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PREFACE

| like to work in a variety of fields
in order to spread my mistakes more thinly.

— VICTOR KLEE (1999)

THIS BOOKLET contains draft material that I'm circulating to experts in the
field, in hopes that they can help remove its most egregious errors before too
many other people see it. I am also, however, posting it on the Internet for
courageous and/or random readers who don’t mind the risk of reading a few
pages that have not yet reached a very mature state. Beware: This material has
not yet been proofread as thoroughly as the manuscripts of Volumes 1, 2, and 3
were at the time of their first printings. And those carefully-checked volumes,
alas, were subsequently found to contain thousands of mistakes.

Given this caveat, I hope that my errors this time will not be so numerous
and/or obtrusive that you will be discouraged from reading the material carefully.
I did try to make it both interesting and authoritative, as far as it goes. But the
field is so vast, I cannot hope to have surrounded it enough to corral it completely.
Therefore I beg you to let me know about any deficiencies you discover.

To put the material in context, this is Section 7.2.1.7 of a long, long chapter
on combinatorial algorithms. Chapter 7 will eventually fill three volumes (namely
Volumes 4A, 4B, and 4C), assuming that I'm able to remain healthy. It will
begin with a short review of graph theory, with emphasis on some highlights
of significant graphs in the Stanford GraphBase, from which I will be drawing
many examples. Then comes Section 7.1, which deals with the topic of bitwise
manipulations. (I drafted about 60 pages about that subject in 1977, but
those pages need extensive revision; meanwhile I’ve decided to work for awhile
on the material that follows it, so that I can get a better feel for how much
to cut.) Section 7.2 is about generating all possibilities, and it begins with
Section 7.2.1: Generating Basic Combinatorial Patterns  which, in turn, begins
with Section 7.2.1.1, “Generating all n-tuples,” Section 7.2.1.2, “Generating all
permutations,” ..., Section 7.2.1.6, “Generating all trees.” (Readers of the
present booklet should have already looked at those sections, drafts of which are
available as Pre-Fascicles 2A, 2B, 3A, 3B, and 4A.) The stage is now set for the
main contents of this booklet, Section 7.2.1.7: “History and further references.”
Section 7.2.2 will deal with backtracking in general. And so it will continue, if
all goes well; an outline of the entire Chapter 7 as currently envisaged appears
on the taocp webpage that is cited on page ii.

iii



iv PREFACE

Writing about history is extraordinarily difficult, not only because the source
materials are widely scattered but also because I must operate at the limit of my
ability to understand languages other than English. Furthermore, facts about
real life are much more complicated than facts about mathematics. No summary
can adequately convey the true feelings of an era or the true spirit of a culture,
yet the story that I'm trying to tell in this section covers many centuries of
development in many different parts of the world. The story is fascinating, and
many parts of it do not seem to have been told before, at least not in English.
Therefore I’'m keen to have professional historians of mathematics take a look at
what I've been able to piece together, hoping that they will not be too shocked
by blunders that have resulted from my present ignorance and/or incompetence.
I hope also to get advice from people of many different cultures who know of
relevant traditions that have not yet been well studied by professional historians.

The answer to exercise 6 poses two historical problems that I haven’t been
able to resolve. I urgently need your help also with respect to some exercises that
I made up as [ was preparing this material. I certainly don’t like to receive credit
for things that have already been published by others, and most of these results
are quite natural “fruits” that were just waiting to be “plucked.” Therefore
please tell me if you know who deserves to be credited, with respect to the ideas
found in exercises 2, 8, 10, 17, 20, 26, and/or 27.

I shall happily pay a finder’s fee of $2.56 for each error in this draft when it is
first reported to me, whether that error be typographical, technical, or historical.
The same reward holds for items that I forgot to put in the index. And valuable
suggestions for improvements to the text are worth 32¢ each. (Furthermore, if
you find a better solution to an exercise, I'll actually reward you with immortal
glory instead of mere money, by publishing your name in the eventual book:—)

Cross references to yet-unwritten material sometimes appear as ‘00’; this
impossible value is a placeholder for the actual numbers to be supplied later.

Happy reading!

Stanford, California D. E. K.
12 October 2004



0 COMBINATORIAL ALGORITHMS (F4B)

[This subject] has a relation
to almost every species of useful knowledge
that the mind of man can be employed upon.

— JAMES BERNOULLI, Ars Conjectandi (1713)

7.2.1.7. History and further references. Early work on the generation of
combinatorial patterns began as civilization itself was taking shape. The story
is quite fascinating, and we will see that it spans many cultures in many parts of
the world, with ties to poetry, music, and religion. There is space here to discuss
only some of the principal highlights; but perhaps a few glimpses into the past
will stimulate the reader to dig deeper into the roots of the subject, as the world
gets ever smaller and as global scholarship continues to advance.

