

557386 FM.qxd 4/2/04 10:00 AM Page iii

Creating Cool

Web Sites with

HTML, XHTML,

and CSS

Dave Taylor

557386 FM.qxd 4/2/04 10:00 AM Page ii

557386 FM.qxd 4/2/04 10:00 AM Page i

Creating Cool

Web Sites with

HTML, XHTML,

and CSS

557386 FM.qxd 4/2/04 10:00 AM Page ii

557386 FM.qxd 4/2/04 10:00 AM Page iii

Creating Cool

Web Sites with

HTML, XHTML,

and CSS

Dave Taylor

557386 FM.qxd 4/2/04 10:00 AM Page iv

Creating Cool Web Sites with HTML, XHTML, and CSS

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2004 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

Library of Congress Control Number: 2004100892

ISBN: 0-7645-5738-6

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/SQ/QU/QU/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317)
572-3447, fax (317) 572-4447, E-Mail: permcoordinator@wiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESEN­
TATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF
THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES
OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED
IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE
IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT
AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL
SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES
THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our Customer
Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Trademarks: Wiley, the Wiley Publishing logo and related trade dress are trademarks or registered trademarks of
John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without
written permission. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not
associated with any product or vendor mentioned in this book.

Copyright © 1994-2003 World Wide Web Consortium (Massachusetts Institute of Technology, European Research
Consortium for Informatics and Mathematics, Keio University). All Rights Reserved. http://www.w3.org/
Consortium/Legal/2002/copyright documents 20021231.

557386 FM.qxd 4/2/04 10:00 AM Page v

About the Author

Dave Taylor has been involved with the Internet since 1980, when he first logged in as an
undergraduate at the University of California, San Diego. Since then, he’s been a research
scientist at Hewlett-Packard Laboratories in Palo Alto, California, reviews editor for SunWorld
magazine, and founder of four companies: The Internet Mall, iTrack.com, AnswerSquad, and
ClickThruStats.com. Currently, Dave is president of Intuitive Systems and is busy launching
an electronic book publishing company called Intuitive Press.

Dave has designed over 50 Web sites, both commercial and nonprofit, and has published
more than 1000 articles about the Internet, Unix, Macintosh, interface design, and business
topics. His books include Learning Unix for Mac OS X Panther (O’Reilly), Wicked Cool Shell
Scripts (No Starch Press), Teach Yourself Unix in 24 Hours (Sams Publishing), and Solaris
For Dummies (Wiley Publishing).

Dave holds a master’s degree in Educational Computing from Purdue University, an M.B.A.
from the University of Baltimore, an undergraduate degree in Computer Science from the
University of California at San Diego, and is an adjunct professor at the University of
Colorado, Boulder, and the University of Phoenix Online.

You can find Dave Taylor online just about any time at http://www.intuitive.com/, or
you can send him electronic mail at taylor@intuitive.com.

557386 FM.qxd 4/2/04 10:00 AM Page vi

557386 FM.qxd 4/2/04 10:00 AM Page vii

Credits
Senior Acquisitions Editor
Jim Minatel

Development Editors
Jodi Jensen
Brian Herrmann

Production Editor
Felicia Robinson

Technical Editing
Wiley-Dreamtech India Pvt Ltd

Copy Editor
Mary Lagu

Editorial Manager
Mary Beth Wakefield

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Bob Ipsen

Vice President and Publisher
Joseph B. Wikert

Executive Editorial Director
Mary Bednarek

Project Coordinator
April Farling

Graphics and Production Specialists
Beth Brooks
Jonelle Burns
Jennifer Heleine

Quality Control Technician
Susan Moritz

Permissions Editor
Laura Moss

Media Development Specialist
Angela Denny

Book Designer
Kathie S. Schnorr

Proofreading and Indexing
Publication Services

Cover Design
Michael Trent

557386 FM.qxd 4/2/04 10:00 AM Page viii

557386 FM.qxd 4/2/04 10:00 AM Page ix

To Kiana, Gareth, and Ashley, my guardian angels

557386 FM.qxd 4/2/04 10:00 AM Page x

557386 FM.qxd 4/2/04 10:00 AM Page xi

Preface

Who should buy this book? What’s covered? How do I read this book? Why should I
read this book? HTML? XHTML? CSS? Sheesh! Why not just use a Web page editor?

Who am I?

Welcome!
“Wow! Another Web book! What makes this one different?”

That’s a fair question. I want you to be confident that Creating Cool Web Sites with HTML,
XHTML, and CSS will meet your needs as well as provide fun and interesting reading. So
spend a minute and breeze through my preface to ensure that this is the book you seek. . . .

What This Book Is About
In a nutshell, Creating Cool Web Sites with HTML, XHTML, and CSS is an introduction to
HTML, XHTML, and Cascading Style Sheets. HTML is the HyperText Markup Language, and
it’s the language that enables you to create and publish your own multimedia documents on
the World Wide Web. Millions of users on the Internet and online services such as America
Online, Earthlink, and the Microsoft Network are spending hours each day exploring the world
of the Web from within their Web browser, be it Internet Explorer, Netscape Navigator, or any of
a variety of other programs. XHTML is the modern “proper” version of HTML and is the future
of the markup language. Cascading Style Sheets are also part of that future, and it’s a rare
modern Web site that doesn’t use at least some element of CSS in its design and layout.

By using all these technologies, you can learn to quickly and easily create attractive docu­
ments that are on the cutting edge of interactive publishing. I went through the pain of learn­
ing HTML back in 1994, the very dawn of the Web era, precisely because I wanted to spread
my ideas to a global audience. For me, learning was hit or miss because the only references
I could find were confusing online documents written by programmers and computer types.
For you, it will be a lot easier. By reading this book and exploring the software and samples
included on the companion Web site, you can learn not only the nuts and bolts of HTML,
XHTML, and CSS, but also quite a lot about how to design and create useful, attractive Web
sites and spread the word about them on the Net.

557386 FM.qxd 4/2/04 10:00 AM Page xii

�

Prefacexii

Before you delve into this book, you should know the basics: what the Internet is, how to get
on it, and how to use your Web browser. If you seek detailed information on these topics, you
can find many interesting and useful books from Wiley Publishing at http://www.wiley.com/
compbooks. After you have this basic knowledge, you’ll find that Creating Cool Web Sites with
HTML, XHTML, and CSS is a fun introduction to the art and science of creating interesting—
and, if I may say so, cool—Web sites that you’ll be proud of and that other users will want to
visit and explore.

Why Not Just Use a Web Page Builder?
If you’ve already flipped through this book to see what’s covered, you’ve seen a ton of differ­
ent sample listings with lots and lots of < and > instructions. Yet the advertisements in every
computer magazine are telling you that you don’t need to get your hands dirty with HTML
and CSS when you can use a Web page editor. So what’s the scoop?

The scoop—or the problem, really—is that every Web page editor I’ve used is designed to
create pages for a particular Web browser and has at best a limited understanding of the rich,
complex, evolving HTML language. Use Microsoft Front Page 2000, for example, and your
site will almost certainly look best in Internet Explorer (a Microsoft product).

It’s a subtle but insidious problem. One clue to this lurking problem is that surveys of Web
developers invariably demonstrate that almost all the most popular Web sites are coded by
hand, not with fancy page-building systems.

A development company that I occasionally help with online design recently sent me a plea
because they had encountered this inconsistency in browser presentation:

Dave, Help! Everything looks different in the different browsers!! This is turning
out to be a nightmare! How much effect do different browsers have on the
appearance of the site? My customer is using AOL and from the e-mail she sent
me, things are a mess. When I look at the site, it pretty much is ok. There are a
few modifications to make - font, bold - but what’s going on?

That’s one of the greatest frustrations for all Web site designers: Not only do different versions
of Web browsers support different versions of HTML and CSS, but the exact formatting that
results from a given HTML tag or CSS style varies by Web browser, too. It’s why the mantra
of all good Web designers is “test, test, test.”

In fact, if you’re going to get serious about Web development, I would suggest that you con­
sider a setup like I have: Before you officially say that you’re done with a project, check all
the pages with the two most recent major releases of the two biggest Web browsers on both a
Mac and a Windows system. (That’s a total of eight different browsers. Right now, I have the
two most recent versions of Internet Explorer and Netscape loaded on both of my computers.)

557386 FM.qxd 4/2/04 10:00 AM Page xiii

xiii �Preface

Text Conventions Used in This Book
Stuff I ask you to type appears in bold, like this: something you actually type. I also use bold
in some lines of HTML source code to point out the specific tag or attribute that the discus­
sion is focusing on.

Filenames, directories, URLs, and names of machines on the Net appear in a special type­
face, like this: http://www.whitehouse.gov/WH/html/Guest_Book.html.

HTML-formatted source code appears in that same special typeface, but on separate lines,
like this:

<html>
<title>How to Create Cool Web Sites</title>

Icons Used to Help You Navigate
I use the following icons to help you find your way around the text and to point out important
additional information that I want to emphasize.

� This icon points out some expert tricks and techniques that can help you work
tip more efficiently.

� Pay attention to this icon. It alerts you to possible pitfalls and may help you avoid
caution trouble.

� Check out this icon for additional details that deserve special attention and may
note help you work better in the long term.

� Jump to the chapters elsewhere in the book that this icon points you to. You’re
x-ref bound to run into some good information or more details about the topic at hand.

This icon points you to helpful information or samples on the companion Web site
on the that accompanies this book (http://www.intuitive.com/coolsites/) or to sites� elsewhere on the Net. web

557386 FM.qxd 4/2/04 10:00 AM Page xiv

�

Prefacexiv

Who Should Read This Book?
You can use this book to learn HTML, XHTML, CSS, and the techniques needed to create
cool Web sites. All you need is a simple text editor, such as Notepad (which comes with
Windows) or TextEdit (which is part of the Macintosh operating system), and a Web browser.
If you’re already online and have a Web browser installed on your computer, you can easily
explore all the examples in this book by going to this book’s accompanying Web site at
http://www.intuitive.com/coolsites/.

What’s on the Companion Web Site?
What would a Web book be without a companion Web site? The Creating Cool Web Sites
with HTML, XHTML, and CSS Web site can be found at http://www.intuitive.com/
coolsites/. The site contains every single example in the book, pointers to every site men­
tioned, the extended table of contents for the book, and a sample chapter for your reading
pleasure. In addition, you’ll find an errata page in case any typos or glitches have come to
light between when we wrapped up production and when you picked up this book. From this
site, you can also access my Booktalk weblog, which offers a fun and informal Q&A environ­
ment where you can ask me questions about specific issues that might puzzle or confuse you.

Be Productive in No Time!
By the time you’re halfway through this book, you’ll be able to whip up the kind of pages you
see every day, guaranteed. And by the time you finish this book, you’ll know other ways to
organize information to make creating Web versions of print material easy. You’ll also learn
about the nuances of XHTML and the tremendous power and capabilities that Cascading Style
Sheets add to the equation, as well as why it’s crazy not to include at least rudimentary CSS
elements in your everyday site development work.

Want to contact the author? Send e-mail to taylor@intuitive.com or visit my home page
on the Web at http://www.intuitive.com/.

If you’re ready, let’s go!

557386 FM.qxd 4/2/04 10:00 AM Page xv

Acknowledgments

No writing project can be completed while the author is locked in a room, although if
there’s a good Net connection, we can probably negotiate something! Seriously, a num­

ber of Internet folk have proven invaluable as I’ve written the different editions of this book—
some for their direct help and others for simply having produced some wickedly cool Web
pages that inspired me when things were moving a bit slowly.

Special thanks go to my many students at The University of Phoenix Online and elsewhere
who helped clarify what made sense and what didn’t in the previous editions of the book. I
also particularly appreciate the continued assistance of the team at Wiley Publishing, includ­
ing notably Sharon Cox and Jodi Jensen, and Dreamtech for the technical edit. My friends
and colleagues John Locke, Bo Leuf, Werner Klauser, Jon Shemitz, Richard Blum, and Jon
Trelfa helped keep the content fresh and accurate and helped to continually remind me that
there’s more to learn. Special thanks also to search engine expert Dan Murray for his help on
Google page ranking algorithms.

Most of the graphics presented in this book were created in GraphicConverter, a wonderful
shareware application for the Macintosh, though I used Adobe Photoshop CS a few times.
Screen shots were done with MW Snap on the PC and Snapz Pro X on the Macintosh. Most of
the book was written on my aging Apple Macintosh G4/450 system (I have to admit, I’m a
Mac guy at heart), and the Windows work was all done on a 900MHz Pentium III box running
Windows XP.

Finally, warm hugs to Linda, Ashley, Gareth, Jasmine, Karma, Angel, and, of course, the
newest member of my family, Kiana, for ensuring that I took sufficient breaks to avoid carpal
tunnel syndrome or any of the other hazards of overly intense typing. The time off would be a
lot less fun without ya!

557386 FM.qxd 4/2/04 10:00 AM Page xvi

557386 FM.qxd 4/2/04 10:00 AM Page xvii

Contents

Preface . xi

Acknowledgments . xv

Part I: Building a Wicked Cool Web Page

Chapter 1: So What’s All This Web Jazz? . 3
What Is the Web Anyway? . 3

Linear media . 3
Hypermedia . 4
Cool spots on the Web . 5

Introduction to Internet Explorer . 8
Launching Internet Explorer . 9
Changing the default page . 11

All about URLs . 12
URLs to the rescue . 12
Reading a URL . 13
FTP via URL . 14

Anonymous FTP . 14
Nonanonymous FTP . 15

Ports . 15
Using FTP URLs . 16
Special characters in URLs . 16
E-mail via URL . 17
Telnet via URL . 17
Usenet news via URL . 18
The heart of the Web: HTTP URLs . 18
Summary . 20

Chapter 2: Building Your First Web Page: HTML Basics 21
Basics of HTML Layout . 21

HTML and browsers . 22
If you open it, close it . 23

Breaking at Paragraphs and Lines . 24
Building Your First Web Page . 28

Launching your HTML editor . 28
Saving your file as HTML . 29

1

557386 FM.qxd 4/2/04 10:00 AM Page xviii

�

Contentsxviii

Opening the file in Internet Explorer . 31
Improving the HTML and viewing it in the browser 32

Breaking Your Document into Sections . 32
Adding a Title to Your Page . 34
Adding Footer Material . 35
Defining Section Heads . 37
Using the Horizontal Rule . 40
Introducing XHTML . 41
Summary . 42

Chapter 3: Presenting Text Attractively . 43
First, a Little History . 44
Helping Readers Navigate with Bold and Italic . 44
Underlining, Monospace, and Other Text Changes 46
Specifying Font Sizes, Colors, and Faces . 49
Applying Logical Styles . 52
Putting It All Together . 54
Summary . 56

Chapter 4: Moving into the 21st Century with Cascading Style Sheets 57

Types of CSS . 58

Inline CSS . 58
One definition, many references . 59
Sharing a single style sheet . 62

The Components of CSS . 62
Classes and IDs . 63
Subclasses . 64
Adding comments within CSS . 65
Compatible style blocks . 65

Text Formatting with CSS . 66
Bold text . 66
Italics . 66

Changing Font Family, Size, and Color . 67
Typefaces and monospace . 67
Changing font size . 69
The color of text . 70

Additional Neato Text Tricks in CSS . 71
Small capitals . 71
Stretching or squishing letter spacing . 72
Stretching or squishing words . 73
Changing line height . 73
Text alignment . 74
Vertical text alignment . 74
Text decorations . 75
Changing text case . 76
Putting it all together . 76

Summary . 80

557386 FM.qxd 4/2/04 10:00 AM Page xix

xix �Contents

Chapter 5: Lists and Special Characters . 81
Definition Lists . 81

Good list, bad list . 84
Unordered (Bulleted) Lists . 85
Ordered (Numbered) Lists . 87
List Formats . 90

Bullet shapes . 92
CSS control over lists . 94
Counting the CSS way . 95
List-style shortcuts . 96

Character Entities in HTML Documents . 96
Nonbreaking Spaces . 99
Comments within HTML Code . 99
Summary . 101

Chapter 6: Putting the Web in World Wide Web: Adding Pointers and Links . . . 103

Pointing to Other Web Pages . 103
Referencing Non-Web Information . 106
Referencing Internal Documents with Relative URLs 108
Organizing a Web Site . 109
Defining Web Document Jump Targets . 113
Adding Jump Links to Your Web Pages . 114

Jumping into organized lists . 117
Linking to jump targets in external documents 119

Changing Link Colors . 119
Summary . 120

Chapter 7: From Dull to Cool by Adding Graphics 121
Image Formats . 122
Including Images in Web Pages . 123
Text Alternatives for Text-Based Web Browsers 127
Image Alignment Options . 128

Standard alignment . 129
More sophisticated alignment . 130

Background Colors and Graphics . 136
Where Can You Find Images? . 140

Creating your own . 140
Clip art or canned image libraries? . 141
Scanned or digital photographs . 142
Working with digital photographs . 144
Grabbing images off the Net . 146

Art today . 146
The shock zone . 146
But wait! There’s more . 147

Transparent Colors . 147
Animated GIF images . 149
Image-Mapped Graphics . 149

Building an image map . 150

557386 FM.qxd 4/2/04 10:00 AM Page xx

�

Contentsxx

Audio, Video, and Other Media . 153
Movies all night . 154
Streaming audio and video . 154

Summary . 156

Part II: Rockin’ Page Design Strategies 157

Chapter 8: Tables and Frames . 159
Organizing Information in Tables . 159

Basic table formatting . 160
Advanced table formatting . 165
Table attributes that aren’t 100 percent portable 168
Modifying edges and grid lines . 169

Tricks with Table Layouts . 171
Tables within tables . 171
Grouping table elements for faster rendering 176
Grouping tables to speed up display . 177

Pages within Pages: Frames . 181
The basics of frames . 181
Specifying frame panes and sizes . 183
More fun with frames . 189

Inline Frames . 190
Summary . 193

Chapter 9: Forms, User Input, and the Common Gateway Interface 195

An Introduction to HTML Forms . 196

Asking for feedback on your site . 198
Adding drop-down lists and radio buttons . 200
Tweaking the select element . 201

Fancy Form Formatting . 204
Easy Searching from Your Page . 206
Another Look at Hidden Variables . 208
How CGI Scripts Work . 210

The world’s simplest CGI example . 211
Sending information via the environment . 213
Sending and reading data . 214
Receiving information from forms . 215
Learning more about CGI programming . 216

Summary . 217

Chapter 10: Advanced Form Design . 219
The button Input Type . 220
Using Labels to Organize User Focus . 222
Dividing Forms into Fieldsets . 224
Tab Key Control on Input . 228
The accesskey Attribute . 230
Disabled and Read-Only Elements . 231
Summary . 233

557386 FM.qxd 4/2/04 10:00 AM Page xxi

xxi �Contents

Chapter 11: Activating Your Pages with JavaScript 235
An Overview of JavaScript . 236

Variables . 236
Where do you put JavaScript? . 237
Events . 237
Expressions . 238
Looping mechanisms . 239
Subroutines, built-in and user-defined . 240

Built-in functions . 240
Testing Browser Compatibility . 241
Graphical Rollovers . 243

Creating a new image container . 244
Assigning a URL to the new image container 244
Changing values on the fly . 245
Telling the time . 248
Time of day, the friendly version . 249
Locale-specific date and time . 249
A built-in clock . 250

Testing Form Values . 251
Creating a test condition . 252

A Temperature Converter . 254
Other Scripting Solutions . 255

Visual Basic Script . 255
Java . 256

Referencing Java applets . 257
Online Java applets . 257

ActiveX . 257
XSLT . 258
Flash . 259

Summary . 260

Chapter 12: Advanced Cascading Style Sheets 261
Boxes and Containers . 261
The Different Parts of a Container . 263

Margins . 263
Borders . 265

Multiple value options . 266
Border-style values . 267

Padding . 269
Container Dimensions . 271

Setting the container height . 272
Text and container flow . 273

Container Positioning . 274
Absolute positioning . 275
Relative positioning . 276

557386 FM.qxd 4/2/04 10:00 AM Page xxii

�

Contentsxxii

So what’s the point? . 277
Fixed positioning . 278

Hide Containers with the Visibility: Attribute . 279
Controlling visibility with JavaScript . 280
The display: attribute controls visibility and flow 283
Stacking: Using z-indexes for a 3D page . 286
Using JavaScript to change z-index values . 287

Summary . 291

Chapter 13: Site Development with Weblogs 293
What Is a Weblog? . 294
Working with a Weblog . 297

Installing a weblog . 297
Configuring a weblog . 298
Adding a weblog entry . 300

The World of RSS . 301
Creating Valid XML / RSS Feeds . 303

Validating an RSS feed . 305
Exploring further . 306

Summary . 306

Part III: Expanding Your Page into a Web Site 307

Chapter 14: Web Sites versus Web Pages 309
Working with Subdirectories . 309

The subdirectory structure of AnswerSquad . 311
An even bigger site: Intuitive.com . 311

Protecting Web Sites and Directories . 313
Server-Side Includes . 316

Useful server-side include options . 317
config . 317
include . 317
echo . 317
fsize . 318
flastmod . 318
exec . 318

SSI environment variables . 319
Building a Web site using SSI . 321

Summary . 322

Chapter 15: Thinking about Your Visitors and Your Site’s Usability 323

What Makes a Site Usable? . 323

Amount of information presented . 324
Organize information on the page . 326
Standardize the screen layout . 326
Presentation of text and graphics . 328
Choice and uses of color . 329

557386 FM.qxd 4/2/04 10:00 AM Page xxiii

xxiii �Contents

Navigating Your Web Site . 330
Tracking navigation . 331
Site search engines . 332
Site maps . 332

Using Cookies to Remember User Information . 333
Summary . 334

Chapter 16: Validating Your Pages and Style Sheets 335
Validating HTML and XHTML Web Pages . 335

Specifying a character set . 337
Validating an HTML page . 337

Validating XHTML Pages . 341
Validating CSS . 344

MIME types and brick walls . 344
Uploading CSS specifications by file . 345

Creating Valid Mobile Web Page Layouts . 347
A deck of cards . 348
WAP versus WML . 348
So what does WML look like? . 348

Summary . 350

Chapter 17: Building Traffic and Being Found 351
Producing Crawler-Friendly Sites . 352

Creating meaningful titles . 352
Using keywords in your title . 352
Using the <meta> tag . 353

Microsoft (http://www.microsoft.com) . 355
Nostarch Press (http://www.nostarch.com) 355
Intuitive Systems (http://www.intuitive.com) 355
The Internet Movie Database (http://www.imdb.com/) 355
Contentious (http://www.contentious.com) 355

Other uses for the <meta> tag . 356
Content rating with PICS . 356
Keeping crawlers away . 358

The Dark Side of Crawlers . 360
Registering with Web Index and Search Sites . 360

Joining a directory site . 361
Yahoo! (http://www.yahoo.com) . 361
The Open Directory Project (http://www.dmoz.org/) 361

Signing up for a crawler or robot site . 362
Google (http://www.google.com) . 362
Lycos (http://www.lycos.com) . 362
AltaVista (http://www.altavista.com) . 363

Tying In with Related Sites Using a Web Ring . 363
The Basics of Banner Advertising . 364
Text Advertising Options and Pay Per Click . 367

Smart text advertisements . 368
Publicizing Your Site . 369
Summary . 369

557386 FM.qxd 4/2/04 10:00 AM Page xxiv

�

Contentsxxiv

Closing Thoughts . 371

Appendix A: Step-by-Step Web Site Planning Guide 373

Appendix B: Finding a Home for Your Web Site 379

Index. 385

557386 PP01.qxd 4/2/04 10:01 AM Page 1

�IBuilding a

�
Chapter 1

Chapter 2

Chapter 3

Chapter 4

Cascading Style Sheets

Chapter 5

Lists and Special Characters

Chapter 6

Putting the Web

Chapter 7

Graphics

Part

Wicked Cool
Web Page

In This Part

So What’s All This Web Jazz?

Building Your First Web Page:
HTML Basics

Presenting Text Attractively

Moving into the 21st Century with

in World Wide
Web: Adding Pointers and Links

From Dull to Cool by Adding

557386 PP01.qxd 4/2/04 10:01 AM Page 2

557386 Ch01.qxd 4/2/04 9:52 AM Page 3

�1
chapterSo What’s All

This Web Jazz?

Introducing Microsoft Internet Explorer

� In This Chapter
Looking at linear media and hypermedia

Checking out some cool Web sites

Examining FTP

Learning about URLs

This chapter covers the basics of the Web, showing how information pointers
help you organize information and illustrating how Web browsers can simplify

file transfer, searches, and other Internet services. It also introduces you to
Microsoft Internet Explorer.

First, however, I define the concept a web of information. So before you study the
basics of creating cool Web pages, take a close look at what the Web is, how it
works, and what HTML is all about. I promise to be brief!

What Is the Web Anyway?
To understand the World Wide Web, consider how information is organized in print
media. Print media, I think, is a good model for the Web, although others may feel
that adventure games, movies, TV, or other information-publishing media provide
a better comparison.

Linear media
Consider the physical and organizational characteristics of this book for a second.
What is most notable? The book has discrete units of information—pages. The
pages are conceptually organized into chapters. The chapters are bound together

557386 Ch01.qxd 4/2/04 9:52 AM Page 4

�

4 Creating Cool Web Sites with HTML, XHTML, and CSS

to comprise the book itself. What you have in your hands is a collection of pages organized
in a format conducive to your reading them from the first page to last. However, there’s no
reason why you can’t riffle through the pages and create your own strategy for navigating
this information.

Are you still with me? The book is an example of linear information organization. Most books,
including this one, are organized with the expectation that you’ll start at the beginning and
finish at the end.

Hypermedia
Imagine that instead of physically turning the page, you can simply touch a spot at the bot­
tom of each page—a forward arrow—to flip to the next page. Touching a different spot—a
back arrow—moves you to the preceding page. Furthermore, imagine that when you look at
the table of contents, you can touch the description of a chapter to flip directly to the page
where that chapter begins. Touch a third spot—a small picture of a dictionary—and move to
another book entirely.

Such a model, based on the user being able to move around quickly with the click of a but­
ton, is called hypermedia or hypertext, terms coined by mid-twentieth-century computer
visionaries, most notably Ted Nelson in his book Computer Lib. This more dynamic approach
to information organization offers a number of benefits to the reader. One immediate boon is
that the topical index becomes really helpful: Because you can touch an item of interest in
the index, whether an explanatory narrative or descriptive reference material, you can use
the same book as a reference work or as the linearly organized tutorial that it’s intended to
be. It’s like the best of two worlds—the linear flow of an audio or video tape and the instant
access of a DVD or music CD.

� Another benefit of hypertext is how it presents footnotes. Footnote text no longer
note clutters up the bottom of the page. With hypertext, you merely touch the asterisk or

footnote number in the text, and a tiny page pops up to display the footnote.

You can also touch an illustration to zoom into a larger version of that illustration or maybe
even convert the illustration into an animated sequence or 3D space. Within the 3D space,
you can cruise around and examine the item from a variety of vantage points.

Obviously, what I’m describing here are Web pages. An additional capability of the Web
makes things much more fun and interesting: These pages of information can reside on sys­
tems throughout the world.

The pages themselves can be quite complex (and, ideally, cool and attractive) documents.
Instead of writing on your Web page “Visit the White House Web site to learn more” (leaving
readers stranded and unsure of how to proceed), you can provide a direct link to that site.
Readers can click certain highlighted words—or a picture of the building—and immediately
zoom to the White House site. Very cool, huh?

557386 Ch01.qxd 4/2/04 9:52 AM Page 5

5 �Chapter 1: So What’s All This Web Jazz?

Cool spots on the Web
Figure 1-1 shows a typical Web document that you will explore later in the book. Notice, in
particular, the underlined words, each of which is a link to another Web document on the
Internet.

Figure 1-1: Some interesting governmental spots to visit on the Internet.

If you’re on the Internet and you click the phrase National Institute for Literacy, for example,
you travel (electronically) to the institute’s headquarters in Washington, D.C., as shown in
Figure 1-2.

What makes this electronic travel from Web site to Web site so compelling for me (and for
millions of other users) is that there aren’t just thousands or tens of thousands of Web docu­
ments to visit—there are millions. So many pages exist, in fact, that no one has ever visited
all of them. Because so many documents are available, finding the information you’re seek­
ing is perhaps the single greatest challenge on the Internet.

Although it’s certainly true that much of the information on the World Wide Web consists of
rich multimedia documents written in HTML specifically for the enjoyment of Web readers, a
surprising number of documents actually come from other types of information-publishing
services on the Internet. These documents are presented in the most attractive formats possi­
ble within the Web browser itself.

557386 Ch01.qxd 4/2/04 9:52 AM Page 6

�

6 Creating Cool Web Sites with HTML, XHTML, and CSS

Figure 1-2: The National Institute for Literacy site.

The simplest of these alternative information services on the Internet is FTP (File Transfer
Protocol). FTP is a mechanism for accessing lists of remote folders on hard disks and then
directly accessing specific files within those folders. It’s been around for a long time—long
before the Web was ever envisioned. Traditionally, working with FTP has been a pain, and the
interface has always been only a tiny step away from programming the computer directly.
From a Unix host, for example, you type the following sequence of steps to connect to the
Microsoft Corporation FTP archive called ftp.microsoft.com. (What you type is shown in
boldface in the following listing; everything else is output from the system):

$ ftp ftp.microsoft.com

Connected to ftp.microsoft.com.

220 Microsoft FTP Service

Name (ftp.microsoft.com:taylor): anonymous

331 Anonymous access allowed, send identity (e-mail name) as password.

Password:

230-This is FTP.Microsoft.Com.

230 Anonymous user logged in.

Remote system type is Windows_NT.

ftp> dir MISC1

227 Entering Passive Mode (207,46,133,140,58,113).

125 Data connection already open; Transfer starting.

557386 Ch01.qxd 4/2/04 9:52 AM Page 7

7 �Chapter 1: So What’s All This Web Jazz?

dr-xr-xr-x 1 owner group 0 Aug 2 2002 beckyk
dr-xr-xr-x 1 owner group 0 Aug 14 2002 BUSSYS
dr-xr-xr-x 1 owner group 0 Aug 14 2002 DESKAPPS
dr-xr-xr-x 1 owner group 0 Aug 14 2002 DEVELOPR
dr-xr-xr-x 1 owner group 0 Aug 1 2002 FULLKB
dr-xr-xr-x 1 owner group 0 Mar 28 2002 jeffreyf
-r-xr-xr-x 1 owner group 6029 Aug 7 2002 kb.CSS
dr-xr-xr-x 1 owner group 0 Aug 1 2002 KBSPV
dr-xr-xr-x 1 owner group 0 Aug 14 2002 PEROPSYS
226 Transfer complete.
ftp>

Calling such a procedure complex would be an understatement. Of course, FTP is fast and
easy to use after you learn all the magic. However, using a computer should enable you to
focus on what you want to accomplish instead of how to accomplish it.

Compare the preceding example with the following procedure that shows you how to use
Microsoft Internet Explorer to access the same archive directly (see Figure 1-3). Instead of
typing all the information required in the preceding method, you simply choose File ➪ Open
and type ftp://ftp.microsoft.com/MISC1 in the Open box. In this example, ftp indicates
what kind of service you want, the :// part is some fancy (if mysterious) notation, and
ftp.microsoft.com/MISC1 is the name of the remote system and the directory to view.
Finally, you just click on OK or press Enter.

Figure 1-3: Microsoft Internet Explorer visits Microsoft’s FTP archive.

The location format (ftp://ftp.microsoft.com/MISC1) is called a Uniform Resource
Locator (URL).

Ready to visit a listed directory or folder? Click it, and you move to that spot. Ready to grab
a file? Just click the file, and Explorer automatically figures out the file type, asks what you
want to call the file on your PC, and transfers it across. No fuss, no hassle.

557386 Ch01.qxd 4/2/04 9:52 AM Page 8

�

8 Creating Cool Web Sites with HTML, XHTML, and CSS

� Throughout this book, I use PC to refer generally to any personal computer. I’m
tip actually writing this book on a Macintosh and double-checking things on a

Windows XP system.

Easy FTP isn’t a unique feature of Explorer; it’s a capability of all Web browser packages,
including the popular Camino open source browser on Mac OS X. Figure 1-4 shows the
Microsoft FTP site in Camino.

Figure 1-4: Camino visits Microsoft’s FTP archive.

Here’s where the difference between the paper and the words becomes important: The type
of service that you can connect with is what I call the information transfer system, and the
actual information presented is the content. By analogy, the Web is the information transfer
system, and Hypertext Markup Language—HTML—is the format used for content. Some of
the HTML documents available on the Internet aren’t available within the Web itself; instead,
they are accessible directly via FTP. Furthermore, some documents may be right on your
hard disk or on a local CD-ROM, in which case you are seeing the formatting but not the
usual transport mechanism.

Introduction to Internet Explorer
Unless you were living under a rock back then, you probably noticed the hoopla surrounding
the unveiling of Windows 95 in 1995. Windows 95 was much more than just an operating
system; it was a whole new environment for PC users—an environment focused on making

557386 Ch01.qxd 4/2/04 9:52 AM Page 9

9 �Chapter 1: So What’s All This Web Jazz?

the computer easier to use and the interface more seamless and consistent. Then Microsoft
released Windows 98, Windows 2000, and their latest OS, Windows XP. Each release has
included a successively more sophisticated version of Internet Explorer, and each has also
more tightly integrated the Web browser into the operating system itself.

Just as Netscape made constant revisions to its Navigator browser in the past, Microsoft has
been on an aggressive upgrade path with major releases distributed as fast as the company
can complete them. By this point, Microsoft has pulled ahead, and Netscape, now a part of
Time Warner Corporation, has morphed into an open source project called Mozilla. Because of
its dominant position in the marketplace, I focus primarily on Internet Explorer in this book;
but where it is important, I examine pages in other browsers and talk about compatibility and
cross-platform consistency of appearance.

Launching Internet Explorer
When you’re ready to start browsing the Web, you need to find and launch Internet Explorer.
You can most easily do so by double-clicking the e icon on your desktop, or launching the
application from the ubiquitous Start button in Windows.

The first time you start Explorer, it tries to connect to the Microsoft home page on the World
Wide Web. This could be a problem if you don’t already have your Internet connection up
and running. If a problem occurs, don’t worry; just choose Cancel when a dialog box pops up
asking for a phone number to dial or the program otherwise indicates that it’s waiting for a
Net connection. You end up looking at a blank page, but all the controls are there. Now, from
the File menu, choose Open. That brings up the Open dialog box, as shown in Figure 1-5.

Figure 1-5: In the Open box, you can type the URL for the Creating Cool Web Sites home page
(http://www.intuitive.com/coolsites/) and click OK.

Now you’re getting somewhere! Type the URL for this book, http://www.intuitive.com/
coolsites/, and click OK, and Internet Explorer should promptly open up the file and the
associated graphics, displaying it all in one neat window. You might have different toolbars
appearing on your screen, but it’s easy to change back and forth by using the Preferences
settings. Figure 1-6 shows how the Creating Cool Web Sites Web page should look on your
screen.

557386 Ch01.qxd 4/2/04 9:52 AM Page 10

�

10 Creating Cool Web Sites with HTML, XHTML, and CSS

Figure 1-6: The Creating Cool Web Sites home page shown in Internet Explorer.

If the Standard toolbar is displayed, you see a set of small buttons that can help you move
around the Web. Starting from the left, these buttons let you move backward and forward in
the set of pages you’re viewing or stop the transfer of a slow page. You can also refresh the
current page (that is, get a new copy of the page and rewrite the screen—this will prove a
huge help as you develop your own Web pages). Finally, you can instantly zip back to your
home—or default—page.

The magnifying glass enables you to pop straight to your favorite Web search engine, and the
star icon enables you to open your list of favorite sites; you might have heard this called your
Bookmark list. Immediately next to the star icon is a small globe and musical note button,
which offers easy access to various media on the Net, including Internet radio. Next is the
history button, a clock with a green arrow. (It’s kind of hard to figure out the meaning of this
icon. It was different in previous versions.) Use this if you forgot to bookmark a page you vis­
ited 20 minutes ago. It returns you to previous pages you’ve visited, in order of most recent
to least recent.

The Envelope button lets you send and receive electronic mail (e-mail). Finally, use the Print
button (the printer) to print the page you’re viewing and the Edit button to transfer the cur­
rent page into Microsoft FrontPage (if you have that program installed).

557386 Ch01.qxd 4/2/04 9:52 AM Page 11

11 �Chapter 1: So What’s All This Web Jazz?

Figure 1-7 shows the Internet Explorer toolbar buttons.

Stop Home PrintFavorites History

Back Forward Refresh Search Media E-mail Edit
Figure 1-7: Handy Windows XP Internet Explorer shortcuts from the toolbar.

Changing the default page
Now that you have the program running, here’s a useful trick before you begin your explo­
ration of HTML and the mysteries and adventure of building cool Web pages: Change your
default (home) page to the Cool Web Sites page, which should be the page currently dis­
played on your screen. When you have learned how to write cool Web pages, you can
change the default to your own page or perhaps to a useful site on the Internet.

To change your default page, follow these steps:

1.	 Choose Tools ➪ Internet Options. You should see something remarkably similar to

Figure 1-8.

Figure 1-8: Changing your default start page.

557386 Ch01.qxd 4/2/04 9:52 AM Page 12

�

12 Creating Cool Web Sites with HTML, XHTML, and CSS

2.	 Because you’re currently viewing the page that you want to make your default page,
simply click the Use Current button, and you’re finished.

That’s all there is to it. The next time you start up Internet Explorer, you’ll find the cheery
Creating Cool Web Sites page conveniently accessible.

Take a few minutes now to scroll around and click the Examples button to see how I’ve laid out
the hundreds of example files so that they parallel what’s discussed in this book. Remember
that you can always use the back arrow on the toolbar to go back to the preceding page.

All about URLs
As our society has made the transition from products to information, we have seen the rapid
acceleration of an age-old problem: identifying needed resources. Finding and obtaining
resources have been important themes of world history, whether those resources be spices,
fuel, raw materials, or information.

Today, computers should make searching easier. After all, aren’t computers supposed to be
experts at sifting through large collections of data to find what you’re looking for? Well, yes
and no.

First, I should differentiate between data and information. Data is stuff—an all-encompassing
body including every iota of digital memory and space on hard disks and backup tapes.
Information, on the other hand, is the data relevant to and valuable for your specific interests.
If you’re interested in Beat poets of the 1960s, for example, information on other topics such
as municipal drainage systems or needlepoint isn’t valuable at all, but rather is clutter.

Computers have tremendously expanded the proliferation of data. As a result, separating
information from the massive flood of data is one of the fundamental challenges of the age of
information. I can only imagine how much worse the situation will get in the next decade as
more and more data flows down the wires.

When considered in this light, the Internet has a big problem. Because it has no central
authority or organization, the Net’s vast stores of data are not laid out in any meaningful or
intuitive fashion. You are just as likely to find information on Beat poets on a machine run
by a German embassy as you are to find it on a computer in a small liberal arts school in
San Francisco.

URLs to the rescue
CERN (European Organisation for Nuclear Research) is a high-energy physics research facil­
ity in Switzerland that created the underlying technology of the World Wide Web. When Tim
Berners-Lee and his team at CERN began to create a common mechanism for uniquely
identifying information in dataspace, they realized the need for a scheme that would neatly
encapsulate the various parts and that could be extended to include a wide variety of Internet
services. The result was the URL.

557386 Ch01.qxd 4/2/04 9:52 AM Page 13

13 �Chapter 1: So What’s All This Web Jazz?

To state the case succinctly, a URL is a unique descriptor that can identify any document
(plain or hypertext), graphic, Usenet article, computer, or even an archive of files anywhere
on the Internet or your machine. That’s what makes URLs so tremendously valuable—
although their format seems a bit puzzling and cryptic at first.

The name URL is something of a misnomer. Many times, jotting down URLs as you surf the
Web only helps you find resources the second time, serving as a sort of memo service for
your Internet travels. Resource location—finding information for the first time on the Internet
and the World Wide Web—is a problem I explore later in this book, in Chapter 17. For now,
think of URLs as business cards for specific resources on the network.

Reading a URL
The format for specifying a URL is consistent throughout the many services that you can ref­
erence with URLs, including Usenet news, Web documents, and FTP archives. As a general
rule, a URL is composed of the following elements:

service :// hostname / directory-path

Not all these components appear in each URL, as you will see later in this chapter when you
learn about the different types of URLs for different services. But the preceding example is a
good general guide.

Consider the following example:

http://www.intuitive.com/coolsites/index.shtml

In this example, the service is identified as http:. HTTP stands for Hypertext Transfer
Protocol, the method by which Web documents are transferred across the Internet. By using
http:, you indicate to your browser—such as Explorer or Netscape Navigator—that you’re
connecting to a Web document. The host computer that offers the information you seek is
www.intuitive.com. The com (called the zone) tells you that the site is a commercial site;
intuitive is the domain or host; and www is the name of the Web server, a particular com­
puter. Usually, as is the case here, you don’t have to specify a port (ports are sort of like TV
channels), because most servers use standard, default port numbers. And finally, from the
server, you are asking for the file index.shtml from the coolsites directory. It is, in fact,
this book’s home page.

The following URL is a slightly more complex example:

ftp://ftp.netscape.com/pub/unsupported/windows/

This URL identifies a file archive for Netscape Corporation. You can see that the URL points
to an archive by its service identifier (ftp, which stands for File Transfer Protocol, the way
files are copied over the Net). The server and host in question is ftp.netscape.com. Notice
that this URL specifies that upon connecting to the FTP server, the browser program should
change to the /pub/unsupported/windows/ directory and display the files within the it.

557386 Ch01.qxd 4/2/04 9:52 AM Page 14

�

14 Creating Cool Web Sites with HTML, XHTML, and CSS

Here’s one more example:

news:alt.internet.services

The preceding URL enables a browser to read the Usenet newsgroup alt.internet.services.
You may notice that this URL is quite different from the other URL examples. For one thing, it
doesn’t specify a host. When you set up your browser program (the details differ from browser
to browser), you indicate (in a preferences or configuration file) which host you can use to
access Usenet. Usually, the host is the news server at your Internet service provider. As a result,
no slashes are required in the URL because the browser already has that information. URLs for
news resources, therefore, boil down to simply the service and newsgroup name.

You can specify a variety of Internet information-publishing services with URLs. The actual
meanings of the URL components differ subtly, depending on which type of service is being
specified. In the following sections, I examine URLs for each service in more detail.

FTP via URL
If you’re familiar with the historical roots of the Internet and its predecessor networks (notably
ARPANET), you already know that one of the earliest uses of the system was to transfer files
quickly between hosts at different sites. The standard mechanism for accomplishing file
transfers was and still is FTP. Although computers have acquired friendlier interfaces, FTP
has remained in the Stone Age. Many users still use clunky command-line interfaces for this
vital function; FTP through a Web browser, however, looks a bit friendlier.

Anonymous FTP
Millions of files are accessible throughout the Net via FTP. At a majority of hosts, you don’t
even need an account to download the files you seek. That’s because a standard Net practice
called anonymous FTP enables any user to log in to an FTP host using the name anonymous.
If asked for a password, you type your e-mail address. Among other uses, you can use
anonymous FTP to acquire new programs for your computer.

FTP was one of the first services addressed in the URL specification developed at CERN. An
FTP URL takes the following form:

ftp://host/directory-path

The URL ftp://ftp.microsoft.com/developr, for example, uniquely specifies the developr
directory of files available via FTP at the host ftp at Microsoft Corporation.

�
In fact, the URL ftp://ftp.microsoft.com/developr specifies more, if only by
omission. By not including a username and password (as you can see in the exam-note ple in the following section), the URL suggests that the site is accessible by anony­
mous FTP.

557386 Ch01.qxd 4/2/04 9:52 AM Page 15

15 �Chapter 1: So What’s All This Web Jazz?

Nonanonymous FTP
Although most Web-browser FTPing is done anonymously, FTP URLs can include the user-
name and password for a specific account. If I had the account coolweb on Microsoft’s
machine and the password was xyzxyz, I could modify the URL to allow other people to
connect to that account, as in the following example:

ftp://coolweb:xyzxyz@ftp.microsoft.com/developr

� You don’t usually see the password included in the URL. Needless to say, it’s not a
note good idea to explicitly include a password in a Web page URL!

Ports
Things can get even more complex when you start dealing with ports. FTP, like other programs
on Internet servers, may be listening to ports other than the default port for its type of service.

Let me explain: Imagine that each computer on the Internet is like a TV station or TV set. It
doesn’t broadcast and receive all data across all possible frequencies; it aims specific types
of data, formatted in prescribed manners, at individual frequencies or channels. On the
Internet, those channels are called ports. If you want to watch your local ABC affiliate, for
example, you may know that the station comes in on channel 7 and not on channel 4. By
the same token, if you want to connect to the mail server on a specific computer, you may
know that the mail server has a default port of 25. Some sites, however, opt to change these
default port numbers (don’t ask why, the reason is usually ugly). In such cases, you need to
identify the special port within the URL.

What if a site decides to offer anonymous FTP for public use, but the site uses port 494
instead of the default FTP port? Then you have to specify that channel number in the URL,
as in the following example:

ftp://ftp.microsoft.com:494/developr

The preceding URL makes a browser connect to channel 494, look for the FTP server, and
then show you the contents of the developr directory.

If you want to use your own account and password simultaneously, put together the URL that
contains all the necessary information, as follows:

ftp://coolweb:xyzxyz@ftp.microsoft.com:494/developr

Fortunately, you’re unlikely to see anything so complex with an FTP URL. In fact, this is
unquestionably a worst-case URL!

557386 Ch01.qxd 4/2/04 9:52 AM Page 16

�

�

16 Creating Cool Web Sites with HTML, XHTML, and CSS

Using FTP URLs
The most valuable thing about FTP URLs is that if you specify a directory, most Web browsers
list the files in that directory. With a click, you can either transfer the files you want or move
into other directories to continue browsing. If you specify a file within the URL, the browser
connects to the server and transfers the file directly to your computer.

The following URL contains all the information you need to obtain a copy of the HTML 3.0
specification document—just in case you want to read this highly complex and lengthy
technical description for some reason:

ftp://ftp.w3.org/pub/doc/html_30.tar.Z

Are you curious about what else is in that directory? To find out, use the same URL, except
omit the actual filename at the end, as shown in the following:

ftp://ftp.w3.org/pub/doc/

Special characters in URLs
URLs have a couple of subtle limitations, things that I had to learn by hit or miss. Fortunately,
you can learn from my mistakes! Among their limitations, the most important is that a URL
cannot contain spaces.

caution It’s worth repeating: URLs cannot contain spaces.

This no-spaces limitation caused me much consternation and some lengthy debugging ses­
sions when I started working with Web servers.

The other limitation is that URLs are case sensitive, even on machines that are otherwise
case insensitive for filenames.

If you have a space in a filename, for example, you have to translate each space into a spe­
cial character that is understood to represent a space within a URL. You can’t use the under­
score character (_), however, because underscores are sometimes used in filenames: if you
automatically translate all spaces to underscores, then all underscores back to spaces, you’d
lose the real underscore that’s supposed to be part of the filename. I repeat: Don’t use it.

Instead, the URL specification enables any character to be specified as—ready for this—a
hexadecimal equivalent prefaced by a percent sign (%). To use test server in a URL, for exam­
ple, replace the space with its hexadecimal equivalent (20), resulting in test%20server.

Instead of ranging from 0 to 9, as in the decimal (base 10) system, hexadecimal (base 16)
numbers range from 0 to 15. Here are the hexadecimal numerals: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
A, B, C, D, E, F. The hexadecimal letters, A–F, represent the decimal numbers, 10–15.

557386 Ch01.qxd 4/2/04 9:52 AM Page 17

�

17 �Chapter 1: So What’s All This Web Jazz?

To compute the decimal equivalent of a hexadecimal number, multiply each number by the
base raised to the appropriate power. Hex 20, therefore, would be 2 × 16 + 0 × 1, or 32 deci­
mal. (Don’t worry if this doesn’t make sense; you’ll probably never need to figure this out.
Just remember to check Table 1-1 for the most common hex equivalents.)

Table 1-1 shows the special URL forms of some common characters that you may encounter
while building URL specifications. To keep the Web browser from getting confused, use a
code for the percent sign itself. Almost perverse, eh?

Table 1-1: URL Coding for Common Characters

Character Hex Value Equivalent URL Coding

Space 20 %20

Tab 09 %09

Percent 25 %25

E-mail via URL
URLs for e-mail are quite simple, fortunately, and require minimal explanation. You can spec­
ify any e-mail address as a URL simply by prefacing the snippet mailto: as the service
name, as in the following example:

mailto:taylor@intuitive.com

Again, make sure that you don’t use spaces in the URL. Note that you can send e-mail in a
URL, but you cannot retrieve it. Why use an e-mail address as a URL? Because it’s nice to
have an e-mail webmaster link (or something similar) on your site, and mailto: is the URL
that allows your users to e-mail the webmaster. A bit later, in the section about hypertext ref­
erences, you see how this type of e-mail address URL is a powerful addition to your regular
page links.

note Almost all browsers launch a separate e-mail program to handle e-mail services.

Telnet via URL
Another service (along with the unquestionably valuable FTP) that caused Internet use to
explode is Telnet. Telnet gives everyone on the Net the capability to log in to other computers
on the Net, just as though they were connected to those machines directly. Not all Internet
computers support Telnet, but many do.

557386 Ch01.qxd 4/2/04 9:52 AM Page 18

�

18 Creating Cool Web Sites with HTML, XHTML, and CSS

Telnet, you will be glad to know, is easy to specify in URLs: You simply specify the service
and the host to which you want to connect. For example, to log in to the Massachusetts
Institute of Technology’s (MIT’s) media laboratory, use the following URL:

telnet://media.mit.edu/

When you use Telnet URLs, your Web browser program actually tries to launch a separate,
external Telnet program to negotiate the Telnet connection, which means that nothing
happens unless you’ve already installed and configured a separate Telnet program, such as
NCSA Telnet. Netscape Navigator, Internet Explorer, Mosaic, and similar browser programs
aren’t designed to enable you to directly interact with the remote computer from within the
browser.

Usenet news via URL
Working with Usenet news is somewhat tricky because you must find an existing server that
allows you to access it. Many systems don’t give you that access, even if you pay for a regu­
lar dialup account. A list of public Usenet hosts—which means hosts that attempt to provide
news free of charge to all comers—is available on the Net, but in my experience only about
5 percent of them actually allow you to connect.

� If you really want to read Usenet newsgroups and your ISP doesn’t offer you access of
on the some sort (almost all do), start at Google Groups at http://groups.google.com/.
web

Building a news URL is a straightforward process. Simply type news: followed by the exact
name of the newsgroup. No slashes are needed (or allowed), and there’s not yet a standard
approach for specifying individual articles. Here are two examples:

news:news.answers
news:comp.sys.ibm-pc.announce

The heart of the Web: HTTP URLs
Although all the services listed so far in this chapter are valuable and interesting when used
through a Web browser, the capability to connect with other Web servers via HTTP is what
really makes the Web revolutionary.

The general format for HTTP references is the same as in the FTP references explained
earlier. Here is a typical HTTP URL:

http://www.trivial.net/trivial.cgi

557386 Ch01.qxd 4/2/04 9:52 AM Page 19

19 �Chapter 1: So What’s All This Web Jazz?

The preceding URL is for the popular Trivial.Net computer trivia game. The URL format
should be quite familiar to you by this point: the service name, a colon, the double slash, the
host name, a slash, and the name of a specific file with the Web standard .html filename
extension to denote an HTML markup file.

�
If your PC is still running Windows 3.x, you already know that it’s unable to cope
with four-letter filename suffixes. Windows simply chops off the fourth character in note the extension, making it .htm instead. Throughout the Net, all files you see with the
.htm suffix are exactly the same as .html files.

As it turns out, many times you don’t even need to specify a filename if you’d rather not do
so. The following is another example of a URL, this time for the Boulder Daily Camera in
Boulder, Colorado:

http://www1.dailycamera.com/bdc/home/

Note that the URL contains a default directory (bdc/home). But because the URL doesn’t
specify a filename, the Web program is savvy enough to choose the default file—probably
index.html—as configured on each server. If your system doesn’t recognize index.html, try
default.html or Welcome.html.

If the HTTP server is on a nonstandard port, of course, that fact would be specified in the
URL, as the following example shows:

http://www.book.uci.edu:80/

The preceding URL is one way to get to the University of California at Irvine bookstore.
Instead of using the default port for an HTTP server, whatever that may be, the site opted to
have people explicitly specify port 80. If you want to create a URL that contains both the port
and a specific filename, you can do so, as in the following example:

http://www.book.uci.edu:80/index.html

� Actually, port 80 is the default port for Web servers; I’m just explicitly showing it in
note these URLs to demonstrate what’s going on. Try this yourself: Next time you go to a

Web site, add :80 after the domain name, but before the slash.

Theoretically, you can specify an unlimited number of different URL types (although you
probably don’t want to know that at this point). The vast majority of the URLs that you’ll see,
however, are in the http, ftp, telnet, mailto, and news formats, as demonstrated in this
chapter.

557386 Ch01.qxd 4/2/04 9:52 AM Page 20

20

�

Creating Cool Web Sites with HTML, XHTML, and CSS

documents. After that, the material in this chapter will doubtless begin to

�Summary
In this chapter, you saw how you can use information pointers to access
more than just HTML documents. You learned that you can use Web
browsers to transfer files via FTP and how you can change the home page on
your Web browser. This chapter also familiarized you with what URLs are,
how they’re built, and how different types of services require different URL
formats. Later in the book, you learn how to tie URLs into your own Web

crystallize and make much more sense. Chapter 2 begins the fun part of this
book (indeed, the heart of the book): how to create cool Web documents!

557386 Ch02.qxd 4/2/04 9:52 AM Page 21

�2
chapterBuilding Your

First Web Page:
HTML Basics

Breaking at lines and paragraphs

Breaking your document into sections

Adding a title to your page

Defining section heads

organization

� In This Chapter
Learning the basics of HTML layout

Creating your first Web page

Understanding headers and footers

Using horizontal rules to aid visual

Working with XHTML

It’s time to learn HTML! In this chapter, you go from 0 to 60 in no time flat, and
by the end of it, you’ll be able to create attractive Web pages. This chapter cov­

ers the basics of creating an HTML document, including head and body informa­
tion, meaningful page titles, paragraph and section head marks, horizontal rules,
and other miscellaneous layout information and data.

Basics of HTML Layout
What is HTML? At its most fundamental, Hypertext Markup Language (HTML) is a
set of special codes that you embed in text to add formatting and linking informa­
tion. HTML is based on Standard Generalized Markup Language (SGML). By con­
vention, all HTML information begins with an open angle bracket (<) and ends with
a closing angle bracket (>), for example, <html>. This tag tells an HTML interpreter
(browser) that the document is written and marked up in standard HTML. An exam­
ple of an HTML interpreter would be Microsoft’s Internet Explorer, available for free
from the Microsoft Web site; pop over to www.microsoft.com/ie/ to get your copy.

557386 Ch02.qxd 4/2/04 9:52 AM Page 22

�

22 Creating Cool Web Sites with HTML, XHTML, and CSS

HTML, like any other markup language, has some problems. Suppose, for example, you
want to show <html>—including the angle brackets—in a document. You need some way to
prevent your expression from being interpreted as an HTML tag. Later in this book, you learn
how to include such tricky information within your documents through character entities. For
now, keep an eye open for this kind of problem as you read on.

� See Chapter 5 to find out how to include text that includes special characters, such
x-ref as brackets, in your Web document to ensure that the browser interprets it properly.

HTML and browsers
What happens if a program that interprets HTML, such as Internet Explorer, reads a file that
doesn’t contain any HTML tags? Suppose that you recently created the file not-yet.html in
NotePad, but you haven’t had a chance to add HTML tags. Your file looks something like this:

Dave’s Desk
Somewhere in Cyberspace

Dear Reader,

Thank you for connecting to my Web server, but I

regret to tell you

that things aren’t up and running yet!

They will be _soon_, but they aren’t today.

Sincerely,

Dave Taylor

It looks reasonable, although some of the lines seem to be shorter than you’re used to seeing
in a note like this. Figure 2-1 shows what the file looks like when it’s opened in Explorer.

Figure 2-1 is clearly not what you want and probably would be quite puzzling to a viewer.
Although placing an underscore before and after a word is a clue in some older systems that
the word (soon) should be underlined, that’s not part of HTML; so the underscores are left
untouched, whether or not they make sense to the viewer.

The document shown in Figure 2-1 needs some HTML tags—information that Web browser
programs can use to lay out and format the information. The implied formatting information
contained in not-yet.html works for humans visually, but Web browsers ignore it because
it’s not in HTML. In other words, to you or me, seeing a tab as the first character of a sen­
tence is a good clue that the sentence is the beginning of a new paragraph, but as you can
clearly see in Figure 2-1, that just isn’t the case with Web browsers.

557386 Ch02.qxd 4/2/04 9:52 AM Page 23

23 �Chapter 2: Building Your First Web Page: HTML Basics

Figure 2-1: The file not-yet.html, without any HTML, shown in Internet Explorer.

Always test your HTML documents by viewing them through one or more Web browsers to
ensure that everything looks the way you want it to. If you encounter a situation in which the
browser is showing you all the formatting tags rather than interpreting them, a likely culprit is
a file named with a .txt suffix rather than an .html suffix. Web browsers are dumb; give
them a text file and they’ll display it exactly as is. To fix the problem just described, you
simply rename the file.

If you open it, close it
Although a small number of HTML tags are stand-alone entities, the majority are paired, with
beginning and end tags. The beginning tag is called the open tag, and the end tag is called
the close tag.

The most basic of all tags is the one shown earlier, <html>, which indicates that the informa­
tion that follows is written in HTML. The <html> tag is a paired tag, however, so you need to
add a close tag at the end of the document, which is the same as the open tag with the addi­
tion of a slash: </html>. By the same token, if you begin an italic phrase with <i> (the italics
tag), you must end it with </i>. Everything between the open and close tags receives the
particular attribute of that tag.

If you get confused and specify, for example, a backslash instead of a slash, as in <\html>, or
some other variant, the browser program doesn’t understand and simply ignores the close
tag. When this happens, the attribute specified in the open tag continues past the point where
you meant it to stop. In the case of the <html> tag, the problem is probably not significant
because </html> appears at the end of the document. Nothing comes after it to mess up. But
in many situations, a missing close tag can completely destroy a Web page, as you’ll learn.

557386 Ch02.qxd 4/2/04 9:52 AM Page 24

�

�

24 Creating Cool Web Sites with HTML, XHTML, and CSS

tip Develop the habit of closing any tag that you open.

What do you think would happen if you included quotation marks around a tag—suppose, for
example, that you used “<html>” at the beginning of your document rather than <html>. If
you guessed that only the quotes would be displayed, you’re right. Let me say it one more
time: Web browsers are very simple-minded in their interpretation of HTML. Any tags that
vary from the specific characters in the HTML-language specification result in something
other than what you were expecting, or your formatting requests are ignored completely.

Breaking at Paragraphs and Lines
The most helpful markup tags—and probably the tags that you’ll use most often—specify
that you want a paragraph break or a line break. Several variants of these tags exist, but you
can create readable and useful Web documents by using only the tags <p></p> and
.

To specify that you want a paragraph break, use the <p> tag. (Many HTML tags are
mnemonic: p for paragraph.) The following example adds some <p> tag pairs to the not-
yet.html file shown in Figure 2-1 and also wraps the file in the <html> and </html> tags.
Notice that the <p> tag is a container: The open tag appears before the passage to be
affected, and the close tag appears at the end of the passage:

<html>
Dave’s Desk
Somewhere in Cyberspace
<p>

Dear Reader,

</p><p>

Thank you for connecting to my Web server, but I

regret to tell you

that things aren’t up and running yet!

They will be _soon_, but they aren’t today.

</p><p>

Sincerely,

</p><p>

Dave Taylor

</p></html>

Figure 2-2 shows what this HTML text looks like in a browser.

557386 Ch02.qxd 4/2/04 9:52 AM Page 25

25 �Chapter 2: Building Your First Web Page: HTML Basics

Figure 2-2: Paragraph breaks in not-yet.html.

The version of the file in Figure 2-2 is a huge improvement over Figure 2-1, but some prob­
lems still exist, not the least of which is that the first few lines don’t look right. In their zeal to
organize the text neatly, Web browsers, by default, fill as many words into each line as they
can manage. Filling the lines works well for the main paragraph of the file, but the first few
lines display more appropriately if you indicate that the browser should break the line
between items.

�
Paragraph tags have a somewhat checkered history in HTML. Although they were
always intended to be used as containers (that is, a paired tag), for many years

note people recommended that they be used as stand-alone tags instead, with a <p>
wherever a break was desired. As HTML has become more sophisticated, using the
<p> tags as a proper container has become more important, and it’s a very good
habit—worth learning and sticking with—as you’ll see when we talk about XHTML
later in this chapter.

To break lines in HTML, use the break tag,
. Like any tag, the break tag can appear
anywhere in the text, including at the end of the line you want to break. HTML tags are also
case insensitive, meaning that
,
, and
 all mean exactly the same thing.
Having said that, however, good form is to use all lowercase in your HTML tags as consis­
tently as possible because that’s required for the XHTML standard. (More about that at the
end of this chapter.) Now is the time to develop good habits—while you’re just figuring this
stuff out—so you don’t have to break bad habits later!

�
Because I’m following XHTML standards in this book, all stand-alone tags have a
slightly odd appearance, with a /> sequence at the end rather than the more com­

note mon > by itself. You can use
 for a break, but
 (with a space before the
slash) is our goal here. As I said in the note above, learning good habits now will
ensure that your pages work properly in the future as HTML and the Web evolve.

557386 Ch02.qxd 4/2/04 9:52 AM Page 26

�

26 Creating Cool Web Sites with HTML, XHTML, and CSS

Here is the HTML file when the break tag is used:

<html>
Dave’s Desk

Somewhere in Cyberspace
<p>

Dear Reader,

</p><p>

Thank you for connecting to my Web server, but I

regret to tell you

that things aren’t up and running yet!

They will be _soon_, but they aren’t today.

</p><p>

Sincerely,

</p><p>

Dave Taylor

</p></html>

From a stylistic perspective, you should try to have a consistent scheme for your tags, espe­
cially because, in case of a problem, you may have to go into fairly complex files and figure
out what’s wrong. I suggest that you place all line breaks at the end of text lines and all para­
graph marks on their own lines. This book uses that style throughout.

Figure 2-3 shows the output of the not-yet.html file when
 is used.

Figure 2-3: The break tag in not-yet.html.

557386 Ch02.qxd 4/2/04 9:52 AM Page 27

27 �Chapter 2: Building Your First Web Page: HTML Basics

One remaining problem with the layout is that I intended for the signature information to be
shifted to the right a few inches, as in a standard business letter. In the browser, however, you
can see that it stays at the left edge of the document.

To remedy this problem, you can use the preformatted information tag, <pre>. The <pre>
tag is also a paired tag (a container), so it works across as many lines as needed, without
any fuss, and ends with </pre>. The following example shows how <pre> preserves all char­
acter and line spacing; in this case, <pre> preserves the tabs I used to indent the closing and
signature lines. I’ve changed the last few lines of the not-yet.html file to reflect the use of
this tag:

<html>

Dave’s Desk

Somewhere in Cyberspace

<p>

Dear Reader,

</p><p>

Thank you for connecting to my Web server, but I

regret to tell you

that things aren’t up and running yet!

They will be _soon_, but they aren’t today.

</p><pre>

Sincerely,

Dave Taylor

</pre>

</html>

By adding the <pre> tags, you achieve the desired formatting, but now another problem has
cropped up: The text in the preformatted block (the stuff between <pre> and </pre>) appears
in a different, monospace typeface! You can see the difference in Figure 2-4, if you look
closely.

�
Typeface refers to a particular style of letters in a variety of sizes. A font, by con­
trast, is a typeface in a specific size and style. Helvetica is a typeface, but 12-point

note Helvetica italic is a font. A monospace typeface is one in which every letter has
exactly the same width. Ten lowercase i characters (iiiiiiiiii), for example, end up
exactly as wide as 10 lowercase m characters (mmmmmmmmmm). In this book,
I use a proportional typeface rather than monospace for this note so that you
can clearly see that the ten i characters are considerably narrower than the ten m
characters.

The browser changed the typeface in Figure 2-4 because the browser assumed that the pre-
formatted text was a code listing or other technical information. That’s the most common
context for the <pre> tag. So it worked, sort of, but it’s not quite what you wanted. (You can
use <pre> to your advantage in other situations, however, as you see later in this chapter.)

557386 Ch02.qxd 4/2/04 9:52 AM Page 28

�

28 Creating Cool Web Sites with HTML, XHTML, and CSS

Figure 2-4: The format is correct, but the typeface is wrong.

Building Your First Web Page
Now that you’ve gotten a tiny taste of the world of HTML markup, take a slight time-out and
go through the steps necessary to duplicate this on your own computer. I’m going to assume
here that you’re running Windows 98, Windows XP, or some other version of Windows, but
the steps are very similar if you’re on a Macintosh or Linux/Unix machine.

Launching your HTML editor
To start, I suggest you use NotePad, a terrific—albeit simple—text editor included with the
Windows operating system. It’s free and ready for you to start up, even if you didn’t realize
you had it!

� Mac users should use TextEdit; it’s a very similar sort of plaintext editor found in
tip your Applications folder, and Linux/Unix users can choose between vi, emacs,

pico, and many other text editors, all accessible from a Terminal command line.

In just about every Windows configuration I’ve ever seen, NotePad is accessible by clicking
the Start button on the bottom-left corner of the window, and then choosing Programs ➪
Accessories. You should see a list of choices similar to Figure 2-5; NotePad is about half way
down the list.

557386 Ch02.qxd 4/2/04 9:52 AM Page 29

29 �Chapter 2: Building Your First Web Page: HTML Basics

Figure 2-5: Pick NotePad out of the many accessory choices in Windows.

After NotePad launches, it shows you a blank page where you can type the HTML. As an
example, type the simple page shown earlier in Figure 2-4. The result looks like Figure 2-6.

Figure 2-6: You can type HTML directly into a blank NotePad file.

Saving your file as HTML
After you type an adequate amount of material in your HTML, it’s time to save the file to
disk. Then you can open it in your favorite Web browser and see how it looks when the HTML
is rendered (interpreted by the browser). Choose File ➪ Save, which pops up the Save As dia­
log box shown in Figure 2-7.

557386 Ch02.qxd 4/2/04 9:52 AM Page 30

�

30 Creating Cool Web Sites with HTML, XHTML, and CSS

Figure 2-7: The Save As dialog box.

When you save this new HTML document, it’s critical that you append either the .htm or
.html filename suffix to ensure that the Web browser properly recognizes it as an HTML
document. You can do this by explicitly typing .html as the suffix in the File Name box. Give
this file a name, such as firstpage.html, and type that name directly into the File Name box.

�
If you don’t specify a filename suffix, by default NotePad uses .txt. Saving the file
with this extension causes problems! When you look at the page later in your Web

caution browser, you see the HTML itself rather than having it interpreted. If that happens,
and you find that you’ve already saved the file with a .txt or another extension,
simply open the file again in NotePad, choose File ➪ Save As, and resave the file
with the .html suffix.

There’s one more decision you must make before the file is ready to save: Where do you
want to put it? I save this example to the desktop because it’s easy to find the desktop. But
you can save it someplace else on your hard drive if you want. Simply use the drop-down
arrow in the Save In field of the Save As dialog box and browse to the folder where you want
to store the file.

Now you’re ready: You have named the file, remembered the .html suffix, made sure that it’s
stored in the directory you want, and clicked Save. Voilà! You’ve created your first Web page.

Notice that after you save this file, the title bar of the NotePad program changes to the name
of the file—a helpful reminder that you’ve named the file.

557386 Ch02.qxd 4/2/04 9:52 AM Page 31

31 �Chapter 2: Building Your First Web Page: HTML Basics

Opening the file in Internet Explorer
Now it’s time to launch a Web browser and have a look. I launch Internet Explorer because I
have the icon right on my desktop. I double-click the blue e icon, and the Web browser opens
to the Creating Cool Web Sites home page. To open a different page—the Web page you just
created—choose File ➪ Open. The Open dialog box appears, as shown in Figure 2-8.

Figure 2-8: The Open dialog box, ready for you to enter a URL or browse to a file.

To open the Web page you just created, click Browse. The dialog box shown in Figure 2-9
opens.

Figure 2-9: Browse to the Web page file you saved earlier and choose the file.

When you find the file, click Open and then OK. You should be looking at your HTML page
(see Figure 2-10).

557386 Ch02.qxd 4/2/04 9:52 AM Page 32

�

32 Creating Cool Web Sites with HTML, XHTML, and CSS

Figure 2-10: Finally, your Web page in a Web browser!

Pretty cool, eh?

Improving the HTML and viewing it in the browser
With both NotePad and the Web browser running, it’s a simple matter to make changes in the
editor and then preview the changes in the browser. Type any changes you want to make in
NotePad, and then make sure you choose File ➪ Save to update the copy stored on your
hard drive.

Then, one more step: Click the Refresh button in the Web browser (the button with the two
green curving arrows pointing at each other) and you should see the results of your efforts
instantly!

And now, back to your HTML. . . .

Breaking Your Document into Sections
If you take a close look at a fully specified HTML document, you’ll find that it’s divided into
two sections: what I call the stationery section (the information that would be preprinted on
the pad if the file were a physical note) and the body of the message. Think of the informa­
tion you typically find at the top of a memo:

557386 Ch02.qxd 4/2/04 9:52 AM Page 33

33 �Chapter 2: Building Your First Web Page: HTML Basics

M E M O R A N D U M

To: Date:

From: Subject:

These common items of information come at the beginning of a memo, usually followed by a
rule (a line) and then by blank space in which you write the actual content of the memo.

Similarly, for the sake of organization, HTML files are commonly broken into two sections:
the header, which contains the introductory page-formatting information, and the body. You
use the paired tags <head> </head> and <body> </body> to surround each section. The fol­
lowing example shows how the not-yet.html file looks when you add these tags:

<html>

<head>

</head>

<body>

Dave’s Desk

Somewhere in Cyberspace

<p>

Dear Reader,

</p><p>

Thank you for connecting to my Web server, but I

regret to tell you

that things aren’t up and running yet!

They will be _soon_, but they aren’t today.

</p><pre>

Sincerely,

Dave Taylor

</pre>

</body>

</html>

The <head> </head> and <body> </body> formatting information doesn’t add anything to
the display, I admit. The document also doesn’t contain any introductory HTML-formatting
information yet, so the head area is empty. If you were to view the preceding HTML text in a
Web browser, it would look identical to Figure 2-3. Later, when you start learning some of
the more complex parts of HTML, you will see why section-block notation such as <head>
</head> can be helpful.

What do you think would happen if I fed the following information to a Web browser?

<html><head></head><body>

Dave’s Desk
Somewhere in Cyberspace<p>Dear Reader,

</p><p> Thank you for connecting to my Web server, but I

regret to tell you that things aren’t up and running yet!

They will be _soon_, but they aren’t today.</p><pre>

Sincerely,

Dave Taylor</pre></body></html>

557386 Ch02.qxd 4/2/04 9:52 AM Page 34

�

34 Creating Cool Web Sites with HTML, XHTML, and CSS

If you guessed that the screen output of the preceding example would look exactly like the
carefully spaced material shown earlier (see Figure 2-4), you’re correct.

Remember that Web browsers ignore carriage returns, tabs, and multiple spaces

� when the document is reformatted for display. That suggests that you can save a
tip great deal of space, and display a great deal more of your document source (the

HTML tag information) on-screen, simply by skipping all the extra returns; but I
strongly recommend against such a strategy. Why? In a nutshell, writing your Web
documents with the markup tags in logical places makes the document easier to
work with later. I’ve written and had to debug more than a thousand HTML docu­
ments, and I can assure you that the more things are jammed together, the less
sense they make a few weeks later when you find you have to add information or
modify the content.

Adding a Title to Your Page
One of the subtle (but quite important) things you can do to make your Web page look smart
is to give it a good title with the <title> tag. The title usually appears in the top border (title
bar) of the window displayed on the user’s computer. Go back and look at the information in
the header of Figure 2-4: The browser shows the name of the file, which is remarkably dull:
ch2-4.html.

The <title> tag enables you to define the exact title you want in the document. It is a paired
tag and appears within the <head> </head> block of information, as follows:

<head>

<title>This is the title</title>

</head>

For the document you’ve been developing in this chapter, not-yet.html, a nice title is one
that reinforces the message in the file itself, as in the following example:

<html>

<head>

<title>This page is not yet ready for prime time</title>

</head>

Figure 2-11 shows how the new title text looks within Internet Explorer. Notice the change in
the title bar.

�
The text in the <title> tag is also used as the link information when a user saves a
Web document into a bookmark or hotlist—compiled URLs for sites you’ve visited

x-ref and want to remember. So, a meaningful title for each page you create can be very
helpful to your readers. Furthermore, titles add to the searchability of the page, as
you find out in Chapter 17.

557386 Ch02.qxd 4/2/04 9:52 AM Page 35

35 �Chapter 2: Building Your First Web Page: HTML Basics

Figure 2-11: The <title> tag produces an appropriate title for the browser window.

Adding Footer Material
Just as you commonly see certain information, such as the title, used in the header of a Web
document, certain other information is commonly placed at the foot of the document. On the
Web, you usually find copyright information and contact data for the creator of the page at
the bottom of documents.

The tag I use for this contact information is <blockquote>. It’s a paired tag (<blockquote>
information</blockquote>). The following example shows this tag added to the not-
yet.html document:

<html>

<head>

<title>This page is not yet ready for prime time</title>

</head>

<body>

Dave’s Desk

Somewhere in Cyberspace

<p>

Dear Reader,

</p><p>

Thank you for connecting to my Web server, but I

regret to tell you

that things aren’t up and running yet!

Continued

557386 Ch02.qxd 4/2/04 9:52 AM Page 36

�

36 Creating Cool Web Sites with HTML, XHTML, and CSS

Continued
They will be _soon_, but they aren’t today.

</p><pre>

Sincerely,

Dave Taylor

</pre>

<blockquote>

Page Design by Dave Taylor (taylor@intuitive.com)

</blockquote>

</body>

</html>

Do you have to use the <blockquote> tag and include this information on your page? Nope.
Like various other items that appear in HTML pages, it can be used or skipped. (In Web
pages I create, I tend not to include address information, but many people like to have that
information at the bottom of each page.) As you can see in Figure 2-12, the address infor­
mation is presented with an indent, which can look quite attractive on certain Web pages.

Figure 2-12: <blockquote> information added to the Web page.

557386 Ch02.qxd 4/2/04 9:52 AM Page 37

37 �Chapter 2: Building Your First Web Page: HTML Basics

Defining Section Heads

The formatting information discussed so far in this chapter enables you to create attractive
text. But what if you want to organize your Web page with sections or subsections? The vari­
ous levels of header-format tags enable you to handle just such a situation.

Each header-format level has an open and close tag. The highest-level header-format tag is
h1; the lowest is h6. To specify a top-level header, use

<h1>First Header</h1>

Header-format tags are best illustrated in an HTML page other than not-yet.html, because
that document doesn’t need headers. The following code shows the beginning of a table of
contents for a movie information Web site:

<html>

<head>

<title>The Cool Web Movie Database</title>

</head>

<body>

Welcome to the Cool Web Movie Database. So far we offer

information on the many brilliant films of David Lean:

soon, a lot more will be online.

<h1>Films with Sam Spiegel Productions</h1>

<h2>The Bridge on the River Kwai (1957)</h2>

<h2>Lawrence of Arabia (1962)</h2>

<h1>The Later Years</h1>

<h2>Doctor Zhivago (1965)</h2>

<h2>Ryan’s Daughter (1970)</h2>

<blockquote>

This information maintained by Dave Taylor

</blockquote>

</body>

</html>

Figure 2-13 shows how the preceding HTML appears in a Web browser.

Most Web pages that you design probably won’t have quite as many headers as the example
in Figure 2-13.

557386 Ch02.qxd 4/2/04 9:52 AM Page 38

�

38 Creating Cool Web Sites with HTML, XHTML, and CSS

Figure 2-13: Examples of <h1> and <h2> headings.

The following example adds a little more information about some of the films to show the
value of using various header sizes:

<html>

<head>

<title>The Cool Web Movie Database</title>

</head>

<body>

Welcome to the Cool Web Movie Database. So far we offer

information on the many brilliant films of David Lean:

soon, a lot more will be online.

<h1>Films with Sam Spiegel Productions</h1>

<h2>The Bridge on the River Kwai (1957)</h2>

Produced by Sam Spiegel, this film was the first of the

Lean blockbuster movies, and featured a young Alec

Guinness, William Holden, and a brilliant performance

from Sessue Hayakawa.<h2>Lawrence of Arabia (1962)</h2>

One of my all-time favorite movies, this epic

adventure starring Peter O’Toole established Lean as

a director who could truly envision film on a grand scale.

<h1>The Later Years</h1>

<h2>Doctor Zhivago (1965)</h2>

557386 Ch02.qxd 4/2/04 9:52 AM Page 39

39 �Chapter 2: Building Your First Web Page: HTML Basics

<h2>Ryan’s Daughter (1970)</h2>

<blockquote>

This information maintained by Dave Taylor

</blockquote>

</body>

</html>

When the preceding example is viewed in a browser, the different headers appear in different
size type, and information that is not part of the header appears in a nonbold, roman type­
face (see Figure 2-14).

�
One thing to remember about HTML is that users can alter the actual fonts, sizes,
and layout of the final presentation based on the preferences they set in their

note browsers. I contend, however, that precious few people actually alter their prefer­
ence settings, so if your page looks good with the default values, you should be
okay. If the default values look a little weird, as may well be the case with Explorer
in particular, by all means experiment with the settings. Just remember what you’ve
changed. You’ll see why as you proceed through the book.

Figure 2-14: Larger titles and smaller descriptive text demonstrate the value of different header levels.

557386 Ch02.qxd 4/2/04 9:52 AM Page 40

�

40 Creating Cool Web Sites with HTML, XHTML, and CSS

Using the Horizontal Rule
A very useful tag for organizing your document visually is the horizontal rule tag: <hr />.
Dropped anywhere in a Web document, it produces a skinny line across the page. The fol­
lowing example shows the movie information page with the <hr /> tag added:

<head>

<title>The Cool Web Movie Database</title>

</head>

<body>

Welcome to the Cool Web Movie Database. So far we offer

information on the many brilliant films of David Lean:

soon, a lot more will be online.

<hr />

<h1>Films with Sam Spiegel Productions</h1>

<h2>The Bridge on the River Kwai (1957)</h2>

Produced by Sam Spiegel, this film was the first of the

Lean blockbuster movies, and featured a young Alec

Guinness, William Holden, and a brilliant performance

from Sessue Hayakawa.

<h2>Lawrence of Arabia (1962)</h2>

One of my all-time favorite movies, this epic

adventure starring Peter O’Toole established Lean as

a director who could truly envision film on a grand scale.

<hr />

<h1>The Later Years</h1>

<h2>Doctor Zhivago (1965)</h2>

<h2>Ryan’s Daughter (1970)</h2>

<hr />

<blockquote>

This information maintained by Dave Taylor

</blockquote>

</body>

</html>

� Remember to use the XHTML style (<hr />) to close the stand-alone rule tag, as
tip illustrated here.

As with any other formatting or design element in a Web page, you can overuse the horizon­
tal rule. Used judiciously, however, the <hr> tag is tremendously helpful in creating cool
pages. Figure 2-15 shows the browser view of the preceding HTML code.

557386 Ch02.qxd 4/2/04 9:52 AM Page 41

41 �Chapter 2: Building Your First Web Page: HTML Basics

Figure 2-15: Use horizontal rules to help divide your Web pages into easy-to-read sections.

Introducing XHTML
One of the biggest recent changes in the world of HTML is the emergence of XML, the
eXstensible Markup Language. Because it allows site designers to designate what things are
(for example, album titles, book publication dates, and other database-field-like identifiers),
rather than how to present them (that is, italics, bold, green text), XML looks vaguely like
HTML; but it is a completely different beast. Fortunately, you don’t have to worry about XML
in this book!

One way that XML has influenced HTML is through the growth of XHTML, a variation of HTML
inspired by the formal structure of XML. The best way to think about XHTML is that it’s a for­
malized version of HTML. Gone are the sloppy mixed case tags of yesteryear and the random
differences between tag usage. Instead, XHTML insists that

• All tags are paired or have a /> ending.

