
THE ART OFCOMPUTER PROGRAMMINGVOLUME 4 PRE-FASCICLE 4B

A DRAFT OF SECTION 7.2.1.7:HISTORY OF COMBINATORIALGENERATION

DONALD E. KNUTH Stanford University

ADDISON{WESLEY 677

-1



Internet page http://www-s-faulty.stanford.edu/~knuth/taop.html ontainsurrent information about this book and related books.See also http://www-s-faulty.stanford.edu/~knuth/sgb.html for informationabout The Stanford GraphBase, inluding downloadable software for dealing with thegraphs used in many of the examples in Chapter 7.Another page, http://www-s-faulty.stanford.edu/~knuth/programs.html, on-tains auxiliary programs by the author.See also http://www-s-faulty.stanford.edu/~knuth/mmixware.html for down-loadable software to simulate the MMIX omputer.Copyright  2004 by Addison{WesleyAll rights reserved. No part of this publiation may be reprodued, stored in a retrievalsystem, or transmitted, in any form, or by any means, eletroni, mehanial, photo-opying, reording, or otherwise, without the prior onsent of the publisher, exeptthat the oÆial eletroni �le may be used to print single opies for personal (notommerial) use.Zeroth printing (revision 7), 28 Otober 2005

-2



PREFACE
I like to work in a variety of �eldsin order to spread my mistakes more thinly.| VICTOR KLEE (1999)

This booklet ontains draft material that I'm irulating to experts in the�eld, in hopes that they an help remove its most egregious errors before toomany other people see it. I am also, however, posting it on the Internet forourageous and/or random readers who don't mind the risk of reading a fewpages that have not yet reahed a very mature state. Beware: This material hasnot yet been proofread as thoroughly as the manusripts of Volumes 1, 2, and 3were at the time of their �rst printings. And those arefully-heked volumes,alas, were subsequently found to ontain thousands of mistakes.Given this aveat, I hope that my errors this time will not be so numerousand/or obtrusive that you will be disouraged from reading the material arefully.I did try to make it both interesting and authoritative, as far as it goes. But the�eld is so vast, I annot hope to have surrounded it enough to orral it ompletely.Therefore I beg you to let me know about any de�ienies you disover.To put the material in ontext, this is Setion 7.2.1.7 of a long, long hapteron ombinatorial algorithms. Chapter 7 will eventually �ll three volumes (namelyVolumes 4A, 4B, and 4C), assuming that I'm able to remain healthy. It willbegin with a short review of graph theory, with emphasis on some highlightsof signi�ant graphs in the Stanford GraphBase, from whih I will be drawingmany examples. Then omes Setion 7.1, whih deals with the topi of bitwisemanipulations. (I drafted about 60 pages about that subjet in 1977, butthose pages need extensive revision; meanwhile I've deided to work for awhileon the material that follows it, so that I an get a better feel for how muhto ut.) Setion 7.2 is about generating all possibilities, and it begins withSetion 7.2.1: Generating Basi Combinatorial Patterns|whih, in turn, beginswith Setion 7.2.1.1, \Generating all n-tuples," Setion 7.2.1.2, \Generating allpermutations," : : : , Setion 7.2.1.6, \Generating all trees." (Readers of thepresent booklet should have already looked at those setions, drafts of whih areavailable as Pre-Fasiles 2A, 2B, 3A, 3B, and 4A.) The stage is now set for themain ontents of this booklet, Setion 7.2.1.7: \History and further referenes."Setion 7.2.2 will deal with baktraking in general. And so it will ontinue, ifall goes well; an outline of the entire Chapter 7 as urrently envisaged appearson the taop webpage that is ited on page ii.iii

-3



iv PREFACEWriting about history is extraordinarily diÆult, not only beause the sourematerials are widely sattered but also beause I must operate at the limit of myability to understand languages other than English. Furthermore, fats aboutreal life are muh more ompliated than fats about mathematis. No summaryan adequately onvey the true feelings of an era or the true spirit of a ulture,yet the story that I'm trying to tell in this setion overs many enturies ofdevelopment in many di�erent parts of the world. The story is fasinating, andmany parts of it do not seem to have been told before, at least not in English.Therefore I'm keen to have professional historians of mathematis take a look atwhat I've been able to piee together, hoping that they will not be too shokedby blunders that have resulted from my present ignorane and/or inompetene.I hope also to get advie from people of many di�erent ultures who know ofrelevant traditions that have not yet been well studied by professional historians.The answer to exerise 6 poses two historial problems that I haven't beenable to resolve. I urgently need your help also with respet to some exerises thatI made up as I was preparing this material. I ertainly don't like to reeive reditfor things that have already been published by others, and most of these resultsare quite natural \fruits" that were just waiting to be \pluked." Thereforeplease tell me if you know who deserves to be redited, with respet to the ideasfound in exerises 2, 8, 10, 17, 20, 26, and/or 27.I shall happily pay a �nder's fee of $2.56 for eah error in this draft when it is�rst reported to me, whether that error be typographial, tehnial, or historial.The same reward holds for items that I forgot to put in the index. And valuablesuggestions for improvements to the text are worth 32/ eah. (Furthermore, ifyou �nd a better solution to an exerise, I'll atually reward you with immortalglory instead of mere money, by publishing your name in the eventual book:�)Cross referenes to yet-unwritten material sometimes appear as `00'; thisimpossible value is a plaeholder for the atual numbers to be supplied later.Happy reading!Stanford, California D. E. K.12 Otober 2004
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0 COMBINATORIAL ALGORITHMS (F4B) [This subjet℄ has a relationto almost every speies of useful knowledgethat the mind of man an be employed upon.| JAMES BERNOULLI, Ars Conjetandi (1713)7.2.1.7. History and further referenes. Early work on the generation ofombinatorial patterns began as ivilization itself was taking shape. The storyis quite fasinating, and we will see that it spans many ultures in many parts ofthe world, with ties to poetry, musi, and religion. There is spae here to disussonly some of the prinipal highlights; but perhaps a few glimpses into the pastwill stimulate the reader to dig deeper into the roots of the subjet, as the worldgets ever smaller and as global sholarship ontinues to advane.Lists of binary n-tuples an be traed bak thousands of years to anientChina, India, and Greee. The most notable soure|beause it still is a best-selling book in modern translations| is the Chinese I Ching or Yijing, whosename means \the Bible of Changes." This book, whih is one of the �ve lassisof Confuian wisdom, onsists essentially of 26 = 64 hapters; and eah hapteris symbolized by a hexagram formed from six lines, eah of whih is either(\yin") or (\yang"). For example, hexagram 1 is pure yang, ; hexagram 2is pure yin, ; and hexagram 64 intermixes yin and yang, with yang on top: .Here is the omplete list:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 3233 34 35 36 37 38 39 40 41 42 43 44 45 46 47 4849 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 (1)
This arrangement of the 64 possibilities is alled King Wen's ordering, beausethe basi text of the I Ching has traditionally been asribed to King Wen (. 1100B.C.), the legendary progenitor of the Chou dynasty. Anient texts are, however,notoriously diÆult to date reliably, and modern historians have found no solidevidene that anyone atually ompiled suh a list of hexagrams before the thirdentury B.C.Notie that the hexagrams of (1) our in pairs: Those with odd numbers areimmediately followed by their top-to-bottom reetions, exept when reetionwould make no hange; and the eight symmetrial diagrams are paired withtheir omplements (1 = 2, 27 = 28, 29 = 30, 61 = 62). Hexagrams that areomposed from two trigrams that represent the four basi elements heaven ( ),earth ( ), �re ( ), and water ( ) have also been plaed judiiously. Otherwisethe arrangement appears to be essentially random, as if a person untrained inmathematis kept listing di�erent possibilities until being unable to ome upwith any more. A few intriguing patterns do exist between the pairs, but nomore than are present by oinidene in the digits of � (see 3.3{(1)).
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7.2.1.7 HISTORY AND FURTHER REFERENCES 1Yin and yang represent omplementary aspets of the elementary fores ofnature, always in tension, always hanging. The I Ching is somewhat analogousto a thesaurus in whih the hexagrams serve as an index to aumulated wisdomabout fundamental onepts like giving ( ), reeiving ( ), modesty ( ), joy( ), fellowship ( ), withdrawal ( ), peae ( ), onit ( ), organization( ), orruption ( ), immaturity ( ), elegane ( ), et. One an hoosea pair of hexagrams at random, obtaining the seond from the �rst by, say,independently hanging eah yin to yang (or vie versa) with probability 1/4;this tehnique yields 4096 ways to ponder existential mysteries, as well as aMarkov proess by whih hange itself might perhaps give meaning to life.A stritly logial way to arrange the hexagrams was eventually introduedabout A.D. 1060 by Shao Yung. His ordering, whih proeeded lexiographiallyfrom to to to to to � � � to to (reading eah hexagram frombottom to top), was muh more user-friendly than the King Wen order, beausea random pattern ould now be found quikly. When G. W. Leibniz learnedabout this sequene of hexagrams in 1702, he jumped to the erroneous onlusionthat Chinese mathematiians had one been familiar with binary arithmeti.[See Frank Swetz, Mathematis Magazine 76 (2003), 276{291. Further detailsabout the I Ching an be found, for example, in Joseph Needham's Siene andCivilisation in China 2 (Cambridge University Press, 1956), 304{345; R. J. Lynn,The Classi of Changes (New York: Columbia University Press, 1994).℄Another anient Chinese philosopher, Yang Hsiung, proposed a system basedon 81 ternary tetragrams instead of 64 binary hexagrams. His Canon of SupremeMystery, written . 2 B.C., has reently been translated into English by MihaelNylan (Albany, New York: 1993). Yang desribed a omplete, hierarhial ter-nary tree struture in whih there are 3 regions, with 3 provines in eah region,3 departments in eah provine, 3 families in eah department, and 9 short poemsalled \appraisals" for eah family, hene 729 appraisals in all|making almostexatly 2 appraisals for every day in the year. His tetragrams were arranged instrit lexiographi order when read top-to-bottom: , , , , , , ,: : : , . In fat, as explained on page 28 of Nylan's book, Yang presented a simpleway to ompute the rank of eah tetragram, as if using a radix-3 number system.Thus he would not have been surprised or impressed by Shao Yung's systematiordering of binary hexagrams, although Shao lived more than 1000 years later.Indian prosody. Binary n-tuples were studied in a ompletely di�erent ontextby pundits in anient India, who investigated the poeti meters of sared Vedihants. Syllables in Sanskrit are either short (. ) or long (_), and the studyof syllable patterns is alled \prosody." Modern writers use the symbols ^and �� instead of . and _. A typial Vedi verse onsists of four lines withn syllables per line, for some n � 8; prosodists therefore sought a way to lassifyall 2n possibilities. The lassi work Chandah.�s�astra by Pi _ngala, written beforeA.D. 400 and probably muh earlier (the exat date is quite unertain), desribedproedures by whih one ould readily �nd the index k of any given pattern of^s and ��s, as well as to �nd the kth pattern, given k. In other words, Pi _ngalaexplained how to rank any given pattern as well as to unrank any given index;
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2 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7thus he went beyond the work of Yang Hsiung, who had onsidered ranking butnot unranking. Pi _ngala's methods were also related to exponentiation, as wehave noted earlier in onnetion with Algorithm 4.6.3A.The next important step was taken by a prosodist named Ked�ara in hiswork Vr.ttaratn�akara, thought to have been written in the 8th entury. Ked�aragave a step-by-step proedure for listing all the n-tuples from ������ : : :�� to^���� : : :�� to ��^�� : : :�� to ^^�� : : :�� to ����^: : :�� to ^��^: : :��to � � � to ^^^: : :^, essentially Algorithm 7.2.1.1M in the ase of radix 2. Hismethod may well have been the �rst-ever expliit algorithm for ombinatorialsequene generation. [See B. van Nooten, J. Indian Philos. 21 (1993), 31{50.℄Poeti meters an also be regarded as rhythms, with one beat for eah ^and two beats for eah ��. An n-syllable pattern an involve between n and 2nbeats, but musial rhythms suitable for marhing or daning generally are basedon a �xed number of beats. Therefore it was natural to onsider the set of allsequenes of ^s and ��s that have exatly m beats, for �xed m. Suh patternsare now alled Morse ode sequenes of length m, and we know from exerise4.5.3{32 that there are exatly Fm+1 of them. For example, the 21 sequeneswhen m = 7 are^������, ��^����, ^^^����, ����^��, ^^��^��,^��^^��, ��^^^��, ^^^^^��, ������^,^^����^, ^��^��^, ��^^��^, ^^^^��^,^����^^, ��^��^^, ^^^��^^, ����^^^,^^��^^^, ^��^^^^, ��^^^^^, ^^^^^^^. (2)
In this way Indian prosodists were led to disover the Fibonai sequene, as wehave observed in Setion 1.2.8.Moreover, the anonymous author of Pr�akr.ta Pai�ngala (. 1320) disoveredelegant algorithms for ranking and unranking with respet to m-beat rhythms.To �nd the kth pattern, one starts by writing down m ^s, then expresses thedi�erene d = Fm+1� k as a sum of Fibonai numbers Fj1 + � � �+Fjt ; here Fj1is the largest Fibonai number that is � d and Fj2 is the largest � d�Fj1 , et.,ontinuing until the remainder is zero. Then beats j�1 and j are to be hangedfrom ^^ to ��, for j = j1, : : : , jt. For example, to get the 5th element of (2)we ompute 21� 5 = 16 = 13 + 3 = F7 + F4; the answer is ^^��^��.A few years later, N�ar�ayan.a Pan.d. ita treated the more general problem of�nding all ompositions of m whose parts are � q, where q is any given posi-tive integer. As a onsequene he disovered the qth-order Fibonai sequene5.4.2{(4), whih was destined to be used 600 years later in polyphase sorting;he also developed the orresponding ranking and unranking algorithms. [SeeParmanand Singh, Historia Mathematia 12 (1985), 229{244, and exerise 16.℄Pi _ngala gave speial ode-names to all the three-syllable meters,������ = m (m), ����^ = t (t),^���� = y (y), ^��^ = j (j),��^�� = r (r), ��^^ = B (bh),^^�� = s (s), ^^^ = n (n), (3)
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7.2.1.7 HISTORY AND FURTHER REFERENCES 3and students of Sanskrit have been expeted to memorize them ever sine.Somebody long ago devised a lever way to reall these odes, by inventingthe nonsense word yam�at�ar�ajabh�anasalag�am (ymAtArAjBAnslgAm); the pointis that the ten syllables of this word an be writtenyâ m�a�� t�a�� r�a�� jâ bh�a�� nâ sâ lâ g�am�� (4)and eah three-syllable pattern ours just after its ode name. The origin ofyam�a : : : lag�am is obsure, but Subhash Kak [Indian J. History of Siene 35(2000), 123{127℄ has traed it bak at least to C. P. Brown's Sanskrit Prosody(1869), page 28; thus it quali�es as the earliest known appearane of a \de Bruijnyle" that enodes binary n-tuples.Meanwhile, in Europe. In a similar way, lassi Greek poetry was based ongroups of short and/or long syllables alled \metrial feet," analogous to bars ofmusi. Eah basi type of foot aquired a Greek name; for example, two shortsyllables `^^' were alled a pyrrhi, and two long syllables `����' were alled aspondee, beause those rhythms were used respetively in a song of war (purr�qh)or a song of peae (sponda�). Greek names for metri feet were soon assimilatedinto Latin and eventually into modern languages, inluding English:^ arsis�� thesis^^ pyrrhi^�� iambus��^ trohee���� spondee^^^ tribrah^^�� anapest^��^ amphibrah^���� bahius��^^ datyl��^�� amphimaer����^ palimbahius������ molossus

