

K13163_Book.indb 1 11/8/2011 8:06:12 PM

© 2012 by Taylor & Francis Group, LLC

K13163_Book.indb 3 11/8/2011 8:06:12 PM

© 2012 by Taylor & Francis Group, LLC

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy
of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related products does not consti-
tute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB®
software.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2012 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20111004

International Standard Book Number-13: 978-1-4398-6904-8 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to
publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials
or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material repro-
duced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any
form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming,
and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copy-
right.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400.
CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been
granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identifica-
tion and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

© 2012 by Taylor & Francis Group, LLC

http://www.copyright.com
http://www.taylorandfrancis.com
http://www.crcpress.com

To my family, who make it all worthwhile, and without whose support this
herculean effort would never have seen the light of day.

Tovi — An excellent wife, who can find? For her worth is far above jewels . . .
Many daughters have done virtuously, but thou excellest them all.

(Proverbs 31)

K13163_Book.indb 5 11/8/2011 8:06:13 PM

© 2012 by Taylor & Francis Group, LLC

vii

Contents at a Glance

Preface . xvii

1Chapter Introduction to Java in Matlab® . 1

2Chapter Using Non-GUI Java libraries in Matlab® . 55

3Chapter Rich GUI Using Java Swing . 79

4Chapter Uitools . 153

5Chapter built-In Matlab® Widgets and Java Classes . 241

6Chapter Customizing Matlab® Controls . 353

7Chapter the Java Frame . 435

8Chapter the Matlab® Desktop . 463

9Chapter Using Matlab® from within Java . 543

1Chapter 0 Putting It all together . 577

appendix a: What Is Java? . 621

appendix b: UDD . 627

appendix C: Open Questions . 639

Index . 641

K13163_Book.indb 7 11/8/2011 8:06:13 PM

© 2012 by Taylor & Francis Group, LLC

ix

Contents

Preface . xvii

1Chapter Introduction to Java in Matlab® . 1

1 .1 Creating Java Objects .3
1 .1 .1 the basics .3
1 .1 .2 accessing Java Objects .6
1 .1 .3 Memory Usage . 11

1 .2 Java Object Properties . 12
1 .3 Java Object Methods and actions . 14
1 .4 Java Events and Matlab Callbacks . 19

1 .5 Safe Java Programming in Matlab — a How-to Guide .24
1 .6 Compiling and Debugging User-Created Java Classes in Matlab 27
1 .7 Compatibility Issues . 35
1 .8 Java Versions in Matlab . 37

1 .8 .1 Pre-bundled JVM Versions . 37
1 .8 .2 Configuring Matlab to Use a Different JVM . 39

1 .9 Java.opts . 42
References .48

2Chapter Using Non-GUI Java libraries in Matlab® . 55

2 .1 Complex Data Structures . 56
2 .1 .1 Java Collections . 56
2 .1 .2 Collections Example: Hashtable . 59
2 .1 .3 Enumerators .60

2 .2 Database Connectivity . 61
2 .2 .1 Using Java Database Connectivity (JDbC) in Matlab . 62
2 .2 .2 Initializing the JDbC Driver . 63
2 .2 .3 Connecting to a Database .65
2 .2 .4 Sending SQl Requests .66
2 .2 .5 Handling SQl Result Sets . 67

2 .3 Miscellaneous Other Uses . 71
2 .4 a Short Pause for Reflection . 72
References .73

K13163_Book.indb 9 11/8/2011 8:06:13 PM

© 2012 by Taylor & Francis Group, LLC

x Contents

3Chapter Rich GUI Using Java Swing . 79

3 .1 adding Java Swing Components to Matlab Figures . .80
3 .1 .1 the javacomponent Function .80
3 .1 .2 the Swing Component library .86
3 .1 .3 Displaying Swing-Derived Components .90
3 .1 .4 UIComponent and JControl . 91

3 .2 Matlab’s Main thread and the Event Dispatch thread (EDt) . 91
3 .3 Customizing Java Components . .96

3 .3 .1 Component Properties and Methods .96
3 .3 .2 look-and-Feel . 102
3 .3 .3 HtMl Support . 106
3 .3 .4 Focus traversal . 110

3 .4 Component Callbacks . 111
3 .5 Using third-Party libraries in Matlab . 119

3 .5 .1 JFreeChart and Other Charting libraries . 119
3 .5 .2 JFreeReport and Other Reporting libraries . 122
3 .5 .3 JGraph and Other Visualization libraries . 125
3 .5 .4 ImageJ and Other Image-Processing libraries . 129
3 .5 .5 Swing Extension Class libraries . 129
3 .5 .6 a Note of Caution . 130

3 .6 System-tray Icons . 131
3 .7 Drag-and-Drop . 134

3 .7 .1 Data transfer Mechanism in Matlab . 134
3 .7 .2 a Sample Matlab application that Supports DND . 138

3 .8 adding Matlab Components to Java Swing Containers . 143
3 .9 alternatives to Swing . 145
References .147

4Chapter Uitools . 153

4 .1 Uitable . 155
4 .1 .1 Customizing Uitable . 158
4 .1 .2 table Callbacks . 166
4 .1 .3 Customizing Scrollbars, Column Widths, and Selection behavior 168
4 .1 .4 Data Sorting and Filtering . 170
4 .1 .5 JIDE Customizations . 173
4 .1 .6 Controlling table Structure (adding/Deleting Rows) . 174
4 .1 .7 Final Remarks . 176

4 .2 Uitree . 176
4 .2 .1 Customizing Uitree . 178
4 .2 .2 accessing tree Nodes . 181
4 .2 .3 Controlling tree Nodes . 183

K13163_Book.indb 10 11/8/2011 8:06:14 PM

© 2012 by Taylor & Francis Group, LLC

xiContents

4 .2 .4 Customizing tree Nodes . 185
4 .2 .5 FindJObj . 189

4 .3 Uitab . 190
4 .3 .1 Customizing tabs at the Java level . 192
4 .3 .2 tabdlg and Other alternatives . 196

4 .4 Uiundo . 197
4 .5 toolbars .202

4 .5 .1 Uitoolfactory .203
4 .5 .2 Other Undocumented toolbar Functions . .205
4 .5 .3 Customizing toolbars at the Java level .206
4 .5 .4 Uisplittool and Uitogglesplittool . 212
4 .5 .5 adding Undo/Redo toolbar buttons . 216

4 .6 Menus . 222
4 .6 .1 accessing Menu Items . 222
4 .6 .2 Customizing Menus via Uitools . .224
4 .6 .3 Customizing Menus via HtMl . .225
4 .6 .4 Customizing Menus via Java .226

4 .7 Status bar . 231
References .236

5Chapter built-In Matlab® Widgets and Java Classes . 241

5 .1 Internal Matlab Java Packages . 242
5 .1 .1 Inspecting Package Contents .242
5 .1 .2 Inspecting an Internal Matlab Class . 243
5 .1 .3 Standard Matlab Packages .246

5 .2 MWSwing Package . .250
5 .2 .1 Enhancements of Standard Java Swing Controls . .250
5 .2 .2 Entirely New Java Controls . 257
5 .2 .3 Other MWSwing Controls .266

5 .3 MWt Package .266
5 .4 MlWidgets Package .268

5 .4 .1 Color-Selection Components . 275
5 .4 .2 Plot-type Selection Components .284

5 .5 Widgets Package . .287
5 .5 .1 Widget Components . .287
5 .5 .2 Font-Selection Components .299
5 .5 .3 Dialogs .303
5 .5 .4 Closable (Collapsible) Panels .306
5 .5 .5 Specialized Widgets . .308

5 .6 MlServices Package . 310
5 .7 JIDE . 318

5 .7 .1 Important JIDE Classes . 319

K13163_Book.indb 11 11/8/2011 8:06:14 PM

© 2012 by Taylor & Francis Group, LLC

xii Contents

5 .7 .2 JIDE Grids . 322
5 .7 .3 Matlab’s PropertyInspector . 326
5 .7 .4 JIDE’s Propertytable . 328
5 .7 .5 Nonstandard Property Renderers and Editors . 331
5 .7 .6 Nested Properties . 334
5 .7 .7 trapping Property Change Events . 334
5 .7 .8 Date-Selection Components . 336

5 .8 Miscellaneous Other Internal Classes . 339
5 .8 .1 logging Utilities . 341
5 .8 .2 JGoodies . .344
5 .8 .3 additional Others . .344

References .346

6Chapter Customizing Matlab® Controls . 353

6 .1 Pushbutton . 357
6 .2 togglebutton . 365
6 .3 Radiobutton . 365
6 .4 Checkbox . 367
6 .5 Editbox . 370

6 .5 .1 Single-line Editbox . 371
6 .5 .2 Multi-line Editbox . 377
6 .5 .3 the JEditorPane alternative . 389

6 .6 listbox .390
6 .6 .1 the listbox Data Model . 398
6 .6 .2 Customizing the appearance of listbox Items . 399
6 .6 .3 Dynamic (Item-Specific) Context-Menus and tooltips .404

6 .7 Popup Menu (a .k .a . Drop-Down, Combo-box) .407
6 .8 Slider . 416
6 .9 text label . 419
6 .10 Frame . 422
6 .11 Uipanel . 423
6 .12 tooltips .424

6 .12 .1 Displaying a tooltip on Disabled Controls . 424
6 .12 .2 Displaying a tooltip on truncated text . 425
6 .12 .3 Controlling tooltip timing . 426
6 .12 .4 Displaying a tooltip on Inactive Controls . 427

References .431

7Chapter the Java Frame . 435

7 .1 Java Frame Properties and Methods . 437
7 .1 .1 Window Minimization and Maximization . 437

K13163_Book.indb 12 11/8/2011 8:06:14 PM

© 2012 by Taylor & Francis Group, LLC

xiiiContents

7 .1 .2 Docking and Undocking . 437
7 .1 .3 UI-Related JavaFrame Properties . 439
7 .1 .4 Miscellaneous Other JavaFrame Properties . 441

7 .2 FindJObj and the Java Frame Components Hierarchy . 443
7 .2 .1 FindJObj . .445
7 .2 .2 Finding the Underlying Java Object of a Matlab Control 445
7 .2 .3 GUI for Displaying Container Hierarchy, Properties, and Callbacks 447
7 .2 .4 the Java Frame Container Hierarchy . 450

7 .3 Important Java Frame Containers . 450
7 .3 .1 axisCanvas . 450
7 .3 .2 FigureComponentContainer . 452
7 .3 .3 Component’s Private Container . 452
7 .3 .4 FigurePanel or ContainerFactory . 453
7 .3 .5 DttoolbarContainer . 454
7 .3 .6 FigureMenubar and Docking Controls . 455
7 .3 .7 FigureFrame . 456

7 .4 beanadapters . 461
References .461

8Chapter the Matlab® Desktop . 463

8 .1 Desktop Functionality and layout .464
8 .1 .1 the Java Desktop Object .464
8 .1 .2 the Desktop Frame . 475
8 .1 .3 Organizing the Desktop Clients . 477
8 .1 .4 Customizing the Desktop toolbars .480

8 .2 System Preferences . 482
8 .3 Command Window . .484

8 .3 .1 Controlling Command Window Colors . .486
8 .3 .2 Help Popup and Integrated browser Controls .490
8 .3 .3 Modifying the Command Window Prompt . 497
8 .3 .4 tab Completions . 501

8 .3 .4 .1 tC .xml and tC .xsd . 501
8 .3 .4 .2 tabComplete Utility . 503
8 .3 .4 .3 additional aspects of tab Completion .504

8 .3 .5 additional Command Window Uses .505
8 .4 Editor .506

8 .4 .1 the EditorServices/matlab .desktop .editor Object .507
8 .4 .2 the Editor Frame Object . 512

8 .5 Keyboard bindings . 515
8 .5 .1 Inserting/Replacing text . 516
8 .5 .2 Running action Macros . 519
8 .5 .3 Running built-In actions . 521

K13163_Book.indb 13 11/8/2011 8:06:14 PM

© 2012 by Taylor & Francis Group, LLC

xiv Contents

8 .6 Workspace . 525
8 .7 Other Desktop tools . 528

8 .7 .1 Profiler . 529
8 .7 .2 Find-Files Dialog . 532
8 .7 .3 GUIDE . 533
8 .7 .4 Variable (array) Editor . 537

References .539

9Chapter Using Matlab® from within Java . 543

9 .1 approaches for Java Control of Matlab .544
9 .1 .1 Controlling the Matlab GUI . 545
9 .1 .2 Controlling the Matlab Engine . .546
9 .1 .3 Controlling a Matlab Session from another Matlab Session 547
9 .1 .4 Running or Modifying Matlab Code without Matlab 547
9 .1 .5 Matlab Clones Written in Java .548

9 .2 JMI — Java-to-Matlab Interface . .548
9 .2 .1 com .mathworks .jmi .Matlab . 549
9 .2 .2 Other Interesting JMI Classes . 553

9 .3 JMI Wrapper — local MatlabControl . 554
9 .3 .1 local and Remote MatlabControl . 554
9 .3 .2 localMatlabProxy . 554
9 .3 .3 Some Usage Examples . 556

9 .4 JMI Wrapper — Remote MatlabControl .560
9 .4 .1 Remote Control of Matlab .560
9 .4 .2 a Simple RemoteExample . 561
9 .4 .3 Parsing Matlab’s Return Values . 563

9 .5 Using JNI to Connect Java and Matlab . .564
References .572

1Chapter 0 Putting It all together . 577

10 .1 UISplitPane . 578
10 .1 .1 technical Description . 579
10 .1 .2 Source-Code listing . 580

10 .2 Integration Debriefing System .609
10 .2 .1 Data Setup .609
10 .2 .2 Defining Data Items and Events . 611
10 .2 .3 Defining analyses . 612
10 .2 .4 Defining Reports . 614
10 .2 .5 Displaying analysis Results . 615

K13163_Book.indb 14 11/8/2011 8:06:15 PM

© 2012 by Taylor & Francis Group, LLC

xvContents

10 .3 Concluding Exercise: UIMultilistbox . 618
References .619

appendix a: What Is Java? . 621

appendix b: UDD . 627

appendix C: Open Questions . 639

Index . 641

K13163_Book.indb 15 11/8/2011 8:06:15 PM

© 2012 by Taylor & Francis Group, LLC

xvii

Preface

the Matlab† programming environment uses Java‡ for numerous tasks, including net-
working, data-processing algorithms, and graphical user interface (GUI) . Matlab’s

internal Java classes can often be easily accessed and used by Matlab users . Matlab also
enables easy access to external Java functionality, either third-party or user-created . Using Java,
we can extensively customize the Matlab environment and application GUI, enabling the
creation of very esthetically pleasing applications .

Unlike Matlab’s interface with other programming languages, the internal Java classes
and the Matlab–Java interface were never fully documented by the MathWorks (tMW),
the company that manufactures the Matlab product .

this is really quite unfortunate: Java is one of the most widely used programming languages,
having many times as many programmers as Matlab .§ Using this huge pool of knowledge
and components can significantly improve Matlab applications .

as a consultant, I often hear clients claim that Matlab is a fine programming platform for
prototyping but not suitable for real-world modern-looking applications .

this book aims to correct this misconception . It shows how using Java can significantly
improve Matlab program appearance and functionality and that this can be done easily and
even without any prior Java knowledge . In fact, many basic programming requirements can-
not be achieved (or are difficult) in pure Matlab but are very easy in Java . as a simple
example, maximizing and minimizing windows is not possible in pure Matlab but is a
trivial one-liner using the underlying Java code:¶

 >> set(get(handle(gcf),'JavaFrame'), 'Maximized',true);

Integrating Java in Matlab is easy and extremely beneficial . by adhering to a few simple
programming rules, many potential pitfalls of using Matlab–Java can be avoided while
gaining access to a vast variety of benefits .

Moreover, while most of this book relies on undocumented functionality that is not officially
supported by tMW, in reality much of it is actually well documented and supported in the Java

† Matlab is a registered trademark of the MathWorks (www .mathworks .com) .
‡ Java is a registered trademark of Javasoft, now an Oracle company (http://java .sun .com/) .
§ MathWorks advertises that there are “over one million” Matlab programmers worldwide (http://bit .ly/hWzWSk) . this

number compares with 6–10 million Java programmers (e .g ., http://bit .ly/gPXVtK) .
¶ See Chapter 7 for additional details .

K13163_Book.indb 17 11/8/2011 8:06:15 PM

© 2012 by Taylor & Francis Group, LLC

http://javasuncom/
http://bitly/hWzWSk

xviii Preface

world . Once we understand how to use the undocumented Matlab–Java interface, we can
easily use well-documented Java code to our advantage .

Matlab’s internal Java classes, although fully undocumented, are often based on existing
(documented) Java classes and have remained relatively stable over the past Matlab releases .
So if we exercise caution, we can make very good use of them .

Very little information was ever published on these topics, most of it on the Matlab forum
(comp .soft-sys .matlab newsgroup, affectionately called CSSM) .1 Some notable CSSM posters
in this regard include amir ben-Dor, Peter boettcher, Steve Eddins, arwel Hughes, Joshua
Kaplan, Malcolm lidierth, Eric ludlam, brad Phelan, brett Shoelson, Donn Shull, Matthew
Whitaker, Ed Yu, and Urs Schwarz (aka “us”) who had posted a humorous comment about the
source of his knowledge a few years ago .2

Unfortunately, only a few dozen CSSM posts deal directly with undocumented Matlab–
Java features in over 300,000 total threads at last count . Outside CSSM, there are even fewer
public references to undocumented Matlab; there are only a few other Matlab forums3 or
blogs4 with original material (not CSSM mirrors), and they are far outshined by CSSM in terms
of traffic and content volumes .

Over the years, I have painstakingly researched the Matlab code group (available in the
Matlab installation) and performed extensive trials and errors . I published many of my find-
ings in CSSM in response to user queries . In later years, I also started to publish related articles
on a dedicated blog: http://www .UndocumentedMatlab .com .

this accumulated knowledge about Matlab–Java is now seeing light for the first time in
this book, which includes all previously published work on the topic (as far as I know) as well
as much more that was never published .

During the past few years, tMW released product updates of Matlab twice annually, in
March and September . Each of these versions deletes or modifies some hidden elements and
adds a few . It is a real challenge to keep up with this rate of change, and I am certain that quite
a few hidden niches and errors escaped my notice due to this .

I, therefore, gladly welcome your feedback on the book’s website: http://www .Undocumented-
Matlab .com/books/Java/ . On this site, I will post the book’s errata list and changes in future
Matlab releases . I presume these to be of particular importance, as unavoidable changes will
occur in future Matlab releases .

Book Organization

this book is organized in chapters grouped in related functionality/usage and ordered from
easiest (novice Java use) to advanced . It is NOt necessary to read the book in order; the chap-
ters and sections are mostly independent and can stand alone . You can safely skip almost any
section that you find difficult or uninteresting .

Chapter 1 (Introduction to Java in Matlab) provides a description of the internal Java
engine shipped in Matlab . Chapters 2 (Using Non-GUI Java libraries in Matlab) and 3

K13163_Book.indb 18 11/8/2011 8:06:15 PM

© 2012 by Taylor & Francis Group, LLC

http://www.undocumentedmatlab.com

xixPreface

(Rich GUI Using Java Swing) describe how this internal Java engine can be used to extend
Matlab, both programmatically (Chapter 2) and visually (Chapter 3) .

Chapter 4 (Uitools) describes a set of undocumented built-in Matlab user-interface func-
tions that use Java components . Many of these functions are Matlab wrappers for Java com-
ponents presented in Chapter 3 . Using these tools and some simple customizations, we can
significantly improve our Matlab programs’ usability .

the notion of customizing our Matlab user-interface using Java is expanded in Chapters
5 (built-in Matlab Widget and Java Classes), 6 (Customizing Matlab Controls), and 7
(the Java Frame) . Chapter 8 (the Matlab Desktop) discusses customization of the Matlab
environment rather than that of a Matlab application .

Chapter 9 (Using Matlab from within Java) discusses the other side of the coin, namely,
how to call the Matlab engine from within a Java program . Unlike calling Java from
Matlab, and unlike calling Matlab from C/C++/Vb, the Java-to-Matlab interface is
entirely undocumented and unsupported — Chapter 9 fills this gap .

this book concludes with Chapter 10 (Putting It all together), which describes a utility and
an application that tie together many issues presented in this book .

From a supportability viewpoint, progressively advanced chapters of this book are deeper in
undocumented territory, are less supported, have fewer online references, and are increasingly
prone to change or malfunction in some future Matlab release .

No prior Java knowledge is required . all code snippets and examples are self-
contained and can generally be used as-is . advanced Java concepts are sometimes used,
but understanding them is not required to run the code . Java-savvy readers will find it
easy to tailor code samples for their particular needs; for Java newcomers, an introduction
to Java (appendix a) and numerous references to online resources will help to ease the
learning curve .

to reduce irrelevant clutter, only bare-bones code snippets are presented within the text .
Only the concluding chapter contains a full listing . Users wishing to utilize the code snippets
should include exception handling, edge-case handling, additional comments, etc . in any
 real-world code, as the full listing hopefully shows .

throughout this book, numerous references are provided that point to online resources .
Readers can use these resources to expand their knowledge and gain a deeper insight than is
possible to achieve within this book . the resources often contain the poster’s email, so inter-
ested readers can follow-up directly with the poster .

No toolbox, Simulink or Stateflow is necessary for using this book — only the core
Matlab product . these extra tools indeed contain many other Java-based aspects, but they
are not covered in this book . Perhaps a future book will describe them .

this book shows readers how to use and discover the described components, using nothing
but Matlab itself as the discovery tool . In no case is illegal hacking implied or necessary for
the discovery or usage of anything presented in this book . as far as I know, everything in this
book is legal and within the bounds of the Matlab license agreement . However, I am an

K13163_Book.indb 19 11/8/2011 8:06:16 PM

© 2012 by Taylor & Francis Group, LLC

xx Preface

engineer, not a lawyer, so this is by no means an official legal opinion . If you have any doubt,
please contact MathWorks for a formal answer .

A Quick Q&A

I don’t know Java—is this book for me? absolutely yes . this book is intended for Matlab
programmers and users, and no Java knowledge is assumed . Java-savvy programmers will
indeed find it easier to use and extend some of the more advanced topics . However, even
programmers with absolutely no Java experience can still use most of this book as-is . I hope the
presentation will suit both audiences equally well .

Is it legal? Yes . I am an engineer, not a lawyer, but as far as I can tell, everything presented
in this book is perfectly legal to use as long as one has access to a legal version of Matlab .
Still, if one has any specific concern about a particular aspect, MathWorks will gladly answer
the question .

Does MathWorks endorse this book? Unfortunately not . this book often relies on undocu-
mented and unsupported features . MathWorks allows us to use these features but does not
officially endorse or support them .

How can I help to promote this work? One can help by sending feedback and by promoting
this book and the website to colleagues .

Conventions Used in This Book

the following special text formatting conventions are used within this book:

Fixed-width ◾ font is used for Matlab or Java code segments and for Java pack-
age and class names . Matlab code segments will not normally be given with the
Command-line’s prompt (>>), except where this would help distinguish between user-
entered text and Matlab’s response:

>> version –java
ans =
Java 1.1.8 from Sun Microsystems Inc.

Regular bold ◾ is used for handle/object property names, which are often camel-cased
(e .g ., JavaFrame), as well as for occasional emphasis .
Bold italic ◾ is used for Matlab function names (e .g ., gcf or uicontrol) .
Regular italic ◾ is used for Java function names (e .g ., setBorder()), Matlab function
arguments (e .g ., InputColor), file names (e .g ., classpath.txt), as well as for occasional
emphasis and the introduction of new terms .

Disclaimer and Warning

Do not use any undocumented feature or function unless you are fully aware of the possible
consequences: such features are generally unsupported by tMW; may break in future Matlab

K13163_Book.indb 20 11/8/2011 8:06:16 PM

© 2012 by Taylor & Francis Group, LLC

xxiPreface

versions without prior notice; may behave differently on different platforms or systems; may
have undiscovered undesirable side effects and may even cause Matlab to crash or hang
(become unresponsive) .

Much effort was invested to ensure the correctness and accuracy of the presented informa-
tion . In addition, I tried to highlight potential pitfalls and the ways to avoid them . I also included
a dedicated section (Section 1 .5) about practices for safe programming .

However, due to its mostly undocumented nature, there is no guarantee that the information
is complete or error-free . Quite the contrary: it should be assumed to be incomplete and inac-
curate . the author and the publisher of this book cannot take any responsibility for possible
consequences due to this book .

When using suggestions, sample code, or ideas from this book, readers must therefore take
extreme care and should either use them at their own risk or not at all .

References

 1 . available, for example, on Google groups http://groups .google .com/group/comp .soft-sys .matlab, on
MathWorks’s website (http://www .mathworks .com/matlabcentral/newsreader), via a personal news-
reader (news:comp .soft-sys .matlab), or archived on http://mathforum .org/kb/forum .jspa?forumID=80
(long URl references such as this will often be accompanies by shortened equivalents; in this case, http://
bit .ly/cXqbNr) .

 2 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/115423#292260 (or http://bit .ly/
bfcs2S) .

 3 . For example, see Kluid at http://www .kluid .com/mlib/index .php?c=1 (or http://bit .ly/9tNMbZ), DSP-
Related at http://www .dsprelated .com/groups/matlab/1 .php (or http://bit .ly/9l8oPa), or Stack Overflow
(http://stackoverflow .com/) .

 4 . the official Matlab blog (http://blogs .mathworks .com) contains the most original content; outside
MathWorks, the now-defunct blinkDagger .com is well known and respected and there are several others
mentioned here: http://www .mathworks .com/matlabcentral/newsreader/view_thread/251652 (or http://
bit .ly/bemxVR) and http://www .mathworks .com/matlabcentral/answers/1822-foreign-matlab-forums
(or http://bit .ly/mYCxht) .

Matlab and Simulink are registered trademarks of the MathWorks, Inc . For product
 information, please contact:

the MathWorks, Inc .
3 apple Hill Drive
Natick, Ma 01760-2098 USa
tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks .com
Web: www .mathworks .com

K13163_Book.indb 21 11/8/2011 8:06:16 PM

© 2012 by Taylor & Francis Group, LLC

http://groups.google.com
http://www.mathworks.com
news:compsoft-sysmatlab
http://mathforum
http://www.kluid.com
http://bit.ly
http://www.dsprelated.com
http://stackoverflowcom/
http://blogsmathworkscom

Introduction to
Java in Matlab®

1
Chapter

K13163_Book.indb 1 11/8/2011 8:06:16 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming2

Java is a programming language introduced in 1995 . Its main strength when compared with
other object-oriented languages of its time (C++ being the most important) was its portability:
Java was designed to be architecture-neutral, so that Java programs written on a Mac,† for
example, would behave exactly in the same way as on Windows‡ and linux machines, and in
fact on any platform that supports Java . this design, coupled with built-in security measures,
modern object-oriented programming features, and easily accessible graphical user interface
(GUI) and I/O, significantly reduced development work and made Java a favorite among pro-
grammers worldwide . a basic introduction to Java is presented in appendix a, and readers who
are unfamiliar with Java are advised to read this appendix first .

Java integration has been available in Matlab since Release 12 (Matlab 6 .0) . Since
R12, Matlab has always been shipped with a bundled Java engine (Java Virtual Machine or
JVM) on all supported Matlab platforms except Mac OS X, in which Matlab uses the
Mac OS’s JVM1 (note that apple plans to discontinue its internally-ported Java runtime engine
(JRE) in future Mac OS releases2) . this pre-bundled Java engine has the benefit of hiding the
nuts and bolts from the user while gaining access to a full-fledged Java engine .

One important point should be made from the onset: it is not necessary to have any Java
experience when using Java in MATLAB . MathWorks has done a pretty good job in integrating
Java . the end result is that Java objects appear as simple Matlab objects that can be accessed
using regular Matlab means, familiar even to novice Matlab users . therefore, no prior
Java knowledge is assumed in this book .

Matlab can access Java objects without any additional tool or knowledge other than sim-
ple Matlab . In fact, most of this book can be used without ever needing a Java editor or a
compiler . You would indeed need such tools to create custom Java classes, but this is unneces-
sary for the vast majority of customizations presented in this book .

While some Java-related Matlab functions are documented, many remain undocumented
to this day (2011) . MathWorks even declared some of the documented functions as “unsup-
ported”, resulting in queries not being answered and bugs not being fixed . While understandable
for a major new release (as R12 was in 2000), it is difficult to understand so many releases later .

the following chapters attempt to bridge this undocumented gap . the reader is cautioned
that being undocumented (and more important, unsupported), features discussed may be modi-
fied or removed without prior notice in some future Matlab release . as long as we continue
to use our current Matlab version, this will not be a problem — we only need to retest our
application when upgrading Matlab releases .

Having said that, in practice, only a small fraction of unsupported features actually change,
and fewer still become unavailable, between Matlab releases . Matlab itself relies on
many undocumented features for its own fully documented supported functions, so modifying
or discontinuing these undocumented features would require a significant effort by MathWorks
to redevelop much of its existing code base for no tangible benefit . We may imagine that this is

† Mac, Macintosh, and apple are trademarks of apple, Inc .
‡ Windows, activeX, and COM are trademarks of Microsoft, Inc .

K13163_Book.indb 2 11/8/2011 8:06:17 PM

© 2012 by Taylor & Francis Group, LLC

3Introduction to Java in MATLAB®

not something easily done . as we dig deeper into the undocumented territory, changes in future
versions become more likely (for an apt example with the Matlab Desktop, see Chapter 8) .

It is not always possible to predict which functions are more prone to change than others .
Some obvious cases are mentioned as such in this book, but it should be understood that these
mentions are pure speculation and should be taken with proper precaution . there is always an
inherent uncertainty about the supportability of undocumented functionality in future Matlab
versions, and we should take this into consideration whenever we depend on such functionality
in our application .

Java-related issues in Matlab may be divided into the following main categories, covered
in detail in the following chapters:

Chapter 2: Using Non-GUI Java libraries in ◾ Matlab
Chapter 3: Rich GUI Using Java Swing ◾
Chapter 4: Uitools ◾
Chapter 5: built-In ◾ Matlab Widgets and Java Classes
Chapter 6: Customizing ◾ Matlab Controls
Chapter 7: the Java Frame ◾
Chapter 8: the ◾ Matlab Desktop
Chapter 9: Using ◾ Matlab from within Java

Much of the “plumbing” part of the Matlab-to-Java interface is documented and sup-
ported by Matlab . It is described below in this chapter, providing a comprehensive introduc-
tory picture of the Matlab–Java interface . Most of the focus is given to the issue of using
Java as a useful extension of Matlab . On the other hand, Chapters 5 through 9 are deeply
undocumented and quite prone to change in future Matlab releases .

all code snippets and examples are self-contained and can be run as-is from the Matlab
Command Window or any Matlab script/function . Matlab users familiar with Java will
find it easier to expand the provided examples for their particular needs . For the rest, references
to online resources are provided to ease the learning curve .

1.1 Creating Java Objects

1.1.1 The Basics
before using Java in our Matlab application, we first need to ensure that Java is supported
on our specific Matlab installation (which it should, normally) . this check is done using
Matlab’s built-in functions usejava or javachk (which is just a wrapper for usejava) .† there
are four documented levels of Java that can be checked (“jvm”, “awt”, “swing”, and “desktop”3);

† usejava itself wraps a system_dependent call — an undocumented precursor for the similarly undocumented feature
function .

K13163_Book.indb 3 11/8/2011 8:06:17 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming4

an additional undocumented level (“mwt”) checks for MathWorks Swing extensions used by
custom Matlab controls (see Chapter 5):

if ~usejava('jvm')
 error('this feature requires Java');
end
error(javachk('jvm','this feature requires Java')); % equivalent

Java code is based on classes that group Java functionality (functions or methods) and prop-
erties . Methods and properties, as well as the classes themselves, have access modifiers, which
determine whether they can be accessed outside the class’s methods . Matlab can only access
Java elements that are declared to have a public access modifier . Classes are grouped into pack-
ages and can be extended by new classes that add new functionality or modify (override) exist-
ing ones .

to use Java classes, we create (instantiate) objects of their type, and then use their classes’
public-access methods . Instantiation can only be done if the class has a constructor method,
which is basically just a method named exactly as its class’s name, and declared without any
return value (unlike all other class methods) . alternately, we can use the classes’ static methods
without needing any object . Matlab’s class object system (MCOS)4 uses many of these con-
cepts, although the actual implementation of classes and modifiers looks different than in Java .

the simplest way to integrate a standard Java class in Matlab is to directly invoke its
constructor method, getting an object reference in return:

>> java.awt.Dimension % default constructor (no args)
ans =
java.awt.Dimension[width = 0,height = 0]

>> dim = java.awt.Dimension(12,25) % non-default constructor
dim =
java.awt.Dimension[width = 12,height = 25]

>> java.lang.Thread % a different example
ans =
Thread[Thread-161,5,main] <= note the different representation format

Matlab can only access publicly accessible methods and classes . Due to this, Matlab
cannot instantiate objects from Java classes that do not have a publicly accessible constructor .
Forgetting to declare both the class and its constructor(s) as public is a common cause of error
when trying to use Java classes in Matlab .

Static public methods can be invoked using the class name, even when the class does not
have a public-access constructor and no objects can be instantiated from it:

>> % MJUtilities has no public constructor so it can't be instantiated
>> object = com.mathworks.mwswing.MJUtilities;
??? No constructor 'com.mathworks.mwswing.MJUtilities' with matching signature
found.

>> % This uses the MJUtilities class's static public beep method
>> com.mathworks.mwswing.MJUtilities.beep; % no error (beep sound)

K13163_Book.indb 4 11/8/2011 8:06:17 PM

© 2012 by Taylor & Francis Group, LLC

5Introduction to Java in MATLAB®

Some Java classes have both public constructor(s) and static methods . In such cases, we can
instantiate class objects and can call the static methods either via the class object or directly via
the class name:

% Three different ways to instantiate a Color object:
>> color = java.awt.Color(1,0.7,0.5) % use a regular constructor
color =
java.awt.Color[r = 255,g = 179,b = 128]

>> color = java.awt.Color.cyan % use a static property
color =
java.awt.Color[r = 0,g = 255,b = 255]

>> color = java.awt.Color.decode('0xff00ff') % use a static method
c =
java.awt.Color[r = 255,g = 0,b = 255]

>> % Instantiate a Java Frame object and use it to list active frames
>> jFrame = java.awt.Frame
jFrame =
java.awt.Frame[frame0,0,0,0x0,invalid,hidden,layout = java.awt.
BorderLayout,title = ,resizable,normal]

>> jFrame.getFrames % or: getFrames(jFrame)
ans =
java.awt.Frame[]:
 [com.mathworks.mde.desk.MLMainFrame]
 [com.mathworks.mde.desk.MLMultipleClientFrame]
 [com.mathworks.mwswing.MJFrame]
 [javax.swing.SwingUtilities$SharedOwnerFrame]
 [com.mathworks.mwswing.MJFrame]
 [java.awt.Frame]

>> % getFrames() is a public static method, therefore we don't need
>> % to instantiate an object in order to use it in MaTLaB:
>> java.awt.Frame.getFrames
ans =
java.awt.Frame[]:
 [com.mathworks.mde.desk.MLMainFrame]
 [com.mathworks.mde.desk.MLMultipleClientFrame]
 ...

Java classes can also be created using Matlab’s javaObject function, which is useful
when the fully qualified class name (FQCN) is long or when the class name is stored in a pro-
gram variable . Such cases are usually rare .

a more common need is to create instances of Java nested-classes . Nested classes are classes
that are defined within the context of a parent class . In Java source code, they are referred to
using dot-notation (e .g ., Package.Name.ParentClassName.NestedName), although
their class file name uses “$” (ParentClassName$NestedName.class) . this confuses Matlab
into thinking that the nested class is called ParentClassName$NestedName (with a $) .

K13163_Book.indb 5 11/8/2011 8:06:17 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming6

Unfortunately, since “$” is not a valid Matlab character, we cannot directly create any
instance of such a class . the solution is to use javaObject:5

>> jObject = javax.swing.ScrollPaneLayout.UIResource6

??? No appropriate method, property, or field UIResource for class javax.swing.
ScrollPaneLayout.

>> jObject = javax.swing.ScrollPaneLayout$UIResource
??? jObject = javax.swing.ScrollPaneLayout$UIResource

|
Error: The input character is not valid in MaTLaB statements or expressions.

>> jObject = javaObject('javax.swing.ScrollPaneLayout$UIResource')
jObject =
javax.swing.ScrollPaneLayout$UIResource@695c5b

Yet another form of Java object creation is using the unsupported semidocumented awt
create function . the main difference between javaObject and awtcreate is that javaObject is
executed immediately, in the main Matlab computational thread, whereas awtcreate is
placed on the Java aWt† Event Dispatch Thread (EDt; described in Section 3 .2) and executed
only after all the other pending aWt events have ended . awtcreate is typically needed when
constructing Java GUI components that rely on other GUI commands to finish first . In all other
cases, use of awtcreate is discouraged — its cumbersome JNI notation7 argument format
ensures that programmers would normally and rightly not use this function .

Matlab release R2008a (7 .6) added an important addition solving much of the awtcreate
and awtinvoke (see below) frustration: javaObjectEDT (and the corresponding javaMethod
EDT) behaves just like javaObject (and javaMethod) except that it runs on the EDt, without
any of the cumbersomeness of awtcreate (and awtinvoke) . Moreover, javaObjectEDT accepts
any reference of an existing Java object and ensures that all method invocations on this refer-
ence object from that point onward will automatically be dispatched on the EDt without any
code change . Unfortunately, I have found that relying on R2008a (7 .6)’s version of javaObject
EDT sometimes causes Matlab to hang . as far as I could test, this was corrected in Matlab
release R2008b (7 .7), and since then it is most advisable to use javaObjectEDT for all GUI-
related Java components (subclasses of java.awt.* or javax.swing.*) .‡

1.1.2 Accessing Java Objects
Regardless of how a Java object is created, the object reference is a reference in the Java sense,
which is different from Matlab’s normal objects . Modifying a copy of such a Java reference
modifies both the copy and the original, unlike the case for Matlab objects (we shall see later
on in this book that there are many cases of undocumented Matlab objects that are also
references) .

† aWt is the Abstract Windowing Toolkit — Java’s very basic graphics framework .
‡ See Section 3 .2 for additional details .

K13163_Book.indb 6 11/8/2011 8:06:18 PM

© 2012 by Taylor & Francis Group, LLC

7Introduction to Java in MATLAB®

Objects can be checked in runtime as to whether they are a Java reference or not, using
Matlab’s built-in isjava function . Java objects, like Matlab objects, can be tested for class
membership (directly or via inheritance) by using Matlab’s built-in isa function:

>> isjava(dim)
ans =
 1 <= logical true
>> isa(dim,'java.awt.geom.Dimension2D')
ans =
 1 <= logical true (Dimension inherits from Dimension2D)
>> isa(dim,'java.lang.NoSuchClassName')
ans =
 0 <= logical false

a class’s fully-qualified package name need not be repeatedly specified: Matlab’s import
function can simplify our code, as the following Matlab code snippet shows:

import java.util.* java.lang.*
hash1 = java.util.Hashtable; % long, fully-qualified format
hash2 = Hashtable; % short, more readable format
stack = Stack; % another short-format, now for java.util.Stack

Note: Do not import any MathWorks-derived (com.mathworks.*) packages on the
same line as other packages on Matlab 7 .5 (R2007b) and older because this crashes
Matlab R2007b .† this bug was solved in Matlab 7 .6 (R2008a), but to support older
releases, separate such imports into different lines:

% This crashes MaTLaB 7.5 (R2007b); OK on 7.6 (R2008a) and newer
import javax.swing.* com.mathworks.mwswing.*

% This is ok in all MaTLaB releases
import javax.swing.*
import com.mathworks.mwswing.*

Imported packages apparently use lazy loading . this means that classes are loaded into
memory only when actually needed . therefore, import java.util .* does NOt load the
entire util package into memory — it only facilitates code readability . Imported packages/
classes can be unimported using Matlab’s clear import command (available at the
Command Window only, not from within a running function) .

Note that using the import XXX .* syntax may fail in compiled (deployed) applications .
the solution is always to use fully-qualified class-names (FQCN) to access Java objects .8

User-defined Java classes can be used in Matlab by adding their containing folder (or JAR
file) to the Java classpath, dynamically using Matlab’s javaclasspath or javaaddpath
 function, or statically by adding them to the top of the classpath.txt file (edit(‘classpath.txt’)) .‡

† at least on Matlab 7 .5 (R2007b) running JVM 1 .6 on a Windows XP PC .
‡ See related bugs in Matlab versions prior to R2006a (Matlab 7 .2): http://www .mathworks .com/support/solutions/en/

data/1-1Y9R5V (or http://tinyurl .com/notqx5) . While writing, this page has been removed by MathWorks from their support
website . a workaround is to add your folders/JaRs to the beginning of the classpath.txt file rather than to the end of this file .

K13163_Book.indb 7 11/8/2011 8:06:18 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming8

We can also add Java classes to one of the existing folders on the dynamic or static classpath
(e .g ., %matlabroot%/java/patch/) .

In general, using the static classpath solves many of the problems that occur on the dynamic
classpath, possibly due to the different classloaders used in both cases .9 Quite a few Java-related
problems are solved by simply placing the classes in the static classpath .

the default classpath.txt file is located in %matlabroot%/toolbox/local/, but a custom edit-
able copy can also be placed in Matlab’s startup folder (in which case, it will have prece-
dence over the default file) .10 Using a local classpath.txt is important for distributions where we
do not have administrator modification privileges for Matlab’s default classpath.txt, or if we
do not wish to modify the root installation .

If we compile (deploy) our Matlab application, we need to manually add the Java class/
JaR files and classpath.txt/librarypath.txt files to the build process using Matlab’s deploy
tool . this is necessary since Matlab’s compiler is not smart enough to automatically inte-
grate javaaddpath code directives in deploytool . alternately, manually place these files in the
application’s deployment (distribution) folder — this is generally safe to do in any case . In
fact, I have seen a case where adding classpath.txt/librarypath.txt in deploytool actually
resulted in errors (this may be related to mapped network paths)† — the solution was to remove
these file references from deploytool and simply add the files to the deployment folder . It is the
deployed application’s equivalent of placing these files in Matlab’s startup folder .‡

classpath.txt entries should be separated by whitespaces, typically newlines . Comments start
with the hash (#) sign . Entries may be a folder name or JaR file name — in both cases, the full
path name should be specified, either directly (e .g ., C:/MyClasses/New) or relative to the mat
labroot (e .g ., $matlabroot/java/jar/util.jar) . Folders must be separated with a forward slash (/),
not a backwards slash (\), even for Windows systems . this follows the Java/JVM convention .
Classpath folders (not JaR files) should also end with a trailing “/” character .§ Entries may also
be preceded with target platforms, and the JVM will only load these specified classpath entries
on these platforms (e .g ., mac=$matlabroot/java/jarext/aquaDecorations.jar) .¶ the classpath
order is important: classes which appear earlier in the classpath will have precedence over other
versions of these classes which appear lower in the classpath .

† Debugging such problems is extremely difficult . the first step is to run the deployed application from an operating system
command prompt (rather than a desktop icon), in order to see warning and error messages .

‡ Note that if you deploy a COM (Dll) component, the librarypath.txt file needs to be placed in the Dll’s actual startup folder,
which is typically not the same as the folder in which the Dll is located . I recently spent a few hours trying to understand why
a compiled Dll loaded in Excel croaks, although its Matlab and EXE counterparts worked flawlessly . Unlike them, Dlls
have no console onto which we can spill debug messages and error traces, making debugging extremely difficult . In the end it
turned out that Excel loaded the Dll with a startup folder of the user’s Windows home directory . Go figure . . .

§ On relatively old Matlab releases only — new releases also accept classpath folders without trailing slashes: http://
www .mathworks .com/support/solutions/en/data/1-1aJWE (or http://bit .ly/abEcRD) .

¶ available platforms on Matlab 7 .1: alpha,glnx86,sol2,unix,win32,mac . On 7 .5 also glnxa64,sol64,win64,maci but
without alpha (Matlab support discontinued) . See the main comment of classpath.txt for an up-to-date list for your
Matlab version .

K13163_Book.indb 8 11/8/2011 8:06:18 PM

© 2012 by Taylor & Francis Group, LLC

9Introduction to Java in MATLAB®

by default, the first entry in classpath.txt is $matlabroot/java/patch . this means that Java
classes in this folder override similarly named classes taken from other folders or JaRs . this is
used to post updated Java classes (aka patches) in Matlab releases .11

We can also use this patch mechanism to override Matlab’s default classes with our
own version . If we do this, then it will only work on the platform on which we have copied
the corrected class to the patch folder . this causes a distribution headache, since the patch
folder is in the program installation tree (matlabroot) and not on the application tree . to
facilitate distribution, we can add a code segment at the beginning of our application, which
copies a version of the class from the current (application) path to the patches folder if it is
not detected there already . then simply distribute our patch class file together with our appli-
cation code . When the application first loads, it will automatically try to install (copy to the
patch folder) the patch file, so that it could be used later by that same application . In cases of
copy failure (probably due to permission constraints on Matlab’s installation tree), a
popup warning will notify users to request their system admin to install the file for them:

className = 'MyClass.class';
patchName = fullfile(matlabroot,'/java/patch/',className);
if ~exist(patchName,'file')
 [successFlag,msg] = copyfile(className, patchName);
 if ~successFlag
 msg = ['Could not copy ' fullfile(pwd,className) ' to ' ...
 patchName ': ' msg '. Please ask sysadmin to patch it'];
 msgbox([msg, [className ' patch'], 'warn');
 end % if failed to copy patch class file
end % if patch class file not detected in patch folder

Unfortunately, Matlab does not automatically create the patch/folder when installing
Matlab . It also does not copy any existing patch files from earlier installations (it copies
prefdir folder and other settings, but not patch/) — we need to do this manually .

Matlab R2008a (7 .6) and earlier had a limited fixed number of classpath characters — a
longer classpath would crash Matlab . this was reportedly fixed in R2008b (7 .7) .12

Related Matlab function javarmpath removes a folder/JaR from the dynamic classpath .
Once a Java class is recognized on the Java classpath, Matlab’s built-in exist function returns
the value 8 when the class name is passed as an input argument .

Determining which Java classes are currently loaded in memory is done via inmem:

>> [mFunctions, mexFunctions, javaClasses] = inmem
...
javaClasses =
 'schema.package'
 'schema.class'
 'handle.listener'
 ...
 'uitools.uimodemanager'
 'java.util.Hashtable'
 'com.mathworks.mlwidgets.workspace.WhosInformation'

K13163_Book.indb 9 11/8/2011 8:06:18 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming10

Java classes can be cleared from memory using Matlab’s clear java function, which was
added following user requests on CSSM .13 Note that this function fails if there are any refer-
ences of instantiated objects of the cleared class still in memory .14

>> clear java
Warning: Objects of org/jfree/chart/ChartPanel class exist - not clearing java

a nasty side effect of Matlab’s javaaddpath and javaclasspath commands is that they
clear all Matlab global variables . this nasty side effect of clearing globals has existed at
least since Matlab 7 .2 (possibly earlier), and to this day (Matlab 7 .12, R2011a) .15 In
Matlab 7 .4 (R2007a) and earlier releases, all Java object references in the Matlab Desktop
Workspace were also cleared .16

Serializable Java objects (those implementing the java .io .Serializable interface) can be saved
and loaded from *mat files via Matlab’s built-in save, load functions .17

arrays behave slightly differently between Java and Matlab: Java array indices start
with zero, whereas Matlab indices start with 1 — this is a common pitfall when using
Java in Matlab . Multidimensional arrays are also handled differently by the two pro-
gramming languages . Java object references may be concatenated in a Matlab array as
long as all the references have exactly the same type or some common superclass (java.
lang.Object being a last-resort superclass) .

the Matlab functions javaArray and javaArray2cells are fully documented and sup-
ported functions that handle Java arrays . Refer to the official documentation18 for additional
details . Note that javaArray and javaArray2cells only support named classes, so arrays of
Java primitives such as int[] or byte[] cannot be created .19

all the Java classes presented in this book are precompiled and are either directly available
in the Matlab installation or downloadable (I will present the relevant URls) . We can also
use our own Java classes (see Section 1 .6 for details) .

as a final note, when Java objects are displayed in Matlab’s Command Window, the
object’s toString() method is automatically invoked to generate a displayable string . Different
Java objects have different implementations of toString() . If a Java object’s class does not have
an internal toString() method, a default toString() method is invoked, displaying the object’s
FQCN (xxx.yyy.classname) and hashCode value in hex format . all Java objects ulti-
mately extend java.lang.Object, so they all have a hashCode and at least this base
Object’s default toString() method:

>> color = java.awt.Color.cyan
color =
java.awt.Color[r = 0,g = 255,b = 255] <= non-default toString() method

>> jObject = java.lang.Object
jObject =
java.lang.Object@2342a6 <= default representation format class@hash

>> hashCode = dec2hex(jObject.hashCode)
hashCode =
2342a6

K13163_Book.indb 10 11/8/2011 8:06:18 PM

© 2012 by Taylor & Francis Group, LLC

11Introduction to Java in MATLAB®

1.1.3 Memory Usage
Java references appear as zero-byte objects in the workspace . Unfortunately, there is no simple
workaround for this:20

 >> whos
 Name Size Bytes Class attributes
 ans 1x1 8 double
 dim 1x1 java.awt.Dimension

One (imperfect) solution for reporting Java object size in Matlab is to use utilities such as
Classmexer21 that rely on JVM Instrumentation (available since JVM 1 .5) .22 to use Classmexer,
download its JaR file, add it to the Java classpath (statically or dynamically), and then add the
following line to our java.opts file (see Section 1 .9):

-javaagent:classmexer.jar

Now, after starting Matlab, we are able to query the Java references size in runtime . For
simple objects such as java.awt.Dimension, a simple “shallow” query of the base size is
sufficient, using memoryUsageOf():

>> com.javamex.classmexer.MemoryUtil.memoryUsageOf(dim)
ans =
 16 <= memory usage in Bytes

However, for more complex classes, which hold private references to other classes, we need
to use the deepMemoryUsageOf() method:23

>> % Prepare the hashtable:
>> hash = java.util.Hashtable;
>> hash.put('dim', java.awt.Dimension(12,25));
>> hash.put('color', java.awt.Color.red);

>> % The base size reports a misleadingly-small memory footprint
>> disp(com.javamex.classmexer.MemoryUtil.memoryUsageOf(hash))
 40

K13163_Book.indb 11 11/8/2011 8:06:19 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming12

>> % So we must include private reference objects to get the full size
>> disp(com.javamex.classmexer.MemoryUtil.deepMemoryUsageOf(hash))
 296

1.2 Java Object Properties

Once we have a reference to the new Java object, we can inspect (using fieldnames, get, or
inspect), read (get), and update (set) its properties .† Note the default properties assigned by
Matlab to all Java classes, and the different equivalent invocation forms:

>> dim = java.awt.Dimension(12,25);
>> fieldnames(dim)
ans =
 'width'
 'height'
>> ans = dim.fieldnames; % equivalent invocation form

>> fieldnames(dim,'-full') % some extra information...
ans =
 'int width'
 'int height'
>> ans = dim.fieldnames('-full'); % equivalent form

>> dim.get
 Class = [(1 by 1) java.lang.Class array]
 Height = [25]
 Size = [(1 by 1) java.awt.Dimension array]
 Width = [12]

 BeingDeleted = off <= start of default MaTLaB properties
 ButtonDownFcn =
 Children = []
 Clipping = on
 CreateFcn =
 DeleteFcn =
 Busyaction = queue
 HandleVisibility = on
 HitTest = on
 Interruptible = on
 Parent = []
 Selected = off
 SelectionHighlight = on
 Tag =
 Type = java.awt.Dimension
 UIContextMenu = []
 UserData = []
 Visible = on
>> ans = dim.get; % equivalent form
% Note: getting partial case-insensitive property names is
% ^^^^ supported (as in MaTLaB), as long as they are unique:

† Use of get/set is undocumented and unsupported since it causes a memory leak — refer to Section 3 .4 for details .

class
properties

HG
(Handle

Graphics)
properties

K13163_Book.indb 12 11/8/2011 8:06:19 PM

© 2012 by Taylor & Francis Group, LLC

13Introduction to Java in MATLAB®

>> height = get(dim,'h')
??? Error using = = > get
ambiguous java.awt.Dimension property: 'h'.
>> height = get(dim,'he')
height =
 25
>> height = dim.getHeight; % equivalent form, case-sensitive
>> height = dim.height; % equivalent form, case-sensitive
% Note: this latter obj.propName form is only available for public
% ^^^^ properties – those returned by the fieldnames function
>> size = dim.getSize % non-primitive data can also be retrieved
size =
java.awt.Dimension[width = 12,height = 25]

>> data = get(dim,{'wid','hei'}) % get multiple prop values
data =
 [12] [25]
>> set(dim)
 Class
 Height
 Size
 Width

 ButtonDownFcn: string -or- function handle -or- cell array
 Children
 Clipping: [{on} | off]
 CreateFcn: string -or- function handle -or- cell array
 DeleteFcn: string -or- function handle -or- cell array
 Busyaction: [{queue} | cancel]
 HandleVisibility: [{on} | callback | off]
 HitTest: [{on} | off]
 Interruptible: [{on} | off]
 Parent
 Selected: [on | off]
 SelectionHighlight: [{on} | off]
 Tag
 UIContextMenu
 UserData
 Visible: [{on} | off]
>> ans = dim.set; % equivalent form
% Note: the following is lexically ok, but in this specific case
% ^^^^ Width & Height must be set using the Size property
>> set(dim,'wid',20,'hei',30); % lexically ok, but no effect
>> set(dim,'size',java.awt.Dimension(20,30));
>> dim.setSize(java.awt.Dimension(20,30)); % equivalent form
>> setSize(dim,java.awt.Dimension(20,30)); % equivalent form

In R2010b (Matlab 7 .11), when using set on one of the Handle-Graphics (HG) properties,
we get a warning asking us not to use set but rather to use its equivalent Java form:

Warning: Possible deprecated use of set('Visible','off') on Java boolean
property: use jobj.setVisible(false) instead.
(Type "warning off MaTLaB:hg:JavaSetHGProperty" to suppress this warning.)

class
properties

HG
(Handle

Graphics)
properties

K13163_Book.indb 13 11/8/2011 8:06:19 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming14

1.3 Java Object Methods and Actions

Once we have a reference to the new Java object, we can also inspect (using methods or meth
odsview) its publicly accessible Java methods . In the following code snippets, note the different
equivalent invocation forms:

>> dim.methods
Methods for class java.awt.Dimension:
Dimension equals getHeight getWidth notify setSize wait
clone getClass getSize hashCode notifyall toString

>> methods(dim); % equivalent form

>> dim.methods('-full') % some extra information...
Methods for class java.awt.Dimension:
Dimension(java.awt.Dimension)
Dimension(int,int)
Dimension()
java.lang.Object clone() % Inherited from java.awt.geom.Dimension2D
boolean equals(java.lang.Object)
java.lang.Class getClass() % Inherited from java.lang.Object
double getHeight()
java.awt.Dimension getSize()
double getWidth()
int hashCode()
void notify() % Inherited from java.lang.Object
void notifyall() % Inherited from java.lang.Object
void setSize(int,int)
void setSize(double,double)
void setSize(java.awt.Dimension)
void setSize(java.awt.geom.Dimension2D) % Inherited from ...
java.lang.String toString()
void wait() throws java.lang.InterruptedException % Inherited ...
void wait(long,int) throws java.lang.InterruptedException % ...
void wait(long) throws java.lang.InterruptedException % ...

>> methods(dim,'-full'); % equivalent form

>> methodsview(dim);
>> dim.methodsview; % equivalent form

the methods and methodsview functions accept either a Java object reference or a class name
as input argument . the window presented by methodsview displays up to six columns (columns
having no data are hidden from view): Quantifiers (synchronized, abstract, static), Return type,
method Name, method arguments, Other (thrown Exception), and Inheritance parent (inheri-
tance info was removed by R2010a) . the data is presented in a Java Frame (not a regular
Matlab figure) window and can also be gotten by the [unused,data] = methods(dim,
'-full') command .

K13163_Book.indb 14 11/8/2011 8:06:19 PM

© 2012 by Taylor & Francis Group, LLC

15Introduction to Java in MATLAB®

methodsview sample screenshot (R2008a)

Java methods can also be found using Matlab’s built-in which function, which searches
the specified input argument in all Java classes loaded in memory:

>> which setSize
setSize is a Java method % javax.swing.JPanel method
>> which setSize -all
setSize is a Java method % javax.swing.JPanel method
setSize is a Java method % javax.swing.JComponent method
setSize is a Java method % java.awt.Dimension method
setSize is a Java method % java.awt.geom.Dimension2D method
setSize is a Java method % com.mathworks.mwt.MWFrame method
setSize is a Java method % com.mathworks.mwt.MWListbox method
setSize is a Java method % javax.swing.Box$Filler method
setSize is a built-in method % javahandle.java.awt.Dimension method
setSize is a built-in method %
 javahandle_withcallbacks.java.awt.Dimension method
...

a Matlab utility that I have uploaded to the File Exchange,24 called UIINSPECt, incor-
porates all the information available in the inspect and methodsview functions, as well as other
information that is normally well hidden in undocumented Matlab territory (and will be

K13163_Book.indb 15 11/8/2011 8:06:20 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming16

described later in this book) . Here is a preview of uiinspect for the Dimension object that was
created above:

>> uiinspect(dim);
>> dim.uiinspect; % equivalent form

uiinspect sample screenshot

accessible object methods can be invoked using either direct method invocation (in the form
object .method(. . .)), javaMethod, or the unsupported semidocumented awtinvoke (that is
described in more detail below) . Direct method invocation is the preferred invocation form in
most cases . the alternative forms, using javaMethod or awtinvoke, would normally be used
only in one of the following cases:

When the method name is very long (beyond ◾ Matlab’s namelengthmax value)
When the method name itself is stored in a program variable ◾
When the method modifies some Java GUI and should be synchronized with the Java ◾
Swing event queue (more on this in Section 3 .2), where javaMethodEDT or awtinvoke
should normally be used

awtinvoke, like awtcreate, uses the cumbersome JNI notation to specify argument types .
this by itself ensures that only the most persistent programmers, in the rare cases that actually
require sequential asynchronous invocation on the Java EDt, would use awtinvoke instead of
using javaMethod or, easier still, the direct invocation syntax . this said, beware of potential
problems when NOt using the EDt . as long as no GUI update is involved, using javaMethod
or direct invocation syntax is safe . If the EDt must be used, ensure to use awtinvoke or, since

K13163_Book.indb 16 11/8/2011 8:06:20 PM

© 2012 by Taylor & Francis Group, LLC

17Introduction to Java in MATLAB®

R2008b (7 .7), javaMethodEDT (or javaObjectEDT on its object prior to method invocation) .
Refer to Section 3 .2 for additional information and details about the EDt and its usage in
Matlab .

In Matlab 7 .7 (R2008b) and later releases, we can use javaMethodEDT instead of awtin
voke. javaMethodEDT is normally much easier to use (no need for the awkward JNI syntax) .
there are two specific use-cases, however, in which we would choose to use awtinvoke:

If our code should be backward-compatible and should also work on pre-R2008b ◾
Matlab releases .
If we want to use ◾ awtinvoke’s semi-documented feature of enabling setting a delayed-
action callback function that is triggered when the Java method has completed . this
functionality, which is unavailable in javaMethodEDT, is only documented within the
awtinvoke .m function, and not in its main help section (which itself is not normally
visible before editing this file) . the syntax of this awtinvoke functionality is simply:
awtinvoke(javaObj, jniMethodStr, param1, ... , paramN, @cbFunction, cbParam1, ... ,
cbParamM) .

In the following code snippet, all invocation forms of the setSize() method are equivalent .
Note that invocations using awtinvoke queue their execution on the Java EDt, while the other
forms execute setSize() immediately, in the main Matlab thread:

>> newDim = java.awt.Dimension(20,30);
>> dim.setSize(newDim);
>> setSize(dim,newDim);
>> javaMethod('setSize', dim, newDim);
>> javaMethodEDT('setSize', dim, newDim); % use EDT, MaTLaB 7.6 +

>> % awtinvoke JNI interface for all MaTLaB versions not just 7.6 +
>> awtinvoke(dim,'setSize(Ljava.awt.Dimension;)',newDim); % use EDT
>> dim.awtinvoke('setSize(Ljava.awt.Dimension;)',newDim); % use EDT

Several common generic Java converter methods are used in Matlab in a very intuitive
manner: Java’s equals() method is invoked when Matlab needs to use isequal; toString() is
invoked whenever Matlab needs to use disp to display a class:

>> url = java.net.URL('http://www.cnn.com')
url =
http://www.cnn.com <= note the use of toString() here

all primitive Java types have corresponding Matlab types and the conversion is usually
transparent and intuitive to the user .25 the toChar() and toDouble() Java methods are invoked
when Matlab’s char and double type-casting functions are used .

Note that conversions that seem trivial are sometimes not automatically done by Matlab .
For example, if a Java method expects a java.lang.Comparable, an interface which java.
lang.String honors, Matlab still fails to send a Matlab string (‘abcd’) to that function

K13163_Book.indb 17 11/8/2011 8:06:20 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming18

by automatic type casting — we need to help Matlab with an explicit type cast: java.
lang.String('abcd') . a real-life example is presented in Section 3 .5 .1 .

It should also be noted that automatic-type conversion occurs only when passing data from
Matlab to Java, but only partially on the reverse path . On the reverse path (from Java to
Matlab), scalar built-in (primitive) numeric values are converted into Matlab doubles,
and Java booleans into Matlab logical values . It is only object types which are not auto-
matically converted . the full list of automatic and nonautomatic conversions is documented in
Matlab’s External Interfaces/Java section .

In the code snippet above, ‘http://www .cnn .com’ is a Matlab char string which is auto-
matically converted into the java.lang.String object that is expected by the java.net.
URL constructor . On the reverse path, the output of the toString() method is not converted into
a Matlab char string, and the result remains a java.lang.String object . It is left up to
the Matlab programmer to convert this into a Matlab char string:

>> urlName = url.toString
urlName =
http://www.cnn.com

>> urlName2 = char(url.toString);

>> whos urlName*
 Name Size Bytes Class attributes
 urlName 1x1 java.lang.String
 urlName2 1x18 36 char

another important difference between passing data to and from Java is that all data passed
from Matlab to Java except for object references are passed by value, whereas all objects
(nonprimitive types) returned from Java are passed by reference . this means that arrays/structs
passed from Matlab cannot be modified by Java methods . Conversely, modifications by
Matlab of a returned (referenced) object will affect the original Java object . therefore, if
you wish the Java method to modify Matlab data, you need to encase this data in a Java
reference, using Matlab’s javaArray function .

Note: try to minimize the number or frequency of invoked Java method calls, because
Matlab creates a large number of temporary objects upon each call, and this can bog
down the JVM with frequent garbage collection . Whenever possible, try to use Java meth-
ods that group internal Java methods .26

Java exceptions are converted into Matlab errors that can be caught and handled using
Matlab’s built-in try-catch mechanism, just like regular Matlab errors:

>> hash = java.util.Hashtable;
>> iter = hash.keys;
>> iter.nextElement
??? Java exception occurred:
java.util.NoSuchElementException: Hashtable Enumerator
 at java.util.Hashtable$EmptyEnumerator.nextElement(Unknown...)

K13163_Book.indb 18 11/8/2011 8:06:20 PM

© 2012 by Taylor & Francis Group, LLC

19Introduction to Java in MATLAB®

>> try iter.nextElement, catch err = lasterror, end
err =
 message: [1x150 char]
 identifier: 'MaTLaB:Java:GenericException'
 stack: [0x1 struct]

>> disp(err.message)
Java exception occurred:
java.util.NoSuchElementException: Hashtable Enumerator
 at java.util.Hashtable$EmptyEnumerator.nextElement(...)

Note that Matlab only catches errors/exceptions thrown on the main Matlab thread .
Exceptions thrown asynchronously, by the aWt (Java GUI) event thread (EDt), are displayed
on the Command Window and to the best of my knowledge cannot be caught or suppressed by
Matlab as of release 7 .12 (R2011a) .†

Java GUI components often use an actionMap27 to store runnable actions28 that are
invoked by listeners on mouse, keyboard, property, or container events .29 Unlike object methods,
actions cannot be directly invoked by Matlab . However, we can use the following
workaround:

import java.awt.event.actionEvent;
action = hObject.getactionMap.get(actionName);
actionEvent = actionEvent(hObject, actionEvent.aCTION_PERFORMED, '');
 % Note: we can use either '' or actionName when creating actionEvent
action.actionPerformed(actionEvent);

% Or, for an EDT-safe action invocation:
awtinvoke(action,'actionPerformed(Ljava.awt.event.actionEvent;)', ...
 actionEvent);

this workaround can be used to force display of a GUI component’s tooltip (in this case,
actionName is simply ‘posttip’) .30

1.4 Java Events and MATlAB Callbacks31

When loading Java classes into Matlab, Matlab callbacks are automatically assigned to
their corresponding Java events . Refer to the following Java class example:32

public class EventTest
{
 private java.util.Vector data = new java.util.Vector();
 public synchronized void addMyTestListener(MyTestListener lis) {
 data.addElement(lis);
 }

† there is an internal class called com.mathworks.mwswing.EdtExceptionHandler with a single property
named SuppressingHandledExceptions, which appears by name to control exactly this, but unfortunately does not .

K13163_Book.indb 19 11/8/2011 8:06:21 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming20

 public synchronized void removeMyTestListener(MyTestListener lis) {
 data.removeElement(lis);
 }
 public interface MyTestListener extends java.util.EventListener {
 void testEvent(MyTestEvent event);
 }

 public class MyTestEvent extends java.util.EventObject {
 private static final long serialVersionUID = 1L;
 public float oldValue,newValue;
 MyTestEvent(Object obj, float oldValue, float newValue) {
 super(obj);
 this.oldValue = oldValue;
 this.newValue = newValue;
 }
 }

 public void notifyMyTest() {
 java.util.Vector dataCopy;
 synchronized(this) {
 dataCopy = (java.util.Vector)data.clone();
 }

 for (int i = 0; i<dataCopy.size(); i + +) {
 MyTestEvent event = new MyTestEvent(this, 0, 1);
 ((MyTestListener)dataCopy.elementat(i)).testEvent(event);
 }
 }
}

When compiling EventTest.java, three class files are created: EventTest.class,
EventTest$MyTestEvent.class, and EventTest$MyTestListener.class . after placing them on
Matlab’s Java classpath (see Section 1 .1), they can be accessed as described above

>> which EventTest
EventTest is a Java method % EventTest constructor

>> evt = EventTest
evt =
EventTest@16166fc

>> evt.get
 Class = [(1 by 1) java.lang.Class array]
 TestEventCallback =
 TestEventCallbackData = []

 BeingDeleted = off
 ButtonDownFcn =
 Children = []
 Clipping = on
 CreateFcn =
 DeleteFcn =
 Busyaction = queue
 HandleVisibility = on

K13163_Book.indb 20 11/8/2011 8:06:21 PM

© 2012 by Taylor & Francis Group, LLC

21Introduction to Java in MATLAB®

 HitTest = on
 Interruptible = on
 Parent = []
 Selected = off
 SelectionHighlight = on
 Tag =
 Type = EventTest
 UIContextMenu = []
 UserData = []
 Visible = on

>> set(evt)
 Class
 TestEventCallback: string -or- function handle -or- cell array

 ...

>> set(evt,'TestEventCallback',@(h,e)disp(h))

>> get(evt)
 Class = [(1 by 1) java.lang.Class array]
 TestEventCallback = [(1 by 1) function_handle array] <= ok
 TestEventCallbackData = []
 ...

>> evt.notifyMyTest % invoke Java event
 0.0009765625 % <= MaTLaB callback

Note how Matlab automatically converted the Java event testEvent, declared in
interface MyTestListener, into a Matlab callback testEventCallback (the first
character is always capitalized) . all Java events are automatically converted in this fashion,† by
appending a “Callback” suffix . Here is a code snippet from R2008a’s \toolbox\matlab\uitools@
opaque\addlistener .m that shows this (slightly edited):

hSrc = handle(jobj,'callbackproperties');
allfields = sortrows(fields(set(hSrc)));
for i = 1:length(allfields)
 fn = allfields{i};
 if ~isempty(findstr('Callback',fn))
 disp(strrep(fn,'Callback',''));
 end
end

callback = @(o,e) cbBridge(o,e,response);
hdl = handle.listener (handle(jobj), eventName, callback);
function cbBridge(o,e,response)
 hgfeval(response, java(o), e.JavaEvent)
end

Note that hgfeval, which is used within the cbBridge callback function, is a semi-
documented pure-Matlab built-in function .33

† this is not always true for non-Java objects .

K13163_Book.indb 21 11/8/2011 8:06:21 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming22

also note that there is no specific need in this particular case to use handle(evt, ‘CallbackPro-
perties’), although it also works and is generally advisable, as will be explained in Section 3 .4:

>> hevt = handle(evt,'CallbackProperties')
hevt =
javahandle_withcallbacks.EventTest

>> set(hevt,'TestEventCallback',@(h,e)disp(h))

>> hevt.get
 Class: [1x1 java.lang.Class]
 TestEventCallback: @(h,e)disp(h)
 TestEventCallbackData: []

If several events have the same case-insensitive name, then the additional callbacks will have
an appended underscore character (e .g ., “testEventCallback_”):†

// In the Java class:
public interface MyTestListener extends java.util.EventListener {
 void testEvent(MyTestEvent e);
 void testevent(TestEvent2 e);
}

% ...and back in MaTLaB:
>> evt = EventTest; evt.get
 Class = [(1 by 1) java.lang.Class array]
 TestEventCallback =
 TestEventCallbackData = []
 TestEventCallback_ =
 TestEventCallback_Data = []
 ...

If there are several such additional callbacks, they will all have the same name, causing
 run-time errors and a locking of the object, preventing property value update:

// In the Java class:
public interface MyTestListener extends java.util.EventListener {
 void testEvent(MyTestEvent e);
 void TestEvent(MyTestEvent e);
 void testevent(TestEvent2 e);
}

% ...and back in MaTLaB:
>> evt = EventTest; evt.get
 Class = [(1 by 1) java.lang.Class array]
 TestEventCallback =
 TestEventCallbackData = []
 TestEventCallback_ =

† Unfortunately, the classhandle events are not differentiated in a similar manner — in this case, only a single event is
created, named Testevent . classhandle events, and their relationship to the preceding discussion, are described later in
this section .

K13163_Book.indb 22 11/8/2011 8:06:21 PM

© 2012 by Taylor & Francis Group, LLC

23Introduction to Java in MATLAB®

 TestEventCallback_Data = []
 TestEventCallback_ =
 TestEventCallback_Data = []
 ...

>> set(evt,'TestEventCallback','123')
??? Error using = = > set
attempt to write a locked object.

to complete this discussion, it should be noted that Matlab also automatically defines
corresponding Events in the Java object’s classhandle (see appendix b for details):

>> ch = classhandle(handle(evt))
ch =
 schema.class
>> get(ch)
 Name: 'EventTest'
 Package: [1x1 schema.package]
 Description: ''
 accessFlags: {0x1 cell}
 Global: 'off'
 Handle: 'on'
 Superclasses: [0x1 handle]
 SuperiorClasses: {0x1 cell}
 InferiorClasses: {0x1 cell}
 Methods: [11x1 schema.method]
 Properties: [3x1 schema.prop]
 Events: [1x1 schema.event]
 JavaInterfaces: {0x1 cell}

>> get(ch.Properties,'Name')
ans =
 'Class'
 'TestEventCallback'
 'TestEventCallbackData'
>> get(ch.Events)
 Name: 'TestEvent'
 EventDataDescription: [1x142 char]

>> ch.Events.EventDataDescription
ans =
JavaEventData:
 Source: the Java object initiating the event
 Type: the name of the Java event
 JavaEvent: the Java event object

Unfortunately, differently capitalized classhandle events are not differentiated as Java
events . For the Java events TestEvent, testEvent, and testevent, only a single
classhandle event is created, named Testevent . this is the name of the last declared event with
a capitalized leading character, which is the classhandle standard .

K13163_Book.indb 23 11/8/2011 8:06:21 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming24

In some cases, users of Java classes encountered problems when trying to use Java Events as
Matlab callbacks . loading the Java class using the static rather than the dynamic classpath
(see Section 1 .1) has reportedly solved this problem .34

Finally, note an alternative to using callbacks on Java events, as shown above: we could also
use undocumented handle.listeners for the same effect (see appendix b):

hListener = handle.listener(handle(evt), 'TestEvent', callback);

Java-based events can be used to easily transfer execution to Matlab code, without need-
ing complex JMI mechanisms (see Chapter 9) . In one specific case, a CSSM reader wanted to
use Java threads to periodically invoke Matlab code .35 Instead of using JMI, the Java thread
could simply notify an object’s event, where that event is already listened-to within Matlab .
then, when the thread evokes the event, the Matlab callback is invoked and execution trans-
fers to the Matlab code .

It is sometimes necessary to trigger an object event programmatically (synchronously), at a
specific predetermined Matlab program execution point . this can be done using the undoc-
umented built-in send function, as follows:

send(handle(evt),'TestEvent');

Custom EventData can be set for the raised event by specifying an optional third argument
of type handle.event .

Note that events that were invoked using send will only trigger callbacks that were set using
the handle.listener function — regular callbacks that were set by setting the object’s corre-
sponding callback property will not be triggered .

1.5 Safe Java Programming in MATlAB — A How-to Guide

as already mentioned, there are several potential pitfalls when programming using Matlab–
Java . this section provides a suggested general programming guide for this environment .
Programmers who abide by these suggestions should hopefully avoid most of the major pitfalls .

In this book’s code snippets, I have often neglected to use these rules . this was done merely
for book space considerations, but care should be taken while writing real code .

Rule #1: Program Defensively

Never assume that the code will execute as expected: it may behave differently on different
computers; it may depend on some hidden timing order; it may depend on a particular JVM
major or minor version or for that matter on a specific Matlab release, it may depend on a
specific user action sequence, and so on .

In short, the code may depend on things that we have never suspected and which may not
even be under our control . When any of these dependencies fail, so will our code .

K13163_Book.indb 24 11/8/2011 8:06:21 PM

© 2012 by Taylor & Francis Group, LLC

25Introduction to Java in MATLAB®

While this is possible also in fully documented/supported code, it is especially important in
undocumented/unsupported code such as the Matlab–Java interface .

the solution is simple: program defensively . lavish the code with trycatch blocks to catch
and handle run-time exceptions, and always test return values for illegal or unexpected values .
In cases where you run some Java code on which you depend, proactively test the code’s suc-
cessful completion (e .g ., test the new GUI component’s visibility flag) .

try
 % Execute doSomething()
 value = javaObject.doSomething();

 % Check the return value
 if (value ~= 0)
 % error handling
 else
 % ok – continue normally
 end
catch
 % exception handling
end

% Execute doSomething(), no ret val
javaObject.doSomething();

% continue normally without checking

 Do Don't

Rule #2: Never Forget EDt

Whenever you program anything in Java that is displayed onscreen (as opposed to doing
some non-GUI computational task), always remember to use the Event Dispatch thread
(EDt, explained in detail in Section 3 .2) .

Neglecting to use EDt is very tempting: the code is simpler and it will even work most of
the time . but every now and then, our GUI (and Matlab itself) will hang, crash, or behave
in entirely unexpected ways . Ouch . . .!

In practice, especially for Matlab versions since R2008b (7 .7), using EDt is relatively
painless: simply lavish the code with javaObjectEDT function calls whenever you create or use
any Java reference for the first time . Matlab’s internal EDt-auto-delegation will then take
over all the dirty work . Unfortunately, there is no such magic wand for Matlab versions
earlier than R2008b .

% Create a JButton on the EDT
jButton = javax.swing.JButton('OK');
jButton = javaObjectEDT(jButton);

% R2008b + : rely on EDT auto-delegation
jButton.setLabel('also OK');

% R2008a-: use awtinvoke()
awtinvoke(jButton, ...
 'setLabel(java.lang.String)',
 'also OK');

% Create a JButton on Main Thread
jButton = javax.swing.JButton('OK');

% Not ok – might cause problems...
jButton.setLabel('Not OK');

 Do Don't

K13163_Book.indb 25 11/8/2011 8:06:21 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming26

Rule #3: Use handle(. . .,‘CallbackProperties’)

Whenever you plan to use an event callback on a Java reference, never set the callback on
the naked (un-handled) Java reference, but always on the handled reference, as explained
in Section 3 .4 . Failing to do so will result in memory leaks and occasional run-time
errors, whereas using handled appears to carry no penalty other than slight extra code
complication .

% Create a handled JButton reference
jButton = javax.swing.JButton('OK');
hButton = handle(jButton,...
 'CallbackProperties');
% Set the requested callback
set(hButton,'MouseClickedCallback',...)

% Create a naked JButton reference
jButton = javax.swing.JButton('OK');

% Set the requested callback
set(jButton,'MouseClickedCallback',...)

Do Don't

Rule #4: Use Java Property accessor Methods

Matlab has a very convenient way to access Java objects’ property values: we can use the
built-in get and set functions to, respectively, retrieve and modify the specified object’s property
values .

Unfortunately, using get and set on naked Java references causes memory leaks and should
be avoided . In R2010b, a warning is even displayed in the Command Window whenever we
attempt to do so .

Instead, either use get and set on the handled Java reference (see Rule #3), or better still use
the object’s natively supported property accessor methods, which are typically named getProp-
ertyName or isPropertyName (is for boolean [logical flag] properties; get for all the others),
and setPropertyName .

% Use set on handled Java reference
set(hButton,'Label','This is OK');

% Use the native Java accessor method
jButton.setLabel('Even better');

% Use set on naked Java reference
set(jButton,'Label','Not OK')

Do Don't

Rule #5: Concentrate Undocumented Code

Concentrate as much of the code that uses undocumented features in a single location — a
single function or m-file . this way, if and when our code breaks under a specific set of circum-
stances (e .g ., new Matlab release or a different running platform), it will be easier to diag-
nose and possibly fix the affected code . If the undocumented-features-dependent code is

K13163_Book.indb 26 11/8/2011 8:06:21 PM

© 2012 by Taylor & Francis Group, LLC

27Introduction to Java in MATLAB®

scattered throughout the entire program, then we would effectively need to diagnose and debug
the entire program . Ouch, not again . . .!

Rule #6: test backward Compatibility

as a corollary to Rule #1, try to test the code, especially sections that rely on undocumented
features, on earlier Matlab releases . In some cases, Matlab has modified the interface
and/or behavior of its internal Java classes across Matlab releases . Since we often cannot
know in advance on which Matlab release our code will run, it makes sense to test our code
on at least one old Matlab release .

an example of using this rule (together with Rule #1) is given in Section 8 .3:

try
 cmdWinFrame = cmdWin.getTopLevelancestor; % MaTLaB 7
catch
 cmdWinFrame = cmdWin.getTopLevelWindow; % MaTLaB 6
end

1.6 Compiling and Debugging User-Created Java Classes
in MATlAB

Matlab comes pre-bundled with a vast number of Java classes that are available for immedi-
ate use in any Matlab program, as we have seen above . However, it is sometimes useful to
have a user-created Java class . Such classes may be an extension of an existing class with some
functionality, or perhaps an entirely new class .

Matlab runs directly from the source m-files, creating the executable code on-the-fly .
Java, on the other hand, needs a compiled (class) file to run and cannot run directly from the
source (java) file . When we use any of the Matlab-bundled Java classes mentioned
above, we are actually using a precompiled class file, the source code for which is not
 available . For our user-created classes, we need to compile our source files into similar
class files .

We have two options for compiling user classes: we can either use a standalone Java compiler
or use an integrated Java development environment (IDE) .

there are many Java compilers, but the simplest is probably the javac compiler, which is
part of the official Java Development Kit (JDK), which can be downloaded from http://java .
sun .com/javase/downloads/previous .jsp and used freely . While doing so, ensure to use a JVM
version not newer than the one used by the Matlab version, as reported by the “version
-java” command in the Matlab desktop (see details in Section 1 .8) . For example, if our
application is meant to target Matlab R2007a (7 .4), which uses JVM 1 .5, then we should
be careful to compile using JDK 1 .5 rather than the latest version (1 .6) .36 In practice, JVM

K13163_Book.indb 27 11/8/2011 8:06:21 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming28

1 .5 provides almost all the functionalities of 1 .6, while enabling backward compatibility with
all Matlab releases since 2005 (R14 SP2 a .k .a 7 .0 .4) . to provide earlier backward compat-
ibility, you will need to use JDK 1 .4 .2 or even 1 .3, but these JDKs lack important Java func-
tionality (e .g ., Generics) . In summary, I suggest to normally compile with JVM 1 .5, except
in rare cases .

to use the javac compiler, simply run “javac MyJavaClass.java” from the operating
system’s command line, replacing “MyJavaClass” with the actual name of the class . If the
class uses some other classes, indicate their classpath location using the –cp command-line
switch . If the source code has errors, they will be reported . Otherwise, we will get a file called
MyJavaClass.class which should now be placed in Matlab’s dynamic or static Java class-
path (see Section 1 .1) .

Note: Java classes must be placed in files that are named exactly like their contained class .
So, class MyJavaClass must be placed in MyJavaClass.java .

a much preferred alternative to javac is to use a Java IDE . there are several excellent free
and commercial IDEs . two of the best free IDEs are Eclipse37 and Netbeans38 (some other
popular Java IDEs are Jbuilder, IntelliJ, and JDeveloper, but I will only discuss Eclipse and
Netbeans below) . there is an active “religious war” among developers regarding which of
these IDEs is better In all IDEs, compilation is done on the fly, and errors are visually dis-
played next to their offending source . It is also easy to modify the compiler to use an earlier
JDK, a need that was explained above .†

Once the class file is generated, we need to place it in Matlab’s Java classpath, as explained
in Section 1 .1 . this can be done either dynamically (using javaaddpath or javaclasspath),
 statically by adding the class path-name to the classpath.txt file (which(‘classpath.txt’)), or by
adding the class file to one of the classpath folders .

Java classes are not reloaded automatically by Matlab, when recompiled outside
Matlab . to reload a modified Java class, we need to restart the JVM by restarting Matlab .
For classes placed on the dynamic classpath, you can try Matlab’s clear(‘java’) command,
while remembering its side effect of clearing all globals . However, this does not always work
(e .g ., if the class signature has changed) .

Expert Java programmers can try to use Paul Milenkovic’s suggestion39 for a proxy class-
loader, as an alternative to restarting Matlab or clearing Java . as Dan Spielman explains,40
“the rough idea is that you create a classloader for your class, and then access it through the

† an Eclipse plugin for Matlab called Matclipse (http://itp .tugraz .at/wiki/index .php/Matclipse or http://bit .ly/huUIXZ)
was developed, but never released . a user request to have an official Eclipse Matlab plugin has generated some inter-
est from Scott Hirsch, Matlab’s product manager (http://linkd .in/dUh2g7), so perhaps this will be added in some
future Matlab release .

K13163_Book.indb 28 11/8/2011 8:06:22 PM

© 2012 by Taylor & Francis Group, LLC

29Introduction to Java in MATLAB®

classloader . after you recompile, you kill the classloader and then create a new instance of it,
which then reads the recompiled class” .†

In practice, I suggest restarting Matlab after Java classes are recompiled, even when this
is not strictly necessary . It may save a lot of frustrating debugging and chasing down errors that
only happen because Matlab keeps an old class in memory .

this brings us to the issue of debugging . When using user-created Java classes in Matlab,
we often need to debug the Java code . there are many online resources for debugging
Java code .41 a general advice when creating such Java classes is to remember to set public
visibility to all Java elements (fields/methods/classes) that need to be visible in Matlab, oth-
erwise we will encounter hard-to debug problems .42

Unfortunately, Matlab’s built-in debugger can only debug the Matlab code, stepping
over Java invocations . there are two basic approaches for debugging the Java code:

the simplest way is to add debug printouts within the Java code . these printouts will be
displayed on the Java console, which in Matlab JVM’s case is redirected to the Matlab
Command Window . It is ugly but it works:

public int myMethod(int row, int column, double value) {
 System.out.println(row + "," + column + "=> value: " + value);
 // do something useful here...
}

the down-side to this approach is that whenever printouts should be modified or removed,
the Java code needs to be recompiled .

a slight improvement of this stone-age debugging is to include a debug flag that can be
turned on/off at will . the drawback is that, while preventing the need for recompilation, the
compiled class remains unnecessarily bloated even after all the development debugging has
ended and the debugging framework is no longer needed:

public class MyClass
{
 private boolean _debug = false;

 public void setDebug(boolean flag) {
 _debug = flag;
 }

 public int myMethod(int row, int column, double value) {
 if (_debug) {
 System.out.println(row + "," + column + "=> " + value);
 }

† Java classloader issues are a sore point in advanced Matlab–Java integration . another such example is presented in
Section 2 .2 .2 (Connecting to a Database) . this has also been referenced in several CSSM and StackOverflow threads
(e .g ., http://bit .ly/hEaCWD, which sheds some light on the internal mechanism) .

K13163_Book.indb 29 11/8/2011 8:06:22 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming30

 // do something useful here...
 }
}

a significantly more powerful method of debugging entails step-by-step debugging using a
Java integrated debugger/editor (IDE) . a very simple and useful trick is to add a public
static main method to the Java class, thereby enabling it to run (and be debugged) as a
standalone Java application in the Java IDE . Once you have fully debugged the class in the Java
IDE, it can be used in Matlab .

to connect the Java IDE to a running Matlab, simply start Matlab with the jdb (Java
debugger) flag and then connect the Java debugger to the Matlab process via default port
4444, as described by brad Phelan:43

matlab -jdb

Matlab will now display the following message when it starts:

JVM is being started with debugging enabled.
Use "jdb -connect com.sun.jdi.Socketattach:port = 4444" to attach debugger.

Note that the –jdb flag is incompatible with some other startup flags (e .g ., -nojvm and -nos-
plash) . Matlab may fail to start if incompatible startup flags are specified .

also note that this works only on Matlab installations having JVM 1 .5 or higher (i .e .,
Matlab release 7 .0 .4 (R14 SP2) and higher), which supports remote debugging .44 For earlier
releases, add –Xdebug and –Xrunjdwp options to the java.opts file (see Section 1 .9) . Each
option must be placed on a separate line in the java.opts file:

-Xdebug

and one of the following (the second is for Windows platforms only):45

-Xrunjdwp:transport = dt_socket,address = 4444,server = y,suspend = n
-Xrunjdwp:transport = dt_shmem,address = matlab,server = y,suspend = n

these options are incompatible with some Matlab versions/platforms (particularly mod-
ern Matlab releases), causing Matlab to fail to start without any generated error message
explaining what happened . In some cases, Matlab may fail to start after setting the java.
opts options due to a missing jdwp.dll library file required by the Java debugger, as explained
in MathWorks solution 1-OVU1l .46 also, java.opts options apply to all the Matlab ses-
sions, whereas the –jdb startup flag can be specified only for the rare sessions in which
Matlab–Java debugging is required . this is important since the remote Java debugging
entails some overhead on the Matlab/Java side, which, in most cases, when debugging is
unneeded, is undesirable .

Here is the complete Matlab–Java debugging process, adapted from a post by Ed Yu on
CSSM .47 this applies to Eclipse IDE, but can easily be adapted for other IDEs:

K13163_Book.indb 30 11/8/2011 8:06:22 PM

© 2012 by Taylor & Francis Group, LLC

31Introduction to Java in MATLAB®

 1 . Create an Eclipse project (we must use JDK 1 .5 or above); to include the source code
of the Java classes, remember the folder where you put the output classes when you
defined the project .

 2 . Start Matlab with the –jdb command-line startup option (or on pre-R14 Matlab
releases, use the java.opts modification that was explained above) .

 3 . In Matlab, add the folder of the output classes from step 1 into Matlab’s java-
classpath . We can use either static or dynamic classpath here .

 4 . In Eclipse, add a “Remote Java application” debug configuration: Set Connection
type “Standard (Socket attach)”, Host “localhost”, Port 4444 .

Attaching the Eclipse debugger to a running local MAtlAb process

 5 . Now click the “Debug” button to debug the “Remote Java application” in Eclipse . If
Eclipse fails to connect to Matlab, you will see an error message; otherwise, you
will see no message and will be able to proceed onward .

 6 . Place a breakpoint in the Java code within Eclipse .
 7 . back in Matlab, instantiate or execute the Java code . You should see the breakpoint

popping up in Eclipse when Matlab calls the Java code and reaches the first
breakpoint .

K13163_Book.indb 31 11/8/2011 8:06:22 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming32

the steps for using Netbeans IDE are very similar: Instead of steps #4 and 5, simply select
Debug/attach Debugger from the main menu or toolbar, and then select Socketattach to port
4444 or Processattach to the Matlab process ID (which is actually the JVM’s process ID) .
Socket attachment is useful for remote (intercomputer) debugging, while process attachment
is useful for local (same computer) debugging . Netbeans will automatically attempt the
debug connection upon pressing the OK button, and will then display Matlab’s threads in
a new threads panel, or report an error if the connection failed for any reason:

Attaching Netbeans debugger to a specific socket (useful for remote debugging)

Attaching Netbeans debugger to a specific process (useful for local debugging)

K13163_Book.indb 32 11/8/2011 8:06:23 PM

© 2012 by Taylor & Francis Group, LLC

33Introduction to Java in MATLAB®

Netbeans IDE debugger attached to a running MAtlAb Process

With Netbeans (and possibly also Eclipse), there is a reported problem that Matlab locks
the generated JaR files, preventing recompilation in the IDE . a CSSM-suggested workaround
is to point Matlab’s javaclasspath to the Java project’s build/classes folder, rather than to the
JaR file .48 When Java files are modified and saved in the IDE, they are automatically recom-
piled and reloaded by Matlab .

Profiling memory and CPU usage of Java classes can be done in several ways: we can of
course use the facilities available in our chosen Java IDE . both Eclipse49 and Netbeans50 have
extensive support for this, with many important plugins for both IDEs to provide a clear picture .
at a very basic level (outside the IDE), we can turn on instruction (-Xt) and method (-Xtm) trac-
ing via java.opts .51 We can even generate an hprof text file of called methods and timing, simi-
lar to Matlab’s profiler .52

Ed Yu has posted a detailed post about debugging a Java class called from within Matlab .53
He has also posted detailed accounts of his experience, first using a Jbuilder/Eclipse-integrated
OptimizeIt profiler,54 then using an external JProfiler application,55 and finally using an exter-
nal YourKit Java profiler .56

Matlab’s built-in profiler can also be used . It does not profile the internal steps within the
Java methods and reports the Java profile data at the class (not method) level . this is much less
useful than the other profilers, but may still be sufficient for simple Matlab–Java integration

K13163_Book.indb 33 11/8/2011 8:06:24 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming34

tasks . and there is no beating the ease-of-use of using Matlab’s integrated profiler, detailing
both Matlab and Java calls at the same place:

MAtlAb’s integrated Profiler displaying information about Java methods (see bottom row)

Memory profiling is normally part of the profiling tools, but also has some dedicated tools .
First, note there are several JVM switches that can be turned on in java.opts: -Xrunhprof[:help]|
[:option = value, . . .], -Xprof, -Xrunprof, -XX: +PrintClassHistogram and so on .57 there are
several memory-monitoring (“heap-walking”) tools: the standard JDK jconsole, jmap, jhat, and
jvisualvm (with its useful plugins) provide good basic coverage . MathWorks has posted a tuto-
rial on using jconsole with Matlab .58 there are a number of other third-party tools such as
JMP (for JVMs 1 .5 and earlier)59 or tIJMP (for JVM 1 .6) .60 Within Matlab, we can use
utilities such as Classmexer61 to estimate a particular object's size or use java.lang.
Runtime .getRuntime()’s methods62 (maxMemory(), freeMemory() and totalMemory()) to
monitor overall Java memory .

Starting in Matlab 7 .13 (R2011b), we can use the built-in Java memory monitor:

com.mathworks.xwidgets.JavaMemoryMonitor.invoke

MAtlAb 7.13 (R2011b)’s new Java memory monitor

K13163_Book.indb 34 11/8/2011 8:06:25 PM

© 2012 by Taylor & Francis Group, LLC

35Introduction to Java in MATLAB®

to complete the picture, note that there are several dedicated tools for Java code analysis that
can be used for static or dynamic code coverage and analysis reports .63

1.7 Compatibility Issues

While supporting a large subset of the core Java functionality, some advanced Java constructs
are not accessible via Matlab .† Use of Generics,64 introduced in J2SE 5 (Matlab 7 .0 .4,
R14 SP2), is an example of one such unsupported Java functionality:

>> jCollection = javaObject('java.util.Collection<java.lang.String>');
??? Error using ==>javaObject
No class java.util.Collection<java.lang.String> can be located on Java
classpath

also, Matlab cannot invoke Java code that is not class-wrapped . always remember that
the JVM shipped with Matlab is only used to enable Matlab to access Java classes, not
to act as an internal Java interpreter . For similar reasons, Java interfaces, annotations, and
anonymous classes and methods (typically used by event callback actions) cannot be directly
accessed from Matlab . However, this is not a big limitation, since the Matlab program-
ming language is very powerful . Java code can often be ported into Matlab, or used as-is via
class or object reference .

another limitation is that inner classes and enumerations cannot be accessed directly: Inner
classes can only be accessed via javaObject/javaMethod using ‘ParentClass$InnerClass’
$-notation, but not via the expected standard ParentClass .InnerClass dot-notation . accessing
enumerations is even more awkward, and using $-notation is not sufficient .

For example, JVM 1 .6 (in Matlab 7 .5 R2007b onward) enabled access to the new trayIcon
functionalities (see Section 3 .6) . One of its functionalities is displaying a message next to the
tray icon, using java.awt.TrayIcon.displayMessage() . this method expects an object of
type java.awt.TrayIcon.MessageType,65 which is an enumeration within the TrayIcon
class . However, Matlab’s dot-notation does not recognize what should have been the follow-
ing correct notation, so we need to resort to Java reflection:

>> trayIcon.displayMessage('title', 'info msg', ...
 TrayIcon.MessageType.INFO);
??? No appropriate method or public field MessageType for class java.awt.
TrayIcon

>> trayIconClasses = trayIcon.getClass.getClasses;
>> trayIconClasses(1)
ans =
class java.awt.TrayIcon$MessageType < =hurray!!!

† these constructs may be interesting only to readers with advanced Java knowledge; other readers may safely skip this
section .

K13163_Book.indb 35 11/8/2011 8:06:25 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming36

>> MessageTypes = trayIconClasses(1).getEnumConstants
MessageTypes =
java.awt.TrayIcon$MessageType[]:
 [java.awt.TrayIcon$MessageType] <= 1: ERROR
 [java.awt.TrayIcon$MessageType] <= 2: WaRNING
 [java.awt.TrayIcon$MessageType] <= 3: INFO
 [java.awt.TrayIcon$MessageType] <= 4: NONE
>> trayIcon.displayMessage('title','info msg',MessageTypes(3));

We can also access Java enums using their built-in values() and valueOf() methods:

>>
msgType = javaMethod('valueOf','java.awt.TrayIcon$MessageType','I
NFO')
msgType =
INFO <= a java.awt.TrayIcon$MessageType object

>> enums =
cell(javaMethod('values','java.awt.TrayIcon$MessageType'));
>> msgType = enums{3}; % alternative way to find the INFO
enum value

>> cellfun(@(c)c.toString.char, enums, 'uniform',false)'
ans =
 'ERROR' 'WaRNING' 'INFO' 'NONE'

Inner classes can also be accessed using the Java classloader, although this is more
cumbersome .66

trying to access internal static fields in java.nio.channels.FileChannel.
MapMode,67 in order to use them to create a memory-mapped file using FileChannel .
map(. . .), is similarly problematic .68 luckily, in this case, we have the built-in memmapfile
Matlab function as a much simpler alternative, but for the record, we could do this:

>> channel = java.io.FileInputStream('234.jpg').getChannel
channel =
sun.nio.ch.FileChannelImpl@1c7a5d3 <= which extends FileChannel

>> innerClasses = ch.getClass.getSuperclass.getDeclaredClasses;
>> innerClasses(1)
ans =
class java.nio.channels.FileChannel$MapMode

>> read_only_const = innerClasses(1).getField('REaD_ONLY').get(1)
read_only_const =
REaD_ONLY <= a java.nio.channels.FileChannel$MapMode object

K13163_Book.indb 36 11/8/2011 8:06:25 PM

© 2012 by Taylor & Francis Group, LLC

37Introduction to Java in MATLAB®

>> fields = innerClasses(1).getFields;
>> read_only_const = fields(1).get(1); % an alternative

>> buffer = channel.map(read_only_const, 0, channel.size);

1.8 Java Versions in MATlAB

1.8.1 Pre-Bundled JVM Versions
as noted above, since R12 Matlab has always shipped with a bundled Java engine (JVM),
on all supported Matlab platforms except Mac OS X (where Matlab uses the Mac OS’s
JVM;69 note that apple will reportedly discontinue its internally ported JRE in future Mac OS
releases) . this pre-bundled Java engine has the benefit of hiding the nuts and bolts from the
user, while gaining access to a full-fledged Java engine .

there are drawbacks to Matlab’s use of a pre-bundled JVM: there is a notable increase in
the installer and installed disk size, run-time memory, and CPU usage . also, the pre-bundled
Java engine is installed and used by Matlab, even if the user already has another JVM
installed, and even if Matlab’s JVM version is older than the user’s version (Section 1 .8 .2
explains how to bypass this) . a bundled JVM also means that Java applications called from
within Matlab (more on this later) may inadvertently close the calling Matlab applica-
tions, unless we are careful .70

Different Matlab releases have integrated progressively advanced JVM engines . the fol-
lowing list is for Windows platforms — other operating systems may vary slightly:71

Matlab Release Matlab Version JVM Version
R12 6.0 1.1.8
R12.1 6.1 1.3.0
R13 72 6.5 1.3.1
R14 7.0 1.4.2
R14 SP2 7.0.4 1.5.0 (J2SE 5)
R14 SP3 7.1 1.5.0
R2006a 7.2 1.5.0
R2006b 7.3 1.5.0
R2007a 7.4 1.5.0_07
R2007b 7.5 1.6.0 (Java SE 6)
R2008a 7.6 1.6.0
R2008b 7.7 1.6.0_04
R2009a 7.8 1.6.0_04
R2009b 7.9 1.6.0_12
R2010a 7.10 1.6.0_12
R2010b 7.11 1.6.0_17
R2011a 7.12 1.6.0_17
R2011b 7.13 1.6.0_17

K13163_Book.indb 37 11/8/2011 8:06:25 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming38

Each Matlab release, in addition to its internal Matlab-based enhancements, thus
included all the fixes and improvements included in the new Java engine . Java 1 .5, for example,
improved GUI performance and smoothness .

Some Matlab versions shipped with different releases of the same JVM version . For
example, R2008b (7 .7) shipped with JVM 1 .6 Update 4 (aka Java 1 .6 .0_04) for all platforms
except the apple Macintosh, whereas R2007b (7 .5) and R2008a (7 .6) shipped with the first 1 .6
release (update 0, so to speak) .†

On Macs, even R2009a still uses Java 1 .5 .0 update 16 (=1 .5 .0_16) . MathWorks explains that
apple’s Java 1 .6 was developed for Intel 64-bit Macs only, not for 32-bit (maci) applications
such as Matlab up to version 7 .7 (R2008b) .73 R2009a is a 64-bit application, but still uses the
older Java 1 .5 for some reason (possibly due to unsolved compatibility issues); however, R2009a
can be modified to use Java 1 .6 by setting the JaVa_JVM_VERSION environment variable, as
explained below . the 32- versus 64-bit issue is also to be blamed for the activation problem of
R2009a on Snow leopard — in this case, we actually need to switch Snow leopard’s from
using the default 64-bit Java 1 .6 (Java SE 6) to its nondefault 32-bit Java version . this is done
using Snow leopard’s Java Preferences utility from the /application/Utilities folder .74 after
activation, switch back to the 64-bit Java 1 .6 (Java SE 6) or Java 1 .5 (J2SE 5) .

the Matlab installer itself uses Java and may require installation of the bundled JVM
even if a newer JVM is already installed on the computer . We can safely approve the Matlab-
bundled Java installation, since it will install Java (or rather, JRE) in a subfolder of Matlab
(sys\java\jre) and will not affect the pre-existing JVM . after Matlab is installed, we can then
instruct Matlab to use the newer JVM, as explained below .

Some Matlab releases use Java features available only on the latest prebundled JVM .
this causes some errors on platforms that bundle with an older JVM . For example, Matlab
6 .5 (R13) shipped with JVM 1 .3 .1 on Windows and linux, but only 1 .1 .8 on alpha and SGI .
this caused the colormapeditor Matlab function to fail on alpha & SGI, since it requires
JVM 1 .3 and above .

a similar source of errors happens when trying to use Java classes compiled with a newer
JVM version than the one Matlab uses . In this case, the classes’ code may be incompatible
with Matlab’s JVM, causing a run-time error .

In some cases, the bundled JVM fails to install, thereby preventing the main Matlab
installation . In such cases, search the Internet for the correct JVM version and install it sepa-
rately, then rerun the Matlab installer . If all goes well, then the Matlab installer will
detect the JVM and continue with the main Matlab installation process .75

to see Matlab’s JVM version, type the following at Matlab’s command prompt:

>> version –java
ans =
Java 1.1.8 from Sun Microsystems Inc.

† R2009a did not change the JVM (1 .6 .0_04); R2009b and R2010a shipped with update 12 (=1 .6 .0_12); R2010b uses
1 .6 .0_17 .

K13163_Book.indb 38 11/8/2011 8:06:26 PM

© 2012 by Taylor & Francis Group, LLC

39Introduction to Java in MATLAB®

1.8.2 Configuring MATlAB to Use a Different JVM
We may configure Matlab to use a JVM version different from the pre-bundled version, by
following the steps outlined here (taken from the MathWorks Support site) .76 In all cases, the
purpose is to point the Matlab_JaVa environment variable to the path of the JVM (i .e ., the
folder that contains the lib/rt.jar file):

Windows Nt/2000/XP ◾ :
 1 . Click on Settings in the Start Menu .
 2 . Choose Control Panel .
 3 . Click on System .
 4 . Choose the “Environment” tab (Nt) or the “advanced” tab and the “Environment
 Variables . . .” button .
 5 . Set/add a Matlab_JaVa system environment variable to your JVM path .

Windows 95/98/ME ◾ :
 1 . Open the C:\aUtOEXEC .bat file in any text editor .
 2 . add a line that points the Matlab_JaVa environment variable to your JVM
 path . For example,

 SET MaTLaB_JaVa = D:\jre
 or:
 SET MaTLaB_JaVa = "D:\Program Files\Java 1.3"

Unix/linux ◾ :

	 Set a Matlab_JaVa environment variable to your JVM path . For example,

 setenv MaTLaB_JaVa /usr/jre (csh shell)
or

 set MaTLaB_JaVa = /usr/jre; export MaTLaB_JaVa (sh shell)
or

 export MaTLaB_JaVa = /usr/jre (bash shell)

Macintosh ◾ :

	 Matlab always uses the Mac’s default JVM, not its prebundled version .77 to modify
the JVM in use, modify the JaVa_JVM_VERSION environment variable to the ver-
sion number (not path!) . For example,

 setenv JaVa_JVM_VERSION 1.5 (tcsh shell)
or

 export JaVa_JVM_VERSION = 1.5 (bash shell)

In rare cases, MathWorks itself advises to change the pre-bundled JVM to a newer78 or
older79 sub-version that fixes some specific error(s) . Some users found this fixes other prob-
lems .80 For example, installing Java 1 .6 solves the problem of running Matlab 7 .4 (R2007a)
and earlier on Windows 7,81 without requiring running in Vista SP2 compatibility mode with
Visual themes/Desktop disabled .82

K13163_Book.indb 39 11/8/2011 8:06:26 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming40

In some cases, the Matlab_JaVa environment variable may be missing from our specific
system . to solve the resulting Java-related problems, simply add the missing variable to the
system’s environment .83

an alternative to modifying the Matlab_JaVa environment variable was suggested on
CSSM: replace the entire JRE subfolder beneath the Matlab root folder with an upgraded
JRE version, without changing the JRE subfolder name .84

Upgrading the JVM version has the potential added benefit of bug fixes and added function-
ality . For example, the useful java.lang.String regexps and java.net.URLConnection .
setReadTimeout() only appeared in JVM 1 .5 .85 as another example, JVM 1 .6 fixed many JVM
1 .5 bugs, improved performance, added some important Swing functionality and Collection
classes86 (see Section 2 .1 for details), enabled using the system tray,87 and many others .88 a
detailed list of changes in each JVM release/update is available online .89 For example, http://
www .oracle .com/technetwork/java/javase/6u5-135446 .html describes JVM 1 .6 update 5, while
http://www .oracle .com/technetwork/java/javase/6u26releasenotes-401875 .html describes update
26, the latest update as of this writing (July 2011) .

JVM 1 .7 (Java SE 7) is a new major Java version, which replaced Java SE 6 in July 2011 . I
expect Matlab to start using JVM 1 .7 in R2012a or R2012b . Until then, I advise not to try
Matlab with JVM 1 .7 — very weird things might happen It would be safer to upgrade to
the latest Java update that corresponds to your major JVM version . For example, if your Matlab
has JVM 1 .6 .0_12, then it would probably be safer to upgrade to 1 .6 .0_26 rather than to 1 .7 .

You can download the latest JVM from http://www .java .com/en/download/manual .jsp or http://
java .sun .com/javase/downloads/index .jsp . Previous JVM versions can be downloaded from http://
java .sun .com/javase/downloads/previous .jsp or http://java .sun .com/products/archive/ (which even
lets us select the requested update number) . Development versions, which usually fix reported
bugs, are described and can be downloaded from https://jdk6 .dev .java .net/ . be sure to use a JVM
version that is compatible with your system: Ed Yu has reported problems trying to run a 32-bit
Java with a 64-bit Matlab .90

Using a non-bundled JVM has a risk of causing many built-in Matlab functions to fail
due to JVM incompatibilities, especially when using a JVM version lower than the bundled
one . JVMs are generally, although not always, backward-compatible . this means that, in gen-
eral, we can use a more advanced JVM than the pre-bundled one .

In some cases, upgrading the JVM actually introduced new errors into the Matlab envi-
ronment .91 therefore, this is mainly useful if we need to use a specific Java feature that is only
available in a more advanced JVM than the pre-bundled one . One extreme example is a user
report of successfully upgrading R13 (Matlab 6 .5, JVM 1 .3 .1) to JVM 1 .6 in order to use
java.net.URLConnection .setReadTimeout() .92

JVM upgrades sometimes occur automatically or semi-automatically for minor JVM or OS
updates . this too may introduce new bugs .† the probability of encountering errors increases

† For example, on Mac OS X 10 .5 (leopard), when upgrading to Update 4: http://www .mathworks .com/support/
bugreports/547093 (or http://tinyurl .com/qby5cw) .

K13163_Book.indb 40 11/8/2011 8:06:26 PM

© 2012 by Taylor & Francis Group, LLC

41Introduction to Java in MATLAB®

significantly when upgrading to a major OS version for which our specific Matlab release
was not qualified .

Matlab on Mac OS, in particular, is plagued by many JVM-related issues, especially with
the Mac OS X 10 .6 (Snow leopard),† but also on older versions such as Mac OS X 10 .5
(leopard) .‡ a CSSM user suggested that this is due to Mac OS’s default installation of JVM
1 .6, which is incompatible with Matlab that requires an older JVM (remember that Matlab
uses Mac’s JVM by default, not a pre-bundled JVM) . He suggested to actually downgrade the
JVM by installing version 1 .5 .93 a different approach is to reverse the automatic Java upgrade
done by OS updates .94

another advice is to install minor JVM updates, which often fixes quirks in earlier JVM
versions . In particular, several of the Mac OS X 10 .6 (Snow leopard) issues are apparently
fixed by apple Java 10 .6 update 1 .95 Note that not all Mac-Matlab issues are Java-related:
there are also problems with X11 and docking .96

a related Mac OS problem is due to 32- versus 64-bit JVM incompatibilities . the suggested
fix is to temporarily set the Mac OS’s default JVM to the 32-bit version .97

Even when using the bundled JVM, there is always some risk that incompatibilities between
JVM versions will cause different Matlab versions to behave differently when running Java
functions .98

In some cases, due to incompatibilities between the new JVM and Matlab, pointing
Matlab to use the new JVM may have adverse effects on Matlab, to a point where
Matlab may occasionally crash or even fail to start .99 In such cases, we can simply
point Matlab back to its internal prebundled JVM to start afresh .100

Warning: if you plan to deploy our Matlab application to other computers, note that using
a non-bundled JVM may cause the Matlab application to break if it is ever ran on a system
other than the one on which the JVM was modified . If the application depends on a non-
bundled JVM, then we must therefore include a Java version check in the code and act accord-
ingly . Such version checks should normally check for a minimal version rather than a specific
version, since versions are usually forward-compatible and we just need to check for the earliest
version supporting some feature:

% Two ways to retrieve the JVM version in MaTLaB:
javaVersion = char(java.lang.System.getProperty('java.version'));
javaVersion = strtok(strrep(version('-java'),'Java','')); %alternative
⇒ '1.6.0' (or a similar string value)

% Check for a specific JVM version (less frequent usage)

† Here is an example out of many that flood the CSSM newsgroup and tMW blogs: Matlab R2007a on Macs was qualified
for Mac OS X 10 .5 (leopard) with Java 1 .5, but not for Mac OS X 10 .6 (Snow leopard) nor Java 1 .6 — retrofitting the newer
Java 6 and/or Snow leopard on Macs running R2007a causes several errors, and only some of which have a patch from
MathWorks support: http://www .mathworks .com/matlabcentral/newsreader/view_thread/265588 (or http://bit .ly/ap0vCK) .

‡ http://www .mathworks .com/matlabcentral/newsreader/view_thread/158424 (or http://bit .ly/dhFrYb) . On leopard, some
Matlab releases will not start until libtiff* . dylib is removed from bin/mac, so that the system version of libtIFF is
loaded .

K13163_Book.indb 41 11/8/2011 8:06:26 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming42

if ~strncmp(javaVersion, '1.3',3)
 error(['Invalid Java version: ' javaVersion ' – must be 1.3!']);
end

% Check for a minimal JVM version (more frequent usage)
javaVerNum = str2num(regexprep(javaVersion,'(\d + \.\d+)\.?(.*)?','$1'));
if javaVerNum < 1.3
 error(['Invalid Java version: ' javaVersion ' – must be > = 1.3!']);
end

If you wish to check for specific platforms/JVMs, Matlab’s built-in com.mathworks.
util.PlatformInfo class provides handy convenience methods:

>> com.mathworks.util.PlatformInfo.isVersion16 % = JVM version 1.6
ans =
 1

Matlab starts its JVM in client mode by default . this was a conscious decision made by
MathWorks, since Java code in Matlab is mostly used for GUI rather than for computational
processing . In this respect, Matlab resembles a client Java application more than a server
one, so the tradeoffs between the server and client JVMs favor the client . Interested readers, and
perhaps users who use Matlab to launch computational-heavy Java code, can modify this
setting .101 Note that the jvm .cfg file mentioned in the referenced CSSM thread actually resides
in %matlabroot%/sys/java/jre/win3/jre/lib/i386/ (at least on Windows), and not as reported in
the thread . a better way would be to add JVM startup options in the java.opts file, as described
in the following section . this has the benefit of being cross-platform and session-specific, and
the ability to be modified by users with no write access to Matlab’s installation folder .

1.9 Java.opts

Matlab enables users to customize the behavior of its bundled JVM . this is done by
placing JVM startup options within the java.opts file, which is typically located within the
%matlabroot%/bin/%arch% folder (e .g ., [matlabroot, ‘\bin\win32’] on Windows) .102 It may
also be placed in Matlab’s startup folder (the current directory when invoking Matlab) .
For compiled applications, it should be placed in the compiled application’s startup folder .103
For X11 terminals on Macs, place this file in the applications/Matlab/ folder and a copy
of this file in the applications/Matlab/bin/maci/ folder (or in applications/Matlab/
bin/mac/ for PowerPC) .104 On Unix, it should be placed in the folder where Matlab is
started .

When starting Matlab, the java.opts file is read and its contained options are passed to
the JVM as command-line options, overriding the default option values .105 because of this,
Matlab needs to be restarted for java.opts modifications to take effect . Since the JVM is
started when Matlab starts, there is no alternative to java.opts for passing startup options to
the JVM .106

K13163_Book.indb 42 11/8/2011 8:06:27 PM

© 2012 by Taylor & Francis Group, LLC

43Introduction to Java in MATLAB®

Note a possible pitfall when creating the java.opts file on Windows:107 when saving this file
via Notepad or another text editor, the editor may automatically append a .txt suffix to the java.
opts name, thereby creating a java.opts.txt file . Since by default Windows does not display the
 .txt file extension in the File Explorer, the user may be misled into thinking that their file was
created successfully (as java.opts), when in fact it was not . Matlab ignores java.opts.txt and
displays no warning if the java.opts file is not found . One way to prevent this problem is to
enclose the file name in quotes (“java .opts”), which tells Notepad to use this name without
appending .txt .

all the options in the java.opts file must be placed on separate lines . Note that these options are
JVM-dependent . therefore, options that work for JVM 1 .6 (R2007b) may not work with JVM 1 .1 .8
(shipped with Matlab R12 (6 .0)) . Refer to the JVM documentation for JVM-specific informa-
tion and additional details .108 also note that Matlab R2008a (7 .6) and earlier had a limited fixed
number of options it could pass on to the JVM engine — if the java.opts file had more options,
Matlab would unexpectedly crash . this issue was reportedly fixed in R2008b (7 .7) .109

JVM 1 .1 .8, used by Matlab R12 (6 .0), uses an “option=value” format to set the JVM
options; JVM 1 .3 onward, used by Matlab R13 (6 .5), use a more compact “-option” format .
Refer to the JVM documentation for additional details .

to confirm that the java.opts changes are in effect, type the following in the Matlab
Command Window and verify that the result is as expected:

java.lang.System.getProperty('apple.awt.graphics.UseQuartz');

(or whatever other property we were trying to set) . alternately, run the following Matlab
code segment to list all the current Java system properties:†

propValues = java.lang.System.getProperties.elements;
propKeys = java.lang.System.getProperties.keys;
while propKeys.hasMoreElements
 disp([propKeys.nextElement ' = ' propValues.nextElement]);‡

end
 java.runtime.name = Java(TM) SE Runtime Environment
 java.protocol.handler.pkgs = null|com.mathworks.util.jarloader
 java.vm.version = 1.6.0-b105
 sun.awt.nopixfmt = true
 java.vm.vendor = Sun Microsystems Inc.
 java.vendor.url = http://java.sun.com/
 os.name = Windows XP
 path.separator = ;
 ...

† One of the useful Java system properties is “line .separator” which returns the newline string on the current platform
(=char(10) on Unix, char(10) + char(13) on windows and char(13) on Macs): double(java .lang .System .getProperty(‘line .
separator’) .char) .

‡ these properties can easily be placed in a Matlab struct by using the following within the while loop:propsStruct.
(strrep(propKeys.nextElement,'.',' _ '))=propValues.nextElement;

K13163_Book.indb 43 11/8/2011 8:06:27 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming44

If you see an unexpected property value, ensure that the java.opts file is in the correct loca-
tion and then restart Matlab .

When Matlab starts, several default properties (all of which can be updated in java.opts)
are set by default, as JVM startup parameters . Here is the list of JVM startup arguments for
Matlab R2007b (7 .5) on a Windows XP platform:

-Xms64m ◾
-Xmx128m ◾
-Xss512k ◾
-Xshare:off ◾
-XX:PermSize=32M ◾
-XX:MaxPermSize=64M ◾
-XX:MaxDirectMemorySize=1200000000 ◾
-XX:NewRatio=3 ◾
-Dsun .java2d .noddraw=true ◾
-Dsun .awt .nopixfmt=true ◾
-Djava .library .path=C:\Program Files\Matlab\R2007b\bin\win32 ◾
vfprintf abort ◾

these JVM parameters can be determined in run-time by running the JConsole or JVisualVM
utilities (part of the JDK distribution), or using the following code snippet in the Matlab
Command Window (note that my JVM uses a few non-standard parameters, which shall be
explained below, and in Sections 1 .1 and 1 .6):110

>> mXBean = java.lang.management.ManagementFactory.getRuntimeMXBean;
>> inputargs = cell(mXBean.getInputarguments.toarray);
inputargs =
 '-Xss512k'
 '-XX:PermSize = 32m'
 '-Xms64m'
 '-XX:NewRatio = 3'
 '-XX:MaxPermSize = 64m'
 '-Xmx128m'
 '-XX:MaxDirectMemorySize = 1200000000'
 '-Dsun.java2d.noddraw = true'
 '-Dsun.awt.nopixfmt = true'
 '-Xshare:off'
 '-Xrs'
 '-Dsun.awt.disableMixing = true'
 '-Xmx256m'
 '-Xdebug'
 '-javaagent:classmexer.jar'
 '-Djava.library.path = C:\Program Files\MaTLaB\R2010b\bin\win32'
 'vfprintf'
 'abort'

K13163_Book.indb 44 11/8/2011 8:06:27 PM

© 2012 by Taylor & Francis Group, LLC

45Introduction to Java in MATLAB®

the following java.opts options (in JVM 1 .3+ compact format) were reported in reference to
Matlab and may be of interest to Matlab users (some esoteric mentions omitted) . Options
starting with a –X are non-standard and subject to change in future JVMs; options starting
with –XX are experimental and even more likely to change in future JVMs .111 the reader is
referred to the JVM documentation for additional options and details .112 like everything in
Java, these options are case-sensitive:

-Xdebug
-Xrunjdwp:transport = dt_socket,address = 1044,server = y,suspend = n113

these options enable debugging Java from within Matlab (see details in Chapter 2)

-Xms128m114

Increases the minimum memory limit allocated to Java (heap space) to 128 Mb .† Other set-
tings are possible: –Xms256m, –Xms262144k, or –Xms268435456 all set the limit to 256 Mb .
Note that Matlab 7 .10 (R2010a) added a preference option to set the heap size and suggests
using either this new preference option or the -Xms java.opts option, but not both .115

-Xmx128m116

Increases the maximum memory limit allocated to Java (heap space), from the default 64
Mb to 128 Mb .‡ Other settings are possible, just like for the minimum limit . Do not set this
limit to more than 66% of the available physical RaM, nor to more than 256 Mb, as this may
cause a Matlab crash .117 Some related options are –XX:PermSize, –XX:MaxPermSize, and
–XX:threadStackSize which are described below .

-XX:PermSize = 128m
-XX:MaxPermSize = 128m118

this option increases the space allotted by the JVM for permanent class (code) memory
 storage . Matlab alone uses most of the default 32 Mb§ of permanent class memory, so
increasing this size solves out-of-memory problems for large-code applications . Note that the
XX: prefix indicates experimental JVM options which are prone to change between JVM (and
therefore also Matlab) versions .

-XX:-UseGCOverheadLimit119

† In R2007b (7 .5), the default limit was 64 Mb; note the following whitepaper for limit considerations: http://java .sun .com/
performance/reference/whitepapers/tuning .html#section4 .1 .2 (or http://tinyurl .com/lfzgvf) .

‡ Since R2007b (7 .5), the default limit was increased to 128 Mb .
§ In R2007a (7 .4), MathWorks promised (http://www .mathworks .com/support/solutions/en/data/1-4HCPJ8/ or http://bit .ly/

aQjS9j) to increase this to 64 Mb and indeed XX:MaxPerSize increased to 64 Mb in R2007b (7 .5) although XX:PermSize
remained 32 Mb .

K13163_Book.indb 45 11/8/2011 8:06:27 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming46

this is another experimental JVM option, which is reported to solve some memory-related
Matlab crashes by preventing the JVM from committing “suicide” if it detects a long mem-
ory-hogging operation .

-XX:ThreadStackSize = 8192

Yet another memory-related experimental JVM option, solving Matlab crashes120 and
startup failures .121 the setting above allots 8 Mb stack size per thread . Note that this may cause
unexpected problems with the Help browser on Matlab R14SP1 .122

-Xrs

this option, which prevents the JVM from responding to external signals, has been found
to solve several problems123 with Matlab components shutting down when another
component exits .

-Djava.compiler = NONE124

this option disables the just-in-time compiler (JItC) for Java . Note that it has no effect on
the Matlab interpreter JItC . It has a similar effect to running Matlab with the “–nojvm”
command-line option . Note that this prevents many of Matlab’s GUI capabilities .125
Unfortunately, in some cases there is no alternative . For example, when running on a remote
console or when running pre-2007 Matlab releases on Intel-based Macs .126 In such cases,
using the undocumented “-noawt” command-line option, which enables the JVM yet prevents
JaVa GUI, is a suggested compromise .127 Disabling JIt also solves a bug that may cause
Matlab to crash when debugging structs or MCOS objects .128 Note that JItC can be dynami-
cally turned on/off during Matlab operation, using one of the following commands:

feature('accel','on/off'); % several online references by MathWorks129

feature('jitallow','structs','on/off');
feature('scopedaccelEnablement','on/off');

-Djava.library.path = /usr/lib/jni/130

-Djava.library.path = /applications/MaTLaB_R2009a.app/bin/maci/131

this option enables accessing native libraries (Dlls) by the JVM (see Section 9 .5) .

-Djava.awt.headless = true132

this option solves some problems with the Distributed Computing toolbox (DCt) running
on Macintosh machines on Matlab R14 (7 .0) . Setting this property enables using the Java
aWt toolkit in headless (i .e ., no display device) mode .133

-Djava.net.preferIPv4Stack = true134

this is another property that solves a Macintosh R14 DCt problem .

-Dswing.noxp = true135

K13163_Book.indb 46 11/8/2011 8:06:27 PM

© 2012 by Taylor & Francis Group, LLC

47Introduction to Java in MATLAB®

this option sets a flag that prevents Java Swing from rendering UI controls such as buttons
with Windows XP styling .

-Dswing.aatext = true136

this option sets automatic antialiasing of text wherever possible .

-Dsun.java2d.noddraw = true137

Setting this option fixes a figure drawing bug in Matlab 7 .0 (that was fixed in 7 .0 .1) . this
is now the default setting in Matlab and so need not be directly specified .

-Dsun.java2d.pmoffscreen = false138

Setting this option fixes a problem of extreme GUI slowness when launching Matlab on
a remote linux/Solaris computer .

-Dmathworks.WarnIfWrongThread = false139

this option disables warnings about misappropriate use of Java Swing calls (not via the
EDt) . See additional details in Chapter 3, “Rich GUI Using Java Swing” .

-Dmatlab.desktop.disableVirtualScreenBounds = true140

this property resolves a problem that crashes Matlab versions R2006b (7 .3) through
R2008a (7 .6) when Microsoft NetMeeting is running on a Windows system . Separate patches
on the MathWorks bug page solve the problem for earlier Matlab releases . Note: using the
patch/property causes side effects on dual-monitor configurations .

-Dapple.laf.useScreenMenuBar = true141

this option fixes a Macintosh problem that displays Matlab menus in an unexpected
position, but may cause menu flickering, memory overflows, and even Matlab crashes .

-Dapple.awt.graphics.UseQuartz = true142

this option is a workaround for GUI slowness on Macintosh OS X 10 .5 (leopard) with
Matlab R2007a (7 .4) onward, also discussed on CSSM143 and elsewhere .144 this option is
pre-included in Matlab R2008a (7 .6) onward .

-Dapple.awt.textantialiasing = off
-Dawt.useSystemaaFontSettings = false145

K13163_Book.indb 47 11/8/2011 8:06:27 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming48

these options, respectively, for apple Macintosh and Microsoft Windows, disable font anti-
aliasing . this is particularly useful on small-resolution screens, large font sizes, some mono-
spaced fonts, and/or large color contrast (or extremely sharp eyes, etc .) .

-Dorg.apache.commons.logging.Log = org.apache.commons.logging.impl.SimpleLog146

-Dorg.apache.commons.logging.simplelog.log.org.apache.commons.httpclient = error

these options solve a network connection error message in Matlab R2008a (7 .6) .

-Dgnu.io.rxtx.SerialPorts = /dev/rfcomm0:/dev/ttySa0 (Linux)
-Dgnu.io.rxtx.SerialPorts = COM1004:COM1005:COM1006147 (Windows)

these options enable accessing serial ports above 256 that are otherwise inaccessible .

-Duser.home=C:\Documents and Settings\Yair altman\148

this option solves a problem in the integrated Matlab Editor on Matlab R14 (7 .0) . the
specified property value should be the path of the application data, which is the leading part of
the path returned by Matlab’s prefdir function .

References

 1 . http://www .mathworks .com/help/techdoc/matlab_external/f98533 .html#f122001 (or http://bit .ly/5lklN1) .
 2 . http://developer .apple .com/library/mac/#releasenotes/Java/JavaSnowleopardUpdate3leopard

Update8RN/NewandNoteworthy/NewandNoteworthy .html (or: http://bit .ly/aUEmlo); http://www .math
works .com/matlabcentral/newsreader/view_thread/294570 (or: http://bit .ly/cVIbkY) .

 3 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/284363 (or http://bit .ly/c2662Q)
used in winmenu.m. Note the equivalent functions com.mathworks.jmi.Support .useXXX() and
son on . (see Section 9 .2 .2) .

 4 . http://www .mathworks .com/help/techdoc/matlab_oop/ug_intropage .html (or http://bit .ly/bc75Cb) .
 5 . http://www .mathworks .com/matlabcentral/answers/1082-jfreechart-pointer-for-dialdemo (or http://bit .

ly/fMIZMa) .
 6 . http://download .oracle .com/javase/6/docs/api/javax/swing/ScrollPanelayout .UIResource .html (or http://

bit .ly/glKflx) .
 7 . http://java .sun .com/docs/books/jni/ or http://java .sun .com/j2se/1 .5 .0/docs/guide/jni/spec/types .html#wp276

(http://bit .ly/cuQaiV) .
 8 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/285933#759307 (or http://bit .

ly/9FuVEo) .
 9 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/298304 (or http://bit .ly/eN1Cvi) or

the related http://stackoverflow .com/questions/4376565/java-jpa-class-for-matlab (or http://bit .ly/dHPpIG)
and many others .

 10 . http://stackoverflow .com/questions/4376565/java-jpa-class-for-matlab#comment-4771530 (or http://bit .ly/
exlWkR); https://www .kitware .com/InfovisWiki/index .php/Matlab_titan_toolbox#matlab_ configuration
(or http://bit .ly/dCC2eh) .

 11 . For example, see http://www .mathworks .com/support/bugreports/100183 (or http://tinyurl .com/n5hr4f);
http://www .mathworks .com/support/bugreports/303235 (or http://tinyurl .com/nvpjj6) .

 12 . http://www .mathworks .com/support/bugreports/452487 (or http://tinyurl .com/m3ejan) .
 13 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/59047 (or http://tinyurl .com/2e6cst) .
 14 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/149079#375133 (or http://tinyurl .

com/yo4ur5); http://www .mathworks .com/matlabcentral/newsreader/view_thread/101092 (or http://
tinyurl .com/d5g394) .

K13163_Book.indb 48 11/8/2011 8:06:28 PM

© 2012 by Taylor & Francis Group, LLC

http://www.mathworks.com

49Introduction to Java in MATLAB®

 15 . See http://www .mathworks .com/Matlabcentral/newsreader/view_thread/287891 (or http://bit .ly/bWXYlJ);
also see related website: http://www .mathworks .com/Matlabcentral/newsreader/view_thread/300963 (or
http://bit .ly/f28Ndl) .

 16 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/163362 (or http://tinyurl .com/29rsu7);
this side effect of clearing Java references in the workspace was fixed in Matlab 7 .5 (R2007b) .

 17 . http://www .mathworks .com/help/techdoc/matlab_external/f4873 .html#f46890 (or http://tinyurl .com/2xgslo) .
 18 . http://www .mathworks .com/help/techdoc/matlab_external/f15351 .html (or http://tinyurl .com/ypffkf) .
 19 . http://iheartmatlab .blogspot .com/2009/09/tcpip-socket-communications-in-matlab .html (or http://bit .ly/

elZM8D) .
 20 . http://blogs .mathworks .com/desktop/2010/04/26/controlling-the-java-heap-size/#comment-6991 (or http://

bit .ly/9QecaC); http://stackoverflow .com/questions/2388409/how-can-i-tell-how-much-memory-a-handle-
object-uses-in-matlab (or http://bit .ly/c7lFjg); http://www .javaworld .com/javaworld/javaqa/2003-12/02-qa-
1226-sizeof .html (or http://bit .ly/aumv0S); http://blogs .mathworks .com/desktop/2010/04/26/controlling-
the-java-heap-size/#comment-6991 (or http://bit .ly/9QecaC) .

 21 . http://www .javamex .com/classmexer/ (or http://bit .ly/bE5zpx) .
 22 . http://java .sun .com/j2se/1 .5 .0/docs/api/java/lang/instrument/package-summary .html (or http://bit .ly/bvR2xk) .
 23 . http://www .javamex .com/tutorials/memory/instrumentation .shtml (or http://bit .ly/bldcNU) .
 24 . http://www .mathworks .com/matlabcentral/fileexchange/17935 (or http://tinyurl .com/ytn33w) .
 25 . http://www .mathworks .com/help/techdoc/Matlab_external/f6425 .html (or http://tinyurl .com/26t7ye) and

http://www .mathworks .com/help/techdoc/Matlab_external/f6671 .html (or http://tinyurl .com/2yxtvs) .
 26 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/246361 (or http://bit .ly/carKgd);

http://www .mathworks .com/matlabcentral/newsreader/view_thread/281221 (or http://bit .ly/dsynlK) .
 27 . http://java .sun .com/javase/6/docs/api/javax/swing/actionMap .html (or http://bit .ly/9xgDIb) .
 28 . http://java .sun .com/javase/6/docs/api/javax/swing/action .html (or http://bit .ly/3DhUbx) .
 29 . http://www .javalobby .org/java/forums/t19402 .html (or http://bit .ly/c605Ng); http://java .sun .com/docs/

books/tutorial/uiswing/misc/action .html (or http://bit .ly/3MXZgi); http://java .sun .com/docs/books/tutorial/
uiswing/misc/keybinding .html (or http://bit .ly/agttK3) .

 30 . http://UndocumentedMatlab .com/blog/spicing-up-matlab-uicontrol-tooltips/#comment-1173 (or http://
bit .ly/5oFn8M) .

 31 . http://UndocumentedMatlab .com/blog/matlab-callbacks-for-java-events/ (or http://bit .ly/hlabbH) .
 32 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/272321 (or http://bit .ly/9bHagh);

download EventTest.zip, which includes source and class files, from http://UndocumentedMatlab .com/
files/Eventtest .zip (or http://bit .ly/bKWltw) .

 33 . http://UndocumentedMatlab .com/blog/hgfeval/ (or http://bit .ly/aIgaOa) .
 34 . Donn Shull, private communication .
 35 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/274961#722084 (or http://bit .ly/

bVHqol) .
 36 . http://java .sun .com/javase/downloads/widget/jdk6 .jsp (http://bit .ly/cqFMkW), useful on Matlab

R2007b (7 .5) onward .
 37 . http://eclipse .org/downloads/ (or http://bit .ly/95wdV4) .
 38 . http://netbeans .org/downloads/ (or http://bit .ly/cISU1K) .
 39 . http://www .medsch .wisc .edu/~milenkvc/pdf/javaproxy .htm (or http://tinyurl .com/d44qpq) .
 40 . http://www-math .mit .edu/~spielman/ECC/javaMatlab .html (or http://tinyurl .com/ccvwya) .
 41 . an excellent place to start is http://java .sun .com/javase/6/webnotes/trouble/ (or http://bit .ly/97Ca0G) .
 42 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/240212 (or http://tinyurl .com/dca5wu) .
 43 . http://xtargets .com/snippets/posts/show/48; brad’s website is currently offline, but cached (archived) versions

of this Web page can be found online, for example, http://bit .ly/9taZaZ .
 44 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/155261#633890 (or http://bit .

ly/71fDNa) .
 45 . JDWP, which is part of the Java Platform Debugging architecture (JPDa) framework, is described

here: http://java .sun .com/javase/technologies/core/toolsapis/jpda/ (or http://bit .ly/akdNIa); the rele-
vant -Xrunjdwp options are described here: http://java .sun .com/javase/6/docs/technotes/guides/jpda/
conninv .html#jdwpoptions (or http://bit .ly/cihXXj) .

 46 . http://www .mathworks .com/support/solutions/en/data/1-OVU1l (or http://tinyurl .com/nvzhms) .

K13163_Book.indb 49 11/8/2011 8:06:28 PM

© 2012 by Taylor & Francis Group, LLC

http://www.mathworks.com
http://www javamex com/
http://blogs.mathworks.com
http://netbeans.org/
http://java.sun.com
http://java.sun.com

Undocumented Secrets of MATLAB®-Java Programming50

 47 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/155261#404006 (or http://bit .ly/4El9Re),
edited .

 48 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/262737#697025 (or http://bit .ly/
cClKra) .

 49 . http://www .eclipse .org/tptp/home/documents/tutorials/profilingtool/profilingexample_32 .html (or http://
bit .ly/dmPKct) .

 50 . http://profiler .netbeans .org/ (or http://bit .ly/cztYQz) .
 51 . http://blogs .sun .com/watt/resource/jvm-options-list .html (or http://bit .ly/bsWNcV) .
 52 . http://prefetch .net/blog/index .php/2008/02/02/profiling-java-methods-with-the-heap-profiling-agent/ (or

http://bit .ly/blZ2l1) .
 53 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/246361 (or http://bit .ly/carKgd) .
 54 . http://www .mathworks .com/matlabcentral/fileexchange/23272 (or http://bit .ly/ceE7x2) .
 55 . http://www .mathworks .com/matlabcentral/fileexchange/23275 (or http://bit .ly/cuo851); JPRofiler is also

used by MathWorks: http://blogs .mathworks .com/desktop/2009/08/17/calling-java-from-matlab/#comment-
7107 (or http://bit .ly/bpjCGC) .

 56 . http://www .mathworks .com/matlabcentral/fileexchange/23513 (or http://bit .ly/9gp2Ot) .
 57 . http://blogs .sun .com/watt/resource/jvm-options-list .html (or http://bit .ly/bsWNcV); http://java .sun .com/

javase/technologies/hotspot/vmoptions .jsp (or http://bit .ly/bMiaam); http://docs .sun .com/app/docs/
doc/806-7930/6jgp65iki?a=view (or http://bit .ly/aMaKh0) .

 58 . http://www .mathworks .com/support/solutions/en/data/1-3l4JU7 (or http://bit .ly/bpCztl) .
 59 . http://www .khelekore .org/jmp/ (or http://bit .ly/coj2xm) .
 60 . http://www .khelekore .org/jmp/tijmp/ (or http://bit .ly/dkrUCi) .
 61 . http://www .javamex .com/classmexer/ (or http://bit .ly/bE5zpx) .
 62 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/296813#797410 (or http://bit .ly/

cJ8m7c) .
 63 . For example, the open-source Findbugs utility: http://findbugs .sourceforge .net/ (or http://bit .ly/agOjYw) .
 64 . http://java .sun .com/j2se/1 .5 .0/docs/guide/language/generics .html (or http://tinyurl .com/6nfhp) .
 65 . http://java .sun .com/javase/6/docs/api/java/awt/trayIcon .Messagetype .html (or http://tinyurl .com/cumm3h) .
 66 . http://www .mathworks .com/matlabcentral/answers/15711-how-do-i-access-a-java-inner-class-from-

matlab (or http://bit .ly/nX1adr) .
 67 . http://java .sun .com/javase/6/docs/api/java/nio/channels/FileChannel .MapMode .html (or http://bit .ly/chlZYD) .
 68 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/286165#759993 (or http://bit .ly/

daq8KX) .
 69 . http://www .mathworks .com/help/techdoc/matlab_external/f98533 .html#f122001 (or http://bit .ly/5lklN1) .
 70 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/44363 (or http://bit .ly/97GcJH) .
 71 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/288627 (or http://bit .ly/9ro58r) .
 72 . http://www .mathworks .com/support/solutions/en/data/1-1a75W (or http://bit .ly/bjXNno); similarly for

other releases .
 73 . http://www .mathworks .com/support/solutions/en/data/1-78HlNI/ (or http://bit .ly/cb8OYl) . MathWorks’

brian arnold explained the details in http://www .mathworks .com/matlabcentral/newsreader/view_
thread/161842#408891 (or http://bit .ly/bbdNdP) .

 74 . http://robert .scullin .name/blog/index .php/2009/09/09/install-activate-matlab-in-snow-leopard/ (or http://
bit .ly/aYrqua); http://www .mathworks .com/support/solutions/en/data/1-8GS5S1/ (or http://bit .ly/aia2v6) .

 75 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/266889 (or http://bit .ly/5dqhpG);
http://www .mathworks .com/matlabcentral/newsreader/view_thread/258941 (or http://bit .ly/cXoqYp) .

 76 . http://www .mathworks .com/support/solutions/en/data/1-1812J (or http://bit .ly/dbFVqh) .
 77 . http://www .mathworks .com/support/solutions/en/data/1-78HlNI/ (or http://bit .ly/cb8OYl) .
 78 . http://www .mathworks .com/support/solutions/en/data/1-1a2l7 (or http://tinyurl .com/nowqmc); http://www .

mathworks .com/support/solutions/en/data/1-1881O (or http://tinyurl .com/m5uv4f); http://blogs .mathworks .
com/desktop/2009/08/31/pouncing-on-snow-leopard/#comment-6710 (or http://bit .ly/4FvylD); http://www .
mathworks .com/support/bugreports/452486 (or http://bit .ly/d2OYIy) and more than a dozen others: http://
www .mathworks .com/support/bugreports/search_results?search_executed=1&keyword=JRE&release=0 (or
http://bit .ly/9lGyf2) .

 79 . http://www .mathworks .com/support/solutions/en/data/1-1a2HO (or http://tinyurl .com/kqvgkq) .

K13163_Book.indb 50 11/8/2011 8:06:28 PM

© 2012 by Taylor & Francis Group, LLC

http://www.mathworks.com
http://www.javamex.com/
http://blogs.sun.com
http://profiler.netbeans.org/
http://blogs.sun.com

51Introduction to Java in MATLAB®

 80 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/157118#395347 (or http://tinyurl .
com/3c3sb8); http://www .mathworks .com/matlabcentral/newsreader/view_thread/242556#630627 (or
http://tinyurl .com/c3ym6m); http://www .mathworks .com/matlabcentral/newsreader/view_thread/161248#
651824 (or http://tinyurl .com/pwosf8); http://www .mathworks .com/matlabcentral/newsreader/view_
thread/242556#658743 (or http://tinyurl .com/nevkx2) .

 81 . http://social .technet .microsoft .com/Forums/en-US/w7itproappcompat/thread/4dba5d57-3127-48f3-
9461-eb1ef5d7c70e (or http://bit .ly/czpDyM); http://recluze .wordpress .com/2009/07/30/matlab-7-
under-windows-7/ (or http://bit .ly/diqHvm); http://www .mathworks .com/matlabcentral/newsreader/
view_thread/272598#763011 (or http://bit .ly/aZuf4S); http://www .mathworks .com/matlabcentral/
newsreader/view_thread/295889#799946 (or http://bit .ly/fbecCw) .

 82 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/266480 (or http://tinyurl .com/yhp6erz) .
 83 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/244727#773600 (or http://bit .

ly/983O1l) .
 84 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/161248 (or http://bit .ly/bcSrlN) .
 85 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/268395#702321 (or http://bit .

ly/8JbbVM); http://www .mathworks .com/matlabcentral/newsreader/view_thread/164917#599155 (or
http://bit .ly/bKrl3E) .

 86 . http://java .sun .com/javase/6/docs/technotes/guides/collections/changes6 .html (or http://tinyurl .com/5ea3b5) .
 87 . http://java .sun .com/developer/technicalarticles/J2SE/Desktop/javase6/systemtray (or http://tinyurl .com/

cbup8c) .
 88 . http://www .devx .com/Java/article/30722 or http://java .sun .com/javase/6/webnotes/features .html or

http://java .sun .com/javase/6/features .jsp
 89 . http://java .sun .com/javase/6/webnotes/ReleaseNotes .html (or http://bit .ly/bKtibY) .
 90 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/155261#717300 (http://bit .ly/9tJ9Ht) .
 91 . http://www .mathworks .com/support/bugreports/495091 (or http://tinyurl .com/mnsdra); http://www .

mathworks .com/support/bugreports/495103 (or http://tinyurl .com/ndupwx); http://www .mathworks .com/
matlabcentral/newsreader/view_thread/245448 (or http://tinyurl .com/c2j24n); http://www .mathworks .com/
matlabcentral/newsreader/view_thread/254319 (or http://tinyurl .com/n5od2n); http://www .mathworks .com/
matlabcentral/newsreader/view_thread/272205 (or http://bit .ly/cw4Kqm) and several others .

 92 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/268395 (or http://bit .ly/4zQgpY) .
 93 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/260767#716249 (or http://bit .ly/

aw6lgl); also see http://www .mathworks .com/matlabcentral/newsreader/view_thread/263909#718604
(or http://bit .ly/cZOQvh) .

 94 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/309912 (or: http://bit .ly/n2uPCx) .
 95 . For example, http://support .apple .com/kb/Dl972 (or http://bit .ly/63elim); http://blogs .mathworks .com/

desktop/2009/08/31/pouncing-on-snow-leopard/#comment-6710 (or http://bit .ly/4FvylD) .
 96 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/162064 (or http://bit .ly/9rmR5h); http://

www .mathworks .com/matlabcentral/newsreader/view_thread/167685 (or http://bit .ly/bMfNrV); http://www .
mathworks .com/support/solutions/en/data/1-5XUP9M/ (or http://bit .ly/a6G0H6); http://www .mathworks .
com/support/solutions/en/data/1-9a6FYK/ (or http://bit .ly/aEqzPU) and the very informative http://blogs .
mathworks .com/desktop/2010/02/08/starting-matlab-from-the-os-x-dock/ (http://bit .ly/bZxV4m) . also see
the following undocumented hint regarding removal of a useless Matlab icon from the Mac Dock bar:
http://www .macosxhints .com/article .php?story=20080212162806562 (or http://bit .ly/9lPJDc) .

 97 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/290935#778666 (or http://bit .ly/
c3UR7f) .

 98 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/160076 (or http://tinyurl .
com/27tmxy) .

 99 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/271127 (or http://bit .ly/93SIzC) .
 100 . For example, http://www .mathworks .com/matlabcentral/newsreader/view_thread/269553 (or http://bit .

ly/72K4M3) .
 101 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/69629 (or http://bit .ly/co0QrW) .
 102 . http://www .mathworks .com/support/solutions/en/data/1-18I2C/ (or http://bit .ly/86OW7J) .
 103 . http://www .mathworks .com/support/solutions/en/data/1-1KY3U1 (or http://tinyurl .com/mfge8w) .
 104 . http://www .mathworks .com/support/solutions/en/data/1-72H2IS (or http://tinyurl .com/lzlm2n) .

K13163_Book.indb 51 11/8/2011 8:06:29 PM

© 2012 by Taylor & Francis Group, LLC

http://www.mathworks.com
http://social.technet.microsoft.com
http://www.devx.com
http://java.sun.com

Undocumented Secrets of MATLAB®-Java Programming52

 105 . http://blogs .mathworks .com/desktop/2009/07/06/calling-java-from-matlab/#comment-6609 (or http://
tinyurl .com/yg9kucw) .

 106 . For example, http://www .mathworks .com/matlabcentral/newsreader/view_thread/266104 (or http://tinyurl .
com/y8aztll); http://blogs .mathworks .com/desktop/2009/07/06/calling-java-from-matlab/#comment-6604
(or http://tinyurl .com/ydhapy9) .

 107 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/154954 (or http://tinyurl .com/2fn2ys) .
 108 . http://blogs .sun .com/watt/resource/jvm-options-list .html (or http://tinyurl .com/2r2hff) . See http://java .

sun .com/javase/6/docs/technotes/guides/2d/flags .html for a specific list of Java2D options on JVM 1 .6
(there are similar pages on the java .sun .com website for earlier JVM releases) .

 109 . http://www .mathworks .com/support/bugreports/452487 (or http://tinyurl .com/m3ejan) .
 110 . http://technology .amis .nl/blog/4214/accessing-jvm-arguments-from-java-to-determine-if-jvm-is-

running-in-debug-mode (or http://bit .ly/9GMKsb) .
 111 . http://java .sun .com/javase/technologies/hotspot/vmoptions .jsp (or http://tinyurl .com/2dx4mz) .
 112 . http://java .sun .com/javase/6/docs/technotes/tools/windows/java .html (or http://tinyurl .com/32yvlk) —

similar Web pages are also available for non-Windows and earlier JVM versions .
 113 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/155261#404006 (or http://tinyurl .

com/yq9g2h) .
 114 . http://www .mathworks .com/support/solutions/en/data/1-18I2C (or http://tinyurl .com/nsjbce); http://

www .mathworks .com/matlabcentral/newsreader/view_thread/252354 (or http://bit .ly/dDhasJ); http://
www .mathworks .com/matlabcentral/newsreader/view_thread/275348 (or http://bit .ly/bvR7lt) .

 115 . http://www .mathworks .com/help/techdoc/rn/bsct_ou-1 .html#bseyszd-1 (or http://bit .ly/9XcSPJ) .
 116 . http://www .mathworks .com/support/solutions/en/data/1-11D2U1 (or http://tinyurl .com/n74v64); http://

www .mathworks .com/support/solutions/en/data/1-6K8OPU (or http://tinyurl .com/kupgmq); http://www .
mathworks .com/support/bugreports/273783 (or http://tinyurl .com/mb2uo2) .

 117 . http://www .mathworks .com/support/bugreports/398525 (or http://tinyurl .com/n76wj4) .
 118 . http://www .mathworks .com/support/solutions/en/data/1-20FV2Z (or http://tinyurl .com/noyw8j); http://

www .mathworks .com/support/solutions/en/data/1-4HCPJ8 (or http://tinyurl .com/m7an94) .
 119 . http://www .mathworks .com/support/solutions/en/data/1-8G7XG1 (or http://tinyurl .com/na2jnu) .
 120 . http://www .mathworks .com/support/solutions/en/data/1-19Z14 (or http://tinyurl .com/kpdk7m) .
 121 . http://www .mathworks .com/support/bugreports/251291 (or http://tinyurl .com/m5vawn) .
 122 . http://www .mathworks .com/support/solutions/en/data/1-13HCX7 (or http://tinyurl .com/lx7ln3) .
 123 . For example, http://www .mathworks .com/support/solutions/en/data/1-30EYl4 (or http://tinyurl .com/

m3cadf); http://www .mathworks .com/support/solutions/en/data/1-XW8a0 (or http://tinyurl .com/n3l4ow) .
 124 . http://www .mathworks .com/support/solutions/en/data/1-1IMUDO (or http://tinyurl .com/nzeswo) .
 125 . http://www .mathworks .com/help/techdoc/rn/bropbi9-1 .html#brubkzc-1 (or http://bit .ly/c3jo3a) .
 126 . http://www .mathworks .com/support/faq/macintel .html (or http://bit .ly/cWFqnX) .
 127 . For example (Macs again), http://www .mathworks .com/matlabcentral/newsreader/view_thread/ 145515#

373700 (or http://bit .ly/9VuSJm); http://www .mathworks .com .au/matlabcentral/newsreader/view_thread/
239001#610205 (or http://bit .ly/abHleQ) .

 128 . http://www .mathworks .com/support/bugreports/595677 (or http://bit .ly/cmsPHG) .
 129 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/76874#195833 (or http://bit .ly/cseyjE);

http://www .mathworks .com/support/solutions/en/data/1-21E4Y8/ (or http://bit .ly/cseyjE) .
 130 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/247047#636162 (or http://tinyurl .

com/cdkdhf); http://www .mathworks .com/matlabcentral/newsreader/view_thread/246481#636161 (or
http://tinyurl .com/cajgq7) .

 131 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/247097 (or http://tinyurl .com/c9t74t) .
 132 . http://www .mathworks .com/support/bugreports/249088 (or http://tinyurl .com/mryvoz); http://www .

mathworks .com/support/bugreports/240836 (or http://tinyurl .com/otmx6a) .
 133 . http://java .sun .com/developer/technicalarticles/J2SE/Desktop/headless/ (or http://tinyurl .com/3qwch6);

http://java .sun .com/j2se/1 .4 .2/docs/guide/awt/aWtChanges .html#headless (or http://tinyurl .com/freza) .
 134 . http://www .mathworks .com/support/bugreports/249097 (or http://tinyurl .com/lmew8q) .
 135 . http://www .mathworks .com/support/bugreports/194025 (or http://tinyurl .com/mjoatj) .
 136 . http://www .javalobby .org/forums/thread .jspa?forumID=61&threadID=14179 (or http://bit .ly/4CEWtC) .
 137 . http://www .mathworks .com/support/solutions/archived/1-1bYDY .html (or http://tinyurl .com/yvsho2) .
 138 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/160387 (or http://tinyurl .com/bxfj4p) .

K13163_Book.indb 52 11/8/2011 8:06:29 PM

© 2012 by Taylor & Francis Group, LLC

http://www.mathworks.com
http://java.sun.com
http://technology.amis.nl/
http://blogs.sun.com
http://blogs.mathworks.com

53Introduction to Java in MATLAB®

 139 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/156388#400906 (or http://tinyurl .
com/2yqyzn) .

 140 . http://www .mathworks .com/support/bugreports/303235 (or http://tinyurl .com/nvpjj6) .
 141 . http://www .mathworks .com/support/bugreports/230485 (or http://tinyurl .com/lzhgg3) .
 142 . http://www .mathworks .com/support/bugreports/412219 (or http://tinyurl .com/qvx5wb); http://www .

mathworks .com/support/solutions/en/data/1-31CIOM (or http://tinyurl .com/kpz5mh); http://blogs .
mathworks .com/loren/2007/02/08/string-annotations-for-plots/#comment-32288 (or http://bit .ly/jtptak); http://
www .mathworks .com/matlabcentral/newsreader/view_thread/309912#847852 (or http://bit .ly/qtxMDl) .

 143 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/160534 (or http://tinyurl .com/2b4nxv),
http://www .mathworks .com/matlabcentral/newsreader/view_thread/144169#398840 (or http://tinyurl .com/
yueky5), and so on .

 144 . http://www .macosxhints .com/article .php?story=2007112503413229 (or http://tinyurl .com/4b97rv); http://
blogs .mathworks .com/desktop/2009/01/05/happy-new-year-2/#comment-6340 (or http://tinyurl .com/
neuf5z) .

 145 . http://blogs .mathworks .com/desktop/2007/03/16/introducing-the-desktop-blog/#comment-2135 (or http://
bit .ly/b5SrYQ); http://www .mathworks .com/support/bugreports/404319 (or http://tinyurl .com/272bf2) —
this page was removed by MathWorks; http://www .mathworks .com/support/solutions/en/data/1-5aZS7W
(or http://tinyurl .com/n8x6w6) .

 146 . http://www .mathworks .com/support/bugreports/450681 (or http://tinyurl .com/lehofw) .
 147 . http://www .mathworks .com/support/solutions/en/data/1-6lEG2H (or http://tinyurl .com/n7r9ct); http://

www .mathworks .com/support/solutions/en/data/1-3Zt8GP (or http://tinyurl .com/km94xk) .
 148 . http://www .mathworks .com/support/bugreports/234906 (or http://tinyurl .com/lfsgqh) .

K13163_Book.indb 53 11/8/2011 8:06:29 PM

© 2012 by Taylor & Francis Group, LLC

http://www.mathworks.com
http://www.macosxhints.com

Using Non-GUI Java
libraries in

Matlab®

2
Chapter

K13163_Book.indb 55 11/8/2011 8:06:29 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming56

as noted earlier, Java has been available in Matlab since R12 (Matlab 6 .0) . Integration of non-
GUI Java classes within Matlab has always been relatively easy to use . Support for integration
of Java GUI components within Matlab figures has been added in R14 SP3 (Matlab 7 .1) .

this chapter covers the programmatic (non-GUI) aspects of these integrations, using some
useful Java libraries in our Matlab code . Chapter 3 (Rich GUI Using Java Swing) shows how
we can use the Java GUI integration to enrich plain-vanilla Matlab GUI .

It is interesting to note that non-GUI integration of Java classes is fully documented and sup-
ported in Matlab,1 whereas the newer GUI integration is still officially unsupported . Possible
reasons for this discrepancy will be presented in Chapter 3 .

While being fully documented, in general, even non-GUI Java integration sometimes exhib-
its undocumented aspects, as will be seen in Section 2 .2 (Database Connectivity) .

Matlab itself uses undocumented features, for example, to implement its Database
toolbox . However, whenever any Matlab release changes break such features, MathWorks
is careful to distribute toolbox releases that work well with the new behavior . When designing
Matlab applications that similarly rely on such undocumented aspects, care should be taken
to retest the application with new Matlab releases, and release application updates, just like
MathWork’s toolboxes .

2.1 Complex Data Structures

this section and the following one (Database Connectivity) provide detailed examples show-
ing how built-in Java functionality can greatly increase Matlab programming productivity
and the resulting program power . these are simply two examples of the enormous potential
Java has for Matlab applications . While not really “undocumented” in the true sense (most
of the material is actually documented separately in Matlab and Java), in practice, such
Java gems are unfortunately often overlooked by Matlab programmers . It is hoped that
Chapter 1 has made us feel at ease with the Matlab–Java interface, enough to take advan-
tage of the available power of Java .

2.1.1 Java Collections
Java contains a wide variety of predefined data structures (specifically Collections and Maps),
which can easily be adapted to fit most programming tasks . It is unfortunate that the Matlab
programming language does not contain similar predefined collection types, apart from its
basic cell, array and struct elements . Matlab R2008b (7 .7) also added containers.Map,
which is a much-scaled-down Matlab version of the java.util.Map interface, but is a
step in the right direction . Some Matlab programmers prepared their own implementations
of data structures, which can be found on the File Exchange .2

However, this limitation of Matlab can easily be overcome with Java’s out-of-the-box set
of predefined classes, as described below . Java collections have many advantages over hand-
coded Matlab equivalents, in addition to the obvious time saving: Java’s classes are
 extensively debugged and performance-tuned, which is especially important when searching large

K13163_Book.indb 56 11/8/2011 8:06:29 PM

© 2012 by Taylor & Francis Group, LLC

57Using Non-GUI Java Libraries in MATLAB®

 collections . also, these classes provide a consistent interface, are highly configurable and
extendable, enable easy cross-type interoperability, and generally give Matlab programmers
the full power of Java’s collections without needing to program the nuts-and-bolts .

to start using Java collections, readers should first be familiar with them . these classes are
part of the core Java language and are explained in any standard Java programming textbook .
the official java .sun .com website provides a detailed online tutorial3 about these classes, their
usage and differences, in addition to a detailed reference of these classes . JVM 1 .6, included in
Matlab since the R2007b (7 .5) release, significantly enlarged the Collection Framework
compared to JVM 1 .5 (used by Matlab releases 7 .0 .4–7 .4) . It is therefore important to choose
the reference version that is relevant for your particular JVM .4 a detailed list of enhancements
added to the different JVM versions can also be found on the java .sun .com website .5

Java Collections include interfaces and implementation classes . as of Matlab R2011a
(7 .12), Java interfaces cannot be used directly — only the implementation classes . Of the many
Collection classes, the following are perhaps most useful (all classes belong to the java.util
package, unless otherwise noted):

Set ◾ :6 an interface that is implemented by classes characterized by their prevention of
duplicate elements . Some notable implementation classes:

EnumSet: ◾ † stores same-type enumerated values; this is the best-performing Set.
HashSet: ◾ stores elements in a hash table and is the second fastest Set.
LinkedHashSet ◾ : stores elements in a hash table whose elements are linked based
on insertion order; slightly slower than HashSet.
TreeSet ◾ : stores elements in a value-ordered balanced (red-black) tree; much
slower than HashSet.

List ◾ :7 an interface that is implemented by classes characterized by ordered elements
(aka sequences), which may be duplicates of each other and accessed based on their
exact position within the List . Specially optimized internal algorithms8 enable sort-
ing, shuffling, reversing, rotating, and other modifications of the List . Some notable
implementation classes are as follows:

Vector: ◾ stores elements in a growable Set.
Stack ◾ : a Vector specialization subclass, which implements last-in-first-out
(lIFO) behavior — compare to the Queue class below .9

LinkedList: ◾ stores elements in a list whose elements are also linked, enabling
usage as a stack, queue, or double-ended queue (Deque) .10

Queue ◾ :11 an interface which is implemented by classes designed for holding elements
prior to processing, in an ordered list accessible only at one (=head) or two (head and tail)
positions . all classes include specialized insertion, extraction, and inspection meth-
ods . Some notable implementation classes:

† available only since JVM 1 .5 (i .e ., Matlab 7 .0 .4, R14SP2) .

K13163_Book.indb 57 11/8/2011 8:06:29 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming58

LinkedList: ◾ a List which is also a Stack, Queue, and Deque.
arrayDeque: ◾ † stores elements in a resizable array which is accessible in either
lIFO (=stack) or as FIFO (=queue) mode, hence its name (DEQUE=Double-Ended
QUEue) .
PriorityQueue ◾ :‡ a queue whose elements are dynamically sorted based on their
priority value .
java.util.concurrent.arrayBlockingQueue: ◾ § stores elements in a
fixed-capacity FIFO queue .
java.util.concurrent.SynchronousQueue: ◾ ¶ enables synchronization
between producer and consumer threads (=rendezvous mechanism) .
java.util.concurrent.DelayQueue ◾ :**†† a queue whose elements are stored
for a minimal time duration before being accessible for extraction .

Map ◾ :12 an interface which is implemented by classes characterized by elements of
unique keys paired with associated values . Early Java versions used the java.util.
Dictionary abstract superclass, but this was subsequently replaced by the java.
util.Map interface class . Maps contain specialized algorithms for fast retrieval based
on a supplied key . Some of the notable implementation classes:

EnumMap: ◾ ††‡‡ stores same-type enumerated keys, similar to EnumSet.
HashMap: ◾ stores elements in unsorted hash table, similar to HashSet.
Hashtable: ◾ synchronized (thread-safe) null-key-enabled HashMap.
TreeMap ◾ : stores elements in a value-ordered balanced (red-black) tree, similar to
TreeSet.
LinkedHashMap: ◾ stores elements in a hash table whose elements are linked
based on insertion order, similar to LinkedHashSet.

It should be noted that Matlab R2008b (7 .7)’s new containers.Map class is a scaled-
down Matlab version of the java.util.Map interface . It has the added benefit of seamless
integration with all Matlab types (unlike Java Collections — see below), as well as the abil-
ity since Matlab 7 .10 (R2010a) to specify data types .13 Serious Matlab implementations
requiring key-value maps/dictionaries should still use Java’s Map classes to gain access to their
larger functionality if not performance . Matlab versions earlier than R2008b have no real
alternative in any case and must use the Java classes . the reader may also be interested to
examine pure-Matlab object-oriented (class-based) Hashtable implementations, which is
available on the File Exchange .14

† available only since JVM 1 .6 (i .e ., Matlab 7 .5, R2007b) .
‡ available only since JVM 1 .5 (i .e ., Matlab 7 .0 .4, R14SP2) .
§ available only since JVM 1 .5 (i .e ., Matlab 7 .0 .4, R14SP2) .
¶ available only since JVM 1 .5 (i .e ., Matlab 7 .0 .4, R14SP2) .
**†† available only since JVM 1 .5 (i .e ., Matlab 7 .0 .4, R14SP2) .
‡‡ available only since JVM 1 .5 (i .e ., Matlab 7 .0 .4, R14SP2) .

K13163_Book.indb 58 11/8/2011 8:06:30 PM

© 2012 by Taylor & Francis Group, LLC

59Using Non-GUI Java Libraries in MATLAB®

a potential limitation of using Java Collections is their inability to contain nonprimitive
Matlab types such as structs .15 to overcome this, either down-convert the types to some
simpler type (using struct2cell or programmatically) or create a separate Java object that will
hold the information and store this object in the Collection .

Many additional Collection classes offer implementation of specialized needs . For example,
java.util.concurrent.LinkedBlockingDeque implements a Queue, which is also
a LinkedList, is a double-ended queue (Deque), and is blocking (meaning that extraction
operations will block until at least one element is extractable) .

all the Java Collections have intentionally similar interfaces, with additional methods
 specific to each implementation class based on its use and intent . Most Collections implement
the following common self-explanatory methods (simplified interface):

int size()
int hashCode()
boolean isEmpty()
boolean contains(Object element)
boolean containsall(Collection c)
Iterator iterator()
boolean add(Object element)
boolean remove(Object element)
boolean addall(Collection c)
boolean removeall(Collection c)
boolean retainall(Collection c)
void clear() % no return value
Object clone()
Object[] toarray()
String toString()

the full list of supported methods in a specific Collection class can, as any other Java object/
class, be inspected using Matlab’s methods or methodsview functions:

>> methods('java.util.Hashtable')
Methods for class java.util.Hashtable:
Hashtable containsKey equals isEmpty notifyall size
clear containsValue get keyset put toString
clone elements getClass keys putall values
contains entrySet hashCode notify remove wait

2.1.2 Collections Example: Hashtable
a detailed Matlab example that utilizes Hashtable16 for a phonebook application is detailed
in Matlab’s External Interface/Java section .† the following code snippet complements that
example by displaying some common characteristics of Collections:

>> hash = java.util.Hashtable;
>> hash.put('key #1','myStr');

† actually, java.util.Properties, which is a subclass of java.util.Hashtable.

K13163_Book.indb 59 11/8/2011 8:06:30 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming60

>> hash.put('2nd key',magic(3));
>> disp(hash) % same as: hash.toString
{2nd key=[[D@59da0f, key #1 = myStr}
>> disp(hash.containsKey('2nd key'))
 1 % = true
>> disp(hash.size)
 2

>> disp(hash.get('key #2')) % key not found
 []

>> disp(hash.get('key #1')) % key found and value retrieved
myStr

>> disp(hash.entrySet) % java.util.Collections$SynchronizedSet object
[2nd key =[[D@192094b, key #1 = myStr]
>> entries = hash.entrySet.toarray
entries =
java.lang.Object[]:
 [java.util.Hashtable$Entry]
 [java.util.Hashtable$Entry]
>> disp(entries(1))
2nd key=[[D@192094b
>> disp(entries(2))
key #1 = myStr

>> hash.values % a java.util.Collections$SynchronizedCollection
ans =
[[[D@59da0f, myStr]
>> vals = hash.values.toarray
vals =
java.lang.Object[]:
 [3 × 3 double]
 'myStr'
>> vals(1)
ans =
 8 1 6
 3 5 7
 4 9 2
>> vals(2)
ans =
myStr

2.1.3 Enumerators
Note that Java Iterators (aka Enumerators), such as those returned by the hash.keys() method,
are temporary memory constructs . a common pitfall is to directly chain such constructs . While
legal from a syntax viewpoint, this would produce results that are repetitive and probably
 unintended, as the following code snippet shows:

K13163_Book.indb 60 11/8/2011 8:06:30 PM

© 2012 by Taylor & Francis Group, LLC

61Using Non-GUI Java Libraries in MATLAB®

>> hash.keys
ans =
java.util.Hashtable$Enumerator@7b1d52 <= enumerator reference
>> hash.keys
ans =
java.util.Hashtable$Enumerator@127d1b4 <= new reference object

>> disp(hash.keys.nextElement)
2nd key <= 1st key enumerated in the hash
>> disp(hash.keys.nextElement)
2nd key <= same key returned, because of the new enumeration obj
>> % Wrong way: causes an endless loop since hash.keys regenerates
>> % ^^^^^^^^^ so hash.keys.hasMoreElements is always true
>> while hash.keys.hasMoreElements, doabc(); end % endless loop

>> % Correct way: store the enumerator in a temporary variable
>> hashKeys = hash.keys;
>> while hashKeys.hasMoreElements, doabc(); end

>> hash.keys.methods
Methods for class java.util.Hashtable$Enumerator:
equals hasNext nextElement remove
getClass hashCode notify toString
hasMoreElements next notifyall wait

>> % and similarly for arrayList iterators:
>> jList = java.util.arrayList;
>> jList.add(pi); jList.add('text'); jList.add(magic(3)); disp(jList)
[3.141592653589793, text, [[D@1c8f959]
>> iterator = jList.iterator
iterator =
java.util.abstractList$Itr@1ab3929

>> disp(iterator.next); fprintf('hasNext: %d\n',iterator.hasNext)
 3.14159265358979
hasNext: 1
>> disp(iterator.next); fprintf('hasNext: %d\n',iterator.hasNext)
text
hasNext: 1

>> disp(iterator.next); fprintf('hasNext: %d\n',iterator.hasNext)
 8 1 6
 3 5 7
 4 9 2
hasNext: 0

2.2 Database Connectivity

Interfacing Matlab to a database can be done in many different manners: we can purchase
and use MathWorks’ Database toolbox,17 use a third-party solution (many of which are free),18

K13163_Book.indb 61 11/8/2011 8:06:30 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming62

use one of numerous utilities on the Matlab File Exchange,19 use an activeX COM server,20
use a proprietary ODbC driver, or use Java Database Connectivity21 (JDbC) .22 Many data-
bases offer Java connectors or drivers that easily integrate with Matlab .23 the Matlab
File Exchange also contains some interesting tutorials and demos for accessing databases
from Matlab .24

any of these methods may be used: it is specifically NOt necessary to purchase the expen-
sive Database toolbox to connect databases to Matlab . this section will only detail the
Java-based JDbC approach .

2.2.1 Using Java Database Connectivity (JDBC) in MATlAB
JDbC is a Java-accessed driver with a standard interface and functionality .25 the basic concept
is that any Java program can access any data storage (database, spreadsheet, data file, etc .)
which has a JDbC driver, in exactly the same manner (Interface), using exactly the same code,
as any other data storage .

Since Matlab has access to Java functionality, it is therefore very easy to connect any
Matlab program to any database which has a JDbC driver . Nowadays, it is very difficult to
find a database which does NOt have a JDbC driver,26 and by extension which cannot be
accessed from Matlab .

In practice, even if we cannot find a JDbC driver, we can always use the database’s ODbC
driver with Java’s built-in JDbC–ODbC bridge, which wraps the ODbC driver in a JDbC
interface .27

Matlab’s Database toolbox, as well as some of the relevant submissions on the File
Exchange, use JDbC at its core, and wrap the basic JDbC calls with lots of code that handles
error checking, parameter passing, function wrapping, and other such programming tasks that
may save the programming time of the user .

Matlab users who are not proficient in JDbC, or who are programming a large database-
driven application, may find the extra cost of the Database toolbox cost-effective compared
with the time it would take to wrap all the basic JDbC calls in Matlab .

It should be noted that while database access is possible and relatively easy using the JDbC
interface described below, there are many nooks and crannies which are beyond the scope of
this book . Interested readers are referred to the official JDbC tutorial,28 JDbC books,29 or to
other online resources .30

as noted previously, users are advised to use the reference version suitable for their Matlab
release . Most online references given in this book are for the JVM 1 .6 version (suitable for
Matlab release R2007b (7 .5) onward) . References for other JVMs can easily be inferred by
a simple URl modification, described in this31 reference note .

let us now examine the basic tasks of connecting to an existing database, reading informa-
tion, and updating data . For more advanced database functionality, the reader is referred to the
additional resources mentioned above .

K13163_Book.indb 62 11/8/2011 8:06:31 PM

© 2012 by Taylor & Francis Group, LLC

63Using Non-GUI Java Libraries in MATLAB®

2.2.2 Initializing the JDBC Driver
Many databases provide a readymade Java connector that simplifies the task of connecting
to the database . For example, MySQl provides a list of such connectors,32 and a recently
submitted utility on the Matlab File Exchange uses one of these (Connector/J) for creat-
ing a Matlab connector .33 Whenever possible, I advise using such readymade connectors
rather than programming the database connectivity from scratch . While programming is fun
and informative, it may take some time to get all the pieces and edge-cases working
properly .

In general, database tasks are composed of four JDbC subtasks:

Initializing the JDbC driver (a one-time process) ◾
Setting up the application’s ◾ Connection to the database (a one-time process)
Sending processing queries (◾ Statements) to the database
Process information (◾ ResultSets) retrieved from the database

Initializing the JDbC driver requires† updating Java’s jdbc.drivers system property
with the driver’s URl prior to Matlab/JVM launch, or loading the driver into memory and
registering it in the built-in java.sql.DriverManager .34 the latter is done using the very
simple code snippet below . this particular example is for apache’s Derby database35 JDbC
driver — other databases will have similar JDbC driver class names which should be used
instead . a list for the most common databases can be found here,36 and a more complete
(although some years out-of-date) list here .37 the built-in JDbC–ODbC bridge38 is called “sun .
jdbc .odbc .JdbcOdbcDriver”; MySQl’s39 is called “com .mysql .jdbc .Driver” .40

Unfortunately, only drivers that appear directly on Matlab Java’s static classpath
can be easily loaded . theoretically, we could add the driver class or JaR file(s) to the
Java classpath in run-time (using javaaddpath) .41 Unfortunately, this fails to properly regis-
ter the Driver in Matlab, since Matlab’s default classloader does not access the
dynamic classpath for some reason .42 MathWorks says that it is not a bug, but an expected
behavior .43

the solution is to add the driver’s class or JaR file(s) to Matlab’s static classpath in
%MATLABroot%/toolbox/local/classpath.txt and it should work after restarting Matlab .44
We can then use Matlab’s classloader (or direct class invocation) to load the driver onto
memory and finally register the driver class with the DriverManager:‡

try
 driverClassName = 'org.apache.derby.jdbc.EmbeddedDriver';

† Strictly speaking, there is an alternative way of connecting to databases, using Java Naming and Directory Interface
(JNDI) and javax.sql.DataSource . this is an advanced topic well outside the scope of this book . Refer to Java
JDbC tutorials or references for further information .

‡ this latter part is unnecessary for JVM 1 .6 (Matlab R2007b) and upward, but is suggested for backward compatibility .

K13163_Book.indb 63 11/8/2011 8:06:31 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming64

 try
 % This works when the class/JaR is on the static Java classpath
 % Note: driver automatically registers with DriverManager
 java.lang.Class.forName(driverClassName);
 catch
 try
 % Try loading from the dynamic Java path
 classLoader =
 com.mathworks.jmi.ClassLoaderManager.getClassLoaderManager;
 driverClass = classLoader.loadClass(driverClassName);
 catch
 try

 % One more attempt, using the system class-loader45

 classLoader = java.lang.ClassLoader.getSystemClassLoader;
 % an alternative, using the MaTLaB Main Thread's context CL
 %classLoader =
 % java.lang.Thread.currentThread.getContextClassLoader;
 driverClass = classLoader.loadClass(driverClassName);
 catch
 % One final attempt - load directly, like this:
 driverClass = eval(driverClassName);
 % Or like this (if the driver name is known in advance):
 driverClass = com.mysql.jdbc.Driver;
 end
 end
 % Now manually register the driver with DriverManager

 % Note: silently fails if driver is not in static classpath46

 DriverManager.registerDriver(driverClass.newInstance);
 end

 % continue with database processing

catch
 error(['JDBC driver' driverClassName 'not found!']);
 % do some failover activity
end

Unfortunately, there seems to be a bug in Matlab releases R2009a–R2010a (7 .8–7 .10) which
causes Matlab startup errors when some JaR files (MySQl’s JDbC driver included) are added
to the static Java classpath .† the recommended solution in such cases is to try to add the driver
using the dynamic classpath (via javaaddpath) . We can add this command to the startup .m script
in order to avoid the necessity of repeating the command in each new Matlab session:

javaaddpath('C:\mysql-connector-java-5.1.12-bin.jar');

as an alternative to using javaaddpath, Ed Yu (whom we recall from Section 1 .6) has sug-
gested using javaclasspath that reportedly works better for JDbC .47

† http://www .mathworks .com/support/bugreports/624963 (or http://bit .ly/d1Gc5x); the bug was apparently fixed in R2010b
(7 .11) .

K13163_Book.indb 64 11/8/2011 8:06:31 PM

© 2012 by Taylor & Francis Group, LLC

http://www.mathworks.com

65Using Non-GUI Java Libraries in MATLAB®

2.2.3 Connecting to a Database
In order to connect to the database, we need to know its connection string . this has a slightly
different version for each database type . the general format is ‘jdbc:<dbtype>:<dbName>
<extraProperties>’ . Refer to the online documentation48 and the database’s documentation for
details about the database’s specific connection string .

Sample connection strings are:

Oracle MySQl: ‘jdbc:mysql://localhost:3306/testDb’ ◾
Oracle Database: ‘jdbc:oracle:thin:@localhost:1521:xe’ ◾
apache Derby: ‘jdbc:derby:sampleDb;create=true;’ ◾
Microsoft access: ‘jdbc:odbc:Driver={Microsoft access Driver (* .mdb)}; ◾
DbQ=c:/Yair/test .mdb;DriverID=22;REaDONlY=true}’

this connection string can now be used for the actual connections, in either secure (user-
name/password) or non-secure mode:†

% Non-secured (no username/password required for database access)
connStr = 'jdbc:derby:sampleDB';
con = java.sql.DriverManager.getConnection(connStr);
% Secure login (username/password required)
import java.sql.*
con = DriverManager.getConnection(connStr,'username','password');

Some databases (e .g ., SQlServer) enable defining a Trusted Connection, which enables con-
necting to the Db without requiring authentication . For example,49

connStr = 'Provider = sqloledb;Data Source = oledbserver;Initial
 Catalog = oledbcat;Trusted_Connection = yes;';
con = java.sql.DriverManager.getConnection(connStr);

Microsoft Windows enables setting up an ODbC connection to data sources and readers
might be tempted to use this for their database connection . My advice is to try to use JDbC
directly, rather than the ODbC bridge . the reason is that in many cases the ODbC driver is
simply using JDbC under the hood, thereby adding another point of possible failure, a tie-in to
a specific computer configuration, and worse performance than a direct JDbC connection .

DriverManager attempts to wait forever for the connection to succeed or fail . this can be
limited by setting a timeout value in seconds prior to the connection attempt:

 DriverManager.setLoginTimeout(3); % wait 3 seconds max
 DriverManager.getConnection(connStr,'username','password');

† Of course, real-world Matlab implementations should heavily use try-catch blocks on all Db-related actions such as these .

K13163_Book.indb 65 11/8/2011 8:06:31 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming66

a database connection is successfully established when a valid java.sql.Connection
object50 is returned by the call to DriverManager.getConnection(connStr) .

2.2.4 Sending SQl Requests
Once a database connection is successfully established (a valid java.sql.Connection
object is gotten), it can process SQl Statements (java.sql.Statement objects51) . the ver-
sion of SQl accepted is determined by your specific Db — each Db vendor and version
 supports a slightly different variety of SQl functions and syntax . However, if we adhere to
aNSI-standard SQl-92,52 then we should be safe in general .

there are several types of Statements:

Data retrieval (SQl “select”) queries ◾
Data manipulation (DMl) queries — insert/update/delete ◾
Data definition (DDl) queries — adding/modifying tables/indices/and so on ◾
Stored procedure invocation queries — uses the ◾ CallableStatement subclass53

Here are some examples (remember to add trycatch blocks in your program!):

% Create the SQL Statement object
stmt = con.createStatement();

% SQL Select query example
sqlQueryStr = 'SELECT * FROM TableName WHERE x = 2';
resultSet = stmt.executeQuery(sqlQueryStr);

% SQL Update query example
sqlQueryStr = 'UPDaTE TableName SET x = 1 WHERE y = 2';
stmt.executeQuery(sqlQueryStr);
numRowsUpdated = stmt.getUpdateCount;

% SQL Insert query example
sqlQueryStr = 'INSERT INTO TableName VaLUES(''str'',2.4)';
stmt.executeQuery(sqlQueryStr);
numRowsInserted = stmt.getUpdateCount;

% DDL query example
sqlQueryStr = 'CREaTE TaBLE NewTable(name varchar, price float)';
stmt.executeQuery(sqlQueryStr); % no return value

% Stored-procedure invocation example
callableStmt = con.prepareCall('{CaLL Show_Suppliers}');
resultSet = callableStmt.executeQuery();

Note that none of these SQl statements requires appending the statement terminator at the
end of the sqlQueryStr . It is fortunate that the JDbC driver does this automatically for us,
since different databases have different terminators (e .g ., ‘;’ or ‘GO’) . this enables database-
independent SQl query strings and code .

SQl keywords (such as SElECt) are case-insensitive . I normally use uppercase, but this is
merely a readability convention — we can use lowercase if we prefer . this is sometimes not the

K13163_Book.indb 66 11/8/2011 8:06:31 PM

© 2012 by Taylor & Francis Group, LLC

67Using Non-GUI Java Libraries in MATLAB®

case with identifier names such as table names and field names, which in some databases are
case-sensitive . also note that different databases may have separate behavior for identifier
names . In addition to case sensitivity, names may also be limited in their length (e .g ., 16 char-
acters) or content (e .g ., only a–z, a–Z, 0–9, and ‘_’) . Names containing special characters
(e .g ., space) may be allowed or not, but when allowed may require enclosures of a specific for-
mat (e .g ., ‘[My field name]’) . In short, refer to the database documentation for specific
information .

these queries may also be passed via the PreparedStatement54 interface, which enables
faster response times and easier invocation when processing parameterized queries . In the fol-
lowing example, a single generic SQl query is precompiled once and then reused multiple
times with different parameter values (Bound Variables) . the alternative would be to prepare a
different standard Statement for each loop element and this would be much less efficient for
a loop over many elements:

salesForWeek = [175, 150, 60, 155];
products = {'Colombian', 'French RFRoast', 'Espresso', 'Decaf'};
sqlQueryStr = 'UPDaTE sales SET amount = ? WHERE product like ?';
stmt = con.prepareStatement(sqlQueryStr);
for productIdx = 1 : length(products)
 stmt.setInt(1, salesForWeek(productIdx));
 stmt.setString(2, products{productIdx});
 numRowsUpdated = stmt.executeUpdate(); % note the return value
end % for productIdx loop

Finally, note that we can also use SQl to insert binary data (such as images, etc .) into our
Db .55 this will, of course, depend on our Db’s capabilities in storing binary data . For exam-
ple, Oracle and MySQl use BLOBs (binary large Objects)56 to store images, whereas
Microsoft access uses an OLE Object .57 If we use blObs whose original data is not binary
(e .g ., a large set of double-precision values), then we will need to cast the data into an int8
array before inserting into the Db, as explained in the following section .

a related question is how to access CLOB (Character large Object) data in an Oracle Db .
It appears that Matlab treats such a ClOb as a string when inserting or passing to a stored
procedure .58 I have only seen online references to problems with Oracle’s ClOb, although
other databases (e .g ., apache Derby) also support ClObs .

2.2.5 Handling SQl Result Sets
ResultSets59 are the standard container for SQl query results . ResultSets are returned
for SQl retrieval (SElECt) and Stored-Procedure invocation queries . the other SQl query
Statement types return no output, and attempting to assign their output to a variable will
cause an error . ResultSets may be viewed as a virtual data table whose rows can be
read sequentially . Each row contains data fields based on the invoked SQl query results and
can be read using dedicated type-specific getter methods (getInt(), getString(), getBoolean(),
getDouble(), getBlob(), and other more-specific types) .

K13163_Book.indb 67 11/8/2011 8:06:31 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming68

Each getter method has two variants, accepting either a column name or a column index
(which starts at 1, despite the fact that Java indexing normally starts at 0) . Using column index
is faster but may cause problems if the Stored-Procedure or View modified the result columns;
column indices are also less readable and maintainable than column names .

Here is an example that reads selective table data and stores it in a Matlab cell matrix:

% Prepare and execute a data-retrieval (select) query
sql1Str = 'SELECT [Customer ID],[Customer Name],[Last Year''s Sales]';
sql2Str = 'FROM Customer';
sql3Str = 'WHERE [Customer ID] > 100';
sql4Str = 'ORDER BY [Customer ID] DESCENDING';
sqlQueryStr = [sql1Str sql2Str sql3Str sql4Str];
resultSet = stmt.executeQuery(sqlQueryStr);

% Process the ResultSet data and store in a Matlab cell matrix
% resultSet rows are processed one at a time, until their end
matlabData = {};
while (resultSet.next())
 id = resultSet.getInt('Customer ID'); % or: resultSet.getInt(1)
 name = char(resultSet.getString(2)); % Java String => Matlab char
 sales = resultSet.getDouble(3);
 matlabData(resultSet.getRow,:) = {id, name, sales};
end % while resultSet

% Display the resulting matlabData (a 169x3 cell array)
disp(matlabData)

 [270] 'Mountain View Sport' [65231.7]
 [269] 'Hikers and Bikers' [8300.8]
 [268] 'Coastal Line Bikes' [1130.4]
 [267] 'Tom's Place for Bikes' [36400.67]
 ...

Note that data retrieval attempts to automatically convert the original data type to the
requested getter method data type . therefore, if data = 65231 .7 (a double), then we could get it
using getInt() (getting 65231) or getString() (getting “65231 .7000” after the conversion from
java.lang.String to Matlab string using Matlab’s char function) .
ResultSet row data can only be read once . after a certain field data was read, an error

will be thrown if we try to reread it . Other errors will be thrown if a supplied column name is
missing in the ResultSet, or when trying to read data before the initial resultSet.next()
or after the final data row (when resultSet.next() returns false) .

Database NUll values are special and care should be taken in our Matlab program to
account for their possible existence in the data . the wasNull() method reports whether the last
value read was NUll or not . this can also be done by testing the getString() result for [] (using:
if isnumeric(val) since non-NUll results return character strings) . Unfortunately, a
similar testing for getInt() or getDouble() fails because these methods return a zero (0) value for

K13163_Book.indb 68 11/8/2011 8:06:31 PM

© 2012 by Taylor & Francis Group, LLC

69Using Non-GUI Java Libraries in MATLAB®

NUlls, which cannot be differentiated from a normal non-NUll zero result — these methods
require the wasNull() method for validity checks:

>> rs = stmt.executeQuery('SELECT ''xyz'',null FROM Customer');
>> rs.next; % go to first data row
>> rs.getString(1)
ans =
xyz
>> rs.getString(2)
ans =
 []
>> rs.wasNull
ans =
 0

>> rs.next; % go to next row to try to re-read the NULL
>> rs.getDouble(3)
ans =
 0
>> rs.getDouble(2)
ans =
 0 <= note the same result as non-NULL value
>> rs.wasNull
ans =
 0

ResultSets are forward-scrolling by default (TYPE_FORWaRD_ONLY), meaning data
rows can only be read in sequence, from beginning to end .60 ResultSets are also read-only
by default (CONCUR_REaD_ONLY), meaning their data cannot be modified . these parameters
cannot be modified once the Statement was created, but may be set during Statement
construction .61 For example,

stmt = con.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_UPDaTaBLE);
sqlQueryStr = 'SELECT * FROM TableName WHERE x = 2';
resultSet = stmt.executeQuery(sqlQueryStr);
resultSet.absolute(5); % move to the fifth row of resultSet
resultSet.updateString(2,'xyz'); % update data in 2nd field
resultSet.updateRow(); % update the relevant row in the database

Note that the originating database table was only updated when resultSet.updateRow
was called . this should be done separately for each modified ResultSet row .

When backward scrolling is enabled (TYPE_SCROLL_INSENSITIVE or TYPE_SCROLL_
SENSITIVE),† moving the ResultSet row cursor (which can be envisioned as a pointer to

† TYPE_SCROLL_INSENSITIVE is insensitive to changes done to the database while the ResultSet is open, whereas
TYPE_SCROLL_SENSITIVE propages database changes to the open ResultSet .

K13163_Book.indb 69 11/8/2011 8:06:32 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming70

the current data row) can be done either to a specific (absolute) row using resultSet.abso-
lute() or relatively to the current row using resultSet.relative() . In both cases, the supplied
parameter may be positive or negative, affecting the movement direction . For example,
resultSet.relative(-5) moves the ResultSet cursor five rows back (if available), whereas
resultSet.absolute(-5) moves to the fifth row before the end .

