3 and

confirm their values. Make sure that

file_uploads has a value of On and that

the limit for upload_max_filesize (2MB, by

default) and post_max_size (8MB) won’t

be a restriction for you. If running PHP

on Windows, see if upload_tmp_dir has

a value. If it doesn’t, that might be a prob-

lem (you’ll know for certain after running

the PHP script that handles the file upload).

For non-Windows users, if this value says

no value, that’s perfectly fine.

303

Web Application Development

H
a

n
d

l
i
n

g
 F

i
l
e

 U
p

l
o

a
d

s

Figure 10.9 A phpinfo() script returns all the information regarding your PHP
setup, including all the file upload handling stuff.

continues on next page

2. If necessary, open php.ini in your text

editor.

If there’s anything you saw in Step 1 that

needs to be changed, or if something

happens when you actually go to handle

a file upload using PHP, you’ll need to

edit the php.ini file. To find this file, see

the Configuration File (php.ini) path value

in the phpinfo() output. This indicates

exactly where this file is on your comput-

er (also see Appendix A for more).

If you are not allowed to edit your php.ini
file (if, for instance, you’re using a hosted

server), then presumably any necessary

edits would have already been made to

allow for file uploads. If not, you’ll need

to request these changes from your host-

ing company (who may or may not agree

to make them).

3. Search the php.ini file for the configura-

tion to be changed and make any edits

(Figure 10.10).

For example, in the File Uploads section,

you’ll see these three lines:

file_uploads = On

;upload_tmp_dir =

upload_max_filesize = 2M

The first line dictates whether or not

uploads are allowed. The second states

where the uploaded files should be tem-

porarily stored. On most operating systems,

including Mac OS X and Unix, this set-

ting can be left commented out (preceded

by a semicolon) without any problem.

If you are running Windows and need to

create a temporary directory, set this value

to C:\tmp, making sure that the line is

not preceded by a semicolon. Again, using

the most recent version of PHP on

Windows XP, I did not need to create a

temporary directory, so you may be able

to get away without one too.

Finally, a maximum upload file size is set

(the M is shorthand for megabytes in con-

figuration settings).

4. Save the php.ini file and restart your

Web server.

How you restart your Web server depends

upon the operating system and Web serv-

ing application being used. See Appendix

A for instructions.

304

Chapter 10

H
a

n
d

l
i
n

g
 F

i
l
e

 U
p

l
o

a
d

s

Figure 10.10 The File Uploads subsection of the
php.ini file.

Figure 10.11 Windows users need to make
sure that the C:\tmp (or whatever directory is
used) is writable by PHP. On my Windows XP
installation, this just meant that it couldn’t
be marked private (see the top portion of
this image).

5. Confirm the changes by rerunning the

phpinfo() script.

Before going any further, confirm that

the necessary changes have been enacted

by repeating Step 1.

6. If you are running Windows and need

to create a temporary directory, add

a tmp folder within C:\ and make sure

that everyone can write to that direc-

tory (Figure 10.11).

PHP, through your Web server, will tem-

porarily store the uploaded file in the

upload_tmp_dir. For this to work, the

Web user (if your Web server runs as a

particular user) must have permission

to write to the folder.

In all likelihood, you may not actually

have to change the permissions, but to

do so, depending upon what version of

Windows you are running, you can nor-

mally adjust the permissions by right-

clicking the folder and selecting Properties.

With the Properties window, there should

be a Security tab where permissions are set.

It may also be under Sharing. Windows

uses a more lax permissions system, so

you probably won’t have to change any-

thing unless the folder is deliberately

restricted. (Note: I haven’t tested this on

Windows Vista, so I’m unsure what, if

anything, might have changed in it.)

Mac OS X and Unix users can skip this

step as the temporary directory—/tmp—

has open permissions already.

7. Create a new directory, called uploads,

in a directory outside of the Web root

directory.

All of the uploaded files will be perma-

nently stored in the uploads directory. If

you’ll be placing your PHP script in the

C:\inetpub\wwwroot\ch10 directory, then

create a C:\inetpub\uploads directory. Or

if the files are going in /Users/~<username>/
Sites/ch10, make a /Users/~<username>/
uploads folder. Figure 10.12 shows the

structure you should establish, and the side-

bar discusses why this step is necessary.

305

Web Application Development

H
a

n
d

l
i
n

g
 F

i
l
e

 U
p

l
o

a
d

s

Figure 10.12 Assuming that htdocs is the Web root
directory (www.example.com or http://localhost
points there), then the uploads directory needs to be
placed outside of it.

continues on next page

8. Set the permissions on the uploads direc-

tory so that the Web server can write to it.

Again, Windows users can use the

Properties window to make these changes,

although it may not be necessary. Mac

OS X users can…

A) Select the folder in the Finder.

B) Press Command+I.

C) Allow everyone to Read & Write,

under the Ownership & Permissions

panel (Figure 10.13).

If you’re using a hosted site, the host likely

provides a control panel through which

you can tweak a folder’s settings or you

might be able to do this within your FTP

application.

Depending upon your operating system,

you may be able to upload files without

first taking this step. You can try the fol-

lowing script before altering the permis-

sions, just to see. If you see messages like

those in Figure 10.14, then you will

need to make some adjustments.

306

Chapter 10

H
a

n
d

l
i
n

g
 F

i
l
e

 U
p

l
o

a
d

s

Figure 10.13 Adjusting the
properties on the uploads
folder in Mac OS X.

Figure 10.14 If PHP could not move the uploaded image over to the uploads
folder because of a permissions issue, you’ll see an error message like this one.
Fix the permissions on uploads to correct this.

✔ Tips

■ Unix users can use the chmod command

to adjust a folder’s permissions. The

proper permissions in Unix terms will be

either 755 or 777.

■ Because of the time it may take to

upload a large file, you may also need to

change the max_input_time value in the

php.ini file or temporarily bypass it

using the set_time_limit() function in

your script.

■ File and directory permissions can be

complicated stuff, particularly if you’ve

never dealt with them before. If you have

problems with these steps or the next

script, search the Web or turn to the book’s

corresponding forum (www.DMCInsights.
com/phorum/).

307

Web Application Development

H
a

n
d

l
i
n

g
 F

i
l
e

 U
p

l
o

a
d

s

Secure Folder Permissions

There’s normally a trade-off between security and convenience. With this example, it’d be

more convenient to place the uploads folder within the Web document directory (the con-

venience arises with respect to how easily the uploaded images can be viewed in the Web

browser), but doing that is less secure.

For PHP to be able to place files in the uploads folder, it needs to have write permissions on

that directory. On most servers, PHP is running as the same user as the Web server itself. On

a hosted server, this means that all X number of sites being hosted are running as the same

user. Creating a folder that PHP can write to means creating a folder that everyone can write

to. Literally anyone on the server can now move, copy, or write files to the uploads folder

(assuming that they know it exists). This even means that a malicious user could write a PHP

script to your uploads directory. However, since the uploads directory in this example is not

within the Web directory, such a PHP script cannot be run in a Web browser. It’s less conven-

ient to do things this way, but more secure.

If you must keep the uploads folder publicly accessible, the permissions could be tweaked.

For security purposes, you ideally want to allow only the Web server user to read, write, and

browse this directory. This means knowing what user the Web server runs as and making

that user—and no one else—ruler of the uploads. This isn’t a perfect solution, but it does

help a bit. This change also limits your access to that folder, though, as its contents would

belong to only the Web server.

Finally, if you’re using Apache, you could limit access to the uploads folder using an .htaccess
file. Basically, you would state that only image files in the folder be publicly viewable, mean-

ing that even if a PHP script were to be placed there, it could not be executed. Information

on how to use .htaccess files can be found online (search on .htaccess tutorial).

Sometimes even the most conservative programmer will make security concessions. The

important point is that you’re aware of the potential concerns and that you do the most you

can to minimize the danger.

Uploading files with PHP
Now that the server has (hopefully) been set

up to properly allow for file uploads, you can

create the PHP script that does the actual

file handling. There are two parts to such a

script: the HTML form and the PHP code.

The required syntax for a form to handle

a file upload has three parts:

<form enctype="multipart/form-data"
➝ action="script.php" method="post">

<input type="hidden"
➝ name="MAX_FILE_SIZE" value="30000" />

File <input type="file" name="upload" />

The enctype part of the initial form tag indi-

cates that the form should be able to handle

multiple types of data, including files. If you

want to accept file uploads, you must include

this enctype! Also note that the form must

use the POST method. The MAX_FILE_SIZE
hidden input is a form restriction on how

large the chosen file can be, in bytes, and

must come before the file input. While it’s

easy for a user to circumvent this restriction,

it should still be used. Finally, the file input

type will create the proper button in the

form (Figures 10.15 and 10.16).

Upon form submission, the uploaded file

can be accessed using the $_FILES super-

global. The variable will be an array of val-

ues, listed in Table 10.4.

Once the file has been received by the PHP

script, the move_uploaded_file() function

can transfer it from the temporary directory

to its permanent location.

move_uploaded_file (temporary_filename,

/path/to/destination/filename);

This next script will let the user select a file

on their computer and will then store it in

the uploads directory. The script will check

that the file is of an image type. In the next

section of this chapter, another script will

list, and create links to, the uploaded images.

308

Chapter 10

H
a

n
d

l
i
n

g
 F

i
l
e

 U
p

l
o

a
d

s

I n d e x M e a n i n g

name The original name of the file (as it was on the
user’s computer).

type The MIME type of the file, as provided by the
browser.

size The size of the uploaded file in bytes.
tmp_name The temporary filename of the uploaded file

as it was stored on the server.
error The error code associated with any problem.

The $_FILES Array

Table 10.4 The data for an uploaded file will be
available through these array elements.

Figure 10.15 The file input as it appears in IE 7
on Windows.

Figure 10.16 The file input as it appears in Firefox
on Mac OS X.

To handle file uploads in PHP:

1. Create a new PHP document in your text

editor or IDE (Script 10.3).

<!DOCTYPE html PUBLIC "-//W3C//DTD
➝ XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd">

<html
➝ xmlns="http://www.w3.org/1999/xhtml"
➝ xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type"
➝ content="text/html;
➝ charset=iso-8859-1" />

<title>Upload an Image</title>

<style type="text/css"
➝ title="text/css" media="all">

.error {

font-weight: bold;

color: #C00

}

</style>

</head>

<body>

<?php # Script 10.3 - upload_image.php

This script will make use of one CSS

class to format any errors.

309

Web Application Development

H
a

n
d

l
i
n

g
 F

i
l
e

 U
p

l
o

a
d

s

continues on next page

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type"
content="text/html; charset=iso-8859-1" />

6 <title>Upload an Image</title>

7 <style type="text/css" title="text/css"
media="all">

8 .error {

9 font-weight: bold;

10 color: #C00

11 }

12 </style>

13 </head>

14 <body>

15 <?php # Script 10.3 - upload_image.php

16

17 // Check if the form has been submitted:

18 if (isset($_POST['submitted'])) {

19

20 // Check for an uploaded file:

21 if (isset($_FILES['upload'])) {

22

23 // Validate the type. Should be
JPEG or PNG.

24 $allowed = array ('image/pjpeg',
'image/jpeg', 'image/jpeg',
'image/JPG', 'image/X-PNG',
'image/PNG', 'image/png',
'image/x-png');

25 if (in_array($_FILES['upload']
['type'], $allowed)) {

26

Script 10.3 This script allows the user to upload an
image file from their computer to the server.

(script continues on next page)

2. Check if the form has been submitted

and that a file was selected.

if (isset($_POST['submitted'])) {

if (isset($_FILES['upload'])) {

Since this form will have no other fields

to be validated (Figure 10.17), this is

the only conditional required. You could

also validate the size of the uploaded file

to determine if it fits within the accept-

able range (refer to the $_FILES['upload']
['size'] value).

3. Check that the uploaded file is of the

proper type.

$allowed = array ('image/pjpeg',
➝ 'image/jpeg', 'image/jpeg',
➝ 'image/JPG', 'image/X-PNG',
➝ 'image/PNG', 'image/png',
➝ 'image/x-png');

if
➝ (in_array($_FILES['upload']['type'],
➝ $allowed)) {

The file’s type is its MIME type, indicat-

ing what kind of file it is. The browser

can determine and may provide this

information, depending upon the proper-

ties of the selected file. To validate the

file’s type, first create an array of allowed

options. The list of allowed types is based

upon accepting JPEGs and PNGs. Some

browsers have variations on the MIME

types, so those are included here as well.

If the uploaded file’s type is in this array,

the file is valid and should be handled.

310

Chapter 10

H
a

n
d

l
i
n

g
 F

i
l
e

 U
p

l
o

a
d

s

27 // Move the file over.

28 if (move_uploaded_file
($_FILES['upload']['tmp_name'],
"../uploads/{$_FILES['upload']['name']
}")) {

29 echo '<p>The file has been
uploaded!</p>';

30 } // End of move... IF.

31

32 } else { // Invalid type.

33 echo '<p class="error">Please upload a
JPEG or PNG image.</p>';

34 }

35

36 } // End of isset($_FILES['upload']) IF.

37

38 // Check for an error:

39

40 if ($_FILES['upload']['error'] > 0) {

41 echo '<p class="error">The file could
not be uploaded because: ';

42

43 // Print a message based upon the
error.

44 switch ($_FILES['upload']['error']) {

45 case 1:

46 print 'The file exceeds the
upload_max_filesize setting in
php.ini.';

47 break;

48 case 2:

49 print 'The file exceeds the
MAX_FILE_SIZE setting in the
HTML form.';

50 break;

51 case 3:

52 print 'The file was only
partially uploaded.';

(script continues on next page)

Script 10.3 continued

Figure 10.17 This very basic HTML form only
takes one input: a file.

4. Copy the file to its new location on the

server.

if (move_uploaded_file
➝ ($_FILES['upload']['tmp_name'],
➝ "../uploads/{$_FILES['upload']
➝ ['name']}")) {

echo '<p>The file has been
➝ uploaded!</p>';

}

The move_uploaded_file() function will

move the file from its temporary to its

permanent location (in the uploads fold-

er). The file will retain its original name.

In Chapter 17, “Example—E-Commerce,”

you’ll see how to give the file a new

name, which is generally a good idea.

As a rule, you should always use a condi-

tional to confirm that a file was success-

fully moved, instead of just assuming

that the move worked.

5. Complete the image type and

isset($_FILES['upload']) conditionals.

} else { // Invalid type.

echo '<p class="error">Please
➝ upload a JPEG, GIF, or PNG
➝ GIF image.</p>';

}

} // End of isset($_FILES['upload'])
➝ IF.

The first else clause completes the if
begun in Step 3. It applies if a file was

uploaded but it wasn’t of the right MIME

type (Figure 10.18).

311

Web Application Development

H
a

n
d

l
i
n

g
 F

i
l
e

 U
p

l
o

a
d

s

53 break;

54 case 4:

55 print 'No file was uploaded.';

56 break;

57 case 6:

58 print 'No temporary folder was
available.';

59 break;

60 case 7:

61 print 'Unable to write to the
disk.';

62 break;

63 case 8:

64 print 'File upload stopped.';

65 break;

66 default:

67 print 'A system error
occurred.';

68 break;

69 } // End of switch.

70

71 print '</p>';

72

73 } // End of error IF.

74

75 // Delete the file if it still exists:

76 if (file_exists
($_FILES['upload']['tmp_name']) &&
is_file($_FILES['upload']['tmp_name'
])) {

77 unlink
($_FILES['upload']['tmp_name']);

78 }

79

80 } // End of the submitted conditional.

(script continues on next page)

Script 10.3 continued

Figure 10.18 If the user uploads a file
that’s not a JPEG or PNG, this is the result.

continues on next page

6. Check for, and report on, any errors.

if ($_FILES['upload']['error'] > 0) {

echo '<p class="error">The file
➝ could not be uploaded because:
➝ ';

If an error occurred, then

$_FILES['upload']['error'] will have a

value greater than 0. In such cases, this

script will report what the error was.

7. Create a switch that prints a more

detailed error.

switch ($_FILES['upload']['error']) {

case 1:

print 'The file exceeds the
➝ upload_max_filesize setting
➝ in php.ini.';

break;

case 2:

print 'The file exceeds the
➝ MAX_FILE_SIZE setting in
➝ the HTML form.';

break;

case 3:

print 'The file was only
➝ partially uploaded.';

break;

case 4:

print 'No file was uploaded.';

break;

case 6:

print 'No temporary folder was
➝ available.';

break;

312

Chapter 10

H
a

n
d

l
i
n

g
 F

i
l
e

 U
p

l
o

a
d

s

81 ?>

82

83 <form enctype="multipart/form-data"
action="upload_image.php" method="post">

84

85 <input type="hidden"
name="MAX_FILE_SIZE" value="524288">

86

87 <fieldset><legend>Select a JPEG or PNG
image of 512KB or smaller to be
uploaded:</legend>

88

89 <p>File: <input type="file"
name="upload" /></p>

90

91 </fieldset>

92 <div align="center"><input type="submit"
name="submit" value="Submit" /></div>

93 <input type="hidden" name="submitted"
value="TRUE" />

94 </form>

95 </body>

96 </html>

Script 10.3 continued

case 7:

print 'Unable to write to the
➝ disk.';

break;

case 8:

print 'File upload stopped.';

break;

default:

print 'A system error
➝ occurred.';

break;

} // End of switch.

There are several possible reasons a file

could not be uploaded and moved. The

first and most obvious one is if the per-

missions are not set properly on the des-

tination directory. In such a case, you’ll

see an appropriate error message (refer

back to Figure 10.14). PHP will often

also store an error number in the

$_FILES['upload']['error'] variable.

The numbers correspond to specific

problems, from 0 to 4, plus 6 through 8

(oddly enough, there is no 5). The switch
conditional here prints out the problem

according to the error number. The

default case is added for future support

(if different numbers are added in later

versions of PHP).

For the most part, these errors are useful

to you, the developer, and not things

you’d indicate to the average user.

313

Web Application Development

H
a

n
d

l
i
n

g
 F

i
l
e

 U
p

l
o

a
d

s

8. Complete the error if conditional.

print '</p>';

} // End of error IF.

9. Delete the temporary file if it still exists

and complete the PHP section.

if (file_exists
➝ ($_FILES['upload']['tmp_name'])
➝ &&
➝ is_file($_FILES['upload']['tmp_
➝ name'])) {

unlink
➝ ($_FILES['upload']['tmp_
➝ name']);

}

} // End of the submitted conditional.

?>

If the file was uploaded but it could not

be moved to its final destination or some

other error occurred, then that file is still

sitting on the server in its temporary

location. To remove it, use the unlink()
function. Just to be safe, prior to applying

unlink(), a conditional checks that the

file exists and that it is a file (because the

file_exists() function will return TRUE
if the named item is a directory).

continues on next page

✔ Tips

■ Omitting the enctype form attribute is a

common reason for file uploads to mys-

teriously fail.

■ The existence of an uploaded file

can also be validated with the

is_uploaded_file() function.

■ Windows users must use forward slashes

or double backslashes to refer to directo-

ries (so C:\\ or C:/ but not C:\). This is

because the backslash is the escape char-

acter in PHP.

■ The move_uploaded_file() function will

overwrite an existing file without warn-

ing if the new and existing files both

have the same name.

■ The MAX_FILE_SIZE is a restriction in the

browser as to how large a file can be,

although not all browsers abide by this

restriction. The PHP configuration file

has its own restrictions. You can also val-

idate the uploaded file size within the

receiving PHP script.

10. Create the HTML form.

<form enctype="multipart/form-data"
➝ action="upload_image.php"
➝ method="post">

<input type="hidden"
➝ name="MAX_FILE_SIZE"
➝ value="524288">

<fieldset><legend>Select a JPEG
➝ or PNG image of 512KB or
➝ smaller to be uploaded:</legend>

<p>File: <input
➝ type="file" name="upload" /></p>

</fieldset>

<div align="center"><input
➝ type="submit" name="submit"
➝ value="Submit" /></div>

<input type="hidden"
➝ name="submitted" value="TRUE" />

</form>

This form is very simple (Figure 10.17),

but it contains the three necessary

parts for file uploads: the form’s enctype
attribute, the MAX_FILE_SIZE hidden

input, and the file input.

11. Complete the HTML page.

</body>

</html>

12. Save the file as upload_image.php, place

it in your Web directory, and test it in

your Web browser (Figures 10.19 and

10.20).

If you want, you can confirm that the

script works by checking the contents

of the uploads directory.

314

Chapter 10

H
a

n
d

l
i
n

g
 F

i
l
e

 U
p

l
o

a
d

s

Figure 10.19 The result upon successfully
uploading and moving a file.

Figure 10.20 The result upon attempting to
upload a file that is too large.

315

Web Application Development

P
H

P
a

n
d

 J
a

v
a

S
c

r
i
p

t

PHP and JavaScript
Although PHP and JavaScript are fundamen-

tally different technologies, they can be used

together to make better Web sites. The most

significant difference between the two lan-

guages is that JavaScript is client-side

(meaning it runs in the Web browser) and

PHP is server-side. Therefore, JavaScript can

do such things as detect the size of the

browser window, create pop-up windows,

and make image mouseovers, whereas PHP

can do nothing like these things.

But while PHP cannot do certain things that

JavaScript can, PHP can be used to create or

work with JavaScript (just as PHP can create

HTML). In this example, PHP will list all the

images uploaded by the upload_image.php
script and make clickable links using their

names. The links themselves will call a

JavaScript function that creates a pop-up

window. This example will in no way be a

thorough discussion of JavaScript, but it

does adequately demonstrate how the two

technologies—PHP and JavaScript—can be

used together.

Along with the JavaScript, three new PHP

functions are used in this example. The first,

getimagesize(), returns an array of informa-

tion for a given image (Table 10.5). The sec-

ond, scandir(), returns an array listing the

files in a given directory (it was added in

PHP 5). The third, filesize(), returns the

size of a file in bytes.

E l e m e n t Va l u e E x a m p l e

0 image’s width in pixels 423
1 image’s height in pixels 368
2 image’s type 2 (representing

JPG)
3 appropriate HTML img tag data height="368"

width="423"
mime image’s MIME type image/png

The getimagesize() Array

Table 10.5 The getimagesize() function returns this
array of data.

To create JavaScript with PHP:

1. Begin a new PHP document in your text

editor or IDE (Script 10.4).

<!DOCTYPE html PUBLIC "-//W3C//DTD
➝ XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd">

<html
➝ xmlns="http://www.w3.org/1999/xhtml"
➝ xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type"
➝ content="text/html;
➝ charset=iso-8859-1" />

<title>Images</title>

<script language="JavaScript">

This script will display a list of images,

along with their file sizes, and create a

link to view the actual image itself in a

pop-up window. The pop-up window will

be created by JavaScript, although PHP

will be used to set certain parameters.

316

Chapter 10

P
H

P
a

n
d

 J
a

v
a

S
c

r
i
p

t

1 «<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.0 Transitional//EN”

2 “http://www.w3.org/TR/
xhtml1/DTD/
xhtml1-transitional.dtd”>

3 <html xmlns=”http://www.w3.org/1999/xhtml”
xml:lang=”en” lang=”en”>

4 <head>

5 <meta http-equiv=”content-type”
content=”text/html; charset=iso-8859-1”
/>

6 <title>Images</title>

7 <script language=”JavaScript”>

8 <!-- // Hide from old browsers.

9

10 // Make a pop-up window function:

11 function create_window (image, width,
height) {

12

13 // Add some pixels to the width and
height:

14 width = width + 10;

15 height = height + 10;

16

17 // If the window is already open,

18 // resize it to the new dimensions:

19 if (window.popup &&
!window.popup.closed) {

20 window.popup.resizeTo(width,
height);

21 }

22

23 // Set the window properties:

Script 10.4 The images.php script uses JavaScript and
PHP to create links to images stored on the server.
The images will be viewable through show_image.php
(Script 10.5).

(script continues on next page)

2. Begin the JavaScript function.

<script language="JavaScript">

<!- - // Hide from old browsers.

function create_window (image, width,
➝ height) {

width = width + 10;

height = height + 10;

The JavaScript create_window() function

will accept three parameters: the image

name, its width, and its height. Each of

these will be passed to this function

when the user clicks a link. The exact

values of the image name, width, and

height will be determined by PHP.

Some pixels will be added to the width

and height values to create a window

slightly larger than the image itself.

3. Resize the pop-up window if it is already

open.

if (window.popup &&
➝ !window.popup.closed) {

window.popup.resizeTo(width,
➝ height);

}

This code first checks if the pop-up win-

dow exists and if it is not closed (popup is

a user-defined JavaScript variable repre-

senting the pop-up window). If it passes

both tests (which is to say it’s already

open), the window will be resized accord-

ing to the new image dimensions. The

purpose of this code is to resize the

existing window from one image to

another if it was left open.

317

Web Application Development

P
H

P
a

n
d

 J
a

v
a

S
c

r
i
p

t

24 var specs = “location=no,
scrollbars=no, menubars=no,
toolbars=no, resizable=yes, left=0,
top=0, width=” + width + “, height=”
+ height;

25

26 // Set the URL:

27 var url = “show_image.php?image=” +
image;

28

29 // Create the pop-up window:

30 popup = window.open(url,
“ImageWindow”, specs);

31 popup.focus();

32

33 } // End of function.

34 //--></script>

35 </head>

36 <body>

37 <p>Click on an image to view it in a
separate window.</p>

38 <table align=”center” cellspacing=”5”
cellpadding=”5” border=”1”>

39 <tr>

40 <td align=”center”>Image
Name</td>

41 <td align=”center”>Image
Size</td>

42 </tr>

43 <?php # Script 10.4 - images.php

44 // This script lists the images in the
uploads directory.

45

46 $dir = ‘../uploads’; // Define the
directory to view.

47

48 $files = scandir($dir); // Read all the
images into an array.

(script continues on next page)

Script 10.4 continued

continues on next page

4. Determine the properties of the pop-up

window and the URL, and then create

the window.

var specs = "location=no,
➝ scrollbars=no, menubars=no,
➝ toolbars=no, resizable=yes, left=0,
➝ top=0, width=" + width + ",
➝ height=" + height;

var url = "show_image.php?image=" +
➝ image;

popup = window.open(url,
➝ "ImageWindow", specs);

popup.focus();

The first line sets the properties of the

pop-up window (the window will have no

location bar, scroll bars, menus, or tool-

bars; it should be resizable; it will be

located in the upper-left corner of the

screen; and it will have a width of width

and a height of height). The plus sign is

used to perform concatenation in

JavaScript, thereby adding the variable’s

value to a string.

The second line sets the URL of the

popup window, which is show_image.

php?image= plus the name of the image.

Finally, the pop-up window is created

using the defined properties and URL,

and focus is given to it, meaning it

should appear above the current window.

318

Chapter 10

P
H

P
a

n
d

 J
a

v
a

S
c

r
i
p

t

49

50 // Display each image caption as a link to
the JavaScript function:

51 foreach ($files as $image) {

52

53 if (substr($image, 0, 1) != ‘.’) { //
Ignore anything starting with a period.

54

55 // Get the image’s size in pixels:

56 $image_size = getimagesize
(“$dir/$image”);

57

58 // Calculate the image’s size in
kilobytes:

59 $file_size = round ((filesize
(“$dir/$image”)) / 1024) . “kb”;

60

61 // Make the image’s name URL-safe:

62 $image = urlencode($image);

63

64 // Print the information:

65 echo “\t<tr>

66 \t\t<td><a href=\”javascript:create_window
(‘$image’,$image_size[0],$image_size[1])\”
>$image</td>

67 \t\t<td>$file_size</td>

68 \t</tr>\n”;

69

70 } // End of the IF.

71

72 } // End of the foreach loop.

73 ?>

74 </table>

75 </body>

76 </html>

Script 10.4 continued

7. Start the PHP code and create an array

of images by referring to the uploads

directory.

<?php # Script 10.4 - images.php

$dir = '../uploads';

$files = scandir($dir);

This script will automatically list and

link all of the images stored in the

uploads folder (presumably put there by

upload_image.php, Script 10.3). The code

begins by defining the directory as a vari-

able, so that it’s easier to refer to. Then

the scandir() function, which returns an

array of files and directories found within

a folder, assigns that information to an

array called $files.

8. Begin looping through the $files array.

foreach ($files as $image) {

if (substr($image, 0, 1) != '.') {

This loop will go through every image in

the array and create a row in the table for

it. Within the loop, there is one condi-

tional that checks if the first character

in the file’s name is a period. On non-

Windows systems, hidden files start with

a period, the current directory is referred

to using just a single period, and two

periods refers to the parent directory.

Since all of these might be includes in

$files, they need to be weeded out.

319

Web Application Development

P
H

P
a

n
d

 J
a

v
a

S
c

r
i
p

t

5. Conclude the JavaScript function and the

HTML head.

} // End of function.

//- -></script>

</head>

6. Create the introductory text and begin

the table.

<body>

<p>Click on an image to view it in a
➝ separate window.</p>

<table align="center"
➝ cellspacing="5" cellpadding="5"
➝ border="1">

<tr>

<td align="center">Image
➝ Name</td>

<td align="center">Image
➝ Size</td>

</tr>

Not a lot of effort is being put into the

appearance of the page. It will be just one

table with a caption (Figure 10.21).

Figure 10.21 This PHP page has a caption
and a table that lists all the images, along
with their file sizes.

continues on next page

9. Get the image information and encode

its name.

$image_size = getimagesize
➝ ("$dir/$image");

$file_size = round ((filesize
➝ ("$dir/$image")) / 1024) . "kb";

$image = urlencode($image);

Three PHP functions are used here that

haven’t been used before (for more infor-

mation, check the PHP manual). The

getimagesize() function returns an array

of information about an image (Table

10.5). The values returned by this func-

tion will be used to set the width and

height sent to the create_window()
JavaScript function.

The filesize() function returns the size

of a file in bytes. To calculate the kilo-

bytes of a file, divide this number by

1,024 (there are that many bytes in a

kilobyte) and round it off.

Lastly, the urlencode() function makes a

string safe to pass in a URL. Because the

image name may contain characters not

allowed in a URL (and it will be passed in

the URL when invoking show_image.php),

the name should be encoded.

10. Print the table row.

echo "\t<tr>

\t\t<td><a
➝ href=\"javascript:create_window
➝ ('$image',$image_size[0],$image_
➝ size[1])\">$image</td>

\t\t<td>$file_size</td>

\t</tr>\n";

Finally, the loop creates the HTML table

row, consisting of the linked image

name and the image size. The caption

is linked as a call to the JavaScript

create_window() function so that when

the link is clicked, that function is exe-

cuted. To make the HTML source more

legible, tabs (\t) and newline characters

(\n) are printed as well.

11. Complete the PHP code and the HTML

page.

} // End of the IF.

} // End of the foreach loop.

?>

</table>

</body>

</html>

320

Chapter 10

P
H

P
a

n
d

 J
a

v
a

S
c

r
i
p

t

✔ Tips

■ Some versions of Windows create a

Thumbs.db file in a folder of images. You

might want to check for this value in the

conditional in Step 8 that weeds out some

returned items. That code would be

if ((substr($image, 0, 1) != '.') &&
➝ ($image != 'Thumbs.db')) {

■ Not to belabor the point, but most every-

thing Web developers do with JavaScript

(for example, resize or move the browser

window) cannot be done using the server-

side PHP.

■ There is a little overlap between the PHP

and JavaScript. Both can set and read

cookies, create HTML, and do some

browser detection.

321

Web Application Development

P
H

P
a

n
d

 J
a

v
a

S
c

r
i
p

t

Figure 10.22 Each image’s name is linked as a call to a JavaScript function. The function call’s parameters were
created by PHP.

12. Save the file as images.php, place it in

your Web directory (in the same direc-

tory as upload_image.php), and test it in

your Web browser (Figure 10.21).

13. View the source code to see the dynam-

ically generated links (Figure 10.22).

Notice how the parameters to each

function call are appropriate to the

specific image.

Understanding
HTTP Headers
This chapter will conclude by discussing how

you can use HTTP headers with your PHP

scripts. HTTP (Hypertext Transfer Protocol)

is the technology at the heart of the World

Wide Web and defines the way clients and

servers communicate (in layman’s terms).

When a browser requests a Web page, it

receives a series of HTTP headers in return.

This happens behind the scenes, of course;

most users aren’t aware of this at all.

PHP’s built-in header() function can be used

to take advantage of this protocol. The most

common example of this will be demonstrated

in the next chapter, when the header() func-

tion will be used to redirect the Web browser

from the current page to another. Here, you’ll

use it to send files to the Web browser.

In theory, the header() function is easy to

use. Its syntax is

header(header string);

The list of possible header strings is quite long,

as headers are used for everything from redi-

recting the Web browser to sending files to

sending cookies to controlling page caching

and much, much more. Starting with some-

thing simple, to use header() to redirect the

Web browser, type

header ('Location:
➝ http://www.example.com/page.php');

That line will send the Web browser from

the page it’s on over to that URL.

In this next example, which will send a file

to the Web browser, three header calls are

used. The first is Content-Type. This is an

indication to the Web browser of what kind

of data is about to follow. The Content-Type

value matches the data’s MIME type. This

line lets the browser know it’s about to

receive a PDF file:

header("Content-
➝ Type:application/pdf\n");

Next, you can use Content-Disposition, which

tells the browser how to treat the data:

header ("Content-Disposition: attachment;
➝ filename=\"somefile.pdf\"\n");

The attachment value will prompt the browser

to download the file (Figure 10.23). An alter-

native is to use inline, which tells the browser

to display the data, assuming that the brows-

er can. The filename attribute is just that: it

tells the browser the name associated with

the data.

322

Chapter 10

U
n

d
e

r
s

t
a

n
d

i
n

g
 H

T
T

P
H

e
a

d
e

r
s

Figure 10.24 The headers already sent error means that the Web browser was sent something—HTML, plain text,
even a space—prior to using the header() function.

Figure 10.23 Firefox prompts the user to
download the file because of the attachment
Content-Disposition value.

A third header to use for downloading files is

Content-Length. This is a value, in bytes, cor-

responding to the amount of data to be sent.

header ("Content-Length: 4096\n");

That’s the basics with respect to using the

header() function. Before getting to the exam-

ple, note that if a script uses multiple header()
calls, each should be terminated by a new-

line (\n) as in the preceding code snippets.

More importantly, the absolutely critical

thing to remember about the header() func-

tion is that it must be called before anything

is sent to the Web browser. This includes

HTML or even blank spaces. If your code has

any echo() or print() statements, has blank

lines outside of PHP tags, or includes files that

do any of these things before calling header(),

you’ll see an error message like that in

Figure 10.24.

To use the header() function:

1. Begin a new PHP document in your text

editor or IDE (Script 10.5).

<?php # Script 10.5 - show_image.php

$name = FALSE;

Because this script will use the header()
function, nothing, absolutely nothing,

can be sent to the Web browser. No

HTML, not even a blank line, tab, or

space before the opening PHP tag.

The $name variable will be used as a flag,

indicating if all of the validation routines

have been passed.

2. Check for an image name.

if (isset($_GET['image'])) {

The script needs to receive a valid image

name in the URL. This should be

appended to the URL in the JavaScript

function that calls this page (see

images.php, Script 10.4).

323

Web Application Development

U
n

d
e

r
s

t
a

n
d

i
n

g
 H

T
T

P
H

e
a

d
e

r
s

1 <?php # Script 10.5 - show_image.php

2 // This page displays an image.

3

4 $name = FALSE; // Flag variable:

5

6 // Check for an image name in the URL:

7 if (isset($_GET[‘image’])) {

8

9 // Full image path:

10 $image = “../uploads/{$_GET[‘image’]}”;

11

12 // Check that the image exists and is a
file:

13 if (file_exists ($image) &&
(is_file($image))) {

14

15 // Make sure it has an image’s
extension:

16 $ext = strtolower (substr
($_GET[‘image’], -4));

17

18 if (($ext == ‘.jpg’) OR ($ext ==
‘jpeg’) OR ($ext == ‘.png’)) {

19 // Set the name as this image:

20 $name = $_GET[‘image’];

21 } // End of $ext IF.

22

23 } // End of file_exists() IF.

24

25 } // End of isset($_GET[‘image’]) IF.

26

27 // If there was a problem, use the default
image:

28 if (!$name) {

29 $image = ‘images/unavailable.png’;

Script 10.5 This script retrieves an image from the
server and sends it to the browser.

(script continues on next page) continues on next page

3. Check that the image is a file on the server.

$image =
➝ "../uploads/{$_GET['image']}";

if (file_exists ($image) &&
➝ (is_file($image))) {

Before attempting to send the image to

the Web browser, make sure that it exists

and that it is a file (as opposed to a direc-

tory). As a security measure, I hard-code

the image’s full path as a combination of

../uploads and the received image name.

Even if someone were to attempt to use

this page to see /path/to/secret/file, this

script would look for ../uploads//path/

to/secret/file (including the double-slash),

which is safe.

4. Validate the image’s extension.

$ext = strtolower (substr
➝ ($_GET['image'], -4));

if (($ext = = '.jpg') OR ($ext = =
➝ 'jpeg') OR ($ext = = '.png')) {

$name = $_GET['image'];

} // End of $ext IF.

The final check is that the file to be sent

to the Web browser has a .jpeg, .jpg, or

.png extension. This way the script won’t

try to send something bad to the user.

Even though the upload_image.php script

also validates the file by type, you can

never be too careful.

To validate the extension, the substr()
function returns the last four characters

from the image’s name (the -4 accom-

plishes this). The extension is also run

through the strtolower() function so

that .PNG and .png are treated the same.

Then a conditional checks to see if $ext
is equal to any of the three allowed values.

Once the image has passed all of these

tests, the $name function is assigned the

value of the image.

324

Chapter 10

U
n

d
e

r
s

t
a

n
d

i
n

g
 H

T
T

P
H

e
a

d
e

r
s

30 $name = ‘unavailable.png’;

31 }

32

33 // Get the image information:

34 $info = getimagesize($image);

35 $fs = filesize($image);

36

37 // Send the content information:

38 header (“Content-Type:
{$info[‘mime’]}\n”);

39 header (“Content-Disposition: inline;
filename=\”$name\”\n”);

40 header (“Content-Length: $fs\n”);

41

42 // Send the file:

43 readfile ($image);

44

45 ?>

Script 10.5 continued

5. Complete the conditionals begun in

Steps 2 and 3.

} // End of file_exists() IF.

} // End of isset($_GET['image']) IF.

6. If no valid image was received by this

page, use a default image.

if (!$name) {

$image = 'images/unavailable.png';

$name = 'unavailable.png';

}

If the image doesn’t exist, if it isn’t a file,

or if it doesn’t have the proper extension,

then the $name variable will still have a

value of FALSE. In such cases, a default

image will be used instead (Figure 10.25).

The image itself can be downloaded from

the book’s corresponding Web site (www.
DMCInsights.com/phpmysql3/, see the

Extras page) and should be placed in an

images folder. The images folder should be

in the same directory as this script, not in

the same directory as the uploads folder.

7. Retrieve the image information.

$info = getimagesize($image);

$fs = filesize($image);

To send the file to the Web browser, the

script needs to know the file’s type and

size. The file’s type can be found using

getimagesize(). The file’s size, in bytes, is

found using filesize(). Because the $image
variable represents either ../uploads/

{$_GET['image']} or images/unavailable.

png, these lines will work on both the

correct and the unavailable image.

8. Send the file.

header ("Content-Type:
➝ {$info['mime']}\n");

header ("Content-Disposition: inline;
➝ filename=\"$name\"\n");

header ("Content-Length: $fs\n");

readfile ($image);

These header() calls will send the file

data to the Web browser. The first line

uses the image’s MIME type for the

Content-Type. The second line tells the

browser the name of the file and that it

should be displayed in the browser (inline).

The last header() function indicates how

much data is to be expected. The file

data itself is sent using the readfile()
function, which reads in a file and imme-

diately sends the content to the Web

browser.

9. Complete the page.

?>

Notice that this page contains no HTML.

It only sends an image file to the Web

browser.

325

Web Application Development

U
n

d
e

r
s

t
a

n
d

i
n

g
 H

T
T

P
H

e
a

d
e

r
s

continues on next pageFigure 10.25 This image will be shown any time there’s
a problem with showing the requested image.

10. Save the file as show_image.php, place it

in your Web directory, in the same fold-

er as images.php, and test it in your

Web browser by clicking a link in

images.php (Figure 10.26).

✔ Tips

■ I cannot stress strongly enough that

nothing can be sent to the Web browser

before using the header() function. Even

an included file that has a blank line

after the closing PHP tag will make the

header() function unusable.

■ To avoid problems when using header(),

you can call the headers_sent() function

first. It returns a Boolean value indicating

if something has already been sent to the

Web browser:

if (!headers_sent()) {

// Use the header() function.

} else {

// Do something else.

}

Output buffering, demonstrated in

Chapter 16, “Example—User Registration,”

can also prevent problems when using

header().

■ Debugging scripts like this, where PHP

sends data, not text, to the Web browser,

can be challenging. For help, use the Live

HTTP Headers plug-in for Firefox

(Figure 10.27).

326

Chapter 10

U
n

d
e

r
s

t
a

n
d

i
n

g
 H

T
T

P
H

e
a

d
e

r
s

Figure 10.27 The Live HTTP Headers extension for Firefox
shows what headers were sent by a page and/or
server. This can be useful debugging information.

Figure 10.26 This image is displayed by having PHP
send the file to the Web browser.

The Hypertext Transfer Protocol (HTTP) is a stateless technology, meaning that each

individual HTML page is an unrelated entity. HTTP has no method for tracking users

or retaining variables as a person traverses a site. Although your browser tracks the

pages you visit, the server keeps no record of who had seen what. Without the server

being able to track a user, there can be no shopping carts or custom Web site person-

alization. Using a server-side technology like PHP, you can overcome the stateless-

ness of the Web. The two best PHP tools for this purpose are cookies and sessions.

As you probably already know, cookies store data in the user’s Web browser. When

the user accesses a page on the site from which the cookie came, the server can

read the data from that cookie. Sessions store data on the server itself. Sessions are

generally more secure than cookies and can store much more information. Both

technologies are easy to use with PHP and are worth knowing.

In this chapter you’ll see uses of both cookies and sessions. The examples for

demonstrating this information will be a login system, based upon the existing

users database.

327

Cookies and
Sessions

11

C
o

o
k

i
e

s
 a

n
d

 S
e

s
s

i
o

n
s

Making a Login Page
A login process involves just a few

components:

◆ A form for submitting the login

information

◆ A validation routine that confirms the

necessary information was submitted

◆ A database query that compares the

submitted information against the

stored information

◆ Cookies or sessions to store data that

reflects a successful login

Subsequent pages will then contain checks

to confirm that the user is logged in (to limit

access to that page). There is also, of course,

a logging out process, which involves clearing

out the cookies or session data representing

a logged-in status.

To start all this, let’s take some of these

common elements and place them into sep-

arate files. Then, the pages that require this

functionality can include the necessary files.

Breaking up the logic this way will make

some of the following scripts easier to read

and write, plus cut down on their redundan-

cies. I’ve designed two includable files. This

first one will contain the bulk of a login page,

including the header, the error reporting, the

form, and the footer (Figure 11.1).

328

Chapter 11

M
a

k
i
n

g
 a

 L
o

g
i
n

 P
a

g
e

1 <?php # Script 11.1 - login_page.inc.php

2

3 // This page prints any errors associated
with logging in

4 // and it creates the entire login page,
including the form.

5

6 // Include the header:

7 $page_title = 'Login';

8 include ('includes/header.html');

9

10 // Print any error messages, if they
exist:

11 if (!empty($errors)) {

12 echo '<h1>Error!</h1>

13 <p class="error">The following error(s)
occurred:
';

14 foreach ($errors as $msg) {

15 echo " - $msg
\n";

16 }

17 echo '</p><p>Please try again.</p>';

18 }

19

20 // Display the form:

21 ?>

22 <h1>Login</h1>

23 <form action="login.php" method="post">

24 <p>Email Address: <input type="text"
name="email" size="20" maxlength="80" />
</p>

25 <p>Password: <input type="password"
name="pass" size="20" maxlength="20"
/></p>

26 <p><input type="submit" name="submit"
value="Login" /></p>

Script 11.1 The login_page.inc.php script creates the
complete login page, including the form, and reports
any errors. It will be included by other pages that
need to show the login page.

(script continues on next page)

Figure 11.1 The login form and page.

329

Cookies and Sessions

M
a

k
i
n

g
 a

 L
o

g
i
n

 P
a

g
e

To make a login page:

1. Create a new PHP page in your text

editor or IDE (Script 11.1).

<?php # Script 11.1 - login_
➝ page.inc.php

2. Include the header.

$page_title = 'Login';

include ('includes/header.html');

This chapter will make use of the same

template system first created in Chapter

3, “Creating Dynamic Web Sites,” then

modified in Chapter 8, “Using PHP with

MySQL.”

3. Print any error messages, if they exist.

if (!empty($errors)) {

echo '<h1>Error!</h1>

<p class="error">The following
➝ error(s) occurred:
';

foreach ($errors as $msg) {

echo " - $msg
\n";

}

echo '</p><p>Please try again.
➝ </p>';

}

This code was also developed back in

Chapter 8. If any errors exist (in the

$errors array variable), they’ll be printed

as an unordered list (Figure 11.2).

Script 11.1 continued

27 <input type="hidden" name="submitted"
value="TRUE" />

28 </form>

29

30 <?php // Include the footer:

31 include ('includes/footer.html');

32 ?>

Figure 11.2 The login form and page, with error
reporting.

continues on next page

4. Display the form.

?>

<h1>Login</h1>

<form action="login.php" method=
➝ "post">

<p>Email Address: <input type=
➝ "text" name="email" size="20"
➝ maxlength="80" /> </p>

<p>Password: <input type=
➝ "password" name="pass" size=
➝ "20" maxlength="20" /></p>

<p><input type="submit" name=
➝ "submit" value="Login" /></p>

<input type="hidden" name=
➝ "submitted" value="TRUE" />

</form>

The HTML form only needs two text

inputs: one for an email address and a

second for the password. The names of

the inputs match those in the users table

of the sitename database (which this

login system is based upon).

To make it easier to create the HTML

form, the PHP section is closed first. The

form is not sticky, but you could easily

add code to accomplish that (but only

for the email address, as passwords can’t

be sticky).

5. Complete the page.

<?php

include ('includes/footer.html');

?>

6. Save the file as login_page.inc.php and

place it in your Web directory (in the

includes folder, along with the files from

Chapter 8: header.html, footer.html, and

style.css).

The page will use a .inc.php extension

to indicate both that it’s an includable

file and that it contains PHP code.

✔ Tip

■ It may seem illogical that this script

includes the header and footer file from

within the includes directory when this

script will also be within that same direc-

tory. This code works because this script

will be included by pages within the

main directory; thus the include refer-

ences are with respect to the parent file,

not this one.

330

Chapter 11

M
a

k
i
n

g
 a

 L
o

g
i
n

 P
a

g
e

Making the Login Functions
Along with the login page that was stored in

login_page.inc.php, there’s a little bit of

functionality that will be common to several

scripts in this chapter. In this next script,

also to be included by other pages in the

login/logout system, two functions will be

defined.

Many pages will end up redirecting the user

from one page to another. For example,

upon successfully logging in, the user will be

taken to loggedin.php. If a user accesses

loggedin.php and they aren’t logged in, they

should be taken to index.php. Redirection

uses the header() function, introduced in

Chapter 10, “Web Application Development.”

The syntax for redirection is

header ('Location: http://www.example.
➝ com/page.php');

Because this function will send the browser

to page.php, the current script should be ter-

minated using exit() immediately after this:

header ('Location: http://www.example.
➝ com/page.php');

exit();

If you don’t do this, the current script will

continue to run (just not in the Web browser).

The location value in the header() call

should be an absolute URL (www.example.
com/page.php instead of just page.php).

You can hard-code this value or, better yet,

dynamically determine it. The first function

in this next script will do just that.

The other bit of code that will be used by

multiple scripts in this chapter validates

the login form. This is a three-step process:

1. Confirm that an email address was

provided.

2. Confirm that a password was provided.

3. Confirm that the provided email address

and password match those stored in the

database (during the registration

process).

So this next script will define two different

functions. The details of how each function

works will be explained in the steps that

follow.

To create the login functions:

1. Create a new PHP document in your text

editor or IDE (Script 11.2).

<?php # Script 11.2 - login_
➝ functions.inc.php

As this file will be included by other files,

it does not need to contain any HTML.

331

Cookies and Sessions

M
a

k
i
n

g
 t

h
e

 L
o

g
i
n

 F
u

n
c

t
i
o

n
s

1 <?php # Script 11.2 - login_functions.
inc.php

2

3 // This page defines two functions used by
the login/logout process.

4

5 /* This function determines and returns an
absolute URL.

6 * It takes one argument: the page that
concludes the URL.

7 * The argument defaults to index.php.

8 */

9 function absolute_url ($page = 'index.
php') {

10

11 // Start defining the URL...

12 // URL is http:// plus the host name
plus the current directory:

Script 11.2 The login_functions.inc.php script
defines two functions that will be used by different
scripts in the login/logout process.

(script continues on next page)

continues on page 333

332

Chapter 11

M
a

k
i
n

g
 t

h
e

 L
o

g
i
n

 F
u

n
c

t
i
o

n
s

Script 11.2 continued

13 $url = 'http://' . $_SERVER['HTTP_HOST']
. dirname($_SERVER['PHP_SELF']);

14

15 // Remove any trailing slashes:

16 $url = rtrim($url, '/\\');

17

18 // Add the page:

19 $url .= '/' . $page;

20

21 // Return the URL:

22 return $url;

23

24 } // End of absolute_url() function.

25

26

27 /* This function validates the form data
(the email address and password).

28 * If both are present, the database is
queried.

29 * The function requires a database
connection.

30 * The function returns an array of
information, including:

31 * - a TRUE/FALSE variable indicating
success

32 * - an array of either errors or the
database result

33 */

34 function check_login($dbc, $email = '',
$pass = '') {

35

36 $errors = array(); // Initialize error
array.

37

38 // Validate the email address:

39 if (empty($email)) {

40 $errors[] = 'You forgot to enter your
email address.';

41 } else {

(script continues)

Script 11.2 continued

42 $e = mysqli_real_escape_string($dbc,
trim($email));

43 }

44

45 // Validate the password:

46 if (empty($pass)) {

47 $errors[] = 'You forgot to enter your
password.';

48 } else {

49 $p = mysqli_real_escape_string($dbc,
trim($pass));

50 }

51

52 if (empty($errors)) { // If everything's
OK.

53

54 // Retrieve the user_id and first_name
for that email/password combination:

55 $q = "SELECT user_id, first_name FROM
users WHERE email='$e' AND
pass=SHA1('$p')";

56 $r = @mysqli_query ($dbc, $q); // Run
the query.

57

58 // Check the result:

59 if (mysqli_num_rows($r) == 1) {

60

61 // Fetch the record:

62 $row = mysqli_fetch_array ($r,
MYSQLI_ASSOC);

63

64 // Return true and the record:

65 return array(true, $row);

66

67 } else { // Not a match!

68 $errors[] = 'The email address and
password entered do not match those on
file.';

69 }

(script continues on next page)

2. Begin defining a new function.

function absolute_url ($page =
➝ 'index.php') {

The absolute_url() function will return

an absolute URL that’s correct for the

site running these scripts. The benefit of

doing this dynamically (as opposed to

just hard-coding http://www.example.
com/page.php) is that you can develop

your code on one server (like your own

computer) and then move it to another

server without ever needing to change

this code.

The function takes one optional argu-

ment: the final destination page name.

The default value is index.php.

3. Start defining the URL.

$url = 'http://' . $_SERVER
➝ ['HTTP_HOST'] . dirname($_
➝ SERVER['PHP_SELF']);

To start, $url is assigned the value of

http:// plus the host name (which could

be either localhost or www.example.com).

To this is added the name of the current

directory using the dirname() function, in

case the redirection is taking place within

a subfolder. $_SERVER['PHP_SELF'] refers

to the current script (which will be the

one calling this function), including the

directory name. That whole value might

be /somedir/page.php. The dirname()
function will return just the directory

part from that value (i.e., /somedir/).

4. Remove any ending slashes from the URL.

$url = rtrim($url, '/\\');

Because the existence of a subfolder

might add an extra slash (/) or backslash

(\, for Windows), the function needs to

remove that. To do so, use the rtrim()
function. By default, this function

removes spaces from the right side of a

string. If provided with a list of charac-

ters to remove as the second argument,

it’ll chop those off instead. With this line

of code, the characters to be removed

should be either / or \ . But since the

backslash is the escape character in PHP,

you need to use \\ to refer to a single

backslash. So, in short, if $url concludes

with either of these characters, the

rtrim() function will remove them.

5. Add the specific page to the URL and

complete the function.

$url .= '/' . $page;

return $url;

} // End of absolute_url() function.

Finally, the specific page name is append-

ed to the $url. It’s preceded by a slash

because any trailing slashes were

removed in Step 4 and you can’t have

www.example.compage.php as the URL.

The URL is then returned.

This may all seem to be quite complicat-

ed, but it’s a very effective way to ensure

that the redirection works no matter on

what server, or from what directory, the

333

Cookies and Sessions

M
a

k
i
n

g
 t

h
e

 L
o

g
i
n

 F
u

n
c

t
i
o

n
s

Script 11.2 continued

70

71 } // End of empty($errors) IF.

72

73 // Return false and the errors:

74 return array(false, $errors);

75

76 } // End of check_login() function.

77

78 ?>

continues on next page

script is being run (as long as the redirec-

tion is taking place within that directory).

6. Begin a new function.

function check_login($dbc, $email =
➝ '', $pass = '') {

This function will validate the login infor-

mation. It takes three arguments: the

database connection, which is required;

the email address, which is optional; and

the password, which is also optional.

Although this function could access

$_POST['email'] and $_POST['pass']
directly, it’s better if the function is

passed these values, making the function

more independent.

7. Validate the email address and password.

$errors = array();

if (empty($email)) {

$errors[] = 'You forgot to enter
➝ your email address.';

} else {

$e = mysqli_real_escape_string
➝ ($dbc, trim($email));

}

if (empty($pass)) {

$errors[] = 'You forgot to enter
➝ your password.';

} else {

$p = mysqli_real_escape_
➝ string($dbc, trim($pass));

}

This validation routine is similar to that

used in the registration page. If any prob-

lems occur, they’ll be added to the

$errors array, which will eventually be

used on the login page (see Figure 11.2).

8. If no errors occurred, run the database

query.

if (empty($errors)) {

$q = "SELECT user_id, first_name
➝ FROM users WHERE email='$e'
➝ AND pass=SHA1('$p')";

$r = @mysqli_query ($dbc, $q);

The query selects the user_id and first_

name values from the database where

the submitted email address (from the

form) matches the stored email address

and the SHA1() version of the submitted

password matches the stored password

(Figure 11.3).

9. Check the results of the query.

if (mysqli_num_rows($r) == 1) {

$row = mysqli_fetch_array ($r,
➝ MYSQLI_ASSOC);

return array(true, $row);

} else {

$errors[] = 'The email address
➝ and password entered do not
➝ match those on file.';

}

If the query returned one row, then the

login information was correct. The results

are then fetched into $row. The final step

in a successful login is to return two pieces

of information back to the requesting

script: the value true, indicating that the

login was a success; and the data fetched

from MySQL. Using the array() function,

both the Boolean value and the $row
array can be returned by this function.

If the query did not return one row, then

an error message is added to the array. It

will end up being displayed on the login

page (Figure 11.4).

334

Chapter 11

M
a

k
i
n

g
 t

h
e

 L
o

g
i
n

 F
u

n
c

t
i
o

n
s

10. Complete the conditional begun in Step

8 and complete the function.

} // End of empty($errors) IF.

return array(false, $errors);

} // End of check_login() function.

The final step is for the function to

return a value of false, indicating that

login failed, and to return the $errors
array, which stores the reason(s) for

failure. This return statement can be

placed here—at the end of the function

instead of within a conditional—

because the function will only get to

this point if the login failed. If the login

succeeded, the return line in Step 9 will

stop the function from continuing (a

function stops as soon as it executes a

return).

11. Complete the page.

?>

12. Save the file as login_functions.inc.
php and place it in your Web directory

(in the includes folder, along with head-
er.html, footer.html, and style.css).

This page will also use a .inc.php exten-

sion to indicate both that it’s an includ-

able file and that it contains PHP code.

✔ Tips

■ The scripts in this chapter include no

debugging code (like the MySQL error or

query). If you have problems with these

scripts, apply the debugging techniques

outlined in Chapter 7, “Error Handling

and Debugging.”

■ You can add name=value pairs to the

URL in a header() call to pass values to

the target page:

$url .= '?name=' . urlencode(value);

335

Cookies and Sessions

M
a

k
i
n

g
 t

h
e

 L
o

g
i
n

 F
u

n
c

t
i
o

n
s

Figure 11.3 The results of
the login query if the user
submitted the proper
email address/password
combination.

Figure 11.4 If the user
entered an email address
and password, but they
don’t match the values
stored in the database,
this is the result.

Using Cookies
Cookies are a way for a server to store infor-

mation on the user’s machine. This is one

way that a site can remember or track a user

over the course of a visit. Think of a cookie

as being like a name tag: you tell the server

your name and it gives you a sticker to wear.

Then it can know who you are by referring

back to that name tag.

Some people are suspicious of cookies

because they believe that cookies allow a

server to know too much about them. How-

ever, a cookie can only be used to store infor-

mation that the server is given, so it’s no less

secure than most anything else online (that

saying what it does). Unfortunately, many

people still have misconceptions about the

technology, which is a problem, as those

misconceptions can undermine the func-

tionality of your Web application.

In this section you will learn how to set a

cookie, retrieve information from a stored

cookie, alter a cookie’s settings, and then

delete a cookie.

Setting cookies
The most important thing to understand

about cookies is that they must be sent from

the server to the client prior to any other

information. Should the server attempt to

send a cookie after the Web browser has

already received HTML—even an extraneous

white space—an error message will result

and the cookie will not be sent (Figure 11.5).

This is by far the most common cookie-

related error but is easily fixed.

336

Chapter 11

U
s

i
n

g
 C

o
o

k
i
e

s

Testing for Cookies

To effectively program using cookies, you

need to be able to accurately test for their

presence. The best way to do so is to have

your Web browser ask what to do when

receiving a cookie. In such a case, the

browser will prompt you with the cookie

information each time PHP attempts to

send a cookie.

Different versions of different browsers

on different platforms all define their

cookie handling policies in different

places. I’ll quickly run through a couple

of options for popular Web browsers.

To set this up using Internet Explorer on

Windows XP, choose Tools > Internet

Options. Then click the Privacy tab,

followed by the Advanced button under

Settings. Click “Override automatic cookie

handling” and then choose “Prompt” for

both First- and Third-party Cookies.

Using Firefox on Windows, choose Tools >

Options > Privacy. In the Cookies section,

select “ask me every time” in the “Keep

until” drop-down menu. If you are using

Firefox on Mac OS X, the steps are the

same, but you start by choosing Firefox >

Preferences.

Unfortunately, Safari on Mac OS X does

not have a cookie prompting option, but

it will allow you to view existing cookies,

which is still a useful debugging tool. This

option can be found under the Security

pane of Safari’s Preferences panel.

Figure 11.5 The headers already sent… error message is all too common when creating cookies. Pay attention to
what the error message says in order to find and fix the problem.

Cookies are sent via the setcookie()
function:

setcookie (name, value);

setcookie ('name', 'Nicole');

The second line of code will send a cookie to

the browser with a name of name and a

value of Nicole (Figure 11.6).

You can continue to send more cookies to

the browser with subsequent uses of the

setcookie() function:

setcookie ('ID', 263);

setcookie ('email', 'email@example.
➝ com');

As when using any variable in PHP, when

naming your cookies, do not use white

spaces or punctuation, but do pay attention

to the exact case used.

To send a cookie:

1. Create a new PHP document in your text

editor (Script 11.3).

<?php # Script 11.3 - login.php

For this example, let’s make a login.php
script that works in conjunction with the

scripts from Chapter 8. This script will

also require the two files created at the

beginning of the chapter.

2. Validate the form.

if (isset($_POST['submitted'])) {

require_once ('includes/login_
➝ functions.inc.php');

require_once ('../mysqli_
➝ connect.php');

list ($check, $data) = check_
➝ login($dbc, $_POST['email'],
➝ $_POST['pass']);

337

Cookies and Sessions

U
s

i
n

g
 C

o
o

k
i
e

s

Figure 11.6 If the browser is set to ask for
permission when receiving cookies, you’ll
see a message like this when a site attempts
to send one (this is Firefox’s version of the
prompt).

continues on next page

1 <?php # Script 11.3 - login.php

2

3 // This page processes the login form
submission.

4 // Upon successful login, the user is
redirected.

5 // Two included files are necessary.

6 // Send NOTHING to the Web browser prior
to the setcookie() lines!

7

8 // Check if the form has been submitted:

9 if (isset($_POST['submitted'])) {

10

11 // For processing the login:

12 require_once ('includes/login_functions.
inc.php');

13

14 // Need the database connection:

15 require_once ('../mysqli_connect.php');

16

17 // Check the login:

18 list ($check, $data) = check_login($dbc,
$_POST['email'], $_POST['pass']);

19

Script 11.3 The login.php script creates two cookies
upon a successful login.

(script continues on next page)

This script will do two things: handle

the form submission and display the

form. This conditional checks for the

submission.

Within the conditional, the script must

include both login_functions.inc.php
and mysqli_connect.php (which was cre-

ated in Chapter 8 and should still be in

the same location relative to this script).

After including both files, the check_
login() function can be called. It’s

passed the database connection (which

comes from mysqli_connect.php), along

with the email address and the password

(both of which come from the form).

This function returns an array of two ele-

ments: the Boolean value and another

array (of user data or errors). To assign

those returned values to variables, use

the list() function. The first value

returned by the function (the Boolean)

will be assigned to $check. The second

value returned (either the $row or

$errors array) will be assigned to $data.

3. If the user entered the correct informa-

tion, log them in.

if ($check) {

setcookie ('user_id', $data
➝ ['user_id']);

setcookie ('first_name', $data
➝ ['first_name']);

The $check variable indicates the

success of the login attempt. If it’s true,

then $data contains the user’s ID and

first name. These two values can be used

in cookies.

338

Chapter 11

U
s

i
n

g
 C

o
o

k
i
e

s

Script 11.3 continued

20 if ($check) { // OK!

21

22 // Set the cookies:

23 setcookie ('user_id', $data

['user_id']);

24 setcookie ('first_name', $data

['first_name']);

25

26 // Redirect:

27 $url = absolute_url ('loggedin.php');

28 header("Location: $url");

29 exit(); // Quit the script.

30

31 } else { // Unsuccessful!

32

33 // Assign $data to $errors for error
reporting

34 // in the login_page.inc.php file.

35 $errors = $data;

36

37 }

38

39 mysqli_close($dbc); // Close the database
connection.

40

41 } // End of the main submit conditional.

42

43 // Create the page:

44 include ('includes/login_page.inc.php');

45 ?>

4. Redirect the user to another page.

$url = absolute_url ('loggedin.php');

header("Location: $url");

exit();

Using the steps outlined earlier in the

chapter, the redirection URL is first

dynamically generated and returned

by the absolute_url() function. The

specific page to be redirected to is

loggedin.php. The absolute URL is then

used in the header() function and the

script’s execution is terminated with

exit().

5. Complete the $check conditional (started

in Step 3) and then close the database

connection.

} else {

$errors = $data;

}

mysqli_close($dbc);

If $check has a false value, then the $data
variable is storing the errors generated

within the check_login() function. If so,

they should be assigned to the $errors
variable, because that’s what the code in

the script that displays the login page—

login_page.inc.php—is expecting.

6. Complete the main submit conditional

and include the login page.

}

include
('includes/login_page.inc.php');

?>

This login.php script primarily

validates the login form by calling

the check_login() function. The

login_page.inc.php file contains the

login page itself, so it just needs to be

included.

7. Save the file as login.php, place it in

your Web directory (in the same folder

as the files from Chapter 8), and load

this page in your Web browser (see

Figure 11.2).

✔ Tips

■ Cookies are limited to about 4 KB of

total data, and each Web browser can

remember a limited number of cookies

from any one site. This limit is 50 cookies

for most of the current Web browsers

(but if you’re sending out 50 different

cookies, you may want to rethink how

you do things).

■ The setcookie() function is one of the

few functions in PHP that could have dif-

ferent results in different browsers, since

each browser treats cookies in its own

way. Be sure to test your Web sites in

multiple browsers on different platforms

to ensure consistency.

■ If the first two included files sends any-

thing to the Web browser or even has

blank lines or spaces after the closing

PHP tag, you’ll see a headers already sent

error. If you see such an error, go to the

document and line number referenced in

the error (after output started at) and fix

the problem.

339

Cookies and Sessions

U
s

i
n

g
 C

o
o

k
i
e

s

Accessing cookies
To retrieve a value from a cookie, you only

need to refer to the $_COOKIE superglobal,

using the appropriate cookie name as the key

(as you would with any array). For example,

to retrieve the value of the cookie established

with the line

setcookie ('username', 'Trout');

you would refer to $_COOKIE['username'].

In the following example, the cookies set by

the login.php script will be accessed in two

ways. First a check will be made that the

user is logged in (otherwise, they shouldn’t

be accessing this page). Second, the user will

be greeted by their first name, which was

stored in a cookie.

To access a cookie:

1. Create a new PHP document in your text

editor (Script 11.4).

<?php # Script 11.4 - loggedin.php

The user will be redirected to this page

after successfully logging in. It will print

a user-specific greeting.

2. Check for the presence of a cookie.

if (!isset($_COOKIE['user_id'])) {

Since a user shouldn’t be able to access

this page unless they are logged in, check

for the cookie that should have been set

(in login.php).

3. Redirect the user if they are not logged in.

require_once ('includes/login_
➝ functions.inc.php');

$url = absolute_url();

header("Location: $url");

exit();

}

340

Chapter 11

U
s

i
n

g
 C

o
o

k
i
e

s

1 <?php # Script 11.4 - loggedin.php

2

3 // The user is redirected here from
login.php.

4

5 // If no cookie is present, redirect the
user:

6 if (!isset($_COOKIE['user_id'])) {

7

8 // Need the functions to create an
absolute URL:

9 require_once ('includes/login_
functions.inc.php');

10 $url = absolute_url();

11 header("Location: $url");

12 exit(); // Quit the script.

13

14 }

15

16 // Set the page title and include the
HTML header:

17 $page_title = 'Logged In!';

18 include ('includes/header.html');

19

20 // Print a customized message:

21 echo "<h1>Logged In!</h1>

22 <p>You are now logged in, {$_COOKIE

['first_name']}!</p>

23 <p>Logout</p>";

24

25 include ('includes/footer.html');

26 ?>

Script 11.4 The loggedin.php script prints a greeting
to a user based upon a stored cookie.

✔ Tips

■ A cookie is not accessible until the

setting page (e.g., login.php) has been

reloaded or another page has been

accessed (in other words, you cannot set

and access a cookie in the same page).

■ If users decline a cookie or have their

Web browser set not to accept them,

they will automatically be redirected to

the home page in this example, even if

they successfully logged in. For this rea-

son you may want to let the user know

that cookies are required.

If the user is not logged in, they will be

automatically redirected to the main

page. This is a simple way to limit access

to content.

4. Include the page header.

$page_title = 'Logged In!';

include ('includes/header.html');

5. Welcome the user, using the cookie.

echo "<h1>Logged In!</h1>

<p>You are now logged in, {$_COOKIE
➝ ['first_name']}!</p>

<p>
➝ Logout</p>";

To greet the user by name, refer to the

$_COOKIE['first_name'] variable

(enclosed within curly braces to avoid

parse errors). A link to the logout page

(to be written later in the chapter) is also

printed.

6. Complete the HTML page.

include ('includes/footer.html');

?>

7. Save the file as loggedin.php, place it in

your Web directory (in the same folder

as login.php), and test it in your Web

browser by logging in through login.php
(Figure 11.7).

Since these examples use the same data-

base as those in Chapter 8, you should

be able to log in using the registered

username and password submitted at

that time.

8. To see the cookies being set (Figures

11.8 and 11.9), change the cookie set-

tings for your browser and test again.

341

Cookies and Sessions

U
s

i
n

g
 C

o
o

k
i
e

s

Figure 11.7 If you used the correct email address and
password, you’ll be redirected here after logging in.

Figure 11.8 The user_id cookie with a
value of 1.

Figure 11.9 The first_name cookie with a
value of Larry (yours might be different).

Setting cookie parameters
Although passing just the name and value

arguments to the setcookie() function will

suffice, you ought to be aware of the other

arguments available. The function can take

up to five more parameters, each of which

will alter the definition of the cookie.

setcookie (name, value, expiration,
➝ path, host, secure, httponly);

The expiration argument is used to set a

definitive length of time for a cookie to

exist, specified in seconds since the epoch

(the epoch is midnight on January 1, 1970).

If it is not set or if it’s set to a value of 0, the

cookie will continue to be functional until

the user closes their browser. These cookies

are said to last for the browser session (also

indicated in Figures 11.8 and 11.9).

To set a specific expiration time, add a

number of minutes or hours to the current

moment, retrieved using the time() func-

tion. The following line will set the expira-

tion time of the cookie to be 30 minutes

(60 seconds times 30 minutes) from the

current moment:

setcookie (name, value, time()+1800);

The path and host arguments are used to

limit a cookie to a specific folder within a

Web site (the path) or to a specific host

(www.example.com or 192.168.0.1). For exam-

ple, you could restrict a cookie to exist only

while a user is within the admin folder of a

domain (and the admin folder’s subfolders):

setcookie (name, value, expire,
➝ '/admin/');

Setting the path to / will make the cookie

visible within an entire domain (Web site).

Setting the domain to .example.com
will make the cookie visible within an

entire domain and every subdomain

(www.example.com, admin.example.com,

pages.example.com, etc.).

The secure value dictates that a cookie

should only be sent over a secure HTTPS

connection. A 1 indicates that a secure

connection must be used, and a 0 says

that a standard connection is fine.

setcookie (name, value, expire, path,
➝ host, 1);

If your site is using a secure connection,

restricting cookies to HTTPS will be much

more secure than not doing so.

Finally, added in PHP 5.2 is the httponly

argument. A Boolean value is used to make

the cookie only accessible through HTTP

(and HTTPS). Enforcing this restriction will

make the cookie more secure (preventing

some hack attempts) but is not supported

by all browsers at the time of this writing.

setcookie (name, value, expire, path,
➝ host, secure, TRUE);

As with all functions that take arguments,

you must pass the setcookie() values in

order. To skip any parameter, use NULL, 0, or

an empty string (don’t use FALSE). The expi-

ration and secure values are both integers

and are therefore not quoted.

To demonstrate this information, let’s add

an expiration setting to the login cookies so

that they last for only one hour.

342

Chapter 11

U
s

i
n

g
 C

o
o

k
i
e

s

To set a cookie’s parameters:

1. Open login.php in your text editor (refer

to Script 11.3).

2. Change the two setcookie() lines to

include an expiration date that’s 60 min-

utes away (Script 11.5):

setcookie ('user_id', $data['user_
➝ id'], time()+3600, '/', '', 0, 0);

setcookie ('first_name', $data
➝ ['first_name'], time()+3600, '/',
➝ '', 0, 0);

With the expiration date set to time() +
3600 (60 minutes times 60 seconds), the

cookie will continue to exist for an hour

after it is set. While making this change,

every other parameter is explicitly

addressed.

For the final parameter, which accepts a

Boolean value, you can also use 0 to rep-

resent false (PHP will handle the con-

version for you). Doing so is a good idea,

as using false in any of the cookie argu-

ments can cause problems.

343

Cookies and Sessions

U
s

i
n

g
 C

o
o

k
i
e

s

1 <?php # Script 11.5 - login.php #2

2

3 if (isset($_POST['submitted'])) {

4

5 require_once ('includes/login_
functions.inc.php');

6 require_once ('../mysqli_connect.php');

7 list ($check, $data) = check_login($dbc,
$_POST['email'], $_POST['pass']);

8

9 if ($check) { // OK!

10

11 // Set the cookies:

12 setcookie ('user_id', $data['user_id'],

time()+3600, '/', '', 0, 0);

13 setcookie ('first_name', $data['first_

name'], time()+3600, '/', '', 0, 0);

14

15 // Redirect:

16 $url = absolute_url ('loggedin.php');

17 header("Location: $url");

18 exit();

19

20 } else { // Unsuccessful!

21 $errors = $data;

22 }

23

24 mysqli_close($dbc);

25

26 } // End of the main submit conditional.

27

28 include ('includes/login_page.inc.php');

29 ?>

Script 11.5 The login.php script now uses every
argument the setcookie() function can take.

continues on next page

3. Save the script, place it in your Web

directory, and test it in your Web

browser by logging in (Figure 11.10).

✔ Tips

■ Some browsers have difficulties with

cookies that do not list every argument.

Explicitly stating every parameter—even

as an empty string—will achieve more

reliable results across all browsers.

■ Here are some general guidelines for

cookie expirations: If the cookie should

last as long as the session, do not set an

expiration time; if the cookie should con-

tinue to exist after the user has closed

and reopened his or her browser, set an

expiration time weeks or months ahead;

and if the cookie can constitute a securi-

ty risk, set an expiration time of an hour

or fraction thereof so that the cookie

does not continue to exist too long after

a user has left his or her browser.

■ For security purposes, you could set a

five- or ten-minute expiration time on a

cookie and have the cookie resent with

every new page the user visits (assuming

that the cookie exists). This way, the

cookie will continue to persist as long as

the user is active but will automatically

die five or ten minutes after the user’s

last action.

■ E-commerce and other privacy-related

Web applications should use an SSL

(Secure Sockets Layer) connection for all

transactions, including the cookie.

■ Be careful with cookies created by scripts

within a directory. If the path isn’t speci-

fied, then that cookie will only be avail-

able to other scripts within that same

directory.

344

Chapter 11

U
s

i
n

g
 C

o
o

k
i
e

s

Figure 11.10 Changes to the setcookie()
parameters, like an expiration date and time,
will be reflected in the cookie sent to the Web
browser (compare with Figure 11.9).

Deleting cookies
The final thing to understand about using

cookies is how to delete one. While a cookie

will automatically expire when the user’s

browser is closed or when the expiration

date/time is met, sometimes you’ll want to

manually delete the cookie instead. For

example, in Web sites that have login capa-

bilities, you will want to delete any cookies

when the user logs out.

