THE EXPERT’S VOICE® IN WEB DEVELOPMENT:.= I

"4

Beginning

PHP and
MySQL

From Novice to Professional

Learn how to build dynamic, database-driven
Web sites using two of the world’s most popular
open source technologies.

THIRD EDITION

W. Jason Gilmore

Apress:

Beginning PHP and
MySQL

From Novice to Professional,
Third Edition

W. Jason Gilmore

Apress°

Beginning PHP and MySQL: From Novice to Professional, Third Edition
Copyright © 2008 by W. Jason Gilmore

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-862-7

ISBN-10 (pbk): 1-59059-862-8

ISBN-13 (electronic): 978-1-4302-0299-8

ISBN-10 (electronic): 1-4302-0299-8

Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Gennick

Technical Reviewers: Jay Pipes and Matt Wade

Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell,
Jonathan Gennick, Kevin Goff, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Senior Project Manager: Tracy Brown Collins

Copy Editor: Bill McManus

Associate Production Director: Kari Brooks-Copony

Production Editor: Kelly Winquist

Compositor: Susan Glinert

Proofreader: Erin Poe

Indexer: John Collin

Artist: April Milne

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://
WWW.apIress. com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales—-eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author nor Apress shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in this work.

The source code for this book is available to readers at http://www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

This one is dedicated to you, Ruby!

Contents at a Glance

About the AUTNOr e e XXvii
About the Technical ReVIEWErS e i XXiX
ACKNOWIBAgMENTS ...t XXXi
INErOAUCTION ..t e e e e Xxxii
CHAPTER 1 Introducing PHP i 1
CHAPTER 2 Configuring Your Environmentl 11
CHAPTER3 PHP BaSICS........coiviiiiiiii i 55
CHAPTER 4 FUNCtions e 113
CHAPTER 5 ArTayS ...\ttt e e e e 127
CHAPTER 6 Object-Oriented PHP ... 163
CHAPTER7 Advanced OOP Featuresccoiiiiiiiiiiininn.n. 193
CHAPTER 8 Error and Exception Handling 213
CHAPTER 9 Strings and Regular EXpressionscc.vvvivinnns. 231
CHAPTER 10 Working with the File and Operating System 277
CHAPTER 11 PEAR ... e 309
CHAPTER12 DateandTimecc.iuiiiiiiiiiiiiiiiiienennn, 323
CHAPTER 13 FOMMS ... i 349
CHAPTER 14 Authenticating YouruUsersccoiiiiiiiiiininn... 365
CHAPTER 15 Handling FileUploads................ooiiiiiiiiiiin.n. 387
CHAPTER 16 Networkingocoviiiiiiii i, 401
CHAPTER17 PHPandLDAPo 425
CHAPTER 18 Session Handlersccoiiiiiiiiiiiiiiiii e, 445
CHAPTER 19 TemplatingwithSmartyt 471
CHAPTER 20 Web ServiCescoviriiriiii ittt 503
CHAPTER 21 Secure PHP Programmingccoiiiriininnennnn... 539

CHAPTER 22
CHAPTER 23
CHAPTER 24
CHAPTER 25
CHAPTER 26
CHAPTER 27
CHAPTER 28
CHAPTER 29
CHAPTER 30
CHAPTER 31
CHAPTER 32
CHAPTER 33
CHAPTER 34
CHAPTER 35
CHAPTER 36
CHAPTER 37
CHAPTER 38

SALIte ... 567
Building Web Sites forthe World 591
MVC and the Zend Frameworkcccovvvinnn, 601
Introducing MySQL 621
Installing and ConfiguringMySQL 635
The Many MySQL Clients ...t 663
MySQL Storage Engines and Datatypes 693
Securing MySQL i 731
Using PHP with MySQLt 767
Introducing PDO ...t 793
Stored Routinesccoiiiiiiiiii 819
MySQL THgQers ...t e 849
MySQLVIieWS ... i 863
Practical Database Queriesciial. 879
Indexes and Searchingccoiiiiiiii it 907
Transactionsco ittt 925
Importing and ExportingData 939

Contents

About the AUTNOr e e XXVii
About the Technical ReVIEWErS e i XXiX
ACKNOWIBAgMENTS ...t XXXi
INtrodUCTION . ..o e Xxxiii
CHAPTER 1 IntroducingPHP ... 1
HiStOrY o e e 2

PHP 4 3

PHP 5 e 4

PHP B ... e 5

General Language Featurescoviiii i 7

Practicality.oovi e 7

PO . e e e 8

PosSibility. 9

PriCE . . e 9

SUMMANY .o i i 10

CHAPTER 2 Configuring Your Environment 1
Installation Prerequisitesc.oiiiiiiiiiiii 12

Downloading Apachecoiiiiii i 12

Downloading PHP e 13

Obtaining the Documentation 14

Installing Apache and PHPon Linuxcccviii..t. 15

Installing Apache and PHP on Windows 17

Installing IIS and PHP on Windowsot 20

Installing ISand PHP i 21

Configuring FastCGl to Manage PHP Processes 22

Testing Your Installation ... 23

Configuring PHP e 25

Configuring PHP at Build Timeon Linux....................... 25

Customizing the Windows Build 26

=

<

CONTENTS
Run-Time Configurationc i 27
Managing PHP’s Configuration Directives 27
PHP’s Configuration Directives ..., 30
Choosinga Code Editorcoiiiii e, 48
Adobe Dreamweaver CS3ttt 48
Notepad++ . ..o e 49

PDT (PHP Development Tools).coovveiiiii i, 49
Zend StUdiO.t e 50
Choosing a Web Hosting Providerociiiieiiin... 50
Seven Questions for Any Prospective Hosting Provider 51
SUMMANY .o e e 53
CHAPTER3 PHPBASiCSoiiiiii e 55
Embedding PHP Code in Your Web Pages 56
Default Syntax. ... i 56
Short-Tags. . ..o 57

£] 58

ASP Style . ..o 58
Embedding Multiple Code Blockst 59
Commenting YourCodec.coiiriiiii i 59
Single-Line C++Syntax. ... 59
Shell Syntax. ... 60
Multiple-Line CSyntax. ..ot et 60
Outputting Datatothe Browser 61
The print() Statement 61

The printf() Statement 63

The sprintf() Statement 65
PHP’s Supported Datatypescoviiiiii e 65
Scalar Datatypes. e 65
Compound Datatypes.covviii i 67
Converting Between Datatypes Using Type Casting............. 69
Adapting Datatypes with Type Juggling....................... 70
Type-Related Functions.........cooviiiiiii it 71
Type Identifier Functions 72
Identifiers ... e e 73
Variables e 73
Variable Declaration.............. ..ot 74
Variable Scope 76
PHP’s Superglobal Variables 80

Variable Variables. ... 86

CONTENTS

Constants e 86
EXPrESSIONS ..ot e 87
OperaNdS . ..ot e 87
Operators. . ..ot 88
String Interpolation 95
Double QUOtES. . ..o ot 95
Single QUOTESt 96
HeredoC oo 97
Control STrUCHUreS . ..o e 98
Conditional Statementso, 98
Looping Statements................ . i 101
File-Inclusion Statementst 108
SUMMANY .. e e e 112
CHAPTER4 Functions ..., 113
Invokinga Function i 113
Creatinga Function, 115
Passing Arguments by Value....................l 115
Passing Arguments by Reference........................... 117
Default ArgumentValues. ..., 118
Returning Values from a Function........................... 119
Recursive Functions............coiii i 121
Function Libraries ... 124
SUMMANY ..o e e 125
CHAPTER 5 AITaYS ..ottt 127
Whatlsan Array? ... e e 128
Creating an Arrayoiiiriiii i i e 129
Creating Arrays witharray()............... ...t 130
Extracting Arrays with list()o it 131
Populating Arrays with a Predefined Value Range 132
Testingforan Array ... 134
Adding and Removing Array Elements 134
Adding a Value to the FrontofanArray 135
Adding a Value onto the End of anArray 135
Removing a Value from the Frontof anArray 135

Removing a Value from the End of an Array 136

CONTENTS

CHAPTER 6

Locating Array Elements ...
Searchingan Array. ...
Retrieving Array Keys.oviiii e
Retrieving Array Valueso

Traversing ArraysSvre i e e e
Retrieving the Current Array Key. ...t
Retrieving the Current Array Value
Retrieving the Current Array Key and Value.
Moving the Array Pointer. L
Passing Array Values to a Function

Determining Array Size and Uniqueness
Determining the Size ofanArray
Counting Array Value Frequency...............c.ccovveeinn...
Determining Unique Array Values...........................

SOMtING AITaYS .ttt
Reversing Array ElementOrder.............................
Flipping Array Keysand Values.........................c..t.
Sorting an Array ...t e

Merging, Slicing, Splicing, and Dissecting Arrays
Merging Arraysot e e
Recursively Appending Arrays.coveiiieiiieennnn..
Combining TWO Arrays. ..o i
Slicing an Array. ... e
Splicing an Array. ..ot e
Calculating an Array Intersection
Calculating Associative Array Intersections...................
Calculating Array Differencescccviiiin...
Calculating Associative Array Differences....................

Other Useful Array Functions ...t
Returning a Random SetofKeys
Shuffling Array Elements..............o it

SUMMIAIY ettt e e i e

Object-Oriented PHP

The Benefits of O0Po
Encapsulation ...t e
Inheritance. e
POlymMOrphiSM . .o e

—_
|2
[=]

139

140

—_
|5
(3]

146

159

CHAPTER 7

CHAPTER 8

CONTENTS
Key O0P ConCeptS .« vvvvet ittt i 166
ClaSSBS. . vttt e 166
ObjeCtS. et e 167
Fields ..o e e 168
Properties ... e 172
Constants. e 176
Methods. ... 177
Constructors and Destructorscoiiiiiiiiinant. 182
Constructors ...t e 182
Destructors ... e 186
Static Class Members ... 187
The instanceof Keywordco i 189
Helper Functionso e 189
Autoloading Objectsccoi i 191
SUMMANY ..o e e 192
Advanced OOP Features 193
Advanced OOP Features Not Supported by PHP 194
Object Cloningcvii e 194
Cloning Example. ...t e 195
The __clone() Method ..., 196
INheritanceo e e 198
ClassInheritancec.oiiiiiiiii i, 199
Inheritance and Constructorsoo.t. 201
INterfaCes ...ttt e 203
Implementing a Single Interface............................ 205
Implementing Multiple Interfaces........................... 206
AbStract Classescovviiiii i e e 207
Introducing Namespacescoovviiieeiiieniinnnnnnn, 208
SUMMANY .. e e e 211
Error and Exception Handling 213
Configuration Directives 214
Error Logging . ..o v e 217
ExceptionHandling ... 221
Why Exception Handling IsHandy. 221
PHP’s Exception-Handling Implementation................... 223
SUMMANY ..o e e 229

xi

1=

CONTENTS
CHAPTER 9 Strings and Regular Expressions 231
Regular EXpressionsoietiiiiie ittt 232
Regular Expression Syntax (POSIX)..........................
PHP’s Regular Expression Functions (POSIX Extended)......... 235
Regular Expression Syntax (Perl) 239
Other String-Specific Functions 248
Determining the Lengthofa String 249
Comparing Two Strings ... 249
Manipulating String Case. ... 252
Converting Stringsto and from HTML 254
Alternatives for Regular Expression Functions 260
Padding and Strippinga String.................. ... 269
Counting Charactersand Words...................... ... 271
Taking Advantage of PEAR: Validate_US 274
Installing Validate_US. it 274
Using Validate_USo i, 275
SUMMANY ..o e e 276
CHAPTER 10 Working with the File and Operating System 277
Learning About Files and Directories 278
Parsing DirectoryPaths it
Calculating File, Directory, and Disk Sizes 281
Determining Access and Modification Times 284
Workingwith Filesc i e 286
The ConceptofaResourceccoviiiiiiieeiiinn.n, 286
Recognizing Newline Characters 287
Recognizing the End-of-File Character
Opening and ClosingaFileccoiiiii... 287
ReadingfromaFile i 289
Writinga StringtoaFileo il 297
Moving the File Pointer it 298
Reading Directory Contents.....................cooeiina... 299
Executing Shell Commands ..., 301
System-Level Program Executionccoiiiiiat. 303
Sanitizingthe Input. 303
PHP’s Program Execution Functions. 305

SUMMANY ..o e e 308

CHAPTER 11

CHAPTER 12

CONTENTS

PEAR 309
Popular PEAR Packagesoviiveiiiie it eaannns 310
Preinstalled Packagescoiiiiiiii it 310
Installer-Suggested Packages...................cooeiinn... 310
The Power of PEAR: Converting Numeral Formats 312
Installing and Updating PEAR i, 313
Installing PEAR e 313
PEAR and Hosting Companies.ccovvieeennnn.. 315
Updating PEAR i e 315
Using the PEAR Package Managerccieiinn... 316
Viewing an Installed PEAR Package 316
Learning More About an Installed PEAR Package.............. 317
Installing a PEAR Package................ccooiiiinninnn... 318
Including a Package Within Your Scripts..................... 320
Upgrading Packages.coovviiii it 320
Uninstallinga Package..............ccooiiiiiiiiin... 322
Downgradinga Packageccciiiiiiiiii .. 322
SUMMANY ..o e e 322
Dateand Time 323
The Unix Timestamp i 323
PHP’s Date and Time Library it 324
Validating Dates ...t 325
Formatting Datesand Times. ...t 325
Converting a Timestamp to User-Friendly Values.............. 330
Working with Timestamps., 331
Date FUo e e 333
Displaying the Localized Date and Time 334
Displaying the Web Page’s Most Recent Modification Date 338
Determining the Number of Days in the Current Month. 339
Determining the Number of Days in Any Given Month.......... 339
Calculating the Date X Days from the PresentDate............ 340
Taking Advantage of PEAR: Creating a Calendar R4
Date and Time Enhancements for PHP 5.1+ Users 345
Introducing the DateTime Constructor....................... 345
FormattingDates ... 346
Setting the Date After Instantiation.......................... 346
Setting the Time After Instantiation 347
Modifying Datesand Times...............cooeiiiiniinn... 347

SUMMANY ..o e e 348

X,

>

CONTENTS
CHAPTER 13 FOrMS e 349
PHPandWeb Forms e 349

ASimple Example. e 351

Passing Form Datatoa Function 352

Working with Multivalued Form Components 354

Taking Advantage of PEAR: HTML_QuickForm 355

Installing HTML_QuickFormccoiiiiiiiii i, 356

Creatinga Simple Form............ .. i 356

Using Auto-Completionot 363

SUMMANY ..o e e 364

CHAPTER 14 Authenticating YourUsers 365
HTTP Authentication Conceptscciiiiiiiiiia... 366

PHP Authentication i 367

Authentication Variableso il 367

Useful Functions. ... e 368

PHP Authentication Methodologies 370

Hard-Coded Authentication................................ 370

File-based Authentication 3

Database-based Authentication 373

IP-based Authentication.....................oo it 375

Taking Advantage of PEAR: Auth_HTTP...................... 377

User Login Administration oo, 380

Testing Password Guessability with the CrackLib Library 380

One-Time URLs and Password Recovery..................... 383

SUMMANY ..o e e e 386

CHAPTER 15 Handling FileUploads 387
Uploading Files vViaHTTPo i 387

Uploading Fileswith PHP i i, 388

PHP’s File Upload/Resource Directives 389

The $_FILESArrayoovit it 390

PHP’s File-Upload Functions.......................coaet. 391

Upload Error Messagesoovvviieeiiiiniiennnnn, 393

ASimple Example. 394

CONTENTS XV

Taking Advantage of PEAR: HTTP_Upload 395
Installing HTTP_Upload ...t 395
UploadingaFile ...t 396
Learning More About an Uploaded File 397
Uploading Multiple Files. ...t 398

SUMMANY ..o e e 399

CHAPTER 16 Networking 401

DNS, Services, and SBIVEIS ... vvve ittt 402
DNS . 402
SBIVICS . vttt ittt e 407
Establishing Socket Connections 408

- T 411
Configuration Directives. ...t 411
Sending E-mail Using a PHP Script.......................... 412

Common Networking Tasksccoiiiieiiiieeiiinennnn.. 418
PingingaServer.........cco i 418
CreatingaPortScanner.................cciiiiiiiiiin..,. 419
Creating a Subnet Converter....................cooiia.t. 420
Testing User Bandwidth................. oii.l. 422

SUMMANY ..o e e 424

CHAPTER17 PHPandLDAP 425

Using LDAPfrom PHP i 427
Connectingtoan LDAP Serverccooviiinneinn... 427
Retrieving LDAPData.................coiiiiiiii ... 430
Counting Retrieved Entriest 435
Sorting LDAP ReCOrdsoiveiiiiiiiiiiinnanns. 435
Inserting LDAPData................ooiiii i 436
Updating LDAP Data...............ccoiiiiiiiii . 438
Deleting LDAPData ..., 438
Working with the Distinguished Name....................... 440
ErrorHandling. ... s

SUMMANY ..o e e 443

Xvi CONTENTS

CHAPTER 18

CHAPTER 19

SessionHandlers ..., 445
What Is Session Handling?cc i, 445
The Session-Handling Processcccoviiiiiiiin... 447
Configuration Directives ... 448
Managing the Session Storage Media 448
Setting the Session FilesPath.............................. 449
Automatically Enabling Sessionsciia., 449
Setting the SessionNamet 450
Choosing Cookies or URL Rewriting......................... 450
Automating URL Rewriting. ..., 450
Setting the Session Cookie Lifetime......................... 451
Setting the Session Cookie’s Valid URL Path.................. 451
Setting Caching Directions for Session-Enabled Pages......... 452
Working with Sessionst i 453
Startinga Session. i 453
Destroying a Sessionc.oviiiiiii 454
Setting and Retrieving the SessionID 454
Creating and Deleting Session Variables..................... 455
Encoding and Decoding SessionData 456
Practical Session-Handling Examples 458
Automatically Logging In Returning Users.................... 459
Generating a Recently Viewed Document Index............... 461
Creating Custom SessionHandlers.............................. 462
Tying Custom Session Functions into PHP’s Logic............. 463
Using Custom MySQL-Based Session Handlers 464
SUMMANY .. e e e 469
TemplatingwithSmarty a7
What’s a Templating Engine? i, 472
Introducing Smarty ... e 474
Installing Smarty ... 475
Using Smarty ..o e 477
Smarty’s Presentational Logic ..., 479
COmMmMENtS e 480
Variable Modifiers.o 480
Control Structures. 484
Statements 490
Creating Configuration Files 493
config_load ... 494

Referencing Configuration Variables 494

CHAPTER 20

CHAPTER 21

CONTENTS

Using CSS in ConjunctionwithSmarty 495
CaChing ..o e 497
Working with the Cache Lifetime 498
Eliminating Processing Overhead with is_cached() 499
Creating Multiple Caches per Template...................... 499
Some Final Words About Caching........................... 501
SUMMANY ..o i e e e 501

Web Services ... 503

Why Web Services? ... 504
Really Simple Syndicationcciiiiiii . 506
Understanding RSS Syntaxt 509
Introducing MagpieRSS 510
SIMPIEXML L e 519
Loading XML oo e e 520
Parsing XMLo e 523
SOAP 526
Introducing SOAP MesSSagesS.........ovveeviineninnnnnnnn. 527
Introducing PHP’s SOAP Extension.......................... 528
SUMMIAIY ettt e e i e 537

Secure PHP Programming 539

Configuring PHP Securely ..., 540
SafeMode 540
Other Security-Related Configuration Parameters 543

Hiding Configuration Details it 546
Hiding Apache. ... e 546
Hiding PHP.o e 547

Hiding Sensitive Data 549
Hiding the DocumentRoot. ...t 549
Denying Access to Certain File Extensions 550

SanitizingUserDatacc i 550
FileDeletion. ... 550
Cross-Site Scriptingcoviii 551
Sanitizing User Input: The Solution.......................... 553
Taking Advantage of PEAR: Validate. 556

Data Encryptionovii i e e 559
PHP’s Encryption Functions.............cccoviii e, 559
The MCryptPackageciiiiiii i 562

SUMMANY ..o e e 565

Xvii

>
|s.