^^^^ proeleusmati^^^�� fourth p�on^^��^ third p�on^^���� minor ioni^��^^ seond p�on^��^�� diiambus^����^ antispast^������ �rst epitrite��^^^ �rst p�on��^^�� horiambus��^��^ ditrohee��^���� seond epitrite����^^ major ioni����^�� third epitrite������^ fourth epitrite�������� dispondee

(5)

Alternative names, like \horee" instead of \trohee," or \reti" instead of\amphimaer," were also in ommon use. Moreover, by the time Diomedes wrotehis Latin grammar (approximately A.D. 375), eah of the 32 �ve-syllable feethad aquired at least one name. Diomedes also pointed out the relation betweenomplementary patterns; he stated for example that tribrah and molossus are\ontrarius," as are amphibrah and amphimaer. But he also regarded datylas the ontrary of anapest, and bahius as the ontrary of palimbahius, al-though the literal meaning of palimbahius is atually \reverse bahius." Greekprosodists had no standard order in whih to list the individual possibilities, and
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4 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7the form of the names makes it lear that no onnetion to a radix-two numbersystem was ontemplated. [See H. Keil, Grammatii Latini 1 (1857), 474{482;W. von Christ, Metrik der Griehen und R�omer (1879), 78{79.℄Surviving fragments of a work by Aristoxenus alled Elements of Rhythm(. 325 B.C.) show that the same terminology was applied also to musi. Andindeed, the same traditions lived on after the Renaissane; for example, we �nd
on page 32 of Athanasius Kirher's Musurgia Universalis 2 (Rome: 1650), andKirher went on to desribe all of the three-note and four-note rhythms of (5).Early lists of permutations. We've traed the history of formulas for ountingpermutations in Setion 5.1.2; but nontrivial lists of permutations were notpublished until hundreds of years after the formula n! was disovered. The �rstsuh tabulation urrently known was ompiled by the Italian physiian ShabbetaiDonnolo in his ommentary on the kabbalisti Sefer Yetzirah, written in A.D. 946.Table 1 shows his list for n = 5 as it was subsequently printed in Warsaw (1884).(The Hebrew letters in this table are typeset in a rabbinial font traditionallyused for ommentaries; notie that the letter hanges its shape to when itappears at the left end of a word.) Donnolo went on to list 120 permutationsof the six-letter word , all beginning with shin ( ); then he noted that120 more ould be obtained with eah of the other �ve letters in front, making720 in all. His lists involved groupings of six permutations, but in a haphazardfashion that led him into error (see exerise 4). Although he knew how manypermutations there were supposed to be, and how many should start with a givenletter, he evidently didn't have an algorithm for generating them.Table 1A MEDIEVAL LIST OF PERMUTATIONS

A omplete list of all 720 permutations of fa; b; ; d; e; fg appeared on pages668{671 of Jeremias Drexel's Orbis Pha�ethon (Munih: 1629; also on pages 526{531 of the Cologne edition in 1631). He o�ered it as proof that a man with sixguests ould seat them di�erently at lunh and dinner every day for a year|
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7.2.1.7 HISTORY AND FURTHER REFERENCES 5altogether 360 days, beause there were �ve days of fasting during Holy Week.Shortly afterwards, Marin Mersenne exhibited all 720 permutations of the sixtones fut; re;mi; fa; sol; lag, on pages 111{115 of his Traitez de la Voix et desChants (Volume 2 of Harmonie Universelle, 1636); then on pages 117{128 hepresented the same data in musial notation:
Drexel's table was organized lexiographially by olumns; Mersenne's tableswere lexiographi with respet to the order ut < re < mi < fa < sol < la, begin-ning with \ut,re,mi,fa,sol,la" and ending with \la,sol,fa,mi,re,ut." Mersenne alsoprepared a \grand et immense" manusript that listed all 40,320 permutationsof eight notes on 672 folio pages, followed by ranking and unranking algorithms[Biblioth�eque nationale de Frane, Fonds Fran�ais, no. 24256℄.We saw in Setion 7.2.1.2 that the important idea of plain hanges, Algo-rithm 7.2.1.2P, was invented in England a few years later.Methods for listing all permutations of a multiset with repeated elementswere often misunderstood by early authors. For example, when Bh�askara exhib-ited the permutations of f4; 5; 5; 5; 8g in setion 271 of his L��l�avat�� (. 1150), hegave them in the following order:48555 84555 54855 58455 5548555845 55548 55584 45855 4558545558 85455 85545 85554 5458558545 55458 55854 54558 58554 (6)
Mersenne used a slightly more sensible but not ompletely systemati order onpage 131 of his book when he listed sixty anagrams of the Latin name IESVS.When Athanasius Kirher wanted to illustrate the 30 permutations of a �ve-note melody on pages 10 and 11 of Musurgia Universalis 2 (1650), this lak of asystem got him into trouble (see exerise 5):

(7)
But John Wallis knew better. On page 117 of his Disourse of Combinations(1685) he orretly listed the 60 anagrams of \messes" in lexiographi order, ifwe let m < e < s ; and on page 126 he reommended respeting alphabeti order\that we may be the more sure, not to miss any."We will see later that the Indian mathematiian N�ar�ayan. a Pan.d. ita had al-ready developed a theory of permutation generation in the 14th entury, althoughhis work remained almost totally unknown.
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6 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7Seki's list. Takakazu Seki (1642{1708) was a harismati teaher and researherwho revolutionized the study of mathematis in 17th-entury Japan. While hewas studying the elimination of variables from simultaneous homogeneous equa-tions, he was led to expressions suh as a1b2 � a2b1 and a1b23 � a1b32 +a2b31 � a2b13 + a3b12 � a3b21, whih we now reognize as determinants.In 1683 he published a booklet about this disovery, introduing an ingenioussheme for listing all permutations in suh a way that half of them were \alive"(even) and the other half were \dead" (odd). Starting with the ase n = 2, when`12' was alive and `21' was dead, he formulated the following rules for n > 2:1) Take every live permutation for n�1, inrease all its elements by 1, and insert1 in front. This rule produes (n�1)!=2 \basi permutations" of f1; : : : ; ng.2) From eah basi permutation, form 2n others by rotation and reetion:a1a2 : : : an�1an; a2 : : : an�1ana1; : : : ; ana1a2 : : : an�1; (8)anan�1 : : : a2a1; a1anan�1 : : : a2; : : : ; an�1 : : : a2a1an: (9)If n is odd, those in the �rst row are alive and those in the seond are dead;if n is even, those in eah row are alternatively alive, dead, : : : , alive, dead.For example, when n = 3 the only basi permutation is 123. Thus 123, 231,312 are alive while 321, 132, 213 are dead, and we've suessfully generated thesix terms of a 3 � 3 determinant. The basi permutations for n = 4 are 1234,1342, 1423; and from, say, 1342 we get a set of eight, namely+ 1342� 3421 + 4213� 2134 + 2431� 1243 + 3124� 4321; (10)alternately alive (+) and dead (�). A 4 � 4 determinant therefore inludes theterms a1b34d2 � a3b42d1 + � � � � a4b32d1 and sixteen others.Seki's rule for permutation generation is quite pretty, but unfortunately ithas a serious problem: It doesn't work when n > 4. His error seems to havegone unreognized for hundreds of years. [See Y. Mikami, The Development ofMathematis in China and Japan (1913), 191{199; Takakazu Seki's ColletedWorks (Osaka: 1974), 18{20, : : ; and exerises 7{8.℄Lists of ombinations. The earliest exhaustive list of ombinations known tohave survived the ravages of time appears in the last book of Su�sruta's well-knownSanskrit treatise on mediine, Chapter 63, written before A.D. 600 and perhapsmuh earlier. Noting that mediine an be sweet, sour, salty, peppery, bitter,and/or astringent, Su�sruta's book diligently listed the (15; 20; 15; 6; 1; 6) asesthat arise when those qualities our two, three, four, �ve, six, and one at a time.Bh�askara repeated this example in setions 110{114 of L��l�avat��, and observedthat the same reasoning applies to six-syllable poeti meters with a given numberof long syllables. But he simply mentioned the totals, (6; 15; 20; 15; 6; 1), withoutlisting the ombinations themselves. In setions 274 and 275, he observed thatthe numbers (n)(n� 1) : : : (n� k + 1)=(k(k � 1) : : : (1)) enumerate ompositions(that is, ordered partitions) as well as ombinations; again he gave no list.To avoid prolixity this is treated in a brief manner;for the siene of alulation is an oean without bounds.| Bh�askara (. 1150)

6



7.2.1.7 HISTORY AND FURTHER REFERENCES 7An isolated but interesting list of ombinations appeared in the remarkablealgebra text Al-B�ahir �'l-h. is�ab (The Shining Book of Calulation), written byal-Samaw'al of Baghdad when he was only 19 years old (1144). In the losingpart of that work he presented a list of �106 � = 210 simultaneous linear equationsin 10 unknowns:Al-Samaw'al's Arabi original Equivalent modern notation65 654321 m (1) x1 + x2 + x3 + x4 + x5 + x6 = 6570 754321 o (2) x1 + x2 + x3 + x4 + x5 + x7 = 7075 854321 ~ (3) x1 + x2 + x3 + x4 + x5 + x8 = 75... ...91 1098764 ¢ � (209) x4 + x6 + x7 + x8 + x9 + x10 = 91100 1098765 Ý � (210) x5 + x6 + x7 + x8 + x9 + x10 = 100
(11)