Several additional ResultSet cursor-movement methods are available:

previous ◾ — opposite of next(), same as relative(-1);
first ◾ — moves to first row, same as absolute(1);
last ◾ — moves to last row, same as absolute(-1);
beforeFirst ◾ — moves to zeroth (invalid) row, just before the first data row;
afterLast ◾ — moves to N + 1th (invalid) row, just after the last data row;
isBeforeFirst ◾ — checks if the cursor is currently on the zeroth (invalid) row;
isFirst ◾ — checks if the cursor is currently on the first data row;
isLast ◾ — checks if the cursor is currently on the last data row;
isafterLast ◾ — checks if the cursor is currently on the N + 1th (invalid) row;
and a few others . ◾

after we have finished processing a ResultSet, it is a good practice to call resultSet.
close() in order to free database, JDbC, and Matlab resources . Similarly, call stmt.close()
when done with the query . When a database connection is no longer needed, call con.closeAll-
Statements() and con.close() . Care should be taken to free these resources also when an excep-
tion occurs, by placing the call to close() following the trycatch block, instead of just within
the try sub-block:

% Bad practice (simple retrieval from a ResultSet):
rs = stmt.executeQuery('SELECT ''xyz'', null FROM Customer');
text = rs.next.getString(1);

% a better practice (close everything; extensive exception handling):
try
 rs = stmt.executeQuery('SELECT ''xyz'', null FROM Customer');
 text = rs.next.getString(1);
catch
 msgbox(['Error occurred:' lasterr]);
end
try rs.close(); catch, end
try stmt.close(); catch, end
try con.closeallStatements(); catch, end
try con.close(); catch, end

For additional performance and resource considerations in applications that heavily utilize a
database, consider using Data Source connections, Connection Pooling, and other advanced
features available in the database and database driver .

K13163_Book.indb 70 11/8/2011 8:06:32 PM

© 2012 by Taylor & Francis Group, LLC

71Using Non-GUI Java Libraries in MATLAB®

binary data (images, etc .) can also be retrieved, depending on Db support .62 a particular
problem with Oracle blObs is that Oracle returns a oracle.sql.BLOB Java object .63
the blOb’s data can be accessed in Matlab using the Java object’s getBytes(position,length)
method, which returns an array of byte (Matlab int8) values . If the original blOb data was
not binary (e .g ., a large set of double-precision values), then we will need to cast the data before
Db inserting (into an int8 array) and following retrieval (back from int8):64

blobDataForDB = typecast(originalData(:),'int8'); % into DB
originalData = typecast(blobDataFromDB,'int8'); % from DB
 % Note: you may need to reshape() originalData appropriately

Similarly, Oracle returns an oracle.sql.CLOB Java object when retrieving ClOb data .
to convert this into Matlab, use the Java object’s getSubString(position,length) method:65

text = char(clob.getSubString(1,clob.length()));

2.3 Miscellaneous Other Uses

Java classes and packages can be used for numerous other uses . Java is such a well-established
and popular programming language, that it is very probable that any conceivable programming
block has a Java version posted somewhere online, often in multiple variations and styles .

Here are several examples that were posted online of Java classes that have been used in
Matlab applications . these encompass a wide array of programming fields and illustrate
Java’s versatility and adaptability for Matlab users:

Use Java networking ◾ 66 for client–server connectivity between Matlab and external
applications . Quite a few CSSM posts67 and utilities68 were posted, and even a detailed
tutorial .69 One power-user, Dirk-Jan Kroon, has even created a Java-based Matlab
webserver .70

 Note that using networking as a server (as opposed to the much simpler client side)
normally requires setting up separate I/O and processing threads . However, as Walter
Roberson has pointed out (also see Section 3 .2):71

“. . . Matlab normally runs as a single Java thread; you can use Java thread creation
 methods to create additional Java threads, but they will not have access to the Matlab
workspaces except by communicating with the single main Matlab thread.”

 Still, andrzej Karbowski’s jPar utility72 on the Matlab File Exchange was created
to connect remote Matlab sessions using Java RMI (Remote-Method Invocation — a
subset of Java networking) .
Retrieve URls that require authentication . ◾ 73

Send emails with authentication or behind a proxy . ◾ 74

Use Java I/O for communication with the serial/parallel/USb ports ◾ 75 and for a multi-
tude of file-processing functionalities .76

K13163_Book.indb 71 11/8/2011 8:06:32 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming72

Use Java XMl parsers to process XMl data files . ◾ 77

Communicate with external websites, for example, to get an updated list of stock and ◾
options data .78

Compress/decompress data (◾ Matlab’s zip function only works with files) .79

Use ◾ java.text.DecimalFormat80 to format displayed numbers in a locale-
specific manner that is far more customizable than Matlab’s standard built-in func-
tions allow .81

Use ◾ java.security.MessageDigest82 to hash, encrypt, and decrypt data .83

Use ◾ java.nio.channels.FileLock84 to solve problems with network files being
concurrently accessed by several Matlab processes .85

automate testing and GUI control using ◾ java.awt.Robot’s86 ability to program-
matically move the mouse cursor,87 simulate mouse clicks and key presses,88 and take
partial or full screenshots .89

 I have used java.awt.Robot for exactly this purpose in my ScreenCapture utility .
this is a relatively small and highly documented utility — the reader may download it free
of cost and inspect its source code .90 another, Java-based alternative is to use the compo-
nent’s printAll() method .91

Use the computer name and the process-id as a random-number seed . ◾ 92

Use the Java jMEF library for combining Gaussian distribution functions . ◾ 93

Use the Java sound aPI to control the computer’s speakers . ◾ 94

Use specific algorithms in graph-theory . ◾ 95

Use specialized data structures such as ◾ decision trees .96

Run Javascript code without the overhead of a browser GUI, using a Java-based ◾
Javascript processing engine .97 this could be used, for example, to integrate Google
Maps in a Matlab mapping application .98

 . . . and a few more ideas that can be implemented in Java but which I have not seen online
(which is not to say they have not been done for Matlab — only that I have personally not come
across them):

Encryption utilities, networking operations that are trivial in Java, are next to impos- ◾
sible in standard Matlab .
Serialization of Java objects is currently not supported in ◾ Matlab,99 but can be done
using an external Java class .
Use ◾ java.math.BigIntger and BigDecimal classes for arbitrary numerical
precision .100

Many other interesting ideas in brian Eubanks’ ◾ Wicked Cool Java book .101

2.4 A Short Pause for Reflection

this chapter described how using Java can benefit Matlab programmers . Much of the
Matlab–Java interface explored in this chapter is well documented, with only a few caveats,

K13163_Book.indb 72 11/8/2011 8:06:32 PM

© 2012 by Taylor & Francis Group, LLC

73Using Non-GUI Java Libraries in MATLAB®

bugs, and undocumented behaviors . Nevertheless, Java remains under-utilized in Matlab
applications, perhaps since most Matlab engineers have no Java knowledge and are there-
fore unaware of its possible usefulness . It is hoped that after reading this chapter (and the online
resources referenced), Matlab programmers will be much less hesitant to explore and inte-
grate Java classes into their Matlab applications .

Java has an extensive set of packages and classes dealing with I/O to external files, pro-
cesses, systems, and hardware . It has extensive support for networking, from low-level tCP/IP
to webpage URls and XMl documents . Java contains classes and libraries that provide wider
functionality and more granular control than their Matlab equivalents that (it must be admit-
ted) provide adequate basic support for most needs .

Java’s millions of programmers worldwide far outnumber Matlab programmers . there are
also many active Java forums,102 blogs,103 articles,104 tutorials,105 and source code repositories,107
with traffic and content far beyond those available in CSSM and the MathWorks’ site . therefore,
there is a good likelihood that for any programming task, algorithm, or problem in a Matlab
application, somebody somewhere has already posted a Java solution which can be integrated
into our Matlab program .

beyond saving hefty toolboxes and algorithm development cost, this book aims to show that
Matlab developers have a real development alternative . the choice is ours based on the
application’s requirements and our programming capabilities .

this chapter has focused on non-GUI Java components and programming . Using Java GUI
(Swing) components can significantly improve a Matlab application’s usability . However,
this topic is more complex than those presented so far and contains more undocumented niches
and pitfalls for the Matlab programmer . Readers will note that the further we advance in
this book, the deeper we get into undocumented areas .

With our improved confidence in Matlab–Java integration, let us now start Swinging .

References

 1 . http://www .mathworks .com/help/techdoc/matlab_external/f44062 .html (or http://tinyurl .com/2zdvha) .
 2 . For example, see http://www .mathworks .com/matlabcentral/fileexchange/26778 (or http://bit .ly/bagjrG) .
 3 . http://java .sun .com/docs/books/tutorial/collections/ (or http://tinyurl .com/6y9ob) .
 4 . 1 .4 .2: http://java .sun .com/j2se/1 .4 .2/docs/guide/collections/ (or http://tinyurl .com/az492n);
 1 .5 .0: http://java .sun .com/j2se/1 .5 .0/docs/guide/collections/ (or http://tinyurl .com/bj5chs);
 1 .6 .0: http://java .sun .com/javase/6/docs/technotes/guides/collections/ (or http://tinyurl .com/bckwmy) .
 5 . 1 .6 compared to 1 .5: http://java .sun .com/javase/6/docs/technotes/guides/collections/changes6 .html

(or http://bit .ly/dfhWwa); 1 .5 compared to 1 .4 .2: http://java .sun .com/javase/6/docs/technotes/guides/
collections/changes5 .html (or http://bit .ly/d8tOCv) .

 6 . http://java .sun .com/javase/6/docs/api/java/util/Set .html (or http://tinyurl .com/2huafe) .
 7 . http://java .sun .com/javase/6/docs/api/java/util/list .html (or http://tinyurl .com/325uax) .
 8 . http://java .sun .com/docs/books/tutorial/collections/algorithms (or http://tinyurl .com/chmfs4) .
 9 . http://stackoverflow .com/questions/4163920/matlab-stack-data-structure (or http://bit .ly/bezONj) .
 10 . http://stackoverflow .com/questions/4142190/is-there-a-queue-in-matlab (or http://bit .ly/aNf6Ek) shows

a Matlab example .
 11 . http://java .sun .com/javase/6/docs/api/java/util/Queue .html (or http://tinyurl .com/2vrhwd) .
 12 . http://java .sun .com/javase/6/docs/api/java/util/Map .html (or http://tinyurl .com/2sfddr) .

K13163_Book.indb 73 11/8/2011 8:06:32 PM

© 2012 by Taylor & Francis Group, LLC

http://www.mathworks.com
http://java.sun.com
http://java.sun.com

Undocumented Secrets of MATLAB®-Java Programming74

 13 . http://www .mathworks .com/help/techdoc/ref/containers_map .html (or http://bit .ly/aEkKOw); http://
stackoverflow .com/questions/3591942/hash-tables-in-matlab (or http://bit .ly/dwpJvI) .

 14 . http://www .mathworks .com/matlabcentral/fileexchange/26778 (or http://bit .ly/bagjrG); http://www .
mathworks .com/matlabcentral/fileexchange/28586 (or http://bit .ly/c0XeFl) .

 15 . http://stackoverflow .com/questions/436852/storing-Matlab-structs-in-java-objects (or http://bit .ly/9toxIj) .
 16 . http://www .mathworks .com/help/techdoc/matlab_external/f18070 .html (or http://tinyurl .com/becpyj) .
 17 . http://www .mathworks .com/products/database/ (or http://bit .ly/aanwJK) .
 18 . For example, http://sourceforge .net/projects/mym (or http://bit .ly/dgGp2W) for MySQl; http://www .

dertech .com/pgmex/pgmex .html (or http://bit .ly/azlSys) for PostgreSQl; or http://energy .51 .net/dbtool/
for any ODbC (shareware with a free demo mode) .

 19 . http://www .mathworks .com/matlabcentral/fileexchange/?term=database (or http://bit .ly/d3YH8K) provides
close to 100 utilities, for example, http://www .mathworks .com/matlabcentral/fileexchange/4045-cse-sql-
database-library (or http://bit .ly/aanwJK); http://www .mathworks .com/matlabcentral/fileexchange/8385-
database-connection-mfiles (or http://bit .ly/bzNyeb); http://www .mathworks .com/matlabcentral/
fileexchange/8663-mysql-database-connector (or http://bit .ly/cnde6t); http://www .mathworks .com/
matlabcentral/fileexchange/9549-myblob (or http://bit .ly/bVlFsj); http://www .mathworks .com/ matlabcentral/
fileexchange/18834-myblobtestdb (or http://bit .ly/d89pjv); http://www .mathworks .com/matlabcentral/
fileexchange/13621-ado-ole-database-connection (or http://bit .ly/bCFdCM) .

 20 . For example, see the code within http://www .mathworks .com/matlabcentral/fileexchange/13621 (or http://
bit .ly/cJ7nk7) or http://www .mathworks .com/matlabcentral/fileexchange/8385 (or http://bit .ly/aXra0c);
or the explanations in http://www .mathworks .com/matlabcentral/newsreader/view_thread/81979#210417
(or http://bit .ly/dzvt8y), http://stackoverflow .com/questions/3100998/getting-names-of-access-database-
tables-with-matlab (or http://bit .ly/aUllln), and http://www .toomre .com/Writing_blObs_With_
Matlab_activeX (or http://bit .ly/d2JtNZ) .

 21 . http://java .sun .com/javase/technologies/database (or http://bit .ly/bbIYaS); http://java .sun .com/docs/
books/tutorial/jdbc/ (or http://bit .ly/cerwIl) .

 22 . as in http://www .mathworks .com/Matlabcentral/fileexchange/25577 (or http://bit .ly/5oIFtj) .
 23 . For example, MongoDb: http://github .com/mongodb/mongo-java-driver/ (or http://bit .ly/cU7vll); http://

stackoverflow .com/questions/3886461/connecting-to-mongodb-from-Matlab (or http://bit .ly/bbwEtZ) .
 24 . http://www .mathworks .com/matlabcentral/fileexchange/12027 (or http://bit .ly/9aayaJ); http://www .

mathworks .com/matlabcentral/fileexchange/13069 (or http://bit .ly/9e1h9F); http://www .mathworks .com/
matlabcentral/fileexchange/17897 (or http://bit .ly/9FGla0); http://www .mathworks .com/matlabcentral/
fileexchange/28237 (or http://bit .ly/9phRvc) and several others by Dimitry Shvorob: http://www .
mathworks .com/matlabcentral/fileexchange/?term=authorid:17777 (or http://bit .ly/dc08al) .

 25 . http://java .sun .com/products/jdbc
 26 . http://developers .sun .com/product/jdbc/drivers (or http://tinyurl .com/2bt7f7) .
 27 . http://java .sun .com/j2se/1 .4 .2/docs/guide/jdbc/bridge .html (or http://bit .ly/c7W4ma) . For example, con-

necting to a Microsoft access Db: http://blog .taragana .com/index .php/archive/access-microsoft-access-
database-from-java-using-jdbc-odbc-bridge-sample-code/ (or http://bit .ly/a5oOSM) .

 28 . http://java .sun .com/docs/books/tutorial/jdbc/index .html (or http://tinyurl .com/2o6jy) .
 29 . http://java .sun .com/products/jdbc/community/books/index .html (or http://bit .ly/a84bwl), or this rela-

tively old comparative review: http://www .javaworld .com/javaworld/jw-01-1998/jw-01-bookreview .html
(or http://bit .ly/cZHht3) .

 30 . Such as www .java2s .com’s excellent website http://www .java2s .com/tutorial/Java/0340_Database/
Catalog0340_Database .htm (or http://tinyurl .com/aawpe7) .

 31 . For example, here are the different reference sections for the ResultSet class:
 1 .4 .2: http://java .sun .com/j2se/1 .4 .2/docs/api/java/sql/ResultSet .html (or http://tinyurl .com/7xm6w);
 1 .5 .0: http://java .sun .com/j2se/1 .5 .0/docs/api/java/sql/ResultSet .html (or http://tinyurl .com/zvbr3);
 1 .6 .0: http://java .sun .com/javase/6/docs/api/java/sql/ResultSet .html (or http://tinyurl .com/2ukwuf) .
 32 . http://www .mysql .com/products/connector/ (or http://bit .ly/aIlHb8) .
 33 . http://www .mathworks .com/matlabcentral/fileexchange/28237-queryMySQl (or http://bit .ly/9phRvc) .
 34 . http://java .sun .com/javase/6/docs/api/java/sql/DriverManager .html (or http://tinyurl .com/7y24l5), or http://

java .sun .com/j2se/1 .5 .0/docs/guide/jdbc/getstart/drivermanager .html (or http://tinyurl .com/7y24l5) .
 35 . http://db .apache .org/derby/

K13163_Book.indb 74 11/8/2011 8:06:33 PM

© 2012 by Taylor & Francis Group, LLC

http://www.mathworks.com
http://stackpverflow.com
http://db.apache.org
http://developers.sun.com
http://java.sun.com

75Using Non-GUI Java Libraries in MATLAB®

 36 . http://www .java2s .com/tutorial/Java/0340_Database/alistofJDbCDriversconnectionstringdrivername .
htm (or http://bit .ly/b7fkCQ) .

 37 . http://developers .sun .com/product/jdbc/drivers (or http://tinyurl .com/2bt7f7) .
 38 . http://java .sun .com/javase/6/docs/technotes/guides/jdbc/bridge .html (or http://bit .ly/dqv8JY) .
 39 . http://dev .mysql .com/downloads/connector/j/ (or http://bit .ly/9ZSPfq); for a detailed description of the JDbC-

MySQl connector, see http://www .developer .com/java/data/article .php/3417381 (or http://bit .ly/9aQk5c) .
 40 . http://stackoverflow .com/questions/2138530/how-can-i-remotely-connect-odbc-using-java-in-windows-

xp/2139141#2139141 (or http://bit .ly/9uNWWS) .
 41 . http://www .mathworks .com/Matlabcentral/newsreader/view_thread/146801#369440 (or http://tinyurl .

com/cmeqea) .
 42 . http://forums .java .net/jive/message .jspa?messageID=111283 (or http://tinyurl .com/cz6n7x); or http://

www .mathworks .com/matlabcentral/newsreader/view_thread/161242#409349 (or http://tinyurl .com/
ddjl2u); or http://www .mathworks .com/matlabcentral/newsreader/view_thread/259499 (or http://tinyurl .
com/l2bj7f) .

 43 . http://www .mathworks .com/support/solutions/en/data/1-1YFUFb (or http://tinyurl .com/nxm42o); unfor-
tunately, this Web page was removed by MathWorks and can no longer be seen . See a related comment on
this issue: http://blogs .mathworks .com/desktop/2009/07/06/calling-java-from-matlab/#comment-6862
(or http://bit .ly/e0dJ4h) .

 44 . http://www .mathworks .com/Matlabcentral/newsreader/view_thread/242091 (or http://tinyurl .com/
cy9nh8) .

 45 . http://www .mathworks .com/Matlabcentral/newsreader/view_thread/37146 (or http://bit .ly/9tksuX) .
 46 . there are several CSSM posts about this issue . For example, see http://www .mathworks .com/matlabcentral/

newsreader/view_thread/58397 (or http://tinyurl .com/99qv3k) .
 47 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/242091#636516 (or http://bit .ly/cwJYJ5) .
 48 . http://www .java2s .com/tutorial/Java/0340__Database/alistofJDbCDriversconnection stringdrivername .

htm (or http://bit .ly/b7fkCQ); http://java .sun .com/docs/books/tutorial/jdbc/basics/connecting .html (or
http://tinyurl .com/2u6uu8) .

 49 . http://www .toomre .com/Writing_blObs_With_Matlab_activeX (or http://bit .ly/d2JtNZ) .
 50 . http://java .sun .com/javase/6/docs/api/java/sql/Connection .html (or http://tinyurl .com/2g6wbd) .
 51 . http://java .sun .com/javase/6/docs/api/java/sql/Statement .html (or http://tinyurl .com/3a859v) .
 52 . http://www .w3schools .com/sql/default .asp or http://en .wikipedia .org/wiki/SQl
 53 . http://java .sun .com/javase/6/docs/api/java/sql/CallableStatement .html (or http://tinyurl .com/65dt5w) .
 54 . http://java .sun .com/javase/6/docs/api/java/sql/PreparedStatement .html (or http://tinyurl .com/375pes) .
 55 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/276333#730751 (or http://bit .ly/

b4aRHZ) . the extremely detailed solution in this thread is mySql-specific, but can be adapted to other
Dbs relatively easily . For solution to the Microsoft access Db, see http://www .mathworks .com/support/
solutions/en/data/1-90b0Eb/ (or http://bit .ly/aGo-DCt) and for SQlServer, see http://www .toomre .com/
Writing_bl Obs_With_Matl ab_activeX (or http://bit .ly/d2JtNZ) .

 56 . http://download .oracle .com/otn_hosted_doc/jdeveloper/1012/jdbc-javadoc/oracle/sql/blOb .html (or
http://bit .ly/heFMmY) .

 57 . http://support .microsoft .com/?scid=kb%3ben-us%3b824263&x=13&y=5 (or http://bit .ly/b2oHay) .
 58 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/278869 (or http://bit .ly/bOdJXt) .
 59 . http://java .sun .com/javase/6/docs/api/java/sql/ResultSet .html (or http://tinyurl .com/2ukwuf) .
 60 . http://www .careerride .com/JDbC-resultset-types .aspx (or http://bit .ly/cFoktR) .
 61 . http://java .sun .com/docs/books/tutorial/jdbc/basics/retrieving .html (or http://tinyurl .com/2ng4f) .
 62 . http://stackoverflow .com/questions/2647621/retrieve-blob-field-from-mysql-database-with-matlab (or

http://bit .ly/bIEKRb); http://www .mathworks .com/matlabcentral/newsreader/view_thread/12454 (or
http://bit .ly/9bxHp1) .

 63 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/257024 (or http://bit .ly/atiqxi) .
 64 . http://www .mathworks .com/support/solutions/en/data/1-4a456Y/ (or http://bit .ly/drVrtC) .
 65 . http://www .mathworks .com/support/solutions/en/data/1-90t4HK/ (or http://bit .ly/drkMXe) . the link to

Oracle’s javadoc of ClOb provided in MathWork’s solution page is now defunct . Instead, use this link:
http://web .archive .org/web/20050818194023/http://download-uk .oracle .com/otn_hosted_doc/
jdeveloper/904preview/jdbc-javadoc/oracle/sql/ClOb .html (or http://bit .ly/942tdo) .

K13163_Book.indb 75 11/8/2011 8:06:33 PM

© 2012 by Taylor & Francis Group, LLC

http://java.sun.com
http://developers.sun.com
http://www.mathworks.com
http://java.sun.com
http://www.toomre.com
http://download.oracle.com
http://support.microsoft.com
http://web.archive.org

Undocumented Secrets of MATLAB®-Java Programming76

 66 . http://java .sun .com/docs/books/tutorial/networking/index .html (or http://bit .ly/b1hXSl) .
 67 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/244801 (or http://bit .ly/ccKz3q); http://

www .mathworks .com/matlabcentral/newsreader/view_thread/258876 (or http://bit .ly/aa9N1a) .
 68 . http://www .mathworks .com/matlabcentral/fileexchange/23728-tcpip-distributed-waitbar (or http://bit .

ly/ab0leF); http://www .mathworks .com/matlabcentral/fileexchange/24524-tcpip-communications-
in-matlab (or http://bit .ly/bkqfyo); http://www .mathworks .com/matlabcentral/fileexchange/24525-a-
simple-udp-communications (or http://bit .ly/9hZnj6); http://www .mathworks .com/matlabcentral/
fileexchange/25249-tcpip-socket-communication (or http://bit .ly/hlwWxd); http://www .mathworks .
com/matlabcentral/fileexchange/27999-ssh-from-matlab-updated (or http://bit .ly/9w3CiS) . also
see MEX-based http://www .mathworks .com/matlabcentral/fileexchange/345-tcpudpip-toolbox-2-0-6
(or http://bit .ly/ceazff) .

 69 . http://iheartmatlab .blogspot .com/2008/08/tcpip-socket-communications-in-matlab .html (or http://bit .ly/
ba32Wq) continued on http://iheartmatlab .blogspot .com/2009/09/tcpip-socket-communications-in-
matlab .html (or http://bit .ly/ehVcdV) .

 70 . http://www .mathworks .com/matlabcentral/fileexchange/29027-web-server (or http://bit .ly/alRWpZ) .
 71 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/289271#771282 (or http://bit .ly/

ds2C0S) .
 72 . http://www .mathworks .com/matlabcentral/fileexchange/24924-jpar-parallelizing-matlab (or http://bit .ly/

cOMVSP); described in this paper: http://www .ia .pw .edu .pl/~karbowsk/jpar/jpar-para08-abstract .pdf (or
http://bit .ly/atiWw7) .

 73 . http://www .mathworks .com/support/solutions/en/data/1-4EO8VK/ (or http://bit .ly/bEhDrP); this may
appear to be a pure ma tlab solution but in fact the entire implementation of urlread and urlwrite is Java-
based and can easily be customized, extended, and configured .

 74 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/254080#658549 (or http://bit .ly/
dv2rZb); like urlread and urlwrite, sendmail also uses Java functionality, which can easily be custom-
ized, extended, and configured .

 75 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/246850 (or http://bit .ly/aJna4w);
also look athttp://www .mathworks .com/matlabcentral/fileexchange/25478 (or http://bit .ly/byFbRd) for
a MEX solution .

 76 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/253537#799898 (or http://bit .ly/
eUlvRD) .

 77 . http://blogs .mathworks .com/desktop/2010/11/01/xml-and-matlab-navigating-a-tree/ (or http://bit .ly/ 9wg9Zp) .
 78 . http://www .mathworks .com/matlabcentral/fileexchange/28071 (or http://bit .ly/ahgr9t) .
 79 . http://www .mathworks .com/matlabcentral/fileexchange/25656-compression-routines (or http://bit .ly/

bE473p); http://www .mathworks .com/matlabcentral/newsreader/view_thread/245803 (or http://bit .
ly/952Pfo); http://www .mathworks .com/matlabcentral/newsreader/view_thread/289360 (or http://bit .ly/
c5VSuQ); Matlab’s entire set of compression functionality (zip, unzip, tar, untar, gunzip) is Java-
based . Users can easily adapt their code for their needs .

 80 . http://download .oracle .com/javase/6/docs/api/java/text/DecimalFormat .html (or http://bit .ly/nJmlml) .
 81 . http://UndocumentedMatlab .com/blog/formatting-numbers/ (or http://bit .ly/qSvXy4) .
 82 . http://java .sun .com/javase/6/docs/api/java/security/MessageDigest .html (or http://bit .ly/9dN43m) .
 83 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/282298#759462 (or http://bit .ly/

bGPP4q) .
 84 . http://java .sun .com/j2se/1 .4 .2/docs/api/java/nio/channels/Filelock .html (or http://bit .ly/91qgfW); http://

www .exampledepot .com/taxonomy/term/194 (or http://bit .ly/9wK5tM) .
 85 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/279510 (or http://bit .ly/95nV5w);

http://stackoverflow .com/questions/3451343/atomically-creating-a-file-lock-in-matlab-file-mutex (or http://
bit .ly/bCYexx) .

 86 . http://java .sun .com/j2se/1 .5 .0/docs/api/java/awt/Robot .html (or http://bit .ly/bObRXh) .
 87 . http://UndocumentedMatlab .com/blog/controlling-mouse-programmatically/ (or http://bit .ly/cqrOJK) .
 88 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/308658#839089 (or http://bit .

ly/mcmmwZ) .
 89 . http://www .mathworks .com/support/solutions/en/data/1-2X10at/ (or http://bit .ly/duWbUP); http://

www .mathworks .com/matlabcentral/newsreader/view_thread/254587 (or http://bit .ly/b2Er37); http://
www .mathworks .com/matlabcentral/newsreader/view_thread/235825#668975 (or http://bit .ly/cGgVHb);

K13163_Book.indb 76 11/8/2011 8:06:33 PM

© 2012 by Taylor & Francis Group, LLC

http://java.sun.com
http://www.mathworks.com
http://stackpverflow.com
http://java.sun.com
http://iheartmatlab.blogspot.com

77Using Non-GUI Java Libraries in MATLAB®

http://www .mathworks .com/matlabcentral/newsreader/view_thread/243113 (or http://bit .ly/9SXnl0);
http://www .mathworks .com/matlabcentral/newsreader/view_thread/262754 (or http://bit .ly/du378H);
http://www .mathworks .com/matlabcentral/newsreader/view_thread/269154 (or http://bit .ly/d6lYfR);
http://www . mathworks .com/matlabcentral/newsreader/view_thread/284445#753949 (or http://bit .ly/9jzvCi) .

 90 . http://www .mathworks .com/matlabcentral/fileexchange/24323-screencapture (or http://bit .ly/czfUSE) .
 91 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/246001 (or http://bit .ly/c7MnHt) .
 92 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/246706#635636 (or http://tinyurl . com/

ch8dbd) .
 93 . http://www .mathworks .com/matlabcentral/fileexchange/26079 (or http://bit .ly/c5SlE6); http://www .lix .

polytechnique .fr/~nielsen/MEF/ (or http://bit .ly/btUYhf) .
 94 . http://UndocumentedMatlab .com/blog/updating-speaker-sound-volume/ (or http://bit .ly/aYSs0W); http://

www .mathworks .com/matlabcentral/fileexchange/28394-jaudio (or http://bit .ly/floQ5n); http://www .
mathworks .com/matlabcentral/fileexchange/25584-SoundVolume (or http://bit .ly/dSFGjb) .

 95 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/285315#757436 (or http://bit .ly/
biQS3c) .

 96 . http://en .wikipedia .org/wiki/alternating_decision_tree (or http://bit .ly/lh2Ylz), implemented in the
open-source Jboost package (http://jboost .sourceforge .net/ or http://bit .ly/iOVmYt), which can easily
be integrated in Matlab (http://www .mathworks .com/matlabcentral/newsreader/view_thread/308764
or http://bit .ly/iGkNN1; http://UndocumentedMatlab .com/blog/jboost-integrating-an-external-java-
library-in-matlab/ or http://bit .ly/nteRXx) .

 97 . http://weblog .raganwald .com/2007/07/javascript-on-jvm-in-fifteen-minutes .html (or http://bit .ly/
dOlrfw) .

 98 . http://stackoverflow .com/questions/4778852/how-to-embed-google-map-api-in-matlab (or http://bit .
ly/hdRUX9); also see http://www .mathworks .com/matlabcentral/fileexchange/?term=tag%3agoogle+
map (or http://bit .ly/i73mCb), http://blogs .mathworks .com/loren/2010/05/06/oilslick/ (or http://bit .ly/
eSbkEk) .

 99 . See related Web pages: http://www .mathworks .com/matlabcentral/newsreader/view_thread/289283 (or
http://bit .ly/gZhnVY) andhttp://www .mathworks .com/matlabcentral/fileexchange/12063-serialize (or http://
bit .ly/fxX5qr) .

 100 . Note John D’Errico’s related File-Exchange utility at http://www .mathworks .com/matlabcentral/
fileexchange/22725-variable-precision-integer-arithmetic (or http://bit .ly/epQwnj) .

 101 . http://my .safaribooksonline .com/1593270615?tocview=true (or http://bit .ly/bM7l67) .
 102 . For example, the entire comp .lang .java .* Usenet tree; several dedicated forums on groups .google .

com; forums .sun .com; www .java-forums .org; forums .java .net; www .javakb .com; http://forums .devshed .
com/java-help-9/; http://www .codeguru .com/forum/forumdisplay .php?f=5; http://www .ibm .com/
developerworks/forums/dw_jforums .jspa, and so on .

 103 . blogsearch .google .com/blogsearch?q=java+code; ww .onjava .com/onjava and many others .
 104 . For example, see java .sun .com; www .devx .com/Java; www .developer .com/java; www .javaworld .com/

features; today .java .net/pub/q/articles; www .java2s .com/article/Java/CatalogJava .htm; oreilly .com/pub/q/
all_onjava_articles, and others .

 105 . For example, www .freejavaguide .com; www .java2s .com/tutorial/Java/CatalogJava .htm; java .sun .com/
docs/books/tutorial; math .hws .edu/javanotes; www .javacoffeebreak .com/tutorials, and others .

 106 . For example, www .javadb .com; www .java2s .com/Open-Source/Java/CatalogJava .htm; wikis .sun .com/
display/code/Home; javaboutique .internet .com/javasource; www .thefreecountry .com/sourcecode/java .
shtml, and others .

K13163_Book.indb 77 11/8/2011 8:06:33 PM

© 2012 by Taylor & Francis Group, LLC

http://www.mathworks.com
http://en.wikipedia.org
http://weblog.raganwald.com
http://stackoverflow.com
http://my.safaribooksonline.com
www.freejavaguide.com

Rich GUI Using
Java Swing

3
Chapter

K13163_Book.indb 79 11/8/2011 8:06:33 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming80

Matlab provides programmers with extensive GUI functionality, including a visual graphic
designer (guide), and programmatic access to component properties and callback events .
However, the level of customizability and extensibility of the basic Matlab components is
limited . Matlab provides a wide set of basic building blocks, and if we wish something look-
ing slightly more stylish or modern, then we have a problem . Well, that is the official docu-
mented version . Unofficially, programmers have access to almost all the modern GUI facilities
that Java provides through its Swing class library (toolkit)1 — a toolkit on which the Matlab
GUI itself is based .

as a consultant who has competed for large-scale Matlab projects, it was frustrating at
times to lose contracts to non-Matlab implementations just on the grounds that Matlab
GUI looks childlike and outdated . It was like competing with a Ferrari engine encased in a
20-year-old pickup frame . this has also been a frustrating experience to other Matlab
users .2 Using Swing now enables your programs to also look like a Ferrari . Sometimes, a
single image is worth a thousand words: take a look at the screenshots on the following page,
which compare Matlab’s Swing-based Preference panel with a corresponding panel created
with pure-Matlab controls using Matlab’s built-in GUIDE .3 In this simple example, we
note several visual differences:

Collapsible tree items in the main listbox ◾
Central vertical alignment of the panel title (“Color Preferences”) ◾
Natural resizing behavior (components keep their size, only positions change) ◾
Complex color combo-box controls (not just simple buttons or popup menus) ◾
Syntax-highlighted multiline editbox without the annoying vertical scrollbar ◾
Panel-wide scrollbar that hides some controls at the bottom ◾

there are numerous books, tutorials, and online resources about Java/Swing programming .
Matlab programmers who have gotten used to relying only on the internal documentation,
and possibly also on very few websites, will be overwhelmed with thousands of websites dedi-
cated to Swing programming (and Java in general) .4 this book is too small to include more than
short code snippets . Readers are encouraged to continue exploring online, based on the key-
words and ideas presented here .

3.1 Adding Java Swing Components to MATlAB Figures

3.1.1 The javacomponent Function5

Swing components can be added very easily onto a Matlab figure window, using the
undocumented javacomponent function, available since Matlab R14 (7 .0) .6 Programmers
can use usejavacomponent (or the equivalent usejava(‘awt’) or javachk as described at the
 beginning of Chapter 2) to programmatically check whether or not their system supports
javacomponent:

K13163_Book.indb 80 11/8/2011 8:06:34 PM

© 2012 by Taylor & Francis Group, LLC

81Rich GUI Using Java Swing

Stylish window using Swing controls (See color insert.)

Simulation of the same dialog window, using standard MAtlAb uicontrols (See color insert.)

K13163_Book.indb 81 11/8/2011 8:06:38 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming82

if ~usejava('swing') % or the equivalent: if ~usejavacomponent()
 error('this platform does not support Java Swing');
end
error(javachk('swing','this platform')); % equivalent

javacomponent accepts a component class name (a string) or a reference to a previously created
component object, an optional pixel position parameter (default = [20,20,60,20], just like uicon
trol; it may also contain the strings ‘North’, ‘South’, ‘East’, or ‘West’†) and an optional parent
container handle (defaults to the current figure) . javacomponent then adds the requested com-
ponent as a child of the requested parent container and wraps it in a Matlab Handle-Graphics
(HG) container . javacomponent returns two handles: the Matlab HG container handle and
a reference (handle) to the Java component:

>> [jButton, hButton] = javacomponent('javax.swing.JButton')
hButton =
 javahandle_withcallbacks.javax.swing.JButton
jButton =
 158.002197265625
>> javacomponent('javax.swing.JButton','North');
>> javacomponent(javax.swing.JButton('Click me!'),[50,40,80,30]);
>> javacomponent(javax.swing.JButton('Click me!'),'East',hFig);

Note the difference between Java object creation and javacomponent: a pre-created Java
object only resides in JVM memory, not onscreen, until javacomponent is called to display it .
javacomponent only creates objects, as a convenient service to programmers, when a class
name (string) parameter is passed to it . In practice, it is better to separate these two actions:
create the Java object separately and then pass the object’s reference handle to javacomponent
for display . this enables easier error-trapping if the Java object cannot be created or fails to
initialize, before attempting to display the object:

% Create and initialize a JScrollBar object
try
 jScrollbar = javaObjectEDT('javax.swing.JScrollBar');
 jScrollbar.setOrientation(jScrollbar.HORIZONTaL);
catch
 error('Cannot create Java-based scroll-bar!');
end

% Display the object onscreen
try
 javacomponent(jScrollbar,'South');
catch
 error('Cannot display Java-based scroll-bar!');
end

† based on the platform’s java.awt.BorderLayout.NORTH, and so on . this string is case-sensitive (i .e ., ‘NORtH’ or
‘north’ will fail) . also, note that ‘Center’ is not supported for some unknown reason .

K13163_Book.indb 82 11/8/2011 8:06:38 PM

© 2012 by Taylor & Francis Group, LLC

83Rich GUI Using Java Swing

javacomponent accepts parent handles that are figures, toolbars,† uipanels,‡ or uicontain
ers .7 Unfortunately, frames are not uicontainers and, therefore, cannot be used as javacompo
nent parents .

Note: Due to a bug in R2007a, javacomponents cannot be added to uicontainers,
since javacomponent .m checks if isa(hParent,'uicontainer') (and similarly for
'uiflowcontainer', 'uigridcontainer') instead of isa(hParent,'hg.uicon-
tainer') (and similarly for the others) . If we modify javacomponent .m accordingly (add
“hg .” in lines 98–100), this bug will be fixed . Since R2007b, isa(...,'hg.uicon-
tainer') is equivalent to isa(...,'uicontainer'), so this fix is unnecessary .

Once the component has been created, even before it has been placed onscreen, it can be
manipulated just like any other Java object . For example,§

jButton.setText('do not click!'); % or: set(jButton,'text','...')

Some manipulations obviously require the component to be visible, for example,

jButton.requestFocus();
jButton.hide(); % or: jButton.setVisible(0), set(jButton,'Visible',0)

Note that it is not assured that an exception will be thrown if an object manipulation that
requires a visible object is requested when the object is hidden . Swing objects very often simply
ignore the requested action in such cases . this often happens when Matlab programmers
place Java code in their GUIDE-created *_OpeningFcn() function,¶ since_OpeningFcn() is
called before the figure window becomes visible .

the component can also be manipulated to some extent via its HG container, which is of a
special Matlab type (class) called hgjavacomponent . this includes getting/setting the com-
ponent position, position units, visibility, resizing callback, tag, UserData, and so on:

set(hButton,'units','norm','position',[.2,.3,.1,.05]);
set(hButton,'visible','off'); %note: on/off, not true/false as in Java
set(hButton,'ResizeFcn',{@resizeCallbackFunc,param1,param2});

When adding Java components which are container classes (descendants of java.awt.
Container), it is important to remember that only other Java components can be added to

† the toolbar option as a possible javacomponent parent has been around from the beginning, and yet until Matlab
7 .6 (R2008a), it remained entirely undocumented and not just semi-documented like the rest of the function . Since
R2008a, parents of type uisplittool and uitogglesplittool can also be used (see Section 4 .5 .4) .

‡ Old Matlab releases failed to mention uipanel as a possible parent in javacomponent’s help comment (this documen-
tation flaw was fixed in new releases) .

§ In these examples, remember to either use EDt or to place a short pause beforehand (see Sections 1 .5 and 3 .2) .
¶ If a figure is called MyFig, GUIDE will automatically create MyFig .m with an internal function called

MyFig_OpeningFcn() .

K13163_Book.indb 83 11/8/2011 8:06:38 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming84

these containers . Matlab objects such as axes (for plots or images) and uicontrols cannot
be added, since they do not have a Container wrapper .† therefore, feel free to use these Java
containers as long as their contained GUI is limited to Java components (JButton, JComboBox,
etc .) . this limitation is very annoying — it would be very useful to be able to place Matlab
axes or uicontrols within a JTabbedPane or JSplitPane . Instead, we need to rely on
Matlab-based workarounds (uitab and uisplitpane, see Section 4 .3 and Chapter 10, respec-
tively), which are cumbersome compared with their Java counterparts .

Swing components can also be added directly to the figure frame’s peer (jFrame.
addchild(component)), but this has numerous drawbacks and is not advisable . Matlab
automatically creates an HG container for the component and sets the default position ([20,20,60,20]
pixels) . In addition, javacomponent adds some important event listeners and checks, and so it is
advisable to use javacomponent rather than directly adding peer components .

Note that when directly adding figure peers, as opposed to using javacomponent, updating
the component’s size or position must be done after a corresponding change to the component’s
parent; otherwise, the change will have no visual effect:8

jButton.getParent.setSize(100,30);
jButton.setSize(100,30);

a better way to modify the component’s size/position is to use the HG container’s setPosi-
tion() method . this updates both container and component at the same time:

jButton.getParent.setPosition(50,100,70,40);

also, note that the HG container created this way fails to register properly as a figure child
and, therefore, cannot be found or accessed via the HG hierarchy (using findall, etc .), and it will
not be cleared with the clf command and other similar side effects . It is actually not a regular
(double-value) HG handle at all, but rather a Java object of class com.mathworks.hg.peer.
HGPanel . the bottom line is that this method of adding components is nice as a one-time
exercise, but it should not be used in practice .‡

If we set the component’s pixel position ourselves (rather than using the container’s layout
manager to determine the position), note that Java positions start at (0,0) in the top-left cor-
ner of the content pane (which includes the figure’s toolbars but not its menubar), increasing
downwards toward the lower right . this is contrary to the Matlab positions, which start at
(1,1) in the bottom-left corner, increasing upwards toward the upper right, exclusive of the
toolbar area . this difference may cause confusion when placing the component and also when
trying to compare the Matlab handle’s PixelPosition property (via getpixelposition) and the
Java component’s position (via its getBounds() method) .

† there actually is a very awkward, undocumented, unsupported, and very problematic method to add Matlab components
to Java Swing containers (see Section 3 .8) .

‡ Other bugs prevent using hgjavacontainers as container parents: uicontrols are not displayed at all; javacomponents are
badly positioned: http://www .mathworks .com/matlabcentral/newsreader/view_thread/295520#804720 (or http://bit .ly/
eEFuxU) .

K13163_Book.indb 84 11/8/2011 8:06:39 PM

© 2012 by Taylor & Francis Group, LLC

http://www.mathworks.com

85Rich GUI Using Java Swing

Java versus MAtlAb pixel positions (See color insert.)

Note that each HG object has an undocumented Pixelbounds property — be careful NOt
to use it: it sometimes reports incorrect values and is unreliable and misleading .†

the exact (pixel) positions can be used to take screenshots of individual components or even
the entire window . this can be done using java.awt.Robot’s createScreenCapture(. . .)
method9 or using the component’s printAll() method .10

Swing components can also be added directly to a figure window’s content pane:

jFrame = get(handle(gcf),'JavaFrame');
jButton = javax.swing.JButton('Click me!');

jPane = jFrame.fHG1.getContentPane;‡

jPane.add(jButton, java.awt.BorderLayout.NORTH);
jPane.revalidate; % repaint jPane with the added JButton

Note the mandatory call to revalidate(); otherwise, the figure window will not repaint the
content area and the added component will not become visible .11 also, note that Java compo-
nents added directly in this fashion will have no HG container (not even a com.mathworks.
hg.peer.HGPanel) and will thus be inaccessible via the HG hierarchy .

Note: When using javacomponent to add Java components to Matlab figures, we should
be aware of several additional important issues:

the default background color of ◾ javacomponents is a slightly different shade of gray
than the default uicontrol background color .

† For example, sometimes it reports the 5-pixel margin surrounding uicontrols and sometimes not; when the uicontrols
moves or resizes, the Pixelbounds value sometimes fails to be updated, and so on .

‡ In R2007b and earlier, use fFigureClient rather than fHG1Client .

K13163_Book.indb 85 11/8/2011 8:06:39 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming86

Java components are not automatically hidden with their ancestor container panel . ◾
this is also the root cause of the failure of Java components to disappear when switch-
ing tabs in a uitab (see Section 4 .3) .
Java components are slightly mis-aligned vertically with ◾ uicontrols, even when posi-
tioned using the same Y position .
Unlike ◾ uicontrols, Java callbacks are activated even when the affected value does not
change . therefore, setting a value in the component’s callback could well cause an infi-
nite loop of invoked callbacks .

For a detailed description and workarounds for these and other issues with javacomponent,
please refer to the online reference that is provided at the end of this sentence .12

3.1.2 The Swing Component library
Java’s Swing toolkit contains many controls (a .k .a . widgets) and containers . the official online
tutorial provides an excellent, although somewhat disorderly, introduction to Swing features13
and components,14 and how to utilize these within GUIs .15

Most Swing controls have Matlab extensions . For example, com.mathworks.
mwswing.MJButton extends javax.swing.JButton . these extensions are detailed in
Chapter 5 . all the standard Matlab uicontrols have Swing equivalents . this is not surpris-
ing considering the fact that internally Matlab controls actually use the Matlab extensions .
thus, a Matlab button uicontrol is basically a com.mathworks.hg.peer.
PushButtonPeer object that extends javax.swing.JButton via the intermediate com.
mathworks.mwswing.MJButton . Chapter 6 will detail the objects that underlie the stan-
dard Matlab uicontrols .

Swing Component type Matlab Equivalent Matlab Doc

JButton Basic control uicontrol(‘style’, ‘pushbutton’) Full

JCheckBox Basic control uicontrol(‘style’, ‘checkbox’) Full

JComboBox Basic control uicontrol(‘style’, ‘popupmenu’) Full

JList Basic control uicontrol(‘style’, ‘listbox’) Full

JMenu Basic control uimenu, uicontextmenu Full

JPopupMenu Basic control uimenu Full

JCheckBoxMenuItem Basic control uimenu(‘checked’, ‘on’) Full

JRadioButton Basic control uicontrol(‘style’, ‘radiobutton’) Full

JSlider Basic control — —

JSpinner Basic control — —

K13163_Book.indb 86 11/8/2011 8:06:39 PM

© 2012 by Taylor & Francis Group, LLC

87Rich GUI Using Java Swing

‡ to a limited extent only . For example, plot axes are always displayed beneath uipanels, which are always displayed
beneath javacomponents, which are themselves always displayed beneath uicontrols . the built-in Matlab function
uistack only affects the z-ordering within subgroups .

† Note that uicontrol(‘style’, ‘slider’) actually produces a scroll–bar and not a slider . See the discussion later in this
section .

(continued)

Swing Component type Matlab Equivalent Matlab Doc

JScrollBar Basic control uicontrol(‘style’, ‘slider’)† Full
JTextField Basic control uicontrol(‘style’, ‘edit’) Full
JFormattedTextField Basic control — —
JPasswordField Basic control — —
JColorChooser Complex control uisetcolor Full
JEditorPane Complex control — —
JTextPane Complex control — —
JTextarea Complex control uicontrol(‘style’, ‘edit’) Full
JFileChooser Complex control uigetfile, uiputfile Full
JTable Complex control uitable Full since R2008a
JTree Complex control uitree Semi
JLabel Noninteractive uicontrol(‘style’, ‘text’) Full
JProgressBar Noninteractive – (simulate with plot or waitbar) —
JSeparator Noninteractive uimenu(‘separator’, ‘on’) Full
JToolTip Noninteractive set(hControl, ‘tooltipString’,

‘. . .’)
Full

Japplet Top-level container — —
JDialog Top-level container dialog Full
JFrame Top-level container figure Full
JWindow Top-level container — —
JDesktopPane Top-level container – —
JInternalFrame Complex container — —
JLayeredPane Complex container – (use uipanel + uistack)‡ Full
JRootPane Complex container — —
JMenuBar Basic container uimenu Full
JPanel Basic container uipanel Full
JScrollPane Basic container – —
JSplitPane Basic container - (UISplitPane in Chapter 10) —
JTabbedPane Basic container uitab, uitabgroup Semi
JToolBar Basic container uitab\bar Full

Box Basic container —

K13163_Book.indb 87 11/8/2011 8:06:40 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming88

Here is the full list of the standard Swing components, with their Matlab counterparts . a
visual list can be found in the official online tutorial .16 all Swing components are classes in the
javax.swing package (e .g ., javax.swing.JButton):

Here is a visual presentation of some Swing components and effects which are missing in
Matlab, as displayed using javacomponent .†

Sample Swing components integrated in a MAtlAb figure window (See color insert.)

Some Swing components can be mimicked with pure-Matlab code, but very inefficiently .
For example, JPasswordField can be simulated by trapping keyboard clicks, adding ‘*’
characters to a text uicontrol and saving typed characters as the password; JProgressBar
can be programmed as an axes with no tick marks or tick labels, a patch plot object that fills the
left part of the axes up to the required percentage point, and a text object (‘78%’) on top . Some
effects, like the non-StringPainted variation of JProgressBar (), can be very dif-
ficult to simulate . In all cases, lots of Matlab code is required to get the same look-and-feel
that can be achieved with a short javacomponent command .

Having said this, readers should always suit the solution to the problem — sometimes using
Java is simply overkill for simple GUI tasks . a standard waitbar in a modal popup window may
be simpler than integrating a JProgressBar .17

Using standard Swing (or Swing-derived) components can often improve Matlab GUI
effectiveness, responsivity, and visual appearance . Consider the following figure window, con-
taining both a javax.swing.JScrollBar and a Matlab uicontrol(‘style’,‘slider’):

† this screenshot was taken to illustrate uicomponent (see Section 3 .1 .4), but uicomponent uses javacomponent .

K13163_Book.indb 88 11/8/2011 8:06:41 PM

© 2012 by Taylor & Francis Group, LLC

89Rich GUI Using Java Swing

jScrollbar = javax.swing.JScrollBar;
jScrollbar.setOrientation(jScrollbar.HORIZONTaL);
javacomponent(jScrollbar,[10,40,200,20]);
uicontrol('style','slider', 'position',[10,10,200,20]);

A Swing JScrollBar component (top) and a MAtlAb slider uicontrol (bottom)
(See color insert.)

the topmost component (a JScrollBar object) not only looks visually more appealing than
the Matlab uicontrol beneath it (which looks so Windows95 1990s style in my opinion), but
also has a more consistent look-and-feel with other Matlab uicontrols, since they are all
based more closely on Swing .†

JScrollBar can also be customized in appearance and behavior to a higher degree than
possible with the properties exposed by Matlab in the slider uicontrol . this is typical of all
Java components . Section 3 .3 describes customization of Java controls .
JScrollBar has a very important functionality, which the slider uicontrol lacks: the abil-

ity to set a continuous-motion callback . the uicontrol only has a single action callback prop-
erty (simply called Callback), which is fired only when one of the arrow buttons or unoccupied
internal scrollbar area is clicked, or after dragging the scrollbar gripper (handle), that is, when
the mouse button is released . applications often need the callback to fire continuously when the
gripper is dragged, but this is not the case for the slider uicontrol .18

this missing functionality can be easily achieved by using the JScrollBar object (or the
uicontrol’s underlying Swing object, as described below) . JScrollBar has 29 callbacks which
can be set, ranging from focus gain/loss (enabling mouse hover effects), mouse wheel, mouse but-
tons, and keyboard actions (clicked/released), and also the specific callback that we need in this
case: adjustmentValueChangedCallback fires continuously, whenever the slider position value
changes, by whichever means (by interactively moving the gripper with the mouse, by a keyboard
event, or programmatically) .‡ Section 3 .4 provides more details about Swing callbacks .

† also note a slight mis-documentation error for the slider uicontrol: http://www .mathworks .com/ matlabcentral/ newsreader/
view_thread/118214#298452 (or http://tinyurl .com/azlyez) .

‡ http://www .mathworks .com/matlabcentral/newsreader/view_thread/144980 (or http://tinyurl .com/b99jnb); http://www .
mathworks .com/matlabcentral/newsreader/view_thread/272224 (or http://bit .ly/9lNCzZ) . Note that the continuous-call-
back issue can be solved in several other ways, using the undocumented handle.listener function as described in
appendix a and in http://UndocumentedMatlab .com/blog/continuous-slider-callback/ (or http://bit .ly/bexwI9) .

K13163_Book.indb 89 11/8/2011 8:06:42 PM

© 2012 by Taylor & Francis Group, LLC

http://www.mathworks.com
http://UndocumentedMatlab.com

Undocumented Secrets of MATLAB®-Java Programming90

the lesson of this short discussion of JScrollBar, which is representative of other con-
trols, is that Java Swing components generally provide all the functionalities of the standard
Matlab controls, with additional benefits in appearance, behavior, and customizability . this
topic shall be further explored in Chapter 6 .

3.1.3 Displaying Swing-Derived Components
javacomponent can be used to place not only Swing components, but also Swing-extended
components onscreen . Matlab itself almost never uses Swing components as is, instead pre-
ferring to use MathWorks-derived extensions of these components, generally in the com.
mathworks.mwswing or com.mathworks.widgets packages . these packages and
their classes, described in Chapter 5, are all in the static Java classpath and are, therefore,
automatically available for use by Matlab programmers .

It sometimes makes sense to use the Matlab components instead of the generic Swing
counterparts . For example, com.mathworks.mwswing.MJButton extends the standard
javax.swing.JButton and normally looks exactly like a JButton . However, when call-
ing MJButton .setFlyOverAppearance(1), which is a new method added by MJButton, the
button’s appearance changes to look flat with a special effect upon mouse hover . this new fea-
ture is handy for toolbar buttons, but it can also be used anywhere in our GUI . I will show a
real-life use for this in Section 10 .2 .

another internal Matlab class, com.mathworks.mwt.MWCheckbox, enables a
tri-state (yes/no/maybe) checkbox, unlike the standard javax.swing.JCheckBox (yes/
no) . there are many other tri-state checkbox alternatives available .19 the point here is only
that sometimes it makes sense to use Matlab’s internal derived-classes rather than the
original Swing components, but, of course, nothing prevents us from using a better compo-
nent class that we can find elsewhere . Internal Matlab classes do have the advantage of
being inherently accessible on all platforms of the same Matlab release, whereas if we
use non-Matlab components, we must include their Java class files in our deployment
package .

Note that in some cases, derived classes may remove functionality available in the original
Swing class . For example, Matlab’s uitree, derived from Swing’s JTree, prevents setting
tooltips, which is very easy in JTree .20 the internal Matlab classes shall be detailed later,
in Chapter 5 .

Just like Matlab components, javacomponent can also display third-party or our own
Swing-derived components . there are quite a few online sources21 for Swing components that
can easily be incorporated into our Matlab application . Simply download the relevant class
files, add them to the static (via classpath.txt) or dynamic (via javaaddpath) Java classpath, use
javacomponent to display them, and then use their reference handle to manipulate their appear-
ance and behavior .

K13163_Book.indb 90 11/8/2011 8:06:42 PM

© 2012 by Taylor & Francis Group, LLC

91Rich GUI Using Java Swing

3.1.4 UIComponent and JControl
javacomponent, useful as it is, has several limitations . In its string variant (class name), it requires
a fully qualified classname (FQCN) that is not inferred automatically .† It also has a different param-
eters format than uicontrol, which may confuse users . javacomponent also cannot display java.
awt.Window components . Finally, it returns two handles — one is a handle() reference of the Java
object and the other is an HG handle (a double numeric value) of the automatically created HG con-
tainer — users are often confused as to which property should be set on which of these handles .22

to overcome these limitations, I created UIComponent — a utility that merges uicontrol
and javacomponent . uicomponent is available for free download on the File Exchange .23 It
accepts all uicontrol parameters and styles, as well as any other displayable Java (Swing/aWt)
class . uicontrol’s calling syntax was preserved for full backwards compatibility . uicomponent
uses the built-in uicontrol whenever possible (for standard Matlab styles) and javacompo
nent for all other Java classes .

uicomponent supports the entire Swing/aWt and any user-defined class, in several equiva-
lent case-insensitive formats . For example, ‘Spinner’, ‘spiNNer’, ‘JSpinner’, and ‘javax .swing .
jspinner’ are all recognized . Notable new styles that are now available (unavailable in the
 built-in uicontrol): spinner, slider, editable combobox, passwordField, tree, table, fileChooser,
colorChooser, and progressbar . but there is much more: whatever is available in Java is seam-
lessly available in uicomponent .

uicomponent returns the same two handles that javacomponent returns (namely a Java ref-
erence handle and a numeric HG handle), modified to include each other’s properties and
 handles (using schema.prop and handle.listener — see appendix b) . Here are some examples
(more can be found in uicomponent’s help comment):

uicomponent('style','edit', 'String','hello'); % a regular uicontrol
uicomponent(hFig, 'style','edit', 'String','hello'); % specify parent
uicomponent('style','jspinner','value',7);
uicomponent('style','javax.swing.jslider','tag','myObj');
uicomponent('style','JComboBox',{1,pi,'text'},'editable',true);

another File Exchange submission that aims to tackle some of javacomponent’s limitations
is Malcolm lidierth’s JCONtROl .24 jcontrol uses Matlab’s new object-oriented class
approach and has the benefit of returning just a single handle object, which aggregates the
handles for both HG container and the contained Java object .

3.2 MATlAB’s Main Thread and the Event Dispatch Thread (EDT)

all Java UI components should run on the Event Dispatch thread (EDt) or risk ill-effects
 ranging from intermittent event processing and errors to Matlab crashes and/or hangs .

† Using Matlab’s import statement — see Section 1 .1 .2 .

K13163_Book.indb 91 11/8/2011 8:06:42 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming92

the reason for this is not due to Matlab but due to the way Swing (or actually, aWt)
works .25

all graphic events, ranging from component creation through rendering and callback event
processing, should funnel through a single processing thread called the EDt . any action done
on another thread (Matlab’s main processing thread in our case) risks a race condition or
deadlock with the EDt, which could (and often does) result in weird, non-deterministic, and
non-repetitive behavior, all of which should be avoided in any application which should behave
in a precisely deterministic manner .

Creating and processing UI components on the EDt are done using Matlab’s awtcreate,
awtinvoke, javaObjectEDT, and javaMethodEDT functions introduced in Section 1 .1 . Non-
EDt usage should be reserved only for very simple GUIs and for non-GUI processing (e .g .,
data structures or database access described in Chapter 2) .

Multiple EDts could theoretically be used for different independent GUIs . However, setting
this up correctly is not easy . also, the potential performance benefit is small, if we abide by the
recommended programming paradigm to minimize EDt processing, running major calcula-
tions on a separate thread — Matlab’s main processing thread .

a very rare CSSM thread26 dwelt on the EDt issue as it pertains to Matlab, with some
very interesting remarks by MathWorks personnel . It is the most detailed Matlab-specific
online reference that I could find .

Matlab R2007b (7 .5) and earlier versions used awtcreate within javacomponent for
newly created components, that is, components requested as classname from the javacompo
nent function, for example, javacomponent(‘javax.swing.JButton’) . this solves the EDt prob-
lem for those invocations of javacomponent but not for invocations of javacomponent with
pre-created Java references, nor for directly adding Swing components and subcomponents to
onscreen containers . In all these cases, special care should be taken to use awtcreate . R2008a
(and better yet, R2008b) only extended the EDt solution for all javacomponent invocations,
and not for all other cases .

Prior to the introduction of javaObjectEDT and javaMethodEDT, Matlab programmers
had to use awtcreate and awtinvoke in order to create and process components on the EDt . awt
create and awtinvoke’s cumbersome JNI notation27 argument format ensured that programmers
rarely used these functions . these functions also had limitations/bugs† in their internal (undocu-
mented) function parseJavaSignature,‡ preventing usage in some cases . In other cases, prob-
lems in the Java objects’ reflection visibility, which is used by awtinvoke, cause awtinvoke to
fail . In all these cases, we had to resort to using the direct calling syntax:

jbutton.setLabel('Close');

the problem with this is that it might cause a race condition or deadlock with the EDt, espe-
cially following object creation when the EDt has not yet finished rendering the component
onscreen . back then (again, prior to javaObjectEDT and javaMethodEDT), the workaround

† For example, invoking methods that accept a java.lang.Object.
‡ %MatlabROOt%/toolbox/matlab/uitools/private/parseJavaSignature.m

K13163_Book.indb 92 11/8/2011 8:06:43 PM

© 2012 by Taylor & Francis Group, LLC

93Rich GUI Using Java Swing

was to place a time pause just before our direct invocation . this had two effects which miti-
gated the risks: it yielded the CPU to the EDt and gave EDt time to finish its pending actions .
the more complex the component (e .g ., JTree or JTable), the longer the required pause . In
practice, a 5 or 10 millisecond wait (i .e ., pause(0.01)) was usually enough .28 Sometimes, but not
always, this pause can be replaced with a simple drawnow . Normally, such pauses are unno-
ticeable, but in some cases (e .g ., expanding a deeply nested JTree), where the pause is repeated
dozens or hundreds of times, it may well be annoying .

Starting with Matlab R2008b (7 .7), users should use javaObjectEDT and javaMethod
EDT for all GUI-related Java components (subclasses of java.awt.* or javax.swing.*),
instead of all these crude workarounds, thereby removing the risks altogether as well as all the
unnecessary pauses . javaObjectEDT (and the corresponding javaMethodEDT) behaves just
like javaObject (and javaMethod), except that it runs on the EDt, without any of the cumber-
someness of awtcreate (and awtinvoke) . Moreover, javaObjectEDT accepts any reference of an
existing Java object and ensures that all the method invocations on this reference object from
that point onward will automatically be dispatched on the EDt, without any code change .

If we only use javacomponent to place components onscreen, then we only need to worry about
using EDt for subcomponents, since javacomponent uses javaObjectEDT automatically . However,
if we set up specialized subcomponents (e .g ., CellRenderers and CellEditors described in
Section 4 .1 .1), these are not handled by javacomponent and should be handled manually .

Note: javaObjectEDT and javaMethodEDT were actually released as undocumented
built-in functions in Matlab 7 .6 (R2008a) . Unfortunately, I have found that relying on
R2008a (7 .6)’s version of javaObjectEDT sometimes causes Matlab to hang . as far as I
could test, this was corrected in Matlab release R2008b (7 .7) .

% Try to use the EDT from now on, if available
majorVersion = str2double(regexprep(version,'∧(\d+).*','$1'));
minorVersion = str2double(regexprep(version,'∧\d + \.(\d+).*','$1'));
if majorVersion >= 7 && minorVersion > 6
 result = javaObjectEDT(jObject);
end

% alternate method suggested by Jan Simon:29
V = sscanf(version, '%d.', 2);
if V(1) >= 7 && V(2) > 6
 result = javaObjectEDT(jObject);
end

Note a common pitfall when checking Matlab versions: Matlab’s version num-
ber is stored as a major.minor string format, which is NOt a decimal representation .
therefore, 7 .10 is a newer version than 7 .9, and is NOt the same as the old Matlab 7 .1 .
In fact, Matlab 7 .2 is much older than Matlab 7 .10 or 7 .11 . For this reason, we need to

K13163_Book.indb 93 11/8/2011 8:06:43 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming94

separately test the major version number (7) and the minor number, as has been done in the
code snippet above .30

Recent Matlab releases have added the verlessThan built-in function that does this
for us, but unfortunately verLessThan did not exist in earlier releases and so code relying
on this function would not work on these releases . Using the code snippet above solves this
problem for all Matlab 7 releases (earlier releases did not have the regexprep function,
but this can easily be fixed by other means) .
 Note that we cannot simply call javaObjectEDT within a trycatch block, since Matlab
7 .6 (R2008a) does have this function (and will thus not fail), although we should not use it
because of its bugs on that version . the code snippet above ensures correct behaviors on all
Matlab versions, both old and new .

javaObjectEDT and javaMethodEDT were undocumented until R2009a (7 .8), when they
became officially supported .31 Similarly, in R2008a onward, there are corresponding javaOb
jectMT and javaMethodMT for creating objects and invoking their methods on Matlab’s
Main thread . Since this is javaObject and javaMethod’s normal behavior and since I cannot
see reasons to invoke methods of EDt-created objects on the Main thread, I see little practical
use for javaObjectMT and javaMethodMT .

Note: there is also an undocumented built-in edtObject function . this function is mentioned
in %Matlabroot%/bin/registry/jmi .xml, but I have not seen it being used anywhere in the
visible Matlab code corpus, and I do not know its exact use or purpose . It appears to accept
the same input arguments as javaObjectEDT (at least, it complains otherwise . . .), so I assume
that it is either a helper function for javaObjectEDT or its equivalent . Similarly related yet
unfamiliar functions are java_method, java_object, and java_array, which seem to corre-
spond to java Method, javaObject, and javaArray .

Extra care should be taken to use javaObjectEDT or awtcreate when directly adding Java
Swing components and subcomponents to onscreen containers . Remember that all Swing com-
ponents are also potential containers, since javax.swing.JComponent extends java.
awt.Container . therefore, once a Java component is placed onscreen, nothing prevents a
direct addition of subcomponents or invoking their methods outside EDt . Doing so will actu-
ally work most of the time, with occasional EDt-related effects .

Wherever possible (R2008b onward), users should always use javaObjectEDT instead of
awtcreate . Not only are awtcreate’s limitations solved, but javaObjectEDT also marks the
object for automatic delegation on the EDt . this means that any future action on this object
will automatically occur on the EDt without any need for special programming setup . In con-
trast, awtcreate only uses EDt for the initial object creation, and any future actions on this
object need to use awtinvoke (or javaMethodEDT) in order to use EDt .

K13163_Book.indb 94 11/8/2011 8:06:43 PM

© 2012 by Taylor & Francis Group, LLC

95Rich GUI Using Java Swing

Similar use of the EDt (or more precisely, asynchronous GUI operations) should be done in
Java code, either standalone or code called from Matlab . a good example of this is the
simple and yet incorrect creation of a Java JFrame followed by its immediate population with
internal components and its display:

import javax.swing.JFrame;
public class Test
{
 public static void main(String[] args) {
 JFrame jframe = new JFrame();
 jframe.setVisible(true);
 }
}

While this may work in console mode, it will fail when called from Matlab, since the
Java main() code runs on the main Matlab thread, whereas the JFrame creation runs on the
EDt . this causes a race condition resulting in an empty-looking JFrame . the solution is to
use EDt, as shown in the following Java code snippet:32

import javax.swing.JFrame;
public class Test
{
 JFrame jframe;
 Test() {
 jframe = new JFrame();
 }
 public static void main(String[] args) {
 java.awt.EventQueue.invokeLater(new Runnable()
 {
 public void run() {
 Test test = new Test();
 test.jframe.setVisible(true);
 }
 });
 }
}

When debugging using a Java IDE (see Section 1 .6), EDt appears in the list of threads as
“aWt-EventQueue-0” (look closely at the Netbeans screenshot in Section 1 .6) .

Sometimes, an EDt-related warning will appear in the Command Window — see
 disableThreadSafeGetMethods() in Section 8 .1 .1 for a way to stop them . Note that these warn-
ings have a very good reason for existence, and so this should be used with care .

I believe that an explanation of the internal Matlab interpreter implementation at this
point would help our understanding . Note that this explanation may be inaccurate, as I have no
access to the internal Matlab code . However, it fits well-known programming practices and
explains observed phenomena, so I suspect that it is correct .

My hunch is that Matlab’s main computational thread is implemented as an endless
loop that waits for computational chunks . these chunks may be Command-Window requests,

K13163_Book.indb 95 11/8/2011 8:06:43 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming96

or runnable Matlab function code, or invoked GUI/timer callbacks, and so on . the chunks
wait in a queue to be processed by the main Matlab thread, which only handles a single
chunk at a time . Java to Matlab calls (using JMI — see Section 9 .2) are simply another
chunk and need to wait for their processing turn . therefore, calling MATLAB from the
EDT is a bad idea that could even deadlock MATLAB . In a multithreaded application, call-
ing pause would have enabled JMI code to execute on another thread . However, in Matlab
there is only a single computational thread (the Main thread), so the Matlab code has to
finish before any JMI request can be handled .

If all this is correct, it means that true multithreaded Matlab applications cannot be
implemented, even when using Java or C++ threads .33 although Matlab applications can
have multiple Java or C++ threads,34 if they need the single-threaded Matlab core engine,
they would simply need to wait in line for their turn . If such a need arises, it is better to handle
the processing in the Java/C++ threads and not in the Matlab thread . Unfortunately, even
this does not guarantee “thread-safety” for file I/O .35

3.3 Customizing Java Components

3.3.1 Component Properties and Methods
Refer again to the screenshot of Swing components shown in Section 3 .1 .2 . the components on
the bottom right of this screenshot, namely JSlider and JComboBox, show how slight modi-
fications of the component properties can have a distinct visual effect . JSlider shows distinct
variants by changing only one or two properties . For JComboBox, a single property enabled
interactive editing of the combo-box’s content — something not directly possible when using the
Matlab uicontrol equivalent (later in this chapter, we shall see how to achieve this even
for Matlab uicontrols, by modifying properties of the Java components which underlie the
Matlab uicontrols) .

let us take JProgressBar as an illustrative example of customizing Swing controls:

% Create a progress-bar with initial value = 57% (type a)
jProgressBar = javax.swing.JProgressBar;
jProgressBar.setValue(57); % default range is [0-100]
[jhProgressBar,hContainer] = javacomponent(jProgressBar,[20,20,100,40]);

jProgressBar.setStringPainted(true); % (type B)
% alternative: set(jProgressBar,'StringPainted','on') %see note below

jProgressBar.setString('57%');

K13163_Book.indb 96 11/8/2011 8:06:44 PM

© 2012 by Taylor & Francis Group, LLC

97Rich GUI Using Java Swing

jProgressBar.setIndeterminate(true); % (type C)36

Animated (indeterminate) progress-bar

Slightly different appearances can be achieved using different Swing look-and-feels (see the
discussion in Section 3 .3 .2) . For example, in the Windows Classic l&F:

Progress-bars in the Windows Classic look-and-feel (types A, b, and C)

another Swing component whose appearance can radically be modified with very few prop-
erty changes is JSlider, as the following code snippets show:

% Create a slider with horizontal orientation (jSlider.HORIZONTaL = 0),
% with no labels nor tick marks, and initial value = 57%
jSlider = javax.swing.JSlider;
jSlider.setValue(57);
[jhSlider,hContainer] = javacomponent(jSlider,[10,10,100,40]);

set(jSlider, 'Value',84, 'MajorTickSpacing',20, 'PaintLabels',true);

Note: Some Java components, such as JSlider, require Java-style scalar (true/false or
1/0) data for Boolean properties like Paintlabels, while other components such as
JProgressBar require Matlab-style ‘on’/‘off’ . Moreover, JSlider appears to have
accepted ‘on’/‘off’ until Matlab release R2008a (7 .6) or so I do not know how to tell
in advance whether a particular Java class expects ‘on’/‘off’ or true/false . I guess we need to
try each case separately — a run-time error will be thrown if we are wrong:

>> set(jSlider, 'PaintLabels','on');
??? Parameter must be scalar.

>> set(jProgressBar, 'StringPainted',true)
??? Error using ==> set
Bad property value found.
Object Name : javax.swing.JProgressBar
Property Name : 'StringPainted'.

K13163_Book.indb 97 11/8/2011 8:06:44 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming98

set(jSlider, 'Value',22, 'PaintLabels','off', 'PaintTicks',true);

jSlider.setPaintLabels(true); % or: jSlider.setPaintLabels(1);

set(jSlider, 'Value',72, 'Orientation',jSlider.VERTICaL, ...
 'MinorTickSpacing',5);
set(hContainer,'position',[10,10,40,100]); %note container size change

and now, here is a JSlider that was more extensively configured:37

rm = javax.swing.DefaultBoundedRangeModel(1,0,1,10); % 1-to-10 range
js = javax.swing.JSlider(rm);
set(js,'Background',[0,0,0],'Foreground',[1,1,1]); % white on black

tickLabel{1} = javax.swing.JLabel(java.lang.String('1'));
set(tickLabel{1},'Foreground',[0,1,0]); % green '1'
tickLabel{2} = javax.swing.JLabel(java.lang.String('10'));
set(tickLabel{2},'Foreground',[1,0,0]); % red '10'

jht = java.util.Hashtable();
jht.put(java.lang.Integer(1), tickLabel{1});
jht.put(java.lang.Integer(10), tickLabel{2});
js.setLabelTable(jht);

js.setMinorTickSpacing(1);
js.setMajorTickSpacing(2);
js.setSnapToTicks(true); % snap to integers
js.setPaintTicks(true);
js.setPaintLabels(true);
[jsh, hContainer] = javacomponent(js); %jsh = handle(js)
set(hContainer,'Position', [100, 100, 200, 40]);

K13163_Book.indb 98 11/8/2011 8:06:45 PM

© 2012 by Taylor & Francis Group, LLC

99Rich GUI Using Java Swing

In addition to the component and container classes, Swing also contains many useful utility
classes . For example, BorderFactory facilitates creation of Border objects (the outline
that surrounds the components, giving a colored outline, 3D appearance, or other visual
effects) .38 Here is a sample JButton with a few different borders:39

import javax.swing.* java.awt.*
jb1 = JButton('Click me #1!');
jb2 = JButton('Click me #2!');
jb3 = JButton('Click me #3!');
etchedBorder = javax.swing.border.EtchedBorder.LOWERED;
jb1.setBorder(BorderFactory.createLineBorder(Color.red));
jb1.setBorder(BorderFactory.createEtchedBorder(etchedBorder));
jb3.setBorder(BorderFactory.createRaisedBevelBorder());
javacomponent(jb1,[10,10,100,40]);
javacomponent(jb2,[130,10,100,40]);
javacomponent(jb3,[250,10,100,40]);

buttons with different border types

Each Swing component can have its own specific mouse hover cursor, an object of class
java.awt.Cursor .40 there are Matlab functions (the documented set(gcf,'Pointer*', . . .)
and the semi-documented setptr) for setting a figure-wide cursor, but Java is required if we
need to set component-specific shapes .

the component’s cursor is controlled via the Cursor property (and the corresponding set-
Cursor(), getCursor() methods) . this controls the cursor shape when the mouse pointer is
located within the component’s bounds . the related method isCursorSet() determines whether
or not a nondefault cursor was set for this component:

>> jb = javax.swing.JButton
jb =
javax.swing.JButton[,0,0,60 × 20,alignmentX = 0.0,alignmentY = 0.5,border = ...]
>> jb.getCursor
ans =
java.awt.Cursor[Default Cursor]
>> jb.isCursorSet
ans =
 0

K13163_Book.indb 99 11/8/2011 8:06:45 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming100

>> % Now set a non-default cursor:
>> jb.setCursor(java.awt.Cursor(java.awt.Cursor.HaND_CURSOR));
>> jb.getCursor
ans =
java.awt.Cursor[Hand Cursor]
>> jb.isCursorSet
ans =
 1

to restore the default cursor, simply call setCursor([]) . the different predefined cursor types
are listed below (the displayed cursor shapes are from Windows — they look slightly different
on other platforms):41

Name Value Cursor Name Value Cursor
DEFAULT_CURSOR 0 NE_RESIZE_CURSOR 7

CROSSHAIR_CURSOR 1 N_RESIZE_CURSOR 8

TEXT_CURSOR 2 S_RESIZE_CURSOR 9

WAIT_CURSOR 3 W_RESIZE_CURSOR 10

SW_RESIZE_CURSOR 4 E_RESIZE_CURSOR 11

SE_RESIZE_CURSOR 5 HAND_CURSOR 12

NW_RESIZE_CURSOR 6 MOVE_CURSOR 13

Custom cursor shapes can be set via the java.awt.Toolkit .createCustomCursor()
 method .42 For example, let us use the Matlab icon as a custom cursor image:

% Create the custom cursor
myIcon = fullfile(MaTLaBroot,'/toolbox/MaTLaB/icons/MaTLaBicon.gif');
imageToolkit = java.awt.Toolkit.getDefaultToolkit;
iconImg = imageToolkit.createImage(myIcon);
hotSpot = java.awt.Point(20,0); % =MaTLaB icon point (top)
myCursor = imageToolkit.createCustomCursor(iconImg,hotSpot,'My Cursor')
 => sun.awt.windows.WCustomCursor[My Cursor]

K13163_Book.indb 100 11/8/2011 8:06:46 PM

© 2012 by Taylor & Francis Group, LLC

101Rich GUI Using Java Swing

% Now use the new cursor
jb.setCursor(myCursor);

Note that Java automatically converts iconImage into the closest supported cursor size
(imageToolkit.getBestCursorSize(iconWidth,iconHeight) = 32 × 32 pixels on Windows
XP) and colormap (imageToolkit.getMaximumCursorColors() = 256 colors on Windows
XP) . Since our original iconImage size was 16 × 16, it was resized to 32 × 32, thereby becom-
ing pixelized, as seen above . Note that because of this resizing, we had to set the hotSpot point
to (20,0) rather than to (10,0) on the original iconImage .

also, note that the JButton methods setCursor(), getCursor() surprisingly do not have cor-
responding properties,† so we cannot use the standard set/get stock functions:

>> jb.ismethod('setCursor')
ans =
 1

>> jb.isprop('Cursor')
ans =
 0

>> get(jb,'Cursor')
??? Error using ==> get
Invalid javax.swing.JButton property: 'Cursor'.

as another example of the usefulness of customized Java components, let’s display a hyper-
link in our GUI window using a simple border-less Java Swing Jbutton:‡

% Prepare the Java JButton object
str = 'Undocumented Matlab.com'; % split link to display multi-line
link = strrep(str,' ',''); % the actual link should have no spaces...
jButton=javax.swing.JButton(['<html><center>' str '']);
jButton.setToolTipText(['Visit the ' link ' website']);
jButton.setCursor(java.awt.Cursor(java.awt.Cursor.HaND_CURSOR));
jButton.setVerticalalignment(javax.swing.SwingUtilities.CENTER);
jButton.setMargin(java.awt.Insets(0,0,0,0));
jButton.setContentareaFilled(false);
jButton.setBorder([]);

% assign the action callback and display onscreen
hButton = handle(jButton,'CallbackProperties');
set(hButton,'actionPerformedCallback',['web(''' link ''');']);
[hjButton, hcontainer] = javacomponent(jButton, pixelPos, hParent);

† this may be a bug in Matlab’s wrapping of the Java object . there are other such cases, for example, the java.awt.
Panel, that encloses a uicontrol(‘style’,‘slider’), has the getX() & getY() methods but no ‘X’ or ‘Y’ properties .

‡ additional methods of displaying hyperlinks are discussed in Sections 5 .5 .1, 6 .5 .2, 6 .9, 8 .3 .1, and 8 .3 .2 .

K13163_Book.indb 101 11/8/2011 8:06:46 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming102

A simple JButton appearing as a hyperlink label

3.3.2 look-and-Feel
One of Matlab’s great advantages is its cross-platform compatibility . Generally speaking,
Matlab applications written on Windows will work as is on Macintosh and linux . Java
has similar cross-platform compatibilities, but it is admittedly slightly easier to verify that
two platforms share the same Matlab version than to verify Java compatibility . Java-based
applications might fail on other platforms that have other JVM versions installed, just as
Matlab applications might fail on platforms that have other Matlab releases . to use
Java in a Matlab application, design for the lowest JVM version it might run on . also, if
the application will run on different platforms, try to use a platform-independent Look-and-
Feel . this is the topic of this section .43

Components can be set to have a different look-and-feel (PlaF or l&F) than their plat-
form’s standard .44 this involves using Swing’s javax.swing.UIManager class, calling the
static javax.swing.UIManager.setLookAndFeel() prior to object creation:

javax.swing.UIManager.setLookandFeel('javax.swing.plaf.metal.MetalLookandFeel')
javacomponent(javax.swing.JSlider);†

 Metal l&F Motif l&F Windows l&F

 . . . and similarly for checkboxes, tabs, buttons, and so on (See color insert.):

 Metal l&F Motif l&F Windows l&F

† and similarly for com.sun.java.swing.plaf.motif.MotifLookandFeel, com.sun.java.swing.plaf.win-
dows.WindowsLookandFeel, and com.sun.java.swing.plaf.windows.WindowsClassicLookandFeel .

K13163_Book.indb 102 11/8/2011 8:06:47 PM

© 2012 by Taylor & Francis Group, LLC

103Rich GUI Using Java Swing

the list of available l&Fs can be retrieved using the static method javax.swing.
UIManager.getInstalledLookAndFeels():

>> lafs = javax.swing.UIManager.getInstalledLookandFeels
lafs =
javax.swing.UIManager$LookandFeelInfo[]:
 [javax.swing.UIManager$LookandFeelInfo] % Metal
 [javax.swing.UIManager$LookandFeelInfo] % Nimbus
 [javax.swing.UIManager$LookandFeelInfo] % Motif
 [javax.swing.UIManager$LookandFeelInfo] % Windows
 [javax.swing.UIManager$LookandFeelInfo] % Windows Classic

>> for lafIdx = 1:length(lafs), disp(lafs(lafIdx)); end
javax.swing.UIManager$LookandFeelInfo[Metal
 javax.swing.plaf.metal.MetalLookandFeel]
javax.swing.UIManager$LookandFeelInfo[Nimbus
 com.sun.java.swing.plaf.nimbus.NimbusLookandFeel]
javax.swing.UIManager$LookandFeelInfo[CDE/Motif
 com.sun.java.swing.plaf.motif.MotifLookandFeel]
javax.swing.UIManager$LookandFeelInfo[Windows
 com.sun.java.swing.plaf.windows.WindowsLookandFeel]
javax.swing.UIManager$LookandFeelInfo[Windows Classic
 com.sun.java.swing.plaf.windows.WindowsClassicLookandFeel]

although not listed in the installed l&Fs, Matlab also enables access to the third-party
Plastic/Plastic 3D l&F by jgoodies .com,45 which generates a stylish GUI:

javax.swing.UIManager.setLookandFeel(
 'com.jgoodies.looks.plastic.Plastic3DLookandFeel')

Plastic3D l&F

the JIDE class library bundled with Matlab (see Section 5 .7), and specifically the jide-
common.jar file located in the %Matlabroot%/java/jarext/jide/ folder, contains a separate
set of third-party l&Fs: aqua,† Eclipse (Metal‡ and Windows§ variants), Office2003,¶ VSNet

† com.jidesoft.plaf.aqua.aquaJideLookandFeel . this l&F requires apple.laf.appleLookandFeel,
which is normally unavailable on Windows platforms and so cannot be used there . aqua is the default l&F on Macs .
Read here: http://blogs .mathworks .com/desktop/2009/03/23/more-mac-like-tabs/#comment-6180 (or http://tinyurl .com/
l9tvox) .

‡ com.jidesoft.plaf.eclipse.EclipseMetalLookandFeel
§ com.jidesoft.plaf.eclipse.EclipseWindowsLookandFeel
¶ com.jidesoft.plaf.office2003.Office2003WindowsLookandFeel

K13163_Book.indb 103 11/8/2011 8:06:47 PM

© 2012 by Taylor & Francis Group, LLC

http://blogs.mathworks.com

Undocumented Secrets of MATLAB®-Java Programming104

(Metal† and Windows‡ variants), and Xerto .§ as far as I can tell, only EclipseMetal and
VsnetMetal have any visible effect, adding a small bluish tint gradient to the Metal l&F (I
could find no difference between these two); Office2003 appears similar to the Windows l&F,
except that the menus get a bluish-orange gradient tint . I would be happy to hear feedback from
readers JIDE’s l&Fs .

Starting with the jide-common.jar file bundled in Matlab release R2008b, JIDE stopped
including full l&F classes and started using l&F extensions using their com.jidesoft.
plaf.LookandFeelFactory class .46 I have not been able to use this class effectively, but
readers are welcome to try (please let me know if you succeed) .

 JIDE EclipseMetal l&F JIDE Office2003 l&F

External l&Fs can also be downloaded and then be used in Matlab .47

the current and standard l&Fs can be retrieved using the respective static methods
javax.swing.UIManager.getLookAndFeel() and getSystemLookAndFeelClassName():

>> disp(javax.swing.UIManager.getLookandFeel)
[The JGoodies Plastic 3D Look and Feel - © 2001-2006 JGoodies Karsten Lentzsch
- com.jgoodies.looks.plastic.Plastic3DLookandFeel]

>> disp(javax.swing.UIManager.getSystemLookandFeelClassName)
com.sun.java.swing.plaf.windows.WindowsLookandFeel

Matlab has a utility class com.mathworks.mwswing.plaf.PlafUtils that con-
tains static methods to query the current l&F: isPlasticLookAndFeel(), isAquaLookAndFeel(),¶
isMetalLookAndFeel(), isMotifLookAndFeel(), and isWindowsLookAndFeel() .**††

Modifying the l&F affects all components created from then on . It also automatically
updates the Matlab Desktop and Editor’s l&F, which may cause unexpected errors .††‡‡ In
some cases, this can at least partially be solved as follows:48

† com.jidesoft.plaf.vsnet.VsnetMetalLookandFeel
‡ com.jidesoft.plaf.vsnet.VsnetWindowsLookandFeel
§ com.jidesoft.plaf.xerto.XertoWindowsLookandFeel
¶ the aqua l&F apparently refers to the apple Macintosh l&F .
†† there is, unfortunately, no such method for the new Nimbus l&F, which is discussed later in this section .
‡‡ For example, on a WindowsXP platform, an exception about XP combo-box button when using WindowsClassic or

Plastic l&F; also see http://www .mathworks .com/matlabcentral/newsreader/view_thread/257284 (or http://tinyurl .com/
mynybr) .

K13163_Book.indb 104 11/8/2011 8:06:47 PM

© 2012 by Taylor & Francis Group, LLC

http://www.mathworks.com

105Rich GUI Using Java Swing

jFrame = com.mathworks.mde.desk.MLDesktop.getInstance.getMainFrame();
javax.swing.SwingUtilities.updateComponentTreeUI(jFrame);
jFrame.repaint;

Or possibly, it can be solved with the following additional settings:

jFrame.getRootPane.putClientProperty('defeatSystemEventQueueCheck',1)
jFrame.getRootPane.putClientProperty('ClassLoader',
 jFrame.getClass.getClassLoader)

In any case, my advice is to restore the default l&F immediately after creating any compo-
nent with a non-standard l&F:

originalLnF = javax.swing.UIManager.getLookandFeel; % class
newLnFName = 'javax.swing.plaf.metal.MetalLookandFeel'; % string
javax.swing.UIManager.setLookandFeel(newLnFName);
jComponent = javacomponent(...); % Create GUI
drawnow; % ensure the controls are displayed before restoring L&F
javax.swing.UIManager.setLookandFeel(originalLnF); % Restore L&F

Components can update their l&F to the current l&F using their jComponent .updateUI()
method . Components that are not specifically updated by invoking their updateUI() method
will retain their existing (original) l&F — the l&F which was active when the components
were created or last updated .

the default settings for the l&F can be retrieved using the static method javax.swing.
UIManager .getDefaults(), which returns an enumeration of the many hundreds of all default
settings (1019 on my Windows platform . . .):

>> defaults = javax.swing.UIManager.getDefaults;
>> propValues = defaults.elements; propKeys = defaults.keys;
>> while propKeys.hasMoreElements
 key = propKeys.nextElement;
 value = propValues.nextElement;
 disp([char(key) ' = ' evalc('disp(value)')]);
 end

SplitPane.dividerSize = 5
DockableFrameTitlePane.stopautohideIcon = javax.swing.ImageIcon@1f4e4c0
FormattedTextField.caretBlinkRate = 500
Table.gridColor = javax.swing.plaf.ColorUIResource[r = 128,g = 128,b = 128]
... (1015 other property settings)

Specific settings can be modified using javax.swing.UIManager .put(key,newValue) .
Readers wishing for complete control over the look-and-feel are referred to Swing’s Synth

l&F .49 Synth enables customization of practically every aspect of the visual appearance and
component behavior, using XMl configuration files .

With Java 1 .6 update 10 onward (available in Matlab R2010a (7 .10), or as a retrofit as
explained in Section 1 .8 .2), it is possible to use the Nimbus l&F50 instead of Synth: Nimbus

K13163_Book.indb 105 11/8/2011 8:06:48 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming106

enables better cross-platform vectorized appearances and all the customizability that Synth
offers . Nimbus was specifically designed to enable creating personalized skins as a derivative
of the basic l&F .51 However, most designers who target application for a particular platform
(Windows or Unix) apparently favor Java’s native (a .k .a . “System”) l&F for that platform .52
also, the Nimbus l&F takes some time to tweak and appears to generate many errors in
Matlab . Still, Nimbus may be useful for cross-platform applications as well as for specific
GUI components . Nimbus is preinstalled as a non-default l&F in Matlab R2010a .

Readers may be interested in Malcolm lidierth’s MUtilities package on Matlab’s File
Exchange .53 MUtilities encapsulated l&F (and other GUI) functionality in Matlab .

3.3.3 HTMl Support
a common feature of Swing components is their acceptance of HtMl (and partial CSS†) for
any of their JLabels .54 Since all Matlab uicontrols are based on Swing-derived compo-
nents, this Swing feature automatically applies to Matlab uicontrols as well .‡ Whatever can
be formatted in HtMl (font, color, size, etc .) is inherently available in Matlab controls .
Note that HtMl tags do not need to be closed (<tag> . . .</tag>), although it is good practice to
close them properly . For example, let us create a multi-colored Matlab listbox:55

uicontrol('Style','list', 'Position',[10,10,70,70], 'String', ...
 {'<HTML>Hello</html>', 'world', ...
 '<html><div style = "font-family:impact;color:green"><i>What a', ...
 '<Html>nice day!'});

HtMl rendering in standard MAtlAb uicontrols (See color insert.)

Note the alternative ways of specifying colors in this example: , <font
color="rgb(0,0,255)">, and <div style="color:green"> . also note the use of the double quotes (")
for the HtMl strings: HtMl also accepts single quotes ('), but the double quotes do not get
mixed-up with Matlab’s string quotes, thereby improving readability (a similar trick is often
used for JavaScript code that is inlined in HtMl) .

the supported HtMl subset includes the tag and can, therefore, display images .§
However, the image src (filename) needs to be formatted in a URl-compliant format such as

† For example, the text-align CSS directive appears to be ignored, while font directives (color/size, etc .) are honored .
‡ Note that the text uicontrol is based on a class which overrides the HtMl support: http://UndocumentedMatlab .com/blog/

html-support-in-matlab-uicomponents/#comment-12 (or http://bit .ly/bujkFq) .
§ Chapter 6 will show how the controls can be made to display images using other means .

K13163_Book.indb 106 11/8/2011 8:06:48 PM

© 2012 by Taylor & Francis Group, LLC

http://UndocumentedMatlab.com

107Rich GUI Using Java Swing

‘http://www .website .com/folder/image .gif’ or ‘file:/c:/folder/subfolder/img .png .’ Warning: if we
try to use a non-URl-format filename, the image will not be rendered, only a placeholder box:

uicontrol('Position',..., 'String','<Html>'); %bad
uicontrol('Style','list', ... '<Html>'}); %bad

Ill-specified HtMl s in MAtlAb uicontrols

>> iconsFolder = fullfile(MaTLaBroot,'/toolbox/MaTLaB/icons/');
>> iconUrl = strrep(['file:/' iconsFolder 'MaTLaBicon.gif'],'\','/');
>> str = ['<Html>']
str =
<Html><img src = "file:/C:/Program
Files/MaTLaB/.../icons/MaTLaBicon.gif" >

>> uicontrol('Position',..., 'String',str);
>> uicontrol('Style','list', ... str});

Correctly specified HtMl s in MAtlAb uicontrols (See color insert.)

HtMl can also be used in tooltips . For example, let us place an image directly in the tooltip
HtMl:

filePath = 'C:\Yair\Undocumented MaTLaB\Images\table.png';
str = ['<html><center>
' filePath];
set(hButton,'tooltipString',str);

tooltip with invalid HtMl img source URl

K13163_Book.indb 107 11/8/2011 8:06:49 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming108

If we fix filePath to be a valid URl, it now looks as intended:

filePath = 'C:\Yair\Undocumented MaTLaB\Images\family.jpg;
filePath = strrep(['file:/' filePath],'/','/');
str = ['<html><center>
 ' ...
 '' filePath];
set(hButton,'tooltipString',str);

tooltip with a valid HtMl image and caption

this tooltip looks enormous (it was actually downsized to fit this page . . .), because our
HtMl size was not limited, so the tooltip was automatically enlarged to contain the full
image size . to limit the tooltip size, simply add the Height and Width attributes to the
tag, remembering to preserve the original image aspect ratio .

HtMl support is very useful when trying to overcome Matlab’s text label uicontrol’s
limitation of not supporting either tex or HtMl . Instead, we can simply use a standard Java
Swing JLabel, which does support HtMl .56 For example,

%show the 'for all' and 'beta' symbols and other HTML formatting
str = '<html>∀β bold<i> label</html>';
jLabel = javaObjectEDT('javax.swing.JLabel',str);
[hcomponent,hcontainer] = javacomponent(jLabel,[100,100,80,20],gcf);

HtMl-rendered label (See color insert.)

Menus and tooltips can also be HtMl-customized in a similar fashion (note: menu cus-
tomization will be detailed separately in Section 4 .6):57

uicontrol('Style','popup', 'Position',[10,10,150,100], 'String', ...
 {'<HTML><BODY bgcolor="green">green background</BODY></HTML>', ...
 '<HTML>Large red font', ...
 '<HTML><BODY bgcolor="#FF00FF"><PRE>fixed-width font'});

K13163_Book.indb 108 11/8/2011 8:06:50 PM

© 2012 by Taylor & Francis Group, LLC

109Rich GUI Using Java Swing

HtMl-rendered controls (popup menus and tooltips) (See color insert.)

HtMl-rendered menus (See color insert.)

a blog reader has suggested58 using HtMl to display font names in their own font:

fontStr = @(font) ['<html>' font '</
html>'];
htmlStr = cellfun(fontStr,listfonts,'uniform',false);
uicontrol('style','popupmenu', 'string',htmlStr, 'pos',[20,350,60,20]);

HtMl-rendered popup (combo-box) menu

there are some caveats when using HtMl with uicontrols: HtMl buttons do not underline
the mnemonic character (e .g ., Cancel) — we need to underline it ourselves (<u>C</u>ancel) .
also, a Java bug59 causes HtMl text to retain its color (not become gray) when the control is
disabled .

K13163_Book.indb 109 11/8/2011 8:06:51 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming110

In some cases, such as multiline editboxes, HtMl support is present but cannot be turned
on in Matlab . Sections 6 .5 .2 and 6 .5 .3 show how to turn it on using the underlying Java
component (JEditorPane in the multiline editbox case):

Editable HtMl-aware JEditorPane

In a related note, a fully capable browser component can easily be included in Matlab
GUI figures to display HtMl messages and even entire webpages (local or on the Internet) .
this is discussed in Section 8 .3 .2 .

browser object integrated in a MAtlAb GUI

3.3.4 Focus Traversal60

Java Swing components have several focus-related properties (and accessor methods) that relate
to the component’s focus cycle, that is, selecting (=setting the focus on) the component using
the keyboard .61 Matlab documentation calls the focus cycle “tab-order”, but it only allows
selecting the focus cycle order, using the uistack function — for all the extra functionalities, we
need to use these Java properties .

K13163_Book.indb 110 11/8/2011 8:06:51 PM

© 2012 by Taylor & Francis Group, LLC

111Rich GUI Using Java Swing

One aspect that is often encountered and easily fixed is Matlab’s default exclusion of all
javacomponents from its focus traversal cycle . this means that if we place several uicontrols
and javacomponents together onscreen, clicking tab or Shift-tab will only move the focus
between the regular uicontrols, but none of the javacomponents . the javacomponents can still
get the focus, but only programmatically or by mouse click — not by keyboard-clicking tab
or Shift-tab .

h1 = uicontrol('style','edit','position', [10 10 120 20]);
h2 = uicontrol('style','edit','position', [10 40 120 20]);
h3 = javacomponent(javax.swing.JTextField, [10 70 120 20]);

Problem: the javacomponent is not tAb-focusable
(tAb only switches focus between bottom uicontrols)

the fix for this problem is immediate:

h3.setFocusable(true);

Solution: the javacomponent is now tAb focusable as expected
(tAb now cycles between all three controls)

Note that this fixes the problem despite the fact that Focusable is already true . the reason is
that setFocusable() invokes a back-end Java method that resets the component to its standard
focus policy, overriding Matlab’s non-standard policy .

3.4 Component Callbacks

Components are useless if they cannot be queried and updated programmatically or if they do
not call asynchronous actions (a .k .a . fire callbacks) when certain events occur . these callbacks
have to be asynchronous or the computer will have to keep polling the controls to query them

K13163_Book.indb 111 11/8/2011 8:06:52 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming112

for changes, instead of doing useful stuff . In short, good callback support and implementation
are at the heart of every successful GUI system .

Swing provides a standard set of callbacks for all its components, with a few additional spe-
cific callbacks for specific components . all callbacks can be accessed from within Matlab .62
Here is a description of the standard callbacks supported by all Swing components .63 all call-
backs fire just once, unless specified as continuous:

ancestorMovedCallback ◾ — fired when one of the component’s container ancestors
has changed its position relative to its container .64

ancestoraddedCallback ◾ — fired when one of the component’s container ancestors
has been added to another container .
ancestorRemovedCallback ◾ — fired when one of the component’s container ances-
tors has been removed from the component’s hierarchy .
ancestorResizedCallback ◾ — fired when one of the component’s container ancestor
has been resized .
ComponentaddedCallback ◾ — fired when a subcomponent is added as a direct child
to this component .65 Compare: ComponentRemovedCallback.
ComponentHiddenCallback ◾ — fired when the component is hidden (setVisible(false)) .66
Compare: ComponentShownCallback.
ComponentMovedCallback ◾ — fired when the component is moved within its con-
tainer . Since Java components are enclosed in a tight-fitting HG container, this call-
back never fires for them: it does not fire when the container moves or resizes but only
when the component’s starting position is moved within it .
ComponentRemovedCallback ◾ — fired when a subcomponent is added as a direct
child to this component . Compare: ComponentaddedCallback.
ComponentResizedCallback ◾ — fired when the component is resized, either directly
or because its container was resized .
ComponentShownCallback ◾ — fired when the component is displayed (setVisible(true)) .
Compare: ComponentHiddenCallback.
FocusGainedCallback ◾ — fired when the component gains GUI focus,67 by a mouse
click,† <tab> key click,‡ or calling the component’s requestFocus() method . Can be
used at the figure-level to detect window focus events .68

FocuslostCallback ◾ — fired when the component loses focus to another component or
window . Compare: FocusGainedCallback .69

HierarchyChangedCallback ◾ — fired when the component changes its ancestors (e .g .,
moved from one panel to another) .70

† Mouse clicks can be either interactive or programmatic, as explained here: http://www .mathworks .com/matlabcentral/
newsreader/view_thread/235825#668975 (or http://tinyurl .com/l5b7av) .

‡ like mouse clicks, <tab> clicks can also be invoked programmatically using java .awt .Robot (keyPress()/keyRelease()
methods) .

K13163_Book.indb 112 11/8/2011 8:06:52 PM

© 2012 by Taylor & Francis Group, LLC

113Rich GUI Using Java Swing

KeyPressedCallback ◾ — fired continuously when a keyboard button (including Shift,
Ctrl, etc .) was pressed while the component had focus .† the meta-data contains details
about the specific key and modifiers (alt, Shift, Ctrl, etc .) that were pressed .71 Compare:
KeyReleasedCallback, KeytypedCallback .
KeyReleasedCallback ◾ — fired when a keyboard button was released while the com-
ponent had focus . the meta-data contain details about the specific key and modifiers
(alt, Shift, Ctrl, etc .) that were pressed . Compare: KeyPressedCallback .
KeytypedCallback ◾ — similar to KeyPressedCallback, but only fired (continuously)
when an actual printable character is clicked . So, for Shift-a, KeyPressedCallback
will fire twice (Shift, ‘a’), but KeytypedCallback will only fire once . Compare:
KeyPressedCallback, KeyReleasedCallback .
MouseClickedCallback ◾ — fired when a mouse button is pressed and then released
(=clicked) within the component’s bounds . If either the press or the release occurs
 outside the component’s bounds, the event will not fire . the figure’s Selectiontype
 property‡ will be ‘normal’, ‘extend’, or ‘alt’ depending on which button was pressed .
Compare: MousePressedCallback, MouseReleasedCallback . also, note an undoc-
umented change in the Selectiontype property behavior starting in Matlab 7 .6
(R2008a) .72

MouseDraggedCallback ◾ — fired continuously when the mouse is clicked in the com-
ponent’s bounds and then moved while the button is still depressed (i .e ., dragged), even
beyond the component’s bounds .73 the callback event’s meta-data contains the move-
ment’s delta-x and delta-y (positive for x-right/y-down; negative for x-left/y-up) .
Handling drag beyond the component’s bounds depends on the component’s autoscrolls
property . Compare: MouseMovedCallback.
MouseEnteredCallback ◾ — fired when the mouse is moved (depressed or not) into the
component’s bounds . Compare: MouseExitedCallback.
MouseExitedCallback ◾ — fired when the mouse is moved (depressed or not) out of the
component’s bounds . Compare: MouseEnteredCallback.
MouseMovedCallback ◾ — fired continuously when the mouse is moved undepressed
within the component’s bounds . the callback event’s meta-data will contain the delta-x
and delta-y of the movement (positive for x-right/y-down; negative for x-left/y-up) . this
can be used to complement Matlab’s WindowbuttonMotionFcn property when track-
ing mouse movements over figure components .74 Compare: MouseDraggedCallback.

† this can be used to intercept keyboard events in a much more fine-grained manner than that enabled by the pure-Mat-
lab callbacks . See, for example, http://www .mathworks .com/matlabcentral/newsreader/view_thread/159849 (http://bit .
ly/9yYXqf), or http://www .mathworks .com/matlabcentral/newsreader/view_thread/115753#292219 (http://bit .ly/c9PFly) .

‡ this information is part of the Java event’s meta-data, but it is not conveyed in the Matlab meta-data . luckily, there
is this workaround . See http://www .mathworks .com/matlabcentral/newsreader/view_thread/148366 (or http://tinyurl .
com/d3h9df), which was a good lesson in humility for me and also shows how sometimes a simple answer lies in unex-
pected places .

K13163_Book.indb 113 11/8/2011 8:06:52 PM

© 2012 by Taylor & Francis Group, LLC

http://www.mathworks.com

Undocumented Secrets of MATLAB®-Java Programming114

MousePressedCallback ◾ — fired when the mouse button is depressed (even before it
has been released) within the component’s bounds .75 the callback event meta-data will
contain the click location within the component’s bounds . Compare: Mouse
ClickedCallback, MouseReleasedCallback.
MouseReleasedCallback ◾ — fired when the mouse button is released within the com-
ponent’s bounds .76 the callback event’s meta-data will contain the click location within
the component’s bounds . Compare: MousePressedCallback.
MouseWheelMovedCallback ◾ — fired when the mouse wheel is turned (even before it
has been released) within the component’s bounds .77

PropertyChangeCallback ◾ — fired when one of the component’s properties has
changed . For example, after setting the component’s text, tooltip, or border . Does not
fire when modifying the component’s callback properties .
VetoableChangeCallback ◾ — fired upon a constrained property value change, allow-
ing the callback to intercept and prevent the property change by raising an exception .
Of all the Swing components, only JInternalFrame actually declares vetoable
properties which can be intercepted .† We can use this callback for our own compo-
nents by setting up a VetoableChangeListener78 and calling the component’s
addVetoableChangeListener() method to register it (for a Java callback) or by calling
fireVetoableChange(propertyName, oldValue, newValue) in our component class’s
setter methods .79 a simpler solution involves schema.prop, but this is outside the
scope of this book .

It should be noted that these callbacks are standard in all Swing GUI controls . thus, they
can be used not just for Matlab uicontrols’ underlying Java objects, but also for any Swing
component that you display using Matlab’s javacomponent function .

the specific list of callbacks supported by each component depends on component type .
as noted above, some components have additional specific callbacks .80 For example,
actionPerformedCallback is fired when a user has performed the main action associated
with the control (selecting/clicking, etc .) .81 this is one of the most commonly used callbacks,
one of the few exposed by Matlab HG handles . this callback is implemented by JButton
and JCheckBox (for instance), but not by JList or JMenu . Caret UpdateCallback and
CaretPositionChangedCallback82 are only supported by text-entry controls such as
JTextField or JEditorPane, but not by JSlider or JTabbedPane . Other compo-
nents have other such specific callbacks . to see the full list of supported callbacks for a par-
ticular object, use uiinspect (described above) or use the following code snippet:

>> props = sort(fieldnames(get(javax.swing.JButton)));
>> callbackNames = props(~cellfun(@isempty,regexp(props,'Callback$')));
callbackNames =
 'actionPerformedCallback'
 'ancestoraddedCallback'

† Only four properties are vetoable: Closed, Icon, Maximum, and Selected .

K13163_Book.indb 114 11/8/2011 8:06:52 PM

© 2012 by Taylor & Francis Group, LLC

115Rich GUI Using Java Swing

 'ancestorMovedCallback'
 ...

a nice example of using Java callbacks to automatically select (highlight) the content text in
a textbox when focus is gained was one of the first online posts in CSSM to use Matlab 7’s
new javacomponent Swing integration .83

to prevent memory leaks in complex GUIs, it is advisable to get and set callbacks using the
handle() object, instead of directly using the Java reference .84 Starting in R2010b, setting call-
backs on un-handled Java references evokes a warning message:

>> jb = javax.swing.JButton;
>> jbh = handle(jb,'CallbackProperties');
>> set(jbh,'actionPerformedCallback',@myCallbackFcn) % ok!

>> set(jb, 'actionPerformedCallback',@myCallbackFcn) % bad! memory leak
Warning: Possible deprecated use of set on a Java callback.
(Type "warning off MaTLaB:hg:JavaSetHGProperty" to suppress this warning.)

handle() objects implement the Adapter design pattern,85 exposing all properties and methods
(but not the public fields) of the original Java reference . the original Java reference can always
be accessed via the handle’s java() method:

>> jScrollPane = handle(javax.swing.JScrollPane,'CallbackProperties')
jScrollPane =
 javahandle_withcallbacks.javax.swing.JScrollPane

>> scrollPolicy = jScrollPane.VERTICaL_SCROLLBaR_NEVER
??? No appropriate method, property, or field VERTICaL_SCROLLBaR_NEVER for class
javahandle_withcallbacks.javax.swing.JScrollPane.

>> scrollPolicy = jScrollPane.java.VERTICaL_SCROLLBaR_NEVER
scrollPolicy =
 21

Whenever possible, it is good practice to always use handle objects instead of directly
using the Java reference .86 Not only does it prevent memory leaks, a good enough reason, but
it also enables placing handles of different (even dissimilar) Java objects in a single Matlab
array (which is often useful in GUI programming), provides access to schema.class, schema.
prop, and other similar goodies (see appendix b), and enables using Matlab’s getappdata/
setappdata functions to store control-specific data like standard Matlab uicontrols:†

>> setappdata(jbh,'data1',{'cell','array',magic(3)})
>> setappdata(jbh,'data2',gcf)
>> getappdata(jbh)

† Matlab R2010b has a bug that sometimes causes an error when using getappdata or setappdata on Java references in
callback functions . to circumvent this, use a java .util .Hashtable instead (see Section 4 .1 .2 for a working example) .

K13163_Book.indb 115 11/8/2011 8:06:53 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming116

ans =
 data1: {'cell' 'array' [3 × 3 double]}
 data2: 1

For some unknown reason,† unless the initial handle() call has been done with the optional
‘CallbackProperties’ parameter, all subsequent handle() calls, even those which explicitly
request ‘CallbackProperties’, will not expose the callback events . this is reflected in the follow-
ing code snippet that uses get(), but also applies to set():

>> jb = javax.swing.JButton;
>> jbh = handle(jb) % naked handle() call: ill-advised!
jbh =
 javahandle.javax.swing.JButton
>> jbh = handle(jb,'callbackProperties')
jbh =
 javahandle.javax.swing.JButton <= naked handle is reused
>> get(jb,'actionPerformedCallback')
??? Error using ==> get
There is no 'actionPerformedCallback' property in the 'javax.
swing.JButton' class

>> get(jbh,'actionPerformedCallback')
??? Error using ==> get
There is no 'actionPerformedCallback' property in the 'javax.
swing.JButton' class

>> jb = javax.swing.JButton; %recreate or handle will be reused
>> jbh = handle(jb,'CallbackProperties') %Non-naked handle() call: ok
jbh =
 javahandle_withcallbacks.javax.swing.JButton
>> get(jb,'actionPerformedCallback')
ans =
 '' <= ok!
>> get(jbh,'actionPerformedCallback')
ans =
 '' <= ok!

Oddly enough, if we get() or set() a Java reference’s callback before calling handle(), the
reference will expose all callbacks, even though its handle() might not:

>> jb = javax.swing.JButton; % recreate button or handle will be reused
>> get(jb,'actionPerformedCallback')
ans =
 '' <= ok! (only for Java reference)
>> jbh = jb.handle; % naked handle() call: ill-advised!
 jbh =

† Even Matlab’s own javacomponent.m file has the following comment: “It seems once a java object is cast to a handle,
you cannot get another handle with ‘callbackproperties’” .

K13163_Book.indb 116 11/8/2011 8:06:53 PM

© 2012 by Taylor & Francis Group, LLC

117Rich GUI Using Java Swing

 javahandle.javax.swing.JButton <= get a naked handle again

>> get(jbh,'actionPerformedCallback')
??? Error using ==> get
There is no 'actionPerformedCallback' property in the 'javax.
swing.JButton' class

luckily, javacomponent automatically creates an initial handle with ‘CallbackProperties’
when the Java object is first placed onscreen . this ensures that any object using javacompo
nent, unless it has called a naked handle() first, has access to the Java Object’s callback prop-
erties . the problem is more significant with subcomponents (e .g ., CellRenderer or CellEditor
explained in Section 4 .1 .1) that are not preprocessed by javacomponent . It is, therefore, advis-
able to never use naked handle(): always add the ‘CallbackProperties’ parameter, even when
unneeded .

the preceding discussion focused on handle() usage for Java components . handle() can also
be used for Matlab components . However, while the java() function (java(jbh) or jbh .java)
returns the original Java object for Java handles, it merely returns a Java-bean adapter reference
for Matlab handles . these adapter objects should not be confused with the Matlab
 components’ underlying Java objects . In fact, the adapters are basically just simple automated
Java wrappers for the Matlab objects and do not expose much additional functionality .87 to
get the real underlying Java object, use findjobj (see Section 7 .2 .2) .

Note another quirk: GUI components that are loaded from * .fig files (created using GUIDE
or saved via their figure menu) are loaded without ‘CallbackProperties’, and it is, therefore, not
possible to access their Java callbacks . Only GUI figures and components created in run-time
have accessible callbacks . as a workaround, we can use the handle.listener approach (see
Section 1 .4 and appendix b):88

hListener = handle.listener(jbh, 'actionPerformed', @myCallbackFcn);

When setting up the callbacks, we may specify additional parameters that will also be passed
to the callback when the event is fired:89

set(jbh, 'actionPerformedCallback', 'disp(gcbo)');
set(jbh, 'actionPerformedCallback', @myCallbackFcn);
set(jbh, 'actionPerformedCallback', {@myCallbackFcn,Param1,Param2});
set(jbh, 'actionPerformedCallback', @(h,e) myCallbackFcn(extraData));

When fired, callback functions receive at least two input parameters: the component refer-
ence handle (e .g ., a javahandle_withcallbacks.javax.swing.JButton) and a
java.util.EventObject90 reference (typically a more specific class, like java.awt.
event.FocusEvent91 or java.awt.event.MouseEvent92) that contains event meta-
data (type, time, source, details, etc .) . If the callback was set using the cell array notation with
extra parameters, these will also be passed to the callback function .

Here is a sample MouseClickedCallback event that was fired on a JButton:

K13163_Book.indb 117 11/8/2011 8:06:53 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming118

eventData =
java.awt.event.MouseEvent[MOUSE_CLICKED,(50,7),absolute(554,601),butto
n = 1,modifiers = Button1,clickCount = 1] on javax.swing.
JButton[,0,0,60 × 20,...]

>> get(eventData)
data =
 altDown: 'off'
 altGraphDown: 'off'
 BeingDeleted: 'off'
 Busyaction: 'queue'
 Button: 1
 ButtonDownFcn: ''
 Children: [0 × 1 double]
 Class: [1 × 1 java.lang.Class]
 ClickCount: 1
 Clipping: 'on'
 Component: [1 × 1 javax.swing.JButton]
 Consumed: 'off'
 ControlDown: 'off'
 CreateFcn: ''
 DeleteFcn: ''
 HandleVisibility: 'on'
 HitTest: 'on'
 ID: 500
 Interruptible: 'on'
 LocationOnScreen: [554 601]
 MetaDown: 'off'
 Modifiers: 16
 ModifiersEx: 0
 Parent: []
 Point: [50 7]
 PopupTrigger: 'off'
 Selected: 'off'
 SelectionHighlight: 'on'
 ShiftDown: 'off'
 Source: [1 × 1 javax.swing.JButton]
 Tag: ''
 Type: 'java.awt.event.MouseEvent'
 UIContextMenu: []
 UserData: []
 Visible: 'on'
 When: 1236907484155†

 X: 50
 XOnScreen: 554
 Y: 7
 YOnScreen: 601

† Milliseconds since January 1, 1970 . Use date = java.util.Date(eventData.getWhen) to convert this number into
a timestamp object and char(date) to get a human-readable string (in this case: “thu Mar 12 20:24:44 ESt 2009”) . See
http://java .sun .com/javase/6/docs/api/java/util/Date .html (or http://bit .ly/7N3b48) for a description of the Date object .

K13163_Book.indb 118 11/8/2011 8:06:53 PM

© 2012 by Taylor & Francis Group, LLC

http://java.sun.com

119Rich GUI Using Java Swing

3.5 Using Third-Party libraries in MATlAB

3.5.1 JFreeChart and Other Charting libraries93

an extremely powerful and widely used Swing-based class library is JFreeChart (www .
jfree .org), which includes classes for displaying charts, graphs, and gauges in Java panels .
JFreeChart solves Matlab’s limitation that plot axes cannot be added to Java containers .
JFreeChart is free open-source94 under the GNU lGPl license . Used by over 40,000 Java
developers worldwide95 (as well as by some Matlab developers96), it is in constant devel-
opment and improvement .†

JFreeChart has some limitations compared with Matlab plots, but it can do things that
are extremely difficult to achieve in Matlab, as shown in the following screenshots:

† Version 1 .0 .13 was released in april 2009; by the time you read this, there may be a newer version available .

Gantt chart demo

May-2001

Write proposal
Obtain approval

Requirements analysis
Design phase

Design signoff

Ta
sk

Alpha implementation
Design review

Revised design signoff
Beta implementation

Testing
Final implementation

Scheduled Actual

Jul-2001 Sep-2001 Nov-2001
Date

Sample JFreeChart charts, gauges, and plots (See color insert.)

K13163_Book.indb 119 11/8/2011 8:06:57 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming120

let us now integrate a JFreeChart pie chart within a Matlab figure, as a means of illus-
trating how to integrate third-party Swing-derived components into Matlab .

First, download the latest JFreeChart version from its download page on the open-source
repository www .sourceforge .net .97 Next, unzip the downloaded file into some new folder .† Now,
edit classpath.txt (or use javaaddpath) to load jfreechart-1.0.13.jar and jcommon-1.0.16.jar
(which are located in the /lib/ subfolder) to the Java classpath (replace the version numbers as
appropriate):‡

javaaddpath C:/Yair/Utils/JFreeChart/lib/jcommon-1.0.16.jar
javaaddpath C:/Yair/Utils/JFreeChart/lib/jfreechart-1.0.13.jar

Within the Matlab code, load the data into an object that implements the org.jfree.
data.Dataset interface . there are separate such objects for each specific chart type .
For example, in order to display a pie chart, we would use org.jfree.data.general.
DefaultPieDataset:

dataset = org.jfree.data.general.DefaultPieDataset;
dataset.setValue(java.lang.String('C'), 4); §

dataset.setValue(java.lang.String('C + +'), 7);
dataset.setValue(java.lang.String('MaTLaB'), 52);
dataset.setValue(java.lang.String('Java'), 23);
dataset.setValue(java.lang.String('Other'), 14);

Now, prepare an org.jfree.chart.JFreeChart object, and update some of its
properties:

chart3D = org.jfree.chart.ChartFactory.createPieChart3D(...
 'Programming languages', dataset, true, true, false); ¶

plot3D = chart3D.getPlot; % an org.jfree.chart.plot.PiePlot3D obj
plot3D.setForegroundalpha(0.7); % set transparency level

Finally, place the chart in a Swing-compliant panel and display using javacomponent:

jPanel = org.jfree.chart.ChartPanel(chart3D);
[jp,hp] = javacomponent(jPanel,[20,20,300,300],gcf);

† a new folder is advisable, since the zip contents and the javadoc documentation are quite hefty in JFreeChart’s case .
‡ there are several other JaR files in the lib subfolder, but only these two are needed for most cases . the other libraries

provide SWt support, development unit tests, servlets for web servers, PDF/RtF/HtMl export, and other specialized
needs . Read the documentation for details .

§ Note the explicit casing to java.lang.String, since dataset .setValue() expects a java.lang.Comparable (as seen
via methodsview or the uiinspect utility) — Matlab is not smart enough to understand that java.lang.String
implements the Comparable interface so the default type conversion can take place . We, therefore, need to use an
explicit type cast .

¶ arguments in this case: title string, data set, display legend flag, display tooltips flag, and generate URls flag .

K13163_Book.indb 120 11/8/2011 8:06:57 PM

© 2012 by Taylor & Francis Group, LLC

121Rich GUI Using Java Swing

 . . . and similarly for a 2D exploding pie chart (no need to re-create the panel — simply point
it to the new chart using jPanel.setChart() and the entire figure is automatically
redrawn):

chart2D = org.jfree.chart.ChartFactory.createPieChart(...
 'Programming languages', dataset, true, true, false);
plot2D = chart2D.getPlot; % an org.jfree.chart.plot.PiePlot obj
plot2D.setExplodePercent(0,0.6);†

plot2D.setExplodePercent(3,0.30);‡

jPanel.setChart(chart2D);

 before: 3D pie chart § After: 2D pie chart

§It is beyond the scope of this book to describe JFreeChart in detail . JFreeChart is indeed a
highly customizable and much recommended addition to Matlab applications . However,
exactly due to its extensiveness, we need to read its documentation, available in javadoc format
on the download page, together with an installation guide . a detailed developer’s guide is also
available (at a low cost) .

to ease the learning curve, a detailed interactive demo application is available .98 this demo
can also run from the command-line following JFreeChart’s installation (from the top-level
JFreeChart folder):

java -cp lib/jfreechart-1.0.13.jar -cp lib/jcommon-1.0.16.jar -jar jfreechart-
1.0.13-demo.jar

† arguments: zeroth index (='C'), 60% outward explosion .
‡ arguments: third index (='Java', remember Java starts indexing at 0), 30% outward explosion .
§ Note the tooltip when the mouse hovers over the 52% “Matlab” segment in the three-dimensional pie chart .

K13163_Book.indb 121 11/8/2011 8:06:57 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming122

JFreeChart interactive demo application

Other free (yet unofficial) guides for JFreeChart can be found online .99 beyond this basic
documentation, which should be enough for most programming tasks, there is a very detailed†
official reference manual available for purchase .‡

there are several other Java charting libraries, although JFreeChart is possibly the most
widespread . Matlab users might also be interested in exploring JMathlib (www .jmathlib .
de), a free Matlab look-alike written in pure Java, which provides the ability to read
Matlab m-files and present Java-based charts . a Matlab user has reported using the Java-
based Processing charting set (www .processing .org) in Matlab with mixed success (excel-
lent graphics but also large memory leaks) .100

3.5.2 JFreeReport and Other Reporting libraries
Pentaho Reporting (formerly JFreeReport)101 is a Java-based open-source reporting package .
It is typically used in conjunction with Pentaho’s visual Report Designer (or its now-defunct
JFreeDesigner102 predecessor) . It has historical ties to JFreeChart, although it was developed
independently . these packages create professional-looking reports, invoices, receipts, inven-
tory lists, and so on, that tightly integrate with JFreeChart, enabling easy creation of reports
that contain charts and graphs .

† 750 pages long at last count
‡ http://www .object-refinery .com/jfreechart/guide .html (or http://tinyurl .com/d5xgqm) . Do not be confused: JFreeChart is,

and plans to remain, entirely free open-source . It is only the book which is not free, as a means to support the JFreeChart
project .

K13163_Book.indb 122 11/8/2011 8:06:58 PM

© 2012 by Taylor & Francis Group, LLC

http://www.object-refinery.com

123Rich GUI Using Java Swing

JFreeReport (Pentaho Reporting) sample reports

K13163_Book.indb 123 11/8/2011 8:06:59 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming124

another popular open-source reporting package is JasperReports103 (its designer is called
iReport104), winner of the 2007 Java Duke’s Choice Open Source award:105

JasperReports sample report

iReports designer for JasperReports

K13163_Book.indb 124 11/8/2011 8:07:00 PM

© 2012 by Taylor & Francis Group, LLC

125Rich GUI Using Java Swing

OpenReports106 is another open-source report package that supports other formats:

OpenReports sample reports

these reporting packages (and several others) differ not just in their visual capabilities, but
also in their acceptance of different data input formats: XMl and/or JaVa aPI and/or database
connection, and so on . they all share a feature of being generic in nature, not tailored to any
particular field of use .

3.5.3 JGraph and Other Visualization libraries
an example of a third-party Java charting library integrated in Matlab is the JGraphT
MATLAB utility .107 this utility uses the open-source JGrapht Java-based library108 that
 provides mathematical graph-theory objects and algorithms, and can be used with the
 corresponding JGraph library109 for visualization . apparently, the Matlab utility is a

K13163_Book.indb 125 11/8/2011 8:07:01 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming126

 wrapper for the non-GUI JGrapht, but we can also use JGraph’s GUI visualization capabilities,
since JGrapht has an extremely simple JGraph adapter .

JGraph samples (See color insert.)

to use JGraph, download the JGraphx zip file110 and then extract the zip file . We will get a
jgraphx/ subfolder containing separate subfolders with docs, examples, source code, and a lib/
subfolder with a jgraphx.jar file that should be loaded into the classpath:

javaaddpath('jgraphx/lib/jgraphx.jar');

K13163_Book.indb 126 11/8/2011 8:07:02 PM

© 2012 by Taylor & Francis Group, LLC

127Rich GUI Using Java Swing

Here is an example of using JGraph in Matlab, provided by blog reader Scott Koch:111

% Make the graph object
graph = com.mxgraph.view.mxGraph;

% Get the parent cell
parent = graph.getDefaultParent();

% Group update
graph.getModel().beginUpdate();

% add some child cells
v1 = graph.insertVertex(parent, '', 'Hello', 240, 150, 80, 30);
v2 = graph.insertVertex(parent, '', 'World', 20, 20, 80, 30);
graph.insertEdge(parent, '', 'Edge', v1, v2);
graph.getModel().endUpdate();

% Get scrollpane
graphComponent = com.mxgraph.swing.mxGraphComponent(graph);

% Make a figure and stick the component on it
pos = get(gcf,'position');
mypanel = javax.swing.JPanel(java.awt.BorderLayout);
mypanel.add(graphComponent);
[obj, hcontainer] = javacomponent(mypanel, [0,0,pos(3:4)], gcf);

JGraph example within a MAtlAb figure (the graph is fully interactive)

the Gephi package,112 winner of the 2010 Java Duke’s Choice award for technical Data
Visualization,113 is a free open-source exploration and visualization package, which leaves
many costly packages far behind (requires JVM 1 .6, Matlab R2007b+):

K13163_Book.indb 127 11/8/2011 8:07:03 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming128

Gephi sample report (See color insert.)

Other packages exist with tailored solutions for specific needs . For example, the titan/VtK
(Visualization tool-Kit) open-source package114 targets visualization of informatics data . It
even has specific instructions for Matlab integration .115 VtK enables display of a complex
GUI, which would be extremely difficult (if not impossible) to achieve in pure Matlab . Here
is a sample report from VtK’s main wiki page:

titan/VtK sample application

K13163_Book.indb 128 11/8/2011 8:07:04 PM

© 2012 by Taylor & Francis Group, LLC

129Rich GUI Using Java Swing

3.5.4 ImageJ and Other Image-Processing libraries
another open-source Java library, which is extremely popular in the Java world, is ImageJ .116
this 100,000 source-code-lines fully documented library handles image processing . Whereas
one user claims that “imageJ seems to be doing circles around MATLAB’s image processing
toolbox”,117 well-respected Imageanalyst disagrees .118

ImageJ is under constant development, with new versions being released about twice a
month .119 ImageJ has dozens of plugins contributed by numerous users for different image for-
mats, processing filters, and so on .120 tutorial and reference docs are available .121 Several open-
source Matlab connectors to ImageJ are available online .122

Imagej image-processing library

ImageJ is by no means the only Java-based image-processing library: there are several other
Java-based open-source and commercial libraries available .123

3.5.5 Swing Extension Class libraries
Several open-source class libraries have been developed that enhance and extend the basic
Swing . In many cases, these class libraries can be used in Matlab with as little effort as
downloading the relevant JaR file, adding it to the Java (preferably static) classpath, and calling
its internal functionality . In some cases, simple Java wrappers need to be coded, which can be

K13163_Book.indb 129 11/8/2011 8:07:05 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming130

called from Matlab, in order to bypass known limitations (e .g ., Matlab’s inability to use
Java Generics) .

the payoff may well be worth your time to experiment: some of the extensions are simply
amazing . a good place to look for such extensions is the official Swinglabs homepage,124
which holds links to many such extension projects — all of them are open-source . Most proj-
ects have online demos (jnlp files) that help illustrate key features .

Some of the interesting projects include:

SwingX ◾ 125 — the semiofficial extension to Swing that includes support for sorting,
filtering, and highlighting of tables/trees/lists, auto-completion, tree-tables, collapsible
panels, hyperlinks, date/month pickers, animated “busy” indicators, and other similar
goodies . Many (but not all) of these are already available in Matlab via internal
classes (refer to Chapter 5 for details) .
JXlayer ◾ 126 — enables transformations of the appearance of any displayable control or
component: blurring, rotation, stretching, scaling, and so on . JXlayer is widely used
and has several active user extensions, blogs, and forum discussions .127 JXlayer is
preinstalled in Matlab starting in R2011a .
SwingHelper ◾ 128 — a set of swing extension mini-projects .
Wizard ◾ 129 — facilitates creating multipanel wizard GUIs .
PDF-renderer ◾ 130 — viewer and annotator for PDF documents .
JDIC ◾ 131 — integration with and access to computer desktop functionality .

3.5.6 A Note of Caution
a note of caution is due when integrating external Java class libraries in Matlab applica-
tions: not all libraries were developed and debugged with the same amount of attention to
detail, quality, and public feedback as the Swing libraries . Some libraries may have internal
bugs, inaccuracies, memory leaks, and all sorts of other similar malfunctions . these may affect
the stability, behavior, and accuracy of any Matlab application that integrates these libraries .
In some cases, the original library creator may no longer be supporting this package; in other
cases, the level of support cannot be guaranteed .

For this reason, I personally prefer, wherever possible, to use an open-source library that has
thousands of active users worldwide . this large user base could provide answers, workaround,
and/or support in case of need . to me, this appears to be more advisable than using a library
from some obscure provider .

While this general caution and advice is true for all integrations of any external software
component, it is especially important with the Matlab–Java interface, which is lacking in
documentation, support, and decent debugging tools . tracing problems across the Matlab–
Java interface can be a painful and frustrating experience indeed .

as a case in point, a CSSM poster asked the Matlab community’s help in solving a mem-
ory leak problem in what he thought was the Matlab–Java interface, but which later turned
out to be internal leaks within the external Java library132 (in this specific case — jPar133) .

K13163_Book.indb 130 11/8/2011 8:07:05 PM

© 2012 by Taylor & Francis Group, LLC

131Rich GUI Using Java Swing

3.6 System-Tray Icons

Java 1 .6, available since Matlab 7 .5 (R2007b), enabled programmatic access to system-tray
icons on such systems that supported system tray .134 If the SystemTray135 object indicates
that it isSupported, then a TrayIcon136 can be added, along with an associated tooltip and
popup menu (See color insert.):137

sysTray = java.awt.SystemTray.getSystemTray;
if (sysTray.isSupported)
 myIcon = fullfile(MaTLaBroot,'toolbox/MaTLaB/icons/MaTLaBicon.gif');
 iconImage = java.awt.Toolkit.getDefaultToolkit.createImage(myIcon);
 trayIcon = java.awt.TrayIcon(iconImage, 'initial tooltip');
 trayIcon.setToolTip('click this icon for applicative context menu');
 java.awt.SystemTray.getSystemTray.add(trayIcon); % remove(trayIcon)
end

the icon image can be made to automatically resize to the system-tray dimensions, using the
trayIcon .setImageAutoSize(true) method (by default, the icon image will maintain its original
size, getting cropped or appearing small as the case may be) .

before: small & cropped (large-sized) icons After: auto-resized icons
(compare the standard-size non-MAtlAb shield icon)

Of course, after initial setup, all the tray icon’s properties (icon image, popup, tooltip, etc .)
can be modified with convenient set() methods (setImage, setPopupMenu, setTooltip) or via
Matlab’s set() function (set(handle(trayIcon),. . ., . . .)) .

tray icons have several important functionalities, which provide very important visual cues
for application users in a very non-obtrusive manner:

the displayed icon ◾ . this icon may be modified in run-time, depending on the state of
the application . For example, during heavy calculations the icon might be set to a red
traffic light, replaced by a green light when all is done . Doing so in run-time is as easy
as calling trayIcon .setImage() with a modified image .
tooltips ◾ . these are displayed whenever the user hovers the mouse over the icon . the
tooltip can contain information which is also updated in run-time, for example, the
calculation completion percentage . Multi-line tooltips are supported by inserting new-
line (lF = 10) characters, but HtMl is not supported . Updating tooltips in run-time is
done by trayIcon .setToolTip().

trayIcon.setToolTip(sprintf('multi\nline\ncomment')); %or: ['...',10,'...']

K13163_Book.indb 131 11/8/2011 8:07:05 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming132

Popup menu. ◾ When a user right-clicks the mouse on the icon, a popup menu will be
presented if it has been specified previously . Of course, this too can be customized in
run-time, for example, by disabling or enabling some items depending on application
state — see below .†

Doubleclicking ◾ . When users double-click on system-tray icons, they usually expect
the corresponding application to come into focus in the desktop forefront . this action
too is entirely customizable, via the actionPerformedCallback property .
Informational messages. ◾ asynchronous informational messages can be presented
next to the system-tray icon in a fashion similar to what we came to expect from mod-
ern programs . this could be used to indicate some unexpected event that was detected
or the end of a complex calculation phase . the message title, text, and severity icon are
all customizable .

Icon popup menus are similar in concept to Matlab uicontextmenus . Unfortunately, they
need to be programmed separately, since Java does not accept uicontextmenu handles . this is
actually quite easy, as the following code snippet shows:

% Prepare the context menu
menuItem1 = java.awt.MenuItem('action #1');
menuItem2 = java.awt.MenuItem('action #2');
menuItem3 = java.awt.MenuItem('action #3');

% Set the menu items' callbacks
set(menuItem1,'actionPerformedCallback',@myFunc1);
set(menuItem2,'actionPerformedCallback',{@myfunc2,data1,data2});
set(menuItem3,'actionPerformedCallback','disp ''action #3...'' ');

% Disable one of the menu items
menuItem2.setEnabled(false);

% add all menu items to the context menu (with internal separator)
jmenu = java.awt.PopupMenu;
jmenu.add(menuItem1);
jmenu.add(menuItem2);
jmenu.addSeparator;
jmenu.add(menuItem3);

% Finally, attach the context menu to the icon
trayIcon.setPopupMenu(jmenu);

tray icon context (right-click) menu

† Popup menus evoke nasty red error messages to the command-line due to an internal Matlab bug, but they otherwise
work ok .

K13163_Book.indb 132 11/8/2011 8:07:06 PM

© 2012 by Taylor & Francis Group, LLC

133Rich GUI Using Java Swing

Unfortunately, neither icon tooltip nor its popup menu supports HtMl . the reason is that
the system-tray functionality resides in the java.awt package and does not inherit javax.
swing.JLabel’s support for HtMl . It is actually not part of Swing at all, and the only rea-
son it is included in this chapter is that it complements Swing-based controls in enabling
Matlab applications a richer GUI by use of Java elements .

If we recall the discussion in Section 1 .7, we need a simple Java reflection hack to be able to
display the informational messages, since the java.awt.TrayIcon.MessageType enu-
meration object cannot be directly accessed:138

>> trayIconClasses = trayIcon.getClass.getClasses;
>> MessageTypes = trayIconClasses(1).getEnumConstants
MessageTypes =
java.awt.TrayIcon$MessageType[]:
 [java.awt.TrayIcon$MessageType] <= 1: ERROR
 [java.awt.TrayIcon$MessageType] <= 2: WaRNING
 [java.awt.TrayIcon$MessageType] <= 3: INFO
 [java.awt.TrayIcon$MessageType] <= 4: NONE
>> trayIcon.displayMessage('title','info msg',MessageTypes(3));

Sample tray icon message: WARNING.and INFO

Multi-line messages can be created by inserting l&F (10) characters within the string . If the
title string is left empty, then neither title nor the severity icon will be displayed . the message
can still be manually dismissed by clicking within its boundaries:

tray icon messages without a title (hence also without a severity icon)

the popup messages are automatically positioned by the operating system and are automati-
cally removed after some timeout, if not manually dismissed by the user . the messages replace
one another, if a previous message has still not been removed .

I have created a utility function called systray, which facilitates the setup and update of
system-tray icons and messages . systray (with source code) can be downloaded from the
Matlab File Exchange .139

K13163_Book.indb 133 11/8/2011 8:07:07 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming134

3.7 Drag-and-Drop

3.7.1 Data Transfer Mechanism in MATlAB
Drag-and-drop (DND), together with cut-copy-and-paste (CCP), collectively called Data
Transfer (Dt), are standard functionalities in modern GUI applications . Unfortunately,
Matlab’s support of these has historically been lacking . Some degree of Dt support is avail-
able in Matlab . For example, we can CCP text into a textbox uicontrol and use DND with
GUIDE or the Matlab desktop .140 However, CCP is often lacking (e .g ., we cannot paste into
a Matlab figure or plot) and DND is missing altogether from figure components (axes and
controls) . this omission was apparently intentional, because MathWorks took the trouble to
ensure DND and CCP behavior for some of its internal tools (e .g ., in tstool, Matlab’s time-
series tool†) . I cannot but wonder why MathWorks chose not to include Dt functionality as a
generally supported functionality in its HG library .

Over the years, sporadic attempts were made by posters on CSSM and File Exchange to
provide Dt support . Of these, some were platform-specific (using Windows-specific activeX
calls141), whereas others were source- or target-limited (e .g ., limiting their support to axes and
figures142 or to files dropped onto the desktop143) . an unsuccessful attempt to integrate Java-
based DND was reported on CSSM .144 I am not familiar with any generic cross-application Dt
solution in Matlab (e .g ., DND or CCP of an image from the computer’s browser onto a
uicontrol or axes) .

this section presents a generic cross-platform solution for incorporating Dt in Matlab .
It relies on Java Swing’s support for Dt:145 since Matlab GUI is essentially Swing-based,
Swing’s Dt functionality can be adapted to all Matlab GUI elements .

DND configuration requires three distinct steps:

Define draggable source components and allowed actions (copy/move/link) . ◾
Define droppable target components and their internal drop location . ◾
Define callback actions to invoke when a source is dropped onto a target . ◾

Not all of these steps are mandatory . For example, a component may only be droppable (=drag
target) but not draggable (=drag source) . Some Java Swing components are not draggable- or
droppable-enabled, although, in general, any component that we would expect to be draggable is
already pre-enabled as such, and similarly for droppable .146 to be precise, this does not mean that
these components are draggable/droppable by default — only that they can be set as draggable/
droppable if the programmer so chooses, without requiring any complex programming . In cases
where DND support is not predefined (either as draggable or droppable or both), full DND sup-
port can be added to our custom Swing-extended class using customized programming .147

to set a Java Swing component as draggable (=possible drag source), and assuming that the
 component is draggable-enabled, use its setDragEnabled(true) method (the method may be called

† tstool’s DND behavior is set up in %matlabroot%/toolbox/matlab/timeseries/@tsexplorer/@treeManager/treeManager .m
and dropCallback .m .

K13163_Book.indb 134 11/8/2011 8:07:07 PM

© 2012 by Taylor & Francis Group, LLC

135Rich GUI Using Java Swing

setDndEnabled() in some cases) . this also applies to all Matlab uicontrols, since they use under-
lying Swing components . Non-Matlab components (e .g ., text strings) cannot be set draggable-
enabled, and rely on their internal (native) setting to determine whether or not they are draggable .

the way a drop location is displayed is affected by the component’s setDropMode() method,
which accepts javax.swing.DropMode.USE_SELECTION (the default value), DropMode.
ON, DropMode.INSERT, or DropMode.ON_OR_INSERT .† DropMode.ON mode enables
dropping on top of (replacing) existing elements without modifying the current selection, as
USE_SELECTION does; DropMode.INSERT enables dropping between (i .e ., inserting) ele-
ments; DropMode.ON_OR_INSERT enables a combination of both, depending on the actual
cursor pixel position . Note that setting the drop mode is only possible since JVM 1 .6, which is
available in Matlab R2007b (7 .5) onward .‡

DROPMODE.USE_SELECTION DropMode.ON DropMode.INSERT

Unfortunately, enabling DND is not nearly as easy as setting the DropMode . things are
even more complicated in Matlab, which actually prevents regular DND from working
within regular Matlab figure windows . We shall see later how to bypass this limitation, but
for the moment let us discuss the dropped-item side of the process .

to set a component as droppable, we need to assign it a java.awt.dnd.DropTarget .148
Most Matlab components return null ([]) in response to getDropTarget() . In such cases, we
need to assign a new DropTarget . For example, let us set the axis canvas as droppable:

dnd = handle(java.awt.dnd.DropTarget(),'CallbackProperties');
jFrame = get(handle(gcf),'JavaFrame');
jaxis = jFrame.getaxisComponent;
jaxis.setDropTarget(dnd);

the DropTarget object contains the following properties:

>> dnd.get
 active: 1
 Class: [1 × 1 java.lang.Class]
 Component: []
 Defaultactions: 3

† http://java .sun .com/docs/books/tutorial/uiswing/dnd/dropmodes .html (or http://bit .ly/bxntHG) . It is advised to use one of
the nondefault drop modes, since the default was only set for backward compatibility . Some components (e .g ., Jtable) sup-
port additional drop modes: INSERt_ROWS, INSERt_COlS, and the corresponding ON_OR_INSERt_ROWS/COlS .

‡ Or as a retrofit of JVM 1 .6 to older Matlab releases, as explained in Section 1 .8 .2 .

K13163_Book.indb 135 11/8/2011 8:07:07 PM

© 2012 by Taylor & Francis Group, LLC

http://java.sun.com

Undocumented Secrets of MATLAB®-Java Programming136

 DropTargetContext: [1 × 1 java.awt.dnd.DropTargetContext]
 FlavorMap: [1 × 1 java.awt.datatransfer.SystemFlavorMap]
 DragEnterCallback: []
 DragEnterCallbackData: []
 DragExitCallback: []
 DragExitCallbackData: []
 DragOverCallback: []
 DragOverCallbackData: []
 DropCallback: []
 DropCallbackData: []
 DropactionChangedCallback: []
DropactionChangedCallbackData: []

DroptargetContext is the component context to which the dnd object is attached and the
Component property is a reference to the component itself . active enables easy temporary
enabling/disabling of DND behavior for this DropTarget . Defaultactions is an enumerator
indicating which DND actions are supported by this DropTarget (3 = java.awt.dnd.
DnDConstants.aCTION_COPY_OR_MOVE) .149 FlavorMap is a hash-map of all supported
java.awt.datatransfer.DataFlavor150 types accepted for drop events . the default map
is java.awt.datatransfer.SystemFlavorMap,151 which is instantiated by the contents
of the %matlabroot%/sys/java/jre/ . . ./lib/flavormap .properties file .† It basically includes a list of
supported data types and the corresponding Java encapsulation class .

as can be seen, dnd includes five callbacks: DragEnter, DragOver, and DragExit are fired
when a dragged object enters, passes over, and exits the bounds of the component for which
dnd was set; DropCallback is fired when an object is dropped within the component’s bounds;
and DropactionChanged is fired when the requested Dropaction changes (e .g ., by click-
ing <Ctrl> in mid-drag to change the action from MOVE to COPY or vice versa) . In most
cases, DragEnter, DragOver, and DragExit are simple, at most modifying the cursor icon
and/or modifying the component’s appearance . Most of the real action occurs in DropCallback,
which handles the actual processing of the dropped (imported) object .

a Matlab example of setting DropCallback for a uitree whose nodes are dropped onto
other containers can be seen in the time-Series tool (tstool) .‡ like other Matlab callbacks,
DropCallback accepts the Source (a java.awt.dnd.DropTarget) and EventData (a java.
awt.dnd.DropTargetDropEvent) standard input arguments . additional user-defined
arguments can be specified when setting the callback .

>> eventData.get
 BeingDeleted: 'off'
 Busyaction: 'queue'
 ButtonDownFcn: ''

† the actual folder location depends on platform (win32/linux, etc .) and JVM version (which depends on the Matlab
release) .

‡ tstool’s DND behavior is set up in %matlabroot%/toolbox/matlab/timeseries/@tsexplorer/@treeManager/treeManager .m
and dropCallback .m .

K13163_Book.indb 136 11/8/2011 8:07:07 PM

© 2012 by Taylor & Francis Group, LLC

137Rich GUI Using Java Swing

 Children: [0 × 1 double]
 Class: [1 × 1 java.lang.Class]
 Clipping: 'on'
 CreateFcn: ''
 CurrentDataFlavors: [1 × 1 java.awt.datatransfer.DataFlavor[]]
CurrentDataFlavorsasList: [Error]
 DeleteFcn: ''
 Dropaction: 2
 DropTargetContext: [1 × 1 java.awt.dnd.DropTargetContext]
 HandleVisibility: 'on'
 HitTest: 'on'
 Interruptible: 'on'
 LocalTransfer: 'off'
 Location: [530 289]
 Parent: []
 Selected: 'off'
 SelectionHighlight: 'on'
 Source: [1x1 java.awt.dnd.DropTarget]
 Sourceactions: 1073741827
 Tag: ''
 Transferable: [1x1 java.awt.dnd.DropTargetContext$TransferableProxy]
 Type: 'java.awt.dnd.DropTargetDropEvent'
 UIContextMenu: []
 UserData: []
 Visible: 'on'

the properties of interest in eventData are CurrentDataFlavors, which returns a list of
separate DataFlavors by which the dropped object can be understood; Dropaction is the type
of drop action† (1 = Copy, 2 = Move, 1073741824 = link/Shortcut); SourceDropaction is a
corresponding property of the drag source (1073741824 means that all the three actions men-
tioned above were made possible by the source); DroptargetContext is the component context
onto which the drop occurred; localtransfer is a flag indicating whether the DND source was
another component within Matlab (or actually, in the same JVM), or from an external appli-
cation; location is the dropped pixel position within the component (some controls like JList
and JTable have automatic methods translating this location into a list/row index); Source is
the component’s DropTarget object .
eventData’s most important property is transferable, which returns an object‡ that con-

tains the dropped data . transferable is only readable when at least one of the eventData’s
CurrentDataFlavors returns true for eventData .isDataFlavorSupported (currentData
Flavors(id)) . Otherwise, an exception will be thrown:152

Error using ==> get
Java exception occurred: java.awt.dnd.InvalidDnDOperationException:
The operation requested cannot be performed by the DnD system since it is not in
the appropriate state

† See DndConstants references above .
‡ http://java .sun .com/javase/6/docs/api/java/awt/dnd/DroptargetContext .transferableProxy .html (or http://bit .ly/drsfFl) .

Note that since this is an inner class, it appears in Matlab as ‘java .awt .dnd .DroptargetContext$transferableProxy’ .

K13163_Book.indb 137 11/8/2011 8:07:08 PM

© 2012 by Taylor & Francis Group, LLC

http://java.sun.com

Undocumented Secrets of MATLAB®-Java Programming138

If the dropped data flavor is supported, then the data can be retrieved by using the transferable
object’s getTransferData() method as follows:

>> th = eventData.getTransferable;
>> tdf = th.getTransferDataFlavors
tdf =
java.awt.datatransfer.DataFlavor[]:
 [java.awt.datatransfer.DataFlavor]
 [java.awt.datatransfer.DataFlavor]
 [java.awt.datatransfer.DataFlavor]

>> tdf(1)
ans =
java.awt.datatransfer.
DataFlavor[mimetype = application/x-java-serialized-
object;representationclass = java.lang.String]

>> tdf(2)
ans =
java.awt.datatransfer.DataFlavor[mimetype = text/plain;representationclass = java.
io.InputStream;charset = unicode]

>> tdf(3)
ans =
java.awt.datatransfer.DataFlavor[mimetype = text/rtf;representationclass = java.
io.InputStream]

>> th.getTransferData(tdf(1))
ans =
Rich-text data string

>> th.getTransferData(tdf(2))
ans =
java.io.StringReader@4d3130

>> th.getTransferData(tdf(3))
ans =
java.io.BytearrayInputStream@19dfe98

3.7.2 A Sample MATlAB Application That Supports DND
let us implement a simple DND GUI, in which a listbox contains some plotting commands,
and the user can drag any of them onto one of the two axes . For this example, we will use a
standard Matlab listbox uicontrol, demonstrating how DND behavior can be retrofitted to
existing Matlab GUIs, without any need to switch to Java components:

% First prepare the figure
hFig = figure('name','DND example','numbertitle','off');

% add a listbox with several plotting commands
plotNames = {'surfc(peaks)','contour(peaks)','contourf(peaks)', ...
 'surf(membrane)','contour(membrane)','contourf(membrane)'};

K13163_Book.indb 138 11/8/2011 8:07:08 PM

© 2012 by Taylor & Francis Group, LLC

139Rich GUI Using Java Swing

% (rather than use a MaTLaB listbox uicontrol, directly use JList)
%hListbox = uicontrol('style','listbox', 'units','norm', ...
% 'position',[.05,.05,.3,.6], 'string',plotNames);
%jListbox = findjobj(hListbox,'nomenu');
%jListbox = jListbox.getViewport.getView; % in a scrollpane
jListbox = javax.swing.JList(plotNames);
[hjList,hcList] = javacomponent(jListbox,[10,10,100,200],hFig);
set(hcList,'units','norm','position',[.05,.05,.3,.6]);

% add some plot axes
hax1 = axes('position',[.5,.1,.45,.35]);
hax2 = axes('position',[.5,.55,.45,.35]);

% Enable dragging from the listbox
jListbox.setDragEnabled(true);

% Enable drop on the figure axes
dnd = handle(java.awt.dnd.DropTarget(),'CallbackProperties');
jFrame = get(handle(hFig),'JavaFrame');
jaxis = jFrame.getaxisComponent;
jaxis.setDropTarget(dnd);
set(dnd,'DropCallback',{@dropCallbackFcn,hFig});
set(dnd,'DragOverCallback',@dragCallbackFcn);

% Define the drag movement callback function
function dragCallbackFcn(src,eventData)
 try
 % Enable drop only on top of actual axes – not the entire figure
 haxes = overobj('axes');
 if isempty(haxes)
 eventData.rejectDrag;
 else
 eventData.acceptDrag(eventData.getDropaction);
 end
 catch
 % never mind...
 end
end

% Define the drop callback function
function dropCallbackFcn(src,eventData)
 try
 hFig = varargin{3};
 transferable=eventData.getTransferable; % will crash if invalid
 dataFlavorStr = 'text/plain; class=java.lang.String';
 dataFlavor = java.awt.datatransfer.DataFlavor(dataFlavorStr);
 dataStr = transferable.getTransferData(dataFlavor);
 haxes = overobj('axes');
 if ~isempty(haxes)
 axes(haxes(1));
 eval(dataStr);
 end
 eventData.dropComplete(true);
 catch

K13163_Book.indb 139 11/8/2011 8:07:08 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming140

 % never mind...
 end
end

In some cases, implementation of DND in Matlab fails to process drop events correctly .
the reason for this is that apparently Matlab’s default DropTargetListener seems to
pass the DropTargetDropEvent (dtde) to Matlab callback functions without previ-
ously accepting the drop, so dtde .getTransferable() fails and the drop event is ignored .153 this
is apparently not an issue for internal Matlab components, which override the standard
DropTarget class .

Dirk Engel, who discovered this bug, also provided a suggested fix (overriding the
DropTarget class), which is provided here with some modifications:154

import java.awt.dnd.*;
import java.awt.datatransfer.*;
import java.util.List;
import java.io.IOException;

// Modified DropTarget to be used for drag & drop in MaTLaB GUI
public class DropTargetList extends DropTarget
{
 private Transferable transferable;
 private DataFlavor acceptedDataFlavor =
 DataFlavor.javaFileListFlavor;
 private List<?> transferDataList;
 private String transferDataStr;
 private boolean debugFlag = false;
 public synchronized void drop(DropTargetDropEvent dtde) {
 dtde.acceptDrop(DnDConstants.aCTION_COPY_OR_MOVE);
 super.drop(dtde);
 transferable = dtde.getTransferable();
 try {
 if (transferable.isDataFlavorSupported(
 DataFlavor.javaFileListFlavor)) {
 transferDataList =
 (List<?>)transferable.getTransferData(acceptedDataFlavor);
 } else {
 // try to interpret as a plain text string
 transferDataStr =
 (String)transferable.getTransferData(DataFlavor.stringFlavor);
 }
 } catch (UnsupportedFlavorException e) {
 return;
 } catch (IOException e) {
 return;
 }
 }

 public void setacceptedDataFlavor(DataFlavor flavor) {
 acceptedDataFlavor = flavor;
 }

K13163_Book.indb 140 11/8/2011 8:07:08 PM

© 2012 by Taylor & Francis Group, LLC

141Rich GUI Using Java Swing

 public DataFlavor getacceptedDataFlavor() {
 return acceptedDataFlavor;
 }
 public Transferable getTransferable() {
 return transferable;
 }
 public List<?> getTransferDataList() {
 return transferDataList;
 }
 public String getTransferDataStr() {
 return transferDataStr;
 }

}

Use of this class is very simple, as the following Matlab code snippet demonstrates:

fileList = get(jDropTarget,'TransferDataList'); %Java List
files = cellfun(@(c)char(c),fileList.toarray.cell,'un',0); %cell array

Here is a larger snippet from an actual program that drag-and-drops data and external files
onto a JTable in a Matlab GUI:

% Enable Drag-&-Drop onto a JTable in MaTLaB GUI
function enableDND(jtable)
 %dnd = handle(java.awt.dnd.DropTarget(),'CallbackProperties');
 dnd = handle(javaObjectEDT(DropTargetList),'CallbackProperties');
 set(dnd,'DropCallback',{@DNDCallback,jtable});
 set(dnd,'DragEnterCallback',{@DNDCallback,jtable});
 %set(dnd,'DragOverCallback',{@DNDCallback,jtable});
 jtable.setDropTarget(dnd);
end

% Main Drag-&-Drop callback function, for both drag and drop events
function DNDCallback(jDropTarget,jEventData,jtable)
 persistent isFileDND
 try
 % Drop event
 if jEventData.isa('java.awt.dnd.DropTargetDropEvent') %nargin>2
 try
 pause(0.05); drawnow;
 if isFileDND
 % File dropped
 fileList = get(jDropTarget,'TransferDataList');
 files = cellfun(@(c)char(c),fileList.toarray.cell,'un',0);
 rowData = FileDropFunction(files,jtable);
 else
 % Table row dropped
 dataStr = get(jDropTarget,'TransferDataStr');
 rowData = DataDropFunction(dataStr,jtable);
 end

K13163_Book.indb 141 11/8/2011 8:07:08 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming142

 % If any rows are to be added
 if ~isempty(rowData)
 % Get the drop location (row index)
 dropPoint = jEventData.getLocation;

 % Handle possible table scrolling
 dropY = dropPoint.getY − jtable.getTableHeader.getHeight +
 jtable.getParent.getViewPosition.getY;
 dropRow = fix(dropY / jtable.getRowHeight);
 if dropRow >= jtable.getRowCount
 dropRow = −1;
 end

 % Insert the new row(s) immediately before drop-location's
 % row, and then move the selection to this latest new row
 stopEditing(jtable);
 for rowIdx = size(rowData,1) : −1 : 1
 if dropRow >= 0
 jtable.getModel.insertRow(max(0,dropRow),
 rowData(rowIdx,:));
 else
 jtable.getModel.addRow(rowData(rowIdx,:));
 end
 end

 % Move the selection to Column a of this new row
 selectedRow = dropRow + (dropRow<0)*jtable.getRowCount;
 jtable.changeSelection(selectedRow,0,false,false);
 jtable.repaint;
 end
 catch
 lasterr
 end
 jEventData.dropComplete(true);

 % Drag event
 elseif jEventData.isa('java.awt.dnd.DropTargetDragEvent')
 try
 isFileDND = jEventData.isDataFlavorSupported(
 java.awt.datatransfer.DataFlavor.javaFileListFlavor);
 catch
 % never mind − reuse previous data...
 disp(lasterr)
 end
 jEventData.acceptDrag(java.awt.dnd.DnDConstants.aCTION_COPY);
 catch
 disp(lasterr)
 end
end

Further reading resources:

http://weblogs .java .net/blog/shan_man/archive/2006/02/choosing_the_dr .html ◾
http://weblogs .java .net/blog/2006/09/15/top-level-drop-swing-and-java-se-6 ◾

K13163_Book.indb 142 11/8/2011 8:07:08 PM

© 2012 by Taylor & Francis Group, LLC

http://weblogs.java.net

143Rich GUI Using Java Swing

http://www .mathworks .com/matlabcentral/newsreader/view_thread/154949 ◾
http://www .java2s .com/tutorial/Java/0240_Swing/1780_Drag-Drop .htm ◾

a suggested exercise for adventurous readers is to implement a Matlab figure that dis-
plays a plot axes and a JFileChooser Swing component side by side; image files from the
file chooser or from external applications (e .g ., Windows Explorer) can be drag-and-dropped
onto the axes, thereby displaying their image contents .

3.8 Adding MATlAB Components to Java Swing Containers

In Section 3 .1 .1, it has been mentioned that Matlab objects such as axes (for plots or images)
and uicontrols cannot be added to Swing containers, since they do not have a javax.swing.
JContainer wrapper . It was advised to use these Java containers as long as their contained
GUI is limited to Java components (JButtons, JComboBox, etc .) . this limitation is very
annoying — it would be most helpful to be able to place Matlab axes or uicontrols within a
JTabbedPane, a JSplitPane, or a pure-Java frame .155 Instead, we must rely on Matlab-
based workarounds (uitab and uisplitpane — see Section 4 .3 and Chapter 10), which are cum-
bersome compared with their Java counterparts .

these were indeed the conventional wisdom and documented knowledge, until now .156

there actually is an undocumented, unsupported, and quite problematic method of plac-
ing Matlab components in our Java GUI . It is based on the fact that Swing components
(and all Matlab GUI is ultimately that) can be reparented by being added to any Swing
container: Matlab uicontrols are easy to reparent, since they each have separate Swing
component peers and associated container (as explained above) .

Matlab axes cannot be separately reparented, since they do not have separate Swing
component peers: as shall be explained in Chapter 7, all the figure’s axes and plots are really
graphic pixels drawn onto a single large java.awt.Canvas that spans the entire figure con-
tent area . It is this Canvas (or one of its hierarchy ancestors, such as the ContentPane)
which can be reparented onto any Java container .

Here is a simple example to move the Canvas onto a Java JFrame (we can move it onto
any Swing container instead):

% Display a simple plot within a MaTLaB figure
plot(1:5);

% Get the MaTLaB frame's plotting canvas container
jFrame = get(handle(gcf),'JavaFrame');
jCanvas = jFrame.getaxisComponent;
jFrameProxy = jCanvas.getParent.getParent.getTopLevelancestor;

% Prepare a new pure-Java frame
jf2 = javax.swing.JFrame;
jf2.pack;
jf2.setSize(jCanvas.getSize);
jf2.setTitle('My pure Java Frame');

K13163_Book.indb 143 11/8/2011 8:07:08 PM

© 2012 by Taylor & Francis Group, LLC

http://www.mathworks.com
http://java2s.com

Undocumented Secrets of MATLAB®-Java Programming144

% add the MaTLaB plot canvas to the new pure-Java frame
awtinvoke(jf2,'add(Ljava.awt.Component;)',jCanvas);
awtinvoke(jf2,'setVisible',1); % the plot shows in the Java Frame

% Hide original MaTLaB figure – only the Java frame remains visible
set(gcf,'Visible','off');

% Update the MaTLaB plot, actually modifying the axes in the JFrame
plot(1:23); % plot in Java window is updated using regular HG MaTLaB
awtinvoke(jf2,'show()'); % re-render (repaint) the plot

MAtlAb axes reparented onto a pure-Java container

Note how we use jf2 .show() in the last command above: For some unknown reason,
repaint() and invalidate() are not enough to cause a plot re-rendering . also note that we use
awtinvoke rather than direct invocation (jf2 .show()), because this operation needs to be done
on the Java EDt thread .

Finally, note that the entire axes content of the Matlab figure is transferred to the new
container, not specific axes or uicontrols . as far as Java is concerned, jCanvas is simply a single
graphic image .

the main menu, toolbars, controls, and activeXes were not re-parented, since they belong to
different containers in the Matlab figure . If we re-parent the root pane,† these components

† jCanvas.getParent.getParent.getTopLevelancestor.getComponent(0) or jFrame.fHG1Client.
getWindow.getRootPane (jFrame.fFigureClient.getWindow.getRootPane in R2007b and earlier) .

K13163_Book.indb 144 11/8/2011 8:07:09 PM

© 2012 by Taylor & Francis Group, LLC

145Rich GUI Using Java Swing

are also moved to the new target container, along with the axes in jCanvas . Remember to set
the target’s size accordingly .

Re-parenting appears to work, sort of: when we close the original Matlab figure, the Java
frame window hangs, so remember to keep them both alive (or closed) together .

Many HG listeners are still connected to the original Matlab figure, causing the figure to
flicker when some HG actions are done . For this reason, keeping the original Matlab figure
alive but hidden is advisable, and this has been done above using set(gcf,‘Visible’,‘off’) . the
downside is that when the figure is hidden, several interactive features (e .g ., interactive zooming)
are disabled .

We also need to handle other listeners (resizing, deletion, etc .) ourselves, since the original
component listeners remain attached to the original Matlab figure, and need to be re-attached
to the new Java container .157

Such a re-parenting technique can be used to effectively remove the title bar from the figure
window, by specifying jf2.setUndecorated(true) before jf2 is displayed .158 also, see the dis-
cussion in Section 7 .3 .7 .

the re-parenting process is deeply undocumented . all in all, using re-parenting is extremely
difficult to program correctly, handling all edge cases . For this reason, I reiterate my earlier
advice, to use Matlab figures instead of Java frames; to use Java containers only for pure-
Java components and not for Matlab components; and, in general, to add Java components
to Matlab figures rather than adding Matlab components to Java frames .

In a related issue, adding Java components to a Matlab-created frame, from within Java
(as opposed to using javacomponent from within Matlab), is also nontrivial and creates
problems with repainting .159

an altogether different approach was suggested on CSSM: taking the screenshot of the Canvas
and placing this as an image in Java .160 We would not be able to later modify this plot as in the
 re-parenting approach, but this approach does solve the system-hang issues .

3.9 Alternatives to Swing

this chapter has focused on Swing and its extensive use in Matlab . However, Swing is by no
means the only Java-based GUI framework available for Matlab programmers . alternative UI
toolkits can be used, such as the popular SWt,161 the older aWt,162 or the lesser-known Qt .163

Matlab uses Swing internally, so it is natural to continue developing using Swing, for a
consistent look and feel, enabling use of internal Matlab components and other side benefits .
aWt is Swing’s predecessor and much outdated, so there is no real reason to use it except for
very specific tasks .† Interested readers can, however, try to use SWt or Qt, which sometimes
provide benefits that Swing lacks .‡ Some open-source projects164 attempt to merge Swing and
SWt, thus providing the benefits of both .

† For example, directly drawing on Matlab figures’ content area (their Axes Canvas) using JaWt and JNI .
‡ For example, whenever tight integration with the native platform (e .g ., wrapping activeX components with Java code on

Windows) is required . See http://www .developer .com/java/other/article .php/10936_2179061_2 (or http://bit .ly/cmWtXt) .

K13163_Book.indb 145 11/8/2011 8:07:09 PM

© 2012 by Taylor & Francis Group, LLC

http://www.developer.com

Undocumented Secrets of MATLAB®-Java Programming146

Here is a simple “Hello World!” Matlab–SWt application:†

import org.eclipse.swt.*;
import org.eclipse.swt.widgets.*;
import org.eclipse.swt.graphics.*;
import org.eclipse.swt.layout.*;

display = Display;
shell = Shell(display);
shell.setLayout(GridLayout);
label = Label(shell, SWT.NONE);
label.setText('Hello, World!');
button = Button(shell, SWT.PUSH);
button.setText('Click me!');
shell.pack;
label.pack;
shell.open;

% Wait for the window to be closed, then dispose (cleanup) components
while (~shell.isDisposed)
 if (display.readandDispatch)
 display.sleep;
 end
end
display.dispose;
label.dispose;
button.dispose;

A simple SWt-based MAtlAb GUI

Here are a few standard SWt controls (widgets) — (See color insert.):165

 button button button button Canvas
 (SWT.aRROW) (SWT.CHECK) (SWT.PUSH) (SWT.TOGGLE)

† adapted from http://www .mathworks .com/matlabcentral/newsreader/view_thread/69793 (or http://bit .ly/cI2kgD) . Note
that using SWt requires adding the SWt jar files to the static Java classpath, as explained in this CSSM post . the post
refers to jar files of a pretty-old Eclipse version (2 .1 .3), which can be obtained from http://bit .ly/cXMbtj . the latest
Eclipse version (and SWt files) can be downloaded from http://www .eclipse .org/downloads/ (or http://bit .ly/95wdV4) .

K13163_Book.indb 146 11/8/2011 8:07:10 PM

© 2012 by Taylor & Francis Group, LLC

http://www.mathworks.com
http://www.eclipse.org

147Rich GUI Using Java Swing

 Coolbar CtabFolder Expandbar

 Datetime (calendar) table tree

Note that mixing components (widgets) of different toolkits on the same figure window may
cause unexpected behavior . For example, when aWt and Swing components were mixed in JVM
versions prior to 1 .6 update 12, the aWt components always overlapped the Swing widgets,
regardless of component priority . therefore, because Matlab uses Swing, if we plan to inte-
grate non-Swing toolkits, we should expect such problems and carefully test our application .

References

 1 . http://java .sun .com/docs/books/tutorial/ui (or http://tinyurl .com/csnocf) .
 2 . For example, http://www .mathworks .com/matlabcentral/newsreader/view_thread/248979 (or http://

tinyurl .com/p758k3) .
 3 . For other great-looking Swing-based applications, using the Netbeans platform, see http://platform .

netbeans .org/screenshots .html
 4 . the most important resource is Sun’s official http://java .sun .com/ website, which includes an excellent

tutorial (http://java .sun .com/docs/books/tutorial/uiswing) and reference (http://java .sun .com/javase/
reference/api .jsp) . Some websites dedicated to Java code examples are java2s .com, javadb .com,
 exampledepot .com, java-tips .org, jexamples .com, javaexamples .com, javalessons .com, and http://www .
crionics .com/products/opensource/faq/swing_ex/SwingExamples .html

 5 . http://UndocumentedMatlab .com/blog/javacomponent/ (or http://bit .ly/8Yxm1K) .
 6 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/79603 (or http://bit .ly/aiifw9); some

bugs existed until fixed in R14 SP3: http://www .mathworks .com/matlabcentral/newsreader/view_
thread/112313#283635 (or http://bit .ly/bW3fRn) .

 7 . http://UndocumentedMatlab .com/blog/matlab-layout-managers-uicontainer-and-relatives/ (or http://bit .
ly/aZ4p7S) .

K13163_Book.indb 147 11/8/2011 8:07:10 PM

© 2012 by Taylor & Francis Group, LLC

http://java.sun.com
http://www.mathworks.com
http://UndocumentedMatlab.com
http://platform.netbeans.org
http://platform.netbeans.org
www.crionics.com/
www.crionics.com/

Undocumented Secrets of MATLAB®-Java Programming148

 8 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/98032 (or http://tinyurl .com/c8y7e8);
http://www .mathworks .com/matlabcentral/newsreader/view_thread/97829 (or http://tinyurl .com/cttuq8) .

 9 . Used by my ScreenCapture utility: http://www .mathworks .com/matlabcentral/fileexchange/24323 (or
http://bit .ly/czfUSE) .

 10 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/246001 (or http://bit .ly/c7MnHt) .
 11 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/161098 (or http://tinyurl .com/chugfo) .
 12 . http://UndocumentedMatlab .com/blog/common-javacomponent-problems (or http://bit .ly/q8o2vJ) .
 13 . http://java .sun .com/docs/books/tutorial/ui/features (or http://tinyurl .com/abb7te) .
 14 . http://java .sun .com/docs/books/tutorial/uiswing/components (or http://tinyurl .com/6662x6) .
 15 . http://java .sun .com/docs/books/tutorial/uiswing (or http://tinyurl .com/2wzah) .
 16 . http://java .sun .com/docs/books/tutorial/ui/features/compWin .html (or http://tinyurl .com/awmkty) .
 17 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/246571 (or http://tinyurl .com/bpkm5v) .
 18 . Here is a typical example (of several) of a Matlab user who asked in vain about this functionality:

http://www .mathworks .com/matlabcentral/newsreader/view_thread/163711 (or http://bit .ly/9ZenfE);
MathWorks has suggested a workaround using class extension here: http://www .mathworks .com/help/
techdoc/matlab_oop/f1-5978 .html#f1-20068 (or http://bit .ly/bttQDU) .

 19 . For example, http://bit .ly/pcZtuP, http://www .javaspecialists .co .za/archive/Issue082 .html (or http://bit .ly/
p5tlar); http://stackoverflow .com/questions/1263323/tristate-checkboxes-in-java (or http://bit .ly/o6nd6H) .

 20 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/153690 (or http://tinyurl .com/9amob6) .
 21 . For example, www .javashareware .com, www .swinglabs .org, www .downloadthat .com, www .shareware-

connection .com, www .easyfreeware .com, www .l2fprod .com, www .fileheap .com/software/components .
html, swing-components .safe-install .com, and many others .

 22 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/242127 (or http://tinyurl .com/bpyfff);
http://www .mathworks .com/matlabcentral/newsreader/view_thread/172873 (or http://tinyurl .com/c6u6hb) .

 23 . http://www .mathworks .com/matlabcentral/fileexchange/14583 (or http://tinyurl .com/cgyz8r) .
 24 . http://www .mathworks .com/matlabcentral/fileexchange/15580 (or http://tinyurl .com/beqxeh) .
 25 . http://java .sun .com/docs/books/tutorial/uiswing/concurrency/dispatch .html (or http://tinyurl .com/2sec5k) .
 26 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/156388 (or http://tinyurl .com/arcqv8) .
 27 . http://java .sun .com/docs/books/jni/ or http://java .sun .com/j2se/1 .5 .0/docs/guide/jni/spec/types .html#wp276

(http://tinyurl .com/2xcqvk) .
 28 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/160272 (or http://tinyurl .com/b5o2bt) .
 29 . http://UndocumentedMatlab .com/blog/matlab-and-the-event-dispatch-thread-edt/#comment-38092 (or

http://bit .ly/faxbmI) .
 30 . See the list of comments here: http://UndocumentedMatlab .com/blog/editormacro-assign-a-keyboard-

macro-in-the-matlab-editor/#comments (or http://bit .ly/bZkgkm) .
 31 . http://www .mathworks .com/help/techdoc/rn/brvak9c-1 .html#bryg6qx-1 (or http://tinyurl .com/cxz7gt) .
 32 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/259650 (or http://tinyurl .com/npxbrl) .
 33 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/161504 (or http://bit .ly/dabulI);

also see http://www .mathworks .com/support/solutions/en/data/1-V3b5t/ (or http://bit .ly/d5Ugqf) and
http://robertoostenveld .ruhosting .nl/index .php/multithreading-matlab-mex/ (or http://bit .ly/9tYame) .

 34 . For example, http://www .osmanoglu .org/index .php/computing/4-computing/1-matlabjavamultitreading
(or http://bit .ly/cbW4Xm) .

 35 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/279510 (or http://bit .ly/95nV5w) .
 36 . Indeterminate Java progress-bars are described here: http://java .sun .com/j2se/1 .4 .2/docs/guide/swing/1 .4/

pb .html (or http://bit .ly/bpYXUi); http://java .sun .com/docs/books/tutorial/uiswing/components/progress .html
(or http://bit .ly/cFupOM) .

 37 . based on http://www .mathworks .com/matlabcentral/newsreader/view_thread/238449 (or http://tinyurl .
com/c4avbe) . Note that contrary to what this news thread says, the posted code does actually work and
display the presented result .

 38 . http://java .sun .com/docs/books/tutorial/uiswing/components/border .html (or http://tinyurl .com/3a2n6e) .
 39 . More border examples can be found here: http://java .sun .com/developer/onlinetraining/GUI/Swing1/

shortcourse .html#JFCborder (or http://tinyurl .com/dxezrm) .
 40 . http://java .sun .com/javase/6/docs/api/java/awt/Cursor .html (or http://tinyurl .com/ck32px) .
 41 . http://java .sun .com/javase/6/docs/api/constant-values .html#java .awt .Cursor .DEFaUlt_CURSOR (or

http://bit .ly/ceUOn1) .

K13163_Book.indb 148 11/8/2011 8:07:10 PM

© 2012 by Taylor & Francis Group, LLC

http://www.mathworks.com
http://UndocumentedMatlab.com
http://stackoverflow.com
www.javashareware.com
www.easyfreeware.com
www.swinglabs.org
www.downloadthat.org
www.fileheap.com
www.l2fprod.com
http://java.sun.com
http://robertoostenveld.ruhosting.nl

149Rich GUI Using Java Swing

 42 . http://java .sun .com/javase/6/docs/api/java/awt/toolkit .html#createCustomCursor(java .awt .Image,%20
java .awt .Point,%20java .lang . String) (or http://tinyurl .com/c5v9zj) .

 43 . http://UndocumentedMatlab .com/blog/modifying-the-look-and-feel/ (or http://bit .ly/dpoZ5i) .
 44 . http://java .sun .com/docs/books/tutorial/uiswing/lookandfeel/plaf .html (or http://tinyurl .com/3az5fu); or the

following detailed technical article: http://java .sun .com/products/jfc/tsc/articles/architecture/#pluggable (or
http://tinyurl .com/prslvs) .

 45 . http://www .jgoodies .com/freeware/looks/index .html (http://bit .ly/9x0xvz) .
 46 . http://www .jidesoft .com/javadoc/com/jidesoft/plaf/lookandFeelFactory .html (or http://bit .ly/9ltqrX) .
 47 . For example, alloy (lookandfeel .incors .com or http://bit .ly/9b9fhD) and Synthetica (www .javasoft .de/

synthetica/ or http://bit .ly/cgVwh6) .
 48 . http://UndocumentedMatlab .com/blog/modifying-matlab-look-and-feel/#comments (or http://bit .ly/dfeNUj) .
 49 . http://java .sun .com/docs/books/tutorial/uiswing/lookandfeel/synth .html (or http://bit .ly/bknOFR) .
 50 . http://java .sun .com/docs/books/tutorial/uiswing/lookandfeel/nimbus .html (or http://bit .ly/bhbnQH) .
 51 . For example, http://www .jasperpotts .com/blog/2008/08/skinning-a-slider-with-nimbus/ (or http://bit .ly/

a2g1Kd) .
 52 . http://www .jasperpotts .com/blog/2009/03/breakdown-of-what-should-be-default-laf-for-java-7/ (or http://

bit .ly/bDsGX0) .
 53 . http://www .mathworks .com/matlabcentral/fileexchange/28326-MUtilities (or http://bit .ly/9sY6Dm) .
 54 . http://java .sun .com/docs/books/tutorial/uiswing/components/html .html (or http://tinyurl .com/5v38m) .
 55 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/164175#416384 (or http://tinyurl .

com/b3fqfc) .
 56 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/265569 (or http://tinyurl .com/yjhgcns) .
 57 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/173886#447732 (or http://tinyurl .

com/d6ymbt); http://UndocumentedMatlab .com/blog/spicing-up-matlab-uicontrol-tooltips/ (or http://
tinyurl .com/ye9xcp7) .

 58 . http://UndocumentedMatlab .com/blog/html-support-in-matlab-uicomponents/#comment-2187 (or http://
bit .ly/daW4cU) .

 59 . http://developer .java .sun .com/developer/bugParade/bugs/4783068 .html (or http://tinyurl .com/dhcw8b) .
this webpage contains several workarounds; the full fix is expected in JVM 1 .7 (whose Matlab inte-
gration date is currently unknown) .

 60 . http://UndocumentedMatlab .com/blog/fixing-a-java-focus-problem/ (or http://bit .ly/alb3mP) .
 61 . http://java .sun .com/docs/books/tutorial/uiswing/misc/focus .html (or http://tinyurl .com/5curo); also read

the very informative http://java .sun .com/javase/6/docs/api/java/awt/doc-files/FocusSpec .html (or http://
tinyurl .com/cqom4d) .

 62 . http://UndocumentedMatlab .com/blog/uicontrol-callbacks/ (or http://tinyurl .com/yle7okd) .
 63 . http://java .sun .com/docs/books/tutorial/uiswing/events/eventsandcomponents .html (or http://tinyurl .

com/6xc38) . this page also lists other events (and corresponding callbacks) that are used by only some of
the components .

 64 . http://java .sun .com/javase/6/docs/api/javax/swing/event/ancestorlistener .html (or http://tinyurl .com/ab6ghm) .
 65 . http://java .sun .com/docs/books/tutorial/uiswing/events/containerlistener .html (or http://tinyurl .com/bdnsof) .
 66 . http://java .sun .com/docs/books/tutorial/uiswing/events/componentlistener .html (or http://tinyurl .com/2afuln) .
 67 . http://java .sun .com/docs/books/tutorial/uiswing/events/focuslistener .html (or http://tinyurl .com/7rcaj);

also read the very informative http://java .sun .com/docs/books/tutorial/uiswing/misc/focus .html (or http://
tinyurl .com/5curo) and http://java .sun .com/javase/6/docs/api/java/awt/doc-files/FocusSpec .html (or
http://tinyurl .com/cqom4d) .

 68 . http://UndocumentedMatlab .com/blog/detecting-window-focus-events/ (or http://tinyurl .com/yzf3jcx) .
 69 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/284958#755942 (or http://bit .ly/dbvayJ) .
 70 . http://java .sun .com/javase/6/docs/api/java/awt/event/Hierarchylistener .html (or http://tinyurl .com/aduwvu) .
 71 . http://java .sun .com/docs/books/tutorial/uiswing/events/keylistener .html (or http://tinyurl .com/5825h) .
 72 . http://www .mathworks .com/help/techdoc/rn/br3lhn8-1 .html#br9d16b (or http://tinyurl .com/p8wk9p);

http://www .mathworks .com/help/techdoc/rn/brgysvh-1 .html#br9cuil (or http://tinyurl .com/qn7c4f) .
 73 . http://java .sun .com/docs/books/tutorial/uiswing/events/mousemotionlistener .html (or http://tinyurl .

com/586jk) .
 74 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/301383 (or http://bit .ly/dld7aG) .
 75 . http://java .sun .com/docs/books/tutorial/uiswing/events/mouselistener .html (or http://tinyurl .com/3rbt9) .

K13163_Book.indb 149 11/8/2011 8:07:10 PM

© 2012 by Taylor & Francis Group, LLC

http://java.sun.com
http://UndocumentedMatlab.com
www.mathworks.com

Undocumented Secrets of MATLAB®-Java Programming150

 76 . Sample usage: http://www .mathworks .com/matlabcentral/newsreader/view_thread/153058 (or http://
tinyurl .com/clvfj4) .

 77 . http://java .sun .com/docs/books/tutorial/uiswing/events/mousewheellistener .html (or http://tinyurl .com/
dh2hkd); for its use in Matlab read http://www .mathworks .com/matlabcentral/newsreader/view_
thread/104129 (or http://tinyurl .com/cxt28j) .

 78 . http://java .sun .com/javase/6/docs/api/java/beans/VetoableChangelistener .html (or http://tinyurl .com/b6x75l) .
 79 . http://java .sun .com/docs/books/tutorial/javabeans/properties/constrained .html (or http://tinyurl .com/

b8dzvy) .
 80 . http://java .sun .com/docs/books/tutorial/uiswing/events/eventsandcomponents .html#many (or http://

tinyurl .com/b93c69) .
 81 . http://java .sun .com/docs/books/tutorial/uiswing/events/actionlistener .html (or http://tinyurl .com/2eept) .
 82 . http://java .sun .com/docs/books/tutorial/uiswing/events/caretlistener .html (or http://tinyurl .com/c9vh2b) .
 83 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/80041#204096 (or http://tinyurl .

com/cnp2pr) .
 84 . http://mathforum .org/kb/message .jspa?messageID=5950839 (or http://bit .ly/dsjsga), http://www .math-

works .com/matlabcentral/newsreader/view_thread/156388#399260 (or http://bit .ly/aoEmXW) and a few
others, including Matlab’s official doc: http://www .mathworks .com/help/techdoc/ref/set .html#f67-
433534 (or http://bit .ly/cJe0SP); http://www .mathworks .com/help/techdoc/rn/broifyr-1 .html#brrxpv8-1
(or http://bit .ly/9QGaKn) .

 85 . http://en .wikipedia .org/wiki/adapter_pattern (or http://bit .ly/9yoDet); I believe that handles are more
Adapter than Decorator objects, but this could also be argued otherwise . the distinction here is merely
theoretical and not practical .

 86 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/246581 (or http://tinyurl .com/c9sobm) .
 87 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/270589#709652 (or http://bit .ly/ 5vVnYt) .
 88 . http://UndocumentedMatlab .com/blog/detecting-window-focus-events/#comment-14472 (or http://bit .

ly/b9n0u3) .
 89 . http://www .mathworks .com/help/techdoc/creating_plots/f7-55506 .html (or http://tinyurl .com/cmtuot) .
 90 . http://java .sun .com/javase/6/docs/api/java/util/EventObject .html (or http://tinyurl .com/b5l3hp) .
 91 . http://java .sun .com/javase/6/docs/api/java/awt/event/FocusEvent .html (or http://tinyurl .com/3x2dhe),

misreported as java.awt.FocusEvent.
 92 . http://java .sun .com/javase/6/docs/api/java/awt/event/MouseEvent .html (or http://tinyurl .com/6mx8x7) .
 93 . http://UndocumentedMatlab .com/blog/jfreechart-graphs-and-gauges/ (or http://bit .ly/dGq4nn) .
 94 . http://sourceforge .net/projects/jfreechart; http://www .jfree .org/jfreechart/
 95 . as reported by http://www .jfree .org/jfreechart/; also — 400,000 Google references and numerous forum

posts .
 96 . Search CSSM for JFreeChart: http://tinyurl .com/clpzsa
 97 . http://sourceforge .net/projects/jfreechart/files/ (or http://bit .ly/ehWYc9) .
 98 . http://www .jfree .org/jfreechart/jfreechart-1 .0 .13-demo .jnlp (or http://bit .ly/gou4Ot) .
 99 . For example, http://www .javaresources .biz/jfreechart_tutorial .jsp (or http://tinyurl .com/d8gqa9); http://

www .screaming-penguin .com/node/4005 (or http://tinyurl .com/c79vtq) .
 100 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/269635 (or http://bit .ly/6HbbCO) .

Installation instructions and sample code: http://home .earthlink .net/~cdunson/ProcessingMatlab .html (or
http://bit .ly/60xqaY) .

 101 . http://sourceforge .net/projects/jfreereport and http://reporting .pentaho .org
 102 . http://sourceforge .net/projects/jfreedesigner
 103 . http://sourceforge .net/projects/jasperreports; http://en .wikipedia .org/wiki/JasperReports
 104 . http://sourceforge .net/projects/ireport
 105 . http://java .com/en/dukeschoice/07winners .jsp (or http://bit .ly/afhRHF) .
 106 . http://sourceforge .net/projects/oreports
 107 . http://www .mathworks .com/matlabcentral/fileexchange/27074 (or http://bit .ly/cpgde0) .
 108 . http://jgrapht .sourceforge .net/
 109 . http://www .jgraph .com/
 110 . http://www .jgraph .com/jgraphdownload .html (or http://bit .ly/ghr7gr) .
 111 . http://UndocumentedMatlab .com/blog/jfreechart-graphs-and-gauges/#comment-30052 (or http://bit .ly/

hI5wba); http://UndocumentedMatlab .com/blog/jgraph-and-bde/ (or http://bit .ly/hfZUtO) .

K13163_Book.indb 150 11/8/2011 8:07:10 PM

© 2012 by Taylor & Francis Group, LLC

www.mathworks.com
http://java.sun.com
http://mathforum.org
http://en.wikipedia.org
http://sourceforge.net
http://www.jgraph.com
http://UndocumentedMatlab.com
http://java.com
http://www.javaresources.biz
www.jfree.org
http://home.earthlink.net
www.screaming-penguin.com

151Rich GUI Using Java Swing

 112 . http://gephi .org/
 113 . http://java .com/en/dukeschoice/ (or http://bit .ly/cbb9Gm) .
 114 . http://vtk .org/, http://en .wikipedia .org/wiki/VtK . VtK was sponsored by SNl (http://titan .sandia .gov/)

and Kitware, Inc .
 115 . https://www .kitware .com/InfovisWiki/index .php/Category:Matlab (or http://bit .ly/f5wbEy); http://www .

kitware .com/products/archive/kitware_quarterly1009 .pdf (or http://bit .ly/gZ30ae) .
 116 . http://rsbweb .nih .gov/ij/features .html (or http://bit .ly/aylE9m); http://en .wikipedia .org/wiki/ImageJ (or

http://bit .ly/bKCx4Q) .
 117 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/281698#745222 (or http://bit .ly/9feEZh) .
 118 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/290176#774399 (or http://bit .ly/9uh26u);

also read: http://www .mathworks .com/matlabcentral/newsreader/view_thread/244712#629073 (or http://
bit .ly/czXP64) .

 119 . http://rsbweb .nih .gov/ij/notes .html (or http://bit .ly/d2Rytl) .
 120 . http://rsbweb .nih .gov/ij/plugins/index .html (or http://bit .ly/dudt55); http://www .mathworks .com/mat-

labcentral/newsreader/view_thread/285447 (or http://bit .ly/eCWutl) .
 121 . http://bigwww .epfl .ch/sage/soft/mij/ (or http://bit .ly/iIVuz5); use the static (rather than dynamic) class-

path (see Section 1 .1 .2) to prevent ImageJ plugin issues: http://blog .mostlycurious .com/imagej-within-
matlab-finally-working (or http://bit .ly/jzgUFl); another connector — http://sourceforge .net/projects/
imagejmatlab/ (or http://bit .ly/llm2b2); also see http://bit .ly/jV7FzY . also see http://www .mathworks .
com/matlabcentral/fileexchange/32344 (or http://bit .ly/p5gwQb) .