Lists of binary n-tuples can be traced back thousands of years to ancient
China, India, and Greece. The most notable source  because it still is a best-
selling book in modern translations—is the Chinese I Ching or Yijing, whose
name means “the Bible of Changes.” This book, which is one of the five classics
of Confucian wisdom, consists essentially of 26 = 64 chapters; and each chapter
is symbolized by a hexagram formed from six lines, each of which is either - -

(“yin”) or — (“yang”). For example, hexagram 1 is pure yang, &; hexagram 2

is pure yin, ££; and hexagram 64 intermixes yin and yang, with yang on top: ££.

== =

Here is the complete list:
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This arrangement of the 64 possibilities is called King Wen’s ordering, because
the basic text of the I Ching has traditionally been ascribed to King Wen (c. 1100
B.C.), the legendary progenitor of the Chou dynasty. Ancient texts are, however,
notoriously difficult to date reliably, and modern historians have found no solid
evidence that anyone actually compiled such a list of hexagrams before the third
century B.C.

Notice that the hexagrams of (1) occur in pairs: Those with odd numbers are
immediately followed by their top-to-bottom reflections, except when reflection
would make no change; and the eight symmetrical diagrams are paired with
their complements (1 = 2, 27 = 28, 29 = 30, 61 = 62). Hexagrams that are
composed from two trigrams that represent the four basic elements heaven (=),
earth (=), fire (=), and water (==) have also been placed judiciously. Otherwise
the arrangement appears to be essentially random, as if a person untrained in
mathematics kept listing different possibilities until being unable to come up
with any more. A few intriguing patterns do exist between the pairs, but no
more than are present by coincidence in the digits of 7 (see 3.3—(1)).
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Yin and yang represent complementary aspects of the elementary forces of
nature, always in tension, always changing. The I Ching is somewhat analogous
to a thesaurus in which the hexagrams serve as an index to accumulated wisdom
about fundamental concepts like giving (), receiving (EE), modesty (££), joy
(), fellowship (E), withdrawal (), peace (E5), conflict (), organization
£), corruption (EE), immaturity (EE), elegance (EE), etc. Ome can choose
a pair of hexagrams at random, obtaining the second from the first by, say,
independently changing each yin to yang (or vice versa) with probability 1/4;
this technique yields 4096 ways to ponder existential mysteries, as well as a
Markov process by which change itself might perhaps give meaning to life.

A strictly logical way to arrange the hexagrams was eventually introduced
about A.D. 1060 by Shao Yung His ordering, which proceeded lexicographically
from EE to EE to £€ to EE to EE to - - - to = to E (reading each hexagram from
bottom to top) was much more user- frlendly than the King Wen order, because
a random pattern could now be found quickly. When G. W. Leibniz learned
about this sequence of hexagrams in 1702, he jumped to the erroneous conclusion
that Chinese mathematicians had once been familiar with binary arithmetic.
[See Frank Swetz, Mathematics Magazine 76 (2003), 276-291. Further details
about the I Ching can be found, for example, in Joseph Needham’s Science and
Civilisation in China 2 (Cambridge University Press, 1956), 304 345; R. J. Lynn,
The Classic of Changes (New York: Columbia University Press, 1994).]

Another ancient Chinese philosopher, Yang Hsiung, proposed a system based
on 81 ternary tetragrams instead of 64 binary hexagrams. His Canon of Supreme
Mystery, written c. 2 B.C., has recently been translated into English by Michael
Nylan (Albany, New York: 1993). Yang described a complete, hierarchical ter-
nary tree structure in which there are 3 regions, with 3 provinces in each region,
3 departments in each province, 3 families in each department, and 9 short poems
called “appraisals” for each family, hence 729 appraisals in all —making almost
exactly 2 appraisals for every day in the year. His tetragrams were arranged in
strict lexicographic order when read top-to-bottom: =, =, =, =, ==, =, =,

., 222, In fact, as explained on page 28 of Nylan’s book, Yang presented a simple
way to compute the rank of each tetragram, as if using a radix-3 number system.
Thus he would not have been surprised or impressed by Shao Yung’s systematic
ordering of binary hexagrams, although Shao lived more than 1000 years later.

Indian prosody. Binary n-tuples were studied in a completely different context
by pundits in ancient India, who investigated the poetic meters of sacred Vedic
chants. Syllables in Sanskrit are either short (1) or long (S), and the study
of syllable patterns is called “prosody.” Modern writers use the symbols —
and — instead of | and §S. A typical Vedic verse consists of four lines with
n syllables per line, for some n > 8; prosodists therefore sought a way to classify
all 2" possibilities. The classic work Chandahsastra by Pingala, written before
A.D. 400 and probably much earlier (the exact date is quite uncertain), described
procedures by which one could readily find the index k of any given pattern of
—s and —s, as well as to find the kth pattern, given k. In other words, Pingala
explained how to rank any given pattern as well as to unrank any given index;
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thus he went beyond the work of Yang Hsiung, who had considered ranking but
not unranking. Pingala’s methods were also related to exponentiation, as we
have noted earlier in connection with Algorithm 4.6.3A.