Although the setcookie() function can take

up to seven arguments, only one is actually

required—the cookie name. If you send a

cookie that consists of a name without a

value, it will have the same effect as deleting

the existing cookie of the same name. For

example, to create the cookie first_name,

you use this line:

setcookie('first_name', 'Tyler');

To delete the first_name cookie, you would

code:

setcookie('first_name');

As an added precaution, you can also set an

expiration date that’s in the past.

setcookie('first_name', '', time
➝ ()-3600);

To demonstrate all of this, let’s add a logout

capability to the site. The link to the logout

page appears on loggedin.php. As an added

feature, the header file will be altered so

that a Logout link appears when the user is

logged in and a Login link appears when the

user is logged out.

To delete a cookie:

1. Create a new PHP document in your text

editor or IDE (Script 11.6).

<?php # Script 11.6 - logout.php

345

Cookies and Sessions

U
s

i
n

g
 C

o
o

k
i
e

s

continues on next page

1 <?php # Script 11.6 - logout.php

2

3 // This page lets the user logout.

4

5 // If no cookie is present, redirect the
user:

6 if (!isset($_COOKIE['user_id'])) {

7

8 // Need the functions to create an
absolute URL:

9 require_once ('includes/login_
functions.inc.php');

10 $url = absolute_url();

11 header("Location: $url");

12 exit(); // Quit the script.

13

14 } else { // Delete the cookies.

15 setcookie ('user_id', '', time()-3600,

'/', '', 0, 0);

16 setcookie ('first_name', '', time()-

3600, '/', '', 0, 0);

17 }

18

19 // Set the page title and include the HTML
header:

20 $page_title = 'Logged Out!';

21 include ('includes/header.html');

22

23 // Print a customized message:

24 echo "<h1>Logged Out!</h1>

25 <p>You are now logged out,
{$_COOKIE['first_name']}!</p>";

26

27 include ('includes/footer.html');

28 ?>

Script 11.6 The logout.php script deletes the
previously established cookies.

2. Check for the existence of a user_id

cookie; if it is not present, redirect the

user.

if (!isset($_COOKIE['user_id'])) {

require_once ('includes/login_
➝ functions.inc.php');

$url = absolute_url();

header("Location: $url");

exit();

As with loggedin.php, if the user is not

already logged in, this page should redi-

rect the user to the home page. There’s

no point in trying to log out a user that

isn’t logged in!

3. Delete the cookies, if they exist.

} else {

setcookie ('first_name', '',
➝ time()-3600, '/', '', 0, 0);

setcookie ('user_id', '',
➝ time()-3600, '/', '', 0, 0);

}

If the user is logged in, these two cookies

will effectively delete the existing ones.

Except for the value and the expiration,

the other arguments should have the

same values as they do when the cookies

were created.

4. Make the remainder of the PHP page.

$page_title = 'Logged Out!';

include ('includes/header.html');

echo "<h1>Logged Out!</h1>

<p>You are now logged out, {$_
➝ COOKIE['first_name']}!</p>";

include ('includes/footer.html');

?>

The page itself is also much like the

loggedin.php page. Although it may

seem odd that you can still refer to the

first_name cookie (that you just deleted

in this script), it makes perfect sense

considering the process:

A) This page is requested by the client.

B) The server reads the available cookies

from the client’s browser.

C) The page is run and does its thing

(including sending new cookies that

delete the existing ones).

So, in short, the original first_name

cookie data is available to this script

when it first runs. The set of cookies

sent by this page (the delete cookies)

aren’t available to this page, so the

original values are still usable.

5. Save the file as logout.php and place it in

your Web directory (in the same folder as

login.php).

346

Chapter 11

U
s

i
n

g
 C

o
o

k
i
e

s

To create the logout link:

1. Open header.html (refer to Script 8.1)

in your text editor or IDE.

2. Change the fifth and final link to

(Script 11.7)

<?php

if ((isset($_COOKIE['user_id'])) &&
(!strpos($_SERVER['PHP_SELF'],
'logout.php'))) {

echo 'Logout';

} else {

echo 'Login';

}

?>

Instead of having a permanent login link

in the navigation area, it should display a

Logout link if the user is logged in or a

Login link if the user is not. The preced-

ing conditional will accomplish just that,

depending upon the presence of a cookie.

347

Cookies and Sessions

U
s

i
n

g
 C

o
o

k
i
e

s

continues on next page

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Strict//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-strict.dtd">

2 <html xmlns="http://www.w3.org/
1999/xhtml">

3 <head">

4 <title><?php echo $page_title;
?></title>

5 <link rel="stylesheet" href="includes/
style.css" type="text/css" media=
"screen" />

6 <meta http-equiv="content-type"
content="text/html; charset=utf-8" />

7 </head>

8 <body>

9 <div id="header">

10 <h1>Your Website</h1>

11 <h2>catchy slogan...</h2>

12 </div>

13 <div id="navigation">

14

15 Home
Page

16
Register

17 View
Users

18 Change
Password

19 <?php // Create a login/logout

link:

20 if ((isset($_COOKIE['user_id'])) &&

(!strpos($_SERVER['PHP_SELF'],

'logout.php'))) {

21 echo 'Logout';

22 } else {

23 echo 'Login';

Script 11.7 The header.html file now displays either a
login or a logout link, depending upon the user’s
current status.

(script continues)

24 }

25 ?>

26

27 </div>

28 <div id="content"><!-- Start of the
page-specific content. -->

29 <!-- Script 11.7 - header.html -->

Script 11.7 continued

Because the logout.php script would

ordinarily display a logout link (because

the cookie exists when the page is first

being viewed), the conditional has to

check that the current page is not the

logout.php script. The strpos() func-

tion, which checks if one string is found

within another string, is an easy way to

accomplish this.

3. Save the file, place it in your Web direc-

tory (within the includes folder), and test

the login/logout process in your Web

browser (Figures 11.11, 11.12, and

11.13).

✔ Tips

■ To see the result of the setcookie() calls

in the logout.php script, turn on cookie

prompting in your browser (Figure 11.14).

■ Due to a bug in how Internet Explorer on

Windows handles cookies, you may need

to set the host parameter to false (with-

out quotes) in order to get the logout

process to work when developing on your

own computer (i.e., through localhost).

■ When deleting a cookie, you should

always use the same parameters that

were used to set the cookie. If you set

the host and path in the creation cookie,

use them again in the deletion cookie.

■ To hammer the point home, remember

that the deletion of a cookie does not take

effect until the page has been reloaded or

another page has been accessed. In other

words, the cookie will still be available to

a page after that page has deleted it.

348

Chapter 11

U
s

i
n

g
 C

o
o

k
i
e

s

Figure 11.11 The home page with a Login link.

Figure 11.12 After the user logs in, the page now has
a Logout link.

Figure 11.13 The result after logging out.

Figure 11.14 This is how the deletion cookie
appears in a Firefox prompt.

Using Sessions
Another method of making data available to

multiple pages of a Web site is to use sessions.

The premise of a session is that data is stored

on the server, not in the Web browser, and a

session identifier is used to locate a particu-

lar user’s record (the session data). This

session identifier is normally stored in the

user’s Web browser via a cookie, but the sen-

sitive data itself—like the user’s ID, name,

and so on—always remains on the server.

The question may arise: why use sessions at

all when cookies work just fine? First of all,

sessions are likely more secure in that all

of the recorded information is stored on the

server and not continually sent back and

forth between the server and the client.

Second, you can store more data in a session.

Third, some users reject cookies or turn them

off completely. Sessions, while designed to

work with a cookie, can function without

them, too.

To demonstrate sessions—and to compare

them with cookies—let’s rewrite the previ-

ous set of scripts.

Setting session variables
The most important rule with respect to

sessions is that each page that will use them

must begin by calling the session_start()
function. This function tells PHP to either

begin a new session or access an existing

one. This function must be called before

anything is sent to the Web browser!

The first time this function is used,

session_start() will attempt to send a

cookie with a name of PHPSESSID (the

session name) and a value of something

like a61f8670baa8e90a30c878df89a2074b

(32 hexadecimal letters, the session ID).

Because of this attempt to send a cookie,

session_start() must be called before

any data is sent to the Web browser, as is

the case when using the setcookie() and

header() functions.

Once the session has been started, values

can be registered to the session using the

normal array syntax:

$_SESSION['key'] = value;

$_SESSION['name'] = 'Roxanne';

$_SESSION['id'] = 48;

Let’s update the login.php script with this

in mind.

349

Cookies and Sessions

U
s

i
n

g
 S

e
s

s
i
o

n
s

Sessions vs. Cookies

This chapter has examples accomplishing

the same tasks—logging in and logging

out—using both cookies and sessions.

Obviously, both are easy to use in PHP,

but the true question is when to use one

or the other.

Sessions have the following advantages

over cookies:

◆ They are generally more secure

(because the data is being retained

on the server).

◆ They allow for more data to be stored.

◆ They can be used without cookies.

Whereas cookies have the following

advantages over sessions:

◆ They are easier to program.

◆ They require less of the server.

In general, to store and retrieve just a

couple of small pieces of information,

use cookies. For most of your Web

applications, though, you’ll use sessions.

continues on next page

To begin a session:

1. Open login.php (refer to Script 11.5) in

your text editor or IDE.

2. Replace the setcookie() lines (12–14)

with these lines (Script 11.8):

session_start();

$_SESSION['user_id'] = $data['user_
➝ id'];

$_SESSION['first_name'] = $data
➝ ['first_name'];

The first step is to begin the session.

Since there are no echo() statements,

inclusions of HTML files, or even blank

spaces prior to this point in the script, it

will be safe to use session_start() now

(although it could be placed at the top of

the script as well). Then, two key-value

pairs are added to the $_SESSION super-

global array to register the user’s first

name and user ID to the session.

3. Save the page as login.php, place it in

your Web directory, and test it in your

Web browser (Figure 11.15).

Although loggedin.php and the header

and script will need to be rewritten, you

can still test the login script and see the

resulting cookie (Figure 11.16). The

loggedin.php page should redirect you

back to the home page, though, as it’s

still checking for the presence of a

$_COOKIE variable.

350

Chapter 11

U
s

i
n

g
 S

e
s

s
i
o

n
s

1 <?php # Script 11.8 - login.php #3

2

3 if (isset($_POST['submitted'])) {

4

5 require_once ('includes/login_
functions.inc.php');

6 require_once ('../mysqli_connect.php');

7 list ($check, $data) = check_login($dbc,
$_POST['email'], $_POST['pass']);

8

9 if ($check) { // OK!

10

11 // Set the session data:.

12 session_start();

13 $_SESSION['user_id'] = $data

['user_id'];

14 $_SESSION['first_name'] = $data

['first_name'];

15

16 // Redirect:

17 $url = absolute_url ('loggedin.php');

18 header("Location: $url");

19 exit();

20

21 } else { // Unsuccessful!

22 $errors = $data;

23 }

24

25 mysqli_close($dbc);

26

27 } // End of the main submit conditional.

28

29 include ('includes/login_page.inc.php');

30 ?>

Script 11.8 The login.php script now uses sessions
instead of cookies.

✔ Tips

■ Because sessions will normally send and

read cookies, you should always try to

begin them as early in the script as possi-

ble. Doing so will help you avoid the

problem of attempting to send a cookie

after the headers (HTML or white space)

have already been sent.

■ If you want, you can set session.auto_

start in the php.ini file to 1, making it

unnecessary to use session_start() on

each page. This does put a greater toll on

the server and, for that reason, shouldn’t

be used without some consideration of

the circumstances.

■ You can store arrays in sessions (making

$_SESSION a multidimensional array), just

as you can store strings or numbers.

Accessing session variables
Once a session has been started and vari-

ables have been registered to it, you can cre-

ate other scripts that will access those vari-

ables. To do so, each script must first enable

sessions, again using session_start().

This function will give the current script

access to the previously started session (if it

can read the PHPSESSID value stored in the

cookie) or create a new session if it cannot.

Understand that if the current session ID

cannot be found and a new session ID is

generated, none of the data stored under the

old session ID will be available. I mention

this here and now because if you’re having

problems with sessions, checking the session

ID value to see if it changes from one page

to the next is the first debugging step.

Assuming that there was no problem access-

ing the current session, to then refer to a

session variable, use $_SESSION['var'], as

you would refer to any other array.

351

Cookies and Sessions

U
s

i
n

g
 S

e
s

s
i
o

n
s

Figure 11.15 The login form remains unchanged to
the end user, but the underlying functionality now
uses sessions.

Figure 11.16 This cookie, created by
PHP’s session_start() function, stores
the session ID.

To access session variables:

1. Open loggedin.php (refer to Script 11.4)

in your text editor or IDE.

2. Add a call to the session_start()
function (Script 11.9).

session_start();

Every PHP script that either sets or

accesses session variables must use the

session_start() function. This line must

be called before the header.html file is

included and before anything is sent to

the Web browser.

3. Replace the references to $_COOKIE
with $_SESSION (lines 6 and 22 of the

original file).

if (!isset($_SESSION['user_id'])) {

and

echo "<h1>Logged In!</h1>

<p>You are now logged in, {$_SESSION
➝ ['first_name']}!</p>

<p>Logout
➝ </p>";

Switching a script from cookies to ses-

sions requires only that you change uses

of $_COOKIE to $_SESSION (assuming that

the same names were used).

4. Save the file as loggedin.php, place it in

your Web directory, and test it in your

browser (Figure 11.17).

352

Chapter 11

U
s

i
n

g
 S

e
s

s
i
o

n
s

1 <?php # Script 11.9 - loggedin.php #2

2

3 // The user is redirected here from
login.php.

4

5 session_start(); // Start the session.

6

7 // If no session value is present,
redirect the user:

8 if (!isset($_SESSION['user_id'])) {

9 require_once ('includes/login_
functions.inc.php');

10 $url = absolute_url();

11 header("Location: $url");

12 exit();

13 }

14

15 $page_title = 'Logged In!';

16 include ('includes/header.html');

17

18 // Print a customized message:

19 echo "<h1>Logged In!</h1>

20 <p>You are now logged in, {$_SESSION

['first_name']}!</p>

21 <p>Logout</p>";

22

23 include ('includes/footer.html');

24 ?>

Script 11.9 The loggedin.php script is updated so that
it refers to $_SESSION and not $_COOKIE (changes are
required on two lines).

Figure 11.17 After logging in, the user is redirected to
loggedin.php, which will welcome the user by name
using the stored session value.

5. Replace the reference to $_COOKIE with

$_SESSION in header.html (from Script

11.7 to Script 11.10).

if ((isset($_SESSION['user_id']))
➝ && (!strpos($_SERVER['PHP_SELF'],
➝ 'logout.php'))) {

For the Login/Logout links to function

properly (notice the incorrect link in

Figure 11.17), the reference to the cookie

variable within the header file must be

switched over to sessions. The header file

does not need to call the session_start()
function, as it’ll be included by pages

that do.

6. Save the header file, place it in your Web

directory (in the includes folder), and

test it in your browser (Figure 11.18).

353

Cookies and Sessions

U
s

i
n

g
 S

e
s

s
i
o

n
s

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Strict//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-strict.dtd">

2 <html xmlns="http://www.w3.org/
1999/xhtml">

3 <head">

4 <title><?php echo $page_title;
?></title>

5 <link rel="stylesheet" href="includes/
style.css" type="text/css" media=
"screen" />

6 <meta http-equiv="content-type"
content="text/html; charset=utf-8" />

7 </head>

8 <body>

9 <div id="header">

10 <h1>Your Website</h1>

11 <h2>catchy slogan...</h2>

12 </div>

13 <div id="navigation">

14

15 Home Page

16
Register

17 View
Users

18 Change
Password

19 <?php // Create a login/logout
link:

20 if ((isset($_SESSION['user_id'])) &&

(!strpos($_SERVER['PHP_SELF'],

'logout.php'))) {

21 echo 'Logout';

22 } else {

23 echo 'Login';

24 }

Script 11.10 The header.html file now also references
$_SESSION instead of $_COOKIE.

(script continues)

25 ?>

26

27 </div>

28 <div id="content"><!-- Start of the
page-specific content. -->

29 <!-- Script 11.10 - header.html -->

Script 11.10 continued

Figure 11.18 With the header file altered for sessions,
the proper Login/Logout links will be displayed
(compare with Figure 11.17).

continues on next page

✔ Tips

■ For the Login/Logout links to work

on the other pages (register.php,

index.php, etc.), you’ll need to add

the session_start() command to

each of those.

■ As a reminder of what I already said, if

you have an application where the ses-

sion data does not seem to be accessible

from one page to the next, it could be

because a new session is being created

on each page. To check for this, compare

the session ID (the last few characters

of the value will suffice) to see if it is the

same. You can see the session’s ID by

viewing the session cookie as it is sent or

by invoking the session_id() function:

echo session_id();

■ Session variables are available as soon

as you’ve established them. So, unlike

when using cookies, you can assign

a value to $_SESSION['var'] and then

refer to $_SESSION['var'] later in that

same script.

354

Chapter 11

U
s

i
n

g
 S

e
s

s
i
o

n
s

Garbage Collection

Garbage collection with respect to

sessions is the process of deleting the

session files (where the actual data is

stored). Creating a logout system that

destroys a session is ideal, but there’s

no guarantee all users will formally

log out as they should. For this reason,

PHP includes a cleanup process.

Whenever the session_start() function

is called, PHP’s garbage collection kicks

in, checking the last modification date

of each session (a session is modified

whenever variables are set or retrieved).

Two settings dictate garbage collection:

session.gc_maxlifetime and session.gc_
probability. The first states after how

many seconds of inactivity a session is

considered idle and will therefore be

deleted. The second setting determines

the probability that garbage collection

is performed, on a scale of 1 to 100.

With the default settings, each call to

session_start() has a 1 percent chance

of invoking garbage collection. If PHP

does start the cleanup, any sessions

that have not been used in more than

1,440 seconds will be deleted.

You can change these settings using the

ini_set() function, although be careful

in doing so. Too frequent or too probable

garbage collection can bog down the

server and inadvertently end the sessions

of slower users.

Deleting session variables
When using sessions, you ought to create a

method to delete the session data. In the

current example, this would be necessary

when the user logs out.

Whereas a cookie system only requires

that another cookie be sent to destroy the

existing cookie, sessions are slightly more

demanding, since there are both the cookie

on the client and the data on the server to

consider.

To delete an individual session variable, you

can use the unset() function (which works

with any variable in PHP):

unset($_SESSION['var']);

To delete every session variable, reset the

entire $_SESSION array:

$_SESSION = array();

Finally, to remove all of the session data

from the server, use session_destroy():

session_destroy();

Note that prior to using any of these meth-

ods, the page must begin with session_
start() so that the existing session is

accessed. Let’s update the logout.php script

to clean out the session data.

To delete a session:

1. Open logout.php (Script 11.6) in your

text editor or IDE.

2. Immediately after the opening PHP line,

start the session (Script 11.11).

session_start();

Anytime you are using sessions, you

must use the session_start() function,

preferably at the very beginning of a

page. This is true even if you are deleting

a session.

355

Cookies and Sessions

U
s

i
n

g
 S

e
s

s
i
o

n
s

1 <?php # Script 11.11 - logout.php #2

2 // This page lets the user logout.

3

4 session_start(); // Access the existing
session.

5

6 // If no session variable exists, redirect
the user:

7 if (!isset($_SESSION['user_id'])) {

8

9 require_once ('includes/login_functions.
inc.php');

10 $url = absolute_url();

11 header("Location: $url");

12 exit();

13

14 } else { // Cancel the session.

15

16 $_SESSION = array(); // Clear the
variables.

17 session_destroy(); // Destroy the
session itself.

18 setcookie ('PHPSESSID', '', time()-3600,
'/', '', 0, 0); // Destroy the cookie.

19

20 }

21

22 // Set the page title and include the HTML
header:

23 $page_title = 'Logged Out!';

24 include ('includes/header.html');

25

26 // Print a customized message:

27 echo "<h1>Logged Out!</h1>

28 <p>You are now logged out!</p>";

29

30 include ('includes/footer.html');

31 ?>

Script 11.11 Destroying a session, as you would in a
logout page, requires special syntax to delete the
session cookie and the session data on the server, as
well as to clear out the $_SESSION array.

continues on next page

3. Change the conditional so that it checks

for the presence of a session variable.

if (!isset($_SESSION['user_id'])) {

As with the logout.php script in the

cookie examples, if the user is not cur-

rently logged in, they will be redirected.

4. Replace the setcookie() lines (that

delete the cookies) with

$_SESSION = array();

session_destroy();

setcookie ('PHPSESSID', '', time
➝ ()-3600, '/', '', 0, 0);

The first line here will reset the entire

$_SESSION variable as a new array, erasing

its existing values. The second line

removes the data from the server, and

the third sends a cookie to replace the

existing session cookie in the browser.

5. Remove the reference to $_COOKIE in the

message.

echo "<h1>Logged Out!</h1>

<p>You are now logged out!</p>";

Unlike when using the cookie version of

the logout.php script, you cannot refer to

the user by their first name anymore, as

all of that data has been deleted.

6. Save the file as logout.php, place it in

your Web directory, and test it in your

browser (Figure 11.19).

✔ Tips

■ Never set $_SESSION equal to NULL and

never use unset($_SESSION). Either

could cause problems on some servers.

■ In case it’s not absolutely clear what’s

going on, there exists three kinds of

information with a session: the session

identifier (which is stored in a cookie by

default), the session data (which is stored

in a text file on the server), and the

$_SESSION array (which is how a script

accesses the session data in the text file).

Just deleting the cookie doesn’t remove

the text file and vice versa. Clearing out

the $_SESSION array would erase the data

from the text file, but the file itself would

still exist, as would the cookie. The three

steps outlined in this logout script effec-

tively remove all traces of the session.

356

Chapter 11

U
s

i
n

g
 S

e
s

s
i
o

n
s

Figure 11.19 The logout page (now featuring sessions).

357

Cookies and Sessions

U
s

i
n

g
 S

e
s

s
i
o

n
s

Changing the Session Behavior

As part of PHP’s support for sessions, there are over 20 different configuration options you

can set for how PHP handles sessions. For the full list, see the PHP manual, but I’ll highlight

a few of the most important ones here. Note two rules about changing the session settings:

1. All changes must be made before calling session_start().

2. The same changes must be made on every page that uses sessions.

Most of the settings can be set within a PHP script using the ini_set() function (discussed

in Chapter 7):

ini_set (parameter, new_setting);

For example, to require the use of a session cookie (as mentioned, sessions can work without

cookies but it’s less secure), use

ini_set ('session.use_only_cookies', 1);

Another change you can make is to the the name of the session (perhaps to use a more user-

friendly one). To do so, use the session_name() function.

session_name('YourSession');

The benefits of creating your own session name are twofold: it’s marginally more secure and

it may be better received by the end user (since the session name is the cookie name the end

user will see). The session_name() function can also be used when deleting the session cookie:

setcookie (session_name(), '', time()-3600);

Finally, there’s also the session_set_cookie_params() function. It’s used to tweak the settings

of the session cookie.

session_set_cookie_params(expire, path, host, secure, httponly);

Note that the expiration time of the cookie refers only to the longevity of the cookie in the

Web browser, not to how long the session data will be stored on the server.

Improving Session
Security
Because important information is normally

stored in a session (you should never store

sensitive data in a cookie), security becomes

more of an issue. With sessions there are

two things to pay attention to: the session

ID, which is a reference point to the session

data, and the session data itself, stored on

the server. A malicious person is far more

likely to hack into a session through the ses-

sion ID than the data on the server, so I’ll

focus on that side of things here (in the tips

at the end of this section I mention two

ways to protect the session data).

The session ID is the key to the session data.

By default, PHP will store this in a cookie,

which is preferable from a security stand-

point. It is possible in PHP to use sessions

without cookies, but that leaves the applica-

tion vulnerable to session hijacking: If I can

learn another user’s session ID, I can easily

trick a server into thinking that their session

ID is my session ID. At that point I have

effectively taken over the original user’s

entire session and would have access to

their data. So storing the session ID in a

cookie makes it somewhat harder to steal.

One method of preventing hijacking is to

store some sort of user identifier in the ses-

sion, and then to repeatedly double-check

this value. The HTTP_USER_AGENT—a

combination of the browser and operating

system being used—is a likely candidate for

this purpose. This adds a layer of security in

that one person could only hijack another

user’s session if they are both running the

exact same browser and operating system.

As a demonstration of this, let’s modify the

examples one last time.

358

Chapter 11

I
m

p
r

o
v

i
n

g
 S

e
s

s
i
o

n
 S

e
c

u
r

i
t

y

1 <?php # Script 11.12 - login.php #4

2

3 if (isset($_POST['submitted'])) {

4

5 require_once ('includes/login_functions.
inc.php');

6 require_once ('../mysqli_connect.php');

7 list ($check, $data) = check_login($dbc,
$_POST['email'], $_POST['pass']);

8

9 if ($check) { // OK!

10

11 // Set the session data:.

12 session_start();

13 $_SESSION['user_id'] = $data['user_id'];

14 $_SESSION['first_name'] = $data
['first_name'];

15

16 // Store the HTTP_USER_AGENT:

17 $_SESSION['agent'] = md5($_SERVER
['HTTP_USER_AGENT']);

18

19 // Redirect:

20 $url = absolute_url ('loggedin.php');

21 header("Location: $url");

22 exit();

23

24 } else { // Unsuccessful!

25 $errors = $data;

26 }

27

28 mysqli_close($dbc);

29

30 } // End of the main submit conditional.

31

32 include ('includes/login_page.inc.php');

33 ?>

Script 11.12 This final version of the login.php
script also stores an encrypted form of the user’s
HTTP_USER_AGENT (the browser and operating
system of the client) in a session.

To use sessions more securely:

1. Open login.php (refer to Script 11.8) in

your text editor or IDE.

2. After assigning the other session variables,

also store the HTTP_USER_AGENT value

(Script 11.12).

$_SESSION['agent'] = md5($_SERVER
➝ ['HTTP_USER_AGENT']);

The HTTP_USER_AGENT is part of the

$_SERVER array (you may recall using it

way back in Chapter 1, “Introduction to

PHP”). It will have a value like Mozilla/4.0

(compatible; MSIE 6.0; Windows NT 5.0;

.NET CLR 1.1.4322).

Instead of storing this value in the ses-

sion as is, it’ll be run through the md5()
function for added security. That func-

tion returns a 32-character hexadecimal

string (called a hash) based upon a value.

In theory, no two strings will have the

same md5() result.

3. Save the file and place it in your Web

directory.

4. Open loggedin.php (Script 11.9) in your

text editor or IDE.

5. Change the !isset($_SESSION['user_
id']) conditional to (Script 11.13)

if (!isset($_SESSION['agent']) OR
➝ ($_SESSION['agent'] != md5($_SERVER
➝ ['HTTP_USER_AGENT'])) {

This conditional checks two things. First,

it sees if the $_SESSION['agent'] variable

is not set (this part is just as it was before,

although agent is being used instead of

user_id). The second part of the condi-

tional checks if the md5() version of

$_SERVER['HTTP_USER_AGENT'] does not

equal the value stored in $_SESSION
['agent']. If either of these conditions

are true, the user will be redirected.

359

Cookies and Sessions

I
m

p
r

o
v

i
n

g
 S

e
s

s
i
o

n
 S

e
c

u
r

i
t

y

1 <?php # Script 11.13 - loggedin.php #3

2

3 // The user is redirected here from
login.php.

4

5 session_start(); // Start the session.

6

7 // If no session value is present,
redirect the user:

8 // Also validate the HTTP_USER_AGENT!

9 if (!isset($_SESSION['agent']) OR
($_SESSION['agent'] != md5($_SERVER
['HTTP_USER_AGENT'])) {

10 require_once ('includes/login_
functions.inc.php');

11 $url = absolute_url();

12 header("Location: $url");

13 exit();

14 }

15

16 $page_title = 'Logged In!';

17 include ('includes/header.html');

18

19 // Print a customized message:

20 echo "<h1>Logged In!</h1>

21 <p>You are now logged in,
{$_SESSION['first_name']}!</p>

22 <p>Logout
</p>";

23

24 include ('includes/footer.html');

25 ?>

Script 11.13 This loggedin.php script now confirms
that the user accessing this page has the same
HTTP_USER_AGENT as they did when they logged in.

continues on next page

6. Save this file, place in your Web directory,

and test in your Web browser by logging in.

✔ Tips

■ For critical uses of sessions, require the

use of cookies and transmit them over a

secure connection, if at all possible. You

can even set PHP to only use cookies

by setting session.use_only_cookies to 1

(this is the default in PHP 6).

■ If you are using a server shared with

other domains, changing the session.

save_path from its default setting—

which is accessible by all users—will be

more secure.

■ The session data itself can be stored in

a database rather than a text file. This is

a more secure, but more programming-

intensive, option. I teach how to do this

in my book PHP 5 Advanced: Visual

QuickPro Guide.

■ The user’s IP address (the network

address from which the user is connect-

ing) is not a good unique identifier, for

two reasons. First, a user’s IP address can,

and normally does, change frequently

(ISPs dynamically assign them for short

periods of time). Second, many users

accessing a site from the same network

(like a home network or an office) could

all have the same IP address.

360

Chapter 11

I
m

p
r

o
v

i
n

g
 S

e
s

s
i
o

n
 S

e
c

u
r

i
t

y

Preventing Session Fixation

Another specific kind of session attack is

known as session fixation. This is where

one malicious user specifies the session

ID that another user should use. This ses-

sion ID could be randomly generated or

legitimately created. In either case, the

real user will go into the site using the

fixed session ID and do whatever. Then

the malicious user can access that ses-

sion because they know what the session

ID is. You can help protect against these

types of attacks by changing the session

ID after a user logs in. The session_
regenerate_id() does just that, providing

a new session ID to refer to the current

session data. You can use this function

on sites for which security is paramount

(like e-commerce or online banking) or in

situations when it’d be particularly bad if

certain users (i.e., administrators) had

their sessions manipulated.

The security of your Web applications is such an important topic that it really cannot

be overstressed. Although security-related issues have been mentioned throughout this

book, this chapter will help to fill in certain gaps and finalize other points.

The most important concept to understand about security is that it’s not a binary

state: don’t think of a Web site or script as being either secure or not secure. Security

isn’t a switch that you turn on and off; it’s a scale that you can move up and down.

When you program, think about what you can do to make your site more secure and

what you’ve done that makes it less secure. Also, keep in mind that improved security

normally comes at a cost of convenience (both to you, the programmer, and to the end

user) and performance. Increased security normally means more code, more checks,

and more required of the server. When developing Web applications, think about

these considerations and make the right decisions—for the particular situation—

from the outset.

The topics discussed here include: preventing spam; using typecasting; preventing

cross-site scripting (XSS) and SQL injection attacks; and database security. This

chapter will use several discrete examples to best demonstrate these concepts. Some

other common security issues and best practices will be mentioned in sidebars as well.

361

Security Methods
12

S
e

c
u

r
i
t

y
 M

e
t

h
o

d
s

Preventing Spam
Spam is nothing short of a plague, cluttering

up the Internet and our inboxes. There are

steps you can take to avoid receiving spam

at your email accounts, but in this book the

focus is on preventing spam being sent

through your PHP scripts.

Chapter 10, “Web Application Development,”

shows how easy it is to send email using PHP’s

mail() function. The example there, a con-

tact form, took some information from the

user (Figure 12.1) and sent it to an email

address. Although it may seem like there’s

no harm in this system, there’s actually a big

security hole. But first, some background on

what an email actually is.

Regardless of how an email is sent, how it’s

formatted, and what it looks like when it’s

received, an email contains two parts: a

header and a body. The header includes such

information as the to and from addresses, the

subject, the date, and more (Figure 12.2).

Each item in the header is on its own line,

in the format Name: value. The body of the

email is exactly what you think it is: the

body of the email.

In looking at PHP’s mail() function—

mail (to, subject, body, [headers]);

—you can see that one of the arguments

goes straight to the email’s body and the rest

appear in its header. To send spam to your

address (as in Chapter 10’s example), all a

person would have to do is enter the spam

message into the comments section of the

form (Figure 12.1). That’s bad enough, but to

send spam to anyone else at the same time,

all the user would have to do is add Bcc:

poorsap@example.org, followed by a some

sort of line terminator (like a newline or car-

riage return), to the email’s header. With the

example as is, this just means entering into

the from value of the contact form me@

example.com\nBcc:poorsap@example.org.

You might think that safeguarding every-

thing that goes into an email’s header would

be sufficiently safe, but as an email is just

one document, bad input in a body can

impact the header.

There are a couple of preventive techniques.

First, validate any email addresses using regu-

lar expressions. Chapter 13, “Perl-Compatible

Regular Expressions,” covers this subject.

362

Chapter 12

P
r

e
v

e
n

t
i
n

g
 S

p
a

m

Figure 12.1 A simple, standard HTML
contact form.

Figure 12.2 The raw source version of the email sent by the contact
form (Figure 12.1).

363

Security Methods

P
r

e
v

e
n

t
i
n

g
 S

p
a

m

Second, now that you know what an evildoer

must enter to send spam (Table 12.1),

watch for those characters in form values.

If a value contains anything from that list,

don’t use that value.

In this next example, a modification of the

email script from Chapter 10, I’ll define a

function that scrubs all the potentially dan-

gerous characters from data. Two new PHP

functions will be used as well: str_replace()
and array_map(). Both will be explained in

detail in the steps that follow.

To prevent spam:

1. Open email.php (Script 10.1) in your text

editor or IDE.

To complete this spam-purification, the

email script needs to be modified.

2. After checking for the form submission,

begin defining a function (Script 12.1).

function spam_scrubber($value) {

This function will take one argument:

a string.

3. Create a list of really bad things that

wouldn’t be in a legitimate contact

form submission.

$very_bad = array('to:', 'cc:',
➝ 'bcc:', 'content-type:', 'mime-
➝ version:', 'multipart-mixed:',
➝ 'content-transfer-encoding:');

Any of these strings should not be present

in an honest contact form submission

(it’s possible someone might legitimately

use to: in their comments, but unlikely).

If any of these strings are present, then

this is a spam attempt. To make it easier

to test for all these, they’re placed in

an array, which will be looped through

(Step 4).

C h a r a c t e r s

content-type:
mime-version:
multipart-mixed:
content-transfer-encoding:
bcc:
cc:
to:
\r
\n
%0a
%0d

Spam Tip-offs

Table 12.1 The presence of any of these character
strings in a form submission is a likely indicator that
someone is trying to send spam through your site. The
last four are all different ways of creating newlines.

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/
xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content=
"text/html; charset=iso-8859-1" />

6 <title>Contact Me</title>

7 </head>

8 <body>

9 <h1>Contact Me</h1>

10 <?php # Script 12.1 - email.php #2

11

12 // Check for form submission:

13 if (isset($_POST['submitted'])) {

14

15 /* The function takes one argument: a
string.

16 * The function returns a clean version
of the string.

Script 12.1 This version of the script can now safely
send emails without concern for spam. Any problem-
atic characters will be caught by the spam_scrubber()
function.

(script continues on next page)

continues on page 365

364

Chapter 12

P
r

e
v

e
n

t
i
n

g
 S

p
a

m

17 * The clean version may be either an
empty string or

18 * just the removal of all newline
characters.

19 */

20 function spam_scrubber($value) {

21

22 // List of very bad values:

23 $very_bad = array('to:', 'cc:', 'bcc:',
'content-type:', 'mime-version:',
'multipart-mixed:', 'content-
transfer-encoding:');

24

25 // If any of the very bad strings are in

26 // the submitted value, return an empty
string:

27 foreach ($very_bad as $v) {

28 if (stripos($value, $v) !== false)
return '';

29 }

30

31 // Replace any newline characters with
spaces:

32 $value = str_replace(array("\r", "\n",
"%0a", "%0d"), ' ', $value);

33

34 // Return the value:

35 return trim($value);

36

37 } // End of spam_scrubber() function.

38

39 // Clean the form data:

40 $scrubbed = array_map('spam_scrubber',
$_POST);

41

42 // Minimal form validation:

43 if (!empty($scrubbed['name']) &&
!empty($scrubbed['email']) &&
!empty($scrubbed['comments'])) {

44

45 // Create the body:

46 $body = "Name: {$scrubbed['name']}
\n\nComments: {$scrubbed['comments']}";

(script continues)

Script 12.1 continued

47 $body = wordwrap($body, 70);

48

49 // Send the email:

50 mail('your_email@example.com',
'Contact Form Submission', $body,
"From: {$scrubbed['email']}");

51

52 // Print a message:

53 echo '<p>Thank you for contacting
me. I will reply some day.</p>';

54

55 // Clear $_POST (so that the form's
not sticky):

56 $_POST = array();

57

58 } else {

59 echo '<p style="font-weight: bold;
color: #C00">Please fill out the |form
completely.</p>';

60 }

61

62 } // End of main isset() IF.

63 ?>

64 <p>Please fill out this form to contact
me.</p>

65 <form action="email.php" method="post">

66 <p>Name: <input type="text" name="name"
size="30" maxlength="60" value="<?php if
(isset($_POST['name'])) echo
$_POST['name']; ?>" /></p>

67 <p>Email Address: <input type="text"
name="email" size="30" maxlength="80"
value="<?php if (isset($_POST['email']))
echo $_POST['email']; ?>" /></p>

68 <p>Comments: <textarea name="comments"
rows="5" cols="30"><?php if (isset
($_POST['comments'])) echo $_POST
['comments']; ?></textarea></p>

69 <p><input type="submit" name="submit"
value="Send!" /></p>

70 <input type="hidden" name="submitted"
value="TRUE" />

71 </form>

72 </body>

73 </html>

Script 12.1 continued

4. Loop through the array. If a very bad

thing is found, return an empty string.

foreach ($very_bad as $v) {

if (stripos($value, $v) !==
➝ false) return '';

}

The foreach loop will access each item in

$very_bad one at a time. Within the loop,

the stripos() function will check if the

item is in the string provided to this

function as $value. The stripos() func-

tion performs a case-insensitive search

(so it would match bcc:, Bcc:, bCC:, etc.).

The first time that any of these items is

found in the submitted value, the func-

tion will return an empty string and ter-

minate (functions automatically stop

executing once they hit a return).

5. Replace any newline characters with

spaces.

$value = str_replace(array("\r",
➝ "\n", "%0a", "%0d"), ' ', $value);

Newline characters, which are represent-

ed by \r, \n , %0a, and %0d, may or may

not be problematic. A newline character

is required to send spam (or else you

can’t create the proper header) but will

also appear if a user just hits Enter while

typing in a textarea box. For this reason,

any found newlines will just be replaced

by a space. This means that the submit-

ted value could lose some of its format-

ting, but that’s a reasonable price to pay

to stop spam.

The str_replace() function looks

through the value in the third argument

and replaces any occurrences of the char-

acters in the first argument with the

character or characters in the second.

Or as the PHP manual puts it:

mixed str_replace (mixed $search,
➝ mixed $replace, mixed $subject)

This function is very flexible in that it can

take strings or arrays for its three argu-

ments (the mixed means it accepts a mix

of argument types). So this line of code

in the script assigns to the $value vari-

able its original value, with any newline

characters replaced by a single space.

There is a case-insensitive version of this

function, but it’s not necessary, as, for

example, \r is a carriage return but \R
is not.

6. Return the value and complete the

function.

return trim($value);

} // End of spam_scrubber() function.

Finally, this function returns the value,

trimmed of any leading and ending

spaces. Keep in mind that the function

will only get to this point if none of the

very bad things was found.

7. After the function definition, invoke the

spam_scrubber() function.

$scrubbed = array_map('spam_
➝ scrubber', $_POST);

I’ve demonstrated this technique in

the book’s supporting forum (www.
DMCInsights.com/phorum/), and I think

the simplicity of this line confuses many

people. The array_map() function has

two required arguments. The first is the

name of the function to call. In this case,

that’s spam_scrubber (without the paren-

theses, because you’re providing the

function’s name, not calling the func-

tion). The second argument is an array.

365

Security Methods

P
r

e
v

e
n

t
i
n

g
 S

p
a

m

continues on next page

What array_map() does is call the named

function, once for each array element,

sending each array element’s value to

that function. In this script, $_POST has

five elements: name, email, comments,

submit, and submitted. After this line of

code, the $scrubbed array will end up with

five elements: $scrubbed['name'] will

have the value of $_POST['name'] after

running it through spam_scrubber();

$scrubbed['email'] will have the same

value as $_POST['email'] after running it

through spam_scrubber(); and so forth.

This one line of code then takes an entire

array of potentially tainted data ($_POST),

cleans it using spam_scrubber(), and

assigns the result to a new variable.

Here’s the most important thing: from

here on out, the script will use the

$scrubbed array, which is clean, not

$_POST, which is still potentially dirty.

8. Change the form validation to use this

new array.

if (!empty($scrubbed['name']) &&
➝ !empty($scrubbed['email']) &&
➝ !empty($scrubbed['comments'])) {

Each of these elements could have an

empty value for two reasons. First, if the

user left them empty. Second, if the user

entered one of the bad strings in the field,

which would be turned into an empty

string by the spam_scrubber() function.

9. Change the creation of the $body variable

so that it uses the clean values.

$body = "Name: {$scrubbed['name']}
➝ \n\nComments: {$scrubbed
➝ ['comments']}";

366

Chapter 12

P
r

e
v

e
n

t
i
n

g
 S

p
a

m

Figure 12.3 The presence of cc: in the email
address field will prevent this submission
from being sent in an email (see Figure 12.4).

Figure 12.4 The email was not sent because of the very
bad characters used in the email address.

10. Change the invocation of the mail()
function to use the clean email address.

mail('your_email@example.com',
➝ 'Contact Form Submission', $body,
➝ "From: {$scrubbed['email']}");

11. Save the script as email.php, place it in

your Web directory, and test it in your

Web browser (Figures 12.3, 12.4, 12.5,

and 12.6).

✔ Tips

■ Using the array_map() function as I have

in this example is convenient but not

without its downsides. First, it blindly

applies the spam_scrubber() function to

the entire $_POST array, even to the sub-

mit button and hidden form input. This

isn't harmful but is unnecessary. Second,

any multidimensional arrays within

$_POST will be lost. In this specific exam-

ple, that's not a problem but it is some-

thing to be aware of.

■ To prevent automated submissions to

any form, you could use a CAPTCHA

test. These are prompts that can only

be understood by humans (in theory).

While this is commonly accomplished

using an image of random characters,

the same thing can be achieved using a

question like What is two plus two? or

On what continent is China?. Checking

for the correct answer to this question

would then be part of the validation

routine.

■ If you wanted, you could change the sticky

form so that it refers to the $scrubbed
values, not the original $_POST ones.

367

Security Methods

P
r

e
v

e
n

t
i
n

g
 S

p
a

m

Figure 12.5 Although the comments field contains
newline characters (created by pressing Enter or
Return), the email will still be sent (Figure 12.6).

Figure 12.6 The received email, with the newlines in
the comments (Figure 12.5) turned into spaces.

368

Chapter 12

P
r

e
v

e
n

t
i
n

g
 S

p
a

m

More Security Recommendations

This chapter covers many specific techniques for improving your Web security. Here are a

handful of other recommendations:

◆ Make it your job to study, follow, and abide by security recommendations. Don’t just rely

upon the advice of one chapter, one book, or one author.

◆ Don’t use user-supplied names for uploaded files. You’ll see an alternative to doing that

in Chapter 17, “Example—E-Commerce.”

◆ Watch how database references are used. For example, if a person’s user ID is their pri-

mary key from the database and this is stored in a cookie (as in Chapter 11, “Cookies

and Sessions”), a malicious user just needs to change that cookie value to access another

user’s account.

◆ Don’t show detailed error messages (this point was repeated in Chapter 7, “Error Handling

and Debugging”).

◆ Use cryptography (this is discussed at the end of the chapter with respect to the database

and in my book PHP 5 Advanced: Visual QuickPro Guide (Peachpit Press, 2007) with

respect to the server).

◆ Don’t store credit card numbers, social security numbers, banking information, and the

like. The only exception to this would be if you have deep enough pockets to pay for the

best security and to cover the lawsuits that arise when this data is stolen from your site

(which will inevitably happen).

◆ Use SSL, if appropriate. A secure connection is one of the best protections a server can

offer a user.

◆ Reliably and consistently protect every page and directory that needs it. Never assume

that people won’t find sensitive areas just because there’s no link to them. If access to a

page or directory should be limited, make sure it is.

My final recommendation is to be aware of your own limitations. As the programmer, you

probably approach a script thinking how it should be used. This is not the same as to how

it will be used, either accidentally or on purpose. Try to break your site to see what happens.

Do bad things, do the wrong thing. Have other people try to break it, too (it’s normally easy

to find such volunteers). When you code, if you assume that no one will ever use a page

properly, it’ll be much more secure than if you assume people always will.

Validating Data by Type
For the most part, the form validation used

in this book thus far has been rather mini-

mal, often just checking if a variable has any

value at all. In many situations, this really is

the best you can do. For example, there’s no

perfect test for what a valid street address is

or what a user might enter into a comments

field. Still, much of the data you’ll work with

can be validated in stricter ways. In the next

chapter, the sophisticated concept of regular

expressions will demonstrate just that. But

here I’ll cover the more approachable ways

you can validate some data by type.

PHP supports many types of data: strings,

numbers (integers and floats), arrays, and so

on. For each of these, there’s a specific func-

tion that checks if a variable is of that type

(Table 12.2). You’ve probably already seen

the is_numeric() function in action in earli-

er chapters, and is_array() is great for con-

firming a variable’s type before attempting to

use it in a foreach loop.

In PHP, you can even change a variable’s type,

after it’s been assigned a value. Doing so is

called typecasting and is accomplished by

preceding a variable’s name by the type in

parentheses:

$var = 20.2;

echo (int) $var; // 20

Depending upon the original and destina-

tion types, PHP will convert the variable’s

value accordingly:

$var = 20;

echo (float) $var; // 20.0

369

Security Methods

V
a

l
i
d

a
t

i
n

g
 D

a
t
a

 b
y

 T
y

p
e

F u n c t i o n C h e c k s F o r

is_array() Arrays
is_bool() Booleans (TRUE, FALSE)
is_float() Floating-point numbers
is_int() Integers
is_null() NULLs
is_numeric() Numeric values, even as a string

(e.g., '20')
is_resource() Resources, like a database

connection
is_scalar() Scalar (single-valued) variables
is_string() Strings

Type Validation Functions

Table 12.2 These functions return TRUE if the submitted
variable is of a certain type and FALSE otherwise.

Two Validation Approaches

A large part of security is based upon val-

idation: if data comes from outside of the

script—from HTML forms, the URL,

cookies, sessions, or even form a data-

base, it can’t be trusted. There are two

types of validation: whitelist and blacklist.

In the calculator example, we know that

all values must be positive, that they

must all be numbers, and that the quanti-

ty must be an integer (the other two

numbers could be integers or floats, it

makes no difference). Typecasting forces

the inputs to be numbers, and a check

confirms that they are positive. At this

point, the assumption is that the input is

valid. This is a whitelist approach: these

values are good; anything else is bad.

The preventing spam example uses a

blacklist approach. That script knows

exactly which characters are bad and

invalidates input that contains them. All

other input is considered to be good.

Many security experts prefer the whitelist

approach, but it can’t always be used. The

example will dictate which approach will

work best, but it’s important to use one

or the other. Don’t just assume that data

is safe without some sort of validation.

continues on next page

With numeric values, the conversion is

straightforward, but with other variable

types, more complex rules apply:

$var = 'trout';

echo (int) $var; // 0

In most circumstances you don’t need to

cast a variable from one type to another, as

PHP will often automatically do so as needed.

But forcibly casting a variable’s type can be a

good security measure in your Web applica-

tions. To show how you might use this notion,

let’s create a calculator script for determining

the total purchase price of an item, similar

to that defined in earlier chapters.

To use typecasting:

1. Begin a new PHP document in your text

editor or IDE (Script 12.2).

<!DOCTYPE html PUBLIC "-//W3C//DTD
➝ XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtm
➝ l1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/
➝ xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type"
➝ content="text/html; charset=
➝ iso-8859-1" />

<title>Widget Cost Calculator</
➝ title>

</head>

<body>

<?php # Script 12.2 - calculator.php

2. Check if the form has been submitted.

if (isset($_POST['submitted'])) {

Like many previous examples, this one

script will both display the HTML form

370

Chapter 12

V
a

l
i
d

a
t

i
n

g
 D

a
t
a

 b
y

 T
y

p
e

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type"
content="text/html; charset=
iso-8859-1" />

6 <title>Widget Cost Calculator</title>

7 </head>

8 <body>

9 <?php # Script 12.2 - calculator.php

10

11 // Check if the form has been submitted.:

12 if (isset($_POST['submitted'])) {

13

14 // Cast all the variables to a specific
type:

15 $quantity = (int) $_POST['quantity'];

16 $price = (float) $_POST['price'];

17 $tax = (float) $_POST['tax'];

18

19 // All variables should be positive!

20 if (($quantity > 0) && ($price > 0) &&
($tax > 0)) {

21

22 // Calculate the total:

23 $total = ($quantity * $price) *
(($tax/100) + 1);

24

25 // Print the result:

26 echo '<p>The total cost of purchasing
' . $quantity . ' widget(s) at $' .
number_format ($price, 2) . ' each,
plus tax, is $' . number_format
($total, 2) . '.</p>';

Script 12.2 By typecasting variables, this script more
definitively validates that data is of the correct format.

(script continues on next page)

and handle its submission. By checking

for the presence of a specific $_POST ele-

ment, you can know if the form has been

submitted.

3. Cast all the variables to a specific type.

$quantity = (int) $_POST['quantity'];

$price = (float) $_POST['price'];

$tax = (float) $_POST['tax'];

The form itself has three text boxes

(Figure 12.7), into which practically

anything could be typed (there’s no num-

ber type of input for HTML forms). But

the quantity must be an integer and both

price and tax should be floats (they will

contain decimal points). To force these

issues, cast each one to a specific type.

4. Check if the variables have proper values,

and then calculate and print the results.

if (($quantity > 0) && ($price > 0)
➝ && ($tax > 0)) {

$total = ($quantity * $price) *
➝ (($tax/100) + 1);

371

Security Methods

V
a

l
i
d

a
t

i
n

g
 D

a
t
a

 b
y

 T
y

p
e

27

28 } else { // Invalid submitted values.

29 echo '<p style="font-weight: bold;
color: #C00">Please enter a valid
quantity, price, and tax rate.</p>';

30 }

31

32 } // End of main isset() IF.

33

34 // Leave the PHP section and create the
HTML form.

35 ?>

36 <h2>Widget Cost Calculator</h2>

37 <form action="calculator.php"
method="post">

38 <p>Quantity: <input type="text" name=
"quantity" size="5" maxlength="10"
value="<?php if (isset($quantity))
echo $quantity; ?>" /></p>

39 <p>Price: <input type="text" name=
"price" size="5" maxlength="10"
value="<?php if (isset($price))
echo $price; ?>" /></p>

40 <p>Tax (%): <input type="text"
name="tax" size="5" maxlength="10"
value="<?php if (isset($tax)) echo
$tax; ?>" /></p>

41 <p><input type="submit" name="submit"
value="Calculate!" /></p>

42 <input type="hidden" name="submitted"
value="TRUE" />

43 </form>

44 </body>

45 </html>

Script 12.2 continued

Figure 12.7 The HTML form takes three
inputs: a quantity, a price, and a tax rate.

continues on next page

echo '<p>The total cost of
➝ purchasing ' . $quantity . '
➝ widget(s) at $' . number_
➝ format ($price, 2) . ' each,
➝ plus tax, is $' . number_
➝ format ($total, 2) . '.</p>';

For this calculator to work, the three vari-

ables must be specific types (see Step 3).

More importantly, they must all be posi-

tive numbers. This conditional checks for

that prior to performing the calculations.

Note that, per the rules of typecasting, if

the posted values are not numbers, they

will be cast to 0 and therefore not pass

this conditional.

The calculation itself is accomplished in

a single line of code, using parentheses to

ensure reliable results (thereby sparing

you concern for precedence issues). The

quantity is multiplied by the price. This

is then multiplied by the tax divided by

100 (so 8% becomes .08) plus 1 (1.08).

The number_format() function is used to

print both the price and total values in

the proper format.

5. Complete the conditionals.

} else {

echo '<p style="font-weight:
➝ bold; color: #C00">Please
➝ enter a valid quantity,
➝ price, and tax rate.</p>';

}

} // End of main isset() IF.

A little CSS is used to create a bold, red

error message, should there be a problem

(Figure 12.8).

6. Begin the HTML form.

?>

<h2>Widget Cost Calculator</h2>

<form action="calculator.php" method=
➝ "post">

<p>Quantity: <input type="text"
➝ name="quantity" size="5"
➝ maxlength="10" value="<?php
➝ if (isset($quantity)) echo
➝ $quantity; ?>" /></p>

The HTML form is really simple and

posts back to this same page. The inputs

will have a sticky quality, so the user can

see what was previously entered. By

referring to $quantity etc. instead of

$_POST['quantity'] etc., the form will

reflect the value for each input as it was

typecast (see the tax value in Figure 12.8).

372

Chapter 12

V
a

l
i
d

a
t

i
n

g
 D

a
t
a

 b
y

 T
y

p
e

Figure 12.8 An error message is
printed in bold, red text if any of
the three fields does not contain a
positive number.

7. Complete the HTML form.

<p>Price: <input type="text"
➝ name="price" size="5"
➝ maxlength="10" value="<?php if
➝ (isset($price)) echo $price;
➝ ?>" /></p>

<p>Tax (%): <input type="text"
➝ name="tax" size="5" maxlength=
➝ "10" value="<?php if (isset
➝ ($tax)) echo $tax; ?>" /></p>

<p><input type="submit" name=
➝ "submit" value="Calculate!"
➝ /></p>

<input type="hidden" name=
➝ "submitted" value="TRUE" />

</form>

8. Complete the HTML page.

</body>

</html>

9. Save the file as calculator.php, place it

in your Web directory, and test it in your

Web browser (Figures 12.9 and 12.10).

✔ Tips

■ You should definitely use typecasting

when working with numbers within SQL

queries. Numbers aren’t quoted in queries,

so if a string is somehow used in a num-

ber’s place, there will be an SQL syntax

error. If you typecast such variables to an

integer or float first, the query may not

work (in terms of returning a record) but

will still be syntactically valid. You’ll fre-

quently see this in the book’s last three

chapters.

■ As I implied, regular expressions are a

more advanced method of data valida-

tion and are sometimes your best bet.

But using type-based validation, when

feasible, will certainly be faster (in terms

of processor speed) and less prone to

programmer error (did I mention that

regular expressions are complex?).

■ To repeat myself, the rules of how values

are converted from one data type to

another are somewhat complicated. If

you want to get into the details, see the

PHP manual.

■ If you wanted to allow for no tax rate,

then change that part of the validation

conditional to … && ($tax >= 0)) { ….

373

Security Methods

V
a

l
i
d

a
t

i
n

g
 D

a
t
a

 b
y

 T
y

p
e

Figure 12.9 If invalid values are
entered, such as floats for the
quantity or strings for the tax…

Figure 12.10 …they’ll be cast into
more appropriate formats. The
negative price will also keep this
calculation from being made
(although the casting won’t
change that value).

Preventing XSS Attacks
HTML is simply plain text, like , which is

given special meaning by Web browsers (as

by making text bold). Because of this fact,

your Web site’s user could easily put HTML

in their form data, like in the comments

field in the email example. What’s wrong

with that, you might ask?

Many dynamically driven Web applications

take the information submitted by a user,

store it in a database, and then redisplay

that information on another page. Think of

a forum, as just one example. At the very

least, if a user enters HTML code in their

data, such code could throw off the layout

and aesthetic of your site. Taking this a step

further, JavaScript is also just plain text, but

text that has special meaning—executable

meaning—within a Web browser. If malicious

code entered into a form were re-displayed

in a Web browser, it could create pop-up

windows (Figures 12.11 and 12.12), steal

cookies, or redirect the browser to other

sites. Such attacks are referred to as cross-

site scripting (XSS). As in the email example,

where you need to look for and nullify bad

strings found in data, prevention of XSS

attacks is accomplished by addressing any

potentially dangerous PHP, HTML, or

JavaScript.

PHP includes a handful of functions for han-

dling HTML and other code found within

strings. These include:

◆ htmlspecialchars(), which turns &, ', ",

<, and > into an HTML entity format

(&, ", etc.)

◆ htmlentities(), which turns all applica-

ble characters into their HTML entity

format

◆ strip_tags(), which removes all HTML

and PHP tags

These three functions are roughly listed in

order from least disruptive to most. Which

you’ll want to use depends upon the applica-

tion at hand. To demonstrate how these

functions work and differ, let’s just create a

simple PHP page that takes some text (see

Figure 12.11) and runs it through these func-

tions, printing the results (Figure 12.13).

374

Chapter 12

P
r

e
v

e
n

t
i
n

g
 X

S
S

 A
t

t
a

c
k

s

Figure 12.11 The malicious and savvy user
can enter HTML, CSS, and JavaScript into
text inputs.

Figure 12.12 The JavaScript entered
into the comments field (see Figure
12.11) would create this alert
window when the comments were
displayed in the Web browser.

Figure 12.13 Thanks to the htmlentities() and
strip_tags() functions, malicious code entered
into the a form field (see Figure 12.11) can be
rendered inert.

To handle HTML:

1. Create a new PHP document in your text

editor or IDE (Script 12.3).

<!DOCTYPE html PUBLIC "-//W3C//DTD
➝ XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtm
➝ l1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/
➝ xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type"
➝ content="text/html; charset=
➝ iso-8859-1" />

<title>XSS Attacks</title>

</head>

<body>

<?php # Script 12.3 - xss.php

2. Check for the form submission and print

the received data in its original format.

if (isset($_POST['submitted'])) {

echo "<h2>Original</h2><p>{$_
➝ POST['data']}</p>";

To compare and contrast what was origi-

nally received with the result after apply-

ing the functions, the original value must

first be printed.

3. Apply the htmlentities() function,

printing the results.

echo '<h2>After htmlentities()
➝ </h2><p>' . htmlentities($_POST
➝ ['data']). '</p>';

To keep submitted information from mess-

ing up a page or hacking the Web brows-

er, it’s run through the htmlentities()
function. So, any HTML entity will be

translated; for instance, < and > will

become < and > respectively.

375

Security Methods

P
r

e
v

e
n

t
i
n

g
 X

S
S

 A
t

t
a

c
k

s

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content=
"text/html; charset=iso-8859-1" />

6 <title>XSS Attacks</title>

7 </head>

8 <body>

9 <?php # Script 12.3 - xss.php

10

11 if (isset($_POST['submitted'])) {

12

13 // Apply the different functions,
printing the results:

14 echo "<h2>Original</h2><p>{$_POST
['data']}</p>";

15 echo '<h2>After htmlentities()</h2><p>'
. htmlentities($_POST['data']). '</p>';

16 echo '<h2>After strip_tags()</h2><p>' .
strip_tags($_POST['data']). '</p>';

17

18 }

19

20 // Display the form:

21 ?>

22 <form action="xss.php" method="post">

23

24 <p>Do your worst! <textarea name="data"
rows="3" cols="40"></textarea></p>

25 <div align="center"><input type="submit"
name="submit" value="Submit" /></div>

26 <input type="hidden" name="submitted"
value="TRUE" />

27

28 </form>

29 </body>

30 </html>

Script 12.3 Applying the htmlentities() and
strip_tags() functions to submitted text can
prevent XSS attacks.

continues on next page

4. Apply the strip_tags() function, print-

ing the results.

echo '<h2>After strip_tags()</h2>
➝ <p>' . strip_tags($_POST['data']).
➝ '</p>';

The strip_tags() function completely

takes out any HTML, JavaScript, or PHP

tags. It’s therefore the most foolproof

function to use on submitted data.

5. Complete the PHP section.

}

?>

6. Display the HTML form.

<form action="xss.php" method="post">

<p>Do your worst! <textarea
➝ name="data" rows="3"
➝ cols="40"></textarea></p>

<div align="center"><input
➝ type="submit" name="submit"
➝ value="Submit" /></div>

<input type="hidden" name=
➝ "submitted" value="TRUE" />

</form>

The form (see Figure 12.11) has only one

field for the user to complete: a textarea.

7. Complete the page.

</body>

</html>

376

Chapter 12

P
r

e
v

e
n

t
i
n

g
 X

S
S

 A
t

t
a

c
k

s

Figure 12.14 This snippet of the page’s HTML source (see Figure 12.13) shows the original, submitted value, the
value after using html_entities(), and the value after using strip_tags().

8. Save the page as xss.php, place it in your

Web directory, and test it in your Web

browser.

9. View the source code of the page to

see the full effect of these functions

(Figure 12.14).

✔ Tips

■ Both htmlspecialchars() and

htmlentities() take an optional

parameter indicating how quotation

marks should be handled. See the

PHP manual for specifics.

■ The strip_tags() function takes an

optional parameter indicating what tags

should not be stripped.

$var = strip_tags ($var, '<p><br
➝ />');

■ The strip_tags() function will remove

even invalid HTML tags, which may

cause problems. For example,

strip_tags() will yank out all of the

code it thinks is an HTML tag, even

if it’s improperly formed, like

<b I forgot to close the tag.

■ Unrelated to security but quite useful is

the nl2br() function. It turns every

return (such as those entered into a text

area) into an HTML
 tag.

Preventing SQL Injection
Attacks
Another type of attack that malicious users

can attempt are SQL injection attacks. As the

name implies, these are endeavors to insert

bad code into a site’s SQL queries. One aim

of such attacks is that they would create a

syntactically invalid query, thereby revealing

something about the script or database in

the resulting error message (Figure 12.15).

An even bigger aspiration is that the injec-

tion attack could alter, destroy, or expose

the stored data.

Fortunately SQL injection attacks are rather

easy to prevent. Start by validating all data

to be used in queries (and perform typecast-

ing, whenever possible). Second, use a func-

tion like mysqli_real_escape_string(),

which makes data safe to use in queries.

This function was introduced in Chapter 8,

“Using PHP and MySQL.” Third, don’t show

detailed errors on live sites.

An alternative to using mysqli_real_
escape_string() is to use prepared state-

ments. Prepared statements were added to

MySQL in version 4.1, and PHP can use them

as of version 5 (thanks to the Improved

MySQL extension). When not using pre-

pared statements, the entire query, including

the SQL syntax and the specific values, is

sent to MySQL as one long string. MySQL

then parses and executes it. With a prepared

query, the SQL syntax is sent to MySQL first,

where it is parsed, making sure it’s syntacti-

cally valid. Then the specific values are sent

separately; MySQL assembles the query using

those values, then executes it. The benefits

of prepared statements are important:

greater security and potentially better per-

formance. I’ll focus on the security aspect

here, but see the sidebar for a discussion of

performance.

Prepared statements can be created out of

any INSERT, UPDATE, DELETE, or SELECT query.

Begin by defining your query, marking

placeholders using question marks. As an

example, take the SELECT query from edit_
user.php (Script 9.3):

$q = "SELECT first_name, last_name,
➝ email FROM users WHERE user_id=$id";

As a prepared statement, this query becomes

$q = "SELECT first_name, last_name,
➝ email FROM users WHERE user_id=?";

Next, prepare the statement in MySQL,

assigning the results to a PHP variable.

$stmt = mysqli_prepare($dbc, $q);

At this point, MySQL will parse the query,

but it won’t execute it.

377

Security Methods

P
r

e
v

e
n

t
i
n

g
 S

Q
L

I
n

j
e

c
t

i
o

n
 A

t
t
a

c
k

s

Figure 12.15 If a site reveals a detailed error message and doesn’t properly handle problematic characters
in submitted values, hackers can learn a lot about your server.

continues on next page

Next, you bind PHP variables to the query’s

placeholders. In other words, you state that

one variable should be used for one question

mark, another variable for the other ques-

tion mark, and so on. Continuing with the

same example, you would code

mysqli_stmt_bind_param($stmt, 'i', $id);

The i part of the command indicates what

kind of value should be expected, using the

characters listed in Table 12.3. In this case,

the query expects to receive one integer. As

another example, here’s how the login query

from Chapter 11, “Cookies and Sessions,”

would be handled:

$q = "SELECT user_id, first_name FROM
➝ users WHERE email=? AND pass=SHA1(?)";

$stmt = mysqli_prepare($dbc, $q);

mysqli_stmt_bind_param($stmt, 'ss', $e,
➝ $p);

In this example, something interesting is

also revealed: even though both the email

address and password values are strings,

they are not placed within quotes in the

query. This is another difference between a

prepared statement and a standard query.

Once the statement has been bound, you

can assign values to the PHP variables (if

that hasn’t happened already) and then exe-

cute the statement. Using the login example,

that’d be:

$e = 'email@example.com';

$p = 'mypass';

mysqli_stmt_execute($stmt);

The values of $e and $p will be used when

the prepared statement is executed.

378

Chapter 12

P
r

e
v

e
n

t
i
n

g
 S

Q
L

I
n

j
e

c
t

i
o

n
 A

t
t
a

c
k

s

L e t t e r R e p r e s e n t s

d Decimal
i Integer
b Blob (binary data)
s All other types

Bound Value Types

Table 12.3 Use these characters to tell the
mysql_stmt_bind_param() function what
kinds of values to expect.

Prepared Statement
Performance

Prepared statements will always be more

secure than running queries in the old-

fashioned way, but they may also be faster.

If a PHP script sends the same query to

MySQL multiple times, using different

values each time, prepared statements

can really speed things up. In such cases,

the query itself is only sent to MySQL

and parsed once. Then, the values are

sent to MySQL separately.

As a trivial example, the following code

would run 100 queries in MySQL:

$q = 'INSERT INTO counter (num)
➝ VALUES (?)';

$stmt = mysqli_prepare($dbc, $q);

mysqli_stmt_bind_param($stmt, 'i',
➝ $n);

for ($n = 1; $n <= 100; $n++) {

mysqli_stmt_execute($stmt);

}

Even though the query is being run 100

times, the full text is only being trans-

ferred to, and parsed by, MySQL once.

MySQL versions 5.1.17 and later will

include a caching mechanism that may

also improve the performance of other

uses of prepared statements.

To see this process in action, let’s write a

script that adds a message to the messages

table in the forum database (created in

Chapter 6, “Advanced SQL and MySQL”). I’ll

also use the opportunity to demonstrate a

couple of the other prepared statement-

related functions.

To use prepared statements:

1. Create a new PHP script in your text edi-

tor or IDE (Script 12.4).

<!DOCTYPE html PUBLIC "-//W3C//DTD
➝ XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtm
➝ l1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/
➝ xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type"
➝ content="text/html; charset=
➝ iso-8859-1" />

<title>Post a Message</title>

</head>

<body>

<?php # Script 12.4 - post_
➝ message.php

2. Check for form submission and connect

to the forum database.

if (isset($_POST['submitted'])) {

$dbc = mysqli_connect
➝ ('localhost', 'username',
➝ 'password', 'forum');

Note that, for brevity’s sake, I’m omitting

basic data validation and error reporting.

Although a real site (a more realized

version of this script can be found in

Chapter 15, “Example—Message Board”),

would check that the message subject

379

Security Methods

P
r

e
v

e
n

t
i
n

g
 S

Q
L

I
n

j
e

c
t

i
o

n
 A

t
t
a

c
k

s

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content=
"text/html; charset=iso-8859-1" />

6 <title>Post a Message</title>

7 </head>

8 <body>

9 <?php # Script 12.4 - post_message.php

10

11 if (isset($_POST['submitted'])) {

12

13 // Validate the data (omitted)!

14

15 // Connect to the database:

16 $dbc = mysqli_connect ('localhost',
'username', 'password', 'forum');

17

18 // Make the query:

19 $q = 'INSERT INTO messages (forum_id,
parent_id, user_id, subject, body,
date_entered) VALUES (?, ?, ?, ?, ?,
NOW())';

20

21 // Prepare the statement:

22 $stmt = mysqli_prepare($dbc, $q);

23

24 // Bind the variables:

25 mysqli_stmt_bind_param($stmt, 'iiiss',
$forum_id, $parent_id, $user_id,
$subject, $body);

26

27 // Assign the values to variables:

28 $forum_id = (int) $_POST['forum_id'];

Script 12.4 This script, which represents a simplified
version of a message posting page, uses prepared
statements as a way of preventing SQL injection
attacks.

(script continues on next page)
continues on next page

and body aren’t empty and that the vari-

ous ID values are positive integers, this

script will still be relatively safe, thanks

to the security offered by prepared

statements.

This example will use the forum database,

created in Chapter 6.

3. Define and prepare the query.

$q = 'INSERT INTO messages (forum_id,
➝ parent_id, user_id, subject, body,
➝ date_entered) VALUES (?, ?, ?, ?,
➝ ?, NOW())';

$stmt = mysqli_prepare($dbc, $q);

This syntax has already been explained.

The query is defined, using placeholders

for values to be assigned later. Then the

mysqli_prepare() function sends this to

MySQL, assigning the result to $stmt.

The query itself was first used in Chapter

6. It populates six fields in the messages

table. The value for the date_entered col-

umn will be the result of the NOW() func-

tion, not a bound value.

4. Bind the appropriate variables and create

a list of values to be inserted.

mysqli_stmt_bind_param($stmt,
➝ 'iiiss', $forum_id, $parent_id,
➝ $user_id, $subject, $body);

$forum_id = (int) $_POST['forum_id'];

$parent_id = (int) $_POST
➝ ['parent_id'];

$user_id = 3;

$subject = strip_tags($_POST
➝ ['subject']);

$body = strip_tags($_POST['body']);

The first line says that three integers and

two strings will be used in the prepared

statement. The values will be found in

the variables to follow.

380

Chapter 12

P
r

e
v

e
n

t
i
n

g
 S

Q
L

I
n

j
e

c
t

i
o

n
 A

t
t
a

c
k

s

29 $parent_id = (int) $_POST['parent_id'];

30 $user_id = 3; // The user_id value would
normally come from the session.

31 $subject = strip_tags($_POST
['subject']);

32 $body = strip_tags($_POST['body']);

33

34 // Execute the query:

35 mysqli_stmt_execute($stmt);

36

37 // Print a message based upon the
result:

38 if (mysqli_stmt_affected_rows($stmt) = =
1) {

39 echo '<p>Your message has been
posted.</p>';

40 } else {

41 echo '<p style="font-weight: bold;
color: #C00">Your message could not
be posted.</p>';

42 echo '<p>' . mysqli_stmt_error($stmt) .
'</p>';

43 }

44

45 // Close the statement:

46 mysqli_stmt_close($stmt);

47

48 // Close the connection:

49 mysqli_close($dbc);

50

51 } // End of submission IF.

52

53 // Display the form:

54 ?>

55 <form action="post_message.php"
method="post">

56

57 <fieldset><legend>Post a message:
</legend>

58

(script continues on next page)

Script 12.4 continued

For those variables, the subject and body

values come straight from the form, after

running them through strip_tags() to

remove any potentially dangerous code.

The forum ID and parent ID (which indi-

cates if the message is a reply to an exist-

ing message or not) also come from the

form. They’ll be typecast to integers (for

added security, you would confirm that

they’re positive numbers after typecast-

ing them).

The user ID value, in a real script, would

come from the session, where it would be

stored when the user logged in.

5. Execute the query.

mysqli_stmt_execute($stmt);

Finally, the prepared statement is

executed.

6. Print the results of the execution and

complete the loop.

if (mysqli_stmt_affected_rows
➝ ($stmt) == 1) {

echo '<p>Your message has been
➝ posted.</p>';

} else {

echo '<p style="font-weight:
➝ bold; color: #C00">Your
➝ message could not be
➝ posted.</p>';

echo '<p>' . mysqli_stmt_
➝ error($stmt) . '</p>';

}

The successful insertion of a record can

be confirmed using the mysqli_stmt_
affected_rows() function, which works

as you expect it would (returning the

number of affected rows). If a problem

occurred, the mysqli_stmt_error() func-

tion returns the specific MySQL error

message. This is for your debugging pur-

poses, not to be used in a live site.

7. Close the statement and the database

connection.

mysqli_stmt_close($stmt);

mysqli_close($dbc);

The first function closes the prepared

statement, freeing up the resources. At

this point, $stmt no longer has a value.

The second function closes the database

connection.

8. Complete the PHP section.

} // End of submission IF.

?>

381

Security Methods

P
r

e
v

e
n

t
i
n

g
 S

Q
L

I
n

j
e

c
t

i
o

n
 A

t
t
a

c
k

s

59 <p>Subject: <input name="subject"
type="text" size="30" maxlength="100"
/></p>

60

61 <p>Body: <textarea name="body"
rows="3" cols="40"></textarea></p>

62

63 </fieldset>

64 <div align="center"><input type="submit"
name="submit" value="Submit" /></div>

65 <input type="hidden" name="submitted"
value="TRUE" />

66 <input type="hidden" name="forum_id"
value="1" />

67 <input type="hidden" name="parent_id"
value="0" />

68

69 </form>

70 </body>

71 </html>

Script 12.4 continued

continues on next page

9. Create the form.

<form action="post_message.php"
➝ method="post">

<fieldset><legend>Post a message:
➝ </legend>

<p>Subject: <input name=
➝ "subject" type="text" size="30"
➝ maxlength="100" /></p>

<p>Body: <textarea name="body"
➝ rows="3" cols="40"></textarea></p>

</fieldset>

<div align="center"><input type=
➝ "submit" name="submit" value=
➝ "Submit" /></div>

<input type="hidden" name="submitted"
➝ value="TRUE" />

<input type="hidden" name="forum_id"
➝ value="1" />

<input type="hidden" name="parent_id"
➝ value="0" />

</form>

The form contains two fields the user

would fill out and two hidden inputs that

store values the query needs. In a real

version of this script, it would determine

the forum_id and parent_id values auto-

matically.

10. Complete the page.

</body>

</html>

11. Save the file as post_message.php, place

it in your Web directory, and test it in

your Web browser (Figures 12.16,

12.17, and 12.18).

✔ Tip

■ There are two kinds of prepared state-

ments. Here I have demonstrated bound

parameters, where PHP variables are

bound to a query. The other type is

bound results, where the results of a

query are bound to PHP variables.

382

Chapter 12

P
r

e
v

e
n

t
i
n

g
 S

Q
L

I
n

j
e

c
t

i
o

n
 A

t
t
a

c
k

s

Figure 12.16 The simple HTML form. Figure 12.17 If one record in the database was
affected by the query, this will be the result.

Figure 12.18 Selecting the most recent
entry in the messages table confirms
that the prepared statement (Script
12.4) worked. Notice that the HTML
was stripped out of the post but the
quotes are still present.

Database Encryption
As a brief conclusion to this chapter, I’ll go

over true encryption in a MySQL database.

Up to this point, pseudo-encryption has

been accomplished via the SHA1() function.