 122 . http://www .imagingbook .com/index .php?id=102 (or http://bit .ly/cgeK6O); http://www .mathworks .com/
matlabcentral/newsreader/view_thread/285447#812882 (or http://bit .ly/eSZa9l) .

 123 . http://rsbweb .nih .gov/ij/links .html (or http://bit .ly/d5l94G) .
 124 . https://swinglabs .dev .java .net/ (or http://bit .ly/gwhaop) .
 125 . https://swingx .dev .java .net/ (or http://bit .ly/eQajUo) .
 126 . https://jxlayer .dev .java .net/ (or http://bit .ly/edIeym) .
 127 . For example, http://www .pbjar .org/blogs/jxlayer/jxlayer40/, http://forums .java .net/jive/forum .jspa?

 forumID=140, and http://forums .java .net/jive/thread .jspa?threadID=21038
 128 . https://swinghelper .dev .java .net/
 129 . https://wizard .dev .java .net/ (or http://bit .ly/hpQyrg) .
 130 . https://pdf-renderer .dev .java .net/ (or http://bit .ly/ebv5mt) .
 131 . https://jdic .dev .java .net/ (or http://bit .ly/h4Fozl) .
 132 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/283708#774672 (or http://bit .ly/avtFl1) .
 133 . http://www .mathworks .com/matlabcentral/fileexchange/24924-jpar-parallelizing-matlab (or http://bit .ly/

cOMVSP) .
 134 . http://java .sun .com/developer/technicalarticles/J2SE/Desktop/javase6/systemtray (or http://tinyurl .com/

y4bq9d); http://blogs .sun .com/CoreJavatechtips/entry/getting_to_know_system_tray (or http://bit .ly/
am5Gy9) .

 135 . http://java .sun .com/javase/6/docs/api/java/awt/Systemtray .html (or http://tinyurl .com/2rld4j) .
 136 . http://java .sun .com/javase/6/docs/api/java/awt/trayIcon .html (or http://tinyurl .com/cyd4nl) .
 137 . http://UndocumentedMatlab .com/blog/setting-system-tray-icons/ (or http://tinyurl .com/y9pl5y6) . Note

that TrayIcon has some quirks: http://weblogs .java .net/blog/alexfromsun/archive/2008/02/jtrayicon_
updat .html (or http://bit .ly/gdvvGb) .

 138 . http://UndocumentedMatlab .com/blog/setting-system-tray-popup-messages/ (or http://tinyurl .com/
y8b8cn5) .

 139 . http://www .mathworks .com/matlabcentral/fileexchange/23299 (or http://tinyurl .com/coqhz9) .
 140 . http://blogs .mathworks .com/desktop/2007/10/15/drag-and-drop-data-import/ (or http://tinyurl .com/

cpmkla); http://blogs .mathworks .com/desktop/2008/08/18/its-all-about-the-data/ (or http://tinyurl .com/
cbwpxu) and others .

 141 . http://www .mathworks .com/matlabcentral/fileexchange/16312 (or http://tinyurl .com/ccza6s); http://
www .mathworks .com/matlabcentral/newsreader/view_thread/155932 (or http://tinyurl .com/cmb52q) .

 142 . http://www .mathworks .com/matlabcentral/fileexchange/4224 (or http://bit .ly/dtfit0), which is an excellent
submission .

 143 . http://www .mathworks .com/matlabcentral/fileexchange/15294 (or http://tinyurl .com/cezbxn) .
 144 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/154949 (or http://tinyurl .com/chkfyd) .

K13163_Book.indb 151 11/8/2011 8:07:10 PM

© 2012 by Taylor & Francis Group, LLC

http://gephi.org/
www.mathworks.com
http://www.imagingbook.com
http://blogs.mathworks.com
http://java.sun.com
http://undocumentedmatlab.com
https://jdic.dev.java.net
https://wizard.dev.java.net
https://pdf-renderer.dev.java.net/
https://jxlayer.dev.java.net
https://swingx.dev.java.net
http://rsbweb.nih.gov
http://rsbweb.nih.gov
http://www.pbjar.org
http://blog.mostlycurious.com
https://swinghelper.dev.java.net
http://vtk.org
http://java.com
https://www.kitware.com/
http://rsbweb.nih.gov
http://en.wikipedia.org
(http://titan.sandia.gov

Undocumented Secrets of MATLAB®-Java Programming152

 145 . http://java .sun .com/docs/books/tutorial/uiswing/dnd/index .html (or http://bit .ly/ahk1HD); http://java .
sun .com/j2se/1 .4 .2/docs/guide/dragndrop/ (or http://bit .ly/aWfPGQ); http://java .sun .com/j2se/1 .5 .0/
docs/guide/dragndrop/ (or http://bit .ly/bfSblt) .

 146 . http://java .sun .com/docs/books/tutorial/uiswing/dnd/defaultsupport .html (or http://bit .ly/bpMFCa); and
more details (yet based on the older JVM 1 .4 .2): http://java .sun .com/j2se/1 .4 .2/docs/guide/swing/1 .4/
dnd .html (or http://bit .ly/aPgN1b) .

 147 . http://java .sun .com/docs/books/tutorial/uiswing/dnd/transferhandler .html (or http://bit .ly/awiQ3d); note
that the transferHandle mechanism changed somewhat between JVMs 1 .4, 1 .5, and 1 .6 .

 148 . http://java .sun .com/javase/6/docs/api/java/awt/dnd/Droptarget .html (or http://tinyurl .com/cuycx7) .
 149 . http://java .sun .com/javase/6/docs/api/java/awt/dnd/DnDConstants .html (or http://bit .ly/a4a35P) and

http://java .sun .com/javase/6/docs/api/constant-values .html#java .awt .dnd .DnDConstants .aCtION_
NONE (or http://bit .ly/91Rrwz) .

 150 . http://java .sun .com/javase/6/docs/api/java/awt/datatransfer/DataFlavor .html (or http://tinyurl .com/cp3pja) .
 151 . http://java .sun .com/javase/6/docs/api/java/awt/datatransfer/SystemFlavorMap .html (or http://tinyurl .

com/cy2kyq) .
 151 . this may be the reason for the following reported problem in CSSM: http://www .mathworks .com/

matlabcentral/newsreader/view_thread/154949 (or http://tinyurl .com/chkfyd) .
 152 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/154949#640039 (or http://bit .ly/

cSVoGs) .
 153 . Download both Java and class files from http://UndocumentedMatlab .com/files/Droptargetlist .zip (or

http://bit .ly/d2ik3J) .
 154 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/258956 (or http://tinyurl .com/knqvlz) .
 155 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/154285 (or http://tinyurl .com/

cy7a2z); http://www .mathworks .com/matlabcentral/newsreader/view_thread/82411 (or http://tinyurl .
com/cqn93t); http://www .mathworks .com/matlabcentral/newsreader/view_thread/148719 (or http://
tinyurl .com/cp7j43) .

 156 . See amir ben-Dor’s comment here: http://www .mathworks .com/matlabcentral/newsreader/view_
thread/82411#209607 (or http://tinyurl .com/cqqvh6), where the re-parenting idea was originally
 suggested . Despite his very few CSSM posts, amir appears to be one of the earliest and most leading-
edge CSSM commenter on the Matlab–Java integration issue .

 157 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/284932#755936 (or http://bit .ly/cb9l2d) .
 158 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/167272 (or http://bit .ly/ctkPsP) .
 159 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/285708 (or http://bit .ly/dsDdSl) .
 160 . http://en .wikipedia .org/wiki/Standard_Widget_toolkit or http://www .eclipse .org/swt . SWt is often used

together with the JFace toolkit (http://en .wikipedia .org/wiki/JFace) .
 161 . http://java .sun .com/javase/6/docs/technotes/guides/awt (or http://tinyurl .com/c6oull) .
 162 . http://en .wikipedia .org/wiki/Qt_Jambi or http://www .qtsoftware .com/products
 163 . http://swingwt .sourceforge .net and http://swtswing .sourceforge .net
 164 . http://www .eclipse .org/swt/widgets/

K13163_Book.indb 152 11/8/2011 8:07:11 PM

© 2012 by Taylor & Francis Group, LLC

http://java.sun.com
www.mathworks.com
http://www.eclipse.org/
http://swingwt.sourceforge.net
http://java.sun.com
http://en.wikipedia.org

Uitools

4
Chapter

K13163_Book.indb 153 11/8/2011 8:07:11 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming154

Uitools is the name given by MathWorks for a set of user-interface functions . these functions
have existed in a pretty stable situation for many Matlab versions, some as far back as R12
(Matlab 6 .0, released in 2000) . Despite this, to this day (Matlab R2011a), some of these
functions are unsupported and only partially documented . Many important uitools are Java
based, hence the reason for including this chapter in this book . Here, we will only focus on the
Java-based or customizable functions .

the odd thing about uitools is that some of these functions appear in the category help output
(result of help(‘uitools’)), and in some cases, they may even have a fully visible help section
(e .g ., help(‘setptr’)) but do not have any online help documentation (docsearch(‘setptr’) fails
and doc(‘setptr’) simply displays the readable help text) .

In other cases (e .g ., help(‘uitree’)), the entire readable help section is as follows:

WaRNING: This feature is not supported in MaTLaB
and the aPI and functionality may change in a future release.

In such cases, one has to manually edit the function (edit(‘uitree’)) in order to place a leading
comment sign (%) at line 4 in order for the help section to become readable in the Command
Window:

 function [tree, container] = uitree (varargin)
 % WaRNING: This feature is not supported in MaTLaB
 % and the aPI and functionality may change in a future release.
fix => %
 % UITREE creates a uitree component with hierarchical data in a
 % figure window.
 % UITREE creates an empty uitree object with default property
 % values in a figure window.
 % ...

these two phenomena are called “Semi-Documented Functions” in this book, and many
other examples will be presented in this and later chapters . all these functions are officially
unsupported by MathWorks, even when having a readable help section . the rule of thumb
appears to be that a Matlab function is supported only if it has online documentation . Note
that in some rare cases, a documentation discrepancy may be due to a MathWorks documenta-
tion error, and not due to unsupportability .

the reasons for the partial documentation are varied: Some functions (such as uitable or
uitree) are based on internal Java objects that MathWorks may feel are still unstable, buggy, or
should be kept under wraps for some reason . Others (such as moveptr) were either developed
for internal Matlab development and are not yet ready for public use or (like uicontainer)
are not well integrated with other Matlab functionalities .

Whatever be the reasons, the uitools folder, located at %matlabroot%/toolbox/matlab/
uitools/, contains a treasure trove well worth exploring . type help(‘uitools’) for an annotated
partial list of available uitools and dir([matlabroot,'\toolbox\matlab\uitools']) for a full (un-
annotated) list .

K13163_Book.indb 154 11/8/2011 8:07:11 PM

© 2012 by Taylor & Francis Group, LLC

155Uitools

4.1 Uitable

For many years, the highest-requested Matlab GUI component was an editable data table/
grid . Such a component was missing both from Matlab’s GUI editor (guide) and from the
supported list of GUI functions until R2008a (aka Matlab 7 .6) . this missing component
appears, at least according to the number of requests/queries/posts on the Matlab forums
and from the number of submissions/downloads of File Exchange solutions, to be the single
most needed missing GUI component in Matlab .

true, there are many possible methods of creating data tables in Matlab using basic
Matlab building blocks, and the variety of solutions on the File Exchange reflects this: one
can use a two-dimensional matrix of editboxes1 or labels,2 a standard listbox,3 activeX
 components,4 standard Java Swing widgets,5 undocumented MathWorks Java classes,6 and even
text labels on a plot axes .7

Starting with Matlab 7 (R14), MathWorks have included the unsupported function uitable
in the uitools folder . this function uses the internal Matlab Java widget com.mathworks.
widgets.spreadsheet.SpreadsheetTable, which derives from the standard Java
Swing JTable8 class via com.mathworks.mwswing.MJTable . uitable became fully sup-
ported in R2008a9 after many years in unsupported mode, and then switched to a com.jide-
soft.grid.SortableTable-derived table (see Section 5 .7) .

uitable provides a lightweight and consistent look-and-feel alternative to the non-Java solu-
tions and integrates well with Matlab GUI . Use of uitable has the benefit of employing a
scrollable JTable without the hassle of setting up a ScrollableViewport and other
similar nuts and bolts . also, uitable automatically detects boolean (islogical) and Combo-box
(iscell) data columns and uses corresponding cell editors for them — checkboxes and drop-
downs, respectively .

Since R2008a, Matlab includes both versions of uitable . Matlab automatically selects
the version to use based on the supplied input and output arguments: uitable accepts data and
parameters in the familiar P–V (property–value) named-pair format, in which case, Matlab
automatically uses the new version of uitable (we can force it to use the older version by adding
a ‘v0’ input argument) . the old (pre-R2008a) uitable also accepts a couple of other formats . In
both versions, uitable accepts an optional figure handle as the leading (first) argument, which
is gcf by default .

Matlab automatically uses the new uitable when only a single output argument (or none)
is requested and when the properties conform to the P–V pairs of the new uitable’s properties .
In all other cases, the older uitable is used .

Note that if we have not used the ‘v0’ input argument and Matlab has determined that it
needs to use the old uitable version, a warning message will be displayed . this warning can be
suppressed using the warning function as follows:

>> mtable = uitable('Data',magic(3)); % new uitable, no warning
>> [mtable,c] = uitable('v0','Data',magic(3)); % old uitable, no warning

K13163_Book.indb 155 11/8/2011 8:07:11 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming156

>> [mtable,c] = uitable('Data',magic(3)); % old uitable + warning
Warning: it appears you are using an obsolete version of uitable.
See the documentation for correct uitable usage:
 help uitable and doc uitable
For more information, click here
> In uitable at 47

>> warning off MaTLaB:uitable:OldTableUsage
>> [mtable,c] = uitable('Data',magic(3)); % old uitable, no warning

Note: In the following sections, text that deals exclusively with the old uitable version is
outlined with a left sidebar, as in this paragraph; text that applies only to the new version
has a right sidebar; and text that applies to both versions has no sidebar .

Settable properties of the old uitable include CheckboxEditor, ColumnNames, ColumnWidth,
Data, DataChangedCallback, Editable, GridColor, NumColumns, NumRows, Position,
Units, and Visible . Matlab versions prior to 2008 had an undocumented Parent property,
renamed UIContainer in later releases .

an undocumented feature of the older uitable is that it also accepts a Java object deriving
from javax.swing.table.DefaultTableModel10 as an optional second argument, fol-
lowing the optional figure handle (which may be skipped, making the user’s TableModel the
first argument) . DefaultTableModel is used as the default TableModel, if none other is
specified (this is also standard for Swing’s JTable) .11

the older uitable returns two arguments: a handle to the created table (a com.math-
works.hg.peer.UitablePeer Java object wrapped within a Matlab handle) and an
undocumented second optional argument holding a handle to the Matlab GUI container of
the created table . these are exactly the two arguments returned from the javacomponent
function (see Chapter 3) . Use of the first return argument enables the user to specify the table
Units (e .g ., “Normalized”), Editable (true/false), Enabled (true/false), Visible (true/false),
and DataChangedCallback properties . uitable’s help section seems to imply that these prop-
erties may be passed directly as P–V pairs, just like ColumnNames, etc ., but this is, in fact,
not so .

Units and Visibility may also be set via the second (container) output argument . the con-
tainer handle also enables changing other standard Matlab handle properties, such as
Position, UserData, tag, HandleVisibility etc . Note that the container handle is a simple
Matlab Handle Graphics (HG) object, whereas the table handle is a Java object wrapped
within a Matlab handle . this means that while we need to pass true/false (or 1/0) to table’s
Visible property, we need to pass ‘on’/‘off’ to the container’s:

[mtable, container] = uitable(gcf, magic(3), {'a', 'B', 'C'});
set(mtable, 'Visible', true, 'Position',[10,10,280,100]);
set(container, 'Visible', 'on');

K13163_Book.indb 156 11/8/2011 8:07:11 PM

© 2012 by Taylor & Francis Group, LLC

157Uitools

A very simple uitable (old version)

the container handle can also be retrieved directly from the table as follows:

mtable = uitable(...);
container = mtable.getUIContainer;
container = get(mtable,'UIContainer'); % equivalent method

We might expect that setting a table’s UIContainer property (e .g ., to a uipanel handle),
would automatically move a table into the new container . However, this is not so . Instead, we
need to set the container’s Parent property as follows:

set(mtable,'UIContainer',hPanel); % doesn't work
set(get(mtable,'UIContainer'),'Parent',hPanel); % ok

like all containers returned from javacomponent, the container handle has some hidden
undocumented properties: JavaPeer (a handle to the table object), FigureChild (same),
Pixelbounds, HelptopicKey, Serializable, and so on . Note that some properties, while setta-
ble, appear to have no effect (the container’s Opaque and backgroundColor properties, for
example) . Note that due to a limitation of javacomponent, which is used to place the uitable
onscreen, the uitable is always created as a direct child of the container figure .

Once created, uitable data can be read by one of the following methods:

data = cell(mtable.Data);
data = cell(mtable.getData);
data = cell(get(mtable,'Data'));

Note the use of cell() casting: this is required, since the returned data is a 2D Java array . Cell
casting transforms this Java array into a Matlab-usable two-dimensional cell array . Similarly,
when we set the Data, we need to pass a cell array:

>> set(mtable,'Data',{1,2,3; 4,'text',true}); % setting mixed data

Settable properties for the new uitable include backgroundColor, CellEditCallback,
ColumnFormat, ColumnEditable, ColumnName, ColumnWidth, Data, Enable, Fontangle,
FontName, FontSize, FontUnits, FontWeight, ForegroundColor, KeyPressFcn, Position,
RearrangeableColumns, RowName, RowStriping, CellSelectionCallback, tooltipString,
Units, and all the standard HG properties (Parent, tag, UserData, Visible, etc .) .

K13163_Book.indb 157 11/8/2011 8:07:11 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming158

the new uitable returns only a single argument — a Matlab handle of the created table .
the new version of uitable is created in a similar manner to the old version:

mtable = uitable(gcf, 'Data',magic(3), 'ColumnName',{'a', 'B', 'C'});
set(mtable,'Position',[10,10,280,100]);

the new version of uitable

the new uitable’s data can be retrieved and set much more easily than the old version’s by
simply using the Data property (no cell casting is necessary):

>> data = get(mtable,'Data') % getting the data
data =
 8 1 6
 3 5 7
 4 9 2
>> set(mtable,'Data',[1,2,3; 4,5,6]); % setting numeric data
>> set(mtable,'Data',{1,2,3; 4,'text',true}); % setting mixed data

Modified table data with text and logical values

4.1.1 Customizing Uitable
the Matlab handles returned by uitable (either the new or the old versions) have some built-in
customizations possible . However, using the underlying Java table reference, we can gain access
to a much wider range of customizations, which shall be discussed below . Note that the table
object returned by uitable is not actually a Java object but rather a Matlab handle object .
because of this, I call the returned object mtable and the underlying Java object jtable .

K13163_Book.indb 158 11/8/2011 8:07:13 PM

© 2012 by Taylor & Francis Group, LLC

159Uitools

In the following listing of Java sub-components, we shall use the following annotated screen-
shot of a uitable (the new version — it is pretty similar to the old version):

Modified table data with text and logical values, annotated (See color insert.)

Unfortunately, there is no direct way of getting the new uitable’s underlying jtable refer-
ence . However, we can use the findjobj utility for this (see Section 7 .2 .2) . the following code
snippet shows how we “dig out” jtable () from its containing scrollpane:

>> jscroll = findjobj(mtable)
jscroll =
 javahandle_withcallbacks.com.mathworks.hg.peer.utils.UIScrollPane

>> jscroll.list
com.mathworks.hg.peer.utils.UIScrollPane[,0,0,280x100,...]
 javax.swing.JViewport[,31,19,248x80,...]
 com.mathworks.hg.peer.ui.UITablePeer$22[,0,0,225x54,...]
 javax.swing.CellRendererPane[,0,0,0x0,hidden]
 com.mathworks.hg.peer.utils.UIScrollPane$1[,262,9,17x0,hidden,...]
 com.sun.java.swing.plaf.windows.WindowsScrollBarUI$WindowsarrowButton
 com.sun.java.swing.plaf.windows.WindowsScrollBarUI$WindowsarrowButton
 com.mathworks.hg.peer.utils.UIScrollPane$2[,31,182,218x17,hidden...]
 com.sun.java.swing.plaf.windows.WindowsScrollBarUI$WindowsarrowButton
 com.sun.java.swing.plaf.windows.WindowsScrollBarUI$WindowsarrowButton
 javax.swing.JViewport[,31,1,248x18,...]
 com.jidesoft.grid.SortableTable$2[,0,0,248x18,...]
 javax.swing.CellRendererPane[,0,0,0x0,hidden]
 javax.swing.JViewport[,1,19,30x80,...]
 com.mathworks.hg.peer.ui.table.RowHeader[,0,0,30x54,...]
 javax.swing.CellRendererPane[,0,0,0x0,hidden]
 javax.swing.JLabel[,1,1,30x18,...]

>> jtable = jscroll.getViewport.getView
jtable =
com.mathworks.hg.peer.ui.UITablePeer$22[,0,0,225x54,...]

In the old version of uitable, get jtable directly from mtable (note that components 4
and 6 are in reversed positions compared with the new uitable):

[mtable,hcontainer] = uitable (...);
jtable = mtable.getTable; % or: get(mtable,'table');
>> jscroll = jtable.getParent.getParent; % or: findjobj(mtable.UIContainer)

1

1

2

3

4

5

6

K13163_Book.indb 159 11/8/2011 8:07:13 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming160

jscroll =
 javahandle_withcallbacks.com.mathworks.widgets.spreadsheet.-
SpreadsheetScrollPane

>> jscroll.list
com.mathworks.widgets.spreadsheet.SpreadsheetScrollPane[,0,0,280x100...]
 javax.swing.JViewport[,16,17,263x65,...]
 com.mathworks.hg.peer.UitablePeer$PeerSpreadsheetTable[,0,0,264x30,...]
 javax.swing.CellRendererPane[,0,0,0x0,hidden]
 javax.swing.JScrollPane$ScrollBar[,0,0,0x0,hidden,...]
 com.sun.java.swing.plaf.windows.WindowsScrollBarUI$WindowsarrowButton...
 com.sun.java.swing.plaf.windows.WindowsScrollBarUI$WindowsarrowButton...
 javax.swing.JScrollPane$ScrollBar[,16,82,263x17,...]
 com.sun.java.swing.plaf.windows.WindowsScrollBarUI$WindowsarrowButton...
 com.sun.java.swing.plaf.windows.WindowsScrollBarUI$WindowsarrowButton..
 javax.swing.table.JTableHeader[,1,1,15x16,...]
 javax.swing.CellRendererPane[,0,0,0x0,hidden]
 javax.swing.JViewport[,1,17,15x65,...]
 com.mathworks.mwswing.MJTable[,0,0,15x30,...]
 javax.swing.CellRendererPane[,0,0,0x0,hidden]
 javax.swing.JViewport[,16,1,263x16,...]
 javax.swing.table.JTableHeader[,0,0,264x16,...]
 javax.swing.CellRendererPane[,0,0,0x0,hidden]

Setting individual cells is much faster than getting the entire data from the table, modifying
it, and then setting the entire data again in the mtable . Just remember that mtable, just as any
Matlab object, uses 1-based indexing, whereas jtable, like any Java object, uses 0-based
indexing . So, the first column (or row or anything) is 1 in mtable and 0 in jtable in both ver-
sions of uitable (both new and old) . Forgetting this rule can be an endless source of bugs .

% Slow alternative:
data = get(mtable,'Data'); % add cell() for the old uitable version
data{row,col} = newValue;
set(mtable,'Data',data);

% This is much faster:
newValueStr = num2str(newValue); % uitable cells contain strings
jtable.setValueat(newValueStr,row-1,col-1); %row,col index start at 0

Note that the underlying cell data of jtable is a string . Matlab automatically converts
the numeric data into strings . therefore, when we use set(mtable,'Data',data), we should
use numeric data, whereas if we use jtable .setValueAt(), we should use the string representa-
tion of the data, otherwise an error will be displayed:

>> jtable.setValueat(345, row-1, col-1)
Warning: Cannot convert logical edit to numeric matrix.
 Please click for more information
(Type “warning off MaTLaB:hg:uitable:CellEditWarning” to suppress this warning.)

>> jtable.setValueat(‘345’, row-1, col-1) % <= this works ok

1

2

3

6

5

4

K13163_Book.indb 160 11/8/2011 8:07:13 PM

© 2012 by Taylor & Francis Group, LLC

161Uitools

In the new uitable, if we wish to set a non-numeric string in a specific table cell, the initial data
type of the relevant column must be ‘char’, otherwise the string will display as ‘NaN’ .

Since the Java object underlying uitable is basically a Java Swing JTable, most JTable
features and actions are also applicable to the uitable object . alternately, if we want to find out
how to do something on the uitable, the easiest way is to find out how to do a similar action on
a JTable and then try to apply this on the uitable object — it works in almost all cases (some
few JTable features are inconsistent or unavailable in old Java versions . type version(‘-java’)
to see your specific JVM version) .

Since all Swing objects accept HtMl for any of their JLabels,12 this means that uitable
cells, column headers, and tooltips also accept HtMl (there is no need to close the tags with
, </html>, etc .) . an example (old uitable version, easily adaptable to the new version) is
as follows:†

mtable = uitable('Data',magic(3),'ColumnNames',{'<html>a','B','C'});
jtable = mtable.getTable;
str = '<html>line #1
line #2';
jtable.setToolTipText(str);
jtable.getTableHeader.setToolTipText(str);
jtable.setValueat('<html><i>big italic',row,col);

uitable with HtMl cell contents and tooltips

Similarly, table cells can display images and icons using the HtMl tag .13

In the preceding discussion, I have shown how column headers can easily be modified and
customized . Unfortunately, row headers cannot be changed so easily . While these are configu-
rable in the new uitable, the old version requires access to a separate Java object (5) which is
used to store these headers .14

there have been several dozen references to uitable in CSSM over the last few years, and read-
ers are referred there for additional references .15 a CSSM poster once requested to know how to
set a specific uitable column to a specific color .16 My answer, based on JTable usage, was to
simply use a nonstandard CellRenderer17 for the requested column as follows (column b):

cr = javax.swing.table.DefaultTableCellRenderer;
cr.setForeground(java.awt.Color.red);

† the following code segment is for the old uitable; for the new version, use findjobj to get the jtable reference, and also
set the initial data to strings via arrayfun(@num2str, magic(3), ‘uniform’, false) .

K13163_Book.indb 161 11/8/2011 8:07:14 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming162

cr.setBackground(java.awt.Color(0.2,0.3,0.8)); %dark-blue
jtable.getColumnModel.getColumn(1).setCellRenderer(cr); %1 = B
jtable.repaint; % repaint the table to use the new CellRenderer

uitable with a nonstandard column foreground and background

Separation of Model and View is the basis for Swing’s MVC architecture .18 the basic idea in
the MVC design pattern is to separate the data (Model) from the presentation format (View) and
the data-modification functionality (Controller) .19 this is the reason for separate cell renderers
and cell editors in JTable, JTree, JList, and JComboBox . Cell renderers and editors are
delegate objects,20 which are separate helper objects from their target component . they fulfill
specific missions of display and editing of their target component’s sub- components (cells) .

Unfortunately, in the new uitable design, JIDE and Matlab have apparently broken this
MVC approach by using a DefaultUIStyleTableModel class as the table model . this
model not only controls the data but also sets the table’s appearance (e .g ., row-striping back-
ground colors) and disregards column cell renderers . In order for our DefaultTable-
CellRenderer to have any effect, we must, therefore, replace Matlab’s standard
DefaultUIStyleTableModel with a simple DefaultTableModel:

% Replace uitable's standard table model
data = mat2cell(magic(3),[1,1,1],[1,1,1]); % {8,1,6; 3,5,7; 4,9,2}
cols = {'<html>a','B','C'};
jtable.setModel(javax.swing.table.DefaultTableModel(data,cols));

% Now set the cell-renderers and repaint the table
jtable.getColumnModel.getColumn(1).setCellRenderer(cr); %1 = B
jtable.repaint; % repaint the table to use the new CellRenderer

Java uses its DefaultTableCellRenderer21 to decide how to display cell data for the
entire table column . If we want to modify cell appearance, we need to modify the specific col-
umn’s CellRenderer as shown above . this requires programming a Java class . In some
cases, smart Matlab programming can save this Java programming: a CSSM user once
requested to know how to set the number of displayed decimal places .22 the textbook approach
would be to create a dedicated CellRenderer . However, in practice, it is easier to preformat
the data using sprintf than to create a separate CellRenderer Java class . Of course, the data
will then be stored (and sorted) as strings rather than as numbers . So, the trick was to populate

K13163_Book.indb 162 11/8/2011 8:07:14 PM

© 2012 by Taylor & Francis Group, LLC

163Uitools

the field with str2double(sprintf(‘% .0f’, myData)) or to cast the data as integers (uint8(myData))
in order to prevent showing any decimals .

While HtMl content provides very easy and simple font customization, greater control can
be achieved by using com.jidesoft.grid.StyledTableCellRenderer as the table
column’s cell renderer (StyledTableCellRenderer extends JIDE’s StyledLabel,
which is described in Section 5 .5 .1) . there are similar renderers for trees and lists .

a different renderer, which I have called ColoredFieldCellRenderer, can be used to
set a specific color (and/or tooltip) for specific table cells .23

cr = ColoredFieldCellRenderer;
jtable.getColumnModel.getColumn(1).setCellRenderer(cr);
cr.setCellBgColor(0,1,java.awt.Color.cyan);
cr.setCellTooltip(2,1,'cell-specific tooltip');
jtable.repaint;

uitable with a nonstandard column cell renderer (See color insert.)

a related common need is to set a nonstandard CellEditor:24 uitable automatically
detects boolean (islogical) and Combo-box (iscell) data columns and uses corresponding cell
editors for them — checkboxes and drop-downs, respectively . For all other data types, uitable
uses a standard text-field editor (javax.swing.DefaultCellEditor25 initialized with
JTextField) .

We often need a color editor or some other nonstandard editors . Such nonstandard cell edi-
tors cannot be set using the standard Matlab (mtable) object, but they can relatively easily
be set at the Java (jtable) level, using one of several options:

 1 . Prepare a Java class that extends DefaultTableCellEditor .
 2 . Prepare a Java class that extends JComboBox, JCheckBox, or JTextField .
 3 . Use JComboBox or a similar editable Java component .

the usage in Matlab is very simple . For example, to set the leftmost table column (#0) to
use a combo-box (drop-down) editor, we will use a simple JComboBox:

comboBox = javax.swing.JComboBox({'First','Last'});
comboBox.setEditable(true);
editor = javax.swing.DefaultCellEditor(comboBox);
jtable.getColumnModel.getColumn(0).setCellEditor(editor);

K13163_Book.indb 163 11/8/2011 8:07:14 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming164

uitable with a nonstandard column cell editor (See color insert.)

Note how the cell editor (in this case, a combo-box) only appears for the currently edited
cell — all the other cells appear as defined by their cell renderers (which in this case is a simple
label and not a combo-box) .

this was not a very powerful example . after all, the drop-down values are static for the
entire column . It is useful for cases where the same editor component (e .g ., font/color/file selec-
tion, etc .) can be used for all data rows .

let us now demonstrate a more realistic and more powerful example: Very often, the cell
drop-down values should depend on its specific row (i .e ., not all column cells should have the
same drop-down options) . For example, a list of selectable dishes in column b might depend on
the dish type in column a . Different table rows will have different dish types and thus different
selectable dishes:

uitable with a more complex nonstandard column cell editor

to implement our dish-type example, we need a custom CellEditor Java class . Preparation
of a custom CellEditor is beyond the scope of this book — users are referred to the official
documentation26 or any good text about Java Swing . Here is a simple skeleton of a sample
DefaultCellEditor-derived class for our dish-types example: it uses a lookup value in the
Dish-type column to set the drop-down values of the Dish column, separately for each row:

import java.awt.*;
import java.util.*;
import javax.swing.*;
public class LookupFieldCellEditor extends DefaultCellEditor
{
 private int_lookupColumn = –1;
 private Hashtable_dataVals = null;

K13163_Book.indb 164 11/8/2011 8:07:15 PM

© 2012 by Taylor & Francis Group, LLC

165Uitools

 public LookupFieldCellEditor(Hashtable dataVals, int column) {
 super(new JComboBox());
 _dataVals = dataVals;
 _lookupColumn = column;
 }
 public Component getTableCellEditorComponent(JTable table,
 Object value,
 boolean isSelected,
 int row, int col) {
 JComboBox cell = (JComboBox) super.
 getTableCellEditorComponent(table,value,isSelected,row,col);
 // Modify the selected cell's CellEditor (JComboBox) to display
 // only relevant fields based on this row's lookup column
 if (_lookupColumn >= 0) {
 cell.removeallItems();
 Object lookupObj = table.getValueat(row,_lookupColumn);
 if (lookupObj != null) {
 String srcName = (String) lookupObj;
 if (_dataVals.containsKey(srcName)) {
 String[] vals = (String[])_dataVals.get(srcName);
 java.util.List <String > dataList = arrays.asList(vals);
 java.util.Iterator iter = dataList.iterator();
 while (iter.hasNext())
 cell.addItem(iter.next());
 }
 }
 }
 cell.setSelectedItem(value);
 cell.setMaximumRowCount(cell.getItemCount() = =0 ? 1 : 10);
 if (cell.getItemCount() == 0) cell.addItem(' ');
 return cell;
 }
 public void setEditable(boolean flag) {
 ((JComboBox) getComponent()).setEditable(flag);
 }
}

Save this code in LookupFieldCellEditor.java, compile it, and place the generated class file
in your Java classpath (see Section 1 .6 for details) . alternately, download LookupFieldCellEditor.
zip,27 which includes both source and class files, and add this file to your Java classpath . Usage
of this class in Matlab is very simple:

set(mtable,'ColumnEditable',[true,true,false]); %make columns editable
fieldsHashtable = java.util.Hashtable;
fieldsHashtable.put('Meat', {'steak','veal','beaf',...});
fieldsHashtable.put('Fish', {'cod','whitefish','salmon',...});
fieldsHashtable.put('Vegetables', {'Salad','Lettuce','Tomato',...});
ed = LookupFieldCellEditor(fieldsHashtable,0); % 0 = column a
jtable.getColumnModel.getColumn(1).setCellEditor(ed); % 1 = column B

If we use a custom CellEditor, we may also need a corresponding CellRenderer . For
example, if we use a com.jidesoft.combobox.ColorComboBox (see Section 5 .4 .1) for

K13163_Book.indb 165 11/8/2011 8:07:15 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming166

selecting a color, we would probably wish to have a color label as our CellRenderer . I have
done just that, and readers can download the relevant renderer and editor classes from the
 website .28 their usage in Matlab is, again, very simple:

data = {'Fish', 'salmon', '223,34,145'; ... % pink
 'Meat', 'steak', '200,0,0'; ... % dark red
 'Vegetables','Lettuce', '0,120,0'}; % green
cols = {'Dish type', 'Dish', 'Color'};
mtable = uitable(gcf, 'Data',data, 'ColumnName',cols);
set(mtable,'Position',[10,10,280,150],'ColumnEditable',true(1,3));
jscroll = findjobj(mtable);
jtable = jscroll.getViewport.getView;
jtable.setModel(javax.swing.table.DefaultTableModel(data,cols))
jtable.getColumnModel.getColumn(2).setCellRenderer(ColorCellRenderer);
jtable.getColumnModel.getColumn(2).setCellEditor(ColorCellEditor);

uitable with custom CellRenderer and CellEditor (See color insert.)

4.1.2 Table Callbacks
the old version of uitable (mtable) has a single callback, DataChangedCallback, which is called
whenever a table value changes, the table structure changes (columns are added/deleted), or a
table cell has been edited . as far as the table model is concerned, checkboxes are simply rendi-
tions of boolean (logical true/false) values and similarly for other CellEditors . therefore,
selecting a checkbox or drop-down value within a table is exactly the same as modifying a cell’s
content programmatically, causing firing (invocation) of the DataChangedCallback .29

the new version of uitable supports CellEditCallback (invoked when a table cell has
changed), CellSelectionCallback (when a cell is selected), KeyPressFcn (when a keyboard key

K13163_Book.indb 166 11/8/2011 8:07:16 PM

© 2012 by Taylor & Francis Group, LLC

167Uitools

has been clicked), and buttonDownFcn (when the mouse is clicked) . In these callbacks, the
EventData input parameter includes the relevant information in a Matlab struct . this data
includes cell indices [row,col], new/previous data, clicked key etc . (depending on the callback,
some of the information may not be presented) .

In our callback function, we need to prevent re-entry if the callback function is not re-
entrant . For example, if the callback function checks the modified data and restores the old
value in case of an invalid entry, the function needs to exit immediately when invoked due to
the old value restoration . this can be done by setting some persistent value,† as shown below
using the old uitable (adaptation to the new version is easy):

% Set a data-change callback function
try % old uitable version
 set(mtable, 'DataChangedCallback',{@myDataChange_Callback,jtable});
catch % new uitable version
 set(mtable, 'CellEditCallback', {@myDataChange_Callback,jtable});
end

% Sample myDataChange_Callback function
function myDataChange_Callback(mtable, eventdata, jtable)
 % Prevent re-entry if the callback function is not re-entrant
 % Note: reset DataChangedCallback within the CB func won't work
 persistent hash
 if isempty(hash), hash = java.util.Hashtable; end
 if ~isempty(hash.get(mtable)), return; end % exit upon reentry
 hash.put(mtable,1);

 % sanity check (in case the table got deleted by now)...
 if ~ishandle(mtable), return; end
 % Check modified value and restore old value if invalid
 try % old uitable version
 modifiedRowIdx = eventdata.getEvent.getFirstRow; % 0-based
 modifiedColIdx = eventdata.getEvent.getColumn; % 0-based
 catch % new uitable version
 modifiedRowIdx = eventdata.Indices(1) - 1; % 1-based
 modifiedColIdx = eventdata.Indices(2) - 1; % 1-based

 end
 if modifiedColIdx > =0 && modifiedRowIdx > =0
 data = get(mtable,'Data');
 newValue = data(modifiedRowIdx + 1,modifiedColIdx + 1);
 if (newValue < 0)
 jtable.setValueat(-newValue,modifiedRowIdx,modifiedColIdx);
 end
 end

 % Release reentrancy flag
 hash.remove(mtable);
end % myDataChange_Callback

† We could use setappdata and getappdata instead, but these fail in some edge cases, whereas Hashtable always works .

K13163_Book.indb 167 11/8/2011 8:07:16 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming168

Note that it is possible that multiple table cells have been modified at once (e .g ., by pasting a
block of values) . In such a case, we will want to use methods such as eventDetails .getFir-
stRow and eventDetails .getLastRow and process the changed data as appropriate to our
requirements .

Note that while this approach is simple and easily integrates within the Matlab program,
it cannot handle very rapid data-change events . at some point, when the event queue is over-
loaded, some callback events will get discarded . a simple solution is to temporarily disable the
table object during callback processing, thus preventing concurrent updates . alternately, tem-
porarily disable the callback itself when updating rapidly changing table data . both of these
solutions can be done in pure Matlab .30 a more complex solution, suggested by a CSSM
poster,31 is to temporarily disable the JTable Matlab listeners using Java or to set up a Java
callback method rather than setting up a Matlab one . these later approaches require Java
knowledge and are advanced beyond the scope of this text .

the jtable object reference handle exposes all the standard Swing callbacks specified in
Chapter 3 . In addition, JTable exposes two additional callbacks: CaretPositionChangedCallback
and InputMethodtextChangedCallback . these callbacks correspond to events that are sup-
posed to be raised when the component’s input caret position or content has changed, but appar-
ently they are disconnected in Matlab for some unknown reason .

4.1.3 Customizing Scrollbars, Column Widths, and Selection
Behavior

a common action that many users need is controlling the scrollability of the table, vertically
and/or horizontally . this can be done using code similar to the following:

jscroll = mtable.TableScrollPane; % old uitable
jscroll = findjobj(mtable); % new uitable
jscroll.setVerticalScrollBarPolicy(...
 jscroll.VERTICaL_SCROLLBaR_aS_NEEDED);
jscroll.setHorizontalScrollBarPolicy(...
 jscroll.HORIZONTaL_SCROLLBaR_aS_NEEDED);

the possible scrollbar policies are *_SCROLLBaR_aS_NEEDED, *_SCROLLBaR_
aLWaYS, and *_SCROLLBaR_NEVER .32 these policies are pretty much self-explanatory .

Horizontal scrolling policy is normally accompanied by setting the column auto-resize policy .
this affects the interaction between the horizontal scrollbar and the column widths when the
column widths are modified interactively (by dragging the column header boundary) or program-
matically (see below) . Possible auto-resize policy values are aUTO_RESIZE_aLL_COLUMNS,
aUTO_RESIZE_LaST_COLUMN, aUTO_RESIZE_NEXT_COLUMN, aUTO_RESIZE_
SUBSEQUENT_COLUMNS, and aUTO_RESIZE_OFF .33 they are best understood by modifying
the autoResizeMode property then dragging a column header boundary sideways and checking
the effect on the other columns and on the scrollbar:

jtable.setautoResizeMode(jtable.aUTO_RESIZE_SUBSEQUENT_COLUMNS);

K13163_Book.indb 168 11/8/2011 8:07:16 PM

© 2012 by Taylor & Francis Group, LLC

169Uitools

Setting of initial column sizes for all columns at once can be achieved easily:

mtable.setColumnWidth(100); % initial size for all columns

We often need to set initial and maximal column width . For example, a checkbox column
should be non-resizable 10 pixels wide:

mtable.setCheckBoxEditor(1); % 1 = column a (Matlab)
jcol = jtable.getColumnModel.getColumn(0); % 0 = column a (Java)
set(jcol,'Resizable','off','MaxWidth',10,'PreferredWidth',10);

% alternative method: note that Matlab 'off' becomes a Java false
jcol.setResizable(false);
jcol.setMaxWidth(10);
jcol.setPreferredWidth(10);

table columns may be resized to dynamically fit their data, using the following:

com.mathworks.mwswing.MJUtilities.initJIDE;
com.jidesoft.grid.TableUtils.autoResizeallColumns(jtable);

another interesting table policy is ListSelectionModel,34 which affects the way in
which multiple table cells may be selected together . Possible values are SINGLE_SELECTION,
SINGLE_INTERVaL_SELECTION, and MULTIPLE_INTERVaL_SELECTION .

import javax.swing.ListSelectionModel;
selectPolicy = ListSelectionModel.MULTIPLE_INTERVaL_SELECTION;
jtable.setSelectionMode(selectPolicy);

the actual selected cells can be gotten via jtable .getSelectedRows(), getSelectedColumns(),
and similar methods . the jtable .getSelectionModel() object contains additional information
about the selected cells .

For programmatic cell selection, use jtable .changeSelection(rowIndex, columnIndex, toggle-
Flag, extendFlag).† For multi-cell selection (e .g ., entire rows, columns, or cell blocks), set
jtable .setNonContiguousCellSelection(flag) followed by setRowSelectionAllowed(flag) and set
ColumnSelectionAllowed(flag).35 Cells blocks can then be selected using jtable .setRowSelec-
tionInterval(startCol,endCol) and setRowSelectionInterval(startRow,endRow) for the first interval
and addRow/ColumnSelectionInterval(. . .) for additional intervals . Intervals can be removed using
setColumnSelectionInterval(. . .) or clearSelection(); selectAll() selects all table cells .

Selection colors can be set using setSelectionBackground(color) and setSelectionForegroun
d(color) . For example,

jtable.setSelectionBackground(java.awt.Color(1.0,1.0,0)); %RGB values
jtable.setSelectionBackground(java.awt.Color.yellow); %alternative

† http://download .oracle .com/javase/1 .5 .0/docs/api/javax/swing/Jtable .html#changeSelection(int, int, boolean, boolean)
(or http://bit .ly/g2i3f8); toggleFlag and extendFlag would normally be set to false or simply 0 .

K13163_Book.indb 169 11/8/2011 8:07:16 PM

© 2012 by Taylor & Francis Group, LLC

http://download.oracle.com/

Undocumented Secrets of MATLAB®-Java Programming170

4.1.4 Data Sorting and Filtering
Users will normally try to sort columns by clicking the header . this has been a deficiency of
JTable for ages . to solve this for the old (pre-R2008a) uitable, download one of several avail-
able JTable sorter classes or my tableSorter class .36 the TableSorter.jar file must be located
in the Java classpath as explained above . the result of the following code can be seen in the
screenshot in Section 4 .1 .7 .

% We want to use sorter, not data model...
% Unfortunately, UitablePeer expects DefaultTableModel not TableSorter
% so we need a modified UitablePeer class. But UitablePeer is a
% Matlab class, so use a modified TableSorter & attach it to the Model
if ~isempty(which('TableSorter'))

 % add TableSorter as TableModel listener
 sorter = TableSorter(jtable.getModel());
 jtable.setModel(sorter);
 sorter.setTableHeader(jtable.getTableHeader());

 % Set the header tooltip (with sorting instructions)
 jtable.getTableHeader.setToolTipText('<html> Click to
 sort up; Shift-click to sort down
 ...</html>');
else

 % Set the header tooltip (no sorting instructions...)
 jtable.getTableHeader.setToolTipText('<html> Click
 to select entire column
 Ctrl-click (or
 Shift-click) to select multiple columns </html>');
end

Sorted columns can be set as follows (the primary sort column is specified first):

tableModel = jtable.getTableModel;
tableModel.setSortingStatus(3,tableModel.aSCENDING); % 3 = Column D
tableModel.setSortingStatus(1,tableModel.DESCENDING); % 1 = Column B

the new (R2008a+) uitable is based on com.jidesoft.grid.SortableTable and so
has built-in sorting support — all we need to do is to turn it on (note: the Matlab handle has
a hidden Sortable property, but it has no effect — use the Java property instead):

jtable.setSortable(true); % or: set(jtable,'Sortable','on');
jtable.setautoResort(true);
jtable.setMultiColumnSortable(true);
jtable.setPreserveSelectionsafterSorting(true);

Sorting can be done programmatically as follows:

jtable.unsort();
jtable.resort();
jtable.unsortColumn(column);
jtable.sortColumn(column,newSortFlag,SortascendingFlag);

K13163_Book.indb 170 11/8/2011 8:07:16 PM

© 2012 by Taylor & Francis Group, LLC

171Uitools

where column indicates the column index (0-based) or column name; newSortFlag indi-
cates whether this sorting is primary (true) or secondary (false); and SortascendingFlag
indicates whether to sort up (true) or down (false) . Sorting can also be forced using resort()
or canceled using unsort() .

the appearance of the sort icon can be controlled with several properties:

jtable.setSortarrowForeground(java.awt.Color.red); % doesn't work...
jtable.setSortOrderForeground(java.awt.Color.blue); % this works ok
jtable.setShowSortOrderNumber(true);

 ShowSortOrderNumber = false ShowSortOrderNumber = true

When more than one column is sorted, the sort-order number is always shown, regardless of the
value of the ShowSortOrderNumber property:

Multi-column sorting with blue sort-order numbers

additional control over sorting can be achieved via the table’s model, which is a com.jidesoft.
grid.SortableTableModel object:

model = jtable.getModel; % = com.jidesoft.grid.SortableTableModel obj
flag = model.isColumnSortable(columnIndex); %columnIndex starts at 0
flag = model.isColumnSorted(columnIndex);
flag = model.isColumnascending(columnIndex);
rank = model.getColumnSortRank(columnIndex);
sortCols = model.getSortingColumns; %returns [] or arrayList of objs
realRowIndex = model.getSortedRowat(displayedRowIdx);
model.reset();
model.resort();
set(model,’SortChangedCallback’,@myFunc); % or: SortChangingCallback

K13163_Book.indb 171 11/8/2011 8:07:17 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming172

the table’s model also includes several useful sorting-related callbacks: SortChanging
Callback, SortChangedCallback, and IndexChangedCallback:

hmodel = handle(model, 'CallbackProperties');
set(hmodel,'SortChangedCallback',@myCallbackFunction);

table data filtering can be done in several ways . Matlab includes built-in filtering support
using the GlazedList package (see Section 5 .5 .5 below) . However, I believe that a much bet-
ter table data filter package is the open-source TableFilter package by luis Pena .37 all we
need to do to implement filtering is the following:

 1 . Download the latest TableFilter jar file (it will be named something such as
tablefilter-swing-4.1.4.jar)38

 2 . add this file to Matlab’s Java classpath, either statically (in classpath.txt) or
 dynamically (using the javaaddpath function), as described in Section 1 .1 .2

 3 . Call net.coderazzi.filters.gui.TableFilterHeader(jtable) in
Matlab:

 javaaddpath('tablefilter-swing-4.1.4.jar');
 filter = net.coderazzi.filters.gui.TableFilterHeader(jtable);

Automatic table filtering using TableFilter

TableFilter also provides the ability to automatically populate filter drop-down (combo-
box, popup-menu) values from the list of distinct data values in each table column . Note that
enabling this may take some time to run, depending on the amount of data . For this reason, this
feature is turned off by default . to turn it on, run this:

filter.setautoChoices(net.coderazzi.filters.gui.autoChoices.ENaBLED);

to retrieve the actual data in a filtered table, use the table’s RowSorter object . For exam-
ple, the following code returns the selected (filtered) row’s data upon selection a specific table
cell with the mouse:

set(jtable.getSelectionModel, 'ValueChangedCallback', ...
 {@selectionCallbackFcn,jtable});
function selectionCallbackFcn(jModel, jEventData, jtable)
 rowIdx = get(jModel,'LeadSelectionIndex');
 try
 rowIdx = jtable.getRowSorter.convertRowIndexToModel(rowIdx);
 catch
 % never mind: no filtering is used so stay with existing rowIdx
 end

K13163_Book.indb 172 11/8/2011 8:07:17 PM

© 2012 by Taylor & Francis Group, LLC

173Uitools

 % Now do something useful with the selected row’s data...
 data = jtable.getModel.getValueat(rowIdx,1); % column #2

 % alternate way to get the selected row’s data...
 data = jtable.getactualRowat(rowIdx);
 % ...
end % selectionCallbackFcn

4.1.5 JIDE Customizations
as noted above, table columns may be resized to dynamically fit their data:

com.jidesoft.grid.TableUtils.autoResizeallColumns(jtable);

the TableUtils class provides many other useful methods for tables .† For example,

TableUtils.ensureRowSelectionVisible(jtable);
TableUtils.ensureRowVisible(jtable,rowIndex);
columnIndex = TableUtils.findColumnIndex(jtable.getModel,columnName);

the new uitable, as stated earlier, is based on JIDE’s SortableTable class .39 this class
and its parent superclasses provide numerous possible customizations . Here, I will only men-
tion a few of these possible customizations . For more details, the reader is referred to the online
javadoc reference40 and to JIDE’s developer guide .41

One of the most annoying things with the standard JTable is that column widths can only
be resized interactively by mouse-dragging column header boundaries (not grid boundaries),
and row heights cannot be resized at all . JIDE easily fixes these issues:

jtable.setColumnResizable(true);
jtable.setRowResizable(true);

 Resizing of column width Resizing of row height

also related to this is the fact that, while Swing’s JTable enables setting row height
(jtable . setRowHeight(pixels)), JIDE’s table also enables setting different heights for differ-
ent rows (jtable .setRowHeights(com.jidesoft.grid.RowHeights)) .

† http://www .jidesoft .com/javadoc/com/jidesoft/grid/tableUtils .html (or http://bit .ly/ar9Wsy); do not confuse JIDE’s use-
ful TableUtils class with Mathworks’ much less useful com.mathworks . mwswing .TableUtils class, which
merely provides two methods: adjustRowHeight(jtable) and getXForColumn(jtable,columnIndex) .

K13163_Book.indb 173 11/8/2011 8:07:19 PM

© 2012 by Taylor & Francis Group, LLC

http://www.jidesoft.com/

Undocumented Secrets of MATLAB®-Java Programming174

JIDE’s SortableTable class indirectly extends CellSpanTable,42 and so if we use a
DefaultSpanTableModel,43 we can merge table cells by defining CellSpan44 objects:

import com.jidesoft.grid.*;
data = {'Fish','salmon',12;'Meat','steak',23;'Vegetables','Lettuce',4};
cols = {'Dish type', 'Dish', 'Price'};
jtable.setModel(SortableTableModel(DefaultSpanTableModel(data,cols)))
jtable.getModel.getactualModel.addCellSpan(CellSpan(1,0,2,1));
jtable.getModel.getactualModel.addCellSpan(CellSpan(0,1,2,2));

Example of two table cell spans(1 × 2 and 2 × 2)

the cell spans were defined using CellSpan’s constructor: startRow, startColumn, num-
Rows, numColumns . In this example, we defined 2×2 and 1×2 cell spans .

Note how we wrapped DefaultSpanTableModel within a SortableTableModel
wrapper . this is standard practice in table models . In fact, we can chain several such model
wrappers . Inner models are retrieved using getActualModel() . Even if we had not wrapped
DefaultSpanTableModel within a SortableTableModel, such a wrap would auto-
matically be applied by the JIDE code when we call jtable .setSortable(true) .

4.1.6 Controlling Table Structure (Adding/Deleting Rows)
In order to programmatically add or remove data rows, we can of course update the data and
then set the Matlab handle (mtable)'s Data property with the new data . Unfortunately, this
redraws the entire data, causing a noticeable flicker and delay if the data set is large .

Unfortunately, we cannot (as far as I know) add and remove data rows from the model of the
new uitable . We need to update the Data property, as noted above . and yes, this indeed causes
flickering .

In the old uitable, we can programmatically add or remove table rows without redrawing the
entire table . Simply call jtable .getModel .addRow() to append a new row at the table’s bot-
tom; or insertRow() to insert one row before another; or removeRow() to remove a specified
row . Remember to stop editing the current cell:

% Stop editing the current cell
function stopEditing(jtable)
 component = jtable.getEditorComponent;
 if ~isempty(component)
 event = javax.swing.event.ChangeEvent(component);
 jtable.editingStopped(event);
 end
end % stopEditing

K13163_Book.indb 174 11/8/2011 8:07:19 PM

© 2012 by Taylor & Francis Group, LLC

175Uitools

% Insert a new row immediately above the currently-selected row
function tableInsertRow(mtable)
 % Stop any current editing
 jtable = mtable.getTable;
 stopEditing(jtable);

 % Insert the new row immediately before the current row
 newRowData = cell(1,mtable.getNumColumns); % empty data
 newRowIdx = max(0,jtable.getSelectedRow);
 jtable.getModel.insertRow(newRowIdx, newRowData);
end % tableInsertRow

% Insert a new row as the last row in the table
function tableappendRow(mtable)
 % Stop any current editing
 jtable = mtable.getTable;
 stopEditing(jtable);

 % add a new row at the bottom of the data table
 newRowData = cell(1,mtable.getNumColumns); % empty data
 mtable.getTableModel.addRow(newRowData);

 % Move the selection to Column a of this new row
 jtable.changeSelection(jtable.getRowCount-1,0,false,false);
end % tableappendRow

% Delete the currently-selected row, if any rows are displayed
function tableDeleteRow(mtable)
 % Stop any current editing
 jtable = mtable.getTable;
 stopEditing(jtable);

 % If any rows are displayed
 rowCount = jtable.getRowCount;
 % rowCount might be 0 during slow processing & user double-click
 if (rowCount > 0)
 % Delete the currently-selected row
 row = max(0,jtable.getSelectedRow);
 col = max(0,jtable.getSelectedColumn);
 jtable.getModel.removeRow(row);
 if row >= rowCount-1
 jtable.changeSelection(row-1, col, false, false);
 elseif jtable.getSelectedRow < 0
 jtable.changeSelection(row, col, false, false);
 end
 end
end % tableDeleteRow

% Delete all table rows
function tableDeleteall(mtable)
 stopEditing(mtable.getTable);
 mtable.setNumRows(0);
end % tableDeleteall

K13163_Book.indb 175 11/8/2011 8:07:20 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming176

4.1.7 Final Remarks
One bug final fix needs to be done to uitables to solve a JTable bug,45 which also affects
uitables . the following fix was suggested by brad Phelan, following others:46

jtable.putClientProperty('terminateEditOnFocusLost', true);

I have written a wrapper47 for uitable which facilitates its integration in Matlab, includ-
ing all the specific settings in the previous pages: feel free to download it from the File Exchange
on Matlab Central . Here is a sample usage script in Matlab:

% Display the initial table
colHeaders = {'My','sortable','and selectable','column','names'};
data = {false, 1.3, 'abc', uint16(45), 'ert'; ...
 true, pi/2, 'def', uint16(13), 'test 123'; ...
 true, pi, 'ghi', uint16(0), '456...'};
mtable = createTable(hFig, colHeaders, data);

% Prepare an editable drop-down CellEditor
cb = javax.swing.JComboBox({'First','Last'});
cb.setEditable(true);
editor = javax.swing.DefaultCellEditor(cb);

% attach the new CellEditor to table column E (=Java index 4)
mtable.getTable.getColumnModel.getColumn(4).setCellEditor(editor);

createTable utility screenshot (note action buttons, sortable columns, and customized
CellEditor) (See color insert.)

Note how we have only modified column E’s CellEditor and not its CellRenderer .
this resulted in the drop-down appearing only for the currently selected cell, while all other
cells in column E use the DefaultCellRenderer to display their data as a simple text field .
Clicking outside the cell will revert its appearance to a standard text field .

4.2 Uitree

Since Matlab 7 (R14), MathWorks have included the unsupported function uitree in the
uitools folder . uitree uses the internal Matlab Java widget com.mathworks.hg.peer.
utils.UIMJTree, which derives from the standard Java Swing JTree48 class (via com.
mathworks.mwswing.MJTree — see Chapter 5) .

K13163_Book.indb 176 11/8/2011 8:07:20 PM

© 2012 by Taylor & Francis Group, LLC

177Uitools

Following uitable, which became documented and supported in the R2008a release, it seems
that MathWorks plan to make uitree a documented function as well, at least judging from the
following comment found in %matlabroot%/toolbox/local/hgrc .m:

Temporarily turn off old uitree and uitreenode deprecated function warning. . . When we intro-
duce the new documented uitree to replace the old undocumented uitree, . . .

uitree appears to be far less popular than uitable on Matlab’s File Exchange and the
CSSM forum–only two dozen answered threads over the years, mostly by the same people .49
However, uitree is a top search term on the UndocumentedMatlab .com website . My explanation
for this is that there is little available documentation and so few Matlab developers are
familiar with uitrees, but many would like to learn .

uitree sets up a scrollable Java Swing JTree onscreen without the hassle of setting up a
scrollable viewport and other similar nuts and bolts . also, uitree automatically knows how to
read and display root objects of type Handle Graphics, Simulink model, or char string (inter-
preted as a file-system folder name) .

On the other hand, uitree is also a far less useful wrapper of the underlying Java object than
uitable . If our data is one of the default types (HG object, Simulink model, or folder name), then
uitree does little more than set up a tree within a ScrollableViewport with some drag-and-
drop settings . as will be seen below, this is actually a very small part of the required setup .

uitree accepts an optional figure handle followed by P–V (property–value) pairs . Settable
properties are Root, ExpandFcn, SelectionChangeFcn, Parent, and Position . as in uitable,
a ‘v0’ input argument may be necessary to suppress a warning message .

uitree returns two arguments: a handle to the created tree (a com.mathworks.hg.peer.-
UITreePeer Java object wrapped within a Matlab handle) and an undocumented second
optional argument holding a handle to the Matlab GUI container of the created tree . these

K13163_Book.indb 177 11/8/2011 8:07:21 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming178

two arguments are exactly the two arguments returned from the javacomponent function (see
Chapter 3) . Use of the first return argument enables the user to specify the tree Units (e .g .,
‘Normalized’), Position, Visible (true/false), and a few other properties (see below) . uitree’s
help section implies that these properties may be passed directly as P–V pairs, just like Root or
ExpandFcn, but this is, in fact, not so . a few callbacks may also be set, as described below .

the uitree Units and Visibility properties may also be set via the second (container) output
argument . the container handle also enables changing other standard Matlab handle prop-
erties, such as Position, UserData, tag, HandleVisibility, etc . Note that the container handle
is a simple Matlab Handle-Graphics object, whereas the tree handle is a Java object wrapped
in a Matlab handle . this means that tree’s Visible property accepts true/false (or 1/0) val-
ues, whereas the container expects ‘on’/‘off’:

[mtree, container] = uitree('v0', 'Root','C:');
set(mtree, 'Visible', true);
set(container, 'Visible', 'on');

as in uitable, a uitree’s container handle can also be retrieved directly as follows:

mtree = uitree(...);
container = mtree.getUIContainer;
container = get(mtree,'UIContainer'); % equivalent method

and, conversely,

mtree = get(container,'JavaPeer'); % JavaPeer is a hidden property

like all javacomponent containers, the container handle has a few hidden undocu-
mented properties: JavaPeer (a handle to the mtree object), FigureChild (same), Pixelbounds,
HelptopicKey, Serializable, and so on . Some properties, while settable, appear to have no
effect (e .g ., Opaque and backgroundColor) .

Note that the uitree is always created as a direct child of the containing figure and disregards
creation-time Parent values . However, the Parent property can be modified following the tree’s
creation:

[mtree, container] = uitree(...,'Parent',hPanel); % Parent is ignored
set(container, 'Parent', hPanel);

as with uitable, it is useful to differentiate between the Matlab handle wrapper returned
by uitree (hereby called “mtree”) and its underlying Java object (“jtree”):

mtree = uitree(...);
jtree = mtree.getTree;
jtree = get(mtree, 'tree'); % an alternative method

4.2.1 Customizing Uitree
the jtree object reference handle has a much richer variety of available methods and call-
backs than mtree . this list is basically a superset of all Java Swing JTree functionalities,

K13163_Book.indb 178 11/8/2011 8:07:21 PM

© 2012 by Taylor & Francis Group, LLC

179Uitools

with a few MathWorks additions but also a few limitations .† the user is referred to the official
documentation50 or any good text about Java Swing . Use methodsview or uiinspect to see the
full list of available methods .

If we need to create a custom tree hierarchy (i .e ., our root node is not an HG object, Simulink
model, or folder name), then we need to use the similarly semi-documented uitreenode func-
tion as follows:

>> root = uitreenode(handle(mtree),'my root','c:\root.gif',false);
>> mtree.setRoot(root);
>> set(mtree,'Root',root); % alternative to mtree.setRoot()

>> mtree.Root = root; % lexically correct, but disallowed:
??? Changing the 'Root' property of javahandle_withcallbacks.
com.mathworks.hg.peer.UITreePeer is not allowed.

uitreenode accepts four arguments: a string or handle value (the node’s “internal” value), a
string description (shown next to the node’s icon), an icon filename ([] will result in an icon
assigned based on the node value), and a flag indicating whether the node is a leaf (no children)
or not . uitreenode is little more than a Matlab handle wrapper for com.mathworks.
hg.peer.UITreeNode (which itself is a derived class of javax.swing.tree.
DefaultMutableTreeNode51), with an added UserData property .

the root node can be hidden, making all its children nodes appear as top-level “roots” . this
can be done with the RootVisible property (default is 1 or true):

jtree.setRootVisible(false); % or: setRootVisible(0)

the jtree ShowRootHandles property, useful when RootVisible = false, controls the visibil-
ity of the “+” and “–” expansion signs next to root nodes (default is 0 or false):

jtree.setShowsRootHandles(true); % or: setShowsRootHandles(1)

 RootVisible = 0, ShowsRootHandles = 0 RootVisible = 0, ShowsRootHandles = 1

† For example, tooltips in uitrees cannot be as easily set as in Jtrees: http://www .mathworks .com/matlabcentral/ newsreader/
view_thread/153690 (or http://tinyurl .com/9amob6) .

K13163_Book.indb 179 11/8/2011 8:07:21 PM

© 2012 by Taylor & Francis Group, LLC

www.mathworks.com

Undocumented Secrets of MATLAB®-Java Programming180

a tree is meaningless without children . addition and removal of nodes can be done directly
(see Section 4 .2 .3) or indirectly (by creating a custom callback function for node expansion,
which returns a dynamic list of uitreenodes, that is then displayed) . uitree’s help section shows
an example for file-folder expansion (the indirect method) . Here is a similar implementation for
a GUI handle expansion:

set(mtree,'NodeExpandedCallback',@myExpandFcn);†

function nodes = myExpandFcn(tree, value)
 try
 iconpath = fullfile(matlabroot,'/toolbox/matlab/icons/');
 child = 0;
 ch = get(value,'children');
 for child = 1:length(ch)
 if ~isempty(get(ch(child),'children'))
 parent = 1;
 icon = [iconpath 'foldericon.gif'];
 else
 parent = 0;
 icon = [iconpath 'pageicon.gif'];
 % or set icon = [] to display the default icon
 end
 desc = get(ch(child),'type'); % textual description
 nodes(child)= uitreenode(ch(child),desc,icon,parent);
 end
 if ~child
 nodes = [];
 end
 catch
 error(['unknown uitree node type: ' value]);
 end
end % myExpandFcn

uitree, like uitable, is basically a Java object placed within a ScrollableViewport and
wrapped within a Matlab handle . as in uitable, uitree’s scrollbars can be customized . Refer
to the uitable scrollbar customization section 4 .1 .3 for a full discussion:

scroll = mtree.ScrollPane; % note different syntax vs. uitable
vScrollPolicy = scroll.VERTICaL_SCROLLBaR_aS_NEEDED;
scroll.setVerticalScrollBarPolicy(vScrollPolicy);
hScrollPolicy = scroll.HORIZONTaL_SCROLLBaR_aS_NEEDED;
scroll.setHorizontalScrollBarPolicy(hScrollPolicy);

uitree (mtree) enables several callbacks:

NodeSelectedCallback ◾ — invoked whenever any node is selected
NodeWillExpandCallback ◾ — invoked just before any node is expanded
NodeExpandedCallback ◾ — invoked right after a node has been expanded

† Note: uitree’s help section incorrectly calls this callback ExpandFcn . In fact, the property name is NodeExpanded Callback .

K13163_Book.indb 180 11/8/2011 8:07:21 PM

© 2012 by Taylor & Francis Group, LLC

181Uitools

NodeWillCollapseCallback ◾ — invoked just before any node is collapsed
NodeCollapsedCallback ◾ — invoked right after a node has been collapsed
NodeDroppedCallback ◾ — invoked after a node has been drag-and-dropped

the jtree object reference exposes some equivalent and many additional callbacks:

treeWillExpandCallback ◾ — invoked just before any node is expanded
treeExpandedCallback ◾ — invoked right after a node has been expanded
treeWillCollapseCallback ◾ — invoked just before any node is collapsed
treeCollapsedCallback ◾ — invoked right after a node has been collapsed
ValueChangedCallback ◾ — invoked after a node value has changed
as well as all the other regular GUI callbacks specified in Chapter 3: ◾
ancestoraddedCallback, ancestorMovedCallback,
ancestorRemovedCallback, ancestorResizedCallback,
CaretPositionChangedCallback, ComponentaddedCallback,
ComponentHiddenCallback, ComponentMovedCallback,
ComponentRemovedCallback, ComponentResizedCallback,
ComponentShownCallback, FocusGainedCallback, FocuslostCallback,
HierarchyChangedCallback, InputMethodtextChangedCallback,
KeyPressedCallback, KeyReleasedCallback, KeytypedCallback,
MouseDraggedCallback, MouseEnteredCallback, MouseExitedCallback,
MouseMovedCallback, MousePressedCallback, MouseReleasedCallback,
MouseClickedCallback, MouseWheelMovedCallback,
PropertyChangeCallback, and VetoableChangeCallback
but note that ◾ jtree does not have equivalents to mtree’s useful NodeSelectedCallback
and NodeDroppedCallback

4.2.2 Accessing Tree Nodes
trees, unlike tables, cannot be read all at once . Instead, selected tree nodes can be accessed and
read separately, often in a recursive manner:

function nodes = getNodeDescendants(root, nodes)
 if root.getChildCount > 0
 childrenVector = root.children;
 while childrenVector.hasMoreElements
 nodes(end + 1) = childrenVector.nextElement;
 nodes = getNodeDescendants(nodes(end), nodes);
 end
 end
end % getNodeDescendants

an important aspect of tree traversals is that only nodes which have previously been expanded
can return their children . Nodes which have not been expanded yet return zero children (just
like leaves), despite the fact that the tree knows that these nodes are not leaves .

K13163_Book.indb 181 11/8/2011 8:07:22 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming182

there are many ways of traversing the tree: We can use the Vector-based approach shown
above . an alternative is to use a loop-based approach using node .getChildCount (or node .
getSiblingCount) together with node .getChildAt . Note the difference between node children
(nodes whose direct Parent is this node) and siblings (nodes that share the same Parent node as
this node) . alternatively, one can use node .getNextNode, getNextLeaf, or getNextSibling .

alternatively again, we can use one of several predefined recursion strategies: node.
breadthFirstEnumeration, depthFirstEnumeration, postorderEnumera-
tion, preorderEnumeration, and pathFromancestorEnumeration . For example,

root2 = root.breadthFirstEnumeration;
while root2.hasMoreElements
 node = root2.nextElement;
end

Note that in this and other similar cases involving collection enumeration, we have to store
the collection in a temporary variable (here, root2) before traversing it . Otherwise, the collec-
tion enumeration will keep getting initialized in an endless loop:†

% The following code causes an endless loop – beware!
while root.breadthFirstEnumeration.hasMoreElements
 node = root.breadthFirstEnumeration.nextElement;
end

UITreeNodes have the following properties (read-only, except where noted):

allowsChildren ◾ — true if the node is not a leaf (read/write) .‡

leaf ◾ — true if the node is a leaf .
leafNode ◾ — appears to be the same as leaf, except for being read/write .
ChildCount ◾ — the number of direct children (not their descendants) .
SiblingCount ◾ — the number of nodes sharing this node’s Parent .
leafCount ◾ — the number of descendant leaves .
Depth ◾ — depth beneath node (based on descendants expanded so far) .
level ◾ — the node level beneath the root (root’s level = 0) .
FirstChild ◾ , lastChild — node children (first/last) — used for traversal .
NextNode ◾ , PreviousNode — next/prev child node — used for traversal .
NextSibling ◾ , PreviousSibling — next/prev sibling node — used for traversal .
Firstleaf ◾ , lastleaf — node children which are leaves — used for traversal .
Nextleaf ◾ , Previousleaf — next/prev child leaf node — used for traversal .
Root ◾ — true for the root node, false otherwise .
Parent ◾ — parent node (empty for root node) .
Path ◾ — list of all node ancestors, up to and including the root node .
Value ◾ — internal value of this node (read/write) .

† See a discussion of this in Section 2 .1 .3 .
‡ Strictly speaking, this depends on the value of mtree .getModel’s asksallowsChildren property, but this property is

normally unchanged from its default value of false .

K13163_Book.indb 182 11/8/2011 8:07:22 PM

© 2012 by Taylor & Francis Group, LLC

183Uitools

Name ◾ — node label (description), displayed next to icon (see below, R/W) .
Icon ◾ — node icon image (see below, read/write) .
UserObject ◾ — user-defined data storage (see below, read/write) .
UserObjectPath ◾ — list of UserObject values for all node ancestors, up to root .
UserData ◾ — regular Matlab user-defined data storage (read/write) .

these properties are essentially inherited from Java Swing’s DefaultMutableTreeNode
class, from which UITreeNode derives . the user is referred to official Swing documenta-
tion52 or any good Swing book for additional details .

4.2.3 Controlling Tree Nodes
In order to collapse and expand nodes programmatically, one could theoretically use mtree .
collapse(node) and mtree .expand(node) . However, this often fails (I am unsure why), and we
need to resort to using one of the following methods:

mtree.collapse(node); % often fails
nodePath = javax.swing.tree.TreePath(node.getPath);
jtree.collapsePath(nodePath); % this works
nodeRow = jtree.getRowForPath(nodePath);
jtree.collapseRow(nodeRow); % an alternative method that works

JIDE’s com.jidesoft.tree.TreeUtils class (see Section 5 .7 .2) provides static
convenience methods that can be used instead: expandAll(jtree,true/false), expandAll(jtree,
jTreePath,true/false) . Matlab’s com.mathworks.mwswing.TreeUtils class pro-
vides similar convenience methods .

Nodes can be programmatically selected using mtree .setSelectedNode(node) . Multiple
nodes may be selected using mtree .setSelectedNodes, if an earlier call to mtree .-
setMultipleSelectionEnabled(true) was made (default is multiple-selection disabled):

mtree.setSelectedNode(root); % root is a node
mtree.setSelectedNodes([root, node1, node2]);

Programmatically selecting multiple tree nodes

K13163_Book.indb 183 11/8/2011 8:07:22 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming184

the jtree object reference handle has several additional selection methods: setSelection-
Path, setSelectionPaths, setSelectionRow, and setSelectionRows, as well as several other meth-
ods affecting selection . Use methodsview or uiinspect to see the full list of available methods .

Similar to uitable, tree node selection is controlled via a policy set in TreeSelection
Model,53 which affects the way in which multiple table cells may be selected together . Possible
selection policy values are: SINGLE_TREE_SELECTION (the default), CONTIGUOUS_
TREE_ SELECTION and DISCONTIGUOUS_TREE_SELECTION:

import javax.swing.tree.TreeSelectionModel;
selectPolicy = TreeSelectionModel.CONTIGUOUS_TREE_SELECTION;
jtree.setSelectionMode(selectPolicy);

the currently selected node(s) can be accessed using mtree .getSelectedNodes, or one of
several jtree methods: getSelectionPath, getSelectionPaths, or getSelectionRows . the first
two methods return javax.swing.tree.TreePath Java object(s) . TreePath is a vector
of all nodes linking the selected node to the root node .

to extract the actual selected node (without its parents), use the following method:

node = jtree.getSelectedPath.getLastPathComponent;

Note that jtree .getSelectionRows returns the rows in 0-based indexing, so the top (root)
node is row #0 . also note that row indexes are those appearing on screen, so any nonexpanded
folder are only counted as a single row . therefore, expanding/collapsing nodes will affect the
row indexes of selected nodes that are below the expanded/collapsed node .

Node selection callbacks often require knowledge of the currently selected rows:

>> mtree = uitree (..., 'SelectionChangeFcn',@mySelectFcn);
>> set(mtree, 'SelectionChangeFcn',@mySelectFcn); % an alternative

function nodes = mySelectFcn(tree, value)
 selectedNodes = tree.getSelectedNodes;
 if ~isempty(selectedNodes)
 % ...
 end
end % mySelectFcn

Nodes can be added or removed programmatically using one of several related methods of
the TreeModel .† uitree uses javax.swing.tree.DefaultTreeModel,54 but we can use
any hierarchical data class which implements the simple javax.swing.tree.TreeModel
interface .55 the uitree model is accessible via both mtree .getModel and jtree .getModel .
the relevant DefaultTreeModel methods for node addition and removal are
insertNodeInto(childNode, parentNode, childIndex) and removeNodeFromParent(node)
respectively . a sample usage in Matlab was posted a few years ago on CSSM .56

† the role of the Model in Swing components is explained at http://java .sun .com/products/jfc/tsc/articles/architecture/
(or http://tinyurl .com/atggc) .

K13163_Book.indb 184 11/8/2011 8:07:22 PM

© 2012 by Taylor & Francis Group, LLC

http://java.sun.com

185Uitools

DefaultTreeModel has some useful self-explanatory callbacks that may be set by the user:
treeNodesChangedCallback, treeNodesInsertedCallback, treeNodesRemovedCallback,
and treeStructureChangedCallback . these can be set in the normal Matlab manner:

set(jtree.getModel, 'TreeStructureChangedCallback', @myFunc);

Nodes can also be added, moved or removed by node methods: node .add(anotherNode)
adds anotherNode to the end of this node’s children list (possibly detaching it from its previous
parent); node .insert(anotherNode,index) does the same but inserts anotherNode at a specific
child index rather than at the end; node .clone() makes a duplicate of this node that can then be
added to another node; node .remove(index) and node .remove(node) remove a specific node
whereas node .removeFromParent() removes this node; node .removeAllChildren() removes
all children, if any, of this node .

Finally, mtree .add(parent,nodes) allows adding a list of nodes to a parent node57 and
mtree .remove(nodes) removes the specified nodes .

4.2.4 Customizing Tree Nodes
Modification of a tree node’s icon image can be done programmatically as follows:

myIcon = fullfile(matlabroot,'/toolbox/matlab/icons/foldericon.gif');
jImage = java.awt.Toolkit.getDefaultToolkit.createImage(myIcon);
node.setIcon(jImage);
node.setIcon(im2java(imread(myIcon))); % an alternative

Real-life programs should check and possibly update jImage’s size to 16 pixels, before setting
the node icon; otherwise, the icon might get badly cropped . this is how it can be done:

function iconImage = setIconSize(iconImage)
 try
 iconWidth = iconImage.getWidth;
 iconHeight = iconImage.getHeight;
 if iconWidth > 16
 newHeight = fix(iconHeight * 16 / iconWidth);
 iconImage = iconImage.getScaledInstance(16,newHeight, ...
 iconImage.SCaLE_SMOOTH);
 elseif iconHeight > 16
 newWidth = fix(iconWidth * 16 / iconHeight);
 iconImage = iconImage.getScaledInstance(newWidth,16, ...
 iconImage.SCaLE_SMOOTH);
 end
 catch
 % never mind... - return original icon
 end
end % setIconSize

Node icons can also be created programmatically (without requiring an existing icon image
file), using Matlab’s im2java function .58

K13163_Book.indb 185 11/8/2011 8:07:22 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming186

Nodes can be modified from leaf (nonexpandable) to parent behavior (=expandable) by set-
ting their leafNode property (a related property is allowsChildren):

set(node,'LeafNode',false); % =expandable
node.setLeafNode(false); % an alternative

Nodes can contain user data in their UserObject property, which is similar to Matlab’s
ubiquitous UserData property . Using the UserObject property is the preferred way to set appli-
cative node data for uitrees . However, we need to be aware that it modifies the stored data in
some rare cases . In such cases, use the node’s UserData or applicationData property
instead:

>> node.setUserObject(gcf)
>> isequal(node.getUserObject, gcf) %ok
ans =
 1

>> node.setUserObject(handle(gcf))
>> isequal(node.getUserObject, handle(gcf)) % not ok!
ans =
 0

>> set(node,'UserData',handle(gcf))
>> isequal(get(node,'UserData'), handle(gcf)) % ok!: UserData is safe
ans =
 1

Node names (descriptions) can be set using node .setName(‘. . .’) . Note that the horizontal
space allotted for displaying the node name will not change until the node is collapsed or
expanded . So, if the new name requires more than the existing space, it will be displayed as
something like “abc . . .”, until the node is expanded or collapsed .

Node names support HtMl just like all Java Swing labels . therefore, we can specify font
size/face/color, bold, italic, underline, super-/sub-script, and so on:

txt1 = '<html><u><i>abra</i></u>';
txt2 = '<sup>kadabra</html>';
node.setName([txt1,txt2]);

HtMl-enriched tree nodes

K13163_Book.indb 186 11/8/2011 8:07:22 PM

© 2012 by Taylor & Francis Group, LLC

187Uitools

If we include a
 element in our label, the node name splits into two lines and does not
have enough vertical space to display correctly . It does not help to expand or collapse the node
in this case — we need to increase the vertical spacing from the default setting of 16 pixels .
this can be done for all tree nodes at once using a positive pixel value, or dynamically for each
cell by specifying a non-positive value:

jtree.setRowHeight(32); % static height for all nodes
jtree.setRowHeight(0); % dynamic height for each node

If we require fine-grained control over the tree node’s appearance, we need to modify its
CellRenderer . the concept of using a CellRenderer class to display cells and a
CellEditor to edit cells is similar to the one described in uitable, and the reader is referred
there (Section 4 .1 .1) for details . Swing texts and online documentation are also good references .59
uitree uses com.mathworks.hg.peer.UITreePeerRenderer as a custom renderer
class . User-defined renderer classes should normally derive from javax.swing.tree.
DefaultTreeCellRenderer,60 but we can always create our own implementation from
scratch . after preparing the renderer, attach it to the tree:

renderer = javax.swing.tree.DefaultTreeCellRenderer;
renderer = jtree.getCellRenderer; % an alternative based on existing
renderer.setOpenIcon(im2java(imread(myIcon)));
renderer.setIconTextGap(8); % default = 4 [pixels]
jtree.setCellRenderer(renderer);

CellEditors derive from javax.swing.tree.DefaultTreeCellEditor.61 uitree
does not use any CellEditor, since its tree is read-only . to use a CellEditor, first enable
cell editing and then specify an editor and attach it to the tree . Finally, assign a data-change
callback to modify the displayed label and icon . Here is a simple example:

% Enable tree cell editing
jtree.setEditable(true);

% Define tree cell editor and attach it to the tree
cb = javax.swing.JComboBox({'First','Last'});
editor = javax.swing.DefaultCellEditor(cb);
%editor = javax.swing.DefaultCellEditor(javax.swing.JCheckBox);
jtree.setCellEditor(editor)

% Define a data-changed callback for the cell editor
callback = {@dataChangedCallback, jtree};
set(editor,'EditingStoppedCallback',callback);

function dataChangedCallback(hEditor,eventData,jtree)
 currentNode = jtree.getSelectionPath.getLastPathComponent;
 currentNode.setName(get(hEditor,'CellEditorValue'));
end % dataChangedCallback

K13163_Book.indb 187 11/8/2011 8:07:22 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming188

Unlike uitables, uitrees do not have a default context menu, activated on mouse right-click .
this is relatively easy to set up, using a Java Swing popup menu (Note the similarities and slight
differences compared with the PopupMenu that was presented in Section 3 .6):62

% Prepare the context menu (note the use of HTML labels)
menuItem1 = javax.swing.JMenuItem('action #1');
menuItem2 = javax.swing.JMenuItem('<html>action #2');
menuItem3 = javax.swing.JMenuItem('<html><i>action #3');

% Set the menu items' callbacks
set(menuItem1,'actionPerformedCallback',@myFunc1);
set(menuItem2,'actionPerformedCallback',{@myfunc2,data1,data2});
set(menuItem3,'actionPerformedCallback','disp ''action #3...'' ');

% add all menu items to the context menu (with internal separator)
jmenu = javax.swing.JPopupMenu;
jmenu.add(menuItem1);
jmenu.add(menuItem2);
jmenu.addSeparator;
jmenu.add(menuItem3);

% Set the tree mouse-click callback
% Note: Default actions (expand/collapse) will still be performed
% Note: MousePressedCallback is better than MouseClickedCallback
% since it fires immediately when mouse button is pressed,
% without waiting for its release, as MouseClickedCallback does
set(jtree, 'MousePressedCallback', {@mousePressedCallback,jmenu});

% Set the mouse-press callback
function mousePressedCallback(hTree, eventData, jmenu)
 if eventData.isMetaDown % right-click is like a Meta-button
 % Get the clicked node
 clickX = eventData.getX;
 clickY = eventData.getY;
 jtree = eventData.getSource;
 treePath = jtree.getPathForLocation(clickX, clickY);
 try
 % Modify the context menu or some other element
 % based on the clicked node. Here is an example:
 node = treePath.getLastPathComponent;
 nodeName = ['Current node: ' char(node.getName)];
 item = jmenu.add(nodeName);

 % remember to call jmenu.remove(item) in item callback
 % or use the timer hack shown here to remove the item:
 timerFcn = {@removeItem,jmenu,item};
 start(timer('TimerFcn',timerFcn,'StartDelay',0.2));
 catch
 % clicked location is NOT on top of any node
 % Note: can also be tested by isempty(treePath)
 end

K13163_Book.indb 188 11/8/2011 8:07:22 PM

© 2012 by Taylor & Francis Group, LLC

189Uitools

 % Display the (possibly-modified) context menu
 jmenu.show(jtree, clickX, clickY);
 jmenu.repaint;
 end
end % mousePressedCallback

% Remove the extra context menu item after display
function removeItem(hObj,eventData,jmenu,item)
 jmenu.remove(item);
end % removeItem

% Menu items callbacks must receive at least 2 args:
% hObject and eventData – user-defined args follow after these two
function myfunc1(hObject, eventData)
 % ...

function myFunc2(hObject, eventData, myData1, myData2)
 % ...

uitree node-specific context menu

4.2.5 FindJObj
One of my favorite File Exchange submissions, FindJObj,63 uses uitree (well, actually its
underlying UITreePeer) and uitreenode extensively . FindJObj explores the GUI hierarchy
of a specified figure or container and displays it in a tree view (see Section 7 .2 .3) .† Selection of
a tree node displays the node’s properties/callbacks . FindJObj uses custom node icons (taken
from the components themselves, where available) and programmatically expands/collapses
nodes . the reader is welcome to download FindJObj and read the sections dealing with the
tree and its nodes .

Here is a screenshot of what FindJObj found for the sample uitree displayed in the screen-
shots above . Note that the uitree is apparently a UIMJTree object embedded in a JViewport

† FindJObj also has the ability to return the underlying Java component handle of the requested MATLAB handle (see
Section 7 .2 .2) .

K13163_Book.indb 189 11/8/2011 8:07:23 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming190

with two ScrollBars (horizontal & vertical), all contained within an MJScrollPane
 container, which itself is contained in javacomponent’s HGPanel:

FindJObj presentation of the sample uitree from Section 4.2.4

4.3 Uitab

uitabgroup and the related uitab functions,64 available since 2004 (R14 SP2, aka 7 .0 .4), use the
internal Matlab Java widget com.mathworks.hg.peer.UITabGroupPeer, which appears
to use an internal javax.swing.JTabbedPane65 which was extended with some extra meth-
ods (type ‘methodsview com.mathworks.hg.peer.UITabGroupPeer’ to see the list) .

Unlike uitable and uitree, which use actual Java objects to both store and present the data,
uitabgroup only sets up the Java object to display the tabs, whereas the tab contents themselves
are placed in entirely unrelated Matlab uicontainers . Matlab uses very clever double-
booking to keep the Java and Matlab objects synchronized . the ability to “switch” tabs is
actually an optical illusion: in reality, a listener placed on the SelectedIndex property of the tab
group causes the relevant Matlab container to display and all the rest to become hidden .
Other listeners control containers’ position and size based on the tab group’s . addition and
removal of tabs use similar methods to add/remove empty tabs to the JTabbedPane . Check
the code in %matlabroot%/toolbox/matlab/@uitools/@uitabgroup/schema .m for details .

a drawback of this complex mechanism is the absence of a single customizable Java object
as in uitable or uitree . the benefit is that it allows us to place any Matlab content within the
tabs, including plot axes that cannot be added to Java containers . Had uitabgroup been a Java
container, we could not have added plot axes or images to its tabs .66 the UISplitPane utility,
described in Chapter 10, uses a similar solution .

K13163_Book.indb 190 11/8/2011 8:07:24 PM

© 2012 by Taylor & Francis Group, LLC

191Uitools

Here is how a simple tab group is set up, adapted from uitabgroup’s help section:†

hTabGroup = uitabgroup; drawnow;
tab1 = uitab(hTabGroup, 'title','Panel 1');
a = axes('parent', tab1); surf(peaks);
tab2 = uitab(hTabGroup, 'title','Panel 2');
uicontrol(tab2, 'String','Close', 'Callback','close(gcbf)');

Here, the returned uitabgroup object hTabGroup is actually a Matlab container
(extending uiflowcontainer) that always displays two elements: the Java tab group and the
active Matlab uicontainer (the active tab’s contents) . the behavior of hTabGroup’s
FlowDirection property is, therefore, clear: FlowDirection accepts one of the several
enumerated types: the default is ‘topdown’, displaying the Java tab group on top of the Matlab
container . Other types are ‘bottomup’, ‘lefttoright’ (or ‘auto’), and ‘righttoleft’ (or ‘autoreverse’) .
Unfortunately, the Java tab orientation is not modified when changing FlowDirection, and so
using this property is usually not a good idea .

a better way is to use the tablocation property, which is a specific property for uitabgroup
that accepts ‘top’, ‘bottom’, ‘left’, and ‘right’: the tab orientation is automatically arranged based
on this location . So, for example, using a ‘left’ tablocation causes the tabs to be arranged
vertically, as expected .

 TabLocation = ‘top’ TabLocation = ‘left’

another hTabGroup property of interest is Margin, which sets the margin in pixels before
each of the displayed elements — not just between them as might be expected: Increasing

† Recent Matlab releases throw a warning when using this code: either add the ‘v0’ input arg to uitabgroup and uitab calls
or suppress the Matlab:uitabgroup:MigratingFunction warning in Matlab versions up to 7 .10 (R2010a); remove the
‘v0’ input arg and supress the Matlab:uitabgroup:OldVersion waning in Matlab 7 .11 (R2010b) or newer .

K13163_Book.indb 191 11/8/2011 8:07:25 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming192

Margin (default = 2 pixels) increases the gap between the tab group and the active tab’s con-
tents but also the gap between the tab group and the figure’s edge:

Margin = 20

tab selection can be done programmatically, by setting hTabGroup’s SelectedIndex prop-
erty . this property is also readable, which is useful when setting callback actions based on the
selected tab, using the SelectionChangeFcn callback:

set(hTabGroup,'SelectionChangeFcn',@myCallbackFcn);
set(hTabGroup,'SelectedIndex',2); % activate second tab

In Matlab 7 .11 R2010b, a new hidden property called Selectedtab has been
added: Selectedtab accepts a uitab handle rather than its index, and it can be used as
an alternative to SelectedIndex . also in R2010b, SelectionChangeFcn was renamed
SelectionChangeCallback:

set(hTabGroup,'SelectionChangeCallback',@myCallbackFcn); % R2010b +
set(hTabGroup,'SelectedIndex',2); % activate second tab
set(hTabGroup,'SelectedTab',tab2); % alternative on R2010b +

4.3.1 Customizing Tabs at the Java level
additional control over the tab group’s behavior can be achieved by customizing the underlying
UITabGroupPeer Java object . this object is not directly exposed by uitabgroup, but it
can be found using the FindJObj utility (see above) or via the hidden applicationData or

K13163_Book.indb 192 11/8/2011 8:07:25 PM

© 2012 by Taylor & Francis Group, LLC

193Uitools

 callbacks . Remember that Java uses 0-based indexing, so tab #1 is actually the second tab .
HtMl is accepted just as in other Swing components:

% Get the underlying Java reference using FindJObj
jTabGroup = findjobj('class','tabgroup');

% a direct alternative for getting jTabGroup
jTabGroup = getappdata(handle(hTabGroup),'JTabbedPane');

% another direct alternative for getting jTabGroup
callback = get(getappdata(tab1,'TabGroupChildListener'),'Callback');
jTabGroup = callback{3}.getComponent;

% Now use the Java reference to set the title, tooltip etc.
jTabGroup.setTitleat(1,'Tab #2');
jTabGroup.setTitleat(1,'<html><i>Tab #2');
jTabGroup.setToolTipTextat(1,'Tab #2');

Enabled is another useful property that is only settable using the Java object . Enabled can
be set for the entire tab group using jTabGroup .setEnabled(true/false), or for a specific tab
using jTabGroup .setEnabledAt(tabIndex,true/false) . Note that setting the property value for
a specific tab overrides the value set for all tabs, despite the fact that setEnabled is called after
setEnabledAt:67

jTabGroup.setEnabledat(1,false); % disable only tab #1 (=second tab)
jTabGroup.setEnabled(false); % disable all tabs
jTabGroup.setEnabled(true); % re-enable all tabs (except tab #1)

Similarly, we can set the tab font color using setForeground and setForegroundAt or via
HtMl (again, setForegroundAt overrides anything set by setForeground):

jTabGroup.setForegroundat(1,java.awt.Color(1.0,0,0)); % tab #1
jTabGroup.setTitleat(1,'<html><i>Panel 2');
jTabGroup.setForeground(java.awt.Color.red);

Unfortunately, the corresponding setBackgroundAt(tabIndex,color) method has no visible
effect, and the Matlab-extended tabs keep their white/gray backgrounds . a similar attempt
to modify the tab’s backgroundColor property fails, since Matlab made this property
unmodifiable (=‘none’) .† the simple solution is to use CSS:68

jTabGroup.setTitleat(1,'<html><div style="background:#ffff00;">Tab2');
jTabGroup.setTitleat(1,'<html><div style="background:yellow;">Tab2');

† http://www .mathworks .com/matlabcentral/newsreader/view_thread/258700 (or http://bit .ly/dtisOw); the backgroundColor
property is actually modifiable, but a PropertyPostSet listener (see appendix b) placed on the property reverts its value back
to ‘none’ . at any rate, this property affects the Matlab uicontainer (content)’s background color and not the tab’s .

K13163_Book.indb 193 11/8/2011 8:07:25 PM

© 2012 by Taylor & Francis Group, LLC

www.mathworks.com

Undocumented Secrets of MATLAB®-Java Programming194

We can also set a background gradient image for the tabs, using the CSS background-image
directive . Similarly, we can set foreground text color (color directive), font, and so on .

uitabgroup with non-default tab colors and fonts (See color insert.)

as explained in Section 3 .3 .2, jTabGroup’s look-and-feel can be modified:

 WindowslookAndFeel WindowsClassiclookAndFeel Plastic3DlookAndFeel

 MotiflookAndFeel NimbuslookAndFeel MetallookAndFeel

Icons and sub-components can be added to the tabs .69 Unfortunately, for some reason that I
do not fully understand, jTabGroup .setIconAt has no apparent effect . the solution is to set
our own custom control as the requested tab, and then add our icon (or other customizations) to
it . Section 4 .6 .4 has a detailed description of using icons . Here is a simple example:

% add an icon to tab #1 (=second tab)
icon = javax.swing.ImageIcon('C:\Yair\save.gif');
jLabel = javax.swing.JLabel('Tab #2');
jLabel.setIcon(icon);
jTabGroup.setTabComponentat(1,jLabel); % Tab #1 = second tab

% Notice how the label and icon are automatically grayed when disabled
jTabGroup.setEnabledat(1,false); % disable only tab #1

K13163_Book.indb 194 11/8/2011 8:07:38 PM

© 2012 by Taylor & Francis Group, LLC

195Uitools

tab with a custom icon (enabled and disabled) (See color insert.)

Now, let us try a more complex example, of adding a close (“x”) button to one of the tabs .
Generalization of this code snippet is left as an exercise to the reader:

% First let us load the close icon
jarFile = fullfile(matlabroot,'/java/jar/mwt.jar');
iconsFolder = '/com/mathworks/mwt/resources/';
iconURI = ['jar:file:/' jarFile '!' iconsFolder 'closebox.gif'];
icon = javax.swing.ImageIcon(java.net.URL(iconURI));

% Now let us prepare the close button: icon, size and callback
jCloseButton = handle(javax.swing.JButton,'CallbackProperties');
jCloseButton.setIcon(icon);
jCloseButton.setPreferredSize(java.awt.Dimension(15,15));
jCloseButton.setMaximumSize(java.awt.Dimension(15,15));
jCloseButton.setSize(java.awt.Dimension(15,15));
set(jCloseButton, 'actionPerformedCallback', @(h,e)delete(tab2));

% Now let us prepare a tab panel with our label and close button
jPanel = javax.swing.JPanel; % default layout = FlowLayout
set(jPanel.getLayout, 'Hgap',0, 'Vgap',0); % default gap = 5 pixels
jLabel = javax.swing.JLabel('Tab #2');
jPanel.add(jLabel);
jPanel.add(jCloseButton);

% Now attach this tab panel as the tab-group's second tab component
jTabGroup.setTabComponentat(1,jPanel); % Tab #1 = second tab

tab with an attached close button (See color insert.)

K13163_Book.indb 195 11/8/2011 8:07:38 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming196

there are other things that we can customize, such as setting mnemonics (keyboard shortcuts),
etc . — refer to the official documentation70 or any good text about Java Swing . the callbacks
are the same as the standard Swing component callbacks, except for StateChangedCall back,
which is automatically linked to the internal function that synchronizes between the Java tab
group and the Matlab uicontainers (in other words: it is not a good idea to mess with it) .

Some jTabGroup functions that work well with standard JTabbedPane fail with uitab
group, for example, jTabGroup .setIconAt or setTabLayoutPolicy .71 I am unsure of the reason
for this . Other limitations with uitabgroup are a reported problem when compiling any GUI
that includes it;72 a reported bug when reordering tabs;73 a reported problem rendering some
graphic object properties (e .g ., clipping);74 and a reported problem in displaying tabs containing
activeX75 or Java objects76 (plus suggested solutions77) . Interested readers can fix all these issues
by modifying the m-files in the folders %matlabroot%/toolbox/matlab/@uitools/@uitabgroup
and /@uitools/@uitab . at least some of these problems are fixed as of R2010a .

Readers might also be interested in the Yet Another Layout Manager utility .78 this utility
directly uses Swing’s JTabbedPane object to implement tab panels, essentially mimicking
the built-in uitab/uitabgroup functions .

4.3.2 Tabdlg and Other Alternatives
tabdlg is a related semidocumented and unsupported uitool that, unlike uitabgroup, creates a
tabbed user interface using plain Matlab, without reliance on Java (all Matlab GUI
 ultimately rely on Java, but tabdlg uses no Java beyond that) . the end result looks less profes-
sional than uitabgroup, but it works even when Java does not .

tabdlg has an extensive readable help section, so it will not be detailed here . In brief, the
input parameters specify the tab labels, dimensions, offsets, callbacks, font, default tab, sheet
dimensions, and parent figure . Whenever tabdlg is invoked without any input arguments, the
following default sample tabs are shown:

 tabdlg left tab tabdlg right tab

K13163_Book.indb 196 11/8/2011 8:07:40 PM

© 2012 by Taylor & Francis Group, LLC

197Uitools

there are many implementations of tab panels in Matlab’s File Exchange .79 Matlab’s
official Desktop blog had an article about a specific example, which was that week’s Pick of the
Week,80 relying on buttons that are easy to implement, but in my personal opinion, they are a
far cry from our expectations of a tab panel . better utilities are Multiple Tab GUI,81 Highlight
Tab Objects easily,82 and best of all uitabpanel,83 TabPanel Constructor,84 or the excellent GUI
Layout Toolbox .85

4.4 Uiundo

uiundo is a very useful tool for Matlab GUI:86 Whenever we have a Matlab GUI contain-
ing user controls which the user may modify (edit boxes, checkboxes, sliders, toggle buttons,
etc .), we may wish to include an undo/redo feature . this would normally be a painful program-
ming task, but uiundo saves much of the setup work . Unlike uitools presented so far, uiundo is
not Java based but rather uses Matlab’s classes and schema-based object-oriented approach .
However, it is such a useful and undocumented Matlab GUI concept, which is also used in
the following section, that I thought readers of this book will benefit from a short discussion of
this feature .

to use uiundo, invoke it in each uicontrol callback function (where we normally place GUI
logic), with the undo/redo action name, the undo-ing action, and the redo-ing action (if it has
been undone) .† uiundo then takes care of adding this data to the figure’s undo/redo options
under Edit in the main figure menu .

let us build a simple GUI consisting of a slider that controls the value of an edit box:

hEditbox = uicontrol('style','edit', 'position',[20,60,40,40]);
set(hEditbox, 'Enable','off', 'string','0');
hSlider = uicontrol('style','slider','userdata',hEditbox);
callback = @(h,e) set(hEditbox,'string',num2str(get(gcbo,'value')));
set(hSlider,'Callback',callback);

A simple GUI example

† Until R2010b, uiundo had a bug in a declared yet unset return value — this was fixed in R2011a by removing the return
value .

K13163_Book.indb 197 11/8/2011 8:07:40 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming198

Now, attach undo/redo actions to the slider’s callback:

set(hSlider,'Callback',@test_uiundo);

% Main callback function for slider updates
function test_uiundo(varargin)
 % Update the edit box with the new value
 hEditbox = get(gcbo,'userdata');
 newValue = get(gcbo,'value');
 set(hEditbox,'string',num2str(newValue));

 % Retrieve and update the stored previous value
 oldValue = getappdata(gcbo,'oldValue');
 if isempty(oldValue), oldValue=0; end
 setappdata(gcbo,'oldValue',newValue);

 % Prepare an undo/redo action
 cmd.Name = sprintf('slider update (%g to %g)',oldValue,newValue);

 % Note: the following is not enough since it only
 % updates the slider and not the editbox...
 %cmd.Function = @set; % Redo action
 %cmd.Varargin = {gcbo,'value',newValue};
 %cmd.InverseFunction = @set; % Undo action
 %cmd.InverseVarargin = {gcbo,'value',oldValue};

 % This takes care of the update problem...
 cmd.Function = @internal_update; % Redo action
 cmd.Varargin = {gcbo,newValue,hEditbox};
 cmd.InverseFunction = @internal_update; % Undo action
 cmd.InverseVarargin = {gcbo,oldValue,hEditbox};

 % Register the undo/redo action with the figure
 uiundo(gcbf,'function',cmd);
end % test_uiundo

% Internal update function to update slider & editbox
function internal_update(hSlider,newValue,hEditbox)
 set(hSlider, 'value',newValue);
 set(hEditbox,'string',num2str(newValue));
end % internal_update

 R2007a R2008a
Undo/redo functionality integrated in the figure's main menu-bar

K13163_Book.indb 198 11/8/2011 8:07:41 PM

© 2012 by Taylor & Francis Group, LLC

199Uitools

Note that sometime in 2007, Matlab added the standard Ctrl-Z/Ctrl-Y keyboard binding
support to its undo/redo functionality, as seen in the above screenshots .

We can invoke the current Undo and Redo actions programmatically by calling uiundo with
the ‘execUndo’ and ‘execRedo’ arguments:

uiundo(hFig,'execUndo');
uiundo(hFig,'execRedo');

When invoking the current Undo and Redo actions programmatically, we can ensure that
this action is invoked only if it is a specific action that is intended:

uiundo(hFig,'execUndo','Save data'); % should equal cmd.Name

a little extra digging in undocumented territory enables additional customization of the
undo/redo functionality: Matlab stores all of a figure’s undo/redo data in a hidden figure
object, referenced by getappdata(hFig,’uitools_FigureToolManager’). this
object, defined in %matlabroot%/toolbox/matlab/uitools/@uiundo/, uses a stack to store
instances of the undo/redo cmd data structure introduced above

% Retrieve redo/undo object
undoObj = getappdata(hFig,'uitools_FigureToolManager');
if isempty(undoObj)
 undoObj = uitools.FigureToolManager(hFig);
 setappdata(hFig,'uitools_FigureToolManager',undoObj);
end

>> get(undoObj)
 CommandManager: [1x1 uiundo.CommandManager]
 Figure: [1x1 figure]
 UndoUIMenu: [1x1 uimenu]
 RedoUIMenu: [1x1 uimenu]

there are several interesting things that we can do with this undoObj . First, let us modify
the main-menu items (see Section 4 .6 for more details):

% Modify the main menu item (similarly for redo/undo)
if ~isempty(undoObj.RedoUIMenu)
 undoObj.RedoUIMenu.Position = 1; %default=2 (switch undo/redo)
 undoObj.RedoUIMenu.Enable = 'off'; % default='on'
 undoObj.RedoUIMenu.Checked = 'on'; % default='off'
 undoObj.RedoUIMenu.ForegroundColor = [1,0,0]; % =red
end
if ~isempty(undoObj.UndoUIMenu)
 undoObj.UndoUIMenu.Label = '<html><i>&Undo action';
 undoObj.UndoUIMenu.Separator = 'on'; % default='off'
 undoObj.UndoUIMenu.Checked = 'on'; % default='off'
 undoObj.UndoUIMenu.ForegroundColor = 'blue'; % default=black
end

K13163_Book.indb 199 11/8/2011 8:07:41 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming200

Note: &Undo underlines the ‘U’ and adds a keyboard accelerator, but unfortunately this only
works if the label is non-HtMl . In our case, we use HtMl for the font effects (<i>),
so we lost the accelerator in the process .

Now, let us take a look at undoObj’s CommandManager child (the Figure child is simply
handle(hFig) and so is not very interesting):

>> undoObj.CommandManager.get
 UndoStack: [13x1 uiundo.FunctionCommand]
 RedoStack: [1x1 uiundo.FunctionCommand]
 MaxUndoStackLength: []
 Verbose: []

>> undoObj.CommandManager.UndoStack(end).get
 Parent: []
 MCodeComment: []
 Name: 'slider update (0.48 to 0.38)'
 Function: @internal_update
 Varargin: {[53.0037841796875] [0.38] [1x1 double]}
 InverseFunction: @internal_update
 InverseVarargin: {[53.0037841796875] [0.48] [1x1 double]}

this looks familiar: In fact, it is exactly the cmd data structure that is being passed to the
uiundo function, with the additional (apparently unused) properties Parent and
MCodeComment . CommandManager’s UndoStack and RedoStack contain all stored undo/
redo actions such that the latest action is at the end of these stack vectors .

We can inspect the latest undo/redo actions, without activating them, by using
CommandManager’s peekundo() and peekredo() methods, which return empty [] if no undo/
redo action is available:

>> undoObj.CommandManager.peekredo.get % first check if isempty…
 Parent: []
 MCodeComment: []
 Name: 'slider update (0.38 to 0.28)'

K13163_Book.indb 200 11/8/2011 8:07:41 PM

© 2012 by Taylor & Francis Group, LLC

201Uitools

 Function: @internal_update
 Varargin: {[53.0037841796875] [0.28] [1x1 double]}
 InverseFunction: @internal_update
 InverseVarargin: {[53.0037841796875] [0.38] [1x1 double]}

>> undoObj.CommandManager.peekundo.get
 Parent: []
 MCodeComment: []
 Name: 'slider update (0.48 to 0.38)'
 Function: @internal_update
 Varargin: {[53.0037841796875] [0.38] [1x1 double]}
 InverseFunction: @internal_update
 InverseVarargin: {[53.0037841796875] [0.48] [1x1 double]}

>> undoObj.CommandManager.peekundo.Name
ans =
slider update (0.48 to 0.38)

We can undo/redo the latest action (last UndoStack/RedoStack element) by invoking
CommandManager’s undo()/redo() methods . this is actually what uiundo does behind the
scenes when calling it with the ‘execUndo’ and ‘execRedo’ arguments:

undoObj.CommandManager.undo;
undoObj.CommandManager.redo;

We can clear the entire action stack by using CommandManager’s empty() method:

undoObj.CommandManager.empty;

If we set CommandManager’s Verbose property to a nonempty value, debug information
is spilled onto the Command Window when new uiundo actions are added:

>> undoObj.CommandManager.Verbose = 1;
% now move the slider and see the debug info below:

internal_update(h_uicontrol, [0.48,], h_uicontrol); % Called by
slider update (0.28 to 0.48)
internal_update(h_uicontrol, [0.58,], h_uicontrol); % Called by
slider update (0.48 to 0.58)

Finally, CommandManager uses its MaxUndoStacklength property to limit the size of the
undo/redo stacks . this property is defined as read-only in %matlabroot%\toolbox\matlab\uitools@
uiundo@CommandManager\schema .m line #12, and so if we wish to programmatically modify
this property from its default value of empty (=unlimited), we will need to comment out that line .

Java Swing has a very similar UndoManager object,87 which predates the Matlab object
by many years . It is obvious that the Matlab’s mechanism has its roots in this Java object .
However, Matlab’s mechanism appears to be a separate implementation that does not
directly extend Swing’s UndoManager . Matlab’s undo manager has several advantages in

K13163_Book.indb 201 11/8/2011 8:07:41 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming202

Matlab compared with Java’s UndoManager (automatic tie-in to the figure’s Edit menu,
acceptance of Matlab actions, etc .) . I, therefore, strongly suggest using Matlab’s undo
manager in Matlab applications rather than using Java’s UndoManager .

uiundo is further revisited in Section 4 .5 .5, where it is used to illustrate adding dynamic
undo/redo buttons to the figure toolbar .

Note: a utility called GUIHistory was submitted by Malcolm lidierth to the Matlab
File Exchange .88 this utility encapsulates Matlab GUI undo/redo and can be used by
readers who find Matlab’s uiundo functionality too complex .

4.5 Toolbars

Matlab has elected to only partially document its toolbar-related functions: initially intro-
duced in Matlab 5 .3, as undocumented internal functions,89 uitoolbar, uipushtool, and uito
ggletool, are now fully documented and supported functions that enable the user to specify a
user-defined toolbar (and toolbar buttons) . On the other hand, other related functions, uigettool,
uigettoolbar and uitoolfactory, remain unsupported and only semidocumented (possessing a
readable help section, but not online doc) . these functions access the default Matlab toolbar .
MathWorks possibly feels more comfortable in letting users access and manipulate user-defined
toolbars than the system toolbars . For this reason, the handles for the default toolbar and its
buttons are hidden (found only by findall and not by findobj) .

uigettool and uigettoolbar retrieve a specified toolbar button handle for a specified figure
handle and action name (uigettoolbar was deprecated in Matlab 7 .4, but while the docu-
mentation says there is no replacement, apparently uigettool is the replacement) . the actions
are typically named <Group> .<button>, for example, ‘annotation .Insertlegend’ or ‘Standard .
EditPlot’ . beware: action names have changed between Matlab versions: for example, the
Zoom-in button (‘Exploration .ZoomIn’) was previously named ‘figtoolZoomIn’ . alternately,
search all figure handles’ tag property:90

% Get the toolbar handle
hToolbar = findall(allchild(hFig),'flat','type','uitoolbar');
hToolbar = findall(hFig,'tag','FigureToolBar'); % equivalent

% Get the list (cell-array) of all toolbar actions
actionNames = get(findall(hToolbar),'tag');

% access a specific toolbar button
hButton = uigettool(hFig, 'Exploration.ZoomIn');
hButton = uigettoolbar(hFig, 'Exploration.ZoomIn'); % equivalent
hButton = findall(hFig,'Tag', 'Exploration.ZoomIn'); % equivalent

Once a toolbar button handle is gotten, the button can be enabled/disabled (via its Enabled
property), shown/hidden (Visible property), separated from or adjoined to its neighbors

K13163_Book.indb 202 11/8/2011 8:07:41 PM

© 2012 by Taylor & Francis Group, LLC

203Uitools

(Separated), shown depressed (State), tooltip-ed (tooltip), icon-customized (CData),91 and
deleted (by simply calling delete(hButton)) .

Several button callback properties are available: ClickedCallback is invoked upon button
click; OnCallback and OffCallback are invoked when the button State changes on/off .92 all
the standard HG properties are also accessible: UserData, tag, Parent, applicationData, and
so on . Refer to the online documentation for details .93

Modification of the ClickedCallback is an easy way to change the default figure toolbar’s behav-
ior . For example, to modify the print button’s default print action to a print-preview action:94

% Find the Print button's handle
hPrintButton = findall(hToolbar,'tag','Standard.PrintFigure');

% Modify the button's callback action & tooltip
set(hPrintButton, 'ClickedCallback','printpreview(gcbf)', ...
 'TooltipString','Print Preview');

Modification of the Print button’s default action

Similarly, the New Figure button () can be customized to open a new data-entry dialog
window; the Open button () can be customized to only open files of specific formats; the

Save button () can be modified to Save as . . . (or to save using a non-*.fig format);95 the
legend button () can be used to customize the displayed legend’s contents, appearance and
location, and so on .

4.5.1 Uitoolfactory
uitoolfactory96 creates a toolbar button (or button group) based on any predefined default figure
button . this is useful when creating a user-defined toolbar that should contain only some of the
default toolbar’s buttons . Of course, an alternative could be to simply remove unneeded buttons
from the default toolbar . Depending on the number of needed/unneeded default buttons, either
approach could be used:

% alternative 1: use uitoolfactory to add buttons to a new toolbar
hNewToolbar = uitoolbar ('parent',hFig);
hButton = uitoolfactory(hNewToolbar,'Standard.EditPlot');
hButton = uitoolfactory(hNewToolbar,'Exploration.ZoomIn');
set(hButton,'Separator','on');
hButton = uitoolfactory(hNewToolbar,'Exploration.ZoomOut');
hButton = uitoolfactory(hNewToolbar,'Exploration.Pan');

K13163_Book.indb 203 11/8/2011 8:07:42 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming204

% alternative 2: remove unneeded buttons from the default toolbar
% Note: in the findall() results below, toolbar is the 1st handle;
% rightmost button is the 2nd; leftmost is the last
hDefaultButtons = findall(hToolbar); % leftmost button is last
delete(hDefaultButtons([2:7,end-3:end]));
set(hDefaultButtons(end-4),'separator','off');

A slimmed-down toolbar

uitoolfactory without args lists all registered toolbar buttons in the Command Window:

>> uitoolfactory
 TOOLBaR ITEMS
 Standard.NewFigure
 Standard.FileOpen
 Standard.SaveFigure
 Standard.PrintFigure
 Standard.EditPlot
 Exploration.ZoomIn
 Exploration.ZoomOut
 Exploration.Pan
 Exploration.Rotate
 Exploration.DataCursor
 annotation.InsertColorbar
 annotation.InsertLegend
 annotation.InsertRectangle
 annotation.InsertEllipse
 annotation.InsertTextbox
 annotation.InsertTextarrow
 annotation.InsertDoublearrow
 annotation.Insertarrow
 annotation.InsertLine
 annotation.Pin
 annotation.alignDistribute
 Plottools.PlottoolsOff
 Plottools.PlottoolsOn

uitoolfactory’s help section has a documentation flaw: it mentions that use of a second input
parameter, ‘getinfo’, returns the list of all registered toolbar buttons whose handle is specified

K13163_Book.indb 204 11/8/2011 8:07:43 PM

© 2012 by Taylor & Francis Group, LLC

205Uitools

as the first parameter . In fact, it is only by NOt specifying a second parameter that this data can
be found:†

>> hToolbar = findall(allchild(hFig),'flat','type','uitoolbar');
>> toolInfo = uitoolfactory(hToolbar)
toolInfo =
1x23 struct array with fields:
 name
 group
 constructor
 properties
 icon <= files in [matlabroot '/toolbox/matlab/icons/']

>> toolInfo(1)
ans =
 name: 'NewFigure'
 group: 'Standard'
 constructor: 'uipushtool'
 properties: [1x1 struct]
 icon: 'newdoc'
>> toolInfo(1).properties
ans =
 ClickedCallback: 'filemenufcn(gcbf,'FileNew')'
 ToolTip: 'New Figure'

>> toolInfo(6)
ans =
 name: 'ZoomIn'
 group: 'Exploration'
 constructor: 'uitoggletool'
 properties: [1x1 struct]
 icon: 'view_zoom_in.gif'
>> toolInfo(6).properties
ans =
 ClickedCallback: 'putdowntext('zoomin',gcbo)'
 ToolTip: 'Zoom In'

Note: uitoolfactory has a bug: using a second specified output parameter that is not mentioned
in the help section, nor ever assigned within the code, causes a runtime error if used .‡

4.5.2 Other Undocumented Toolbar Functions
the uitools folder still contains an ancient (Matlab 5, mid-1990s vintage) set of functions
whose aim was to mimic toolbar buttons by patches drawn on invisible axes next to each
other . these functions, probably left for backward compatibility, do not posses any noticeable

† this documentation flaw was fixed in R2011a .
‡ this bug was also fixed in R2011a .

K13163_Book.indb 205 11/8/2011 8:07:43 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming206

advantage over the newer toolbar functions, either documented (uitoolbar, uipushtool, and
uitoggletool) or not (uigettool and uitoolfactory) .

this set of obsolete functions includes btngroup, btnicon, btnresize, btnstate, btnpress,
btndown, and btnup: btngroup sets the button group (toolbar); btnicon sets specific predefined
icons for a button; icondisp displays a specific icon (or all icons if no icon name is specified); btnre
size resizes a button; the other btn functions get or set the button’s depressed state . Oddly, these btn
functions are not indicated as obsolete or unsupported within their code or help section, although
they have no online help . Interested readers can find a few ancient references in CSSM .97

Output of icondisp

4.5.3 Customizing Toolbars at the Java level
Usage of undocumented Java toolbar functionality enables additional customization of toolbars .
Matlab toolbars are com.mathworks.mwswing.MJToolBar objects that extend the
standard javax.swing.JToolBar .98 We can easily interlace the functionality of the Java
reference handle with the functionality of the Matlab handle .

For example, a CSSM user has once posted a question99 asking how to add large buttons to
the Matlab toolbar . apparently, Matlab uses a 25-pixel-high toolbar and crops any but-
ton added to this toolbar in order to fit this height . this can be changed as follows:

First, let us enlarge the toolbar height from its default 25 pixels to 50:

hToolbar = findall(hFig,'tag','FigureToolBar');
jToolbar = get(get(hToolbar,'JavaContainer'),'ComponentPeer');
jToolbar.setPreferredSize(java.awt.Dimension(10,50));
jToolbar.revalidate; % refresh/update the displayed toolbar

K13163_Book.indb 206 11/8/2011 8:07:44 PM

© 2012 by Taylor & Francis Group, LLC

207Uitools

Now, let us add a 32×32 button:

icon = fullfile(matlabroot,'/toolbox/matlab/icons/warning.gif');
[cdata,map] = imread(icon);
cdata = ind2rgb(cdata,map);
hButton = uipushtool(hToolbar,'cdata',cdata,'tooltip','Warning');

Enlarged toolbar (50 pixels high) with a cropped warning button

Initially, Matlab crops the button to 23×23, but we can modify its maximum size so that
it looks perfect (increase the width if you wish wider margins between buttons):

% The requested button is the last component in the toolbar
numButtons = jToolbar.getComponentCount;
newSize = java.awt.Dimension(35,50);

% Remember that Java indexes start at 0, not 1...
jToolbar.getComponent(numButtons-1).setMaximumSize(newSize);
jToolbar.revalidate;

Enlarged toolbar with a non-cropped large warning button

alternately, we can resize the button to the standard 16×16 toolbar icon size†

icon = jToolbar.getComponent(numButtons-1).getIcon;
iconImg = icon.getImage; % a java.awt.image.BufferedImage object
newIconImg = iconImg.getScaledInstance(16,16,iconImg.SCaLE_SMOOTH);
icon.setImage(newIconImg);
jToolbar.revalidate; % refresh/update the displayed toolbar

Regular toolbar with a perfectly sized warning button

† If the white, instead of transparent, icon background disturbs your aesthetics, you can further customize this image as
described in http://www .rgagnon .com/javadetails/java-0265 .html (or http://tinyurl .com/dyspal) .

K13163_Book.indb 207 11/8/2011 8:07:45 PM

© 2012 by Taylor & Francis Group, LLC

http://www.rgagnon.com

Undocumented Secrets of MATLAB®-Java Programming208

Instead of using Matlab’s uipushtool/uitoggletool, we can add JComponents directly
into our jToolbar . this is particularly useful for drop-downs (javax.swing.JComboBox),
checkboxes, and so on, which cannot be added to the toolbar using plain-vanilla Matlab:

jToolbar = get(get(hToolbar,'JavaContainer'),'ComponentPeer');
jCheckBox = javax.swing.JCheckBox('Checkbox');
hCheckBox = handle(jCheckBox,'CallbackProperties');
set(hCheckBox, 'actionPerformedCallback', @myCallbackFcn);
jToolbar.add(hCheckBox,5); % 5th position, after printer icon
jToolbar.revalidate;

Addition of a Java control to the standard MAtlAb toolbar

a blog reader has asked100 why buttons added to the toolbar in this manner appear “flat”
instead of appearing three-dimensional like buttons created outside the toolbar . the answer is
that the new buttons actually behave consistently with the default toolbar buttons (and the win-
dowing system, for that matter): their border is painted only when we hover the mouse over the
button . this is controlled by the JButton’s RolloverEnabled property (which is true by
default, but can be turned off at will):

jButton.setRolloverEnabled(false);
set(jButton,'RolloverEnabled','off'); % an alternative

to always display a border, override the button’s default border property:101

jBorder = javax.swing.BorderFactory.createRaisedBevelBorder;
jButton.setBorder(jBorder);

 Default toolbar button toolbar button with non-default border

Remember that toolbars are simply containers for internal components, generally buttons
and separators . these components can be accessed individually . an example of this can be
found in my FindJObj utility that lists the individual figure components: whenever the user
selects a toolbar button (or any other Java component), its border is temporarily modified to a
flashing red rectangle:

K13163_Book.indb 208 11/8/2011 8:07:46 PM

© 2012 by Taylor & Francis Group, LLC

209Uitools

FindJObj utility accessing a specific toolbar button (See color insert.)

an additional interesting functionality of toolbars that can only be used in Java is enabling a
floating toolbar, via jToolbar .setFloatable(1) .102 the toolbar can then be dragged from its
docked position at the top of the figure menu, becoming enclosed in an independent floating win-
dow (a non-modal javax.swing.JDialog child of the parent figure, to be exact) . Since this
toolbar window has a very small initial size and no name, a simple immediate fix is required as
follows:

jToolbar.setFloatable(true);
hjToolbar = handle(jToolbar,'CallbackProperties'); % for callbacks
set(hjToolbar,'ancestoraddedCallback',@dockUndockCallbackFcn);

% Sample dockUndockCallbackFcn function
function dockUndockCallbackFcn(hjToolbar, eventData)
 if hjToolbar.isFloating
 jToolbarWin = hjToolbar.getTopLevelancestor;
 jToolbarWin.setTitle('Toolbar');
 % jToolbarWin.setResizable(true); %to enable manual resize
 jToolbarWin.setPreferredSize(java.awt.Dimension(380,57));
 jToolbarWin.setSize(java.awt.Dimension(380,57));
 jToolbar.revalidate; %repaint toolbar
 jToolbarWin.getParent.validate; %repaint parent figure

K13163_Book.indb 209 11/8/2011 8:07:46 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming210

 end
end % dockUndockCallbackFcn

 Undocked toolbar . . .the same undocked toolbar after minor fixes

Re-docking a floating toolbar is done by simply closing the floating window (clicking the
“X” button at the window’s top-right corner) — the toolbar then re-appears in its default (top)
position within the parent figure window . the standard Java JToolBar, which Matlab’s
MJToolBar extends, allows floating toolbars to be manually dragged and pinned to the win-
dow sides,103 but apparently the Matlab extension prevents it .

Here is how to programmatically place the toolbar on the window’s bottom:

jPanel = jToolbar.getParent.getParent;
jPanel.add(jToolbar.getParent,java.awt.BorderLayout.SOUTH);
jPanel.revalidate;

Unfortunately, when we try to use the same method for placing the toolbar on the left/right
sides of the window, the figure gets “frozen” and unresponsive . Perhaps, someone can enlighten
me what needs to be changed in the following code:

jToolbar.setOrientation(jToolbar.VERTICaL);
jPanel.add(jToolbar.getParent,java.awt.BorderLayout.WEST);
jPanel.revalidate;

there are other interesting functions/properties available via the Java object . these can be
explored using the methods, methodsview, inspect, and uiinspect functions .

For example, addGap() can be used to add a transparent gap between the rightmost toolbar
component and the window border: this gap is kept even if the window is shrunk — the right-
most components disappear, maintaining the requested gap .

setBackground() sets the background color that is seen beneath any transparent pixels of
button images and gaps . Nontransparent (opaque or colored) pixels are not modified . If the but-
ton icons are improperly created, the result looks bad:

jToolbar.setBackground(java.awt.Color.cyan) % or: Color(0,1.0,1.0)

K13163_Book.indb 210 11/8/2011 8:07:47 PM

© 2012 by Taylor & Francis Group, LLC

211Uitools

Some of the default figure toolbar buttons having opaque backgrounds

We can modify the toolbar buttons to have a consistent background as follows:

color = java.awt.Color.cyan; %or: Color(0,1.0,1.0)
jToolbar.setBackground(color);
jToolbar.getParent.getParent.setBackground(color);
jtbc = jToolbar.getComponents;
for idx = 1 : length(jtbc)
 jtbc(idx).setOpaque(false);
 jtbc(idx).setBackground(color);
 for childIdx = 1 : length(jtbc(idx).getComponents)
 jtbc(idx).getComponent(childIdx-1).setBackground(color);
 end
end

Default figure toolbar buttons fixed in order to present a consistent background

setMorePopupEnabled() specifies the behavior when the window resizes to such a small
width that one or more toolbar buttons disappear — by default (=1 or true), the chevron (>>)
mark appears on the toolbar’s right, enabling display of missing buttons, but this behavior can
be overridden (0 or false) to simply crop the extra buttons .

setRollover() controls the behavior when the mouse passes (“rolls”) over the toolbar buttons .
the default value (1 or true) displays a three-dimensional button border, creating an embossing
effect; this can be overridden (0 or false) for a different effect:

% Set non-default Rollover and MorePopupEnabled property values
jToolbar.setRollover(false); % or: set(jToolbar,'Rollover','off')
jToolbar.setMorePopupEnabled(0); % or: set(...,'MorePopupEnabled','off')

Default Rollover and MorePopupEnabled Nondefault Rollover and MorePopupEnabled

K13163_Book.indb 211 11/8/2011 8:07:47 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming212

4.5.4 Uisplittool and Uitogglesplittool
Matlab 7 .6 (R2008a) and onward contain a reference to uisplittool and uitogglesplittool in
the javacomponent .m and %matlabroot%/bin/registry/hg .xml files . these are reported as built-
in functions by the which function, although they have no corresponding m-file as other similar
built-in functions:

>> which uisplittool
built-in (C:\Matlab\R2008a\toolbox\matlab\uitools\uisplittool)

these uitools are entirely undocumented, even as these lines are written in 2010, with
Matlab 7 .12 (R2011a) around the corner . an acute reader (Jeremy Raymonds) suggested that
they are related to toolbars, like other uitools such as uipushtool and uitoggletool . this turned
out to be the missing clue that unveiled these useful tools:

both uisplittool and uitogglesplittool are basic HG building blocks used in Matlab tool-
bars similarly to the well-documented uipushtool and uitoggletool. Uisplittool presents a sim-
ple drop-down, whereas uitogglesplittool presents a drop-down that is also selectable .

the plot-selection drop-down control on the Desktop’s Workspace toolbar () is an
example of a uisplittool:

A uisplittool in action in the MATLAB Desktop

Other examples are the Publish and Run controls on the Matlab Editor’s toolbar

(,) . these controls, like other Matlab toolbar controls, have a fly-over

(hover) embossing effect on by default, as seen in this Publish control image . When
we click the narrow arrow button, which is adjacent to the main control image, a drop-down
appears with a control-specific functionality .

K13163_Book.indb 212 11/8/2011 8:07:49 PM

© 2012 by Taylor & Francis Group, LLC

213Uitools

the brush / Select-Data control on the figure’s toolbar () is an example of a uitog
glesplittool . It behaves very similarly to a uisplittool in its drop-downs . In addition, it also
supports a persistent selection:

 No mouse fly-over Mouse fly-over

Unselected

Selected

addition of uisplittool and uitogglesplittool to a toolbar is done in a similar manner to add-
ing uipushtools and uitoggletools:

hToolbar = findall(hFig,'tag','FigureToolBar');
hUndo = uisplittool('parent',hToolbar); % uisplittool
hRedo = uitogglesplittool('parent',hToolbar); % uitogglesplittool

Default figure toolbar with additional user-created uisplittool and uitogglesplittool buttons

Just as with uipushtools and uitoggletools, the new buttons have an empty button-face
appearance, until we fix their CData, tooltip, and similar settable properties:

% Load the Redo icon
icon = fullfile(matlabroot,'toolbox/matlab/icons/greenarrowicon.gif');
[cdata,map] = imread(icon);

% Convert white pixels into a transparent background
map(find(map(:,1) + map(:,2) + map(:,3) = =3)) = NaN;

% Convert into 3D RGB-space
cdataRedo = ind2rgb(cdata,map);
cdataUndo = cdataRedo(:,[16:-1:1],:);

% add the icon (and its mirror image = undo) to latest toolbar
set(hUndo, 'cdata',cdataUndo, 'tooltip','undo','Separator','on', ...
 'ClickedCallback','uiundo(gcbf,''execUndo'')');
set(hRedo, 'cdata',cdataRedo, 'tooltip','redo', ...
 'ClickedCallback','uiundo(gcbf,''execRedo'')');

K13163_Book.indb 213 11/8/2011 8:07:50 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming214

uisplittool and uitogglesplittool buttons with nonempty icons

Note that the controls can be created with these properties in a single command:

hUndo = uisplittool('parent',hToolbar, 'cdata',cdataRedo, ...);

let us now re-arrange our toolbar buttons . Unfortunately, at least in Matlab versions
7 .6–7 .12 (R2008a–R2011a), an apparent bug causes uisplittools, uitogglesplittools, and any
directly added Java component to always be placed flush-left when the toolbar’s children are
re-arranged . therefore, we cannot re-arrange the buttons at the HG-children level (as shown in
Section 4 .5 .5), but we can still re-arrange directly at the Java level:

jToolbar = get(get(hToolbar,'JavaContainer'),'ComponentPeer');
jButtons = jToolbar.getComponents;
for buttonIdx = length(jButtons)-3 : -1 : 7 % end-to-front
 jToolbar.setComponentZOrder(jButtons(buttonIdx), buttonIdx+1);
end
jToolbar.setComponentZOrder(jButtons(end-2), 5); % Separator
jToolbar.setComponentZOrder(jButtons(end-1), 6); % Undo
jToolbar.setComponentZOrder(jButtons(end), 7); % Redo
jToolbar.revalidate;

uisplittool and uitogglesplittool button positions rearranged (not as simple as it may
seem)

Now that we have added the controls, we need to specify their drop-down functionality:
uisplittool and uitogglesplittool have a Callback property in addition to the standard
ClickedCallback property that is available in uipushtools and uitoggletools . the standard
ClickedCallback is invoked when the main button is clicked, while Callback is invoked when
the narrow arrow button is clicked .† the accepted convention is that ClickedCallback should

† uitogglesplittool, like uitoggletool, also has settable OnCallback and OffCallback callback properties .

K13163_Book.indb 214 11/8/2011 8:07:50 PM

© 2012 by Taylor & Francis Group, LLC

215Uitools

invoke the default control action (in our case, an Undo/Redo of the topmost undo action stack),
while Callback should display a drop-down of selectable actions .

to set the drop-down functionality, we can use the Callback property to programmatically
present a GUI of our choice to the user — we are definitely NOt confined to a simple drop-
down . However, as noted above, the accepted convention is to present a selection drop-down .
While this can be done programmatically using the Callback property, this functionality is
already prebuilt into uisplittool and uitogglesplittool for our benefit . to access it, we need to
get the control’s underlying Java component . this is normally done using the findjobj utility
(see Section 7 .2 .2), but in this case, we have a shortcut: the control handle’s hidden
JavaContainer property that holds the underlying com.mathworks.hg.peer .
SplitbuttonPeer (or .ToggleSplitButtonPeer) Java reference handle . this Java object’s
MenuComponent property returns a reference to the control’s drop-down sub-component (a
com.mathworks.mwswing.MJPopupMenu object):

>> jUndo = get(hUndo,'JavaContainer')
jUndo =
com.mathworks.hg.peer.SplitButtonPeer@f09ad5

>> jMenu = get(jUndo,'MenuComponent') % or: =jUndo.getMenuComponent
jMenu =
com.mathworks.mwswing.MJPopupMenu[Dropdown Picker ButtonMenu,...]

let us add a few simple textual options:

jOption1 = jMenu.add('Option #1');
jOption1 = jMenu.add('Option #2');

set(jOption1, 'actionPerformedCallback', 'disp(''option #1'')');
set(jOption2, 'actionPerformedCallback', {@myCallbackFcn, extraData});

Setting up of uisplittool and uitogglesplittool popup menus

Popup menus are described in detail in Sections 4 .2 .4, 4 .8 .3, 6 .6 .2, and elsewhere .104 Sections
4 .6 .3 and 4 .6 .4 explain how menu items can be set with icons and HtMl markup . Sub-menus
can also be added .

like uipushtool and uitoggletool, uisplittool and uitogglesplittool also have unique type
property values, ‘uisplittool’ and ‘uitogglesplittool’, respectively . the handles can also be tested
using the built-in isa function:

K13163_Book.indb 215 11/8/2011 8:07:50 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming216

>> isa(handle(hUndo),'uisplittool') % or: 'uitogglesplittool'
ans =
 1

>> class(handle(hUndo))
ans =
uisplittool

4.5.5 Adding Undo/Redo Toolbar Buttons
an important customization of the uiundo functionality (described in Section 4 .4) is the addi-
tion of undo/redo buttons to the figure toolbar .105 I am unclear why such an elementary feature
was not included in the default figure toolbar, but this is a fact that can easily be remedied using
the functionalities we explored earlier in this section . We start by adding simple undo/redo
toolbar buttons:

% Load the Redo icon
icon = fullfile(matlabroot,'toolbox/matlab/icons/greenarrowicon.gif');
[cdata,map] = imread(icon);

% Convert white pixels into a transparent background
map(find(map(:,1) + map(:,2) + map(:,3) = =3)) = NaN;

% Convert into 3D RGB-space
cdataRedo = ind2rgb(cdata,map);
cdataUndo = cdataRedo(:,[16:-1:1],:);

% add the icon (and its mirror image = undo) to latest toolbar
hUndo = uipushtool('cdata',cdataUndo, 'tooltip','undo', ...
 'ClickedCallback','uiundo(gcbf,''execUndo'')');
hRedo = uipushtool('cdata',cdataRedo, 'tooltip','redo', ...
 'ClickedCallback','uiundo(gcbf,''execRedo'')');

Setting up of simple undo/redo buttons

K13163_Book.indb 216 11/8/2011 8:07:51 PM

© 2012 by Taylor & Francis Group, LLC

217Uitools

We would normally preserve hUndo and hRedo, and modify their tooltip and Enable prop-
erties in runtime, based on availability and name of the latest undo/redo actions:

latestUndoaction = undoObj.CommandManager.peekundo;
if isempty(latestUndoaction)
 set(hUndo, 'Tooltip','', 'Enable','off');
else
 tooltipStr = ['undo' latestUndoaction.Name];
 set(hUndo, 'Tooltip',tooltipStr, 'Enable','on');
end

In the preceding screenshot, since no figure toolbar was previously shown, uipushtool added
the undo and redo buttons to a new toolbar . Had the figure toolbar been visible, the buttons
would have been added to its right end . Since undo/redo buttons are normally requested near
the left end of toolbars, we need to re-arrange the toolbar buttons . this is done by re-arranging
the buttons at the HG-children level:

hToolbar = findall(hFig,'tag','FigureToolBar');
%hToolbar = get(hUndo,'Parent'); % an alternative
hButtons = findall(hToolbar);

% all buttons need to be visible in order to be re-arrangeable
oldStatus = get(0,'showHiddenHandles');
set(0 ,'showHiddenHandles','on');
set(hToolbar,'children',hButtons([4:end-4,2,3,end-3:end])); %rearrange
set(0,'showHiddenHandles',oldStatus); % restore previous status
set(hUndo,'Separator','on');

Simple undo/redo buttons added to the default figure toolbar

K13163_Book.indb 217 11/8/2011 8:07:51 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming218

Note: another re-arrangement method, which overcomes the uisplittool flush-left bug, is to
use Java-level re-arrangement, as explained in Section 4 .5 .4 .

More advanced customization is required to present the undo/redo actions in a drop-down
(combo-box) . Unfortunately, since Matlab only enables adding uipushtools and uitoggle
tools to toolbars, we need to use a Java component . the drawback of using such a component is
that it is inaccessible via the toolbar’s Children property (implementation of the drop-down
callback function is left as an exercise to the reader):

jToolbar = get(get(hToolbar,'JavaContainer'),'ComponentPeer');
if ~isempty(jToolbar)
 undoactions = get(undoObj.CommandManager.UndoStack,'Name');
 jCombo = javax.swing.JComboBox(undoactions(end:-1:1));
 set(jCombo, 'actionPerformedCallback', @myUndoCallbackFcn);
 jToolbar(1).add(jCombo,5); % 5th position, after printer icon
 jToolbar(1).repaint;
 jToolbar(1).revalidate;
end

% Drop-down (combo-box) callback function
function myUndoCallbackFcn(hCombo,hEvent)
 itemIndex = get(hCombo,'SelectedIndex'); % 0 = topmost item
 itemName = get(hCombo,'SelectedItem');
 % user processing needs to be placed here
end % myUndoCallbackFcn

Undo/redo popup (actually, a drop-down) menu added to the default figure toolbar

Note: Java components added directly to the Java toolbar in this fashion are not saved
with the rest of the figure data/GUI when the figure is saved . a simple workaround for this
limitation is to place the code that adds the Java components in the figure’s CreateFcn
callback . this callback value is stored with the rest of the figure’s data/GUI and will be
executed whenever the figure is reloaded from the disk .106

K13163_Book.indb 218 11/8/2011 8:07:51 PM

© 2012 by Taylor & Francis Group, LLC

219Uitools

let us now extend this example to use a small uisplittool rather than using a wide combo-box .
a uisplittool will also enable us to easily undo/redo the latest action (like a simple toolbar button,
by clicking the main uisplittool button) as well as select items from the actions drop-down (like
a combo-box, by clicking the attached arrow button) — all this using a single Java component .

Finally, let us attach the undo actions to our Undo button’s drop-down . this assumes that our
GUI is already displayed — remember that the uicontrol function hides the figure toolbar and
destroys all our previous customization work . Here is the complete code, which extends the
uiundo code that was presented in Section 4 .4:†

% Display our GUI
hEditbox = uicontrol('style','edit', 'position',[20,60,40,40], ...
 'Enable','off', 'string','0');
hSlider = uicontrol('style','slider', 'userdata',hEditbox, ...
 'Callback',@sliderCallbackFcn);
[hUndo, hRedo] = prepareUndoRedoButtons();

% Callback function for slider movements
function sliderCallbackFcn(hSlider,hEventData)
 % Update the edit box with the new value
 newValue = get(hSlider,'value');
 set(hEditbox,'string',num2str(newValue));

 % Retrieve and update the stored previous value
 oldValue = getappdata(gcbo,'oldValue');
 if isempty(oldValue), oldValue=0; end
 setappdata(gcbo,'oldValue',newValue);

 % Prepare an undo/redo action
 cmd.Name = sprintf('slider update (%g to %g)', oldValue, newValue);
 cmd.Function = @internal_update;
 cmd.Varargin = {gcbo,newValue,hEditbox};
 cmd.InverseFunction = @internal_update;
 cmd.InverseVarargin = {gcbo,oldValue,hEditbox};

 % Register the undo/redo action with the figure
 uiundo(gcbf,'function',cmd);
 undoObj = getUndoObj(gcbf);
 setappdata(undoObj.CommandManager.UndoStack(end), 'oldValue',oldValue);
 setappdata(undoObj.CommandManager.UndoStack(end), 'newValue',newValue);
end % sliderCallbackFcn

% Prepare the undo/redo toolbar buttons
function [hUndo, hRedo] = prepareUndoRedoButtons()
 % Display the figure toolbar, hidden by the uicontrol function
 set(gcf,'Toolbar','figure');

 % add the Undo/Redo buttons
 hToolbar = findall(gcf,'tag','FigureToolBar');
 hUndo = uisplittool('parent',hToolbar);

† the reason for rearranging the buttons at the Java rather than the HG-children level was explained in Section 4 .5 .4 .

K13163_Book.indb 219 11/8/2011 8:07:51 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming220

 hRedo = uisplittool('parent',hToolbar);

 % Load the Redo icon
 icon = fullfile(matlabroot,'toolbox/matlab/icons/greenarrowicon.gif');
 [cdata,map] = imread(icon);

 % Convert white pixels into a transparent background
 map(map(:,1)+map(:,2)+map(:,3)==3) = NaN;

 % Convert into 3D RGB-space
 cdataRedo = ind2rgb(cdata,map);
 cdataUndo = cdataRedo(:, 16:-1:1, :);

 % add the icon (and its mirror image = undo) to latest toolbar
 set(hUndo, 'ClickedCallback',{@undoRedoCallbackFcn,'Undo'}, ...
 'cdata',cdataUndo, 'enable','off', ...
 'tooltip','Nothing to undo', 'Separator','on');
 set(hRedo, 'ClickedCallback',{@undoRedoCallbackFcn,'Redo'}, ...
 'cdata',cdataRedo,'enable','off',...
 'tooltip','Nothing to redo');

 % Ensure everything is displayed onscreen otherwise Java won't work...
 drawnow;

 % Re-arrange the Undo/Redo buttons
 jToolbar = get(get(hToolbar,'JavaContainer'),'ComponentPeer');
 jButtons = jToolbar.getComponents;
 for buttonIdx = length(jButtons)-3 : -1 : 7 % end-to-front
 jToolbar.setComponentZOrder(jButtons(buttonIdx), buttonIdx+1);
 end
 jToolbar.setComponentZOrder(jButtons(end-2), 5); % Separator
 jToolbar.setComponentZOrder(jButtons(end-1), 6); % Undo
 jToolbar.setComponentZOrder(jButtons(end), 7); % Redo
 jToolbar.revalidate;

 % Update the buttons whenever the undo/redo stack changes
 prepareUndoRedoListener(hUndo,'Undo');
 prepareUndoRedoListener(hRedo,'Redo');
end % prepareUndoRedoButtons

% Prepare undo/redo listener
function prepareUndoRedoListener(hButton,actionType)
 undoObj = getUndoObj(gcf);
 hUndoCmd = handle(undoObj.CommandManager);
 hProp = findprop(hUndoCmd,[actionType 'Stack']);
 callback = {@updateUndoDropDown,hButton,actionType};
 hListener = handle.listener(hUndoCmd,hProp,'PropertyPostSet',callback);
 setappdata(hUndoCmd,[actionType 'Listener'],hListener);
end % prepareUndoRedoListener

% Get the undo/redo object
function undoObj = getUndoObj(hFig)
 drawnow;
 undoObj = getappdata(hFig,'uitools_FigureToolManager');
 if isempty(undoObj)

K13163_Book.indb 220 11/8/2011 8:07:52 PM

© 2012 by Taylor & Francis Group, LLC

221Uitools

 undoObj = uitools.FigureToolManager(hFig);
 setappdata(hFig,'uitools_FigureToolManager',undoObj);
 end
end % getUndoObj

% Generic undo/redo for the requested action
function undoRedoCallbackFcn(hButton,hEventData,actionType)
 hFig = gcbf;
 if isempty(hFig), hFig = gcf; end
 uiundo(hFig,['exec' actionType]);
end % undoRedoCallbackFcn

% Update a split-button's drop-down based on the undo/redo stack
function updateUndoDropDown(ignore1,ignore2,hButton,actionType)
 hFig = ancestor(hButton,'figure');
 jButton = get(hButton,'JavaContainer');
 jMenu = get(jButton,'MenuComponent');
 undoObj = getUndoObj(hFig);
 actionsStack = undoObj.CommandManager.([actionType 'Stack']);
 jMenu.removeall;
 if isempty(actionsStack)
 set(hButton, 'enable','off', 'Tooltip',['Nothing to ' actionType]);
 else
 actions = get(actionsStack,'Name');
 if ischar(actions) % only a single undo/redo action
 actions = {actions};
 end
 for idx = length(actions) : -1 : 1 % end-to-front
 jaction = handle(jMenu.add(actions{idx}),'CallbackProperties');
 callback = {@undoMenuCallbackFcn, actionType};
 set(jaction, 'actionPerformedCallback', callback);
 end
 set(hButton,'enable','on','Tooltip',[actionType ' '
 actions{end}]);
 end
 jButton.getComponentPeer.getParent.revalidate;
end % updateUndoDropDown

% Drop-down callback function
function undoMenuCallbackFcn(jactionItem,hEvent,actionType)
 jPopup = jactionItem.getParent;
 for idx = 0 : jPopup.getComponentIndex(jactionItem.java)
 undoRedoCallbackFcn([],[],actionType);
 end
end % undoMenuCallbackFcn

% Internal update function to update slider & editbox
function internal_update(hSlider,newValue,hEditbox)
 % Update slider & editbox
 set(hSlider, 'value',newValue);
 set(hEditbox,'string',num2str(newValue));
 setappdata(hSlider, 'oldValue', newValue);
end % internal_update

K13163_Book.indb 221 11/8/2011 8:07:52 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming222

Undo/redo buttons implemented using uisplittool and uiundo

4.6 Menus

4.6.1 Accessing Menu Items
Figure menus may be accessed via hidden handles as shown below:107

% add a context-sensitive Help menu option to the Help main menu
% Note: unlike other main menus, the Help menu tag is empty, so
% ∧∧∧∧ findall(hFig,'tag','figMenuHelp') is empty... Therefore,
% we find this menu by accessing the Help/about menu item
helpabout = findall(hFig,'tag','figMenuHelpabout');
helpMenu = get(helpabout,'parent');
csName = 'Context-sensitive help';
cbFcn = ['if strcmp(get(gcbo,''Checked''),''on''), ' ...
 'set(gcbo,''Checked'',''off''); ' ...
 'else, ' ...
 'set(gcbo,''Checked'',''on''); ' ...
 'end; ' ...
 'set(gcbf,''CSHelpMode'',get(gcbo,''checked''))'];
cshelp(hFig); % install the CSMode property and associated listeners
uimenu(helpMenu,'Label',csName,'Callback',cbFcn,'Separator','on');

Here is a snippet to find available menu items . Note that since some uimenus have duplicate
or empty tag names (probably a programming oversight), we may need to retrieve the handle
using type, label, or another property rather than their tag:†

% Find all available menu items
%hMenus = findall(hFig,'-regexp','tag','.*Menu.*'); % bad: empty tags!
>> hMenus = findall(hFig,'type','uimenu');
>> sort(get(hMenus,'tag'))
ans =
 'figMenuCameraToolbar'

† this may include some user-defined context menus as well, which should be separately filtered out .

K13163_Book.indb 222 11/8/2011 8:07:52 PM

© 2012 by Taylor & Francis Group, LLC

223Uitools

 'figMenuDatatip'
 'figMenuDesktop'
 'figMenuEdit'
 'figMenuEditClear'
 'figMenuEditClearCmdHistory'
 'figMenuEditClearCmdWindow'
 'figMenuEditClearWorkspace'
 'figMenuEditColormap'
 'figMenuEditCopy'
 ...

% Find only the top-level menu items (except Help that's untagged)
% Note the absence of figMenuHelp (untagged) and odd presence of
% figMenuDatatip and figMenuPan
>> hTopMenus = findall(hFig,'-regexp','tag','.*Menu[a-Z][a-z]*$');
>> sort(get(hTopMenus,'tag'))
ans =
 'figMenuDatatip'
 'figMenuDesktop'
 'figMenuEdit'
 'figMenuFile'
 'figMenuInsert'
 'figMenuOptions'
 'figMenuPan'
 'figMenuTools'
 'figMenuView'
 'figMenuWeb'
 'figMenuWindow'

% Find the Print menu item, which has an empty Tag:
hPrintMenuItem = get(findall(hFig,'Label','&Print...'));

Menu items’ Callback property can be modified or invoked . Note that menu callbacks are
kept in Callback, while toolbar callbacks are kept in ClickedCallback .

Menu callbacks generally use internal semi-documented functions (i .e ., having a readable
help section but no doc, online help, or official support), which are part of Matlab’s uitools
folder . these functions are specific to each top-level menu tree: filemenufcn, editmenufcn,
viewmenufcn, insertmenufcn, toolsmenufcn, desktopmenufcn, winmenu, and helpmenufcn
implement the figure’s eight respective top-level menu trees’ callbacks .108 these functions
accept an optional figure handle (otherwise, gcbf is assumed), followed by a string specifying
the specific menu item whose action needs to be run . webmenufcn implements the Help menu’s
Web Resources sub-menu callbacks in a similar manner .

Use of these *fcn functions makes it easy to invoke a menu action directly from our Matlab
code: instead of accessing the relevant menu item and invoking its Callback, we simply find out
the menu item string in advance and use it directly . For example,

filemenufcn FileClose;
editmenufcn(hFig,'EditPaste');

K13163_Book.indb 223 11/8/2011 8:07:52 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming224

uimenufcn is a related fully-undocumented (built-in) function, available since Matlab
R11 (late 1990s) .109 It accepts a figure handle (or the zero [0] handle to indicate the desktop) and
action name . For example, the fully-documented commandwindow function uses the following
code to bring the Command Window into focus:

uimenufcn(0, 'WindowCommandWindow');

a related now-useless uitool function, grandfathered in Matlab 7 .3, is menubar. long
ago, this function indicated the default figure menu bar . this is now done by simply setting the
figure property Menubar to ‘none’ .

4.6.2 Customizing Menus via Uitools
makemenu is another semi-documented uitool function that enables easy creation of hierarchi-
cal menu trees with separators and accelerators . It is a simple and effective wrapper for uimenu.
makemenu is a useful function that has been made obsolete (grandfathered) without any known
replacement .

makemenu accepts four parameters: a figure handle, a char matrix of labels (‘>’ indicating
sub-item, ‘>>’ indicating sub-sub-items, etc ., ‘&’ indicating keyboard shortcut, ‘∧x’ indicating
an accelerator key, and ‘-’ indicating a separator line), a char matrix of callbacks, and an optional
char matrix of tags (empty by default) . makemenu makes use of another semi-documented
grandfathered function, menulabel, to parse the specified label components . makemenu returns
an array of handles of the created uimenu items:

labels = str2mat('&File', ... % File top menu
 '>&New^n', ... % File=>New
 '>&Open', ... % File=>Open
 '>>Open &document^d', ... % File=>Open=>doc
 '>>Open &graph^g', ... % File=>Open=>graph
 '>-------', ... % File=>separator line
 '>&Save^s', ... % File=>Save
 '&Edit', ... % Edit top menu
 '&View', ... % View top menu
 '>&axis^a', ... % View=>axis
 '>&Selection region^r'); % View=>Selection
calls = str2mat('', ... % no action: File top menu
 'disp(''New'')', ...
 '', ... % no action: Open sub-menu
 'disp(''Open doc'')', ...
 'disp(''Open graph'')', ...
 '', ... % no action: Separator
 'disp(''Save'')', ...
 '', ... % no action: Edit top menu
 '', ... % no action: View top menu
 'disp(''View axis'')', ...
 'disp(''View selection region'')');
handles = makemenu(hFig, labels, calls);
set(hFig,'menuBar','none');

K13163_Book.indb 224 11/8/2011 8:07:52 PM

© 2012 by Taylor & Francis Group, LLC

225Uitools

A simple figure menu

4.6.3 Customizing Menus via HTMl
Since menu items share the same HtMl/CSS support feature as all Java Swing labels, we can
specify font size/face/color, bold, italic, underline, superscript/subscript, and practically any
HtMl formatting .

Note that some features, such as the font or foreground/background colors, have specific
properties that we can set using the Java handle instead of using HtMl . the benefit of using
HtMl is that it enables setting all the formatting in a single property . HtMl does not require
using Java — just pure Matlab (see the following example) .

Unlike treeNodes (see Section 4 .2 .4), multi-line menu items can easily be done with HtMl:
simply include a
 element in the label — the menu item splits into two lines and automati-
cally resizes vertically when displayed (See color insert.):

txt1 = '<html><u><i>Save</i></u>';
txt2 = '<sup>this file</html>';
txt3 = '
this file as...</html>';
set(findall(hFig,'tag','figMenuFileSave'), 'Label',[txt1,txt2]);
set(findall(hFig,'tag','figMenuFileSaveas'), 'Label',[txt1,txt3]);

K13163_Book.indb 225 11/8/2011 8:07:52 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming226

set(hMenuItem, 'Label',['<html>&2: C:\My Documents\doc.txt
'
 ' '
 'Date: 15-Jun-2011 13:23:45
 Size: 123 KB']);

HtMl-rendered menus

4.6.4 Customizing Menus via Java
Matlab menus (uimenu) are basically simple wrappers for the much more powerful and
flexible Java Swing JMenu and JMenuItem on which they are based .110 Many important func-
tionalities that are available in Java menus111 are missing from the Matlab uimenus . For
example, let us add DHtMl-like behavior to the menu, such that the menu items will automati-
cally be displayed when the mouse hovers over the item, without waiting for a user mouse click .
First, let us get the Java reference for the menu:

jFrame = get(handle(hFig),'JavaFrame');
jMenuBar = jFrame.fHG1Client.getMenuBar;†

Now, set the MouseEnteredCallback to automatically simulate a user mouse click on each
menu item using its doClick() method . Note that the callback is set on the reference’s handle()
wrapper, as explained in Section 3 .4 . Setting the callback should be done separately to each of
the top-level menu components:

for menuIdx = 1 : jMenuBar.getComponentCount
 jMenu = jMenuBar.getComponent(menuIdx-1);
 hjMenu = handle(jMenu,'CallbackProperties');
 set(hjMenu,'MouseEnteredCallback','doClick(gcbo)');
end

as another example, Matlab automatically assigns a nonmodifiable keyboard accelerator key
modifier of <Ctrl>, while JMenus allow any combination of alt/Ctrl/Shift/Meta (depending on the
platform) . let us modify the default File/Save accelerator key from ‘Ctrl-S’ to ‘alt-Shift-S’ as an
example . We need a reference for the “Save” menu item . Note that unlike regular Java components,
menu items are retrieved using the getMenuComponent() method and not getComponent():

% File main menu is the first main menu item => index = 0
jFileMenu = jMenuBar.getComponent(0);

† In R2007b and earlier, use fFigureClient rather than fHG1Client .

K13163_Book.indb 226 11/8/2011 8:07:53 PM

© 2012 by Taylor & Francis Group, LLC

227Uitools

% Save menu item is the 5th menu item (separators included)
jSave = jFileMenu.getMenuComponent(4); %Java indexes start with 0!
inspect(jSave) => just to be sure: label = 'Save' => good!

Finally, set a new accelerator key for this menu item:

% Set a new accelerator key
jaccelerator = javax.swing.KeyStroke.getKeyStroke('alt shift S');
jSave.setaccelerator(jaccelerator);

that is all there is to it — the label is modified automatically to reflect the new keyboard
accelerator key . More info on setting different combinations of accelerator keys and modifiers
can be found on the official Java documentation for KeyStroke .112

Modification of menu-item accelerators and tooltips (See color insert.)

Note that the Save menu-item reference can only be retrieved after opening the File menu at
least once earlier; otherwise, an exception will be thrown when trying to access the menu item .
the File menu does NOt need to remain open — it only needs to have been opened sometime
earlier, for its menu items to be rendered . this can be done either interactively (by selecting the
File menu) or programmatically:

% Simulate mouse clicks to force the File main-menu to open & close
jFileMenu.doClick; % open the File menu
jFileMenu.doClick; % close the menu

% Now the Save menu is accessible:
jSave = jFileMenu.getMenuComponent(4);

there are many customizations that can only be done using the Java handle: setting icons,
several dozen callback types, tooltips, background color, font, text alignment, and so on .
Interested readers may wish to get/set/inspect/methodsview/uiinspect the jSave reference
handle and/or to read the documentation for JMenuItem .113

let us now set an icon for some menu items . Many of Matlab’s icons reside in either the
[matlabroot ‘/toolbox/matlab/icons/’] folder or the [matlabroot ‘/java/jar/mwt.jar’] file (a JaR
file is simply a zip file that includes Java classes and resources such as icon images) . let us

K13163_Book.indb 227 11/8/2011 8:07:54 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming228

 create icons from the latter to keep a consistent look-and-feel with the rest of Matlab (we
could just as easily use our own external icon files):

% External icon file example
jSave.setIcon(javax.swing.ImageIcon('C:\Yair\save.gif'));

% JaR resource example
jarFile = fullfile(matlabroot,'/java/jar/mwt.jar');
iconsFolder = '/com/mathworks/mwt/resources/';
iconURI = ['jar:file:/' jarFile '!' iconsFolder 'save.gif'];
iconURI = java.net.URL(iconURI); % not necessary for external files
jSave.setIcon(javax.swing.ImageIcon(iconURI));

Note that setting a menu item’s icon automatically re-aligns all other items in the menu,
including those that do not have an icon (an internal bug that was introduced in R2010a causes
a misalignment, as shown below) .

 Menu item with a custom Icon (R2009b) . . . and the same in R2010a onward

the empty space on the left of the menu is reserved for the checkmark . Each Matlab
menu item is check-able, since it is an object that extends the com.mathworks.mwswing.
MJCheckBoxMenuItem class . I have not found a way to eliminate this empty space, which
is really unnecessary in the File-menu case (it is only actually necessary in the View and tools
menus) .

Icons can be customized: modify the gap between the icon and the label with the IcontextGap
property (default = 4 [pixels]); place icons to the right of the label by setting HorizontaltextPosition
to jSave.LEFT (=2), or centered using jSave.CENTER (=0) . Note that the above-mentioned
misalignment bug does not appear in these cases:

jSave.setHorizontalTextPosition(jSave.lEFt) jSave.setHorizontalTextPosition(jSave.
CENtER)

K13163_Book.indb 228 11/8/2011 8:07:55 PM

© 2012 by Taylor & Francis Group, LLC

229Uitools

Note how the label text can be seen through (or on top of) the icon when it is centered . this
feature can be used to create stunning menu effects as shown below . Note how the width and
height of the menu item automatically increased to accommodate my new 77×31 icon size
(icons are normally sized 16×16 pixels):

Overlaid icon (HorizontalTextPosition = CENtER)

to resize an icon programmatically before setting it in a Java component, we can use the
following example:

myIcon = fullfile(matlabroot,'/toolbox/matlab/icons/matlabicon.gif');
imageToolkit = java.awt.Toolkit.getDefaultToolkit;
iconImage = imageToolkit.createImage(myIcon);
iconImage = iconImage.getScaledInstance(32,32,iconImage.SCaLE_SMOOTH);
jSave.setIcon(javax.swing.ImageIcon(iconImage));

Remember when rescaling images, particularly small ones with few pixels, that it is always
better to shrink than to enlarge images: enlarging a small icon image might introduce a signifi-
cant pixelization effect:

16×16 icon image resized to 32×32

Separate icons can be specified for a different appearance during mouse hover (RolloverIcon;
requires RolloverEnabled = 1), item click/press (PressedIcon), item selection (SelectedIcon,
RolloverSelectedIcon, DisabledSelectedIcon), and disabled menu item (DisabledIcon) . all
these properties are empty ([]) by default, which applies a predefined default variation (image
color filter) to the main item’s Icon . For example, let us modify DisabledIcon:

myIcon = 'C:\Yair\Undocumented Matlab\Images\save_disabled.gif';
jSaveas.setDisabledIcon(javax.swing.ImageIcon(myIcon));
jSaveas.setEnabled(false);

K13163_Book.indb 229 11/8/2011 8:07:55 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming230

 Enabled, main Icon Disabled, default Icon variation Disabled, custom DisabledIcon

Note the automatic graying of disabled menu items, including their icon .† When we use a
non-default custom DisabledIcon, it is used instead of the gray icon variant .

Several additional JMenu and JMenuItem properties could be useful in applications:

armed ◾ — a flag (on/off, default = off); when it is on, the menu item is highlighted just
as when it is selected (see the save as . . . item in the screenshot above) . On a Windows
system, this means a blue background . When the item is actually selected and then
 de-selected, armed reverts to off value .
State ◾ — a flag (on/off, default = off); when it is on, the menu item is indicated with an
attached checkmark . this property corresponds to the Matlab handle’s Checked
property . Note that if an icon is set for the item, both the icon and the checkmark will
be displayed, side by side:

set(findall(hFig,'tag','figMenuFileSave'), 'Checked','on');
jSave.setState(true); % this is equivalent

 State = true, Icon = [] State = true, Icon = custom

† this effect can also be achieved programmatically using the static methods in com.mathworks.mwswing.
IconUtils: changeIconColor(), createbadgedIcon(), createGhostedIcon(), and createSelectedIcon() .

K13163_Book.indb 230 11/8/2011 8:07:56 PM

© 2012 by Taylor & Francis Group, LLC

231Uitools

tooltiptext ◾ — for some unknown reason, MathWorks failed to include this useful
property in its Matlab menu handle, so we must use the Java handle:

jSave.setToolTipText('Save this figure...');

Modified menu-item tooltip

In addition to the standard Swing control callbacks discussed in Chapter 3, menu items pos-
sess several additional callbacks, including

actionPerformedCallback ◾ — fired when the menu item is invoked
StateChangedCallback ◾ — fired when the menu item is selected or deselected
MenuDragMouseXXXCallback ◾ (XXX = Dragged/Entered/Exited/Released) —
fired when the menu item is dragged for the corresponding event
MenuKeyXXXCallback ◾ (XXX = Pressed/Released/typed) — fired when a keyboard
click event occurs (the menu item’s accelerator was typed)

4.7 Status Bar

getstatus and setstatus appear to be early attempts made by Matlab to enable users an
access to a figure’s status bar (the text bar at the bottom of the figure) . In these early attempts,
Matlab assumes that the user prepares a text label having a tag of ‘status’ . getstatus then
returns this label’s string, while setstatus modifies it:

uicontrol('Parent',hFig,'Style','text','Tag','Status');
setstatus(hFig, 'Goodbye');
string = getstatus(hFig);

Nothing prevents the user from placing the label anywhere in the figure, and also from having
multiple such labels at once, adding to the confusion . the result is inconsistent with normal win-
dowing practices, and this is probably the reason that MathWorks have grandfathered these func-
tions in Matlab 7 .4 (R2007a) . It would be much more logical for Matlab to have the status
bar accessible via a figure property, and perhaps this will happen in some future version .

K13163_Book.indb 231 11/8/2011 8:07:56 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming232

a better, consistent, and more flexible access to the figure (and desktop) status bar can be
achieved by using some undocumented Java functions:114

jFrame = get(handle(hFig),'JavaFrame');
jRootPane = jFrame.fHG1Client.getWindow;†

statusbarObj = com.mathworks.mwswing.MJStatusBar;
jRootPane.setStatusBar(statusbarObj);
statusbarObj.setText('please wait – processing...');

Status text Corner grip

A simple status bar with corner grip

Here, statusbarObj is actually a component contained within a parent container (a com.
mathworks.mwswing.MJPanel object) . When statusbarObj is created and attached to
the figure via the frame’s root pane’s setStatusBar() method, it is this parent container which is
actually attached, and the statusbarObj is then added to it . In addition to statusbarObj
(which includes an internal JPanel‡ to display the text), the parent also contains a corner grip
(com.mathworks.mwswing.MJCornerGrip) object:

>> statusbarObj.getParent.list

com.mathworks.mwswing.MJPanel[,0,81,291x20,layout=java.awt.Border...]
 com.mathworks.mwswing.MJCornerGrip[,279,0,12x20,alignment...]
 com.mathworks.mwswing.MJStatusBar[,0,0,279x20,layout=...]
 com.mathworks.mwswing.MJStatusBar$1[,0,2,277x16,...,text=please wait –
processing...,verticalalignment=CENTER,verticalTextPosition=CENTER]

Each of these status bar components can be accessed and customized separately by travers-
ing the component hierarchy tree . For example, let us hide the corner grip and set a colored text
background (note the alternative ways of specifying colors):

% Hide the corner grip
cornerGrip = statusbarObj.getParent.getComponent(0);
cornerGrip.setVisible(false); % or: (cornerGrip,'Visible','off')

% Set a red foreground & yellow background to status bar text
statusbarTxt = statusbarObj.getComponent(0);

† In R2007b and earlier, use fFigureClient rather than fHG1Client .
‡ actually, an inner class of type com.mathworks.mwswing.MJStatusBar$1 .

K13163_Book.indb 232 11/8/2011 8:07:56 PM

© 2012 by Taylor & Francis Group, LLC

233Uitools

statusbarTxt.setForeground(java.awt.Color.red);
set(statusbarTxt,'Background','yellow');
set(statusbarTxt,'Background',[1,1,0]); % an alternative...

A colored status bar with no corner grip

Note that the status bar is not an HG object, and cannot be accessed via findobj, findall, or the
figure’s HG hierarchy . Similarly, clf does not delete the status bar . In short, it is not a regular
Matlab handle .

also, note that the status bar is 20 pixels high across the entire bottom of the figure . It hides
everything between pixel heights 0–20, even parts of uicontrols, regardless of which was cre-
ated first or the relative ComponentZOrder in the frame’s ContentPane:

uicontrol('string','click me!', 'position',[10,10,70,25]);

Status bars overlap all other figure components in pixel heights 0–20

the statusbarObj object is simply a container . as such, we can add any other Swing
component or container to it . let us decorate our status bar with a progress bar:115

jProgressBar = javax.swing.JProgressBar;
set(jProgressBar, 'Value',73); % value in % [0-100]
jProgressBar.setValue(73); % an alternative...
statusbarObj.add(jProgressBar,'West');
statusbarObj.revalidate;

K13163_Book.indb 233 11/8/2011 8:07:57 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming234

 A status bar with progress bar (West) . . .and East

Note that if the window resizes to a width smaller than that required to display the status
text, the text is automatically cropped:

Effects of resizing

as with other objects in Matlab and Java, the progress bar object can be customized with
min/max values and other internal properties . a very useful property is StringPainted —
when this property is set to ‘on’ (default = ‘off’), the progress bar appears continuous with the
internal value displayed:†

jProgressBar.setStringPainted(true);

Status bar with a continuous progress bar using the StringPainted property

† additional customizations of progress bars are discussed in detail in Section 3 .3 .1; additional progress bars and busy
indications are presented in Sections 5 .4 and 5 .5 .1 .

K13163_Book.indb 234 11/8/2011 8:07:58 PM

© 2012 by Taylor & Francis Group, LLC

235Uitools

In order to update the desktop’s status bar (as opposed to a figure’s status bar), we need to
set up a delayed-activation timer . the reason for this is that during regular Matlab processing,
the desktop’s status bar text is modified to display “busy” and this will immediately override
any status bar update that we code . the delayed-activation timer solves this by updating the
desktop’s status bar after the Matlab command returns to the Command Prompt to await
 further commands:

%% Set the status bar text of the Matlab desktop
function setDesktopStatus(statusText)
 % Set the desktop status (differently for Matlab 6 & Matlab 7)†
 try
 % Matlab 7
 desktop = com.mathworks.mde.desk.MLDesktop.getInstance;
 catch
 % Matlab 6
 desktop = com.mathworks.ide.desktop.MLDesktop.getMLDesktop;
 end
 % Schedule a timer to update the status text, because an
 % immediate update will be overridden by Matlab's 'busy' message
 try
 start(timer('Name','statusbarTimer', ...
 'TimerFcn',{@setText,desktop,statusText}, ...
 'StartDelay',0.05, ...
 'ExecutionMode','singleShot'));
 catch
 % Probably an old Matlab version: still doesn't have timer
 desktop.setStatusText(statusText);
 end
end % setDesktopStatus

%% Utility function used as internal timer's callback
function setText(hSrc,hEvent,targetObj,statusText)
 targetObj.setStatusText(statusText);
end % setText

I have created a wrapper function, aptly called statusbar, which encapsulates all the above
with some additional error checking, Matlab version compatibility checks, and so on . the
statusbar utility file is posted on the MathWorks File Exchange and is available for free down-
load at http://www .mathworks .com/matlabcentral/fileexchange/14773 (or http://tinyurl .com/
akcwf9) . Readers are encouraged to look at statusbar’s source code for examples of statusbar
manipulation .

† See a discussion of desktop references in Chapter 8 (the Matlab Desktop) .

K13163_Book.indb 235 11/8/2011 8:07:58 PM

© 2012 by Taylor & Francis Group, LLC

www.mathworks.com

Undocumented Secrets of MATLAB®-Java Programming236

statusbar usage examples (See color insert.)

References

 1 . http://www .mathworks .com/matlabcentral/fileexchange/10045 (or http://tinyurl .com/2agvb3), http://
www .mathworks .com/matlabcentral/fileexchange/11201 (or http://tinyurl .com/ywnlm6) .

 2 . http://www .mathworks .com/matlabcentral/fileexchange/6734 (or http://tinyurl .com/2y9d97) .
 3 . http://www .mathworks .com/matlabcentral/fileexchange/10782 (or http://tinyurl .com/2ar4vv) .
 4 . http://www .mathworks .com/matlabcentral/fileexchange/6889 (or http://tinyurl .com/368mw2), http://

www .mathworks .com/matlabcentral/fileexchange/3477 (or http://tinyurl .com/35nf5m) .
 5 . http://www .mathworks .com/matlabcentral/fileexchange/5752 (or http://tinyurl .com/2xvx53) .
 6 . http://www .mathworks .com/matlabcentral/fileexchange/15372 (or http://tinyurl .com/2nzzby) .
 7 . http://www .mathworks .com/matlabcentral/fileexchange/1113 (or http://tinyurl .com/2omrak), http://

www .mathworks .com/matlabcentral/fileexchange/7026 (or http://tinyurl .com/3yl2nn) .
 8 . http://java .sun .com/docs/books/tutorial/uiswing/components/table .html (or http://tinyurl .com/29n77) .
 9 . http://blogs .mathworks .com/desktop/2008/06/02/tables-in-matlab-with-uitable/ (or http://bit .ly/ac0EW6) .
 10 . http://java .sun .com/j2se/1 .4 .2/docs/api/javax/swing/table/DefaulttableModel .html (or http://tinyurl .com/

ypql9n) .
 11 . the role of the Model in Swing components is explained at http://java .sun .com/products/jfc/tsc/articles/

architecture/ (or http://tinyurl .com/atggc) .
 12 . http://java .sun .com/docs/books/tutorial/uiswing/components/html .html (or http://tinyurl .com/5v38m) .
 13 . http://www .mathworks .com/matlabcentral/answers/1132-display-an-icon-in-png-format-in-a-cell-of-a-

uitable (or http://bit .ly/pECRz4) .
 14 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/239788 (or http://bit .ly/dFRQ7b) .
 15 . http://www .mathworks .com/matlabcentral/newsreader/search_results?search_string=uitable&dur=all

(http://bit .ly/bbYljW) .
 16 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/147554 (or http://tinyurl .com/ywgndk) .
 17 . http://java .sun .com/docs/books/tutorial/uiswing/components/table .html#renderer (or http://tinyurl .com/

3x24op) .
 18 . http://java .sun .com/products/jfc/tsc/articles/architecture/ (or http://bit .ly/9G7aMZ) .
 19 . http://en .wikipedia .org/wiki/Model%E2%80%93view%E2%80%93controller (or http://bit .ly/d7QY5o) .
 20 . http://en .wikipedia .org/wiki/Delegation_pattern (or http://bit .ly/da7Oa4) .
 21 . http://java .sun .com/javase/6/docs/api/javax/swing/table/DefaulttableCellRenderer .html (or http://tinyurl .

com/2aue8y) .
 22 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/153934 (or http://tinyurl .com/2t7ljr) .
 23 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/150507 (or http://bit .ly/brXusn);

download a zip file with source and class files from: http://UndocumentedMatlab .com/files/Colored
FieldCellRenderer .zip (or http://bit .ly/dpMVhI) .

K13163_Book.indb 236 11/8/2011 8:07:58 PM

© 2012 by Taylor & Francis Group, LLC

www.mathworks.com
http://java.sun.com
http://blogs.mathworks.com
http://en.wikipedia.org

237Uitools

 24 . http://java .sun .com/docs/books/tutorial/uiswing/components/table .html#editrender (or http://tinyurl .com/
4kvy8) .

 25 . http://java .sun .com/javase/6/docs/api/javax/swing/DefaultCellEditor .html (or http://tinyurl .com/2ry2xa) .
 26 . http://java .sun .com/docs/books/tutorial/uiswing/components/table .html#combobox (or http://tinyurl .

com/2j8h5m) .
 27 . http://UndocumentedMatlab .com/files/lookupFieldCellEditor .zip (or http://bit .ly/aiHumG) .
 28 . http://UndocumentedMatlab .com/files/ColorCell .zip (or http://bit .ly/ddmqsa), which contains both the

source and the class files for the ColorCellRenderer and the ColorCellEditor classes .
 29 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/150532 (or http://tinyurl .com/a8kh2p) .
 30 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/164149 (or http://tinyurl .com/darxm2) .
 31 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/235046 (or http://tinyurl .com/4k7qcc) .
 32 . http://java .sun .com/docs/books/tutorial/uiswing/components/scrollpane .html#scrollbars (or http://tinyurl .

com/22wvy5) .
 33 . http://java .sun .com/javase/6/docs/api/javax/swing/Jtable .html#field_summary (or http://tinyurl .com/24oroo) .
 34 . http://java .sun .com/javase/6/docs/api/javax/swing/listSelectionModel .html (or http://tinyurl .com/38b2tk) .
 35 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/268448#702699 (or http://bit .ly/

fecP2c) .
 36 . http://www .mathworks .com/matlabcentral/fileexchange/14225 (or http://tinyurl .com/24kyjr) .
 37 . http://coderazzi .net/tablefilter (or: http://bit .ly/lRqhgl); http://code .google .com/p/tablefilter-swing/ (or:

http://bit .ly/iUrzKW) .
 38 . http://www .coderazzi .net/tablefilter/download .html (or: http://bit .ly/kyh4ZD); http://repo2 .maven .org/

maven2/net/coderazzi/tablefilter-swing/ (or: http://bit .ly/jZUC2C) .
 39 . http://www .jidesoft .com/javadoc/com/jidesoft/grid/Sortabletable .html (or http://bit .ly/aOyv6U) .
 40 . http://www .jidesoft .com/javadoc/ (or http://bit .ly/bcevRu) .
 41 . http://www .jidesoft .com/products/JIDE_Grids_Developer_Guide .pdf (or http://bit .ly/a88Xzt) .
 42 . http://www .jidesoft .com/javadoc/com/jidesoft/grid/CellSpantable .html (or http://bit .ly/bo3sGt) .
 43 . http://www .jidesoft .com/javadoc/com/jidesoft/grid/DefaultSpantableModel .html (or http://bit .ly/dwQSIV) .
 44 . http://www .jidesoft .com/javadoc/com/jidesoft/grid/CellSpan .html (http://bit .ly/9u0MdX) .
 45 . http://bugs .sun .com/bugdatabase/view_bug .do;:Wuut?bug_id=4709394 (or http://tinyurl .com/2z79od) .
 46 . http://xtargets .com/snippets/posts/show/37 (currently offline — use this cached version: http://bit .ly/

amtwcl); also see http://www .mathworks .com/matlabcentral/newsreader/view_thread/284958#755942
(or http://bit .ly/dbvayJ) .

 47 . http://www .mathworks .com/matlabcentral/fileexchange/14225 (or http://tinyurl .com/24kyjr) .
 48 . http://java .sun .com/docs/books/tutorial/uiswing/components/tree .html (or http://tinyurl .com/937xd);

http://www .java2s .com/Code/Java/Swing-JFC/tree .htm (or http://tinyurl .com/clr7mh) .
 49 . http://www .mathworks .com/matlabcentral/newsreader/search_results?search_string=uitree&dur=all (or

http://bit .ly/dv3XzJ) .
 50 . http://java .sun .com/javase/6/docs/api/javax/swing/Jtree .html (or http://tinyurl .com/2nv3nx) .
 51 . http://java .sun .com/javase/6/docs/api/javax/swing/tree/DefaultMutabletreeNode .html (or http://tinyurl .

com/2fpd9c) .
 52 . http://java .sun .com/javase/6/docs/api/javax/swing/tree/DefaultMutabletreeNode .html (or http://tinyurl .

com/2fpd9c) .
 53 . http://java .sun .com/docs/books/tutorial/uiswing/events/treeselectionlistener .html (or http://tinyurl .com/

yqpvt9) .
 54 . http://java .sun .com/javase/6/docs/api/javax/swing/tree/DefaulttreeModel .html (or http://tinyurl .com/

2x9y3a) .
 55 . http://java .sun .com/docs/books/tutorial/uiswing/components/tree .html#data (or http://tinyurl .com/2cruyh) .
 56 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/104957#269485 (or http://tinyurl .

com/yt4y2k) .
 57 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/138971 (or http://tinyurl .com/2zjq9f).
 58 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/164189#417341 (or http://bit .ly/4lhgrP)

for an example of programmatically creating checked and unchecked node icon images .
 59 . http://java .sun .com/docs/books/tutorial/uiswing/components/tree .html#display (or http://tinyurl .com/

2e766m) .

K13163_Book.indb 237 11/8/2011 8:07:58 PM

© 2012 by Taylor & Francis Group, LLC

http://java.sun.com
www.undocumentedmatlab.com
http://www.jidesoft.com/
http://coderazzi.net
www.mathworks.com
http://bugs.sun.com
http://xtargets.com

Undocumented Secrets of MATLAB®-Java Programming238

 60 . http://java .sun .com/javase/6/docs/api/javax/swing/tree/DefaulttreeCellRenderer .html (or http://tinyurl .
com/yttzjp) .

 61 . http://java .sun .com/javase/6/docs/api/javax/swing/tree/DefaulttreeCellEditor .html (or http://tinyurl .com/
2ar3vg) .

 62 . brad Phelan suggested a similar approach at http://xtargets .com/cms/tutorials/Matlab-Programming/
adding-Popups-to-the-tree-Control .html (currently offline — cached version: http://bit .ly/9pQ3av) .
also see: http://UndocumentedMatlab .com/blog/adding-context-menu-to-uitree/ (or http://bit .ly/b3vRjI) .

 63 . http://www .mathworks .com/matlabcentral/fileexchange/14317 (or http://tinyurl .com/bnprwc) .
 64 . http://UndocumentedMatlab .com/blog/tabbed-panes-uitab-and-relatives/ (or http://bit .ly/9Mfu3x) .
 65 . http://java .sun .com/docs/books/tutorial/uiswing/components/tabbedpane .html (or http://tinyurl .com/

ad2lv) .
 66 . there are several non-Java tab-panel implementations on the File Exchange, for example, http://www .

mathworks .com/matlabcentral/fileexchange/1741, http://www .mathworks .com/matlabcentral/fileexchange/
11546, http://www .mathworks .com/matlabcentral/fileexchange/2852, http://www .mathworks .com/
matlabcentral/fileexchange/4780, and http://www .mathworks .com/matlabcentral/fileexchange/6996 . Some
of these are highly elaborate and excellent submissions, but unfortunately they still suffer from the same limi-
tation regarding incorporation of axes/plots/images .

 67 . http://UndocumentedMatlab .com/blog/uitab-customizations/ (or http://bit .ly/bEfGgJ) .
 68 . http://www .w3schools .com/css/css_background .asp (or http://bit .ly/cYbyfm) .
 69 . http://UndocumentedMatlab .com/blog/uitab-colors-icons-images/ (or http://bit .ly/bi5qoj) .
 70 . http://java .sun .com/javase/6/docs/api/javax/swing/JtabbedPane .html (or http://tinyurl .com/2662ue) .
 71 . http://java .sun .com/j2se/1 .4 .2/docs/guide/swing/1 .4/tabbedPane .html (or http://bit .ly/dcKKyp) .
 72 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/158711 (or http://tinyurl .com/

37qw4t) .
 73 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/156065#392032 (or http://tinyurl .

com/3b6746) .
 74 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/235274#597793 (or http://tinyurl .

com/48o4lk) .
 75 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/130100 (or http://tinyurl .com/

3dgwar) .
 76 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/110949 (or http://tinyurl .com/2o2j8e);

http://www .mathworks .com/matlabcentral/newsreader/view_thread/268477 (or http://bit .ly/7q0M1D) .
 77 . http://UndocumentedMatlab .com/blog/common-javacomponent-problems (or: http://bit .ly/q8o2vJ);

http://www .mathworks .com/matlabcentral/newsreader/view_thread/162430 (or http://tinyurl .com/22sstq),
http://www .mathworks .com/matlabcentral/newsreader/view_thread/235274#597813 (or http://tinyurl .com/
4hmzqq) .

 78 . http://www .mathworks .com/matlabcentral/fileexchange/20218-yet-another-layout-manager (or http://
bit .ly/cMHrP3) .

 79 . http://www .mathworks .com/matlabcentral/fileexchange/?term=tab+gui (or http://bit .ly/cXPvWo) .
 80 . http://blogs .mathworks .com/desktop/2010/02/15/putting-the-tab-into-a-gui/ (or http://bit .ly/bUCK5c);

an older (2002) tab-panel implementation was also Pick-of-the-Week: Tab panel example (http://www .
mathworks .com/matlabcentral/fileexchange/1741-tab-panel-example or http://bit .ly/dbS3qQ) .

 81 . http://www .mathworks .com/matlabcentral/fileexchange/25938-multiple-tab-gui (or http://bit .ly/8ZrMMU) .
 82 . http://www .mathworks .com/matlabcentral/fileexchange/22488-highlight-tab-objects-easily (or http://bit .

ly/arlFKD) .
 83 . http://www .mathworks .com/matlabcentral/fileexchange/11546-uitabpanel (or http://bit .ly/dm8zFl) .
 84 . http://www .mathworks .com/matlabcentral/fileexchange/6996-tabpanel-constructor (or http://bit .ly/a4p5k6) .
 85 . http://www .mathworks .com/matlabcentral/fileexchange/27758-gui-layout-toolbox (or http://bit .ly/cpotaI) .
 86 . http://UndocumentedMatlab .com/blog/uiundo-matlab-undocumented-undo-redo-manager/ (or http://

tinyurl .com/yhzm9xy) .
 87 . http://java .sun .com/javase/6/docs/api/javax/swing/undo/UndoManager .html (or http://bit .ly/8X1yXa);

http://www .javaworld .com/javaworld/jw-06-1998/jw-06-undoredo .html (or http://bit .ly/b5ltso); http://
www .java2s .com/Code/Java/Swing-JFC/Undomanager .htm (or http://bit .ly/alkJK5) .

 88 . http://www .mathworks .com/matlabcentral/fileexchange/28322-GUIHistory (or http://bit .ly/9FuQtE) .
 89 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/21676 (or http://tinyurl .com/2g75vw) .

K13163_Book.indb 238 11/8/2011 8:07:58 PM

© 2012 by Taylor & Francis Group, LLC

http://java.sun.com
www.mathworks.com
www.undocumentedmatlab.com
http://blogs.mathworks.com

239Uitools

 90 . http://UndocumentedMatlab .com/blog/modifying-default-toolbar-menubar-actions/#Item-handles (or http://
bit .ly/9KbREq) .

 91 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/33887 (or http://tinyurl .com/yoyogr) .
 92 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/35735 (or http://tinyurl .com/2477ct) .
 93 . http://www .mathworks .com/help/techdoc/ref/uitoggletool_props .html (or http://tinyurl .com/2bygbk) .
 94 . http://UndocumentedMatlab .com/blog/modifying-default-toolbar-menubar-actions/#Print (or http://bit .

ly/bsgjSi) .
 95 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/286235 (or http://bit .ly/aEVP63) .
 96 . First reported online in http://www .mathworks .com/matlabcentral/newsreader/view_thread/81390 (or

http://bit .ly/ct1fpD) .
 97 . http://www .mathworks .com/matlabcentral/newsreader/search_results?search_string=btngroup&page=

1 &dur=all (or http://bit .ly/94nWV5); http://groups .google .com .by/group/comp .soft-sys .matlab/search?
q= btngroup (or http://bit .ly/azQ8G4) .

 98 . http://java .sun .com/javase/6/docs/api/javax/swing/Jtoolbar .html (or http://bit .ly/d9lm2d) .
 99 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/163829 (or http://tinyurl .com/2enfpo) .
 100 . http://UndocumentedMatlab .com/blog/figure-toolbar-components/#comment-4342 (or http://tinyurl .com/

yb25qhm) .
 101 . http://java .sun .com/docs/books/tutorial/uiswing/components/border .html (or http://tinyurl .com/3a2n6e) .
 102 . http://UndocumentedMatlab .com/blog/figure-toolbar-customizations/ (or http://tinyurl .com/yfnxbxz) .
 103 . http://java .sun .com/docs/books/tutorial/uiswing/components/toolbar .html (or http://bit .ly/bSJtSY) .
 104 . http://java .sun .com/docs/books/tutorial/uiswing/components/menu .html (http://bit .ly/cMm0Ke) and

http://java .sun .com/javase/6/docs/api/javax/swing/JPopupMenu .html (http://bit .ly/bCiQCC) .
 105 . http://UndocumentedMatlab .com/blog/figure-toolbar-components/ (or http://tinyurl .com/yfxkp43) .
 106 . http://UndocumentedMatlab .com/blog/figure-toolbar-components/#comment-13897 (or http://bit .ly/

dcShDr) .
 107 . http://UndocumentedMatlab .com/blog/modifying-default-toolbar-menubar-actions/#Item-handles (or http://

bit .ly/9KbREq) .
 108 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/27281#67933 (or http://tinyurl .com/

n7at7p) .
 109 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/12736#27281 (or http://tinyurl .com/

np6rf5) .
 110 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/282197 (or http://bit .ly/b73IFp) .
 111 . http://java .sun .com/docs/books/tutorial/uiswing/components/menu .html (or http://tinyurl .com/dsxgl); or

in www .java2s .com: http://www .java2s .com/tutorial/Java/0240_Swing/0400_JMenubar .htm (or http://
tinyurl .com/c4k43v), http://www .java2s .com/tutorial/Java/0240_Swing/0380_JMenu .htm (or http://
tinyurl .com/cjk7wg) and http://www .java2s .com/tutorial/Java/0240_Swing/0420_JMenuItem .htm (or
http://tinyurl .com/dacdce) .