• All attributes are quoted.

• All attributes must be presented as name=value pairs.

• All tags and attributes must be in lowercase only.

557386 Ch02.qxd 4/2/04 9:52 AM Page 42

�

42 Creating Cool Web Sites with HTML, XHTML, and CSS

What’s an attribute? That’s something I explore in Chapter 3, but here’s a sneak preview:

Just about every HTML tag allows you to change its behavior by adding specific attributes.

For example, you can change the width of a horizontal rule by adding a width value to the

<hr> tag, as in <hr width=”60%” />.

Fortunately, after you get the hang of it, writing XHTML is no more difficult than writing regu­

lar HTML. In this book, I write XHTML exclusively. By the end of the book, you’ll think that

regular HTML looks slightly weird and that everything should be written in XHTML. You’ll see!

�
Even though I write XHTML code exclusively throughout the rest of this book,

XHTML and HTML are very similar. So don’t be confused if I sometimes refer to
note
HTML when I’m contrasting a particular block of code with code written for
Cascading Style Sheets (CSS), which you learn about in Chapter 4.

Meaning

<blockquote> </blockquote>

<body> </body>

 Signifies a line break

<head> </head>

<hn> </hn> Indicates the document header level (n = 1–6)

<hr />

<html> </html>

<p> </p> Blocks a paragraph

<pre> </pre> Indicates preformatted information

Table 2-1: HTML Tags Covered in This Chapter

HTML Tag Close Tag

Indicates indentation block

Indicates the body of the HTML page

Provides HTML-formatting information

Inserts a horizontal rule

Defines a Web-formatted file

tion (like this chapter of this book, to pick the most immediate example) in

how to add other types of emphasis to text, and how to make various other
changes within sentences and paragraphs.

�Summary
A great deal of information was presented here. You learned many of the
basic HTML tags, and you created your first Web page. With the basics you
learned in this chapter, you should be able to reproduce formatted informa­

an attractive format for users on the World Wide Web. Chapter 3 continues
to explore HTML by explaining how to use boldface and italic formatting,

557386 Ch03.qxd 4/2/04 9:51 AM Page 43

�3Attractively
chapterPresenting Text

alignment, and other styles

Applying font sizes, colors, and faces

� In This Chapter
Using bold and italics for navigation

Changing text with underlining,

Working with styles

This chapter explores some of the nuts and bolts of text presentation and infor­
mation layout. When I talk about text styles, I mean the specification of bold­

face, italics, and other changes that you can make to text. The preceding chapter
showed you, in the proverbial one fell swoop, the basics of HTML document lay­
out. But, as you’ve probably figured out, there’s much more to creating cool
Web pages.

When you were given your first box of crayons, you probably went wild and tried
to use all the colors for each picture you colored. Eventually, however, it dawned
on you (unless you were a young Peter Max) that a subset of colors can be much
more useful and attractive. The same holds true for the various formatting com­
mands in HTML. It is possible to use all the commands everywhere, but a better
strategy is to use them only when they are most appropriate. Many Web pages
already tend to be cluttered, and using too much italic or boldface typeface
makes the clutter even worse.

Nevertheless, at times you want to highlight certain words, phrases, titles, names,
or other information. In this chapter, you learn how to do that using HTML. A
quick warning, however: In the next chapter you learn a completely different, and
more modern, approach to formatting text using something called Cascading
Style Sheets, or CSS. Although more complex, CSS offers dramatically greater
control over the presentation of text (and much more). Purists lobby for CSS-only
pages, but I’m not that hard core. I use a mélange of HTML and CSS to achieve
the page results I seek, and I bet you will, too.

557386 Ch03.qxd 4/2/04 9:51 AM Page 44

�

44 Creating Cool Web Sites with HTML, XHTML, and CSS

First, a Little History
Page design and layout have been around for thousands of years—since the beginning of
writing. In Egyptian hieroglyphs, for example, vertical lines separate columns of glyphs to
make them easier to read. Before the year A.D. 1000, scribes all over the world were using
various techniques to present information on a page, including illumination (adding gold or
silver to the ink, or including other illustrations in the margins or twined around the letters),
illustration, and other devices.

By the time Johann Gutenberg introduced his printing press in the fifteenth century, with its
revolutionary movable type supplanting etched- or engraved-plate printing, designers and
artists were codifying various approaches to page design. A glance at the Gutenberg Bible
reveals that it foreshadows many aspects of modern text design, including italicized and
boldface text.

� See http://prodigi.bl.uk/gutenbg/ to have a peek at the Gutenberg Bible. It’s
on the an astonishing piece of history.
web

Why am I rambling on about the history of page layout? Well, it’s important to realize that
italics and boldface text have commonly accepted standard meanings. You don’t have to fol­
low the rules to the letter, but if your goal is to help people breeze through your Web material
and quickly find what they’re looking for, you should keep the guidelines in mind.

Helping Readers Navigate with Bold and Italic
In the examples in Chapter 2, I mention that standard computer notation for underlining
doesn’t always work. In Figure 2-1, I include this text as an example:

soon,

By placing underscore characters before and after soon, my hope is that a browser will read
the text and italicize, underline, or otherwise present the word in a manner that emphasizes it.

One of the most important characteristics of any document layout—on the Web or in print—
is the use of different fonts and various styles to help the reader navigate the material.
Imagine this page without any spacing, paragraph breaks, headings, italics, or boldface
words; it would look pretty boring. More important, it would be difficult to skim the page for
information or to glance at it quickly to gain a sense of what’s being discussed.

�
I like to remember the different text treatments by imagining that I’m reading the
material to an audience. Italicized words or phrases are those that I emphasize in

tip my speech. Words or phrases in boldface I imagine to be anchors—items that help
me skim the material and find specific spots. Apply this practice to text, and you
see why section headings are in bold rather than italic: Headings would be harder to
find if they didn’t stand out. The same reasoning applies to text size; larger words
stand out from smaller adjacent text.

557386 Ch03.qxd 4/2/04 9:51 AM Page 45

45 �Chapter 3: Presenting Text Attractively

Now take a look at how bold and italic work in Web page design. Italic and boldface format­
ting require paired tags:

• The italic formatting tag is <i>, which is paired with </i>.

• The boldface formatting tag is , and its partner is .

Here’s how a brief HTML passage looks with both bold and italics text:

It turns out Starbucks, the popular and
fast-growing coffee chain, got its name from the
coffee-loving first mate in Melville’s classic
tale of pursuit and revenge, <i>Moby Dick< /i >,
although few people realize it.

Figure 3-1 shows how the preceding information looks in a Web browser. Notice I made a
slight mistake in the coding: The name of the book, Moby Dick, has an open italics tag, but I
incorrectly added spaces within its partner, the close italics tag. As a result, the request to
end the italics passage doesn’t take effect when the title of the book is complete. Also, if you
view this exact same snippet in Explorer and Navigator, you find that each has a slightly dif­
ferent way of dealing with an error of this form. Another good reason to double-check your
Web pages in multiple browsers!

Figure 3-1: An example of boldface, italics, and a coding mistake.

� Always follow the opening angle bracket of an HTML formatting tag with the format
caution code immediately; no spaces are allowed.

557386 Ch03.qxd 4/2/04 9:51 AM Page 46

�

46 Creating Cool Web Sites with HTML, XHTML, and CSS

Underlining, Monospace, and Other Text Changes

A number of other formatting options are available within Web documents:

• The underline formatting tag is <u>, which is paired with </u>.

• The monospace tag is <tt>, which is paired with </tt>.

• Superscripts are denoted by ^{and}, subscripts by _{and}.

• Text can be crossed out using <strike>, which ends with </strike>.

Monospace is so named because each letter in a monospace typeface occupies exactly the
same width as every other letter, even if the letter itself is quite narrow. Monospace type
typically looks like the product of a typewriter:

This is an example of a monospace typeface.

Proportional typefaces are more common in the text you see everyday. The text you are
reading now is a proportional typeface. Note that it varies the width of the letters for easier
reading; five occurrences of the letter i, for example (iiiii) aren’t as long as five occurrences
of the letter m (mmmmm).

Don’t use the <u> and <tt> tags too often because of possible browser conversion problems.
Some versions of Internet Explorer, for example, ignore the <u> format. When you create a
Web document that contains links to other documents, the links are displayed in a different
color—usually blue. To make links stand out more, however, and to ensure that people with
grayscale or black-and-white displays can recognize links, links also appear with an under­
line. Therein lies the problem with the <u> formatting tag. If you use it on a Web page, it is
difficult for visitors to tell which underlined words or phrases are links and which simply rep­
resent underlined text. Figure 3-2 demonstrates this underlining problem more clearly.

You can’t tell by looking at Figure 3-2, but the word Starbucks is a pointer to another docu­
ment on the World Wide Web, whereas the book title, Moby Dick, is just an underlined word.
As you can see, using underlining in Web pages can be confusing, so it isn’t often used.

Figure 3-2: Underlines on a Web page: links or simply underlined text?

557386 Ch03.qxd 4/2/04 9:51 AM Page 47

47 �Chapter 3: Presenting Text Attractively

Monospace is often more useful than underlining, but it’s not used extensively in Web pages
either. If you want to simulate computer input or output, for example, you might display that
text in monospace, as in the following:

Rather than typing <tt>DIRECTORY</tt> to find out

what files you have in your Unix account, you’ll instead

want to type <tt>ls -l</tt>, as shown:

<pre>

$ ls -l

total 8

-rw------- 1 taylor 1689 Feb 11 09:51 that

-rw------- 1 taylor 0 Feb 11 09:51 the-other

-rw------- 1 taylor 563 Feb 11 09:51 this

</pre>

As shown in Figure 3-3, this example demonstrates that the preformatted text tag <pre> pro­
duces text in monospace typeface, but it also preserves the original line breaks and extra
spacing between words.

You can combine some HTML tags to produce exactly the output you want. In Figure 3-3, the
terms DIRECTORY and ls appear in bold monospace text.

Figure 3-3: and <tt> together produce bold monospace.

If you’re working with mathematical formulas or otherwise have reason to use superscripts
and subscripts on your Web pages, two tags offer easy formatting, as shown here:

If you could double the amount of water on the

planet - essentially H₂O² - you’d

never have to worry about mowing the lawn again; it’d be

under the ocean!

557386 Ch03.qxd 4/2/04 9:51 AM Page 48

�

48 Creating Cool Web Sites with HTML, XHTML, and CSS

The resulting format is very attractive and lends itself to slick formulas and instant math, as
you can see in Figure 3-4.

Figure 3-4: Superscript and subscript format tags at work.

Finally, sometimes you want to be able to show a change in text to someone visiting your
page. In this situation, showing deleted text can be quite useful, and you can do this in
most Web browsers by using the <strike> strikethrough tag. Here’s how it looks as source
code:

If you could double the amount of water on the
planet - essentially H₂O² - you’d
never have to worry about <strike>mowing the lawn again:
everything would be under the ocean!</strike>buying a
dryer: everything would be permanently wet!

The strikethrough formatting works well in this case, as you can see in Figure 3-5, because
the text is a reasonable size. But if the text were smaller, the strikethrough line itself could
make the underlying text unreadable. Therefore, be sure you carefully preview any <strike>
text before you unleash it on the world.

By the way, commerce sites such as Amazon.com use the <strike> tag extensively: Every
time you see the retail price shown and then Amazon’s discounted price, the <strike> is
being used to cross out the retail price!

� Depending on the Web browser you’re using, some HTML tags can be combined
caution and others can’t. You can learn more about this through experimentation, but

common combinations work fine, such as <i> to get bold and italics.

557386 Ch03.qxd 4/2/04 9:51 AM Page 49

49 �Chapter 3: Presenting Text Attractively

Figure 3-5: Using the <strike> tag to show changed text on-screen.

Specifying Font Sizes, Colors, and Faces
One valuable improvement to your Web pages is the capability to change font sizes, colors,
and faces. Using pure HTML formatting, rather than CSS, HTML font sizes range from size 1
to size 7, with 1 being the smallest and 7 the largest. Unfortunately, this is the opposite of the
numbering system for header tags, where Header 1 is the largest and Header 6 the smallest.

All font changes are variations on the tag, and it’s the first tag I’ve discussed so far
that includes specific attributes. HTML tags that can include attributes specify them as
name=”value” pairs. The tag is a fine example. To change the size of a passage of
text, you can use this formatting:

some important text

In this example, the words some important text are displayed at the largest possible size in
the browser.

�
Notice that the closing tag doesn’t need to include the attributes of the

tip opening tag: You don’t have to use to end the larger text. This
is an important nuance and a great time-saver as you start to explore more com­
plex formatting.

You can specify font sizes absolutely, as in the previous example, or you can use relative size
changes. Here’s the HTML to make a particular word one font size larger than the text sur­
rounding it:

This is a very important issue to us.

The default font size in Web browsers is size=”3”. Relative changes can’t go below
size=”1” or above size=”7”, so if you have a default size of 3 and add 10 to it, with a tag
like font size=”+10”, it’ll be identical in function to font size=”7” (or font size=”+4”).

557386 Ch03.qxd 4/2/04 9:51 AM Page 50

�

50 Creating Cool Web Sites with HTML, XHTML, and CSS

You can specify color for a range of text in a similar manner by using a different font
attribute. To display a passage of text in blue, for example, you can use

I’m blue

You can choose from a wide variety of colors that can be specified by name, and you can
have even finer resolution of color control by using RGB (red-green-blue) hexadecimal val­
ues. For basic colors, however, you can work without worrying about the RGB values and,
instead, just specify them by name.

� Chapter 7 provides an explanation of the red-green-blue color identification tech-
x-ref nique and includes a table of RGB hexadecimal values.

The markup language has a nice feature that enables you to specify several attributes within
one HTML tag, thereby achieving multiple effects. If you want big red text, for example, you
do it with this code:

Clifford

It doesn’t matter in what order you specify the name=”value” pairs. So to the browser

is identical to

However, the attributes must be tucked within the <> pair, so <size=”6”><color=
”red”> won’t work, nor will <color=”red”>. Both are common errors for
neophyte HTML coders, however, so be alert that this doesn’t creep into your own markup
work.

The third possible attribute for the font tag is the typeface specifier face. This is a tricky one,
however, because you need to specify the exact typeface name on the user’s system, and
typefaces have different names on different platforms. For example, on my Macintosh, the
standard typeface is Times, but in Windows, the equivalent typeface is called Times Roman.
Many typefaces are included on computers nowadays, but again, no standardization exists.

This means you must specify typefaces with the face attribute to the font tag, and you can
specify a list of typefaces as the value. If you want to ensure that you get either Arial (a pop­
ular typeface on Windows) or Chicago (a popular face on the Macintosh), you specify the
following:

special text

The browser, upon receiving this HTML instruction, looks for Arial. If Arial is found, the browser
uses it to display special text on the screen. If Arial isn’t available, the browser uses Chicago. If
Chicago is not available, the text is displayed in the default proportional typeface.

557386 Ch03.qxd 4/2/04 9:51 AM Page 51

51 �Chapter 3: Presenting Text Attractively

Here is a more complex example:

<font size=”4” color=”blue” face=”Helvetica Narrow,Arial

Narrow”>Skinny Text

Again, the browser displays the text in Helvetica Narrow, if available, or Arial Narrow, or the
default typeface.

One final tag and you have an example that demonstrates all these modifications: To change
the default size of all text on a page, you use or a similar tag at the very
top of the document. However, you can use a tag intended for just this purpose called
<basefont>. However, <basefont> only lets you change the size of the type, so most mod­
ern sites use the appropriate CSS styles to specify the type family, size, and other layout
elements, as you learn in Chapter 4. Here is a tantalizing preview of both the CSS body style
and the HTML unordered (or bullet) list:

<style type=”text/css”>

body { font-family: Arial,Helvetica,serif; font-size: 90%;

line-height:1.5 }

</style>

Common Foods of the French

Quarter

You can visit New Orleans and have a

great time without ever leaving

the picturesque and partyin’ French Quarter area,

particularly if you partake of some of these

fabulous local foods:

Beignets - small deep-fried

donuts in powdered sugar. Best with

a steaming fresh cup of coffee.

Seafood Gumbo - a stew-like

soup that’s delicious.

Typically served with a side of white rice

that’s best dumped into the soup directly. Skip the

chicken gumbo some

places serve too: the seafood is definitely better!

Jambalaya - the best

of all possible dinners. You’ll just have

to order it so you can find out what it’s about.

alcohol - it’s the

grease on the wheels of the tourist experience in the

French Quarter, but I’m not convinced it’s as necessary

for a good time as the bars suggest...

Whatever you do, make sure you have <font

size=”+1”>FU

N!

557386 Ch03.qxd 4/2/04 9:51 AM Page 52

�

52 Creating Cool Web Sites with HTML, XHTML, and CSS

This code creates a screen full of fun and interesting text in a variety of sizes and colors (see
Figure 3-6).

Figure 3-6: You can make your text fun and interesting by using the font tag attributes to specify a variety of
colors and sizes.

�
There’s another way to change the color of text on your page, but it applies to all text

tip on the page at once: Add the text attribute to the body tag. For example, to have all
text blue, add the following line of code:

<body text=”blue”>

Again, however, CSS offers more graceful solutions.

Applying Logical Styles
The style directives discussed up to this point specify how you want the material displayed
when the page is formatted and presented to the reader. The HTML language also supports
what are called logical styles. Logical styles enable readers (and their software) to indicate
what things are, rather than how they should be presented.

The most common logical styles are for emphasis and for
stronger emphasis. Figure 3-7 shows the results of using these tags.

557386 Ch03.qxd 4/2/04 9:51 AM Page 53

53 �Chapter 3: Presenting Text Attractively

Figure 3-7: An example of logical styles in HTML.

In the example shown in Figure 3-7, the first point (shown in italics) is specified as

Things are okay

The second point (boldfaced) is specified as

Things are getting better!

�
I have to admit that I don’t particularly like the logical tags and never use them
myself. I have no way of knowing if a particular browser will think should be innote bold or italics, and the two have very different meanings in layout, as discussed at
the beginning of this chapter.

Many other logical tags are specified in the HTML standard but are rarely used. I list them all
in Table 3-1 for your information. You may want to experiment with them to see if they meet
any of your specific formatting needs; but in most browsers, they’re all synonymous with the
<tt> monospace-type tag. More important, the markup world is moving to CSS, and that’s
really what you should be using for these kinds of logical formatting. With CSS, you can
fine-tune the results to be exactly what you want, and then some!

Table 3-1: A Variety of Logical Text Tags

HTML Tag Close Tag Meaning

<cite> </cite> Bibliographic citation

<code> </code> Code listing

<dfn> </dfn> Word definition

<kbd> </kbd> Keyboard text (similar to <CODE>)

<samp> </samp> Sample user input

<var> </var> Program or other variable

557386 Ch03.qxd 4/2/04 9:51 AM Page 54

�

54 Creating Cool Web Sites with HTML, XHTML, and CSS

Putting It All Together

The following example is a complex HTML document viewed within a Web browser. This
example also includes material covered in Chapter 2.

<html>

<head>

<title>Travels with Tintin</title>

<style type=”text/css”>

body { font-family: Arial,Helvetica; font-size: 90% }

</style>

</head><body>

<h2>Travels with Tintin</h2>

<p>

Of the various reporters with whom I’ve travelled around

the world, including writers for <i>UPI</i>, <i>AP</i>,

and <i>Reuters</i>, the most fascinating has clearly been

Tintin, boy reporter from Belgium (<tt>tintin@intuitive.com</tt>).

</p><p>

Probably the most enjoyable aspect of our travels was his

dog Snowy, though I don’t know that our hosts would

always agree!

</p><p>

The First Trip: Nepal

</p><p>

After winning the Pulitzer for <i>Red Rackham’s Treasure</i>,

Tintin told me he wanted a vacation. Remembering some of his

earlier adventures, he decided to visit Nepal. Early one

Sunday, I was sipping my tea and reading the <i>Times</i>

when he rang me up, asking whether I’d be able to take a

break and come along...

</body>

</html>

Can you guess how the preceding text will look in a browser? Check Figure 3-8 to find out.

The document in Figure 3-8 is quite attractive, albeit with some poor spacing around the
italicized acronyms in the first sentence. Fortunately, some of the most recent Web browsers
realize that an additional space is needed after the last italicized character. It would make this
document even more readable. Also notice the spacing around the h2 format compared to
the two <p> tags I added later in the document when I opted to use the font size=”6” tag
to create my own section head.

Table 3-2 provides a summary of the many HTML character-formatting tags covered in this
chapter.

557386 Ch03.qxd 4/2/04 9:51 AM Page 55

55 �Chapter 3: Presenting Text Attractively

Figure 3-8: A complex and attractive document.

Meaning

 Displays text in bold

<i> </i>

<u> </u> Underlines specified text

<tt> </tt> Specifies monospace text

<cite> </cite>

<code> </code> Specifies code listing

<dfn> </dfn> Specifies word definition

<kbd> </kbd> Specifies keyboard text (similar to <code>)

<samp> </samp> Specifies sample user input

<var> </var> Specifies program or other variable

<basefont size=”n”> Specifies default font size for page.
Range is 1–7, 7 being largest. Default: 3.

<font Specifies attributes for enclosed text.
size=”n” Size of text: range is 1–7, 7 being largest.
face=”a,b” Specifies typeface to use: a if available, or b.
color=”s”>

value.

Table 3-2: Summary of Tags in This Chapter

HTML Tag Close Tag

Displays text in italic

Specifies bibliographic citation

Indicates logical emphasis style

Indicates logical stronger emphasis

Color of text, either as color name or RGB

557386 Ch03.qxd 4/2/04 9:51 AM Page 56

56

�

Creating Cool Web Sites with HTML, XHTML, and CSS

�Summary
This chapter focused on formatting characters and words using the tradi­
tional HTML tags most frequently used to build Web pages. Chapter 4 re­
examines all these issues but from the perspective of Cascading Style
Sheets. It explains what they are, how to use them, and why they leave
these crude HTML tags in the proverbial dust.

557386 Ch04.qxd 4/2/04 11:01 AM Page 57

�4with Cascading

chapterMoving into the
21st Century

Style Sheets

Examining the types of CSS

Underlining, monospace, and other
text changes

and faces

Discovering other cool font tricks
in CSS

Putting it all together

� In This Chapter

Understanding the format of CSS

Working with font sizes, colors,

After reading the last chapter you might think that text markup is pretty
straightforward—with tags such as , <i>, and the like—but not very

powerful. After all, when you look at Web pages from large commercial sites such
as ESPN, Disney, or The Wall Street Journal, you see a variety of typefaces, type
treatments, and even line-spacing variations.

So how do the Web site creators accomplish those effects? They use a new and
vastly improved addition to Web page design called style sheets. You might be
familiar with the concept of style sheets from working with document-processing
applications like Microsoft Word, where choosing a particular style produces a
complex set of changes in typeface, color, size, indentation, and much more.
Style sheets give you a corresponding capability as you design Web pages

One very important characteristic of style specifications, both in applications,
such as Microsoft Word, and in Web documents, is that attributes are inherited.
Suppose that a paragraph in your document appears in 14-point Times Roman.

557386 Ch04.qxd 4/2/04 11:01 AM Page 58

�

58 Creating Cool Web Sites with HTML, XHTML, and CSS

Then you apply a style to a single word in the paragraph that puts the selected word in blue.
Besides having the blue added, that word also inherits the typeface, typeface size, and any
other attributes from the parent style applied to the remainder of the paragraph. In Web par­
lance, this is known as cascading (style attributes cascade down until something changes
them). The style sheets I’ll be talking about are, therefore, logically called Cascading Style
Sheets and succinctly referred to as CSS.

In this chapter, I begin showing you how to interweave traditional HTML tags and formatting
(actually, I use XHTML, but for simplicity, every time you see HTML, imagine that you really
see XHTML) with the newer, more powerful CSS capabilities. Why weave them together?
Because although CSS is wonderful for many things, it frankly requires too much work when
you want to make just one or two simple, straightforward changes. If I want a word in bold on
my page, it’s usually much simpler to specify than to figure out the CSS details.

Types of CSS
Cascading Style Sheets are really a completely different approach to page styling and layout.
So first, you need to look at where you add CSS information to your page. CSS information
can be specified in three different places:

• Within the specific tags in the document body

• At the top of the document within a <style> block, or combined with named <div> or
 containers in the document body

• In one or more separate files shared across many Web pages

These may all be combined with a well-defined inheritance (which is why they are called
cascading style sheets). Don’t worry, this will all make sense as you explore CSS.

Inline CSS
Basically, styles can be specified with the style attribute within almost any HTML markup tag.
For example, you can have a bold tag that also changes the color of the text within by using
the following HTML:

<b style=”color: blue”>this is bold and blue and this isn’t.

More commonly, styles are used within one of two otherwise empty tags called <div> or
. These two tags were introduced into HTML specifically for use with Cascading Style
Sheets, so if you see them on a Web page, they’re often used like this:

this is green and this ain’t.

The difference between the two is that <div> is used as a block container (it’s basically iden­
tical to <p> and </p>) whereas is used within a block (it’s more analogous to
and).

557386 Ch04.qxd 4/2/04 11:01 AM Page 59

59 �Chapter 4: Moving into the 21st Century with Cascading Style Sheets

Take a look at this simple sequence of HTML with a simple style attribute, color:, applied:

<p>

This is a typical paragraph of text that contains

some words, perhaps a sentence or two, but that’s

about all.

</p>

<div>

By contrast, this is a vibrant,

colorful

div block

that has lots of room for growth!

</div>

The result of having this code interpreted by Microsoft Internet Explorer is shown in Figure 4-1.

Figure 4-1: Rudimentary style sheets aren’t too thrilling. Yet.

The preceding example is not going to convince you that this approach is superior to the
 tag discussed in Chapter 3. But read on, and perhaps you will begin to understand
the value of style sheets.

One definition, many references
The second way to work with CSS will doubtless catch your attention. To a great extent, CSS
enables you to redefine how any HTML markup is rendered. CSS also essentially allows you
to create your own tags to transform a Web page into exactly the format and layout you seek.

This is accomplished by moving the style specifications into a <style> block. At the top of a
page, the <style> tag might look like this:

<style type=”text/css”>
b { color: blue }
</style>

557386 Ch04.qxd 4/2/04 11:01 AM Page 60

�

60 Creating Cool Web Sites with HTML, XHTML, and CSS

This style specifies that throughout the subsequent document body, all occurrences of the
bold tag should also have a type color change to blue. Are you starting to see where this
can make your life considerably easier?

More interestingly, you can specify style classes, which are akin to subtags. Imagine that I
have a Web site that talks about my digital camera, a Nikon. I’m going to write about how it
compares to other digital cameras, including those from Canon, Sony, and Kodak. To make
the page consistent, each time that I mention a manufacturer I want to use the identical for­
mat. Here’s how I can do that with CSS:

While a variety of companies manufacture digital

cameras, notably including

Kodak,

Olympus and

Sony,

there are only two companies that offer true

digital single lens reflex (SLR) cameras:

Nikon and

Canon.

This gets interesting when you go into the <style> block and specify exactly how to format
the manufacturer names. Because these are all specified by class, the CSS notation is to
preface the classname with a dot in the style block:

<style type=”text/css”>

.manuf { font-size: 125%; color: green }

</style>

Figure 4-2 shows the results of using this code at the top of your page.

Figure 4-2: Classes let you organize your data presentation.

557386 Ch04.qxd 4/2/04 11:01 AM Page 61

61 �Chapter 4: Moving into the 21st Century with Cascading Style Sheets

The more I look at Figure 4-2, the more I think, “That’s not really quite what I want.” Here’s
where the power of CSS makes things a breeze. To change the style of all the manufacturer
names instantly, I simply edit the style definition in the style block. A few changes (don’t
worry, in a page or so I’ll talk about the specific style attributes you can use) and suddenly
the Web page is totally different! Here’s my modified code:

<html>

<head>

<title>Moving Styles To the Top</title>

<style type=”text/css”>

.manuf { color:blue; font-weight: bold; font-style: italic }

</style>

</head><body>

While a variety of companies manufacture digital

cameras, notably including

Kodak,

Olympus and

Sony,

there are only two companies that offer true

digital single lens reflex (SLR) cameras:

Nikon and

Canon.

</body>

</html>

Figure 4-3 shows the result of this code. Remember, the only difference between Figure 4-2
and Figure 4-3 is what’s specified in the style block. I know that you can’t see the result of
the color attribute in this black-and-white screen shot, but I think you can still see that quite a
difference results from such a simple change.

Figure 4-3: Same HTML page, different style specification.

557386 Ch04.qxd 4/2/04 11:01 AM Page 62

�

62 Creating Cool Web Sites with HTML, XHTML, and CSS

I hope that simple example is enough to sell you on CSS as a powerful method for formatting
and specifying the presentation of your Web pages!

Sharing a single style sheet
The third way that you can work with CSS is to create a completely separate document on
your Web server that includes all the styles you want to use. You can then reference that doc­
ument within all the Web pages on your site. You may think that having a single style defini­
tion at the top of your page makes it easy to manage the layout of that page. Imagine how
handy it would be to have a site with dozens (or hundreds!) of pages of material, all using the
appropriate div and span tags and classes. Add to that the capability to change the style
across all occurrences of a class, on all pages, with a single edit!

To reference a separate style sheet, use the link tag:

<link type=”text/css” href=”mystyles.css” />

This refers to a separate style sheet called mystyles.css, stored in the same directory on
the same server as the page that contains this link reference. You can also use a fully
qualified URL. This is how I reference one of my CSS style sheets on my server:

<link type=”text/css”

href=”http://www.intuitive.com/library/shared.css” />

The .css file should contain everything you’d otherwise put between the <style> and
</style> tags. For the previous example, the entire mystyles.css might look like this:

.manuf { color:blue; font-weight: bold; font-style: italic }

As you develop your site, your shared CSS files will doubtless become longer and longer as
you push more of the formatting details into style specifications and out of the HTML tags.

�
You can edit separate CSS files in NotePad or TextEdit, and they should be saved

tip with a .css filename suffix. For example, styles.css is a common name, and
you would include it in your HTML file with this <link type=”text/css”
href=”styles.css” /> tag.

The Components of CSS
Whether it appears in a style attribute of an HTML tag, within a style block on the top of a
Web page, or in a separate document, all CSS specifications have the same general format:

name colon value semicolon

Here’s an example: color:blue;.

557386 Ch04.qxd 4/2/04 11:01 AM Page 63

63 �Chapter 4: Moving into the 21st Century with Cascading Style Sheets

� The very last CSS specification in a group can have the trailing semicolon omitted
tip because there’s nothing subsequent; but it’s a good habit to always use a semicolon

after each style specification.

CSS specifications are case-insensitive, but by convention you should use all lowercase, just
as XHTML specifies all lowercase for the HTML tags.

Within a style block or separate style sheet, tags have style attributes defined within a curly-
brace pair, as in the following example.

b { color: green; }

This code adds a shift to green text for any bold passages in the applicable text.

�
Within a style attribute, the content that the style changes is already implied by the
usage, so no tag names and curly braces are allowed. You can’t do the following,

caution for example:

<b style=”i { color: yellow; } color:red”>this is red
but <i>this should be yellow</i>, shouldn’t it?

If you’re trying to accomplish anything like this, the specification belongs in the
style block instead.

Classes and IDs
I have already briefly discussed classes and how you can use them to group similarly format­
ted content. But there’s another type of identifier that you can use in CSS work called an id
attribute. You use classes and id tags in similar ways:

<div class=”para”>
This is a standard paragraph on this page, with
nothing
out of the ordinary.</div>

Within the style block, these two identifiers are differentiated by their first character: a dot
for a class identifier, and a hash mark (#) for an id tag:

<style type=”text/css”>
.para { font-size: 110% }
#emphasize8 { font-weight: bold }
</style>

The primary difference between these two is that each unique id tag value is supposed to
occur once and only once within a given document, whereas classes are reused as needed. In
practice, almost every CSS site I’ve seen makes heavy use of classes and completely ignores
id tags.

557386 Ch04.qxd 4/2/04 11:01 AM Page 64

�

64 Creating Cool Web Sites with HTML, XHTML, and CSS

Subclasses
Another tremendously powerful trick you can use with CSS is to specify subclasses and to con­
strain formatting styles to a subset of your tags. For example, imagine a Web page like this:

<div class=”special”>
This is a special block and bold words should appear
differently than they do in regular text.</div>
<p>

And this, by contrast, is regular bold text,

with a little <i>italics</i> tossed in for luck

and an example of <i>italics within bold</i>.

</p>

To specify that only the bold tags within the class special should have a particular style, use
the format class class (in the example below, notice that the b i sequence changes italics
within bold sequences only):

<style type=”text/css”>
.special b { color: green; font-size: 125%; }
b i { background-color: yellow; }
b,i { font-weight: bold; color: blue; }
</style>

Look closely to see what’s specified here. Two lines contain a pair of selectors separated by a
space; on the third line, the selectors are separated by a comma. On the two lines in which a
space separates the selectors, the second selector is affected only when it falls within the first
selector. In other words, bold text is green only when the is used within a class=”special”
block, and the background color is yellow only when the <i> is used within a tag. In the last
of the three CSS lines, I employ a shorthand to specify that both bold tags and italic tags should
be in bold with blue text. It’s the same as if I had used b { ... } and i { }.

Put this all together and the results are as shown in Figure 4-4.

Figure 4-4: Subclasses and special selectors allow very specific control over styles.

557386 Ch04.qxd 4/2/04 11:01 AM Page 65

65 �Chapter 4: Moving into the 21st Century with Cascading Style Sheets

If you’re starting to think, “Hey, this stuff is pretty darn powerful,” you’re right! CSS is a thou­
sand times more powerful than even the fanciest HTML formatting, and there’s no question
that it’s the future of Web page design and layout. The price, as you can already see, is that
it’s more complex. There is quite a bit of difference between bold and <span
style=”font-weight: bold;”>bold, but stick with me and you’ll get the hang of
things. You may soon find that you are creating exceptional pages—and with darn little work!

Adding comments within CSS
Here’s another little tip: You can add comments to your CSS in two different ways. For a single-
line comment, use two slashes; anything after them is ignored through the end of the line, as
in the following example:

b { font-weight: normal; } // disabled bold for this page

If you need a multiline comment, wrap it in /* and */ pairs, as shown in the following example:

<style type=”text/css”>
b { font-weight: normal; }
/* The head of layout suggested that we disable all bold text as
an experiment, so we’ve done so. – DaveT, Oct 11 */
</style>

Compatible style blocks
If you’re big on backwards compatibility, consider wrapping all your style blocks as I have in
the following example:

<style type=’text/css”>
<!—
b { font-weight: normal; }
// —>
</style>

If the Web browser understands style sheets, it ignores the comment characters, and if the
browser doesn’t understand CSS, it assumes that all the stuff within the <!— and —> span is a
comment and hides it from the final rendered page. In fact, even without CSS, you can
always add comments to your HTML pages by surrounding them with <!— and —>. They show
up in the source code but aren’t displayed in the actual Web page you see in a browser.

�
I have to admit that I typically do not use the comment sequence to hide my style
blocks. CSS-compatible Web browsers first came out in 1997, so by this point, the note vast majority of users should have browsers that can render CSS properly. You can
make your own call, however, as there are definitely different opinions on this subject.

557386 Ch04.qxd 4/2/04 11:01 AM Page 66

�

66 Creating Cool Web Sites with HTML, XHTML, and CSS

Text Formatting with CSS
You’ve looked at the skeleton of CSS long enough; it’s time to dig into some specifics of CSS
formats and styles! To parallel Chapter 3, I start with basic text transformations: bold, italics,
colors, sizes, and typefaces.

Bold text
The most straightforward of the CSS visual text formatting styles is bold, which is specified
as font-weight. As with all CSS tags, you can define a variety of possible values:

• lighter

• normal

• bold

• bolder

You can specify the weight of the font in increments of 100, in the range of 100–900, with
100 being the lightest and 900 being the heaviest. Normal text is weight 500, and normal
bold is 700. Specifying font-weight: 900 is the equivalent of extra-bold or, in the parlance
of CSS, bolder.

Italics
Italics are easier to work with than bold. You simply specify a font-style and pick from one
of the following values:

• normal

• italics

• oblique

� Oblique font style is similar to italics, but more slanted. On a Web page, however, it
note looks identical to italics.

Why have a value for normal? Answering this question reveals the secret magic of the cas­
cading of style sheets. Imagine the following:

<div style=”font-style: italics”>
This is a paragraph where all the words should be italicized.
But what if I have a word that I don’t want in italics?
</div>

557386 Ch04.qxd 4/2/04 11:01 AM Page 67

67 �Chapter 4: Moving into the 21st Century with Cascading Style Sheets

If you want don’t to appear in a non-italics format, the easiest way to accomplish this is to
use font-style: normal to override the italics formatting. In fact, this does the trick:

<div style=”font-style: italics”>
This is a paragraph where all the words should be italicized.
But what if I have a word that I
don’t
want in italics?
</div>

This is the same reason that the font-weight style has a normal value.

Changing Font Family, Size, and Color
As I’ve shown you so far in this chapter, switching between bold and italics within CSS is
straightforward. Other text transformations, such as changing the font family, the font size,
and the color, are also easy to do, and the following sections show you how.

Typefaces and monospace
With standard HTML markup, the <tt> tag produces typewriter text, but call it by its proper
name: monospace. Chapter 3 talks about the difference between monospace and proportional
spaced typefaces. CSS is much more accurate about this particular text transformation
because it’s really a typeface change . . . well, a font-family change, to be precise.

�
All right, I’ll call the change in typeface produced by a font-family style what Web
standards developers want me to call it, a font; but it’s really not. A font is a specific note applied instance of a typeface, style, and size. Times Roman is a typeface, for
example, but Times Roman 12 point, oblique, is a font.

At its most basic, the font-family style enables you to specify one of a variety of different
typeface families:

• serif

• sans-serif

• monospace

• cursive

• fantasy

The most commonly used font families on the Web are serif (typically Times Roman or
Times) and monospace (typically Courier). Times Roman is the default typeface used by Web
browsers, and Courier is used to show code listings and form input fields.

557386 Ch04.qxd 4/2/04 11:01 AM Page 68

�

68 Creating Cool Web Sites with HTML, XHTML, and CSS

The font-family style enables you to specify a typeface by name, or even indicate a list of
typefaces separated by commas, exactly as the face attribute of the font tag does in plain
HTML.

Here’s how you might use the font-family style in practice (with some additional styles
thrown in for fun):

<style type=”text/css”>

b { color: blue; font-style: italic; }

i { color: green; font-family: Monotype Corsiva,cursive;

font-style: normal; }

tt { font-family: serif; background-color: yellow; }

.mytt { color: red; font-family: monospace; font-weight: bold; }

</style>

</head><body>

<div>

This is a bit of bold text, with a little <i>content

displayed in italics</i>

tossed in for luck, and a <tt>monospace</tt> passage too, which

should be compared to

this tt ‘emulation’ passage!

</div>

All these changes are displayed in Figure 4-5.

Figure 4-5: Adding color, font-style, and font-family styles makes an interesting page.

In the code shown for Figure 4-5, notice especially that you can redefine the browser’s
default rendering of HTML tags by redefining their style within CSS. In this case, I effectively
removed the monospace typeface change from the <tt> tag. However, if you have sharp
eyes, you can see that the resulting serif content (the word monospace) is slightly smaller
than the surrounding text because the Times Roman typeface is naturally smaller than
Courier. In addition, we’ve set the background to yellow too. The size change you can fix
with the font-size style, as you will see momentarily.

557386 Ch04.qxd 4/2/04 11:01 AM Page 69

69 �Chapter 4: Moving into the 21st Century with Cascading Style Sheets

Changing font size
As I’ve shown you in some of the earlier examples in this chapter, you use the CSS font-size
style to change the size of text. This style accepts specific sizes in a variety of units (see
Table 4-1) or the following specific named values:

• xx-small

• x-small

• small

• medium

• large

• x-large

• xx-large

and two relative sizes:

• smaller

• larger

Finally, you can also specify a font size by percentage: A specification of font-size: 110%
means that it’s 10% larger than the text would otherwise be displayed. If the 110% appears
within an h1 passage, for example, it produces a larger end result than if it’s in a p or div block.

Table 4-1: CSS Size Specifications

Measure Definition Comment

In inches A measurement that can prove problematic with layout,
although people commonly use it. To understand why,
try to figure out what 1in becomes if you’re simulta­
neously looking at a page on a computer monitor and
projecting it on a screen through an LCD projector.

cm centimeter The same problem as with inches; of course, a differ­
ent measurement.

mm millimeter Same problem as with inches.

pt points A traditional typographic unit. There are 72 points to
an inch. You see these measurements a lot because
that’s the mystery value whenever you talk about a
typeface as 18 point (which you describe in CSS as
18pt). For display use, this measure poses the same
problem as the preceding measurements.

Continued

557386 Ch04.qxd 4/2/04 11:01 AM Page 70

�

70 Creating Cool Web Sites with HTML, XHTML, and CSS

Table 4-1: Continued

Measure Definition Comment

pc Pica	 Another traditional typographic unit of measure:
1 pica = 12 points = 1/6 inch, or 6 picas = 1 inch.
Presents the same problem as the other physical-unit
measurements.

em em-width	 This measure is relative to the size of the current type­
face in use; it’s the width of the letter m in the specific
typeface.

px Pixel	 The size of a specific dot of information on-screen, this
measure works great for screen displays, but you must
redefine it for printers to avoid startling and unex­
pected results. Consider that a typical screen is 72–75
dpi, so each pixel is 1/72nd of an inch. On a typical
modern printer, however, output renders at 300–600
dpi, so each pixel is 1/300th of an inch or smaller.
Most browsers sidestep this by multiplying out the dif­
ference, so 10px is actually 40px for printing.

These give you a lot of different ways you can specify the type size. I would say that at least
99% of the time, I just use percentage specifications and ignore all these other possibilities.
To jump back to my attempt to emulate the <tt> tag earlier, here’s a better definition:

.mytt { color: red; font-family: monospace; font-weight: bold;

font-size: 90%; }

Well, this isn’t a complete emulation, of course, because I’ve specified the content should be
red and in bold too, but the monospace type is now displayed at 90% of the size of the regu­
lar text on the page. Better yet, it’s true regardless of what size type I’m working in:

<h2>This is my big tt and</h2>
This is smaller my tt text.

The color of text
Surprisingly, you don’t change the color of text with a style called font-color. Given that every
other style modification is done with font-something, it took me a while to remember that
color is changed by simply using the attribute color:. Throughout this chapter, I have shown
many examples of color specifications, but they’ve all been specific by color name. In fact,
there are a bunch of ways you can specify a color within CSS, some of which are explained
in more detail in Chapter 7 and all of which are listed in Table 4-2.

557386 Ch04.qxd 4/2/04 11:01 AM Page 71

71 �Chapter 4: Moving into the 21st Century with Cascading Style Sheets

Table 4.2: Color Specification Options in CSS

Specifier Example Comment

#RRGGBB #009900	 This notation is the color specification that you’ve been
using for a long time if you’re an HTML coder. It’s a two-
hexadecimal–digit red, green, and blue value, where 00 is
the least of a color and FF is the most. It offers more than
16 million possible colors and is explored in detail in
Chapter 7.

#RGB #090	 A useful variant on the regular #RRGGBB scheme, this
specification duplicates each of the values to create a six-
digit color. The #090 value, therefore, is identical to
#009900. It offers more than 4,000 different possible
colors, although if you stick with the so-called Internet
safe color palette (explained in Chapter 7) you need only
216 colors (the values of #0, #3, #6, #9, #C and #F for
each of red, green and blue).

rgb(r%,g%,b%) rgb(0%,100%,50%)	 An unusual notation, in which you specify integer color
values for each red, green, and blue component. It offers
exactly one million possible colors.

rgb(rr,gg,bb) rgb(128,0,128)	 Similar to the previous notation, this specification enables
you to use integer color values, but the value can range
from 0–255. If you do the decimal to hexadecimal math,
you find that the two-digit hex notation #RRGGBB offers
exactly the same number of choices, just in a different
way. It offers more than 16 million possible colors.

colorname Blue	 The CSS standard defines 16 colors by name, and they’re
the 16 colors of the original Windows VGA palette: aqua,
black, blue, fuchsia, gray, green, lime, maroon, navy,
olive, purple, red, silver, teal, white, and yellow. Some
browsers can recognize more color names, but the speci­
fication includes only these 16.

Additional Neato Text Tricks in CSS
Before I wrap up the discussion of text transformations in CSS, take a peek at a number of
additional styles that are available to change how the text on your Web page appears—trans-
formations that aren’t possible in regular HTML.

Small capitals
One of the most interesting styles accessible in CSS is the capability to specify a font-
variant that has every letter capitalized, with the letters that were already capitalized slightly
larger than the lowercase letters capitalized by the variant. Here’s a typical usage:

557386 Ch04.qxd 4/2/04 11:01 AM Page 72

�

72 Creating Cool Web Sites with HTML, XHTML, and CSS

<style type=”text/css”>

.smallcap { font-variant: small-caps; }

</style>

</head><body>

<h1>This is a Level One Header</h1>

<h1 class=”smallcap”>This is also a Level One Header</h1>

The CSS specification defines a number of possible font variants, but so far Web browser
developers seem to have implemented only small-caps. The other possible value, to shut
off small-caps, is normal.

Stretching or squishing letter spacing
Another interesting variation in font layout is the letter-spacing style, which enables you
to expand or compress type by a specified per-letter value—even if it causes letters to over­
lap! Adjusting this space between letters is known as kerning in typographical circles. Here’s
an example:

<h1 style=”letter-spacing: -2px;”>And Another Level One Header</h1>

Figure 4-6 shows small-caps and letter-spacing all on the same page.

Figure 4-6: Small caps and letter spacing offer interesting type variations.

You can use any of the units specified in Table 4-1 in the letter-spacing style. In this exam­
ple, I’m indicating that each letter should have two pixels less space for width than normal,
effectively compressing the text just a bit.

557386 Ch04.qxd 4/2/04 11:01 AM Page 73

73 �Chapter 4: Moving into the 21st Century with Cascading Style Sheets

Stretching or squishing words
If you don’t want to have the spacing between letters adjusted, but you still want some con­
trol over the overall width of a text passage, word-spacing might be just what you need.
Consider the following example:

.wide { word-spacing: 15px; font-weight: bold; }

.narrow { word-spacing: -3px; font-weight: bold; }

Be careful with these values, especially if you’re trying to compress the text! A little change
can quickly produce unreadable text, and just a bit more can cause words to overlap.

Changing line height
The height between the lines of text in a paragraph is known as leading. You probably
remember having to write double-spaced papers in school. Double-spaced, in CSS terms,
is line-height: 2. Unusual in a CSS style, line-height doesn’t need a unit (unless you
want to refer to percentages, inches, pixels, points, and so on) and accepts fractional
values, too. So to get a line-height half way between single-spaced and double-spaced, use
line-height: 1.5, as shown:

.doublespaced { line-height: 1.5; }

Putting it all together, here’s an example of line-height and word-spacing:

<style type=”text/css”>

.wide { word-spacing: 15px; font-weight: bold; }

.narrow { word-spacing: -3px; font-weight: bold; }

.doublespaced { line-height: 1.5; }

</style>

</head><body>

<div class=”doublespaced”>

This is a paragraph of text that’s double-spaced. This means

that the <i>leading</i>, or interline spacing, is different

from standard text layout on a Web page. Within this

paragraph, I can also have

some words that are widely spaced due to

the word-spacing value and, of course,

some words that are narrowly spaced,

too.

</div>

<p>

By comparison, this paragraph doesn’t have any special line-height

specified, so it’s “single spaced.” Notice the difference in the

space between lines of text.

</p>

557386 Ch04.qxd 4/2/04 11:01 AM Page 74

�

74 Creating Cool Web Sites with HTML, XHTML, and CSS

The effects of both word and line spacing are shown in Figure 4-7.

Figure 4-7: Word and line spacing can dramatically change the way text looks on a page.

Not all possible settings are good, of course. A line height that’s too small results in the lines
of text becoming illegible as they’re overlapped. The single addition of line-height: 1.25,
however, can significantly improve the appearance of a page, and you can increase line
height for the entire document by changing the style of the body tag. Adding the following
code to the top <style> block changes all the text on the page:

body { line-height: 1.25 }

Cool, eh? I tweak the body container again and again as I proceed. It’s very useful!

Text alignment
HTML includes some attributes for the <p> tag that let you specify if you want the text to be
left, center, or right aligned, or justified, where both the left and right margins are aligned.
These attributes are replaced in CSS with the text-align style, which has the following
possible values:

• left

• right

• center

• justify

Vertical text alignment
Here’s one feature that you don’t see in HTML except in the exceptionally awkward form of
<sup> and <sub> for superscripts and subscripts, respectively. Instead, use vertical-align
and pick one of the values shown in Table 4-3.

557386 Ch04.qxd 4/2/04 11:01 AM Page 75

75 �Chapter 4: Moving into the 21st Century with Cascading Style Sheets

Table 4.3: CSS Vertical Alignment Values

Value Explanation

top Specifies that top of element aligns with top of highest element in line

middle Specifies that middle of element aligns with middle of line

bottom Specifies that bottom of element aligns with bottom of lowest element in line

text-top Specifies that top of element aligns with top of highest text element in line

text-bottom Specifies that bottom of element aligns with bottom of lowest text element in line

super Indicates superscript

sub Indicates subscript

A nice demonstration of this capability is a technique for having trademark (tm) character
sequences displayed attractively on a page:

.tm { vertical-align: top; font-size: 33%; font-weight: bold; }

In use, this might appear as

Though just about lost to common parlance, it remains the case that
Xeroxtm is a trademark of Xerox Corporation.

Text decorations
One HTML text decoration that, surprisingly, made it to CSS is underlining. As discussed in
Chapter 3, underlining text on a Web page is somewhat problematic because it can become
quite difficult to differentiate links from underlined text. But the CSS text-decoration style
enables more than just underlining. It provides the following four values:

• underline

• overline

• line-through

• blink

With the exception of overline, these all have HTML equivalents: <u> for underline, <strike>
for line-through, and <blink> for blink. In CSS, however, it’s much easier to apply a number of
them simultaneously, like this:

h1 { text-decoration: overline underline; }

By using the underlining styles, you can rather dramatically change the appearance of head­
ers throughout a document.

557386 Ch04.qxd 4/2/04 11:01 AM Page 76

�

76 Creating Cool Web Sites with HTML, XHTML, and CSS

Changing text case
This is the last new CSS style for this chapter, I promise. I know that this chapter must seem
like quite a monster with all this thrown at you at once! That’s why it’s incredibly important
that you try things on your computer as you read about them. If you just sip your latté while
you go through this book, your retention is likely to be minimal. But if you’re trying each and
every style and example on your computer, you’ll have lots of “a ha!” moments, and you
should start to see the tremendous value of CSS for even the most rudimentary pages.

� Don’t forget, all the code listings are available on the book Web site at
on the http://www.intuitive.com/coolsites/.
web

The final style to learn in this chapter, text-transform, deals with the capitalization of text
and has the values specified in Table 4-4.

Table 4-4: Text Transformation Values

Value Meaning

capitalize Displays the first letter of each word as caps and all others as lowercase

uppercase Displays all letters as uppercase

lowercase Displays all letters as lowercase

none Displays characters as specified

To have a paragraph of text transformed into all uppercase, for example, use text-transform:
uppercase;, and to instantly ensure that all header level ones are in proper case, use:

h1 { text-transform: capitalize; }

Putting it all together
Let’s pull the example from the end of the last chapter and see how using CSS can help jazz
up the presentation. Here’s what I’ve produced with just a little CSS tweaking (notice that I
always include a font-family default value, too):

<style type=”text/css”>
body { font-family: Arial,Helvetica,sans-serif; font-size:90%;

line-height: 1.25; }
h1 { text-transform: capitalize; text-decoration: overline
underline; color: blue; letter-spacing: 0.05em; text-align: center; }
{ font-variant: small-caps; font-weight: bold; }

.email { color: #909; font-family: monospace; font-size: 90% }

.tm { vertical-align: top; font-size: 40%; font-weight: bold; }

</style>

</head><body>

i

557386 Ch04.qxd 4/2/04 11:01 AM Page 77

77 �Chapter 4: Moving into the 21st Century with Cascading Style Sheets

<h1>Travels with Tintin</h1>
<p>

Of the various reporters with whom I’ve travelled around

the world, including writers for <i>UPI</i>, <i>AP</i>,

and <i>Reuters</i>, the most fascinating has clearly been

Tintin, boy reporter from Belgium (

tintin@intuitive.com).

</p><div style=”text-align:right”>

Probably the most enjoyable aspect of our travels was his

dog Snowy, though I don’t know that our hosts would

always agree!

</div>

<h1>The First Trip: Nepal</h1>

<p>

After winning the Pulitzer for <i>Red Rackham’s Treasure</i>

tm,

Tintin told me he wanted a vacation. Remembering some of his

earlier adventures, he decided to visit Nepal. Early one

Sunday, I was sipping my tea and reading the <i>Times</i>

when he rang me up, asking whether I’d be able to take a

break and come along...

</p>

Check out the attractive result in Figure 4-8. Make sure you compare this figure to Figure 3-8
from the previous chapter to see how much more capability you’ve gained by moving to CSS.

Figure 4-8: The Travels With Tintin screen shot from Chapter 3 has been enhanced with the CSS styles presented
throughout this chapter.

557386 Ch04.qxd 4/2/04 11:01 AM Page 78

�

78 Creating Cool Web Sites with HTML, XHTML, and CSS

�
One CSS shortcut that I haven’t mentioned here is the font: style itself. Many of the

tip individual font-related styles can be combined into a single font: style, saving you a
lot of work. For example, the following two code lines are functionally
equivalent:

h1 { font-weight: bold; font-size: 22pt;

line-height: 30pt; font-family: Courier, monospace; }
h1 { font: bold 22pt/30pt Courier, monospace }

Well worth learning to save you typing!

Description

<span
tences or headers to change individual words

style= Provides specific CSS styles to apply to the span

class= Identifies which CSS class should be applied to the span

id= span

<div </div> <p>

style= Specifies CSS styles to apply to the div

class= Identifies which CSS class should be applied to the div

id= div

<link

type= Specifies a type of external link; for CSS it should be
text/css

href=
rate CSS style sheets are named with a .css filename
suffix

<style </style>
should appear within the <head></head> block of the
page

type= Specifies the type of style sheet being used; for CSS always
use text/css

Table 4-5: HTML Tags That Support CSS Covered in This Chapter

Tag Closing Tag

Specifies a nonbreaking CSS container; used within sen­

Identifies which CSS ID should be applied to the

Specifies a CSS container that acts identically to the
tag; forces a line break before and after

Identifies which CSS ID should be applied to the

References external CSS style sheet by name

Indicates the URL of the style sheet; by convention, sepa­

Specifies a block for CSS style definitions on Web page;

557386 Ch04.qxd 4/2/04 11:01 AM Page 79

�Chapter 4: Moving into the 21st Century with Cascading Style Sheets 79

Style Exemplary Usage Description

font-weight font-weight: bold Specifies how much or how little to
embolden a text passage

font-style font-style: italic

font-family font-family: serif Specifies which typeface to use for the
text passage, as a comma-separated list,
or which font-family to use from a
small predefined list

font-size font-size: 80% Specifies the type size of the text pas­
sage in one of a wide variety of different
units and values

color color: green Specifies the text color in the text pas­
sage; can be color names or color
values specified in a variety of ways

font-variant font-variant: small-caps
on the specified variation; only
small-caps and none are defined

letter-spacing letter-spacing: -3px Changes the interletter spacing (also
known as the kerning) to make it larger
or smaller than the default

word-spacing word-spacing: 15px Increases or decreases the spacing
between words in the text passage

line-height line-height: 1.25 Changes the spacing between lines of
text (also known as the leading); a
variety of values are accepted, including
fractional values such as 1.5 (for one
and a half times normal spacing), 2 (for
double spacing), and so on

text-align text-align:center Specifies alignment for a block of text

vertical-align vertical-align: sub Specifies vertical alignment of a text pas­
sage relative to other text on the line

text-decoration text-decoration: underline Specifies one or more of a variety of
simple text decorations

text-transform text-transform: capitalize Specifies one of a number of text trans­
formations involving upper- and lower­
case letters

font font: 22pt monospace
allows the specification of a number of
different font characteristics

Table 4-6: CSS Styles Covered in This Chapter

Specifies whether to italicize, oblique, or
leave the text passage non-italicized

Transforms the text passage based

Indicates shorthand CSS notation that

557386 Ch04.qxd 4/2/04 11:01 AM Page 80

80

�

Creating Cool Web Sites with HTML, XHTML, and CSS

showing you how a few simple changes to your HTML, such as bold, italics,

looking at lists and special characters.

�Summary
This chapter introduced you to the marvels of Cascading Style Sheets,

underlining, text alignment, and text decorations and transformations, can
result in dramatically improved Web page layout and text presentation. In
the next chapter, you continue your exploration of both HTML and CSS by

557386 Ch05.qxd 4/2/04 9:48 AM Page 81

�5Special
chapterLists and

Characters

Setting up definition lists

Adding numbered and bulleted lists to

Fiddling with list styles

Adding special characters to your

� In This Chapter

your Web pages

HTML documents

Working with comments within HTML

In this chapter, I introduce you to various types of lists for Web pages, including
ordered (numbered) and unordered (bulleted) lists. You learn how to change

the appearance of lists using both HTML attributes and CSS styles to make them
exactly what you want. I also explain how to add special and non-English charac­
ters and comments to your Web documents. You have probably noticed lots of
lists on the Web. After you read this chapter, you will know how to use the differ­
ent list styles to your advantage as you create your own Web pages.

Definition Lists
One of the most common elements of multipage documents is a set of definitions,
references, or cross-indexes. Glossaries are classic examples; words are listed
alphabetically, followed by prose definitions. In HTML, the entire glossary section
is contained by a definition list, which is contained within a pair of definition list
tags: <dl> and </dl>. Within the pair of listings, a definition has two parts:

• Definition term (<dt> and </dt>)

• Definition description (<d> and </dd>)

557386 Ch05.qxd 4/2/04 9:48 AM Page 82

�

82 Creating Cool Web Sites with HTML, XHTML, and CSS

Here’s how you can use a definition list in HTML to define some genetics terms:

<html>

<head>

<title>Miscellaneous Genetic Terms</title>

<body>

<h1>A Quick Glossary of Genetic Terms</h1>

<i>Adapted from Dawkins, The Extended Phenotype</i>

<dl>

<dt>allometry</dt>

<dd>A disproportionate relationship between size of a body

part and size of the whole body.</dd>

<dt>anaphase</dt>

<dd>Phase of the cell division during which the paired

chromosomes move apart.</dd>

<dt>antigens</dt>

<dd>Foreign bodies, usually protein molecules, which provoke the

formation of antibodies.</dd>

<dt>autosome</dt>

<dd>A chromosome that is not one of the sex chromosomes.</dd>

<dt>codon</dt>

<dd>A triplet of units (nucleotides) in the genetic code, specifying

the synthesis of a single unit (amino acid) in a protein chain.</dd>

<dt>genome</dt>

<dd>The entire collection of genes possessed by one organism.</dd>

</dl>

</body>

</html>

Figure 5-1 shows the result of the preceding HTML code in a Web browser. Notice the auto­
matic indentation and formatting.

If you’re writing a book about herbal remedies, for example, you may want to have a cross-
reference of herbs for specific problems. Perhaps you want the ailment in bold and certain
key herbs in italics for emphasis. The following example shows how you might want such a
listing to look:

Blood Pressure

Balm, Black Haw, Garlic, Hawthorn.

Bronchitis

Angelica, Aniseed, Caraway, Grindelia.

Burns

Aloe, Chickweed, Elder.

557386 Ch05.qxd 4/2/04 9:48 AM Page 83

83 �Chapter 5: Lists and Special Characters

Figure 5-1: A glossary, formatted as a definition list, in HTML.

Obtaining this format within an HTML document requires the following tag placements:

<dl>

<dt>Blood Pressure</dt>

<dd>Balm, Black Haw, <i>Garlic</i>, Hawthorn.</dd>

<dt>Bronchitis</dt>

<dd>Angelica, <i>Aniseed, Caraway</i>, Grindelia.</dd>

<dt>Burns</dt>

<dd>Aloe, Chickweed, <i>Elder</i>.</dd>

</dt>

Figure 5-2 shows the result, which is, if I do say so myself, quite attractive and similar to the
original design.

� By now, I hope that you can read the preceding HTML snippet and understand all
x-ref the paired formatting tags. If not, you might want to skip back to Chapters 3 and 4

and study it a bit more to refresh your memory on text-style formatting.

There’s a smarter way to accomplish some of the formatting in this last definition list: Use a
CSS style modification that makes all <dt> tags appear in bold text. It looks like the following
in the <style> block:

dd { font-weight: bold; }

557386 Ch05.qxd 4/2/04 9:48 AM Page 84

�

84 Creating Cool Web Sites with HTML, XHTML, and CSS

Figure 5-2: A definition list of medicinal herbs with some additional formatting.

With this style modification in place, you can simplify the previous HTML and also make it
more manageable:

<style type=”text/css”>

dt { font-weight: bold; }

</style>

<body>

<dl>

<dt>Blood Pressure</dt>

<dd>Balm, Black Haw, <i>Garlic</i>, Hawthorn.</dd>

<dt>Bronchitis</dt>

<dd>Angelica, <i>Aniseed, Caraway</i>, Grindelia.</dd>

<dt>Burns</dt>

<dd>Aloe, Chickweed, <i>Elder</i>.</dd>

</dl>

The results are completely identical to Figure 5-2. By using CSS, however, you can further
modify the presentation, including presenting the terms in a slightly larger font (font-size:
125%) or even a different color (color:green).

Good list, bad list
The basic concept of a list is exhibited in the definition-list format: a pair of tags within which
other tags have special meanings. Tags such as <dt> and <dd> are context-sensitive tags:
They have meaning only if they appear within the <dl> </dl> pair.

What happens if you use <dt> and <dd> without wrapping them in a <dl> </dl> pair?
Sometimes, the result is identical to Figure 5-2: The default meanings of the dt and dd tags
are consistent in the Web browser, whether they appear within a list or not. In other browsers,
they are ignored. Later in this chapter, you learn about a different context-sensitive tag that def­
initely does the wrong thing if you don’t ensure that it’s wrapped within its list-definition tags.

557386 Ch05.qxd 4/2/04 9:48 AM Page 85

85 �Chapter 5: Lists and Special Characters

To avoid lucky defaults that aren’t consistent across all browsers, always check

� your HTML formatting in multiple Web browsers before concluding that the format-
tip ting is correct. This can trip up even experienced Web page designers: My friend

Linda has been developing some new pages for an existing Web site and she asked
me to have a peek. I responded that it looked great, but was surprised she had left
the default gray background (I show you how to change the page background color
in Chapter 7). She was surprised by that; she’d forgotten that her particular Web
browser used white, not gray, as the default background page color!

Unordered (Bulleted) Lists
Definition lists are handy, but the type of list that you see much more often on the World Wide
Web is a bulleted list, also called an unordered list. Unordered lists start with and close
with , and denotes each list item.

The format is similar to that of the definition list, as the following example shows:

Common Herbal remedies include:

Blood Pressure -- Balm, Black Haw, <i>Garlic</i>, Hawthorn.

Bronchitis -- Angelica, <i>Aniseed, Caraway</i>, Grindelia.

Burns -- Aloe, Chickweed, <i>Elder</i>.

� Although many people are lazy regarding use of the closing tag, it is required
tip if you want your pages to be XHTML compliant, as discussed in Chapter 2. It’s also

a good habit to form.

The result as viewed from a browser is attractive, as you can see in Figure 5-3.

Figure 5-3: A bulleted list.

557386 Ch05.qxd 4/2/04 9:48 AM Page 86

�

86 Creating Cool Web Sites with HTML, XHTML, and CSS

A combination of the two list types (unordered and definition) is often useful. The definition
list looks very professional with the addition of a few style tweaks, and the bullets next to
each item in the unordered list look slick, too. The solution is to nest lists within one another,
as follows:

<style type=”text/css”>
dt { font-weight: bold; margin-top: 10px; margin-left: 1em; }
li { font-size: 80%; }
</style>
<body>
Common herbal remedies include:
<dl>
<dt>Blood Pressure</dt>
<dd>
Balm
Black Haw
<i>Garlic</i>
Hawthorn

</dd>
<dt>Bronchitis</dt>
<dd>
Angelica
<i>Aniseed
Caraway</i>
Grindelia

</dd>
<dt>Burns</dt>
<dd>
Aloe
Chickweed
<i>Elder</i>

</dd>
</dl>

Figure 5-4 shows the nice result of the preceding code.

�
Notice that I used some indentation on the HTML source code in the previous listing
to make it clearer which lists were subordinate to which and to make the source

note more readable. That manual indentation is ignored when the page is rendered and
displayed in the browser, but it’s a convenient organizational tool and also helps
find possible errors in the code.

Notice (in the listing that follows) that I use some fairly sophisticated CSS styles to achieve
the desired screen display.

dt { font-weight: bold; margin-top: 10px; margin-left: 1em; }

li { font-size: 80%; }

557386 Ch05.qxd 4/2/04 9:48 AM Page 87

87 �Chapter 5: Lists and Special Characters

Figure 5-4: A nested list using bold, indenting, and varied font sizes.

The first statement redefines all definition terms to be in bold, with a 10-pixel space above
and one em-width to the left. (I discuss margin styles in Chapter 13.) The second statement
reduces all list item entries to 80% of the standard typeface size on the page. The results are
attractive, and it’s a nice demonstration of how HTML and CSS can work together to make
this kind of result not only possible, but easy too!

Ordered (Numbered) Lists
What if you want to create a list, but with numbers instead of bullet points? The adage “sim­
pler is better” suggests the formatting in the following example:

<html>
<head>
<title>Enchilada Recipe, v1</title>
</head><body>
<h2>Enchilada Sauce</h2>

1. Heat a large saucepan and saute the following ingredients until soft:

Two tablespoons virgin olive oil

Large onion, chopped

2. Add a quart of water.

3. Sprinkle in a quarter-cup of flour.

Continued

557386 Ch05.qxd 4/2/04 9:48 AM Page 88

�

88 Creating Cool Web Sites with HTML, XHTML, and CSS

Continued
4. Jazz it up by adding:

Two tablespoons chili powder

Two teaspoons cumin

One teaspoon garlic powder

5. Finally, add a teaspoon of salt, if desired.

Whisk as sauce thickens; then simmer for 20 minutes.

</body>

</html>

The result is reasonably nice, as shown in Figure 5-5.

Figure 5-5: An example showing manually inserted numbered steps along with unordered lists.

Before you carry this book into the kitchen, however, I need to tell you that I got confused
while I typed this recipe. The water should be added at the end, not in Step 2.

Now what? You certainly don’t want to renumber all the items in the numbered list. The situa­
tion calls for the cousin of the unordered list: the ordered list . The list ends with the
close tag . Each item in the list has a list item tag .

Now you can see what I was talking about earlier with context-sensitive tags: You specify the
list items for an ordered list using exactly the same HTML tag as you do for an unordered,

557386 Ch05.qxd 4/2/04 9:48 AM Page 89

89 �Chapter 5: Lists and Special Characters

bulleted list: . Without specifying which type of list you want, how does the browser know
what you mean? The meaning of the tag depends on what kind of list it lies within.

Following is how the recipe itself looks with my gaffe corrected and the HTML rewritten to
take advantage of the ordered list style:

Heat a large saucepan, and saute the following ingredients until soft:

Two tablespoons virgin olive oil

Large onion, chopped

Sprinkle in a quarter-cup of flour.

Jazz it up by adding:

Two tablespoons chili powder

Two teaspoons cumin

One teaspoon garlic powder

Add a quart of water.

Finally, add a teaspoon of salt, if desired.

Whisk as sauce thickens; then simmer for 20 minutes.

The output (see Figure 5-6) not only produces a better enchilada sauce, but it is consider­
ably more attractive because Web browsers automatically indent lists of this nature. As a
result, the nested-list items are indented twice: once because they’re part of the numbered
list, and a second time because they’re the list-within-the-list.

Figure 5-6: An example of automatic numbering using the ordered list style and indents.

557386 Ch05.qxd 4/2/04 9:48 AM Page 90

�

90 Creating Cool Web Sites with HTML, XHTML, and CSS

�
A final note on lists: There are a number of additional HTML tags from the early
days of Web design that are supposed to offer further list-formatting capabilities, note most notably <dir> and <menu>. Unfortunately, these styles were never widely
implemented and are explicitly phased out in the HTML 4.0 specification.

List Formats
You’ve already learned how to modify HTML in a variety of ways, from using simple format­
ting tags such as and <i>, to more sophisticated changes using CSS styles. Some
changes, however, aren’t so simple.

Standard ordered-list HTML tags specify that you have an ordered list and display the list
items with incremental numeric values—1, 2, 3, and so on. If you want to create a multilevel
outline or other multilevel list, or if you want to have an alternative numbering system, the
capability to specify different notations for the different levels is quite useful. You might want
A to Z for the highest level, numbers for the second level, and a to z for the lowest level. That
format is, of course, the typical outline format taught in English class, and an example of it
looks like the following:

A. Introduction

1. Title

a. Author

b. Institution

c. Working title (20 words or fewer)

2. Justification for research

a. What? Why?

3. Findings

4. Conclusions

B. Body of Paper

1. Previous research

2. Research methods used

3. Results and findings

557386 Ch05.qxd 4/2/04 9:48 AM Page 91

91 �Chapter 5: Lists and Special Characters

C. Conclusion

1. Implications

2. Directions for future research

D. References

If you want to reproduce the preceding example on a Web page, you could accomplish it by
using three levels of numbered-list items, many bullet points, or no indentation at all. None of
these options is what you want, and that’s where the enhanced ordered-list extensions come
in handy.

Ordered lists have two extensions: type, which specifies the numeric counter style to use;
and start, which begins the count at the value you specify, rather than at one.

You can use any of five different types of counting values:

• <type=”A”> is uppercase alphabetic (A, B, C, D).

• <type=”a”> is lowercase alphabetic (a, b, c, d).

• <type=”I”> is uppercase Roman numerals (I, II, III, IV).

• <type=”i”> is lowercase Roman numerals (i, ii, iii, iv).

• <type=”1”> (the default) is Arabic numerals (1, 2, 3, 4).

To have an ordered list count with Roman numerals, in uppercase, and start with item 4, you
would use <ol type=”I” start=”4”>. The default for a list is <ol type=”1” start=”1”>.
(Because it’s the default, you don’t have to include it. But if you do include it, nothing will
break. It’s up to you.)

Here’s how you produce the previous outline as a Web page:

<ol type=”A”>

Introduction

Title

<ol type=”a”>

Author

Institution

Working title (20 words or fewer)

Justification for research

<ol type=”a”>

What? Why?

Continued

557386 Ch05.qxd 4/2/04 9:48 AM Page 92

�

92 Creating Cool Web Sites with HTML, XHTML, and CSS

Continued
Findings

Conclusions

Body of Paper

Previous research

Research methods used

Results and findings

Conclusion

Implications

Directions for future research

References

This outline displays correctly in a Web browser, as you can see in Figure 5-7.

Figure 5-7: An outline using special attributes to display varied types of numbers and letters.

Bullet shapes
If you’re experimenting with list styles as you read along—and I hope you are—you may have
found that different levels of unordered lists produce differently shaped bullets. In fact, Web
browsers support three types of bullets—a solid disc, a circle, and a square—and you can

557386 Ch05.qxd 4/2/04 9:48 AM Page 93

93 �Chapter 5: Lists and Special Characters

choose which bullet to use for your unordered list by specifying a type attribute. For example,
if you want a list in which every item is bulleted with a square, <ul type=”square”> does the
trick.

The following example shows how you can use these various bullet types in a Web docu­
ment. Notice, also, that within the tag, you can change the bullet shape for that specific
list item by specifying type=”shape”. You can also change the start count for an ordered list
by specifying start=”value”. In the following example, the ordered list ends before the
<div> text. I used <li value=3> to restart it at 3.

<h3>Geometric Ramblings</h3>

<ol type=”i”>

Facets of a Square:

<ul type=”square”>

four sides of equal length

Interesting Facts about Circles:

<ul type=”disc”>

maximum enclosed area, shortest line

<div style=”text-align:center; background-color:yellow;”>

Weird, unrelated information.

</div>

<ol type=”i”>

<li value=”3”> and much, much more!

Figure 5-8 shows the preceding HTML text in a Web browser. Notice that the numbered list
seems to flow without any interruption, something that would be impossible to accomplish
without adding a subsequent value attribute to the ordered list.

Figure 5-8: Geometric ramblings—showing off various ways you can fine-tune the presentation of list elements.

557386 Ch05.qxd 4/2/04 9:48 AM Page 94

�

94 Creating Cool Web Sites with HTML, XHTML, and CSS

CSS control over lists
You can employ the strategies just discussed in the preceding section to fine-tune the list
styles in CSS. This means that you can apply them en masse across all lists on a page in a
style block! For example, to have all bullets on all bulleted lists, regardless of indentation
level, be solid discs, use this code:

ul { list-style-type: disc; }

The entire range of possible values for list-style-type are as follows:

• disc

• circle

• square

Much more exciting, however, is that with CSS you can define your own bullet! Way cool!!
Here’s the solution:

ul { list-style-image: url(diamond.gif) }

This specifies that the graphic file diamond.gif (it can be a fully-qualified URL starting with
http:// and pointing to any server on the Web, if needed) should replace the standard bullet
element.

� Although CSS supports relative URLs as shown here, many CSS experts recom­
tip mend that you fully qualify every reference, that is, make sure it always starts with

the http:// sequence.

You can also control the exact position of the bullet within the list, all with CSS (I told you,
CSS is remarkably powerful!) by using the attribute list-style-position. It has two possi­
ble values: inside or outside. The following code demonstrates how they differ:

<ul style=”list-style-image: url(diamond.gif);line-height:1.5;”>

“Good-night, Mister Sherlock Holmes.”

<li style=”list-style-position: inside;”>

There were several people on the pavement at the time,

but the greeting appeared to come from a slim youth

in an ulster who had hurried by.

<li style=”list-style-position: outside;”>

“I’ve heard that voice before,” said Holmes, staring

down the dimly lit street. “Now, I wonder who the

deuce that could have been.”

Figure 5-9 shows the result. What a nice capability!

557386 Ch05.qxd 4/2/04 9:48 AM Page 95

95 �Chapter 5: Lists and Special Characters

Figure 5-9: Specifying a bullet graphic with list-style-image.

Counting the CSS way
In addition to supporting the five basic ordered list numbering schemes shown earlier in this
chapter, the CSS style list-style-type, when used in an ordered list, has a completely
overwhelming number of possibilities, as shown in Table 5-1.

Table 5-1: The Many, Many Possible Values of list-style-type

Name Explanation Implemented?

decimal The default: 1, 2, 3, . . . J

decimal-leading-zero The same as decimal, but with leading zeroes: 01, 02, . . . L

lower-roman Lowercase roman numerals: i, ii, iii, iv, v, vi, . . . J

upper-roman Uppercase roman numerals: I, II, III, IV, V, VI, . . . J

lower-greek Counts using Greek letters: alpha, beta, gamma, delta, . . . L

lower-alpha Lowercase alphabetic: a, b, c, d, e, . . . J

lower-latin Lowercase alphabetic – identical to lower-alpha L

upper-alpha Uppercase alphabetic: A, B, C, D, E, . . . J

upper-latin Uppercase alphabetic—identical to upper-alpha L

hebrew Counts using Hebrew numbering L

armenian Counts using Armenian numbering L

georgian Counts using Georgian numbering L

cjk-ideographic Counts using ideographic numbers L

hiragana Counts using Japanese hiragana system L

katakana Counts using Japanese katakana system L

hiragana-iroha Counts using Japanese hiragana-iroha system L

katakana-iroha Counts using Japanese katakana-iroha system L

557386 Ch05.qxd 4/2/04 9:48 AM Page 96

�

96 Creating Cool Web Sites with HTML, XHTML, and CSS

Based on the many possibilities, you can apparently have lots of fun with different counting
options, but unfortunately, only a few of these values are implemented, as the table indicates. If
you’re expert with the HTML type attribute of the tag, you recognize all the implemented
values; they’re exactly the same as the implemented values for the list-style-type tag.

So why are so many elements in the CSS standard not implemented? Two reasons:

� First, even though CSS has been around for a long time, these different numbering
note systems are still on the cutting edge; second, most of the standards I’ve encoun­

tered contain elements that are never implemented. HTML 4.01also has unimple­
mented elements; for example, some of the elements added to aid site navigation
by disabled people are consistently ignored by browser developers.

List-style shortcuts
Just as you can use the font: attribute as a convenient shortcut for specifying a variety of
font- and typeface-related style attributes, you can also use the list-style attribute to
make fine-tuning the presentation of your lists a breeze.

I can best demonstrate this shorthand by showing you the following snippet:

ul { list-style: disc outside url(diamond.gif); }

This example is functionally identical to the following example:

ul { list-style: disc; list-style-position: outside;

list-style-image: url(diamond.gif); }

Character Entities in HTML Documents
If you’re an alert reader, you may have noticed a typographical error in the recipe shown
earlier. The recipe instructed the cook to saute the ingredients, yet the word should have
an accent (sauté). Languages contain a variety of special characters that you may need to
use, called diacriticals, particularly if you plan to present material in a language other than
English. Not surprisingly, you can include special characters in HTML code by using special
tags called entities or entity references.

Unlike the tags you’ve learned about so far, special character entities aren’t neatly tucked
into paired angle brackets (< >); instead, they always begin with an ampersand (&) and end
with a semicolon (;). Most entities are somewhat mnemonic, as Table 5-2 shows.

557386 Ch05.qxd 4/2/04 9:48 AM Page 97

97 �Chapter 5: Lists and Special Characters

Table 5-2: Special Characters in HTML

Character HTML Code Meaning

& & ampersand

< < less than

> > greater than

© © copyright symbol

á á lowercase a with acute accent

à à lowercase a with grave accent

â â lowercase a with circumflex

ä ä lowercase a with umlaut

å å lowercase a with ring

ç ç lowercase c with cedilla

ñ ñ lowercase n with tilde

ø ø lowercase o with slash

β ß lowercase ess-zed symbol

� Not all Web browsers can display all these characters, particularly on Windows sys­
caution tems. Check them on a few browsers before you use them in your own Web page

layout.

To create an uppercase version of one of the characters in Table 5-2, make the first letter of
the formatting tag uppercase. Ø, for example, produces an uppercase O with a slash
through it, as in the word CØPENHAGEN (which you type as CØPENHAGEN). To pro­
duce a different vowel with a diacritical mark, change the first letter of that tag. The word
desvàn, for example, is correctly specified in an HTML document as desvàn.

The following example contains some foreign language snippets so that you can see how
these formatting tags work:

<style type=”text/css”>

dt { font-weight: bold; font-size: 110%; margin: 5px }

</style>

<body>

The following demonstrate the various uses of

character entities in working with non-English

languages on Web pages.

<dl>

<dt>Gibt es ein Café in der Nähe? </dt>

Continued

557386 Ch05.qxd 4/2/04 9:48 AM Page 98

�

98 Creating Cool Web Sites with HTML, XHTML, and CSS

Continued
<dd>Is there a café nearby?</dd>
<P>

<dt>Je voudrais un dîner. </dt>

<dd>I want to eat dinner.</dd>

<P>

<dt>Y una mesa por mañana, por favor.</dt>

<dd>And a table for tomorrow, please.</dd>

<P>

<dt>Oh! C’è una specialità locale?</dt>

<dd>Oh! Is there a local speciality?</dd>

</dl>

I don’t actually speak German, French, Spanish, or Italian particularly well, but I guarantee
the preceding set of questions will confuse just about any waiter in Europe! Figure 5-10
shows the result of the preceding formatting.

Figure 5-10: Examples of entity references you can use to present special characters on your Web pages.

Some problems occur with the international characters supported in the basic HTML code,
not the least of these being that some elements are missing. This situation is improving; you
no longer have to do without the upside-down question mark (¿), for example, if you want to
write in Spanish. Use ¿ to get this character in your documents. If you want to
denote currency, you can code the pound sterling (£) and the cent sign (¢) as £ and
¢, respectively. If you need to acknowledge copyrights, most Web browsers display the
copyright symbol (©) and the registered trademark symbol (®) with © and ®.