In the registration and login examples, the

user’s password has been stored after run-

ning it through SHA1(). Although using this

function in this way is perfectly fine (and

quite common), the function doesn’t provide

real encryption: the SHA1() function returns

a representation of a value. If you need to

store data in a protected way while still

being able to view the data is its original

form at some later point, other MySQL func-

tions are necessary.

Encryption
MySQL has several encryption and decryp-

tion functions built into the software. If you

require data to be stored in an encrypted

form that can be decrypted, you’ll want to

use AES_ENCRYPT() and AES_DECRYPT(). These

functions take two arguments: the string

being encrypted or decrypted and a salt

argument. The salt argument is a string that

helps to randomize the encryption. The only

trick is that the exact same salt must be

used for both encryption and decryption.

To add a record to a table while encrypting

the data, the query might look like

INSERT INTO tablename (username, pass)

VALUES ('troutster',

AES_ENCRYPT('mypass', 'nacl'))

The encrypted data returned by the

AES_ENCRYPT() function will be in binary for-

mat. To store that data in a table, the col-

umn must be defined as one of the binary

types (e.g., BLOB).

To run a login query for the record just

inserted (matching a submitted username

and password against those in the data-

base), you would write

SELECT * FROM tablename WHERE

username = 'troutster' AND

AES_DECRYPT(pass, 'nacl') = 'mypass'

The AES_ENCRYPT() function is considered to

be the most secure encryption option (it’s

available as of MySQL version 4.0.2). To

demonstrate how you’d use it, let’s run some

queries on the test database using a MySQL

client.

To encrypt and decrypt data:

1. Access MySQL and select the test data-

base (Figure 12.19).

USE test;

383

Security Methods

D
a

t
a

b
a

s
e

 E
n

c
r

y
p

t
i
o

n

Figure 12.19 The following
examples will all be run in
the mysql client, on the
test database.

continues on next page

Follow the steps outlined in Chapter 4,

“Introduction to MySQL,” to connect to

the mysql client. Alternatively, you can

use phpMyAdmin or another interface to

run the queries in the following steps.

2. Create a new encode table (Figure 12.20).

CREATE TABLE encode (

id INT UNSIGNED NOT NULL

AUTO_INCREMENT,

card_number TINYBLOB,

PRIMARY KEY (id)

);

This table, encode, will contain fields for

just an id and a (credit) card_number. The

card_number will be encrypted using

AES_ENCRYPT() so that it can be decoded.

AES_ENCRYPT() returns a binary value

that ought to be stored in a BLOB (or

TINYBLOB here) column type.

3. Insert a new record (Figure 12.21).

INSERT INTO encode (id, card_number)

VALUES (NULL,

AES_ENCRYPT(1234567890123456,

'eLL10tT'));

Here I am adding a new record to the

table, using the AES_ENCRYPT() function

with a salt of eLL10tT to encrypt the

card number. Always try to use a unique

salt with your encryption functions. Also

remember that you cannot have spaces

between your function names and their

opening parentheses.

4. Retrieve the record in an unencrypted

form (Figure 12.22).

SELECT id, AES_DECRYPT(card_number,

'eLL10tT') AS cc FROM encode;

This query returns all of the records,

decrypting the credit card number in

the process. Any value stored using

AES_ENCRYPT() can be retrieved (and

matched) using AES_DECRYPT(), as long

as the same salt is used (here, eLL10tT).

5. Check out the table’s contents without

using decryption (Figure 12.23).

SELECT * FROM encode;

As you can see in the figure, the encrypt-

ed version of the credit card number is

unreadable. This is exactly the kind of

security measure required by e-commerce

applications.

384

Chapter 12

D
a

t
a

b
a

s
e

 E
n

c
r

y
p

t
i
o

n

Figure 12.21 A record is inserted, using an encryption
function to protect the credit card number.

Figure 12.20 The encode table, consisting of
only two columns, is added to the database.

✔ Tips

■ As a rule of thumb, use SHA1() for infor-

mation that will never need to be view-

able, such as passwords and perhaps

usernames. Use AES_ENCRYPT() for infor-

mation that needs to be protected but

may need to be viewable at a later date,

such as credit card information, Social

Security numbers, addresses (perhaps),

and so forth.

■ As a reminder, it’s much more secure to

never store credit card numbers and

other high-risk data.

Secure salt storage
While the preceding sequence of steps

demonstrates how you can add a level of

security to your Web applications by

encrypting and decrypting sensitive data,

there’s still room for improvement. The main

issue is protecting the encryption salt,

which is key to the encryption process.

In order for a PHP script to use a salt in its

queries, PHP must have access to it. Most

likely, the salt might be placed in the same

script that establishes a database connec-

tion. But storing this value in a plain text for-

mat on the server makes it more vulnerable.

As an alternative, you can store the salt in a

database table. Then, when a query needs to

use this value, it can be selected. This

process can be simplified thanks to user-

defined MySQL variables. I discuss this con-

cept in more detail in my book MySQL:

Visual QuickStart Guide, Second Edition

(Peachpit Press, 2006), but I’ll provide a

quick rundown of that process here.

To just establish a user-defined variable, use

this SQL command:

SELECT @var:=value

So, you could write

SELECT @PI:=3.14

To define a variable based upon a value

stored in a table, the syntax is just an exten-

sion of this:

SELECT @var:=some_column FROM tablename

Once you’ve established @var, it can be used

in other queries:

SELECT * FROM tablename WHERE col=@var

This next sequence of steps will demon-

strate this approach in action, using the

mysql client. Doing the same thing in a PHP

script is described in the first tip.

385

Security Methods

D
a

t
a

b
a

s
e

 E
n

c
r

y
p

t
i
o

n

Figure 12.22 The record has been retrieved,
decrypting the credit card number in the process.

Figure 12.23 Encrypted data is stored in an
unreadable format (here, as a binary string of data).

To use a database-stored salt:

1. Log in to the mysql client and select the

test database, if you haven’t already.

2. Empty the encode table (Figure 12.24).

TRUNCATE TABLE encode;

Because I’m going to be using a different

encryption function, I’ll want to clear out

all the existing data before repopulating

it. The TRUNCATE command is the best

way to do so.

3. Create and populate an aes_salt table

(Figure 12.25).

CREATE TABLE aes_salt (

salt VARCHAR(12) NOT NULL

);

INSERT INTO aes_salt (salt)

VALUES ('0bfuscate');

This table, aes_salt, will store the encryp-

tion salt value in its one column. The

INSERT query stores the salt, which will

be retrieved and assigned to a user-

defined variable as needed.

4. Retrieve the stored salt value and use it

to insert a new record into the encode

table (Figure 12.26).

SELECT @salt:=salt FROM aes_salt;

INSERT INTO encode (card_number)

VALUES (AES_ENCRYPT(1234567890123456,

@salt));

The first line retrieves the stored salt

value from the aes_salt table and assigns

this to @salt (the figure shows the results

of the SELECT statement). Then a stan-

dard INSERT query is run to add a record

to the encode table. In this case, @salt is

used in the query instead of a hard-

coded salt value.

386

Chapter 12

D
a

t
a

b
a

s
e

 E
n

c
r

y
p

t
i
o

n

Figure 12.25 The aes_salt table has one
column and should only ever have one
row of data. The INSERT query stores the
salt value in this table.

Figure 12.26 These two queries show how you can
retrieve a salt value using one query, assigning
the value to a variable, then use that variable in a
second query.

Figure 12.24 Run a TRUNCATE query to empty
a table.

5. Decrypt the stored credit card number

(Figure 12.27).

SELECT @salt:=salt FROM aes_salt;

SELECT id, AES_DECRYPT(card_number,

@salt) AS cc FROM encode;

The first step retrieves the salt value

so that it can be used for decryption

purposes. (If you followed these steps

without closing the MySQL session, this

step wouldn’t actually be necessary, as

@salt would already be established.)

The @salt variable is then used with

he AES_DECRYPT() function.

✔ Tips

■ The code in these steps (for retrieving

and using a salt stored in a table) can

easily be used in a PHP script. Run the

first query, then run the second query,

and then fetch the results:

$r = mysqli_query($dbc, 'SELECT
➝ @salt:=salt FROM aes_salt');

$r = mysqli_query($dbc, 'SELECT id,
➝ AES_DECRYPT(card_number, @salt)
➝ AS cc FROM encode');

$row = mysqli_fetch_array($r,
➝ MYSQLI_ASSOC);

You can make this more professional by

calling the mysqli_num_rows() function

prior to running the second query or

fetching the results, of course. But notice

that you don’t have to fetch the results of

the first query into the PHP script. The

results of that query will be assigned to

the @salt variable, residing in MySQL,

associated with this connection.

■ User variables are particular to each con-

nection. When one script or one mysql

client session connects to MySQL and

establishes a variable, only that one script

or session has access to that variable.

387

Security Methods

D
a

t
a

b
a

s
e

 E
n

c
r

y
p

t
i
o

n

Figure 12.27 A similar query (see Figure 12.22) is
used to decrypt stored information using a
database-stored salt.

■ Prior to version 5.0 of MySQL, user vari-

able names are case-sensitive.

■ Never establish and use a user-defined

variable within the same SQL statement.

■ Storing the salt in the database, as

demonstrated in these steps, adds

improved security over storing it in a

PHP script. Even better security can be

had by using unique and random salts

for each stored record.

388

Chapter 12

D
a

t
a

b
a

s
e

 E
n

c
r

y
p

t
i
o

n

Preventing Brute Force Attacks

A brute force attack is an attempt to log into a secure system by making lots of attempts in

the hopes of eventual success. It’s not a sophisticated type of attack, hence the name “brute

force.” For example, if you have a login process that requires a username and password, there

is a limit as to the possible number of username/password combinations. That limit may be

in the billions or trillions, but still, it’s a finite number. Using algorithms and automated

processes, a brute force attack repeatedly tries combinations until they succeed.

The best way to prevent brute force attacks from succeeding is requiring users to register

with good, hard-to-guess passwords: containing letters, numbers, and punctuation; both

upper and lowercase; words not in the dictionary; at least eight characters long, etc. Also,

don’t give indications as to why a login failed: saying that a username and password combi-

nation isn’t correct gives away nothing, but saying that a username isn’t right or that the

password isn’t right for that username says too much.

To stop a brute force attack in its tracks, you could also limit the number of incorrect login

attempts by a given IP address. IP addresses do change frequently, but in a brute force attack,

the same IP address would be trying to login multiple times in a matter of minutes. You would

have to track incorrect logins by IP address, and then, after X number of invalid attempts,

block that IP address for 24 hours (or something). Or, if you didn’t want to go that far, you

could use an “incremental delay” defense: each incorrect login from the same IP address cre-

ates an added delay in the response (use PHP’s sleep() function to create the delay). Humans

might not notice or be bothered by such delays, but automated attacks most certainly would.

Regular expressions are an amazingly powerful (but tedious) tool available in most of

today’s programming languages and even in many applications. Think of regular

expressions as an elaborate system of matching patterns. You first write the pattern

and then use one of PHP’s built-in functions to apply the pattern to a value (regular

expressions are applied to strings, even if that means a string with a numeric value).

Whereas a string function could see if the name John is in some text, a regular expres-

sion could just as easily find John, Jon, and Jonathon.

PHP supports several types of regular expressions, the two most popular being POSIX

Extended and Perl-Compatible (PCRE). In previous editions of this book (and in

other books), I exclusively use the POSIX version. They are somewhat less powerful

and potentially slower than PCRE but are far easier to learn. But PCRE is becoming

the preferred type to use in PHP, so I’ll provide an introduction to it here instead.

Because the regular expression syntax is so complex, while the functions that use

them are simple, the focus in this chapter will be on mastering the syntax in little

bites. The PHP code will be very simple; later chapters will better incorporate regular

expressions into real-world scripts.

389

Perl-
Compatible
Regular Expressions

13

P
e

r
l
-
C

o
m

p
a

t
i
b

l
e

 R
e

g
u

l
a

r
 E

x
p

r
e

s
s

i
o

n
s

Creating a Test Script
As already stated, regular expressions are a

matter of applying patterns to values. The

application of the pattern to a value is

accomplished using one of a handful of

functions, the most important being

preg_match(). This function returns a 0

or 1, indicating whether or not the pattern

matched the string. Its basic syntax is

preg_match(pattern, subject);

The preg_match() function will stop once it

finds a single match. If you need to find all

the matches, use preg_match_all(). That

function will be discussed toward the end

of the chapter.

When providing the pattern to preg_match(),

it needs to be placed within quotation marks,

as it’ll be a string. Because many escaped

characters within double quotation marks

have special meaning (like \n), I advocate

using single quotation marks to define your

patterns.

Secondarily, within the quotation marks, the

pattern needs to be encased within delimiters.

The delimiter can be any character that’s not

alphanumeric or the backslash, and the same

character must be used to mark the begin-

ning and end of the pattern. Commonly

you’ll see forward slashes used. So, to see if

the word cat contains the letter a, you

would code:

if (preg_match('/a/', 'cat')) { …

If you need to match a forward slash in the

pattern, use a different delimiter, like the

pipe (|) or an exclamation mark (!).

The bulk of this chapter covers all the rules

for defining patterns. In order to best learn

by example, let’s start by creating a simple

PHP script that takes a pattern and a string

(Figure 13.1) and returns the regular

expression result (Figure 13.2).

390

Chapter 13

C
r

e
a

t
i
n

g
 a

 T
e

s
t

 S
c

r
i
p

t

Figure 13.1 The HTML form, which will be used
for practicing regular expressions.

Figure 13.2 The script will print what values were
used in the regular expression and what the
result was. The form will also be made sticky to
remember previously submitted values.

To match a pattern:

1. Create a new PHP document in your text

editor or IDE (Script 13.1).

<!DOCTYPE html PUBLIC "-//W3C//DTD
➝ XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtm
➝ l1-transitional.dtd">

<html xmlns="http://www.w3.org/
➝ 1999/xhtml">

<head>

<meta http-equiv="content-type"
➝ content="text/html; charset=
➝ iso-8859-1" />

<title>Testing PCRE</title>

</head>

<body>

<?php // Script 13.1 - pcre.php

391

Perl-Compatible Regular Expressions

C
r

e
a

t
i
n

g
 a

 T
e

s
t

 S
c

r
i
p

t

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/
xhtml">

4 <head>

5 <meta http-equiv="content-type" content=
"text/html; charset=iso-8859-1" />

6 <title>Testing PCRE</title>

7 </head>

8 <body>

9 <?php // Script 13.1 - pcre.php

10

11 // This script takes a submitted string
and checks it against a submitted pattern.

12

13 if (isset($_POST['submitted'])) {

14

15 // Trim the strings:

16 $pattern = trim($_POST['pattern']);

17 $subject = trim($_POST['subject']);

18

19 // Print a caption:

20 echo "<p>The result of checking
$pattern
against
$subject
is ";

21

22 // Test:

23 if (preg_match ($pattern, $subject)) {

24 echo 'TRUE!</p>';

25 } else {

26 echo 'FALSE!</p>';

27 }

28

29 } // End of submission IF.

Script 13.1 The complex regular expression syntax will
be best taught and demonstrated using this PHP script.

(script continues)

Script 13.1 continued

30 // Display the HTML form.

31 ?>

32 <form action="pcre.php" method="post">

33 <p>Regular Expression Pattern: <input
type="text" name="pattern" value="<?php
if (isset($pattern)) echo $pattern; ?>"
size="30" /> (include the
delimiters)</p>

34 <p>Test Subject: <input type="text"
name="subject" value="<?php if
(isset($subject)) echo $subject; ?>"
size="30" /></p>

35 <input type="submit" name="submit"
value="Test!" />

36 <input type="hidden" name="submitted"
value="TRUE" />

37 </form>

38 </body>

39 </html>

continues on next page

2. Check for the form submission.

if (isset($_POST['submitted'])) {

3. Treat the incoming values.

$pattern = trim($_POST['pattern']);

$subject = trim($_POST['subject']);

The form will submit two values to this

same script. Both should be trimmed,

just to make sure the presence of any

extraneous spaces doesn’t skew the

results. I’ve omitted a check that each

input isn’t empty, but you could include

that if you wanted.

4. Print a caption.

echo "<p>The result of checking<br
➝ />$pattern
against<br
➝ />$subject
is ";

As you can see in Figure 13.2, the form

handling part of this script will start by

printing the values used.

5. Run the regular expression.

if (preg_match ($pattern, $subject))
{

print 'TRUE!</p>';

} else {

print 'FALSE!</p>';

}

To test the pattern against the string,

feed both to the preg_match() function.

If this function returns 1, that means a

match was made, this condition will be

true, and the word TRUE will be printed.

If no match was made, the condition

will be false and that will be stated

(Figure 13.3).

392

Chapter 13

C
r

e
a

t
i
n

g
 a

 T
e

s
t

 S
c

r
i
p

t

Figure 13.3 If the pattern does not match the
string, this will be the result. This image also
shows that regular expressions are case-
sensitive by default.

✔ Tips

■ Some text editors, such as BBEdit and

emacs, allow you to use regular expres-

sions to match and replace patterns with-

in and throughout several documents.

■ Another difference between POSIX and

PCRE regular expressions is that the

latter can be used on binary data while

the former cannot.

■ The PCRE functions all use the estab-

lished locale. A locale, discussed more

in Chapter 14, “Making Universal Sites,”

reflects a computer’s designated country

and language, among other settings.

6. Complete the PHP code and create the

HTML form.

?>

<form action="pcre.php" method=
➝ "post">

<p>Regular Expression Pattern:
➝ <input type="text" name=
➝ "pattern" value="<?php if
➝ (isset($pattern)) echo
➝ $pattern; ?>" size="30" />
➝ (include the delimiters)</p>

<p>Test Subject: <input type=
➝ "text" name="subject" value=
➝ "<?php if (isset($subject))
➝ echo $subject; ?>" size="30"
➝ /></p>

<input type="submit" name=
➝ "submit" value="Test!" />

<input type="hidden" name=
➝ "submitted" value="TRUE" />

</form>

The form contains two text boxes, both

of which are sticky (using the trimmed

version of the values).

7. Complete the HTML page.

</body>

</html>

8. Save the file as pcre.php, place it in your

Web directory, and test it in your Web

browser (Figures 13.1, 13.2, and 13.3).

Although you don’t know the rules for

creating patterns yet, you could use the

literal a test (see Figures 13.1 and 13.2) or

check any other literal value. Remember

to use delimiters around the pattern

or else you’ll see an error message

(Figure 13.4).

393

Perl-Compatible Regular Expressions

C
r

e
a

t
i
n

g
 a

 T
e

s
t

 S
c

r
i
p

t

Figure 13.4 If you fail to wrap the pattern in
matching delimiters, you’ll see an error message.

Defining Simple Patterns
Using one of PHP’s regular expression func-

tions is really easy, defining patterns to use

is hard. There are lots of rules for creating a

pattern. You can use these rules separately

or in combination, making your pattern

either quite simple or very complex. To start,

then, you’ll see what characters are used to

define a simple pattern. As a formatting rule,

I’ll define patterns in bold and will indicate

what the pattern matches in italics. The pat-

terns in these explanations won’t be placed

within delimiters or quotes (both being

needed when used within preg_match()),

just to keep things cleaner.

The first type of character you will use for

defining patterns is a literal. A literal is a

value that is written exactly as it is inter-

preted. For example, the pattern a will match

the letter a, ab will match ab, and so forth.

Therefore, assuming a case-insensitive search

is performed, rom will match any of the fol-

lowing strings, since they all contain rom:

◆ CD-ROM

◆ Rommel crossed the desert.

◆ I’m writing a roman à clef.

Along with literals, your patterns will use

meta-characters. These are special symbols

that have a meaning beyond their literal

value (Table 13.1). While a simply means a,

the period (.) will match any single character

except for a newline (. matches a, b, c, the

underscore, a space, etc., just not \n). To

match any meta-character, you will need to

escape it, much as you escape a quotation

mark to print it. Hence \. will match the

period itself. So 1.99 matches 1.99 or 1B99

or 1299 (a 1 followed by any character

followed by 99) but 1\.99 only matches 1.99.

394

Chapter 13

D
e

f
i
n

i
n

g
 S

i
m

p
l
e

 P
a

t
t

e
r

n
s

C h a r a c t e r M e a n i n g

\ Escape character
^ Indicates the beginning of a string
$ Indicates the end of a string
. Any single character except newline
| Alternatives (or)
[Start of a class
] End of a class
(Start of a subpattern
) End of a subpattern

{ Start of a quantifier
} End of a quantifier

Meta-Characters

Table 13.1 The meta-characters have unique
meanings inside of regular expressions.

Two meta-characters specify where certain

characters must be found. There is the caret

(^), which will match a string that begins with

whatever follows the caret. There is also the

dollar sign ($), which marks the conclusion

of a pattern. Accordingly, ^a will match any

string beginning with an a, while a$ will

correspond to any string ending with an a.

Therefore, ^a$ will only match a (a string

that both begins and ends with a).

These two meta-characters—the caret and

the dollar sign—are crucial to validation, as

validation normally requires checking the

value of an entire string, not just the presence

of one string in another. For example, using

an email matching pattern without those two

characters will match any string containing

an email address. Using an email matching

pattern that begins with a caret and ends

with a dollar sign will match a string that

contains only a valid email address.

Regular expressions also make use of the

pipe (|) as the equivalent of or. Therefore,

a|b will match strings containing either a or

b. (Using the pipe within patterns is called

alternation or branching). So yes|no accepts

either of those two words in their entirety

(the alternation is not just between the two

letters surrounding it: s and n).

Once you comprehend the basic symbols,

then you can begin to use parentheses to

group characters into more involved pat-

terns. Grouping works as you might expect:

(abc) will match abc, (trout) will match

trout. Think of parentheses as being used to

establish a new literal of a larger size.

Because of precedence rules in PCRE,

yes|no and (yes)|(no) are equivalent. But

(even|heavy) handed will match either

even handed or heavy handed.

To use simple patterns:

1. Load pcre.php in your Web browser, if it

is not already.

2. Check if a string contains the letters cat

(Figure 13.5).

To do so, use the literal cat as the pat-

tern and any number of strings as the

subject. Any of the following would be

a match: catalog, catastrophe, my cat

left, etc. For the time being, use all lower-

case letters, as cat will not match Cat

(Figure 13.6).

Remember to use delimiters around the

pattern, as well (see the figures).

395

Perl-Compatible Regular Expressions

D
e

f
i
n

i
n

g
 S

i
m

p
l
e

 P
a

t
t

e
r

n
s

Figure 13.5 Looking for a cat in a string. Figure 13.6 Don’t forget that PCRE performs a case-
sensitive comparison by default.

continues on next page

3. Check if a string starts with cat

(Figure 13.7).

To have a pattern apply to the start

of a string, use the caret as the first

character (^cat). The sentence my

cat left will not be a match now.

4. Check if a string contains the word

color or colour (Figure 13.8).

The pattern to look for the American

or British spelling of this word is

col(o|ou)r. The first three letters

—col—must be present. This needs

to be followed by either an o or ou.

Finally, an r is required.

✔ Tips

■ If you are looking to match an exact

string within another string, use the

strstr() function, which is faster than

regular expressions. In fact, as a rule of

thumb, you should use regular expres-

sions only if the task at hand cannot be

accomplished using any other function

or technique.

■ You can escape a bunch of characters in

a pattern using \Q and \E. Every charac-

ter within those will be treated literally

(so \Q$2.99?\E matches $2.99?).

■ To match a single backslash, you have

to use \\\\. The reason is that matching

a backslash in a regular expression

requires you to escape the backslash,

resulting in \\. Then to use a backslash

in a PHP string, it also has to be escaped,

so escaping both backslashes means a

total of four.

396

Chapter 13

D
e

f
i
n

i
n

g
 S

i
m

p
l
e

 P
a

t
t

e
r

n
s

Figure 13.7 The caret in a pattern means that the
match has to be found at the start of the string.

Figure 13.8 By using the pipe meta-character, the
performed search can be more flexible.

Using Quantifiers
You’ve just seen and practiced with a couple

of the meta-characters, the most important

of which are the caret and the dollar sign.

Next, there are three meta-characters that

allow for multiple occurrences: a* will

match zero or more a’s (no a’s, a, aa, aaa,

etc.); a+ matches one or more a’s (a, aa, aaa,

etc., but there must be at least one); and a?

will match up to one a (a or no a’s match).

These meta-characters all act as quantifiers

in your patterns, as do the curly braces.

Table 13.2 lists all of the quantifiers.

To match a certain quantity of a thing, put

the quantity between curly braces ({}), stat-

ing a specific number, just a minimum, or

both a minimum and a maximum. Thus,

a{3} will match aaa; a{3,} will match aaa,

aaaa, etc. (three or more a’s); and a{3,5} will

match just aaa, aaaa, and aaaaa (between

three and five).

Note that quantifiers apply to the thing that

came before it, so a? matches zero or one

a’s, ab? matches an a followed by zero or

one b’s, but (ab)? matches zero or one ab’s.

Therefore, to match color or colour (see

Figure 13.8), you could also use colou?r as

the pattern.

397

Perl-Compatible Regular Expressions

U
s

i
n

g
 Q

u
a

n
t

i
f
i
e

r
s

C h a r a c t e r M e a n i n g

? 0 or 1
* 0 or more
+ 1 or more
{x} Exactly x occurrences
{x, y} Between x and y (inclusive)
{x,} At least x occurrences

Quantifiers

Table 13.2 The quantifiers allow you to dictate how
many times something can or must appear.

To use quantifiers:

1. Load pcre.php in your Web browser, if it

is not already.

2. Check if a string contains the letters c

and t, with one or more letters in

between (Figure 13.9).

To do so, use c.+t as the pattern and any

number of strings as the subject.

Remember that the period matches any

character (except for the newline). Each

of the following would be a match: cat,

count, coefficient, etc. The word doctor

would not match, as there are no letters

between the c and the t (although doctor

would match c.*t).

3. Check if a string matches either cat or

cats (Figure 13.10).

To start, if you want to make an exact

match, use both the caret and the dollar

sign. Then you’d have the literal text cat,

followed by an s, followed by a question

mark (representing 0 or 1 s’s). The final

pattern—^cats?$—matches cat or cats

but not my cat left or I like cats.

4. Check if a string ends with .33, .333, or

.3333 (Figure 13.11).

To find a period, escape it with a back-

slash: \.. To find a three, use a literal 3. To

find a range of 3’s, use the curly brackets

({}). Putting this together, the pattern is

\.3{2,4}. Because the string should end

with this (nothing else can follow), con-

clude the pattern with a dollar sign:

\.3{2,4}$.

Admittedly, this is kind of a stupid exam-

ple (not sure when you’d need to do

exactly this), but it does demonstrate

several things. This pattern will match

lots of things—12.333, varmit.3333, .33,

look .33—but not 12.3 or 12.334.

398

Chapter 13

U
s

i
n

g
 Q

u
a

n
t

i
f
i
e

r
s

Figure 13.10 You can check for the plural form
of many words by adding s? to the pattern.

Figure 13.11 The curly braces let you dictate the
acceptable range of quantities present.

Figure 13.9 The plus sign, when used as a
quantifier, requires that one or more of a
thing be present.

5. Match a five-digit number (Figure 13.12).

A number can be any one of the num-

bers 0 through 9, so the heart of the pat-

tern is (0|1|2|3|4|5|6|7|8|9). Plainly said,

this means: a number is a 0 or a 1 or a 2

or a 3…. To make it a five-digit number,

follow this with a quantifier:

(0|1|2|3|4|5|6|7|8|9){5}. Finally, to

match this exactly (as opposed to match-

ing a five-digit number within a string),

use the caret and the dollar sign:

^(0|1|2|3|4|5|6|7|8|9){5}$.

This, of course, is one way to match a

United States zip code, a very useful

pattern.

✔ Tips

■ When using curly braces to specify a

number of characters, you must always

include the minimum number. The maxi-

mum is optional: a{3} and a{3,} are

acceptable, but a{,3} is not.

■ Although it demonstrates good dedica-

tion to programming to learn how to

write and execute your own regular

expressions, numerous working exam-

ples are available already by searching

the Internet.

399

Perl-Compatible Regular Expressions

U
s

i
n

g
 Q

u
a

n
t

i
f
i
e

r
s

Figure 13.12 The proper test for confirming that a
number contains five digits.

Using Character Classes
As the last example demonstrated (Figure

13.12), relying solely upon literals in a pat-

tern can be tiresome. Having to write out

all those digits to match any number is silly.

Imagine if you wanted to match any four-

letter word: ^(a|b|c|d…){4}$ (and that

doesn’t even take into account uppercase

letters)! To make these common references

easier, you can use character classes.

Classes are created by placing characters

within square brackets ([]). For example,

you can match any one vowel with [aeiou].

This is equivalent to (a|e|i|o|u). Or you can

use the hyphen to indicate a range of char-

acters: [a-z] is any single lowercase letter

and [A-Z] is any uppercase, [A-Za-z] is any

letter in general, and [0-9] matches any

digit. As an example, [a-z]{3} would match

abc, def, oiw, etc.

Within classes, most of the meta-characters

are treated literally, except for four. The

backslash is still the escape, but the caret (^)

is a negation operator when used as the first

character in the class. So [^aeiou] will

match any non-vowel. The only other meta-

character within a class is the dash, which

indicates a range. (If the dash is used as the

last character in a class, it’s a literal dash.)

And, of course, the closing bracket (]) still

has meaning as the terminator of the class.

Naturally a class can have both ranges and

literal characters. A person’s first name,

which can contain letters, spaces, apostro-

phes, and periods, could be represented by

[A-z '.] (again, the period doesn’t need to be

escaped within the class, as it loses its meta-

meaning there).

Along with creating your own classes, there

are six already-defined classes that have

their own shortcuts (Table 13.3). The digit

and space classes are easy to understand.

400

Chapter 13

U
s

i
n

g
 C

h
a

r
a

c
t

e
r

 C
l

a
s

s
e

s

C l a s s S h o r t c u t M e a n i n g

[0-9] \d Any digit
[\f\r\t\n\v] \s Any white space
[A-Za-z0-9_] \w Any word character
[^0-9] \D Not a digit
[^\f\r\t\n\v] \S Not white space
[^A-Za-z0-9_] \W Not a word character

Character Classes

Table 13.3 These character classes are commonly
used in regular expressions.

The word character class doesn’t mean

“word” in the language sense but rather as in

a string unbroken by spaces or punctuation.

Using this information, the five-digit number

(aka, zip code) pattern could more easily be

written as ^[0-9]{5}$ or ^\d{5}$. As anoth-

er example, can\s?not will match both can

not and cannot (the word can, followed by

zero or one space characters, followed by not).

To use character classes:

1. Load pcre.php in your Web browser, if it

is not already.

2. Check if a string is formatted as a valid

United States zip code (Figure 13.13).

A United States zip code always starts

with five digits (^\d{5}). But a valid zip

code could also have a dash followed by

another four digits (-\d{4}$). To make

this last part optional, use the question

mark (the 0 or 1 quantifier). This com-

plete pattern is then ^(\d{5})(-\d{4})?$.

To make it all clearer, the first part of the

pattern (matching the five digits) is also

grouped in parentheses, although this

isn’t required in this case.

3. Check if a string contains no spaces

(Figure 13.14).

The \S character class shortcut will match

non-space characters. To make sure that

the entire string contains no spaces, use

the caret and the dollar sign: ^\S$. If you

don’t use those, then all the pattern is

confirming is that the subject contains

at least one non-space character.

4. Validate an email address (Figure 13.15).

The pattern ^[\w.-]+@[\w.-]+\.[A-Za-

z]{2,6}$ provides for reasonably good

email validation. It’s wrapped in the caret

and the dollar sign, so the string must be

a valid email address and nothing more.

401

Perl-Compatible Regular Expressions

U
s

i
n

g
 C

h
a

r
a

c
t

e
r

 C
l

a
s

s
e

s

continues on next page

Figure 13.15 A pretty good and reliable validation
for email addresses.

Figure 13.13 The pattern to match a United
States zip code, in either the five-digit or five
plus four format.

Figure 13.14 The no-white-space shortcut
can be used to ensure that a submitting
string is contiguous.

An email address starts with letters,

numbers, and the underscore (represent-

ed by \w), plus a period (.) and a dash.

This first block will match larryullman,

larry77, larry.ullman, larry-ullman, and

so on. Next, all email addresses include

one and only one @. After that, there can

be any number of letters, numbers, peri-

ods, and dashes. This is the domain

name: dmcinsights, smith-jones,

amazon.co (as in amazon.co.uk), etc.

Finally, all email addresses conclude with

one period and between two and six let-

ters. This accounts for .com, .edu, .info,

.travel, etc.

✔ Tips

■ I think that the zip code example is a

great demonstration as to how complex

and useful regular expressions are. One

pattern accurately tests for both formats

of the zip code, which is fantastic. But

when you put this into your PHP code,

with quotes and delimiters, it’s not easily

understood:

if (preg_match ('/^(\d{5})(-\d{4})?$/
➝ ', $zip)) {…

That certainly looks like gibberish, right?

■ This email address validation pattern is

pretty good, although not perfect. It will

allow some invalid addresses to pass

through (like ones starting with a period

or containing multiple periods together).

However, a 100 percent foolproof valida-

tion pattern is ridiculously long, and fre-

quently using regular expressions is real-

ly a matter of trying to exclude the bulk

of invalid entries without inadvertently

excluding any valid ones.

■ Regular expressions, particularly PCRE

ones, can be extremely complex. When

starting out, it’s just as likely that your

use of them will break the validation rou-

tines instead of improving them. That’s

why practicing like this is important.

402

Chapter 13

U
s

i
n

g
 C

h
a

r
a

c
t

e
r

 C
l

a
s

s
e

s

Using Boundaries

Boundaries are shortcuts for helping to find, um, boundaries. In a way, you’ve already seen

this: using the caret and the dollar sign to match the beginning or end of a value. But what

if you wanted to match boundaries within a value?

The clearest boundary is between a word and a non-word. A “word” in this case is not cat,

month, or zeitgeist, but in the \w shortcut sense: the letters A through Z (both upper- and

lowercase), plus the numbers 0 through 9, and the underscore. To use words as boundaries,

there’s the \b shortcut. To use non-word characters as boundaries, there’s \B. So the pattern

\bfor\b matches they’ve come for you but doesn’t match force or forebode. Therefore \bfor\B

would match force but not they’ve come for you or informal.

Finding All Matches
Going back to the PHP functions used

with Perl-Compatible regular expressions,

preg_match() has been used just to see if

a pattern matches a value or not. But the

script hasn’t been reporting what, exactly,

in the value did match the pattern. You can

find out this information by using a variable

as a third argument to the function:

preg_match(pattern, subject, $match)

The $match variable will contain the first

match found (because this function only

returns the first match in a value). To find

every match, use preg_match_all(). Its

syntax is the same:

preg_match_all(pattern, subject,
➝ $matches)

This function will return the number of

matches made, or FALSE if none were found.

It will also assign to $matches every match

made. Let’s update the PHP script to print

the returned matches, and then run a couple

more tests.

To report all matches:

1. Open pcre.php (Script 13.1) in your text

editor or IDE.

2. Change the invocation of preg_match()
to (Script 13.2)

if (preg_match_all ($pattern,
$subject, $matches)) {

There are two changes here. First, the

actual function being called is different.

Second, the third argument is provided

a variable name that will be assigned

every match.

403

Perl-Compatible Regular Expressions

F
i
n

d
i
n

g
 A

l
l
 M

a
t

c
h

e
s

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/
xhtml">

4 <head>

5 <meta http-equiv="content-type" content=
"text/html; charset=iso-8859-1" />

6 <title>Testing PCRE</title>

7 </head>

8 <body>

9 <?php // Script 13.2 - matches.php

10

11 // This script takes a submitted string
and checks it against a submitted pattern.

12 // This version prints every match made.

13

14 if (isset($_POST['submitted'])) {

15

16 // Trim the strings:

17 $pattern = trim($_POST['pattern']);

18 $subject = trim($_POST['subject']);

19

20 // Print a caption:

21 echo "<p>The result of checking

$pattern
against

$subject
is ";

22

23 // Test:

24 if (preg_match_all ($pattern, $subject,

$matches)) {

25 echo 'TRUE!</p>';

26

Script 13.2 To reveal exactly what values in a string
match which patterns, this revised version of the
script will print out each match. You can retrieve the
matches by naming a variable as the third argument
in preg_match() or preg_match_all().

(script continues on next page)

continues on next page

27 // Print the matches:

28 echo '<pre>' . print_r($matches, 1) .

'</pre>';

29

30 } else {

31 echo 'FALSE!</p>';

32 }

33

34 } // End of submission IF.

35 // Display the HTML form.

36 ?>

37 <form action="matches.php" method="post">

38 <p>Regular Expression Pattern: <input
type="text" name="pattern" value="
<?php if (isset($pattern)) echo
$pattern; ?>" size="30" /> (include
the delimiters)</p>

39 <p>Test Subject: <textarea name=

"subject" rows="5" cols="30"><?php

if (isset($subject)) echo $subject;

?></textarea></p>

40 <input type="submit" name="submit"
value="Test!" />

41 <input type="hidden" name="submitted"
value="TRUE" />

42 </form>

43 </body>

44 </html>

3. After printing the value TRUE, print the

contents of $matches.

echo '<pre>' . print_r($matches, 1) .
➝ '</pre>';

Even though the PRE tags are not

XHTML compliant, this is the easiest

way to know what’s in $matches. As you’ll

see when you run this script, this vari-

able will be an array whose first element

is an array of matches made.

4. Change the form’s action attribute to

matches.php.

<form action="matches.php" method=
➝ "post">

This script will be renamed, so the

action attribute must be changed, too.

5. Change the subject input to be a

textarea.

<p>Test Subject: <textarea name=
➝ "subject" rows="5" cols="30"><?php
➝ if (isset($subject)) echo $subject;
➝ ?></textarea></p>

In order to be able to enter in more text

for the subject, this element will become

a textarea.

404

Chapter 13

F
i
n

d
i
n

g
 A

l
l
 M

a
t

c
h

e
s

Script 13.2 continued

6. Save the file as matches.php, place it in

your Web directory, and test it in your

Web browser (Figures 13.16, 13.17,

13.18, and 13.19).

For the first test, use for as the pattern

and This is a formulaic test for informal

matches. as the subject (Figure 13.16). It

may not be proper English, but it’s a

good test subject.

For the second test, change the pattern

to for.* (Figure 13.17). The result may

surprise you, the cause of which is dis-

cussed in the sidebar, “Being Less

Greedy.” To make this search less greedy,

the pattern could be changed to for.*?,

whose results would be the same as

those in Figure 13.16.

405

Perl-Compatible Regular Expressions

F
i
n

d
i
n

g
 A

l
l
 M

a
t

c
h

e
s

Figure 13.16 This first test returns
three matches, as the literal text
for was found three times. Figure 13.17 Because regular expressions are greedy

by default (see the sidebar), this pattern only finds
one match in the string. That match happens to start
with the first instance of for and continue until the
end of the string.

Figure 13.18 This revised pattern
matches strings that begin with
for and end on a word.

Figure 13.19 Unlike the pattern
in Figure 13.18, this one matches
entire words that contain for
(informal here, formal in Figure
13.18).

For the third test, use for[\S]*, or, more

simply for\S* (Figure 13.18). This has the

effect of making the match stop as soon

as a white space character is found

(because the pattern wants to match for

followed by any number of non–white

space characters).

For the final test, use \b[a-z]*for[a-z]

*\b as the pattern (Figure 13.19). This

pattern makes use of boundaries, dis-

cussed in the sidebar “Using Boundaries,”

earlier in the chapter.

✔ Tip

■ The preg_split() function will take a

string and break it into an array using a

regular expression pattern.

406

Chapter 13

F
i
n

d
i
n

g
 A

l
l
 M

a
t

c
h

e
s

Being Less Greedy

A key component to Perl-Compatible reg-

ular expressions, which isn’t present in

POSIX, is the concept of greediness. By

default, PCRE will attempt to match as

much as possible. For example, the pattern

<.+> matches any HTML tag. When test-

ed on a string like

Link, it will actually match that

entire string, from the opening < to the

closing one. This string contains three

possible matches, though: the entire

string, the opening tag (from <a to ">),

and the closing tag ().

To overrule greediness, make the match

lazy. A lazy match will contain as little

data as possible. Any quantifier can be

made lazy by following it with the ques-

tion mark. For example, the pattern

<.+?> would return two matches in the

preceding string: the opening tag and the

closing tag. It would not return the whole

string as a match. (This is one of the con-

fusing aspects of the regular expression

syntax: the same character—here, the

question mark—can have different mean-

ings depending on its context.)

Another way to make patterns less greedy

is to use negative classes. The pattern

<[^>]+> matches everything between

the opening and closing <> except for a

closing >. So using this pattern would

have the same result as using <.+?>. This

pattern would also match strings that

contain newline characters, which the

period excludes.

Using Modifiers
The majority of the special characters you

can use in regular expression patterns are

introduced in this chapter. One final type of

special character is the pattern modifier.

Table 13.4 lists these. Pattern modifiers

are different than the other meta-characters

in that they are placed after the closing

delimiter.

Of these delimiters, the most important is i,

which enables case-insensitive searches. All

of the examples using variations on for (in the

previous sequence of steps) would not match

the word For. However, /for.*/i would be a

match. Note that I am including the delim-

iters in that pattern, as the modifier goes

after the closing one. Similarly, the last step

in that sequence referenced the sidebar “Begin

Less Greedy” and stated how for.*? would

perform a lazy search. So would /for.*/U.

The multiline mode is also interesting in that

you can make the caret and the dollar sign

behave differently. By default, each applies to

the entire value. In multiline mode, the caret

matches the beginning of any line and the

dollar sign matches the end of any line.

407

Perl-Compatible Regular Expressions

U
s

i
n

g
 M

o
d

i
f
i
e

r
s

C h a r a c t e r R e s u lt

A Anchors the pattern to the beginning of
the string

i Enables case-insensitive mode

m Enables multiline matching

s Has the period match every character,
including newline

x Ignores most white space

U Performs a non-greedy match

Pattern Modifiers

Table 13.4 These characters, when placed after the
closing delimiter, alter the behavior of a regular
expression.

To use modifiers:

1. Load matches.php in your Web browser,

if it is not already.

2. Validate a list of email addresses

(Figure 13.20).

To do so, use /^[\w.-]+@[\w.-]+\.[A-

Za-z]{2,6}\r?$/m as the pattern. You’ll

see that I’ve added an optional carriage

return (\r?) before the dollar sign. This is

necessary because some of the lines will

contain returns and others won’t. And in

multiline mode, the dollar sign matches

the end of a line. (To be more flexible,

you could use \s? instead.)

3. Validate a list of United States zip codes

(Figure 13.21).

Very similar to the example in Step 2,

the pattern is now /^(\d{5})(-\d{4})?\

s?$/m. You’ll see that I’m using the more

flexible \s? instead of \r?.

You’ll also notice when you try this your-

self (or in Figure 13.21) that the $matches
variable contains a lot more information

now. This will be explained in the next

section of the chapter.

✔ Tip

■ To always match the start or end of a

pattern, regardless of the multiline set-

ting, there are shortcuts you can use.

Within the pattern, the shortcut \A
will match only the very beginning of

the value, \z matches the very end, and

\Z matches any line end, like $ in single-

line mode.

408

Chapter 13

U
s

i
n

g
 M

o
d

i
f
i
e

r
s

Figure 13.20 A list of email addresses, one per line,
can be validated using the multiline mode. Each valid
address is stored in $matches.

Figure 13.21 Validating a list of zip codes, one
per line.

Matching and Replacing
Patterns
The last subject to discuss in this chapter is

how to match and replace patterns in a value.

While preg_match() and preg_match_all()
will find things for you, if you want to do a

search and replace, you’ll need to use preg_
replace(). Its syntax is

preg_replace(pattern, replacement,
➝ subject)

This function takes an optional fourth argu-

ment limiting the number of replacements

made.

To replace all instances of cat with dog, you

would use

$str = preg_replace('/cat/', 'dog', 'I
➝ like my cat.');

This function returns the altered value (or

unaltered value if no matches were made),

so you’ll likely want to assign it to a variable

or use it as an argument to another function

(like printing it by calling echo()). Also, as

a reminder, this is just an example: you’d

never want to replace one literal string with

another using regular expressions, use

str_replace() instead.

There is a related concept to discuss that is

involved with this function: back referencing.

In a zip code matching pattern—^(\d{5})(-

\d{4})?$—there are two groups within

parentheses: the first five digits and the

optional dash plus four-digit extension.

Within a regular expression pattern, PHP

will automatically number parenthetical

groupings beginning at 1. Back referencing

allows you to refer to each individual section

by using $ plus the corresponding number.

For example, if you match the zip code

94710-0001 with this pattern, referring back

to $2 will give you -0001. The code $0 refers

to the whole initial string. This is why Figure

13.21 shows entire zip code matches in

$matches[0], the matching first five digits in

$matches[1], and any matching dash plus

four digits in $matches[2].

To practice with this, let’s modify Script 13.2 to

also take a replacement input (Figure 13.22).

409

Perl-Compatible Regular Expressions

M
a

t
c

h
i
n

g
 a

n
d

 R
e

p
l

a
c

i
n

g
 P

a
t

t
e

r
n

s

Figure 13.22 One use of preg_replace() would be to
replace variations on inappropriate words with
symbols representing their omission.

To match and replace patterns:

1. Open matches.php (Script 13.2) in your

text editor or IDE.

2. Add a reference to a third incoming vari-

able (Script 13.3).

$replace = trim($_POST['replace']);

As you can see in Figure 13.22, the third

form input (added between the existing

two) takes the replacement value. That

value is also trimmed to get rid of any

extraneous spaces.

3. Change the caption.

echo "<p>The result of replacing<br
➝ />$pattern
with<br
➝ />$replace
in
$subject
➝

";

The caption will print out all of the

incoming values, prior to applying

preg_replace().

410

Chapter 13

M
a

t
c

h
i
n

g
 a

n
d

 R
e

p
l

a
c

i
n

g
 P

a
t

t
e

r
n

s

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/
xhtml">

4 <head>

5 <meta http-equiv="content-type" content=
"text/html; charset=iso-8859-1" />

6 <title>Testing PCRE Replace</title>

7 </head>

8 <body>

9 <?php // Script 13.3 - replace.php

10

11 // This script takes a submitted string
and checks it against a submitted pattern.

12 // This version replaces one value with
another.

13

14 if (isset($_POST['submitted'])) {

15

16 // Trim the strings:

17 $pattern = trim($_POST['pattern']);

18 $subject = trim($_POST['subject']);

19 $replace = trim($_POST['replace']);

20

21 // Print a caption:

22 echo "<p>The result of replacing
$pattern
with

$replace
in
$subject

";

23

24 // Check for a match:

25 if (preg_match ($pattern, $subject)) {

26 echo preg_replace($pattern, $replace,
$subject) . '</p>';

27 } else {

Script 13.3 To test the preg_replace() function,
which replaces a matched pattern in a string with
another value, you can use this third version of the
PCRE test script.

(script continues on next page)

4. Change the regular expression condition-

al so that it only calls preg_replace() if a

match is made.

if (preg_match ($pattern, $subject)
➝) {

echo preg_replace($pattern,
➝ $replace, $subject) . '</p>';

} else {

echo 'The pattern was not
➝ found!</p>';

}

You can call preg_replace() without

running preg_match() first. If no match

was made, then no replacement will

occur. But to make it clear when a match

is or is not being made (which is always

good to confirm, considering how tricky

regular expressions are), the preg_match()
function will be applied first. If it returns

a true value, then preg_replace() is

called, printing the results (Figure

13.23). Otherwise, a message is printed

indicating that no match was made

(Figure 13.24).

411

Perl-Compatible Regular Expressions

M
a

t
c

h
i
n

g
 a

n
d

 R
e

p
l

a
c

i
n

g
 P

a
t

t
e

r
n

s

Script 13.3 continued

28 echo 'The pattern was not found!</p>';

29 }

30

31 } // End of submission IF.

32 // Display the HTML form.

33 ?>

34 <form action="replace.php" method="post">

35 <p>Regular Expression Pattern: <input
type="text" name="pattern" value="<?php
if (isset($pattern)) echo $pattern; ?>"
size="30" /> (include the delimiters)
</p>

36 <p>Replacement: <input type="text"
name="replace" value="<?php if
(isset($replace)) echo $replace; ?>"
size="30" /></p>

37 <p>Test Subject: <textarea name=
"subject" rows="5" cols="30"><?php
if (isset($subject)) echo $subject;
?></textarea></p>

38 <input type="submit" name="submit"
value="Test!" />

39 <input type="hidden" name="submitted"
value="TRUE" />

40 </form>

41 </body>

42 </html>

Figure 13.23 The resulting text has uses of
bleep, bleeps, bleeped, bleeper, and bleeping
replaced with *****.

Figure 13.24 If the pattern is not found within
the subject, the subject will not be changed.
The replacement value is hidden here
because it uses HTML tags; see the source
code for the full effect.

5. Change the form’s action attribute to

replace.php.

<form action="replace.php" method=
➝ "post">

This file will be renamed, so this value

needs to be changed accordingly.

6. Add a text input for the replacement

string.

<p>Replacement: <input type="text"
➝ name="replace" value="<?php if
➝ (isset($replace)) echo $replace;
➝ ?>" size="30" /></p>

7. Save the file as replace.php, place it in

your Web directory, and test it in your

Web browser (Figure 13.25).

As a good example, you can turn an

email address found within some text

into its HTML link equivalent:
email@example.com. The pattern for

matching an email address should be

familiar by now: ^[\w.-]+@[\w.-]+\.[A-

Za-z]{2,6}$. However, because the email

address could be found within some text,

the caret and dollar sign need to be

412

Chapter 13

M
a

t
c

h
i
n

g
 a

n
d

 R
e

p
l

a
c

i
n

g
 P

a
t

t
e

r
n

s

replaced by the word boundaries short-

cut: \b. The final pattern is therefore

/\b[\w.-]+@[\w.-]+\.[A-Za-z]{2,6}\b/.

To refer to this matched email address,

you can refer to $0 (because $0 refers to

the entire match, whether or not paren-

theses are used). So the replacement

value would be $0

. Because HTML is involved here,

look at the HTML source code of the

resulting page for the best idea of what

happened.

✔ Tips

■ Back references can even be used within

the pattern. For example, if a pattern

included a grouping (i.e., a subpattern)

that would be repeated.

■ I’ve introduced, somewhat quickly, the

bulk of the PCRE syntax here, but there’s

much more to it. Once you’ve mastered

all this, you can consider moving on to

anchors, named subpatterns, comments,

lookarounds, possessive quantifiers,

and more.

Figure 13.25 Another use of
preg_replace() is
dynamically turning email
addresses into clickable links.

The biggest change in version 6 of PHP is support for Unicode. But what is Unicode

and why should you care? In this chapter, I’ll answer those questions, and show you

how you might change your Web sites using this new information. But as a preview, if

you’d like your Web sites to be usable by people that don’t speak the same language

as you, or if you don’t feel like always programming in your non-native language,

keep reading!

This chapter goes over several subjects, all with the goal of making a more global

Web site. The bulk of these topics involve text: character sets, encodings, collation,

transliteration, and Unicode. These topics apply to PHP, MySQL, HTML, and even the

application you create your PHP scripts in. I’ll be presenting a book’s worth of infor-

mation in just a few pages, but it’ll certainly be enough for you to use in real sites.

The other subjects covered here are time zones and locales. Like the language a user

reads and writes, these two ideas reflect the different cultures and regions in the

world, and therefore ought to be considered in your Web applications. Understanding

all of these subjects, and being able to apply the techniques taught herein, will make

your Web sites more reliable, more impressive, and accessible to a larger audience.

413

Making
Universal Sites

14

M
a

k
i
n

g
 U

n
i
v

e
r

s
a

l
 S

i
t

e
s

Character Sets and
Encoding
To understand the concepts of character sets

and encoding, you have to first realize that,

in your computer, there is no such thing as

the letter A. The letter A is part of a charac-

ter set: the symbols used by a language (also

called a character repertoire). But the A on

my screen as I write this, the A in the text

document itself: these aren’t really A’s. At

their foundation, computers understand num-

bers, not letters. This works well for com-

puters, but humans like to see letters. The

solution is to have numbers represent letters.

ASCII, which you’ve certainly heard of and

is short for American Standard Code for

Information Interchange, is a representation

of all the letters in the English alphabet—A

through Z, both upper- and lowercase—plus

the digits 0 through 9, plus all English punc-

tuation. That’s a total of 95 characters. Add

to this 33 non-printing characters such as

the newline (\n) and a tab (\t), and you have

128 characters, associated with the integers 0

through 127 (Table 14.1). This is a coded

character set: each character is represented

by a number (the number is also called a

code point).

When computers store data or transfer it

from one computer to another, they don’t do

so in numbers, they do so in bytes. Encoding

is how a coded character set is mapped from

integers to bytes. Working backward then,

by identifying how text is encoded, a com-

puter can recognize its coded character set,

and therefore know what characters should

be displayed.

Although ASCII represents the entire English

character set, it doesn’t include all the accented

characters in related languages, like French

and Spanish. Nor does it include non-Latin

characters, like those present in German,

Greek, or Korean. It doesn’t even include things

like curly quotes. Other encodings have since

been defined, lots and lots of them: different

encodings for different languages, even differ-

ent encodings for different computers (e.g.,

Windows vs. Mac). Making communication

difficult, two encodings would commonly use

the same number to represent different

characters. From this mess, Unicode was born.

Unicode provides a unique number represent-

ing every symbol in every alphabet for any

operating system and program. It’s a huge goal

and Unicode succeeds rather well. Version 5

of Unicode—the current version at the time

of this writing—supports over 99,000 char-

acters, but the upper limit is well over a mil-

lion. Table 14.2 lists just a sampling of the

scripts supported (a script being the collection

of symbols used by one or more languages).

414

Chapter 14

I n t e g e r K e y / C h a r a c t e r

0 NULL
9 \t
10 \n
27 Escape
32 Space
43 +
54 6
64 @
65 A
97 a
126 ~
127 Delete

Some ASCII Characters

C
h

a
r

a
c

t
e

r
 S

e
t

s
 a

n
d

 E
n

c
o

d
i
n

g

Table 14.1 These twelve items are a sampling of the
128 characters defined by the ASCII standard.

S c r i p t

Arabic
Cherokee
Cyrillic
Greek
Han
Hebrew
Latin
N’Ko
Runic
Tibetan

Unicode Supported Scripts

When using Unicode, you still have to choose

which encoding to go with. UTF-8 is perhaps

the most common, in part because ASCII,

used so commonly for years, is a nice little

subset of UTF-8. In fact, any ASCII text is

also valid UTF-8. There’s also UTF-16 and

UTF-32, each with larger character sets.

In these paragraphs I’ve introduced the key

concepts that will help you comprehend the

information in the rest of the chapter. Doing

so required the distillation of oodles of tech-

nical information, the glossing over of many

details, and the abbreviation of decades of

computer history. If you want to learn more

about these subjects, a search online will

turn up volumes, but what you most need to

understand is this: the encoding you use dic-

tates what characters can be represented

(and therefore, what languages can be used).

✔ Tips

■ Unfortunately, many resources, including

HTML and MySQL, use the term charset

or character set to refer to the encoding.

The two things are technically different,

but the terms are used synonymously.

■ Prior to UTF-8, ISO-8859-1 was one of

the more commonly used encodings. It

represents most Western European lan-

guages. It’s still the default encoding for

many Web browsers and other applications.

■ Email messages should (but don’t always)

indicate the encoding. You can normally

see this by viewing the raw source of a

message, which will contain a line like

Content-Type: text/plain;
➝ charset="UTF-8"

■ Any document—email, Web page, or text

file—that contains some junk characters

probably wasn’t encoding properly

(Figure 14.1).

415

Making Universal Sites

C
h

a
r

a
c

t
e

r
 S

e
t

s
 a

n
d

 E
n

c
o

d
i
n

g

Table 14.2 A handful of the scripts represented in
Unicode. Some scripts, like Latin, are used in many
languages (English, Italian, Portuguese, etc); others,
like Hangul, are only used in one (Korean, in this case).

Figure 14.1 This friendly little piece of spam I received
didn’t use the right encoding, so junk characters
appeared instead (thereby denying me the full joy of
the message).

Creating Multilingual
Web Pages
Eventually this chapter will go over how to

use multiple languages (i.e., multiple charac-

ters) in PHP and MySQL, but doing so man-

dates that you know how to make an HTML

page that can display characters from many

languages. Of course, what characters you

can display is determined by the encoding,

but even that topic comes into play more

than once in this process.

Say you want to create a Web page that con-

tains text in both English and Japanese. For

starters, your computer must be able to enter

characters in both languages (it must have

the necessary fonts). Normally you can type

in one (native) language, but most operating

systems offer tools for inserting characters

from other languages, too. If your computer

supports both languages, then you need to

use an encoding for the Web page that sup-

ports both, too. That would be UTF-8, in all

likelihood. Therefore, the HTML file needs

to be written in an application that supports

UTF-8 encoding; not all do.

If you have all that, you can now create a

document with both English and Japanese

characters. This HTML page will be viewable

by others in their Web browsers. The Web

browsers, then, need to know what encoding

the HTML page uses. One way to convey

this information is to use a META tag:

<meta http-equiv="Content-Type"
➝ content="text/html; charset=utf-8">

(To repeat what’s said on a previous page,

unfortunately the term charset is used to

mean encoding, not character set.)

The last requirement is that the end user’s

computer also support both character sets

(i.e., they have the necessary fonts). If so,

then you’ve successfully created and shared

a multilingual Web page. Before writing

another opening PHP tag, let’s make sure

you can get all this working.

To create a multilingual Web page:

1. Confirm that your text editor or IDE sup-

ports UTF-8 encoding (Figure 14.2).

You’ll need to check the Web site, help

files, or other documentation for your

application. Getting this step right is

necessary, though, as you can’t create a

UTF-8-encoded document if your editor

doesn’t support UTF-8.

Some applications let you set this in their

preferences (as in Figure 14.2). Others set

the encoding when you save the file

(Figure 14.3).

416

Chapter 14

C
r

e
a

t
i
n

g
 M

u
l
t

i
l
i
n

g
u

a
l
 W

e
b

 P
a

g
e

s

Figure 14.2 My favorite text editor, BBEdit (which
sadly only runs on a Mac), has a preferences area
where you can set the default encoding for documents.

2. Begin a new HTML document

(Script 14.1).

<!DOCTYPE html PUBLIC "-//W3C//DTD
➝ XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd">

<html
➝ xmlns="http://www.w3.org/1999/
➝ xhtml" xml:lang="en" lang="en">

<head>

<title>Testing UTF-8</title>

</head>

<body style="font-size: 18pt;">

<!-- Script 14.1 - utf8.html -->

</body>

</html>

This is mostly standard HTML. To make

the resulting page easier to view, an inline

CSS style increases the base font size to

18 points.

Note that the language declarations in

the opening html tag (the two uses of

lang="en") are indications of the document’s

main language. This is a separate issue

from the encoding and the character set.

417

Making Universal Sites

C
r

e
a

t
i
n

g
 M

u
l
t

i
l
i
n

g
u

a
l
 W

e
b

 P
a

g
e

s

Script 14.1 This script will be a test to confirm that a
UTF-8 Web page can be successfully created and viewed.

Figure 14.3 Notepad on Windows, which isn’t a great
text editor but is usable, lets you define a file’s
encoding when you save it.

continues on next page

3. Add a META tag that indicates the encoding.

<meta http-equiv="Content-Type"
➝ content="text/html; charset=utf-8">

This line should be the first one inside of

the HEAD tag, as the browser needs to

know this information as soon as possi-

ble. It should come before the title tags

(see Script 14.1) or any other META tags.

4. Add some characters or text to the body

of the page.

The first word is a good test of encoding,

as it contains many different accents and

non-Latin characters. You can also throw

in symbols or characters from other lan-

guages. In a list, I’ve added the Euro sym-

bol, the schwa, and infinity; then individ-

ual characters from the Cyrillic, Arabic,

Hebrew, and Hangul scripts (and hope-

fully I haven’t included anything that will

offend anyone!).

How you insert characters depends upon

your operating system. Windows has the

Character Map utility, which lets you

choose characters from installed fonts.

Mac OS X has the Character Palette,

which displays available scripts, and the

Keyboard Viewer, which shows characters

by font. Both can be accessed in the menu

bar, after checking the right boxes in the

International System Preferences pane.

5. Save the file as utf.html and test it in your

Web browser (Figures 14.4 and 14.5).

Because this is just an HTML file, it does

not need to be run through a URL, like a

PHP script.

418

Chapter 14

C
r

e
a

t
i
n

g
 M

u
l
t

i
l
i
n

g
u

a
l
 W

e
b

 P
a

g
e

s

Figure 14.4 A UTF-
8 encoded Web
page, successfully
showing characters
and symbols from
all over the world.

Figure 14.5 The
same HTML page
(as in Figure 14.4),
viewed in Windows.
This browser and
operating system
didn’t support the
Korean character
(the last one),
replacing it with a
question mark.

✔ Tips

■ If a page’s encoding is different than the

encoding it indicates it uses (in the META
tag), that will likely lead to problems.

■ Curly quotes often cause problems in

improperly encoded documents, as they

aren’t part of the ASCII standard.

■ Firefox’s Page Info window (Figure 14.6)

will show the document’s encoding. This

can be a useful debugging tool.

■ Because there are so many variables when

creating multilingual Web pages, they

can be tougher to debug. Make sure that

you use the proper encoding in your

application that creates the HTML or

PHP page, that the encoding is indicated

within the file itself, and that you test

using as many browsers and operating

systems as possible.

■ You can also indicate to the Web browser

the page’s encoding using PHP and the

header() function:

<?php header ('Content-Type:
➝ text/html; charset=UTF-8'); ?>

This can be more effective than using a

META tag, but it does require the page to

be a PHP script. If using this, it must be

the first line in the page, before any HTML.

■ You can specify the encoding to accept

in an HTML form tag, too:

<form accept-charset="utf-8">

By default, a Web page will use the same

encoding as the page itself for any sub-

mitted data.

■ You can declare the encoding of an exter-

nal CSS file by adding @charset "utf-8";
as the first line in the file. If you’re not

using UTF-8, change the line accordingly.

■ Another way to use special characters in

an HTML page is by using a numeric

character reference (NCR). Any Unicode

character can be referenced using the

format &#XXXX;. For example, the Latin

capital A is A. But ideally you

should use your computer to add the

character itself instead of using an NCR.

419

Making Universal Sites

C
r

e
a

t
i
n

g
 M

u
l
t

i
l
i
n

g
u

a
l
 W

e
b

 P
a

g
e

s

Figure 14.6 The informative Page Info window is yet
another reason to use Firefox for your Web development.

Unicode in PHP
Now that you know what Unicode is and

how to create a properly encoded HTML

page, how does this affect PHP, which now

supports Unicode? Lacking Unicode sup-

port, earlier versions of PHP had only one

type of string. PHP 6 has three: Unicode,

binary (for other encodings and binary

data), and native (for backward compatibili-

ty). But because PHP is a weakly typed lan-

guage, you can work with all three types in

more or less the same way.

420

Chapter 14

U
n

i
c

o
d

e
 i

n
 P

H
P

Figure 14.7 In PHP 6, the output generated by calling the phpinfo() function now
has a section for Unicode settings.

Unicode and PHP 5

The most important addition to PHP 6 is support for Unicode, including UTF-8, which I’m

advocating using in this chapter. What’s implied is that earlier versions of PHP did not support

Unicode. This isn’t just a matter of convenience; it’s actually a problem. If you attempt to

work with Unicode text in earlier versions of PHP 6, the results can range from being unex-

pected and unpredictable to insecure.

The reason is that practically every string function in earlier versions of PHP treated each char-

acter as a single byte. This was fine when working with English and many other languages, in

which each character was, in fact, a single byte. But the characters in other languages some-

times require multiple bytes apiece. Applying even a simple function like substr() to such

text would give erroneous results. PHP 5 and earlier has two sets of functions for working with

multibyte strings—mb_* and iconv_*—but neither is perfect and you really need to know your

stuff to use them.

Simply said, if you need to handle Unicode data, make sure you’re using PHP 6. If you’re not

using PHP 6, don’t accept multibyte characters (i.e., use a different encoding).

To use Unicode with PHP, it first has to be

enabled. Doing so requires modifying PHP’s

configuration file. The specific setting is uni-

code.semantics, which must be turned on. If

you’re running your own installation of PHP,

see Appendix A, “Installation,” for instruc-

tions on changing PHP’s configuration. If

using a hosted server that’s running PHP 6,

you’ll have to ask them to enable Unicode

support. You can confirm this setting by

calling the phpinfo() function (Figure 14.7).

With Unicode enabled, PHP scripts can

properly handle Unicode text that might

come from a form, a text file, or a database.

Functions like substr() or strlen(), which

would not properly work with Unicode data

in PHP 5, will now function correctly.

You can also now use non-Latin characters for

identifiers: the names of variables, functions,

and so forth (keywords in PHP will still be in

English). These are possible in PHP 6:

If you’re going to use Unicode characters in

identifiers, you need indicate to PHP what

encoding you’re using (aside from encoding

the script itself properly using your applica-

tion). To do so, use

declare (encoding="UTF-8");

This must be the first line in the PHP script

(after the opening tag, of course). Also, any

included file also needs to indicate its encod-

ing (the encoding is not inherited from one

script to another).

While I think that being able to use your

native language for identifiers is really cool,

to demonstrate Unicode in PHP, let’s create

a script that highlights some differences

between PHP 5 and PHP 6.

421

Making Universal Sites

U
n

i
c

o
d

e
 i

n
 P

H
P

To use Unicode in PHP:

1. Begin a new PHP document in your text

editor or IDE (Script 14.2).

<?php header ('Content-Type:
➝ text/html; charset=UTF-8'); ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD
➝ XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd">

<html
➝ xmlns="http://www.w3.org/1999/xhtml"
➝ xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type"
➝ content="text/html;
➝ charset=utf-8" />

<title>Unicode in PHP</title>

</head>

<body style="font-size: 18pt;">

<h1>Names from Around the World</h1>

<?php # Script 14.2 - unicode.php

Per a mention in a tip on a previous page,

this document will also use a PHP head-
er() call to indicate to the Web browser

the encoding.

2. Create a list of names.

I’ve pulled together some names from

around the world and placed them into

an array for easy access.

422

Chapter 14

U
n

i
c

o
d

e
 i

n
 P

H
P

Script 14.2 A handful of multilingual names are printed,
along with their lengths and their capitalized forms.

3. Print each name’s length and capitalized

version.

foreach ($names as $name) {

echo "<p>$name has " .
➝ strlen($name) . "
➝ characters
\n" .
➝ strtoupper($name) . " in
➝ capital letters</p>\n";

}

This code should be pretty easy to under-

stand, even though it’s going to be applied

to strings in multiple languages. It loops

through the array, printing out each name

as it originally is. Then it also prints out

the number of characters in the name

and the name in all caps.

4. Complete the page.

?>

</body>

</html>

5. Save the file as unicode.php, place it in

your Web directory, and test it in your

Web browser (Figure 14.8).

6. If possible, run the same script using an

older version of PHP (Figure 14.9).

✔ Tips

■ You can use casting to forcibly convert a

string from one encoding type to another

(see Chapter 12, “Security Methods,” for

an introduction to typecasting). The

casting keywords are (binary), (unicode),

and (string).

■ Alternatively, you can use unicode_encode()
and unicode_decode() to convert strings

from one encoding to another. The

unicode_set_error_mode() determines

how any conversion problems are handled.

423

Making Universal Sites

U
n

i
c

o
d

e
 i

n
 P

H
P

Figure 14.8 The (accurate)
results of running the Unicode
PHP script using PHP 6.

Figure 14.9 The same page
(Script 14.2), run under PHP
5.2. Notice how both the
character counts and
capitalization are incorrect
and differ from the results in
Figure 14.8.

Collation in PHP
Collation refers to the rules used for com-

paring characters in a set. It’s like alphabeti-

zation, but takes into account numbers,

spaces, and other characters as well. Collation

relates to the character set being used,

reflecting both the kinds of characters pres-

ent and cultural habits. How text is sorted in

English is not the same as it is in Traditional

Spanish or in Arabic. For example, are upper-

and a lowercase versions of a character con-

sidered to be the same or different (i.e., is it

a case-sensitive comparison)? Or, how do

accented characters get sorted? Is a space

counted or ignored?

The best way to sort Unicode strings in PHP 6

is to use the Collator class. This gets into

the subject of object-oriented programming

(OOP), not otherwise discussed in this book

(a solid introduction provided by my book

PHP 5 Advanced: Visual QuickPro Guide

(Peachpit Press, 2007) requires over 100 pages),

but the syntax is easy enough to follow.

Start by creating a new object of type

Collator:

$c = new Collator(locale);

When doing this, you need to indicate the

locale. I discuss locales at the end of the chap-

ter, but for now, just know that it’ll be a short

string indicating a language and geographic

reference point. For example, jp_JP is Japanese

in Japan; pt_BR is Portuguese in Brazil.

Next, apply the sort() function to an array

of strings. Calling functions in a class uses

the $object->function() syntax:

$array = $c->sort($array);

Let’s run through an example of this.

424

Chapter 14

C
o

l
l

a
t

i
o

n
 i

n
 P

H
P

To use collation in PHP:

1. Begin a new PHP document in your text

editor or IDE (Script 14.3).

<?php header ('Content-Type:
➝ text/html; charset=UTF-8'); ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD
➝ XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd">

<html
➝ xmlns="http://www.w3.org/1999/xhtml"
➝ xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type"
➝ content="text/html;
➝ charset=utf-8" />

<title>Collation in PHP</title>

</head>

<body style="font-size: 18pt;">

<?php # Script 14.3 - collation.php

Remember that, because this script will

use characters in other languages, the file

needs to be encoded in your application

using UTF-8 and the page itself should

indicate to the Web browser this same

encoding.

2. Create a list of words.

$words = array('chère', 'côté',
➝ 'chaise', 'château', 'chaînette',
➝ 'châle', 'Chère', 'côte', 'chemise');

For this example, I’m using a smattering

of French (being about all the French I

know). It’s a good choice, as it contains

lots of a ccented characters. This exam-

ple will then be able to demonstrate how

accented characters are properly sorted.

425

Making Universal Sites

C
o

l
l

a
t

i
o

n
 i

n
 P

H
P

1 <?php header ('Content-Type: text/html;

charset=UTF-8'); ?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">

4 <html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

5 <head>

6 <meta http-equiv="content-type"
content="text/html; charset=utf-8" />

7 <title>Collation in PHP</title>

8 </head>

9 <body style="font-size: 18pt;">

10 <?php # Script 14.3 - collation.php

11

12 // Create an array of words:

13 $words = array('chère', 'côté', 'chaise',

'château', 'chaînette', 'châle', 'Chère',

'côte', 'chemise');

14

15 // Sort using the default PHP function:

16 echo '<h3>Using sort()</h3>';

17 sort($words);

18 echo implode('
', $words);

19

20 // Sort using the Collator:

21 echo '<h3>Using Collator</h3>';

22 $c = new Collator('fr_FR');

23 $words = $c->sort($words);

24 echo implode('
', $words);

25

26 ?>

27 </body>

28 </html>

Script 14.3 The collation.php script sorts several
French words using the Collator class. Using that
code is demonstrably more effective than using PHP’s
built-in sort() function.

continues on next page

3. Use the sort() function, and then print

the results.

echo '<h3>Using sort()</h3>';

sort($words);

echo implode('
', $words);

PHP’s sort() function is the default sort-

ing utility and it works just fine…with

standard English. Let’s see how it does

with French!

The third line here uses the implode()
function as a quick way of printing each

item in the array on its own line. This

function turns an array into a string,

using the first argument as the glue. The

returned string is then printed by echo().

Figure 14.10 shows the HTML source

code resulting from this little shortcut.

4. Use the Collator class, and then print

the results.

echo '<h3>Using Collator</h3>';

$c = new Collator('fr_FR');

$words = $c->sort($words);

echo implode('
', $words);

The syntax for using this Collator class

is described before these steps. For the

locale value, I use fr_FR, which means

French in France.

5. Complete the page.

?>

</body>

</html>

6. Save the file as collation.php, place it in

your Web directory, and test it in your

Web browser (Figure 14.11).

✔ Tips

■ Simple comparisons in PHP, using the com-

parison operators, do not use collation.

■ The Collator class has a setStrength()
function that can be used to adjust the

collation rules. For example, you can use

this to ignore accents or to change the

stress placed on case.

426

Chapter 14

C
o

l
l

a
t

i
o

n
 i

n
 P

H
P

Figure 14.10 To print each item in the array on its own line, I place HTML breaks in between
them using implode().

Figure 14.11 The Collator class
does a better job sorting accented
and capitalized characters than
PHP’s sort() function.

Transliteration in PHP
Transliteration is the conversion of text from

one character set to another. This is not the

same thing as translating, which involves a

certain amount of interpretation. For exam-

ple, in unicode.php (Script 14.2), several

names are placed into an array. One of those

is Greek: . Transliterated into the

Latin alphabet, that would be Gi rgos. The

example also used two Asian names—

and . Those would be turned into Jié

Xi K and Ài Zi, respectively.

Because Unicode maps all the characters in

every language to numbers, it’s actually very

easy to perform transliteration. To achieve

this in PHP, use the str_transliterate()
function. It takes as its first argument the

string to change. The second argument is

the script of the original string. The third is

the destination script. For both of these, I’m

using “script” in the sense of Table 14.2, which

lists the scripts supported by Unicode: Latin,

Greek, Cyrillic, Arabic, etc.

To try this out, let’s see what my (or your)

name looks like in other alphabets.

427

Making Universal Sites

T
r

a
n

s
l
i
t

e
r

a
t

i
o

n
 i

n
 P

H
PUnicode Documentation

As I’m currently writing this book, PHP 6 has not yet been officially released. However, using

available beta versions of the software, I have been able to test all of the code under PHP 6

with only minor hiccups. Unfortunately, what’s not available to me is good, and sometimes

any, documentation on many of these new features. In fact, a couple of examples in this

chapter use functions that aren’t even in the PHP manual yet!

I’m absolutely confident about the examples and content of this book, naturally, but should

something change in the official release of PHP 6, you may experience a problem here or

there. If so, check out the PHP manual (which will be updated to correspond with the release)

and turn to the book’s corresponding Web site (www.DMCInsights.com/phpmysql3/) or its sup-

porting book forum for assistance.

To use transliteration:

1. Begin a new PHP document in your text

editor or IDE (Script 14.4).