Eah ombination of ten things taken six at a time yielded one of his equa-tions. His purpose was evidently to demonstrate that over-determined equationsan still have a unique solution|whih in this ase was (x1; x2; : : : ; x10) =(1; 4; 9; 16; 25; 10; 15; 20; 25; 5). [Salah Ahmad and Roshdi Rashed, Al-B�ahir enAlg�ebre d'As-Samaw'al (Damasus: 1972), 77{82, 248{231.℄Rolling die. Some glimmerings of elementary ombinatoris arose also inmedieval Europe, espeially in onnetion with the question of listing all possibleoutomes when three die are thrown. There are, of ourse, �83� = 56 ways tohoose 3 things from 6 when repetitions are allowed. Gambling was oÆially pro-hibited; yet these 56 ways beame rather well known. In about A.D. 965, BishopWibold of Cambrai in northern Frane devised a game alled Ludus Clerialis,so that members of the lergy ould enjoy rolling die while remaining pious.His idea was to assoiate eah possible roll with one of 56 virtues, aording tothe following table:q q q love q qqq qqq qqq perseverane q q qqq qqqq q hospitality qqq q qq q qqq qqq morti�ationq q q q faith q q qq q q qq q kindness q q qqq qqq qqq eonomy qqq qqqq q qqqq q innoeneq q qqq hope q q qq q qqqq q modesty q q q qq q q qq q patiene qqq qqqq q qqq qqq ontritionq q q qq q justie q q qq q qqq qqq resignation q q q qq q qqqq q zeal qqq qqq qqq qqq qqq onfessionq q qqqq q prudene q qqqq q qqqq q gentleness q q q qq q qqq qqq poverty q qq q q qq q q qq q maturityq q qqq qqq temperane q qqqq q qqq qqq generosity q q qqqq q qqqq q softness q qq q q qq q qqqq q soliitudeq q q q q ourage q qqq qqq qqq qqq wisdom q q qqqq q qqq qqq virginity q qq q q qq q qqq qqq onstanyq q q qqq peae q q q q q q remorse q q qqq qqq qqq qqq respet q qq q qqqq q qqqq q intelligeneq q q q qq q hastity q q q q qqq joy qqq qqq qqq piety q qq q qqqq q qqq qqq sighingq q q qqqq q mery q q q q q qq q sobriety qqq qqq q qq q indulgene q qq q qqq qqq qqq qqq weepingq q q qqq qqq obediene q q q q qqqq q satisfation qqq qqq qqqq q prayer qqqq q qqqq q qqqq q heerfulnessq qqq qqq fear q q q q qqq qqq sweetness qqq qqq qqq qqq a�etion qqqq q qqqq q qqq qqq ompassionq qqq q qq q foresight q q qqq qqq leverness qqq q qq q q qq q judgment qqqq q qqq qqq qqq qqq self-ontrolq qqq qqqq q disretion q q qqq q qq q simpliity qqq q qq q qqqq q vigilane qqq qqq qqq qqq qqq qqq humilityPlayers took turns, and the �rst to roll eah virtue aquired it. After all possibil-ities had arisen, the most virtuous player won. Wibold noted that love (aritas)is the best virtue of all. He gave a ompliated soring system by whih twovirtues ould be ombined if the sum of pips on all six of their die was 21; for
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8 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7example, love + humility or hastity + intelligene ould be paired in this way,and suh ombinations ranked above any individual virtue. He also onsideredmore omplex variants of the game in whih vowels appeared on the die insteadof spots, so that virtues ould be laimed if their vowels were thrown.Wibold's table of virtues was presented in lexiographi order, as above,when it was �rst desribed by Bald�eri in his Chronion Cameraense, about150 years later. [Patrologia Latina 134 (Paris: 1884), 1007{1016.℄ But anothermedieval manusript presented the possible die rolls in quite a di�erent order:qqq qqq qqq qqq qqq qqq qqqq q qqqq q qqqq q q qq q q qq q q qq q qqq qqq qqq q q q q q q q q q qqq qqq qqq qqq qqqq qqqq qqq qqq qqq q qq q qqq qqq qqq qqq qqq qqq qqq qqq qqq q q qqq qqq qqq qqq q qqqq q qqqq q qqq qqq qqqq q qqqq q q qq q qqqq q qqqq q qqqqqqq q qqqq q q q qqqq q qqqq q q q qq q q qq q qqq qqq q qq q q qq q qqqq q q qq q q qq q qqq q qq q q qq q q q q qq q q qq q qqqq qqq qqq qqq qqq qqq qqqq q qqq qqq q qq q qqq qqq q q qqq qqq q q q q q qqq qqq q q q q qqqq qq q q q q qq q q q q q qqq q q q q q q q qqq qqq q q qqqq q q q q qq q q q qqqq q q q qqq qqq qqqq q q qq q qqqq q q qq q qqq q qq q qqq q q qqq q q q qqq qqq q qq q q q qqq qqq q qq q qqqq qqq qqq q qqqq q qqq q qqq qqq qqqq q qqq qqq qqq qqqq q q q qqq qqq qqqq q q qqq qqq q q q qqqq q q q qq qq q q q q qqqq q q qq q q q qqqq q q qq q q qqq qqq q qq q qqq q qq q qqq q qqq qqq qqq q q qqqq q qqq q q
(12)

In this ase the author knew how to deal with repeated values, but had a veryompliated, ad ho way to handle the ases in whih all die were di�erent. [SeeD. R. Bellhouse, International Statistial Review 68 (2000), 123{136.℄An amusing poem entitled \Chaune of the Dyse," attributed to JohnLydgate, was written in the early 1400s for use at parties. Its opening versesinvite eah person to throw three die; then the remaining verses, whih areindexed in dereasing lexiographi order from qqq qqq qqq qqq qqq qqq to qqq qqq qqq qqq qqqq q to � � � to q q q ,give 56 harater skethes that light-heartedly desribe the thrower. [The fulltext was published by E. P. Hammond in Englishe Studien 59 (1925), 1{16;a translation into modern English would be desirable.℄I pray to god that euery wight may asteVpon three dyse ryght as is in hys herteWhether he be rehelesse or stedfasteSo moote he lawghen outher elles smerteHe that is gilty his lyfe to onverteThey that in trouthe haue su�red many a throweMoote ther haune fal as they moote be knowe.| The Chaune of the Dyse (. 1410)Ramon Llull. Signi�ant ripples of ombinatorial onepts also emanatedfrom an energeti and quixoti Catalan poet, novelist, enylopedist, eduator,mysti, and missionary named Ramon Llull (. 1232{1316). Llull's approah toknowledge was essentially to identify basi priniples and then to ontemplateombining them in all possible ways.For example, one hapter in his Ars Compendiosa Inveniendi Veritatem(. 1274) began by enumerating sixteen attributes of God: Goodness, greatness,eternity, power, wisdom, love, virtue, truth, glory, perfetion, justie, generosity,mery, humility, sovereignty, and patiene. Then Llull wrote �162 � = 120 shortessays of about 80 words eah, onsidering God's goodness as related to greatness,
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7.2.1.7 HISTORY AND FURTHER REFERENCES 9God's goodness as related to eternity, and so on, ending with God's sovereignty asrelated to patiene. In another hapter he onsidered seven virtues (faith, hope,harity, justie, prudene, fortitude, temperane) and seven vies (gluttony, lust,greed, sloth, pride, envy, anger), with �142 � = 91 subhapters to deal with eahpair in turn. Other hapters were systematially divided in a similar way, into�82� = 28, �152 � = 105, �42� = 6, and �162 � = 120 subsetions. (One wonders whatmight have happened if he had been familiar with Wibold's list of 56 virtues;would he have produed ommentaries on all �562 � = 1540 of their pairs?)

Fig. 44. Illustrations in a manusript presented by Ramon Llull tothe doge of Venie in 1280. [From his Ars Demonstrativa, BiblioteaMariana, VI 200, folio 3v.℄Llull illustrated his methodology by drawing irular diagrams like those inFigure 44. The left-hand irle in this illustration, Deus, names sixteen divineattributes|essentially the same sixteen listed earlier, exept that love (amor)was now alled will (voluntas), and the �nal four were now respetively simpliity,rank, mery, and sovereignty. Eah attribute is assigned a ode letter, andthe illustration depits their interrelations as the omplete graph K16 on ver-ties (B;C;D;E;F;G;H; I;K;L;M;N;O;P;Q;R). The right-hand �gure, virtuteset vitia, shows the seven virtues (b; ; d; e; f; g; h) interleaved with the seven vies(i; k; l;m; n; o; p); in the original manusript virtues appeared in blue ink whilevies appeared in red. Notie that in this ase his illustration depited twoindependent omplete graphs K7, one of eah olor. (He no longer bothered toompare eah individual virtue with eah individual vie, sine every virtue waslearly better than every vie.)Llull used the same approah to write about mediine: Instead of juxta-posing theologial onepts, his Liber Prinipiorum Mediin� (. 1275) on-sidered ombinations of symptoms and treatments. And he also wrote books
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10 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7

Fig. 45. Llullian illustrationsfrom a manusript presented tothe queen of Frane, . 1325.[Badishe Landesbibliothek Karls-ruhe, Codex St. Peter perg. 92,folios 28v and 39v.℄
on philosophy, logi, jurisprudene, astrology, zoology, geometry, rhetori, andhivalry|more than 200 works in all. It must be admitted, however, that muhof this material was highly repetitive; modern data ompression tehniques wouldprobably redue Llull's output to a size muh less than that of, say, Aristotle.He eventually deided to simplify his system by working primarily withgroups of nine things. See, for example, Fig. 45, where irle A now lists only the�rst nine of God's attributes (B;C;D;E;F;G;H; I;K). The �92� = 36 assoiatedpairs (BC;BD; : : : ; IK) appear in the stairstep hart at the right of that irle. Byadding two more virtues, namely patiene and ompassion|as well as two morevies, namely lying and inonsisteny|he ould treat virtues vis-�a-vis virtuesand vies vis-�a-vis vies with the same hart. He also proposed using the samehart to arry out an interesting sheme for voting, in an eletion with nineandidates [see I. MLean and J. London, Studia Lulliana 32 (1992), 21{37℄.The enirled triangles at the lower left of Fig. 45 illustrate another keyaspet of Llull's approah. Triangle (B;C;D) stands for (di�erene, onordane,ontrariness); triangle (E;F;G) stands for (beginning, middle, ending); and trian-gle (H; I;K) stands for (greater, equal, less). These three interleaved appearanesof K3 represent three kinds of three-valued logi. Llull had experimented earlierwith other suh triplets, notably `(true, unknown, false)'. We an get an idea
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7.2.1.7 HISTORY AND FURTHER REFERENCES 11of how he used the triangles by onsidering how he dealt with ombinations ofthe four basi elements (earth, air, �re, water): All four elements are di�erent;earth is onordant with �re, whih onords with air, whih onords withwater, whih onords with earth; earth is ontrary to air, and �re is ontraryto water; these onsiderations omplete an analysis with respet to triangle(B;C;D). Turning to triangle (E;F;G), he noted that various proesses in naturebegin with one element dominating another; then a transition or middle stateours, until a goal is reahed, like air beoming warm. For triangle (H; I;K) hesaid that in general we have �re > air > water > earth with respet to their\spheres," their \veloities," and their \nobilities"; nevertheless we also have,for example, air > �re with respet to supporting life, while air and �re haveequal value when they are working together.Llull provided the vertial table at the right of Fig. 45 as a further aid. (Seeexerise 11 below.) He also introdued movable onentri wheels, labeled withthe letters (B;C;D;E;F;G;H; I;K) and with other names, so that many thingsould be ontemplated simultaneously. In this way a faithful pratitioner ofthe Llullian art ould be sure to have all the bases overed. [Llull may haveseen similar wheels that were used in nearby Jewish ommunities; see M. Idel,J. Warburg and Courtauld Institutes 51 (1988), 170{174 and plates 16{17.℄Several enturies later, Athanasius Kirher published an extension of Llull'ssystem as part of a large tome entitled Ars Magna Siendi sive Combinatoria(Amsterdam: 1669), with �ve movable wheels aompanying page 173 of thatbook. Kirher also extended Llull's repertoire of omplete graphs Kn by provid-ing illustrations of omplete bipartite graphs Km;n; for example, Fig. 46 is takenfrom page 171 of Kirher's book, and his page 170 ontains a glorious pitureof K18;18.