CONTENTS

CHAPTER 22

CHAPTER 23

CHAPTER 24

SALite ... 567
Introductionto SQLiteoovi i 567
Installing SQLitecoviiii 568
Using the SQLite Command-Line Interface 569
PHP’s SQLite Library 571
sglite.assoc_case =0 1112, 571
OpeningaConnectionccoiiiiiiiiiiiinnnn., 571
Creatinga TableinMemorycciiiiiiiiian.. 573
ClosingaConnection ..., 573
QueryingaDatabaseccoiiiiiiiii i 574
Parsing ResultSets. ... i 576
Retrieving Result SetDetails............................... 580
Manipulating the Result Set Pointer......................... 582
Retrieving a Table’s Column Typesccovvenn... 585
Working with Binary Data 585
Creating and Overriding SQLite Functions.................... 587
Creating Aggregate Functions. 589
SUMMANY ..o e e 590
Building Web Sites fortheWorld 591
Translating Web Sites with Gettext, 592
Step 1: Update the Web Site Scripts..................oeitt. 592
Step 2: Create the Localization Repository 594
Step 3: Create the TranslationFiles 595
Step 4: Translatethe Text it 596
Step 5: Generate Binary Files ...t 597
Step 6: Set the Desired Language Within Your Scripts 597
Localizing Dates, Numbers, and Times 598
SUMMANY ..o e e 600
MVC and the Zend Framework 601
Introducing MVC i e 601
PHP’s Framework Solutions ..., 605
The CakePHP Framework ..., 605
The Solar Framework.o 606
The symfony Framework. ..., 606
The Zend Framework i 607

CHAPTER 25

CHAPTER 26

CONTENTS

Introducing the Zend Frameworkl 607
Downloading and Installing the Zend Framework.............. 609
Creating Your First Zend Framework—Driven Web Site 610
Searching the Web with Zend_Service_Yahoo................ 617

SUMMANY ..o e e 620

IntroducingMySQLl 621

What Makes MySQL So Popular? ..., 622
Flexibility ... 622
1 T 623
Flexible Licensing Options. ..., 626
A (Hyper) Active User Community........................... 627

The Evolution of MySQLo e 628
MYSQL 4 .. 628
MYSQL 5.0, ..o 629
MYSQL 5.1, 630

Prominent MySQLUSErS ..ot 631
craigslist ... e 631
Wikipedia. 632
Yahoo! Finance i 632

SUMMANY ..o e e 633

Installing and ConfiguringMySQL 635

Downloading MySQLo 636
Downloading MySQL for Windowscoovvviviinnt, 636

Installing MySQL e 636
Installing MySQL on Linux.......coovuiiiiiiii i 637
Installing and Configuring MySQL on Windows. 642

Setting the MySQL Administrator Password 645

Starting and Stopping MySQL ...t 646
Controlling the Daemon Manually. 646
Starting and Stopping MySQL Automatically.................. 648

Configuring and Optimizing MySQLciiiiiinn.s. 652
The mysqld_safe Wrapper. ..., 652
MySQL’s Configuration and Optimization Parameters........... 653
ThemycenfFile.... ... e 657

Configuring PHP to Work with MySQLccoveinin.t. 661
Reconfiguring PHPonLinuxt 661
Reconfiguring PHP on Windows 661

SUMMANY ..o e e 662

CONTENTS

CHAPTER 27

CHAPTER 28

CHAPTER 29

The Many MySQL Clients 663
Introducing the Command-Line Clients 663
ThemysqlClient. it 663
The mysgladmin Client. ...t 676
Other Useful Clients ... 678
Client Options e 683
MySQL’s GUI Client Programscovviiiiiiii i, 686
Installing GUITOOIScovii e 687
MySQL Administrator. ... 687
MySQL Query Browser.coviiiiie it 688
MySQL Migration Toolkitccoviiiiiiii i 690
PhPMYAMIN o e 691
SUMMANY .. e e 692
MySQL Storage Engines and Datatypes 693
Storage Engines ... 693
MYISAM . . 695
INNODB . .. 698
MEMORY ... 699
MERGE. 700
FEDERATEDt 701
ARCHIVE. e e 703
OV e 703
EXAMPLE 704
BLACKHOLE.o e 704
Storage Engine FAQ ... 705
Datatypes and Attributesc i 706
Datatypes. . .o e 707
Datatype Attributes.coovi 714
Working with Databasesand Tables 718
Working with Databasesccoiiiiiiiiia.t, 718
Workingwith Tables.co i, 720
Alteringa Table Structure ... i 724
The INFORMATION_SCHEMA. 725
SUMMANY ..o e e 728
Securing MySQL 731
What You Should Do First ... 732

Securingthe mysgldDaemon ..., 734

CHAPTER 30

CONTENTS

The MySQL Access Privilege System ...t 734
How the Privilege System Works 735
Where Is Access Information Stored?. 738

User and Privilege Managementl 750
Creating USerS. . ..ottt e 750
Deleting UsSers. ..o e i 751
Renaming USersooviiiiiii e i 751
The GRANT and REVOKE Commands........................ 752
Reviewing Privileges. 759

Limiting User RESOUrCESovirieiiiie it iiieannnns 759

Secure MySQL Connectionscovviiiiiiiiiii i 760
Grant Options ... 761
SSLOPHONS. .. o 762
Starting the SSL-Enabled MySQL Server..................... 764
Connecting Using an SSL-Enabled Client 764
Storing SSL Options inthe my.cnfFile....................... 764

SUMMANY ..o e e 765

Using PHP withMySQL 767

Handling Installation Prerequisites 768
Enabling the mysqli Extension on Linux/Unix 769
Enabling the mysqli Extension on Windows. 769
Managing User Privilegescciiiiiiii ... 769
Working with Sample Data 769

Using the mysqli Extension ..., 770
Setting Up and Tearing Down the Connection................. 770
Handling Connection Errors............... ..ot 772
Retrieving Error Information 772
Storing Connection Information in a Separate File 774
Securing Your Connection Information....................... 775

Interacting with the Database 775
Sending a Query to the Database........................... 775
Parsing QueryResults ...t 779
Determining the Rows Selected and Rows Affected 781
Working with Prepared Statements 782

Executing Database Transactionscooevinn... 790
Enabling AutocommitMode.ol 790
Committing a Transactioncciieiiinnnnn... 790
Rolling Back a Transactioncouaet. 790

SUMMANY ..o e e 791

Xxi

CONTENTS

CHAPTER 31 IntroducingPDOcc.i... 793
Another Database Abstraction Layer? 795
USINg PDO ..o e e 796

Installing PDOciii e i 796
PDO’s Database Optionsccooviiiiiiiiin... 797
Connecting to a Database Server and Selecting a Database.. . .. 798
Handling Errors 802
Getting and Setting Attributes..............l 804
Executing QUeries.o 805
Introducing Prepared Statements........................... 807
RetrievingData............. .o e 811
SettingBound Columns ..., 815
Working with Transactionss. 816
SUMMANY ..o e e 817

CHAPTER 32 Stored Routines .. 819

Should You Use Stored Routines?ccoiviiiieiannt. 820
Stored Routine Advantages..................cooiiiiiaat. 820
Stored Routine Disadvantagest. 820

How MySQL Implements Stored Routines 821
Stored Routine Privilege Tables 822
Creating a Stored Routineot 824
Declaring and Setting Variables 828
Executing a Stored Routinet 830
Creating and Using Multistatement Stored Routines 830
Calling a Routine from Within Another Routine................ 840
Modifying a Stored Routinel 84
Deleting a Stored Routine ...t 84
Viewing a Routine’s Status ..., 84
Viewing a Routine’s Creation Syntax 843
Handling Conditions i 844

Integrating Routines into Web Applications 845
Creating the Employee Bonus Interface...................... 845
Retrieving Multiple Rows. ...t 846

SUMMANY ..o e e 847

CHAPTER 33

CHAPTER 34

CHAPTER 35

CONTENTS

MySQL Triggersccooiiiiiiiiiiiiiie e, 849
Introducing Triggers e i 849
Why Use TrHggers? . ..ot e e 850
Taking Action BeforeanEvent 850
Taking Action AfteranEvent......................., 851
Before Triggers vs. After Triggers.ccoveeiiinennn... 852
MySQL’s Trigger SUpportt e 853
Creating a Trigger. ..o vir i i e 854
Viewing Existing Triggers.coovriiii i 856
Modifyinga Triggerc.oviiiieiiii i aaeens 859
Deleting aTrigger.ovieivii i e 859
Integrating Triggers into Web Applications 859
SUMMANY .. e e 861
MySAL Views ..., 863
Introducing VIEWS e 864
MySQL’s View Support e 865
Creating and Executing Views.ccoiiiiin... 865
Viewing View Informationl 872
Modifyinga View. ... e 874
DeletingaView. ... e 875
Updating ViewsS . ..o e i 875
Incorporating Views into Web Applications 876
SUMMANY ..o e e 878
Practical Database Queries 879
Sample Data 880
Creating Tabular Output with PEAR it 880
Installing HTML_Tablet 881
Creatinga Simple Table. ..., 882
Creating More Readable Row Output........................ 884
Creating a Table from DatabaseData 885
Generalizing the Output Process. ..., 887
Sorting Qutput ... 890

Creating Paged Qutput e 892

XX

xxiv CONTENTS

Listing Page Numbers ...t 895
Querying Multiple Tables with Subqueries 897
Performing Comparisons with Subqueries 899
Determining Existence with Subqueries 899
Performing Database Maintenance with Subqueries........... 901
Using SubquerieswithPHPoo.L. 901
lterating Result Sets with Cursors ...t 902
CursorBasiCsvviei i e 903
Creating @ Cursorcov vt e et 904
Opening @ Cursor ...t e e 904
USiNg @ CUISOT. ..ottt i i 904
Closing @ CUISOr .. .ottt e it i 906
Using Cursorswith PHP it 906
SUMMANY ..o e e 906
CHAPTER 36 Indexes and Searching 907
Database Indexingcciiiiiiiiii e 907
Primary Key INdexXes.ovvri e 908
Unique INdeXeS oee i i e 910
Normal INdeXeS. ... oo ii i i i 911
Full-TextIndexescooviiiiiiiii e 913
Indexing Best Practices ..., 918
Forms-Based Searchesccoiiiiiiiiiiiii 919
Performinga Simple Search 919
Extending Search Capabilities.............................. 921
Performing a Full-TextSearch 923
SUMMANY ..o e e 924
CHAPTER 37 Transactionscoiiiiiiiiiiiiiiieinnn. 925
What’'s a Transaction? ...t 925
MySQL’s Transactional Capabilities 926
System Requirements ... e 927
Table Creation.ci i e 927
ASample Project ... e 928
Creating Tables and Adding Sample Data.................... 929
Executing an Example Transaction.......................... 930
Backing Up and Restoring InnoDB Tables 932

USage TIPS, . oot e e e e 933

CHAPTER 38

CONTENTS

Building Transactional Applications with PHP 933
The Swap Meet Revisited ..., 934
SUMMANY ..o e e 937
Importing and ExportingData 939
SampleTableo 940
Using Data Delimitation i L. 940
ImportingDatac.oiiiiii e M
Importing Data with LOAD DATAINFILE. am
Importing Data with mysqlimport........................... 946
Loading Table DatawithPHP 950
Exporting Dataco i 951
SELECTINTOOUTFILEo e 951
SUMMANY ..o e 955

o

About the Author

W. JASON GILMORE is a Columbus, Ohio-based developer, consultant, writer, and
editor. He’s co-founder of IT Enlightenment (http://www.itenlightenment.com/) and
the CodeMash conference (http://www.codemash.org), and is a member of the 2008
MySQL Conference speaker selection board. In his previous capacity as Apress’s open
source editor, he fostered the development of more than 60 books, along the way
helping to transform Apress’s open source line into one of the industry’s most respected
publishing programs.

Jason has more than 100 articles to his credit within prominent publications such
as Developer.com, Linux Magazine, and TechTarget. He’s the author of several books,
including the best-selling Beginning PHP and MySQL: From Novice to Professional,
Beginning PHP and PostgreSQL 8: From Novice to Professional, and Beginning PHP
and Oracle: From Novice to Professional.

Away from the laptop you’ll find Jason starting more home-remodeling projects
than he could possibly complete, tickling the ivories, playing chess, and reading up on
military history. Contact Jason at wj@wjgilmore.com, and be sure to visit his Web site
athttp://www.wjgilmore.com.

XXVii

http://www.itenlightenment.com
http://www.codemash.org
mailto:wj@wjgilmore.com
http://www.wjgilmore.com

About the
Technical Reviewers

JAY PIPES is the North American Community Relations Manager at MySQL. Coauthor
of Pro MySQL (Apress, 2005), Jay has also written articles for Linux Magazine and
regularly assists software developers in identifying how to make the most effective use
of MySQL. He has given sessions on performance tuning at the MySQL Users Confer-
ence, RedHat Summit, NY PHP Conference, phpltek, OSCON, and Ohio LinuxFest,
among others. He lives in Columbus, Ohio, with his wife, Julie, and his four animals.
In his abundant free time, when not being pestered by his two needy cats and two
noisy dogs, he daydreams in PHP code and ponders the ramifications of __clone().

MATT WADE is a programmer, database developer, and system administrator. He
currently works for a large financial firm by day and freelances by night. He has
experience programming in several languages, though he most commonly utilizes
PHP and C. On the database side of things, he regularly uses MySQL and Microsoft
SQL Server. As an accomplished system administrator, he regularly has to maintain
Windows servers and Linux boxes and prefers to deal with FreeBSD.

Mattresides in Jacksonville, Florida, with his wife, Michelle, and their three children,
Matthew, Jonathan, and Amanda. When not working, Matt can be found fishing, doing
something at his church, or playing some video game. Matt was the founder of
Codewalkers.com, a leading resource for PHP developers, and ran the site until 2007.

XXix

Acknowledgments

Back in 2000, Gary Cornell, co-founder of a small but ambitious computer publisher
called Apress, contacted me and asked whether I'd be interested in writing a book about
PHP. At the time a developer and aspiring technical writer, I jumped at the opportunity,
albeit wondering how I'd ever be able to finish such a large writing project. Like running
a first marathon, success was gauged by way of mere completion rather than by any
other benchmark.

Eight years have since passed, and that original book is still alive and kicking, its
current incarnation being what you hold in your hands. Suffice it to say this project
has exceeded my wildest expectations, and I thank Gary and Apress (now a much
larger but still ambitious publisher) profusely for the opportunity.

I'd also like to thank my project manager Tracy Brown Collins for her infinite patience
and organizational talents. Technical reviewers Jay Pipes and Matt Wade offered valuable
insight that greatly improved the material. Copy editor Bill McManus once again proved
his keen ability to turn my jabbering into coherent English. All other members of the
Apress team also deserve a hand for all of the hard work behind the scenes.

Last but certainly not least, I'd like to thank my family and friends for reminding
me there is indeed life beyond the keyboard.

XXXi

Introduction

Most great programming books sway far more toward the realm of the practical
than of the academic. Although I have no illusions regarding my place among the
great technical authors of our time, it is always my goal to write with this point in
mind, producing material that you can apply to your own situation. Given the size
of this book, it’s probably apparent that I attempted to squeeze out every last drop of
such practicality from the subject matter. That said, if you're interested in gaining
practical and comprehensive insight into the PHP programming language and MySQL
database server, and how these prominent technologies can be used together to create
dynamic, database-driven Web applications, this book is for you.

The feverish work of the respective PHP and MySQL communities prompted this
new edition, and with it considerable changes over the previous edition. In addition
to updating the material to reflect features found in PHP 6 and the latest MySQL releases,
two new chapters have been added. Chapter 23 shows you how to create Web sites for
the world by taking advantage of open source internationalization and localization
tools. Chapter 24 introduces the popular Zend Framework, a great solution for building
powerful Web applications. Furthermore, all existing chapters have been carefully
revised, and in some cases heavily modified, to both update and improve upon the
previous edition’s material.

If you're new to PHP, I recommend beginning with Chapter 1, because gaining the
fundamental knowledge presented therein will be of considerable benefit to you when
you're reading later chapters. If you know PHP but are new to MySQL, consider begin-
ning with Chapter 25. Intermediate and advanced readers are invited to jump around
as necessary; after all, this isn’t aromance novel. Regardless of your reading strategy,
I've attempted to compartmentalize the material found in each chapter so that you
can quickly learn each topic without having to necessarily master other chapters beyond
those that concentrate on the technology fundamentals.

Furthermore, novices and seasoned PHP and MySQL developers alike have some-
thing to gain from this book, as I've intentionally organized it in a hybrid format of
both tutorial and reference. I appreciate the fact that you have traded hard-earned
cash for this book, and therefore have strived to present the material in a fashion that
will prove useful not only the first few times you peruse it, but far into the future.

XXXiii

XXXiv

INTRODUCTION

Download the Code

Experimenting with the code found in this book is the most efficient way to best under-
stand the concepts presented within. For your convenience, a zip file containing all of
the examples can be downloaded from http://www.apress.com.

Contact Me!

I love reader e-mail, and invite you to contact me with comments, suggestions, and
questions. Feel free to e-mail me at jason@vjgilmore.com. Also be sure to regularly
check http://www.beginningphpandmysql.com for errata, code, and other updates.

http://www.apress.com
mailto:jason@wjgilmore.com
http://www.beginningphpandmysql.com

CHAPTER 1

Introducing PHP

In many ways the PHP language is representative of the stereotypical open source
project, created to meet a developer’s otherwise unmet needs and refined over time
to meet the needs of its growing community. As a budding PHP developer, it’simportant
you possess some insight into how the language has progressed, as it will help you
to understand the language’s strengths, and to some extent the reasoning behind its
occasional idiosyncrasies.

Additionally, because the language is so popular, having some understanding of the
differences between the versions—most notably versions 4, 5, and 6—will help when
evaluating Web hosting providers and PHP-driven applications for your own needs.

To help you quickly get up to speed in this regard, this chapter will get you acquainted
with PHP’s features and version-specific differences. By the conclusion of this chapter,
you’ll learn the following:

* How a Canadian developer’s Web page traffic counter spawned one of the world’s
most popular scripting languages

e What PHP’s developers did to reinvent the language, making version 5 the best
yet released

e Why PHP 6 is going to further propel PHP’s adoption in the enterprise

e Which features of PHP attract both new and expert programmers alike

Note At the time of publication, PHP 6 was still a beta release, although many of the features are
stable enough that they can safely be discussed throughout the course of the book. But be forewarned;
some of these features could change before the final version is released.

CHAPTER 1 INTRODUCING PHP

History

The origins of PHP date back to 1995 when an independent software development
contractor named Rasmus Lerdorf developed a Perl/CGI script that enabled him
to know how many visitors were reading his online résumé. His script performed two
tasks: logging visitor information, and displaying the count of visitors to the Web page.
Because the Web as we know it today was still young at that time, tools such as these
were nonexistent, and they prompted e-mails inquiring about Lerdorf’s scripts. Lerdorf
thus began giving away his toolset, dubbed Personal Home Page (PHP).

The clamor for the PHP toolset prompted Lerdorf to continue developing the
language, with perhaps the most notable early change being a new feature for converting
data entered in an HTML form into symbolic variables, encouraging exportation into
other systems. To accomplish this, he opted to continue development in C code rather
than Perl. Ongoing additions to the PHP toolset culminated in November 1997 with
the release of PHP 2.0, or Personal Home Page/Form Interpreter (PHP/FI). As aresult
of PHP’s rising popularity, the 2.0 release was accompanied by a number of enhance-
ments and improvements from programmers worldwide.

The new PHP release was extremely popular, and a core team of developers soon
joined Lerdorf. They kept the original concept of incorporating code directly alongside
HTML and rewrote the parsing engine, giving birth to PHP 3.0. By the June 1998 release
of version 3.0, more than 50,000 users were using PHP to enhance their Web pages.

Development continued at a hectic pace over the next two years, with hundreds of
functions being added and the user count growing in leaps and bounds. At the beginning
0f 1999, Netcraft (http://www.netcraft.com/), an Internet research and analysis
company, reported a conservative estimate of a user base of more than 1 million, making
PHP one of the most popular scripting languages in the world. Its popularity surpassed
even the greatest expectations of the developers, as it soon became apparent that
users intended to use PHP to power far larger applications than originally anticipated.
Two core developers, Zeev Suraski and Andi Gutmans, took the initiative to completely
rethink the way PHP operated, culminating in a rewriting of the PHP parser, dubbed the
Zend scripting engine. The result of this work was in the PHP 4 release.

Note In addition to leading development of the Zend engine and playing a major role in steering the
overall development of the PHP language, Suraski and Gutmans are cofounders of Zend Technologies
Ltd. (http://www. zend.com/). Zend is the most visible provider of products and services for developing,
deploying, and managing PHP applications. Check out the Zend Web site for more about the company’s
offerings, as well as an enormous amount of free learning resources.

http://www.netcraft.com
http://www.zend.com

CHAPTER 1 INTRODUCING PHP

PHP 4

On May 22, 2000, roughly 18 months after the first official announcement of the new

development effort, PHP 4.0 was released. Many considered the release of PHP 4 to

be the language’s official debut within the enterprise development scene, an opinion

backed by the language’s meteoric rise in popularity. Just a few months after the major

release, Netcraft estimated that PHP had been installed on more than 3.6 million

domains.

PHP 4 added several enterprise-level improvements to the language, including

the following:

Improved resource handling: One of version 3.X’s primary drawbacks was scal-
ability. This was largely because the designers underestimated how rapidly the
language would be adopted for large-scale applications. The language wasn’t
originally intended to run enterprise-class Web sites, and continued interest in
using it for such purposes caused the developers to rethink much of the language’s
mechanics in this regard.

Object-oriented support: Version 4 incorporated a degree of object-oriented
functionality, although it was largely considered an unexceptional and even poorly
conceived implementation. Nonetheless, the new features played an important role
in attracting users used to working with traditional object-oriented programming
(OOP) languages. Standard class and object development methodologies were
made available in addition to features such as object overloading and run-time
class information. A much more comprehensive OOP implementation has been
made available in version 5 and is introduced in Chapter 6.

Native session-handling support: HTTP session handling, available to version 3.X
users through the third-party package PHPLIB (http://phplib.sourceforge.net),
was natively incorporated into version 4. This feature offers developers a means
for tracking user activity and preferences with unparalleled efficiency and ease.
Chapter 18 covers PHP’s session-handling capabilities.

Encryption: The MCrypt (http://mcrypt.sourceforge.net) library was incorpo-
rated into the default distribution, offering users both full and hash encryption
using encryption algorithms including Blowfish, MD5, SHA1, and TripleDES,
among others. Chapter 21 delves into PHP’s encryption capabilities.

ISAPI support: ISAPI support offered users the ability to use PHP in conjunction
with Microsoft’s IIS Web server. Chapter 2 shows you how to install PHP on both
the IIS and Apache Web servers.

http://phplib.sourceforge.net
http://mcrypt.sourceforge.net

CHAPTER 1 INTRODUCING PHP

Native COM/DCOM support: Another bonus for Windows users is PHP 4’s ability
to access and instantiate COM objects. This functionality opened up a wide
range of interoperability with Windows applications.

Native Java support: In another boost to PHP’s interoperability, support for binding
to Java objects from a PHP application was made available in version 4.0.

Perl Compatible Regular Expressions (PCRE) library: The Perl language has long
been heralded as the reigning royalty of the string-parsing kingdom. The developers
knew that powerful regular expression functionality would play a major role in the
widespread acceptance of PHP and opted to simply incorporate Perl’s functionality
rather than reproduce it, rolling the PCRE library package into PHP’s default distri-
bution (as of version 4.2.0). Chapter 9 introduces this important feature in great
detail and offers a general introduction to the often confusing regular expres-
sion syntax.

In addition to these features, literally hundreds of functions were added to version 4,
greatly enhancing the language’s capabilities. Many of these functions are discussed
throughout the course of the book.

PHP 4 represented a gigantic leap forward in the language’s maturity, offering new
features, power, and scalability that swayed an enormous number of burgeoning and
expert developers alike. Yet the PHP development team wasn’t content to sit on
their hands for long and soon set upon another monumental effort, one that could
establish the language as the 800-pound gorilla of the Web scripting world: PHP 5.

PHP 5

Version 5 was yet another watershed in the evolution of the PHP language. Although
previous major releases had enormous numbers of new library additions, version 5
contains improvements over existing functionality and adds several features
commonly associated with mature programming language architectures:

Vastly improved object-oriented capabilities: Improvements to PHP’s object-
oriented architecture is version 5’s most visible feature. Version 5 includes numerous
functional additions such as explicit constructors and destructors, object cloning,
class abstraction, variable scope, and interfaces, and a major improvement
regarding how PHP handles object management. Chapters 6 and 7 offer thorough
introductions to this topic.

CHAPTER 1 INTRODUCING PHP

Try/catch exception handling: Devising custom error-handling strategies within
structural programming languages is, ironically, error-prone and inconsistent.
To remedy this problem, version 5 supports exception handling. Long a mainstay of
error management in many languages, such as C++, C#, Python, and Java, excep-
tion handling offers an excellent means for standardizing your error-reporting
logic. This convenient methodology is introduced in Chapter 8.

Improved XML and Web Services support: XML support is now based on the
libxml2 library, and a new and rather promising extension for parsing and manip-
ulating XML, known as SimpleXML, has been introduced. In addition, a SOAP
extension is now available. In Chapter 20, these two extensions are introduced, along
with a number of slick third-party Web Services extensions.