The next important step was taken by a prosodist named Kedara in his
work Vrttaratnakara, thought to have been written in the 8th century. Kedara
gave a step-by-step procedure for listing all the n-tuples from ——— ... — to
-~ ...—to —V~—...—to~~—...— t0 ———...— tO ——— ...
to -+ to ———...—, essentially Algorithm 7.2.1.1M in the case of radix 2. His
method may well have been the first-ever explicit algorithm for combinatorial
sequence generation. [See B. van Nooten, J. Indian Philos. 21 (1993), 31-50.]

Poetic meters can also be regarded as rhythms, with one beat for each —
and two beats for each —. An n-syllable pattern can involve between n and 2n
beats, but musical rhythms suitable for marching or dancing generally are based
on a fixed number of beats. Therefore it was natural to consider the set of all
sequences of ~—s and —s that have exactly m beats, for fixed m. Such patterns
are now called Morse code sequences of length m, and we know from exercise
4.5.3 32 that there are exactly F,,;1 of them. For example, the 21 sequences
when m = 7 are

e e e e
\_/i\_/&/i’ 7vvv7’ \/\/\/\/\/i’ 777\/’

e e, e, e — (2)
e, e e, ——

N N —— NN N — NN — N NN \_/\/\_/\/\_/\/\_/.

) Y ’

In this way Indian prosodists were led to discover the Fibonacci sequence, as we
have observed in Section 1.2.8.

Moreover, the anonymous author of Prakrta Pairngala (c.1320) discovered
elegant algorithms for ranking and unranking with respect to m-beat rhythms.
To find the kth pattern, one starts by writing down m —s, then expresses the
difference d = Fy,41 — k as a sum of Fibonacci numbers Fj, +---+ F},; here F},
is the largest Fibonacci number that is < d and Fj, is the largest < d—F} , etc.,
continuing until the remainder is zero. Then beats j — 1 and j are to be changed
from —— to —, for j = ji, ..., j:. For example, to get the 5th element of (2)
we compute 21 — 5 = 16 = 13 + 3 = F; + F4; the answer is —————,

A few years later, Narayana Pandita treated the more general problem of
finding all compositions of m whose parts are < g, where ¢ is any given posi-
tive integer. As a consequence he discovered the gth-order Fibonacci sequence
5.4.2-(4), which was destined to be used 600 years later in polyphase sorting;
he also developed the corresponding ranking and unranking algorithms. [See
Parmanand Singh, Historia Mathematica 12 (1985), 229244, and exercise 16.]

Pingala gave special code-names to all the three-syllable meters,

) —— =T (bh), (5)
e —wG) DU )
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and students of Sanskrit have been expected to memorize them ever since.
Somebody long ago devised a clever way to recall these codes, by inventing
the nonsense word yamatarajabhanasalagam (TATATLSTHTTEAITH ); the point
is that the ten syllables of this word can be written

ya ma ta ra ja bha na sa la gam

(4)

and each three-syllable pattern occurs just after its code name. The origin of
yama...lagam is obscure, but Subhash Kak [Indian J. History of Science 35
(2000), 123-127] has traced it back at least to C. P. Brown’s Sanskrit Prosody
(1869), page 28; thus it qualifies as the earliest known appearance of a “de Bruijn
cycle” that encodes binary n-tuples.

—_— — — — ~ — ~  — —

Meanwhile, in Europe. In a similar way, classic Greek poetry was based on
groups of short and/or long syllables called “metrical feet,” analogous to bars of
music. Each basic type of foot acquired a Greek name; for example, two short
syllables ‘“——" were called a pyrrhic, and two long syllables ‘——" were called a
spondee, because those thythms were used respectively in a song of war (mwuppixn)
or a song of peace (omovdai). Greek names for metric feet were soon assimilated
into Latin and eventually into modern languages, including English:

— arsis ——~—— proceleusmatic
— thesis —w—w—— fourth paon
———w— third paon
—— pyrrhic ———— minor ionic
—— iambus ——w—w— second paon
—— trochee ———— diiambus
—— spondee ———— antispast
———— first epitrite
——— tribrach —w——— first pseon (5)
——— anapest ———— choriambus
——w— amphibrach —w——+— ditrochee
~——— bacchius ———— second epitrite
——+— dactyl ————  major ionic
——— amphimacer ————  third epitrite
——— palimbacchius ———— fourth epitrite
——— molossus ———— dispondee

Alternative names, like “choree” instead of “trochee,” or “cretic” instead of
“amphimacer,” were also in common use. Moreover, by the time Diomedes wrote
his Latin grammar (approximately A.D. 375), each of the 32 five-syllable feet
had acquired at least one name. Diomedes also pointed out the relation between
complementary patterns; he stated for example that tribrach and molossus are
“contrarius,” as are amphibrach and amphimacer. But he also regarded dactyl
as the contrary of anapest, and bacchius as the contrary of palimbacchius, al-
though the literal meaning of palimbacchius is actually “reverse bacchius.” Greek
prosodists had no standard order in which to list the individual possibilities, and
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the form of the names makes it clear that no connection to a radix-two number
system was contemplated. [See H. Keil, Grammatici Latini 1 (1857), 474-482;
W. von Christ, Metrik der Griechen und Rémer (1879), 78-79.]