557386 Ch05.qxd 4/2/04 9:48 AM Page 99

99 �Chapter 5: Lists and Special Characters

Nonbreaking Spaces
A special character entity that people frequently use in Web page design is one that isn’t
even a character and doesn’t even show up on the screen: the nonbreaking space. Included
as , it lets you force multiple spaces between items and ensures that items on either
side of the space are always adjacent regardless of how the window may be sized.

Here’s a typical scenario: You’re working with a Web page on which you want to have a word
set off by a number of spaces on each side. Your first attempt might be something like the
following:

words before important words after.

But that won’t work: The browser ignores the extra spaces. A better way to specify the spacing
you want is like this:

words before important words
after.

This accomplishes exactly what you want to present.

� I’ve made a copy of the entire entity reference list included in the HTML 4.0 specifica­
on the tion. You can view it at http://www.intuitive.com/coolsites/entities.html.
web

Comments within HTML Code
If you’ve spent any time working with complex markup languages, such as HTML, you know
that the capability to include tracking information and other comments can help you organize
and remember your coding approach when you return to the pages later.

Fortunately, HTML supports a specific (if peculiar) notational format for comments within
your documents. Any text surrounded by the elements <!— and —> is considered to be a com­
ment and is ignored by Web browsers, as shown in the following example:

<html>
<!— Last modified: 2 January 2004 —>
<title>Enchilada Sauce</title>
<!— inspired by an old recipe I heard in Mexico,
but I must admit that it’s going to be very
different. Even the flour is subtly different
in Juarez and elsewhere from that found in the States. —>
<H1>Enchilada Sauce</H1>

When I modify the Enchilada Sauce recipe by adding the comments shown above and
feed the text to a Web browser, the browser does not display the comments, as you see in
Figure 5-11 (which looks just like Figure 5-6).

557386 Ch05.qxd 4/2/04 9:48 AM Page 100

�

100 Creating Cool Web Sites with HTML, XHTML, and CSS

Figure 5-11: Comments galore, but none displayed.

�
You don’t have to use comments, but if you’re starting to build a complex Web
space that offers many documents, just time stamping each file could prove to be note invaluable. Me? I sometimes put jokes in my Web pages as comments, just to see if
people ever view the source!

Meaning

<dd> </dd> Indicates a definition description

<dl> </dl> Indicates a definition list

<dt> </dt> Indicates a definition term

 Indicates a list item

 Indicates an ordered (numbered) list

type=”type” Indicates the type of numbering (possible values are a, a, i, i, 1)

start=”x”

 Indicates an unordered (bulleted) list

type=”shape” Specifies the shape of bullet to use (possible values are
circle, square, disc)

<!— —>

Table 5-3: HTML Tags Covered in This Chapter

HTML Tag Close tag

Specifies the starting number of an ordered list

Indicates a comment within HTML

557386 Ch05.qxd 4/2/04 9:48 AM Page 101

�Chapter 5: Lists and Special Characters 101

CSS Style Description

list-style-type
ordered list, it specifies the type of numbering system to use.

list-style-image
bullet image. Use url(url) as the value.

list-style A shortcut for specifying more than one list style characteristic.

list-style-position Specifies the location of the bullet relative to the list content.
inside or outside.

Table 5-4: CSS Styles in This Chapter

For an unordered list, this specifies the type of bullet to use. For an

Enables you to specify the URL of a graphic to use as an alternative

Values are

including using your own custom bullets, changing the type of numbering,

�Summary
Each chapter, so far, expands the depth and sophistication of your HTML
skills. In this chapter, you learned about the various types of lists and how
you can combine them—and many CSS styles and formatting tags—to
produce attractive results. In particular, you learned about how CSS gives
you a remarkable level of control over the nuances of list formatting,

and much more. The next chapter is lots of fun. I show you the missing
link—quite literally.

557386 Ch05.qxd 4/2/04 9:48 AM Page 102

557386 Ch06.qxd 4/6/04 9:56 AM Page 103

�6Putting the Web in

and Links

chapter

World Wide Web:
Adding Pointers

information

Defining internal document references

� In This Chapter
Linking to other Web pages

Creating references to non-Web

Examining relative URLs

Deciding how to organize your Web site

This chapter covers actual HTML pointers to other Web and Internet resources,
shows you how to include pointers to graphics and illustrations, and builds on

the URL explanation found in Chapter 1.

At this point, you should feel comfortable with your HTML composition skills. You
certainly know all the key facets of HTML, with three notable exceptions: adding
links to other documents, adding internal links, and adding nontext information to
your pages. This chapter shows you how to add links; Chapter 7 covers graphics.

Much of the information in this chapter builds on the extensive discussion of
Uniform Resource Locators (URLs) in Chapter 1. You may want to skim that
chapter again to refresh your memory before you proceed.

Pointing to Other Web Pages
The basic HTML formatting tag for external references is the anchor tag, <a>,
and its ending partner is . This tag must contain attributes. Without any

557386 Ch06.qxd 4/6/04 9:56 AM Page 104

�

104 Creating Cool Web Sites with HTML, XHTML, and CSS

attributes, the <a> tag has no meaning and doesn’t affect the formatting of information. The
following, for example, would result in the display of the text without formatting:

You can now visit <a>the White House online!

To make this link live, that is, to make it clickable in a Web browser, you need to specify the
hypertext reference attribute: href=”value”. The value can be empty if you don’t know
the actual information, but you must specify the attribute to make the link appear active to
the viewer. You can rewrite the sentence as follows to make it a Web link:

You can now visit the White House online!

A Web browser would display the preceding line of HTML code with the portion between the
<a> references (the anchor tags) appearing in blue —the default color—with an underline or
highlighted in some other fashion. The information that should be contained between the
quotation marks is the URL for the Web page to which you want to link. The URL for the
White House Web site, for example, is http://www.whitehouse.gov/.

One classic problem that appears in HTML code is the use of curly (smart, or

� fancy) quotation marks. Web servers just don’t know what they mean. Double-
caution check to ensure that the quotes in your HTML documents are all straight: "like this"

rather than “like this.” The same applies to apostrophes and single quotes: make
sure that all the ones in your HTML documents are straight (') instead of curly (‘). A
rudimentary program such as NotePad or TextEdit uses straight quotes by default.
Using either of these makes building Web pages easier than using a more sophisti­
cated word processing program such as Microsoft Word.

The following is the sentence with the correct, live hypertext link to the White House:

You can now visit the

White House online!

The following is a more comprehensive example, which combines various facets of HTML to
build an interesting and attractive Web page.

<html>

<head>

<title>Visiting the White House and Other Government Sites</title>

</head>

<body link=”#0000FF” vlink=”#0000FF”>

<center>

<!— the following includes a graphic on the page. It’ll be

explained in Chapter 7 —>

</center>

<p>

In cyberspace, you can virtually travel anywhere. Of the various places

that are fun and interesting to explore, however, few are as

557386 Ch06.qxd 4/6/04 9:56 AM Page 105

105 �Chapter 6: Putting the Web in World Wide Web: Adding Pointers and Links

interesting as The White House.

But here are some others

to keep you busy:

</p>

<h2 style=”background-color:#ccc;padding:4px;width:100%;border: 1px

solid black;”>

Government Sites on the Web</h2>

Federal Bureau of Investigation

FedWorld, a great starting

point for

government research

National Institute for Literacy

Office of Surface Mining

Small Business Administration

Social Security Administration

Department of Homeland Security

U.S. Agency for International

Development

</body>

</html>

Figure 6-1 shows that the preceding HTML code is quite attractive when viewed in a browser.
The ugliness of the URLs is neatly hidden; readers can simply click the name of an agency to
connect directly to it.

Figure 6-1: Government sites with their accompanying URL links.

557386 Ch06.qxd 4/6/04 9:56 AM Page 106

�

106 Creating Cool Web Sites with HTML, XHTML, and CSS

Notice in the preceding HTML code that the link for the Office of Surface Mining is a complex
URL with a specified starting page, not just a domain name URL. Also notice that the words
The White House in the prose at the beginning of the Web page are highlighted and under­
lined, comprising a real Web link.

� Understanding this section of the chapter is a terrific step forward in learning HTML.
note After you grasp how to build anchors, you can build Web tables of contents—the

starting points for exploration on the Internet—with the best of them.

But how do you point to information that isn’t found within another Web document but is
located somewhere else on the Internet—outside the relative comfort and ease of the World
Wide Web? The next section shows you how.

Referencing Non-Web Information
To point to material that isn’t a Web document, but instead is located elsewhere on the
Internet, you simply use the appropriate URL, as specified in Chapter 1. If you learn, for
example, that the Library of Congress has an FTP site, you build a URL for it like this:

ftp://ftp.loc.gov/

You can then drop the URL into your HTML code as a value in an href attribute, as follows:

The Library of Congress

The following example shows how the unordered list of government Web sites I discussed in
the preceding section looks with the addition of a few FTP sites and an e-mail link:

Federal Bureau of Investigation

FedWorld, a great starting

point for government research

National Institute for Literacy

Office of Surface Mining

Library of Congress

Small Business Administration

Social Security Administration

Department of Commerce

National Oceanic and Atmospheric

Administration

Department of Homeland Security

U.S. Agency for International

Development

557386 Ch06.qxd 4/6/04 9:56 AM Page 107

107 �Chapter 6: Putting the Web in World Wide Web: Adding Pointers and Links

In my Web browser, the preceding looks almost identical to the earlier version, except that it
has three new items listed (see Figure 6-2). This example underscores one of the real strengths
of the HTML language: All anchors (hypertext pointers), regardless of the kind of information
they point to, look the same on a Web page. No funny little mail icons appear next to the
mailto link, no FTP icons appear next to FTP archives, and so on. The pages contain uniform
sets of pointers to other spots on the Internet that contain interesting, valuable, or fun
resources.

Figure 6-2: The list of government Web sites, expanded to include several that don’t reference other Web pages.

Of all the links demonstrated in the HTML code for this Web document, I think that the most
notable is the mailto: link used for the Department of Commerce. You create an e-mail
hypertext reference simply by prepending “mailto:” to a valid e-mail address. Sometimes,
a friendly mailto: link is presented like this:

Please Click here
to send updates.

But the preferred method is to integrate the link smoothly and transparently into the prose,
like this:

Please send
updates if anything has changed.

Try to avoid using Click here and similar labels for hypertext tags; cool Web pages come from
creative, meaningful, and unobtrusive integration of links into the text. On the other hand, set­
ting expectations for what happens when users click a link is important, too. A different design
for this particular Web page might include such hypertext labels as The FTP archives of . . . or
Send email to . . . to set expectations. I explore this important usability factor in Chapter 14.

557386 Ch06.qxd 4/6/04 9:56 AM Page 108

�

108 Creating Cool Web Sites with HTML, XHTML, and CSS

Referencing Internal Documents with Relative URLs
The capability to link to external information sources and sites on the Internet is a huge boon
to Web designers; but if you stopped at that and never learned any more, you’d be missing
half the picture. The one piece yet to learn is how to reference other documents on your own
server. This is where you advance from creating cool Web pages to creating cool Web sites!

Many home pages offer a simple format similar to the examples shown in this chapter—a
heading or two, a few simple paragraphs of text, perhaps a graphic or two, and then some
links to corresponding sites on the Web. More complex and sophisticated sites, however, may
have a number of different Web pages available. The pages on these multipage sites include
the appropriate links so that readers can easily jump among them.

You can choose an easy way or a hard way to reference internal documents—documents on
the server where your Web site resides. The hard way builds on the earlier examples: You fig­
ure out the full, or absolute, URL of each page and use those URLs as the hypertext reference
tags. Each of these begins with http://. The easy way to reference another document on
your server (the computer that holds your Web pages) is to specify the document name only,
or path and name, without any of the URL preface information. This method is referred to as
using relative URLs.

For example, if you have a starting page called home.html and a second page called
resume.html, and both are stored in the same folder or directory on the server, you can
create the following link:

You’re welcome to read my
resume.

� Purists, of course, would use the HTML code résumé instead of
note resume to ensure that résumé has the proper accent marks.

Relative URLs work by having the browser preface the hostname and path of the current page
to each reference. So if your Web page is at http://www.college.edu/joe/home.html and
uses the relative URL reference , the actual reference built by the
browser when it requests the page is http://www.college.edu/joe/research.html.

�
It’s critical to remember that if your Web server name changes, say from http://
www.college.edu to http://lab.college.edu, you have to update pages

note employing absolute URLs but not the pages employing relative URLs. These auto­
matically point to the correct subsequent links. This functionality is a compelling
reason to use relative URLs whenever possible.

557386 Ch06.qxd 4/6/04 9:56 AM Page 109

109 �Chapter 6: Putting the Web in World Wide Web: Adding Pointers and Links

You can change the default prefix for links on your page by using the <base href=”new-
base-url” /> tag. For example, <base href=”http://alt-server.college.edu/joe/
” /> causes all relative URLs to be resolved to the alt-server.college.edu server rather
than the www.college.edu server. More interestingly, you can use the target attribute of the
base tag to point links to other windows, a subject explored in greater depth in Chapter 8,
when I discuss frames and frame-based designs. For now, experiment by adding the following
line to your HTML page—this forces all links to open up in new windows—and watch how all
the links change their behaviors:

<base target=”_blank” />

Organizing a Web Site
After you move beyond one or two Web pages and a half-dozen graphics, it quickly becomes
clear that good organization makes site maintenance and management easier. To this end, a
hierarchical directory approach can prove to be a big advantage.

Imagine you are building a Web site for a local delicatessen. In addition to the home page,
you also want to have a variety of information available online about the sandwiches and
soups the deli offers. Planning for future growth, you might opt to organize the information as
shown in Figure 6-3.

Dave's Deli

soups sandwiches

index.html

tomato.html lentil.html ham.html veggie.htmlmystery.html corn-chowder.html turkey.html

order-counter.html

Figure 6-3: Organizing the Web page flow for the deli menu data.

When you want to translate the illustration in Figure 6-3 into an HTML layout that works with
the subdirectories, you might create a first draft of the home page that looks like this:

557386 Ch06.qxd 4/6/04 9:56 AM Page 110

�

110 Creating Cool Web Sites with HTML, XHTML, and CSS

<html>
<head>
<title>Dave’s Online Deli</title>

</head>

<body>

<h2>Welcome to the Virtual World of Dave’s Online Deli!</h2>

Sandwich Choices:

Turkey on a croissant.

Ham and Cheese

Veggie Delight

Soups of the Day:

Tomato

Tomato and Rice

Lentil

Corn Chowder

Mystery Soup

<I>Please order at the counter...</I>

</body>

</html>

The new virtual deli home page (which Web folks call the root, or the first page that visitors
see when reaching a site) is now formatted as shown in Figure 6-4.

You can’t see it, but the HTML code contains an inadvertent error. To understand the
problem—a relatively common one in complex documents like this—consider what happens
if someone wants more information about the tomato and rice soup instead of the tomato
soup. Both soup choices point to the same second page: soups/tomato.html, but this only
makes sense to the user if that page has information on both soups. Odds are, it’s just for the
tomato soup, which could leave fans of tomato and rice (one of my favorites) a bit baffled.

557386 Ch06.qxd 4/6/04 9:56 AM Page 111

111 �Chapter 6: Putting the Web in World Wide Web: Adding Pointers and Links

Figure 6-4: The opening page of Dave’s Online Deli, with the links to other pages available.

If a Web user pops into the virtual deli and wants to find out more about the lentil soup, for
example, he or she might click the hypertext link Lentil. The user would then see the page
soups/lentil.html, offering information about the soup and perhaps even including a pic­
ture. But how could you add a link on that page back to the deli home page? Consider the
following listing, paying close attention to the last few lines:

<center></center>

<h2>Lentil Soup</h2>

<div style=”margin-bottom:12px;”>

It will come as no surprise to regular patrons of the Virtual Deli

that our lentil soup has quickly become one of the most popular

items. With its combination of six different lentil beans, some

succulent organic vegetables, and our carefully filtered fresh spring

water, a hot bowl of our lentil soup on a cold day is unquestionably

one of life’s pleasures.

We’d love to tell you the recipe too, but why not come in and try it

for yourself.

</div>

We Also Recommend: a veggie

sandwich to accompany.

<hr />

Back to the main menu.

<hr />

557386 Ch06.qxd 4/6/04 9:56 AM Page 112

�

112 Creating Cool Web Sites with HTML, XHTML, and CSS

When visitors to the virtual deli arrive at the page created by the preceding HTML, they
have moved down a level in the server’s hierarchical directory structure, but they don’t know
that. The URLs in the document, however, tell the story. The main menu is ../deli.html.
The recommended sandwich to accompany the soup is in another directory—hence its
../sandwiches/ folder specification. See Figure 6-5 to see what the page looks like in a
browser.

Figure 6-5: The lentil soup page.

�
In the previous listings, you can see the use of relative filename addresses. For
example, ../deli.html pops up one level in the file system to find the deli.htmlnote page. This makes for easy HTML coding. But beware that problems can easily arise
if you move any of the pages around without updating the rest of the files.

Having shorter URLs is a compelling reason to use relative URLs in your Web page design,
but you have an even better reason: Your Web site (the collection of pages and graphics) is
much more portable from system to system with relative addressing.

Suppose that you’re building a Web site with your America Online account, and your home
page address is http://members.aol.com/d1taylor/. Each absolute reference, therefore,
has that address as the first portion, so a graphic like landscape.jpg in the photos directory
ends up with the URL http://members.aol.com/d1taylor/photos/landscape.jpg.

What if you end up registering your own domain a few weeks later and want to have all the
references to the members.aol.com domain vanish? With absolute URLs, you’re stuck with
editing every single reference in every HTML file—a mondo drag. If you use relative URLs, on
the other hand, the photo would be referenced as photos/landscape.jpg. You simply move
the entire set of files and graphics to the new folder, and everything works without a single
modification!

557386 Ch06.qxd 4/6/04 9:56 AM Page 113

113 �Chapter 6: Putting the Web in World Wide Web: Adding Pointers and Links

Defining Web Document Jump Targets
Until now, the HTML pages shown in this book have been short, with the information confined
to the visible browser-window area. Such an approach to Web document design results in
pages that are easy to navigate but potentially very tedious to view, particularly if the visitor
has a slower Internet connection.

If I want to put this chapter up on the Web, I could make each section a different page, but
even then, some of the sections would be so long that readers would be forced to scroll down
to find the information. The hassle of navigation eclipses the value of splitting your informa­
tion into separate pages. A better design is one in which the entire chapter is a single docu­
ment, but the topic headers are actually links to the appropriate spots further down the page.
Clicking a table of contents entry moves you to that section of the document instantly.

�
One constant challenge for Web page designers is figuring out when a document
works best as a single HTML file and when it works best as a set of files. My rule of

note thumb is to break pages at logical jump points and to minimize load time for read­
ers. This chapter could be a single HTML document, but the book itself would
clearly be a set of separate documents.

The targets of internal Web document jumps are known as named anchors. The HTML tag for
an anchor point is an alternate attribute of the <a> tag: . The value can be
any sequence of characters, numbers, or simple punctuation. (Dash, underscore, and dot are
safe. With others it might or might not work). I recommend that you stick with a strategy of
mnemonic anchor names that start with a letter, such as section1 or references. Some
browser software insists that all characters in the anchor be in lowercase, so you may want
to experiment before you build a complex document, or stick with lowercase to avoid any
potential problems.

The following shows how a set of tags might look within a document on Web design guide­
lines. The anchors are built from the rule name and specific rule number, which can then be
referenced as links in the rest of the document. Notice that there are no spaces in anchor
names:

<h2>WEB DESIGN GUIDELINES</h2>
<dl>
<dt>Rule #1:</dt>
<dd>
Understand the intended users and uses of your Web site; then focus
the design and layout around their needs and interests.</dd>
<dt>Rule #2:</dt>
<dd>
Be sparing with graphical elements.</dd>
<dt>Rule #3:</dt>
<dd>

Continued

557386 Ch06.qxd 4/6/04 9:56 AM Page 114

�

114 Creating Cool Web Sites with HTML, XHTML, and CSS

Continued
Pages should load within no more than thirty seconds, including all
graphical elements.</dd>
<dt>Rule #4:</dt>
<dd>
Minimize color palettes.</dd>
<dt>Rule #5:</dt>
<dd>
Design horizontally-oriented graphical elements where possible. </dd>
</dl>

Viewed in a Web browser (see Figure 6-6), the preceding document looks like an attractive
list of design rules. Because anchors are destinations on the current page rather than links to
go elsewhere, any text between the <a name> and is not highlighted in any way when
displayed. However, because the definition of the destination point is a regular anchor tag—
albeit with different attributes than an href—it must be closed like any other paired tag, so
you need to ensure that you have a corresponding for each named anchor. Because the
text isn’t highlighted, most people place the immediately after the spot is defined, as in
.

What I’ve done in this example is not only add links to each of the design guidelines but also
add a link to the very top of the document (called guidelines), which could then easily be
used as a shortcut to the top of the page from anywhere in the document.

Figure 6-6: Some design guidelines coded with named anchors although you can’t tell that from this output.

Adding Jump Links to Your Web Pages
The partner of an anchor in HTML documents is the formatting tag, which defines the jump,
or active link, within the document. The formatting tag is a variation of the <a> tag, which

557386 Ch06.qxd 4/6/04 9:56 AM Page 115

115 �Chapter 6: Putting the Web in World Wide Web: Adding Pointers and Links

you already know. The necessary attribute turns out to be another href hypertext reference,
this time with the URL replaced by the anchor name and prefaced by a number sign (#).

For example, if the anchor you want to connect to is specified as ,
as in the preceding example, you specify the jump as go to the
top of the guidelines.

� One of my goals in creating cool Web sites is to avoid phrases like the following:
tip

Click here to see the
guidelines.

Instead, try to integrate the references more smoothly into the text, as follows:

Design Guidelines.

One common way to utilize the named anchors is to create a succinct summary line at the
top of the document. Recall that the style font-size: 80% creates smaller type, so you can
see immediately what’s going here:

<div style=”font-size:80%;text-align:center;”>

rule 1 |

rule 2 |

rule 3 |

rule 4 |

rule 5

</div>

This extends the page I showed you previously to offer users a very simple way to jump to a
specific guideline without having to scroll, as Figure 6-7 shows.

Figure 6-7: A quick jump list on top that uses links to named anchors.

557386 Ch06.qxd 4/6/04 9:56 AM Page 116

�

116 Creating Cool Web Sites with HTML, XHTML, and CSS

For another way to use internal references, consider the following HTML that might replace
the overly succinct introduction in the previous example. Notice how the links are much
more informative and integrate more smoothly into the presentation:

<div>

While the number of web pages that are available online increases every

day, the quality of these pages seems to be declining, with more and more

people (and programs, to be fair) violating basic design guidelines.

There are a variety of reasons involved, but one that’s common is a

simple lack of experience with layout.

Some design rules might seem obscure, like minimizing

the color palette size, which is clearly specific to the World Wide

Web, but others,such as being sparing with graphical

elements andfocusing on the intended user of the

page, are basic rules of <i>any</i> design.

The most important idea is that

good web pages start with good content

rather than with good form, layout or design. The design

should spring from the content and the information therein.

</div>

In a browser, the Web design guidelines shown in the preceding HTML are quite pleasing to the
eye and easy to navigate. All the links and anchor information are appropriately hidden from
view or sufficiently subtle that the reader can focus on the surrounding text (see Figure 6-8).

Figure 6-8: Design commentary with reference links.

557386 Ch06.qxd 4/6/04 9:56 AM Page 117

117 �Chapter 6: Putting the Web in World Wide Web: Adding Pointers and Links

One thing to keep in mind when you specify your anchor points is that the exact spot of the
reference becomes the top of the displayed document. A sequence such as the following
shows the possible danger resulting from this:

<h2>Bananas</h2>

The banana

is one of the most exotic, yet most easily purchased,

fruits in the world.

The HTML source seems reasonable, but the resulting behavior is not what you seek. Users
who jump to the bananas tag see The banana is . . . as the first line of their window;
with the <h2> header one line off screen.

A much better strategy is to flip the two items, as follows:

<h2>Bananas</h2>

The banana is one of the most exotic, yet most easily

purchased, fruits in the world.

Can you see the difference? In the former case, the <h2> is just barely off the screen,
whereas in the latter, the positioning of the anchor tag ensures that the header stays with the
prose.

� Always test your Web documents before unleashing them on the world. I can’t
tip overemphasize this. Subtle problems, such as where anchor tags are placed, cause

classic mistakes found on otherwise spiffy Web sites.

Jumping into organized lists
Anchors and jump points are commonly used to help readers navigate large lists of alphabet­
ically sorted information. Consider the following simple phone book layout:

<html>

<title>Jazz Institute Internal Phone Book</title>

<body>

<h1>Jazz Institute Internal Phone Book</h1>

Section Shortcut: [A-C]

[D-H] [I-L]

[M-N] [O-S]

[T-Z]

<h2>A-C</h2>

Benson, George (x5531)

Coleman, Ornette (x5143)

Coltrane, John (x5544)

Continued

557386 Ch06.qxd 4/6/04 9:56 AM Page 118

�

118 Creating Cool Web Sites with HTML, XHTML, and CSS

Continued

<h2>D-H</h2>

Dorsey, Tom (x9412)

Ellington, Duke (x3133)

Getz, Stan (x1222)

<h2>I-L</h2>

Jackson, Milt (x0434)

Laffite, Guy (x5358)

<h2>M-N</h2>

Monk, Thelonious (x3333)

Noone, Jimmy (x5123)

<h2>O-S</h2>

Parker, Charlie (x4141)

Peterson, Oscar (x8983)

Reinhardt, Django (x5351)

<h2>T-Z</h2>

Taylor, Billy (x3311)

Tyner, McCoy (x4131)

Waller, Fats (x1321)

</body>

</html>

Although the HTML in the preceding example is complex, Figure 6-9 shows that the result
not only looks attractive but is also quite a useful way to present the information.

Figure 6-9: Anchors and jump points can help you navigate the Jazz Institute phone book.

557386 Ch06.qxd 4/6/04 9:56 AM Page 119

119 �Chapter 6: Putting the Web in World Wide Web: Adding Pointers and Links

You can start to get a feeling of how complex HTML text can become if you imagine that
each entry in the phone list actually is a link to that person’s home page or other material
somewhere else on the Web. Every line of information displayed in the browser could easily
be the result of four or more lines of HTML.

Linking to jump targets in external documents
Now that you’re familiar with the concept of jumping around within a single document, you
can also add the #anchor notation to the end of any Web URL to make that link move
directly to the specific anchor point in the document.

Suppose, for example, that the Web design guidelines page resides on a system called
www.intuitive.com, and that its full URL is http://www.intuitive.com/coolsites/
design.html. (It is, actually. Try it!)

A visit to the page reveals that a variety of anchor tags are embedded in the HTML, including
the #highlights reference at the beginning of the document, enabling you to jump directly
to the executive summary. You could link directly to that spot from another Web page with
this URL:

http://www.intuitive.com/coolsites/design.html#highlights

�
Pointing to external anchors can be useful for linking to large Web documents that
contain a great deal of information that might otherwise confuse your reader. Be

caution careful: If anyone but you maintains the anchors, the names may change, the docu­
ments may be reorganized, or other changes may suddenly invalidate your links
without your knowledge. There’s always a chance that a whole document might
vanish from the Web, of course; but the chance that a link within a document might
change is considerably higher.

Changing Link Colors
One more topic before I conclude this chapter: Using standard HTML, you can change a
link’s default color by specifying a few special <body> tag attributes, shown in Table 6-1.

Table 6-1: Link Color <body> Tag Attributes

Attribute Possible Values Function

text Color name or hex rgb value Specifies color of text on the page

link Color name or hex rgb value Specifies color of hypertext references

vlink Color name or hex rgb value Specifies color of links you’ve visited

alink Color name or hex rgb value Specifies color of link while mouse button is down

557386 Ch06.qxd 4/6/04 9:56 AM Page 120

�

120 Creating Cool Web Sites with HTML, XHTML, and CSS

These attributes are almost always used together. For example, if I want to have green text
and red hypertext references, I use the following:

<body text=”green” link=”red”>

� In Chapter 7, you learn about the bgcolor and background attributes that let you
x-ref further specify color schemes on your page. CSS also enables you to change col­

ors, as discussed in Chapter 4. Look especially for the color style.

Meaning

<a>

href=”url” Indicates a pointer to hypertext reference

href=”#name”

name=”name” Specifies an Internal anchor definition

Table 6-2: HTML Tags Covered in This Chapter

HTML Tag Close Tag

Specifies the anchor tag

References an internal anchor name

�Summary
In this chapter, you learned how to include links on your Web pages to other
sites on the World Wide Web and throughout the Internet by using the anchor
tag. You also learned how to organize a set of Web documents in manage­
able folders, how to link to other documents on your own server with mini­
mal fuss by using relative URLs, and the HTML way of changing text and link
colors. The next chapter introduces you to an exciting topic: graphics.

557386 Ch07.qxd 4/2/04 9:54 AM Page 121

�7
chapterFrom Dull to

Cool by Adding
Graphics

Getting a handle on image formats

Exploring text alternatives to images

Aligning your images

Finding images

Using transparent colors

Building your own image maps

and other media

� In This Chapter

Adding images to your Web pages

Adding animated GIFs, audio, video,

By this point, you’ve learned enough HTML to create complex webs of infor­
mation with sophisticated text formatting, but that isn’t all there is to Web

design; graphics are what make a Web page truly cool. The capability to place
large and small images—and even to make them hypertext references—is a cru­
cial element of good Web page design, not to mention that it’s great fun to have
Web pages with pictures, audio, and video clips! This chapter shows you how to
jazz up your Web pages with multimedia elements and includes discussion of how
to create and edit graphic images, audio, and even video clips.

In this chapter, I diverge slightly from the platform-independent approach that I’ve
taken so far and delve into some platform-specifics to help you create graphics
and images for Windows PCs and Macintoshes. The examples in this chapter
utilize programs that are available for both platforms.

557386 Ch07.qxd 4/2/04 9:54 AM Page 122

�

122 Creating Cool Web Sites with HTML, XHTML, and CSS

Image Formats
Before delving into the HTML tag itself, I want to spend some time talking about acceptable
graphics formats. Hundreds of different formats exist, but Web browser software generally
understands only three:

• GIF: CompuServe’s Graphics Interchange Format

• JPEG: Joint Photographic Expert Group format

• PNG: Progressive Network Graphics format

If your Web page contains graphics in another format—for example, TIFF, BMP, PCX, or
PICT—Web users might be able to display those graphics, but only in a separate application,
which their Web browsers may or may not automatically launch.

The most common graphic formats on the Web, however, are GIF and JPEG, so I focus on
those first. The trade-off between GIF and JPEG formats is in the subtleties. GIF images can
only use a maximum of 256 colors, whereas JPEG supports millions of unique colors in a
graphic. (Whether they show up correctly depends on the particular display system you have
in your computer. If you have an old clunker monitor and ancient display card, you won’t see
millions of colors even if the graphics contain that many colors in their palette). Both graphic
formats attempt to compress images to shrink down the file size, but because they compress
in different ways, some images are considerably smaller in one format than in the other.

�
The PNG format is a hybrid that represents the best of both JPEG and GIF format
capabilities. Although it’s widely supported in contemporary browsers, older

note browsers can’t display PNG format graphics, and more unusual Web browsers
(such as PDAs, and cell phones) are unlikely to include the capability to display
them. As with many facets of Web design, you should consider your target audience
when considering the set of technologies to include in your implementation.

The main reason that the GIF image format is so attractive to Web designers isn’t that it has
a small color palette but that you can trim down the palette to the bare minimum number of
colors you need for a particular graphic, thereby shrinking the image’s file size dramatically.

Graphic images are built out of pixels: individual dots of information in the graphic. In a GIF
image, each pixel can have one of up to 256 different colors. But what if the image uses only
two colors instead of 256, as you might find in a two-color company logo? In that case, you
can chop the size of the GIF image down quite a bit: Each pixel requires one bit of informa­
tion (8 bits in a byte), versus 8 bits of information for the full 256-color option. In other
words, you’ve just chopped your file down to one-eighth its original size.

With any good graphics editor, you can easily trim your color palette to minimize your file
sizes; officially, GIF supports 1-bit (2 color), 2-bit (4 color), 4-bit (64 color), and 8-bit (256
color) formats. I should point out that with 1-bit, it’s any two of the 256 colors you can work
with, so a blueprint that’s white on light blue is still only a 1-bit-per-pixel image.

557386 Ch07.qxd 4/2/04 9:54 AM Page 123

123 �Chapter 7: From Dull to Cool by Adding Graphics

Although GIF supports up to 256 colors, not all these colors are the same on both the Mac
and PC. This can be a nightmare. A picture that looks great on your PC can look awful on a
Mac, and vice versa. To avoid this pitfall, you might want to explore the so-called Internet-
Safe Color Palette, a subset of 216 colors that are identical on both computers.

� You can see all 216 safe colors on the same Web page by looking online at
on the http://www.intuitive.com/coolsites/colors.html.
web

Other useful characteristics of GIF images are the capability to designate any one color as a
transparent color—I examine that more closely later in the section “Transparent Colors”—and
to create interlaced graphics. If you visit a Web page and watch the images load line by line,
going from out of focus into the final, crisp rendition, you’re seeing an interlaced image.
Although interlacing adds about five to ten percent to the size of the file, if your images are
large, interlacing is a nice way to let the user quickly get a rough idea of what he or she is
downloading.

The majority of images on the Web employ GIF format, particularly buttons and banners,
because of their smaller file size. The JPEG format is used to most closely duplicate the
exact colors of an original image. For example, a friend of mine has a Web site where he
highlights some of his many excellent nature photographs. For photographic reproduction,
it’s imperative that he use the JPEG format for all his images. Otherwise, the nuances of
color would be lost.

For your Web pages, however, your images will mostly be in the GIF format. Fortunately, a
variety of freeware and shareware programs—all available on the Web—can translate com­
mon graphics formats into GIF format. For the Mac, I recommend GraphicConverter; for
Windows systems, you can use Paint Shop Pro. If you have the latest version of your graphics
editor or image-manipulation program, it probably has the capability to save directly into GIF
format, too. Check with the vendor or your local computer store to make sure. A great start­
ing point for finding graphics software packages on the Web is Yahoo! Specifically, go to
http://www.yahoo.com/Computers/Software/Graphics/ and have a look at what is
offered there.

If you want to find the specific shareware packages previously mentioned, here are their
official Web addresses:

• GraphicConverter: http://www.lemkesoft.de/

• Paint Shop Pro: http://www.jasc.com/psp.html

Including Images in Web Pages
Including images in a Web document is easy—you use the (image) format tag. Just
like the <a> anchor tag, the tag has a single critical attribute, src=”graphicname”,
and like the <hr> horizontal rule, it requires no paired close tag. To include the graphic
banner.gif, use this HTML:

557386 Ch07.qxd 4/2/04 9:54 AM Page 124

�

124 Creating Cool Web Sites with HTML, XHTML, and CSS

When you have a graphics file, the tag is used to place that file in the text. Suppose
that I have a file called black-box.gif that I want to use as the opening graphic in my Web
page. The following example shows how this file might appear in an HTML document:

<html>

<head>

<title>The Black Box</title>

</head><body>

<h1>Welcome to the Black Box</h1>

People are always trying to figure

out how things work. From “How Things Work” to “Why Things

Work”, it’s an obsession. But why? Why not just think of

everything in life as a simple

<i>Black Box?</i>.

Ready to change your perspective? yes

</body>

</html>

The formatting tag has quite a variety of attributes, as this chapter illustrates. The two
attributes that must appear in the tag are a specification of the image source file itself,
in the format src=”filename”, and a tag indicating the alternative text to display if the
image cannot be loaded, the alt=”text” tag. Figure 7-1 shows how the preceding HTML
appears when viewed in a browser.

Figure 7-1: The Black Box page with graphics specified, but not loaded.

557386 Ch07.qxd 4/2/04 9:54 AM Page 125

125 �Chapter 7: From Dull to Cool by Adding Graphics

The small box at the top of Figure 7-1 with a small x inside is not the graphic I wanted to
include; rather, it’s an indication from Internet Explorer that an inline graphic was specified with
the tag, but not loaded. In this case, the graphic was not loaded because I mistyped the
name of the graphics file, specifying black-box.gff rather than black-box.gif. (Did you
notice?) Instead, the text of the alt attribute is shown, but it’s definitely not what I want!

To correct the problem, simply fix the spelling. Figure 7-2 shows what the resulting Web page
looks like with all the information properly loaded (more attractive than with the unloaded
graphic, eh?).

Figure 7-2: The Black Box Web page with the fully loaded graphic.

You may have a fast Internet connection, but remember that many people are trapped with
slow dial-up connections at 28,800 baud or—horrors!—slower. Earthlink, America Online,
and MSN users can access Web pages, but performance can be quite slow. Bigger graphics
have more data to transfer to the user and, therefore, take longer to receive. Also keep in
mind that, to speed up access, many users simply modify their Web browser preferences to
skip loading the graphics unless they’re required to understand a page.

A general guideline in gauging how long a graphic takes to download is to figure that each
1K of graphics size translates to one second of download time for dial-up users. So, when
you create graphics, it’s a good idea to look at the file sizes and ask yourself whether the
specific graphic is worth the wait. Sometimes it is, but often it isn’t and just creates a frustrat­
ing situation for the user.

A popular use of graphics is a button that you can create by wrapping the tag with an
<a> anchor. If I have two button graphics—yes.jpg and no.jpg—here’s how I can spiff up
the Black Box page:

557386 Ch07.qxd 4/2/04 9:54 AM Page 126

�

126 Creating Cool Web Sites with HTML, XHTML, and CSS

<html>

<head>

<title>The Black Box, Take III</title>

</head><body>

<h1>Welcome to the Black Box</h1>

People are always trying to figure

out how things work. From “How Things Work” to “Why Things

Work”, it’s an obsession. But why? Why not just think of

everything in life as a simple

<i>Black Box?</i>.

Ready to change your perspective?

</body>

</html>

The graphics included in this page (yes.jpg and no.jpg) are separate files in the same
directory as the Web page. Figure 7-3 shows the new Web page with all graphics included.

Figure 7-3: The improved Black Box page displays the added graphics.

�

A critical question you might ask is the following: Where do the graphics files live?

The answer to this question is that they are almost always on the same server, in

tip the same directory, as the HTML files. If you upload your HTML file to a Web server,

for example, you also need to upload the graphics used in those files. As you get

more comfortable with Web site development, you might want to adopt the habit of
automatically creating a Graphics folder to corral the graphics files in a single spot.

557386 Ch07.qxd 4/2/04 9:54 AM Page 127

127 �Chapter 7: From Dull to Cool by Adding Graphics

A page in which graphics are a vital part of the design, however, can look peculiar to some
Web users because a small percentage of people on the Web still either cannot or opt not
to download graphics when viewing Web pages. This creates a design dilemma: Should
pages be designed to omit the graphics, to include them as critical, or just to add them as
an afterthought?

Some Web pundits tell you to just go wild with the graphics because “within a few months”
everyone will have a fast, powerful computer and a high-speed connection. I don’t agree with
that advice. Pundits make this claim year after year, yet a majority of Web users still don’t
have high-speed connections. Because the various graphic formats, already compressed,
still produce large files, you should ensure that people who omit the images still see a mean­
ingful page.

The argument over whether or not to go wild with graphics breaks down like this. Some
designers insist that you should be able to design for a specific browser and platform. Those
sites say stuff like Enhanced for Internet Explorer 5.0 and Windows 2000. I think their design
is unintentionally user-unfriendly: Why immediately tell users they’ve got the wrong tools to
visit your site? Another group believes that specific browsers shouldn’t be required, but that
no-graphics viewers are irrelevant to their online experience. They eschew alt attributes (as
you see shortly) or any text alternatives for the graphical buttons and pictures. For some
sites that’s cool, but for many, it’s just a sign of poor implementation. Finally, some think that
every graphic should have a text alternate and that the pages should work wonderfully for all
users. That’s the safest bet, but if you want to advertise your T-shirt designs online, clearly,
text descriptions aren’t very useful! Which road you take definitely depends on the goal of
your site and your vision of your target audience.

�
Notice in the previous example that the graphical buttons had a small rectangular
border. If you look at the example on your own computer, you see it’s a blue border.

note The browser adds the border for the same reason that hypertext links are blue and
underlined, to let the user know the graphic is clickable. Don’t like it? You can elimi­
nate the blue border around a graphic image that’s serving as a hyperlink by adding
another attribute to the tag: border=”0”. If the preceding example contains
, the blue border vanishes.

Text Alternatives for Text-Based Web Browsers
Although the most popular browsers—Netscape and Internet Explorer—offer support for a vari­
ety of graphic formats, an important Web browser called Lynx is designed for text-only display.
Lynx is found most commonly on Unix systems where users have dial-up accounts. Even at a
very slow connect speed, Lynx enables many users to navigate the Web and have fun.

Graphics can’t be shown in Lynx, so an additional attribute is allowed in the format tag
for just that situation. The magic sequence is alt=”alternative-text”. Whatever replaces
alternative-text is displayed if the user can’t view graphics or chooses to skip loading
graphics to speed up surfing the Web (which roughly five to ten percent of Web users still do,
according to most estimates I’ve seen).

557386 Ch07.qxd 4/2/04 9:54 AM Page 128

�

128 Creating Cool Web Sites with HTML, XHTML, and CSS

To understand why the alt= element is necessary, see Figure 7-4. For this example, I removed
the alt tag included in the HTML and renamed the button graphics to be more like what is
used in a typical Web site design.

Figure 7-4: The Black Box looks much different in Lynx’s text-only display.

The user faces a problem, obviously: How do you answer the question posed? That’s another
great reason why you should always include some meaningful information in the alt attribute.

Modern Web browsers show this alt text immediately upon loading a page and then gradu­
ally replace each placeholder with the actual graphic. Carefully planned alt text can
enhance the user’s experience and even be fun. For example, the text alternative for my
photograph on one page I designed is Weird picture of some random guy rather than simply
My photo.

�
You don’t have to place brackets, parentheses, or anything else around the text in
the alt= section of the tag; but in my experience, brackets or parentheses

tip help users figure out what’s on the page (and they make the text look better as
well). Experimentation is the key for learning how to make this work best for your
own page design.

Image Alignment Options
Go to the first section of this chapter and refer to Figure 7-3. Look carefully at the relative
alignment of the text Ready to change your perspective? with the YES and NO icons.
The text is aligned with the bottom of the icons, which looks good.

But what if you want a different alignment? Or what if you use various alignments for multiple
graphics? You can specify a third attribute in the formatting tag, align, which gives
you precise control over alignment.

557386 Ch07.qxd 4/2/04 9:54 AM Page 129

129 �Chapter 7: From Dull to Cool by Adding Graphics

Standard alignment
The three standard alignments are align=”top”, align=”middle”, and align=”bottom”.
By default, adjacent material is aligned with the bottom of the image, as you can see in
Figure 7-3. The following HTML snippet demonstrates these three alignment options:

<h1>More about Winter Birds</h1>

(align=”top”)

There are many birds that can visit your feeder

even in the middle of the coldest period, with

snow many inches thick on the trees. Three common

birds that we see here in Colorado during the winter

months are Winter Wrens, Barrow’s Goldeneyes, and Yellow-Bellied

Sapsuckers.

<br clear=”all” /><hr />

(align=”middle”)

There are many birds that can visit your feeder

even in the middle of the coldest period, with

snow many inches thick on the trees. Three common

birds that we see here in Colorado during the winter

months are Winter Wrens, Barrow’s Goldeneyes, and Yellow-Bellied

Sapsuckers.

<br clear=”all” /><hr />

(align=”bottom”)

There are many birds that can visit your feeder

even in the middle of the coldest period, with

snow many inches thick on the trees. Three common

birds that we see here in Colorado during the winter

months are Winter Wrens, Barrow’s Goldeneyes, and Yellow-Bellied

Sapsuckers.

Figure 7-5 shows this example in a Web browser. It demonstrates the options for a graphic
surrounded by text. Notice that the text doesn’t gracefully wrap; instead, the alignment attrib­
utes affect only the first line of text subsequent to the image. All additional text moves down
below the graphic.

� A simple rule of thumb for images is the following: If you don’t want any material to
note appear to the right of the graphic, add a
 tag to the end of the HTML

sequence that specifies the graphic.

The three basic image alignment options refer to the alignment of information that appears
subsequent to the image itself. An additional set of image-alignment options refers to the
alignment of the image relative to the window, rather than the adjacent material relative to
the graphic. I discuss these additional options in the following section.

557386 Ch07.qxd 4/2/04 9:54 AM Page 130

�

130 Creating Cool Web Sites with HTML, XHTML, and CSS

Figure 7-5: Top, middle, and bottom image alignment options.

More sophisticated alignment
The three basic image-alignment options just discussed offer considerable control of graphic
positioning, but they don’t enable you to wrap text around a graphic, either left or right, on the
screen. To remedy this, some additional image alignment options offer much more control.
But beware, they also make formatting more confusing because of the difference between
alignment of the image and alignment of the adjacent material.

These options are better demonstrated than discussed. The following example improves signifi­
cantly on Figure 7-5 by using both the alignment options, align=”left” and align=”right”:

<h1>More about Winter Birds</h1>

(align=”left”)

There are many birds that can visit your feeder

even in the middle of the coldest period, with

snow many inches thick on the trees. Three common

birds that we see here in Colorado during the winter

months are Winter Wrens, Barrow’s Goldeneyes, and Yellow-Bellied

Sapsuckers.

<br clear=”all” /><hr />

557386 Ch07.qxd 4/2/04 9:54 AM Page 131

�

131 �Chapter 7: From Dull to Cool by Adding Graphics

(align=”right”)

There are many birds that can visit your feeder

even in the middle of the coldest period, with

snow many inches thick on the trees. Three common

birds that we see here in Colorado during the winter

months are Winter Wrens, Barrow’s Goldeneyes, and Yellow-Bellied

Sapsuckers.

<br clear=”all” /><hr />

Figure 7-6 shows how the preceding text is formatted using align=left and align=right—
quite a step up from the primitive placement options shown earlier.

Figure 7-6: Aligning graphics to the left and right makes text more presentable in Explorer.

Not only can you specify alignment within the now complex formatting tag, you can
also specify the graphic’s width and height before it loads. By specifying these attributes,
the document can be rendered on the screen faster, even before your browser receives the
graphic.

tip Specify height and width to have your Web pages load faster!

Values are specified in pixels, as follows:

557386 Ch07.qxd 4/2/04 9:54 AM Page 132

�

132 Creating Cool Web Sites with HTML, XHTML, and CSS

The preceding example reserves a 67 × 108-pixel box on the screen for the graphic, which
enables the page to be displayed, including all text, even before your browser receives the
graphic from the Web server. This functionality enables you to begin reading the text portion
of the Web page immediately. Be careful with these attributes, however, because if you have
a 100 × 200 graphic and specify height=“200” and width=“350”, Navigator and Explorer both
stretch the image to fit the 200 × 350 space, making it look pretty weird and distorted.

Another attribute that I mention earlier in this chapter is border, which you can use to great
effect: The border attribute enables you to specify the exact width of the border around a
linked image. The following code shows an example of the border attribute:

<body style=’text-align: center’>

<!— Tic-Tac-Toe —>

<h2>Tic-Tac-Toe</h2>

<p>

It’s X’s Turn... (This color

indicates a recommended move).</p>

<div>

<img src=”Graphics/boxx.gif” border=”0”

alt=”x” />

<img src=”Graphics/box.gif” border=”0”

alt=” “ />

<img src=”Graphics/box.gif” border=”0”

alt=” “ />

<img src=”Graphics/boxo.gif” border=”0”

alt=”o” />

<img src=”Graphics/boxo.gif” border=”0”

alt=”o” />

<img src=”Graphics/box.gif” border=”2”

alt=” “ />

<img src=”Graphics/boxx.gif” border=”0”

alt=”x” />

<img src=”Graphics/box.gif” border=”0”

alt=” “ />

<img src=”Graphics/box.gif” border=”0”

alt=” “ />

</div>

</body>

Figure 7-7 displays the resulting graphic. Notice that the border specification enables you to
indicate the recommended next move by simply placing a blue (or gray, for the figures in this
book) border around the box. Earlier in this chapter, I used this same attribute to turn off the
blue border on the YES and NO buttons.

557386 Ch07.qxd 4/2/04 9:54 AM Page 133

133 �Chapter 7: From Dull to Cool by Adding Graphics

Figure 7-7: A Tic-Tac-Toe game created using the border attribute.

Two more useful image alignment and presentation attributes are vspace and hspace, which
control the vertical and horizontal space around each graphic, respectively. Consider an
example of a left-aligned graphic. When displayed, the text starts immediately adjacent to
the edge of the graphic. By using hspace, I can fix this potential problem by specifying a par­
ticular number of pixels as a horizontal spacing between the graphic and the adjacent text, as
the following HTML shows:

<h1>More about Winter Birds</h1>

<img src=”feeder.jpg” align=”left” border=”0”

alt=”feeder” hspace=”40” />

There are many birds that can visit your feeder

even in the middle of the coldest period, with

snow many inches thick on the trees. Three common

birds that we see here in Colorado during the winter

months are Winter Wrens, Barrow’s Goldeneyes, and Yellow-Bellied

Sapsuckers.

<br clear=”all” /><hr />

<img src=”feeder.jpg” align=”left” border=”0”

alt=”feeder” hspace=”4” />

There are many birds that can visit your feeder

even in the middle of the coldest period, with

snow many inches thick on the trees. Three common

birds that we see here in Colorado during the winter

months are Winter Wrens, Barrow’s Goldeneyes, and Yellow-Bellied

Sapsuckers.

<br clear=”all” /><hr />

557386 Ch07.qxd 4/2/04 9:54 AM Page 134

�

�

134 Creating Cool Web Sites with HTML, XHTML, and CSS

Figure 7-8 demonstrates the result of this source code.

Figure 7-8: You can use the hspace attribute to adjust the space between text and an image.

A subtle thing to note in Figure 7-8 is that hspace adds the specified number of blank pixels
on both sides of the graphic. vspace does the same thing with vertical space. If you specify
10 pixels of empty space above a graphic, you end up with 10 pixels of space below it, too.
An alternative—if you really want space only on one side of the image, not both—is to add
the empty space as part of the graphic itself, or to use a margin setting within the style
attribute of the tag.

x-ref Check out Chapter 12 to find out more about setting margins using CSS.

At this point, you’re learning to have some real control over the display of your document
and can begin to design some cool Web pages. But I must mention one more attribute before
you go wild with the various options for the tag.

If you experiment, you might find that when you’re wrapping text around a large graphic, it’s
difficult to move any material below the graphic. The
 and <p> tags simply move to
the next line in the wrapped area. That effect is not always what you want. To break the line
and move back to the margin, past the graphics, you add a special attribute to the useful

 tag: clear. For example, use <br clear=”left” /> to move down as needed to
get to the left margin, <br clear=”right” /> to move down to a clear right margin, or
<br clear=”all” /> to move down until both margins are clear of the image. Most com­
monly, you see <br clear=”all” />.

Tossing all the additions into the mix, here’s a Macintosh icon tutorial that uses the tags and
attributes that I’ve just discussed:

557386 Ch07.qxd 4/2/04 9:54 AM Page 135

135 �Chapter 7: From Dull to Cool by Adding Graphics

<html>

<head>

<title>Intro to Macintosh Icons</title>

</head>

<body style=’line-height: 1.25’>

<h2 style=’text-align:center’>Intro to Macintosh Icons</h2>

<p>

Generic File Icon

This is a generic file, that is, one that doesn’t have

any application ownership information stored in the Mac

file system or its own resource fork. Opening

these files typically results in the

TeachText or SimpleText application being used.

</p>

<br clear=”all” />

<p>

Generic Folder Icon

<img src=”mac-icons/folder.gif” alt=”folder” align=”left”

hspace=”15” />
This is a standard folder icon on the Macintosh. Folders
can contain just about anything, including files,
applications and other folders. Opening a folder results
in the contents of that folder being displayed in a
separate window on the Macintosh.
</p>
<br clear=”all” />

<p>

System Folder Icon

<img src=”mac-icons/system.gif” align=”left” hspace=”15”

vspace=”11” alt=”system” />
A special folder at the top-most level of the boot disk
on the Macintosh is the <I>System Folder</I>. It
contains all the files, applications, and information
needed to run and maintain the Macintosh operating
system itself. The “X”
inside the folder icon indicates that this
particular <i>System Folder</i> is <i>live</i> and that
the information inside was used to actually start up
the current Macintosh.
</p>

<p>

Applications Folder

Continued

557386 Ch07.qxd 4/2/04 9:54 AM Page 136

�

136 Creating Cool Web Sites with HTML, XHTML, and CSS

Continued
<img src=”mac-icons/applications.gif” align=”left”
hspace=”15” vspace=”8” alt=”app folder” />
All of the major applications in Mac OS X live in a shared
folder called the Applications Folder. It’s easily
recognized by the ‘A’ on the folder icon itself and is
the first place to look when you seek any of the many
Macintosh applications included with the operating system.
</p>
</body>
</html>

Figure 7-9 shows the result of this code.

Figure 7-9: The Align and Clear attributes at work.

Background Colors and Graphics
One aspect of Web page design that I really enjoy fiddling with, an area that can dramatically
change the character of your Web site, is selecting a background color for the page. Not only
can you change the background color, you can also load any graphic as the background to
the entire page: a graphic that’s either subtle (such as a marbled texture) or way over the top
(such as a picture of your cat).

To add a background color or background graphic, you add an attribute to the <body> tag.
The <body> tag should already be an integral part of your existing Web pages. After you start
modifying the <body> tag, it is absolutely crucial that you place it in the correct spot on your

557386 Ch07.qxd 4/2/04 9:54 AM Page 137

137 �Chapter 7: From Dull to Cool by Adding Graphics

pages. Remember, all Web pages should start with an <html> tag, followed by <head> and
<title> tags. A </head> tag ends the header section, and immediately following, you should
insert the <body> tag. If you have the <body> tag in the wrong place—particularly if you
place it subsequent to any specification of information to appear on the Web page itself (such
as an <h1> tag)—your browser ignores any background changes.

You specify background colors with bgcolor=”colorname” or bgcolor=”#rgb-value”, and
you specify a background graphic with background=”filename”. But rather than live in the
past with the HTML approach, let’s look at how to use CSS. CSS enables you to change the
background color by modifying the attributes of the <body> tag with this attribute:

<style type=”text/css”>
body { background-color: blue; }
</style>

If you don’t want a CSS block, you can instead specify background color as a style attribute
to the <body> tag itself. You can add background graphics by using the background-image
attribute:

body { background-image: url(diamond.gif) }

In addition, you can specify the background image’s position on the page with background-
position. (One value equals the horizontal and vertical origin point of the image; two values
equal the horizontal and then the vertical point of the image.) You can also specify whether
the background image should repeat (old-timers call this tile) with background-repeat,
which has four possible values:

• repeat

• repeat-x

• repeat-y

• no-repeat

Working with background graphics is fairly straightforward, but the specification for a color,
unfortunately, isn’t quite so simple. If you want to have complete control, you specify your
colors as a trio of red-green-blue numeric values, two letters for each, in hexadecimal.

“Hexa-what?” I can hear you asking.

Hexadecimal is a numbering system that’s base-16 rather than our regular numbering
scheme of base-10 (decimal, as it’s called). The number 10, for example, is 1 × 10 + 0, but
in hexadecimal, it has the base-10 equivalent of 1 × 16 + 0, or 16.

Hexadecimal numbers range from 0 to 9 and also use A, B, C, D, E, and F to repre-

� sent larger numbers. Instead of base 10, our regular numbering system, hex uses a
note base-16 numbering system. So in hex, A = 10 decimal, B = 11 decimal, C = 12

decimal, D = 13 decimal, E = 14 decimal, and F = 15 decimal. 1B hex is 1 × 16 +
11 = 27 decimal. FF, therefore, is F × 16 + F, or 15 × 16 + 15 = 255 decimal.

557386 Ch07.qxd 4/2/04 9:54 AM Page 138

�

138 Creating Cool Web Sites with HTML, XHTML, and CSS

Don’t worry too much if this doesn’t make much sense to you. It’s just important to know
some typical color values as shown in Table 7-1.

Table 7-1: Common Colors as Hex RGB Values

Hex Color Value CSS Hex Shortcut Common Color Name

00 00 00 000 Black

FF FF FF FFF White

FF 00 00 F00 Red

00 FF 00 0F0 Green

00 00 FF 00F Blue

FF FF 00 FF0 Yellow

FF 00 FF F0F Purple

00 FF FF 0FF Aqua

You should experiment with different colors to see how they look on your system. If you’re
working with basic colors, however, you can use their names (thankfully). Table 7-2 shows
some of the most common colors.

Table 7-2: Popular Colors Available by Name

Aqua Black Blue Fuchsia

Gray Green Lime Maroon

Navy Olive Purple Red

Silver Teal White Yellow

�
If you specify a color that your system can’t display, the browser tries to produce a
similar color by dithering, or creating a textured background with elements of each

caution of the two closest colors. Sounds nice, but it isn’t; you end up with a pebbly back­
ground that can make your text completely unreadable. The trick is to use the so-
called Internet-safe color choices if you’re specifying color with a hex value. The
good news is that it’s pretty easy: Just remember that you’re fine if you choose each
of the three basic colors (red, green, blue) from 00 33 66 99 CC FF. For example,
CCCCCC (or just CCC) is a light gray, and CCCCFF (or CCF) is an attractive light
blue. Go to http://www.intuitive.com/coolsites/colors.html to see a full list.

Take a look at a page that specifies a yellow background for the page and a light blue back­
ground (color #99F) for two of the <div> tags on the page:

<body style=”background-color: yellow”>
<p>

One of the nice things about background colors is that you

557386 Ch07.qxd 4/2/04 9:54 AM Page 139

139 �Chapter 7: From Dull to Cool by Adding Graphics

can produce interesting and unusual effects

with relatively little work.

</p>

<div style=”background-color: #99f”>

Want to have something look exactly like a piece of paper?

Use background-color:#FFF or its

equivalent background-color:white

</div>

<div style=’background-image: url(diamond.gif);

font-size:200%;font-weight:bold;’>

Is green your favorite color? Try either

background-color:green or background-color:#0F0

</div>

<div style=”background:#99f”>

Another solid-background-color box, this has a nice light blue.

</div>

Viewing this in your browser, as shown in Figure 7-10, results in a bright, cheery, and attrac­
tive yellow background and two light blue text boxes. Another interesting example in Figure
7-10 is that of a background graphic—diamond.gif—that appears behind the second <div>
block. Even with text twice the normal size, notice that the background graphic makes the
text difficult to read!

Figure 7-10: Exploring background colors and graphics.

As Figure 7-10 demonstrates, graphical backgrounds are also easy to work with, albeit a bit
more dangerous. Even the simplest graphic can potentially obscure the text on a particular
page.

The moral of this story: By all means, use these fun options, but be sensitive to the potential
readability problems your viewers might face because of their own hardware or browser pref­
erences or because these options have been used inappropriately.

557386 Ch07.qxd 4/2/04 9:54 AM Page 140

�

140 Creating Cool Web Sites with HTML, XHTML, and CSS

Where Can You Find Images?

Considering that all graphics are specified with the same basic HTML tag, it’s remarkable
how much variation exists among different sites on the Web. Web designers create varied
appearances for their pages through the types of graphics they use and their unique combi­
nation of graphics, text, and background images.

Where do these graphics come from? Here are the most common sources:

• Personally created

• Clip art or other canned image libraries

• Scanned or digital photographs

• Images grabbed off the Web

Creating your own
If you’re artistically inclined or want to use straightforward graphics, buttons, or icons, the
easiest way to produce graphics for your Web pages is to create them yourself. A wide vari­
ety of graphics applications are available for Windows and Mac users, at prices ranging from
free to fifty dollars to thousands of dollars for real top-notch stuff.

To give you an example, I created the opening graphic for the Black Box (shown in Figure 7-2)
from scratch in about 15 minutes. I used the powerful Adobe Photoshop application, a rather
expensive commercial package available for both Mac and PC platforms. Photoshop has the
capability to save directly to GIF format (and JPEG format, for that matter), so it was easy to
produce.

Having said that, I will warn you that Photoshop is not for the faint of heart! It’s a highly sophis­
ticated program that takes quite a bit of training before you can be really productive. If you’re
looking for something that enables you to be productive in one afternoon, Photoshop is not
the best choice. On the other hand, when you do master it, you’ll join the ranks of some of the
best digital artists on the Web.

If you’d prefer something simpler, GraphicConverter for the Mac and Paint Shop Pro for the
PC are both quite useful programs that offer you the capability to create graphics and save
them in either GIF or JPEG format. Earlier in this chapter, I indicated the official Web sites for
each of these programs. Here they are again for your convenience:

• GraphicConverter: http://www.lemkesoft.de/

• Paint Shop Pro: http://www.jasc.com/psp.html

The number of graphics programs is staggering, and regardless of how fast or capable your
machine, some unquestionably terrific software solutions are available. Some of the best
packages are shareware—such as the two listed—but numerous commercial packages are

557386 Ch07.qxd 4/2/04 9:54 AM Page 141

141 �Chapter 7: From Dull to Cool by Adding Graphics

available as well. Here are some of the more popular commercial graphics packages for each
platform:

• Windows: Among the many applications for developing graphics in Microsoft Windows
are Adobe Illustrator, Adobe Photoshop, Macromedia Fireworks, Aldus FreeHand,
MetaCreations Painter, Dabbler, Canvas, Ray Dream Designer, SmartSketch, CorelDRAW!,
MacroModel, AutoSketch, Kai’s Power Tools, 3D Sketch, and Elastic Reality.

• Macintosh: Because it remains the premier platform for graphics, most graphics applica­
tions are available for the Mac. In addition to the big three—Adobe Photoshop, Macromedia
Fireworks, and Adobe Illustrator—Macintosh graphics programs such as Drawing Table,
Color It, Collage, KPT Bryce, Paint Alchemy, TextureScape, Painter, Kai’s Power Tools,
and Alias Sketch.

• Unix: Fewer graphics programs are available for Unix systems, but the programs that are
available are quite powerful. Look for Adobe Photoshop, FusionArt, GINOGRAPH, Adobe
Illustrator, Image Alchemy, Magic Inkwell, and Visual Reality, depending on your flavor
of Unix.

�
One request: If you do opt to use a shareware program, please remember to pay for
it and register it with the shareware author. That’s the only way users can continue note relying on the generosity of these programmers who write such excellent software
and then make it available to users directly.

Clip art or canned image libraries?
One result of the explosion of interest in Web page design is the wide variety of CD-ROM
and floppy-based clip art and image libraries now available. From hundreds of thousands of
drawings on multi-CD-ROM libraries (I have one image library that sprawls across thirteen
different CD-ROMs!) to hand-rendered three-dimensional images on floppy—or available for
a fee directly on the Web—lots of license-free image sources are available. At the same time,
most of the CD-ROMs I’ve seen that are supposedly for Web designers are pretty mediocre—
tossed-together collections of clip art that would look okay on your page if you could just fig­
ure out where it is on the disk and how to save it as a GIF or JPEG.

If you opt to explore the clip art route, I strongly recommend you be a skeptical consumer and
make sure that both the product’s interface and ease of finding specific images meet your
needs. I have a CD-ROM of clip art for Web pages, for example, that’s packaged in a very
cool-looking box and includes some undeniably spiffo images, but finding the exact one I want
and saving it as a Web-ready graphic is surprisingly difficult.

Of the clip-art Web sites, one that I find particularly interesting is Art Today. It has a variety of
different membership options. Free membership includes access to tens of thousands of Web
graphics, including tons of animated GIFs, bullets, backgrounds, buttons, themed images,
rules, dividers, and icons.

To access the graphics, visit http://www.arttoday.com/.

557386 Ch07.qxd 4/2/04 9:54 AM Page 142

�

142 Creating Cool Web Sites with HTML, XHTML, and CSS

Scanned or digital photographs
Another way to produce graphics for your Web site is to use a scanner and work with existing
art. If you’re a photography buff, you probably have hundreds of original photographs, or even
digital photographs already on your computer, from which you can glean cool additions for
your site.

A few years ago, I was traveling in Paris and took what turned out to be a great photograph
of the beautiful Sacré Coeur. A few minutes of work with a scanner made the photo instant
artwork to include in my Web page, as shown in Figure 7-11.

Figure 7-11: Scanned image of Sacré Coeur.

Scanners offer further options for producing fun and interesting graphics. I also scanned the
image shown in Figure 7-11 as black-and-white line art, producing the interesting abstract
graphic in Figure 7-12.

If I were designing a Web site that I expected to attract users with slow connections, I could
use small black-and-white representations of art to save download time. Each small thumb­
nail image serves as a button that produces the full color image when clicked. The HTML for
a thumbnail image looks like the following:

<img src=”little-image.gif”
border=”0” alt=”little image” />

Thumbnail versions of large graphic images are common (and appreciated by just
tip about everyone), so if you create a page that contains many pictures, think about � minimizing the data transfer with smaller versions that refer to larger images.

557386 Ch07.qxd 4/2/04 9:54 AM Page 143

143 �Chapter 7: From Dull to Cool by Adding Graphics

Figure 7-12: Sacré Coeur as line art, after scanning and some manipulation.

Another difference between the images in Figures 7-11 and 7-12 is file size. Figure 7-11 is a

JPEG image to ensure that all the colors in the original photograph are viewable in the Web

artwork. It’s 48K in size. Figure 7-12, however, is a 1-bit GIF image, and even though it’s

exactly the same image-size as the JPEG color photo, the file is only 6K, less than one-

eighth the size of the color image.

�
Check out a pretty neat scanning Web site online at http://www.scantips.com/.

on the

web

Another way to work with scanners is to scan scrawls, doodles, or pictures you create with
pencils, pens, color markers, paint, pastels, or what have you, and then incorporate those
objects into your Web page. Or get even more creative: Scan in aluminum foil, crumpled tis­
sues, your cat (note that this would be a cat scan), wood, a piece of clothing, or just about
anything else.

�
Copyright laws are serious business, and I strongly discourage you from scanning
images from any published work that is not in the public domain. The cover of Sports caution
Illustrated might be terrific this week, but if you scan it and display it on your Web
page, you’re asking for some very serious legal trouble.

If you work with scanners, you already know about some of the best software tools available.
I always use Photoshop when I’m working with color or gray-scale scans.

�
One important scanner trick if your output is for the Web: Scan the images at

tip	 between 75 dpi (dots per inch) and 100 dpi. The additional information you get
from, say, a 2400 dpi scan is wasted, slows down the editing process, and produces
ridiculously large graphics files anyway.

557386 Ch07.qxd 4/2/04 9:54 AM Page 144

�

144 Creating Cool Web Sites with HTML, XHTML, and CSS

Working with digital photographs
One of the easiest ways to add images to your Web site is use of your digital camera. Whether
it’s a picture of how messy your desk has become to photos of your kids doing cute things,
if you have a digital camera and can transfer the images from your camera to your computer,
you’ve overcome 90% of the challenges involved. The last step required before you can use
these images on your pages (and in your e-mail, for that matter) is to resize them for the
intended application and make sure you’ve saved them in a Web-compatible graphics format
(probably JPEGs, because that format is most suited for photographs).

When I include photographs on a Web page, I always reduce the size of the image to no more
than about 500 pixels wide and, certainly, no more than 400 pixels high, so they don’t take
too long for the viewer to download. You can easily resize images using Paint Shop Pro,
Graphic Converter, Photoshop Elements, or any of dozens of other applications. In Paint
Shop Pro, for example, here’s how I accomplish this:

1.	 Download and install the trial version of Paint Shop Pro (PSP) from http://

www.jasc.com/

2.	 Choose File ➪ Open in PSP to find the image you want.

3.	 Choose Image ➪ Resize to resize the image, as shown in Figure 7-13.

Figure 7-13: Resizing a photograph in Paint Shop Pro 8.

557386 Ch07.qxd 4/2/04 9:54 AM Page 145

145 �Chapter 7: From Dull to Cool by Adding Graphics

This image is 1504 × 1000 pixels, so I’m going to reduce it to 33% of its current size,
which produces an image that’s much more manageable at 496 × 330 pixels. If the
image seems very small all of a sudden, make sure you’re viewing it at its full size.
Choose View ➪ Zoom ➪ Zoom to 100%.

4.	 If you’re so inclined, sharpen up the shrunken image with Adjust ➪ Sharpness ➪ Unsharp
Mask. The default settings work fine, in my experience, and the image should be visibly
improved.

5.	 Choose File ➪ Save to save the image with a new image name, in this case,

gilligan.jpg.

That’s it! Now you have a new photograph ready to include on your Web page. You can
include it like this:

<img src=”Graphics/gilligan.jpg” border=”5”

alt=”Did Gilligan escape the island, finally?” />

The preceding text produces the page shown in Figure 7-14.

Figure 7-14: Photograph from digital camera included on a Web Page.

�
Note the useful trick of forcing a nonzero border with this image as a way to get the
black border around the photograph. With a linked image, the border color would

tip be the link or visited link color; without being linked, it’s just black. With CSS, you
can also specify a specific style of border with the border style, as I discuss in
Chapter 12.

557386 Ch07.qxd 4/2/04 9:54 AM Page 146

�

146 Creating Cool Web Sites with HTML, XHTML, and CSS

Grabbing images off the Net
Another way to get images that doesn’t involve being artistic or using a camera or scanner is
to find interesting, attractive graphics online. Think of Net graphics as being virtual clip art
(you can use real clip art, too), but don’t forget that many of the images may be copyrighted.
Just because MCI has a Web site (at http://www.mci.com/) doesn’t mean that you can pop
over and borrow its logo without permission!

The good news is that there are a number of different sites that are archives of publicly avail­
able graphics, clip art, background graphics, and more. Here are a few of the best.

Art today
I already talked about it earlier in this chapter, but I want to remind you that it’s one of the
best places I know online to grab high-quality graphical elements and much more. Visit the
site at http://www.arttoday.com/.

The shock zone
Chris Stephens offers a terrific set of icons that loads quickly and can add pizzazz to your
Web site. His site also includes a range of animated graphics and much more. Connect to
http://www.TheShockZone.com/, and you can see much more than the small selection
shown in Figure 7-15.

Figure 7-15: Some of the images available at The Shock Zone.

557386 Ch07.qxd 4/2/04 9:54 AM Page 147

147 �Chapter 7: From Dull to Cool by Adding Graphics

But wait! There’s more . . .
After a while, the different graphic repositories start to look alike. Call me a curmudgeon, but
you have only so many different ways to create a 50 × 50 pixel bullet graphic, right? Well, if
the previous two repositories don’t have what you want, here are a few more good ones:

• Graphics Station: http://www.geocities.com/SiliconValley/6603/

• Webular Wasteland: http://www.aceent.com/w2/

• The Icon Bazaar: http://www.iconbazaar.com/

Of course, you can just travel the Net, and when you see something you like, grab it with a
screen-capture program or download it directly. Different Web browsers offer different tools
to accomplish just this task. With Explorer, for example, right-click a graphic, and suddenly
there’s a pop-up menu with the option of saving that graphic to disk. If you take this route,
however, be doubly sensitive to possible copyright infringement. It is quite easy to create a
site using existing graphics and only later discover the legal complications.

Another thing to be aware of is the following: If you’re creating a Web site for someone else,
don’t be surprised if part of your agreement letter specifies that you certify that all images
used on the site legally belong to the site owner. I’ve seen contracts that even included a
clause stating that if there were any questions about the legality of material on the site, the
problem was mine and that I’d have to pay any and all damages for any legal action that
might ensue.

Transparent Colors
One cool thing you can do with PNG and GIF images is replace the background around the

edges of the image with a transparent color—one that enables the background color or image

to bleed through. Transparent colors (available only with PNG- or GIF-format images today)

almost instantly make pages look cooler. Of course, this book is printed without any colors,

but you’ve been pretending pretty well up to now, haven’t you?

Figure 7-16 shows two versions of the same type of icon. The background of the top graphic

is set to transparent; the background of the bottom graphic isn’t. Some difference, eh?

To select a distinctive transparent color, choose File ➪ Export ➪ GIF Optimizer (yellow, in this

case) during the Paint Shop Pro image save process, as shown in Figure 7-17.

All the major graphics and type-manipulation packages support transparent GIFs. If yours

doesn’t—check the documentation to make sure—it’s time to upgrade.

�
For a comprehensive list of utilities and all sorts of goodies, zip over to Yahoo!

tip (http://www.yahoo.com/) and look in Computers/World WideWeb/Programming.

557386 Ch07.qxd 4/2/04 9:54 AM Page 148

�

148 Creating Cool Web Sites with HTML, XHTML, and CSS

Figure 7-16: Transparent graphics can add a cool element to your icons by letting the page’s background bleed
through the edges of the image.

Figure 7-17: Creating a transparent graphic in Paint Shop Pro.

557386 Ch07.qxd 4/2/04 9:54 AM Page 149

149 �Chapter 7: From Dull to Cool by Adding Graphics

Animated GIF Images
Another cool element you can add to your Web pages is animated GIFs, which are based on
the very simple flip-book premise: A sequence of graphic images with subtle changes between
them can be cycled in such a way that the images appear to be animated. That’s how film
works, too. If you’ve ever looked at an individual cel of a motion picture reel, you know that
it’s a still image. Watch the still images at a sufficiently fast speed, and you have the illusion
of motion and life.

Animated GIF images are available through a variety of sources, particularly the clip-image
archive packages and Web sites listed next, but you can also create your own with some share­
ware animation packages. For the Macintosh, I recommend GIFBuilder, and for Windows, I
suggest you explore GIF Construction Set. Here are their homes on the Web:

• GIFBuilder: http://www.versiontracker.com/dyn/moreinfo/macosx/10438

• GIF Construction Set: http://www.mindworkshop.com/alchemy/gifcon.html

Image-Mapped Graphics
As you explore the Web on your own, you might encounter sites that eschew mundane bul­
leted lists of links in favor of sexy, all-encompassing graphics that lead you off in different
directions. When you click a particular spot on the graphic, the system knows where you
clicked and links you to an appropriate Web page. You can perform this impressive trick by
using image maps, graphics that associate specific regions with different URLs.

The modern, cool way to create image maps is to use client-side image maps, meaning that
you include image-mapping information as part of the HTML document itself.

A simple example consists of these parts: the graphic image, the HTML document that
includes the image, and the additional lines of HTML that turn the image into a client-side
image map. For example, I have a photograph of a toy truck that would make an interesting
image map, and the free Mac-based Taco HTML image map editor, found at http://www
.tacosw.com/, can help me build one. The process for a PC with software such as Coffee
Cup is almost identical.

�
If you use a Mac, you can get Taco HTML and build your own image maps. Go to

tip http://www.tacosw.com/. If you’re on a PC, another very good image map editor
is Coffee Cup Image Mapper, which is shareware, but still quite inexpensive. Go to
http://www.coffeecup.com/ to learn more.

557386 Ch07.qxd 4/2/04 9:54 AM Page 150

�

150 Creating Cool Web Sites with HTML, XHTML, and CSS

Building an image map
After you install Taco HTML editor, launch it, and follow these steps:

1.	 Choose Insert ➪ Image Map. The dialog box shown in Figure 7-18 appears.

Figure 7-18: Inserting an image map using the Taco HTML editor.

2.	 Click Browse to select an image. For this example, I chose the image big-truck.jpg.

3.	 Choose a name for your image (such as truck) and enter it into the Image Map Name
box at the top of the dialog box.

4.	 Click Design Image Map, which produces the window shown in Figure 7-19.

5.	 You can add geometric shapes by clicking New Circle, New Rectangle, or New Polygon,
encompassing the spot where you want to associate a URL, and then entering a destina­
tion URL and Alternate Text in the table at the top. Draw a circle around something, type
in a URL, and the area of the graphic within the circle is then associated with the target
URL. After loading this image, I’ve mapped the tires to pirelli.com, and the truck’s hat is
mapped to mcnopoly.com, a construction supply company.

557386 Ch07.qxd 4/2/04 9:54 AM Page 151

151 �Chapter 7: From Dull to Cool by Adding Graphics

Figure 7-19: Creating an image map.

6.	 Click OK when you’re finished building the image map; then click Insert Map on the main
image map dialog box. Taco automatically updates the source code view to include the
HTML image map code, which looks like this:

<map name=”truck”>

<area shape=”rect” coords=”238,10,336,67”

href=”http://www.mcnopoly.com/tool.asp?catid=Hard+Hats” alt=”Buy a

Hard Hat”>

<area shape=”circle” coords=”162,239,58”

href=”http://www.pirelli.com/” alt=”Tires by Pirelli”>

<area shape=”circle” coords=”368,235,59”

href=”http://www.pirelli.com/” alt=”Tires by Pirelli”>

</map>

557386 Ch07.qxd 4/2/04 9:54 AM Page 152

�

152 Creating Cool Web Sites with HTML, XHTML, and CSS

This isn’t exactly XHTML, but it’s pretty close. To convert Taco’s HTML output to XHTML,
simply add an alt tag for the image, and replace the > ending of the and <area>
tags with the XHTML form of />. Make those changes, and the final image map is ready
to include on one or more of your pages:

<img src=”big-truck.jpg” usemap=”#truck” width=”497” height=”352”

alt=”big truck” />

<map name=”truck”>

<area shape=”rect” coords=”238,10,336,67”

href=”http://www.mcnopoly.com/tool.asp?catid=Hard+Hats” alt=”Buy a

Hard Hat” />

<area shape=”circle” coords=”162,239,58”

href=”http://www.pirelli.com/” alt=”Tires by Pirelli” />

<area shape=”circle” coords=”368,235,59”

href=”http://www.pirelli.com/” alt=”Tires by Pirelli” />

</map>

Figure 7-20 shows the final image map. Notice the location of the pointing finger cursor and
the indicated target URL in the status line of the window.

Figure 7-20: A completed image map offers region-to-URL mapping.

Seeing the complexity of even this simple image map, you can understand why specific tools
that help you create the map information are wonderful ways to save Web page developers
lots of time. Even better, you can obtain lots of image-map assistance for free on the Internet,

557386 Ch07.qxd 4/2/04 9:54 AM Page 153

153 �Chapter 7: From Dull to Cool by Adding Graphics

whether you’re on a Macintosh, a Unix workstation, or a PC running Windows. You unques­
tionably want to have one of these programs. Without image-mapping software, you might
go crazy trying to get things right, but after you figure out the application, building image
maps is a lot of fun!

Audio, Video, and Other Media
Graphics definitely add pizzazz to a Web site, but there are more media that you can use to
develop your cool Web pages, including audio and video. Some significant limitations plague
these add-on media, however, not the least of which is that they’re large and take quite a
while to download.

Audio fragments are probably the most fun—it’s great to hear voices or music coming from
your computer, and they’re quite easy to add to your own pages. The audio recordings are
usually in what’s called a micro-law (you’ll see this written as mu-law) format, and can be
included as a button or hot spot just like any other URL. Here’s an example:

You’re invited to listen to a sample of
my latest album

Users who click the phrase a sample of my latest album download an audio file (typi­
cally 75K or larger); then an audio player program launches to actually play the audio clip.

Two other common audio formats are used on the Web today. WAV files started their life on
Windows machines but can be played on Macs and Unix systems, too, with the latest browsers.
MIDI files are another way to squeeze a lot of audio into a remarkably small file because they’re
actually written in a musical instrument language rather than simply being compressed
recordings.

Another way to add audio is to use either the embed or bgsound HTML extensions. In fact, the
latest and most modern way to add audio is to use the object tag, but it doesn’t always work
with audio media, depending on how old your visitors’ browsers are. For all these, use Google
to learn more about how to incorporate them into your site. Try a search like “+embed +html
+audio”, for example.

In the meantime, if you’re dying to explore some online audio files, I strongly encourage you
to check out the dynamite MIDIfarm site. It has an incredible archive of over 15,000 different
audio files in MIDI format, including the themes to “Mission Impossible,” “Star Wars,” “The
Jetsons,” “Batman,” “the Avengers,” and just about any other song or music you can imagine!
It’s online at http://www.midifarm.com/.

My only caution is the usual one about copyright and legal restrictions. If you’re going to use
these MIDI files on a commercial site, make sure you have permission from the original
music copyright holder.

557386 Ch07.qxd 4/2/04 9:54 AM Page 154

�

154 Creating Cool Web Sites with HTML, XHTML, and CSS

� Be careful when you’re adding audio to your site; these files can grow incredibly
tip large. A ten-second audio clip can grow to over 150K, which represents quite a

long download period for people accessing the Web via slow dial-up connections.