Native support for SQLite: Always keen on choice, the developers added support for
the powerful yet compact SQLite database server (http://www.sqlite.org/). SQLite
offers a convenient solution for developers looking for many of the features found in
some of the heavyweight database products without incurring the accompanying
administrative overhead. PHP’s support for this powerful database engine is
introduced in Chapter 22.

Note The enhanced object-oriented capabilities introduced in PHP 5 resulted in an additional boost
for the language: it opened up the possibility for cutting-edge frameworks to be created using the
language. Chapter 24 introduces you to one of the most popular frameworks available today, namely the
Zend Framework (http://framework.zend.com/).

With the release of version 5, PHP’s popularity hit what was at the time a historical
high, having been installed on almost 19 million domains, according to Netcraft. PHP
was also by far the most popular Apache module, available on almost 54 percent of
all Apache installations, according to Internet services consulting firm E-Soft Inc.
(http://www.securityspace.com/).

PHP 6

At press time, PHP 6 was in beta and scheduled to be released by the conclusion of 2007.
The decision to designate this a major release (version 6) is considered by many to be
acurious one, in part because only one particularly significant feature has been added—
Unicode support. However, in the programming world, the word significant is often

http://www.sqlite.org
http://framework.zend.com
http://www.securityspace.com

CHAPTER 1 INTRODUCING PHP

implied to mean sexy or marketable, so don’t let the addition of Unicode support over-
shadow the many other important features that have been added to PHP 6. A list of
highlights is found here:

¢ Unicode support: Native Unicode support has been added, making it much
easier to build and maintain multilingual applications.

e Security improvements: A considerable number of security-minded improve-
ments have been made that should greatly decrease the prevelance of security-
related gaffes that to be frank aren’t so much a fault of the language, but are due
toinexperienced programmers running with scissors, so to speak. These changes
are discussed in Chapter 2.

* New language features and constructs: A number of new syntax features have
been added, including, most notably, a 64-bit integer type, a revamped foreach
looping construct for multidimensional arrays, and support for labeled breaks.
Some of these features are discussed in Chapter 3.

Atpresstime, PHP’s popularity was at a historical high. According to Netcraft, PHP
has been installed on more than 20 million domains. According to E-Soft Inc., PHP
remains the most popular Apache module, available on more than 40 percent of all
Apache installations.

So far, this chapter has discussed only version-specific features of the language.
Each version shares a common set of characteristics that play a very important role in
attracting and retaining a large user base. In the next section, you’ll learn about these
foundational features.

Note You might be wondering why versions 4, 5, and 6 were mentioned in this chapter. After all,
isn’t only the newest version relevant? While you're certainly encouraged to use the latest stable version,
versions 4 and 5 remain in widespread use and are unlikely to go away anytime soon. Therefore having
some perspective regarding each version’s capabilities and limitations is a good idea, particularly if you
work with clients who might not be as keen to keep up with the bleeding edge of PHP technology.

CHAPTER 1 INTRODUCING PHP

General Language Features

Every user has his or her own specific reason for using PHP to implement a mission-
critical application, although one could argue that such motives tend to fall into four
key categories: practicality, power, possibility, and price.

Practicality

From the very start, the PHP language was created with practicality in mind. After all,
Lerdorf’s original intention was not to design an entirely new language, but to resolve
a problem that had no readily available solution. Furthermore, much of PHP’s early
evolution was not the result of the explicit intention to improve the language itself,
but rather to increase its utility to the user. The result is a language that allows the
user to build powerful applications even with a minimum of knowledge. For instance,
auseful PHP script can consist of as little as one line; unlike C, there is no need for the
mandatory inclusion of libraries. For example, the following represents a complete
PHP script, the purpose of which is to output the current date, in this case one formatted
like September 23, 2007:

<?php echo date("F j, Y");?>

Don’t worry if this looks foreign to you. In later chapters, the PHP syntax will be
explained in great detail. For the moment just try to get the gist of what’s going on.
Another example of the language’s penchant for compactness is its ability to nest
functions. For instance, you can effect numerous changes to a value on the same line
by stacking functions in a particular order. The following example produces a string
of five alphanumeric characters such
as a3jhs:

$randomString = substr(mds(microtime()), 0, 5);

PHP is a loosely typed language, meaning there is no need to explicitly create, typecast,
or destroy a variable, although you are not prevented from doing so. PHP handles
such matters internally, creating variables on the fly as they are called in a script,
and employing a best-guess formula for automatically typecasting variables. For
instance, PHP considers the following set of statements to be perfectly valid:

CHAPTER 1 INTRODUCING PHP

<?php

$number = "5"; // $number is a string
$sum = 15 + $number; // Add an integer and string to produce integer
$sum = "twenty"; // Overwrite $sum with a string.

?>

PHP will also automatically destroy variables and return resources to the system
when the script completes. In these and in many other respects, by attempting to
handle many of the administrative aspects of programming internally, PHP allows
the developer to concentrate almost exclusively on the final goal, namely a working
application.

Power

PHP developers have more than 180 libraries at their disposal, collectively containing
well over 1,000 functions. Although you’re likely aware of PHP’s ability to interface
with databases, manipulate form information, and create pages dynamically, you
might not know that PHP can also do the following:

¢ Create and manipulate Adobe Flash and Portable Document Format (PDF) files

» Evaluate a password for guessability by comparing it to language dictionaries
and easily broken patterns

¢ Parse even the most complex of strings using the POSIX and Perl-based regular
expression libraries

¢ Authenticate users againstlogin credentials stored in flat files, databases, and even
Microsoft’s Active Directory

e Communicate with a wide variety of protocols, including LDAP, IMAP, POP3,
NNTP, and DNS, among others

e Tightly integrate with a wide array of credit-card processing solutions

And this doesn’t take into account what'’s available in the PHP Extension and
Application Repository (PEAR), which aggregates hundreds of easily installable open
source packages that serve to further extend PHP in countless ways. You can learn more
about PEAR in Chapter 11. In the coming chapters you’ll learn about many of these
libraries and several PEAR packages.

CHAPTER 1 INTRODUCING PHP

Possibility

PHP developers are rarely bound to any single implementation solution. On the
contrary, a user is typically fraught with choices offered by the language. For example,
consider PHP’s array of database support options. Native support is offered for more
than 25 database products, including Adabas D, dBase, Empress, FilePro, FrontBase,
Hyperwave, IBM DB2, Informix, Ingres, InterBase, mSQL, Microsoft SQL Server, MySQL,
Oracle, Ovrimos, PostgreSQL, Solid, Sybase, Unix dbm, and Velocis. In addition,
abstraction layer functions are available for accessing Berkeley DB—style databases.
Several generalized database abstraction solutions are also available, among the most
popular being PDO (http://www.php.net/pdo) and MDB2 (http://pear.php.net/
package/MDB2). Finally, if you're looking for an object relational mapping (ORM) solu-
tion, projects such as Propel (http://propel.phpdb.org/trac/) should fit the bill
quite nicely.

PHP’s flexible string-parsing capabilities offer users of differing skill sets the
opportunity to not only immediately begin performing complex string operations
but also to quickly port programs of similar functionality (such as Perl and Python)
over to PHP. In addition to more than 85 string-manipulation functions, both POSIX-
and Perl-based regular expression formats are supported.

Do you prefer alanguage that embraces procedural programming? How about one
that embraces the object-oriented paradigm? PHP offers comprehensive support for
both. Although PHP was originally a solely functional language, the developers soon
came to realize the importance of offering the popular OOP paradigm and took the
steps to implement an extensive solution.

The recurring theme here is that PHP allows you to quickly capitalize on your current
skill set with very little time investment. The examples set forth here are but a small
sampling of this strategy, which can be found repeatedly throughout the language.

Price

PHP is available free of charge! Since its inception, PHP has been without usage,
modification, and redistribution restrictions. In recent years, software meeting such
open licensing qualifications has been referred to as open source software. Open source
software and the Internet go together like bread and butter. Open source projects such
as Sendmail, Bind, Linux, and Apache all play enormous roles in the ongoing opera-
tions of the Internet at large. Although open source software’s free availability has
been the point most promoted by the media, several other characteristics are equally
important if not more so:

http://www.php.net/pdo
http://pear.php.net/package/MDB2
http://pear.php.net/package/MDB2
http://propel.phpdb.org/trac

10

CHAPTER 1 INTRODUCING PHP

Free of licensing restrictions imposed by most commercial products: Open
source software users are freed of the vast majority of licensing restrictions one
would expect of commercial counterparts. Although some discrepancies do exist
among license variants, users are largely free to modify, redistribute, and integrate
the software into other products.

Open development and auditing process: Although not without incidents, open
source software has long enjoyed a stellar security record. Such high-quality
standards are a result of the open development and auditing process. Because
the source code is freely available for anyone to examine, security holes and
potential problems are rapidly found and fixed. This advantage was perhaps best
summarized by open source advocate Eric S. Raymond, who wrote “Given enough
eyeballs, all bugs are shallow.”

Participation is encouraged: Development teams are not limited to a particular
organization. Anyone who has the interest and the ability is free to join the project.
The absence of member restrictions greatly enhances the talent pool for a given
project, ultimately contributing to a higher-quality product.

Summary

Understanding more about the PHP language’s history and widely used versions is
going to prove quite useful as you become more acquainted with the language and
begin seeking out both hosting providers and third-party solutions. This chapter satis-
fied that requirement by providing some insight into PHP’s history and an overview of
version 4, 5, and 6’s core features.

In Chapter 2, prepare to get your hands dirty, as you'll delve into the PHP installation
and configuration process, and learn more about what to look for when searching for
a Web hosting provider. Although readers often liken these types of chapters to
scratching nails on a chalkboard, you can gain a lot from learning more about this
process. Much like a professional cyclist or race car driver, the programmer with hands-
on knowledge of the tweaking and maintenance process often holds an advantage over
those without by virtue of a better understanding of both the software’s behaviors and
quirks. So grab a snack and cozy up to your keyboard—it’s time to build.

CHAPTER 2

Configuring Your Environment

Chances are you're going to rely upon an existing corporate IT infrastructure or a
third-party Web hosting provider for hosting your PHP-driven Web sites, alleviating
you of the need to attain a deep understanding of how to build and administrate a
Web server. However, as most prefer to develop applications on a local workstation or
laptop, or on a dedicated development server, you're likely going to need to know
how to at least install and configure PHP and a Web server (in this case, Apache and
Microsoft IIS).

Having at least a rudimentary understanding of this process has a second benefit as
well: it provides you with the opportunity to learn more about the many features of
PHP and the Web server, which might not otherwise be commonly touted. This
knowledge can be useful not only in terms of helping you to evaluate whether your
Web environment is suited to your vision for a particular project, but also in terms of
aiding you in troubleshooting problems with installing third-party software (which
may arise due to a misconfigured or hobbled PHP installation).

To that end, in this chapter you’ll be guided through the process of installing PHP
on both the Windows and Linux platforms. Because PHP is of little use without a Web
server, along the way you’'ll learn how to install and configure Apache on both Windows
and Linux, and Microsoft IIS 7 on Windows.

This chapter concludes with an overview of select PHP editors and IDEs (integrated
development environments), and shares some insight into what you should keep in
mind when choosing a Web hosting provider.

Specifically, you’ll learn how to do the following:

¢ Install Apache and PHP on the Linux platform
 Install Apache, IIS, and PHP on the Microsoft Windows platform

e Testyour installation to ensure that all of the components are properly working
and troubleshoot common pitfalls

1

12

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

» Configure PHP to satisfy practically every conceivable requirement
¢ Choose an appropriate PHP IDE to help you write code faster and more efficiently

e Choose a Web hosting provider suited to your specific needs

Installation Prerequisites

Let’s begin the installation process by downloading the necessary software. At a

minimum, this will entail downloading PHP and the appropriate Web server (either
Apache or IIS 7, depending on your platform and preference). If your platform requires
additional downloads, that information will be provided in the appropriate section.

Tip In this chapter you'll be guided through the manual installation and configuration process. Manually
installing and configuring Apache and PHP is a good idea because it will familiarize you with the many
configuration options at your disposal, allowing you to ultimately wield greater control over how your
Web sites operate. However, if you’re ultimately going to rely on the services of a Web hosting provider
and just want to quickly set up a test environment so you can get to coding, consider downloading
XAMPP (http://www.apachefriends.org/en/xampp.html), a free automated Apache installer that
includes, among other things, PHP, Perl, and MySQL. XAMPP is available for Linux and Windows, with
Mac 0S X and Solaris solutions in development.

Downloading Apache

These days, Apache is packaged with all mainstream Linux distributions, meaning if
you’re using one of these platforms, chances are quite good you already have it installed
or can easily install it through your distribution’s packaging service (e.g., by running
the apt-get command on Ubuntu). Therefore, if this applies to you, by all means skip
this section and proceed to the section “Downloading PHP.” However, if you'd like to
install Apache manually, follow along with this section.

Because of tremendous daily download traffic, it’s suggested you choose a down-
load location most closely situated to your geographical location (known as a mirror).
At the time of this writing, the following page offered a listing of 251 mirrors located in
52 global regions: http://www.apache.org/mirrors/.

Navigate to this page and choose a suitable mirror by clicking the appropriate link.
The resulting page will consist of a list of directories representing all projects found

http://www.apachefriends.org/en/xampp.html
http://www.apache.org/mirrors

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

under the Apache Software Foundation umbrella. Enter the httpd directory. This will
take you to the page that includes links to the most recent Apache releases and various
related projects and utilities. The distribution is available in two formats:

Source: If your target server platform is Linux, consider downloading the source
code. Although there is certainly nothing wrong with using one of the convenient
binary versions, the extra time invested in learning how to compile from source
will provide you with greater configuration flexibility. If your target platform is
Windows and you’d like to compile from source, a separate source package
intended for the Win32 platform is available for download. However, note that
this chapter does not discuss the Win32 source installation process. Instead, this
chapter focuses on the much more commonplace (and recommended) binary
installer.

Binary: Binaries are available for a number of operating systems, among them
Microsoft Windows, Sun Solaris, and OS/2. You'll find these binaries under the
binaries directory.

So which Apache version should you download? Although Apache 2 was released
more than five years ago, version 1. X remains in widespread use. In fact, it seems that
the majority of shared-server ISPs have yet to migrate to version 2.X. The reluctance
to upgrade doesn’t have anything to do with issues regarding version 2.X, but rather is
atestament to the amazing stability and power of version 1.X. For standard use, the
external differences between the two versions are practically undetectable; therefore,
consider going with Apache 2 to take advantage of its enhanced stability. In fact, if
you plan to run Apache on Windows for either development or deployment purposes, it
is recommended that you choose version 2 because it is a complete rewrite of the
previous Windows distribution and is significantly more stable than its predecessor.

Downloading PHP

Although PHP comes bundled with most Linux distributions nowadays, you should
download the latest stable version from the PHP Web site. To decrease download
time, choose from the approximately 100 mirrors residing in more than 50 countries,
alist of which is available here: http://www.php.net/mirrors.php.

Once you've chosen the closest mirror, navigate to the downloads page and choose
one of the available distributions:

13

http://www.php.net/mirrors.php

14

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

Source: If Linux is your target server platform, or if you plan to compile from
source for the Windows platform, choose this distribution format. Building from
source on Windows isn’'t recommended and isn’t discussed in this book. Unless
your situation warrants very special circumstances, the prebuilt Windows binary
will suit your needs just fine. This distribution is compressed in Bzip2 and Gzip
formats. Keep in mind that the contents are identical; the different compression
formats are just there for your convenience.

Windows zip package: If you plan to use PHP in conjunction with Apache on
Windows, you should download this distribution because it’s the focus of the
later installation instructions.

Windows installer: This version offers a convenient Windows installer interface
for installing and configuring PHP, and support for automatically configuring the
IIS, PWS, and Xitami servers. Although you could use this version in conjunction
with Apache, it is not recommended. Instead, use the Windows zip package version.
Further, if you're interested in configuring PHP to run with IIS, see the later section
titled “Installing IIS and PHP on Windows.” A recent collaboration between
Microsoft and PHP product and services leader Zend Technologies Ltd. has resulted
in a greatly improved process that is covered in that section.

If you are interested in playing with the very latest PHP development snapshots,
you can download both source and binary versions at http://snaps.php.net/. Keep
in mind that some of the versions made available via this Web site are not intended
for use with live Web sites.

Obtaining the Documentation

Both the Apache and PHP projects offer truly exemplary documentation, covering
practically every aspect of the respective technology in lucid detail. You can view the
latest respective versions online via http://httpd.apache.org/ and http://www.php.net/
,or download a local version to your local machine and read it there.

Downloading the Apache Manual

Each Apache distribution comes packaged with the latest versions of the documenta-
tion in XML and HTML formats and in nine languages (Brazilian Portuguese, Chinese,
Dutch, English, German, Japanese, Russian, Spanish, and Turkish). The documenta-
tion is located in the directory docs, found in the installation root directory.

http://snaps.php.net
http://httpd.apache.org
http://www.php.net

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

Should you need to upgrade your local version, require an alternative format such
as PDF or Microsoft Compiled HTML Help (CHM) files, or want to browse it online,
proceed to the following Web site: http://httpd.apache.org/docs-project/.

Downloading the PHP Manual
The PHP documentation is available in more than 20 languages and in a variety of
formats, including a single HTML page, multiple HTML pages, and CHM files. These
versions are generated from DocBook-based master files, which can be retrieved from
the PHP project’s CVS server should you wish to convert to another format. The docu-
mentation is located in the directory manual in the installation directory.

Should you need to upgrade your local version or retrieve an alternative format,
navigate to the following page and click the appropriate link: http://www.php.net/
docs.php.

Installing Apache and PHP on Linux

This section guides you through the process of building Apache and PHP from source,
targeting the Linux platform. You need a respectable ANSI-C compiler and build
system, two items that are commonplace on the vast majority of distributions avail-
able today. In addition, PHP requires both Flex (http://flex.sourceforge.net/) and
Bison (http://www.gnu.org/software/bison/bison.html), while Apache requires at
least Perl version 5.003. If you’ve downloaded PHP 6, you'll also need to install
the International Components for Unicode (ICU) package version 3.4 (http://
icu.sourceforge.net/), although this may very well be bundled with PHP in the
future. Again, all of these items are prevalent on most, if not all, modern Linux platforms.
Finally, you’ll need root access to the target server to complete the build process.

For the sake of convenience, before beginning the installation process, consider
moving both packages to a common location—/usr/src/, for example. The installa-
tion process follows:

1. Unzip and untar Apache and PHP. In the following code, the X represents the
latest stable version numbers of the distributions you downloaded in the
previous section:

%>gunzip httpd-2 X XX.tar.gz
%>tar xvf httpd-2 X XX.tar
%>gunzip php-XX.tar.gz
%>tar xvf php-XX.tar

15

http://httpd.apache.org/docs-project
http://www.php.net
http://flex.sourceforge.net
http://www.gnu.org/software/bison/bison.html
http://icu.sourceforge.net
http://icu.sourceforge.net

16

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

2. Configure and build Apache. At a minimum, you'll want to pass the option

--enable-so, which tells Apache to enable the ability to load shared modules:

%>cd httpd-2 X XX
%>./configure --enable-so [other options]
%>make

. Install Apache:

%>make install

. Configure, build, and install PHP (see the section “Configuring PHP at Build

Time on Linux” for information regarding modifying installation defaults
and incorporating third-party extensions into PHP). In the following steps,
APACHE_INSTALL DIRisaplaceholder for the path to Apache’sinstalled location,
for instance /usr/local/apache2:

%>cd . ./php-X XX

%>./configure --with-apxs2=APACHE INSTALL DIR/bin/apxs [other options]
%>make

%>make install

. PHP comes bundled with a configuration file that controls many aspects of

PHP’s behavior. This file is known as php.ini, but it was originally named
php.ini-dist. You need to copy this file to its appropriate location and rename
it php.ini. The later section “Configuring PHP” examines php.ini’s purpose
and contents in detail. Note that you can place this configuration file anywhere
you please, butif you choose a nondefault location, you also need to configure
PHP using the --with-config-file-path option. Also note that there is another
default configuration file at your disposal, php.ini-recommended. This file sets
various nonstandard settings and is intended to better secure and optimize
your installation, although this configuration may not be fully compatible with
some of the legacy applications. Consider using this file in lieu of php.ini-dist.
To use this file, execute the following command:

%>cp php.ini-recommended /usr/local/lib/php.ini

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

6. Open Apache’s configuration file, known as httpd. conf, and verify that the fol-
lowing lines exist. (The httpd. conf file is located at APACHE_INSTALL DIR/conf/
httpd.conf.) If they don't exist, go ahead and add them. Consider adding each
alongside the other LoadModule and AddType entries, respectively:

LoadModule php6 module modules/libphp6.so
AddType application/x-httpd-php .php

Because at the time of publication PHP 6 wasn’t yet official, you should use the
latest stable version of PHP 5 if you're planning on running any production applica-
tions. In the case of PHP 5, the lines will look like this:

LoadModule php5 module modules/libphp5.so
AddType application/x-httpd-php .php

Believe it or not, that'’s it. Restart the Apache server with the following command:
%>/usxr/local/apache2/bin/apachectl restart

Now proceed to the section “Testing Your Installation.”

Tip The AddType directive in step 6 binds a MIME type to a particular extension or extensions. The
. php extension is only a suggestion; you can use any extension you like, including .html, .php5, or
even . jason. In addition, you can designate multiple extensions simply by including them all on the
line, each separated by a space. While some users prefer to use PHP in conjunction with the .html
extension, keep in mind that doing so will ultimately cause the file to be passed to PHP for parsing
every single time an HTML file is requested. Some people may consider this convenient, but it will
come at the cost of performance.

Installing Apache and PHP on Windows

Whereas previous Windows-based versions of Apache weren’t optimized for the
Windows platform, Apache 2 was completely rewritten to take advantage of Windows
platform-specific features. Even if you don’t plan to deploy your application on
Windows, it nonetheless makes for a great localized testing environment for those
users who prefer it over other platforms. The installation process follows:

17

18

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

. Start the Apache installer by double-clicking the apache X.X.XX-win32-x86-

no_ssl.msiicon. The Xs in this file name represent the latest stable version
numbers of the distributions you downloaded in the previous section.

. The installation process begins with a welcome screen. Take a moment to read

the screen and then click Next.

. The license agreement is displayed next. Carefully read through the license.

Assuming that you agree with the license stipulations, click Next.

. A screen containing various items pertinent to the Apache server is displayed

next. Take a moment to read through this information and then click Next.

. You will be prompted for various items pertinent to the server’s operation,

including the network domain, the server name, and the administrator’s e-mail
address. If you know this information, fill it in now; otherwise, just enter localhost
for the first two items and put in any e-mail address for the last. You can always
change this information later in the httpd. conf file. You'll also be prompted as
to whether Apache should run as a service for all users or only for the current
user. If you want Apache to automatically start with the operating system,
which is recommended, then choose to install Apache as a service for all users.
When you're finished, click Next.