 112 . http://java .sun .com/javase/6/docs/api/javax/swing/KeyStroke .html#getKeyStroke(java .lang .String) (or http://
bit .ly/9Iw0ti) .

 113 . http://java .sun .com/javase/6/docs/api/javax/swing/JMenuItem .html (or http://tinyurl .com/2xe3lj) .
 114 . http://UndocumentedMatlab .com/blog/setting-status-bar-text/ (or http://tinyurl .com/yjqgv52) .
 115 . http://UndocumentedMatlab .com/blog/setting-status-bar-components/ (or http://tinyurl .com/ygmrkom) .

K13163_Book.indb 239 11/8/2011 8:07:59 PM

© 2012 by Taylor & Francis Group, LLC

www.undocumentedmatlab.com
http://java.sun.com
www.mathworks.com

built-In Matlab®
Widgets and
Java Classes

5
Chapter

K13163_Book.indb 241 11/8/2011 8:07:59 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming242

5.1 Internal MATlAB Java Packages

Matlab has several Java packages (com.mathworks.*) which contain Swing-extended com-
ponents and resources (icon images), which are used internally by the Matlab application and
can also be used in user applications . all these components reside in packages that have the com.
mathworks domain prefix . the packages are grouped based on utility and topic and are all located
in the %matlabroot%/java/jar/ folder in separate JaR (Java archive zip) files .† these Java archive
files are all included in the static Java classpath, within the classpath.txt file . this means that all
internal Matlab classes are immediately accessible from within our Matlab m-code .

Important warning: all classes included in Matlab packages, their internal function-
alities, and even the packages themselves and the location of their containing JaR files,
are entirely unsupported and are prone to change without any warning between Matlab
releases . Extensive use of exception handling must, therefore, be done in any code which uses
these classes/packages . the description in this chapter focuses on release R2008a (7 .6); other
releases may well vary .

Note that in all the ensuing discussions, Matlab’s internal classes are not hacked or
decompiled — an act which could violate Matlab’s license agreement . Instead, we shall
only use commands available from within Matlab or snippets copied from openly accessible
Matlab m-code files .

When asked about these packages, Mike Katz said the following on the official Matlab
Desktop blog (http://blogs .mathworks .com/desktop):1

“com.mathworks.* represent Java classes that we’ve built here. These mostly represent the
libraries and widgets used by the Desktop and toolboxes, and as such are not considered part
of the MATLAB language and are largely [un]documented. Occasionally we mention some of
these in technical support solutions as workarounds to bug fixes. Some of the classes are docu-
mented for use for xml, web, and database I/O, and a whole bunch are meant for use in with the
MATLAB Builder JA product for deploying MATLAB code to work with Java programs.”

5.1.1 Inspecting Package Contents
Since jar files are simple zip files, they can be inspected using any zip client application, includ-
ing Matlab’s standard unzip command .‡ For example,

zipFilename = fullfile(matlabroot,'/java/jar/mwswing.jar');
classFilenames = unzip(zipFilename, outputFolder);

this will spill all of mwswing.jar’s files (which are the requested classes and some static
resources such as icons) into a tree structure in outputFolder (i .e ., outputFolder/com/math-
works/mwswing/ . . .) and return a cell-array of the file paths .

† For example, C:\Program Files\Matlab\R2008b\java\jar\mwswing .jar .
‡ Matlab’s built-in unzip.m itself uses standard Java zip-processing classes and methods .

K13163_Book.indb 242 11/8/2011 8:07:59 PM

© 2012 by Taylor & Francis Group, LLC

http://blogs.mathworks.com

243Built-In MATLAB® Widgets and Java Classes

However, although it may help our understanding, we do not really need the physical class
files . We only need to know which files are available in the mwswing package . So, let us use
only a small segment of unzip.m:

>> zipJavaFile = java.io.File(zipFilename);
>> zipFile = org.apache.tools.zip.ZipFile(zipJavaFile);

>> files = zipFile.getEntries
files =
java.util.Hashtable$Enumerator@e4bf0e

>> while files.hasMoreElements, disp(files.nextElement.getName); end
com/mathworks/mwswing/MJMenu$1.class
com/mathworks/mwswing/MJOptionPane$Buttonaction.class
com/mathworks/mwswing/MJMultilineRadioButton.class
com/mathworks/mwswing/MJToolBar$Gap.class
com/mathworks/mwswing/MJMenu$MWindowsMenuUI.class
com/mathworks/mwswing/ScrollablePopupList$PopupDismisser.class
com/mathworks/mwswing/SelectallOnFocusListener$1$1.class
com/mathworks/mwswing/MJScrollStrip.class
com/mathworks/mwswing/dialog/MJGotoDialog.class
...
com/mathworks/mwswing/MJToggleButton.class
com/mathworks/mwswing/MJSlider.class
com/mathworks/mwswing/MJSpinner.class
...

Remember to close the zipFile after reading is done, in order to free resources (this is done
by unzip.m in its cleanup phase):

>> zipFile.close(); % close file even if exception happens!

Note that the reverse operation, namely finding the source JaR of a specific Java object, can
be obtained using standard Java reflection . For example, let us find the JaR source of the Java
object that underlies a simple pushbutton uicontrol:

>> hButton = uicontrol('String','Yair');

>> jButton = java(findjobj(hButton))
jButton =
com.mathworks.hg.peer.PushButtonPeer$1[...]

>> jButton.getClass.getProtectionDomain.getCodeSource
ans =
(file:/C:/Program%20Files/MaTLaB/R2010b/java/jar/hg.jar ...)

5.1.2 Inspecting an Internal MATlAB Class
We are now faced with two important questions: Which of the internal Matlab packages and
classes are useful, and how can we use them?

the first question can be answered to a small degree by simple inspection of the file names .
It is pretty obvious that com.mathworks.mwswing.MJToggleButton implements a

K13163_Book.indb 243 11/8/2011 8:07:59 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming244

MathWorks toggle-button that extends the standard javax.swing.JToggleButton .2 all
MathWorks classes and resources are contained in a com.mathworks.* package . the “M”
prefix in the class name is Matlab’s standard prefix for all its internal classes; “Mclassname”
would then be Matlab’s extension of “classname” and in this case, Matlab’s extension of
javax.swing.JToggleButton . Similarly, com.mathworks.mwswing.MJSlider
implements a JSlider-extended slider .

the easiest way to visualize these components is to display them onscreen, using
javacomponent:

javacomponent('com.mathworks.mwswing.MJSlider',[10,10,100,20]);

this looks exactly like a javax.swing.JSlider . In fact, this is not surprising, consider-
ing that MJSlider extends JSlider . While the MathWorks components may look similar to
their Swing ancestors, some have important functionality extensions that merit their use, rather
than using their Swing ancestors .†

I have created a utility called checkClass that looks at the MathWorks class and reports its
modifications versus the ancestor class . checkClass is available for download on the
UndocumentedMatlab .com website3 and the Matlab File Exchange .4

Here is a sample output for the com.mathworks.mwswing.MJToggleButton class:

>> checkClass(com.mathworks.mwswing.MJToggleButton)

Class: com.mathworks.mwswing.MJToggleButton

Superclass: javax.swing.JToggleButton

Methods in MJToggleButton missing in JToggleButton:
 hasFlyOverappearance() : boolean
 hideText()
 isautoMnemonicEnabled() : boolean
 setautoMnemonicEnabled(boolean)
 setFlyOverappearance(boolean)
 setFocusTraversable(boolean)

Methods inherited & modified by MJToggleButton:
 getForeground() : java.awt.Color
 getParent() : java.awt.Container
 isFocusTraversable() : boolean
 paint(java.awt.Graphics)
 setaction(javax.swing.action)
 setModel(javax.swing.ButtonModel)
 setText(java.lang.String)

† For those interested, Matlab makes extensive use of the Decorator and Façade design patterns in these classes .

K13163_Book.indb 244 11/8/2011 8:08:00 PM

© 2012 by Taylor & Francis Group, LLC

245Built-In MATLAB® Widgets and Java Classes

Interfaces in JToggleButton missing in MJToggleButton:
 javax.accessibility.accessible

From this output, we learn that MJToggleButton added the FlyOverappearance and
autoMnemonicEnabled properties, together with their associated getter/setter methods . We
also learn that MJToggleButton added a non-property method: hideText() .

Finally, setFocusTraversable() was added as a setter method to the Focustraversable
 property: the getter method isFocusTraversable() is already defined in the ancestor
JToggleButton class — MJToggleButton simply added a setter method . these proper-
ties can also be accessed using the familiar Matlab notation:

% Matlab notation:
>> get(jButton,'FlyOverappearance')
ans =
off % <= a
string
>> set(jButton,'FlyOverappearance','on');); % causes a warning on R2010b+

% Java notation:
>> jButton.hasFlyOverappearance
ans =
 0 % = false
>> jButton.setFlyOverappearance(true);
>> jButton.setFlyOverappearance(1); % an equivalent alternative

Some classes (e .g ., MJSlider) are just simple wrappers for their Swing ancestor:

>> checkClass('com.mathworks.mwswing.MJSlider')

Class: com.mathworks.mwswing.MJSlider

Superclass: javax.swing.JSlider

Methods inherited & modified by MJSlider:
 setModel(javax.swing.BoundedRangeModel)

Interfaces in JSlider missing in MJSlider:
 javax.accessibility.accessible
 javax.swing.SwingConstants

In other cases, MathWorks has extensively modified the base class’s functionality:

>> checkClass com.mathworks.mwswing.MJToolBar

Class: com.mathworks.mwswing.MJToolBar

Superclass: javax.swing.JToolBar

Methods in MJToolBar missing in JToolBar:
 addGap()
 addGap(int)
 addToggle(javax.swing.action)) : javax.swing.JToggleButton
 configureButton(com.mathworks.mwswing.MJButton) (static)
 configureButton(com.mathworks.mwswing.MJToggleButton) (static)
 createMacPressedIcon(javax.swing.Icon): javax.swing.Icon (static)

K13163_Book.indb 245 11/8/2011 8:08:00 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming246

 dispose()
 dispose(javax.swing.JToolBar) (static)
 getFlyOverBorder() : javax.swing.border.Border (static)
 getToggleFlyOverBorder() : javax.swing.border.Border (static)
 isFloating() : boolean
 isMarkedNonEssential(javax.swing.JComponent) : boolean (static)
 isMorePopupEnabled() : boolean
 markasNonEssential(javax.swing.JComponent) (static)
 setarmed(boolean)
 setInsideToolbarBorder()
 setMorePopupEnabled(boolean)

Methods inherited & modified by MJToolBar:
 add(javax.swing.action) : javax.swing.JButton
 addSeparator()
 addSeparator(java.awt.Dimension)
 doLayout()
 getMinimumSize() : java.awt.Dimension
 getPreferredSize() : java.awt.Dimension
 removeall()

Interfaces in JToolBar missing in MJToolBar:
 javax.accessibility.accessible
 javax.swing.SwingConstants

Static fields in MJToolBar missing in JToolBar:
 MORE_BUTTON_NaME = 'MoreButton'
 NON_ESSENTIaL_PROPERTY_KEY = 'NonEssentialComponent'

Sub-classes in MJToolBar missing in JToolBar:
 com.mathworks.mwswing.MJToolBar$VisibleSeparator

Class methods can also be inspected using methodsview or preferably uiinspect (see Section
1 .3); properties and callbacks can be inspected by using get, inspect, or again uiinspect . Users
may also try to search the Matlab-supplied m-files for sample usage of these classes .† For
example, Matlab 7 .2’s uisetfont.m‡ uses com.mathworks.mwswing.MJButton, and
datacursormode.m uses MJOptionPane .

Note that different Matlab releases use internal classes differently . For example,
datacursormode.m on newer Matlab releases no longer uses MJOptionPane . therefore,
searching the m-file code base of separate Matlab releases may yield additional clues .

5.1.3 Standard MATlAB Packages
Here is the full list of standard Matlab packages on the R2011a release, excluding packages
dedicated to installation, activation, and licensing . as noted above, a package called XYZ,

† this can easily be done using Matlab’s editor Find Files tool — search * .m for “com .mathworks .” in the “Entire
Matlab path” .

‡ Or %matlabroot%/toolbox/matlab/uitools/private/uisetfont_deprecated .m in relatively new Matlab releases .

K13163_Book.indb 246 11/8/2011 8:08:00 PM

© 2012 by Taylor & Francis Group, LLC

247Built-In MATLAB® Widgets and Java Classes

including all its classes and sub-packages, will be included in a file called XYZ.jar located
under the %matlabroot%/java/jar/ folder .†

bde ◾ .jar — block-diagram editor (see Section 5 .8 .3) .‡

beans ◾ .jar — creates automatic Javabeans for external objects and includes specialized
editors to handle some common built-in classes .
common ◾ .jar — repository for common icons .
comparisons ◾ .jar — file and data comparison tools .
desktop ◾ .jar — Matlab Desktop support classes (new in R2011a) .
fatalexit ◾ .jar — displays an error message following a Matlab crash .
foundation_libraries ◾ .jar — tiny package with some i18n-support classes .
hg.jar — ◾ Handle-Graphics-related Java classes . Contains Java peers for all UI compo-
nents, as well as class interfaces for plotting functions that are done via compiled
native libraries .
ide ◾ .jar — Integrated Development Environment classes, leftover from old Matlab
releases (v5 & 6) . ide .jar was replaced in Matlab 7 with mde .jar (see below), but
some ide .jar classes still remain to this day .
jmi ◾ .jar — Java-to-Matlab Integration classes (see Chapter 9) .
mde ◾ .jar — Matlab 7 Desktop (see Chapter 8) .
mlservices ◾ .jar — Matlab services (see Section 5 .6) .
mlwebservices ◾ .jar — services that communicate with MathWorks .com .
mlwidgets ◾ .jar — Matlab widgets (= GUI controls; see Section 5 .4) .
mwswing ◾ .jar — MathWorks Swing extensions (see Section 5 .2) .
mwt ◾ .jar — MathWorks aWt extensions (see Section 5 .3) .
net ◾ .jar — network proxy support classes .
page ◾ .jar — functionality that wraps Matlab plots, for example: plot editor, statisti-
cal data fitting, and page/print setup .
services ◾ .jar — contains several utility classes .
timer ◾ .jar — implements Matlab timers as Java threads .
toolstrip ◾ .jar — supports a tool-strip (ribbon) container that has modern stylish behav-
ior and appearance (new in R2011a) .5

util ◾ .jar — contains a list of support classes .
webintegration ◾ .jar — services to check for product updates and display an HtMl
start page .
widgets ◾ .jar — another set of Matlab widgets (see Section 5 .5) .
wizard ◾ .jar — framework that enables the creation of interactive wizard screens .
xml ◾ .jar — utility classes to parse Matlab-related XMl files .

† For example, C:\Program Files\Matlab\R2011a\java\jar\mwswing .jar .
‡ the bde .jar package was removed in R2011b .

K13163_Book.indb 247 11/8/2011 8:08:00 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming248

Matlab toolboxes normally use separate JaR files, located under %matlabroot%/java/jar/
toolbox/ . For example,

toolbox/compiler .jar — the ◾ Matlab Compiler toolbox
toolbox/instrument .jar — the ◾ Matlab Instrument Control toolbox

a couple of standard Matlab packages are located under %matlabroot%/java/jar/toolbox/
matlab/ and . . ./java/jar/toolbox/shared/:†

toolbox/shared/controllib — plot property-editing control components ◾
toolbox/matlab/guide .jar — the ◾ Matlab GUIDE (GUI Design Editor)
toolbox/matlab/audiovideo .jar — audio/video recorder/player control ◾ ‡

Matlab also uses external Java package archives . these are also located in %matlab-
root%/java/, under the separate subfolders org/ and jarext/ . Here is the list for R2008a . Most jars
are open-source packages that are easily found documented online:

jar/org/netbeans .jar ◾ § — Java development platform and desktop framework6

jar/org/openide .jar — portion of Netbeans dealing with dev environment (IDE) ◾
jarext/abbot .jar — Java-automated GUI testing framework ◾ 7

jarext/access-bridge .jar — Windows support for accessibility functionality ◾ 8

jarext/activation .jar — Java activation Framework (JaF) ◾ 9

jarext/ant .jar — Java project build automation ◾ 10

jarext/avalon .jar — component framework for container (server) applications ◾ 11

jarext/axis .jar — Java SOaP-based webservice framework (aka JWS) ◾ 12

jarext/batik-svggen .jar — Java toolkit for SVG images ◾ 13

jarext/collections .jar — the standard ◾ java.util.collections package14

jarext/commapi/comm .jar — communication toolkit (serial/parallel ports) ◾ 15

jarext/commons-codec .jar — Java encoders/decoders (codecs) package ◾ 16

jarext/commons-discovery .jar — Java service/interface discovery package ◾ 17

jarext/commons-el .jar — JSP Expression-language interpreter package ◾ 18

jarext/commons-httpclient .jar — Java-based rich HttP client infrastructure ◾ 19

jarext/commons-io .jar — Java library of I/O functionality ◾ 20

jarext/commons-logging .jar — Java event logging facilities ◾ 21

jarext/commons-net-1 .4 .1 .jar — Java internet protocols toolkit ◾ 22

jarext/dtdparser121 .jar — Java DtD parser toolkit ◾ 23

jarext/glazedlists_java15 .jar — Java lists/table text-filtering package ◾ 24

jarext/jaccess-1_4 .jar — Java accessibility utilities ◾ 25

jarext/jakarta-oro-2 .0 .8 .jar — regular expression support utilities ◾ 26

jarext/jakarta-regexp-1 .2 .jar — another package for regular expressions ◾ 27

† I do not know why these were not placed in the root %matlabroot%/java/jar/ folder together with the other standard packages .
‡ the audiovideo .jar package was removed in R2011a for some unknown reason .
§ I do not know why MathWorks chose to place org .netbeans and org .openide in jar/ rather than jarext/ as would be

expected .

K13163_Book.indb 248 11/8/2011 8:08:00 PM

© 2012 by Taylor & Francis Group, LLC

249Built-In MATLAB® Widgets and Java Classes

jarext/jaxrpc .jar — Java-based webservice support utilities ◾ 28

jarext/jdom .jar — Java XMl parsing utilities ◾ 29

jarext/jemmy .jar — Java GUI testing framework ◾ 30

jarext/jfcunit .jar — an extension to JUnit (see below) for testing Java GUI ◾ 31

jarext/jgoodies-forms .jar — elegant Java form panels (preferences, etc .) ◾ 32

jarext/jgoodies-looks .jar — high-fidelity GUI look-and-feel appearance ◾ 33

jarext/jox116 .jar — Javabeans-to-XMl serialization/deserialization support ◾ 34

jarext/junit .jar — Java unit-testing framework package ◾ 35

jarext/lucene-* .jar — Java-based text-search engine ◾ 36

jarext/mail .jar — Java mail support (Sun’s standard JavaMail aPI) ◾ 37

jarext/mwucarunits .jar — support for conversion between different units ◾ 38

jarext/nekohtml .jar — simple HtMl parser ◾ 39

jarext/saaj .jar — Java SOaP support utilities ◾ 40

jarext/saxon* .jar — XSlt/XQuery/XPath XMl-processing support utilities ◾ 41

jarext/spring-* .jar — Java application framework ◾ 42

jarext/wsdl4j .jar — Java support utilities for WSDl ◾ 43

jarext/xalan .jar — XSlt/XPath XMl-processing support utilities ◾ 44

jarext/xercesImpl .jar — Java XMl parser ◾ 45

jarext/xml-apis .jar — Java XMl-processing support utilities (aka JaXP) ◾ 46

In a few cases (JIDE being perhaps the most notable), the packages are commercially licensed
products:

jarext/ice/* .jar — packages that implement the commercial ICEsoft browser ◾ 47

jarext/J2PrinterWorks .jar — printing Java documents (commercial) ◾ 48

JIDE packages: ◾ †

jarext/jide/jide-action .jar — dockable command bars . ◾
jarext/jide/jide-common .jar — tabbed/option panes; calendar, gripper, and other UI ◾
controls; PlaFs; multipage dialogs; and so on . this was the largest JIDE package
bundled in Matlab in past releases, but as of R2011a, jide-grids .jar (see below) is
now the largest package .
jarext/jide/jide-components .jar — tabbed-panes; document panes; status bars; ani- ◾
mations, and so on .
jarext/jide/jide-dialogs .jar — wizard; multipage; and other dialog windows . ◾
jarext/jide/jide-dock .jar — support for dockable frame windows . ◾
jarext/jide/jide-grids .jar — specialized ◾ JTree and JTable classes .
jarext/jide/jide-shortcuts — support for keyboard shortcuts (R2010a ◾ +) .

jarext/vb20 .jar — Java online presentation solutions ◾ 49

jarext/webrenderer .jar — Java web browser ◾ 50

† the JIDE packages are described in detail in Section 5 .7 .

K13163_Book.indb 249 11/8/2011 8:08:00 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming250

In comparison, let us compare this list of packages with the corresponding list for R2011a .
We find that the R2011a list is similar, with many additions and removals (all under jarext/), and
some other packages being updated to a newer version:

added ◾ : animatedtransitions, annotations, commons-collections, commons- compress,
commons-lang, commons-math, commons-net, dws_client, felix, foxtrot, freehep-*,
google-collect, jxlayer, mwaws_client, RXtXcomm, saxon9*, scr, tablelayout,
timingFramework, xstream, jide/jide-shortcut, guice/*, axis2/*, wn32/jogl, win32/
gluegen-rt, webservices/service_request_client, and webservices/loginws_client
Moved ◾ (to the jarext/axis2/ subfolder):† activation, commons-httpclient, commons-co-
dec, mail, wsdl4j, and xml-apis
Removed ◾ : abbot, avalon, axis, batik-svggen, collections, commons-discovery, commons-el,
commons-net-1 .4 .1, dtdparser121, J2PrinterWorks, jakarta-*, jaxrpc, jemmy, jfcunit,
jox116, junit, mwucarunits, saaj, saxon8*, spring-*, vb20, wembeddedframe, and xalan

a major lesson that can be learned from this comparison is that the list of internal JaR files,
not to mention their contents, can change dramatically from one Matlab release to another . For
this reason, we must exercise caution when relying on any of these internal components within
our code .

the following sections in this chapter will describe interesting classes that I found, and
which have remained relatively stable across releases, grouped by their containing package .
the list is by no means complete: I will be happy to hear from readers who find other interesting
or useful classes and features .

5.2 MWSwing Package

5.2.1 Enhancements of Standard Java Swing Controls

Note: For space considerations, only a handful of MWSwing classes can be described here .
Readers are encouraged to look at the MWSwing package themselves and search for usable
classes .

Most of the MWSwing classes are simple extensions of the corresponding Java Swing class .
For example,

>> checkClass(com.mathworks.mwswing.MJSpinner)

Class: com.mathworks.mwswing.MJSpinner

Superclass: javax.swing.JSpinner

Methods in MJSpinner missing in JSpinner:
 setDefaultEditoraccessibleName(java.lang.String)

† along with some additional packages that were added to this new subfolder .

K13163_Book.indb 250 11/8/2011 8:08:01 PM

© 2012 by Taylor & Francis Group, LLC

251Built-In MATLAB® Widgets and Java Classes

Methods inherited & modified by MJSpinner:
 setEditor(javax.swing.JComponent)
 updateUI()

Interfaces in JSpinner missing in MJSpinner:
 javax.accessibility.accessible

this specific control, MJSpinner, deserves a short description, since it does not have any
built-in Matlab uicontrol counterpart, unlike most other Swing controls . like its JSpinner
superclass,51 MJSpinner is basically an editbox with two tiny adjacent up/down buttons .
Spinners are similar in functionality to a combo-box (aka drop-down or popup menu), where a
user can switch between several preselected values . Spinners are often used when the list of
possible values is too large to display in a combo-box menu . like combo-boxes, spinners too
can be editable (meaning that the user can type a value in the editbox) or not (the user can only
“spin” the value using the up/down buttons) .

Spinners use an inner model, similarly to JTree and JTable and other complex controls .
the default model is javax.swing.SpinnerNumberModel, which defines a min/max
value (unlimited = [] by default) and step-size (1 by default) . additional predefined models are
javax.swing.SpinnerListModel (which accepts a cell array of possible string values)
and javax.swing.SpinnerDateModel (which defines a date range and step unit) . the
spinner Value can be set using the editbox or by clicking on one of the tiny arrow buttons . to
attach a data-change callback, set the spinner’s StateChangedCallback property .

I have created a small Matlab demo, SpinnerDemo,52 which demonstrates usage of
JSpinner in Matlab figures . Each of the three predefined models (number, list, and date)
is presented, and the spinner values are interconnected via their callbacks . Readers are wel-
come to download this demo and reuse its source code .

Sample usage of three spinner models in a MAtlAb figure

MJButton and MJToggleButton added the autoMnemonicEnabled, FlyOver
appearance, and Focustraversable properties (see Sections 6 .1 and 6 .2) to JButton and
JToggleButton, respectively .53

K13163_Book.indb 251 11/8/2011 8:08:02 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming252

MJRadioButton added the autoMnemonicEnabled property (see Section 6 .3) to the
standard JRadioButton .54

MJCheckBox also added the autoMnemonicEnabled property (see Section 6 .4) to the
standard JCheckBox .55 a specific trick enables setting a tri-state (mixed) checkbox mode to
either MJCheckBox or JCheckBox as described in detail in Section 6 .4:

% Display the checkbox (UNSELECTED state at first)
import com.mathworks.mwswing.checkboxtree.*
jCB = com.mathworks.mwswing.MJCheckBox('MJCheckbox - mixed',0);
javacomponent(jCB, [10,70,150,20], hFig);

% Update the checkbox state to MIXED
jCB.setUI(TriStateButtonUI(jCB.getUI));
jCB.putClientProperty('selectionState', SelectionState.MIXED);
jCB.repaint;

tri-state checkbox (yes/no/maybe)

MJTextField added the ContextMenu and SelectallOnFocus functionality methods, as
well as the tipWhentruncatedEnabled property (see Sections 6 .5 .1 and 6 .5 .2) to the standard
JTextField .56

MJFormattedTextField added the ContextMenu, SelectallOnFocus (see Sections 6 .5 .1
and 6 .5 .2), and EntertriggersDefaultbutton functionality methods to the standard
JFormattedTextField .57 this enables setting up text-entry (edit-box) fields that display
and accept values in a formatted manner, such as: “3 .45%”, “123,456”, “12:34:45”, “May 30,
2011”, “(212) 123 .456 .789” or “($123 .45)” . the control stores the actual value separate from the
presented string . It automatically converts the base value to text string for presentation, and
from string to base value upon user input .
MJList added the CellPainter and SelectionappearanceReflectsFocus functionalities, as

well as the CellViewerEnabled, DragSelectionEnabled, and RightSelectionEnabled proper-
ties (see Section 6 .6) to JList .58
MJComboBox added the PopupWidthConstrained functionality and the tipWhentruncated

Enabled property (see Section 6 .7) to JComboBox .59

K13163_Book.indb 252 11/8/2011 8:08:02 PM

© 2012 by Taylor & Francis Group, LLC

253Built-In MATLAB® Widgets and Java Classes

MJLabel added the tipWhentruncatedEnabled property and mnemonic functionality
(see Section 6 .9) to the standard JLabel .60

MJMenuItem added the mnemonic functionality to the standard JMenuItem, by adding a
second optional flag to the MJMenuItem constructors, specifying whether or not to treat the
first “&” found within the menu item’s text as the mnemonic indicator . as in MJLabels, the
default flag value is true (more details in Section 6 .9).
MJMenuBar added the MoreMenuEnabled property (see Section 6 .9) to the standard

JMenuBar .61 this property affects the behavior of the menu bar when the width of its contain-
ing window is shrunk and so not all menu items can be fully seen:

jFrame = get(handle(hFig),'JavaFrame');
jMenuBar = jFrame.fHG1Client.getMenuBar;†

jMenuBar.setMoreMenuEnabled(true);

Standard menu
(MoreMenuEnabled = false)

MoreMenu enabled
(MoreMenuEnabled = true)

MJScrollPane added the anchorToBottom() method, which is very useful for logger-type
scroll-boxes, where the data is constantly updated at the bottom of the box and the scroll-pane
needs to keep showing the bottom item (also see Section 6 .5 .2) .
MJTabbedPane added the indexAtLocation() and indexFromMouse() methods, and the

ability to add/remove tab mouse listeners, to the standard JTabbedPane .62

MJTable added the FillEmptyColumnHeader, CellViewerEnabled, Horizontalauto
ScrollEnabled, MiddleSelectionEnabled, RightSelectionEnabled, and Selectionappear
anceReflectsFocus flag properties, and a few methods, to the standard JTable .63 Here is a
sample use of the FillEmptyColumnHeader property:‡

cols = {'a1','b2','c3'};
data = mat2cell(magic(3),[1,1,1],[1,1,1]);
jTable = com.mathworks.mwswing.MJTable(data,cols);
jTable.setautoResizeMode(jTable.aUTO_RESIZE_OFF);
jTable.setFillEmptyColumnHeader(true);
jScrollPane = com.mathworks.mwswing.MJScrollPane(jTable);
[jhScroll,hContainer] = javacomponent(jScrollPane,[10,10,300,50],gcf);

† In R2007b and earlier, use fFigureClient rather than fHG1Client .
‡ Ken Orr, former official Matlab Desktop blog co-owner (http://blogs .mathworks .com/desktop/) and a Java enthusiast,

mentions this specific feature in his personal blog: http://explodingpixels .wordpress .com/2009/05/18/creating-a-better-
jtable/ .

K13163_Book.indb 253 11/8/2011 8:08:02 PM

© 2012 by Taylor & Francis Group, LLC

http://blogs.mathworks.com

Undocumented Secrets of MATLAB®-Java Programming254

FillEmptyColumnHeader = true FillEmptyColumnHeader = false (default)

MJToolBar added many methods and properties to the standard JToolBar .64 these
include the addGap(), markAsNonEssential(component), setArmed(flag), and setInsideTool-
barBorder() methods as well as the MorePopupEnabled property .

MoreMenu disabled
(MoreMenuEnabled = false)

Standard toolbar
(MoreMenuEnabled = true)

the markAsNonEssential(component) method can be used to specify which toolbar compo-
nent will be the first to “disappear” from view when the window is shrunk . by default, no
toolbar component is marked as nonessential, and so the buttons disappear according to their
position, from right to left . but if we set any toolbar buttons as non-essential, they will disap-
pear first (and will NOt appear in the More menu) .

the setArmed(flag) method sets whether or not hot keys (mnemonics) should be enabled for
toolbar labels (true by default) . Compare these main Desktop toolbars:

Standard toolbar (armed)

Dis-armed toolbar

K13163_Book.indb 254 11/8/2011 8:08:04 PM

© 2012 by Taylor & Francis Group, LLC

255Built-In MATLAB® Widgets and Java Classes

MJSplitPane added the ProportionalResizeEnabled, IntersectionDragEnabled, and
SuppressingborderIfNested flag properties (which shall not be described here) to the stan-
dard JSplitPane .65 Java split-panes (and JPanels in general) are problematic in Matlab,
since they cannot contain Matlab plots, but only other Java components . Readers can use the
UISplitPane utility (see Section 10 .1) as an alternative .
MJTree is an extension of the standard JTree .66 If we use the checkClass utility, then we

will notice many new and modified methods compared with the standard JTree . Unfortunately,
I could not find any which would be particularly useful for use applications, which would merit
a description here . trees, in general, are very important GUI components . It is regrettable that
MathWorks did not see fit to include trees in its standard set of uicontrols . However, Matlab
user can use the built-in uitree function (described in Section 4 .2) or any Java tree component
(JTree, MJTree, JideTree, etc .) . both the FindJObj and the UIInspect utilities, which
are used extensively in this book, use a Java tree component that is placed onscreen using the
built-in javacomponent function . In this case, I have chosen to use com.mathworks.hg.
peer.UITreePeer,† but I could have used any other tree class:

A Java tree component incorporated within a MAtlAb figure (See color insert.)

† this is the class that underlies the built-in uitree function .

K13163_Book.indb 255 11/8/2011 8:08:05 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming256

MJFileChooser extends JFileChooser67 with the IncludeFilterExtension, Show
OverwriteDialog, and UseaWtFileDialog write-only boolean properties . MJFileChooser
can be used both as an embedded non-modal component within an existing figure window, or
as a standalone modal dialog window (where the UseaWtFileDialog flag property comes
into play):†

% Place a file-selection component as part of a GUI
jc = javaObjectEDT('com.mathworks.mwswing.MJFileChooser');
jc.setMultiSelectionEnabled(true); % = false by default
[jhc,hContainer] = javacomponent(jc,[10,10,500,400],gcf); % embedded

% The following section is optional: set user-defined filter(s)
filter = com.mathworks.mwswing.FileExtensionFilter(...
 'Image File', {'png','gif','jpg'}, true);
jc.setFileFilter(filter); % more filters can be added to jc if needed

MJFileChooser component embedded in a figure window

jc.setUseaWTFileDialog(true); % old-style aWT (not newer Swing)
jc.showDialog([],''); % stand-alone modal dialog window

† a very detailed sample usage can be found in %matlabroot%\toolbox\matlab\timeseries@tsguis@allExportdlg\
exportsinglefile .m . Note that an internal Java bug (http://bit .ly/oRJRQu) causes the top-right icons to disappear in
Windows 7 . this was fixed only in JVM 1 .6_18, so Matlab users who wish to use the fix need to retrofit this JVM
version, as explained in Section 1 .8 .2 .

K13163_Book.indb 256 11/8/2011 8:08:05 PM

© 2012 by Taylor & Francis Group, LLC

257Built-In MATLAB® Widgets and Java Classes

MJFileChooser as a standalone modal dialog window (old-style AWt, rather than
newer Swing)

Similarly, there is a com.mathworks.mwswing.dialog.MJFolderChooser .
I do not know why MJFolderChooser was placed in the dialog sub-package rather
than in the root package next to MJFileChooser . the dialog sub-package also contains
MJGotoDialog .
MJDialog added the CloseOnEscapeEnabled property and some useful methods to the

standard JDialog:68 getHWnd(), getSpecifiedTitle(), setFocusTarget(component), and
setNonBlockingVisible(flag); MJDialogParent and MJFrame both added many properties
and methods to the standard JFrame that they extend . the related MJOptionPane added hot
keys and some static button strings to the standard JOptionPane .69

MJTextarea added the ability to add/remove a context (right-click) menu to the standard
JTextarea .70 Similarly, MJTextPane added the context-menu functionality and the
setWrapping(flag) method to the standard JTextPane .71

MJEditorPane added the Wrapping and ContextMenu functionality methods to the stan-
dard JEditorPane .72 the reader is referred to the documentation73 for an explanation of the
differences between JEditorPane and its JTextPane subclass . Yet another built-in
Matlab class that extends JEditorPane is com.mathworks.webintegration.
startpage.framework.view.ResourcePane, which has useful methods for setting
HtMl title, subtitles, text, hyperlinks, and image resources .

5.2.2 Entirely New Java Controls
the MWSwing package also contains several entirely new controls:

K13163_Book.indb 257 11/8/2011 8:08:07 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming258

MJGrip is used to display a gripper for toolbars and the Editor’s document bar:

Vertical and horizontal MJGrip

MJCornerGrip is used to display a gripper for resizing documents and figure windows .
the gripper is often placed in the status bar, at the figure’s or document’s bottom-right corner
(see Section 4 .7), although this is not strictly necessary:

jc = javaObjectEDT('com.mathworks.mwswing.MJCornerGrip');
pos = getpixelposition(gcf);
gripPos = [pos(3)-20,1,20,20];
[jhc,hContainer] = javacomponent(jc,gripPos,gcf);

MJCornerGrip

both MJGrip and MJCornerGrip have methods that enable their functional correlation with
their tied component: MJGrip .setComponentToMove(component) and MJCornerGrip .
setComponentToResize(component) .
MJStatusBar is a JPanel that is normally placed at the bottom of windows to display

non-intrusive content-sensitive information . the use of status bars in Matlab figures is
described in detail in Section 4 .7 . Here is a simple example:

jFrame = get(handle(gcf),'JavaFrame');
jRootPane = jFrame.fHG1Client.getWindow;†

statusbarObj = com.mathworks.mwswing.MJStatusBar;
jRootPane.setStatusBar(statusbarObj);
statusbarObj.setText('please wait — processing...');

Status text → ← Corner grip

A simple status bar with corner grip

Here, statusbarObj is actually a component contained within a parent container (a com.
mathworks.mwswing.MJPanel object) . When statusbarObj is created and attached to the

† In R2007b and earlier, use fFigureClient rather than fHG1Client .

K13163_Book.indb 258 11/8/2011 8:08:07 PM

© 2012 by Taylor & Francis Group, LLC

259Built-In MATLAB® Widgets and Java Classes

figure via the frame’s root pane’s setStatusBar() method, it is this parent container which
is actually attached, and the statusbarObj is then added to it . In addition to statusbarObj
(which includes an internal JPanel† to display the text), the parent also contains a corner grip
(com.mathworks.mwswing.MJCornerGrip) object .
DefaultSortableTable is a significantly extended javax.swing.JTable that

enables lexical (alphanumeric) data column sorting . While a significant improvement over the
standard JTable, this component has many limitations: only one column is sortable and can-
not be unsorted; sorting is lexical and not numeric, and so on:

data = mat2cell(int16(magic(4)),[1,1,1,1],[1,1,1,1]);
headers = {'1','b','c23','#4'};
jTable = com.mathworks.mwswing.DefaultSortableTable(data,headers);
jScrollPane = com.mathworks.mwswing.MJScrollPane(jTable);
[jComp,hc] = javacomponent(jScrollPane,[10,10,150,110],gcf);

A DefaultSortableTable

For anything but very simple tasks, I suggest using a different sortable table than
DefaultSortableTable . For example, JIDE tables (we can use com.jidesoft.grid.
SortableTable or any of its subclasses as direct replacement for DefaultSortable-
Table — see Section 5 .7 for more details), or one of the solutions presented in Section 4 .1:

An entirely different approach to table sorting (see Section 4.1 for details)

† actually, an inner class of type com.mathworks.mwswing.MJStatusBar$1.

K13163_Book.indb 259 11/8/2011 8:08:08 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming260

MJTreeTable is an MJTable (see above) with additional functionality to support basic
tree-like hierarchical cells, as shown in the following screenshots:

An example of an MJTreeTable†

†a much more sophisticated tree-table implementation is provided by JIDE’s TreeTable
class, which is described in Section 5 .7 .2:

Another tree-table example (this time a JIDE TreeTable)

MJColorComboBox is a JColorComboBox that is suited for color selection (see
Section 5 .4 .1) . Unfortunately, this class was removed in Matlab 7 .11 (R2010b) .

† Note that the Help Index tab was removed in Matlab R2009b . Vociferous user protests have demanded its return, so
perhaps the tab will indeed return in some future release .

K13163_Book.indb 260 11/8/2011 8:08:08 PM

© 2012 by Taylor & Francis Group, LLC

261Built-In MATLAB® Widgets and Java Classes

MJDimensionPicker is a JPanel dedicated to interactive selection of a table grid size:

jc = com.mathworks.mwswing.MJDimensionPicker(java.awt.Dimension(3,4),1);
jc.setautoGrowEnabled(true);
jc.setSizeLimit(java.awt.Dimension(5,5));
[jhc,hContainer] = javacomponent(jc,[100,100,150,200],gcf);

>> jc.getSelectedSize
ans =
java.awt.Dimension[width = 2,height = 3]

Initial 4x3
MJDimensionPicker

Selecting 3x2 cells

table auto-growth (up to 5x5)

MJMultilineLabel, MJMultilineToggleButton, MJMultilineRadioButton,
and MJMultilineCheckBox enable setting a text label spanning multiple lines if necessary .
this contrasts with the default JLable behavior of truncating excess characters . However, it
should be remembered that HtMl labels are automatically line-wrapped as well . therefore, all
we need to do to achieve label text-wrapping is to enclose the label text with a “<html>” tag,
without needing these four new MJMultiline* classes:

% Non-HTML (single-line, truncated) label
str = 'This is an MJLabel string';
jLabel = javaObjectEDT('com.mathworks.mwswing.MJLabel',str);
jLabel.setTipWhenTruncatedEnabled(true);
[hcomponent,hcontainer] = javacomponent(jLabel,[10,50,50,30],gcf);

% HTML (multi-line) label — see discussion in Section 6.9 below
str = '<html>&∀β bold<i>label';
jLabel.setText(str);

truncated single-line
(non-HtMl) label

Multiline (HtMl) label

Multiline (HtMl) radio
button & checkbox

K13163_Book.indb 261 11/8/2011 8:08:09 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming262

MJScrollStrip is used to display components in a panel that has arrow buttons at each
end to enable scrolling when the panel’s size is not enough to display all components .
MJScrollStrip has both Horizontal and Vertical display modes (set via its Orientation
property) . this is used, for example, in the Matlab Editor:

Horizontal MJScrollStrip in the MAtlAb Editor

by default, the Editor has its MJScrollStrip setup to automatically scroll the compo-
nents in the arrow’s direction upon mouse hover on one of the arrows . this behavior can be
switched off via the ScrollOnMouseOver property .
MJTiledPane is a container that enables to define a nonuniform matrix of subpanels, each

containing its own Java components . this is used extensively by the Matlab Editor in “tiled”
mode (see Section 8 .1 .1), but it can also be used in use applications:

jc = com.mathworks.mwswing.MJTiledPane(java.awt.Dimension(3,4));
[jhTiledPane,hContainer] = javacomponent(jc,[10,10,300,200],gcf);

MJTiledPane (4x3) with some cells merged and some inner borders moved

MJUtilities is not a displayable component but rather contains a set of ancillary methods
that are used throughout the system . these include self-explanatory methods such as beep(),
getCaretBlinkRate(), getCheckBoxIndent(), getDoubleClickInterval(), getScreenBounds(),
getVirtualScreenBounds(), and hasMultipleMonitors() .

Several MJUtilities methods handle mnemonics (hot keys): setMnemonicFrom-
Text(component,labelString), exciseMnemonic(labelString), findMnemonic(labelString),
indexOfMnemonic(labelString), and a few others .

there are also some EDt-related methods (see Section 3 .2): invokeLater(. . .), runOnEvent-
DispatchThread(. . .), assertIsEventThread(), getThreadWarningCount(), setThreadingChecks-
Enabled(flag), and threadSafetyWarningStackTraceSuppressed() .

K13163_Book.indb 262 11/8/2011 8:08:10 PM

© 2012 by Taylor & Francis Group, LLC

263Built-In MATLAB® Widgets and Java Classes

Finally, the initJIDE() method is necessary for using JIDE functionality (see below) .
Until R2010b, MJUtilities also included several font-related methods . In R2011a, these

methods were transferred to com.mathworks.mwswing.FontUtils .
MouseUtils contains the single self-explanatory method isDoubleClickEvent(mouseEvent),

which is useful in mouse callback functions .
ColorUtils contains color management methods: darker(), brighter(), intensify(), and so on .
TableUtils provides convenience methods for controlling a JTable: adjustRowHeight-

(jtable) and getXForColumn(jtable, columnIndex) . the corresponding JIDE class, com.jides-
oft.grid.TableUtils, provides many other complementary methods: autoResizeAllColumns,
autoResizeAllRows, autoResizeColumn, autoResizeRow, ensureRowSelectionVisible, findCol-
umnIndex, getViewPositionForRow, loadRowHeights, loadSelection(. . .), and many others .†

Similarly, TreeUtils provides convenience methods for controlling a JTree: childEx-
ists(. . .), collapseAllNodes(jtree), expandAllNodes(jtree), nodeToPath(. . .), and pathExists(. . .) .
there is a corresponding JIDE class, com.jidesoft.tree.TreeUtils, which provides
complementary methods: expandAll(jtree,flag), findTreeNode(. . .), getLeafCount(. . .),
isDescen dant(. . .), loadSelection(. . .), and a few others .‡

SimpleDOMParser provides, as its name suggests, simple DOM-based XMl parsing sup-
port . Its main method is parse(java.io.Reader), which returns a SimpleElement object,
which includes all the important parsing methods: DOM traversal is done via getChildNodes(),
getChildrenByTagName(name), getElementsByTagName(name), getFirstChild(), getParent-
Node(), and hasChildNodes(); XMl node inspection is done via getAttribute(name), getAttrib-
utes(), getNodeName(), getNodeValue(), getTagName(), getText(), and hasAttribute(name) .

the MWSwing package contains several subpackages with specialized controls:
com.mathworks.mwswing.checkboxlist.CheckBoxList is an MJList exten-

sion that displays a list of labels in a list with a checkbox next to each label .§ the labels’ check-
boxes can be set, unset, and queried using methods supplied by the CheckBoxList class or
its com.mathworks.mwswing.checkboxlist.DefaultListCheckModel model:

jList = java.util.arrayList; % any java.util.List will be ok
jList.add(0,'First');
jList.add(1,'Second');
jList.add(2,'Third');
jList.add(3,'and last');
jCBList = com.mathworks.mwswing.checkboxlist.CheckBoxList(jList);
jScrollPane = com.mathworks.mwswing.MJScrollPane(jCBList);
[jhCBList,hContainer] = javacomponent(jScrollPane,[10,10,80,65],gcf);
set(jCBList, 'ValueChangedCallback', @myMatlabCallbackFcn);
jCBModel = jCBList.getCheckModel;
jCBModel.checkall;

† See Section 4 .1 .5 for sample usage .
‡ See Section 4 .2 .3 for sample usage .
§ there is also an unrelated JIDE equivalent: com.jidesoft.swing.CheckBoxList (http://www .jidesoft .com/java-

doc/com/jidesoft/swing/Checkboxlist .html or http://bit .ly/9d2GSJ) .

K13163_Book.indb 263 11/8/2011 8:08:10 PM

© 2012 by Taylor & Francis Group, LLC

http://www.jidesoft.com

Undocumented Secrets of MATLAB®-Java Programming264

jCBModel.uncheckIndex(1);
jCBModel.uncheckIndex(3);

>> jCBList.getCheckedValues
ans =
[First, Third]
>> jCBList.getCheckedIndicies'
ans =
 0 2
>> jCBModel.isIndexChecked(0)
ans =
 1

CheckBoxList example

Similarly, com.mathworks.mwswing.checkboxtree.CheckBoxTree is an
MJTree extension that displays tree nodes with a checkbox next to each label .† In the following
example, a regular MJTree is presented next to a CheckBoxTree:

import com.mathworks.mwswing.checkboxtree.*
jRoot = DefaultCheckBoxNode('Root');
l1a = DefaultCheckBoxNode('Letters'); jRoot.add(l1a);
l1b = DefaultCheckBoxNode('Numbers'); jRoot.add(l1b);
l2a = DefaultCheckBoxNode('a'); l1a.add(l2a);
l2b = DefaultCheckBoxNode('b'); l1a.add(l2b);
l2c = DefaultCheckBoxNode('<html>α'); l1a.add(l2c);
l2d = DefaultCheckBoxNode('<html><i>β'); l1a.add(l2d);
l2e = DefaultCheckBoxNode('3.1415'); l1b.add(l2e);

% Present the standard MJTree:
jTree = com.mathworks.mwswing.MJTree(jRoot);
jScrollPane = com.mathworks.mwswing.MJScrollPane(jTree);
[jComp,hc] = javacomponent(jScrollPane,[10,10,120,110],gcf);

% Now present the CheckBoxTree:
jCheckBoxTree = CheckBoxTree(jTree.getModel);
jScrollPane = com.mathworks.mwswing.MJScrollPane(jCheckBoxTree);
[jComp,hc] = javacomponent(jScrollPane,[150,10,120,110],gcf);

† there is also an unrelated JIDE equivalent: com.jidesoft.swing.CheckBoxTree (http://www .jidesoft .com/
javadoc/com/jidesoft/swing/Checkboxtree .html or http://bit .ly/93K6up); http://www .mathworks .com/matlabcentral/
newsreader/view_thread/300225 (or http://bit .ly/hG79aE) .

K13163_Book.indb 264 11/8/2011 8:08:10 PM

© 2012 by Taylor & Francis Group, LLC

http://www.jidesoft.com
www.mathworks.com

265Built-In MATLAB® Widgets and Java Classes

A regular MJTree (left) and a CheckBoxTree (right)

Unlike MJTree or CheckBoxList, CheckBoxTree does not have a separate data
model . Instead, it relies on the base MJTree’s model, which is a javax.swing.tree.
DefaultTreeModel74 by default (JIDE’s CheckBoxTree does have its own model) .

Node checkboxes can be set, unset, and queried using the nodes’ SelectionState property (or
the corresponding get/set accessor methods) . the three possible values are specified by the com.
mathworks.mwswing.checkboxtree.SelectionState class: SelectionState.
SELECTED, SelectionState.NOT_SELECTED and SelectionState.MIXED:

set(l2a,'SelectionState',SelectionState.SELECTED); % select 'a'
jCheckBoxTree.repaint;

>> isequal(jRoot.getSelectionState, SelectionState.MIXED)
ans =
 1

the SelectionState value is used by the checkboxes’ UI . to see this UI, run the follow-
ing before rendering the tree onscreen:

>> jCheckBoxTree.list
com.mathworks.mwswing.checkboxtree.CheckBoxTree[...]
 javax.swing.CellRendererPane[,0,0,0x0,invalid,hidden]
 javax.swing.JPanel[...]
 com.mathworks.mwswing.MJCheckBox[...]
 ...

>> jCheckBoxTree.getComponent(0).getComponent(0).getComponent(0).getUI
ans =
com.mathworks.mwswing.checkboxtree.TriStateButtonUI@c98a94

com.mathworks.mwswing.checkboxtree.TriStateButtonUI displays a distinc-
tive pattern, which is PlaF (look-&-Feel) dependent . In Section 6 .4, we shall use
TriStateButtonUI to set a similar tri-state for regular checkboxes .

K13163_Book.indb 265 11/8/2011 8:08:10 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming266

lastly, the com.mathworks.mwswing.desk sub-package, which shall not be detailed
here, includes numerous classes, many of which extend the basic MWSwing components
described above, and which are used as Matlab Desktop components . In R2011a, this sub-
package was renamed com.mathworks.widgets.desk .

5.2.3 Other MWSwing Controls
Finally, there are a few custom Matlab controls that, as far as I could see, do not add much impor-
tant functionality to their Swing superclass . these include MJComponent, MJButton Group,
MJSlider, MJSpinner, MJScrollBar, MJProgressBar, MJColorChooser, MJMenu,
MJPopupMenu, MJRadioButtonMenuItem, MJPanel, MJLayeredPane, and MJWindow .

I believe that it is safe to say that these control classes detract nothing from their superclass
parents . I, therefore, recommend using the MathWorks classes instead of their corresponding
Swing counterparts, even in cases which have no apparent benefit .

5.3 MWT Package

the MWt package contains components that directly access the base GUI (aWt), bypassing
the standard Swing family of components . Many MWt components have corresponding
MWSwing components . In practice, the MWSwing/Swing components usually look more
 “polished” and professional than their MWt counterparts .

Without additional information, it appears to me that MWt was an early attempt made by
MathWorks to implement a Java-based GUI, which was later replaced with the MWSwing
package . Perhaps, the reason for this package being kept in new Matlab releases is the sup-
port that it provides to backward-compatibility with code written for earlier releases .

However, the MWt components sometimes have specific features that are missing in
MWSwing . therefore, in specific circumstances, users may actually prefer using MWt . For
example, consider the com.mathworks.mwt.MWCheckbox component, which is com.
mathworks.mwswing.MJCheckBox’s counterpart (note the different capitalization):

jMWCheckbox = com.mathworks.mwt.MWCheckbox('MWCheckbox',1);
javacomponent(jMWCheckbox,[10,10,100,20],gcf);

jMJCheckBox = com.mathworks.mwswing.MJCheckBox('MJCheckBox',1);
javacomponent(jMJCheckBox,[10,40,100,20],gcf);

jMWCheckbox = com.mathworks.mwt.MWCheckbox('MWCheckbox - mixed',0);
jMWCheckbox.setMixedState(true);†

javacomponent(jMWCheckbox,[120,10,140,20],gcf);

jMWCheckbox = com.mathworks.mwt.MWCheckbox('MWCheckbox - radio',1);
jMWCheckbox.setappearance(jMWCheckbox.RaDIO_BUTTON);
javacomponent(jMWCheckbox,[120,40,140,20],gcf);

† the checkbox State must be false for the MixedState to have a visible effect . Note that the mixed state is only available in
checkbox appearance and not in radio appearance .

K13163_Book.indb 266 11/8/2011 8:08:10 PM

© 2012 by Taylor & Francis Group, LLC

267Built-In MATLAB® Widgets and Java Classes

MWt’s MWCheckbox vs. MWSwing’s MJCheckBox

In this example, we see that although the MJCheckBox appears more “polished” (e .g .,
 anti-aliased font), the MWCheckbox enables setting a mixed-state checkbox, as well as a radio-
button appearance . Specific use-cases that require a mixed-state or radio appearance may,
therefore, favor using MWCheckbox over MJCheckBox (Section 6 .4 shows how to set a tri-
state mode also for regular MJCheckBox) .

In some cases, the MWt components have different names than their standard counterparts .
For example, MWSplitter is similar to a JSplitPane; MWListbox is really just a simple
table;75 MWCardPanel is similar to a Matlab Frame uicontrol; and so on .

an MWt component that may be of interest, and which does not have an MWSwing coun-
terpart, is MWRuler, which was removed in R2011a . MWRuler creates a pixel ruler that can be
useful for graphical-editing applications . In fact, it is used by Matlab’s own GUIDE (GUI
Design Editor), as detailed in Section 8 .7 .3 . both horizontal and vertical rulers can be specified,
and the tick & label intervals can be customized:

javacomponent(com.mathworks.mwt.MWRuler,[30,150,250,20],gcf);
javacomponent(com.mathworks.mwt.MWRuler(0,5,25),[10,10,20,142],gcf);

Horizontal and vertical ruler controls

Note: MWt is an undocumented “feature” of the built-in usejava, javachk functions:

if ~usejava('mwt'), ... % alternative #1
error(javachk('mwt','title msg')); % alternative #2

K13163_Book.indb 267 11/8/2011 8:08:11 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming268

5.4 MlWidgets Package

the MlWidgets package contains miscellaneous components (widgets) used throughout
Matlab . the components are divided into sub-packages based on usage . So, for example, the
array sub-package (com.mathworks.mlwidgets.array.*) includes components and sup-
port classes used by the Matlab array Editor .

Here are some interesting MlWidgets sub-packages:
actionbrowser ◾ — appears to relate to function-hints tooltip, introduced in R2008b
(Matlab 7 .7):

array ◾ — relates to the array Editor . For example, the following snippet displays
 variable data in a figure panel:

 data = magic(5);
 jValuePanel = com.mathworks.mlwidgets.array.ValuePanel('data');
 javacomponent(jValuePanel,[10,10,400,150],gcf);

the VariableToolBar component implements the array-editor toolbar:

configeditor ◾ — relates to the run/publish configuration-editor dialog window .
cwd ◾ — CwdDisplayPanel is the component that displays the current folder in the
main desktop toolbar . It can also be displayed as a standalone component:

K13163_Book.indb 268 11/8/2011 8:08:11 PM

© 2012 by Taylor & Francis Group, LLC

269Built-In MATLAB® Widgets and Java Classes

debug ◾ — Editor’s Debug menu’s “Stop if Errors/Warnings” dialog window .
dialog ◾ — Editor’s interactive file-running support dialog windows: PathUpdateDialog
presents the following dialog window:

 SpecifyNewFilenameDialog presents the following dialog window:

 ProgressBarDialog presents an animated progress-bar dialog window, similar to
Matlab’s built-in waitbar function but with an animated circular busy icon (see
Busyaffordance in Section 5 .5 .1):

 d = com.mathworks.mlwidgets.dialog.ProgressBarDialog.createProgressBar
 ('test...',[]);

 d.setValue(0.75); % default = 0
 d.setProgressStatusLabel('testing...'); % default = 'Please Wait'
 d.setSpinnerVisible(true); % default = true
 d.setCircularProgressBar(false); % default = false
 d.setCancelButtonVisible(true); % default = true
 d.setVisible(true); % default = false

ProgressBarDialog — separate dialog window

K13163_Book.indb 269 11/8/2011 8:08:12 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming270

 the progress window can also appear as an internal window pane within a Matlab
figure, as follows:†

 jFrame = get(gcf,'JavaFrame'); surf(peaks); drawnow;
 jWindow = jFrame.fHG1Client.getWindow;‡

 d = com.mathworks.mlwidgets.dialog.ProgressBarDialog.createProgressBar.
 createHeavyweightInternalProgressBar(jWindow,'test...',[]);
 d.setValue(0.37);
 d.setVisible(true);

ProgressBarDialog — internal window pane

explorer ◾ — Current-Folder explorer panel .
graphics ◾ — contains color and plot-type selection panels and controls, described in
the following sections .
help ◾ — classes that deal with the different aspects of Matlab help, parsing, and
displaying internal or user-defined76 help docs, and so on . One of the controls,
HelpPopup, is presented in detail in Section 8 .3 .2 . another control, HelpPanel,
can be used to embed a panel that displays doc pages in user GUI .

 the search subpackage handles the help-contents search functionality, which is
apparently based on the well-known open-source lucene engine (com.mathworks.
mlwidgets.help.search.lucene) .77

html ◾ — contains the classes for presenting and displaying HtMl webpages in Matlab-
branded containers via HTMLBrowserPanel, for example, doc pages or the Matlab
webbrowser (invoked with the built-in web function), as detailed in Section 8 .3 .2 .

† Note: More advanced animated busy indications, including automated percentage and time-remaining labels, can be speci-
fied using JBusyComponent (http://code .google .com/p/jbusycomponent/ or http://bit .ly/gvPyav), which is a JXlayers
(https://jxlayer .dev .java .net/ or http://bit .ly/edIeym) decorator that can be applied to any displayable component . also, see
status-bar progress-bars (Section 4 .7), Swing’s JProgressBar (Section 3 .3 .1), and the built-in waitbar function .

‡ In R2007b and earlier, use fFigureClient rather than fHG1Client .

K13163_Book.indb 270 11/8/2011 8:08:12 PM

© 2012 by Taylor & Francis Group, LLC

http://code.google.com
https://jxlayer.dev.java.net

271Built-In MATLAB® Widgets and Java Classes

 browser preferences are stored in the global preferences file (see Section 8 .2) and
usually have an “HtMl” prefix (e .g ., HtMlUseProxy, HtMlProxyHost,
HtMlMaxFileSize), with a few preferences that do not follow this convention (e .g .,
Systembrowser, SystembrowserOptions) . Section 8 .2 shows how these preferences
can be set programmatically, but in this case there is another alternative, using the
built-in com.mathworks.mlwidgets.html.HTMLPrefs class: HTMLPrefs
has static get/set accessor methods for all the relevant preferences, for example,
HTMLPrefs.setUseProxy(flag),setProxyHost(hostName), setMaxFileSize(value),
setSystemBrowser(browserName), and setSystemBrowserOptions(optionsString) —
see urlread .m/urlwrite .m for sample usage . after setting proxy preferences, we must
call HTMLPrefs.setProxySettings(), or restart Matlab .

 another possibly useful class is com.mathworks.mlwidgets.html.
HTMLUtils, which contains static methods to encode/decode URls, and so on .
inspector ◾ — contains classes used to implement the built-in property inspector .
Matlab’s inspector is based on JIDE grid tables, which are presented in Section
5 .7 .2 . the property inspector can be embedded as a standalone control in user GUIs . I
have done so in my UIInspect (see Section 1 .3) and FindJObj (see Sections 4 .2 .5 and
7 .2 .3) utilities . Interested users are encouraged to download these utilities and see how
the inspector panel was configured, added to the GUI, and then assigned various object
handles for inspection .
interactivecallbacks ◾ — contains the InteractiveCallbackEditor class that
presents an interactive callback-function editor panel . this could be used to input code
segments from the user that are automatically syntax-highlighted and mlinted (also see
the related SyntaxTextPane component in Section 5 .5 .1):

InteractiveCallbackEditor

io ◾ — contains com.mathworks.mlwidgets.io.InterruptibleStreamCopier .
Used by all the built-in Matlab I/O functions, this is a faster and more powerful I/O
class than the standard java.net.url .78

mlservices ◾ — this com.mathworks.mlwidgets.mlservices sub-package
should not be confused with the main com.mathworks.mlservices package

K13163_Book.indb 271 11/8/2011 8:08:12 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming272

(described in Section 5 .6) . the mlwidgets.mlservices sub-package is mainly
responsible for the source-control integration, which is located in its scc sub-package
(com.mathworks.mlwidgets.mlservices.scc) .
path ◾ — the PathUtils class has a few static methods that display path-related error
messages:

 jFrame = java.awt.Frame;
 jFrame.setLocation(java.awt.Point(400,300));
 import com.mathworks.mlwidgets.path.PathUtils
 PathUtils.showChangeNotificationDialog(jFrame, PathUtils.PaTH_CHaNGE)79

Path change notification warning

 PathUtils.showInvalidPathEntryDialog(javax.swing.JButton,'Error msg')

Path change error message

prefs ◾ — contains components that help manage the Matlab system preferences in a
dedicated window . these components are simply GUI representations of the preferences,
which can be modified programmatically as explained in detail in Section 8 .2 . among
these components, we can find PrefsDialog, which is the main dialog window . It can
be used to present a specified preferences panel (e .g ., in response to user action):

 jPrefsDialog = com.mathworks.mlwidgets.prefs.PrefsDialog;
 jPrefsDialog.showPrefsDialog('Command Window');

K13163_Book.indb 272 11/8/2011 8:08:13 PM

© 2012 by Taylor & Francis Group, LLC

273Built-In MATLAB® Widgets and Java Classes

MAtlAb main preference window

 as an alternative to PrefsDialog.showprefsDialog(), we can use the built-in
 preferences function with the undocumented input argument of the preference
name, for example, preferences(‘Command Window’) or preferences(‘General.Source
Control’) .

 PrefsDialog’s registerPanel(name1,name2) method apparently enables adding
a new preference panel to the Preferences dialog window . this method accepts two
names that are presumably the panel title (‘Command Window’) and its class name (or
possibly vice versa) . Posted stack-traces80 seem to indicate that preference panel classes
are expected to have a createPrefsPanel() method that returns the displayable JPanel
component .

 Many preference panel classes are located in this package, under self-explanatory
names such as GeneralMatFilePrefsPanel or FontPrefsPanel . the keyboard
shortcut preferences panel, available since R2009b, received a dedicated sub-package
(com.mathworks.mlwidgets.prefs.binding) due to its complex implementa-
tion . Other panels are located in other packages: com.mathworks.mlwidgets.
mlservices.scc.SccPrefsPanel (“General/Source Control”), com.math-
works.mlwidgets.text.mcode.MLintPrefsPanel (“Code analyzer”), com.
mathworks.mlwidgets.explorer.ExplorerPrefsPanel (“Current Folder”),
several panels under com.mathworks.mde.* and elsewhere .

K13163_Book.indb 273 11/8/2011 8:08:13 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming274

shortcuts ◾ — this sub-package includes classes and components used to handle Desktop
toolbar shortcuts . the pivot class appears to be com.mathworks.mlwidgets.
shortcuts.ShortcutUtils, which is described in Section 8 .1 .4, together with
the ShortcutTreePanel component .
stack ◾ — the stack functions drop-down combo-box and surrounding panel .

tabcompletion ◾ — handles the Matlab Desktop and Editor tab completions (the
popup that displays when we type <tab> in the Command Prompt or Editor, with a
list of possible completions) . the customization of tab completion is explored in
Section 8 .3 .4 .
tex ◾ — the TestTexDraw class displays a Java window frame with a canvas that dis-
plays teX-formatted strings,81 apparently as a test for valid strings (if the string is
invalid, the frame contents will appear empty):

 f = com.mathworks.mlwidgets.tex.TestTexDraw;
 f.setString('T_ex \bf example: $\sqrt{xˆ2+2x+1}=x+1$');
 f.repaint;

TestTexDraw window

 Note that there are plenty of teX-testing alternatives online, including some on the
Matlab File Exchange .82

text ◾ — the com.mathworks.mlwidgets.text.mcode.* sub-package con-
tains the preference panel and support classes for the Matlab Mlint (“Code
analyzer”) .
util ◾ — product information utilities .
workspace ◾ — contains the components and support classes used by the Workspace
panel in the main Matlab Desktop . Customization of the Workspace is described in
Section 8 .6 . One of the support classes, com.mathworks.mlwidgets.work-
space.MatlabCustomClassRegistry, is used by the toolboxes’ prefspanel .m
function to register class callbacks . another support class, WhosInformation, is
used by arrayviewfunc .m and by workspacefunc .m . lastly, ImportFileChooser
is used by the built-in uiimport .

K13163_Book.indb 274 11/8/2011 8:08:13 PM

© 2012 by Taylor & Francis Group, LLC

275Built-In MATLAB® Widgets and Java Classes

5.4.1 Color-Selection Components83

Matlab’s fully-documented uisetcolor function uses a modal dialog window, whereas we
often need to integrate color-selection components as a sub-component of an existing GUI . this
is not supported by uisetcolor .

luckily, Matlab contains several internal color-selection components that can be inte-
grated in our GUI . these include the beans package’s ColorPicker, and the MlWidgets
package’s ColorPicker and ColorDialog . In addition, external Java components, such as
Swing’s standard JColorChooser,84 can also be used (note that JColorChooser should
have a minimum size of about 425 × 325 pixels to appear uncropped) . they can be added to our
GUI using the built-in javacomponent function . For example,

>> cc=javax.swing.JColorChooser;

>> [jColorChooser,container]=javacomponent(cc,[1,1,450,325],gcf);

>> jColorChooser.getColor
ans=
java.awt.Color[r=102,g=153,b=255]

Swing’s standard JColorChooser panel

K13163_Book.indb 275 11/8/2011 8:08:14 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming276

the beans package’s ColorPicker is an alternative component provided by Matlab:

>> cp = com.mathworks.beans.editors.ColorPicker;

>> [jColorPicker,container]=javacomponent(cp,[1,1,400,200],gcf);

>> jColorPicker.getSelectedColor
ans=
java.awt.Color[r=255,g=86,b=158]

MAtlAb’s ColorPicker

the selection color can be specified using the ColorPicker’s setSelectedColor() method:

cp.setSelectedColor(0,0,255); % = blue
cp.repaint; % necessary if the component is already displayed

Similarly, the original color can be specified using the setInitialColor() method:

cp.setInitialColor(255,0,0); % = red
cp.repaint; % necessary if the component is already displayed

ColorPicker is used by the property inspector as the editor for color properties of Java
objects (Matlab color properties use another editor — see below):

inspect(cp)

K13163_Book.indb 276 11/8/2011 8:08:15 PM

© 2012 by Taylor & Francis Group, LLC

277Built-In MATLAB® Widgets and Java Classes

ColorPicker is used by MAtlAb’s property inspector as the editor for color properties of
Java objects

Note how Matlab’s implementation of the color-selection window blended the window
and javacomponent background colors, and how simple <OK> and <Cancel> buttons were
added to the window’s bottom . this is a good example of blending Java components/controls
into a Matlab GUI .†

the com.mathworks.beans.editors.ColorPicker object should not be confused
with the com.mathworks.mlwidgets.graphics.ColorPicker object . the beans
 editor ColorPicker is a simple standalone Java component that can be embedded in GUI
figures, whereas the MlWidgets ColorPicker is a Java button control that is used to present
a popup selection similar to a ColorDialog:

options = 0; icon = 0;
cp = com.mathworks.mlwidgets.graphics.ColorPicker(options,icon,'');
[jColorPicker,hContainer] = javacomponent(cp,[10,220,30,20],gcf);

† actually, this is an entirely Java-based window, but a Matlab figure would look exactly the same except for the window
decoration (window icon and minimization/maximization buttons) .

K13163_Book.indb 277 11/8/2011 8:08:15 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming278

A different MAtlAb ColorPicker

the com.mathworks.mlwidgets.graphics.ColorPicker component enables
specifying different button icons and popup options . the list of supported icons is as follows:

Enumeration name Value Icon

ColorPicker.NO_ICON 0

ColorPicker.FILL_ICON 1

ColorPicker.LINE_ICON 2

ColorPicker.TEXT_ICON 3

the icons need to be supplied to the ColorPicker constructor, as shown above, as either
a numeric value or as a more readable static enumeration name . For example,

icon = com.mathworks.mlwidgets.graphics.ColorPicker.LINE_ICON; % = 2
cp = com.mathworks.mlwidgets.graphics.ColorPicker(options,icon,'');

Similarly, for the popup options, the list is as follows:

Enum Name ColorPicker. NO_OPTIONS ColorPicker.aUTO ColorPicker.MaRKER

Value 0 1 2

Displayed
popup

K13163_Book.indb 278 11/8/2011 8:08:16 PM

© 2012 by Taylor & Francis Group, LLC

279Built-In MATLAB® Widgets and Java Classes

ColorPicker. ColorPicker. ColorPicker. ColorPicker.NONE
SURFaCE_aND_PaTCH SURFaCE_FaCECOLOR SURFaCE_MaRKER

 3 4 5 6

Depending on the selected popup-menu element, the ColorPicker’s Value property will
return a java.awt.Color object or a string representation of the selected option:

>> get(cp,'Value')
ans =
java.awt.Color[r=0,g=0,b=255] <= a java.awt.Color object

>> jColorPicker.getValue % equivalent to: get(cp,'Value')
ans =
interp <= a string value

and similarly, we can also set the ColorPicker’s Value to a java.awt.Color or string:

set(cp,'Value',java.awt.Color.red) % or: java.awt.color(1,0,0)
jColorPicker.setValue('flat');

We can programmatically display the popup menu using ColorPicker’s showMenu()
method . For example, let us set the button so that the popup menu is displayed whenever the
mouse hovers over the button . Recall from Section 3 .4 that we should use the handle wrapper
for the Java object, to prevent memory leaks:

>> jhColorPicker = handle(jColorPicker,'CallbackProperties')
jhColorPicker =
 javahandle_withcallbacks.com.mathworks.mlwidgets.graphics.ColorPicker

>> set(jhColorPicker,'MouseEnteredCallback', @(obj,evd) obj.showMenu);

advanced programmers can customize the color-selection popup menu using its object han-
dle returned from the getPopupMenu() method . although the popup menu looks like a complex

K13163_Book.indb 279 11/8/2011 8:08:17 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming280

container, it is really a very simple menu list that includes com.mathworks.mwswing.
MJMenuItem items and a few javax.swing.JSeparator objects:

>> jColorPicker.getPopupMenu.list
com.mathworks.mlwidgets.graphics.ColorPicker$ColorPickerMenu[ColorPickerMenu,0,
0,150x284,...]
 com.mathworks.mwswing.MJMenuItem[No Color,5,5,140x16,...]
 com.mathworks.mwswing.MJMenuItem[automatic,5,25,140x16,...]
 javax.swing.JSeparator[,5,25,140x2,...,orientation=HORIZONTaL]
 com.mathworks.mwswing.MJMenuItem[black,4,30,16x16,...]
 com.mathworks.mwswing.MJMenuItem[white,22,30,16x16,...]
 com.mathworks.mwswing.MJMenuItem[0.94,0.94,0.94,40,30,16x16,...]
 com.mathworks.mwswing.MJMenuItem[0.83,0.82,0.78,58,30,16x16,...]
 ...
 javax.swing.JSeparator[,3,68,144x2,...,orientation=HORIZONTaL]
 com.mathworks.mwswing.MJMenuItem[0.85,0.16,0,4,74,16x16,...]
 com.mathworks.mwswing.MJMenuItem[0.93,0.93,0.93,22,138,16x16,...]
 ...

to modify this popup menu, follow the steps outlined in Sections 4 .6 .3 and 4 .6 .4 .

JIDE’s com.jidesoft.combobox.ColorComboBox (see Section 5 .7 .2) is very simi-
lar to ColorPicker . Despite its name and appearance as a combo-box, it actually extends the
basic JComponent and not JComboBox . It includes three separately customizable sub-com-
ponents: a color label, the color values, and the drop-down arrow button . all are shown by
default (the color values may be hidden if the control is set too narrow), and each of the sub-
components can easily be hidden:

Default ColorValueVisible = 0 ColorIconVisible = 0 ButtonVisible = 0
ColorComboBox

ColorComboBox has a very nice feature, enabling manual modification of the color values
(RGb) — the label’s color automatically changes once a new value has been entered (the
<Enter> key is pressed) .

another, much simpler, color-selection drop-down control (which was most regrettably
removed in Matlab 7 .11 R2010b), is com.mathworks.mwswing.MJColorComboBox,
which is a simple extension of the standard Swing javax.swing.JComboBox:

jc = com.mathworks.mwswing.MJColorComboBox;
jc.addColor(java.awt.Color.red,'red');
jc.addColor(java.awt.Color.blue,'blue');
jc.addColor(java.awt.Color.green.darker,'green');
jc.addColor(java.awt.Color(.8,.5,.3),'???');
jc.setSelectedColor(java.awt.Color.green.darker);
[jhc,hContainer] = javacomponent(jc,[50,50,60,20],gcf);

selectedIndex = jc.getSelectedIndex;

K13163_Book.indb 280 11/8/2011 8:08:18 PM

© 2012 by Taylor & Francis Group, LLC

281Built-In MATLAB® Widgets and Java Classes

selectedColor = jc.getSelectedColor;
selectedColorName = jc.getSelectedName;

the property inspector uses a different control to edit color properties of Matlab HG
objects . as can be seen below, editing a figure handle’s Color property displays a modal com.
mathworks.mlwidgets.graphics.ColorDialog window; when clicking its <More
Colors…> button, a new window containing a Swing JColorChooser is presented:

>> inspect(gcf)

MAtlAb’s ColorDialog (See color insert.)

a ColorDialog can also be presented programmatically from within our GUI, regardless
of any property inspector . to present a ColorDialog, pass a parent Java container to its
showDialog() method . any container will do, even a null container:

>> cd=com.mathworks.mlwidgets.graphics.ColorDialog('Yair''s Colors');
>> color=cd.showDialog([]) % pass a null value as the container

K13163_Book.indb 281 11/8/2011 8:08:19 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming282

(the entire MaTLaB application waits until the dialog window closes)
color=
java.awt.Color[r=255,g=0,b=153]

MAtlAb’S ColorDialog

the ColorDialog window is modal, meaning that the entire Matlab application is
inaccessible until the dialog window is closed . When it closes, the showDialog() method returns
the selected color value or the initial color if no other value was selected .

Despite its name, ColorDialog can also be presented in a GUI panel — not just in a stand-
alone dialog window . Instead of using showDialog(), use the getPickerPanel() method to get
the contents panel (a com.mathworks.widgets.color.ColorPickerPanel object),
and then display this panel using javacomponent .

like com.mathworks.beans.editors.ColorPicker, ColorDialog also has a set-
InitialColor() method . this setInitialColor() method can be used to specify the initially dis-
played color . Note that unlike ColorPicker’s method that accepts three integer values,
ColorDialog’s variant expects a java.awt.Color object . also, note that if the specified
color does not match any displayed color, the user will NOt be informed — the ColorDialog
will simply display the previously stored color .
ColorDialog also has a setTitle() method that can be used to update the title from the one

supplied during ColorDialog’s creation . ColorDialog has a default constructor that sets
a ‘Choose Color’ title, and so we can use setTitle() to override this default title .

K13163_Book.indb 282 11/8/2011 8:08:19 PM

© 2012 by Taylor & Francis Group, LLC

283Built-In MATLAB® Widgets and Java Classes

Finally, there is a color-chooser panel class in the com.mathworks.hg.util package:

initialColor = java.awt.Color.cyan;
dc = com.mathworks.hg.util.dColorChooser(initialColor,{},'','');
dcPanel = dc.getContentPanel;
[jColorPicker,hContainer] = javacomponent(dcPanel,[1,1,400,200],gcf);

com.mathworks.hg.util.dColorChooser

to access the currently selected color, read the control’s Color property:

>> get(dc,'Color')
color =
 0.992156862745098 0.917647058823529 0.796078431372549

>> dc.getColor
color=
java.awt.Color[r=253,g=234,b=203]

In summary, Matlab programmers have several distinct ways of presenting a visually
appealing color-selection dialog:

1 . In a standalone window (com.mathworks.mlwidgets.graphics.ColorDialog)
2 . In a drop-down button (com.mathworks.mlwidgets.graphics.Color-
Picker, com.mathworks.mwswing.MJColorComboBox (pre-R2010b), JIDE
ColorComboBox)

3 . as an embedded component that can also be shown in a separate window: (com.math-
works.beans.editors.ColorPicker or javax.swing.JColorChooser)

4 . as an embedded cell component within data tables (see Section 4 .1 .1)

K13163_Book.indb 283 11/8/2011 8:08:20 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming284

5.4.2 Plot-Type Selection Components
Matlab contains several graphical plot-type selection components that can be used in our
GUI . PlotPicker is a combo-box (drop-down/popup) control, which displays a list of pos-
sible plot functions ; PlotCatalog is a dialog window that presents the plot func-
tions catalog:

>> com.mathworks.mlwidgets.graphics.PlotCatalog.getInstance.show

another plot-function selector is PlottypeCombo, which is
my personal favorite control for embedding in a Matlab
application:

% Present the PlotCombo control
import com.mathworks.mlwidgets.graphics.*
jPlotCombo = PlotTypeCombo;
pos = [100,100,170,50];
[jhPlotCombo,hPanel] = javacomponent(jPlotCombo,pos,gcf);
set(jhPlotCombo,'actionPerformedCallback',@myCBFcn);

% Callback function to process PlotCombo selections
function myCBFcn(jObject,jEventData) newPlotFunc =
jObject.getSelectedItem.getName.char;
 %Now do something useful with the selected function
end % myCBFcn

K13163_Book.indb 284 11/8/2011 8:08:20 PM

© 2012 by Taylor & Francis Group, LLC

285Built-In MATLAB® Widgets and Java Classes

For the IDS application (see Section 10 .2 for details), I implemented a dynamic report page
that enables users to select the plotting function using a PlotTypeCombo . When users select
a nondefault function (e .g ., stairs or loglog), that function is automatically added to the combo-
box for possible future reuse .85 I implemented this as follows:

% add the specified plotFunc to a PlotTypeCombo control
function updatePlotCombo(plotCombo, plotFunc)

 % Convert plotFunc (a Matlab string) into a Java PlotSignature
 import com.mathworks.mlwidgets.graphics.*
 plotSig = PlotMetadata.getPlotSignature(plotFunc);

 % Get the list of all existing plot types in the combo box
 existingPlotTypes = {};
 for plotIdx = 0 : plotCombo.ItemCount-1
 nextItem = plotCombo.getItemat(plotIdx);
 if isjava(nextItem)
 nextItem = char(nextItem.getName);
 end
 existingPlotTypes = [existingPlotTypes, nextItem];
 end

 % If the new plotType is NOT already in the list
 if isempty(strmatch(plotType,existingPlotTypes,'exact'))
 % add the new plotType to the list just prior to the end,
 % so that “More plots...” will always be last
 plotCombo.insertItemat(plotSig,plotCombo.ItemCount-1);
 end

 % Set the currently-selected item to be the requested plotType
 % Note: temporarily disable callbacks to prevent involuntary action
 plotCombo.actionPerformedCallback = [];
 plotCombo.setSelectedItem(plotSig);
 plotCombo.actionPerformedCallback = @myCBFcn; % selection callback

end % updatePlotCombo

Usage of this function would then be as simple as:

updatePlotCombo(jhPlotCombo,'stairs');

the astute reader would have noticed from the updatePlotCombo() function above that the
PlotTypeCombo items are plot-signature objects . Different plot functions expect a different
set of input arguments (signature) . this information is kept and can be queried from the
PlotMetadata class:86

>> com.mathworks.mlwidgets.graphics.PlotMetadata.listallSignatures
ans =
[area, bar, bar (stacked), barh (stacked), barh, comet, compass, errorbar,
feather, loglog, plot, plot N series, plot N series against T, plot3,
plotmatrix, plotyy, polar, quiver, quiver3, ribbon, scatter, scatter3, semilogx,
semilogy, stairs, stem, stem3, null, contour, contour3, contourf, image,

K13163_Book.indb 285 11/8/2011 8:08:20 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming286

imagesc, mesh, meshc, meshz, pcolor, plot against first column, surf, surfc,
surfl, waterfall, null, contour, contour3, contourf, image, imagesc, mesh,
meshc, meshz, pcolor, plot against first column, surf, surfc, surfl, waterfall]

>> plotFunc = 'surf'; % for example
>> plotSig = PlotMetadata.getPlotSignature(plotFunc);
>> args = cell(plotSig.getargs)'
args =
 [1x1 com.mathworks.mlwidgets.graphics.PlotargDescriptor]
 [1x1 com.mathworks.mlwidgets.graphics.PlotargDescriptor]
 [1x1 com.mathworks.mlwidgets.graphics.PlotargDescriptor]
 [1x1 com.mathworks.mlwidgets.graphics.PlotargDescriptor]

>> argsStruct = []; % initialize
>> for argsIdx = 1 : length(args)
 argsStruct(argsIdx).axis = char(args{argsIdx}.getaxis);
 argsStruct(argsIdx).name = char(args{argsIdx}.getName);
 argsStruct(argsIdx).label = char(args{argsIdx}.getLabel);
 argsStruct(argsIdx).dims = args{argsIdx}.getNumDimensions;
 argsStruct(argsIdx).reqObj = args{argsIdx}.getRequired;
 req = argsStruct(argsIdx).reqObj;
 argsStruct(argsIdx).requiredFlag = req.equals(req.REQUIRED);
 end

>> argsStruct(1) % Info about the first input argument
ans =
 axis: 'X'
 name: 'X'
 label: 'X Data Source'
 dims: [2x1 int32]
 reqObj: [1x1
 com.mathworks.mlwidgets.graphics.PlotargDescriptor$RequiredType]
 requiredFlag: 0

>> {argsStruct.axis} % axis info of all input arguments
ans =
 'X' 'Y' 'Z' ''

>> {argsStruct.name} % name of all input arguments
ans =
 'X' 'Y' 'Z' 'C'

>> {argsStruct.label} % data label of all input arguments
ans =
 'X Data Source' 'Y Data Source' 'Z Data Source' 'Color'

>> {argsStruct.dims} % dimensionality of all input args
ans =
 [2x1 int32] [2x1 int32] [2] [2]

>> {argsStruct.requiredFlag} % is any input arg mandatory?
ans =
 [0] [0] [1] [0]

K13163_Book.indb 286 11/8/2011 8:08:20 PM

© 2012 by Taylor & Francis Group, LLC

287Built-In MATLAB® Widgets and Java Classes

5.5 Widgets Package

the com.mathworks.widgets package contains component classes similar to those found
in the MlWidgets package (see Section 5 .4) . the widgets are normally composed of several
basic Swing or MWSwing (see Section 5 .3) components .

5.5.1 Widget Components
ClosableToolTip is a simple tooltip window that can be displayed anywhere (regardless of
“parent” component) . It was first introduced for Editor mlint messages in R2009a87 and then
added to the Desktop’s Current-Folder pane in R2010a:88

cttd = com.mathworks.widgets.ClosableToolTipData('name','Tooltip msg');
dirsEnums = javaMethod('values', ...
 'com.mathworks.widgets.tooltip.BalloonToolTip$arrowDirection');
dirs = java.util.arrayList;
dirs.add(dirsEnums(1)); % NORTH
dirs.add(dirsEnums(2)); % EaST
pos = java.awt.Rectangle(300,600,500,500);
com.mathworks.widgets.ClosableToolTip.show(cttd,pos,dirs);

ClosableToolTip

the displayed tooltip contains the requested message text as well as a button that (when clicked)
not only closes this tooltip message but also stores a system preference to never again show similar
tooltips (which have the same ‘name’) . this preference can always be modified programmatically:

cttd.setPreferenceToClose(false); % true will prevent display
currentState = cttd.isPreferenceSetToClose(); % true/false

For the inquisitive reader, the preference is stored in the matlab .prf file in the user’s prefdir
folder under the key “Closedtooltip<tooltip-name>”:

ClosedToolTipname=Bfalse†

Note the narrow rounded-edge gradient-shade button used in the ClosableToolTip
above . this is another component in the Widgets package, called LightButton, an extension
of com.mathworks.mwswing.MJButton . It has the appealing look-and-feel that reverses
the shade gradient when the button is clicked:

jButton = com.mathworks.widgets.LightButton('My LightButton');
[hjButton,hContainer] = javacomponent(jButton,[20,20,83,13],gcf);

† the preference file and its accessor methods are described in detail in Section 8 .2 . the Dialogs class, described below,
uses a similar way to prevent message from reappearing following a user indication .

K13163_Book.indb 287 11/8/2011 8:08:21 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming288

A regular shaded LightButton.and the same button depressed

Informational messages can also be displayed using another lightweight widget, Light
weightWindow . LightweightWindow is not a displayable component but rather a class that
creates such a component . I do not know the reason for this somewhat-cumbersome usage:

% Create a light-weight dialog window
jf = java.awt.Frame;
jsb = com.mathworks.mwswing.MJStatusBar;
jb = javax.swing.JButton('click me!');
jlww = com.mathworks.widgets.LightweightWindow(jf,'Yair #2',jb,jsb);
jDialogWindow = jlww.getWindow;

% Customize the dialog window's size, status-bar text etc., then show
jsb.setText('This is the status-bar');
jDialogWindow.setSize(200,100)
jDialogWindow.show;

LightweightWindow

In the lightweight widget family, there is also a LightScrollPane component that
extends com.mathworks.mwswing.MJScrollPane to achieve a different look-and-feel:

% Regular scroll-pane:
cols = {'a1','b2','c3'};
data = mat2cell(magic(3),[1,1,1],[1,1,1]);
data = [data;data;data;data];
jTable = com.mathworks.mwswing.MJTable(data,cols);
jScrollPane = com.mathworks.mwswing.MJScrollPane(jTable);
[jhScroll,hContainer] = javacomponent(jScrollPane,[10,10,200,150],gcf);

% Light scroll-pane:
jScrollPane = com.mathworks.widgets.LightScrollPane(jTable);
[jhScroll,hContainer] = javacomponent(jScrollPane,[10,10,200,150],gcf);

 com.mathworks.mwswing. com.mathworks.widgets.

 MJScrollPane LightScrollPane

K13163_Book.indb 288 11/8/2011 8:08:21 PM

© 2012 by Taylor & Francis Group, LLC

289Built-In MATLAB® Widgets and Java Classes

DropdownButton is a button that masquerades as a drop-down/popup menu . Menu items
can be attached to the DropdownButton’s internal MJPopupMenu, just as for any Java
JMenu89 (see Section 4 .6 .4 for additional details and examples):

% Create the drop-down button
jDDButton = com.mathworks.widgets.DropdownButton('Select here');
[jhButton,hContainer] = javacomponent(jDDButton,[10,100,100,20],gcf);

% Customize the popup menu
import javax.swing.* java.awt.event.*
jDDMenu = jDDButton.getPopupMenu; % com.mathworks.mwswing.MJPopupMenu
menuItem = JMenuItem('Text-only menu item');
menuItem.setaccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_1, ...
 actionEvent.aLT_MaSK));
menuItem.getaccessibleContext().setaccessibleDescription('do nothing')
jDDMenu.add(menuItem);
myIcon = fullfile(matlabroot,'/toolbox/matlab/icons/warning.gif');
menuItem = JMenuItem('Text and icon', javax.swing.ImageIcon(myIcon));
menuItem.setaccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_2, ...
 bitor(actionEvent.CTRL_MaSK,actionEvent.aLT_MaSK)));
jDDMenu.add(menuItem);
jDDMenu.addSeparator;
cbMenuItem = JCheckBoxMenuItem('a check box menu item');
jDDMenu.add(cbMenuItem);

DropdownButton in action

the popup menu can also be aligned to the right rather than to the default left:

set(hContainer,'pos',[200,100,100,20]);
aligns = javaMethod('values', ...
 'com.mathworks.widgets.DropdownButton$Popupalignment');
jDDButton.setPopupMenualignment(aligns(2)); % RIGHT

K13163_Book.indb 289 11/8/2011 8:08:21 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming290

A right-aligned DropdownButton

FormPanel is another MJPanel extension . FormPanel automatically lays out specified
subcomponents in a table manner, labels to the left and controls/subcomponents to the right .
Such a panel is often called a “Form”, hence its class name . For example,

jPanel = com.mathworks.widgets.FormPanel;
jPanel.addRow('Row #1:', javax.swing.JCheckBox('test1'))
jPanel.addRow('a very long label:', javax.swing.JCheckBox)
jPanel.addRow('#3:',javax.swing.JButton('Click me!'))
jPanel.addRow('Row #4:',javax.swing.JComboBox({'red','green','blue'}))
[jhPanel,hContainer] = javacomponent(jPanel,[10,10,200,110],gcf);

FormPanel

Note: Matlab comes bundled with the JGoodies Forms package, which is even more
powerful and flexible than FormPanel (see Section 5 .8 .2) .

FormPanel automatically sets HorizontalSpace and VerticalSpace of 5 pixels . these
properties can be modified to achieve a tighter- or more expanded-looking layout .

K13163_Book.indb 290 11/8/2011 8:08:22 PM

© 2012 by Taylor & Francis Group, LLC

291Built-In MATLAB® Widgets and Java Classes

If we look closely at the screenshot above, then we will notice that the button and drop-
down subcomponents are stretched in the horizontal direction but not in the vertical direc-
tion . this is the basic behavior, which can be modified separately for any of the subcomponents
by specifying a third (optional) numeric argument, which is one of FormPanel.STRETCH_
NONE (=0), FormPanel.STRETCH_HORIZONTaL (=1, the default value), FormPanel.
STRETCH_VERTICaL (=2), and FormPanel.STRETCH_BOTH (=3):

jPanel = com.mathworks.widgets.FormPanel;
jPanel.addRow('Row #1:', javax.swing.JCheckBox('test1'))
jPanel.addRow('a very long label:', javax.swing.JCheckBox)

% Unstretched button
jButton = javax.swing.JButton('Click me!');
jPanel.addRow('#3:', jButton, jPanel.STRETCH_NONE)

% Vertically-streched combo-box
jPanel.addRow('Row #4:',javax.swing.JComboBox({'red','green','blue'}),2)
[jhPanel,hContainer] = javacomponent(jPanel,[10,10,200,110],gcf);

 Original FormPanel FormPanel with modified

 (default stretching) stretching behavior

FormPanel’s labels are right-aligned by default, meaning that they are flushed rightward
to the invisible vertical divider between the label column and the subcomponent column .
this behavior can be modified by modifying the Rightaligned property from its default value
of true:

jPanel = com.mathworks.widgets.FormPanel;
jPanel.addRow('Row #1:', javax.swing.JCheckBox('test1'))
jPanel.addRow('a very long label:', javax.swing.JCheckBox)
drawnow; % allow time for Java EDT to process...

% Labels #3 & #4 are left-aligned:
jPanel.setRightaligned(false);
jPanel.addRow('#3:',javax.swing.JButton('Click me!'))
jPanel.addRow('Row #4:',javax.swing.JComboBox({'red','green','blue'}))
[jhPanel,hContainer] = javacomponent(jPanel,[10,10,200,110],gcf);

K13163_Book.indb 291 11/8/2011 8:08:22 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming292

left-aligned FormPanel labels

as a final customization, we note that the labels themselves can be customized . For example,
let us use the SyntaxTextLabel class that will be introduced immediately below (actually,
any component that extends javax.swing.JLabel will be accepted):

str = 'underlined ''string'' % comment';
codeType = com.mathworks.widgets.SyntaxTextLabel.M_STYLE;
jCodeLabel = com.mathworks.widgets.SyntaxTextLabel(str,codeType);
jCodeLabel.setUnderlined(true);

jPanel = com.mathworks.widgets.FormPanel;
jPanel.addRow('Row #1:', javax.swing.JCheckBox('test1'))
jPanel.addRow(jCodeLabel, javax.swing.JCheckBox)
jPanel.addRow('#3:',javax.swing.JButton('Click me!'))
jPanel.addRow('Row #4:',javax.swing.JComboBox({'red','green','blue'}));
[jhPanel,hContainer] = javacomponent(jPanel,[10,10,200,110],gcf);

Styled FormPanel labels (See color insert.)

SyntaxTextLabel is used to display a single-line text label that is syntax-highlighted
according to the specified programming language: C_StYlE, HtMl_StYlE, JaVa_
StYlE, PlaIN_StYlE and, of course, M_StYlE for Matlab code:

s = 'for id = 1:3, set(h(id),''string'',num2str(id)); end % Matlab code';
codeType = com.mathworks.widgets.SyntaxTextLabel.M_STYLE;
jCodeLabel = com.mathworks.widgets.SyntaxTextLabel(s,codeType)
[jhLabel,hContainer] = javacomponent(jCodeLabel,[10,10,300,20],gcf);

K13163_Book.indb 292 11/8/2011 8:08:23 PM

© 2012 by Taylor & Francis Group, LLC

293Built-In MATLAB® Widgets and Java Classes

SyntaxTextLabels (different code styles) (See color insert.)

More flexibility in the displayed label styles can be achieved with HtMl/CSS, and the
bundled com.jidesoft.swing.StyledLabel90 provides even more flexibility (JIDE is
described in Section 5 .7):

import java.awt.*
import com.jidesoft.swing.*
str = 'Mixed Underlined Strikethrough Super and Subscript combo Styles';
jStyledLabel = StyledLabel(str);
styles = [StyleRange(0,5, Font.BOLD, Color.BLUE), ...
 StyleRange(6,10, Font.PLaIN,StyleRange.STYLE_UNDERLINED),...
 StyleRange(17,13,Font.PLaIN, Color.RED, ...
 StyleRange.STYLE_STRIKE_THROUGH), ...
 StyleRange(31,5, Font.PLaIN, Color.BLUE, ...
 StyleRange.STYLE_SUPERSCRIPT), ...
 StyleRange(37,3, Font.ITaLIC, Color.BLaCK), ...
 StyleRange(41,9, Font.PLaIN, Color.BLUE, ...
 StyleRange.STYLE_SUBSCRIPT), ...
 StyleRange(51,5, Font.PLaIN, StyleRange.STYLE_WaVED + ...
 StyleRange.STYLE_STRIKE_THROUGH)];
jStyledLabel.setStyleRanges(styles);
[jhLabel,hContainer] = javacomponent(jStyledLabel,[10,10,300,20],gcf);

JIDE StyledLabel (different font styles) (See color insert.)

JIDE also provides the convenient StyledLabelBuilder,91 which enables easy multi-
style text construction . Our StyledLabel example could thus be coded as follows (note the
different equivalent ways of specifying the blue font color):

str = ['{Mixed:b,f:blue} {Underlined:u} {Strikethrough:s,f:red} ' ...
 '{Super:sp,f:(0,0,255)} {and:i} {Subscript:sb,f:#00f} ' ...
 '{combo:s,w} Styles'];
jStyledLabel = StyledLabelBuilder.createStyledLabel(str);
[jhLabel,hContainer] = javacomponent(jStyledLabel,[10,10,300,20],gcf);

K13163_Book.indb 293 11/8/2011 8:08:23 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming294

Finally, JIDE also provides the ClickThroughStyledLabel,92 a StyledLabel exten-
sion that allows setting a target component, so that mouse clicks on the label will actually trig-
ger the target component . this can be useful in forms such as the FormPanel component
described above, where components have adjacent descriptive labels .

Multi-line syntax-highlighted code can be displayed with the SyntaxTextPane compo-
nent . SyntaxTextPane uses MIME types93 rather than styles for syntax-highlighting, but
the end-result is essentially the same:

jCodePane = com.mathworks.widgets.SyntaxTextPane;
codeType = jCodePane.M_MIME_TYPE; % = 'text/m-MaTLaB'
jCodePane.setContentType(codeType)
str = ['% create a file for output\n' ...
 '!touch testFile.txt\n' ...
 'fid = fopen(''testFile.txt'', ''w'');\n' ...
 'for i = 1:10\n' ...
 ' % Unterminated string:\n' ...
 ' fprintf(fid,''%6.2f \\n, i);\n' ...
 'end'];
str = sprintf(strrep(str,'%','%%'));
jCodePane.setText(str)
jScrollPane = com.mathworks.mwswing.MJScrollPane(jCodePane);
[jhPanel,hContainer] = javacomponent(jScrollPane,[10,10,300,100],gcf);

SyntaxTextPane panel (MAtlAb MIME type) (See color insert.)

the nice thing about SyntaxTextPane is that it syntax-highlights on-the-fly as we type
or edit in the SyntaxTextPane (assuming that we have not disabled editing with the
setEditable(flag) method) . this is exactly the behavior that we have come to expect in the full-
blown Matlab editor, and it can now be embedded as a simple panel in our GUI .

Despite its misleadingly simple look, SyntaxTextPane actually has most capabilities of
the full-blown editor and not just syntax-highlighting . this includes multiple undo/redo actions;

K13163_Book.indb 294 11/8/2011 8:08:23 PM

© 2012 by Taylor & Francis Group, LLC

295Built-In MATLAB® Widgets and Java Classes

smart indentation and commenting; automatic indication of corresponding block elements (if-
end, for-end, etc . — also known as delimiter matching); drag-and-drop and cut-copy-paste
support; and many others .

line numbers can be added as a separate glyph gutter-panel .94 this mimics the Matlab
Editor, which also uses a separate panel for line numbers and code folding .

Interested readers should use the uiinspect and checkClass utilities to explore the full capa-
bilities offered by SyntaxTextPane . In this respect, it would be helpful to also look at its
superclass (SyntaxTextPaneBase) and the related SyntaxTextPaneUtilities class .

additional classes appear to provide wrappers for SyntaxTextPane, to enable the
Matlab Editor functionality . these include MCommentWrapper, StateMRUFiles,
STPPrefsManager, STPStateManagerFactory, STPStateManagerImpl, Syntax-
TextPaneMultiView, and a few others .
SyntaxDelimiterPanel is a related class, which displays the Delimiter Matching panel

in the Keyboards tab of the Preferences window . Its constructor accepts six input args, which
correspond to the logical or numeric values seen in the panel:

SyntaxDelimiterPanel

FileExtensionsPanel is a class that creates a panel with the specified list of strings to
be used as file extensions . this is used in several places in the Matlab Preferences window .
Note that we need the getComponent() method to get the displayable panel:

jExtObj = com.mathworks.widgets.FileExtensionsPanel('',{'htm','HTML'});
jExtPanel = jExtObj.getComponent;
[jhPanel,hContainer] = javacomponent(jExtPanel,[10,10,200,100],gcf);

FileExtensionsPanel

K13163_Book.indb 295 11/8/2011 8:08:24 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming296

autoCompletionList also creates a component in a similar way . this component has a
list of string items where the user can type in the header row and the cursor automatically
selects the corresponding list item and autocompletes the rest of the entry . Invalid user entries
are greeted with a beep and are not allowed by default (unless setStrict(false) is called) . Items
can be selected either by entering text in the header row, or by selecting a list item:

strs = {'This','is','test1','test2'};
strList = java.util.arrayList;
for idx = 1 : length(strs), strList.add(strs{idx}); end
jPanelObj = com.mathworks.widgets.autoCompletionList(strList,'');
javacomponent(jPanelObj.getComponent,[10,10,200,100],gcf);

autoCompletionList

Busyaffordance is another similar class that creates a visible panel internally . In this
case, the panel presents an animated (spinning) icon and optional text label as long as the
 panel’s object is in the “started” mode (the mode can be started/stopped numerous times) .
When the object is stop()ed, the icon and label are removed by default, but can be displayed
un-animated (non-spinning) via the PaintsWhenStopped property:†

iconsClassName = 'com.mathworks.widgets.Busyaffordance$affordanceSize';

iconsSizeEnums = javaMethod('values',iconsClassName);‡

SIZE_32x32 = iconsSizeEnums(2); % (1) = 16x16
jObj = com.mathworks.widgets.Busyaffordance(SIZE_32x32,'testing...');
jObj.setPaintsWhenStopped(true);
javacomponent(jObj.getComponent,[10,10,80,80],gcf);
jObj.start;
 % do some long operation...
jObj.stop;

† Note: More advanced animated busy indications, including automated percentage and time-remaining labels, can be speci-
fied using JBusyComponent (http://code .google .com/p/jbusycomponent/ or http://bit .ly/gvPyav), which is a JXlayers
(https://jxlayer .dev .java .net/ or http://bit .ly/edIeym) decorator that can be applied to any displayable component . also, see
ProgressBarDialog control (Section 5 .4), Swing’s JProgressBar (Section 3 .3 .1), and the built-in waitbar
function .

‡ this causes an error on Matlab R2009b and earlier versions . On these Matlab releases, try the following instead:
c1 = java .awt .Color(1,0,0); c2 = java .awt .Color(0,0,0); jObj = com .mathworks .widgets .busyaffordance(c1,c2);

K13163_Book.indb 296 11/8/2011 8:08:24 PM

© 2012 by Taylor & Francis Group, LLC

http://code.google.com
https://jxlayer.dev.java.net

297Built-In MATLAB® Widgets and Java Classes

Busyaffordance started.stopped . . .stopped
(animated spinning icon) (PaintsWhenStopped = false) (PaintsWhenStopped = true)

SearchTextField is yet another component that uses this internal panel creation behav-
ior . the created component provides a text-entry box that is normally used to enter search terms
in the Help browser, but it can actually be used for entirely other purposes as an embedded
component in our GUI . an optional light-gray prompt automatically disappears when the user
clicks in the entry box and reappears when the focus leaves an empty entry box; a search icon
appears on the right for as long as the entry box is empty and turns into a deletion icon when
something is entered:

jObj = com.mathworks.widgets.SearchTextField('Enter search term:');
jPanel = jObj.getComponent;
[jhPanel,hContainer] = javacomponent(jPanel,[10,10,150,25],gcf);

SearchTextField . . .user clicks in entry box — . . .user types something — the
initial view gray prompt disappears search icon changes
 (clicking it will clear the text)

SearchTextField’s viewable panel is composed of a PromptingTextField editbox
and the right-side search/clear icon . If the icon is not needed, use the editbox directly:

jEditBox = com.mathworks.widgets.PromptingTextField('Enter search:');
[jhEditBox,hContainer] = javacomponent(jEditBox,[10,10,150,25],gcf);

In order to process user entries, we need to trap the editbox’s <Enter> event . this can be
done on the internal editbox’s KeytypedCallback property, by specifying a callback function
that will check whether the typed key was <Enter> or not:†

set(jPanel.getComponent.getComponent(0),'KeyTypedCallback',@myCbFunc)

the search box is accompanied in the Matlab Help browser with a popup that shows
recent and suggested searches . this is apparently supported by the SearchTextFieldHint
and SearchTextFieldIntelliHints widget classes .

† there must be a better way to do this, but this works for me in all practical use-cases .

K13163_Book.indb 297 11/8/2011 8:08:24 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming298

HyperlinkTextLabel is a class that creates a com.mathworks.mwswing.
MJEditorPane containing the requested HtMl label . Remember to modify the background
color from its default white to the actual background color at the label’s position:

htmlStr = 'click this link!'
jObj = com.mathworks.widgets.HyperlinkTextLabel(htmlStr);
jPanel = jObj.getHTMLPane;
color = get(gcf,'color');
jObj.setBackgroundColor(java.awt.Color(color(1),color(2),color(3)));
[jhPanel,hContainer] = javacomponent(jPanel,[10,10,150,25],gcf);

jObj.setEnabled(false); % to disable the hyperlink

HyperlinkTextLabel in regular, hover, and disabled modes

there are other ways to present HtMl-aware labels (see Section 6 .9) . However,
HyperlinkTextLabel has an advantage for displaying hyperlinks: it automatically modi-
fies the link color and cursor shape during mouse hover over the link, as shown in the screen-
shots above .

Hyperlinks are useless if they do nothing when clicked . In Java code, we can attach a hyper-
link handler to the label, either as an optional second argument to the object constructor, or later
by modifying its HyperlinkHandler property . In practice, it is much easier in Matlab to
simply set the object’s MouseClickedCallback property:

hjObj = handle(jObj,'CallbackProperties');
set(hjObj,'MouseClickedCallback',@myHyperlinkCallbackFcn);
% an alternative:
set(hjObj,'MouseClickedCallback','web(''www.google.com'')');

this label can contain hyperlinks, hence the class’s name, but the label can actually contain
any HtMl segment, and even multiple lines, as shown below:†

htmlStr = ['What a bloody <i>mess!</i>
' ...
 'click this link!'];

Multi-line HyperlinkTextLabel

† additional methods of displaying hyperlinks are discussed in Sections 3 .3 .1, 6 .5 .2, 6 .9, 8 .3 .1, and 8 .3 .2 .

K13163_Book.indb 298 11/8/2011 8:08:24 PM

© 2012 by Taylor & Francis Group, LLC

299Built-In MATLAB® Widgets and Java Classes

Note that MouseClickedCallback applies to the entire label area, including the invisible
empty margins around the actual hyperlink and the non-hyperlink HtMl segments . this is
often the expected behavior, but for tight-fitting click sensitivity, use a tight-fitting label size or
set the HyperlinkHandler property .
TextPrintPanel extends MJPanel to present the familiar Matlab Editor page-setup

panel . this can be integrated in our GUI:

options = com.mathworks.widgets.TextPrintPanel.SYNTaX_STYLE;
jPanel = com.mathworks.widgets.TextPrintPanel(options,true, ...
 'My selection...',[],'');
[jhPanel,hContainer] = javacomponent(jPanel,[10,10,250,250],gcf);

TextPrintPanel

5.5.2 Font-Selection Components
DesktopFontPicker is a component that extends MJPanel to present a font selection panel:

font = java.awt.Font('Tahoma',java.awt.Font.PLaIN,11);
jFontPanel = com.mathworks.widgets.DesktopFontPicker(true,font);
[jhPanel,hContainer] = javacomponent(jFontPanel,[10,10,250,170],gcf);

DesktopFontPicker panel

K13163_Book.indb 299 11/8/2011 8:08:25 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming300

Instead of the “Use desktop font” label, we can use our own label:

jFontPanel.setUseDesktopFontLabel('Use Yair''s standard font...')

Non-standard DesktopFontPicker panel

there are several alternatives to DesktopFontPicker: we can use FontPrefsPanel
(see Section 5 .4), com.mathworks.widgets.fonts.FontDialog, or the fully-documented
uisetfont function (which is basically a simple wrapper for FontDialog):

uisetfont dialog window

When the window closes, we can retrieve the user’s selected font using the getSelectedFont()
and getUseDesktopFont() methods .

Font selection can also be shown with drop-downs (combo-boxes), rather than with lists as
in DesktopFontPicker, FontPrefsPanel, or uisetfont . Use of drop-downs significantly
reduces the display “real-estate” required by the control . this is extremely useful in forms
where the font selection is only one of several user-configurable options and where enough

K13163_Book.indb 300 11/8/2011 8:08:25 PM

© 2012 by Taylor & Francis Group, LLC

301Built-In MATLAB® Widgets and Java Classes

space must be reserved for other configuration controls . We can do this using the com.math-
works.widgets.fonts.FontPicker class, which is an extension of the standard
Matlab MJPanel . FontPicker’s constructor accepts optional parameters of a pre-se-
lected font (a java.awt.Font object), boolean flag indicating whether to display sample text
using the selected font, layout indicator, and list of selectable font names . Several screenshots
of different parameter combinations are shown below:

jFontPicker = com.mathworks.widgets.fonts.FontPicker(font, sampleFlag, layout);
[hjFontPicker, hContainer] = javacomponent(jFontPicker, position, gcf);

font = [] java.awt.
Font('Tahoma’, java.
awt.Font.PLaIN, 8)

[]

sampleFlag = false false true

layout = FontPicker.
GRID_LaYOUT

(=1)

FontPicker.LONG_
LaYOUT (=2)

FontPicker.LONG_
LaYOUT (=2)

position = [10,200,140,40] [10,200,225,20] [10,200,225,80]

as before, the selected font can be retrieved using FontPicker .getSelectedFont() .
these component variants are used by the Matlab Fonts Preferences dialogs:

K13163_Book.indb 301 11/8/2011 8:08:26 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming302

as a final alternative for font selection, we can use the JIDE font-selection component bundled
in the jide-grids .jar file (see Section 5 .7 .2) . this component has two variants: as a drop-down/
combo-box (com.jidesoft.combobox.FontComboBox) and as a standard JPanel (com.
jidesoft.combobox.FontChooserPanel):

jFont = java.awt.Font('arial black',java.awt.Font.PLaIN,8);
jFontPicker = com.jidesoft.combobox.FontComboBox(jFont);
[hjFontPicker, hContainer] = javacomponent(jFontPicker,position,gcf);
set(jFontPicker, 'ItemStateChangedCallback', @myCallbackFunction);

JIDE’s FontComboBox

Within the callback function, use getSelectedFont() to retrieve the updated font . there is
also a corresponding setSelectedFont(font) to programmatically update the control .

K13163_Book.indb 302 11/8/2011 8:08:27 PM

© 2012 by Taylor & Francis Group, LLC

303Built-In MATLAB® Widgets and Java Classes

the combo-box presents a FontChooserPanel, which can be accessed (via the
PopupPanel property or the corresponding getPopupPanel() method) after it has been initially
created . thereafter, the panel can be customized . For example, the preview text can be modi-
fied via the panel’s Previewtext property (or the setPreviewText method) .

the same FontChooserPanel can also be displayed as a standalone font-selection panel,
unrelated to any combo-box . Different GUI requirements might prefer using a compact combo-
box approach or the larger standalone panel .

5.5.3 Dialogs
om.mathworks.widgets.Dialogs is a class that provides seven static methods for dis-
playing preset modal dialog windows (message boxes) . Five of these methods display dialogs
whose text labels are provided as input arguments, but whose button texts cannot be modified .
the order of the input arguments is inconsistent, as can be seen in the example below . the dif-
ferent methods are also inconsistent in their return values: some return a com.mathworks.
widgets.Dialogs$Option enumeration objects, while others return a numeric value . For
all these reasons, it is advisable to use the documented questdlg function instead, since it is
much more customizable:

>> import com.mathworks.widgets.Dialogs
>> choice = Dialogs.showEditanyway([],'My title','My prompt')
choice =
EDIT_aNYWaY <= a com.mathworks.widgets.Dialogs$Option enum

>> choice = Dialogs.showSaveDirtyFile([],'My prompt','My title')
choice =
2 <= a numeric value: <Yes> = 0, <No> = 1, <Cancel> = 2

Dialogs-presented message box (Dialogs.showEditAnyway and Dialogs.
showSaveDirtyFile)

Note: the Dialogs class’s interface has changed in R2010b: the showEditAnyway()
method has been removed along with showOverwriteCancel(), and an additional input
parameter was added to several methods — use methodsview, uiinspect, or checkClass to
determine the correct interface on your specific target Matlab release .

K13163_Book.indb 303 11/8/2011 8:08:28 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming304

two Dialogs methods may still be useful, as they provide functionality unavailable in
questdlg: the ability to skip message presentation based on a globally-stored preference flag,
and the ability for the user, from within the message box, to indicate that the global preference
should be modified to never again show this message:

showOptionalMessageDialog([], prompt, title, icon, prefName, defaultFlag) presents an
optional message box with the specified prompt (a string or any Java component), title (a string),
and icon (see below), depending on the logical value of the specified prefName, which is stored
in the global preferences file (see Section 8 .2) . In this case, the preferences file will include an
entry such as myPrefName = bfalse following user selection of the checkbox:

import com.mathworks.widgets.Dialogs
icon = javax.swing.JOptionPane.ERROR_MESSaGE; % = 0
Dialogs.showOptionalMessageDialog([],'My prompt','My title',icon, ...
 'myPrefName',true);†

an optional message box

the possible icons are javax.swing.JOptionPane.ERROR_MESSaGE (=0),
INFORMaTION_MESSaGE (=1), WaRNING_MESSaGE (=2), QUESTION_MESSaGE (=3), and
PLaIN_MESSaGE (=1) . Either the enumerated or the numeric values may be specified . If the
chosen icon is PLaIN_MESSaGE (=1), then no icon will be displayed:95

Dialogs.showOptionalMessageDialog([],'My prompt','My title',-1, ...
 'myPrefName',true);

An icon-less optional message box

† the ClosableToolTips class, described above, uses a similar way to prevent a message from reappearing following
a user indication (in that case, use a LightButton rather than a checkbox) .

K13163_Book.indb 304 11/8/2011 8:08:29 PM

© 2012 by Taylor & Francis Group, LLC

305Built-In MATLAB® Widgets and Java Classes

Note: Unlike the standard dialog windows above (which are best replaced with questdlg),
this optional message box does NOt return any value . the window can only be dismissed,
with no optional buttons for user selection, and so there are no data to convey in a return
value . Still, the inconsistency is disturbing .

Instead of a prompt string, we can display any Java component . this would normally be a
JPanel component that contains several subcomponents in some layout . to illustrate the
point, let us display a simple JButton instead:

promptObject = javax.swing.JButton('click me!');
Dialogs.showOptionalMessageDialog([],promptObject,'My title',icon, ...
 'myPrefName',true);

An optional message box with a custom prompt component

Similarly, showOptionalConfirmDialog([], prompt, title, options, icon, prefName, default-
Value, defaultFlag) presents an optional dialog with the specified prompt, title, option buttons,
and icon, depending on the logical value of the specified prefName . the possible button options
are javax.swing.JOptionPane.DEFaULT_OPTION (=–1), YES_NO_OPTION (=0),
YES_NO_CaNCEL_OPTION (=1), and OK_CaNCEL_OPTION (=2) . If prefName is already set
(i .e ., user chose to never show the dialog again), then the method returns defaultValue; other-
wise, it returns the selected button’s numeric value:

options = javax.swing.JOptionPane.YES_NO_CaNCEL_OPTION; % = 1
icon = javax.swing.JOptionPane.QUESTION_MESSaGE; % = 3
defRetVal = -1;
Dialogs.showOptionalConfirmDialog([], 'My prompt', 'My title', ...
 options, icon, 'myPrefName', defRetVal, true);

An optional confirmation dialog

K13163_Book.indb 305 11/8/2011 8:08:29 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming306

showOptionalMessageDialog and showOptionalConfirmDialog correspond to standard
Swing methods having similar names . Refer to the documentation for additional information
about these and related methods .96 If the required dialog customization is greater than what is
possible to achieve with the Dialogs class, the user should try to use JOptionPane97 (or
its Matlab extension com.mathworks.mwswing.MJOptionPane) or JDialog98 (or
its Matlab extension com.mathworks.mwswing.MJDialog) . In these cases, place the
prompt and checkbox within a panel, and present this panel to the user using these generic
Swing classes .

5.5.4 Closable (Collapsible) Panels
com.mathworks.widgets.ClosablePanel extends com.mathworks.mwswing.
MJPanel, so that the panel can be collapsed/opened programmatically, or by clicking its title .†
the following example contains a simple button component, but any Java object (including
complex options/data panels) can be added to the ClosablePanel’s content:

jButton = com.mathworks.mwswing.MJButton('MJButton');
jPanel = com.mathworks.widgets.ClosablePanel('name','my Title',jButton);
[jhPanel,hContainer] = javacomponent(jPanel,[20,20,100,100],gcf);
jhPanel.setOpen(false); % programmatically close the panel
jhPanel.setEnabled(false); % disable the panel

Open, closed, and disabled ClosablePanel

the title component (a ClosablePanel$ClosablePanelButton) is actually imple-
mented as a checkbox (!), with the arrow icons replacing the standard checkbox square icons .
this is a good example of disguising a component to look like another, in order to make use of
the former’s functionality (in this case, checkbox’s click handling) .
ClosablePanels are usually grouped and contained within a ClosablePanel-

Container, which is an MJPanel extension (like ClosablePanel), providing wrapper
functionality:

jp = com.mathworks.widgets.ClosablePanelContainer;

† JIDE’s com.jidesoft.pane.CollapsiblePane, CollapsiblePanes (Section 5 .7 .1) have a similar
functionality .

K13163_Book.indb 306 11/8/2011 8:08:30 PM

© 2012 by Taylor & Francis Group, LLC

307Built-In MATLAB® Widgets and Java Classes

jp.addPanel('panel1','my Title #1',javax.swing.JButton('click me!'));
jp.addPanel('panel2','my Title #2',javax.swing.JCheckBox('select?'));
options = {'Red','Green','Blue'};
jp.addPanel('panel3','my Title #3',javax.swing.JComboBox(options));
[jhScroll,hContainer] = javacomponent(jp,[10,10,200,130],gcf);

Note how scrollbars appear/disappear automatically in a ClosablePanelContainer,
whenever it is resized or subpanels are opened/closed (panel 2 in these screenshots):

ClosablePanelContainer with auto-scrollbars

ClosablePanelContainer can add subpanels in two manners: addPanel() adds a
ClosablePanel at the bottom; insertPanel(name,title,contents,index) adds it at the specified
position index (0 = top) . there is also a removePanel(name) method .

Individual subpanels can be opened and closed via the setPanelOpen(name,flag) method,
and can be hidden/shown using the setPanelVisible(name,flag) method . there are also corre-
sponding isPanelOpen(name) and isPanelVisible(name) methods .

the ClosablePanelContainer’s setEnabled(flag) method was overridden to provide
the functionality of disabling all the contained subpanels individually . Subpanels can also be
disabled/enabled individually, but we will need to travel down the panel hierarchy (via the
getComponent(index) method) to access the individual subpanels .
ClosablePanel and ClosablePanelContainer objects can be stacked in a multi-

level (hierarchical) manner, as shown below . In some cases, we may need to programmatically
call the top panel’s revalidate() method after modifying the layout of internal subpanels to force
the subpanels, to “stick” together without gaps:

% Top ClosablePanelContainer
jp1 = com.mathworks.widgets.ClosablePanelContainer;
jp1.addPanel('panel1','my Title #1',javax.swing.JButton('click me!'));
jp1.addPanel('panel2','my Title #2',javax.swing.JCheckBox('select?'));
options = {'Red','Green','Blue'};
jp1.addPanel('panel3','my Title #3',javax.swing.JComboBox(options));

% Bottom ClosablePanelContainer
jp2 = com.mathworks.widgets.ClosablePanelContainer;
jp2.addPanel('panel1','my Title #1',javax.swing.JButton('click me!'));

K13163_Book.indb 307 11/8/2011 8:08:30 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming308

jp2.addPanel('panel2','my Title #2',javax.swing.JCheckBox('select?'));
jp2.addPanel('panel3','my Title #3',javax.swing.JComboBox(options));

% add the two ClosablePanelContainers in a larger container
jp3 = com.mathworks.widgets.ClosablePanelContainer;
jp3.addPanel('cp1','ClosablePanelContainer #1',jp1);
jp3.addPanel('cp2','ClosablePanelContainer #2',jp2);
[jhScroll,hContainer] = javacomponent(jp3,[10,10,200,250],gcf);
jp3.revalidate;

% Set individual panels properties
jp1.setPanelOpen('panel2',false);
jp2.setPanelOpen('panel1',false);
jp2.setEnabled(false);

Multi-level (hierarchical) ClosablePanelContainer with auto-scrollbars

5.5.5 Specialized Widgets
the widgets class has several specialized sub-packages, each of which deals with a particular
aspect . Some of the interesting ones are

color ◾ — the com.mathworks.widgets.color sub-package contains color-selec-
tion components that mirror the equivalent components in the com.mathworks.
mlwidgets package, explained in Section 5 .4 .1 . the relevant classes are
ColorPicker, ColorPickerPanel, ColorPickerUtils, and ColorDialog .
Since the results look similar, I suggest using the mlwidgets version rather than wid-
gets.color, since mlwidgets appears to be newer and, therefore, possibly more
powerful and/or less buggy .
datatransfer ◾ — classes supporting Matlab’s Drag-and-Drop and Cut-Copy-
Paste operations (which use similar mechanisms) . See Section 3 .7 for details .
find ◾ — classes that implement Matlab’s Find/Replace functionality . this includes
the standard popup dialog (also see related Section 8 .7 .2):

K13163_Book.indb 308 11/8/2011 8:08:30 PM

© 2012 by Taylor & Francis Group, LLC

309Built-In MATLAB® Widgets and Java Classes

Standard Find/Replace dialog window

	 the com.mathworks.widgets.find.FindClientRegistry class apparently
enables registering a specific Find/Replace functionality (defined in a class that imple-
ments the com.mathworks.widgets.find.FindClientInterface interface),
but I have not tested this myself .
fonts ◾ — see the description in Section 5 .5 .2 .
glazedlists ◾ — provides the com.mathworks.widgets.glazedlists.
GlazedTableSupport support class, which helps set up Glazed-list functional-
ity99 on JTables . this is the open-source functionality that enables real-time (inter-
active) dynamic sorting and filtering on table data .100 the Glazedlists JaR file is
prebundled in the Matlab installation, and so it can be used directly .

 a sample usage of glazed lists can be found in the Mlint (Code analyzer) preferences
panel, which uses a com.mathworks.mlwidgets.text.mcode.MLintTable
that relies on glazed list:

Glazed lists in action (note the interactive filtering and highlighting)

Note: a different (I think better) table filtering is described in Section 4 .1 .4 .

K13163_Book.indb 309 11/8/2011 8:08:30 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming310

grouptable ◾ — implements the GroupTable extension of JIDE’s TreeTable . See
Section 5 .7 .2 for a description of JIDE tables .
incSearch ◾ — the com.mathworks.widgets.incSearch.IncSearch class
implements incremental search, used in the Command Window and the Editor .
jidesoft.grid ◾ — this package holds only two classes: com.mathworks.widgets.
jidesoft.grid.MWSortableTable and MWCellSpanTable, which are,
respectively, wrappers for JIDE’s corresponding com.jidesoft.grid.
SortableTable and com.jidesoft.grid.CellSpanTable . See Section 5 .7 .2
for a description of JIDE tables .
text ◾ — this package and its subpackages contain numerous classes that support the
Editor, including syntax-highlighting, support for different languages, code folding,
printing, formatting, etc .
wizard ◾ — com.mathworks.widgets.wizard.WizardFrame appears to create
a dedicated window Frame for implementation of multipanel wizard dialogs . the code
requires a Java class that implements the com.mathworks.widgets.wizard.
IWizardContents interface that defines methods for navigating back and forth in
the wizard . Java-savvy programmers will be able to relatively easily create Java classes
that implement this interface and then use the infrastructure provided by WizardFrame;
Matlab programmers will need to rely on other means (such as the undocumented
built-in wizard function) .

5.6 MlServices Package

the com.mathworks.mlservices package contains a variety of support services to major
Matlab components: the Desktop, Command Window, Editor, Variable Editor, and so on .
all these classes have static methods that supply their functionalities . the classes apparently
use an internal registry (MLServicesRegistry) to register themselves, but, in practice, we
do not need to use this registry — we can access their static support methods directly .

the available support classes in Matlab 7 .12 (R2011a) are

MatlabDebugServices ◾
MatlabDesktopServices ◾
MLarrayEditorServices ◾
MLCommandHistoryServices ◾
MLCommandWindowServices ◾
MLEditorServices ◾
MLExecuteServices ◾
MLHelpServices ◾
MLInspectorServices ◾
MLLicenseChecker ◾ †

† Note the missing “Services” suffix for the MLLicenseChecker class .

K13163_Book.indb 310 11/8/2011 8:08:31 PM

© 2012 by Taylor & Francis Group, LLC

311Built-In MATLAB® Widgets and Java Classes

MLPathBrowserServices ◾
MLPrefsDialogServices ◾
MLWorkspaceServices ◾
FileExchangeServices ◾ †

MatlabDebugServices provides support functionality for the Matlab debugger . all
of the debugger functionalities can be accessed by regular built-in Matlab functions (dbstep,
dbcont, dbstatus, mdbstatus, etc .) or by the MLExecuteServices class (see below) . I could
not find any actual use of MatlabDebugServices for Matlab users as opposed to using
the fully-supported built-in Matlab functions .
MatlabDesktopServices provides access to the main Matlab Desktop components:

getDesktop() returns a com.mathworks.mde.desk.MLDesktop object (which can also be
obtained via com.mathworks.mde.desk.MLDesktop.getInstance), which is explored in
detail in Chapter 8; showCommandHistory(), showCommandWindow(), showFileBrowser(),
showHelpBrowser(), showProfiler(), and showWorkspaceBrowser() bring the requested panel/
window into focus, displaying it if it was previously closed or hidden; closeCommandHistory(),
closeCommandWindow(), closeFileBrowser(), closeHelpBrowser(), closeProfiler(), and close-
WorkspaceBrowser() close the requested panel/window; finally, setCommandAndHistoryLay-
out(), setCommandOnlyLayout(), and setDefaultLayout() organize the desktop component in a
predetermined manner (see Section 8 .1 .3) .
MLarrayEditorServices provides support services for the Variable Editor (called the

array Editor prior to R2008a (Matlab 7 .6)) . See Section 8 .7 .5 for more details .
MLCommandHistoryServices supports the Desktop’s Command History panel . the

support methods are getAllHistory(), getSessionHistory(), removeAll()101 and save() . Note that
getAllHistory() and getSessionHistory() return a Java String array that should be converted
to a Matlab string cell array using the built-in cell function:

% The following are equivalent:
com.mathworks.mlservices.MLCommandHistoryServices.getallHistory.cell
cell(com.mathworks.mlservices.MLCommandHistoryServices.getallHistory)

the following returns the last entered Command Window expression (command):102

import com.mathworks.mlservices.MLCommandHistoryServices;
history = MLCommandHistoryServices.getSessionHistory;
lastCommand = char(history(end));

any previous command can similarly be retrieved and executed programatically:103

eval(char(history(end-10)); % execute the 10th previous command

† FileExchangeServices was added in Matlab 7 .11 (R2010b) and is unavailable in earlier Matlab releases .

K13163_Book.indb 311 11/8/2011 8:08:31 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming312

MLCommandHistoryServices is closely related to the com.mathworks.mde.
cmdhist.* classes (particularly CmdHistoryWindow and CmdHistory), which you may
find useful . Just remember that they may change in future Matlab releases without prior
notice .
MLCommandWindowServices provides the hasFocus() and isJavaCWInitialized() meth-

ods: hasFocus() determines whether the Matlab Command Window is currently in focus
(e .g ., as opposed to some GUI window); isJavaCWInitialized() determines whether the
Command Window (CW) is Java-based, as opposed to a native CW when Matlab is started
with the “-nojvm” startup switch . Some CW functionality (e .g ., tab completion and line-wrap-
ping) is only available in Java .104

MLCommandWindowServices is closely related to the com.mathworks.mde.cmdwin.*
classes, similarly to MLCommandHistoryServices described above . as above, interested
readers may find these additional classes useful . See Section 8 .3 for additional details .
MLEditorServices provides access to the Matlab Editor . getEditorApplication()

returns a com.mathworks.mde.editor.MatlabEditorapplication object (which
can also be obtained via com.mathworks.mde.editor.MatlabEditorapplication.
getInstance) . Several other methods are available to open/access/save/reload/close documents .
the full list of these functions is detailed in Section 8 .4 .1 .
MLExecuteServices provides Command-Window evaluation functions . this is useful

in GUI callbacks that wish to run Matlab commands exactly as if they were manually
entered at the Command Window . For example, I often use a generic error-handling routine
(handleError) that presents an informative msgbox about the details of trapped errors
 (exceptions) . let us take a simple example (with annotated line-numbers):

test.m file:
1: function test
2: ...
3: data = 1 : 5;
4: test2(data)
5: ...
10: function test2(data)
11: try
12: b = data(6); < = Error! Index exceeds matrix dimensions
13: catch
14: handleError;
15: end
16: end % test2
17: end % test

handleError.m file:
1: function handleError
2: err = lasterror;
3: msgbox(...);
4: ... < = place breakpoint here, following msgbox display
9: end % handleError

K13163_Book.indb 312 11/8/2011 8:08:31 PM

© 2012 by Taylor & Francis Group, LLC

313Built-In MATLAB® Widgets and Java Classes

In this generic msgbox, the <Edit> button has a callback that opens the Editor at the offend-
ing error location (in this case, test .m line #12) . It would be beneficial to place a breakpoint
following the msgbox’s presentation, so that the user could debug the cause of the error (in this
case, check why the index exceeded the matrix dimensions) . For this, we need to issue the dbup
command, in order to move from the generic error-handler (handleError .m) workspace context
to the offending function’s (test .m):

K>> dbstack
> In handleError at 5 <= breakpoint is placed here
 In test > test2 at 14 <= try-catch error handler calls handleError
 In test at 4

Unfortunately, adding ‘dbup’ to the callback string has no effect — the Editor/Debugger
immediately returns the stack focus to the breakpoint location (handleError .m) rather than to
the error location (test .m) . We need to actively enter “dbup” at the Command Window .
MLExecuteServices comes to our rescue, by simulating a Command-Window entry with-
out need for any actual user interaction:

% Prevent a dbup error if not in debug mode by using try-catch:
dbupStr = 'try dbup catch, end';

% Prepare an MLExecuteServices command
dbupStr = ['com.mathworks.mlservices.MLExecuteServices.consoleEval('''
 dbupStr '''); ']; % note double quotes on internal command

% Move the editor cursor to the offending error line (#12)
% which is *NOT* the line that called handleError (#14):
setLineStr = sprintf('opentoline(''%s'',%d);', fileName, lineNumber);

% assemble everything in the <Edit> button callback string
set(hEditButton, 'Callback', [dbupStr,dbupStr,setLineStr]);

K13163_Book.indb 313 11/8/2011 8:08:31 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming314

Interested readers are referred to Chapter 9 for other mechanisms of accessing the Matlab
Workspace and Command Prompt from within Java . I suspect that MLExecuteServices
itself uses JMI, one of these mechanisms .
MLHelpServices provides support functions for the Help browser: invoke() brings the

Help browser into focus, displaying it if it was not already shown (like the built-in helpbrowser
and doc functions); hideNavigator(), showNavigator(), and toggleNavigator() open/close the
navigation panel (which contains the Contents and Search Results); isNavigatorShowing()
returns the panel’s state . Note that unlike MatlabDesktopServices and
MLEditorServices, MLHelpServices does not provide a getter method for the help
browser object . However, it can be gotten directly via com.mathworks.mde.help.
HelpBrowser.getInstance() .

getDocRoot() returns the root folder containing the help files . getDocRoot is equivalent to
the semidocumented built-in docroot function, except that forward slashes (/) are replaced in
docroot by backslashes (\):

>> com.mathworks.mlservices.MLHelpServices.getDocRoot
ans =
C:/Program Files/Matlab/R2010a/help

>> docroot
ans =
C:\Program Files\Matlab\R2010a\help

there is also a corresponding setDocRoot(folderName) (or: docroot(foldername)), but using
it will disable Matlab’s online help, so please use it with caution .

Note that the Help browser component displays the help pages (which are really HtMl
webpages) using an integrated browser . It is, therefore, not surprising that many of the functions
have web-browser relationships:

getCurrentLocation() returns the webpage’s URl, while setCurrentLocation(url) sets it;
setCurrentLocationAndHighlightKeywords(url,{keywords}) sets the URl and also highlights the
requested keywords/phrases:

>> url = com.mathworks.mlservices.MLHelpServices.getCurrentLocation
url =
jar:file:///C:/Program Files/Matlab/R2010a/help/techdoc/help.jar! /matlab_prog/
bq9l448-1.html#bq9tdlq-1

We can display help URls in any Matlab-based browser, as explained in Section 8 .3 .2 .
an alternative is to display it in a standalone window (a Java JFrame):

docRoot = char(com.mathworks.mlservices.MLHelpServices.getDocRoot);
url = ['jar:file:///' docRoot '/techdoc/help.jar!/ref/lasterror.html'];
com.mathworks.mlservices.MLHelpServices.cshDisplayFile(url);

K13163_Book.indb 314 11/8/2011 8:08:31 PM

© 2012 by Taylor & Francis Group, LLC

315Built-In MATLAB® Widgets and Java Classes

cshSetSize(width,height) and cshSetLocation(xFromLeft,yFromTop) set the displayed win-
dow frame’s size and location, respectively .

getHtmlText() returns the HtMl contents currently being displayed in the HtMl browser;
the corresponding method setHtmlText(text) updates the displayed contents, and setHtmlText-
AndHighlightKeywords(text,{keywordsCellArray}) does the same while also highlighting the
requested keywords/phrases, as discussed in Section 8 .3 .2 .
MLHelpServices provides many other methods, but all the useful ones already have the

corresponding built-in Matlab functions (demo, docsearch, and doc) . there are also some
related semidocumented pure-Matlab functions that users may be interested to explore:
demowin, helpview, help2html, helpdesk, and helpinfo .
MLInspectorServices provides support methods for the built-in property inspector .

inspectObject(handle) presents a property inspection table for the specified handle, which is
a Java object reference or a Matlab handle (i .e ., inspect handle(gcf) rather than gcf);
inspectObject(handle,flag) accepts an optional second flag argument (default = true), which
indicates whether or not to bring the inspector window forward (into focus);
inspectIfOpen(handle) is similar, but it only inspects the object if the inspector window is
currently being displayed; inspectObjectArray(handles,flag) inspects an array of objects and
displays the values of their common properties (properties which are unavailable in some of
the objects are not displayed) . the handles can be specified using two Matlab formats:
[handle1, handle2, . . .] for similarly typed handles, and {handle1, handle2, . . .} for handles of
unrelated classes .

isUDDObjectInJava(object) and isUDDObjectArrayInJava(handles) indicate whether the
supplied objects are UDD (Matlab HG handle) objects or not; getRegistry() provides access
to the inspector’s properties registry (see Sections 5 .7 .3 through 5 .7 .6 and the uiinspect utility);
selectProperty(propName) selects a specific property .

K13163_Book.indb 315 11/8/2011 8:08:32 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming316

activateInspector() and invoke() have a similar functions — to display and focus on the
inspector window; isInspectorOpen() indicates whether the inspector is displayed; refre-
shIfOpen() refreshes the object’s property values; toFront() brings a visible inspector window
forward (into focus); closeWindow() closes the inspector window .

setUseNewInspector(flag) indicates whether to use the new MDE inspector version (com.
mathworks.mde.inspector.Inspector, used since Matlab R2006a+ or 7 .2) or the
old IDE inspector version (com.mathworks.ide.inspector.Inspector, used up to
Matlab R14SP3 or 7 .1) .105 by default, flag = true (new MDE) . isNewInspector() returns the
current inspector’s type (true=MDE; false=IDE) . the IDE inspector was removed in R2011a
along with these two methods:

jObject = javaObjectEDT('com.mathworks.mwswing.MJFileChooser');
com.mathworks.mlservices.MLInspectorServices.inspectObject(jObject);
com.mathworks.mlservices.MLInspectorServices.setUseNewInspector(false)
com.mathworks.mlservices.MLInspectorServices.inspectObject(jObject);

We can also pass these settings and queries directly to Matlab’s inspect function (again,
up to R2010b):

isOldFlag = inspect('-isnewinspector');
inspect('newinspector','off'); % default = 'on'
inspect(jObject);

alternatively, we can always invoke a specific inspector version directly:

com.mathworks.ide.inspector.Inspector.activateInspector; % old
com.mathworks.mde.inspector.Inspector.activateInspector; % new

 Old (IDE) inspector New (MDE) inspector

K13163_Book.indb 316 11/8/2011 8:08:33 PM

© 2012 by Taylor & Francis Group, LLC

317Built-In MATLAB® Widgets and Java Classes

Section 5 .7 .3 provides additional details about Matlab’s property inspector . the inspector
object happens to be a very interesting Matlab component from a technical standpoint . It is
also a prime example of using JIDE tables (property grid to be exact) within Matlab .
MLLicenseChecker checks whether or not the specified toolbox(es) is/are included in the

Matlab license, using hasLicense(toolboxName) and hasLicenses(toolboxNames) .
MLPathBrowserServices provides Matlab path browser functionality . In reality,

this class only has a single static invoke() method that presents the path browser window:

com.mathworks.mlservices.MLPathBrowserServices.invoke;

MAtlAb’s path browser

MLPrefsDialogServices provides functionality relating to the Preferences dialog win-
dow . showPrefsDialog() simply displays this dialog (or brings it into focus); showPrefsDialog(prefs-
PanelName) also sets the shown preferences panel to the one requested . Some of the preference
panels are children of other panels — their names are specified as parentPanelName .childPan-
elName . For example,

panel = 'Editor/Debugger.Code Folding';
com.mathworks.mlservices.MLPrefsDialogServices.showPrefsDialog(panel)

Displaying a specific preference panel

K13163_Book.indb 317 11/8/2011 8:08:33 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming318

MLPrefsDialogServices also provides the registerPanel(. . .) and unregisterPanel(. . .)
methods, which are apparently accessor methods for adding and removing preference panels as
explained in Section 5 .4 .
MLWorkspaceServices provides functionality relating to the Desktop Workspace

browser . invoke() brings the Workspace browser panel into focus (this can also be done via
com.mathworks.mlservices.MatlabDesktopServices.showWorkspace-
Browser); getSelectedClasses(), getSelectedNames(), and getSelectedSizes() return informa-
tion about the selected variables in the Worspace browser panel . the returned data is a Java
String array that should be converted to a Matlab string cell array using the built-in cell
function, as discussed above . See Section 8 .6 for additional details about Matlab’s Workspace
browser .

Finally, FileExchangeServices, newly added in Matlab 7 .11 (R2010b), provides
functionality to search the Matlab File Exchange (known in the Matlab community as
FEX),106 functionality that was integrated into the Matlab Desktop with much fanfare in
R2009b .107 the Desktop’s FEX integration existed since R2009b, but com.mathworks.
mlservices.FileExchangeServices was only added in R2010b . Its single static
method search(string) searches FEX for utilities that contain the specified search string and
presents the results in a dockable Desktop panel/window:

MAtlAb Desktop’s File Exchange search-results window

5.7 JIDE

JIDE is a commercial set of packages from www .jidesoft .com that is bundled in the Matlab
installation . JIDE classes significantly extend the basic Swing functionality . they are widely
used by Matlab and can also be used in any user Matlab application .

K13163_Book.indb 318 11/8/2011 8:08:35 PM

© 2012 by Taylor & Francis Group, LLC

319Built-In MATLAB® Widgets and Java Classes

the Matlab-bundled JIDE packages include (see Section 5 .1):

jarext/jide/jide-action .jar — command bars (JIDE action Framework) . ◾ 108

jarext/jide/jide-common .jar — tabbed/option panes; calendar, gripper, and other UI ◾
controls; PlaFs; multipage dialogs; and so on .109 this package is open-source .110

jarext/jide/jide-components .jar — tabbed-panes, document panes, status bars, anima- ◾
tions, balloon tips, and so on .111

jarext/jide/jide-dialogs .jar — wizard, multipage, and other dialog windows . ◾ 112

jarext/jide/jide-dock .jar — support for dockable frame windows . ◾ 113

jarext/jide/jide-grids .jar — specialized ◾ JTree, JList, and JTable classes, with
support for sorting, filtering, grouping, nesting, cell-spanning, and so on .114

jarext/jide/jide-shortcuts — keyboard shortcuts support . ◾

JIDE has extensive documentation, both in book (PDF) form† and in online reference (java-
doc) form .115 there is also a very active user forum,116 with 50K posts .

Note 1: JIDE docs refer to the latest JIDE version, but Matlab uses an older version,
(com.jidesoft.utils.Lm.getProductVersion()) for code-freeze configuration reasons .
For example, R2011b uses JIDE version 2 .8 .7 from June 2010, not the newest 3 .2 .2 as of
September 2011 .117 this may cause inconsistencies between the documentation and code .

Note 2: JIDE is a commercial product . We may not use it (except for the open-source jide-
common package) without JIDESoft’s permission outside the Matlab environment . For
any licensing questions, contact sales@JIDESoft .com .

5.7.1 Important JIDE Classes
there is not enough space in this book for a full description of the numerous features available
in the bundled JIDE packages (this would require an entire book) . Instead, I will just list the
classes that I believe are more important and then describe JIDE tables in more detail . Many
JIDE classes have specialized derived classes (e .g ., renderers for tree/list/table) or related
classes (builders, factories, or interfaces) . Interested readers are encouraged to use the docu-
mentation resources that were given above for additional details .

Usage notes: all JIDE components, even those that have internal show() methods, require java
component to be displayed in a Matlab figure window . Some JIDE components (e .g ., com.
jidesoft.tooltip.BalloonTip) have mechanisms of automatic component removal
(upon mouse click, etc .), events that are not detected by Matlab . So, unless we programmati-
cally check for it, odd artifacts will appear in the GUI when it repaints . I tried using property listen-
ers and callbacks to detect this event, but this did not work, so we are left with a timer that periodically
checks the component’s Visible property value and updates the component’s container handle

† the online links to the PDFs were specified in the references above, separately for each of the JIDE packages .

K13163_Book.indb 319 11/8/2011 8:08:35 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming320

appropriately . also, note that although some components have a transparent background, they
 display with opaque backgrounds in Matlab (see Section 7 .3 .3 for an explanation) .

com.jidesoft.action ◾ (part of jide-action .jar)
CommandBar ◾ — dockable/floatable/shrinkable/closable toolbar
CommandMenuBar — JMenuBar ◾ extension supporting floating/shrinking
JideMenu — JMenu ◾ extension supporting floating/shrinking

com.jidesoft.swing ◾ (part of jide-common .jar)
CheckBoxList/CheckBoxTree ◾ — a JList/JTree that supports a checkbox
in the row/tree node (see Section 5 .2 .2) .
Calculator ◾ — component used by CalculatorComboBox (part of JIDE grids) .
JideSwingUtilities ◾ — general functionality common to all swing compo-
nents . this is a very important class, well worth exploring .118

JideButton, JideToggleButton, ◾ and so on: common button components .
JideSplitButton ◾ — button/popup-menu combination (see Section 4 .5 .4) .
JidePopupMenu ◾ — extends JPopupMenu, ensuring that the popup-menu con-
tents are within the screen boundary . If the popup menu is too long, it will automati-
cally display scroll buttons at the menu’s top and bottom .
JideMenu ◾ — extends JMenu to allow lazy creation of menu items and to allow
specification of the popup menu’s alignment .
JideSplitPane ◾ — a split pane that supports multiple splits .
JideScrollPane ◾ — extends JScrollPane to support RowFooter,
ColumnFooter, and corner components on either side of the scrollbars .
SimpleScrollPane ◾ — extends JScrollPane to use four scroll buttons to do
the scrolling; tt has no scrollbar .
JideTabbedPane ◾ — extends JTabbedPane to support many different tab
styles, tab resize modes, tab leading/trailing component, and so on .
JideBoxLayout ◾ — similar to BoxLayout but can support different constraints
to give child components of different resize weights .
JideBorderLayout ◾ — extends BorderLayout just to make the north and
south components of the same width as the center component .
PartialLineBorder ◾ , PartialEtchedBorder, PartialGradientLine
Border — extend LineBorder/EtchedBorder to only paint lines on cer-
tain sides .
autoResizingTextarea ◾ — a JTextarea that automatically resizes verti-
cally as text is added into it .
LabeledTextField ◾ — a JTextField that supports a JLabel in front of it .
See related com.mathworks.widgets.FormPanel in Section 5 .5 .1 .
MultilineLabel ◾ — a JTextarea that looks like a JLabel but supports
 multiple lines; also see Sections 5 .5 .1 and 6 .9 .
RangeSlider ◾ — a JSlider with two thumbs to specify a min/max range .

K13163_Book.indb 320 11/8/2011 8:08:35 PM

© 2012 by Taylor & Francis Group, LLC

321Built-In MATLAB® Widgets and Java Classes

StyledLabel ◾ — extends JLabel to support different text styles (see details
and sample usage in Section 5 .5 .1) .
TristateCheckBox ◾ — a checkbox that has three states (on/off/maybe; see
Sections 5 .2 and 6 .4) .
FolderChooser ◾ — a folder-selection component that extends JFileChooser
with additional functionality .
MarqueePane ◾ — continuously scrolling data pane (e .g ., stock tickers and news) .
TitledSeparator ◾ — a JSeparator-like component with a title .
autoCompletion ◾ — auto text-completion for JComboBox, JText-
Component.
ResizablePanel ◾ , ResizableWindow, ResizableFrame, Resizable-
Dialog.
Searchable ◾ — search support for ComboBox/List/Table/Tree/Text-
Component.
SearchableBar ◾ — a searching component similar to the Firefox browser’s
search bar, using the Searchable functionality .
Overlayable ◾ — enables placing one component on top of another to display
icons/text such as validation error and process indicator .

com.jidesoft.dialog ◾ (part of jide-common .jar)
StandardDialog ◾ — a JDialog supporting commonly used dialog standards
ButtonPanel ◾ — supports a panel for buttons in an OS-aware way

com.jidesoft.hints ◾ (part of jide-common .jar)
IntelliHints ◾ — dynamic hints to help user typing (see autoCompletion),
used for IDE IntelliSense (use ListDataIntelliHints, FileIntelliHints)

com.jidesoft.icons ◾ (part of jide-common .jar)
ColorFilter ◾ — creates a color filter that can dim/brighten images

com.jidesoft.document ◾ (part of jide-components .jar)
DocumentPane ◾ — a tabbed-document implementation

com.jidesoft.pane ◾ (part of jide-components .jar)
CollapsiblePane ◾ — also see Section 5 .5 .4
FloorTabbedPane ◾ — extends JTabbedPane for an Outlook 2000 navigation-
pane appearance
OutlookTabbedPane ◾ — extends JTabbedPane (Outlook 2003 appearance)

com.jidesoft.status ◾ (part of jide-components .jar)
StatusBar ◾ — a tabbed-document implementation, similar (but entirely unre-
lated) to the Matlab Editor
StatusBarSeparator ◾ — a separator component within a StatusBar
StatusBarItem ◾ — superclass for StatusBar components that are all called
xxxStatusBarItem, where xxx = Button, ComboBox, Empty, Label,
Memory, OvrIns, Progress, Time, and Resizable (=window gripper)

K13163_Book.indb 321 11/8/2011 8:08:36 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming322

com.jidesoft.alert ◾ (part of jide-components .jar)
alert ◾ — a popup alert message, similar to Outlook’s new-email alert

com.jidesoft.animation ◾ (part of jide-components .jar)
Customanimation ◾ — supports component entry/exit animation using a variety
of customizable fly/zoom/fade effects

com.jidesoft.tooltip ◾ (part of jide-components .jar)
BalloonTip ◾ — a cartoon-baloon-like tooltip/alert message, using a variety of
shadows (com.jidesoft.tooltip.shadows.*) and shapes (.shapes.*)

com.jidesoft.tipoftheday ◾ (part of jide-dialogs .jar)
TipOfTheDayDialog ◾ — creates a standard tip-of-the-Day dialog window, sim-
ilar to Matlab’s unrelated internal tipoftheday function

com.jidesoft.wizard ◾ (part of jide-dialogs .jar)
Several classes that facilitate creating standard-looking multipage dialog windows ◾
(aka “wizard”), with banner, navigation panel, steps, and so on

com.jidesoft.docking ◾ (part of jide-dock .jar)
Several classes that support dockable windows . Interested developers can try using ◾
these classes to achieve the so-far-impossible task of docking Matlab figures in
other Matlab figures .119 Note that I have never tried this and I do not know if this
is even possible (I would be happy to learn . . .)

com.jidesoft.plaf ◾ (part of jide-common .jar)
Several look-and-Feel framework classes (see Section 3 .3 .2 for details) . ◾

5.7.2 JIDE Grids
JIDE grids is a class library that contains JIDE extensions for the standard Swing JTable and
JTree . the library resides in the jide-grids .jar file, which is the largest JIDE file bundled with
Matlab as of R2011a .

Since tables and trees are such an important and useful GUI concept, this JIDE library
deserves more detailing . this subsection provides an overview of JIDE grids, and subsequent
subsections provide sample usage and detailed examples .

jide-grids .jar includes the following classes:

JIDE Grids class hierarchy. We would normally use only one of the marked classes

K13163_Book.indb 322 11/8/2011 8:08:36 PM

© 2012 by Taylor & Francis Group, LLC

323Built-In MATLAB® Widgets and Java Classes

com.jidesoft.grid ◾
JideTable ◾ extends JTable for functionality that is important in any table and
should have been part of the basic JTable: nested table column header; date
validation support; customizable cell selection/editing behavior; scrolling sup-
port; automatic row/column resizing; and so on .
ContextSensitiveTable ◾ extends JideTable to enable different cell render-
ers and cell editors for each cell .
NavigableTable ◾ extends ContextSensitiveTable to enable definition of
table navigation keys .
CellStyleTable ◾ extends NavigableTable to enable cell styles .
CellSpanTable ◾ extends CellStyleTable to enable cell merging .
CategorizedTable ◾ extends CellSpanTable to enable data rows
grouping .
SortableTable ◾ extends CategorizedTable to enable column sorting . this
class is used by Matlab for the new (R2008a+) uitable version .
TreeTable ◾ extends SortableTable to enable collapsible/expandable row
groups (as expected from trees) while showing multiple columns for the displayed
rows (as expected from tables) .
PropertyTable ◾ extends TreeTable to display a two-column property-value
TreeTable. this is used by Matlab’s built-in inspect function and is described
in detail in the following sections .
HierarchicalTable ◾ extends SortableTable to enable display of any com-
ponent, including other tables, in child rows . Unlike TreeTable, the child compo-
nents do not need to have the same class or format .
TableUtils ◾ provides several utility methods for controlling table appearance and
behavior (see Section 4 .1 .5 for some examples; also see com.mathworks.
mwswing.TableUtils) .

com.jidesoft.tree ◾
SortableTreeModel ◾ — a tree model wrapper that supports sorting .
FilterableTreeModel ◾ — a tree model wrapper that supports node filters .
QuickTreeFilterField ◾ — adds filtering support to any tree model .
StyledTreeCellRenderer ◾ — a tree cell renderer based on JIDE StyledLabel
(see Section 5 .5 .1); note: included in jide-common .jar, not jide-grids .jar .
TreeModelWrapperUtils ◾ — utility class with useful tree model methods .
TreeSelectionModelGroup ◾ — enables creating rules for single/multiple node
selections, similarly to checkbox/radio-button groups .
TreeUtils ◾ — a utility class that provides several useful JTree methods (see
Section 4 .2 .3; also see com.mathworks.mwswing.TreeUtils) .

com.jidesoft.list ◾
DualList ◾ — a component that contains two lists: a left list of selectable items and
a right list of selected items

K13163_Book.indb 323 11/8/2011 8:08:36 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming324

GroupList ◾ — a list with groupable items (similar to a tree with collapsible/
expandable nodes)
ImagePreviewList ◾ — a list whose selectable items are image previews
(DefaultPreviewImageIcon objects) with a description and title
StyledListCellRenderer ◾ — a list cell renderer based on JIDE
StyledLabel (see Section 5 .5 .1); note: included in jide-common .jar not in jide-
grids .jar
ListUtils ◾ — a utility class that provides several useful JList methods

com.jidesoft.combobox ◾

Note: Each of the following classes has both a combo-box control and a corresponding
panel that is presented when the combo-box arrow button is clicked (activated) . the panel
is normally called xxxChooserPanel and its corresponding combo-box is called xxx-
ComboBox . after the combo-box is created, the panel can be accessed and customized via
the combo-box’s PopupPanel property or the corresponding getPopupPanel() method . the
panel can also be displayed as a standalone control . GUI designers can choose whether to use
a compact combo-box or the full-size panel control .

CalculatorComboBox ◾ — a combo-box control that displays the result of simple
arithmetic calculations .

ColorComboBox ◾ — see the discussion in Section 5 .4 .1 .
DateComboBox ◾ — presents a date-selection combo-box, whose attributes (day/
month names, display format, etc .) are taken from the system definitions . JIDE’s
date-selection components are discussed in Section 5 .7 .8 .

K13163_Book.indb 324 11/8/2011 8:08:36 PM

© 2012 by Taylor & Francis Group, LLC

325Built-In MATLAB® Widgets and Java Classes

DateSpinnerComboBox ◾ — presents a date-selection combo-box that includes
both the DateComboBox and a spinner control .
MonthComboBox ◾ — a month-selection combo-box, similar to DateComboBox
but without the ability to select individual days .
FileChooserComboBox ◾ — a combo-box that displays a file-selection window
when activated .
FolderChooserComboBox ◾ — a combo-box that displays a folder-selection
window when activated .
FontComboBox ◾ — see Section 5 .5 .2 .
InsetsComboBox ◾ — enables interactive definition of insets (margins) .

ListComboBox ◾ — a simple combo-box that accepts a list (cell array) of selectable
values (e .g ., string values) .
TableComboBox ◾ — a combo-box that displays selectable data in table format
(i .e ., multiple columns) .
TreeComboBox ◾ — a combo-box that displays selectable data in tree format (i .e .,
a hierarchy of items) .
MultilineStringComboBox ◾ — a combo-box that enables entering multiple lines
of text (string) items; its corresponding panel is MultilineStringPopupPanel.

K13163_Book.indb 325 11/8/2011 8:08:37 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming326

MultiSelectListComboBox ◾ — a combo-box that enables selecting multiple
items using a combination of <Shift> and <Ctrl> keys .

com.jidesoft.field ◾
IPTextField ◾ — a text-field that presents, validates, and accepts IP data (# .# .# .#

format):
creditcard.CreditCardTextField ◾ — a text-field that presents, validates,
and accepts credit card numbers . the card issuer is automatically inferred from the
card number; by default, Visa, MasterCard, DinersClub, JCb, Discover, and
american Express are supported (this can be changed):

accepted value: ◾ †

invalid value: ◾
creditcard.VISa ◾ (and similarly MasterCard, DinersClub, JCB,
Discover, and americanExpress) contains methods specific to that credit-
card type: getName(), getIcon(), and isCardNumberValid(string)

Note: You should not rely on JIDE’s control for credit-card validation . the control provides
only rudimentary checks of the entered number validity . It does not check whether the card
itself is valid, stolen etc .

com.jidesoft.hssf ◾
HssfTableUtils ◾ — a utility class that enables exporting table data to Excel
(XlS) format using the open-source POI-HSSF library .120

For a full description of the classes, please refer to the documentation resources listed at the
beginning of the JIDE section . the following subsections will detail the usage of one particu-
larly useful JIDE class, the PropertyTable .

5.7.3 MATlAB’s PropertyInspector121

We often wish to edit the properties of heterogeneous objects using a common interface .
Matlab’s property inspector, invoked with the inspect122 function, answers this need .

the inspector is based on a two-column table of property names and values . Properties and their
values are populated automatically, and the user can edit values in-place . the inspector enables
property categorization, sub-categorization, and sorting, which help users find and modify proper-
ties easily . For each property, the inspector displays a matching edit control: editbox/combobox/
checkbox, and so on . this simplifies property value editing and prevents illegal value entry .

Matlab’s GUI builder, GUIDE,123 uses the inspector to let users edit GUI properties such
as position and color . It is also used by other tools such as the Plot Editor .124

† the Visa trademark is being used with permission . Visa is a registered trademark of Visa International Service
association . For the avoidance of doubt, Visa’s permission does not constitute Visa’s endorsement of this book nor of the
JIDE control .

K13163_Book.indb 326 11/8/2011 8:08:37 PM

© 2012 by Taylor & Francis Group, LLC

327Built-In MATLAB® Widgets and Java Classes

MAtlAb’s built-in property inspector

the Matlab inspector can be embedded, with not-too-much effort, within Matlab
GUI applications . Examples of this can be found in the FindJObj and UIInspect utilities,
which are described elsewhere in this book .

FindJObj — embedded property inspector

K13163_Book.indb 327 11/8/2011 8:08:38 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming328

to embed the inspector within the findjobj and uiinspect utilities, for example, the following
(simplified) code was used:

% prepare and populate the properties table
inspectorPane = com.mathworks.mlwidgets.inspector.PropertyView;
inspectorPane.setObject(hInspectedObject);
inspectorPane.setautoUpdate(true);

inspectorTable = inspectorPane;
try
 while ~isa(inspectorTable,'javax.swing.JTable')
 inspectorTable = inspectorTable.getView;
 end
catch % R2010a
 scrollPane = inspectorPane.getComponent(0).getScrollPane;
 inspectorTable = scrollPane.getViewport.getComponent(0);
end

% prevent JIDE alert by run-time (not load-time) evaluation
com.mathworks.mwswing.MJUtilities.initJIDE;
jideTableUtils = eval('com.jidesoft.grid.TableUtils;');
jideTableUtils.autoResizeallColumns(inspectorTable);
inspectorTable.setRowautoResizes(true);
inspectorTable.getModel.setShowExpert(true);

% Display onscreen
javacomponent(inspectorPane,position,hFig);

% Update the inspected data in the inspector table
if (numHandles = = 1) % only one selected object
 inspectorPane.setObject(thisHandle)
else % multiple objects — only inspect the common properties
 % (jarray is an array of inspected handles)
 jarray = javaarray('java.lang.Object', numSelections);
 ... % populate jarray with the list of selected handles)
 inspectorPane.getRegistry.setSelected(jarray, true);
end

Unfortunately, Matlab’s property inspector is limited to Handle Graphics, Java, and COM
objects . It cannot be used for structures or user-defined Matlab classes . We shall see below how
to set up our own property grid, populate it with data, and subscribe to property change events .

this is a rather procedural approach . It is usually more convenient to use a declarative
approach in which a structure or Matlab class is passed to a function that automatically
discovers its properties and their meta-information . the Property Grid125 utility at Matlab
File Exchange provides these services .

5.7.4 JIDE’s PropertyTable

Note: the following discussion only works on Matlab 7 .6 (R2008a) onward . Read the
 comment mentioned in the reference126 for additional details and workarounds .

K13163_Book.indb 328 11/8/2011 8:08:38 PM

© 2012 by Taylor & Francis Group, LLC

329Built-In MATLAB® Widgets and Java Classes

Matlab’s property inspector is based on a JIDE property grid control . Recall that JIDE
Grids is a components library bundled with Matlab . JIDE Grids includes the Property-
Table class, which is a fully customizable property grid component . Details on JIDE Grids
can be found in the Developer Guide127 and Javadoc documentation .128

Several related classes are associated with PropertyTable:129 PropertyTableModel130
encapsulates all the properties that are visualized in the property grid . Each property derives
from the Property131 abstract class, which features some common actions to properties, most
notably to get and set the property value . DefaultProperty132 is a default concrete subclass
of Property . Finally, PropertyPane133 decorates a property grid with icons for alphabeti-
cal sorting (rather than grouped), as well as for expanding and collapsing categories; a descrip-
tion text box at the bottom can be shown or hidden .

Here are the DefaultProperty fields and their respective roles:

Field Role
Name Internal property name, not necessarily displayed, used as a key to identify the property
DisplayName A short property name shown in the property grid’s left column
Description A concise description of the property, shown at the bottom of the property pane, below

the grid
Type The Java type associated with the property, used to invoke the appropriate cell renderer

or editor (see Section 4.1.1 for details)
EditorContext An editor context object. If set, both type and context are used to look up the renderer

or editor to use. This lets, for instance, one flag value to display as a true/false label,
while another as a checkbox

Category A string specifying the property’s category, for grouping purposes
Editable Specifies whether the property value is modifiable or read-only
Value The current property value, as a Java object

like any Java object, these fields may either be accessed with Java get/set semantics (e .g .,
getName(), setName(name)), or Matlab get/set semantics (e .g ., get(prop,‘Name’) and
set(prop,‘Name’,name)) . When using the Matlab syntax, remember to wrap the Java object
in a handle() call, in order to prevent a memory leak, as explained in Section 3 .4 .

to use a property grid in Matlab, first construct a set of DefaultProperty objects for
each of the grid properties . For each object, set at least the name, type, and initial value . Next,
add the properties to a table model . Finally, construct a property grid with the given table model
and encapsulate in a property pane:

% Initialize JIDE's usage within Matlab
com.mathworks.mwswing.MJUtilities.initJIDE;

% Prepare the properties list
list = java.util.arrayList();
prop1 = com.jidesoft.grid.DefaultProperty();

K13163_Book.indb 329 11/8/2011 8:08:39 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming330

prop1.setName('stringProp');
prop1.setType(javaclass('char',1));
prop1.setValue('initial value');
prop1.setCategory('My Category');
prop1.setDisplayName('Editable string property');
prop1.setDescription('a concise description for my property.');
prop1.setEditable(true);
list.add(prop1);

prop2 = com.jidesoft.grid.DefaultProperty();
prop2.setName('flagProp');
prop2.setType(javaclass('logical'));
prop2.setValue(true);
prop2.setCategory('My Category');
prop2.setDisplayName('Read-only flag property');
prop2.setEditable(false);
list.add(prop2);

% Prepare a properties table containing the list
model = com.jidesoft.grid.PropertyTableModel(list);
model.expandall();
grid = com.jidesoft.grid.PropertyTable(model);
pane = com.jidesoft.grid.PropertyPane(grid);

% Display the properties pane onscreen
hFig = figure;
panel = uipanel(hFig);
javacomponent(pane, [0 0 200 200], panel);

% Wait for figure window to close & display the prop value
uiwait(hFig);
disp(prop1.getValue());

Here, com.mathworks.mwswing.MJUtilities.initJIDE is called to initialize
JIDE’s usage within Matlab . Without this call, we may see a JIDE warning message .
We only need to initJIDE once per Matlab session, but there is no harm in repeated
calls .

javaclass is a function (included in the Property Grid utility or directly downloadable134)
that returns a Java class for the corresponding Matlab type with the given dimension:
javaclass(‘logical’) or javaclass(‘logical’,0) (a single logical flag value) returns a java.
lang.Boolean class; javaclass(‘char’,1) (a character array) returns a java.lang.
String class; javaclass(‘double’,2) (a matrix of double-precision floating point values)
returns double[][] .

javacomponent is the undocumented built-in Matlab function that adds Java Swing
 components to a Matlab figure (see Section 3 .1 .1) . When the user closes the figure, prop .
getValue() fetches and displays the new property value .

K13163_Book.indb 330 11/8/2011 8:08:39 PM

© 2012 by Taylor & Francis Group, LLC

331Built-In MATLAB® Widgets and Java Classes

A simple user-defined property grid

5.7.5 Nonstandard Property Renderers and Editors135

Cell renderers and cell editors136 (see Section 4 .1 .1) are the backbone of JTable implementa-
tions, and this includes JIDE’s property grid . Each property is associated with a type, and a
renderer and an editor may be registered for a type . the cell renderer controls how the property
value is displayed, while the editor determines how it is edited . For example, flags (Java
Booleans) are often both rendered and edited using a checkbox, but they can also use a text
renderer (displaying the string “true” or “false”) with a combo-box editor (for selecting a true
or false value) . PropertyTable automatically assigns a default renderer and editor to each
property, based on its type: Flags are assigned a combo-box editor (true/false), and similarly for
other types .

let us modify the preassigned editor: First, assign spinners137 (SpinnerCellEditor138)
for numbers and checkboxes139 (BooleanCheckBoxCellEditor140) for logical flags:

% Prepare the properties list:
% First two logical values (flags)
list = java.util.arrayList();
prop1 = com.jidesoft.grid.DefaultProperty();
prop1.setName('mylogical');
prop1.setType(javaclass('logical'));
prop1.setValue(true);
list.add(prop1);

prop2 = com.jidesoft.grid.DefaultProperty();
prop2.setName('mycheckbox');
prop2.setType(javaclass('logical'));

K13163_Book.indb 331 11/8/2011 8:08:40 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming332

prop2.setValue(true);
cbContext = com.jidesoft.grid.BooleanCheckBoxCellEditor.CONTEXT;
prop2.setEditorContext(cbContext);
list.add(prop2);

% Now integers (note the different way to set property values):
prop3 = com.jidesoft.grid.DefaultProperty();
javatype = javaclass('int32');
set(prop3,'Name','myinteger','Type',javatype,'Value',int32(1));
list.add(prop3);

prop4 = com.jidesoft.grid.DefaultProperty();
set(prop4,'Name','myspinner','Type',javatype,'Value',int32(1));
set(prop4,'EditorContext',com.jidesoft.grid.SpinnerCellEditor.CONTEXT);
list.add(prop4);

% Prepare a properties table containing the list
model = com.jidesoft.grid.PropertyTableModel(list);
model.expandall();
grid = com.jidesoft.grid.PropertyTable(model);
pane = com.jidesoft.grid.PropertyPane(grid);

% Display the properties pane onscreen
panel = uipanel(gcf);
javacomponent(pane, [0 0 200 200], panel);

A property grid with checkbox and spinner controls

Notice how the EditorContext is used to specify a nonstandard renderer/editor for myspin-
ner and mycheckbox: the mylogical flag displays as a string label, while mycheckbox
displays as a checkbox; myinteger uses a regular integer editor that accepts whole numbers,
while myspinner uses a spinner control to modify the value .

In addition to BooleanCheckBoxCellEditor and SpinnerCellEditor, JIDE pre-
defines many other cell editors . all these classes implement the EditorContextSupport141
interface and have a class name of <type>CellEditor .142 Here is the full list of supported
cell editor <type>s: boolean, byte, Calculator, CheckboxlistCombobox, Color, ContextSensitive,
Date, Dimension, Double, Enum, File, FileName, Float, Folder, Font, FontName,
FormattedtextField, Insets, Integer, IPaddress, listCombobox, long, Month, MultilineString,
Multilinetable, MultilineEnum, Number, Password, Point, Rectangle, Short, Slider, Spinner,
String, Stringarray, tableCombobox, textField, and treeCombobox .

Note that instead of creating an entirely new properties list and table, we could have run the previ-
ous section’s example, modified list, and then simply called model.refresh() to update the display .

K13163_Book.indb 332 11/8/2011 8:08:40 PM

© 2012 by Taylor & Francis Group, LLC

333Built-In MATLAB® Widgets and Java Classes

Matlab types are automatically converted to Java types, but we must ensure that the con-
version matches our setType declaration: the logical value true correctly converts to a java.
lang.Boolean; however, the value 1 would be a double, Matlab’s standard numeric type,
and so an int32(1) cast is required to force a java.lang.Integer conversion .

Spinners with indefinite value bounds are seldom useful . the following shows how to regis-
ter a new editor to restrict values to a fixed range:

import com.jidesoft.grid.*;
javatype = javaclass('int32');
value = int32(0);
minVal = int32(-2);
maxVal = int32(5);
step = int32(1);
spinner = javax.swing.SpinnerNumberModel(value, minVal, maxVal, step);
editor = SpinnerCellEditor(spinner);
context = EditorContext('spinnereditor');
CellEditorManager.registerEditor(javatype, editor, context);

prop = DefaultProperty();
set(prop, 'Name','myspinner', 'Type',javatype, ...
 'Value',int32(1), 'EditorContext',context);

Note how we registered a specific cell editor for a specific property context, using
the CellEditorManager.registerEditor() method . Similarly, we can register specific
cell renderer using CellRendererManager.registerRenderer(), which accepts similar input
parameters (javatype, renderer, context), where renderer is a javax .swing.table.
TableCellRenderer (such as DefaultTableCellRenderer — see Section 4 .1 .1) .

the principle is the same for combo-boxes:

import com.jidesoft.grid.*;
javatype = javaclass('char', 1);
options = {'spring', 'summer', 'fall', 'winter'};
editor = ListComboBoxCellEditor(options);
context = EditorContext('comboboxeditor');
CellEditorManager.registerEditor(javatype, editor, context);

prop = com.jidesoft.grid.DefaultProperty();
set(prop, 'Name','season', 'Type',javatype, ...
 'Value','spring', 'EditorContext',context);

A property grid with a combobox control

K13163_Book.indb 333 11/8/2011 8:08:41 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming334

both CellEditorManager and CellRendererManager are global objects that live
as long as our JVM session (i .e ., the entire Matlab session) . We can unregister an editor or
renderer when it is no longer used, thereby freeing memory, as follows:

com.jidesoft.grid.CellEditorManager.unregisterEditor(javatype,context);

5.7.6 Nested Properties
Properties can act as a parent node for other properties . a typical example is an object’s dimen-
sions: a parent node value may be edited as a 2 × 1 matrix, but width and height may also be
exposed individually . Nested properties are created as regular properties . However, rather than
adding them directly to a PropertyTableModel, they are added under a Property
instance using its addChild method:

propdimensions = com.jidesoft.grid.DefaultProperty();
propdimensions.setName('dimensions');
propdimensions.setEditable(false);

propwidth = com.jidesoft.grid.DefaultProperty();
propwidth.setName('width');
propwidth.setType(javaclass('int32'));
propwidth.setValue(int32(100));
propdimensions.addChild(propwidth);

propheight = com.jidesoft.grid.DefaultProperty();
propheight.setName('height');
propheight.setType(javaclass('int32'));
propheight.setValue(int32(100));
propdimensions.addChild(propheight);

A property grid with nested properties

PropertyTableModel accesses properties in a hierarchical naming scheme . this means
that the parts of nested properties are separated with a dot (.) . In the above example, these two
fully-qualified names are dimensions.width and dimensions.height .

5.7.7 Trapping Property Change Events
Sometimes, it is desirable to subscribe to the PropertyChange event . this event is fired by
PropertyTableModel whenever any property value is updated . to expose Java events to
Matlab, we use the two-parameter form of the handle function with the optional
CallbackProperties parameter .

K13163_Book.indb 334 11/8/2011 8:08:41 PM

© 2012 by Taylor & Francis Group, LLC

335Built-In MATLAB® Widgets and Java Classes

hModel = handle(model, 'CallbackProperties');
set(hModel, 'PropertyChangeCallback', @callback_onPropertyChange);

the callback function receives two input arguments: the first is the PropertyTableModel
object that fired the event, and the second is a PropertyChangeEvent object with proper-
ties PropertyName, OldValue, and NewValue . the PropertyTableModel’s getProperty
(PropertyName) method may be used to fetch the Property instance that has changed .

Callbacks enable property value validation: OldValue can be used to restore the original
property value, if NewValue fails to meet some criteria that cannot be programmed into the cell
editor . We may, for instance, set the property type to a string and then, in our callback function,
use str2num as a validator to try to convert NewValue to a numeric matrix . If the conversion
fails, we restore the OldValue:

function callback_onPropertyChange(model, event)
 string = event.getNewValue();
 [value, isvalid] = str2num(string); %#ok
 prop = model.getProperty(event.getPropertyName());
 if isvalid % standardize value entered
 string = mat2str(value);
 else % restore previous value
 string = event.getOldValue();
 end
 prop.setValue(string);
 model.refresh(); % refresh value onscreen
end % callback_onPropertyChange

Now combine the nested properties and callbacks to update the parent property according to
the changes made to child property . First, set the parent property’s initial value:

propdimensions.setValue('[100,100]')

Next, set a callback on the model’s PropertyChange event:

hModel = handle(model, 'CallbackProperties');
set(hModel, 'PropertyChangeCallback', @onPropertyChangeFcn);

and in this callback function, update the parent’s value whenever one of its child values
changes:

function onPropertyChangeFcn(model, event)
 propName = event.getPropertyName;
 switch propName
 case {'dimensions.width', 'dimensions.height'}
 newWidth = model.getProperty('dimensions.width').getValue;
 newHeight = model.getProperty('dimensions.height').getValue;
 parentProp = model.getProperty(propName).getParent;
 parentProp.setValue(sprintf('[%d,%d]',newWidth,newHeight));
 otherwise
 % Some other property has changed...
 end
 model.refresh(); % refresh value onscreen
end % onPropertyChangeFcn

K13163_Book.indb 335 11/8/2011 8:08:41 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming336

Deeply nested properties with updated parent value

Note: levente Hunyadi, who wrote the preceding subsections about JIDE’s property table,
also created two utilities that facilitate property visualization in Matlab: PropertySheet143
(based on the open-source Fraeser project144) and PropertyGrid (based on JIDE’s
PropertyTable) .145

5.7.8 Date-Selection Components146

Matlab has many built-in date-handling functions (calendar, date, datestr, datenum,
datetick, datevec, etc .) . Unfortunately, this built-in support does not extend to Matlab GUI .
If we need a date-selection drop-down or calendar panel, we have to design it ourselves, or use
a third-party Java component or activeX control .147

luckily, we have a much better alternative, right within Matlab . this relies on JIDE
Grids, which includes the following date-selection controls:

DateChooserPanel ◾ :148 an extension of Swing’s JPanel that displays a single
month and enables selecting one or more days
CalendarViewer ◾ :149 a similar panel, which displays several months in a table for-
mat (e .g ., 4 × 3 months)
DateComboBox ◾ :150 a combo-box (drop-down/popup menu) that presents a
DateChooserPanel for selecting a date
DateSpinnerComboBox ◾ :151 presents a date-selection combo-box that includes both
the DateComboBox and a spinner control
MonthChooserPanel ◾ :152 a panel that enables selection of entire months (not spe-
cific dates)
MonthComboBox ◾ :153 a month-selection combo-box, similar to DateComboBox but
without the ability to select individual days

Usage of these controls is very similar, so I will just show the basics here . First, to present any
control, we need to use the built-in javacomponent function or the uicomponent utility:154

% Initialize JIDE's usage within Matlab
com.mathworks.mwswing.MJUtilities.initJIDE;

K13163_Book.indb 336 11/8/2011 8:08:41 PM

© 2012 by Taylor & Francis Group, LLC

337Built-In MATLAB® Widgets and Java Classes

% Display a DateChooserPanel
jPanel = com.jidesoft.combobox.DateChooserPanel;
[hPanel,hContainer] = javacomponent(jPanel,[10,10,200,200],gcf)

DateChooserPanel and MonthChooserPanel components

2 × 2 CalendarViewer component

Just as with any Java object, properties may be accessed with either the Java get/set semantics
(e .g ., getName() or setName(name)) or the Matlab get/set semantics (e .g ., get(prop,‘Name’) or

K13163_Book.indb 337 11/8/2011 8:08:42 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming338

set(prop,‘Name’,value)) . When using the Matlab syntax, remember to wrap the Java object in a
handle() call, in order to prevent a memory leak (i .e ., use hPanel, not jPanel — see Section 3 .4):

jPanel.setShowWeekNumbers(false); % Java syntax
set(hPanel,'ShowTodayButton',true); % Matlab syntax

Retrieving the selected date is easy:

>> selectedDate = jPanel.getSelectedDate;
selectedDate =
Sun Jun 27 00:00:00 IDT 2010

% Note: selectedDate is a java.util.Date object:
>> selectedDate.get
 Class = [(1 by 1) java.lang.Class array]
 Date = [27]
 Day = [0]
 Hours = [0]
 Minutes = [0]
 Month = [5]
 Seconds = [0]
 Time = [1.27759e + 012]
 TimezoneOffset = [-180]
 Year = [110]

We can enable selection of multiple dates (MULTIPLE _ INTERVaL_SELECTION = 2,
SINGLE_INTERVaL_SELECTION = 1, SINGLE_SELECTION = 0):

jModel = hPanel.getSelectionModel; % => a DefaultDateSelectionModel
jModel.setSelectionMode(jModel.MULTIPLE_INTERVaL_SELECTION);

>> jModel.getSelectedDates
ans =
java.util.Date[]:
 [java.util.Date]
 [java.util.Date]
 [java.util.Date]

We can, of course, set a callback for user modification of the selected date(s):

hModel = handle(hPanel.getSelectionModel, 'CallbackProperties');
set(hModel, 'ValueChangedCallback', @myCallbackFunction);

For the combo-box (drop-down/popup menus) controls, we obviously need to modify the
displayed size (in the javacomponent call) to something much more compact, such as
[10,10,100,20] . these components display one of the above panels as their popup selection
 panels . Users can access these panels using the combo-box control’s getPopupPanel() function
(or PopupPanel property) .

K13163_Book.indb 338 11/8/2011 8:08:42 PM

© 2012 by Taylor & Francis Group, LLC

339Built-In MATLAB® Widgets and Java Classes

DateComboBox and DateSpinnerComboBox components

5.8 Miscellaneous Other Internal Classes

this section details, in no particular order, several interesting classes that can be found in the
standard Matlab packages and possibly used in our user applications .

Several possibly useful components can be found in the com.mathworks.hg.util sub-
package . One such component, dColorChooser, was described in Section 5 .4 .1 . com.
mathworks.hg.util .FontChooser is another similar self-explanatory component .

another interesting component is com.mathworks.hg.util .StringScrollList-
Chooser, which presents a component that is composed of an automatic-scrolling listbox
with an attached editbox . the editbox contents are updated whenever any item is selected in the
listbox, but the user can also type any nonlisted text value in the editbox .

the control’s SelectedValue property returns the current text in the Edit box . the editbox
contents can be set directly using the setSelectedItem(string) method or via the listbox via
setSelectedValue(string, shouldScrollToSelectionFlag) . Note that if the value string specified
to setSelectedValue() is not found in the listbox, neither the editbox nor the listbox will be
updated . So, to specify non-listed values, use the setSelectedItem method:

strList = {'Oh','what','a','wonderful','world!'};
slc = com.mathworks.hg.util.StringScrollListChooser(strList);
[jComponent,hContainer] = javacomponent(slc,[1,1,300,85],gcf);

StringScrollListChooser

K13163_Book.indb 339 11/8/2011 8:08:43 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming340

Note: While this may seem like a regular property, be careful to always use the
setSelectedItem(string) method and never use the alternative set(slc,‘SelectedItem’,string) since
it crashes Matlab,† whereas using setSelectedItem(string) or setSelectedValue(string,flag)
is entirely safe .

com.mathworks.webintegration.startpage.framework.view.
ResourcePane can be used to extend JEditorPane with some very useful methods for
setting HtMl title, subtitles, text, hyperlinks, and image resources .
com.mathworks.page.utils.ClipboardHandler is an easy-to-use wrapper for

system-clipboard copy/paste operations, used by the built-in Matlab function clipboard.m .
the com.mathworks.services package contains several useful classes that are

described in more detail elsewhere in this book: com.mathworks.services.Prefs han-
dles system preferences (Section 8 .2); com.mathworks.services.antialiasedFont-
Prefs handles font anti-aliasing (Section 6 .5 .3); com.mathworks.services.binding.
MatlabKeyBindings can be used to load the default Editor and Command Window key
bindings (Section 8 .5) .

the com.mathworks.util package also contains several useful classes:
com.mathworks.util.StringUtils contains a set of useful string-processing func-

tions that complement those available in the standard java.lang.String .
com.mathworks.util.Range enables setting/getting start and end integer duo values

that define a numeric range . Range contains relevant methods such as min/max of the duo
values and union/intersection/adjacency with another Range object .
com.mathworks.util.PlatformInfo retrieves information about the current plat-

form . Methods such as isWindowsXP, isIntelMac64, isMacOSXTiger, and isUnix describe the
platform and operating system; methods such as isWindowsVistaAppearance and getWin-
dowsColorScheme determine (or modify) the operating system’s appearance; and methods such
as isVersion118 return information about the Java version .

Note: Do not confuse com.mathworks.util.PlatformInfo with the unrelated com.
mathworks.mlwidgets.util.productinfo.ProductInfoUtils class .155

Finally, there is a com.mathworks.util.Timer class that should not be confused with
the very similar yet unrelated com.mathworks.timer.Timer class . I believe that the latter
Timer class is used to implement Matlab’s built-in timer function . I do not know why
another implementation of a timer class was needed . Note that we can also use the standard
Java javax.swing.Timer class .156

† at least on Matlab 7 .5 (R2007b) through 7 .12 (R2011a) running JVM 1 .6 on a Windows XP PC . I suspect this may be
due to a missing getSelectedItem method in Matlab’s implementation .

K13163_Book.indb 340 11/8/2011 8:08:43 PM

© 2012 by Taylor & Francis Group, LLC

341Built-In MATLAB® Widgets and Java Classes

5.8.1 logging Utilities
Matlab contains several utilities/components that can be used for logging events .

the hg package contains a logger utility, which enables displaying log messages in a separate
Java window . the logger window is always available, yet hidden:

frames = java.awt.Frame.getFrames;
for idx = 1 : length(frames)
 if strcmp(frames(idx).getTitle,'Logger')
 f = frames(idx); f.setVisible(true); break;
 end
end

the logger logs HG events based on the debugging options specified via com.mathworks.
hg.peer.DebugUtilities.setDebugOptions(dbgOptions) . the possible options are enu-
merated static fields in the DebugUtilities class . they are powers of 2, so apparently are
bitwise flag representations that can be combined — a well-known programming practice . by
increasing value, the enumerated options are

DEBUG_CMD_WINDOW = 1 = 20

DEBUG_LOG_FILE = 2 = 21

DEBUG_LOG_WINDOW = 4 = 22

(missing) = 8 = 23

DEBUG_SURPRISES = 16 = 24

DEBUG_TRaCE_METHODS = 32 = 25

DEBUG_TRaCE_INVOKES = 64 = 7
DEBUG_SIZE = 128 = 27

DEBUG_LISTENERS = 256 = 28

DEBUG_EVENTS = 512 = 29

DEBUG_DESKTOP = 1024 = 210

DEBUG_MODaL = 2048 = 211

DEBUG_TREELOCK = 4096 = 212

DEBUG_TEMP = 8192 = 213

DEBUG_aCTIVaTE = 16384 = 214

DEBUG_JOGL = 32768 = 215

It appears that the first (lowest value) options determine the logging destination (the
Matlab Command Window and/or a figure_log.txt file in the current folder (pwd) and/or the

K13163_Book.indb 341 11/8/2011 8:08:43 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming342

logger window) . the rest of the options determine which events should be logged . For exam-
ple, to log all events to the logger window only:

com.mathworks.hg.peer.DebugUtilities.setDebugOptions(2ˆ16-1-(1 + 2));

or equivalently (a lot more coding, but much more readable/maintainable):

dbg = com.mathworks.hg.peer.DebugUtilities;
options = dbg.DEBUG_LOG_WINDOW + dbg.DEBUG_SURPRISES + ...

 dbg.DEBUG_TRaCE_METHODS + dbg.DEBUG_TRaCE_INVOKES + ...

 dbg.DEBUG_SIZE + dbg.DEBUG_LISTENERS + ...

 dbg.DEBUG_EVENTS + dbg.DEBUG_DESKTOP + ...

 dbg.DEBUG_MODaL + dbg.DEBUG_TREELOCK + ...

 dbg.DEBUG_TEMP + dbg.DEBUG_aCTIVaTE + dbg.DEBUG_JOGL;
dbg.setDebugOptions(options);

We can also log our custom events using DebugUtilities . this is done with the
logMessage(destination, description, object) method, where destination is a combination of
DEBUG_CMD_WINDOW, DEBUG_LOG_FILE, and DEBUG_ LOG_WINDOW; description is a
descriptive string, and object is the logged object reference or Matlab value . Note that
only destinations that were previously enabled with setDebugOption() will display the new
message — non-enabled destinations will simply silently ignore it .

K13163_Book.indb 342 11/8/2011 8:08:44 PM

© 2012 by Taylor & Francis Group, LLC

343Built-In MATLAB® Widgets and Java Classes

For example, the following will output a log message only to the Command Window but not
to the logger window (since it was not logger-enabled):

>> dbg.setDebugOptions(dbg.DEBUG_CMD_WINDOW + dbg.DEBUG_LOG_FILE);
>> dbg.logMessage(7,'Yair: ', jFrame)
Yair: com.mathworks.hg.peer.FigureFrameProxy$FigureFrame[...]