<?php header ('Content-Type:
➝ text/html; charset=UTF-8'); ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD
➝ XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd">

<html
➝ xmlns="http://www.w3.org/1999/xhtml"
➝ xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type"
➝ content="text/html;
➝ charset=utf-8" />

<title>Transliteration</title>

</head>

<body style="font-size: 18pt;">

What's my name?

<?php # Script 14.4 - trans.php

This is all similar to the past two scripts.

The PHP header() call indicates the

encoding to the Web browser, and some

inline CSS increases the font size to

make the characters easier to read.

2. Create two variables.

$me = 'Larry Ullman';

$scripts = array('Greek', 'Cyrillic',
➝ 'Hebrew', 'Arabic', 'Hangul');

The first variable is my name. Feel free to

use your own here instead. The second vari-

able is an array of scripts to be used as the

third argument in str_transliterate().

These values represent the destination

script.

428

Chapter 14

T
r

a
n

s
l
i
t

e
r

a
t

i
o

n
 i

n
 P

H
P

1 <?php header ('Content-Type: text/html;

charset=UTF-8'); ?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">

4 <html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

5 <head>

6 <meta http-equiv="content-type"
content="text/html; charset=utf-8" />

7 <title>Transliteration</title>

8 </head>

9 <body style="font-size: 18pt;">

10 What's my name?

11 <?php # Script 14.4 - trans.php

12

13 // Your name:

14 $me = 'Larry Ullman';

15

16 // Create an array of scripts:

17 $scripts = array('Greek', 'Cyrillic',

'Hebrew', 'Arabic', 'Hangul');

18

19 // Loop through each script:

20 foreach ($scripts as $script) {

21 echo "<p>$me is " .

str_transliterate($me, 'Latin', $script) .

" in $script.</p>\n";

22 }

23

24 ?>

25 </body>

26 </html>

Script 14.4 This script uses the new str_translitera-
tion() function to convert a name from one character
set to another.

3. Print the name in each script.

foreach ($scripts as $script) {

echo "<p>$me is " .
➝ str_transliterate($me, 'Latin',
➝ $script) . " in $script.</p>\n";

}

Within the foreach loop, an echo() state-

ment will print the name as it is originally

and then transliterated. It will also print

the destination script. For the origination

script argument, Latin is being used, as the

name was written using the Latin alpha-

bet (change this if yours is different).

4. Complete the page.

?>

</body>

</html>

5. Save the file as trans.php, place it in your

Web directory, and test it in your Web

browser (Figure 14.12).

If you get an error message like the one

in Figure 14.13, that means that a par-

ticular script is not available for translit-

eration (or you misspelled it).

429

Making Universal Sites

T
r

a
n

s
l
i
t

e
r

a
t

i
o

n
 i

n
 P

H
P

Figure 14.12 My name, transliterated into different
alphabets.

Figure 14.13 The attempted conversion into Tibetan
failed, as that script isn’t supported by my
installation.

Languages and MySQL
Just as an HTML page and PHP script can

use different encodings, so can MySQL. To

see a list of ones supported by your version

of MySQL, run a SHOW CHARACTER SET com-

mand (Figure 14.14). Note that the phrase

character set is being used in MySQL to

mean encoding (which I’ll generally follow in

this section to be consistent with MySQL).

Each character set in MySQL has one or

more collations. To view those, run this

query, replacing charset with the proper

value from the result in the last query

(Figure 14.15):

SHOW COLLATION LIKE 'charset%'

430

Chapter 14

L
a

n
g

u
a

g
e

s
 a

n
d

 M
y

S
Q

L

The results of this query will also indicate

the default collation for that character set.

In MySQL, the server as a whole, each data-

base, each table, and even every column can

have a character set and collation. To set

these values when you create a database, use

CREATE DATABASE name CHARACTER SET
➝ charset COLLATION collation

To set these values when you create a

table, use

CREATE TABLE name (

column definitions

) CHARACTER SET charset COLLATION
➝ collation

Figure 14.14 The list of
character sets supported
by this MySQL
installation.

Figure 14.15 The list of
collations available in
the UTF-8 encoding. The
first one, utf_general_ci,
is the default.

Establishing the character set and collation

when you define a database affects what

data can be stored (e.g., you can’t store a

character in a column if its encoding doesn’t

support that character). A second issue is

the encoding used to communicate with

MySQL. If you want to store Chinese charac-

ters in a table with a Chinese encoding, those

characters will need to be transferred using

the same encoding. To do so from a PHP script,

execute this query—

SET NAMES charset

—prior to executing any others. If you fail to

do this, all data will be transferred using the

default character set, which may or may not

cause problems.

Within the mysql client, set the encoding

using just

CHARSET charset

These last two ideas will be revisited in the

next chapter.

I’ve just run through a fair amount of infor-

mation, so to practice, let’s connect to MySQL

and run some queries. For the example, I’ll

use Spanish, which has two collations. Using

traditional rules, the letter combinations ch

and ll are each treated as a singular letter. In

modern rules, they are not.

To use character sets and collation:

1. Connect to MySQL using the mysql client.

Recent versions of phpMyAdmin (at the

time of this writing) do support setting

the character sets and collations, if you’d

rather use it.

2. Change the encoding to UTF8

(Figure 14.16).

CHARSET utf8;

431

Making Universal Sites

L
a

n
g

u
a

g
e

s
 a

n
d

 M
y

S
Q

L

To establish the character set and collation

for a column, add the right clause to the

column’s definition (you’d only use this for

text types):

CREATE TABLE name (

something TEXT CHARACTER SET charset
➝ COLLATION collation

…)

In each of these cases, both clauses are

optional. If omitted, a default character set

or collation will be used.

Collations in MySQL can also be specified

within a query, to affect the results:

SELECT … ORDER BY column COLLATE collation

SELECT … WHERE column LIKE 'value'
➝ COLLATE collation

Figure 14.16 When communicating with MySQL, to
use a non-default encoding, change it upon
connecting to the server.

continues on next page

3. Select the test database and create a new

table (Figure 14.17).

USE test;

CREATE TABLE test_utf (

id INT UNSIGNED NOT NULL
➝ AUTO_INCREMENT,

word VARCHAR(20),

PRIMARY KEY (id)

) CHARSET utf8;

Because this is just practice, create a new

table within the test database. This table

is rather minimally defined, using just two

columns. The character set (which is to

say the encoding) for the table is UTF-8.

4. Insert some sample records (Figure 14.18).

INSERT INTO test_utf (word) VALUES

('Calle'), ('cuchillo'), ('cuchara'),

('castillo'), ('cucaracha'),

('castigo'), ('castizo'),

('cuclillo');

432

Chapter 14

L
a

n
g

u
a

g
e

s
 a

n
d

 M
y

S
Q

L

Figure 14.17 This table will be used to demonstrate
collation and character sets.

Figure 14.18 Populating the table with some sample
data.

5. Retrieve the records in alphabetical order

(Figure 14.19).

SELECT * FROM test_utf ORDER BY word;

This query will use the established colla-

tion for the column. With the table defi-

nition in Step 3, that would be the default

collation for the UTF-8 character set.

6. Retrieve the records in order using

Traditional Spanish rules (Figure 14.20).

SELECT * FROM test_utf

ORDER BY word COLLATE
➝ utf8_spanish2_ci;

To change the order used in a sort, with-

out making a permanent change in the

database, add the COLLATE clause to your

query. The utf8_spanish2_ci collation uses

the Traditional Spanish rules of order.

✔ Tips

■ It’s recommended that any column using

the UTF-8 encoding not be defined as

CHAR for performance reasons. Use a text

or VARCHAR type instead.

■ The CONVERT() function can convert text

from one character set to another.

■ Because different character sets require

more space to represent a string, you will

likely need to increase the size of a col-

umn for UTF-8 characters. Do this before

changing a column’s encoding so that no

data is lost.

433

Making Universal Sites

L
a

n
g

u
a

g
e

s
 a

n
d

 M
y

S
Q

L

Figure 14.19 The words in order using the default
collation.

Figure 14.20 The difference in collations is evident in
the new location of the word with an ID of 8 (compare
with Figure 14.19).

Time Zones and MySQL
Chapter 10, “Web Application Development,”

introduces a couple of PHP’s date and time

functions. These include date_default_time-
zone_set(), which needs to be called prior to

using any other date or time function (as of

PHP 5.1). I think there’s enough information

in that chapter, and in the PHP manual, if

you need to work with time zones in PHP.

But what about MySQL?

Start by remembering that the date and time

in MySQL represents the date and time on

the server. Invocations of NOW() and other

functions reflect the server’s time. Therefore,

values stored in a database using these func-

tions are also storing the server’s time,

reflecting that server’s time zone. But say

you move your site from one server to

another: you export all the data, import it

into the other, and everything’s fine…unless

the two servers are in different time zones,

in which case all of the dates are now off.

That won’t be a big deal for some sites, but

what if your site features paid memberships?

That means some people’s membership might

expire a day early and for others, a day late!

The solution is to store dates and times in

a time zone–neutral way. Doing so uses some-

thing called UTC (Coordinated Universal

Time, and, yes, the abbreviation doesn’t

exactly match the term). UTC, like Greenwich

Mean Time (GMT), provides a common

point of origin, from which all times in the

world can be expressed as UTC plus or minus

some hours and minutes (Table 14.3).

Fortunately you don’t have to perform any

calculations in order to determine UTC for

your server. Instead, the UTC_DATE() function

returns the UTC date; UTC_TIME() returns

the current UTC time; and UTC_TIMESTAMP()
returns the current date and time.

Once you have stored a UTC time, you’ll

likely want to retrieve it adjusted to reflect

the server’s or the user’s location. To change

a date and time from any one time zone to

another, use CONVERT_TZ():

CONVERT_TZ(dt, from, to)

The first argument is a date and time value,

like the result of a function or what’s stored

in a column. The second and third arguments

are named time zones (see the sidebar).

434

Chapter 14

T
i
m

e
 Z

o
n

e
s

 a
n

d
 M

y
S

Q
L

C i t y T i m e

New York City, U.S. UTC–4
Cape Town, South Africa UTC+2
Mumbai, India UTC+5:30
Auckland, New Zealand UTC+13
Kathmandu, Nepal UTC+5:45
Santiago, Chile UTC–3
Dublin, Ireland UTC+1

UTC Offsets

Table 14.3 A sampling of cities and how their time
would be represented, depending upon daylight
saving time. Note that not all time zones use hourly
offsets. Some use 30- or 45-minute offsets.

To work with UTC:

1. Connect to MySQL.

You can use the mysql client (as I will in

the corresponding figures), phpMyAdmin,

or something else.

2. Select the test database and create a new

table (Figure 14.21).

USE test;

CREATE TABLE tz (

id INT UNSIGNED NOT NULL
➝ AUTO_INCREMENT,

utc DATETIME,

PRIMARY KEY (id)

);

Because this is just practice, the new table

will again be created within the test data-

base. This table is also rather minimally

defined, using just two columns. The sec-

ond column, of type DATETIME, will be the

important one for this example. I haven’t

tweaked the character set, as this example

won’t be working with text.

3. Insert a sample record.

INSERT INTO tz (utc) VALUES

(UTC_TIMESTAMP());

Using the UTC_TIMESTAMP() function, the

record will store the UTC date and time,

not the date and time on the server.

435

Making Universal Sites

T
i
m

e
 Z

o
n

e
s

 a
n

d
 M

y
S

Q
L

Using Time Zones in MySQL

MySQL does not install support for time

zones by default. In order to use named

time zones, there are five tables in the

mysql database that have to be populat-

ed. While MySQL doesn’t automatically

do this for you, it does provide the tools

to do this yourself.

This process is just complicated enough

that there’s not room to discuss it in this

book (not for every possible contingency:

operating system etc.). But you can find

the instructions by looking up “server

time zone support” in the MySQL manu-

al. The manual even has sample queries

you can run to confirm that your time

zones are accurate.

If you continue to use time zones in

MySQL, you also need to keep this infor-

mation in the mysql database updated.

The rules for time zones, in particular,

when and how they observe daylight sav-

ing time, change often. Again, the MySQL

manual has instructions for updating

your time zones.

Figure 14.21 Creating another example table.

continues on next page

4. View the record as it’s stored

(Figure 14.22).

SELECT * FROM tz;

As you can see in the figure and the table

definition, UTC times are stored just the

same as non-UTC times. What’s not

obvious in the figure is that the record

just inserted reflects a time four hours

ahead of the server (because the server is

in a time zone four hours away).

5. Retrieve the record in your time zone

(Figure 14.23).

SELECT CONVERT_TZ(utc, 'UTC',
➝ 'America/New_York') FROM tz;

Using the CONVERT_TZ() function, you

can format any date and time converted

to a different time zone. For the from

time zone, use UTC. For the to time zone,

use yours. The time zone names match

those used by PHP (see Chapter 10 or,

more directly, www.php.net/timezones).

If you get a NULL result (Figure 14.24),

either the name of one of your time zones

is wrong or MySQL hasn’t had its time

zones loaded yet (see the sidebar).

✔ Tips

■ However you decide to handle dates, the

key is to be consistent. If you decide to

use UTC, then always use UTC.

■ UTC is also known as Zulu time, repre-

sented by the letter Z.

■ Besides being time zone and daylight

saving time agnostic, UTC is also more

accurate. It has irregular leap seconds

that compensate for the inexact move-

ment of the planet.

436

Chapter 14

T
i
m

e
 Z

o
n

e
s

 a
n

d
 M

y
S

Q
L

Figure 14.22 The
record that was just
inserted, which
reflects a time four
hours ahead (the
server is UTC-4).

Figure 14.23 The UTC-stored date and time converted
to my local time.

Figure 14.24 The CONVERT_TZ() function will return
NULL if it references an invalid time zone or if the time
zones haven’t been installed in MySQL (which is the
case here).

Working with Locales
A locale is an interesting concept that most

beginner programmers aren’t familiar with.

It occupies several realms that overlap with

some of the other topics in this chapter. A

locale represents the language and format-

ting habits for a culture. Locales describe:

◆ How dates, times, currencies, and num-

bers should be written

◆ What unit of measurement is used

◆ How text should be sorted or matched

◆ How characters are capitalized

For example, both the United States and

England speak English, but they format

dates differently.

Each computer has a default locale. Using PHP,

you can change the locale value. You might

want to do this if, for example, your server is

located in the United States but you have a

site targeting the Swiss population.

To change the locale in version 6 of PHP, use

the locale_set_default() function (see the

sidebar for the PHP 5 alternative). This func-

tion takes just one argument, a string in

the format

<language>[_<script>]_<country>
➝ [_<variant>][@<keywords>]

Language and country are required; the other

values are optional (indicated by the square

brackets). A tool for finding all these values

is available at http://demo.icu-project.org/
icu-bin/locexp.

The thing to be aware of is that not all PHP

functions are locale-aware. For example,

number_format() isn’t, but money_format() is

(or should be in the final release of PHP 6; it

wasn’t at the time of this writing). And the

date() function won’t respect locales, but

the new date_format_locale() function will.

It uses the same formatting parameters as

date(), but takes a DateTime object as its

first argument (you’ll see what this means in

the following script).

Another locale-aware function to be used

in this example is strtotitle(). It’s like

uc_words(), used to properly capitalize

words in a string. Because strtotitle()
works with locales, it also works on text in

languages that are written from right to left

or that don’t use spaces between words.

As a simple demonstration of this concept,

let’s create a script that prints the date using

different locales.

437

Making Universal Sites

W
o

r
k

i
n

g
 w

i
t

h
 L

o
c

a
l
e

s

Locales in PHP 5

Earlier versions of PHP (prior to 6) use

what are called POSIX locales. These are

short strings like en_US (English, United

States), en_GB (English, Great Britain),

etc. You can establish the locale in PHP

using set_locale():

set_locale(category, locale);

The categories include LC_ALL, LC_MONE-
TARY, LC_NUMERIC, and more. So to have

numbers formatted as they would be in

France, you would use

set_locale(LC_NUMERIC, fr_FR);

The list of locale abbreviations can be

found online. Complicating things, if

you’re running PHP on Windows, the

locale abbreviations differ some.

As of version 6 of PHP, this function and

these locales are deprecated (meaning

they’re still available for backward-

compatibility but you should stop

using them).

To use locales:

1. Begin a new PHP document in your text

editor or IDE (Script 14.5).

<?php header ('Content-Type:
➝ text/html; charset=UTF-8'); ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD
➝ XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd">

<html
➝ xmlns="http://www.w3.org/1999/xhtml"
➝ xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type"
➝ content="text/html;
➝ charset=utf-8" />

<title>Locales</title>

</head>

<body style="font-size: 18pt;">

<?php # Script 14.5 - locales.php

Because some characters to be printed

by this script will be in different lan-

guages, this page should also use UTF-8

encoding.

2. Set the default time zone.

date_default_timezone_set('UTC');

Before calling any function that returns a

date or a time, you have to set the time

zone. I’m setting it to UTC, to make it

time zone–indifferent.

438

Chapter 14

W
o

r
k

i
n

g
 w

i
t

h
 L

o
c

a
l
e

s

1 <?php header ('Content-Type: text/html;

charset=UTF-8'); ?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">

4 <html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

5 <head>

6 <meta http-equiv="content-type"
content="text/html; charset=utf-8" />

7 <title>Locales</title>

8 </head>

9 <body style="font-size: 18pt;">

10 <?php # Script 14.5 - locales.php

11

12 // Set the default timezone:

13 date_default_timezone_set('UTC');

14

15 // Need a date object:

16 $d = new DateTime();

17

18 // Create a list of locales:

19 $locales = array('en_US', 'fr_FR',

'es_BO', 'zh_Hans_CN', 'ru_RU', 'el_GR',

'is_IS');

20

21 // Print the date in each locale:

22 foreach ($locales as $locale) {

23

24 // Set the locale:

25 locale_set_default($locale);

26

27 // Print the date:

Script 14.5 In this script, a series of locales are defined,
representing languages and countries around the
world. Then today’s date is printed for each locale.

(script continues on next page)

3. Create a DateTime object.

$d = new DateTime();

As with the collation example earlier in

the chapter, this is object-oriented pro-

gramming, but this one line is all you’ll

do. The variable $d is now an object of

the DateTime type. Among other things,

it contains the current date and time for

the established time zone.

4. Create a list of locales.

$locales = array('en_US', 'fr_FR',
➝ 'es_BO', 'zh_Hans_CN, 'ru_RU',
➝ 'el_GR', 'is_IS');

For the locales, I’m using a variety of

places and languages around the world.

The first is English in the United States,

then French in France, Spanish in Bolivia,

Chinese (Traditional Han) in China,

Russian in Russia, Greek in Greece, and

Icelandic in Iceland.

5. Print the date in each locale.

foreach ($locales as $locale) {

locale_set_default($locale);

echo "<p>$locale: " .
➝ strtotitle(date_format_locale
➝ ($d, 'l, j F Y')) . "</p>\n";

}

The foreach loop will access every locale

in the array. Within the loop, the locale is

then changed and printed. Then the date

for that locale is returned using date_
format_locale(). Its first argument is $d,

the DateTime object created in Step 3. Its

second argument is the formatting, in

this case Day DD Month YYYY. This

whole returned string will be run though

strtotitle() to properly capitalize it.

439

Making Universal Sites

W
o

r
k

i
n

g
 w

i
t

h
 L

o
c

a
l
e

s

28 echo "<p>$locale: " .

strtotitle(date_format_locale($d, 'l, j

F Y')) . "</p>\n";

29

30 }

31

32 ?>

33 </body>

34 </html>

Script 14.5 continued

continues on next page

6. Complete the page.

?>

</body>

</html>

7. Save the file as locales.php and test it in

your Web browser (Figure 14.25).

✔ Tips

■ The locale_get_default() function

returns the current locale.

■ The topic of locales falls under PHP’s

support for internationalization (abbrevi-

ated i18n) and localization (i10n).

440

Chapter 14

W
o

r
k

i
n

g
 w

i
t

h
 L

o
c

a
l
e

s

Figure 14.25 How the same date would be written in
different locales around the world.

New in this edition of the book is this chapter, in which a message board (aka a forum)

is created. I’ve never before written up such an example because there are so many

great forum software packages available already. But readers are clamoring for infor-

mation on this topic, and I always respect a hardy clamor.

The functionality of a message board is really rather simple: a post can either start

a new topic or be in response to an existing one; posts are added to a database and

then displayed on a page. That’s really about it. Of course, sometimes implementing

simple concepts can be quite hard!

To make this example even more exciting and useful, it’s not going to be just a message

board but rather a multilingual message board. Each language will have its own forum,

and all of the key elements—navigation, prompts, introductory text, etc.—will be lan-

guage-specific. It’ll be very cool, really applying the knowledge covered in Chapter 14,

“Making Universal Sites.”

In order to focus on the most important aspects of this Web application, I’m going to

omit some others. The three glaring omissions will be: user management, error handling,

and administration. This shouldn’t be a problem for you, though, as the next chapter

goes over user management and error handling in great detail. Practically all of that

chapter’s content can be applied to this example. As for the administration, I’ll make

some recommendations at the chapter’s end.

441

Example—
Message Board

15

E
x

a
m

p
l
e

—
M

e
s

s
a

g
e

 B
o

a
r

d

Making the Database
The first step, naturally, is to create the data-

base. A sample message board database is

developed in Chapter 6, “Advanced SQL and

MySQL.” Although that database is perfectly

fine, a variation on it will be used here

instead. Figure 15.1 shows the tables and

relationships in that database. Figure 15.2

shows the tables and relationships in this

new database. I’ll compare and contrast the

two to better explain my thinking.

To start, the forums table is replaced with

a languages table. Both serve the same pur-

pose: allowing for multiple forums. In this

new database, the topic—PHP and MySQL

for Dynamic Web Sites—will be the same in

every forum, but each forum will use a dif-

ferent language. The posts will differ in each

forum (this won’t be a translation of the

same forum in multiple languages). The lan-

guages table stores the name of a language

in its own alphabet and in English, for the

administrator’s benefit.

The threads table in the new database acts

like the messages table in the old one, with

one major difference. Just as the old messages

table relates to forums, threads relates to the

languages and users tables (each message

can only be in one forum and by one user;

each forum can have multiple messages and

each user can post multiple messages).

However, this threads table will only store

the subject, not the message itself. There are

a couple of reasons I made this change. First,

having a subject repeat multiple times with

each reply (replies, in my experience, almost

always have the same subject anyway) is

unnecessary. The same goes for the lang_id

association (it doesn’t need to be in each

reply as long as each reply is associated with

a single thread). Third, I’m changing the way

a thread’s hierarchy will be indicated in this

database (you’ll see how in the next para-

graph), and changing the table structures

helps in that regard. Finally, the threads

table will be used every time a user looks at

the posts in a forum. Removing the message

bodies from that table will improve the per-

formance of those queries.

442

Chapter 15

M
a

k
i
n

g
 t

h
e

 D
a

t
a

b
a

s
e

Figure 15.1 The model for the forum database developed
in Chapter 6.

Figure 15.2 The revised model for the forum database
to be used in this chapter.

Moving onto the posts table, its sole purpose

is to store the actual bodies of the messages

associated with a thread. In Chapter 6’s data-

base, the messages table had a parent_id

column, used to indicate the message to

which a new message was a response. It was

hierarchical: message 3 might be the starting

post; message 18 might be a response to 3,

message 20 a response to 18, and so on

(Figure 15.3). That version of the database

more directly indicated the responses; this

version will only store the thread that a mes-

sage goes under. So messages 18 and 20 both

use a thread_id of 3. This will make showing

a thread much more efficient (in terms of

the PHP and MySQL required), and the

date/time that each message was posted on

can still be used to order them.

Those three tables provide the bulk of the

forum functionality. The database also needs

a users table. In my version of the forum,

only registered users can post messages,

which I think is a really, really, really good

policy (it cuts way down on spam and hack

attempts). Registered users can also indicate

their default language (from the languages

table) and time zone, in order to give them

a more personalized experience. A combina-

tion of their username and password would

be used to log in.

The final table, words, is necessary to make

the site multilingual. This table will store

translations of common elements: naviga-

tion links, form prompts, headers, and so

forth. Each language in the site will have one

record in this table. It’ll be a nice and sur-

prisingly easy feature to use. Arguably the

words listed in this table could also go in the

languages table, but then the implication

would be that the words are also related to

the threads table, which would not be the case.

That’s the thinking behind this new data-

base design. You’ll learn more as you create

the tables in the following steps. As with the

other examples in this book, you can also

download the SQL necessary for this chapter—

that in these steps, plus more—from the book’s

corresponding Web site (www.DMCInsights.com/
phpmysql3/, see the Downloads page).

443

Example—Message Board

M
a

k
i
n

g
 t

h
e

 D
a

t
a

b
a

s
e

Figure 15.3 How the relationship among messages
was indicated using the older database schema.

To make the database:

1. Access your MySQL server and set the

character set to be used for communi-

cating (Figure 15.4).

CHARSET utf8;

As always, I’ll be using the mysql client

in the figures, but you can use whatever

you’d like. The first step, though, has to

be changing the character set to UTF-8

for the queries to come. If you don’t do

this, some of the characters in the queries

will be stored as gibberish in the data-

base (see the sidebar “Strange Characters”).

2. Create a new database (Figure 15.5).

CREATE DATABASE forum2 CHARACTER SET
➝ utf8;

USE forum2;

So as not to muddle things with the tables

created in the original forum database

(from Chapter 6), a new database will

be created.

If you’re using a hosted site and cannot

create your own databases, use the data-

base provided for you and select that. If

your existing database has tables with

these same names—words, languages,

threads, users, and posts, rename the

tables (either the existing or the new

ones) and change the code in the rest of

the chapter accordingly.

Whether you create this database from

scratch or use a new one, it’s very impor-

tant that the tables use the UTF-8 encod-

ing, in order to be able to support multi-

ple languages (see Chapter 14 for more).

If you’re using an existing database and

don’t want to potentially cause problems

by changing the character set for all of

your tables, just add the CHARACTER SET
utf8 clause to each table definition

(Steps 3 through 7).

444

Chapter 15

M
a

k
i
n

g
 t

h
e

 D
a

t
a

b
a

s
e

Strange Characters

If, when you’re implementing this chap-

ter’s example, you see strange charac-

ters—boxes, numeric codes, or question

marks instead of actual language charac-

ters, there might be several reasons why.

To solve the problem, start by referring to

Chapter 14, which goes over Unicode and

character sets in detail.

A computer’s ability to display a charac-

ter depends on both the file’s encoding

and the characters (i.e., fonts) supported

by the operating system. This means that

every PHP or HTML page must use the

proper encoding. Secondarily, the database

in MySQL must use the proper encoding

(as indicated in the steps for creating the

database). Third, and this can be a com-

mon cause of problems, the communica-

tion between PHP and MySQL must also

use the proper encoding. I address this

issue in the mysqli_connect.php script (see

the first tip). Finally, if you use the mysql

client, phpMyAdmin, or another tool to

populate the database, that interaction

must use the proper encoding, too.

Figure 15.4 In order to use Unicode data in my
queries, I need to change the character set used to
communicate with MySQL from the mysql client.

3. Create the languages table (Figure 15.6).

CREATE TABLE languages (

lang_id TINYINT UNSIGNED NOT NULL
➝ AUTO_INCREMENT,

lang VARCHAR(60) NOT NULL,

lang_eng VARCHAR(20) NOT NULL,

PRIMARY KEY (lang_id),

UNIQUE (lang)

);

This is the simplest table of the bunch.

There won’t be many languages repre-

sented, so the primary key (lang_id) can

be a TINYINT. The lang column is defined

a bit larger, as it’ll store characters in

other languages, which may require more

space. This column must also be unique.

Note that I can’t call this column “lan-

guage,” as that’s a reserved keyword in

MySQL (actually, I could still call it that,

but I’d need to take extra steps, and it’s

just not worth it). The lang_eng column

is the English equivalent of the language

so that the administrator can easily see

which languages are which.

4. Create the threads table (Figure 15.7).

CREATE TABLE threads (

thread_id INT UNSIGNED NOT NULL
➝ AUTO_INCREMENT,

lang_id TINYINT(3) UNSIGNED NOT NULL,

user_id INT UNSIGNED NOT NULL,

subject VARCHAR(150) NOT NULL,

PRIMARY KEY (thread_id),

INDEX (lang_id),

INDEX (user_id)

);

The threads table contains four columns

and relates to both the languages and

users tables (through the lang_id and

user_id foreign keys, respectively). The

subject here needs to be long enough to

store subjects in multiple languages (in

other languages the characters take up

more space).

The columns that will be used in joins

and WHERE clauses—lang_id and user_id—

are indexed, as is thread_id (as a primary

key, it’ll be indexed).

445

Example—Message Board

M
a

k
i
n

g
 t

h
e

 D
a

t
a

b
a

s
e

Figure 15.5 Creating and selecting the database for
this example. This database uses the UTF-8 character
set, so that it can support multiple languages.

Figure 15.6 Creating the languages table.

Figure 15.7 Creating the threads table. This table
stores the topic subjects and associates them with a
language (i.e., a forum).

continues on next page

5. Create the posts table (Figure 15.8).

CREATE TABLE posts (

post_id INT UNSIGNED NOT NULL
➝ AUTO_INCREMENT,

thread_id INT UNSIGNED NOT NULL,

user_id INT UNSIGNED NOT NULL,

message TEXT NOT NULL,

posted_on DATETIME NOT NULL,

PRIMARY KEY (post_id),

INDEX (thread_id),

INDEX (user_id)

);

The main column in this table is message,

which stores each post. Two columns

are foreign keys, tying into the threads

and users tables. The posted_on column

is of type DATETME but will use UTC

(Coordinated Universal Time, see

Chapter 14). Nothing special needs to

be done here for that, though.

6. Create the users table (Figure 15.9).

CREATE TABLE users (

user_id MEDIUMINT UNSIGNED NOT NULL
➝ AUTO_INCREMENT,

lang_id TINYINT UNSIGNED NOT NULL,

time_zone VARCHAR(30) NOT NULL,

username VARCHAR(30) NOT NULL,

pass CHAR(40) NOT NULL,

email VARCHAR(60) NOT NULL,

PRIMARY KEY (user_id),

UNIQUE (username),

UNIQUE (email),

INDEX login (username, pass)

);

For the sake of brevity, I’m omitting some

of the other columns you’d put in this

table, such as registration date, first

name, and last name. For more on creat-

ing and using a table like this, see the

next chapter.

In my thinking about this site, I expect

users will select their preferred language

and time zone when they register, so that

they can have a more personalized expe-

rience. They can also have a username,

which will be displayed in posts (instead

of their email address). Both the username

and the email address must be unique,

which is something you’d need to address

in the registration process.

446

Chapter 15

M
a

k
i
n

g
 t

h
e

 D
a

t
a

b
a

s
e

Figure 15.8 Creating the posts table, which links to
both threads and users.

Figure 15.9 Creating a bare-bones version of the
users table.

7. Create the words table (Figure 15.10).

CREATE TABLE words (

word_id TINYINT UNSIGNED NOT NULL
➝ AUTO_INCREMENT,

lang_id TINYINT UNSIGNED NOT NULL,

title VARCHAR(80) NOT NULL,

intro TINYTEXT NOT NULL,

home VARCHAR(30) NOT NULL,

forum_home VARCHAR(40) NOT NULL,

`language` VARCHAR(40) NOT NULL,

register VARCHAR(30) NOT NULL,

login VARCHAR(30) NOT NULL,

logout VARCHAR(30) NOT NULL,

new_thread VARCHAR(40) NOT NULL,

subject VARCHAR(30) NOT NULL,

body VARCHAR(30) NOT NULL,

submit VARCHAR(30) NOT NULL,

posted_on VARCHAR(30) NOT NULL,

posted_by VARCHAR(30) NOT NULL,

replies VARCHAR(30) NOT NULL,

latest_reply VARCHAR(40) NOT NULL,

post_a_reply VARCHAR(40) NOT NULL,

PRIMARY KEY (word_id),

UNIQUE (lang_id)

);

This table will store different translations

of comment elements used on the site.

Some—home, forum_home, language,

register, login, logout, and new_thread—

will be the names of links. Others—sub-

ject, body, submit—are used on the page

for posting messages. Another category

are those used on the forum’s main page:

posted_on, posted_by, replies, and

latest_reply.

Some of these will be used multiple times

in the site, and yet, this is still an incom-

plete list. As you implement the site your-

self, you’ll see other places where word

definitions could be used.

Each column is of VARCHAR type, except

for intro, which is a body of text to be

used on the main page. Most of the

columns have a limit of 30, allowing for

characters in other languages that require

more space, except for a handful that

might need to be bigger.

For each column, its name implies the

value to be stored in that column. For

one—language—I’ve used a MySQL key-

word to demonstrate how that can be

done. The fix is to surround the column’s

name in backticks so that MySQL doesn’t

confuse this column’s name with the key-

word “language”.

447

Example—Message Board

M
a

k
i
n

g
 t

h
e

 D
a

t
a

b
a

s
e

continues on next page

Figure 15.10 Creating the words table, which stores
representations of key words in different languages.

8. Populate the languages table (Figure 15.11).

This is just a handful of the languages

the site will represent thanks to some

assistance provided me (see the sidebar

“A Note on Translations”). For each, the

native and English word for that lan-

guage is stored.

448

Chapter 15

M
a

k
i
n

g
 t

h
e

 D
a

t
a

b
a

s
e

A Note on Translations

Several readers around the world were kind enough to provide me with translations of key

words, names, message subjects, and message bodies. For their help, I’d like to extend my sin-

cerest thanks to (in no particular order): Angelo (Portuguese); Iris (German); Johan (Norwegian);

Gabi (Romanian); Darko (Serbian); Emmanuel and Jean-François (French); Andreas and

Simeon (Greek); Darius (Filipino/Tagalog); Olaf (Dutch); and Tsutomu (Japanese).

If you know one of these languages, you’ll undoubtedly see linguistic mistakes made in this

text or in the corresponding images. If so, it’s almost certainly my fault, having miscommuni-

cated the words I needed translated or improperly entered the responses into the database. I

apologize in advance for any such mistakes but hope you’ll focus more on the database, the

code, and the functionality. My thanks, again, to those who helped!

Figure 15.11 The populated languages table, with
each language written in its own alphabet.

9. Populate the users table (Figure 15.12).

INSERT INTO users (lang_id,
➝ time_zone, username, pass, email)
➝ VALUES

(1, 'America/New_York', 'troutster',
➝ SHA1('password'),
➝ 'email@example.com'),

(7, 'Europe/Berlin', 'Ute',
➝ SHA1('pa24word'),
➝ 'email1@example.com'),

(4, 'Europe/Oslo', 'Silje',
➝ SHA1('2kll13'),
➝ 'email2@example.com'),

(2, 'America/Sao_Paulo', 'João',
➝ SHA1('fJDLN34'),
➝ 'email3@example.com'),

(1, 'Pacific/Auckland', 'kiwi',
➝ SHA1('conchord'),
➝ 'kiwi@example.org');

Because the PHP scripts will show the

users associated with posts, a couple of

users are necessary. I’ve associated a lan-

guage and a time zone with each (see

Chapter 14 for more on time zones in

MySQL). Each user’s password will be

encrypted with the SHA1() function.

449

Example—Message Board

M
a

k
i
n

g
 t

h
e

 D
a

t
a

b
a

s
e

Figure 15.12 A few users were added manually, as there is no registration process in this site (but see Chapter 16,
“Example—User Registration,” for that).

continues on next page

10. Populate the words table.

INSERT INTO words VALUES

(NULL, 1, 'PHP and MySQL for Dynamic
➝ Web Sites: The Forum!',
➝ '<p>Welcome to our site....please
➝ use the links above...blah, blah,
➝ blah.</p>\r\n<p>Welcome to our
➝ site....please use the links
➝ above...blah, blah, blah.</p>',
➝ 'Home', 'Forum Home', 'Language',
➝ 'Register', 'Login', 'Logout',
➝ 'New Thread', 'Subject', 'Body',
➝ 'Submit', 'Posted on', 'Posted
➝ by', 'Replies', 'Latest Reply',
➝ 'Post a Reply');

These are the words associated with

each term in English. The record has a

lang_id of 1, which matches the lang_id

for English in the languages table. The

SQL to insert words for other languages

into this table is available from the

book’s supporting Web site.

✔ Tips

■ This chapter doesn’t go through the steps

for creating the mysqli_connect.php
page, which connects to the database.

Instead, just copy the one from Chapter 8,

“Using PHP and MySQL.” Then change

the parameters in the script to use a

valid username/password/hostname

combination to connect to the forum2

database.

This chapter does include one additional

requirement: PHP should identify to

MySQL the encoding to be used. To do

that, add this line after establishing a

connection:

mysqli_set_charset($dbc, 'utf8');

If your installation of PHP or MySQL

doesn’t support this function (i.e., if you

get an error message from it), use this

instead:

mysqli_query($dbc, 'SET NAMES utf8');

With either of those two lines being exe-

cuted immediately after connecting to

MySQL, every interaction should be

Unicode-safe.

■ As a reminder, the foreign key in one

table should be of the exact same type

and size as the matching primary key in

another table.

450

Chapter 15

M
a

k
i
n

g
 t

h
e

 D
a

t
a

b
a

s
e

Writing the Templates
This example, like any site containing lots of

pages, will make use of a template to separate

out the bulk of the appearance from the

logic. Following the instructions laid out in

Chapter 3, “Creating Dynamic Web Sites,”

a header file and a footer file will store most

of the HTML code. Each PHP script will

then include these files to make a complete

HTML page (Figure 15.13). But this exam-

ple is a little more complicated.

One of the goals of this site is to serve users

in many different languages. Accomplishing

that involves not just letting them post mes-

sages in their native language but making

sure they can use the whole site in their

native language as well. This means that the

page title, the navigation links, the captions,

the prompts, and even the menus need to

appear in their language (Figure 15.14).

The instructions for making the database

show how this is accomplished: by storing

translations of all key words in a table. The

header file, therefore, needs to pull out all

these key words so that they can be used as

needed. Secondarily, this header file will also

show different links based upon whether the

user is logged in or not. Adding just one

more little twist: if the user is on the forum

page, where they view all the threads in a

language, they’ll also be given the option to

post a new thread (Figure 15.15).

The template itself uses CSS for some format-

ting (there’s not much to it, really). You can

download all these files from the book’s sup-

porting Web site (www.DMCInsights.com/
phpmysql3/).

451

Example—Message Board

W
r

i
t

i
n

g
 t

h
e

 T
e

m
p

l
a

t
e

s

Figure 15.13 The basic layout and appearance of the site.

Figure 15.14 The home page viewed in French (compare
with Figure 15.13).

Figure 15.15 The same
home page as in Figure
15.13, but with different
links acknowledging that
the user is logged in and
on the forum.php page.

To make the template:

1. Begin a new document in your text edi-

tor or IDE (Script 15.1).

<?php # Script 15.1 - header.html

header ('Content-Type: text/html;
➝ charset=UTF-8');

As this script will need to do a fair amount

of data validation and retrieval, it starts

with a PHP block. The script also indi-

cates to the Web browser its encoding—

UTF-8, using the header() function. See

Chapter 14 for more on this.

2. Start a session.

session_start();

$_SESSION['user_id'] = 1;

$_SESSION['user_tz'] =
➝ 'America/New_York';

// $_SESSION = array();

To track users after they log in, the site

will use sessions. Since the site doesn’t

have registration and login functionality

in this chapter, two lines can virtually log

in the user. Ordinarily both values would

come from a database, but they’ll be set

here for testing purposes. To virtually log

the user out, uncomment the third line.

452

Chapter 15

W
r

i
t

i
n

g
 t

h
e

 T
e

m
p

l
a

t
e

s

1 <?php # Script 15.1 - header.html

2 /* This script...

3 * - starts the HTML template.

4 * - indicates the encoding using
header().

5 * - starts the session.

6 * - gets the language-specific words from
the database.

7 * - lists the available languages.

8 */

9

10 // Indicate the encoding:

11 header ('Content-Type: text/html;
charset=UTF-8');

12

13 // Start the session:

14 session_start();

15

16 // For testing purposes:

17 $_SESSION['user_id'] = 1;

18 $_SESSION['user_tz'] = 'America/New_York';

19 // $_SESSION = array();

20

21 // Need the database connection:

22 require_once('../mysqli_connect.php');

23

24 // The language ID is stored in the
session.

25 // Check for a new language ID...

26 if (isset($_GET['lid']) &&
is_numeric($_GET['lid'])) {

27 $_SESSION['lid'] = (int) $_GET['lid'];

28 } elseif (!isset($_SESSION['lid'])) {

Script 15.1 The header.html file begins the template.
It also sets the page’s encoding, starts the session,
and retrieves the language-specific key words from
the database.

(script continues on next page)

3. Include the database connection and val-

idate the language ID, if present.

require_once('../mysqli_connect.php');

if (isset($_GET['lid']) &&
➝ is_numeric($_GET['lid'])) {

$_SESSION['lid'] = (int)
➝ $_GET['lid'];

} elseif (!isset($_SESSION['lid'])) {

$_SESSION['lid'] = 1;

}

As with many other examples in this book,

the assumption is that the mysqli_connect.
php script is stored in the directory above

the current one, outside of the Web root.

Next, the language ID value (abbreviated

lid) will be validated, if one was received

in the URL. The language ID controls what

language is used to show all the site ele-

ments, and it also dictates the forum to be

viewed. It would be passed to the forum.php
page by submitting the language form in

the navigation links (see Figure 15.15). In

that case, the ID will be stored in the ses-

sion so that it’s always available.

The second clause applies if the page did

not receive a language ID in the URL and

the language ID has not already been

established in the session. In that case,

a default language is selected. This value

corresponds to English in the languages

table in the database. You can change it

to any ID that matches the default lan-

guage you’d like to use.

453

Example—Message Board

W
r

i
t

i
n

g
 t

h
e

 T
e

m
p

l
a

t
e

s

29 $_SESSION['lid'] = 1; // Default.

30 }

31

32 // Get the words for this language.

33 $words = FALSE; // Flag variable.

34 if ($_SESSION['lid'] > 0) {

35 $q = "SELECT * FROM words WHERE lang_id
= {$_SESSION['lid']}";

36 $r = mysqli_query($dbc, $q);

37 if (mysqli_num_rows($r) == 1) {

38 $words = mysqli_fetch_array($r,
MYSQLI_ASSOC);

39 }

40 }

41

42 // If we still don't have the words, get
the default language:

43 if (!$words) {

44 $_SESSION['lid'] = 1; // Default.

45 $q = "SELECT * FROM words WHERE lang_id
= {$_SESSION['lid']}";

46 $r = mysqli_query($dbc, $q);

47 $words = mysqli_fetch_array($r,
MYSQLI_ASSOC);

48 }

49

50 mysqli_free_result($r);

51 ?>

52 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

53 "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">

54 <html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

55 <head>

56 <meta http-equiv="content-type"
content="text/html; charset=utf-8" />

(script continues on next page)

Script 15.1 continued

continues on next page

4. Get the key words for this language.

$words = FALSE;

if ($_SESSION['lid'] > 0) {

$q = "SELECT * FROM words WHERE
➝ lang_id = {$_SESSION['lid']}";

$r = mysqli_query($dbc, $q);

if (mysqli_num_rows($r) == 1) {

$words = mysqli_fetch_array($r,
➝ MYSQLI_ASSOC);

}

}

The next step in the header file is to

retrieve from the database all of the key

words for the given language. A variable

will be used as a flag, indicating whether

this process succeeds or not. Then a

check confirms that the language ID is

positive and the query is run on the

database. If the query returns one record,

those values will be fetched into $words.

5. If a problem occurred, get the default

words.

if (!$words) {

$_SESSION['lid'] = 1;

$q = "SELECT * FROM words WHERE
➝ lang_id = {$_SESSION['lid']}";

$r = mysqli_query($dbc, $q);

$words = mysqli_fetch_array($r,
➝ MYSQLI_ASSOC);

}

If $_SESSION['lid'] is not greater than 0

or it is but the query in Step 4 did not

return a record, then the words for the

default language need to be retrieved.

454

Chapter 15

W
r

i
t

i
n

g
 t

h
e

 T
e

m
p

l
a

t
e

s

57 <title><?php echo $words['title'];
?></title>

58 <style type="text/css" media="screen">

59 body { background-color: #ffffff; }

60

61 .content {

62 background-color: #f5f5f5;

63 padding-top: 10px; padding-right:
10px; padding-bottom: 10px; padding-
left: 10px;

64 margin-top: 10px; margin-right: 10px;
margin-bottom: 10px; margin-left:
10px;

65 }

66

67 a.navlink:link { color: #003366; text-
decoration: none; }

68 a.navlink:visited { color: #003366;
text-decoration: none; }

69 a.navlink:hover { color: #cccccc; text-
decoration: none; }

70

71 .title {

72 font-size: 24px; font-weight: normal;
color: #ffffff;

73 margin-top: 5px; margin-bottom: 5px;
margin-left: 20px;

74 padding-top: 5px; padding-bottom: 5px;
padding-left: 20px;

75 }

76 </style>

77 </head>

78 <body>

79

80 <table width="90%" border="0"
cellspacing="10" cellpadding="0"
align="center">

81

(script continues on next page)

Script 15.1 continued

6. Free up the resources and close the

PHP section.

mysqli_free_result($r);

?>

Calling mysqli_free_result() isn’t nec-

essary, but makes for tidy programming.

7. Begin the HTML page.

<!DOCTYPE html PUBLIC "-//W3C//DTD
➝ XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd">

<html
➝ xmlns="http://www.w3.org/1999/xhtml"
➝ xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type"
➝ content="text/html;
➝ charset=utf-8" />

<title><?php echo
➝ $words['title']; ?></title>

Note that the encoding is also indicated

in a META tag, even though the PHP header()
call already identifies the encoding. This

is just a matter of being thorough.

455

Example—Message Board

W
r

i
t

i
n

g
 t

h
e

 T
e

m
p

l
a

t
e

s

82 <tr>

83 <td colspan="2" bgcolor="#003366"
align="center"><p class="title"><?php
echo $words['title']; ?></p></td>

84 </tr>

85

86 <tr>

87 <td valign="top" nowrap="nowrap"
width="10%">

88 <?php // Display links:

89

90 // Default links:

91 echo '<a href="index.php"
class="navlink">' . $words['home'] .
'

92 ' .
$words['forum_home'] . '
';

93

94 // Display links based upon login status:

95 if (isset($_SESSION['user_id'])) {

96

97 // If this is the forum page, add a
link for posting new threads:

98 if (stripos($_SERVER['PHP_SELF'],
'forum.php')) {

99 echo '<a href="post.php"
class="navlink">' .
$words['new_thread'] .
'
';

100 }

101

102 // Add the logout link:

103 echo '<a href="logout.php"
class="navlink">' . $words['logout'] .
'
';

104

105 } else {

106

(script continues on next page)

Script 15.1 continued

continues on next page

8. Add the CSS.

<style type="text/css"
➝ media="screen">

body { background-color: #ffffff; }

.content {

background-color: #f5f5f5;

padding-top: 10px; padding-right:
➝ 10px; padding-bottom: 10px;
➝ padding-left: 10px;

margin-top: 10px; margin-right:
➝ 10px; margin-bottom: 10px;
➝ margin-left: 10px;

}

a.navlink:link { color: #003366;
➝ text-decoration: none; }

a.navlink:visited { color:
➝ #003366; text-decoration: none; }

a.navlink:hover { color: #cccccc;
➝ text-decoration: none; }

.title {

font-size: 24px; font-weight:
➝ normal; color: #ffffff;

margin-top: 5px; margin-bottom:
➝ 5px; margin-left: 20px;

padding-top: 5px; padding-bottom:
➝ 5px; padding-left: 20px;

}

</style>

This is all taken from a template I found

somewhere some time ago. It adds a little

decoration to the site.

456

Chapter 15

W
r

i
t

i
n

g
 t

h
e

 T
e

m
p

l
a

t
e

s

107 // Register and login links:

108 echo '<a href="register.php"
class="navlink">' . $words['register'] .
'

109 ' .
$words['login'] . '
';

110

111 }

112

113 // For choosing a forum/language:

114 echo '<p><form action="forum.php"
method="get">

115 <select name="lid">

116 <option value="0">' . $words['language'] .
'</option>

117 ';

118

119 // Retrieve all the languages...

120 $q = "SELECT lang_id, lang FROM languages
ORDER BY lang_eng ASC";

121 $r = mysqli_query($dbc, $q);

122 if (mysqli_num_rows($r) > 0) {

123 while ($menu_row =
mysqli_fetch_array($r, MYSQLI_NUM)) {

124 echo "<option
value=\"$menu_row[0]\">$menu_row[1]
</option>\n";

125 }

126 }

127 mysqli_free_result($r);

128 unset($menu_row);

129

130 echo '</select>

131 <input name="submit" type="submit"
value="' . $words['submit'] . '" />

132 </form></p>

133 </td>

134

135 <td valign="top" class="content">';

136 ?>

Script 15.1 continued

9. Complete the HTML head and begin

the page.

</head>

<body>

<table width="90%" border="0"
➝ cellspacing="10" cellpadding="0"
➝ align="center">

<tr>

<td colspan="2" bgcolor="#003366"
➝ align="center"><p
➝ class="title"><?php echo
➝ $words['title']; ?></p></td>

</tr>

<tr>

<td valign="top" nowrap="nowrap"
➝ width="10%">

The page itself uses a table for the layout,

with one row showing the page title, the

next row containing the navigation links

on the left and the page-specific content

on the right, and the final row containing

the copyright (Figure 15.16). You’ll see

in this code that the page title will also

be language-specific.

10. Start displaying the links.

<?php

echo '<a href="index.php"
➝ class="navlink">' . $words['home'] .
➝ '

'
➝ . $words['forum_home'] . '
➝
';

The first two links will always appear,

whether the user is logged in or not,

and regardless of the page they’re cur-

rently viewing. For each link, the text of

the link itself will be language-specific.

11. If the user is logged in, show “new

thread” and logout links.

if (isset($_SESSION['user_id'])) {

if
➝ (stripos($_SERVER['PHP_SELF'],
➝ 'forum.php')) {

echo '<a href="post.php"
➝ class="navlink">' .
➝ $words['new_thread'] .
➝ '
';

}

echo '<a href="logout.php"
➝ class="navlink">' .
➝ $words['logout'] .
➝ '
';

Confirmation of the user’s logged-in

status is achieved by checking for the

presence of a $_SESSION['user_id']
variable. If it’s set, then the logout link

can be created. Before that, a check is

made to see if this is the forum.php
page. If so, then a link to start a new

thread is created (users can only create

new threads if they’re on the forum

page; you wouldn’t want them to create

a new thread on some of the other

pages, like the home page, because it

wouldn’t be clear to which forum the

thread should be posted).

457

Example—Message Board

W
r

i
t

i
n

g
 t

h
e

 T
e

m
p

l
a

t
e

s

Figure 15.16 The page layout showing the rows and
columns of the main HTML table. continues on next page

12. Display the links for users not logged in.

} else {

echo '<a href="register.php"
➝ class="navlink">' .
➝ $words['register'] .
➝ '

<a href="login.php"
➝ class="navlink">' .
➝ $words['login'] . '
';

}

If the user isn’t logged in, links are pro-

vided for registering and logging in.

13. Begin a form for choosing a language.

echo '<p><form
➝ action="forum.php" method="get">

<select name="lid">

<option value="0">' .
➝ $words['language'] . '</option>

';

The user can choose a language (which

is also a forum), using a pull-down menu

(Figure 15.17). The first value in the

menu will be the word “language,” in

the user’s default language. The select

menu’s name is lid, short for language

ID, and its action points to forum.php.

So when the user submits this simple

form, they’ll be taken to the forum of

their choice.

14. Retrieve every language.

$q = "SELECT lang_id, lang FROM
➝ languages ORDER BY lang_eng ASC";

$r = mysqli_query($dbc, $q);

if (mysqli_num_rows($r) > 0) {

while ($menu_row =
➝ mysqli_fetch_array($r,
➝ MYSQLI_NUM)) {

echo "<option
➝ value=\"$menu_row[0]\">
➝ $menu_row[1]</option>\n";

}

}

This query retrieves the languages and

the language ID from the languages

table. Each is added as an option to the

select menu.

15. Perform some cleanup.

mysqli_free_result($r);

unset($menu_row);

Again, these lines aren’t required, but

they can help limit bugs. In particular,

when you have pages that run multiple

SELECT queries, mysqli_free_result()
can help avoid confusion issues

between PHP and MySQL.

458

Chapter 15

W
r

i
t

i
n

g
 t

h
e

 T
e

m
p

l
a

t
e

s

Figure 15.17 The language
pull-down menu, with each
option in its native language.

17. Save the file as header.html.

Even though it contains a fair amount

of PHP, this script will still use the .html
extension (which I prefer to use for

template files). Make sure that the file

is saved using UTF-8 encoding (see

Chapter 14).

18. Create a new document in your text

editor or IDE (Script 15.2).

<!-- Script 15.2 - footer.html -->

19. Complete the HTML page.

</td>

</tr>

<tr>

<td colspan="2"
➝ align="center">© 2008
➝ Larry E. Ullman & DMC
➝ Insights, Inc.</td>

</tr>

</table>

</body>

</html>

20. Save the file as footer.html.

Again, make sure that the file is saved

using UTF-8 encoding (see Chapter 14).

21. Place both files in your Web directory,

within a folder called includes.

459

Example—Message Board

W
r

i
t

i
n

g
 t

h
e

 T
e

m
p

l
a

t
e

s

1 <!-- Script 15.2 - footer.html -->

2 </td>

3 </tr>

4

5 <tr>

6 <td colspan="2" align="center">©
2008 Larry E. Ullman & DMC Insights,
Inc.</td>

7 </tr>

8

9 </table>

10 </body>

11 </html>

Script 15.2 The footer file completes the HTML page.

16. Complete the form and the PHP page.

echo '</select>

<input name="submit" type="submit"
➝ value="' . $words['submit'] . '" />

</form></p>

</td>

<td valign="top"
➝ class="content">';

?>

Creating the Index Page
The index page in this example won’t do

that much. It’ll provide some introductory

text and the links for the user to register, log

in, choose their language/forum, and so

forth. From a programming perspective, it’ll

show how the template files are to be used.

To make the home page:

1. Create a new PHP document in your text

editor or IDE (Script 15.3).

<?php # Script 15.3 - index.php

Because all of the HTML is in the included

files, this page can begin with the open-

ing PHP tags.

2. Include the HTML header.

include ('includes/header.html');

The included file uses the header() and

session_start() functions, so you have

to make sure that nothing is sent to the

Web browser prior to this line. That

shouldn’t be a problem as long as there

are no spaces before the opening PHP tag.

3. Print the language-specific content.

echo $words['intro'];

The $words array is defined within the

header file. It can be referred to here,

since the header file was just included.

The value indexed at intro is some wel-

coming text in the selected or default

language.

4. Complete the page.

include ('includes/footer.html');

?>

That’s it for the home page!

460

Chapter 15

C
r

e
a

t
i
n

g
 t

h
e

 I
n

d
e

x
 P

a
g

e

1 <?php # Script 15.3 - index.php

2 // This is the main page for the site.

3

4 // Include the HTML header:

5 include ('includes/header.html');

6

7 // The content on this page is
introductory text

8 // pulled from the database, based upon the

9 // selected language:

10 echo $words['intro'];

11

12 // Include the HTML footer file:

13 include ('includes/footer.html');

14 ?>

Script 15.3 The home page includes the header and
footer files to make a complete HTML document. It also
prints some introductory text in the chosen language.

5. Save the file as index.php, place it in your

Web directory, and test it in your Web

browser (see Figures 15.13 and 15.14).

Once again, make sure that the file is

saved using UTF-8 encoding (see

Chapter 14). This will be the last time

I remind you!

Creating the Forum Page
The next page in the Web site is the forum

page, which displays the threads in a forum

(each language being its own forum). The

page will use the language ID, passed to this

page in a URL and/or stored in a session, to

know what threads to display.

The basic functionality of this page—running

a query, displaying the results—is simple

(Figure 15.18). The query this page uses is

perhaps the most complex one in the book.

It’s complicated for three reasons:

1. It performs a join across three tables.

2. It uses three aggregate functions and

a GROUP BY clause.

3. It converts the dates to the user’s time

zone, but only if the person viewing the

page is logged in.

So, again, the query is intricate, but I’ll go

through it in detail in the following steps.

To write the forum page:

1. Create a new PHP document in your text

editor or IDE (Script 15.4).

<?php # Script 15.4 - forum.php

include ('includes/header.html');

461

Example—Message Board

C
r

e
a

t
i
n

g
 t

h
e

 F
o

r
u

m
 P

a
g

e

1 <?php # Script 15.4 - forum.php

2 // This page shows the threads in a forum.

3 include ('includes/header.html');

4

5 // Retrieve all the messages in this
forum...

6

7 // If the user is logged in and has chosen
a time zone,

8 // use that to convert the dates and
times:

9 if (isset($_SESSION['user_tz'])) {

10 $first = "CONVERT_TZ(p.posted_on, 'UTC',
'{$_SESSION['user_tz']}')";

11 $last = "CONVERT_TZ(p.posted_on, 'UTC',
'{$_SESSION['user_tz']}')";

12 } else {

13 $first = 'p.posted_on';

14 $last = 'p.posted_on';

15 }

16

17 // The query for retrieving all the
threads in this forum, along with the
original user,

18 // when the thread was first posted, when
it was last replied to, and how many
replies it's had:

Script 15.4 This script performs one rather complicated
query to display five pieces of information—the
subject, the original poster, the date the thread was
started, the number of replies, and the date of the
latest reply—for each thread in a forum.

(script continues on next page)

continues on next page

Figure 15.18 The forum
page, which lists
information about the
threads in a given
language. The threads
are linked to a page
where they can be read.

2. Determine what dates and times to use.

if (isset($_SESSION['user_tz'])) {

$first = "CONVERT_TZ(p.posted_on,
➝ 'UTC',
➝ '{$_SESSION['user_tz']}')";

$last = "CONVERT_TZ(p.posted_on,
➝ 'UTC',
➝ '{$_SESSION['user_tz']}')";

} else {

$first = 'p.posted_on';

$last = 'p.posted_on';

}

As I already said, the query will format

the date and time to the user’s time zone

(presumably selected during the registra-

tion process), but only if the viewer is

logged in. This information would be

retrieved from the database and stored

in the session upon login.

To make the query dynamic, what exact

date/time value should be selected will be

stored in a variable. If the user is not logged

in, which means that $_SESSION['user_tz']
is not set, the two dates—when a thread

was started and when the most recent

reply was posted—will be unadulterated

values from the table. In both cases, the

table column being referenced is posted_on

in the posts table (p will be an alias to

posts in the query).

If the user is logged in, the CONVERT_TZ()
function will be used to convert the value

stored in posted_on from UTC to the

user’s chosen time zone. See Chapter 14

for more on this function.

462

Chapter 15

C
r

e
a

t
i
n

g
 t

h
e

 F
o

r
u

m
 P

a
g

e

19 $q = "SELECT t.thread_id, t.subject,
username, COUNT(post_id) - 1 AS responses,
MAX(DATE_FORMAT($last, '%e-%b-%y %l:%i
%p')) AS last, MIN(DATE_FORMAT($first,
'%e-%b-%y %l:%i %p')) AS first FROM
threads AS t INNER JOIN posts AS p USING
(thread_id) INNER JOIN users AS u ON
t.user_id = u.user_id WHERE t.lang_id =
{$_SESSION['lid']} GROUP BY (p.thread_id)
ORDER BY last DESC";

20 $r = mysqli_query($dbc, $q);

21 if (mysqli_num_rows($r) > 0) {

22

23 // Create a table:

24 echo '<table width="100%" border="0"
cellspacing="2" cellpadding="2"
align="center">

25 <tr>

26 <td align="left" width="50%">' .
$words['subject'] . ':</td>

27 <td align="left" width="20%">' .
$words['posted_by'] . ':</td>

28 <td align="center" width="10%">' .
$words['posted_on'] . ':</td>

29 <td align="center" width="10%">' .
$words['replies'] . ':</td>

30 <td align="center" width="10%">' .
$words['latest_reply'] . ':</td>

31 </tr>';

32

33 // Fetch each thread:

34 while ($row = mysqli_fetch_array($r,
MYSQLI_ASSOC)) {

35

36 echo '<tr>

37 <td align="left"><a
href="read.php?tid=' . $row['thread_id'] .
'">' . $row['subject'] . '</td>

38 <td align="left">' . $row['username']
. '</td>

39 <td align="center">' . $row['first'] .
'</td>

40 <td align="center">' .
$row['responses'] . '</td>

(script continues on next page)

Script 15.4 continued

The query needs to return six things: the

ID and subject of each thread (which comes

from the threads table), the name of the

user who posted the thread in the first

place (from users), the number of replies

to each thread, the date the thread was

started, and the date the thread last had

a reply (all from posts).

The overarching structure of this query is

a join between threads and posts using the

thread_id column (which is the same in

both tables). This result is then joined with

the users table using the user_id column.

As for the selected values, three aggregate

functions are used (see Chapter 6): COUNT(),

MIN(), and MAX(). Each is applied to a

column in the posts table, so the query

has a GROUP BY (p.thread_id) clause.

MIN() and MAX() are used to return the

earliest (for the original post) and latest

dates. Both will be shown on the forum

page (see Figure 15.18). The latest date is

also used to order the results so that the

most recent activity always gets returned

first. The COUNT() function is used to count

the number of posts in a given thread.

Because the original post is also in the

posts table, it’ll be counted as well, so 1 is

subtracted from the count.

Finally, aliases are used to make the

query shorter to write and to make it

easier to use the results in the PHP

script. Figure 15.19 shows this query

executed in the mysql client, for a user

that’s not logged in.

463

Example—Message Board

C
r

e
a

t
i
n

g
 t

h
e

 F
o

r
u

m
 P

a
g

e

41 <td align="center">' . $row['last'] .
'</td>

42 </tr>';

43

44 }

45

46 echo '</table>'; // Complete the table.

47

48 } else {

49 echo '<p>There are currently no messages
in this forum.</p>';

50 }

51

52 // Include the HTML footer file:

53 include ('includes/footer.html');

54 ?>

Script 15.4 continued

continues on next page

3. Define and execute the query.

$q = "SELECT t.thread_id, t.subject,
➝ username, COUNT(post_id) - 1 AS
➝ responses, MAX(DATE_FORMAT($last,
➝ '%e-%b-%y %l:%i %p')) AS last,
➝ MIN(DATE_FORMAT($first, '%e-%b-%y
➝ %l:%i %p')) AS first FROM threads
➝ AS t INNER JOIN posts AS p USING
➝ (thread_id) INNER JOIN users AS u
➝ ON t.user_id = u.user_id WHERE
➝ t.lang_id = {$_SESSION['lid']}
➝ GROUP BY (p.thread_id) ORDER BY
➝ last DESC";

$r = mysqli_query($dbc, $q);

if (mysqli_num_rows($r) > 0) {

Figure 15.19 The
results of running
the complex query in
the mysql client.

4. Create a table for the results.

echo '<table width="100%" border="0"
➝ cellspacing="2" cellpadding="2"
➝ align="center">

<tr>

<td align="left"
➝ width="50%">' .
➝ $words['subject'] . ':</td>

<td align="left" width="20%">'
➝ . $words['posted_by'] .
➝ ':</td>

<td align="center"
➝ width="10%">' .
➝ $words['posted_on'] .
':</td>

<td align="center"
➝ width="10%">' .
➝ $words['replies'] . ':</td>

<td align="center"
➝ width="10%">' .
➝ $words['latest_reply'] .
➝ ':</td>

</tr>';

As with some items in the header file,

the captions for the columns in this

HTML page will use language-specific

terminology.

5. Fetch and print each returned record.

while ($row = mysqli_fetch_array($r,
➝ MYSQLI_ASSOC)) {

echo '<tr>

<td align="left"><a
➝ href="read.php?tid=' .
➝ $row['thread_id'] . '">' .
➝ $row['subject'] . '</td>

<td align="left">' .
➝ $row['username'] . '</td>

<td align="center">' .
➝ $row['first'] . '</td>

<td align="center">' .
➝ $row['responses'] . '</td>

<td align="center">' .
➝ $row['last'] . '</td>

</tr>';

}

This code is fairly simple, and there are

similar examples many times over in the

book. The thread’s subject is linked to

read.php, passing that page the thread ID

in the URL.

464

Chapter 15

C
r

e
a

t
i
n

g
 t

h
e

 F
o

r
u

m
 P

a
g

e

6. Complete the page.

echo '</table>';

} else {

echo '<p>There are currently no
➝ messages in this forum.</p>';

}

include ('includes/footer.html');

?>

This else clause applies if the query

returned no results. In actuality, this mes-

sage should also be in the user’s chosen

language. I’ve omitted that for the sake

of brevity. To fully implement this feature,

create another column in the words table

and store for each language the translated

version of this text.

7. Save the file as forum.php, place it in your

Web directory, and test it in your Web

browser (Figure 15.20).

✔ Tips

■ To improve this example, you could add

pagination—see Chapter 9, “Common

Programming Techniques”—to this script.

■ As noted in the chapter’s introduction,

I’ve omitted all error handling in this

example. If you have problems with the

queries, apply the debugging techniques

outlined in Chapter 7, “Error Handling

and Debugging.”

465

Example—Message Board

C
r

e
a

t
i
n

g
 t

h
e

 F
o

r
u

m
 P

a
g

e

Figure 15.20 The
forum.php page,
viewed in another
language (compare
with Figure 15.18).

Creating the Thread Page
Next up is the page for viewing all of the mes-

sages in a thread (Figure 15.21). This page

is accessed by clicking a link in forum.php
(Figure 15.22). Thanks to a simplified data-

base structure, the query used by this script

is not that complicated (with the database

design from Chapter 6, this page would have

been much more complex). All this page has

to do then is make sure it receives a valid

thread ID, display every message, and display

the form for users to add their own replies.

To make read.php:

1. Create a new PHP document in your text

editor or IDE (Script 15.5).

<?php # Script 15.5 - read.php

include ('includes/header.html');

466

Chapter 15

C
r

e
a

t
i
n

g
 t

h
e

 T
h

r
e

a
d

 P
a

g
e

Figure 15.21 The read.php page shows every message in a thread.

Figure 15.22 Part of the source code from forum.php shows
how the thread ID is passed to read.php in the URL.

2. Begin validating the thread ID.

$tid = FALSE;

if (isset($_GET['tid']) &&
➝ is_numeric($_GET['tid'])) {

$tid = (int) $_GET['tid'];

if ($tid > 0) {

To start, a flag variable is defined as FALSE,

a way of saying: prove that the thread ID

is valid. Next, a check confirms that the

thread ID was passed in the URL and

that it is numeric. Finally, it’s typecast as

an integer and checked to see if it has

a positive value.

3. Determine if the dates and times should

be adjusted.

if (isset($_SESSION['user_tz'])) {

$posted =
➝ "CONVERT_TZ(p.posted_on, 'UTC',
➝ '{$_SESSION['user_tz']}')";

} else {

$posted = 'p.posted_on';

}

As in the forum.php page (Script 15.4),

the query will format all of the dates and

times in the user’s time zone, if they are

logged in. To be able to adjust the query

accordingly, this variable stores either the

column’s name (posted_on, from the

posts table) or the invocation of MySQL’s

CONVERT_TZ() function.

467

Example—Message Board

C
r

e
a

t
i
n

g
 t

h
e

 T
h

r
e

a
d

 P
a

g
e

1 <?php # Script 15.5 - read.php

2 // This page shows the messages in a
thread.

3 include ('includes/header.html');

4

5 // Check for a thread ID...

6 $tid = FALSE;

7 if (isset($_GET['tid']) &&
is_numeric($_GET['tid'])) {

8

9 $tid = (int) $_GET['tid'];

10

11 if ($tid > 0) { // Check against the
database...

12

13 // Convert the date if the user is
logged in:

14 if (isset($_SESSION['user_tz'])) {

15 $posted = "CONVERT_TZ(p.posted_on,
'UTC', '{$_SESSION['user_tz']}')";

16 } else {

17 $posted = 'p.posted_on';

18 }

19

20 // Run the query:

21 $q = "SELECT t.subject, p.message,
username, DATE_FORMAT($posted, '%e-%b-%y
%l:%i %p') AS posted FROM threads AS t
LEFT JOIN posts AS p USING (thread_id)
INNER JOIN users AS u ON p.user_id =
u.user_id WHERE t.thread_id = $tid ORDER
BY p.posted_on ASC";

22 $r = mysqli_query($dbc, $q);

23 if (!(mysqli_num_rows($r) > 0)) {

24 $tid = FALSE; // Invalid thread ID!

25 }

26

Script 15.5 The read.php page shows all of the
messages in a thread, in order of ascending posted
date. The page also shows the thread’s subject at the
top and includes a form for adding a reply at the bottom.

(script continues on next page)

continues on next page

4. Run the query.

$q = "SELECT t.subject, p.message,
➝ username, DATE_FORMAT($posted,
➝ '%e-%b-%y %l:%i %p') AS posted FROM
➝ threads AS t LEFT JOIN posts AS p
➝ USING (thread_id) INNER JOIN users
➝ AS u ON p.user_id = u.user_id WHERE
➝ t.thread_id = $tid ORDER BY
➝ p.posted_on ASC";

$r = mysqli_query($dbc, $q);

if (!(mysqli_num_rows($r) > 0)) {

$tid = FALSE;

}

This query is like the query on the forum

page, but it’s been simplified in two ways.

First, it doesn’t use any of the aggregate

functions or a GROUP BY clause. Second, it

only returns one date/time. The query is

still a join across three tables, in order to

get the subject, message bodies, and user-

names. They are ordered by their posted

dates in ascending order (i.e., from the

first post to the most recent).

If the query doesn’t return any rows, then

the thread ID isn’t valid and the flag vari-

able is assigned FALSE again.

5. Complete the conditionals and check,

again, for a valid thread ID.

} // End of ($tid > 0) IF.

} // End of isset($_GET['tid']) IF.

if ($tid) {

Before printing the messages in the thread,

one last conditional is used. This condi-

tional would be false if a numeric thread

ID greater than 0 was supplied but it

didn’t return any rows from the database.

468

Chapter 15

C
r

e
a

t
i
n

g
 t

h
e

 T
h

r
e

a
d

 P
a

g
e

27 } // End of ($tid > 0) IF.

28

29 } // End of isset($_GET['tid']) IF.

30

31 if ($tid) { // Get the messages in this
thread...

32

33 $printed = FALSE; // Flag variable.

34

35 // Fetch each:

36 while ($messages =
mysqli_fetch_array($r, MYSQLI_ASSOC)) {

37

38 // Only need to print the subject once!

39 if (!$printed) {

40 echo
"<h2>{$messages['subject']}</h2>\n";

41 $printed = TRUE;

42 }

43

44 // Print the message:

45 echo "<p>{$messages['username']}
({$messages['posted']})

{$messages['message']}</p>
\n";

46

47 } // End of WHILE loop.

48

49 // Show the form to post a message:

50 include ('post_form.php');

51

52 } else { // Invalid thread ID!

53 echo '<p>This page has been accessed in
error.</p>';

54 }

55

56 include ('includes/footer.html');

57 ?>

Script 15.5 continued

As you can see in Figure 15.21, the thread

subject needs to be printed only once.

However, the query will return the subject

for each returned message (Figure 15.23).

To achieve this effect, a flag variable is

created. If $printed is false, then the sub-

ject needs to be printed. This would be

the case for the first row fetched from

the database. Once that’s been displayed,

$printed is set to TRUE so that the subject

is not printed again. Then the username,

posted date, and message are displayed.

7. Include the form for posting a message.

include ('post_form.php');

As users could post messages in two

ways—as a reply to an existing thread

and as the first post in a new thread, I’ve

placed the form itself within a separate

file (to be created next).

469

Example—Message Board

C
r

e
a

t
i
n

g
 t

h
e

 T
h

r
e

a
d

 P
a

g
e

Figure 15.23 The results of the read.php query when run in the mysql client. This
version of the query converts the dates to the logged-in user’s preferred time zone.

6. Print each message.

$printed = FALSE;

while ($messages =
➝ mysqli_fetch_array($r,
➝ MYSQLI_ASSOC)) {

if (!$printed) {

echo
➝ "<h2>{$messages['subject']}
➝ </h2>\n";

$printed = TRUE;

}

echo
➝ "<p>{$messages['username']}
➝ ({$messages['posted']})<br
➝ />{$messages['message']}
➝ </p>
\n";

}

continues on next page

8. Complete the page.

} else { // Invalid thread ID!

echo '<p>This page has been
➝ accessed in error.</p>';

}

include ('includes/footer.html');

?>

Again, in a complete site, this error mes-

sage would also be stored in the words

table in each language. Then you would

write here:

echo
➝ "<p>{$words['access_error']}</p>";

9. Save the file as read.php, place it in your

Web directory, and test it in your Web

browser (Figure 15.24).

470

Chapter 15

C
r

e
a

t
i
n

g
 t

h
e

 T
h

r
e

a
d

 P
a

g
e

How This Example Is Complicated

In the introduction to this example, I state that it’s fundamentally simple, but that some-

times the simple things take some extra effort to do. So how is this example complicated, in

my opinion?

First, supporting multiple languages does add a couple of issues. If the encoding isn’t handled

properly everywhere—when creating the pages in your text editor or IDE, in communicating

with MySQL, in the Web browser, etc.—things can go awry. Also, you have to have the proper

translations for every language for every bit of text that the site might need. This includes

error messages (ones the user should actually see), the bodies of emails, and so forth.

How the PHP files are organized and what they do also complicates things. In particular, vari-

ables will be used in one file that are created in another. Doing this can lead to confusion at

best and bugs at the worst. To overcome those problems, I recommend adding lots of com-

ments indicating where variables come from or where else they might be used. Also try to use

unique variable names within pages so that they are less likely to conflict with variables in

included files.

Finally, this example was complicated by the way only one page is used to display the posting

form and only one page is used to handle it, despite the fact that messages can be posted in

two different ways, with different expectations.

Figure 15.24 The read.php page, viewed in Japanese.

Posting Messages
The final two pages in this application are

the most important, because you won’t have

threads to read without them. I’m creating

two files for posting messages. One will make

the form, and the other will handle the form.

Creating the form
The first page required for posting messages

is post_form.php. It has some contingencies:

1. It can only be included by other files,

never accessed directly.

2. It should only be displayed if the user is

logged in (which is to say only logged-in

users can post messages).

3. If it’s being used to add a reply to an

existing message, it only needs a message

body input (Figure 15.25).

4. If it’s being used to create a new thread,

it needs both subject and body inputs

(Figure 15.26).

5. It needs to be sticky (Figure 15.27).

Still, all of this can be accomplished in just

about 60 lines of code and some smart

conditionals.