. You are prompted for a Setup Type: Typical or Custom. Unless there is a specific

reason you don’'t want the Apache documentation installed, choose Typical
and click Next. Otherwise, choose Custom, click Next, and on the next screen,
uncheck the Apache Documentation option.

. You're prompted for the Destination folder. By default, this is C: \Program

Files\Apache Group. Consider changing this to C:\, which will create an instal-
lation directory C:\apache2\. Regardless of what you choose, keep in mind that
the latter is used here for the sake of convention. Click Next.

. Click Install to complete the installation. That’s it for Apache. Next you'll

install PHP.

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

9. Unzip the PHP package, placing the contents into C:\php6\. You're free to choose
any installation directory you please, but avoid choosing a path that contains
spaces. Regardless, the installation directory C: \php6\ will be used throughout
this chapter for consistency.

10. Navigate to C:\apache2\conf and open httpd. conf for editing.

11. Add the following three lines to the httpd. conf file. Consider adding them
directly below the block of LoadModule entries located in the bottom of the
Global Environment section:

LoadModule php6 module c:/php6/php6apache2.dll
AddType application/x-httpd-php .php
PHPIniDir "c:\php6"

Because at the time of publication PHP 6 wasn’t yet official, you should use the latest
stable version of PHP 5 if you're planning on running any production applications. To
do so, you'll need to make some minor changes to the previous lines, as follows:

LoadModule php5 module c:/php5/php5apache2.d1l
AddType application/x-httpd-php .php
PHPIniDir "c:\php5"

Tip The AddType directive in step 11 binds a MIME type to a particular extension or extensions. The
. php extension is only a suggestion; you can use any extension you like, including .html, .php5, or
even . jason. In addition, you can designate multiple extensions simply by including them all on the
line, each separated by a space. While some users prefer to use PHP in conjunction with the .html
extension, keep in mind that doing so will cause the file to be passed to PHP for parsing every single time
an HTML file is requested. Some people may consider this convenient, but it will come at the cost of a perfor-
mance decrease. Ultimately, it is strongly recommended you stick to common convention and use . php.

19

20

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

12, Rename the php.ini-dist file to php.ini and save it to the C: \php6 directory.
The php.inifile contains hundreds of directives that are responsible for tweaking
PHP’s behavior. The later section “Configuring PHP” examines php.ini’s
purpose and contents in detail. Note that you can place this configuration file
anywhere you please, but if you choose a nondefault location, you also need to
configure PHP using the --with-config-file-path option. Also note that there
is another default configuration file at your disposal, php.ini-recommended.
This file sets various nonstandard settings and is intended to better secure and
optimize your installation, although this configuration may not be fully com-
patible with some of the legacy applications. Consider using this file in lieu of
php.ini-dist.

13. If you're using Windows NT, 2000, XP, or Vista, navigate to Start » Settings »
Control Panel » Administrative Tools » Services. If you're running Windows
98, see the instructions provided at the conclusion of the next step.

14. Locate Apache in the list and make sure that it is started. If it is not started, high-
light the label and click Start the Service, located to the left of the label. If it is
started, highlight the label and click Restart the Service, so that the changes made
to the httpd. conf file take effect. Next, right-click Apache and choose Properties.
Ensure that the startup type is set to Automatic. If you're still using Windows
95/98, you need to start Apache manually via the shortcut provided on the
start menu.

Installing 11S and PHP on Windows

Microsoft Windows remains the operating system of choice even among most open
source-minded developers, largely due to reasons of convenience; after all, as the
dominant desktop operating system, it makes sense that most would prefer to continue
using this familiar environment. Yet for reasons of both stability and performance,
deploying PHP-driven Web sites on Linux running an Apache Web server has histor-
ically been the best choice.

But this presents a problem if you’d like to develop and even deploy your PHP-
driven Web site on a Windows server running the Microsoft IIS Web server. Microsoft, in
collaboration with PHP products and services provider Zend Technologies Ltd., is
seeking to eliminate this inconvenience through a new IIS component called FastCGI.

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

FastCGI greatly improves the way IIS interacts with certain third-party applications
that weren’t written with IIS in mind, including PHP (versions 5.X and newer are
supported). Though FastCGI wasn’t intended for use within production environments
at the time of publication, it is ready for testing and development purposes. In this
section you'll learn how to configure PHP to run in conjunction with IIS.

Installing IIS and PHP

To begin, download PHP as explained in the earlier section “Downloading PHP.” Be
sure to choose the Windows zip package distribution as described in that section.
Extract the zip file to C: \php. Believe it or not, this is all that’s required in regard to
installing PHP.

Next you'll need to install IIS. In order to take advantage of FastCGI, you'll need to
install IIS version 5.1 or greater. IIS 5.1 is available for Windows 2000 Professional,
Windows 2000 Server, and Windows XP Professional, whereas IIS 6 is available for
Windows 2003 Server. You can verify whether IIS is installed on these operating
systems by navigating to Start » Run and executing inetmgr at the prompt. If the IIS
manager loads, it’s installed and you can proceed to the next section, “Configuring
FastCGI to Manage PHP Processes.” If it is not installed, insert the Windows XP
Professional CD into your CD-ROM drive and navigate to Start » Control Panel » Add/
Remove Programs, and select Add/Remove Windows Components. From here, check
the box next to Internet Information Services (IIS) and click Next, then click OK.

Note It's not possible to download any version of IIS; they are bundled solely with the corresponding
version of Windows, therefore you will need the Windows installation disk if IIS isn’t already installed on
your computer. Also, lIS is not available nor installable on Windows 98, Windows ME, or Windows XP
Home Edition.

IIS 7 is bundled with both Windows Vista and Windows Server “Longhorn”; however,
it may not be installed on your machine. You can verify whether IIS is installed on
these operating systems by navigating to Start » Run and executing inetmgr at the
prompt. If the IIS manager loads, it’s installed, and you can proceed to the next section,
“Configuring FastCGI to Manage PHP Processes.” Otherwise, install IIS 7 by navigating

21

22

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

to Start » Settings » Control Panel » Programs and Features and clicking the Turn
Windows Features On and Off link appearing to the right of the window. As shown in
Figure 2-1, anew window will appear containing a list of features you're free to enable
and disable at will, including IIS. Enable IIS by clicking the checkbox next to it.

You'll also want to enable FastCGI by clicking the checkbox next to CGIL. Once both
of these checkboxes have been enabled, click the OK button.

Once the installation process completes, you'll need to restart the operating
system for the changes to take effect.

@! Windows Features g 10l =l

Turn Windows features on or off (7]

To turn a feature on, select its check box. To turn a feature off,
dear its check box. A filled box means that only part of the
feature is turned on.

O | ActiveX Installer Service
| Games
. Indexing Service
J Internet Information Services
[| FTP Publishing Service
. Web Management Tools
J World Wide Web Services
. Application Development Features
| .MNET Extensibility —
. ASP
. ASP.NET

| v

=]

o= =EEQ

nEd

. ISAPI Extensions

| ISAPI Filters

| Server-Side Indudes

. Common Http Features

) Health and Diagnostics

FA . Performance Features i

oK I Cancel

OOommooO

H

Figure 2-1. Enabling IIS on Vista

Configuring FastCGI to Manage PHP Processes

Next you'll need to configure FastCGI to handle PHP-specific requests. This is done
by navigating to the IIS Manager (Start » Run, then enter inetmgr), clicking Handler
Mappings, clicking Add Module Mapping, and then entering the mapping as shown
in Figure 2-2.

PHP and IIS are now properly installed and configured on your machine. Proceed
to the next section to test your installation.

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

“E Internet Information Services (II5) Manager I =10 x|
GO [+ muwor FEELICE
File Wiew Help
@5 Handler Mappings
| L Add Managed Handler...
3 MYLAPTOP toy i
= j Y ADDI‘EE&::::DISP\JESM) |ie this feature tn enarifu the reenircesaurh as Nl e and mananed rade that Al SR
- id = 7| x Add Module Ma
[#-[@&| Web Sites HodslEE TSR, — —I—I =
Request path: Edit...
|‘.php Rename
Example: *bas, wsvc.axd K Remove
Module: Edit Handler Permissions ...
Iusftgl j View Ordered List...
'@ Help
Name:
JPHP using FastCGI
Request Restrictions. .. |
Cencel |
il | i
E] Features View (¢ ::_ Content View
Configuration: 'localhost’ applicationHost. config or root web.config qﬂ_:g

Figure 2-2. Confirming the FastCGI Handler Mapping is installed

Testing Your Installation

The best way to verify your PHP installation is by attempting to execute a PHP script.
Open a text editor and add the following lines to a new file:

<?php
phpinfo();
2>

If you're running Apache, save the file within the htdocs directory as phpinfo.php.
If you're running IIS, save the file within C:\inetpub\wwwroot\.

Now open a browser and access this file by entering the following URL: http://
localhost/phpinfo.php.

If all goes well, you should see output similar to that shown in Figure 2-3. If you're
attempting to run this script on a Web hosting provider’s server, and you receive an error
message stating phpinfo() has been disabled for security reasons, you'll need to try

23

http://localhost/phpinfo.php
http://localhost/phpinfo.php

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

executing another script. Try executing this one instead, which should produce some
simple output:

<?php
echo "A simple but effective PHP test!";
7>

Tip Executing the phpinfo() function is a great way to learn about your PHP installation, as it offers
extensive information regarding the server, operating system environment, and available extensions.

PHP Version 6.0.0-dev Php

System Windows NT MYLAPTOP 6.0 build 6000

Build Date Feb 24 2007 18:20:21

Configure Command cscript /nologo configure js "—enable-snapshot-build” "—with-gd=shared”
Server APl Apache 2.0 Handler

Virtual Directory Support |enabled
Configuration File (php.ini) | C:\php&\php.ini

Path

PHP API 20070116

PHP Extension 20060613

Zend Extension 320060519

Debug Build no

Thread Safety enabled

Zend Memory Manager enabled

Unicode Support Based on Copyright (C) 2005, International Business Machines Corporation and
others. All Rights Reserved. . ICU Version 3.4,

IPv6 Support enabled

Registered PHP Streams | php, file, data, hitp, ftp, compress zlib

Reqgistered Stream Socket |tcp, udp
Transports

Reqgistered Stream Filters |unicode.*, string.rot13, string.toupper, string.tolower, string.strip_tags, convert.®,
consumed, Zlib.*

This program makes use of the Zend Scripting Language Engine: Powered By
Zend Engine v3.0.0-dev, Copyright (c) 1998-2007 Zend Technologies

(3l

Figure 2-3. Output from PHP’s phpinfo() function

If you encountered no noticeable errors during the build process but you are not
seeing the appropriate output, it may be due to one or more of the following reasons:

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

¢ Changes made to Apache’s configuration file do not take effect until it has been
restarted. Therefore, be sure to restart Apache after adding the necessary PHP-
specific lines to the httpd.conf file.

¢ When you modify the Apache configuration file, you may accidentally intro-
duce an invalid character, causing Apache to fail upon an attempt to restart. If
Apache will not start, go back and review your changes.

* Verify that the file ends in the PHP-specific extension as specified in the
httpd. conf file. For example, if you've defined only .php as the recognizable
extension, don’t try to embed PHP code in an .html file.

e Make sure that you've delimited the PHP code within the file. Neglecting to do
this will cause the code to output to the browser.

* You've created a file named index.php and are trying unsuccessfully to call it as
you would a default directory index. Remember that by default, Apache only
recognizes index.html in this fashion. Therefore, you need to add index. php to
Apache’s DirectoryIndex directive.

¢ Ifyou’re runningIIS, make sure the appropriate mapping is available, as shown
in Figure 2-2. If not, something went awry during the FastCGI installation process.
Try removing that mapping and installing FastCGI anew.

Configuring PHP

Although the base PHP installation is sufficient for most beginning users, chances are
you’ll soon want to make adjustments to the default configuration settings and possibly
experiment with some of the third-party extensions that are not built into the distri-
bution by default. In this section you’ll learn all about how to tweak PHP’s behavior
and features to your specific needs.

Configuring PHP at Build Time on Linux

Building PHP as described earlier in the chapter is sufficient for getting started; however,
you should keep in mind many other build-time options are at your disposal. You can
view a complete list of configuration flags (there are more than 200) by executing the
following:

25

26

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

%>./configure --help

To make adjustments to the build process, you just need to add one or more of these
arguments to PHP’s configure command, including a value assignment if necessary.
For example, suppose you want to enable PHP’s FTP functionality, a feature not
enabled by default. Just modify the configuration step of the PHP build process like so:

%>./configure --with-apxs2=/usr/local/apache2/bin/apxs --enable-ftp

As another example, suppose you want to enable PHP’s Java extension. Just recon-
figure PHP like so:

%>./configure --with-apxs2=/usr/local/apache2/bin/apxs \
>--enable-java=[IDK-INSTALL-DIR]

One common point of confusion among beginners is to assume that simplyincluding
additional flags will automatically make this functionality available via PHP. This is not
necessarily the case. Keep in mind that you also need to install the software that is ulti-
mately responsible for enabling the extension support. In the case of the Java example,
you need the Java Development Kit (JDK).

Customizing the Windows Build

A total of 45 extensions are bundled with PHP 5.1 and 5.2, a number that was pared to
35 extensions with the current alpha version of PHP 6. However, to actually use any
of these extensions, you need to uncomment the appropriate line within the php.ini
file. For example, if you’d like to enable PHP’s XML-RPC extension, you need to make
a few minor adjustments to your php.ini file:

1. Open the php.ini file and locate the extension_dir directive and assign it
C:\php\ext\. If you installed PHP in another directory, modify this path
accordingly.

2. Locate theline ;extension=php xmlrpc.dll. Uncomment this line by removing
the preceding semicolon. Save and close the file.

3. Restart the Web server and the extension is ready for use from within PHP. Keep in
mind that some extensions have additional configuration directives that may
be found later in the php.ini file.

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

When enabling these extensions, you may occasionally need to install other soft-
ware. See the PHP documentation for more information about each respective
extension.

Run-Time Configuration

It’s possible to change PHP’s behavior at run time on both Windows and Linux
through the php.ini file. This file contains a myriad of configuration directives that
collectively control the behavior of each product. The remainder of this chapter
focuses on PHP’s most commonly used configuration directives, introducing the
purpose, scope, and default value of each.

Managing PHP’s Configuration Directives

Before you delve into the specifics of each directive, this section demonstrates the
various ways in which these directives can be manipulated, including through the
php.ini file, Apache’s httpd.conf and .htaccess files, and directly through a PHP script.

The php.ini File
The PHP distribution comes with two configuration templates, php.ini-dist and
php.ini-recommended. You'll want to rename one of these files to php.ini and place it in
the location specified by the PHPIniDir directive found in Apache’s httpd.conf file. It’s
suggested that you use the latter because many of the parameters found within it are
already assigned their suggested settings. Taking this advice will likely save you a good
deal of initial time and effort securing and tweaking your installation because there
are well over 200 distinct configuration parameters in this file. Although the default
values go along way toward helping you to quickly deploy PHP, you'll probably want to
make additional adjustments to PHP’s behavior, so you'll need to learn a bit more about
php.iniand its many configuration parameters. The upcoming section “PHP’s Config-
uration Directives” presents a comprehensive introduction to many of these parameters,
explaining the purpose, scope, and range of each.

The php.ini file is PHP’s global configuration file, much like httpd. conf is to Apache.
This file addresses 12 different aspects of PHP’s behavior:

¢ Language Options

¢ Safe Mode

27

28

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

e Syntax Highlighting

* Miscellaneous

* Resource Limits

e Error Handling and Logging
e Data Handling

» Paths and Directories

¢ File Uploads

* Fopen Wrappers

¢ Dynamic Extensions

e Module Settings

The section “PHP’s Configuration Directives” that follows will introduce many of
the directives found in the php. ini file. Later chapters will introduce module-specific
directives as appropriate.

Before you are introduced to them, however, take a moment to review the php.ini
file’s general syntactical characteristics. The php. ini file is a simple text file, consisting
solely of comments and the directives and their corresponding values. Here’s a sample
snippet from the file:

; Allow the <? tag
short open tag = Off

Lines beginning with a semicolon are comments; the parameter short_open_tagis
assigned the value Off.

Tip Once you’re comfortable with a configuration parameter’s purpose, consider deleting the accom-
panying comments to streamline the file’s contents, thereby decreasing later editing time.

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

Exactly when changes take effect depends on how you install PHP. If PHP is
installed as a CGI binary, the php.ini file is reread every time PHP is invoked, thus
making changes instantaneous. If PHP is installed as an Apache module, php.iniis
only read in once, when the Apache daemon is first started. Therefore, if PHP is
installed in the latter fashion, you must restart Apache before any of the changes take
effect.

The Apache httpd.conf and .htaccess Files

When PHP is running as an Apache module, you can modify many of the directives
through either the httpd. conf file or the .htaccess file. This is accomplished by
prefixing directive/value assignment with one of the following keywords:

* php_value: Sets the value of the specified directive.
* php_flag: Sets the value of the specified Boolean directive.

* php_admin_value: Sets the value of the specified directive. This differs from
php_value in that it cannot be used within an . htaccess file and cannot be over-
ridden within virtual hosts or .htaccess.

* php_admin_flag: Sets the value of the specified directive. This differs from
php_value in that it cannot be used within an .htaccess file and cannot be
overridden within virtual hosts or .htaccess.

For example, to disable the short tags directive and prevent others from overriding
it, add the following line to your httpd. conf file:

php_admin flag short open tag Off

Within the Executing Script

The third, and most localized, means for manipulating PHP’s configuration vari-
ables is via the ini_set() function. For example, suppose you want to modify PHP’s
maximum execution time for a given script. Just embed the following command into
the top of the script:

ini set("max_execution time","60");

29

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

Configuration Directive Scope

Can configuration directives be modified anywhere? The answer is no, for a variety of
reasons, mostly security related. Each directive is assigned a scope, and the directive
can be modified only within that scope. In total, there are four scopes:

e PHP_INI PERDIR: Directive can be modified within the php.ini, httpd.conf, or
.htaccess files

PHP_INI_SYSTEM: Directive can be modified within the php.iniand httpd. conf files

PHP_INI USER: Directive can be modified within user scripts

PHP_INI ALL: Directive can be modified anywhere

PHP’s Configuration Directives

The following sections introduce many of PHP’s core configuration directives. In
addition to a general definition, each section includes the configuration directive’s
scope and default value. Because you’ll probably spend the majority of your time
working with these variables from within the php.ini file, the directives are intro-
duced as they appear in this file.

Note that the directives introduced in this section are largely relevant solely to
PHP’s general behavior; directives pertinent to extensions, or to topics in which
considerable attention is given later in the book, are not introduced in this section
but rather are introduced in the appropriate chapter.

Language Options

The directives located in this section determine some of the language’s most basic
behavior. You'll definitely want to take a few moments to become acquainted with
these configuration possibilities.

engine = On | Off
Scope: PHP_INI ALL; Default value: On

This parameter is responsible for determining whether the PHP engine is available.
Turning it off prevents you from using PHP at all. Obviously, you should leave this
enabled if you plan to use PHP.

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

zend.zel_compatibility_mode = On | Off
Scope: PHP_INI ALL; Default value: Off

Some three years after PHP 5.0 was released, PHP 4.X is still in widespread use. One
of the reasons for the protracted upgrade cycle is due to some significant object-oriented
incompatibilities between PHP 4 and 5. The zend.zel compatibility mode directive
attempts to revert several of these changes in PHP 5, raising the possibility that PHP
4 applications can continue to run without change in version 5.

Note The zend.ze1 compatibility mode directive never worked as intended and was removed in
PHP 6.

short_open_tag = On | Off
Scope: PHP_INI ALL; Default value: On

PHP script components are enclosed within escape syntax. There are four different
escape formats, the shortest of which is known as short open tags, which looks like this:

<?
echo "Some PHP statement";
?>

You may recognize that this syntax is shared with XML, which could cause issues in
certain environments. Thus, a means for disabling this particular format has been
provided. When short_open_tagis enabled (On), short tags are allowed; when disabled
(0ff), they are not.

asp_tags = On | Off
Scope: PHP_INI ALL; Default value: Off
PHP supports ASP-style script delimiters, which look like this:
<%
echo "Some PHP statement";
%>

If you're coming from an ASP background and prefer to continue using this delimiter
syntax, you can do so by enabling this tag.

31

32

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

Note ASP-style tags are no longer available as of PHP 6.

precision = integer
Scope: PHP_INI ALL; Default value: 12

PHP supports a wide variety of datatypes, including floating-point numbers. The
precision parameter specifies the number of significant digits displayed in a floating-
point number representation. Note that this value is set to 14 digits on Win32 systems
and to 12 digits on Linux.

y2k_compliance = On | Off
Scope: PHP_INI ALL; Default value: Off

Who can forget the Y2K scare of just a few years ago? Superhuman efforts were
undertaken to eliminate the problems posed by non-Y2K-compliant software, and
although it’s very unlikely, some users may be using wildly outdated, noncompliant
browsers. If for some bizarre reason you're sure that a number of your site’s users fall
into this group, then disable the y2k _compliance parameter; otherwise, it should be
enabled.

output_buffering = On | Off| integer
Scope: PHP_INI SYSTEM; Default value: Off

Anybody with even minimal PHP experience is likely quite familiar with the following
two messages:

"Cannot add header information - headers already sent"
"Oops, php set cookie called after header has been sent"

These messages occur when a script attempts to modify a header after it has
already been sent back to the requesting user. Most commonly they are the result of
the programmer attempting to send a cookie to the user after some output has already
been sent back to the browser, which is impossible to accomplish because the header
(not seen by the user, but used by the browser) will always precede that output. PHP
version 4.0 offered a solution to this annoying problem by introducing the concept of

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT 33

output buffering. When enabled, output buffering tells PHP to send all output at
once, after the script has been completed. This way, any subsequent changes to the
header can be made throughout the script because it hasn’t yet been sent. Enabling
the output_bufferingdirective turns output buffering on. Alternatively, you can limit
the size of the output buffer (thereby implicitly enabling output buffering) by setting
it to the maximum number of bytes you’d like this buffer to contain.

If you do not plan to use output buffering, you should disable this directive because it
will hinder performance slightly. Of course, the easiest solution to the header issue is
simply to pass the information before any other content whenever possible.

output_handler = string
Scope: PHP_INI ALL; Default value: NULL

This interesting directive tells PHP to pass all output through a function before
returning it to the requesting user. For example, suppose you want to compress all
output before returning it to the browser, a feature supported by all mainstream
HTTP/1.1-compliant browsers. You can assign output_handler like so:

output handler = "ob_gzhandler"

ob_gzhandler() is PHP’s compression-handler function, located in PHP’s output
control library. Keep in mind that you cannot simultaneously set output_handler to
ob_gzhandler() and enable z1ib.output compression (discussed next).

zlib.output_compression = On | Off | integer
Scope: PHP_INI SYSTEM; Default value: Off

Compressing output before it is returned to the browser can save bandwidth and
time. This HTTP/1.1 feature is supported by most modern browsers and can be safely
used in most applications. You enable automatic output compression by setting
z1lib.output_compression to On. In addition, you can simultaneously enable output
compression and set a compression buffer size (in bytes) by assigning z1ib.output
compression an integer value.

zlib.output_handler = string
Scope: PHP_INI SYSTEM; Default value: NULL

The z1ib.output_handler specifies a particular compression library if the z1ib
library is not available.