Surviving fragments of a work by Aristoxenus called Elements of Rhythm
(c. 325 B.C.) show that the same terminology was applied also to music. And
indeed, the same traditions lived on after the Renaissance; for example, we find

Spondeus — — =it b g dgs  Pyichius o e e e
Chorzus — o o~ i e :i:i: :i.;: Tambos » — :é:c: :‘:&: :irzi: :i:é

on page 32 of Athanasius Kircher’s Musurgia Universalis 2 (Rome: 1650), and
Kircher went on to describe all of the three-note and four-note rhythms of (5).

Early lists of permutations. We’ve traced the history of formulas for counting
permutations in Section 5.1.2; but nontrivial lists of permutations were not
published until hundreds of years after the formula n! was discovered. The first
such tabulation currently known was compiled by the Italian physician Shabbetai
Donnolo in his commentary on the kabbalistic Sefer Yetzirah, written in A.D. 946.
Table 1 shows his list for n = 5 as it was subsequently printed in Warsaw (1884).
(The Hebrew letters in this table are typeset in a rabbinical font traditionally
used for commentaries; notice that the letter » changes its shape to © when it
appears at the left end of a word.) Donnolo went on to list 120 permutations
of the six-letter word %3055, all beginning with shin (£); then he noted that
120 more could be obtained with each of the other five letters in front, making
720 in all. His lists involved groupings of six permutations, but in a haphazard
fashion that led him into error (see exercise 4). Although he knew how many
permutations there were supposed to be, and how many should start with a given
letter, he evidently didn’t have an algorithm for generating them.

Table 1
A MEDIEVAL LIST OF PERMUTATIONS

ST BP9T O3, 30T 09T, O 0937 MINIT BT ,IMST , OMIT , O1I5T
VDT I3WT IONT 3T NIBNT ,IINT IO, I AW, O3WT 09T
ST LTI IB 0TS 091D VS 0TI MINT3 , OMT3 NI 0TS I3
O3, IS, O3 0TI T IDTI L TN MT0I LT3, T3 1IN I3
SINTY, OBTY 3NN DI, WITY BN 0D, 0TI 0T 03T 130N, 3TN
23T T30 TN SYINTTINY L TR [TN5Y 2080, 0130, O3 070 nad
JSIT DI 50T MBT L 039, 0931 3T, TIMY TN 5T 39T
AT DT3P 03P TINN L INTP L 03T T IO I, 0TI TR, O
TN T TIBN LTI TN, WD, I, IWID I3, W 59 MBI
TITN L, 3TIN VIIN I LT 5T 370 L1300, TIM L, BT T3 5T

A complete list of all 720 permutations of {a, b, c,d, e, {f} appeared on pages
668 671 of Jeremias Drexel’s Orbis Phaéthon (Munich: 1629; also on pages 526
531 of the Cologne edition in 1631). He offered it as proof that a man with six
guests could seat them differently at lunch and dinner every day for a year —
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altogether 360 days, because there were five days of fasting during Holy Week.
Shortly afterwards, Marin Mersenne exhibited all 720 permutations of the six
tones {ut,re,mi, fa,sol,la}, on pages 111-115 of his Traitez de la Voix et des
Chants (Volume 2 of Harmonie Universelle, 1636); then on pages 117 128 he
presented the same data in musical notation:

1 2 3 4 5 719 7:0
— ) (WY 38 $85T CH . I N 37 NSO
Ezsx@&:&._"é.g,g.nwx ST $.§.¢.__.n{_.5.§+_.§.& TR s = LR 5

Drexel’s table was organized lexicographically by columns; Mersenne’s tables
were lexicographic with respect to the order ut < re < mi < fa < sol < la, begin-
ning with “ut,re,mi,fa,sol,]Ja” and ending with “la,sol,fa,mi,re,ut.” Mersenne also
prepared a “grand et immense” manuscript that listed all 40,320 permutations
of eight notes on 672 folio pages, followed by ranking and unranking algorithms
[Bibliotheque nationale de France, Fonds Francais, no. 24256].

We saw in Section 7.2.1.2 that the important idea of plain changes, Algo-
rithm 7.2.1.2P, was invented in England a few years later.