471

Example—Message Board

P
o

s
t

i
n

g
 M

e
s

s
a

g
e

s

Figure 15.25 The form for posting a message, as
shown on the thread-viewing page.

Figure 15.26 The same form for posting a message, if
being used to create a new thread.

Figure 15.27 The form will recall entered values when
not completed correctly.

To create post_form.php:

1. Begin a new PHP document in your text

editor or IDE (Script 15.6).

<?php # Script 15.6 - post_form.php

2. Redirect the Web browser if this page has

been accessed directly.

if (!isset($words)) {

header ("Location:
➝ http://www.example.com/index.
➝ php");

exit();

}

This script does not include the header

and footer and therefore won’t make

a complete HTML page, so it must be

included by a script that does all that.

There’s no been_included() function that

will indicate if this page was included or

loaded directly. Instead, since I know that

the header file creates a $words variable,

if that variable isn’t set, then header.html
hasn’t been included prior to this script

and the browser should be redirected.

Change the URL in the header() call to

match your site.

3. Confirm that the user is logged in and

begin the form.

if (isset($_SESSION['user_id'])) {

echo '<form action="post.php"
➝ method="post" accept-
➝ charset="utf-8">';

Only registered users can post, so check

for the presence of $_SESSION['user_id']
before displaying the form. The form

itself will be submitted to post.php, to be

written next. The accept-charset attrib-

ute is added to the form to make it clear

that UTF-8 text is acceptable (although

this isn’t technically required, as each

page uses the UTF-8 encoding already).

472

Chapter 15

P
o

s
t

i
n

g
 M

e
s

s
a

g
e

s

1 <?php # Script 15.6 - post_form.php

2 // This page shows the form for posting
messages.

3 // It's included by other pages, never
called directly.

4

5 // Redirect if this page is called
directly:

6 if (!isset($words)) {

7 header ("Location:
http://www.example.com/index.php");

8 exit();

9 }

10

11 // Only display this form if the user is
logged in:

12 if (isset($_SESSION['user_id'])) {

13

14 // Display the form:

15 echo '<form action="post.php"
method="post" accept-charset="utf-8">';

16

17 // If on read.php...

18 if (isset($tid) && $tid) {

19

20 // Print a caption:

21 echo '<h3>' .
$words['post_a_reply'] . '</h3>';

22

23 // Add the thread ID as a hidden
input:

24 echo '<input name="tid"
type="hidden" value="' . $tid . '"
/>';

25

Script 15.6 This script will be included by other pages
(notably, read.php and post.php). It displays a form
for posting messages that is also sticky.

(script continues on next page)

4. Check for a thread ID.

if (isset($tid) && $tid) {

echo '<h3>' .
➝ $words['post_a_reply'] . '</h3>';

echo '<input name="tid"
➝ type="hidden" value="' . $tid .
➝ '" />';

This is where things get a little bit tricky.

As mentioned earlier, and as shown in

Figures 15.25 and 15.26, the form will dif-

fer slightly depending upon how it’s being

used. When included on read.php, it’ll be

used to provide a reply to an existing

thread. To check for this, the script sees

if $tid (short for thread ID) is set and if it

has a TRUE value. That will be the case

when this page is included by read.php.

When this script is included by post.php,

$tid will be set but have a FALSE value.

If this conditional is true, the language-

specific version of “Post a Reply” will be

printed and the thread ID will be stored

in a hidden form input.

473

Example—Message Board

P
o

s
t

i
n

g
 M

e
s

s
a

g
e

s

26 } else { // New thread

27

28 // Print a caption:

29 echo '<h3>' . $words['new_thread']
. '</h3>';

30

31 // Create subject input:

32 echo '<p>' . $words['subject']
. ': <input name="subject"
type="text" size="60"
maxlength="100" ';

33

34 // Check for existing value:

35 if (isset($subject)) {

36 echo "value=\"$subject\" ";

37 }

38

39 echo '/></p>';

40

41 } // End of $tid IF.

42

43 // Create the body textarea:

44 echo '<p>' . $words['body'] .
': <textarea name="body" rows="10"
cols="60">';

45

46 if (isset($body)) {

47 echo $body;

48 }

49

50 echo '</textarea></p>';

51

52 // Finish the form:

(script continues on next page)

Script 15.6 continued

continues on next page

5. Complete the conditional begun in Step 4.

} else { // New thread

echo '<h3>' .
➝ $words['new_thread'] . '</h3>';

echo '<p>' .
➝ $words['subject'] . ':
➝ <input name="subject"
➝ type="text" size="60"
➝ maxlength="100" ';

if (isset($subject)) {

echo "value=\"$subject\" ";

}

echo '/></p>';

} // End of $tid IF.

If this is not a reply, then the caption

should be the language-specific version

of “New Thread” and a subject input

should be created. That input needs to be

sticky. To check for that, look for the

existence of a $subject variable. This

variable will be created in post.php, and

that file will then include this page.

474

Chapter 15

P
o

s
t

i
n

g
 M

e
s

s
a

g
e

s

53 echo '<input name="submit" type="submit"
value="' . $words['submit'] . '"
/><input name="submitted" type="hidden"
value="TRUE" />

54 </form>';

55

56 } else {

57 echo '<p>You must be logged in to post
messages.</p>';

58 }

59

60 ?>

Script 15.6 continued

6. Create the textarea for the message body.

echo '<p>' . $words['body'] .
➝ ': <textarea name="body"
➝ rows="10" cols="60">';

if (isset($body)) {

echo $body;

}

echo '</textarea></p>';

Both uses of this page will have this

textarea. Like the subject, it will be made

sticky if a $body variable (defined in

post.php) exists. For both inputs, the

prompts will be language-specific.

7. Complete the form.

echo '<input name="submit"
➝ type="submit" value="' .
➝ $words['submit'] . '" /><input
➝ name="submitted" type="hidden"
➝ value="TRUE" />

</form>';

All that’s left is a language-specific sub-

mit button (Figure 15.28) and the hid-

den input to indicate form submission

(the little trick I discuss in Chapter 3).

8. Complete the page.

} else {

echo '<p>You must be logged in to
➝ post messages.</p>';

}

?>

Once again, you could store this message

in the words table and use the translated

version here. I didn’t only for the sake of

simplicity.

9. Save the file as post_form.php, place it in

your Web directory, and test it in your

Web browser by accessing read.php
(Figure 15.29).

475

Example—Message Board

P
o

s
t

i
n

g
 M

e
s

s
a

g
e

s

Figure 15.28 The form prompts and even the submit
button will be in the user’s chosen language (compare
with Figures 15.25, 15.26, and 15.27).

Figure 15.29 The result of the post_form.php page if
the user is not logged in (remember that you can
emulate not being logged in by using the $_SESSION =
array(); line in the header file).

Handling the form
This file, post.php, will primarily be used

to handle the form submission from

post_form.php. That sounds simple enough,

but there’s a bit more to it. This page will

actually be called in three different ways:

1. To handle the form for a thread reply

2. To display the form for a new thread

submission

3. To handle the form for a new thread

submission

This means that the page will be accessed using

either POST (modes 1 and 3) or GET (mode 2).

Also, the data that will be sent to the page,

and therefore needs to be validated, will dif-

fer between modes 1 and 3. Figure 15.30

shows a representation of the logic.

Adding to the complications, if a new thread

is being created, two queries must be run:

one to add the thread to the threads table

and a second to add the new thread body to

the posts table. If the submission is a reply to

an existing thread, then only one query is

required, inserting a record into posts.

Of course, successfully pulling this off is just

a matter of using the right conditionals, as

you’ll see. In terms of validation, the subject

and body, as text types, will just be checked

for a non-empty value. All tags will be stripped

from the subject (because why should it have

any?) and turned into entities in the body.

This will allow for HTML, JavaScript, and

PHP code to be used in a post but still not

be executed when the thread is shown

(because in a forum about Web development,

you’ll need to show some code).

To create post.php:

1. Begin a new PHP document in your text

editor or IDE (Script 15.7).

<?php # Script 15.7 - post.php

include ('includes/header.html');

This page will use the header and footer

files, unlike post_form.php.

2. Check for the form submission and vali-

date the thread ID.

if (isset($_POST['submitted'])) {

$tid = FALSE;

if (isset($_POST['tid']) &&
is_numeric($_POST['tid'])) {

$tid = (int) $_POST['tid'];

if ($tid <= 0) {

$tid = FALSE;

}

}

The thread ID will be present if the form was

submitted as a reply to an existing thread

(the thread ID is stored as a hidden input,

see Figure 15.31). The validation process

is fairly routine: make sure it’s set and is

numeric, and then typecast it. If it’s not

greater than 0, then it’s an invalid thread ID.

476

Chapter 15

P
o

s
t

i
n

g
 M

e
s

s
a

g
e

s

Figure 15.30 The various uses of the
post.php page.

Figure 15.31 The source code of read.php shows how the thread ID is stored in the
form. This indicates to post.php that the submission is a reply, not a new thread.

3. Validate the message subject.

if (!$tid &&
➝ empty($_POST['subject'])) {

$subject = FALSE;

echo '<p>Please enter a subject
➝ for this post.</p>';

} elseif (!$tid &&
➝ !empty($_POST['subject'])) {

$subject =
➝ htmlspecialchars(strip_tags
➝ ($_POST['subject']));

} else {

$subject = TRUE;

}

The tricky part about validating the sub-

ject is that three scenarios exist. First, if

there’s no valid thread ID, then this should

be a new thread and the subject can’t be

empty. If it is, then an error occurred and

a message is printed. Second, if there’s no

valid thread ID and the subject isn’t

empty, then this is a new thread and the

subject was entered, so it should be han-

dled. In this case, any tags are removed,

using the strip_tags() function, and

htmlspecialchars() will turn any remain-

ing quotation marks into their entity for-

mat. Calling this second function will

prevent problems should the form be dis-

played again and the subject placed in

the input to make it sticky. To be clear, if

the submitted subject contained a dou-

ble quotation mark but the body wasn’t

completed, the form will be shown again

with the subject placed within value="",

and you’ll see problems.

The third scenario is when the form has

been submitted as a reply to an existing

thread. In that case, $tid will be valid

and no subject is required.

477

Example—Message Board

P
o

s
t

i
n

g
 M

e
s

s
a

g
e

s

1 <?php # Script 15.7 - post.php

2 // This page handles the message post.

3 // It also displays the form if creating a
new thread.

4 include ('includes/header.html');

5

6 if (isset($_POST['submitted'])) { //
Handle the form.

7

8 // Language ID ($lid) is in the session.

9 // Validate thread ID ($tid), which may
not be present:

10 $tid = FALSE;

11 if (isset($_POST['tid']) &&
is_numeric($_POST['tid'])) {

12 $tid = (int) $_POST['tid'];

13 if ($tid <= 0) {

14 $tid = FALSE;

15 }

16 }

17

18 // If there's no thread ID, a subject
must be provided:

19 if (!$tid && empty($_POST['subject'])) {

20 $subject = FALSE;

21 echo '<p>Please enter a subject for
this post.</p>';

22 } elseif (!$tid &&
!empty($_POST['subject'])) {

23 $subject =
htmlspecialchars(strip_tags($_POST
['subject']));

24 } else { // Thread ID, no need for
subject.

25 $subject = TRUE;

Script 15.7 The post.php page will process the form
submissions when a message is posted. This page
will be used to both create new threads and handle
replies to existing threads.

(script continues on next page) continues on next page

4. Validate the body.

if (!empty($_POST['body'])) {

$body =
➝ htmlentities($_POST['body']);

} else {

$body = FALSE;

echo '<p>Please enter a body for
➝ this post.</p>';

}

This is a much easier validation, as the

body is always required. If present, it’ll be

run through htmlentities().

5. Check if the form was properly filled out.

if ($subject && $body) {

478

Chapter 15

P
o

s
t

i
n

g
 M

e
s

s
a

g
e

s

26 }

27

28 // Validate the body:

29 if (!empty($_POST['body'])) {

30 $body =
htmlentities($_POST['body']);

31 } else {

32 $body = FALSE;

33 echo '<p>Please enter a body for
this post.</p>';

34 }

35

36 if ($subject && $body) { // OK!

37

38 // Add the message to the database...

39

40 if (!$tid) { // Create a new thread.

41 $q = "INSERT INTO threads (lang_id,
user_id, subject) VALUES ($lid,
{$_SESSION['user_id']}, '" .
mysqli_real_escape_string($dbc,
$subject) . "')";

42 $r = mysqli_query($dbc, $q);

43 if (mysqli_affected_rows($dbc) = = 1) {

44 $tid = mysqli_insert_id($dbc);

45 } else {

46 echo '<p>Your post could not be
handled due to a system
error.</p>';

47 }

48

49 }

50

51 if ($tid) { // Add this to the replies
table:

(script continues on next page)

Script 15.7 continued

6. Create a new thread, if appropriate.

if (!$tid) {

$q = "INSERT INTO threads
➝ (lang_id, user_id, subject)
➝ VALUES ($lid,
➝ {$_SESSION['user_id']}, '" .
➝ mysqli_real_escape_string($dbc,
➝ $subject) . "')";

$r = mysqli_query($dbc, $q);

if (mysqli_affected_rows($dbc)
➝ == 1) {

$tid = mysqli_insert_id($dbc);

} else {

echo '<p>Your post could not
➝ be handled due to a system
➝ error.</p>';

}

}

If there’s no thread ID, then this is a new

thread and a query must be run on the

threads table. That query is simple, popu-

lating the three columns. Two of these val-

ues come from the session (after the user

has logged in). The other is the subject,

which is run through mysqli_real_escape_
string(). Because the subject already had

strip_tags() and htmlspecialchars()
applied to it, you could probably get away

with not using this function, but there’s

no need to take that risk.

If the query worked, meaning it affected one

row, then the new thread ID is retrieved.

479

Example—Message Board

P
o

s
t

i
n

g
 M

e
s

s
a

g
e

s

52

53 $q = "INSERT INTO posts (thread_id,
user_id, message, posted_on) VALUES
($tid, {$_SESSION['user_id']}, '" .
mysqli_real_escape_string($dbc, $body)
. "', UTC_TIMESTAMP())";

54 $r = mysqli_query($dbc, $q);

55 if (mysqli_affected_rows($dbc) == 1) {

56 echo '<p>Your post has been
entered.</p>';

57 } else {

58 echo '<p>Your post could not be
handled due to a system
error.</p>';

59 }

60

61 }

62

63 } else { // Include the form:

64 include ('post_form.php');

65 }

66

67 } else { // Display the form:

68

69 include ('post_form.php');

70

71 }

72

73 include ('includes/footer.html');

74 ?>

Script 15.7 continued

continues on next page

7. Add the record to the posts table.

if ($tid) {

$q = "INSERT INTO posts
➝ (thread_id, user_id, message,
➝ posted_on) VALUES ($tid,
➝ {$_SESSION['user_id']}, '" .
➝ mysqli_real_escape_string($dbc,
➝ $body) . "', UTC_TIMESTAMP())";

$r = mysqli_query($dbc, $q);

if (mysqli_affected_rows($dbc)

➝ == 1) {

echo '<p>Your post has been
➝ entered.</p>';

} else {

echo '<p>Your post could not
➝ be handled due to a system
➝ error.</p>';

}

}

This query should only be run if the

thread ID exists. That will be the case if

this is a reply to an existing thread or if the

new thread was just created in the data-

base (Step 6). If that query failed, then

this query won’t be run.

The query populates four columns in the

table, using the thread ID, the user ID

(from the session), the message body, run

through mysqli_real_escape_string()
for security, and the posted date. For this

last value, the UTC_TIMESTAMP() column is

used so that it’s not tied to any one time

zone (see Chapter 14).

Note that for all of the printed messages

in this page, I’ve just used hard-coded

English. To finish rounding out the

examples, each of these messages should

be stored in the words table and printed

here instead.

8. Complete the page.

} else { // Include the form:

include ('post_form.php');

}

} else { // Display the form:

include ('post_form.php');

}

include ('includes/footer.html');

?>

The first else clause applies if the form

was submitted but not completed. In

that case, the form will be included again

and can be sticky, as it’ll have access to

$subject and $body created here. The sec-

ond else clause applies if this page was

accessed directly (by clinking a link in

the navigation) and $_POST['submitted']
is not set.

480

Chapter 15

P
o

s
t

i
n

g
 M

e
s

s
a

g
e

s

9. Save the file as post.php, place it in your

Web directory, and test it in your Web

browser (Figures 15.32 and 15.33).

481

Example—Message Board

P
o

s
t

i
n

g
 M

e
s

s
a

g
e

s

Figure 15.32 The result if no subject was provided
while attempting to post a new thread.

Figure 15.33 The reply has been successfully added
to the thread.

Administering the Forum

Much of the administration of the forum would involve user management, discussed in the

next chapter. Depending upon who was administering the forum, you might also create forms

for managing the languages and lists of translated words.

Administrators would also likely have the authority to edit and delete posts or threads. To

accomplish this, store a user level in the session as well (the next chapter shows you how).

If the logged-in user is an administrator, add links to edit and delete threads on forum.php.

Each link would pass the thread ID to a new page (like edit_user.php and delete_user.php
from Chapter 9). When deleting a thread, you have to make sure you delete all the records

in the posts table that also have that thread ID.

Finally, an administrator could edit or delete individual posts (the replies to a thread). Again,

check for the user level and then add links to read.php (a pair of links after each message). The

links would pass the post ID to edit and delete pages (different ones than are used on threads).

This page intentionally left blank

The second example in the book—a user registration system—is one of the more

common uses of PHP and MySQL. Most of the scripts developed here have been

introduced and explained in previous chapters, as the registration, login, and logout

processes make for good examples of many concepts. But this chapter will place all

of that within the same context, using a consistent programming theory.

Users will be able to register, log in, log out, and change their password. One feature

not shown elsewhere will be the ability to reset a password, should it be forgotten.

Another feature will be the requirement that users activate their account—by click-

ing a link in an email—before they can log in. Once the user has logged in, sessions

will be used to limit access to pages and track the user. New to this edition will

be support for different user levels, allowing you to control the available content

according to the type of user logged in.

As in the preceding chapter, the focus here will be on the public side of things (never

fear: Chapter 17, “Example—E-Commerce,” includes some administration). Of course,

I’ll include notes at the end of the chapter discussing what you might do to add

administrative features. Along the way you’ll also see recommendations as to how

this application could easily be expanded or modified.

483

Example—
User Registration

16

E
x

a
m

p
l
e

—
U

s
e

r
 R

e
g

i
s

t
r

a
t

i
o

n

Creating the Templates
The application in this chapter will use a

new template design (Figure 16.1). This

template makes extensive use of Cascading

Style Sheets (CSS), creating a clean look

without the need for images. It has tested

well on all current browsers and will appear

as unformatted text on browsers that don’t

support CSS 2 (including text browsers like

Lynx). The layout for this site is derived

from one freely provided by BlueRobot

(www.bluerobot.com).

To begin, I’ll write two template files:

header.html and footer.html. As in the

Chapter 11, “Cookies and Sessions,” exam-

ples, the footer file will display certain links

depending upon whether or not the user

is logged in, determined by checking for the

existence of a session variable. Taking this

concept one step further, additional links

will be displayed if the logged-in user is also

an administrator (a session value will indi-

cate such).

The header file will begin sessions and out-

put buffering, while the footer file will end

output buffering. Output buffering hasn’t

been formally covered in the book, but it’s

introduced sufficiently in the sidebar.

To make header.html:

1. Create a new document in your text edi-

tor or IDE (Script 16.1).

<?php # Script 16.1 - header.html

2. Begin output buffering and start a

session.

ob_start();

session_start();

I’ll be using output buffering for this

application, so that I need not worry

about error messages when I use HTTP

headers, redirect the user, or send cook-

ies. Every page will make use of sessions

as well. It’s safe to place the session_
start() call after ob_start(), since noth-

ing has been sent to the Web browser yet.

Since every public page will use both of

these techniques, placing these lines in

the header.html file saves me the hassle

of placing them in every single page.

Secondarily, if you later want to change

the session settings, you only need to

edit this one file.

484

Chapter 16

C
r

e
a

t
i
n

g
 t

h
e

 T
e

m
p

l
a

t
e

s

Figure 16.1 The basic
appearance of this
Web application.

485

Example—User Registration

C
r

e
a

t
i
n

g
 t

h
e

 T
e

m
p

l
a

t
e

s

Using Output Buffering

By default, anything that a PHP script prints or any HTML outside of the PHP tags (even in

included files) is immediately sent to the Web browser. Output buffering (or output control, as

the PHP manual calls it) is a PHP feature that overrides this behavior. Instead of immediately

sending HTML to the Web browser, that output will be placed in a buffer—temporary memo-

ry. Then, when the buffer is flushed, it’s sent to the Web browser. There can be a performance

improvement with output buffering, but the main benefit is that it virtually eradicates those

pesky headers already sent error messages. Some functions—header(), setcookie(), and

session_start()—can only be called if nothing has been sent to the Web browser. With out-

put buffering, nothing will be sent to the Web browser until the end of the page, so you are

free to call these functions at any point in a script.

To begin output buffering, use the ob_start() function. Once you call it, every echo(), print(),

and similar function will send data to a memory buffer rather than the Web browser. Conversely,

HTTP calls (like header() and setcookie()) will not be buffered and will operate as usual.

At the conclusion of the script, call the ob_end_flush() function to send the accumulated

buffer to the Web browser. Or, use the ob_end_clean() function to delete the buffered data

without sending it. Both functions have the secondary effect of turning off output buffering.

1 <?php # Script 16.1 - header.html

2 // This page begins the HTML header for
the site.

3

4 // Start output buffering:

5 ob_start();

6

7 // Initialize a session:

8 session_start();

9

10 // Check for a $page_title value:

11 if (!isset($page_title)) {

12 $page_title = 'User Registration';

13 }

14 ?><!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

Script 16.1 The header file begins the HTML, starts
the session, and turns on output buffering.

(script continues)

15 "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">

16 <html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

17 <head>

18 <meta http-equiv="content-type" content=
"text/html; charset=iso-8859-1" />

19 <title><?php echo $page_title;
?></title>

20 <style type="text/css"
media="screen">@import
"includes/layout.css";</style>

21 </head>

22 <body>

23 <div id="Header">User Registration</div>

24 <div id="Content">

25 <!-- End of Header -->

Script 16.1 continued

3. Check for a $page_title variable and

close the PHP section.

if (!isset($page_title)) {

$page_title = 'User
➝ Registration';

}

As in the other times this book has used

a template system, the page’s title—

which appears at the top of the browser

window—will be set on a page-by-page

basis. This conditional checks if the

$page_title variable has a value and, if it

doesn’t, sets it to a default string. This is

a nice, but optional, check to include in

the header.

4. Create the HTML head.

?><!DOCTYPE html PUBLIC "-//W3C//DTD
➝ XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtm
➝ l1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/
➝ xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type"
➝ content="text/html; charset=
➝ iso-8859-1" />

<title><?php echo $page_title;
➝ ?></title>

<style type="text/css" media="screen"
➝ >@import "./includes/layout.css";
➝ </style>

</head>

The PHP $page_title variable is printed

out between the title tags here. Then, the

CSS document is included. It will be

called layout.css and stored in a direc-

tory called includes. You can download

the file from the book’s supporting Web

site (www.DMCInsights.com/phpmysql3/,

see the Extras page).

486

Chapter 16

C
r

e
a

t
i
n

g
 t

h
e

 T
e

m
p

l
a

t
e

s

1 <!-- End of Content -->

2 </div>

3

4 <div id="Menu">

5 <a href="index.php" title="Home
Page">Home

6 <?php # Script 16.2 - footer.html

7 // This page completes the HTML template.

8

9 // Display links based upon the login
status:

10 if (isset($_SESSION['user_id'])) {

11

12 echo '<a href="logout.php"

title="Logout">Logout

13 <a href="change_password.php" title=

"Change Your Password">Change

Password

14 ';

15

16 // Add links if the user is an
administrator:

17 if ($_SESSION['user_level'] == 1) {

18

19 echo '<a href="view_users.php"

title="View All Users">View Users

20 Some Admin Page

21 ';

22

23 }

24

25 } else { // Not logged in.

26

27 echo '<a href="register.php" title=

"Register for the Site">Register

Script 16.2 The footer file concludes the HTML,
displaying links based upon the user status
(logged in or not, administrator or not), and
flushes the output to the Web browser.

(script continues on next page)

5. Begin the HTML body.

<body>

<div id="Header">User
Registration</div>

<div id="Content">

The body creates the banner across the

top of the page and then starts the con-

tent part of the Web page (up until Page

Caption in Figure 16.1).

6. Save the file as header.html.

To make footer.html:

1. Create a new document in your text edi-

tor or IDE (Script 16.2).

</div>

<div id="Menu">

<a href="index.php" title="Home
➝ Page">Home

<?php # Script 16.2 - footer.html

2. If the user is logged in, show logout and

change password links.

if (isset($_SESSION['user_id'])) {

echo '<a href="logout.php" title=
➝ "Logout">Logout

<a href="change_password.php" title=
➝ "Change Your Password">Change
➝ Password

';

If the user is logged in (which means that

$_SESSION['user_id'] is set), the user

will see links to log out and to change

their password (Figure 16.2).

487

Example—User Registration

C
r

e
a

t
i
n

g
 t

h
e

 T
e

m
p

l
a

t
e

s

28 <a href="login.php"

title="Login">Login

29 <a href="forgot_password.php"

title="Password Retrieval">Retrieve

Password

30 ';

31

32 }

33 ?>

34 Some Page

35 Another Page

36 </div>

37 </body>

38 </html>

39 <?php // Flush the buffered output.

40 ob_end_flush();

41 ?>

Script 16.2 continued

continues on next page

Figure 16.2 The user will see these
navigation links while they are logged in.

3. If the user is also an administrator, show

some other links.

if ($_SESSION['user_level'] == 1) {

echo '<a href="view_users.php"
➝ title="View All Users">View
➝ Users

Some Admin Page

';

}

If the logged-in user also happens to be

an administrator, then they should see

some extra links (Figure 16.3). To test

for this, check the user’s access level,

which will also be stored in a session. A

level value of 1 will indicate that the user

is an administrator.

4. Show the links for non-logged-in users.

} else {

echo '<a href="register.php"
➝ title="Register for the
➝ Site">Register

➝ Login

<a href="forgot_password.php" title=
➝ "Password Retrieval">Retrieve
➝ Password

';

}

?>

If the user isn’t logged in, they will see

links to register, log in, and reset a forgot-

ten password (Figure 16.4).

5. Complete the HTML.

Some Page

Another Page

</div>

</body>

</html>

I’ve included two dummy links for other

pages to be added.

6. Flush the buffer to the Web browser.

<?php

ob_end_flush();

?>

The footer file will send the accumulated

buffer to the Web browser, completing

the output buffering begun in the header

script.

488

Chapter 16

C
r

e
a

t
i
n

g
 t

h
e

 T
e

m
p

l
a

t
e

s

Figure 16.3 A logged-in administrator will
see extra links (compare with Figure 16.2).

Figure 16.4 The user will see these links if
they are not logged in (including if they just
logged out).

■ The ob_get_contents() function will

return the current buffer so that it may

be assigned to a variable, should the

need arise.

■ The ob_flush() function will send the

current contents of the buffer to the

Web browser and then discard them,

allowing a new buffer to be started. This

function allows your scripts to maintain

more moderate buffer sizes. Conversely,

ob_end_flush() turns off output buffer-

ing after sending the buffer to the Web

browser.

■ The ob_clean() function deletes the

current contents of the buffer without

stopping the buffer process.

■ PHP will automatically run ob_end_
flush() at the conclusion of a script

if it is not otherwise done.

489

Example—User Registration

C
r

e
a

t
i
n

g
 t

h
e

 T
e

m
p

l
a

t
e

s

Figure 16.5 The directory structure of the site on the Web server, assuming
htdocs is the document root (where www.example.com points).

7. Save the file as footer.html and place it,

along with header.html and layout.css
(from the book’s supporting Web site), in

your Web directory, putting all three in

an includes folder (Figure 16.5).

✔ Tips

■ If this site has any page that does not

make use of the header file but does

need to work with sessions, it must call

session_start() on its own. If you fail to

do so, that script won’t be able to access

the session.

■ In more recent versions of PHP, output

buffering is enabled by default. The

buffer size—the maximum number of

bytes stored in memory—is 4,096, but

this can be changed in PHP’s configura-

tion file.

Writing the Configuration
Scripts
This Web site will make use of two configu-

ration-type scripts. One, config.inc.php,

will really be the most important script in

the entire application. It will

◆ Have comments about the site as a

whole

◆ Define constants

◆ Establish site settings

◆ Dictate how errors are handled

◆ Define any necessary functions

Because it does all this, the configuration

script will be included by every other page

in the application.

The second configuration-type script,

mysqli_connect.php, will store all of the

database-related information. It will be

included only by those pages that need to

interact with the database.

Making a configuration file
The configuration file is going to serve many

important purposes. It’ll be like a cross

between the site’s owner’s manual and its

preferences file. The first purpose of this file

will be to document the site overall: who

created it, when, why, for whom, etc., etc.

The version in the book will omit all that,

but you should put it in yours. The second

role will be to define all sorts of constants

and settings that the various pages will use.

Third, the configuration file will establish

the error-management policy for the site.

The technique involved—creating your own

error handling function—was covered in

Chapter 7, “Error Handling and Debugging.”

As in that chapter, during the development

stages, every error will be reported in the

most detailed way (Figure 16.6). Along

with the specific error message, all of the

existing variables will be shown, as will the

current date and time. This will be format-

ted so that it fits within the site’s template.

490

Chapter 16

W
r

i
t

i
n

g
 t

h
e

 C
o

n
f
i
g

u
r

a
t

i
o

n
 S

c
r

i
p

t
s

Figure 16.6 During the
development stages of the
Web site, I want all errors
to be made as obvious and
as informative as possible.

During the production, or live, stage of the

site, errors will be handled more gracefully

(Figure 16.7). At that time, the detailed

error messages will not be printed in the

Web browser, but instead sent to an email

address.

Finally, this script will define any functions

that might be used multiple times in the site.

This site won’t have any, but I wanted to

mention that as another logical use of such

a file.

To write the configuration file:

1. Create a new PHP document in your text

editor or IDE (Script 16.3).

<?php # Script 16.3 - config.inc.php

2. Establish two constants for error

reporting.

define('LIVE', FALSE);

define('EMAIL', 'InsertRealAddress
➝ Here');

The LIVE constant will be used as it was

in Chapter 7. If it is FALSE, detailed error

messages are sent to the Web browser

(Figure 16.6). Once the site goes live, this

constant should be set to TRUE so that

detailed error messages are never

revealed to the Web user (Figure 16.7).

The EMAIL constant is where the error

messages will be sent when the site is

live. You would obviously use your own

e-mail address for this value.

491

Example—User Registration

W
r

i
t

i
n

g
 t

h
e

 C
o

n
f
i
g

u
r

a
t

i
o

n
 S

c
r

i
p

t
s

Figure 16.7 If errors occur while a site is live, the user
will only see a message like this (but a detailed error
message will be emailed to the administrator).

continues on page 493

1 <?php # Script 16.3 - config.inc.php

2 /* This script:

3 * - define constants and settings

4 * - dictates how errors are handled

5 * - defines useful functions

6 */

7

8 // Document who created this site, when,
why, etc.

9

10

11 // ********************************** //

12 // ************ SETTINGS ************ //

13

14 // Flag variable for site status:

15 define('LIVE', FALSE);

16

17 // Admin contact address:

18 define('EMAIL', 'InsertRealAddressHere');

19

20 // Site URL (base for all redirections):

21 define ('BASE_URL',
'http://www.example.com');

22

23 // Location of the MySQL connection
script:

Script 16.3 This configuration script dictates how
errors are handled, defines site-wide settings and
constants, and could declare any necessary functions.

(script continues on next page)

492

Chapter 16

W
r

i
t

i
n

g
 t

h
e

 C
o

n
f
i
g

u
r

a
t

i
o

n
 S

c
r

i
p

t
s

24 define ('MYSQL',
'/path/to/mysqli_connect.php');

25

26 // Adjust the time zone for PHP 5.1 and
greater:

27 date_default_timezone_set ('US/Eastern');

28

29 // ************ SETTINGS ************ //

30 // ********************************** //

31

32

33 //
**
//

34 // ************ ERROR MANAGEMENT
************ //

35

36 // Create the error handler:

37 function my_error_handler ($e_number,
$e_message, $e_file, $e_line, $e_vars) {

38

39 // Build the error message.

40 $message = "<p>An error occurred in
script '$e_file' on line $e_line:
$e_message\n
";

41

42 // Add the date and time:

43 $message .= "Date/Time: " . date('n-j-Y
H:i:s') . "\n
";

44

45 // Append $e_vars to the $message:

46 $message .= "<pre>" . print_r ($e_vars,
1) . "</pre>\n</p>";

47

48 if (!LIVE) { // Development (print the
error).

49

50 echo '<div id="Error">' . $message .
'</div>
';

51

52 } else { // Don't show the error:

53
(script continues)

Script 16.3 continued

54 // Send an email to the admin:

55 mail(EMAIL, 'Site Error!', $message,
'From: email@example.com');

56

57 // Only print an error message if the
error isn't a notice:

58 if ($e_number != E_NOTICE) {

59 echo '<div id="Error">A system error
occurred. We apologize for the
inconvenience.</div>
';

60 }

61 } // End of !LIVE IF.

62

63 } // End of my_error_handler() definition.

64

65 // Use my error handler.

66 set_error_handler ('my_error_handler');

67

68 // ************ ERROR MANAGEMENT
************ //

69 // *************************************
***** //

70

71 ?>

Script 16.3 continued

3. Establish two constants for site-wide

settings.

define ('BASE_URL', 'http://www.
➝ example.com/');

define ('MYSQL', '/path/to/mysqli_
➝ connect.php');

These two constants are defined just to

make it easier to redirect the user from

one page to another and to include the

MySQL connection script. BASE_URL
refers to the root domain (http://www.

example.com/), with an ending slash. If

developing on your own computer, this

might be http://localhost/. When a page

redirects the browser, it’ll now only need

to write

header('Location: ' . BASE_URL .
➝ 'page.php');

MYSQL is an absolute path to the MySQL

connection script (to be written next).

By setting this as an absolute path, any

file can include the connection script by

referring to this constant:

include (MYSQL);

Change both of these values to corre-

spond with your environment. If you

move the site from one server or

domain to another, just change these

two constants.

4. Establish any other site-wide settings.

date_default_timezone_set ('US/
➝ Eastern');

As mentioned in Chapter 10, “Web

Application Development,” any use of a

PHP date or time function (as of PHP 5.1)

requires that the time zone be set. Change

this value to match your time zone (see

the PHP manual for the list of zones).

5. Begin defining the error-handling

function.

function my_error_handler ($e_number,
➝ $e_message, $e_file, $e_line,
➝ $e_vars) {

$message = "<p>An error occurred
➝ in script '$e_file' on line
➝ $e_line: $e_message\n
";

The function definition begins like the

one in Chapter 7. It expects to receive five

arguments: the error number, the error

message, the script in which the error

occurred, the line number on which PHP

thinks the error occurred, and an array of

variables that exist. Then it begins defin-

ing the $message variable, starting with

the information provided to this function.

6. Add the current date and time.

$message .= "Date/Time: " . date
➝ ('n-j-Y H:i:s') . "\n
";

To make the error reporting more useful,

I’ll include the current date and time in

the message. A newline character and an

HTML
 tag are included to make

the resulting display more legible.

7. Append all of the existing variables.

$message .= "<pre>" . print_r
➝ ($e_vars, 1) . "</pre>\n</p>";

The $e_vars variable is an array of all

variables that exist at the time of the

error, along with their values. Calling

the print_r() function, with a second

argument of 1 or TRUE, will append the

contents of $e_vars onto $message. To

make it easier to read this section of the

message in the Web browser, I use the

HTML <pre> tags (those aren’t XHTML-

compliant, but that’s irrelevant, as they

won’t be used on the live site).

493

Example—User Registration

W
r

i
t

i
n

g
 t

h
e

 C
o

n
f
i
g

u
r

a
t

i
o

n
 S

c
r

i
p

t
s

continues on next page

8. Handle the error according to the value

of LIVE.

if (!LIVE) {

echo '<div class="error">' .
➝ $message . '</div>
';

} else {

mail(EMAIL, 'Site Error!',
➝ $message, 'From: email@example.
➝ com');

if ($e_number != E_NOTICE) {

echo '<div class="error">A
➝ system error occurred. We
➝ apologize for the
➝ inconvenience.</div>
';

}

}

As I mentioned earlier, if the site isn’t

live, the entire error message is printed,

for any type of error. The message is

placed within <div class="error">,

which will format the message per the

rules defined in the site’s CSS file.

If the site is live, the detailed message

should be sent in an email and the Web

user should only see a generic message.

To take this one step further, the generic

message will not be printed if the error is

of a specific type: E_NOTICE. Such errors

occur for things like referring to a vari-

able that does not exist, which may or

may not be a problem. To avoid poten-

tially inundating the user with error mes-

sages, only print the error message if

$e_number is not equal to E_NOTICE,

which is a constant defined in PHP (see

the PHP manual).

9. Complete the function definition and

tell PHP to use your error handler.

}

set_error_handler ('my_error_
➝ handler');

?>

You have to use the set_error_
handler() function to tell PHP to

use your own function for errors.

10. Save the file as config.inc.php, and

place it in your Web directory, within

the includes folder (see Figure 16.5)

Making the database script
The second configuration-type script will

be mysqli_connect.php, the database con-

nection file used multiple times in the book

already. Its only purpose is to connect to

MySQL and select the database. If a

problem occurs, this script will make use

of the error-handling tools established in

config.inc.php. To do so, it’ll use the

trigger_error() function. This function

lets you tell PHP that an error occurred. Of

course PHP will handle that error using the

my_error_handler() function, as established

in the configuration script.

To connect to the database:

1. Create a new PHP document in your text

editor or IDE (Script 16.4).

<?php # Script 16.4 - mysqli_
➝ connect.php

2. Set the database access information.

DEFINE ('DB_USER', 'username');

DEFINE ('DB_PASSWORD', 'password');

DEFINE ('DB_HOST', 'localhost');

DEFINE ('DB_NAME', 'ch16');

As always, change these values to those

that will work for your MySQL installation.

494

Chapter 16

W
r

i
t

i
n

g
 t

h
e

 C
o

n
f
i
g

u
r

a
t

i
o

n
 S

c
r

i
p

t
s

3. Attempt to connect to MySQL and select

the database.

$dbc = @mysqli_connect (DB_HOST,
➝ DB_USER, DB_PASSWORD, DB_NAME);

In previous scripts, if the function didn’t

return the proper result, the die() func-

tion was called. Since I will be using my

own error-handling function and not

simply killing the script, I’ll rewrite this

process. Any errors raised by this func-

tion call will be suppressed (thanks to

the @) and handled using the code in the

next step.

4. Handle any errors if the database con-

nection was not made.

if (!$dbc) {

trigger_error ('Could not connect
➝ to MySQL: ' . mysqli_connect_
➝ error());

}

If the script could not connect to the data-

base, I want to send the error message

to the my_error_handler() function. By

doing so, I can ensure that the error is

handled according to the currently set

management technique (live stage versus

development). Instead of calling my_error_
handler() directly, use trigger_error(),

whose first argument is the error message.

Figure 16.8 shows the end result if a prob-

lem occurs during the development stage.

495

Example—User Registration

W
r

i
t

i
n

g
 t

h
e

 C
o

n
f
i
g

u
r

a
t

i
o

n
 S

c
r

i
p

t
s

1 <?php # Script 16.4 - mysqli_connect.php

2

3 // This file contains the database access
information.

4 // This file also establishes a connection
to MySQL

5 // and selects the database.

6

7 // Set the database access information as
constants:

8 DEFINE ('DB_USER', 'username');

9 DEFINE ('DB_PASSWORD', 'password');

10 DEFINE ('DB_HOST', 'localhost');

11 DEFINE ('DB_NAME', 'ch16');

12

13 // Make the connection:

14 $dbc = @mysqli_connect (DB_HOST, DB_USER,
DB_PASSWORD, DB_NAME);

15

16 if (!$dbc) {

17 trigger_error ('Could not connect to
MySQL: ' . mysqli_connect_error());

18 }

19

20 ?>

Script 16.4 This script connects to the ch16 database.
If it can’t, then the error handler will be triggered,
passing it the MySQL connection error.

Figure 16.8 A database
connection error occurring
during the development of
the site.

continues on next page

5. Complete the PHP code.

?>

6. Save the file as mysqli_connect.php, and

place it in your Web directory, outside of

the Web document root (see Figure 16.5).

7. Create the database (Figure 16.9).

See the sidebar “Database Scheme” for a

discussion of the database and the com-

mand required to make the one table. If

you cannot create your own database,

just add the table to whatever database

you have access to. Also make sure that

you edit the mysqli_connect.php file so

that it uses the proper username/pass-

word/hostname combination to connect

to this database.

✔ Tips

■ On the one hand, it might make sense to

place the contents of both configuration

files in one script for ease of reference.

Unfortunately, doing so would add

unnecessary overhead (namely, connect-

ing to and selecting the database) to

scripts that don’t require a database

connection (e.g., index.php).

■ For the error management file, I used

.inc.php as the extension, indicating

that the script is both an included file

but also a PHP script. For the MySQL

connection page, I just used .php, as it’s

clear from the file’s name what the script

does. These are minor, irrelevant distinc-

tions, but I would strongly advocate that

both files end with .php, for security

purposes.

■ In general, I would define common

functions in the configuration file. One

exception would be any function that

required a database connection. If you

know that a function will only be used

on pages that connect to MySQL, then

defining that function within the

mysqli_connect.php script is only logical.

496

Chapter 16

W
r

i
t

i
n

g
 t

h
e

 C
o

n
f
i
g

u
r

a
t

i
o

n
 S

c
r

i
p

t
s

Figure 16.9 Creating the database for this chapter.

497

Example—User Registration

W
r

i
t

i
n

g
 t

h
e

 C
o

n
f
i
g

u
r

a
t

i
o

n
 S

c
r

i
p

t
s

Database Scheme

The database being used by this application is called ch16. The database currently consists of

only one table, users. To create the table, use this SQL command:

CREATE TABLE users (

user_id INT UNSIGNED NOT NULL AUTO_INCREMENT,

first_name VARCHAR(20) NOT NULL,

last_name VARCHAR(40) NOT NULL,

email VARCHAR(80) NOT NULL,

pass CHAR(40) NOT NULL,

user_level TINYINT(1) UNSIGNED NOT NULL DEFAULT 0,

active CHAR(32),

registration_date DATETIME NOT NULL,

PRIMARY KEY (user_id),

UNIQUE KEY (email),

INDEX login (email, pass)

);

Most of the table’s structure should be familiar to you by now; it’s quite similar to the users

table in the sitename database, used in several examples in this book. One new addition is

the active column, which will be used to indicate whether a user has activated their account

(by clicking a link in the registration email) or not. It will either store the 32-character-long

activation code or have a NULL value. Because the active column may have a NULL value, it

cannot be defined as NOT NULL. If you do define active as NOT NULL, no one will ever be able to

log in (you’ll see why later in the chapter). The other new addition is the user_level column,

which will be used to differentiate the kinds of users the site has.

A unique index is placed on the email field, and another index is placed on the combination

of the email and pass fields. These two fields will be used together during the login query, so

indexing them as one, which I call login, makes sense.

Creating the Home Page
The home page for the site, called index.php,

will be a model for the other pages on the

public side. It will require the configuration

file (for error management) and the header

and footer files to create the HTML design.

This page will also welcome the user by

name, assuming the user is logged in

(Figure 16.10).

To write index.php:

1. Create a new PHP document in your text

editor or IDE (Script 16.5).

<?php # Script 16.5 - index.php

2. Include the configuration file, set the

page title, and include the HTML header.

require_once ('includes/config.
➝ inc.php');

$page_title = 'Welcome to this
➝ Site!';

include ('includes/header.html');

The script includes the configuration

file first so that everything that happens

afterward will be handled using the

error-management processes established

therein. Then the header.html file is

included, which will start output buffer-

ing, begin the session, and create the ini-

tial part of the HTML layout.

498

Chapter 16

C
r

e
a

t
i
n

g
 t

h
e

 H
o

m
e

 P
a

g
e

1 <?php # Script 16.5 - index.php

2 // This is the main page for the site.

3

4 // Include the configuration file:

5 require_once ('includes/config.inc.php');

6

7 // Set the page title and include the HTML
header:

8 $page_title = 'Welcome to this Site!';

9 include ('includes/header.html');

10

11 // Welcome the user (by name if they are
logged in):

12 echo '<h1>Welcome';

13 if (isset($_SESSION['first_name'])) {

14 echo ", {$_SESSION['first_name']}!";

15 }

16 echo '</h1>';

17 ?>

18 <p>Spam spam spam spam spam spam

19 spam spam spam spam spam spam

20 spam spam spam spam spam spam

21 spam spam spam spam spam spam.</p>

22 <p>Spam spam spam spam spam spam

23 spam spam spam spam spam spam

24 spam spam spam spam spam spam

25 spam spam spam spam spam spam.</p>

26

27 <?php // Include the HTML footer file:

28 include ('includes/footer.html');

29 ?>

Script 16.5 The script for the site’s home page, which
will greet a logged-in user by name.

3. Greet the user and complete the PHP

code.

echo '<h1>Welcome';

if (isset($_SESSION['first_name'])) {

echo ", {$_SESSION['first_
➝ name']}!";

}

echo '</h1>';

?>

The Welcome message will be printed to

all users. If a $_SESSION['first_name']
variable is set, the user’s first name will

also be printed. So the end result will be

either just Welcome (Figure 16.11) or

Welcome, <Your Name>! (Figure 16.10).

4. Create the content for the page.

<p>Spam spam…</p>

You might want to consider putting

something more useful on the home

page on a real site. Just a suggestion….

5. Include the HTML footer.

<?php

include ('includes/footer.html');

?>

The footer file will complete the HTML

layout (primarily the menu bar on the

right side of the page) and conclude the

output buffering.

6. Save the file as index.php, place it in your

Web directory, and test it in a Web

browser.

499

Example—User Registration

C
r

e
a

t
i
n

g
 t

h
e

 H
o

m
e

 P
a

g
e

Figure 16.10 If the user is logged in, the index page
will greet them by name.

Figure 16.11 If the user is not logged in, this is the
home page they will see.

Registration
The registration script was first started in

Chapter 8, “Using PHP with MySQL.” It has

since been improved upon in many ways.

This version of register.php will do the

following:

◆ Both display and handle the form

◆ Validate the submitted data using

regular expressions

◆ Redisplay the form with the values

remembered if a problem occurs (the

form will be sticky)

◆ Process the submitted data using the

mysqli_real_escape_string() function

for security

◆ Ensure a unique email address

◆ Send an email containing an activation

link (users will have to activate their

account prior to logging in—see the

sidebar)

To write register.php:

1. Create a new PHP document in your text

editor or IDE (Script 16.6).

<?php # Script 16.6 - register.php

2. Include the configuration file and the

HTML header.

require_once ('includes/config.
➝ inc.php');

$page_title = 'Register';

include ('includes/header.html');

3. Create the conditional that checks for

the form submission and then include

the database connection script.

if (isset($_POST['submitted'])) {

require_once (MYSQL);

500

Chapter 16

R
e

g
i
s

t
r

a
t

i
o

n

1 <?php # Script 16.6 - register.php

2 // This is the registration page for the
site.

3

4 require_once ('includes/config.inc.php');

5 $page_title = 'Register';

6 include ('includes/header.html');

7

8 if (isset($_POST['submitted'])) { //
Handle the form.

9

10 require_once (MYSQL);

11

12 // Trim all the incoming data:

13 $trimmed = array_map('trim', $_POST);

14

15 // Assume invalid values:

16 $fn = $ln = $e = $p = FALSE;

17

18 // Check for a first name:

19 if (preg_match ('/^[A-Z \'.-]{2,20}$/i',
$trimmed['first_name'])) {

20 $fn = mysqli_real_escape_string ($dbc,
$trimmed['first_name']);

21 } else {

22 echo '<p class="error">Please enter
your first name!</p>';

23 }

24

25 // Check for a last name:

26 if (preg_match ('/^[A-Z \'.-]{2,40}$/i',
$trimmed['last_name'])) {

27 $ln = mysqli_real_escape_string ($dbc,
$trimmed['last_name']);

28 } else {

29 echo '<p class="error">Please enter
your last name!</p>';

30 }

Script 16.6 The registration script uses regular
expressions for security and a sticky form for user
convenience. It sends an email to the user upon a
successful registration.

(script continues on next page)continues on page 503

501

Example—User Registration

R
e

g
i
s

t
r

a
t

i
o

n

Script 16.6 continued

31

32 // Check for an email address:

33 if (preg_match ('/^[\w.-]+@[\w.-]+\.[A-
Za-z]{2,6}$/', $trimmed['email'])) {

34 $e = mysqli_real_escape_string ($dbc,
$trimmed['email']);

35 } else {

36 echo '<p class="error">Please enter a
valid email address!</p>';

37 }

38

39 // Check for a password and match
against the confirmed password:

40 if (preg_match ('/^\w{4,20}$/',
$trimmed['password1'])) {

41 if ($trimmed['password1'] ==
$trimmed['password2']) {

42 $p = mysqli_real_escape_string
($dbc, $trimmed['password1']);

43 } else {

44 echo '<p class="error">Your password
did not match the confirmed
password!</p>';

45 }

46 } else {

47 echo '<p class="error">Please enter a
valid password!</p>';

48 }

49

50 if ($fn && $ln && $e && $p) { // If
everything's OK...

51

52 // Make sure the email address is
available:

53 $q = "SELECT user_id FROM users WHERE
email='$e'";

54 $r = mysqli_query ($dbc, $q) or
trigger_error("Query: $q\n
MySQL
Error: " . mysqli_error($dbc));

55

56 if (mysqli_num_rows($r) == 0) { //
Available.

57

(script continues)

Script 16.6 continued

58 // Create the activation code:

59 $a = md5(uniqid(rand(), true));

60

61 // Add the user to the database:

62 $q = "INSERT INTO users (email,
pass, first_name, last_name, active,
registration_date) VALUES ('$e',
SHA1('$p'), '$fn', '$ln', '$a',
NOW())";

63 $r = mysqli_query ($dbc, $q) or
trigger_error("Query: $q\n
MySQL
Error: " . mysqli_error($dbc));

64

65 if (mysqli_affected_rows($dbc) == 1)
{ // If it ran OK.

66

67 // Send the email:

68 $body = "Thank you for registering
at <whatever site>. To activate
your account, please click on this
link:\n\n";

69 $body .= BASE_URL . 'activate.php?
x=' . urlencode($e) . "&y=$a";

70 mail($trimmed['email'],
'Registration Confirmation', $body,
'From: admin@sitename.com');

71

72 // Finish the page:

73 echo '<h3>Thank you for
registering! A confirmation email
has been sent to your address.
Please click on the link in that
email in order to activate your
account.</h3>';

74 include ('includes/footer.html');
// Include the HTML footer.

75 exit(); // Stop the page.

76

77 } else { // If it did not run OK.

78 echo '<p class="error">You could
not be registered due to a system
error. We apologize for any
inconvenience.</p>';

79 }

80

81 } else { // The email address is not
available.

(script continues on next page)

502

Chapter 16

R
e

g
i
s

t
r

a
t

i
o

n

Script 16.6 continued

82 echo '<p class="error">That email
address has already been registered.
If you have forgotten your password,
use the link at right to have your
password sent to you.</p>';

83 }

84

85 } else { // If one of the data tests
failed.

86 echo '<p class="error">Please re-enter
your passwords and try again.</p>';

87 }

88

89 mysqli_close($dbc);

90

91 } // End of the main Submit conditional.

92 ?>

93

94 <h1>Register</h1>

95 <form action="register.php" method="post">

96 <fieldset>

97

98 <p>First Name: <input type="text"
name="first_name" size="20" maxlength=
"20" value="<?php if (isset($trimmed
['first_name'])) echo $trimmed
['first_name']; ?>" /></p>

99

100 <p>Last Name: <input type="text"
name="last_name" size="20" maxlength=
"40" value="<?php if (isset($trimmed
['last_name'])) echo $trimmed
['last_name']; ?>" /></p>

101

102 <p>Email Address: <input
type="text" name="email" size="30"
maxlength="80" value="<?php if
(isset($trimmed['email'])) echo
$trimmed['email']; ?>" /> </p>

103

104 <p>Password: <input type=
"password" name="password1" size="20"
maxlength="20" /> <small>Use only
letters, numbers, and the underscore.
Must be between 4 and 20 characters
long.</small></p>

(script continues)

Script 16.6 continued

105

106 <p>Confirm Password: <input
type="password" name="password2"
size="20" maxlength="20" /></p>

107 </fieldset>

108

109 <div align="center"><input type="submit"
name="submit" value="Register" /></div>

110 <input type="hidden" name="submitted"
value="TRUE" />

111

112 </form>

113

114 <?php // Include the HTML footer.

115 include ('includes/footer.html');

116 ?>

4. Trim the incoming data and set some

flag variables.

$trimmed = array_map('trim', $_POST);

$fn = $ln = $e = $p = FALSE;

The first line runs every element in

$_POST through the trim() function,

assigning the returned result to the

new $trimmed array. The explanation

for this line can be found in Chapter 12,

“Security Methods,” when array_map()
was used with data to be sent in an

email. In short, the trim() function will

be applied to every value in $_POST, sav-

ing the hassle of applying trim() to each

individually.

The second line initializes four variables

as FALSE. This one line is just a shortcut

in lieu of

$fn = FALSE;

$ln = FALSE;

$e = FALSE;

$p = FALSE;

5. Validate the first and last names.

if (preg_match ('/^[A-Z \'.-]{2,20}
➝ $/i', $trimmed['first_name'])) {

$fn =
mysqli_real_escape_string($dbc,
➝ $trimmed['first_name']);

} else {

echo '<p class="error">Please
➝ enter your first name!</p>';

}

if (preg_match ('/^[A-Z \'.-]{2,40}
➝ $/i', $trimmed['last_name'])) {

$ln = mysqli_real_escape_
➝ string($dbc, $trimmed['last_
➝ name']);

} else {

echo '<p class="error">Please
➝ enter your last name!</p>';

}

The form will be validated using regular

expressions, covered in Chapter 13, “Perl-

Compatible Regular Expressions.” For the

first name value, the assumption is that

it will contain only letters, a period (as in

an initial), an apostrophe, a space, and

503

Example—User Registration

R
e

g
i
s

t
r

a
t

i
o

n

Activation Process

New in this chapter is an activation

process, where users have to click a link

in an email to confirm their accounts,

prior to being able to log in. Using a sys-

tem like this prevents bogus registrations

from being used. If an invalid email

address is entered, that account can

never be activated. And if someone regis-

tered another person’s address, hopefully

that person would not activate this unde-

sired account.

From a programming perspective, this

process requires the creation of a unique

activation code for each registered user,

to be stored in the users table. The code

is then sent in the confirmation email to

the user (in a link). When the user clicks

the link, they’ll be taken to a page on the

site that activates their account (by

removing that code from their record).

Using this activation code, instead of just

having them go to the activation page

without it, keeps people from being able

to activate accounts without receiving

the confirmation email.

continues on next page

the dash. Further, I expect the value to be

within the range of 2 to 20 characters

long. To guarantee that the value con-

tains only these characters, the caret and

the dollar sign are used to match both

the beginning and end of the string. While

using Perl-Compatible regular expressions,

the entire pattern must be placed within

delimiters (the forward slashes).

If this condition is met, the $fn variable

is assigned the value of the mysqli_real_
escape_string() version of the submitted

value; otherwise, $fn will still be false

and an error message is printed

(Figure 16.12).

The same process is used to validate

the last name, although that regular

expression allows for a longer length.

Both patterns are also case-insensitive,

thanks to the i modifier.

6. Validate the email address (Figure 16.13).

if (preg_match ('/^[\w.-]+@[\w.-]
➝ +\.[A-Za-z]{2,6}$/', $trimmed
➝ ['email'])) {

$e = mysqli_real_escape_string
➝ ($dbc, $trimmed['email']);

} else {

echo '<p class="error">Please
➝ enter a valid email address
➝ !</p>';

}

The pattern for the email address was

described in Chapter 13. It could be

more exacting, of course, but it works

well enough, in my opinion.

504

Chapter 16

R
e

g
i
s

t
r

a
t

i
o

n

Figure 16.13 The submitted email address must be of
the proper format.

Figure 16.15 …that the password value matches the
confirmed password value.

Figure 16.14 The passwords are checked for the
proper format, length, and…

Figure 16.12 If the first name value does not pass the
regular expression test, an error message is printed.

7. Validate the passwords (Figures 16.14

and 16.15).

if (preg_match ('/^\w{4,20}$/',
➝ $trimmed['password1'])) {

if ($trimmed['password1'] ==
➝ $trimmed['password2']) {

$p = mysqli_real_escape_string
➝ ($dbc, $trimmed
['password1']);

} else {

echo '<p class="error">Your
➝ password did not match the
➝ confirmed password!</p>';

}

} else {

echo '<p class="error">Please
➝ enter a valid password!</p>';

}

The password must be between 4 and 20

characters long and contain only letters,

numbers, and the underscore. That exact

combination is represented by \w in Perl-

Compatible regular expressions. Further-

more, the first password (password1)

must match the confirmed password

(password2).

8. If every test was passed, check for a

unique email address.

if ($fn && $ln && $e && $p) {

$q = "SELECT user_id FROM users
➝ WHERE email='$e'";

$r = mysqli_query ($dbc, $q) or
➝ trigger_error("Query: $q\n<br
➝ />MySQL Error: " . mysqli_error
➝ ($dbc));

If the form passed every test, this condi-

tional will be TRUE. Then the script must

search the database to see if the submit-

ted email address is currently being used,

since that column’s value must be unique

across each record. As with the MySQL

connection script, if a query doesn’t run,

call the trigger_error() function to

invoke the self-defined error reporting

function. The specific error message will

include both the query being run and

the MySQL error (Figure 16.16), so that

the problem can easily be debugged.

505

Example—User Registration

R
e

g
i
s

t
r

a
t

i
o

n

Figure 16.16 If a MySQL query error occurs, it should be easier to debug thanks to this informative error message.

continues on next page

9. If the email address is unused, register

the user.

if (mysqli_num_rows($r) == 0) {

$a = md5(uniqid(rand(), true));

$q = "INSERT INTO users (email,
➝ pass, first_name, last_name,
➝ active, registration_date)
➝ VALUES ('$e', SHA1('$p'),
➝ '$fn', '$ln', '$a', NOW())";

$r = mysqli_query ($dbc, $q) or
➝ trigger_error("Query: $q\n<br
➝ />MySQL Error: " . mysqli_error
➝ ($dbc));

The query itself is rather simple, but it

does require the creation of a unique

activation code. Generating that uses the

rand(), uniqid(), and md5() functions. Of

these, uniqid() is the most important; it

creates a unique identifier. It’s fed the

rand() function to help generate a more

random value. Finally, the returned result

is hashed using md5(), which creates a

string exactly 32 characters long (a hash

is a mathematically calculated represen-

tation of a piece of data). You do not need

to fully comprehend these three functions,

just note that the result will be a unique

32-character string.

As for the query itself, it should be famil-

iar enough to you. Most of the values

come from variables in the PHP script,

after applying trim() and mysqli_real_
escape_string() to them. The MySQL

SHA1() function is used to encrypt the

password and NOW() is used to set the

registration date as the current moment.

Because the user_level column has a

default value of 0 (i.e., not an administra-

tor), it does not have to be provided a

value in this query. Presumably the site’s

main administrator would edit a user’s

record to give them administrative power.

10. Send an email if the query worked.

if (mysqli_affected_rows($dbc) ==
➝ 1) {

$body = "Thank you for
➝ registering at <whatever
➝ site>. To activate your
➝ account, please click on
➝ this link:\n\n";

$body .= BASE_URL .
➝ 'activate.php?x=' .
➝ urlencode($e) . "&y=$a";

mail($trimmed['email'],
➝ 'Registration Confirmation',
➝ $body, 'From:
➝ admin@sitename.com');

echo '<h3>Thank you for
➝ registering! A confirmation
➝ email has been sent to your
➝ address. Please click on the
➝ link in that email in order to
➝ activate your account.</h3>';

include ('includes/
➝ footer.html');

exit();

With this registration process, the impor-

tant thing is that the confirmation mail

gets sent to the user, because they will

not be able to log in until after they’ve

activated their account. This email

should contain a link to the activation

page, activate.php. The link to that

page starts with BASE_URL, which is

defined in config.inc.php. The link also

passes two values along in the URL. The

first, generically called x, will be the user’s

email address, encoded so that it’s safe

to have in a URL. The second, y, is the

activation code. The URL, then, will be

something like http://www.example.com/

activate.php?x= email%40example.com

&y=901e09ef25bf6e3ef95c93088450b008.

506

Chapter 16

R
e

g
i
s

t
r

a
t

i
o

n

A thank-you message is printed out upon

successful registration, along with the

activation instructions (Figure 16.17).

11. Print errors if the query failed.

} else {

echo '<p class="error">You could
➝ not be registered due to a
➝ system error. We apologize for
➝ any inconvenience.</p>';

}

If the query failed for some reason,

meaning that mysqli_affected_rows()
did not return 1, an error message is

printed to the browser. Because of the

security methods implemented in this

script, the live version of the site should

never have a problem at this juncture.

12. Complete the conditionals and the

PHP code.

} else {

echo '<p class="error">That
➝ email address has already
➝ been registered. If you
➝ have forgotten your
➝ password, use the link
➝ at right to have your
➝ password sent to
➝ you.</p>';

}

} else {

echo '<p class="error">Please
➝ re-enter your passwords and
➝ try again.</p>';

}

mysqli_close($dbc);

} // End of the main Submit
➝ conditional.

?>

The first else is executed if a person

attempts to register with an email

address that has already been used

(Figure 16.18). The second else
applies when the submitted data fails

one of the validation routines (see

Figures 16.12 through 16.15).

13. Begin the HTML form (Figure 16.19).

<h1>Register</h1>

<form action="register.php" method=
➝ "post">

507

Example—User Registration

R
e

g
i
s

t
r

a
t

i
o

n

Figure 16.17 The resulting page after a user has
been successfully registered.

Figure 16.18 If an email address has already
been registered, the user is told as much.

continues on next page

Figure 16.19 The registration form as it looks
when the user first arrives.

<fieldset>

<p>First Name: <input
➝ type="text" name="first_name"
➝ size="20" maxlength="20"
➝ value="<?php if (isset($
➝ trimmed['first_name'])) echo
➝ $trimmed['first_name']; ?>"
➝ /></p>

<p>Last Name: <input
➝ type="text" name="last_name"
➝ size="20" maxlength="40"
➝ value="<?php if (isset($
➝ trimmed['last_name'])) echo
➝ $trimmed['last_name']; ?>"
➝ /></p>

<p>Email Address: <input
➝ type="text" name="email" size=
➝ "30" maxlength="80" value=
➝ "<?php if (isset($trimmed
➝ ['email'])) echo $trimmed
➝ ['email']; ?>" /> </p>

The HTML form has text inputs for all

of the values. Each input has a name

and a maximum length that match the

corresponding column definition in the

users table. The form will be sticky,

using the trimmed values.

14. Complete the HTML form.

<p>Password: <input type=
➝ "password" name="password1"
➝ size="20" maxlength="20" />
➝ <small>Use only letters and
➝ numbers. Must be between 4 and
➝ 20 characters long.</small>
➝ </p>

<p>Confirm Password:
➝ <input type="password" name=
➝ "password2" size="20"
➝ maxlength="20" /></p>

</fieldset>

<div align="center"><input
➝ type="submit" name="submit"
➝ value="Register" /></div>

<input type="hidden" name=
➝ "submitted" value="TRUE" />

</form>

Requesting the password requires two

inputs, so it can be confirmed. Doing

this is a good idea, as the user cannot

see what they type in a password input.

Password inputs cannot be made sticky,

though.

15. Include the HTML footer.

<?php

include ('includes/footer.html');

?>

16. Save the file as register.php, place it in

your Web directory, and test it in your

Web browser.

✔ Tips

■ Because every column in the users table

cannot be NULL (except for active), I

require that each input be correctly filled

out. If a table has an optional field, you

should still confirm that it is of the right

type if submitted, but not require it.

■ Except for encrypted fields (such as the

password), the maximum length of the

form inputs and regular expressions

should correspond to the maximum

length of the column in the database.

508

Chapter 16

R
e

g
i
s

t
r

a
t

i
o

n

Activating an Account
As described in the “Activation Process”

sidebar earlier in the chapter, users will have

to activate their account prior to being able

to log in. Upon successfully registering, users

will receive an email containing a link to

activate.php (Figure 16.20). This link also

passes two values to this page: their email

address and their unique activation code.

This script needs to first confirm that those

two values were received in the URL. Then,

if these two values match those in the data-

base, the activation code will be removed

from the record, indicating an active

account.

To create the activation page:

1. Begin a new PHP script in your text edi-

tor or IDE (Script 16.7).

<?php # Script 16.7 - activate.php

require_once ('includes/config.inc.
➝ php');

$page_title = 'Activate Your
➝ Account';

include ('includes/header.html');

2. Validate the values that should be

received by the page.

$x = $y = FALSE;

if (isset($_GET['x']) && preg_match
➝ ('/^[\w.-]+@[\w.-]+\.[A-Za-z]{2,
➝ 6}$/', $_GET['x'])) {

$x = $_GET['x'];

}

if (isset($_GET['y']) && (strlen
➝ ($_GET['y']) == 32) {

$y = $_GET['y'];

}

509

Example—User Registration

A
c

t
i
v

a
t

i
n

g
 a

n
 A

c
c

o
u

n
t

Figure 16.20 The registration confirmation email.

continues on next page

1 <?php # Script 16.7 - activate.php

2 // This page activates the user's account.

3

4 require_once ('includes/config.inc.php');

5 $page_title = 'Activate Your Account';

6 include ('includes/header.html');

7

8 // Validate $_GET['x'] and $_GET['y']:

9 $x = $y = FALSE;

10 if (isset($_GET['x']) && preg_match
('/^[\w.-]+@[\w.-]+\.[A-Za-z]{2,6}$/',
$_GET['x'])) {

11 $x = $_GET['x'];

12 }

13 if (isset($_GET['y']) &&
(strlen($_GET['y']) == 32) {

14 $y = $_GET['y'];

15 }

16

17 // If $x and $y aren't correct, redirect
the user.

18 if ($x && $y) {

19

20 // Update the database...

21 require_once (MYSQL);

Script 16.7 To activate an account, the user must
come to this page, passing it their email address and
activation code (all part of the link they received upon
registering).

(script continues on next page)

As I mentioned, if the user clicks the link

in the registration confirmation email,

they’ll pass two values to this page: the

email address and the activation code.

First check for the presence of x (the

email address) and that it matches the

regular expression pattern for an email

address. If both conditions are true, $x
is assigned the value of $_GET['x'].

For y (the activation code), the code

checks for its existence and that its

length (how many characters are in it)

is exactly 32. The md5() function, which

created the activation code, always

returns a string 32 characters long.

If x or y does not pass its corresponding

conditional, its value will be FALSE, which

is what they were both initialized as (in

the first line).

3. If $x and $y have the correct values,

activate the user.

if ($x && $y) {

require_once (MYSQL);

$q = "UPDATE users SET active=
➝ NULL WHERE (email='" . mysqli_
➝ real_escape_string($dbc, $x) .
➝ "' AND active='" . mysqli_real_
➝ escape_string($dbc, $y) . "')
➝ LIMIT 1";

$r = mysqli_query ($dbc, $q) or
➝ trigger_error("Query: $q\n<br
➝ />MySQL Error: " . mysqli_
➝ error($dbc));

If both conditions are TRUE, an UPDATE
query is run. This query removes the

activation code from the user’s record by

setting the active column to NULL. Before

using the values in the query, both are

run through mysqli_real_escape_
string() for security.

510

Chapter 16

A
c

t
i
v

a
t

i
n

g
 a

n
 A

c
c

o
u

n
t

22 $q = "UPDATE users SET active=NULL WHERE
(email='" . mysqli_real_escape_string
($dbc, $x) . "' AND active='" . mysqli_
real_escape_string($dbc, $y) . "')
LIMIT 1";

23 $r = mysqli_query ($dbc, $q) or
trigger_error("Query: $q\n
MySQL
Error: " . mysqli_error($dbc));

24

25 // Print a customized message:

26 if (mysqli_affected_rows($dbc) == 1) {

27 echo "<h3>Your account is now active.
You may now log in.</h3>";

28 } else {

29 echo '<p class="error">Your account
could not be activated. Please re-
check the link or contact the system
administrator.</p>';

30 }

31

32 mysqli_close($dbc);

33

34 } else { // Redirect.

35

36 $url = BASE_URL . 'index.php'; // Define
the URL:

37 ob_end_clean(); // Delete the buffer.

38 header("Location: $url");

39 exit(); // Quit the script.

40

41 } // End of main IF-ELSE.

42

43 include ('includes/footer.html');

44 ?>

Script 16.7 continued

4. Report upon the success of the query.

if (mysqli_affected_rows($dbc) ==
➝ 1) {

echo "<h3>Your account is now
➝ active. You may now log in.
➝ </h3>";

} else {

echo '<p class="error">Your
➝ account could not be activated.
➝ Please re-check the link
➝ or contact the system
➝ administrator.</p>';

}

If one row was affected by the query,

then the user’s account is now active and

a message says as much (Figure 16.21).

If no rows are affected, the user is noti-

fied of the problem (Figure 16.22). This

would most likely happen if someone

tried to fake the x and y values or if

there’s a problem in following the link

from the email to the Web browser.

5. Complete the main conditional.

mysqli_close($dbc);

} else {

$url = BASE_URL . 'index.php';

ob_end_clean();

header("Location: $url");

exit();

} // End of main IF-ELSE.

The else clause takes effect if $x and $y
are not of the proper value and length. In

such a case, the user is just redirected to

the index page. The ob_end_clean() line

here deletes the buffer (whatever was to

be sent to the Web browser up to this

point, stored in memory), as it won’t

be used.

511

Example—User Registration

A
c

t
i
v

a
t

i
n

g
 a

n
 A

c
c

o
u

n
t

Figure 16.21 If the database could be updated
using the provided email address and activation
code, the user is notified that their account is
now active.

Figure 16.22 If an account is not activated by the
query, the user is told of the problem.

continues on next page

6. Complete the page.

include ('includes/footer.html');

?>

7. Save the file as activate.php, place it in

your Web directory, and test it by click-

ing the link in the registration email.

✔ Tips

■ If you wanted to be a little more forgiv-

ing, you could have this page print an

error similar to that in Figure 16.22,

rather than redirect them to the index

page (as if they were attempting to hack

the site).

■ I specifically use the vague x and y as the

names in the URL for security purposes.

While someone may figure out that the

one is an email address and the other is

a code, it’s sometimes best not to be

explicit about such things.

■ An alternative method, which I used in

the second edition of this book, was to

place the activation code and the user’s

ID (from the database) in the link. That

also works, but from a security perspec-

tive, it’s really best that users never see,

or are even aware of, a user ID that’s oth-

erwise not meant to be public.

512

Chapter 16

A
c

t
i
v

a
t

i
n

g
 a

n
 A

c
c

o
u

n
t

Logging In and Logging
Out
In Chapter 11, I wrote many versions of the

login.php and logout.php scripts, using

variations on cookies and sessions. Here I’ll

develop standardized versions of both that

adhere to the same practices as the whole

application. The login query itself is slightly

different here in that it also checks that the

active column has a NULL value, which is the

indication that the user has activated their

account.

To write login.php:

1. Create a new PHP document in your text

editor or IDE (Script 16.8).

<?php # Script 16.8 - login.php

require_once ('includes/config.inc.
➝ php');

$page_title = 'Login';

include ('includes/header.html');

2. Check if the form has been submitted,

require the database connection, and val-

idate the submitted data.

if (isset($_POST['submitted'])) {

require_once (MYSQL);

if (!empty($_POST['email'])) {

$e = mysqli_real_escape_string
➝ ($dbc, $_POST['email']);

} else {

$e = FALSE;

echo '<p class="error">You forgot
➝ to enter your email address!
➝ </p>';

}

513

Example—User Registration

L
o

g
g

i
n

g
 I

n
 a

n
d

 L
o

g
g

i
n

g
 O

u
t

1 <?php # Script 16.8 - login.php

2 // This is the login page for the site.

3

4 require_once ('includes/config.inc.php');

5 $page_title = 'Login';

6 include ('includes/header.html');

7

8 if (isset($_POST['submitted'])) {

9 require_once (MYSQL);

10

11 // Validate the email address:

12 if (!empty($_POST['email'])) {

13 $e = mysqli_real_escape_string ($dbc,
$_POST['email']);

14 } else {

15 $e = FALSE;

16 echo '<p class="error">You forgot to
enter your email address!</p>';

17 }

18

19 // Validate the password:

20 if (!empty($_POST['pass'])) {

21 $p = mysqli_real_escape_string ($dbc,
$_POST['pass']);

22 } else {

23 $p = FALSE;

24 echo '<p class="error">You forgot to
enter your password!</p>';

25 }

26

27 if ($e && $p) { // If everything's OK.

28

29 // Query the database:

Script 16.8 The login page will redirect the user to the
home page after registering the user ID, first name,
and access level in a session.

(script continues on next page)

continues on page 515

514

Chapter 16

L
o

g
g

i
n

g
 I

n
 a

n
d

 L
o

g
g

i
n

g
 O

u
t

30 $q = "SELECT user_id, first_name, user_
level FROM users WHERE (email='$e' AND
pass=SHA1('$p')) AND active IS NULL";

31 $r = mysqli_query ($dbc, $q) or
trigger_error("Query: $q\n
MySQL
Error: " . mysqli_error($dbc));

32

33 if (@mysqli_num_rows($r) == 1) { // A
match was made.

34

35 // Register the values & redirect:

36 $_SESSION = mysqli_fetch_array ($r,
MYSQLI_ASSOC);

37 mysqli_free_result($r);

38 mysqli_close($dbc);

39

40 $url = BASE_URL . 'index.php'; //
Define the URL:

41 ob_end_clean(); // Delete the buffer.

42 header("Location: $url");

43 exit(); // Quit the script.

44

45 } else { // No match was made.

46 echo '<p class="error">Either the
email address and password entered do
not match those on file or you have
not yet activated your account.</p>';

47 }

48

49 } else { // If everything wasn't OK.

50 echo '<p class="error">Please try
again.</p>';

51 }

52

53 mysqli_close($dbc);

54

55 } // End of SUBMIT conditional.