34

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

implicit_flush = On | Off
Scope: PHP_INI SYSTEM; Default value: Off

Enabling implicit flushresults in automatically clearing, or flushing, the output
buffer of its contents after each call to print () orecho(), and completing each embedded
HTML block. This might be useful in an instance where the server requires an unusu-
ally long period of time to compile results or perform certain calculations. In such cases,
you can use this feature to output status updates to the user rather than just wait until
the server completes the procedure.

unserialize_callback_func = string
Scope: PHP_INI ALL; Default value: NULL

This directive allows you to control the response of the unserializer when arequest
is made to instantiate an undefined class. For most users, this directive is irrelevant
because PHP already outputs a warning in such instances if PHP’s error reporting is
tuned to the appropriate level.

serialize_precision = integer
Scope: PHP_INI ALL; Default value: 100

The serialize precision directive determines the number of digits stored after
the floating point when doubles and floats are serialized. Setting this to an appro-
priate value ensures that the precision is not potentially lost when the numbers are
later unserialized.

allow_call_time_pass_reference = On | Off
Scope: PHP_INI_SYSTEM; Default value: On

Function arguments can be passed in two ways: by value and by reference. Exactly
how each argument is passed to a function at function call time can be specified in
the function definition, which is the recommended means for doing so. However,
you can force all arguments to be passed by reference at function call time by enabling
allow call time pass reference.

The discussion of PHP functions in Chapter 4 addresses how functional arguments
can be passed both by value and by reference, and the implications of doing so.

Safe Mode

When you deploy PHP in a multiuser environment, such as that found on an ISP’s
shared server, you might want to limit its functionality. As you might imagine, offering all

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT 35

users full reign over all PHP’s functions could open up the possibility for exploiting or
damaging server resources and files. As a safeguard for using PHP on shared servers,
PHP can be run in a restricted, or safe, mode.

Enabling safe mode will disable quite a few functions and various features deemed to
be potentially insecure and thus possibly damaging if they are misused within a local
script. A small sampling of these disabled functions and features includes parse
ini file(), chmod(), chown(), chgrp(), exec(), system(), and backtick operators.
Enabling safe mode also ensures that the owner of the executing script matches the
owner of any file or directory targeted by that script. However, this latter restriction in
particular can have unexpected and inconvenient effects because files can often be
uploaded and otherwise generated by other user IDs.

In addition, enabling safe mode opens up the possibility for activating a number of
other restrictions via other PHP configuration directives, each of which is introduced
in this section.

Note Due in part to confusion caused by the name and approach of this particular feature, coupled
with the unintended consequences brought about due to multiple user IDs playing a part in creating and
owning various files, PHP’s safe mode feature has been removed from PHP 6.

safe_mode = On | Off
Scope: PHP_INI SYSTEM; Default value: Off

Enabling the safe_mode directive results in PHP being run under the aforementioned
constraints.

safe_mode_gid = On | Off
Scope: PHP_INI SYSTEM; Default value: Off

When safe mode is enabled, an enabled safe_mode_gid enforces a GID (group ID)
check when opening files. When safe mode gid is disabled, a more restrictive UID
(user ID) check is enforced.

safe_mode_include_dir = string
Scope: PHP_INI SYSTEM; Default value: NULL

The safe_mode_include dir provides a safe haven from the UID/GID checks
enforced when safe_mode and potentially safe_mode_gid are enabled. UID/GID
checks are ignored when files are opened from the assigned directory.

36

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

safe_mode_exec_dir = string
Scope: PHP_INI_SYSTEM; Default value: NULL

When safe mode is enabled, the safe_mode_exec_dir parameter restricts execution
of executables via the exec() function to the assigned directory. For example, if you
want to restrict execution to functions found in /usr/local/bin, you use this directive:

safe_mode_exec_dir = "/usr/local/bin"

safe_mode_allowed_env_vars = string

Scope: PHP_INI_SYSTEM; Default value: PHP

When safe mode is enabled, you can restrict which operating system-level environ-
ment variables users can modify through PHP scripts with the safe_mode allowed
env_vars directive. For example, setting this directive as follows limits modification
to only those variables with a PHP_ prefix:

safe_mode allowed env vars = "PHP_"

Keep in mind that leaving this directive blank means that the user can modify any
environment variable.

safe_mode_protected_env_vars = string
Scope: PHP_INI_SYSTEM; Default value: LD _LIBRARY_ PATH

The safe_mode_protected env_vars directive offers a means for explicitly preventing
certain environment variables from being modified. For example, if you want to
prevent the user from modifying the PATHand LD_LIBRARY PATH variables, you use this
directive:

safe _mode protected env_vars = "PATH, LD LIBRARY_ PATH"

open_basedir = string
Scope: PHP_INI_SYSTEM; Default value: NULL

Much like Apache’s DocumentRoot directive, PHP’s open_basedir directive can
establish a base directory to which all file operations will be restricted. This prevents
users from entering otherwise restricted areas of the server. For example, suppose all
Web material is located within the directory /home/www. To prevent users from viewing
and potentially manipulating files like /etc/passwd via a few simple PHP commands,
consider setting open_basedir like this:

open_basedir = "/home/www/"

http://www.To

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

Note that the influence exercised by this directive is not dependent upon the
safe_mode directive.

disable_functions = string
Scope: PHP_INI SYSTEM; Default value: NULL

In certain environments, you may want to completely disallow the use of certain
default functions, such as exec() and system(). Such functions can be disabled by
assigning them to the disable functions parameter, like this:

disable functions = "exec, system";

Note that the influence exercised by this directive is not dependent upon the
safe_mode directive.

disable_classes = string
Scope: PHP_INI SYSTEM; Default value: NULL

Given the capabilities offered by PHP’s embrace of the object-oriented paradigm,
it likely won’t be too long before you're using large sets of class libraries. There may
be certain classes found within these libraries that you’d rather not make available,
however. You can prevent the use of these classes via the disable classes directive. For
example, if you want to disable two particular classes, named vector and graph, you
use the following:

disable classes = "vector, graph"

Note that the influence exercised by this directive is not dependent upon the
safe_mode directive.

ignore_user_abort = Off| On
Scope: PHP_INI ALL; Default value: On

How many times have you browsed to a particular page only to exit or close the
browser before the page completely loads? Often such behavior is harmless. However,
what if the server is in the midst of updating important user profile information, or
completing a commercial transaction? Enabling ignore_user abort causes the server
to ignore session termination caused by a user- or browser-initiated interruption.

Syntax Highlighting
PHP can display and highlight source code. You can enable this feature either by
assigning the PHP script the extension .phps (this is the default extension and, as

37

38

CHAPTER 2 CONFIGURING YOUR ENV

IRONMENT

you'll soon learn, can be modified) or via the show_source() or highlight file()

function. To use the . phps extension, you need to add the following line to httpd. conf:

AddType application/x-httpd-php-

source .phps

You can control the color of strings, comments, keywords, the background, default
text, and HTML components of the highlighted source through the following six direc-

tives. Each can be assigned an RGB

, hexadecimal, or keyword representation of each

color. For example, the color we commonly refer to as black can be represented as
1gb(0,0,0), #000000, or black, respectively.

highlight.string = string
Scope: PHP_INI ALL; Default value

highlight.comment = string
Scope: PHP_INI ALL; Default value

highlight.keyword = string
Scope: PHP_INI ALL; Default value

highlight.bg = string
Scope: PHP_INI ALL; Default value

highlight.default = string
Scope: PHP_INI ALL; Default value

highlight.html = string
Scope: PHP_INI ALL; Default value

Miscellaneous

: #DD0000

: #FF9900

: #007700

 #FFFFFF

: #0000BB

: #000000

The Miscellaneous category consists of a single directive, expose_php.

expose_php = On | Off

Scope: PHP_INI_SYSTEM; Default value: On
Each scrap of information that a potential attacker can gather about a Web server

increases the chances that he will

successfully compromise it. One simple way to

obtain key information about server characteristics is via the server signature. For

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

example, Apache will broadcast the following information within each response
header by default:

Apache/2.2.0 (Unix) PHP/6.0.0 PHP/6.0.0-dev Server at www.example.com Port 80

Disabling expose _php prevents the Web server signature (if enabled) from broad-
casting the fact that PHP is installed. Although you need to take other steps to ensure
sufficient server protection, obscuring server properties such as this one is nonethe-
less heartily recommended.

Note You can disable Apache’s broadcast of its server signature by setting ServerSignature to
Off in the httpd.conf file.

Resource Limits

Although PHP’s resource-management capabilities were improved in version 5, you
must still be careful to ensure that scripts do not monopolize server resources as a
result of either programmer- or user-initiated actions. Three particular areas where
such overconsumption is prevalent are script execution time, script input processing
time, and memory. Each can be controlled via the following three directives.

max_execution_time = integer
Scope: PHP_INI ALL; Default value: 30

The max_execution time parameter places an upper limit on the amount of time,
in seconds, that a PHP script can execute. Setting this parameter to 0 disables any
maximum limit. Note that any time consumed by an external program executed by
PHP commands, such as exec() and system(), does not count toward this limit.

max_input_time = integer
Scope: PHP_INI ALL; Default value: 60

The max_input_time parameter places a limit on the amount of time, in seconds,
that a PHP script devotes to parsing request data. This parameter is particularly impor-
tant when you upload large files using PHP’s file upload feature, which is discussed in
Chapter 15.

39

http://www.example.com

40

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

memory_limit = integerM
Scope: PHP_INI ALL; Default value: 8M

The memory limit parameter determines the maximum amount of memory, in
megabytes, that can be allocated to a PHP script.

Data Handling

The parameters introduced in this section affect the way that PHP handles external
variables— that is, variables passed into the script via some outside source. GET, POST,
cookies, the operating system, and the server are all possible candidates for providing
external data. Other parameters located in this section determine PHP’s default char-
acter set, PHP’s default MIME type, and whether external files will be automatically
prepended or appended to PHP’s returned output.

arg_separator.output = string
Scope: PHP_INI ALL; Default value: &

PHPis capable of automatically generating URLs and uses the standard ampersand (8)
to separate input variables. However, if you need to override this convention, you can
do so by using the arg_separator.output directive.

arg_separator.input = string
Scope: PHP_INI ALL; Default value: ;&

The ampersand (&) is the standard character used to separate input variables
passed in via the POST or GET methods. Although unlikely, should you need to
override this convention within your PHP applications, you can do so by using the
arg separator.input directive.

variables_order = string
Scope: PHP_INI ALL; Default value: EGPCS

The variables order directive determines the order in which the ENVIRONMENT, GET,
POST, COOKIE, and SERVER variables are parsed. While seemingly irrelevant, if
register globalsisenabled (notrecommended), the ordering of these values could
result in unexpected results due to later variables overwriting those parsed earlier in
the process.

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

register_globals = On | Off
Scope: PHP_INI SYSTEM; Default value: Off

If you have used a pre-4.0 version of PHP, the mere mention of this directive is
enough to evoke gnashing of the teeth and pulling of the hair. To eliminate the prob-
lems, this directive was disabled by default in version 4.2.0 , but at the cost of forcing
many long-time PHP users to entirely rethink (and in some cases rewrite) their Web
application development methodology. This change, although done at a cost of
considerable confusion, ultimately serves the best interests of developers in terms of
greater application security. If you're new to all of this, what’s the big deal?

Historically, all external variables were automatically registered in the global
scope. That is, any incoming variable of the types COOKIE, ENVIRONMENT, GET, POST, and
SERVER were made available globally. Because they were available globally, they were
also globally modifiable. Although this might seem convenient to some people, it also
introduced a security deficiency because variables intended to be managed solely by
using a cookie could also potentially be modified via the URL. For example, suppose that
a session identifier uniquely identifying the user is communicated across pages via a
cookie. Nobody but that user should see the data that is ultimately mapped to the
user identified by that session identifier. A user could open the cookie, copy the session
identifier, and paste it onto the end of the URL, like this:

http://www.example.com/secretdata.php?sessionid=4x5bh5H793adK

The user could then e-mail this link to some other user. If there are no other secu-
rity restrictions in place (e.g., IP identification), this second user will be able to see the
otherwise confidential data. Disabling the register globals directive prevents such
behavior from occurring. While these external variables remain in the global scope, each
must be referred to in conjunction with its type. For example, the sessionid variable in
the previous example would instead be referred to solely as the following:

$ COOKIE['sessionid']

Any attempt to modify this parameter using any other means (e.g., GET or POST)
causes a new variable in the global scope of that means ($_CET['sessionid'] or
$_POST['sessionid']).In Chapter 3, the section on PHP’s superglobal variables offers
a thorough introduction to external variables of the COOKIE, ENVIRONMENT, GET, POST,
and SERVER types.

4

http://www.example.com/secretdata.php?sessionid=4x5bh5H793adK

42

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

Although disabling register globals isunequivocally a goodidea, itisn’t the only
factor you should keep in mind when you secure an application. Chapter 21 offers
more information about PHP application security.

Note The register globals feature has been a constant source of confusion and security-
related problems over the years. Accordingly, it is no longer available as of PHP 6.

register_long arrays = On | Off
Scope: PHP_INI_SYSTEM; Default value: On

This directive determines whether to continue registering the various input arrays
(ENVIRONMENT, GET, POST, COOKIE, SYSTEM) using the deprecated syntax, such as
HTTP_* VARS. Disabling this directive is recommended for performance reasons.

Note The register long arrays directive is no longer available as of PHP 6.

register_argc_argv = On | Off
Scope: PHP_INI_SYSTEM; Default value: On

Passing in variable information via the GET method is analogous to passing argu-
ments to an executable. Many languages process such arguments in terms of argc
and argv. argc is the argument count, and argv is an indexed array containing the
arguments. If you would like to declare variables $argc and $argv and mimic this
functionality, enable register argc argv.

post_max_size = integerM
Scope: PHP_INI SYSTEM; Default value: 81

Of the two methods for passing data between requests, POST is better equipped to
transport large amounts, such as what might be sent via a Web form. However, for
both security and performance reasons, you might wish to place an upper ceiling
on exactly how much data can be sent via this method to a PHP script; this can be
accomplished using post_max_size.

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

WORKING WITH SINGLE AND DOUBLE QUOTES

Quotes, both of the single and double variety, have long played a special role in programming.
Because they are commonly used both as string delimiters and in written language, you need a way
to differentiate between the two in programming, to eliminate confusion. The solution is simple:
escape any quote mark not intended to delimit the string. If you don’t do this, unexpected errors
could occur. Consider the following:

$sentence = "John said, "I love racing cars!"";

Which quote marks are intended to delimit the string, and which are used to delimit John’s
utterance? PHP doesn’t know, unless certain quote marks are escaped, like this:

$sentence = "John said, \"I love racing cars!\"";

Escaping nondelimiting quote marks is known as enabling magic quotes. This process could
be done either automatically, by enabling the directive magic_quotes_gpc (introduced in this
section), or manually, by using the functions addslashes() and stripslashes(). The latter
strategy is recommended because it enables you to wield total control over the application, although in
those cases where you're trying to use an application in which the automatic escaping of quotations
is expected, you’ll need to enable this behavior accordingly.

Three parameters have long determined how PHP behaves in this regard: magic_quotes
gpc, magic quotes runtime, and magic_quotes sybase. However, because this feature has
long been a source of confusion among developers, it’s been removed as of PHP 6.

magic_quotes_gpc = On | Off
Scope: PHP_INI SYSTEM; Default value: On

This parameter determines whether magic quotes are enabled for data trans-
mitted via the GET, POST, and cookie methodologies. When enabled, all single and

double quotes, backslashes, and null characters are automatically escaped with a
backslash.

magic_quotes_runtime = On | Off
Scope: PHP_INI ALL; Default value: Off

Enabling this parameter results in the automatic escaping (using a backslash) of any
quote marks located within data returned from an external resource, such as a data-
base or text file.

43

44

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

magic_quotes_sybase = On | Off
Scope: PHP_INI ALL; Default value: Off

This parameter is only of interest if magic_quotes_runtimeis enabled. If magic
quotes sybaseis enabled, all datareturned from an external resource will be escaped
using a single quote rather than a backslash. This is useful when the data is being
returned from a Sybase database, which employs a rather unorthodox requirement of
escaping special characters with a single quote rather than a backslash.

auto_prepend_file = string
Scope: PHP_INI_SYSTEM; Default value: NULL

Creating page header templates or including code libraries before a PHP script is
executed is most commonly done using the include() orrequire() function. You can
automate this process and forgo the inclusion of these functions within your scripts by
assigning the file name and corresponding path to the auto_prepend file directive.

auto_append._file = string
Scope: PHP_INI_SYSTEM; Default value: NULL

Automatically inserting footer templates after a PHP script is executed is most
commonly done using the include() or require() functions. You can automate this
process and forgo the inclusion of these functions within your scripts by assigning
the template file name and corresponding path to the auto_append file directive.

default_mimetype = string
Scope: PHP_INI ALL; Default value: text/html

MIME types offer a standard means for classifying file types on the Internet. You
can serve any of these file types via PHP applications, the most common of which is
text/html. If you're using PHP in other fashions, however, such as a content generator for
WML (Wireless Markup Language) applications, you need to adjust the MIME type
accordingly. You can do so by modifying the default _mimetype directive.

default_charset = string
Scope: PHP_INI ALL; Default value: iso-8859-1

As of version 4.0, PHP outputs a character encoding in the Content-Type header.
By default this is set to is0-8859-1, which supports languages such as English,
Spanish, German, Italian, and Portuguese, among others. If your application is geared
toward languages such as Japanese, Chinese, or Hebrew, however, the default _charset
directive allows you to update this character set setting accordingly.

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

always_populate_raw_post_data = On | Off
Scope: PHP_INI PERDIR; Default value: On

Enabling the always populate raw post data directive causes PHP to assign a
string consisting of POSTed name/value pairs to the variable $HTTP_RAW_POST DATA,
even if the form variable has no corresponding value. For example, suppose this direc-
tive is enabled and you create a form consisting of two text fields, one for the user’s
name and another for the user’s e-mail address. In the resulting form action, you
execute just one command:

echo $HTTP_RAW POST DATA;

Filling out neither field and clicking the Submit button results in the following
output:

name=&email=

Filling out both fields and clicking the Submit button produces output similar to
the following:

name=jason8email=jason%40example.com

Paths and Directories

This section introduces directives that determine PHP’s default path settings. These
paths are used for including libraries and extensions, as well as for determining user
Web directories and Web document roots.

include_path = string
Scope: PHP_INI ALL; Default value: NULL

The path to which this parameter is set serves as the base path used by functions
such as include(), require(), and fopen with path(). You can specify multiple directo-
ries by separating each with a semicolon, as shown in the following example:

include path=".:/usr/local/include/php;/home/php"

By default, this parameter is set to the path defined by the environment variable
PHP_INCLUDE_PATH.

45

46

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

Note that on Windows, backward slashes are used in lieu of forward slashes, and
the drive letter prefaces the path:

include path=".;C:\php6\includes"

doc_root = string
Scope: PHP_INI_SYSTEM; Default value: NULL

This parameter determines the default from which all PHP scripts will be served.
This parameter is used only if it is not empty.

user_dir = string
Scope: PHP_INI_SYSTEM; Default value: NULL

The user_dir directive specifies the absolute directory PHP uses when opening
files using the
/~username convention. For example, when user dir is set to /home/users and a user
attempts to open the file ~/gilmore/collections/books.txt, PHP knows that the
absolute path is /home/ users/gilmore/collections/books.txt.

extension_dir = string
Scope: PHP_INI SYSTEM; Default value: ./

The extension dir directive tells PHP where its loadable extensions (modules)
are located. By default, this is set to ./, which means that the loadable extensions
are located in the same directory as the executing script. In the Windows environ-
ment, if extension_dir is not set, it will default to C: \PHP-INSTALLATION-DIRECTORY\ext\.
In the Linux environment, the exact location of this directory depends on several factors,
although it’s quite likely that the location will be PHP-INSTALLATION-DIRECTORY/1ib/
php/extensions/no-debug-zts-RELEASE-BUILD-DATE/.

enable_dl = On | Off
Scope: PHP_INI_SYSTEM; Default value: On

The enable_d1() function allows a user to load a PHP extension at run time—that
is, during a script’s execution.

Fopen Wrappers

This section contains five directives pertinent to the access and manipulation of
remote files.

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

allow_url_fopen = On | Off
Scope: PHP_INI ALL; Default value: On

Enabling allow_url fopen allows PHP to treat remote files almost as if they were
local. When enabled, a PHP script can access and modify files residing on remote
servers, if the files have the correct permissions.

from = string
Scope: PHP_INI ALL; Default value: NULL

The title of the from directive is perhaps misleading in that it actually determines
the password, rather than the identity, of the anonymous user used to perform FTP
connections. Therefore, if from is set like this

from = "jason@example.com"

the username anonymous and password jason@example.com will be passed to the server
when authentication is requested.

user_agent = string
Scope: PHP_INI ALL; Default value: NULL

PHP always sends a content header along with its processed output, including a
user agent attribute. This directive determines the value of that attribute.

default_socket_timeout = integer

Scope: PHP_INI ALL; Default value: 60
This directive determines the time-out value of a socket-based stream, in seconds.

auto_detect_line_endings = On | Off
Scope: PHP_INI ALL; Default value: Off

One never-ending source of developer frustration is derived from the end-of-line
(EOL) character because of the varying syntax employed by different operating
systems. Enabling auto_detect line endings determines whether the data read by
fgets() and file() uses Macintosh, MS-DOS, or Linux file conventions.

47

mailto:jason@example.com
mailto:jason@example.com

48

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

Dynamic Extensions

This section contains a single directive, extension.

extension = string

Scope: PHP_INI ALL; Default value: NULL
The extension directive is used to dynamically load a particular module. On the
Win32 operating system, a module might be loaded like this:

extension = php java.dll
On Uniy, it would be loaded like this:
extension = php java.so

Keep in mind that on either operating system, simply uncommenting or adding
this line doesn’t necessarily enable the relevant extension. You’ll also need to ensure
that the appropriate software is installed on the operating system. For example, to enable
Java support, you also need to install the JDK.

Choosing a Code Editor

While there’s nothing wrong with getting started writing PHP scripts using no-frills
editors such as Windows Notepad or vi, chances are you're soon going to want to
graduate to a full-fledged PHP-specific development solution. Several open source
and commercial solutions are available.