>> dbg.logMessage(7,'Yair: ', hFig)
Yair: 171.0030517578125

>> dbg.logMessage(7,'Yair: ', magic(3))
Yair: [[D@1f5e413

>> dbg.logMessage(7,'Yair: ',{1,2,3,'abc'})
Yair: [Ljava.lang.Object;@9cde9a

>> dbg.logMessage(7,'Yair: ', 2 + 3 = = 5)
Yair: true

this logger utility should not be confused with another logger utility, provided by the com.
mathworks.util.Log class: Log provides a very simple logging class, which enables dis-
playing log messages in a separate Java window . For example,

com.mathworks.util.Log.setLogging(true);
com.mathworks.util.Log.printLn('testing 12345...');

A simple log window

In addition to the hg.peer.DebugUtilities and util.Log classes, we can implement
our own logging utility . an example of this is shown in Section 6 .5 .2:

A custom icon and color-enriched log panel

Finally, we can use external logger packages, such as the pre-bundled simple loggers in the
jarext/commons-logging.jar or the well-established open-source log4J .157

K13163_Book.indb 343 11/8/2011 8:08:45 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming344

5.8.2 JGoodies
Section 5 .5 .1 introduced FormPanel, a convenient form layout preparation class by
MathWorks . Matlab installation prebundled the open-source JGoodies Forms package by
www .jgoodies .com (%matlabroot%/java/jarext/jgoodies-forms.jar) .158 this package, well
known in the Java community, enables easy and consistent form creation . Using JGoodies
Forms, we can create forms that have aligned components, shrinking appropriately in any or all
dimensions as their container shrinks or grows .

let us recreate the FormPanel example of Section 5 .5 .1 using JGoodies Forms:

jLayout = com.jgoodies.forms.layout.FormLayout('r:p, 4dlu, p:g');
jFormBuilder = com.jgoodies.forms.builder.DefaultFormBuilder(jLayout);
jFormBuilder.append('Row #1:', javax.swing.JCheckBox('test1'))
jFormBuilder.append('a very long label:', javax.swing.JCheckBox)
jFormBuilder.append('#3:', javax.swing.JButton('Click me!'))
jComboBox = javax.swing.JComboBox({'red','green','blue'});
jFormBuilder.append('Row #4:',jComboBox);
jPanel = jFormBuilder.getPanel;
[jhPanel,hContainer] = javacomponent(jPanel,[10,10,200,110],gcf);

A simple form created using JGoodies FormLayout

this may appear to be a very simple case where JGoodies Forms are not really needed, but
when alignment and resizing behavior requirements kick in, these are easy to implement in
FormLayout, but are much more difficult using other Swing layouts . It is possible that
JGoodies Forms were also used for Mac Matlab’s unified toolbar .159

as an alternative to Java-based forms, consider using Kesh’s excellent Enhanced Input
Dialog Box utility on the Matlab File Exchange .160

In addition to JGoodies Forms, Matlab also comes bundled with the JGoodies looks
library (%matlabroot%/java/jarext/jgoodies-looks.jar),161 which contains a set of l&F classes,
including the Plastic look-and-Feel that was introduced in Section 3 .3 .2 .

5.8.3 Additional Others
the com.mathworks.mde and com.mathworks.desktop packages and subpackages
contain classes that are used to implement the Matlab Desktop and its associated tools
(Editor, Command History, etc .) . these are described in detail in Chapter 8 .

the com.mathworks.fatalexit package contains a single class, FatalExitFrame,
which displays the dreaded Matlab crash message:

K13163_Book.indb 344 11/8/2011 8:08:46 PM

© 2012 by Taylor & Francis Group, LLC

345Built-In MATLAB® Widgets and Java Classes

In some cases, Matlab decides that an attempt to continue is impossible:

We can programmatically invoke this crash display using com.mathworks.fatalexit .
FatalExitFrame.main('xxx'), where 'xxx' is the filename of the crash details file, which
is then presented in the window’s text box . However, closing the message window will have
the side effect of closing Matlab

the com.mathworks.ide.filtermgr.FilterEditor and FilterManager classes
(removed in R2011a) enable managing object properties . I have not encountered this in normal
Matlab usage and do not know its intended usage . It can be regenerated as follows:

fm = com.mathworks.ide.filtermgr.FilterManager('Yair');
fm.editFilter('javax.swing.JButton', 'MyFilter');†

† or javacomponent(com .mathworks .ide .filtermgr .FilterEditor(fm,[]),[1,1,300,285],gcf);

K13163_Book.indb 345 11/8/2011 8:08:47 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming346

the bDE (block Diagram Editor?) package is a graphical block-diagram editor available up
to R2011a . I do not know the diagrams’ purpose (note that bDE was redesigned in R2009b,
breaking the code below):162

bde = com.mathworks.bde.clients.BDEDesktop; % this fails in R2009b +
diagram = com.mathworks.bde.diagram.Diagram;
client = com.mathworks.bde.clients.DiagramViewDTClient('YMa',diagram);
bde.addClient(client,'YMa');

References

 1 . http://blogs .mathworks .com/desktop/2009/07/06/calling-java-from-matlab/#comment-6836 (or http://
bit .ly/cUbHnQ) .

K13163_Book.indb 346 11/8/2011 8:08:47 PM

© 2012 by Taylor & Francis Group, LLC

http://blogs.mathworks.com

347Built-In MATLAB® Widgets and Java Classes

 2 . http://java .sun .com/javase/6/docs/api/javax/swing/Jtogglebutton .html (or http://bit .ly/davduF) .
 3 . http://UndocumentedMatlab .com/files/checkClass .m (or http://bit .ly/clwCHs) .
 4 . http://www .mathworks .com/matlabcentral/fileexchange/26947-checkclass (or http://bit .ly/98151H) .
 5 . http://UndocumentedMatlab .com/blog/toolstrip (or http://bit .ly/nlU9PX) .
 6 . http://platform .netbeans .org/ (http://bit .ly/dqIav2); http://en .wikipedia .org/wiki/Netbeans (or http://bit .

ly/aDbvU0) .
 7 . http://abbot .sourceforge .net/ (or http://bit .ly/15j85l); also see jarext/jimmy .jar below .
 8 . http://java .sun .com/javase/technologies/accessibility/accessbridge/index .jsp (or http://bit .ly/a41Qxg);

also see jaccess below .
 9 . http://www .oracle .com/technetwork/java/javase/jaf-136260 .html (or http://bit .ly/azwbIS) .
 10 . http://ant .apache .org/ (http://bit .ly/coyRzw); http://en .wikipedia .org/wiki/apache_ant (or http://bit .ly/

a3bGiM) .
 11 . http://avalon .apache .org/ (http://bit .ly/dhHxpN); the avalon project has been superseded by http://excali-

bur .apache .org/ (http://bit .ly/955lYU) — I do not know why Matlab keeps the older avalon . avalon
was apparently removed in R2011b .

 12 . http://ws .apache .org/axis/ (or http://bit .ly/9RGXoy); http://en .wikipedia .org/wiki/apache_axis (or
http://bit .ly/dyEDz7); also see jarext/jaxpc .jar below .

 13 . http://xmlgraphics .apache .org/batik/ (or http://bit .ly/aOl2en); http://www .w3 .org/Graphics/SVG/ (or
http://bit .ly/bO0UJK); http://en .wikipedia .org/wiki/batik_(softyes ware) (or http://bit .ly/9WcIlg) .

 14 . http://java .sun .com/javase/6/docs/technotes/guides/collections/index .html (or http://bit .ly/9Hwq6O); see
the discussion in Section 2 .1 .

 15 . http://en .wikibooks .org/wiki/Serial_Programming/Serial_Java (or http://bit .ly/bdYZl3) .
 16 . http://commons .apache .org/codec (or http://bit .ly/bfxtK0) .
 17 . http://commons .apache .org/discovery (or http://bit .ly/a4PHgb) .
 18 . http://commons .apache .org/el/ (or http://bit .ly/ds7R6S) .
 19 . http://hc .apache .org/httpclient-3 .x/ (or http://bit .ly/aS6hbN) .
 20 . http://commons .apache .org/io/ (or http://bit .ly/bMmcHx) .
 21 . http://commons .apache .org/logging/ (or http://bit .ly/bloxXv); http://en .wikipedia .org/wiki/log4j (or

http://bit .ly/ainRgK) .
 22 . http://commons .apache .org/net/ (or http://bit .ly/9mt1a9) .
 23 . http://www .wutka .com/dtdparser .html (or http://bit .ly/ailDg9) . this Web page is currently offline, so use:

http://bit .ly/adj8bz .
 24 . http://publicobject .com/glazedlists/ (or http://bit .ly/bqkgQM); http://www .javaworld .com/javaworld/

jw-10-2004/jw-1025-glazed .html (or http://bit .ly/cIY8Ha); see the discussion in Section 5 .5 .5 .
 25 . http://java .sun .com/javase/technologies/accessibility/index .jsp (or http://bit .ly/ahfFFM); http://java .sun .

com/javase/technologies/accessibility/docs/jaccess-1 .3/doc/ (or http://bit .ly/c0gaaf) — note that this is
a documentation of version 1 .3 not of 1 .4 (there is no official documentation for the 1 .4 version); also see
access-bridge above .

 26 . http://jakarta .apache .org/oro/ (or http://bit .ly/dd4WKy) .
 27 . http://jakarta .apache .org/regexp/ (or http://bit .ly/cWNDIS) .
 28 . https://jax-rpc .dev .java .net/ (or http://bit .ly/ahGigm); http://en .wikipedia .org/wiki/JaX-RPC (or http://

bit .ly/9mF1FR); also see jarext/axis .jar above .
 29 . http://www .jdom .org/; http://en .wikipedia .org/wiki/JDOM (or http://bit .ly/ar871s) .
 30 . https://jemmy .dev .java .net/ (or http://bit .ly/9gGenk); also see jarext/jabot .jar above .
 31 . http://jfcunit .sourceforge .net/ (or http://bit .ly/dctafp) .
 32 . http://www .jgoodies .com/freeware/forms/index .html (http://bit .ly/byJQjj) .
 33 . http://www .jgoodies .com/freeware/looks/index .html (http://bit .ly/9x0xvz) .
 34 . http://www .wutka .com/jox .html (http://bit .ly/bt7Sd9) . this webpage is currently offline, so use http://bit .

ly/98t1IR instead .
 35 . http://junit .org/; http://en .wikipedia .org/wiki/JUnit (or http://bit .ly/dlkh5Y) .
 36 . http://lucene .apache .org/java/docs/ (or http://bit .ly/9ut3Zf); http://en .wikipedia .org/wiki/lucene (or

http://bit .ly/asea2K) .
 37 . http://java .sun .com/products/javamail/ (http://bit .ly/axPlpR); http://en .wikipedia .org/wiki/Javamail (or

http://bit .ly/9HtmOg) .

K13163_Book.indb 347 11/8/2011 8:08:48 PM

© 2012 by Taylor & Francis Group, LLC

http://java.sun.com
www.undocumentedmatlab.com
http://abbot.sourceforge.net
http://www.oracle.com
http://platform.netbeans.org
www.mathworks.com
http://avalon.apache.org
http://en.wikibooks.org
http://xmlgraphics.apache.org/
http://commons.apache.org
http://www.wutka.com
http://publicobject.com/
http://jakarta.apache.org
http://www.jdom.org/
http://www.jgoodies.com/
http://www.wutka.com
http://junit.org
http://lucene.apache.org
http://jfcunit.sourceforge.net
https://jemmy.dev.java.net

Undocumented Secrets of MATLAB®-Java Programming348

 38 . http://www .unidata .ucar .edu/software/netcdf-java/v2 .2 .22/javadocall/ucar/units/package-summary .html
(or http://bit .ly/bM0tSN); the “mw” prefix indicates a MathWorks-modified package to support
Matlab functionality .

 39 . http://nekohtml .sourceforge .net/ (or http://bit .ly/a0Rxta) .
 40 . https://saaj .dev .java .net/ (or http://bit .ly/aKtYju); http://en .wikipedia .org/wiki/SaaJ (or http://bit .ly/

dsl884) .
 41 . http://saxon .sourceforge .net/ (or http://bit .ly/ccuzZx); http://en .wikipedia .org/wiki/Saxon_XSlt (or

http://bit .ly/aFotNo); also see jarext/xalan .jar below .
 42 . http://www .springsource .org/ (or http://bit .ly/aoVan9); http://en .wikipedia .org/wiki/Java_Spring (or

http://bit .ly/9WoUq9) .
 43 . http://sourceforge .net/projects/wsdl4j/ (or http://bit .ly/9OmEot) .
 44 . http://xalan .apache .org/ (or http://bit .ly/abPaJE); also see jarext/saxon .jar above .
 45 . http://xerces .apache .org/ (or http://bit .ly/bhR3lt); http://en .wikipedia .org/wiki/Xerces (or http://bit .ly/

aNmqeq) .
 46 . https://jaxp .dev .java .net/ (or http://bit .ly/9mo9Gi); http://java .sun .com/developer/codesamples/xml .html

(or http://bit .ly/9ZljMp); http://java .sun .com/j2ee/1 .4/docs/tutorial/doc/JaXPIntro .html (or http://bit .ly/
bMadFt) .

 47 . http://www .icesoft .com/products/icebrowser .html (or http://bit .ly/ai0dMs) . ICE browser solves problems
with the standard (built-in) Matlab browser: http://www .mathworks .com/support/solutions/en/data/1-
91a14Y/ (or http://bit .ly/a7C9xS); but it does have limitations: http://www .mathworks .com/support/
solutions/en/data/1-5aJ3DV (or http://bit .ly/gIGaam) .

 48 . http://www .wildcrest .com/Software/J2PrinterWorks/J2PrinterWorksREaDME .html (or http://bit .ly/a2j620) .
 49 . http://www .qarbon .com/presentation-software/solution/ (or http://bit .ly/9z7eCS) .
 50 . http://www .webrenderer .com/ (or http://bit .ly/a3aFiR) .
 51 . http://java .sun .com/docs/books/tutorial/uiswing/components/spinner .html (or http://bit .ly/b1gg56) .
 52 . http://www .mathworks .com/matlabcentral/fileexchange/26970-spinnerdemo (or http://bit .ly/bahlpw) .
 53 . http://java .sun .com/docs/books/tutorial/uiswing/components/button .html (or http://bit .ly/ahRKa7) .
 54 . http://java .sun .com/docs/books/tutorial/uiswing/components/button .html#radiobutton (or http://bit .ly/

bbYbtz) .
 55 . http://java .sun .com/docs/books/tutorial/uiswing/components/button .html#checkbox (or http://bit .

ly/9oxWwX) .
 56 . http://java .sun .com/docs/books/tutorial/uiswing/components/textfield .html (or http://bit .ly/9Vl3Qh) .
 57 . http://java .sun .com/docs/books/tutorial/uiswing/components/formattedtextfield .html (or http://bit .ly/axEi5c) .
 58 . http://java .sun .com/docs/books/tutorial/uiswing/components/list .html (or http://bit .ly/9qFQU0) .
 59 . http://java .sun .com/docs/books/tutorial/uiswing/components/combobox .html (or http://bit .ly/b0e4ta) .
 60 . http://java .sun .com/docs/books/tutorial/uiswing/components/label .html (or http://bit .ly/dCx3uq) .
 61 . http://java .sun .com/docs/books/tutorial/uiswing/components/menu .html (or http://bit .ly/cMm0Ke) .
 62 . http://java .sun .com/docs/books/tutorial/uiswing/components/tabbedpane .html (or http://bit .ly/aaFMyM) .
 63 . http://java .sun .com/docs/books/tutorial/uiswing/components/tree .html (or http://bit .ly/dbH5Mt) .
 64 . http://java .sun .com/docs/books/tutorial/uiswing/components/toolbar .html (or http://bit .ly/9zkpxO) .
 65 . http://java .sun .com/docs/books/tutorial/uiswing/components/splitpane .html (or http://bit .ly/b3lKpb) .
 66 . http://java .sun .com/docs/books/tutorial/uiswing/components/table .html (or http://bit .ly/aysVb3) .
 67 . http://java .sun .com/docs/books/tutorial/uiswing/components/filechooser .html (or http://bit .ly/d3Ylar) .
 68 . http://java .sun .com/docs/books/tutorial/uiswing/components/dialog .html (or http://bit .ly/cNtSGs) .
 69 . http://download .oracle .com/javase/6/docs/api/javax/swing/JOptionPane .html (or http://bit .ly/rthGIM) .
 70 . http://java .sun .com/docs/books/tutorial/uiswing/components/textarea .html (or http://bit .ly/aIZb9G) .
 71 . http://download .oracle .com/javase/6/docs/api/javax/swing/JtextPane .html (or http://bit .ly/npKP6R) .
 72 . http://download .oracle .com/javase/6/docs/api/javax/swing/JEditorPane .html (or http://bit .ly/nhGRWU) .
 73 . http://java .sun .com/docs/books/tutorial/uiswing/components/editorpane .html (or http://bit .ly/8X4XoX) .
 74 . http://download .oracle .com/javase/6/docs/api/javax/swing/tree/DefaulttreeModel .html (or http://bit .ly/

dpe8qb) .
 75 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/138344 (or http://bit .ly/9CNHVn);

http://www .mathworks .com/matlabcentral/newsreader/view_thread/156915 (or http://bit .ly/9jMYOP);
and its usage as a Java table: http://www .mathworks .com/matlabcentral/fileexchange/5752 (or http://bit .
ly/c4N3c9) .

K13163_Book.indb 348 11/8/2011 8:08:48 PM

© 2012 by Taylor & Francis Group, LLC

349Built-In MATLAB® Widgets and Java Classes

 76 . http://www .mathworks .com/help/techdoc/matlab_env/bruby4n-1 .html#f3-40511 (or http://bit .ly/crY6KJ) .
 77 . http://en .wikipedia .org/wiki/lucene; http://lucene .apache .org/java/
 78 . also used by the webbot utility: http://www .mathworks .com/matlabcentral/fileexchange/4023 (or http://bit .

ly/d6JYWc) and the compression utility in: http://www .mathworks .com/matlabcentral/fileexchange/8899
(or http://bit .ly/c43CZE), EZGlobe utility in: http://www .mathworks .com/matlabcentral/fileexchange/8966
(or http://bit .ly/cgEvYG), and some others .

 79 . Change notifications are discussed in an official Matlab technical solution: http://www .mathworks .
com/support/solutions/en/data/1-81QJlt/ (or http://bit .ly/bj9y35) .

 80 . http://blogs .mathworks .com/desktop/2009/10/12/the-history-of-keyboard-shortcuts-in-
matlab/#comment-6666 (or http://bit .ly/aOaIbd); http://www .mathworks .com/support/solutions/en/
data/1-bG4EU1/ (or http://bit .ly/bUDsYD) .

 81 . http://en .wikipedia .org/wiki/teX
 82 . For example, http://www .mathworks .com/matlabcentral/fileexchange/11946-tex-editor (or http://bit .ly/

gUhtSk) .
 83 . http://UndocumentedMatlab .com/blog/color-selection-components/ (or http://bit .ly/kjbDVn) .
 84 . http://java .sun .com/javase/6/docs/api/javax/swing/JColorChooser .html (or http://bit .ly/9VosZG); http://

java .sun .com/docs/books/tutorial/uiswing/components/colorchooser .html (or http://bit .ly/a7Rajb) .
 85 . http://blogs .mathworks .com/desktop/2011/04/18/redesigned-plot-catalog-in-matlab-r2011a/#comment-

7698 (or http://bit .ly/fWxHWX) .
 86 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/154144#386877 (or http://bit .ly/

a5aH41) .
 87 . http://blogs .mathworks .com/desktop/2009/03/16/click-for-more-information/ (or http://bit .ly/cQnbWP) .
 88 . http://blogs .mathworks .com/desktop/2010/07/19/that-tooltip-looks-familiar/ (or http://bit .ly/92YyYc) .
 89 . http://java .sun .com/docs/books/tutorial/uiswing/components/menu .html (or http://bit .ly/cMm0Ke) .
 90 . http://www .jidesoft .com/javadoc/com/jidesoft/swing/Styledlabel .html (or http://bit .ly/cUztP4); PDF

developer guide: http://www .jidesoft .com/products/JIDE_Common_layer_Developer_Guide .pdf (or
http://bit .ly/9x61e1) .

 91 . http://www .jidesoft .com/javadoc/com/jidesoft/swing/Styledlabelbuilder .html (or http://bit .ly/baFokP) .
 92 . http://www .jidesoft .com/javadoc/com/jidesoft/swing/ClickthroughStyledlabel .html (or http://bit .

ly/9yiZ5w) .
 93 . http://en .wikipedia .org/wiki/MIME
 94 . http://UndocumentedMatlab .com/blog/syntax-highlighted-labels-panels/#comment-13214 (or http://bit .

ly/atWvvy) .
 95 . See http://java .sun .com/docs/books/tutorial/uiswing/components/dialog .html#features (or http://bit .ly/

aOzOlw) .
 96 . http://java .sun .com/docs/books/tutorial/uiswing/components/dialog .html (or http://bit .ly/cNtSGs) .
 97 . http://java .sun .com/javase/6/docs/api/javax/swing/JOptionPane .html (or http://bit .ly/aVGRxD) .
 98 . http://java .sun .com/javase/6/docs/api/javax/swing/JDialog .html (or http://bit .ly/d8q0b3) .
 99 . http://publicobject .com/glazedlists/ (or http://bit .ly/bqkgQM) .
 100 . http://www .javaworld .com/javaworld/jw-10-2004/jw-1025-glazed .html (or http://bit .ly/cIY8Ha) .
 101 . http://blogs .mathworks .com/desktop/2007/03/29/shortcuts-for-commonly-used-code/#comment-5753 (or

http://bit .ly/aRva9c); http://www .mathworks .com/support/solutions/en/data/1-1bM76/ (or http://bit .
ly/9PSVQj); in old Matlab releases, the relevant code was com .mathworks .ide .cmdline .
CommandHistory .deleteallHistoryForDesktop() — see http://www .mathworks .com/matlabcentral/news-
reader/view_thread/ 80617 (or http://bit .ly/9kRtRO) .

 102 . http://www .mathworks .com/support/solutions/en/data/1-8F3C38/ (or http://bit .ly/dpWFSn) .
 103 . http://stackoverflow .com/questions/4405536/history-command-buffer-in-matlab (or http://bit .ly/heUqDG) .
 104 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/278672#734272 (or http://bit .

ly/9w7tSW) .
 105 . http://www .mathworks .com/help/releases/R2006a/techdoc/rn/r2006a_v7_2_graphics .html (or http://bit .

ly/90tkhY) .
 106 . http://www .mathworks .com/matlabcentral/fileexchange/ (or http://bit .ly/anwdaP) .
 107 . http://blogs .mathworks .com/desktop/2009/09/21/the-front-page-of-the-file-exchange-your-desktop/ (or

http://bit .ly/a4KcQN) .

K13163_Book.indb 349 11/8/2011 8:08:48 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming350

 108 . http://www .jidesoft .com/products/action .htm (or http://bit .ly/blEUbv); PDF developer guide: http://
www .jidesoft .com/products/JIDE_action_Framework_Developer_Guide .pdf (or http://bit .ly/d8Rrec) .

 109 . http://www .jidesoft .com/products/oss .htm (or http://bit .ly/dyDh22); PDF developer guide: http://www .
jidesoft .com/products/JIDE_Common_layer_Developer_Guide .pdf (or http://bit .ly/9x61e1) .

 110 . https://jide-oss .dev .java .net/ (or http://bit .ly/dg0Myq) .
 111 . http://www .jidesoft .com/products/component .htm (or http://bit .ly/dxGV1m); PDF developer guide:

http://www .jidesoft .com/products/JIDE_Components_Developer_Guide .pdf (or http://bit .ly/9bFgg9) .
 112 . http://www .jidesoft .com/products/dialogs .htm (or http://bit .ly/crvSRc); PDF developer guide: http://

www .jidesoft .com/products/JIDE_Dialogs_Developer_Guide .pdf (or http://bit .ly/9wGiDE) .
 113 . http://www .jidesoft .com/products/dock .htm (or http://bit .ly/bdI5Ra); PDF developer guide: http://www .

jidesoft .com/products/JIDE_Docking_Framework_Developer_Guide .pdf (or http://bit .ly/bNvZgP) .
 114 . http://www .jidesoft .com/products/grids .htm (or http://bit .ly/aetw9H); PDF developer guide: http://www .

jidesoft .com/products/JIDE_Grids_Developer_Guide .pdf (or http://bit .ly/a88Xzt) .
 115 . http://www .jidesoft .com/javadoc/ (or http://bit .ly/bcevRu) .
 116 . http://www .jidesoft .com/forum/ (or http://bit .ly/9Q0a9j) .
 117 . http://www .jidesoft .com/history/ (or http://bit .ly/b4MEVn); R2008a uses 2 .1 .2 .01 (aug 2007) and

R2010a uses 2 .7 .1 (aug 2009) .
 118 . http://www .jidesoft .com/javadoc/com/jidesoft/swing/JideSwingUtilities .html (or http://bit .ly/9ozlvw) .
 119 . http://blogs .mathworks .com/desktop/2007/05/18/do-you-dock-figure-windows-what-does-your-desk-

top-look-like/#comment-7041 (or http://bit .ly/bIvtgI) .
 120 . http://poi .apache .org/spreadsheet/ (or http://bit .ly/9kyv0m) .
 121 . http://UndocumentedMatlab .com/blog/jide-property-grids/ (or http://bit .ly/bF6lpJ), written by lebente

Hunyadi (http://www .mathworks .com/matlabcentral/fileexchange/authors/60898 or http://bit .ly/9OVCJJ) .
 122 . http://www .mathworks .com/help/techdoc/ref/inspect .html (or http://bit .ly/b23wxl) .
 123 . http://www .mathworks .com/help/techdoc/creating_guis/f7-998368 .html (or http://bit .ly/b23wxl) .
 124 . http://www .mathworks .com/help/techdoc/creating_plots/f9-47085 .html#f9-43456 (or http://bit .ly/aud12c) .
 125 . http://www .mathworks .com/matlabcentral/fileexchange/28732-property-grid (or http://bit .ly/cn218w) .
 126 . http://UndocumentedMatlab .com/blog/jide-property-grids/comment-page-1/#comment-9476 (or http://

bit .ly/971sbb) .
 127 . http://www .jidesoft .com/products/JIDE_Grids_Developer_Guide .pdf (or http://bit .ly/a88Xzt) .
 128 . http://www .jidesoft .com/javadoc/ (or http://bit .ly/bcevRu) .
 129 . http://www .jidesoft .com/javadoc/com/jidesoft/grid/Propertytable .html (or http://bit .ly/9sVZGe) .
 130 . http://www .jidesoft .com/javadoc/com/jidesoft/grid/PropertytableModel .html (or http://bit .ly/cJXcYb) .
 131 . http://www .jidesoft .com/javadoc/com/jidesoft/grid/Property .html (or http://bit .ly/9sfINj) .
 132 . http://www .jidesoft .com/javadoc/com/jidesoft/grid/DefaultProperty .html (or http://bit .ly/cgwE2P) .
 133 . http://www .jidesoft .com/javadoc/com/jidesoft/grid/PropertyPane .html (or http://bit .ly/9aG8gN) .
 134 . http://UndocumentedMatlab .com/files/javaclass .m (or http://bit .ly/d1DSbb) .
 135 . http://UndocumentedMatlab .com/blog/advanced-jide-property-grids (or http://bit .ly/a7vaqs), also by

lebente Hunyadi .
 136 . http://java .sun .com/docs/books/tutorial/uiswing/components/table .html#editrender (or http://bit .ly/

colllg) .
 137 . http://java .sun .com/docs/books/tutorial/uiswing/components/spinner .html (or http://bit .ly/b1gg56) .
 138 . http://www .jidesoft .com/javadoc/com/jidesoft/grid/SpinnerCellEditor .html (or http://bit .ly/b27yFt) .
 139 . http://java .sun .com/docs/books/tutorial/uiswing/components/button .html#checkbox (or http://bit .

ly/9oxWwX) .
 140 . http://www .jidesoft .com/javadoc/com/jidesoft/grid/booleanCheckboxCellEditor .html (or http://bit .ly/

adJ7K4) .
 141 . http://www .jidesoft .com/javadoc/com/jidesoft/grid/EditorContextSupport .html (or http://bit .ly/cCzYao) .
 142 . For example, BooleanCellEditor is documented in http://www .jidesoft .com/javadoc/com/jidesoft/

grid/booleanCellEditor .html (or http://bit .ly/aN1hmE) .
 143 . http://www .mathworks .com/matlabcentral/fileexchange/26784-property-sheet (or http://bit .ly/bdvcnM) .
 144 . http://sourceforge .net/projects/fraeser/files/matlab_gui_extensions (or http://bit .ly/atM2x3) .
 145 . http://www .mathworks .com/matlabcentral/fileexchange/28732-property-grid (or http://bit .ly/cn218w) .
 146 . http://UndocumentedMatlab .com/blog/date-selection-components/ (or http://bit .ly/bpe1V4) .

K13163_Book.indb 350 11/8/2011 8:08:48 PM

© 2012 by Taylor & Francis Group, LLC

351Built-In MATLAB® Widgets and Java Classes

 147 . a list of non-JIDE alternatives is presented here: http://UndocumentedMatlab .com/blog/date-selectioncomp
onents/#alternatives (or http://bit .ly/aotMQv) .

 148 . http://www .jidesoft .com/javadoc/com/jidesoft/combobox/DateChooserPanel .html (or http://bit .ly/cfENEX) .
 149 . http://www .jidesoft .com/javadoc/com/jidesoft/combobox/CalendarViewer .html (or http://bit .ly/ddt08l) .
 150 . http://www .jidesoft .com/javadoc/com/jidesoft/combobox/DateCombobox .html (or http://bit .ly/9S0ga6) .
 151 . http://www .jidesoft .com/javadoc/com/jidesoft/combobox/DateSpinnerCombobox .html (or http://bit .ly/

duNrRv) .
 152 . http://www .jidesoft .com/javadoc/com/jidesoft/combobox/MonthChooserPanel .html (or http://bit .ly/

b7oONr) .
 153 . http://www .jidesoft .com/javadoc/com/jidesoft/combobox/MonthCombobox .html (or http://bit .ly/aDgGib) .
 154 . http://www .mathworks .com/matlabcentral/fileexchange/14583-uicomponent (or http://bit .ly/dbtov3) .
 155 . this was mentioned in http://www .mathworks .com/support/solutions/en/data/1-OVWJ9/ (or http://bit .

ly/9GH2Cm) .
 156 . http://java .sun .com/docs/books/tutorial/uiswing/misc/timer .html (or http://bit .ly/bvpQHX) .
 157 . http://commons .apache .org/logging/ (or http://bit .ly/bloxXv); http://en .wikipedia .org/wiki/log4j (or http://

bit .ly/ainRgK); http://blogs .mathworks .com/desktop/2009/07/06/calling-java-from-matlab/#comment-6655
(or http://bit .ly/fM0G7S) .

 158 . http://www .jgoodies .com/freeware/forms/ (or http://bit .ly/8XMIwD); https://forms .dev .java .net/ (or
http://bit .ly/biUx9g); PDF tutorial: http://www .jgoodies .com/articles/forms .pdf (or http://bit .ly/azlgCf);
Presentation: http://www .jgoodies .com/articles/layout .pdf (or http://bit .ly/aVHwkd) .

 159 . http://explodingpixels .wordpress .com/2008/05/02/sexy-swing-app-the-unified-toolbar/ (or http://bit .ly/
deQcsy) — this was written by Ken Orr, who was a lead Matlab Desktop designer until late 2009, in
his personal blog . Note that the blog post does NOt mention Matlab in any way, and the connection
I made here is pure speculation .

 160 . http://www .mathworks .com/matlabcentral/fileexchange/25862-enhanced-input-dialog-box (or http://bit .
ly/9YiiJl) .

 161 . http://www .jgoodies .com/freeware/looks/ (or http://bit .ly/96XUpq); https://looks .dev .java .net/ (or http://
bit .ly/c8ay7m) .

 162 . http://UndocumentedMatlab .com/blog/jgraph-and-bde/ (or http://bit .ly/hfZUtO) .

K13163_Book.indb 351 11/8/2011 8:08:48 PM

© 2012 by Taylor & Francis Group, LLC

http://www.jidesoft.com
www.mathworks.com
httpp://java.sun.com
http://www.jgoodies.com
http://UndocumentedMatlab.com
http://commons.apache.org
http://www.jgoodies.com
http://explodingpixels.wordpress.com
http://en.wikipedia.org
http://blogs.mathworks.com

Customizing
Matlab® Controls

6
Chapter

K13163_Book.indb 353 11/8/2011 8:08:48 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming354

as noted in Chapter 3, all Matlab uicontrols are based on underlying Java Swing compo-
nents, or more precisely on internal Matlab classes which extend the standard Swing com-
ponents . this section will detail these components, show how to access them, and describe how
they can be customized in our Matlab application .

the underlying components can be found using the findjobj utility described earlier:†

>> hButton = uicontrol('Style','ToggleButton');

>> jButton = findjobj(hButton)
jButton =
 javahandle_withcallbacks.com.mathworks.hg.peer.ToggleButtonPeer$
 hgToggleButton

>> jButton.java
ans =
com.mathworks.hg.peer.ToggleButtonPeer$hgToggleButton[...]

the component can also be found and inspected visually, rather than programmatically,
using findjobj’s graphic hierarchical component tree display, displayed when findjobj is called
with no output arguments:

>> findjobj(hButton); %or: findjobj; to search from the figure root

uicontrol underlying Java component found using findjobj

Once found, the component can be inspected using methods/methodsview, get/set, inspect
and uiinspect, as described in Chapter 1 . It is usually best to use the returned Matlab han
dle() wrapper rather than the actual Java object for setting object properties (see a discussion in
Section 3 .4); however, inspecting the Java object is easier since handle() reports all arguments

† Findjobj is discussed in detail in Section 7 .2 .

K13163_Book.indb 354 11/8/2011 8:08:48 PM

© 2012 by Taylor & Francis Group, LLC

355Customizing MATLAB® Controls

and return values as “Matlab array”, and does not report the constructor methods, super-
class, nor static class fields:

jButton.uiinspect or: uiinspect(jButton)

jButton.java.uiinspect or: uiinspect(jButton.java) (See color insert.)

K13163_Book.indb 355 11/8/2011 8:08:49 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming356

Of course, the real purpose in finding the underlying Java reference handle is to access the
Java component’s properties, callbacks and methods, which offer much more extensive func-
tionality than those exposed by the corresponding Matlab control .

For example, the Java handle can be used to force display of the component tooltip:†

set(hButton,='TooltipString','This is a tooltip string...');
jButton = findjobj(hButton);
import java.awt.event.actionEvent;
action = jButton.getactionMap.get('postTip');
actionEvent = actionEvent(jButton,actionEvent.aCTION_PERFORMED,'postTip');
action.actionPerformed(actionEvent);

% Or, for an EDT-safe action invocation:
awtinvoke(action,'actionPerformed(Ljava.awt.event.actionEvent;)', ...
 actionEvent);

Note that the corresponding new way for EDt-safe invocation (see Section 3 .2) fails
(I believe that this is due to an internal Matlab bug):

>> javaMethodEDT('actionPerformed',action,actionEvent);
??? Error using ==> javaMethodEDT
Java exception occurred:
java.lang.IllegalaccessException: Class
com.mathworks.jmi.aWTUtilities$Invoker$3 can not access a member of
class javax.swing.ToolTipManager$actions with modifiers "public"

Several examples of customizing the Java components were presented in Section 3 .3 .1 . For
example, updating a component’s mouse-over cursor:

jButton = findjobj(hButton);

jButton.setCursor(java.awt.Cursor(java.awt.Cursor.HaND_CURSOR));

let us now look at all the standard Matlab controls, explore their underlying Java
component(s) and describe their added functionality benefits .

† http://UndocumentedMatlab .com/blog/spicing-up-matlab-uicontrol-tooltips/#comment-1173 (or http://bit .ly/5oFn8M) .
Unfortunately, this method does not work consistently — I could not determine why or under which exact circumstances
it fails . as an alternative, use Geoffrey akien’s tooltip utility (http://www .mathworks .com/matlabcentral/fileexchange/
26283 or http://bit .ly/6ZkYmJ) . See Section 6 .12 for additional information .

K13163_Book.indb 356 11/8/2011 8:08:49 PM

© 2012 by Taylor & Francis Group, LLC

http://bit.ly
www.mathworks.com
http://UndocumentedMatlab.com

357Customizing MATLAB® Controls

6.1 PushButton

uicontrol(‘Style’, ‘pushbutton’) is Matlab’s default and simplest uicontrol: a simple push-
button . It uses the com.mathworks.hg.peer.PushButtonPeer$1 class, that extends
Matlab’s com.mathworks.mwswing.MJButton class, which itself extends Swing’s javax.
swing.JButton class .1

Perhaps the simplest and most striking customization of pushbuttons (and most other uicon-
trols) is using Swing’s inherent HtMl and CSS support (see Section 3 .3 .3) . Here is an example
of an HtMl-formatted pushbutton:2

tooltip ='<html>HTML-aware
tooltips
<i>supported';
labelTop=' <HTML><center>Hello world';
labelBot =['<div style="font-family:impact;color:green"><i>What a</i>'...
 'nice day!'];
hButton = uicontrol('Style','pushbutton', 'tooltip',tooltip, ...
 'string',[labelTop '
' labelBot], 'position',pos);

(See color insert.)

JButton has many useful properties and methods, which are unavailable when using the
Matlab uicontrol handle, and are essentially common to all Java components:

border ◾ — this property, common to all Java Swing components, sets the border that
surrounds the component’s interior .3 Section 3 .3 .1 showed how to set different borders
and how they affect a button’s appearance . the related borderPainted property indi-
cates whether or not a component’s border is set .

buttons having different Border values

ContentareaFilled ◾ — this boolean property (default=true) indicates whether to fill
the component’s interior with component-specific graphics . On a button such as our

K13163_Book.indb 357 11/8/2011 8:08:50 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming358

jbutton, this determines a flat (2D) versus 3D appearance (note: the flat appearance
does not distinguish between depressed/undepressed states):†

ContentAreaFilled = true ContentAreaFilled = false

 this property can be used to display a linkable label in the GUI figure (there are
other ways to achieve this, but it seems to me this is one of the easiest) . For example,
this property is used to display the link in the FindJObj utility:

>> labelStr = '<html><center>Undocumented
Matlab.com';
>> hButton = uicontrol('string',labelStr,'pos',[20,20,100,35]);
>> jButton = findjobj(hButton)
jButton = javahandle_withcallbacks.com.mathworks.hg.peer.PushButtonPeer$1

>> callbackStr = 'web(''http://Undocumentedmatlab.com'');';
>> set(jButton,'actionPerformedCallback',callbackStr);
>> jButton.setCursor(java.awt.Cursor(java.awt.Cursor.HaND_CURSOR));
>> jButton.setContentareaFilled(false);

 the same visual effect can be achieved by simply clearing the border property:

>> jButton.setBorder([]);4

>> jButton.setBorderPainted(false); % an alternative

 Note that Java components have a lighter shade of gray background color than the
default Matlab figure . to set the Java component’s background color to the same
color as the figure’s, we can either set the figure’s Color property, or the Java compo-
nent’s background property . For example, setting the Java component’s background
property to the figure’s Color can be done using the following code segment:

>> c = mat2cell(get(gcf,'color'),1,[1,1,1]);
>> jButton.setBackground(java.awt.Color(c{:}));

† ContentareaFilled is actually the preferred way of setting transparent controls (instead of setting the Opaque property):
http://java .sun .com/javase/6/docs/api/javax/swing/abstractbutton .html#setContentareaFilled(boolean) (or http://bit .ly/
ce6Ebs) . However, this has no effect in Matlab figure windows, as explained in Section 7 .3 .3 .

K13163_Book.indb 358 11/8/2011 8:08:52 PM

© 2012 by Taylor & Francis Group, LLC

httpp://java.sun.com
http://bit.ly

359Customizing MATLAB® Controls

 Unfortunately, using the setBackground() method has a side effect of restoring the
default border, something that setContentAreaFilled() does not clear . For this rea-
son, it may be better to either use setBorder([]) rather than setContentAreaFilled-
(false), or to set the figure’s Color property rather than the Java component’s
background property:

>> color = jButton.getBackground.getRGBComponents([]); % R,G,B,alpha
>> set(gcf, 'color', color(1:3))

DebugGraphicsOptions ◾ — (default=0) sets debugging options useful for debugging
the graphic appearance .5

Cursor ◾ — (default=[]) sets the component-specific cursor, as described in Section
3 .3 .1 . Note that this property must be used with the accessor methods (getCursor()/
setCursor()) — get/set fail here, as described in Section 3 .3 .1 . If the property value is
set to [] (the default value), then the container’s cursor is used and this component will
display no special cursor upon hover .

Standard Cursor Nonstandard Cursor Custom Cursor

DisplayedMnemonicIndex ◾ (default=–1) indicates the character position within the
text label where the Mnemonic6 (i .e ., keyboard shortcut) should be displayed .
Mnemonics are similar to, but distinct from, keyboard accelerators: Mnemonics only
set the focus for a displayed item (e .g ., clicking <alt-F> to set the focus on the File
main menu); accelerators activate the action of the associated component, even if it is
hidden (e .g ., <Control-S> to save the current document) . Java components can have
both a mnemonic and an accelerator . associated property Mnemonic (default=0) indi-
cates the mnemonic’s aSCII code . also see related property autoMnemonicEnabled,
described below . In the following case, DisplayedMnemonicIndex=3 (remember that
Java indices start at 0) and Mnemonic=73 (=‘r’):†

 Note that HtMl-rendered buttons do not underline the mnemonic character — we
need to underline it ourselves: <html>Yai<u>r</u> . . .

† Sometimes the MnemonicIndex should not be the first occurrence of Mnemonic . For example, in the File menu, we wish
to highlight the second occurrence of Mnemonic ‘a’: ‘Save as’ rather than ‘Save as’; setting MnemonicIndex to 5
achieves this .

K13163_Book.indb 359 11/8/2011 8:08:52 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming360

DisabledIcon ◾ , DisabledSelectedIcon, Icon, PressedIcon, RolloverIcon,
RolloverSelectedIcon, SelectedIcon — these icons may be set to present a different
appearance depending on component state . Refer to Section 4 .6 .1 for an example . the
associated property IcontextGap (default=4) determines the gap in pixels between
the icon and the button text label .

 associated properties HorizontaltextPosition and VerticaltextPosition specify
the label text’s alignment relative to the label icon . these properties accept javax.
swing.SwingConstants integer values: HorizontaltextPosition accepts LEFT (=2),
CENTER (=0, default), RIGHT (=4), LEaDING (=10) or TRaILING (=11);†
VerticaltextPosition accepts TOP (=1), CENTER (=0, default), or BOTTOM (=3) . Users
should normally prefer to use javax.swing.SwingConstants rather than their
numeric values . the reason is that although unlikely, numeric values may change
between JVM versions, platforms and implementations . also, enumerated constants
are more readable and maintainable than numbers .

 For example, let us display an icon to the right and upward of the text:

myIcon = fullfile(matlabroot,'/toolbox/matlab/icons/warning.gif');
jButton.setIcon(javax.swing.ImageIcon(myIcon));
jButton.setHorizontalTextPosition(javax.swing.SwingConstants.LEFT);
jButton.setVerticalTextPosition(javax.swing.SwingConstants.BOTTOM);

HorizontaltextPosition = SwingConstants.LEFT CENTER CENTER

VerticaltextPosition = SwingConstants.BOTTOM BOTTOM CENTER

Horizontalalignment ◾ — default=0) sets the component’s label (text and icon) align-
ment relative to the component’s horizontal center . like HorizontaltextPosition
above, Horizontalalignment accepts the following values: javax.swing.

SwingConstants.RIGHT, LEFT, CENTER, LEaDING, TRaILING .

HorizontalAlignment =
SwingConstants.LEaDING

HorizontalAlignment =
SwingConstants.CENTER

(=default)

HorizontalAlignment =
SwingConstants.TRaILING

† For a latin locale, lEaDING and lEFt have the same effect, as do tRaIlING and RIGHt . this may be different for
ltR (Hebrew/arabic) or Far-Eastern locales .

K13163_Book.indb 360 11/8/2011 8:08:53 PM

© 2012 by Taylor & Francis Group, LLC

361Customizing MATLAB® Controls

 the Java Horizontalalignment property is particularly important since the Matlab
Horizontalalignment uicontrol property has no effect on non-text Windows controls
(i .e ., all controls except editboxes and text labels) .7

Verticalalignment ◾ — (default=0) similar to Horizontalalignment: this property sets
the component’s label alignment relative to the component’s vertical center . like
VerticaltextPosition above, Verticalalignment accepts any of the following integer
values: javax.swing.SwingConstants.TOP (=1), BOTTOM (=3), or CENTER (=0, default):

VerticalAlignment =
SwingConstants.TOP

VerticalAlignment =
SwingConstants.CENTER

(=default)

VerticalAlignment =
hSwingConstants.BOTTOM

 the Horizontalalignment and Verticalalignment properties can be combined . For
example,

HorizontalAlignment = LEFT and VerticalAlignment = TOP

Margin ◾ — (default = java.awt.Insets(2,-1,2,-1)) this property sets the margin
insets8 (top, left, bottom, right) between the button’s borders and the internal label .
Setting Margin to [] will revert to the default margin, a 2-pixel vertical and −1 pixel
horizontal insets:

jButton.setMargin(java.awt.Insets(8,8,8,8));

Default Margin 8-pixel Margin†
†

† For some unknown reason, only the vertical margin has any visible effect on pushbutton labels, at least on Windows XP .
I tend to believe that this is a JVM bug, rather than a Matlab one, but perhaps I am missing something here .

K13163_Book.indb 361 11/8/2011 8:08:53 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming362

FocusCycleRoot ◾ (default=false), FocusPainted (default=true), FocustraversalKeys
(default=[]), FocustraversalPolicy (default=[]), FocustraversalPolicyProvider
(default=false), FocustraversalPolicySet (default=false), Focusable (default=true),
ManagingFocus (default=false), NextFocusableComponent (default=[]),
RequestFocusEnabled (default=true) and VerifyInputWhenFocustarget
(default=true) all relate to the component’s focus cycle, that is, selecting (setting the
focus on) the component using the keyboard .9 Matlab documentation calls the focus
cycle “tab-order” but only allows selecting the focus cycle order, using the uistack
function — for all the extra functionality we need to use these Java properties (also see
Section 3 .3 .4, as well as the Focustraversable property below) .
MultiClickthreshhold ◾ — (default=0) sets the number of milliseconds between sub-
sequent processed user mouse clicks on the button . any clicks that occur within the
specified number (e .g ., fast double-clicks) will be considered by the component as only
a single click .10 the default value of 0 means that all clicks will be processed sepa-
rately; this is often undesirable in GUI applications . Note that the property value is in
milliseconds, not seconds .
there are quite a few other properties, but I personally find them less useful . However, ◾
by all means feel free to inspect them and test alternative values .

In addition to the property accessor (getter/setter/checker) methods, JPushButton has the
following useful method:

doClick() ◾ — programmatically simulate a button click . this has the same effect as an
interactive user button click, and the corresponding callback(s) is/are invoked . an optional
numeric input parameter to this method specifies the time in milliseconds in which the
button should remain visibly “pressed” before popping back to its normal state .

In addition to the standard Swing component callbacks (see Section 3 .4), JPushButton
defines several non-standard callbacks:

actionPerformedCallback ◾ — fired when the button is clicked .

CaretPositionChangedCallback ◾ — unused .

InputMethodtextChangedCallback ◾ — unused .

ItemStateChangedCallback ◾ — fired when the button state (depressed or not) has
changed . this can only be done programmatically, via the setSelected() method, or by
setting the Selected property on the Java handle, or by setting the Value property on
the Matlab handle .† It cannot be done interactively since interactive (mouse) click-
ing immediately bounces the button to its undepressed state .

† Note the potentially confusing difference in property names between the Matlab and Java objects: Matlab’s Value
(a boolean ‘on’/‘off’ property) is equivalent to the Java object’s Selected property (a boolean true/false, 0/1 property);
Matlab’s Selected property has no Java object equivalent — its boolean value controls highlighting of the uicontrol
with a unique black border .

K13163_Book.indb 362 11/8/2011 8:08:53 PM

© 2012 by Taylor & Francis Group, LLC

363Customizing MATLAB® Controls

StateChangedCallback ◾ — Similar to ItemStateChangedCallback, but also fired
when the mouse enters and leaves the button bounds thereby modifying the button
appearance with a special highlight border .

In addition to all the regular JPushButton properties, methods and callbacks, Matlab’s
PushButtonPeer$1 adds the following public properties:

autoMnemonicEnabled ◾ — boolean flag (default=false); if set, then setting the button
label (via setText()) with a string containing an ampersand (&) will automatically pro-
cess the string and use the & location as an indication of a requested mnemonic, saving
programmers the trouble of also setting the DisplayedMnemonicIndex and Mnemonic
properties . For example,

jButton.setautoMnemonicEnabled(true)
jButton.setText('&Yair')

AutoMnemonicEnabled = true
(responds to <Alt-Y> key-clicks)

AutoMnemonicEnabled=false
(=default)

FlyOverappearance ◾ — boolean flag (default=false); if set, the button appearance is
changed to a flat (2D) appearance with a special 3D border effect displayed on mouse
hover . this appearance is useful for toolbar buttons:

Undepressed

Depressed

 FlyOverAppearance = false FlyOverAppearance = true

Focustraversable ◾ — boolean flag (default=true); if set then the component partici-
pates in the figure’s focus-traversal round,† meaning that clicking <tab> or <Control-
tab>‡ will eventually come around to selecting the component (=setting the focus on
it) . If this flag is false, the component cannot be selected with <tab> — only with the
mouse (also see Section 3 .3 .4) .

† Matlab does not enable bypassing a component altogether, only setting its tab-order; we need the Java property to
achieve this .

‡ On Windows systems; the keyboard event is of course different for other platforms .

K13163_Book.indb 363 11/8/2011 8:08:54 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming364

and the following public methods:

hasFlyOverAppearance ◾ — returns a boolean flag indicating the FlyOverappearance
property value;
hideText ◾ — a convenience (equivalent) form for setText([]);

isAutoMnemonicEnabled ◾ — returns a boolean flag indicating the autoMnemonic
Enabled property value;
setAutoMnemonicEnabled(flag) ◾ — sets the autoMnemonicEnabled property;
setFlyOverAppearance ◾ (flag) — sets the FlyOverappearance property value;
setFocusTraversable(flag) ◾ — sets the Focustraversal property value;
setBackgroundPainter() ◾ — sets a painter object that is used to paint the button before
the standard paint() is called, effectively painting the button’s background, possibly
modifying the button appearance (I never tried this) . the method accepts com.math-
works.mwswing.Painter-compliant objects where Painter is an interface that
declares only the standard Swing paint() method .

 . . .while not surprisingly removing the JButton() constructors from public view .
like all other Matlab uicontrols, pushbuttons obey Java’s look-and-feel, as explained in

Section 3 .3 .2 . Here is how the pushbutton uicontrol appears with different l&Fs on R2011a
(JVM 1 .6) on the Windows XP platform:†

import javax.swing.UIManager
originalLnF = UIManager.getLookandFeel;

% Modify the platform Look-and-Feel
UIManager.setLookandFeel('javax.swing.plaf.metal.MetalLookandFeel');
 % or: com.sun.java.swing.plaf.motif.MotifLookandFeel
 % or: com.sun.java.swing.plaf.windows.WindowsLookandFeel
 % or: com.sun.java.swing.plaf.windows.WindowsClassicLookandFeel
 % or: com.jgoodies.looks.plastic.Plastic3DLookandFeel
hButton = uicontrol('Style','pushbutton', 'String','Yair');

% Restore the standard platform L&F
UIManager.setLookandFeel(originalLnF);

% Update the uicontrol to the newly updated L&F
jButton = findjobj(hButton);
jButton.updateUI;

Unselected

(underpressed)

Selected

(depressed)

 Windows l&F Win Classic Metal l&F Motif l&F Plastic l&F

† the appearance might be different on other platforms and versions .

K13163_Book.indb 364 11/8/2011 8:08:55 PM

© 2012 by Taylor & Francis Group, LLC

365Customizing MATLAB® Controls

Note that a bug existed in Matlab versions R14 (7 .0) through R2006a (7 .2) in which the
background color of buttons could not be set on Windows XP machines;11 to fix this problem on
those WinXP Matlab versions, do one of the following:

S ◾ et the Windows Scheme to ‘classic’;12

U ◾ pdate the l&F to some other temporary value before creating the button;
a ◾ dd the -Dswing.noxp = true option to the java.opts file (see Section 1 .9) .13

6.2 ToggleButton

uicontrol(‘Style’,‘togglebutton’) is similar to the pushbutton uicontrol described in the previous
section, except that it has a dual state (depressed and undepressed) . a togglebutton can remain
in a depressed (selected) state, unlike pushbuttons which automatically pop back up to the
undepressed state . the togglebutton uicontrol uses the com.mathworks.hg.peer.Toggle-
Button Peer$hgToggleButton class that extends Matlab’s com.mathworks.mwswing.
MJToggleButton class, which itself extends Swing’s javax.swing.JToggleButton class .14

JToggleButton and hgToggleButton have the same appearance, properties, and methods as
the pushbutton uicontrol . togglebuttons also expose the following public constructor method:

ToggleButtonPeer$hgToggleButton ◾ — Java object constructor method . accepts 0–3
optional arguments: text string, icon image, and depressed state flag .

On the other hand, togglebuttons do not expose the setBackgroundPainter method that the
regular pushbuttons expose .

Some nonstandard callbacks behave slightly differently than in pushbuttons:

actionPerformedCallback ◾ — fired when the button is clicked in either button state
(depressed and undepressed) .
ItemStateChangedCallback ◾ — fired when the button state (depressed or not) has
changed, either interactively (button click) or programmatically (via the setSelected()
method or by setting the Selected property) .

6.3 RadioButton

uicontrol(‘Style’,‘radiobutton’) is also similar to the pushbutton uicontrol described earlier . It
uses the com.mathworks.hg.peer.RadioButtonPeer$1 class that extends Matlab’s com.
mathworks.mwswing.MJRadioButton class, which itself extends Swing’s javax.swing.
JRadioButton class .15 JRadioButton actually extends JToggleButton, so it inherits all of
JToggleButton’s properties, methods, and callbacks .

Radiobuttons also support HtMl and CSS formatting, like most other uicontrols . Here is an
example of an HtMl-formatted radiobutton:

tooltip = '<html>HTML-aware
tooltips
<i>supported';
labelTop= ' <HTML><center>Hello world';
labelBot=['<div style="font-family:impact;color:green"><i>What a</i>'...

K13163_Book.indb 365 11/8/2011 8:08:55 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming366

 'nice day!'];
hButton = uicontrol('Style', 'radiobutton', 'tooltip',tooltip, ...
 'string', [labelTop ' < br > ' labelBot], 'position',pos);

(See color insert.)

JRadioButton and RadioButtonPeer$1 have similar useful properties and methods as the
pushbutton uicontrol, except the FlyOverappearance and Focustraversable features
 (properties and associated methods) . like the pushbutton and togglebutton uicontrols, radiobut-
ton also supports the autoMnemonic feature which the superclass JRadioButton does not .

JRadioButton is basically a simple button with a pre-defined radio icon . this means that
the circle Icon image can be changed to any other icon:

jButton = findjobj(hButton);
myIcon = fullfile(matlabroot,'/toolbox/matlab/icons/csh_icon.png');
jButton.setIcon(javax.swing.ImageIcon(myIcon));

If we change the default radio icon, we also need to specify the SelectedIcon property: Icon
will then display in the unselected state (empty radio circle by default), while SelectedIcon will
display in the selected state (filled radio circle by default) .

a corollary of the radio icon issue is that the HorizontaltextPosition and VerticaltextPosition
properties (and related getter/setter methods) are very relevant to radio buttons, controlling the
text position in relation to the adjacent radio icon . as explained in the pushbutton Section 6 .1,
HorizontaltextPosition accepts any of javax.swing.SwingConstants.RIGHT (=4), LEFT
(=2), CENTER (=0), LEaDING (=10) or TRaILING (=11, default), whereas VerticaltextPosition
accepts javax.swing.SwingConstants.TOP (=1), BOTTOM (=3), or CENTER (=0, default):†

HorizontaltextPosition = Swing

Constants.TRaILING (=default)‡
HorizontaltextPosition =
SwingConstants.CENTER

HorizontaltextPosition =
SwingConstants.LEaDING‡

† Users should only use one of the javax.swing.SwingConstants values . the numeric values may change
between JVM versions, platforms and implementations (although this is unlikely) . Using the constants is also much
more readable and maintainable than using the numeric values .

‡ Note that in radiobutton’s case for a latin locale, tRaIlING and lEFt have the same effect, as do lEaDING and
RIGHt . this is different than the case for pushbuttons and togglebuttons (where tRaIlING⇔RIGHt and
lEaDING⇔lEFt) . this may also be different for ltR (Hebrew/arabic) or Far-Eastern locales .

K13163_Book.indb 366 11/8/2011 8:08:56 PM

© 2012 by Taylor & Francis Group, LLC

367Customizing MATLAB® Controls

another icon-related property which is particularly useful for radiobuttons is IcontextGap
(default=4 pixels), which determines the gap in pixels between the icon and the text label .† Gap
values may be negative, in which case the text overlaps the icon . let us compare different gap sizes:

IcontextGap = 0 IcontextGap = 4 (=default) IcontextGap = 15

Here is how the radiobutton uicontrol appears with different l&Fs on R2007b (JVM 1 .6) on
the Windows XP platform, as explained in Sections 3 .3 .2 and 6 .1:

Unselected

Selected

Windows l&F Windows Classic l&F Metal l&F Motif & Plastic l&F

6.4 Checkbox

uicontrol(‘Style’,‘checkbox’) is very similar to the radiobutton uicontrol described earlier . It uses
the com.mathworks.hg.peer.CheckboxPeer$1 class that extends Matlab’s com.math-
works.mwswing.MJCheckBox class, which itself extends Swing’s javax.swing.JCheckBox
class .16 like JRadioButton, JCheckBox extends JToggleButton, so it inherits all its proper-
ties, methods and callbacks . the entire discussion about radio icons presented above therefore
also applies to checkboxes .

like most other uicontrols, checkboxes also support HtMl and CSS formatting:

tooltip = '<html>HTML-aware
tooltips
<i> supported';
labelTop= '<HTML><center>Hello world ';
labelBot=['<div style="font-family:impact;color:green"><i>What a</i> '...
 'nice day!'];
hButton = uicontrol('Style','checkbox', 'tooltip',tooltip, ...
 'string', [labelTop '
' labelBot], 'position',pos);

(See color insert.)

† IcontextGap was already introduced in Section 6 .1 above, and also exists for pushbutton and togglebutton .

K13163_Book.indb 367 11/8/2011 8:08:57 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming368

Here is how the checkbox uicontrol appears with different l&Fs on R2007b (JVM 1 .6) on
the Windows XP platform:

Unselected

Selected

Windows l&F Windows Classic l&F Metal l&F Motif & Plastic l&F

JCheckBox is selectable just like JRadioButton and JToggleButton, and can therefore
participate in a javax.swing.ButtonGroup17 for mutually exclusive behavior . this is the
standard manner of programming a list of mutually exclusive radio buttons, but a ButtonGroup
can contain a mixture of JRadioButton, JCheckBox, and JToggleButton . However, the
Matlab uibuttongroup allows only radio and toggle buttons, not checkboxes, to participate
in a group . this limitation is probably intended to prevent unintentional usability mistakes, in
which checkboxes (which are non-exclusive by well-known convention) behave exclusively .
this is a typical example of how Matlab attempts to simplify programming at the expense
of customizability . If we specifically wish to include checkboxes in a mutually exclusive but-
ton group (warning: this violates the well-known convention), then we therefore have the fol-
lowing options:

Use pure Java components (via ◾ javacomponent) and the Swing ButtonGroup .
Use ◾ Matlab checkbox uicontrols without uibuttongroup and programmatically
select/deselect the other checkboxes whenever some checkbox is selected (using the
Callback property) .
Use ◾ Matlab radiobutton uicontrols and uibuttongroup, then replace the radio icons
with checkbox icons via findjobj and the component’s setIcon() method .
Use ◾ Matlab radiobutton uicontrols and uibuttongroup, then update the radio uicon
trol’s style to ‘checkbox’ (!!!) . Note that the controls must first be created as radio
 buttons for the mutual exclusive behavior to work . also note that while this behavior is
undocumented and as such is subject to change in future Matlab versions without
prior notice, it does work as of Matlab 7 .13 (R2011b) .

a useful customization that can be done to checkboxes is to set a tri-state (mixed) mode .
this could indicate, for example, a yes/no/maybe situation, or empty/full/partial . luckily,
Matlab already uses this tri-state mode in its CheckBoxTree component, described at the
end of Section 5 .2 .2 . looking at the com.mathworks.mwswing.checkboxtree package, we
note the TriStateButtonUI class that is used by the CheckBoxTree component to set a mixed-
state checkbox appearance . the CheckBoxTreeCellRenderer class contains an updateClient-
Property(SelectionState) method that apparently tells TriStateButtonUI which checkbox

K13163_Book.indb 368 11/8/2011 8:08:57 PM

© 2012 by Taylor & Francis Group, LLC

369Customizing MATLAB® Controls

state to display . acting on hunch, I tried a few property names, until I hit on “selectionState”
Here is an end-to-end example:

import com.mathworks.mwswing.checkboxtree.*
jButton = findjobj(hButton);
jButton.setUI(TriStateButtonUI(jButton.getUI));
jButton.putClientProperty('selectionState', SelectionState.MIXED);
jButton.repaint;

tri-state checkbox (yes/no/maybe)

adventurous readers can use TriStateButtonUI and SelectionState also on radio-button
uicontrols . It works, but the visual appearance would probably not be understood by users .
therefore, I advise not to use it in practice .

Note that there is another alternative for tri-state checkboxes — using the com.mathworks.
mwt.MWCheckbox component, as explained in Section 5 .3 . Finally, we can also use JIDE’s
TristateCheckBox18 to achieve a similar result .

MWt’s MWCheckbox vs. MWSwing’s MJCheckBox

K13163_Book.indb 369 11/8/2011 8:08:58 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming370

We sometimes need to design option forms with right-aligned checkboxes, that is, with the
label to the left of the checkbox icon . this can easily be achieved by setting the checkbox’s
HorizontaltextPosition and Horizontalalignment properties:

jButton.setHorizontalTextPosition(jButton.java.LEFT);
jButton.setHorizontalalignment(jButton.java.TRaILING);

Right-aligned checkboxes

Right-aligned checkboxes appear to be useful for multi-option (form) dialog window .
However, if we need to also align different controls (e .g ., combo or edit boxes), it becomes more
difficult to correctly align the labels and the controls . In such a case, consider using FormPanel
(see Section 5 .5 .1) or the JGoodies Forms package, which is even more powerful and flexible
than FormPanel (see Section 5 .8 .2) .

6.5 Editbox

uicontrol(‘Style’,‘edit’) and the rest of the uicontrols are different from the uicontrols presented
so far, in that they are not buttons . Still, they share many similarities with the button uicontrols
described earlier . there are two distinct uicontrols called “editbox” in Matlab: a single-line
editbox and a multi-line editbox . Matlab automatically uses the single-line control if the
Max property is set to 1 (the default value, backward compatible with early Matlab ver-
sions) . If Max > 1, the multi-line editbox is used .

Editboxes do not share other control’s support for HtMl content . However, multi-line edit-
boxes have their own extensive internal HtMl support, described below .

beware of a possible pitfall using Matlab uicontrols: when switching styles, including
switching between the single-line and multi-line editbox versions, Matlab replaces the
underlying Java component with a new component that has default properties . therefore, if we
need any customizations to the uicontrol, then we should ensure that they are done after setting
the final uicontrol style, otherwise they will be forgotten .

Here is how the editbox uicontrol appears with different l&Fs on R2007b (JVM 1 .6) on the
Windows XP platform:†

† Plastic l&F looks like Motif for single-line editboxes and like Metal for multi-line editboxes .

K13163_Book.indb 370 11/8/2011 8:08:58 PM

© 2012 by Taylor & Francis Group, LLC

371Customizing MATLAB® Controls

Single-line:

Multi-line:

 Windows l&F Windows Classic l&F Metal l&F Motif l&F

Note that a bug existed in Matlab versions R14 (7 .0) through R2006a (7 .2) in which the
background color of single-line editboxes could not be set on Windows XP machines;19 to fix
this problem on those WinXP Matlab versions, we must do one of these:

Set the editbox’s ◾ Max property to 2, thereby modifying to a multi-line editbox with the
same dimensions . You may wish to hide the scrollpane’s scrollbars;†

Set the Windows Scheme to “classic”; ◾
Update the l&F to some other temporary value before creating the editbox; ◾
add the ◾ -Dswing.noxp=true option to the java.opts file (see Section 1 .9) .20

6.5.1 Single-line Editbox
the simple default single-line editbox uicontrol uses the com.mathworks.hg.peer.

EditTextPeer$hgTextField class that extends Matlab’s com.mathworks.mwswing.
MJTextField class, which itself extends Swing’s javax.swing.JTextField class .21

JTextField has many useful properties and methods missing from Matlab’s uicontrol
handle, in addition to the standard pushbutton ones presented in Section 6 .1:

border ◾ — this property was already described for pushbuttons but merits special men-
tion here, since the editbox border is such a pronounced feature of this component .22
a CSSM user recently requested23 to remove this border altogether . this can be done
by simply setting this property to []:

jEditbox.setBorder([]);24

Default border No border

 Now let us set a relatively complex border: a raised bevel border (giving the appear-
ance of a pushbutton) surrounded by a thick rounded red border:‡

import javax.swing.BorderFactory java.awt.Color
outer = javax.swing.border.LineBorder(Color.red,4,true);

† set(hEditbox,'Max',2); jScrollPane=findjobj(hEditbox); jScrollPane .setVerticalScrollbarPolicy(21); %21 = never .
‡ this border is only given as an example of setting complex multi-level border — I am not assuming for even a moment

that this specific border is useful in any practical GUI application .

K13163_Book.indb 371 11/8/2011 8:08:59 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming372

inner = BorderFactory.createRaisedBevelBorder();
border = BorderFactory.createCompoundBorder(outer,inner);
jEditbox.setBorder(border);

Complex multi-layered border

Editable ◾ — (default=true) a boolean flag indicating whether or not the editbox text can
be modified . Note that the Matlab HG handle (hEditbox) only allows setting the
Enable property (its jEditbox Java counterpart is called Enabled), but not to set an
enabled yet uneditable control — this can only be done using the Java Editable
property .
Caret ◾ — this property, common to all Java Swing data-entry components, sets a
javax.swing.text.DefaultCaret25 object that controls the text caret appearance
(relevant for editable editboxes only) .

 Specific Caret properties and callbacks include:
blinkRate ◾ (default=530 [milliseconds] on Windows XP) . Set to 0 to stop blinking
altogether .
Dot ◾ (default=end of text) — indicates the caret’s character position, with 0 indicat-
ing the position before the first character . Setting the Dot position automatically
moves the Mark position (see below), effectively cancelling any text selection . the
Dot position is also reflected in JTextField’s CaretPosition and SelectionEnd
properties .
Mark ◾ (default=Dot) — indicates the character position of the start of the selection
range . this property is read-only . to set the Mark position, use the moveDot()
method, which moves the Dot position while leaving the Mark position unchanged .
For example, if the text is “Matlab” then setDot(1) followed by moveDot(5) will
select the “atla” substring leaving the caret blinking at Dot position 5, following the
selection, between the “a” and the “b” characters:

setDot(1) followed by moveDot(5)

K13163_Book.indb 372 11/8/2011 8:08:59 PM

© 2012 by Taylor & Francis Group, LLC

373Customizing MATLAB® Controls

 by default, Matlab’s editbox uicontrol (EditTextPeer$hgTextField) sets the
Mark to 0 and the Dot to the end of the text, thereby selecting the entire text .
However, this only becomes visible when the editbox receives focus (programmati-
cally, or via keyboard or mouse) .

 associated read-only properties X and Y hold the Mark position in pixels;
CenterX and CenterY hold the selection’s midpoint position .

 Editboxes also support bidi (Rtl) text, via a javax.swing.text.Position.
Bias26 object attached to both Dot and Mark . Mixed bidi text can create odd- looking
selections (this is normal for non-latin languages), and is fully supported:†

Non-latin Rtl characters (note the odd selection behavior)

>> jEditbox.getCaret
ans =
Dot = (1, Forward) Mark = (4, Backward)

 the Mark position is also reflected in the JTextField’s SelectionStart property .
However, unlike Mark, the SelectionStart property is settable . It is usually easier
to set JTextField’s SelectionStart and SelectionEnd properties (possibly in a
single Matlab set command) than to get the Caret reference, set the Dot and
then use moveDot() . However, both methods are equivalent .
bounds ◾ — indicates the pixel bounds of the selection (if any) and the caret . If
Mark=Dot (i .e ., no selection), bounds will still indicate a minimal 10-pixel-wide
boundary . associated read-only properties MinX, MinY, MaxX and MaxY hold
the bounds edge points, which can also be obtained from the bounds object .
SelectionVisible ◾ — (default=true) a boolean flag which enables hiding the
 selection — this property is reverted to true each time the editbox gains focus . to
overcome this, do not clear this property directly but only in the editbox’s
FocusGainedCallback:

cbStr = 'set(get(gcbo,''Caret''),''SelectionVisible'',''off'')';
set(jEditbox,'FocusGainedCallback',cbStr);

Visible ◾ — (default=true) a boolean flag which enables hiding the blinking caret .
like the SelectionVisible property, this property constantly reverts to true, so it
needs to be cleared in the editbox’s FocusGainedCallback .

† Matlab has many serious bugs in bidi support, including a serious bug that hangs the Matlab desktop when Rtl
text is entered in the Command Window . However, the basic editbox control usually behaves nicely with Rtl text . On
some past Matlab releases, non-latin characters were lost if the uicontrol style was modified or the editobox was
converted into multi-line (Max > 1) . However, this is fixed as of R2011a .

K13163_Book.indb 373 11/8/2011 8:08:59 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming374

UpdatePolicy ◾ — indicates whether the caret position should change automatically
when the text is modified (=default, caret.UPDaTE_WHEN_ON_EDT=0), or should
remain in place regardless of text changes (=caret.NEVER_UPDaTE=1) .†

StateChangedCallback ◾ — this callback is fired whenever the caret (Dot) position
changes, either programmatically or interactively . the callback’s EventData will
contain information of the new Dot position .

as noted above, the associated ◾ JTextField properties SelectionStart, SelectionEnd
and CaretPosition mimic the Caret’s Dot and Mark properties . the moveCaretPosi-
tion() method behaves just like the caret’s moveDot() method . another alternative is to
use the select(selectionStart,selectionEnd) method to select the requested text range .
Selectedtext ◾ is a read-only property holding the text currently selected, between the
Mark and Dot (or SelectionStart and SelectionEnd) positions . associated property
text holds the entire text within the editbox . Note that both these properties hold a
java.lang.String object, which should be cast to a Matlab string via Matlab’s
built-in char function .
SelectionColor ◾ and SelectedtextColor ought to change the foreground and back-
ground colors of the selected text . these properties too are overridden whenever
the editbox gains focus, and so need to be overridden in the editbox’s FocusGained
Callback:

 cbStr = ['set(gcbo,''SelectionColor'',java.awt.Color.red,' ...
 '''SelectedTextColor'',java.awt.Color.blue)'];

set(jEditbox, 'FocusGainedCallback', cbStr);

Non-standard selection colors and FocusGainedCallback

CaretColor ◾ property controls caret color . Remember that Java colors are set differ-
ently from Matlab colors . Unlike SelectionColor and SelectedtextColor, this
CaretColor property is not automatically overridden and can therefore be set outside
the FocusGainedCallback . For example, to set a red caret:

jEditbox.setCaretColor(java.awt.Color(1.0,0,0));
jEditbox.setCaretColor(java.awt.Color.red); % an alternative

DisabledtextColor ◾ controls the text color (default=gray) when the editbox is disabled .
this property can also be set outside the FocusGainedCallback .

† there is also an aLWaYS_UPDatE option — read the DefaultCaret documentation (http://java .sun .com/javase/6/
docs/api/javax/swing/text/DefaultCaret .html or http://tinyurl .com/cdg5ta) for more information .

K13163_Book.indb 374 11/8/2011 8:09:00 PM

© 2012 by Taylor & Francis Group, LLC

httpp://java.sun.com

375Customizing MATLAB® Controls

ScrollOffset ◾ — sets the positive pixel offset (default=0=leftmost character) of the left-
most character to display in the visible editbox rectangle . the leftmost character cho-
sen is always rounded to the nearest character pixel edge . If the remaining length to the
end of the text is shorter than the editbox width, then the actual ScrollOffset used will
be smaller than the required value .

 Note that the Caret position is NOt modified, and might become hidden to the right
or left of the displayed text . For example, for the text “Yair 01234567890 abcdef” with
Caret position set to 4 in a 60-pixel-wide editbox:

ScrollOffset t 0 ScrollOffset = 30 ScrollOffset = 60 ScrollOffset = 90

HorizontalVisibility ◾ — this read-only property provides a javax.swing.

BoundedRangeModel27 object that specifies the content text’s visible and total width in
pixels . Note that the object’s Extent property is smaller than the editbox’s Width, to
account for the editbox’s border and internal Margins; the object’s Value property is
the same as the editbox’s ScrollOffset:

Document ◾ — holds a javax.swing.text.PlainDocument28 object that contains the
editbox content document metadata . the Document object is a pivotal element of the
editbox component .29 Interesting things possible with this object include setting call-
backs upon text insert, update or removal (delete); inserting text at a specific position;
replacing or removing (deleting) text; retrieving a specific paragraph (relevant for
multi-line editboxes) or text sub-range;30 adding undo/redo support to the editbox31 and
installing a DocumentFilter32 to process the text .33 Users could theoretically set the
editbox’s Document property to a StyledDocument34 object (e .g ., javax.swing.
text.html.HTMLDocument35), but I have not tried this myself . as an alternative, con-
sider using a SyntaxTextPane component (see Section 5 .5 .1) .
DragEnabled ◾ — (default=false) a boolean flag indicating whether the editbox contents
can be mouse-dragged externally as a DND source (for example, onto an editor,

K13163_Book.indb 375 11/8/2011 8:09:00 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming376

 command line or any DND target) . the DropMode,† Droplocation, Droptarget and
transferHandler properties enable the editbox act as a DND target, accepting exter-
nally dragged data as input sources . Refer to Section 3 .7 for details .
Focusaccelerator ◾ — (default=char(0)) sets the keyboard accelerator sequence that
will cause the receiving text component to get the focus . the accelerator will be the
key combination of the <alt> key and the specified character, converted to upper-case .
any previous key accelerator setting, including menu-bar accelerators, will be super-
seded . a char(0) key has the effect of turning off the focus accelerator . by default,
there is no focus accelerator key (i .e ., an accelerator of \0=char(0)) . For example, let us
set the accelerator to <alt>-E, overriding the menu-bar’s default accelerator for the
Edit menu:

>> jEditbox.setFocusaccelerator('e');
>> jEditbox.getFocusaccelerator % let us check...
ans =
E <= 'e' converted to 'E', meaning an <alt>-E accelerator

Special methods not discussed above, which may be useful for Matlab programmers (all
of these are standard JTextField methods, not Matlab extensions) are the following:

cut(), copy() & paste() ◾ — do the corresponding clipboard action .
enableInputMethods(flag) ◾ — enable inputting non-standard multi-stroke international
unicode characters . Input methods are an important aspect of Java i18n (international-
ization) and well beyond the scope of this book .36

replaceSelection(string) ◾ — replaces the selected text with the specified string . If no
sub-text is currently selected, this method has the effect of inserting the specified string
at the caret position .
selectAll() ◾ — selects the entire editbox text, equivalent to select(0,intmax)
getScrollableBlockIncrement, getScrollableUnitIncrement ◾ — returns the integer
scrollbar increments that correspond to scrollbar block or single-unit movement in any
direction . this roughly corresponds to the HG handle’s SliderStep property, although
SliderStep holds double values equivalent to the block/Unit increments divided by
the (Max–Min) value .
viewToModel(point) ◾ — returns the character position of the specified pixel position .
this is useful in mouse callbacks, in which the mouse position is known from the call-
back’s EventData and we wish to get the corresponding text position . the reverse
transformation is done via modelToView(position) .

† For backward compatibility, the default DropMode value is DropMode.USE_SELECTION . Usage of DropMode.
INSERT is recommended to get the expected user experience of inserting DND drops at the Caret position .

K13163_Book.indb 376 11/8/2011 8:09:00 PM

© 2012 by Taylor & Francis Group, LLC

377Customizing MATLAB® Controls

Non-standard callbacks include:

actionPerformedCallback ◾ — fired when <Enter> is clicked in the editbox .
CaretUpdateCallback ◾ — fired when the caret position has changed .
CaretPositionChangedCallback ◾ — relevant for Input Methods only .
InputMethodtextChangedCallback ◾ — relevant for Input Methods only .

EditTextPeer$hgTextField exposes two extra properties not available in JTextField:

setSelectAllOnFocus(flag) ◾ — (settable-only; default=true) selects entire text and sets
the caret at its end whenever the control gains focus, regardless of prior selection .37 this
may seem like a regular setter method for a SelectallOnFocus property, but we must
be careful to always use this method and never use the alternative set(jEditbox,
‘selectAllOnFocus’,flag) because it crashes Matlab,† whereas using setSelect
AllOnFocus (flag) is entirely safe .
tipWhentruncatedEnabled ◾ — (default=false) overrides the tooltip processing to
automatically display the full editbox content text whenever the box is too short to
visually present the entire text . When the box is larger than the visual appearance of
the text, the tooltip is deleted . Setting this property to true overrides any previous tool-
tip that might have been set for the editbox . this property has two accessor methods:
isTipWhenTruncatedEnabled() and setTipWhenTruncatedEnabled(flag) .

6.5.2 Multi-line Editbox
Multiline editboxes, created when the Max property is set or updated to a higher value than 1,
use the EditTextPeer$hgTextEditMultiline class, which extends com.mathworks.hg.
peer.utils.MJMultilineText, com.mathworks.mwswing.MJTextPane and javax.swing.
JTextPane38 (a JEditorPane-derived class) . So, this simple-looking textbox is actually a very
powerful HtMl-aware editor component, although it is pre-configured as non-HtMl-aware
by default (see below) .39

Multi-line editboxes are a compound component, composed of a container (a com.math-
works.hg.peer.utils.UIScrollPane object) which includes three children, as expected
from any ScrollPane:40 a javax.swing.JViewport41 that contains the Edit TextPeer$hg-
TextEditMultiline component, and horizontal/vertical scrollbars .‡

the scrollbars are simple javax.swing.JScrollPane.ScrollBar instances of javax.
swing.JScrollBar that shall be described shortly (Section 6 .7, Slider uicontrol) .

† at least on Matlab 7 .5 (R2007b) through 7 .13 (R2011b) running JVM 1 .6 on a Windows XP PC . I suspect this may be
due to a missing isSelectAllOnFocus() method in Matlab’s implementation .

‡ com.mathworks.hg.peer.utils.UIScrollPane$1 and $2, which directly extend javax.swing.
JScrollPane.ScrollBar: http://java .sun .com/javase/6/docs/api/javax/swing/JScrollPane .Scrollbar .html (or http://
tinyurl .com/dzxtmr) .

K13163_Book.indb 377 11/8/2011 8:09:00 PM

© 2012 by Taylor & Francis Group, LLC

httpp://java.sun.com

Undocumented Secrets of MATLAB®-Java Programming378

Since most of the multi-line editbox customizations would naturally be needed for the edit-
ing component, we need to dig within the scrollpane container to get its reference:

>> jScrollPane = findjobj(hEditbox);

>> jScrollPane.list
com.mathworks.hg.peer.utils.UIScrollPane[...]
 javax.swing.JViewport[...]
 com.mathworks.hg.peer.EditTextPeer$hgTextEditMultiline[...]
 com.mathworks.hg.peer.utils.UIScrollPane$1[...]
 com.sun.java.swing.plaf.windows.WindowsScrollBarUI$WindowsarrowButton[...]
 com.sun.java.swing.plaf.windows.WindowsScrollBarUI$WindowsarrowButton[...]
 com.mathworks.hg.peer.utils.UIScrollPane$2[...]
 com.sun.java.swing.plaf.windows.WindowsScrollBarUI$WindowsarrowButton[...]
 com.sun.java.swing.plaf.windows.WindowsScrollBarUI$WindowsarrowButton[...]

>> jViewport = jScrollPane.getViewport;†

>> jEditbox = jViewport.getView;

before diving into the editbox component’s customization, let us investigate some of the
interesting ones available in its container jScrollPane:42

HorizontalScrollbarPolicy ◾ — controls the appearance of the horizontal (bottom)
scrollbar . as explained for uitable (Section 4 .1 .3) and uitree (Section 4 .2 .1) above, the
possible values for this property are jScrollPane. HORIZONTaL_SCROLLBaR_aS_
NEEDED (=30), HORIZONTaL_SCROLLBaR_NEVER (=31, default‡) and HORIZONTaL_
SCROLLBaR_aLWaYS (=32) .

 Note that if our handle is a Matlab handle wrapper (as returned from the findjobj
utility), rather than a naked Java reference, then the policies need to be accessed via the
java builtin function, as explained in Section 3 .4:

>> scrollPolicy = jScrollPane.HORIZONTaL_SCROLLBaR_NEVER
??? No appropriate method, property, or field
HORIZONTaL_SCROLLBaR_NEVER for class
javahandle_withcallbacks.javax.swing.JScrollPane.

>> scrollPolicy=jScrollPane.java.HORIZONTaL_SCROLLBaR_NEVER
scrollPolicy =
 31

 also note that setting a non-default HorizontalScrollbarPolicy requires using the
setWrapping(false) method . See the discussion of setWrapping() below for more details
and a usage example .

† Using jScrollPane .getViewport() is preferable to getComponent(0) in this case, since the sub-somponents order in the
ScrollPane might be different on some JVM implementations . For the same reason we use jViewport .getView() rather
than getComponent(0) to get the editbox object within the Viewport .

‡ the default HorizontalScrollbarPolicy on non-Windows platforms may be different .

K13163_Book.indb 378 11/8/2011 8:09:00 PM

© 2012 by Taylor & Francis Group, LLC

379Customizing MATLAB® Controls

 Finally, note that updating the HG handle (hEditbox) Position property (either pro-
grammatically or by resizing its container) has a side-effect of automatically reverting
the scrollbar policies to their default values (HORIZONTaL_SCROLLBaR_NEVER and
VERTICaL_SCROLLBaR_aLWaYS/NEVER) . It is therefore advisable to set jScrollPane’s
ComponentResizedCallback to “unrevert” the policies:

hjScrollPane = handle(jScrollPane,'CallbackProperties');
scrollPolicy = hjScrollPane.java.HORIZONTaL_SCROLLBaR_aS_NEEDED;
callback = @(h,e)set(h,'HorizontalScrollBarPolicy',scrollPolicy);
set(hjScrollPane,'ComponentResizedCallback',callback);

VerticalScrollbarPolicy ◾ — similarly to HorizontalScrollbarPolicy, controls the
appearance of the vertical (right) scrollbar . accepted values are: VERTICaL_

SCROLLBaR_aS_NEEDED (=20), VERTICaL_SCROLLBaR_NEVER (=21) and
VERTICaL_SCROLLBaR_aLWaYS (=22) . the default VerticalScrollbarPolicy is
VERTICaL_SCROLLBaR_aLWaYS for editboxes taller than 19 pixels† and VERTICaL_
SCROLLBaR_NEVER otherwise . this default setting causes the vertical scrollbar to
appear even when unneeded (i .e ., when the entire editbox content is visible) . It is
therefore useful to set both scrollbars to *_aS_NEEDED:

 VERTICaL_SCROLLBaR_aLWaYS (default)

VERTICaL_SCROLLBaR_aS_NEEDED

 In some cases, users may wish to specifically set a VERTICaL_SCROLLBaR_NEVER
policy . For example, after converting a single-line editbox to a multi-line one (by set-
ting its Max property) to solve the editbox background problem on WinXP for
Matlab versions 7 .0-7 .2 (see discussion at the top of Section 6 .5) .

 as above, note that updating hEditbox’s Position automatically reverts
VerticalScrollbarPolicy to its default value of VERTICaL_SCROLLBaR_aLWaYS/NEVER .
WheelScrollingEnabled ◾ — (default=true) is a boolean flag controlling whether the
mouse wheel should enable vertical scrolling within the editbox .
background ◾ and Foreground — these have no effect since the opaque viewport,
scrollbars and hgTextEditMultiline objects occlude the scrollpane . Set these prop-
erties individually for the requested sub-components .

† Recall that the default uicontrol height is 20 pixels, thereby making VERtICal_SCROllbaR_alWaYS the default
policy .

K13163_Book.indb 379 11/8/2011 8:09:02 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming380

Enabled ◾ — (default=true) indicates whether the entire scroll-pane component is
enabled . to disable editing yet enable scrolling, use the hgTextEditMultiline’s
Editable property instead .
tooltiptext ◾ — this string property can be set for the entire scroll-pane, or individu-
ally for the scrollbars and hgTextEditMultiline sub-components .
adjustmentValueChangedCallback ◾ — this callback is fired continuously whenever
the scrollbar value is modified, via resizing, dragging, or clicking .
anchorToBottom() ◾ — this useful method, added by Matlab’s MJScrollPane’s
extension of the standard Swing JScrollPane, ensures that whenever the caret posi-
tion is at the editbox bottom, then if the editbox is resized (for example, by resizing its
figure window or updating its Position property) or its contents are updated, then the
visible viewport will update to show the bottom portion . this is useful for logger-type
editboxes, where data is constantly updated at the bottom of the box and the scroll-
pane needs to keep showing the last item .
getViewport(), getVerticalScrollBar(), getHorizontalScrollBar() ◾ — convenience meth-
ods for retrieving the scroll-panes sub-components .

Multiline editboxes share many of the properties, methods and callbacks as single-line edit-
boxes . Readers who wish to customize multi-line editboxes are therefore encouraged to read
previous sections (Section 6 .1 for pushbuttons; Section 6 .5 .1 for single-line editboxes) .

Some of these shared customizations may be even more useful on multi-line than on single-
line editboxes . For example, several CSSM readers have requested to use a multi-line editbox
to present an activity log which would be constantly updated . However, when setting the uicon
trol’s String property with the modified log data, the caret position always reverts to the start-
ing position (top line), rather than the end (bottom line, with the most recent log data) . In order
to fix this, use one of the following:43

jEditbox.setCaretPosition(jEditbox.getDocument.getLength);
jEditbox.setCaretPosition(intmax); % alternative

Caret at top row (default) Caret at bottom (via Java)

a related functionality of the containing MJScrollPane enables automatic scrolling to the
bottom of the scroll-box whenever the editbox contents change . this is done using the anchor-
ToBottom() method described above .

the default Matlab implementation of the editbox uicontrol simply enables a multi-line
vertical-scrollable text area using the system font . However, the underlying JTextPane object
enables many important customizations, including the ability to specify different font attributes
(size/color/bold/italic, etc .) and paragraph attributes (alignment, etc .) for text segments (called

K13163_Book.indb 380 11/8/2011 8:09:02 PM

© 2012 by Taylor & Francis Group, LLC

381Customizing MATLAB® Controls

style runs) and the ability to embed images, HtMl† and other controls . there are several alter-
native methods of doing this . From easiest to hardest these involve:

setFont(), setForeground() ◾ and other similar methods (or HG handle properties) affect
the entire content pane, not individual style runs .
Use the ◾ setPage(url) method to load a text page from the specified URl (any pre-
existing editbox content will be erased) . the page contents may be plain text, HtMl‡
or RtF . the content type will automatically be determined and the relevant
StyledEditorKit44 and StyledDocument45 will be chosen for that content . additional
StyledEditorKit content parsers can be registered to handle additional content
types .46 Here is an example loading an HtMl page:

>> jEditbox.setPage('http://tinyurl.com/c27zpt');

 where the URl’s contents are:47

<html><body >

This is an uneditable <code>JEditorPane</code>, which was
initialized with HTML text from a URL.
<p>an editor pane uses specialized editor kits to read, write,
display, and edit text of different formats. The Swing text
package includes editor kits for plain text, HTML, and RTF. You
can also develop custom editor kits for other formats. <script
language="JavaScript" src="/js/omi/jsc/s_code_remote.js">
</script> </body></html>

MAtlAb’s editbox uicontrol displaying a webpage (note
how <script> tags are not supported)

† Note that some non-simple HtMl/CSS features are not supported by this Swing component . If we need to display them,
then we can use a browser control as explained in Section 8 .3 .2 .

‡ JVM 1 .6 supports HtMl 3 .2 and partially CSS, but not JavaScript . Future JVM versions will support HtMl 4 & CSS 2 .

K13163_Book.indb 381 11/8/2011 8:09:03 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming382

Set a specific ◾ StyledEditorKit (via setEditorKit) or Contenttype properties, then
use setText() to set the text, which should be of the appropriate content type . Note that
setting EditorKit or Contenttype clears any existing text and left-aligns the contents
(hgTextEditMultiline is center aligned by default) . also note that HtMl <div>s
get their own separate lines and that <html> and <body> opening and closing tags are
accepted but unnecessary . For example,

>> jEditbox.setEditorKit(javax.swing.text.html.HTMLEditorKit);
>> % alternative: jEditbox.setContentType('text/html');
>> jEditbox.setText('<div style="font-
family:impact;color:green">Matlab</div> GUI is <i>highly</i> customizable')

(See color insert.)

let us show another usage example, of an event log file, spiced with icons and colored text
based on event severity . First, define the logging utility function:

function logMessage(jEditbox,text,severity)

 % Ensure we have an HTML-ready editbox
 HTMLclassname = 'javax.swing.text.html.HTMLEditorKit';
 if ~isa(jEditbox.getEditorKit,HTMLclassname)

 jEditbox.setContentType('text/html');

 end

 % Parse the severity and prepare the HTML message segment

 if nargin < 3, severity = 'info'; end

 switch lower(severity(1))

 case 'i', icon = 'greenarrowicon.gif'; color = 'gray';

 case 'w', icon = 'demoicon.gif'; color = 'black';

 otherwise, icon = 'warning.gif'; color = 'red';

 end

 icon = fullfile(matlabroot,'toolbox/matlab/icons',icon);

 iconTxt =[''];

 msgTxt = [' ',text,''];

 newText = [iconTxt,msgTxt];

 endPosition = jEditbox.getDocument.getLength;

 if endPosition > 0, newText = ['
' newText]; end

 % Place the HTML message segment at the bottom of the editbox

 currentHTML = char(jEditbox.getText);

 jEditbox.setText(strrep(currentHTML,'</body> ',newText));

 endPosition = jEditbox.getDocument.getLength;

 jEditbox.setCaretPosition(endPosition); % end of content

end % logMessage

K13163_Book.indb 382 11/8/2011 8:09:03 PM

© 2012 by Taylor & Francis Group, LLC

383Customizing MATLAB® Controls

Now, let us use this logging utility function to log some messages:

logMessage(jEditbox, 'a regular info message...');
logMessage(jEditbox, 'a warning message...', 'warn');
logMessage(jEditbox, 'an error message!!!', 'error');
logMessage(jEditbox, 'a regular message again...', 'info');

(See color insert.)

HtMl editboxes are normally editable, images included . In actual applications, we may
wish to prevent editing the display log . to do this, simply call jEditbox .setEditable(false) .

Setting a hyperlink handler is easy: first we need to ensure that we are using an HtMl
content-type document . Next, set the editbox to be uneditable (hyperlinks display correctly
when the editbox is editable, but are unclickable), using jEditbox .setEditable(false) . Finally, set
the callback function in the editbox’s HyperlinkUpdateCallback property . as per Section 3 .4,
we set the callback on the editbox’s handle, not the base reference:

jEditbox.setContentType('text/html');
jEditbox.setText('link: <a href="http://UndocumentedMatlab.
com"> UndocumentedMatlab.com');
jEditbox.setEditable(false); % hyperlinks require non-editable
hjEditbox = handle(jEditbox,'callbackproperties');
set(hjEditbox,'HyperlinkUpdateCallback',@linkCallbackFcn);

function linkCallbackFcn(src,eventData)
 url = eventData.getURL; % java.net.URL object
 description = eventData.getDescription; % URL string
 jEditbox = eventData.getSource;
 switch char(eventData.getEventType)
 case char(eventData.getEventType.ENTERED)
 disp('link hover enter');
 case char(eventData.getEventType.EXITED)
 disp('link hover exit');
 case char(eventData.getEventType.aCTIVaTED)
 jEditbox.setPage(url);
 end
end % linkCallbackFcn†

(See color insert.)

† additional methods of displaying hyperlinks are discussed in Sections 3 .3 .1, 5 .5 .1, 6 .9, 8 .3 .1, and 8 .3 .2 .

K13163_Book.indb 383 11/8/2011 8:09:03 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming384

Setting the styles programmatically, one style run after another . this can be done via ◾
the text-pane’s Document object (introduced in the single-line editbox section above) .
Individual character ranges can be set using the Document’s setCharacterAttributes-
(startPos,endPos,attributeSet,replaceFlag) method,48 or entire style runs can be
inserted via insertString(startPos,text,attributeSet) .49 attributes are updated using the
static methods available in javax.swing.text.StyleConstants .50 these methods
include setting character attributes (font/size/bold/italic/strike-through/underline/
superscript/subscript and foreground/background colors), paragraph attributes (inden-
tation/spacing/tab-stops/bidi), image icons and any Swing Component (buttons, etc .) .
 For example, let us adapt Sun’s official JTextPane example51 to Matlab:

initString = {'This is an editable ',... %regular
 'JTextPane', ... %italic
 ' - a styled ', ... %bold
 'colored ', ... %color
 'text ', ... %small
 'component, ', ... %large
 ['which supports embedded components',10], ...
 [' ',10], ... %button
 ['...and embedded images...',10], ... %regular
 ' ', ... %icon
 [10,'JTextPane is a subclass of JEditorPane', ...
 ' that uses a StyledEditorKit and ' ...
 'StyledDocument, and provides cover ' ...
 'methods for interacting with those objects.']};
initStyles = {'regular','italic','bold','color','small',...
 'large','regular','button','regular','image','regular'};

import javax.swing.text.* % StyleContext, StyleConstants

defaultContext = StyleContext.getDefaultStyleContext();
defaultattrs = defaultContext.getStyle(StyleContext.DEFaULT_STYLE);
doc = jEditbox.getStyledDocument();
regular = doc.addStyle('regular', defaultattrs);

style = doc.addStyle('italic', regular);
StyleConstants.setItalic(style, true);

style = doc.addStyle('bold', regular);
StyleConstants.setBold(style, true);

style = doc.addStyle('color', regular);
StyleConstants.setForeground(style, java.awt.Color.red);
StyleConstants.setBackground(style, java.awt.Color.cyan);

style = doc.addStyle('small', regular);
StyleConstants.setFontSize(style, 10);

style = doc.addStyle('large', regular);
StyleConstants.setFontSize(style, 16);

K13163_Book.indb 384 11/8/2011 8:09:03 PM

© 2012 by Taylor & Francis Group, LLC

385Customizing MATLAB® Controls

style = doc.addStyle('image', regular);
StyleConstants.setalignment(style,StyleConstants.aLIGN_CENTER);

pigUrl = 'http://tinyurl.com/calqqu';52

pigImage = javax.swing.ImageIcon(java.net.URL(pigUrl));
StyleConstants.setIcon(style,pigImage);

style = doc.addStyle('button', regular);
StyleConstants.setalignment(style,StyleConstants.aLIGN_CENTER);

icon = fullfile(matlabroot,'/toolbox/matlab/icons/matlabicon.gif');
jButton = javax.swing.JButton(javax.swing.ImageIcon(icon));
hjButton = handle(jButton,'callbackproperties');
set(hjButton,'actionPerformedCallback','beep')
StyleConstants.setComponent(style, jButton);

for styleRunIdx = 1 : length(initString)
 doc.insertString(doc.getLength(),initString{styleRunIdx},...
 doc.getStyle(initStyles{styleRunIdx}));
end

Programmatically setting separate Document style runs (See color insert.)

Note that if a styled multi-line editbox is converted to a single-line editbox (by setting hEdit-
box’s Max property to 1), then it loses all style information, embedded images and components .
Returning to multi-line mode will therefore show only the plain-text .

Multi-line properties which do not exist in single-line editboxes include:

Characterattributes ◾ — determines the style attributes of a specified character range .
Read the reference53 for details .
Container ◾ — a reference to the editbox’s grandparent scrollpane .
Contenttype ◾ — the automatically inferred content-type of the text . Determines the
parsing EditorKit and the type of Document . ‘text/plain’, ‘text/html’, and ‘text/rtf’
are supported by default .

K13163_Book.indb 385 11/8/2011 8:09:03 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming386

EditorKit ◾ — the editor parsing the text (see above) .
Inputattributes ◾ — the default attribute set for the entire edit-pane .
logicalStyle ◾ — the default style object for the paragraph at the current caret position .
any paragraph element without an explicit style will use this style .
Page ◾ — enables setting the editbox’s contents from a specified URl .
Paragraphattributes ◾ — determines the style attributes of a specified paragraph
 element . Read the reference54 for details .
StyledDocument ◾ — holds a version of the Document with style information .
ScrollabletracksViewportWidth, ScrollabletracksViewportHeight ◾ — (default=true)
read-only flags that indicate the scrollability of the editbox’s content-pane in the corre-
sponding direction .55 these properties also exist in single-line editboxes (with a default
value of false), but are more useful in multi-line editboxes . ScrollabletracksViewport
Width is related to the setWrapping method described below .
HyperlinkUpdateCallback ◾ — see a description of hyperlink support above .

Single-line editbox properties/methods/callbacks unavailable in Multi-line editboxes:

Columns ◾ — this property enables setting the JTextField’s PreferredWidth based
on the specified number of columns, roughly equivalent to the number of “m”-width
characters fitting in the visible editbox rectangle . Since editbox uicontrols are effec-
tively controlled by their container and the HG handle’s position array, the Columns
property is of no effective use in Matlab .†

Horizontalalignment ◾ — while this property does not exist per-se, Matlab’s imple-
mentation (hgTextEditMultiline) added the setHorizontalAlignment() method that
enables setting the horizontal text alignment: 0=left, 1=center (default), 2=right .‡ this
can also be set directly via the HG handle:

set(hEditbox,'Horizontalalignment','right');

SelectallOnFocus ◾ — when a multiline editbox gains focus, the previous selection and
caret position are maintained, unlike the default behavior of single-line editboxes .
ScrollOffset ◾ — use the viewport’s properties to set the displayed text range .
tipWhentruncatedEnabled ◾ — because of the viewport scrollbars, there is no need
for this feature in a multi-line editbox .
actionPerformedCallback ◾ — clicking <Enter> in a multi-line editbox simply moves
the caret to the next editbox row, beneath the current row . therefore, this callback is
not necessary in a multi-line editbox .

† Users who need to specify the uicontrol’s width in term of characters, can set the HG handle’s Units property to “charac-
ters” before setting the handle’s Position property .

‡ Note that these values are different than the SwingContants accepted by the single-line editbox . be careful NOt to

use hgTextEditMultiline’s static constant fields lEFt_alIGNMENt (=0), CENtER_alIGNMENt (=0 .5)
and RIGHt_alIGNMENt (=1) since these values are half of the actual values accepted by the setHorizontalAlignment
method .

K13163_Book.indb 386 11/8/2011 8:09:04 PM

© 2012 by Taylor & Francis Group, LLC

387Customizing MATLAB® Controls

Note that due to being contained in a scrollpane, the space that is actually taken by the editing
component EditTextPeer$hgTextEditMultiline is smaller than the size of the uicontrol .
Whereas the default uicontrol size is 60 × 20 pixels, the contained EditTextPeer$hgText-
EditMultiline only uses 41 × 18: a one-pixel margin is used for the scrollpane border at the
top, bottom and left, and 18 pixels are used by the vertical scrollbar on the right (the bottom
horizontal scrollbar is hidden by default in Matlab’s multi-line uicontrol) . In comparison,
single-line editboxes use the entire 60 × 20 space .

Interesting hgTextEditMultiline methods include:

 ◾ setWrapping(flag) — this may seem like a regular setter method for a Wrapping
property, but we must be careful to always use this method and never use the alter-
native set(jEditbox,‘wrapping’,flag) because it crashes Matlab,† whereas using
setWrapping(flag) is entirely safe .

 by default, line-wrapping is turned on, effectively disabling horizontal scrolling .
For this reason, Matlab set the HorizontalScrollbarPolicy to HORIZONTaL_
SCROLLBaR_ NEVER . However, in some cases, it may be more useful to turn line-wrap-
ping off and horizontal scrolling on . Here is a usage example:

jEditbox.setWrapping(false);
newPolicy = jScrollPane.HORIZONTaL_SCROLLBaR_aS_NEEDED;
jScrollPane.setHorizontalScrollBarPolicy(newPolicy)

 Note that this method only works for the default EditorKit, and fails for
HTMLEditorKit — this is due to HtMl’s inherent wrapping behavior, as can easily
be seen in any browser webpage .
scrollToReference(refString) ◾ — for HtMl documents that contain a reference, calling
this method will scroll the content-pane so that the requested reference will become
visible, preferably at the top of the content pane . For example, if the document contains
a tag <div name=“123”>, then scrollToReference(‘123’) will scroll this <div> into view .
a similar effect is seen when using setPage(‘#123’), since the setPage method calls
scrollToReference internally . this method has no effect on non-HtMl document .
replaceSelection(string) ◾ — inserts the specified text string into the content pane as a
replacement for the currently-selected content . If no content is selected then a simple
insertion takes place .

† at least on Matlab 7 .5 (R2007b) through 7 .13 (R2011b) running JVM 1 .6 on a Windows XP PC . I suspect this may be
due to a missing isWrapping() method in Matlab’s implementation . Oddly, the crash only affects handle(jEditbox),
which accepts a true/false value; on the other hand, using set(jEditbox,‘wrapping’,‘on’/‘off’) on the naked Java reference
is entirely safe . odd . . .

K13163_Book.indb 387 11/8/2011 8:09:04 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming388

 Note that the text is HtMl-encoded if the current content-type and EditorKit are
HtMl-based, so replaceSelection(‘123’) will actually insert “
123” instead of the requested HtMl code — use setText to solve this prob-
lem . HTMLEditorKit also contains several methods56 to insert HtMl tags (e .g .,
‘123’) at specific HTML.Tag57 locations (e .g ., ‘HtMl .tag .body’) using the
HTMLEditorKit.insertHTML() method and the HTMLEditorKit.InsertHTML-

Textaction58 inner class .
insertComponent(Component) ◾ — inserts the specified Swing component (button/
table, etc .) into the content pane as a replacement for the currently selected content . If
no content is selected then a simple insertion takes place .
insertIcon(ImageIcon) ◾ — insert the specified image (a object) into the content pane as
a replacement for the currently-selected content . If no content is selected then a simple
insertion takes place .

pigUrl = 'http://tinyurl.com/calqqu';59

pigImage = javax.swing.ImageIcon(java.net.URL(pigUrl));
jEditbox.insertIcon(pigImage);

registerEditorKitForContentType(contentTypeString, editorKitClassName) ◾ — associ-
ates a particular EditorKit class with the specified content type . the specified class
should extend StyledEditorKit or one of its descendants (e .g ., HTMLEditorKit or
RTFEditorKit) . an EditorKit object is not created at this time, only a registry bind-
ing . the actual EditorKit will automatically be created at run-time, when the speci-
fied content-type is detected .

getEditorKitForContentType(contentTypeString) ◾ — returns the EditorKit object
responsible for parsing the specified content type: ‘text/plain’, ‘text/html’, and ‘text/rtf’
are supported by default; the default javax.swing.text.StyledEditorKit is returned
for unregistered content types .

setEditorKitForContentType(contentTypeString,editorKit) ◾ — sets the EditorKit
object responsible for parsing the specified content type .

getEditorKitClassNameForContentType ◾ — similar to the getEditorKitForContent-
Type method described above, but returns a class name, not an EditorKit object . this
method returns a java.lang.String object that should be cast to a Matlab string
using the built-in char function .

createEditorKitForContentType(contentTypeString) ◾ — creates an EditorKit object
that should be associated with a specific content type, from the list of registered

K13163_Book.indb 388 11/8/2011 8:09:04 PM

© 2012 by Taylor & Francis Group, LLC

389Customizing MATLAB® Controls

EditorKits . It is usually unnecessary to call this method directly: getEditorKitFor-
ContentType always calls it if it fails to find an association .

addStyle(name,baseStyle) ◾ — adds a named style to the list of known logical styles .
this style can then be customized independently of its baseStyle, and uses to insert a
style run into the document using doc.insertString (see above) .

getStyle(name) ◾ — returns the requested named style .
removeStyle(name) ◾ — removes the specified style from the list of known styles .

6.5.3 The JEditorPane Alternative
as a side-note, we can always use JEditorPane directly in our Matlab code to display
HtMl, without having to go through the uicontrol route .60 this was the solution that Mikhail
posted to a StackOverflow forum query:61

mytext = ['<html><body><table border="1">' ...
 '<tr><th>Month</th><th>Savings</th></tr>' ...
 '<tr><td>January</td><td>$100</td></tr>' ...
 '</body></html>'];

% Create a figure with a scrollable JEditorPane
jEdit = javax.swing.JEditorPane('text/html', mytext);
jPanel = javax.swing.JScrollPane(jEdit);
[hcomponent, hcontainer] = javacomponent(jPanel, [], gcf);
set(hcontainer, 'units', 'normalized', 'position', [0,0,1,1]);

% Turn anti-aliasing on (R2006a, Java 5.0)
java.lang.System.setProperty('awt.useSystemaaFontSettings', 'on');
jEdit.setFont(java.awt.Font('arial', java.awt.Font.PLaIN, 13));
honorDisplayPropName = javax.swing.JEditorPane.HONOR_DISPLaY_PROPERTIES;
jEdit.putClientProperty(honorDisplayPropName, true);

Editable HtMl-aware JEditorPane

Mikhail’s code included setting SwingUtilities2’s aa_tEXt_PROPERtY_KEY prop-
erty for anti-aliasing . Unfortunately, SwingUtilities2 was an unsupported and undocumented
internal class in Java 1 .562 (undocumented/unsupported by Sun, not MathWorks for a change . . .)

K13163_Book.indb 389 11/8/2011 8:09:04 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming390

and completely disappeared in Java 1 .6 (which is bundled with Matlab R2007b onward) .
therefore, SwingUtilities2 can only be used on Matlab releases R14 SP2 (7 .0 .4) through
R2007a (7 .4) — on any other Matlab version this will throw an error . For newer releases,
use JIDE’s aa_tEXt_PROPERtY_KEY alternative (JIDE is bundled with Matlab and
this is supported even on new Matlab releases — see Section 5 .7):

try
 % This only works on Java 1.5 (Matlab R14SP2 to R2007a):
 propName = com.sun.java.swing.SwingUtilities2.aa_TEXT_PROPERTY_KEY;
catch
 % This works for Java 1.6 (Matlab R2007b onward):
 propName = com.jidesoft.swing.JideSwingUtilities.aa_TEXT_PROPERTY_KEY;
end
jEdit.putClientProperty(propName, true);

alternatively, add the following switch to your java.opts file (see Section 1 .9):

-Dswing.aatext = true

With this switch, we no longer need to set anti-aliasing separately for each component . It is
entirely harmless to set this switch even on Matlab/Java versions that do not support it (the
switch is simply ignored in these cases) .

as a final note regarding font anti-aliasing, take a look at the static methods supplied by the
built-in com.mathworks.services.antialiasedFontPrefs class . Specifically, we can use
the following code snippet:

try
 import com.mathworks.services.antialiasedFontPrefs
 antialiasedFontPrefs.setDesktopFontantialiased(true);
catch
 % Never mind...
end

Note that while JEditorPane’s support for HtMl is extensive, it is incomplete . It also does
not contain a JavaScript engine or other web-related features we have come to expect in a
browser . For the more complex browser support see Section 8 .3 .2 .

another related alternative is to use the builtin com.mathworks.webintegration.start-
page.framework.view.ResourcePane class that extends JEditorPane with some useful
methods for setting HtMl title, subtitles, text, hyperlinks, and image resources .

6.6 listbox

uicontrol(‘Style’,‘listbox’) is similar to the multi-line editbox uicontrol described earlier . It uses
the com.mathworks.hg.peer.ListboxPeer$UicontrolList class that extends Matlab’s
com.mathworks.mwswing.MJList class, which itself extends Swing’s javax.swing.JList
class .63

K13163_Book.indb 390 11/8/2011 8:09:04 PM

© 2012 by Taylor & Francis Group, LLC

391Customizing MATLAB® Controls

like multi-line editboxes, listboxes are actually composed of a container (a com.mathworks.
hg.peer.utils.UIScrollPane object) which includes three children, as expected from any
ScrollPane:64 a javax.swing.JViewport65 that contains the ListboxPeer$UicontrolList
component, and horizontal/vertical scrollbars .† Readers are referred to the multi-line editbox
section for a detailed description of scrollpanes .

>> hListbox = uicontrol('Style','List','String',{'item #1','item #2'});

>> jScrollPane = java(findjobj(hListbox))
jScrollPane =
com.mathworks.hg.peer.utils.UIScrollPane[...]

>> jListbox = jScrollPane.getViewport.getView
jListbox =
com.mathworks.hg.peer.ListboxPeer$UicontrolList[...]

the default initial value of the UIScrollPane’s HorizontalScrollbarPolicy is HORIZONTaL_
SCROLLBaR_aS_NEEDED (=30) for listboxes wider than 35 pixels and HORIZONTaL_SCROLLBaR_
NEVER (=31) for narrower listboxes, a setting which is usually satisfactory . the default
VerticalScrollbarPolicy is VERTICaL_SCROLLBaR_aLWaYS (=22) for listboxes taller than 25
pixels and VERTICaL_SCROLLBaR_NEVER (=21) for shorter listboxes; users will probably wish
to change this value to VERTICaL_SCROLLBaR_aS_NEEDED (=20), at least for tall listboxes .

Note that as with the multi-line editbox’s case, Matlab’s scroll-pane implementation
automatically reverts the policy to the default configuration whenever the listbox is resized,
losing any user specification . It is therefore advisable to set jScrollPane’s Component
ResizedCallback in order to “unrevert” the policies:

hjScrollPane = handle(jScrollPane,'CallbackProperties');
scrollBarPolicy = hjScrollPane.java.VERTICaL_SCROLLBaR_aS_NEEDED;
callback = @(h,e) set(h,'VerticalScrollBarPolicy',scrollBarPolicy);
set(hjScrollPane,'ComponentResizedCallback',callback);

listboxes share JTable and JTree’s use of a separate CellRenderer,66 Model,67 and
SelectionModel .68 Readers are referred to Sections 4 .1 .1 and 4 .2 .4 for a description of these
concepts and how they can be used in Matlab applications . For a detailed description of
JList customization, read the Swing documentation .69 Some of the interesting customizations
will be presented below .

Many of the customizations presented earlier in this chapter (borders, cursors, margins
etc .) are also relevant for listboxes . Perhaps the simplest and most striking customization of

† com.mathworks.hg.peer.utils.UIScrollPane$1 and $2, which directly extend javax.swing.
JScrollPane.ScrollBar: http://java .sun .com/javase/6/docs/api/javax/swing/JScrollPane .Scrollbar .html (or
http://tinyurl .com/dzxtmr) .

K13163_Book.indb 391 11/8/2011 8:09:05 PM

© 2012 by Taylor & Francis Group, LLC

httpp://java.sun.com

Undocumented Secrets of MATLAB®-Java Programming392

listbox is using its inherent HtMl and CSS support, shared with most other uicontrols (see
Section 3 .3 .3):

HtMl-enriched listbox (See color insert.)

Presented here is how the listbox uicontrol appears with different l&Fs on R2007b (JVM
1 .6) on the Windows XP platform:

Windows l&F Windows Classic Metal & Plastic l&F Motif l&F

JList has many useful properties and methods missing from Matlab’s uicontrol han-
dle, in addition to the standard pushbutton ones presented Section 6 .1:

SelectionMode ◾ — this property holds the listbox selection mode: javax.swing.
ListSelectionModel.SINGLE_SELECTION (=0), SINGLE_INTERVaL_SELECTION (=1)
or MULTIPLE_INTERVaL_SELECTION (=2) . SINGLE_SELECTION is the default when the
HG handle (hListbox)’s Max property value† =1, which is Max’s default value;
MULTIPLE_INTERVaL_SELECTION is the default when Max > 1 . When applicable,
interval selection is done by holding down the <Shift> key, and separate (multiple)
selections by holding down the <Ctrl> key .‡

Note that using a non-SINGLE_SELECTION SelectionMode requires the HG handle
(hListbox)’s Max property to be > 1, otherwise a warning message will be displayed in
the Matlab Command Window and the listbox will be hidden from view . this is also
Matlab’s behavior for the equivalent set(hListbox,‘Max’,1,‘Value’,[1:4]):

† actually, Max–Min is the relevant value being checked, but by default Min value=0 and there is really no reason to
modify this default value in listboxes .

‡ On Windows platforms only — the standard selection process is somewhat different on other platforms (e .g ., using
the <Command> key on Mac OS) .

K13163_Book.indb 392 11/8/2011 8:09:05 PM

© 2012 by Taylor & Francis Group, LLC

393Customizing MATLAB® Controls

>> import javax.swing.ListSelectionModel
>> selectionMode = ListSelectionModel.MULTIPLE_INTERVaL_SELECTION;
>> jListbox.setSelectionMode(selectionMode);

>> % Now use <Shift> to select several list items
Warning: single-selection listbox control requires a scalar Value
Control will not be rendered until all its parameter values are valid
(Type "warning off MaTLaB:hg:uicontrol:ParameterValuesMustBeValid" to
suppress this warning.)

>> get(hListbox,'Value')
ans =
 2 4 5 6

>> set(hListbox,'Max',2); % Now ok – no more warning messages!

also note that changing the HG handle’s Max property causes the underlying jListbox to
be recreated, and so it must again be found using FindJObj . the previous jListbox handle
will still exist but will NOt update the visible object, which may cause many hard-to-diag-
nose bugs . this unfortunate effect happens for all uicontrols . therefore, always re-retrieve
the Java handle after modifying the HG Min/Max property .

SINGLE_SELECTION

SINGLE_INTERVaL_
SELECTION

MULTIPLE_INTERVaL_
SELECTION

SelectedIndex ◾ — holds the topmost (smallest) index of the selected listbox items . For
the ListSelectionModel.SINGLE_SELECTION selection model, this is simply the
index of the single selected item . Index values start at 0 for the topmost listbox item,
and have increasing integer values for items lower in the listbox . If nothing is selected,
SelectedIndex holds −1 . Setting SelectedIndex value has the effect of programmati-
cally selecting the corresponding item, firing relevant callbacks just as selecting the
item by mouse or keyboard clicks . Setting the value to −1 is accepted but does not
deselect the current selection (use the clearSelection() method to clear the current
selection); setting lower negative numbers throws an error .
SelectedValue ◾ — holds the string value of the SelectedIndex item, or [] if nothing is
selected . Setting this property can only be done via the setSelectedValue(itemString,
scrollFlag), in which scrollFlag indicates whether the item should scroll into view
once selected; if the specified itemString does not exist, then no error is thrown and the
current selection is retained .

K13163_Book.indb 393 11/8/2011 8:09:05 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming394

SelectedIndices ◾ — holds the list of selected item indices . For the ListSelectionModel.
SINGLE_SELECTION model this is equal to SelectedIndex; for SINGLE_INTERVaL_
SELECTION and MULTIPLE_INTERVaL_SELECTION it may contain a column array
of sorted int32 index values (e .g . [0;1;2]) . Note that when setting SelectedIndices,
we need not worry about array orientation or numeric class: jListbox .
setSelectedIndices([0,2:4,6]) works as expected .

 this property roughly corresponds to the Matlab HG handle (hListbox)’s Value
property (whose topmost index is 1 and holds a row array of indices) . as noted above,
a multi-valued jListbox .SelectedIndices (or the equivaluent hListbox .Value) require
hListbox .Max > 1, otherwise a warning message will appear and the listbox will be
hidden from view .
SelectedValues ◾ — holds an array of the selected item values (strings) . to convert to a
Matlab cell array, use Matlab’s built-in cell function . Note that this property
holds an array even if only one or even no item is selected:

>> values = jListbox.getSelectedValues.cell;
>> values = cell(jListbox.getSelectedValues) % equivalent form
values =
 'Undocumented'
 'Matlab'

MinSelectionIndex, MaxSelectionIndex ◾ — read-only properties holding the index
of the topmost (smallest) and bottommost (largest) selected listbox items .
MinSelectionIndex is the same as SelectedIndex or min (SelectedIndices);
MaxSelectionIndex is the same as max(SelectedIndices) .
FirstVisibleIndex ◾ , lastVisibleIndex — read-only properties holding the index values
of the topmost (smallest) and bottommost (largest) visible listbox items . the HG han-
dle (hListbox) listboxtop property corresponds to FirstVisibleIndex but starts at 1
not 0; lastVisibleIndex has no HG equivalent .
anchorSelectionIndex ◾ , leadSelectionIndex — read-only properties holding the
index values of the most recently updated SelectionInterval . the most recent index0
is considered the “anchor” and the most recent index1 is considered the “lead” . Some
interfaces display these indices specially, for example, Windows95 displays the lead
index with a dotted yellow outline . Using these properties enable us to distinguish
between selection of indices 1-to-4 and 4-to-1 .

SelectionEmpty ◾ — a read-only boolean flag (isSelectionEmpty) indicating whether
there is any active selection . See related method clearSelection() .

SelectionForeground, Selecionbackground ◾ — sets the foreground and background
colors (should be a java.awt.Color object) of selected items .

Container ◾ — a read-only Matlab extension to JList, which returns a reference to
the container ScrollPane object (same as jEditbox .getParent.getParent) .

layoutOrientation ◾ — (default=jListbox .VERTICaL=0) sets the layout of listbox
items within the viewport . the default layoutOrientation (jListbox .VERTICaL=0)

K13163_Book.indb 394 11/8/2011 8:09:06 PM

© 2012 by Taylor & Francis Group, LLC

395Customizing MATLAB® Controls

indicates regular top-to-bottom arrangement; jListbox .VERTICaL_WRaP=1 sets a
horizontal item layout, wrapping to a new row as necessary for the maximum number
of rows determined by the VisibleRowCount property (default=8); jListbox .
HORIZONTaL_WRaP=2 sets a vertical item layout, wrapping to a new column at row
number VisibleRowCount . For example,

LayoutOrientation = VERTICaL
VisibleRowCount is irrelevant

VERTICaL_WRaP
VisibleRowCount = 3

HORIZONTaL_WRaP
VisibleRowCount = 3

FixedCellHeight, FixedCellWidth ◾ — holds the listbox’s cells height (default=13 pix-
els†) and width (default=−1) . a −1 value means that the actual size is determined by the
default platform-dependent CellRenderer size:

FixedCellHeight = –1
FixedCellWidth = –1

FixedCellHeight = 10
FixedCellWidth = 30

FixedCellHeight = 16
FixedCellWidth = 50

PrototypeCellValue ◾ — (default=[]) holds a “typical” item value (string) which helps
the CellRenderer to optimize CellHeight and CellWidth .
CellViewerEnabled ◾ — (default=false) this boolean property was added by Matlab’s
MJList listbox implementation (does not exist in Swing’s standard JList) . If set to
true, a special tooltip containing the entire item text is displayed if the item under the
current mouse cursor position is truncated (does not fit within the listbox width) . Here
are some examples:

LayoutOrientation = VERTICaL

LayoutOrientation = HORIZONTaL_WRaP
before & after mouse over the truncated item

† actually, the default JList CellHeight is −1, but this translates into relatively large margins, so MathWorks apparently
decided to specifically set a 13-pixel CellHeight in the Matlab listbox uicontrol implementation .

K13163_Book.indb 395 11/8/2011 8:09:08 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming396

RightSelectionEnabled ◾ — (default=false) a boolean flag indicating whether items can
be selected by right-clicking . by default this is disabled, to enable presentation of a
uicontextmenu upon right-click . this is a Matlab MJList extension, not available
in Swing’s standard JList .

DragSelectionEnabled ◾ — (default=false) a boolean flag indicating whether to move/
extend the selection interval† when the mouse drags (i .e ., clicks an item and then moves)
in the upward or downward direction . this is also a Matlab MJList extension, not
available in Swing’s standard JList .

ValueIsadjusting ◾ — (default=false) a boolean flag indicating whether the contents are
modified (e .g ., during a drag operation) . Programmers seldom need to set this value,
but may use it as explained in the documentation70 and in the ValueChangedCallback
description below .

ValueChangedCallback ◾ — fired when the SelectedIndex value has changed, pro-
grammatically or interactively . the callback is actually fired twice for each update:
once at the beginning (when ValueIsadjusting=true) and once at the end (ValueIs
adjusting=false) . this callback is the Java equivalent of the Matlab HG handle
(hListbox)’s Callback property .71

CellRenderer ◾ — holds a ListCellRenderer object‡ (a JLabel implementation)
which is responsible for displaying the listbox’s cell items . to leverage the full power
of listbox CellRenderers, create a separate Java class that implements the
ListCellRenderer72 interface, and then set the CellRenderer property to an instance
of it . Use the documentation,73 the descriptions in the uitable and uitree sections (4 .1 .1
and 4 .2 .4, respectively), or the example in Section 7 .6 .1 .

listData ◾ — a settable property specifying the listbox items . listData accepts a cell
array of strings (or any Java Object e .g . IconImages or JLabels with both icons and
text) . We shall see the use of this property in Section 6 .6 .2 .

Interesting special methods include:

addSelectionInterval(anchorIndex,leadIndex) ◾ — adds listbox items anchorIndex
through leadIndex (or vice versa if leadIndex < anchorIndex) to the current selection .
this is especially useful for a MULTIPLE_INTERVaL_SELECTION model; for SINGLE_
SELECTION only leadIndex is selected; for SINGLE_INTERVaL_SELECTION the
requested interval is merged with the existing interval if they overlap or are adjacent,
otherwise the new interval replaces the existing selection interval .

† Depending on the SelectionMode, a multi-item interval or only a single item can be selected .
‡ actually, an object of class javax.swing.DefaultListCellRenderer.UIResource: http://java .sun .

com/javase/6/docs/api/javax/swing/DefaultlistCellRenderer .UIResource .html (or http://tinyurl .com/csvc79) .

K13163_Book.indb 396 11/8/2011 8:09:08 PM

© 2012 by Taylor & Francis Group, LLC

httpp://java.sun.com
httpp://java.sun.com

397Customizing MATLAB® Controls

setSelectionInterval(anchorIndex,leadIndex) ◾ — sets the selection to specified inter-
val in a SINGLE_INTERVaL_SELECTION or MULTIPLE_INTERVaL_SELECTION
SelectionModel; for the SINGLE_SELECTION model only leadIndex is selected .
removeSelectionInterval(anchorIndex,leadIndex) ◾ — deselects any item in the speci-
fied interval .
clearSelection() ◾ — deselects all listbox items . SelectionEmpty will become true .
ensureIndexIsVisible(index) ◾ — scrolls the listbox as necessary to ensure the requested
item index is visible in the displayed viewport .
getCellBounds(anchorIndex,leadIndex) ◾ — returns the bounding Rectangle74 (pixels
relative to the top-left listbox corner) of the specified cell interval . this can be used for
special highlighting of the selection bounds .
getNextMatch(prefixString,startIndex,searchDirection) ◾ — returns the index of the
next item whose toString starts with the specified prefixString, starting the search at
the startIndex item, in the specified searchDirection .† this enables us to program an
easy keyboard navigation/selection based on user key-clicks .
indexToLocation(index) ◾ — returns the pixel position of the specified index . this may
be useful for moving the mouse cursor to point at a specified listbox item . the corre-
sponding locationToIndex(Point) returns the item index, useful in mouse callbacks .
isSelectedIndex(index) ◾ — returns a boolean flag indicating whether the specified item
index is selected .

 ◾ setSelectionAppearanceReflectsFocus(flag) — this may seem like a regular setter
method for a SelectionappearanceReflectsFocus property, but be careful to always
use this method and never use the alternative set(jListbox, ‘SelectionAppearance-
ReflectsFocus’,flag) that crashes Matlab R2008a and earlier,‡ whereas using setSe
lectionAppearanceReflectsFocus(flag) is safe .

 this settable-only boolean property (default=true) is another Matlab extension .
It has the apparent effect of using a different (grayish) selection background whenever
the listbox loses the focus, reverting to the standard selecting background when focus
is regained .75

 Note that setSelectionAppearanceReflectsFocus “freezes” the current selection
color, so if the listbox is not in focus when we run it, the gray selection color will
remain even when the listbox is back in focus . . .

† searchDirection is either javax.swing.text.Position.Bias.Forward or Backward . See: http://java .
sun .com/javase/6/docs/api/javax/swing/text/Position .bias .html (or http://tinyurl .com/cranzr) .

‡ I suspect that this may be due to a missing isSelectionAppearanceReflectsFocus method in Matlab’s implementation .
this bug was fixed in Matlab 7 .7 (R2008b) .

K13163_Book.indb 397 11/8/2011 8:09:09 PM

© 2012 by Taylor & Francis Group, LLC

httpp://java.sun.com
httpp://java.sun.com

Undocumented Secrets of MATLAB®-Java Programming398

Focus gained Focus lost

6.6.1 The listbox Data Model
the listbox model, retrieved via the getModel method or the Model property (get(jListbox,‘Model’)),
enables item manipulation . Using the getter methods or callback properties is always safe .
However, when updating simple listbox string items, it is better to update the HG handle’s String
property rather than the Model, since Model update breaks the connection between Java and
Matlab items . the Model’s callbacks and methods include the following:

ContentsChangedCallback ◾ — fired after listbox content items have changed .
IntervaladdedCallback ◾ — fired after one or more items were added . the EventData
object contains the start and end indices of the added interval .
IntervalRemovedCallback ◾ — fired after one or more items are removed . the
EventData object contains the start and end indices of the removed interval .

getElementAt(index) ◾ — returns the item at the specified index . also: get(index).
firstElement() ◾ — returns the topmost listbox item .
indexOf(item) ◾ — returns the index of the first occurrence of the specified item in the
listbox; if not found, returns −1 . indexOf(item,searchIndex) starts the search at the
specified searchIndex. lastIndexOf(item) returns the index of the last occurrence and
similarly for lastIndexOf(item,searchIndex) .
elements() ◾ — returns the enumeration object of all the listbox items .
insertElementAt(item,index) ◾ — inserts the specified item at the specified index . also:
add(index,item) which is equivalent, but which some consider better because it con-
forms to the List Collections interface .
setElementAt(item,index) ◾ — replaces the specified item index with a new item . also:
set(index,item) which is equivalent but may be better (such as add above) .
removeElementAt(index) ◾ — removes the specified item from the listbox . also:
remove(index) which is equivalent but which some consider better (such as add above) .
removeElement(item) ◾ — removes the first (lowest index) occurrence of item .
removeRange(minIndex,maxIndex) ◾ — removes the specified index interval .
removeAllElements() ◾ — empties the listbox . also; clear(), equivalent but better
getSize() ◾ — returns the number of listbox items . also: capacity() .

K13163_Book.indb 398 11/8/2011 8:09:09 PM

© 2012 by Taylor & Francis Group, LLC

399Customizing MATLAB® Controls

setSize(int) ◾ — sets the listbox size but may cause many usability problems if mis-used,
so I suggest not using this method . Instead, one needs to update the HG String .

6.6.2 Customizing the Appearance of listbox Items
Customizing listbox items requires combined use of several of the properties/methods intro-
duced above, particularly listData and CellRenderer . For example, let us present icon images
rather than text (string) items: a simple solution is to use HtMl images,76 but this looks bad
due to the narrow row height of listbox items (setting the HtMl image height attribute does not
improve this situation):

imgSrc = 'http://www.google.com/intl/en_aLL/images/logo.gif';
uicontrol('Style','listbox','Units','pixel','Pos',[0 0 250 100], ...
 'String', {'a', ['<HTML>'], 'c'});

a better solution is to use the listData property, as follows:

% Prepare the list of ImageIcon objects
iconsFolder = fullfile(matlabroot,'toolbox/matlab/icons');
imgs = dir(fullfile(iconsFolder,'*.gif'));
for iconIdx = 1 : length(imgs)
 iconFilename = fullfile(iconsFolder,imgs(iconIdx).name);
 icons{iconIdx} = javax.swing.ImageIcon(iconFilename);
end

% Display the ImageIcon list in 18x18 cells within the listbox
jScrollPane = findjobj(hButton);
jListbox = jScrollPane.getViewport.getView;
jListbox.setLayoutOrientation(jListbox.HORIZONTaL_WRaP)
jListbox.setVisibleRowCount(4)
jListbox.setFixedCellWidth(18) % icon width = 16 + 2px margin
jListbox.setFixedCellHeight(18) % icon height = 16 + 2px margin
jListbox.setListData(icons)

(See color insert.)

K13163_Book.indb 399 11/8/2011 8:09:09 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming400

Note that after setting the listData property, the item data become different from the HG
handle’s String property, possibly causing programming bugs . also, the HG String prop-
erty cannot be modified after updating listData .† It is therefore advised to update listData
only if we wish to list non-string items; for string items, only use HG’s String property . If
we do update listData, then we must first ensure that there are exactly as many items in the
HG String property as the number of items we will supply listData; otherwise, the listbox
might disappear if we select a listData item beyond HG’s range .

the default listbox CellRenderer knows how to render (display) text and icons; other objects
are rendered by converting them to text strings, using their toString method . this looks bad .
For example, let us try to display labels having both text and icons:

% Prepare the list of JLabel objects
iconsFolder = fullfile(matlabroot,'toolbox/matlab/icons');
imgs = dir(fullfile(iconsFolder,'*.gif'));
for idx = 1 : length(imgs)
 iconFname = imgs(idx).name;
 iconFname = fullfile(iconsFolder, iconFname);
 jLabels{idx} = javax.swing.JLabel;
 jLabels{idx}.setIcon(javax.swing.ImageIcon(iconFname));
 jLabels{idx}.setText(iconFname);
 jLabels{idx}.setToolTipText(['Item-specific tooltip: ' iconFname]);
end

% Set the JLabel objects in the model
set(hListbox,'String',{imgs.name}); % ensure consistent HG size

%jListbox.setListData(jLabels); % easy but bad – see note above
model = javax.swing.DefaultListModel;‡

for idx = 1:length(imgs)
 model.addElement(jLabels{idx});
end
jListbox.setModel(model);

† this later problem can be solved by replacing the call to setListData(dataArray) with the following:
 model = javax.swing.DefaultListModel;
 for idx = 1:length(dataarray), model.addElement(dataarray{idx}); end
 jListbox.setModel(model);

 the String property can now be updated, although it still remains unrelated to the model .
‡ the role of the Model in Swing components is explained here: http://java .sun .com/products/jfc/tsc/articles/architecture/

(or http://tinyurl .com/atggc) .

K13163_Book.indb 400 11/8/2011 8:09:10 PM

© 2012 by Taylor & Francis Group, LLC

httpp://java.sun.com

401Customizing MATLAB® Controls

therefore, to display non-icon objects we need a custom CellRenderer . First place the
following code in a file called LabelListBoxRenderer.java:

import java.awt.*;
import javax.swing.*;
public class LabelListBoxRenderer extends JLabel
 implements ListCellRenderer
{
 public LabelListBoxRenderer() {
 setOpaque(true);
 setHorizontalalignment(LEFT);
 setVerticalalignment(CENTER);
 }

 // return a label displaying both text and image.
 public Component getListCellRendererComponent(
 JList list,
 Object value,
 int index,
 boolean isSelected,
 boolean cellHasFocus) {

 try {
 // Try assuming the object is a JLabel
 JLabel jLabel = (JLabel) value;
 setIcon(jLabel.getIcon());
 setText(jLabel.getText());
 list.setToolTipText(jLabel.getToolTipText());
 } catch (Exception e) {
 // Oops... the object is probably not a JLabel
 setIcon(null);
 setText(value.toString());
 list.setToolTipText(null);
 }
 if (isSelected) {
 setBackground(list.getSelectionBackground());
 setForeground(list.getSelectionForeground());
 } else {
 setBackground(list.getBackground());
 setForeground(list.getForeground());
 }
 setEnabled(list.isEnabled());
 setFont(list.getFont());
 setOpaque(true);
 return this;
 }
}

Next, compile this file and place the generated LabelListBoxRenderer.class file in our
Matlab’s Java classpath (see Section 1 .6 for details) . Now use this LabelListBoxRenderer
class in Matlab:

K13163_Book.indb 401 11/8/2011 8:09:10 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming402

jListbox.setCellRenderer(LabelListBoxRenderer);
jListbox.setFixedCellHeight(16); % give the icons some space...

(See color insert.)

Note: the following Section 6 .6 .3 shows an entirely different alternative for presenting
item-specific tooltips .

Since we have ensured setting the HG String property with the label texts, we can now work
at the Matlab HG level almost as usual:

>> listboxStrs = get(hListbox,'string');
>> index = get(hListbox,'value');
>> disp(listboxStrs{index})
figureicon.gif

However, setting the HG String property, while now allowed,† causes a side effect of replac-
ing the existing listbox model with a new string-based model:

listboxStrs{index} = 'Undocumented Matlab';
set(hListbox,'string',listboxStrs);

† Since we have used the model.addElement() loop instead of the simple setListData() call .

K13163_Book.indb 402 11/8/2011 8:09:10 PM

© 2012 by Taylor & Francis Group, LLC

403Customizing MATLAB® Controls

to overcome this, set the labels via the model, not the HG String property:†

jListbox.getModel.setElementat('Undocumented Matlab',index-1);

the listData property is settable-only, and so cannot be used to get the list of all existing
items . Instead, use jListbox .getModel.toArray.cell to get the list as a Matlab cell array .
this list can also be gotten as an enumerated list by using jListbox .getModel.elements . See
Section 2 .1 .3 for enumeration usage details .

as another example of customizing listbox items, consider the request I once received to set
a dedicated behavior (e .g ., display a dedicated text) for selected listbox items:

import java.awt.Component;
import javax.swing.*;
public class LabelListBoxRenderer extends JLabel
 implements ListCellRenderer
{
 public LabelListBoxRenderer() {
 setOpaque(true);
 setHorizontalalignment(LEFT);
 }

 // return a label displaying both text and image.
 public Component getListCellRendererComponent(
 JList list,
 Object value,
 int index,
 boolean isSelected,
 boolean cellHasFocus)
 {

 setText(value.toString());
 if (isSelected) {
 if (selectedItemText != null)
 setText(selectedItemText); // override label text
 setBackground(list.getSelectionBackground());
 setForeground(list.getSelectionForeground());

† this method has the disadvantage that now the HG String values are inconsistent with the model (displayed) values . to
fix this, set the HG String and then update the model with Jlabels for all the non-updated values . this is admittedly
awkward .

K13163_Book.indb 403 11/8/2011 8:09:11 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming404

 } else {
 setBackground(list.getBackground());
 setForeground(list.getForeground());
 }
 setEnabled(list.isEnabled());
 setFont(list.getFont());
 setOpaque(true);
 return this;
 }

 public void setSelectedItemText(String text) {
 selectedItemText = text;
 }

 public String getSelectedItemText() {
 return selectedItemText;
 }
}

6.6.3 Dynamic (Item-Specific) Context-Menus and Tooltips
Item-specific context-menus and tooltips can be achieved with pure-Matlab code, without
the necessity for a custom Java CellRenderer as discussed above .77 the trick is to trap the
MousePressedCallback (for item-specific context-menu) and MouseMovedCallback (for
item-specific tooltip) events . below are sample implementations for both of these .

the benefit of using this approach, compared to the Java CellRenderer approach, is that no
Java knowledge or programming is necessary — it can be achieved by any proficient Matlab
programmer . However, it should be realized that this pure-Matlab approach has limitations:
Custom CellRenderer enables customization of listbox item appearance (for example, icons,
etc .), something that (to the best of my knowledge) cannot be done in pure Matlab .

We start by defining a basic context menu, then trap MousePressedCallback to update it
based on the current mouse position, and then display the updated menu . there are several ways
in which we could pass the basic jmenu object to the MousePressedCallback function — in
this case we choose to simply pass it as an extra (4th) run-time input argument . alternatively,
we could store the jmenu object in the UserData or elsewhere accessible from within the
callback .

Note that for our purposes here, it is better to trap MousePressedCallback rather than
MouseClickedCallback, since MousePressedCallback fires immediately when the mouse
button is pressed, without waiting for its release as MouseClickedCallback does:

K13163_Book.indb 404 11/8/2011 8:09:11 PM

© 2012 by Taylor & Francis Group, LLC

405Customizing MATLAB® Controls

% Prepare the context menu (note the use of HTML labels)
menuItem1 = javax.swing.JMenuItem('action #1');
menuItem2 = javax.swing.JMenuItem('<html>action #2');
menuItem3 = javax.swing.JMenuItem('<html><i>action #3');

% Set the menu items' callbacks
set(menuItem1,'actionPerformedCallback',@myFunc1);
set(menuItem2,'actionPerformedCallback',{@myfunc2,data1,data2});
set(menuItem3,'actionPerformedCallback','disp ''action #3 ...''');

% add all menu items to context menu (with internal separator)
jmenu = javax.swing.JPopupMenu;
jmenu.add(menuItem1);
jmenu.add(menuItem2);
jmenu.addSeparator;
jmenu.add(menuItem3);

% Convert to a callback-able reference handle
jListbox = handle(jListbox, 'CallbackProperties');

% Set the mouse-click event callback
set(jListbox, 'MousePressedCallback', ...
 {@mousePressedCallback,hListbox,jmenu});

% Mouse-click callback
function mousePressedCallback(jListbox,jEventData,hListbox,jmenu)

 if jEventData.isMetaDown % right-click is like a Meta-button

 % Get the clicked list-item
 %jListbox = jEventData.getSource;
 mousePos = java.awt.Point(jEventData.getX,jEventData.getY);
 clickedIndex = jListbox.locationToIndex(mousePos) + 1;
 listValues = get(hListbox,'string');
 clickedValue = listValues{clickedIndex};

 % Modify the context menu or some other element
 % based on the clicked item. Here is an example:
 itemStr = ['<html>' clickedValue];
 item = jmenu.add(itemStr);

 % Remember to call jmenu.remove(item) in item callback
 % or use the timer hack shown here to remove the item:
 timerFcn = {@removeItem,jmenu,item};
 start(timer('TimerFcn',timerFcn,'StartDelay',0.2));

 % Display the (possibly-modified) context menu
 jmenu.show(jListbox, jEventData.getX, jEventData.getY);
 jmenu.repaint;

 else

 % Left-click - do nothing (do NOT display context-menu)
 end
end % mousePressedCallback

K13163_Book.indb 405 11/8/2011 8:09:11 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming406

% Remove the extra context menu item after display
function removeItem(hObj,eventData,jmenu,item)
 jmenu.remove(item);
end % removeItem

% Menu items callbacks must receive at least 2 args:
% hObject and eventData: user-defined args follow these two
function myfunc1(hObject, eventData)
 % ...

function myFunc2(hObject, eventData, myData1, myData2)
 % ...

For dynamic item-specific tooltips, similarly trap MouseMovedCallback:

% Convert to a callback-able reference handle
jListbox = handle(jListbox, 'CallbackProperties');

% Set the mouse-movement event callback
set(jListbox, 'MouseMovedCallback', {@mouseMovedCallback,hListbox});

% Mouse-movement callback
function mouseMovedCallback(jListbox, jEventData, hListbox)

 % Get the currently-hovered list-item
 mousePos = java.awt.Point(jEventData.getX, jEventData.getY);
 hoverIndex = jListbox.locationToIndex(mousePos) + 1;
 listValues = get(hListbox,'string');
 hoverValue = listValues{hoverIndex};

 % Modify the tooltip based on the hovered item
 msgStr = sprintf('<html> item #%d: %s</html>', ...
 hoverIndex, hoverValue);
 set(hListbox, 'Tooltip',msgStr);
end % mouseMovedCallback

Dynamic context-menu (See color insert.) Dynamic tooltip

K13163_Book.indb 406 11/8/2011 8:09:11 PM

© 2012 by Taylor & Francis Group, LLC

407Customizing MATLAB® Controls

6.7 Popup Menu (a.k.a. Drop-Down, Combo-Box)

uicontrol(‘Style’,‘popupmenu’) is similar to the listbox uicontrol described in the previous sec-
tion . It uses the com.mathworks.hg.peer.ComboboxPeer$MLComboBox class that extends
Matlab’s com.mathworks.mwswing.MJComboBox class, which itself extends Swing’s javax.
swing.JComboBox class .78

Unlike listboxes, JComboBox is not embedded within a scroll-pane . Instead, it is a simple
container for a text field, an arrow button and the popup (drop-down) window .

Many of the pushbutton properties, methods and callbacks presented in Section 6 .1 also
apply to popup windows . this includes, of course, HtMl formatting:

tooltip = '<html>HTML-aware
tooltips
<i>supported';
hPopup = uicontrol('Style', 'popup', 'tooltip',tooltip, 'string',{ ...
 '<HTML>Hello</html>', 'world', ...
 '<html><div style="font-family:impact;color:green"><i>What a', ...
 '<Html>nice day!'});

(See color insert.)

Presented here is how the dropdown uicontrol appears with different l&Fs on R2007b (JVM
1 .6) on the Windows XP platform:

Windows l&F Windows Classic l&F Metal l&F

Motif l&F Plastic l&F Nimbus l&F

K13163_Book.indb 407 11/8/2011 8:09:13 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming408

MaximumRowCount ◾ — (default=20) sets the maximum number of drop-down items
to display together, before requiring a scrollbar . In effect this value controls the maxi-
mal popup height:

MaximumRowCount = 20
(default)

MaximumRowCount = 3

MaximumRowCount = 2

Editable ◾ — (default=false) a boolean flag which controls whether the text field that
displays the currently-selected item is editable or not . Unfortunately, this looks ok (if
we ignore the missing left border, which is fixable — see below) only for text items, not
HtMl-rendered items:†

Editable text item string Editable HtMl item string

 a more serious problem is that after editing an entry, the popup control disappears,
displaying the following error in the Command Window:

Warning: popupmenu control requires that Value be an integer within String
range
Control will not be rendered until all of its parameter values are valid.

 the reason for this behavior is that when the combo-box object detects that the text
field’s content match none of the popup list items, it automatically sets the SelectedIndex
to −1 and therefore Matlab’s HG Value property to 0 . at this point the Matlab
implementation kicks in, hiding the uicontrol since it considers 0 an invalid value for
the Value property . this is similar to the check being done to test for an empty HG
String value (=no items):

>> set(hPopup,'string',[])
popupmenu control requires a non-empty String
Control will not be rendered until all of its parameter values are valid.

† this happens since the underlying JTextField component does not support HtMl rendering — see Section 6 .5 .1 .

K13163_Book.indb 408 11/8/2011 8:09:15 PM

© 2012 by Taylor & Francis Group, LLC

409Customizing MATLAB® Controls

 bruno luong on CSSM has suggested79 clearing these particular warnings:

warning('off','MaTLaB:hg:uicontrol:ParameterValuesMustBeValid')

 Unfortunately, as far as I could see this has an effect only on Matlab R2008a
onward and in any case does not prevent the control from being hidden — it just pre-
vents the warning from showing on the Command Window .

 It therefore appears that the only easy way to really implement an editable popup
menu is NOt to use Matlab’s uicontrol but rather Swing’s standard JComboBox,
which has none of these problems/limitations:

items = {'option #1','option #2','option #3'};
model = javax.swing.DefaultComboBoxModel(items);
jPopup.setModel(model);
jPopup.setEditable(true);
jPopup = javacomponent('javax.swing.JComboBox',position,hFig);

PopupVisible ◾ — (default=false) a boolean flag which controls whether the popup win-
dow is currently (or should be) displayed . If this property is updated, then the focus is
automatically transferred to the popup window for easy item selection using the key-
board (up/down/enter keys) . there are also equivalent convenience methods show-
Popup()/hidePopup() .

 On a Windows platform the PopupVisible property is toggled, thereby showing/
hiding the popup window, whenever the user clicks <alt-Up> or <alt-Down> when
the combo-box has focus .
PopupWidthConstrained ◾ — (default=false) a boolean flag which is another Matlab
MJComboBox extension to the standard Swing JComboBox . It is apparently used to con-
strain the width of the drop-down list to the width of the text field . MathWorks took the
trouble to add this feature because Swing JComboBox’s width is constrained, causing a
difficulty in distinguishing between popup values when the control is relatively narrow;
Matlab’s MJComboBox’s default unconstrained behavior is much more user-friendly:

PopupWidthConstrained
= false (default)

PopupWidthConstrained
= true

K13163_Book.indb 409 11/8/2011 8:09:15 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming410

Note that the PopupWidthConstrained property’s read accessor methods is the expected
isPopupWidthConstrained(), thereby also enabling the expected Matlab-standard for-
mat of get(‘PopupWidthConstrained’) . However, the property update accessor method is
not the expected setPopupWidthConstrained(flag) but rather a nonstandard setConstrain-
Popup Width(flag) . For this reason, it is impossible to set this property using set(‘PopupWi
dthConstrained’,. . .), but only via setConstrainPopupWidth():

>> set(jPopup,'PopupWidthConstrained',true)
??? Changing the 'PopupWidthConstrained' property of javahandle_
withcallbacks.com.mathworks.hg.peer.ComboboxPeer$MLComboBox is not allowed.

>> jPopup.setPopupWidthConstrained(true)
??? No appropriate method or public field
setPopupWidthConstrained for class javahandle_withcallbacks.com.
mathworks.hg.peer.ComboboxPeer$MLComboBox.

PrototypeDisplayValue ◾ — (default = []) holds a “typical” item value (string or Object)
which helps the Renderer to optimize the text field’s height and width .
SelectedIndex ◾ — holds the index of the selected drop-down item . Index values start at
0 for the topmost listbox item, and have increasing integer values for items lower in the
listbox . Setting SelectedIndex value has the effect of programmatically selecting the
corresponding item, firing relevant callbacks just as selecting the item by mouse or
keyboard clicks . this property roughly corresponds to the Matlab HG handle
(hPopup)’s Value property (whose topmost index is 1) .

SelectedItem ◾ — holds the currently-selected drop-down value . Note that this value
may be HtMl-encoded if this was how the combo-box was initially set:

>> jPopup.getSelectedItem
ans =
<HTML>Hello</html>

 SelectedItem can be updated, but has no effect in the Matlab implementation
since it requires a com.mathworks.hg.peer.ComboboxPeer$ComboBoxElement
object . Instead, update the SelectedIndex property .
tipWhentruncatedEnabled ◾ — (default=false) a very useful boolean flag that over-
rides the tooltip processing to automatically display the full text field content when-
ever it is too short to visually present the entire text . When the box is larger than the
visual appearance of the text, the tooltip is deleted . Setting this property to true over-
rides any previous tooltip that might have been set for the popup uicontrol .
tipWhentruncatedEnabled has no effect on regular non-editable popup uicontrols,
only on editable ones .

K13163_Book.indb 410 11/8/2011 8:09:16 PM

© 2012 by Taylor & Francis Group, LLC

411Customizing MATLAB® Controls

truncated-text tooltip
(editable popup only)

Model ◾ — (default=javax.swing.DefaultComboBoxModel80) the popup’s data
model† is an object that implements the ComboBoxModel81 interface, which is an exten-
sion of the basic ListModel .82 the standard DefaultComboBoxModel is used by the
Matlab implementation, and there is not much reason to modify it . the model can
be used to access/modify presented items, as described below .

 Using the model’s getter methods or callbacks is always safe . However, as with list-
boxes (see Section 6 .6 .1), when updating simple popup list string items, it is better to
update the HG handle’s String property than the Model, since Model update breaks
the connection between Java and Matlab items .

 Interesting Model methods and properties include:

SelectedItem ◾ — see the SelectedItem property described above .
Size ◾ — a read-only property holding the number of popup list items .
ContentsChangedCallback ◾ — fired after popup contents (items) have changed .
IntervaladdedCallback ◾ — fired after one or more items were added . the
EventData object contains the start and end indices of the added interval .
IntervalRemovedCallback ◾ — fired after one or more items were removed . the
EventData object contains the start and end indices of the removed interval .
getElementAt(index) ◾ — returns the item at the specified index . also: get(index).
getIndexOf(item) ◾ — returns the index of the specified item in the popup list; if not
found, returns −1 .
insertElementAt(item,index) ◾ — inserts the specified item at the specified index
position within the popup list .
setElementAt(item,index) ◾ — replaces the specified item index with a new item.
removeElementAt(index) ◾ — removes specified item from the popup list .
removeElement(item) ◾ — removes the specified item from the popup list .
removeAllElements() ◾ — empties the popup list .

† the role of the Model in Swing components is explained here: http://java .sun .com/products/jfc/tsc/articles/architecture/
(or http://tinyurl .com/atggc) .

K13163_Book.indb 411 11/8/2011 8:09:16 PM

© 2012 by Taylor & Francis Group, LLC

httpp://java.sun.com

Undocumented Secrets of MATLAB®-Java Programming412

ItemCount ◾ — this read-only property returns the number of popup items . this
information can also be retrieved from the popup Model .
EditorColumnCount ◾ — this settable-only property is a Matlab MJComboBox
extension to the standard Swing JComboBox . I assume that it helps determine the
edit-field’s width, like Swing’s JtextField’s Columns property .83

Note: While this may seem like a regular property, be careful to always use the
setEditorColumnCount(int) method and never use the alternative set(jPopup,“EditorColu
mnCount”,number) since it crashes Matlab,† whereas using setEditorColumnCount(int)
is entirely safe .

Editor ◾ — this property holds a reference to the Java class that is responsible for ren-
dering (displaying) and processing (editing) the selected item in the textfield . Editor is
only relevant when the popup control is editable (see the Editable property above);
otherwise, the Renderer is used . the default uicontrol Editor is a com.mathworks.
mwswing.MJComboBox$DefaultEditor object, which is a Matlab extension of
Swing’s generic javax.swing.plaf.basic.BasicComboBoxEditor .‡

>> jPopup.setEditable(true)
>> editor = jPopup.getEditor
editor =
com.mathworks.mwswing.MJComboBox$DefaultEditor@55b768

 the main use of the editor object is in customization of its internal text field compo-
nent, which can be retrieved via the Editor’s read-only EditorComponent property or
the get EditorComponent() method . Matlab’s editor is similar to Swing’s, except
that it uses an MJTextField component,§ whereas Swing uses JTextField . Refer to
Section 6 .5 .1 (Single-line editboxes) for a discussion of MJTextField and its possible
customizations .

>> textField = jPopup.getEditor.getEditorComponent
textField =
com.mathworks.mwswing.MJComboBox$DefaultEditor$BorderTextField[...]

% Let's fix the missing left border that's due to bad x location
>> textField.getBounds
ans =

† at least on Matlab 7 .5 (R2007b) through 7 .13 (R2011b) running JVM 1 .6 on a Windows XP PC . I suspect this may be
due to a missing getEditorColumnCount method in Matlab’s implementation .

‡ http://java .sun .com/javase/6/docs/api/javax/swing/plaf/basic/basicComboboxEditor .html (or http://tinyurl .com/cubnfs);
in R2009b MathWorks reverted to using the simple standard Swing component, rather than a Matlab extension .

§ actually, a com.mathworks.mwswing.MJComboBox$DefaultEditor$BorderTextField object,

that extends MJTextField, which in turn extends Swing’s JTextField . In R2009b this was reverted to a simple

JTextField, and the associated hidden left border problem disappeared so there does not seem to be reason for much
customization anyway .

K13163_Book.indb 412 11/8/2011 8:09:17 PM

© 2012 by Taylor & Francis Group, LLC

httpp://java.sun.com

413Customizing MATLAB® Controls

java.awt.Rectangle[x=-1,y=1,width=41,height=20] %note negative x
>> textField.setLocation(java.awt.Point(1,1))

before: hidden left border

After: fixed left border

 In addition to EditorComponent, the editor contains an Item property (and associ-
ated getItem/setItem methods) that holds the current text-field contents:

>> jPopup.getEditor.getItem
ans =
<HTML>Hello</html>

 the editor has a single callback property, actionPerformedCallback, which is
fired when the editing is finalized (by clicking <Enter>) .

 If we investigate the editor object (e .g . using uiinspect), then we will note that it has
the public methods focusGained(),focusLost() . However, for some reason, the
Matlab implementation does not expose these focus event methods as callbacks .
Instead, use jPopup’s FocusGainedCallback, FocuslostCallback .

 the editor’s selectAll() method can be used to select the entire text-field’s contents .
this is simply a convenience method for the JTextField .selectAll() method of the
editor’s internal text-field component .

 In practice, I can see some use for customizing the editor’s text-field component, but
not much use for replacing the editor or text-field components with some other user-
provided objects .

Note: When setting the Editor property, the specified editor must be a Java class imple-
menting the javax.swing.ComboBoxEditor84 interface . Nonimplementing objects will be
accepted without error or warning, but the editor simply will not be replaced, causing hard-
to-trace bugs .

Renderer ◾ — exactly like listbox controls, the Renderer property of popup (combo-
box) controls holds a ListCellRenderer object† (a JLabel implementation) which is
responsible for displaying the control’s items . to leverage the full power of Renderers,
create a separate Java class that implements the ListCellRenderer85 interface, and
then set the Renderer property to an instance of the class . For sample usages refer to
the documentation,86 or the uitable and uitree in Sections 4 .1 .1 and 4 .2 .4, respectively .

† actually, an object of class com.mathworks.mwswing.MJComboBox$CorrectedBorderRenderer,

that extends Swing’s defaulr javax.swing.plaf.basic.BasicComboBoxRenderer: http://java .sun .com/
javase/6/docs/api/javax/swing/plaf/basic/basicComboboxRenderer .html (or http://tinyurl .com/cg5xmw) .

K13163_Book.indb 413 11/8/2011 8:09:18 PM

© 2012 by Taylor & Francis Group, LLC

httpp://java.sun.com

Undocumented Secrets of MATLAB®-Java Programming414

Here is a simple example mimicking the listbox example of the previous section (as
can be seen, except for very minor differences the code looks the same):

% Prepare the list of JLabel objects
iconsFolder = fullfile(matlabroot,'toolbox/matlab/icons');
imgs = dir(fullfile(iconsFolder,'*.gif'));
for idx = 1 : length(imgs)
 iconFilename = fullfile(iconsFolder, imgs(idx).name);
 iconTooltip = ['Item-specific tooltip: ' imgs(idx).name];
 jLabels{idx} = javax.swing.JLabel;
 jLabels{idx}.setIcon(javax.swing.ImageIcon(iconFilename));
 jLabels{idx}.setText(imgs(idx).name);
 jLabels{idx}.setToolTipText(iconTooltip);
end

% Set the JLabel objects in the model
set(hPopup,'String',{imgs.name}); % ensure consistent HG size
model = javax.swing.DefaultComboBoxModel; %not DefaultListModel
for idx = 1:length(imgs)
 model.addElement(jLabels{idx});
end
jPopup.setModel(model);

% Set the display Renderer
% Note: LabelLisitBoxRenderer was presented in section 6.6 above
jPopup.setRenderer(LabelListBoxRenderer); %not setCellRenderer()
jPopup.setFixedCellHeight(16); % give the icons some space...
jPopup.setMaximumRowCount(8); % override the default 20

like listboxes, since we have ensured setting the HG String property with the label texts, we
can now work at the Matlab HG level almost as usual:

>> listboxStrs = get(hPopup,'string');
>> index = get(hPopup,'value');

>> disp(listboxStrs{index})
demoicon.gif

K13163_Book.indb 414 11/8/2011 8:09:19 PM

© 2012 by Taylor & Francis Group, LLC

415Customizing MATLAB® Controls

However, like listboxes, setting the HG String property has a side-effect of replacing the
existing listbox model with a new string-based model:

listboxStrs{index} = 'Undocumented Matlab';
set(hPopup,'string',listboxStrs);

to overcome this, set the labels via the Java Model, not the HG String property . In listboxes
we did this via the setElementAt() method . Unfortunately, the javax.swing.

DefaultComboBoxModel class does not expose such a public method, so we use
insertElementAt(item,index) followed by removeElementAt(index):†

% The following is not allowed – argh!
%model.setElementat('Undocumented Matlab',index-1);

% ...instead, we use a combination of insert + remove:
model.insertElementat('Undocumented Matlab',index-1);
model.removeElementat(index);

† this method has the disadvantage that now the HG String values are inconsistent with the model (displayed) values . to
fix this, set the HG String and then update the model with Jlabels for all the non-updated values . this is admittedly
awkward .

K13163_Book.indb 415 11/8/2011 8:09:19 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming416

Note: If the popup control is Editable, then the Renderer only controls the items presented
in the popup list, while the selected item in the text-field uses the Editor (not Renderer)
for rendering . If the control is uneditable, Renderer is used for both the popup list and the
text-field .

the popup control exposes several non-standard callbacks, as follows:

actionPerformedCallback ◾ — fired when the selected item has changed .
ItemStateChangedCallback ◾ — fired twice when the selected item has changed: first
deselecting the previous item, then for selecting the new item .
CaretPositionChangedCallback ◾ — unused .
InputMethodtextChangedCallback ◾ — unused .
PopupMenuCanceledCallback ◾ — fired when the popup menu is closed . this callback
is very similar to PopupMenuWillbecomeInvisibleCallback and they usually fire
together (PopupMenuCanceledCallback before PopupMenuWillbecomeInvisible
Callback) .
PopupMenuWillbecomeInvisibleCallback ◾ — fired when the popup menu is about to
be hidden (closed) . also see PopupMenuCanceledCallback above .
PopupMenuWillbecomeVisibleCallback ◾ — fired when the popup menu is about to
be displayed .

and here are several interesting methods exposed by the jPopup Java peer object:

removeAll(), removeAllItems(), removeItem(item), removeItemAt(index), addItem(item), ◾
insertItemAt(item,index), getItemAt(index) — these are simply convenience methods
for the corresponding model methods (see below) .
configureEditor(editor,item) ◾ — sets the control’s editor component with a default ini-
tial selected item presented for editing in the control’s text-field .
selectWithKeyChar(char) ◾ — selects the nearest item corresponding to the specified
character . this can be used in KeyPress callbacks for easy keyboard navigation/selec-
tion based on user key-clicks .
hidePopup(), showPopup() ◾ — these are pretty much self-explanatory .87

6.8 Slider

uicontrol(‘Style’,‘slider’) is actually implemented as a Java Swing JScrollBar rather than a
JSlider .† It uses the com.mathworks.hg.peer.SliderPeer$MLScrollBar class that extends

† I do not know the reason for naming this control “slider” rather than “scrollbar” . It would seem that this historic misnomer
now prevents Matlab from implementing an actual slider control, which is pretty common in modern GUIs . In this sec-

tion, the terms “slider” and “scrollbar” will be used interchangeably . See Section 3 .3 .1 for JSlider examples .

K13163_Book.indb 416 11/8/2011 8:09:20 PM

© 2012 by Taylor & Francis Group, LLC

417Customizing MATLAB® Controls

Matlab’s com.mathworks.mwswing.MJScrollBar class, which itself extends Swing’s
javax.swing.JScrollBar class .88

like JComboBox, JScrollBar is not embedded within a scroll-pane . Instead, it is a simple
container for the central part (knob/thumb and track/trough), and the two scroll buttons (which
are instances of javax.swing.plaf.basic.BasicarrowButton):

Many of the pushbutton properties, methods and callbacks presented in Section 6 .1 also
apply to sliders . Note that HtMl formatting is generally irrelevant for this control, which does
not contain a text field — it is only relevant for the tooltip .

tooltip='<html>HTML-aware
tooltips
<i>supported';
hSlider=uicontrol('style','slider', 'tooltip',tooltip);

Here is how the slider uicontrol appears with different l&Fs on R2007b (JVM 1 .6) on the
Windows XP platform (Plastic l&F is similar to Metal, with an added tooltip drop-shadow;
Windows l&F is similar to the Classic with slightly altered arrows):

Windows l&F

Windows Classic
l&F Metal l&F Motif l&F

Plastic l&F Nimbus l&F

MJScrollBar has many useful properties and methods missing in Matlab’s uicontrol
handle, in addition to the standard pushbutton ones presented in Section 6 .1:†

† all of these are standard Swing JScrollBar properties and methods — Matlab’s extension does not really extend
much .

K13163_Book.indb 417 11/8/2011 8:09:22 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming418

blockIncrement ◾ — (default=100,000†) sets the change in the scrollbar value when-
ever the scroll-bar track is clicked, moving the knob a full “block” . the corresponding
Matlab property is SliderStep (2nd value), that has a default value of 0 .1 . Note that
while Java defines increments as integers, Matlab defines them as floating-point
portions . an internal algorithm (which changed in R2008b) preserves the correct
arithmetic ratios between blockIncrement, UnitIncrement, Visibleamount, Value,
Maximum, and Minimum .

 Here is a simple example, showing corresponding values in Matlab and Java:

Min Max Unit
Increment

block
Increment

Visible
amount

Value

MATLAB 2 4 0.01 0.1 0.2 2.5

Java 2008a 200000000 420000000 2000000 20000000 20000000 250000000

Java 2008b + − 100000 1000000 10000 100000 100000 150000

UnitIncrement ◾ — (default=10,000‡) sets the change in the scrollbar value whenever
an arrow button is clicked . the corresponding Matlab property is SliderStep
(1st value), which has a default value of 0 .01 . Note that while Java defines increments
as integers, Matlab defines them as floating-point portions .
Visibleamount ◾ — (default=blockIncrement) sets the size of the scrollbar knob . In
Matlab, this cannot be different from the block increment value, but using this Java
property we can specify different values for the knob size .
Value ◾ — (default=Minimum) sets the scrollbar value and knob position . the corre-
sponding Matlab property is also Value .
Maximum ◾ — (default=1,000,000§) sets the maximal scrollbar value . the correspond-
ing Matlab property is Max, which has a default value of 1 .
Minimum ◾ — (default=–blockIncrement¶) sets the minimal scrollbar value . the
 corresponding Matlab property is Min that also has a default value of 0 .

Note: In pre-2008 Matlab releases, whenever the Matlab slider control’s Min or Max
properties were updated, the control was re-created and a new Java handle had to be
retrieved .**†† apparently this does not happen when updating the related Matlab SliderStep
or Value properties, so in these cases the Java handle does not need to be retrieved again . It
also does not happen on modern Matlab releases .

† 10,000,000 up to Matlab 7 .6 (R2008a); 100,000 starting with Matlab 7 .7 (R2008b) .
‡ 1,000,000 up to Matlab 7 .6 (R2008a); 10,000 starting with Matlab 7 .7 (R2008b) .
§ 110,000,000 up to Matlab 7 .6 (R2008a); 1,000,000 starting with Matlab 7 .7 (R2008b) .
¶ 0 up to Matlab 7 .6 (R2008a); -blockIncrement starting with Matlab 7 .7 (R2008b) .
†† this appears to be the standard case for uicontrols — also see for example in editboxes: http://www .mathworks .com/

matlabcentral/newsreader/view_thread/244383 (or http://tinyurl .com/dzhk5c) .

K13163_Book.indb 418 11/8/2011 8:09:23 PM

© 2012 by Taylor & Francis Group, LLC

www.mathworks.com

419Customizing MATLAB® Controls

Orientation ◾ — (default=0) sets the scrollbar orientation: 0=horizontal; 1=vertical .
there is no corresponding Matlab property: Matlab automatically determines
the slider orientation based on the size of the uicontrol: if the control is more wide than
tall, then a horizontal orientation is used, otherwise a vertical orientation is used . Using
the Java Orientation property, we can override this behavior to specify wide vertical
or narrow horizontal sliders:

Wide vertical slider Narrow horizontal slider

Sliders (or rather, JScrollBars) have a single non-standard callback:

adjustmentValueChangedCallback ◾ — fired continuously when the scrollbar track
or an arrow button is clicked, or when the knob is dragged . Compare this with the
standard Matlab Callback, which is only fired when the mouse button is released .
this has been an ongoing complaint from Matlab users for many years (e .g ., here89),
which can easily be solved by using the Java callback .

Note: MathWorks is indeed aware of this issue, as evidenced by their addition of an
internal ActionEvent event to the slider’s schema.class object, as an alternative to using
adjustmentValueChangedCallback . ActionEvent is the method used by several built-in
Matlab functions, such as imscrollpanel:

>> hSlider = uicontrol('Style','slider', ...);
>> hcSlider = classhandle(handle(hSlider));
>> hcSlider.Events.get
 Name: 'actionEvent'
 EventDataDescription: 'action Event'

>> handle.listener (hSlider, 'actionEvent', @myCallbackFunction);†

6.9 Text label

uicontrol(‘Style’,‘text’) uses a com.mathworks.hg.peer.LabelPeer$1 class that extends
Matlab’s com.mathworks.hg.peer.utils.MultilineLabel class, which itself extends
Swing’s standard javax.swing.JComponent class .90 It has no sub-components .

† In R2008b we can also use the addlistener function, but in earlier Matlab releases addlistener only worked for Java
objects .

K13163_Book.indb 419 11/8/2011 8:09:23 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming420

LabelPeer$1 shares some formatting properties with pushbuttons, described in Section 6 .1
(specifically, border, Horizontalalignment, Verticalalignment) . In addition, LabelPeer$1
has the following interesting property:

lineWrap ◾ — (default=true) a flag indicating whether the label’s string should wrap
onto a new line if the control’s width is smaller than the string label’s extent . there is
no corresponding Matlab property .

Matlab’s text uicontrol is pretty bland “out-of-the-box” because it is created as a simple
borderless label . In some cases, it may be advisable to make the text label noticeable (e .g ., for
displaying alerts or error messages) .91 this can be achieved by changing the font (which can be
done via Matlab properties), background color, and/or by adding a border, as explained in
Sections 3 .3 .1, 6 .1, and 6 .5 .1 .

as an alternative to the limited text uicontrol, we can use the text function (which supports
tex/latex formatting), a borderless button, or a javacomponent with JLabel .

HtMl formatting is unfortunately NOt supported by LabelPeer$1’s text field — it is only
relevant for the tooltip . as noted in Section 3 .3 .3, we can overcome this limitation by using a
standard Java Swing JLabel, which does support HtMl:92

%show the 'for all' and 'beta' symbols and other HTML formatting
str = '<html>∀β bold<i>label';
jLabel = javaObjectEDT('javax.swing.JLabel',str);
[hcomponent,hcontainer] = javacomponent(jLabel,[100,100,80,20],gcf);

HtMl label

Note: for styled labels consider the other alternatives presented in Section 5 .5 .1 .

In many cases, it is useful to use a com.mathworks.mwswing.MJLabel rather than its
JLabel superclass, because of MJLabel’s tipWhentruncatedEnabled property:

str = 'This is an MJLabel string';
jLabel = javaObjectEDT('com.mathworks.mwswing.MJLabel',str);
jLabel.setTipWhenTruncatedEnabled(true);
[hcomponent,hcontainer] = javacomponent(jLabel,[10,50,50,30],gcf);

K13163_Book.indb 420 11/8/2011 8:09:25 PM

© 2012 by Taylor & Francis Group, LLC

421Customizing MATLAB® Controls

Note that MJLabel also support HtMl, but we need to duplicate the initial “&” in the text
string because MJLabel removes it as a mnemonic indicator by default (unless a second optional
argument is passed to setText(text,mnemonicFlag) with a false value) . also note that HtMl
text always wraps and does not truncate:

str = '<html>&∀β bold<i> label';
jLabel.setText(str);

HtMl label before leading “&” duplication.and after “&” duplication

this default behavior of setText(text) is misleading — one would have expected compatibility
with JLabel’s setText(text), meaning a default value of false for the optional mnemonicFlag,
rather than true . For this reason, the following would give the same results (note that the leading
“&” is not duplicated; also note the extra mnemonicFlag = false input argument to setText):

% Note: the '&' is not duplicated; extra setText flag = false
str = '<html>∀β bold<i> label';
jLabel.setText(str, false);

Same effect with mnemonicFlag = false instead of “&” duplication (See color insert.)

the mnemonic functionality is a very useful feature when combined with the setLabelFor()
method: labels can be associated with another component (e .g ., an adjacent editbox) such that
pressing the label’s mnemonic hot-key will bring the associated component into focus:

% Create the editbox
hEdit = uicontrol('style','edit','pos',[70,10,100,20]);
set(hEdit,'string','Initial value');
jEdit = findjobj(hEdit);

K13163_Book.indb 421 11/8/2011 8:09:26 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming422

% Create the label
str = 'My &data:'; % mnemonic hotkey = <alt> -D
jLabel = javaObjectEDT('com.mathworks.mwswing.MJLabel',str);
[hcomponent,hcontainer] = javacomponent(jLabel,[10,10,50,20],gcf);

% Synchronize the label and figure background colors
color = get(gcf,'Color');
colorCells = mat2cell(color,1,[1,1,1]);
jLabel.setBackground(java.awt.Color(colorCells{:}));

% associate the label with the editbox
jLabel.setLabelFor(jEdit.java);

Editbox selected after pressing <Alt>-D (the label’s mnemonic)

the mnemonic hot-key functionality can be turned on and off at will, using MJLabel’s
setArmed(flag) method:

jLabel.setarmed(false);

Same figure with label disarmed (note the missing underscore in the label);
<Alt>-D now activates the Desktop menu item

com.mathworks.widgets.HyperlinkTextLabel is another HtMl-aware multi-line label
component, which is explained in detail in Section 5 .5 . this component is particularly advanta-
geous for displaying hyperlinks, as explained there . additional methods of displaying hyper-
links are discussed in Sections 3 .3 .1, 6 .5 .2, 8 .3 .1, and 8 .3 .2 .

6.10 Frame

uicontrol(‘Style’,‘frame’) uses the com.mathworks.hg.peer.FramePeer$1 class that extends
Matlab’s com.mathworks.mwswing.MJPanel class, which itself extends Swing’s standard
javax.swing.JPanel class .93 It has no sub-components .

K13163_Book.indb 422 11/8/2011 8:09:27 PM

© 2012 by Taylor & Francis Group, LLC

423Customizing MATLAB® Controls

HtMl formatting is generally irrelevant for this control — it is only relevant (and sup-
ported) for the tooltip .

LabelPeer$1 is actually a simple JPanel that has a simple border (a javax.swing.bor-
der.LineBorder object), which can be customized as explained in Sections 3 .3 .1, 6 .1, and 6 .5 .1
(Single-line editbox) . as such, it does not have any interesting formatting properties, methods
or callbacks (except the border) . For this and many other reasons, it is advisable to use
Matlab uipanel wherever frames were considered for use — read the following section for
more details .

6.11 Uipanel

uipanel is considered a UI control although it is created using a dedicated function (uipanel)
rather than the uicontrol function . uipanel uses a standard java.awt.Panel with a single com.
mathworks.hg.peer.LabelPeer$1 sub-component for the panel’s title (this is the same object
used for text uicontrols — see Section 6 .9) . Since text labels do not support HtMl formatting,
the uipanel’s title similarly does not support HtMl . However, HtMl is indeed supported for
the uipanel’s tooltip .

the panel’s title handle can be retrieved by inspecting the panel’s children (be careful not to
confuse the title with other possible panel children) . the title handle can also be retrieved
directly, using the undocumented Matlab property titleHandle:

hTitle = findall(hPanel, 'parent',hPanel, 'style','text');
hTitle = get(hPanel,'TitleHandle') % a direct alternative

We can use this handle to modify the panel’s title to any control . For example,

titlePos = get(hTitle,'position');
titlePos(3) = 70;
set(hTitle,'style','checkbox','string','all options','pos',titlePos);

Note that if uipanel is created with no title (or an empty one), no java.awt.Panel nor com.
mathworks.hg.peer.LabelPeer$1 sub-component are created (see Section 7 .3 .3) . Only when
the panel’s title is updated are these two objects created . If the title is then reset to “”or [], these
Java objects are made invisible (but not deleted) .

Unfortunately, it seems that only the panel’s title object is customizable at the Java level:
Unlike other uicontrols, uipanel itself does not have any accessible Java peer object, and so

K13163_Book.indb 423 11/8/2011 8:09:27 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming424

cannot be customized at the Java level . It appears that the HG information is stored elsewhere
and that the panel is painted directly onto the figure’s canvas .

If we need customizable panel layout94 or borders (see Sections 3 .3 .1, 6 .1, and 6 .5 .1), then we
have to use a JPanel object, and this will force us to use Java controls for all the components
contained within the panel (see Section 3 .8) . We cannot present a Matlab plot axes within
rounded panel borders, for example . this is indeed a great pity .

6.12 Tooltips†

all uicontrols, just like all Swing components, have tooltips . In standard documented/sup-
ported Matlab, the only thing which can be customized in tooltips is their text contents . We
have already shown in Section 3 .3 .3, that tooltips support HtMl contents, which can lead to
very innovative and informative tooltips, which can even display images .

but HtMl formatting is not the only thing that can be customized in tooltips . In this sec-
tion, we shall present several other usages, which can easily be extended by interested readers .

6.12.1 Displaying a Tooltip on Disabled Controls95

One issue with the stock Matlab uicontrol tooltips is that if we turn the uicontrol’s Enable
property to “inactive” or “off”, its tooltip no longer displays . this is the behavior that we nor-
mally want, but occasionally we wish to display a tooltip on a disabled control, for example, to
explain why the control is disabled .

We can use the findjobj utility (see Section 7 .2 .2) to find the Java handle for the uicontrol . this
handle can then be used to set the tooltip text . the tooltip will display if we disable the control
using its Java handle’s Enabled property rather than the Matlab handle’s Enable property:

hButton = uicontrol('String','Button');
jButton = findjobj(hButton);
set(jButton,'Enabled',false);
set(jButton,'ToolTipText','This is disabled for a reason');

as any Java object, properties can also be set using corresponding accessor methods:

javaMethodEDT('setEnabled',jButton,false);
javaMethodEDT('setToolTipText',jButton,'Button is disabled for a reason');

tooltip on a disabled uicontrol

† the bulk of this section was contributed by Matthew (Matt) Whitaker (http://bit .ly/8YFX7W) .

K13163_Book.indb 424 11/8/2011 8:09:27 PM

© 2012 by Taylor & Francis Group, LLC

http://bit.ly

425Customizing MATLAB® Controls

Unfortunately, this hack does not work for “inactive” controls . there is no direct Java anal-
ogy for inactive controls — it is a Matlab extension . It appears that Matlab somehow
intercepts mouse events associated with inactive controls . Section 6 .12 .4 explains how event
callback can be used to display tooltips for such controls .

as an alternative for inactive edit-box controls, we can simulate the inactive behavior by set-
ting the Java object’s Editable property (or by using its setEditable() accessor method), then
setting the tooltip . Note that the extremely useful Java Editable property is unavailable in the
Matlab handle, for some inexplicable reason:

hEditbox = uicontrol('String','Edit Text','Style','edit');
jEditbox = findjobj(hEditbox);
set(jEditbox,'Editable',false);
set(jEditbox,'ToolTipText','Text is inactive for a reason');

tooltip on a non-editable editbox

6.12.2 Displaying a Tooltip on Truncated Text
If we want to conditionally display a tooltip for an editbox uicontrol when the text exceeds the
control’s width, we can use the tipWhentruncatedEnabled property (or its corresponding
setTipWhenTruncatedEnabled() method) . this will display a tooltip with the editbox contents
if the string is shown truncated . this saves the user from having to scroll through the control to
see its contents . I often use this for edit controls that may contain long path names:

hEditbox(1) = uicontrol('Style','edit','Units','norm','Pos', ...
[0.1,0.8,0.4,0.05], 'String','Too Short');

hEditbox(2) = uicontrol('Style','edit','Units','norm','Pos', ...
[0.1,0.7,0.2,0.05], 'String','Long Enough to Display a Tool Tip');

jEditbox1 = findjobj(hEditbox(1));
jEditbox2 = findjobj(hEditbox(2));

% property-based alternative
set(jEditbox1,'TipWhenTruncatedEnabled',true);

% method-based alternative
javaMethod('setTipWhenTruncatedEnabled',jEditbox2,true);

K13163_Book.indb 425 11/8/2011 8:09:27 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming426

TipWhenTruncatedEnabled tooltip

the tipWhentruncatedEnabled property is also available for multi-line editboxes, but
has (obviously) no effect when scrollbars are present . also note that setting the
tipWhentruncatedEnabled property to true overrides any previous tooltip that might have
been set for the editbox .

Finally, note that the tipWhentruncatedEnabled property can also be set for the editbox
component of popup-menu (aka drop-down) controls, after they have been set to be editable
using their Java Editable property (note that both properties are false by default for Matlab
uicontrols) . In the following screenshot, the drop-down’s editbox component contained an
HtMl snippet that is shown unformatted within the edit-box and HtMl-formatted in the de-
truncated tooltip:

De-truncated HtMl-format tooltip

6.12.3 Controlling Tooltip Timing
as you have probably noticed, there is a slight delay between the time the mouse enters the
control and when the tooltip actually appears . If we display a tooltip over a control for suffi-
ciently long, the tooltip will then disappear . Sometimes the default delays are too slow or fast
for our application . these delay times can be controlled using the javax.swing.

ToolTipManager .96 ToolTipManager sets these parameters globally (including for Matlab
desktop components), but they are not persistent between Matlab sessions .

Some examples using the ToolTipManager:

btn = uicontrol('String','Button','Tooltip', ...
 'This is a button.','Pos',[100,100,75,25]);

txt = uicontrol('Style','edit','String','Edit Text', ...
 'Tooltip','This is editable text','Pos',[100,50,75,25]);

K13163_Book.indb 426 11/8/2011 8:09:28 PM

© 2012 by Taylor & Francis Group, LLC

427Customizing MATLAB® Controls

% Use a static method to get ToolTipManager object
tm = javax.swing.ToolTipManager.sharedInstance;

% Get the delay before display in milliseconds (=750 on my system)
initialDelay = javaMethodEDT('getInitialDelay',tm);

% Set tooltips to appear immediately
javaMethodEDT('setInitialDelay',tm,0);

% Get delay before tooltip disappears (=10000 (10 sec) on my system)
dismissDelay = javaMethodEDT('getDismissDelay',tm);

% Set the dismiss delay to 2 seconds
javaMethodEDT('setDismissDelay',tm,2000);

% Turn off all tooltips in system (including the Matlab desktop)
javaMethodEDT('setEnabled',tm,false);
javaMethodEDT('setEnabled',tm,true); % ...now turn them back on
javaMethodEDT('setInitialDelay',tm,initialDelay);
javaMethodEDT('setDismissDelay',tm,dismissDelay);

Note the extensive use of the javaMethodEDT function to execute Java Swing methods on
the Swing Event Dispatch thread (EDt — see Section 3 .2) .

6.12.4 Displaying a Tooltip on Inactive Controls97

Section 6 .12 .2 explained that displaying tooltips on inactive controls is problematic since
Matlab appears to intercept mouse events to these inactive controls, so even setting the tool-
tip on the underlying Java object will not work: the Java object appears not to receive the
mouse-hover event and therefore does not “know” that it is time to display the tooltip .

there is an undocumented Java technique98 (Java also has some . . .) for forcing a tooltip to
appear using the actionMap of the uicontrol’s underlying Java object to get at a postTip
action . a WindowbuttonMotionFcn callback could be used to check if the mouse was above
the inactive control, then triggering the forced tooltip display . We will need to chain existing
WindowbuttonMotionFcn callbacks and handle ModeManagers that override them . all this
is admittedly difficult to implement .

the Image Processing toolbox has the nice pair of iptaddcallback and iptremovecallback
functions that largely handle these issues . but for general Matlab, there seemed to be no
alternative until I† remembered that events trigger callbacks . I decided to use a listener for the
WindowButtonMotion event to detect the mouse motion . the advantage of using an event lis-
tener is that we do not disturb any existing WindowbuttonMotionFcn callback . We still need
to be somewhat careful that our listeners do not do conflicting things, but it is a lot easier than
trying to manage everything through the single WindowbuttonMotionFcn .

† Matt Whitaker .

K13163_Book.indb 427 11/8/2011 8:09:28 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming428

a demonstration of this appears below with some comments following (note that this code
uses the FindJObj utility — see Section 7 .2):

% Illustrates how to make a tooltip appear on an inactive control
function inactiveBtnToolTip
 h = figure('WindowButtonMotionFcn',@motionFcn);
 col = get(h,'color');
 lbl = uicontrol('Style','text', 'Pos',[10,160,120,20], ...
 'Background',col, 'Horizontalalignment','left');
 btn = uicontrol('Parent',h, 'String','Button', ...
 'Enable','inactive', 'Pos',[10,40,60,20]);
 uicontrol('Style','check', 'Parent',h, ...
 'String','Enable button tooltip', ...
 'Callback',@chkTooltipEnable, 'Value',1, ...
 'Pos',[10,80,180,20], 'Background',col);

 % Create the tooltip and postTip action
 jBtn = findjobj(btn);
 import java.awt.event.actionEvent;
 javaMethodEDT('setToolTipText',jBtn,'This button is inactive');
 actionMap = javaMethodEDT('getactionMap',jBtn);
 action = javaMethodEDT('get',actionMap,'postTip');
 actionEvent = actionEvent(jBtn, actionEvent.aCTION_PERFORMED, ...
 'postTip');

 % Get control's extents +2 pixels to compare to the mouse position
 margin = [-2,-2,4,4]; % define a narrow band around the control
 btnPos = getpixelposition(btn) + margin;
 left = btnPos(1);
 right = sum(btnPos([1,3]));
 btm = btnPos(2);
 top = sum(btnPos([2,4]));

 % add a listener on mouse movement events
 tm = javax.swing.ToolTipManager.sharedInstance; %tooltip manager
 pointListener = handle.listener(h,'WindowButtonMotionEvent', ...
 @figMouseMove);

 % inControl is a flag to prevent multiple postTip action triggers
 % while mouse remains in the button
 inControl = false;

 function figMouseMove(src,evtData) %#ok

 %get the current point
 cPoint = evtData.CurrentPoint;
 if cPoint(1) >= left && cPoint(1) <= right &&...
 cPoint(2) >= btm && cPoint(2) <= top
 if ~inControl %we just entered
 inControl = true;
 action.actionPerformed(actionEvent); %show the tooltip
 end %if

K13163_Book.indb 428 11/8/2011 8:09:28 PM

© 2012 by Taylor & Francis Group, LLC

429Customizing MATLAB® Controls

 else
 if inControl %we just existed
 inControl = false;
 %toggle to make it disappear when leaving button
 javaMethodEDT('setEnabled',tm,false);
 javaMethodEDT('setEnabled',tm,true);
 end %if
 end %if
 end %figMouseMove

 %illustrate we can still do regular window button motion callback
 function motionFcn(varargin)
 str = sprintf('Mouse position: %d, %d',get(h,'CurrentPoint'));
 set(lbl,'String',str);
 drawnow;
 end %motionFcn

 function chkTooltipEnable(src,varargin)
 if get(src,'Value')
 set(pointListener,'Enable','on');
 else
 set(pointListener,'Enable','off');
 end %if
 end %chkTooltipEnable

end %inactiveBtnToolTip

tooltip on an inactive button

a few comments on the code:

 1 . the code illustrates that we can successfully add an additional event listener to listen
for mouse motion events, while still invoking the original WindowbuttonMotionFcn
callback . this makes chaining callbacks easier .

K13163_Book.indb 429 11/8/2011 8:09:29 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming430

 2 . handle.listener objects have an Enable property that can be used to turn the listener
on and off . this can be seen in the chkTooltipEnable() callback for the check box in
the code above . If we wanted to permanently remove the listener we would simply use
delete(pointListener) . Note that addlistener adds a hidden property to the object being
listened to, so that the listener is tied to the object’s lifecycle . If we create a listener
directly using handle.listener we are responsible for its disposition . Unfortunately,
addlistener fails for HG handles on R2008a and earlier Matlab releases, so we use
handle.listener directly . On the other hand, addlistener does provide some extra san-
ity checks that handle.listener does not: it checks whether the listened handle actually
has the requested event (evoking an error if not); also, starting in R2009a, it checks that
the event name conforms to HG2 naming conventions (evoking a warning if not) .† See
appendix b for additional information on handle.listener .