Modern PCs and Macintosh machines have a variety of built-in audio capabilities, including
the capability to record audio directly from an attached microphone. Save the file that’s pro­
duced and ensure it has a WAV or AU filename suffix. My personal favorite for recording and
editing audio is a great shareware program called Wham. You can learn more about this, and
many other audio tools, by visiting the audio tools on the Web area on Yahoo!

Movies all night
Movies are found in two primary formats: QuickTime and MPEG (Motion Picture Experts
Group).

� If you think audio files can expand rapidly to take up lots of space, you haven’t

note seen anything until you try video on the Web!

The format for including an MPEG sequence is simple:

The latest Music Video is finally
here!

Web browsers see the filename suffix MPG and know to download the file specified and
launch a video player program.

The other popular movie format is Apple’s QuickTime, which has players available for Mac
and Windows machines. QuickTime movies use the MOV filename extension.

�
You can learn a lot more about working with MPEG and other video formats
and sneak a peek at some public domain video and animation archive sitesnote by popping over to Yahoo! Do so, and check out http://dir.yahoo.com/
Computers_and_Internet/Multimedia/.

Streaming audio and video
Another popular technology is streaming media. The concept is quite logical. Instead of forc­
ing you to wait for the entire audio or video sequence to download, you get enough to ensure
that you’re downloading a few seconds ahead and then you begin playing the audio or video
sequence.

The biggest proponent of this technology is Real Corporation, which you can visit online at
http://www.real.com/.

557386 Ch07.qxd 4/2/04 9:54 AM Page 155

155 �Chapter 7: From Dull to Cool by Adding Graphics

A bunch of different sites use the Real audio technology, including National Public Radio
(http://www.npr.org) and C-SPAN (http://www.c-span.org). You can also listen to 2FM
live from Ireland at http://www.2fm.ie/, and check out some obscure music groups from
Artist Underground Music at http://www.aumusic.com/.

Real also has a streaming video technology, ingeniously called RealVideo. It’s quite popular,
and a number of different sites help you learn more about it. Start with Polygram Records
(http://www.polygram.com/), peek in at United Airlines Zurich (http://www.united-
airlines.ch/), and wrap up your exploration of streaming video with Comedy Central,
online at http://www.comedycentral.com/.

I think the streaming technologies are cool, but the biggest problem is that they assume
transfers on the Net happen at a steady speed, and that’s rarely true. So instead, you get
a few seconds of audio and then it stops, or a very low quality audio signal, and the videos
either jump or are used as fancy slide-shows rather than a simulated live video feed. If you
have a slow Net connection, the situation is even more frustrating; I have very fast connec­
tions and still tend to avoid these most of the time.

Despite my misgivings, streaming media continues to improve. In fact, streaming audio and
video technologies are growing into a viable alternative media delivery system. If you’re
building a Web site that requires media, supporting streaming players is the way to go. For
today, the server software still costs a fair bit and isn’t something I can explain to you in a
paragraph or two. Stay tuned (so to speak). There’ll be more from this corner of the Web
soon.

Meaning

<img

src=”url” Indicates the source to the graphic file

alt=”text” Specifies the alternative text to display

align=”alignment” Indicates the image alignment on page; alignment of material surround­

height=”x” Indicates the height of graphic (in pixels)

width=”x” Indicates the width of graphic (in pixels)

border=”x” Indicates the size of the border around graphic

hspace=”x”

vspace=”x” Indicates additional vertical space around graphic (in pixels)

<br Specifies a line break

clear=”opt”

Table 7-3: HTML Tags Covered in This Chapter

HTML Tag

Specifies the image inclusion tag

ing the image. Possible values: top, middle, bottom, left, right

Indicates additional horizontal space around graphic (in pixels)

Forces a break to specified margin (possible values are left, right, all)

557386 Ch07.qxd 4/2/04 9:54 AM Page 156

156

�

CSS Style Definition

background color

are most commonly specified as #rrggbb, #rgb, or color names.

background image value) as the

background repeat Determines whether or not to repeat (or tile) the background graphic.

background position Specifies where to place the background image within the CSS

Table 7-4: CSS Styles Covered in This Chapter

Enables you to define the CSS container’s background color. Use it
with the body tag to change the background of the entire page. Values

Specifies the background image’s URL (use the form url(
argument) for the CSS container.

Values are repeat, repeat x, repeat y, or no repeat.

container.

Creating Cool Web Sites with HTML, XHTML, and CSS

you see a million slick graphics, icons, buttons, separator bars, and

your page layout.

�Summary
I could say a lot more about the fun and frustration of working with
graphics and other media in Web pages, and I will over the next few
chapters. One thing’s for sure: However people accomplish the task,

other gizmos all over the Web. Keep a skeptical eye on your own work,
though, to make sure that your neat doodads don’t overtake the theme
and message—the content—of your site. Good Web sites are built
around content, not appearance.

In my view at least, cool Web pages are those that intelligently incor­
porate their graphics into the overall design and that don’t fall apart or
become unusable (or otherwise frustrating) when users don’t or can’t
load everything. In Chapter 8, you learn about two very important
design options, tables and frames, which offer much finer control over

557386 PP02.qxd 4/2/04 10:01 AM Page 157

�IIPage Design

�
Chapter 8

Chapter 9

Common Gateway Interface

Chapter 10

Chapter 11

JavaScript

Chapter 12

Advanced Cascading Style Sheets

Chapter 13

Part Rockin’

Strategies

In This Part

Tables and Frames

Forms, User Input, and the

Advanced Form Design

Activating Your Pages with

Site Development with Weblogs

557386 PP02.qxd 4/2/04 10:01 AM Page 158

557386 Ch08.qxd 4/2/04 9:54 AM Page 159

�8
chapterTables and

Frames

Exploring frames: pages within pages

� In This Chapter
Organizing table information

Examining some tricks with tables

Working with iframes

If you’ve been diligently reading each chapter of this book so far, I have good
news! You’ve reached the point where many Web-page design consultants, as

recently as two or three years ago, considered themselves experts. From this point
on, we look at a wide variety of different advanced formatting features starting in
this chapter with two essentials for modern site design: tables and frames.

Most interestingly, at this point in the book I have primarily covered the specifics
of HTML 1, HTML 1.1, and HTML 2.0, although I’ve delved a tiny bit into some
features that showed up in HTML 3.2, along with providing a decent sampling of
Cascading Style Sheets information. Can you keep all these numbers straight? I
can’t. Remember, the sequence was 1, 1.1, 2.0, 3.2, and now 4.0. For some cryp­
tic reason, there was never a 3.0 release of the HTML standard. Along the way, the
two formatting capabilities covered in this chapter—tables and frames—brought
about some of the most dramatic improvements in Web site design. As you read
this chapter and see the examples, you should begin to see why.

Organizing Information in Tables
Tables are an important addition to HTML that originated in the development labs
at Netscape Communications Corporation. Unlike the tables in your favorite word
processor, however, HTML tables can be quite compelling. You may even find

557386 Ch08.qxd 4/2/04 9:54 AM Page 160

�

160 Creating Cool Web Sites with HTML, XHTML, and CSS

yourself naturally boxing up groups of icons, taking a list of bullet items, and making a table
out of them, or who knows what else! If you want to have material adjacent on a page, per­
haps multiple columns of text, tables are unquestionably your best bet.

At their most fundamental, tables are composed of data cells and organized into rows, the
collection of which is called a table. In HTML, table data cells are denoted by <td> and </td>.
These cells are collected neatly into rows with <tr> and </tr>, and the table itself starts with
<table> and ends, logically enough, with </table>.

Basic table formatting
Although tables offer a lot of cool capabilities, they also have a downside: Tables can be
pretty hard to build when you’re just getting started. You have to specify the parameters for
the table, the parameters for each row, and then ensure that each cell element is surrounded
by <td> </td>—table data—tags. Here’s a simple example of table formatting:

<h3>Common Cable TV Channels</h3>

<table border=”1”>
<tr>
<td>MTV</td>
<td>EPSN</td>
<td>CNN Headline News</td>
<td>WTBS Atlanta</td>

</tr>

</table>

This formats all data on the same line (that is, in the same row, denoted by <tr> and </tr>),
as shown in Figure 8-1.

Figure 8-1: The simplest table possible—all data in a single row.

If you want to include all the information shown in the preceding example but to present each
item in a separate row, the table instantly gets more complex, as the following code shows:

557386 Ch08.qxd 4/2/04 9:54 AM Page 161

161 �Chapter 8: Tables and Frames

<h3>Common Cable TV Channels</h3>

<table border=”1”>

<tr>

<td>MTV</td>

</tr><tr>

<td>EPSN</td>

</tr><tr>

<td>CNN Headline News</td>

</tr><tr>

<td>WTBS Atlanta</td>

</tr>

</table>

Figure 8-2 shows this expanded format.

Figure 8-2: Another simple table, but with each element on its own line.

Needless to say, this stuff can get tricky because you can include graphics, text, and just
about anything else (including other tables) within any element of a table. Each data cell can
have a specific alignment specified with align= as part of the tag; and the <table> tag itself
has a plethora of options, including all those shown in Table 8-1.

Table 8-1: Attributes for the <table> Tag

Tag Meaning

border=”n” Width of enclosed area surrounding table; if border=”0”, this also elimi­
nates the grid lines within the table itself

cellspacing=”n” Spacing between individual cells

cellpadding=”n” Space between border and contents of cell

width=”n” Desired width; overrides automatic width calculations (value or percentage)

557386 Ch08.qxd 4/2/04 9:54 AM Page 162

�

162 Creating Cool Web Sites with HTML, XHTML, and CSS

It’s useful to consider how to stretch out the table so that things aren’t so jammed together.
Two basic attributes enable you to space things out: width and cellpadding.

The width attribute enables you to specify the exact width of the table, regardless of contents,
on the screen. You can specify it either as a specific number of pixels or as a percentage of
the overall width of the current viewer window. I always use the latter form, which requires a
slight modification to the code used for the preceding table:

<h3>Common Cable TV Channels</h3>
<table border=”1” width=”75%”>
<tr><td>MTV</td></tr>
<tr><td>EPSN</td></tr>
<tr><td>CNN Headline News</td></tr>
<tr><td>WTBS Atlanta</td></tr>
</table>

Notice here that I’ve also shrunk the HTML a bit. As you’ll recall from the discussion in earlier
chapters, your entire Web page can be on one long line, if you like; so certainly in a case like
this, you can put the row and data specs on the same line. As you can see in Figure 8-3, the
output is considerably more open than the previous table.

The other way to open up the design of your table is to specify a cellpadding factor. Two
attributes initially seem similar, but they serve important but different functions in the layout
of the table. cellpadding indicates the amount of space—in pixels—between the inner edge
of the table cell border and the material within, whereas cellspacing refers to the width of
the grid lines between the data cells.

Figure 8-3: Adding some width improves the look of the table.

Here’s an example of two tables, one using the cellpadding parameter and the other using
cellspacing:

557386 Ch08.qxd 4/2/04 9:54 AM Page 163

163 �Chapter 8: Tables and Frames

<h3>Common Cable TV Channels</h3>

<table border=”1” cellpadding=”10”>

<tr><td>MTV</td>

<td>EPSN</td>

<td>CNN Headline News</td>

<td>WTBS Atlanta</td>

</tr>

</table>

<div style=’font-size:75%’>cellpadding=10</div>

<hr />

<table border=”1” cellspacing=”10”>
<tr><td>MTV</td>

<td>EPSN</td>

<td>CNN Headline News</td>

<td>WTBS Atlanta</td>

</tr>

</table>

<div style=’font-size:75%’>cellspacing=10</div>

Consider the differences between the two examples shown in Figure 8-4. By slightly increas­
ing the cellpadding, you increase the size of the individual data cells and improve the look
of your table. Increasing cellspacing, on the other hand, makes the table look like a steam­
roller ran over the grid and flattened it.

Figure 8-4: A comparison of the cellpadding and cellspacing parameters.

Within a table, not only can you specify the rows with tr and individual data elements with
td but you can also specify column headings with th (which replaces the td tag in the row).
The th tag is mostly identical to td, with two important changes: Text in the th tag appears
in bold and is horizontally centered in the cell.

557386 Ch08.qxd 4/2/04 9:54 AM Page 164

�

164 Creating Cool Web Sites with HTML, XHTML, and CSS

You can also specify the horizontal alignment of data cells within their space by using the
align option. The options are align=”left” (the default), align=”center”, and
align=”right”, as demonstrated in the following HTML snippet. You can use valign to
specify the vertical alignment: valign=”top”, for example, ensures that all cells on a row
have their information at the top rather than the default of vertically centered. The valign
options are top, middle, bottom, and baseline. In the following code, I added the <th> tag
to provide each column with a column head. I have also adjusted the cell alignment and the
size of the table border:

<table border=”5” width=”75%”>
<tr>
<th>Show</th><th>Airs on</th>
</tr>
<tr align=”center”>
<td>Sherlock Holmes</td><td>Monday</td>
</tr>
<tr align=”left”>
<td>Lovejoy</td><td align=”right”>Monday</td>
</tr>
</table>

In Figure 8-5, see how the <th> tag changes the layout of the information on the page, and
you can see what happens when a larger border is specified. I also added some different
alignment options. Alignment is inherited in a table, so if you want to have all data cells in
a row share an alignment, you can put the align attribute in the tr tag. If you only want the
alignment to affect an individual table cell, use the align attribute in the td tag instead.

Figure 8-5: Using the <th> tag to add table headers.

Rows and columns can span more than one table unit if needed, so you can add a nice header
over both columns of the previous table by specifying colspan=”2” in a new data cell:

<table border=”5” width=”75%”>

<tr>

<td colspan=”2” align=”center”>

557386 Ch08.qxd 4/2/04 9:54 AM Page 165

165 �Chapter 8: Tables and Frames

Arts & Entertainment Network

</td>

</tr><tr>

<th>Show</th><th>Airs on</th>

</tr>

<tr align=”center”>

<td>Sherlock Holmes</td><td>Monday</td>

</tr>

<tr align=”center”>

<td>Lovejoy</td><td>Monday</td>

</tr>

</table>

This simple change offers considerable control over the layout of the individual cells within
the table, as shown in Figure 8-6. Notice that I’ve fixed the weird alignments, so everything is
all lined up nicely, and I’ve used a CSS element, font-size, to increase the size of the type.

Figure 8-6: The colspan attribute enables you to add headers that span more than one column.

Advanced table formatting
A number of additional table formatting options help you learn how to really exploit this pow­
erful set of features embodied in the table tag set. One of the most important enables you to
control the colors involved with the table: the color of the cell background.

Colors within a specific data cell show up within the td tag in a way that won’t surprise you:

<td bgcolor=”yellow”>text in a yellow cell</td>

This code makes the single cell yellow with default black text. You can accomplish the same
thing by using CSS, of course. You either define a class with a background color that’s then
associated with a table, table row, or table data cell; or you simply redefine the colors associ­
ated with a table element. The following code shows how CSS classes can be intermingled in
a table:

557386 Ch08.qxd 4/2/04 9:54 AM Page 166

�

166 Creating Cool Web Sites with HTML, XHTML, and CSS

<head>

<title>Colorful tables</title>

<style type=”text/css”>

.title { background-color: #006; color: white; }

th { background-color: yellow; }

</style>

</head>

<body style=’text-align:center’>

<table border=”5” width=”75%”>

<tr class=”title”>

<td colspan=”2” align=”center”>

Arts & Entertainment Network

</td>

</tr><tr>

<th>Show</th><th>Airs on</th>

</tr>

<tr align=”center”>

<td>Sherlock Holmes</td><td>Monday</td>

</tr>

<tr align=”center”>

<td>Lovejoy</td><td bgcolor=”#99ff99”>Monday</td>

</tr>

</table>

</body>

The result of this formatting is quite attractive, as shown in Figure 8-7, and it’s even more
attractive when you can see it in color!

Figure 8-7: Table cells colored by using both CSS and the <td> tag.

In this code, the style block creates a class called title that has a dark blue background
and white text, and then it redefines the table head (th) tag to have a yellow background.
Then, in the table itself, the title class is applied to the first row by adding class=”title”
to the tr tag. Finally, the light green background in the bottom-right data cell is done with an
old-fashioned bgcolor attribute, which works just as well.

557386 Ch08.qxd 4/2/04 9:54 AM Page 167

167 �Chapter 8: Tables and Frames

One thing that might not be obvious is that you can really exploit the inheritance characteris­
tics of table elements with colors. Want to have all the data cells share a background color?
Then either redefine the table tag itself within CSS, add a style=’background-color:
#xxx’ attribute to the table tag, or use a bgcolor attribute, also within the table tag itself.

The colspan attribute is pretty easy to understand, I think; but the real challenge is trying to
figure out how to use its sibling attribute, rowspan, which lets you have a data cell across
multiple rows of the table.

The next example demonstrates rowspan; in this case, I include a graphic image in the multi-
row data cell. The graphic, what2watch.gif, is some text that’s been rotated 90 degrees
counterclockwise. Here’s the source code:

<table border=”5” cellspacing=”0” width=”75%”>

<tr class=”title”>

<td rowspan=”3” align=”center”>

</td>
<th>Show</th><th>Airs on</th>

</tr>

<tr align=”center”>

<td>Sherlock Holmes</td><td>Monday</td>

</tr>

<tr align=”center”>

<td>Lovejoy</td><td>Monday</td>

</tr>

</table>

The result is a very sophisticated table, as shown in Figure 8-8. Pay attention in the figure
to the result of setting cellspacing to zero. It’s not what you think (that is, the contents of
cells don’t end up actually abutting each other), but it is attractive! A common graphics trick
is also shown in this example. The background of the graphic has been carefully chosen to
ensure that it can be duplicated as a color specification in the HTML. So however large or
small the table becomes, the graphic seems to shrink or stretch to fit. It doesn’t really; it’s
just that the background of the table data cell is identical.

Figure 8-8: The rowspan attribute demonstrated.

557386 Ch08.qxd 4/2/04 9:54 AM Page 168

�

168 Creating Cool Web Sites with HTML, XHTML, and CSS

Table attributes that aren’t 100 percent portable
Although all the table attributes shown so far work across the major Web browsers, Microsoft
has expanded the definition of tables a bit further than even the HTML 4 specification details.

The most recent HTML specification details how to set background colors for specific cells
using bgcolor, and CSS enables you to specify the colors of a table cell as a regular CSS
container. But Internet Explorer adds its own additional attributes. The background tag allows
background graphics in table cells, and the bordercolor tag gives you detailed control over
the border color. If the latter is not exact enough, Internet Explorer also offers the capability
to set the two colors used in the border with bordercolorlight and bordercolordark.
Further, Internet Explorer is the only Web browser that enables you to specify background
graphics within individual data cells by using background=graphic-file rather than bgcolor
solid colors, although CSS also allows background graphics.

� See Chapter 7 for more about adding graphics to your Web pages, including back-
x-ref ground graphics with CSS.

All these new attributes are demonstrated in the following example:

<table bordercolor=”blue” border=”5” cellspacing=”0”

cellpadding=”20” width=”75%”>

<tr>

<td background=”Graphics/tiedye-background.gif”

align=”center”>

<span style=’font-size: 175%;font-weight:bold;color:white;

background-color:black;’>

What a Long, Strange Trip It’s Been

</td>

</tr>

</table>

<hr />

<table bordercolorlight=”yellow” bordercolordark=”red”

border=”10” cellspacing=”0” cellpadding=”8” width=”50%”>

<tr>

<td align=”center”>

Classic Rock from guys in BMWs.

</td>

</tr>

</table>

Figure 8-9 shows the result of this code. Looks good, doesn’t it?

557386 Ch08.qxd 4/2/04 9:54 AM Page 169

169 �Chapter 8: Tables and Frames

Figure 8-9: Table-edge colors specified for a different appearance: This capability is only available in Internet
Explorer.

�
This example looks good here, but to really see this rainbow of colors at its
best, you’ll want to view the file on your own computer! Just go to http://wwwon the .intuitive.com/coolsites/, and then go to the Examples area to see it in

web full color.

Modifying edges and grid lines
Two table attributes are new in the HTML 4 specification. Both offer even finer granularity of
control over the borders around the table and between the individual data cells. The two
attributes are frame and rules, and their values are defined as shown in Tables 8-2 and 8-3.

Table 8-2: Values for the <table frame= Attribute>

Value Result

void Removes all outside table borders

above Displays a border on the top side of the table frame

below Displays a border on the bottom side of the table frame

hsides Displays a border on the top and bottom sides of the table frame

lhs Displays a border on the left-hand side of the table frame

rhs Displays a border on the right-hand side of the table frame

vsides Displays a border on the left and right sides of the table frame

box Displays a border on all sides of the table frame

border Displays a border on all sides of the table frame

557386 Ch08.qxd 4/2/04 9:54 AM Page 170

�

170 Creating Cool Web Sites with HTML, XHTML, and CSS

Table 8-3: Values for the <table rules= Attribute>

Value Result

none Removes all interior table borders

groups Displays horizontal borders between all table groups. Groups are specified by
thead, tbody, tfoot, and colgroup elements.

rows Displays horizontal borders between all table rows

cols Displays vertical borders between all table columns

all Displays a border on all rows and columns

The frame and rule attributes combine to give you a remarkable amount of control over the
borders and edges in a Web table, but they’re pretty complex. I offer you one example and
encourage you to tweak the source yourself to see how these attributes work in different
combinations:

<table border=”10” frame=”vsides” cellspacing=”0”
rules=”rows” width=”50%”>

<tr align=”center”>

<td> January </td>

<td> $25,404,384.08 </td>

</tr>
<tr align=”center”>
<td> February </td>
<td> $28,498,294.38 </td>

</tr>

<tr align=”center”>

<td> March </td>
<td> $31,978,193.55 </td>

</tr>

<tr align=”center”>

<td> April </td>
<td> $18,559,205.00 </td>

</tr>

</table>

Read through this code example closely (and remember that all the important work is being
done in the table tag) and compare it to Figure 8-10 to see if this makes sense to you. Try
opening the same example in Netscape or an older version of Internet Explorer—which doesn’t
yet support these HTML 4.0 additions—and consider how different the table looks.

�
Try taking out the cellspacing=”0” in the previous example, and notice the rule
lines are broken with a very small invisible grid line or 3D bar (depends on which

tip browser you’re using). Specify that there should be no spacing, and the problem
goes away. This nuance of layout spacing is also true when you work with back­
ground colors in your data cells.

557386 Ch08.qxd 4/2/04 9:54 AM Page 171

171 �Chapter 8: Tables and Frames

Figure 8-10: A sample table that uses the frame and rules attributes.

Tricks with Table Layouts
Before we leave tables and move on, I’d like to show you two more examples of how you can
use tables to dramatically change the appearance of material on your Web page.

Tables within tables
The first trick is a table within a table. This is a real-life example: It’s the signup form from
the local bus pass program—EcoPass—site that I manage at http://www.ourecopass.org/.
Here’s the source:

<html>

<head>

<title>Contact the EcoPass Coordinators</title>

<style type=”text/css”>

<!—

.text { font-size: 95% }

body { width:80%; margin-left:10%; background-color:white; }

// —>

</style>

</head>

<body>

<h2 style=’text-align:center;background-color:#99c’>

Contact The Norwood/Quince EcoPass Team</h2>

We welcome email, whether you’re interested in talking about

the EcoPass system, you’re a member of the NQ EcoPass

community, or you’d like to learn more about it. If you’d

rather not contact us, you can go to

our home page or learn about our

Continued

557386 Ch08.qxd 4/2/04 9:54 AM Page 172

�

172 Creating Cool Web Sites with HTML, XHTML, and CSS

Continued
mailing lists.

<div style=’text-align:center’>

<table cellpadding=”7” cellspacing=”0” border=”0”>

<tr><td valign=”top” bgcolor=”#cccccc”>

<form method=”POST” action=”mailform.cgi”>

<table border=”0” cellpadding=”2”>

<tr>

<td align=”right” class=”text”>

Your name:</td>

<td><input name=”name” size=”35” /></td>

</tr><tr>

<td align=”right” class=”text”>

Your email:</td>

<td><input name=”email” size=”35” /></td>

</tr><tr>

<td align=”right” class=”text”>

Your phone:</td>

<td><input name=”phone” size=”35” /></td>

</tr><tr>

<td align=”right” class=”text”>

Street address:</td>

<td><input name=”address” size=”50” /></td>

</tr><tr>

<td colspan=”2” class=”text”>

Your Message (write as much as you’d like!):

<textarea rows=5 cols=70 name=”note”

style=”margin-left: 2em;margin-top:3px”></textarea>

<div style=’text-align:center’>
<input type=”submit” value=”send it in”
style=”font-size: 80%;” />
</div>
</td>
</tr>
</table>

</td></tr>
</table>

</form> <!- it’s out of order, but forms have layout peculiarities —>

</div>
<div style=’padding:3px;font-size:80%;
text-align:center;background-color:#99c’>

557386 Ch08.qxd 4/2/04 9:54 AM Page 173

�

173 �Chapter 8: Tables and Frames

Web site by Dave Taylor
</div>
</body>
</html>

You haven’t yet seen one big part of this listing: forms. The input tags and the form and
/form tags are all part of the HTML necessary for a Web page to send data back to the
server for processing. Figure 8-11 shows the result of this code. A lot is going on within lay­
out, I know, but grab the source code and make some changes to see how it’s all assembled.
For example, change border=”0” in the inner table to border=”1” and watch how suddenly
all the elements of the table are obvious and visible.

Figure 8-11: The OurEcoPass Contact Us page, showing a table within a table.

x-ref I discuss forms in detail in Chapter 9.

Also notice in this example how you can gracefully intersperse CSS and HTML to offer great
flexibility and an attractive appearance, almost effortlessly.

When I’m working with table layouts, I always leave the border on until I’m just
tip about done with everything. Then I switch it off and test the layout on a few differ-� ent browsers.

557386 Ch08.qxd 4/2/04 9:54 AM Page 174

�

174 Creating Cool Web Sites with HTML, XHTML, and CSS

The second table trick I want to demonstrate is using a table as a tool for developing the lay­
out of an entire page rather than an element within the page. For this, I call on another exam­
ple: a home page template for a small business site, built using tables.

<html>
<head>

<title>Tables as a Page Layout Tool</title>

<style type=”text/css”>

.name { color: white; font-weight: bold; font-size: 110%;

margin-top: 10px; }

body { color: #336; font-family: sans-serif; }

td { font-size: 90%; }

</style>

</head>

<body>

<table border=”0” width=”640” cellspacing=”9”>

<tr>

<td width=”115” align=”center” valign=”top” bgcolor=”#666666”>

<div class=”name”>

Small Business International, Inc.

</div>

<table border=”1” cellpadding=”14” cellspacing=”0”

bgcolor=”#DDDDDD”>

<tr><td align=”center”>

Mission

</td></tr>

<tr><td align=”center”>

Approach

</td></tr>

<tr><td align=”center”>

Staff

</td></tr>

<tr><td align=”center”>

Links

</td></tr>

<tr><td align=”center”>

Home

</td></tr>

</table></td><td width=”525”>

<div style=”text-align:center;”>

</div><div>

Small Business International, Inc. (“SBI”) is a strategy

consulting and new venture development firm serving the

global retail industry. The firm was founded in 1974 to

assist US-based retail enterprises in realizing their

international growth objectives and to capitalize on

557386 Ch08.qxd 4/2/04 9:54 AM Page 175

�

175 �Chapter 8: Tables and Frames

emerging retail trends through the creation and financing

of promising new ventures.

</div>

<div style=”text-align:center;”>

<img src=”Graphics/sbi-image1.gif” vspace=”3”

alt=”sbi-map” />

<div style=”font-size: 75%”>A strategic focus: Japan.</div>

</div>

</td></tr>

</table>

</body>

</html>

By now, every line of this example should make sense to you. Everything being used here has
been explained earlier in the book, with the exception of margin settings in the CSS. A quick
glance at Figure 8-12, and you can immediately see that this is how people create multiple
column designs, like that used on the Microsoft home page (http://www.microsoft.com/),
for example.

x-ref I cover margin settings and other advanced aspects of CSS in Chapter 12.

Figure 8-12: A nifty table-based page layout.

557386 Ch08.qxd 4/2/04 9:54 AM Page 176

�

176 Creating Cool Web Sites with HTML, XHTML, and CSS

The hidden problem with this design, however, is that it’s explicitly designed for a standard
VGA monitor resolution: 640 pixels wide. You can see that in the table width specification:

<table border=”0” width=”640” cellspacing=”9”>

If the user has a screen that’s considerably wider (800, 1024, or more pixels), a lot of unused
blank space remains on the right side of the screen, and you can’t do much about it.

One experiment that might give you good results is using relative widths at the top of the
table, like this:

<table border=”0” width=”80%” cellspacing=”9”>

You can then specify the exact size of the column you are working with, like this:

<td width=”150”>

With this method, you let the browser calculate the width of any other columns of data you
might specify. This works reasonably well, but there’s a hidden gotcha if you have a screen
that’s too small. It’s a problem that is present on the Small Business International page, too,
if displayed on too narrow a screen. When you specify relative widths on a narrow screen, the
browser sometimes calculates the width of a column to be narrower than the items within.
The table of possible areas to explore on the SBI page can end up being resized and, as a
result, its edge might actually overlap the main column of data, a very unacceptable result.

To avoid the potential problem of overlapping columns, you can create a blank graphic that
is the specific width of the widest element in the column plus a dozen pixels or so. You then
include that as a hidden spacer element.

�
If your table looks bizarre when you view it and you’re using a mix of specific pixel
widths and percentage widths, try switching exclusively to pixel widths or percent-

tip age widths. It’s not always a problem, but I’ve definitely seen some weird table lay­
outs suddenly fix themselves when I change from mixed specifications to a single
type.

Grouping table elements for faster rendering
You have a lot of ways to slice and dice tables to produce just the layout you want in HTML.
As you push the envelope further, however, sometimes you find that it takes a while for tables
to render in a Web browser. Just as the img tag provides you with the capability to specify the
height and width to speed up rendering graphical elements, there is an analogous capability
called colgroup—column groups for tables. You won’t see them used too often on the Web,
but it’s worth a brief peek to see how they work!

With these additional HTML tags, you can now specify the number and exact size of each row
of a table with a combination of the colgroup and col tags within a table tag. There is a cols
attribute to the table tag, but if you want to start including hints about your table size in your
page, colgroup is a much better, more flexible strategy.

557386 Ch08.qxd 4/2/04 9:54 AM Page 177

177 �Chapter 8: Tables and Frames

Why bother indicating the number of columns? Because if you have ever worked with com­
plex tables, you already know that the browser can’t start rendering the first line of the table
until it has received every snippet of information. To understand why you should indicate the
number of columns, consider what happens when the following table is displayed onscreen:

<table border=”1” cellspacing=”3”>

<tr><td>The</td><td>Rain</td><td>in</td><td>Spain</td>

</tr><tr>

<td>Falls</td><td>Mainly</td><td>On</td><td>The</td>

<td>Plain</td>

</tr><tr>

<td>and where is that plain?</td><td>in Spain! In

Spain!</td>

</tr>

</table>

Figure 8-13 shows the result: Pay close attention to the spacing of cells and the number of
cells in the first row of the table.

Figure 8-13: How big is this table? It can be hard to compute when the layout is sufficiently complex.

If the table is as small as the previous example, a delay of a fraction of a second in rendering
the page isn’t a big deal; but when you get into large tables—and I’ve created tables with
over 1,000 data cells—the delay in transmitting information and rendering the table can be
substantial.

Grouping tables to speed up display
The solution is to use the colgroup and cols tags to give the browser an idea of what’s com­
ing next. Here’s how you can rewrite the code for the preceding table to use these new tags:

<table border=”1” cellspacing=”3”>

<colgroup align=”center” />

<col width=”2*” />

Continued

557386 Ch08.qxd 4/2/04 9:54 AM Page 178

�

178 Creating Cool Web Sites with HTML, XHTML, and CSS

Continued
<col width=”4*” />

<colgroup />

<col />

<col width=”15%”><col width=”150” />

<tr><td>The</td><td>Rain</td><td>in</td><td>Spain</td>

</tr><tr>

<td>Falls</td><td>Mainly</td><td>On</td><td>The</td>

<td>Plain</td>

</tr><tr>

<td>and where is that plain?</td><td>in Spain! In

Spain!</td>

</tr>

</table>

This may look a bit confusing, but the sizing parameters are similar to how you specify frame
sizes when you use the frameset tag, which I explain shortly in the section “Pages within
Pages: Frames.” In a nutshell, you can specify sizes by percentage of the width of the window
(width=”15%”), the specific number of pixels (width=”150”), having the browser compute
the smallest possible width for the cells in the column (<col> without any width specified), or
by specifying how much of the remaining unallocated space should be allocated to the differ­
ent columns. Notice that the 2* and 4* for the first colgroup specify ratios of space allocated:
Whatever space is allocated for the first column, twice as much should be given to the second.
This could also be accomplished with * and 2*.

In the previous example, 2* appears once, 4* appears once, and <col> appears once without
a width specification, which is identical to <col width=”*”> or <col width=”1*”>. Add
these specs up (2+4+1) and you get 7 portions that encompass the entire width of the browser
window. Subtract the space for the 15 percent width and 150-pixel-width columns, and the
remaining space on the window is allocated for the remainder of the table, broken into 2⁄7, ⁄7,
and 1 ⁄7. When the entire width of the screen is 1000 pixels, 15 percent is 150 pixels, and the
width consumed by the last two columns is 300 pixels (15 percent + 150). The remainder
is 700 pixels, which is divided up into seven equal portions and then allocated. The result:
Column 1 is 200 pixels wide, Column 2 is 400 pixels wide, Column 3 is 100 pixels wide, and
the last two you already know. I know, I know, this makes your head swim!

A glance at Figure 8-14 demonstrates how this all works, and it also shows how colgroup
lets you apply formatting to a set of columns simultaneously with the align=”center”
attribute.

Notice one thing here: Internet Explorer 6.0, which I used for these screenshots, doesn’t
understand the asterisk width notation for col, so although it applied the percentage and
absolute pixel widths, and even caught the align=”center” in the colgroup tag, the first
and second columns ended up the same width (even though the second should be twice as
wide as the first).

4

557386 Ch08.qxd 4/2/04 9:54 AM Page 179

179 �Chapter 8: Tables and Frames

Figure 8-14: The colspan and col tags define table attributes.

Therefore, not only is col useful for specifying the number of columns, it’s also quite useful
for specifying the width of a given column. Even better, you can also specify other attributes
for a given column, as demonstrated in the following example and shown in Figure 8-15:

<table border=”1” width=”90%”>

<colgroup />

<col align=”right” />

<col align=”char” char=”:” />

<thead>

<tr><th>What I’m Doing</th><th>Time Of Day</th></tr>

</thead>

<tbody>

<tr><td>Waking Up</td><td>8:30 am</td></tr>

<tr><td>Driving to Work</td><td>9:00 am</td></tr>

<tr><td>Eating Lunch</td><td>12:00 noon</td></tr>

<tr><td>Driving Home</td><td>6:00 pm</td></tr>

</tbody>

</table>

To help organize complex tables, <thead> and <tbody> have been added: They’re not
mandatory, and it’s too soon to tell if people will actually start using them. More than anything,
they’re just a layout convenience to help clarify what elements are serving what purposes in
the actual table HTML.

Figure 8-15: Organizing a table with thead and tbody doesn’t affect appearance.

557386 Ch08.qxd 4/2/04 9:54 AM Page 180

�

180 Creating Cool Web Sites with HTML, XHTML, and CSS

The other interesting thing about this example is that I’m specifying that I want to have the
second column of information aligned by the colon (:) character in the data cell contents.
The attribute align=”char” specifies a character alignment, and char is where you specify
which character to use for alignment. If you don’t specify a char value, the default is ‘.’, which
aligns numeric values along the decimal point.

� Alas, character alignment isn’t supported in Internet Explorer 6.0, so Figure 8-15
tip doesn’t show the times aligned along the colons. It’ll just magically work one day,

I expect.

Another possible align option (and, like the align=”char” option, it can appear anywhere
you can specify an alignment) that you might well have been waiting for since the first release
of HTML has arrived: justified text. The align=”justify” attribute should eliminate the ragged
right margin of text, while keeping the left margin also aligned.

This attribute can also be used with the p or div tag, as discussed earlier in the book.
Consider this HTML sequence:

<p align=”justify”>

While the rain slowly poured down the

rooftops in Spain, the same storm was dumping water in

Paris too, pooling at the edge of the buildings and

seeping slowly into the Seine. Tintin, our hero, was

undaunted. He held his

chin high and walked quietly along the Rue Sienna, looking

for his beloved dog.

</p>

<table border=”1” cellpadding=”5”>

<col align=”justify” /><tr><td>

Just when he was beginning

to give up hope, a small “yip” from a dark alleyway caused

Tintin to spin about and yell out “Snowy? Come on, boy!”

Within moments, there was a happy reunion in the rain

between the boy reporter and his faithful - but ever-

curious - pet.

</td></tr>

</table>

Now look at how it all formats in Figure 8-16. As you can see, justification is implemented
within the p tag in this version of Internet Explorer, but justification within the data cell is
ignored.

� Dying for that visual justified effect? Just wrap the table data cell in <p

tip align=”justify”> and you achieve the results desired.

557386 Ch08.qxd 4/2/04 9:54 AM Page 181

181 �Chapter 8: Tables and Frames

Figure 8-16: The align=”justify” attribute justifies text when it is used within the <p> tag but not when used within
a table data cell.

Pages within Pages: Frames
Okay, I think you’re ready. Take a deep breath. It’s time for us to explore something that
makes tables look easy: frames. Frames answer the question: What if each data cell in your
table was its own Web page?

When Netscape first introduced frames, prior to the release of HTML 3.2, lots of people didn’t
like them. Enough sites, however, started to develop around a frame design, splitting a single
Web page into separate panes, that they gradually became popular in spite of complaints.

Meanwhile, many sites that had introduced frame versions of their home pages had to also
offer a no-frame version for people who didn’t like frames; and today the first frame site I
ever saw, the Netscape home page, is now a frames-free site. If you want to be an HTML
expert, you should definitely know how to work with frames; but you’ll undoubtedly find that
when you become an expert in CSS, designing with tables with their myriad uses is the better
way to go.

The basics of frames
Unlike many of the tags you’ve seen so far, frames are an all-or-nothing proposition. Individual
frames are specified with the frame tag, which is itself wrapped in a frameset specifier that
indicates the amount of space to allocate to each pane of information. Here’s a very basic
frame page that breaks the screen into two sections; the top pane is 75 pixels high, and the
second pane consumes the remainder of the screen:

557386 Ch08.qxd 4/2/04 9:54 AM Page 182

�

182 Creating Cool Web Sites with HTML, XHTML, and CSS

<html>

<title>A Simple Frames-based Design</title>

<frameset rows=”75,*”>

<frame src=”frames/top.html” />
<frame src=”frames/bottom.html” />

</frameset>

</html>

Figure 8-17 shows what happens in the browser: You have the single page split into two rows
as specified in the frameset tag. The first row (pane) is 75 pixels high with a white back­
ground, and the second row, with its black background, consumes the remaining space
(specified by *).

You can’t see here that three Web pages are actually involved in getting this to format cor­
rectly: the root page shown above and two additional pages, top.html and bottom.html.
The first file, top.html, contains this code:

<body bgcolor=”white”>

<h2 style=”text-align:center;”>This

is the top pane on the page!</h2>

</body>

The second file, bottom.html, looks like this:

<body style=”background:black; color:white;”>

<div style=”margin-top: 10%;text-align:center;”>

<h2>this is the bottom section of the page!</h2>

</div>

</body>

Figure 8-17: A simple two-pane frame page.

557386 Ch08.qxd 4/2/04 9:54 AM Page 183

183 �Chapter 8: Tables and Frames

That’s the basic concept of frame documents: Instead of a single page defining all the infor­
mation displayed to the visitor, the information is split into multiple pages, each given its own
small piece of the window.

Specifying frame panes and sizes
Now that you’re an expert with tables, it will come as no surprise that you have lots of options
for frames, too, only a few of which are vitally important to understand.

The most important tag to learn about is frameset. The frameset tag creates a frameset:
a set of frames into which the Web page is split. In addition to being able to specify rows to
split the Web page into horizontal panes, you can alternatively use cols to specify vertical
panes. You can use three different values for these attributes:

• A simple number to specify the desired size in screen pixels

• An asterisk to specify the remaining space on the page

• A percentage of page width by using the n% notation

If you think you got all that, here’s a test for you: What does <frameset cols=”30%,19,*”>
mean?

The sequence cols=”30%,19,*” is interpreted as the first column being allocated 30 percent
of the width of the window, the next column being allocated a slim 19 pixels, and the third
column getting the remainder of the space on the window.

You can create complex multipane Web pages, where each pane has autonomous behavior,
by combining these attributes in creative ways:

<html>
<title>Lots of frames</title>
<frameset cols=”80%,*”>

<frameset rows=”30%,70%”>
<frame src=”frames/top.html” />
<frame src=”frames/bottom.html” />

</frameset>
<frameset rows=”33%,33%,*”>
<frame src=”frames/advert1.html” />
<frame src=”frames/advert2.html” />
<frame src=”frames/advert3.html” />

</frameset>

</frameset>

</html>

In this case, what I’ve done is specify two columns of information. One column is 80 percent
of the width of the screen; the latter gets the remaining width. That’s specified with the follow­
ing line:

<frameset cols=”80%,*”>

557386 Ch08.qxd 4/2/04 9:54 AM Page 184

�

184 Creating Cool Web Sites with HTML, XHTML, and CSS

The first pane here is the second frameset: two rows, the first (top.html) 30 percent of the
available height, and the second (bottom.html) the remaining 70 percent:

<frameset rows=”30%,70%”>

<frame src=”frames/top.html” />

<frame src=”frames/bottom.html” />

</frameset>

The second column of information (the * width in the first frameset specification) contains
three advertisements evenly spaced, each 33 percent of the vertical space:

<frameset rows=”33%,33%,*”>

<frame src=”frames/advert1.html” />

<frame src=”frames/advert2.html” />

<frame src=”frames/advert3.html” />

</frameset>

The result of this code is shown in Figure 8-18.

Figure 8-18: Lots of pain, er, panes, specified within a frameset.

You can specify a couple of different attributes for frames, the most important of which is the
name= attribute. Each specific frame can be given a unique name (similar to) that
can then be used as a way to control which window is affected by specific actions. What’s the
point of this? Imagine that your site includes a table of contents in a small pane that is always
present. Any user who clicks one of the links on the table of contents actually causes the
information in the main pane to change—not the information in the table of contents pane.

557386 Ch08.qxd 4/2/04 9:54 AM Page 185

185 �Chapter 8: Tables and Frames

That’s the idea behind the name= attribute. A partner attribute also appears in the anchor tag
for any hypertext reference (a href). The following provides an example of this at work.
First, a simple frames page:

<html>
<frameset cols=”20%,*”>

<frame src=”frames/toc.html” />

<frame src=”frames/default.html” name=”main” />

</frameset>

</html>

Notice in this example that the second frame tag now has a name associated with it: main.

Here are the contents of the default.html page:

<html>

<body style=”text-align:center;”>

</body>

</html>

And here’s the all-important toc.html page with the target=”main” attribute, where
“main” is the name of the specific target pane as specified in the frame tag itself:

<html>

<body style=”background-color:yellow”>

<div style=”text-align:center; font-size:120%; font-weight:bold;”>

<h2>Pick An Animal</h2>

<div style=’line-height:2.0;’>

DOG

CAT

BIRD

(HOME)

</div>

</div>

</body>

</html>

Figure 8-19 shows how it looks, but you’ll definitely want to try this out.

�
Check out the example files for this chapter on this book’s companion Web site
at http://www.intuitive.com/coolsites/ to learn how these attributes work. on the In particular, experiment with excluding the target attribute. Watch what happens

web when you click a link and what happens when you use the Back button on your
browser.

557386 Ch08.qxd 4/2/04 9:54 AM Page 186

�

186 Creating Cool Web Sites with HTML, XHTML, and CSS

Figure 8-19: Navigational panes offer flexibility in layout and presentation.

The frame tag itself also has two attributes worth highlighting. The first enables you to spec­
ify the width of a frame border: frameborder (makes sense, eh?), with an attribute in pixels.
The second, scrolling, enables you to force or prohibit a scroll bar, even if the pane is too
small for the information within it. Possible values are yes, no, and auto; the latter adds a
scrollbar if needed, but hides it otherwise. Here is a small sample of the scrolling attribute:

<html>
<title>Animals Tour</title>
<frameset cols=”20%,*”>
<frame src=”frames/toc.html” scrolling=”yes” />
<frame src=”frames/default.html” name=”main” />

</frameset>

</html>

Compare the results in Figure 8-20 with Figure 8-19.

By default, visitors can drag around the frame borders to resize elements of the page design.
If you’d rather that didn’t occur, add the noresize attribute, which, when written as xhtml, is
the odd looking noresize=”noresize”.

When working with frames, remember and compensate for the visitors who might not be able
to see your frames-based design. The most recent versions of the major Web browsers,
Navigator and Explorer, support frames quite well, but if you have visitors with older soft­
ware, their browsers probably won’t support the entire frames tag set.

557386 Ch08.qxd 4/2/04 9:54 AM Page 187

187 �Chapter 8: Tables and Frames

It should be clear that you can aim events at a specific pane of a frames-based design by using the
name=”name” attribute to specify the name of the pane within the frame
tional pages, use target=”name” as part of the href to have the events affect the specified pane
rather than the one that you’re working within. It turns out, however, that you can specify other val­
ues within the target

Name Meaning

_blank

_self

_parent
than one window on the screen).

_top

underneath is doubtless similar to

no frames

As a fifth possible value, you can use the target attribute to point to a named window that doesn’t
exist, and thereby create a new window with that name.

Judicious use of the special target values can considerably improve your frames-based design and
offer, for example, a navigational window that sticks even while the user wanders around other areas
of the site.

If you don’t want to type the target value for each of your links, and they’re all pointing to the same

<base target=”value”>

If specific links are supposed to aim elsewhere, you are still free to override things with a target
attribute within an individual a href target=”self” attribute.

Hypertext Reference Target Values

tag. Then, on the naviga­

attribute, values that let you gain a bit more control over what’s going on. Table
8-4 summarizes the four key targets with which you should experiment.

Table 8-4: Values of the target Attribute for Greater Frame Control

Loads the document in a new, unnamed window.

Loads the document into the current window (the default).

Loads the document into the parent window (only relevant when you have more

Loads the document into the very topmost window, thus canceling all other
frames that might be in the window.

When you see a Web site that has a frames-based design and a button that says “no frames,” the code

place, a shortcut in HTML saves you oodles of typing:

tag. That’s where you’d use the

Remembering that any HTML tags that aren’t understood are ignored, what do you think
would be the result of having a nonframes browser receive something like the source code
shown just before Figure 8-20? If you guessed that it’d be a blank page, you’re right on the
mark!

As a result, the standard way that people circumvent this problem is to have a section in
their frames root page that’s wrapped with the noframes option. If the browser understands
frames, it ignores what’s in that section; if the browser doesn’t understand frames, the mater­
ial in the noframes area is all that it’s going to display.

557386 Ch08.qxd 4/2/04 9:54 AM Page 188

�

188 Creating Cool Web Sites with HTML, XHTML, and CSS

Figure 8-20: Navigational panes with an added scroll bar.

Here’s how I might modify the previous listing to include some noframes information:

<html>
<frameset cols=”20%,*”>

<frame src=”frames/toc.html” scrolling=”yes” />

<frame src=”frames/default.html” name=”main” />

</frameset>

<noframes>

<body style=”text-align:center;”>

<h2>Sorry, but our site is designed for a frames-compliant

browser</h2>

To visit us you’ll need to upgrade your Web software.

</body>

</noframes>

</html>

Displaying the preceding source with your regular Web browser, if it’s at least Internet
Explorer 3.0 or Netscape Navigator 2.0, shows you the multiple-frame design as expected.
Otherwise, you see the page that would be rendered as if you’d been sent the following HTML
sequence:

<html>

<body style=”text-align:center;”>

<h2>Sorry, but our site is designed for a frames-compliant

browser</h2>

To visit us you’ll need to upgrade your Web software.

</body>

</html>

557386 Ch08.qxd 4/2/04 9:54 AM Page 189

189 �Chapter 8: Tables and Frames

More fun with frames
Before leaving frames behind, I want to spend a little time looking at some of the cool attrib­
utes you can use to fine-tune the appearance of frames in a frameset. First and foremost, you
can get rid of the annoying grid line between frame elements by tweaking either the border
attribute or (depending on the browser) the frameborder attribute. Whichever one you use, it
goes in the frameset tag:

<frameset cols=”20%,*” border=”0”>
<frame src=”frames/toc.html” />
<frame src=”frames/default.html” name=”main” />

</frameset>

But that’s pretty similar to the other examples so far. Before you look at how that changes
things, however, I want to switch to a different example so that you can see a different, inter­
esting characteristic of frames design: how it spaces out page content. To do this, I use the
same basic frameset layout, but I point to a different page, a page that has a simple graphic
and lots of text:

<html>
<title>The Gettysburg Address</title>
<frameset cols=”50%,*” border=”5”>
<frame src=”frames/gettysburg1.html” marginheight=”0” marginwidth=”0”

/>
<frame src=”frames/gettysburg2.html” marginheight=”30” marginwidth=”30”

/>
</frameset>
</html>

The page being displayed to demonstrate the marginheight and marginwidth attributes is a
copy of Abraham Lincoln’s Gettysburg Address. The only difference between gettysburg1.
html and gettysburg2.html is the background color, by the way. The results are shown in
Figure 8-21, and pay particular attention to the results of specifying a border width of five
pixels and the dramatic differences in margin changes.

Of course, it’s worth mentioning that the margin CSS style also offers significant flexibility to
change margins if used to modify the <body> tag. But sometimes you don’t have control over
the material that’s in your frames-based design. The margin style is explored in depth later,
in Chapter 12.

� Read the entire Gettysburg Address at http://www.intuitive.com/library/

note Gettysburg.shtml. It’s time well spent.

Creating a multipane frame site isn’t too difficult. What’s tricky is to do a really good job of it:
to produce a site that makes sense and actually helps people find what they want when they
explore your site.

557386 Ch08.qxd 4/2/04 9:54 AM Page 190

�

190 Creating Cool Web Sites with HTML, XHTML, and CSS

Figure 8-21: The same Web Page with different frame margin settings.

� Be sure to take a few minutes to explore the examples included on this book’s
on the companion Web site at http://www.intuitive.com/coolsites/. Many of them
web are presented in a frames-based design.

Inline Frames
One of the coolest things that Microsoft introduced into the HTML language with its popular
Internet Explorer browser is the concept of inline frames—frame windows completely enclosed
by their surrounding window. They are now an official part of the HTML 4 specification and
can be used for more sites than in the past.

An inline frame is specified with the iframe tag in a manner quite similar to how you specify
the frame tag, as shown in the following simple example:

<iframe src=”inset-info.hml” height=”40%” width=”50%”></iframe>

In this case, I’m specifying that I want an inline frame window that’s 40 percent of the height
and 50 percent of the width of the current page and that the HTML within should be the page
inset-info.html. To use this in a more complex example, I pick up the Gettysburg Address
file again:

557386 Ch08.qxd 4/2/04 9:54 AM Page 191

191 �Chapter 8: Tables and Frames

<html>

<head><title>The Gettysburg Address</title></head>

<body style=”text-align:center;”>

<div style=”margin:25;text-align:left;”>

The Gettysburg Address, as delivered by President Abraham

Lincoln to the soldiers and general assembly at the

Gettysburg battlefield during the American Civil War,

November 19, 1863.

</div>

<p align=”center”>

<iframe src=”frames/gettysburg1.html” height=”70%” width=”75%”>

<table border=”1” cellpadding=”20”><tr>

<td align=”center”>You can’t see the information here,

which should be in a separate inline frame.

<p>

read the Gettysburg Address

</td></tr></table>

</iframe>

</p>

More information about Lincoln can be found at

Lincoln Online

</body>

</html>

The results in Internet Explorer, as shown in Figure 8-22, are quite attractive. Older browsers
that don’t understand the iframe tag ignore both parts of the <iframe> </iframe> pair and,
instead, interpret the HTML between the two tags. In this case, it says “You can’t see the
information here. . . .”

Figure 8-22: An inline frame within Internet Explorer.

557386 Ch08.qxd 4/2/04 9:54 AM Page 192

�

192 Creating Cool Web Sites with HTML, XHTML, and CSS

A number of options to the iframe tag (that mirror frame capabilities) are worth exploring,
particularly frameborder, which can have a value of 0 or 1, depending on whether you’d like
a border. The marginwidth and marginheight attributes offer finer control over the spacing
between the margin of the inline frame and the contents, and scrolling can be yes, no, or
auto, exactly what the frame tag lets you specify.

� The iframe tag is popularly used on Web sites for those license agreements you
note generally see prior to downloading software.

You have one final mechanism to explore as you further exploit inline frames on your site: You
can name the inline frame with the name attribute, and you can point references to the inline
frame with target, just as you would for a regular frames layout.

Table 8-5 summarizes the many HTML tags presented in this chapter.

Meaning

<table </table>

border=”x”

cellpadding=”x”
(in pixels).

cellspacing=”x”
(in pixels).

width=”x”

frame=”val”

rules=”val”

bordercolor=”color”
name).

bordercolorlight=”color” Produces the lighter of the two colors specified

bordercolordark=”color” Produces the darker of the two colors specified

<tr </tr>

bgcolor=”color” Specifies the background color for the entire

align=”align” Specifies alignment of cells in this row (left,
center, right).

<td </td>

Table 8-5: Summary of Tags in This Chapter

HTML Tag Close Tag

Creates a Web-based table.

Places border around table (pixels or
percentage).

Adds additional space within table cells

Adds additional space between table cells

Forces table width (in pixels or percentage).

Fine-tunes the frames within the table (see
Table 8-2).

Fine-tunes the rules of the table (see Table 8-3).

Specifies color of table border (RGB or color

(RGB or color name).

(RGB or color name).

Indicates a table row.

row (RGB or color name).

Indicates table data cell.

557386 Ch08.qxd 4/2/04 9:54 AM Page 193

�Chapter 8: Tables and Frames 193

Meaning

bgcolor=”color”
or color name).

colspan=”x”
to span.

rowspan=”x”
to span.

align=”align”

valign=”align” Specifies vertical alignment of material within the

background=”url” Specifies the background picture for the cell.

<frameset </frameset> Defines a frame-based page layout.

cols=”x” Indicates number and relative sizes of column
frames.

rows=”x” Indicates number and relative sizes of
column rows.

<frame Defines a specific frame.

src=”url”

name=”name” Indicates name of the pane (used with
=name as a part of the <a>

scrolling=”scrl”
auto.

frameborder=”x” Indicates size of border around the frame.

<noframes> </noframes> Indicates section of page displayed for users
who can’t see a frames-based design.

HTML Tag Close Tag

Indicates background color for data cell (RGB

Indicates number of columns for this data cell

Indicates number of rows for this data cell

Specifies alignment of material within the data
cell. Possible values: left, center, right.

data cell. Possible values: top, middle, bottom.

Indicates source URL for the frame.

target anchor tag).

Sets scroll bar options. Possible values: on, off,

table, tr, and td

�Summary
This chapter gave you a whirlwind tour of the remarkable formatting capa­
bilities offered by the table and frame tag sets. From the basics of the

tags, you learned about the many different attributes of
these tags and how they can work together to produce quite sophisticated
and interesting layouts. In addition, the exploration of frames offered a new
way of looking at site design, particularly in terms of navigational control.
I introduce some tricky formatting tag sets, so make sure you’ve had a
chance to digest these before you proceed. Chapter 10 introduces a bunch
of advanced design features, including changing backgrounds, Explorer-
only marquees, and lots more!

557386 Ch08.qxd 4/2/04 9:54 AM Page 194

557386 Ch09.qxd 4/2/04 9:57 AM Page 195

�9
chapterForms, User Input,

and the Common
Gateway Interface

Extending your forms with fancy
formatting

Executing searches from your page

Examining hidden variables

� In This Chapter
Introducing HTML forms

Understanding the CGI backend

This chapter provides an introduction to forms. In some ways, forms on Web
pages are just like the ubiquitous paper forms with dozens of fill-in boxes

standard in any bureaucratic organization, but they can also include some inter­
esting and helpful capabilities of their own.

I’m going to be honest with you right up front. I’ve broken this topic into two sep­
arate sections. I want to highlight that tasks such as working with forms, requesting
information from the user, and sending it to a designated program are separate
from the more challenging programming work needed on the server—receiving
the data. The communication path between the browser and server is called the
common gateway interface (CGI) and that’s something I have space to address
only briefly later in this chapter. But you can find out more by turning to a variety
of books that cover just this one topic.

For now, let’s explore the wide range of form tags and attributes and how to use
them to spice up your site with easy access to search engines, login sections, and
more.

557386 Ch09.qxd 4/2/04 9:57 AM Page 196

�

196 Creating Cool Web Sites with HTML, XHTML, and CSS

An Introduction to HTML Forms

Forms enable you to build Web pages that let users actually enter information and send it
back to the server. The forms can range from a single text box for entering a search string—
common to all the search engines on the Web—to a complex multipart worksheet that offers
powerful submission capabilities.

All forms are the same on the Web, but information can be transmitted from the Web browser
software back to the server on the other end in two ways. If you submit information from a
form and the URL that it produces includes the information you entered (like search.
cgi?p=aardvark), the form is called a method=get or get form. The alternative is that you
submit the information and the URL of the next page looks perfectly normal, with no cryptic
stuff stuck on the end. If that’s the case, you have submitted a method=post or post form.

I explore the differences between these two forms later in the chapter; for now, it’s helpful to
be aware that information on forms can be sent in two basic ways. You can start by looking
at the design and specification of forms themselves.

HTML forms are surrounded by the form tag, which is specified as <form action=”url”
method=”method”> and </form>. The url points to the remote file or application used for
digesting the information, and the method is specified as either get or post.

Inside the form tag, your Web page can contain any standard HTML formatting information,
graphics, links to other pages, and any combination of the new tags specific to forms. For the
most part, all input fields within a form are specified with the input tag and different attributes
thereof. The other two possibilities are select, for a drop-down list, and textarea, for a mul­
tiline text input box.

The various new tags let you define the many different elements of your form, as shown in
Table 9-1. The most important of the three tags is input because it’s used for so many dif­
ferent types of form elements.

Table 9-1: The form Tags and Their Attributes

Tag Close Tag Meaning

<input Specifies text or other data-input field

type=”opt” Specifies the type of input entry field

name=”name” Specifies the symbolic name of a field value

value=”value” Specifies the default content of the text field

checked=”opt” Indicates the button or box checked by default

size=”x” Indicates the number of characters in the displayed text box

maxlength=”x” Indicates the maximum number of characters accepted

<select </select> Specifies a drop-down or multiline menu

557386 Ch09.qxd 4/2/04 9:57 AM Page 197

197 �Chapter 9: Forms, User Input, and the Common Gateway Interface

Tag	 Close Tag Meaning

name=”name”	 Specifies the symbolic name of a field value

size=”x” Determines whether it’s a pop up (size=1, the default)
or a multiline scrolling region

multiple=”multiple”	 Enables users to select more than one value

<option	 </option> Indicates individual values within the select range

value=”x”	 Returns the value of the specified menu item

selected=”selected” Denotes the default value in the list

<textarea </textarea> Specifies a multiline text-entry field

name=”x”	 Specifies the symbolic name of a field value

rows=”x” Indicates the number of rows (lines) in the textarea
space

cols=”x”	 Indicates the number of columns in the textarea space

wrap=”x”	 Specifies the type of word wrap within the textarea
(virtual is typical, which shows words wrapping but
sends them as a single long line when submitted)

The sheer number of different attributes within the input tag can be confusing, but you can
understand the overloaded tag if you know that the original design for forms had all possible
input specified as variants to input. It didn’t quite work out, however, because two types of
information, drop-down lists and text area boxes, ended up spilling out as their own tags:
select and textarea.

Current Web browsers support nine different input types, each of which produces a different
type of output. Here are the user input types:

• text: The default, with size used to specify the default size of the box that is created
and maxlength used to indicate the maximum number of characters the user is allowed
to enter.

• password: A text field with the user input displayed as asterisks or bullets for security.
Again, size specifies the displayed input-box size and maxlength can be used to specify
the maximum number of characters allowed.

• checkbox: Offers a single (ungrouped) check box; the checked attribute enables you to
specify whether the box should be checked by default. The value attribute can be used
to specify the text associated with the check box.

• hidden: Enables you to send information to the program processing the user input with­
out the user actually seeing it on the display. This type is particularly useful if the page
with the HTML form is automatically generated by a CGI script.

• file: Provides a way for users to actually submit files to the server. Users can either type
the filename or click the Browse button to select the file from the PC.

• radio: Displays a toggle button; different radio buttons with the same name= value are
grouped automatically so that only one button in the group can be selected at a time.

557386 Ch09.qxd 4/2/04 9:57 AM Page 198

�

198 Creating Cool Web Sites with HTML, XHTML, and CSS

The most important input types, as you’ll see, are the following:

• submit: Produces a push button in the form that, when clicked, submits the entire form
to the remote server.

• image: Identical to submit, but instead of specifying a button, it enables you to specify a
graphical image you can click for submission.

• reset: Enables users to clear the contents of all fields in the form.

The <select> tag is a drop-down list of choices, with a </select> partner tag and <option>
tags denoting each of the items in the list. The default <option> can be denoted with
selected=”selected”. You must specify a name that uniquely identifies the overall selection
within the select tag itself. In fact, all form tags must have a name specified, and all names
must be unique within the individual form. You’ll see why when we consider how information
is sent to the server in the next section.

Here’s a simple select example that uses selected for the option attribute:

<select name=”soup”>
<option selected=”selected”>(none)</option>
<option>chicken noodle</option>
<option>seafood gumbo</option>
<option>tomato and rice</option>
</select>

You can also specify a size with the select tag, indicating how many items should be dis­
played at once, and multiple, indicating that it’s okay for users to select more than one
option. If a default value exists, add selected to the option tag (as in option selected)
to indicate that value. You can see that in the simple preceding example, the default menu
choice is (none).

The textarea tag enables you to produce a multiline input box. Like select, textarea
requires a unique name, specified with name=. The textarea tag enables you to specify the
size of the text input box with rows and cols attributes, specifying the number of lines in
the box and the width of the lines, respectively. The <textarea> tag has a closing tag,
</textarea>, as the following example shows:

<textarea name=”comment” rows=”4” cols=”60”></textarea>

This code produces a text input box that is 60 characters wide, 4 lines tall, and has the name
comment.

Asking for feedback on your site
Have you always wanted to have some mechanism for letting the visitors who come to your
site send you e-mail if they have comments? Of course, you could use a href=”mailto:your@
address”, but that’s rather dull and easily harvested by spammers. Instead, it would be much

557386 Ch09.qxd 4/2/04 9:57 AM Page 199

199 �Chapter 9: Forms, User Input, and the Common Gateway Interface

more fun to have a Web page that prompts users for some simple information and then auto­
matically sends what they specify. Figure 9-1 shows a form that prompts for the user’s name
and e-mail address and then offers a text box in which the user can enter comments.

Figure 9-1: A simple input form.

The source code for this form shows that the form’s tags aren’t too difficult to use:

<h2>What do you think of our web site?</h2>

<form action=”http://www.intuitive.com/coolsites/cgi/query.cgi”
method=”get”>

Your name:

<input type=”text” name=”yourname”>

Your e-mail address:

<input type=”text” name=”e-mail”>

Your comments:

<textarea name=”feedback” rows=”5” cols=”60”></textarea>

<input type=”submit” value=”send it in”>

</form>

Perhaps the most complex line of this form is the very first, the form tag. It specifies two
things: the method by which the information from the form is to be sent to the server program,
and the action, the actual URL of the program that receives the information from the form
(when the user clicks the Submit button).

Other than that, the name and e-mail address are both one-line text boxes, so input
type=”text” is the needed specifier, with each box being assigned a unique name by the
designer—in this case, yourname and e-mail. The multiline input box is specified with
textarea, the name of the box is specified with name=”feedback”, and I want it to be
60 characters wide by 5 lines tall, which is specified with rows=”5” and cols=”60”.

557386 Ch09.qxd 4/2/04 9:57 AM Page 200

�

200 Creating Cool Web Sites with HTML, XHTML, and CSS

The Submit button (type=”submit”) is crucial to any form: It’s the button that, when clicked,
causes the Web browser to package up and transmit the information to the program specified
in the action attribute of the form tag. All forms must have a Submit button; if you want to
have your own graphic instead of the default text button, you can use input type=”image”
and specify the URL of the graphic with an src=”url” additional attribute. Because I’ve opted
for a simple text button, I instead specify the text to be displayed on the button with the
value attribute.

Adding drop-down lists and radio buttons
The next generation of this form includes more complex form elements, most notably a family
of radio buttons and a drop-down list using the select tag. Figure 9-2 shows how the form
looks on the screen.

Figure 9-2: A more complex form that incorporates radio buttons and a drop-down list.

Notice that the drop-down list shows you only a single value: Clicking the displayed value
brings up all the possible choices; then moving the cursor enables the visitor to select the
specific value that’s best.

Here’s what I’ve added to the form HTML you’ve already seen:

You found our site from:

<select name=”foundus”>

<option selected=”selected”>(choose one)</option>

<option>Yahoo</option>

<option>Google</option>

557386 Ch09.qxd 4/2/04 9:57 AM Page 201

201 �Chapter 9: Forms, User Input, and the Common Gateway Interface

<option>MSN</option>
<option>other...</option>
</select>

You are:
<input type=”radio” name=”age” value=”kid” /> under 18
<input type=”radio” name=”age” value=”genx” />18-30
<input type=”radio” name=”age” value=”30something” />30-40
<input type=”radio” name=”age” value=”old” />over 40

Only two new areas are added. The select tag builds the drop-down list, with each menu
value specified as an option, and the set of four radio buttons is specified with input
type=”radio”. The first drop-down list item is the default, which is indicated with the addi­
tion of the selected=”selected” attribute:

<option selected=”selected”>(choose one)</option>

Pay careful attention to the radio button set. Notice that all buttons in the set share the same
name value. That’s how they become a family of radio buttons, ensuring that only one of them
can be selected out of the set. If they had different names, you could select both the Under
18 and Over 40 categories, for example.

� To tie radio buttons together, even if they’re in different areas of the page, just
tip ensure that they have exactly the same name attribute.

A secret concerning radio buttons: The actual value they send back to the server, if checked,
is specified with the value attribute. The actual text displayed next to a radio button is irrele­
vant to the program on the server: The only thing it knows about what’s selected is that the
specified family (by name) had a radio button selected with the specified value. If you choose
18–30, the value that would be sent back to the server would be age=genx.

You recall that I said each input type in a form requires a name? Now you can see the reason
for that: Each form element is packaged up and sent back to the server as a name=value pair.
The drop-down list, for example, might be foundus=”MSN”, and the username, when typed,
might be sent back to the server as yourname=”Kiana”. If you neglected to name an input,
that element is sometimes not even displayed in the browser because the specified informa­
tion can’t be sent back to the server.

Tweaking the select element
To have more than one menu item displayed at a time with a select box, simply change the
select tag by adding the attribute size. With this attribute, I can specify how many choices
should be visible at the same time. For example, size=”4” produces a scrolling list of options,
with four visible at a time.

557386 Ch09.qxd 4/2/04 9:57 AM Page 202

�

202 Creating Cool Web Sites with HTML, XHTML, and CSS

If you want to let the visitor to your site have the possibility of choosing multiple values from
the selection box, you can add a second attribute: multiple. A list such as the following
would display a three-line–high select box with ten different values in it:

<h2>Pick your favorite color:</h2>

<select size=”3” multiple=”multiple” name=”favorites”>

<option>black</option>

<option>blue</option>

<option>brown</option>

<option>gold</option>

<option>green</option>

<option>orange</option>

<option>red</option>

<option>white</option>

<option>yellow</option>

<option>a color not otherwise specified</option>

</select>

<div style=’font-size:75%;color:#666;’>Use control+click

to make multiple selections</div>

Figure 9-3 shows just this form element on a page with two colors selected: the first by click­
ing, the second by holding down the Ctrl key and clicking.

Figure 9-3: Multiple select options in a small scrolling window.

You could select any number of these colors as your favorites or, if you didn’t select any,
because no default is specified, the default value for favorites would be none.

The other unusual tag you can include in a form is textarea, which enables you to create
large boxes in which users can type their information. It has several options, starting with
the mandatory name attribute that denotes the symbolic name of the field. You can specify

557386 Ch09.qxd 4/2/04 9:57 AM Page 203

203 �Chapter 9: Forms, User Input, and the Common Gateway Interface

rows and cols to indicate the size of the resulting text field with units in characters. The wrap
attribute specifies that the text the user enters wraps automatically when the user reaches
the right margin. The <textarea> tag is a paired tag, partnered by </textarea>. Any text
between the two tags is displayed as the default information in the text box.

You saw this demonstrated with the e-mail feedback form earlier, but now I create a more
complex form to show you how things can work together. As it turns out, I am building a
form for a Web site I’m working on, so I’ll step through this form design to show how to utilize
a textarea field, as well as a number of other elements:

<h2>Contact The School</h2>

<form method=”get”

action=”http://www.intuitive.com/coolsites/cgi/query.cgi”>

Name: <input type=”text” name=”fullname” />

Address: <input type=”text” name=”address” size=”60” />

Phone: <input type=”text” name=”phone” />

Email: <input type=”text” name=”email” />

Your child is in

<select name=”child1”>

<option selected>(please choose one)</option>

<option>pre-kindergarten</option><option>Kindergarten</option>

<option>First</option><option>Second</option><option>Third</option>

<option>Fourth</option><option>Fifth</option><option>Sixth</option>

<option>Seventh</option><option>Eighth</option><option>Ninth

</option><option>Tenth</option><option>Eleventh</option>

<option>Twelfth</option><option>(not applicable)</option>

</select>

<input type=”checkbox” name=”sendInfo”> Please send

me an information packet on the school.

<input type=”checkbox” name=”thisYear”> I’m

interested in learning about enrollment opportunities

for this school year.

<input type=”submit” value=”Submit Query” />

</form>

Figure 9-4 shows the preceding form in a Web browser.

This is a rudimentary form, but you can do quite a bit to jazz it up. You’ll learn how to do just
that in the next section.

557386 Ch09.qxd 4/2/04 9:57 AM Page 204

�

204 Creating Cool Web Sites with HTML, XHTML, and CSS

Figure 9-4: The school contact form showing several tags and attributes in action.

Fancy Form Formatting
The forms shown so far are reasonably attractive, but when you start combining form elements
with other formatting tags that you’ve already learned, you can produce really beautiful pages
requesting user input. In this section, I show you a couple of examples.

Probably the most common strategy for creating attractive forms is to drop the various fields
into a table. This enables you to line up all the prompts and input boxes quite easily. To spruce
up the school contact form, I do that as appropriate and also add a div block in order to add
a CSS border.

Remember, the goal of any good form is to encourage people to fill out the information prop­
erly. Usability is an important part of form design.

� Chapter 12 talks about CSS border options in great detail, and Chapter 15 gives
x-ref you more information about usability issues.

<html> <head>
<title>Contact Us</title>
</head><body>

<h2>Contact The School</h2>

<form method=”get”

action=”http://www.intuitive.com/coolsites/cgi/query.cgi”>

<p>

Please fill out the form as completely as possible so we can

557386 Ch09.qxd 4/2/04 9:57 AM Page 205

205 �Chapter 9: Forms, User Input, and the Common Gateway Interface

best answer your query. If you’d like our catalog and other

information about the school, don’t forget to check the “send

information” option.

</p>

<center>

<table border=”0”>

<tr>

<td>Name:</td><td><input type=”text” name=”fullname” /></td>

</tr><tr>

<td>Address:</td>

<td><input type=”text” name=”address” size=”60” /></td>

</tr><tr>

<td>Phone:</td><td><input type=”text” name=”phone” /></td>

</tr><tr>

<td>Email:</td><td><input type=”text” name=”email” /></td>

</tr><tr>

<td colspan=”2”>

This school year, your child is in:

<select name=”child1”>

<option selected>(please choose one)</option>
<option>pre-kindergarten</option><option>Kindergarten</option>
<option>First</option><option>Second</option><option>Third</option>
<option>Fourth</option><option>Fifth</option><option>Sixth</option>
<option>Seventh</option><option>Eighth</option><option>Ninth
</option><option>Tenth</option><option>Eleventh</option>
<option>Twelfth</option><option>(not applicable)</option>
</select>

<div style=”border: 3px groove #ccc;padding:3px;margin-top: 5px;”>

<input type=”checkbox” name=”sendInfo”> Please send

me an information packet on the school.

<input type=”checkbox” name=”thisYear”> I’m

interested in learning about enrollment opportunities

for this school year.

</div>

</td>

</tr><tr><td colspan=”2” align=”center”>

<input type=”submit” value=”submit request” />

</td></tr>

</table>

</center>

</form>

</body>

</html>

This is a pretty long example, but if you compare it to Figure 9-5, you see that it’s a great
improvement over the earlier form.

557386 Ch09.qxd 4/2/04 9:57 AM Page 206

�

206 Creating Cool Web Sites with HTML, XHTML, and CSS

Figure 9-5: The improved school contact form using a table structure.

Easy Searching from Your Page
Now that you’re becoming an absolute forms development genius, take a look at how you can
exploit forms on other sites to actually duplicate their input on your own page. For example,
perhaps you’d like to have a Google search box on your own page to let people who visit
your site easily flip over to Google to find something.

Popping over to the Google home page, you can perform a View Source and see, in the veri­
table thicket of HTML, a rather convoluted sequence of lines that defines Google’s simple
search form. By trimming it down to just the entries needed for the search itself, you end up
with the following snippet:

<form action=”http://www.google.com/search” name=f>
<input type=hidden name=hl value=en>
<input type=hidden name=ie value=”ISO-8859-1”>
<input maxLength=256 size=55 name=q value=””>

<input type=submit value=”Google Search” name=btnG>
<input type=submit value=”I’m Feeling Lucky” name=btnI>

</form>

This is the code for the actual search box shown on the top of the Google home page. Because
I’ve pulled the code out, however, it’s easy for me to include this sequence of commands on
my own Web page, as you can see in Figure 9-6.

557386 Ch09.qxd 4/2/04 9:57 AM Page 207

207 �Chapter 9: Forms, User Input, and the Common Gateway Interface

Figure 9-6: My personal Google search.

Of course, it would be nice to rewrite it as proper xhtml, so here’s the very same code, prop­
erly written:

<form action=”http://www.google.com/search” name=”f”>

<input type=”hidden” name=”hl” value=”en” />

<input type=”hidden” name=”ie” value=”ISO-8859-1” />

<input maxlength=”256” size=”55” name=”q” value=”” />

<input type=”submit” value=”Google Search” name=”btnG” />

<input type=”submit” value=”I’m Feeling Lucky” name=”btnI” />

</form>

If you’re willing to delve into JavaScript for a few lines of code, you can make a couple of
modifications to this search form that can turn it into a far cooler addition to your site! First,
eliminate the I’m Feeling Lucky button and replace it with two radio buttons: my site only
or all the web. In addition, the Submit button is shrunk down a bit with some savvy CSS,
and the onclick event (which is triggered when someone clicks the submit button) is tied to
a JavaScript function:

<form action=”http://www.google.com/search” name=”searchbox”
method=”get”>

<input type=”hidden” name=”hl” value=”en” />

<input type=”hidden” name=”ie” value=”ISO-8859-1” />

<input maxlength=”256” size=”55” name=”q” value=”” />

<input type=”radio” name=”scope” value=”me” checked /> my

site only, or

<input type=”radio” name=”scope” value=”all” /> all

the web

<input type=”submit” value=”search!” name=”btnG”

style=”font-size:75%;” onclick=”tweakValue();” />

</form>

The next step is to write the JavaScript tweakValue function, which tests the value of the radio
button and appends the special Google search constraint +site:domain to limit the search
results to pages from the domain specified only:

557386 Ch09.qxd 4/2/04 9:57 AM Page 208

�

�

208 Creating Cool Web Sites with HTML, XHTML, and CSS

<script language=”JavaScript”>

function tweakValue()

{

if (document.searchbox.scope[0].checked)
document.searchbox.q.value += “ +site:intuitive.com”;

}

</script>

Without too much foreshadowing of Chapter 11, where JavaScript is explored in depth, this
function tests to see whether the first of the radio button values is checked and, if so, it
appends the specified search constraint to the search pattern before handing it off to Google.

� This JavaScript script block is properly placed in the head section of the page, not
tip the body.

The form itself is quite simple when viewed in a browser, as shown in Figure 9-7.

Figure 9-7: My personal Google search box.

Another Look at Hidden Variables
Now that you’ve learned quite a bit about forms, you can peek at how the popular online
game Etymologic works.

tip Try the game for yourself at http://www.Etymologic.com/

The game itself is quite simple: You’re asked a question and upon answering it you’re asked
another, until you have tried to answer 10 different questions. At that point, the game figures
out how many you answered correctly and gives you a final score.

557386 Ch09.qxd 4/2/04 9:57 AM Page 209

209 �Chapter 9: Forms, User Input, and the Common Gateway Interface

To make it work properly, however, the game program needs to know how many questions
have been asked, what specific questions have been asked, and the exact question being
asked at any point in the game sequence.

Here’s how the HTML looks—well, the part that’s relevant to the form—when I’m halfway
through a game:

<form action=”http://www.etymologic.com/etymologic.cgi”
method=”post”>

<input type=”hidden” name=”total_questions” value=”184” />

<input type=”hidden” name=”current_question” value=”48” />

<input type=”hidden” name=”asked” value=”7” />

<input type=”hidden” name=”right” value=”5” />

<input type=”hidden” name=”ingame” value=”10” />

<input type=”hidden” name=”already_asked”

value=”95 30 79 53 60 165 114 48” />

<input type=”hidden” name=”phrase” value=”ole” />

<div style=”font-family: arial,tekton,helvetica” />

Where does the Spanish bullfight expression Ole!

originate?

</div>

<table border=”0”>

<tr><td valign=”top”>

<input type=”radio” name=”answer” value=”t” /></td>

<td style=”font-family: arial,tekton,helvetica”>

From the arabic “Allah” (God!)

<input type=”hidden” name=”correct”

value=”from the Arabic ‘allah’ (God!)” />

</td>

</tr><tr>

<td valign=”top”>

<input type=”radio” name=”answer” value=”f” /></td>

<td style=”font-family: arial,tekton,helvetica”>

From the Spanish “Hola!” (Hello!)

</td>

</tr><tr>

<td valign=”top”>

<input type=”radio” name=”answer” value=”f” /></td>

<td style=”font-family: arial,tekton,helvetica”>

From the Spanish “Hoja!” (Blade!)</td>

</tr>

</table>

<input type=”submit”

value=”please indicate your answer then click here” />

</form>

557386 Ch09.qxd 4/2/04 9:57 AM Page 210

�

210 Creating Cool Web Sites with HTML, XHTML, and CSS

Notice that almost all the variables are type=”hidden”: There’s a lot going on behind the
scenes on this Web site!

Also, if you look closely at the values for the radio buttons, you see that you can View Source
and cheat: If value=”f”, then it’s the wrong answer. If value=”t”, it’s correct.

How CGI Scripts Work
To understand how the common gateway interface works, take a brief step back to the most
basic of Web concepts. All Web browsers talk with Web servers using a language (well, proto­
col, to be exact) called HTTP, the Hypertext Transfer Protocol. At its simplest, HTTP defines
the interaction between the browser and server, which can be boiled down to “I want” from
the browser and “here is” or “don’t have” from the server.

Forget all the fancy stuff from the last eight chapters. The simple I want/here is dialog is what
the Web and, indeed, the Internet are really all about. Your Mac or PC is asking a server some­
where on the Net for a particular file, picture, resource, or what-have-you, and the Net is
responding either “Here it is!” or “I don’t have it!” In fact, when you have an HTML document
that includes graphics, each graphic is requested from the server through its own dialog of a
similar nature. That’s why you see the source to some pages before you get all the graphics,
because the back and forth looks like this:

PC: I want “test.html”
Server: here is “test.html”
PC: oh, now I want “opening.gif”
Server: here is “opening.gif”
PC: and I want “photo.jpeg”
Server: here is “photo.jpeg”
PC: and I want “logo.gif”
Server: here is “logo.gif”
and finally I want “lastpict.gif”
I don’t have “lastpict.gif” Error 404: file not found

Although this may seem tedious—and it is—it’s also a great design because it’s so easily
extended into other areas. In particular, what happens if instead of the “I want” request, the
browser asked, “Please run the following program and send me the output”?