Adobe Dreamweaver CS3

Formerly known as Macromedia Dreamweaver MX, Adobe’s Dreamweaver CS3 is
considered by many to be the ultimate Web designer’s toolkit. Intended to be a one-
stop application, Dreamweaver CS3 supports all of the key technologies, such as Ajax,
CSS, HTML, JavaScript, PHP, and XML, which together drive cutting-edge Web sites.

In addition to allowing developers to create Web pages in WYSIWYG (what-you-
see-is-what-you-get) fashion, Dreamweaver CS3 offers a number of convenient features
for helping PHP developers more effectively write and manage code, including syntax
highlighting, code completion, and the ability to easily save and reuse code snippets.

Adobe Dreamweaver CS3 (http://www.adobe.com/products/dreamweaver/) is
available for the Windows and Mac OS X platforms, and retails for $399.

http://www.adobe.com/products/dreamweaver

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

Tip If you settle upon Dreamweaver, consider picking up a copy of The Essential Guide to Dreamweaver
CS3 with CSS, Ajax, and PHP by David Powers (friends of ED, 2007). Learn more about the book at
http://www.friendsofed.com/.

Notepad++

Notepad++ is a mature open source code editor and avowed Notepad replacement
available for the Windows platform. Translated into 41 languages, Notepad++ offers
a wide array of convenient features one would expect of any capable IDE, including
the ability to bookmark specific lines of a document for easy reference; syntax, brace,
and indentation highlighting; powerful search facilities; macro recording for tedious
tasks such as inserting templated comments; and much more.

PHP-specific support is fairly slim, with much of the convenience coming from the
general features. However, rudimentary support for auto-completion of function
names is offered, which will cut down on some typing, although you're still left to
your own devices regarding remembering parameter names and ordering.

Notepad++ is only available for the Windows platform and is released under the GNU
GPL. Learn more about it and download it at http://notepad-plus.sourceforge.net/.

PDT (PHP Development Tools)

The PDT project (http://waw.eclipse.org/pdt/) is currently seeing quite a bit of
momentum. Backed by leading PHP products and services provider Zend Technologies
Ltd. (http://www.zend.com/), and built on top of the open source Eclipse platform
(http://www.eclipse.org/), awildly popular extensible framework used for building
development tools, PDT is the likely front-runner to become the de facto PHP IDE for
hobbyists and professionals alike.

Note The Eclipse framework has been the basis for a wide array of projects facilitating crucial devel-
opment tasks such as data modeling, business intelligence and reporting, testing and performance
monitoring, and, most notably, writing code. While Eclipse is best known for its Java IDE, it also has IDEs
for languages such as C, C++, Cobol, and more recently PHP.

49

http://www.friendsofed.com
http://notepad-plus.sourceforge.net
http://www.eclipse.org/pdt
http://www.zend.com
http://www.eclipse.org

50

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

Zend Studio

Zend Studio is far and away the most powerful PHP IDE of all commercial and open
source offerings available today. A flagship product ofleading PHP products and services
provider Zend Technologies Ltd., Zend Studio offers all of the features one would
expect of an enterprise IDE, including comprehensive code completion, CVS and
Subversion integration, internal and remote debugging, code profiling, and conve-
nient code deployment processes.

Facilities integrating code with popular databases such as MySQL, Oracle,
PostgreSQL, and SQLite are also offered, in addition to the ability to execute SQL
queries and view and manage database schemas and data.

Zend Studio (http://www.zend.com/products/zend studio/) is available for the
Windows, Linux, and Mac OS X platforms in two editions: standard and professional.
The Standard Edition lacks key features such as database, CVS/Subversion, and Web
Services integration but retails at just $99. The Professional Edition offers all of the
aforementioned features and more and retails at $299.

Choosing a Web Hosting Provider

Unless you work with an organization that already has an established Web site
hosting environment, eventually you’re going to have to evaluate and purchase the
services of a Web hosting provider. Thankfully this is an extremely crowded and
competitive market, with providers vying for your business, often by offering an
impressive array of services, disk space, and bandwidth at very low prices.
Generally speaking, hosting providers can be broken into three categories:

* Dedicated server hosting: Dedicated server hosting involves leasing an entire
Web server, allowing your Web site full reign over server CPU, disk space, and
memory resources, as well as control over how the server is configured. This solu-
tion is particularly advantageous because you typically have complete control
over the server’s administration while not having to purchase or maintain the
server hardware, hosting facility, or the network connection.

http://www.zend.com/products/zend_studio

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT 51

¢ Shared server hosting: If your Web site will require modest server resources, or
if you don’t want to be bothered with managing the server, shared server hosting is
likely the ideal solution. Shared hosting providers capitalize on these factors by
hosting numerous Web sites on a single server and using highly automated
processes to manage system and network resources, data backups, and user
support. The result is that they’re able to offer appealing pricing arrangements
(many respected shared hosting providers offer no-contract monthly rates
for as low as $8 a month) while simultaneously maintaining high customer
satisfaction.

* Virtual private server hosting: A virtual private server blurs the line between a
dedicated and shared server, providing each user with a dedicated operating
system and the ability to install applications and fully manage the server by way
of virtualization. Virtualization provides a way to run multiple distinct oper-
ating systems on the same server. The result is complete control for the user
while simultaneously allowing the hosting provider to keep costs low and pass
those savings along to the user.

Keep in mind this isn’t necessarily a high-priority task; there’s no need to purchase
Web hosting services until you're ready to deploy your Web site. Therefore, even in
spite of the trivial hosting rates, consider saving some time, money, and distraction
by waiting to evaluate these services until absolutely necessary.

Seven Questions for Any Prospective Hosting Provider

On the surface, most Web hosting providers offer a seemingly identical array of offer-
ings, boasting absurd amounts of disk space, endless bandwidth, and impressive
guaranteed server uptimes. Frankly, chances are that any respected hosting provider is
going to meet and even surpass your expectations, not only in terms of its ability to
meet the resource requirements of your Web site, but also in terms of its technical
support services. However, as a PHP developer, there are several questions you
should ask before settling upon a provider:

52

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

1. Is PHP supported, and if so, what versions are available? Many hosting pro-

viders have been aggravatingly slow to upgrade to the latest PHP version, with
many still offering only PHP 4, despite PHP 5 having been released more than
three years ago. Chances are it will take at least as long for most to upgrade to

PHP 6; therefore, if you're planning on taking advantage of version-specific fea-
tures, be sure the candidate provider supports the appropriate version. Further, it
would be particularly ideal if the provider simultaneously supported multiple
PHP versions, allowing you to take advantage of various PHP applications that
have yet to support the latest PHP version.

. Is MySQL/Oracle/PostgreSQL supported, and if so, what versions are available?

Like PHP, hosting providers have historically been slow to upgrade to the
latest database version. Therefore, if you require features available only as of a
certain version, be sure to confirm that the provider supports that version.

. What PHP file extensions are supported? Inexplicably, some hosting providers

continue to demand users use deprecated file extensions such as .php3 for PHP-
enabled scripts, despite having upgraded their servers to PHP version 4 or newer.
This is an indicator of the provider’s lack of understanding regarding the PHP
language and community and therefore you should avoid such a provider.
Only providers allowing the standard . php extension should be considered.

. What restrictions are placed on PHP-enabled scripts? As you learned earlier

in this chapter, PHP’s behavior and capabilities can be controlled through the
php.ini file. Some of these configuration features were put into place for the
convenience of hosting providers, who may not always want to grant all of
PHP’s power to its users. Accordingly, some functions and extensions may be
disabled, which could ultimately affect what features you’ll be able to offer on
your Web site.

Additionally, some providers demand all PHP-enabled scripts are placed in a
designated directory, which can be tremendously inconvenient and of ques-
tionable advantage in terms of security considerations. Ideally, the provider
will allow you to place your PHP-enabled scripts wherever you please within
the designated account directory.

CHAPTER 2 CONFIGURING YOUR ENVIRONMENT

5. What restrictions are placed on using Apache .htaccess files? Some third-
party software, most notably Web frameworks (see Chapter 24), requires that a
feature known as URL rewriting be enabled in order to properly function;
however, not all hosting providers allow users to tweak Apache’s behavior through
special configuration files known as . htaccess files. Therefore, know what lim-
itations, if any, are placed on their use.

6. What PHP software do you offer by default, and do you support it? Most
hosting providers offer automated installers for installing popular third-party
software such as Joomla!, WordPress, and phpBB. Using these installers will save
you some time, and will help the hosting provider troubleshoot any problems
that might arise. However, be wary that some providers only offer this software
for reasons of convenience and will not offer technical assistance. Therefore, be
prepared to do your own homework should you have questions or encounter
problems using third-party software. Additionally, you should ask whether
the provider will install PEAR and PECL extensions upon request (see Chapter 11).

7. Does (insert favorite Web framework or technology here) work properly on your
servers? If you're planning on using a particular PHP-powered Web framework
(see Chapter 24 for more information about frameworks) or a specific technology
(e.g., a third-party e-commerce solution), you should take care to make sure this
software works properly on the hosting provider’s servers. If the hosting provider
can't offer a definitive answer, search various online forums using the technology
name and the hosting provider as keywords.

Summary

In this chapter you learned how to configure your environment to support the devel-
opment of PHP-driven Web applications. Special attention was given to PHP’s many
run-time configuration options. Finally, you were presented with a brief overview of
the most commonly used PHP editors and IDEs, in addition to some insight into what
to keep in mind when searching for a Web hosting provider.

In the next chapter, you'll begin your foray into the PHP language by creating your
first PHP-driven Web page and learning about the language’s fundamental features.
By its conclusion, you'll be able to create simplistic yet quite useful scripts. This mate-
rial sets the stage for subsequent chapters, where you’ll gain the knowledge required
to start building some really cool applications.

53

CHAPTER 3

PHP Basics

Y)u’re only two chapters into the book and already quite a bit of ground has been
covered. By now, you are familiar with PHP’s background and history and have delved
deep into the installation and configuration concepts and procedures. This material
sets the stage for what will form the crux of much of the remaining material in this
book: creating powerful PHP applications. This chapter initiates this discussion, intro-
ducing a great number of the language’s foundational features. Specifically, you'll learn
how to do the following:

e Embed PHP code into your Web pages

¢ Comment code using the various methodologies borrowed from the Unix shell
scripting, C, and C++ languages

¢ Qutput data to the browser using the echo(), print(), printf(), and sprintf()
statements

» Use PHP’s datatypes, variables, operators, and statements to create sophisti-
cated scripts

e Take advantage of key control structures and statements, including if-else-

elseif, while, foreach, include, require, break, continue, and declare

By the conclusion of this chapter, you’ll possess not only the knowledge necessary
to create basic but useful PHP applications, but also an understanding of what’s required
to make the most of the material covered in later chapters.

55

56

CHAPTER 3 PHP BASICS

Note This chapter simultaneously serves as both a tutorial for novice programmers and a reference
for experienced programmers who are new to the PHP language. If you fall into the former category,
consider reading the chapter in its entirety and following along with the examples.

Embedding PHP Code in Your Web Pages

One of PHP’s advantages is that you can embed PHP code directly alongside HTML.
For the code to do anything, the page must be passed to the PHP engine for interpreta-
tion. But the Web server doesn’t just pass every page; rather, it passes only those pages
identified by a specific file extension (typically .php) as configured per the instructions in
Chapter 2. But even selectively passing only certain pages to the engine would none-
theless be highly inefficient for the engine to consider every line as a potential PHP
command. Therefore, the engine needs some means to immediately determine which
areas of the page are PHP-enabled. This is logically accomplished by delimiting the PHP
code. There are four delimitation variants, all of which are introduced in this section.

Default Syntax

The default delimiter syntax opens with <?php and concludes with ?», like this:

<h3>Welcome!</h3>
<?php
echo "<p>Some dynamic output here</p>";
?>
<p>Some static output here</p>

If you save this code as test.php and execute it from a PHP-enabled Web server,
you’ll see the output shown in Figure 3-1.

CHAPTER 3 PHP BASICS 57

3 Mozilla Firefox B (= 5]

File Edit View Bookmarks Tools Help

Q] - |:> - @ @ I http:/flocalhost/3/test.php j © 6o I@v

Welcome!

Some dynamic output here

Some static output here

Figure 3-1. Sample PHP output

Short-Tags

For less motivated typists an even shorter delimiter syntax is available. Known as
short-tags, this syntax forgoes the php reference required in the default syntax. However,
to use this feature, you need to enable PHP’s short_open_tag directive. An example
follows:

<?
print "This is another PHP example.";
>

Caution Although short-tag delimiters are convenient, keep in mind that they clash with XML, and
thus XHTML, syntax. Therefore, for conformance reasons you shouldn’t use short-tag syntax.

58

CHAPTER 3 PHP BASICS

When short-tags syntax is enabled and you want to quickly escape to and from
PHP to output a bit of dynamic text, you can omit these statements using an output
variation known as short-circuit syntax:

<?="This is another PHP example.";?>
This is functionally equivalent to both of the following variations:

<? echo "This is another PHP example."; ?>
<?php echo "This is another PHP example.";?>

Script

Historically, certain editors, Microsoft’s FrontPage editor in particular, have had
problems dealing with escape syntax such as that employed by PHP. Therefore,
support for another mainstream delimiter variant, <script>, is offered:

<script language="php">
print "This is another PHP example.";
</script>

Tip Microsoft’s FrontPage editor also recognizes ASP-style delimiter syntax, introduced next.

ASP Style

Microsoft ASP pages employ a similar strategy, delimiting static from dynamic syntax by
using a predefined character pattern, opening dynamic syntax with <%, and concluding
with %>. If you're coming from an ASP background and prefer to continue using this
escape syntax, PHP supports it. Here’s an example:

<%

print "This is another PHP example.";
%>

Caution ASP-style syntax was removed as of PHP 6.

CHAPTER 3 PHP BASICS

Embedding Multiple Code Blocks

You can escape to and from PHP as many times as required within a given page. For
instance, the following example is perfectly acceptable:

<html>
<head>
<title><?php echo "Welcome to my Web site!";?></title>
</head>
<body>
<?php
$date = "July 26, 2007";
?>
<p>Today's date is <?=$date;?></p>
</body>
</html>

As you can see, any variables declared in a prior code block are “remembered” for
later blocks, as is the case with the $date variable in this example.

Commenting Your Code

Whether for your own benefit or for that of a programmer later tasked with main-
taining your code, the importance of thoroughly commenting your code cannot be
overstated. PHP offers several syntactical variations, each of which is introduced in
this section.

Single-Line C++ Syntax

Comments often require no more than a single line. Because of its brevity, there is no
need to delimit the comment’s conclusion because the newline (\n) character fills this
need quite nicely. PHP supports C++ single-line comment syntax, which is prefaced
with a double slash (//), like this:

<?php
// Title: My first PHP script
// Author: Jason
echo "This is a PHP program";
>

59

CHAPTER 3 PHP BASICS

Shell Syntax

PHP also supports an alternative to the C++-style single-line syntax, known as shell
syntax, which is prefaced with a hash mark (#). Revisiting the previous example, I'll
use hash marks to add some information about the script:

<?php

Title: My PHP program

Author: Jason

echo "This is a PHP program";
>

ADVANCED DOCUMENTATION WITH PHPDOCUMENTOR

Because documentation is such an important part of effective code creation and management,
considerable effort has been put into devising methods for helping developers automate the process. In
fact, these days documentation solutions are available for all mainstream programming languages,
PHP included. phpDocumentor (http: //www.phpdoc.org/) is an open source project that facilitates
the documentation process by converting the comments embedded within the source code into a
variety of easily readable formats, including HTML and PDF.

phpDocumentor works by parsing an application’s source code, searching for special comments
known as DocBlocks. Used to document all code within an application, including scripts, classes,
functions, variables, and more, DocBlocks contain human-readable explanations along with
formalized descriptors such as the author’s name, code version, copyright statement, function
return values, and much more.

Even if you’re a novice programmer, it's strongly suggested you become familiar with
advanced documentation solutions and get into the habit of using them for even basic applications.

Multiple-Line C Syntax

It’s often convenient to include somewhat more verbose functional descriptions or
other explanatory notes within code, which logically warrants numerous lines. Although
you could preface each line with C++ or shell-style delimiters, PHP also offers a
multiple-line variant that can open and close the comment on different lines. Here’s
an example:

http://www.phpdoc.org

CHAPTER 3 PHP BASICS

<?php
/*
Title: My PHP Program
Author: Jason
Date: July 26, 2007
*/

7>

Outputting Data to the Browser

Of course, even the simplest of Web sites will output data to the browser, and PHP
offers several methods for doing so.

Note Throughout this chapter, and indeed the rest of this book, when introducing functions I'll refer
to their prototype. A prototype is simply the function’s definition, formalizing its name, input parameters,
and the type of value it returns, defined by a datatype. If you don’t know what a datatype is, see the
section “PHP’s Supported Datatypes” later in this chapter.

The print() Statement

The print() statement outputs data passed to it to the browser. Its prototype looks
like this:

int print(argument)
All of the following are plausible print() statements:

<?php
print("<p>I love the summertime.</p>");
>

<?php

$season = "summertime";

print "<p>I love the $season.</p>";
7>

61

62

CHAPTER 3 PHP BASICS

<?php
print "<p>I love the
summertime.</p>";

>

All these statements produce identical output:

I love the summertime.

Note Although the official syntax calls for the use of parentheses to enclose the argument, they’re
not required. Many programmers tend to forgo them simply because the target argument is equally
apparent without them.

Alternatively, you could use the echo() statement for the same purposes as print().
While there are technical differences between echo() and print (), they’'ll be irrelevant
to most readers and therefore aren’t discussed here. echo()’s prototype looks like this:

void echo(string argumentl [, ...string argumentN])

Asyou can see from the prototype, echo() is capable of outputting multiple strings.
The utility of this particular trait is questionable; using it seems to be a matter of pref-
erence more than anything else. Nonetheless, it’s available should you feel the need.
Here’s an example:

<?php
$heavyweight = "Lennox Lewis";
$lightweight = "Floyd Mayweather";

echo $heavyweight, " and ", $lightweight, " are great fighters.";

2>

This code produces the following:

Lennox Lewis and Floyd Mayweather are great fighters.

CHAPTER 3 PHP BASICS

If your intent is to output a blend of static text and dynamic information passed
through variables, consider using printf() instead, which is introduced next. Other-
wise, if you'd like to simply output static text, echo() or print() works great.

Tip Which is faster, echo() or print()? The fact that they are functionally interchangeable leaves
many pondering this question. The answer is that the echo() function is a tad faster because it returns
nothing, whereas print() will return 1 if the statement is successfully output. It's rather unlikely that you'll
notice any speed difference, however, so you can consider the usage decision to be one of stylistic concern.

The printf() Statement

The printf() statement is ideal when you want to output a blend of static text and
dynamic information stored within one or several variables. It’s ideal for two reasons.
First, it neatly separates the static and dynamic data into two distinct sections, allowing
for easy maintenance. Second, printf() allows you to wield considerable control over
how the dynamic information is rendered to the screen in terms of its type, precision,
alignment, and position. Its prototype looks like this:

boolean printf(string format [, mixed args])

For example, suppose you wanted to insert a single dynamic integer value into an
otherwise static string:

printf("Bar inventory: %d bottles of tonic water.", 100);

Executing this command produces the following:

Bar inventory: 100 bottles of tonic water.

In this example, %d is a placeholder known as a type specifier, and the d indicates an
integer value will be placed in that position. When the printf() statement executes,
the lone argument, 100, will be inserted into the placeholder. Remember that an integer
is expected, so if you pass along a number including a decimal value (known as a floa?),
it will be rounded down to the closest integer. If you pass along 100.2 or 100. 6, 100 will

63

64

CHAPTER 3 PHP BASICS

be output. Pass along a string value such as "one hundred", and 0 will be output. Similar
logic applies to other type specifiers (see Table 3-1 for a list of commonly used specifiers).

Table 3-1. Commonly Used Type Specifiers

Type Description

%b Argument considered an integer; presented as a binary number

%c Argument considered an integer; presented as a character corresponding to that
ASCII value

%d Argument considered an integer; presented as a signed decimal number

yas Argument considered a floating-point number; presented as a floating-point number

%0 Argument considered an integer; presented as an octal number

%S Argument considered a string; presented as a string

%u Argument considered an integer; presented as an unsigned decimal number

%X Argument considered an integer; presented as a lowercase hexadecimal number

%X Argument considered an integer; presented as an uppercase hexadecimal number

So what do you do if you want to pass along two values? Just insert two specifiers
into the string and make sure you pass two values along as arguments. For example, the
following printf() statement passes in an integer and float value:

printf("%d bottles of tonic water cost $%f", 100, 43.20);

Executing this command produces the following:

100 bottles of tonic water cost $43.20

When working with decimal values, you can adjust the precision using a precision
specifier. An example follows:

printf("$%.2f", 43.2); // $43.20

Still other specifiers exist for tweaking the argument’s alignment, padding, sign,
and width. Consult the PHP manual for more information.

CHAPTER 3 PHP BASICS

The sprintf() Statement

The sprintf() statement is functionally identical to printf() except that the output is
assigned to a string rather than rendered to the browser. The prototype follows:

string sprintf(string format [, mixed arguments])
An example follows:

$cost = sprintf("$%.2f", 43.2); // $cost = $43.20

PHP’s Supported Datatypes

A datatypeis the generic name assigned to any data sharing a common set of character-
istics. Common datatypes include Boolean, integer, float, string, and array. PHP has
long offered a rich set of datatypes, and in this section you’ll learn about them.

Scalar Datatypes

Scalar datatypes are capable of containing a single item of information. Several
datatypes fall under this category, including Boolean, integer, float, and string.

Boolean

The Boolean datatype is named after George Boole (1815-1864), a mathematician
who is considered to be one of the founding fathers of information theory. A Boolean
variable represents truth, supporting only two values: TRUE and FALSE (case insensitive).
Alternatively, you can use zero to represent FALSE, and any nonzero value to represent
TRUE. A few examples follow:

$alive = false; // $alive is false.
$alive = 1; // $alive is true.
$alive = -1; // $alive is true.
$alive = 5; // %$alive is true.
$alive = 0; // $alive is false.
Integer

An integeris representative of any whole number or, in other words, a number that
does not contain fractional parts. PHP supports integer values represented in base 10
(decimal), base 8 (octal), and base 16 (hexadecimal) numbering systems, although

65

66

CHAPTER 3 PHP BASICS

it’s likely you’ll only be concerned with the first of those systems. Several examples

follow:

42 // decimal
-678900 // decimal
0755 // octal

0xC4E // hexadecimal

The maximum supported integer size is platform-dependent, although this is typi-
cally positive or negative 231 for PHP version 5 and earlier. PHP 6 introduced a 64-bit
integer value, meaning PHP will support integer values up to positive or negative 263
in size.