Fig. 46. K9;9 as pre-sented by AthanasiusKirher in 1669.
It is an investigative and inventive art.When ideas are ombined in all possible ways,the new ombinations start the mind thinking along novel hannelsand one is led to disover fresh truths and arguments.| MARTIN GARDNER, Logi Mahines and Diagrams (1958)The most extensive modern development of Llull-like methods is perhapsThe Shillinger System of Musial Composition by Joseph Shillinger (New York:
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12 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7Carl Fisher, 1946), a remarkable two-volume work that presents theories ofrhythm, melody, harmony, ounterpoint, omposition, orhestration, et., froma ombinatorial perspetive. On page 56, for example, Shillinger lists the 24permutations of fa; b; ; dg in the Gray-ode order of plain hanges (Algorithm7.2.1.2P); then on page 57 he applies them not to pithes but rather to rhythms,to the durations of notes. On page 364 he exhibits the symmetrial yle(2; 0; 3; 4; 2; 5; 6; 4; 0; 1; 6; 2; 3; 1; 4; 5; 3; 6; 0; 5; 1); (13)a universal yle of 2-ombinations for the seven objets f0; 1; 2; 3; 4; 5; 6g; inother words, (13) is an Eulerian trail in K7 : All �72� = 21 pairs of digits ourexatly one. Suh patterns are grist for a omposer's mill. But we an begrateful that Shillinger's better students (like George Gershwin) did not ommitthemselves entirely to a stritly mathematial sense of aesthetis.Taquet, van Shooten, and Izquierdo. Three additional books related toour story were published during the 1650s. Andr�e Taquet wrote a popular text,Arithmeti� Theoria et Praxis (Louvain: 1656), that was reprinted and revisedoften during the next �fty years. Near the end, on pages 376 and 377, he gave aproedure for listing ombinations two at a time, then three at a time, et.Frans van Shooten's Exeritationes Mathemati� (Leiden: 1657) was moreadvaned. On page 373 he listed all ombinations in an appealing layoutab: ab: a: b: abd: ad: bd: abd: d: ad: bd: abd (14)
and he proeeded on the next few pages to extend this pattern to the letters e,f , g, h, i, k, \et si in in�nitum." On page 376 he observed that one an replae(a; b; ; d) by (2; 3; 5; 7) in (14) to get the divisors of 210 that exeed unity:23 65 10 15 307 14 21 42 35 70 105 210 (15)
And on the following page he extended the idea toaa: aab: ab: aab: a: aa: b: ab: aab (16)
thereby allowing two a's. He didn't really understand this extension, though; hisnext example aa: aaa: aaab: ab: aab: aaabb: bb: abb: aabb: aaabb (17)
was bothed, indiating the limits of his knowledge at the time. (See exerise 13.)
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7.2.1.7 HISTORY AND FURTHER REFERENCES 13On page 411 van Shooten observed that the weights (a; b; ; d) = (1; 2; 4; 8)ould be assigned in (14), leading to 12 34 5 6 78 9 10 11 12 13 14 15 (18)
after addition. But he didn't see the onnetion with radix-2 arithmeti.Sebasti�an Izquierdo's two-volume work Pharus Sientiarum (Lyon: 1659),\The Lighthouse of Siene," inluded a niely organized disussion of ombina-toris entitled Disputatio 29, De Combinatione. He gave a detailed disussion offour key parts of Stanley's Twelvefold Way, namely the n-tuples, n-variations,n-multiombinations, and n-ombinations of m objets that appear in the �rsttwo rows and the �rst two olumns of Table 7.2.1.4{1.In Setions 81{84 of De Combinatione he listed all ombinations of m letterstaken n at a time, for 2 � n � 5 and n � m � 9, always in lexiographi order;he also tabulated them for m = 10 and 20 in the ases n = 2 and 3. But whenhe listed the mn variations of m things taken n at a time, he hose a moreompliated ordering (see exerise 14).Izquierdo was �rst to disover the formula �m+n�1n � for ombinations of mthings taken n at a time with unlimited repetition; this rule appeared in x48{x51of his work. But in x105, when he attempted to list all suh ombinations in thease n = 3, he didn't know that there was a simple way to do it. In fat, hislisting of the 56 ases form = 6 was rather like the old, awkward ordering of (12).Combinations with repetition were not well understood until James Ber-noulli's Ars Conjetandi, \The Art of Guessing," ame out in 1713. In Part 2,Chapter 5, Bernoulli simply listed the possibilities in lexiographi order, andshowed that the formula �m+n�1n � follows by indution as an easy onsequene.[Niol�o Tartaglia had, inidentally, ome lose to disovering this formula in hisGeneral trattato di numeri, et misure 2 (Venie: 1556), 17r and 69v; so had theMaghrebi mathematiian Ibn Mun`im in his 13th-entury Fiqh al-H. is�ab.℄The null ase. Before we onlude our disussion of early work on ombinations,we should not forget a small yet noble step taken by John Wallis on page 110of his Disourse of Combinations (1685), where he spei�ally onsidered theombination of m things taken 0 at a time: \It is manifest, That, if we wouldtake None, that is, if we would leave All ; there an be but one ase thereof, whatever be the Number of things exposed." Furthermore, on page 113, he knew that�00� = 1: \(for, here, to take all, or to leave all, is but one and the same ase.)"However, when he gave a table of n! for n � 24, he did not go so far as topoint out that 0! = 1, or that there is exatly one permutation of the empty set.The work of N�ar�ayan.a. A remarkable monograph entitled Gan. ita Kaumud��(\Treatise on Calulation"), written by N�ar�ayan. a Pan.d. ita in 1356, has reentlybeome known in detail to sholars outside of India for the �rst time, thanksto an English translation by Parmanand Singh [Gan. ita Bh�arat�� 20 (1998), 25{82; 21 (1999), 10{73; 22 (2000), 19{85; 23 (2001), 18{82; 24 (2002), 35{98℄.
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14 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7Chapter 13 of his work, subtitled A_nka P�a�sa (\Conatenation of Numbers"), wasdevoted to ombinatorial generation. Indeed, although the 97 \sutras" of thishapter were rather rypti, they presented a omprehensive theory of the subjetthat antiipated developments in the rest of the world by several hundred years.For example, N�ar�ayan. a dealt with permutation generation in sutras 49{55a,where he gave algorithms to list all permutations of a set in dereasing olex or-der, together with algorithms to rank a given permutation and to unrank a givenserial number. In this way he essentially disovered the fatorial representationof positive integers. Then in sutras 57{60 he extended the algorithms to handlegeneral multisets; for example, he listed the permutations of f1; 1; 2; 4g as1124; 1214; 2114; 1142; 1412; 4112; 1241; 2141; 1421; 4121; 2411; 4211;again in dereasing olex order.N�ar�ayan. a's sutras 88{92 dealt with systemati generation of ombinations.Besides illustrating the ombinations of f1; : : : ; 8g taken 3 at a time, namely(678; 578; 478; : : : ; 134; 124; 123);he also onsidered a bit-string representation of these ombinations in the reverseorder (inreasing olex):(11100000; 11010000; 10110000; : : : ; 00010011; 00001011; 00000111):He almost, but not quite, disovered Theorem 7.2.1.3L.Thus we an legitimately regard N�ar�ayan. a Pan.d. ita as the founder of thesiene of ombinatorial generation|even though, like many other pioneers whowere signi�antly \ahead of their time," his work on the subjet never beamewell known even in his own ountry.Permutable poetry. Let's turn now to a urious question that attratedthe attention of several prominent mathematiians in the seventeenth entury,beause it sheds onsiderable light on the state of ombinatorial knowledge inEurope at that time. A Jesuit priest named Bernard Bauhuis had omposed afamous one-line tribute to the Virgin Mary, in Latin hexameter:Tot tibi sunt dotes, Virgo, quot sidera �lo. (19)[\Thou hast as many virtues, O Virgin, as there are stars in heaven"; seehis Epigrammatum Libri V (Cologne: 1615), 49.℄ His verse inspired EryiusPuteanus, a professor at the University of Louvain, to write a book entitledPietatis Thaumata (Antwerp: 1617), presenting 1022 permutations of Bauhuis'swords. For example, Puteanus wrote107 Tot dotes tibi, quot �lo sunt sidera, Virgo.270 Dotes tot, �lo sunt sidera quot, tibi Virgo.329 Dotes, �lo sunt quot sidera, Virgo tibi tot.384 Sidera quot �lo, tot sunt Virgo tibi dotes.725 Quot �lo sunt sidera, tot Virgo tibi dotes.949 Sunt dotes Virgo, quot sidera, tot tibi �lo.1022 Sunt �lo tot Virgo tibi, quot sidera, dotes.
(20)
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7.2.1.7 HISTORY AND FURTHER REFERENCES 15He stopped at 1022, beause 1022 was the number of visible stars in Ptolemy'swell-known atalog of the heavens.The idea of permuting words in this way was well known at the time; suhwordplay was what Julius Saliger had alled \Proteus verses" in his PoetiesLibri Septem (Lyon: 1561), Book 2, Chapter 30. The Latin language lends itselfto permutations like (20), beause Latin word endings tend to de�ne the funtionof eah noun, making the relative word order muh less important to the meaningof a sentene than it is in English. Puteanus did state, however, that he hadspei�ally avoided unsuitable permutations suh asSidera tot �lo, Virgo, quot sunt tibi dotes, (21)beause they would plae an upper bound on the Virgin's virtues rather than alower bound. [See pages 12 and 103 of his book.℄Of ourse there are 8! = 40;320 ways to permute the words of (19). Butthat wasn't the point; most of those ways don't \san." Eah of Puteanus's 1022verses obeyed the strit rules of lassial hexameter, the rules that had beenfollowed by Greek and Latin poets sine the days of Homer and Vergil, namely:i) Eah word onsists of syllables that are either long (��) or short (^);ii) The syllables of eah line belong to one of 32 patterns,n��^^���� o n��^^���� o n��^^���� o n��^^���� o ��^^ n��^����o: (22)In other words there are six metrial feet, where eah of the �rst four is either adatyl or a spondee in the terminology of (5); the �fth foot should be a datyl,and the last is either trohee or spondee.The rules for long versus short syllables in Latin poetry are somewhat trikyin general, but the eight words of Bauhuis's verse an be haraterized by thefollowing patterns:tot = ��; tibi = n^^^��o; sunt = ��; dotes = ����;Virgo = n��^����o; quot = ��; sidera = ��^^; �lo = ����: (23)Notie that poets had two hoies when they used the words `tibi' or `Virgo'.Thus, for example, (19) �ts the hexameter pattern��Tot t̂i- b̂i ��sunt ��do- ��tes, ��Vir- ��go, ��quot ��si-d̂e-r̂a ���-��lo. (24)(Datyl, spondee, spondee, spondee, datyl, spondee; \dum-diddy dum-dumdum-dum dum-dum dum-diddy dum-dum." The ommas represent slight pauses,alled \�suras," when the words are read; they don't onern us here, althoughPuteanus inserted them arefully into eah of his 1022 permutations.)A natural question now arises: If we permute Bauhuis's words at random,what are the odds that they san? In other words, how many of the permutationsobey rules (i) and (ii), given the syllable patterns in (23)? G. W. Leibniz raised
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16 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7this question, among others, in his Dissertatio de Arte Combinatoria (1666), awork published when he was applying for a position at the University of Leipzig.At this time Leibniz was just 19 years old, largely self-taught, and his under-standing of ombinatoris was quite limited; for example, he believed that thereare 600 permutations of fut; ut; re;mi; fa; solg and 480 of fut; ut; re; re;mi; fag,and he even stated that (22) represents 76 possibilities instead of 32. [See x5 andx8 in his Problem 6.℄But Leibniz did realize that it would be worthwhile to develop generalmethods for ounting all permutations that are \useful," in situations whenmany permutations are \useless." He onsidered several examples of Proteusverses, enumerating some of the simpler ones orretly but making many errorswhen the words were ompliated. Although he mentioned Puteanus's work, hedidn't attempt to enumerate the sannable permutations of (19).A muh more suessful approah was introdued a few years later by JeanPrestet in his �El�emens des Math�ematiques (Paris: 1675), 342{438. Prestet gavea lear exposition leading to the onlusion that exatly 2196 permutations ofBauhuis's verse would yield a proper hexameter. However, he soon realized thathe had forgotten to ount quite a few ases| inluding those numbered 270,384, and 725 in (20). So he ompletely rewrote this material when he publishedNouveaux �El�emens des Math�ematiques in 1689. Pages 127{133 of Prestet's newbook were devoted to showing that the true number of sannable permutationswas 3276, almost 50% larger than his previous total.Meanwhile John Wallis had treated the problem in his Disourse of Combi-nations (London: 1685), 118{119, published as a supplement to his Treatise ofAlgebra. After explaining why he believed the orret number to be 3096, Wallisadmitted that he may have overlooked some possibilities and/or ounted someases more than one; \but I do not, at present, disern either the one and other."An anonymous reviewer of Wallis's work remarked that the true number ofmetrially orret permutations was atually 2580|but he gave no proof [AtaEruditorum 5 (1686), 289℄. The reviewer was almost ertainly G. W. Leibnizhimself, although no lue to the reasoning behind the number 2580 has beenfound among Leibniz's voluminous unpublished notes.Finally James Bernoulli entered the piture. In his inaugural leture asDean of Philosophy at the University of Basel, 1692, he mentioned the tot-tibi enumeration problem and stated that a areful analysis is neessary toobtain the orret answer|whih, he said, was 3312(!). His proof appearedposthumously in the �rst edition of his Ars Conjetandi (1713), 79{81. [Thosepages were, inidentally, omitted from later editions of that famous book, andfrom his olleted works, beause he didn't atually intend them for publiation;a proofreader had inserted them by mistake. See Die Werke von Jakob Bernoulli3 (Basel: Birkh�auser, 1975), 78, 98{106, 108, 154{155.℄So who was right? Are there 2196 sannable permutations, or 3276, or 3096,or 2580, or 3312? W. A. Whitworth and W. E. Hartley onsidered the questionanew in The Mathematial Gazette 2 (1902), 227{228, where they eah presentedelegant arguments and onluded that the true total was in fat none of the
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7.2.1.7 HISTORY AND FURTHER REFERENCES 17above. Their joint answer, 2880, represented the �rst time that any two math-ematiians had independently ome to the same onlusion about this problem.But exerises 21 and 22, below, reveal the truth: Bernoulli is vindiated,and everybody else was wrong. Moreover, a study of Bernoulli's systematiand arefully indented 3-page derivation indiates that he was suessful hieybeause he adhered faithfully to a disipline that we now all the baktrakmethod. We shall study the baktrak method thoroughly in Setion 7.2.2, wherewe will also see that the tot-tibi question is readily solved as a speial ase ofthe exat over problem.Even the wisest and most prudent people often su�er fromwhat Logiians all insuÆient enumeration of ases.| JAMES BERNOULLI (1692)Set partitions. The partitions of a set seem to have been studied �rst in Japan,where a parlor game alled genji-ko (\Genji inense") beame popular amongupperlass people about A.D. 1500. The host of a gathering would seretly selet�ve pakets of inense, some of whih might be idential, and he would burnthem one at a time. The guests would try to disern whih of the sents werethe same and whih were di�erent; in other words, they would try to guess whihof the $5 = 52 partitions of f1; 2; 3; 4; 5g had been hosen by their host.
Fig. 47. Diagrams used to represent set partitionsin 16th entury Japan. [From a opy in the olle-tion of Tamaki Yano at Saitama University.℄Soon it beame ustomary to represent the 52 possible outomes by diagramslike those in Fig. 47. For example, the uppermost diagram of that illustration,when read from right to left, would indiate that the �rst two sents are identialand so are the last three; thus the partition is 12 j345. The other two diagrams,similarly, are pitorial ways to represent the respetive partitions 124 j35 and1 j24 j35. As an aid to memory, eah of the 52 patterns was named after ahapter of Lady Murasaki's famous 11th-entury Tale of Genji, aording to thefollowing sequene [Enylopedia Japoni� (Tokyo: Sanseido, 1910), 1299℄:

(25)
(One again, as we've seen in many other examples, the possibilities were notarranged in any partiularly logial order.)
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18 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7The appealing nature of these genji-ko patterns led many families to adoptthem as heraldi rests. For example, the following stylized variants of (25) werefound in standard atalogs of kimono patterns early in the 20th entury:

[See Fumie Adahi, Japanese Design Motifs (New York: Dover, 1972), 150{153.℄Early in the 1700s, Takakazu Seki and his students began to investigate thenumber of set partitions $n for arbitrary n, inspired by the known result that$5 = 52. Yoshisuke Matsunaga found formulas for the number of set partitionswhen there are kj subsets of size nj for 1 � j � t, with k1n1 + � � � + ktnt = n(see the answer to exerise 1.2.5{21). He also disovered the basi reurrenerelation 7.2.1.5{(14), namely$n+1 = �n0�$n + �n1�$n�1 + �n2�$n�2 + � � �+ �nn�$0; (26)by whih the values of $n an readily be omputed.Matsunaga's disoveries remained unpublished until Yoriyuki Arima's bookSh�uki Sanp�o ame out in 1769. Problem 56 of that book asked the reader tosolve the equation \$n = 678570" for n; and Arima's answer, worked out indetail (with redit duly given to Matsunaga), was n = 11.Shortly afterwards, Masanobu Saka studied the number �nk	 of ways thatan n-set an be partitioned into k subsets, in his work Sanp�o-Gakkai (1782). Hedisovered the reurrene formulann+ 1k o = knnko+ n nk � 1o; (27)and tabulated the results for n � 11. James Stirling, in his Methodus Di�eren-tialis (1730), had disovered the numbers �nk	 in a purely algebrai ontext; thusSaka was the �rst person to realize their ombinatorial signi�ane.An interesting algorithm for listing set partitions was subsequently devisedby Toshiaki Honda (see exerise 24). Further details about genji-ko and its rela-tion to the history of mathematis an be found in Japanese artiles by TamakiYano, Sugaku Seminar 34, 11 (Nov. 1995), 58{61; 34, 12 (De. 1995), 56{60.Set partitions remained virtually unknown in Europe until muh later, ex-ept for three isolated inidents. First, George and/or Rihard Puttenhampublished The Arte of English Poesie in 1589, and pages 70{72 of that book
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7.2.1.7 HISTORY AND FURTHER REFERENCES 19ontain diagrams similar to those of genji-ko. For example, the seven diagrams(28)were used to illustrate possible rhyme shemes for 5-line poems, \whereof someof them be harsher and unpleasaunter to the eare then other some be." But thisvisually appealing list was inomplete (see exerise 25).Seond, an unpublished manusript of G. W. Leibniz from the late 1600sshows that he had tried to ount the number of ways to partition f1; : : : ; nginto three or four subsets, but with almost no suess. He enumerated �n2	 bya very umbersome method, whih would not have led him to see readily that�n2	 = 2n�1 � 1. He attempted to ompute �n3	 and �n4	 only for n � 5, andmade several numerial slips leading to inorret answers. [See E. Knobloh,Studia Leibnitiana Supplementa 11 (1973), 229{233; 16 (1976), 316{321.℄The third European appearane of set partitions had a ompletely di�erentharater. John Wallis devoted the third hapter of his Disourse of Combina-tions (1685) to questions about \aliquot parts," the proper divisors of numbers,and in partiular he studied the set of all ways to fatorize a given integer. Thisquestion is equivalent to the study of multiset partitions; for example, the fator-izations of p3q2r are essentially the same as the partitions of fp; p; p; q; q; rg, whenp, q, and r are prime numbers. Wallis devised an exellent algorithm for listingall fatorizations of a given integer n, essentially antiipating Algorithm 7.2.1.5M(see exerise 28). But he didn't investigate the important speial ases that arisewhen n is the power of a prime (equivalent to integer partitions) or when n issquarefree (equivalent to set partitions). Thus, although Wallis was able to solvethe more general problem, its omplexities paradoxially deeted him from dis-overing partition numbers, Bell numbers, or Stirling subset numbers, or from de-vising simple algorithms that would generate integer partitions or set partitions.Integer partitions. Partitions of integers arrived on the sene even moreslowly. Bishop Wibold (. 965) knew the partitions of n into exatly threeparts � 6. So did Galileo, who wrote a memo about them (. 1627) and alsostudied their frequeny of ourrene as rolls of three die. [\Sopra le soperte dei dadi," in Galileo's Opere, Volume 8, 591{594; he listed partitions in dereasinglexiographi order.℄Mersenne listed the partitions of 9 into any number of parts, on page 130 ofhis Traitez de la Voix et des Chants (1636). With eah partition 9 = a1+ � � �+akhe also omputed the multinomial oeÆient 9!=(a1! : : : ak!); as we've seen earlier,he was interested in ounting various melodies, and he knew for example thatthere are 9!=(3!3!3!) = 1680 melodies on the nine notes fa; a; a; b; b; b; ; ; g.But he failed to mention the ases 8 + 1 and 3 + 2 + 1 + 1 + 1 + 1, probablybeause he hadn't listed the possibilities in any systemati way.Leibniz onsidered two-part partitions in Problem 3 of his Dissertatio deArte Combinatoria (1666), and his unpublished notes show that he subsequentlyspent onsiderable time trying to enumerate the partitions that have three or
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20 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7more summands. He alled them \diserptions," or (less frequently) \divul-sions"| in Latin of ourse|or sometimes \setions" or \dispersions" or even\partitions." He was interested in them primarily beause of their onnetionwith the monomial symmetri funtions Pxa1i1 xa2i2 : : : . But his many attemptsled to almost total failure, exept in the ase of three summands, when he almost(but not quite) disovered the formula for ��n3�� in exerise 7.2.1.4{31. For example,he arelessly ounted only 21 partitions of 8, forgetting the ase 2+2+2+1+1;and he got only 26 for p(9), after missing 3 + 2 + 2 + 2, 3 + 2 + 2 + 1 + 1,2 + 2 + 2 + 1 + 1 + 1, and 2 + 2 + 1 + 1 + 1 + 1 + 1| in spite of the fat thathe was trying to list partitions systematially in dereasing lexiographi order.[See E. Knobloh, Studia Leibnitiana Supplementa 11 (1973), 91{258; 16 (1976),255{337; Historia Mathematia 1 (1974), 409{430.℄Abraham de Moivre had the �rst real suess with partitions, in his paper\A Method of Raising an in�nite Multinomial to any given Power, or Extratingany given Root of the same" [Philosophial Transations 19 (1697), 619{625 andFig. 5℄. He proved that the oeÆient of zm+n in (az + bz2 + z3 + � � � )m hasone term for eah partition of n; for example, the oeÆient of zm+6 is�m6 �am�6b6 + 5�m5 �am�5b4+ 4�m4 �am�4b3d+ 6�m4 �am�4b22+ 3�m3 �am�3b2e+ 6�m3 �am�3bd+ 2�m2 �am�2bf + �m3 �am�33+ 2�m2 �am�2e+ �m2 �am�2d2 + �m1 �am�1g: (29)If we set a = 1, the term with exponents bijdkel : : : orresponds to the partitionwith i 1s, j 2s, k 3s, l 4s, et. Thus, for example, when n = 6 he essentiallypresented the partitions in the order111111; 11112; 1113; 1122; 114; 123; 15; 222; 24; 33; 6: (30)He explained how to list the partitions reursively, as follows (but in di�erentlanguage related to his own notation): For k = 1, 2, : : : , n, start with k andappend the (previously listed) partitions of n� k whose smallest part is � k.[My solution℄ was ordered to be published in the Transations,not so muh as a matter relating to Play,but as ontaining some general Speulationsnot unworthy to be onsidered by the Lovers of Truth.| ABRAHAM DE MOIVRE (1717)P. R. de Montmort tabulated all partitions of numbers � 9 into � 6 partsin his Essay d'Analyse sur les Jeux de Hazard (1708), in onnetion with dieproblems. His partitions were listed in a di�erent order from (30); for example,111111; 21111; 2211; 222; 3111; 321; 33; 411; 42; 51; 6: (31)He probably was unaware of de Moivre's prior work.So far almost none of the authors we've been disussing atually desribedthe proedures by whih they generated ombinatorial patterns. We an onlyinfer their methods, or lak thereof, by studying the lists that they atually pub-lished. Furthermore, in rare ases suh as de Moivre's paper where a tabulation
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7.2.1.7 HISTORY AND FURTHER REFERENCES 21method was expliitly desribed, the author assumed that all patterns for the�rst ases 1, 2, : : : , n� 1 had been listed before it was time to takle the ase oforder n. No method for generating patterns \on the y," moving diretly fromone pattern to its suessor without looking at auxiliary tables, was atuallyexplained by any of the authors we have enountered, exept for Ked�ara andN�ar�ayan. a. Today's omputer programmers naturally prefer methods that aremore diret and need little memory.Roger Joseph Bosovih published the �rst diret algorithm for partitiongeneration in Giornale de' Letterati (Rome, 1747), on pages 393{404 togetherwith two foldout tables faing page 404. His method, whih produes for n = 6the respetive outputs111111; 11112; 1122; 222; 1113; 123; 33; 114; 24; 15; 6; (32)generates partitions in preisely the reverse order from whih they are visited byAlgorithm 7.2.1.4P; and his method would indeed have been featured in Setion7.2.1.4, exept for the fat that the reverse order turns out to be slightly easierand faster than the order that he had hosen.Bosovih published sequels in Giornale de' Letterati (Rome, 1748), 12{27and 84{99, extending his algorithm in two ways. First, he onsidered generatingonly partitions whose parts belong to a given set S, so that symboli multinomialswith sparse oeÆients ould be raised to the mth power. (He said that the gdof all elements of S should be 1; in fat, however, his method ould fail if 1 =2 S.)Seond, he introdued an algorithm for generating partitions of n into m parts,given m and n. Again he was unluky: A slightly better way to do that task,Algorithm 7.2.1.4H, was found subsequently, diminishing his hanes for fame.Hindenburg's hype. The inventor of Algorithm 7.2.1.4H was Carl FriedrihHindenburg, who also redisovered N�ar�ayan. a's Algorithm 7.2.1.2L, a winningtehnique for generating multiset permutations. Unfortunately, these small su-esses led him to believe that he had made revolutionary advanes in mathemat-is|although he did ondesend to remark that other people suh as de Moivre,Euler, and Lambert had ome lose to making similar disoveries.Hindenburg was a prototypial overahiever, extremely energeti if not in-spired. He founded or ofounded Germany's �rst professional journals of math-ematis (published 1786{1789 and 1794{1800), and ontributed long artiles toeah. He served several times as aademi dean at the University of Leipzig,where he was also the Retor in 1792. If he had been a better mathematiian,German mathematis might well have ourished more in Leipzig than in Berlinor G�ottingen.But his �rst mathematial work, Beshreibung einer ganz neuen Art, naheinem bekannten Gesetze fortgehende Zahlen durh Abz�ahlen oder Abmessenbequem und siher zu �nden (Leipzig: 1776), amply foreshadowed what was toome: His \ganz neue" (ompletely new) idea in that booklet was simply to giveombinatorial signi�ane to the digits of numbers written in deimal notation.Inredibly, he onluded his monograph with large foldout sheets that ontained