That capability is what programming for Web servers is built around, and the environment
on the server within which you communicate with your programs is the Common Gateway
Interface. Working within the CGI environment, in the programming language of your choice,
you can replace any Web page or graphic with a program that performs calculations, looks
up information in a database, checks the weather, reads a remote sensor, or whatever you’d
like. The program then returns the results of that action to the user as Web data.

557386 Ch09.qxd 4/2/04 9:57 AM Page 211

211 �Chapter 9: Forms, User Input, and the Common Gateway Interface

On many servers you can recognize a CGI script by the .cgi filename suffix that occurs within
the URL of the referenced page, but any file or graphic can actually be a program, the output
of which is sent to the user. The best news is that the use of CGI scripts can be invisible to the
Web visitor. Visitors just wander through your site and see page after page. If some of the
pages are the result of running scripts, the visitors may never know.

The world’s simplest CGI example
Let’s dive right in and have a look at a CGI script that might replace a static Web page with
something more dynamic: hello.cgi, written as a Perl programming language script:

#!/usr/bin/perl
print “Content-type: text/html\n\n”;
print “<html><body>\n”;
print “<h1>Hi Mystery Web Visitor</h1>\n”;
print “</body></html>\n”;
exit 0;

The print command outputs whatever you specify to standard output, which, in this case,
because it’s being run as a CGI script, is sent through the Web server to the remote Web
browser. The \n sequences are translated in carriage returns, so the \n\n at the end of the
first print statement produces a blank line after the Content-type: text/html sequence.

As you can see, the program hello.cgi is required to return an actual HTML document.
This is done so that everything remains transparent to the user: The user requests a Web
document, and it comes back all neatly formatted and ready to be displayed by the browser.

�
The first responsibility of any CGI program is to return a valid HTML document to the
browser. Any additional capabilities must be built on top of that basic requirement, note and if you forget, you’ll get various scary error messages when you try to test things
yourself.

Notice that the first output line of any CGI script, as shown in this example, must identify the
particular type of information being sent back to the browser. In this case, it’s HTML text, and
the formal description for that is Content-type: text/html. That line must be followed in
the output by a blank line (which you get by having two \n sequences) and then, finally, the
actual HTML code can appear. This first section is called the preamble, and I like to think of it
as the envelope within which the Web page is sent.

Functionally, this program output is identical to a static Web page that contains:

<html><body>
<h1>Hi Mystery Web Visitor</h1>
</body></html>

557386 Ch09.qxd 4/2/04 9:57 AM Page 212

�

212 Creating Cool Web Sites with HTML, XHTML, and CSS

So why go through the bother? Because these scripts can output virtually anything your
heart desires. Let’s look at a more sophisticated example. This one uses the Perl localtime
function to return the current date and time on the server:

#!/usr/bin/perl

print “Content-type: text/html\n\n”;

print “<html><head><title>LocalTime</title>\n”;

print “</head><body style=’text-align:center’>\n”;

print “<h2>Oh Mystery Web Visitor, the time is... </h2>\n”;

first, get the values from the localtime function

($sec,$min,$hr,$mday,$mon,$year,$wday) = localtime(time);

now let’s make them pretty, suitable for display

$today = (Sun,Mon,Tues,Wed,Thurs,Fri,Sat)[$wday];

$thismon = (Jan,Feb,March,April,May,June,July,

Aug,Sep,Oct,Nov,Dec)[$mon];

$year += 1900;

print “$today, $thismon $mday, $year at precisely $hr:$min:$sec\n”;

print “</body></html>\n”;

exit 0;

Figure 9-8 shows how that script would look to a user visiting my Web site and requesting
http://www.intuitive.com/coolsites/cgi/localtime.cgi—try it yourself, too!

Figure 9-8: The local time on the server via a CGI script.

You can do a lot with programs that output content based on the environment at the moment
the page is requested. For example, the localtime function returns the current date as a
series of individual values, so it takes remarkably little work to get the hour of the day and
have a CGI program that produces different output during daylight and nighttime hours.

557386 Ch09.qxd 4/2/04 9:57 AM Page 213

213 �Chapter 9: Forms, User Input, and the Common Gateway Interface

Although this little script is useful, CGI offers a considerably richer environment for develop­
ing sophisticated sites. It’s an environment in which you can make decisions about what kind
of HTML to output based on the browser that’s in use, where the user is located, and much
more. And we haven’t even talked about receiving information from the user yet!

Sending information via the environment
Every HTTP transaction (the I want/here is pair) actually includes a collection of environ­
mental characteristics that is sent along and is accessible by the CGI program. I like to think
of it as a briefcase chock full of information about the user. What might surprise you is that
all the information is sent on every interaction between the browser and server, even if it’s just
a request for a graphic or static Web page.

To see all the environment variables, I’ve created another CGI script that uses a slick Perl
looping mechanism to show the environment given to the script at runtime:

#!/usr/bin/perl

print “Content-type: text/html\n\n”;
print “<html><head><title>Your CGI Environment</title>\n”;
print “<style type=’text/css’>td { font-size: 80% }</style>\n”;
print “</head><body>\n”;
print “<table border=’0’ cellspacing=’4’ width=’100%’>\n”;

print “<tr><td align=’right’ valign=’top’>$a</td><td>$b</td></tr>\n”
while ($a,$b) = each %ENV;

print “</table>\n”;
print “</body></html>\n”;

exit 0;

The results for Internet Explorer are as shown in Figure 9-9.

Notice particularly the variable HTTP_USER_AGENT. This identifies the specific browser in
use. In this case, you can also see a bit of a trick that Microsoft’s Internet Explorer performs:
It identifies itself as Mozilla (a code name for Netscape) 4.0, but then correctly identifies itself
in the parentheses as Internet Explorer 6.0.

If I request the very same Web CGI script from a different Web browser, the output
note is very different. This suggests, correctly, that CGI scripts can ascertain what kind � of browser you’re running, among other things.

557386 Ch09.qxd 4/2/04 9:57 AM Page 214

�

214 Creating Cool Web Sites with HTML, XHTML, and CSS

Figure 9-9: My CGI environment for writing scripts in Internet Explorer.

Sending and reading data
Another variable in the environment is very important for interactive pages: QUERY_STRING.
The Google search form explored earlier in this chapter is a great example of just this type of
interaction.

As I touched on earlier, you have two ways to transfer information from the browser to the
server, based on the setting of the method parameter in the form tag. You’ll recall the two pos­
sible values: get and post. If the form specifies a method=get, then the information entered
by the user, in name=value pairs, is available to the CGI program as the environment variable
value query_string.

Go to Yahoo! and enter a word or phrase for it to seek. When you get the search results, you
see a page of matches as you’d expect. Most important, however, you also see a slightly
weird URL. If I search for disney world, the URL shown in the Address box of the browser is
http://search.yahoo.com/bin/search?p=disney+world.

This URL is consistent with what I explained about URLs way back in the beginning of the
book, but there’s a new twist. The ? indicates information to be sent to the remote system,
and the p=disney+world is the value sent to the server from the client. For the CGI program
on the server specified in the action attribute of the form tag, the QUERY_STRING variable
contains the exact information specified after the question mark.

557386 Ch09.qxd 4/2/04 9:57 AM Page 215

215 �Chapter 9: Forms, User Input, and the Common Gateway Interface

You can do some neat things now that you know about this QUERY_STRING URL format.
Perhaps you’re working on a Web site that’s all about the films of Alfred Hitchcock. You can
add a link to your Web page that automatically searches Yahoo! for sites related to the direc­
tor. You don’t require the user to enter anything:

Information on Alfred Hitchcock

You can see that spaces were transformed into + signs so that they are transmitted safely to
the CGI script. A variety of other characters are also specially encoded so that they can be
transmitted safely too, as detailed in Table 9-2.

Table 9-2: Common Character Encoding

Code Real Meaning Code Real Meaning Code Real Meaning

%21 ! %26 & %2F /

%22 “ %27 ‘ %3A :

%23 # %28 (%3D =

%24 $ %29) %3F ?

%25 % %2B + %5C \

Because you know that special characters are wrapped up for transmission by converting
them into escape sequences, it shouldn’t surprise you that the first step a script must take
after receiving data from the remote server is to decode the given information. Fortunately,
Perl is ideal for this sort of task, and this translation can be easily accomplished by first trans­
lating all the plus (+) signs into spaces and all percent (%) sign hexadecimal sequences into
their equivalent character values.

Receiving information from forms
The CGI behind forms is more complex because the very environment you work with when
processing the form depends heavily on the operating system used on the server. Scripting
a gateway (hence, the Common Gateway Interface, or CGI, moniker for these scripts) can be
quite different on a Unix system than it is on a Windows machine or a Macintosh.

The biggest difference involves what programming languages and tools are available. On a
Unix system, it’s quite simple to create a shell script, Perl script, or even a C or C++ program
or two to process and act on input. Windows machines rely on either a DOS command tem­
plate or what’s known informally as a jacket script. Fortunately, the Perl-interpreted program­
ming language is also available on PCs and Macs, and that’s what I recommend you use for
CGI programming—as I have throughout this chapter—although a number of Windows-based
CGI scripts are written in C and Visual Basic.

557386 Ch09.qxd 4/2/04 9:57 AM Page 216

�

216 Creating Cool Web Sites with HTML, XHTML, and CSS

�
The Perl home page is at http://www.perl.com, and there’s a terrific Perl FAQ at
ftp://ftp.cis.ufl.edu/pub/perl/faq/FAQ. You can also get a free Perl inter-note preter for Windows at http://www.ActiveState.com/ or for the Mac at http://
www.macperl.com/.

Learning more about CGI programming
Don’t be worried if this CGI stuff seems complex. It is. The good news is that many of the
larger Web-page hosting companies offer a set of useful CGI scripts that you can use without
having to do any custom programming. Ask your ISP before you spend hours trying to write
your own scripts.

In case it isn’t obvious, I really enjoy working with CGI programs (indeed, the CGI program
that powers the Etymologic.com Web site you’ve already seen is over 1,200 lines of C code)
and find it to be one of the most enjoyable areas of the Web to explore. If you’re intrigued
by this, too, please consider getting a book on CGI programming and—after you’re finished
with this book, of course—go through it to learn how to make your sites maximally interac­
tive. It’s fun!

�
Security is a critical issue when building your own CGI programs. One smart trick is
to set the taint flag on your Perl CGI scripts, letting the Perl interpreter help ensure caution that things stay safe. There’s an excellent FAQ online at http://gunther.web66.
com/FAQS/taintmode.html.

Meaning

<form </form>

action=”url”

method=”method” get or post)

<input

type=”opt” Indicates the type of <input>
text, password, checkbox, hidden, file, radio,
submit, reset, image

name=”name” Specifies the symbolic name of a field value

value=”value” Indicates default content of text field

checked=”opt” Indicates a button or box checked by default

size=”x” Specifies the number of characters in a text field

maxlength=”x” Specifies the maximum number of characters accepted

<select </select> Indicates grouped check boxes

name=”name” Specifies the symbolic name of a field value

Table 9-3: HTML Tags Covered in This Chapter

HTML Tag Close Tag

Indicates an interactive HTML form

Indicates a CGI program on a server that receives data

Indicates how data is transmitted to server (

Indicates text or other data-input field

entry field: Possible values,

557386 Ch09.qxd 4/2/04 9:57 AM Page 217

�Chapter 9: Forms, User Input, and the Common Gateway Interface 217

Meaning

size=”x” Indicates the number of items to show at once
(default = 1)

multiple= Allows multiple items to be selected
”multiple”

<option </option> Indicates a specific choice within a <select> range

value=”value”

<textarea </textarea>

name=”name” Specifies the symbolic name of a field value

rows=”x” Specifies the number of rows in a textarea box

cols=”x” Specifies the number of columns (characters) on a line
within the box

HTML Tag Close Tag

Determines the resultant value of this menu choice

Specifies a multiline text-entry field

textarea tag, and

�Summary
In this chapter, you learned quite a bit about how forms work on Web pages,
including how to duplicate Yahoo! or Google search forms on your own site.
Even better, you saw a way that you can utilize Google to offer searches that
look through only the content on your site. In addition, nuances of form lay­
out were introduced, and different ways to work with the
you explored drop-down lists.

557386 Ch09.qxd 4/2/04 9:57 AM Page 218

557386 Ch10.qxd 4/2/04 9:57 AM Page 219

�10
Advanced chapter

Form Design

Examining the button input type

Labeling to organize user focus

Examining accesskey attributes

Using disabled and read-only elements

� In This Chapter

Learning to divide forms into fieldsets

Facilitating input with the Tab key

Because forms are such an integral part of complex site design and because,
if you design them well, they can really help your users have a good experi­

ence on your site, this chapter presents additional ways to create complex and
attractive forms. Just about everything covered in this chapter is HTML 4.0 or
more recent, so if you have an older browser, don’t be surprised if some of these
features don’t work properly.

It’s one of the basic challenges for Web site designers: If you’re going to use all
the most recent HTML tags and capabilities, you must also have a backup plan
if some of them do not work properly. What happens when someone with a PDA
Web browser visits your new site and can’t see frames-based design? What hap­
pens when your form is designed to exploit fieldset tags, but your third-world
visitor doesn’t have a computer that can run a modern Web browser? The key is
to know your target audience, and then plan for graceful degradation.

If you’re building a Web site for your company’s internal use—an Intranet in the
jargon—and by corporate decree everyone must run Internet Explorer 6.0, you
can safely design for that browser. If you’re building a Web site that’s an informa­
tional source for Kenyan safari venues, however, or a site about hitchhiking through
the Middle East, the chances of your having visitors with slower connections and
older software go up significantly. It is well worth testing with those configurations
before you say that you’re done with your design.

557386 Ch10.qxd 4/2/04 9:57 AM Page 220

�

�

220 Creating Cool Web Sites with HTML, XHTML, and CSS

Graceful degradation just means that if you build a site for the most modern browser systems,
you also test to ensure that your site is (at least) functional with older, less capable browsers.
Try not to penalize users for having out-of-date software. Think of it as an effort to give users
with more modern browsers a better experience, while still using basic HTML as the baseline
for your site’s functionality.

With this in mind, the following sections look at tags so modern—so new—that you’ll have a
hard time finding Web sites that use them even today (although they should be)!

The button Input Type
In Chapter 9, you learned about the overloaded input tag and its many possible type val­
ues, including the following:

• text

• checkbox

• radio

• password

• submit

• reset

Another value that I didn’t talk about in that chapter is type=”button”. The button type is
intended to be a general-purpose button on a Web page, perhaps not even associated with a
specific script, often used for JavaScript scripts tied to the onclick event.

x-ref JavaScript is explored in Chapter 11.

Look at this pretty interesting example:

<input type=”button” value=”Open window”
onclick=’miniWindow=window.open(“”,”mini”,
“resizable=no,width=300,height=250”)’>

Learn About Starbucks

<input type=”button” value=”Close window”

onclick=”miniWindow.close()”>

Figure 10-1 shows what appears when this snippet is first loaded into the browser: two buttons
and a small hypertext reference between them.

557386 Ch10.qxd 4/2/04 9:57 AM Page 221

221 �Chapter 10: Advanced Form Design

Figure 10-1: Open window and Close window buttons and a Learn About Starbucks hypertext reference appear.

Click the button labeled Open Window and a new window pops up on the screen, 300 pixels
by 250 pixels, called mini. The window object is defined in the JavaScript environment with
the name miniWindow. That’s all defined in the onclick event on the second line. Click on
the hypertext reference Learn about Starbucks, and the contents of the file pop-up.html
are loaded into the new navigational window (that’s what the target=”mini” does). Figure
10-2 shows how this looks on the screen.

Figure 10-2: Pop-up navigational controls implemented with JavaScript and an empty HTML form.

Click the second button, Close Window, and the separate window closes, vanishing entirely
from the screen. This is done with a request for the browser to run the close() function for
the miniWindow object.

These input buttons need not be part of a form, even though the input tag is defined to have
meaning only within the context of the <form> </form> pair. Internet Explorer is flexible, but
Netscape is picky; it wants to see form tags even if they don’t specify any attributes. In other
words, if you list the preceding code, but you don’t have <form> before it and </form> after it,
it won’t work in some browsers. Internet Explorer doesn’t care, and the preceding code snip­
pet, typed exactly as written, works fine.

557386 Ch10.qxd 4/2/04 9:57 AM Page 222

�

222 Creating Cool Web Sites with HTML, XHTML, and CSS

� A button tag (that is, <button onclick=...>) offers many of the same capabili­
note ties as input type=”button”, but it’s much less widely supported.

Although this example might seem like a simple use of an input button, this feature can, in
fact, be quite a powerful mechanism for helping people explore a very complex Web site. It
can, for example, pop up a window that contains a cycling sequence of advertisements or
even function as part of a game.

Rather than consider ads that appear when a page loads, consider interstitials, or advertise­
ments that pop up and play for ten or fifteen seconds when you request to move to another
page. After the ad is finished, the small window vanishes and the next page is displayed.
Instead of having the window opener tied to a button event, it’s tied to the loading of the win­
dow by using onLoad within the body tag (see Chapter 11 for more details on JavaScript and
event-handling code).

The following code demonstrates one more neat button trick that I use with pop-up windows:

<input type=”button” value=”CloseMe” onclick=”window.close()”>

If a user clicks the CloseMe button, the window vanishes. Imagine having a new window pop
up for user feedback; if a user cancels the message, the window.close() JavaScript snippet
closes the window and enables the user to focus on the main Web page.

Using Labels to Organize User Focus
Although Web-based form tags are quite flexible, some definitely needed improvement. Up
until now, the text adjacent to an input element on a Web page was dead, useless text. A
small improvement causes this text to actually be associated with the element itself so that it
matches the behavior of Windows or Mac dialog boxes. In a typical application dialog box, if
you click the description adjacent to a radio button, you have effectively also clicked on the
button itself. The way to accomplish this in a Web form is to use the label attribute. To see
how things have changed with the advent of the new label element, note that clicking Taxi
in the following example causes the box to be checked:

3 Call for a Taxi

This association of text with a specific form element is exactly what the new label element
accomplishes.

You can work with labels in your HTML form in two ways. You can aim labels at specific form
elements by using the id attribute within a form element, or you can wrap a form element
within a <label> </label> pair.

557386 Ch10.qxd 4/2/04 9:57 AM Page 223

223 �Chapter 10: Advanced Form Design

Here’s an example of how aiming a label might look:

<form method=”post” action=”someURL”>

<input type=”checkbox” name=”taxi” id=”cab”>

<label for=”cab”>Call for a Taxi</label>

<input type=”submit” value=”submit”>

</form>

On a modern HTML 4.0-compliant browser, this code lets you click anywhere in the phrase
Call for a Taxi to check or uncheck the associated check box. Of course, you can still
click the check box itself to change the value.

� This functionality is exactly what graceful degradation is all about. If your browser
note doesn’t support the label tag, you never realize what you’re missing, and it won’t

adversely impact your visit.

The following label example is slightly more complex because it pours the check boxes into
a table:

<form method=”post” action=”someURL”>

<div style=’margin-left: 3em;margin-right:3em;’>

The following is a demonstration of the label tag and

how it can be used to increase your form usability.

Click on the words adjacent to the checkbox to see what

happens!

<div style=’margin-left: 3em;margin-right:3em;’>

<table border=”0” cellpadding=”3”>

<tr>

<td align=”right”>

<label for=”willcall”>I’ll call tomorrow</label>

</td>

<td>

<input type=”checkbox” name=”call” id=”willcall”>

</td>

</tr><tr>

<td align=”right”>

<label for=”willup”>I’d like to upgrade

my membership</label>

</td><td>

<input type=”checkbox” name=”upgrade” id=”willup”>

</td></tr>

</table>

</div></div>

</form>

In this example, as you can see in Figure 10-3, two check boxes are presented with the asso­
ciated text, I’ll call tomorrow and I’d like to upgrade my membership. The figure
also shows the latter box checked, but notice where the cursor is located.

557386 Ch10.qxd 4/2/04 9:57 AM Page 224

�

224 Creating Cool Web Sites with HTML, XHTML, and CSS

Figure 10-3: By including the label tag, clicking the text next to the check box causes the box to be checked.

The second way to use the label tag as a wrapper is shown in the following code:

<form method=”post” action=”someurl”>
<label>

<input type=”radio” name=”gender” value=”male”>
male

</label>
<label>

<input type=”radio” name=”gender” value=”female”>
female

</label>

</form>

� As of this writing, wrapper-style labels don’t work properly in any of the Web
note browsers I tested.

Dividing Forms into Fieldsets
The combination of the fieldset and legend elements enables you to create a document
that is not only more attractive and more logically presented but also more accessible for
people with disabilities. The tags’ intent is to allow grouping of thematically related controls
within a form.

First, here’s a fancy but straightforward form that is actually organized into multiple logical
areas without any fieldsets:

557386 Ch10.qxd 4/2/04 9:57 AM Page 225

225 �Chapter 10: Advanced Form Design

<html>

<head>

<title>Advanced Forms</title>

<style type=’text/css’>

.title { background: #9cc; font-size:150%;

font-weight: bold; }

.head { background: #9cc; font-size: 125% }

.submit { font-size: 75%; background: #9cc; }

</style>

</head><body>

<form method=”get” action=”someURL”>

<table cellpadding=”2” width=”100%”>

<tr>

<td class=”title” align=”center” colspan=”2”>

Software Defect Report

</td>

</tr><tr>

<td class=”head” align=”center” colspan=”2”>

User Profile Information

</td>

</tr><tr>

<td>Name:</td>

<td>

<input type=”text” name=”name” size=”50” />

</td>

</tr><tr>

<td>Company:</td>

<td>

<input type=”text” name=”company” size=”50” />

</td>

</tr><tr>

<td class=”head” align=”center” colspan=”2”>

What seems to be the problem?

</td>

</tr><tr>

<td colspan=”2” align=”center”>

<textarea name=”problem” rows=”4” cols=”60”></textarea>

</td>

</tr>

</table>

<center>

<input type=”submit” value=” submit report “ class=”submit” />

</center>
</form>
</body>
</html>

As shown in Figure 10-4, the layout is attractive, but quite complex.

557386 Ch10.qxd 4/2/04 9:57 AM Page 226

�

226 Creating Cool Web Sites with HTML, XHTML, and CSS

Figure 10-4: An attractive forms layout that doesn’t use fieldsets.

� Did you notice that I used CSS to change the appearance of the Submit button on
tip the page? It’s easy to do and can really help fine-tune the page.

The fieldset and legend tags become important here. The fieldset tag is a paired tag
that enables you to organize your form into logical sections, and legend enables you to assign
a caption to a specific fieldset area. The form shown in Figure 10-4 could be rewritten as
follows using the fieldset and legend tags:

<style type=’text/css’>

.title { background: #9cc; font-size:150%; margin-bottom: 10px;

font-weight: bold; text-align:center; }

.submit { font-size: 75%; background: #9cc; }

</style>

</head><body>

<form method=”get” action=”someURL”>

<div class=”title”>Software Defect Report</div>

<fieldset>

<legend style=”font-size:80%; color:#666”>User Profile</legend>

<table cellpadding=”2” width=”100%”>

<tr>

<td>Name:</td>

<td>

<input type=”text” name=”name” size=”50” />

</td>

</tr><tr>

<td>Company:</td>

<td>

<input type=”text” name=”company” size=”50” />

</td>

557386 Ch10.qxd 4/2/04 9:57 AM Page 227

227 �Chapter 10: Advanced Form Design

</tr>
</table>

</fieldset>

<!— separation between sections —>

<fieldset>

<legend style=”font-size:80%; color:#666”>Problem
Description</legend>

<table cellpadding=”2” width=”100%”>

<tr>

<td colspan=”2”>

Please describe the problem in as much detail as possible:

 <textarea name=”problem” rows=”4” cols=”60”></textarea>

</td>

</tr>

</table>

</fieldset>

<!— separation before the submit button —>

<center>

<input type=”submit” value=” submit report “ class=”submit” />

</center>

</form>

The fieldset tags are easy to add—they add a nice touch to the design, as you can see in
Figure 10-5—but I did have to break the monolithic table into a set of smaller tables so each
could be encircled by the lines associated with the fieldset legend.

Figure 10-5: Legends help organize the requested information.

The fieldset tag has no options or attributes. The legend tag has four possible values for the
align attribute: top, bottom, left, and right. The default location is top, and the others are
ignored, as far as I can tell.

557386 Ch10.qxd 4/2/04 9:57 AM Page 228

�

228 Creating Cool Web Sites with HTML, XHTML, and CSS

Tab Key Control on Input
If you’ve filled out any forms online, you already know that it can be a pain to move the mouse
to each input field, click to move the cursor, and then type in the specific value. Fortunately,
you can use the Tab key on regular Web input forms to step from the top-left to the bottom-
right.

That’s where the nifty tabindex attribute comes into play. HTML 4.0 added the capability to
define the exact tabbing sequence on your form. If you want to move people down the entries
on the left side, then the right side, you can do so by specifying the appropriate ascending
tabindex values.

Table 10-1 shows which HTML tags can have a tabindex specified.

Table 10-1: tabindex-Enabled HTML Tags

Tag Name Meaning

a Anchor tag

area Client-side image map

object Object inclusion (see Chapter 11)

input Text, radio button, check box input field

select Pop-up or multiple selection menu

textarea Multiline text input box

button Analogous to input type=”button”

The tabindex can help you make your Web page much more accessible to people who want
to stick with a keyboard rather than fiddle with a mouse or trackball.

Here’s an example of a form that uses the tabindex attributes to ensure that users can step
through the entries with the Tab key in the order the designer wants:

<html>

<head><title>A veritable tab lovefest!</title>

</head><body style=”text-align:center;”>

<form method=”post” action=””>

<table border=”0” cellpadding=”10” width=”90%”>

<tr><td>

557386 Ch10.qxd 4/2/04 9:57 AM Page 229

229 �Chapter 10: Advanced Form Design

<fieldset><legend>About You</legend>

<table><tr><td>

Your Name:</td><td><input type=”text” name=”name” tabindex=”2” />

</td></tr><tr><td>

Address:</td><td><input type=”text” name=”addr” tabindex=”4” />

</td></tr><tr><td>

Telephone:</td><td><input type=”text” name=”phone” tabindex=”3” />

</td></tr><tr><td>

E-Mail:</td><td><input type=”text” name=”email” tabindex=”1” />

</td></tr><tr><td>

You are:</td><td><select name=”city” tabindex=”5” />

<option>Republican</option><option>Democrat</option>

</select>

</td></tr></table>

</fieldset>

<!—- split between the two columns —> </td><td>

<fieldset><legend>Your Views</legend>

Your opinion of the President

of the United States of America:

<blockquote>

<input type=”radio” name=”opinion” value=”great” tabindex=”6” />

He’s doing great!

<input type=”radio” ame=”opinion” value=”super” tabindex=”8” />

He’s doing super!

<input type=”radio” name=”opinion” value=”wonderful” tabindex=”7” />

He’s doing wonderful!

</blockquote>

</fieldset>

</td></tr>

</table>

<input type=”submit” value=”Send your message to the President”

tabindex=”9” />

</form>

If you follow the numbering, you see that the first entry in the tab sequence is the e-mail
address, jumping to the name, back to the telephone number, then to the address, and so on
as you dance around on the page tab by tab. Then the visitor can tab to the select pop-up
menu and step through the three possible radio button values. Finally, the submit button itself
is in the tabindex sequence, and the anchor wrapping around the graphic, which returns to
the site’s home page, is the last (10th) entry in the tabindex.

Figure 10-6 shows you what the form looks like, but you should try using the Tab key to step
through the tabindex values yourself.

557386 Ch10.qxd 4/2/04 9:57 AM Page 230

�

�

230 Creating Cool Web Sites with HTML, XHTML, and CSS

Figure 10-6: Trying the tabindex-enabled form.

note Notice how the fieldset and legend tags help create an attractive layout.

The accesskey Attribute
You can use an additional attribute to offer even easier navigation of your Web pages via key­
board: You can assign keyboard shortcuts to let people quickly get to a specific spot on a
form or a specific anchor. This is done with the accesskey=”key” sequence, although don’t
be fooled—on a PC, you must use Alt + the key specified, and on the Macintosh you use the
Command key.

� On the Mac, you might be more familiar with calling the Command key the Apple
tip or Cloverleaf key. It’s usually on both sides of your spacebar.

Here’s a succinct example of how the accesskey attribute might be used:

Yahoo

Of course, if you’re going to have a keyboard shortcut, it might be valuable to show the user
what key to use. The Windows system has a nice standard for this: The letter in question is
underlined. You can do this with the otherwise marginally useful U underline tag, as shown here:

<u>Y</u>ahoo

As this becomes widely implemented in Web browsers, it will undoubtedly prove to be a great
addition to your page implementation toolkit.

557386 Ch10.qxd 4/2/04 9:57 AM Page 231

231 �Chapter 10: Advanced Form Design

Disabled and Read-Only Elements
The tabindex and accesskey attributes can be quite valuable in Web site design. By contrast,
I am not at all sure why two more attributes, disabled and readonly, have been added.

The disabled attribute enables you to display form elements that cannot be changed by the
user and are intended to be displayed in a grayed out or in some other fashion that makes
the disabled status obvious. The readonly attribute is very similar but shouldn’t be visually
different from the other fields, just unchangeable.

Here’s how you might use these two in your own form:

<form method=”post” action=”#”>
<table border=”0” cellpadding=”3”>
<tr>
<td align=”right”>Name:</td>
<td><input type=”text” name=”yourname” /></td>

</tr><tr>

<td align=”right”>Login:</td>
<td><input type=”text” name=”login” /></td>

</tr><tr>

<td align=”right”>Host:</td>

<td><input type=”text” name=”host” value=”hostname.com”

readonly=”readonly” /></td>

</tr><tr>

<td align=”right”>Date:</td>
<td><input type=”text” value=”3 August, 2004”
disabled=”disabled” /></td>

</tr>

</table>

</form>

In this example, I’ve already filled in the value of host for the visitor. (This is probably based
on the user’s remote_host CGI environment variable. See Chapter 9 for more details on how
you can get this value dynamically.) I’ve also filled in the current date, but it’s a disabled field
because I’m not letting the user change the date.

� To ensure XHTML compliance, the attributes are in the odd form of disabled=
note ”disabled” and readonly=”readonly”. Non-XHTML–compliant sites might well

use disabled and readonly instead.

Take a close look at Figure 10-7, and you can see how Internet Explorer renders these two
special form elements.

557386 Ch10.qxd 4/2/04 9:57 AM Page 232

�

232 Creating Cool Web Sites with HTML, XHTML, and CSS

Figure 10-7: The disabled and readonly attributes rendered in Internet Explorer.

Meaning

<input

type=”button” Specifies general purpose button type

onClick=”s”
(JavaScript)

<label </label> Indicates label associated with a specific element

for=”s” Specifies element associated with label (use
id=”s” in element)

<fieldset> </fieldset>

<legend </legend> Specifies name associated with fieldset

align=”s” Specifies alignment of legend in display (top,
bottom, left, right)

tabindex=”x” Specifies order of elements when user presses

accesskey=”c” Specifies key to allow keyboard shortcuts to
specific elements

disabled=”disabled” Disables element but displays it onscreen

readonly=”readonly” Displays element onscreen but element not

Table 10-2: HTML Tags Covered in This Chapter

HTML Tag Close Tag

Specifies action to take when button is clicked

Divides form into logical parts

Tab key

editable

557386 Ch10.qxd 4/2/04 9:57 AM Page 233

�Chapter 10: Advanced Form Design 233

for scripting—and how to enable users to get the most out of your

elements using a number of advanced HTML design elements, includ­
ing the label and fieldset variables and the tabindex, accesskey,
disabled, and readonly
attention to JavaScript, a simple scripting language that enables you

�Summary
In this chapter, you explored the button input type—particularly useful

forms. You also learned how to fine-tune the interaction between form

attributes. In the next chapter, you turn your

to include Java-like programming instructions in the HTML text of
your Web pages.

557386 Ch10.qxd 4/2/04 9:57 AM Page 234

557386 Ch11.qxd 4/2/04 9:56 AM Page 235

�11
chapterActivating Your

Pages with
JavaScript

Employing graphical rollovers

Scripting solutions other than
JavaScript

� In This Chapter
Understanding JavaScript basics

Testing browser compatibility

Telling time

Testing form values

A fter you have mastered HTML, XHTML, and CSS, you might think “Phew!
Done. Now I’m ready to start building some cool Web sites!” So do give your­

self a pat on the back. You have made great progress. But depending on how you
want your site to evolve, you still have tons of additional things to learn. If you want
to have beautiful graphics or designs, you should explore some wonderful devel­
opment tools for artists, including Adobe Photoshop, Macromedia Dreamweaver,
Flash, Fireworks, and many more. If you want to interface with backend database
systems, powerful scripting languages like PHP, and query languages like SQL,
you’ll be delving more into the programming side of things.

But this chapter isn’t about that. Indeed, any one of these topics is easily the sub­
ject of another book—or two—and quite a bit more complex than I can cover in
this book. However, a critical additional level of sophistication for truly cool Web
sites is within your reach: JavaScript.

Imagine a reasonably simple scripting language that’s designed for Web page use,
and you’d be talking about the JavaScript language.

In this chapter, I provide a brief overview of the language and then dig into five
nifty and informative ways that JavaScript can really expand and improve the inter­
activity of a Web page. Finally, I wrap up with a brief look at some of the other
major scripting and development languages in common use.

557386 Ch11.qxd 4/2/04 9:56 AM Page 236

�

236 Creating Cool Web Sites with HTML, XHTML, and CSS

An Overview of JavaScript
In the beginning was HTML, and all was well. No one wanted to do anything particularly com­
plex or sophisticated, and its capability to include text and graphics of different sizes within the
same document was quite compelling. As time passed, however, pages became increasingly
sophisticated, so the two major Web browser companies, Netscape and Microsoft, each began
to develop a scripting language for use on Web pages, a language that would allow programs
to be run on the visitors’ systems as they viewed the pages.

For Microsoft, it was Visual Basic Script, the same scripting language found in the Microsoft
Office Suite, among others. For Netscape, it was a scripting language that looked vaguely
like the popular new Java object-oriented language. Sparing you the gory details, Netscape
won, Microsoft lost, and JavaScript is the Web’s de facto scripting language.

�
To clear up a common point of confusion, JavaScript and Java aren’t the same
thing. In fact, Java is what’s known as an object-oriented programming language,

note and it’s not for the faint of heart. JavaScript, however, which shares only some min­
imal syntax structure in common with Java, is a simple scripting language that you
can add to your Web pages quickly and easily.

I’m going to discuss programming, but don’t panic. JavaScript is fun and easy. You’ll see.

Variables
The building blocks of all scripting are variables, the named containers that store specific infor­
mation and enable you both to manipulate and display it whenever you want. If you remember
your algebra, where x = y + 4, you’re already familiar with variables because that’s what the
x and y are in that equation. If you imagine the two variables as boxes that can take on any
value, the equation describes a relationship between them. If y is 10, x is 14.

JavaScript features three primary types of variables that you need to know: numeric, string,
and Boolean. Numeric variables are just like the x and y of the preceding paragraph and can
store either an integer value (123) or a floating-point value (4.4353). String variables store
a sequence of letters, digits, or punctuation. By using a string variable, you can say name =
“Dave Taylor” and it has the effect of putting the letters D, a, v, e, and so on, into the con­
tainer name. By contrast, Booleans can have only one of two possible values: true or false.

To use a variable, you have to define it and assign it a value. Variables are defined in
JavaScript with the var statement, and the = symbol assigns values. For example:

var doggie_in_window_cost = 200;
var favoriteDirector = “David Lean”;

� Notice here that both lines end with a semicolon. In JavaScript, all properly formed
tip lines must end with a semicolon.

557386 Ch11.qxd 4/2/04 9:56 AM Page 237

237 �Chapter 11: Activating Your Pages with JavaScript

Remember the mathematical expression above? Here’s how it looks in JavaScript:

var x, y;

y = 3;

x = y + 4;

That’s the JavaScript equivalent of x = y + 4. Not too hard, is it?

Where do you put JavaScript?
Before you delve any further into JavaScript, you’re probably wondering where this stuff goes
on your page. The answer is that JavaScript should always live within a <script> block, as
shown here:

<script language=”javascript”>

var x, y;

y = 3;

x = y + 4;

</script>

This <script> block adds two variables within the JavaScript portion of your Web page,
named x and y. The former has the value of 7, and the latter has a value of 3.

You can have more than one <script> block on your page, and later <script> can reference
variables set and functions defined by earlier blocks.

Events
Most people find that tying JavaScript to specific Web page events (quite literally, something
that happens), including onLoad and onUnload among others, gives them more than enough
flexibility.

Table 11-1 shows a list of interesting JavaScript events.

Table 11-1: Interesting Scriptable Events in JavaScript

Event Name Description

onblur Input element loses focus (user moves cursor elsewhere)

onchange Similar to oblur, but contents change

onclick A mouseclick event occurs

ondblclick A double-click occurs

onfocus User clicks into, or tabs into, an input element

Continued

557386 Ch11.qxd 4/2/04 9:56 AM Page 238

�

238 Creating Cool Web Sites with HTML, XHTML, and CSS

Table 11-1: Continued

Event Name Description

onload The page completes loading in the browser

onmousedown The user clicks the mouse button

onmouseup The user releases the mouse button

onmouseout The cursor moves away from the element

onmouseover The cursor moves over the element

onmove The window moves

onresize The window is resized

onselect User selects text in an input or textarea element

onunload Opposite of onload; user leaves the page

The four events most commonly used with JavaScript are onclick, onmouseover, onmouse-
out, and onload. I explore how to utilize these four events later in this chapter.

Expressions
Much more interesting than variable assignment statements (JavaScript instructions that
assign a value to a specified variable) are expressions, which are the real building blocks of
JavaScript. Expressions can evaluate to a Boolean (as in “if this condition is true, then . . .”)
or can evaluate to a string or numeric expression. Table 11-2 takes a look at each of these
expressions.

Table 11-2: Three Types of Expressions in JavaScript

Expression What It Evaluates To

x + y > z Evaluates to a Boolean: either true or false

x + (2 x y)-3 Evaluates to a numeric value, the sum of these two variables

name + “ (given name)” Appends the specified string to the end of the value of the string name

JavaScript simplifies working with strings, sequences of characters such as names,
addresses, product codes, and URLs. You can build up strings of other values by using the +
symbol, as shown here:

var name = “Gareth”, name2 = “Ashley”;
names = name + “ and “ + name2;

The resultant variable names is set to Gareth and Ashley.

557386 Ch11.qxd 4/2/04 9:56 AM Page 239

239 �Chapter 11: Activating Your Pages with JavaScript

You can create mathematical expressions in lots of ways. Not only can you use +, -, *, and /
for addition, subtraction, multiplication, and division, respectively, you can also use shortcuts,
such as ++ to add one, — to subtract one, and even structures like x += y; to add y to the cur­
rent value of x or salary /= 2; to divide the value of salary by two.

Looping mechanisms
Although writing programs without any sort of looping or conditional execution is theoretically
possible, doing so is a complete nightmare, requiring you to type and type and type until the
cows come home. Instead, JavaScript offers a typical lineup of looping and control structures,
as shown in Table 11-3. By utilizing these structures, you can have sections of JavaScript that
only run if certain conditions are true or if variables have specified values. You can also execute
statements more than once, based on similar conditions.

Table 11-3: JavaScript Looping Mechanisms

Looping Mechanism	 What It Does

if (expr) statement	 Conditionally executes statement or statement block.

else statement Executes statement if expr is false (must be associ­
ated with an if statement)

switch (expr)	 Acts like a case statement, a series of if/else tests

while (expr) statement Loops, continually executing a statement until expr
is false

do statement while (expr) Same as while, but guarantees one time through
loop

for (expr1;expr2;expr3) statement	 Loops, continually executing a statement until
expr2 is false: expr1 is the initializing expression
prior to looping, and expr3 is done after each loop
but before expr2 evaluates

Don’t let the complex appearance of a for loop turn you off; it’s the most useful looping
mechanism in JavaScript. A for loop consists of three components: an initializer, a condi­
tional, and a loop increment, as you see in the following example:

for (var j = 0; j < 10; j++) {

salary += salary;

}

The preceding setup is 100 percent identical to the following example:

var j = 0;
while (j < 10) {

salary += salary;

j++;

}

557386 Ch11.qxd 4/2/04 9:56 AM Page 240

�

240 Creating Cool Web Sites with HTML, XHTML, and CSS

The for loop is a delightfully succinct way to express this sort of sequence, with the initializer
as the first part of the for loop, the conditional statement as the second part, and the loop
increment as the third, all separated by semicolons.

Subroutines, built-in and user-defined
Many programs have sequences of statements that appear over and over again. Smart pro­
grammers turn those into subroutines, named functions that you can invoke anywhere in your
JavaScript. A simple user-defined function might look like the following example:

function swap(a, b) {
var hold = b;
a = b; b = hold;

}

This function enables you to easily swap the values of any two variables, for example, name
and address, which you can reference in your JavaScript with swap(name, address);.

Subroutines can also return values by using the return statement. Here’s a subroutine that
returns the square of the given value:

function square(x) {

return (x * x);

}

A statement such as y = square(20); results in y having the value of 400 (20 squared).

Built-in functions
The really good news is that hundreds of different functions are built into the JavaScript lan­
guage. Consequently, most of your user-defined subroutines end up implementing your algo­
rithms instead of doing the real dirty work of string or number manipulation.

Because JavaScript is an object-oriented programming language, you invoke many functions
by essentially appending their names to a given variable. For example, you obtain the length
of the string variable name by using name.length,

so you can use this attribute in a conditional as follows:

if (name.length > 50)

JavaScript uses many more built-in functions than I can squeeze into this book, but Table
11-4 highlights several that are of particular value to site developers.

557386 Ch11.qxd 4/2/04 9:56 AM Page 241

241 �Chapter 11: Activating Your Pages with JavaScript

Table 11-4: A Few Great JavaScript Functions

Function What It Does

back() Returns to the previous URL

close() Closes the specified window

confirm() Confirms an action with an OK/CANCEL answer

open() Creates and opens a new window

submit() Submits the specified form, as if you’d clicked the Submit button

How can you use these functions? Here’s an example:

if (confirm(“You want to close this window?”)) close();

This code pops up a dialog box that reads, You want to close this window? and has two
buttons: OK and Cancel. If you choose OK the confirm() function returns true and the
close() statement executes. (The window closes.) If you choose Cancel, confirm() returns
false and JavaScript skips the close() statement.

� There’s a lot more to JavaScript than I can squeeze into these few pages. Many online
note sources give you additional information, including http://www.Javascript.com/.

Testing Browser Compatibility
JavaScript is commonly used to figure out what kind of Web browser you’re running. You
might not realize it, but every time you communicate with a Web server, you’re sending along
various (nonspecific) identifying information, including your unique computer (IP) address,
and a browser identification string such as the following:

Mozilla/4.0 (compatible; MSIE 5.0; Windows 98; DigExt)

Although this browser says that this user is running Mozilla/4.0, it’s really not. Mozilla is the
code name for Netscape’s Navigator Web browser, but this user is actually running MSIE—
Microsoft Internet Explorer—5.0 masquerading as Mozilla (that’s what the compatible means
in parentheses). Notice it also indicates that the user is running Windows 98, of all things.

You can test all this information within JavaScript quite easily, making it possible for you to
write Web pages that refuse to work for certain browsers or, in a more friendly vein, perhaps
congratulate users on their choice of Web browsers or operating systems. Here’s an example:

557386 Ch11.qxd 4/2/04 9:56 AM Page 242

�

242 Creating Cool Web Sites with HTML, XHTML, and CSS

<body>

<script language=”JavaScript”>

function showInfo()

{

document.writeln(“<div style=’font-size: 75%’>”);

document.writeln(“Information about your browser:\n”);

for (propertyName in navigator) {

document.writeln(“”, propertyName, “ = “,

navigator[propertyName], “”);

}

document.writeln(“</div>”);

}

document.writeln(“<h1>Welcome, “, navigator.appName, “ User</h1>”);

document.write(“<h3>You’re running “);

if (navigator.appName.indexOf(“Win”) > -1) {

document.writeln(“Microsoft Windows</h3>”);

} else if (navigator.appName.indexOf(“Mac”) > -1) {

document.writeln(“Apple MacOS</h3>”);

} else {

document.writeln(navigator.platform, “</h3>”);

}

showInfo();

</script>

</body>

This code is fairly sophisticated. In the following paragraphs, I explain the main things you
need to understand about this JavaScript example.

First, this code includes a function to output all the possible values in the navigator object.
The line for (propertyName in navigator) steps through all the values. But focus on the
middle line that says Welcome. Have a look at Figure 11-1 to see how it looks in a browser.

The indexOf() call is a built-in subroutine that returns either the location in the given string
where the specified pattern appears or the value -1 if the pattern doesn’t appear. So, the first
conditional—if (navigator.appName.indexOf(“Win”) > -1—is testing to see if the
sequence “Win” appears in the application name string. If it does, then the value returned is
greater than -1 and the user is running Windows. If not, JavaScript goes to the next test,
which looks for “Mac” and if that fails too, JavaScript just writes whatever platform-name
value the user’s browser returns.

557386 Ch11.qxd 4/2/04 9:56 AM Page 243

�

243 �Chapter 11: Activating Your Pages with JavaScript

Figure 11-1: Using JavaScript to welcome visitors by browser name.

note When run on a Linux system, navigator.platform is Linux i686.

If this seems like vast overkill, here’s how you can simply slip in an optimized for message on
a Web page that actually lists the user’s specific browser (the value contained in navigator.
appName):

<script language=”JavaScript”>

document.writeln(“<h4>This site optimized for “,

navigator.appName, “</h4>”);

</script>

That’s it. Tricky, eh? If you’re perverse, you could use a simple conditional to have your page
always indicate that it’s optimized for the browser the user isn’t running, although, of course,
the page itself would still render properly!

Graphical Rollovers
One of the most popular ways to use JavaScript is creating a rollover, a Web page element
that changes its appearance or behavior when you hover the cursor over it. Before I show you
how to create a rollover, don’t forget that you can use CSS to accomplish a rollover text
effect by using the hover attribute, as shown in the following code:

557386 Ch11.qxd 4/2/04 9:56 AM Page 244

�

244 Creating Cool Web Sites with HTML, XHTML, and CSS

<style type=”text/css”>
a:hover { background-color: #ccffcc; text-decoration: none; }
</style>

This bit of code removes the underline from all hypertext links on the page while the cursor is
over the link, but it also changes the background color of the link itself to a very light green.

But if you want to accomplish a similar effect with graphics, work with the document object
model (DOM). This is the data structure that Web browsers use to understand and render
every page of HTML you view. Recall that everything on a Web page is a container, so the
hover style that I just showed you changes the background of the link container when a
mouseover event takes place. The change doesn’t affect the page or the paragraph, just the
actual linked text itself.

Similarly, all graphical elements also live in containers within the document object model,
even if they don’t look like it when you’re viewing a page.

What does this mean? It means that to have a graphic change after the page has loaded, you
must figure out the appropriate way to reference the container that holds the image. In addi­
tion, you need to create a new image container so that the alternative image can also be
loaded. The following sections guide you through creating a new image container.

Creating a new image container
The first step when creating a graphical rollover is to create an image container. Use the fol­
lowing code:

var myImageObject = new Image();

The Image() function is a built-in function in JavaScript that returns a complex object with a
variety of attributes, notably src, the image’s URL.

When you are trying to implement a rollover quickly, you see that two image objects are nec­
essary: one for the default image and another for the new rollover image. So, in fact, the first
couple of lines look like this:

var newImageObject = new Image();

var defaultImage = new Image();

These lines would appear within a JavaScript block, of course.

Assigning a URL to the new image container
The next step is to assign a URL, which is surprisingly easy to do:

557386 Ch11.qxd 4/2/04 9:56 AM Page 245

245 �Chapter 11: Activating Your Pages with JavaScript

newImageObject.src =

‘http://www.intuitive.com/coolsites/examples/Graphics/b-off.jpg’

defaultImage.src =

‘http://www.intuitive.com/coolsites/examples/Graphics/b-on.jpg;

Not only does this create two new image objects, one of which represents the rollover’s
button-off state (b-off.jpg) and one that represents the rollover’s button-on state (b-on.jpg),
but it also associates them with actual graphics by using the URL of two different images.

� Although these are fully qualified URLs, most rollovers use a lazier shorthand nota-
note tion like defaultImage.src = ‘b-on.jpg” or something similar.

Changing values on the fly
To make the rollover actually work, first, you write a function that changes the image from
one value to another; and second, you hook the function into the Web page with the appro­
priate JavaScript events, as discussed earlier in this chapter.

Start by looking at the code that’s needed in the img tag to make it a rollover:

<img src=”http://www.crewtags.com/create/images/tags/front/
emoticonsmile.jpg”
alt=”fun keychains: happy or sad” id=”changingface”
onMouseOver=”makeSad();” onMouseOut=”makeHappy();” />

Most of this should look like a typical image inclusion, with the src attribute for the image’s
URL, and the alt tag for text to display in lieu of the graphic. What’s new is that you give this
particular image container a unique identifying name: id=”changingface”. That change
becomes important when you want to refer to this specific container in the DOM.

In addition, this code ties the function makeSad() to a Mouseover event and the function
makeHappy() to a Mouseout event. Any guesses about how this is going to work?

The other half of this dynamic duo consists of the functions themselves, which are almost
completely identical except that one refers to happy and the other refers to sad:

function makeHappy()
{
if (document.images) {
imageObject = document.getElementById(“changingface”);
imageObject.src = happy.src;

}

}

function makeSad()

{

Continued

557386 Ch11.qxd 4/2/04 9:56 AM Page 246

�

246 Creating Cool Web Sites with HTML, XHTML, and CSS

Continued
if (document.images) {
imageObject = document.getElementById(“changingface”);
imageObject.src = sad.src;

}

}

The first function, makeHappy(), is called when the cursor leaves the container—the
onMouseOut event—so its purpose is to restore the image to its initial state. First, it checks to
ensure that the Web browser has a reasonably modern DOM (the test is to see if document.
images is nonzero), and if so, it gets the image container’s specific address by searching for
its unique ID in the DOM tree. Now you can see why the img tag had to include an id attribute!

After the image container is found by referencing its unique ID, the image object’s source—
the src property—is changed to match the happy image object’s source, which is set to the
smiley face icon.

Here’s the entire HTML file, top to bottom:

<html>
<head><title>Don’t tread on me</title>
<script language=”JavaScript”>

var happy = new Image();
var sad = new Image();

happy.src=
“http://www.crewtags.com/create/images/tags/front/emoticonsmile.jpg”;
sad.src=
“http://www.crewtags.com/create/images/tags/front/emoticonsad.jpg”;

function makeHappy()
{
if (document.images) {
imageObject = document.getElementById(“changingface”);
imageObject.src = happy.src;

}

}

function makeSad()
{
if (document.images) {
imageObject = document.getElementById(“changingface”);
imageObject.src = sad.src;

}

}

</script>

</head>

557386 Ch11.qxd 4/2/04 9:56 AM Page 247

247 �Chapter 11: Activating Your Pages with JavaScript

<body style=’text-align:center;’>

<h2>Rollover demonstration</h2>

<img src=”http://www.crewtags.com/create/images/tags/front/
emoticonsmile.jpg”

alt=”fun keychains: happy or sad” id=”changingface”

onmouseover=”makeSad();” on mouseout=”makeHappy();” />

<hr />

Images courtesy of

<img

src=”http://www.crewtags.com/create/images/logo.jpg”
alt=”CrewTags” border=”0” />

</body>

</html>

You can try it for yourself. You’ll find that the initial state of the page is shown in Figure 11-2.
Move your cursor over the smiley tag and see what happens!

Figure 11-2: A demonstration of rollover graphics, courtesy of Crew Tags.

What might not be immediately obvious is that you can have JavaScript events tied to almost
any element of a page, and that they can change other containers, not just themselves.

To change the page so that moving the cursor over the Crew Tags logo also changes the smi­
ley to a sad face, use the following code:

<img

src=”http://www.crewtags.com/create/images/logo.jpg”

onMouseOver=”makeSad();” onMouseOut=”makeHappy();”

alt=”CrewTags” border=”0” />

557386 Ch11.qxd 4/2/04 9:56 AM Page 248

�

248 Creating Cool Web Sites with HTML, XHTML, and CSS

You only have to change one line—the line that is already in the img tag for the smiley tag.
Simple enough!

With this sort of capability, you have many, many different ways to improve and add pizzazz
to your Web sites.

Telling the time
JavaScript also enables your Web page to access the system clock and display the current
date and time. The following code illustrates how to add this function:

<h2>The current date and time:

<script language=”JavaScript”>

var rightNow = new Date(); // create a new variable called ‘rightNow’

document.writeln(rightNow); // assign in the date, then print it out

</script>

</h2>

This sequence of code works just fine, producing an HTML sequence like this:

<h2>The current date and time:

Wed Dec 17 20:01:54 MST 2003

</h2>

The problem is that the preceding method does not produce a very legible format for show­
ing the time, compared to the friendlier formats you’re used to seeing.

Fortunately, JavaScript has many different methods (a fancy object-oriented name for func­
tions) available for working with the date and time information, as shown in Table 11-5.

Table 11-5: Time-Related JavaScript Methods

Method Description

getDate Day of month (range 1–31)

getDay Day of week (range 0–6)

getFullYear Returns four-digit year value

getHours Hours unit (0–23)

getMinutes Minutes unit (0–59)

getMonth Month of year (range 0–11)

getSeconds Seconds unit (0–59)

getTime Number of milliseconds since reference date (1 January, 1970)

getYear Years unit (may return year as 1900 on older systems)

setDate Specifies new month in date object (range 0–11)

557386 Ch11.qxd 4/2/04 9:56 AM Page 249

249 �Chapter 11: Activating Your Pages with JavaScript

Method Description

setFullYear Specifies new year (4-digit) in date object

setHours Specifies new hours value in date object (range 0–23)

setMinutes Specifies new minutes value in date object (range 0–59)

setMonth Specifies new month in date object (same as setDate)

setSeconds Specifies new seconds in date object

setTime Specifies time for date object in milliseconds (see getTime)

setYear Specifies new year in date object (See note in getYear)

toLocaleString Returns locale-based date/time string (most useful for switching date format
strings to local conventions and languages, as the individual user specifies)

These methods make producing attractive output a breeze, because they do all the hard work
of isolating individual date elements for you.

Time of day, the friendly version
Want to include the time of day? Use getTime():

At the tone, it’s

<script language=”JavaScript”>

document.writeln(rightNow.getHours() +”:”+ rightNow.getMinutes());

</script>

exactly.

Typical output for this code might look like the following:

At the tone, it’s 20:12 exactly.

Locale-specific date and time
You might not think of locale as the collection of all standard information that defines how
your part of the world specifies numeric values, dates, time, and many other things, but
that’s exactly how computers think of it. So the method toLocaleString() proves tremen­
dously helpful. The following code produces a helpful (and amusing) result:

<div style=’font-size:75%;color:#333’>

Page last modified

<script language=”JavaScript”>

document.writeln(rightNow.toLocaleString());

</script>

</div>

557386 Ch11.qxd 4/2/04 9:56 AM Page 250

�

250 Creating Cool Web Sites with HTML, XHTML, and CSS

Here is the result:

Page last modified Wednesday, December 17, 2003 8:12:44 PM

This is amusing because the page always reports that it was last modified at exactly the
moment the visitor is viewing the page!

A built-in clock
One additional neat thing you can do with the time methods is to output a clock container
that stays up-to-the-second while someone is viewing the page. It’s a bit more complex,
because it uses a lot of JavaScript. Here’s the code:

<html>

<head><title>Does anybody really know what time it is?</title>

<script language=”JavaScript”>

function clock() {

var now = new Date();

var hours = now.getHours();

var amPm = (hours > 11) ? “pm” : “am”;

hours = (hours > 12) ? hours - 12 : hours;

var minutes = now.getMinutes();

minutes = (minutes < 10) ? “0” + minutes : minutes;

var seconds = now.getSeconds();

seconds = (seconds < 10) ? “0” + seconds : seconds;

dispTime = hours + “:” + minutes + “:” + seconds + “ “ + amPm;

if (document.getElementById) {
document.getElementById(“clockspace”).innerHTML = dispTime;

}

setTimeout(“clock()”,1000);

}

</script>

</head>

<body onload=”clock()”>

The actual time right now is:

</body>

</html>

Figure 11-3 shows a screenshot of the preceding code with all the additional snippets explored
in this section thrown in for good measure. Notice that the page loaded at 16:23 (4:23 p.m.),
but because the built-in clock keeps track of time, the actual time indicates 4:42 p.m. The
difference between the two times can be a bit subtle: The first time indicates when the page

557386 Ch11.qxd 4/2/04 9:56 AM Page 251

251 �Chapter 11: Activating Your Pages with JavaScript

was loaded into the Web browser, whereas the second time, like a clock on the wall, keeps
incrementing each second. The longer you have the page sitting in your browser, the greater
the difference between these two times. When the page first loads, of course, they are identi­
cal. Make sense? Also notice the locale-specific date and time at the bottom of the page.

Figure 11-3: Your Web pages can show up-to-the-second time of day.

� The setTimeout() method used here is particularly interesting: It tells the Web
note browser to call the clock() function again after 1000 milliseconds pass.

When looking at Figure 11-3, notice in particular the difference between the at the tone time
(which is the current time when the page was loaded) and the actual time (which is incre­
menting, second by second).

There’s a lot more you can do with the time and date methods, including a simple masthead
for a publication. But since getMonth returns 0–11 as its value (as shown in Table 11-5), you
want to map those numeric values to actual month names, probably with some sort of data
structure, perhaps an array. You can also produce dynamic calendars with the current day
highlighted, and much more.

Testing Form Values
Although the previous examples are fun for adding some excitement to your Web site, per­
haps the most compelling use of JavaScript is to help with user-input forms. In Chapter 9, for
example, you learn that by including the following code snippet, you can easily add a Google
search box to your Web page:

<form method=”get” action=”http://www.google.com/search”>
What you seek:
<input type=”text” name=”q”>
<input type=”submit” value=”search google”>
</form>

557386 Ch11.qxd 4/2/04 9:56 AM Page 252

�

252 Creating Cool Web Sites with HTML, XHTML, and CSS

By default, if you submit the search without any query string, Google simply prompts for one.
Instead, however, you can use JavaScript to refuse to send blank queries. To do this, you use
an onsubmit event handler in the form tag that checks for the input. Use the alert()
method to have the search query appear in a pop-up window:

<h2>Search Google for what you seek</h2>
<form method=”get” action=”http://www.google.com/search”

name=”google”

onsubmit=”alert(document.google.q.value);return false;”>

What you seek:

<input type=”text” name=”q”>

<input type=”submit” value=”search google”>

</form>

This looks more complex than it is. Really. The form is called google and the variable you’re
interested in is called q (that’s Google’s name for it, not mine). So you can reference that
object as document.google.q. The value attribute of this object contains whatever the user
enters. Figure 11-4 shows what I’m talking about.

Figure 11-4: An alert box shows what’s in the search box.

Did you notice the return false at the end of the onSubmit handler? That’s a key idea for
form validation: If an onSubmit event handler returns false, the form data isn’t submitted to
the action script. If it returns true, it is submitted. So any script that tests values prior to sub­
mission simply needs to return the appropriate value to control whether it is actually submit­
ted or not.

Creating a test condition
To have this form actually test a value, you need a conditional expression. To improve the
HTML’s overall readability, move the conditional expression into a function at the top of
the page:

557386 Ch11.qxd 4/2/04 9:56 AM Page 253

253 �Chapter 11: Activating Your Pages with JavaScript

<script language=”JavaScript”>

function validate()

{

if (document.google.q.value.length == 0) {

alert(“Please enter a search pattern!”);

return false;

}

else

return true;

}

</script>

Moving the conditional expression to the top of the page actually simplifies the form itself
because the increasingly complex JavaScript is now elsewhere, not squished into the HTML:

<form method=”get” action=”http://www.google.com/search”
name=”google” onsubmit=”return validate();”>

What you seek:

<input type=”text” name=”q”>

<input type=”submit” value=”search google”>

</form>

Figure 11-5 shows what happens if a search is requested when there’s no pattern.

Figure 11-5: No search string is specified, so flag it!

If there is a search pattern, the function returns true, and the pattern is given to Google for a
search.

557386 Ch11.qxd 4/2/04 9:56 AM Page 254

�

�

254 Creating Cool Web Sites with HTML, XHTML, and CSS

A Temperature Converter
Another neat JavaScript example is a simple form that doesn’t actually have a CGI script
(a program that lives on the Web server) behind it; instead, it works completely through
JavaScript.

x-ref If you need a refresher on CGI scripts, turn to Chapter 9.

To enable this form’s functionality, tie events to an input type=”button” and avoid the sub-
mit element completely instead of embedding the script into the page by using JavaScript.
This is an in-place Fahrenheit/Celsius conversion function:

function convertTemp(direction)
{
// if you have a Fahrenheit temp, compute Celsius, or vice-versa
var fObj = document.convert.ftemp, cObj = document.convert.ctemp;

if (direction == “ftoc”) {
cObj.value = Math.round((fObj.value - 32) * (5/9));

} else {
fObj.value = Math.round((parseInt(cObj.value) * (9/5)) + 32);

}
}

The conversion formulas here are Celsius = Fahrenheit * (9/5) + 32 and Fahrenheit
= (Celsius + 32) * (5/9). The direction variable enables you to use the same function
to calculate in either direction.

The associated HTML is as follows:

<form style=”border: 1px double blue; background-color: #DDF;
padding: 4px;text-align:center;” name=”convert”>

Fahrenheit:

<input type=”text” name=”ftemp” size=”7”

onchange=”convertTemp(‘ftoc’)”> is the

same as Celsius:

<input type=”text” name=”ctemp” size=”7”

onchange=”convertTemp(‘ctof’)”>

<input type=”button” value=”clear” onclick=”clearAll();”>

</form>

It’s pleasantly short and sweet. You can see in Figure 11-6 that I also added one more capa­
bility: The Clear button calls the following JavaScript function:

557386 Ch11.qxd 4/2/04 9:56 AM Page 255

255 �Chapter 11: Activating Your Pages with JavaScript

function clearAll()
{
document.convert.ftemp.value=””;
document.convert.ctemp.value=””;

}

Figure 11-6: You can use JavaScript to add a temperature conversion calculator to your Web page.

Other Scripting Solutions
Although JavaScript is the most popular scripting solution for Web pages, a number of other
scripting options deserve at least a brief mention. Some of these live within the HTML page,
whereas others live on the server but still offer a remarkable amount of power over what you
deliver to your visitor.

Visual Basic Script
JavaScript is powerful but unlike any language that most programmers and users have
ever learned. Visual Basic, on the other hand, is a language based on the one that many folks
learned when they were first starting out with computers or programming. Microsoft offers
Visual Basic Script for Internet Explorer—VBScript—as an alternative to JavaScript.

Here’s how a simple VBScript program might look:

<html>

<body bgcolor=”white”>

<script language=”VBScript” event=”OnClick” for=”Button1”>

MsgBox “You clicked on the button and up popped me!”

</script>

Continued

557386 Ch11.qxd 4/2/04 9:56 AM Page 256

�

256 Creating Cool Web Sites with HTML, XHTML, and CSS

Continued
<center>

<form>

<input name=”Button1” type=”button”

value=”Roses are red, beloved by the bee...”>

<i>click the button</i>

</form>

</center>

</html>

The script looks very similar to JavaScript in the HTML document, but the language itself is
easier to work with, in my opinion. Unfortunately, you can do the math: VBScript is only sup­
ported in Internet Explorer; JavaScript is supported in both Navigator and Internet Explorer.
As a result, JavaScript is unquestionably the scripting language of choice.

� You can learn a lot more about Visual Basic Script by visiting Microsoft’s reference
tip site at http://msdn.microsoft.com/vbasic/.

Java
In terms of sheer enthusiasm in the press and incessant commentary from pundits every­
where, no new technology introduced on the Net has been as widely heralded as Java, from
Sun Microsystems. Your favorite computer magazine probably told you that Java would save
the world, cure world hunger, and, did I mention, lower the prime lending rate and wash
your car?

The reality is somewhat different. Java is a complex, object-oriented programming language
based on a powerful language called C++, which itself is a modified version of the C program­
ming language so beloved by Unix folks. C was originally developed to write Unix device dri­
vers, so it shares many characteristics with the most primitive of languages: Assembler. Add
a layer of object-oriented capabilities, and you’ve got C++. Tweak it further for the Net, and
you have Java.

The good news is that many different Java-development environments are available for
Windows, Macintosh, and Unix/Linux systems, and they make things quite a bit easier. Even
better, you can use Java applets (small programs providing a specific function), as they’re
called, without even having much of a clue about Java itself.

Start by having a look at a simple Java program:

class HelloWorld {

public static void main (String args[]) {

System.out.println(“Hello World!”);

}

}

557386 Ch11.qxd 4/2/04 9:56 AM Page 257

257 �Chapter 11: Activating Your Pages with JavaScript

That is what’s involved in getting the program to say “Hello World!” within a Web page. You
can’t send this script directly in your HTML page, though. You have to actually translate it
into a Java applet binary by compiling it. To work with Java, you must have some sort of
development environment.

Referencing Java applets
If you can’t include the Java source or compiled binary in your HTML code, you might wonder
just how you actually include Java applets on your page. The answer used to be the applet
tag, but HTML 4 replaces that with the object tag. The object tag has a variety of parame­
ters, the most important of which is the classid parameter, which specifies the exact name of
the applet desired. Here is an example of the object tag at its simplest:

<object codetype=”application/octet-stream”

classid=”java:DrawStringApplet.class”

width=”100” height=”100”></object>

The codetype specified is actually what’s called a MIME type. Originally, the MIME standard
was intended for e-mail attachments—indeed, it stands for Multimedia Internet Mail
Extensions—but it’s now used as a general-purpose media attachment standard. In this case,
you’re informing the Web browser that the Java applet is a stream of program data.

The preceding HTML snippet defines a 100×100 box that shows the result of
DrawStringApplet when loaded and run.

Online Java applets
You can add all sorts of Java applets to your own Web pages by simply adding the appropriate
reference to your pages. There are dozens upon dozens of nifty applets online, many of which
live at Sun’s Java division Web site, Javasoft (go to http://www.javasoft.com/applets/),
and many more that live at Gamelan’s online Java library at http://www.gamelan.com/.
Another great place is JARS.com, which is the Java Applet Resource Center. An online mag­
azine called JavaWorld is just about Java. It is not only very good but it is also run by a bunch
of friends of mine. You can visit it at http://www.javaworld.com. I encourage you to explore
some of these resources online!

�
Elliotte Rusty Harold has written a fabulous Java programming tutorial at http://

tip sunsite.unc.edu/javafaq/javatutorial.html. If books are your thing, check
out Wiley’s Java 2 Bible by Justin Couch and Daniel H. Steinberg, or Java 2 For
Dummies by Barry Burd.

ActiveX
If Java is going to save the world, then ActiveX is going to save us from Java—or something
like that. ActiveX is Microsoft’s contribution to the programming-languages-on-the-Net debate
and offers many of the same capabilities and complexities as Java. The big difference: Java
works with both Navigator and Explorer, but ActiveX works only for the Microsoft browser.

557386 Ch11.qxd 4/2/04 9:56 AM Page 258

�

258 Creating Cool Web Sites with HTML, XHTML, and CSS

� NCompass Labs has a plug-in called Ncompass for Netscape Navigator that
tip enables Navigator to use ActiveX Controls. Find out more at http://www.

ncompasslabs.com.

ActiveX functions as a wrapper called an ActiveX control. The code being included interacts
with the wrapper (ActiveX), and the wrapper interacts with the browser directly. Using this
technique, just about any code can run within the browser space, from word processors and
spreadsheets to simple games and animation.

Each ActiveX control has a unique class ID and is included as an object tag, with parame­
ters specified in the param tag—remarkably similar to JavaScript. Here’s an example of how
you might include an ActiveX control in your page:

<object id=”ClientLayout”

classid=”clsid:812ae312-8b8e-11cf-93c8-00aa00c08fdf”>

<param name=”ALXPATH” ref_value=”Client.alx”>

</object>

� To learn more about ActiveX, visit Microsoft’s Developer Network site at http://
note msdn.microsoft.com/. There’s also a good ActiveX tutorial area, along with much

more, at http://www.webreference.com/.

XSLT
Although it has a confusing acronym, XSLT, the Extensible Stylesheet Language
Transformations, offers a very interesting approach to modifying XML-based pages within
the Web browser. XSLT is an XML-based language, which means that it looks a lot like the
document specification values you see in Chapter 16.

Take a quick look at this XSLT style sheet:

<?xml version=’1.0’?>

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”

version=”1.0”>

<xsl:template match=”/”>

<html>

<body bgcolor=”#ccccff”>

<h2> <xsl:value-of select=”Concert/Title” /></h2>

Performances:

<xsl:for-each select=”Concert/CourseDates/Date[Day!=’’]” >
<xsl:value-of select=”Month”/>/
<xsl:value-of select=”Day”/>/
<xsl:value-of select=”Year”/>
at <xsl:value-of select=”Time/Start”/>
<xsl:value-of select=”Mode” />

</xsl:for-each>

557386 Ch11.qxd 4/2/04 9:56 AM Page 259

259 �Chapter 11: Activating Your Pages with JavaScript

</body>

</html>

</xsl:template>

</xsl:stylesheet>

This is fairly complex stuff and not something you whip out in a few minutes. But if you think
of a scripting language that’s somewhere between the Structured Query Language (SQL) of
database work and JavaScript, you can start to see some logic here. In this example, a
header level 2 shows the name of the concert, and the performances are shown in an
unordered list, by month/day/year, with starting times. The xsl:for-each is a for loop, just
as JavaScript uses one, but this steps through possible matches in the input data stream (the
XML document that references this XSLT style sheet).

Fortunately, if you’re going to be working with XSLT, you’re likely to have some tools available
to help make it manageable!

� To learn more about XSLT and its associated technologies, start at O’Reilly’s excel-
note lent XML.com Web site.

Flash
Another possibility for scripting your pages is to delve into a completely different environ­
ment that offers a high level of sophistication at the price of a plug-in. That environment is
Macromedia Flash. First developed as an offshoot of Macromedia Director, Flash offers a
complete time-based scripting environment with sophisticated transformations, so you can
have elements zoom in, zoom out, spin, add music, and much, much more. Think of an ani­
mation toolbox, and you are on the right track. You’ll know when you’ve hit a Flash-based site
because it’s much more like a multimedia experience than a regular non-Flash Web page.

For many applications, that’s the problem with Flash; it’s not a Web page at all. The content
isn’t indexed the same by search engines like Google, and users can’t easily save the content.
Also, it’s almost always large and requires a great deal of bandwidth, it’s more difficult to
develop, and it requires expensive commercial software. However, comparing a typical HTML-
only Web page to a well-designed professional Flash page is like comparing an oyster to a
pearl. If you want the fancy jewelry, if you want the shine and the glitz, Flash might be well
worth exploring.

�
If you do want to learn more about Flash, there’s no better place to go than
Macromedia’s Flash showcase Web site, with its list of Flash Site of the Day choices, note at http://www.macromedia.com/cfusion/showcase/. You can also check out
Wiley’s Macromedia Flash MX 2004 Bible by Robert Reinhardt and Snow Dowd.

557386 Ch11.qxd 4/2/04 9:56 AM Page 260

260

�

Creating Cool Web Sites with HTML, XHTML, and CSS

of JavaScript code, and even some ways that you can access and

�Summary
This chapter focused on using JavaScript to add pizzazz to your Web
site. I started with a basic explanation of this simple programming lan­
guage, and then I showed you how to test browser compatibility. I also
demonstrated how to create fun graphical rollovers with just a few lines

manipulate the system clock for different results. Finally, I explored a
few calculators along with the interface between JavaScript and HTML
forms. The next chapter switches gears and explores the nooks and
crannies of Cascading Style Sheets—a must read!

557386 Ch12.qxd 4/2/04 10:16 AM Page 261

�12
Advanced
Cascading

chapter

Style Sheets

parts

them

Using visibility to control the display

Designing three-dimensional pages
with Z-indexes

� In This Chapter
Examining boxes and containers

Getting to know the CSS container

Assigning container dimensions

Putting containers where you want

By this point, I hope that you’re comfortable with my convention of referring
to the space that a Web-page element occupies as a container, because this

session is going to focus on the concept of containers and how they affect your
Web design in the CSS world. So jump right in!

Boxes and Containers
If you’ve been working with HTML for a while, you are already familiar with the
containers that comprise a page. Whether a container is as overt as a data cell in
a table, a paragraph, or a div, or as subtle as a hypertext reference or italicized
passage, you construct all your Web pages from containers within containers
within containers.

In regular HTML, this concept isn’t really that important because, for the most
part, you can’t do anything with the containers or even really affect their layout,
other than perhaps by using cellspacing and width on a table or margin attrib­
utes in a body tag.

557386 Ch12.qxd 4/2/04 10:16 AM Page 262

�

262 Creating Cool Web Sites with HTML, XHTML, and CSS

Cascading Style Sheets are a different story, however; just about every HTML tag turns out to
be a container—and you can modify them all to suit your needs!

As a simple example, consider the following HTML block:

<body>

<table>

<tr><td>

<p>

This is an <i>example</i> to explore.

</p>

</td></tr>

</table>

</body>

How many different containers do you count in this example?

I count six. They’re easier to see if I indent things to suggest the containers at work, as in the
following version:

<body>

<table>

<tr>

<td>

<p>

This is an

<i>

example

</i>

to explore.

</p>

</td>

</tr>

</table>

</body>

If you imagine each level of container having its own attributes, you can see where the cascad­
ing part of Cascading Style Sheets can really force you to keep track of everything happening
on your page and not just the closest enclosing tag values.

In the CSS world containers are said to nest, which means that the <i></i> container nests
within the <p></p> container, the <td></td> container, and so on. Furthermore, the <i></i>
container is the child of the <p></p> container. You also sometimes state this relationship by
calling the <p></p> container the parent of the <i></i> container.

557386 Ch12.qxd 4/2/04 10:16 AM Page 263

263 �Chapter 12: Advanced Cascading Style Sheets

The Different Parts of a Container
Before I explore the elements of each container, take a look at Figure 12-1:

Image or text
(container contents)

Border Padding Margin
Figure 12-1: Margins, padding, and borders on a CSS container.

As you can see in Figure 12-1, an invisible buffer zone, or a padding, surrounds every element
on a Web page. That buffer zone is identical in concept to the cellpadding attribute of a table
data cell. On the very edge of the padding is a border, which is almost always invisible; and
the space between the border and the rest of the contents of the page is the margin of the
element.

Margins
The element of a container that people change most often is the margin. In a way, that process
is analogous to setting the margin in your document before typing in a report, but it’s consid­
erably more powerful.

You set and alter margins in CSS by using the margin attribute, which is actually a shorthand
way to access margin-left, margin-right, margin-top, and margin-bottom. You can give
each of these attributes a different value—either a numeric measure (in, cm, em, and so on) or
a percentage value. Because you almost always change all four margins at the same time,
the margin attribute is often a convenient alternative.

557386 Ch12.qxd 4/2/04 10:16 AM Page 264

�

264 Creating Cool Web Sites with HTML, XHTML, and CSS

The following example, from Arthur Conan Doyle’s Sherlock Holmes story, A Scandal in
Bohemia, shows how these values can affect layout:

<body style=”margin: 1cm; “>

<p style=”margin: 1cm;”>

“I am about to be married.”

</p><p style=”margin: 1cm;”>

”So I have heard.”

</p>

<p style=”margin-right: 3cm;”>

“To Clotilde Lothman von Saxe-Meningen, second daughter

of the King of Scandinavia. You may know the strict

principles of her family. She is herself the very soul

of delicacy. A shadow of a doubt as to my conduct would

bring the matter to an end.”

</p><p>

“And Irene Adler?”

</p><p style=”margin-left: 25%”>

“Threatens to send them the photograph. And she will

do it. I know that she will do it. You do not know her,

but she has a soul of steel. She has the face of the

most beautiful of women, and the mind of the most

resolute of men. Rather than I should marry another

woman, there are no lengths to which she would not

go—none.”

</p>

</body>

Figure 12-2 shows how you can give the different paragraphs dramatically different spacing
and layout simply by changing the margin settings. Notice that, by setting a default margin
of 1cm in the <body> tag, I force more white space around the entire contents of the page, to
which each paragraph container (other than “And Irene Adler?”) adds its additional margin
spacing. Most important, remember that margins affect top and bottom spacing in addition
to left and right spacing.

The margin shorthand is the most complex shorthand attribute that you’ve seen so far: If you
specify a single value, it applies to all four sides. Specify two values, and the first becomes the
top and bottom whereas the second becomes the left and right. Specify three values, and you
specify the top, left and right, and bottom margins, respectively. Specify four values, and
you specify each of the four possible sides, proceeding clockwise from the top: top, right,
bottom, and left.

557386 Ch12.qxd 4/2/04 10:16 AM Page 265

265 �Chapter 12: Advanced Cascading Style Sheets

Figure 12-2: Margin spacing dramatically changes the appearance of text. Compare the margins surrounding each
paragraph.

So that you don’t think that margins only create mass confusion on your page, try to visual­
ize the result of the following set of styles:

<STYLE TYPE=”text/css”>

BODY { margin: 1cm; }

P { margin-left: 1cm; }

H1 { margin-left: -5mm; }

H2 { margin-left: -5mm; }

</STYLE>

If you’re imagining an attractive indented paragraph format with headers that outdent, you’re
right!

�
Did you notice the margin-left attribute in the last example? If you don’t want to
use the margin shorthand, you can specify any (or all) of the four margin values note for a container by using margin-left, margin-right, margin-top, and margin-
bottom.

Borders
The best way to understand the different containers is to draw a box around them all—literally.
As you saw in Figure 12-1, every container includes three elements: an external margin, a
border, and an internal padding.

557386 Ch12.qxd 4/2/04 10:16 AM Page 266

�

266 Creating Cool Web Sites with HTML, XHTML, and CSS

The border is the most obvious visual element, so I’m going to explore some of the CSS border
capabilities, and then take a look at container padding. After you see the impact of borders, the
effect of the padding becomes quite obvious.

A number of different CSS attributes enable you to define the characteristics of a container
border: border-width, border-style, and border-color. To demonstrate, I add the follow­
ing style to the very top of the HTML that I used for Figure 12-2:

<style type=”text/css”>
body { margin: 1cm;

border-width: 4px; border-style: solid;
border-color: #999; }

</style>

Figure 12-3 shows what this addition does: It draws an attractive four-pixel-wide gray box
around the contents of this page of text.

Figure 12-3: A basic body border makes the page considerably more visually interesting.

The border-width attribute can take a numerical measure, as you see here, or you can
simply specify thin, medium, or thick. The border-color attribute can also take any of the
usual color specifications, depending on your personal preference.

Multiple value options
Both border-width and border-color can take more than one value if you want finer control
over your presentation, so you can achieve a left-margin-only border by using the following
example:

border-width: 0 0 0 3px;

557386 Ch12.qxd 4/2/04 10:16 AM Page 267

267 �Chapter 12: Advanced Cascading Style Sheets

The code for a margin where the top and bottom borders are blue, the right is green, and the
left is yellow, is written as follows:

border-color: blue green blue yellow;

Like the multiple-value margin attribute in the section “Margins,” these two styles (border
and padding) also interpret values as top, right, bottom, and left. If you specify only two val­
ues, the attribute interprets them as top/bottom and then left/right, and if you specify three
values, it interprets them as top, left/right, bottom.

Just as you can sidestep the order of parameters to the margin style by using margin-left,
margin-right, and so on, you can also specify sides by using border-width or border-
color.

Here’s another way to specify a three-pixel-wide left border:

border-left-width: 3px;

And here’s another way to specify the rainbow border:

border-bottom-color: blue;
border-top-color: blue;
border-right-color: green;
border-left-color: yellow;

As a general rule, if you’re going to specify different widths for different sides of a border ele­
ment, it’s good practice to use the explicit side name to avoid confusion.

� To add to the potential confusion, a shorthand exists for each of the sides of the
tip border, too. Use border-left: and you can specify width, color, and style all

at once: border-left: 3px solid black.