Float

Floating-point numbers, also referred to as floats, doubles, or real numbers, allow you
to specify numbers that contain fractional parts. Floats are used to represent monetary
values, weights, distances, and a whole host of other representations in which a simple
integer value won't suffice. PHP’s floats can be specified in a variety of ways, each of
which is exemplified here:

4.5678
4.0
8.7e4
1.23E+11

String

Simply put, a stringis a sequence of characters treated as a contiguous group. Strings

are delimited by single or double quotes, although PHP also supports another delim-

itation methodology, which is introduced in the later section “String Interpolation.”
The following are all examples of valid strings:

"PHP is a great language"
"whoop-de-do"
"*9subway\n'

"123$%"789"

Historically, PHP treated strings in the same fashion as arrays (see the next section,
“Compound Datatypes,” for more information about arrays), allowing for specific char-
acters to be accessed via array offset notation. For example, consider the following string:

CHAPTER 3 PHP BASICS

$color = "maroon";

You could retrieve a particular character of the string by treating the string as an
array, like this:

$parser = $color[2]; // Assigns 'r' to $parser

Compound Datatypes

Compound datatypes allow for multiple items of the same type to be aggregated
under a single representative entity. The array and the object fall into this category.

Array

It’s often useful to aggregate a series of similar items together, arranging and refer-
encing them in some specific way. This data structure, known as an array, is formally
defined as an indexed collection of data values. Each member of the array index (also
known as the key) references a corresponding value and can be a simple numerical
reference to the value’s position in the series, or it could have some direct correlation
to the value. For example, if you were interested in creating a list of U.S. states, you could
use a numerically indexed array, like so:

$state[0] = "Alabama";
$state[1] = "Alaska";
$state[2] = "Arizona";

$state[49] = "Wyoming";

But what if the project required correlating U.S. states to their capitals? Rather
than base the keys on a numerical index, you might instead use an associative index,
like this:

$state["Alabama"] = "Montgomery";
$state["Alaska"] = "Juneau";
$state["Arizona"] = "Phoenix";

$state["Wyoming"] = "Cheyenne";

Arrays are formally introduced in Chapter 5, so don’t worry too much about the
matter if you don’t completely understand these concepts right now.

67

68

CHAPTER 3 PHP BASICS

Note PHP also supports arrays consisting of several dimensions, better known as muiltidimensional
arrays. This concept is introduced in Chapter 5.

Object

The other compound datatype supported by PHP is the object. The object is a central
concept of the object-oriented programming paradigm. If you're new to object-
oriented programming, Chapters 6 and 7 are devoted to the topic.

Unlike the other datatypes contained in the PHP language, an object must be explic-
itly declared. This declaration of an object’s characteristics and behavior takes place
within something called a class. Here’s a general example of a class definition and
subsequent invocation:

class Appliance {
private $ power;
function setPower($status) {
$this-> power = $status;

}

$blender = new Appliance;

A class definition creates several attributes and functions pertinent to a data struc-
ture, in this case a data structure named Appliance. There is only one attribute, power,
which can be modified by using the method setPower().

Remember, however, that a class definition is a template and cannot itself be manip-
ulated. Instead, objects are created based on this template. This is accomplished via the
new keyword. Therefore, in the last line of the previous listing, an object of class Appliance
named blender is created.

The blender object’s power attribute can then be set by making use of the method

setPower():
$blender->setPower("on");

Improvements to PHP’s object-oriented development model are a highlight of
PHP 5 and are further enhanced in PHP 6. Chapters 6 and 7 are devoted to thorough
coverage of PHP’s object-oriented development model.

CHAPTER 3 PHP BASICS 69

Converting Between Datatypes Using Type Casting

Converting values from one datatype to another is known as type casting. A variable can
be evaluated once as a different type by casting it to another. This is accomplished by
placing the intended type in front of the variable to be cast. A type can be cast by inserting
one of the operators shown in Table 3-2 in front of the variable.

Table 3-2. Type Casting Operators

Cast Operators Conversion

(array) Array

(bool) or (boolean) Boolean

(int) or (integer) Integer

(int64) 64-bit integer (introduced in PHP 6)
(object) Object

(real) or (double) or (float) Float

(string) String

Let’s consider several examples. Suppose you’d like to cast an integer as a double:
$score = (double) 13; // $score = 13.0

Type casting a double to an integer will result in the integer value being rounded
down, regardless of the decimal value. Here’s an example:

$score = (int) 14.8; // $score = 14
What happens if you cast a string datatype to that of an integer? Let’s find out:

$sentence = "This is a sentence";
echo (int) $sentence; // returns 0

In light of PHP’s loosely typed design, it will simply return the integer value unmodi-
fied. However, as you'll see in the next section, PHP will sometimes take the initiative
and cast a type to best fit the requirements of a given situation.

You can also cast a datatype to be a member of an array. The value being cast
simply becomes the first element of the array:

70

CHAPTER 3 PHP BASICS

$score = 1114;
$scoreboard = (array) $score;
echo $scoreboard[0]; // Outputs 1114

Note that this shouldn’t be considered standard practice for adding items to an array
because this only seems to work for the very first member of a newly created array. If it
is cast against an existing array, that array will be wiped out, leaving only the newly cast
value in the first position. See Chapter 5 for more information about creating arrays.

One final example: any datatype can be cast as an object. The result is that the
variable becomes an attribute of the object, the attribute having the name scalar:

$model = "Toyota";
$obj = (object) $model;

The value can then be referenced as follows:

print $ obj->scalar; // returns "Toyota"

Adapting Datatypes with Type Juggling

Because of PHP’s lax attitude toward type definitions, variables are sometimes auto-
matically cast to best fit the circumstances in which they are referenced. Consider the
following snippet:

<?php

$total = 5; // an integer

$count = "15"; // a string

$total += $count; // $total = 20 (an integer)
?>

The outcome is the expected one; $total is assigned 20, converting the $count variable
from a string to an integer in the process. Here’s another example demonstrating
PHP’s type-juggling capabilities:

<?php

$total = "45 fire engines";

$incoming = 10;

$total = $incoming + $total; // $total = 55
?>

CHAPTER 3 PHP BASICS

The integer value at the beginning of the original $total string is used in the
calculation. However, if it begins with anything other than a numerical representa-
tion, the value is 0. Consider another example:

<?php

$total = "1.0";

if ($total) echo "We're in positive territory!";
?>

In this example, a string is converted to Boolean type in order to evaluate the if
statement.

Consider one last particularly interesting example. If a string used in amathematical
calculation includes ., e, or E (representing scientific notation), it will be evaluated as a
float:

<?php
$vall = "1.2e3"; // 1,200
$val2 = 2;

echo $val1l * $val2; // outputs 2400
>

Type-Related Functions

A few functions are available for both verifying and converting datatypes; they are
covered in this section.

Retrieving Types

The gettype() function returns the type of the variable specified by var. In total, eight
possible return values are available: array, boolean, double, integer, object, resource,
string, and unknown type. Its prototype follows:

string gettype (mixed var)

Converting Types

The settype() function converts a variable, specified by var, to the type specified by
type. Seven possible type values are available: array, boolean, float, integer, null,
object, and string. If the conversion is successful, TRUE is returned; otherwise, FALSE is
returned. Its prototype follows:

boolean settype(mixed var, string type)

n

72

CHAPTER 3 PHP BASICS

Type Identifier Functions

A number of functions are available for determining a variable’s type, including
is_array(),is bool(), is_float(),is_integer(), is_null(), is numeric(), is_object(),
is resource(),is_scalar(),and is_string().Because all of these functions follow the
same naming convention, arguments, and return values, their introduction is consol-
idated into a single example. The generalized prototype follows:

boolean is name(mixed var)

All of these functions are grouped in this section because each ultimately accom-
plishes the same task. Each determines whether a variable, specified by var, satisfies
a particular condition specified by the function name. If var is indeed of the type tested
by the function name, TRUE is returned; otherwise, FALSE is returned. An example
follows:

<?php
$item = 43;
printf("The variable \$item is of type array: %d
", is array($item));
printf("The variable \$item is of type integer: %d
",
is_integer($item));
printf("The variable \$item is numeric: %d
", is numeric($item));
?>

This code returns the following:

The variable $item is of type array: 0
The variable $item is of type integer: 1
The variable $item is numeric: 1

You might be wondering about the backslash preceding $item. Given the dollar
sign’s special purpose of identifying a variable, there must be a way to tell the inter-
preter to treat it as a normal character should you want to output it to the screen.
Delimiting the dollar sign with a backslash will accomplish this.

CHAPTER 3 PHP BASICS

Identifiers

Identifieris a general term applied to variables, functions, and various other user-
defined objects. There are several properties that PHP identifiers must abide by:

¢ Anidentifier can consist of one or more characters and must begin with a letter
or an underscore. Furthermore, identifiers can consist of only letters, numbers,
underscore characters, and other ASCII characters from 127 through 255.
Table 3-3 shows a few examples of valid and invalid identifiers.

Table 3-3. Valid and Invalid Identifiers

Valid Invalid
my_function This&that
Size Icounter
_someword 4ward

 Identifiers are case sensitive. Therefore, a variable named $recipe is different
from a variable named $Recipe, $rEciPe, or $recipE.

e Identifiers can be any length. This is advantageous because it enables a
programmer to accurately describe the identifier’s purpose via the identifier name.

* Anidentifier name can’t be identical to any of PHP’s predefined keywords. You
can find a complete list of these keywords in the PHP manual appendix.

Variables

Although variables have been used in numerous examples in this chapter, the concept
has yet to be formally introduced. This section does so, starting with a definition.
Simply put, a variableis a symbol that can store different values at different times. For
example, suppose you create a Web-based calculator capable of performing mathe-
matical tasks. Of course, the user will want to plug in values of his choosing; therefore,
the program must be able to dynamically store those values and perform calculations
accordingly. At the same time, the programmer requires a user-friendly means for
referring to these value-holders within the application. The variable accomplishes
both tasks.

73

74

CHAPTER 3 PHP BASICS

Given the importance of this programming concept, it would be wise to explicitly
lay the groundwork as to how variables are declared and manipulated. In this section,
these rules are examined in detail.

Note Avariable is a named memory location that contains data and may be manipulated throughout
the execution of the program.

Variable Declaration

A variable always begins with a dollar sign, $, which is then followed by the variable
name. Variable names follow the same naming rules as identifiers. That is, a variable
name can begin with either a letter or an underscore and can consist of letters, under-
scores, numbers, or other ASCII characters ranging from 127 through 255. The following
are all valid variables:

* $color

* $operating system
* $ some variable
* $model

Note that variables are case sensitive. For instance, the following variables bear
absolutely no relation to one another:

e $color
e $Color
e $COLOR

Interestingly, variables do not have to be explicitly declared in PHP as they do in
Perl. Rather, variables can be declared and assigned values simultaneously. Nonetheless,
just because you can do something doesn’t mean you should. Good programming
practice dictates that all variables should be declared prior to use, preferably with an
accompanying comment.

CHAPTER 3 PHP BASICS

Once you've declared your variables, you can begin assigning values to them. Two
methodologies are available for variable assignment: by value and by reference. Both
are introduced next.

Value Assignment

Assignment by value simply involves copying the value of the assigned expression to
the variable assignee. This is the most common type of assignment. A few examples
follow:

$color = "red";

$number = 12;

$age = 12;

$sum = 12 + "15"; // $sum = 27

Keep in mind that each of these variables possesses a copy of the expression assigned
to it. For example, $number and $age each possesses their own unique copy of the value 12.
If you prefer that two variables point to the same copy of a value, you need to assign by
reference, introduced next.

Reference Assignment

PHP 4 introduced the ability to assign variables by reference, which essentially means
that you can create a variable that refers to the same content as another variable does.
Therefore, a change to any variable referencing a particular item of variable content
will be reflected among all other variables referencing that same content. You can
assign variables by reference by appending an ampersand (8) to the equal sign. Let’s
consider an example:

<?php
$valuel = "Hello";
$value2 =& $valuel; // $valuel and $value2 both equal "Hello"
$value2 = "Goodbye"; // $valuel and $value2 both equal "Goodbye"
?>

An alternative reference-assignment syntax is also supported, which involves
appending the ampersand to the front of the variable being referenced. The following
example adheres to this new syntax:

75

76

CHAPTER 3 PHP BASICS

<?php
$value1l = "Hello";
$value2 = &$valuel; // $valuel and $value2 both equal "Hello"
$value2 = "Goodbye"; // $valuel and $value2 both equal "Goodbye"
7>

References also play an important role in both function arguments and return
values, as well as in object-oriented programming. Chapters 4 and 6 cover these
features, respectively.

Variable Scope

However you declare your variables (by value or by reference), you can declare them
anywhere in a PHP script. The location of the declaration greatly influences the realm
in which a variable can be accessed, however. This accessibility domain is known as
its scope.

PHP variables can be one of four scope types:

¢ Local variables
e Function parameters
¢ Global variables

¢ Static variables

Local Variables

A variable declared in a function is considered local. That is, it can be referenced only in
that function. Any assignment outside of that function will be considered to be an
entirely different variable from the one contained in the function. Note that when
you exit the function in which a local variable has been declared, that variable and its
corresponding value are destroyed.

Local variables are helpful because they eliminate the possibility of unexpected
side effects, which can result from globally accessible variables that are modified,
intentionally or not. Consider this listing:

CHAPTER 3 PHP BASICS

$x = 4;
function assignx () {
$x = 0;
printf("\$x inside function is %d
", $x);
}
assignx();

printf("\$x outside of function is %d
", $x);

Executing this listing results in the following:

$x inside function is 0
$x outside of function is 4

As you can see, two different values for $x are output. This is because the $x located
inside the assignx() function is local. Modifying the value of the local $x has no bearing
on any values located outside of the function. On the same note, modifying the $x

located outside of the function has no bearing on any variables contained in assignx().

Function Parameters

As in many other programming languages, in PHP, any function that accepts arguments
must declare those arguments in the function header. Although those arguments
accept values that come from outside of the function, they are no longer accessible
once the function has exited.

Note This section applies only to parameters passed by value and not to those passed by reference.
Parameters passed by reference will indeed be affected by any changes made to the parameter from
within the function. If you don’t know what this means, don’t worry about it because Chapter 4 addresses the
topic in some detail.

Function parameters are declared after the function name and inside parentheses.
They are declared much like a typical variable would be:

77

78

CHAPTER 3 PHP BASICS

// multiply a value by 10 and return it to the caller
function x10 ($value) {

$value = $value * 10;

return $value;

Keep in mind that although you can access and manipulate any function parameter in
the function in which it is declared, it is destroyed when the function execution ends.
You'll learn more about functions in Chapter 4.

Global Variables

In contrast to local variables, a globalvariable can be accessed in any part of the program.
To modify a global variable, however, it must be explicitly declared to be global in the
function in which it is to be modified. This is accomplished, conveniently enough, by
placing the keyword GLOBAL in front of the variable that should be recognized as global.
Placing this keyword in front of an already existing variable tells PHP to use the variable
having that name. Consider an example:

$somevar = 15;

function addit() {
GLOBAL $somevar;

$somevar++;
echo "Somevar is $somevar";
addit();

The displayed value of $somevar would be 16. However, if you were to omit this line,
GLOBAL $somevar;

the variable $somevar would be assigned the value 1 because $somevar would then be
considered local within the addit() function. This local declaration would be implic-
itly set to 0 and then incremented by 1 to display the value 1.

An alternative method for declaring a variable to be global is to use PHP’s $GLOBALS
array. Reconsidering the preceding example, you can use this array to declare the
variable $somevar to be global:

CHAPTER 3 PHP BASICS 79

$somevar = 15;

function addit() {
$GLOBALS["somevar" J++;

addit();
echo "Somevar is ".$GLOBALS["somevar"];

This returns the following:

Somevar is 16

Regardless of the method you choose to convert a variable to global scope, be
aware that the global scope has long been a cause of grief among programmers due
to unexpected results that may arise from its careless use. Therefore, although global
variables can be extremely useful, be prudent when using them.

Static Variables

The final type of variable scoping to discuss is known as static. In contrast to the vari-
ables declared as function parameters, which are destroyed on the function’s exit, a
static variable does not lose its value when the function exits and will still hold that
value if the function is called again. You can declare a variable as static simply by
placing the keyword STATIC in front of the variable name:

STATIC $somevar;

Consider an example:

function keep track() {
STATIC $count = 0;
$count++;
echo $count;
echo "
";

keep_track();
keep_track();
keep_track();

80

CHAPTER 3 PHP BASICS

What would you expect the outcome of this script to be? If the variable $count was
not designated to be static (thus making $count a local variable), the outcome would
be as follows:

However, because $count is static, it retains its previous value each time the function
is executed. Therefore, the outcome is the following:

Static scoping is particularly useful for recursive functions. Recursive functions are
a powerful programming concept in which a function repeatedly calls itself until a
particular condition is met. Recursive functions are covered in detail in Chapter 4.

PHP’s Superglobal Variables

PHP offers a number of useful predefined variables that are accessible from anywhere
within the executing script and provide you with a substantial amount of environ-
ment-specific information. You can sift through these variables to retrieve details
about the current user session, the user’s operating environment, the local operating
environment, and more. PHP creates some of the variables, while the availability and
value of many of the other variables are specific to the operating system and Web
server. Therefore, rather than attempt to assemble a comprehensive list of all
possible predefined variables and their possible values, the following code will
output all predefined variables pertinent to any given Web server and the script’s
execution environment:

foreach ($_SERVER as $var => $value) {
echo "$var => $value
";

CHAPTER 3 PHP BASICS

This returns a list of variables similar to the following. Take a moment to peruse
the listing produced by this code as executed on a Windows server. You'll see some of
these variables again in the examples that follow:

HTTP_HOST => localhost:81

HTTP_USER_AGENT => Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US;
1v:1.8.0.10) Gecko/20070216 Firefox/1.5.0.10

HTTP_ACCEPT =>
text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;
g=0.8,1image/png,*/*;q=0.5

HTTP_ACCEPT_LANGUAGE => en-us,en;q=0.5

HTTP_ACCEPT ENCODING => gzip,deflate

HTTP_ACCEPT_CHARSET => IS0-8859-1,utf-8;9=0.7,*;9=0.7

HTTP_KEEP_ALIVE => 300

HTTP_CONNECTION => keep-alive

PATH =>
C:\oraclexe\app\oracle\product\10.2.0\server\bin;c:\ruby\bin;C:\Windows\system32
5

C:\Windows;C:\Windows\System32\Wbem;C:\Program
Files\QuickTime\QTSystem\;c:\php52\;c:\Python24

SystemRoot => C:\Windows

COMSPEC => C:\Windows\system32\cmd.exe

PATHEXT => .COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE; .WSF; .WSH; .MSC; .RB; .RBW
WINDIR => C:\Windows

SERVER_SIGNATURE =>

Apache/2.0.59 (Win32) PHP/6.0.0-dev Server at localhost Port 81

SERVER_SOFTWARE => Apache/2.0.59 (Win32) PHP/6.0.0-dev
SERVER_NAME => localhost

SERVER_ADDR => 127.0.0.1

SERVER_PORT => 81

REMOTE_ADDR => 127.0.0.1

DOCUMENT ROOT => C:/apache2/htdocs

SERVER_ADMIN => wj@wjgilmore.com

SCRIPT FILENAME => C:/apache2/htdocs/books/php-oracle/3/server.php
REMOTE_PORT => 49638

GATEWAY INTERFACE => CGI/1.1

SERVER_PROTOCOL => HTTP/1.1

REQUEST METHOD => GET

QUERY_STRING =>

81

mailto:wj@wjgilmore.com

82

CHAPTER 3 PHP BASICS

REQUEST URI => /books/php-oracle/3/server.php
SCRIPT NAME => /books/php-oracle/3/server.php
PHP_SELF => /books/php-oracle/3/server.php
REQUEST TIME => 1174440456

Asyou can see, quite a bit of information is available—some useful, some not so
useful. You can display just one of these variables simply by treating it as a regular
variable. For example, use this to display the user’s IP address:

printf("Your IP address is: %s", $ SERVER['REMOTE ADDR']);

This returns a numerical IP address, such as 192.0.34.166.
You can also gain information regarding the user’s browser and operating system.
Consider the following one-liner:

printf("Your browser is: %s", $ SERVER['HTTP_USER AGENT']);

This returns information similar to the following:

Your browser is: Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US;
1v:1.8.0.10)Gecko/20070216 Firefox/1.5.0.10

This example illustrates only one of PHP’s nine predefined variable arrays. The rest
of this section is devoted to introducing the purpose and contents of each.

Note To use the predefined variable arrays, the configuration parameter track_vars must be
enabled in the php.ini file. As of PHP 4.03, track vars is always enabled.

Learning More About the Server and Client

The $_SERVER superglobal contains information created by the Web server and offers
a bevy of information regarding the server and client configuration and the current
request environment. Although the value and number of variables found in $§ SERVER
varies by server, you can typically expect to find those defined in the CGI 1.1 specifica-
tion (available at the National Center for Supercomputing Applications at http://
hoohoo.ncsa.uiuc.edu/cgi/env.html). You'll likely find all of these variables to be quite
useful in your applications, some of which include the following:

http://hoohoo.ncsa.uiuc.edu/cgi/env.html
http://hoohoo.ncsa.uiuc.edu/cgi/env.html

CHAPTER 3 PHP BASICS

$ SERVER['HTTP_REFERER']: The URL of the page that referred the user to the
current location.

$ SERVER['REMOTE_ADDR']: The client’s IP address.

$ SERVER['REQUEST URI']: The path component of the URL. For example, if the
URL is http://www.example.com/blog/apache/index.html, the URIis /blog/apache/
index.html.

$ SERVER['HTTP_USER_AGENT']: The client’s user agent, which typically offers infor-
mation about both the operating system and the browser.

Retrieving Variables Passed Using GET

The $_GET superglobal contains information pertinent to any parameters passed using
the GET method. If the URL http://www.example.com/index.html?cat=apachedid=157is
requested, you could access the following variables by using the $_GET superglobal:

$ GET['cat'] = "apache"
$ GET['id'] = "157"

The $_GET superglobal by default is the only way that you can access variables
passed via the GET method. You cannot reference GET variables like this: $cat, $id. See
Chapter 21 for more about safely accessing external data.

Retrieving Variables Passed Using POST

The $_POST superglobal contains information pertinent to any parameters passed using
the POST method. Consider the following form, used to solicit subscriber information:

<form action="subscribe.php" method="post">
<p>
Email address:

<input type="text" name="email" size="20" maxlength="50" value="" />
</p>
<p>
Password:

<input type="password" name="pswd" size="20" maxlength="15" value="" />
</p>
<p>
<input type="submit" name="subscribe" value="subscribe!" />
</p>
</form>

83

http://www.example.com/blog/apache/index.html
http://www.example.com/index.html?cat=apache&id=157

84

CHAPTER 3 PHP BASICS

The following POST variables will be made available via the target subscribe.php script:

$_POST['email'] = "jason@example.com";
$ POST['pswd'] = "rainyday";
$ _POST['subscribe'] = "subscribe!";

Like $_GET, the $_POST superglobal is by default the only way to access POST variables.
You cannot reference POST variables like this: $email, $pswd, and $subscribe.