21



22 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7a table of the numbers 0000 through 9999| followed by two other tables thatlisted the even numbers and odd numbers separately(!).Hindenburg published letters from people who praised his work, and invitedthem to ontribute to his journals. In 1796 he edited Sammlung ombinatorish-analytisher Abhandlungen, whose subtitle stated (in German) that de Moivre'smultinomial theorem was \the most important proposition in all of mathematialanalysis." About a dozen people joined fores to form what beame known asHindenburg's Combinatorial Shool, and they published thousands of pages �lledwith esoteri symbolism that must have impressed many nonmathematiians.The work of this Shool was not ompletely trivial from the standpointof omputer siene. For example, H. A. Rothe, who was Hindenburg's beststudent, notied that there is a simple way to go from a Morse ode sequeneto its lexiographi suessor or predeessor. Another student, J. C. Burkhardt,observed that Morse ode sequenes of length n ould also be generated easilyby �rst onsidering those with no dashes, then one dash, then two, et. Theirmotivation was not to tabulate poeti meters of n beats, as it had been in India,but rather to list the terms of the ontinuant polynomials K(x1; x2; : : : ; xn),Eq. 4.5.3{(4). [See Arhiv f�ur reine und angewandte Mathematik 1 (1794), 154{194.℄ Furthermore, on page 53 of Hindenburg's 1796 Sammlung ited above,G. S. Kl�ugel introdued a way to list all permutations that has subsequentlybeome known as Ord-Smith's algorithm; see Eqs. (23){(26) in Setion 7.2.1.2.Hindenburg believed that his methods deserved equal time with algebra,geometry, and alulus in the standard urriulum. But he and his disipleswere ombinatorialists who only made ombinatorial lists. Burying themselvesin formulas and formalisms, they rarely disovered any new mathematis of realinterest. Eugen Netto has admirably summarized their work in M. Cantor'sGeshihte der Mathematik 4 (1908), 201{219. \For a while they ontrolledthe German market; however, most of what they dug up soon sank into a not-entirely-deserved oblivion."The sad outome was that ombinatorial studies in general got a bad name.G�osta Mittag-Le�er, who assembled a magni�ent library of mathematial lit-erature about 100 years after Hindenburg's death, deided to plae all suhwork on a speial shelf marked \Dekadenter." And this ategory still persistsin the library of Sweden's Institut Mittag-Le�er today, even as that instituteattrats world-lass ombinatorial mathematiians whose researh is anythingbut deadent.Looking on the bright side, we may note that at least one good book didemerge from all of this ativity. Andreas von Ettingshausen's Die ombina-torishe Analysis (Vienna: 1826) is noteworthy as the �rst text to disuss om-binatorial generation methods in a perspiuous way. He disussed the generalpriniples of lexiographi generation in x8, and applied them to onstrut goodways to list all permutations (x11), ombinations (x30), and partitions (x41{x44).Where were the trees? We've now seen that lists of tuples, permutations,ombinations, and partitions were ompiled rather early in human history, by
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7.2.1.7 HISTORY AND FURTHER REFERENCES 23interested and interesting researhers. Thus we've aounted for the evolutionof the topis studied in Setions 7.2.1.1 through 7.2.1.5, and our story will beomplete if we an trae the origins of tree generation, Setion 7.2.1.6.But the historial reord of that topi before the advent of omputers isvirtually a blank page, with the exeption of a few 19th-entury papers by ArthurCayley. Cayley's major work on trees, originally published in 1875 and reprintedon pages 427{460 of his Colleted Mathematial Papers, Volume 4, was limaxedby a large foldout illustration that exhibited all the free trees with 9 or fewerunlabeled verties. Earlier in that paper he had also illustrated the nine orientedtrees with 5 verties. The methods he used to produe those lists were quiteompliated, ompletely di�erent from Algorithm 7.2.1.6O and exerise 7.2.1.6{90. All free trees with up to 10 verties were listed many years later by F. Hararyand G. Prins [Ata Math. 101 (1958), 158{162℄, who also went up to n = 12 inthe ases of free trees with no nodes of degree 2 or with no symmetries.The trees most dearly beloved by omputer sientists|binary trees or theequivalent ordered forests or nested parentheses|are however strangely absentfrom the literature. We saw in Setion 2.3.4.5 that many mathematiians of the1700s and 1800s had learned how to ount binary trees, and we also know thatthe Catalan numbers Cn enumerate dozens of di�erent kinds of ombinatorialobjets. Yet nobody seems to have published an atual list of the C4 = 14objets of order 4 in any of these guises, muh less the C5 = 42 objets oforder 5, before 1950. (Exept indiretly: The 42 genji-ko diagrams in (25) thathave no interseting lines turn out to be equivalent to the 5-node binary treesand forests. But this fat was not learned until the 20th entury.)There are a few isolated instanes where authors of yore did prepare lists ofC3 = 5 Catalan-related objets. Cayley, again, was �rst; he illustrated the binarytrees with 3 internal nodes and 4 leaves as follows in Philosophial Magazine 18(1859), 374{378: (33)(That same paper also illustrated another speies of tree, equivalent to so-alledweak orderings.) Then, in 1901, E. Netto listed the �ve ways to insert parenthesesinto the expression `a+ b+ + d':(a+b)+(+d); [(a+b)+℄+d; [a+(b+)℄+d; a+[(b+)+d℄; a+[b+(+d)℄: (34)[Lehrbuh der Combinatorik, x122.℄ And the �ve permutations of f+1;+1;+1;�1;�1;�1g whose partial sums are nonnegative were listed in the following wayby Paul Erd}os and Irving Kaplansky [Sripta Math. 12 (1946), 73{75℄:1+1+1�1�1�1; 1+1�1+1�1�1; 1+1�1�1+1�1;1�1+1+1�1�1; 1�1+1�1+1�1: (35)Even though only �ve objets are involved, we an see that the orderings in (33)and (34) were basially ath-as-ath-an; only (35), whih mathes Algorithm7.2.1.6P, was systemati and lexiographi.
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24 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7We should also note briey the work of Walther von Dyk, sine many reentpapers use the term \Dyk words" to refer to strings of nested parentheses. Dykwas an eduator known for o-founding the Deutshes Museum in Munih, amongother things. He wrote two pioneering papers about the theory of free groups[Math. Annalen 20 (1882), 1{44; 22 (1883), 70{108℄. Yet the so-alled Dykwords have at best a tenuous onnetion to his atual researh: He studied thewords on fx1; x�11 ; : : : ; xk; x�1k g that redue to the empty string after repeatedlyerasing adjaent letter-pairs of the forms xix�1i or x�1i xi; the onnetion withparentheses and trees arises only when we limit erasures to the �rst ase, xix�1i .Thus we may onlude that, although an explosion of interest in binary treesand their ousins ourred after 1950, suh trees represent the only aspet of ourstory whose historial roots are rather shallow.After 1950. Of ourse the arrival of eletroni omputers hanged everything.The �rst omputer-oriented publiation about ombinatorial generation methodswas a note by C. B. Tompkins, \Mahine attaks on problems whose variablesare permutations" [Pro. Symp. Applied Math. 6 (1956), 202{205℄. Thousandsmore were destined to follow.Several artiles by D. H. Lehmer, espeially his \Teahing ombinatorialtriks to a omputer" in Pro. Symp. Applied Math. 10 (1960), 179{193, provedto be extremely inuential in the early days. [See also Pro. 1957 CanadianMath. Congress (1959), 160{173; Pro. IBM Sienti� Computing Symposiumon Combinatorial Problems (1964), 23{30; and Chapter 1 of Applied Combina-torial Mathematis, edited by E. F. Bekenbah (Wiley, 1964), 5{31.℄ Lehmerrepresented an important link to previous generations. For example, Stanford'slibrary reords show that he had heked out Netto's Lehrbuh der Combinatorikin January of 1932.The main publiations relevant to partiular algorithms that we've studiedhave already been ited in previous setions, so there is no need to repeat themhere. But textbooks and monographs that �rst put piees of the subjet togetherin a oherent framework were also of great importane. Three books, in parti-ular, were espeially noteworthy with respet to establishing general priniples:� Elements of Combinatorial Computing by Mark B. Wells (Pergamon Press,1971), espeially Chapter 5.� Combinatorial Algorithms by Albert Nijenhuis and Herbert S. Wilf (Aa-demi Press, 1975). A seond edition was published in 1978, ontainingadditional material, and Wilf subsequently wrote Combinatorial Algorithms:An Update (Philadelphia: SIAM, 1989).� Combinatorial Algorithms: Theory and Pratie by Edward M. Reingold,Jurg Nievergelt, and Narsingh Deo (Prentie{Hall, 1977), espeially thematerial in Chapter 5.Robert Sedgewik ompiled the �rst extensive survey of permutation generationmethods in Computing Surveys 9 (1977), 137{164, 314. Carla Savage's surveyartile about Gray odes in SIAM Review 39 (1997), 605{629, was anothermilestone.
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7.2.1.7 HISTORY AND FURTHER REFERENCES 25We noted above that algorithms to generate Catalan-ounted objets werenot invented until omputer programmers developed an appetite for them. The�rst suh algorithms to be published were not ited in Setion 7.2.1.6 beausethey have been superseded by better tehniques; but it is appropriate to listthem here. First, H. I. Soins gave two reursive algorithms for ordered treegeneration, in the same paper we have ited with respet to the generation oforiented trees [Mahine Intelligene 3 (1968), 43{60℄. His algorithms dealt withbinary trees represented as bit strings that were essentially equivalent to Polishpre�x notation or to nested parentheses. Then Mark Wells, in Setion 5.5.4 of hisbook ited above, generated binary trees by representing them as nonrossingset partitions. And Gary Knott [CACM 20 (1977), 113{115℄ gave reursiveranking and unranking algorithms for binary trees, representing them via theinorder-to-preorder permutations q1 : : : qn of Table 7.2.1.6{3.Algorithms to generate all spanning trees of a given graph have been pub-lished by numerous authors ever sine the 1950s, motivated originally by thestudy of eletrial networks. Among the earliest suh papers were works ofN. Nakagawa, IRE Trans. CT-5 (1958), 122{127; W. Mayeda, IRE Trans.CT-6 (1959), 136{137, 394; H. Watanabe, IRE Trans. CT-7 (1960), 296{302;S. Hakimi, J. Franklin Institute 272 (1961), 347{359.A reent introdution to the entire subjet an be found in Chapters 2and 3 of Combinatorial Algorithms: Generation, Enumeration, and Searh byDonald L. Kreher and Douglas R. Stinson (CRC Press, 1999).Frank Ruskey is preparing a book entitled Combinatorial Generation thatwill ontain a thorough treatment and a omprehensive bibliography. He hasmade working drafts of several hapters available on the Internet.EXERCISESMany of the exerises below ask a modern reader to �nd and/or to orret errors inthe literature of bygone days. The point is not to gloat over how smart we are in the21st entury; the point is rather to understand that even the pioneers of a subjet anstumble. One good way to learn that a set of ideas is not really as simple as it mightseem to today's omputer sientists and mathematiians is to observe that some of theworld's leading thinkers had to struggle with the onepts when they were new.1. [15 ℄ Does the notion of \omputing" arise in the I Ching?x 2. [M30 ℄ (The geneti ode.) DNA moleules are strings of \nuleotides" on the4-letter alphabet fT; C; A; Gg, and most protein moleules are strings of \amino aids" onthe 20-letter alphabet fA;C;D;E;F;G;H; I;K;L;M;N;P;Q;R;S;T;V;W;Yg. Threeonseutive nuleotides xyz form a \odon," and a strand x1y1z1x2y2z2 : : : of DNAspei�es the protein f(x1; y1; z1)f(x2; y2; z2) : : : , where f(x; y; z) is the element in row zand olumn y of matrix x in the array0B�F S Y CF S Y CL S � �L S � W
1CA 0B�L P H RL P H RL P Q RL P Q R