One more element to consider before I get to the fun border-style values is border-
collapse. The border-collapse CSS attribute takes two possible values: collapse or
separate. This attribute comes into play only if two borders would otherwise touch each
other on the page. If you specify collapse, the two borders merge and become one border
(the size of the larger of the two, usually), whereas if you specify separate, they both show
up, even if the result is essentially a double-wide border.

Border-style values
The most interesting of the border attributes is border-style, because it makes a number of
way-cool values available to the page designer. See Table 12-1 for a list.

557386 Ch12.qxd 4/2/04 10:16 AM Page 268

�

268 Creating Cool Web Sites with HTML, XHTML, and CSS

Table 12-1: The Many Values of border-style

Border Style Name Explanation

none No border (overrides parent border style).

hidden Hidden border (again, overrides parent border style).

dotted Dotted line.

dashed Dashed line.

solid Solid line, no shading.

double Double solid line.

groove Drawn as if it’s carved into the screen.

ridge Similar to groove but with an outward rather than inward cut appearance.

inset Appears to indent the container’s contents into the screen.

outset Similar to inset but pushes contents outward.

These different values become quite apparent in the following example:

<style type=”text/css”>
body { margin: 1cm;

border-width: 10px; border-style: groove;

border-color: #999999; padding: 5px; }

</style>

<body>

<p style=”border: 10px inset; “>

“I am about to be married.”

</p><p style=”border: 10px dashed;”>

”So I have heard.”

</p><p style=”border: 10px outset;”>

“To Clotilde Lothman von Saxe-Meningen, second daughter

of the King of Scandinavia. You may know the strict

principles of her family. She is herself the very soul

of delicacy. A shadow of a doubt as to my conduct would

bring the matter to an end.”

</p><p style=”border: 10px double;”>

“And Irene Adler?”

</p><p style=”border: 10px dotted;”>

“Threatens to send them the photograph. And she will do

it. I know that she will do it. You do not know her, but

she has a soul of steel. She has the face of the most

beautiful of women, and the mind of the most resolute of

men. Rather than I should marry another woman, there are

no lengths to which she would not go—none.”

</p>

</body>

557386 Ch12.qxd 4/2/04 10:16 AM Page 269

269 �Chapter 12: Advanced Cascading Style Sheets

Take a look at Figure 12-4 and you see how this example renders in Internet Explorer. Quite
a busy page all of a sudden, isn’t it?

Figure 12-4: The border-style attribute values produce a drastically different page in Microsoft Internet Explorer.

In Figure 12-4, although Internet Explorer doesn’t appear to implement the inset and outset

border styles, it actually does, but it just doesn’t know how to render them visible if they’re

black.

�
Since both Figure 12-4 and Figure 12-5 are in color, a quick visit to http://

on the www.intuitive.com/coolsites/ might help you visualize what each figure looks

web like on-screen. Reproducing colors in a black-and-white book is difficult!

Padding

The next topic to consider in dealing with container spacing is the padding, which affects the

space between the border and the contents of the container. In the example in the preceding

section, I added padding: 5px; to ensure that the outermost border and the borders of each

paragraph container don’t touch, but instead maintain a fixed pixel space from each other.

The following example gives you one more variation on the Holmes snippet, with padding

added within the many different containers to help you clearly see the difference. Watch for

the negative padding to see what happens!

557386 Ch12.qxd 4/2/04 10:16 AM Page 270

�

270 Creating Cool Web Sites with HTML, XHTML, and CSS

<style type=”text/css”>
body { margin: 1cm;

border-width: 10px; border-style: groove;

border-color: #999999; padding: 5px; }

</style>

<body>

<p style=”border: 10px inset blue; padding: 5px; “>

“I am about to be married.”

</p><p style=”border: 10px dashed green; padding: 1em;”>

”So I have heard.”

</p><p style=”border: 10px outset yellow; padding: -10px;”>

“To Clotilde Lothman von Saxe-Meningen, second daughter of

the King of Scandinavia. You may know the strict principles

of her family. She is herself the very soul of delicacy.

A shadow of a doubt as to my conduct would bring the matter

to an end.”

</p><p style=”border: 10px double red; padding: 2%;”>

“And Irene Adler?”

</p><p style=”border: 10px dotted; padding: 1mm;

border-top-color: blue; border-left-color: red;

border-bottom-color: yellow; border-right-color: cyan;

border-top-width: 4px;”>

“Threatens to send them the photograph. And she will do it.

I know that she will do it. You do not know her, but she

has a soul of steel. She has the face of the most beautiful

of women, and the mind of the most resolute of men. Rather

than I should marry another woman, there are no lengths

to which she would not go—none.”

</p>

Figure 12-5 shows how padding affects container borders. Notice in particular that the spacing
around each paragraph is different, and that the width of the paragraphs has changed.

Notice the complex border specification of the very last paragraph and its results on-screen.
It’s quite festive! And did you catch that the browser interprets a negative padding as a zero-
padding request? That’s quite fortunate, in my opinion; otherwise you might have some
pretty peculiar and unreadable results.

557386 Ch12.qxd 4/2/04 10:16 AM Page 271

271 �Chapter 12: Advanced Cascading Style Sheets

Figure 12-5: Padding dramatically changes the feel of container borders.

Container Dimensions
Two key CSS attributes enable you to control the dimensions of each container of information
on your Web page: width and height. The following example shows how you can use them
to specify the exact container size you want, regardless of current page layout:

<p style=”width: 50%; margin-left: 25%;
border: 1px solid; padding: 2px;”>

The stout gentleman half rose from his chair and gave

a bob of greeting, with a quick little questioning

glance from his small fat-encircled eyes.

</p>

<p>

“Try the settee,” said Holmes, relapsing into his

armchair and putting his fingertips together, as was

his custom when in judicial moods. “I know, my dear

Watson, that you share my love of all that is bizarre

and outside the conventions and humdrum routine of

everyday life. You have shown your relish for it by

the enthusiasm which has prompted you to chronicle,

and, if you will excuse my saying so, somewhat to

embellish so many of my own little adventures.”

</p>

557386 Ch12.qxd 4/2/04 10:16 AM Page 272

�

272 Creating Cool Web Sites with HTML, XHTML, and CSS

For the CSS attributes listed in the first paragraph that I explained earlier in this chapter,
here’s a review: I’m specifying here that the first container (paragraph) is 50 percent of the
width of the parent container (the body), with a left margin that’s 25 percent of the width of
the parent container (effectively centering the material). A one-pixel, solid-black border is
drawn around the contents of the container, with a two-pixel padding. The results are as
shown in Figure 12-6.

Figure 12-6: Width can profoundly affect the appearance of material on a Web page.

The value of the width: attribute is obvious, but the value of height: is a bit subtler.

Setting the container height
By default, containers are automatically created at the minimum height necessary to contain
all their information. If you specify a height value, however, the container takes on a fixed
size and no longer automatically expands to include all the information. If you have more
material than fits in the specified container size, the material spills out of the container. You
can use the overflow attribute (which I talk about in the section “Clipping Containers,” later
in this chapter) to duplicate some of the Internet Explorer-only iframe HTML tag characteris­
tics, but I’m just going to let it spill over for this example.

The only change in HTML between what you see in Figures 12-6 and 12-7 is that I add
height: 1em; to the style attribute of the first paragraph for the second figure, as shown in
the following example:

<p style=”width: 50%; margin-left: 25%; height: 1em;

border: 1px solid; padding: 2px;”>

As a result, specifying a height that’s insufficient for the contents of a container can give you
bizarre results, as Figure 12-7 demonstrates when you view this page in Netscape 7.1.

557386 Ch12.qxd 4/2/04 10:16 AM Page 273

273 �Chapter 12: Advanced Cascading Style Sheets

Figure 12-7: Don’t specify a height that’s too small to contain the text, or the text spills out of the container.

Text and container flow
To really understand why the height: attribute is useful, look at the float: attribute, which
enables you to align a container relative to the rest of the content of the page.

The best way to understand how the float: attribute works is to recognize that it’s exactly
the same as the align attribute of the <table> tag. Within a <table> tag, you can specify
align=left or align=right, and the subsequent material flows around the table on the side
other than the one that you specify. To phrase it differently, left alignment causes the table to
align against the left margin, with the subsequent text flowing to its right.

The float: attribute works in the same way, as the following example shows:

<p style=”width: 50%; margin: 10px; background-color: #FDF;
float: left; border: 1px solid; padding: 2px;”>

The stout gentleman half rose from his chair and gave a bob

of greeting, with a quick little questioning glance from

his small fat-encircled eyes.

</p>

<p>

“Try the settee,” said Holmes, relapsing into his armchair and

putting his fingertips together, as was his custom when in

judicial moods. “I know, my dear Watson, that you share my love

of all that is bizarre and outside the conventions and humdrum

routine of everyday life. You have shown your relish for it by

the enthusiasm which has prompted you to chronicle, and, if you

will excuse my saying so, somewhat to embellish so

many of my own little adventures.”

</p>

557386 Ch12.qxd 4/2/04 10:16 AM Page 274

�

274 Creating Cool Web Sites with HTML, XHTML, and CSS

Notice that, in addition to specifying float: left; in the style attribute, I also add a 10­
pixel margin around all four sides of the container border and spruce things up with a light-red
background (which appears gray in the black and white figure).

� Technically, #FDF results in a light purple—red + blue = purple—but your color may
note vary, as mine does! If you really want purple, try #C9F instead.

Figure 12-8 shows the attractive results and should certainly inspire you regarding ways to
improve long passages of text!

Figure 12-8: Float and container tweaks produce a delightful result.

The float: CSS attribute can take three possible values: left, right, or none; you use the
last to override the parent float: value if you specify one.

Remember that this attribute affects any container, even one that has child containers, so you
can use this layout technique with a parent container that includes multiple paragraphs of text,
graphics, hyperlinks, or whatever. It still acts as a single unit for any CSS presentation speci­
fications that you apply at the parent container level.

Container Positioning
The idea that containers can hold child containers and that you can alter the appearance of
the parent through CSS is a cornerstone of advanced Dynamic HyperText Markup Language
(DHTML) Web design. It’s also why accurately and precisely positioning the container is so
important. In the CSS world, you have four different container-positioning options: absolute,
relative, fixed, and static.

The good news is that one of these—static—is the default, so you’re already familiar with it.
In static positioning, the container lays out as it would if you didn’t specify any positioning,
with preceding material appearing on-screen before the container and subsequent material
appearing after the container.

557386 Ch12.qxd 4/2/04 10:16 AM Page 275

275 �Chapter 12: Advanced Cascading Style Sheets

Absolute positioning
Absolute positioning offers a way to specify, pixel by pixel, exactly where the container appears
on-screen. You set this positioning through a combination of three CSS attributes. The most
obvious is position: with the value absolute, but you also need to specify some combination
of the top:, left:, right:, and bottom: values, all of which are relative to the edges of the
parent container.

Those last few words are so critical, I want to repeat them again: all of which are relative to
the edges of the parent container—not relative to the Web page itself. If you specify top: and
left:, for example, they’re relative to the top-left corner of the parent container.

Here’s an example of how you can use absolute positioning to change the appearance of our
working passage from Arthur Conan Doyle’s novel, The Red-Headed League:

<p style=”width: 50%; margin: 10px; color: red;

position: absolute; top: -6px; left: -6px;

border: 1px solid; padding: 2px;”>

The stout gentleman half rose from his chair and gave a bob of

greeting, with a quick little questioning glance from his small

fat-encircled eyes.

</p>

<p>

“Try the settee,” said Holmes, relapsing into his armchair and

putting his fingertips together, as was his custom when in

judicial moods. “I know, my dear Watson, that you share my love

of all that is bizarre and outside the conventions and humdrum

routine of everyday life. You have shown your relish for it by

the enthusiasm which has prompted you to chronicle, and, if you

will excuse my saying so, somewhat to embellish so many of my own

little adventures.”

</p>

Figure 12-9 shows the results.

Figure 12-9: Absolute positioning often layers containers atop each other.

557386 Ch12.qxd 4/2/04 10:16 AM Page 276

�

276 Creating Cool Web Sites with HTML, XHTML, and CSS

I don’t know about you, but Figure 12-9 gives me a bit of a headache! The good news is that
you have a couple of different ways to address the overlapping container problem. The fastest
solution is to simply restore the background color so that you can’t see the text of the second
paragraph, which the following example accomplishes:

<p style=”width: 50%; margin: 10px; background-color: #C9F;

position: absolute; top: -6px; left: -6px;

border: 1px solid; padding: 2px;”>

When the preceding code replaces the previous <p> tag and style attributes, the result is as
shown in Figure 12-10. You can see this is considerably easier on the eye.

Figure 12-10: Specifying a background color hides the overlapping text problem.

It’s not a completely satisfying solution, however, because you still face the issue of the miss­
ing text. In this particular example, the best solution is to use the float: left CSS attribute.
Experiment with it yourself and find what works best for you.

Relative positioning
Absolute positioning is absolute only within the parent container, and most DHTML designers
prefer relative positioning, which they consider part of the normal flow of the document for
layout. In the example in the preceding section, switching from absolute to relative solves the
overlap problem, but in a somewhat inelegant manner (leaving a big empty space to the right
of the purple box), as follows:

<p style=”width: 50%; margin: 10px; background-color: #C9F;

position: relative; top: -6px; left: -6px;

border: 1px solid; padding: 2px;”>

Figure 12-11 shows the result of replacing the existing <p> tag style attribute with the val­
ues shown in the preceding code.

557386 Ch12.qxd 4/2/04 10:16 AM Page 277

277 �Chapter 12: Advanced Cascading Style Sheets

Figure 12-11: Relative positioning makes the container part of the regular document flow.

In this case, float: left produces a more attractive result.

So what’s the point?
To see why the positioning of elements can prove so useful, I need to change the perspective
a bit. Instead of merely providing you with a tool to create big containers of information, rela­
tive positioning can actually become your best friend when you want to exert fine control over
the positioning of inline elements.

The vertical-align CSS attribute enables you to change the relative location of an element,
such as the trademark symbol, in a line of text. Relative positioning offers far greater control
over inline positioning, and that’s its greatest value, as the following example shows:

<style type=”text/css”>
.tm { position: relative; top: -2.2em; left: -2em;

font: 8pt bold; border: 1px red groove; padding: 1px;
background-color: #009; color: white; }

</style>

</head>
<body>

<p style=”font: 36pt bold Courier;”>
This book has been brought to you by
J. Wiley & Sons, Inc.
tm—

formerly Hungry Minds, Inc., formerly IDG Books, Inc.

</p>

Here I create a new class, .tm, that creates a small blue box with white tm lettering inside
that’s actually a hyperlink to the trademark information on the site. By using the top and
left attributes, I can carefully tune exactly where the box appears on the layout, pixel by
pixel.

557386 Ch12.qxd 4/2/04 10:16 AM Page 278

�

278 Creating Cool Web Sites with HTML, XHTML, and CSS

�
A figure illustrating this example appears on the book’s Web site at http://

on the www.intuitive.com/coolsites/.

web

Fixed positioning
You have one more possible positioning value, fixed. This position is essentially the same as
absolute positioning with one spiffy difference: Fixed containers don’t scroll as the rest of the
page scrolls.

Fixed positioning offers another way to get around the hidden text problem: Simply let the
user scroll to reveal the otherwise hidden text. Probably not the most user-friendly solution,
but it works!

Here’s a nifty fixed header example that shows up on this book’s Web site (at http://www.
intuitive.com/coolsites/, in Chapter 12).

� Before you jump up and try this fixed position example on your computer, I give
caution you fair warning: Windows browsers don’t support fixed positioning in my tests.

overflow, and it offers three possible values: hidden, visible, and scroll hid-
den or scroll clip

If not, the material is hidden.

Now for the bad news:

overflow or clip as the CSS

clip attribute as rect(top, right, bottom, left), but Microsoft
clip rect(top,

left, width, height).

I encourage you to experiment with a combination of size, overflow, and clip values to see

Clipping Containers
The capability to size and position containers with a high degree of precision is useful, but if the con­
tents are larger than the container parameters, browsers ignore the specified dimensions. Two CSS
attributes offer control over what happens if the contents of a container are larger than the size that
you specify for the container itself.

The first is . For
to work, you must define a clipping region, using the CSS attribute. You define

the clipping region as a rectangle. Think of it as a stencil cutout superimposed atop the region, with its
top left and bottom right vertices defined. If the material can be seen through the cutout, it’s displayed.

Very few of the browsers available as of this writing support either
specification defines them. Worse, the Cascading Style Sheet 2.0 specification defines the rectangular
region associated with the
Internet Explorer, in its flaky implementation of , expects a rectangular definition of

whether you obtain results that are a reasonable solution for your specific design needs!

557386 Ch12.qxd 4/2/04 10:16 AM Page 279

279 �Chapter 12: Advanced Cascading Style Sheets

Here’s how fixed positioning looks in HTML:

<p style=”position: fixed; width: 75%;

top: -25px; left: 12%; background-color: #CFC;

font: 18pt bold Arial; padding: 8px;

border: 3px dashed #090; text-align: center;”>

ADVENTURE II. THE RED-HEADED LEAGUE

</p>

Hide Containers with the Visibility: Attribute
Examples in preceding sections demonstrate how you can assign containers a wide vari-
ety of layout attributes and can even make them float above other containers by setting
position changes. Something that you may find remarkable is that every container also has
a visibility: attribute—one that controls whether its contents appear on-screen or remain
hidden to the viewer.

The following example shows how this visibility attribute works:

<p>

As he spoke there was the sharp sound of horses’

hoofs and grating wheels against the curb, followed

by a sharp pull at the bell. Holmes whistled.</p>

<p style=”visibility: hidden;” ID=”holmes1”>

“A pair, by the sound,” said he. “Yes,” he continued,

glancing out of the window. “A nice little brougham

and a pair of beauties. A hundred and fifty guineas

apiece. There’s money in

this case, Watson, if there is nothing else.”

</p>

<p>

“I think that I had better go, Holmes.”

</p><p>

“Not a bit, Doctor. Stay where you are. I am lost

without my Boswell. And this promises to be interesting.

It would be a pity to miss it.”

</p>

Figure 12-12 shows the results.

557386 Ch12.qxd 4/2/04 10:16 AM Page 280

�

�

280 Creating Cool Web Sites with HTML, XHTML, and CSS

Figure 12-12: You still must allocate space even for hidden containers.

The most important thing to notice about Figure 12-12 is that the paragraph of information
that’s hidden still has its space allocated in the layout of the page. To work with the visibility:
of a container, you specify a unique ID (in this case, “holmes1”).

To go further, you must jump into the world of JavaScript . . .

Controlling visibility with JavaScript
The visibility: attribute isn’t of much use unless you can make it visible on demand. To
accomplish any event-based scripting on a Web page requires JavaScript, the official scripting
language of HTML 4.0 and CSS 2.0.

x-ref For a refresher on JavaScript, flip back to Chapter 11.

The Web browser uses a document object model (DOM), and every container and element

on the page is accessible through an appropriate reference to that element in the DOM.

�
To learn more about document object models, surf over to http://www.w3.org/

on the DOM/.

web

To switch the value of the visibility: attribute from hidden to visible, reference the
paragraph by ID through the circuitous route of the DOM itself, as follows:

document.all.holmes1.style.visibility=”visible”;

I’d better explain.

557386 Ch12.qxd 4/2/04 10:16 AM Page 281

281 �Chapter 12: Advanced Cascading Style Sheets

You’re already familiar with the idea that a series of nested containers surrounds a given
element on your Web page, right? Simply imagine that you now want a method of referring
uniquely to any of the elements in any of the containers, and you see that this dot notation
(that is, separating elements with a period) makes sense. In fact, by using a unique ID value,
all you really have in the preceding line is the following:

document.all.holmes1

This line refers uniquely to the container (paragraph) that you designate as holmes1 on the
Web page.

After you initially specify a unique element, you can access a wide variety of different attributes
of that container by further utilizing the dot notation. To get to visibility:, you must use the
.style element and then specify the exact name of the attribute that you want. Conceptually,
it’s as follows:

unique container descriptor.style.visibility

After you specify the visibility: attribute of the style of the holmes1 paragraph, you can
change its value by using a simple assignment statement in JavaScript, as follows:

document.all.holmes1.style.visibility = “visible”;

I hope that makes a bit more sense.

� If you can’t get the examples in this session to work, perhaps your Web browser is
tip using an older document model. If that’s the case, try using document.holmes.

visibility = “visible”; instead.

JavaScript is all eventbased, so to test this snippet of code, I’m going to associate the reas­
signment of visible to a simple event that occurs on all Web pages: onload. After you spec­
ify this event in the <body> tag of a page, onload enables you to easily specify JavaScript to
execute as soon as the Web browser receives every element of the page from the network.

Inline JavaScript looks a little bit different from inline CSS because you don’t have a single
attribute that you always use, style. Instead, you list the desired event, with the associated
JavaScript code on the right-hand side of the statement.

The <body> tag of your page may look like this:

<body onload=”document.all.holmes1.style.visibility=’visible’;”>

By convention, many people write JavaScript events in mixed upper- and lower-
note case letters, although to ensure that your page remains fully XHTML compliant, � JavaScript events should be all lowercase.

557386 Ch12.qxd 4/2/04 10:16 AM Page 282

�

282 Creating Cool Web Sites with HTML, XHTML, and CSS

Following is a complete listing of the source for Figure 12-13:

<body onload=”document.all.holmes1.style.visibility=’visible’;”>

As he spoke there was the sharp sound of horses’

hoofs and grating wheels against the curb, followed

by a sharp pull at the bell. Holmes whistled.

<p style=”visibility: hidden;” id=”holmes1”>

“A pair, by the sound,” said he. “Yes,” he continued,

glancing out of the window. “A nice little brougham

and a pair of beauties. A hundred and fifty guineas

apiece. There’s money in

this case, Watson, if there is nothing else.”

</p>

<p>

“I think that I had better go, Holmes.”

</p><p>

“Not a bit, Doctor. Stay where you are. I am lost

without my Boswell. And this promises to be interesting.

It would be a pity to miss it.”</p>

If you view this example in a Web browser, you may expect the hidden paragraph to appear
along with the other paragraphs of material.

Figure 12-13: JavaScript materializes the otherwise invisible paragraph.

This example isn’t too scintillating, but what if you add the following two hypertext reference
links to this page? They both associate with the onmouseover event, which triggers whenever
the user moves the cursor over the highlighted text.

make it visible |

hide it

557386 Ch12.qxd 4/2/04 10:16 AM Page 283

283 �Chapter 12: Advanced Cascading Style Sheets

Now you can start to see where CSS plus JavaScript can really give you a tremendous
amount of power! In this example, moving your cursor over the link hide it sets the
visibility: of the holmes1 element to hidden, hiding the paragraph of text. Move your
cursor over make it visible and the visibility: of holmes1 is set to visible, revealing
the paragraph again.

� The href=”#” is a common trick for a null hypertext reference that you tie to a
note JavaScript event. If you click it, you go to the same Web page, effectively making

it an empty reference.

You can also use to tie a JavaScript event to a container, as in the following example:

“Not a bit, Doctor.

Stay

where you are.

I am lost without my

Boswell. And this promises to be interesting.

It would be a pity to miss it.”

The interesting thing about using is that the enabled text appears completely identical
to the surrounding text. Go back to Figure 12-13 and look closely at the two sentences shown
in the preceding example: Stay where you are. and It would be a pity to miss it.
You can see no visible indicator that they’re turbocharged, capable of hiding or displaying a
paragraph of the text on the user’s whim!

The display: attribute controls visibility and flow
Although the visibility: attribute is definitely valuable, it has one characteristic that makes
it less than the ideal layout element: The browser allocates space for the invisible element
even if it never appears on-screen. You can see that in Figure 12-12.

CSS offers a second style attribute that enables you to simultaneously control the visibility
and whether the space for the element is allocated: display:.

According to the CSS 2.0 specification, the display: attribute offers a whole group of possi­
ble values, as enumerated in Table 12-2.

Table 12-2: Possible Values for Display

Value Explanation

inline Container with no break before or after.

block Container with a forced line break above and below.

list-item Element that creates both a box and list-item box (indented).

Continued

557386 Ch12.qxd 4/2/04 10:16 AM Page 284

�

284 Creating Cool Web Sites with HTML, XHTML, and CSS

Table 12-2: Continued

Value Explanation

run-in Element that you can insert into the subsequent container.

compact Element that you can place adjacent to the subsequent container.

marker Used for pseudocontainer references.

inline-table Inline table container (not possible in regular HTML; regular tables are
always block elements).

table Table container.

table-cell Table data-cell container.

table-row Table data-row container.

table-row-group Table data-row group container.

table-column Table column container.

table-column-group Table column group container.

table-header-group Table header group container.

table-footer-group Table footer group container.

table-caption Table caption container.

none Invisible container that gets no allocation for layout and flow.

The only values that need interest you are none, block, and inline. The attribute display:
none sets the visibility: of the element to hidden and frees up any allocated space for
the container in the page layout. The other two possibilities, block and inline, illustrate the
same distinction that differentiates <div> and : The former forces a blank line above
and below, whereas the latter displays no break from the surrounding material.

Here’s how you can use display: none with the buttons of the last paragraph as
your inspiration for this approach:

<body>
<p>

As he spoke there was the sharp sound of horses’

hoofs and grating wheels against the curb, followed

by a sharp pull at the bell. Holmes whistled.

</p>

<div id=”holmes1”

style=”display: none; font-style: italic;”>

“A pair, by the sound,” said he. “Yes,” he continued,

glancing out of the window. “A nice little brougham

and a pair of beauties. A hundred and fifty guineas

apiece. There’s money in

this case, Watson, if there is nothing else.”

</div>

557386 Ch12.qxd 4/2/04 10:17 AM Page 285

285 �Chapter 12: Advanced Cascading Style Sheets

<p>

“I think that I had better go, Holmes.”

</p><p>

“Not a bit, Doctor.

Stay where you are.

I am lost without my

Boswell. And this promises to be interesting.

<span

onmouseover=”document.all.holmes1.style.display=’none’;”>

It would be a pity to miss it.”

</p>

</body>

This example is particularly interesting to experiment with on your own computer, but
Figures 12-14 and 12-15 show how the page initially loads and how the page looks after
I move my cursor over the sentence Stay where you are.

Figure 12-14: The default layout with the <div> block hidden from view.

Notice how no space or other indication in Figure 12-14 hints at anything lurking beneath the
surface on this Web page; then take a look at Figure 12-15.

Figure 12-15: The mouse is over the magic phrase, so the hidden paragraph emerges.

557386 Ch12.qxd 4/2/04 10:17 AM Page 286

�

286 Creating Cool Web Sites with HTML, XHTML, and CSS

In this case, the JavaScript is different because I’m working with a different CSS attribute.
Instead of visibility: hidden and visibility: visible, the settings are display:
none and display: block. Inline elements use display: inline instead.

Here’s how you can use display: inline to make acronyms automatically spell themselves
out if someone puts the cursor over the acronym:

<span

onmouseover=”document.all.css.style.display=’inline’;”

onmouseout=”document.all.css.style.display=’none’;”>

CSS

(Cascading Style Sheets)

Type this small code snippet in and try it yourself; you’re sure to like the results!

Notice the addition of a second JavaScript event: onmouseout triggers after the cursor moves
out of the container. In essence, I set display to inline if the cursor is over the abbreviation
CSS and reset it to none after the cursor moves out.

Stacking: Using z-indexes for a 3D page
I know it may have been years ago, but do you remember your high school geometry class?
In the class, you undoubtedly learned about the three primary axes or dimensions of our
physical space. Other dimensions exist, notably time (duration), that also affect physical
space, but fortunately, I’m going to just look at the three core dimensions: height, width,
and depth.

Imagine that each container on a Web page has its own depth value and that, the deeper the
element, the lower that depth value. A depth of zero is on the bottom, and a depth of 100 is
on the topmost layer. If you have three layers, the depth values (which are known as z-index
values in DHTML) may be z=0 for the bottom, z=1 for the middle, and z=2 for the topmost
layer.

The attribute z-index easily translates this concept into CSS nomenclature. The z-index
attribute accepts a single integer value from zero to 100, with higher values positioned above
lower values on the Web page.

Here’s an example:

<div style=”position: absolute; z-index: 0;

background-color: blue; width: 250; height: 100;

top: 105px; left: 14px;”></div>

<div style=”position: absolute; z-index: 1;

background-color: red; width: 200; height: 150;

557386 Ch12.qxd 4/2/04 10:17 AM Page 287

287 �Chapter 12: Advanced Cascading Style Sheets

top: 80px; left: 40px;”></div>

<div style=”position: absolute; z-index: 2;

background-color: green; width: 100; height: 325;

top: 10px; left: 90px;”></div>

Figure 12-16 shows the result, which, on your computer screen, is quite attractive, particu­
larly if you remember that each colored box is actually a full dynamic HTML container and
can hold graphics, hypertext links, or whatever else you want.

Figure 12-16: Three boxes, neatly stacked atop each other.

Using JavaScript to change z-index values
You can initially set z-index values within the CSS, but to dynamically change them, you
must jump into JavaScript again. The onclick JavaScript event triggers the associated
script after the cursor moves into the element and the user clicks the mouse button, as the
following example demonstrates:

<div id=”blue”
style=”position: absolute; z-index: 2;

background-color: blue; width: 250;

height: 100; top: 105px; left: 14px;”

onclick=”document.all.blue.style.zIndex=100;”>

</div>

<div id=”red”

style=”position: absolute; z-index: 1;

background-color: red; width: 200;

Continued

557386 Ch12.qxd 4/2/04 10:17 AM Page 288

�

288 Creating Cool Web Sites with HTML, XHTML, and CSS

Continued
height: 150; top: 80px; left: 40px;”

onclick=”document.all.red.style.zIndex=100;”></div>

<div id=”green”
style=”position: absolute; z-index: 0;

background-color: green; width: 100;

height: 325; top: 10px; left: 90px;”

onclick=”document.all.green.style.zIndex=100;”></div>

This change appears to achieve the result that you want. You create layers that you can click
to bring to the foreground. If you try actually changing the z-index of the different layers in
your browser, however, you quickly find that, after you move all three to the z-index of 100,
they can’t move farther towards the top—so nothing changes.

One solution to this problem is to make each layer move the other layers back to their original
settings as it rises, so that each onclick looks more like the following example:

onclick=”document.all.green.style.zIndex=100;

document.all.blue.style.zIndex=2;

document.all.red.style.zIndex=1;”

This solution works (sort of), but although each layer that you click does indeed jump to the
front after you click it, your browser loses the relative z-index values of the other two layers
after they automatically reset to their original values.

A more sophisticated approach to this situation makes the requested layer’s z-index increment
by one and the z-index of the other layers decrement by one, as follows:

onclick=”document.all.green.style.zIndex += 1;

document.all.blue.style.zIndex -= 1;

document.all.red.style.zIndex -= 1;”

� Here I’m using a convenient JavaScript shorthand: The += is an increment, so a+=1
tip is exactly the same as a = a + 1; it’s just more succinct.

This solves the problem, but now a new problem appears. You don’t want any layers to ever
have a z-index of less than zero, because that’s an illegal value. If you blindly subtract from a
zIndex, you could easily end up with a negative number.

Another level of JavaScript sophistication can constrain the decrement statements so that the
script checks for a zero value before deciding to subtract one, as in the following examples:

onclick=”document.all.blue.style.zIndex += 1;

if (document.all.green.style.zIndex > 0) {

document.all.green.style.zIndex -= 1; }

if (document.all.red.style.zIndex > 0) {

document.all.red.style.zIndex -= 1; }”

557386 Ch12.qxd 4/2/04 10:17 AM Page 289

289 �Chapter 12: Advanced Cascading Style Sheets

In addition to ensuring that nothing is ever less than zero, you must also be sure that nothing
is ever greater than 100, the maximum z-index value that you can have, as the following
example shows:

onclick=”if (document.all.blue.style.zIndex < 100 {
document.all.blue.style.zIndex += 1; }

if (document.all.green.style.zIndex > 0) {
document.all.green.style.zIndex -= 1; }

if (document.all.red.style.zIndex > 0) {
document.all.red.style.zIndex -= 1; }

To understand what’s wrong with this seemingly reasonable solution, open this example from
the book’s Web site (http://www.intuitive.com/coolsites/) and click the red layer a
half-dozen times, then click the blue layer.

The result that you want is for the blue layer to move to the front after you click, but it doesn’t
work. Clicking the red layer a half-dozen times increments its z-index each time, resulting in
a red z-index of 7 (after starting out at z-index: 1, remember). Clicking blue then sets its
z-index to 1 (after starting at 2 but decrementing to zero because of the clicks on red) and
decrements the red layer from 7 to 6. Four more clicks on the blue region are necessary before
the blue layer correctly moves to the top.

The complete solution is actually to write a sophisticated JavaScript function that checks the
value of the other layers and ensures that the layer that you want increments sufficiently to move
to the front. Subsequently clicking that layer doesn’t result in any change in z-index values.

�
Netscape Navigator includes a built-in method (a fancy name for a subroutine) to
accomplish what you want: moveAbove(id). However, it requires that you use the note Netscape <layer> approach to layers rather than the more standard CSS <div>
tags, as shown here.

A JavaScript function implementing the moveAbove concept might look like this:

<script language=”JavaScript”>

function moveAboveIt(id1, id2) {
id1o = eval(“document.all.”+id1+”.style”);

id2o = eval(“document.all.”+id2+”.style”);

if (id1o.zIndex > id2o.zIndex) {

return 1; // already above, nothing to do

}

if (id2o.zIndex == 100) { id2o.zIndex -= 1; }

id1o.zIndex = id2o.zIndex + 1;

return 1;

}

</script>

557386 Ch12.qxd 4/2/04 10:17 AM Page 290

�

290 Creating Cool Web Sites with HTML, XHTML, and CSS

This example represents quite a lot of JavaScript, but it’s really rather straightforward: If id1
already has a higher z-index value than id2, the function has nothing to do and exits directly.
If id2 is already at 100, id1 can’t be one higher, so id2 must decrement by one, which you
do by using the -=1 shortcut. Finally, id1’s z-index is set so that it’s one higher than id2’s
z-index.

Meaning

margin

margin-left

margin-right

margin-top

margin-bottom

padding

padding-left Specifies left padding setting only

padding-right Specifies right padding setting only

padding-top Specifies top padding setting only

padding-bottom Specifies bottom padding setting only

border
include border-left, border-right, border-top, or border-
bottom).

width

height

float

position

top

left

overflow
clip)

clip overflow attribute

visibility

display

zindex

Table 12-3: CSS Styles Covered in This Chapter

Tag

Specifies spacing between container contents and surrounding material

Specifies left margin setting only

Specifies right margin setting only

Specifies top margin setting only

Specifies bottom margin setting only

Specifies spacing between container contents and container edge

Specifies color, style, and size of container border element (other values

Specifies container width

Specifies container height

Specifies container’s relationship container to surrounding material

Specifies container’s position on page.

Specifies position of container’s top relative to its parent container

Specifies position container left side relative to its parent container

Determines what Web browser does with content that doesn’t fit in con­
tainer (must define a clipping region with

Defines a clipping region to use with

Indicates whether container is visible or not

Controls container visibility and flow in page layout

Specifies container’s relative z-index value

557386 Ch12.qxd 4/2/04 10:17 AM Page 291

�Chapter 12: Advanced Cascading Style Sheets 291

you delved into positioning containers on your pages, and how working

�Summary
In this chapter, you learned how containers function within CSS and
the myriad ways you can control and modify a container’s presentation
on your Web pages. Not only did you explore the difference between
borders, margins, and padding as they relate to containers, you also
examined how content flows both within and around containers. Finally,

with z-index values affects where a container’s content appears on your
Web pages. In Chapter 13, you will learn about weblog, a different and
increasingly popular way to manage your Web site.

557386 Ch12.qxd 4/2/04 10:17 AM Page 292

557386 Ch13.qxd 4/2/04 9:56 AM Page 293

�13Development
chapterSite

with Weblogs

Creating a weblog

� In This Chapter
Understanding weblogs?

Getting a handle on RSS

Ensuring valid RSS feeds

Of the many trends to hit the Web in the last few years, few have had more
impact on the daily experience of Web surfers than weblogs, or blogs as

they’re commonly known. Initially used as a system for creating online diaries,
they’ve expanded to encompass business and other professional uses, and you
can find weblogs at Yahoo!, the BBC World Service, Google, CNN, and many
more sites.

But don’t be intimidated! At its most fundamental, a weblog is a content manage­
ment system that lets you design the site once and then focus on the content, on
what you want to say, without worrying about CSS, HTML, and similar concerns.

To demonstrate, I will give you a guided tour of my own weblog, The Intuitive Life,
and show you how it’s built and how I can add new weblog entries with just a few
clicks. I explore RSS feeds, a core underpinning of weblog popularity. The chapter
wraps up with a quick examination of how to build your own RSS feed and vali­
date it so that even if you don’t want to use a blog, you can still reap the benefit
of these new technologies on your own site.

557386 Ch13.qxd 4/2/04 9:56 AM Page 294

�

294 Creating Cool Web Sites with HTML, XHTML, and CSS

What Is a Weblog?
Imagine a system that automatically does the following:

• Creates new Web pages that are visually consistent with the existing site

• Links all pages together

• Organizes content based on the entry date and user-defined categories

• Offers readers alternative methods of keeping track of what’s new

• Works within a Web browser

Wouldn’t that be a nice extension to your site?

These criteria are the fundamental elements of most weblog systems, and it should be imme­
diately obvious why so many people are moving towards weblog as a content management
system.

Before I proceed too much further, I want to highlight that two classes of weblog solutions are
available. The first is hosted solutions: the weblog lives on a different server. The second is
software solutions, which means a package is installed and configured on your own server
(by you or your Internet Service Provider), and the weblog lives on your own server. Both
have merit, but overall the tradeoff is that hosted solutions tend to be less flexible, whereas
software solutions are more powerful, but more complex to install.

Two examples of hosted solutions are the very popular Blogger system, now owned by
Google, and TypePad, from SixApart (the same company that produces Movable Type, a
tremendously popular software solution). Figure 13-1 shows Tim Harrington’s Blogger Web
site, and Figure 13-2 shows David Lawrence’s TypePad blog site. Both are attractive and
quite easy to read.

Which of these solutions is better? It depends on whether you want to “serve your own” or
depend on an outside server. If you’re reading this book, I’m guessing that you’re going to be
more excited about having a software solution, a weblog system that lives on your server and
lets you have complete and ultimate control over what appears, how it appears, and more.

For software solutions, the de facto standard seems to be Movable Type from SixApart. I use
Movable Type to run four different weblogs: three public and one password-protected for a
private community. Other software solutions exist, but I’m going to stick with Movable Type
in this chapter to keep things simple. The alternative software programs have the same basic
challenge of installation and configuration, followed by a typically similar interface for day-
to-day use.

557386 Ch13.qxd 4/2/04 9:56 AM Page 295

295 �Chapter 13: Site Development with Weblogs

Figure 13-1: TokyoTim’s Blogger site: http://tokyotim.blogspot.com/.

Figure 13-2: Thug #4’s TypePad site: http://david.typepad.com/.

557386 Ch13.qxd 4/2/04 9:56 AM Page 296

�

296 Creating Cool Web Sites with HTML, XHTML, and CSS

The key capability of weblogs is how much they let you customize the interface. Consider
Figures 13-3 and 13-4; both are weblogs running under Movable Type, but they’re quite dif­
ferent in appearance! This capability to customize the appearance is one of the great strengths
of Movable Type.

Figure 13-3: The Intuitive Life, a weblog by this author that uses Movable Type.

The next section digs into how a weblog works, and you can begin to see how weblogs can
improve your Web site design and deployment.

557386 Ch13.qxd 4/2/04 9:56 AM Page 297

297 �Chapter 13: Site Development with Weblogs

Figure 13-4: Dave Taylor’s Booktalk, another weblog by this author that also uses Movable Type.

Working with a Weblog
Consider three areas when working with a weblog of your own: installation, configuration, and
day-to-day entries and additions. This section looks at each in turn.

Installing a weblog
If you’ve opted for a hosted solution like TypePad or Blogger, you have no installation con­
cerns. You can go straight to work on configuration.

If you’re going to use Movable Type or a similar software solution, you must be fairly proficient
at working in the depths of your Web server, or you need to contract with someone to install
the application for you. When I installed Movable Type on my server, I followed the detailed
installation instructions from SixApart, and it took me a few hours to get everything installed
correctly.

557386 Ch13.qxd 4/2/04 9:56 AM Page 298

�

298 Creating Cool Web Sites with HTML, XHTML, and CSS

�
You can contract directly with SixApart to have one of their experts install the pack-

tip age on your server if you’re so inclined. You have to share your account password
with them, however, so be careful; that might violate the account usage policy of
your ISP.

Configuring a weblog
Both hosted and software solutions use the same basic model for configuration: You pick a
template for your site from a range of possibilities and then do either a small amount or a ton
of fine-tuning to complete things to your liking.

Configuration is really where you’ll spend lots of time. And I do mean lots of time. I probably
spent upwards of 100 hours tweaking and fiddling with the various components of my weblog
before I could finally move to another project. When I redesign my site, I’m sure I’ll once more
find the MTtemplates to be a veritable black hole.

The configuration time varies significantly based on how much you want to have your weblog
look like your existing site (and/or want it to not look like everyone else’s weblog). If you just
use a predefined template, inevitably other sites on the Web may have the same column design,
color scheme, type treatment, and so on. If that’s okay with you, you can almost completely
sidestep configuration and move onto the fun part of blogging: writing entries and beginning
to share your ideas, thoughts, and vision with others.

If you are going to dig into the design, and you’re running Movable Type, learn about the
many templates the software uses. Figure 13-5 shows the basic administrative interface for
my Intuitive Life weblog. Again, other systems have similar configuration menus.

From a configuration perspective, the buttons on the left are the most important. Start with
WEBLOG CONFIG to ensure that the basics of your weblog name, archiving policy, whether
you allow people to add comments to your blogs, and similar settings are all set to your liking.
Then define your categories with CATEGORIES and finally move into the central design area,
TEMPLATES.

�
Think twice about allowing people to add comments to your weblog. In the last
year or so blogspam, junk postings to weblogs that promote unrelated sites or busi­

caution nesses, has exploded. You can use some elegant solutions that you can learn more
about from the blog vendors, but you should anticipate that this could be a problem
as your site gets more popular.

Like many modern software systems, Movable Type is built atop a set of templates, essentially
HTML pages with lots of CSS sprinkled in, and a special scripting language that says “insert
new entry title here,” “insert entry here,” “link to archived articles here,” and so on. These are
a bit tricky to learn, but the good news is that many bloggers (as people who maintain weblogs
are called) never touch any of the scripting code and just focus instead on fine-tuning the
templates to get the look and feel they want.

Figure 13-6 shows the list of the main templates, including the two RSS feed templates,
which I discuss a bit later in this chapter. For now, focus on the main templates. The RSS
material isn’t directly read by humans so you won’t have to touch it.

557386 Ch13.qxd 4/2/04 9:56 AM Page 299

299 �Chapter 13: Site Development with Weblogs

Figure 13-5: The Movable Type administrative interface.

Figure 13-6: Editing templates in Movable Type.

557386 Ch13.qxd 4/2/04 9:56 AM Page 300

�

300 Creating Cool Web Sites with HTML, XHTML, and CSS

To edit a specific template, click on its name and something similar to Figure 13-7 is
displayed.

Figure 13-7: Viewing the CSS within Movable Type.

If you’re looking at Figure 13-7 and thinking that it looks a bit tedious, well, it is. Bloggers
who opt to really fine-tune their layout and site presentation end up spending a lot of time
getting everything to be attractive. But in defense of that, I have to say that I found the
process rather fun.

I have far too little space in this book to do justice to the complexity and capabilities of any
blogging tool, whether it’s a rudimentary hosting solution like Blogger or a sophisticated soft­
ware package like Movable Type. Instead, let me just share how easy it is to add a new entry
to the weblog after everything is configured properly!

Adding a weblog entry
The complexities of configuration are all worth it when you see how incredibly simple it is to
add a new entry to a weblog. On my browser, I have a favorites link that takes me directly to
the New Entry page. When I click that link (or click NEW ENTRY within any other area of
Movable Type), I’m taken to a page that looks like Figure 13-8:

557386 Ch13.qxd 4/2/04 9:56 AM Page 301

301 �Chapter 13: Site Development with Weblogs

Figure 13-8: Adding a new entry in Movable Type.

That’s about as complex as it gets. You can see in Figure 13-8 that I’ve already added a title
and typed in a few paragraphs of text. When I’m ready, I just click on Publish (scrolled off the
page in Figure 13-8), and I’ve added a new entry to my weblog, I’ve created a new archive
page with the article contents, and made adding the new content to my site the work of a few
minutes, not an hour or two.

Are weblogs for everyone? Probably not. Are they for you? Maybe. Spend some time exploring
the many different weblogs on the net and see what you think. Then talk with some bloggers
about what tools they use and how they like them. Finally, talk with your ISP to see if it has
anything already installed, and then don’t be afraid to take the plunge. It’s fun!

The World of RSS
As I commented earlier, if you’ve been on the Web in the last year or two, it seems inevitable
that you’ve stumbled across—or perhaps started your own—weblog. Although these online
diaries and content management systems are cool and compelling, most of the weblog tools
produce an incidental data stream that turns out to be the most valuable of all: RSS. Known as
really simple syndication, RSS is a copy of the content of the weblog in a machine-parseable
format based on XML, the eXtensible Markup Language.

557386 Ch13.qxd 4/2/04 9:56 AM Page 302

�

302 Creating Cool Web Sites with HTML, XHTML, and CSS

When I’m asked to describe what RSS actually is, I explain it with a metaphor: When you
update your Web page, how many people are aware of it? Those few who visit your site every
few days, right? But what of the people who have stopped visiting your site because the con­
tent doesn’t change frequently enough? If you go on holiday for a few weeks, do you lose
your reader base? What if, instead, you had a system that was designed to track changes and
notify people running special aggregator software when your site changes? That’s what RSS
is all about. With an RSS reader, you can keep track of the content of dozens—or hundreds—
of different Web sites, and you see only what’s new since your last visit.

With an RSS feed, people can subscribe to your feed and keep up-to-date on your Web site
with a simple RSS reader or aggregator. A few great examples of aggregators are NewsGator
(for Windows, it’s at http://www.newsgator.com/ and integrates with Microsoft Outlook),
RssReader (for Windows, it’s at http://www.rssreader.com/ and is a separate application)
and NetNewsWire (for Macintosh, at http://www.ranchero.com/). Figure 13-9 shows
RssReader displaying the RSS feed from my Intuitive Life weblog.

Figure 13-9: RssReader displaying RSS feeds.

RSS is a compelling solution for a lot of organizations. InfoWorld, for example, offers eight
different RSS feeds for professionals in the information technology business. CNN, The New
York Times, BBC World Service, and many other information sources also offer the capability
to track their content via RSS.

Also, you can track hundreds, no, thousands, of personal weblogs just as easily—weblogs on
topics as far-ranging as parenting, NASCAR drivers, acting, professional swimming, and
many more topics. All these feeds can be neatly organized in an RSS aggregator program,
whether you’re on a Mac, Linux system, Unix box, Windows machine, or even PDA.

557386 Ch13.qxd 4/2/04 9:56 AM Page 303

303 �Chapter 13: Site Development with Weblogs

Creating Valid XML / RSS Feeds

Given this discussion of RSS, it might not be obvious that if you don’t want to use a weblog at
all, you can still build and maintain your own RSS feed! The format looks terrifyingly complex
upon first glance, but in fact it’s straightforward and even has an online validator that can help
ensure that your nascent feed layout is valid and syntactically correct. Even better news: Most
decent weblog tools, like Movable Type, already automatically generate RSS data, so you
don’t have to worry about doing it.

Start by having a peek at the RDF (also known as RSS 1.0) feed from my weblog. To see the
contents of this particular file, I go to www.intuitive.com/blog/index.rdf, where the first
few lines, the header of the file, are as follows:

<?xml version=”1.0” encoding=”iso-8859-1” ?>

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:dc=”http://purl.org/dc/elements/1.1/”

xmlns:sy=”http://purl.org/rss/1.0/modules/syndication/”

xmlns:admin=”http://webns.net/mvcb/”

xmlns=”http://purl.org/rss/1.0/”

xmlns:content=”http://purl.org/rss/1.0/modules/content/”>

<channel rdf:about=”http://www.intuitive.com/blog/”>

<title>The Intuitive Life</title>

<link>http://www.intuitive.com/blog/</link>

<description>Thoughts, commentary, news analysis, and general

philosophizing

and punditry from author and speaker Dave Taylor.</description>

<dc:language>en-us</dc:language>

<dc:creator />

<dc:date>2003-12-02T23:15:59-07:00</dc:date>

<admin:generatorAgent rdf:resource=”http://www.movabletype.org/?v=2.63” />

This looks overwhelming, but I’ve put in bold the entries that would have to change for a new
custom RSS feed (the file itself is just plaintext, just as an HTML file doesn’t have bold or italics,
just markup tags).

XML is pretty similar to XHTML, but its use is context-dependent. In this case, the XML in use
is specifically for an RSS feed, hence the information in this header. The good news is that all
this information is completely identical for all similar types of RSS feeds; so as long as the
first bunch of lines are correct, you can safely write this once and forget about it.

The next section is a block of links to the individual items in the feed (I’ve trimmed it a bit to
make it easier to see what’s going on):

<items>

<rdf:Seq>

<rdf:li rdf:resource=”http://www.intuitive.com/blog/archives/000257.html”

/>

There are fifteen lines like this because there are
Continued

557386 Ch13.qxd 4/2/04 9:56 AM Page 304

�

304 Creating Cool Web Sites with HTML, XHTML, and CSS

Continued
fifteen entries in the RSS feed. They’re identically
formatted.

<rdf:li rdf:resource=”http://www.intuitive.com/blog/archives/000239.html”

/>

</rdf:Seq>

</items>

</channel>

And finally, each entry in the feed itself has its own item container, which has a link, title,
description, and (HTML) encoded description:

<item rdf:about=”http://www.intuitive.com/blog/archives/000257.html”>

<title>ASCII movies. No kidding.</title>

<link>http://www.intuitive.com/blog/archives/000257.html</link>

<description>I bumped into this site via The Internet Tourbus,

and it’s amazing.

I remember ASCII art from decades ago, the classic Snoopy

off the line printer,

but this is another level entirely: ASCII Movies. Check

it out for yourself!...</description>

<content:encoded>

<![CDATA[I bumped into this site via The

Internet Tourbus, and it’s amazing. I remember ASCII

art from decades ago,

the classic Snoopy off the line printer, but this is

another level entirely:

ASCII

Movies. Check it out

for yourself!]]>

</content:encoded>

<dc:subject />

<dc:creator>Dave Taylor</dc:creator>

<dc:date>2003-12-02T23:15:59-07:00</dc:date>

</item>

That’s all there is. Notice that the description and the content:encoded are the same
material, but the description is just plaintext—no formatting tags—whereas the encoded con­
tent allows complex XHTML (and HTML, but make sure it’s well-formed to avoid problems).

Duplicate this structure for each of the entries in your feed, add new ones at the top (as is
typical), and you can even turn your guestbook into an RSS feed that people read via their
news aggregators!

557386 Ch13.qxd 4/2/04 9:56 AM Page 305

305 �Chapter 13: Site Development with Weblogs

Validating an RSS feed
You opt to rough it and make your own RSS feed, which I hope you are thinking is kinda tricky,
but not unimaginably hard, or use an RSS feed from another application like a weblog system.
Either way, you can validate the RDF file just as you can validate an HTML, xhtml, or CSS file,
with an online validator.

In Figure 13-10, I’ve entered my weblog site into a validator. This one is called Feed Validator,
and it’s found at http://www.feedvalidator.org/.

Figure 13-10: You can use Feed Validator to validate an RSS feed.

Feed Validator not only checks to ensure that all the RSS information is correct in the RDF file,
but it’s also smart enough to catch errors like the inclusion of a relative URL in an encoded
content block. (A link like web site home won’t work in an RSS feed
because it’s interpreted as relative to the RSS aggregator, not relative to your Web site, by
RSS readers.)

A quick check by the site and the RSS feed from my weblog receives the appropriate blessing,
as shown in Figure 13-11.

557386 Ch13.qxd 4/2/04 9:56 AM Page 306

�

306 Creating Cool Web Sites with HTML, XHTML, and CSS

Figure 13-11: Feed Validator gives my RSS feed the green light.

Exploring further
If you want to learn more about building an RSS feed, you have a number of places to go.

To learn more about the RSS specification, read the official document itself at http://web.

resource.org/rss/1.0/. Then learn about some RSS readers by going to http://rss.

intuitive.com/ for reference materials. The O’Reilly Network also has some very good RSS

tutorial information at its RSS Devcenter, at www.oreillynet.com/rss/.

tour of common weblog tools and utilities led to a behind-the-scenes
tour of my own weblog, The Intuitive Life. This tour included a demon­

�Summary
This chapter covered the new and exciting world of weblogs or blogs,
starting with what they are and aren’t and how to create a weblog. A

stration of how to add a new entry and how the software makes
rebuilding the pages simple. Finally, I discussed RSS, starting with a
description of what it is and how it works. I next showed you how you
can create your own RSS feed of your content and validate it using
common validation tools online. In the next chapter, I explore in depth
the organization of your files on the server and different methods of
streamlining site management.

557386 PP03.qxd 4/2/04 10:01 AM Page 307

�III
Expanding

�
Chapter 14

Chapter 15

Chapter 16

Sheets

Part

Your Page into
a Web Site

In This Part

Web Sites versus Web Pages

Thinking about Your Visitors and
Your Site’s Usability

Validating Your Pages and Style

Chapter 17

Building Traffic and Being Found

557386 PP03.qxd 4/2/04 10:01 AM Page 308

557386 Ch14.qxd 4/2/04 11:01 AM Page 309

�14versus
chapterWeb Sites

Web Pages

Using subdirectories intelligently

directories with passwords

� In This Chapter

Protecting your Web sites and

Working with server-side includes

Now that you’ve learned the nuts and bolts of HTML and CSS Web page ele­
ments, it’s time to expand your horizons and explore how to structure and

organize a Web site comprised of many different Web pages. Web sites and Web
pages are not the same thing, as you’ve probably noticed if you’ve built a site
with more than a half-dozen pages.

No matter how you decide to organize your site, the fundamental goals are the
same: to be able to edit pages, add new pages, and manage the content with a
minimum of hassle.

Working with Subdirectories
It may seem a bit basic to step back and talk about how to lay out files and create
subdirectories after all the code and layout discussed so far in this book. Trust me,
it’s really quite helpful to start out with a basic structure before your site grows into
something unmanageable. More than once I have been asked to improve an exist­
ing Web site only to be horrified to find more than 300 files sitting in a single home
directory, with no indication of what’s new or what isn’t in use any more. Often it
has no separation of pages by functional category (such as tour, catalog, biogra­
phies), or no clear organization (such as having all the graphics neatly tucked into
a directory different from the one that holds the content pages).

557386 Ch14.qxd 4/2/04 11:01 AM Page 310

�

310 Creating Cool Web Sites with HTML, XHTML, and CSS

Besides enabling you to separate sets of files into more manageable chunks, subdirectories
also make it easier to implement directory-specific security (which I discuss in the section
“Protecting Web Sites and Directories”) and create beta (test) sites. Subdirectories benefit
even the smallest Web site. Consider a site I recently built for a regional bus transit pass
(http://www.OurEcoPass.org/). The site has a total of seven pages, two PDFs, two graph­
ics, and some CGI scripts. Originally, it was organized as shown in the following file listing.
I’ve used the Unix list (ls) command to display the files residing in the directory:

$ ls
cgi-lib.pl joinlist.cgi nq-map.jpg
contact.html lists.html sponsors.html
flyer-back.pdf mailform.cgi thanks-join.html
flyer-front.pdf new-contact-form.html thanks.html
index.html nq-map.gif

In this Unix file listing, you can see that everything lives in a single directory, with no use of
subdirectories. The listing works reasonably well now, but it quickly becomes overwhelming
if I decide to expand the Web site to include a directory of other regional EcoPass programs,
offer a page or two for each of the other regional EcoPass groups, and include tips on which
bus routes go to popular locations.

Fortunately, it’s pretty easy to solve this problem! For this particular site, I created two subdi­
rectories: Graphics and collateral. In the former, I dropped the JPEG and GIF images, and
in the latter, the PDFs found a nice home.

�
If you’re using an FTP program, it should be quite easy to create subdirectories on
the remote system (the Web server). Some FTP programs allow you to move files

note around remotely without downloading them, but if your FTP client does not, simply
download the file, move into the desired subdirectory on the remote system (that is,
within the FTP program), and upload the file to its new home. Then delete the file
from its former location to maximize the value of your organization and avoid later
confusion about which is the real version of the file in question.

Utilizing the -R flag to the Unix ls command enables the program to show the contents of sub­
directories, and the -F flag adds a / at the end of each directory name. Here’s how http://
www.OurEcoPass.org/ looks now:

$ ls -RF

Graphics/ index.html

cgi-lib.pl joinlist.cgi

collateral/ lists.html

contact.html mailform.cgi

new-contact-form.html
sponsors.html
thanks-join.html
thanks.html

./Graphics:

nq-map.gif nq-map.jpg

./collateral:

flyer-back.pdf flyer-front.pdf

557386 Ch14.qxd 4/2/04 11:01 AM Page 311

311 �Chapter 14: Web Sites versus Web Pages

To help you see why it’s helpful to use subdirectories for your Web site organization, in the
next section you look at a site that’s a bit more complex: AnswerSquad.

The subdirectory structure of AnswerSquad
The AnswerSquad site—http://www.AnswerSquad.com/—is more complex because it con­
tains a lot more content. In fact, it has 24 different HTML pages, six CGI scripts or helpers, a
couple of PDF files, and over 60 different graphics files. Instead of having all content in the
same directory, I simplified management and maintenance of the site by splitting it up like this:

$ ls -F

Graphics/ insidepeek.html

answersquad.jpg ip.shtml

answersquad.tgz join-peek.cgi

archive/ learnmore.shtml

bios.shtml library.shtml

book.data listrules.shtml

bookstore/ mailform.cgi

buildlibs mailman-help.shtml

buildlibs.c members.shtml

cgi-lib.pl press/

check.cgi pressroom.shtml

collateral/ privacy.shtml

contact-thanks.shtml samples.shtml

contact.shtml signup.shtml

covers/ subscribe-cancel-thanks.shtml

faq.shtml subscribe-thanks.shtml

foot.html thanks-peek.shtml

head.html thanks.cgi

index.shtml thanks.shtml

In the previous listing, the -F flag to the ls command produces a trailing / on directory
names, to make it easier to see what’s what in the output. As you can tell, I have created six
different subdirectories: Graphics, archive, bookstore, collateral, covers, and press.

An even bigger site: Intuitive.com
My main Web site, http://www.intuitive.com, contains over 600 different Web pages and
hundreds of graphical elements, photographs, and more. Having all that content in a single
directory can be completely overwhelming and unmanageable. As shown in the following
code, I split the content into quite a few subdirectories, many of which have only one or two
files, and others that are entire Web sites:

$ ls -F
Graphics/ library.shtml
apps/ limpet/

Continued

557386 Ch14.qxd 4/2/04 11:01 AM Page 312

�

312 Creating Cool Web Sites with HTML, XHTML, and CSS

Continued
articles/
bio.shtml
blog/
cgi-lib.pl
cgi-local/
clanpb.shtml
consulting.shtml
contact.shtml
coolsites/
coolweb/
custer/
dhtml/
directions/
ebay/
errordoc-404.shtml
errordoc-500.shtml
favicon.ico
footer.html
games.html
globalsoftware/
header.html
index.count
index.shtml
join-author-news.cgi
kana.shtml
library/

macosx/

origins/

pearls/

pilot/

popup/

portfolio/

robots.txt

send-query.cgi

sites/

social-faq.html

solaris/

spam/

spam-assassin-rule-help.html

speaking-testimonials.shtml

speaking.shtml

stylesheet.css

taylor/

teaching.shtml

thanks-author-news.shtml

thanks.shtml

temp/

tyu24/

tyusa/

wicked/

writing.shtml

To see what I mean, take a peek into a couple of the subdirectories. Some of these subdirec­
tories are redirects for Web sites that now have their own URLs. An example is the custer
subdirectory:

$ ls custer
index.html

In this case, the index.html file simply says “we’ve moved” and points to the new URL for
the Custer Battlefield Museum and Historical Society.

A slightly more sophisticated example is the origins subdirectory, which is again a redirect to
a new Web site address. This time, however, it includes a graphical element called bomb.gif:

$ ls origins
bomb.gif index.html

Making custer and origins separate subdirectories helps keep their content out of the main
page and lets me easily ignore them as I manage the day-to-day changes and updates for
the main Intuitive System Web site.

557386 Ch14.qxd 4/2/04 11:01 AM Page 313

313 �Chapter 14: Web Sites versus Web Pages

Although some subdirectories contain very little information, others are quite full. Take, for
example, the subdirectory tyu24, for my book Teach Yourself Unix in 24 Hours, at the URL
www.intuitive.com/tyu24/:

$ ls -F tyu24
Graphics/ exchange/ links.shtml
Previous/ exchange-cgi.html middleslice.html
author.shtml exchange.html netiq.html
bottomslice.html exchange.zip printers.html
browsex.html exchange2.zip reviews.shtml
buyit.shtml fget.html samples.shtml
chap19.shtml fget.zip template.html
coming-soon.shtml fget2.zip toc.shtml
dickens.html hello.cgi topslice.html
download.shtml index.shtml

I basically duplicate the directory structure you’ve already seen, with a Graphics subdirectory,
an archive of the previous version of the HTML files called Previous, and a mix of HTML and
CGI. Just for fun, peek into the Graphics subdirectory to see how many graphics files are
being neatly sequestered:

$ ls tyu24/Graphics
2nd-ed-cover.gif floppydisk.gif slice3.gif
3rd-ed-cover.jpg intsys.gif slice4.gif
action-icon.gif menubar.gif slice5.gif
amazon.gif menubar.gif.old stars-4-0.gif
author.gif note-icon.gif stars-5-0.gif
background.gif quote.gif summary-icon.gif
buy-it.gif slice1.gif tyu24-banner.gif
description-icon.gif slice2.gif

Quite a few files, don’t you think? You can see immediately why putting all these graphic files
into their own subdirectory simplifies site management. It ensures that these graphics aren’t
mixed in with the top-level graphics of the main intuitive.com pages, which are in another
directory also called Graphics. The difference is that the top-level graphics are in /Graphics/,
and these are in /tyu24/Graphics/—a critical difference.

With a site that contains hundreds and hundreds of files of various types, it’s critical to cate­
gorize and organize. Think of the chaos that would result at the public library if it didn’t have
a filing and organizational system, or how your local school district would grind to a halt with
thousands of student files dumped into a single folder!

Protecting Web Sites and Directories
After you have your Web site organized and you are beginning to do ongoing maintenance
and updates, it’s time to think about another important topic: protecting specific areas of the
site from unauthorized viewing.

557386 Ch14.qxd 4/2/04 11:01 AM Page 314

�

314 Creating Cool Web Sites with HTML, XHTML, and CSS

If your Web hosting provider is running the Apache Web server (and most do), odds are
excellent that you can create password-protected areas on your Web site—or even protect
the entire site itself—without a single line of CGI code!

�
Other Web server software programs also include various levels of security; you
certainly don’t have to be running Apache to have a password-protected area on

note your site. Check with your Web hosting provider to find out exactly what it offers
and how you can use those facilities for your site. The rest of this section, however,
is written for the tremendously popular (and free!) Apache Web server.

The first step toward protecting your Apache-based Web site is to create a file called
.htaccess and put it in the directory you want to protect. After you create .htaccess, cre­
ate a separate file containing the login name and password pairs for people who are allowed
access to this directory.

I have password-protected one of my subdirectories on the intuitive.com site, my spam area.
This particular area of my site lets me easily check my incoming e-mail for spam or junk
messages, and then delete them without actually having them download to my system. But
don’t worry about the e-mail, per se; this directory is just an interesting example of a direc­
tory that I’ve password protected. The .htaccess file in the spam subdirectory contains the
following code:

AuthUserFile /web/home/passwords
AuthGroupFile /dev/null
AuthName “Spam Analysis Tools”
AuthType Basic

<Limit GET>
require user taylor
require user demo
</Limit>

The contents of this file are identical across all Apache installations: The passwords file is spec­
ified as the AuthUserFile; it’s /web/home/passwords in this example. The AuthGroupFile
enables you to specify a group-based access mechanism, although I’ve never seen it used
in practice. In this instance, AuthGroupFile is set to /dev/null as a way of disabling this
feature. The so-called realm or security realm identifier (which shows up when the user is
prompted to enter his or her authorization credentials in the Web browser) is the AuthName,
identified here as “Spam Analysis Tools”. The AuthType specifies what kind of authoriza­
tion you require from users. Basic is by far the most common choice.

Most important, as designated in the <Limit GET> block, only two user accounts can access
this directory (given the correct password); taylor or demo. This is done because the actual
passwords file can contain many more account/password pairs than just those of the people
authorized to access this particular directory. The .htaccess file in different protected directo­
ries could have completely different accounts listed. This technique offers two levels of secu­
rity and control instead of just the passwords file itself.

557386 Ch14.qxd 4/2/04 11:01 AM Page 315

315 �Chapter 14: Web Sites versus Web Pages

For an example of how this might be important, consider that I have subdirectories other
than spam that are password protected, but I have one central passwords file for simplicity.
People who are authorized to enter one area are not automatically allowed into all the others.
This necessitates the use of the <Limit GET> block to specify exactly which accounts can
access the specific directory area.

Before I show you the passwords file, Figure 14-1 shows what happens when you go to the
password-protected http://www.intuitive.com/spam/ URL.

Figure 14-1: The .htaccess file forces visitors to log in before viewing the directory.

Notice in Figure 14-1 how the realm is shown as a reminder of what area on the site you’re
protecting (“Spam Analysis Tools”). This detail is quite helpful if you have a number of differ­
ent directories protected with this mechanism.

�
Why protect areas of your site? You have many possible reasons, ranging from pri­
vacy and confidentiality of information to commerce. On my server, I have areas note for just my family members and friends, areas for partners in a specific business
venture, and an area for people who pay to get access to the information therein.

You’ve looked at the .htaccess file, but now take a quick peek at the /web/home/passwords
file so that you can see how it’s organized:

hot:ycHlIQxpZ.Ck
taylor:YCE/5fFav6aQ
boulder:J8hgfSWw9Qsc
admin:VKJ994JdmHxA
demo:NweXYPIuKP2Y
board:XVHZLziAkrM2

Although I have placed my passwords file in the /web/home directory, you can give this
file a different name or place it in a different directory location. Just make sure that the
AuthUserFile entry in the .htaccess file points to the correct spot.

557386 Ch14.qxd 4/2/04 11:01 AM Page 316

�

316 Creating Cool Web Sites with HTML, XHTML, and CSS

�
You have more to learn about .htaccess and password files, including how to
create an encrypted password entry and add it to the existing file. I have a helpful on the note addressing this topic on this book’s companion Web site at http://www.

web intuitive.com/coolsites/.

Server-Side Includes
Step back from security issues for a moment and consider Web site organization again. Earlier
you explored the value of having a smart subdirectory organization to ensure that you aren’t
overwhelmed with files as you maintain your site, but there’s another side to this too. How do
you manage dozens or hundreds of pages that all have remarkably similar header and footer
content?

A smart way to create a site with lots of identical fragments is to use server-side includes
(SSI). SSIs enable you to invisibly include the content of multiple files as part of the page sent
to the user. Typically, you specify server-side includes by burying them within comments,
like this:

<!—#include file=”header.html” —>

A server often requires that files containing SSI instructions use a different suffix. The servers
I use, for example, specify SSI material with .shtml instead of .html. This is quite common.
If your Web server supports SSI, you can often specify a wide variety of SSI instructions that
replace the SSI directive itself with the current time of day, a text-based counter, and more. It’s
not a universal solution, however, because many different types of Web servers either don’t
support SSI at all or support a different version, with different notation.

If you’re not sure whether your server supports SSI, experiment by creating a simple page
that has an .shtml suffix and contains the preceding SSI line. It might look like this:

<html><head><title>testing</title></head>
<body><h2>SSI test</h2>
<!—#include file=”header.html”—>
</body></html>

When the page is viewed in your browser, if you get a File not found error after the <h2>,
your server supports SSI. The file specified wasn’t found because it doesn’t exist. If you see
nothing, and if choosing View ➪ Source shows the SSI line, your server either doesn’t support
SSI or doesn’t have it enabled.

You can access quite a bit with SSI on an Apache server—and Apache is the most popular
Web server, so it’s likely that your ISP is using an Apache server. I talk about some of the
available SSI material in the following section.

557386 Ch14.qxd 4/2/04 11:01 AM Page 317

317 �Chapter 14: Web Sites versus Web Pages

Useful server-side include options
Some of the key SSI options you might want to experiment with are config, include, echo,
fsize, flastmod, and exec. If you want to learn more about how SSI can simplify the process
of creating cool Web pages, read on.

config
If you include SSI in your HTML document and include the config directive (that is,
<!—#config), you gain control over various ways to display subsequent SSI options on your
page. Here are the three valid config tags:

• errmsg: Lets you specify the message that’s sent back to a client if a parse error occurs.
Although most people leave the standard SSI error messages, you might find it helpful to
suppress the message entirely or otherwise change what the Web server emits when it
encounters a failure.

• timefmt: Gives the server a new format to use when providing dates with flastmod (see
the “FLASTMOD” section a little later in the chapter). This is a string compatible with the
strftime library call under most versions of Unix (that is, if you have a Unix system
handy, you can type man strftime at the shell command line and find all the possible
options for timefmt).

• sizefmt: Determines the formatting to use when displaying the size of a file. Valid choices
are bytes, for a formatted byte count (1,234,567), or abbrev, for an abbreviated version
displaying the number of kilobytes or megabytes the file occupies (1.2MB). The default
value is abbrev.

include
The include directive inserts the content of a specified document into the parsed file as it’s
sent to the user. Any included file is subject to access control: If you’re denied file permission,
you can’t sneak around the block with an SSI. The include directive accepts the following
two attributes:

• virtual: Lets you specify a virtual path to a document on the server. You can access
normal (.txt or .html) files this way, and you can also include another .shtml parsed
document.

• file: Lets you specify a path name relative to the current directory. However, trying to
sneak up the directory tree with a parent directory reference (../) is prohibited for secu­
rity reasons.

echo
The echo directive outputs the value of specified variables and prints dates based on the
currently configured timefmt. The only valid tag to this directive is var, whose value is the
name of the variable you want.

557386 Ch14.qxd 4/2/04 11:01 AM Page 318

�

318 Creating Cool Web Sites with HTML, XHTML, and CSS

fsize
The fsize directive shows the size of the specified file and employs the same tags as the
include command (virtual or file). The resulting format of this directive is subject to
the sizefmt parameter of the config directive.

flastmod
The flastmod directive shows the last modification date of the specified file. Valid tags are
the same ones used with the include directive.

exec
The exec directive executes a given command or CGI script, including the output of the com­
mand in the HTML document. Very cool, and very helpful! Valid tags include the following:

• cmd: Executes the given string using the local command interpreter (/bin/sh on a Unix
system, for example).

• cgi: executes the given virtual path to a CGI script and includes its output.

The following code snippet demonstrates some of the more interesting SSIs:

<table border=”1” cellpadding=”4” cellspacing=”1”>

<tr><td bgcolor=”#DDDDDD”>HTTP_USER_AGENT

<td>

<!—#echo var=”HTTP_USER_AGENT”—>

<tr><td bgcolor=”#DDDDDD”>fsize ch14-2.shtml

<td>

<!—#fsize virtual=”ch14-2.shtml”—>

<tr><td bgcolor=”#DDDDDD”>fsize again, but after setting

the sizefmt to “bytes” with #config

<td>

<!—#config sizefmt=”bytes”—>

<!—#fsize virtual=”ch14-2.shtml”—>

bytes

<tr><td bgcolor=”#DDDDDD”>flastmod ch14-2.shtml

<td>

<!—#flastmod virtual=”ch14-2.shtml”—>

</table>

Finally, here’s an example of running a Unix command from within an HTML document. In
this example, the ls command is run:

<pre>

$ ls

<!—#exec cmd=”/bin/ls -Cl”—>

</pre>

557386 Ch14.qxd 4/2/04 11:01 AM Page 319

319 �Chapter 14: Web Sites versus Web Pages

Figure 14-2 shows the result of running the preceding two code snippets from a Web server.
Note that the file requires an .shtml filename suffix to work correctly.

Figure 14-2: Demonstration of some useful server-side includes.

SSI environment variables
Many useful SSI environment variables are accessible to HTML documents through the
<!—#echo server-side include. In addition to the CGI variable set shown in Chapter 9, the
variables shown in Table 14-1 are also accessible.

Table 14-1: SSI Environment Variables

Variable Function

DOCUMENT_NAME Name of the current document

DOCUMENT_URI Virtual path to current document (such as /home/taylor/
sample.shtml)

QUERY_STRING_UNESCAPED Unescaped version of any search query sent by the client, with all
shell-special characters escaped with \

DATE_LOCAL Current date, local time zone. Subject to the timefmt parameter
of the config directive

DATE_GMT Identical to DATE_LOCAL, but in Greenwich mean time

LAST_MODIFIED Current document’s last modification date of; subject to timefmt
like the other variables

557386 Ch14.qxd 4/2/04 11:01 AM Page 320

�

320 Creating Cool Web Sites with HTML, XHTML, and CSS

Here’s an example of how to write a small HTML snippet that includes almost all of these SSI
variables:

<table border=”1” cellpadding=”4” cellspacing=”1”>

<tr><td bgcolor=”#DDDDDD”>DOCUMENT NAME</td>

<td>

<!—#echo var=”DOCUMENT_NAME” — >

</td></tr>

<tr><td bgcolor=”#DDDDDD”>DOCUMENT URI</td>

<td>

<!—#echo var=”DOCUMENT_URI” — >

</td></tr>

<tr><td bgcolor=”#DDDDDD”>DATE_LOCAL</td>

<td>

<!—#echo var=”DATE_LOCAL” — >

</td></tr>

<tr><td bgcolor=”#DDDDDD”>DATE_GMT</td>

<td>

<!—#echo var=”DATE_GMT” — >

</td></tr>

<tr><td bgcolor=”#DDDDDD”>LAST_MODIFIED</td>

<td>

<!—#echo var=”LAST_MODIFIED” — >

</td></tr>

</table>

Figure 14-3 shows the results when you feed this code snippet through a Web browser by
way of a Web server. Note that the file must have a .shtml suffix for your Web server to
recognize that it contains SSI instructions.

Figure 14-3: You can use SSI variables to display interesting information.

557386 Ch14.qxd 4/2/04 11:01 AM Page 321

321 �Chapter 14: Web Sites versus Web Pages

Building a Web site using SSI
The AnswerSquad site illustrates how liberal use of SSI enables you to easily expand a site
while maintaining visual consistency. The trick to maintaining visual consistency is to pull
the header and footer information into standard header and footer files, which you can simply
include in your SSI.

If you sign up for the Inside Peek mailing list, the following HTML code is interpreted by the
Web server and, post-SSI, served up to your Web browser:

<!—#include file=”head.html”—>

<center>

<h2 style=”margin-top: 5px”>Thanks!</h2>

</center>

<p>

Thank you for signing up for the Inside Peek mailing list. You’ll now

receive a confirmation email message from our system to confirm

that you really want to sign up. Simply reply to that message and

you’ll be on the Inside Peek mailing list.

</p><p>

Thanks again.

</p>

<!—#include file=”foot.html”—>

The page that’s produced from this code is shown in Figure 14-4.

�
You can see this page on the Web. Just go to http://www.AnswerSquad.com/ and
sign up for the free InsidePeek mailing. To see just the head.html or foot.html

on the file, simply open the respective URL, http://www.AnswerSquad.com/head.html
web or http://www.AnswerSquad.com/foot.html. Choose View ➪ Source to see the

contents of these files because they’re HTML fragments, not full pages.

By including headers and footers in your SSI, you can build remarkably flexible Web sites
in very little time. I use them all the time. Believe me, it makes life so much easier when you
can build one page and rip its header and footer HTML sections into separate files, head.
html and foot.html, which you can easily include in all other pages on the site!

557386 Ch14.qxd 4/2/04 11:01 AM Page 322

�

322 Creating Cool Web Sites with HTML, XHTML, and CSS

Figure 14-4: The Inside Peek mailing list’s thank you page with header and footer files.

Meaning

<!—# None

Table 14-2: HTML Tags Covered in This Chapter

Tag Closing Tag

Begins an SSI directive; supports many possible values, depending
on your Web server configuration

�Summary
In this chapter, you learned how to use subdirectories and how to
implement Web site and per-directory password security. You also saw
the many advantages of using SSI to build your Web pages. In the next
chapter, I step away from the nuts and bolts of individual HTML and
CSS tags and, instead, consider usability and how to create a Web site
that offers your visitors the best possible experience.

557386 Ch15.qxd 4/2/04 9:58 AM Page 323

�15
chapterThinking about

Your Visitors and
Your Site’s Usability

Helping users navigate your site

Using cookies to remember user
information

� In This Chapter
Designing usable Web sites

You’ve built your site, added some helpful JavaScript to make it fun, tweaked
things to ensure that your site is indexed well for search engines, and you’ve

even validated your XHTML and CSS code (see Chapter 16), so you’re finished,
right?

Well, you could be done if all you want is a site that shows off your sense of cool.

But in this chapter, I spend some time talking about the user experience, about
what your visitors may think about your design and how you can develop a Web
site that’s not only visually attractive and informative, but highly usable too. To
do this, I have to delve into the world of human computer interaction, or HCI. But
don’t panic! I promise this’ll be interesting and not overly academic.

Also, keep in mind that these rules are all in the “made to be broken” vein. You
could theoretically build a site that is compliant with every nuance of every rule,
but more likely you’ll find that some help you produce cool sites, whereas other
rules end up just being obstacles. That’s okay.

What Makes a Site Usable?
I bet you’ve been to Web sites that cause you to say, “This is really clean.” Other
sites may make you say, “What the heck? How am I supposed to figure out what’s
what?” It turns out that much of this difference can be quantified, measured, and
judged in a fairly impersonal way. Guidelines for usability can be a real help for
site designers, so they can produce sites that are both cool and useful.

557386 Ch15.qxd 4/2/04 9:58 AM Page 324

�

324 Creating Cool Web Sites with HTML, XHTML, and CSS

A key underlying question to determine usability revolves around the target audience for your
site and the purpose of your site. If you’re building a portal site to compete with Yahoo and MSN,
you may want to include more information on the page than if you’re translating a three-page
brochure into a humble Web site for a small-business client.

� If you’re building a Web site specifically to show off your coding skills, none of this
note may apply. But read through this chapter anyway. The sanity you save may be

your own!

Amount of information presented
The first guideline for usability is to always minimize the amount of information presented by
showing only what’s necessary to the user.

This rule explains why the AOL and MSN home pages are baffling when first visited, why it’s
hard to figure out what’s going on at Yahoo!, and why Google, by contrast, is relaxing and
easy to use.

An example of a site with lots and lots of information that’s still thoughtfully organized to
ensure that it’s not overloading the visitor is the U.S. Internal Revenue Service site. Figure
15-1 shows the current page.

Figure 15-1: The Internal Revenue Service Web Site—clean, uncluttered, and easy to read.

557386 Ch15.qxd 4/2/04 9:58 AM Page 325

325 �Chapter 15: Thinking about Your Visitors and Your Site’s Usability

The site is clean, open, inviting, and has a small number of links off this page so that the user
isn’t completely overwhelmed by the choices. Very nice!

Compare this with the U.S. Social Security Administration Web site, as shown in Figure 15-2.
Here you can see many more choices. The designer seems unable to differentiate between
what I call the musts and the wants. The musts are those links that must be on the home page
or, for that matter, on the specific page in question, whatever it is. The wants, on the other
hand, are those links that would be helpful to have up-front, but are not critical. Remember,
the guideline here is to minimize the amount of information presented. Less is more.

Figure 15-2: The Social Security Administration Web Site—pretty overwhelming at first glance.

To help achieve this minimization, keep these points in mind:

• Use concise wording.

• Use tables with column headings where appropriate.

• Use familiar data formats.

• Avoid unnecessary detail.

• Use abbreviations appropriately.