Retrieving Information Stored Within Cookies

The $_COOKIE superglobal stores information passed into the script through HTTP
cookies. Such cookies are typically set by a previously executed PHP script through
the PHP function setcookie(). For example, suppose that you use setcookie() to store
a cookie named example.com with the value ab2213. You could later retrieve that value
by calling $ COOKIE["example.com"]. Chapter 18 introduces PHP’s cookie-handling
capabilities.

Retrieving Information About Files Uploaded Using POST

The $_FILES superglobal contains information regarding data uploaded to the server
via the POST method. This superglobal is a tad different from the others in thatitis a
two-dimensional array containing five elements. The first subscript refers to the name
of the form’s file-upload form element; the second is one of five predefined subscripts
that describe a particular attribute of the uploaded file:

$ FILES['upload-name']['name']: The name ofthe file as uploaded from the client
to the server.

$ FILES['upload-name']['type']: The MIME type of the uploaded file. Whether
this variable is assigned depends on the browser capabilities.

$ FILES['upload-name']['size']: The byte size of the uploaded file.

$ FILES['upload-name']['tmp name']: Once uploaded, the file will be assigned a
temporary name before it is moved to its final location.

mailto:jason@example.com

CHAPTER 3 PHP BASICS

$ FILES['upload-name']['error']: An upload status code. Despite the name, this
variable will be populated even in the case of success. There are five possible values:

e UPLOAD_ERR_OK: The file was successfully uploaded.

e UPLOAD ERR_INI SIZE: The file size exceeds the maximum size imposed by the
upload max_filesize directive.

e UPLOAD ERR _FORM SIZE: The file size exceeds the maximum size imposed by an
optional MAX FILE SIZE hidden form-field parameter.

e UPLOAD ERR_PARTIAL: The file was only partially uploaded.

UPLOAD_ERR_NO_FILE: A file was not specified in the upload form prompt.

Chapter 15 is devoted to a complete introduction of PHP’s file-upload functionality.

Learning More About the Operating System Environment

The $_ENV superglobal offers information regarding the PHP parser’s underlying server
environment. Some of the variables found in this array include the following:

$ _ENV['HOSTNAME']: The server hostname

$ ENV['SHELL']: The system shell

Caution PHP supports two other superglobals, namely $GLOBALS and $ _REQUEST. The $_REQUEST
superglobal is a catch-all of sorts, recording variables passed to a script via the GET, POST, and Cookie
methods. The order of these variables doesn’t depend on the order in which they appear in the sending
script, but rather it depends on the order specified by the variables order configuration directive.
The $GLOBALS superglobal array can be thought of as the superglobal superset and contains a compre-
hensive listing of all variables found in the global scope. Although it may be tempting, you shouldn’t use
these superglobals as a convenient way to handle variables because it is insecure. See Chapter 21 for
an explanation.

85

86

CHAPTER 3 PHP BASICS

Retrieving Information Stored in Sessions

The $_SESSION superglobal contains information regarding all session variables. Regis-
tering session information allows you the convenience of referring to it throughout
your entire Web site, without the hassle of explicitly passing the data via GET or POST.
Chapter 18 is devoted to PHP’s formidable session-handling feature.

Variable Variables

On occasion, you may want to use a variable whose content can be treated dynami-
cally as a variable in itself. Consider this typical variable assignment:

$recipe = "spaghetti”;

Interestingly, you can treat the value spaghetti as a variable by placing a second
dollar sign in front of the original variable name and again assigning another value:

$$recipe = "& meatballs";

This in effect assigns & meatballs to a variable named spaghetti.
Therefore, the following two snippets of code produce the same result:

echo $recipe $spaghetti;
echo $recipe ${$recipe};

The result of both is the string spaghetti & meatballs.

Constants

A constantis a value that cannot be modified throughout the execution of a program.
Constants are particularly useful when working with values that definitely will not
require modification, such as pi (3.141592) or the number of feet in a mile (5,280).
Once a constant has been defined, it cannot be changed (or redefined) at any other
point of the program. Constants are defined using the define() function.

Defining a Constant
The define() function defines a constant by assigning a value to a name. Its prototype
follows:

boolean define(string name, mixed value [, bool case insensitive])

CHAPTER 3 PHP BASICS

Ifthe optional parameter case_insensitiveisincluded and assigned TRUE, subsequent
references to the constant will be case insensitive. Consider the following example in
which the mathematical constant PI is defined:

define("PI", 3.141592);
The constant is subsequently used in the following listing:

printf("The value of pi is %f", PI);
$pi2 = 2 * PI;
printf("Pi doubled equals %f", $pi2);

This code produces the following results:

The value of pi is 3.141592.
Pi doubled equals 6.283184.

There are several points to note regarding the previous listing. The first is that constant
references are not prefaced with a dollar sign. The second is that you can’t redefine or
undefine the constant once it has been defined (e.g., 2*PI); if you need to produce a
value based on the constant, the value must be stored in another variable. Finally,
constants are global; they can be referenced anywhere in your script.

Expressions

An expressionis a phrase representing a particular action in a program. All expressions
consist of at least one operand and one or more operators. A few examples follow:

$a = 5; // assign integer value 5 to the variable $a
$a = "5"; // assign string value "5" to the variable $a
$sum = 50 + $some_int; // assign sum of 50 + $some int to $sum
$wine = "Zinfandel"; // assign "Zinfandel" to the variable $wine
$inventory++; // increment the variable $inventory by 1
Operands

Operands are the inputs of an expression. You might already be familiar with the manip-
ulation and use of operands not only through everyday mathematical calculations, but
also through prior programming experience. Some examples of operands follow:

87

CHAPTER 3 PHP BASICS

$a++; // %$a is the operand
$sum = $vall + val2; // $sum, $vall and $val2 are operands

Operators

An operatoris a symbol that specifies a particular action in an expression. Many oper-
ators may be familiar to you. Regardless, you should remember that PHP’s automatic
type conversion will convert types based on the type of operator placed between the
two operands, which is not always the case in other programming languages.

The precedence and associativity of operators are significant characteristics of a
programming language. Both concepts are introduced in this section. Table 3-4
contains a complete listing of all operators, ordered from highest to lowest precedence.

Table 3-4. Operator Precedence, Associativity, and Purpose

Operator Associativity Purpose

new NA Object instantiation

() NA Expression subgrouping

[] Right Index enclosure

I~ 4t -- Right Boolean NOT, bitwise NOT, increment,
decrement

@ Right Error suppression

/ *% Left Division, multiplication, modulus

+ - . Left Addition, subtraction, concatenation

<< > Left Shift left, shift right (bitwise)

< <= > >= NA Less than, less than or equal to, greater than,
greater than or equal to

== l= === & NA Is equal to, is not equal to, is identical to, is
not equal to

&~ | Left Bitwise AND, bitwise XOR, bitwise OR

&& || Left Boolean AND, Boolean OR

?: Right Ternary operator

= 4= *= /= = %=8= Right Assignment operators

|= "= <<= >>=

AND XOR OR Left Boolean AND, Boolean XOR, Boolean OR

B Left Expression separation; example: $days =

array(1=>"Monday", 2=>"Tuesday")

CHAPTER 3 PHP BASICS

Operator Precedence

Operator precedenceis a characteristic of operators that determines the order in
which they evaluate the operands surrounding them. PHP follows the standard
precedence rules used in elementary school math class. Consider a few examples:

$total cost = $cost + $cost * 0.06;
This is the same as writing
$total cost = $cost + ($cost * 0.06);

because the multiplication operator has higher precedence than the addition operator.

Operator Associativity

The associativity characteristic of an operator specifies how operations of the same
precedence (i.e., having the same precedence value, as displayed in Table 3-3) are
evaluated as they are executed. Associativity can be performed in two directions, left to
right or right to left. Left-to-right associativity means that the various operations making
up the expression are evaluated from left to right. Consider the following example:

$value = 3 * 4 ¥ 5 * 7 * 2;
The preceding example is the same as the following:
$value = ((((3 * 4) * 5) *7) * 2);

This expression results in the value 840 because the multiplication (*) operator is
left-to-right associative.

In contrast, right-to-left associativity evaluates operators of the same precedence
from right to left:

$c = 5;
print $value = $a = $b = $c;

The preceding example is the same as the following:

$c = 5;
$value = ($a = ($b = $c));

When this expression is evaluated, variables $value, $a, $b, and $c will all contain
the value 5 because the assignment operator (=) has right-to-left associativity.

89

90

CHAPTER 3 PHP BASICS

Arithmetic Operators

The arithmetic operators, listed in Table 3-5, perform various mathematical opera-
tions and will probably be used frequently in many of your PHP programs.
Fortunately, they are easy to use.

Incidentally, PHP provides a vast assortment of predefined mathematical func-
tions capable of performing base conversions and calculating logarithms, square
roots, geometric values, and more. Check the manual for an updated list of these
functions.

Table 3-5. Arithmetic Operators

Example Label QOutcome

$a + $b Addition Sum of $a and $b

$a - $b Subtraction Difference of $a and $b

$a * $b Multiplication Product of $a and $b

$a / $b Division Quotient of $a and $b

$a % $b Modulus Remainder of $a divided by $b

Assignment Operators

The assignment operators assign a data value to a variable. The simplest form of
assignment operator just assigns some value, while others (known as shortcut assign-
ment operators) perform some other operation before making the assignment. Table
3-6 lists examples using this type of operator.

Table 3-6. Assignment Operators

Example Label Outcome

$a =5 Assignment $a equals 5

$a += 5 Addition-assignment $a equals $a plus 5

$a *= 5 Multiplication-assignment $a equals $a multiplied by 5
$a /=5 Division-assignment $a equals $a divided by 5

$a .= 5 Concatenation-assignment $a equals $a concatenated with 5

CHAPTER 3 PHP BASICS

String Operators

PHP’s string operators (see Table 3-7) provide a convenient way in which to concatenate
strings together. There are two such operators, including the concatenation operator (.)
and the concatenation assignment operator (.=) discussed in the previous section.

Note To concatenate means to combine two or more objects together to form one single entity.

Table 3-7. String Operators

Example Label QOutcome
$a = "abc"."def"; Concatenation $a is assigned the string abcdef
$a .= "ghijkl"; Concatenation-assignment $a equals its current value

concatenated with “ghijkl”

Here is an example involving string operators:

// $a contains the string value "Spaghetti & Meatballs";
$a = "Spaghetti" . "& Meatballs";

$a .= " are delicious.”
// $a contains the value "Spaghetti & Meatballs are delicious.”

The two concatenation operators are hardly the extent of PHP’s string-handling
capabilities. Read Chapter 9 for a complete accounting of this important feature.

Increment and Decrement Operators

The increment (++) and decrement (--) operators listed in Table 3-8 present a minor
convenience in terms of code clarity, providing shortened means by which you can
add 1 to or subtract 1 from the current value of a variable.

Table 3-8. Increment and Decrement Operators

Example Label QOutcome

++$a, $a++ Increment Increment $a by 1

--%$a, $a-- Decrement Decrement $a by 1

91

92

CHAPTER 3 PHP BASICS

These operators can be placed on either side of a variable, and the side on which
they are placed provides a slightly different effect. Consider the outcomes of the
following examples:

$inv = 15; // Assign integer value 15 to $inv.
$oldInv = $inv--; // Assign $oldInv the value of $inv, then decrement $inv.
$origInv = ++$inv; // Increment $inv, then assign the new $inv value to $origInv.

As you can see, the order in which the increment and decrement operators are used
has an important effect on the value of a variable. Prefixing the operand with one of
these operators is known as a preincrement and predecrement operation, while post-
fixing the operand is known as a postincrement and postdecrement operation.

Logical Operators

Much like the arithmetic operators, logical operators (see Table 3-9) will probably
play a major role in many of your PHP applications, providing a way to make deci-
sions based on the values of multiple variables. Logical operators make it possible to
direct the flow of a program and are used frequently with control structures, such as
the if conditional and the while and for loops.

Logical operators are also commonly used to provide details about the outcome of
other operations, particularly those that return a value:

file exists("filename.txt") OR echo "File does not exist!";

One of two outcomes will occur:
¢ The file filename.txt exists

* The sentence “File does not exist!” will be output

Table 3-9. Logical Operators

Example Label Outcome

$a 8& $b AND True if both $a and $b are true
$a AND $b AND True if both $a and $b are true
$a || $b OR True if either $a or $b is true
$a OR $b OR True if either $a or $b is true
1$a NOT True if $a is not true

NOT $a NOT True if $a is not true

$a XOR $b Exclusive OR True if only $a or only $b is true

CHAPTER 3 PHP BASICS

Equality Operators

Equality operators (see Table 3-10) are used to compare two values, testing for
equivalence.

Table 3-10. Equality Operators

Example Label QOutcome

$a == $b Is equal to True if $a and $b are equivalent

$a 1= %b Isnot equal to True if $a is not equal to $b

$a === $b Is identical to True if $a and $b are equivalent and $a and $b have

the same type

It is a common mistake for even experienced programmers to attempt to test for
equality using just one equal sign (e.g., $a = $b). Keep in mind that this will result in
the assignment of the contents of $b to $a and will not produce the expected results.

Comparison Operators

Comparison operators (see Table 3-11), like logical operators, provide a method to
direct program flow through an examination of the comparative values of two or
more variables.

Table 3-11. Comparison Operators

Example Label QOutcome

$a < $b Less than True if $a is less than $b

$a > $b Greater than True if $a is greater than $b

$a <= $b Less than or equal to gue if $a is less than or equal to

$a >= $b Greater than or equal to True if $a is greater than or
equal to $b

($a == 12) 2 5 : -1 Ternary If $a equals 12, return value is 5;

otherwise, return value is -1

Note that the comparison operators should be used only for comparing numerical
values. Although you may be tempted to compare strings with these operators, you
will most likely not arrive at the expected outcome if you do so. There is a substantial
set of predefined functions that compare string values, which are discussed in detail
in Chapter 9.

93

94

CHAPTER 3 PHP BASICS

Bitwise Operators

Bitwise operators examine and manipulate integer values on the level of individual
bits that make up the integer value (thus the name). To fully understand this concept,
you need at least an introductory knowledge of the binary representation of decimal
integers. Table 3-12 presents a few decimal integers and their corresponding binary
representations.

Table 3-12. Binary Representations

Decimal Integer Binary Representation

2 10

5 101

10 1010

12 1100

145 10010001

1,452,012 101100010011111101100

The bitwise operators listed in Table 3-13 are variations on some of the logical
operators but can result in drastically different outcomes.

Table 3-13. Bitwise Operators

Example Label QOutcome

$a & $b AND And together each bit contained in $a and $b

$a | $b OR Or together each bit contained in $a and $b

$a " $b XOR Exclusive-or together each bit contained in $a and $b
~ $b NOT Negate each bit in $b

$a << $b Shift left $a will receive the value of $b shifted left two bits

$a >> $b Shift right $a will receive the value of $b shifted right two bits

Ifyou are interested in learning more about binary encoding and bitwise operators
and why they are important, check out Randall Hyde’s massive online reference, “The
Art of Assembly Language Programming,” available at http://webster.cs.ucr.edu/.

http://webster.cs.ucr.edu

CHAPTER 3 PHP BASICS

String Interpolation

To offer developers the maximum flexibility when working with string values, PHP
offers a means for both literal and figurative interpretation. For example, consider the
following string:

The $animal jumped over the wall.\n

You might assume that $animal is a variable and that \n is a newline character, and
therefore both should be interpreted accordingly. However, what if you want to output
the string exactly as it is written, or perhaps you want the newline to be rendered but
want the variable to display in its literal form ($animal), or vice versa? All of these vari-
ations are possible in PHP, depending on how the strings are enclosed and whether
certain key characters are escaped through a predefined sequence. These topics are
the focus of this section.

Double Quotes

Strings enclosed in double quotes are the most commonly used in most PHP scripts
because they offer the most flexibility. This is because both variables and escape
sequences will be parsed accordingly. Consider the following example:

<?php

$sport = "boxing";

echo "Jason's favorite sport is $sport.";
?>

This example returns the following:

Jason's favorite sport is boxing.

Escape sequences are also parsed. Consider this example:

<?php
$output = "This is one line.\nAnd this is another line.";
echo $output;

?>

95

CHAPTER 3 PHP BASICS

This returns the following within the browser source:

This is one line.
And this is another line.

It's worth reiterating that this output is found in the browser source rather than in
the browser window. Newline characters of this fashion are ignored by the browser
window. However, if you view the source, you'll see that the output in fact appears on
two separate lines. The same idea holds true if the data were output to a text file.

In addition to the newline character, PHP recognizes a number of special escape
sequences, all of which are listed in Table 3-14.

Table 3-14. Recognized Escape Sequences

Sequence Description

\n Newline character

\1 Carriage return

\t Horizontal tab

\\ Backslash

\$ Dollar sign

\" Double quote
\[0-7]{1,3} Octal notation
\x[0-9A-Fa-f]{1,2} Hexadecimal notation
Single Quotes

Enclosing a string within single quotes is useful when the string should be interpreted
exactly as stated. This means that both variables and escape sequences will not be
interpreted when the string is parsed. For example, consider the following single-
quoted string:

print 'This string will $print exactly as it\'s \n declared.';

CHAPTER 3 PHP BASICS

This produces the following:

This string will $print exactly as it's \n declared.

Note that the single quote located in it's was escaped. Omitting the backslash
escape character will result in a syntax error, unless the magic_quotes_gpc configura-
tion directive is enabled. Consider another example:

print 'This is another string.\\';

This produces the following:

This is another string.\

In this example, the backslash appearing at the conclusion of the string has to be
escaped; otherwise, the PHP parser would understand that the trailing single quote
was to be escaped. However, if the backslash were to appear anywhere else within the
string, there would be no need to escape it.

Heredoc

Heredoc syntax offers a convenient means for outputting large amounts of text. Rather
than delimiting strings with double or single quotes, two identical identifiers are
employed. An example follows:

<?php

$website = "http://www.romatermini.it";

echo <<<EXCERPT

<p>Rome's central train station, known as Roma Termini,
was built in 1867. Because it had fallen into severe disrepair in the late 20th
century, the government knew that considerable resources were required to
rehabilitate the station prior to the 50-year <i>Giubileo</i>.</p>

EXCERPT;

>

97

http://www.romatermini.it

98 CHAPTER 3 PHP BASICS

Several points are worth noting regarding this example:

¢ The opening and closing identifiers, in the case of this example, EXCERPT, must be
identical. You can choose any identifier you please, but they must exactly match.
The only constraint is that the identifier must consist of solely alphanumeric char-
acters and underscores and must not begin with a digit or an underscore.

* The opening identifier must be preceded with three left-angle brackets, <<<.

e Heredoc syntax follows the same parsing rules as strings enclosed in double
quotes. That is, both variables and escape sequences are parsed. The only
difference is that double quotes do not need to be escaped.

* The closing identifier must begin at the very beginning of a line. It cannot be
preceded with spaces or any other extraneous character. This is a commonly
recurring point of confusion among users, so take special care to make sure
your heredoc string conforms to this annoying requirement. Furthermore, the
presence of any spaces following the opening or closing identifier will produce
a syntax error.

Heredoc syntax is particularly useful when you need to manipulate a substantial
amount of material but do not want to put up with the hassle of escaping quotes.

Control Structures

Control structures determine the flow of code within an application, defining execu-
tion characteristics such as whether and how many times a particular code statement
will execute, as well as when a code block will relinquish execution control. These
structures also offer a simple means to introduce entirely new sections of code (via
file-inclusion statements) into a currently executing script. In this section you’ll learn
about all such control structures available to the PHP language.

Conditional Statements

Conditional statements make it possible for your computer program to respond
accordingly to a wide variety of inputs, using logic to discern between various condi-
tions based on input value. This functionality is so basic to the creation of computer
software that it shouldn’t come as a surprise that a variety of conditional statements
are a staple of all mainstream programming languages, PHP included.

CHAPTER 3 PHP BASICS

The if Statement

The if statement is one of the most commonplace constructs of any mainstream
programming language, offering a convenient means for conditional code execution.
The following is the syntax:

if (expression) {
statement

As an example, suppose you want a congratulatory message displayed if the user
guesses a predetermined secret number:

<?php
$secretNumber = 453;
if ($_POST['guess'] == $secretNumber) {
echo "<p>Congratulations!</p>";

2>

The hopelessly lazy can forgo the use of brackets when the conditional body
consists of only a single statement. Here’s a revision of the previous example:

<?php

$secretNumber = 453;

if ($_POST['guess'] == $secretNumber) echo "<p>Congratulations!</p>";
2>

Note Alternative enclosure syntax is available for the if, while, for, foreach, and switch control
structures. This involves replacing the opening bracket with a colon (:) and replacing the closing bracket
with endif;, endwhile;, endfor;, endforeach;, and endswitch;, respectively. There has been
discussion regarding deprecating this syntax in a future release, although it is likely to remain valid for
the foreseeable future.

The else Statement

The problem with the previous example is that output is only offered for the user who
correctly guesses the secret number. All other users are left destitute, completely
snubbed for reasons presumably linked to their lack of psychic power. What if you
want to provide a tailored response no matter the outcome? To do so you would need

99

100

CHAPTER 3 PHP BASICS

a way to handle those not meeting the if conditional requirements, a function handily
offered by way of the else statement. Here’s a revision of the previous example, this
time offering a response in both cases:

<?php
$secretNumber = 453;
if ($_POST['guess'] == $secretNumber) {
echo "<p>Congratulations!!</p>";
} else {
echo "<p>Sorry!</p>";

2>

Like if, the else statement brackets can be skipped if only a single code statement
is enclosed.

The elseif Statement

The if-else combination works nicely in an “either-or” situation—that is, a situation
in which only two possible outcomes are available. But what if several outcomes are
possible? You would need a means for considering each possible outcome, which is
accomplished with the elseif statement. Let’s revise the secret-number example
again, this time offering a message if the user’s guess is relatively close (within ten)
of the secret number:

<?php

$secretNumber = 453;

$_POST['guess'] = 442;

if ($_POST['guess'] == $secretNumber) {
echo "<p>Congratulations!</p>";

} elseif (abs ($ _POST['guess'] - $secretNumber) < 10) {
echo "<p>You're getting closel</p>";

} else {
echo "<p>Sorry!</p>";

2>

Like all conditionals, elseif supports the elimination of bracketing when only a
single statement is enclosed.

CHAPTER 3 PHP BASICS

The switch Statement
You can think of the switch statement as a variant of the if-else combination, often
used when you need to compare a variable against a large number of values:

<?php
switch($category) {

case "news":
echo "<p>What's happening around the world</p>";
break;

case "weather":
echo "<p>Your weekl