1CA 0B� I T N SI T N SI T K RM T K R
1CA 0B�V A D GV A D GV A E GV A E G

1CA .
(Here (T; C; A; G) = (1; 2; 3; 4); for example, f(CAT) is the element in row 1 and olumn 3of matrix 2, namely H.) Enoding proeeds until a odon leads to the stopper `�'.
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26 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7a) Show that there is a simple way to map eah odon into a hexagram of the I Ching,with the property that the 21 possible outomes fA;C;D; : : : ;W;Y;�g orrespondto 21 onseutive hexagrams of the King Wen ordering (1).b) Is that a sensational disovery?3. [20 ℄ What is the millionth meter that has 30 beats, in olex ordering analogousto (2)? What is the rank of ^^^��^����^^^^����^^^^^^^��^��?4. [19 ℄ Analyze the imperfetions of Donnolo's list of permutations in Table 1.5. [16 ℄ What's wrong with Kirher's list of �ve-note permutations in (7)?6. [25 ℄ Mersenne published a table of the �rst 64 fatorials on pages 108{110 of hisTraitez de la Voix et des Chants (1636). His value for 64! was � 2:2�1089; but it shouldhave been � 1:3� 1089. Find a opy of his book and try to �gure out where he erred.7. [20 ℄ What permutations of f1; 2; 3; 4; 5g are \alive" and \dead" aording to Seki'srules (8) and (9)?x 8. [M27 ℄ Make a path to (9) so that Seki's proedure will be orret.9. [15 ℄ From (11), dedue the Arabi way to write the Arabi numerals (0; 1; :::; 9).x 10. [HM27 ℄ In Ludus Clerialis, what is the expeted number of times the three dieare rolled before all possible virtues are aquired?11. [21 ℄ Deipher Llull's vertial table at the right of Fig. 45. What 20 ombinatorialobjets does it represent? Hint: Don't be misled by typographi errors.12. [M20 ℄ Relate Shillinger's universal yle (13) to the universal yle of Poinsot inexerise 7.2.1.3{106.13. [21 ℄ What should van Shooten have written, instead of (17)? Give also theorresponding tableau for ombinations of the multiset fa; a; a; b; b; g.x 14. [20 ℄ Complete the following sequene, from x95 of Izquierdo's De Combinatione:ABC ABD ABE ACD ACE ACB ADE ADB ADC AEB : : : .15. [15 ℄ If all n-ombinations of f1; : : : ;mg with repetition are listed in lexiographiorder, how many of them begin with the number j?16. [20 ℄ (N�ar�ayan.a Pan.d. ita, 1356.) Design an algorithm to generate all ompositionsof n into parts � q, namely all ordered partitions n = a1 + � � �+ at, where 1 � aj � qfor 1 � j � t and t is arbitrary. Illustrate your method when n = 7 and q = 3.17. [HM27 ℄ Analyze the algorithm of exerise 15.18. [10 ℄ Trik question: Leibniz published his Dissertatio de Arte Combinatoria in1666. Why was that a partiularly auspiious year, permutationwise?19. [17 ℄ In whih of Puteanus's verses (20) is `tibi' treated as ^�� instead of ^^?20. [M25 ℄ To ommemorate the visit of three illustrious noblemen to Dresden in 1617,a poet published 1617 permutations of the hexameter verseDant tria jam Dresd�, eu sol dat, lumina luem.\Three give now to Dresden, as the sun gives, lights to light." [Gregor Kleppis, ProteusPoetius (Leipzig: 1617).℄ How many permutations of those words would atually sanproperly? Hint: The verse has datyls in the �rst and �fth feet, spondees elsewhere.
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7.2.1.7 HISTORY AND FURTHER REFERENCES 2721. [HM30 ℄ Let f(p; q; r; s; t) be the number of ways to make (op; oq; or) by onate-nating the strings fs � o; t � oog, when p+ q+ r = s+2t. For example, f(2; 3; 2; 3; 2) = 5beause the �ve ways are(oo; ooo; oo); (oo; ooo; oo); (oo; ooo; oo); (oo; ooo; oo); (oo; ooo; oo):a) Show that f(p; q; r; s; t) = [upvqwrzs℄ 1=((1� zu� u2)(1� zv� v2)(1� zw�w2)).b) Use the funtion f to enumerate the sannable permutations of (19), subjet tothe additional ondition that the �fth foot doesn't begin in the middle of a word.) Now enumerate the remaining ases.x 22. [M40 ℄ Look up the original disussions of the tot-tibi problem that were publishedby Prestet, Wallis, Whitworth, and Hartley. What errors did they make?23. [20 ℄ What order of the 52 genji-ko diagrams orresponds to Algorithm 7.2.1.5H?x 24. [23 ℄ Early in the 1800s,Toshiaki Honda gave a reursive rule for generating all par-titions of f1; : : : ; ng. His algorithm produed them in the following order when n= 4:
Can you guess the orresponding order for n = 5? Hint: See (26).25. [15 ℄ The 16th-entury author of The Arte of English Poesie was interested only inrhyme shemes that are \omplete" in the sense of exerise 7.2.1.5{35; in other words,every line should rhyme with at least one other. Furthermore, the sheme shouldbe \indeomposable" in the sense of exerise 7.2.1.2{100: A partition like 12 j345deomposes into a 2-line poem followed by a 3-line poem. And the sheme shouldn'tonsist trivially of lines that all rhyme with eah other. Under these onditions, is (28)a omplete list of 5-line rhyme shemes?x 26. [HM25 ℄ How many n-line rhyme shemes satisfy the onstraints of exerise 24?x 27. [HM31 ℄ The set partition 14 j25 j36 an be represented by a genji-ko diagram suhas ; but every suh diagram for this partition must have at least three plaes wherelines ross, and rossings are sometimes onsidered undesirable. How many partitionsof f1; : : : ; ng have a genji-ko diagram in whih the lines ross at most one?x 28. [25 ℄ Let a, b, and  be prime numbers. JohnWallis listed all possible fatorizationsof a3b2 as follows: bbaaa, bbaa � a, baaa � b, bbaaa � , bba � aa, bba � a � a, baa � ba,baa � b � a, bbaa � a, bbaa �  � a, aaa � bb, aaa � b � b, baaa � b, baaa �  � b, bb � aaa,bb � aa � a, bb � a � a � a, ba � baa, ba � ba � a, ba � aa � b, ba � b � a � a, bba � aa, bba � a � a,bba �aa � , bba �  �a �a, aa � bb �a, aa � ba � b, aa � b � b �a, baa � b �a, baa � a � b, baa � ba � ,baa �  � b � a, aaa � b � b, aaa � bb � , aaa �  � b � b, b � ba � aa, b � ba � a � a, b � aa � b � a,b � b � a � a � a, bb � a � aa, bb � a � a � a, bb � aa �  � a, bb �  � a � a � a, a � ba � ba, a � ba � b � a,a � aa � b � b, a � b � b � a � a, ba � ba �  � a, ba � aa �  � b, ba �  � b � a � a, aa �  � b � b � a, � b � b � a � a � a. What algorithm did he use to generate them in this order?x 29. [24 ℄ In what order would Wallis have generated all fatorizations of the numberabde = 5 � 7 � 11 � 13 � 17? Give your answer as a sequene of genji-ko diagrams.30. [M20 ℄ What is the oeÆient of ai11 ai22 : : : zm+n in (a0z + a1z2 + a2z3 + � � � )m?(See (29).)31. [20 ℄ Compare de Moivre's and de Montmort's orders for partitions, (30) and (31),with Algorithm 7.2.1.4P.32. [21 ℄ (R. J. Bosovih, 1748.) List all partitions of 20 for whih all parts are 1, 7,or 10. Also design an algorithm that lists all suh partitions of any given integer n > 0.
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28 ANSWERS TO EXERCISES 7.2.1.7SECTION 7.2.1.71. Perhaps under hexagram 21, \runhing" ( ); however, the anient ommentatorsrelated this hexagram more to law enforement than to the interation of eletrons.2. (a) For the �rst nuleotide in the odon, let (T; C; A; G) be respetively representedby (. .. .. .. .; . .. .. .. .; . .. .. .. .; . .. .. .. .); represent the seond nuleotide, similarly, by (. .. .. .. .; . .. .. .. .; . .. .. .. .; . .. .. .. .); repre-sent the third by (. .. .. .. .; . .. .. .. .; . .. .. .. .; . .. .. .. .); and superimpose those three representations. Thus,for example, hexagram number 34 is = . .. .. .. . + . .. .. .. . + . .. .. .. . ; it represents the odon TTC,whih maps to the amino aid F. Under this orrespondene, hexagrams 34 through 54inlusive map into the respetive values (F;G;L;Q;W;D; S;�;P;Y;K;A; I;T;N;H;M;R;V;E;C). Moreover, the three hexagrams that map to `�' are numbers 1, 9, and 41,namely , , and , whih mean \reation", \taming," and \removal of exess" inthe I Ching|all quite appropriate for the notion of ompleting a protein.(b) Consider the � 646;6;6;4;4;4;4;4;3;3;2;2;2;2;2;2;2;2;2;1;1� � 2:3 � 1069 ways to permutethe elements of the 4� 4� 4 geneti ode array. Exatly2402880402175789790003993681964551328451668718750185553920000000� 2:4� 1063of them ontain at least one run of 21 distint onseutive elements. [Using the prinipleof inlusion and exlusion one an show that any multiset f(n1+1) �x1; : : : ; (nr+1) �xrgwith r distint elements and nr = 0 has exatly(n+1)� nn1; : : : ; nr �r!� rXk=1 (n+1�k)k!(r�k)! ak X0�d1;:::;dr�1d1+���+dr=k � n� kn1 � d1; : : : ; nr � dr �suh permutations, where n = n1 + � � � + nr and ak is the number of indeomposablepermutations with k elements (exerise 7.2.1.2{100).℄ Thus only about one out of everymillion permutations has the stated property.But there are 4!3� 62;2;2� = 1244160 ways to represent odons as in part (a), andmost of them orrespond to di�erent permutations of the amino aids (exept forinterhanging the representations of T and C in third position).Empirially, in fat, about 31% of all permutations of the 64 hexagrams turn outto have suitable odon mappings. Thus the onstrution in part (a) gives no reason tobelieve that the authors of the I Ching antiipated the geneti ode in any way.3. Sine F31 � 106 = F28 + F22 + F20 + F18 + F16 + F14 + F9, the millionth is^^^^^^^��^^^����������^^^^��^^:Going the other way is easier: F31� (F5+F8+F10+F16+F18+F27+F30) = 314159.4. One of the two appearanes of on line 4 should be ; this glith maysimply be a typographial error. Similarly, one on line 8 should be . Butthe six ases with rightmost letters appear twie, in lines 3 and 4, while the aseswith rightmost are missing. Donnolo himself must be responsible for this aw.5. The last one should have been , not .6. The nth value mn in Mersenne's list agrees with n! only for 1 � n � 13 and15 � n � 38. Mersenne knew that 14! = 87178291200 6= m14 = 8778291200, beause heinserted the missing `1' in his personal opy of the book (now owned by the Biblioth�equeNationale; a fasimile was published in 1975). But the other errors in his table were notmerely typographial, beause they propagated into subsequent entries, exept in thease of m50: m39 = 39!+ 1026� 1010; m40 = 40m39; m41 = 41m40� 4 � 1025� 14 � 1011;
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7.2.1.7 ANSWERS TO EXERCISES 29mn = nmn�1 for n = 42, 43, 44, 46, 47, 48, 49, 55, 60, and 62; m50 = 50m49 + 1066;m51 = 51 � 50 �m49. When he omputed m45 = 9 � 45 �m44� 1040+1029, he apparentlydeided to take a shortut, beause it's easy to multiply by 5 or by 9; but he multipliedtwie by 9. Most of his errors indiate an unreliable multipliation tehnique, whihmay have depended on an abaus: m52 = 52m51 + 5 � 1056 � 2 � 1047 + 1034; m53 =53m52 � 4 � 1029; m54 = 54m53 + 1016; m57 = 57m56 + 1033 + 1024; m58 = 58m57 +1067�1035+1032+11 �1026; m59 = 59m58+1066+1049�1028; m61 = 61m60�5 �1081;m63 = 63m62 + 1082 � 1074; m64 = 64m63 + 3 � 1081 + 1067 + 2 � 1038 � 2 � 1033 � 1023.The remaining ase, m56 � 10:912m55 is ba�ing; it is � 56m55 (modulo 1017), butits other digits seem to satisfy neither rhyme nor reason. Can they be easily explained?Notes: Athanasius Kirher must have opied from Mersenne when he tabulated n!for 1 � n � 50 on page 157 of his Ars Magna Siendi (1669), beause he repeated all ofMersenne's mistakes. Kirher did, however, list the values 10m14, m45=10, and 10m49instead of m14, m45, and m49; perhaps he was trying to make the sequene grow moresteadily. It is not lear who �rst alulated the orret value of 39!; exerise 1.2.5{4tells the story of 1000!.7. The basi permutations are 12345, 13254, 14523, 15432, 12453, 14235, 15324,13542, 12534, 15243, 13425, 14352. But then we �nd that all 60 of the evenpermutations are both alive and dead, beause (9) di�ers by an even permutationfrom (8). (Moreover, if we somehow repair the ase n = 5, half of the live permutationsfor n = 6 will turn out to be odd.)8. For example, we an replae (9) byana3 : : : an�1a2a1; a1an�1 : : : ana3a2; : : : ; an�1a2 : : : an�2a1an;thus ipping the ends and ylially shifting the other elements in the permutationsof (8). This modi�ation works beause all permutations have the orret parity, andbeause the live and dead ones both have a1 in every possible position. (We essentiallyhave a dual Sims table for the alternating group, as in Eq. 7.2.1.2{(32); but our elementsare named (n;n� 1; : : : ; 1) instead of (0; 1; : : : ; n� 1).)A simpler way to generate permutations with the proper signs was published by�E. B�ezout [M�emoires Aad. Royale des Sienes (Paris, 1764), 292℄: Eah permutationa1 : : : an�1 of f1; : : : ; n� 1g yields n others, a1 : : : an�1an � a1 : : : an�2anan�1 + � � � .9. (0;1;2;3;4;5;6;7;8;9); or perhaps we should say (9;8;7;6;5;4;3;2;1;0). Notes:A di�erent system was used for the index numbers of the equations; for example, `�'stood for 200. Moreover, it should be noted that (11) is atually a transription of al-Samaw'al's work into modern Arabi; Ahmad and Rashed based their work on a 14th-entury opy that used similar but older forms of the digits: (5;1;2;3;:;;;6;7;8;9).Al-Samaw'al himself may well have used numerals of an even earlier vintage.10. If the 56 ases were equally likely, the answer would be 56H56 � 258:2, as inthe oupon olletor's problem (exerise 3.3.2{8). But (6; 30; 20) ases our with therespetive probabilities (1=216; 1=72; 1=36); so the orret answer turns out to beZ 10 (1� (1� e�t=216)6(1� e�t=72)30(1� e�t=36)20) dt � 546:6;about 42% of the upper bound 216H216. [See P. Flajolet, D. Gardy, and L. Thimonier,Disrete Applied Math. 39 (1992), 207{229.℄11. It tabulates the �63� = 20 ombinations of (b; ; d;B;C;D) taken three at a time;furthermore, they appear in lexiographi order if we regard b <  < d < B < C < D.