557386 Ch15.qxd 4/2/04 9:58 AM Page 326

�

326 Creating Cool Web Sites with HTML, XHTML, and CSS

� To find out more about enhancing the usability of your Web site, I recommend an
note excellent book on human-computer interaction: A Guide to Usability, edited by

Jenny Preece (Addison-Wesley).

Organize information on the page
Another common mistake made on Web sites is the lack of any coherent organization. By
organizing links and material, you significantly help the user find what he seeks. Although
the Social Security page in Figure 15-2 has too much information, it is nonetheless a fine
example of how grouping information can help make a Web page more usable. Notice the
four key areas on the site entitled: Retirement and Medicare, Disability and SSI, Widows,
widowers and other survivors, and Get help with your situation.

What I also really like about this page is that everything is written in an active manner; it’s
engaging, and it refers to me, the visitor. It doesn’t say “get help with a life situation,” it says
“get help with your situation.”

How can you ensure that your information is grouped appropriately? Here are some ideas:

• Use color coding (I get back to color usage shortly).

• Highlight elements using foreground or background colors.

• Add graphical borders or other dividers to visually cluster elements.

• Use different size text and different typefaces.

The last idea is very important for good Web page design, in my opinion. I’m always surprised
how infrequently sites use different size type effectively.

Consider the IRS site back in Figure 15-1 for a moment. Notice how the word contents, is large
and how the headlines are larger than the text underneath. Also notice the use of a graphical
divider to organize information: the horizontal rule above and below the featured article titled,
Undeliverable Refunds Looking for Taxpayers. By contrast, the Social Security site, by over­
loading its page with too much information, fails to take advantage of type sizes and ends up
with links lost in a sea of words, almost all in blue.

� For reference purposes, the IRS Web page has 31 links on it, whereas the SSA Web
note page has 79 links.

Standardize the screen layout
Screen layout can really make or break a site design, whether it’s complex or simple. The
idea is that if you teach people to look in a certain place on your page for a specific type
of information, make sure that it’s always in that place on all pages on the site. Consider
Figure 15-3, the Firstgov.gov home page.

557386 Ch15.qxd 4/2/04 9:58 AM Page 327

327 �Chapter 15: Thinking about Your Visitors and Your Site’s Usability

Figure 15-3: The Firstgov.gov home page—complex, but with a method to the layout madness.

This site is quite complex, but the content has a definite layout. There’s a navigational bar
along the top, a set of self-identifying categorization tabs, and a high-level categorization
column along the left side. Just as important, a search box is placed on the top-right. All
well and good!

The question is whether these basic organizational areas are carried through on other pages.
To find out, I clicked Welcome from President Bush at the right end of the navigational bar. It
revealed the page shown in Figure 15-4.

This is an example of how not to structure the layout for the pages on your site. Instead of
having a standardized screen layout and sticking to it throughout all the major areas of the
site, Firstgov has created an environment that’s actively user unfriendly. As a user, you are
forced to go back to the home page to get basic navigational elements (and notice that no
Home link is visible in Figure 15-4 to take you back). You have to use the Back button on the
browser.

To be completely fair about it, the President’s welcome is actually part of the White

� House Web site, not part of Firstgov. Nonetheless, the problem remains: Visitors are
note taught to expect certain information in certain places on the Firstgov site, but after

only one click they are facing a completely different layout. Instead, I’d like to see
the letter of introduction duplicated on the Firstgov site so that the site is visually
consistent.

557386 Ch15.qxd 4/2/04 9:58 AM Page 328

�

328 Creating Cool Web Sites with HTML, XHTML, and CSS

Figure 15-4: One click in, and the Firstgov site has changed its screen layout completely.

Here are some ways that you can ensure standardization of information on your Web pages:

• Important information that needs to catch the attention of the visitor should always be
displayed in a prominent place on the screen.

• Reports and reference information should be grouped together and shown on the less
central areas of the screen.

• Redundant information should only be displayed if it truly helps the user navigate the site.

• Common elements, such as the site’s privacy policy, contact information, and copyright,
should be displayed on the bottom of the page.

If you opt to have a more complex site, it becomes critically important that you show infor­
mation in a completely consistent manner. So pay extra attention to this facet of usability.

Presentation of text and graphics
Although graphics are an important part of the Web, it’s still fundamentally a text-based
medium. Consequently, think through very carefully how you want to present the text on your
site. I talked about the importance of having larger and smaller text as a quick visual cue for
visitors and about ensuring a consistent layout structure, but also consider some of the other
important aspects of textual presentation:

557386 Ch15.qxd 4/2/04 9:58 AM Page 329

329 �Chapter 15: Thinking about Your Visitors and Your Site’s Usability

• Conventional uppercase and lowercase text (like the sentence in this book) can be read
significantly faster than all uppercase text.

• Right-justified text (also called align=”justify”) is more difficult to read than text with
a ragged right margin.

• Uppercase characters are most effective for drawing attention to items (and don’t forget
small-caps in this regard).

• Optimal spacing between lines is at least equal to the height of the characters them­
selves, and you can adjust this with line height in CSS. I almost always use at least a
line-height of 1.25 to open up my design a little bit.

� A liberal use of CSS styles on your Web sites ensures that all your text is displayed
tip attractively and in a manner that is as user-friendly as possible.

In addition, the graphics you include on your Web site should not only convey useful informa­
tion or design elements, they should be maximally effective. Here are some things to consider
when you design graphics for your site:

• Context of the graphical elements: All visual metaphors and other graphical elements
should be thematically consistent, including whether they are two- or three-dimensional
and whether they are color or black and white. (A visual metaphor is a set of images or
a picture that represents a certain function. The trashcan on your computer desktop, for
example, is a visual metaphor for the file deletion function in the operating system.) To
ensure a consistent graphical theme, a site that’s built around a mockup of the Windows
user interface shouldn’t suddenly have buttons that look like they’re pulled from an auto
dashboard or a children’s toy.

• Task domain: Not all applications that can have graphics should have graphics. Although
graphical representations of data are often preferred, some types of data are best pre­
sented as a text table, such as a month-at-a-glance calendar format.

• Graphic form of the element: Choose either concrete representations of objects (photo­
graphs or finely detailed illustrations) or abstract representations (line art and symbols)
to ensure consistency.

• Extent to which elements can be discriminated in the overall design: Having a series of
icons or graphical elements with similar appearance just serves to confuse the visitor.

Another important issue is consistency, which I have woven through the different sections
here. Whatever rules you choose to follow, do your best to ensure that your text, graphics,
phrasing, and overall design are as logically consistent as possible.

Choice and uses of color
One final area to consider on page and site design is your use and application of color. Not
only does color have significant cultural meaning that varies as you travel through the world,
but you should also consider physiological issues. Bright red on bright blue and light grey on
yellow, for example, are almost completely unreadable combinations on a computer screen.

557386 Ch15.qxd 4/2/04 9:58 AM Page 330

�

330 Creating Cool Web Sites with HTML, XHTML, and CSS

Indeed, one aspect of color use to consider is whether your colors work for someone who is
color blind: Most people with a color deficiency have a hard time differentiating between reds
and greens. This may or may not influence your design depending on whether you anticipate
that a significant percentage of your audience might have a color deficiency.

� You can find lots of interesting information on color blindness online. One good
on the place to start is the National Institutes of Health’s usability.gov Web site. For spe­
web cific information, jump straight to http://usability.gov/web_508/tut-c.html.

Nonetheless, color can and does convey meaning on a Web site, and it’s hard to imagine a
situation where you wouldn’t use any sort of colors on your site, except perhaps if you are
a photographer seeking a stark, black-and-white design. But that’s another story!

In terms of good usage of color, I try to take to heart the usability.gov suggestion that color be
used as a bonus for your design, rather than as a critical element of everything functioning well.
Here are some guidelines for using color:

• Use color where it adds value or conveys information. Compare the usage of color at
Yahoo! with the usage of color at MSN or AOL to see what I mean.

• Use logical colors for the meaning you seek: If you’re creating a site about backpacking,
for example, use outdoor colors, greens and browns. A techno or industrial site might
have a lot of black, by contrast.

• Be sparing with inverse color choices: white on black is much more difficult to read than
black on white, for example.

• Try to pick a color palette and stick with it.

• Be conscious of the cultural meaning of colors for your main audience. In Western cul­
ture, for example, black represents death, white represents purity and innocence, yellow
represents warnings, and red represents danger. Given that, highlighting information in
red because it stands out, is a usability error.

Having said all that, don’t be afraid to experiment! Considering the color usage guidelines is
important, but some sites look delightful with yellow text on dark blue, with green edges.

�
In addition to issues of color blindness, you may need to address other possible
handicaps. These include screen readers for blind visitors (that is, how effective is

note your Web site if no graphics are loaded?), voice control or mouseless navigation
(do you force users to navigate through pull-down menus exclusively?), and more.
These are additional reasons to ensure that you always include alt tags with your
images and offer non-graphical navigational alternatives.

Navigating Your Web Site
In addition to design and usability, it’s worth thinking about how visitors navigate through
your site. This area is one of the most difficult parts of site design, because you have to cre­
ate an overarching hierarchy of information for your site when it might not have a coherent
vision or organization in the first place!

557386 Ch15.qxd 4/2/04 9:58 AM Page 331

331 �Chapter 15: Thinking about Your Visitors and Your Site’s Usability

For my personal site, I have over 900 pages online, and I’ve really tried to categorize them
according to some basic concepts. Consequently, I have the four major sections of Teaching,
Speaking, Writing, and Consulting. You can see them as the main navigational elements in
Figure 15-5.

Figure 15-5: Navigational elements of my Intuitive Systems Web site.

Notice in Figure 15-5 that I’m also trying to stick with the usability guidelines discussed
throughout. The site has an open design, subtle use of colors and graphical elements, fewer
rather than more links, and the introduction of what proves to be a consistent information lay­
out. Also notice that this first page has links to other areas (such as my digital photography
portfolio) as part of the main prose, rather than as another navigational link. A downside is
that no single place has all links to all areas immediately obvious; but the upside is that the
site design is much less cluttered and less overwhelming than, say, the SSA site shown earlier.

Tracking navigation
One trick that many sites employ, and which can be particularly helpful for users, is to have
a visual indication of where in the site hierarchy the particular page is located. Flip back to
Figure 15-4 and notice how the White House site does a nice job of providing this site hierar­
chy information. If you look just under The White House logo, you can see that this page can
be found in their hierarchy at Home ➪ News & Policies ➪ March 2002. Just as important, each
of those phrases is clickable, so you can jump directly to the top-level News & Policies area,
for example, by clicking the phrase on the page.

557386 Ch15.qxd 4/2/04 9:58 AM Page 332

�

332 Creating Cool Web Sites with HTML, XHTML, and CSS

Sites such as Yahoo! and the Open Directory Project do a wonderful job of this type of hierar­
chical cookie crumb trail navigational element (see the following section for more information
about cookies). It’s well worth studying if you’re building a site that’s going to have any sort
of deep organization.

You can also leave a relatively subtle hierarchical trail in the title of your pages, where each
level is either appended or prepended to the standard title. It might look like this as you navi­
gate through a site:

Norwood/Quince EcoPass Information

Region Map :: Norwood/Quince EcoPass Information

Norwood Ave :: Region Map :: Norwood/Quince EcoPass Information

This technique has the advantage that it helps create useful and informative bookmarks but
still ensures that the key words are included in the title.

� See Chapter 17 to find out more about bookmarks and how to ensure that potential
x-ref visitors can find your site.

Site search engines
Another way to help people navigate your site is to include a search engine of some sort.
This can be easier than you think. Many Web-hosting companies now include one or more
common search engines that you can literally plug into your design and use after the engine
has indexed your pages.

� A popular search engine goes by the odd-looking name of ht://Dig. You can learn
tip more about it at http://www.htdig.org/.

Another approach to having a search engine is to use an existing search engine and constrain
its results to just your site. Chapter 12 has an extensive example of how you can use Google
to add a search capability to your own site that lets visitors choose between searching just
your site and searching the entire Web.

Site maps
A third option for helping people navigate the information on your site is to have a separate
page called a site map. You’ve doubtless seen these on very large sites with hundreds of dif­
ferent areas. But site maps can be useful for smaller sites too, especially if you’re worried that
visitors won’t necessarily figure out how you’ve organized your information, and you don’t
want to include a search engine.

557386 Ch15.qxd 4/2/04 9:58 AM Page 333

�

�

333 �Chapter 15: Thinking about Your Visitors and Your Site’s Usability

Your site map can be as simple as a single-page indented list or as fancy as you desire, but
the key idea is to include a Site Map link somewhere on every page on your site. Wherever
people end up, they can always pop over to the map and figure out the path to what they’re
trying to reach.

As an added bonus, Google and other algorithmic search ranking systems tend to like sites
with site maps, so it may also help with your site ranking.

x-ref For more information on improving your site ranking, flip to Chapter 17.

Using Cookies to Remember User Information
If your site offers user customization, user accounts, or other configuration elements that can
change based on whether visitors have been there before or not, a very popular solution is to
use cookies. Cookies are small packets of persistent data stored on the visitor’s computer, not
on the server. The word persistent is the key here. With cookies you can quit your browser,
reboot your computer, and the data is still present and sent back to the site next time you
visit. That’s how sites like Yahoo! have Welcome back messages instead of a login area.

Your Web browser has a store of hundreds of cookies from different sites, I bet, and you might
not even be aware of them. It’s a rare site nowadays that doesn’t feed some sort of persistent
information to you when you’re browsing: You’ll find that some areas of my intuitive.com site
do too.

Why use cookies? Because if you’re asking visitors for information, the more your site can
“remember” from the last visit, the easier and more usable your site becomes. In particular,
with sites that require a log in, it’s very nice to offer the option of staying logged in on a par­
ticular computer: That’s all done with cookies.

If you’re running MSIE6, it’s not very easy to see your cookies. I recommend you download a
simple little application called Karen’s Cookie Viewer, written by expert Windows programmer
Karen Kenworthy.

on the Karen’s Web site is at http://www.karenware.com/
web

In terms of usability, just remember one key point: Building a usable site is a process not a goal, per

tell you.

Final Thoughts about Usability

se. Listen to your visitors, invite input and feedback, and be focused on the goal of a site that’s attrac­
tive and usable, not the goal of its being ultimately cool or a tour de force of graphical interactivity.
Rebuild pages, reorganize information, and rethink presentation issues based on what your visitors

557386 Ch15.qxd 4/2/04 9:58 AM Page 334

�

334 Creating Cool Web Sites with HTML, XHTML, and CSS

The application is free and makes it quite easy for you to browse all the cookies your Web
browser has been dutifully saving for you. Figure 15-6 shows a list of my cookies and the
specific details of one of the two cookies I am storing from Tim Carter’s excellent Ask The
Builder Web site.

Figure 15-6: Displaying cookie information.

visit and what things you can do to make your site easier to under­

and valid.

�Summary
This chapter gave you a chance to step back from the nuts and bolts
of Web page and Web site design and look at the user experience. You
looked at how people are likely to perceive your Web site when they

stand and easier to navigate. Although the rules may seem obvious,
many Web sites violate one or more of them regularly. These violations
can make a site less enjoyable, less effective, and less useful than it
might otherwise be. The next chapter looks at the other end of Web
design: how to ensure that your CSS and HTML are perfectly written

557386 Ch16.qxd 4/2/04 9:58 AM Page 335

�16
chapterValidating

Your Pages and
Style Sheets

devices

� In This Chapter
Validating HTML, XHTML, and CSS

Creating Web pages for wireless

Introducing WML and WAP

So far, you’ve learned how to work with various HTML tags, how to fine-tune
presentation using CSS, and that Web browsers are quite forgiving about the

occasional incorrect tag usage. If you add a wrong attribute, misspell a tag, or
forget to close a list element, the browser does its best to fix your error without
complaining. However, don’t conclude that you can lapse into sloppy coding
habits!

Validating HTML and XHTML Web Pages
Because modern Web browsers are so complex, it’s important to ensure that your
HTML is valid and correct. Fortunately, some terrific online tools help you produce
clean, proper HTML. Notable among these is the World Wide Web Consortium’s
(W3C) HTML Validator Tool, which you can find at http://validator.w3.org/.
I particularly like this validator because W3C is the group that manages and
blesses the different HTML, XHTML, and CSS standards, so its validator should
be the most accurate of the options available.

Unfortunately, using a validator isn’t as easy as just pointing it to your Web page
and clicking the Validate button. Try that and you promptly find the validation
system complaining that it can’t figure out what kind of HTML to check against,
and what character set your page uses. (For more information about character
sets, see the section “Specifying a character set” later in this chapter.)

557386 Ch16.qxd 4/2/04 9:58 AM Page 336

�

336 Creating Cool Web Sites with HTML, XHTML, and CSS

To use the validator, you need to add a line called DOCTYPE to the beginning of your HTML
files, as shown in the following example:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”
“http://www.w3.org/TR/html4/loose.dtd”>

This particular DOCTYPE declares the document to be HTML 4.01 transitional, which means
that the validator requires that you have used the most recent HTML tags and format, but it
also accepts older, correct, HTML. If you want to be forced to use only HTML 4.01 tags on
your pages and not let any old or obsolete (referred to as deprecated) tags creep in, you
should use Strict instead of Transitional.

�
What are the differences among all these versions of HTML? Really, they come
down to nuances and the changes caused by evolution of the HTML language. If

note you want to learn about the specific differences among versions of HTML, your best
bet is to read some of the excellent reference material on the W3C Web site, found
at http://www.w3.org/. If you use HTML 4.01 (as I do in this book), additional
formatting is necessary for your code to be valid XHTML.

Three other DOCTYPE options exist. The following example calls for HTML 3.2:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 3.2 Final//EN”>

When you use the HTML 3.2 Final designation, the validator flags any HTML 4.01 tags as
errors in the source. If you’ve been working along with me and using the code I’m demon­
strating, you’re far beyond the HTML 3.2 specification, anyway.

The next example calls for strict HTML 4.01:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Strict//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

With the HTML 4.01 designation, earlier tags you may have used including and
similar, are not acceptable and are flagged as errors. If you use this option, it’s quite difficult,
in my experience, to have your page reported as fully compliant.

This last example shows the DOCTYPE for XHTML 1.0 Transitional:

<!DOCTYPE html

PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

I explore this designation later in this chapter. Notice that the DOCTYPE tag forces you to
choose between HTML and XHTML.

557386 Ch16.qxd 4/2/04 9:58 AM Page 337

337 �Chapter 16: Validating Your Pages and Style Sheets

Specifying a character set
In addition to the DOCTYPE, validators want to know what character set you’re using. Because
my page uses plain ASCII (alphanumeric characters, the set of characters you use for e-mail
and other plain applications)—no special characters for foreign languages or special symbols—
I simply add the following line to my HTML code:

<meta http-equiv=”Content-Type” content=”text/html;charset=us-ascii”>

Character entities themselves are always plain ASCII, regardless of what symbol they produce
when interpreted.

� If you want your Web page to contain various Spanish or German characters, your
x-ref best approach is to use the character entities explained in Chapter 5, and stick with

plain ASCII. It’s the most portable solution.

Validating an HTML page
You can feed your HTML to the W3C validator in two different ways. Open the Validation
Service page at http://validator.w3.org and use one of these methods:

• In the Address box, specify the URI of the page you want to validate and click the

Validate URI button.

• In the Local File box, type the path to your local file (or use the Browse button to find it
on your system) and then click the Validate File button.

Now see what happens when you try validating this sample page:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”
“http://www.w3.org/TR/html4/loose.dtd”>

<meta http-equiv=”Content-Type” content=”text/html;charset=us-ascii”>

<html>

<head><title>Validation Test</title></head>

<h2>There are some errors in this file</h2>

<div color=blue>

Can you spot all the mistakes in this simple HTML file?

</body>

</html>

Figure 16-1 shows this page’s URI—http://www.intuitive.com/coolsites/examples/
ch16-1.html—entered into the Address box on the W3C validator page.

557386 Ch16.qxd 4/2/04 9:58 AM Page 338

�

338 Creating Cool Web Sites with HTML, XHTML, and CSS

Copyright © 1994-2003, World Wide Web Consortium

Figure 16-1: Asking the W3C validator to check a test page for HTML compliance.

Figure 16-2 shows the result of the validation process on this test file after the Validate URI
button is clicked.

The actual errors listed for this very short HTML page are as follows:

Line 4, column 5: document type does not allow element “HTML” here

<html>

Line 7, column 11: there is no attribute “COLOR”

<div color=blue>

Line 9, column 6: end tag for “DIV” omitted, but its declaration does not
permit this.
</body>

Line 7, column 0: start tag was here.

<div color=blue>

Line 10, column 8: “HEAD” not finished but document ended

</ht...

Line 10, column 8: “HTML” not finished but document ended

</ht...

557386 Ch16.qxd 4/2/04 9:58 AM Page 339

339 �Chapter 16: Validating Your Pages and Style Sheets

Copyright © 1994-2003, World Wide Web Consortium

Figure 16-2: The sample page is not valid HTML.

If you’re like me, you look at all this and say, “Huh?” It’s critical to remember that validators
do the best job they can, but if something is not configured correctly, it can trigger an error
that then messes up all the subsequent messages from the validators.

In this instance, a closer look at the HTML file reveals that the basic problem is that tags are
out of order, and I left out an opening <body> tag and a closing </div> tag. If you make the
necessary revisions (shown in bold in the following code), you get this new version of the
HTML snippet:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”
“http://www.w3.org/TR/html4/loose.dtd”>

<html>

<head>

<meta http-equiv=”Content-Type” content=”text/html;charset=us-ascii”>
<title>Validation Test</title>

</head>
<body>
<h2>There are some errors in this file</h2>

<div style=”color:blue”>

Continued

557386 Ch16.qxd 4/2/04 9:58 AM Page 340

�

340 Creating Cool Web Sites with HTML, XHTML, and CSS

Continued
Can you spot all the mistakes in this simple HTML file?
</div>
</body>
</html>

Does this validate as correct HTML 4.01 transitional? To find out, I applied these changes to
the HTML file and created ch16-3.html, which I then specified as a URI to the validator. The
result: yes! See Figure 16-3 for the good news.

Copyright © 1994-2003, World Wide Web Consortium

Figure 16-3: HTML validates as correct HTML 4.01 transitional code.

Notice that after the page validates, the site offers you the capability to slap a happy “HTML
4.01” graphic (these are called medallions in the online marketing biz) on your page to show
that it has been validated. W3C even offers this code to help you add this graphic:

<p>
<img border=”0”

src=”http://www.w3.org/Icons/valid-html401”
alt=”Valid HTML 4.01!” height=”31” width=”88”>

</p>

557386 Ch16.qxd 4/2/04 9:58 AM Page 341

341 �Chapter 16: Validating Your Pages and Style Sheets

Notice that although this snippet is valid HTML, it is not valid XHTML. Also, don’t have a
lapse in judgment: Include the medallion only on pages that do validate. You don’t want to
look foolish if a visitor decides to test your page and runs into errors.

� Would someone really test your page? Probably not, unless you proudly advertise
note that it’s completely HTML compliant with the graphical icon. Then analyzing and

revalidating the page is simply a matter of clicking on the medallion icon.

Validating XHTML Pages
Although HTML 4.01 is the latest version of HTML, the introduction and popularity of XML, the
eXtensible Markup Language, has caused Web developers to move toward a hybrid markup
language called XHTML. In a nutshell, XHTML offers all the capabilities and format of a regu­
lar HTML document, but forces a slightly more formal tag usage. The entire set of XHTML
rules can be easily summarized, and I discussed them in Chapter 2. But here’s the full set of
XHTML rules to refresh your memory:

• Documents must be well-formed and exhibit proper nesting (all opened tags must be
closed, and in the correct order).

• Elements and attributes must be in lowercase only.

• For non-empty elements, end tags are required (esp. the <p> tag).

• Attribute values must always be quoted.

• Attributes cannot be minimized (for example, noshade should be noshade=”noshade”).

• Empty elements must otherwise end with a /> sequence.

• All img tags must have an alt=”” attribute.

To explore the differences between HTML and XHTML validation, take the code snippet
shown earlier and translate it into proper XHTML; then see if it validates. Here’s my first
attempt at this translation:

<!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html>
<head>
<meta http-equiv=”Content-Type” content=”text/html;charset=us-ascii”>
<title>Validation Test</title>

</head>

<body>

<h2>There are some errors in this file</h2>

<div style=”color:blue”>

Can you spot all the mistakes in this simple HTML file?

</div>

Continued

557386 Ch16.qxd 4/2/04 9:58 AM Page 342

�

342 Creating Cool Web Sites with HTML, XHTML, and CSS

Continued
<center>

<p>
<img border=”0”

src=”http://www.w3.org/Icons/valid-html401”

alt=”Valid HTML 4.01!” height=”31” width=”88”>

</p>

</center>

</body>

</html>

Did you notice that I’m using a different DOCTYPE, one that specifies transitional XHTML
instead of HTML 4.01? To see if this code is valid and clean XHTML, simply ask the W3C
validator to test it by going to the same page as before—http://validator.w3.org/—and
feeding in the URL http://www.intuitive.com/coolsites/examples/ch16-04.html.

The results are not good. The validator reports that the page is not valid XHTML 1.0 transi­
tional and lists the following errors:

Line 6, column 71: end tag for “meta” omitted, but OMITTAG NO was

specified

...nt-Type” content=”text/html;charset=us-ascii”>

Line 6, column 2: start tag was here

<meta http-equiv=”Content-Type” content=”text/html;charset=us-ascii”>

Line 19, column 54: end tag for “img” omitted, but OMITTAG NO was
specified

alt=”Valid HTML 4.01!” height=”31” width=”88”>

Line 17, column 50: start tag was here

<img border=”0”

After a moment’s thought, you know these errors all make sense. The meta tag doesn’t have
a paired </meta> tag; so even though it’s part of what the validator wants (not necessarily
part of your page), you need to slightly change the <meta> tag to have a /> ending. The
 tag has exactly the same problem: Because it’s not a paired tag, it must end with />
not just >. Here’s the HTML source again, with two small tweaks to fix these problems:

<!DOCTYPE html

PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html>
<head>
<meta http-equiv=”Content-Type” content=”text/html;charset=us-ascii” />
<title>Validation Test</title>

</head>

<body>

<h2>There are some errors in this file</h2>

557386 Ch16.qxd 4/2/04 9:58 AM Page 343

343 �Chapter 16: Validating Your Pages and Style Sheets

<div style=”color:blue”>

Can you spot all the mistakes in this simple HTML file?

</div>

<center>

<p>
<img border=”0”

src=”http://www.w3.org/Icons/valid-html401”
alt=”Valid HTML 4.01!” height=”31” width=”88” />

</p>

</center>

</body>

</html>

�
The URI for the corrected XHTML is http://www.intuitive.com/coolsites/

note examples/ch16-4b.html.

Figure 16-4 shows the valid result after I make these changes.

Copyright © 1994-2003, World Wide Web Consortium

Figure 16-4: A few simple changes result in valid XHTML 1.0 transitional code.

557386 Ch16.qxd 4/2/04 9:58 AM Page 344

�

344 Creating Cool Web Sites with HTML, XHTML, and CSS

Now that I’ve added the ending slash that somehow dropped out when I copied the snippet
for the W3C medallion graphic, you can see that this is also valid XHTML:

<p>
<img

src=”http://www.w3.org/Icons/valid-xhtml10”
alt=”Valid XHTML 1.0!” height=”31” width=”88” />

</p>

Validating CSS
If you can validate HTML and XHTML, is it any surprise that you can also feed your sepa­
rate CSS pages to a CSS validator? Because some Web browsers automatically stop reading
all CSS definitions after they encounter any error, and others silently skip errors without any
feedback, it’s smart to validate—perhaps even smarter than validating HTML.

To see what I mean, consider this snippet of CSS:

<style type=”text/css”>

body { background: #ccf font: 125%/200% Arial

margin-left: 2in }

</style>

To someone who is familiar with CSS, the problem is probably obvious: I forgot a semicolon
after the background color specification and before the font-size style. But to a Web browser,
well, it sees the background color, but it doesn’t know what to make of the subsequent mate­
rial on that line, and so ignores it. This is an easy fix: Simply restore the semicolon after the
#ccf. If you have a 50–200-line CSS file, however, finding these nitpicky problems can be
much more difficult.

MIME types and brick walls
Frustratingly, the W3C CSS validator is very fussy about what it calls MIME types. MIME
actually means multimedia Internet mail extension, but it’s more generally used to define file
and content types throughout the Internet, including the Web. Odds are good that if you give
a CSS file to the validator at http://jigsaw.w3.org/css-validator/validator-
upload.html, it’ll complain with the following message:

I/O Error: Unknown mime type : text/plain

What this means is that your Web server isn’t configured properly, so it’s sending .css files
as type text/plain rather than the more correct text/css. You can’t override this behavior
for the validator, unfortunately; so if you can’t get your administrator to tweak the server con­
figuration, you have to find a different method to validate your CSS.

Fortunately, that’s not too hard to do.

557386 Ch16.qxd 4/2/04 9:58 AM Page 345

345 �Chapter 16: Validating Your Pages and Style Sheets

Uploading CSS specifications by file
Instead of feeding the validator a URL, simply ensure that you have the file on your own
computer—your PC or Mac—and upload the file to the validator directly. It’s very simple:
Go to http://jigsaw.w3.org/css-validator/ and click on Validate your cascading
style sheet source file by upload. This takes you to the file upload area, as shown
in Figure 16-5.

Copyright © 1994-2003, World Wide Web Consortium

Figure 16-5: You can upload your CSS for validation.

I have a style sheet that I’ve been building and would like to validate. It’s on the Web at
http://www.intuitive.com/coolsites/sample.css, and I’ve already saved it to disk with
the same name. To validate it, I click the Browse button on the CSS Validation Service page
and select the file; then I click the Submit This CSS File for Validation button.

W3C’s validator shows that a small error is buried in the CSS, as shown in Figure 16-6.

557386 Ch16.qxd 4/2/04 9:58 AM Page 346

�

346 Creating Cool Web Sites with HTML, XHTML, and CSS

Copyright © 1994-2003, World Wide Web Consortium

Figure 16-6: The CSS Validator finds the error in my style sheet.

However, as is common with validators, the CSS validator has found an error, but it hasn’t
done much to help identify what the error is. To see what’s wrong, look at the first section of
the sample.css file, the section that has the error:

body { font: 11pt/14pt Times,serif;

width: 600px; margin-left: 24px;

border-left: 1px solid #666; border-right: 1px solid #666;

padding-left; 5px; padding-right: 5px; }

Can you see what’s wrong here?

The problem is that I accidentally typed a semicolon instead of a colon after padding-left.
Not an error that’s listed in the validator output, but if I make that one fix and resubmit the
file, my CSS is validated, as shown in Figure 16-7. Finally.

557386 Ch16.qxd 4/2/04 9:58 AM Page 347

347 �Chapter 16: Validating Your Pages and Style Sheets

Copyright © 1994-2003, World Wide Web Consortium

Figure 16-7: CSS document validates!

Now that the code has been proven to be valid CSS, Web pages that use this style sheet can
include a spiffy Valid CSS medallion, like the medallion graphic for valid HTML or XHTML.

Creating Valid Mobile Web Page Layouts
If you’re really building a site that has maximum flexibility, you might want to include support
for mobile devices. With screens the size of your thumb (well, a tiny bit bigger, but not much),
cell phones, PDAs and other devices have been gaining the capability to let users surf the
web, albeit with a very simplified browser application.

Pages for these devices are written in a crude subset of HTML called Wireless Markup
Language (WML). WML helps you write pages that work for wireless devices simply by
omitting most of the design elements. For example, WML supports only monochrome
bitmaps—no animated GIFs, no streaming media, nothing fancy, just crude graphics.

557386 Ch16.qxd 4/2/04 9:58 AM Page 348

�

348 Creating Cool Web Sites with HTML, XHTML, and CSS

A deck of cards
WML pages are designed more like a deck of cards (lots of small data items) instead of the
(longer, more complex) separate Web pages that you’re used to working with. People access­
ing the Web with mobile devices don’t want to scroll around a lot if they can help it. By keeping
your pages very short, even if you produce lots more pages, downloads are faster and every­
thing feels snappier. Interestingly, many WML developers actually design their sites to send
all the common information for the “cards” at one time (a process called in-device buffering)
to have nice displays with manageable download times.

To begin working with WML, you need a good emulator. A mobile device emulator lets you
simulate a mobile device and see what your WML page looks like on it. By using an emulator,
you don’t have to download and test pages time and time again on your PDA or other mobile
device as you learn WML. Fortunately there are two good choices in free emulators:

Nokia offers its emulator at http://www.forum.nokia.com/main/1,6566,033,00.html.

Phone.com, which produces many of the Web sites for current-generation mobile phones,
offers its emulator (they call it a simulator) at http://www.phone.com/products/
upsdk.html.

Both emulators are free, but you must register on each company’s site to get them.

WAP versus WML
If you looked at the URLs above, you probably said “Um, WAP? What happened to WML?”
In fact, it’s critical to understand what differentiates the Wireless Application Protocol (WAP)
and WML.

The basic difference is that WML is like HTML; it’s a markup language optimized for wireless
devices, and it looks a lot like HTML. WAP, on the other hand, is like HTTP, the hypertext
transport protocol. Its role is to ensure that information is successfully transmitted between
the wireless device and the server.

If you want to use the tired cliché of the Information Superhighway, think of WAP as the high­
way itself, whereas WML is the car on the highway. You can also look at the regular Web that
way: little HTML (and XHTML) cars zooming along on the HTTP highway. But I’ll drop this
metaphor before I miss the exit ramp!

So what does WML look like?
Here is an example of a simple WML page:

557386 Ch16.qxd 4/2/04 9:58 AM Page 349

349 �Chapter 16: Validating Your Pages and Style Sheets

<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”
“http://www.wapforum.org/DTD/wml_1.1.xml”>
<wml>
<template>
</template>
<card id=”card1” title=”Page 1”>
<p>

This is your cellphone on steroids.

<i>Any questions?
</i>

</p>

</card>

</wml>

The first line of a WML file is a DOCTYPE specifier, just like the HTML, XHTML, and CSS val­
idators you’ve already seen. Because so many different variations of HTML are available now,
it’s critical for maximal flexibility that you properly identify what type of markup you’re using.

The <template> block is where buttons that are common to all “cards in the deck” (remem­
ber the deck of cards metaphor) are specified. Liberal use of this section can significantly
improve the performance of the resultant deck.

The <card> block is where you specify the information for this particular page. You can’t do
much sophisticated layout here, but you can include graphics using the WBMP (Wireless
Bitmap) format:

Did you notice the /> closing tag? That’s because WML, like XHTML, is an XML-based
markup language; so it requires proper formatting throughout.

�
One of the best places to learn about WAP and WML is at http://www.wapforum.

tip org/. The WAP Forum group is also the standards-setting body for this community
(the wireless equivalent of the W3C, actually) so whatever it specifies is what phone
manufacturers implement.

What I cover here only scratches the surface of what’s required to produce Web pages and
Web sites for the world of wireless connectivity, but hopefully it whets your appetite. If http://
www.wapforum.org/ isn’t sufficient information to get you started, try visiting http://www.
waptastic.com/ too. It’s a very popular discussion forum and resource site for WAP/WML
developers.

557386 Ch16.qxd 4/2/04 9:58 AM Page 350

350

�

Creating Cool Web Sites with HTML, XHTML, and CSS

�Summary
In this chapter, you learned how to validate HTML, XHTML, and CSS
using W3C’s online validators. You were also introduced to WML and
WAP. WML is a markup language that enables you to build unencum­
bered Web pages for mobile devices. WAP is an application protocol,
similar to HTTP, whose role is to ensure that information is success­
fully transmitted between the wireless device and the server.

The next chapter is sure to catch your attention now that your pages
are all well-formed and valid HTML, XHTML, or CSS. In Chapter 17, I
explore the world of search engines and how you can apply simple
design rules to your Web sites to ensure that they are not just findable,
but highly ranked for relevancy when people search for your content.

557386 Ch17.qxd 4/2/04 9:58 AM Page 351

�17and Being
chapterBuilding Traffic

Found

Producing index-friendly pages

search sites

Introducing banner advertising

� In This Chapter

Registering with Web index and

Using Web rings to link to other sites

Advertising with AdWords and
Pay Per Click

In this chapter, I discuss how Web search engines work and how to design your
material so it will attract attention when it is indexed by Google, Lycos, MSN,

Yahoo!, and the many other search systems available on the Web. I then talk
about where you should announce your new Web site and other things you can
do to build lots of traffic.

Having your own Web site is definitely worthwhile, but, like art exhibited in a
gallery, the real fun begins when people come to visit. The fundamental puzzle
of the World Wide Web—and the Internet as a whole—is how to find information.
If you can’t find other people’s stuff, it stands to reason that others will have diffi­
culty finding your stuff.

People have applied many different strategies for solving the indexing problem,
which ranges from creating simple databases of Web sites that accept information
about your site to unleashing powerful crawler programs that stealthily visit your
site and add your information to their massive indexes.

557386 Ch17.qxd 4/2/04 9:58 AM Page 352

�

352 Creating Cool Web Sites with HTML, XHTML, and CSS

Producing Crawler-Friendly Sites
Before you start to worry about which sites to visit when you’re starting to build traffic, it’s
important to begin building the most search engine-friendly Web site possible. You have many
ways to ensure that your site is understandable to the robots that roam the Net and index
everything, but the two most important are unquestionably creating well-titled pages and
using the <meta> HTML tag frequently. This tag offers information specifically intended for
the robots to read.

Creating meaningful titles
When a visitor bookmarks your Web site, your site’s exact title appears in that person’s
bookmark list. Furthermore, many search systems use the document title as the basis of
their indexing. The more meaningful your title, the more likely your site will be found. To wit,
if you’re busy creating a site that explores the intricacies of coffee roasting, Coffee Roasting:
The Quest for the Perfect Cup is much more explicit (and more interesting) than The Coffee
Home Page or Welcome!

� I don’t recommend including the words home page and Web in your page’s title.
tip Instead, add at least three or four descriptive words or keywords, such as Satellite

TV and DSS Central, including Dish Network and DirecTV.

Titles are used not only by search tools; they are also what users see when they save your
URL to their hotlists. A hotlist full of titles such as The Intuitive Life, All About Starbucks,
Digital Games Review, and Sony Consumer Electronics offers a great deal more information
with less clutter than The Ray-O-Vac World Wide Web Site or Welcome to the New Stanford
University Web Site Home Page.

Some wit and verve can help, too. Which of these pages would you rather visit?

• Home Page for Tom Vilot

• Who Is This Tom Vilot Guy?

• Tom’s Home Page

• Welcome to my Home Page

Needless to say, that last one offers no information about the Web page at all and should be
avoided like the plague.

Using keywords in your title
Including keywords in your page’s title is crucial. Keywords significantly improve your rank­
ing on search engines (partially because so few people pay attention to titles as an index-
generating entry). The principle is quite simple. The more keywords you have in your Web
site’s title, the higher your page ranks in a search engine. Thus, the more people who visit
your site.

557386 Ch17.qxd 4/2/04 9:58 AM Page 353

353 �Chapter 17: Building Traffic and Being Found

Go to a site like Google, MSN, or Yahoo!, and search for a common term such as buy new
computer or credit card. You’ll get thousands of results. But, what makes the first few show
up as the most relevant of all those matches? The answer is their page rank, or the score that
the search engine assigns their page when compared to your exact search pattern. Visit a page
that’s rated very highly. Then, go a few pages further into the results of the search, and visit a
lower-ranked page. See if you can ascertain what is different in terms of title, headers, text
prose, <meta> tags (choose View ➪ Source to see these), and similar elements. That’s what
I’m talking about here—how to design your pages and your site to maximize your page rank
and improve your calculated relevance when people search for your service and products.

Take a peek at a few really good Web page titles to get your creative juices flowing. Notice
how specific each title is to what each site contains:

• This is True by Randy Cassingham—Weird but True News from Around the World

(http://www.thisistrue.com/)

• Ask The Builder—Home Building, Remodeling, and Improvement Information Page

(http://www.askthebuilder.com/)

• Surfing the Net with Kids: Guide to the BEST KID SITES for kids of all ages (http://

www.surfnetkids.com/)

• SafetySurf.com—Parental Control Software and Internet Monitoring Software. The par­
ents’ place to find software to protect their children on the Internet! Parents take control
at SafetySurf.com, home of great Software for Parents! (http://www.safetysurf.com/)

• Intuitive Systems: Thoughtful Solutions by Dave Taylor for Teaching, Speaking, Writing,
and Consulting (http://www.intuitive.com/)

What do these titles have in common? They describe the site’s contents in an appealing, cre­
ative, and concise way. I particularly like what Tim Carter of Ask The Builder writes, Ask The
Builder—Home Building, Remodeling, and Improvement Information Page. Notice the string
of critical keywords—builder, building, remodeling, improvement, and information—all neatly
tucked into a readable and human-friendly title. Smart!

Some search engine wizards tell me that the best possible titles actually have the keywords
first and the company name or page title at the end, if at all. If you want to create a page
devoted to the Nikon D100 digital camera, you might use something like Nikon D100, Digital
Photography, Digital Camera—All about the Nikon D100 as your page’s title.

� I’m not convinced that changing the order of words in your title can meaningfully
note alter your page rank. But, naming your pages with keywords first is worth exploring

if you don’t mind a somewhat odd looking page title or two.

Using the <meta> tag
In addition to smart titles and thoughtful text layout, the <meta> tag can help ensure that
crawler sites include meaningful information about your site. The <meta> tag doesn’t display
anything to the visitor. However, just about all the crawler sites highlighted in this chapter use
the <meta> tag’s contents as the abstract or summary description of your site and its contents
instead of homing in on just the first few dozen words on your page.

557386 Ch17.qxd 4/2/04 9:58 AM Page 354

�

354 Creating Cool Web Sites with HTML, XHTML, and CSS

My search engine-optimizer friends (called SEOs in the biz) tell me that <meta> tags

� for keywords and description are passé and not worth including anymore. Titles
tip and the first few sentences are much more important for page ranking on search

engines. Personally, I still include the <meta> tags, but I strive to ensure that I’m
doing everything else I can to maximize the findability of my sites.

Here’s how you use the <meta> tag:

<meta name=”keywords” content=”technical support, Microsoft Windows, Mac,
Linux, Microsoft Office, Unix, Open Office, OpenOffice, X, GNOME, Novell,
NetWare, Help, Answers, AnswerSquad.com, MICROSOFT WINDOWS, MAC, LINUX,
ANSWERSQUAD.COM, Windows, Mac” />

<meta name=”description” content=”Got Technical Questions? You need
AnswerSquad! We offer a high-quality email discussion list staffed with
expert professionals - top-notch tech authors who can explain even the most
complex topics to normal human beings. Microsoft Windows, Mac, Linux,
Office? We Wrote the Book!” />

The search on a system such as AltaVista shows the title of the page and the description as
the summary of the site rather than showing the first few dozen words found (which is the
usual “description” used by search engines if they can’t find something better to display).
Here’s how the result of the search might look:

AnswerSquad: Windows, Windows XP, Mac OS X, Unix, Linux, Red Hat Linux,
Mac OS, Windows 2000, C, C++, Java, HTML, Microsoft Office, Open Office,
X, GNOME and NetWare Support / Help / Questions Answered by Experts

Got Technical Questions? You need AnswerSquad! We offer a high-quality
email discussion list staffed with expert professionals—top-notch tech
authors who can explain even the most complex topics to normal human
beings. Microsoft Windows, Mac, Linux, Office? We Wrote the Book!
http://www.answersquad.com/ —size 14k—15 Jan 04

�
Search Engine Watch is a great site for learning the latest scoop on how different
search engines rate and index pages. Even better, it’s run by a friend of mine, on the Danny Sullivan, so that’s another good reason to visit! Check it out online at www.

web searchenginewatch.com.

Now that you know the value of meta keyword and meta description tags, poke around on
some other sites, such as those suggested in the following sections, to see how they use the
<meta> tag to improve their listings in search engines.

557386 Ch17.qxd 4/2/04 9:58 AM Page 355

355 �Chapter 17: Building Traffic and Being Found

Microsoft (http://www.microsoft.com)

<META NAME=”KEYWORDS” CONTENT=”products; headlines; downloads; news; Web

site; what’s new; solutions; services; software; contests; corporate

news;” />

<META NAME=”DESCRIPTION” CONTENT=”The entry page to Microsoft’s Web site.

Find software, solutions, answers, support, and Microsoft news.” />

Nostarch Press (http://www.nostarch.com)

<META NAME=”description” CONTENT=”catalog of computer books that make a

difference” />

<META NAME=”keywords” CONTENT=”computer books, linux books, linux,

javascript, mindstorms, LEGO, LEGO Mindstorms, robotics, web programming,

web scripting, bash shell, winzip, winzip help, .NET, zope, zclass,

zcatalog, livemotion, live motion, adobe, little red book, mao, chairman

mao, steal this book, steal this computer book, opera, opera web browser,

opera browser, needlecraft, computers, computer books that don’t suck” />

Intuitive Systems (http://www.intuitive.com)

<META NAME=”keywords”
CONTENT=”writing,teaching,speaking,keynote,lecture,seminar,workshop,

consulting,design,taylor,dave taylor,david taylor,author” />

<META NAME=”description”
CONTENT=”Thoughtful Solutions by Dave Taylor for teaching, speaking,

writing, and consulting.” />

The Internet Movie Database (http://www.imdb.com/)

<meta name=”description” content=”IMDb” />

<meta name=”keywords” content=”movies,films,movie

database,actors,actresses,directors,hollywood,stars,quotes” />

Contentious (http://www.contentious.com)

<META name=”description” content=”The Web-zine for writers, editors, and

others who create content for online media” />

<META name=”keywords” content=”writing, editing, writer, editor, write,

edit, journalism, journalist, journalists, news, content development,

content industry, online content, online media, media criticism” />

557386 Ch17.qxd 4/2/04 9:58 AM Page 356

�

356 Creating Cool Web Sites with HTML, XHTML, and CSS

�
If you aren’t going to use the <meta> tag and still want the best possible design so

tip your site can be easily found online, ensure that the first paragraph of text on your
home page contains a meaningful description of its contents. Because some of the
Web index systems only grab the first few sentences, you must carefully craft them
so that people can find your information when they search with the various tools
listed in this chapter. In particular, your first <h1> headline is important!

Other uses for the <meta> tag
The <meta> tag actually turns out to be a general purpose HTML tag that is used for a wide
variety of things. Want your page to flip to another after a few seconds? The <meta> tag
can do that, as this snippet from Paul Myers’ TalkBiz site (http://www.talkbiz.com/)
demonstrates:

<meta http-equiv=”refresh”

content=”0;url=http://www.talkbiznews.com/” />

As quickly as possible (after zero seconds), the site’s new home page replaces the current
page on the screen. Another way to specify the same functionality is a bit easier to read. It
looks like this:

<meta name=”refresh” content=”0”

url=”http://www.talkbiznews.com/” />

The new format of using three attributes—not two—is nicer in my view because it’s more obvi­
ous which is a delay factor and which is the target URL.

Here is another example. Want to have your page automatically refresh every 30 seconds?
Substitute 30 for 0, as shown in the following:

<meta http-equiv=”refresh” content=”30” />

For example, such frequent refreshes are perfect for Webcam sites!

News organizations also use this approach with slightly longer timeouts (that is, the amount
of time between when you load the page and when it’s refreshed). Here’s how The Wall Street
Journal (http://www.wsj.com/) does it:

<meta http-equiv=”refresh” content=”600” />

Every 600 seconds (five minutes), the page automatically reloads.

Content rating with PICS
Another <meta> value is used to detail the type of material included on a site using the con­
voluted PICS (Platform for Internet Content Selection) rating information. In late 1996, one of
the most hotly argued topics was the quality and appropriateness of content on the Internet.

557386 Ch17.qxd 4/2/04 9:58 AM Page 357

357 �Chapter 17: Building Traffic and Being Found

Congress passed the Communications Decency Act of 1996 (CDA), and Web developers
added blue ribbon icons on their pages to protest the intrusion of government regulation onto
the Net. One side of the debate chanted its mantra of “Free speech über alles” whereas the
other side shouted “Protect our children!” Both sides raised valid and important issues, and
the debate was very interesting. The CDA was later challenged in court and overturned.
Publication of pornographic or offensive material on the Internet doesn’t violate any specific
electronic laws (although it might violate basic pornography and lewd conduct laws, but that’s
an entirely different debate).

The best news to come from this entire debate is that Paul Resnick of AT&T and James Miller
of MIT’s Computer Science Lab developed a content rating system. They distributed sample
programs demonstrating that voluntary ratings for Web sites can be coupled with screening
software, such as Net Nanny and SurfWatch, and even built into Microsoft’s Internet Explorer
program. These programs allow free discussion online while protecting children from stum­
bling into inappropriate material.

Resnick and Miller’s system, PICS, enables you—as parent, teacher, or administrator—to block
access to particular Internet resources without affecting what’s distributed to other sites on
the Internet. It’s based on two ideas: instantaneous publishing of information on the Web (in
this case, the ratings themselves) and access to Internet resources mediated by computers
that can manage far more than any human being.

The two inventors of PICS state the following in their original paper, PICS: Internet Access
Controls without Censorship (http://www.w3.org/PICS/iacwcv2.htm):

Appropriateness, however, is neither an objective nor a universal measure. It depends
on at least three factors.

• The supervisor: Parenting styles differ, as do management styles.

• The recipient: What’s appropriate for one 15-year-old may not be appropriate
for an 8-year-old, or even all 15-year-olds.

• The context: A game or chat room that is appropriate to access at home may
be inappropriate at work or school.

PICS allows complex site content ratings, which is both a strength and a weakness. If I want
to create a movie stills archive but limit access to the archive to match the original ratings of
the films, I can use a rating system for sites based on the movie ratings from the Motion Picture
Association of America (MPAA). Here’s how it would look:

((PICS-version 1.0)
(rating-system “http://moviescale.org/Ratings/

Description/”)

(rating-service “http://moviescale.org/v1.0”)

(icon “icons/moviescale.gif”)

(name “The Movies Rating Service”)

(description “A rating service based on the MPAA’s movie

rating scale”)
Continued

557386 Ch17.qxd 4/2/04 9:58 AM Page 358

�

358 Creating Cool Web Sites with HTML, XHTML, and CSS

Continued
(category

(transmit-as “r”)

(name “Rating”)

(label (name “G”) (value 0) (icon “icons/G.gif”))

(label (name “PG”) (value 1) (icon “icons/PG.gif”))

(label (name “PG-13”) (value 2) (icon “icons/PG-13.gif”))

(label (name “R”) (value 3) (icon “icons/R.gif”))

(label (name “NC-17”) (value 4) (icon “icons/NC-17.gif”))))

Now it is time for a real example. Here’s a PICS tag in use—this <meta> tag PICS rating is
from the SurfNet Kids home page at http://www.surfnetkids.com:

<META
HTTP-EQUIV=”PICS-Label” CONTENT=’(PICS-1.1 “http://www.rsac.org/ratingsv01.
html” l gen true comment “RSACi North America Server” by “surfnetkids.com”
for “http://www.surfnetkids.com” on “1997.12.03T07:38-0800” r (n 0 s 0 v 0
l 0))’ />
<META
HTTP-EQUIV=”PICS-Label” CONTENT=’(PICS-1.1 “http://www.classify.org/safesur
f/” l gen true for “http://www.surfnetkids.com” by “surfnetkids.com” r (SS~
~000 1))’ />
<META
HTTP-EQUIV=”PICS-Label” CONTENT=’(PICS-1.1
“http://www.weburbia.com/safe/ratings.htm” 1 r (s 0))’ />

Clearly, the PICS system is ugly and confusing. Is it going to change things? It seems unlikely,
but, if the PICS system can become much easier to use and specify, people may start to vol­
untarily rate their Web sites. One way or the other, wrestling with the problem of inappropriate
and obscene content on the Internet is unavoidable.

� Lots of information is available on this topic, including the original PICS design
on the documents that is available at http://www.bilkent.edu.tr/pub/WWW/PICS/ and
web the official home page of the PICS system at http://www.w3.org/PICS/.

Keeping crawlers away
If you’re plugged into the Internet, your pages are eventually going to be indexed by one or
more of the crawler programs, or robots, such as Google, WebCrawler, AltaVista, and various
others. It’s fun and very useful except when you prefer that portions of your Web site remain
private or separate. To retain your privacy, you need a special file called robots.txt.

The robots.txt file—it must be called exactly that regardless of what kind of server you’re
working with, and it must be at the topmost level of your site organization—contains a set
of commands that defines the level of access a robot program can have to your Web site.
Unfortunately, it’s a wee bit complex to write. But, once you’ve got it right, you never have
to touch it again.

557386 Ch17.qxd 4/2/04 9:58 AM Page 359

359 �Chapter 17: Building Traffic and Being Found

Two fields must be present in the robots.txt file: User-agent and Disallow. The first lets
you specify either individual robots (maybe you intensely dislike public crawler programs but
like one that’s part of your own company), and the second is how you specify directories to
omit your site from the automatic indexing. Take a look at a few examples of this to clarify:

User-agent: *
Disallow: /

This is the simplest method and says that everyone should simply leave this site unindexed.
Here, the asterisk (*) for User-agent indicates that it applies to all crawler or robot programs.
The slash (/) indicates everything from the very topmost directory down. Now look at another
example:

User-agent: Scooter
Disallow: /cgi-bin/sources
Disallow: /access_stats
Disallow: /cafeteria/dinner_menus/

In this example, the Scooter robot isn’t allowed to index any of the files in the cgi-bin/sources
directory (a smart move), any of the access statistics (because they probably change quite
frequently), or any of the cafeteria dinner menus (because they, one hopes, also change quite
frequently). Any other indexing program that visits the site can index everything.

Here’s an example section from the robots.txt file at ESPN’s Web site (http://msn.espn.
go.com/robots.txt):

robots.txt for Disallow: /

User-agent: mozilla/4
Disallow: /

User-agent: Mozilla/4.0 (compatible; MSIE 4.0; Windows NT)
Disallow: /

User-agent: Mozilla/4.0 (compatible; MSIE 4.0; Windows 95)
Disallow: /

Here, you can see that the program tries to avoid user Web browsers that attempt to auto­
matically crawl the site (Navigator 4 whose code name is Mozilla, and Internet Explorer
whose code name is MSIE).

Another simple example is the robots.txt file from Nikon Corporation

(http://www.nikon.com/robots.txt):

User-Agent: *
Disallow: /server_stats/
Disallow: /access_stats/
Disallow: /cgi-bin/

Continued

557386 Ch17.qxd 4/2/04 9:58 AM Page 360

�

360 Creating Cool Web Sites with HTML, XHTML, and CSS

Continued
Disallow: /image/
Disallow: /test/
Disallow: /stylesheet/

Any robot can index anything on the (very nice) Nikon site with the exception of the directories
server_stats, access_stats, cgi-bin, image, test, and stylesheet.

A handful of sites for you to explore on your own that have impressive and complex robots.
txt files include CNN Online (http://www.cnn.com), Health and Human Services (http://
www.hhs.gov/), the U.S. Army (http://www.army.mil), and Disney online (http://www.
disney.com/).

One additional trick: There’s a meta sequence you can add to your individual Web page (prob­
ably your home page would make the most sense) that tells crawlers to leave you alone:

<meta name=”robots” content=”noindex” />

� You can learn a lot more about Web robots and the robots.txt file at

on the http://www.robotstxt.org/.

web

The Dark Side of Crawlers
Although most Web crawlers are benevolent, some people use them maliciously. Spammers,
people who harvest and sell e-mail addresses, use their own sort of crawlers to find useful
information on Web sites. But, these crawlers don’t respect the robots.txt file. The story is
quite the opposite. They add every directory listed on a Web page—even directories prohib­
ited by the robots.txt file—to their search list. So, you have a decision to make. If you have
content that you don’t want indexed or searched by either good guys (Google) or bad guys
(spammers), you might want to password protect that area rather than try to close it off with
the robots.txt directives. That’s my approach. I let crawlers index and search my entire site,
and I then block more private areas with passwords.

� See Chapter 14 for more information on protecting areas of your site with a
tip password.

Registering with Web Index and Search Sites
Clearly, the search sites on the Net take different approaches to indexing the Web (that is,
your Web site). So, where should you register? The answer is with all of them. Why not? All
the sites are free, and lots of people use each service to find information, which may just be
on your own home page. Two primary types of Web index sites are presented in this overview:
directories of information submitted by users (such as Yahoo! and DMOZ) and crawler systems
that find actual Web pages and index them automatically (such as Google, WebCrawler, and

557386 Ch17.qxd 4/2/04 9:58 AM Page 361

361 �Chapter 17: Building Traffic and Being Found

Lycos). To join the former, you go to the sites and fill in a form with a brief description of your
page or site. The latter services are easier. You simply pop over to these sites and add your
URL to their databases.

Joining a directory site
In this section, I explore each type of registration more closely and then visit with Microsoft’s
Submit It! service. Submit It! announces your site to dozens of these search systems and
directories for free.

Yahoo! (http://www.yahoo.com)
Of the many sites that offer a comprehensive database of other Web sites, my favorite is
Yahoo!, which was created by then-Stanford graduate students David Filo and Jerry Yang.
Filo and Yang developed Yahoo! as a mechanism for maintaining their own ever-growing list
of cool Web sites, and the site grew so fast that their two UNIX servers couldn’t keep up with
the load. Today, Yahoo! is a media empire with a wide variety of businesses, partnerships,
and plans.

That’s the good news. The bad news is that, as the company has spun off into different busi­
nesses, it’s become harder and harder to actually have your commercial site listed in the Yahoo
directory without paying a substantial amount of money. Have a site that isn’t commercial?
Then, theoretically, it should be free and relatively speedy to add it to Yahoo!’s directory.

To join Yahoo!, find the appropriate category in the Yahoo! online directory and then click the
small Suggest a Site link at the top right of the page. Yahoo! prompts you to choose one of
these two options: Yahoo Express (a $299 fee whether your entry is chosen for inclusion in
Yahoo! or not; seven-day turnaround) or Standard Consideration (free; no indication of how
long it takes to evaluate your submission and include it in the directory). Pick the latter. Fill in
all the blanks within the provided form. Your site will then be added after the administrative
folks have a glance at your entry to ensure everything is accurate and the site is appropriate
to the Yahoo! system.

The Open Directory Project (http://www.dmoz.org/)
Initially created as part of the Netscape open source browser project, the Open Directory
Project (also known as DMOZ for its domain name) is a great alternative to Yahoo! with faster
entry inclusion and administrators who actually maintain the links in a given category. To add
your site, navigate to the appropriate spot in the directory, and click Suggest URL in the top-
right. The form asks for a few key items of information, including URL, site title, and site
description, and then submits the form to the appropriate category editor.

If that’s not sufficient for your interests, don’t forget that you can volunteer to become an edi­
tor at the Open Directory Project, which would then let you help manage a key online resource
area dedicated to a specific topic that you’re particularly interested in or knowledgeable about.
Volunteering as a category editor is also a great way to join a thriving online community and
help the Web grow. To start, click Become an Editor on the home page.

557386 Ch17.qxd 4/2/04 9:58 AM Page 362

�

362 Creating Cool Web Sites with HTML, XHTML, and CSS

Signing up for a crawler or robot site
The alternative to a site where you describe your new Web page and how it should be orga­
nized and categorized are those sites where you provide your URL and their programs visit
your page and read through your meta description and keyword information. (You didn’t for­
get to include those, as detailed earlier in this chapter, right?) They then add your pages, one-
by-one, to their massive databases.

As you learned earlier in this chapter, the programs that actually index the Web pages are
called robots. There isn’t much difference between the various robots. In fact, you don’t really
even need to register with these sites. If another page on the Web points to you, they’ll even­
tually find the link and make it to your Web pages. Of course, it is worth visiting them because
giving them your URL speeds up their finding and indexing your page.

�
I suggested earlier that you craft your pages to ensure that keywords and concepts
appear in the first few sentences. Don’t fall for the trick of setting your text to the

caution same color as the background by thinking you can have search engine content that
visitors won’t see. Code like the following probably won’t slip by the search engines:

<h1 style=’font-size:5%;color:white’>list,of,various,key,words</h1>

The smartest of the search engines—notably Google—can catch this sort of trick and
penalize you or perhaps not list your site at all. It’s not worth the risk! In fact, the search
engine sites are pretty darn smart. Any tricks you think will work probably won’t. Just
create good, informative pages with content, and you’ll have the best results.

Google (http://www.google.com)
This is my favorite site on the entire Web when I’m searching for information. You can find
almost anything by exploring Google, which has billions of documents indexed, and that makes
it an important place for your Web site to be included. Fortunately, being included is easy.

To begin, click About on the stark home page and then click Add Your URL. Type the URL of
your page, submit it, and you’re done in just a few seconds.

� You don’t need to—and probably shouldn’t—submit every page on your site. If all
tip your pages are linked to each other, the Google crawler finds them all without any

further assistance.

Lycos (http://www.lycos.com)
Taking a very different approach than Yahoo!, the Lycos site, which was first created at
Carnegie-Mellon University and is now a part of the Spanish company Terra Lycos, indexes
hundreds of millions of Web documents by building a database of URLs and the first few lines
of description from each Web page. Lycos includes minimal textual information for the sites
in its database, but the results are still surprisingly good.

557386 Ch17.qxd 4/2/04 9:58 AM Page 363

363 �Chapter 17: Building Traffic and Being Found

To join the Lycos database, you click the Add Your Site to Lycos link almost hidden at the
very bottom of the home page. Enter the information requested, and click Submit. It might
take a week or two before the robot comes to your site and starts indexing your pages.

AltaVista (http://www.altavista.com)
AltaVista is a search system developed by Digital Equipment Corp. (DEC) that exploded onto
the Web scene in late 1995 and is one of the busier search sites. A quick look shows that there’s
absolutely no way to browse any of the information; it’s purely a search-and-see-results design.
What’s most impressive is the sheer volume of pages it has visited and indexed. Currently,
the site has over 100 million Web pages indexed, that is, billions of words.

On the AltaVista site, you choose Submit a Site from the list of options on the bottom of the
home page. Like Lycos, AltaVista only asks you for the actual URL of the base page, and it’ll
take a week or more before Scooter, its crawler program, actually reaches your site.

� Oh, did I mention that AltaVista is now owned by Overture, which was bought by
note Yahoo!? So, AltaVista might merge with the Yahoo! directory somewhere down the

road...

Tying In with Related Sites Using a Web Ring
If you visit a site focused on the X-Files, Magic the Gathering, or even a site covering preg­
nancy and birth resources, you’re likely to find that it points to other, similar Web sites by using
what’s called a Web ring—an informal group of similar Web sites that all point to each other.
Although this sort of grassroots link-sharing is not at the forefront of Web design, it might be
just what you need to help build some traffic if you’re building an informational Web site. You
can find an organization focused on these loose, cooperative groups of like-minded sites at
http://www.webring.org. There are over 50,000 different Web rings hosted at that site.

The Web ring is a logical outgrowth of the ubiquitous Favorite Links area of a Web site with a
bit of link exchange thrown in—a collection of a half-dozen or more sites that the creator of
the site feels are related and of interest to the visitor. Instead of having them all listed on your
own page, why not have a central collection of these related links and simply include a Next
link on your site to take visitors to the next site on the list?

Now, you can imagine how these work. A central Web server maintains a list of sites tied to
a specific theme or interest, and each site indicates its part of the ring and includes a pointer
to the central ring server. Simple rings include a Next and Previous button allowing visitors to
travel linearly through the list of links. More sophisticated ones offer subset list views—“show
five ring sites”—and a random link that takes the visitor to one of the sites in the ring.

Interested in how Web rings work? Here’s the code from the bottom of a page that’s a part of
a typical Web ring—in this case, Attached! Parenting, a parenting Web ring:

557386 Ch17.qxd 4/2/04 9:58 AM Page 364

�

364 Creating Cool Web Sites with HTML, XHTML, and CSS

<TABLE BORDER=”2” CELLSPACING=”1”>

<TR VALIGN=”Middle”>

<TD VALIGN=”Top”>

</TD>
<TD VALIGN=”Top”>

<CENTER><P>

ATTACHED! Parenting Webring

<P>

<A href=”http://www.webring.org/cgi-

bin/webring?ring=attached;id=6;prev”>Previous

<P>

<A href=”http://www.webring.org/cgi-

bin/webring?ring=attached;id=6;next”>Next

<P>

<A href=”http://www.webring.org/cgi-

bin/webring?ring=attached;id=6;next5”>Next

5 Sites

<P>

<A

href=”http://www.webring.org/cgi-

bin/webring?ring=attached;random”>Random

Site</CENTER>

</TD>

</TR>

</TABLE>

You can join an existing Web ring to gain more exposure for your site, but I must admit I have
somewhat mixed feelings about using Web rings for building traffic. If I can get someone to
come to my site, why would I want to have him easily pop over to other, similar sites and
possibly not come back? You have to make your own choice, but I encourage you to think
this through carefully.

The Basics of Banner Advertising
Another way that you can build traffic to your Web site is to pay for banner advertisements
and placements on other sites or search engines. These banners are typically 468 pixels wide
and 60 pixels high, and a typical banner advertisement might look like Figure 17-1. Notice
that a banner advertisement is small enough to be a minor part of an overall Web page, but it
is large enough that it certainly attracts attention if well-designed.

557386 Ch17.qxd 4/2/04 9:58 AM Page 365

365 �Chapter 17: Building Traffic and Being Found

Figure 17-1: AnswerSquad’s banner advertisements are typical of what you might find on the Web.

The majority of sites that allow you to have your own banner also charge a fee for the adver­
tisement, which is exactly akin to paying for an advertisement in a print publication. The costs
for advertisements online are most often calculated in CPM, which is actually cost per thou­
sand impressions.

� The M in CPM is actually the Latin mil, which is thousand. Think of a millimeter
note being a thousandth of a meter to help you remember the acronym’s meaning.

You’re probably wondering what an impression is. This is one of those areas where you can
see how the Web has grown far beyond just a hobbyist space. Madison Avenue has brought
its jargon to the Internet, and you now have a whole language of banner ads to learn.

Some of the most important Web terms include hit, which represents a request received by
the Web server; page view, which is the number of times an HTML document is requested;
impression (or, sometimes, eyeball), which is the number of times that the banner advertise­
ment is displayed onscreen; and click-through, which counts the number of times someone
saw the banner advertisement and clicked it.

Now, you can look at a Web page with a more experienced eye. Each graphic on the page
produces its own hit on the server so, even though a simple page such as Google only pro­
duces two hits for each visit to the home page, a complex page such as Compaq Computer’s
(http://www.compaq.com) actually has 91 separate, graphical elements that produce 92 hits
for each viewing of the page. That’s why you hear about Web sites that have millions of hits
each month and why you shouldn’t care. It’s the number of visitors or the number of page
views that tell you the real traffic story.

Banner ads are going to cost $2–$30 for each thousand impressions, and the number of people
who click your banner ad is really more in your control than that of the site that shows your
advertisement. To create effective banner advertisements, follow these three general rules:

557386 Ch17.qxd 4/2/04 9:58 AM Page 366

�

�

366 Creating Cool Web Sites with HTML, XHTML, and CSS

1.	 Offer the viewer a special bargain or deal. An advertisement that just mentions your

company isn’t going to be very successful, particularly if no one knows who you are.

2.	 Keep the banner advertisement simple and uncluttered. It’s competing for attention with
the rest of the page so it must be elegant and effective.

3.	 Have a call to action. The best are as follows: Click Here or a mock button or search box
as part of the banner.

Advertisements that offer a bargain and tell the viewer how to get that product (for example,
a button labeled Buy Now!) are the most successful of all in the commercial space.

There is also a standard set of sizes for advertising banners on the Web, which is set by the
Internet Advertising Bureau (IAB).

tip Visit the IAB online at http://www.iab.net/.

Table 17-1 enumerates the standard banner sizes.

Table 17-1: Standard Banner Advertising Sizes

Size	 Typical Use

468×60 Produces a full banner.

392×72 Produces a full banner with vertical navigation bar.

234×60 Produces a half banner.

125×125 Produces a square button.

120×90 Produces a large button.

120×60 Produces a small button.

88×31 Produces a micro button.

120×240 Produces a vertical banner.

If you opt to try banner advertising, be skeptical of the claims of different Web sites, and test
out your banner for click-through rates. A really successful banner might have a 2 or 3 percent
click-through rate (which means that, if 1,000 people see the banner, only 20–30 click it to
reach your site). Unless your ad is exceptionally interesting, you’re just as likely to see fewer
than 1 percent click-through as Web surfers become conditioned to skip the banner advertise­
ment. If you do decide to use banner advertisements, one good strategy is to try a couple of
different banner types and sizes (for example, some people report that 125×125 graphics do
better) for a small number of impressions and try to identify which one is the most effective.
Then, focus your campaign on that banner and its style.

557386 Ch17.qxd 4/2/04 9:58 AM Page 367

367 �Chapter 17: Building Traffic and Being Found

Text Advertising Options and Pay Per Click
In the last year or two, another advertising option has cropped up—text-based ads placed
automatically on relevant pages. A number of sites offer this capability—both search engines
and advertising networks—but the premier choice is Google’s AdWords program. You can
learn more about AdWords at http://adwords.google.com/, or you can just look for the
ads on a number of different Web sites, as demonstrated in Figure 17-2.

Figure 17-2: Google’s AdWords produces simple, text-based advertisements, as illustrated in the three ads at the
top of this Web page.

�
An interesting way to earn some pocket change (or more if you’ve a very busy site)

is to allow Google to include AdWords advertisements on your Web site. You can
note learn more about that at http://www.google.com/adsense/. I allow this on some
of my pages, and it more than pays for all my Web site hosting fees!

The basic idea behind AdWords is that you pay for each person who clicks your ad and jumps
to your site, which is termed pay per click (PPC). This is a much better model for advertising
in my opinion because you pay for performance and not for visibility. For example, if you run
an ad at Google itself, you might be charged 5¢ per click for traffic. If your area isn’t too busy,
only a few dozen people might see your advertisement each day, and only one or two might
click through.

Click-through is one area where it’s critically important to ensure that the page that Web
surfers come to on your site follows through with whatever you stated in the advertisement in
the first place. Do not just drop people on your home page, for example, if you’re trying to
sell them a specific product.

A quick Google search reveals how other Web designers follow through on advertising claims.

557386 Ch17.qxd 4/2/04 9:58 AM Page 368

�

368 Creating Cool Web Sites with HTML, XHTML, and CSS

Smart text advertisements
I searched on Google for dish network (a satellite TV provider) and cover (that is, I used a
search pattern of “dish network” cover) and found quite a few sponsored links, as shown
in Figure 17-3.

Figure 17-3: Smart text advertisements can help you find what you’re looking for.

Notice that some of these advertisements are exactly on-target for my search (dish cover and
dish covers prices) whereas others just picked up on the key phrase dish network and present
that less relevant match instead (Free Dish Network TV Deal, 3 Months Free Satellite). On
Google, the more an advertiser is willing to pay for the PPC functionality, the higher his ad
appears on the page. In Figure 17-3, the more expensive ads appear on the left, and the less
expensive ads appear farther to the right. (The figure shows just the ads themselves).

But, all is not necessarily as it appears here either. The second ad, Dish Cover, actually points
to eBay, and the fourth ad, Dish covers Prices, points to a shopping comparison site called
NexTag.com. So, if you subtract those two and subtract the dish network matches that aren’t
about covers, none of these ads are what I seek. But, a Heated 18" Satellite Dish at least
sounds interesting. If you click-through to see what SolidSignal.com has to offer, you get to
the page shown in Figure 17-4.

Figure 17-4: The Web Page shown when you click the Heated 18" Satellite Dish ad.

557386 Ch17.qxd 4/2/04 9:58 AM Page 369

369 �Chapter 17: Building Traffic and Being Found

Very nicely done page. First off, it succeeds at the cardinal rule of online advertising. Always
take people to a page specifically tied into the ad they clicked in the first place. But, notice
also the title of the page (which might be a bit hard to read here in the book!) which is Hotshot
18 Inch Heated Dish Antenna from Perfect Vision (HS18) | Perfect Vision HS18. Nicely written!

If you want to run your own advertisements through Google, Overture, or a similar PPC net­
work, think of an effective 5–10-word ad that points to a page that fulfills the ad’s claim. If
your ad reads Nikon D100 Tips: How to get the most out of your camera, you don’t want it to
lead to a page about making the perfect cup of coffee!

Publicizing Your Site
The best way to publicize your new Web site is to become active in the Internet community and
to be sure to include your site URL in all your documents, advertisements, and other collateral
materials you use to interact with your peers, friends, and customers. Find the cool Web sites
in your area of interest, and ask them to include pointers to your information. Almost all sites
do that for free, particularly if you agree to list them at your site, too.

� Jill Whalen has a great newsletter at http://www.highrankings.com/ with lots of
on the wonderful tips about improving your findability. Check it out!
web

Meaning

<meta </meta>

Table 17-2: HTML Tags Covered in This Chapter

Tag Closing Tag

Specifies additional information to assist search engines and
crawlers in indexing and cataloging the Web page

find-
ability

<meta> tags and how

�Summary
After you learn how to build the best possible Web site, it’s important
to ensure that you’ve made specific decisions to maximize your

. That’s what this chapter has been about. Starting with a dis­
cussion of the importance of titles, it delved into
to work with crawlers. It then explored various search engines, what
they offer, and how to ensure that your site is in the search engine’s
directory. Finally, it presented advertising options, including Google’s
AdWords program.

557386 Ch17.qxd 4/2/04 9:58 AM Page 370

557386 Closing.qxd 4/2/04 9:58 AM Page 371

�Closing
Thoughts

You’ve now completed Creating Cool Web Sites and should be an expert in
the voodoo technologies of HTML, XHTML, and Cascading Style Sheets. You

should now also have some significant knowledge of JavaScript, search engine
optimization, and usability. You should have mastered how to efficiently build a
Web site rather than just loosely stringing together a bunch of Web pages.

Building cool Web sites is as much an art as a science. Don’t be afraid to break
the rules, go against something suggested in this book, or even blaze a completely
different trail for your development efforts. Lots and lots of terrific Web sites trade
usability for searchability or visuals for speed. Some even have a completely dif­
ferent perspective on which colors are compatible with which other colors!

The most important thing to remember is that you should endeavor to make your
Web sites fun and engaging. Although it’s difficult enough getting people to your
site in the first place, it’s even harder to get them to stay on your site and explore
what’s there. Remember that all pages should work as a passable entry point into
your site and any tricks you can use to help visitors find what they want quickly
and painlessly more than repay any extra effort required in developing the site.

And, finally, thanks for sharing this journey with me. I’ve been building Web sites
for many, many years, and most of the knowledge I have has come from the
school of experience and not from a great reference book. Let me know how your
own Web site creation projects are going and what you found most helpful in this
book!

You can visit me at any time online at http://www.intuitive.com/ and, of
course, the Web site for this book is at http://www.intuitive.com/coolsites/.

Dave Taylor
Boulder, Colorado
taylor@intuitive.com

557386 Closing.qxd 4/2/04 9:58 AM Page 372

557386 AppA.qxd 4/2/04 9:53 AM Page 373

�AStep-by-Step

Planning Guide

appendix

Web Site

When you design a simple, one-page Web site for personal use, you might
get away with just letting the page evolve as you experiment. However,

when you design a complex set of interconnecting Web documents or a commer­
cial site, you must go about the process more systematically. Here’s a guide to
planning the process, step-by-step.

Stage One: Conceptualization
A lot of your HTML choices and design decisions follow from overall decisions
about the Web site’s goal and the people you hope to reach. If you’re working on
a complex site design, thinking through those questions early in the process will
save you a lot of time in the end.

Step 1: Establish the goal
As with any other project, you can expect the best results if you figure out up
front exactly what you want the Web site to do for you, your company, or your
client. It’s sometimes a challenge to clearly articulate the purpose, but if you
know what you’re doing and why before you plunge into the design, you will
avoid unnecessary revisions.

Part of setting the goal for your Web site is identifying as clearly as possible your
intended audience. The tools for identifying who visits a Web page are limited, and,
so far, there’s no accepted standard for how to count the number of users to estab­
lish a return on investment or the number of people in the target audience who
have received your message. However, if you spend some time thinking about what
kind of people you want to reach, during the design process, you can focus on
including things that will attract those people, judge which external links to incorpo­
rate, and zero in on the sites you most want to point to your site. In addition, you
can do some contingency planning for what to do if your site turns out to be so
intriguing that it’s swamped by loads of visitors who aren’t in the target audience.

557386 AppA.qxd 4/2/04 9:53 AM Page 374

�

�

374 Creating Cool Web Sites with HTML, XHTML, and CSS

Your target audience plays a big role in determining how you design your pages. For example,
if you’re preparing a site for Macintosh multimedia developers, you might assume that all tar­
geted users will be able to play QuickTime movies. But, that might not be the case, however,
for a site directed toward a more general audience. Or, if you’re creating a site directed
toward Netscape users, you could use Netscape-specific HTML extensions, but you might
want to stick to the standard HTML and CSS for a broader audience.

Do you want a lot of repeat visitors? If so, plan to change elements of the site frequently to
keep the site interesting to the real Web zealots. For example, some commercial sites are
designed to change many times each day.

When considering the audience, think about which browser software you plan to support (and,
therefore, test with). And remember, if you want to reach everyone, you’ll need to include text
alternatives to graphics for Lynx users and visitors with disabilities of one sort or another.

x-ref Usability issues are explored in Chapter 15.

Another factor that may control your design—especially in a corporate setting—is, “who’s
going to maintain the site, and how much time do they have to do it?”

Many companies find that managing and maintaining Web sites and responding to all the
inquiries they generate take more time and money than originally anticipated. If a company
goes on the Web but can’t keep up with the visitors’ demands for information or follow-up, the
company seems unresponsive. So, make sure those issues are part of any discussion about
a commercial Web site plan. (Interestingly enough, even if a commercial Web site doesn’t
include a company’s Internet address, launching a Web site often leads to more e-mail from
the outside world, sometimes radically more e-mail—something else to factor in.)

Remember that it’s called the World Wide Web for a reason. Whether you mean to or not, you
have a global audience. So, if your client or company or content has international aspects, be
sure to include that in the Web site plan. For example, if you are planning to publish product
information for a company that distributes its products worldwide, make sure to include inter­
national sales office contact information as well as U.S. contact information. If you don’t dis­
tribute worldwide, say so. Some Web sites offer the users a choice of languages. Click your
native language, and link to a set of pages that you can read without translating.

Step 2: Outline the content
When you have a goal in mind, it helps to outline what content you want to include in the
Web site. As you outline, keep track of what content you merely collect, which you need to
create, and which you retool for the online medium. Remember that some of the content may
be links to information that’s not part of your site—include that in your outline, too. The out­
line serves as a starting point for mapping out how the parts interact.

Which of the information is simply text? Which text should be scrollable? Which text should
be in short chunks that easily fit within a window of the browser?

557386 AppA.qxd 4/2/04 9:53 AM Page 375

�

�

375 �Appendix A: Step-by-Step Web Site Planning Guide

What kind of interactivity do you need to build in? Do you need to collect any information
about the visitors to the page? Are you going to try to qualify visitors by having them register
their addresses or other information in a form? That creates two tiers of visitors—browsers and
users—whom you can attempt to contact in the future through the URLs they leave for you.

x-ref Forms are covered in depth, first in Chapter 9 and then again in Chapter 10.

Will the Web site link to any other pages on the same Web server or to external Web docu­
ments? Will you make internal links relative (all files in the same subdirectory or folder on
the server so only the unique part of the path name appears in each link address) or absolute
(with complete path and file name for each link)? (This topic is discussed in Chapter 6, Putting
the “Web” in World Wide Web: Pointers and Links.)

Step 3: Choose a structure for the Web site
After you have the big picture of what the Web site covers and what external links you’re
likely to want, you can settle on a basic organization of the pages. Do you want a linear
structure so users can switch from screen-to-screen like a slide show by using Next and Back
navigation buttons? How about a branching structure with a choice of major topics on the
home page that link to content or a choice of subtopics? If a branching hierarchy is too rigid,
how about a more organic Web structure with many links that interconnect the parts of the
content? What about a hybrid structure that combines a formal hierarchy with some linear
slide shows and a complex Web (as appropriate) for the different parts of the site?

Whatever structure seems right for the purpose and content, in a complex site, it’s a good
idea to sketch out a map or storyboard for the pages by using lines to indicate links. You can
make your map with pencil and paper, index cards and yarn on a bulletin board, a drawing
program, or any other tool that works for you. Make sure the home page reflects the organi­
zation you choose. That really helps to orient users.

x-ref This and many other usability topics are discussed in Chapter 15.