 3 . the code illustrates a good practice when tracking rapidly firing events like mouse
movement of handling reentry into the callback while it is still processing a previous
callback . Here, we use the inControl flag to prevent the postTip action being continu-
ously fired during mouse hover over the control .

 4 . I was unable to determine if there is any corresponding action for the postTip to dis-
miss tips so I resorted to using the tooltipManager to toggle its own Enable property
to cleanly hide the tooltip as the mouse leaves the control .

 5 . Extensive use of the javaMethodEDT function was made to execute Java methods that
affect swing components on Swing’s EDt (see above) .

Each Matlab callback has an associated event with it . Some of the ones that might be
immediately useful at the figure-level are WindowbuttonDown, WindowbuttonUp,
WindowKeyPress, and WindowKeyRelease . they can all be accessed through handle.lis
tener or addlistener as in the code above . Unfortunately, events do not always have names that
directly correspond to the callback names . to see the list of available events for a particular
Matlab object, use the following code, which relies on another undocumented function —
classhandle . Here we list the events for gcf:

>> get(get(classhandle(handle(gcf)),'Events'),'Name')

ans =

 'SerializeEvent'

 'FigureUpdateEvent'

 'ResizeEvent'

 'WindowKeyReleaseEvent'

 'WindowKeyPressEvent'

 'WindowButtonUpEvent'

 'WindowButtonDownEvent'

 'WindowButtonMotionEvent'

 'WindowPostChangeEvent'

† HG2 event names do not have an “Event” suffix .

K13163_Book.indb 430 11/8/2011 8:09:29 PM

© 2012 by Taylor & Francis Group, LLC

431Customizing MATLAB® Controls

References

 1 . http://java .sun .com/javase/6/docs/api/javax/swing/Jbutton .html (or http://tinyurl .com/2tnxxc) .
 2 . http://UndocumentedMatlab .com/blog/button-customization/ (or http://tinyurl .com/yzaze7x) .
 3 . http://java .sun .com/docs/books/tutorial/uiswing/components/border .html (or http://bit .ly/afp0gt); http://

UndocumentedMatlab .com/blog/customizing-uicontrol-border/ (or http://bit .ly/cX76rK) .
 4 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/284619#754494 (or http://bit .ly/

c3PpcU) .
 5 . http://java .sun .com/javase/6/docs/api/javax/swing/JComponent .html#setDebugGraphicsOptions(int) (or

http://bit .ly/4b3vX2) .
 6 . http://java .sun .com/docs/books/tutorial/uiswing/components/menu .html#mnemonic (or http://tinyurl .

com/c3fdu8) .
 7 . http://www .mathworks .com/help/techdoc/ref/uicontrol_props .html#bqxoims (or http://bit .ly/aE3NCi) .
 8 . http://java .sun .com/javase/6/docs/api/java/awt/Insets .html (or http://tinyurl .com/38calj) .
 9 . http://java .sun .com/docs/books/tutorial/uiswing/misc/focus .html (or http://tinyurl .com/5curo); also read

the very informative http://java .sun .com/javase/6/docs/api/java/awt/doc-files/FocusSpec .html (or http://
tinyurl .com/cqom4d) .

 10 . http://java .sun .com/javase/6/docs/api/javax/swing/abstractbutton .html#setMultiClickthreshhold(long)
(http://bit .ly/95l42l) .

 11 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/145846 (or http://tinyurl .com/db5bjf) .
 12 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/163279#438778 (or http://tinyurl .

com/cnx52y); http://www .mathworks .com/matlabcentral/newsreader/view_thread/161302#416409 (or
http://tinyurl .com/dfxqz3); http://www .mathworks .com/matlabcentral/newsreader/view_thread/99285
(or http://tinyurl .com/d8c64v) .

 13 . http://www .mathworks .com/support/bugreports/194025 (or http://tinyurl .com/mjoatj) .
 14 . http://java .sun .com/javase/6/docs/api/javax/swing/Jtogglebutton .html (or http://tinyurl .com/4aufxh) .
 15 . http://java .sun .com/javase/6/docs/api/javax/swing/JRadiobutton .html (or http://tinyurl .com/czz2or) .
 16 . http://java .sun .com/javase/6/docs/api/javax/swing/JCheckbox .html (or http://tinyurl .com/34lppe) .
 17 . http://java .sun .com/javase/6/docs/api/javax/swing/buttonGroup .html (or http://tinyurl .com/d9k36z) .
 18 . http://www .jidesoft .com/javadoc/com/jidesoft/swing/tristateCheckbox .html (or http://bit .ly/9lcWOG) .
 19 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/71720 (or http://tinyurl .com/

d2bsyk) .
 20 . http://www .mathworks .com/support/bugreports/194025 (or http://tinyurl .com/mjoatj) .
 21 . http://java .sun .com/javase/6/docs/api/javax/swing/JtextField .html (or http://tinyurl .com/2tpnjg) .
 22 . http://UndocumentedMatlab .com/blog/customizing-uicontrol-border/ (or http://bit .ly/cX76rK) .
 23 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/244383 (or http://tinyurl .com/dzhk5c) .
 24 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/284619#754494 (or http://bit .ly/

c3PpcU) .
 25 . http://java .sun .com/javase/6/docs/api/javax/swing/text/DefaultCaret .html (or http://tinyurl .com/cdg5ta) .
 26 . http://java .sun .com/javase/6/docs/api/javax/swing/text/Position .bias .html (or http://tinyurl .com/cranzr) .
 27 . http://java .sun .com/javase/6/docs/api/javax/swing/boundedRangeModel .html (or http://tinyurl .com/ckvxff) .
 28 . http://java .sun .com/javase/6/docs/api/javax/swing/text/PlainDocument .html (or http://tinyurl .com/

de6479); also read; http://java .sun .com/javase/6/docs/api/javax/swing/text/Document .html (or http://
tinyurl .com/33zp32) .

 29 . http://java .sun .com/docs/books/tutorial/uiswing/components/generaltext .html#document (or http://
tinyurl .com/5h38a) .

 30 . http://java .sun .com/products/jfc/tsc/articles/text/element_interface/ (or http://tinyurl .com/c8p99u) .
 31 . http://java .sun .com/docs/books/tutorial/uiswing/components/generaltext .html#undo (or http://tinyurl .

com/cmv8wk) .
 32 . http://java .sun .com/javase/6/docs/api/javax/swing/text/DocumentFilter .html (or http://tinyurl .com/cctt56) .
 33 . http://java .sun .com/docs/books/tutorial/uiswing/components/generaltext .html#filter (or http://tinyurl .

com/dackdp) .
 34 . http://java .sun .com/javase/6/docs/api/javax/swing/text/StyledDocument .html (or http://tinyurl .com/

d2ylgx) .

K13163_Book.indb 431 11/8/2011 8:09:29 PM

© 2012 by Taylor & Francis Group, LLC

www.mathworks.com
httpp://java.sun.com
http://UndocumentedMatlab.com
http://www.jidesoft.com
httpp://java.sun.com
http://UndocumentedMatlab.com
www.mathworks.com

Undocumented Secrets of MATLAB®-Java Programming432

 35 . http://java .sun .com/javase/6/docs/api/javax/swing/text/html/HtMlDocument .html (or http://tinyurl .
com/cnqpcj) .

 36 . Read introductions here: http://java .sun .com/j2se/1 .4 .2/docs/guide/imf/index .html (or http://bit .ly/aIf3jo)
and here: http://java .sun .com/products/jfc/tsc/articles/InputMethod/inputmethod .html (or http://bit .ly/
cgNcQo) . additional info: http://java .sun .com/javase/technologies/desktop/articles .jsp#I18N (or http://
bit .ly/9nlIXG) .

 37 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/285437#757783 (or http://bit .ly/
b5utRD) .

 38 . http://java .sun .com/javase/6/docs/api/javax/swing/JtextPane .html (or http://tinyurl .com/2sqmm6) .
 39 . http://java .sun .com/docs/books/tutorial/uiswing/components/text .html (or http://bit .ly/7duW9X) .
 40 . http://java .sun .com/javase/6/docs/api/javax/swing/JScrollPane .html (or http://tinyurl .com/2hp2we);

http://java .sun .com/docs/books/tutorial/uiswing/components/scrollpane .html (or http://tinyurl .com/
o64g). com.mathworks.hg.peer.utils.UIScrollPane extends com.mathworks.
mwswing.MJScrollPane which directly extends Swing’s javax.swing.JScrollPane .

 41 . http://java .sun .com/javase/6/docs/api/javax/swing/JViewport .html (or http://tinyurl .com/2r3a4s) .
 42 . For an overview of how to use scroll-panes, read http://java .sun .com/docs/books/tutorial/uiswing/

components/scrollpane .html (or http://tinyurl .com/o64g) .
 43 . http://UndocumentedMatlab .com/blog/setting-line-position-in-edit-box-uicontrol (or http://tinyurl .com/

dhe8yo) .
 44 . http://java .sun .com/javase/6/docs/api/javax/swing/text/StyledEditorKit .html (or http://tinyurl .com/cq5zxx) .
 45 . http://java .sun .com/javase/6/docs/api/javax/swing/text/StyledDocument .html (or http://tinyurl .com/

d2ylgx) .
 46 . http://java .sun .com/javase/6/docs/api/javax/swing/JEditorPane .html#registerEditorKitForContenttype

(java .lang .String,%20java .lang .String) (or http://tinyurl .com/dzhrg2) .
 47 . http://java .sun .com/docs/books/tutorial/uiswing/examples/components/textSamplerDemoProject/src/

components/textSamplerDemoHelp .html (or http://tinyurl .com/c27zpt) .
 48 . Example usage: http://javatechniques .com/blog/setting-jtextpane-font-and-color/ (or http://tinyurl .com/

dx673x) .
 49 . Example usage: http://java .sun .com/docs/books/tutorial/uiswing/components/generaltext .html (or http://

tinyurl .com/482pk9) .
 50 . http://java .sun .com/javase/6/docs/api/javax/swing/text/StyleConstants .html (or http://bit .ly/cCu6bY) .

also look at the internal classes: StyleConstants.CharacterConstants, Style-
Constants.ColorConstants, StyleConstants.FontConstants, and Style-
Constants.ParagraphConstants .

 51 . http://java .sun .com/docs/books/tutorial/uiswing/components/editorpane .html (or http://tinyurl .com/b7elr);
Java source code: http://java .sun .com/docs/books/tutorial/uiswing/examples/components/textSamplerDemo
Project/src/components/textSamplerDemo .java (or http://tinyurl .com/yvmf7r) .

 52 . http://java .sun .com/docs/books/tutorial/uiswing/examples/components/textSamplerDemoProject/src/
components/images/Pig .gif (or http://tinyurl .com/calqqu) .

 53 . http://java .sun .com/products/jfc/tsc/articles/text/element_interface/#changingCharacterattributes (or http://
bit .ly/c8NbqZ) .

 54 . http://java .sun .com/products/jfc/tsc/articles/text/element_interface/#changingParagraphattributes (or http://
bit .ly/chdaaN) .

 55 . http://java .sun .com/javase/6/docs/api/javax/swing/JEditorPane .html#getScrollabletracksViewport
Width() (or http://bit .ly/a8qDy7) .

 56 . a detailed description and tic-tac-toe usage example can be found here: http://java .sun .com/products/
jfc/tsc/articles/tictactoe/index .html (or http://tinyurl .com/chg3ob) .

 57 . http://java .sun .com/javase/6/docs/api/javax/swing/text/html/HtMl .tag .html (or http://tinyurl .com/cdo5fo) .
 58 . http://java .sun .com/javase/6/docs/api/javax/swing/text/html/HtMlEditorKit .InsertHtMltextaction .

html (or http://bit .ly/aODmK8) .
 59 . http://java .sun .com/docs/books/tutorial/uiswing/examples/components/textSamplerDemoProject/src/

components/images/Pig .gif (or http://tinyurl .com/calqqu) .
 60 . http://UndocumentedMatlab .com/blog/gui-integrated-html-panel/ (or http://bit .ly/7cNXYM) .

K13163_Book.indb 432 11/8/2011 8:09:30 PM

© 2012 by Taylor & Francis Group, LLC

http://java.sun.com
http://UndocumentedMatlab.com
http://javatechniques.com/

433Customizing MATLAB® Controls

 61 . http://stackoverflow .com/questions/1903516/matlab-displaying-markup-html-or-other-
format/1903990#1903990 (or http://bit .ly/5aYj7d) .

 62 . http://www .jroller .com/gfx/entry/be_ready_for_java_se (or http://bit .ly/4PKz2l) .
 63 . http://java .sun .com/javase/6/docs/api/javax/swing/Jlist .html (or http://tinyurl .com/3x52m2) .
 64 . http://java .sun .com/javase/6/docs/api/javax/swing/JScrollPane .html (or http://tinyurl .com/2hp2we); http://

java .sun .com/docs/books/tutorial/uiswing/components/scrollpane .html (or http://tinyurl .com/o64g).
com.mathworks.hg.peer.utils.UIScrollPane extends com.mathworks.mwswing.
MJScrollPane which directly extends Swing’s javax.swing.JScrollPane .

 65 . http://java .sun .com/javase/6/docs/api/javax/swing/JViewport .html (or http://tinyurl .com/2r3a4s) .
 66 . http://java .sun .com/javase/6/docs/api/javax/swing/DefaultlistCellRenderer .html (or http://tinyurl .com/

clhxet) . For a usage example read http://java .sun .com/javase/6/docs/api/javax/swing/listCellRenderer .
html (or http://tinyurl .com/28qs5u) .

 67 . http://java .sun .com/javase/6/docs/api/javax/swing/listModel .html (or http://tinyurl .com/4tv9ob) and its
default implementation http://java .sun .com/javase/6/docs/api/javax/swing/DefaultlistModel .html (or
http://tinyurl .com/dhkco7) .

 68 . http://java .sun .com/javase/6/docs/api/javax/swing/listSelectionModel .html (or http://tinyurl .com/38b2tk)
and its default implementation http://java .sun .com/javase/6/docs/api/javax/swing/DefaultlistSelection
Model .html (or http://bit .ly/cilKj8) .

 69 . http://java .sun .com/docs/books/tutorial/uiswing/components/list .html (or http://tinyurl .com/5h7mx);
http://java .sun .com/products/jfc/tsc/tech_topics/jlist_1/jlist .html (or http://tinyurl .com/2hf2qu) .

 70 . http://java .sun .com/javase/6/docs/api/javax/swing/listSelectionModel .html#setValueIsadjusting(boole
an) (or http://bit .ly/bHDCQJ) .

 71 . See related: http://www .mathworks .com/matlabcentral/newsreader/view_thread/169102 (or http://bit .ly/
eKeEa7) .

 72 . http://java .sun .com/javase/6/docs/api/javax/swing/listCellRenderer .html (or http://tinyurl .com/28qs5u) .
 73 . http://java .sun .com/javase/6/docs/api/javax/swing/Jlist .html#renderer (or http://tinyurl .com/c9nyac);

http://java .sun .com/javase/6/docs/api/javax/swing/listCellRenderer .html (or http://tinyurl .com/28qs5u);
http://java .sun .com/javase/6/docs/api/javax/swing/DefaultlistCellRenderer .UIResource .html (or http://
tinyurl .com/csvc79); http://java .sun .com/docs/books/tutorial/uiswing/components/combobox .html# ren-
derer (or http://tinyurl .com/86ljz) .

 74 . http://java .sun .com/javase/6/docs/api/java/awt/Rectangle .html (or http://tinyurl .com/ccnqxq) .
 75 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/277385 (or http://bit .ly/9jJ9ic) .
 76 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/278059#731584 (or http://bit .ly/

afSMmt) .
 77 . http://UndocumentedMatlab .com/blog/setting-listbox-mouse-actions/ (or http://tinyurl .com/ylpfcxa) .
 78 . http://java .sun .com/javase/6/docs/api/javax/swing/JCombobox .html (or http://tinyurl .com/3cfejq) .
 79 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/173313#445679 (or http://tinyurl .

com/d9gl9f) .
 80 . http://java .sun .com/javase/6/docs/api/javax/swing/DefaultComboboxModel .html (or http://tinyurl .com/

2lrpxu) .
 81 . http://java .sun .com/javase/6/docs/api/javax/swing/ComboboxModel .html (or http://tinyurl .com/cbsjhs) .
 82 . http://java .sun .com/javase/6/docs/api/javax/swing/listModel .html (or http://tinyurl .com/4tv9ob) .
 83 . http://java .sun .com/javase/6/docs/api/javax/swing/JtextField .html#setColumns(int) (or http://tinyurl .

com/c9hlcw) .
 84 . http://java .sun .com/javase/6/docs/api/javax/swing/JCombobox .html#setEditor(javax .swing .

ComboboxEditor) (or http://bit .ly/b4UasM) .
 85 . http://java .sun .com/javase/6/docs/api/javax/swing/listCellRenderer .html (or http://tinyurl .com/28qs5u) .
 86 . http://java .sun .com/docs/books/tutorial/uiswing/components/combobox .html#renderer (or http://tinyurl .

com/86ljz) .
 87 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/292881#784678 (or http://bit .ly/

aWbrPc) .
 88 . http://java .sun .com/javase/6/docs/api/javax/swing/JScrollbar .html (or http://tinyurl .com/32zssr) .
 89 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/144980 (or http://tinyurl .com/b99jnb) .
 90 . http://java .sun .com/javase/6/docs/api/javax/swing/JComponent .html (or http://tinyurl .com/yqp2u6) .

K13163_Book.indb 433 11/8/2011 8:09:30 PM

© 2012 by Taylor & Francis Group, LLC

httpp://java.sun.com
www.mathworks.com
http://UndocumentedMatlab.com
http://stackoverflow.com
http://www.jroller.com
http://java.sun.com

Undocumented Secrets of MATLAB®-Java Programming434

 91 . http://www .mathworks .se/matlabcentral/newsreader/view_thread/246424 (or http://tinyurl .com/ybnua54) .
 92 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/265569 (or http://tinyurl .com/yjhgcns) .
 93 . http://java .sun .com/javase/6/docs/api/javax/swing/JPanel .html (or http://tinyurl .com/39qfmh) .
 94 . See a discussion in http://java .sun .com/docs/books/tutorial/uiswing/components/panel .html
 95 . http://UndocumentedMatlab .com/blog/additional-uicontrol-tooltip-hacks/ (or http://bit .ly/appIpJ) .
 96 . http://java .sun .com/javase/6/docs/api/javax/swing/tooltipManager .html (or http://bit .ly/9fG6sV) .
 97 . http://UndocumentedMatlab .com/blog/inactive-control-tooltips-event-chaining/ (or http://bit .ly/c8voeY) .
 98 . http://UndocumentedMatlab .com/blog/spicing-up-matlab-uicontrol-tooltips/#comment-1173 (or http://

bit .ly/5oFn8M) .

K13163_Book.indb 434 11/8/2011 8:09:30 PM

© 2012 by Taylor & Francis Group, LLC

www.mathworks.com
httpp://java.sun.com
http://UndocumentedMatlab.com
http://bit.ly

the Java Frame

7
Chapter

K13163_Book.indb 435 11/8/2011 8:09:31 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming436

Matlab figures are nowadays basically Java Swing objects, proxy derivatives of the Swing
JFrame container . this has not always been so: in Matlab releases prior to 7, figures were
coded using native platform functionality . In Matlab 7, this has apparently been recoded
using Java Swing, probably in an attempt to increase cross-platform compatibility and to reduce
code maintenance and development costs . the Matlab code wraps all the Java code to
ensure a smooth transition, and so Matlab programmers may remain oblivious of the under-
lying Java infrastructure .

However, we can take full advantage of the capabilities offered by Java if we step outside
Matlab’s documented boundaries into the undocumented realms of the Swing JFrame .
the door into these realms is using the Matlab figure’s undocumented JavaFrame property .
this is a hidden property, which cannot be seen when typing get(hFig) or set(hFig) .† However,
it is fully accessible, just like any other familiar figure property such as tag, UserData, or
Name . Note that this is a read-only (un-settable) property, just like the type, FixedColors, or
beingDeleted properties:

>> jFrame = get(gcf,'JavaFrame')
jFrame =
com.mathworks.hg.peer.FigurePeer@14b3c93

Starting with Matlab R2008a (7 .6), a warning message appears whenever the JavaFrame
property is accessed:

Warning: figure JavaFrame property will be obsoleted in a future release. For
more information see the JavaFrame resource on the MathWorks website.‡

For the moment, at least as of release R2011b (7 .13), these warnings are harmless, and can
easily be turned off:§

warning('off','MaTLaB:HandleGraphics:ObsoletedProperty:JavaFrame');

alternatively, retrieving the JavaFrame property of the figure’s handle()-ed handle does
not display any warning message:

jFrame = get(handle(gcf),'JavaFrame'); % no warning displayed

However, the warning may be a bad omen for things breaking down in some future Matlab
release . I shall be on the lookout for this and try to find workarounds if and when it happens . the
first place to look for answers if and when this happens should be this book’s website .1

MathWorks is currently evaluating whether to discontinue the JavaFrame property (causing
an application error if used), or to continue supporting it for backward compatibility . I encourage

† at least not normally, it can be seen, together with other undocumented properties, after typing . set(0
‘HideUndocumented’, ‘off’) . See http://UndocumentedMatlab .com/blog/getundoc-get-undocumented-object-properties/
(or http://bit .ly/ns3Cog) .

‡ the hyperlink links to http://www .mathworks .com/javaframe
§ this warning workaround is even used by Matlab itself, in functions such as javacomponent.m that use the

JavaFrame property .

K13163_Book.indb 436 11/8/2011 8:09:31 PM

© 2012 by Taylor & Francis Group, LLC

http://UndocumentedMatlab.com
http://bit.ly
www.mathworks.com

437The Java Frame

all users of this property to let MathWorks know how and why it is important to them, so that
they may be more inclined to preserve it . Users can do so by using the official feedback form:
http://www .mathworks .com/javaframe

7.1 Java Frame Properties and Methods

Once retrieved, the jFrame handle can be used to set several interesting properties which have
not been exposed as regular properties in the Matlab figure .

7.1.1 Window Minimization and Maximization
the JavaFrame’s Minimized and Maximized properties affect the window state . Note that
these properties are Java booleans which accept true/false (or 1/0), not the regular Matlab
‘on’/‘off’:

% Three alternative possibilities of setting Minimized/Maximized:
jFrame.setMinimized(true);
set(jFrame,'Minimized',true); % note interchangeable 1⇔true, 0⇔false
jFrame.handle.Minimized = 1;

jFrame follows Java convention: the method that retrieves boolean values is called
is<Propname>() instead of get<Propname> . In our case: isMaximized() and isMinimized():

flag = jFrame.isMinimized; % Note: isMinimized, not getMinimized
flag = get(jFrame,'Minimized');
flag = jFrame.handle.Minimized;

all Matlab releases from the past years have the Minimized and Maximized properties in
jFrame, but some old releases do not .2 I therefore advise to always prefer using the correspond-
ing jFrameProxy properties, rather than the jFrame ones, as explained in Section 7 .3 .7 .

7.1.2 Docking and Undocking
all Matlab figures, and most other Matlab windows, dialogs, and so on, are dockable
Clients within enclosing Groups, which can themselves be docked into enclosing Groups (see
Section 8 .1 for details) . Using the Java Desktop object, we can control the docking state and
target of these client windows and their Group containers .

Regular Matlab figures have two fully documented properties that affect docking:3

WindowStyle ◾ — sets the docking window’s state (normal/modal/docked)

DockControls ◾ — controls the display of docking controls in the figure

K13163_Book.indb 437 11/8/2011 8:09:31 PM

© 2012 by Taylor & Francis Group, LLC

www.mathworks.com

Undocumented Secrets of MATLAB®-Java Programming438

Using these properties presents several limitations: we cannot hide the DockControls when
a figure is docked . also, we cannot define a docking target — the Figures group is always auto-
matically used . both limitations can be overcome using the JavaFrame object handle — the
first limitation is overcome in Section 7 .3 .6; we can overcome the second limitation using the
JavaFrame’s GroupName property .

Setting nondefault docking groups can be useful in applications that open multiple figure win-
dows that need to be semantically grouped . For example, a monitoring application that opens sev-
eral real-time graphs may wish to have them grouped in a separate group from the main UI controls;
alternatively, graphs of input channels may be separated from output channels by using separate
groups . Control panels with separate internal resizable panels can also be implemented this way .

before setting the figure’s group, we need to be acquainted with another read-only JavaFrame
property, Desktop, which returns the reference of the main Matlab desktop .† Chapter 8
describes this reference and its uses in detail:

>> jFrame.getDesktop
ans =
com.mathworks.mde.desk.MLDesktop@146b111

the JavaFrame’s GroupName property affects the group to which the figure belongs when it
is docked (programmatically or by clicking its docking icon — see Section 7 .3 .6) .4 If the group
name does not exist, it needs to be created using jFrame .getDesktop.addGroup(groupName) .
these actions are combined in jFrame’s setDesktopGroup(jFrame.getDesktop,groupName)
method that automatically creates a new group if necessary . by default, frames belong to the
“Figures” group . Specifying any other groupName enables creating a new docking group or
docking in existing desktop groups . the list of existing group names can be retrieved via the
jFrame.getDesktop.getGroupTitles method (other desktop-related and group-related methods
are described in Section 8 .1) or Grouptitles read-only property .‡

For example, let us dock our figure into the Editor group:

>> get(jFrame.getDesktop,'GroupTitles')
ans =
 'Editor'
 'Figures'
 'Web Browser'
 'array Editor'§ % 'Variable Editor' on new releases
 'File Comparisons'¶ % 'File and Directory Comparisons'...
>> jFrame.setGroupName('Editor');
>> jFrame.setDesktopGroup(jFrame.getDesktop,'Editor'); % alternative

† this reference can also be retrieved by other means — see Chapter 8 (the Matlab Desktop) .
‡ the difference between them is that getGroupTitles returns an array of java.lang.String objects, while

get(. . .,‘Grouptitles’) returns a Matlab cell array of strings (char) which is easier to use in Matlab applications .
§ this is called “Variable Editor” on R2008a (Matlab 7 .6) onward .
¶ this is called “File and Directory Comparisons” on R2008a (Matlab 7 .6), later renamed “Comparison tool” in

R2011a (Matlab 7 .12) .

K13163_Book.indb 438 11/8/2011 8:09:32 PM

© 2012 by Taylor & Francis Group, LLC

439The Java Frame

Docking a figure in the Editor group

I have created a convenience utility for setting the figure docking based on the properties and
methods above . this utility, called setFigDockGroup, is available on the MathWorks File
Exchange .5

additional docking-related methods which might be of interest are:†

jFrame ◾ .getGroupName() or get(jFrame, ‘GroupName’)
jDesktop ◾ .addClient(clientComponent, Name, . . .)
jDesktop ◾ .getGroupMembers(groupName)
jDesktop ◾ .setGroupDocked(groupName, stateFlag)
jDesktop ◾ .setClientDocked(figureName, groupName, stateFlag)

also see some additional docking-related customizations in Section 7 .3 .6 .

7.1.3 UI-Related JavaFrame Properties
UIControlbackgroundCompatibilityMode property affects the appearance of Matlab
uicontrol backgrounds . It is an odd property: it is gettable as usual, via the three alternatives
above (jFrame.getUI . . ., get(jFrame,'UI . . .'), and jFrame.handle.UI...) . However,

† Used in %matlabroot%\toolbox\matlab\plottools\plottools .m .

K13163_Book.indb 439 11/8/2011 8:09:33 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming440

it can only be set via the first of these alternatives, using jFrame.setUIControlBackground-
CompatibilityMode . It also does not appear as a property in get(jFrame), although
get(jFrame,'UI . . .') works as expected

the value of UIControlbackgroundCompatibilityMode is normally 0 (=jFrame.
UICONTROLBaCKGROUND_OS), which lets the platform-dependent OS (Operating System)
decide on the uicontrol’s background appearance . It can also be set to 1 (=jFrame.
UICONTROLBaCKGROUND_COMPaTIBLE), which will cause all subsequent uicontrols in
the figure to have a background appearance which is compatible across platforms . this can eas-
ily be seen in button uicontrols on Windows, where the default XP OS background appearance
for buttons does not enable a background color, unlike older (aka Classic) Windows system .6
Note that in order to solve the XP issue, Matlab 7 .5 (R2007b)† was fixed to automatically
switch to Compatible appearance mode for uicontrols which have their backgroundColor
property set (right-most button in the following screenshot):

% Left-most button: normal (OS) background appearance
uicontrol('string','click me!','position',[10,10,100,20]);

% Middle button: Compatible-mode background appearance
bgMode = jFrame.UICONTROLBaCKGROUND_COMPaTIBLE;
jFrame.setUIControlBackgroundCompatibilityMode(bgMode);
uicontrol('string','click me!','position',[130,10,100,20]);

% Right-most button: back in OS mode, but automatically switched to
% Compatible mode because of the BackgroundColor
bgMode = jFrame.UICONTROLBaCKGROUND_OS;
jFrame.setUIControlBackgroundCompatibilityMode(bgMode);
uicontrol('string','click me!','background','y');

Windows l&F; different UIControlBackgroundCompatibilityModes values

Compare this to other look-and-feels (l&Fs):

Motif l&F

† Or rather, the newer JVM 1 .6 in Matlab 7 .5

K13163_Book.indb 440 11/8/2011 8:09:35 PM

© 2012 by Taylor & Francis Group, LLC

441The Java Frame

Metal l&F†

†

Windows Classic l&F

Of course, Matlab programmers always have the alternative option of using Swing con-
trols instead of Matlab uicontrols . the Swing controls enable a very high degree of flexibil-
ity in defining the control’s background appearance .7

the jFrame .showTopSeparator(flag) method controls the display of the divider line that
separates the figure content from the top menu/toolbar:

jFrame.showTopSeparator(false)

 before (normal) After (top separator hidden)
 jFrame.showTopSeparator(true) jFrame.showTopSeparator(false)

another useful method is getCurrentEdit() (despite the method name, there is no corre-
sponding CurrentEdit property) . this method returns the current editing component peer . this
can be useful, for example, when setting a figure-wide keyboard action callback and wishing to
determine which of several editing components (editboxes, etc .) triggered the callback .

7.1.4 Miscellaneous Other JavaFrame Properties
UserlastMethodID apparently reports the integer ID of the latest graphical user-interface
(GUI) method used in this jFrame . this ID can be translated into a text description via
jFrame’s getUserMethodDescription(id) method:

>> disp(jFrame.getUserLastMethodID)
 23

† the Metal l&F has a hover effect on the central button: a bluish border .

K13163_Book.indb 441 11/8/2011 8:09:38 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming442

>> disp(jFrame.getUserMethodDescription(jFrame.getUserLastMethodID))
setVisual

like any other Java object, the full list of jFrame properties and methods can be explored
using Matlab’s get, inspect, or methodsview functions, or by using my findjobj or uiinspect
utilities, as explained above . I have presented those properties and methods that I felt were of
special interest; readers are welcome to investigate the others .

the NativeWindowHandle and NativeChildWindowHandle read-only jFrame prop-
erties return OS-native handles of the window . Native-code programmers (e .g ., using C/C++
code) can access these handles in order to add graphics, modify the window decorations (the
blue frame surrounding the content), etc .8 a similar native handle is returned by jFrame.
fHG1Client.getWindow .getHWnd .† this latest HWND belongs to the top-level window
frame,9 whereas NativeWindowHandle appears to be the handle ID of the window’s
axis canvas (see the description below) . NativeChildWindowHandle is a superposition
of the OpenGl child-pane handle (in the listing below, the handle value would be
0x00D116a400D116a4):

HWND = int32(jFrame.getNativeChildWindowHandle/2^32);
HWND = bitshift(jFrame.getNativeChildWindowHandle,-32); %alternative

this is what the Spy++ application‡ reported for a top-level window frame (HWND) and its
axis canvas (NativeWindowHandle):

Top-level window frame (HWND)

Axis canvas (NativeWindowHandle)
OpenGL pane
(NativeChildWindowHandle)

Spy++ listing for a figure window (top tree) and the MAtlAb desktop (bottom tree)

† Or com.mathworks.util.NativeJava.getHWnd(jFrame.fHG1Client.getWindow) . In R2007b and earlier,
use fFigureClient rather than fHG1Client.

‡ Spy++ is bundled with Microsoft Visual Studio . a good alternative is the free Winspector utility (http://www .softpedia .
com/get/Security/Security-Related/Winspector .shtml or http://bit .ly/bfQJYg) .

K13163_Book.indb 442 11/8/2011 8:09:39 PM

© 2012 by Taylor & Francis Group, LLC

http://www softpedia.com
http://www softpedia.com
http://bit.ly

443The Java Frame

When we click any of these handles in Spy++, a small window is displayed with relevant
information . Here are screenshots for HWND and NativeWindowHandle:

 top-level window frame (HWND) Axis canvas (NativeWindowHandle)

7.2 FindJObj and the Java Frame Components Hierarchy

the jFrame handle can be used to access (traverse) the entire Java component hierarchy in the
figure . this is done using several possible alternatives, as shown below for R2008a (other
Matlab releases return different results, as explained below):

>> jContainer1 = jFrame.getaxisComponent.getParent.getParent†

jContainer1 =
com.mathworks.hg.peer.FigureComponentContainer[,0,0,560x420,layout=java
.awt.BorderLayout,alignmentX=0.0,alignmentY=0.0,border=,flags=9,
maximumSize=minimumSize=,preferredSize=]

>> jContainer2=jFrame.fHG1Client.getContentPane‡

jContainer2 =
com.mathworks.hg.peer.FigureComponentContainer[,0,0,560x420,...]

>> isequal(jContainer1,jContainer2)
ans =
 1

the GUI subcomponents hierarchy can be listed for any Java Swing container by using its
list() method, which dumps the listing in text format onto the Command Window . If we invoke
list() on the top-level figure ancestor, a Java container proxy of class com.mathworks.
hg.peer.FigureFrameProxy$FigureFrame, then we get a listing of the entire figure-
frame GUI hierarchy .

alternatively, simply click <Ctrl> + <Shift> + F1 in any Matlab window (including
the Desktop) to see the same frame hierarchy output . this is a built-in Java diagnostic tool,

† See, for example, the code within getfigurefordesktopclient.m .
‡ In R2007b and earlier, use fFigureClient rather than fHG1Client.

K13163_Book.indb 443 11/8/2011 8:09:39 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming444

available since very early Java GUIs,10 and by extension in all Matlab releases since 6 .0
(R12), since all Matlab GUI since R12 is Java-based .†

Here is the list generated by the top-level figure ancestor in R2008a, edited for clarity . Note
that different Matlab releases and/or different platforms might generate slightly different
hierarchy lists:

>> jFrame.fFigureClient.getWindow.list

com.mathworks.hg.peer.FigureFrameProxy$FigureFrame
 com.mathworks.mwswing.desk.DTRootPane
 javax.swing.JPanel
 javax.swing.JLayeredPane
 javax.swing.Box
 javax.swing.Box$Filler
 com.mathworks.mwswing.desk.DTTitleButton
 javax.swing.Box$Filler
 com.mathworks.hg.peer.FigureMenuBar
 com.mathworks.hg.peer.MenuPeer$FigureMJMenu
 com.mathworks.hg.peer.MenuPeer$FigureMJMenu
 com.mathworks.hg.peer.MenuPeer$FigureMJMenu
 ...

 com.mathworks.mwswing.MJPanel
 com.mathworks.mwswing.desk.DTClientFrame
 com.mathworks.mwswing.desk.DTInternalFrame$RootPane
 javax.swing.JPanel
 com.mathworks.mwswing.desk.DTToolBarContainer
 com.mathworks.mwswing.MJPanel
 com.mathworks.mwswing.MJToolBar
 com.mathworks.mwswing.MJButton
 com.mathworks.mwswing.MJButton
 com.mathworks.mwswing.MJButton
 com.mathworks.mwswing.MJButton
 com.mathworks.mwswing.MJButton
 com.mathworks.mwswing.MJToolBar$VisibleSeparator
 javax.swing.JSeparator
 com.mathworks.mwswing.MJToggleButton
 com.mathworks.mwswing.MJToolBar$VisibleSeparator
 ...
 com.mathworks.hg.peer.FigureClientProxy$FigureDTClientBase
 com.mathworks.hg.peer.FigureComponentContainer
 com.mathworks.hg.peer.FigurePanel$2
 com.mathworks.hg.peer.FigureComponentContainer
 com.mathworks.hg.peer.activeXCanvas
 com.mathworks.hg.peer.FigureaxisComponentProxy$_axisCanvas

† http://www .mathworks .com/support/solutions/en/data/1-9SFV31/ (or http://tinyurl .com/yje3edc); R12 had native (non-
Java) figures, so in R12 we can only list the Editor or the Desktop which are Java-based; in later Matlab releases, the
Matlab figure also became a listable Java frame .

⎫
⎬
⎭

Docking
icon

⎫
⎬
⎭

Main figure
menu bar

⎫
⎬
⎭

Main
figure
tool
bar

⎫
⎬
⎭

Main figure
content area

K13163_Book.indb 444 11/8/2011 8:09:40 PM

© 2012 by Taylor & Francis Group, LLC

www.mathworks.com

445The Java Frame

In Matlab 7 .7 (R2008b), the content-pane subcomponent hierarchy has changed slightly:

 ...
 com.mathworks.hg.peer.FigureClientProxy$FigureDTClientBase
 com.mathworks.mwswing.MJPanel
 com.mathworks.hg.peer.HeavyweightLightweightContainerFactory
$FigurePanelContainerHeavy
 com.mathworks.hg.peer.FigureComponentContainer
 com.mathworks.hg.peer.FigureaxisComponentProxy$_axisCanvas

7.2.1 FindJObj
Earlier in this book, I explained that all Matlab GUIs (except the axes plotting engine†) are
based on Java components . I have mentioned the findjobj utility as a means to access the under-
lying Java components to enable customizations that are unavailable in standard Matlab, as
well as to display the component hierarchy of complex Matlab containers .

the time has now come for a formal introduction of findjobj, explaining its uses and internal
mechanism . Of course, readers are welcome to continue using findjobj as a black-box utility, but
I believe that important insights can be gained from understanding its inner details . findjobj’s code
is available for free download on the MathWorks File Exchange .11 It is one of my favorite submis-
sions and is apparently well liked by users, being highly reviewed and highly downloaded .

findjobj has two main purposes:

 1 . Find the underlying Java object reference of a given Matlab handle, to enable pro-
grammatic object customization . Historically this was the original purpose,12 hence
the utility’s name . findjobj was meant to extend Matlab’s standard findobj function,
which does not find Java components .13

 2 . Display a container’s internal components hierarchy in a graphical user interface, to
facilitate visualization of complex containers . this was later extended to also display
and allow modification of the subcomponents’ properties and callbacks .14

7.2.2 Finding the Underlying Java Object of a MATlAB Control
findjobj’s heart is finding a control’s underlying Java handle . Unfortunately, this is not exposed
by Matlab except in very rare cases . I could not find a way to directly access the underlying
Java-peer handle . therefore, I resorted to getting the control’s enclosing Java frame (window)
reference, and then working down its subcomponents hierarchy until finding the Java object(s)
which satisfy the position and/or class criteria . to get the enclosing Java frame (aka
toplevelancestor), I use the Matlab figure’s undocumented JavaFrame property (see
Section 7 .1) . Since Matlab releases R2008a onward issue a standard warning when using
this property, I have turned off this warning in findjobj’s code (see discussion above) .

† See Section 7 .3 .1 .

K13163_Book.indb 445 11/8/2011 8:09:40 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming446

traversing the frame’s hierarchy presents several challenges: Main-menu items are
accessed using different functions than other Swing components or subcontainers and are not
 programmatically accessible until first displayed . I overcome this latter challenge by simulating
a menu-open action (menu .doClick(), see Section 4 .6 .4) when menus should be searched (this
feature is off by default since it takes several seconds and also changes the GUI focus) . For
“regular” subcontainers, sometimes we need to loop over getComponent(...) and in some other
cases over getChildAt(...) .

another challenge was presented by the fact that Java positions start at (0,0) in the top-
left corner increasing rightward and downward, rather than starting at (1,1) in the bottom-
left and increasing upward as in Matlab (see Section 3 .1 .1) . Moreover, Java positions are
always pixel-based and relative to their parent container, which is different from Matlab
(if the Matlab units is ‘pixels’, then the value is absolute; if ‘normalized’, then it returns
a nonpixel value) . to further complicate matters, some Matlab controls have a different
size than their Java counterparts: some controls have 5-pixel margins, while others do not;
some controls are shifted by a pixel or two from their container’s border (for a total offset
of up to 7 pixels), while some controls (such as popup-menus) have an entirely different
reported size . In theory, we could use the Matlab component’s undocumented Pixelbounds
property (much faster than getpixelposition), but unfortunately Pixelbounds turns out to be
unreliable, sometimes returning erroneous values . Finally, different Java containers/compo-
nents return their position differently: for some, it is a getLocation() method; for others, it
is getX()/getY(), and for others it is the X and Y properties (without any corresponding
getX()/getY() accessor methods!) .

Having finally overcome all these challenges (and quite a few smaller ones, documented
within the source code), I have wrapped the algorithm in a function interface that tries to emu-
late findobj’s . Using findjobj can now be as easy as

% Modify the mouse cursor when over the button
hButton = uicontrol('string','click me!');
jButton = findjobj(hButton);
jButton.setCursor(java.awt.Cursor(java.awt.Cursor.HaND_CURSOR))

Modified uicontrol Cursor—a Java property

 . . . or as complex as (for other examples of using findjobj, see Sections 4 .2 .5 and 4 .7 .3):

% Find all non-button controls with the specified label
jControls = findjobj('property',{'text','click me!'}, 'not','class','button');

K13163_Book.indb 446 11/8/2011 8:09:40 PM

© 2012 by Taylor & Francis Group, LLC

447The Java Frame

Note that when using findjobj in a GUIDE-generated m-file, we must place the call to
 findjobj in the m-file’s_OutputFcn() function rather than the _OpeningFcn() . the rea-
son is that _OpeningFcn() is invoked before the figure is made visible and the Java peers
are created . findjobj cannot find the non-existent Java peers at this point . On the other
hand, _OutputFcn() is invoked immediately after it is made visible, when the peers are in
place so findjobj can find them .

7.2.3 GUI for Displaying Container Hierarchy, Properties,
and Callbacks

When findjobj is called with no output arguments, the function infers that the user requests to
see the GUI version, rather than to get the control’s Java handle:

>> findjobj(gcf); % or: findjobj(gcf)

findjobj GUI

there are several noteworthy aspects in this graphical hierarchy presentation:
the hierarchy tree is displayed using the internal com.mathworks.hg.peer.

UITreePeer Java object . this is the object that underlies the semi-documented uitree func-
tion (see Section 4 .2) . the hierarchy subcomponents are presented as tree nodes, each having a
separate icon based on the component type . Where possible (toolbar buttons, for example), the
component’s icon image is used for its corresponding tree node . a javax.swing.
JProgressBar is presented while the tree is being populated, an action that can take a few
seconds depending on the target figure’s complexity . Some tree branches that are normally

K13163_Book.indb 447 11/8/2011 8:09:41 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming448

uninteresting are automatically collapsed: hidden containers (these are also grayed-out), menu-
bars, tool-bars, and scroll-bars . In parallel to the Java container hierarchy, a separate tree branch
is presented with the corresponding Matlab Handle-Graphics (HG) hierarchy .

Another findjobj GUI example — note the hidden (gray) items, the HG tree branch,
and the auto-collapsed MJToolBar container

Each node item gets a unique tooltip (see first GUI screenshot above), as well as a unique
context-menu (right-click menu) with actions that are relevant for that node:

Item-specific context-menu

K13163_Book.indb 448 11/8/2011 8:09:42 PM

© 2012 by Taylor & Francis Group, LLC

449The Java Frame

labels presented a particular challenge: Java labels do not store their text string in any acces-
sible property . So, while we could see the label handle in the GUI hierarchy, its contents string
could not be presented as for other controls . this was confusing in GUI figures that had many
text labels, which could not be distinguished . the solution was to associate Java labels with the
figure’s Matlab (HG) label handles by size and position — once a Java label was associated,
I got the text string from its HG handle .

Finally, a node-selection callback is attached to the tree that will flash a red border around
the GUI control when its corresponding Java node-item is clicked/selected:

Flashing red border around a selected toolbar icon using findjobj (See color insert.)

Once the tree was done, I set out to display and enable modifications of component proper-
ties and callbacks in separate adjacent panels . an internal com.mathworks.mlwidgets.
inspector.PropertyView component is used to display the properties . this is the JIDE
component (see Section 5 .7 .3) that underlies the built-in inspect function . to prevent a JIDE
run-time alert, com.mathworks.mwswing.MJUtilities.initJIDE() is called before
the JIDE component is first used . a label is added to the table’s header, displaying the currently
selected subcomponent’s class (e .g .,'javax.swing.JButton'), and a tooltip with a col-
or-coded list of its properties .

K13163_Book.indb 449 11/8/2011 8:09:43 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming450

the callbacks table was implemented using com.jidesoft.grid.TreeTable to
enable easy column resizing, but this is otherwise used as a simple data table . a checkbox was
added to filter out the 30-odd standard Swing callbacks, which are non-unique to the selected
subcomponent (tree node) . all the panels — tree, properties, and callbacks — are then placed
in resizable javax.swing.JSplitPanes and presented to the user .

Space here is limited and findjobj is some 3000 lines long, so I have obviously not covered
everything . I encourage readers to download the utility and explore the code .

7.2.4 The Java Frame Container Hierarchy
Here is findjobj’s view of the textual Java Frame listing that was presented earlier . as indicated
by findjobj, each subcomponent has a separate set of properties, methods, and callbacks . I
labeled some important hierarchy components in this screenshot . Each numbered label will
now be discussed separately in the following sections:

7

6

5

2

4

3

1

findjobj presentation of the Java Frame object hierarchy

7.3 Important Java Frame Containers

7.3.1 AxisCanvas
axisCanvas is the graphic java.awt.Canvas where Matlab plots all axes and graphs
as graphic elements . Unfortunately, I am unaware of a direct access to internal elements within
this graphic area — only via Matlab’s HG handles .

K13163_Book.indb 450 11/8/2011 8:09:44 PM

© 2012 by Taylor & Francis Group, LLC

451The Java Frame

>> jaxisCanvas = jFrame.getaxisComponent
jaxisCanvas =
com.mathworks.hg.peer.FigureaxisComponentProxy$_axisCanvas[faxisComponentProxy,
0,0,560x420]

the axisCanvas area overlaps the entire content pane area, but is always displayed
beneath the FigureComponentContainer which includes all uicontrols .15 this behavior
is due to their common parent FigurePanel$2’s OverlayLayout .16 this layout can be
reversed, hiding uicontrols and activeXes beneath the axes, by changing the component’s
Z-order within their FigurePanel$2, as follows:†

>> jFigPanel2 = jaxisCanvas.getParent;
>> awtinvoke(jFigPanel2,'setComponentZOrder',jaxisCanvas,0); % 1 = >0

Note that all uicontrols will now disappear since the axisCanvas is opaque and extends over
the entire content pane . this can be used to temporarily hide figure uicontrols (e .g ., when print-
ing GUIs or during heavy application processing) .

Other interesting properties and methods of axisCanvas:
the Enabled boolean flag property (default = true; settable via jaxisCanvas.

setEnabled(flag) or set(jAxisCanvas,‘Enabled’,’on/off’); gettable via isEnabled or get) controls
whether the figure axes are clickable or not . this may be useful, for example, to temporarily
prevent zoom-in/out until some calculation completes . Related flag property Focusable
(default = true) controls the ability to focus on the axes (e .g ., by using the tab key) .

the Visible flag property (default = true; set via setVisible, etc .) controls the visibility of all
figure axes . Setting this property should only be done on the EDt, using awtinvoke or javaMe
thodEDT . If set to 0 (awtinvoke(jAxisCanvas, ‘setVisible’,0)‡), all figure axes disappear at once
leaving only the uicontrols visible, and vice versa .

NativeWindowHandle reports the axes canvas handle ID, enabling external programs to
directly draw on this canvas . this is also the handle returned by jaxisCanvas.getPeer.
getHWnd and jFrame .getNativeWindowHandle . this handle is presumably used by Matlab
to draw on the canvas using JaWt§ via external libraries such as hg.dll on Windows . Note that
it is a different handle ID than the HWND returned for the top-level figure frame . Related
 read-only (nonsettable) property NativeWindowHandleValid is a boolean flag reporting
whether or not the handle ID is valid .¶ For example, after a figure window is closed,
NativeWindowHandle = 0 and NativeWindowHandleValid = false .

† this must be done on the EDt, hence the use of awtinvoke(); we can also use javaMethodEDT() in Matlab
R2008a+ .

‡ We cannot use set(jAxisCanvas,‘Visible’,0) here because it does not use the EDt, unless javaObjectEDT(jAxisCanvas)
was previously invoked . alternatively, we could have used the equivalent method awtinvoke(jAxisCanvas,‘hide’) .

§ http://en .wikipedia .org/wiki/Java_aWt_Native_Interface (or http://tinyurl .com/5omllu); http://java .sun .com/j2se/1 .5 .0/
docs/guide/awt/1 .3/aWt_Native_Interface .html (or http://tinyurl .com/dhnbtp) . the reason for using JaWt may be per-
formance, or perhaps MathWorks’ wish to reuse the existing code from Matlab 6 and earlier .

¶ Note that as a boolean Java flag, its accessor method is isNativeWindowHandleValid(), not getNativeWindowHandleValid().

K13163_Book.indb 451 11/8/2011 8:09:45 PM

© 2012 by Taylor & Francis Group, LLC

http://en.wikipedia.org
httpp://java.sun.com

Undocumented Secrets of MATLAB®-Java Programming452

Cursor can be used to get or set the cursor (mouse pointer) shape . Other Matlab func-
tions also do this (getptr, setptr) at the figure level, so this property is not very useful here .
However, it is very useful for specific components, for hover effects .
axisCanvas includes all the standard Swing callbacks mentioned in Chapter 3, including

focus, keyboard, and mouse actions . In fact, figure-level callbacks are only effective when set
on the axisCanvas, not on any other figure hierarchy container .17

axisCanvas is used in several places within this book: Section 3 .7 used axisCanvas for
trapping drag-and-drop (DND) events onto a Matlab figure; Section 3 .8 used axisCanvas to
reparent a Matlab figure’s axes onto a new Java container; and Section 10 .1 explained that the
UISplitPane utility uses axisCanvas for setting mouse callbacks that behave better than similar
callbacks at the figure level .

7.3.2 FigureComponentContainer
FigureComponentContainer is a transparent container for all the figure’s controls,
including Matlab uicontrols, Java Swing controls (added with javacomponent), and
activeX controls (added with actxcontrol) . It normally overlaps axisCanvas such that its
 contained controls are always painted on top of Matlab axes/plots . this is a consequence
of its default Z-order of 0, as explained above . this container can be directly accessed as
follows:

>> jControlsPanel = jFrame.getFigurePanelContainer.getComponent(0)
jControlsPanel =
com.mathworks.hg.peer.FigureComponentContainer[fComponentContainer,...]

FigureComponentContainer is a com.mathworks.mwswing.MJPanel object
(that extends javax.swing.JPanel) . this object shares many of the properties, methods,
and callbacks of axisCanvas (or most other Swing components for that matter), so these
shall not be repeated . Perhaps the single interesting property in this object is ComponentCount
(read-only), which holds the number of controls within the container (there is also a correspond-
ing getComponentCount() method) .

7.3.3 Component’s Private Container
Each uicontrol and activeX that is added to the figure will have a separate java.awt.Panel
container within the FigureComponentContainer . these containers cannot be accessed
directly, since they are dynamic in nature . However, they can be accessed as separate children
of the FigureComponentContainer, as follows:†

>> jControlsPanel = jFrame.getFigurePanelContainer.getComponent(0);
>> jButtonHGPanel = jControlsPanel.getComponent(0);

† Or by using the findjobj utility, as explained below .

K13163_Book.indb 452 11/8/2011 8:09:45 PM

© 2012 by Taylor & Francis Group, LLC

453The Java Frame

>> jButton = jButtonHGPanel.getComponent(0)
jButton =
com.mathworks.hg.peer.PushButtonPeer$1[,0,0,60x20,alignmentX = 0.0,...,
text = uicontrol button,defaultCapable = false]

Since java.awt.Panel is a heavyweight container (panel .isLightweight() = false), it
cannot be made transparent . Since all uicontrols, activeXes, and javacomponents are auto-
matically contained in such a Panel by Matlab,† this means that even if the control or
component is made transparent, this would still have no effect since their containing Panel is
opaque . this prevents plot axes from showing beneath transparent controls and is also the rea-
son for Matlab controls being Java peers, not simple Swing components .18 bill York,
Matlab GUI development manager, explained there were technical reasons for choosing
heavyweight Panel over the lightweight JPanel .‡

Note that jFrame.getActiveXCanvas() does not return the handle of an existing activeX
Canvas, as its name would imply . Rather, actxcontrol.m§ uses it to create a new activeX Canvas
within FigureComponentContainer, into which the activeX control is then embedded
using the native handle ID and the NativeWindowHandle and NativeWindowHandleValid
properties (and their corresponding accessor methods) .

7.3.4 FigurePanel or ContainerFactory
FigurePanel$2 is the common container panel for FigureComponentContainer and
axisCanvas . Its OverlayLayout manager is responsible for the axes/controls overlap
issue discussed above . It can be directly accessed as follows:

>> jFigPanel2 = jFrame.getFigurePanelContainer
jFigPanel2 =
com.mathworks.hg.peer.FigurePanel$2[fFigurePanel,0,0,560x420,layout =
javax.swing.OverlayLayout]

In Matlab 7 .9 (R2009b), com.mathworks.hg.peer.FigurePanel$2 was modified
to com.mathworks.hg.peer.HeavyweightLightweightContainerFactory$2,
and once again in Matlab 7 .12 (R2011a) to ...$FigurePanelContainerHeavy .
all these objects extend java.awt.Panel and appear to be very similar to each other .

† javacomponents are contained within a com.mathworks.hg.peer.HGPanel, which extends java.awt.Panel;
activeXes are contained within a com.mathworks.hg.peer.activeXCanvas, which extends the heavyweight java.
awt.Canvas via com.mathworks.hg.peer.axisCanvas; uicontrols used a simple java.awt.Panel until
R2009b, when Matlab started using com.mathworks.hg.peer.UIComponentHeavyweightContainer which
is simply a java.awt.Panel extension .

‡ http://www .mathworks .com/matlabcentral/newsreader/view_thread/268556#702864 (or http://bit .ly/7VNzo0) . Note
that while individual controls are opaque, the entire figure window can be made fully or partially transparent — see
Section 7 .3 .7 .

§ Feel free to look at its code: edit(‘actxcontrol’) .

K13163_Book.indb 453 11/8/2011 8:09:45 PM

© 2012 by Taylor & Francis Group, LLC

www.mathworks.com
http://bit.ly

Undocumented Secrets of MATLAB®-Java Programming454

7.3.5 DTToolBarContainer
DTToolBarContainer is the container for all figure toolbars . Each toolbar is con-
tained within a com.mathworks.mwswing.MJPanel, which is contained in the parent
DTToolBarContainer . this parent can be directly accessed as follows:

>> jToolBar = jFrame.fHG1Client.getFrameProxy.getToolBarContainer†

jToolBar =
com.mathworks.mwswing.desk.DTToolBarContainer[ToolBarContainer,0,...]

>> % an alternative:
>> jFigPanel2 = jFrame.getFigurePanelContainer;
>> jControlsPanel = jFigPanel2.getComponent(0);
>> jToolBar = jControlsPanel.getTopLevelancestor.getToolBar;

the toolbars themselves are accessible from their DTToolBarContainer parent using
jToolBar.getComponent(toolbarIndex).getComponent(0) .‡ the standard figure toolbars
only contain togglebuttons and separators:

>> jFrame.fFigureClient.getFrameProxy.getToolBarContainer.list
com.mathworks.mwswing.desk.DTToolBarContainer
 com.mathworks.mwswing.MJPanel
 com.mathworks.mwswing.MJToolBar
 com.mathworks.mwswing.MJButton
 com.mathworks.mwswing.MJButton
 com.mathworks.mwswing.MJButton
 com.mathworks.mwswing.MJButton
 com.mathworks.mwswing.MJButton
 com.mathworks.mwswing.MJToolBar$VisibleSeparator
 javax.swing.JSeparator
 com.mathworks.mwswing.MJToggleButton
 ...

Matlab figure toolbars are typically com.mathworks.mwswing.MJToolBar
objects .§ We can add our own JToolBar objects to their DTToolBarContainer parent
with a simple jToolBar.add() command (of course, this can also be done with Matlab’s
standard uitoolbar function) .

toolbars, like all other Swing containers, may also contain other Swing components, just
like the Matlab Desktop’s Workspace toolbar:

† In R2007b and earlier, use fFigureClient rather than fHG1Client .
‡ Remember that Java indices start at 0, so the first (topmost) toolbar will have an index of 0 .
§ com.mathworks.mwswing.MJToolBar extends javax.swing.JToolBar.

K13163_Book.indb 454 11/8/2011 8:09:45 PM

© 2012 by Taylor & Francis Group, LLC

455The Java Frame

findjobj presentation of a toolbar with non-standard controls (See color insert.)

Readers are referred to Section 4 .5, where toolbar creation and customization is extensively
discussed .

7.3.6 FigureMenuBar and Docking Controls
FigureMenuBar contains the figure’s menu . It can be accessed directly as so:

>> jMenuBar = jFrame.fHG1Client.getMenuBar†

jMenuBar =
com.mathworks.hg.peer.FigureMenuBar[,0,0,543x21,layout = javax.swing.plaf.basic.
DefaultMenuLayout,alignmentX = ...,paintBorder = true]

FigureMenuBar is basically just a container for MJMenuItems and MJMenus .
MJMenus are displayed as cascading submenus, as shown below (the appearance of menus,
menu items, and submenus is greatly affected by the platform and chosen l&F):

† In R2007b and earlier, use fFigureClient rather than fHG1Client .

K13163_Book.indb 455 11/8/2011 8:09:48 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming456

Cascading submenus

additional menus, submenus, and menu items may be added to their parent, using the par-
ent’s add() method . Section 4 .6 and many online resources19 describe how to set up and custom-
ize menus, and this shall not be repeated here .

a sibling container of the FigureMenubar and the content pane is a javax.swing.Box
object that contains the window docking controls, which are com.mathworks.mwswing.
desk.DTTitleButton objects . Docking is described in detail in Section 7 .1 .2 . Using these
DTTitleButton handles, we can hide/display the docking controls, even when this is not
allowed in regular Matlab:

>> set(gcf, 'WindowStyle','docked', 'DockControls','off')
??? Error using ==> set
Cannot set DockControls to 'off' while WindowStyle is 'docked'

Unfortunately, in the R2008a compiler, MathWorks removed the docking controls and
 disabled the figure docking properties .20 this can be easily overcome:†

jFrame = get(handle(hFig),'JavaFrame');
jFrame.fHG1Client.setClientDockable(true); %R2007b-: use .fFigureClient

7.3.7 FigureFrame
FigureFrame is the topmost component in the frame’s hierarchy . It represents the jFrame
window itself, although it is not itself a valid Swing container or component, but just a proxy
reference of it . It can be accessed directly as follows (in R2007b and earlier, use fFigureClient
rather than fHG1Client):

>> jFrameProxy=jFrame.fHG1Client.getWindow()
jFrameProxy=
com.mathworks.hg.peer.FigureFrameProxy$FigureFrame[fClientProxyFrame,
227,25,568x502,invalid,layout=java.awt.BorderLayout,title=Figure 1,resizable,
normal,defaultCloseOperation=DO_NOTHING_ON_CLOSE,rootPane=com
.mathworks.mwswing.desk.DTRootPane[,4,30,560x468,...], ...]

† http://UndocumentedMatlab .com/blog/docking-figures-in-compiled-applications/ (or http://bit .ly/l0GCDj) . In R2007b
and earlier, use fFigureClient rather than fHG1Client — refer to the blog article for additional details .

K13163_Book.indb 456 11/8/2011 8:09:48 PM

© 2012 by Taylor & Francis Group, LLC

http://UndocumentedMatlab.com
http://bit.ly

457The Java Frame

jFrameProxy can also be retrieved via other alternatives:

jFrame.fHG1Client.getContentPane.getTopLevelancestor() ◾
jFrame.getFigurePanelContainer.getComponent(0). ◾
getTopLevelancestor()
jControlsPanel.getRootPane.getParent() ◾ — jControlsPanel can be
replaced by any component reference†

javax.swing.SwingUtilities.getWindowancestor(jFrame. ◾
getaxisComponent)‡

beware of the potential pitfall of using the seemingly innocent jFrame.fFigureCli-
ent.getFrameProxy(): this will return a FigureFrameProxy object, that is an instance
of the FigureFrameProxy$FigureFrame’s container class, instead of the requested
FigureFrameProxy$FigureFrame itself .

While individual figure components cannot be made transparent (see Section 7 .3 .3),
FigureFrame can be used to set the entire figure’s transparency level, ranging from 0 .0
(fully-transparent) to 1 .0 (fully-opaque, the default figure value):§

com.sun.awt.aWTUtilities.setWindowOpacity(jFrameProxy,0.8);
jFrameProxy.repaint;

a semi-transparent window can be used for another interesting effect, of blurring .21 this
blurring effect is typically used to visually indicate a disabled or inactive window . the trick is
to overlay the main (blurred) window with an empty semi-transparent overlay window that has
the same size and position .
FigureFrame contains several useful properties and methods for Matlab applications:
HWnd, described above, is the native window handle ID that could probably enable modify-

ing the window frame and similar aspects, although I have never tried this myself .
alwaysOntop is a boolean flag (default = false) specifying whether or not the figure window

should always remain on top of all other windows .22 this top-most state is only applicable when
the window is shown (i .e ., not minimized or made invisible) . If two overlapping windows have this
flag set, then the last window whose flag was set or that was selected will be shown on top of the
other window . Note that clearing alwaysOntop does not hide or minimize the window — the

† this method can be used to retrieve FigureFrameProxy without directly using the JavaFrame property . basically,
javacomponent is ran with an invisible/transparent . JLabel, which is then used to get the RootPane and the Frame refer-
ences: http://www .mathworks .com/matlabcentral/newsreader/view_thread/104129#275318 (or http://tinyurl .com/dkfzn5) .

‡ this is the method used in editmenufcn, for example .
§ available on Java 6 update 10 and later, pre-bundled in Matlab R2009b (7 .9) and later, or as a retrofit (see Section 1 .8) . See

additional details in http://UndocumentedMatlab .com/blog/transparent-matlab-figure-window/ (or http://bit .ly/fykuiH) .

K13163_Book.indb 457 11/8/2011 8:09:48 PM

© 2012 by Taylor & Francis Group, LLC

www.mathworks.com
http://UndocumentedMatlab.com
http://bit.ly

Undocumented Secrets of MATLAB®-Java Programming458

window will remain in its previous (top-most) position, but it could now be overlapped by other
windows .

Not all Matlab platforms support alwaysOntop . this depends on the Operating System’s
capabilities . to check whether the target platform supports this functionality, check the
alwaysOntopSupported property (jFrameProxy.isAlwaysOnTopSupported) . If
alwaysOntopSupported = false, try alternative solutions on the File Exchange .23

the CloseOnEscapeEnabled flag (default = false) controls whether the window can be
closed by clicking the <Esc> keyboard button . this behavior is typically expected in popup dia-
logs and message-boxes, but not in complex GUI windows . For this reason, setting this flag to
true is mostly useful for small Matlab figures that act as popup notification windows .

DefaultCloseOperation — when a figure window is closed, in reality it is NOt disposed/
deleted, but merely hidden from view, thereby preserving an active reference to the frame
object and all its contained objects . this is because Matlab’s default frame-closing action is
not DISPOSE_ON_ClOSE (=2), but rather DO_NOTHING_ON_CLOSE (=0) . Internal
Matlab listener code does the actual cleanup, in effect mimicking Java’s default JFrame
closing action (HIDE_ON_CLOSE =1) .24 after a Matlab figure closes, it is still accessible
via java.awt.Frame.getFrames() . therefore, to prevent potential memory leaks when mul-
tiple Matlab figures are opened and closed, set the figure’s Frame DefaultCloseOperation
property to DISPOSE_ON_CLOSE:

jFrame.setDefaultCloseOperation(jFrame.DISPOSE_ON_CLOSE);
% or: set(jFrame,'DefaultCloseOperation',2);

Using EXIT_ON_CLOSE (=3) can be a nice way to exit Matlab when the user application
window closes25 (it also reportedly solves an issue of premature exit in compiled
applications26):

jFrame.setDefaultCloseOperation(jFrame.EXIT_ON_CLOSE);
% or: set(jFrame,'DefaultCloseOperation',3);

Undecorated — this flag property always has a true value, which cannot be modified . It indi-
cates that the frame window has a title bar and border which are set by the current l&F’s so-called
decoration . Unfortunately, we cannot modify this property . the reason for this is that Java prevents
removing window decorations after a window in displayed and we cannot access a figure’s Java
components before the window is displayed, so that is a bit of a catch-21 . One can try playing
around with his/her Java l&F’s properties (see Section 3 .3 .2), but this is not for the faint-hearted .

as suggested in Section 3 .8, we could theoretically create another undecorated pure-Java
JFrame and transfer the entire Matlab figure’s content onto this new (undecorated)
JFrame . In practice, implementing this causes numerous problems .27

another possible alternative, which I have not been able to successfully implement, is to
invoke jFrameProxy .dispose(), then setUndecorated(true), pack(), and finally show(true) .
this removes the decoration, but unfortunately all the content as well . . .

K13163_Book.indb 458 11/8/2011 8:09:48 PM

© 2012 by Taylor & Francis Group, LLC

459The Java Frame

WindowDecorationStyle in jFrameProxy’s single child (DTRootPane) does not appear
to make any difference, so this is also a dead-end with regard to window decoration .

the Enabled flag property (default = true), already discussed above for axes, is useful at this
(figure window) level: clearing this flag (setting to false or ‘off’) disables any interactive action
on the figure window, including clicks anywhere in the window frame (including the minimize/
maximize/close icons in the window’s decoration [frame]; main menu; toolbars and content),
as well as selecting the window (alt-tab in Windows) . this is very useful in preventing user
actions while some complicated computation is done . We must take special care to handle
 programming exceptions; otherwise, the window might stay in its inactive state and cannot
even be closed .

In effect, using this property can be an alternative to Matlab’s built-in (yet undocumented)
uisuspend and uirestore functions . Note that the fully-documented functions uiwait and uiresume
are similar in functionality and in name to the undocumented uisuspend and uirestore functions .
We should not confuse between these two function sets, and most importantly, should not confuse
between uiresume and uirestore after using their counterparts earlier in the code — odd things
might happen if we do so . also, note that uiresore has a minor bug in that it overwrites the figure’s
WindowScrollWheelFcn callback with the WindowKeyPressFcn value .†

I created a convenience utility called enableDisableFig, available on the Matlab File
Exchange,28 for setting figure modality based on jFrameProxy’s Enabled property .

Setting the Modal flag, or the figure handle’s WindowStyle property to ‘modal’ is safer than
using Enabled (because the window can be closed), and can often answer the requirements .29
While a modal window is less powerful than a disabled window in some aspects (e .g ., modal
 windows enable selection and closing), it has the advantage of safety and of locking the Matlab
desktop for input or selection . Users who wish can set both properties, thereby gaining an added
level of window modality, but if there is a bug somewhere, then they will need the Operating
System’s task-manager to kill Matlab, since neither the window nor the Matlab desktop will
be accessible .

MaximumSize and MinimumSize control the limits to which the window may be resized,
either interactively or programmatically:‡

% Enable window sizes between 300x200 and 400x300:
newMaxBounds = java.awt.Dimension(400,300); % width, height
jFrameProxy.setMaximumSize(newMaxBounds);
jFrameProxy.setMinimumSize(java.awt.Dimension(300,200))

% Clear all limitations
set(jFrameProxy,'MaximumSize',[],'MinimumSize',[]);

Minimized and Maximized flags control the window state accordingly . this feature has
long been a requested feature of Matlab figures, which is still not exposed by its HG handle,

† http://www .mathworks .com/support/bugreports/646025 (or http://bit .ly/drhhqa); apparently fixed in R2011a
(Matlab 7 .12) .

‡ Even when maximized, windows appear no larger than their stated MaximumSize .

K13163_Book.indb 459 11/8/2011 8:09:48 PM

© 2012 by Taylor & Francis Group, LLC

www.mathworks.com
http://bit.ly

Undocumented Secrets of MATLAB®-Java Programming460

but can easily be done via Java .† Note that these properties are Java booleans which accept true/
false (or 1/0), not the regular Matlab ‘on’/’off’:

% Three alternative possibilities of setting Minimized:
jFrameProxy.setMinimized(true);
set(jFrameProxy,'Minimized',true);
jFrameProxy.handle.Minimized = true;

When either the Maximized or Minimized properties are changed back to false, the win-
dow is restored to regular mode (its Restoredlocation and RestoredSize) .

Maximized and Minimized are mutually-exclusive, meaning that no more than one of them
can be 1 (or true) at any time . this is automatically handled by jFrameProxy — users only
need to be aware that a situation in which a window is both maximized and minimized at the
same time is impossible (duh!) .

Some Matlab releases have the Maximized and Minimized properties in jFrame
itself . However, because not all releases have this property,30 it is advisable to always use the
corresponding properties on jFrameProxy — this should be much more portable since these
are standard java.awt.Window properties, whereas jFrame is an internal unsupported
Matlab object that is prone to change between releases .

the Restoredlocation (a java.awt.Point(x,y) object) and RestoredSize (a java.
awt.Dimension(width,height) object) properties control the position and size of the
figure window after un-maximizing or un-minimizing .

the FocusableWindowState flag (default = true) controls whether the window can become the
active window . Clearing this flag is the standard mechanism for windows used as a floating palette
or toolbar and thus should be nonfocusable .31 Setting the flag on a visible window can have a delayed
effect on some platforms: the actual change may happen only when the window becomes hidden and
then visible again . to ensure consistent behavior across platforms, set the window’s focusable state
when it is invisible and then show it . Note that the similarly-named property Focusable, inherited
from java.awt.Component, appears to have no effect at the window level .

the read-only Focused flag can be read‡ in run-time (e .g ., within callback functions) to
determine whether or not the window is currently in focus . actions such as requesting focus
(jFrameProxy .requestFocus()) can then be applied accordingly .

Statusbar, Statusbartext, and StatusbarVisible were presented in detail in Section 4 .7
and shall not be repeated here .
jFrameProxy also contains several properties which are reflected in the HG handle: title

(equivalent to HG’s Name property), Modal (equivalent to WindowStyle = ‘modal’), Resizable
(equivalent to Resize), bounds (equivalent to Position), and so on .

† Spawning several submissions on the File Exchange that do exactly this . also see http://www . mathworks .com/
matlabcentral/newsreader/view_thread/82958 (or http://tinyurl .com/cfa4wt) .

‡ like all Java flags, using get(jFrameProxy,‘Focused’) or jFrameProxy.isFocused(), not jFrameProxy .getFocused().

K13163_Book.indb 460 11/8/2011 8:09:49 PM

© 2012 by Taylor & Francis Group, LLC

www.mathworks.com

461The Java Frame

among the nonproperty-related methods, we should note transferFocus() and transferFo-
cusBackward() that act like interactive alt-tab and alt-Ctrl-tab, transferring focus to the next/
previous window . also note resize(width,height) and requestFocus() .

additional nonstandard yet self-explanatory callbacks exposed by jFrameProxy are:

WindowactivatedCallback ◾ , WindowDeactivatedCallback
WindowOpenedCallback, WindowClosedCallback, ◾

 WindowClosingCallback
WindowIconifiedCallback, WindowDeiconifiedCallback ◾
WindowGainedFocusCallback, WindowlostFocusCallback ◾
WindowStateChangedCallback ◾

7.4 BeanAdapters

as explained in Section 3 .4, Matlab automatically generates Java-bean adapter wrapper
objects for Matlab handles . For example,

>> h = uicontrol('string','click me!'); % a simple button
>> class(java(handle(h)))
ans =
uicontrolBeanadapter0

as mentioned in Section 3 .4, these wrapper objects should not be confused with the actual
Java peer objects described earlier in this chapter . the adapter objects expose little more than
the basic functionality of the Matlab handles . On the other hand, the peer objects (obtain-
able using the findjobj utility) are much more powerful, exposing significantly more properties,
callbacks, and methods .

let us take a look at a simple button, for example:32

h = uicontrol('string','click me!'); % a simple button

% Beanadapter:
hj1 = java(handle(h));
disp(hj1.class); % => uicontrolBeanadapter0
m1 = methods(hj1); % => 140 methods
p1 = fieldnames(get(hj1)); % => 52 properties

% Java HG peer:
hj2 = findjobj(h);
disp(hj2.class); % =>
 javahandle_withcallbacks.com.mathworks.hg.peer.PushButtonPeer$1
m2 = methods(hj2); % => 347 methods
p2 = fieldnames(get(hj2)); % => 152 properties

References
 1 . http://www .UndocumentedMatlab .com/blog/JavaFrame (or http://bit .ly/97M1Cb) .
 2 . For example, http://www .mathworks .com/matlabcentral/newsreader/view_thread/151005#379698 (or

http://bit .ly/cCUjzk); http://www .mathworks .com/matlabcentral/newsreader/view_thread/155823 (or
http://bit .ly/dmzSK2) .

K13163_Book.indb 461 11/8/2011 8:09:49 PM

© 2012 by Taylor & Francis Group, LLC

http://UndocumentedMatlab.com
www.mathworks.com
http://bit.ly

Undocumented Secrets of MATLAB®-Java Programming462

 3 . http://www .mathworks .com/help/techdoc/creating_plots/f5-41409 .html (or http://bit .ly/8d5xi2) .
 4 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/126957#321453 (or http://bit .ly/8zJaYi) .
 5 . http://www .mathworks .com/matlabcentral/fileexchange/16650 (or http://tinyurl .com/cjw5la) .
 6 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/161302 (or http://tinyurl .com/c8x42g);

http://www .mathworks .com/matlabcentral/newsreader/view_thread/145846 (or http://tinyurl .com/db5bjf);
http://www .mathworks .com/matlabcentral/newsreader/view_thread/99285 (or http://tinyurl .com/d8c64v);
http://www .mathworks .com/matlabcentral/newsreader/view_thread/94240 (or http://tinyurl .com/d8kbz4) .

 7 . For example, http://www .mathworks .com/matlabcentral/newsreader/view_thread/147025 (or http://
tinyurl .com/c6hmhw) .

 8 a few examples on the File Exchange: http://www .mathworks .com/matlabcentral/fileexchange/2041 (or
http://bit .ly/inId6a); http://www .mathworks .com/matlabcentral/fileexchange/31437 (or http://bit .ly/
jxWkk6); http://www .mathworks .com/matlabcentral/fileexchange/3434 (or http://bit .ly/lNwF97) .

 9 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/73110 (or http://tinyurl .com/c93vno) .
 10 . http://java .sun .com/developer/techtips/1998/tt0909 .html#tip1 (or http://tinyurl .com/yapzb74) .
 11 . http://www .mathworks .com/matlabcentral/fileexchange/14317 (or http://tinyurl .com/bnprwc) .
 12 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/143275 (or http://bit .ly/5XPiv1) .
 13 . http://UndocumentedMatlab .com/blog/findjobj-find-underlying-java-object/ (or http://bit .ly/8YFRnE) .
 14 . http://UndocumentedMatlab .com/blog/findjobj-gui-display-container-hierarchy/ (or http://bit .ly/aZnrW9) .
 15 . http://www .mathworks .com/support/solutions/en/data/1-3Y3C84/ (or http://bit .ly/7aD4QO) .
 16 . http://java .sun .com/javase/6/docs/api/javax/swing/Overlaylayout .html (or http://tinyurl .com/ddwvf2) .
 17 . http://UndocumentedMatlab .com/blog/uicontrol-callbacks/#comment-22139 (or http://bit .ly/bexuYP) .
 18 . the technical differences between heavyweight and lightweight Java components are explained here:

http://java .sun .com/products/jfc/tsc/articles/mixing/index .html (or http://tinyurl .com/2cztz7); http://java .
sun .com/developer/technicalarticles/GUI/mixing_components/index .html (or http://bit .ly/6S4tjE) .

 19 . http://java .sun .com/docs/books/tutorial/uiswing/components/menu .html (or http://tinyurl .com/dsxgl); or
in www .java2s .com: http://www .java2s .com/tutorial/Java/0240__Swing/0400__JMenubar .htm (or
http://tinyurl .com/c4k43v), http://www .java2s .com/tutorial/Java/0240__Swing/0380__JMenu .htm (or
http://tinyurl .com/cjk7wg) and http://www .java2s .com/tutorial/Java/0240__Swing/0420__JMenuItem .
htm (or http://tinyurl .com/dacdce) .

 20 . http://www .mathworks .com/support/solutions/en/data/1-a6XFEt/ (or http://bit .ly/dbK2MU) .
 21 . http://UndocumentedMatlab .com/blog/blurred-matlab-figure-window/ (or http://bit .ly/ht4e86) .
 22 . Sample Matlab usage: http://www .mathworks .com/matlabcentral/newsreader/view_thread/128026 (or

http://bit .ly/bFztju); http://www .mathworks .com/matlabcentral/newsreader/view_thread/155685 (or http://
bit .ly/cbb54a) .

 23 . For example, http://www .mathworks .com/matlabcentral/fileexchange/8642 (or http://tinyurl .com/cj362s)
or http://www .mathworks .com/matlabcentral/fileexchange/20694 (or http://tinyurl .com/cwrtmc) . Note
that some other submissions (e .g ., http://www .mathworks .com/matlabcentral/fileexchange/17166, http://
www .mathworks .com/matlabcentral/fileexchange/14103 or http://www .mathworks .com/matlabcentral/
fileexchange/11684) are simply wrappers for the alwaysOntop Java property .

 24 . http://java .sun .com/docs/books/tutorial/uiswing/components/frame .html#windowevents (or http://bit .ly/
cH93xG) .

 25 . http://java .sun .com/javase/6/docs/api/javax/swing/JFrame .html#setDefaultCloseOperation(int) (or http://
bit .ly/aefKo9) .

 26 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/293841#849882 (or http://bit .ly/
nIVQV2) .

 27 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/284932#755936 (or http://bit .ly/
cb9l2d) .

 28 . http://www .mathworks .com/matlabcentral/fileexchange/15895 (or http://bit .ly/gR25Ok) .
 29 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/247071 (or http://tinyurl .com/ddxn9c) .
 30 . For example, http://www .mathworks .com/matlabcentral/newsreader/view_thread/151005#379698 (or

http://bit .ly/cCUjzk); http://www .mathworks .com/matlabcentral/newsreader/view_thread/155823 (or http://
bit .ly/dmzSK2) .

 31 . http://java .sun .com/javase/6/docs/api/java/awt/Window .html#setFocusableWindowState(boolean) (or http://
bit .ly/dp4XJI) .

 32 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/270589#709652 (or http://bit .ly/5vVnYt) .

K13163_Book.indb 462 11/8/2011 8:09:49 PM

© 2012 by Taylor & Francis Group, LLC

www.mathworks.com
httpp://java.sun.com
http://UndocumentedMatlab.com

the Matlab®
Desktop

8
Chapter

K13163_Book.indb 463 11/8/2011 8:09:49 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming464

the Matlab integrated development environment (IDE), commonly known as the Matlab
Desktop, has continuously evolved since its first Java-based Matlab 6 .0 (R12) appearance
back in 2000 . the Desktop now includes an integrated Editor, Command Window, Command
History, Profiler, Help browser, and other supporting tools .

In this chapter, I will discuss several customizations that can be done to these windows and
tools . It should be noted that the Desktop code-base is very extensive, so there may be many
customizations still undiscovered . Moreover, the Desktop remains under constant MathWorks
development, each new release adding new features . We should also keep in mind that undocu-
mented aspects sometimes change in new releases, and this is especially true for Desktop-
related features .

On the brighter side, the entire Desktop and related tools is nowadays Java-based . this
means that with entry hooks, that will be described shortly, we have a very wide range of
 possible customizations that can be achieved, as the following pages will show . We are only
limited by the time we can spare for investigation and trials .

We start by retrieving the Desktop’s Java handle . this can be done using several alternatives,
which are used by several built-in Matlab functions:†

>> jDesktop = com.mathworks.mde.desk.MLDesktop.getInstance
jDesktop =
com.mathworks.mde.desk.MLDesktop@e80d28

>> jDesktop = com.mathworks.mlservices.MatlabDesktopServices.getDesktop;

>> jDesktop = get(get(handle(gcf),'JavaFrame'),'Desktop');‡

Note that all these methods only work in Matlab 7 .0 and later releases . For Matlab 6
versions, we need to use a slightly different approach:1

>> jDesktop = com.mathworks.ide.desktop.MLDesktop.getMLDesktop;

In this chapter, I will mainly use the Matlab 7 object, as the Matlab 6 object is much
less versatile and customizable . Matlab 6 users can use the ideas presented in this chapter to
find corresponding functionality in their system, if it is available .

8.1 Desktop Functionality and layout

8.1.1 The Java Desktop Object
all Matlab windows, panels, figures, and Editor documents, are called Clients . these
Clients are all part of a containing Group, into which they can be docked . the default Groups
are ‘Editor’, ‘Figures’, ‘Web browser’, ‘Variable Editor’, ‘File and Directory Comparisons’

† For example, %matlabroot%/toolbox/matlab/general/desktop .m and %matlabroot%/toolbox/matlab/uitools/uiopen .m .
‡ For a discussion of the JavaFrame property, see Chapter 7 .

K13163_Book.indb 464 11/8/2011 8:09:49 PM

© 2012 by Taylor & Francis Group, LLC

465The MATLAB® Desktop

(or: ‘Comparison tool’), and ‘special figures’ . Even when undocked, Clients remain part of
their Group . this enables group-wide actions to be performed, such as closing the entire group,
or bringing the group’s last used Client into focus .

Some Clients are special — they can only exist once within a group . Example of this is the
Desktop’s Command Window, or the Figure group’s plot-editing panels . these special Clients
are called Singletons and have dedicated handling methods .

these are some of jDesktop object’s methods, many of which are Client and/or
Group-related:

activate() ◾ — brings the Matlab Desktop into focus . It does not change the Desktop’s
currently active window, unlike showCommandWindow() et al .
addGroup(. . .), addClient(. . .) ◾ — discussed in Section 7 .1 .2 .
attemptClose() ◾ , attemptMainFrameClose() — close the main Desktop window; equiv-
alent to exit/quit .
canClose() ◾ — returns a flag (normally true) indicating whether or not the main Desktop
can be closed .
canHaveMainFrame() ◾ — returns a flag (normally true) indicating whether or not the
main Desktop is displayable .
cascadeDockedDocuments(groupName) ◾ — causes all docked documents within the
specified group (e .g ., ‘Editor’ or ‘Figures’) to become cascaded (as opposed to maxi-
mized, for example) .
closeClient(client) ◾ — closes the specified client window (an Editor document or a
Figure window), if it is found . client is the Java Frame/Document’s handle, or its name
(e .g ., the figure title, Editor document filename or panel name†) . closeClient(clientName,
groupName) only closes the window if it is contained in the specified docking group,
thereby limiting accidental closures . there are also similar removeClient(...) methods .
closeGroup(groupName) ◾ — closes the specified group, if it is currently open (dis-
played), and all figures attached to it (not necessarily docked) .2 closeGroup(groupName,
dockedOnlyFlag, flag) — dockedOnlyFlag specifies whether to close undocked group
figures/documents; I do not know the purpose of the second flag . there are also similar
removeGroup(. . .) methods .
closeGroupSingletons(groupName) ◾ — closes singleton clients belonging to the speci-
fied group . Used by the built-in plottools function to close plot-editting panels . also
see: getSingletonTitles(), isSingleton(), restoreGroupSingletons() .
closeCommandHistory() ◾ , closeCommandWindow(), closeFileBrowser(), closeFile-
Exchange(),‡ closeHelpBrowser(), closeMainFrame(), closeProfiler(), closeProject-
Explorer(),§ closeWorkspaceBrowser() — closes the corresponding window/panel, if it

† ‘Command Window’, ‘Command History’, ‘Current Directory’, ‘Workspace’, ‘Help,’ ‘Profiler’, ‘Figure Palette’, ‘Plot
browser’, or ‘Property Editor’ .

‡ closeFileExchange() was added in R2009b (Matlab 7 .9) .
§ closeProjectExplorer() was removed in R2008b (Matlab 7 .7) .

K13163_Book.indb 465 11/8/2011 8:09:49 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming466

is currently open (displayed) . closeMainFrame(flag) indicates whether or not to save
the desktop layout .
disableThreadSafeGetMethods() ◾ — disable Command Window warnings and preven-
tion when trying to invoke non-thread-safe (EDt) methods . See Section 3 .2 (the Event
Dispatch thread) for a detailed discussion . Corresponding enableThreadSafeGet-
Methods() reverses this thread-unsafe behavior, and areThreadSafeGetMethods-
Enabled() returns the current state (default=false) .
getClearCommandAction() ◾ , getClearHistoryAction(), getClearWorkspaceAction() —
return a javax.swing.action3 object handle . accelerator keystrokes can be set via
setAccelerator, setAcceleratorSequence .
getClient(clientName, groupName) ◾ — returns a handle to the requested client window,
optionally specifying its containing group; getTitle(clientHandle) and getShort-
Title(clientHandle) return the client’s corresponding window name in the Editor, with
and without the file path, respectively .
getClientByName(internalName) ◾ returns the handle to the client that has this internal-
Name (the name returned by its getName() method or Name property) .
getClientGroup(clientName) ◾ returns the client’s containing group name .
getClientLocation(clientHandle) ◾ — returns a com.mathworks.mwswing.desk.
DTLocation object specifying the client’s location, docking state, restored loca-
tions, and other similar location data (see Section 8 .1 .3); getGroupLocation(groupName)
returns a similar object for the specified docking group; getLastUndockedLocation
(clientHandle) returns a similar object of the client’s location when undocked (or [] if
it was never undocked) .
getClientShortTitles() ◾ — returns an array of all the open client names; getClientTitles()
returns the same list with the clients’ full names (this includes path for open Editor
documents and the Current Directory) . ClientShorttitles and Clienttitles are the
corresponding read-only (un-settable) properties .
getCommandWindowHWND() ◾ — returns the Desktop window’s HWND value, pos-
sibly useful for interfacing Matlab and other applications .† this is the same value
as returned from jDesktop .getMainFrame().getHWnd() .‡

getDocumentArrangement(groupName) ◾ — returns a numeric value indicating how
client windows/documents are arranged within the specified group . Possible values
are 1 (maximized), 2 (tiled) or 3 (floating/cascaded) . setDocumentArrangement(group-
Name,value,size)§ updates the setup:

% Set a 2x3 titled Editor arrangement

† Similar to the figure window’s HWND value, discussed in Section 7 .1 .
‡ Note the different spelling: HWND vs . HWnd — Java is case sensitive so be careful to use the correct spelling in each

case .
§ Size is a java.awt.Dimension object specifying table in tiles: java.awt.Dimension (numCols,numRows). It

is only relevant for tiled documents, so set size = [] for maximized (1) or floating/cascaded (3) arrangement values . See
http://www .mathworks .com/matlabcentral/newsreader/view_thread/155225#411327 (or http://bit .ly/6sjxUg) .

K13163_Book.indb 466 11/8/2011 8:09:50 PM

© 2012 by Taylor & Francis Group, LLC

www.mathworks.com
http://bit.ly

467The MATLAB® Desktop

jDesktop.setDocumentarrangement('Editor',2,java.awt.Dimension(2,3));
jDesktop.setDocumentarrangement('Editor',2,[]); %reuse previous size

2 × 3 tiled document arrangement

getDocumentTiledDimension() ◾ returns the Dimension of the group tiles table when
arranged as titled, or a 1 × 1 dimension otherwise:

>> jDesktop.getDocumentTiledDimension('Editor')
ans =
java.awt.Dimension[width=2,height=3]

getDocumentBarPosition(groupName) ◾ — returns a numeric value indicating how the
client document bar, which contains buttons with the names of all the clients contained
in the group, is arranged within the specified group . Possible values are 1 (top), 3
(right), 5 (bottom), 7 (left), and −1 (hidden) . setDocumentBarPosition(groupName,
value) updates the bar position .

left document bar position

K13163_Book.indb 467 11/8/2011 8:09:51 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming468

top document bar position

getDocumentContainment() ◾ — this returns the number 2 . I am uncertain what this
represents, but I suspect that it may be related to jDesktop’s PER_FRAME (=1) and
PER_GROUP (=2) static fields . there is also a corresponding setDocument-
Containment(value) method and a DocumentContainment property .
getContainingFrame(clientHandle) ◾ — returns a handle to the client’s Java container, a
com.mathworks.hg.peer.FigureClientProxy$FigureDTClientBase
object . this object is actually mid-level in the Frame hierarchy, as shown in Section 7 .2 .
It can be used to access the figure’s Java sub-components in lieu of the JavaFrame
property (see Chapter 7 — the Java Frame) .
getFrameContainingGroup(groupName) ◾ — returns a handle to the Java Frame that
contains the specified group . to get the Editor frame’s handle, for example, run
jDesktop.getFrameContainingGroup(‘Editor’), which is equivalent to: jDesk-
top.getGroupContainer(‘Editor’).getTopLevelAncestor .
getGroup(clientHandle) ◾ — returns the group name of the group that contains the spec-
ified client window/panel .
getGroupContainer(groupName) ◾ — returns an object handle similar to that returned
by getFrameContainingGroup(groupName), only lower down the Frame hierarchy .
getGroupContainerInsets(groupName) ◾ — returns a java.awt.Insets4 object that
contains the internal margins of the group container . For example, setting the
DocumentbarPosition (see above) value to 1 (top) will set the top inset to 21 and the
rest to 0; setting the value to 7 (left) will set only the left inset; getInternalFrame-
Insets(clientHandle) returns the corresponding client insets .
getGroupLocation(groupName) ◾ — see getClientLocation() discussed above .
getGroupMembers(groupName) ◾ — returns an array of handles of the client windows/
panels contained within the specified group . If the group name is not found, then the
Desktop’s client handles are returned:

>> jDesktop.getGroupMembers('Editor')
ans =

K13163_Book.indb 468 11/8/2011 8:09:52 PM

© 2012 by Taylor & Francis Group, LLC

469The MATLAB® Desktop

java.awt.Component[]:
 [com.mathworks.mde.editor.EditorViewContainer]
 [com.mathworks.mde.editor.EditorViewContainer]
 [com.mathworks.mde.editor.EditorViewContainer]

>> % Remember: group names are case-sensitive !!!
>> jDesktop.getGroupMembers('editor') % not found, use 'Desktop'
ans =
java.awt.Component[]:
 [com.mathworks.mde.cmdwin.CmdWin]
 [com.mathworks.mde.cmdhist.CmdHistoryWindow]
 [com.mathworks.mde.workspace.WorkspaceBrowser]
 [com.mathworks.mde.help.HelpBrowser]

getGroupName() ◾ — returns the Desktop’s docking group name (='Desktop') . the cor-
responding read-only (unsettable) property is GroupName .
getGroupTitles() ◾ — returns the titles of all available groups . there is a corresponding
read-only (un-settable) Grouptitles property .† the titles are returned as a Java array
of Strings; to convert to a Matlab cell-array we can simply use the get() mechanism,
or use the built-in cell function to cast the Java Strings array into a Matlab char
cell array:

>> jDesktop.getGroupTitles % returns a Java String object array
ans =
java.lang.String[]:
 'Editor'
 'Figures'
 'Web Browser'
 'Variable Editor'
 'File and Directory Comparisons'

>> get(jDesktop,'GroupTitles') % returns a Matlab char cell-array
ans =
 'Editor'
 'Figures'
 'Web Browser'
 'Variable Editor'
 'File and Directory Comparisons'

>> groupNames = cell(jDesktop.getGroupTitles); % equivalent
>> groupNames = jDesktop.getGroupTitles.cell; % equivalent

getInternalFrameInsets(clientHandle) ◾ — see getGroupContainerInsets above .
getLastDocumentSelectedInGroup(groupName) ◾ — returns the handle of the latest cli-
ent that was selected (accessed) in the specified group . this would normally indicate
the currently active (in-focus) document/figure/panel .
getLastUndockedLocation(clientHandle) ◾ — see getClientLocation() above .

† Note that some of these titles were changed between Matlab releases . For example, ‘array Editor’ => ‘Variable
Editor’ .

K13163_Book.indb 469 11/8/2011 8:09:52 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming470

getLayoutSavePolicy() ◾ — returns a com.mathworks.mwswing.desk.
Desktop$ LayoutSavePolicy object representing when Desktop layout
changes are saved; setLayoutSavePolicy(layout) updates the policy to one of
LayoutSavePolicy’s static (predefined) layouts: NEVER, UPON_EXIT or
 UPON_CHANGE (=default) . there is also a corresponding read–write (settable)
layoutSavePolicy property . See initMainFrame(...), restoreLayout(...) and Section
8 .1 .3 for additional details .
getMainFrame() ◾ — returns a handle to the Desktop’s Java Frame, a com.math-
works.mde.desk.MLMainFrame object . We can use this object to access specific
Desktop components . this is described in detail in Section 8 .1 .2 .
getMajorVersion(), getMinorVersion() ◾ — returns the internal Desktop version (3 and 0
respectively on my system, regardless of the Matlab release) .
getSelected() ◾ — returns a handle to the currently selected client:

>> jDesktop.getSelected
ans =
com.mathworks.mde.cmdwin.CmdWin[cw_DTClientBase,0,0,1074x731,...]

getSelectedGroup() ◾ — returns the name of the currently selected group, or [] if the
selected group is the Desktop; getSelectedInGroup(groupName) returns the client han-
dle currently selected within the specified group .
getShortTitle(clientHandle), getTitle(clientHandle) ◾ — see getClient()
getSingletonShortTitles() ◾ , getSingletonTitles() — returns the list of titles of all single-
ton clients . there are also corresponding properties . See also: isSingleton(),
 closeGroupSingletons(), restoreGroupSingletons() .

>> jDesktop.getSingletonTitles
ans =
java.lang.String[]:
 'Command Window'
 'Command History'
 'Current Directory'
 'Workspace'
 'Help'
 'Profiler'
 'Figure Palette'
 'Plot Browser'
 'Property Editor - Figure'

getToolBarRegistry() ◾ — returns an object containing information about the current
configuration of the Main (‘Matlab’) and Editor (‘Editor’ and ‘Cell mode’/‘Codepad’)
toolbars and their contained buttons/controls . also see showToolBarCustomization-
Panel() below .
getWindowRegistry() ◾ — returns the list of currently open non-Desktop client windows
(i .e ., Editor documents and figure windows) .
groupToFront(groupName) ◾ — brings the specified group into focus .

K13163_Book.indb 470 11/8/2011 8:09:53 PM

© 2012 by Taylor & Francis Group, LLC

471The MATLAB® Desktop

hasClient(client) ◾ — returns a flag indicating whether or not the specified client handle
or name exists; hasClient(clientName,groupName) limits the check to those clients
contained within the specified group .
hasGroup(groupName) ◾ — returns a flag indicating whether a group exists .
hasMainFrame() ◾ — returns a flag indicating whether or not the Desktop is currently
in use . this is what the built-in desktop(‘-inuse’) returns internally .
hideClient(client) ◾ — hides (closes) the specified client (by handle or name) if it exists;
hideClient(clientName,groupName) limits the action to a client contained within the
specified group . Compare: showClient() below .
initMainFrame(splashFlag, restoreLayoutFlag, minimizedFlag) ◾ — starts the main
Desktop frame, if it is not already shown; splashFlag controls whether or not the splash
screen should appear;† optional restoreLayoutFlag (default =true) indicates whether to
reuse the last-used layout or the default one; optional minimizedFlag (default=false)
controls whether the Desktop should start in minimized mode . the built-in desktop
and desktop(‘-norestore’) actually call initMainFrame internally . See getLayoutSave-
Policy(..), restoreLayout(. . .) and Section 8 .1 .3 for other related layout methods .
isClientDocked(), isClientHidden(), isClientMaximized(), isClientMinimized(), isCli- ◾
entSelected(), isClientShowing(), isClientUnfurled() — all these check a client handle
or name for the specified state .‡ these methods also accept an optional second group-
Name argument . See plottools.m for sample usage .
isGroupDocked(groupName), isGroupMaximized(. . .), isGroupMinimized(. . .), ◾
isGroupSelected(. . .), isGroupShowing(. . .), isGroupUnfurled(. . .) — similar to the
corresponding Client methods but only accepting a single groupName parameter . For
some reason there is no corresponding isGroupHidden method .
isSingleton(clientName) ◾ — returns a flag indicating whether or not the client is a sin-
gleton; isDocument(clientName) apparently returns the reverse flag . See also: getSin-
gletonTitles(), closeGroupSingletons(), restoreGroupSingletons() .
minimizedDockedDocuments(groupName) ◾ — minimizes all clients which are cur-
rently docked in the specified group .§

removeClient(client) ◾ , removeGroup(groupName) — see the corresponding closeCli-
ent(), closeGroup() methods .
restoreGroupSingletons(groupName) ◾ — opens the singleton clients attached to the
specified group . Used by the built-in plottools function to open plot-editting panels .
See also: getSingletonTitles(), closeGroupSingletons() .
restoreLayout(layoutName) ◾ — restores the specified layout; saveLayout(layoutName)
saves the current layout under the specified name; restorePreviousLayout() is pretty much
self-explanatory . See Section 8 .1 .3 for additional information regarding desktop layouts .

† this corresponds to the -nosplash startup option; note that the splash screen only appears after a predefined timeout .
‡ isClientHidden() only accepts a client handle; all the others accept client handle, clientName or clientName with

groupName .
§ minimizedDockedDocuments appears to be a naming typo: should be minimizeDockedDocuments.

K13163_Book.indb 471 11/8/2011 8:09:53 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming472

setClientDocked(client, groupName, dockedFlag) ◾ — sets the specified client (handle,
or clientName with optional groupName) docking state .
setClientLocation(client, groupName, location) ◾ — sets the specified client (handle, or
clientName with optional groupName) location (a com.mathworks.mwswing.
desk.DTLocation object — see Section 8 .1 .3) .
setClientMaximized(client, groupName, maximizedFlag) ◾ — sets the specified client
(handle, or clientName with optional groupName) window maximization state
(true=maximized; false=regular) .
setClientMinimized(client, groupName, minimizedFlag, dockPosition) ◾ — sets the
specified client (handle, or clientName with optional groupName) window minimiza-
tion state (true=minimized; false=regular) . the optional docPosition value indicates
the minimized position when the group is docked: 1 (top), 3 (right=default), 5 (bottom),
7 (left) or 0 (center — fills entire container group) .
setClientSelected(client, groupName, selectedFlag) ◾ — sets the specified client (han-
dle, or clientName with optional groupName) selection state, effectively bringing the
client into active focus if selectedFlag = true .
setDefaultDesktop(), setDefaultLayout() setCommandAndHistoryLayout(), setCom- ◾
mandOnlyLayout() — see Section 8 .1 .3 for details .
setDocumentColumnWidths(groupName, relativeWidths) ◾ — if the group’s document
arrangement (see getDocumentArrangement above) is tiled, this method sets the rela-
tive widths of the tile columns; setDocumentRowHeights does a similar action in the
vertical direction, spanning rows . For example,5

jDesktop.setDocumentarrangement('Editor',2,java.awt.Dimension(3,4));
jDesktop.setDocumentColumnWidths('Editor',[.6,.2,.1,.1]);
jDesktop.setDocumentRowHeights('Editor',[.3,.5,.2]);
jDesktop.setDocumentColumnSpan('Editor',1,1,2);

Document cell width, height and span example (See color insert.)

K13163_Book.indb 472 11/8/2011 8:09:53 PM

© 2012 by Taylor & Francis Group, LLC

473The MATLAB® Desktop

setDocumentColumnSpan(groupName, rowNum, colNum, spanNum) ◾ — if the group’s
document arrangement (see getDocumentArrangement above) is tiled, this method
sets the tile at the specified row/column to span the specified number of tile columns
to the right . Note that row and column numbers start at 0 (top left) and the minimal
spanNum is 1 .
setGroupDocked(groupName, flag), setGroupMaximized(groupName, flag), ◾
setGroupMinimized(groupName, flag), setGroupLocation(groupName, location) —
sets the requested state flag or location value for the specified group . Groups are always
docked to their parent (the Desktop) . Restoring the group’s appearance is done by set-
ting flag = false . like setClientMinimized, setGroupMinimized also accepts a third
optional numeric value indicating the minimized position when the group is docked: 1
(top), 3 (right = default), 5 (bottom), 7 (left), or 0 (center — fills entire container group) .
the top-level window of docked groups is the Desktop . So, unless we undock the ◾
group, operations done to its window will affect the entire desktop:6

container = jDesktop.getGroupContainer('Figures').getTopLevelancestor;
container.setSize(width,height); % e.g., (500,300)
container.setalwaysOnTop(true); % or false to return to normal
container.setMaximized(true); % or false to return to normal
container.setMinimized(true); % or false to return to normal
container.setVisible(true); % or false to hide: ignore the Java error

setStatusText(text) ◾ — displays the specified text in the Desktop’s status bar . there is
also a write-only (un-gettable) Statustext property:

jDesktop.setStatusText('testing 123...');
set(jDesktop, 'StatusText', 'testing 123...'); % an alternative

Note that the statusbar text is only settable if the Desktop frame is visible . It is therefore
prudent to test this in advance, as the built-in uiopen function does:

dt = javaMethod('getInstance', 'com.mathworks.mde.desk.MLDesktop');
if dt.hasMainFrame
 dt.setStatusText(message);
else
 disp(message);
end

showClient(clientName, groupName, location, selectFlag) ◾ — shows the requested cli-
ent; optional groupName limits the action to clients in the specified group; optional
location indicates the client’s new DTLocation ([] indicates “do not change”; see
Section 8 .1 .3); optional selectFlag indicates whether the client should be selected
(brought into focus) after display . Note related method showClient(clientHandle,
 location, selectFlag) that accepts a clientHandle rather than a clientName;
toFront(clientHandle); and showClientHidden(clientHandle,location,selectFlag) .

K13163_Book.indb 473 11/8/2011 8:09:53 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming474

showCommandWindow() ◾ — brings the Matlab Desktop’s Command Window into
focus, displaying it if it was hidden or minimized . this is what the built-in command
window function does internally . as an alternative, run uimenufcn(0,‘WindowComm-
andWindow’).†

showCommandHistory() ◾ — brings the Command History panel into focus .
alternatively, use the following (used by the builtin commandhistory function):

com.mathworks.mde.cmdhist.CmdHistoryWindow.invoke;

showFileBrowser() ◾ — brings the File browser panel/window into focus . alternatively,
use the following (used by the built-in filebrowser function):

com.mathworks.mde.filebrowser.FileBrowser.invoke;

showHelpBrowser() ◾ — brings the Help browser panel/window into focus . alternatively,
use the following (used by the built-in helpbrowser function):

com.mathworks.mlservices.MLHelpServices.invoke;

showProfiler() ◾ — brings the Profiler panel/window into focus . alternatively, use the
following (used by the built-in profile function):

com.mathworks.mde.profiler.Profiler.invoke;

showWorkspaceBrowser() ◾ — brings the Workspace browser panel/window into focus .
alternatively, use the following (used by the builtin workspace function):

com.mathworks.mlservices.MLWorkspaceServices.invoke;

showGroup(groupName, flag) ◾ — brings the specified group into focus . flag must
apparently be true for showGroup to have any effect . showGroup is used by many
built-in Matlab functions (plottools for example) .
showToolBarCustomizationPanel(toolbarName) ◾ — displays the Preferences panel
responsible for toolbars configuration . also see getToolBarRegistry() .

Some of these methods can also be invoked directly from com.mathworks.mlser-
vices.MatlabDesktopServices, using static internal methods . For example,

com.mathworks.mlservices.MatlabDesktopServices.showCommandWindow;7

com.mathworks.mlservices.MatlabDesktopServices.closeCommandWindow;
com.mathworks.mlservices.MatlabDesktopServices.setCommandOnlyLayout;

† this alternative is used by commandwindow when Java and/or the desktop are not present, in a Matlab session started
with the ‘-nojvm’ or ‘-nodesktop’ option . uimenufcn is discussed in section 4 .6 .1 . showCommandWindow() can also be
invoked directly from com.mathworks.mlservices.MatlabDesktopServices .show...(). See a discussion of
alternatives here: http://www .mathworks .com/matlabcentral/newsreader/view_thread/269716 (or http://bit .ly/6g7dX2) .

K13163_Book.indb 474 11/8/2011 8:09:54 PM

© 2012 by Taylor & Francis Group, LLC

www.mathworks.com
http://bit.ly

475The MATLAB® Desktop

8.1.2 The Desktop Frame
as seen in Section 8 .1 .1, the jDesktop .getMainFrame() method returns a handle to the
Desktop Java Frame window (a com.mathworks.mde.desk.MLMainFrame object):

>> jDesktopFrame = jDesktop.getMainFrame;
jDesktopFrame =
com.mathworks.mde.desk.MLMainFrame[MainDesktopFrame,...]

Since this is also the first window created when Matlab starts,† we can also retrieve this
handle by other means:

jWindows = java.awt.Window.getOwnerlessWindows;
jDesktopFrame = jWindows(1);
jFrames = java.awt.Frame.getFrames;
jDesktopFrame = jFrames(1);

Note that it is not always assured that MLMainFrame would be the first Frame . For exam-
ple, in R2011a it is actually the second .

this handle enables access to the entire Desktop GUI hierarchy . before showing specific
usage examples of internal hierarchy components, let us explore useful aspects of the Desktop
Frame itself, at the window level .

Most of the Desktop Frame’s functionality closely follows the figure frame’s functionality
discussed in Chapter 7 (the Java Frame) . therefore, only the highlights will be presented;
interested readers are referred to Chapter 7 for additional details, or to investigate further using
the uiinspect and findjobj utilities discussed above .

We begin with a long-demanded request to programmatically hide/restore the Desktop . this
can be achieved by several alternatives using the Frame handle:8

jDesktopFrame.show;
jDesktopFrame.hide;

jDesktopFrame.show(flag); % true = show, false = hide

jDesktopFrame.setVisible(flag); % or: set(jDesktopFrame,'Visible',...)

Similarly, we can minimize/maximize the entire Desktop window:9

jDesktopFrame.setMinimized(flag); % true = minimize; false = restore
jDesktopFrame.setMaximized(flag); % true = maximize; false = restore

Or hide its menu bar:10

jDesktopFrame.getJMenuBar.setVisible(flag); % true = show, false = hide
jDesktopFrame.getJMenuBar.repaint;

† Unless we used the -nojvm, -noawt and/or -nodesktop startup (command-line) options, in which case we have no Desktop
Frame anyway . . . those using -nodesktop, then starting the Desktop via the initMainFrame method, deserve their
punishment .

K13163_Book.indb 475 11/8/2011 8:09:54 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming476

Other useful methods (most of which have corresponding properties):

jDesktopFrame.getDesktop();
jDesktopFrame.getDesktopMenu();
jDesktopFrame.getJMenuBar();
jDesktopFrame.getMenuBar();
jDesktopFrame.getHWnd();
jDesktopFrame.getHeight();
jDesktopFrame.getWidth();
jDesktopFrame.getLocationOnScreen();
jDesktopFrame.getX();
jDesktopFrame.getY();
jDesktopFrame.resize(pixelWidth,pixelHeight);
jDesktopFrame.reshape(x,y, pixelWidth,pixelHeight);
jDesktopFrame.repaint();
jDesktopFrame.requestFocus();
jDesktopFrame.setalwaysOnTop(flag);
jDesktopFrame.setBackground(java.awt.Color);
jDesktopFrame.setForeground(java.awt.Color);
jDesktopFrame.setCloseOnEscapeEnabled(flag);
jDesktopFrame.setCursor(value or java.awt.Cursor);
jDesktopFrame.setEnabled(flag);
jDesktopFrame.setFont(javaFont);
jDesktopFrame.setLocation(x,y);
jDesktopFrame.setRestoredLocation(x,y);
jDesktopFrame.setMaximumSize(java.awt.Dimension);
jDesktopFrame.setMinimumSize(java.awt.Dimension);
jDesktopFrame.setPreferredSize(java.awt.Dimension);
jDesktopFrame.setRestoredSize(java.awt.Dimension or x,y);
jDesktopFrame.setSize(java.awt.Dimension or x,y);
jDesktopFrame.setModal(flag);
jDesktopFrame.setResizable(flag);
jDesktopFrame.setSelected(flag);
jDesktopFrame.setStatusBar(com.mathworks.mwswing.MJStatusBar);
jDesktopFrame.setStatusBarVisible(flag);
jDesktopFrame.setStatusText(text);
jDesktopFrame.setTitle(text);
jDesktopFrame.toBack();
jDesktopFrame.toFront();

For example, the setTitle() method (or the corresponding title property) was used by a
CSSM user to set different titles to different Matlab sessions that run concurrently on the
same computer — setting separate titles enables easy distinction between these separate
sessions;11 the statusbar can be updated using the setStatus*() methods, as explained in Section
4 .7; the desktop frames position and size can be controlled using the set*Location() and
set*Size() methods; and so on .

In addition to these methods/properties, and the 30-odd standard callbacks (see Section 3 .4),
the Desktop frame has the following non-standard callbacks:

K13163_Book.indb 476 11/8/2011 8:09:54 PM

© 2012 by Taylor & Francis Group, LLC

477The MATLAB® Desktop

DragEnterCallback ◾ , DragExitCallback, DragOverCallback, DropCallback,
DropactionChangedCallback — used for Drag-&-Drop ops .
WindowIconifiedCallback ◾ , WindowDeiconifiedCallback — these refer to minimi-
zation and unminimization operations .
WindowactivatedCallback ◾ , WindowDeactivatedCallback.
WindowGainedFocusCallback ◾ , WindowlostFocusCallback.
WindowOpenedCallback ◾ , WindowClosedCallback, WindowClosingCallback.
WindowStateChangedCallback. ◾

the Desktop components hierarchy, accessible via the jDesktopFrame handle, should be
handled with more care than the Figure Frame, for two reasons:

the Figure Frame hierarchy is much less prone to change between ◾ Matlab releases .
there is much attention in recent releases to improvement of the Desktop functionality
and usability, and this is expected to impact the internal Desktop hierarchy and sub-
components, much more than for the Figure .
the Desktop hierarchy is highly dependent on the Desktop state and layout, to a larger ◾
extent than the Figure frame hierarchy .

Having thus been fairly warned, there are quite a few interesting things we can do with inter-
nal Desktop components, which are discovered down the hierarchy tree .

Here is an example: In answer to a CSSM user request to hide the Desktop’s lower edge (the
panel that contains the “Start” button and status bar), we locate the status bar’s parent panel and
simply hide it:12

jDesktop.getMainFrame.getStatusBar.getParent.setVisible(false);

Further examples of using the Desktop object and its contained sub-components are shown
in the rest of this Section 8 .1 .

8.1.3 Organizing the Desktop Clients
the Matlab Desktop enables users to switch between different presentation layouts of the
Desktop panels (Command Window, Workspace, etc .) .13 this has been supported as far back as
Matlab 6 (R12), with newer Matlab releases adding improved functionality such as the
ability to save user-defined layouts, as Kristin thomas explained in the official Matlab
Desktop blog .14

the only supported way to save and switch layouts is to use the Desktop’s main menu . Since
Kristin has posted her write-up, a few people have posted unanswered follow-up comments
requesting to know how to programmatically save and switch layouts .15 I will now show how
this can be done .

K13163_Book.indb 477 11/8/2011 8:09:54 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming478

First, we need to get the Java handle of the Matlab desktop . We can then investigate
this handle using the built-in methodsview function or my uiinspect utility which was
described above . We quickly see the relevant layout-related functions, which we can put to
good use:

% Get the desktop's Java handle (Matlab 7 only)
jDesktop = com.mathworks.mde.desk.MLDesktop.getInstance;

% Inspect the available desktop functions
methodsview(jDesktop);
uiinspect(jDesktop);

% Get and set the layout-saving policy
oldPolicy = jDesktop.getLayoutSavePolicy;
set(jDesktop,'LayoutSavePolicy',
jDesktop.getLayoutSavePolicy.NEVER);

% Save the current layout
jDesktop.saveLayout('Yair');

% Switch between different layouts
jDesktop.restoreLayout('Yair');
jDesktop.restoreLayout('Default');
jDesktop.restoreLayout('History and Command Window');

% Switch between pre-defined layouts
jDesktop.setDefaultLayout();
jDesktop.setDefaultDesktop();
jDesktop.setCommandOnlyLayout();
jDesktop.setCommandandHistoryLayout();

Desktop layout menu in MAtlAb 7

the new “Yair” layout is stored as an XMl file (YairMATLABLayout.xml) in the prefdir
folder .† this layout file can be copied between users and Matlab installations, with some
care when copying onto an earlier-release installation .16

† For example, C:\Documents and Settings\Yair\application Data\MathWorks\Matlab\R2008a\YairMatlablayout .
xml on a Windows platform . It can be edited via: edit(fullfile(prefdir,‘YairMatlablayout .xml’)) .

K13163_Book.indb 478 11/8/2011 8:09:55 PM

© 2012 by Taylor & Francis Group, LLC

479The MATLAB® Desktop

Note that trying to restore an invalid layout name simply does nothing (without throwing an
error) . this may be misleading, so if we plan to change layouts programmatically (e .g ., in
startup scripts), then we should first check the existence of the layout file (using the dir or exist
built-in functions) .

also note that the layout functionality relies heavily on unsupported and undocumented
internal implementation, which may change without prior notice between Matlab releases .
the code snippet above works on several Matlab 7 releases . but for Matlab 6 .0 (R12),
for example, it needs to be modified, as follows:

% Get the desktop's Java handle (Matlab 6 only)
jDesktop = com.mathworks.ide.desktop.MLDesktop.getMLDesktop;

% Inspect the available desktop functions
% Note: in Matlab 6, methodsview() did not accept object handles
methodsview('com.mathworks.ide.desktop.MLDesktop');
%uiinspect(jDesktop); % UIINSPECT does not work on Matlab 6

% Save the current layout
% saving the desktop is not possible in Matlab 6

% Switch between different layouts
jDesktop.set5PanelLayout;
jDesktop.setTallLayout;
jDesktop.setShortLayout;
jDesktop.setDefaultDesktop;
jDesktop.setMolerMode;† % ='Command window only'

Desktop layout menu in MAtlAb 6

Note that Matlab 6 did not have a generic restoreLayout() function, instead using a few
pre-defined setXXX() . also note that Matlab 6 did not have the saveLayout() function — it
did however have saveDesktop(string,string) and restoreDesktop(string,string), which I leave
as an exercise to readers .

† this is presumably an internal-MathWorks reference to Matlab’s founder Cleve Moler .

K13163_Book.indb 479 11/8/2011 8:09:56 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming480

Perhaps the main lesson to be learned from this sample customization is that essentially
anything that can be done via the menu can also be done programmatically .

Using desktop layouts is easy and interactive, but if we want finer-grained control over the
clients’ location we need to use other methods, which in general require the use of a com.
mathworks.mwswing.desk.DTLocation object:

com.mathworks.mwswing.desk.DTLocation.create('NW');

or of one of DTLocation's derivative classes: DTNestedLocation, DTFloating-
Location, DTTiledLocation, DTBorderLocation.

8.1.4 Customizing the Desktop Toolbars
the Matlab Desktop has two toolbars displayed by default beneath the main menu: the
Matlab toolbar, and the Shortcuts toolbar:

the top (“Matlab”) toolbar is a standard Java toolbar that can be customized similarly to
figure toolbars (see Section 4 .5) .

Here is one particular use-case that is specific to the Matlab toolbar: a reader has
approached me with a request to trap current-directory changes in order to update project-spe-
cific settings . to achieve this, we first locate the Desktop’s “Current Directory” drop-down in the
Matlab toolbar (this is done using the findjobj utility, which searches from jDesktopFrame
downward) . We then set this component’s actionPerformedCallback property:†

% First get a reference to the 'Current Directory' drop-down component
% Note that we use handle 0 = desktop
hCombo = findjobj(0,'class','CwdComponentSet$CustomComboBox');

% Set the component's actionPerformedCallback property
set(hCombo, 'actionPerformedCallback', 'disp([''New dir: '' pwd])');

% The following is typed in the Command Window
>> cd c:\ % or via the 'Current Directory' drop-down
New dir: c:\ <= this is presented by the callback
>>

† a different mechanism for monitoring current-folder changes is to use com.mathworks.jmi.MatlabPath (see
Section 9 .2 .2), but apparently this requires writing some Java code to handle 'CWD_CHaNGE' events and cannot be
done with pure Matlab code as in here .

K13163_Book.indb 480 11/8/2011 8:09:57 PM

© 2012 by Taylor & Francis Group, LLC

481The MATLAB® Desktop

Other button controls in the Desktop toolbar can be accessed via the toolbar container’s
reference handle:17

hMainFrame=com.mathworks.mde.desk.MLDesktop.getInstance.getMainFrame;
hToolbar = hMainFrame.getContentPane.getComponent(0).getComponent(0);

the bottom (“Shortcuts”) toolbar is a reflection of the contents of the [prefdir ‘/shortcuts .
xml’] file, which can be textually edited . the toolbar, which is also a Java toolbar, has special
access functions in the com.mathworks.mlwidgets.shortcuts.ShortcutUtils
class . For example, to add a new shortcut to the toolbar:18

name = 'My New Shortcut';
cbstr = 'disp(''My New Shortcut'')'; % will be eval'ed when clicked
iconfile = 'c:\path\to\icon.gif'; % default icon if it is not found
isEditable = 'true';
scUtils = com.mathworks.mlwidgets.shortcuts.ShortcutUtils;
category = scUtils.getDefaultToolbarCategoryName; % = 'Toolbar Shortcuts'
scUtils.addShortcutToBottom(name,cbstr,iconfile,category,isEditable);

to add a shortcut to the Help browser (also known as a “Favorite”), simply set the category to
scUtils.getDefaultHelpCategoryName (=‘Help browser Favorites’ on English-based
Matlab installations); to add the shortcut to the “Start” button, set the category to “Shortcuts” .

to remove a shortcut, use the removeShortcut(category, shortcutName) method (this method
does not complain if the specified shortcut does not exist):19

scUtils.removeShortcut('Toolbar Shortcuts', 'My New Shortcut');

the addShortcutToBottom() method does not override existing shortcuts . therefore, to ensure
that we do not add duplicate shortcuts, we must first remove any possibly existing shortcut using
removeShortcut(), before adding it . alternatively, we could loop over all existing category short-
cuts checking their label, and adding a new shortcut only if it is not already found, as follows:

>> category = scUtils.getDefaultToolbarCategoryName;
>> scVector = scUtils.getShortcutsByCategory(category);
>> scarray = scVector.toarray
ans =
java.lang.Object[]:
 [com.mathworks.mlwidgets.shortcuts.Shortcut]
 [com.mathworks.mlwidgets.shortcuts.Shortcut]
 [com.mathworks.mlwidgets.shortcuts.Shortcut]
 ...

>> char(scarray(1))
ans =
How to add

>> foundFlag = 0;
 for scIdx = 1:length(scarray)
 if strcmp(char(scarray(scIdx)), 'My New Shortcut')
 foundFlag = 1; break;

K13163_Book.indb 481 11/8/2011 8:09:57 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming482

 end
 end

>> if ~foundFlag, scUtils.addShortcutToBottom(...); end

Following my advice on the StackOverflow forum,20 Richie Cotton wrapped the code above
for adding and removing toolbar shortcuts, in a user-friendly utility that can now be found on
the Matlab File Exchange21 and on his blog .22

We are not limited to the above-mentioned three default categories (‘toolbar Shortcuts’,
‘Help browser Favorites’, and ‘Shortcuts’) . In fact, we can add new categories as follows:

scUtils.addNewCategory('New category name');

Removing a category is also easy: Simply use the afore-mentioned removeShortcut method
with an empty shortcut name — this will immediately remove the entire shortcuts category,
along with all its contents:

scUtils.removeShortcut('category name to remove',[]);

Shortcuts are normally visible in the toolbar and in the Matlab start menu . However,
using com.mathworks.mlwidgets.shortcuts.ShortcutTreePanel they can also
be displayed in any user GUI:

jShortcuts = com.mathworks.mlwidgets.shortcuts.ShortcutTreePanel;
[jhShortcuts,hPanel] = javacomponent(jc,[10,10,300,300],gcf);

 MAtlAb start-menu shortcuts Shortcuts presented in a user GUI

8.2 System Preferences23

Matlab’s user preferences are stored in the matlab .prf text file,24 which is stored in the user’s
Matlab preferences folder (prefdir):25

edit(fullfile(prefdir,'matlab.prf'));

K13163_Book.indb 482 11/8/2011 8:09:57 PM

© 2012 by Taylor & Francis Group, LLC

483The MATLAB® Desktop

Each preference appears to be on a separate line in the following format: <pref-name>=<pref-
type><pref-value> where <pref-type> appears to be one of these:

b => boolean/logical flag ◾
C => color (RGb numeric value) ◾
F => font (type,size,name) ◾
I => int16 ◾
J => int64 ◾
R => rectangular area (x,y,h,w) ◾
S => string/char ◾

Some examples:

EditorShowLineNumbers = Btrue
EditorMaxCommentWidth = I120

We can read the preference names from this Matlab .prf file and then use the following
(you-guessed-it) Java calls to get/set the values:26

com.mathworks.services.Prefs.get<type>Pref(<pref-name>)
com.mathworks.services.Prefs.set<type>Pref(<pref-name> , newValue);

where <type> is one of: boolean, Color, RGbColor, Font, Integer, Rectangle, String, Double
(I believe Doubles get converted to int64 — possibly a bitwise† casting since both use 64 bits) .
For example,

com.mathworks.services.Prefs.getBooleanPref('LayoutSnapToGrid')
com.mathworks.services.Prefs.setIntegerPref('LayoutGridWidth', 25)
... Prefs.setStringPref('HelpSelectedProducts','MaTLaB')

Preference values can also be retrieved using the undocumented built-in functions feature or
system_dependent (unfortunately, there is no corresponding set feature):

>> NumericFormat = feature('getpref','GeneralNumFormat2')
NumericFormat =
Slong g

adding a second argument to get<type>Pref() indicates a default value that is returned if
<pref-name> is not already set or defined:

>> disp(com.mathworks.services.Prefs.getIntegerPref('xxxx',123))
 123

We can programmatically set any preference key we like — we are not limited to Matlab’s
built-in set . I used this feature in my cprintf utility (described in the following section), to set

† Suggested by MathWorks: http://www .mathworks .com/support/solutions/en/data/1-OVWJ9/ (or http://bit .ly/9GH2Cm) .

K13163_Book.indb 483 11/8/2011 8:09:57 PM

© 2012 by Taylor & Francis Group, LLC

www.mathworks.com
http://bit.ly

Undocumented Secrets of MATLAB®-Java Programming484

user-defined colors for later use by the desktop’s UI syntax-highlighting engine . the relevant
code segment is this:

% Convert Matlab RGB vector into a known style name, e.g. '[255,37,0]'
function styleName = getColorStyle(rgb)

 % Convert Matlab RGB array into a Java Color object
 intColor = int32(rgb*255);
 javaColor = java.awt.Color(intColor(1), intColor(2), intColor(3));

 % Preference key name format: '[RRR,GGG,BBB]'
 styleName = sprintf('[%d,%d,%d]',intColor);

 % Set/update the preference with this Java Color
 com.mathworks.services.Prefs.setColorPref(styleName,javaColor);
end % getColorStyle

 . . .which in turn adds entries such as the following to my matlab .prf file:

[12,34,67] = C-15982013

Note that -15982013 = 0xFF0C2243, which is the RGb value [12, 34, 67] with an opaque
alpha value (0xFF) . this color value can later be retrieved using:

 >> disp(com.mathworks.services.Prefs.getColorPref('[12,34,67]'))
java.awt.Color[r = 12,g = 34,b = 67]

after modifying the preferences, we need to notify all the components that use them to
update themselves, standard practice in Java:†

com.mathworks.services.ColorPrefs.notifyColorListeners('ColorsText')
com.mathworks.services.ColorPrefs.notifyColorListeners('ColorsBackground')

Warning: I published much of this information on the CSSM forum27 back in 2007 . ben
Steiner then shared his experience on that thread, as follows:

“For anyone else that’s playing with this: I don’t advise trying to edit the matlab.prf via
MATLAB(!). I created a situation that made MATLAB unworkable. I did find that deleting the
matlab.prf completely (in frustration) solved it.”

8.3 Command Window

there are several ways by which we can get a direct handle to the Command Window edit pane
(which contains the editable Document) . We can start with the Desktop’s Java Frame handle
and work our way down the extremely complex hierarchy tree . a better alternative is to use this
shortcut:28

jDesktop = get(get(handle(gcf),'JavaFrame'),'Desktop');
jTextarea = get(getMainFrame(jDesktop), 'FocusOwner');
jTextarea = jDesktop.getMainFrame.getFocusOwner; % an alternative

† More information on changing the Command Window colors can be found in the following section .

K13163_Book.indb 484 11/8/2011 8:09:58 PM

© 2012 by Taylor & Francis Group, LLC

485The MATLAB® Desktop

We can also start with the handle to the Command Window itself, and find our way down its
scroll-pane hierarchy tree:

jDesktop = com.mathworks.mde.desk.MLDesktop.getInstance;
cmdWin = jDesktop.getClient('Command Window');
jTextarea = cmdWin.getComponent(0).getViewport.getView

Yet another alternative is to get the corresponding Document listener target:

cmdWinDoc = com.mathworks.mde.cmdwin.CmdWinDocument.getInstance;
listeners = cmdWinDoc.getDocumentListeners;

% Loop over all listener objects until we find the required JTextarea
% Note: jTextarea's actual position in the listeners list may vary†

jTextarea = [];
for listenerIdx = 1 : length(listeners)
 comp = listeners(listenerIdx);
 if comp.isa('javax.swing.JTextarea$accessibleJTextarea')
 jTextarea = comp.getaccessibleParent.getComponent(0);
 break;
 end
end

the returned jTextarea is an object of class com.mathworks.mde.cmdwin.
XCmdWndView, which derives from the standard Java Swing JTextarea component .29

Using the jTextarea handle, we can directly access (read/modify) the Command Window
edit pane text . Note that the retrieved text is a java.lang.String object, so in order to use
it in Matlab it is better to immediately convert it using the char function:

cwText = char(get(jTextarea,'Text')); % or: jTextarea.getText.char;

to get the reference handle of the Command Window’s containing Frame, do the following:‡

try
 % Matlab 7
 jDesktop = com.mathworks.mde.desk.MLDesktop.getInstance;
 cmdWin = jDesktop.getClient('Command Window');
 cmdWinFrame = cmdWin.getTopLevelancestor;
catch
 % Matlab 6
 jDesktop = com.mathworks.ide.desktop.MLDesktop.getMLDesktop;
 cmdWin = jDesktop.getClient('Command Window');
 cmdWinFrame = cmdWin.getTopLevelWindow;
end

† the JTextarea position in the listeners array may change . In fact, it is the 3rd item in R2008a, but the 4th item in
R2008b .

‡ When the Command Window is docked in the Desktop (as it normally is), the containing Frame can also be retrieved via
jDesktop .getMainFrame(), as described in Section 8 .1 .2 .

K13163_Book.indb 485 11/8/2011 8:09:58 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming486

8.3.1 Controlling Command Window Colors
a very common request over the years30 has been to enable programmatic customization of the
Command Window colors . this need has two subrequirements:

Customizing the entire Command Window foreground/background colors . ◾
Customizating specific text segments outputted to the Command Window . ◾

In the preceding section, I have shown how the Matlab preferences can be modified pro-
grammatically . the specific customization for setting the Command Window colors (the first
sub-requirement) is:31

% Do not use system color
import com.mathworks.services.*
Prefs.setBooleanPref('ColorsUseSystem',0);

% Use the specified colors for foreground/background
% (instead of the default black on white)
Prefs.setColorPref('ColorsBackground', java.awt.Color.yellow);
ColorPrefs.notifyColorListeners('ColorsBackground');

Programmatically controlling the Command Window colors is important, for example, when
we have two Matlab applications open at the same time and wish to visually distinguish
between them . Unfortunately, this has the side-effect of setting the colors even for future
Matlab sessions, since the corresponding preferences have changed . It also has the effect of
changing the color in all Matlab text panes — not just the Command Window (e .g ., the
Command History pane) .

So, if we only wish to set the colors temporarily and/or only update the Command Window,
we should not modify the system preferences . Instead, simply use the jTextarea handle
directly . this also has the benefit of applying immediately (no need for notifications as in the
preceding section) . Several alternatives are presented in the following code snippet (we may
need to tweak it for particular Matlab versions):

jTextarea.setBackground(java.awt.Color.yellow);
jTextarea.setBackground(java.awt.Color(1,1,0));
set(jTextarea,'Background','yellow');
set(jTextarea,'Background',[1,1,0]);

We can do the same with the Foreground property:

jTextarea.setForeground(java.awt.Color(0,0,1)); % =blue

this can be used, for example, to flash the Command Window, alerting the user to some event:

for idx = 1 : 5
 jTextarea.setBackground(java.awt.Color.red); pause(0.2);
 jTextarea.setBackground(java.awt.Color.white); pause(0.2);
end

K13163_Book.indb 486 11/8/2011 8:09:58 PM

© 2012 by Taylor & Francis Group, LLC

487The MATLAB® Desktop

let us now turn to the more difficult task of customizing the color of specific text segments
within the Command Window . For this we use jTextarea’s dormant syntax highlighting
capabilities . In fact, these capabilities are not entirely dormant: they are used by Matlab in
two very specific cases:

Errors (or rather: output to StDERR) are displayed in a ◾ red color .
Hyperlinks are displayed as ◾ underlined blue.

We can use this within our programs as follows:†

% Use hyperlink style:
disp('my text');

% Use STDERR (fid = 2) style:
fprintf(2,'my text\n');

We would perhaps have expected jTextarea to support HtMl formatting like the rest of
the uicontrols . Unfortunately, jTextarea (like Swing’s standard JTextarea of which
jTextarea is an instance) does not automatically support HtMl formatting . In fact, jText-
area’s default Document object, which holds the text-area’s text and font style information, is
an extension of Swing’s javax.swing.text.PlainDocument,32 which does not allow any
text style formatting . and the jTextarea object itself is a simple JTextarea, which does
not enable using a styled Document object . Perhaps in a future version MathWorks would be
willing to use the almost identical (syntactically wise) JTextPane,33 which does enable
styled text runs . Instead of using JTextPane, Matlab apparently implemented their sup-
port for StDERR and hyperlink styles using a custom com.mathworks.mde.cmdwin.
CmdWinSyntaxUI class that extends javax.swing.plaf.basic.BasicTextareaUI .
Unfortunately, these are internal classes that we users cannot customize .

after many trials and errors, frustrations and blind alleys, an idea occurred to me:34 Perhaps
we could fool the UI class to think that our text should be syntax highlighted? We would then
have a few more colors with which to play (comments=green, strings=purple, etc .) . So I took a
look at the jTextarea’s Document component (that holds all text and style info) and there
I saw that Matlab uses several custom attributes with the style and hyperlink information:

Syntaxtokens ◾ attribute holds style color strings such as ‘Colors_M_Strings’ for
strings, or ‘CWlink’ for hyperlinks .
linkStarttokens ◾ attribute holds the segment start offsets for hyperlinks (−1 for
 non-hyperlinked, 0+ for hyperlink) .
Htmllink ◾ attribute holds the URl target (java .lang .String object) for hyperlinks, or
null ([]) for non-hyperlink .

I played a hunch and modified the style of a specific text segment and lo-and-behold, its
Command Window color changed! Unfortunately, I found out that I cannot just fprintf(text) and

† http://UndocumentedMatlab .com/blog/changing-matlab-command-window-colors-part2/ (or http://tinyurl .com/y97mhsx) .
additional methods of displaying hyperlinks are discussed in Sections 3 .3 .1, 5 .5 .1, 6 .5 .2, 6 .9, and 8 .3 .2 .

K13163_Book.indb 487 11/8/2011 8:09:58 PM

© 2012 by Taylor & Francis Group, LLC

http://UndocumentedMatlab.com

Undocumented Secrets of MATLAB®-Java Programming488

then modify its style — for some unknown reason Matlab first needs to place the relevant
 segment in a “styled” mode (or something similar) . I tried to fprintf(2,text) to set the red (error)
style, but this did not help . but when I prepended a simple hyperlink space character I got what I
wanted — I could now modify the subsequent text to any of the predefined syntax highlighting
colors/styles .

but is it possible to use any user-defined colors, not just the predefined syntax highlighting
colors? I then remembered my earlier discovery that “Colors_M_Strings” and friends are sim-
ply system preference color objects that can be updated:

import com.mathworks.services.*
Prefs.setColorPref('Colors_M_Strings',java.awt.Color(...));

So I played another hunch and tried to set a new custom preference:

>> Prefs.setColorPref('yair',java.awt.Color.green);
>> Prefs.getColorPref('yair')
ans =
java.awt.Color[r=0,g=255,b=0]

So far so good . I now played the hunch and changed the text element’s style name from
‘Colors_M_Strings’ to ‘yair’ and luckily the new green color took effect!

So we can now set any style color (and underline it by enclosing the text in a non-target-url
hyperlink), as long as we define a style name for it using Prefs .setColorPref() . How can we
ensure the color uniqueness for multiple colors? the answer was to simply use the integer RGb
values of the requested color, something such as [47,0,255] .

but we still have the hyperlinked (underlined) space before our text — how do we get rid of
it? I tried to set the relevant linkStarttokens entry to –1 but could not: unlike Syntaxtokens
which are modifiable Java objects, linkStarttokens is an immutable numeric vector . I could,
however, set its URl target to null ([]) to prevent the mouse cursor from changing when hover-
ing over the space character, but could not remove the underline . I then had an idea to simply
hide the underline by setting the character style to the Command Window’s background color .
the hard part was to come up with this idea — implementation was then relatively easy:

% Get a handle to the Command Window component
mde = com.mathworks.mde.desk.MLDesktop.getInstance;
cmdWin = mde.getClient('Command Window');
xCmdWndView = cmdWin.getComponent(0).getViewport.getView;

% Store the Command Window background color as a special color pref
% This way, if the Command Window background color changes (via
% File/Preferences), it will also affect existing rendered strings
cwBgColor = xCmdWndView.getBackground;
com.mathworks.services.Prefs.setColorPref('CW_BG_Color',cwBgColor);

% Now update the space character's style to 'CW_BG_Color'
% See within the code: setElementStyle(docElement,'CW_BG_Color',...)

K13163_Book.indb 488 11/8/2011 8:09:58 PM

© 2012 by Taylor & Francis Group, LLC

489The MATLAB® Desktop

Having thus completed the bulk of the hard detective/inductive work, I now had to contend
with several other obstacles before the code could be released to the public:

Older ◾ Matlab versions (e .g ., 7 .1 R14) use the Document style elements slightly dif-
ferently and I needed to find a solution that would work well on all Matlab 7 ver-
sions (this took quite some time . . .) .† I even succeeded in implementing most features
on Matlab 6 — this again was quite an effort .
If the text is not newline (‘\n’)-terminated, then sometimes it is not rendered properly . ◾
adding a forced Command Window repaint() helped solve much of this problem, but
some quirks still remain (see cprintf’s help section) .
Multi-line text (‘abra \n kadbra’) creates several style elements which needed to be ◾
processed separately .
adding exception handling, argument processing, and so on, to ensure foolproof ◾
behavior . For example, accepting case-insensitive and partial style names .
Debugging the code was very difficult because whenever the debugger stopped at a break- ◾
point, “k>>” is written to the Command Window thereby ruining the displayed element!
I had to devise nontrivial instrumentation and post-processing (see within the code) .

bottom line: we now have a very simple and intuitive utility that is deceivingly simple, but
took many hours of investigation to develop . I never imagined it would be so difficult when I
started, but this just makes the engineering satisfaction greater .

the cprintf utility, which is the outcome of these extensive labors, is now available for down-
load from the Matlab File Exchange .35 based on the reviews/ratings it received and the number
of times it was downloaded, it appears to be a very popular utility that answers a real user need .

cprintf — display styled formatted text in the Command Window (See color insert.)

as in other cases, it is hoped that some future Matlab version will have this capability
built into the language . MathWork’s Ken Orr of the Desktop development team has indeed
publically commented that:36

† It appears that Matlab 7 .13 (R2011b) modified the underlying Document in a manner that required a major fix .

K13163_Book.indb 489 11/8/2011 8:09:59 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming490

“We would definitely like to allow users to change the color of their text in the Command Window
(this is a frequent request). We’re thinking about more robust highlighting mechanisms now.”

8.3.2 Help Popup and Integrated Browser Controls
the Command Window’s jTextarea can also be used to programmatically display a popup
window with user-specified text or HtMl, on Matlab releases that support the help popup
(R2007b onward):37

jDesktop = com.mathworks.mde.desk.MLDesktop.getInstance;
jTextarea = jDesktop.getMainFrame.getFocusOwner;
jClassName = 'com.mathworks.mlwidgets.help.HelpPopup';
jPosition = java.awt.Rectangle(0,0,400,300);
helpTopic = 'surf';
javaMethodEDT('showHelp',jClassName,jTextarea,[],jPosition,helpTopic);

Notes:

 1 . jPosition sets the popup’s pixel size and position (X, Y, Width, Height) . Remember
that Java counts from the top down (contrary to Matlab) and is 0-based (see Section
3 .1 .1) . therefore, Rectangle(0,0,400,300) is a 400 × 300 window at the screen’s
top-left corner .

 2 . On R2007b we must use the equivalent but more cumbersome awtinvoke function
instead of javaMethodEDT (see Sections 1 .1 and 3 .2) .

 3 . On R2011b, the code snippet above can be simplified by this replacement: helpUtils.
errorDocCallback('surf')

 4 . helpTopic is the help topic of our choice (the output of the doc function) . to display
arbitrary text, create a simple .m file that only has a main help comment with the arbi-
trary text, which will be presented in the popup .

(See color insert.)

K13163_Book.indb 490 11/8/2011 8:09:59 PM

© 2012 by Taylor & Francis Group, LLC

491The MATLAB® Desktop

So if we had a sample.m file with the following contents:

function sample
% The text in this function's main comment will be presented in the
% help popup. Hyperlinks
% are supported, but unfortunately not full-fledged HTML.

then we would get the following popup displayed (the m-file help text is converted into
HtMl using the undocumented internal function help2html):

Help popup with user-created arbitrary text

Note that Matlab’s embedded web-browser control (detailed later in this section), accepts
the “matlab:” protocol for hyperlinks . When matlab: hyperlinks are clicked, the control invokes
the target in the Matlab Command Prompt as an actual Matlab command . For example,
“matlab:dir(pwd)” will run the command dir(pwd) .38

Well, this does get the message across, but looks rather dull . It would be nice if this could be
improved to provide full-scale HtMl support . Unfortunately, Matlab documentation says
this cannot be done:39

The doc function is intended only for reference pages supplied by The MathWorks. The exception
is the doc UserCreatedClassName syntax. doc does not display HTML files you create your-
self. To display HTML files for functions you create, use the web function

luckily for us, there is a back door: the idea is to search all visible Java windows for the
HelpPopup (a modeless undecorated MJDialog Java window40) . For some reason, Matlab
does not reuse existing HelpPopup windows but always creates a new instance . In any case,
we search for the single visible HelpPopup, and then move down its component hierarchy to
the internal web browser (a com.mathworks.mlwidgets.html.HTMLRenderer object),
then update its content with HtMl text or a webpage URl:

% Find the Help popup window
jWindows = com.mathworks.mwswing.MJDialog.getWindows;

K13163_Book.indb 491 11/8/2011 8:10:00 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming492

jPopup = [];
for idx=1 : length(jWindows)
 if strcmp(get(jWindows(idx),'Name'),'HelpPopup')
 if jWindows(idx).isVisible
 jPopup = jWindows(idx);
 break;
 end
 end
end

% Update the popup with selected HTML
html=['Full HTML support: bold, '...
 '<i>italic</i>, hyperlink, ' ...
 'symbols (∀β) etc.'];
if ~isempty(jPopup)
 browser = jPopup.getContentPane.getComponent(1).getComponent(0);
 browser.setHtmlText(html);
end

Help popup with HtMl content

We can display HtMl content and highlight certain keywords using the setHtmlText-
AndHighlightKeywords() method:

browser.setHtmlTextandHighlightKeywords(html,{'support','symbols'});

Help popup with HtMl content and highlighting (See color insert.)

Instead of specifying the HtMl content, we can point this browser to a URl webpage loca-
tion (no need for the “http://” prefix) using setCurrentLocation():

browser.setCurrentLocation('UndocumentedMatlab.com');

K13163_Book.indb 492 11/8/2011 8:10:00 PM

© 2012 by Taylor & Francis Group, LLC

493The MATLAB® Desktop

Help popup browser displaying a URl webpage

the HTMLRenderer includes a full-fledged browser (which may be different across
Matlab releases and platforms) . this browser supports HtMl, CSS, JavaScript and other
web-rendering aspect that we would expect from a modern browser . being a full-fledged
browser, we have some control over its appearance using multiple internal methods of either
this object or one of its children .† Interested readers may use my uiinspect utility to explore
these options (see Section 1 .3):

>> browser.list
com.mathworks.mlwidgets.html.HTMLRenderer[HTMLRenderer,...]
 com.mathworks.mlwidgets.html.WebRenderer[...]
 com.webrenderer.windows.MozillaBrowserCanvas[canvas0,0,0,792x587]
 com.mathworks.mwswing.MJPanel[HTMLRendererInfoMessageBarPanel,...]
 com.mathworks.mwswing.MJPanel[...]
 com.mathworks.mwswing.MJLabel[...]
 com.mathworks.mwswing.MJScrollPane[...]
 ...

technically, HTMLRenderer is actually just a JPanel containing the actual browser .
luckily for us, MathWorks extended this panel class with the useful methods presented above,
that forward the user requests to the actual internal browser . this way, we do not need to get the
actual browser reference (although we can, of course) .

My popupPanel utility, downloadable on the Matlab File Exchange,41 encapsulates all
the above, displaying Matlab doc pages, arbitrary text, HtMl or webpages .

an interesting exercise left for the readers, is adapting the main heavy-weight documenta-
tion window (Help browser) to display user-created HtMl help pages . this can be achieved
by means very similar to those shown in this section .

† http://www .mathworks .com/matlabcentral/newsreader/view_thread/243727#670555 (or http://bit .ly/csoohl); note that
some internal HTMLBrowserPanel were removed or have changed between Matlab releases, so test carefully .

K13163_Book.indb 493 11/8/2011 8:10:01 PM

© 2012 by Taylor & Francis Group, LLC

www.mathworks.com
http://bit.ly

Undocumented Secrets of MATLAB®-Java Programming494

another option for displaying webpages in a stand-alone pop-up window is to use the com.
mathworks.mlservices.MLHelpServices class, described in Section 5 .6:

docRoot = char(com.mathworks.mlservices.MLHelpServices.getDocRoot);
url = ['jar:file:///' docRoot '/techdoc/help.jar!/ref/lasterror.html'];
com.mathworks.mlservices.MLHelpServices.cshDisplayFile(url);
com.mathworks.mlservices.MLHelpServices.cshSetSize(600,400);
com.mathworks.mlservices.MLHelpServices.cshSetLocation(500,250);

although meant for displaying help pages, MLHelpServices can be used for any URl
(the text:// protocol is apparently not supported, but regular HtMl webpages are):

com.mathworks.mlservices.MLHelpServices.cshDisplayFile('google.com');

Of course, as the official documentation states, we can always use the fully supported web
function to display HtMl or URls .† Under the hood, web uses the same HTMLRenderer as
our HelpPopup . the benefit of using the methods shown here is the use of a lightweight popup
window that is well-integrated with existing Matlab help .

† Urs Schwarz (aka “us”) has uploaded sweb to the File Exchange, a highly recommended extension to web: http://www .
mathworks .com/matlabcentral/fileexchange/26034 or http://bit .ly/7VJQUC .

K13163_Book.indb 494 11/8/2011 8:10:01 PM

© 2012 by Taylor & Francis Group, LLC

www.mathworks.com
www.mathworks.com

495The MATLAB® Desktop

If we do wish to display a full-blown browser window, then we should consider using the
internal WebBrowser object returned as the second output parameter from the web() function .
WebBrowser enables fine-grained programmatic control using its supplied methods:†

% Create a new browser window and point it to a webpage URL
jBrowser = com.mathworks.mde.webbrowser.WebBrowser.createBrowser;
jBrowser.setCurrentLocation('www.UndocumentedMatlab.com');
% or: [status,jBrowser,url] = web('www.UndocumentedMatlab.com');

% Wait for the contents to be available, then close the browser window
pause(1); s = {};
while isempty(s)
 s = char(jBrowser.getHtmlText);
 pause(0.1);
end
jDesktop = com.mathworks.mde.desk.MLDesktop.getInstance;
jDesktop.removeClient(jBrowser);

HelpPopup’s browser component is actually a stand-alone component that we can embed
in our Matlab GUI applications as a component (unlike WebBrowser, which creates a full-
blown window) .42 In fact, Matlab’s browser object predates PopupPanel by many years
and quite a few releases .

Here is a simple example in which a Matlab listbox selects an adjacent webpage . this
simple example shows how the Java browser object can easily be controlled by Matlab .
Specifically, we use two browser states: first we present an HtMl text message (‘loading
www .cnn .com — please wait . . .’), then replace it with a webpage:

% Prepare the figure window
f = figure('Name','Browser GUI demo', 'Number','off', 'Units','norm');

% Set up the browser panel
jObject = com.mathworks.mlwidgets.html.HTMLBrowserPanel;
[browser,container] = javacomponent(jObject, [], f);
set(container, 'Units','norm', 'Pos',[0.3,0.05,0.65,0.9]);

% Set up the URLs listbox
urls = {'www.cnn.com', 'www.bbc.co.uk', 'myLocalwebpage.html', ...
 'www.Mathworks.com', 'UndocumentedMatlab.com'};
hListbox = uicontrol('style','listbox', 'string',urls, ...
 'units','norm', 'pos',[0.05,0.05,0.2,0.9], 'userdata',browser);

% Set the listbox callback to load selected URL in the browser panel
cbStr = ['strs = get(gcbo,''string''); url = strs{get(gcbo,''value'')};'...
 'browser = get(gcbo,''userdata'');' ...
 'msg = [''<html><h2>Loading '' url '' - please wait ...''];' ...
 'browser.setHtmlText(msg); pause(0.1); drawnow;' ...
 'browser.setCurrentLocation(url);'];
set(hListbox,'Callback',cbStr);

† http://stackoverflow .com/questions/1311106/running-a-javascript-command-from-matlab-to-fetch-apdf-file (or http://bit .
ly/7ilJU3) . this example could of course be replaced with a simple urlread() — it is not intended to provide a real-life
solution but rather demonstrate the WebBrowser usage .

K13163_Book.indb 495 11/8/2011 8:10:01 PM

© 2012 by Taylor & Francis Group, LLC

http://stackoverflow.com
http://bit.ly
http://bit.ly

Undocumented Secrets of MATLAB®-Java Programming496

browser object integrated in a MAtlAb GUI (valid webpage)

If the webpage is inaccessible, an error message is displayed:

browser object integrated in a MAtlAb GUI (missing webpage)

K13163_Book.indb 496 11/8/2011 8:10:02 PM

© 2012 by Taylor & Francis Group, LLC

497The MATLAB® Desktop

Note that we can also use a JEditorPane component to display HtMl (a simpler subset
than the browser control), as discussed in Sections 3 .3 .3 and 6 .5 .2 .43

also note that Matlab’s built-in WebBrowser object accepts the nonstandard protocol
text:// for displaying HtMl contents (<html> and that closing tags are unnecessary here):

>> [status,jBrowser,url] = web('text://this is <i>a test');
status =
 0
jBrowser =
com.mathworks.mde.webbrowser.WebBrowser[Web Browser,0,0,924x635,...]
url =
text://this is <i>a test

We can easily expand this simple example to display any HtMl message or webpage, in a
seamless integration within our GUI .

Several years ago, a CSSM reader asked whether it is possible to set a callback function on
the web browser’s closure .44 there are two alternatives for doing this:

 1 . set(jBrowser .getParent,'ComponentRemovedCallback',@myFcn) .
 2 . embed a com.mathworks.mlwidgets.html.HTMLBrowserPanel component

in the GUI as described above, and then set the figure’s CloseRequestFcn property
like any other regular figure .

Note that Matlab ships with an additional, completely different, ICE web browser: a
commercial product from http://www .icesoft .com . MathWorks themselves recommend switch-
ing to ICE in some cases of problems with the standard browser .45 In most cases I suggest stick-
ing to the built-in browser and not the ICE browser, as I have seen some problems when using
the ICE browser in Matlab . to enable the ICE browser, run the following, after which
Matlab will use ICE by default:

com.mathworks.mlwidgets.html.HTMLRenderer.setUseWebRenderer(false);

8.3.3 Modifying the Command Window Prompt
a reader of the UndocumentedMatlab .com blog emailed me a challenge:46 Modify the standard
Matlab Command-Window prompt from “>>” to some other string, preferably a dynamic
prompt with the current timestamp . at first thought this cannot be done: the Command-
Window prompts are hard-coded and to the best of my knowledge cannot be modified via
properties or system preferences .

So the prompt can (probably) not be modified in advance, but what if it could be modified
after being displayed? It is true that my cprintf utility modifies the Command-Window contents
to display colored text . but this case is different since cprintf runs once synchronously (user-
invoked), whereas the prompt appears asynchronously multiple times .

there are two ways of handling multiple asynchronous events in Matlab: the first
approach, which I have eventually used, involves setting a callback on the object . this is a

K13163_Book.indb 497 11/8/2011 8:10:02 PM

© 2012 by Taylor & Francis Group, LLC

http://www icesoft com

Undocumented Secrets of MATLAB®-Java Programming498

 well-known Matlab practice, although we shall see that it uses an undocumented callback
and functionality .

a possible alternative is to set a PostSet handle.listener on the relevant object property (see
appendix b) . this approach is entirely undocumented and not well known . Interested readers
can try this approach, rather than the callbacks approach that I have taken .

the solution involved getting the Command-Window reference, then setting its
CaretUpdateCallback . this callback is fired whenever the desktop text is modified, which is
an event we trap to replace the displayed prompt:

% Get the reference handle to the Command Window text area
jDesktop = com.mathworks.mde.desk.MLDesktop.getInstance;
try
 cmdWin = jDesktop.getClient('Command Window');
 jTextarea = cmdWin.getComponent(0).getViewport.getView;
catch
 commandwindow;
 jTextarea = jDesktop.getMainFrame.getFocusOwner;
end

% Instrument the text area's callback
if nargin && ~isempty(newPrompt) && ~strcmp(newPrompt,'>> ')
 set(jTextarea,'CaretUpdateCallback',{@setPromptFcn,newPrompt});
else
 set(jTextarea,'CaretUpdateCallback',[]);
end

Now that we have the Command-Window object callback set, we need to set the logic of
prompt replacement — this is done in the internal Matlab function setPromptFcn . Here is
its core code:

% Does the display text end with the default prompt?
% Note: catch a possible trailing newline
cwText = char(jTextarea.getText);
pos = strfind(cwText(max(1,end-3):end),'>> ');
if ~isempty(pos)
 % Short prompts need to be space-separated
 if length(newPrompt) < 3
 newPrompt(end+1:3) = ' ';
 elseif length(newPrompt) > 3
 fprintf(newPrompt(1:end-3));
 end
 newLen = jTextarea.getCaretPosition;

 % The Command-Window text should be modified on the EDT
 awtinvoke(jTextarea.java,'replaceRange(Ljava.lang.String;II)', ...
 newPrompt(end-2:end), newLen-3, newLen);
 awtinvoke(jTextarea.java,'repaint()');
end

K13163_Book.indb 498 11/8/2011 8:10:03 PM

© 2012 by Taylor & Francis Group, LLC

499The MATLAB® Desktop

In this code snippet, note that we space-pad prompt string that are shorter than three
characters: this is done to prevent an internal-Matlab mixup when displaying additional
text — Matlab “knows” the Command-Window’s text position and it gets mixed up if it
turns out to be shorter than expected .

also note that I use the semi-documented awtinvoke function (Section 1 .1) to replace
the default prompt (and an automatically appended space) on the Event Dispatch thread
(Section 3 .2) . Since Matlab R2008a, I could use the more convenient javaMethodEDT
function, but I wanted my code to work on all prior Matlab 7 versions, where javaMethod
EDT was not yet available .

the callback snippet above would enter an endless loop if not changed: whenever the prompt
is modified the callback would have been re-fired, the prompt re-modified and so on endlessly .
there are many methods of preventing callback re-entry — here is the one that I chose:47

function setPromptFcn(jTextarea,eventData,newPrompt)
 % Prevent overlapping reentry due to prompt replacement
 persistent inProgress
 if isempty(inProgress)
 inProgress = 1; %#ok unused
 else
 return;
 end

 try
 % *** Prompt modification code goes here ***
 pause(0.02); % force the prompt-change callback to fizzle-out
 catch
 % Never mind - ignore errors...
 end

 % Enable new callbacks now that the prompt has been modified
 inProgress = [];
end % setPromptFcn

Handling both static prompt strings (e .g ., ‘[Yair] ’) and dynamic prompts (e .g ., ‘[25-Jan-2010
01:00:51]’) is done by accepting string-evaluable strings/functions:

% Try to evaluate the new prompt as a function
try
 origNewPrompt = newPrompt;
 newPrompt = feval(newPrompt);
catch
 try
 newPrompt = eval(newPrompt);
 catch
 % Never mind - probably a string...
 end
end

K13163_Book.indb 499 11/8/2011 8:10:03 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming500

if ~ischar(newPrompt) && ischar(origNewPrompt)
 newPrompt = origNewPrompt;
end

I then added some edge-case error handling and wrapped everything in a single utility called
setPrompt, now available on the File Exchange .48 Some usage examples:

setPrompt usage examples

However, the displayed timestamp is somewhat problematic in the sense that it indicates
when the prompt was created, not when the associated Command-Window command was exe-
cuted . In the screenshot above, the 234 command was executed on [25-Jan-2010 01:29:42],
instead of the displayed [25-Jan-2010 01:29:38] .

this is somewhat misleading . It would be better if the last (current) timestamp was continu-
ously updated and would therefore always display the latest command’s execution time . I use a
predetermined setPrompt argument of ‘timestamp’ to indicate that this should be done . set
Prompt implements this using a Matlab timer as follows:

% This is entered in the main function before setting the prompt:
stopPromptTimers;
if nargin && strcmpi(newPrompt,'timestamp')

 % Update initial prompt & prepare a timer to continuously update it
 newPrompt = @()(['[',datestr(now),'] ']);
 start(timer('Tag','setPromptTimer', ...
 'Name','setPromptTimer', ...
 'ExecutionMode','fixedDelay', ...
 'ObjectVisibility','off',...
 'Period',0.99, ...
 'StartDelay',0.5, ...
 'TimerFcn',{@setPromptTimerFcn,jTextarea}));
end

% Stop & delete any existing prompt timer(s)
function stopPromptTimers

K13163_Book.indb 500 11/8/2011 8:10:04 PM

© 2012 by Taylor & Francis Group, LLC

501The MATLAB® Desktop

 try
 timers = timerfindall('tag','setPromptTimer');
 if ~isempty(timers)
 stop(timers);
 delete(timers);
 end
 catch
 % Never mind...
 end
end % stopPromptTimers

% Internal timer callback function
function setPromptTimerFcn(timerObj,eventData,jTextarea)
 try
 try jTextarea = jTextarea.java; catch, end %#ok
 pos = getappdata(jTextarea,'setPromptPos');
 newPrompt = datestr(now);
 awtinvoke(jTextarea,'replaceRange(Ljava.lang.String;II)', ...
 newPrompt, pos, pos+length(newPrompt));
 awtinvoke(jTextarea,'repaint()');
 catch
 % Never mind...
 end
end % setPromptTimerFcn

8.3.4 Tab Completions
tab completions have become a standard feature of development environment in recent years .
Matlab has not fallen too far behind, and has repeatedly introduced support and improve-
ments for tab completions in the Desktop Command Window and the Matlab Editor .49 When
a CSSM reader asked50 whether it is possible to customize Matlab tab-completion for user-
defined functions . I searched for an answer and found a similar question on StackOverflow that
provided the necessary clue:51

apparently, Matlab has a file called TC.xml in its [matlabroot ‘/toolbox/local/’] folder
that contains the definitions of the tab-completable functions and their arguments . In order for
a user-defined function’s arguments to support tab-completion, a new entry needs to be added
to this XMl file .

8.3.4.1 TC.xml and TC.xsd the full syntax of the TC.xml file can be found in the TC.xsd
file, which is located in the same folder as TC.xml . Here are some sample definitions from an
R2008a TC.xml file (which might vary across Matlab releases):

<binding name="addpath" ctype="DIR"/>;
<binding name="help" ctype="FUN SUBFUN"/>;
<binding name="clear" ctype="FUN VaR"/>;

<binding name="whos" ctype="VaR">
 <arg previous="-file" ctype="MaTFILE"/>

K13163_Book.indb 501 11/8/2011 8:10:04 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming502

</binding>

<binding name="open">
 <arg argn="1" ctype="VaR MaTFILE FIGFILE MFILE MDLFILE FILE"/>
</binding>

<binding name="openfig">
 <arg argn="1" ctype="FIGFILE"/>
 <arg argn="2" ctype="VaR" value="new visible invisible reuse"/>
</binding>

<binding name="mlint" ctype="FUN">
 <arg argn="2:10" ctype="VaR" value="-struct -string -id"/>
</binding>

the first example defines that an unlimited number of addpath arguments, all of type DIR .
So, when completing any argument of this function in the Command-Window, Matlab pres-
ents only relevant sorted DIR (folder) elements in the pop-up window:

tab-completion of type DIR (See color insert.)

Similarly, help defines all its arguments to be a function or sub-function type, so the popup
will only be populated with function names currently visible in the desktop:

tab-completion of types FUN & SUbFUN

Similarly, clear defines all its arguments as function names or variables . Note that the list of
available functions/variables may change depending on the current execution stack position .
the full list of supported types as defined in TC.xsd is: VaR, FUN, SUbFUN, DIR, FIlE,
MFIlE, MatFIlE, FIGFIlE, MDlFIlE, MCOSPCG, MCOSClaSS (the last two available
since R2010a), and MESSaGEID (since R2011b) .

K13163_Book.indb 502 11/8/2011 8:10:04 PM

© 2012 by Taylor & Francis Group, LLC

503The MATLAB® Desktop

the whos function defines all its arguments as VaR, except a single MatFIlE arg that fol-
lows a ‘-file’ argument (whos’s help page52 explains why); the open function defines tab comple-
tion only for its first argument (with plenty of possible types) . likewise, openfig is defined as
accepting a FIGFIlE followed by a VaR with a few extra special-purpose strings53 that are
added to the popup-up menu .

Finally, the mlint example shows that multiple arguments can be defined using a single
XMl definition element . In this case, args #2-10 are defined as VaR (with three extra special-
purpose strings), while args #1 and #11+ are defined as FUN .

Careful users can edit the TC.xml file (I strongly suggest saving a backup first):

edit(fullfile(matlabroot,'toolbox/local/TC.xml'))

User-defined functions can easily be added to TC.xml, and we can even add/modify the
built-in Matlab functions that are already defined . Note that changes to TC.xml only take
effect after a Matlab restart . From then on, all future Matlab sessions will use the modi-
fication, so a really simple one-time edit can improve our workflow for a long time — at least
until we upgrade Matlab, when we will need to redo our edits .

8.3.4.2 TabComplete Utility to facilitate TC.xml editing, I have created a utility called
TabComplete, which is available on the Matlab File Exchange .54 the use of this utility is
very simple:

tabcomplete test file 'DIR +data -data no_data' VaR

defines a user-defined function test that accepts a FIlE argument, followed by a DIR argument
with three special-purpose strings, followed by any number of VaR arguments .

<binding name="test" ctype="VaR">
<arg argn="1" ctype="FILE"/>
<arg argn="2" ctype="DIR" value="+data -data no_data"/>
</binding>

to define specific argument types without any default type, use

tabcomplete test file 'DIR +data -data no_data' ''

Using TabComplete for user-defined functions

K13163_Book.indb 503 11/8/2011 8:10:04 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming504

Note: Matlab releases 7 .10 (R2010a) through 7 .13 (R2011b) have a bug that causes
Matlab to enter an endless loop (full CPU load) whenever tab-completion is requested
for an argument that has possible values that are not simple terms . In the case above, “+data”
and “-data” both cause this abnormal behavior . In such cases, the only remedy is to kill the
Matlab process via the OS’s task manager . Until this bug is fixed, I suggest using only
simple values .

TabComplete can retrieve the current list of tab-completion definitions:

>> definitions = tabcomplete;
>> definitions(1)
ans =
 functionName: 'addpath'
 defaultType: 'DIR'
 extraValues: ''
 platform: ''
 functionargs: []

>> definitions(54)
ans =
 functionName: 'openfig'
 defaultType: ''
 extraValues: ''
 platform: ''
 functionargs: [1x2 struct]

>> definitions(54).functionargs(1)
ans =
 previousarg: ''
 argType: 'FIGFILE'
 extraValues: ''

>> definitions(54).functionargs(2)
ans =
 previousarg: ''
 argType: 'VaR'
 extraValues: 'new visible invisible reuse'

TabComplete has a few limitations: it does not support the -previous option described above
(we can do this by manually editing TC.xml) . there are also some inherent limitations in
Matlab’s tC functionality: changes take effect only after a Matlab restart (there might
be a way to reload the definitions in the current Matlab session, but I do not know of any);
the list of standard types cannot be modified; and the default type does not support extra spe-
cial-purpose strings as do the numbered args .

8.3.4.3 Additional Aspects of Tab Completion there is another annoying limitation of
Matlab’s tab-completion mechanism: TC.xml only supports lowercase function names

K13163_Book.indb 504 11/8/2011 8:10:05 PM

© 2012 by Taylor & Francis Group, LLC

505The MATLAB® Desktop

although Matlab supports function names with UPPERCaSE characters . this limitation
can be solved by editing the TC.xsd file (not the TC.xml file) . Instead of:

<xsd:simpleType name="tcBindingNameType">
 <xsd:restriction base="xsd:token">
 <xsd:pattern value='[a-Za-z_0-9]+(/[a-z_0-9]+)?'/>
 </xsd:restriction>
</xsd:simpleType>

Change the xsd:pattern definition element to:†

<!–− Yair 21/2/2010: added a-Z −–>
<xsd:pattern value='[a-Za-z_0-9]+(/[a-Za-z_0-9]+)?'/>

(note the way that comments can be added to the XSD/XMl files) .

an entirely different customization, for user-defined class members, was presented by Michal
Kutil .55 Unfortunately, Michal’s hacks only work for user-defined classes, and not for regular
Matlab functions and scripts, either built-in or user-defined .

a related undocumented aspect of tab completions, is the ‘tabcompletion’ feature .56 For
some unknown reason, this feature cannot be activated via the feature function but only via the
older system_dependent one (in most other cases, these two functions are interchangeable):

system_dependent('tabcompletion',false) % use true to turn back on

8.3.5 Additional Command Window Uses
the most important addition of XCmdWndView compared to the standard JTextarea is
the support for incremental search/replace, defined in the com.mathworks.widgets.
incSearch.IncSearchInterface interface, that defines the following methods:
find(string,forwardFlag), findBack(findEventObj), findForward(findEventObj),
incSearch(string,forwardFlag), incSearchEOL(string), incSearchNextWord(string), endInc-
Search(), endIncSearchMoveCaret(), replace(findEventObj), replaceAll(findEventObj),
startIncSearch(forwardFlag), and clearSearch() .

another aspect of the Command Window’s jTextarea, is its callback support for key-
board and mouse events . We use this feature in Section 8 .5, where key-bindings support is
discussed in detail . For the purpose of this section, we just show how key-click events in the
Command Window can be trapped and processed:57

jDesktop = com.mathworks.mde.desk.MLDesktop.getInstance; % Matlab 7
%jDesktop = com.mathworks.ide.desktop.MLDesktop.getMLDesktop; % Matlab 6

† this has been fixed in R2011a, as I have suggested .

K13163_Book.indb 505 11/8/2011 8:10:05 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming506

cmdWin = jDesktop.getClient('Command Window');
jTextarea = cmdWin.getComponent(0).getViewport.getView;
h_cw = handle(jTextarea,'CallbackProperties');
set(h_cw, 'KeyPressedCallback', @myMatlabFunction);

% alternatively, to pass predefined parameters to myMatlabFunction:
set(h_cw, 'KeyPressedCallback', {@myMatlabFunction,extraParam1,...});

% ...and now to clear the event trap:
set(h_cw, 'KeyPressedCallback', '');

a user on the StackOverflow forum asked58 if it is possible to programmatically control the
Command Window title, to enable easy window differentiation:

% For entire Desktop:
jDesktop.getMainFrame.setTitle('my new title');

% For Command Window only:
cmdWin = jDesktop.getClient('Command Window');
cmdWin.getTopLevelancestor.setTitle('my new title'); % Matlab 7
%cmdWin.getTopLevelWindow.setTitle('my new title'); % Matlab 6

another StackOverflow user asked59 how to retrieve the Command Window’s selected text:

text = char(jTextarea.getSelectedText);

8.4 Editor

the built-in Matlab Editor is possibly the most complex Java-based component in Matlab .
In addition to standard editor functionalities, it also includes support for document docking,
integrated debugging, code-folding and other nontrivial tasks . the editor itself has many pos-
sible customizations, once we get its Java handle:60

try
 % Matlab 7
 jDesktop = com.mathworks.mde.desk.MLDesktop.getInstance;
 jEditor = jDesktop.getFrameContainingGroup('Editor');†
 % => a com.mathworks.mde.desk.MLMultipleClientFrame object

catch

 % Matlab 6
 % Unfortunately Matlab 6 Desktop does not expose the Editor handle
 %jDesktop = com.mathworks.ide.desktop.MLDesktop.getMLDesktop;

 % So here is the workaround for Matlab 6:
 editorapp = com.mathworks.ide.editor.Editorapplication;
 openDocs = editorapp.getOpenDocuments;

† an alternative: jEditor = jDesktop.getGroupContainer('Editor').getTopLevel ancestor; we can
also get jEditor by searching the Java Frames returned by java.awt.Frame.getFrames().

K13163_Book.indb 506 11/8/2011 8:10:05 PM

© 2012 by Taylor & Francis Group, LLC

507The MATLAB® Desktop

 % => a java.util.Vector

 firstDoc = openDocs.elementat(0);
 % => a com.mathworks.ide.editor.EditorViewContainer object

 jEditor = firstDoc.getParent.getParent.getParent;
 % => a com.mathworks.mwt.MWTabPanel object or
 % a com.mathworks.ide.desktop.DTContainer object
end

Note that we cannot use the shortcut presented for the Profiler in the previous section namely,
jDesktop.getClient('Editor') . While this is syntactically correct in both Matlab 6
and 7, it will normally return a null ([]) object because the Editor client constantly changes its
name based on the currently presented filename . For example,

>> jDesktop.getClient('Editor')
ans =
 []

>> jDesktop.getClient('Untitled')
ans =
com.mathworks.ide.editor.EditorViewContainer[...]

8.4.1 The EditorServices/matlab.desktop.editor Object
Now that we have the Editor handle, let us retrieve its currently open (active) file name from the
Editor’s title (remember to strip away possible “dirty” indication — a prepended ‘*’ character):

title = jEditor.getTitle;
currentFilename = char(title.replaceFirst('Editor - ',''));
currentFilename = strrep(currentFilename,'*','');

an alternative way to get the title of the currently active Editor document:61

% Get the handle to the currently-active document container
jDocContainer = jDesktop.getLastDocumentSelectedInGroup('Editor');

% Get this container's title from the Desktop
currentFilename = char(jDesktop.getTitle(jDocContainer));

% Strip away possible "dirty" indication (a prepended '*' character)
currentFilename = strrep(currentFilename,'*','');

the entire list of open file names can be retrieved in several ways (some may not work on
some Matlab releases):

% alternative #1:
jEditorServices = com.mathworks.mlservices.MLEditorServices;
editorFilenames = char(jEditorServices.builtinGetOpenDocumentNames);

K13163_Book.indb 507 11/8/2011 8:10:05 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming508

% alternative #2:
openFiles = jDesktop.getWindowRegistry.getClosers.toarray.cell;
editorFilenames = cellfun(@(c)c.getTitle.char,openFiles,'uniform',false);

% alternative #3:
jEditorServices = com.mathworks.mlservices.MLEditorServices;
openFiles = jEditorServices.getEditorapplication.getOpenEditors.toarray;
editorFilenames = arrayfun(@(c)c.getLongName.char,openFiles,'uniform',false);

In Matlab R2009b to R2010b, we can also use the built-in editorservices package,62
which is basically just a Matlab wrapper for MLEditorServices:

% In Matlab R2009b, editorservices is a predefined built-in package
currentFile = editorservices.getactive;
openFiles = editorservices.getall;

% The new editorservices package has a hidden undocumented property
% 'JavaEditor' which is a bridge to the Java side with all the editor
% panes, toolbars, etc.
jEditor = get(editorservices.EditorDocument,'JavaEditor');
edit('editorservices.EditorDocument'); % to see usage examples

editorservices was renamed matlab.desktop.editor in Matlab 7 .12 (R2011a) .63 the
syntax for the corresponding code in R2011a is very similar:

currentFile = matlab.desktop.editor.getactive;
openFiles = matlab.desktop.editor.getall;
jEditor = matlab.desktop.editor.getactive().JavaEditor;
edit('matlab.desktop.editor.Document'); % to see usage examples

Here are some interesting methods of the pre-R2009b jEditorServices handle† (note
that in R2010b this interface has changed somewhat — see below):

builtinAppendDocumentText(fileName, text) ◾ — appends the specified text to the spec-
ified filename . Filename may be specified using the full pathname or just the simple
file name . Note that if the file is not currently open in the Editor, then nothing happens,
and no warning/error message is displayed .
builtinGetActiveDocument() ◾ — returns the full pathname of the currently active
 editor file .‡

builtinGetDocumentText(fileName) ◾ — returns the text of the specified Editor filename
(which may be specified using its simple or full-path form) . Note that the returned text
is a java.lang.String object, which should be converted to Matlab using the
built-in char function . If the specified file is not currently open in the Editor, [] is
returned .

† this refers to the MLEditorServices Java object, not the R2009b+editorservices package, although many of the
latter’s methods are similar to those presented here . this is not a coincidence: they share a common origin .

‡ the corresponding R2009b+editorservices method name is getActive().

K13163_Book.indb 508 11/8/2011 8:10:05 PM

© 2012 by Taylor & Francis Group, LLC

509The MATLAB® Desktop

builtinGetNumOpenDocuments() ◾ — returns the number of open documents .64

builtinGetOpenDocumentNames() ◾ — returns a Java array of java.lang.String
objects,† of the full-path filenames of the files currently open in the Editor .65 Use the
built-in cell function to convert this array to a Matlab string cell array:

>> openFiles = jEditorServices.builtinGetOpenDocumentNames.cell
openFiles =
 'C:\Yair\Utils\Matlab\EditorMacro\EditorMacro.m'
 'C:\Program Files\Matlab\R2008a\toolbox\matlab\uitools\uiundo.m'
 'C:\Yair\Undocumented Matlab\Untitled2'

closeAll() ◾ — closes all open documents .‡

closeDocument(fileName) ◾ — closes specified document, if currently loaded .66

isDocumentDirty(filename) ◾ — returns a flag indicating whether or not the specified
document is modified and unsaved compared to its disk image . Such documents are
usually indicated with an asterix (*) in their title .
newDocument(text) ◾ — creates a new (untitled) Editor document, with the optional
specified text .§

openDocument(fileName) ◾ — opens the specified document in the Editor and sets the
cursor caret at line #1 .¶ If the file does not exist, a popup message will ask the user
wheter to create a new file by this name or not .
openDocumentToFunction(fileName, functionName, string) ◾ — opens the specified
document at the specified function/sub-function .**†† If the filename does not exist, noth-
ing happens (no error/warning is displayed); if the function does not exist in the docu-
ment, then a new empty function having the specified name is added at the bottom of
the document (a new line with the text: “function functionName”) . I do not know what
the third string is used for — as far as I could tell, it accepts any string value and has
no visible effect .
openDocumentToLine(fileName, lineNum, focusFlag, highlightFlag) ◾ — opens the
specified document at the requested line number .††‡‡ the optional focusFlag (default=true)
determines whether the Editor window should receive focus (be moved to the front);
the accompanying highlightFlag (default=false)‡‡§§ determines whether the entire line
should be highlighted .

† the corresponding R2009b+editorservices method name is getAll() .
‡ http://blogs .mathworks .com/desktop/2007/03/29/shortcuts-for-commonly-used-code/#comment-5753 (or http://bit .ly/aRva9c) .

the corresponding R2009b+editorservices method name is closeGroup() . to leave the group up and just close all the open
editors use: close(editorservices.getall).

§ the corresponding R2009b+editorservices method name is new(text).
¶ http://www .mathworks .com/matlabcentral/newsreader/view_thread/154050#386543 (or http://bit .ly/c775qm) . the cor-

responding R2009b+editorservices method name is open(fileName) .
†† the corresponding R2009b+editorservices method name is openAndGoToFunction(fileName,functionName,...).
‡‡ the corresponding R2009b+editorservices method name is openAndGoToLine(fileName,lineNum,columnNum,...).
§§ If focusFlag is specified, then so must highlightFlag — these two flags must either both be present or both be absent .

K13163_Book.indb 509 11/8/2011 8:10:05 PM

© 2012 by Taylor & Francis Group, LLC

http://blogs mathworks com
http://bit.ly
www.mathworks.com

Undocumented Secrets of MATLAB®-Java Programming510

openDocumentToLineAndColumn(fileName, lineNum, colNum, focusFlag) ◾ — opens
the specified document at the requested line/column . focusFlag (default=true) deter-
mines whether the Editor window should receive focus .
reloadDocument(filename, onlyIfNonDirtyflag) ◾ — reloads the specified document if
it was modified . If onlyIfNonDirtyflag is true, then the document is not unloaded if it
is “dirty” (i .e ., modified and unsaved), causing data loss if the document were reloaded;
if onlyIfNonDirtyflag is false, then the document is reloaded regardless of the docu-
ment’s “dirty” state (see isDocumentDirty) .
saveDocument(fileName) ◾ — saves the specified document .

the combination of builtinGetOpenDocumentNames() and openDocument() enables stor-
ing the current editor state in a disk file, for later reload .67 this enables easy switching between
projects, each having its own set of open Editor documents .

% Save the current Editor state:
jEditorServices = com.mathworks.mlservices.MLEditorServices;
editorState = jEditorServices.builtinGetOpenDocumentNames();
save('editorState.mat', 'editorState');

% Restore the Editor state:
jEditorServices = com.mathworks.mlservices.MLEditorServices;
load('editorState.mat');
for i = 1:length(editorState)
 jEditorServices.openDocument(editorState(i))
end

this functionality was encapsulated into a small but useful setEditorState utility:68

setEditorState('projecta','save');
setEditorState('projectB','load');

as an alternative, we can preserve and later load a copy of the current MATLAB_Editor_
State.xml file in the prefdir folder (the editor will need to be closed and reopened for changes
to take effect) . this file stores both document names and their code-folding state (but not break-
points or bookmarks) .

as noted above, in R2010b (Matlab 7 .11), the Java class interface has changed . In R2010b,
we get the editor handle as follows:69

jEditorServices = com.mathworks.mlservices.MLEditorServices;
jEditorapp = jEditorServices.getEditorapplication;

the method names and parameters have also changed from those presented above . In
R2010b, interesting jEditorapp methods are (use the uiinspect utility for more info):

close(), closeNoPrompt() ◾
findEditor(com.mathworks.matlab.api.datamodel.StorageLocation) ◾
getActiveEditor() ◾
getOpenEditors() ◾

K13163_Book.indb 510 11/8/2011 8:10:05 PM

© 2012 by Taylor & Francis Group, LLC

511The MATLAB® Desktop

getEditor(com.mathworks.matlab.api.datamodel.StorageLocation) ◾
getLastActiveEditorViewClient() ◾
isEditorOpen(com.mathworks.matlab.api.datamodel.StorageLocation) ◾
isEditorOpenAndDirty(com.mathworks.matlab.api.datamodel.StorageLocation) ◾
newEditor(java.lang.String) ◾
openEditor(java.io.File) ◾
openEditorForDebug(java.io.File, int) ◾
openEditorForExistingFile(java.io.File) ◾

as can be seen from this new interface, each edited document has a separate com.math-
works.mde.editor.MatlabEditor object . the getActiveEditor() method returns the
MatlabEditor object for the currently edited document, and the others can be retrieved via
the getOpenEditors(), which returns a java.util.Collections.UnmodifiableList of
such MatlabEditors .

Each document’s functionality can be accessed via its MatlabEditor’s methods
 (bringToFront(), close(), goToLine(...), reload(), replaceText(...), setEditable(...), etc .) or prop-
erties (e .g . CaretPosition, Document, language, length, longName, ShortName, Selection,
text, etc .):

appendText(java.lang.String) ◾
bringToFront() ◾
close(), closeNoPrompt(), dispose() ◾
fireEditorEvent(com.mathworks.matlab.api.editor.EditorEvent) ◾
firePropertyChange(java.lang.String, java.lang.Object, java.lang.Object) ◾
getCaretPosition() ◾
getComponent() ◾
getDocument() ◾
getLanguage() ◾
getLength() ◾
getShortName(), getLongName(), getStorageLocation() ◾
getProperty(java.lang.Object) ◾
getSelection() ◾
getText() ◾
getTextWithSystemLineEndings() ◾
goToFunction(java.lang.String, java.lang.String) ◾
goToLine(int, boolean), goToLine(int, int) ◾
insertTextAtCaret(java.lang.String) ◾
isBuffer() ◾
isDirty() ◾
isEditable() ◾
isMCode() ◾
isOpen() ◾

K13163_Book.indb 511 11/8/2011 8:10:06 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming512

lockIfOpen(), unlock() ◾
negotiateSave() ◾
refreshMenus() ◾
reload() ◾
replaceText(java.lang.String, int, int) ◾
setCaretPosition(int) ◾
setEditable(boolean) ◾
setSelection(int, int) ◾
setStatusText(java.lang.String) ◾
smartIndentContents() ◾

8.4.2 The Editor Frame Object
the jEditor handle is actually a container for many internal panels (toolbars, etc .) and docu-
ments . the entire object hierarchy can be seen with the FindJObj utility:

MAtlAb Editor object hierarchy as seen by findjobj(jEditor) or: jEditor.findjobj

K13163_Book.indb 512 11/8/2011 8:10:08 PM

© 2012 by Taylor & Francis Group, LLC

513The MATLAB® Desktop

We can see the Editor hierarchy tree is rather complex . Here is a simplified version:

(See color insert.)

MLMultipleClientFrame (this is our top-level jEditor object)
 - DTMaximizedButtonPanel (1 — docking controls)
 - MLMenuBar (2 — main menu bar)
 - MJCornerGrip (3 — window lower-right corner grip)
 - EditorStatusBar (4 — status bar)†
 - DTGroupFrame
 - DTToolBarContainer
 - arrangementControls (5 — document layout controls)
 - MJToolBar (6 — main Editor toolbar)
 - MJToolBar (7 — cell-mode or “codepad” toolbar)
 - DTDocumentContainer
 - DTDocumentBar (8 — document labels scroll-pane)
 - DTMaximizedPane
 - DTClientFrame (hidden — a nonactive document)
 - DTClientFrame (hidden — a nonactive document)
 - DTClientFrame (active document)
 - EditorSyntaxTextPane (9 — main editable text area)
 - ScrollBar (10 — vertical scrollbar)
 - ScrollBar (horizontal scrollbar)
 - GlyphGutter (11 — line numbers)
 - MWCodeFoldingSideBar (12 — code folding lines and icons)
 - BreakpointPanel (13 — breakpoints and executable lines icons)
 - ExecutionPanel (14 — bookmarks and execution arrow icons)
 - MessagePanel (15 — m-lint code-analysis icons)
 - (other hidden nonactive documents) …

Note that this list was generated by Matlab R2008a on Windows XP with a specific
Editor document layout; other releases, platforms or layouts might vary .

† Statusbar customization was described in Section 4 .7 . jEditor .setStatusText(...) updates the statusbar text .

K13163_Book.indb 513 11/8/2011 8:10:09 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming514

Navigating down the hierarchy tree is easily done using the getComponent() method, as the
following example to retrieve the main toolbar object illustrates . However, in real-life pro-
grams, extra care should be taken to account for other Matlab releases, platforms and Editor
layouts, all of which may cause changes to the hierarchy tree:

jLayeredPane = jEditor.getComponent(0).getComponent(1);
dtGroupFrame = jLayeredPane.getComponent(3).getComponent(1);
jToolBarPanel = dtGroupFrame.getComponent(0).getComponent(0);
dtToolBarContainer = jToolBarPanel.getComponent(0);
mjToolBar = dtToolBarContainer.getComponent(1);

the jEditor handle to the MLMultipleClientFrame at the top of the hierarchy tree
has over 300 invokable methods and close to 200 gettable/settable properties . My uiinspect
utility, described above, facilitates the discovery of interesting things we can programmatically
do with the Editor handle:

uiinspect(jEditor); % or: jEditor.uiinspect

MAtlAb Editor methods, callbacks and properties as seen by uiinspect

K13163_Book.indb 514 11/8/2011 8:10:10 PM

© 2012 by Taylor & Francis Group, LLC

515The MATLAB® Desktop

Using jEditor at the top-level Editor-window level, we can prevent the window’s resizing,
update its status bar, modify its toolbar/menu-bar, control docking/position/maximize/mini-
mize and do other similar fun things:

% actions via built-in methods:
jEditor.setResizable(false);
jEditor.setStatusText('testing 123...');
jEditor.setTitle('This is the Matlab Editor');

% Equivalent actions via properties:
set(jEditor, 'Resizable', 'off');
set(jEditor, 'StatusText', 'testing 123...');
set(jEditor, 'Title', 'This is the Matlab Editor');

Some other interesting methods and properties exposed by the jEditor handle:

getStatusBar ◾ /setStatusBar (or Statusbar property) — returns or sets the handle to the
EditorStatusBar panel at the Editor window’s bottom (#4 in the Editor screenshot
above) . Updating the panel’s main javax.swing.JLabel is easy:

sbLabel = jEditor.getStatusBar.getComponent(0);
set(sbLabel, 'Foreground',java.awt.Color.blue, 'Text','testing...');

 the entire status bar can be hidden by using setStatusBarVisible(false) (or:
set(‘StatusbarVisible’,0)); to redisplay, simply set this property to true (or 1) .
getWindowMenu, getDesktopMenu ◾ (or corresponding read-only properties) — return
a handle to the “Window” and “Desktop” children of the main MLMenuBar menu bar
(#2 in the Editor screenshot above); getJMenuBar/setJMenuBar (or the JMenubar
property) returns or sets the handle to the MLMenuBar menu bar itself . We can cus-
tomize menu items just like Figure menus (see Section 4 .6) .

While the jEditor and jEditorServices object reference handles enable access to many
Editor niches, some aspects remain inaccessible . I discovered an example when a user requested70
access to Editor bookmarks . apparently, these are displayed in the ExecutionPanel panel
(#14 in the Editor screenshot above), but I could not find a way to access them programmatically .†

8.5 Keyboard Bindings

Over the past years, there have been quite a few requests to enable keyboard macros and key-
binding modifications in the Matlab editor .71 Some posters have even noted this lack as their
main reason to use an external editor .

based on the information presented in the previous section and some helpful feedback
of early adopters, my EditorMacro utility on the Matlab File Exchange72 now provides a

† an ugly workaround: loop over all open files, invoke the editor’s default action for <F2> (‘next-bookmark’ action
reported by the EditorMacro utility) until detecting an earlier line number . to set bookmarks, use the ‘toggle-book-
mark’ action .