Methods for listing all permutations of a multiset with repeated elements
were often misunderstood by early authors. For example, when Bhaskara exhib-
ited the permutations of {4,5,5,5,8} in section 271 of his Lilavat1 (c. 1150), he
gave them in the following order:

YTYYY GY¥LYY  LY¥TYY Ug¥dY LYYty
dYTEL LLL¥T LLLTY FUTLL FLUTY
TLLLT TLELL  TLLIEL  TULLY LvLTY
ATLEL LL¥LT L4TLY LCLLT LTLLY

Mersenne used a slightly more sensible but not completely systematic order on
page 131 of his book when he listed sixty anagrams of the Latin name IESVS.
When Athanasius Kircher wanted to illustrate the 30 permutations of a five-
note melody on pages 10 and 11 of Musurgia Universalis 2 (1650), this lack of a
system got him into trouble (see exercise 5):

(6)

R AT A Wy 7oL L L S T L 7 WP UL TR A Y O
_— i

ses 0y 5rton n00gs [0¥aa o favg Tageadaglug aesogs de: Vaves: (7)

053 90955 5057 Sagas:-duaog] Sevvy Oatev fasan donsadsevg:

But John Wallis knew better. On page 117 of his Discourse of Combinations
(1685) he correctly listed the 60 anagrams of “messes” in lexicographic order, if
we let m < e < s; and on page 126 he recommended respecting alphabetic order
“that we may be the more sure, not to miss any.”

We will see later that the Indian mathematician Narayana Pandita had al-
ready developed a theory of permutation generation in the 14th century, although
his work remained almost totally unknown.



6 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7

Seki’s list. Takakazu Seki (1642-1708) was a charismatic teacher and researcher
who revolutionized the study of mathematics in 17th-century Japan. While he
was studying the elimination of variables from simultaneous homogeneous equa-
tions, he was led to expressions such as aibs — asb; and aibacs — aijbscs +
asbscy — asbics + azbica — agbacy, which we now recognize as determinants.
In 1683 he published a booklet about this discovery, introducing an ingenious
scheme for listing all permutations in such a way that half of them were “alive”
(even) and the other half were “dead” (odd). Starting with the case n = 2, when

‘12’ was alive and ‘21’ was dead, he formulated the following rules for n > 2:
1) Take every live permutation for n—1, increase all its elements by 1, and insert
1 in front. This rule produces (n—1)!/2 “basic permutations” of {1,...,n}.

2) From each basic permutation, form 2n others by rotation and reflection:

A1G3...0n_10p, A2 ...0p_10pG1, ..., Gpd1G3 ... 0y_1; (8)
ApGp_1...0241, Q1QpGp_1 .. .02, .., Gp_1 -..02010,. (9)
If n is odd, those in the first row are alive and those in the second are dead;
if n is even, those in each row are alternatively alive, dead, ..., alive, dead.

For example, when n = 3 the only basic permutation is 123. Thus 123, 231,
312 are alive while 321, 132, 213 are dead, and we’ve successfully generated the
six terms of a 3 X 3 determinant. The basic permutations for n = 4 are 1234,
1342, 1423; and from, say, 1342 we get a set of eight, namely

+ 1342 — 3421 + 4213 — 2134 + 2431 — 1243 + 3124 — 4321, (10)

alternately alive (4+) and dead (—). A 4 x 4 determinant therefore includes the
terms aibszcads — aszbscody + - - - — agbszcad; and sixteen others.

Seki’s rule for permutation generation is quite pretty, but unfortunately it
has a serious problem: It doesn’t work when n > 4. His error seems to have
gone unrecognized for hundreds of years. [See Y. Mikami, The Development of
Mathematics in China and Japan (1913), 191-199; Takakazu Seki’s Collected
Works (Osaka: 1974), 1820, \Fi— .. —P9—; and exercises 7-8.]

Lists of combinations. The earliest exhaustive list of combinations known to
have survived the ravages of time appears in the last book of Susruta’s well-known
Sanskrit treatise on medicine, Chapter 63, written before A.D. 600 and perhaps
much earlier. Noting that medicine can be sweet, sour, salty, peppery, bitter,
and/or astringent, Susruta’s book diligently listed the (15,20,15,6,1,6) cases
that arise when those qualities occur two, three, four, five, six, and one at a time.
Bhaskara repeated this example in sections 110-114 of Lilavati, and observed
that the same reasoning applies to six-syllable poetic meters with a given number
of long syllables. But he simply mentioned the totals, (6,15, 20, 15,6, 1), without
listing the combinations themselves. In sections 274 and 275, he observed that
the numbers (n)(n—1)...(n—k+1)/(k(k—1)...(1)) enumerate compositions
(that is, ordered partitions) as well as combinations; again he gave no list.
To avoid prolixity this is treated in a brief manner;
for the science of calculation is an ocean without bounds.
— Bhaskara (c.1150)
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An isolated but interesting list of combinations appeared in the remarkable
algebra text Al-Bahir fi’l-hisab (The Shining Book of Calculation), written by
al-Samaw’al of Baghdad when he was only 19 years old (1144). In the closing
part of that work he presented a list of (160) = 210 simultaneous linear equations
in 10 unknowns:

Al-Samaw’al’s Arabic original Equivalent modern notation
Ao ACIARS) | (1) z1+x2+ z3+ Ta + x5 + 6 = 65
V- VoéYYy < (2) z1+z2+ 23+ Ta+ x5 + 27 =70
Vo Ao EY YN a 3) zi+x2+ 23+ 24+ 25+ 28 =75 (11)
a\ V- AAVRE .la:) (209) T4 + g+ x7 + 28 + T9 + 10 = 91
Voo | V-AAVTG | (210) z5 + 6 + x7 + T8 + T9 + T10 = 100

Each combination of ten things taken six at a time yielded one of his equa-
tions. His purpose was evidently to demonstrate that over-determined equations
can still have a unique solution —which in this case was (z1,z2,...,219) =
(1,4,9,16,25,10,15,20,25,5). [Salah Ahmad and Roshdi Rashed, Al-Bahir en
Algébre d’As-Samaw’al (Damascus: 1972), 77-82, YEA-YY\.]

Rolling dice. Some glimmerings of elementary combinatorics arose also in
medieval Europe, especially in connection with the question of listing all possible
outcomes when three dice are thrown. There are, of course, (2) = 56 ways to
choose 3 things from 6 when repetitions are allowed. Gambling was officially pro-
hibited; yet these 56 ways became rather well known. In about A.D. 965, Bishop
Wibold of Cambrai in northern France devised a game called Ludus Clericalis,
so that members of the clergy could enjoy rolling dice while remaining pious.
His idea was to associate each possible roll with one of 56 virtues, according to
the following table:

] love [-][+')g3] perseverance  [7][+][] hospitality  [+F][3][if mortification
(][] faith [-][3Ee kindness [‘I[~']E3] economy [*][=][F] innocence
(1] hope (-] modesty [ patience []E[3 contrition
(][] justice (]33 resignation (I3[ zeal ["JE3[EE confession

[<][*][] prudence [+ ][] gentleness [I2E3] poverty FIEEE] maturity
[-][-]E¥ temperance [+][=]E3 generosity [I[=][F] softness (3] solicitude
L] courage [-][3)EE wisdom [I[=]E3] virginity (33 constancy

)] peace [ remorse [IE3)[EE respect [d(f] intelligence
[ chastity  CILIE doy S piety FIEIEY sighing
(][] mercy [7I[)ES) sobriety [“I[=E indulgence  [I][E3[E weeping
[-][.7]E3 obedience [ satisfaction [+ prayer cheerfulness
=[] fear [ 71E3] sweetness [I[E3 affection compassion

(][5 foresight []]] cleverness ]33] judgment self-control
[-][FI[=] discretion )R simplicity [~ vigilance humility
Players took turns, and the first to roll each virtue acquired it. After all possibil-
ities had arisen, the most virtuous player won. Wibold noted that love (caritas)
is the best virtue of all. He gave a complicated scoring system by which two
virtues could be combined if the sum of pips on all six of their dice was 21; for
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example, love 4+ humility or chastity + intelligence could be paired in this way,
and such combinations ranked above any individual virtue. He also considered
more complex variants of the game in which vowels appeared on the dice instead
of spots, so that virtues could be claimed if their vowels were thrown.

Wibold’s table of virtues was presented in lexicographic order, as above,
when it was first described by Baldéric in his Chronicon Cameracense, about
150 years later. [Patrologia Latina 134 (Paris: 1884), 1007 1016.] But another
medieval manuscript presented the possible dice rolls in quite a different order:

I 35| I | i O R i 3 | | A 1 R I
BIEICY [IEYLT EYRILT EIEIL EORAED [EEEY R
5 | P 5 R O 3 | 1 s | O R R
15 5 3 3 2 33 3 S P | 1 A 2 (12)
5 A 3 5 | 5 I A R R 5
101 P 3 < 2 5 O 3| S | | | S B R
R 53 I 3 51 5 25 5 3 8 2
| A 5 2 3 I s 3 25 53 A

In this case the author knew how to deal with repeated values, but had a very
complicated, ad hoc way to handle the cases in which all dice were different. [See
D. R. Bellhouse, International Statistical Review 68 (2000), 123 136.]