29



30 ANSWERS TO EXERCISES 7.2.1.7The letter t ( ) means \shift from lowerase to upperase." [See A. Bonner, SeletedWorks of Ramon Llull (Prineton: 1985), 596{597.℄ There are two typos: `d' shouldbe `b' at the beginning of line 6; `' should be `d' at the end of line 18. Line 1 wouldhave been more onsistent with the others if Llull had presented it as;but in that line, of ourse, no ase shift was needed.12. Multiply Poinsot's yle by 5 (mod 7).13. It's best to have just n lines when there are n di�erent letters:a: aa: aaab: ab: aab: aaab: bb: abb: aabb: aaabbThen, assigning the weights (a; b) = (1; 4) gives the numbers 1 through 11 as in (18).(The �rst line of (16) should also be omitted.) Similarly, for fa; a; a; b; b; g we wouldimpliitly give  the weight 12 and add the additional line: a: aa: aaa: b: ab: aab: aaab: bb: abb: aabb: aaabb:[J. Bernoulli almost did it right in Ars Conjetandi, Part 2, Chapter 6.℄14. ABC ABD ABE ACD ACE ACB ADE ADB ADC AEB AEC AED BCD BCE BCA BDEBDA BDC BEA BEC BED BAC BAD BAE CDE CDA CDB CEA CEB CED CAB CADCAE CBD CBE CBA DEA DEB DEC DAB DAC DAE DBC DBE DBA DCE DCA DCBEAB EAC EAD EBC EBD EBA ECD ECA ECB EDA EDB EDC. It's a genlex ordering(see Algorithm 7.2.1.3R), proeeding ylially through the letters not yet used.[A similar ordering had been used to form all 120 permutations of �ve letters in akabbalisti work entitled Sha`ari Tzedeq, asribed to the 13th-entury author Natan benSa`adyah Har'ar of Messina, Siily; see Le Porte della Giustizia (Milan: Adelphi, 2001).℄15. After j we plae the (n � 1)-ombinations of fj; : : : ;mg with repetition, so theanswer is �(m+1�j)+(n�1)�1n�1 � = �m+n�j�1n�1 �. [Jean Borrel, also known as Buteonis,pointed this out on pages 305{309 of his early book Logistia (Lyon: 1560). Hetabulated all throws of n die for 1 � n � 4, then used a sum over j to dedue thatthere are 56+ 35+ 20+ 10+ 4+ 1 = 252 distint throws for n = 5, and 462 for n = 6.℄16. N1. [Initialize.℄ Set r  n, t 0, and a0  0.N2. [Advane.℄ While r � q, set t t+ 1, at  q, and r  r � q. Then if r > 0,set t t+ 1 and at  r.N3. [Visit.℄ Visit the omposition a1 : : : at.N4. [Find j.℄ Set j  t, t� 1, : : : , until aj 6= 1. Terminate the algorithm if j = 0.N5. [Derease aj .℄ Set aj  aj � 1, r  t� j + 1, t j; return to N2.For example, the ompositions for n = 7 and q = 3 are 331, 322, 3211, 313, 3121, 3112,31111, 232, 2311, 223, 2221, 2212, 22111, 2131, 2122, 21211, 2113, 21121, 21112, 211111,133, 1321, 1312, 13111, 1231, 1222, 12211, 1213, 12121, 12112, 121111, 1132, 11311,1123, 11221, 11212, 112111, 11131, 11122, 111211, 11113, 111121, 111112, 1111111.N�ar�ayan. a's sutras 79 and 80 gave essentially this proedure, but with the stringsreversed (133, 223, 1123, : : : ), beause he preferred dereasing olex order. Curiously,he alled this a \famous method, told by sholars of old dramati art," although noreferenes to prior desriptions are urrently known exept in the ase q = 2.17. The number Vn of visits is F (q)n+q�1 = �(�nq ); see exerise 5.4.2{7. The numberXn of times step N4 tests aj = 1 satis�es Xn = Xn�1 + � � � +Xn�q + 1, and we �nd
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7.2.1.7 ANSWERS TO EXERCISES 31Xn = V0 + � � � + Vn = (qVn + (q � 1)Vn�1 + � � � + Vn�q+1 � 1)=(q � 1) = �(Vn). Thenumber Yn of times step N2 sets at  q satis�es the same reurrene, and we �ndYn = Xn�q. And the number of times step N2 �nds r = 0 turns out to be Vn�q.18. It was MDCLXVI in Roman numerals, where M > D > C > L > X > V > I.19. Lines 329 and 1022. (Puteanus inluded 139 suh verses among his list of 1022.)20. With `tria' preeding `lumina', there are 5! � 2! � (11; 12; 12; 16) ways having adatyl in the (1st, 2nd, 3rd, 4th) foot, respetively; with `lumina' preeding `tria' thereare 5! � 2! � (16; 12; 12; 11). So the total is 24480. [Leibniz onsidered this problemnear the end of his Dissertatio de Arte Combinatoria, and ame up with the answer45870; but his argument was riddled with errors.℄21. (a) The generating funtion 1=((1 � zu � yu2)(1 � zv � yv2)(1 � zw � yw2)) islearly equal to Pp;q;r;s;t�0 f(p; q; r; s; t)upvqwrzsyt.(b) If `tibi' is ^^ and `Virgo' is ����, the number is 3! 3! times P3k=0(f(2k + 1;6� 2k; 2; 3; 3) + f(2k; 6� 2k; 2; 2; 3)), namely 36((7+7) + (9+5) + (10+5) + (14+7)) =2304. Otherwise `tibi' is^��, `Virgo' is ��^, and the number is 2! 3! timesP3k=0(f(2k;5�2k; 2; 3; 2)+f(2k; 6�2k; 1; 3; 2)), namely 12((7+6)+(5+4)+(4+4)+(0+6)) = 432.() The �fth foot begins with the seond syllable of `�lo', `dotes', or `Virgo'.Hene the additional number is 3! 3!P2k=0 f(2k; 5 � 2k; 2; 3; 2) = 36(7 + 5 + 4) = 576,and the grand total is 2304 + 432 + 576 = 3312.22. Let � 2 fquot; sunt; totg, � 2 f�lo; dotes;Virgog, � = sidera, and � = tibi.Prestet's analysis was essentially equivalent to that of Bernoulli, but he forgot to inludethe 36 ases ��������. (In his favor one an say that those ases are poetially sterile;Puteanus found no use for them.) The 1675 edition of Prestet's book had also omittedall permutations that end with ��.Wallis divided the possibilities into 23 types, T1 [ T2 [ � � � [ T23. He laimed thathis types 6 and 7 eah yielded 324 verses; but atually jT6j = jT7j = 252, beause hisvariable i should be 7, not 9. He also ounted many solutions twie: jT3 \ T5j = 72,jT2 \ T7j = jT5 \ T7j = jT3 \ T6j = jT6 \ T10j = 36, and jT11 \ T12j = jT12 \ T13j =jT14 \ T15j = 12. He missed the 36 possibilities �������� (19 of whih were used byPuteanus). And he also missed all the permutations of exerise 20(); Puteanus hadused 250 of those 576. The Latin edition of Wallis's book, published in 1693, orretedseveral typographi errors in this setion, but none of the mathematial mistakes.Whitworth and Hartley omitted all ases with `tibi' = ^�� (see exerise 18),possibly beause people's knowledge of lassial hexameter was beginning to fade.[Speaking of errors, Puteanus atually published only 1020 distint permutations,not 1022, beause lines 592 and 593 in his list were idential to lines 601 and 602. Buthe would have had no trouble �nding two more ases| for example, by hanging `totsunt' to `sunt tot' in lines 252, 345, 511, 548, 659, 663, 678, 693, or 797.℄23. Reading eah diagram left-to-right, so that 12 j345$ , we get
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32 ANSWERS TO EXERCISES 7.2.1.724. His rule was: For k = 0, 1, : : : , n � 1, and for eah ombination 0 < j1 < � � � <jk < n of n�1 things taken k at a time, visit all partitions of f1; : : : ; n�1gnfj1; : : : ; jkgtogether with the blok fj1; : : : ; jk; ng. His order for n = 5 was:

But stritly speaking, the answer to this exerise is \No"|beause Honda's rule is notomplete until the order of the ombinations is spei�ed. He generated ombinationsin olex order (lexiographi on jt : : : j1). Lexiographi order on j1 : : : jt would also beonsistent with the list given for n = 4, but it would put before . Referene:T. Hayashi, Tôhoku Math. J. 33 (1931), 332{337.25. No; (28) misses 14 j235 (the top-bottom reetion of its seond pattern).26. Let an be the number of indeomposable partitions of f1; : : : ; ng, and let a0nbe the number that are both indeomposable and omplete. These sequenes beginha1; a2; : : : i = h1; 1; 2; 6; 22; 92; 426; : : : i, ha01; a02; : : : i = h0; 1; 1; 3; 9; 33; 135; : : : i; andthe answer to this exerise is a0n�1 for n � 2. It turns out that an is also the number ofsymmetri polynomials of degree n in nonommuting variables. [See M. C. Wolf, DukeMath. J. 2 (1936), 626{637, who also tabulated indeomposable partitions into k parts.℄If A(z) = Pn anzn, and if B(z) = Pn$nzn is the non-exponential generatingfuntion for Bell numbers, we have A(z)B(z) = B(z) � 1, hene A(z) = 1 � 1=B(z).And the result of exerise 7.2.1.5{35 implies that Pn a0nzn = zA(z)=(1 + z � A(z)) =z(B(z)�1)=(1+zB(z)). Unfortunately B(z) has no espeially nie losed form. Notiethat indeomposable set partitions with n > 1 orrespond to vaillating tableau loopswith no three onseutive �s equal to zero (see exerise 7.2.1.5{27).27. The problem is ambiguous beause genji-ko diagrams are not well de�ned. Let'srequire all vertial lines of a blok to have the same height; then, for example, 145 j236has no single-rossing diagram beause is not allowed.The number of partitions with no rossing is Cn (see exerise 7.2.1.6{26). For onerossing, the elements of the two bloks that ross must appear within the restritedgrowth sequene as either xiyxjyk or xiyj+1xyk or xiyjxykxl, where i; j; k; l > 0.Suppose the pattern is xiyxjyk. The number of suh partitions is[zn�i�j�k�1℄C(z)i+j+k+2 = C(n�i�j�k�1)nby Eq. 7.2.1.6{(24). Summing on k gives C(n�i�j�2)(n+1); then summing on j and igives C(n�4)(n+3).Similarly, the other two patterns ontribute C(n�5)(n+3) and C(n�5)(n+4). Thetotal number of single-rossing partitions is therefore C(n�5)(n+3) + C(n�4)(n+4).28. Order the divisors of bbaaa by their number of prime fators and then olexio-graphially: 1 � a � b �  � aa � ba � a � bb � b � aaa � baa � aa � bba �ba � bb � baaa � aaa � bbaa � baa � bba � bbaaa � baaa � bbaa � bbaaa.For every suh divisor d, in dereasing order, let d be the �rst fator; reursively appendall fatorizations of bbaaa=d whose �rst fator is � d.
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7.2.1.7 ANSWERS TO EXERCISES 33If the divisors had been ordered lexiographially (namely 1 < a < aa < aaa <b < ba < � � � < bbaa < bbaaa), Wallis's algorithm would have been equivalent toAlgorithm 7.2.1.5M with (n1; n2; n3) = (1; 2; 3). He probably hose his more ompli-ated ordering of the divisors beause it tends to agree more losely with ordinarynumerial order when a � b � ; for example, his ordering is preisely numerial when(a; b; ) = (7; 11; 13). By generating the divisors aording to his somewhat omplexsheme, Wallis was essentially generating multiset ombinations, whih we noted inSetion 7.2.1.3 are equivalent to bounded ompositions. [Referene: A Disourse ofCombinations (1685), 126{128, with two typographi errors orreted.℄29. The fatorizations edba, edb �a, eda �b, : : : , e �d � �b �a orrespond respetively to

30. The oeÆient is zero unless i1+2i2+ � � � = n; in that ase it is �mk �am�k0 � ki1;i2;:::�where k = i1 + i2 + � � � . (Consider (a0z)m times (1 + (a1=a0)z + (a2=a0)z2 + � � � )m.)31. The order produed by that algorithm is dereasing lexiographi, the reverseof (31), if we assume that partitions a1 : : : ak have a1 � � � � � ak; de Moivre's wasinreasing olexiographi.32. 20 � 1 = 7 + 13 � 1 = 2 � 7 + 6 � 1 = 10 + 10 � 1 = 10 + 7 + 3 � 1 = 2 � 10. In general,Bosovih suggested starting with n �1 and omputing the suessor of a �10+b �7+ �1as follows: If  � 7, the suessor is a �10+(b+1) �7+(�7) �1; otherwise if +7b � 10,the suessor is (a+ 1) � 10 + (+ 7b� 10) � 1; otherwise stop.
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