K13163_Book.indb 515 11/8/2011 8:10:10 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming516

solution for this need on all Matlab releases since 6 .0 (R12) . Following EditorMacro,
another user has submitted a similar utility (KeyBindings73) that complements EditorMacro in
several aspects . In this section, I will detail some of the inner workings, which heavily rely on
undocumented Matlab features .

Matlab 7 .9 (R2009b) introduced key-binding customization of the Matlab Editor and
Desktop as part of the Systems Preferences window .74 the desktop design team appears to have
done a good job of enabling easy keyboard shortcuts customization, saving/loading sets of
shortcuts, and so on, using a new easy-to-use preference panel . However, there may still be
reasons for using EditorMacro and/or KeyBindings:

Earlier ◾ Matlab versions — those who have a Matlab release earlier than
R2009b have no option but to use these utilities . the first version of EditorMacro even
supported Matlab 6 .0, which is a decade old!
Programmatic access ◾ — some users may wish to have programmatic access to the
keyboard bindings . For example, by saving sets of bindings in an m-file and accessing
any of these sets via GUI or the desktop shortcuts toolbar . Note that in R2009b, these
preferences can probably be accessed programmatically via the preferences interface
(see Section 8 .2) .
Understanding the underlying workings ◾ of the Matlab desktop/editor, for those
interested in exploring and using these undocumented subjects .

User-contributed utilities, especially those relying on undocumented features like EditorMacro
and KeyBindings, will always pale next to slick GUI preferences that are well-integrated by
design . they do have a place in niche usages, as explained above . but the hope is that all these
needs will eventually be addressed by well-documented integrated features, as has happened in
this particular case .

8.5.1 Inserting/Replacing Text
In a nutshell, EditorMacro sets the KeyPressedCallback property (see Section 3 .4) for each of
the editor’s document panes, to an internal function . this internal function then checks each
keystroke against a list of registered keybindings . the list itself is persisted in the editor object’s
hidden applicationData property (accessible via the getappdata/setappdata built-in func-
tions) . If a match is found, then the associated macro is invoked .

Depending on the macro type, text can be inserted at the current editor caret position
(or as a replacement of the currently selected text); or a nontext Matlab function/com-
mand/action can be invoked . this enables EditorMacro to be used for quickly inserting
code templates (header comments, try-catch blocks, etc .) or for automating Matlab unit
testing .

Here is a typical usage example: start by defining a simple function that returns a dynamic
header comment:

K13163_Book.indb 516 11/8/2011 8:10:11 PM

© 2012 by Taylor & Francis Group, LLC

517The MATLAB® Desktop

function comment = createHeaderComment(hDocument, eventData)
 timestamp = datestr(now);
 username = getenv('username');
 %computer = getenv('computername'); % unused
 lineStr = repmat('%',1,35);
 comment = sprintf(...
 ['%s\n' ...
 '%% \n' ...
 '%% Name: functionName\n' ...
 '%% \n' ...
 '%% Desc: enter description here\n' ...
 '%% \n' ...
 '%% Inputs: enter inputs here\n' ...
 '%% \n' ...
 '%% Outputs: enter outputs here\n' ...
 '%% \n' ...
 '%% Created: %s\n' ...
 '%% \n' ...
 '%% author: %s\n' ...
 '%% \n' ...
 '%s\n'], ...
 lineStr, timestamp, username, lineStr);
end % createHeaderComment

Now define a macro to use this function, and another simple trycatch template:

>> EditorMacro('alt-Control-h', @createHeaderComment);
>> macroStr = ['try\n % Main code here\ncatch\n ' ...
 '% Exception handling here\nend'];
>> bindings = EditorMacro('Ctrl alt T', macroStr)
bindings =
 'ctrl alt pressed H' @createHeaderComment 'text' 'text'
 'ctrl alt pressed T' [1x60 char] 'text' 'text'

Now start with a blank document and click <Ctrl>-<alt>-H and <Ctrl>-<alt>-t . this will
automatically insert the following text into the document:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Name: functionName
%
% Desc: enter description here
%
% Inputs: enter inputs here
%
% Outputs: enter outputs here
%
% Created: 01-Jul-2009 23:31:46
%

K13163_Book.indb 517 11/8/2011 8:10:11 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming518

% author: Yair altman
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
try
 % Main code here
catch
 % Exception handling here
end

Keybindings are normalized using Java’s built-in javax.swing.KeyStroke.getKey-
Stroke() method, to enable the user a very wide range of keystroke naming formats (e .g ., ‘alt-
Control-t’ or ‘ctrl alt t’) .

text can also be computed dynamically by the called macro function . For example, this
macro inserts the current timestamp:

EditorMacro('alt control t', @(a,b)datestr(now), 'text');

Note the odd-looking definition of datestr: this is because each EditorMacro macro func-
tion must accept at least two input arguments (see the following section for details) . It is ok to
ignore these input arguments, but they must be defined since they will be passed to the macro
function in runtime, and unless defined a runtime error will be thrown .

I have taken great pains to make EditorMacro compatible with all Matlab versions
since 6 .0 (R12) . this was no easy feat: Matlab 7 made some significant changes to the
editor layout . Discovering how to get a handle to the Matlab 6 editor object took some
hours of trial-and-error — the result is listed at the beginning of Section 8 .4 . Once I had this
handle, listing its display hierarchy was simple and the modifications were generally straight-
forward, although nontrivial: different quirks due to missing default type-castings, missing
eventData in invoked callbacks, and so on . EditorMacro’s source code now has clearly
marked Matlab 6 segments .

another complication arose due to the different layout used for floating/maximized/tiled
document layout in the editor . Yet another was due to the different behavior (at least on
Matlab 6) between a one-document and a multi-document editor view .

Due to the way keyboard events are processed by the Matlab editor, KeyPressedCallback
needs to be set separately for all the open document panes and split-panes . Since we wish newly
opened documents to recognize the macro bindings, we also need to set the common container
ancestor’s ComponentaddedCallback to an internal function that will handle the
KeyPressedCallback instrumentation for each newly opened document . again, this is done
differently for Matlab 6 and 7 .

Note that EditorMacro relies on the Matlab Editor’s and Command Window’s internal
display layout, which is very sensitive to modification between Matlab releases (as it has
between Matlab 6 and 7, for example) .

Here is a screenshot of EditorMacro’s report of existing keybindings on my system:

K13163_Book.indb 518 11/8/2011 8:10:11 PM

© 2012 by Taylor & Francis Group, LLC

519The MATLAB® Desktop

Screenshot of currently-defined key bindings, as reported by EditorMacro

8.5.2 Running Action Macros
For running action macros, as opposed to text insertion, we must specify a callback function,
which returns no output value and accepts at least two input arguments:75

sourceObject — the macro target, which is the Editor document’s text pane (an ◾
EditorSyntaxTextPane object, described in Section 8 .4 .2), or the Command
Window text area (an XCmdWndView object, described in Section 8 .3) .
eventData — a ◾ java.awt.event.KeyEvent76 object that contains the key-stroke
event data, including alt/ctrl/shift depression state and the clicked character .

For example, let us set the <Ctrl-E> combination to a macro moving to the end-of-line (unix-
style — equivalent to <End> on Windows), and <Ctrl-Shift-E> to a similar macro doing the
same while also selecting the text (like <Shift-End> on Windows) . We shall even use the same
macro code, by simply checking in the eventData whether the <Shift> key is depressed:

First, let us define our macro function and place it in EOl_Macro .m:

function EOL_Macro(hDocument,eventData)

 % Find the position of the next EOL mark
 currentPos = hDocument.getCaretPosition;
 docLength = hDocument.getLength;

K13163_Book.indb 519 11/8/2011 8:10:12 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming520

 textToEOF = char(hDocument.getTextStartEnd(currentPos,docLength));
 nextEOLPos = currentPos+find(textToEOF<=13,1)-1; % next CR/LF pos
 if isempty(nextEOLPos)
 % no EOL found (=> move to end-of-file)
 nextEOLPos = docLength;
 end

 % Do action based on whether <Shift> was pressed or not
 %get(eventData) % for debugging purposes
 if eventData.isShiftDown
 % Select to EOL
 hDocument.moveCaretPosition(nextEOLPos);
 else
 % Move to EOL (without selection)
 hDocument.setCaretPosition(nextEOLPos);
 end
end % EOL_Macro

 . . .and now let us activate this macro in the Matlab Command Window:

>> macros = EditorMacro('ctrl-e',@EOL_Macro,'run');
>> macros = EditorMacro('ctrl-shift-e',@EOL_Macro,'run')
macros =
 'ctrl pressed E' @EOL_Macro 'run' 'user-defined macro'
 'shift ctrl pressed E' @EOL_Macro 'run' 'user-defined macro'

For a full list of methods made available in the hDocument source object, I suggest using
the uiinspect utility . We will discover, for example, the very handy method of
delete(startPos,endPos), which can be used for defining character/word/line/sentence deletion
macros . Similarly, the insert(startPos,string) method can be used to insert text .† I have used
this to answer a user request of binding (Emacs-style) <Ctrl-O> to an insertion of a new line
beneath the current line without moving the caret:77

EditorMacro('ctrl-o', @(ed,evd)ed.insert(...
 ed.getLineEndFromPos(ed.getCaretPosition),sprintf('\n')), 'run');

I have used the long one-liner above to illustrate a point of the ease in which action macros
can be defined . In real life, however, it would probably be easier to debug and maintain more
verbose code such as this:

function NL_Macro(hDocument,eventData)
 currentPos = hDocument.getCaretPosition;
 eolPos = hDocument.getLineEndFromPos(currentPos);
 hDocument.insert(eolPos,sprintf('\n'));
end % NL_Macro

EditorMacro('ctrl-o', @NL_Macro, 'run');

† this is correct for Matlab 7 releases — in Matlab 6 the input arguments order for insert() is reversed .

K13163_Book.indb 520 11/8/2011 8:10:12 PM

© 2012 by Taylor & Francis Group, LLC

521The MATLAB® Desktop

When running a macro, we might wish to save the document before (or possibly after) our
modifications, as requested by a blog reader . Here is how to do so:

function my_Macro(hDocument,eventData)
 filename = jDocument.getFilename;

 % do some user-defined stuff

 % Now save the file:
 com.mathworks.mlservices.MLEditorServices.saveDocument(filename);
end % my_Macro

User data can also be passed to the macro functions, as the third and subsequent parameters,
just as for regular Matlab callbacks . For example,

EditorMacro('Shift-Control d', {@computeDiameter,3.14159}, 'run');
% In this case, 3.14159 is computeDiameter()'s 3rd input argument:
% function computeDiameter(source,keyEvent,data)

8.5.3 Running Built-In Actions
Menus in Matlab (and in Java applications in general) are connected to corresponding action
methods that are invoked whenever the menu item is selected .78 actions are identified by name,
which is a lowercase dash-separated description such as ‘selection-up’ (this format is familiar
to Emacs users) .

Naturally, there are many more possible actions than displayed menu items . In fact, it
turns out that both the Matlab Editor and the Command Window have some 200 built-in
(native) actions, about half of them common, giving a total of some 300 unique native actions .
Of these, only some 100 have default (pre-assigned) key-bindings in Matlab . a few
dozen actions even have multiple key-bindings . For example, the ‘selection-up’ action is
assigned to both ‘shift pressed UP’ (=<shift>-<up>) and ‘shift pressed KP_UP’ (<shift>-
<Keypad-up>):

>> [bindings, actions] = EditorMacro
actions =
...[snip]
 'selection-page-down' 'shift pressed PaGE_DOWN' 'editor native action'
 'selection-page-up' 'shift pressed PaGE_UP' 'editor native action'
 'selection-previous-word' {2x1 cell} 'editor native action'
 'selection-up' {2x1 cell} 'editor native action'
 'set-read-only' [] 'editor native action'
 'set-writable' [] 'editor native action'
 'shift-insert-break' 'shift pressed ENTER' 'editor native action'
 'shift-line-left' 'ctrl pressed OPEN_BRaCKET' 'editor native action'
 'shift-line-right' 'ctrl pressed CLOSE_BRaCKET' 'editor native action'
 'shift-tab-pressed' 'shift pressed TaB' 'editor native action'
...[snip]...

K13163_Book.indb 521 11/8/2011 8:10:12 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming522

Even more interestingly, apparently some 200 actions do not have any pre-assigned default
key-bindings, such as ‘set-read-only’ and ‘set-writable’ in the snippet above . let us take the
‘match-brace’ action for example . this sounded promising so I assigned it an unused key-
binding and indeed found that it can be very useful: if the cursor is placed on a beginning or end
of some code, then clicking the assigned key-binding will jump the cursor to the other end, and
then back again . this works nicely for (. .), [. .], for . .end, try . .end, if . .end, and so on .

>> % Ensure that <alt> -M is unassigned
>> bindings = EditorMacro('alt m')
bindings =
 Empty cell array: 0-by-4

>> % assign the key-binding and verify
>> EditorMacro('alt m','match-brace','run');
>> bindings = EditorMacro('alt m')
bindings =
 'alt pressed M' 'match-brace' 'run' 'editor native action'

Some action assignments that I have found very useful:†

EditorMacro('ctrl back_space', 'delete-previous-word', 'run');
EditorMacro('ctrl back_space', 'remove-previous-word', 'run');
EditorMacro('ctrl delete', 'delete-next-word', 'run');
EditorMacro('ctrl delete', 'remove-next-word', 'run');

Here is the code snippet that retrieves the actions from the Editor’s Java Map object:

% Get all available actions even those without any key-binding
function actionNames = getNativeactions(hEditorPane)
 try
 actionNames = {};
 actionKeys = hEditorPane.getactionMap.allKeys;
 actionNames = cellfun(@char,cell(actionKeys),'Uniform',0);
 actionNames = sort(actionNames);
 catch
 % never mind...
 end
end % getNativeactions

% Get all active native shortcuts (key-bindings)
function accelerators = getaccelerators(hEditorPane)
 try
 accelerators = cell(0,2);
 inputMap = hEditorPane.getInputMap;
 inputKeys = inputMap.allKeys;
 accelerators = cell(numel(inputKeys),2);
 for ii = 1 : numel(inputKeys)

† the reason for the apparent duplication here is that corresponding Editor and Command Window actions sometimes have
slightly different names, as in this case .

K13163_Book.indb 522 11/8/2011 8:10:12 PM

© 2012 by Taylor & Francis Group, LLC

523The MATLAB® Desktop

 thisKey = inputKeys(ii);
 thisaction = inputMap.get(thisKey);
 accelerators(ii,:) = {char(thisKey), char(thisaction)};
 end
 accelerators = sortrows(accelerators,1);
 catch
 % never mind...
 end
end % getaccelerators

Menu retrieval was more difficult: while it is possible to directly access the menubar reference
(jMainPane .getRootPane.getMenuBar), the menu items themselves are not visible until their
main menu item is clicked (displayed) . the only way I know to access menu actions/keybindings
is to read them from the individual menu items (if anyone knows a better way please tell me —
perhaps some central key-listener repository?) . therefore, a simulation of the menu-click events
is done† and the menu hierarchy is traveled recursively to collect all its actions and key-bindings .

Unfortunately, Matlab menus are dynamically recreated whenever the Editor is docked/
undocked, or a separate type of file is edited (e .g ., switching from an m-file to a c-file) . Similarly,
whenever the active desktop window changes from the Command Window to another desktop-
docked window (e .g ., Command History) . In all these cases, the dynamically recreated menus
override any conflicting key-binding previously done with EditorMacro .

another limitation of EditorMacro is that Multi-key bindings are still not reported properly,
nor can they be assigned . For example, the editor menu action ‘to-lower-case’ has a pre-assigned
default key-binding of <alt>-<U>-<l>, but this is reported as unassigned . Of course, we can
always add another (single-key) assignment for this action, for example, <alt>-<Ctrl>-<l> .

both of these limitations have a workaround in Perttu Ranta-aho’s KeyBindings utility,79
which nicely complements EditorMacro . In addition to KeyBindings, there have been other
follow-on submissions on the File Exchange that provide sets of EditorMacro macros .80

EditorMacro still has some other unresolved limitations, which will hopefully be resolved
in future releases of this utility:

Key bindings are sometimes lost when switching between a one-document editor and ◾
a two-document one (i .e ., adding/closing the second doc) .
Key bindings are not saved between editor sessions . ◾
In split-pane mode, when inserting a text macro on the secondary (right/bottom) editor ◾
pane, both panes (and the actual document) are updated but the secondary pane does
not display the inserted macro (the primary pane looks ok) .

Recall the standard warning about the use of the Event Dispatch thread (EDt, see Section 3 .2):
actions that affect the GUI need to be invoked asynchronously (via the EDt) rather than syn-
chronously (on the main Matlab thread) . this is not a real problem in the editor, but it is

† Using menuItem .doClick(), described in Section 4 .6 .4 . a similar trick is used by the findjobj utility (see Section 7 .2 .2) .

K13163_Book.indb 523 11/8/2011 8:10:12 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming524

indeed an acute issue in the Command Window: Unless we use EDt, we would get ugly red
stack-trace exceptions thrown on the Command Window whenever we run our EditorMacro-
assigned macro . Here is the code snippet that solves this:

try
 % Matlab 7:
 % Note: it is better to use replaceSelection() than insert()
 %jEditorPane.insert(caretPosition, macro);
 try
 % Try to dispatch on EDT
 awtinvoke(jEditorPane.java, 'replaceSelection', macro);

 catch
 % no good - try direct invocation
 jEditorPane.replaceSelection(macro);
 end
catch
 % Matlab 6:†

 % Note: it is better to use replaceRange() than insert()
 %jEditorPane.insert(macro, caretPosition);‡
 try
 % Try to dispatch on EDT
 awtinvoke(jEditorPane.java, 'replaceRange', macro, ...
 jEditorPane.getSelStart, jEditorPane.getSelEnd);

 catch

 % no good - try direct invocation
 jEditorPane.replaceRange(macro, jEditorPane.getSelStart, ...
 jEditorPane.getSelEnd);
 end
end % try-catch block

One final note: EditorMacro uses the Java containers that underlie the Matlab Editor and
Command Window, to gain access to the list of key-bindings . Some time after I have created
EditorMacro, I discovered that this functionality can also be done directly: com.mathworks.
services.binding.MatlabKeyBindings.getManager() returns a com.math-
works.mwswing.binding.KeyBindingManager object that contains all the keybind-
ings for all contexts (Editor and Commend Window, in both Emacs & non-Emacs configurations) .
KeyBindingManager .setCurrentKeyBindingSet(setName) can be used to switch binding
sets; parseAndRegisterCustomKeyBindingSet(...) can be used to load a new or modified set .

Key-bindings, both the default and the user-defined, are stored in XMl files . the default
files (for Emacs, Windows, and Macs) can be found in the %matlabroot%/java/jar/services.jar
file (under com/mathworks/services/binding/resources/), that can be opened using any zip
 utility (e .g ., WinRar, WinZip, or unzip) . the user-defined XMl files are stored in the user’s
prefdir folder, in files named something similar to Pre2009bWindowsDefaults.xml .

† Note that the Matlab 6 method replaceRange() was renamed to replaceSelection() in Matlab 7 .
‡ Note the reverse order of the insert() input arguments in Matlab 6 compared to Matlab 7 .

K13163_Book.indb 524 11/8/2011 8:10:13 PM

© 2012 by Taylor & Francis Group, LLC

525The MATLAB® Desktop

8.6 Workspace

the Matlab Workspace pane is just another Desktop client, which hosts a table of variable
names and attributes (class, value, size, etc .) . a CSSM user asked81 whether it is possible to
modify the appearance of the bytes column in the Workspace pane, so that it will present data
in Kbytes rather than in bytes . Here is the solution:†

First, we need to retrieve the Workspace table’s Java reference handle:

jDesktop = com.mathworks.mde.desk.MLDesktop.getInstance;
jWSBrowser = jDesktop.getClient('Workspace');
jWSTable = jWSBrowser.getComponent(0).getComponent(0).getComponent(0);

Next, we note that jWSTable is a simple Java Swing JTable, and as such we can easily
modify its column header (assume that the bytes column is the third column => column index
#2 in Java):

jWSTable.getColumnModel.getColumn(2).setHeaderValue('KBytes');
jWSBrowser.repaint;

Modifying the column’s behavior to display 1/1024 of the initial values is trickier .
We can use a custom TableCellRenderer,82 replacing Workspacetable’s
DefaultTableCellRenderer . Create the following KBytesCellRenderer.java file:83

import javax.swing.SwingConstants.*;
import javax.swing.table.*;

public class KBytesCellRenderer extends DefaultTableCellRenderer
 implements TableCellRenderer
{
 public java.awt.Component getTableCellRendererComponent(
 javax.swing.JTable table, Object value, boolean isSelected,
 boolean hasFocus, int row, int column)
 {
 java.awt.Component cell = super.getTableCellRendererComponent(
 table, value, isSelected, hasFocus, row, column);
 int bytes = Integer.parseInt(value.toString());
 ((KBytesCellRenderer)cell).setHorizontalalignment(TRaILING);
 ((KBytesCellRenderer)cell).setText(bytes/1024 + ""); //Bytes => KB
 return cell;
 }
 public KBytesCellRenderer() { super(); }
}

Next, compile this file84 and place the generated KBytesCellRenderer.class file in Matlab’s
Java classpath (see Section 1 .6 for details) and restart Matlab . all this is only a one-time
operation . after restarting Matlab, we can place the following code in our startup.m script:

jDesktop = com.mathworks.mde.desk.MLDesktop.getInstance;

† http://UndocumentedMatlab .com/blog/customizing-matlabs-workspace-table/ (or http://bit .ly/70a72C) . In this section, I
will assume Matlab release R2008a (7 .6) or higher — the adaptations for earlier releases should be minor .

K13163_Book.indb 525 11/8/2011 8:10:13 PM

© 2012 by Taylor & Francis Group, LLC

http://UndocumentedMatlab.com
http://bit.ly

Undocumented Secrets of MATLAB®-Java Programming526

jWSBrowser = jDesktop.getClient('Workspace');
jWSTable = jWSBrowser.getComponent(0).getComponent(0).getComponent(0);
jWSTable.getColumn('Bytes').setHeaderValue('KBytes');
jWSTable.getColumn('Bytes').setCellRenderer(KBytesCellRenderer);
jWSBrowser.repaint;

before: bytes

After: Kbytes

an improved CellRenderer can highlight cells with illegal values or show a thousands
(comma) separator . Just remember to restart Matlab after each recompilation . Here is the
version for the thousands separator:

import java.awt.Component;
import javax.swing.JTable;
import javax.swing.SwingConstants.*;
import javax.swing.table.*;
import java.text.NumberFormat;

public class KBytesCellRenderer extends DefaultTableCellRenderer
 implements TableCellRenderer

K13163_Book.indb 526 11/8/2011 8:10:13 PM

© 2012 by Taylor & Francis Group, LLC

527The MATLAB® Desktop

{
 public Component getTableCellRendererComponent(
 JTable table, Object value, boolean isSelected,
 boolean hasFocus, int row, int column)
 {
 Component cell = super.getTableCellRendererComponent(
 table, value, isSelected, hasFocus, row, column);
 ((KBytesCellRenderer)cell).setHorizontalalignment(TRaILING);
 int bytes = Integer.parseInt(value.toString());
 NumberFormat nf = NumberFormat.getInstance();
 ((KBytesCellRenderer)cell).setText(nf.format(bytes/1024));
 return cell;
 }
 public KBytesCellRenderer() { super(); }
}

After: formatted Kbytes (US locale)

Even more control over the appearance of the numeric value can be achieved using Java’s
standard java.text.DecimalFormat85 that enables using the computer’s current locale
settings, which in turn determine the grouping character and location, the number of decimal
digits, and other aspects of numeric value presentation .86

Note that Java objects appear as having 0 bytes . the reasons for this, and a workaround
using Classmexer, were discussed in Section 1 .1 . Unfortunately, Classmexer cannot be used
in our CellRenderer, since deep memory scans might take some time to execute whereas
 cell-renderers must be super-fast .

another useful Workspace functionality is the ability to specify user-defined context menus
for specific class types . this is done in several prefspanel.m files in the Matlab codebase .†

† For example, \toolbox\matlab\audiovideo\prefspanel .m and \toolbox\signal\signal\prefspanel .m

K13163_Book.indb 527 11/8/2011 8:10:14 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming528

It relies on the following Java-based mechanism, which is unsupported and undocumented, yet
has existed in the present form for the past several releases:

classes = {'double', 'java.lang.Object'};
menuName = 'My context-menu';
menuItems = {'Inspect', 'Properties', '-', 'class name'};
menuactions = {'inspect($1)', 'get($1)', '', 'class($1)'};
com.mathworks.mlwidgets.workspace.MatlabCustomClassRegistry...
 .registerClassCallbacks(classes,menuName,menuItems,menuactions);

Customizable Workspace table context-menu

a few other supporting static methods are available in com.mathworks.mlwidgets.
workspace.MatlabCustomClassRegistry class: getClassCallbacksInformation
(className), registerSimilarClassCallbacks(newClassNames,definedClassName) and unregis-
terClassCallbacks(definedClassName) . For example,

disp(com.mathworks.mlwidgets.workspace.MatlabCustomClassRegistry...
 .getClassCallbacksInformation('double'))

java.lang.Object[]:
 'My context-menu'
 [4 element array]
 [4 element array]

8.7 Other Desktop Tools

the Desktop contains several utilities and tools that can be accessed via buttons or menus but
not programmatically .

K13163_Book.indb 528 11/8/2011 8:10:15 PM

© 2012 by Taylor & Francis Group, LLC

529The MATLAB® Desktop

One example of such a useful tool is the visdiff internal file comparison tool, which became
documented87 following a post I made in the CSSM newsgroup .88

Several such tools merit special attention and are detailed below: the Profiler, GUIDE, File-
search utility, and the Variable Editor .

8.7.1 Profiler
the Matlab profiler is an extremely helpful debugging tool, helping to diagnose code coverage
and performance hotspot problems . It can be accessed via the following Desktop methods:

jDesktop = com.mathworks.mde.desk.MLDesktop.getInstance;

% The following methods show/hide the profiler window
jDesktop.showProfiler; % or: showClient('Profiler')
jDesktop.hideProfiler; % or: hideClient('Profiler')
jDesktop.closeProfiler; % or: closeClient('Profiler')
jDesktop.toFront('Profiler');

% The following methods modify the profiler window appearance
jDesktop.setClientMaximized('Profiler',flag); % flag = true/false
jDesktop.setClientMinimized('Profiler',flag); % flag = true/false
jDesktop.setClientDocked('Profiler',flag); % flag = true/false
jDesktop.setClientSelected('Profiler',flag); % flag = true/false
jDesktop.setClientLocation('Profiler',location);

% The following methods return a status flag (true/false)
flag = jDesktop.isClientDocked('Profiler');
flag = jDesktop.isClientHidden('Profiler');
flag = jDesktop.isClientMaximized('Profiler');
flag = jDesktop.isClientMinimized('Profiler');
flag = jDesktop.isClientSelected('Profiler');
flag = jDesktop.isClientShowing('Profiler');
flag = jDesktop.isClientUnfurled('Profiler');

% The following methods also return true/false flags
flag = jDesktop.hadClient('Profiler'); % in the past
flag = jDesktop.hasClient('Profiler'); % currently

% This method returns the Profiler's Java object handle
>> jProfiler = jDesktop.getClient('Profiler')
jProfiler =
com.mathworks.mde.profiler.Profiler[…]

the profiler functionality (as opposed to the GUI) has programmatic access via the follow-
ing (fully documented) built-in function: profile, profsave, profview, and coveragerpt (actually,
coveragerpt is the undocumented function that launches the documented Coverage Report; I do
not know why the report is documented but its gateway function is not) .

Many of jProfiler’s methods have corresponding counterparts in the fully docu-
mented built-in profile function (start(), stop(), clear(), etc .) . Some other possibly interesting
methods include:

K13163_Book.indb 529 11/8/2011 8:10:15 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming530

getHtmlText(), setHtmlText(string) ◾ — control the displayed text in the Profiler window,
which is HtMl-rendered .†

Other ◾ jProfiler methods: getLazyProperty(obj), getSelectedLabsFromHtml(),
getTempFilesManager(), setCommandText(string), setCurrentLocation(string),
setCurrentLocationParallel(string), setNumLabs(int,int), setNumLabsParallel(int,int),
setSelectedLab(int) .

to conclude this section, I would like to describe a couple of undocumented profiler features,
which are unrelated to GUI or Java:89

to turn on memory stats in the profile report, run this (only once is necessary — it will be
remembered for future profiling runs in the current Matlab session):

profile -memory on;
profile('-memory','on'); % an alternative

to turn on JItC (Just-In-time Java Compilation‡) information, run the following (again,
only once is necessary, prior to profile report):

setpref('profiler','showJitLines',1);

Note: JIt information has been removed in Matlab 7 .12 (R2011a) . I assume that this
was done so that programmers will not attempt to depend on (and code against) JItC func-
tionality (see Scott Hirsh’s comment below) .

In R2010b and earlier Matlab releases, we will now see additional JIt and memory (allo-
cated, freed and peak) information displayed in the profile report, as well as the options to sort
by allocated, freed and peak memory:

Profile summary report with additional memory usage information

† there are also getHtmlTextParallel(), setHtmlTextParallel() methods which I believe are related to the Distributed Computing
toolbox (DCt), but I do not know their exact use . Perhaps all the other *Parallel methods are also DCt-related .

‡ JItC can be statically and dynamically turned on/off in Matlab — see Section 1 .9 for details .

K13163_Book.indb 530 11/8/2011 8:10:16 PM

© 2012 by Taylor & Francis Group, LLC

531The MATLAB® Desktop

Profile drill-down report with additional memory-usage and JIt information (See
color insert.)

For those interested, the references to these two options appear within the code of profview.m
(line 1199 on R2007b), for the JIt option:

showJitLines = getpref('profiler','showJitLines',false);

 . . .and in profile.m (lines 153-155 on R2011a), for the memory option:

if memory ~= −1
 callstats('memory', memory);
end

K13163_Book.indb 531 11/8/2011 8:10:17 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming532

the JIt-profiling feature is permanent, since setpref is stored across Matlab sessions; to
make the memory-profiling feature permanent, we need to add the following line beneath the
if memory — end block shown above:

callstats('memory',3);

Note that there appears to be two undocumented additional memory-related options in
profile.m (lines 311–312):

options = {'detail','timer','history','nohistory','historysize',...
 'timestamp', 'memory', 'callmemory', 'nomemory' };

However, ‘-nomemory’ appears to simply turn the memory stats collection off, and ‘-callmem-
ory’ is not recognized because of a bug in line 349, which looks for ‘callnomemory’ . . .

case 'callnomemory' % should be 'callmemory'
 memory = 2;

When this bug is fixed, we see that we get only partial memory information, implying that
the ‘-callmemory’ option is not really useful — use ‘-memory’ instead .

Note: When I published this information in the UndocumentedMatlab .com blog, Scott Hirsh,
Matlab’s chief product manager, commented as follows:90

 “We would love feedback on the memory profiling feature. We know there’s a lot of
interest in tools to help figure out where and how memory is chewed up in code, but
it turns out to be not so obvious as to what information to present and how. I’ll keep
an eye out here for comments, or readers can feel free to email me directly. My
address is on my MATLAB Central page.

 I would advise a bit of caution when working with the JIT profiler results. We turned
them off after MATLAB 6.5 primarily because the JIT was such a moving target
(changing every release) that we really didn’t want to encourage users to code against
it. That being said, your readers all know the standard warning that comes with your
posts — so have fun poking around!!”

8.7.2 Find-Files Dialog
the Matlab file-finder dialog is used to find files containing some search (text) pattern . this
is typically used in the Matlab Editor (Edit/Find Files menu item) and so most users natu-
rally assume that it is part of the Editor . However, the same menu option is also available in the

K13163_Book.indb 532 11/8/2011 8:10:17 PM

© 2012 by Taylor & Francis Group, LLC

533The MATLAB® Desktop

main Matlab desktop menu . In fact, this is a desktop tool, and just as other desktop tools, it
can be accessed and invoked programmatically:

com.mathworks.mde.find.FindFiles.invoke('*.m','undocumented','C:\Yair')

MAtlAb’s standard Find Files dialog window

8.7.3 GUIDE
GUIDE (Matlab’s Graphical User Interface Design Editor) is very useful for designing
simple GUI figures, although experience has shown that it has limitations for complex GUIs .
Nevertheless, GUIDE is the tool used by most Matlab developers when designing GUIs . In
this section, I will show a few undocumented customizations that could help make GUIDE ses-
sions more productive .91

the starting point is GUIDE’s undocumented return value, which is a Java reference to the
layout Editor panel within the GUIDE figure Frame . this handle can be used to access GUIDE
components and functionality . We can start by inspecting the interesting GUIDE layout hierar-
chy using my FindJObj utility (see Section 4 .2 .5), and the associated properties and method
using my UIInspect utility (see Section 1 .3):

>> h = guide
h =
Layout Document [untitled]

>> h.getClass
ans =
class com.mathworks.toolbox.matlab.guide.LayoutEditor

>> h.findjobj;
>> h.uiinspect;

K13163_Book.indb 533 11/8/2011 8:10:17 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming534

Hierarchy of layout Editor within the GUIDE frame

to see the hierarchy of the entire GUIDE figure frame, simply run FindJObj on the frame
reference, by either of the two following methods (and similarly for UIInspect):

findjobj(h.getFrame);
findjobj(h.getTopLevelWindow);

We see that the layout Editor contains, in addition to the expected Layoutarea and two
MWScrollbars,† several ruler-related objects . these rulers can be activated via the GUIDE
menu (tools/Grid and Rulers), or the Matlab Command Prompt, as follows:

looking at the ruler properties in FindJObj or UIInspect, we see a settable boolean prop-
erty called RulerState . If we turn it on, then we see a very handy pixels-ruler . Once we set this
property, it remains in effect for every future GUIDE session:

before: GUIDE with no rulers

† these were changed in recent Matlab releases to standard MJScrollBar objects .

K13163_Book.indb 534 11/8/2011 8:10:19 PM

© 2012 by Taylor & Francis Group, LLC

535The MATLAB® Desktop

h.getComponent(0).getComponent(4).setRulerState(true); % Horizontal
h.getComponent(0).getComponent(5).setRulerState(true); % Vertical

RulerState actually controls a system preference (layoutShowRulers, a boolean flag) that
controls the visibility of both rulers, and persists across Matlab/GUIDE sessions . to change
the visibility of only a single ruler for this GUIDE session only, or on old Matlab versions
(e .g . Matlab 7 .1 aka R14 SP3) that do not have the RulerState property, use the hide()/
show()/setVisible(flag) methods, or set the Visible property:

% Equivalent ways to show horizontal ruler for this GUIDE session only
hRuler = h.getComponent(0).getComponent(4); % =top horizontal ruler
set(hRuler, 'Visible','on');
hRuler.setVisible(true); % or: hRuler.setVisible(1)
hRuler.show();

After: GUIDE with pixel rulers

Using hRuler properties, we can customize the rulers in manners that are unavailable
using the standard GUIDE menu options: We can specify horizontal/vertical grid size, tick and
label interval, and other similar ruler properties . For example, let us set a 5-pixel minor tick
interval, 25-pixel major interval, labels every 50 pixels, starting offset of 40 pixels and a ruler
size limited at 70 pixels:

hRuler = h.getComponent(0).getComponent(4); % =top horizontal ruler
set(hRuler, 'MinorInterval',5, 'MajorInterval',25);
set(hRuler, 'LabelInterval',50, 'LabelUnit',50);
set(hRuler, 'Margin',40, 'Length',260);

Default pixel ruler

K13163_Book.indb 535 11/8/2011 8:10:19 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming536

Modified pixel ruler

GUIDE with modified pixel rulers

Note that the vertical ruler’s labels start (=labelStart property) at the figure’s height, and
have a decreasing labelInterval of −50 . this is done because Java coordinates start counting
from the top-left corner downward, whereas Matlab counts from the bottom-left upward
(see Section 3 .1 .1) . In GUIDE, we naturally wish to display the Matlab coordinates, hence
the transformation .

Unfortunately, most properties have no corresponding system property, as far as I could tell .
Here is a list of all the GUIDE-related system properties that I found:

layoutactivate ◾ — boolean, controls the ability to run (activate) unsaved figures with-
out confirmation .
layoutChangeDefaultCallback ◾ — boolean, purpose unknown (I can see this prefer-
ence in my Matlab .prf file but I have no idea what it does or how it got there) .
layoutExport ◾ — boolean, controls the ability to export unsaved figures without
confirmation .
layoutExtension ◾ — boolean, controls display of file extension in the GUIDE window
title .
layoutFullPath ◾ — boolean, controls display of file path in the GUIDE window title .

K13163_Book.indb 536 11/8/2011 8:10:20 PM

© 2012 by Taylor & Francis Group, LLC

537The MATLAB® Desktop

layoutGridWidth ◾ — integer, controls the size of the grid boxes .
layoutMCodeComments ◾ — boolean, controls generation of comments for m-file
callbacks .
layoutMRU1 ◾ to layoutMRU9 — string, contain the Most-Recently Used (MRU)
full file paths .
layoutQuickStarttab ◾ — integer, controls whether GUIDE’s Quick Start dialog
(which is shown when GUIDE is launched with no input filename parameter) initially
display the “Create New GUI” panel (=0) or the “Open Existing GUI” panel (=1) .
layoutShowGuides ◾ — boolean, controls display of blue guidelines .
layoutShowGrid ◾ — boolean, controls display of gray gridlines .
layoutShowRulers ◾ — boolean, controls display of both rulers .
layoutSnaptoGrid ◾ — boolean, controls snap-to-grid behavior .
layouttoolbar ◾ — boolean, controls display of the GUIDE widow toolbar .
layouttoolNames ◾ — boolean, controls display of tool names in the components
palette .

In addition to these properties, GUIDE has some useful invokable methods . For example, the
following method displays the Object browser, which presents the hierarchical list of figure
components:

h.showObjectBrowser;

and this displays the property inspector:

h.showInspector;

Warning: these undocumented features are way deep in unsupported territory . they
depend heavily on Matlab’s internal implementation, which may change without any
prior notice between Matlab releases . the very next Matlab release might break
these features, so beware .

8.7.4 Variable (Array) Editor
the Variable Editor (called the “array Editor” prior to R2008a (Matlab 7 .6), and still called
arrayEditor in internal Java classes), is another Java-based Desktop tool . this tool is tightly
coupled with the Matlab Desktop . It can be invoked using the built-in openvar function, as
follows:

data = magic(3);

% all the following are equivalent:
openvar('data');
com.mathworks.mlservices.MLarrayEditorServices.openVariable('data');
awtinvoke(com.mathworks.mlservices.MLarrayEditorServices, ...
 'openVariable(Ljava.lang.String;)', 'data');

K13163_Book.indb 537 11/8/2011 8:10:21 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming538

the MAtlAb Desktop’s Variable Editor

the tight-coupling of the Variable Editor to the Desktop Workspace variables is unfortunate
in some respects .92 One would perhaps expect it to be a generic data editor that merely accepts
the data when opened, but in fact it continues to be coupled even later . We can see this by modi-
fying the variable in the Desktop Workspace and seeing the change automatically reflected in
the Variable Editor .

an unfortunate side-effect of this design is that the Variable Editor needs to interact with the
Desktop Workspace (probably via JMI) . Since there is only one Matlab computational
thread, this interaction has to wait for the user’s function to exit (the “>>” prompt returning)
before it can query the variable data for display in the Editor .

a side-note about the internal Matlab implementation is necessary to explain the preced-
ing statement: Recall the explanation about Matlab threads that was presented in Section
3 .2: Matlab only has a single computational thread, so Matlab code has to finish before
the JMI request can be handled . this means that the Variable Editor contents cannot be dis-
played synchronously by the Matlab code that invokes it .

the bottom line is that we cannot wait (synchronously) on the Variable Editor in our code . In
real-life, this is not a real nuisance, because invoking the Variable Editor from the Command
Window immediately finishes the processing chunk, returning to the “>>” prompt and enabling
the JMI chunk to be processed and the variable data to be displayed . However, if we wish to
display the data from within our Matlab code, we need to find another, a-synchronous, way .

We can make this work by modifying our request such that a callback function is called
when the Variable Editor editing has ended (the window is closed) — this makes the design
asynchronous, which enables the JMI interaction:

% Open the variable in the Variable Editor
openvar('data');
drawnow; pause(0.5); % wait for client to become visible

% Get handle of variable's client in the Variable Editor
jDesktop = com.mathworks.mde.desk.MLDesktop.getInstance;
jClient = jDesktop.getClient('data');
hjClient = handle(jClient,'CallbackProperties');

K13163_Book.indb 538 11/8/2011 8:10:21 PM

© 2012 by Taylor & Francis Group, LLC

539The MATLAB® Desktop

% Instrument the client to fire a callback when it is closed
set(hjClient,'ComponentRemovedCallback',{@my_callback, 'data'});

function my_callback(varEditorObj,eventData,varname)
 data = evalin('caller',varname);
 % do something with this modified data
end % my_callback

MLarrayEditorServices provides support services for the Variable Editor . this class’s
name reflects the tool’s pre-R2008a name (array Editor) . among the class’s functions are
openVariable(varName), isEditable(varName) and setEditable(varName,flag) . the setEditable
method can be used to display non-modifiable (read-only) data:

m = magic(4);
com.mathworks.mlservices.MLarrayEditorServices.openVariable('m');
com.mathworks.mlservices.MLarrayEditorServices.setEditable('m',false);

References

 1 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/146899#370458 (or http://tinyurl .
com/yhj7kmu) .

 2 . http://blogs .mathworks .com/desktop/2007/03/29/shortcuts-for-commonly-used-code/#comment-5753
(or http://bit .ly/aRva9c) .

 3 . http://java .sun .com/javase/6/docs/api/javax/swing/action .html (or http://tinyurl .com/ybmpyxg) .
 4 . http://java .sun .com/javase/6/docs/api/java/awt/Insets .html (or http://tinyurl .com/38calj) .
 5 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/155225#411327 (or http://bit .ly/6sjxUg) .
 6 . http://blogs .mathworks .com/desktop/2007/05/18/do-you-dock-figure-windows-what-does-your-desktop-

look-like/#comment-626 (or http://bit .ly/64pGv7) see comments #9 to #11 .
 7 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/128832 (or http://tinyurl .com/yjt6qz9) .
 8 . http://stackoverflow .com/questions/826384/how-can-i-suppress-matlabs-command-window-when-calling-

it-from-java#855923 (or http://bit .ly/cwpjlt); http://blogs .mathworks .com/desktop/2010/02/22/launching-
matlab-without-the-desktop/#comment-6876 (or http://bit .ly/92Fux6); or this again: http://bit .ly/deRV1Z

 9 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/303833#822981 (or: http://bit .ly/
fxzceC) .

 10 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/285209 (or http://bit .ly/cRts4g) .

K13163_Book.indb 539 11/8/2011 8:10:22 PM

© 2012 by Taylor & Francis Group, LLC

www.mathworks.com
http://blogs mathworks com
httpp://java.sun.com
http://stackoverflow.com

Undocumented Secrets of MATLAB®-Java Programming540

 11 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/265337#693771 (or http://bit .ly/
aXFE17); also see brad Phelan’s earlier post: http://xtargets .com/snippets/posts/show/4 (currently offline —
cached version: http://bit .ly/eWrHs3) .

 12 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/152888 (or http://tinyurl .com/
yl8ekyb) .

 13 . http://UndocumentedMatlab .com/blog/setting-the-matlab-desktop-layout-programmatically/ (or http://
tinyurl .com/yd8pcl4) .

 14 . http://blogs .mathworks .com/desktop/2007/08/29/i-came-i-saw-i-created-my-own-desktop-layout/ (or
http://bit .ly/acKIf8) .

 15 . For example, http://www .mathworks .com/matlabcentral/newsreader/view_thread/146522 (or http://
tinyurl .com/yc44d4e) .

 16 . http://blogs .mathworks .com/desktop/2007/08/29/i-came-i-saw-i-created-my-own-desktop-
layout/#comment-159 (or http://tinyurl .com/yb93y4n) .

 17 . http://UndocumentedMatlab .com/blog/modifying-default-toolbar-menubar-actions/#comment-49832
(or: http://bit .ly/j4gwja) .

 18 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/151033 (or http://bit .ly/8atpPR);
also see Section 5 .4 .

 19 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/246731 (or http://bit .ly/bJtdI5) .
 20 . http://stackoverflow .com/questions/2802233/programmatically-configure-matlab (or http://bit .ly/

bGst0l) .
 21 . http://www .mathworks .com/matlabcentral/fileexchange/27567 (or http://bit .ly/aEYbJP) .
 22 . http://4dpiecharts .com/2010/08/23/a-shortcut-to-success/ (or http://bit .ly/bCaKWt) .
 23 . http://UndocumentedMatlab .com/blog/changing-system-preferences-programmatically (or http://bit .ly/

gZpQZv) .
 24 . http://blogs .mathworks .com/desktop/2010/01/11/the-preferences-folder-matlabprf/ (or http://bit .ly/7rf9t9) .
 25 . http://blogs .mathworks .com/desktop/2009/12/07/the-preferences-directory/ (or http://bit .ly/6cqv5p) .
 26 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/100542 (or http://bit .ly/d8to1G) .
 27 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/154608 (or http://tinyurl .com/

ygg55y8) .
 28 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/151019#383576 (or http://tinyurl .

com/ybm4635) .
 29 . http://java .sun .com/docs/books/tutorial/uiswing/components/textarea .html (or http://tinyurl .com/6o8n2);

http://java .sun .com/javase/6/docs/api/javax/swing/Jtextarea .html (or http://tinyurl .com/2db6j9) .
 30 . Here’s one of many: http://www .mathworks .com/matlabcentral/newsreader/view_thread/158678 (or http://

bit .ly/98ht8t) .
 31 . http://UndocumentedMatlab .com/blog/changing-matlab-command-window-colors/ (or http://tinyurl .

com/yjcazox) .
 32 . http://java .sun .com/javase/6/docs/api/javax/swing/text/PlainDocument .html (or http://tinyurl .com/de6479) .
 33 . http://java .sun .com/docs/books/tutorial/uiswing/components/text .html (or http://tinyurl .com/2xg2n) .
 34 . http://UndocumentedMatlab .com/blog/cprintf-display-formatted-color-text-in-command-window/ (or

http://bit .ly/aztQt6) .
 35 . http://www .mathworks .com/matlabcentral/fileexchange/24093 (or http://tinyurl .com/yaucfsk) .
 36 . http://UndocumentedMatlab .com/blog/changing-matlab-command-window-colors-part2/#comment-

539 (or http://bit .ly/bWRS58) .
 37 . http://UndocumentedMatlab .com/blog/customizing-help-popup-contents (or http://bit .ly/5VuSaR) .
 38 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/155108 (or http://bit .ly/ahhpJM) .
 39 . http://www .mathworks .com/help/techdoc/ref/doc .html (or http://bit .ly/8g8eUg) .
 40 . http://java .sun .com/developer/technicalarticles/J2SE/Desktop/javase6/modality/ (or http://bit .ly/7dhU1c) .
 41 . http://www .mathworks .com/matlabcentral/fileexchange/25975 (or http://bit .ly/7Smk3y) .
 42 . http://UndocumentedMatlab .com/blog/gui-integrated-browser-control/ (or http://bit .ly/4HbOK0); http://

www .mathworks .com/matlabcentral/newsreader/view_thread/243727 (or http://bit .ly/9me22R) .
 43 . an example of this: http://stackoverflow .com/questions/1903516/matlab-displaying-markup-html-or-

other-format/1903990#1903990 (or http://bit .ly/5aYj7d) .
 44 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/157032 (or http://bit .ly/alpy0g) .
 45 . http://www .mathworks .com/support/solutions/en/data/1-91a14Y/ (or http://bit .ly/a7C9xS) .

K13163_Book.indb 540 11/8/2011 8:10:22 PM

© 2012 by Taylor & Francis Group, LLC

www.mathworks.com
http://UndocumentedMatlab.com
http://blogs mathworks com
httpp://java.sun.com

541The MATLAB® Desktop

 46 . http://UndocumentedMatlab .com/blog/setprompt-setting-the-matlab-desktop-prompt/ (or http://bit .
ly/5N5Nnz) .

 47 . also see: http://undocumentedmatlab .com/blog/controlling-callback-re-entrancy/ (or http://bit .ly/
qmFwYw) .

 48 . http://www .mathworks .com/matlabcentral/fileexchange/26471 (or http://bit .ly/8tXCDa) .
 49 . http://blogs .mathworks .com/desktop/2007/04/27/tab-completion-will-save-your-fingers/ (or http://bit .ly/

cgmukU); http://blogs .mathworks .com/desktop/2009/08/10/tab-to-narrow-completions/ (or http://bit .ly/
bxd6Rl) .

 50 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/264550 (or http://bit .ly/cn53PH) .
 51 . http://stackoverflow .com/questions/1842804/tab-completion-of-filenames-as-arguments-for-matlab-

scripts (or http://bit .ly/doyVDx) .
 52 . http://www .mathworks .com/help/techdoc/ref/whos .html (or http://bit .ly/9qrlJm) .
 53 . http://www .mathworks .com/help/techdoc/ref/openfig .html (or http://bit .ly/9DmvRb) .
 54 . http://www .mathworks .com/matlabcentral/fileexchange/26830-tabcomplete (or http://bit .ly/caKwQS) .
 55 . http://www .tim .cz/en/nfaq/matlab-simulink/tab-completion .php (or http://bit .ly/8XCCan) .
 56 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/30604 (or http://bit .ly/antbQ0) .
 57 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/257842 (or http://tinyurl .com/y93a9rh) .
 58 . http://stackoverflow .com/questions/1924286/change-the-title-of-the-matlab-command-window (or http://

bit .ly/8uND2K) .
 59 . http://stackoverflow .com/questions/3533074/how-do-you-retrieve-the-selected-text-in-matlab (or http://

bit .ly/c4Q2Wq) .
 60 . http://UndocumentedMatlab .com/blog/accessing-the-matlab-editor/ (or http://tinyurl .com/yjel9kw) .
 61 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/135588#342288 (or http://tinyurl .

com/ylnktyl) .
 62 . http://blogs .mathworks .com/desktop/2009/10/26/the-matlab-editor-at-your-fingertips/ (or http://tinyurl .

com/yaongph) .
 63 . http://blogs .mathworks .com/desktop/2009/10/26/the-matlab-editor-at-your-fingertips/#comment-7532

(or http://bit .ly/gm6MHb); the code for this new object is in %matlabroot%\toolbox\matlab\codetools\
++matlab\++desktop\++editor\

 64 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/135588 (or http://tinyurl .com/ybb48zv) .
 65 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/127507 (or http://bit .ly/bChnMK);

http://www .mathworks .com/matlabcentral/newsreader/view_thread/136808 (http://bit .ly/bSOSl9); http://
www .mathworks .com/matlabcentral/newsreader/view_thread/159050#400521 (or http://bit .ly/boZuIY);
http://blogs .mathworks .com/desktop/2009/10/26/the-matlab-editor-at-your-fingertips/#comment-6630
(or http://bit .ly/ct7cl9) .

 66 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/154050#386543 (or http://bit .ly/
c775qm); http://www .mathworks .com/matlabcentral/newsreader/view_thread/285757#758517 (or http://
bit .ly/bSmdSu) .

 67 . http://blogs .mathworks .com/loren/2009/03/03/whats-in-your-startupm/#comment-30128 (or http://
tinyurl .com/y8wh7jw) .

 68 . http://gkdot .blogspot .com/2009/04/matlab-gem .html (or http://bit .ly/bqjK3a) .
 69 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/291659#783173 (or http://bit .ly/

cql8GK) .
 70 . http://UndocumentedMatlab .com/blog/accessing-the-matlab-editor/comment-page-1/#comment-3433

(or http://bit .ly/9vnpfR); also http://www .mathworks .com/matlabcentral/newsreader/view_thread/288201
(or http://bit .ly/awtJ12) .

 71 . For example, http://www .mathworks .com/matlabcentral/newsreader/view_thread/162069 (or http://
tinyurl .com/ygfjg89) .

 72 . http://www .mathworks .com/matlabcentral/fileexchange/24615 (or http://tinyurl .com/ydzznxb); http://
UndocumentedMatlab .com/blog/EditorMacro (or http://bit .ly/cUJlJ6) .

 73 . http://www .mathworks .com/matlabcentral/fileexchange/25089 (or http://tinyurl .com/yhd4go9) .
 74 . http://blogs .mathworks .com/desktop/2009/09/04/r2009b-is-here/ (or http://tinyurl .com/ykjofmf); http://

UndocumentedMatlab .com/blog/r2009b-keyboard-bindings/ (or http://bit .ly/d6VDU9) .
 75 . http://UndocumentedMatlab .com/blog/non-textual-editor-actions/ (or http://tinyurl .com/ye62rjf) .
 76 . http://java .sun .com/javase/6/docs/api/java/awt/event/KeyEvent .html (or http://tinyurl .com/2s63e9) .

K13163_Book.indb 541 11/8/2011 8:10:22 PM

© 2012 by Taylor & Francis Group, LLC

http://UndocumentedMatlab.com
www.mathworks.com
http://stackoverflow.com
http://blogs mathworks com
httpp://java.sun.com

Undocumented Secrets of MATLAB®-Java Programming542

 77 . http://blogs .mathworks .com/desktop/2009/09/28/configurable-keyboard-shortcuts-have-arrived/#comment-
6617 (or http://tinyurl .com/yfaw9gy) .

 78 . http://UndocumentedMatlab .com/blog/editormacro-v2-setting-command-window-key-bindings/ (or http://
bit .ly/9YOvPS) .

 79 . http://www .mathworks .com/matlabcentral/fileexchange/25089 (or http://tinyurl .com/yhd4go9) .
 80 . http://www .mathworks .com/matlabcentral/fileexchange/25122 (or http://tinyurl .com/ybkclvk), also by

Perttu Ranta-aho; http://www .mathworks .com/matlabcentral/fileexchange/25217 (or http://tinyurl .com/
y94d2e9) by leif Persson .

 81 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/269361 (or http://bit .ly/55EDCb)
 82 . http://java .sun .com/docs/books/tutorial/uiswing/components/table .html#renderer (or http://bit .ly/6g452w);

also Section 4 .1 .1 .
 83 . Downloadable from here: http://UndocumentedMatlab .com/files/KbytesCellRenderer .java (or http://bit .

ly/7oRqls) .
 84 . or download it directly from http://UndocumentedMatlab .com/files/KbytesCellRenderer .class (or http://

bit .ly/6zxSQX) .
 85 . http://download .oracle .com/javase/6/docs/api/java/text/DecimalFormat .html (or: http://bit .ly/nJmlml) .
 86 . http://UndocumentedMatlab .com/blog/formatting-numbers/ (or http://bit .ly/qSvXy4) .
 87 . http://www .mathworks .com/help/techdoc/ref/visdiff .html (or http://bit .ly/5faC1Z) .
 88 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/161225 (or http://bit .ly/5MgdbV) .
 89 . http://UndocumentedMatlab .com/blog/undocumented-profiler-options/ (or http://tinyurl .com/yl7oenq) .
 90 . http://UndocumentedMatlab .com/blog/undocumented-profiler-options/#comment-64 (or http://bit .ly/

6PURhP) .
 91 . http://UndocumentedMatlab .com/blog/guide-customization/ (or http://bit .ly/7jCptz) .
 92 . http://blogs .mathworks .com/desktop/2008/04/21/variable-editor/#comment-6790 (or http://bit .ly/8nqDR2) .

K13163_Book.indb 542 11/8/2011 8:10:22 PM

© 2012 by Taylor & Francis Group, LLC

http://blogs mathworks com
www.mathworks.com
httpp://java.sun.com
www.download.oracle.com

Using Matlab®
from within Java†

9
Chapter

†

† a major portion of this chapter was contributed by Joshua Kaplan, who also authored the
matlabcontrol package .

K13163_Book.indb 543 11/8/2011 8:10:22 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming544

9.1 Approaches for Java Control of MATlAB

as explained in previous chapters, Matlab can easily call Java . Unfortunately, the reverse,
calling and controlling Matlab from Java, is not so simple . MathWorks has taken a con-
scious decision not to support or document this functionality .

Note that this entire chapter is based on many hours of experimentation and online research
and so while we (Joshua and Yair) are more or less certain of the following, it could be deficient
or incorrect in many respects .

Generally speaking, seven technologies can be used to call Matlab from within Java:1

RMI/JMI (RMI for connection, JMI for the functionality) ◾
JNI (connecting to the supported C/C++ engine library using Java Native Interface) ◾
COM (Windows-only; connecting to ◾ Matlab .application ProgID or its like)
Process-pipes (Unix/Macs-only) ◾
DDE (Windows-only; using Dynamic Data Exchange) ◾
Dedicated interface via — a Java/MEX communications wrapper ◾
Using MathWorks’ commercial Java builder toolbox ◾

Most of this chapter will focus on the RMI/JMI approach . JMI (Java–Matlab Interface)
is widely used by Matlab to interface the Java and the Matlab codebases . RMI (Remote
Method Invocation) can be used to run JMI on a different computer . In this manner, different
computers can theoretically use a single Matlab installation .

Programming JMI requires a medium-to-high level of Java experience . It is not a trivial task,
and many complications need to be addressed, including threading, security, method comple-
tion blocking, virtual machine restrictions, and others . In practice, it is difficult to get all the
pieces programmed correctly . this prevents using JMI directly from being practical and reli-
able . Several JMI wrappers were developed which attempt to handle these issues . the latest
JMI wrapper package is called matlabcontrol .2 JMI is described in Section 9 .2, while matlab-
control is described in Sections 9 .3 and 9 .4 .

the JNI (Java Native Interface) approach uses the fact that Matlab has a supported library
for C/C++ integration with Matlab .3 the idea, described in Section 9 .5, is to load this library
in the Java code and invoke its entry-point methods using JNI .

a separate JNI-based approach uses the fact that R13 (Matlab 6 .5)’s compiler enabled
creation of a shared library from the source Matlab code . this shared library could then be
imported and used directly in Java code .4 Unfortunately, this approach is not possible with new
Matlab releases and/or compilers, which use MCR .†

Matlab also has fully documented support for a COM (Windows Component
Object Model) interface and process pipes (Unix/Mac) that allow remote communication from

† MCR (Matlab Compiler Runtime) is a binary component that is called by Matlab-compiled applications in order
to execute core Matlab functionality .

K13163_Book.indb 544 11/8/2011 8:10:23 PM

© 2012 by Taylor & Francis Group, LLC

545Using MATLAB® from within Java

external applications .5 In Windows, remember to register the Matlab automation server
before usage, using the –regserver startup option .6 We may also need to modify the ProgID
from “Matlab .application” to “Mlapp .Mlapp” .7

Unfortunately, COM is a Windows-specific proprietary (Microsoft) technology that is not
natively supported by Java . Interested readers can try using a Java/COM bridge using open-
source JaCOb8 or JCOM,9 or one of several commercial packages . this would have the benefits
of enabling connection to an existing Matlab session (a current matlabcontrol limitation),
and of MathWorks’ documented COM .

Unfortunately again, Windows-Matlab does not appear to enable pipes, since it does not
appear to use the Standard I/O framework,10 so this approach can only be used on Unix/Mac .

DDE, an old inefficient ancestor of COM, can also be used on Windows to communicate
between Matlab and DDE clients .11 Finally, dedicated interfaces can be implemented with
other technologies (e .g ., CORba12) .

StRONG WaRNING: When implementing any of these approaches for interfacing
Java to Matlab, the information and warnings presented in Section 3 .2 should be
borne in mind . It is very easy to deadlock the Matlab application by not paying atten-
tion to threading issues . also, if the Java code is implemented in an applet, security
issues need to be addressed .13 In short, when connecting Java to Matlab, extra atten-
tion and testing must be invested .

Quite a few Java-to-Matlab interface implementations were developed over the years .
technology-wise, most implemented interfaces appear to use either RMI/JMI or JNI technolo-
gies . Functionality-wise, these solutions can roughly be grouped as described in the following
subsections .

9.1.1 Controlling the MATlAB GUI
this approach is for those who want to control a Matlab session (or multiple sessions) that
will also be used by a user . all solutions in this approach rely on JMI:

Kamin Whitehouse from the University of Virginia made the first known attempt to ◾
provide a JMI tutorial and wrapper .14 His code enables controlling Matlab from
Java, but the Java program must be launched from Matlab .
bowen Hui from the University of toronto extended Whitehouse’s code to control ◾
Matlab from a Java program that is not launched from within Matlab .15 However,
his code requires user configuration, and also writes the Matlab results to a text file
rather than returning those results as Java objects .
Joshua Kaplan from brown University wrote the ◾ matlabcontrol package that is also
based on Whitehouse’s work, and enables both local and remote JVM access . No user
interaction or configuration is needed, and Matlab results are returned as Java
objects . matlabcontrol is described in Sections 9 .3 and 9 .4 .

K13163_Book.indb 545 11/8/2011 8:10:23 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming546

Simon Caton from Cardiff University has a walk through on controlling ◾ Matlab
and the results it returns .16

Debprakash Patnaik from Virginia tech wrote a blog post ◾ 17 and some simple example
codes18 on how to call Matlab from Java from within Matlab . the code is much
less sophisticated than the above solutions .
aguido Horatio Davis from Griffith University wrote a paper where he describes a ◾
framework for controlling Matlab from Java .19 Extensive code is provided in the
paper beginning on page 117, although many previous pages describe the approach .
David allen from Virginia Polytechnic Institute addresses controlling ◾ Matlab from
Java in his thesis .20 His description is on page 32 (page 38 of the PDF) .
Maksim Khadkevich created ◾ JaMal (Java–Matlab library) .21 this project, like
matlabcontrol, uses RMI to access the Matlab process .

9.1.2 Controlling the MATlAB Engine
this approach uses Matlab for non-interactive computation (an automation engine):

Stefan Müller’s ◾ JMatlink is a library that uses JNI to access Matlab’s C/C++
engine library .22 JMatlink may require a fix of the environment PatH variable,23 or to
the Eclipse configuration .24 Ying bai wrote a book about JMatlink that can be pre-
viewed on Google books (pages 76–286) .25 Note that an apparent JMatlink inconsis-
tency prevents Matlab Desktop access .26

andreas Klimke from the University of Stuttgart compared two different approaches ◾
for controlling the Matlab engine: using JNI to Matlab’s engine library and
using Java’s Runtime class to start Matlab and simulate Unix pipes using
Matlab’s standard input and output streams (this fails on Windows) .27

Ma li, Jiang Zhihong, li Hao, and Wu Dan from Nanjing University wrote a paper ◾
entitled “the Combination of JaVa with Matlab apply to Meteorology” where
they discuss using JNI calls to Matlab’s C++ aPI .28

Erlangung der Würde from technischen Universität Carolo-Wilhelmina zu ◾
braunschweig describes another solution (in German)29 using a combination of JNI
calls to the C/C++ library, and applicative use of Java-sockets .
there have been several reported adaptations of ◾ SWIG30 (Simple Wrapper and Interface
Generation) to generate a JNI wrapper for Matlab .31 I do not know the current status
of the SWIG adaptations . as far as I could tell, they are not widely used . the official
SWIG distribution once had a Matlab adaptor and fully functional example,32 but
the current distribution does not (SWIG does support the Matlab-compatible
Octave) .33

albert Strasheim has adapted the open-source ◾ JNa (Java Native access) package34 to
connect to Matlab’s native C/C++ library .35 JNa is basically a JNI replacement
enabling simple native library integration . the adaptation is complete with some
remaining quirks36 and incorporated in array4J .37

K13163_Book.indb 546 11/8/2011 8:10:23 PM

© 2012 by Taylor & Francis Group, LLC

547Using MATLAB® from within Java

andrzej Karbowski from Warsaw’s Instytut automatyki i Informatyki Stosowanej ◾
created jPar,38 a Matlab computation-parallelization engine that connects remote
Matlab sessions using Java RMI .
Chris bunch from the University of California at Santa barbara also posted a solution ◾
based on piping Matlab’s input/output streams39 (plus a long rant about MathWorks
not providing a supported solution . . .40) .
Pete Cappello and andy Pippin, also from UCSb, created a package ◾ 41 that enables
Matlab control from their JICOS,42 a Java-centric network framework .
Markus Krätzig created ◾ JMatlab/link,43 which works as part of JStatCom .44 His
tutorial notes that it only works on Windows .
Gianluca Magnani also used sockets for applicative interaction between the ◾ Matlab
server and Java clients, as a preferred way when compared with JMI .45

a commercial approach is to use ◾ JIntegra .46 they have a webpage explaining how to
use their product with Matlab .47

another, now defunct, commercial approach is called ◾ MatlabServeragent . their
website no longer exists, but it can be found on the Internet archive .48

9.1.3 Controlling a MATlAB Session from Another MATlAB Session
this approach links together multiple sessions of Matlab, mostly using Java:

a very simple non-Java approach is to use ◾ Matlab’s support for both client-side and
server-side (automation) COM, to access another Matlab using the built-in
Matlab command actxserver(‘Matlab .application’) .
Scott Gorlin from the Massachusetts Institute of technology uses a different approach ◾
to control multiple sessions of Matlab using Java, based on Kamin Whitehouse’s
code .49 Some documentation is also available .50

Gabor Cselle from the Swiss Federal Institute of technology has a tutorial and source ◾
code on an approach to Matlab distributed computing using Java .51

Max Goldman and Da Guo from MIt created Java MPI in ◾ Matlab*P, which enables
parallel computing using Matlab .52

brad Phelan, a MathWorks ex-employee, created a ◾ Distributed Computing toolbox
(DCt) . His website is currently not functional, but a cached version can be found
online .53 He also has a simple example of using JMI .54

9.1.4 Running or Modifying MATlAB Code without MATlAB
this approach does not actually control Matlab, but involves both Matlab and Java:

Matlab ◾ builder Ja55 is a MathWorks toolbox product that compiles Matlab
code into a Java wrapper that can be imported and used in Java code . the toolbox uses
the Matlab MCR, not interaction with the engine library .

K13163_Book.indb 547 11/8/2011 8:10:24 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming548

Wojciech Gradkowski created ◾ JMatIO, a pure Java library for reading and writing to
Matlab’s Mat-file format .56 He also created a working example of JNI integration
with Matlab,57 which is described in Section 9 .5 .

9.1.5 MATlAB Clones Written in Java
this approach does not use Matlab at all, but implements a Matlab-like package in Java
that can easily be integrated in a Java application . However, these packages are significantly
inferior to Matlab in terms of their computational and graphic features .

JMathlib ◾ is an open-source clone of Matlab written entirely in Java,58 by Stefan
Müller who also authored JMatlink .
aRRaY4j ◾ is another open-source package mentioned above (albert Strasheim’s adap-
tation of JNa — see Section 9 .1 .2) .59

jMatlab ◾ is an Eclipse-based interpreter interface to linear algebra libraries .60 It pro-
vides a Matlab-like scripting language, GNUPlOt interface for plotting,61 and the
ability to write toolboxes using Java-based plugins .

9.2 JMI — Java-to-MATlAB Interface62

JMI takes the form of a jmi.jar file that comes with every copy of Matlab released in the past
decade . this jar file, located in the %matlabroot%/java/jar/ folder, is essentially a zip file con-
taining Java packages and class files . this chapter will discuss com.mathworks.jmi.
Matlab, the most important class in jmi.jar . Other JMI classes can be explored using the meth-
ods explained in Section 5 .1 .

JMI has been included with each Matlab release since 5 .3 (R11) when Java was first inte-
grated into Matlab . the oldest public reference to JMI comes from aguido Horatio Davis,
who posted about discovering and testing JMI on September 2000 .63 Since then, there have
been only a handful of useful references posted online .64 One of the notable posts has been brad
Phelan’s MatlabFunction wrapper in 2005 .65

In fact, JMI is so unsupported and undocumented that an article describing JMI written in
2002 by Peter Webb (a MathWorks employee) and published in the official newsletter66 has
been removed from their website in 2008, but can still be found in several online archives .67 an
attempt to document JMI (based on Matlab 6 .5) was made by Robert Fleming in March
2003,68 and his javadocs could be a very good basic reference, taking into consideration they are
incomplete and relatively old .

JMI easily allows calling two built-in Matlab functions: eval69 and feval .70 Essentially,
eval evaluates any string typed into Matlab’s Command Window, and feval allows calling
any function by name and passing in arguments . For example,

>> sqrt(5)
ans =
 2.2361

K13163_Book.indb 548 11/8/2011 8:10:24 PM

© 2012 by Taylor & Francis Group, LLC

549Using MATLAB® from within Java

>> eval('sqrt(5)')
ans =
 2.2361

>> feval('sqrt',5)
ans =
 2.2361

the first approach computes the square root of 5 by directly calling Matlab’s sqrt func-
tion . JMI does not enable this direct-invocation approach . Instead, JMI uses the second
approach, where eval mimics the first call by evaluating the entire expression inside single
quotes . the third option, which is also used by JMI, uses feval where the function and argu-
ments are separated .

there are some differences between eval and feval . For example, assignment can be done
using eval(‘x = 5’) but cannot be done with feval .

the eval and feval functions have several relatives (e .g ., hgfeval,71 evalc, evalin), which will
not be described here .

9.2.1 com.mathworks.jmi.Matlab
With all of that said, let us dive in! at the Matlab command-prompt type:

>> methodsview('com.mathworks.jmi.Matlab')

to see the Matlab class’s numerous methods . Many of these methods have very similar names;
many others have the same names and just different parameters . In order to call eval and feval,
we are going to use two of Matlab’s static methods:

public Object mtEval(String command, int returnCount)
public Object mtFeval(String funcName, Object[] args, int returnCount)

Since Matlab can call Java, we can experiment with these methods from Matlab . that
is right, we are about to use Matlab to call Java to call Matlab! First, let us import the
Java package that contains the Matlab class, to reduce typing:

import com.mathworks.jmi.*

Now let us take the square root of 5 as we did above, but this time from Java . Using JMI’s
eval-equivalent:

>> Matlab.mtEval('sqrt(5)',1)
ans =
 2.23606797749979

K13163_Book.indb 549 11/8/2011 8:10:24 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming550

Here, 'sqrt(5)' is passed to eval; 1 signifies that Matlab should expect a single return value .
the return count is important: an empty string (") is returned if instead the call had used a return
count of 0:

>> Matlab.mtEval('sqrt(5)',0)
ans =
 ''

If instead, return count was set to 2 or higher, then a Java exception will occur, since the
invoked function does not generate so many return values:

>> Matlab.mtEval('sqrt(5)',2)

??? Java exception occurred:
com.mathworks.jmi.MatlabException: Error using ==> sqrt
Too many output arguments.
 at com.mathworks.jmi.NativeMatlab.SendMatlabMessage(Native Method)
 at com.mathworks.jmi.NativeMatlab.sendMatlabMessage(NativeMatlab.java:212)
 at com.mathworks.jmi.MatlabLooper.sendMatlabMessage(MatlabLooper.java:121)
 at com.mathworks.jmi.Matlab.mtFeval(Matlab.java:1478)
 at com.mathworks.jmi.Matlab.mtEval(Matlab.java:1439)

this stack trace clearly shows how mtEval() is actually calling mtFeval() internally .

Now perform the square root using JMI’s feval-equivalent:

>> Matlab.mtFeval('sqrt',5,1)
ans =
 2.23606797749979

Here, 'sqrt' is the name of the Matlab function to be called, 5 is the argument to the func-
tion, and 1 is the expected return count . If the return count is set as 0 instead of 1, the function
call will still succeed, but no results will be returned .

the second mtFeval() argument, which specifies the arguments to the invoked Matlab
function, can take any number of arguments as an array . So, the following is valid:

>> Matlab.mtFeval('sqrt',[5 3],1)
ans =
 2.23606797749979
 1.73205080756888

Note that although two values are returned (the square roots of both 5 and 3), they are
 considered as one, since it is a single array that is returned .

Multiple Matlab arguments can be specified in mtFeval() using a cell array . For example,
consider the following equivalent formats (note the array orientations):

>> min(1:4,2)
ans =
 1 2 2 2

K13163_Book.indb 550 11/8/2011 8:10:24 PM

© 2012 by Taylor & Francis Group, LLC

551Using MATLAB® from within Java

>> Matlab.mtFeval('min',{1:4,2},1)
ans =
 1
 2
 2
 2

as we observed above, mtEval() is really just calling mtFeval() . this works because eval is
a function, so feval can call it . an illustration:

Matlab.mtFeval('eval','sqrt(5)',1)

both mtFeval() and mtEval() enable interaction with Matlab, but the effects are not shown
in the Command Window . another static method will allow us to do this:

public static Object mtFevalConsoleOutput(String functionName,
 Object[] args, int returnCount)

mtFevalConsoleOutput() is very similar to mtFeval(), except that mtFeval() suppresses any
Command-Window output, whereas mtFevalConsoleOutput() does not . For instance,

>> Matlab.mtFeval('disp','hi',0); % no visible output

>> Matlab.mtFevalConsoleOutput('disp','hi',0);
hi

there is no equivalent mtEvalConsoleOutput() method, but that is not a problem because we
have seen that eval can be accomplished using feval:

>> Matlab.mtFevalConsoleOutput('eval','x = 5',0);
x =
 5

Finally, there is a large set of eval* and feval* methods that correspond to mtEval* and allow
setting a callback function that gets invoked when Matlab finishes processing the JMI
request, using a com.mathworks.jmi.CompletionObserver .72

there are many more eval and feval methods in the Matlab class . Most of these meth-
ods’ names begin with eval or feval instead of mtEval and mtFeval . Many of these methods
are asynchronous, which means that their effect on Matlab can occur after the method
call returns . this is often problematic because if one method call creates a variable which is
then used by the next call, there is no guarantee that the first call has completed (or
even begun) by the time the second call tries to use the new variable . Unlike mtEval() and
mtFeval(), these methods are not static, meaning that we must have an instance of the Java
class Matlab:

>> proxy = Matlab
proxy =
com.mathworks.jmi.Matlab@1faf67f0

K13163_Book.indb 551 11/8/2011 8:10:24 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming552

Using this instance, let us attempt to assign variable “a” and then store it into variable “b” .
this may cause an exception if the variable “a” does not yet exist by the time that it is needed
to be stored in “b”:

>> proxy.evalConsoleOutput('a = 5'); b = proxy.mtEval('a',1)
??? Java exception occurred:
com.mathworks.jmi.MatlabException: Error using ==> eval
Undefined function or variable 'a'.
 at com.mathworks.jmi.NativeMatlab.SendMatlabMessage(Native Method)
 at com.mathworks.jmi.NativeMatlab.sendMatlabMessage(NativeMatlab.java:212)
 at com.mathworks.jmi.MatlabLooper.sendMatlabMessage(MatlabLooper.java:121)
 at com.mathworks.jmi.Matlab.mtFeval(Matlab.java:1478)
 at com.mathworks.jmi.Matlab.mtEval(Matlab.java:1439)
a =
 5

If we run the above code, then we are not guaranteed to get that exception because of the
nature of asynchronous method calls . However, this inherent unpredictability makes it difficult
to perform almost any sequential action . It is therefore best to stick to mtEval, mtFeval, and
mtFevalConsoleOutput, where such exceptions will be very rare . they can still occur, about 1
in 100 times, for an unknown reason . to prevent some problems, Java coders could use the
whenMatlabReady(Runnable) method, which is executed on the Matlab thread when it
next becomes available .

two potentially useful methods are mtSet() and mtGet(), which are the Java proxies for
Matlab’s set and get functions, and similarly accept a Matlab handle (a double value) and
a property name (a string) or array of property names, and either set the value or return it . this
can be used to update Matlab HG handles from within Java code, without needing to pass
through an intermediary Matlab eval function:

>> Matlab.mtSet(gcf,'Color','b')

>> Matlab.mtGet(gcf,'Color')
ans =
 0
 0
 1

>> Matlab.mtGet(gcf,{'Color','Name'})
ans =
java.lang.Object[]:
 [3 × 1 double]
 'My figure'

In summary, using just eval and feval, an enormous amount of Matlab’s functionality can
be accessed from Java . For instance, this enables creating sophisticated Java GUIs using Swing
and then being able to call Matlab code when the user clicks a button or moves a slider .
Performance is not super fast, but it works splendidly .

K13163_Book.indb 552 11/8/2011 8:10:25 PM

© 2012 by Taylor & Francis Group, LLC

553Using MATLAB® from within Java

9.2.2 Other Interesting JMI Classes
In addition to the important com.mathworks.jmi.Matlab class, a few other JMI classes
merit at least a brief mention:
com.mathworks.jmi.MatlabPath handles changes to the Matlab path or current

folder (pwd) . these can be modified from Java, or monitored asynchronously for changes .†

com.mathworks.jmi.MLFileUtils can be used to query file types (see mdbfileonpath) .
com.mathworks.jmi.aWTUtilities is a utility class that enables synchronous (invoke-

AndWait) and asynchronous (invokeLater) invocation of functions on the main Matlab
 execution thread, including the ability to setTimeout value (in milliseconds) .
com.mathworks.jmi.ClassLoaderManager can be used as an alternative Java class-

loader (Cl), when the default Matlab Cl fails to load a class . this has been used in Section
2 .2, in the checkClass and uiinspect utilities, that were discussed earlier in this book,‡ and on
the CSSM forum:73

try
 thisClass = java.lang.Class.forName(className);
catch
 classLoader =
 com.mathworks.jmi.ClassLoaderManager.getClassLoaderManager;
 thisClass = classLoader.loadClass(className);
end

a sibling method, com.mathworks.jmi.ClassLoaderManager .findClass(), is used to
parse Java class names in the built-in awtcreate and awtinvoke functions .§

alternatively, we could try to use java.lang.ClassLoader.getSystemClassLoader.
loadClass(className) .74 a different approach was used by bred Phelan to load Groovy75 classes
in Matlab, by registering Groovy’s Cl with the Matlab Cl .76

Finally, com.mathworks.jmi.Support is a utility class that reports the current
Matlab release’s supported capabilities . For example,

>> cell(com.mathworks.jmi.Support.allMexExtensions)'
ans =
 '.mexglx' '.mexa64' '.mexmaci' '.mexmaci64' '.mexw32' '.mexw64'

>> cell(com.mathworks.jmi.Support.allarches)'
ans =
 'glnx86' 'glnxa64' 'maci' 'maci64' 'win32' 'win64'

>> cell(com.mathworks.jmi.Support.allComputers)'
ans =
 'GLNX86' 'GLNXa64' 'MaCI' 'MaCI64' 'PCWIN' 'PCWIN64'

>> com.mathworks.jmi.Support.computer % Equivalent function: computer
ans =
PCWIN

† a different mechanism for monitoring current folder changes was described in Section 8 .1 .4 .
‡ Sections 5 .1 .2 and 1 .3, respectively .
§ See %matlabroot%/toolbox/matlab/uitools/private/parseJavaSignature .m, which is used by both of these built-in functions .

K13163_Book.indb 553 11/8/2011 8:10:25 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming554

com.mathworks.jmi.Support.useDesktop(), useAWT(), useJVM(), useMWT() and
useSwing() are the equivalent of the corresponding built-in usejava function that was discussed
in Section 1 .1 . For example:

>> com.mathworks.jmi.Support.useDesktop % also: useaWT/JVM/MWT/Swing
ans =
 1 <= Equivalent function: usejava('desktop')

9.3 JMI Wrapper — local MatlabControl77

9.3.1 local and Remote MatlabControl
the previous section discussed how JMI enables calling Matlab from Java . Joshua Kaplan
has written an open-source wrapper for JMI called matlabcontrol, which is both documented
and user-friendly .78 matlabcontrol was originally created to enable a grading program written
in Java used by teaching assistants at brown University to programmatically control Matlab
in order to open, run, and close students’ Matlab code assignments,79 and after several alter-
native approaches were analyzed as unsuitable for this need .80

matlabcontrol supports calling Matlab in two different ways: locally, where the Java
code is launched from Matlab, and remotely where the Java code launches Matlab . these
are discussed in Sections 9 .3 and 9 .4, respectively .

matlabcontrol is a collection of Java classes, bundled together in a downloadable jar file .81
as of this writing, the latest version is matlabcontrol-3.1.0.jar . Note down where we have
downloaded the jar file — we will need to use this information shortly .

For local control, we shall use the LocalMatlabProxy and MatlabInvocationExce-
ption classes . LocalMatlabProxy contains methods required for calling Matlab; instances
of MatlabInvocationException will be thrown if a problem occurs in the call .

to tell Matlab where matlabcontrol-3.1.0.jar is, add the jar file path to Matlab’s
dynamic (via the built-in javaaddpath function) or static (via edit(‘classpath.txt’)) Java class-
path . We will need to restart Matlab if we modified the static classpath, but it has the benefit
of working better in some situations (see Section 1 .1) .

Matlab now knows where to find the Java class files in matlabcontrol . to save typing
later on, run the following in Matlab (or in the JMI-empowered Matlab application):

import matlabcontrol.*

9.3.2 localMatlabProxy
LocalMatlabProxy is easy to use . all of its methods are static, meaning they can be called
without needing to assign LocalMatlabProxy to a variable . the methods are:

void exit()
Object getVariable(String variableName)

K13163_Book.indb 554 11/8/2011 8:10:25 PM

© 2012 by Taylor & Francis Group, LLC

555Using MATLAB® from within Java

void setVariable(String varName, Object value)
void eval(String command)
Object returningEval(String command, int returnCount)
void feval(String functionName, Object[] args)
Object returningFeval(String functionName, Object[] args)
Object returningFeval(String functionName, Object[] args, int returnCount)
void setEchoEval(boolean echoFlag)

matlabcontrol has a fair degree of documentation,82 including detailed javadocs for all these
methods .83 Here is an overview:

exit() ◾ is as straightforward as it sounds: it will exit Matlab . While it is possible to
programmatically exit Matlab by other means, they may be unreliable . So, to exit
Matlab from Java:

LocalMatlabProxy.exit();

Setting and getting variables can be done using the ◾ getVariable(. . .) and setVari-
able(. . .) methods . these methods will auto-convert between Java and Matlab types
where applicable .

Using getVariable(. . .):
Java types in the ◾ Matlab environment will be returned as Java types .
Matlab ◾ types will be converted into Java types .84

Using setVariable(. . .):
Java types will be converted into ◾ Matlab types if they can, based on a set of rules .85
Java Strings are converted to Matlab char arrays . additionally, arrays of one of
those Java types are converted to arrays of the corresponding Matlab type .

 Using these methods is fairly intuitive:

 >> LocalMatlabProxy.setVariable('x',5)
 >> LocalMatlabProxy.getVariable('x')
 ans =
 5

Getting and setting basic types (numbers, strings, and Java objects) is quite reliable
and consistent . However, it gets complicated when passing in an array (particularly
multidimensional) from Java using setVariable(. . .), or getting a Matlab struct or
cell array using getVariable(. . .) . the type conversion in such cases is unpredict-
able and may be inconsistent across Matlab versions . In such cases, we are best
off building a Java object with Matlab code and then getting the Java object that
we have created .
the ◾ eval() and feval() methods were described in detail in Section 9 .2 .1 . these func-
tions will return the result, if any, as a Java object .

K13163_Book.indb 555 11/8/2011 8:10:25 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming556

Due to the way that the underlying JMI operates, it is necessary to know in advance the
number of expected return arguments — we can use Matlab’s built-in nargout
function for this . Note that some functions (e .g ., feval) return a variable number of
arguments, in which case nargout returns −1 . For example,

 >> nargout sqrt
 ans =
 1
 >> nargout feval
 ans =
 −1

LocalMatlabProxy ◾ ’s returningFeval(functionName, args) method uses the
nargout information to determine the number of returned arguments and provide
it to JMI . It will likely not function as expected if the function specified by function-
Name returns a variable number of arguments . In such a case, call returningFeval(...)
with a third input argument that specifies the expected number of returned
arguments .

 Since an eval() function can evaluate anything, just as if it were typed in the
Command Window, there is no reliable way to determine what will be returned . all of
this said, in most situations returningEval(...) can be used with a return count of 1, and
the returningFeval(...) that automatically determines the return count will operate as
expected .

9.3.3 Some Usage Examples
let us perform some of the same simple square root operations that we performed in Section
9 .2 .1 with pure JMI, this time using matlabcontrol . First let us take the square root of 5, assign-
ing the result to the Matlab variable y (note that we are calling Matlab from Java, which
itself is called from within Matlab):

>> LocalMatlabProxy.eval('sqrt(5)')
ans =
 2.2361
>> y = LocalMatlabProxy.returningEval('sqrt(5)',1)
y =
 2.2361
>> LocalMatlabProxy.feval('sqrt',5) % no return value
>> y = LocalMatlabProxy.returningFeval('sqrt',5)
y =
 2.2361
>> y = LocalMatlabProxy.returningFeval('sqrt',5,1)
y =
 2.2361

K13163_Book.indb 556 11/8/2011 8:10:25 PM

© 2012 by Taylor & Francis Group, LLC

557Using MATLAB® from within Java

there is no major difference between using eval() or feval() here . However, if instead of
sqrt(5) we need the square root of a variable, then eval() is our only option:

>> a = 5
a =
 5
>> LocalMatlabProxy.eval('sqrt(a)')
ans =
 2.2361
>> y = LocalMatlabProxy.returningEval('sqrt(a)',1)
y =
 2.2361

>> LocalMatlabProxy.feval('sqrt','a')
??? Undefined function or method 'sqrt' for input arguments of type 'char'.
??? Java exception occurred:
matlabcontrol.MatlabInvocationException: Method could not return a value because
of an internal Matlab exception
 at matlabcontrol.JMIWrapper.returningFeval(JMIWrapper.java:256)
 at matlabcontrol.JMIWrapper.feval(JMIWrapper.java:210)
 at matlabcontrol.LocalMatlabProxy.feval(LocalMatlabProxy.java:132)
Caused by: com.mathworks.jmi.MatlabException: Undefined function or method
'sqrt' for input arguments of type 'char'.
 at com.mathworks.jmi.NativeMatlab.SendMatlabMessage(Native Method)
 at com.mathworks.jmi.NativeMatlab.sendMatlabMessage(NativeMatlab.ava:212)
 at com.mathworks.jmi.MatlabLooper.sendMatlabMessage(MatlabLooper.java:121)
 at com.mathworks.jmi.Matlab.mtFevalConsoleOutput(Matlab.java:1511)
 at matlabcontrol.JMIWrapper.returningFeval(JMIWrapper.java:252)
 ... 2 more

the automatic Matlab/Java type conversions discussed above are equally applicable to
eval() and feval(): feval() automatically converted the argument ‘a’ into a Matlab char,
instead of considering it as a Matlab variable . as seen above, the feval() invocation fails
with a Java MatlabInvocationException . So, the only way to interact with Matlab
variables is via eval() methods; feval() will not work .

lastly, there is the setEchoEval(echoFlag) method: If this method is called with a true argu-
ment, then all Java to Matlab calls will be logged in a dedicated window . this can be very
helpful for debugging .

let us now put matlabcontrol to work from Java . below is a very simple Java class called
localExample which uses Swing to create a window (JFrame), a text field (JTextField),
and a button (JButton) . When the button is pressed, the text in the field will be evaluated in
Matlab using LocalMatlabProxy.eval(. . .), as explained above .

import java.awt.event.*; //ActionEvent/Listener,WindowAdapter/Event

import javax.swing.*; //JButton,JFrame,JPanel,JTextField

import java.util.concurrent.Executors;
import java.util.concurrent.ExecutorService;

K13163_Book.indb 557 11/8/2011 8:10:25 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming558

import matlabcontrol.LocalMatlabProxy;
import matlabcontrol.MatlabInvocationException;

/**
 * A simple demo of some of matlabcontrol’s functionality.
 *
 * @author Joshua Kaplan
 */
public class LocalExample extends JFrame
{
 /**
 * Constructs this example and displays it.
 */

 public LocalExample() {
 //Window title
 super("Local Session Example");

 //Panel to hold field and button
 JPanel panel = new JPanel();
 this.add(panel);

 //Input field
 final JTextField inputField = new JTextField();
 inputField.setColumns(15);
 panel.add(inputField);

 //Eval button
 JButton evalButton = new JButton("eval");
 panel.add(evalButton);
 final Runnable evalRunnable = new Runnable()
 {
 public void run() {
 try { LocalMatlabProxy.eval(inputField.getText()); }
 catch (MatlabInvocationException exc) { }
 }
 };

 //Eval runnable, to execute in separate (non-EDT) thread
 final ExecutorService executor =
 Executors.newSingleThreadExecutor();

 //Eval action event for button and field
 actionListener evalaction = new actionListener()
 {
 public void actionPerformed(actionEvent e) {
 //This uses the EDT thread, which may hang Matlab...
 //LocalMatlabProxy.eval(inputField.getText());

 //Execute runnable on a separate (non-EDT) thread
 executor.execute(evalRunnable);
 }
 };
 evalButton.addactionListener(evalaction);
 inputField.addactionListener(evalaction);

K13163_Book.indb 558 11/8/2011 8:10:25 PM

© 2012 by Taylor & Francis Group, LLC

559Using MATLAB® from within Java

 //On closing, release resources of this frame
 this.addWindowListener(new Windowadapter()
 {
 public void windowClosing(WindowEvent e) {
 LocalExample.this.dispose();
 }
 });

 //Display
 this.pack();
 this.setResizable(false);
 this.setVisible(true);
 }
}

We can either copy and compile the above code (remember to import the matlabcontrol JaR
file86 in the compiler; four class files will be created) or download the pre-compiled code .87
Note that the pre-compiled classes were compiled using JDK 1 .6, so if we have Matlab
R2007a (7 .4) or earlier we will need to compile using an earlier Java compiler .

We now need to tell Matlab where to find the matlabcontrol JaR and LocalExample
class files, by adding them to Matlab’s static or dynamic classpath (see Section 1 .1):

% add Java files to current MaTLaB session's dynamic Java classpath
javaaddpath LocalExample.zip
javaaddpath matlabcontrol-3.1.0.jar

to run the Java program, simply type LocalExample in Matlab’s Command Window .
a small Java window will appear and JMI will evaluate any expression typed into it:

>> LocalExample
ans =
LocalExample[frame0,0,0,202x67,title = Local Session Example,...]

Java window calling MAtlAb via JMI

a =
 1.77245385090552

When we called LocalMatlabControl.eval(. . .) from the Command Window earlier,
what occurred behind the scenes was actually quite different from what happens when we press
the “eval” button in the Java GUI: in the Command Window, everything executes in Matlab’s
single main thread; when we press “eval” in the GUI, it executes in the Event Dispatch thread
(EDt, see Section 3 .2) which is a separate thread .

EDt is used extensively by Matlab when accessing graphical components such as a fig-
ure window or plots . When calling a function from JMI, the calling thread always blocks

K13163_Book.indb 559 11/8/2011 8:10:26 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming560

(pauses) until Matlab completes doing whatever it was asked . If we call JMI/matlabcontrol
from EDt and Matlab needed to use EDt everything will lock up .

to fix this potential EDt problem, when the “eval” button is pressed, the command is dis-
patched to a separate thread that can block without preventing Matlab from doing its work .88
Future versions of matlabcontrol will try to further simplify this process .

When using matlabcontrol over a remote connection, the topic of the following section, this
EDt complication does not arise, since Matlab and the Java program do not share the same
EDt or even the same Java runtime process (JVM) .

Similar solutions to the threading issue (i .e ., using a separate thread or process) were sug-
gested on CSSM .89

While the above Java example is quite simple, using a combination of all the methods
described, a much more sophisticated program can be created . to explore the methods in more
detail, use the downloadable demo .90 the demo uses a remote connection to Matlab, but the
available methods are the same .

9.4 JMI Wrapper — Remote MatlabControl91

9.4.1 Remote Control of MATlAB
the previous section demonstrated using matlabcontrol to call Matlab from Java from within
the Matlab application . this section will explain how to control Matlab from a remote
Java session .

We will create a small Java program that allows us to launch and connect to Matlab, then
send it eval commands and receive the results . While this example will involve creating a dedi-
cated user interface, matlabcontrol can be integrated into any existing Java program without
requiring any user interface .

matlabcontrol was originally created for controlling Matlab, not for performing computa-
tions . If our exclusive concern is to perform Matlab computations and use the results in Java,
then check the Matlab builder Ja toolbox,92 which is made by MathWorks and is officially
supported . Unfortunately, this toolbox is quite expensive and does not enable interaction with a
running Matlab session (it uses the non-GUI Matlab engine, much as the compiler does) .
It is for this purpose that the open-source (free) matlabcontrol package was created .

Note that matlabcontrol opens a new running Matlab session and does not connect to an
already-running session . Matlab commands can then be invoked either interactively (in
Matlab’s Command Window) or remotely (from Java) .

Debugging an already-open Matlab session can be done with jdb over a dedicated port,
using an altogether different mechanism than matlabcontrol, or alternatively using COM or
process pipes . as noted at the beginning of this chapter, Matlab has fully documented sup-
port for a COM interface (Windows) and process pipes (Unix/Mac) that allow remote commu-
nication from external applications . Using this approach would have the benefits of enabling
communication with an existing Matlab session (a current limitation of matlabcontrol) and
of MathWorks’ documented support .

K13163_Book.indb 560 11/8/2011 8:10:26 PM

© 2012 by Taylor & Francis Group, LLC

561Using MATLAB® from within Java

9.4.2 A Simple RemoteExample
this section’s RemoteExample demo is too long to paste here; instead we can download the
source code,93 or a jar file94 that contains both the pre-compiled classes and matlabcontrol . If
we wish to download and compile the source file, remember that we will need the matlabcon-
trol jar referenced in our Java classpath .

to run this jar, simply double click its file icon . alternatively, in Matlab:

>> javaaddpath RemoteExample.jar
>> RemoteExample.main('')

RemoteExample's user interface is built using standard Swing components — there is
 nothing special here, just some panels, panes, text fields, buttons, and so on .

Connecting Java to MAtlAb using RMI

the interesting part begins when the code creates a RemoteMatlabProxyFactory
object:

RemoteMatlabProxyFactory factory = new RemoteMatlabProxyFactory();

this Matlab-proxy factory object is used when the user clicks the “Connect” button:

factory.requestProxy();

this creates a RemoteMatlabProxy object . RemoteMatlabProxys must be created
by a RemoteMatlabProxyFactory and cannot be directly constructed . When request-

K13163_Book.indb 561 11/8/2011 8:10:26 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming562

Proxy() is called, matlabcontrol launches a new Matlab process and connects to it using
RMI .95 When the connection is established, a MatlabConnectionListener added to the
factory will be notified using its connectionEstablished(RemoteMatlabProxy proxy) call-
back method, passing in the now-connected RemoteMatlabProxy object .

While this example only deals with communicating with a single Matlab session,
 matlabcontrol can handle multiple remote sessions . Whenever a new session is established,
connectionEstablished(RemoteMatlabProxy proxy) is invoked on each connection listener .
When a connection is lost due to Matlab closing, or in very rare cases Matlab encounter-
ing extremely severe errors, connectionLost(RemoteMatlabProxy proxy) is called . Calling
methods on this proxy will lead to exceptions being thrown, as it can no longer communicate
with Matlab . the proxy is passed because this information is useful when controlling mul-
tiple sessions of Matlab simultaneously .

When the “Invoke” button is pressed, the command and the number of expected return argu-
ments are sent to Matlab . If the number of return arguments is 0, the command will still
execute but nothing will be returned . If the number is positive but less than the total number of
return arguments, then only up to that number of arguments will be returned . If the number of
return arguments specified exceeds the actual amount of arguments returned, a Java exception
will be thrown . by default, the fields are populated to return the result of ‘sqrt(5)’ . Press “Invoke”
to see what happens . Change the number of return arguments to 0, and click “Invoke” again .
Now change the number to 2 and try once more .

Invoking MAtlAb commands from Java using JMI (See color insert.)

When the Java program closes, it also exits Matlab . this is accomplished by adding a
WindowListener to the program, which detects the Java closure event . It is important to

K13163_Book.indb 562 11/8/2011 8:10:27 PM

© 2012 by Taylor & Francis Group, LLC

563Using MATLAB® from within Java

directly invoke Matlab’s exit command as opposed to eval(‘exit’), since all other proxy
methods block (pause) until completion, but in the case of exiting Matlab no signal will ever
be sent by Matlab to indicate that it has closed .

9.4.3 Parsing MATlAB’s Return Values
Our eval commands are being sent using RemoteMatlabProxy’s returningEval(String
command, int returnCount) method, whose return type is Object, because Matlab can
return multiple return types . For example, the expression “sqrt(5)” will return an array of dou-
bles, “pwd” will return a java.lang.String, and “whos” will return a complicated array of
arrays with a variety of base types and Objects .

this behavior may be different on different Matlab releases . We will have to experiment
to find out what is being returned on each particular platform that is being used . the demo can
help as it lists everything returned, including array contents . the demo contains the formatRe-
sult method which recursively goes through the object returned from Matlab and builds a
description of what it contains . as discussed above, Matlab functions may return a base
type, an array of base types, a String . a Java object might also be returned — this might
actually arise if we are trying to control the Matlab GUI, as described in previous chapters
of this book .

When returning Java objects from Matlab, certain restrictions and limitations apply .
First, the object must be Serializable96 because of the underlying use of RMI . In practice,
this is a minor issue because many built-in Java classes are Serializable, and making our
own classes Serializable is usually trivial . Unfortunately, not all built-in Matlab classes
are Serializable, and so cannot be transferred from Matlab .

Secondly, classes returned by Matlab to Java must be defined in our Java program . For
any standard built-in Java class, this is easy . However, if we send Matlab classes, our Java
program must have those classes in its classpath . In practice, this means to reference the jar file
containing that class . For HG (or rather, UDD — see appendix b) classes, we have the alterna-
tive of using the following Matlab function to create a Java class interface, which can then
be used in Java code to access the Matlab object:

% This will create a figure.java file in the current folder:
myClassHandle = classhandle(handle(gcf));
myClassHandle.createJavaInterface(myClassHandle.name, pwd);

% alternately, use myClassHandle.JavaInterfaces{1}
% = 'com.mathworks.hg.Figure' in this particular case
% i.e., in your Java code import com.mathworks.hg.Figure

Finally, note that a copy of the Java object is transferred — not a reference to the original
object . this means that if we modify the transferred object, then the original object in Matlab

K13163_Book.indb 563 11/8/2011 8:10:27 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming564

will not be affected . However, we can then send the modified object back to Matlab, so in
practice this limitation can be bypassed .

None of these restrictions is applicable to matlabcontrol for local sessions .

9.5 Using JNI to Connect Java and MATlAB

JNI (Java Native Interface)97 is a standard Java technology that enables access from Java to
functionality exposed by native libraries . JNI was developed entirely unrelated to Matlab .
However, since Matlab provides documented support to its native libraries for C and Fortran
integration,98 we can use the same native libraries for Java integration using JNI .

a major benefit of using JNI is that while using JNI is undocumented and not officially sup-
ported, the Matlab functionality it uses is both documented and supported .99 the official
Matlab support is only for C and Fortran interfaces, but the same Matlab libraries that
support C/Fortran are being loaded and used by JNI . this means that if we run into a problem
in development, then we could indeed expect to get MathWorks support .100 this contrasts with
the JMI approaches, which rely on undocumented and unsupported technology .

JNI only works in a Java application that runs on the same computer as an installed Matlab
(not simply an installed MCR but a full Matlab installation), since the native libraries are
apparently not included in the MCR . theoretically we could try loading native libraries remotely
using direct UNC filepaths, but I never tried this, and I do not know whether it works . On the
other hand, JMI can easily run on a remote computer which does not have Matlab, and con-
nect to the Matlab-installed computer via RMI .

Unfortunately, Java can only access functions that have a very specific interface (prototype)
declaration .101 For example, a simple print() function should be declared as follows in the
dynamic library:

JNIEXPORT void JNICaLL Java_HelloWorld_print (JNIEnv *, jobject);

For example, the C-code which generates this function could be as follows:

#include <jni.h >
#include <stdio.h >

JNIEXPORT void JNICaLL
Java_HelloWorld_print(JNIEnv *env, jobject obj)
{
 printf("Hello World!\n");
 return;
}

this print() function prototype informs the JVM it is meant for Java and is part of the
HelloWorld class . after we compile this C-code into a dynamic library (e .g ., HelloWorld.
dll), the JVM expects to find the library in Java’s librarypath . this librarypath is specified

K13163_Book.indb 564 11/8/2011 8:10:27 PM

© 2012 by Taylor & Francis Group, LLC

565Using MATLAB® from within Java

using the -Djava.library.path = directive in the JVM’s command-line, or by setting the
LD_LIBRaRY_PaTH environment variable .102

Once we have all this set up properly, we can now use our dynamic library in Java and access
our native function using the regular Java syntax of HelloWorld .print() . the corresponding
Java class would be as follows:

public class HelloWorld
{
 private native void print();
 public static void main(String[] args)
 {
 new HelloWorld().print();
 }
 static {
 try {
 System.loadLibrary("HelloWorld");
 } catch (UnsatisfiedLinkError error) {
 System.out.println("Error loading library!");
 }
 }
}

an UnsatisfiedLinkError exception will be thrown if JNI encounters any error when
loading the file . this could range from file-not-found, to not being on the librarypath, to not
being loadable as a dynamic library, and so on .103 It is therefore always prudent to test for this
exception when loading native libraries .

admittedly, all this is far from trivial . It gets even more complicated when we try to access
Matlab native (dynamic library) functionality using JNI: the basic building block of JNI
usage is the java.lang.System .loadLibrary(libName) method . Unfortunately, unlike
almost any other Java method that can be tested from the Matlab Command Prompt (as
shown throughout this book), it appears that some internal bug or limitation in Matlab’s
classloader prevents direct usage of System .loadLibrary from the Command Prompt .104
Instead, it can only be used from within Java code (i .e ., a user-created Java class) .

therefore, to test our dynamic library, we need to create a simple Java class that does the
actual loadLibrary, and then call that class from Matlab:

public class LoadLibrary
{
 public static void loadLibrary(String s)
 {
 try {
 System.loadLibrary(s);
 } catch (UnsatisfiedLinkError error) {
 System.out.println("Error loading library "+s);
 }
 }
}

K13163_Book.indb 565 11/8/2011 8:10:27 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming566

We have several alternatives of specifying the librarypath in Matlab: we can set the
LD_ LIBRaRY_PaTH environment variable, or add a corresponding -Djava.library.
path= directive to our java.opts file (see Section 1 .9) .

alternatively, we could add a line in the librarypath.txt file, which is located in the %matla-
broot%/toolbox/local/ folder . type edit(‘librarypath.txt’) at the Matlab Command Prompt to
edit this file in the Matlab Editor, or use any external text editor for this . If we do not have
administrator access to this file, then we can also place a copy of this file in our user’s Matlab
startup folder .

Once we have librarypath.txt set-up correctly and have restarted Matlab, we can now
load our library in Matlab as follows:

javaaddpath('path-to-the-folder-that-contains-LoadLibrary.class');
LoadLibrary.loadLibrary('libMylib.so'); % or libMylib.dll in Windows

the librarypath.txt file should contain separate lines with the paths of each folder that con-
tains loadable dynamic libraries . When Matlab installs, librarypath.txt already includes a
single line, with the path to Matlab’s internal dynamic libraries:

$matlabroot/bin/$arch

For example, for Matlab R2011a running on Windows XP, this could translate into: C:\
Program Files\Matlab\R2011a\bin\win32\ . taking a look at this folder, we find some 200
dynamic libraries, depending on the Matlab release and platform .

Some of these dynamic libraries, those that are named native* (e .g ., nativecmdwin.dll,
nativehg.dll, nativejava.dll, etc .) as well as a few others (JavaAccessBridge.dll, JAWTAccessBridge.
dll, jogl.dll, etc .), provide JNI-compliant functions that can be used in our Java programs .
Unfortunately, we do not know the prototype interface for any of these functions (i .e ., we do not
know what input arguments they expect or what return value they provide) . Without this infor-
mation, we can only guess the actual prototype of these functions . For example, nativejava.dll
defines the following function, as reported by the Dependency Walker utility:105

_Java_com_mathworks_util_NativeJava_getMenuBar@16

From this declaration, we know that the function is part of the com.mathworks.util.
NativeJava class, and from the function name (getMenuBar) we can infer that it returns a
reference to a figure window’s menu-bar . However, which input argument does it expect? a
Matlab handle value? Or perhaps a JFrame reference? We cannot really know except by
very extensive trial-and-error . Providing the wrong input arguments will cause errors, hangs, or
crashes on our system .

Even more unfortunate is that most of Matlab’s dynamic libraries do not conform to the
JNI prototype syntax . this means that we cannot load these libraries in Java without interface
libraries that DO conform to the required JNI prototype syntax .

K13163_Book.indb 566 11/8/2011 8:10:27 PM

© 2012 by Taylor & Francis Group, LLC

567Using MATLAB® from within Java

theoretically, we could create a C-code wrapper for all these libraries, thereby creating JNI-
compliant interface libraries . However, as noted above, Matlab does not document the pro-
totypes for the functions in its libraries . Without these prototypes, we cannot create the necessary
JNI-compliant interface libraries . luckily, there are two exceptions that we can use to our
advantage:

Firstly, many of the Matlab libraries rely on C++ rather than C code . C++ provides inter-
nal documentation of its prototype in the function name (its so-called mangled name) . We can
use these prototypes even if we do not really know what the functions actually do under their
hood . I will not explore this option here .

an easier route is to use the few Matlab’s libraries that are meant for interfacing with
external C/Fortran code, and which provide standard C header (* .h) files . these header files are
located in the %matlabroot%/extern/include/ folder, and their associated [static] libraries are
available under %matlabroot%/extern/lib/%arch% (e .g ., C:\Program Files\Matlab\R2011a\
extern\lib\win32\lcc) .

the functions are exposed by four fully documented static libraries, which actually provide
access to much of Matlab’s functionality .† these are the provided libraries:

libmat .lib (header file: ◾ mat.h) — functionality for reading/writing Mat files .
libmx .lib (◾ matrix.h) — functionality relating to Matlab data: creation/deletion,
copying, testing, size, storage, casting/conversion, and so on .
libmex .lib (◾ mex.h) — functionality for executing Matlab functions/commands,
accessing Matlab variables, and displaying messages .
libeng .lib (◾ engine.h) — functionality for controlling the Matlab engine: starting
and quiting the Matlab engine,‡ evaluating Matlab expressions, and accessing/
updating Matlab variables .

In addition to these documented functions, Matlab provides a few additional libraries
with header files in the same location as the documented libraries:

libmwblas .lib (◾ blas.h) — a library encapsulating the open-source blaS (basic linear
algebra Subprograms) package,106 auto-generated from Fortran .
libmwblascompat32 .lib (◾ blascompat32.h) — a 32-bit compatible version of libmwblas,
for bridging between 32-bit Embedded Matlab and 64-bit blaS .
libmwlapack .lib (◾ lapack.h) — a library encapsulating the open-source laPaCK
(linear algebra) Package,107 auto-generated from Fortran . laPaCK depends on
blaS, so we may possibly need to include blaS when linking our library .

† http://www .mathworks .com/help/techdoc/apiref/bqoqnz0 .html (or http://bit .ly/gZqD1a) . Each of these static libraries
also has a dynamic counterpart library, in the $matlabroot/bin/$arc/ folder that was mentioned above .

‡ Note that starting the Matlab engine (via engOpen()) uses csh on Unix/linux, so you must have csh installed, other-
wise the connection will fail: http://www .mathworks .com/matlabcentral/newsreader/view_thread/238828 (or http://bit .
ly/i9Cc1H) .

K13163_Book.indb 567 11/8/2011 8:10:28 PM

© 2012 by Taylor & Francis Group, LLC

www.mathworks.com
http://bit.ly

Undocumented Secrets of MATLAB®-Java Programming568

libmwmathutil .lib — a library providing access to all the basic math functions (sin, ◾
log, sqrt, etc .) . Unfortunately, there is no corresponding header file .
libut .lib — a library with general-purpose functions, also without a header file . ◾

there are a few header files that are not directly related to any particular library: tmwtypes.h
provides definitions for data types; fintrf.h provides some definitions of pointer types and com-
patibility overrides of functions on old Matlab releases; io64.h provides 64-bits I/O support
(i .e ., for files larger than 2 Gb) .

So here now is the roadmap for connecting Java to Matlab via JNI:

First, create a C-code file that wraps the functions in the aforementioned libraries ◾
 (libmat, libmx, and so on), using the expected JNI notation .
link the C-code with the ◾ static Matlab libraries, creating a dynamic library .
Now, place this library in a folder that is specified in the ◾ LD_LIBRaRY_PaTH envi-
ronment variable or JVM’s -Djava.library.path= directive .
Within the Java code, declare the dynamic library’s functions as ◾ native . Ensure that
the class name and declared function name match the JNI-compliant declaration in the
library . For example, if the JNI declaration was for Java_HelloWorld_print, then
ensure that the HelloWorld Java class declares a native print function .
Finally, use ◾ java.lang.System.loadLibrary to load the library an access its
internal functions within the Java code .

In practice, setting up JNI and all its plumbing can be quite tedious and error-prone . Several
researchers reported their experience using JNI with Matlab, as follows:

andreas Klimke from the University of Stuttgart wrote a detailed paper ◾ 108 (and source
code109) about JNI access to Matlab’s engine library .
Yousef Farschtschi from the University of Hamburg has posted a complete (although ◾
limited) example of setting up JNI for Matlab based on Klimke’s work . Yousef
reported that the code does not work, but I suspect that this has something to do with
his specific environment, rather than with his code .110

Ma li, Jiang Zhihong, li Hao, and Wu Dan from Nanjing University wrote a paper ◾
entitled “the Combination of JaVa with Matlab apply to Meteorology” where
they discuss using JNI calls to Matlab’s C++ aPI .111

Erlangung der Würde from technischen Universität Carolo-Wilhelmina zu braunsch- ◾
weig described another solution (in German)112 using a combination of JNI calls to the
C/C++ library and applicative use of Java-sockets .

Still, I suggest using one of the following established wrapper packages, rather than pure
JNI . these wrappers greatly ease the burden of using JNI with Matlab:

there have been several reported adaptations of ◾ SWIG113 (Simple Wrapper and
Interface Generation) to generate a JNI wrapper for Matlab .114 I do not know

K13163_Book.indb 568 11/8/2011 8:10:28 PM

© 2012 by Taylor & Francis Group, LLC

569Using MATLAB® from within Java

the current status of the SWIG adaptations . as far as I could tell, they are not widely
used . the official SWIG distribution once had a Matlab adaptor and fully func-
tional example,115 but the current distribution does not (SWIG does support the
Matlab-compatible Octave116) .
Stefan Müller’s ◾ JMatlink is a library that uses JNI to access Matlab’s C/C++
engine library .117 JMatlink may require a fix of the environment PatH variable,118 or
to the Eclipse configuration .119 Ying bai wrote a book about JMatlink that can be
previewed on Google books (pages 76–286) .120 Note that an apparent JMatlink incon-
sistency prevents Matlab Desktop access .121

JMatlink’s built-in testing GUI (See color insert.)

albert Strasheim has adapted the open-source ◾ JNa (Java Native Access) package122 to
connect to Matlab’s native C/C++ library .123 JNa is basically a JNI replacement
that enables simple native library integration, without the requirement for JNI-
compliant prototypes . Using JNa, we do not need to write any C-code nor do we need
to create any interfacing library (so-called “glue-code”) . the JNa-Matlab adapta-
tion is complete with some remaining quirks124 and is incorporated in the array4J
project .125

Here is a basic guide for integrating Strasheim’s JNa adapter for Matlab:

First, download ◾ jna.jar from the JNa project archive .126 this file contains the JNa
project classes as well as dynamic libraries for Windows, linux, SunOS, Darwin (Mac
OS X), and Open/FreebSD .
Next, open ◾ jna.jar using WinZip or WinRar and extract the relevant dynamic library
into a folder that is specified in the Java librarypath, as explained above . For example,
on Windows x86, we would extract com\sun\jna\win32-x86\ jnidispatch.dll . this
extraction step is not required, but it may help solve a minor problem of a leftover
temporary file in our %tEMP% folder: JNa automatically extracts the relevant
dynamic library from the JaR whenever it is activated, if it does not detect this dynamic
library on its librarypath .127

K13163_Book.indb 569 11/8/2011 8:10:28 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming570

Next, download ◾ jna4matlab.jar from this book’s website,128 or download the contained
classes directly from the aRRaY4J project’s archives .129 this contains Matlab
adapter classes and test classes (MaTLaBTest, MXarrayTest) . jna4matlab.jar con-
tains both the source (*.java) and compiled (*.class) files .
Next, add both ◾ jna.jar and jna4matlab.jar (or the folder that contains the jna4matlab
class files) to the static or dynamic Java classpath . If we are testing this from within
Matlab, then we can use the javaaddpath function .
Within the Java code, use the following code skeleton (more complete examples are in ◾
the MatlabTest.java and MXArrayTest.java files):

import net.lunglet.matlab.*; // Engine, MXarray
public void testFunction()
{
 // Open a visible Matlab engine instance
 // (will throw a RuntimeException upon failure)
 Engine engine = new Engine(true); // false for non-visible

 // Eval MaTLaB expression; get command prompt output as string
 String versionStr = engine.eval("version");

 // Do some MaTLaB processing, read the results
 engine.eval("matlabVar = sqrt(pi);");
 MXarray pMatlabVar = engine.getVariable("matlabVar");
 double scalar = pMatlabVar.getScalar(); // = 1.77245...

 engine.close(); // Close the MaTLaB engine
}

adapting the above code skeleton to Matlab for testing purposes is straightforward:

engine = net.lunglet.matlab.Engine(true); % an Engine object
versionStr = char(engine.eval('version'));
engine.eval('matlabVar = sqrt(pi);');
pMatlabVar = engine.getVariable('matlabVar'); % an MXarray object
scalar = pMatlabVar.getScalar(); % = 1.77245...
engine.close();

let us now turn to a more complex example, by converting Matlab’s own example for
integrating an external C program with Matlab . the original C-code is located in %matla-
broot%/extern/examples/eng_mat/engdemo.c . Here is its Java variant, which is also included in
jna4matlab.jar:

import net.lunglet.matlab.*; // Engine, MXarray, MXLibrary
public class EngDemo
{
 /*
 * Start a non-visible MaTLaB engine locally.
 * To start the session on a remote host, use the host name as
 * the startCmd: Engine(startCmd,visible,singleUse,bufSize)
 * For more complicated cases, use any string with whitespace,

K13163_Book.indb 570 11/8/2011 8:10:28 PM

© 2012 by Taylor & Francis Group, LLC

571Using MATLAB® from within Java

 * and that string will be executed literally to start MaTLaB.
 */
 Engine ep = new Engine(false); // may throw a RuntimeException

 // Send data to MaTLaB, analyze the data, and plot the result
 public void testMatlabJNa() throws java.io.IOException
 {
 final MXLibrary mx = MXLibrary.INSTaNCE;
 MXarray result;
 double[] time = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 };

 // Create a variable T for our data
 MXarray T = MXarray.createDoubleMatrix(1,10);

 // alternative: MXarray T = mx.mxCreateDoubleMatrix(new NativeLong(1), new
NativeLong(10), MXConstants.REaL);

 // Populate the variable T with our time data
 com.sun.jna.Pointer prPtr = mx.mxGetPr(T);
 prPtr.write(0,time,0,time.length);

 // Place the variable T into the MaTLaB workspace
 ep.putVariable("T", T);

 // Evaluate distance as a function of time = (1/2)*g*t.^2
 ep.eval("D = 0.5 * (-9.8) * T.^2;");

 // Plot the result (and pause a bit to ensure that we see it)
 ep.eval("plot(T,D);");
 ep.eval("title('Position vs. Time for a falling object');");
 ep.eval("xlabel('Time (seconds)');");
 ep.eval("ylabel('Position (meters)');");
 ep.eval("pause(10);");

 // Get the results of the MaTLaB computation back into Java
 System.out.println("Retrieving D...");
 if ((result = ep.getVariable("D")) == null) {
 System.out.println("Oops! You did not create variable D");
 } else {
 System.out.println("D is class "+mx.mxGetClassName(result));
 double[] results = result.getPr();
 System.out.print("D values = [");
 for (double value : results)
 System.out.print(value + ", ");
 System.out.println("]");
 }

 // We're done! Free memory, close MaTLaB engine and exit
 System.out.println("Done!");
 mx.mxDestroyarray(result);
 mx.mxDestroyarray(T);
 ep.close();
 }
}

K13163_Book.indb 571 11/8/2011 8:10:28 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming572

MAtlAb plot generated via JNI/JNA (See color insert.)

In a related usage of JNI, Wojciech Gradkowski uploaded to the Matlab File Exchange130
a working example of using JNI to interface with user-generated dynamic libraries that were
prepared using the Matlab compiler . Note that this is somewhat different from the need
to use JNI to connect to core Matlab dynamic libraries, although the basic JNI principles
are the same .

Important note: testing JNI/JNa functionality may cause JVM to crash due to memory
access errors if we pass incorrect values to Matlab engine libraries . Do not be afraid of
this: just remember to kill any leftover Matlab process .

References

 1 . http://code .google .com/p/matlabcontrol/wiki/approachestoControl (or http://bit .ly/bnpVUR) .
 2 . http://matlabcontrol .googlecode .com/ (or http://bit .ly/d5uggN) .
 3 . http://www .mathworks .com/help/techdoc/mfatlab_external/f38569 .html (or http://bit .ly/bpg7VF) .
 4 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/77971 (or http://bit .ly/cGHDGH) .
 5 . http://www .mathworks .com/help/techdoc/matlab_external/brd4at8 .html (or http://bit .ly/cVQ9s6) .
 6 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/278705 (or http://bit .ly/cEG3JQ) .
 7 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/245298 (or http://bit .ly/aIgwt5);

http://www .mathworks .com/help/techdoc/matlab_external/f135590 .html (or http://bit .ly/ahOnXi) .
 8 . http://sourceforge .net/projects/jacob-project/ (or http://bit .ly/bbzakx) .
 9 . http://sourceforge .net/projects/jcom/ (or http://bit .ly/bR21pq) .
 10 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/171255 (or http://bit .ly/bXcEjv) .

K13163_Book.indb 572 11/8/2011 8:10:29 PM

© 2012 by Taylor & Francis Group, LLC

www.mathworks.com
http://sourceforge.net
http://bit.ly
http://matlabcontrol.googlecode.com
http://code.google.com/
http://bit.ly

573Using MATLAB® from within Java

 11 . an example for a .Net client: http://www .codeproject .com/Kb/dotnet/matlabeng .aspx (or http://bit .ly/
dwgVug) .

 12 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/36079#91688 (or http://bit .ly/g1CzCC) .
 13 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/160196 (or http://bit .ly/9irShd) .
 14 . http://www .cs .virginia .edu/~whitehouse/matlab/JavaMatlab .html (or http://bit .ly/cscPuE) .
 15 . http://www .cs .utoronto .ca/~bowen/code/code .html#matjav (or http://bit .ly/bjOaXq) .
 16 . http://beryl .cs .cf .ac .uk/Web/Guides/Java%20Control%20of%20Matlab/1 .php (or http://bit .ly/a5cIWI) .
 17 . http://debprakash .blogspot .com/2007/01/java-matlab-connection-11-jan-2007-see .html (or http://bit .ly/

b9Uu1w) .
 18 . http://debprakash .googlepages .com/MatlabInterface .zip (or http://bit .ly/a7EMle) .
 19 . http://citeseerx .ist .psu .edu/viewdoc/download?doi=10 .1 .1 .133 .1715&rep=rep1&type=pdf (or http://bit .

ly/cF7as8) .
 20 . http://institutes .lanl .gov/ei/pdf_files/dallenthesis1 .pdf (or http://bit .ly/asxQlF) .
 21 . http://jamal .sourceforge .net/about .shtml (or http://bit .ly/d2u4zm) .
 22 . http://jmatlink .sourceforge .net/ (or http://bit .ly/bwfllv) .
 23 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/263275#710541 (or http://bit .ly/

dabH4b) .
 24 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/263275#731945 (or http://bit .ly/

b4xk03) .
 25 . http://books .google .com/books?id=l0wG3sV6UGkC&pg=Pa266 (or http://bit .ly/aOHbN4) .
 26 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/260855#693135 (or http://bit .ly/cYjiz1);

also see related http://www .mathworks .com/matlabcentral/newsreader/view_thread/286797#762248 (or
http://bit .ly/ddrCab) .

 27 . http://mathforum .org/kb/message .jspa?messageID=884742 (or http://bit .ly/gGNybn); the source code
location mentioned in this post is now defunct — here is a cached version: http://bit .ly/h3pdsP; the source
code is extensively described by Klimke in the following document: http://preprints .ians .uni-stuttgart .de/
downloads/2003/2003-005 .pdf (or http://bit .ly/9S5kOs) .

 28 . http://doi .ieeecomputersociety .org/10 .1109/IFIta .2009 .494 (or http://bit .ly/aa5vFo) . access to this
paper is restricted by IEEE Xplore membership, or the article can be purchased .

 29 . http://bit .ly/99Ylet . the relevant pages appear to be 91 and 92 .
 30 . http://swig .org
 31 . http://www .mathworks .com/matlabcentral/answers/618-calling-java-methods-using-jni (or http://bit .ly/

gHghfF); http://alumni .media .mit .edu/~sbasu/code/swigmatlabplus/ (or http://bit .ly/fSbsuX); http://lnc .
usc .edu/~holt/matwrap/; http://stackoverflow .com/questions/6983324/calling-java-from-matlab (or http://
bit .ly/qFOD57) .

 32 . an ancient SWIG Matlab example is available here: http://fifi .org/doc/swig-examples/Matlab/ (dated
1997) and referenced here: http://www .mathworks .com/matlabcentral/newsreader/view_thread/8451 (or
http://bit .ly/fY6naj) .

 33 . http://www .swig .org/Doc1 .3/Octave .html (or http://bit .ly/fC2rw7) .
 34 . https://jna .dev .java .net/
 35 . https://jna .dev .java .net/servlets/browselist?list=users&by=thread&from=935824 (or http://bit .ly/9zGSDm);

http://www .mathworks .com/matlabcentral/newsreader/view_thread/154026 (or http://bit .ly/bHFoqD) .
 36 . https://jna .dev .java .net/servlets/ReadMsg?list=users&msgNo=524 (or http://bit .ly/bjlEo5) .
 37 . http://code .google .com/p/array4j/ (or http://bit .ly/djQtG9) .
 38 . http://www .mathworks .com/matlabcentral/fileexchange/24924-jpar-parallelizing-matlab (or http://bit .ly/

cOMVSP); described in this paper: http://www .ia .pw .edu .pl/~karbowsk/jpar/jpar-para08-abstract .pdf (or
http://bit .ly/atiWw7) .

 39 . http://shatterednirvana .wordpress .com/2007/07/12/howto-call-matlab-from-java-kinda/ (or http://bit .
ly/935zSG) .

 40 . http://shatterednirvana .wordpress .com/2007/06/06/calling-matlab-from-java-now-20-less-painful/ (or
http://bit .ly/cZbVl3) .

 41 . http://www .cs .ucsb .edu/projects/jicos/javadoc/edu/ucsb/cs/jicos/services/external/services/matlab/pack-
age-summary .html (or http://bit .ly/agua39) .

 42 . http://www .cs .ucsb .edu/projects/jicos/ (or http://bit .ly/dbxXlk) .
 43 . http://www .jstatcom .com/jmatlab .html (or http://bit .ly/akj80x) .

K13163_Book.indb 573 11/8/2011 8:10:29 PM

© 2012 by Taylor & Francis Group, LLC

www.mathworks.com
http://bit.ly
http://code.google.com/
https://jna.dev.java.net
http://mathforum.org
http://shatterednirvana.wordpress.com
http://www.cs.ucsb.edu
http://www.jstatcom.com/
http://www.swig.org/
http://doi.ieeecomputersociety.org
http://www.cs.ucsb.edu
http://institutes.lanl.gov
http://jamal.sourceforge.net/
http://www.cs.virginia.edu
http://www.cs.utoronto.ca
http://debprakash.blogspot.com
http://citeseerx.ist.psu.edu/
http://debprakash.googlepages.com
http://beryl.cs.cf.ac.uk/
http://www.codeproject.com
http://bit.ly/

Undocumented Secrets of MATLAB®-Java Programming574

 44 . http://www .jstatcom .com/ (or http://bit .ly/9ha7Zs) .
 45 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/250598 (or http://bit .ly/abdNMK) .
 46 . http://j-integra .intrinsyc .com/ (or http://bit .ly/cDtVbt) .
 47 . http://j-integra .intrinsyc .com/support/com/doc/other_examples/Matlab .htm (or http://bit .ly/b7ZbDF);

also read http://www .mathworks .com/matlabcentral/newsreader/view_thread/100497 (or http://bit .
ly/9sbiV2) .

 48 . http://web .archive .org/web/20040318183559/http://www .matlabserveragent .com (or http://bit .ly/92wUpg) .
 49 . http://www .scottgorlin .com/2007/07/matlabdispatch/ (or http://bit .ly/bKwavh); http://git .scottgorlin .

com/?p=MatlabDispatch .git (or http://bit .ly/cZEpI7) .
 50 . http://www .scottgorlin .com/wp-content/uploads/2008/01/day6 .pdf (or http://bit .ly/bE7ctP) .
 51 . http://www .gaborcselle .com/mdct/ (or http://bit .ly/9mRbtS) .
 52 . http://beowulf .csail .mit .edu/18 .337-2003/projects/web .mit .edu/maxg/www/18 .337/ (or http://bit .ly/bNuotr) .
 53 . For example, http://bit .ly/9sW6Rm; also read here: http://bit .ly/dsFyz1 . brad’s DCt was possibly

Matlab’s DCt ancestor .
 54 . Cached version again: http://bit .ly/c8bkw3
 55 . http://www .mathworks .com/products/javabuilder/ (or http://bit .ly/bhZtt2) .
 56 . http://www .mathworks .com/matlabcentral/fileexchange/10759 (or http://bit .ly/cRd7Ca); http://www .

mathworks .com/matlabcentral/newsreader/view_thread/254065 (or http://bit .ly/btlltE) .
 57 . http://www .mathworks .com/matlabcentral/fileexchange/10463 (or http://bit .ly/9xsium) .
 58 . http://sourceforge .net/projects/mathlib/ (or http://bit .ly/aScWPf); http://www .jmathlib .de/ (or http://bit .

ly/dr9Cq6) .
 59 . http://code .google .com/p/array4j/ (or http://bit .ly/djQtG9) .
 60 . http://www .jmatlab .org/
 61 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/163723#415046 (or http://bit .ly/ay0y30) .
 62 . http://UndocumentedMatlab .com/blog/jmi-java-to-matlab-interface/ (or http://bit .ly/dbevUE) .
 63 . http://www .mathforum .com/kb/message .jspa?messageID=851527&tstart=0 (or http://bit .ly/90oFqs) .
 64 . For example, http://www .mathworks .com/matlabcentral/newsreader/view_thread/38383#97557 (or http://

bit .ly/928Sja) .
 65 . http://xtargets .com/snippets/posts/show/32 (currently offline — cached version: http://bit .ly/c8bkw3) .
 66 . http://www .mathworks .com/company/newsletters/news_notes/win02/patterns .html (or http://bit .

ly/9U8bHq) .
 67 . For example, http://bit .ly/d4Ox9w (with images) . another archive contains no images but includes a

discussion in Chinese: http://bit .ly/assmCj (translated: http://bit .ly/atki6G) .
 68 . http://inneoin .org/matlab/6 .5 .0 .180913a/api/ (or http://bit .ly/be7JDz) .
 69 . http://www .mathworks .com/help/techdoc/ref/eval .html (or http://bit .ly/bonUXt) .
 70 . http://www .mathworks .com/help/techdoc/ref/feval .html (or http://bit .ly/9U8bHq) .
 71 . http://UndocumentedMatlab .com/blog/hgfeval/ (or http://bit .ly/aIgaOa) .
 72 . http://code .google .com/p/matlabcontrol/wiki/JMI (or http://bit .ly/ajstla); http://www .mathworks .com/

matlabcentral/newsreader/view_thread/97653#248522 (or http://bit .ly/a3rdYk) .
 73 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/282516 (or http://bit .ly/9N681K) .
 74 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/36994 (or http://bit .ly/abhi0I) .
 75 . http://groovy .codehaus .org/; http://en .wikipedia .org/wiki/Groovy_(programming_language) (or http://

bit .ly/9kbeyP) .
 76 . http://xtargets .com/snippets/posts/show/7 (currently offline — cached version: http://bit .ly/aOb0y1) .
 77 . http://UndocumentedMatlab .com/blog/jmi-wrapper-local-matlabcontrol-part-1/ (or http://bit .ly/aaqOy0) and

http://UndocumentedMatlab .com/blog/jmi-wrapper-local-matlabcontrol-part-2/ (or http://bit .ly/bE5bhP) .
 78 . http://matlabcontrol .googlecode .com/ (or http://bit .ly/d5uggN) .
 79 . http://code .google .com/p/matlabcontrol/wiki/FaQ (or http://bit .ly/chHXDb) .
 80 . http://stackoverflow .com/questions/2047283/change-directory-in-matlab-from-terminal-java (or http://

bit .ly/9NCu2M); note Joshua Kaplan’s answer to the original posted question on that webpage .
 81 . http://code .google .com/p/matlabcontrol/downloads/list (or http://bit .ly/cyk1U6) .
 82 . http://code .google .com/p/matlabcontrol/w/list (or http://bit .ly/csI7zb) .
 83 . http://matlabcontrol .googlecode .com/svn/javadocs/doc/matlabcontrol/localMatlabProxy .html (or http://

bit .ly/9aCFuE) .
 84 . http://www .mathworks .com/help/techdoc/matlab_external/f6425 .html#bq__5xw-1 (or http://bit .ly/cNXrVd) .

K13163_Book.indb 574 11/8/2011 8:10:29 PM

© 2012 by Taylor & Francis Group, LLC

http://www.mathworks.com
http://www.jstatcom.com
http://bit.ly/
http://www.scottgorlin.com
http://www.scottgorlin.com
http://sourceforge.net/
http://www.jmatlab.org/
http://code.google.com
http://www.gaborcselle.com
http://UndocumentedMatlab.com/
http://matlabcontrol.googlecode.com
http://stackoverflow.com/
http://groovy.codehaus.org
http://web.archive.org

575Using MATLAB® from within Java

 85 . http://www .mathworks .com/help/techdoc/matlab_external/f6671 .html#bq__508-1 (or http://bit .ly/cbbYl8) .
 86 . http://code .google .com/p/matlabcontrol/downloads/list (or http://bit .ly/cyk1U6) .
 87 . http://UndocumentedMatlab .com/files/localExample .zip (or http://bit .ly/bWreyv) .
 88 . http://java .sun .com/javase/6/docs/api/java/util/concurrent/Executors .html#newSinglethreadExecutor()

(or http://bit .ly/8XtY0R) .
 89 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/171255 (or http://bit .ly/bXcEjv) .
 90 . http://code .google .com/p/matlabcontrol/downloads/list (or http://bit .ly/cyk1U6) .
 91 . http://UndocumentedMatlab .com/blog/jmi-wrapper-remote-matlabcontrol/ (or http://bit .ly/986irt) .
 92 . http://www .mathworks .com/products/javabuilder/ (or http://bit .ly/bhZtt2) .
 93 . http://UndocumentedMatlab .com/files/RemoteExample .java (or http://bit .ly/bXYcdy) .
 94 . http://UndocumentedMatlab .com/files/RemoteExample .jar (or http://bit .ly/cmHy1E) .
 95 . http://java .sun .com/javase/technologies/core/basic/rmi/index .jsp (or http://bit .ly/cJvo7D); http://java .

sun .com/docs/books/tutorial/rmi/index .html (or http://bit .ly/bD47dg) .
 96 . http://java .sun .com/javase/6/docs/api/java/io/Serializable .html (or http://bit .ly/b7Pc0l) .
 97 . http://java .sun .com/docs/books/jni/
 98 . http://www .mathworks .com/help/techdoc/matlab_external/f38569 .html (or http://bit .ly/bpg7VF) .
 99 . http://www .mathworks .com/help/techdoc/apiref/ (or http://bit .ly/fxqxq4) .
 100 . For example, http://www .mathworks .com/matlabcentral/newsreader/view_thread/298719#804190 (or

http://bit .ly/ebS20D) .
 101 . http://java .sun .com/docs/books/jni/html/start .html#1309 (or http://bit .ly/hokrtY) .
 102 . http://java .sun .com/docs/books/jni/html/start .html#27157 (or http://bit .ly/eYSHUX) .
 103 . http://www .mathworks .com/matlabcentral/answers/618-calling-java-methods-using-jni (or http://bit .ly/

gHghfF); http://stackoverflow .com/questions/1168567/matlab-jni-error (or http://bit .ly/gk7Ra6); http://
bit .ly/g2qmbr; http://www .mathworks .com/matlabcentral/newsreader/view_thread/116639 (or http://bit .
ly/dNbqCV); and many others .

 104 . https://www .kitware .com/InfovisWiki/index .php/Matlab_titan_toolbox#Overcome_Matlab_loadlibrary_
bug (or http://bit .ly/gU7tpc) . Note that the report mentioned above references an official Matlab bug
report that for some unknown reason has since been removed: http://www .mathworks .com/support/solu-
tions/data/1-1a2HO .html?solution=1-1a2HO .

 also see: http://www .mathworks .com/matlabcentral/answers/618-calling-java-methods-using-jni (or http://
bit .ly/gHghfF) .

 105 . http://dependencywalker .com/, http://en .wikipedia .org/wiki/Dependency_Walker (or http://bit .ly/gbD0l0);
MathWorks recommends using this utility: http://www .mathworks .com/support/solutions/en/data/1-
2RQl4l/ (or http://bit .ly/gmb8DU) .

 106 . http://www .netlib .org/blas/, http://en .wikipedia .org/wiki/blaS; blaS has extensive documentation of
its functionality, albeit in a simple textual format .

 107 . http://www .netlib .org/lapack/, http://en .wikipedia .org/wiki/laPaCK; laPaCK has even more extensive
documentation .

 108 . http://preprints .ians .uni-stuttgart .de/downloads/2003/2003-005 .pdf (or http://bit .ly/9S5kOs) .
 109 . http://mathforum .org/kb/message .jspa?messageID=884742 (or http://bit .ly/gGNybn); the source code

location mentioned in this post is now defunct — here is a cached version: http://bit .ly/h3pdsP
 110 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/286771 (or http://bit .ly/he5UUW) .
 111 . http://doi .ieeecomputersociety .org/10 .1109/IFIta .2009 .494 (or http://bit .ly/aa5vFo) . access to this

paper is restricted by IEEE Xplore membership, or the article can be purchased .
 112 . http://bit .ly/99Ylet — the relevant pages appear to be 91 and 92 .
 113 . http://swig .org
 114 . http://www .mathworks .com/matlabcentral/answers/618-calling-java-methods-using-jni (or http://bit .ly/

gHghfF); http://alumni .media .mit .edu/~sbasu/code/swigmatlabplus/ (or http://bit .ly/fSbsuX); http://lnc .
usc .edu/~holt/matwrap/; http://stackoverflow .com/questions/6983324/calling-java-from-matlab (or http://
bit .ly/qFOD57) .

 115 . an ancient SWIG Matlab example is available here: http://fifi .org/doc/swig-examples/Matlab/ (dated
1997) and referenced here: http://www .mathworks .com/matlabcentral/newsreader/view_thread/8451 (or
http://bit .ly/fY6naj) .

 116 . http://www .swig .org/Doc1 .3/Octave .html (or http://bit .ly/fC2rw7) .
 117 . http://jmatlink .sourceforge .net/ (or http://bit .ly/bwfllv) .

K13163_Book.indb 575 11/8/2011 8:10:29 PM

© 2012 by Taylor & Francis Group, LLC

http://UndocumentedMatlab.com/
http://java.sun.com
http://www.mathworks.com
http://code.google.com
http://preprints.ians.uni-stuttgart.de/
http://jmatlink.sourceforge.net
http://swig.org
http://www.netlib.org/
http://en.wikipedia.org

Undocumented Secrets of MATLAB®-Java Programming576

 118 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/263275#710541 (or http://bit .ly/
dabH4b) .

 119 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/263275#731945 (or http://bit .ly/
b4xk03) .

 120 . http://books .google .com/books?id=l0wG3sV6UGkC&pg=Pa266 (or http://bit .ly/aOHbN4) .
 121 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/260855#693135 (or http://bit .ly/cYjiz1);

also see related .http://www .mathworks .com/matlabcentral/newsreader/view_thread/286797#762248 (or http://
bit .ly/ddrCab) .

 122 . http://jna .dev .java .net/; http://en .wikipedia .org/wiki/Java_Native_access (or http://bit .ly/gQ4MzV); http://
www .javaworld .com/javaworld/jw-02-2008/jw-02-opensourcejava-jna .html (or http://bit .ly/dHtcoS) .

 123 . http://markmail .org/message/7b722ablic4j2bdx (or http://bit .ly/hNW67b); http://www .mathworks .com/
matlabcentral/newsreader/view_thread/154026 (or http://bit .ly/bHFoqD) .

 124 . http://jna .dev .java .net/servlets/ReadMsg?list=users&msgNo=524 (or http://bit .ly/bjlEo5) .
 125 . http://code .google .com/p/array4j/ (or http://bit .ly/djQtG9) .
 126 . http://java .net/projects/jna/sources/svn/content/trunk/jnalib/dist/jna .jar?rev=1182 (or http://bit .ly/hz37K2) .
 127 . http://java .net/jira/browse/JNa-49 (or http://bit .ly/gjUEnD); http://markmail .org/message/35ahe33bswag4qzf

(or http://bit .ly/gJap7e); http://markmail .org/message/4uzk5ilwisa6rdvf (or http://bit .ly/h7orfq); http://
markmail .org/message/23j76gf3gnx6sk6a (or http://bit .ly/epGKOQ) .

 128 . http://UndocumentedMatlab .com/files/jna4matlab .jar (or http://bit .ly/g6sviR) .
 129 . http://array4j .googlecode .com/svn/trunk/src/main/java/net/lunglet/matlab/ (or http://bit .ly/eWmMfo) for

the basic Matlab files; http://array4j .googlecode .com/svn/trunk/src/test/java/net/lunglet/matlab/ (or
http://bit .ly/gnnd3j) for the test files .

 130 . http://www .mathworks .com/matlabcentral/fileexchange/10463 (or http://bit .ly/b69tg0) .

K13163_Book.indb 576 11/8/2011 8:10:29 PM

© 2012 by Taylor & Francis Group, LLC

http://www.mathworks.com
http://code.google.com
http://UndocumentedMatlab.com/
http://array4j.googlecode.com
http://bit.ly/
http://jna.dev.java.net
http://markmail.org
http://en.wikipedia.org
http://books.google.com

Putting It all
together

10
Chapter

K13163_Book.indb 577 11/8/2011 8:10:29 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming578

10.1 UISplitPane1

an innovative† example of using many of the features discussed in this book is the UISplitPane
utility,2 which was chosen by the Matlab Central team as “Pick of the Week” on March 27,
2009 .3 Split-pane functionality was always sorely missed in Matlab GUI . Most other stan-
dard GUI controls have a Matlab counterpart, but as of Matlab 7 .13 (R2011b) there is
no split-pane control . the Swing class JSplitPane provides access to split-pane functional-
ity, but JSplitPane cannot be used as is, because Matlab axes and controls cannot be
placed in its two Java subcontainers . Enter UISplitPane:

A horizontal UISplitPane contained within a vertical UISplitPane (See color insert.)

Recently, Malcolm lidierth has posted a set of Java Swing-based utilities to the Matlab
File Exchange (collectively called Project Waterloo) .4 this set includes the GSplitPane and
GSplitPaneDivider classes, that basically do what UISplitPane does . Readers are highly
encouraged to investigate and use Malcolm’s submission, which even includes an interac-
tive demo .

† If I may be allowed a minor indulgence . . . I was quite satisfied with myself after coming up with the basic solution for
uisplitpane, having spent several days investigating other potential routes which proved fruitless . tying all the loose ends
took another few days .

K13163_Book.indb 578 11/8/2011 8:10:30 PM

© 2012 by Taylor & Francis Group, LLC

579Putting It All Together

10.1.1 Technical Description
the technical idea behind uisplitpane is to create an invisible off-screen JSplitPane, extract
only its narrow central divider subcomponent, and then place that divider onscreen using
 javacomponent . Pure-Matlab code then attaches standard Matlab uipanels as subpanes on
either side of the divider, and some smart property linkages (using handle.listener, appendix b)
ensure that whenever the divider is dragged, its two side-panes will be resized accordingly, together
with all their content (axes and controls) .

Since the two split panes are simple uipanels, they can contain not only axes and controls, but
also other uisplitpanes, creating a hierarchy of split panes . For example, the screenshot in the previ-
ous page displays a horizontal (left and right panes) UISplitPane that is contained within a vertical
(up and down panes) UISplitPane .

the basic idea of tying a lean Swing component (in this case, the divider subcomponent) to
standard Matlab panels was taken from Matlab’s implementation of the semi-documented
uitab/uitabgroup functions (Section 4 .3) . In that case, a lean Swing component (the tabs row)
is displayed above several overlapping uipanels, in which only one uipanel is visible at any one
time . Selecting a Java tab fires a Matlab callback that simply switches the current visible
uipanel into view .

Unfortunately, uitabgroup’s solution cannot be applied as-is to the split-pane problem, since
the JSplitPane containers overlap (hide) the axes-containing panes . this required using
only the narrow divider subcomponent, giving an illusion of being connected to the split panes
within a single component — a similar illusion as uitabgroup provides .

In addition to javacomponent, uisplitpane uses several other undocumented Matlab
 features, which are all explained in other sections of this book, as well as on the http://www .
UndocumentedMatlab .com website .5

the Java divider’s reference is converted into a Matlab handle, so that some extra
 properties can be added using schema.prop and will become visible when using regular get.
handle.listener property linkages (appendix b) ensure the above-mentioned linkage between
the divider and its side panes .

Semi-documented internal function hgfeval6 is used in mouse callbacks to chain the original
Windowbutton callback (if available), and setptr is used to set the mouse pointer (cursor) .
UISplitPane behaves nicely in the presence of Mode Managers (zoom, pan, etc .) by using the fig-
ure’s undocumented ModeManager property and setting its buttonDownFilter to bypass mode .

Finally, the figure’s JavaFrame property (Chapter 7) is used to get the figure’s axisCanvas
container (Section 7 .3 .1), which is needed for setting mouse callbacks that behave better than
similar callbacks at the figure level .

the complete listing of UISplitPane can be downloaded from the Matlab File Exchange7
and is also presented here .

Note that the version on the File Exchange might be newer and contain additions or fixes that
are not included in the code below . the objective of including the full listing here is therefore
not for readers to copy the code as-is, but rather to study it in conjunction with the relevant
 sections presented earlier in this book .

K13163_Book.indb 579 11/8/2011 8:10:30 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming580

10.1.2 Source-Code listing
function [h1,h2,hDivider] = uisplitpane(varargin)
% uisplitpane Split a container (figure/frame/uipanel) into two resizable

sub-containers
%
% Syntax:
% [h1,h2,hDivider] = uisplitpane(hParent, 'propName',propVal,...)
%
% Description:
% UISPLITPaNE splits the specified container(s) (figure, panel or frame,
% referenced by handle(s) hParent) into two distinct panes (panels)
% separated by a movable divider. If no hParent container is specified,
% then the current figure (gcf) is assumed. Matlab components may freely
% be added to each of the panes. Pane sizes may be modified by dragging
% or programmatically repositioning the movable divider.
%
% UISPLITPaNE returns the handles to the left/bottom sub-container h1,
% right/top sub-container h2, and the split-pane divider hDivider.
% If a vector of several hParents was specified, then h1, h2 & hDivider
% will be corresponding vectors in the containing hParents. If the
% hParents are found to be non-unique, then the returned handles will
% correspond to the unique sorted vector of hParents, so that no hParent
% will be split more than once.
%
% The UISPLITPaNE divider can be dragged to either side, up to the
% specified DividerMinLocation to DividerMaxLocation property values
% (defaults: 0.1 and 0.9, respectively, meaning between 10–90% of range).
% In Matlab 7+, additional one-click buttons are added to the divider,
% which enable easy flushing of the divider to either side, regardless
% of DividerMinLocation & DividerMaxLocation property values.
%
% Several case-insensitive properties may be specified as P-V pairs:
% 'Orientation': 'horizontal' (default) or 'vertical'
% Note: this specifies sub-pane alignment (R/L or U/D):
% divider direction is always perpendicular
% 'Parent': Handle(s) of containing figure, panel or frame
% 'DividerWidth': Divider width (1-25 [pixels], default=5)
% 'DividerColor': Divider color (default = figure background color)
% Note: accepts both [r,g,b] and 'colorname' formats
% 'DividerLocation': Divider normalized initial location (.001-

.999,default=0.5)
% Note: 0 = far left/bottom, 1 = far right/top
% 'DividerMinLocation': Normalized minimal left/bottom pane size (0–1,

default=0.1)
% 'DividerMaxLocation': Normalized maximal left/bottom pane size (0–1,

default=0.9)
%
% hDivider is a standard Matlab object handle possessing all these additional
% properties. all these properties are gettable/settable via the hDivider
% handle, except for the 'Orientation' & 'Parent' properties which become
% read-only after the UISPLITPaNE is constructed. hDivider also exposes

K13163_Book.indb 580 11/8/2011 8:10:30 PM

© 2012 by Taylor & Francis Group, LLC

581Putting It All Together

% the following read-only properties:
% 'LeftOrBottomPaneHandle': the h1 value returned by this function
% 'RightOrTopPaneHandle': the h2 value returned by this function
% 'DividerHandle': the HG container handle (a numeric value)
% 'JavaComponent': handle to the underlying java divider obj
% 'ContainerParentHandle': handle to hParent container
% Note: this is important in Matlab 6 which does
% ^^^^ not allow hierarchical UI containers
% 'ContainerParentVarName': name of the hParent variable (if available)
%
% Example:
% [hDown,hUp,hDiv1] = uisplitpane(gcf,'Orientation','ver','dividercolor',[0,1,

0]);
% [hLeft,hRight,hDiv2] = uisplitpane(hDown,'dividercolor','r','divid
erwidth',1);

% t=0:.1:10;
% hax1=axes('Parent',hUp); plot(t,sin(t));
% hax2=axes('parent',hLeft); plot(t,cos(t));
% hax3=axes('parent',hRight); plot(t,tan(t));
% hDiv1.DividerLocation = 0.75; % one way to modify divider properties...
% set(hDiv2,'DividerColor','red'); % ...and this is another way...
%
% Bugs and suggestions:
% Please send to Yair altman (altmany at gmail dot com)
%
% Warning:
% This code heavily relies on undocumented and unsupported Matlab
% functionality. It works on Matlab 6+, but use at your own risk!
% a detailed list of undocumented/unsupported functionality can
% be found at:
http://UndocumentedMatlab.com/blog/uisplitpane/
%
% Change log:
% 2009-03-30: Fixed DividerColor parent's color based on Co Melissant's
suggestion; re-fixed JavaFrame warning
% 2009-03-27: Fixed R2008b JavaFrame warning
% 2009-02-23: First version posted on <a href="http://www.mathworks.com/
matlabcentral/fileexchange/authors/27420">MathWorks File Exchange
%
% See also:
% gcf, javax.swing.JSplitPane

% Technical implementation:
% UISPLITPaNE is a Matlab implementation of the Java-Swing
% javax.swing.JSplitPane component. Since Matlab currently prevents
% Matlab objects (axes etc.) to be placed within java containers (such as
% those returned by JSplitPane), a pure-Matlab implementation was needed.
% JSplitPane is actually used (if available) for the user-interface, but
% hidden Matlab containers actually display the pane contents.
%
% The basic idea was to take the platform-dependent divider sub-component
% created by Java's JSplitPane, and place this divider in a stand-alone

K13163_Book.indb 581 11/8/2011 8:10:30 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming582

% Matlab container. Two sub-panes (uipanels or frames) are then placed
% on either side of this divider. Property linking and divider callbacks
% are then set in order to ensure that whenever the divider is dragged or
% programmatically modified, the two sub-panes are updated accordingly.
%
% Matlab 6 needs special treatment because in that version Java UI
% components and uipanels were still unavailable. Therefore, standard
% Matlab uicontrol buttons are used to represent the divider, and frames
% (instead of uipanels) represent the sub-panes. also, hierarchical UI
% controls were not allowed - all controls and axes need to be direct
% children of the containing figure frame, so special handling needs to
% be done to correctly handle hierarchical dividers. additional special
% handling was also done to overcome bugs/limitations with mouse event
% tracking in Matlab 6.

% On a personal note, this has been my most challenging project of all my
% submissions to the File Exchange. Ensuring backward compatibility all the
% way back to Matlab 6 proved extremely difficult.
% Programmed by Yair M. altman: altmany(at)gmail.com

% $Revision: 1.2 $ $Date: 2009/03/30 22:07:23 $

 try
 %dbstop if error
 h1 = []; %#ok
 h2 = []; %#ok
 hDivider = handle([]); %#ok

 % Process input arguments
 paramsStruct = processargs(varargin{:});

 % Capture the parent var name, if supplied
 try
 paramsStruct.parentName = inputname(1);
 catch
 paramsStruct.parentName = '';
 end

 % Split the specified parent container(s)
 [h1, h2, hDivider] = splitPanes(paramsStruct);
 % TODO - setup hContainer return arg

 return; % debug point

 % Error handling
 catch
 v = version;
 if v(1)<='6'
 err.message = lasterr; % no lasterror function...
 else
 err = lasterror;
 end
 try
 err.message = regexprep(err.message,'Error using ==> [^\n]+\n','');
 catch

K13163_Book.indb 582 11/8/2011 8:10:31 PM

© 2012 by Taylor & Francis Group, LLC

583Putting It All Together

 try
 % another approach, used in Matlab 6 (where regexprep is unavailable)
 startIdx = findstr(err.message,'Error using ==> ');
 stopIdx = findstr(err.message,char(10));
 for idx = length(startIdx) : -1 : 1
 idx2 = min(find(stopIdx > startIdx(idx))); %#ok ML6
 err.message(startIdx(idx):stopIdx(idx2)) = [];
 end
 catch
 % never mind...
 end
 end
 if isempty(findstr(mfilename,err.message))
 % Indicate error origin, if not already stated within the error message
 err.message = [mfilename ': ' err.message];
 end
 if v(1)<='6'
 while err.message(end)==char(10)
 err.message(end) = []; % strip excessive Matlab 6 newlines
 end
 error(err.message);
 else
 rethrow(err);
 end
 end

%% Internal error processing
function myError(id,msg)
 v = version;
 if (v(1) >= '7')
 error(id,msg);
 else
 % Old Matlab versions do not have the error(id,msg) syntax...
 error(msg);
 end
%end % myError %#ok for Matlab 6 compatibility

%% Process optional arguments
function paramsStruct = processargs(varargin)
 % Get the properties in either direct or P-V format
 [parent, pvPairs] = parseparams(varargin);

 % Now process the optional P-V params
 try
 % Initialize
 paramName = [];
 paramsStruct = [];
 paramsStruct.dividercolor = '';
 supportedargs = {'orientation','parent','tooltip',...
 'dividerwidth','dividercolor','dividerlocation',...
 'dividerminlocation','dividermaxlocation'};
 while ~isempty(pvPairs)
 % Ensure basic format is valid

K13163_Book.indb 583 11/8/2011 8:10:31 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming584

 paramName = '';
 if ~ischar(pvPairs{1})
 myError('YMa:uisplitpane:invalidProperty','Invalid uisplitpane prop');
 elseif length(pvPairs) == 1
 myError('YMa:uisplitpane:noPropertyValue', ...
 ['No value specified for property ''' pvPairs{1} '''']);
 end

 % Process parameter values
 paramName = pvPairs{1};
 paramValue = pvPairs{2};
 %paramsStruct.(lower(paramName)) = paramValue; % no good on ML6...
 paramsStruct = setfield(paramsStruct, lower(paramName),

paramValue); %#ok
 pvPairs(1:2) = [];
 if ~any(strcmpi(paramName,supportedargs))
 url = ['matlab:help ' mfilename];
 urlStr = getHtmlText(['' strrep(url,'matlab:','')

'']);
 myError('YMa:uisplitpane:invalidProperty',...
 ['Unsupported property - type "' urlStr ...
 '" for a list of supported properties']);
 end
 end % loop pvPairs

 % Process parent container property
 if isfield(paramsStruct,'parent')
 % Parent property supplied as a P-V pair
 if ~all(ishandle(paramsStruct.parent))
 myError('YMa:uisplitpane:invalidProperty', ...
 'Parent must be a handle of a figure, panel or frame');
 end
 elseif ~isempty(parent)
 % Parent container was supplied as a direct (first) parameter
 paramsStruct.parent = parent{1};
 if ~all(ishandle(paramsStruct.parent))
 myError('YMa:uisplitpane:invalidProperty', ...
 'Parent must be a handle of a figure, panel or frame');
 end
 else
 % Default parent container = current figure (gcf)
 paramsStruct.parent = gcf;
 end

 % Ensure we do not split any parent container more than once...
 if length(paramsStruct.parent) > length(unique(paramsStruct.parent))
 % Do not sort hParents (a side-effect of unique() function) unless we must...
 paramsStruct.parent = unique(paramsStruct.parent);
 end

 % Process DividerColor property
 paramsStruct.dividercolor = processColor(paramsStruct.dividercolor, ...
 paramsStruct.parent);

K13163_Book.indb 584 11/8/2011 8:10:31 PM

© 2012 by Taylor & Francis Group, LLC

585Putting It All Together

 % Set default param values
 if ~isfield(paramsStruct,'orientation'), paramsStruct.orientation =

'horizontal'; end
 if ~isfield(paramsStruct,'tooltip'), paramsStruct.tooltip =

''; end
 if ~isfield(paramsStruct,'dividerwidth'), paramsStruct.

dividerwidth=5; end
 if ~isfield(paramsStruct,'dividerlocation'), paramsStruct.

dividerlocation=0.5; end
 if ~isfield(paramsStruct,'dividerminlocation'), paramsStruct.

dividerminlocation=0.1; end
 if ~isfield(paramsStruct,'dividermaxlocation'), paramsStruct.

dividermaxlocation=0.9; end

 % Check min/max data
 checkNumericValue(paramsStruct.dividerminlocation,0,1,'DividerMinLocation');
 checkNumericValue(paramsStruct.dividermaxlocation,0,1,'DividerMaxLocation');
 if paramsStruct.dividermaxlocation <= paramsStruct.dividerminlocation
 myError('YMa:uisplitpane:invalidProperty', ...
 'DividerMaxLocation must be greater than DividerMinLocation');
 end

 % Check other properties
 checkNumericValue(paramsStruct.dividerlocation,0,1,'DividerLocation');
 checkNumericValue(paramsStruct.dividerwidth,1,25,'DividerWidth');
 if isfield(paramsStruct,'tooltip') & ~ischar(paramsStruct.tooltip) %#ok

ML6
 myError('YMa:uisplitpane:invalidProperty','Tooltip must be a string');
 elseif isfield(paramsStruct,'orientation') &
 (~ischar(paramsStruct.orientation) | ...
 (~strncmpi(paramsStruct.orientation, 'horizontal', ...
 length(paramsStruct.orientation)) & ...
 ~strncmpi(paramsStruct.orientation, 'vertical', ...
 length(paramsStruct.orientation)))) %#ok ML6
 myError('YMa:uisplitpane:invalidProperty', ...
 'Orientation must be ''horizontal'' or ''vertical''');
 elseif lower(paramsStruct.orientation(1)) == 'h'
 paramsStruct.orientation = 'horizontal';
 else
 paramsStruct.orientation = 'vertical';
 end
 catch
 if ~isempty(paramName), paramName = [' ''' paramName '''']; end
 myError('YMa:uisplitpane:invalidProperty', ...
 ['Error setting uisplitpane property' paramName ':' char(10)

lasterr]);
 end
%end % processargs %#ok for Matlab 6 compatibility

%% Check a property value for numeric boundaries
function checkNumericValue(value,minVal,maxVal,propName)
 errMsg = sprintf('number between %g - %g', minVal, maxVal);
 if ~isnumeric(value) | isempty(value) %#ok ML6

K13163_Book.indb 585 11/8/2011 8:10:31 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming586

 myError('YMa:uisplitpane:invalidProperty', ...
 sprintf('%s must be a %s',propName,errMsg));
 elseif numel(value) ~= 1
 myError('YMa:uisplitpane:invalidProperty', ...
 sprintf('%s must be a single %s',propName,errMsg));
 elseif value<minVal | value>maxVal %#ok ML6
 myError('YMa:uisplitpane:invalidProperty', ...
 sprintf('%s must be a %s',propName,errMsg));
 end
%end % checkNumericValue %#ok for Matlab 6 compatibility

%% Strip HTML tags for Matlab 6
function txt = getHtmlText(txt)
 v = version;
 if v(1)<='6'
 leftIdx = findstr(txt,'<');
 rightIdx = findstr(txt,'>');
 if length(leftIdx) ~= length(rightIdx)
 newLength = min(length(leftIdx),length(rightIdx));
 leftIdx = leftIdx(1:newLength);
 rightIdx = leftIdx(1:newLength);
 end
 for idx = length(leftIdx) : -1 : 1
 txt(leftIdx(idx) : rightIdx(idx)) = [];
 end
 end
%end % getHtmlText %#ok ML6

%% Process color argument
function color = processColor(color,hParent)
 try
 % Convert color names to RBG triple (0–1) if not already in that format
 if isempty(color)
 % Get the parent's background color
 if isprop(hParent,'Color')
 color = get(hParent,'color');
 elseif isprop(hParent,'BackgroundColor')
 color = get(hParent,'BackgroundColor');
 elseif isprop(hParent,'Background')
 color = get(hParent,'Background');
 else
 color = get(gcf,'color'); % default = figure background color
 end
 end
 if ischar(color)
 switch lower(color)
 case {'y','yellow'}, color = [1,1,0];
 case {'m','magenta'}, color = [1,0,1];
 case {'c','cyan'}, color = [0,1,1];
 case {'r','red'}, color = [1,0,0];
 case {'g','green'}, color = [0,1,0];
 case {'b','blue'}, color = [0,0,1];

K13163_Book.indb 586 11/8/2011 8:10:31 PM

© 2012 by Taylor & Francis Group, LLC

587Putting It All Together

 case {'w','white'}, color = [1,1,1];
 case {'k','black'}, color = [0,0,0];
 otherwise, myError('YMa:uisplitpane:invalidColor', ['''' color '''']);
 end
 elseif ~isnumeric(color) | length(color)~=3 %#ok ML6
 myError('YMa:uisplitpane:invalidColor', color);
 end

 % Convert decimal RGB format (0-255) to fractional format (0-1)
 if max(color) > 1
 color = color / 255;
 end
 catch
 myError('YMa:uisplitpane:invalidColor',['Invalid color specified: '

lasterr]);
 end
%end % processColor %#ok ML6

%% Split the specified parent container(s)
function [h1, h2, hDivider] = splitPanes(paramsStruct)
 % Initialize
 h1 = [];
 h2 = [];
 hDivider = handle([]);

 % Loop over all specified parent containers
 for parentIdx = 1 : length(paramsStruct.parent)
 % add the divider button to the parent container
 % Note: use temp vars a,b,c to bypass []-handle errors
 [a,b,c] = splitPane(paramsStruct.parent(parentIdx), paramsStruct);
 if ~isempty(a), h1(parentIdx) = a; end %#ok grow
 if ~isempty(b), h2(parentIdx) = b; end %#ok grow
 if ~isempty(c), hDivider(parentIdx) = c; end
 end

 % Clear any invalid handles
 if ~isempty(h1), h1(h1==0) = []; end
 if ~isempty(h2), h2(h2==0) = []; end
 if ~isempty(hDivider), hDivider(hDivider==0) = []; end
%end % splitPanes %#ok ML6

%% Split a specific parent container
function [h1, h2, hDivider] = splitPane(hParent, paramsStruct)
 % Initialize
 h1 = []; %#ok in case of premature exit
 h2 = []; %#ok in case of premature exit

 % Matlab 6 has a bug that causes mouse movements to be ignored over Frames
 % The workaround is to leave a very small margin next to the divider
 dvMargin = 0;
 v = version;
 if v(1)<='6'
 dvMargin = 0.005;
 end

K13163_Book.indb 587 11/8/2011 8:10:31 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming588

 % Get the container dimensions
 if strcmpi(paramsStruct.orientation(1),'v')
 % vertical
 dvPos = [0,paramsStruct.dividerlocation,1,paramsStruct.dividerwidth];
 h1Pos = [0,0,1,paramsStruct.dividerlocation-dvMargin];
 else
 % horizontal
 dvPos = [paramsStruct.dividerlocation,0,paramsStruct.dividerwidth,1];
 h1Pos = [0,0,paramsStruct.dividerlocation-dvMargin,1];
 end

 % Prepare the divider
 transformFlag = 0;
 originalParent = hParent;
 try
 hDivider = addDivider(hParent, paramsStruct, dvPos);
 catch
 % Matlab 6 required a uicontrol parent to be a figure, not a frame...
 % get the hParent position in containing figure coordinates
 T = getPos(hParent,'normalized');

 % Hide parent frames so mouse movements around the divider can be found &
fired

 if isa(handle(hParent),'hg.uicontrol')
 set(hParent,'Visible','off');
 % TODO: link originalParent resizing events to this divider (listener?)
 end
 hParent = get(hParent,'parent');
 while ~isempty(hParent) & ishandle(hParent) & hParent~=0 %#ok for Matlab 6
 %if ~isa(handle(hParent),'figure') % this is best but returns 0 in

Matlab6!
 if ~strcmpi(get(hParent,'type'),'figure')
 parentPos = getPos(hParent,'normalized');
 T = transformParentChildCoords(parentPos, T);
 hParent = get(hParent,'parent');
 else
 break;
 end
 end

 % Reconfigure the split-pane positions in normalized figure coords
 dvPos = transformParentChildCoords(T, dvPos);
 h1Pos = transformParentChildCoords(T, h1Pos);
 %h2Pos = transformParentChildCoords(T, h2Pos);
 transformFlag = 1;

 % Now try again...
 hDivider = addDivider(hParent, paramsStruct, dvPos);
 end

 % Recompute the sub-containers dimensions now that the divider is displayed
 dvPos = get(hDivider,'pos');
 if strcmpi(paramsStruct.orientation(1),'v')

K13163_Book.indb 588 11/8/2011 8:10:31 PM

© 2012 by Taylor & Francis Group, LLC

589Putting It All Together

 % vertical
 h2PosStart = paramsStruct.dividerlocation + dvPos(4) + dvMargin;
 h2Pos = [0,h2PosStart,1,1-h2PosStart];
 else
 % horizontal
 h2PosStart = paramsStruct.dividerlocation + dvPos(3) + dvMargin;
 h2Pos = [h2PosStart,0,1-h2PosStart,1];
 end
 if transformFlag
 h2Pos = transformParentChildCoords(T, h2Pos);
 end

 % Setup the mouse-click callback
 mouseDownSetup(hParent);

 % Help messages (right-click context menu)
 %hMenu = uicontextmenu;
 %set(hDivider, 'UIContextMenu',hMenu);
 %uimenu(hMenu,'Label','drag-able divider','Callback',@moveCursor,'UserData',h
Divider);

 % Set the mouse callbacks
 hFig = ancestor(hParent,'figure');
 winFcn = get(hFig,'WindowButtonMotionFcn');
 if ~isempty(winFcn) & ~isequal(winFcn,@mouseMoveCallback) & ...
 (~iscell(winFcn) | ~isequal(winFcn{1},@mouseMoveCallback)) %#ok for

Matlab 6
 setappdata(hFig, 'uisplitpane_oldButtonMotionFcn',winFcn);
 end
 set(hFig,'WindowButtonMotionFcn',@mouseMoveCallback);

 % Prepare the sub-panes
 h1 = addSubPane(hParent,h1Pos);
 h2 = addSubPane(hParent,h2Pos);

 % add extra props to hDivider
 addSpecialProps(hDivider, h1, h2, paramsStruct, originalParent);

 % add listeners to hDivider props
 listenedPropNames = { 'DividerColor', 'DividerWidth', 'DividerLocation', ...
 'DividerMinLocation', 'DividerMaxLocation'};
 listeners = addPropListeners(hFig, hDivider, h1, h2, listenedPropNames);
 setappdata(hDivider, 'uisplitpane_listeners',listeners);
 % These will die with hDivider so no need to un-listen upon hDivider deletion
%end % splitPane6 %#ok ML6

%% add the divider button
function hDivider = addDivider(hParent,paramsStruct,position)
 try
 % Get a handle to a platform-specific Java divider object
 % by creating an invisible temporary javax.swing.JSplitPane container
 if lower(paramsStruct.orientation(1)) == 'h'
 jsp = javax.swing.JSplitPane(javax.swing.JSplitPane.HORIZONTaL_SPLIT);
 else % =vertical
 jsp = javax.swing.JSplitPane(javax.swing.JSplitPane.VERTICaL_SPLIT);

K13163_Book.indb 589 11/8/2011 8:10:31 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming590

 end
 jsp.setOneTouchExpandable(1);
 jdiv = jsp.getComponent(0);
 clear jsp; % release memory
 jpanel = javax.swing.JPanel;
 jpanel.add(jdiv);

 % Place onscreen at the correct position & size (still normalized to
container)

 [jdiv,hDivider] = javacomponent(jdiv, [], hParent); %#ok jdiv is for
debugging

 %[jdiv2,hDivider] = javacomponent(jpanel, [], hParent); %#ok jdiv is for
debug

 jdiv = handle(jdiv,'CallbackProperties');
 jdiv.Visible = 1;
 drawnow;
 %pause(0.03);
 jdiv.setLocation(java.awt.Point(0,0));
 set(hDivider, 'tag','uisplitpane divider', 'units','norm', 'pos',position);
 drawnow;
 dvPosPix = getPixelPos(hDivider);
 if lower(paramsStruct.orientation(1)) == 'h'
 newPixelPos = [dvPosPix(1:2) paramsStruct.dividerwidth dvPosPix(4)];
 else % =vertical
 newPixelPos = [dvPosPix(1:3) paramsStruct.dividerwidth];
 end
 setPixelPos(hDivider,newPixelPos);
 jdiv.setSize(java.awt.Dimension(newPixelPos(3),newPixelPos(4)));
 jdiv.DividerSize = paramsStruct.dividerwidth;

 % Set the divider color
 color = mat2cell(paramsStruct.dividercolor,1,[1,1,1]);
 jdiv.setBackground(java.awt.Color(color{:}));

 % add cross-referencing data
 storeHandles(handle(hDivider),jdiv,hDivider);
 addNewProp(jdiv,'Orientation',paramsStruct.orientation,1);

 % add resizing & drag/click callbacks
 jdiv.ComponentResizedCallback = @dividerResizedCallback;
 jdiv.MouseDraggedCallback = @dividerResizedCallback;
 import java.awt.*
 if paramsStruct.orientation(1)=='h'
 jLeft = jdiv.getComponent(0);
 jRight = jdiv.getComponent(1);
 set(jLeft, 'actionPerformedCallback', {@divideractionCallback,

handle(hDivider), jRight, 'left'}, 'ToolTipText','Click to hide left
sub-pane');

 set(jRight,'actionPerformedCallback', {@divideractionCallback,
handle(hDivider), jLeft, 'right'}, 'ToolTipText','Click to hide right
sub-pane');

K13163_Book.indb 590 11/8/2011 8:10:31 PM

© 2012 by Taylor & Francis Group, LLC

591Putting It All Together

 % should be Cursor.W/E_RESIZE_CURSOR but problematic icon on JRE
1.6=Matlab R2007b+

 jLeft.setCursor(Cursor(Cursor.HaND_CURSOR)); % should be
 Cursor.W_RESIZE_CURSOR
 jRight.setCursor(Cursor(Cursor.HaND_CURSOR)); % should be
 Cursor.E_RESIZE_CURSOR
 else
 jTop = jdiv.getComponent(0);
 jBot = jdiv.getComponent(1);
 set(jTop,'actionPerformedCallback', {@divideractionCallback,

handle(hDivider),jBot,'top'}, 'ToolTipText','Click to hide top sub-
pane');

 set(jBot,'actionPerformedCallback', {@divideractionCallback, handle(hDivid
er),jTop,'bottom'},'ToolTipText','Click to hide bottom sub-pane');
 % should be Cursor.N/S_RESIZE_CURSOR but problematic icon on JRE

1.6=Matlab R2007b+
 jTop.setCursor(Cursor(Cursor.HaND_CURSOR)); % should be
 Cursor.S_RESIZE_CURSOR
 jBot.setCursor(Cursor(Cursor.HaND_CURSOR)); % should be
 Cursor.N_RESIZE_CURSOR
 end

 catch

 % Prepare & display the divider button
 hDivider = uicontrol('parent',hParent, 'style','togglebutton', ...
 'tag','uisplitpane divider', ...
 'background',paramsStruct.dividercolor, ... %TODO
 'tooltip', paramsStruct.tooltip, ...
 'enable', 'inactive', ...
 ... %'callback',@mouseDownCallback, ...
 ... %'ButtonDownFcn',@mouseDownCallback, ...
 'units','norm', 'position',position);
 drawnow;
 dvPosPix = getPixelPos(hDivider);
 if lower(paramsStruct.orientation(1)) == 'h'
 newPixelPos = [dvPosPix(1:2) paramsStruct.dividerwidth dvPosPix(4)];
 else % =vertical
 newPixelPos = [dvPosPix(1:3) paramsStruct.dividerwidth];
 end
 setPixelPos(hDivider,newPixelPos);
 try
 set(hParent,'ResizeFcn',@dividerResizedCallback);
 catch
 % never mind... :-(((
 end
 %jDivider = javax.swing.JButton;
 %set(jDivider,'parent',hParent, 'tag','uisplitpane divider', ...
 % 'background',paramsStruct.dividercolor, ... %TODO
 % 'tooltip', paramsStruct.tooltip, ...
 % 'ButtonDownFcn',@mouseDownCallback);
 end

K13163_Book.indb 591 11/8/2011 8:10:31 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming592

 % Transform HG double to handle obj, so extra props will become visible in
get()
 hDivider = handle(hDivider);
 set(double(hDivider), 'UserData', hDivider);
%end % addDivider %#ok ML6

%% add a sub-pane to a parent container
function h = addSubPane(hParent,hPos)
 try
 % Try a uipanel first...
 h = uipanel('parent',hParent, 'units','norm', 'position',hPos, ...
 'bordertype','none', 'tag','uisplitpane');
 catch
 % Error - probably Matlab 6... - try using a frame instead of a panel
 h = uicontrol('parent',hParent, 'style','frame', 'enable', 'inactive', ...
 'units','norm', 'position',hPos, 'tag','uisplitpane');
 end
%end % addSubPane %#ok ML6

%% Divider one-click callback function
function divideractionCallback(varargin)
 try
 jButton = varargin{2}.getSource;
 hDivider = varargin{3};
 jOther = varargin{4};
 str = varargin{5};
 dvPos = hDivider.DividerLocation;
 if any(strcmp(str,{'right','top'}))
 flag = (dvPos <= hDivider.DividerMinLocation); % flushed left/bottom
 dvFlush = 0.99;
 else % left/bottom
 flag = (dvPos >= hDivider.DividerMaxLocation); % flushed right/top
 dvFlush = 0.001;
 end

 if flag % flushed on the side => move back to center
 hDivider.DividerLocation = 0.5;
 jButton.setToolTipText(['Click to hide ' str ' sub-pane']);
 jOther.setVisible(1);
 else
 hDivider.DividerLocation = dvFlush;
 jOther.setToolTipText(['Click to restore ' str ' sub-pane']);
 jButton.setVisible(0);
 end
 catch
 % never mind...
 disp(lasterr);
 end
%end % divideractionCallback %#ok for Matlab 6 compatibility

%% Divider property pre-change callback
function newValue = dividerPropChangedCallback(varargin)
 [prop,newValue,hFig,hDivider,h1,h2,propName] = deal(varargin{:});

K13163_Book.indb 592 11/8/2011 8:10:31 PM

© 2012 by Taylor & Francis Group, LLC

593Putting It All Together

 try newValue = newValue.NewValue; catch, end %#ok

 % Note: Matlab 6 sends EventData obj, not scalar newValue
 try jDivider = get(hDivider,'JavaComponent'); catch, end %#ok
 switch propName

 case 'DividerLocation'

 checkNumericValue(newValue,.001,.999,'DividerLocation');
 dvPos = get(hDivider,'pos');
 hParent1 = get(hDivider,'Parent');
 hParent2 = get(hDivider,'ContainerParentHandle');
 if ~isequal(hParent1,hParent2)
 % Matlab 6 required a uicontrol parent to be a figure, not

frame...
 % get the hParent position in containing figure coordinates
 T = getPos(hParent2,'normalized');
 %variant of transformParentChildCoords(T, newValue*[1,1,0,0]);
 newVal2 = T(1:2) + T(3:4) .* newValue([1,1]);
 if lower(hDivider.Orientation(1))=='h'
 newValue = newVal2(1);
 else
 newValue = newVal2(2);
 end
 end
 if lower(hDivider.Orientation(1))=='h'
 set(hDivider,'position',[newValue dvPos(2:4)]);
 else
 set(hDivider,'position',[dvPos(1) newValue dvPos(3:4)]);
 end
 h1 = get(hDivider, 'LeftOrBottomPaneHandle');
 h2 = get(hDivider, 'RightOrTopPaneHandle');
 updateSubPaneSizes(h1,h2,hDivider,newValue);

 % Both flush buttons should now become visible,
 % since divider cannot be flushed
 try
 jDivider = get(hDivider,'JavaComponent');
 jDivider.getComponent(0).setVisible(1);
 jDivider.getComponent(1).setVisible(1);
 catch
 % never mind - probably Matlab 6 without jDivider...
 end

 case 'DividerColor'

 newValue = processColor(newValue,get(hDivider,'Parent')); % =>
[R,G,B]

 color = mat2cell(newValue,1,[1,1,1]); % java-readable format
 try
 jDivider.setBackground(java.awt.Color(color{:}));
 catch
 % probably Matlab 6 without jDivider...
 set(hDivider, 'BackgroundColor', newValue);

K13163_Book.indb 593 11/8/2011 8:10:31 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming594

 end
 jDivider.repaint;

 case 'DividerWidth'

 checkNumericValue(newValue,1,25,'DividerWidth');
 dvPos = getPixelPos(hDivider);
 if lower(hDivider.Orientation(1))=='h'
 setPixelPos(hDivider,[dvPos(1:2),newValue,dvPos(4)]);
 else
 setPixelPos(hDivider,[dvPos(1:3),newValue]);
 end
 updateSubPaneSizes(h1,h2,hDivider,hDivider.DividerLocation);
 try
 jDivider.setDividerSize(newValue);
 catch
 % never mind - probably Matlab 6 without jDivider...
 end
 jDivider.repaint;

 case 'DividerMinLocation'

 % nothing to do except check the value and store it for later use
 checkNumericValue(newValue,0,1,propName);
 if newValue >= hDivider.DividerMaxLocation
 myError('YMa:uisplitpane:invalidProperty', ...
 'DividerMaxLocation must be > DividerMinLocation');
 end

 case 'DividerMaxLocation'

 % nothing to do except check the value and store it for later use
 checkNumericValue(newValue,0,1,propName);
 if newValue <= hDivider.DividerMinLocation
 myError('YMa:uisplitpane:invalidProperty', ...
 'DividerMaxLocation must be > DividerMinLocation');
 end

 otherwise

 disp(['Unrecognized property: ' propName ...
 ' (new value: ' num2str(newValue) ')']);
 end
%end % dividerPropChangedCallback %#ok for Matlab 6 compatibility

%% Divider resizing callback function
function outsideLimitsFlag = dividerResizedCallback(varargin)
 try
 outsideLimitsFlag = 0;
 try
 hDivider = varargin{1}.MatlabHGContainer;
 hDivider = get(hDivider, 'UserData');
 catch
 try
 hDivider = varargin{2}.affectedObject;
 catch

K13163_Book.indb 594 11/8/2011 8:10:31 PM

© 2012 by Taylor & Francis Group, LLC

595Putting It All Together

 hDivider = handle(findobj(gcbf,'tag','uisplitpane divider'));
 end
 end

 % exit if invalid handle or already in Callback
 if ~ishandle(hDivider) | ~isempty(getappdata(hDivider(1),'inCallback'))

%#ok ML6
 % | length(dbstack)>1 %exit also if not called from user action
 return;
 end
 setappdata(hDivider(1),'inCallback',1); % used to prevent endless

recursion

 if isempty(varargin{1}) | (~isa(hDivider(1),'hg.uicontrol') & ...
 varargin{2}.getID == java.awt.event.MouseEvent.MOUSE_DRaGGED) %#ok ML6
 pixelPos = getPixelPos(hDivider);
 hParent = get(hDivider,'ContainerParentHandle');
 parentPixelPos = getPixelPos(hParent);
 if isequal(hParent, get(hDivider,'Parent'))
 parentPixelPos(1:2) = 0;
 end
 if hDivider.Orientation(1) == 'h'
 deltaX = varargin{2}.getX;
 newDvPos = (pixelPos(1)+deltaX-parentPixelPos(1)) /

parentPixelPos(3);
 else % vertical
 deltaY = -varargin{2}.getY;
 newDvPos = (pixelPos(2)+deltaY-parentPixelPos(2)) /

parentPixelPos(4);
 end
 outsideLimitsFlag = (newDvPos > hDivider.DividerMaxLocation+.02) | ...
 (newDvPos < hDivider.DividerMinLocation-.02);
 newDvPos = max(hDivider.DividerMinLocation, newDvPos);
 newDvPos = min(hDivider.DividerMaxLocation, newDvPos);
 hDivider.DividerLocation = newDvPos;

 else % uicontrol - probably ML6

 for hIdx = 1 : length(hDivider) % might be several if Frame resized in ML6
 pixelPos = getPixelPos(hDivider(hIdx));
 if lower(hDivider(hIdx).Orientation(1)) == 'h'
 newPixelPos = [pixelPos(1:2) hDivider(hIdx).DividerWidth ...
 pixelPos(4)];
 else % =vertical
 newPixelPos = [pixelPos(1:3) hDivider(hIdx).DividerWidth];
 end
 if ~isequal(pixelPos,newPixelPos)
 setPixelPos(hDivider(hIdx),newPixelPos);
 hLeft = get(hDivider(hIdx),'LeftOrBottomPaneHandle');
 hRight = get(hDivider(hIdx),'RightOrTopPaneHandle');
 updateSubPaneSizes(hLeft, hRight, hDivider(hIdx), ...
 get(hDivider(hIdx),'DividerLocation'));

K13163_Book.indb 595 11/8/2011 8:10:31 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming596

 end
 end
 end
 catch
 % never mind...
 disp(lasterr);
 end
 drawnow;
 pause(0.01);
 setappdata(hDivider(1),'inCallback',[]); % used to prevent endless recursion
%end % dividerResizedCallback %#ok for Matlab 6 compatibility

%% Update sub-pane sizes after the divider has moved
function updateSubPaneSizes(h1,h2,hDivider,dvPos)
 try
 dvPixPos = getPixelPos(hDivider);
 hDivider = handle(hDivider);

 if lower(hDivider.Orientation(1))=='h' % horizontal

 if ~isa(hDivider,'hg.uicontrol') % regular java obj
 % Left sub-pane
 set(h1,'position',[0,0,dvPos,1]);
 h1PixPos = getPixelPos(h1);
 setPixelPos(h1,[0,0,max(1,h1PixPos(3)-1),h1PixPos(4)+1]);
 % Right sub-pane
 set(h2,'position',[dvPos,0,1-dvPos,1]);
 h2PixPos = getPixelPos(h2);
 parentPixPos = getPixelPos(hDivider.Parent);
 h2Width = max(1, parentPixPos(3)-dvPixPos(1)-dvPixPos(3)+2);
 setPixelPos(h2,[dvPixPos(1)+dvPixPos(3)-1,0,h2Width,h2PixPos(4)+1]);
 else % old ML6 uicontrol obj
 % Left sub-pane
 dvPos = hDivider.position;
 hParent = get(hDivider,'ContainerParentHandle');
 if ~isequal(hParent,hDivider.Parent)
 h1Pos = get(hParent,'pos');
 else
 h1Pos = get(h1,'pos');
 end
 newPos = [h1Pos(1), dvPos(2), ...
 max(0.001,dvPos(1)-h1Pos(1)-0.005),dvPos(4)];
 % 0.5% margin due to ML6 frame bug: not firing mouse movement events
 set(h1,'pos',newPos);
 updateLogicalSubPane(h1);
 % Right sub-pane
 if ~isequal(hParent,hDivider.Parent)
 h2Pos = get(hParent,'pos');
 else
 h2Pos = get(h2,'pos');
 end
 newPos = dvPos(1)+dvPos(3)+0.005;
 % 0.5% margin due to ML6 frame bug: not firing mouse movement events

K13163_Book.indb 596 11/8/2011 8:10:31 PM

© 2012 by Taylor & Francis Group, LLC

597Putting It All Together

 newPos = [newPos,dvPos(2),max(0.001,h2Pos(1)+h2Pos(3)-
newPos),dvPos(4)];

 set(h2,'pos',newPos);
 updateLogicalSubPane(h2);
 end

 else % vertical

 if ~isa(hDivider,'hg.uicontrol') % regular java obj
 % Bottom sub-pane
 set(h1,'position',[0,0,1,dvPos]);
 h1PixPos = getPixelPos(h1);
 setPixelPos(h1,[0,0,max(1,h1PixPos(3)),max(1,h1PixPos(4))]);
 % this is theoretically unneeded, used to align with pixel

boundaries
 % Top sub-pane
 set(h2,'position',[0,dvPos,1,1-dvPos]);
 h2PixPos = getPixelPos(h2);
 parentPixPos = getPixelPos(hDivider.Parent);
 h2Height = max(1, parentPixPos(4)-dvPixPos(2)-dvPixPos(4));
 setPixelPos(h2,[0,dvPixPos(2)+dvPixPos(4),h2PixPos(3)+3,h2Height]);
 else % old ML6 uicontrol obj
 % Bottom sub-pane
 dvPos = hDivider.position;
 hParent = get(hDivider,'ContainerParentHandle');
 if ~isequal(hParent,hDivider.Parent)
 h1Pos = get(hParent,'pos');
 else
 h1Pos = get(h1,'pos');
 end
 newPos = [h1Pos(1:2),dvPos(3),max(0.001,dvPos(2)-h1Pos(2)-0.005)];
 % 0.5% margin due to ML6 frame bug: not firing mouse movement events
 set(h1,'pos',newPos);
 updateLogicalSubPane(h1);
 % Top sub-pane
 if ~isequal(hParent,hDivider.Parent)
 h2Pos = get(hParent,'pos');
 else
 h2Pos = get(h2,'pos');
 end
 newPos = dvPos(2)+dvPos(4)+0.005;
 % 0.5% margin due to ML6 frame bug: not firing mouse movement events
 newPos = [h2Pos(1),newPos,dvPos(3),max(0.001,h2Pos(2)+h2Pos(4)-

newPos)];
 set(h2,'pos',newPos);
 updateLogicalSubPane(h2);
 end
 end
 catch
 disp(lasterr); % never mind...
 end
%end % updateSubPaneSizes %#ok for Matlab 6 compatibility

K13163_Book.indb 597 11/8/2011 8:10:31 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming598

%% Update logical child sub-pane size (necessary in ML6 which requires all
%% frames to be children of the figure)
function updateLogicalSubPane(hPane)
 try
 hFig = gcbf;
 if isempty(hFig) %& isa(handle(hPane),'hg.uicontrol')
 hFig = ancestor(hPane,'figure');
 end
 hDivider = handle(findobj(hFig, 'ContainerParentHandle', hPane));
 for hIdx = 1 : length(hDivider)
 hParent = get(hDivider(hIdx),'Parent');
 if ~isequal(hPane,hParent) % ML6
 dvLoc = get(hDivider(hIdx),'DividerLocation');
 pixelPos = getPixelPos(hDivider(hIdx));
 hPanePos = getPixelPos(hPane);
 orientation = get(hDivider(hIdx),'Orientation');
 if lower(orientation(1)) == 'h'
 newDvPos = hPanePos(1) + hPanePos(3)*dvLoc;
 newPixelPos = [newDvPos hPanePos(2) hDivider(hIdx).