An amusing poem entitled “Chaunce of the Dyse,” attributed to John
Lydgate, was written in the early 1400s for use at parties. Its opening verses
invite each person to throw three dice; then the remaining verses, which are
indexed in decreasing lexicographic order from to to -+ - to [[J[<][+],
give 56 character sketches that light-heartedly describe the thrower. [The full
text was published by E. P. Hammond in Englische Studien 59 (1925), 1-16;
a translation into modern English would be desirable.]

| pray to god that euery wight may caste

Vpon three dyse ryght as is in hys herte
Whether he be rechelesse or stedfaste

So moote he lawghen outher elles smerte

He that is gilty his lyfe to converte

They that in trouthe haue suffred many a throwe
Moote ther chaunce fal as they moote be knowe.

— The Chaunce of the Dyse (c.1410)

Ramon Llull. Significant ripples of combinatorial concepts also emanated
from an energetic and quixotic Catalan poet, novelist, encyclopedist, educator,
mystic, and missionary named Ramon Llull (c. 1232-1316). Llull’s approach to
knowledge was essentially to identify basic principles and then to contemplate
combining them in all possible ways.

For example, one chapter in his Ars Compendiosa Inveniendi Veritatem
(c.1274) began by enumerating sixteen attributes of God: Goodness, greatness,
eternity, power, wisdom, love, virtue, truth, glory, perfection, justice, generosity,
mercy, humility, sovereignty, and patience. Then Llull wrote (16) = 120 short

2
essays of about 80 words each, considering God’s goodness as related to greatness,
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God’s goodness as related to eternity, and so on, ending with God’s sovereignty as
related to patience. In another chapter he considered seven virtues (faith, hope,
charity, justice, prudence, fortitude, temperance) and seven vices (gluttony, lust,
greed, sloth, pride, envy, anger), with (124) = 91 subchapters to deal with each
pair in turn. Other chapters were systematically divided in a similar way, into
(g) = 28, (125) = 105, (g) = 6, and (126) = 120 subsections. (One wonders what
might have happened if he had been familiar with Wibold’s list of 56 virtues;
would he have produced commentaries on all (526) = 1540 of their pairs?)

Noteeurel ee-vind-

Fig. 44. Illustrations in a manuscript presented by Ramon Llull to
the doge of Venice in 1280. [From his Ars Demonstrativa, Biblioteca
Marciana, v1 200, folio 3".]

Llull illustrated his methodology by drawing circular diagrams like those in
Figure 44. The left-hand circle in this illustration, Deus, names sixteen divine
attributes — essentially the same sixteen listed earlier, except that love (amor)
was now called will (voluntas), and the final four were now respectively simplicity,
rank, mercy, and sovereignty. FEach attribute is assigned a code letter, and
the illustration depicts their interrelations as the complete graph Kig on ver-
tices (B,C,D,E,F,G,H,I, K, L, M,N,O,P,Q,R). The right-hand figure, virtutes
et vitia, shows the seven virtues (b, c,d, e, f, g, h) interleaved with the seven vices
(i,k,1,m,n,0,p); in the original manuscript virtues appeared in blue ink while
vices appeared in red. Notice that in this case his illustration depicted two
independent complete graphs K7, one of each color. (He no longer bothered to
compare each individual virtue with each individual vice, since every virtue was
clearly better than every vice.)

Llull used the same approach to write about medicine: Instead of juxta-
posing theological concepts, his Liber Principiorum Medicinz (c.1275) con-
sidered combinations of symptoms and treatments. And he also wrote books
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on philosophy, logic, jurisprudence, astrology, zoology, geometry, rhetoric, and
chivalry — more than 200 works in all. It must be admitted, however, that much
of this material was highly repetitive; modern data compression techniques would
probably reduce Llull’s output to a size much less than that of, say, Aristotle.
He eventually decided to simplify his system by working primarily with
groups of nine things. See, for example, Fig. 45, where circle A now lists only the
first nine of God’s attributes (B,C,D,E,F,G,H,I,K). The (g) = 36 associated
pairs (BC,BD, ..., IK) appear in the stairstep chart at the right of that circle. By
adding two more virtues, namely patience and compassion — as well as two more
vices, namely lying and inconsistency he could treat virtues vis-a-vis virtues
and vices vis-a-vis vices with the same chart. He also proposed using the same
chart to carry out an interesting scheme for voting, in an election with nine
candidates [see I. McLean and J. London, Studia Lulliana 32 (1992), 21-37].
The encircled triangles at the lower left of Fig. 45 illustrate another key
aspect of Llull’s approach. Triangle (B, C, D) stands for (difference, concordance,
contrariness); triangle (E, F, G) stands for (beginning, middle, ending); and trian-
gle (H, I, K) stands for (greater, equal, less). These three interleaved appearances
of K3 represent three kinds of three-valued logic. Llull had experimented earlier
with other such triplets, notably ‘(true, unknown, false)’. We can get an idea