56 ?>

57
(script continues)

Script 16.8 continued

58 <h1>Login</h1>

59 <p>Your browser must allow cookies in
order to log in.</p>

60 <form action="login.php" method="post">

61 <fieldset>

62 <p>Email Address: <input
type="text" name="email" size="20"
maxlength="40" /></p>

63 <p>Password: <input type=
"password" name="pass" size="20"
maxlength="20" /></p>

64 <div align="center"><input type="submit"
name="submit" value="Login" /></div>

65 <input type="hidden" name="submitted"
value="TRUE" />

66 </fieldset>

67 </form>

68

69 <?php // Include the HTML footer.

70 include ('includes/footer.html');

71 ?>

Script 16.8 continued

Figure 16.23 The login form checks only if
values were entered, without using regular
expressions.

if (!empty($_POST['pass'])) {

$p = mysqli_real_escape_string
➝ ($dbc, $_POST['pass']);

} else {

$p = FALSE;

echo '<p class="error">You
➝ forgot to enter your
➝ password!</p>';

}

There’s two ways of thinking about the

validation. On the one hand you could

use regular expressions, applying those

from register.php, to validate these val-

ues. On the other hand, the true test of

the values will be whether the login query

returns a record or not, so one could

arguably skip more stringent PHP valida-

tion. I’m going with the latter thinking

here.

If the user does not enter any values into

the form, error messages will be printed

(Figure 16.23).

3. If both validation routines were passed,

retrieve the user information.

if ($e && $p) {

$q = "SELECT user_id, first_name,
➝ user_level FROM users WHERE
➝ (email='$e' AND pass=SHA1
➝ ('$p')) AND active IS NULL";

$r = mysqli_query ($dbc, $q) or
➝ trigger_error("Query: $q\n<br
➝ />MySQL Error: " . mysqli_error
➝ ($dbc));

The query will attempt to retrieve the

user ID, first name, and user level for the

record whose email address and pass-

word match those submitted. The MySQL

query uses the SHA1() function on the

pass column, as the password is encrypted

using that function in the first place. The

query also checks that the active column

has a NULL value, meaning that the user

has successfully accessed the

activate.php page. If you know an

account has been activated but you still

can’t log in using the proper values, it’s

likely because your active column was

erroneously defined as NOT NULL.

4. If a match was made in the database, log

the user in and redirect them.

if (@mysqli_num_rows($r) == 1) {

$_SESSION = mysqli_fetch_array
➝ ($r, MYSQLI_ASSOC);

mysqli_free_result($r);

mysqli_close($dbc);

$url = BASE_URL . 'index.php';

ob_end_clean();

header("Location: $url");

exit();

The login process consists of storing the

retrieved values in the session (which

was already started in header.html) and

then redirecting the user to the home

page. Because the query will return an

array with three elements—one indexed

at user_id, one at first_name, and the

third at user_level, they can be fetched

right into $_SESSION, resulting in

$_SESSION['user_id'], $_SESSION
['first_name'], and $_SESSION['user_
level']. If $_SESSION had other values in

it already, you would not want to take

this shortcut, as you’d wipe out those

other elements.

The ob_end_clean() function will delete

the existing buffer (the output buffering

is also begun in header.html), since it

will not be used.

515

Example—User Registration

L
o

g
g

i
n

g
 I

n
 a

n
d

 L
o

g
g

i
n

g
 O

u
t

continues on next page

5. Complete the conditionals and close the

database connection.

} else {

echo '<p class="error">Either
➝ the email address and
➝ password entered do not match
➝ those on file or you have not
➝ yet activated your account.
➝ </p>';

}

} else {

echo '<p class="error">Please try
➝ again.</p>';

}

mysqli_close($dbc);

} // End of SUBMIT conditional.

?>

The error message (Figure 16.24) indi-

cates that the login process could fail

for two possible reasons. One is that the

submitted email address and password

do not match those on file. The other

reason is that the user has not yet acti-

vated their account.

6. Display the HTML login form

(Figure 16.25).

<h1>Login</h1>

<p>Your browser must allow cookies
➝ in order to log in.</p>

<form action="login.php" method=
➝ "post">

<fieldset>

<p>Email Address: <input
➝ type="text" name="email" size=
➝ "20" maxlength="40" /></p>

516

Chapter 16

L
o

g
g

i
n

g
 I

n
 a

n
d

 L
o

g
g

i
n

g
 O

u
t

Figure 16.25 The login form.

Figure 16.26 Upon successfully logging in, the user
will be redirected to the home page, where they will
be greeted by name.

Figure 16.24 An error message is displayed if the
login query does not return a single record.

<p>Password: <input type=
➝ "password" name="pass" size=
➝ "20" maxlength="20" /></p>

<div align="center"><input type=
➝ "submit" name="submit" value=
➝ "Login" /></div>

<input type="hidden" name=
➝ "submitted" value="TRUE" />

</fieldset>

</form>

The login form, like the registration form,

will submit the data back to itself. This

one is not sticky, though, as only the one

input could be made sticky anyway.

Notice that the page includes a message

informing the user that cookies must be

enabled to use the site (if a user does not

allow cookies, the user will never get

access to the logged-in user pages).

7. Include the HTML footer.

<?php

include ('includes/footer.html');

?>

8. Save the file as login.php, place it in your

Web directory, and test it in your Web

browser (Figure 16.26).

To write logout.php:

1. Create a new PHP document in your text

editor or IDE (Script 16.9).

<?php # Script 16.9 - logout.php

require_once ('includes/config.
➝ inc.php');

$page_title = 'Logout';

include ('includes/header.html');

517

Example—User Registration

L
o

g
g

i
n

g
 I

n
 a

n
d

 L
o

g
g

i
n

g
 O

u
t

1 <?php # Script 16.9 - logout.php

2 // This is the logout page for the site.

3

4 require_once ('includes/config.inc.php');

5 $page_title = 'Logout';

6 include ('includes/header.html');

7

8 // If no first_name session variable
exists, redirect the user:

9 if (!isset($_SESSION['first_name'])) {

10

11 $url = BASE_URL . 'index.php'; // Define
the URL.

12 ob_end_clean(); // Delete the buffer.

13 header("Location: $url");

14 exit(); // Quit the script.

15

16 } else { // Log out the user.

17

18 $_SESSION = array(); // Destroy the
variables.

19 session_destroy(); // Destroy the
session itself.

20 setcookie (session_name(), '', time()-
300); // Destroy the cookie.

21

22 }

23

24 // Print a customized message:

25 echo '<h3>You are now logged out.</h3>';

26

27 include ('includes/footer.html');

28 ?>

Script 16.9 The logout page destroys all of the
session information, including the cookie.

continues on next page

2. Redirect the user if they are not logged in.

if (!isset($_SESSION['first_name']
➝)) {

$url = BASE_URL . 'index.php';

ob_end_clean();

header("Location: $url");

exit();

If the user is not currently logged

in (determined by checking for a

$_SESSION['first_name'] variable),

the user will be redirected to the

home page (because there’s no point

in trying to log them out).

3. Log out the user if they are currently

logged in.

} else { // Log out the user.

$_SESSION = array();

session_destroy();

setcookie (session_name(), '',
➝ time()-300);

}

To log the user out, the session values

will be reset, the session data will be

destroyed on the server, and the session

cookie will be deleted. These lines of

code were first used and described in

Chapter 11. The cookie name will be the

value returned by the session_name()
function. If you decide to change the

session name later, this code will still

be accurate.

4. Print a logged-out message and complete

the PHP page.

echo '<h3>You are now logged out.
➝ </h3>';

include ('includes/footer.html');

?>

5. Save the file as logout.php, place it in

your Web directory, and test it in your

Web browser (Figure 16.27).

✔ Tip

■ By adding a last_login DATETIME field to

the users table, you could update it when

a user logs in. Then you would know the

last time a person accessed the site and

have a method for counting how many

users are currently logged in (say, every-

one that logged in within the past so

many minutes).

518

Chapter 16

L
o

g
g

i
n

g
 I

n
 a

n
d

 L
o

g
g

i
n

g
 O

u
t

Figure 16.27 The results of successfully logging out.

Password Management
The final aspect of the public side of this site

is the management of passwords. There are

two processes to consider: resetting a forgot-

ten password and changing an existing one.

Resetting a password
It inevitably happens that people forget their

login passwords for Web sites, so having a

contingency plan for these occasions is

important. One option would be to have the

user email the administrator when this

occurs, but administering a site is difficult

enough without this extra hassle. Instead,

let’s make a script whose purpose is to reset

a forgotten password.

Because the passwords stored in the data-

base are encrypted using MySQL’s SHA1()
function, there’s no way to retrieve an unen-

crypted version. The alternative is to create

a new, random password and change the

existing password to this value. Rather than

just display the new password in the Web

browser (that would be terribly insecure), it

will be emailed to the address with which

the user registered.

To write forgot_password.php:

1. Create a new PHP document in your text

editor or IDE (Script 16.10).

<?php # Script 16.10 - forgot_
➝ password.php

require_once ('includes/config.
➝ inc.php');

$page_title = 'Forgot Your Password';

include ('includes/header.html');

519

Example—User Registration

P
a

s
s

w
o

r
d

 M
a

n
a

g
e

m
e

n
t

continues on page 521

1 <?php # Script 16.10 - forgot_password.php

2 // This page allows a user to reset their
password, if forgotten.

3

4 require_once ('includes/config.inc.php');

5 $page_title = 'Forgot Your Password';

6 include ('includes/header.html');

7

8 if (isset($_POST['submitted'])) {

9 require_once (MYSQL);

10

11 // Assume nothing:

12 $uid = FALSE;

13

14 // Validate the email address...

15 if (!empty($_POST['email'])) {

16

17 // Check for the existence of that
email address...

18 $q = 'SELECT user_id FROM users WHERE
email="'. mysqli_real_escape_string
($dbc, $_POST['email']) . '"';

19 $r = mysqli_query ($dbc, $q) or
trigger_error("Query: $q\n
MySQL
Error: " . mysqli_error($dbc));

20

21 if (mysqli_num_rows($r) == 1) { //
Retrieve the user ID:

22 list($uid) = mysqli_fetch_array ($r,
MYSQLI_NUM);

23 } else { // No database match made.

24 echo '<p class="error">The submitted
email address does not match those
on file!</p>';

25 }

26

27 } else { // No email!

28 echo '<p class="error">You forgot to
enter your email address!</p>';

Script 16.10 The forgot_password.php script
allows users to reset their password without
administrative assistance.

(script continues on next page)

520

Chapter 16

P
a

s
s

w
o

r
d

 M
a

n
a

g
e

m
e

n
t

29 } // End of empty($_POST['email']) IF.

30

31 if ($uid) { // If everything's OK.

32

33 // Create a new, random password:

34 $p = substr (md5(uniqid(rand(),
true)), 3, 10);

35

36 // Update the database:

37 $q = "UPDATE users SET pass=SHA1('$p')
WHERE user_id=$uid LIMIT 1";

38 $r = mysqli_query ($dbc, $q) or
trigger_error("Query: $q\n
MySQL
Error: " . mysqli_error($dbc));

39

40 if (mysqli_affected_rows($dbc) == 1) {
// If it ran OK.

41

42 // Send an email:

43 $body = "Your password to log into
<whatever site> has been temporarily
changed to '$p'. Please log in using
this password and this email address.
Then you may change your password to
something more familiar.";

44 mail ($_POST['email'], 'Your
temporary password.', $body, 'From:
admin@sitename.com');

45

46 // Print a message and wrap up:

47 echo '<h3>Your password has been
changed. You will receive the new,
temporary password at the email
address with which you registered.
Once you have logged in with this
password, you may change it by
clicking on the "Change Password"
link.</h3>';

48 mysqli_close($dbc);

49 include ('includes/footer.html');

50 exit(); // Stop the script.

51

(script continues)

Script 16.10 continued

52 } else { // If it did not run OK.

53 echo '<p class="error">Your password
could not be changed due to a system
error. We apologize for any
inconvenience.</p>';

54 }

55

56 } else { // Failed the validation test.

57 echo '<p class="error">Please try
again.</p>';

58 }

59

60 mysqli_close($dbc);

61

62 } // End of the main Submit conditional.

63

64 ?>

65

66 <h1>Reset Your Password</h1>

67 <p>Enter your email address below and your
password will be reset.</p>

68 <form action="forgot_password.php"
method="post">

69 <fieldset>

70 <p>Email Address: <input
type="text" name="email" size="20"
maxlength="40" value="<?php if
(isset($_POST['email'])) echo
$_POST['email']; ?>" /></p>

71 </fieldset>

72 <div align="center"><input type="submit"
name="submit" value="Reset My Password"
/></div>

73 <input type="hidden" name="submitted"
value="TRUE" />

74 </form>

75

76 <?php

77 include ('includes/footer.html');

78 ?>

Script 16.10 continued

2. Check if the form has been submitted

and validate the email address.

if (isset($_POST['submitted'])) {

require_once (MYSQL);

$uid = FALSE;

if (!empty($_POST['email'])) {

$q = 'SELECT user_id FROM users
➝ WHERE email="'.

mysqli_real_escape_string
➝($dbc, $_POST['email']) . '"';

$r = mysqli_query ($dbc, $q) or
➝ trigger_error("Query: $q\n<br
➝ />MySQL Error: " . mysqli_
➝ error($dbc));

if (mysqli_num_rows($r) == 1) {

list($uid) = mysqli_fetch_array
➝ ($r, MYSQLI_NUM);

This form will take an email address

input and update the password for that

record. The first step is to validate that

an email address was entered (there’s no

need for the extra overhead of a regular

expression). If so, an attempt is made to

retrieve the user ID for that email address

in the database. If the query returns one

row, it’ll be fetched and assigned to $uid
(short for user ID). This value will be

needed to update the database with the

new password, and it’ll also be used as a

flag variable.

The list() function has not been for-

mally discussed in the book, but you may

have run across it. It’s a shortcut function

that allows you to assign array elements

to other variables. Since mysqli_fetch_
array() will always return an array, even

if it’s an array of just one element, using

list() can save having to write:

$row = mysqli_fetch_array($r, MYSQLI_
➝ NUM);

$uid = $row[0];

3. Report any errors.

} else {

echo '<p class="error">The
➝ submitted email address does
➝ not match those on file!</p>';

}

} else {

echo '<p class="error">You forgot
➝ to enter your email address!
➝ </p>';

}

If no such record could be found, an error

message is displayed (Figure 16.28). If

no email address was provided, that is

also reported (Figure 16.29).

521

Example—User Registration

P
a

s
s

w
o

r
d

 M
a

n
a

g
e

m
e

n
t

continues on next page

Figure 16.28 If the user entered an email address
that is not found in the database, an error message
is shown.

Figure 16.29 Failure to provide an email address also
results in an error.

4. Create a new, random password.

if ($uid) {

$p = substr (md5(uniqid(rand(),
➝ true)), 3, 10);

To create a new, random password, I’ll

make use of four PHP functions. The first

is uniqid(), which will return a unique

identifier. It is fed the arguments rand()
and true, which makes the returned

string more random. This returned value

is then sent through the md5() function,

which calculates the MD5 hash of a string.

At this stage, a hashed version of the

unique ID is returned, which ends up being

a string 32 characters long. This part of

the code is similar to that used to create

the activation code in activate.php
(Script 16.7).

From this string, the password is deter-

mined by pulling out ten characters

starting with the third one, using the

substr() function. All in all, this code

will return a very random and meaning-

less ten-character string (containing

both letters and numbers) to be used as

the temporary password.

5. Update the password in the database.

$q = "UPDATE users SET pass=SHA1
➝ ('$p') WHERE user_id=$uid LIMIT 1";

$r = mysqli_query ($dbc, $q) or
➝ trigger_error("Query: $q\n<br
➝ />MySQL Error: " . mysqli_error
➝ ($dbc));

if (mysqli_affected_rows($dbc) ==
➝ 1) {

Using the user ID (the primary key for

the table) that was retrieved earlier, the

password for this particular user is

updated to the SHA1() version of $p, the

random password.

6. Send the password to the user and com-

plete the page.

$body = "Your password to log into
➝ <whatever site> has been
➝ temporarily changed to '$p'. Please
➝ log in using this password and this
➝ email address. Then you may change
➝ your password to something more
➝ familiar.";

mail ($_POST['email'], 'Your
➝ temporary password.', $body,
➝ 'From: admin@sitename.com');

echo '<h3>Your password has been
➝ changed. You will receive the new,
➝ temporary password at the email
➝ address with which you registered.
➝ Once you have logged in with this
➝ password, you may change it by
➝ clicking on the "Change Password"
➝ link.</h3>';

mysqli_close($dbc);

include ('includes/footer.html');

exit();

The email sent to the user (Figure 16.30)

contains the new, randomly generated

password. Then a message is printed and

the page is completed so as not to show

the form again (Figure 16.31).

You may wonder why the email address

is not run through any kind of regular

expression prior to using it in mail(). To

get to this point, the submitted email

address must match the value stored in

the database and that value was already

run through fairly strict validation, guar-

anteeing that it’s safe to use.

522

Chapter 16

P
a

s
s

w
o

r
d

 M
a

n
a

g
e

m
e

n
t

7. Complete the conditionals and the PHP

code.

} else {

echo '<p class="error">Your
➝ password could not be
➝ changed due to a system
➝ error. We apologize for any
➝ inconvenience.</p>';

}

} else {

echo '<p class="error">Please
try ➝ again.</p>';

}

mysqli_close($dbc);

}

?>

The first else clause applies only if the

UPDATE query doesn’t work, which hope-

fully shouldn’t happen on a live site. The

second else applies if the user didn’t

submit a password or if the submitted

password didn’t match any in the data-

base (Figures 16.28 and 16.29).

8. Make the HTML form (Figure 16.32).

<h1>Reset Your Password</h1>

<p>Enter your email address below and
➝ your password will be reset.</p>

<form action="forgot_password.php"
➝ method="post">

<fieldset>

<p>Email Address: <input
➝ type="text" name="email"
➝ size="20" maxlength="40"
➝ value="<?php if (isset($_POST
➝ ['email'])) echo $_POST
➝ ['email']; ?>" /></p>

523

Example—User Registration

P
a

s
s

w
o

r
d

 M
a

n
a

g
e

m
e

n
t

continues on next page

Figure 16.30 The email message received after
resetting a password.

Figure 16.31 The resulting page after successfully
resetting a password.

Figure 16.32 The simple form for resetting a
password.

</fieldset>

<div align="center"><input type=
➝ "submit" name="submit" value=
➝ "Reset My Password" /></div>

<input type="hidden" name=
➝ "submitted" value="TRUE" />

</form>

The form takes only one input, the

email address. If there is a problem

when the form has been submitted, the

submitted email address value will be

shown again.

9. Include the HTML footer.

<?php

include ('includes/footer.html');

?>

10. Save the file as forgot_password.php,

place it in your Web directory, and test

it in your Web browser.

11. Check your email to see the resulting

message after a successful password

reset (see Figure 16.30).

Changing a password
The change_password.php script was

initially written in Chapter 8 (called just

password.php), as an example of an UDPATE
query. The one developed here will be very

similar in functionality but will differ in that

only users who are logged in will be able to

access it. Therefore, the form will only need

to accept the new password and a confirma-

tion of it (the user’s existing password and

email address will have already been con-

firmed by the login page).

To write change_password.php:

1. Create a new PHP document in your text

editor or IDE (Script 16.11).

<?php # Script 16.11 - change_
➝ password.php

require_once ('includes/config.
➝ inc.php');

$page_title = 'Change Your Password';

include ('includes/header.html');

2. Check that the user is logged in.

if (!isset($_SESSION['first_name']
➝)) {

$url = BASE_URL . 'index.php';

ob_end_clean();

header("Location: $url");

exit();

}

The assumption is that this page is

accessed only by logged-in users. To

enforce this idea, the script checks for

the existence of the $_SESSION['first_
name'] variable. If it is not set, then the

user will be redirected.

3. Check if the form has been submitted

and include the MySQL connection.

if (isset($_POST['submitted'])) {

require_once (MYSQL);

The key to understanding how this script

functions is remembering that there are

three possible scenarios: the user is not

logged in (and therefore redirected), the

user is logged in and viewing the form,

and the user is logged in and has submit-

ted the form.

The user will only get to this point in the

script if they are logged in. Otherwise,

they would have been redirected. So the

script now needs to determine if the

form has been submitted or not.

524

Chapter 16

P
a

s
s

w
o

r
d

 M
a

n
a

g
e

m
e

n
t

continues page 526

525

Example—User Registration

P
a

s
s

w
o

r
d

 M
a

n
a

g
e

m
e

n
t

1 <?php # Script 16.11 - change_password.php

2 // This page allows a logged-in user to
change their password.

3

4 require_once ('includes/config.inc.php');

5 $page_title = 'Change Your Password';

6 include ('includes/header.html');

7

8 // If no first_name session variable
exists, redirect the user:

9 if (!isset($_SESSION['first_name'])) {

10

11 $url = BASE_URL . 'index.php'; // Define
the URL.

12 ob_end_clean(); // Delete the buffer.

13 header("Location: $url");

14 exit(); // Quit the script.

15

16 }

17

18 if (isset($_POST['submitted'])) {

19 require_once (MYSQL);

20

21 // Check for a new password and match
against the confirmed password:

22 $p = FALSE;

23 if (preg_match ('/^(\w){4,20}$/', $_POST
['password1'])) {

24 if ($_POST['password1'] ==
$_POST['password2']) {

25 $p = mysqli_real_escape_string
($dbc, $_POST['password1']);

26 } else {

27 echo '<p class="error">Your password
did not match the confirmed
password!</p>';

28 }

29 } else {

Script 16.11 With this page, users can change an
existing password (if they are logged in).

(script continues)

30 echo '<p class="error">Please enter a
valid password!</p>';

31 }

32

33 if ($p) { // If everything's OK.

34

35 // Make the query.

36 $q = "UPDATE users SET pass=SHA1('$p')
WHERE user_id={$_SESSION['user_id']}
LIMIT 1";

37 $r = mysqli_query ($dbc, $q) or
trigger_error("Query: $q\n
MySQL
Error: " . mysqli_error($dbc));

38 if (mysqli_affected_rows($dbc) == 1) {
// If it ran OK.

39

40 // Send an email, if desired.

41 echo '<h3>Your password has been
changed.</h3>';

42 mysqli_close($dbc); // Close the
database connection.

43 include ('includes/footer.html'); //
Include the HTML footer.

44 exit();

45

46 } else { // If it did not run OK.

47

48 echo '<p class="error">Your password
was not changed. Make sure your new
password is different than the
current password. Contact the system
administrator if you think an error
occurred.</p>';

49

50 }

51

52 } else { // Failed the validation test.

53 echo '<p class="error">Please try
again.</p>';

54 }

55

(script continues on next page)

Script 16.11 continued

4. Validate the submitted password.

$p = FALSE;

if (preg_match ('/^(\w){4,20}$/',
➝ $_POST['password1'])) {

if ($_POST['password1'] ==
➝ $_POST['password2']) {

$p = mysqli_real_escape_string
➝ ($dbc, $_POST['password1']);

} else {

echo '<p class="error">Your
➝ password did not match the
➝ confirmed password!</p>';

}

} else {

echo '<p class="error">Please
➝ enter a valid password!</p>';

}

The new password should be validated

using the same tests as those in the

registration process. Error messages

will be displayed if problems are found

(Figure 16.33).

5. Update the password in the database.

if ($p) {

$q = "UPDATE users SET pass=
➝ SHA1('$p') WHERE user_id=
➝ {$_SESSION['user_id']} LIMIT
➝ 1";

$r = mysqli_query ($dbc, $q) or
➝ trigger_error("Query: $q\n<br
➝ />MySQL Error: " . mysqli_
➝ error($dbc));

if (mysqli_affected_rows($dbc) ==
➝ 1) {

echo '<h3>Your password has
➝ been changed.</h3>';

mysqli_close($dbc);

include ('includes/footer.html');

exit();

526

Chapter 16

P
a

s
s

w
o

r
d

 M
a

n
a

g
e

m
e

n
t

56 mysqli_close($dbc); // Close the
database connection.

57

58 } // End of the main Submit conditional.

59

60 ?>

61

62 <h1>Change Your Password</h1>

63 <form action="change_password.php"
method="post">

64 <fieldset>

65 <p>New Password: <input type=
"password" name="password1" size="20"
maxlength="20" /> <small>Use only
letters, numbers, and the underscore.
Must be between 4 and 20 characters
long.</small></p>

66 <p>Confirm New Password: <input
type="password" name="password2"
size="20" maxlength="20" /></p>

67 </fieldset>

68 <div align="center"><input type="submit"
name="submit" value="Change My Password"
/></div>

69 <input type="hidden" name="submitted"
value="TRUE" />

70 </form>

71

72 <?php

73 include ('includes/footer.html');

74 ?>

Script 16.11 continued

Figure 16.33 As in the registration process, the user’s
new password must pass the validation routines;
otherwise, they will see error messages.

Using the user’s ID—stored in the session

when the user logged in—the password

field can be updated in the database. The

LIMIT 1 clause isn’t strictly necessary

but adds extra insurance. If the update

worked, a confirmation message is print-

ed to the Web browser (Figure 16.34).

6. Complete the conditionals and the PHP

code.

} else {

echo '<p class="error">Your
➝ password was not changed.
➝ Make sure your new
➝ password is different than
➝ the current password.
➝ Contact the system
➝ administrator if you think
➝ an error occurred.</p>';

}

} else {

echo '<p class="error">Please try
➝ again.</p>';

}

mysqli_close($dbc);

} // End of the main Submit
➝ conditional.

?>

The first else clause applies if the

mysqli_affected_rows() function did

not return a value of 1. This could occur

for two reasons. The first is that a query

or database error happened. Hopefully

that’s not likely on a live site, after you’ve

already worked out all the bugs. The

second reason is that the user tried to

“change” their password but entered the

same password again. In that case, the

UPDATE query wouldn’t affect any rows

because the password column in the

database wouldn’t be changed. A mes-

sage implying such is printed.

7. Create the HTML form (Figure 16.35).

<h1>Change Your Password</h1>

<form action="change_password.php"
method="post">

<fieldset>

<p>New Password: <input
➝ type="password" name=
➝ "password1" size="20"
➝ maxlength="20" /> <small>Use
➝ only letters, numbers, and the
➝ underscore. Must be between 4
➝ and 20 characters long.</small>
➝ </p>

527

Example—User Registration

P
a

s
s

w
o

r
d

 M
a

n
a

g
e

m
e

n
t

Figure 16.34 The script has successfully changed the
user’s password.

Figure 16.35 The Change Your Password form.

continues on next page

✔ Tips

■ Once this script has been completed,

users can reset their password with the

previous script and then log in using the

temporary, random password. After log-

ging in, users can change their password

back to something more memorable with

this page.

■ Because the site’s authentication does

not rely upon the user’s password from

page to page (in other words, the pass-

word is not checked on each subsequent

page after logging in), changing a pass-

word will not require the user to log

back in.

<p>Confirm New Password:
➝ <input type="password" name=
➝ "password2" size="20"
➝ maxlength="20" /></p>

</fieldset>

<div align="center"><input type=
➝ "submit" name="submit" value=
➝ "Change My Password" /></div>

<input type="hidden" name=
➝ "submitted" value="TRUE" />

</form>

This form takes two inputs: the new

password and a confirmation of it.

A description of the proper format is

given as well.

Since password inputs in HTML forms

cannot be given preset values, there’s no

reason to set them using PHP (to make

the form sticky).

8. Complete the HTML page.

<?php

include ('includes/footer.html');

?>

9. Save the file as change_password.php,

place it in your Web directory, and test

it in your Web browser.

528

Chapter 16

P
a

s
s

w
o

r
d

 M
a

n
a

g
e

m
e

n
t

Site Administration

For this application, how the site admin-

istration works depends upon what you

want it to do. One additional page you

would probably want for an administra-

tor would be a view_users.php script,

like the one created in Chapter 8 and

modified in Chapter 9, “Common

Programming Techniques.” It’s already

listed in the administrator’s links. You

could use this to link to an edit_user.php
page, which would allow you to manually

activate an account, declare that a user is

an administrator, or change a person’s

password. You could also delete a user

using such a page.

While the header file creates links to

administrative pages only if the logged-

in user is an administrator, every admin-

istration page should also include such

a check.

In this, the final chapter of the book, I’ll develop one last Web application, an

e-commerce site. In this example, I’ll design a site for the purpose of selling prints of

art. Unfortunately, to write and explain the entire application would require a book in

itself. Furthermore, some aspects of e-commerce—like how you handle the money—

are extremely particular to each individual site. Trying to demonstrate such a process

would be a waste of space. With these restrictions in mind, the focus in this chapter

is on the core functionality of an e-commerce site: designing the database, populating

a catalog as an administrator, displaying products to the public, creating a shopping

cart, and storing orders in a database.

This example includes a lot of concepts that have already been covered: using PHP

with MySQL (of course) via the MySQL Improved extension, handling file uploads, using

PHP to send images to the Web browser, prepared statements, sessions, etc. This chap-

ter will also introduce one new topic: how to perform MySQL transactions from a

PHP script. In order to save space in an already extended example, some corners will

be cut. However, when that does occur, I’ll offer suggestions for improving the scripts.

529

Example—
E-Commerce

17

E
x

a
m

p
l
e

—
E

-
C

o
m

m
e

r
c

e

Creating the Database
The e-commerce site in this example will use

the simply named ecommerce database. I’ll

explain each table’s role prior to creating the

database in MySQL.

With any type of e-commerce application

there are three broad kinds of data to be

stored: the product information (what is

being sold), the customer information (who

is making purchases), and the order infor-

mation (what was purchased and by whom).

Going through the normalization process

(see Chapter 6, “Advanced SQL and MySQL”),

I’ve come up with five tables (Figure 17.1).

The first two tables store all of the products

being sold. As already stated, the site will

be selling artistic prints. The artists table

(Table 17.1) stores the information for the

artists whose work is being sold. This table

contains just a minimum of information

(the artists’ first, middle, and last names),

but you could easily add the artists’ birth

and death dates, biographical data, and so

forth. The prints table (Table 17.2) is the

main products table for the site. It stores the

print names, prices, and other relevant details.

It is linked to the artists table using the

artist_id. This table is arguably the most

important, as it provides a unique identifier

for each product being sold. That concept is

key to any e-commerce site (without unique

identifiers, how would you know what a per-

son bought?).

530

Chapter 17

C o l u m n Ty p e

artist_id INT(3) UNSIGNED NOT NULL

first_name VARCHAR(20) DEFAULT NULL

middle_name VARCHAR(20) DEFAULT NULL

last_name VARCHAR(40) NOT NULL

The artists Table

C o l u m n Ty p e

print_id INT(4) UNSIGNED NOT NULL

artist_id INT(3) UNSIGNED NOT NULL

print_name VARCHAR(60) NOT NULL

price DECIMAL(6,2) UNSIGNED NOT NULL

size VARCHAR(60) DEFAULT NULL

description VARCHAR(255) DEFAULT NULL

image_name VARCHAR(60) NOT NULL

The prints Table

C
r

e
a

t
i
n

g
 t

h
e

 D
a

t
a

b
a

s
e

Figure 17.1 This entity-relationship diagram (ERD)
shows how the five tables in the ecommerce database
relate to one another.

Table 17.1 The artists table will be used to link artist
names to each individual print (see Table 17.2).

Table 17.2 The prints table is the equivalent of a products
table in other e-commerce applications. Items listed
in the prints table will be purchased by the customer.

C o l u m n Ty p e

customer_id INT(5) UNSIGNED NOT NULL

email VARCHAR(60) NOT NULL

pass CHAR(40) NOT NULL

The customers Table

C o l u m n Ty p e

order_id INT(10) UNSIGNED NOT NULL

customer_id INT(5) UNSIGNED NOT NULL

total DECIMAL(10,2) UNSIGNED NOT NULL

order_date TIMESTAMP

The orders Table

C o l u m n Ty p e

oc_id INT(10) UNSIGNED NOT NULL

order_id INT(10) UNSIGNED NOT NULL

print_id INT(4) UNSIGNED NOT NULL

quantity TINYINT UNSIGNED NOT NULL DEFAULT 1

price DECIMAL(6,2) UNSIGNED NOT NULL

ship_date DATETIME DEFAULT NULL

The order_contents Table

The customers table (Table 17.3) does exactly

what you’d expect: it records the personal

information for each client. At the least, it

reflects the person’s first name, last name,

email address, password, and shipping address,

as well as the date they registered. Presumably

the combination of the email address and

password would allow the user to log in,

shop, and access their account. Since it’s

fairly obvious what information this table

would store, I’ll define it with only the three

essential columns for now.

The final two tables store all of the order

information. There are any number of ways

you could do this, but I’ve chosen to store

general order information—the total, the date,

and the customer’s ID—in an orders table

(Table 17.4). This table could also have sep-

arate columns reflecting the shipping cost,

the amount of sales tax, any discounts that

applied, and so on. The order_contents table

(Table 17.5) will store the actual items that

were sold, including the quantity and price.

The order_contents table is essentially a

middleman, used to intercept the many-to-

many relationship between prints and orders

(each print can be in multiple orders, and

each order can have multiple prints).

In order to be able to use transactions (in

the final script), the two order tables will use

the InnoDB storage engine. The others will

use the default MyISAM type. See Chapter 6

for more information on the available storage

engines (table types).

531

Example—E-Commerce

C
r

e
a

t
i
n

g
 t

h
e

 D
a

t
a

b
a

s
e

Table 17.3 The customers table is being defined in the
most minimal way for the purposes of this chapter’s
example. Expand its definition to suit your application’s
needs.

Table 17.4 The orders table will record the customer’s
ID, the order total, and the date of the order.

Table 17.5 The order_contents table stores the specific
items in an order.

To create the database:

1. Log in to the mysql client and create

the ecommerce database, if it doesn’t

already exist.

CREATE DATABASE ecommerce;

USE ecommerce;

For these steps, you can use either the

mysql client or another tool like

phpMyAdmin.

2. Create the artists table (Figure 17.2).

CREATE TABLE artists (

artist_id INT(3) UNSIGNED NOT NULL
➝ AUTO_INCREMENT,

first_name VARCHAR(20) DEFAULT NULL,

middle_name VARCHAR(20) DEFAULT NULL,

last_name VARCHAR(40) NOT NULL,

PRIMARY KEY (artist_id),

INDEX full_name (last_name,
➝ first_name)

) ENGINE=MyISAM;

This table stores just four pieces of infor-

mation for each artist. Of these, only

last_name is required (is defined as NOT
NULL), as there are artists that go by a

single name (e.g., Christo). I’ve added def-

initions for the indexes as well. The pri-

mary key is the artist_id, and an index is

placed on the combination of the first

and last name, which may be used in an

ORDER BY clause.

532

Chapter 17

C
r

e
a

t
i
n

g
 t

h
e

 D
a

t
a

b
a

s
e

Figure 17.2 Making the first table.

Figure 17.3 Making the second table.

) ENGINE=MyISAM;

All of the columns in the prints table are

required except for the size and description.

I’ve also set indexes on the artist_id,

print_name, and price fields, each of

which may be used in queries.

Each print will be associated with one

image. The image will be stored on the

server using the same value as the print_id.

When displaying the image in the Web

browser, its original name will be used, so

that needs to be stored in this table.

You could add to this table an in_stock or

qty_on_hand field, to indicate the avail-

ability of products.

533

Example—E-Commerce

C
r

e
a

t
i
n

g
 t

h
e

 D
a

t
a

b
a

s
e

3. Create the prints table (Figure 17.3).

CREATE TABLE prints (

print_id INT(4) UNSIGNED NOT NULL
➝ AUTO_INCREMENT,

artist_id INT(3) UNSIGNED NOT NULL,

print_name VARCHAR(60) NOT NULL,

price DECIMAL(6,2) UNSIGNED NOT NULL,

size VARCHAR(60) DEFAULT NULL,

description VARCHAR(255) DEFAULT NULL,

image_name VARCHAR(60) NOT NULL,

PRIMARY KEY (print_id),

INDEX (artist_id),

INDEX (print_name),

INDEX (price)
continues on next page

Security

With respect to an e-commerce site, there are four broad security considerations. The first is

how the data is stored on the server. You need to protect the MySQL database itself (by set-

ting appropriate access permissions) and the directory where session information is stored

(see Chapter 11, “Cookies and Sessions,” for what settings could be changed). With respect to

these issues, using a non-shared hosting would definitely improve the security of your site.

The second security consideration has to do with protecting access to sensitive information.

The administrative side of the site, which would have the ability to view orders and customer

records, must be safeguarded to the highest level. This means requiring authentication to

access it, limiting who knows the access information, using a secure connection, and so forth.

The third factor is protecting the data during transmission. By the time the customer gets to

the checkout process (where credit card and shipping information comes in), secure transac-

tions must be used. To do so entails establishing a Secure Sockets Layer (SSL) on your server

with a valid certificate and then changing to an https:// URL. Also be aware of what informa-

tion is being sent via e-mail, since those messages are frequently not transmitted through

secure avenues.

The fourth issue has to do with the handling of the payment information. You really, really,

really, really (really!) don’t want to keep this information in any way. Ideally, let a third-party

resource handle the payment and keep your site’s figurative hands clean. I discuss this a little

bit in a sidebar entitled “The Checkout Process,” found at the end of the chapter.

4. Create the customers table (Figure 17.4).

CREATE TABLE customers (

customer_id INT(5) UNSIGNED NOT NULL
➝ AUTO_INCREMENT,

email VARCHAR(60) NOT NULL,

pass CHAR(40) NOT NULL,

PRIMARY KEY (customer_id),

INDEX email_pass (email, pass)

) ENGINE=MyISAM;

This is the code used to create the cus-

tomers table. You could throw in the

other appropriate fields (name, address,

phone number, the registration date,

etc.). As I won’t be dealing with those

values—or user management at all—in

this chapter, I’ve omitted them.

5. Create the orders table (Figure 17.5).

CREATE TABLE orders (

order_id INT(10) UNSIGNED NOT NULL
➝ AUTO_INCREMENT,

customer_id INT(5) UNSIGNED NOT NULL,

total DECIMAL(10,2) UNSIGNED NOT NULL,

order_date TIMESTAMP,

PRIMARY KEY (order_id),

INDEX (customer_id),

INDEX (order_date)

) ENGINE=InnoDB;

All of the orders fields are required, and

three indexes have been created. Notice

that a foreign key column here, like cus-

tomer_id, is of the same exact type as its

corresponding primary key (customer_id

in the customers table). The order_date field

will store the date and time an order was

entered. Being defined as a TIMESTAMP, it

will automatically be given the current

value when a record is inserted (for this

reason it does not formally need to be

declared as NOT NULL).

Finally, because I’ll want to use transactions

with the orders and order_contents tables,

both will use the InnoDB storage engine.

534

Chapter 17

C
r

e
a

t
i
n

g
 t

h
e

 D
a

t
a

b
a

s
e

Figure 17.5 Making the orders table.Figure 17.4 Creating a basic version of the customers
table. In a real e-commerce site, you’d need to expand
this table to store more information.

6. Create the order_contents table

(Figure 17.6).

CREATE TABLE order_contents (

oc_id INT(10) UNSIGNED NOT NULL
➝ AUTO_INCREMENT,

order_id INT(10) UNSIGNED NOT NULL,

print_id INT(4) UNSIGNED NOT NULL,

quantity TINYINT UNSIGNED NOT NULL
➝ DEFAULT 1,

price DECIMAL(6,2) UNSIGNED NOT NULL,

ship_date DATETIME default NULL,

PRIMARY KEY (oc_id),

INDEX (order_id),

INDEX (print_id),

INDEX (ship_date)

) ENGINE=InnoDB;

In order to have a normalized database

structure, I’ve separated out each order

into its general information—the cus-

tomer, the order date, and the total

amount—and its specific information—

the actual items ordered and in what

quantity. The table has foreign keys to

the orders and prints tables. The quantity

has a set default value of 1. The ship_date

is defined as a DATETIME, so that it can have

a NULL value, indicating that the item has

not yet shipped. Again, this table must

use the InnoDB storage engine in order

to be part of a transaction.

You may be curious why I’m storing the

price in this table when that information

is already present in the prints table. The

reason is simply this: the price of a prod-

uct may change. The prints table indi-

cates the current price of an item; the

order_contents table indicates the price

at which an item was purchased.

✔ Tips

■ Depending upon what a site is selling, it

would have different tables in place of

artists and prints. The most important

attribute of any e-commerce database is

that there is a products table that lists the

individual items being sold with a prod-

uct ID associated with each. So a large,

red polo shirt would have one ID, which

is different than a large, blue polo shirt’s

ID, which is different than a medium,

blue polo shirt’s ID. Without unique,

individual product identifiers, it would be

impossible to track orders and product

quantities.

■ If you wanted to store multiple addresses

for users—home, billing, friends, etc.—

create a separate addresses table. In this

table store all of that information, includ-

ing the address type, and link those records

back to the customers table using the

customer ID as a primary-foreign key.

535

Example—E-Commerce

C
r

e
a

t
i
n

g
 t

h
e

 D
a

t
a

b
a

s
e

Figure 17.6 Making the final table for the ecommerce
database.

The Administrative Side
The first script I’ll write will be for the pur-

pose of adding products (specifically a print)

to the database. The page will allow the

administrator to select the artist by name or

enter a new one, upload an image, and enter

the details for the print (Figure 17.7). The

image will be stored on the server and the

print’s record inserted into the database. By

far, this will be the most complicated script

in this chapter, but all of the technology

involved has already been covered elsewhere

in the book.

This—and pretty much every script in this

chapter—will require a connection to the

MySQL database. Instead of writing a new

one from scratch, just copy mysqli_connect.
php (Script 8.2) from Chapter 8, “Using PHP

with MySQL,” to the appropriate directory

for this site’s files. Then edit the information

so that it connects to a database called

ecommerce, using a username/password/

hostname combination that has the proper

privileges.

Do note that all of these scripts, like every

other PHP and MySQL script in this book,

make use of PHP’s Improved MySQL exten-

sion functions. If you’re not using at least

version 5 of PHP and version 4.1 of MySQL,

with these functions enabled, you’ll need to

modify these scripts to get them to work

(see Chapter 8 for more).

To create add_print.php:

1. Create a new PHP document, beginning

with the HTML head (Script 17.1).

<!DOCTYPE html PUBLIC "-//W3C//DTD
➝ XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd">

<html
➝ xmlns="http://www.w3.org/1999/xhtml"
➝ xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type"
content="text/html; charset=iso-
8859-1" />

<title>Add a Print</title>

</head>

<body>

<?php # Script 17.1 - add_print.php

Normally, I would create a template sys-

tem for the administrative side, but since

I’ll be writing only this one administra-

tive script in this chapter, I’ll do without.

536

Chapter 17

T
h

e
 A

d
m

i
n

i
s

t
r

a
t

i
v

e
 S

i
d

e

Figure 17.7The HTMLform for adding prints to the catalog.

continues on page 543

537

Example—E-Commerce

T
h

e
 A

d
m

i
n

i
s

t
r

a
t

i
v

e
 S

i
d

e

1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

2 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

3 <html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>

4 <head>

5 <meta http-equiv=”content-type” content=”text/html; charset=iso-8859-1” />

6 <title>Add a Print</title>

7 </head>

8 <body>

9 <?php # Script 17.1 - add_print.php

10 // This page allows the administrator to add a print (product).

11

12 require_once (‘../../mysqli_connect.php’);

13

14 if (isset($_POST[‘submitted’])) { // Handle the form.

15

16 // Validate the incoming data...

17 $errors = array();

18

19 // Check for a print name:

20 if (!empty($_POST[‘print_name’])) {

21 $pn = trim($_POST[‘print_name’]);

22 } else {

23 $errors[] = ‘Please enter the print\’s name!’;

24 }

25

26 // Check for an image:

27 if (is_uploaded_file ($_FILES[‘image’][‘tmp_name’])) {

28

29 // Create a temporary file name:

30 $temp = ‘../../uploads/’ . md5($_FILES[‘image’][‘name’]);

31

32 // Move the file over:

33 if (move_uploaded_file($_FILES[‘image’][‘tmp_name’], $temp)) {

34

35 echo ‘<p>The file has been uploaded!</p>’;

36

(script continues on next page)

Script 17.1 This administration page adds products to the database. It handles a file upload, inserts the new print
into the prints table, and even allows for a new artist to be added at the same time.

538

Chapter 17

T
h

e
 A

d
m

i
n

i
s

t
r

a
t

i
v

e
 S

i
d

e

37 // Set the $i variable to the image’s name:

38 $i = $_FILES[‘image’][‘name’];

39

40 } else { // Couldn’t move the file over.

41 $errors[] = ‘The file could not be moved.’;

42 $temp = $_FILES[‘image’][‘tmp_name’];

43 }

44

45 } else { // No uploaded file.

46 $errors[] = ‘No file was uploaded.’;

47 $temp = NULL;

48 }

49

50 // Check for a size (not required):

51 $s = (!empty($_POST[‘size’])) ? trim($_POST[‘size’]) : NULL;

52

53 // Check for a price:

54 if (is_numeric($_POST[‘price’])) {

55 $p = (float) $_POST[‘price’];

56 } else {

57 $errors[] = ‘Please enter the print\’s price!’;

58 }

59

60 // Check for a description (not required):

61 $d = (!empty($_POST[‘description’])) ? trim($_POST[‘description’]) : NULL;

62

63 // Validate the artist...

64 if (isset($_POST[‘artist’]) && ($_POST[‘artist’] == ‘new’)) {

65 // If it’s a new artist, add the artist to the database...

66

67 // Validate the first and middle names (neither required):

68 $fn = (!empty($_POST[‘first_name’])) ? trim($_POST[‘first_name’]) : NULL;

69 $mn = (!empty($_POST[‘middle_name’])) ? trim($_POST[‘middle_name’]) : NULL;

70

71 // Check for a last_name...

72 if (!empty($_POST[‘last_name’])) {

(script continues on next page)

Script 17.1 continued

539

Example—E-Commerce

T
h

e
 A

d
m

i
n

i
s

t
r

a
t

i
v

e
 S

i
d

e

73

74 $ln = trim($_POST[‘last_name’]);

75

76 // Add the artist to the database:

77 $q = ‘INSERT INTO artists (first_name, middle_name, last_name) VALUES (?, ?, ?)’;

78 $stmt = mysqli_prepare($dbc, $q);

79 mysqli_stmt_bind_param($stmt, ‘sss’, $fn, $mn, $ln);

80 mysqli_stmt_execute($stmt);

81

82 // Check the results....

83 if (mysqli_stmt_affected_rows($stmt) == 1) {

84 echo ‘<p>The artist has been added.</p>’;

85 $a = mysqli_stmt_insert_id($stmt); // Get the artist ID.

86 } else { // Error!

87 $errors[] = ‘The new artist could not be added to the database!’;

88 }

89

90 // Close this prepared statement:

91 mysqli_stmt_close($stmt);

92

93 } else { // No last name value.

94 $errors[] = ‘Please enter the artist\’s name!’;

95 }

96

97 } elseif (isset($_POST[‘artist’]) && ($_POST[‘artist’] == ‘existing’) && ($_POST[‘existing’] >
0)) { // Existing artist.

98 $a = (int) $_POST[‘existing’];

99 } else { // No artist selected.

100 $errors[] = ‘Please enter or select the print\’s artist!’;

101 }

102

103 if (empty($errors)) { // If everything’s OK.

104

105 // Add the print to the database:

106 $q = ‘INSERT INTO prints (artist_id, print_name, price, size, description, image_name) VALUES
(?, ?, ?, ?, ?, ?)’;

107 $stmt = mysqli_prepare($dbc, $q);

(script continues on next page)

Script 17.1 continued

540

Chapter 17

T
h

e
 A

d
m

i
n

i
s

t
r

a
t

i
v

e
 S

i
d

e

108 mysqli_stmt_bind_param($stmt, ‘isdsss’, $a, $pn, $p, $s, $d, $i);

109 mysqli_stmt_execute($stmt);

110

111 // Check the results...

112 if (mysqli_stmt_affected_rows($stmt) == 1) {

113

114 // Print a message:

115 echo ‘<p>The print has been added.</p>’;

116

117 // Rename the image:

118 $id = mysqli_stmt_insert_id($stmt); // Get the print ID.

119 rename ($temp, “../../uploads/$id”);

120

121 // Clear $_POST:

122 $_POST = array();

123

124 } else { // Error!

125 echo ‘<p style=”font-weight: bold; color: #C00”>Your submission could not be processed due
to a system error.</p>’;

126 }

127

128 mysqli_stmt_close($stmt);

129

130 } // End of $errors IF.

131

132 // Delete the uploaded file if it still exists:

133 if (isset($temp) && file_exists ($temp) && is_file($temp)) {

134 unlink ($temp);

135 }

136

137 } // End of the submission IF.

138

139 // Check for any errors and print them:

140 if (!empty($errors) && is_array($errors)) {

141 echo ‘<h1>Error!</h1>

142 <p style=”font-weight: bold; color: #C00”>The following error(s) occurred:
’;

143 foreach ($errors as $msg) {

(script continues on next page)

Script 17.1 continued

541

Example—E-Commerce

T
h

e
 A

d
m

i
n

i
s

t
r

a
t

i
v

e
 S

i
d

e

144 echo “ - $msg
\n”;

145 }

146 echo ‘Please reselect the print image and try again.</p>’;

147 }

148

149 // Display the form...

150 ?>

151 <h1>Add a Print</h1>

152 <form enctype=”multipart/form-data” action=”add_print.php” method=”post”>

153

154 <input type=”hidden” name=”MAX_FILE_SIZE” value=”524288” />

155

156 <fieldset><legend>Fill out the form to add a print to the catalog:</legend>

157

158 <p>Print Name: <input type=”text” name=”print_name” size=”30” maxlength=”60”
value=”<?php if (isset($_POST[‘print_name’])) echo htmlspecialchars($_POST[‘print_name’]); ?>”
/></p>

159

160 <p>Image: <input type=”file” name=”image” /></p>

161

162 <div>Artist:

163 <p><input type=”radio” name=”artist” value=”existing” <?php if (isset($_POST[‘artist’]) &&
($_POST[‘artist’] == ‘existing’)) echo ‘ checked=”checked”’; ?>/> Existing =>

164 <select name=”existing”><option>Select One</option>

165 <?php // Retrieve all the artists and add to the pull-down menu.

166 $q = “SELECT artist_id, CONCAT_WS(‘ ‘, first_name, middle_name, last_name) FROM artists ORDER BY
last_name, first_name ASC”;

167 $r = mysqli_query ($dbc, $q);

168 if (mysqli_num_rows($r) > 0) {

169 while ($row = mysqli_fetch_array ($r, MYSQLI_NUM)) {

170 echo “<option value=\”$row[0]\””;

171 // Check for stickyness:

172 if (isset($_POST[‘existing’]) && ($_POST[‘existing’] == $row[0])) echo ‘
selected=”selected”’;

173 echo “>$row[1]</option>\n”;

174 }

175 } else {

176 echo ‘<option>Please add a new artist.</option>’;

(script continues on next page)

Script 17.1 continued

542

Chapter 17

T
h

e
 A

d
m

i
n

i
s

t
r

a
t

i
v

e
 S

i
d

e

177 }

178 mysqli_close($dbc); // Close the database connection.

179 ?>

180 </select></p>

181

182 <p><input type=”radio” name=”artist” value=”new” <?php if (isset($_POST[‘artist’]) &&
($_POST[‘artist’] == ‘new’)) echo ‘ checked=”checked”’; ?>/> New =>

183 First Name: <input type=”text” name=”first_name” size=”10” maxlength=”20” value=”<?php if
(isset($_POST[‘first_name’])) echo $_POST[‘first_name’]; ?>” />

184 Middle Name: <input type=”text” name=”middle_name” size=”10” maxlength=”20” value=”<?php if
(isset($_POST[‘middle_name’])) echo $_POST[‘middle_name’]; ?>” />

185 Last Name: <input type=”text” name=”last_name” size=”10” maxlength=”40” value=”<?php if
(isset($_POST[‘last_name’])) echo $_POST[‘last_name’]; ?>” /></p>

186 </div>

187

188 <p>Price: <input type=”text” name=”price” size=”10” maxlength=”10” value=”<?php if
(isset($_POST[‘price’])) echo $_POST[‘price’]; ?>” /> <small>Do not include the dollar sign or
commas.</small></p>

189

190 <p>Size: <input type=”text” name=”size” size=”30” maxlength=”60” value=”<?php if
(isset($_POST[‘size’])) echo htmlspecialchars($_POST[‘size’]); ?>” /> (optional)</p>

191

192 <p>Description: <textarea name=”description” cols=”40” rows=”5”><?php if
(isset($_POST[‘description’])) echo $_POST[‘description’]; ?></textarea> (optional)</p>

193

194 </fieldset>

195

196 <div align=”center”><input type=”submit” name=”submit” value=”Submit” /></div>

197 <input type=”hidden” name=”submitted” value=”TRUE” />

198

199 </form>

200

201 </body>

202 </html>

Script 17.1 continued

543

Example—E-Commerce

T
h

e
 A

d
m

i
n

i
s

t
r

a
t

i
v

e
 S

i
d

e

2. Include the database connection script and

check if the form has been submitted.

require_once
➝ ('../../mysqli_connect.php');

if (isset($_POST['submitted'])) {

$errors = array();

The administration folder will be located

inside of the main (htdocs) folder and is

therefore two directories above the con-

nection script. Keep your directory struc-

ture (Figure 17.8) in mind when includ-

ing files.

Any form validation problems will be

added to the $errors array, which is initi-

ated here.

3. Validate the print’s name.

if (!empty($_POST['print_name'])) {

$pn = trim($_POST['print_name']);

} else {

$errors[] = 'Please enter the
➝ print\'s name!';

}

This is one of the required fields in the

prints table and should be checked for

a value. Because this script will use pre-

pared statements, the values to be used in

the query don’t need to be run through

mysqli_real_escape_string(). See

Chapter 12, “Security Methods,” for more

on this subject.

If you wanted to be extra careful, you could

apply strip_tags() here (although if a mali-

cious user has gotten into the adminis-

trative area, you’ve got bigger problems).

If no value is entered, an error message is

added to the $errors array.

Figure 17.8 The site structure for this Web application. The MySQL connection
script and the uploads directory (where images will be stored) are not within
the Web directory (they aren’t available via http://).

continues on next page

4. Handle the image file, if one was selected.

if (is_uploaded_file
➝ ($_FILES['image']['tmp_name'])) {

$temp = '../../uploads/' .
➝ md5($_FILES['image']['name']);

if
➝ (move_uploaded_file($_FILES
➝ ['image']['tmp_name'], $temp)) {

echo '<p>The file has been
➝ uploaded!</p>';

$i = $_FILES['image']['name'];

When I demonstrated the techniques for

handling file uploads with PHP (in Chapter

10, “Web Application Development”), I

mentioned the is_uploaded_file() func-

tion. It returns TRUE if a file was uploaded

and FALSE if not. If a file was uploaded,

the script will attempt to move the file

over to the uploads directory. Messages

are printed (Figure 17.9) indicating its

success in doing so. Finally, the $i variable

will be set to the name of the file (for use

later on in the script).

There is one other thing happening here:

the images will not be stored on the server

using their given names (which can be a

security concern). Instead the images will

be stored using their associated print ID.

However, since that value isn’t yet known

(because the print hasn’t been added to

the database), a temporary name for this

file has to be generated. To do so, the

md5() function, which returns a 32-char-

acter hash, is applied to the image’s origi-

nal name. At this point in the script, the

print image will have been moved to its

permanent location (the uploads directory)

but given a temporary name (to be

renamed later).

544

Chapter 17

T
h

e
 A

d
m

i
n

i
s

t
r

a
t

i
v

e
 S

i
d

e

There are improvements you could make

in this one area. You could also validate

that the image is of the right size and type.

To keep an already busy script more man-

ageable, I’ve omitted that here, but see

Chapter 10 for the exact code to apply.

5. Complete the image handling section.

} else {

$errors[] = 'The file could
➝ not be moved.';

$temp =
➝ $_FILES['image']['tmp_name'
➝];

}

} else { // No uploaded file.

$errors[] = 'No file was
➝ uploaded.';

$temp = NULL;

}

Figure 17.9 The result if
a file was selected for the
print’s image and it was
successfully uploaded.

Figure 17.10 If the uploads directory is not writable
by PHP, you’ll see errors like these.

The size and description values are

optional, but the price is not. As a basic

validity test, I ensure that the submitted

price is a number (it should be a decimal)

using the is_numeric() function. If the

value is numeric, I typecast it as a float-

ing-point number just to be safe. An

error message will be added to the array

if no price or an invalid price is entered.

If the size and description inputs are not

used, I’ll set the $s and $d variables to

NULL. For these two validation routines,

I’ve reduced the amount of code by using

the ternary operator (introduced in

Chapter 9, “Common Programming

Techniques”). The code here is the same as

if (!empty($_POST['size'])) {

$s = trim($_POST['size']);

} else {

$s = NULL;

}

7. Check if a new artist is being entered.

if (isset($_POST['artist']) && (
➝ $_POST['artist'] == 'new')) {

To enter the print’s artist, the administra-

tor will have two choices (Figure 17.11):

select an existing artist (from the records

in the artists table) using a pull-down

menu or enter the name of a new artist.

If a new artist is being entered, the

record will have to be inserted into the

artists table before the print is added to

the prints table.

545

Example—E-Commerce

T
h

e
 A

d
m

i
n

i
s

t
r

a
t

i
v

e
 S

i
d

e

The first else clause applies if the file

could not be moved to the destination

directory. This should only happen if the

path to that directory is not correct or if

the proper permissions haven’t been set

on the directory (Figure 17.10). In this

case, the $temp variable is assigned the

value of the upload, which is still residing

in its temporary location. This is neces-

sary, as the script will attempt to remove

unused files later in the script.

The second else clause applies if no file

was uploaded. As the purpose of this site

is to sell prints, it’s rather important to

actually display what’s being sold. If you

wanted, you could add to this error mes-

sage more details or recommendations

as to what type and size of file should be

uploaded.

6. Validate the size, price, and descrip-

tion inputs.

$s = (!empty($_POST['size'])) ?
➝ trim($_POST['size']) : NULL;

if (is_numeric($_POST['price'])) {

$p = (float) $_POST['price'];

} else {

$errors[] = 'Please enter the
➝ print\'s price!';

}

$d = (!empty($_POST['description']))
➝ ? trim($_POST['description']) :
➝ NULL;

Figure 17.11 The administrator
can select an existing artist from
the database or choose to submit
a new one.

continues on next page

8. Validate the artist’s names.

$fn = (!empty($_POST['first_name']))
➝ ? trim($_POST['first_name']) : NULL;

$mn = (!empty($_POST['middle_name']))
➝ ? trim($_POST['middle_name']) : NULL;

if (!empty($_POST['last_name'])) {

$ln = trim($_POST['last_name']);

The artist’s first and middle names are

optional fields, whereas the last name is

not (since there are artists referred to by

only one name). To validate the first two

name inputs, the same ternary structure

as in Step 6 is used.

9. Add the artist to the database.

$q = 'INSERT INTO artists
➝ (first_name, middle_name,
➝ last_name) VALUES (?, ?, ?)';

$stmt = mysqli_prepare($dbc, $q);

mysqli_stmt_bind_param($stmt, 'sss',
➝ $fn, $mn, $ln);

mysqli_stmt_execute($stmt);

if (mysqli_stmt_affected_rows($stmt)
➝ == 1) {

echo '<p>The artist has been
➝ added.</p>';

$a = mysqli_stmt_insert_id($stmt);

} else {

$errors[] = 'The new artist could
➝ not be added to the database!';

}

mysqli_stmt_close($stmt);

To add the artist to the database, the

query will be something like INSERT INTO
artists (first_name, middle_name,
last_name) VALUES ('John',
'Singer', 'Sargent') or INSERT INTO
artists (first_name, middle_name,
last_name) VALUES (NULL, NULL,
'Christo'). The query is run using pre-

pared statements, covered in Chapter

12.

If the new artist was added to the data-

base, the artist’s ID will be retrieved (for

use in the print’s INSERT query) using

the mysqli_stmt_insert_id() function.

Otherwise an error is added to the array

(in which case, you’ll need to do some

debugging).

10. Complete the artist conditional.

} else { // No last name value.

$errors[] = 'Please enter
➝ the artist\'s name!';

}

} elseif (isset($_POST['artist'])
➝ && ($_POST['artist'] == 'existing')
➝ && ($_POST['existing'] > 0)) {

$a = (int) $_POST['existing'];

} else { // No artist selected.

$errors[] = 'Please enter or
➝ select the print\'s artist!';

}

If the administrator opted to use an

existing artist, then a check is made that

an artist was selected from the pull-down

menu. If this condition fails, then an

error message is added to the array.

546

Chapter 17

T
h

e
 A

d
m

i
n

i
s

t
r

a
t

i
v

e
 S

i
d

e

11. Insert the record into the database.

if (empty($errors)) {

$q = 'INSERT INTO prints
➝ (artist_id, print_name, price,
➝ size, description, image_name)
➝ VALUES (?, ?, ?, ?, ?, ?)';

$stmt = mysqli_prepare($dbc, $q);

mysqli_stmt_bind_param($stmt,
➝ 'isdsss', $a, $pn, $p, $s, $d,
➝ $i);

mysqli_stmt_execute($stmt);

If the $errors array is empty, then all of

the validation tests were passed and the

print can be added. Using prepared state-

ments again, the query is something

like INSERT INTO prints (artist_id,
print_name, price, size, descrip-
tion, image_name) VALUES (34, 'The
Scream', 25.99, NULL, 'This
classic…', 'scream.jpg').

The mysqli_stmt_bind_param() function

indicates that the query needs six inputs

(one for each question mark) of the

type: integer, string, double (aka float),

string, string, and string. For questions

on any of this, see Chapter 12.

12. Confirm the results of the query.

if (mysqli_stmt_affected_rows($stmt)
➝ == 1) {

echo '<p>The print has been
➝ added.</p>';

$id =
➝ mysqli_stmt_insert_id($stmt);

rename ($temp,
➝ "../../uploads/$id");

$_POST = array();

} else {

echo '<p style="font-weight:
➝ bold; color: #C00">Your
➝ submission could not be
➝ processed due to a system
➝ error.</p>';

}

If the query affected one row, then a

message of success is printed in the Web

browser (see Figure 17.9). Next, the

print ID has to be retrieved so that the

associated image can be renamed (it

currently is in the uploads folder but

under a temporary name). Finally, the

$_POST array is cleared so that its values

are displayed in the sticky form.

If the query did not affect one row,

there’s probably some MySQL error hap-

pening and you’ll need to apply the

standard debugging techniques to fig-

ure out why. See Chapter 7, “Error

Handling and Debugging,” for specifics.

547

Example—E-Commerce

T
h

e
 A

d
m

i
n

i
s

t
r

a
t

i
v

e
 S

i
d

e

continues on next page

13. Complete the conditionals.

mysqli_stmt_close($stmt);

} // End of $errors IF.

if (isset($temp) && file_exists
➝ ($temp) && is_file($temp)) {

unlink ($temp);

}

} // End of the submission IF.

The first closing brace terminates the

check for $errors being empty. In this

case, the file on the server should be

deleted because it hasn’t been perma-

nently moved and renamed.

14. Print any errors.

if (!empty($errors) &&
➝ is_array($errors)) {

echo '<h1>Error!</h1>

<p style="font-weight: bold;
➝ color: #C00">The following
➝ error(s) occurred:
';

foreach ($errors as $msg) {

echo " - $msg
\n";

}

echo 'Please reselect the print
➝ image and try again.</p>';

}

?>

All of the errors that occurred would be

in the $errors array. These can be printed

using a foreach loop (Figure 17.12).

The errors are printed within some CSS

to make them bold and red. Also, since

a sticky form cannot recall a selected

file, the user is reminded to reselect the

print image.

15. Begin creating the HTML form.

<h1>Add a Print</h1>

<form enctype="multipart/form-data"
➝ action="add_print.php"
➝ method="post">

<input type="hidden"
➝ name="MAX_FILE_SIZE"
➝ value="524288" />

<fieldset><legend>Fill out the
➝ form to add a print to the
➝ catalog:</legend>

<p>Print Name: <input
➝ type="text" name="print_name"
➝ size="30" maxlength="60"
➝ value="<?php if
➝ (isset($_POST['print_name']))
➝ echo htmlspecialchars($_POST
➝ ['print_name']); ?>" /></p>

<p>Image: <input
➝ type="file" name="image" /></p>

Because this form will allow a user to

upload a file, it must include the enctype
in the form tag and the MAX_FILE_SIZE
hidden input. The form will be sticky,

thanks to the code in the value attrib-

ute of its inputs. Note that you cannot

make a file input type sticky. In case

the print’s name, size, or description uses

potentially problematic characters, each

is run through htmlspecialchars(), so as

not to mess up the value (Figure 17.13).

548

Chapter 17

T
h

e
 A

d
m

i
n

i
s

t
r

a
t

i
v

e
 S

i
d

e

Figure 17.12 An incompletely filled out
form will generate several errors.

16. Begin the artist pull-down menu.

<div>Artist:

<p><input type="radio" name="artist"
➝ value="existing" <?php if
➝ (isset($_POST['artist']) &&
➝ ($_POST['artist'] == 'existing'))
➝ echo ' checked="checked"'; ?>/>
➝ Existing =>

<select
➝ name="existing"><option>Select
➝ One</option>

The artist pull-down menu will be

dynamically generated (Figure 17.14)

from the records stored in the artists

table using this PHP code. It’s prefaced

by a radio button so that the adminis-

trator can select an existing artist or

enter a new one (see Step 18).

Complicating things a bit, to make this

form sticky, the radio buttons have to

check to see if $_POST['artist'] is set

(because it won’t be the first time the

page is loaded) and if its value equals

existing. If both conditions are true, the

code checked="checked" is added to the

HTML to pre-check this button.

549

Example—E-Commerce

T
h

e
 A

d
m

i
n

i
s

t
r

a
t

i
v

e
 S

i
d

e

continues on next page

Figure 17.13 The sticky form uses
htmlspecialchars() to encode
some characters, like quotation
marks, that could be used in form
values. If this function wasn’t
invoked, such characters would
otherwise make a mess of things
when placed in the input’s value
attribute.

Figure 17.14 The PHP-generated HTML source code for the artists portion of the form.

17. Retrieve every artist.

<?php

$q = "SELECT artist_id, CONCAT_WS
➝ (' ', first_name, middle_name,
➝ last_name) FROM artists ORDER BY
➝ last_name, first_name ASC";

$r = mysqli_query ($dbc, $q);

if (mysqli_num_rows($r) > 0) {

while ($row = mysqli_fetch_array
➝ ($r, MYSQLI_NUM)) {

echo "<option
➝ value=\"$row[0]\"";

if (isset($_POST['existing'])
➝ && ($_POST['existing'] ==
➝ $row[0])) echo '
➝ selected="selected"';

echo
➝ ">$row[1]</option>\n";

}

} else {

echo '<option>Please add a new
➝ artist.</option>';

}

mysqli_close($dbc);

?>

</select></p>

This query retrieves every artist’s name

and ID from the database (it doesn’t use

prepared statements, as there’s really no

need). The MySQL CONCAT_WS() func-

tion—short for concatenate with sepa-

rator—is used to retrieve the artist’s

entire name as one value. If you are

confused by the query’s syntax, run it in

the mysql client or other interface to

see the results.

The first time the administrator runs

this script, there will be no existing

artists. In that case, there won’t be any

options in this pull-down menu, so an

indication to add an artist is made

(Figure 17.15).

This otherwise-basic code is complicated

by the desire to make the pull-down menu

sticky. To make any select menu sticky,

you have to add selected="selected"
to the proper option. So the code in the

while loop checks if $_POST['existing']
is set and, if so, if its value is the same

as the current artist ID being added to

the menu.

550

Chapter 17

T
h

e
 A

d
m

i
n

i
s

t
r

a
t

i
v

e
 S

i
d

e

Figure 17.15 Before any artists have been added to
the artists table, the pull-down menu tells the
administrator that they have to add a new artist.

18. Create the inputs for adding a new artist.

<p><input type="radio" name="artist"
➝ value="new" <?php if
➝ (isset($_POST['artist']) &&
➝ ($_POST['artist'] == 'new')) echo '
➝ checked="checked"'; ?>/> New =>

First Name: <input type="text"
➝ name="first_name" size="10"
➝ maxlength="20" value="<?php if
➝ (isset($_POST['first_name']))
echo
➝ $_POST['first_name']; ?>" />

Middle Name: <input type="text"
➝ name="middle_name" size="10"
➝ maxlength="20" value="<?php if
➝ (isset($_POST['middle_name'])) echo
➝ $_POST['middle_name']; ?>" />

Last Name: <input type="text"
➝ name="last_name" size="10"
➝ maxlength="40" value="<?php if
➝ (isset($_POST['last_name'])) echo
➝ $_POST['last_name']; ?>" /></p>

</div>

Rather than create a separate form for

adding artists to the database, the

administrator will have the option of

doing so directly here. The PHP code

that handles the form (described earlier)

will create a new database record using

the new artist information. Each form

element is also made sticky, although

not using the htmlspecialchars() func-

tion, as these values shouldn’t contain

problematic characters.

19. Complete the HTML form.

<p>Price: <input
➝ type="text" name="price"
➝ size="10" maxlength="10"
➝ value="<?php if
➝ (isset($_POST['price'])) echo
➝ $_POST['price']; ?>" />
➝ <small>Do not include the
dollar
➝ sign or commas.</small></p>

<p>Size: <input
➝ type="text" name="size"
➝ size="30" maxlength="60"
➝ value="<?php if
➝ (isset($_POST['size'])) echo
➝ htmlspecialchars($_POST['size']
➝); ?>" /> (optional)</p>

<p>Description: <textarea
➝ name="description" cols="40"
➝ rows="5"><?php if
➝ (isset($_POST['description']))
➝ echo $_POST['description'];
➝ ?></textarea> (optional)</p>

</fieldset>

<div align="center"><input
➝ type="submit" name="submit"
➝ value="Submit" /></div>

<input type="hidden"
➝ name="submitted" value="TRUE" />

</form>

20. Complete the HTML page.

</body>

</html>

21. Save the file as add_print.php.

551

Example—E-Commerce

T
h

e
 A

d
m

i
n

i
s

t
r

a
t

i
v

e
 S

i
d

e

continues on next page

22. Create the necessary directories on your

server.

This administrative page will require

the creation of two new directories.

One, which I’ll call admin (see Figure

17.8), will house the administrative files

themselves. On a real site, it’d be better

to name your administrative directory

something less obvious.

The second, uploads, should be placed

below the Web document directory and

have its privileges changed so that PHP

can move files into it. See Chapter 10

for more information on this.

23. Place add_print.php in your Web direc-

tory (in the administration folder) and

test it in your Web browser (Figures

17.16 and 17.17).

Don’t forget that you’ll also need to

place a mysqli_connect.php script, edit-

ed to connect to the ecommerce data-

base, in the right directory as well.

✔ Tips

■ This is actually the most complicated

script in this entire chapter, if not the

book. In part, the complexity arises from

the artists option (use an existing one or

add a new one). Secondarily, making it a

sticky form really adds some code. To

simplify this aspect of the application,

you could create one form for adding

artists to the database and a separate

one for adding prints (the separate

add_print.php page would therefore only

allow the selection of an existing artist).

■ Although I did not do so here for the

sake of brevity, I would recommend that

separate MySQL users be created for the

administrative and the public sides. The

admin user would need SELECT, INSERT,

UPDATE, and DELETE privileges, while the

public one would need only SELECT,

INSERT and UPDATE.

■ The administrative pages should be pro-

tected in the most secure way possible.

This could entail HTTP authentication

using Apache, a login system using ses-

sions or cookies, or even placing the

admin pages on another, possibly offline,

server (so the site could be managed

from just one location).

552

Chapter 17

T
h

e
 A

d
m

i
n

i
s

t
r

a
t

i
v

e
 S

i
d

e

Figure 17.16 In this example, I’m adding a print for
a new artist.

Figure 17.17 Here I’m adding a print using an existing
artist.

To make header.html:

1. Create a new PHP document in your text

editor or IDE (Script 17.2).

<?php # Script 17.2 - header.html

2. Begin the session.

session_start();

It’s very important that the user’s session

be maintained across every page, so I’ll

start the session in the header file. If the

session was lost on a single page, then a

new session would begin on subsequent

pages, and the user’s history—the contents

of the shopping cart—would be gone.

3. Create the HTML head.

?><!DOCTYPE html PUBLIC "-//W3C//DTD
➝ XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd">

<html
➝ xmlns="http://www.w3.org/1999/xhtml"
➝ xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type"
➝ content="text/html;
➝ charset=iso-8859-1" />

<title><?php echo
➝ (isset($page_title)) ?
➝ $page_title : 'Welcome!';
➝ ?></title>

</head>

As with all the other versions of this script,

the page’s title will be set as a PHP variable

and printed out within the title tags. In

case it’s not set before this page is included,

a default title is also provided.

553

Example—E-Commerce

C
r

e
a

t
i
n

g
 t

h
e

 P
u

b
l
i
c

 T
e

m
p

l
a

t
e

Creating the
Public Template
Before I get into the heart of the public side,

I’ll need to create the requisite HTML header

and footer files. I’ll whip through these quickly,

since the techniques involved should be

familiar territory by this point in the book.

continues on next page

1 <?php # Script 17.2 - header.html

2 // This page begins the session, the HTML
page, and the layout table.

3

4 session_start(); // Start a session.

5 ?><!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

6 "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">

7 <html xmlns="http://www.w3.org/1999/xhtml"
xml:lang="en" lang="en">

8 <head>

9 <meta http-equiv="content-type"
content="text/html; charset=iso-8859-1" />

10 <title><?php echo (isset($page_title)) ?
$page_title : 'Welcome!'; ?></title>

11 </head>

12 <body>

13 <table cellspacing="0" cellpadding="0"
border="0" align="center" width="600">

14 <tr>

15 <td align="center" colspan="3"><img
src="images/title.jpg" width="600"
height="61" border="0" alt="title"
/></td>

16 </tr>

17 <tr>

Script 17.2 The header file creates the initial HTML
and begins the PHP session.