DividerWidth ...
 hPanePos(4)];
 else % =vertical
 newDvPos = hPanePos(2) + hPanePos(4)*dvLoc;
 newPixelPos = [hPanePos(1) newDvPos hPanePos(3) ...
 hDivider(hIdx).DividerWidth];
 end
 if ~isequal(pixelPos,newPixelPos)
 setPixelPos(hDivider(hIdx),newPixelPos);
 hLeft = get(hDivider(hIdx),'LeftOrBottomPaneHandle');
 hRight = get(hDivider(hIdx),'RightOrTopPaneHandle');
 updateSubPaneSizes(hLeft, hRight, hDivider(hIdx), dvLoc);
 end
 end
 end
 catch
 disp(lasterr); % never mind...
 end
%end % updateLogicalSubPane %#ok for Matlab 6 compatibility

%% Get ancestor figure - used for old Matlab versions that don't have a built-in
ancestor()
function hObj = ancestor(hObj,type)
 if ~isempty(hObj) & ishandle(hObj) %#ok for Matlab 6 compatibility
 try
 hObj = get(hObj,'ancestor');
 catch
 % never mind...
 end
 try
 %if ~isa(handle(hObj),type) % this is best but always returns 0 in

Matlab6!

K13163_Book.indb 598 11/8/2011 8:10:32 PM

© 2012 by Taylor & Francis Group, LLC

599Putting It All Together

 %if ~isprop(hObj,'type') | ~strcmpi(get(hObj,'type'),type) % ML6 no
isprop()

 objType=''; try objType=get(hObj,'type'); catch, end %#ok
 if ~strcmpi(objType,type)
 try
 parent = get(handle(hObj),'parent');
 catch
 parent = hObj.getParent; % some objs have no prop, just this

method
 end
 if ~isempty(parent) % empty parent means root ancestor, so exit
 hObj = ancestor(parent,type);
 end
 end
 catch
 % never mind...
 end
 end
%end % ancestor %#ok for Matlab 6 compatibility

%% Get position of an HG object in specified units
function pos = getPos(hObj,units)
 % Matlab 6 did not have hgconvertunits so use the old way...
 oldUnits = get(hObj,'units');
 if strcmpi(oldUnits,units) % do not modify units unless we must!
 pos = get(hObj,'pos');
 else
 set(hObj,'units',units);
 pos = get(hObj,'pos');
 set(hObj,'units',oldUnits);
 end
%end % getPos %#ok for Matlab 6 compatibility

%% Get pixel position of an HG object - for Matlab 6 compatibility
function pos = getPixelPos(hObj)
 try
 % getpixelposition is unvectorized unfortunately!
 pos = getpixelposition(hObj);
 catch
 % Matlab6 did not have getpixelposition nor hgconvertunits so use the old
way...
 pos = getPos(hObj,'pixels');
 end
%end % getPixelPos %#ok for Matlab 6 compatibility

%% Set pixel position of an HG object - for Matlab 6 compatibility
function setPixelPos(hObj,pos)
 try
 % getpixelposition is unvectorized unfortunately!
 setpixelposition(hObj,pos);
 catch

K13163_Book.indb 599 11/8/2011 8:10:32 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming600

 % Matlab6 did not have setpixelposition nor hgconvertunits so use the old
way...

 old_u = get(hObj,'Units');
 set(hObj,'Units','pixels');
 set(hObj,'Position',pos);
 set(hObj,'Units',old_u);
 end
%end % setPixelPos %#ok for Matlab 6 compatibility

%% Transform parent=>child normalized coordinates
function normalizedChildCoords =
 transformParentChildCoords(normalizedParentCoords,
 normalizedChildCoords)
 normalizedChildCoords(1:2) =normalizedParentCoords(1:2) + ...
 normalizedParentCoords(3:4).*normalizedChildCoords(1:2);
 normalizedChildCoords(3:4) =normalizedParentCoords(3:4) .* ...
 normalizedChildCoords(3:4);
%end % transformParentChildCoords %#ok for Matlab 6 compatibility

%% Store the container & component's handles in the component
function storeHandles(hcomp,jcomp,hcontainer)
 try
 % Matlab HG container handle
 sp(1) = schema.prop(jcomp,'MatlabHGContainer','mxarray');
 %sp(2) = schema.prop(hcomp,'MatlabHGContainer','mxarray');
 %set([hcomp,jcomp],'MatlabHGContainer',hcontainer);
 set(jcomp,'MatlabHGContainer',hcontainer);
 linkprops([hcomp,jcomp],'DividerHandle','MatlabHGContainer');

 % Java component handle (no need to store within jcomp - only in hcomp...)
 sp(end+1) = schema.prop(hcomp,'JavaComponent','mxarray');
 set(hcomp,'JavaComponent',jcomp);

 % Store the handle in the container's UserData
 % Note: javacomponent placed the jcomp classname in here, but the correct

place
 % ^^^^ is really in the Tag property, and use UserData to store the

handle ref
 set(hcontainer,'UserData',hcomp);

 % Disable public set of these handles - read only
 set(sp,'accessFlags.PublicSet','off');
 catch
 disp(lasterr); % never mind...
 end
%end % storeHandles %#ok for Matlab 6 compatibility

%% add special properties to the hDivider handle
function addSpecialProps(hDivider, h1, h2, paramsStruct, hParent)
 try
 hhDivider = handle(hDivider);

 % Read-only props: handles & Orientation
 addNewProp(hhDivider,'Orientation', paramsStruct.orientation,1);
 addNewProp(hhDivider,'LeftOrBottomPaneHandle', h1,1);

K13163_Book.indb 600 11/8/2011 8:10:32 PM

© 2012 by Taylor & Francis Group, LLC

601Putting It All Together

 addNewProp(hhDivider,'RightOrTopPaneHandle', h2, 1);
 addNewProp(hhDivider,'DividerHandle', double(hDivider),1);
 addNewProp(hhDivider,'ContainerParentHandle', hParent,1); % necesary for

ML6
 % Note: ML6 requires uicontrols to have a figure parent (not uipanel)
 addNewProp(hhDivider,'ContainerParentVarName', paramsStruct.parentName,1);

 % Read/write divider props:
 addNewProp(hhDivider,'DividerColor', paramsStruct.dividercolor);
 addNewProp(hhDivider,'DividerWidth', paramsStruct.dividerwidth);
 addNewProp(hhDivider,'DividerLocation', paramsStruct.

dividerlocation);
 addNewProp(hhDivider,'DividerMinLocation', paramsStruct.

dividerminlocation);
 addNewProp(hhDivider,'DividerMaxLocation', paramsStruct.

dividermaxlocation);

 % Note: setting the property's GetFunction is cleaner but doesn't work in
ML6

 catch
 % Never mind...
 end
%end % addSpecialProps %#ok for Matlab 6 compatibility

%% add new property to supplied handle
function addNewProp(hndl,propName,initialValue,readOnlyFlag,getFunc,setFunc)
 sp = schema.prop(hndl,propName,'mxarray');
 set(hndl,propName,initialValue);
 if nargin>3 & ~isempty(readOnlyFlag) & readOnlyFlag %#ok for Matlab 6
compatibility
 set(sp,'accessFlags.PublicSet','off'); % default='on'
 end
 if nargin>4 & ~isempty(getFunc) %#ok for Matlab 6 compatibility
 set(sp,'GetFunction',getFunc); % unsupported in Matlab 6
 end
 if nargin>5 & ~isempty(setFunc) %#ok for Matlab 6 compatibility
 set(sp,'SetFunction',setFunc); % unsupported in Matlab 6
 end
%end % addNewProp %#ok for Matlab 6 compatibility

%% add divider property listeners
function listeners = addPropListeners(hFig, hDivider, h1, h2, propNames)
 hhDivider = handle(hDivider); % ensure a handle obj
 listeners = handle([]);
 for propIdx = 1 : length(propNames)
 callback = {@dividerPropChangedCallback, hFig, hDivider, h1, h2, ...
 propNames{propIdx}}; %TODO
 prop = findprop(hhDivider, propNames{propIdx});
 try
 set(prop, 'SetFunction', callback);
 % Note: this fails in Matlab 6 so we do not have sanity checks revert in

ML6
 catch

K13163_Book.indb 601 11/8/2011 8:10:33 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming602

 listeners(propIdx) = handle.listener(hhDivider, prop, 'PropertyPreSet', ...
 callback); %#ok mlint - preallocate
 end
 end
 listeners(end+1) = handle.listener(hhDivider, findprop(hhDivider,'Extent'), ...
 'PropertyPostSet', @dividerResizedCallback);
%end % addPropListeners %#ok for Matlab 6 compatibility

%% Link property fields
function linkprops(handles,propName,h2PropName)
 if nargin < 3, h2PropName = propName; end
 msp = findprop(handles(1),propName);
 msp.GetFunction = {@localGetData,handles(2),h2PropName};
 msp.SetFunction = {@localSetData,handles(2),h2PropName};
%end % linkprop %#ok for Matlab 6 compatibility

%% Get the relevant property value from jcomp
function propValue = localGetData(object,propValue,jcomp,propName) %#ok
 propValue = get(jcomp,propName);
%end % localGetData %#ok for Matlab 6 compatibility

%% Set the relevant property value in jcomp
function propValue = localSetData(object,propValue,jcomp,propName) %#ok
 set(jcomp,propName,propValue);
%end % localSetData %#ok for Matlab 6 compatibility

%% Setup the mouse-click callback
function mouseDownSetup(hParent)
 % Matlab 6 has several bugs/problems/limitations with buttonDownFcn, so use
figure callback
 try
 v = version;
 if v(1)<='6'
 axisComponent = getaxisComponent(hParent);
 if ~isempty(axisComponent)
 winDownFcn = get(axisComponent,'MouseClickedCallback');
 else
 winDownFcn = get(hParent,'WindowButtonDownFcn');
 end
 if isempty(winDownFcn) | (~isequal(winDownFcn,@mouseDownCallback) & ...
 (~iscell(winDownFcn) | ~isequal(winDownFcn{1},@

mouseDownCallback))) %#ok

 % Set the ButtonDownFcn callbacks
 if ~isempty(winDownFcn)
 setappdata(hParent, 'uisplitpane_oldButtonUpFcn',winDownFcn);
 setappdata(hParent, 'uisplitpane_oldButtonUpObj',axisComponent);
 end
 if ~isempty(axisComponent)
 set(axisComponent, 'MouseClickedCallback', {@

mouseDownCallback,hParent});

K13163_Book.indb 602 11/8/2011 8:10:33 PM

© 2012 by Taylor & Francis Group, LLC

603Putting It All Together

 % remember ancestor HG handle...
 addNewProp(axisComponent,'ancestor',hParent,1);
 else
 set(hParent, 'WindowButtonDownFcn',@mouseDownCallback);
 end
 end
 % TODO: chain winDownFcn
 end
 catch
 disp(lasterr);
 end
%end % mouseDownSetup %#ok ML6

%% Mouse click down callback function
function mouseDownCallback(varargin)
 try
 % Modify the cursor shape (close hand)
 hFig = gcbf; %varargin{3};
 if isempty(hFig) & ~isempty(varargin) %#ok for Matlab 6 compatibility
 hFig = ancestor(varargin{1},'figure');
 end
 if isempty(hFig) | ~ishandle(hFig), return; end %#ok just in case..
 setappdata(hFig, 'uisplitpane_mouseUpPointer',getptr(hFig));
 newPtr = getappdata(hFig, 'uisplitpane_mouseDownPointer');
 if ~isempty(newPtr)
 setptr(hFig, newPtr);
 end

 % Determine the clicked divider
 hDivider = getCurrentDivider(hFig);
 if isempty(hDivider), return; end

 % Store divider handle for later use (mouse move/up)
 setappdata(hFig, 'uisplitpane_clickedDivider', hDivider);
 catch
 disp(lasterr); % Never mind...
 end
%end % mouseDownCallback %#ok for Matlab 6 compatibility

%% Mouse movement callback function
function mouseMoveCallback(varargin) %#ok varargin used for debug only
 try
 % Get the figure's current cursor location & check if it is over any
divider
 hFig = gcbf;
 if isempty(hFig) | ~ishandle(hFig), return; end %#ok just in case..
 inDragMode = isappdata(hFig, 'uisplitpane_clickedDivider');
 % Exit if already in progress - do not want to mess everything...
 if isappdata(hFig,'uisplitpane_inProgress'), return; end

 % Fix case of Mode Managers (pan, zoom, ...)
 try
 modeMgr = get(hFig,'ModeManager');
 hMode = modeMgr.CurrentMode;

K13163_Book.indb 603 11/8/2011 8:10:33 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming604

 set(hMode,'ButtonDownFilter',@shouldModeBeInactiveFcn);
 catch
 % Never mind - either an old Matlab (no mode managers) or no active mode
 end

 % If in drag mode, mode the divider to the new cursor's position
 if inDragMode
 hDivider = getappdata(hFig, 'uisplitpane_clickedDivider');
 event.affectedObject = hDivider;
 event.getID = java.awt.event.MouseEvent.MOUSE_DRaGGED;
 cp = get(hFig,'CurrentPoint'); % TODO: convert from pixels => norm
 orientation = get(hDivider, 'orientation');
 pixelPos = getPixelPos(hDivider);
 if lower(orientation(1))=='h' % horizontal
 event.getX = cp(1,1) - pixelPos(1); % x location
 event.getY = 0;
 else % vertical
 event.getX = 0;
 event.getY = pixelPos(2) - cp(1,2); % y location
 % Note: Y has a negative value to simulate Java behavior
 end
 if (event.getX == 0) & (event.getY == 0) %#ok ML6
 return;
 elseif dividerResizedCallback([],event)
 mouseUpCallback([],[],hFig);
 end
 else % regular (non-drag) mouse movement
 % If mouse pointer is not currently over any divider
 hDivider = getCurrentDivider(hFig);
 if isempty(hDivider) %& ~inDragMode %#ok for Matlab 6 compatibility
 % Perform cleanup
 mouseOutsideDivider(hFig,inDragMode,hDivider);
 else
 % From this moment on, do not allow any interruptions
 setappdata(hFig,'uisplitpane_inProgress',1);
 mouseOverDivider(hFig,inDragMode,hDivider);
 end
 end

 % Try to chain the original WindowButtonMotionFcn (if available)
 try
 hgfeval(getappdata(hFig, 'uisplitpane_oldButtonMotionFcn'));
 catch
 % Never mind...
 end
 catch
 disp(lasterr); % Never mind...
 end
 rmappdataIfExists(hFig,'uisplitpane_inProgress');
%end % mouseMoveCallback %#ok for Matlab 6 compatibility

%% Mouse click up callback function
function mouseUpCallback(varargin)

K13163_Book.indb 604 11/8/2011 8:10:33 PM

© 2012 by Taylor & Francis Group, LLC

605Putting It All Together

 try
 % Restore the previous (pre-click) cursor shape
 hFig = gcbf; %varargin{3};
 if isempty(hFig) & ~isempty(varargin) %#ok for Matlab 6 compatibility
 hFig = varargin{3};
 if isempty(hFig)
 hFig = ancestor(varargin{1},'figure');
 end
 end
 if isempty(hFig) | ~ishandle(hFig), return; end %#ok just in case..
 if isappdata(hFig, 'uisplitpane_mouseUpPointer')
 mouseUpPointer = getappdata(hFig, 'uisplitpane_mouseUpPointer');
 set(hFig,mouseUpPointer{:});
 rmappdata(hFig, 'uisplitpane_mouseUpPointer');
 end

 % Cleanup data no longer needed
 rmappdataIfExists(hFig, 'uisplitpane_clickedDivider');

 % Try to chain the original WindowButtonUpFcn (if available)
 oldFcn = getappdata(hFig, 'uisplitpane_oldButtonUpFcn');
 if ~isempty(oldFcn) & ~isequal(oldFcn,@mouseUpCallback) & (~iscell(oldFcn)

| ...
 ~isequal(oldFcn{1},@mouseUpCallback)) %#ok for Matlab 6 compatibility
 hgfeval(oldFcn);
 end
 catch
 disp(lasterr); % Never mind...
 end
%end % mouseUpCallback %#ok for Matlab 6 compatibility

%% Mouse movement outside the divider area
function mouseOutsideDivider(hFig,inDragMode,hDivider) %#ok hDivider is unused
 try
 % Restore the original figure pointer (probably 'arrow', but not

necessarily)
 % On second thought, it should always be 'arrow' since zoom/pan etc. are
 % disabled within hDivider
 %if ~isempty(hDivider)
 % Note: Only modify this within hDivider (outside the patch area)
 % - not in other axes - TODO!!!
 set(hFig, 'Pointer','arrow');
 %end
 oldPointer = getappdata(hFig, 'uisplitpane_oldPointer');
 if ~isempty(oldPointer)
 %set(hFig, oldPointer{:}); % see comment above
 drawnow;
 rmappdataIfExists(hFig, 'uisplitpane_oldPointer');
 if isappdata(hFig, 'uisplitpane_mouseUpPointer')
 setappdata(hFig, 'uisplitpane_mouseUpPointer',oldPointer);
 end
 end

K13163_Book.indb 605 11/8/2011 8:10:33 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming606

 % Restore the original ButtonUpFcn callback
 if isappdata(hFig, 'uisplitpane_oldButtonUpFcn')
 oldButtonUpFcn = getappdata(hFig, 'uisplitpane_oldButtonUpFcn');
 axisComponent = getappdata(hFig, 'uisplitpane_oldButtonUpObj');
 if ~isempty(axisComponent)
 set(axisComponent, 'MouseReleasedCallback',oldButtonUpFcn);
 else
 set(hFig, 'WindowButtonUpFcn',oldButtonUpFcn);
 end
 rmappdataIfExists(hFig, 'uisplitpane_oldButtonUpFcn');
 end

 % additional cleanup
 rmappdataIfExists(hFig, 'uisplitpane_mouseDownPointer');
 drawnow;
 catch
 disp(lasterr); % never mind...
 end
%end % mouseOutsideDivider %#ok for Matlab 6 compatibility

%% Mouse movement within the divider area
function mouseOverDivider(hFig,inDragMode,hDivider)
 try
 % Separate actions for H/V
 orientation = get(hDivider, 'orientation');
 if lower(orientation(1))=='h' % horizontal
 shapeStr = 'lrdrag';
 else % vertical
 shapeStr = 'uddrag';
 end

 % If we have entered the divider area for the first time
 axisComponent = getaxisComponent(hFig);
 if ~isempty(axisComponent)
 winUpFcn = get(axisComponent,'MouseReleasedCallback');
 else
 winUpFcn = get(hFig,'WindowButtonUpFcn');
 end
 if isempty(winUpFcn) | (~isequal(winUpFcn,@mouseUpCallback) & ...
 (~iscell(winUpFcn) | ~isequal(winUpFcn{1},@mouseUpCallback))) %#ok ML6
 % Set the ButtonUpFcn callbacks
 if ~isempty(winUpFcn)
 setappdata(hFig, 'uisplitpane_oldButtonUpFcn',winUpFcn);
 setappdata(hFig, 'uisplitpane_oldButtonUpObj',axisComponent);
 end
 if ~isempty(axisComponent)
 set(axisComponent, 'MouseReleasedCallback',{@mouseUpCallback,hFig});
 else
 set(hFig, 'WindowButtonUpFcn',@mouseUpCallback);
 end
 % Clear up potential junk that might confuse us later
 rmappdataIfExists(hFig, 'uisplitpane_clickedBarIdx');
 end

K13163_Book.indb 606 11/8/2011 8:10:33 PM

© 2012 by Taylor & Francis Group, LLC

607Putting It All Together

 % If this is a drag movement (i.e., mouse button is clicked)
 if inDragMode
 % act according to the dragged object
 dvLimits = get(hDivider, {'dividerMinLocation','dividerMinLocation'});
 cp = get(hFig,'CurrentPoint'); % TODO: convert from pixels => norm
 if strcmpi(orientation,'horizontal')
 dvLocation = cp(1,1); % x location
 else % vertical
 dvLocation = cp(1,2); % y location
 end
 dvLocation = min(max(dvLocation,dvLimits{1}),dvLimits{2});
 set(hDivider,'DividerLocation',dvLocation);
 % Mode managers (zoom/pan etc.) modify cursor shape so we need
 to force ours
 newPtr = getappdata(hFig, 'uisplitpane_mouseDownPointer');
 if ~isempty(newPtr)
 setptr(hFig, newPtr);
 end
 else % Normal mouse movement (no drag)
 % Modify the cursor shape
 oldPointer = getappdata(hFig, 'uisplitpane_oldPointer');
 if isempty(oldPointer)
 % Preserve original pointer shape for future use
 setappdata(hFig, 'uisplitpane_oldPointer',getptr(hFig));
 end
 setptr(hFig, shapeStr);
 setappdata(hFig, 'uisplitpane_mouseDownPointer',shapeStr);
 end
 drawnow;
 catch
 disp(lasterr); % never mind...
 end
%end % mouseOverDivider %#ok for Matlab 6 compatibility

%% Remove appdata if available
function rmappdataIfExists(handle, name)
 if isappdata(handle, name)
 rmappdata(handle, name)
 end
%end % rmappdataIfExists %#ok for Matlab 6 compatibility

%% Get the figure's java axis component
function axisComponent = getaxisComponent(hFig)
 try
 if isappdata(hFig, 'uisplitpane_axisComponent')
 axisComponent = getappdata(hFig, 'uisplitpane_axisComponent');
 else
 axisComponent = [];
 oldJFWarning=warning('off','MaTLaB:HandleGraphics:ObsoletedProperty:Jav

aFrame');
 javaFrame = get(hFig,'JavaFrame');
 warning(oldJFWarning.state,'MaTLaB:HandleGraphics:ObsoletedProperty:Jav

aFrame');

K13163_Book.indb 607 11/8/2011 8:10:33 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming608

 axisComponent = get(javaFrame,'axisComponent');
 axisComponent = handle(axisComponent, 'CallbackProperties');
 if ~isprop(axisComponent,'MouseReleasedCallback')
 axisComponent = []; % wrong axisComponent...
 else
 setappdata(hFig, 'uisplitpane_axisComponent',axisComponent);
 end
 end
 catch
 % never mind...
 end
%end % getaxisComponent %#ok for Matlab 6 compatibility

%% Get the divider (if any) that the mouse is currently over
function hDivider = getCurrentDivider(hFig)
 try
 hDivider = handle([]);
 hDividers = findall(hFig, 'tag','uisplitpane divider');
 if isempty(hDividers), return; end % should never happen...
 for dvIdx = 1 : length(hDividers)
 dvPos(dvIdx,:) = getPixelPos(hDividers(dvIdx)); %#ok mlint -

preallocate
 end
 cp = get(hFig, 'CurrentPoint'); % in Matlab pixels
 inXTest = (dvPos(:,1) <= cp(1)) & (cp(1) <= dvPos(:,1)+dvPos(:,3));
 inYTest = (dvPos(:,2) <= cp(2)) & (cp(2) <= dvPos(:,2)+dvPos(:,4));
 hDivider = hDividers(inXTest & inYTest);
 hDivider = hDivider(min(1:end)); % return no more than a single hDivider!
 hDivider = handle(hDivider); % transform into a handle object
 catch
 disp(lasterr); % never mind...
 end
%end % getCurrentDivider %#ok for Matlab 6 compatibility

%% Determine whether a current mode manager should be active or not (filtered)
function shouldModeBeInactive = shouldModeBeInactiveFcn(hObj, eventData) %#ok
- eventData
 try
 shouldModeBeInactive = 0;
 hFig = ancestor(hObj,'figure');
 hDivider = getCurrentDivider(hFig);
 shouldModeBeInactive = ~isempty(hDivider);
 catch
 disp(lasterr); % never mind...
 end
%end % shouldModeBeactiveFcn %#ok for Matlab 6 compatibility

%% hgfeval replacement for Matlab 6 compatibility
function hgfeval(fcn,varargin)
 if isempty(fcn), return; end
 if iscell(fcn)
 feval(fcn{1},varargin{:},fcn{2:end});
 elseif ischar(fcn)

K13163_Book.indb 608 11/8/2011 8:10:33 PM

© 2012 by Taylor & Francis Group, LLC

609Putting It All Together

 evalin('base', fcn);
 else
 feval(fcn,varargin{:});
 end
%end % hgfeval %#ok for Matlab 6 compatibility

10.2 Integration Debriefing System

as another example that illustrates the use of some of the features presented in this book,
I would like to present the IDS (Integration Debriefing System) application, which I developed
for a large industrial client .

Integration engineers are often at the bottom of the “food chain” when it comes to develop-
ment resource allocation . they often need to rely on simple tools such as Excel . In cases of
large data sets, numerous input files, and multiple data formats, using Excel becomes a very
painful experience . Work efficiency and productivity suffer greatly, and integration work often
needs to wait for support from external programmers (e .g ., modifying Vb code or plugins) .

IDS was designed to solve this problem, enabling integration engineers to easily load and
analyze large amounts of data, originating from multiple systems, using different storage for-
mats . Moreover, it enables engineers who do not necessarily have any programming experience
to utilize the full set of mathematical, statistical, and other engineering functions available in
Matlab, writing analysis functions using a GUI .

In practice, IDS achieved a 10-fold improvement in processed data size, 80-fold improve-
ment in analysis time, and a 5-fold improvement in overall integration productivity, compared
with the old Excel-based system . because of IDS’s focus on analysis result anomalies, some of
the issues discovered using IDS would never have been detected in the older system . altogether,
IDS was a major success for the client . I will be happy to provide additional details to readers
who may be interested in a similar application for their own needs .

For such a generic large-scale application, Matlab may seem to be an odd choice . However,
Matlab’s powerful analysis and graphing functionality, coupled with the power of Java GUI,
resulted in a very usable application . Here are some of the features that made this possible:

10.2.1 Data Setup
In the main application window, summary information is displayed in Java tables that are con-
tained within Java tabbed panes (refer to Sections 4 .1 and 4 .3):

Java tables contained within a JtabbedPane

K13163_Book.indb 609 11/8/2011 8:10:35 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming610

the panel-level checkbox that appears next to the “Objects” label uses a nice trick: It relies
on the undocumented fact that the panel’s title label is a simple hidden uicontrol child of the
Matlab panel handle (see Section 6 .11) . this uicontrol handle can be found and simply
transformed from a ‘style’ = ‘text’ control into a ‘style’ = ‘checkbox’ control, as follows:8

hPanel = uipanel('position',[0.2,0.2,0.4,0.4], 'title','Objects');
hTitle = setdiff(findall(hPanel),hPanel); % retrieve title handle
hTitle = get(hPanel,'TitleHandle'); % alternative, uses hidden prop

% Modify the uicontrol style; add 20 pixel space for the checkbox
newPos = get(hTitle,'position') + [0,0,20,0]; % in pixels
set(hTitle, 'style','checkbox', 'value',1, 'pos',newPos);

MAtlAb uipanel with a checkbox title

Within the tables, I have used a custom CellRenderer (see Section 4 .1 .1) in order to automati-
cally align the data based on its type (strings are left-aligned and numbers are right-aligned),
display cell-specific tooltips (that provide cell-specific information that cannot be displayed due
to space and usability considerations), and set cell-specific foreground and background colors
(to highlight modified cells) .

Data table with a non-standard cell-renderer

the table headers enable sorting by attaching a TableSorter class, as explained in Section
4 .1 .4 . the headers tooltip implement multi-line HtMl formatting (as explained in Section 3 .3 .3
and shown in Section 4 .1 .7) to explain the sorting functionality:

Data table with sortable columns

K13163_Book.indb 610 11/8/2011 8:10:35 PM

© 2012 by Taylor & Francis Group, LLC

611Putting It All Together

10.2.2 Defining Data Items and Events
In the application’s data definition screen, I use a uitree (Section 4 .2) to display the defined data
items . In the events definition screen, I use a Java table with dynamic cell drop-down selection
values, based on each event’s context .

Here is how it works: Events are defined as some condition that occurs in some data file . For
example, a value of “2” that occurs for the first time in data field System_Status of data file
System_Operability_Status.dat indicates some sort of failure event . the System_Status data
field only occurs in the System_Operability_Status.dat data file, and so the field-selection drop-
down should only present the fields that are relevant for the selected data file (Section 4 .1 .1):

uitable with a non-standard column cell editor that supports dynamic data values

Since the event we have just defined is a failure event, we need to give it a prominent marker . let
us choose a red * marker, using the cell-attached color drop-down control (Section 4 .1 .1 again):

uitable with custom CellRenderer and CellEditor

K13163_Book.indb 611 11/8/2011 8:10:36 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming612

New events are added to the events table with empty (undefined) data, prominently marked
with a red background, until being populated . the non-mandatory fields are similarly marked
with a gray background and editing-disabled (Section 4 .1 .1) . both these features are done using
a custom CellRenderer for the relevant columns (mandatory and non-mandatory data columns
have slightly different variants) .

these CellRenderers are also used in other definition tables (Inputs, axes, analyses) . For
example, the axes definition table contains some calculated data fields — these are presented
as read-only disabled fields, with a gray background color .

10.2.3 Defining Analyses
the analyses definition GUI window is really where the engineering know-how is entered by
the user . Each defined analysis can be edited in a table and saved separately . analyses can use
each other as building blocks, as well as use any available built-in or user-defined Matlab
function that is available on the Matlab path .

When selecting from the list of available analyses building blocks, the listbox implements a
dynamic tooltip, such that moving the mouse pointer over any list item presents relevant format-
ted (color/font-styled) information in a tooltip (Section 6 .6 .3):

Dynamic tooltips in the analyses selection listbox

K13163_Book.indb 612 11/8/2011 8:10:37 PM

© 2012 by Taylor & Francis Group, LLC

613Putting It All Together

In order to assist integration engineers, who may have little programming experience, often-
used functions are grouped in categories, so that novice users can simply select the category and
then the required function from the drop-down list . this uses the same dynamic-data drop-downs
described above for the Events table:

Analyses definition table

Note in the screenshot above how the drop-down only presents functions relevant to
the selected function category (“Vectors/Matrices” in this case — category labels are them-
selves selected from a drop-down) . the drop-down cell is fully editable . this means that users
can select a drop-down value or type any other function name .

also note that some cells (in the bottom table row in the screenshot above) have background
highlights . this is done by automatically passing the generated analysis script through the
built-in mlint preprocessor using mlint’s undocumented interface9 (mlint was not described in
this book since it is not Java-based; I will possibly detail it in a future book about undocu-
mented aspects of pure Matlab) .

a tooltip over the affected cell displays the specific warning or error . this was done by using
the custom CellRenderer’s ability to specify cell-specific tooltips as well as a cell-specific back-
ground color (pink/orange for warnings; red for errors):

K13163_Book.indb 613 11/8/2011 8:10:38 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming614

Analysis dynamic (cell-specific) alert tooltips: notice, warning, and error

In some cases, users may wish to view the auto-generated analysis code in a syntax-high-
lighted code pane (mini-editor), rather than in a data table . this is done using a SyntaxText-
Pane panel that has a Matlab MIME type (Section 5 .5 .1):

Auto-generated analysis code in a syntax-highlighted code pane

10.2.4 Defining Reports
In the final setup tab panel, Reports, the user can create and customize the appearance of
defined reports . the reports can then be used as building blocks within any of the analyses .

In the Reports panel, I have integrated the plot-selection drop-down control
(PlotTypeCombo) and plot-catalog dialog window (PlotCatalog) that were discussed
in Section 5 .4 .2:

K13163_Book.indb 614 11/8/2011 8:10:39 PM

© 2012 by Taylor & Francis Group, LLC

615Putting It All Together

Plot-selection control embedded within the reports-definition panel

Users can select any of the recently used or predefined plot types speci-
fied in the drop-down list . In addition, users can always select the “More
Plot types . . .” option (at the bottom of the drop-down list) to display a
dedicated plot catalog selection window .

after any plot is selected, it is automatically added to the drop-down list
for possible future reuse .

Once a plot type is selected, its meta-data is examined in order to extract
the plot’s expected input arguments . these are then displayed immediately
beneath the plot selection drop-down, for user reference .

the reader is referred to Section 5 .4 .2 for a description of all these
features .

10.2.5 Displaying Analysis Results
Following automated running of the selected analyses on the tested data objects, a color-coded
matrix of results is created and presented to the user . the brighter the color of a specific cell
(a data-object vs . analysis combination), the more problematic was the corresponding combina-
tion (i .e ., the specific analysis ran on the specific object) . this enables immediate and intuitive
drill-down into problematic cases, rather than sifting through hundreds of irrelevant graphs .

K13163_Book.indb 615 11/8/2011 8:10:39 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming616

this not only significantly improves the data analysis time, but also improves accuracy, since
users are not made careless by endless acceptable reports, before they encounter the infrequent
problematic report .

In order to facilitate user decision on which of the cells to drill-down, I implemented
dynamic data cursors: moving the mouse pointer over any of the matrix cells presents a
tooltip box with information about the executed analysis and the reason for the unacceptable
result:

Dynamic data-tips in the Results window (See color insert.)

When clicking any of the result matrix’s cells, the user is presented with the reports prepared
by that particular analysis for the selected object . as shown above, these user-defined reports
can be Excel tables, data tables, text files, or graphs .

a particularly useful and non-obtrusive addition I have used for all graphs is the addition of
a small “+” button next to the graph origin .10 Clicking on the button presents a small dialog
window that enables controlling the graph properties:11

K13163_Book.indb 616 11/8/2011 8:10:41 PM

© 2012 by Taylor & Francis Group, LLC

617Putting It All Together

Customizing result plots (See color insert.)

the “+” button is actually a com.mathworks.mwswing.MJButton Java object (Section
6 .1) that is displayed using javacomponent . We recall from Section 6 .1 that MJButton added
a FlyOverappearance property to the standard Java Swing’s JButton . It is this property that
I now use, using the following code snippet:

btLinePropsCbStr = ['uisetlineprops(findall(' num2str(haxes,99) ...
 ',''type'',''line''))'];

btLinePropsPos = [axesPos(1:2) + 0.003, 0.02, 0.02];

%uicontrol('string','+', 'Units','Norm', 'BackgroundColor','white',
'Position',btLinePropsPos, 'tag',['bt' axName '_LineProps'], 'userdata',haxes,
'callback',btLinePropsCbStr);

% Note: all the following code is just to have a specific cursor
% ^^^^ (HaND_CURSOR) when hovering over the button...
btLineprops = com.mathworks.mwswing.MJButton('+');
btLineprops.setBorder([]);
btLineprops.setBackground(java.awt.Color.white);
btLineprops.setCursor(java.awt.Cursor(java.awt.Cursor.HaND_CURSOR));
btLineprops.setFlyOverappearance(true);
btLineprops.setToolTipText('Modify properties of plot lines');
[dummy,btContainer] = javacomponent(btLineprops,[0 0 1 1],hFig); %#ok
set(btLineprops, 'actionPerformedCallback',btLinePropsCbStr);
set(btContainer, 'Units','Norm', 'Position',btLinePropsPos);

K13163_Book.indb 617 11/8/2011 8:10:42 PM

© 2012 by Taylor & Francis Group, LLC

Undocumented Secrets of MATLAB®-Java Programming618

10.3 Concluding Exercise: UIMultilistbox

as a suggested concluding exercise, implement the following UIMultiListbox utility, which
covers many of the topics discussed in this book:

the UIMultiListbox utility will place two adjacent listboxes in the specified Matlab
container handle (frame, uipanel, or gcf if none was specified) . the listboxes will be correlated
so that selecting an item in any of the listboxes will automatically select the corresponding item
in the other listbox — use handle.listener† to synchronize the selection/movement of the
listboxes .

Update the figure status-bar‡ and present a systray icon message§ whenever the listbox selec-
tion is modified . Since the listboxes are correlated, there is no need for one of the listboxes to
have scrollbars — hide them .¶

Set a specialized border**†† around the listboxes and update the listbox background color upon
MouseEnter/MouseExit/FocusGained/Focuslost event callbacks .††‡‡

Enable display of list-item icons (e .g ., state flags) .‡‡§§
Use uimenu§§¶¶ and uiundo†††¶¶ to undo listbox changes .
Enable Drag-and-Drop of listbox items .***‡‡‡
Use HtMl tooltips and labels .§§§†††
Set item-specific tooltips and context (right-click) menus .¶¶¶‡‡‡

Finally, use schema.prop††††§§§ to return a single handle object with all the information com-
bined (both listbox handles, etc .) upon creation of the UIMultiListbox object .

Here are several links that may provide ideas on how to use a JSlider to synchronize two
listboxes:

http://www .mathworks .com/matlabcentral/newsreader/view_thread/235484 ◾
http://www .jroller .com/santhosh/entry/synchronize_scrolling_views ◾
http://www .jidesoft .com/javadoc/com/jidesoft/list/Duallist .html ◾ ‡‡‡‡¶¶¶

† See appendix b .
‡ See Section 4 .7 .
§ See Section 3 .6 .
¶ See Sections 6 .5 .2 and 6 .6 .
†† See several border examples in Chapter 6 .
‡‡ See Section 3 .4 .
§§ See Section 6 .6 .1 .
¶¶ See Section 4 .6 .
††† See Section 4 .4 .
‡‡‡ See Section 3 .7 .
§§§ See Section 3 .3 .3 .
¶¶¶ See Section 6 .6 .2 .
†††† See appendix b .
‡‡‡‡ com.jidesoft.list.DualList is included in the JIDE Grids package that is included in Matlab since release

7 .7 (R2008b) — see Section 5 .7 .2 .

K13163_Book.indb 618 11/8/2011 8:10:42 PM

© 2012 by Taylor & Francis Group, LLC

619Putting It All Together

References

 1 . See http://UndocumentedMatlab .com/blog/uisplitpane/ (or http://bit .ly/9iQoPJ) .
 2 . http://www .mathworks .com/matlabcentral/fileexchange/23073 (or http://bit .ly/n73ucR) .
 3 . http://blogs .mathworks .com/pick/2009/03/27/gui-layout-part-6 (or http://bit .ly/qEdlQV) .
 4 . http://www .mathworks .com/matlabcentral/fileexchange/32697-making-matlab-swing (or http://bit .ly/

reUuPk); http://sourceforge .net/projects/waterloo/ (or http://bit .ly/oiWP2q) .
 5 . http://UndocumentedMatlab .com/blog/uisplitpane (or http://bit .ly/9iQoPJ) .
 6 . http://UndocumentedMatlab .com/blog/hgfeval/ (or http://bit .ly/aIgaOa) .
 7 . http://www .mathworks .com/matlabcentral/fileexchange/23073 (or http://tinyurl .com/ckbbo4) .
 8 . http://UndocumentedMatlab .com/blog/panel-level-uicontrols/ (or http://bit .ly/9qbn3E) .
 9 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/255839#755939 (or http://bit .ly/

e6tawD) .
 10 . http://UndocumentedMatlab .com/blog/borderless-button-used-for-plot-properties/ (or http://bit .ly/

rusMp1) .
 11 . adapted from http://www .mathworks .cn/matlabcentral/fileexchange/14143-uisetlineprops (or http://bit .

ly/f0yt6S) .

K13163_Book.indb 619 11/8/2011 8:10:42 PM

© 2012 by Taylor & Francis Group, LLC

http://UndocumentedMatlab.com/
http://www.mathworks.com
http://sourceforge.net
http://blogs.mathworks.com/

621

appendix a:
What Is Java?

this appendix presents an overview of Java . an experienced Java programmer can safely skip
this section . For readers who are inexperienced with Java, reading this section should help to
understand the Java concepts and code snippets used throughout this book, as well as to make
simple adaptations .

Java is an object-oriented programming language, introduced in 1995 . Its main strength when
compared with other object-oriented languages of its time (C++ being the most important) was its
portability: Java was designed to be architecture-neutral so that Java programs written on a Mac,
for example, would look and behave exactly in the same way as on Windows, linux, and any
other platform that supports the Java specification . this design, coupled with modern object-ori-
ented programming features, built-in security measures, and easily accessible GUI and I/O, sig-
nificantly reduced development work and made Java a favorite among programmers worldwide .

all Java programs are object-oriented: whereas Matlab functions can be created as stand-
alone functions or scripts, Java code must be enclosed in a containing class . the Java class
determines which properties belong to the class and which functions (methods) are available to
act on these properties .

Classes are often grouped into packages and sub-packages based on semantic and functional
relationships . For example, Matlab has a com.mathworks.mwswing package that con-
tains the MJButton, MJLabel, and MJPanel classes . a class’s Fully Qualified Class Name
(FQCN) includes the package name along with all its parent packages (e .g ., com.mathworks.
mwswing.MJButton) . Sibling classes of the same package, or classes that explicitly import
definition of another package, do not need to use FQCN, and can use just the short classname
(e .g ., MJButton) . Classes whose package is not explicitly defined are still packaged, in a global
default package . It is customary, although not mandatory, for package names to be lower-cased
and for class names to be camel-cased (e .g ., ClassName) .1

Java classes, properties, methods, and so on, all have accessibility attributes that control
whether these elements are accessible to external (non-class) code . a public attribute means
that the element is usable by any external class (including our Matlab code); protected and
private attributes (and the default package visibility) reduce the element visibility/accessibility
to Java subclasses, the same class and the same package, respectively . Only public elements are
visible from our Matlab code .

K13163_Book.indb 621 11/8/2011 8:10:42 PM

© 2012 by Taylor & Francis Group, LLC

Appendix A: What Is Java?622

like Matlab, Java is case-sensitive . this means that ClassName is different from class-
name, className, and Classname . Using a keyword or element name with incorrect capitaliza-
tion will result in a compilation error .

Unlike Matlab, all Java code statements must either conclude with a semicolon (;) or be
encased within braces: { . . .} . Failing to do so causes a compilation error . Java is less forgiving
than Matlab to such seemingly trivial syntax errors .

Java comments can either extend to the end of the line (following a double-slash //, like
Matlab’s %), or have a limited extent (between /* . . .*/, like Matlab’s %{ . . .%}
construct) .

Unlike Matlab, Java arrays use square, not round, brackets ([]) . Java arrays start all index
values at 0, and multi-dimensional arrays use multiple brackets . So, Matlab’s a(2,3) would
be represented in Java as a[1][2] .

Classes and methods can contain local properties . these properties have accessibility attri-
butes as well as a type . all Java properties and methods must be declared to have a specific type
(aka strong-typing) .† the type can either be a primitive built-in type (boolean, char, byte,
short, int, long, float, or double) or a class name (e .g ., String or java.lang.
String) . Properties can be declared to be static (a class property, as opposed to an object
instance property) and/or final (unchangeable, constant) .‡ all newly created properties get a
default value, unless they were initialized during creation . Property values can be initialized
upon creation, or set later on in the code:

public boolean myFlag1; // default value = false
private boolean myFlag2 = true; // override default value
protected double number = java.lang.Math.PI; // override default = 0
private final double PI_2 = java.lang.Math.PI / 2.0; // constant
public static String message = "Hello World!"; // override default = ""
private MyClass myObject = new MyClass(); // default constructor

Java elements (properties and methods) are either static or objectal . Static elements belong
to their class, so only a single instance exists, referred-to by its class name (e .g ., HelloWorld .
main() or Math.PI) . Non-static (object instance) elements are created by instantiating one or
more instances (objects) of their class . the elements are then accessed using the object’s refer-
ence handle (e .g ., myObject.data or message .length()) .

“Hello World” is a classic sample program that is typically used when learning new pro-
gramming languages . Here is the Java version of this program:

public class HelloWorld
{
 public static void main(String[] args)
 {

† Notwithstanding Generics (http://java .sun .com/j2se/1 .5 .0/docs/guide/language/generics .html or http://tinyurl .com/6nfhp),
which is an advanced Java programming topic outside the scope of this book (also see section 1 .7) .

‡ additional modifiers that are encountered less frequently are native, synchronized, transient, and volatile.

K13163_Book.indb 622 11/8/2011 8:10:42 PM

© 2012 by Taylor & Francis Group, LLC

www.java.sun.com

623Appendix A: What Is Java?

 // Display a message on the console
 System.out.println("Hello World!");
 }
}

this simple program contains the public class HelloWorld, which contains only a single
method — a public main() . this method is declared static, so it can be called without requir-
ing object instantiation . Such a static main() method is the standard execution entry point of all
Java programs . It accepts an array of String values (which are the command-line arguments
supplied to the program), and returns nothing (void) .

Within the main() method, we call the System class’s† static out object’s println() method
to display a “Hello World” message (a String) to the console, which is automatically redi-
rected to Matlab’s Command Window in Matlab .

Classes can have multiple versions of the same method, which receive different arguments
and/or return different result types . Java knows in run-time (and sometimes even in compila-
tion-time) which of the methods to use, based on the types of the supplied and returned argu-
ments (this is often called method overloading) .

Classes can have special methods, called constructors, that have the same name as their
class . they are invoked whenever a new class object is created (instantiated) . like other meth-
ods, constructors can be overloaded with different input arguments . Unlike regular methods,
constructors have no return type and return no value .

For example, assume we declare the following class:

public class MyClass
{
 public MyClass() // default constructor
 {
 // do something useful here...
 }

 /* Non-default (overloaded) constructor */
 public MyClass(boolean flag, double number)
 {
 // do something useful here...
 }
}

We could then use the following object instantiation code:

private MyClass myObject = new MyClass(); // use default constructor
private MyClass myObject = new MyClass(myFlag,PI_2); // non-default

Java classes support a single inheritance, meaning they can inherit (extend) another class (the
superclass) . the subclass inherits all the methods and properties of its superclass and can

† System is actually java.lang.System — the java.lang package is automatically imported in Java and does not
require explicit import . String is also such a class (java.lang.String) .

K13163_Book.indb 623 11/8/2011 8:10:43 PM

© 2012 by Taylor & Francis Group, LLC

Appendix A: What Is Java?624

 override any of them . In addition, subclasses often add new properties and methods to sup-
port a specialized implementation . For example, Matlab’s com.mathworks.mwswing.
MJButton class extends the standard Swing javax.swing.JButton class, in order to pro-
vide additional capabilities to Matlab button controls that are unavailable in the standard Java
Swing button implementation (many of these extensions are detailed in Chapters 5 and 6) .

While supporting only a single inheritance, Java classes can support multiple interfaces . an
interface (typically named, I . . ., e .g ., IGeometry) is a declaration of a set of methods that
each supporting class must implement . For example, geometry interface IGeometry might
require implementing the area(), circumference(), maxWidth(), and maxHeight() methods .
then, the Circle, Rectangle, and Square classes (that all extend the Geometry super-
class) could all declare themselves as implementing IGeometry, if they indeed implement all
the relevant methods:

public class Circle extends Geometry implements IGeometry, IPaintable

Now, if a method somewhere receives an input argument of type Geometry, it could invoke
any IGeometry method on the input, without needing to know the input object’s exact sub-
type (shape) . as noted, classes can implement multiple interfaces .

Java supports most of the Matlab operators and quite a few others . this includes the
standard arithmetic operators + (which can also be used to concatenate strings), -, *, /,
and = (which is also used for property assignments), comparison operators (<, <=, ==, >=, >,
and !=), and logical operators (&, |, &&, and ||) . For example,

double PI_2 = java.lang.Math.PI / 2.0; // arithmetic operation
boolean myFlag = condition1 && (PI_2 >= 3); // logical operation
String message = "Hello "."World!"; // string operation

In addition, Java has autoincrement (++) and autodecrement (−−), % (the remainder func-
tion), left and right shifts (<<<, <<, >>, >>>), logical complement (!, similar to Matlab’s ~),
ternary conditional (? :), and the instanceof operator:

number++; // same as: number = number + 1;
number = Math.PI % 2; // remainder function
myFlag = condition1 & !condition2; // logical condition
myFlag = (a > b ? true : myFlag2); // ternary condition

Finally, many simple operations on the properties can be simplified using the <op>= syntax .
For example,

number −= 1.2; // same as: number = number – 1.2;
message += "again!"; // same as: message = message + "again!";

the instanceof operator is special: it returns true if the object on its left-hand side
is an instance of the class (or implements the interface) on its right-hand side . For example,

myFlag = (shape instanceof Geometry);

K13163_Book.indb 624 11/8/2011 8:10:43 PM

© 2012 by Taylor & Francis Group, LLC

625Appendix A: What Is Java?

all the Java operators have predefined precedence . therefore, a + b*c would give a different
result than (a + b)*c . For this reason, it is always advisable to add parentheses () in order to
explicitly determine the computation order .

Java’s code-flow statements are similar to Matlab, using the following constructs:

if (a > b) { ... }
else if (c > d) { ... }
else { ... }
while (myFlag) { ... }
do { ... } while (number-- > 0)
switch (value) {
 case 1:
 // do something useful here...
 break; // without this break, execution will fall-through
 case 2:
 // do something useful here...
 break; // without this break, execution will fall-through
 default:
 // do something useful here...
}
for (int i=0; // initial loop value
 i < maxIValue; // loop continues while condition is true
 i++) // loop round post-processing
{
 // do something useful here...
}

to exit loops and functions, use one of the following keywords, similar to Matlab: break,
continue, and return . break and continue also support a labeled target, although this
is often discouraged as bad programming style:

boolean foundFlag = false;
search:
 for (int i=0; i < maxIValue; i++) {
 for (int j=0; j < maxJValue; j++) {
 if (someCondition) {
 foundFlag = true;
 break search; //regular break would only exit the inner loop
 }
 }
 }

Exceptions can be caught and processed in Java as in Matlab, using a try/catch mech-
anism . an optional finally section enables code execution following the exception-handled
block, regardless of whether or not any exception was raised . this is similar to Matlab’s
onCleanup function that was added in Matlab 7 .6 (R2008a) .

try
{

K13163_Book.indb 625 11/8/2011 8:10:43 PM

© 2012 by Taylor & Francis Group, LLC

Appendix A: What Is Java?626

 // do something useful here...
}
catch (anException ex)
{
 // do some error-processing here...
}
catch (anotherException ex) { ... }
finally
{
 // do some cleanup processing here whether or not exception raised
}

Java enforces stricter exception fore-thought by the programmer: uncaught exceptions must
be declared at the top method definition line:

public void readFile(String fileName) throws IOException { ... }

Unlike Matlab, which directly interprets source code, Java requires source code to be com-
piled into binary byte-code (aka class-files) . this compilation can be done using the command-line
javac compiler, available from the main Java site as part of the free Java Development Kit (JDK) .2
to use javac, place the class code in a similarly named *.java file (HelloWorld.java in our case),
then run “javac HelloWorld.java” from the Operating System’s command line . If the source
code has errors, they will be reported in the console . Otherwise, we will get a file called
HelloWorld.class . to run HelloWorld, run “java HelloWorld.class” in the operating
system’s command line . Sections 1 .1 and 1 .6 explain how to run this program from within
Matlab .

a much preferred alternative to javac is to use a Java IDE (integrated development environ-
ment), which enables easier code development and debugging . there are several excellent free
and commercial Java IDEs . two widely-used free IDEs are Eclipse3 and Netbeans4 (see Section
1 .6) . In both IDEs, compilation is done on the fly, and errors are visually displayed next to their
offending source .

Similar to Matlab’s path, Java uses a classpath to locate external classes . If the class uses
other classes, then we may need to indicate their classpath location during compilation using
javac’s–cp command-line switch or the IDE’s project preferences .

References

 1 . http://en .wikipedia .org/wiki/CamelCase
 2 . http://java .sun .com/javase/downloads/previous .jsp
 3 http://www .eclipse .org/downloads/ (or http://bit .ly/95wdV4) .
 4 . http://netbeans .org/downloads/ (or http://bit .ly/cISU1K) .

K13163_Book.indb 626 11/8/2011 8:10:43 PM

© 2012 by Taylor & Francis Group, LLC

http://en.wikipedia.org
http://java.sun.com
http://www.eclipse.org
http://netbeans.org
http://bit.ly

627

appendix b: UDD†

In several places within this book, I referred to a few undocumented built-in Matlab
 functions that relate to UDD, including handle.listener and schema.prop . these functions are
not documented anywhere outside the UndocumentedMatlab .com website, so this short appen-
dix that describes them may be helpful .

this functionality, while related to Java objects as mentioned elsewhere in this book, is not
in itself Java-based . as far as I know, UDD (Unified Data Definition?) is based on C++ code .
Only one of the UDD roles is to provide wrapper functionality for Java objects within Matlab .
In this appendix, I will only describe issues that directly relate to using Java objects — other
aspects are documented on the website .

UDD objects, also referred to as schema objects, were introduced with Matlab 6 .0 (R12)
back in 2000 . UDD is a foundation technology for using handle graphics, Simulink®, Java, and
COM within Matlab . MathWorks has consistently refused to document UDD, stating that
UDD objects are for internal use by MathWorks developers . although there is no formal docu-
mentation, there are plenty of examples and tools to help us learn about these classes .

Since UDD classes are a foundation technology, they appear both as built-in classes and as
classes defined in m-code . We can tell whether a particular object is a UDD object by using the
undocumented built-in function classhandle, which takes one input argument (an object han-
dle) and returns a schema.class object that describes the input object . If the input object is not
a UDD object, then classhandle raises an exception . Using classhandle in code that cannot
guarantee that the input argument is a UDD object requires placing it in a try-catch block, to
handle such exceptions .

UDD and the newer, well-documented MCOS classes share many similarities . In many
respects, classhandle is analogous to the MCOS metaclass function; property and method
attributes are similar, and so on . this is not surprising, considering MCOS was developed
based on the UDD experience .

MCOS classes can either be defined as a standalone class or scoped by placing it in a pack-
age or package hierarchy . With UDD, all classes must be defined in a package . UDD packages
are not hierarchical, meaning that a UDD package may not contain other packages . UDD
classes are instantiated as packageName.className . UDD classes whose Global flag is defined
as ‘yes’ only report their className, not their package (instantiation must still be done using

† this appendix is the product of joint work with Donn Shull of http://aetoolbox .com . additional details on UDD can be
found at http://undocumentedmatlab .com/?s = UDD (or http://bit .ly/dShauG) .

K13163_Book.indb 627 11/8/2011 8:10:43 PM

© 2012 by Taylor & Francis Group, LLC

http://aetoolbox.com
http://undocumentedmatlab.com
http://bit.ly/

Appendix B: UDD628

the package name) . as far as I know, handle graphics objects are the only built-in UDD objects
that have the Global flag set to on, so they have global scope rather than package scope .

>> hFig = hg.figure % note: global hg package name is not reported
hFig =
 figure

>> which hg.figure
hg.figure is a built-in method % hg.figure constructor

MCOS classes are value classes by default, but we can subclass the handle class to create
handle classes . In contrast, UDD classes are handle classes by default, but we can create value
classes by setting the Handle property to ‘off’ .

the m-files that create the UDD classes supplied with Matlab are easy to find by search-
ing for directories containing a schema .m file . these classes include the timeseries UDD pack-
age tsdata, the user interface package uitools, and many others .

built-in UDD classes are harder to identify, and are hidden in normal usage . For example, in
the current handle graphics version,† all HG elements are UDD objects from the hg package
that are wrapped in normal usage by a numeric handle . We can get the underlying UDD object
using the undocumented built-in handle() function:

>> hFig = handle(gcf)
hFig =
 figure

>> hLine = handle(plot(1:5))
hLine =
 graph2d.lineseries

We can pass any UDD object to Java classes in Matlab . Matlab automatically creates
a bean adapter for the object, enabling access to the object’s methods and properties .

any Java object created in Matlab has an associated UDD wrapper object that is either
from the javahandle or the javahandle_withcallbacks package (the latter is invoked with the
‘CallbackProperties’ parameter, as described in Section 3 .4):

>> hjButton = handle(javax.swing.JButton)
hjButton =
 javahandle.javax.swing.JButton

>> hjButton = handle(javax.swing.JButton, 'CallbackProperties')
hjButton =
 javahandle_withcallbacks.javax.swing.JButton

Java objects’ properties and methods can be inspected using Reflection . Matlab has a
corresponding mechanism, which is accessible via the UDD classhandle:

>> chFig = classhandle(handle(gcf))
chFig =
 schema.class

† this may change in the future HG2: http://UndocumentedMatlab .com/blog/matlab-hg2/ (or http://bit .ly/chl9iK) .

K13163_Book.indb 628 11/8/2011 8:10:43 PM

© 2012 by Taylor & Francis Group, LLC

http://undocumentedmatlab.com
http://bit.ly/

629Appendix B: UDD

>> get(chFig) % or: chFig.get
 Name: 'figure'
 Package: [1x1 schema.package]
 Description: ''
 accessFlags: {0x1 cell}
 Global: 'on'
 Handle: 'on'
 Superclasses: [1x1 schema.class]
 SuperiorClasses: {0x1 cell}
 InferiorClasses: {0x1 cell}
 Methods: [2x1 schema.method]
 Properties: [90x1 schema.prop]
 Events: [10x1 schema.event]
 JavaInterfaces: {'com.mathworks.hg.Figure'}

>> chFig.Package.get % or: get(chFig.Package)
 Name: 'hg'
 DefaultDatabase: [1x1 handle.Database]
 Classes: [42x1 schema.class]
 Functions: [0x1 handle]
 JavaPackage: 'com.mathworks.hg'
 Documented: 'on'

>> chFig.Superclasses.Name
ans =
GObject

as can be seen, UDD figure objects are global handles that belong to the hg package and
inherit from the base GObject class . UDD figures have two methods, 90 properties and 10
events (callbacks) . let us inspect them, starting with the two methods:

>> cmhFig = chFig.Methods
cmhFig =
 schema.method: 2-by-1

>> cmhFig(1).get
 Name: 'setlayoutdirty'
 Description: 'setlayoutdirty'
 Signature: [1x1 schema.signature]
 Static: 'off'
 FirstargDispatch: 'on'

>> cmhFig(1).Signature.get
 InputTypes: {'handle'}
 OutputTypes: {0x1 cell}
 Varargout: 'off'
 Varargin: 'off'

>> cmhFig(2).get
 Name: 'setDefaultButton'
 Description: 'setDefaultButton'
 Signature: [1x1 schema.signature]
 Static: 'off'

K13163_Book.indb 629 11/8/2011 8:10:43 PM

© 2012 by Taylor & Francis Group, LLC

Appendix B: UDD630

 FirstargDispatch: 'on'

>> cmhFig(2).Signature.get
 InputTypes: {2x1 cell}
 OutputTypes: {0x1 cell}
 Varargout: 'off'
 Varargin: 'off'

>> cmhFig(2).Signature.InputTypes'
ans =
 'handle' 'handle'

as can be seen, two-figure methods are defined: setlayoutdirty(handle) and setDefaultButton
(handle,handle) . both methods do not return any output argument .

When Matlab creates a UDD handle for a Java object, the Java object is inspected using
Reflection and the corresponding UDD attributes are set . So, we can also use classhandle and
the mechanism shown above for Java objects . hjButton in the example above exposes no less
than 340 methods, 153 properties, and 31 events .

Events (callbacks) are invoked (sent or raised) when a specific condition occurs in the under-
lying object (the relationship with Java events was discussed in Section 1 .4):

>> cehFig = chFig.Events
cehFig =
 schema.event: 10-by-1

>> reshape(get(cehFig,'Name'),5,2)
ans =
 'SerializeEvent' 'WindowButtonUpEvent'
 'FigureUpdateEvent' 'WindowButtonDownEvent'
 'ResizeEvent' 'WindowButtonMotionEvent'
 'WindowKeyReleaseEvent' 'WindowPostChangeEvent'
 'WindowKeyPressEvent' 'WindowPreChangeEvent'†

>> cehFig(5).get
 Name: 'WindowKeyPressEvent'
 EventDataDescription: 'Window KeyPress Event'

We can monitor these events using the undocumented built-in handle.listener function . the
basic syntax is handle.listener(hObject, eventName, callback), where hObject is the handle of the
requested object, eventName is a string that contains the case-insensitive possibly partial (if unam-
biguous) event name, and callback is a callback definition (function handle, string, or cell array):‡

hListener = handle.listener(gcf,'ResizeEvent','disp 123');
hListener = handle.listener(gcf,'ResizeEvent',@myCallbackFunc);
hListener = handle.listener(gcf,'ResizeEvent',{@myCallbackFunc,data});
hListener = handle.listener(gcf,'ResizeEvent',@(h,e) myFunc(h));

† WindowPreChangeEvent was removed starting in R2008a .
‡ http://UndocumentedMatlab .com/blog/continuous-slider-callback/#Event_listener (or http://bit .ly/a6gtaX) . In R2009b+,

we can also use the addlistener function, but in earlier Matlab releases addlistener only worked for Java objects .
Starting with R2009b, addlistener accepts non-Java handles . See Section 6 .12 .4 for additional details about addlistener
and its limitation .

K13163_Book.indb 630 11/8/2011 8:10:44 PM

© 2012 by Taylor & Francis Group, LLC

http://undocumentedmatlab.com
http://bit.ly

631Appendix B: UDD

the callback’ed function has the following interface:

function myCallbackFcn(hObject,hEventData,varargin)

where hObject contains the carrier object’s handle, hEventData contains the event-specific
data, which normally contains the type and Source properties, as well as other event-specific
information, and varargin contains optional extra data that is specified during listener setup
via cell array (e .g ., {@myCallbackFunc,data}), or anonymous function (@(h,e)
myFunc(h,e,data1,data2)) declaration formats .

In many cases, although not all, the event names are simply the object’s callback name with-
out the ‘Callback’ suffix . this is the case for Java and COM objects (see Section 1 .4) . thus,
each Event has a corresponding EventCallback property .

Unfortunately, this does not always apply in Handle-Graphics objects . Some events have
corresponding callbacks (e .g ., ResizeEvent ⇔ ResizeFcn), but some events (e .g .,
SerializeEvent) and some callbacks (e .g ., CloseRequestFcn) have no counterparts .

Note that Matlab only keeps the callback alive as long as both the object and the listener
handle are accessible somewhere . For this reason, we must store hListener somewhere per-
sistent . a good place for this is in the source object’s applicationData, since that property lives
just long enough as the object itself:

setappdata(gcf, 'ResizeEventListener', hListener);

We can get the handle for a UDD event using the findevent(classHandle, eventName) func-
tion, which tries to match partial case-insensitive event names (if unambiguous) .

let us now inspect the UDD figure properties . If we get(gcf), we only see 62 properties, so
why does the figure classhandle report 90? the answer is that 28 properties (e .g ., JavaFrame,
UseHG2, applicationData) are defined as hidden (their meta-property Visible = ‘off’) . We
can access them just like the regular properties (e .g ., get(gcf,‘JavaFrame’)), but we cannot see
them in get(gcf) or set(gcf):

>> cphFig = chFig.Properties
cphFig =
 schema.prop: 90-by-1

>> cphFig(1).get
 Name: 'alphamap'
 Description: ''
 DataType: 'figurealphamapType'
 FactoryValue: [1x64 double]
 accessFlags: [1x1 struct]
 Visible: 'on'
 GetFunction: []
 SetFunction: []

>> reshape(get(cphFig,'Name'),30,3) % hidden props in *bold italic*
ans =
 'alphamap' 'PaperOrientation' 'UseHG2'
 'BackingStore' 'PaperPosition' 'BeingDeleted'

K13163_Book.indb 631 11/8/2011 8:10:44 PM

© 2012 by Taylor & Francis Group, LLC

Appendix B: UDD632

 'CloseRequestFcn' 'PaperPositionMode' 'PixelBounds'
 'Color' 'PaperSize' 'ButtonDownFcn'
 'Colormap' 'PaperType' 'Clipping'
 'Currentaxes' 'Pointer' 'CreateFcn'
 'CurrentCharacter' 'PointerShapeCData' 'DeleteFcn'
 'CurrentKey' 'PointerShapeHotSpot' 'Busyaction'
 'CurrentModifier' 'Position' 'HandleVisibility'
 'CurrentObject' 'OuterPosition' 'HelpTopicKey'
 'CurrentPoint' 'ActivePositionProperty' 'HitTest'
 'Dithermap' 'PrintTemplate' 'Interruptible'
 'DithermapMode' 'ExportTemplate' 'Selected'
 'DockControls' 'Renderer' 'SelectionHighlight'
 'DoubleBuffer' 'RendererMode' 'Serializable'
 'FileName' 'Resize' 'Tag'
 'FixedColors' 'ResizeFcn' 'Type'
 'HelpFcn' 'SelectionType' 'UIContextMenu'
 'HelpTopicMap' 'ToolBar' 'UserData'
 'IntegerHandle' 'Units' 'ApplicationData'
 'InvertHardcopy' 'WaitStatus' 'Behavior'
 'KeyPressFcn' 'WindowButtonDownFcn' 'XLimInclude'
 'KeyReleaseFcn' 'WindowButtonMotionFcn' 'YLimInclude'
 'MenuBar' 'WindowButtonUpFcn' 'ZLimInclude'
 'MinColormap' 'WindowKeyPressFcn' 'CLimInclude'
 'Name' 'WindowKeyReleaseFcn' 'ALimInclude'
 'JavaFrame' 'WindowScrollWheelFcn' 'IncludeRenderer'
 'NextPlot' 'WindowStyle' 'Children'
 'NumberTitle' 'WVisual' 'Parent'
 'PaperUnits' 'WVisualMode' 'Visible'

>> cphFig(27).get
 Name: 'JavaFrame'
 Description: ''
 DataType: 'figureJavaFrameType'
 FactoryValue: []
 accessFlags: [1x1 struct]
 Visible: 'off'
 GetFunction: []
 SetFunction: []

>> cphFig(90).get
 Name: 'Visible'
 Description: ''
 DataType: 'figureVisibleType'
 FactoryValue: 'on'
 accessFlags: [1x1 struct]
 Visible: 'on'
 GetFunction: []
 SetFunction: []

the following trick uses a hidden property of the root (desktop, 0) handle, in order to auto-
matically display hidden properties in get() and set():1

set(0,'HideUndocumented','off'); % default = 'on'

K13163_Book.indb 632 11/8/2011 8:10:44 PM

© 2012 by Taylor & Francis Group, LLC

633Appendix B: UDD

Each property has a separate list of accessFlags . the flags most useful to users are PublicSet
and PublicGet, indicating whether users can set or get the property value:

>> cphFig(27).accessFlags % JavaFrame
ans =
 PublicSet: 'off' <= this indicates a read-only property
 PublicGet: 'on'
 PrivateSet: 'on'
 PrivateGet: 'on'
 Init: 'off'
 Default: 'off'
 Reset: 'off'
 Serialize: 'off'
 Copy: 'off'
 Listener: 'off'
 abortSet: 'off'

>> cphFig(90).accessFlags % Visible
ans =
 PublicSet: 'on'
 PublicGet: 'on'
 PrivateSet: 'on'
 PrivateGet: 'on'
 Init: 'off'
 Default: 'on'
 Reset: 'on'
 Serialize: 'on'
 Copy: 'on'
 Listener: 'on'
 abortSet: 'off'

as noted above, UDD handles of Java objects include all object properties, methods, and
events . For example, let us inspect JButton’s read-only UIClassID property:

>> chjButton = classhandle(hjButton);
>> chjButton.Properties(2).get
 Name: 'UIClassID'
 Description: ''
 DataType: 'jstring'
 FactoryValue: ''
 accessFlags: [1x1 struct]
 Visible: 'on'
 GetFunction: []
 SetFunction: []

>> chjButton.Properties(2).accessFlags
ans =
 PublicSet: 'off' <= this indicates a read-only property
 PublicGet: 'on'
 PrivateSet: 'off' <= unsettable even within the class itself
 PrivateGet: 'on'

K13163_Book.indb 633 11/8/2011 8:10:44 PM

© 2012 by Taylor & Francis Group, LLC

Appendix B: UDD634

 Init: 'off'
 Default: 'off'
 Reset: 'off'
 Serialize: 'off'
 Copy: 'off'
 Listener: 'off'
 abortSet: 'off'

Specific property handles can be found using the findprop(uddHandle,propertyName) func-
tion . like findevent, findprop also tries to match partial case-insensitive property names
(if unambiguous), and returns [] if the property was not found:

>> get(chFig.findprop('resize')) % or: findprop(chhFig,'resize')
 Name: 'Resize'
 Description: ''
 DataType: 'figureResizeType'
 FactoryValue: 'on'
 accessFlags: [1x1 struct]
 Visible: 'on'
 GetFunction: []
 SetFunction: []

>> get(findprop(chFig,'Resize')); % equivalent alternative format
>> get(chFig.findprop('Window')) % or: findprop(chhFig,'Window')
??? The 'Window' property name is ambiguous in the 'figure' class.
>> hProp = findprop(chFig,'NoSuchProperty')
hProp =
 [] <= indicates the specified property was not found

Note that findprop acts on (accepts) either UDD object handle or the classHandle, whereas
findevent can only act on classHandle . this is due to findevent being a schema.class method,
whereas findprop belongs to many classes (which findprop all) .

Callback monitors can be placed on property access events using handle.listener:2

>> hFig = handle(gcf);
>> hProp = findprop(hFig, 'position');
>> hListener = handle.listener(hFig,hProp,'PropertyPreSet','123');

% Now resize or move the figure and see the callback being invoked:
ans =
 123

Note: Unfortunately, callbacks do not work for some properties (e .g ., Children) .3

Using this format of handle.listener, four separate property access events can be monitored:
PropertyPreSet, PropertyPostSet, PropertyPreGet, and PropertyPostGet . the callback’s event-
Data (second input argument) will contain information about the affected object and property,
and (for Set events) the new value:

>> eventData.get
 Type: 'PropertyPreSet'

K13163_Book.indb 634 11/8/2011 8:10:44 PM

© 2012 by Taylor & Francis Group, LLC

635Appendix B: UDD

 Source: [1x1 schema.prop]
 affectedObject: [1x1 figure]
 NewValue: [734 361 477 325] <= PropertyPre/PostSet only!

the fully documented built-in function linkprop uses this handle.listener mechanism to
keep separate objects synchronized with respect to a specified property: whenever one of the
objects modifies the monitored property, a callback is invoked that updates the other object’s
corresponding property . You may find the source code for this illuminating .† I uploaded a utility
called PropListener to the Matlab File Exchange that enables bulk setting of monitors on a
set of properties and objects .4

handle.listener monitors property value changes, but cannot intercept these changes .
Sometimes we need the ability to prevent illegal values (data validation) . For this, we can use
the property’s SetFunction and GetFunction meta-properties:

>> hProp.SetFunction = {@myCallbackFunc,extraData1,extraData2,...};

the SetFunction and GetFunction callback functions expect two mandatory input argu-
ments (in addition to any extra data that you may add, as in the example snippet above): the
affected object (the figure’s UDD handle in this case) and the expected value(s) . the callback
function returns a single output argument, which is then set in the property (SetFunction) or
returned to the caller (GetFunction) . Within the callback function, we can trap applicative errors
and modify the set/retrieved value . the default behavior is to simply pass the value as-is:

function value = myCallbackFcn(hObject,value,varargin)

Unfortunately, SetFunction and GetFunction cannot be modified for existing Java object
properties — only for newly added properties (see below) . For existing Java properties, we can
only use a handle.listener monitor .5 Moreover, for Java properties, handle.listener callbacks
are only invoked when the property is modified using Matlab’s set() function or = operator,
not when using the Java setter method:

set(hjButton,'Text','test #1'); % listener callback invoked
hjButton.Text = 'test #2'; % listener callback invoked
hjButton.setText('test #3'); % listener callback NOT invoked

We can usually add properties to handle objects in run-time . this is done, as in UDD
schema .m constructors, using the schema.prop function (actually, this is a class constructor,
since schema.prop is a UDD class):‡

>> hProp = schema.prop(hFig,'MyName', 'string');
>> hProp = schema.prop(hFig,'MyValue','double');

† %matlabroot%/toolbox/matlab/graphics/@graphics/@linkprop\linkprop .m . Note that graphics .linkprop is itself a UDD
class .

‡ Note the similarities between UDD’s undocumented schema.prop and MCOS’s fully documented addprop .

K13163_Book.indb 635 11/8/2011 8:10:45 PM

© 2012 by Taylor & Francis Group, LLC

Appendix B: UDD636

>> hProp = schema.prop(hFig,'anyData','mxarray'); % mxarray = anything

>> get(hFig)
 ...
 UserData: []
 Children: [0x1 double]
 Parent: 0
 Visible: 'on'
 MyName: '' <= new 'string' property, default = ''
 MyValue: 0 <= new 'double' property, default = 0
 anyData: [] <= new 'mxarray' property, default = []

these new properties are displayed when we use get(uddHandle) or set(uddHandle) on
our UDD handle, as shown above . Of course, both the property’s corresponding acccessFlag
and Visible flags must be ‘on’, which is the default value for newly created properties .
Unfortunately, new properties are sometimes not visible when retrieving the full list of object
properties using get() or set() on the base (non-UDD) object, although both acccessFlag and
Visible flags are ‘on’ . Despite this minor issue, as with hidden properties, our new properties
can always be accessed directly, as long as we know their name, regardless of whether or not
they are visible:

>> set(gcf,'anyData',magic(3));
>> get(gcf,'anyData')
ans =
 8 1 6
 3 5 7
 4 9 2

% Set the public accessibility and visibility flags
>> hProp.Visible = 'off'; % set property as hidden
>> hProp.accessFlags.PublicSet = 'off'; % set property as read-only

% Retry to set the property, now that it is read-only
>> set(gcf,'anyData',{1,2,3})
??? Error using ==> set
Changing the 'anyData' property of instance is not allowed.

Finally, to obtain a Java interface source file that represents our class to compile with our
Java code, use classhandle once again: the schema.class object that is returned has a method
called createJavaInterface(interfaceName, folderPath) . For example:

chFig.createJavaInterface('IFigure', pwd);

this will create an IFigure.java file in the current working directory . We can inspect this file
to see the prototypes for accessing the object’s properties/methods from Java . Note that read-
only properties will not have a setter method in the interface; that set-only properties will have
no getter method; and that private properties will not appear at all . also note that object arrays
are indicated using JNI notation6 rather than the regular []-notation (Ljava.lang.String;

K13163_Book.indb 636 11/8/2011 8:10:45 PM

© 2012 by Taylor & Francis Group, LLC

637Appendix B: UDD

rather than java.lang.String[]) . Finally, note that logical properties (flags) are converted
into Java int values, not boolean:

package com.mathworks.hg;
public interface IFigure extends com.mathworks.jmi.bean.TreeObject
{
 /* Properties */
 public double[] getalphamap();
 public void setalphamap(double[] value);

 public com.mathworks.hg.types.HGCallback getCloseRequestFcn();
 public void setCloseRequestFcn(com.mathworks.hg.types.HGCallback value);

 public com.mathworks.hg.types.HGColor getColor();
 public void setColor(com.mathworks.hg.types.HGColor value);

 ...

 public int getType(); <= this is a read-only property

 public com.mathworks.jmi.types.MLarrayRef getUserData();
 public void setUserData(com.mathworks.jmi.types.MLarrayRef value);

 public com.mathworks.hg.types.HGHandle getParent();
 public void setParent(com.mathworks.hg.types.HGHandle value);

 public int getVisible();
 public void setVisible(int value);

 /* Methods */
 public void setlayoutdirty();
 public void setDefaultButton(com.mathworks.jmi.bean.UDDObject arg1);
}

References

 1 . http://UndocumentedMatlab .com/blog/displaying-hidden-handle-properties/ (or http://bit .ly/d25kyG);
http://UndocumentedMatlab .com/blog/getundoc-get-undocumented-object-properties/ (or: http://bit .ly/
ns3Cog) .

 2 . http://UndocumentedMatlab .com/blog/continuous-slider-callback/#Property_listener (or http://bit .ly/
b49NwE) .

 3 . See http://www .mathworks .com/matlabcentral/newsreader/view_thread/292813#800994 (or http://bit .
ly/fPbfHU) for details .

 4 . http://www .mathworks .com/matlabcentral/fileexchange/18301-proplistener (or http://bit .ly/aDIcav) .
 5 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/157947 (or http://bit .ly/btpl96) .
 6 . http://java .sun .com/docs/books/jni/ or http://java .sun .com/j2se/1 .5 .0/docs/guide/jni/spec/types .html#wp276

(or http://bit .ly/cuQaiV) .

K13163_Book.indb 637 11/8/2011 8:10:45 PM

© 2012 by Taylor & Francis Group, LLC

http://undocumentedmatlab.com
www.mathworks.com
www.java.sun.com
http://bit.ly
www.java.sun.com

639

appendix C:
Open Questions

being investigative and unsupported in nature, some questions appeared during the preparation
of this work, which are still unanswered . Perhaps answers to some of these will be discovered
or reported as time passes . If so, I will report them on the http://www .UndocumentedMatlab .
com/books/Java/ website and in future book editions .

 1 . What is the purpose of edtObject (Section 1 .1)?
 2 . are Java EDt exceptions trappable or suppressible in Matlab (Section 1 .3)?
 3 . Is it possible to automatically serialize non-primitive Matlab constructs (e .g ., structs

and class objects) into Java objects that can be stored in Java Collections, without
requiring use of a conversion function (Section 2 .1 .1)?

 4 . Is it possible to know in advance whether a Java logical flag property expects scalar
(true/false) or string (‘on’/‘off’) values (Section 3 .3 .1)?

 5 . How can the com.jidesoft.plaf.LookandFeelFactory class be used to mod-
ify the look & Feel (Section 3 .3 .2)?

 6 . Why does System-tray throw errors on some Matlab versions (Section 3 .6)?
 7 . Is it possible to transfer/incorporate Matlab plots into a pure-Java GUI container

(Section 3 .8)?
 8 . Is it possible to customize the new uitable without needing to replace its existing table

Model (Section 4 .1 .1)?
 9 . Why does tree node collapsing/expansion sometimes fail (Section 4 .2 .3)?
 10 . Why do some standard JTabbedPane methods fail for uitabgroup (Section 4 .3 .1)?
 11 . Can the empty space left of menu-item icons be removed (Section 4 .6 .4)?
 12 . Why are guide.jar and audiovideo.jar placed in a separate folder than the rest of

Matlab’s standard JaR files (Section 5 .1 .3)?
 13 . Why does Java place the external JaR files of org .netbeans and org .openide in the

MathWorks /jar/ folder rather than the /jarext/ folder (Section 5 .1 .3)?
 14 . How can the BDE.jar package be used (Sections 5 .1 .3 and 5 .8 .3)?
 15 . Can the com.mathworks.widgets.find.FindClientRegistry class be used

to specify user-defined Find/Replace functionality (Section 5 .5 .5)?

K13163_Book.indb 639 11/8/2011 8:10:45 PM

© 2012 by Taylor & Francis Group, LLC

http://undocumentedmatlab.com
http://undocumentedmatlab.com

Appendix C: Open Questions640

 16 . Can the com.jidesoft.docking package be used to customize Matlab’s dock-
ing (Section 5 .7 .1)?

 17 . What is the benefit of Matlab’s two custom Timer classes versus Swing’s standard
javax.swing.Timer (Section 5 .8)?

 18 . How can the com.mathworks.ide.filtermgr.FilterEditor class be used
(Section 5 .8 .3)?

 19 . Is it possible to access a uicontrol’s underlying Java peer’s reference without needing
to scan the Java frame hierarchy using FindJObj (Chapter 6)?

 20 . Is it possible to set an editbox’s Document property to a StyledDocument in order
to implement HtMl markup or syntax highlighting (Section 6 .5 .1)?

 21 . Why does Matlab insist on calling its scrollbar uicontrol “slider” instead of
 “scrollbar” and why does it not have an actual slider control (Section 6 .8)?

 22 . Is there an accessible underlying Java peer object for uipanel (Section 6 .11)?
 23 . How can the Java frame’s native HWND values be used to modify the frame’s

 appearance (Sections 7 .1 .4 and 7 .3 .7)?
 24 . are axes Handle-Graphics underlying objects accessible (via the JaWt canvas or else-

where) (Section 7 .3 .1)?
 25 . Is it possible to set a transparent Swing component such that the axes behind it would

appear (Section 7 .3 .3)?1

 26 . Is it possible to synchronize help browser’s tOC with the displayed page?2

 27 . Is it possible to undecorate a Matlab figure window (Section 7 .3 .7)?
 28 . What is the purpose of the second flag argument in jDesktop .closeGroup() (Section

8 .1 .1)?
 29 . What is the purpose of jDesktop .getDocumentContainment() (Section 8 .1 .1)?
 30 . Is it possible to reload tab-completion definitions in the current Matlab session,

without being required to restart Matlab (Section 8 .3 .4)?
 31 . What is the purpose of the third string argument in editorservices . openDocu-

mentToFunction() (Section 8 .4 .1)?
 32 . Why is coveragerpt undocumented (having a help section but no doc page or online

help), while the Coverage Report that it launches is fully documented (Section 8 .7 .1)?
 33 . What is the purpose of jProfiler’s *Parallel() methods (Section 8 .7 .1)?
 34 . What is the purpose of GUIDE’s layoutChangeDefaultCallback and layoutQuick

Starttab preference properties (Section 8 .7 .3)?
 35 . Is it possible to modify existing UDD objects’ meta-properties, for example, SetFunction

(appendix b)?

References

 1 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/248051 (or http://bit .ly/cEjXRQ) .
 2 . http://www .mathworks .com/matlabcentral/newsreader/view_thread/265127 (or http://bit .ly/deYzhK) .

K13163_Book.indb 640 11/8/2011 8:10:45 PM

© 2012 by Taylor & Francis Group, LLC

www.mathworks.com
http://bit.ly

641

Index

A

abstract Windowing toolkit (aWt), 6, see also
java.awt.*

accessFlags, see Uniform Data Definition (UDD),
AccessFlags

accessibility functionality, 248
accessibility attributes, 621
actionPerformedCallback

in buttons, 101, 114–117, 195, 358, 362, 365,
385, 617

in checkboxes, 114, 208, 218
in combo-boxes, 114, 284–285, 413, 416, 480
in edit-boxes, 377, 386
in menu items, 132, 188, 215, 221, 231, 405
in other GUI controls, 590–591

actions, 19, 356, see also java.awt.event.
ActionEvent; javax.swingActionMap

Running built-in editor/desktop actions,
521–524

activeX, 62, 134, 144, 196, 451–453
addlistener, 21, 419, 430, 630
adjustmentValueChangedCallback, 89, 380, 419
alignment, see HorizontalAlignment;

VerticalAlignment
alpha, see Transparency (alpha channel)
alwaysOntop, see JavaFrame, AlwaysOnTop
ancestoraddedCallback, 112, 209
ancestorMovedCallback, 112
ancestorRemovedCallback, 112
ancestorResizedCallback, 112
anti-aliasing, 47–48, 267, 389–390
array Editor, see Desktop, Variable (Array) Editor
aRRaY4J, 546, 548, 569–570
arrayDeque, 58
autoCompletionList, see com.mathworks.

widgets.AutoCompletionList
autoMnemonicEnabled, 244–245, 251–252, 359,

363–364, 366
aWt, see Abstract Windowing Toolkit (AWT)
awtcreate, 6, see also Java Native Interface (JNI)
awtinvoke, 16–17, see also Java Native

Interface (JNI)

axisCanvas, see com.mathworks.hg.peer.
AxisCanvas

B

basic linear algebra Subprograms (blaS),
567

bDE, see Block Diagram Editor (BDE)
Beanadapter, 117, 461
binary large Object (blOb), see Database.

Binary Large Object (BLOB)
blaS, see Basic Linear Algebra Subprograms

(BLAS)
blOb, see Binary Large Object (BLOB)
block Diagram Editor (bDE), 247, 346
border, 99, 208

callback after change of, 114
compound border, 371–372
flashing, 449
JIDE extensions, 320
missing in combo-box, 412–413
removal of, 101, 358–359, 371, 617
rollover effect, see RolloverEnabled
in Matlab uicontrols, 357–363, 371–372, 375,

420, 423–424, 446
BorderFactory, see javax.swing.BorderFactory
BorderLayout, see java.awt.BorderLayout
browser, see Web browser
BufferedImage, see java.awt.image.

BufferedImage
Busyaffordance, 269, 296–297
button control

Java button, see javax .swing.JButton; com.
mathworks.mwswing.MJButton

Matlab push button, see Push button
Matlab radio button, see Radio button
Matlab toggle button, see Toggle button

byte-code, 626

C

CallbackProperties, 22, 26, 116–117, 226,
334–335, 628

K13163_Book.indb 641 11/8/2011 8:10:45 PM

© 2012 by Taylor & Francis Group, LLC

Index642

Callbacks, 634, see also Events
chaining, 429, 579
in GUI controls, see within the specific

components (e.g., uitable,
callbacks)

inspecting, 114, 189, 246, 445, 449–450, 514
interactive callbacks editor, 271
in UDD objects, 628–631, 634–635

Caret, 372–377, 380
CaretblinkRate, 105, 262, 372
CaretPosition, 372–376, 380, 386, 498,

511–512, 519–520, 524
CaretPositionChangedCallback, 114, 168, 181,

362, 377, 416, 498
CaretUpdateCallback, 114, 377, 498

CCP, see Cut-copy-and-paste (CCP)
Cell Editor

BooleanCheckBoxCellEditor, see com.
jidesoft.grid.BooleanCheckBoxCellEditor

CellEditorManager, see com.jidesoft.grid.
CellEditorManager

ColorCellEditor, 166, see also uitable, Cell
Editor

DefaultCellEditor, see javax.swing.
DefaultCellEditor

DefaultTreeCellEditor, see javax.swing.
tree.DefaultTreeCellEditor

JIDE’s pre-defined cell-editors, 331–334
ListComboBoxCellEditor, 333
LookupFieldCellEditor, 164–165
need for manual setup, 93, 117
SpinnerCellEditor, see com.jidesoft.grid.

SpinnerCellEditor
Cell Renderer, 396

CellRenderer property, 404
CellRendererManager, see com.jidesoft.

grid.CellRendererManager
CheckBoxTreeCellRenderer, see com.

mathworks.mwswing.checkboxtree.
CheckBoxTreeCellRenderer

ColorCellRenderer, 166
ColoredFieldCellRenderer, 163
DefaultListCellRenderer, see javax.

swing.DefaultListCellRenderer
DefaultTableCellRenderer, see javax.

swing.table.DefaultTableCellRenderer
DefaultTreeCellRenderer, see javax.

swing.tree.DefaultTreeCellRenderer
KBytesCellRenderer, 525–527
LabelListBoxCellRenderer, 401
ListCellRenderer, see javax.swing.

ListCellRenderer
need for manual setup, 93, 117
StyledListCellRenderer, see com.

jidesoft.list.StyledListCellRenderer

StyledTableCellRenderer, see com.
jidesoft.grid.StyledTableCellRenderer

StyledTreeCellRenderer, see com.
jidesoft.tree.StyledTreeCellRenderer

TableCellRenderer, 333, 525–527
CellEditCallback, 157, 166–167
Character large Object (CLOB), see Database,

Character Large Object (CLOB)
Checkbox, 367–370

alignment, 370
look and feel, 102, 368, see also Look and Feel

(L&F, LNF, PLAF)
tri-state, 90, 252, 265, 321, 368–369

CheckBoxList
JIDE component, see com .jidesoft.swing.

CheckBoxList
Matlab component, see com .mathworks.

mwswing.checkboxlist.CheckBoxList
CheckBoxTree

JIDE component, see com .jidesoft.swing.
CheckBoxTree

Matlab component, see com.mathworks.
mwswing.checkboxtree.CheckBoxTree

checkClass, 244
Class-files, see Byte-code
classhandle, 23, 430, 563, 627–636
Classloader, 8, 28–29, 36, 63–64, 105, 553, 565
Classmexer, 11, 34, 527
Classpath

classpath.txt, see Classpath, static
in debugging, 31, 33
dynamic, 7–9, 24, 31, 63
Java, 7–11, 28, 626
javaaddpath, 7–8, 10, 28, 63–64, 120, 126
javaclasspath, 7, 10, 28, 64
javarmpath, 8
location, 28
order, 8
static, 7–9, 24, 28, 31, 63–64, 90, 120, 129, 242
size limitation, 9

clear import, 7
clear java, 10
Click, see Mouse, programmatic control of
ClickedCallback, 203, 205, 213–216, 220, 223
ClickThroughStyledLabel, see com.jidesoft.

swing.StyledLabel
ClOb, see Database, Character Large Object

(CLOB)
ClosablePanelContainer, see com.

mathworks.widgets.
ClosablePanelContainer

ClosablePanel, see com.mathworks.widgets.
ClosablePanel

ClosableToolTip, see com.mathworks.widgets.
ClosableToolTip

K13163_Book.indb 642 11/8/2011 8:10:46 PM

© 2012 by Taylor & Francis Group, LLC

643Index

CloseOnEscapeEnabled, 257, 458, 476
Code-flow statements, 625
Collection, see Java Collections
Color selection components, 275–283

ColorCellEditor, see Cell Editor,
ColorCellEditor

com.jidesoft.combobox.
ColorComboBox, 165, 280, 324

com.mathworks.beans.editors.
ColorPicker, 275–277

com.mathworks.hg.util.
dColorChooser, 283, 339

com .mathworks .mlwidgets .graphics .
ColorDialog, 275, 281–283

com.mathworks.mlwidgets.
graphics.ColorPicker, 275,
277–280, 282

com.mathworks.mwswing.
MJColorChooser, 266

com.mathworks.mwswing.
MJColorComboBox, 260, 280, 283

com.mathworks.widgets.color.
ColorPicker, 308

javax.swing.JColorChooser, 87, 275,
281, 283

ColoredFieldCellRenderer, 163
ColorFilter, see com.jidesoft.icons.ColorFilter
ColorUtils, see com.mathworks.mwswing.

ColorUtils
COM, see Component Object Model (COM)
com.jidesoft.*, see JIDE
com.jidesoft.action, 320
com.jidesoft.alert .alert, 322
com.jidesoft.animation .Customanimation,

322
com.jidesoft.combobox.*, 324–326

CalculatorComboBox, 320, 324
CalendarViewer, 249, 319, 336–337, see also

Date selection components
ColorComboBox, 165, 280, 283, 324, see also

Color selection components
DateChooserPanel, 336–337, see also Date

selection components
DateComboBox, 324–325, 336, 339, see also

Date selection components
DateSpinnerComboBox, 325, 336, 339, see

also Date selection components
FileChooserComboBox, 325
FolderChooserComboBox, 325
FontChooserPanel, 302–303, see also Font

selection components
FontComboBox, 302, 325, see also Font

selection components
InsetsComboBox, 325
ListComboBox, 325

MonthChooserPanel, 336–337, see also
Date selection components

MonthComboBox, 325, 336, see also Date
selection components

MultilineStringComboBox, 325
MultiselectListComboBox, 326
TableComboBox, 325
TreeComboBox, 325

com.jidesoft.dialog, 321
com.jidesoft.docking, 322
com.jidesoft.document.DocumentPane,

321
com.jidesoft.field.*, 326

creditcard.CreditCardTextField,
326

IPTextField, 326
com.jidesoft.grid.*, 323

BooleanCheckBoxCellEditor, 331–332
CategorizedTable, 323
CellEditorManager, 334
CellRendererManager, 334
CellSpan, 174
CellSpanTable, 310, 323
CellStyleTable, 323
ContextSensitiveTable, 323
DefaultProperty, 329
DefaultSpanTableModel, 174
EditorContextSupport, 332
GroupTable, 310
JideTable, 323
HierarchicalTable, 323
NavigableTable, 323
PropertyPane, 330
PropertyTable, 323, 330
RowHeights, 173
SpinnerCellEditor, 331–333
SortableTable, 155, 170, 259, 310, 323
SortableTableModel, 171, 174
StyledTableCellRenderer, 163
TableUtils, 169, 173, 263, 323, 328, see also

com.mathworks.mwswing.TableUtils
TreeTable, 323, 450

com.jidesoft.hints.IntelliHints, 320,
see also com.mathworks.widgets.
AutoCompletion

com.jidesoft.hssf.HssfTableUtils,
326

com.jidesoft.icons.ColorFilter, 321, see
also Icons

com.jidesoft.list, 323–324
com.jidesoft.pane, 306, 321
com.jidesoft.plaf, 103–104, 322, see also

Look and Feel (L&F, LNF, PLAF)
com.jidesoft.status.StatusBar, 321,

see also Status bar

K13163_Book.indb 643 11/8/2011 8:10:46 PM

© 2012 by Taylor & Francis Group, LLC

Index644

com.jidesoft.swing, 320–321
CheckBoxList, 263, 320, see also com .

mathworks.mwswing.checkboxlist.
CheckBoxList

CheckBoxTree, 264, 320, see also com .
mathworks.mwswing.checkboxtree.
CheckBoxTree

FolderChooser, 321, see also com.
mathworks.mwswing.dialog.
MJFolderChooser

JideSwingUtilities, 321, 390
MultilineLabel, 320, see also com.

mathworks.swing.MJMultilineLabel;
com.mathworks.hg.peer.utils.
MultilineLabel

StyledLabel, 163, 293–294, 321, 323–324,
see also Syntax highlighting

StyledLabelBuilder, 293, see also Syntax
highlighting

TristateCheckBox, 321, see also Checkbox,
tri-state

com.jidesoft.tipoftheday.
TipOfTheDayDialog, 322

com.jidesoft.tooltip.BaloonTip, 319, 322
com.jidesoft.tree .treeUtils, 183, 263, 323,

see also com.mathworks.mwswing.
TreeUtils

com.jidesoft.wizard, 322
com.mathworks.desktop, 344
com.mathworks.hg.peer.* .

activeXCanvas, 444, 453
axisCanvas, 450–453, 579
CheckboxPeer, 367
ComboboxPeer, 407, 410
DebugUtilities, 341–343, see also com.

mathworks.util.Log
EditTextPeer, 371, 373, 377–378, 387
FigureaxisComponentProxy, 444–445,

451
FigureClientProxy, 444–445, 468
FigureComponentContainer, 443–445,

451–453
FigureFrameProxy, 343, 443–444, 456–457
FigureMenuBar, 444, 455–456
FigurePanel, 444–445, 451–454, 457
FigurePeer, 436, see also Java Frame
FramePeer, 422
HeavyweightLightweightContainer-

Factory[Q2], 445, 453
HGPanel, 84–85, 190, 453
LabelPeer, 419–420, 423
ListboxPeer, 390–391
MenuPeer, 444
PushButtonPeer, 86, 243, 357–358, 363,

453, 461

RadioButtonPeer, 365–366
SliderPeer, 416
SplitButtonPeer, 215
ToggleButtonPeer, 354, 365
ToggleSplitButtonPeer, 215
UIComponentHeavyweightContainer,

453
UITabGroupPeer, 190, 192
UitablePeer, 156, 160, 170
UITreeNode, 179–183, 189
UITreePeer, 177, 179, 187, 189, 255, 447
ui.table.RowHeader, 159
ui.UITablePeer$2, 159
utils.MJMultilineText, 377
utils.MultilineLabel, 419, see also com.

mathworks.mwswing.MJMultilineLabel;
com.jidesoft.swing.MultilineLabel

utils.UIMJTree, 176, 189, see also com.
mathworks.mwswing.MJTree

utils.UIScrollPane, 159, 377–378, 391
com .mathworks .hg .util .*

dColorChooser, see Color selection
components

StringScrollListChooser, 339
com.mathworks.jmi.*, 549–553, see also

Java-to-MATLAB Integration (JMI)
aWTUtilities, 356, 457, 553
bean, 637
ClassLoaderManager, 64, 553
CompletionObserver, 551
Matlab, 548–552, 557
MatlabException, 552, 557
MatlabLooper, 550, 552, 557
MatlabPath, 480, 553
MLFileUtils, 553
NativeMatlab, 550, 552, 557
Support, 553–554
types, 637

com.mathworks.mde.*, 273, 344, see also
Desktop

cmdhist.CmdHistory, 312
cmdhist.CmdHistoryWindow, 312, 469, 474
cmdwin.CmdWin, 312, 469–470
cmdwin.CmdWinDocument, 485
cmdwin.XCmdWndView, 485
cmdwin.CmdWinSyntaxUI, 487
desk.MLDesktop, 105, 235, 311, 438, 464,

473, 478
desk.MLMainFrame, 5, 470, 475
desk.MLMultipleClientFrame, 5, 506,

513–514
editor.MatlabEditor, 511
editor.MatlabEditorapplication,

312, 469
filebrowser.FileBrowser, 474

K13163_Book.indb 644 11/8/2011 8:10:46 PM

© 2012 by Taylor & Francis Group, LLC

645Index

find.FindFiles, 533
help.HelpBrowser, 314, 469
inspector.Inspector, 316
profiler.Profiler, 474, 529
webbrowser.WebBrowser, 495
workspace.WorkspaceBrowser, 469

com.mathworks.mlservices.*, 247, 271,
310–318

FileExchangeServices, 311, 318
MatlabDebugServices, 311
MatlabDesktopServices, 311, 314, 318,

464, 474
MLarrayEditorServices, 311, 537, 539
MLCommandHistoryServices, 311–312
MLCommandWindowServices, 312
MLEditorServices, 312, 314, 507–508,

510, 521
MLExecuteServices, 311–314
MLHelpServices, 314–315, 474, 494
MLInspectorServices, 315–316
MLLicenseChecker, 310, 317
MLPathBrowserServices, 317
MLPrefsDialogServices, 317–318
MLServicesRegistry, 310
MLWorkspaceServices, 318, 474

com.mathworks.mlwidgets.*, 247, 268–286
actionbrowser.*, 268
array.*, 268
configeditor.*, 268
cwd.CwdDisplayPanel, 268
debug.*, 269
dialog.*, 269–270
explorer.*, 270
graphics.*, 270, 277–286, 308
help.*, 270, 490
html.*, 270–271, 491–497
inspector.*, 271, 328, 449
interactivecallbacks.*, 271
io.*, 271
mlservices.scc.*, 271–273
path.PathUtils, 272
prefs.*, 272–273
shortcuts.*, 274, 481–482
stack.*, 274
tabcompletion.*, 274, see also Tab

completion
tex.*, 274
text.mcode.*, 274, 309
util.*, 274, 340
workspace.*, 274–275, 528

com.mathworks.mwswing.*, 7, 90, 242–247,
250–266, 287, 621

binding.KeyBindingManager, 524
checkboxlist.CheckBoxList, 263–265,

see also com .jidesoft.swing.CheckBoxList

checkboxtree.CheckBoxTree, 264–265,
see also com .jidesoft.swing.CheckBoxTree

checkboxtree.
CheckBoxTreeCellRenderer, 368

checkboxtree.DefaultCheckBoxNode,
264

checkboxtree.SelectionState, 252,
265, 369

checkboxtree.TriStateButtonUI, 252,
265, 368–369, see also Checkbox,
tri-state

ColorUtils, 263
DefaultSortableTable, 259
desk.*, see com.mathworks.mwswing.desk.*
dialog.MJFolderChooser, 257, see also

com.jidesoft.swing.FolderChooser
EdtExceptionHandler, 19
FileExtensionFilter, 256
FontUtils, 263
IconUtils, 230
MJButton, 86, 90, 246, 251, 287, 357,

617, 624
MJButtonGroup, 266
MJCheckBox, 252, 266–267, 367–370
MJCheckBoxMenuItem, 228
MJColorChooser, see Color-selection

components
MJColorComboBox, see Color-selection

components
MJComboBox, 252, 407, 409–416
MJComponent, 266
MJCornerGrip, 232, 258–259, 513, see also

com.mathworks.mwswing.MJGrip
MJDialog, 257, 306, 491
MJDimensionPicker, 261
MJEditorPane, 257, 298
MJFileChooser, 256–257, 316
MJFolderChooser, see com.mathworks.

mwswing.dialog.MJFolderChooser
MJFormattedTextField, 252
MJFrame, 5, 257
MJGotoDialog, 243, 257
MJGrip, 258, see also com.mathworks.

mwswing.MJCornerGrip
MJLabel, 253, 261, 420–422
MJLayeredPane, 266
MJList, 252, 263, 390–406
MJMenu, 243, 266, 455
MJMenuBar, 253
MJMenuItem, 253, 280, 455
MJMultilineCheckBox, 261
MJMultilineLabel, 261, see also com.

jidesoft.swing.MultilineLabel; com.
mathworks.hg.peer.utils.MultilineLabel

MJMultilineRadioButton, 243, 261

K13163_Book.indb 645 11/8/2011 8:10:47 PM

© 2012 by Taylor & Francis Group, LLC

Index646

com.mathworks.mwswing.* (continued)
MJMultilineText, see com.mathworks.hg.

peer.utils.MJMultilineText
MJMultilineToggleButton, 261
MJOptionPane, 243, 246, 257, 306
MJPanel, 232, 258, 266, 444–445, 452, 454
MJPanel extensions, 290, 299, 301, 306, 422
MJPopupMenu, 215, 266, 289
MJProgressBar, 266
MJRadioButton, 252, 365
MJScrollBar, 266, 417
MJScrollPane, 190, 253, 259, 263–264, 288,

294, 377, 380, 391
MJScrollStrip, 243, 262
MJSlider, 243–245, 266
MJSpinner, 243, 250–251, 266
MJSplitPane, 255
MJStatusBar, 232, 258–259, 288, 476
MJTabbedPane, 253
MJTable, 155, 160, 253, 260, 288
MJTextarea, 257
MJTextField, 252, 371, 412
MJTextPane, 257, 377
MJTiledPane, 262
MJToggleButton, 243–245, 251, 365, 444,

454
MJToolBar, 206–211, 243–246, 254, 444, 448,

454, 513–514
MJTree, 176, 255, 260, 264–265, see also com.

mathworks.hg.peer.utils.UIMJTree
MJTreeTable, 260
MJStatusBar, 232–233, 258–259, 476
MJUtilities, 4, 169, 262–263, 328–330,

449
MJWindow, 266
MouseUtils, 263
Painter, 364–365
plaf.PlafUtils, 104
SimpleDOMParser, 263
ScrollablePopupList, 243
TableUtils, 173, 263, 323, see also com.

jidesoft.grid.TableUtils
TreeUtils, 183, 263, 323, see also com.

jidesoft.tree.TreeUtils
com.mathworks.mwswing.desk.*, 266, see

also Desktop
Desktop, 470
DTClientFrame, 444, 513
DTDocumentBar, 513
DTDocumentContainer, 513
DTInternalFrame, 444
DTLocation, 466, 472–473, 480
DTRootPane, 444, 456, 459
DTTitleButton, 444, 456
DTToolbarContainer, 444, 454, 513–414

com.mathworks.mwt.*
MWCheckbox, 90, 266–267, 369
MWRuler, 267

com.mathworks.page.utils.
ClipboardHandler, 340

com.mathworks.services.*
antialiasedFontPrefs, 340, 390
binding.MatlabKeyBindings, 340
ColorPrefs, 484, 486
Prefs, 340, 483–484, 486, 488

com.mathworks.util.*
log, 343, see also com.mathworks.hg.peer.

DebugUtilities
PlatformInfo, 42, 340
Range, 340
StringUtils, 340
Timer, 340

com.mathworks.webintegration.*, 247,
257, 340, 390

com.mathworks.widgets.*, 287
autoCompletionList, 296, see also com.

jidesoft.hints.IntelliHints
Busyaffordance, 269, 296–297
ClosablePanel, 306–308
ClosableToolTip, 287, 304
datatransfer.*, 308, see also Drag

and Drop (DND)
DesktopFontPicker, 299–300, see also

Font selection components
Dialogs, 303–306
DropdownButton, 289–290
FileExtensionsPanel, 295
find.FindClientInterface, 309
fonts.FontDialog, 300, see also Font

selection components
FormPanel, 290–292, 294, 320, 344, 370, see

also JGoodies; com.jidesoft.swing.
LabeledTextField

glazedlists.*, 172, 248, 309
grouptable.*, 310
HyperlinkTextLabel, 298, 422
incSearch.*, 310, 505
LightButton, 287–288, 304
LightScrollPane, 288
LightweightWindow, 288
SearchTextField, 297
SyntaxDelimiterPanel, 295, see also

Syntax highlighting
SyntaxTextLabel, 292–293, see also

Syntax highlighting
SyntaxTextPane, 271, 294–295, 375, see

also Syntax highlighting
text.*, 310
TextPrintPanel, 299
wizard.*, 310

K13163_Book.indb 646 11/8/2011 8:10:47 PM

© 2012 by Taylor & Francis Group, LLC

647Index

com.mysql.jdbc.Driver, see Database, JDBC
driver initialization

Combobox (drop-down, pop-up)
callbacks, 114, 416, 480
as Cell Editor, 163–166, 332–333
data model, 411
dynamic tooltip, see Tooltip, Dynamic
Editable, 91, 163, 176, 408–412, 416, 425–426,

613, see also Editable
Editor, 412–413
HtMl support, 106, 109, 407
images in, 107, 414–415
look and feel, 407, see also Look and Feel

(L&F, LNF, PLAF)
MaximumRowCount, 165, 408, 414
PopupPanel, 303, 324, 338
PopupVisible, 409
PopupWidthConstrained, 252, 409–410
scrollbars, see Combobox (drop-down, pop-up),

MaximumRowCount
SelectedIndex, 218, 280, 408, 410
SelectedItem, 165, 218, 284–285, 339–340,

403–404, 410–411
SelectedValue, 339–340
selection, 135, 408, 410, 416, see also Selection
SelectionColor, 374
specialized Combobox, 324–326
tipWhentruncatedEnabled, 252, 410, 426

Command History, 311–312, 465–466, 470, 472,
474, 478, 486

Command Window (CW), 311–312, 484–506
bidi (Rtl) support, 373
callbacks, 498, 514
closing, 311, 465, 474
colors, 486–490
command history, see Command History
commandwindow, 224, 474
desktop, see Desktop
displaying, 311, 465, 474
Document, 485, 487, 489
and EDt, 19, 523–524, see also Event Dispatch

Thread (EDT)
focus, 312
help popup, 490–497
HWND, 466
hyperlinks in, 487, 491
and Java exceptions, 19
and Java objects display, 10
and Java print-outs, 29, 443, 623
and Java warnings, 26, 95, 466
and JMI, 548, 551, 556, 559, see also Java-to-

MATLAB Interface (JMI)
JTextarea, 484–485
keyboard bindings, see Editor, Keyboard

bindings

layout, 477–480
Matlab 6 VS . Matlab 7, 27, 235, 464, 479,

485, 505–507, 518, 520, 524
menus, 523
preferences, 272–273, 486–488
prompt, 497–501
running action macros, 519–521
search/replace, 310, 505
status bar, see Status bar
tab completion, 501–505
text, 485
text selection 506, see also Selection
title, 273, 470, 506, see also Desktop, Title
uses of, 505–506
wrapping text, 312

Complex data structures, 56–60
enumerators, 60–61
Hashtable, 59–60
Java collections, see Java Collections

Component callbacks, 111–118
CallbackProperties, see CallbackProperties

ComponentaddedCallback, 112, 518
ComponentHiddenCallback, 112
ComponentMovedCallback, 112
ComponentRemovedCallback, 112, 497, 539
ComponentResizedCallback, 112
ComponentShownCallback, 112

input parameters, 117
Java reference of, 115
and javacomponent, 117

Component Object Model (COM), 8, 544
constructor, 4–5, 355, 622–623, 635
containers.Map, 56, 58
Contenttype, 294, 382–383, 385, 388–389
Corner grip, see com.mathworks.mwswing.

MJCornerGrip
cprintf, 483, 489, 497
Cursor, see Mouse, programmatic control of
Cut-copy-and-paste (CCP), 134, 223, 295, 308, 340,

376
CW, see Command Window (CW)
CwdDisplayPanel, 268

D

Data transfer (Dt), see Drag and Drop (DND),
data transfer mechanism

Database
apache Derby, 63, 65, 67
binary large Object (blOb), 67, 71
Character large Object (ClOb), 67, 71
connecting to database, 65–66
connection strings, 65
Java Database Connectivity (JDbC), 62,

see also java.sql.Connection

K13163_Book.indb 647 11/8/2011 8:10:47 PM

© 2012 by Taylor & Francis Group, LLC

Index648

Database (continued)
JDbC driver initialization, 63–64
Microsoft access, 62, 65, 67
Microsoft SQlServer, 65, 67
MySQl, 63–65, 67, 71
ODbC connection, 62–63, 65
Oracle Db, 65, 67, 71
Oracle MySQl, 65
PostgreSQl, 61
Result set, processing, 67–71, see also java.sql.

ResultSet
SQl request, sending, 66–67, see also java.sql.

Statement
DataChangedCallback, 156, 166–167, 187
datacursormode, 246
DataFlavor, see Drag and Drop (DND),

DataFlavor
Date selection components, 147, 336–339
DCt, see Distributed Computing Toolbox (DCT)
DDE, see Dynamic Data Exchange (DDE)
debugging Matlab-Java, 30

using Eclipse, 31
using Netbeans, 32

DebugUtilities, see com.mathworks.hg.peer.
DebugUtilities

Defaultactions, see Drag and drop (DND),
DefaultActions

DefaultCloseOperation, 456, 458
DefaultSortableTable, see com.mathworks.

mwswing.DefaultSortableTable
Deque, see Double-ended queue (Deque)
Desktop, see also com.mathworks.mde.*; com.

mathworks.mwswing.desk.*
callbacks, 19
Command History, see Command History
Command Window, see Command Window (CW)
Desktop Frame, 475–477
Editor, see Editor
Enabled, 476
File-finder dialog, 532–533
groups, 464
GUIDE, see Graphical User Interface Design

Editor (GUIDE)
Java desktop object, 464–474
organizing sub-components, 477–480
preferences, 482–484
Profiler, see Profiler
shortcuts, 274, 480–482, 516
Status bar, 235, 473, 476–477, see also Status bar
title, 273, 438, 469, 476, 506, see also Command

Window (CW), Title
toolbars, 254, 454, 480–482
Variable (array) Editor, 537–539, see also com.

mathworks.mlwidgets.array
Workspace, see Workspace

DesktopFontPicker, see com.mathworks.
widgets.DesktopFontPicker

Distributed Computing toolbox (DCt), 46,
530, 547

DND, see Drag and Drop (DND)
Docking, 437–439, 456

in compiled (deployed) applications, 7, 456
of desktop windows (“Clients”), 465–466, 469,

471–473, 529, see also Desktop
of Matlab Editor documents, 506, 513, 515,

see also Editor
“floating” figure toolbars, 209–210, see also

Toolbar
icon, 438, 444, 456
JIDE, 249, 319–320, 322, see also com.jidesoft.

docking
Programmatically, 438
setFigDockGroup, 439
and X11 on Macs, 41

doClick, see Mouse, programmatic control of
Document

in editboxes, see Editbox, Document
in the Matlab Editor, see Editor, documents
in Command Window, see Command Window,

Document
Double-ended queue (Deque), 57–59
Drag and Drop (DND), 134–143

callbacks, 136
configuration, 134
DataFlavor, 136–142
data transfer mechanism, 134–138, 308
Defaultactions, 136
DndEnabled, 135
DragEnabled, 134, 139, 255, 375
DragEnterCallback, 136, 141, 477
DragExitCallback, 136, 141, 477
DragOverCallback, 136, 139, 141, 477
DropCallback, 134, 136, 139, 141, 477
DropMode, 135, 376
Droptarget, 135–137, 139–141, 376
DroptargetContext, 136–137
DropTargetDragEvent, 142
DropTargetDropEvent (dtde), 136–137,

140–141
FlavorMap, 136
Matlab application example, 138–142

Drop-down, see Combobox (drop-down, pop-up);
Popup Menu

DropdownButton, see com.mathworks.widgets.
DropdownButton

DropMode, see Drag and Drop (DND), DropMode
Droptarget, see Drag and Drop (DND),

DropTarget
DroptargetContext, see Drag and Drop (DND),

DropTargetContext

K13163_Book.indb 648 11/8/2011 8:10:47 PM

© 2012 by Taylor & Francis Group, LLC

649Index

DropTargetDropEvent (dtde), see Drag and
Drop (DND), DropTargetDropEvent (dtde)

Dt, see Data Transfer (DT)
dtde, see Drag and Drop (DND),

DropTargetDropEvent (dtde)
DTLocation, see com.mathworks.mwswing.desk.

DTLocation
DTRootPane, see com.mathworks.mwswing.desk.

DTRootPane
DTToolBarContainer, see com.mathworks.

mwswing.desk.DTToolbarContainer
Dynamic Data Exchange (DDE), 544–545

E

Eclipse, 28, 30–31, 33, 103–104, 146, 546, 548,
626, see also NetBeans

Editable
comboboxes, see Combobox (drop-down,

pop-up), Editable
editboxes, see Editbox, Editable
DefaultProperty, 329, see also com.

jidesoft.grid.DefaultProperty
JEditorPane, 110, 389, see also javax.swing.

JEditorPane
Matlab Editor documents, see Editor, Editable
spinners, 251
SyntaxTextPane, 294, see also com.

mathworks.widgets.SyntaxTextPane
uitable, see uitable, Editable
uitree, see uitree, Editable
Variable (array) Editor document, 539, see also

Desktop, Variable (Array) Editor
Editbox, 370–390, see also Text field

anti-aliasing, see Anti-aliasing
border, 371, see also Border
callbacks, 373–374, 377, 379–380, 383, 386
Caret, 372–374, see also Caret
colors, 374
Document, 375, 384–386
Editable, 372, 380, 383, see also Editable
Enabled, 372, 380, see also Enabled
HtMl support, 110, 370
hyperlinks in, 383
images in, 381–382, 385
JEditorPane, 110, 389–390, see also javax.

swing.JEditorPane
look and feel, 370–371, see also Look and Feel

(L&F, LNF, PLAF)
multi-line, 110, 294, 370–371, 373, 375,

377–389, 489
scroll pane, 371, 376–379, 387, see also Scrollbars
ScrollOffset, 375
SearchTextField, see com.mathworks.

widgets.SearchTextField

StringScrollListChooser, see com.
mathworks.hg.util.
StringScrollListChooser

selection, 372–374, 376–377, 386–387, 422, see
also Selection

single-line, 371–377, 412, see also com.
mathworks.mwswing.MJTextField

spinner, see Spinner
tipWhentruncatedEnabled, see Tooltip,

TipWhenTruncatedEnabled
wrapping text, 257, 378, 386–387

Editor, 506–524
active document, 469–470, 507–508
caret position, 505, 519–520
components hierarchy, 512–514
document arrangement, 262, 466–467, 472–473
document, close, 509–511
document, new, 509, 511
document, open, 509–511
document, save, 510, 521
document, show, 473
document text, modifying, 505, 508, 511–512,

516–518, 524
document text, retrieving, 508
document text, searching, 505, 522–533, see

also com.mathworks.widgets.incSearch
document text, selection, 508, 511–512, 521,

524, see also Selection
documents bar, 262, 467–468
documents list, 507–509
Editable, 511–512
EditorMacro, 515
EditorServices, 507–511
Find-files dialog, 532–533
frame object, 512–515
Java editor, see Eclipse; NetBeans
keyboard bindings, 340, 515–524
Matlab 6 vs . Matlab 7, 506, 524
Matlab editor, 212, 262, 295, 506
matlab.desktop.editor, see Editor,

EditorServices
menu, 512–513, 515, 521, 523
running action macros, 519–521
status bar, 512–513, 515, see also Status bar
Syntax highlighting, see Syntax highlighting
title, 507, 515

EditorContext, 329, 332–333
EditorKit, 381–382, 384–389
EditorMacro, 515–524

ComponentaddedCallback property, 518
KeyPressedCallback property, 516, 518
Matlab 6 vs . Matlab 524
running action macros, 519–521
screenshot of, 519

EDt, see Event Dispatch Thread (EDT)

K13163_Book.indb 649 11/8/2011 8:10:48 PM

© 2012 by Taylor & Francis Group, LLC

Index650

Enabled, 459
closable panels, see com.mathworks.widgets.

ClosablePanel
desktop, see Desktop, Enabled
editbox, see Editbox, Enabled
Figure window, see JavaFrame, Enabled
hyperlink label, see com.mathworks.widgets.

HyperlinkTextLabel
listbox item, see Listbox, Enabled
menu item, see Menus, Enabled, item
plot axes, 451
toolbar button, see Toolbar, Enabled,

button
tooltips, see Tooltip, Enabled
uitab, 193–193, see also uitab
uitable, 156, see also uitable

Enumeration (“enum”), 35–36, 133, 136, 278, 287,
296, 303–304, 332, 341, 360, see also
java.util.EnumSet; java.util.EnumMap

Enumerator, see Iterator
EnumMap, see java.util.EnumMap
EnumSet, see java.util.EnumSet
Environment variables

COMPUtERNaME, 517
getenv, 517
JaVa_JVM_VERSION, 38–39
lD_lIbRaRY_PatH, 565–566, 568
Matlab_JaVa, 39–40
PatH, 546, 569
setenv, 39
USERNaME, 517

Event Dispatch thread (EDt), 91–96
autodelegation, 6
awtcreate, see awtcreate
awtinvoke, see awtinvoke
check if running on, 262
deadlocks, 91, 96, 560
debugging, 95
delayed (asynchronous) method invocation,

262
delayed-action (asynchronous) callback, 17
exceptions, 19, 524
and Java method invocation, 16–17
and Java object creation, 6
and javacomponent, 93, see also

javacomponent
javaMethodEDT, see javaMethodEDT
javaObjectEDT, see javaObjectEDT
in Matlab R2008a (7 .6), 6
and program pauses, 83, 93
and safe programming, 25, 83, 92
and subcomponents, 94
thread safety, 96
warnings, 47, 95, 262, 466

EventQueue, see java.awt.EventQueue

Events, see also Callbackscommon Swing events,
89, 111–118

Java events as Matlab callbacks, 19–24, 86
Exception

in drag and drop, 137, 140, see also Drag and
Drop (DND)

Event Dispatch thread (EDt), see Event
Dispatch Thread (EDT), exceptions

generic Java exception handler, 626, 401
generic Matlab exception handler, 312
in hidden components, 83, 227
Java, 625–626
Java class declaration of potential exceptions,

14, 626
look and feel, 104, see also look and Feel

(L&F, LNF, PLAF)
and Matlab errors, 18–19
programmatic use of, 114
and safe programming, 25, 70, 242, 312, 459
UDD, 627

F

FEX, see File Exchange, MATLAB (FEX)
FIFO, see First-in-first-out (FIFO)
Figure window, see Java Frame
FigureComponentContainer, see com.

mathworks.hg.peer.
FigureComponentContainer

FigureFrame, see com.mathworks.hg.peer.
FigureFrameProxy

FigureMenuBar, see com.mathworks.hg.peer.
FigureMenuBar

FigurePanel, see com.mathworks.hg.peer.
FigurePanel

File Exchange, Matlab (FEX), 318
345 – tCP/UDP/IP toolbox, 71
1113 – plottable, 155
1741 – tab panel example, 190, 197
2041 – api_showwindow, 442
2852 – tabpanel, 190
3434 – Window Manipulation, 442
3477 – graph_and_table, 155
4023 – webbot, 271
4045 – CSE SQl Database library, 62
4224 – dragndrop, 134
4780 – tab Panel (Yet another one), 190
5752 – GUI_sheet : Java GUI table, 155, 267
6734 – Editable table, 155
6889 – spreadsheet, 155
6996 – tabPanel Constructor, 190, 197
7026 – editable table, 155
8385 – database connection mfiles, 62
8642 – Figure Window always on top, 458
8663 – MySQl Database Connector, 62

K13163_Book.indb 650 11/8/2011 8:10:48 PM

© 2012 by Taylor & Francis Group, LLC

651Index

8899 – Rapid lossless data compression, 271
8966 – EZGlobe - easily plot a rotatable globe,

271
9549 – Myblob, 62
10143 – UISetlineProps, 578
10463 – Matlab -> Dll -> JNI -> Java working

example, 548, 572
10759 – JmatIO – Matlab’s Mat-file I/O in

JaVa, 548
10782 – HGtable – functions for displaying

tabular data, 155
11201 – uitable, 155
11546 – uitabpanel, 190, 197
11946 – teX Editor, 274
12027 – Using MySQl for High-Volume Data

Manipulation, 62
12063 – serialize, 72
13069 – Facilitating Data Exchange between

SaS and Matlab, 62
13621 – aDO OlE Database Connection, 62
14103 – Set figure window to be always on top,

458
14225 – createtable –Java-based data table, 170,

176
14317 – FindJObj, see findjobj
14583 – UIComponent, 88, 91, 336
14773 – statusbar, 235
15294 – Drag-Drop for user defined file types,

134
15372 – PlotData – display plot raw-data, 155
15580 – JControl – Using Java Swing

components in Matlab, 91
15895 – enableDisableFig –enable/disable

figure, 459
16312 – Drag and Drop, 134
16650 – setFigDockGroup, 439
17166 – Set figures and scopes to be always on

top, 458
17897 – access a MySQl database, 62
17935 – UIInspect – display object methods/

properties/callbacks, 15–16
18301 – Proplistener – add callback to property

get/set event, 635
18834 – myblob_testdb, 62
20218 – Yet another layout Manager, 196
20694 – aot (always on top), 458
22488 – Highlight tab objects easily, 197
22725 – Variable Precision Integer arithmetic,

72
23073 – UISplitPane, 578–609
23272 – Profiling Java using Jbuilder (Eclipse)

with Optimizeit, 33
23275 – Profiling Matlab JVM using

JProfiler, 33
23299 – Systray – set/get system-tray icons, 133

23513 – Profiling Matlab JVM using
YourKit Java Profiler, 33

23728 – tCP/IP distributed waitbar, 71
24093 – cprintf – color text in Command

Window, 489
24323 – ScreenCapture, 72, 85
24524 – tCP/IP Communications, 71
24525 – a simple UDP communications

application, 71
24615 – EditorMacro, 515
24924 – jPar – parallelizing Matlab

calculations, 71, 130, 547
25089 – Keybindings, 516, 523
25122 – texttools, 523
25217 – Intelligent code completion, 523
25249 – tCP/IP Socket Communication, 71
25478 – SerialIO mex, 71
25577 – MS SQl JDbC connection, 62
25584 – SoundVolume – set/get system speaker

volume, 72
25656 – Compression routines, 72
25862 – inputsdlg: Enhanced Input Dialog box,

344
25938 – Multiple tab GUI, 197
25975 – popupPanel, 493, 495
26079 – Wrapper of the jMEF java library, 72
26283 – tooltip – GUI modeless feedback, 356
26471 – setPrompt, 500
26778 – Hash table declaration, 56, 58
26784 – PropertySheet, 336
26830 – tabComplete, 503
26947 – checkClass, 244
26970 – SpinnerDemo, 251
27074 – Maximal Independent Sets using

JGrapht, 125
27567 – Shortcut tools, 482
27758 – GUI layout toolbox, 197
27999 – SSH from Matlab updated + SFtP/

SCP, 71
28071 – Russell Index Member Companies, 72
28237 – queryMySQl, 62, 63
28322 – GUIHistory, 202
28326 – MUtilities, 106
28394 – jaudio: buffered Sound Class, 72
28586 – Simple Hashtable - Repackaged, 58
28732 – PropertyGrid using JIDE

implementation, 328, 336
29027 – Web Server, 71
31437 – WindowaPI, 442
32344 – Hardware accelerated 3D viewer, 129
32697 – Making Matlab Swing, 578

FileExchangeServices, see com.mathworks.
mlservices.FileExchangeServices

FileExtensionsPanel, see com.mathworks.
widgets.FileExtensionsPanel

K13163_Book.indb 651 11/8/2011 8:10:48 PM

© 2012 by Taylor & Francis Group, LLC

Index652

findjobj, 443–450
displaying Java containers hierarchy, 189–190,

255, 327, 354, 447–450, 512, 533
finding underlying Java component, 159,

192–193, 215, 354–356, 445–447
internal workings explained, 189–190, 208–209,

255, 271, 327, 358, 445–447
screenshots, 190, 209, 255, 327, 354, 447, 512,

534
First-in-first-out (FIFO), 58
FlavorMap, see Drag and Drop (DND),

FlavorMap
FlyOverapearance, 90, 244–246, 251, 363–364,

366, 617
Focus, 398

enabling key-press events, 113
focus accelerator, 359, 376, 421
Focusable, 111, 362, 451, 460
FocusableWindowState, 460
Focused, 460
FocusEvent, see java.awt.event.FocusEvent
FocusGainedCallback, 112, 181, 373–374, 398,

413, 461, 477
FocuslostCallback, 112, 176, 181, 297,

397–398, 413, 461, 477
FocusOwner, 484, 490, 498
hasFocus(), 312
requesting focus, 112, 132, 224, 311, 314–318,

460–461, 465, 470, 472–474, 476, 509
requiring visible component, 83
SelectallOnFocus, 115, 252, 377, 386
setFocusTarget(), 257
setSelectionAppearanceReflectsFocus(),

252–253, 397
traversal, 110–111, 244–245, 251, 362–364, 366,

461
Folder specification, 8
Font selection components, 299–303

DesktopFontPicker, see com.mathworks.
widgets.DesktopFontPicker

FontComboBox, see com.jidesoft.combobox.
FontComboBox

FontChooserPanel, see com.jidesoft.
combobox.FontChooserPanel

FontDialog, see com.mathworks.widgets.
fonts.FontDialog

FontPrefsPanel, see com.mathworks.
mlwidgets.prefs.FontPrefsPanel

FormPanel, see com.mathworks.widgets.
FormPanel

FQCN, see Fully qualified class name (FQCN)
Fully qualified class name (FQCN), 5, 7, 9,

91, 621
Function hints, see com.mathworks.mlwidgets.

actionbrowser

G

Generics, 28, 35, 130, 622
Gephi, 127–128
getenv, see Environment variables, getenv
GetFunction, see Unified Data Definition (UDD),

GetFunction
Global flag, see Unified Data Definition (UDD),

global flag
Graphical User Interface Design Editor (GUIDE),

533–537
layout Editor hierarchy, 534
with modified pixel rulers, 536
with no rulers, 534
with pixel ruler, 535
system properties, 536–537

GroupName, see Java Frame, GroupName
guide, 80, 155
GUIDE, see Graphical User Interface Design

Editor (GUIDE)

H

handle, 26, 91, 115–117, 628
beanadapter for Matlab handles, see

BeanAdapter
behavior change vs . base object, 116–117, 387
with CallbackProperties, see

CallbackProperties
inspection, 315, 354–355
use to prevent JavaFrame warning, xvii, 436
use to prevent memory leaks, 26, 115,

329, 338
safe programming, 26

handle.event, see Events, MATLAB
handle.listener, 24, 89, 91, 117, 220, 419, 430, 498,

579, 630, 634–635
Handle-Graphics (HG)

callbacks, 114, see also Callbacks
component in Java container, see Java,

container of MATLAB components
container of Java controls, see Java, component

in MATLAB container
drag and drop, see Drag and Drop (DND)
events, 341
HG2, 430, 628, 631
inspecting, 177, 281, 447–448
position, see Position
re-arranging components, 214, 217
standard properties, 12–13, 157, 203
as UDD objects, 315, 628, see also Unified Data

Definition (UDD)
HashMap, see java.util.HashMap
HashSet, see java.util.HashSet
Hashtable, see java.util.Hashtable

K13163_Book.indb 652 11/8/2011 8:10:48 PM

© 2012 by Taylor & Francis Group, LLC

653Index

Help popup, see Command Window (CW), Help
popup

HG, see Handle-Graphics (HG)
hgfeval, 21, 549, 579, 608–609
hgjavacomponent, 83
HierarchyChangedCallback, 112
Horizontalalignment, 360–361, 370, 386, 401,

403, 420, 525
HorizontalScrollbarPolicy, 168, 180, 378–379,

387, 391
HorizontaltextPosition, 228–229, 360, 366,

370
HtMl support

browser component, 110, 249, 270–271,314–315,
381, 490–497

editable HtMl-aware JEditorPane, 110, 389
images, 106–107
in labels, 107, 298, 420–422
in Matlab uicontrols, 106–110, see also

within the specific components (uitab,
uitable, uitree, Menus, Listbox etc .)

in menus, 108–109
in Swing components in general, 106
in tooltips, 108

HTMLRenderer, 491, 493–494, 497, see also
com.mathworks.mlwidgets.html.*

HWnd, see Java Frame, HWND
HyperlinkHandler, 298–299
HyperlinkTextLabel, 298, 422

I

Icons, 131
CData, 203, 207, 213–214
changing based on control state, 229–230
creating from image file, 228, see also Icons,

imread
hotspot, 100–101, 632, see also java.awt.Cursor
im2java, 185, 187
imread, 185, 187, 207, 213, 216, 220, see also

Icons, creating from image file
in System tray, 131–132
resizing, 101, 131, 185, 207, 229
transparent, 207, 210–211, 213, 216, 220

IDE, see Integrated debugger/editor (IDE);
Integrated development environment
(IDE)

IDS, see Integration Debriefing System (IDS)
ImageJ, 129
import, 7
Inheritance, 7, 244–246, 623–624
initJIDE, see JIDE, initJIDE
Inner class, 35–37, 137, 232, 259, 388
InputMethodtextChangedCallback, 168, 181,

362, 377, 416

inspect, 12, 15, 210, 227, 246, 276, 281, 315–316,
323, 326, 354, 442, 449, 528, see also
UIInspect; com.mathworks.mlwidgets.
inspector

Integrated development environment (IDE), 464,
see MATLAB Desktop

Matlab, see Desktop
Java, see Eclipse; NetBeans

Integration Debriefing System (IDS), 609–617
analyses definition, 612–614
data setup, 609–610
defining data items and events, 611–612
defining reports, 614–615
result analysis display, 615–617

Interface, 62–63, 624, see also Inheritance
creating for HG component, 636–637
creating for Java events, 20–22
JMI, see Java-to-MATLAB Interface (JMI)
JNDI, see Java namind and Directory Interface

(JNDI)
JNI, see Java Native interface (JNI)
com.jidesoft.grid.

EditorContextSupport, see com.
jidesoft.grid.EditorContextSupport

com.mathworks.mwswing.Painter, see
com.mathworks.mwswing.Painter

com.mathworks.widgets.find.
FindClientInterface, see com.
mathworks.widgets.find.
FindClientsInterface

com.mathworks.widgets.incSearch.
IncSearchInterface, see com.
mathworks.widgets.incSearch.*

com.mathworks.widgets.wizard.
IWizardContents, see com.
mathworks.widgets.wizard.*

java.io.Serialize, 10
java.lang.Comparable, 120
java.sql.PreparedStatement, see java.

sql.PreparedStatement
java.util.List, see java.util.List
java.util.Queue, see java.util.Queue
java.util.Map, see java.util.Map
java.util.Set, see java.util.Set
javax.swing.ComboBoxEditor, see javax.

swing.ComboBoxEditor
javax.swing.ComboBoxModel, see javax.

swing.ComboBoxModel
javax.swing.ListCellRenderer, see

javax.swing.ListCellRenderer
javax.swing.tree.TreeModel, 184, see

also javax.swing.tree.DefaultTreeModel
org.jfree.data.Dataset, 120
SWIG, see Simple Wrapper and Interface

Generation (SWIG)

K13163_Book.indb 653 11/8/2011 8:10:48 PM

© 2012 by Taylor & Francis Group, LLC

Index654

iReport, 124
isjava, 7, 285
ItemStateChangedCallback, 302, 362–363, 365,

416
Iterator, 18–19, 60–61, 105, 181–182, 243, 398,

403

J

JaMal, 546
JaR, see Java Archive (JAR)
JasperReports, 124
Java, 1–3, 73, 621–626, see also Java object

charting libraries, 122
classloader issues, 29
Collections, 56–59, see also java.util.*
compatibility issues, 35–37
compiling and debugging, 27–35
container of Matlab components, 26, 84,

143–145
component in Matlab container, 82–85, 91,

112, 156
control of Matlab, see Java-to-MATLAB

Interface (JMI)
desktop object, 464–474
elements, 622
events and Matlab callbacks, 19–24
garbage collection, 18
introduction to, 621–626
Java programming in Matlab, 24–27
memory monitor, 34
objects creation, 3
pixel positions vs . Matlab pixel positions,

84–85
profiling memory and CPU usage, 33–34
RMI, see Remote-Method Invocation (RMI)
startup options, see java.opts file
system properties, 43

Java archive (JaR)
adding to classpath, 7–9, see also Classpath
debugging issues, 33
inspecting, 242–243
in URl, 195, 228, 494
as a ZIP file, 227

java.awt.*, see also Abstract Windowing Toolkit
(AWT)

BorderLayout, 82, 85, 127, 210, 320
Canvas, 143, 450, 453
Color, 5, 10, 161–163, 169, 171, 193, 210–211,

233, 279–280, 293, 296, 298, 332, 358,
374, 422, 484–488, 586

Component, 144, 403, 460, 469, 525–526
Container, 83–84, 94, 244
Cursor, 99–101, 356, 358–359, 446, 452, 476,

591, 617

datatransfer.*, 136, see also Drag and
Drop (DND), data transfer mechanism

Dimension, 4, 7, 11–17, 195, 206–209,
261–262, 286, 332, 459–460, 466–467,
472, 476, see also com.mathworks.
mwswing.MJDimensionPicker

dnd.*, 135–142, see also Drag and Drop (DND)
event.actionEvent, 19, 289, 356, 419, 428,

558, see also Actions
event.FocusEvent, 117, see also Focus
event.MouseEvent, 117–118, 595, see also

Mouse events
EventQueue, 95, 105
Font, 293, 299–302, 389, see also Font

selection components
Frame, 5, 272, 288, 341, 458, 475, 506, see also

JavaFrame
image.BufferedImage, 207
Insets, 101, 325, 332, 361, 468–469
MenuItem, 132, see also Menus
Panel, 423, 452–453
Point, 100, 118, 142, 272, 332, 397, 405–406,

413, 428, 460
Rectangle, 287, 413, 490
Robot, 72, 85, 112, see also Mouse,

programmatic control of; ScreenCapture
SystemTray, 131, see also System tray
Toolkit, 100, 131, 185, 229
TrayIcon, 35–36, 131–133, see also System tray
Window, 91, 460, 475

Java components customization, 96, see also Java
swing; javax.swing.*

border, 99
component properties and methods, 96–101
cursor, 99–101
focus traversal, 110–111
HtMl support, 106–110
JButton, see javax.swing.JButton
JSlider, see javax.swing.JSlider
look-and-feel, 102–106

Java Database Connectivity (JDbC), see Database,
Java Database Connectivity (JDBC)

Java Development Kit (JDK), 27–28, 31, 34, 44, 559,
626, see also Java Virtual Machine (JVM)

Java Frame, 436, 441–443
alwaysOntop, 457–458, 473, 476
AxisCanvas, see com.mathworks.hg.peer.

AxisCanvas
blurring, 130, 457
components hierarchy, 443, 450, see also com.

mathworks.hg.peer.*
corner grip, see com.mathworks.mwswing.

MJGrip
decoration, 277, 442, 458–459, see also

Undecorated

K13163_Book.indb 654 11/8/2011 8:10:49 PM

© 2012 by Taylor & Francis Group, LLC

655Index

docking and undocking, see Docking
DTToolBarContainer, see com.mathworks.

mwswing.desk.DTToolBarContainer
Enabled, 459
FigureComponentContainer, see com.

mathworks.hg.peer.
FigureComponentContainer

FigureFrame, see com.mathworks.hg.peer.
FigureFrameProxy

FigureMenuBar, see com.mathworks.hg.peer.
FigureMenuBar

FigurePanel, see com.mathworks.hg.peer.
FigurePanel

findjobj, 443–445, see also findjobj
GroupName, 438–439
GUI for display, 447–450
HWND, 257, 442–443, 451, 457, 466, 476
JavaFrame property, 436
maximization, xvii, 437, 459–460, 472–473
menu bar, 47, 84, 222–231, 253, 444, 455–456,

475–476, 513, 515, 523, see also Menus
minimization, 437, 459–460, 472–473
modality, 88, 209, 256–257, 275, 281–282, 303,

437, 459–460, 476
separator line, 441
setting maximum/minimum window size, 459
toolbar, see Toolbar
transparency, 457
UIControlbackgroundCompatibilityMode,

439–440
Java Iterators, see Enumerators
Java Naming and Directory Interface (JNDI), 63
Java Native access (JNa), 544, 569
Java Native Interface (JNI), 544–546, 548, 564–572

JNI notation (syntax), 6, 16–17, 92, 568, 636, see
also awtcreate; awtinvoke

Java object
access, 6–10, 624
basics, 3–6, 622–626
inspection, 14–16, see also inspect, UIInspect,

methods, methodsview
memory usage, 11–12
methods and actions, 14–19
properties, 12–13

java .opts file, 42–48
changes confirmation, 43
disabling JIt, 46
JVM startup parameters, 43–44
use in Matlab, 42
options in, 42

Java programming, 24
backward compatibility, 27
defensive programming, 24–27
EDt, see Event Dispatch Thread (EDT)
using event callback, 26

Java property accessor methods, 26
Java Runtime Engine (JRE), 2, 37–40, 42, see also

Java Virtual Machine (JVM)
java.sql.*, see also Database

DriverManager, 61
Connection, 66
PreparedStatement, 67
ResultSet, 67–71
Statement, 66
Java Swing, 80

alternatives to Swing, 145–147, see also
Standard_Widget_Toolkit (SWT)

component callbacks, 111–118
components in Matlab figures, 80, 88
components customization, 96
drag-and-drop, see Drag and Drop (DND)
Event Dispatch thread, see Event Dispatch

Thread (EDT)
javacomponent function, see javacomponent
jcontrol utility, see File Exchange (FEX), 15580

– JControl
Matlab components addition to Swing

containers, 143–145
standard Swing components, 86–87
Swing-derived components, 90
third-party Swing libraries in Matlab, 119
uicomponent utility, see File Exchange (FEX),

14583 – UIComponent
java.util.*, see also Java Collections

abstractList, 61
arrayDeque, 58
arrayList, 61, 171, 263, 287, 296, 329, 331
concurrent.arrayBlockingQueue, 58
concurrent.Executors, 557–558
concurrent.DelayQueue, 58
concurrent.SynchronousQueue, 58
Date, 118, 338
Deque, 57–59
Dictionary, 58
EnumMap, 58
EnumSet, 57–58
EventListener, 20, 22, 631
EventObject, 20, 117
HashMap, 58
HashSet, 57–58
Hashtable, 7, 11, 18–19, 58–61, 98, 115,

164–165, 167, 243
Iterator, 60, see also Iterators
LinkedBlockingDeque, 59
LinkedHashMap, 58
LinkedHashSet, 57–58
LinkedList, 57–59
List, 57, 140, 165, 263
Map, 58
NoSuchElementException, 18–19

K13163_Book.indb 655 11/8/2011 8:10:49 PM

© 2012 by Taylor & Francis Group, LLC

Index656

java.util.* (continued)
PriorityQueue, 58
Properties, 59
Queue, 57
Stack, 7, 57
TreeMap, 58
TreeSet, 57–58
Vector, 19–20, 57, 181–182, 184, 481, 507

Java versions in Matlab, 37
Matlab configuration, 39–42
pre-bundled JVM versions, 37–38

Java Virtual machine (JVM), 2, 35, 37–42
changing default, 39–42
pre-installed in Matlab, 37–38
startup options, see Java.opts file

javaaddpath, 7–8, 10, 28, 63–64, 90, 120, 126, 172,
554, 559, 561, 566, 570

javaArray, 10, 18, 94, 328
javachk, 3–4, 80, 82, 267
javaclass, 330
javaclasspath, 7, 10, 28, 64, see also Classpath
javacomponent

and the Event Dispatch thread, see Event
Dispatch Thread (EDT)

function description, 80–86
limitations, 84, 87, 91
manipulations, 83
parent handles, 83
tab focusable, 111, see also Focus
uicomponent utility, see File Exchange (FEX),

14583 – UIComponent
jcontrol utility, see File Exchange (FEX), 15580

– JControl
JavaFrame, see Java Frame, JavaFrame

property
javahandle, 117, 628
javaMethod, 6, 16–17, 35–36, 93–94
javaMethodEDT, 6, 16–17, 92–94, 356, 427, 430,

451, 490, 499
javaMethodMT, 94
javaObject, 5–6, 35, 93–94
javaObjectEDT, 6, 17, 25, 82, 92–94, 451
javaObjectMT, 94
JavaPeer, 157, 178
javarmpath, 9
Java-to-Matlab Interface (JMI), 247, 544–564,

see also com.mathworks.jmi.*
com.mathworks.jmi.*, see com.mathworks.

jmi.*
local vs . remote Matlab control, 554
parsing Matlab’s return values in Java,

563–564
MatlabControl, local access, 554–556
MatlabControl, remote access, 560–564
serialization, 563, see also Serialization

javax.swing.*
actionMap, 19, 356, 427–428, 522, see also

Actions
Border, 99, 208, 357–358, 371, 375, 420, 423,

see also Border
ComboBoxModel, 411
ComboBoxEditor, 333, 412–413
DefaultCellEditor, 163–164, 176, 187
DefaultComboBoxModel, 409, 411, 414–415
DefaultListCellRenderer, 396
ImageIcon, 105, 194–195, 228–229, 289, 360,

366, 385, 388, 399–400, 414, see also
Icons

JButton, 25–26, 82–86, 90, 92, 99, 101–102,
624, 628

JColorChooser, 87, 275, 281, 283
JComboBox, 84, 86, 96, 143, 162–165, 176, 187,

208, 218, 252, 280, 321, 407, 409, 412, 417
JContainer, 143
JEditorPane, 87, 110, 114, 257, 340, 377,

389–390, 497
JFileChooser, 87, 143, 256–257, 321
JFrame, 87, 95, 143, 257, 314, 436, 458, 557
JLabel, 87, 98, 108, 133, 194–195, 253, 292,

320–321, 396, 400–403, 413–414,
420–421, 457, 515

JList, 86, 114, 137, 139, 162, 252, 319–320,
324, 390–396, 401, 403

JMenu, 86, 114, 230, 289, 320
JMenuItem, 188, 226–227, 230, 253, 289, 405
JPanel, 87, 127, 195, 232, 258–259, 261, 265,

273, 302, 305, 336, 422–424, 452–453,
493, 557

JPasswordField, 87–88
JPopupMenu, 86, 188, 320, 405
JProgressBar, 87–88, 96–97, 233–234, 270,

296, 447
JRadioButton, 86, 252, 365–368
JScrollBar, 82, 87–90, 377, 416–417
JScrollPane, 87, 115, 160, 320, 377–378,

380, 389, 391
JSeparator, 87, 280, 321, 444, 454
JSlider, 86, 96–98, 102, 114, 244–245, 320,

416
JSpinner, 86, 91, 250–251
JSplitPane, 84, 87, 143, 255, 267, 578–579,

581, 589
JTabbedPane, 84, 87, 114, 143, 190, 193, 196,

253, 320–321, 609
JTable, 87, 93, 137, 141, 155–176, 249, 251,

253, 259, 263, 319, 322–323, 328, 331,
391, 525–527

JTextarea, 87, 257, 320, 485, 487, 505
JTextField, 87, 111, 114, 163, 252, 320,

371–377, 386, 408, 412–413, 557–558

K13163_Book.indb 656 11/8/2011 8:10:49 PM

© 2012 by Taylor & Francis Group, LLC

657Index

JTextPane, 87, 257, 377, 380, 384, 487
JToggleButton, 244–245, 251, 365, 367–368
JToolBar, 87, 206, 210, 245–246, 254, 454
JTree, 87, 90, 93, 162, 176–178, 249, 251, 255,

263, 319–320, 322–323, 391
JViewport, 159–160, 189, 377–378, 391
JWindow, 87
KeyStroke, 227, 289, 518
ListCellRenderer, 396, 401, 403, 413,
ListSelectionModel, 169, 392–394
table.DefaultTableModel, 156, 162, 166,

170
table.DefaultTableCellRenderer,

161–162, 333, 525–526
text.StyledEditorKit, 381–382, 384, 388
tree.DefaultTreeModel, 184–185, 265,

see also uitree
tree.DefaultTreeCellEditor, 187
tree.DefaultTreeCellRenderer, 187
tree.TreePath, 183–184
UIManager, 102–105, 364

jcontrol, 91, see also javacomponent
JDbC, see Database, Java Database Connectivity

(JDBC)
JDK, see Java Development Kit (JDK)
JFreeChart, 119–122
JFreeReport, see Pentaho Reporting
JGoodies, 103–104, 249, 290, 344, 370
JGraph, 125–127
JICOS, 547
JIDE, 318–339

classes, 319–322
Combo-boxes (pop-ups/dropdowns), see com .

jidesoft.combobox.*
Components, see com.jidesoft.*
Date selection components, 336–339, see also

Date selection components
Grids (tables), 317, 322–326, see also com.

jidesoft.grid.*
initJIDE, 169, 263, 328–330, 336, 449
lists, see com.jidesoft.list.*
Matlab’s property inspector, 326–328
properties table, 334–336
nonstandard property renderers and editors,

331–334
packages bundled in Matlab, 319
Property table, 328–331
table customizations, 173–174
trees, see com.jidesoft.tree.*
versions, 319

JIntegra, 547
JItC, see Just-in-time compiler (JITC)
JMathlib, 122, 548
JMatIO, 548
jMatlab, 547–548

JMatlink, 546, 548, 569
JMenubar, 87, 226, 253, 320, 455, 515
JMI, see Java-to-MATLAB Integration (JMI);

Java-to-Matlab Interface (JMI)
JNa, see Java Native Access (JNA)
JNDI, see Java Naming and Directory Interface

(JNDI)
JNI, see Java Native Interface (JNI)
jPar, 71, 130, 547
JRE, see Java runtime engine (JRE)
JStatCom, 547
Just-in-time compiler (JItC), 46, 530–532, see also

Profiler
JVM, see Java Virtual Machine (JVM)
JXlayer, 130, 250, 270, 296

K

Keyboard bindings, 199, 340, 515–524
inserting/replacing text, 516–518
running action macros, 519–520
running built-in actions, 521–525

KeyPressedCallback, 113, 181, 506, 516, 518
KeyReleasedCallback, 113, 181
KeytypedCallback, 113, 181, 297

l

l&F, see Look and Feel (L&F, LNF, PLAF)
labels, 419–423

HtMl support, 420–421
Hyperlink in, 101–102, 298–299, 383, 422
Java vs . Matlab, 420
mnemonic (keyboard shortcut), 421–422
multi-line, 101–102, 261, 298, 320, 419, 421–422
tipWhentruncatedEnabled, 420, see also

Tooltip, TipWhenTruncatedEnabled
last-in-first-out (lIFO), 57–58
layoutOrientation, 394–395
layoutShowRulers, 535, 537
librarypath .txt, 8, 564–566, 569
lIFO, see Last-in-first-out (LIFO)
LightButton, see com.mathworks.widgets.

LightButton
LightScrollPane, see com.mathworks.widgets.

LightScrollPane
LinkedHashMap, see java.util.LinkedHashMap
LinkedHashSet, see java.util.LinkedHashSet
LinkedList, see java.util.LinkedList
linkprop, 635
linux, 2, 38–39, 42–43, 47–48, 102, 136, 544–545,

560, 567, 569, 621
List, see java.util.List
listbox, 390–406

callbacks, 393, 396, 398, 404–406

K13163_Book.indb 657 11/8/2011 8:10:50 PM

© 2012 by Taylor & Francis Group, LLC

Index658

listbox (continued)
customizing items, 399–404
data model, 398
dynamic context (right-click) menu, 404–406
dynamic tooltip, see Tooltip, Dynamic
Enabled, 401, 404
HtMl support, 106, 491
images in, 399–403
layout of items, 395
listData, 396
look and feel, 392, see also Look and Feel

(L&F, LNF, PLAF)
scroll pane, 391, 394
SelectedIndex, 393–394, 396–397
SelectedIndices, 394
SelectedValue, 393
SelectedValue, 394
selection, 391–394, 396–397, see also Selection
size of item cells, 395
wrapping text, 395, 399

lNF, see Look and Feel (L&F, LNF, PLAF)
LocalMatlabProxy, see Java control of

MATLAB, LocalMatlabProxy
look and Feel (l&F, lNF, PlaF), 102–106

M

Macintosh, 2, 8, 37–42, 46–48, 102, 104, 344, 392,
544–545, 560, 569, 621

makemenu, see Menus
Map, see java.util.Map
Margin, 101, 191–192, 361, 375, 535,
markAsNonEssential, 246, 254
Matclipse, 28
Matlab builder Ja, 242, 547, 560
Matlab Class Object System (MCOS), 4, 46,

502, 627–628, 635
Matlab Compiler Runtime (MCR), 544, 547,

564
Matlab control customization

Checkbox, 367–370
dynamic context-menus and tooltips, 404–406
Editbox, 370–390
finding Java object of, 445–447
findjobj utility, see findjobj
Frame, 422–423
listbox, 390–406
Popup menu, 407–416
Push button, 357–365
Radio button, 365–367
Slider, 416–419
text label, 419–422
toggle button, 365
tooltips, 424–430, see also Tooltips
uipanel, 423–424

Matlab Desktop, see Desktop
Matlab versions

Java, 37
R12 (6 .0), 2, 37, 43, 56, 154, 444, 464, 477, 479,

516, 518, 627
R13 (6 .5), 38, 40, 43, 532, 544, 548
R14 (7 .0), 28, 30–31, 35, 46–48, 57–58, 80, 155,

176, 190, 365, 371, 379, 390, 464, 489
R14 SP3 (7 .1), 8, 56, 80, 93, 316, 371, 379, 390,

489, 535
R2006a (7 .2), 7, 10, 93, 246, 316, 365, 371, 379,

389
R2006b (7 .3), 47, 224
R2007a (7 .4), 10, 27, 39, 41, 45, 47, 57, 83, 198,

202, 231, 390, 559
R2007b (7 .5), 7, 35, 38, 43- 45, 57–58, 62–63,

83, 85, 92, 127, 131, 135, 144, 226, 232,
253, 258, 270, 340, 367–368, 370, 377,
387, 390, 392, 407, 412, 417, 440,
442–443, 454–456, 490, 531, 591

R2008a (7 .6), 6–7, 9, 15, 17, 21, 25, 38, 43,
47–48, 83, 92–94, 97, 113, 155, 170, 177,
198, 212, 214, 242, 248, 311, 323, 328,
397, 409, 418, 430, 436, 438, 443–445,
451, 456, 478, 485, 499, 501, 509, 513,
525, 537, 539, 625, 630

R2008b (7 .7), 6, 9, 17, 25, 38, 43, 56, 58, 92–94,
104, 214, 242, 268, 397, 418–419, 445,
465, 485

R2009a (7 .8), 38, 46, 64, 94, 214, 287, 430
R2009b (7 .9), 38, 93, 214, 228, 260, 273, 296,

318, 346, 412, 453, 457, 465, 508–509,
516, 524, 630

R2010a (7 .10), 14, 38, 45, 58, 64, 93, 105–106,
191, 196, 214, 228, 249, 287, 314, 328,
502, 504

R2010b (7 .11), 13, 26, 38, 64, 93, 115, 191–192,
197, 214, 245, 260, 263, 280, 283, 303,
311, 316, 318, 504, 508, 510, 530

R2011a (7 .12), 10, 19, 57, 130, 154, 197, 205,
212, 214, 246–250, 263, 266–267, 310,
316, 322, 340, 345–346, 364, 373, 438,
453, 459, 475, 504–505, 508, 530–531,
566

R2011b (7 .13), 34, 247, 319, 368, 377, 387, 412,
436, 489–490, 502, 504, 578

Matlab*P, 547
MatlabControl, see Java-to-MATLAB Integration

(JMI)
MatlabDebugServices, see com.mathworks.

mlservices.MatlabDebugServices
MatlabDesktopServices, see com.

mathworks.mlservices.
MatlabDesktopServices

MatlabServeragent, 547

K13163_Book.indb 658 11/8/2011 8:10:50 PM

© 2012 by Taylor & Francis Group, LLC

659Index

Maximized, see JavaFrame, maximization and
minimization

MaximumSize, see JavaFrame, setting maximum/
minimum window size

MCOS, see MATLAB Class Object System (MCOS)
MCR, see MATLAB Compiler Runtime (MCR)
Memory

JVM startup heap size, 45
Profiling, 34, 530–532
Usage, 11–12, 530–531

Menus, 222
armed (highlighted), 230
callbacks, 132, 188, 215, 221, 223–224, 231, 405
Checked, 199, 222, 230
ClickedCallback, 223
customizing menus via HtMl, 108–109,

225–226, see also HTML support
customizing menus via Java, 226–231
customizing menus via uitools, 224
Enabled, item, 132, 229–230
icons, 227–230, see also Icons
keyboard shortcuts, 226–227
makemenu, 224
menu item access, 222–224, see also javax.

swing.JMenuItem; com.mathworks.
mwswing.MJMenuItem

multi-line, 225–226
opening sub-menu programmatically, 226
tooltip, 227, see also Tooltip
uimenu, 86–87, 222, 224, 226
uimenufcn, 224, 474

Message box, 303–306
methods, methodsview, 14–15, 59, 120, 179, 184, 190,

210, 227, 246, 303, 354, 442, 478–479, 549
MEX, 544, 567
Minimized, see JavaFrame, maximization and

minimization
MinimumSize, see JavaFrame, setting maximum/

minimum window size
MJ*, see com.mathworks.mwswing
ML*, see com.mathworks.mlservices
Mnemonic (keyboard shortcut), 109, 196, 244–245,

251–254, 262, 359, 363–364, 366,
421–422, 359

Modal, see Java Frame, modality
Mode manager, 427, 579, 603–604, 607–608
Mouse, programmatic control of, 72

automation, see java.awt.Robot
click simulation (doClick), 226, see also Menus
Cursor, see java.awt.Cursor
getptr, setptr, 99, 154, 452, 579, 603, 607
hotspot, see Icons, hotspot

Mouse events
java.awt.event.MouseEvent, see java.

awt.event.MouseEvent

MouseClickedCallback, 26, 113, 117–118, 181,
188, 298–299, 404, 602

MouseDraggedCallback, 113, 181, 590
MouseEnteredCallback, 113, 181, 226, 279
MouseExitedCallback, 113, 181
MouseMovedCallback, 113, 181, 404, 406
MousePressedCallback, 113–114, 181, 188,

404–405
MouseReleasedCallback, 113–114, 181, 606, 608
MouseWheelMovedCallback, 114, 181

MouseUtils, see com.mathworks.mwswing.
MouseUtils

Multi-line
editbox, see Editbox, multi-line
label, see Label, multi-line
menu items, see Menus, multi-line
MultilineEnumCellEditor, 332
MultilineStringComboBox, see com.

jidesoft.combobox.
MultilineStringComboBox

MultilineStringCellEditor, 332
MultilineTableCellEditor, 332
text, 489
tooltip, see Tooltip, multi-line

MWCheckbox, see com.mathworks.mwt.
MWCheckbox

MWRuler, see com.mathworks.mwt.MWRuler

N

NativeChildWindowHandle, 442
NativeWindowHandle, 442–443, 451, 453
Nested classes, 5
Nested properties, 334–336
Netbeans, 28, 32–33, 80, 248, 626, see also

Eclipse

O

ODbC, see Database, ODBC connection
OpenReports, 125

P

PathUtils, see com.mathworks.mlwidgets.path.
PathUtils

Pentaho Reporting (JFreeReport), 122–123
Pixel ruler, 267, 535–536
Pixelbounds, see Position, PixelBounds
PlaF, see Look and Feel (L&F, LNF, PLAF)
Plot selection components, 212, 284–286, 615, see

also com.mathworks.mlwidgets.graphics
PlotCatalog, 284
PlotPicker, 284
PlotTypeCombo, 284–285

K13163_Book.indb 659 11/8/2011 8:10:51 PM

© 2012 by Taylor & Francis Group, LLC

Index660

Popup Menu, see Combobox (drop-down, pop-up)
PopupMenuCanceledCallback, 416
PopupMenuWillbecomeInvisibleCallback, 416
PopupMenuWillbecomeVisibleCallback, 416
PopupPanel property, see Combobox (drop-down,

pop-up), PopupPanel
popupPanel utility, see File Exchange (FEX),

25975 – popupPanel
Position

Java vs . Matlab, 84–85, 446
Pixelbounds, 85, 446
PixelPosition, 84, 258, 428, 446, 599
update, 379, 386

prefdir folder, 9, 48, 287, 478, 481–482, 510, 524
Preferences, see Desktop, Preferences
PrefsDialog, see com.mathworks.mlwidgets.

prefs.PrefsDialog
PriorityQueue, see java.util.PriorityQueue
Profiler, 33–34, 311, 465, 474, 507, 529–532
ProgressBarDialog, see com.mathworks.

mlwidgets.dialog.ProgressBarDialog
Property access events, 634
PropertyChangeCallback, 114, 181, 335
Property table, 328–336
Property–value pairs (P–V pairs), 177, 580,

583–584
public attribute, 621
Public class, 623
Push button, 357–365

alignment, see HorizontalAlignment;
VerticalAlignment

background, 358, see also Java Frame,
UIControlBackgroundCompatibility-
Mode

border, 357
Cursor, 359
FlyOverappearance, see FlyOverAppearance
focus, see Focus
HtMl support, 370, see also HTML support
icon, see Icons
look and feel, 364, see also Look and Feel

(L&F, LNF, PLAF)
Margin, see Margin
mnemonic, 359
multi-line, 100–101

P–V pairs, see Property–value pairs (P–V pairs)

Q

Queue, 57–59

R

Radio button, 261, 365–367
Reference, object, 4, 6–7, 12, 18

Reflection, 35, 92, 133, 243, 628, 630
Remote-Method Invocation (RMI), 71, 544–547,

561–564
Renderer, 413–414
ResultSet, see Database, Result set,

processing
RMI, see Remote-Method Invocation (RMI)
RulerState, 534–535

S

Scrollbars, 89, 168, 180, 190, 377, 513, see also
Slider

in combo-boxes, see Combobox (drop-down,
pop-up), MaximumRowCount

continuous event callback, 89, 380, 419
customization, 376, 418
Java vs . Matlab, 89, 416
Orientation, 419
Policy, 168, 180, 378–379, 387, 391
scroll pane, see Editbox, scroll pane
variants, 320

SearchTextField, see com.
mathworks.widgets.
SearchTextField

Selection
SelectedIndex, see Combobox, SelectedIndex;

Listbox, SelectedIndex; uitab,
SelectedIndex

SelectedIndices, see Listbox, SelectedIndices
SelectedItem, see Combobox, SelectedItem
Selectedtext, see Editbox, selection
SelectedValue, see Combobox, SelectedValue;

Listbox, SelectedValue
SelectedValues, see Listbox, SelectedValues
SelectionColor, see Editbox, SelectionColor
SelectionVisible, 173, 263, 373

Semi-documented functions, 154, 223
Serialization, 10, 72, 157, 178, 249, 563
Set, see java.util.Set
setenv, see Environment variables, setenv
SetFunction, see Unified Data Definition (UDD),

SetFunction
Simple Wrapper and Interface Generation (SWIG),

546, 568
SimpleDomParser, see com.mathworks.

mwswing.SimpleDOMParser
Slider, 416–419, see also Scrollbars; javax.swing.

JSlider; com.mathworks.mwswing.
MJSlider

Sorting, see uitable, sorting columns
Spinner, see javax.swing.JSpinner; com.

mathworks.mwswing.MJSpinner; File
Exchange
(FEX), 26970 – SpinnerDemo

K13163_Book.indb 660 11/8/2011 8:10:51 PM

© 2012 by Taylor & Francis Group, LLC

661Index

Split-pane, see javax.swing.JSplitPane; com.
mathworks.mwswing.MJSplitPane;
UISplitPane

SQl, see Database
Stack, see java.util.Stack
Standard Widget toolkit (SWt), 120, 145–147, see

also Abstract Windowing Toolkit (AWT)
Startup options

Java, see java.opts file
-jdb, 30, 31
-nodesktop, 474, 475
-nojvm, 312
-nosplash, 30
startup.m file, 64, 526

StateChangedCallback, 196, 231, 251, 363, 374
Status bar, 231–236, 258, see also Uitools

StatusBar class, see com.jidesoft.status.
StatusBar

Statusbar property, 232, 259, 460, 476–477, 515
statusbar utility, see File Exchange (FEX),

14773 – statusbar
Statusbartext, 470
StatusbarVisible, 470, 476, 515

StyledLabel, see com.jidesoft.swing.
StyledLabel

sun.jdbc.odbc.JdbcOdbcDriver, see
Database, JDBC driver initialization

SWIG, see Simple Wrapper and Interface
Generation (SWIG)

Swing extension class libraries, 129–130, see also
Java swing; MATLAB, third-party
libraries in

SwingX, 130
SWt, see Standard Widget Toolkit (SWT)
Syntax highlighting, 271, 292–295, 310, 487–488
SyntaxDelimiterPanel, see com.mathworks.

widgets.SyntaxDelimiterPanel
SyntaxTextLabel, see com.mathworks.

widgets.SyntaxTextLabel
SyntaxTextPane, see com.mathworks.widgets.

SyntaxTextPane
System tray, 35–36, 131–133
systray, 133

T

tab completion, 501–505, see also com.mathworks.
mlwidgets.tabcompletion

TableUtils, see com.jidesoft.grid.TableUtils
text field, see also Editbox

CreditCardTextField, 326, see com.
jidesoft.field.creditcard.
CreditCardTextField

IPTextField, 326, see com.jidesoft.field.
IPTextField

JTextField, see javax.swing.JTextField
MJTextField, see com.mathworks.mwswing.

MJTextField
SearchTextField, see com.mathworks.

widgets.SearchTextField
selection, 393, see also Selection
tipWhentruncatedEnabled, see Tooltip,

TipWhenTruncatedEnabled
tipWhentruncatedEnabled, see Tooltip,

TipWhenTruncatedEnabled
toggle button, 146, 243–245, 354, 365–366, see

also Push button; com.mathworks.
mwswing.MJToggleButton

toolbar, 202–222, 480–482, see also Uitools;
Desktop, toolbars

accessing components, 202
adding components to, 208
background, 210–211
border, 208
callbacks, 203, 215, 218
component icons, 207, see also Icons
components order, 214
CreateFcn callback, 218
customization, 206–211
DTToolbarContainer, see com .mathworks.

mwswing.desk.DTToolbarContainer
Enabled, button, 202
Figure buttons, 211
FindJObj utility, see findjobj
Gap, 210
icondisp output, 206
MorePopupEnabled, 211, 246, 254
Orientation, 210
re-arrangement of components, 218
RolloverEnabled, 208, 211, 229, 360
uigettool, 202
uigettoolbar, 202
uipushtool, 202, 208, 218
uisplittool, 212–215, 219–222
uitogglesplittool, 212–215, 219–222
uitoggletool, 202, 208, 212, 215, 218
uitoolbar, 202
uitoolfactory, 202–205
undo/redo toolbar buttons, 216–222
undocking (floating), 209–210
undocumented toolbar functions, 205–206

tooltip, 424–430
controlling timing, 426–427
de-truncated HtMl-format, 426
for disabled controls, 424–425
dynamic, 406, 613
Enabled, 424, 427, 429
forcing display programmatically, 427–428
HtMl support, 107–109, 421, see also HTML

support

K13163_Book.indb 661 11/8/2011 8:10:51 PM

© 2012 by Taylor & Francis Group, LLC

Index662

tooltip (continued)
for inactive controls, 427–430
labels, 421
mnemonic functionality, 254
multi-line, 109, 131, 133, 170, 176, 610
timing, 426
tipWhentruncatedEnabled, 252–253, 261,

377, 386, 410, 420, 425–426
on truncated text, 425–426

toplevelancestor, 27, 143–144, 209, 445, 454,
457, 468, 473, 485, 506

toString() method, 10, 17–18, 60
transparency (alpha channel)

alpha channel, 120, 359, 484
container, 452–453
controls, 120, 320, 358–359, 453
icons, 207, 210–211, 213, 216, 220
figure, 457
transparent gap, 210

TreeMap, see java.util.TreeMap
TreePath, see javax.swing.tree.TreePath
TreeSet, see java.util.TreeSet
TreeUtils, see com.mathworks.mwswing.

TreeUtils
TriStateButtonUI, see com.mathworks.

mwswing.checkboxtree.TriStateButtonUI

U

UDD, see Unified Data Definition (UDD)
uicomponent, see File Exchange (FEX), 14583 –

UIComponent
uicontainer, 83, 191
uicontextmenu, 86, 154, 190–191, 193, 196
UIControlbackgroundCompatibilityMode, see

Java Frame, UIControlBackground-
CompatibilityMode

uigetfile, 87, see also uiputfile
uiinspect, see File Exchange (FEX), 17935 –

UIInspect
uimenu, see Menus
uipanel, 423–424
uiputfile, 87, see also uigetfile
UISplitPane, see File Exchange (FEX), 23073 –

UISplitPane
uitab, 87, 190–197, see also Uitools

benefit, 190
callbacks, 192–193, 196
colors, 193–194
custom icon, 195
customization, 192–196
drawback, 190
Enabled, 193
FlowDirection, 191
font, 193–194

HtMl support, 193, see also HTML support
icons, see Icons
look and Feel, 102, 194, see also Look and Feel

(L&F, LNF, PLAF)
Margin, 191–192
mnemonics, 196
SelectedIndex, 190, 192
Selectedtab, 192
tabdlg, 196
tablocation, 191
uitabgroup, 190

uitable, 155–176, see also Uitools
adding and deleting rows, 174–175
callbacks, 166–168, 172
Cell colors, 162
Cell Editor, 162–166, 176, 323, 611, see also

Cell Editor
Cell Renderer, 161–166, see also Cell Renderer
Cell spanning, 174, 323
ColoredFieldCellRenderer, 163
container handle, 157
createTable utility, see File Exchange (FEX),

14225 – createTable
Editable, 156
filtering rows, 170
HtMl support, 106, 161, 171, see also HTML

support
JavaPeer, 157
combo-boxes in, 163–166
JIDE customizations, 173–174
modified table data, 158
old vs . new version, 156–161
resizing rows and columns, 168
scrollbars, 168, see also Scrollbars
selection, programmatic, 169
settable properties, 156–157
sorting columns, 170–172
sub-components, 159–160

Uitools, 154
menus, see Menus
status bar, see Status bar
toolbars, see Toolbar
uitab, see uitab
uitable, see uitable
uitree, see uitree
uiundo, see uiundo

uitree, 176–190, see also Uitools
callbacks, 178, 180–181, 184–185
Cell Editor, 187, see also Cell Editor
Cell Renderer, 187, see also Cell Renderer
container handle, 178
context (right-click) menu, 188–189
customization, 178–181
DefaultTreeModel, see javax.swing.tree.

DefaultTreeModel

K13163_Book.indb 662 11/8/2011 8:10:52 PM

© 2012 by Taylor & Francis Group, LLC

663Index

Editable, 187
use in FindJObj utility, 189–190, see also findjobj
HtMl support, 186, see also HTML support
JavaPeer, 178
node icons, 185, see also Icons
opening/closing nodes, 179, 183
RootVisible, 179
scrollbars, 180, see also Scrollbars
selecting nodes, 179–180, 183–184
ShowRootHandles, 179
tree node access, 181–183
tree node control, 183–185
tree node customization, 182–183, 185–189
TreePath, see javax.swing.tree.TreePath
UItreeNodes, 179, 182–183

uiundo, 197–202, see also Uitools
keyboard shortcuts, 198–199
as main-menu items, 199
MaxUndoStacklength, 201
RedoStack, 200
as toolbar controls, 216–222
UndoStack, 200
Verbose, 201

Undecorated, 145, 458, 491, see also Java Frame,
decoration

Unified Data Definition (UDD), 627–637
accessFlags, 636
classhandle, 627
GetFunction, 635
global flag, 627–628
isUDDObject*, 315
linkprop, 635
property access events, 634
SetFunction, 635
visible flag, 636

unzip, 72, 242–243, see also File Exchange (FEX),
25656 – Compression routines

usejava, 3–4, 80, 82, 267, 554, see also javachk
usejavacomponent, 80, 82
UserlastMethodID, 441–442

V

Variable Editor, see Desktop, Variable (Array)
Editor

Vector, see java.util.Vector
Verticalalignment, 101, 361, 401, 420
VerticalScrollbarPolicy, 168, 180, 371, 379–380,

391
VetoableChangeCallback, 114, 181
Visualization tool-Kit (VtK), 128
VtK, see Visualization Tool-Kit (VTK)

W

Web browser, 249, 491–497
callbacks, 497
ICE, 249, 497
integrated in GUI, 110, 495–496
in popup window, see Command Window (CW),

Help popup
web, 101, 270, 298, 358, 494–495, 497

WindowbuttonMotionFcn, 113, 427–429,
589

WindowDecorationStyle, 459
WindowKeyPressFcn, 430, 459
WindowKeyReleaseFcn, 430
WindowScrollWheelFcn, 459
Workspace, 274, 525–528
Wrapping text

in editbox, see Editbox, wrapping text
in labels, 261, 420–421
in listbox, see Listbox, wrapping text
in Command Window, see Command Window,

wrapping text

X

XMl,72–73, 105, 125, 242, 247, 249–250, 263, 478,
501–505, 524

K13163_Book.indb 663 11/8/2011 8:10:52 PM

© 2012 by Taylor & Francis Group, LLC

Stylish window using Swing controls (see Section 3.0)

Simulation of the same dialog window, using standard MATLAB uicontrols
(see Section 3.0)

K13163_CI.indd 1 11/3/2011 9:28:32 PM

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-000.jpg&w=343&h=266
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-001.jpg&w=343&h=266

Sample Swing components integrated in a MATLAB figure window (see Section 3.1)

A Swing JScrollBar component (top) and a MATLAB slider uicontrol (bottom) — (see
Section 3.1.2)

The effect of Look-and-Feel (L&F) on some standard GUI controls (see Section 3.3.2)

K13163_CI.indd 2 11/3/2011 9:28:35 PM

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-002.jpg&w=324&h=367
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-003.jpg&w=202&h=87

HTML in standard MATLAB listboxes, labels, popup-menus, tooltips, and menus
(see Section 3.3.3)

Sample JFreeChart charts, gauges, and plots (see Section 3.5.1)

K13163_CI.indd 3 11/3/2011 9:28:39 PM

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-005.jpg&w=324&h=250
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-006.jpg&w=324&h=283

JGraph sample report (see Section 3.5.3)

Gephi sample report (see Section 3.5.3)

K13163_CI.indd 4 11/3/2011 9:28:43 PM

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-007.jpg&w=381&h=244
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-008.jpg&w=381&h=248

System tray-icon messages (top-center), context-menu (top-right), and tooltip
(bottom) — (see Section 3.6)

Some standard SWT controls (see Section 3.9)

K13163_CI.indd 5 11/3/2011 9:28:45 PM

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-009.jpg&w=381&h=105
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-010.jpg&w=381&h=228

uitable customizations (see Section 4.1)

uitab customizations (see Section 4.3)

K13163_CI.indd 6 11/3/2011 9:28:48 PM

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-011.jpg&w=400&h=319
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-012.jpg&w=381&h=153

statusbar usage examples (see Section 4.7)

findjobj utility accessing a specific toolbar button (see Section 4.5)

K13163_CI.indd 7 11/3/2011 9:28:53 PM

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-013.jpg&w=381&h=138
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-014.jpg&w=381&h=343

uiinspect usage examples (see Sections 5.2 and 6.0)

K13163_CI.indd 8 11/3/2011 9:28:57 PM

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-015.jpg&w=381&h=579

MATLAB’s ColorPicker control (see Section 5.4.1)

K13163_CI.indd 9 11/3/2011 9:28:59 PM

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-016.jpg&w=335&h=523

Different GUI controls displaying syntax-highlighted text (see Section 5.5.1)

HTML-enriched MATLAB uicontrols (see Chapter 6)

K13163_CI.indd 10 11/3/2011 9:29:05 PM

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-017.jpg&w=381&h=234
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-018.jpg&w=381&h=223

Editbox customizations (see Section 6.5)

Listbox customizations (see Section 6.6)

findjobj presentation of a toolbar with non-standard controls (see Section 7.3.5)

K13163_CI.indd 11 11/3/2011 9:29:14 PM

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-019.jpg&w=381&h=141
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-020.jpg&w=343&h=104
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-021.jpg&w=343&h=270

Document cell width, height, and span example (see Section 8.1.1)

cprintf — display styled formatted text in the Command Window (see Section 8.3.1)

Help popup with custom HTML content and highlighting (see Section 8.3.2)

K13163_CI.indd 12 11/3/2011 9:29:20 PM

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-022.jpg&w=343&h=250
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-023.jpg&w=302&h=146
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-024.jpg&w=167&h=86

MATLAB Editor components (see Section 8.4.2)

Tab-completion (see Section 8.3.4)

Help popup with a standard MATLAB doc page (see Section 8.3.2)

K13163_CI.indd 13 11/3/2011 9:29:26 PM

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-025.jpg&w=381&h=123
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-026.jpg&w=362&h=123
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-027.jpg&w=343&h=252

Memory and JIT information in MATLAB’s Profiler (see Section 8.7.1)

Invoking MATLAB commands from Java using RMI (see Section 9.4)

JMatLink’s built-in testing GUI (see Section 9.5)

K13163_CI.indd 14 11/3/2011 9:29:29 PM

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-028.jpg&w=293&h=152
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-029.jpg&w=239&h=168
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-030.jpg&w=381&h=106

MATLAB plot generated from Java using JNI/JNA (see Section 9.5)

A horizontal UISplitPane contained within a vertical UISplitPane (see Section 10.1)

K13163_CI.indd 15 11/3/2011 9:29:34 PM

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-031.jpg&w=285&h=252
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-032.jpg&w=305&h=269

Customizing result plots (see Section 10.2.5)

Dynamic data-tips in the IDS Results window (see Section 10.2.5)

K13163_CI.indd 16 11/3/2011 9:29:37 PM

© 2012 by Taylor & Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-033.jpg&w=381&h=249
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11496-16&iName=master.img-034.jpg&w=381&h=277

	b11496-1
	Undocumented Secrets of MATLAB-Java Programming
	Undocumented Secrets of MATLAB-Java Programming
	Dedication
	Contents at a Glance
	Contents
	Preface
	Book Organization
	A Quick Q&A
	Conventions Used in This Book
	Disclaimer and Warning

	b11496-2
	Chapter 1 Introduction to Java in Matlab®
	1.1 Creating Java Objects
	1.1.1 The Basics
	1.1.2 Accessing Java Objects
	1.1.3 Memory Usage

	1.2 Java Object Properties
	1.3 Java Object Methods and Actions
	1.4 Java Events and MATlAB Callbacks31
	1.5 Safe Java Programming in MATlAB — A How- to Guide
	1.6 Compiling and Debugging User- Created Java Classes in MATlAB
	1.7 Compatibility Issues
	1.8 Java Versions in MATlAB
	1.8.1 Pre- Bundled JVM Versions
	1.8.2 Configuring MATlAB to Use a Different JVM

	1.9 Java.opts

	b11496-3
	Chapter 2 Using Non-GUI Java libraries in Matlab®
	2.1 Complex Data Structures
	2.1.1 Java Collections
	2.1.2 Collections Example: Hashtable
	2.1.3 Enumerators

	2.2 Database Connectivity
	2.2.1 Using Java Database Connectivity (JDBC) in MATlAB
	2.2.2 Initializing the JDBC Driver
	2.2.3 Connecting to a Database
	2.2.4 Sending SQl Requests
	2.2.5 Handling SQl Result Sets

	2.3 Miscellaneous Other Uses
	2.4 A Short Pause for Reflection
	References

	b11496-4
	Chapter 3 Rich GUI Using Java Swing
	3.1 Adding Java Swing Components to MATlAB Figures
	3.1.1 The javacomponent Function5
	3.1.2 The Swing Component library
	3.1.3 Displaying Swing- Derived Components
	3.1.4 UIComponent and JControl

	3.2 MATlAB's Main Thread and the Event Dispatch Thread (EDT)
	3.3 Customizing Java Components
	3.3.1 Component Properties and Methods
	3.3.2 look- and- Feel
	3.3.3 HTMl Support
	3.3.4 Focus Traversal60

	3.4 Component Callbacks
	3.5 Using Third- Party libraries in MATlAB
	3.5.1 JFreeChart and Other Charting libraries93
	3.5.2 JFreeReport and Other Reporting libraries
	3.5.3 JGraph and Other Visualization libraries
	3.5.4 ImageJ and Other Image- Processing libraries
	3.5.5 Swing Extension Class libraries
	3.5.6 A Note of Caution

	3.6 System- Tray Icons
	3.7 Drag- and- Drop
	3.7.1 Data Transfer Mechanism in MATlAB
	3.7.2 A Sample MATlAB Application That Supports DND

	3.8 Adding MATlAB Components to Java Swing Containers
	3.9 Alternatives to Swing
	References

	b11496-5
	Chapter 4 Uitools
	4.1 Uitable
	4.1.1 Customizing Uitable
	4.1.2 Table Callbacks
	4.1.3 Customizing Scrollbars, Column Widths, and Selection Behavior
	4.1.4 Data Sorting and Filtering
	4.1.5 JIDE Customizations
	4.1.6 Controlling Table Structure (Adding/ Deleting Rows)
	4.1.7 Final Remarks

	4.2 Uitree
	4.2.1 Customizing Uitree
	4.2.2 Accessing Tree Nodes
	4.2.3 Controlling Tree Nodes
	4.2.4 Customizing Tree Nodes
	4.2.5 FindJObj

	4.3 Uitab
	4.3.1 Customizing Tabs at the Java level
	4.3.2 Tabdlg and Other Alternatives

	4.4 Uiundo
	4.5 Toolbars
	4.5.1 Uitoolfactory
	4.5.2 Other Undocumented Toolbar Functions
	4.5.3 Customizing Toolbars at the Java level
	4.5.4 Uisplittool and Uitogglesplittool
	4.5.5 Adding Undo/ Redo Toolbar Buttons

	4.6 Menus
	4.6.1 Accessing Menu Items
	4.6.2 Customizing Menus via Uitools
	4.6.3 Customizing Menus via HTMl
	4.6.4 Customizing Menus via Java

	4.7 Status Bar
	References

	b11496-6
	Chapter 5 built-In Matlab® Widgets and Java Classes
	5.1 Internal MATlAB Java Packages
	5.1.1 Inspecting Package Contents
	5.1.2 Inspecting an Internal MATlAB Class
	5.1.3 Standard MATlAB Packages

	5.2 MWSwing Package
	5.2.1 Enhancements of Standard Java Swing Controls
	5.2.2 Entirely New Java Controls
	5.2.3 Other MWSwing Controls

	5.3 MWT Package
	5.4 MlWidgets Package
	5.4.1 Color- Selection Components83
	5.4.2 Plot- Type Selection Components

	5.5 Widgets Package
	5.5.1 Widget Components
	5.5.2 Font- Selection Components
	5.5.3 Dialogs
	5.5.4 Closable (Collapsible) Panels
	5.5.5 Specialized Widgets

	5.6 MlServices Package
	5.7 JIDE
	5.7.1 Important JIDE Classes
	5.7.2 JIDE Grids
	5.7.3 MATlAB's PropertyInspector121
	5.7.4 JIDE's PropertyTable
	5.7.5 Nonstandard Property Renderers and Editors135
	5.7.6 Nested Properties
	5.7.7 Trapping Property Change Events
	5.7.8 Date- Selection Components146

	5.8 Miscellaneous Other Internal Classes
	5.8.1 logging Utilities
	5.8.2 JGoodies
	5.8.3 Additional Others

	References

	b11496-7
	Chapter 6 Customizing Matlab® Controls
	6.1 PushButton
	6.2 ToggleButton
	6.3 RadioButton
	6.4 Checkbox
	6.5 Editbox
	6.5.1 Single- line Editbox
	6.5.2 Multi- line Editbox
	6.5.3 The JEditorPane Alternative

	6.6 listbox
	6.6.1 The listbox Data Model
	6.6.2 Customizing the Appearance of listbox Items
	6.6.3 Dynamic (Item- Specific) Context- Menus and Tooltips

	6.7 Popup Menu (a. k. a. Drop- Down, Combo- Box)
	6.8 Slider
	6.9 Text label
	6.10 Frame
	6.11 Uipanel
	6.12 Tooltipsƒ
	6.12.1 Displaying a Tooltip on Disabled Controls95
	6.12.2 Displaying a Tooltip on Truncated Text
	6.12.3 Controlling Tooltip Timing
	6.12.4 Displaying a Tooltip on Inactive Controls97

	References

	b11496-8
	Chapter 7 the Java Frame
	7.1 Java Frame Properties and Methods
	7.1.1 Window Minimization and Maximization
	7.1.2 Docking and Undocking
	7.1.3 UI- Related JavaFrame Properties
	7.1.4 Miscellaneous Other JavaFrame Properties

	7.2 FindJObj and the Java Frame Components Hierarchy
	7.2.1 FindJObj
	7.2.2 Finding the Underlying Java Object of a MATlAB Control
	7.2.3 GUI for Displaying Container Hierarchy, Properties, and Callbacks
	7.2.4 The Java Frame Container Hierarchy

	7.3 Important Java Frame Containers
	7.3.1 AxisCanvas
	7.3.2 FigureComponentContainer
	7.3.3 Component's Private Container
	7.3.4 FigurePanel or ContainerFactory
	7.3.5 DTToolBarContainer
	7.3.6 FigureMenuBar and Docking Controls
	7.3.7 FigureFrame

	7.4 BeanAdapters
	References

	b11496-9
	Chapter 8 the Matlab® Desktop
	8.1 Desktop Functionality and layout
	8.1.1 The Java Desktop Object
	8.1.2 The Desktop Frame
	8.1.3 Organizing the Desktop Clients
	8.1.4 Customizing the Desktop Toolbars

	8.2 System Preferences23
	8.3 Command Window
	8.3.1 Controlling Command Window Colors
	8.3.2 Help Popup and Integrated Browser Controls
	8.3.3 Modifying the Command Window Prompt
	8.3.4 Tab Completions
	8.3.5 Additional Command Window Uses

	8.4 Editor
	8.4.1 The EditorServices/ matlab. desktop. editor Object
	8.4.2 The Editor Frame Object

	8.5 Keyboard Bindings
	8.5.1 Inserting/ Replacing Text
	8.5.2 Running Action Macros
	8.5.3 Running Built- In Actions

	8.6 Workspace
	8.7 Other Desktop Tools
	8.7.1 Profiler
	8.7.2 Find- Files Dialog
	8.7.3 GUIDE
	8.7.4 Variable (Array) Editor

	References

	b11496-10
	Chapter 9 Using Matlab® from within Java
	9.1 Approaches for Java Control of MATlAB
	9.1.1 Controlling the MATlAB GUI
	9.1.2 Controlling the MATlAB Engine
	9.1.3 Controlling a MATlAB Session from Another MATlAB Session
	9.1.4 Running or Modifying MATlAB Code without MATlAB
	9.1.5 MATlAB Clones Written in Java

	9.2 JMI — Java- to- MATlAB Interface62
	9.2.1 com. mathworks. jmi. Matlab
	9.2.2 Other Interesting JMI Classes

	9.3 JMI Wrapper — local MatlabControl77
	9.3.1 local and Remote MatlabControl
	9.3.2 localMatlabProxy
	9.3.3 Some Usage Examples

	9.4 JMI Wrapper — Remote MatlabControl91
	9.4.1 Remote Control of MATlAB
	9.4.2 A Simple RemoteExample
	9.4.3 Parsing MATlAB's Return Values

	9.5 Using JNI to Connect Java and MATlAB
	References

	b11496-11
	Chapter 10 Putting It all together
	10.1 UISplitPane1
	10.1.1 Technical Description
	10.1.2 Source- Code listing

	10.2 Integration Debriefing System
	10.2.1 Data Setup
	10.2.2 Defining Data Items and Events
	10.2.3 Defining Analyses
	10.2.4 Defining Reports
	10.2.5 Displaying Analysis Results

	10.3 Concluding Exercise: UIMultilistbox

	b11496-12
	Appendix A: What Is Java?
	References

	b11496-13
	Appendix B: Udd

	b11496-14
	Appendix C: Open Questions

	b11496-15
	Index

	b11496-16
	Color Insert