Stage Two: Building Pages
After you have a plan for the pages, you can roll up your sleeves and get your hands into
HTML. You can start with the home page, move on to the other pages, and then adjust the
page design as necessary as you go along. You might feel more comfortable designing the
linked pages first and finishing up with the home page. It doesn’t really matter so choose
which approach fits your style. Remember, it’s a process.

557386 AppA.qxd 4/2/04 9:53 AM Page 376

�

376 Creating Cool Web Sites with HTML, XHTML, and CSS

Step 4: Code, preview, and revise
You might find that you work in cycles—coding, placing graphics and links, and then preview­
ing what you’ve done, changing the code, and previewing again in the browser software (that
is, unless you’re working with one of those HTML editing tools that offers “what you see is what
you get”). As you become accustomed to the effect of the HTML formatting tags and CSS
styles, you have fewer cycles of coding, previewing, and revising the code, but even experi­
enced site designers expect to go through many revisions.

Fortunately, finding mistakes in the code is relatively simple. Usually, the flaw in the page
points you to the part of the HTML that’s not quite right or the style specification that’s not
what you want.

Remember to format your pages so that it’s easy to revise and debug and include comments
about the code so that someone else can maintain the files later.

� Check out Chapter 11 to find out more about JavaScript and other code additions
x-ref to a Web page.

Step 5: Add internal and external links
After you have the basic framework for your pages, you can add the relevant links and check
whether they make sense. Obviously, check and recheck links as you develop the material
that links back and forth internally.

� My book Wicked Cool Shell Scripts (NoStarch Press) includes some helpful scripts
tip for automating the tests for bad internal and external links. Learn more at http://

www.intuitive.com/wicked/.

If you plan carefully, you’re better able to add links to external pages as you go along. Or, you
can add external links later. Just leave placeholders if that’s the route you choose. Some pages
have sections set aside for a changing set of links to external pages. You can arrange to change
the links every week, every day, or several times a day—depending on your target audience
and the purpose of the page.

Step 6: Optimize for the slowest members
of your target audience
After the pages have all the elements in place, make sure they work for the slowest connec­
tions you expect your target audience to use. Remember that a lot of people who use online
systems such as CompuServe, America Online, and Prodigy still have 56 Kbps or even 28.8
Kbps modems. If you want to reach the lowest common denominator, you test your pages at
that speed over the online systems and make design changes or offer low-speed alternatives
to accommodate these slower connections.

557386 AppA.qxd 4/2/04 9:53 AM Page 377

�

377 �Appendix A: Step-by-Step Web Site Planning Guide

Stage Three: Testing
Just in case you don’t get the message yet, for a great Web site, plan to test and test and test
your work.

Step 7: Test and revise the site yourself
Even when you think you’ve worked out all the kinks, it’s not yet time to pat yourself on the
back and celebrate. If you’re serious about Web site design, test the pages with all the
browsers you intend to support, at the slowest speeds you expect in your target audience,
and on the different computer systems your target audience might use. For example, what
happens to graphics when they’re viewed on a monitor that shows fewer colors than yours?

x-ref The nuances of graphics are discussed in Chapter 7.

Step 8: Have other testers check your work
You can only go so far in testing your own work. The same way you tend to overlook your own
typos, someone else may find obvious flaws that you’re blind to in your own Web site. As much
as is practical, have people in-house test your Web site if you’re creating a site at work or in an
organization. Or, load it all on the Web server as a pilot project, and ask a few trusted testers
to explore the site and report back any problems or suggestions for improvement.

Stage Four: Loading the Files onto the Web
When you have finished testing the files locally, you’re ready to put them on the Web for a
live test drive. You may need to do some preparation if you’re sending the files to someone
else’s Web server for publishing.

Step 9: Prepare files for the server
Make sure your files are ready to go onto the server. Put all the files for your pages in one folder
(or one directory) on the hard disk of the Web server for your own site. Within that folder (or
directory), name the file you mean to be the home page index.html—that’s the file most
Web server software loads by default as the home page.

� See Chapter 14 to find out more about establishing directories and subdirectories. x-ref

557386 AppA.qxd 4/2/04 9:53 AM Page 378

�

378 Creating Cool Web Sites with HTML, XHTML, and CSS

If you’re using someone else’s server, find out if it uses any file naming conventions. For
example, you may need to limit file names to eight characters plus a three-character exten­
sion, such as webpp.htm, for DOS-based servers. Do make sure that your filenames don’t
include spaces!

If you’re using someone else’s server, you probably have to send your Web page files there
via FTP, Zmodem file transfer, or some other electronic file transfer. Be careful to transfer
graphic files in binary format.

� Be sure to check out Appendix B, Finding a Home for Your Web Site.
x-ref

Step 10: Double-check your URL
If you’re not sure of your new site’s URL, check with the Web site’s administrator. Try out the
URL to make sure it’s correct before passing it around to testers or printing it on business
cards.

Step 11: Test drive some more
This is the true test of your Web site. Can you find it on the Web? (This topic is analyzed in
Chapter 17, “Building Traffic and Being Found”). What about the other testers you’ve lined up?
Are your pages valid and correct HTML/XHTML/CSS? (Site validation is explored in Chapter
16, “Validating Your Pages and Style Sheets.”) Test, revise, reload, and retest. It may take a
while to iron out the wrinkles in a complex site, but hang in there.

If you transfer your files to a foreign operating system, you may see unexpected results such
as line breaks in your Web page text where you don’t intend them, particularly in text format­
ted with the <pre> tag. For example, perhaps the <pre> tag includes double-spaced text
where you mean to show single-spaced text. If you can’t easily solve the problem, you can
use a UNIX filter to fix line break problems. Consult the Web site administrator if you’re stuck.

Last Stage: Announcing Your Web Page
Finally, it’s time to let the world know your Web page exists! Use the techniques in Chapter 17
to publicize your Web site, and take a moment to celebrate your World Wide Web publishing
debut. Congratulations!

557386 AppB.qxd 4/2/04 9:52 AM Page 379

�BFinding a appendix

Home for Your
Web Site

Now that you’ve built a cool Web site, the natural question is, “Now what?
Where can I put my site so that everyone else on the Web can find and enjoy

it?” That’s an important question, but it’s not as easy to answer as you might think.
Why? Because a million different solutions present themselves ranging from sites
that advertise their willingness to host your Web pages for free (if they’re not too
big) to sites that charge a very small amount annually. Some offer very fast con­
nectivity but bill you based on megabytes transferred (which means you definitely
don’t want to have lots of huge graphics!). Finally, some sites host a reasonably
big site for a small monthly fee.

The most important factor, in my opinion, is matching your expectations for your
site with the capabilities of the presence provider (as they’re called in the biz even
though you may think of them as ISP or Web host). For example, if you want to
create a site that will be viewed by thousands each day because you’re going to
include it in your print advertising or because your mom can plug it on her
nationally syndicated radio show, you should certainly put your site on a fast
machine with a fast, reliable network connection. If you’re just having fun and
want your friends to visit, a simpler setup with fewer capabilities at less cost
should work just dandy.

Key Capabilities
Regardless of your performance demands, here are some questions to ask your
presence provider to help you assess its key capabilities:

• What speed is the connection between the system where your pages will
reside and the Internet? Good answers to this question are multiple T1 and
T3. Bad answers are DSL, ISDN, or a fast dialup.

• How many other sites are hosted on the same system? The more Web sites
on the system, the more likely you could be squeezed out in the crush of Web-
related traffic. A few dozen are okay, but hundreds of sites on the same server
could spell problems for you.

557386 AppB.qxd 4/2/04 9:52 AM Page 380

�

380 Creating Cool Web Sites with HTML, XHTML, and CSS

• What guarantee of up-time and availability is offered? A great server that’s offline one
day each week is worse than a slower system that guarantees 99 percent up-time.

• Can you access your pages online to make changes or add something new? Because
you’re now an expert at creating cool Web sites, you probably want easy access to your
pages online rather than having to mail in your changes and updates. If you have some­
thing new to add to your Web site, you want to do it now!

Here’s a run-down of some of the possibilities for free, inexpensive, and commercial Web page
hosting. Of course, which kind you choose is up to you, and I don’t necessarily vouch for the
quality of any of these sites. They’re just fast and seem to feature well-designed and—yes—
cool Web sites. I tried to pick some of the more stable companies to list here, but this area of
business has a lot of churn. Many small companies are acquired by larger ones, merge, or
just go out of business. That’s something to consider when you make the decision about
where to host your site.

Free Sites
I wouldn’t be surprised to find a lot more options than the few I list here, but these should get
you started.

Freeservers
One option for hosting your free Web site is a freeserver. Like most free services, these offer
many upgrade options which you can purchase, and their free hosting means that your site
includes both banner ads and pop-ups, which can be pretty annoying to visitors. However, as
a place to start, visit http://www.freeservers.com.

50Megs
This is another free Web site hosting choice (http://www.50megs.com). It offers—no surprise—
an impressive 50MB of disk space for your new site, but it also includes pop-up ads and ad
banners, among other things.

Tripod
Tripod (http://www.tripod.com) is a huge online community offering free Web space to
anyone who would like to join the more than 750,000 members. The Tripod site is divided
into 28 different pods, or areas, and lots of fun sites reside on this collection of high-speed
server systems.

557386 AppB.qxd 4/2/04 9:52 AM Page 381

381 �Appendix B: Finding a Home for Your Web Site

Yahoo! Geocities
The space isn’t unlimited. It’s also a bit tricky to get an account, but the Yahoo! Geocities
concept is a brilliant one. It offers space for millions of different home pages that are divided
into virtual cities. For example, if you pick Rodeo Drive, you can pick a “street address” to
assign as your home page. It is a very fun concept, and some wild sites are hosted on this
terrific system. Visit the home page at http://geocities.yahoo.com, and look for the “free
GeoCities home page” link in the small print.

In addition, don’t forget to check if your Internet access provider offers Web hosting space.
For example, Comcast Networks includes 10MB of Web site storage space with a typical
cable modem account. Southwestern Bell (in cooperation with Yahoo!) offers up to 760MB of
space in its briefcase area (although I’m suspicious of any up to phrasing on a marketing
page). America Online includes 20MB of space with an AOL dial-up account. Save yourself
hours of searching, and go to http://hometown.aol.com/ to find more information.

Inexpensive Presence Providers
The prices for Web presence can range all over the map, and it’s astonishing how many dif­
ferent firms now offer some sort of Web site service. The majority of them though are clearly
geared toward grabbing a slice of the business market as thousands of companies worldwide
come onto the Internet each year. If you’re looking for somewhere to keep your personal
home page, you might want to carefully consider which of these spots has the aura you like.
They definitely differ quite a bit!

The following listing doesn’t even scratch the surface of all the available options. Hundreds—
if not thousands—of firms offer relatively low-cost Web space. The following is a sampling of
different-sized firms that gives you an idea of what’s available.

Earthlink Communications
Earthlink is one of the largest Internet ISP and Web hosting companies and has a good track
record of growing its business by offering national accessibility at low cost. Earthlink’s basic
offer is $21.95 per month for 10MB of disk space and the capability to have your own domain.
Visit Earthlink’s homepage at http://www.earthlink.com for more information.

Earthnet
It sounds like Earthlink Communications, but it’s a completely different company. Based in my
hometown of Boulder, Colorado, Earthnet offers great hosting choices, including a standard
plan that includes 50MB of disk space, 5 mailboxes, PHP, CGI, Perl, and more for only $9.95
per month. Visit http://www.earthnet.net for more details and plan options.

557386 AppB.qxd 4/2/04 9:52 AM Page 382

�

382 Creating Cool Web Sites with HTML, XHTML, and CSS

Pair Networks
If you already have dial-up access or another way to get to the Internet, a very low-cost solu­
tion is Pair Networks (http://www.pair.com). For $9.95 per month, you get 200MB of disk
space, 10 mailboxes, Telnet, SSH, FTP, and more. There is a one-time $25 setup fee, but it’s
a good deal.

SRLNet
A comprehensive hosting solution, SRLNet offers much more than just basic Web hosting.
In particular, its online tutorials are worth visiting, and they support multiple domain names
pointing to a single hosting account. The basic account, their Personal account, is $6.95 per
month—with no setup fee—and includes 200MB of disk space, a private CGI directory for
installing scripts, PHP, FTP, and more. Find this nice group online at http://wwwsrlnet.com!

Sonic.net
This company has a very good reputation for service, and its basic package includes dial-up,
shell access (Linux), 80MB of storage space for your Web site, and access to CGI programs
for custom and dynamic page generation (see Chapter 9 to learn more about CGI program-
ming)—all for $18.95/month. For more information, check out http://www.sonic.net.

Verio/NTT
Based in Silicon Valley, Verio offers a wide variety of Web hosting packages, including one
that would work just fine for your new site, I bet. For $25 per month, you get 250MB of disk
space and 7.5GB per month of data transfer even though they do charge for excessive net­
work traffic. The Web site for my firm, Intuitive Systems, is hosted on a Verio Virtual Private
Server system, and I recommend Verio to all my clients. Tell ‘em I sent you to http://
hosting.verio.com!

The Well
If you’re looking for a funky and fun online community with lots of writers, musicians, and
even a few members of the Grateful Dead, the Well (http://www.well.com), which was
created by the Whole Earth Access team, is the spot for you. Web page hosting is inexpen­
sive here (starting at $15 per month for each 10MB of storage space) and includes a dial-up
account on the system.

557386 AppB.qxd 4/2/04 9:52 AM Page 383

383 �Appendix B: Finding a Home for Your Web Site

Not Enough Choices?
You can always dig around in the ever-fun Yahoo! online directory to find a wide variety of
Web presence providers. And remember, if the provider can’t publicize itself, it’s not likely
to help you publicize your site. Pop over to http://www.yahoo.com, and search for Web
presence (or perhaps Web) and your city or state.

Nationally distributed Internet-related magazines can be a good place to find presence provider
advertisements, too. A few magazines immediately come to mind—PC World, MacWorld, and
Smart Computing. Finally, don’t forget to check with your local computer magazines or news­
papers. Most of the major cities in the United States now have one or more computer-related
publications, and the advertisements in these are a terrific place to learn about local Internet
companies and their capabilities. If you have access, I’d particularly recommend Computer
Currents, which is available in at least eight U.S. cities.

Also remember that there’s absolutely no reason why you have to work with a company in
your own city. After you have some sort of access to the Internet (perhaps through school or
work), you can easily work with a Web site hosting company located anywhere in the world.
Indeed, I live in Colorado, but the Verio Web server that hosts my Web site is located at a
facility in Washington, D.C.—almost 1700 miles away!

557386 AppB.qxd 4/2/04 9:53 AM Page 384

557386 index.qxd 4/2/04 10:00 AM Page 385

�Index

A
<a> (anchor) tag, 103–107

href attribute of, 104

name attribute of, 113

named, 113–119

and presentation of links, 119–120

referencing internal documents,

108–109
referencing non-Web information,

106–107

straight quotes in, 104

target attribute of, 185, 187

absolute positioning, 275–276
access lists, Web site

for restricting visibility of directories,
313–316

for restricting Web crawlers and robots,
358–360

accesskey attribute, 230

Adobe Photoshop, 140, 141

advertisements on Web pages

banner, 364–366

charges for placing, 365, 367

interstitial, 222

smart text, 368–369

standard sizes, 366

text-based, 367–369

AdWords, 367

aggregation, RSS, 301–306

explained, 301–302

feed stream, format of, 303–304

readers, 302

resources for, 306

validating code for, 305–306

aids to Web site navigation

“cookie crumb trail,” 332

italicized text, 44

site maps, 332–333

alignment in HTML documents

of images, 128–134

inheritance of, 164

of table elements, 161, 164–165,

180–181
of text, adjusting with CSS, 74–75

AltaVista, 363

anchor tag, (<a>), 103–108

href attribute of, 104

name attribute of, 113

named, 113–119

and presentation of links, 119–120

referencing internal documents,

108–109
referencing non-Web information,

106–107

straight quotes in, 104

target attribute of, 185, 187

animated GIF, 149

anonymous FTP. See FTP (File Transfer

Protocol), anonymous

Apache Web server, 314

Art Today, 141, 146

ascertaining the user’s Web browser, 213,

241–243

assessment of Web presence providers,

379–380

attributes of HTML/XHTML tags, 42

inheritance of values of, cascading,

57–58, 66–67

as name=”value” pairs, 49

not repeated in closing tag, 49

specifying several, 50–51

557386 index.qxd 4/2/04 10:00 AM Page 386

�

Index386

.au files, 153

audio fragments, in Web pages, 153–154, 155

B
 (boldface text) tag, 45

background colors and graphics

inheritance of, 167

in tables, 165–167, 168–169

in Web pages, 136

banner advertisements on Web sites, 364–366
CPM-based charges for, 365

banner advertising sizes, standard, 366

<base> tag, 109

<basefont> tag, 51

base-16 (hexadecimal) number system, 137

base-10 (decimal) number system, 137

Berners-Lee, Tim, 12

Bible, Gutenberg, 44

blinking text, producing with CSS, 75

<blockquote> (indentation block) tag, 35–36

Blogger hosted weblog, 294

blogs

adding entries to, 300–301

blogspam on, 298

configuring, 298–300

as content management systems, 293–296

hosted, 294

installing, 297–298

RSS data stream from, 301

“serve your own,” 294

blogspam, 298

<body> formatting tag, 33

adding background colors and graphics with,

136

background attribute of (HTML), 137

background-color attribute of (CSS), 137

background-image attribute of (CSS), 137

background-position attribute of (CSS),

137

background-repeat attribute of (CSS), 137

bgcolor attribute of (HTML), 137

text attribute of, 52

boldface text, 45

helping readers navigate with, 44

with CSS, 66

bookmarks, 10, 34

border (of CSS container), 265–269

border width, specifying

around frame panes, 186, 189, 192

around images, 127, 132–133

around table elements, 161, 164, 169–171

 (line break) tag, 24, 25

clear attribute of, 134

breaks
line, 25–26
paragraph, 24–25

browser events, Web page code for handling,

184–185, 187, 192, 237–238, 243–248, 280–286

browser(s), Web, 8

ascertaining the user’s, 213, 241–243

Camino, 8

compatibility of (with Web site), 213, 241–243

cookies, 333–334

default presentation settings of, 85

Internet Explorer (Microsoft), 9

interpretation of HTML by, 21–23, 29, 33

Lynx, 127–128

Mozilla, 9

Netscape, 9

non-CSS-compatible, 65

text-based, 127–128

transferring files with, 7–8, 14–16

browsing directories in FTP, 16

C
Camino open source Web browser, 8

capitalization, controlling with CSS, 76

Cascading Style Sheet (CSS) container

child, 262

clipping of, 278

depth of, 286–290

dimensions of, 271

nested, 262

parent, 262

parts of a, 263–270

positioning of, 274

text flow around, 273–274

visibility of, controlling, 279–286

Cascading Style Sheets (CSS)

box and container model, 261–271

case-insensitivity of, 63

color specification options, 71

comments in HTML, 65

information, location of, 58–62

introduced, 57–58

557386 index.qxd 4/2/04 10:00 AM Page 387

387 �Index

list numbering schemes in, 95–96

lowercase convention for, 63

size specifications, 69–70

specifications, format of, 62–63

summary of styles of, 79

text transformation values, 76

types of, 58

vertical alignment values, 75

case (in)sensitivity

in HTML, 25

of URLs, 16

in XHTML, 25, 41

CGI (Common Gateway Interface), 195, 210–211

.cgi files, 211

CGI scripts

environment variables of, 213

examples of, 211–213

execution environment of, 213–214

generating Web pages with, 210–211

and hidden form fields, 197, 206–210

processing form data with, 215–216

and security issues, 216

changing link colors, 119

character entities, 96–99

character set of Web page, 337

charset, 337

checkboxes, 197

<cite> (bibliographic citation) tag, 53

click-through, 365, 367. See also advertisements on

Web pages
advertising charges based on, 367

clip art libraries, 141, 147

clipping (of CSS container), 278

close tag, 23

<code> (code listing) tag, 53

coding, hexadecimal

for RGB values, 137–139
for special characters, in URLs, 16–17

Coffee Cup Image Mapper, 149

color names, 138

color palette (of graphics file), 122–123

Internet-Safe, 123

color values, 50, 138–139

in CSS, 71, 138

colors and graphics, background

inheritance of, 167

in tables, 165–167, 168–169

in Web pages, 136

comments

CSS, 65

HTML, 65, 99–100

Common Gateway Interface (CGI), 195, 210–211

Communications Decency Act of 1996 (CDA), 357

Computer Lib (Nelson), 4

container, CSS

child, 262

clipping of, 278

depth of, 286–290

dimensions of, 271

nested, 262

parent, 262

parts of a, 263–270

positioning of, 274

text flow around, 273–274

visibility of, controlling, 279–286

container tag, 24

content rating with PICS (Platform for Internet

Content Selection), 356–358

context-sensitive tags, 84, 88–89

“cookie crumb trail” Web site navigation aid, 332

cookies, Web browser, 333–334

copyright laws, 143, 146, 147, 153

copyright symbol, character entity for, 98

CPM (cost per thousand impressions)-based

advertisement charges, 365

crawler programs

assisting, to index your Web site, 352–358
prohibiting, from indexing your Web site,

358–360
used by spammers, 360

creating a trademark character with CSS, 75

creating meaningful titles for Web sites, 352

CSS (Cascading Style Sheets)

box and container model, 261–271

case-insensitivity of, 63

color specification options, 71

comments in HTML, 65

information, location of, 58–62

introduced, 57–58

list numbering schemes in, 95–96

lowercase convention for, 63

size specifications, 69–70

specifications, format of, 62–63

summary of styles of, 79

text transformation values, 76

types of, 58

vertical alignment values, 75

557386 index.qxd 4/2/04 10:00 AM Page 388

�

Index388

CSS, redefining HTML tags with, 59–62, 64–65,
86–87

for custom list layouts, 83–84

for custom table layouts, 165–166

CSS comments, 65

CSS container

border of, 265–269

child, 262

clipping of, 278

depth of, 286–290

dimensions of, 271

nested, 262

parent, 262

parts of a, 263–270

positioning of, 274

text flow around, 273–274

visibility of, controlling, 279–286

CSS styles

classes of, 60–62, 64–65

in .css files, 62

in document head <style> block, 59–62

specifying format for, 62–63

within HTML tags, 58–59, 63

currency symbols, character entities for, 98

cursor, detecting motion of. See browser events, Web

page code for handling

D
data versus information, 12

date, current

obtaining using JavaScript, 248–251

obtaining using Perl, 212

<dd>	(definition description) tag, 81

context-sensitivity of, 84

redefining, with CSS, 83–84

decimal (base-10) number system, 137

definition lists, 81–85

definition term, using CSS to redefine, 83–84

depth (z-index) value (CSS container), 286–290

designing Web sites, process of, 373–378

<dfn> (word definition) tag, 53

diacritical marks. See character entities

digital photographs in Web pages, 144–145

directories (filesystem)

access lists for a Web site’s, 313–316

browsing, in FTP, 16

structure of, for various Web sites, 309–313

directories (indexes) of Web sites, 360–363
joining, 361

disabled form input elements, 231

dithering, 138

<div> (CSS container) tag, 58–59

<dl> (definition list) tag, 81, 84

DMOZ (Open Directory Project), 361

DOCTYPE declaration, 336

DOCTYPE options

HTML 3.2 Final, 336

HTML 4.01 Strict, 336

HTML 4.01 Transitional, 336

XHTML 1.0 Transitional, 336

WML 1.1, 348–349

Document Object Model (DOM)
manipulating, 244–248, 280–282

documents, HTML. See also <a> (anchor) tag;
Cascading Style Sheets (CSS); CGI scripts

alignment of images in, controlling, 128–134

alignment of tables in, controlling, 161,

164–165, 180–181

audio in, 153–155

background colors and graphics in, 136

capitalization in, controlling with CSS, 76

character entities in, 96–99

character set (charset) of, 337

coding, for non-CSS-compatible browsers

colors in, controlling, 119–120

comments in, 65, 99–100

consistent coding style for, 26, 34

creating with a text editor, 28–30

designing, for non-frames-capable browsers,

186–188

DOCTYPE declaration in, 336

and the Document Object Model (DOM), 244

dynamically generated by CGI scripts,

210–211

example of, 54

finding/creating images for, 140–147

font styles in, 49–52

foreign characters (diacritical marks) in, 96–98

forms in, basics of, 196–203

frames in, basics of, 181–183

with graphics, design philosophies for, 127

image-mapped graphics in, 149–153

including copyrighted material in, 143, 146,

147, 153

including images in, 123–127

557386 index.qxd 4/2/04 10:00 AM Page 389

389 �Index

inheritance of alignment in, 164

integration of links and text in, 107

kerning in, using CSS, 72

keyboard shortcuts in, 230

leading in, adjusting with CSS, 73–74

letter spacing in, adjusting with CSS, 72

line spacing in, adjusting with CSS, 73–74

links in, 103–108, 114–119

logical styles for, 52

multimedia in, 153–155

navigation of, 44, 117, 330–333

organizing, in a Web site, 109–112, 113

preamble of, 211

rendering of, by Web browser, 29

section heads in, defining 37–39

sections of, 32–34

small capitals in, using CSS, 71–72

tables in, basics of, 159–165

testing, 23, 31–32, 39, 85, 117, 377–378

text decorations in, using CSS, 75

text styles in, 44–49

titling of, 34–35

user input from, 196–198

using digital photographs in, 144–145

using tables for layout of, 174–176

video in, 153–155

word spacing in, adjusting with CSS, 73

download time for graphics, 125

<dt> (definition term) tag, 81

context-sensitivity of, 84

dynamically generated HTML documents

examples of, 211–213, 321–322

and security issues, 216

using CGI scripts, 210–211

using server-side includes, 316

E
 (emphasis) tag, 52

e-mail, URLs for, 17

emulator, mobile device, 348

enhancing the usability of a Web site. See also

usability rules followed or violated
through careful use of color, 329–330
through careful use of text and graphics,

328–329

for color-blind individuals, 330

through consistent layout across pages,

326–328

by grouping information, 326
by minimizing amount of information

presented to the viewer, 324–325
as a process, 333

entities. See character entites

entity references. See character entities

environment variables of CGI scripts, 213

expectations of users for hyperlinks, 107. See also

usability of a Web site, improving

F
factors influencing usability of a Web site, 323–330
feed, RSS, 303–304

validating, 305–306

Feed Validator (online RSS validator), 305

<fieldset> (form-sectioning) tag, 224–227

File Transfer Protocol (FTP). See also World Wide

Web, FTP file transfer via the

anonymous, 14

browsing directories with, 16

nonanonymous, 15

traditional (command-line) use of, 6–7, 14

URL format for, 13, 14–16, 18

over the Web, 7–8, 14–16

filename suffixes, 19

files. See also particular file types

maintaining a Web site’s, using server-side

includes, 316–321

organizing a Web site’s, 109–112, 113,

309–313

protecting a Web site’s, 313–316
remote access to, over the Internet, 6–8, 14–16

filesystem directories

access lists for a Web site’s, 313–316

browsing, in FTP, 16

structure of, for various Web sites, 309–313

findability, 351, 369

fixed positioning (of CSS container), 278–279

Flash (Macromedia), 259

Macromedia Flash MX 2004 Bible (Reinhardt
and Dowd), 259

font, 27, 67

font colors

in CSS, 70–71

specifying, 50

font faces, specifying, 50

font family, in CSS, 67–68

557386 index.qxd 4/2/04 10:00 AM Page 390

�

Index390

font sizes
in CSS, 69–70
specifying, 49–50

font styles, 43, 49–52. See also Cascading Style
Sheets (CSS)

in CSS, 67–72
 (text attributes) tag, 49–52

face attribute of, 50

size attribute of, 49

fonts, 27, 67

monospace, 27

proportional, 27

specifying, in HTML documents, 50

foreign characters. See character entities
<form> (fill-in form) tag, 196

action attribute of, 196

method attribute of, 196, 214

forms, HTML

active labels for input elements in, 222–224

basics of, 196–203

combining layout and user input in, 204–210

disabled input elements in, 231

drop-down menus within, 198, 200–202

general-purpose buttons within, 220–222

get, 196, 214

grouping input elements of, into fieldsets,

224–227

hidden input fields of, 197, 206–210

input fields within, 196–198

<input> tag types, 197

post, 196, 214

processing data from, using server (CGI)

scripts, 215–216

radio buttons within, 197, 200–201

read-only input elements in, 231

tabbing through elements of, 228–230

text input boxes within, 198, 202–203

validating input from, using JavaScript,

251–253
frame panes

aiming browser events at specific, 184–185,
187, 192

borders around, 186, 189, 192

resizing, 186

root, 182

scroll bars in, 186

sizes of, specifying, 183–184

source files for, 182

<frame> (frame pane) tag, 181–182, 183–184

name attribute of, 184

frames, HTML

basics of, 181–183

inline, 180–182

and non-frames-capable browsers, 186–188

spacing in, controlling, 189–190, 192

<frameset> formatting tag, 181–182, 183–184
free Web sites, 380–381

50Megs, 380

freeservers, 380

Yahoo! Geocities, 381

FTP (File Transfer Protocol). See also World Wide
Web (WWW), FTP file transfer via the

anonymous, 14

browsing directories with, 16

nonanonymous, 15

traditional (command-line) use of, 6–7, 14

URL format for, 13, 14–16, 18

over the Web, 7–8, 14–16

G
get form, 196, 214

GIF (Graphics Interchange Format) files, 122–123

animated, 149

interlaced, 123

transparent, 123, 147–148

Google, 362

groups, 18

search form, incorporating in Web pages,

206–208

graceful degradation, 219–220

GraphicConverter, 123, 140

graphics files

as buttons, 125–126

creating your own, 140–141

as customized list bullets, 94

GIF, 122–123

JPEG, 122–123

PNG, 122–123

software packages for, 141

Graphics Interchange Format (GIF) files, 122–123

animated, 149

interlaced, 123

transparent, 123, 147–148

A Guide to Usability (Preece), 326

557386 index.qxd 4/2/04 10:00 AM Page 391

391 �Index

Gutenberg, Johann, 44

Gutenberg Bible, 44

H
<h1>, <h2>, ...<h6> (header-format) tags, 37–39

<head> formatting tag, 33

header-format tags, 37–39

height of CSS container, 271

hexadecimal coding

of RGB values, 137–139
of special characters, in URLs, 16–17

hexadecimal (base-16) number system, 137

hidden input fields in HTML forms, 197, 206–210

history list, Web browser, 10

hit, 365. See also advertisements on Web pages,

banner

home page, how to set in Internet Explorer, 11–12

host name portion of URL, 13

hosted weblog, 294

hosting options (Web), 379–383

assessing, 379–380

hotlists, 34

<hr /> (horizontal rule) tag, 40–41

.htaccess files, 314–316

format of, 314

online information about, 316

.htm files, 19, 30

HTML (Hypertext Markup Language), 8, 21. See also

HTML entries; Wireless Markup Language (WML);
XHTML

comments in, 65

definition lists in, 81–85

effective use of, 43

special characters in, 21–23

specifying character set, 337

validating Web pages in, 335–336

HTML comments, 65, 99–100
HTML documents. See also <a> (anchor) tag;

Cascading Style Sheets (CSS); CGI scripts

alignment of images in, controlling, 128–134

alignment of tables in, controlling, 161,

164–165, 180–181

audio in, 153–155

background colors and graphics in, 136

capitalization in, controlling with CSS, 76

character entities in, 96–99

character set (charset) of, 337

coding, for non-CSS-compatible browsers

colors in, controlling, 119–120

comments in, 65, 99–100

consistent coding style for, 26, 34

creating with a text editor, 28–30

designing, for non-frames-capable browsers,

186–188

DOCTYPE declaration in, 336

and the Document Object Model (DOM), 244

dynamically generated by CGI scripts,

210–211

example of, 54

finding/creating images for, 140–147

font styles in, 49–52

foreign characters (diacritical marks) in, 96–98

forms in, basics of, 196–203

frames in, basics of, 181–183

with graphics, design philosophies for, 127

image-mapped graphics in, 149–153

including copyrighted material in, 143, 146,

147, 153

including images in, 123–127

integration of links and text in, 107

kerning in, using CSS, 72

keyboard shortcuts in, 230

leading in, adjusting with CSS, 73–74

letter spacing in, adjusting with CSS, 72

line spacing in, adjusting with CSS, 73–74

links in, 103–108, 114–119

logical styles for, 52

multimedia in, 153–155

navigation of, 44, 117, 330–333

organizing, in a Web site, 109–112, 113

preamble of, 211

rendering of, by Web browser, 29

section heads in, defining 37–39

sections of, 32–34

small capitals in, using CSS, 71–72

tables in, basics of, 159–165

testing, 23, 31–32, 39, 85, 117, 377–378

text decorations in, using CSS, 75

text styles in, 44–49

titling of, 34–35

user input from, 196–198

using digital photographs in, 144–145

using tables for layout of, 174–176

video in, 153–155

word spacing in, adjusting with CSS, 73

557386 index.qxd 4/2/04 10:00 AM Page 392

�

Index392

HTML editor, 104

NotePad as, 28

.html files, 19, 30

HTML forms

active labels for input elements in, 222–224

basics of, 196–203

combining layout and user input in, 204–210

disabled input elements in, 231

drop-down menus within, 198, 200–202

general-purpose buttons within, 220–222

get, 196, 214

grouping input elements of, into fieldsets,

224–227

hidden input fields of, 197, 206–210

input fields within, 196–198

<input> tag types, 197

post, 196, 214

processing data from, using server (CGI)

scripts, 215–216

radio buttons within, 197, 200–201

read-only input elements in, 231

tabbing through elements of, 228–230

text input boxes within, 198, 202–203

validating input from, using JavaScript,

251–253
HTML frames

basics of, 181–183

inline, 180–182

and non-frames-capable browsers, 186–188

spacing in, controlling, 189–190, 192

HTML interpreter, 21. See also Web browser(s)

HTML tables

alignment of elements in, controlling, 161,

164–165, 180–181

background colors and graphics in, 165–167,

168–169

basics of, 159–165

borders around, 161, 164, 169–171

browser-specific attributes of, 168–171

column headings in, 163–164

grouping elements of, 176

improving rendering of, 176–179

multi-unit rows and columns in, 164–165, 167

nesting, 161, 171–173

as a page layout and design tool, 174–176

spacing in, controlling, 161–163, 176–179

<html> tag, 21
HTML tags

attributes of, 42, 49

case insensitivity of, 25

closing, 23

container, 24

for entity references, 96–98

malformed, 45

mismatched, 22–23

obsolete, 90

opening, 23

paired, 23

redefining, 59–62, 64–65

specifying styles within, 58–59, 63

style attribute of, 58–59, 63

tabindex-enabled, 228–230

unrecognized, 22–23

used with CSS, 78

HTML text styles, 43. See also Cascading Style
Sheets (CSS)

combining, 47, 48

in CSS, 72–76

history of, 44

meanings of, 44

specifying, with CSS, 66–67

HTML Validator Tool (W3C), 334–337

HTTP. See Hypertext Transfer Protocol

http: URLs, 18–19

HTTP_USER_AGENT environment variable, 213

hyperlinks, users’ expectations for, 107. See also

usability of a Web site, improving

hypermedia, 4

hypertext, 4

href attribute of, 104

name attribute of, 113

presentation of, 119–120

referencing internal documents, 108–109

referencing non-Web information, 106–107

straight quotes in markup of, 104

target attribute of, 185, 187

Hypertext Markup Language (HTML), 8, 21. See also
HTML entries; Wireless Markup Language (WML);
XHTML

comments in, 65

definition lists in, 81–85

effective use of, 43

557386 index.qxd 4/2/04 10:00 AM Page 393

393 �Index

special characters in, 21–23

specifying character set, 337

validating Web pages in, 335

Hypertext Markup Language (HTML) documents. See
also <a> (anchor) tag; Cascading Style Sheets
(CSS); CGI scripts

alignment of images in, controlling, 128–134

alignment of tables in, controlling, 161,

164–165, 180–181

audio in, 153–155

background colors and graphics in, 136

capitalization in, controlling with CSS, 76

character entities in, 96–99

character set (charset) of, 337

coding, for non-CSS-compatible browsers

colors in, controlling, 119–120

comments in, 65, 99–100

consistent coding style for, 26, 34

creating with a text editor, 28–30

designing, for non-frames-capable browsers,

186–188

DOCTYPE declaration in, 336

and the Document Object Model (DOM), 244

dynamically generated by CGI scripts,

210–211

example of, 54

finding/creating images for, 140–147

font styles in, 49–52

foreign characters (diacritical marks) in, 96–98

forms in, basics of, 196–203

frames in, basics of, 181–183

with graphics, design philosophies for, 127

image-mapped graphics in, 149–153

including copyrighted material in, 143, 146,

147, 153

including images in, 123–127

integration of links and text in, 107

kerning in, using CSS, 72

keyboard shortcuts in, 230

leading in, adjusting with CSS, 73–74

letter spacing in, adjusting with CSS, 72

line spacing in, adjusting with CSS, 73–74

links in, 103–108, 114–119

logical styles for, 52

multimedia in, 153-155

navigation of, 44, 117, 330–333

organizing, in a Web site, 109–112, 113

preamble of, 211

rendering of, by Web browser, 29

section heads in, defining 37–39

sections of, 32–34

small capitals in, using CSS, 71–72

tables in, basics of, 159–165

testing, 23, 31–32, 39, 85, 117, 377–378

text decorations in, using CSS, 75

text styles in, 44–49

titling of, 34–35

user input from, 196–198

using digital photographs in, 144–145

using tables for layout of, 174–176

video in, 153–155

word spacing in, adjusting with CSS, 73

Hypertext Markup Language (HTML) editor, 104

NotePad as, 28

Hypertext Markup Language (HTML) forms

active labels for input elements in, 222–224

basics of, 196–203

combining layout and user input in, 204–210

disabled input elements in, 231

drop-down menus within, 198, 200–202

general-purpose buttons within, 220–222

get, 196, 214

grouping input elements of, into fieldsets,

224–227

hidden input fields of, 197, 206–210

input fields within, 196–198

<input> tag types, 197

post, 196, 214

processing data from, using server (CGI)

scripts, 215–216

radio buttons within, 197, 200–201

read-only input elements in, 231

tabbing through elements of, 228–230

text input boxes within, 198, 202–203

validating input from, using JavaScript,

251–253
Hypertext Markup Language (HTML) frames

basics of, 181–183

inline, 180–182

and non-frames-capable browsers, 186–188

spacing in, controlling, 189–190, 192

Hypertext Markup Language (HTML) interpreter, 21.
See also Web browser(s)

557386 index.qxd 4/2/04 10:00 AM Page 394

�

Index394

Hypertext Markup Language (HTML) tables

alignment of elements in, controlling, 161,

164–165, 180–181

background colors and graphics in, 165–167,

168–169

basics of, 159–165

borders around, 161, 164, 169–171

browser-specific attributes of, 168–171

column headings in, 163–164

grouping elements of, 176

improving rendering of, 176–179

multi-unit rows and columns in, 164–165, 167

nesting, 161, 171–173

as a page layout and design tool, 174–176

spacing in, controlling, 161–163, 176–179

Hypertext Markup Language (HTML) tags

attributes of, 42, 49

case insensitivity of, 25

closing, 23

container, 24

for entity references, 96–98

malformed, 45

mismatched, 22–23

obsolete, 90

opening, 23

paired, 23

redefining, 59–62, 64–65

specifying styles within, 58–59, 63

style attribute of, 58–59, 63

tabindex-enabled, 228–230

unrecognized, 22–23

used with CSS, 78

Hypertext Markup Language (HTML) text styles, 43.
See also Cascading Style Sheets (CSS)

combining, 47, 48

in CSS, 72–76

history of, 44

meanings of, 44

specifying, with CSS, 66–67

Hypertext Transfer Protocol (HTTP), 13

<i> (italic text) tag, 23, 45

<iframe> (inline frame) tag, 190–192

image formats. See graphics files

image libraries, 141, 147

image maps, 149–153

 (image) tag
align attribute of, 128–131
alt attribute of, 124–125, 127–128
border attribute of, 127, 132–133
height attribute of, 131–132
hspace attribute of, 133–134
src attribute of, 123–124
vspace attribute of, 133–134
width attribute of, 131–132

impression, 365. See also advertisements on Web

pages, banner

including copyrighted material in Web pages, 143,

146, 147, 153

including images in Web pages, 123–127, 140–147

index.html file, 19

indexes (directories) of Web sites, 360–363

information versus data, 12

inline CSS, 58–59

inline frames, 190–192

<input> (form input) tag, 196–198

type attribute of, possible values for, 196–197,
220–222

interlaced GIF, 123

international characters. See character entities

Internet, the

accessing files over, 6–8, 14–16

decentralized nature of, 12

logging into a remote computer over, 17–18

scale of, 5, 12

Internet Advertising Bureau (IAB), 366

Internet Explorer Web browser (Microsoft), 8, 9

Bookmark list, 10

default page of, changing, 11–12

Edit button, 10

history button, 10

launching, 9

Letter button, 10

Print button, 10

standard toolbar, 10

toolbar buttons, 11

viewing local HTML pages in, 31–32

Internet service providers (ISPs), 379–383
as Web presence providers, assessing,

379–380
Internet site(s). See also presence providers

for ActiveX, 258

AdWords, 367

AltaVista, 363

I

557386 index.qxd 4/2/04 10:00 AM Page 395

395 �Index

Art Today, 141, 146

for audio files and software, 153–154, 154–155

banner advertisements on, 364–366

content rating of, with PICS, 356–358

crawler-friendly, making your, 352–356

for Creating Cool Web Sites (Taylor), 9, 76

design process, 373–378

directories and indexes of, 360–363

DMOZ (Open Directory Project), 361

for document object models, 280

effective use of color in, 329–330

Etymologic.com, 208, 216

for GIF tools, 149

Google, 362

GraphicConverter, 123, 140

for graphics and images, 147

for graphics software packages, 123

for the Gutenberg Bible, 44

ht://Dig search engine, 332

for image map editors, 149

including a search engine in, 206–208, 332

Internet Advertising Bureau (IAB), 366

Intuitive Systems (intuitive.com), 311–313

for Java, 257

of Jill Whalen, 369

of Karen Kenworthy, 333

Lycos, 362–363

for Macromedia Flash, 259

navigating, 44, 117, 330–333

Open Directory Project, 361

organizing files of a, 109–112, 113, 309–313

Paint Shop Pro, 123, 140

for Perl, 216

for the PICS system, 358

protecting files of a, 313–316

publicizing, 369

Real Corporation, 154

for RSS, 306

for RSS validation, 305

on scanners and scanning, 143

The Shock Zone, 146

testing, 23, 31–32, 39, 85, 117, 377–378

text-based advertisements on, 367–369

for this book, 9, 76

usability of, factors influencing, 323–330

using server-side includes to organize,

316–321

for video files and software, 154–155

for VBScript, 256

for WAP and WML, 349

for XSLT, 259

Yahoo!, 361

Internet-Safe color palette, 71, 138

interstitial advertisements, 222

italicized text, 45

with CSS, 66

helping readers navigate Web pages using, 44

J
jacket script, 215

Java, 256–257

Java 2 Bible (Couch and Steinberg), 257

Java 2 For Dummies (Burd), 257

JavaScript

accessing the system clock with, 248–251

changing z-index values with, 287–290

compared to Java, 236

creating rollovers with, 243–248

event-based Web page scripting with, 280–286

identifying the user’s Web browser with,

241–243
language, overview of, 236–241
temperature converter implemented in,

254–255
validating HTML form input using, 251–253

Joint Photographic Expert Group (JPEG) files,
122–123

jump links, 114–119

jump targets, 113–114, 119

external, instability of, 119

K
Karen’s Cookie Viewer, 333

<kbd> (keyboard text) tag, 53

kerning, adjusting with CSS, 72

keyboard shortcuts, using (on Web pages), 230

keywords, HTML

<a> (anchor) tag, 103–108
 (boldface text) tag, 45

<base> tag, 109

<basefont> tag, 51

<blockquote> (indentation block) tag, 35–36

<body> formatting tag, 33

Continued

557386 index.qxd 4/2/04 10:00 AM Page 396

�

Index396

keywords, HTML (continued)

 (line break) tag, 24, 25

<cite> (bibliographic citation) tag, 53

<code> (code listing) tag, 53

<dd> (definition description) tag, 81

<dfn> (word definition) tag, 53

<div> (CSS container) tag, 58–59

<dl> (definition list) tag, 81,84

<dt> (definition term) tag, 81

 (emphasis tag), 52

<fieldset> (form-sectioning) tag, 224–227

 (text attributes) tag, 49–52

<form> (fill-in form) tag, 196

<frame> (frame pane) tag, 181–182, 183–184

<frameset> formatting tag, 181–182,

183–184
<h1>, <h2>, ...<h6> (header-format) tags,

37–39

<head> formatting tag, 33

<hr /> (horizontal rule) tag, 40–41

<html> tag, 21

<i> (italic text) tag, 23, 45

<iframe> (inline frame) tag, 190–192

 (image) tag, 123–132

<input> (form input) tag, 196–198

<kbd> (keyboard text) tag, 53

<label> (form input element label) tag,

222–224
<legend> (form-labeling) tag, 224–227
 (list item) tag, 85

<link> (external style sheet) tag, 62

<meta> (document information) tag, 353–356

<noframes> formatting tag, 187–188

 (ordered list) tag, 88

<p> (paragraph) tag, 24–25

<pre> (preformatted text) tag, 27, 47

<samp> (sample input) tag, 53

<script> (script code block) tag, 237

<select> (drop-down menu list) tag, 198

 (CSS container) tag, 58–59

<strike> (strikethrough text) tag, 46, 48–49

 (strong emphasis) tag, 52

<style> (style definition block) tag, 59–62

<sub> (subscript) tag, 46

<sup> (superscript) tag, 46

<table> (tabular layout) tag, 160

<td> (table data) tag, 160

<textarea> (text input box) tag, 198,
202–203

<th> (table head) tag, 163–164

<title> (document title) tag, 34–35

<tr> (table row) tag, 160

<tt> (monospace text) tag, 46, 53, 67

<u> (underlined text) tag, 46

 (unordered list) tag, 85

<var> (variable) tag, 53

L
<label> (form input element label) tag, 222–224

laws, copyright, 143, 146, 147, 153

layout and page design

history of, 44

using Cascading Style Sheets (CSS), 58

leading, adjusting with CSS, 73–74

Lee, Tim. See Berners-Lee, Tim

legal issues for copyrighted material on Web sites,

143, 146, 147, 153

<legend> (form-labeling) tag, 224–227

letter spacing, adjusting with CSS, 72

 (list item) tag, 85

as a container, 85

context-sensitivity of, 88–89

redefining, with CSS, 86–87

value attribute of, 93

line breaks, 25–26

line spacing, adjusting with CSS, 73–74

<link> (external style sheet) tag, 62

links in Web pages

href attribute of, 104

name attribute of, 113

presentation of, 119–120

referencing internal documents, 108–109

referencing non-Web information, 106–107

straight quotes in markup of, 104

target attribute of, 185, 187

link colors, changing, 119–120
lists

bullet style in, controlling, 92–93, 94

bulleted, 85–87

definition, 81–85

graphics files as bullets in, 94

nested, 89, 90–93

numbered, 87–90

numbering style in, controlling, 91, 93

557386 index.qxd 4/2/04 10:00 AM Page 397

397 �Index

ordered, 87–90
unordered, 85–87

logging in remotely, using Telnet, 17

logical styles, 43, 52. See also Cascading Style

Sheets (CSS)
Lycos, 362–363
Lynx text-based Web browser, 127–128

M
Macromedia Flash, 259

Macromedia Flash MX 2004 Bible (Reinhardt and

Dowd), 259

mailto: URLs, 17

margin (of CSS container), 263–265

markup languages

Hypertext Markup Language (HTML), 8, 21

Standard Generalized Markup Language

(SGML), 21

XHTML, 25, 41

XML (eXtensible Markup Language), 41, 301,

303

XSLT (eXtensible Stylesheet Language

Transformations), 258–259

meaningful titles for Web sites, creating, 352

medallions, 340–341

media

linear, 3–4
non-linear (hypertext), 4

<meta> (document information) tag, 353–356

Microsoft Internet Explorer, 8

Bookmark list, 10

default page of, changing, 11–12

Edit button, 10

history button, 10

launching, 9

Letter button, 10

Print button, 10

standard toolbar, 10

toolbar buttons, 11

viewing local HTML pages in, 31–32

Microsoft NotePad, 27. See also text editor

Microsoft Submit It! directory listing service, 361

Microsoft Windows 95/98/2000/XP, 8–9

MIDIfarm Web site, 153

Miller, James, 357

mismatched HTML tags, 22–23

monospace typeface, 27, 46, 47

mouse clicks, detecting. See browser events, Web
page code for handling

.mov files, 154

Movable Type software weblog server, 294

Mozilla open source web browser, 9

.mpg files, 154

N
name=”value” pairs, 49

straight quotes in, 104

navigation of Web sites, 44, 117, 330–333

“cookie crumb trail” to assist users’, 332

tracking users’, 331–332

Navigator Web browser (Netscape), 9

Nelson, Ted, 4

nested containers, 262

nested lists, 89

nested tables, 161

example of use of, on an actual Web site,
171–173

Netscape, 9

Netscape Navigator Web browser, 9

<noframes> formatting tag, 187–188

nonanonymous FTP. See FTP (File Transfer

Protocol), nonanonymous

nonbreaking spaces, 99

non-CSS-compatible Web browser(s), 65

NotePad, 27. See also text editor

number system

decimal (base-10), 137

hexadecimal (base-16), 137

O
	(ordered list) tag, 88

start attribute of, 91

style attributes for, CSS, 95–96

type attribute of, 91

online resources. See also presence providers

for ActiveX, 258

AdWords Web site, 367

AltaVista Web site, 363

Art Today Web site, 141, 146

for audio files and software, 153–154, 154–155

and banner advertisements, 364–366

crawler-friendly, making, 352–356

for Creating Cool Web Sites (Taylor), 9, 76

designing, 373–378

directories and indexes of, 360–363

Continued

557386 index.qxd 4/2/04 10:00 AM Page 398

�

Index398

online resources (continued)

DMOZ (Open Directory Project) Web site, 361

for document object models, 280

enhancing, with a search engine, 206–208,

332

Etymologic.com Web site, 208, 216

for GIF tools, 149

Google Web site, 362

GraphicConverter Web site, 123, 140

for graphics and images, 147

for graphics software packages, 123

for the Gutenberg Bible, 44

ht://Dig search engine, 332

for image map editors, 149

Internet Advertising Bureau (IAB) Web site, 366

Intuitive Systems (intuitive.com) Web site,

311–313

for Java, 257

Jill Whalen’s Web site, 369

Karen Kenworthy’s Web site, 333

Lycos Web site, 362–363

for Macromedia Flash, 259

navigating, 44, 117, 330–333

Open Directory Project Web site, 361

organizing files of, 109–112, 113, 309–313

Paint Shop Pro Web site, 123, 140

for Perl, 216

for the PICS system, 358

protecting files of, 313–316

publicizing, 369

rating content of, with PICS, 356–358

Real Corporation Web site, 154

for RSS, 306

for RSS validation, 305

on scanners and scanning, 143

The Shock Zone Web site, 146

testing appearance and function of, 23, 31–32,

39, 85, 117, 377–378

and text-based advertisements, 367–369

for this book, 9, 76

usability of, factors influencing, 323–330

using color effectively in, 329–330

using server-side includes to organize,

316–321

for video files and software, 154–155

for VBScript, 256

for WAP and WML, 349

for XSLT, 259

Yahoo! Web site, 361

Open Directory Project, 361

open source Web browser, 8

open tag, 23

P
<p> (paragraph) tag, 24–25

as a container, 24–25
padding (of CSS container), 267–271
page design and layout

history of, 44

using Cascading Style Sheets (CSS), 58

page view, 365. See also advertisements on Web

pages

pages, Web, 30. See also HTML documents

character set of, 337

gathering, into frames, 181–183

index.html, 19

on mobile devices, 347–349

titling of, 34–35

pages, Web, advertisements on

banner, 364–366

charges for placing, 365, 367

interstitial, 222

text-based, 367–369

pages, Web, dynamically generated

examples of, 211–213, 321–322

and security issues, 216

using CGI scripts, 210–211

using server-side includes, 316

Paint Shop Pro, 123, 140

trial version of, 144

paired tag, 23

paragraph breaks, 24–25

passwords file, Apache Web server, 314–316

passwords, FTP, 14–15

pay per click (PPC)-based advertisement charges,

367

Perl programming language

Web sites for, 216

writing CGI scripts in the, 211–213

Photoshop (Adobe), 140, 141

PICS (Platform for Internet Content Selection),

356–358

PICS: Internet Access Controls without Censorship

(Resnick and Miller), 357

557386 index.qxd 4/2/04 10:00 AM Page 399

399 �Index

pixels, 122
planning your Web site

announcing your Web page, 378

buiding pages in, 375–376

conceptualization for, 373–375

loading files onto Web and, 377–378

testing and, 377

PNG files, 122–123

pointing to Web pages. See <a> (anchor) tag

pop-up windows, implementing, 220–222

ports, of Internet services, 15

positioning, absolute, 275–276

post form, 196, 214

<pre> (preformatted text) tag, 27, 47

preamble of Web page, 211

prefix, of relative URL

controlling, with <base> tag, 109

determination of, 108

presence providers, 379–383

assessing, 379–380

presence providers, inexpensive, 381–382

choices, 383

Earthlink, 381

Earthnet, 381

Pair networks, 382

Sonic.net, 382

SRLNet, 382

Verio/NTT, 382

Well, the, 382

programming for Web sites. See CGI scripts;
JavaScript; Perl programming language; scripting
solutions, alternate

Progressive Network Graphics (PNG) files, 122–123

proportional typeface, 27, 46

protecting a Web site’s files, 313–316

publicizing your Web site, 369

Q
QUERY_STRING environment variable, 214–215

R
radio buttons, 197, 200–201

groups of mutually exclusive, 201

.rdf files, 303

read-only input elements, 231

Real Corporation, 154–155

RealVideo streaming video technology, 155

redefining HTML tags with CSS, 59–62, 64–65,
86–87

to customize list layout, 83–84

to customize table layout, 165–166

registered trademark symbol, character entity for, 98

relative positioning (CSS container), 276–277

remote access to files over the Internet, 6–8, 14–16

repeating background images, with CSS, 137

Resnick, Paul, 357

RGB values, 50, 138–139

in CSS, 71, 138

robots

assisting, to index your Web site, 352–358
preventing, from indexing your Web site,

358–360
used by spammers, 360

robots.txt file, 358–360

rollovers, 243–248

RSS (Really Simple Syndication), 301–306

aggregators, 302

explained, 301–302

feed stream, format of, 303–304

readers, 302

resources for, 306

validating, 305–306

RSS 1.0 files, 303

S
<samp> (sample input) tag, 53

scanners, recommended resolution for producing

Web graphics with, 142

<script> (script code block) tag, 237

scripting solutions, alternate, 255–259. See also CGI

scripts; JavaScript; Perl programming language
scripts, CGI

environment variables of, 213

examples of, 211–213

execution environment of, 213–214

generating Web pages with, 210–211

and hidden form fields, 197, 206–210

processing form data with, 215–216

and security issues, 216

search engine, including on a Web page, 206–208,

332

section-block notation, for Web page (HTML) code,

33

<select> (drop-down menu list) tag, 198

557386 index.qxd 4/2/04 10:00 AM Page 400

�

Index400

server-side includes (SSIs)

directives in, 317–318

environment variables of, 319–320

example of use of, 321–322

explained, 316

service identifier portion of URL, 13

SGML. See Standard Generalized Markup Language

The Shock Zone, 146

site maps as navigaton aids, 332–333

sites, free, 380–381

50Megs, 380

freeservers, 380

Yahoo! Geocities, 381

sites on the World Wide Web. See also presence
providers

for ActiveX, 258

AdWords, 367

AltaVista, 363

Art Today, 141, 146

for audio files and software, 153–154, 154–155

banner advertisements on, 364–366

content rating of, with PICS, 356–358

crawler-friendly, making your, 352–356

for Creating Cool Web Sites (Taylor), 9, 76

design process, 373–378

directories and indexes of, 360–363

DMOZ (Open Directory Project), 361

for document object models, 280

effective use of color in, 329–330

Etymologic.com, 208, 216

for GIF tools, 149

Google, 362

GraphicConverter, 123, 140

for graphics and images, 147

for graphics software packages, 123

for the Gutenberg Bible, 44

ht://Dig search engine, 332

for image map editors, 149

including a search engine in, 206–208, 332

Internet Advertising Bureau (IAB), 366

Intuitive Systems (intuitive.com), 311–313

for Java, 257

of Jill Whalen, 369

of Karen Kenworthy, 333

Lycos, 362–363

for Macromedia Flash, 259

navigating, 44, 117, 330–333

Open Directory Project, 361

organizing files of a, 109–112, 113, 309–313

Paint Shop Pro, 123, 140

for Perl, 216

for the PICS system, 358

protecting files of a, 313–316

publicizing, 369

Real Corporation, 154

for RSS, 306

for RSS validation, 305

on scanners and scanning, 143

The Shock Zone, 146

testing, 23, 31–32, 39, 85, 117, 377–378

text-based advertisements on, 367–369

for this book, 9, 76

usability of, factors influencing, 323–330

using server-side includes to organize,

316–321

for video files and software, 154–155

for VBScript, 256

for WAP and WML, 349

for XSLT, 259

Yahoo!, 361

small capitals, producing with CSS, 71–72

software weblog server, 294

spaces, nonbreaking, 99

 (CSS container) tag, 58–59

special characters in URLs, hexadecimal coding of,

16–17, 215

specifying border width

around frame panes, 186, 189, 192

around images, 127, 132–133

around table elements, 161, 164, 169–171

Standard Generalized Markup Language (SGML), 21

streaming media, 154–155

<strike> (strikethrough text) tag, 46, 48–49

with CSS, 75

 (strong emphasis) tag, 52

style classes, CSS, 60–62

subclasses of, 64–65
style definition block, CSS, 59–62

and non-compatible browsers, 65

style sheets. See Cascading Style Sheets (CSS)

<style> (style definition block) tag, 59–62

and non-compatible browsers, 65

<sub> (subscript) tag, 46

subclasses of CSS clases, 64–65

557386 index.qxd 4/2/04 10:00 AM Page 401

401 �Index

Submit It! (Microsoft) directory listing service, 361

<sup> (superscript) tag, 46

symbol for copyright, 98

T
tabindex-enabled HTML tags, 228–230
<table> (tabular layout) tag, 160. See also the

following entry
border attributes of, 161

cellpadding attributes of, 161

cellspacing attributes of, 161

frame attribute of, 169–171

rules attribute of, 169–171

width attributes of, 161

tables in Web pages

alignment of elements in, controlling, 161,

164–165, 180–181

background colors and graphics in, 165–167,

168–169

basics of, 159–165

borders around, 161, 164, 169–171

browser-specific attributes of, 168–171

column headings in, 163–164

grouping elements of, 176

improving rendering of, 176–179

multi-unit rows and columns in, 164–165, 167

nesting, 161, 171–173

as a page layout and design tool, 174–176

spacing in, controlling, 161–163, 176–179

Taco HTML image map editor, 149

tag, <a> (anchor), 103–108

href attribute of, 104

name attribute of, 113

named, 113–119

and presentation of links, 119–120

referencing internal documents, 108–109

referencing non-Web information, 106–107

straight quotes in, 104

target attribute of, 185, 187

tag, <body> formatting, 33

adding background colors and graphics with,

136

background attribute of (HTML), 137

background-color attribute of (CSS), 137

background-image attribute of (CSS), 137

background-position attribute of (CSS), 137

background-repeat attribute of (CSS), 137

bgcolor attribute of (HTML), 137

text attribute of, 52

tag, (image)
align attribute of, 128–131
alt attribute of, 124–125, 127–128
border attribute of, 127, 132–133
height attribute of, 131–132
hspace attribute of, 133–134
src attribute of, 123–124
vspace attribute of, 133–134
width attribute of, 131–132

tag, (list item), 85

as a container, 85

context-sensitivity of, 88–89

redefining, with CSS, 86–87

value attribute of, 93

tag, <table> (tabular layout), 160

border attributes of, 161

cellpadding attributes of, 161

cellspacing attributes of, 161

frame attribute of, 169–171

rules attribute of, 169–171

width attributes of, 161

tag(s), HTML/XHTML, 21. See also individual tags

attributes of, 42, 49

case sensitivity of, in XHTML, 25

closing, 23

container, 24

for entity references, 96–98

malformed, 45

mismatched, 22–23

obsolete, 90

opening, 23

paired, 23

redefining, 59–62, 64–65

specifying styles within, 58–59, 63

style attribute of, 58–59, 63

tabindex-enabled, 228–230

unrecognized, 22–23

used with CSS, 78

taint flag (for Perl scripts), 216

<td> (table data) tag, 160

Teach Yourself Unix in 24 Hours (Taylor), 313

Telnet, 17

telnet: URLs, 18

557386 index.qxd 4/2/04 10:00 AM Page 402

�

Index402

text, boldface, 45

helping readers navigate with, 44

with CSS, 66

text alignment, adjusting with CSS, 74–75

text decorations, producing with CSS, 75

text editor, 27, 104

using to create Web pages, 28–30
text styles, HTML, 43. See also Cascading Style

Sheets (CSS)

combining, 47, 48

in CSS, 72–76

history of, 44

meanings of, 44

specifying, with CSS, 66–67

<textarea> (text input box) tag, 198, 202–203

text-based advertisements, 367–369

TextEdit, 27. See also text editor

<th> (table head) tag, 163–164

thumbnail images, 142

tiling background images, using CSS for, 137

time, current

obtaining using JavaScript, 248–251
obtaining using Perl, 212

<title> (document title) tag, 34–35

<tr> (table row) tag, 160

trademark character, creating with CSS, 75

transparent GIF, 123, 147–148

<tt> (monospace text) tag, 46, 53, 67

.txt files

default extension used by NotePad, 30

displayed in Web browser, 23, 30

typefaces, 27, 67

monospace, 27

proportional, 27

specifying, in HTML documents, 50

TypePad hosted weblog, 294

U
<u> (underlined text) tag, 46

	(unordered list) tag, 85

redefining, with CSS, 86–87, 94–96

style attributes for, CSS, 94, 96

type attribute of, 93

Uniform Resource Locator (URL), 7. See also <a>
(anchor) tag

absolute, 108

case sensitivity of, 16

for e-mail, 17

examples of, 13–14

format of, 13–14, 17

for FTP, 13, 14

fully qualified, 94, 108

interpretation of relative, 108–109

invention of, 12–13

limitations of, 16

port numbers in, 15

purpose of, 12

relative, 94, 108–109, 112

resolution of, 108

spaces within, 16

special characters in, 16–17

special URLs, 17

for Telnet, 17

for Usenet groups, 14, 18

for Web pages (hypertext), 18–19

underlined text, 46

with CSS, 75

unrecognized HTML tags, 22–23

URI, 337

URL (Uniform Resource Locator), 7)

absolute, 108

case sensitivity of, 16

for e-mail, 17

examples of, 13–14

format of, 13–14, 17

for FTP, 13, 14

fully qualified, 94, 108

interpretation of relative, 108–109

invention of, 12–13

limitations of, 16

port numbers in, 15

purpose of, 12

relative, 94, 108–109, 112

resolution of, 108

spaces within, 16

special characters in, 16–17

special URLs, 17

for Telnet, 17

for Usenet groups, 14, 18

for Web pages (hypertext), 18–19

usability of a Web site, improving. See also the
following entry

through careful use of color, 329–330

through careful use of text and graphics,

328–329

for color-blind individuals, 330

557386 index.qxd 4/2/04 10:00 AM Page 403

V

403 �Index

through consistent layout across pages,
326–328

by grouping information, 326

by minimizing amount of information

presented to the viewer, 324–325

as a process, 333

usability rules followed or violated

at AOL’s Web site, 324

at Firstgov.gov Web site, 326–327

at Google’s Web site, 324

at Intuitive Systems’s Web site, 331

at the MSN Web site, 324

at Open Directory Project Web site, 332

at the U.S. Internal Revenue Service Web site,

324, 326

at the U.S. Social Security Administration Web

site, 325, 326

at the Yahoo! Web site, 324, 330, 332

Usenet newsgroups

accessing, 18

special URL format for, 14, 18

user’s Web browser, ascertaining, 213, 241–243

validation
of CSS style sheets, 344–347
of HTML form data, 251–253
of HTML pages, 337–341
medallions, 340–341
of RSS feeds, 305–306
of WML pages, 347–349
of XHTML pages, 341–344

<var> (variable) tag, 53

video clips in Web pages, 154

video files

MPEG (Motion Picture Experts Group), 154

QuickTime, 154

view, of Web page, 365. See also advertisements on

Web pages

Visual Basic Script (VBScript), 255–256

W
WAP Forum, the, 349

WAV files, 153

Web browser(s), 8

ascertaining the user’s, 213, 241–243

Camino, 8

compatibility of (with Web site), 213, 241–243

cookies, 333–334

default presentation settings of, 85

Internet Explorer (Microsoft), 8, 9

interpretation of HTML by, 21–23, 29, 33

Lynx, 127–128

Mozilla, 9

Netscape, 9

non-CSS-compatible, 65

text-based, 127–128

transferring files with, 7–8, 14–16

Web crawlers
assisting, to index your Web site, 352–358
preventing, from indexing your Web site,

358–360

used by spammers, 360

Web files. See also <a> (anchor) tag; Cascading Style

Sheets (CSS); CGI scripts

alignment of images in, controlling, 128–134

alignment of tables in, controlling, 161,

164–165, 180–181

audio in, 153–155

background colors and graphics in, 136

capitalization in, controlling with CSS, 76

character entities in, 96–99

character set (charset) of, 337

coding, for non-CSS-compatible browsers

comments in, 65, 99–100

consistent coding style for, 26, 34

colors in, controlling, 119–120

creating with a text editor, 28–30

designing, for non-frames-capable browsers,

186–188

DOCTYPE declaration in, 336

and the Document Object Model (DOM), 244

dynamically generated by CGI scripts,

210–211

example of, 54

finding/creating images for, 140–147

font styles in, 49–52

foreign characters (diacritical marks) in, 96–98

forms in, basics of, 196–203

frames in, basics of, 181–183

with graphics, design philosophies for, 127

image-mapped graphics in, 149–153

including copyrighted material in, 143, 146,

147, 153

including images in, 123–127

Continued

557386 index.qxd 4/2/04 10:00 AM Page 404

�

Index404

Web files (continued)

integration of links and text in, 107

kerning in, using CSS, 72

keyboard shortcuts in, 230

leading in, adjusting with CSS, 73–74

letter spacing in, adjusting with CSS, 72

line spacing in, adjusting with CSS, 73–74

links in, 103–108, 114–119

logical styles for, 52

multimedia in, 153–155

navigation of, 44, 117, 330–333

organizing, in a Web site, 109–112, 113

preamble of, 211

rendering of, by Web browser, 29

section heads in, defining 37–39

sections of, 32–34

small capitals in, using CSS, 71–72

tables in, basics of, 159–165

testing, 23, 31–32, 39, 85, 117, 377–378

text decorations in, using CSS, 75

text styles in, 44–49

titling of, 34–35

user input from, 196–198

using digital photographs in, 144–145

using tables for layout of, 174–176

video in, 153–155

word spacing in, adjusting with CSS, 73

Web hosting options, 379–383
assessing, 379–380

Web page scripting. See CGI scripts; JavaScript; Perl
programming language; scripting solutions,
alternate

Web pages, 30. See also HTML documents

character set of, 337

gathering, into frames, 181–183

index.html, 19

on mobile devices, 347–349

titling of, 34–35

Web pages, advertisements on

banner, 364–366

charges for placing, 365, 367

interstitial, 222

text-based, 367–369

Web pages, dynamically generated

examples of, 211–213, 321–322

and security issues, 216

using CGI scripts, 210–211

using server-side includes, 316

Web rings, 363–364
Web servers, 18–19
Web site access lists

for restricting visibility of directories, 313–316
for restricting Web crawlers and robots,

358–360
Web site feedback, 198–200
Web site planning

announcing your Web page, 378

building pages in, 375–376

conceptualization for, 373–375

loading files onto Web and, 377–378

testing and, 377

Web site usability rules followed or violated by

AOL, 324

Firstgov.gov, 326–327

Google, 324

Intuitive Systems, 331

MSN, 324

Open Directory Project, 332

U.S. Internal Revenue Service, 324, 326

U.S. Social Security Administration, 325, 326
Yahoo!, 324, 330, 332

Web site(s). See also presence providers

for ActiveX, 258

AdWords, 367

AltaVista, 363

Art Today, 141, 146

for audio files and software, 153–154, 154–155

banner advertisements on, 364–366

content rating of, with PICS, 356–358

crawler-friendly, making your, 352–356

for Creating Cool Web Sites (Taylor), 9, 76

design process, 373–378

directories and indexes of, 360–363

DMOZ (Open Directory Project), 361

for document object models, 280

effective use of color in, 329–330

Etymologic.com, 208, 216

for GIF tools, 149

Google, 362

GraphicConverter, 123, 140

for graphics and images, 147

for graphics software packages, 123

for the Gutenberg Bible, 44

ht://Dig search engine, 332

for image map editors, 149

including a search engine in, 206–208, 332

557386 index.qxd 4/2/04 10:00 AM Page 405

405 �Index

Internet Advertising Bureau (IAB), 366
Intuitive Systems (intuitive.com), 311–313
for Java, 257
of Jill Whalen, 369
of Karen Kenworthy, 333
Lycos, 362–363
for Macromedia Flash, 259
navigating, 44, 117, 330–333
Open Directory Project, 361
organizing files of a, 109–112, 113, 309–313
Paint Shop Pro, 123, 140
for Perl, 216
for the PICS system, 358
protecting files of a, 313–316
publicizing, 369
Real Corporation, 154
for RSS, 306
for RSS validation, 305
on scanners and scanning, 143
The Shock Zone, 146
testing, 23, 31–32, 39, 85, 117, 377–378
text-based advertisements on, 367–369
for this book, 9, 76
usability of, factors influencing, 323–330
using server-side includes to organize,

316–321
for video files and software, 154–155
for VBScript, 256
for WAP and WML, 349
for XSLT, 259
Yahoo!, 361

weblogs
adding entries to, 300–301
blogspam on, 298
configuring, 298–300
as content management systems, 293–296
hosted, 294
installing, 297–298
RSS data stream from, 301
“serve your own,” 294

Wham shareware audio file editor, 154
Wicked Cool Shell Scripts (Taylor), 376

width of CSS container, 271
window motion and resizing, detecting. See browser

events, Web page code for handling
Windows 95/98/2000/XP, 8–9
Wireless Application Protocol (WAP), 348
Wireless Markup Language (WML), 347–349

emulator, 348
W3C (World Wide Web Consortium) validation

of CSS style sheets, 344–347
of HTML form data, 251–253
of HTML pages, 337–341
medallions, 340–341
of XHTML pages, 341–344

word spacing, adjusting with CSS, 73
World Wide Web (WWW)

explained, 3–8
FTP file transfer via the, 7–8, 14–16
information services available on, 5–8

World Wide Web Consortium (W3C) validation
of CSS style sheets, 344–347
of HTML pages, 337–341
medallions, 340–341
of XHTML pages, 341–344

WWW. See World Wide Web

X
XHTML

and HTML, 41
lowercasing of tags in, 25, 41
unpaired tags in, formatting of 25, 41

XML (eXtensible Markup Language), 41
and RSS, 301, 303

XSLT (eXtensible Stylesheet Language
Transformations), 258–259

Y
Yahoo!, 361

Z
z-index (depth value) attribute (of CSS container),

286–290

	Creating Cool Web Sites with HTML, XHTML, and CSS
	Cover

	Preface
	Acknowledgments
	Contents
	Part I: Building a Wicked Cool Web Page
	Chapter 1: So What's All This Web Jazz?
	What Is the Web Anyway?
	Linear media
	Hypermedia
	Cool spots on the Web

	Introduction to Internet Explorer
	Launching Internet Explorer
	Changing the default page

	All about URLs
	URLs to the rescue
	Reading a URL
	FTP via URL
	Anonymous FTP
	Nonanonymous FTP

	Ports
	Using FTP URLs
	Special characters in URLs
	E-mail via URL
	Telnet via URL
	Usenet news via URL
	The heart of the Web: HTTP URLs

	Summary

	Chapter 2: Building Your First Web Page: HTML Basics
	Basics of HTML Layout
	HTML and browsers
	If you open it, close it

	Breaking at Paragraphs and Lines
	Building Your First Web Page
	Launching your HTML editor
	Saving your file as HTML
	Opening the file in Internet Explorer
	Improving the HTML and viewing it in the browser

	Breaking Your Document into Sections
	Adding a Title to Your Page
	Adding Footer Material
	Defining Section Heads
	Using the Horizontal Rule
	Introducing XHTML
	Summary

	Chapter 3: Presenting Text Attractively
	First, a Little History
	Helping Readers Navigate with Bold and Italic
	Underlining, Monospace, and Other Text Changes
	Specifying Font Sizes, Colors, and Faces
	Applying Logical Styles
	Putting It All Together
	Summary

	Chapter 4: Moving into the 21st Century with Cascading Style Sheets
	Types of CSS
	Inline CSS
	One definition, many references
	Sharing a single style sheet

	The Components of CSS
	Classes and IDs
	Subclasses
	Adding comments within CSS
	Compatible style blocks

	Text Formatting with CSS
	Bold text
	Italics

	Changing Font Family, Size, and Color
	Typefaces and monospace
	Changing font size
	The color of text

	Additional Neato Text Tricks in CSS
	Small capitals
	Stretching or squishing letter spacing
	Stretching or squishing words
	Changing line height
	Text alignment
	Vertical text alignment
	Text decorations
	Changing text case
	Putting it all together

	Summary

	Chapter 5: Lists and Special Characters
	Definition Lists
	Good list, bad list

	Unordered (Bulleted) Lists
	Ordered (Numbered) Lists
	List Formats
	Bullet shapes
	CSS control over lists
	Counting the CSS way
	List-style shortcuts

	Character Entities in HTML Documents
	Nonbreaking Spaces
	Comments within HTML Code
	Summary

	Chapter 6: Putting the Web in World Wide Web: Adding Pointers and Links
	Pointing to Other Web Pages
	Referencing Non-Web Information
	Referencing Internal Documents with Relative URLs
	Organizing a Web Site
	Defining Web Document Jump Targets
	Adding Jump Links to Your Web Pages
	Jumping into organized lists
	Linking to jump targets in external documents

	Changing Link Colors
	Summary

	Chapter 7: From Dull to Cool by Adding Graphics
	Image Formats
	Including Images in Web Pages
	Text Alternatives for Text-Based Web Browsers
	Image Alignment Options
	Standard alignment
	More sophisticated alignment

	Background Colors and Graphics
	Where Can You Find Images?
	Creating your own
	Clip art or canned image libraries?
	Scanned or digital photographs
	Working with digital photographs
	Grabbing images off the Net
	Art today
	The shock zone
	But wait! There's more

	Transparent Colors
	Animated GIF images
	Image-Mapped Graphics
	Building an image map

	Audio, Video, and Other Media
	Movies all night
	Streaming audio and video

	Summary

	Part II: Rockin' Page Design Strategies
	Chapter 8: Tables and Frames
	Organizing Information in Tables
	Basic table formatting
	Advanced table formatting
	Table attributes that aren't 100 percent portable
	Modifying edges and grid lines

	Tricks with Table Layouts
	Tables within tables
	Grouping table elements for faster rendering
	Grouping tables to speed up display

	Pages within Pages: Frames
	The basics of frames
	Specifying frame panes and sizes
	More fun with frames

	Inline Frames
	Summary

	Chapter 9: Forms, User Input, and the Common Gateway Interface
	An Introduction to HTML Forms
	Asking for feedback on your site
	Adding drop-down lists and radio buttons
	Tweaking the select element

	Fancy Form Formatting
	Easy Searching from Your Page
	Another Look at Hidden Variables
	How CGI Scripts Work
	The world's simplest CGI example
	Sending information via the environment
	Sending and reading data
	Receiving information from forms
	Learning more about CGI programming

	Summary

	Chapter 10: Advanced Form Design
	The button Input Type
	Using Labels to Organize User Focus
	Dividing Forms into Fieldsets
	Tab Key Control on Input
	The accesskey Attribute
	Disabled and Read-Only Elements
	Summary

	Chapter 11: Activating Your Pages with JavaScript
	An Overview of JavaScript
	Variables
	Where do you put JavaScript?
	Events
	Expressions
	Looping mechanisms
	Subroutines, built-in and user-defined
	Built-in functions

	Testing Browser Compatibility
	Graphical Rollovers
	Creating a new image container
	Assigning a URL to the new image container
	Changing values on the fly
	Telling the time
	Time of day, the friendly version
	Locale-specific date and time
	A built-in clock

	Testing Form Values
	Creating a test condition

	A Temperature Converter
	Other Scripting Solutions
	Visual Basic Script
	Java
	Referencing Java applets
	Online Java applets

	ActiveX
	XSLT
	Flash

	Summary

	Chapter 12: Advanced Cascading Style Sheets
	Boxes and Containers
	The Different Parts of a Container
	Margins
	Borders
	Multiple value options
	Border-style values

	Padding

	Container Dimensions
	Setting the container height
	Text and container flow

	Container Positioning
	Absolute positioning
	Relative positioning
	So what's the point?
	Fixed positioning

	Hide Containers with the Visibility: Attribute
	Controlling visibility with JavaScript
	The display: attribute controls visibility and flow
	Stacking: Using z-indexes for a 3D page
	Using JavaScript to change z-index values

	Summary

	Chapter 13: Site Development with Weblogs
	What Is a Weblog?
	Working with a Weblog
	Installing a weblog
	Configuring a weblog
	Adding a weblog entry

	The World of RSS
	Creating Valid XML / RSS Feeds
	Validating an RSS feed
	Exploring further

	Summary

	Part III: Expanding Your Page into a Web Site
	Chapter 14: Web Sites versus Web Pages
	Working with Subdirectories
	The subdirectory structure of AnswerSquad
	An even bigger site: Intuitive.com

	Protecting Web Sites and Directories
	Server-Side Includes
	Useful server-side include options
	config
	include
	echo
	fsize
	flastmod
	exec

	SSI environment variables
	Building a Web site using SSI

	Summary

	Chapter 15: Thinking about Your Visitors and Your Site's Usability
	What Makes a Site Usable?
	Amount of information presented
	Organize information on the page
	Standardize the screen layout
	Presentation of text and graphics
	Choice and uses of color

	Navigating Your Web Site
	Tracking navigation
	Site search engines
	Site maps

	Using Cookies to Remember User Information
	Summary

	Chapter 16: Validating Your Pages and Style Sheets
	Validating HTML and XHTML Web Pages
	Specifying a character set
	Validating an HTML page

	Validating XHTML Pages
	Validating CSS
	MIME types and brick walls
	Uploading CSS specifications by file

	Creating Valid Mobile Web Page Layouts
	A deck of cards
	WAP versus WML
	So what does WML look like?

	Summary

	Chapter 17: Building Traffic and Being Found
	Producing Crawler-Friendly Sites
	Creating meaningful titles
	Using keywords in your title
	Using the <meta> tag
	Microsoft (http://www.microsoft.com)
	Nostarch Press (http://www.nostarch.com)
	Intuitive Systems (http://www.intuitive.com)
	The Internet Movie Database (http://www.imdb.com/)
	Contentious (http://www.contentious.com)

	Other uses for the <meta> tag
	Content rating with PICS
	Keeping crawlers away

	The Dark Side of Crawlers
	Registering with Web Index and Search Sites
	Joining a directory site
	Yahoo! (http://www.yahoo.com)
	The Open Directory Project (http://www.dmoz.org/)

	Signing up for a crawler or robot site
	Google (http://www.google.com)
	Lycos (http://www.lycos.com)
	AltaVista (http://www.altavista.com)

	Tying In with Related Sites Using a Web Ring
	The Basics of Banner Advertising
	Text Advertising Options and Pay Per Click
	Smart text advertisements

	Publicizing Your Site
	Summary

	Closing Thoughts
	Appendix A: Step-by-Step Web Site Planning Guide
	Appendix B: Finding a Home for Your Web Site
	Index
	Team DDU