(script continues on next page)

4. Create the top row of the table.

<body>

<table cellspacing="0"
➝ cellpadding="0" border="0"
➝ align="center" width="600">

<tr>

<td align="center"
➝ colspan="3"><img
➝ src="images/title.jpg"
➝ width="600" height="61"
➝ border="0" alt="title" /></td>

</tr>

<tr>

<td><img
➝ src="images/home.jpg"
➝ width="200" height="39"
➝ border="0" alt="home page"
➝ /></td>

<td>
➝ <img src="images/prints.jpg"
➝ width="200" height="39"
➝ border="0" alt="view the
➝ prints" /></td>

<td><img
➝ src="images/cart.jpg"
➝ width="200" height="39"
➝ border="0" alt="view your cart"
➝ /></td>

</tr>

<tr>

<td align="left" colspan="3"
➝ bgcolor="#ffffcc">

This layout will use images to create the

links for the public pages (Figure 17.18).

554

Chapter 17

C
r

e
a

t
i
n

g
 t

h
e

 P
u

b
l
i
c

 T
e

m
p

l
a

t
e

18 <td><img
src="images/home.jpg" width="200"
height="39" border="0" alt="home page"
/></td>

19 <td><img
src="images/prints.jpg" width="200"
height="39" border="0" alt="view the
prints" /></td>

20 <td><img
src="images/cart.jpg" width="200"
height="39" border="0" alt="view your
cart" /></td>

21 </tr>

22 <tr>

23 <td align="left" colspan="3"
bgcolor="#ffffcc">

Script 17.2 continued

Figure 17.18 The banner created by the header file.

5. Start the middle row.

<tr>

<td align="left" colspan="3"
➝ bgcolor="#ffffcc">

All of each individual page’s content will

go in the middle row, so the header file

begins this row and the footer file will

close it.

6. Save the file as header.html and place

it in your Web directory (create an

includes folder in which to store it).

To make footer.html:

1. Create a new HTML document in your

text editor or IDE (Script 17.3).

<!-- Script 17.3 - footer.html -->

2. Complete the middle row, create the

bottom row, and complete the HTML

(Figure 17.19).

</td>

</tr>

<tr>

<td align="center" colspan="3"
➝ bgcolor="#669966"><font
➝ color="#ffffff">©
➝ Copyright...</td>

</tr>

</table>

</body>

</html>

3. Save the file as footer.html and place

it in your Web directory (also in the

includes folder).

555

Example—E-Commerce

C
r

e
a

t
i
n

g
 t

h
e

 P
u

b
l
i
c

 T
e

m
p

l
a

t
e

Figure 17.19 The copyright row created by the footer file.

1 <!-- Script 17.3 - footer.html -->

2
</td>

3 </tr>

4 <tr>

5 <td align="center" colspan="3"
bgcolor="#669966">©
Copyright...</td>

6 </tr>

7 </table>

8 </body>

9 </html>

Script 17.3 The footer file closes the HTML, creating
a copyright message in the process.

To make index.php:

1. Create a new PHP document in your text

editor or IDE (Script 17.4).

<?php # Script 17.4 - index.php

$page_title = 'Make an Impression!';

include ('includes/header.html');

?>

2. Create the page’s content.

<p>Welcome to our site....please use
➝ the links above...blah, blah,
➝ blah.</p>

<p>Welcome to our site....please use
➝ the links above...blah, blah,
➝ blah.</p>

Obviously a real e-commerce site would

have some actual content on the main

page. You could put lists of recently

added items here (if you added a

date_entered column to the prints table),

highlight specials, or do whatever.

3. Complete the HTML page.

<?php

include ('includes/footer.html');

?>

4. Save the file as index.php, place it in your

Web directory, and test it in your Web

browser (Figure 17.20).

556

Chapter 17

C
r

e
a

t
i
n

g
 t

h
e

 P
u

b
l
i
c

 T
e

m
p

l
a

t
e

1 <?php # Script 17.4 - index.php

2 // This is the main page for the site.

3

4 // Set the page title and include the HTML
header:

5 $page_title = 'Make an Impression!';

6 include ('includes/header.html');

7 ?>

8

9 <p>Welcome to our site....please use the
links above...blah, blah, blah.</p>

10 <p>Welcome to our site....please use the
links above...blah, blah, blah.</p>

11

12 <?php // Include the HTML footer file:

13 include ('includes/footer.html');

14 ?>

Script 17.4 A minimal script for the site’s home page.

✔ Tips

■ The images used in this example are avail-

able for download through the book’s

companion Web site: www.DMCInsights.
com/phpmysql3/.

See the Extras page.

■ Since sessions are key to the functionality

of this application, review the information

presented in Chapter 11, “Cookies and

Sessions,” or in the PHP manual to under-

stand all of the session considerations.

Figure 17.20 The public home page for the e-commerce
site.

The Product Catalog
For customers to be able to purchase products,

they’ll need to view them first. To this end,

I’ll create two scripts for accessing the prod-

uct catalog. The first, browse_prints.php,

will display a list of the available prints

(Figure 17.21). If a particular artist has

been selected, only that artist’s work will be

shown (Figure 17.22); otherwise, every

print will be listed.

The second script, view_print.php, will be

used to display the information for a single

print, including the image (Figure 17.23).

On this page customers will find an Add to

Cart link, so that the print may be added to

the shopping cart. Because the print’s image

is stored outside of the Web root directory,

view_print.php will use a separate script—

nearly identical to show_image.php from

Chapter 10—for the purpose of displaying

the image.

557

Example—E-Commerce

T
h

e
 P

r
o

d
u

c
t

 C
a

t
a

l
o

g

Figure 17.21 The current product listing, created by
browse_prints.php.

Figure 17.22 If a particular artist is selected (by
clicking on the artist’s name), the page displays
works only by that artist.

Figure 17.23 The page that displays an individual
product.

To make browse_prints.php:
1. Create a new PHP document in your text

editor or IDE (Script 17.5).

<?php # Script 17.5 -
➝ browse_prints.php

$page_title = 'Browse the Prints';

include ('includes/header.html');

require_once
➝ ('../mysqli_connect.php');

2. Define the query.

$q = "SELECT artists.artist_id,
➝ CONCAT_WS(' ', first_name,
➝ middle_name, last_name) AS artist,
➝ print_name, price, description,
➝ print_id FROM artists, prints
WHERE
➝ artists.artist_id =
➝ prints.artist_id ORDER BY
➝ artists.last_name ASC,
➝ prints.print_name ASC";

The query is a standard join across the

artists and prints tables (to retrieve the

artist name information with each print’s

information). The first time the page is

viewed, every print by every artist will be

returned (Figure 17.24).

3. Check for an artist ID in the URL.

if (isset($_GET['aid']) &&
➝ is_numeric($_GET['aid'])) {

$aid = (int) $_GET['aid'];

if ($aid > 0) {

$q = "SELECT artists.artist_id,
➝ CONCAT_WS(' ', first_name,
➝ middle_name, last_name) AS
➝ artist, print_name, price,
➝ description, print_id FROM
➝ artists, prints WHERE
➝ artists.artist_id =
➝ prints.artist_id AND
➝ prints.artist_id = $aid ORDER
➝ BY prints.print_name";

558

Chapter 17

T
h

e
 P

r
o

d
u

c
t

 C
a

t
a

l
o

g

1 <?php # Script 17.5 - browse_prints.php

2 // This page displays the available prints
(products).

3

4 // Set the page title and include the HTML
header:

5 $page_title = 'Browse the Prints';

6 include ('includes/header.html');

7

8 require_once ('../mysqli_connect.php');

9

10 // Default query for this page:

11 $q = "SELECT artists.artist_id,
CONCAT_WS(' ', first_name, middle_name,
last_name) AS artist, print_name, price,
description, print_id FROM artists, prints
WHERE artists.artist_id = prints.artist_id
ORDER BY artists.last_name ASC,
prints.print_name ASC";

12

13 // Are we looking at a particular artist?

14 if (isset($_GET['aid']) &&
is_numeric($_GET['aid'])) {

15 $aid = (int) $_GET['aid'];

16 if ($aid > 0) { // Overwrite the query:

17 $q = "SELECT artists.artist_id,
CONCAT_WS(' ', first_name,
middle_name, last_name) AS artist,
print_name, price, description,
print_id FROM artists, prints WHERE
artists.artist_id = prints.artist_id
AND prints.artist_id = $aid ORDER BY
prints.print_name";

18 }

19 }

20

21 // Create the table head:

22 echo '<table border="0" width="90%"
cellspacing="3" cellpadding="3"
align="center">

Script 17.5 The browse_prints.php script displays
every print in the catalog or every print for a particular
artist, depending upon the presence of $_GET['aid'].

(script continues on next page)

}

}

If a user clicks one artist’s name, the user

will be returned back to this page, but

now the URL will be, for example,

browse_prints.php?aid=529. In that case,

the query is redefined, adding the clause

AND prints.artist_id = $aid, so just

that artist’s works are displayed (and the

ORDER BY is slightly modified). So the two

different roles of this script—showing

every print or just those for an individual

artist—are handled by variations on the

same query, while the rest of the script

works the same in either case.

For security purposes, I use typecasting

on the artist ID and make sure that it’s a

positive integer prior to using it in a query.

559

Example—E-Commerce

T
h

e
 P

r
o

d
u

c
t

 C
a

t
a

l
o

g

23 <tr>

24 <td align="left"
width="20%">Artist</td>

25 <td align="left" width="20%">Print
Name</td>

26 <td align="left"
width="40%">Description</td>

27 <td align="right"
width="20%">Price</td>

28 </tr>';

29

30 // Display all the prints, linked to URLs:

31 $r = mysqli_query ($dbc, $q);

32 while ($row = mysqli_fetch_array ($r,
MYSQLI_ASSOC)) {

33

34 // Display each record:

35 echo "\t<tr>

36 <td align=\"left\"><a
href=\"browse_prints.php?aid={$row
['artist_id']}\">{$row['artist']}</td>

37 <td align=\"left\"><a
href=\"view_print.php?pid={$row
['print_id']}\">{$row['print_name']}</td>

38 <td
align=\"left\">{$row['description']}</td>

39 <td
align=\"right\">\${$row['price']}</td>

40 </tr>\n";

41

42 } // End of while loop.

43

44 echo '</table>';

45 mysqli_close($dbc);

46 include ('includes/footer.html');

47 ?>

Script 17.5 continued

continues on next page

Figure 17.24 The results after running the main
browse_prints.php query in the mysql client.
Remember that running a PHP script’s query in
another interface is one of the best debugging tools!

4. Create the table head.

echo '<table border="0" width="90%"
➝ cellspacing="3" cellpadding="3"
➝ align="center">

<tr>

<td align="left"
➝ width="20%">Artist</td>

<td align="left"
➝ width="20%">Print
➝ Name</td>

<td align="left"
➝ width="40%">Description
➝ </td>

<td align="right"
➝ width="20%">Price</td>

</tr>';

5. Display every returned record.

$r = mysqli_query ($dbc, $q);

while ($row = mysqli_fetch_array ($r,
➝ MYSQLI_ASSOC)) {

echo "\t<tr>

<td align=\"left\"><a
➝ href=\"browse_prints.php?aid=
➝ {$row['artist_id']}\">{$row
➝ ['artist']}</td>

560

Chapter 17

T
h

e
 P

r
o

d
u

c
t

 C
a

t
a

l
o

g

<td align=\"left\"><a
➝ href=\"view_print.php?pid={$row
➝ ['print_id']}\">{$row['print_
➝ name']}</td>

<td
➝ align=\"left\">{$row
➝ ['description']}</td>

<td
➝ align=\"right\">\${$row
➝ ['price']}</td>

</tr>\n";

} // End of while loop.

I want the page to display the artist’s full

name, the print name, the description,

and the price for each returned record.

Further, the artist’s name should be linked

back to this page (with the artist’s ID

appended to the URL), and the print name

should be linked to view_print.php (with

the print ID appended to the URL).

Figure 17.25 shows some of the resulting

HTML source code.

This code doesn’t include a call to mysqli_
num_rows(), to confirm that some results

were returned prior to fetching them, but

you could add that in a live version, just

to be safe.

Figure 17.25 The source code for the page reveals how the artist and print IDs are appended
to the links.

6. Close the table, the database connection,

and the HTML page.

echo '</table>';

mysqli_close($dbc);

include ('includes/footer.html');

?>

7. Save the file as browse_prints.php, place it

in your Web directory, and test it in your

Web browser (Figures 17.21 and 17.22).

✔ Tips

■ You could easily take the dynamically gen-

erated pull-down menu from add_print.php
and use it as a navigational tool on the

public side. Set the form’s action attribute

to browse_print.php, change the name of

the pull-down menu to aid, use the get
method, and when users select an artist

and click Submit, they’ll be taken to, for

example, browse_print.php?aid=5.

■ Although I did not do so here, you could

paginate the returned results using the

technique described in Chapter 9 (see

the view_users.php script).

■ Another feature you could add to this

page is the option to choose how the

prints are displayed. By adding links to

the column headings (e.g., to browse_

prints.php?order=price), you could

change the ORDER BY in the query and

therefore the resulting display. Again, this

idea was demonstrated in Chapter 9.

To make view_print.php:

1. Create a new PHP document in your text

editor or IDE (Script 17.6).

<?php # Script 17.6 - view_print.php

$row = FALSE;

561

Example—E-Commerce

T
h

e
 P

r
o

d
u

c
t

 C
a

t
a

l
o

g

continues on next page

1 <?php # Script 17.6 - view_print.php

2 // This page displays the details for a
particular print.

3

4 $row = FALSE; // Assume nothing!

5

6 if (isset($_GET['pid']) &&
is_numeric($_GET['pid'])) { // Make sure
there's a print ID!

7

8 $pid = (int) $_GET['pid'];

9

10 // Get the print info:

11 require_once ('../mysqli_connect.php');

12 $q = "SELECT CONCAT_WS(' ', first_name,
middle_name, last_name) AS artist,
print_name, price, description, size,
image_name FROM artists, prints WHERE
artists.artist_id = prints.artist_id AND
prints.print_id = $pid";

13 $r = mysqli_query ($dbc, $q);

14 if (mysqli_num_rows($r) = = 1) { // Good
to go!

15

16 // Fetch the information:

17 $row = mysqli_fetch_array ($r,
MYSQLI_ASSOC);

18

19 // Start the HTML page:

20 $page_title = $row['print_name'];

21 include ('includes/header.html');

22

23 // Display a header:

24 echo "<div align=\"center\">

25 {$row['print_name']} by

Script 17.6 The view_print.php script shows the details
for a particular print. It also includes a link to add the
product to the customer’s shopping cart.

(script continues on next page)

I’ll use the $row variable to track whether

or not a problem occurred on this page.

This variable, if everything went right, will

store the print information from the data-

base. If a problem occurred, then, at the

end of the script, $row will still be false,

and the page should indicate an error.

2. Validate that a print ID has been passed

to this page.

if (isset($_GET['pid']) &&
➝ is_numeric($_GET['pid'])) {

This script won’t work if it does not

receive a valid print ID, so check for a

numeric ID’s existence first.

3. Retrieve the information from the

database.

$pid = (int) $_GET['pid'];

require_once
➝ ('../mysqli_connect.php');

$q = "SELECT CONCAT_WS(' ',
➝ first_name, middle_name, last_name)
➝ AS artist, print_name, price,
➝ description, size, image_name FROM
➝ artists, prints WHERE
➝ artists.artist_id = prints.artist_id
➝ AND prints.print_id = $pid";

$r = mysqli_query ($dbc, $q);

The query is a join like the one in browse_
prints.php, but it selects only the informa-

tion for a particular print (Figure 17.26).

The print ID is typecast as an integer

prior to using it in the query for security

purposes (so that a malicious user doesn’t

try to break the query using invalid

$_GET['pid'] values).

562

Chapter 17

T
h

e
 P

r
o

d
u

c
t

 C
a

t
a

l
o

g

26 {$row['artist']}
";

27

28 // Print the size or a default
message:

29 echo (is_null($row['size'])) ? '(No
size information available)' :
$row['size'];

30

31 echo "
\${$row['price']}

32 Add
to Cart

33 </div>
";

34

35 // Get the image information and
display the image:

36 if ($image = @getimagesize
("../uploads/$pid")) {

37 echo "<div align=\"center\"><img
src=\"show_image.php?image=$pid&na
me=" .
urlencode($row['image_name']) .
"\" $image[3]
alt=\"{$row['print_name']}\"
/></div>\n";

38 } else {

39 echo "<div align=\"center\">No
image available.</div>\n";

40 }

41

42 // Add the description or a default
message:

43 echo '<p align="center">' .
((is_null($row['description'])) ?
'(No description available)' :
$row['description']) . '</p>';

44

45 } // End of the mysqli_num_rows() IF.

46

47 mysqli_close($dbc);

(script continues on next page)

Script 17.6 continued

4. If a record was returned, retrieve the

information, set the page title, and

include the HTML header.

if (mysqli_num_rows($r) == 1) {

$row = mysqli_fetch_array ($r,
➝ MYSQLI_ASSOC);

$page_title = $row['print_name'];

include ('includes/header.html');

The browser window’s title (Figure 17.27)

will be the name of the print.

563

Example—E-Commerce

T
h

e
 P

r
o

d
u

c
t

 C
a

t
a

l
o

g

48

49 }

50

51 if (!$row) { // Show an error message.

52 $page_title = 'Error';

53 include ('includes/header.html');

54 echo '<div align="center">This page has
been accessed in error!</div>';

55 }

56

57 // Complete the page:

58 include ('includes/footer.html');

59 ?>

Script 17.6 continued

Figure 17.26 The results after running theview_print.php query in the mysql client.

continues on next page

Figure 17.27 The browser page title will be the name of
the print being viewed (like The Birth of Venus here).

5. Begin displaying the print information.

echo "<div align=\"center\">

{$row['print_name']} by

{$row['artist']}
";

echo (is_null($row['size'])) ? '(No
➝ size information available)' :
➝ $row['size'];

echo "
\${$row['price']}

Add
➝ to Cart

</div>
";

The header for the print will be the print’s

name (in bold), followed by the artist’s

name, the size of the print, and its price.

Finally, a link is displayed giving the cus-

tomer the option of adding this print to

the shopping cart (Figure 17.28). The

shopping cart link is to the add_cart.php
script, passing it the print ID.

Because the print’s size can have a NULL
value, the ternary operator is used to print

out either the size or a default message.

6. Display the image and description.

if ($image = @getimagesize
➝ ("../uploads/$pid")) {

echo "<div align=\"center\"><img
➝ src=\"show_image.php?image=
➝ $pid&name=" .
➝ urlencode($row['image_name']) .
➝ "\" $image[3]
➝ alt=\"{$row['print_name']}\"
➝ /></div>\n";

} else {

echo "<div align=\"center\">No
➝ image available.</div>\n";

}

echo '<p align="center">' .
➝ ((is_null($row['description'])) ?
➝ '(No description available)' :
➝ $row['description']) . '</p>';

This section of the script will first attempt

to retrieve the image’s dimensions by using

the getimagesize() function. If it is suc-

cessful in doing so, the image itself will

be displayed. That process is a little unusual

in that the source for the image calls the

show_image.php page (Figure 17.29).

This script, to be written next, expects

the print ID to be passed in the URL,

along with the image’s filename (stored

in the database when the print is added).

This use of a PHP script to display an

image is exactly like the use of show_
image.php in Chapter 10, only now it’s

occurring within another page, not in its

own window.

564

Chapter 17

T
h

e
 P

r
o

d
u

c
t

 C
a

t
a

l
o

g

Figure 17.28 The print information and a link to buy it
are displayed at the top of the page.

Figure 17.29 The HTML source of the view_print.php page shows how the src attribute of the img tag calls the
show_image.php script, passing it the values it needs.

If the script could not retrieve the image

information (because the image is not on

the server or no image was uploaded),

a message is displayed instead.

Finally, the print’s description is added

(Figure 17.30). A default message will

be printed if no print description was

stored in the database.

7. Complete the two main conditionals.

} // End of the mysqli_num_rows()
➝ IF.

mysqli_close($dbc);

}

8. If a problem occurred, display an error

message,

if (!$row) {

$page_title = 'Error';

include
('includes/header.html');

echo '<div align="center">This
➝ page has been accessed in
➝ error!</div>';

}

If the print’s information could not be

retrieved from the database for whatever

reason, then $row is still false and an error

should be displayed (Figure 17.31).

Because the HTML header would not

have already been included if a problem

occurred, it must be included here first.

9. Complete the page.

include ('includes/footer.html');

?>

10. Save the file as view_print.php and

place it in your Web directory.

✔ Tips
■ Many e-commerce sites use an image for

the Add to Cart link. To do so in this exam-

ple, replace the text Add to Cart (within

the <a> link tag) with the code for the

image to be used. The important consid-

eration is that the add_cart.php page still

gets passed the product ID number.

■ If you wanted to add Add to Cart links

on a page that displays multiple products

(like browse_prints.php), do exactly

what’s done here for individual products.

Just make sure that each link passes the

right print ID to the add_cart.php page.

■ If you want to show the availability of

a product, add an in_stock field to the

prints table. Then display an Add to Cart

link or Product Currently Out of Stock

message according to the value in this

column for that print.

565

Example—E-Commerce

T
h

e
 P

r
o

d
u

c
t

 C
a

t
a

l
o

g

Figure 17.30 The print’s image followed by its
description.

Figure 17.31 The view_print.php page, should it not
receive a valid print ID in the URL.

To write show_image.php:

1. Create a new PHP document in your text

editor or IDE (Script 17.7).

<?php # Script 17.7 - show_image.php

$image = FALSE;

$name = (!empty($_GET['name'])) ?
➝ $_GET['name'] : 'print image';

This script will do the same thing as

show_image.php from Chapter 10, except

that there are two values being passed to

this page. The actual image’s filename on

the server will be a number, corresponding

to the print ID. The original image’s file-

name was stored in the database and will

be used when sending the image to the

Web browser. This page will not contain

any HTML, and nothing can be sent to

the Web browser prior to this opening

PHP tag.

Two flag variables are initialized here.

The first, $image, will refer to the physical

image on the server. It’s assumed to be

false and needs to be proven otherwise.

The $name variable, which will be the name

of the file provided to the Web browser,

should come from the URL. If not, a default

value is assigned.

2. Check for an image value in the URL.

if (isset($_GET['image']) &&
➝ is_numeric($_GET['image'])) {

Before continuing, ensure that the script

received an image value, which should be

part of the HTML src attribute for each

print (see Figure 17.29) in view_print.php.

566

Chapter 17

T
h

e
 P

r
o

d
u

c
t

 C
a

t
a

l
o

g

1 <?php # Script 17.7 - show_image.php

2 // This pages retrieves and shows an
image.

3

4 // Flag variables:

5 $image = FALSE;

6 $name = (!empty($_GET['name'])) ?
$_GET['name'] : 'print image';

7

8 // Check for an image value in the URL:

9 if (isset($_GET['image']) &&
is_numeric($_GET['image'])) {

10

11 // Full image path:

12 $image = '../uploads/' . (int)
$_GET['image'];

13

14 // Check that the image exists and is a
file:

15 if (!file_exists ($image) ||
(!is_file($image))) {

16 $image = FALSE;

17 }

18

19 }

20

21 // If there was a problem, use the default
image:

22 if (!$image) {

23 $image = 'images/unavailable.png';

24 $name = 'unavailable.png';

25 }

26

Script 17.7 This script is called by view_print.php
(Script 17.6) and displays the image stored in the
uploads directory.

(script continues on next page)

3. Check that the image is a file on the server.

$image = '../uploads/' . (int)
➝ $_GET['image'];

if (!file_exists ($image) ||
➝ (!is_file($image))) {

$image = FALSE;

}

As a security measure, I hard-code the

image’s full path as a combination of

../uploads and the received image name.

As the name of the file on the server is

an integer, it’s typecast for extra security.

You could also validate the MIME type

(image/jpg, image/gif) of the file here.

Next, the script checks that the image

exists on the server and that it is a file

(as opposed to a directory). If either con-

dition is false, then $image is set to FALSE,

indicating a problem.

4. Complete the validation conditional and

check for a problem.

}

if (!$image) {

$image =
➝ 'images/unavailable.png';

$name = 'unavailable.png';

}

If the image doesn’t exist or isn’t a file, this

conditional applies. If no image name was

passed to this script, the second else
clause applies. In either case, a default

image will be used (Figure 17.32).

5. Retrieve the image information.

$info = getimagesize($image);

$fs = filesize($image);

To send the file to the Web browser, the

scripts needs to know the file’s type and

size. This code is the same as in Chapter 10.

567

Example—E-Commerce

T
h

e
 P

r
o

d
u

c
t

 C
a

t
a

l
o

g

27 // Get the image information:

28 $info = getimagesize($image);

29 $fs = filesize($image);

30

31 // Send the content information:

32 header ("Content-Type:
{$info['mime']}\n");

33 header ("Content-Disposition: inline;
filename=\"$name\"\n");

34 header ("Content-Length: $fs\n");

35

36 // Send the file:

37 readfile ($image);

38

39 ?>

Script 17.7 continued

Figure 17.32 If show_image.php cannot access a valid
print image, this default image will be displayed.

continues on next page

6. Send the file.

header ("Content-Type:
➝ {$info['mime']}\n");

header ("Content-Disposition: inline;
➝ filename=\"$name\"\n");

header ("Content-Length: $fs\n");

readfile ($image);

These header() calls will send the file

data to the Web browser, exactly as they

did in Chapter 10. To revisit the overall

syntax, the first line prepares the browser

to receive the file, based upon the MIME

type. The second line sets the name of

the file being sent.

The last header() function indicates how

much data is to be expected. The file data

itself is sent using the readfile() function,

which reads in a file and immediately

sends the content to the Web browser.

7. Complete the page.

?>

Notice that this page contains no HTML.

It only sends an image file to the Web

browser.

8. Save the file as show_image.php, place it

in your Web directory, and test it in your

Web browser by viewing any print

(Figure 17.33).

✔ Tips

■ The end user is unlikely to see results

like those in Figure 17.32 unless there’s

a problem with your scripts or they’re

doing some serious hacking. The view_
print.php script does some preliminary

verification of the image, only calling show_
image.php if it can access the image.

■ If the view_print.php page does not show

the image for some reason, you’ll need to

debug the problem by running the show_
image.php directly in your Web browser.

View the HTML source of view_print.php
and find the value of the img tag’s src

attribute. Then use this as your URL (in

other words, go to http://www.example.
com/show_image.php?image=23&name=
BirthOfVenus.jpeg). If an error occurred,

running show_image.php directly is the

best way to find it.

568

Chapter 17

T
h

e
 P

r
o

d
u

c
t

 C
a

t
a

l
o

g

Figure 17.33 The view_print.php page, where the
print’s image is retrieved and shown thanks to
show_image.php.

The Shopping Cart
Once you have created a product catalog, as

the preceding pages do, the actual shopping

cart itself can be surprisingly simple. The

method I’ve chosen to use in this example is

to record the product IDs, prices, and quan-

tities in a session. Knowing these three things

will allow the scripts to calculate totals and

do everything else required.

These next two examples will provide all the

necessary functionality for the shopping cart.

The first script, add_cart.php, will add items

to the shopping cart. The second, view_
cart.php, will both display the contents of

the cart and allow the customer to update it.

Adding items
The add_cart.php script will take one argu-

ment—the ID of the print being purchased—

and will use this to update the cart. The cart

itself is stored in a session; it’ll be accessed

through the $_SESSION['cart'] variable. The

cart will be a multidimensional array whose

keys will be product IDs. The values of the

array elements will themselves be arrays: one

element for the quantity and another for the

price (Table 17.6).

To create add_cart.php:

1. Create a new PHP document in your text

editor or IDE (Script 17.8).

<?php # Script 17.8 - add_cart.php

2. Include the page header and check that a

print was selected.

$page_title = 'Add to Cart';

include ('includes/header.html');

if (isset ($_GET['pid']) &&
➝ is_numeric($_GET['pid'])) {

As with the view_print.php script, I do not

want to proceed with this script if no, or

a non-numeric, print ID has been received.

569

Example—E-Commerce

T
h

e
 S

h
o

p
p

i
n

g
 C

a
r

t

1 <?php # Script 17.8 - add_cart.php

2 // This page adds prints to the shopping
cart.

3

4 // Set the page title and include the HTML
header:

5 $page_title = 'Add to Cart';

6 include ('includes/header.html');

7

8 if (isset ($_GET['pid']) &&
is_numeric($_GET['pid'])) { // Check for
a print ID.

9

10 $pid = (int) $_GET['pid'];

11

12 // Check if the cart already contains
one of these prints;

13 // If so, increment the quantity:

14 if (isset($_SESSION['cart'][$pid])) {

15

16 $_SESSION['cart'][$pid]['quantity']
++; // Add another.

17

Script 17.8 This script adds products to the shopping
cart by referencing the product (or print) ID and
manipulating the session data.

(script continues on next page)

(i n d e x) Q u a n t i t y P r i c e

2 1 54.00
568 2 22.95
37 1 33.50

Sample $_SESSION['cart'] Values

Table 17.6 The $_SESSION['cart'] variable will be a
multidimensional array. Each array element will use
the print ID for its index. Each array value will be
another array of two elements: the quantity of that
print ordered and the price of that print.

continues on next page

3. Determine if a copy of this print had

already been added.

$pid = (int) $_GET['pid'];

if (isset($_SESSION['cart'][$pid])) {

$_SESSION['cart'][$pid]
➝ ['quantity']++;

echo '<p>Another copy of the
➝ print has been added to your
➝ shopping cart.</p>';

Before adding the current print to the

shopping cart (by setting its quantity to

1), check if a copy is already in the cart.

For example, if the customer selected

print #519 and then decided to order

another, the cart should now contain two

copies of the print. So first check if the

cart has a value for the current print ID.

If so, the quantity is incremented. The

code $_SESSION['cart'][$pid]
['quantity']++ is the same as

$_SESSION['cart'][$pid]['quantity'] =
➝ $_SESSION['cart'][$pid]['quantity']
➝ + 1

Then, a message is displayed

(Figure 17.34).

570

Chapter 17

T
h

e
 S

h
o

p
p

i
n

g
 C

a
r

t

18 // Display a message.

19 echo '<p>Another copy of the
print has been added to your
shopping cart.</p>';

20

21 } else { // New product to the cart.

22

23 // Get the print's price from the
database:

24 require_once
('../mysqli_connect.php');

25 $q = "SELECT price FROM prints
WHERE prints.print_id = $pid";

26 $r = mysqli_query ($dbc, $q);

27 if (mysqli_num_rows($r) = = 1) {
// Valid print ID.

28

29 // Fetch the information.

30 list($price) = mysqli_fetch_array
($r, MYSQLI_NUM);

31

32 // Add to the cart:

33 $_SESSION['cart'][$pid] =
array ('quantity' => 1, 'price'
=> $price);

34

35 // Display a message:

36 echo '<p>The print has been
added to your shopping
cart.</p>';

37

38 } else { // Not a valid print ID.

39 echo '<div align="center">This
page has been accessed in
error!</div>';

40 }

41

42 mysqli_close($dbc);

(script continues on next page)

Script 17.8 continued

Figure 17.34 The result after clicking an Add to Cart
link for an item that was already present in the
shopping cart.

4. Add the new product to the cart.

} else { // New product to the cart.

require_once
➝ ('../mysqli_connect.php');

$q = "SELECT price FROM prints
➝ WHERE prints.print_id = $pid";

$r = mysqli_query ($dbc, $q);

if (mysqli_num_rows($r) = = 1) {

list($price) = mysqli_fetch_array
➝ ($r, MYSQLI_NUM);

$_SESSION['cart'][$pid] = array
➝ ('quantity' => 1, 'price' =>
➝ $price);

echo '<p>The print has been added
➝ to your shopping cart.</p>';

If the product is not currently in the cart,

this else clause comes into play. Here,

the print’s price is retrieved from the

database using the print ID. If the price

is successfully retrieved, a new element is

added to the $_SESSION['cart'] multidi-

mensional array.

Since each element in $_SESSION['cart']
is itself an array, use the array() function

to set the quantity and price. A simple

message is then displayed (Figure 17.35).

571

Example—E-Commerce

T
h

e
 S

h
o

p
p

i
n

g
 C

a
r

t

continues on next page

43

44 } // End of
isset($_SESSION['cart'][$pid]
conditional.

45

46 } else { // No print ID.

47 echo '<div align="center">This page has
been accessed in error!</div>';

48 }

49

50 include ('includes/footer.html');

51 ?>

Script 17.8 continued

Figure 17.35 The result after adding a new item to the
shopping cart.

5. Complete the conditionals.

} else {

echo '<div
➝ align="center">This
➝ page has been accessed in
➝ error!</div>';

}

mysqli_close($dbc);

}

} else { // No print ID.

echo '<div align="center">This
➝ page has been accessed in
➝ error!</div>';

}

The first else applies if no price could be

retrieved from the database, meaning

that the submitted print ID is invalid.

The second else applies if no print ID, or

a non-numeric one, is received by this

page. In both cases, an error message will

be displayed (Figure 17.36).

6. Include the HTML footer and complete

the PHP page.

include ('includes/footer.html');

?>

7. Save the file as add_cart.php, place it in

your Web directory, and test it in your Web

browser (by clicking an Add to Cart link).

✔ Tips

■ If you would rather display the contents

of the cart after something’s been added,

you could combine the functionality of

this script with that of view_cart.php,

written next.

■ Similarly, you could easily copy the tech-

nique used in view_print.php to this

script so that it would display the details

of the product just added. There are any

number of variations on this process.

■ The most important thing to store in the

cart is the unique product ID and the

quantity of that item. Everything else,

including the price, can be retrieved from

the database. Alternatively, you could

retrieve the price, print name, and artist

name from the database, and store all

that in the cart so that it’s easily displayed.

■ The shopping cart is stored in $_SESSION
['cart'], not just $_SESSION. Presumably

other information, like the user’s ID from

the database, would also be stored in

$_SESSION.

572

Chapter 17

T
h

e
 S

h
o

p
p

i
n

g
 C

a
r

t

Figure 17.36 The add_cart.php page will only add an
item to the shopping cart if the page received a valid
print ID in the URL.

Viewing the shopping cart
The view_cart.php script will be more com-

plicated than add_cart.php because it serves

two purposes. First, it will display the con-

tents of the cart in detail (Figure 17.37).

Second, it will give the customer the option

of updating the cart by changing the quanti-

ties of the items therein (or deleting an item

by making its quantity 0). To fulfill both

roles, I’ll display the cart’s contents as a

form and have the page submit the form

back to itself.

Finally, this page will link to a checkout.php
script, intended as the first step in the

checkout process.

To create view_cart.php:

1. Create a new PHP document in your text

editor or IDE (Script 17.9).

<?php # Script 17.9 - view_cart.php

$page_title = 'View Your Shopping
➝ Cart';

include ('./includes/header.html');

573

Example—E-Commerce

T
h

e
 S

h
o

p
p

i
n

g
 C

a
r

t

Figure 17.37 The shopping cart displayed as a form
where the specific quantities can be changed.

1 <?php # Script 17.9 - view_cart.php

2 // This page displays the contents of the
shopping cart.

3 // This page also lets the user update the
contents of the cart.

4

5 // Set the page title and include the HTML
header:

6 $page_title = 'View Your Shopping Cart';

7 include ('./includes/header.html');

8

9 // Check if the form has been submitted
(to update the cart):

10 if (isset($_POST['submitted'])) {

11

12 // Change any quantities:

13 foreach ($_POST['qty'] as $k => $v) {

14

15 // Must be integers!

16 $pid = (int) $k;

17 $qty = (int) $v;

18

19 if ($qty = = 0) { // Delete.

20 unset ($_SESSION['cart'][$pid]);

21 } elseif ($qty > 0) { // Change
quantity.

22 $_SESSION['cart'][$pid]
['quantity'] = $qty;

23 }

24

25 } // End of FOREACH.

26 } // End of SUBMITTED IF.

27

28 // Display the cart if it's not empty...

Script 17.9 The view_cart.php script both displays
the contents of the shopping cart and allows the user
to update the cart’s contents.

(script continues on next page)

continues on next page

2. Update the cart if the form has been sub-

mitted.

if (isset($_POST['submitted'])) {

foreach ($_POST['qty'] as $k =>
➝ $v) {

$pid = (int) $k;

$qty = (int) $v;

if ($qty = = 0) {

unset
➝ ($_SESSION['cart'][$pid]);

} elseif ($qty > 0) {

$_SESSION['cart'][$pid]
➝ ['quantity'] = $qty;

}

} // End of FOREACH.

} // End of SUBMITTED IF.

If the form has been submitted, then the

script needs to update the shopping cart

to reflect the entered quantities. These

quantities will come in as an array called

$_POST['qty'] whose index is the print

ID and whose value is the new quantity

(see Figure 17.38 for the HTML source

code of the form). If the new quantity is 0,

then that item should be removed from

the cart by unsetting it. If the new quan-

tity is not 0 but is a positive number, then

the cart is updated to reflect this.

574

Chapter 17

T
h

e
 S

h
o

p
p

i
n

g
 C

a
r

t

29 if (!empty($_SESSION['cart'])) {

30

31 // Retrieve all of the information for
the prints in the cart:

32 require_once ('../mysqli_connect.php');

33 $q = "SELECT print_id, CONCAT_WS(' ',
first_name, middle_name, last_name) AS
artist, print_name FROM artists, prints
WHERE artists.artist_id = prints.artist_id
AND prints.print_id IN (";

34 foreach ($_SESSION['cart'] as $pid =>
$value) {

35 $q .= $pid . ',';

36 }

37 $q = substr($q, 0, -1) . ') ORDER BY
artists.last_name ASC';

38 $r = mysqli_query ($dbc, $q);

39

40 // Create a form and a table:

41 echo '<form action="view_cart.php"
method="post">

42 <table border="0" width="90%"
cellspacing="3" cellpadding="3"
align="center">

43 <tr>

44 <td align="left"
width="30%">Artist</td>

45 <td align="left" width="30%">Print
Name</td>

(script continues on next page)

Script 17.9 continued

Figure 17.38 The HTML source code
of the view shopping cart form shows
how the quantity fields reflect both
the product ID and the quantity of
that print in the cart.

If the quantity is not a number greater than

or equal to 0, then no change will be made

to the cart. This will prevent a user from

entering a negative number, creating a

negative balance due, and getting a refund.

3. If the cart is not empty, create the query

to display its contents.

if (!empty($_SESSION['cart'])) {

require_once
➝ ('../mysqli_connect.php');

$q = "SELECT print_id,
➝ CONCAT_WS(' ', first_name,
➝ middle_name, last_name) AS
➝ artist, print_name FROM
➝ artists, prints WHERE
➝ artists.artist_id =
➝ prints.artist_id AND
➝ prints.print_id IN (";

foreach ($_SESSION['cart'] as
➝ $pid => $value) {

$q .= $pid . ',';

}

$q = substr($q, 0, -1) . ') ORDER
➝ BY artists.last_name ASC';

$r = mysqli_query ($dbc, $q);

The query is a join similar to one used

already in this chapter. It retrieves all the

artist and print information for each print

in the cart. One addition is the use of the

IN SQL clause. Instead of just retrieving

the information for one print (as in the

view_print.php example), retrieve all the

information for every print in the shop-

ping cart. To do so, use a list of print IDs

in a query like SELECT… print_id IN
(519,42,427)…. I could have also used

SELECT… WHERE print_id=519 OR print_
id=42 or print_id=427…, but that’s

unnecessarily long-winded.

575

Example—E-Commerce

T
h

e
 S

h
o

p
p

i
n

g
 C

a
r

t

46 <td align="right"
width="10%">Price</td>

47 <td align="center"
width="10%">Qty</td>

48 <td align="right" width="10%">Total
Price</td>

49 </tr>

50 ';

51

52 // Print each item...

53 $total = 0; // Total cost of the order.

54 while ($row = mysqli_fetch_array ($r,
MYSQLI_ASSOC)) {

55

56 // Calculate the total and sub-
totals.

57 $subtotal =
$_SESSION['cart'][$row['print_id']]
['quantity'] *
$_SESSION['cart'][$row['print_id']]
['price'];

58 $total += $subtotal;

59

60 // Print the row.

61 echo "\t<tr>

62 <td align=\"left\">{$row['artist']}
</td>

63 <td align=\"left\"
>{$row['print_name']}</td>

64 <td align=\"right\">\
${$_SESSION['cart']
[$row['print_id']]['price']}</td>

65 <td align=\"center\"><input
type=\"text\" size=\"3\"
name=\"qty[{$row['print_id']}]\"
value=\"{$_SESSION['cart'][$row
['print_id']]['quantity']}\" /></td>

(script continues on next page)

Script 17.9 continued

continues on next page

To generate the IN (519,42,427) part of

the query, a for loop adds each print ID

plus a comma to $q. To remove the last

comma, the substr() function is applied,

chopping off the last character.

4. Begin the HTML form and create a table.

echo '<form action="view_cart.php"
➝ method="post">

<table border="0" width="90%"
➝ cellspacing="3" cellpadding="3"
➝ align="center">

<tr>

<td align="left"
➝ width="30%">Artist</td>

<td align="left"
➝ width="30%">Print
➝ Name</td>

<td align="right"
➝ width="10%">Price</td>

<td align="center"
➝ width="10%">Qty</td>

<td align="right"
➝ width="10%">Total
➝ Price</td>

</tr>

';

576

Chapter 17

T
h

e
 S

h
o

p
p

i
n

g
 C

a
r

t

66 <td align=\"right\">$" .
number_format ($subtotal, 2) .
"</td>

67 </tr>\n";

68

69 } // End of the WHILE loop.

70

71 mysqli_close($dbc); // Close the
database connection.

72

73 // Print the footer, close the table,
and the form.

74 echo '<tr>

75 <td colspan="4"
align="right">Total:</td>

76 <td align="right">$' . number_format
($total, 2) . '</td>

77 </tr>

78 </table>

79 <div align="center"><input type="submit"
name="submit" value="Update My Cart"
/></div>

80 <input type="hidden" name="submitted"
value="TRUE" />

81 </form><p align="center">Enter a
quantity of 0 to remove an item.

82

Checkout</p>';

83

84 } else {

85 echo '<p>Your cart is currently
empty.</p>';

86 }

87

88 include ('./includes/footer.html');

89 ?>

Script 17.9 continued

5. Retrieve the returned records.

$total = 0;

while ($row = mysqli_fetch_array ($r,
➝ MYSQLI_ASSOC)) {

$subtotal =
➝ $_SESSION['cart'][$row['print_
➝ id']]['quantity'] *
➝ $_SESSION['cart'][$row['print_
➝ id']]['price'];

$total += $subtotal;

When displaying the cart, I will also want

to calculate the order total, so I initialize

a $total variable first. Then for each

returned row (which represents one

print), I multiply the price of that item

times the quantity to determine the

subtotal (the syntax of this is a bit com-

plex because of the multidimensional

$_SESSION['cart'] array). This subtotal

is added to the $total variable.

6. Print the returned records.

echo "\t<tr>

<td
➝ align=\"left\">{$row['artist']}
➝ </td>

<td align=\"left\">{$row['print_
➝ name']}</td>

<td align=\"right\">\${$_SESSION
➝ ['cart'][$row['print_id']]
➝ ['price']}</td>

<td align=\"center\"><input
➝ type=\"text\" size=\"3\"
➝ name=\"qty[{$row['print_id']}]\"
➝ value=\"{$_SESSION['cart'][$row
➝ ['print_id']]['quantity']}\"
➝ /></td>

<td align=\"right\">$" .
➝ number_format ($subtotal, 2) .
➝ "</td>

</tr>\n";

} // End of the WHILE loop.

Each record is printed out as a row in the

table, with the quantity displayed as a

text input type whose value is preset

(based upon the quantity value in the

session). The subtotal amount (the quan-

tity times the price) for each item is also

formatted and printed.

577

Example—E-Commerce

T
h

e
 S

h
o

p
p

i
n

g
 C

a
r

t

continues on next page

7. Close the database connection, and then

complete the table and the form.

mysqli_close($dbc);

echo '<tr>

<td colspan="4"
➝ align="right">Total:</td
>

<td align="right">$' .
➝ number_format ($total, 2) .
➝ '</td>

</tr>

</table>

<div align="center"><input
➝ type="submit" name="submit"
➝ value="Update My Cart" /></div>

<input type="hidden" name="submitted"
➝ value="TRUE" />

</form><p align="center">Enter a
➝ quantity of 0 to remove an item.

<a
➝ href="checkout.php">Checkout
➝ </p>';

The running order total is displayed in

the final row of the table, using the number_
format() function for formatting. The

form also provides instructions to the

user on how to remove an item, and a

link to the checkout page is included.

8. Finish the main conditional and the

PHP page.

} else {

echo '<p>Your cart is currently
➝ empty.</p>';

}

include ('./includes/footer.html');

?>

This else clause completes the

if (!empty($_SESSION['cart'])) {
conditional.

9. Save the file as view_cart.php, place it in

your Web directory, and test it in your Web

browser (Figures 17.39 and 17.40).

✔ Tips

■ On more complex Web applications,

I would be inclined to write a PHP page

strictly for the purpose of displaying a

cart’s contents. Since several pages might

want to display that, having that func-

tionality in an includable file would

make sense.

■ One aspect of a secure e-commerce appli-

cation is watching how data is being sent

and used. For example, it would be far less

secure to place a product’s price in the

URL, where it could easily be changed.

578

Chapter 17

T
h

e
 S

h
o

p
p

i
n

g
 C

a
r

t

Figure 17.39 If I make changes to any quantities and
click Update My Cart, the shopping cart and order
total are updated (compare with Figure 17.37).

Figure 17.40 I removed everything in the shopping
cart by setting the quantities to 0.

Recording the Orders
After displaying all the products as a catalog,

and after the user has filled up their shopping

cart, there are three final steps:

◆ Checking the user out

◆ Recording the order in the database

◆ Fulfilling the order

Ironically, the most important part—check-

ing out (i.e., taking the customer’s money)—

could not be adequately demonstrated in

a book, as it’s so particular to each individ-

ual site. So what I’ve done instead is given

an overview of that process in the sidebar.

Similarly, the act of fulfilling the order is

beyond the scope of the book. For physical

products, this means that the order will

need to be packaged and shipped. Then the

order in the database would be marked as

shipped by indicating the shipping date.

This concept shouldn’t be too hard for you

to implement.

What I can properly show in this chapter is

how the order information would be stored

in the database. To ensure that the order is

completely and correctly entered into both

the orders and order_contents tables, I’ll use

transactions. This subject was introduced in

Chapter 6, using the mysql client. Here the

transactions will be performed through a

PHP script. For added security and perform-

ance, this script will also make use of pre-

pared statements, discussed in Chapter 12.

This script, checkout.php, represents the

final step the customer would see in the

e-commerce process. Because the steps that

would precede this script have been skipped

in this book, a little doctoring of the process

is required.

579

Example—E-Commerce

R
e

c
o

r
d

i
n

g
 t

h
e

 O
r

d
e

r
s

To create submit_order.php:

1. Create a new PHP document in your text

editor or IDE (Script 17.10).

<?php # Script 17.10 - checkout.php

$page_title = 'Order Confirmation';

include ('./includes/header.html');

2. Create two temporary variables.

$customer = 1;

$total = 178.93;

To enter the orders into the database,

this page needs two additional pieces of

information: the customer’s identifica-

tion number (which is the customer_id

from the customers table) and the total

of the order. The first would presumably

be determined when the customer

logged in (it would probably be stored in

the session). The second value may also

be stored in a session (after tax and ship-

ping are factored in) or may be received

by this page from the billing process. But

as I don’t have immediate access to

either value (having skipped those steps),

I’ll create these two variables to fake it.

3. Include the database connection and

turn off MySQL’s autocommit mode.

require_once
➝ ('../mysqli_connect.php');

mysqli_autocommit($dbc, FALSE);

The mysqli_autocommit() function can

turn MySQL’s autocommit feature on or

off. Since I’ll want to use a transaction to

ensure that the entire order is entered

properly, I’ll turn off autocommit first. If

you have any questions about transac-

tions, see Chapter 6 or the MySQL manual.

580

Chapter 17

R
e

c
o

r
d

i
n

g
 t

h
e

 O
r

d
e

r
s

1 <?php # Script 17.10 - checkout.php

2 // This page inserts the order information
into the table.

3 // This page would come after the billing
process.

4 // This page assumes that the billing
process worked (the money has been taken).

5

6 // Set the page title and include the HTML
header.

7 $page_title = ‘Order Confirmation’;

8 include (‘includes/header.html’);

9

10 // Assume that the customer is logged in
and that this page has access to the
customer’s ID:

11 $customer = 1; // Temporary.

12

13 // Assume that this page receives the
order total.

14 $total = 178.93; // Temporary.

15

16 require_once (‘../mysqli_connect.php’); //
Connect to the database.

17

18 // Turn autocommit off.

19 mysqli_autocommit($dbc, FALSE);

20

21 // Add the order to the orders table...

22 $q = “INSERT INTO orders (customer_id,
total) VALUES ($customer, $total)”;

23 $r = mysqli_query($dbc, $q);

24 if (mysqli_affected_rows($dbc) == 1) {

25

26 // Need the order ID:

Script 17.10 The final script in the e-commerce
application records the order information in the
database. It uses transactions to ensure that the
whole order gets submitted properly.

(script continues on next page)

4. Add the order to the orders table.

$q = "INSERT INTO orders
➝ (customer_id, total) VALUES
➝ ($customer, $total)";

$r = mysqli_query($dbc, $q);

if (mysqli_affected_rows($dbc) == 1) {

This query is very simple, entering only

the customer’s ID number and the total

amount of the order into the orders table.

The order_date field in the table will

automatically be set to the current date

and time, as it’s a TIMESTAMP column.

5. Retrieve the order ID and prepare the

query that inserts the order contents

into the database.

$oid = mysqli_insert_id($dbc);

$q = "INSERT INTO order_contents
➝ (order_id, print_id, quantity,
➝ price) VALUES (?, ?, ?, ?)";

$stmt = mysqli_prepare($dbc, $q);

mysqli_stmt_bind_param($stmt, 'iiid',
➝ $oid, $pid, $qty, $price);

The order_id value from the orders table

is needed in the order_contents table to

relate the two. The query itself inserts

four values into the order_contents table,

where there will be one record for each

print purchased in this order. The query

is defined, using placeholders for the values,

and prepared. The mysqli_stmt_bind_
param() function associates four vari-

ables to the placeholders. Their types, in

order, are: integer, integer, integer, double

(aka float).

581

Example—E-Commerce

R
e

c
o

r
d

i
n

g
 t

h
e

 O
r

d
e

r
s

27 $oid = mysqli_insert_id($dbc);

28

29 // Insert the specific order contents
into the database...

30

31 // Prepare the query:

32 $q = “INSERT INTO order_contents
(order_id, print_id, quantity, price)
VALUES (?, ?, ?, ?)”;

33 $stmt = mysqli_prepare($dbc, $q);

34 mysqli_stmt_bind_param($stmt, ‘iiid’,
$oid, $pid, $qty, $price);

35

36 // Execute each query, count the total
affected:

37 $affected = 0;

38 foreach ($_SESSION[‘cart’] as $pid =>
$item) {

39 $qty = $item[‘quantity’];

40 $price = $item[‘price’];

41 mysqli_stmt_execute($stmt);

42 $affected +=
mysqli_stmt_affected_rows($stmt);

43 }

44

45 // Close this prepared statement:

46 mysqli_stmt_close($stmt);

47

48 // Report on the success....

49 if ($affected ==
count($_SESSION[‘cart’])) { // Whohoo!

50

51 // Commit the transaction:

52 mysqli_commit($dbc);

53

54 // Clear the cart.

(script continues on next page)

Script 17.10 continued

continues on next page

6. Run through the cart, inserting each print

into the database.

$affected = 0;

foreach ($_SESSION['cart'] as $pid =>
➝ $item) {

$qty = $item['quantity'];

$price = $item['price'];

mysqli_stmt_execute($stmt);

$affected +=
➝ mysqli_stmt_affected_rows($stmt);

}

mysqli_stmt_close($stmt);

By looping through the shopping cart, as

I did in view_cart.php, I can access each

item, one at a time. To be clear about

what’s happening here: the query has

already been prepared—sent to MySQL

and parsed—and variables have been

assigned to the placeholders. Within the

loop, two new variables are assigned val-

ues that come from the session. The

mysqli_stmt_execute() function is

called, which executes the prepared

statement, using the variable values at

that moment. The $oid value will not

change from iteration to iteration, but

$pid, $qty, and $price will.

If you have any problems with this or the

other queries in this script, use your

standard MySQL debugging techniques:

print out the query using PHP, print out

the MySQL error, and run the query using

another interface, like the mysql client.

To confirm the success of all the queries,

the number of affected rows must be

tracked. A variable, $affected, is initial-

ized to 0 outside of the loop. Within the

loop, the number of affected rows is

added to this variable after each execu-

tion of the prepared statement.

582

Chapter 17

R
e

c
o

r
d

i
n

g
 t

h
e

 O
r

d
e

r
s

55 //unset($_SESSION[‘cart’]);

56

57 // Message to the customer:

58 echo ‘<p>Thank you for your order.
You will be notified when the items
ship.</p>’;

59

60 // Send emails and do whatever else.

61

62 } else { // Rollback and report the
problem.

63

64 mysqli_rollback($dbc);

65

66 echo ‘<p>Your order could not be
processed due to a system error. You
will be contacted in order to have
the problem fixed. We apologize for
the inconvenience.</p>’;

67 // Send the order information to the
administrator.

68

69 }

70

71 } else { // Rollback and report the
problem.

72

73 mysqli_rollback($dbc);

74

75 echo ‘<p>Your order could not be
processed due to a system error. You
will be contacted in order to have the
problem fixed. We apologize for the
inconvenience.</p>’;

76

77 // Send the order information to the
administrator.

78

(script continues on next page)

Script 17.10 continued

7. Report on the success of the transaction.

if ($affected = =
➝ count($_SESSION['cart'])) {

mysqli_commit($dbc);

unset($_SESSION['cart']);

echo '<p>Thank you for your
➝ order. You will be notified
➝ when the items ship.</p>';

The conditional checks to see if as many

records were entered into the database

as exist in the shopping cart. In short:

did each product get inserted into the

order_contents table? If so, then the

transaction is complete and can be com-

mitted. Then the shopping cart is emp-

tied and the user is thanked. Logically

you’d want to send a confirmation email

to the customer here as well.

583

Example—E-Commerce

R
e

c
o

r
d

i
n

g
 t

h
e

 O
r

d
e

r
s

79 }

80

81 mysqli_close($dbc);

82

83 include (‘./includes/footer.html’);

84 ?>

Script 17.10 continued

continues on next page

Searching the Product Catalog

The structure of this database makes for a fairly easy search capability, should you desire to

add it. As it stands, there are only three logical fields to use for search purposes: the print’s

name, its description, and the artist’s last name. A LIKE query could be run on these using

the following syntax:

SELECT…WHERE prints.description LIKE

'%keyword%' OR prints.print_name

LIKE '%keyword%' …

Another option would be to create an advanced search, wherein the user selects whether to

search the artist’s name or the print’s name (similar to what the Internet Movie Database,

www.imdb.com, does with people versus movie titles).

8. Handle any MySQL problems.

} else {

mysqli_rollback($dbc);

echo '<p>Your order could not
➝ be processed due to a
➝ system error. You will be
➝ contacted in order to have
➝ the problem fixed. We
➝ apologize for the
➝ inconvenience.</p>';

}

} else {

mysqli_rollback($dbc);

echo '<p>Your order could not be
➝ processed due to a system
➝ error. You will be contacted in
➝ order to have the problem
➝ fixed. We apologize for the
➝ inconvenience.</p>';

}

The first else clause applies if the correct

number of records were not inserted into

the order_contents table. The second

else clause applies if the original orders

table query fails. In either case, the entire

transaction should be undone, so the

mysqli_rollback() function is called.

If a problem occurs at this point of the

process, it’s rather serious because the

customer has been charged but no record

of their order has made it into the data-

base. This shouldn’t happen, but just in

case, you should write all the data to a

text file and/or email all of it to the site’s

administrator or do something that will

create a record of this order. If you don’t,

you’ll have some very irate customers on

your hands.

584

Chapter 17

R
e

c
o

r
d

i
n

g
 t

h
e

 O
r

d
e

r
s

9. Complete the page.

mysqli_close($dbc);

include ('./includes/footer.html');

?>

10. Save the file as checkout.php, place it in

your Web directory, and test it in your

Web browser (Figure 17.41).

You can access this page by clicking the

link in view_cart.php.

11. Confirm that the order was properly

stored by looking at the database using

another interface (Figure 17.42).

✔ Tips

■ On a live, working site, you should assign

the $customer and $total variables real

values for this script to work. You would

also likely want to make sure that the

cart isn’t empty prior to trying to store

the order in the database.

■ Creating an administrative script for view-

ing orders is rather simple. The first page

would function like browse_prints.php,

except it would perform a join across the

orders and customers tables. This page

could display the order total, the order

ID, the order date, and the customer’s

name. You could link the order ID to a

view_order.php script, passing the order

ID in the URL. That script would use the

order ID to retrieve the details of the order

from the order_contents table (joining

prints and artists in the process).

■ If you’d like to learn more about

e-commerce or see variations on this

process, a quick search on the Web will

turn up various examples and tutorials

for making e-commerce applications

with PHP.

585

Example—E-Commerce

R
e

c
o

r
d

i
n

g
 t

h
e

 O
r

d
e

r
s

Figure 17.41 The customer’s order is now complete,
after entering all of the data into the database.

Figure 17.42 The order in the MySQL database, as
viewed using the mysql client.

586

Chapter 17

R
e

c
o

r
d

i
n

g
 t

h
e

 O
r

d
e

r
s

The Checkout Process

The checkout process (which I will not discuss in detail) involves three steps:

1. Confirm the order.

2. Confirm/submit the billing and shipping information.

3. Process the billing information.

Steps 1 and 2 should be easy enough for intermediate programmers to complete on their own

by now. In all likelihood, most of the data in Step 2 would come from the customers table,

after the user has registered and logged in.

Step 3 is the trickiest one and could not be adequately addressed in any book. The particu-

lars of this step vary greatly, depending upon how the billing is being handled and by whom.

To make it more complex, the laws are different depending upon whether the product being

sold is to be shipped later or is immediately delivered (like access to a Web site or a down-

loadable file).

Most small to medium-sized e-commerce sites use a third party to handle the financial

transactions. Normally this involves sending the billing information, the order total, and a

store number (a reference to the e-commerce site itself) to another Web site. This site will

handle the actual billing process, debiting the customer and crediting the store. Then a result

code will be sent back to the e-commerce site, which would be programmed to react according-

ly. In such cases, the third-party handling the billing will provide the developer with the

appropriate code and instructions to interface with their system.

As I mention in the introduction to the book, there are three technical requirements

for executing all of the examples: MySQL (the database application), PHP (the script-

ing language), and the Web serving application (that PHP runs through). In this

appendix I will describe the installation of these tools on two different platforms—

Windows and Macintosh—which should cover the needs of most readers. (My

assumption has always been that if you know enough to be running some version of

Unix, you probably already know how to install software like PHP and MySQL.) If you

are using a hosted Web site, all of this will already be provided for you, but these

products are all free and easy enough to install, so putting them on your own com-

puter still makes sense.

After covering installation, the appendix discusses related issues that will be of

importance to almost every user. First, I introduce how to create users in MySQL.

Next, I demonstrate how to test your PHP and MySQL installation, showing tech-

niques you’ll want to use when you begin working on any server for the first time.

Finally, you’ll learn how to configure PHP to change how it runs.

Before getting into the particulars, there’s one little heads-up: PHP 6 has not been for-

mally released at the time of this writing. I was able to use PHP 6 for all of the exam-

ples by building my own installation of PHP 6 for both Windows and Mac. However,

in these steps I highly recommend using pre-made installers, so what you’ll see in

this appendix are installers and images for PHP 5. When PHP 6 is formally released,

these installers will undoubtedly be updated and the steps will likely be the same or

very nearly so.

587

Installation
A

I
n

s
t
a

l
l

a
t

i
o

n

Installation on Windows
In previous versions of this book I’ve advo-

cated that Windows users take advantage of

the available, and free, all-in-one installers.

These programs will install and configure

the Web server (like Apache, Abyss, or IIS),

PHP, and MySQL for you. In past editions,

after making that recommendation, I have

also demonstrated how to install PHP and

MySQL individually yourself. But repeated

changes in those installation steps and mul-

tiple questions from readers having problems

have convinced me to cut to the chase and

walk through the all-in-one steps instead.

There are several all-in-one installers out

there for Windows. The two that I see

mentioned most frequently are XAMPP

(www.apachefriends.org) and WAMP

(www.wampserver.com). For this appendix,

I’ll use XAMPP, which runs on Windows 98,

NT, 2000, 2003, XP.

Along with Apache, PHP, and MySQL,

XAMPP also installs:

◆ PEAR, a library of PHP code

◆ Perl, a very popular programming

language

◆ phpMyAdmin, the Web-based interface

to a MySQL server

◆ A mail server (for sending email)

◆ Several useful extensions

At the time of this writing XAMPP (Version

1.6.4) installs both PHP 5.2.4 and 4.4.7, MySQL

5.0.45, Apache 2.2.6, and phpMyAdmin 2.11.0.

I’ll run through the installation process in

these next steps. Note that if you have any

problems, you can use the book’s supporting

forum (www.DMCInsights.com/phorum/), but

you’ll probably have more luck turning to

the XAMPP site (it is their product, after all).

Also, the installer works really well and isn’t

that hard to use, so rather than detail every

single step in the process, I’ll highlight the

most important considerations.

To install XAMPP on Windows:

1. Download the latest release of XAMPP for

Windows from www.apachefriends.org.

You’ll need to click around a bit to find

the download section, but eventually

you’ll come to an area like that in

Figure A.1. Then click Installer, which

is the specific item you want.

2. On your computer, double-click the

downloaded file in order to begin the

installation process.

588

Appendix A

I
n

s
t
a

l
l

a
t

i
o

n
 o

n
 W

i
n

d
o

w
s

Figure A.1 From the Apache Friends Web site, grab the latest installer for Windows.

3. Click your way through the installation

process.

4. When prompted (Figure A.2), install

XAMPP somewhere other than in the

Program Files directory.

You shouldn’t install it in the Program

Files directory because of a permissions

issue in Windows Vista. I’d recommend

installing XAMPP in your root directory

(e.g., C:\).

Wherever you decide to install the pro-

gram, make note of that location, as

you’ll need to know it several other times

as you work through this appendix.

5. If given the option, install both Apache

and MySQL as services (Figure A.3).

Installing them as services just changes

how they can be started and stopped,

among other things.

6. After the installation process has done

its thing, click Finish (Figure A.4).

After you click Finish, a DOS prompt

(aka console window) will open up for

XAMPP to try a couple of things. If you

see a message like that in Figure A.5,

choose the Unblock option (see the side-

bar “On Firewalls” for more on this subject).

589

Installation

I
n

s
t
a

l
l

a
t

i
o

n
 o

n
 W

i
n

d
o

w
s

Figure A.2 Select where XAMPP should be installed.

Figure A.3 The XAMPP options I’d recommend using.

Figure A.4 Installation is complete! Figure A.5 If you’re running a firewall of any kind,
you’ll see some messages like this when Apache,
and possibly the other applications, are started.
See the sidebar “On Firewalls” for more.

continues on next page

7. To start, stop, and configure XAMPP, open

the XAMPP Control Panel (Figure A.6).

A shortcut to the control panel may be

created on your Desktop and in your

Start menu, if you checked those options

in Figure A.3.

8. Using the control panel, start Mercury

(see Figure A.6).

This is the mail server that XAMPP

installs. It needs to be running in order

to send email using PHP (see Chapter 10,

“Web Application Development”).

9. Immediately set a password for the root

MySQL user.

How you do this is explained later in the

chapter.

✔ Tips

■ See the configuration section at the end

of this chapter to learn how to configure

PHP by editing the php.ini file.

■ Your Web root directory—where your

PHP scripts should be placed in order to

test them—is the htdocs folder in the

directory where XAMPP was installed.

For my installation (see Figure A.2), this

would be C:\xampp\htdocs.

590

Appendix A

I
n

s
t
a

l
l

a
t

i
o

n
 o

n
 W

i
n

d
o

w
s

Figure A.6 The XAMPP Control Panel, your gateway to
using all of the installed software.

On Firewalls

A firewall prevents communication over ports (a port being an access point to a computer).

Versions of Windows starting with Service Pack 2 of XP include a built-in firewall. You can

also download and install third-party firewalls, like ZoneAlarm. Firewalls improve the security

of your computer, but they will also interfere with your ability to run Apache, MySQL, and

some of the other tools used by XAMPP because these all use ports.

If you see a message like that in Figure A.5, choose Unblock. Otherwise, you can configure

your firewall manually (for example, on Windows XP, it’s done through Control Panel > Security

Center). The ports that need to be open are: 80 (for Apache), 3306 (for MySQL), and 25 (for

the Mercury mail server). If you have any problems starting or accessing one of these, disable

your firewall and see if it works then. If so, you’ll know the firewall is the problem and that it

needs to be reconfigured.

Just to be clear, firewalls aren’t found just on Windows, but in terms of the instructions in this

appendix, the presence of a firewall will more likely trip up a Windows user than any other.

Installation on Mac OS X
The Macintosh was always a user-friendly

computer, frequently used by Web developers

for graphic design and HTML coding. Now,

thanks to OS X, the Macintosh is a program-

mer’s computer as well.

OS X, in version 10.5 (aka Leopard) at the

time of this writing, has a Unix base with

a glorious Macintosh interface. The Unix

aspect of the operating system—predicated

upon Free BSD—allows the use of standard

Unix tools, such as PHP, MySQL, and Apache,

with remarkable ease. In fact, Leopard comes

with Apache and PHP already installed (but

the latter may not be enabled by default).

As with any other Unix technology, you can

download the source code for these packages

and manually build them (I had to do exactly

that for this book, and it’s not too strenuous).

However, I would recommend you take the

easy way out and use Marc Liyanage’s pre-

compiled installers, available at www.entropy.
ch/software/macosx. Marc—who ought to

receive an award for the amount of OS X–

specific work he does—provides up-to-date,

easy-to-use installers for many different

technologies. In this appendix, I’ll install

MySQL using the package provided by MySQL

and PHP using Marc’s precompiled module.

The instructions will demonstrate this process

using Mac OS X 10.4 (Tiger), but the steps

will be similar with Leopard or Panther (10.3).

As an aside, these instructions are particular

to the basic version of Mac OS X. The server

version of Mac OS X comes with Apache,

PHP, and MySQL preinstalled.

To install and start MySQL:

1. Download the latest Generally Available

(GA) release of the MySQL Community

Server.

Start at http://dev.mysql.com, and then

click the appropriate links until you get

to the package format installer for Mac

OS X (Figure A.7). You’ll want to down-

load the one that matches your version

of Mac OS X and your processor (if you

have an Intel chip, use the x86 link; all

others use PowerPC). Note that as I write

this, Mac OS X 10.5 (Leopard) has only

been out for two days, so MySQL’s Web

site (Figure A.7) doesn’t list it as an

option yet.

After you click Pick a Mirror, you’ll go

through a couple more quick steps to

download the actual file.

591

Installation

I
n

s
t
a

l
l

a
t

i
o

n
 o

n
 M

a
c

 O
S

X

Figure A.7 The available downloads of MySQL for Mac OS X.

continues on next page

2. On your computer, double-click the

downloaded file to mount it.

The downloaded file is a disk image that

must then be mounted. The Disk Utility

application will automatically do this

once you double-click the .dmg file.

3. Open the disk image and double-click the

mysql-<version>... package (Figure A.8)

to begin the installation process.

If upgrading MySQL from a previous ver-

sion, be certain to stop the existing MySQL

server before installing the new version.

4. Follow through the installation process.

There are a few, very obvious steps, like

agreeing to the license and selecting a

destination disk (Figure A.9). Behind

the scenes, the package will install all of

the necessary files into the /usr/local/
mysql-<version> directory. It will also

create a symbolic link from /usr/local/
mysql to this directory so that the MySQL

files can be more easily accessed.

5. Install the MySQL preference pane by

double-clicking the MySQL.prefPane file

in the disk image (see Figure A.8).

After a couple more steps, you’ll have

installed a System Preferences pane so

that you can easily start and stop MySQL.

6. Open System Preferences and click MySQL,

under Other.

The new MySQL preferences pane will be

available the next time you open the

System Preferences. If System Preferences

was open when you installed the MySQL

pane, you’ll need to quit and reopen

System Preferences.

7. Use the new pane to start and stop the

MySQL server (Figure A.10).

8. Immediately set a password for the root

MySQL user.

How you do this is explained later in the

chapter.

592

Appendix A

I
n

s
t
a

l
l

a
t

i
o

n
 o

n
 M

a
c

 O
S

X

Figure A.8 The mounted disk image contains a few files.
I have highlighted the actual installer in this image.

Figure A.9 Choose the disk where MySQL should be
installed. If you have multiple hard drives or partitions
(which I do not), install MySQL on the one with your
operating system.

Figure A.10 The MySQL preferences pane can be used
to control the MySQL database server.

To install PHP:

1. In your Web browser, head over to www.
entropy.ch/software/macosx/php.

2. Download the appropriate version of

PHP for your operating system.

At the time of this writing, the only dif-

ference between the two versions the site

offers is that one is for Apache 1.3 and

the other for Apache 2.4. Every version of

Mac OS X I’ve used includes the 1.x ver-

sion of Apache. I expect this will be the

same in Leopard, too.

3. On your computer, double-click the down-

loaded file in order to access its contents.

4. Double-click the PHP package

(Figure A.11) to begin the installa-

tion process.

5. Follow through the installer.

The installer is really easy to use. You’ll

need to click Continue a couple of times,

select a destination disk (this should be

the same hard disk or partition that also

has your operating system), and enter the

administrative password.

✔ Tips

■ See the section “Testing Your Installation”

later in this appendix for guidelines on

confirming the results of installing PHP

and MySQL.

■ See the configuration section at the end

of this chapter to learn how to configure

PHP by editing the php.ini file.

■ Your Web root directory—where your

PHP scripts should be placed in order to

test them—is the Sites folder in your

home directory. The URL you would use

to access those files is http://localhost/
~<user>, replacing <user> with the short

version of your actual username (see the

Accounts System Preferences pane to

find this value if you don’t know it).

593

Installation

I
n

s
t
a

l
l

a
t

i
o

n
 o

n
 M

a
c

 O
S

X

Figure A.11 The PHP
installer for Mac OS X.

MySQL Permissions
Once MySQL has been successfully installed,

you should immediately set a password for the

root user. Until you have done so, anyone can

access your databases and have administrative-

level privileges.

Once you’ve established the root user’s pass-

word, you can begin establishing the users

who will regularly access the database (for

example, from PHP scripts). It is very insecure

to use the root user for general purposes, so

everyone should create some new MySQL

users for regular use.

I’ll walk you through both of these processes

over the next couple of pages. Note that if

you’re using a hosted server, they’ll likely

create the MySQL users for you.

Setting the root user password
The mysqladmin utility, as the name might

imply, is used to perform administrative-

level tasks on your database. These include

stopping MySQL, setting the root user’s

password, and more. (Some of the things

you can do with mysqladmin can also be

accomplished more directly within the

mysql client, though.)

One of the first uses of mysqladmin is to

assign a password to the root user. When

MySQL is installed, there is no such value

established. This is certainly a security risk

that ought to be remedied before you begin

to use the server. Just to clarify, your data-

bases can have several users, just as your

operating system might. The MySQL users

are different from the operating system

users, even if they share a common name.

Therefore, the MySQL root user is a different

entity than the operating system’s root user,

having different powers and even different

passwords (preferably but not necessarily).

Most important, understand that the

MySQL server must be running for you to

use mysqladmin.

To assign a password to the root user:

1. Log in to your system from a command-

line interface.

For Mac OS X and Linux users, this is

just a matter of opening the Terminal

application. For Windows users, you’ll

need to choose Start > Run, then enter

cmd in the prompt, and click OK.

2. Move to the mysql/bin directory.

The proper command will be something

like

cd /usr/local/mysql/bin (Unix or Mac
➝ OS X)

or

cd C:\xampp\mysql\bin (Windows)

You’ll need to change the values you

use here to match where MySQL was

installed (the bin directory will be found

within it).

3. Enter the following, replacing thepass-

word with the password you want to use

(Figure A.12):

On Windows, you can just type

mysqladmin –u root password
➝ thepassword

On Mac OS X and Unix you’ll need to

use

./mysqladmin -u root password
➝ thepassword

594

Appendix A

M
y

S
Q

L
P

e
r

m
i
s

s
i
o

n
s

Figure A.12 Establishing a password for the root
MySQL user.

Keep in mind that passwords within

MySQL are case-sensitive, so Kazan

and kazan are not interchangeable. The

term password that precedes the actual

quoted password tells MySQL to encrypt

that string.

✔ Tips

■ Accessing the MySQL utilities from the

command line can be daunting. If you

have any problems with these steps, con-

sult the MySQL manual, search the Web,

or turn to the book’s supporting forum

for help.

■ If you installed XAMPP on Windows,

you’ll need to change the phpMyAdmin

configuration file after changing the

MySQL root user password. Head to the

directory where you installed XAMPP and

open a file called config.inc.php in the

phpMyAdmin folder. Find the line that says

$cfg['Servers'][$i]['password']
➝ = '';

and change it to

$cfg['Servers'][$i]['password']
➝ = 'the new password';

Creating users and privileges
After you have MySQL successfully up and

running, and after you’ve established a pass-

word for the root user, it’s time to begin

adding other users. To improve the security

of your applications, you should always cre-

ate new users for accessing your databases,

rather than continue to use the root user at all

times.

The MySQL privileges system was designed

to restrict access to only certain commands on

specific databases by individual users. This

technology is how a Web host, for example, can

securely have several users accessing several

databases, without concern. Each user within

the MySQL system can have specific capabilities

on specific databases from specific hosts (com-

puters). The root user—the MySQL root user,

not the system’s—has the most power and is

used for creating subusers, although subusers

can be given rootlike powers (inadvisably so).

When a user attempts to do something with

the MySQL server, MySQL will first check to

see if the user has the permission to connect

to the server at all (based upon the username,

the user’s password, and the information in

the user table of the mysql database). Second,

MySQL will check to see if the user has the

permission to run the specific SQL statement

on the specific databases—for example, to

select data, insert data, or create a new table.

To determine this, MySQL uses the db, host,

user, tables_priv, and columns_priv tables,

again from the mysql database. Table A.1

lists the various privileges that can be set on

a user-by-user basis.

595

Installation

M
y

S
Q

L
P

e
r

m
i
s

s
i
o

n
s

P R I V I L E G E A L L O W S

SELECT Read rows from tables.
INSERT Add new rows of data to tables.
UPDATE Alter existing data in tables.
DELETE Remove existing data from tables.
INDEX Create and drop indexes in tables.
ALTER Modify the structure of a table.
CREATE Create new tables or databases.
DROP Delete existing tables or databases.
RELOAD Reload the grant tables (and therefore

enact user changes).
SHUTDOWN Stop the MySQL server.
PROCESS View and stop existing MySQL processes.
FILE Import data into tables from text files.
GRANT Create new users.
REVOKE Remove the permissions of users.

MySQL Privileges

Table A.1 The list of privileges that can be assigned to
MySQL users.

continues on next page

There are a handful of ways to set users and

privileges within MySQL. One way is to use

the mysql client to execute a GRANT command.

The syntax goes like this:

GRANT privileges ON database.*

TO username IDENTIFIED BY 'password'

For the privileges aspect of this statement, you

can list specific privileges from the list in

Table A.1, or you can allow for all of them using

ALL (which is not prudent). The database.*
part of the statement specifies which data-

base and tables the user can work on. You

can name specific tables using the database.

tablename syntax or allow for every database

with *.* (again, not prudent). Finally, you

can specify the username and a password.

The username has a maximum length of 16

characters. When creating a username, be sure

to avoid spaces (use the underscore instead)

and note that usernames are case-sensitive.

The password has no length limit but is also

case-sensitive. The passwords will be encrypted

within the mysql database, meaning they

cannot be recovered in a plain text format.

Omitting the IDENTIFIED BY 'password' clause

results in that user not being required to

enter a password (which, once again, should

be avoided).

Finally, there is the option of limiting users

to particular hostnames. The hostname is

either the name of the computer on which

the MySQL server is running (localhost being

the most common value here) or the name

of the computer from which the user will be

accessing the server. This can even be an IP

address, should you choose. To specify a par-

ticular host, change your statement to

GRANT privileges ON database.*

TO username@hostname

IDENTIFIED BY 'password'

To allow for any host, use the hostname

wildcard character (%).

GRANT privileges ON database.*

TO username@'%' IDENTIFIED BY 'password'

As an example of this process, I will create a

new user with specific privileges for a data-

base called sitename. The following instruc-

tions will require using the mysql client or a

similar interface to MySQL. I discuss how to

access this tool in detail in Chapter 4,

“Introduction to SQL and MySQL.”

596

Appendix A

M
y

S
Q

L
P

e
r

m
i
s

s
i
o

n
s

To create new users:

1. Log in to your system from a command-

line interface.

For Mac OS X and Linux users, this is

just a matter of opening the Terminal

application. For Windows users, you’ll

need to choose Start > Run, then enter

cmd in the prompt, and click OK.

2. Log in to the mysql client.

If you are using Windows, the command

would be

C:\xampp\mysql\bin\mysql -u root -p

If you are using Mac OS X or Unix, you’ll

need to type

/usr/local/mysql/bin/mysql -u root -p

In both cases, if MySQL was not installed

in that directory, you’ll need to change

your pathname accordingly.

At the prompt, enter the root user’s

password.

If you don’t feel like messing with all of

this, you can use phpMyAdmin to create

the users instead. It’s installed by XAMPP

but also freely available to download and

install yourself.

3. Create the example database.

CREATE DATABASE example;

Creating a database is quite easy, using

the preceding syntax. This command will

work as long as you’re connected as a

user with the proper privileges.

4. Create a user that has basic-level

privileges on the example database

(Figure A.13).

GRANT SELECT, INSERT, UPDATE, DELETE

ON example.* TO

'someuser'@'localhost'

IDENTIFIED BY 'somepass';

The generic someuser user can browse

through records (SELECT from tables) and

add (INSERT), modify (UPDATE), or DELETE
them. The user can only connect from

localhost (from the same computer) and

can only access the example database.

5. Apply the changes.

FLUSH PRIVILEGES;

The changes just made will not take effect

until you have told MySQL to reset the list

of acceptable users and privileges, which

is what this command will do. Forgetting

this step and then being unable to access

the database using the newly created

users is a common mistake.

✔ Tip

■ Any database whose name begins with

test_ can be accessed by any user who

has permission to connect to MySQL.

Therefore, be careful not to create data-

bases named this way unless it truly is

experimental.

597

Installation

M
y

S
Q

L
P

e
r

m
i
s

s
i
o

n
s

Figure A.13 Creating a user that can perform basic
tasks on one database.

Testing Your Installation
Now that you’ve installed everything and

created the necessary MySQL users, you

should test the installation. I’ll create two

quick PHP scripts for this purpose. In all

likelihood, if an error occurred, you would

already know it by now, but these steps will

allow you to perform tests on your (or any

other) server before getting into complicated

PHP programming.

The first script being run is phpinfo.php. It

both tests if PHP is enabled and shows a ton

of information about the PHP installation.

As simple as this script is, it is one of the

most important scripts PHP developers ever

write because it provides so much valuable

knowledge.

The second script will serve two purposes.

It will first see if support for MySQL has

been enabled. If not, you’ll need to see the

next section of this chapter to change that.

The script will also test if the MySQL user

has permission to connect to a specific

MySQL database.

To test PHP:

1. Create the following PHP document in a

text editor (Script A.1).

<?php

phpinfo();

?>

The phpinfo() function returns the con-

figuration information for a PHP installa-

tion in a table. It’s the perfect tool to test

that PHP is working properly.

You can use almost any application to

create your PHP script as long as it can

save the file in a plain text format.

2. Save the file as phpinfo.php.

You need to be certain that the file’s exten-

sion is just .php. Be careful when using

Notepad on Windows, as it will secretly

append .txt. Similarly, TextEdit on Mac

OS X wants to save everything as .rtf.

3. Place the file in the proper directory on

your server.

What the proper directory is depends

upon your operating system and your

Web server. If you are using a hosted site,

check with the hosting company. For

Windows users who installed XAMPP,

the directory is called htdocs and is with-

in the XAMPP directory. For Mac OS X

users, the proper directory is called

Sites, found within your home folder.

598

Appendix A

T
e

s
t

i
n

g
 Y

o
u

r
 I

n
s

t
a

l
l

a
t

i
o

n

Figure A.14 The information for this server’s PHP
configuration.

1 <?php

2 phpinfo();

3 ?>

Script A.1 The phpinfo.php script tests and reports
upon the PHP installation.

4. Test the PHP script by accessing it in your

Web browser (Figure A.14).

Run this script in your Web browser by

going to http://your.url.here/phpinfo.
php. On your own computer, this may be

something like http://localhost/
phpinfo.php (Windows with XAMPP) or

http://localhost/~<user>/phpinfo.php,

where <user> is your short username

(Mac OS X).

To test PHP and MySQL:

1. Create a new PHP document in your text

editor (Script A.2).

<?php

mysqli_connect ('localhost',
➝ 'someuser', 'somepass', 'example');

?>

This script will attempt to connect to the

MySQL server using the username and

password just established in this appendix.

2. Save the file as mysqli_test.php, place it

in the proper directory for your Web

server, and test it in your Web browser

(Figure A.15).

If the script was able to connect, the

result will be a blank page. If it could not

connect, you should see an error message

like that in Figure A.16. Most likely this

indicates a problem with the MySQL user’s

privileges (see the preceding section of

this chapter).

If you see an error like in Figure A.17,

this means that PHP does not have

MySQL support enabled. See the next

section of this chapter for the solution.

599

Installation

T
e

s
t

i
n

g
 Y

o
u

r
 I

n
s

t
a

l
l

a
t

i
o

n

Figure A.15 The PHP
script was able to
connect to the MySQL
server as indicated by
this blank page. Any
errors would have
been revealed (as in
Figure A.16).

Figure A.16 The script was not able to connect to the
MySQL server.

Figure A.17 The script was not able to connect to the
MySQL server because PHP does not have MySQL
support enabled.

1 <?php

2 mysqli_connect ('localhost', 'someuser',
'somepass', 'example');

3 ?>

Script A.2 The mysqli_test.php script tests for MySQL
support in PHP and if the proper MySQL user privileges
have been set.

continues on next page

✔ Tips

■ For security reasons, you should not

leave the phpinfo.php script on a live

server because it gives away too much

information.

■ If you run a PHP script in your Web

browser and it attempts to download the

file, then your Web server is not recog-

nizing that file extension as PHP. Check

your Apache (or other Web server) con-

figuration to correct this.

■ PHP scripts must always be run from a

URL starting with http://. They cannot be

run directly off a hard drive (as if you had

opened it in your browser).

■ If a PHP script cannot connect to a

MySQL server, it is normally because of

a permissions issue. Double-check the

username, password, and host being

used, and be absolutely certain to flush

the MySQL privileges.

600

Appendix A

T
e

s
t

i
n

g
 Y

o
u

r
 I

n
s

t
a

l
l

a
t

i
o

n

Enabling Extension Support

Many PHP configuration options can be altered by just editing the php.ini file. But enabling

(or disabling) an extension—in other words, adding support for extended functionality—

requires more effort. To enable support for an extension for just a single PHP page, you can

use the dl() function. To enable support for an extension for all PHP scripts requires a bit of

work. Unfortunately, for Unix and Mac OS X users, you’ll need to rebuild PHP with support

for this new extension. Windows users have it easier:

First, edit the php.ini file (see the steps in this section), removing the semicolon before the

extension you want to enable. For example, to enable Improved MySQL Extension support,

you’ll need to find the line that says

;extension=php_mysqli.dll

and remove that semicolon.

Next, find the line that sets the extension_dir and adjust this for your PHP installation.

Assuming you installed PHP into C:\php, then your php.ini file should say

extension_dir = "C:/php/ext"

This tells PHP where to find the extension.

Next, make sure that the actual extension file, php_mysqli.dll in this example, exists in the

extension directory.

Save the php.ini file and restart your Web server. If the restart process indicates an error

finding the extension, double-check to make sure that the extension exists in the exten-

sion_dir and that your pathnames are correct. If you continue to have problems, search the

Web or use the book’s corresponding forum for assistance.

Configuring PHP
If you have installed PHP on your own com-

puter, then you also have the ability to con-

figure how PHP runs. Changing PHP’s behav-

ior is very simple and will most likely be

required at some point in time. Just a few of

the things you’ll want to consider adjusting are

◆ Whether or not display_errors is on

◆ The default level of error reporting

◆ The Unicode settings

◆ Support for the Improved MySQL

Extension functions

◆ SMTP values for sending emails

What each of these means—if you don’t

already know—is covered in the book’s

chapters and in the PHP manual. But for

starters, I would highly recommend that you

make sure that display_errors is on.

Changing PHP’s configuration is really sim-

ple. The short version is: edit the php.ini file

and then restart the Web server. But because

many different problems can arise, I’ll cover

configuration in more detail. If you are look-

ing to enable support for an extension, like

the MySQL functions, the configuration is

more complicated (see the sidebar).

To configure PHP:

1. Run a phpinfo() script (see the preceding

section) in your Web browser.

2. In the resulting page, look for the line

that says “Configuration File (php.ini)

Path” (see Figure A.14).

It should be about six rows down in

the table.

3. Note the location of your php.ini file.

This will be the value listed on the line

mentioned in Step 2 (it’ll be found in the

right-hand column).

This is the active configuration file PHP

is using. Your server may have multiple

php.ini files on it, but this is the one

that counts.

4. Open the php.ini file in any text editor.

If you are using Mac OS X, you do not have

easy access to the php.ini directory. You

can either use the Terminal to access the

file, open it using BBEdit’s Open Hidden

option, or use something like TinkerTool

to show hidden files in the Finder.

If you go to the directory listed and there’s

no php.ini file there, you’ll need to down-

load this file from the PHP Web site (it’s

part of the PHP source code).

601

Installation

C
o

n
f
i
g

u
r

i
n

g
 P

H
P

continues on next page

5. Make any changes you want, keeping in

mind the following:

▲ Comments are marked using a semi-

colon. Anything after the semicolon is

ignored.

▲ Instructions on what most of the set-

tings mean are included in the file.

▲ The top of the file lists general infor-

mation with examples. Do not change

these values! Change the settings

where they appear later in the file.

▲ For safety purposes, don’t change any

original settings. Just comment them

out (by preceding the line with a

semicolon) and then add the new,

modified line afterward.

▲ Add a comment (using the semi-

colon) to mark what changes you

made and when. For example:

; unicode.semantics = Off

; Next line added by LEU
➝ 10/28/2007

unicode.semantics = On

6. Save the file.

7. Restart the Web server (Apache, IIS,

Xitami, etc.).

You do not have to restart the entire

computer, just the Web serving applica-

tion (Apache, IIS, etc.). How you do this

depends upon the application being

used, the operating system, and the

installation method. Windows users can

use the XAMPP Control Panel (see

Figure A.6). Mac OS X users can stop

and then start Personal Web Sharing

(under System Preferences > Sharing).

Unix users can normally just enter

apachectl graceful in a Terminal window.

8. Rerun the phpinfo.php script to make

sure the changes took effect.

✔ Tips

■ Any changes to PHP’s (or Apache’s) con-

figuration file do not take effect until you

restart Apache. Always make sure that you

restart the Web server to enact changes!

■ Editing the wrong php.ini file is a com-

mon mistake. This is why I recommend

that you run a phpinfo.php script to see

which php.ini file PHP is using.

602

Appendix A

C
o

n
f
i
g

u
r

i
n

g
 P

H
P

! (exclamation point)

not operator, 42, 133

using as function delimiter, 390

!= (not equal to), 42, 133

“ (double quotation marks)

in Boolean mode, 191

debugging PHP scripts by tracking, 218

escaping with, 6, 216

preg_match() function and, 390

printing variables within, 15, 218

showing string value within context, 18

single vs., 30–32

SQL queries and, 127

using for HTML attributes, 91

(pound symbol), 10

$ (dollar sign)

initial character in variable, 14

using as meta-character, 394–395

% (modulus), 23

&& (and operator), 42, 133

‘ (single quotation mark)

apostrophes, 238, 247

debugging PHP scripts by tracking, 218

double vs., 30–32

escaping with, 6, 216

preg_match() function and, 390

SQL queries and, 127

() (parentheses), 191

* (asterisk)

Boolean wildcard, 191

as multiplication character, 23, 135

using with quantifiers, 397

+ (plus sign)

addition character, 135

Boolean mode operator, 191

standard arithmetic operator, 23

using with quantifiers, 397

++ (increment sign), 23

- (minus sign), 23, 135, 191

- - (decrement sign), 23

.= (concatenation assignment operator), 22

. (period)

concatenation operator, 21

escaping with backslash, 398

/ (forward slash)

delimiting preg_match() function with, 390

division sign, 23, 135

referencing Window directories with, 314

/* */ comment tags, 10, 12, 13, 219

// (double forward slash), 10, 12

; (semicolon)

ending PHP statements with, 216

errors ending PHP queries with, 238

terminating MySQL client statements with, 116, 125

< (less than operator), 42, 191

<= (less than or equal to operator), 42, 133

<? ?> (PHP tag), 5

<?php ?> (PHP tag), 2, 5

<script language=”php”> and </script> (PHP tag), 5

= (equals sign), 14, 44, 133

== (double equals sign), 42, 44

> (greater than operator), 42, 191

>= (greater than or equal to operator), 42, 133

? (question mark), 397

@ operator, 208, 227

[] (square brackets), 111, 400

\ (backslash)

escaping characters with, 6, 30

escaping period with, 398

using with PHP regular expressions, 396

\” character, 30

\’ character, 30

\$ character, 30

^ (caret), 394–395, 396

{ } (curly braces), 42, 45, 399

| (or operator), 390, 395, 396

|| (or operator), 42, 133

~ (tilde), 191

1NF (First Normal Form), 161–162

2NF (Second Normal Form), 163–165

3NF (Third Normal Form), 166–167

603

Index
i

I
n

d
e

x

placing on individual lines with implode(), 426

printing, 53, 55

randomizing order of, 69

referring to specific values in, 52

sorting, 65–69

strings and, 65

structure of, 55

superglobal variables, 40, 53, 55

using loops to replace, 71

artists

adding new, 551

checking for artist ID in URL, 558–559

complexity of options for, 552

creating pull-down menu for, 549–550

entering new names in database, 545–548

HTML source code for, 549

viewing works by, 557

artists table, 530, 532, 558

ASCII character set, 414

asort() function, 65, 68

assignment operator (=), 14

associative arrays

case-sensitivity of keys in, 242

defined, 52

example of, 62

asterisk (*)

Boolean wildcard, 191

as multiplication character, 23, 135

using with quantifiers, 397

attributes

action, 34, 35

double-quoting, 91

enctype form, 308, 314

method, 34

value, 89, 90, 91

authentication, 533

AUTO_INCREMENT property, 115

B
background color, 277, 282–283

backslash (\)

escaping characters with, 6, 30

escaping period with, 398

using with PHP regular expressions, 396

BETWEEN operator, 133

billing, 586

binding variables to query placeholders, 378, 380–381, 382

blacklist validation, 369

boundaries, 402

browse_prints.php script, 557, 558–561, 585

brute force attacks, 388

C
calculations

in HTML forms, 86, 88

performing with functions taking arguments, 96, 97

using calculate_total() function for, 101, 102–103

call to undefined function error, 94

CAPTCHA tests, 367

caret (^), 394–395, 396

A
\A character, 408

about this book

checking Web forum for help, 3

errata page, 203

problem solving examples in book, 203

absolute paths, 74

absolute_url function, 333

access. See also permissions

access denied errors, 222

cookies and, 340–341

action attribute of HTML form, 34, 35

activate.php script, 506

activation page

about, 503

creating, 509–512

sending confirmation mail with link to, 506, 509

Add a Print form, 536–552

Add to Cart links, 561, 564, 565, 570

add_cart.php script, 569–572

ADDDATE() function, 154

addition (+) character, 135

add_print.php script, 536–552, 561

addresses table, 535

ADDTIME() function, 154

administration

adding product to ecommerce database, 536–552

creating script for viewing orders, 585

message board, 481

protecting Web pages for, 552

setting MySQL root user password, 594–595

user registration, 528

AES_DECRYPT function, 383

AES_ENCRYPT function, 383

aliases, 146, 148–149

ALTER TABLE clauses, 181

and (&&) operator, 42, 133

and not (XOR) operator, 42

Apache Friends Web sites, 588

Apache Web servers

installing with XAMPP, 588–590

limiting access to uploads folders for, 307

restarting to enable configuration changes, 602

apostrophes (‘), 238, 247

arguments

creating user-defined functions taking, 95–97

date() function, 298

i-am-dummy, 119

setcookie(), 342

setting default values for, 98–100

arithmetic operators, 23, 26

array() function, 56–57, 105

array_map function, 363, 366

arrays, 52–69

accessing, 57–60

associative, 52, 62, 242

creating, 56–57, 58–60

debugging by printing values of, 218

$_FILES, 308

indexed, 52

multidimensional, 61–64

604

I
n

d
e

x

Index

PHP, 43–45

SQL, 133–135

structure and syntax of, 42

switch, 45

config.inc.php script, 490

configuration scripts, 490–497

connecting to database with mysqli_connect.php,

494–496

function of configuration file, 490–491

used for user registration example, 490

confirmation emails, 506–507, 509, 583

connection scripts

connecting PHP document to MySQL server, 226–229

errors using, 226, 229, 495, 543

storing outside main directory, 228, 229, 243

testing for new PHP and MySQL installations, 599–600

constants

declaring for user registration configuration file, 491,

493

defined, 27

mysqli_fetch_array(), 239

using, 28–29

contact forms

clearing data after mail sent, 295

preventing spam attacks via, 293, 297

CONVERT() function, 433

CONVERT_TZ() function, 436

$_COOKIE superglobal, 53, 340

cookies

about, 339

accessing, 340–341

deleting, 345–346, 348

expiration parameters for, 342–344, 357

making more secure, 342

requiring use of in PHP, 360, 517

sending, 337–339

sessions vs., 349

setting, 336–337

testing for, 336

using, 327, 336

using with logout link, 347–348

Coordinated Universal Time (UTC), 434

copyright row in footer, 555

count() function, 60, 178–179

counting returned records, 249–250

credit card numbers, 368

cross-site scripting (XXS) attacks, 374–376

cryptography, 368

CSS (Cascading Style Sheets)

adding to message board, 456

using in user registration templates, 484

curly braces ({ }), 42, 45, 399

custom error handlers, 211–215

customers table, 531, 534

D
data

cleaning user-submitted, 243, 244–248

determining handling with method attribute, 34

grouping selected results, 178–179

inserting into SQL tables, 128–130

cart. See shopping cart

Cascading Style Sheets. See CSS

case-sensitivity

allowing delimiter searches without, 307

MySQL identifiers and, 109

not applied for PHP function names, 6, 92

passwords in MySQL, 595

SQL and, 124

variable names and, 14

Change Your Password form, 524–528

change_password.php script, 524–528

CHAR columns, 113

character classes, 400–402

character sets

collation and, 115, 424

defined, 414

encoding and, 415

equivalent in MySQL to encoding, 430

setting in MySQL, 444

characters. See character sets; meta-characters

charset, 415, 416

check boxes, 89

checkdate() function, 298

checkout process, 533, 579, 586

checkout.php script, 579, 580–583

chmod command, 306

clients for MySQL, 116–122. See also mysql client;

phpMyAdmin

Codd, E.F., 158

coded character sets, 414

collation

character sets and, 115, 424

comparing characters with PHP, 424–426

Collator class, 424, 426

columns

adding SQL records to, 127

applying SQL function to values in, 146

character sets and collations for text, 115

choosing types of MySQL, 110–113

defining SQL, 124

identifying those without NULL value, 114, 115

increasing for UTF-8 characters, 433

indexing, 180

making clickable links from headings, 285–289

naming MySQL, 109

properties of MySQL, 114–115

unique names for database, 108

comments

adding HTML form textbox for, 37

debugging using, 217

HTML vs. PHP, 10

writing in PHP code, 10–13

CONCAT() function, 147–149

concatenating strings, 21–22

concatenation assignment operator (.=), 22

CONCAT_WS() function, 149

conditionals, 42–45

checking display or handling Web actions with, 84,

85, 231–232

comparative and logical operators used with, 42

creating joins with, 177

die() or exit() functions with OR, 219

605

I
n

d
e

x

Index

access denied errors, 222

email scripts, 296

HTML, 204–205

multilingual Web pages, 419

PHP scripts, 5

SQL and MySQL techniques for, 220–222

steps for basic, 201–203

taking breaks during, 201–202

techniques for PHP, 216–219

understanding technology’s role in problem, 205

decimals, computer storage of, 26

decrement sign (- -), 23

decrypting data, 383–384

define() function, 27

deleting

cookies, 345–346, 348

sessions, 355–356

SQL data, 144–145

delimiters

preg_match() function, 390

using pattern modifiers with, 407–408

designing databases, 158–172

about data modeling, 158

assigning primary keys, 159, 164

compliant with 2NF, 163–165

creating database, 168–170

FULLTEXT searches on databases, 188–193

grouping selected results, 178–179

joins, 173–177

making database 1NF compliant, 161–162

normalization and, 158

optimizing databases, 193

performing transactions, 194–198

populating database, 171–172

relationships in tables, 160

3NF-compliance when designing, 166–167

die() function, 219

directories

creating temporary, 304–305, 307

e-commerce application, 543, 552

display_errors

adjusting, 210

printing error if enabled, 211

syntactical PHP errors with, 200

testing setting for, 207

turning on for script, 206

displaying Web page forms

checking actions with conditional, 84, 85

code for, 87

displaying or handling form with same Web page, 84,

85, 231–232

division sign (/), 23, 135

do...while loops, 72

dollar sign ($), 394–395

double equal (==) sign, 42, 44

double forward slash (//), 10, 12

double quotation marks (“)

in Boolean mode, 191

debugging PHP scripts by tracking, 218

escaping with, 6, 216

preg_match() function and, 390

printing variables within, 15, 218

data (continued)

modeling, 158

MySQL text types for binary, 113

security for e-commerce, 533

sending to Web browser, 69

session, 356

storing using cookies, 327

trimming incoming user registration, 503

types of MySQL column, 110–113

updating SQL, 142–143

using scripts to handle HTML form, 38–41

validating by type, 369–373

validating form input with conditionals, 43

validating in HTML forms, 46–51

databases

about data modeling, 158

access to test_, 597

assigning primary keys, 159, 164

compliance with 2NF, 163–165

connecting to and selecting, 226–229

creating, 124–126, 168–170

deleting, 145

designing e-commerce, 530–535

editing existing records, 270–276

encrypting, 383–387

ensuring secure SQL with PHP, 243–248

FULLTEXT searches on, 188–193

grouping selected results, 178–179

indexes and keys for, 115

joins, 173–177

making 1NF compliant, 161–162

naming elements of, 108–109

normalization and, 158

optimizing, 193

performing transactions, 194–198

populating, 171–172

registering users with, 233–236

relationships in tables, 160

selecting in phpMyAdmin, 121

setting collation and character set for MySQL, 430–434

submitting e-commerce orders to, 580–585

tables for message board, 442–443

3NF-compliance when designing, 166–167

transferring with phpMyAdmin, 122

updating records with PHP, 251–258

user registration example, 496, 497

using indexes for, 180

date and time

formatting in SQL, 155–156

functions in SQL, 152–154

PHP functions for, 298–301

queries determining, 462–463

showing in user registration errors, 493

DATE function, 152

date() function

arguments for, 298

formatting parameters for, 299

date_default_timezone_set() function, 298, 434, 438

date_format_locale() function, 439

DATE_FORMAT() parameters, 155

DATETIME function, 152

debugging

606

I
n

d
e

x

Index

indicating in PHP header() function, 419

indicating with META tag, 416, 418

MySQL character set equivalent to, 430

setting in text editor, 416–417

Unicode, 415

encryption

adding encryption salt in PHP queries, 385–387

encrypting databases, 383–387

SHA1() function for, 383, 385

enctype form attribute, 308, 314

entity-relationship diagram (ERD), 160, 530

ENUM data type, 111

$_ENV variable, 53

equals (=) sign, 44, 133

ERD (entity-relationship diagram), 160, 530

errata page, 203

error class, 49

error suppression operator (@), 208, 227

error_reporting() function, 208, 209, 210

errors. See also debugging

about, 199

access denied, 222

adjusting reporting in PHP, 208–210, 368

call to undefined function, 94

common PHP, 216

connecting PHP document to MySQL server, 226

connecting to database with mysqli_connect.php, 495

correcting mysql client query, 119

creating custom error handlers, 211–215

disadvantages of detailed messages, 208, 368, 377

displaying PHP, 206–207

e-commerce connection script, 543

error-reporting settings in PHP, 208

finding PHP file extensions, 600

handling with user registration configuration file,

490–491, 493, 494, 496

headers already sent, 322, 336, 339

if email address not found in database, 521

include() function, 75

logging in PHP, 215

login page script, 329

mysqli_connect() function, 229

problem solving in book’s examples, 203

reporting for faulty queries, 505

require() function, 75, 78, 83

rolling back unprocessed orders, 584

showing information for single print, 565

suppressing browser’s display of, 227

types of, 200–201

undefined variable, 41

updating passwords with PHP scripts, 258

upload permission, 306

uploading and moving files, 312–313, 544

viewing print images in Web browser, 568

when failing to wrap pattern in delimiters, 390, 393

escapes

debugging techniques for, 216

sequences used for, 30

using backslash as, 6

using with PHP characters and regular expression

strings, 396

showing string value within context, 18

single vs., 30–32

SQL queries and, 127

using for HTML attributes, 91

DROP TABLE command, 145

dynamic Web sites, 73. See also Web sites

E
echo() function, 6–7, 8, 18, 217

e-commerce

checking out, 579, 586

further resources on, 585

handling payment information, 533, 586

importance of products table for, 535

rolling back unprocessed orders, 584

security for, 533, 578

ecommerce database, 530–535

e-commerce example. See also product catalog;

shopping cart

adding product to database, 536–552

checkout process for, 533, 579, 586

creating header and footer templates, 553–556

designing database for, 530–535

displaying and updating cart contents, 573–578

focus of, 529

handling multiple customer addresses, 535

home page, 556

placing items in shopping cart, 569–572

product catalog, 557–568

recording orders, 579–585

rolling back unprocessed orders, 584

showing availability of products, 565

site structure for, 543, 552

edit_user.php page, 271–272

elements

adding to array, 56–57

counting array, 60

else if conditional, 42

email

character classes for validating, 401–402

clearing contact form data after sending, 295

confirming registration, 506–507, 509

creating body of, 294

encoding of, 415

mailing temporary password to user, 522

order confirmation, 583

preventing spam attacks, 293, 297, 362–367

sending, 292–297

SMTP mail servers, 297

email addresses

errors when not found in database, 521

registering if unused, 506

retrieving from table, 151

validating, 253–255, 273–274, 334, 504, 505–506

EMAIL constant, 491, 494

email.php script, 299–301

empty() function, 46, 232, 294

encoding

about, 414

communicating type of between PHP and MySQL, 450

converting string, 423

607

I
n

d
e

x

Index

form uploads

moving file to Web server, 311

validating form submittal, 310

FORMAT() function, 150

formatting

date and time in SQL, 155–156

date() function, 299

text with SQL functions, 148–149

forum database

indexes for, 180

types for, 168

forum page, 461–465

forums. See message board example

forums table, 169, 171, 442

forward slash (/), 314

fulfilling orders, 579

full joins, 177

FULLTEXT indexes

about, 180, 182

Boolean searches of, 191–193

performing basic searches of, 188–190

functions, JavaScript, 317

functions, MySQL

grouping, 178–179

SHA1() and NOW(), 129

standard vs. Improved, 225

functions, PHP. See also user-defined functions

altering variable scope of, 106

arguments with, 95

calculating length of string, 22

converting arrays and strings, 65

creating login, 331–335

customizing, 92–105

date and time, 298–301

errors using, 200, 217

executing simple queries, 230–238

handling HTML with, 374–376

Improved MySQL, 225

multiple return statements for, 105

mysqli_real_escape_string(), 243, 244–248, 500, 506

preg_match(), 390

quotation marks with, 6

retrieving query results with, 239–242

sending email with mail(), 292–297

sorting arrays with, 65

standards for, 104

time zone, 298

type validation, 369

used with external files, 74–75

functions, SQL, 146–156. See also specific functions

AES_ENCRYPT and AES_DECRYPT functions, 383

CONVERT() function, 433

date and time, 152–154

numeric, 150–151

text, 147–149

time zones, 434–436

G
garbage collection, 354

gender validation, 49–50

generating random passwords, 522

exclamation point (!)

not operator, 42, 133

using as function delimiter, 390

exit() function, 219, 331

expiration times for cookies, 342–344, 357

expressions. See regular expressions

external files, 74–83

adding footer templates to Web sites, 76, 79–80

creating and inserting header templates, 76, 78–79

creating Web site templates, 75, 76

functions for using, 74–75

Web site structure using, 83

F
file extensions

enabling support for PHP, 600

.html vs. .php, 37

.inc.php, 328, 330

mysql and mysqli, 225

proper PHP, 2

script connections with .php, 228

suggestions for sensitive data, 83

template, 225

validating image’s, 324

file uploads, 302–314

adding image files with add_print.php script, 537, 544

configurations for, 302

destination folders for, 303

handling in PHP, 308–314, 544

preparing server for, 303–306

temporary storage directory for, 302, 304–305, 307

$_FILES array, 308

files. See also external files; file extensions; file uploads

.htaccess, 307

storing sensitive information outside Web document

directory, 83

temporary names for image, 544

filesize() function, 315, 320

firewalls, 589, 590

First Normal Form (1NF), 161–162, 165

first_name cookie data, 345, 346

folders

creating file upload destination, 303

permissions for uploads, 305–306, 307

footer.html template file

creating, 76, 79–80

e-commerce, 555

user registration, 487–489

for loops, 70–72

foreach loops

accessing array elements with, 57

accessing items in shopping cart with, 582

creating multidimensional array access with, 61–64

errors using on non-array variables, 60

foreign keys

achieving 2NF compliance with, 165

defined, 115, 159

linking to primary key, 170

matching with primary key of other table, 450

forgot_password.php script, 519–524

608

I
n

d
e

x

Index

file uploads to, 302–314

handling with PHP script, 38–41

illustrated, 37

indicating required fields in, 51

input validation with conditionals, 43

login form, 329–330

method attribute of, 34

performing calculations in, 86, 88

placing PHP code in, 89

Reset Your Password, 523–524

script for displaying and handling, 84–88, 231–232

setting default argument values for, 98–100

sticky forms, 89–91, 276, 548

submitting, 88

tags for, 34

testing submission with conditional, 84

using hidden form inputs, 260, 264–269

htmlentities() function, 374, 375, 376

htmlspecialchars() function, 374, 376

HTTP (Hypertext Transfer Protocol)

get and post methods, 34

stateless nature of, 327

using headers with PHP scripts, 322–326

HTTP_USER_AGENT, 358, 359

Hypertext Markup Language. See HTML

Hypertext Transfer Protocol. See HTTP

I
i-am-dummy argument, 119

identifiers

defined, 14

IP addresses as, 360

MySQL, 109

IDEs (Integrated Development Environments), 2–3

IDs

print, 560, 572

product, 535, 572

retrieving order, 581

session, 356, 358

user, 266, 270

if, else conditional, 42

$image variable, 566

image files. See also prints

displaying from different directory, 557, 566–568

image for shopping cart link, 565

retrieving and sending to browser, 323–324

temporary names for, 544

uploading, 537, 544

validating extension of, 324–325

images.php script, 316–317

implode() function, 426

IN operator, 133

include() function, 74, 75, 83

include_once() function, 74, 75

includes folder, 555

.inc.php file extension, 328, 330

increment sign (++), 23

indenting PHP code blocks, 45

INDEX indexes, 180

index page for message board, 460

indexed arrays, 52

$_GET variable, 53

get method, 34, 260

getdate() function, 298, 299

getimagesize() array, 315

getimagesize() function, 320

GMT (Greenwich Mean Time), 434

greater than operator (>), 42, 191

greater than or equal to (>=) operator, 42, 133

greediness, 405, 406

Greenwich Mean Time (GMT), 434

GROUP BY clauses, 178–179

H
HAVING clause, 179

header() function

adding name=value pairs to URL, 335

calling before sending anything to Web browser, 323,

326, 568

syntax for, 322–326

header.html template file

creating, 76, 78–79

e-commerce, 553–555

modifying, 224–225

user registration, 484–487

headers

already sent errors for, 322, 336, 339

defining variables prior to, 80–81

using HTTP headers with PHP scripts, 322–326

headers_sent() function, 326

help, 3

hidden form inputs

storing timestamp in, 300, 301

using, 260, 264–269

home page

e-commerce, 556

message board, 460

user registration, 498–499

.htaccess files, 307

HTML (Hypertext Markup Language)

altering PHP white space with tags, 9

debugging, 204–205

defining message board layout, 457–459

errors in, 200

generating source code in PHP, 9

hidden input type in, 260, 264–269

preventing malicious use of, 374–376

security of hidden form elements, 269

single quotation marks when printing with PHP, 32

source code for errors, 211

using PHP in same file with, 2

UTF-8 encoding for files, 416

viewing shopping cart in, 574, 576

.html file extensions, 2, 37

HTML forms

Add a Print, 536–552

Change Your Password, 524–528

corresponding PHP variables for elements in, 39

creating, 34–37

creating e-commerce header and footer templates,

553–556

data validation in, 46–51

609

I
n

d
e

x

Index

creating, 445

populating, 448

lazy matches, 406

less than (<) operator, 42, 191

less than or equal to (<=) operator, 42, 133

letters, 60

LIKE term in SQL, 136–137

LIMIT clauses

limiting results of queries with, 140–141, 178

paginating queries with LIMIT SQL clause, 277–284

placing ORDER BY clause before, 288

line break tags (
) in HTML, 12

links

adding product link to shopping cart, 561, 564

creating e-commerce header, 554

logout, 347–348

making sortable, 285–289

showing change password, 487

list() function, 105

literal values, 394

LIVE constant, 491, 494

Liyanage, Marc, 591

locales

defined, 393

indication with Collator type, 424

working with, 437–440

locale_set_default() function, 437

logging errors in PHP, 215

logical errors in PHP, 201

login

preventing brute force attacks on, 388

requiring message board, 472, 475

session variables for, 352–354

using cookies to send custom greetings at, 340–341

using temporary, random password, 528

writing script for user registration, 513–517

login page

components for, 328

creating login functions, 331–335

illustrated, 328, 329

making, 329–330

login scripts

login_functions.inc.php, 338

login_page.inc.php, 328–329

login.php script, 513–517

logout

session variables for, 354

using cookies for, 345–348

logout.php script, 345–346, 517–518

loops. See also foreach loops; while loops

for and while, 70–72

creating pull-down menus with arrays and foreach,

57–60

do...while, 72

for, 70–72

replacing arrays with, 71

M
Macintosh computers

inserting multilingual characters, 418

installing and starting MySQL on, 591–592

indexes. See also FULLTEXT indexes

creating for existing table, 180–184

defined, 115

defining SQL, 124

naming, 184

index.php script, 498–499, 556

ini_set() function, 206, 357

inner joins, 173, 174

InnoDB storage engine, 185, 186, 531

INSERT form (phpMyAdmin), 130

installation, 587–602

configuring PHP after, 601–602

MySQL for Mac OS X computers, 591–592

PHP for Mac OS X computers, 593

setting MySQL permissions after, 594–597

testing connection for PHP and MySQL, 599–600

testing PHP, 598–599

using XAMPP for Windows computers, 588–590, 595

Windows all-on-one installers, 588

integers

maximum size of, 26

numbers as, 14, 23

Integrated Development Environments (IDEs), 2–3

intermediary tables, 165

Internet Explorer, 336, 348

IP addresses

limiting number of incorrect logins for, 388

using as unique identifier, 360

IS NOT NULL operator, 133

IS NULL operator, 133

is_array() function, 60, 369

is_numeric() function, 369

isset() function, 42, 45, 46

is_uploaded_file() function, 314, 544

J
JavaScript

creating with PHP, 315–321

functions, 317

preventing malicious use of, 374

joins, 173–177

common errors with, 220

defined, 173

full, 177

inner and outer, 173, 174

NULL values and, 177

self, 177

using, 175–177

K
keys, 115. See also foreign keys; primary keys

ksort() function, 65, 68

L
languages. See also multilingual Web pages

setting for array sorting, 69

setting for message board, 453–454

translations of, 448

languages table

about, 442, 443

610

I
n

d
e

x

Index

inserting multilingual characters, 418

multiple line queries, 125

multiplication sign (*), 23, 135

my_error_handler() function, 494, 495

MyISAM storage engine, 185, 186, 531

MySQL. See also functions, MySQL; SQL

about, 107

accessing, 116–122

assigning column properties, 114–115

changing table types, 185–187

character sets in, 430, 444

connecting PHP document to, 226–229

creating new users for, 597

data types for defining columns, 110–113

database encryption in, 383–387

date and time functions in, 152

debugging techniques, 220–222

errors in syntax, 201

executing simple queries with PHP functions, 230–238

grouping functions in, 178–179

indexing existing tables, 180–184

knowing versions of, 202–203

language collations and character sets, 430–434

Mac OS X installations of, 591–592

making sortable displays with PHP and, 285–289

mysql client for accessing, 116–119

naming database elements, 108–109

operators with, 133

phpMyAdmin for accessing, 120–122

primary keys in, 159

privileges for users, 595–596

setting permissions after installing, 594–597

SHA1() and NOW() functions, 129

standard vs. Improved functions in, 225

time zones and, 434–436

UTC offsets for time zones, 434

Windows installations of, 588–590

mysql client

accessing MySQL with, 116–119

debugging using, 221

performing transactions with, 195–197

queries using, 238

running counting query in, 280

selecting user ID from hidden form input, 268

semicolons in, 116, 125

mysql file extension, 225

MySQL Query Browser, 116

mysqladmin utility, 594

mysqli file extension, 225

mysqli_affected_rows() function, 251

mysqli_autocommit() function, 580

mysqli_connect_error(), 226

mysqli_connect.php script, 226, 338, 490, 496

mysqli_connect() function, 226, 227, 229

mysqli_fetch_array() function, 239, 241, 242

mysqli_free_result() function, 239

mysqli_num_rows() function, 248, 249–250, 387

mysqli_query() function, 230, 234, 238

mysqli_real_escape_string() function, 243, 244–248, 500,

506

mysqli_stmt_bind_param() function, 380, 547, 581

mysqli_test.php script, 599

mysql client Terminal window, 116

PHP installations for, 593

using built-in SMTP mail server, 297

Magic Quotes, 41, 248

mail() function, 292, 362

many-to-many relationships, 160

MAX_FILE_SIZE hidden input, 308, 314

max_input_time value, 306

MD5() function, 129, 359, 506, 544

memory use of user-defined functions, 94

message board example, 441–481

adding messages with prepared statements, 379–382

administering forums, 481

creating forum page, 461–465

dynamic queries determining date and time, 462–463

enabling Unicode capability for, 444

1NF-compliant databases, 161–162

forum database indexes, 180

function of, 441

HTML code defining page layout, 457–459

index page for, 460

making database for, 442–450

normalization and, 158

performing joins, 173–177

populating database for, 171–172

posting messages, 471–481

relationship of messages in database schema, 443

sample data for, 158

setting language for, 453–454

thread page for, 466–470

tracking users after log in, 452–453

using CSS for, 456

writing templates for, 451–459

messages table, 169, 172, 175, 182

META tag with encoding, 416, 418, 419

meta-characters

in character classes, 400

examples of, 394–395

using as pattern quantifiers, 397

method attribute of HTML form, 34

Microsoft Internet Explorer, 336, 348

minus sign (-), 23, 191

missing values for variables, 41

mktime() function, 298

MOD() function (SQL), 151

modifiers, 407–408

modulus (%), 23

move_uploaded_file() function, 311, 314

movies table, 162, 163

movies-actors table, 162, 163, 165

Mozilla Firefox

advantages of, 205

Live HTTP Headers extension for, 326

Page Info window, 419

testing for cookies, 336

multidimensional arrays

creating, 61–64

sorting, 69

multilingual Web pages

complexity of example queries for, 470

creating, 416–419

debugging, 419

611

I
n

d
e

x

Index

comparative and logical, 42

MySQL, 133

ternary, 283

OPTIMIZE command, 193

or operator (|), 390, 395, 396

OR (||) operator, 42, 133

$order_by variable, 287, 288

ORDER BY clauses, 138–139, 178, 285, 288

order_contents table, 531, 535

orders, e-commerce. See recording e-commerce orders

orders table, 531, 534, 581

outer joins, 173, 174

output buffering

about, 485

completing, 488

enabling, 484, 485, 489

overriding error handling, 211

P
paginating query results, 277–285

parameters. See also arguments

bound, 382

cookie, 342–344

date() function’s formatting, 299

TIME_FORMAT(), 155

parentheses (), 191

parse errors, 200, 216

password.php script, 252–254, 524

passwords

access errors and, 222

address validation for, 334

case sensitivity of MySQL, 595

changing, 257, 258, 524–528

database validation for, 233, 253–255

displaying current and new, 257

generating random, 522

logging in with temporary, random, 528

mysql client, 118

MySQL root user, 594–595

providing boxes for changing, 276

resetting forgotten, 507, 519–524

setting in connection scripts, 227

showing change password links, 487

updating using PHP, 251–258, 526–527

validating user, 334, 505, 526

paths

absolute vs. relative, 74

setting for cookies created by scripts, 344

specifying MySQL database in, 119

pattern modifiers, 407–408

patterns

alternation or branching, 395

defining simple, 395–396

finding all matches with regular expressions, 403–406

grouping, 395

using meta-characters and quantifiers, 397

payment information, 533, 586

performance

improving with output buffering, 485

prepared statement, 378

N
\n (newline) character, 9, 30, 32, 292, 323

$name variable, 566

names

concatenating without an alias, 148–149

database element, 108

temporary file, 544

validating user’s, 273

naming

indexes, 184

sessions, 357

variables, 17

newline characters, 9, 30, 32, 292, 323, 365

Next links, 282–283

non-logged-in users, 488

normalization

defined, 158

First Normal Form, 161–162, 165

normal forms, 158

overruling, 167

Second Normal Form, 163–165

Third Normal Form, 166–167

variations in, 167

not (!) operator, 42, 133

NOT BETWEEN operator, 133

not equal to (!=) sign, 42, 133

NOT LIKE term in SQL, 136–137

NOT NULL value, 114, 115

NOT REGEXP() function, 149

notices, 208

NOW() function, 129, 132, 506

NULL values

about, 42, 114

grouping together, 179

joins and, 177

number_format function, 23

numbers

arithmetic operators for, 23

creating array of sequential, 57

integers, 14, 23, 26

matching patterns with quantifiers, 398–399

using, 24–26

using as array key-value, 52

working with arrays of sphenic, 61

numeric character reference (NCR), 419

numeric functions in SQL, 150–151

O
ob_end_clean() function, 485

ob_end_flush() function, 485, 489

ob_flush() function, 489

ob_get_contents() function, 489

ob_start() function, 485

one-to-many relationships, 160

one-to-one relationships, 160

Opera, 205

operators. See also operators listed in Symbols and

numbers section

arithmetic, 23, 26

Boolean mode, 191

612

I
n

d
e

x

Index

HTML form creation with, 34–37

indenting code blocks, 45

making sticky forms, 89–91, 276, 548

paginating query results, 277–285

referring to specific values in arrays, 52

sending values to scripts, 260–263

sortable displays with, 285–289

sorting arrays, 65–69

superglobal variables in, 53

types of errors in, 200, 216

working with multiple external files, 74–83

PHP scripts

combining HTML form display and handling in

single, 84–88

handling HTML form with, 38–41

pull-down menu created with user-defined function,

92–94

sorting arrays with, 66–69

using HTTP headers with, 322–326

validating each form element has value, 46–51

PHP tags

<? ?>, 5

<?php ?>, 2

<script language=”php”> and </script>, 5

types of, 5

phpinfo() script

checking for correct php.ini file with, 602

confirming server settings with, 303

confirming Unicode support with, 420

debugging using, 203, 204

deleting from live server, 600

testing PHP installation, 598–599

php.ini file, 297, 302, 304, 600, 601–602

phpMyAdmin

accessing MySQL with, 120

configuration file changes for Windows computers,

595

debugging using, 221

INSERT form for, 130

installing on Windows computers with XAMPP,

588–590

multiple line queries in, 125

using, 120–122

pipe delimiter (|), 390, 395, 396

plus sign (+)

Boolean mode operator, 191

standard arithmetic operator, 23

using with quantifiers, 397

pop-up window

creating and resizing, 317

creating text and table in, 319

determining properties of, 318

getting image information and encoding its name,

320

ports for Windows XP firewalls, 590

POSIX locales, 437

POSIX regular expressions, 389, 393

$_POST[‘do’] variable, 260

$_POST variable, 53, 54

post method, 34

post_form.php, 471–475

period (.)

as concatenation operator, 21

escaping with backslash, 398

Perl-compatible regular expressions (PCRE). See regular

expressions

permissions

creating secure uploads folder, 305–306, 307

protecting e-commerce databases with, 533

setting for MySQL after installation, 594–597

PHP

about, 2

accessing MySQL with phpMyAdmin, 120

adjusting error reporting in, 208–210, 368

basic script syntax for, 2–4

case sensitivity of variables in, 14

case-insensitivity with function names, 6, 92

collation in, 424–426

common errors in, 216

configuring, 601–602

connecting document to MySQL server, 226–229

constants in, 28–29

creating JavaScript with, 315–321

displaying errors in, 206–207

enabling support for extensions, 600

ensuring secure SQL databases with, 243–248

handling file uploads, 302–314

identifying encoding to MySQL, 450

Improved MySQL functions with, 225

locales in, 393, 437–440

logging errors in, 215

Mac installations of, 593

Magic Quotes feature removed in, 41, 248

POSIX locales in version 5, 437

preventing XSS attacks, 374–376

requiring use of cookies in, 360, 517

sending email with, 292–297

session handling with, 357

strings, 18–22

transliteration in, 427–429

using Unicode in, 413, 420–423

variables in, 14–17

versions of, 202–203, 587

white space in scripts, 9

Windows installations of, 588–590

writing comments, 10–13

.php file extension

.html vs., 37

proper, 2

script connections with, 228

PHP programming. See also debugging; errors

absolute vs. relative paths, 74

altering variable scope of function, 106

for and while loops, 70–72

appending values to URL scripts, 260

conditionals and operators, 42–45

converting arrays and strings, 65

creating and accessing arrays, 56–60

defining functions taking arguments, 95–97

editing existing database records, 270–276

error reporting in, 208–210, 368

handling HTML form with script, 38–41

hidden form inputs in, 260, 264–269

613

I
n

d
e

x

Index

preselecting, 89

script creating with user-defined function, 92–94

Q
quantifiers in regular expressions, 397–399

queries

adding encryption salt in PHP, 385–387

aliases and, 146

alphabetic sorting of results, 138–139

checking values in switch rather than, 287, 289

debugging SQL, 220–221

defining in PHP scripts, 558

DELETE, 144–145

determining message board date and time, 462–463

displaying contents of shopping cart, 575–576

editing existing records using UPDATE, 273–275

FULLTEXT, 189–190

grouping selected results, 178–179

invoking error reporting for faulty, 505

limiting results of, 140–141

multiple line, 125

paginating results of, 277–285

PHP functions executing, 230–238

prepared statements vs., 378

preventing SQL injection attacks via, 377–382

quotation marks in SQL, 127

retrieving results with PHP, 239–242

running on thread page, 468

SELECT, 131–132

sorting results, 138–139

SQL database security when running, 243

string equality checks with LIKE and NOT LIKE,

136–137

TRUNCATE, 386

typecasting within SQL, 373

updating passwords with UPDATE, 251, 256, 258

question mark (?), 397

quotation marks. See double quotation marks; single

quotation marks

R
r character, 30, 323

radio buttons

adding to HTML form, 36

presetting status of, 89

RAND() function (SQL), 150, 506

range() function, 57, 60

read.php, 466–470

recording e-commerce orders, 579–585

billing for orders, 586

confirming transaction success, 583

entering into database, 580–585

rolling back unprocessed orders, 584

storing purchase price information with order, 535

records

adding to database, 171–172

adding with AUTO_INCREMENT property, 115

counting returned, 249–250

deleting SQL, 144–145

posting messages

creating form for, 471–475

handling form for post.php, 476–481

post.php, 476–481

posts table

about, 443

creating, 446

pound (#) symbol, 10

predefined constants, 27

preg_match_all() function, 403

preg_match() function, 390

preg_replace() function, 410, 412

preg_split function, 406

prepared statements

about, 377

bound parameters and results for, 382

performance of, 378

using, 379–382

Previous links, 282–283

PRIMARY KEY indexes, 180

primary keys

assigning, 159, 164

defined, 115, 159

linking to foreign key, 170

maintaining values of, 143

MySQL column, 114

updating records using, 142, 251

print() function, 6–7, 8, 18, 101, 217

printing

custom error handler messages, 213–214, 215

difficulties with array, 53, 55

HTML form calculations, 85, 86

making sortable displays, 285–289

text over multiple lines, 8, 9

prints. See also product catalog

adding items to shopping cart, 569–572

displaying list of, 557, 558–561

print IDs, 560, 572

showing information for single, 557, 561–565

validating name of, 543

prints table, 530, 531, 533, 535, 543, 558

privileges for MySQL users, 595–596

product catalog, 557–568

adding items to, 536–552

checking for artist ID in URL, 558–559

dealing with changing product prices, 535

displaying list of prints, 557, 558–561

entering new artists in database, 545–548

function of scripts for, 557

making product link to shopping cart, 561, 564

searching, 583

showing information for single print, 557, 561–565

unique identifiers for products in, 535, 572

products. See also product catalog

adding link to shopping cart, 561, 564

showing availability of, 565

storing IDs in shopping cart, 572

public templates for e-commerce, 553–556

pull-down menus

adding to HTML form, 36, 37

creating with array and foreach loop, 57–60

614

I
n

d
e

x

Index

considering security for, 368

debugging, 5, 217–218

defining queries in PHP, 558

enabling sessions in, 351

form display and handling with single, 84–88

handling HTML form with PHP, 38–41

HTTP headers with PHP, 322–326

importance of Unicode support for, 421

login, 328–329, 338, 513–517

pull-down menu created with user-defined function,

92–94

registration, 230–234

resetting passwords, 519, 521–524

running from URLs starting with http://, 600

sending values to PHP, 260–263

setting error-reporting globally or individually, 209

sorting arrays with PHP, 66–69

turning on display_errors in, 206–207

types of errors disrupting, 200

unable to open in Web browser, 5

Unicode-supported, 415

using .php extensions for connection, 228

validating values for each form element, 46–51

searching

allowing delimiter searches without case-sensitivity,

307

FULLTEXT indexes, 188–190, 191–193

product catalogs, 583

Second Normal Form (2NF), 163–165

security

adding for administrative pages, 552

brute force attacks, 388

cookie, 342

data validation by type, 369–373

database encryption, 383–387

deleting phpinfo() script from live server, 600

e-commerce, 533, 578

folder permissions for uploads, 305–306, 307

hidden form elements and, 269

improving site and application, 361

measures for activation page, 512

preventing spam, 293, 297, 362–367

session, 358–360

SQL injection attacks, 377–382

storing sensitive information outside Web document

directory, 83

using database-stored salt, 385–387

validating form data, 46–47

verifying received query data, 289

Web site structure and file, 228, 229

when checking values in switch, 287, 289

XSS attacks, 374–376

SELECT queries

retrieving data from tables with, 131–132

selecting user ID from hidden form input, 268

using while loop to fetch results from, 239, 242

self-joins, 177

semicolons (;)

ending PHP statements with, 216

errors ending PHP queries with, 238

terminating MySQL client statements with, 116, 125

$_SERVER array, 359

editing existing database, 270–276

inserting SQL, 127–130

retrieving and printing shopping cart, 577

updating SQL, 142–143

updating with PHP, 251–258

redirecting users to other pages, 331, 333–334, 339

REGEXP() function, 149

registering. See also user registration example

email addresses, 248

users with databases, 233–236

register.php script, 231–234, 244–247, 248, 500–508

regular expressions

character classes in, 400–402

creating test script using, 390–393

data validation with, 373

defining simple patterns, 394–396

finding all matches, 403–406

greediness in PCRE, 405, 406

matching and replacing patterns, 409–412

maximum length of register.php, 508

pattern modifiers, 407–408

POSIX and PCRE, 389, 393

quantifiers in, 397–399

using, 389

relative paths, 74, 81

removing uploaded files, 313

replies for message boards, 473–474

$_REQUEST variable, 40, 53

require() function, 74, 75, 78, 83

require_once() function, 74, 75

Reset Your Password form, 523–524

resetting passwords, 519, 521–524

return statements

functions using multiple, 105

returning values from user-defined functions,

101–105

terminates code execution, 104

root directory, Web, 590, 593

root user password for MySQL, 594–595

round() function, 23

ROUND() function (SQL), 150

rows. See also tables

counting returned records, 249–250

displaying with alternating background colors, 277,

282–283

including copyright in footer, 555

inserting multiple MySQL data, 128

rsort() function, 65

run-time errors in PHP, 200

S
Safari, 336

salt values, 385–387

savepoints in transactions, 198

scandir() function, 315

schemas, 158

scripts. See also connection scripts; and specific scripts

adding comments in, 10–13

addresses for running in Web browsers, 4, 5

appending PHP values to URL, 260, 263

configuration, 490–497

615

I
n

d
e

x

Index

spam_scrubber function, 363, 365–366

sphenic numbers, 61

SQL (Structured Query Language). See also prepared

statements; queries

about, 123

case sensitivity, 124

changing table type with SHOW TABLE STATUS

command, 186–187

conditionals in, 133–135

creating databases and tables, 124–126

date and time functions, 152–154

debugging techniques, 220–222

deleting data, 144–145

editing existing records using UPDATE query,

273–275

ensuring secure databases in, 243–248

errors in syntax, 201

formatting date and time, 155–156

functions in, 146–156

GROUP BY clauses, 178–179

HAVING clause, 179

inserting records, 127–130

LIKE and NOT LIKE, 136–137

LIMIT clauses, 140–141, 178, 277–284, 288

making sortable displays with PHP and, 285–289

modifying tables with ALTER TABLE clauses, 181

numeric functions in, 150–151

paginating query results, 277–284

performing transactions with mysql client, 195–197

preventing malicious use of, 377–382

quotes in queries, 127

selecting data, 131–132

sorting query results, 138–139

text function, 147–149

updating data, 142–143

using user-defined variables in statements, 387

SQL injection attacks, 377–382

SQL tab (phpMyAdmin window), 122

square brackets ([]), 111, 400

SSL (Secure Sockets Layer), 344, 368, 533

statements

ending with semicolon, 116, 125, 216

prepared, 377, 378, 379–382

return, 101–105

static Web sites, 73. See also Web sites

sticky forms

changing values entered with, 276

making artists pull-down menu sticky, 550

presetting values with, 89–91

unable to make file input type sticky, 548

using in registration script, 500

storage engines, 185–187, 531

strings

arrays and, 65

character strings indicating spam, 363

checking for equality in query with LIKE and NOT

LIKE, 136–137

concatenating, 21–22

converting encoding for, 423

equality and case-sensitivity of, 44

examples of, 18

Unicode, binary, and native, 420

$_SERVER variable, 53

$_SESSION[‘cart’] variable, 569, 570, 571, 572

$_SESSION array, 355, 356

$_SESSION variable, 53

session cookies

deleting, 355–356

setting parameters for, 357

session identifier, 356

session IDs

accessing, 351–354

securing, 358

session_name() function, 357, 518

session_regenerate_id() function, 360

sessions

about, 349

accessing variables for, 351–354

beginning, 350–351, 484

changing behavior for, 357

cookies vs., 349

deleting, 355–356

enabling for e-commerce public templates, 553, 556

garbage collection, 354

improving security for, 358–360

resetting values after user logout, 518

session fixation, 360

setting variables for, 349

starting message board template for, 452–454

types of information in, 356

session_start() function, 351, 352, 354, 489, 553

SET data type, 111

setcookie() function, 339, 342–344, 345

set_error_handler() function, 211

set_locales() function, 437

SHA1() function, 129, 255, 383, 385, 506

shopping cart, 569–578

adding items to, 569–572

displaying contents and updating contents of, 572,

573–578

images for link to, 565

making link from product to, 561, 564

SHOW TABLE STATUS command, 186–187

show_image.php script, 557, 566–568

single quotation marks (‘)

debugging PHP scripts by tracking, 218

double vs., 30–32

escaping with, 6, 216

preg_match() function and, 390

SQL queries and, 127

sleep() function, 388

social security numbers, 368

$sort variable, 285, 287

sort() function, 65

sorting

arrays, 65–69

query results, 138–139

source code

artists, 549

for errors, 211

generating in PHP, 9

spam

character strings indicating, 363

preventing spam attacks, 293, 297, 362–367

616

I
n

d
e

x

Index

intermediary, 165

making 1NF compliant, 162

modifying with ALTER TABLE clauses, 181

naming MySQL, 109

optimizing, 193

primary and foreign keys for, 115

relationships in, 160

retrieving email address from, 151

salt stored in, 387

SELECT queries for retrieving data from, 131–132

testing for 2NF compliance, 165

unique names for columns and, 108

using dot syntax when selecting from multiple, 173

tags

altering space in Web pages, 9

debugging code with HTML preformatted, 219

form, 34

PHP function for removing all HTML and PHP, 374

types of, 5

using PHP, 2, 4

taking breaks during debugging, 201–202

templates. See also footer.html template file; header.html

template file

creating footer, 76, 79–80

creating Web site, 76

e-commerce, 553–556

header, 76, 78–79

message board, 451–459

modifying, 224–225

testing Web site, 82

user registration, 484–489

temporary file names, 544

ternary operators, 277

testing

connections for new PHP and MySQL installations,

599–600

cookies, 336

display_errors setting, 207

form submission with conditional, 84

pages in other Web browsers, 204, 205

pattern against string value, 392

PHP installation, 598–599

tables for 2NF compliance, 165

Web site templates, 82

test_ databases, 597

text

comparing characters in set, 424–426

formatting with SQL functions, 148–149

matching alphabetic patterns with character classes,

400–402

printing over multiple lines, 8, 9

transliteration of, 427–429

using boundaries with character classes, 402

text columns, 115

text functions, 147–149

textarea form elements, 37, 89

Third Normal Form (3NF), 166–167

thread ID

checking for, 473

validating, 466, 476

thread page, 466–470

using, 18–20

using as array key-value, 52

stripslashes() function, 41, 248

strip_tags() function, 374, 375–376

strlen() function, 22

strlower() function, 22

str_replace() function, 363, 365, 409

strtotitle() function, 437, 439

strtoupper() function, 22

str_transliterate() function, 427, 428

Structured Query Language. See SQL

SUBDATE() function, 154

submit_order.php script, 580–585

submitting HTML forms, 88

SUBTIME function, 154

subtraction (-) character, 135

superglobal variables, 40, 53, 55, 106

surrogate primary keys, 159

switch conditional

checking values in, 287, 289

printing detailed error of uploaded file using, 312–313

syntax for, 45

syntax

accessing superglobal variables, 55

ALTER statement, 181

for and while loop, 70

Collator class, 424

comment types in PHP, 10–11

CONCAT_WS() function, 149

conditional, 42

creating SQL databases and tables, 124

DATE_FORMAT(), 155–156

deleting session cookie and data, 355–356

errors in PHP, 200, 216

handling file uploads in PHP, 308

header() function, 322

inserting data into table columns, 128–129

PHP script, 2–4

relative path, 81

rules for variable, 14

SELECT query, 131

SQL errors in, 201

switch conditional, 45

user-defined function, 92

when selecting from multiple tables, 173

T
\t character, 30

table types

about, 185

changing, 184–187

MyISAM and InnoDB storage engines, 185, 531

tables

choosing MySQL column types, 110–113

creating alternating background colors, 277, 282–283

creating SQL, 124–126

ecommerce database, 530–531

functions and schema of message board, 442–443

indexing existing, 180–184

inserting data into, 128–130

617

I
n

d
e

x

Index

creating multilingual Web pages, 416–419

locales in PHP, 393, 437–440

MySQL language collations and character sets,

430–434

time zones in MySQL, 434–436

transliteration in PHP, 427–429

using Unicode in PHP, 420–423

Unix

adjusting folder permissions, 306

technology found in Max OS X, 591

unlink() function, 313

UPDATE query, editing existing records using, 273–275

updating

passwords, 251–258, 522, 526–527

shopping cart quantities, 573, 574

SQL data, 142–143

updating records

SQL, 142–143

using PHP, 251–258

using primary keys, 142, 251

urlencode() function, 263, 320

URLs

adding name=value pairs to, 335

appending values to, 260, 263

redirecting users to other pages, 331, 333–334, 339

returning absolute, 333

run all PHP pages through, 202

using secure transaction, 533

usage errors, 204

user registration example, 483–528

activating account, 503, 509–512

creating index.php home page for, 498–499

designing templates for, 484–489

form illustrated, 507

logging in, 513–517

logging out, 517–518

managing passwords, 519–528

password validation, 505, 526

register.php script for, 500–508

scope of, 483

validating email address in, 504, 505–506

writing configuration scripts, 490–497

user-defined functions, 92–105

arguments with, 95–97

memory use for, 94

pull-down menu created with, 92–94

returning values from, 101–105

setting default argument values vs. using, 98

username

mysql client, 118

setting in connection scripts, 227

users

appending user ID to URLs, 263

creating new MySQL, 597

declining cookies, 336, 341

emailing temporary password to, 522

name validation of, 273

privileges for MySQL, 595–596

redirecting to other pages, 331, 333–334, 339

reflecting computer time of, 301

registering with database, 233–236

scenarios for change_password.php script, 524

threads. See also message board example

checking for thread ID, 473

forum page and, 461

handling thread replies and submissions, 476–481

page for viewing messages in, 466–470

threads table

about, 442

creating, 445

query joining posts table and, 463

running new threads on, 479

tilde (~), 191

time

formatting in SQL, 155–156

functions in SQL, 152–154

PHP functions for, 298–301

TIME function, 152

time zones

adjusting date and times for, 467, 469

MySQL functions for, 434–436

PHP functions for, 298

setting for user registration example, 493

UTC offsets for MySQL time zones, 434

TIME_FORMAT() parameters, 155

TIMESTAMP columns, 113

TIMESTAMP function, 152

timestamps

PHP, 298

storing in hidden input, 300, 301

transactions

confirming e-commerce order success, 583

creating savepoints in, 198

defined, 194

making MySQL transactions from PHP script, 536

performing, 195–197

securing e-commerce, 533

translations in examples, 448

transliteration in PHP, 427–429

trigger_error() function, 215, 494, 495, 506

trim() function, 503, 506

TRUNCATE queries, 386

TRUNCATE TABLE command, 145

typecasting, 369–373, 559

U
ucfirst() function, 22

ucwords() function, 22

undefined variable errors, 41

Unicode

about, 414

documentation for, 427

encoding, 415

PHP support for, 413, 601

sorting strings with Collator class, 424

support unavailable in PHP5, 420

transliteration with, 427

using in PHP, 420–423

uniqid() function, 506

UNIQUE indexes, 180, 184

universalizing Web sites, 413–440

character sets and encoding for, 414–415

collation in PHP, 424–426

618

I
n

d
e

x

Index

passing to PHP script, 260–263

PHP’s case sensitivity with, 14

printing variables within double quotation marks, 15,

218

scope of, 106

session, 349

string variables, 18–20

superglobal, 40, 53, 55, 106

typecasting, 369–373

types of, 14

using, 15–17

view_cart.php script, 572, 573–578

view_order.php script, 585

view_print.php script, 557, 561–565, 566, 568, 572

view_users.php script, 240–241, 249–250, 260–262,

277–287

W
WAMP installer for Windows computers, 588

warnings, 208

Web applications. See also e-commerce example;

message board example; user registration example

activation page for, 503, 509–512

adding Next and Previous links for pages, 282–283

administering user registration, 528

appearance of message board, 451

beginning templates for, 75, 76

checking display or handling actions with

conditional, 84, 85, 231–232

checkout process for, 533, 579, 586

creating JavaScript pop-up windows, 315–321

customizing functions for, 92–105

debugging PHP code for, 202

defining functions taking arguments, 95–97

footer templates for, 76, 79–80

forum page design for message boards, 461–465

handling file uploads in PHP, 308–314, 544

header templates in, 76, 78–79

improving security of, 361

index page for message board, 460

logging out using cookies, 345–348

login page for, 328–329, 513–517

pull-down menus, 36, 37, 57–60, 89, 92–94

radio buttons, 36, 89

recording e-commerce orders, 579–585

redirecting users to other pages, 331, 333–334, 339

searching product catalogs, 583

sending cookies, 337–339

sending email from, 292–297

shopping cart for, 569–578

site structure for e-commerce, 543, 552

starting sessions for, 350–351

sticky forms for, 89–91, 276, 548

using HTTP headers with PHP scripts, 322–326

welcome messages on home page, 498, 499

Web browsers. See also Mozilla Firefox

accessing phpMyAdmin from, 120

addresses for running scripts in, 4, 5

calling header() function before sending anything to,

323, 326

debugging code with HTML preformatted tags, 219

storing data in cookies for, 327

validating user IDs, 266, 270

viewing total number of registered, 240–241, 249–250

welcoming to site, 340–341, 498, 499, 516

users table

about, 443

adding indexes to, 183

adding last_login DATETIME field to, 518

adding records to, 171, 449

creating, 170, 446, 497

innerjoin between messages table and, 175

UTC (Coordinated Universal Time), 434–436

UTF-8 encoding, 415, 416, 433, 444

V
validating

data by type, 369–373

database passwords, 233, 253–255

email addresses, 253–255, 273–274, 334, 504, 505–506

form submittal, 310

HTML form data, 43, 46–51

image’s extension, 324–325

login form, 331

print name for e-commerce prints table, 543

thread ID, 466, 476

user IDs, 266, 270

user passwords, 334, 505, 526

value attribute, 89, 90, 91

values

checking in switch, 287, 289

defining for SET data type, 111

maintaining primary key, 143

NOT NULL, 114, 115

NULL, 42, 114, 177

referring to in arrays, 52

resetting session values after user logout, 518

returning from user-defined functions, 101–105

salt, 385–387

sending to PHP scripts, 260–263

setting defaults for arguments, 98–100

$_SESSION[‘cart’] variable, 569

validating for activation page, 509–510, 512

VARCHAR columns, 113

variables. See also arrays

accessing session, 351–354

adding to custom error handlers, 213

allowing for arguments in function with, 95

appending to URL, 263

arrays, 52–69

binding to query placeholders in PHP, 378, 380–381,

382

concatenating strings, 21–22

constants vs., 27

database registration, 235

debugging PHP scripts by tracking, 218

defined, 14

defining prior to header file, 80–81

deleting session, 355–356

HTML form elements and corresponding PHP, 39

missing values for, 41

naming, 17

619

I
n

d
e

x

Index

welcome messages

after login, 516

from user registration home page, 498, 499

using cookies to send custom greetings at login,

340–341

WHERE conditionals, 133, 143

while loops

fetching results from SELECT queries with, 239, 242

flowchart for, 70

retrieving records using mysqli_fetch_array(), 282

using, 70–72

white space in PHP scripts, 9

whitelist validation, 369

Windows computers

all-on-one installers for, 588

creating Thumbs.db file in image folder, 321

finding free SMTP mail servers, 297

inserting multilingual characters, 418

mysql client prompt in, 116

referencing directories for, 314

security alerts with, 589, 590

temporary directories for, 304, 305

using XAMPP installer for, 588–590, 595

words table, 443, 447, 450

wordwrap() function, 292

writing comments in PHP, 10–13

X
XAMPP installer for Windows, 588–590

XOR (and not operator), 42

XSS (cross-site scripting) attacks, 374–376

Z
\z, \Z character, 408

zip codes, 401, 402, 408

Web browsers (continued)

debugging tips for, 204

hidden form elements not displayed in, 269

Internet Explorer, 336, 348

manipulating with header() function, 322–326

Opera, 205

retrieving image from server and sending to, 323–324,

567–568

Safari, 336

sending cookies to, 337–339

sending data to, 6–9

stating cookie parameters for, 344

testing pages in other, 204, 205

unable to open PHP scripts in, 5

using output buffering with, 485

Web root directory, 590, 593

Web servers

checking for image files, 567

confirming settings with phpinfo(), 303

debugging tips for, 204

moving file to, 311

PHP date function reflecting time of, 301

preparing for file uploads, 303–307

restarting after configuring PHP, 602

retrieving image and sending to browser, 323–324,

567–568

support for Improved MySQL functions, 225

Web sites. See also universalizing Web sites

Apache Friends, 588

dynamic vs. static, 73

file security and structure of, 228, 229

improving security of, 361

multilingual Web pages, 416–419

scripting HTML form display and handling for, 84–88

setting default argument values for forms, 98–100

structure using multiple external files, 83

Unicode and, 413

working with external files, 74–83

620

I
n

d
e

x

Index

	PHP 6 and MySQL 5 for Dynamic Web Sites
	Table of Contents
	Introduction
	What Are Dynamic Web Sites?
	What You'll Need
	About This Book
	Companion Web Site

	Chapter 1: Introduction to PHP
	Basic Syntax
	Sending Data to the Web Browser
	Writing Comments
	What Are Variables?
	Introducing Strings
	Concatenating Strings
	Introducing Numbers
	Introducing Constants
	Single vs. Double Quotation Marks

	Chapter 2: Programming with PHP
	Creating an HTML Form
	Handling an HTML Form
	Conditionals and Operators
	Validating Form Data
	Introducing Arrays
	For and While Loops

	Chapter 3: Creating Dynamic Web Sites
	Including Multiple Files
	Handling HTML Forms, Revisited
	Making Sticky Forms
	Creating Your Own Functions

	Chapter 4: Introduction to MySQL
	Naming Database Elements
	Choosing Your Column Types
	Choosing Other Column Properties
	Accessing MySQL

	Chapter 5: Introduction to SQL
	Creating Databases and Tables
	Inserting Records
	Selecting Data
	Using Conditionals
	Using LIKE and NOT LIKE
	Sorting Query Results
	Limiting Query Results
	Updating Data
	Deleting Data
	Using Functions

	Chapter 6: Advanced SQL and MySQL
	Database Design
	Performing Joins
	Grouping Selected Results
	Creating Indexes
	Using Different Table Types
	Performing FULLTEXT Searches
	Performing Transactions

	Chapter 7: Error Handling and Debugging
	Error Types and Basic Debugging
	Displaying PHP Errors
	Adjusting Error Reporting in PHP
	Creating Custom Error Handlers
	PHP Debugging Techniques
	SQL and MySQL Debugging Techniques

	Chapter 8: Using PHP with MySQL
	Modifying the Template
	Connecting to MySQL
	Executing Simple Queries
	Retrieving Query Results
	Ensuring Secure SQL
	Counting Returned Records
	Updating Records with PHP

	Chapter 9: Common Programming Techniques
	Sending Values to a Script
	Using Hidden Form Inputs
	Editing Existing Records
	Paginating Query Results
	Making Sortable Displays

	Chapter 10: Web Application Development
	Sending Email
	Date and Time Functions
	Handling File Uploads
	PHP and JavaScript
	Understanding HTTP Headers

	Chapter 11: Cookies and Sessions
	Making a Login Page
	Making the Login Functions
	Using Cookies
	Using Sessions
	Improving Session Security

	Chapter 12: Security Methods
	Preventing Spam
	Validating Data by Type
	Preventing XSS Attacks
	Preventing SQL Injection Attacks
	Database Encryption

	Chapter 13: Perl-Compatible Regular Expressions
	Creating a Test Script
	Defining Simple Patterns
	Using Quantifiers
	Using Character Classes
	Finding All Matches
	Using Modifiers
	Matching and Replacing Patterns

	Chapter 14: Making Universal Sites
	Character Sets and Encoding
	Creating Multilingual Web Pages
	Unicode in PHP
	Collation in PHP
	Transliteration in PHP
	Languages and MySQL
	Time Zones and MySQL
	Working with Locales

	Chapter 15: Example—Message Board
	Making the Database
	Writing the Templates
	Creating the Index Page
	Creating the Forum Page
	Creating the Thread Page
	Posting Messages

	Chapter 16: Example—User Registration
	Creating the Templates
	Writing the Configuration Scripts
	Creating the Home Page
	Registration
	Activating an Account
	Logging In and Logging Out
	Password Management

	Chapter 17: Example—E-Commerce
	Creating the Database
	The Administrative Side
	Creating the Public Template
	The Product Catalog
	The Shopping Cart
	Recording the Orders

	Appendix A: Installation
	Installation on Windows
	Installation on Mac OS X
	MySQL Permissions
	Testing Your Installation
	Configuring PHP

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