Ta e
e |a |
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I | | I
b c| |0
blelelb
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Lt (v e
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bie |¢|d
e [s]clb]
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Fig. 45. Llullian illustrations N >
from a manuscript presented to [ L
the queen of France, c. 1325. [10lv |ble
[Badische Landesbibliothek Karls- dlelbvle
ruhe, Codex St. Peter perg. 92, —
folios 28" and 39".] Kd
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of how he used the triangles by considering how he dealt with combinations of
the four basic elements (earth, air, fire, water): All four elements are different;
earth is concordant with fire, which concords with air, which concords with
water, which concords with earth; earth is contrary to air, and fire is contrary
to water; these considerations complete an analysis with respect to triangle
(B, C,D). Turning to triangle (E, F, G), he noted that various processes in nature
begin with one element dominating another; then a transition or middle state
occurs, until a goal is reached, like air becoming warm. For triangle (H,I,K) he
said that in general we have fire > air > water > earth with respect to their
“spheres,” their “velocities,” and their “nobilities”; nevertheless we also have,
for example, air > fire with respect to supporting life, while air and fire have
equal value when they are working together.

Llull provided the vertical table at the right of Fig. 45 as a further aid. (See
exercise 11 below.) He also introduced movable concentric wheels, labeled with
the letters (B,C,D,E,F,G,H,[,K) and with other names, so that many things
could be contemplated simultaneously. In this way a faithful practitioner of
the Llullian art could be sure to have all the bases covered. [Llull may have
seen similar wheels that were used in nearby Jewish communities; see M. Idel,
J. Warburg and Courtauld Institutes 51 (1988), 170-174 and plates 16-17.]

Several centuries later, Athanasius Kircher published an extension of Llull’s
system as part of a large tome entitled Ars Magna Sciendi sive Combinatoria
(Amsterdam: 1669), with five movable wheels accompanying page 173 of that
book. Kircher also extended Llull’s repertoire of complete graphs K,, by provid-
ing illustrations of complete bipartite graphs K, ,,; for example, Fig. 46 is taken
from page 171 of Kircher’s book, and his page 170 contains a glorious picture
of Kig,1s-

\

\

A

POLK
KRR RS

Fig. 46. Ky 9 as pre-
sented by Athanasius
Kircher in 1669.

beghroobo
W\
F X F N B xW
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It is an investigative and inventive art.

When ideas are combined in all possible ways,

the new combinations start the mind thinking along novel channels
and one is led to discover fresh truths and arguments.

— MARTIN GARDNER, Logic Machines and Diagrams (1958)

The most extensive modern development of Llull-like methods is perhaps
The Schillinger System of Musical Composition by Joseph Schillinger (New York:

11
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Carl Fischer, 1946), a remarkable two-volume work that presents theories of
rhythm, melody, harmony, counterpoint, composition, orchestration, etc., from
a combinatorial perspective. On page 56, for example, Schillinger lists the 24
permutations of {a,b,c,d} in the Gray-code order of plain changes (Algorithm
7.2.1.2P); then on page 57 he applies them not to pitches but rather to rhythms,
to the durations of notes. On page 364 he exhibits the symmetrical cycle

(2,0,3,4,2,5,6,4,0,1,6,2,3,1,4,5,3,6,0,5, 1), (13)

a universal cycle of 2-combinations for the seven objects {0,1,2,3,4,5,6}; in
other words, (13) is an Eulerian trail in K: All (;) = 21 pairs of digits occur
exactly once. Such patterns are grist for a composer’s mill. But we can be
grateful that Schillinger’s better students (like George Gershwin) did not commit
themselves entirely to a strictly mathematical sense of aesthetics.

Tacquet, van Schooten, and Izquierdo. Three additional books related to
our story were published during the 1650s. André Tacquet wrote a popular text,
Arithmeticze Theoria et Praxis (Louvain: 1656), that was reprinted and revised
often during the next fifty years. Near the end, on pages 376 and 377, he gave a
procedure for listing combinations two at a time, then three at a time, etc.
Frans van Schooten’s Exercitationes Mathematicae (Leiden: 1657) was more
advanced. On page 373 he listed all combinations in an appealing layout

a

b. ob (14)

c. ac. be. abe
d. ad. bd. abd. cd. acd. bed. abed
and he proceeded on the next few pages to extend this pattern to the letters e,
f, 9, h, 1, k, “et sic in infinitum.” On page 376 he observed that one can replace
(a,b,c,d) by (2,3,5,7) in (14) to get the divisors of 210 that exceed unity:
2

_ 36 (15)
5 10 15 30

7 14 21 42 35 70 105 210
And on the following page he extended the idea to

a

a. aa (16)

b. ab. aab

c. ac. aac. be. abe. aabe

thereby allowing two a’s. He didn’t really understand this extension, though; his
next example
a
a. ag
a. aaa (17)
b. ab. aab. aaab
b. bb. abb. aabdb. aaabdb

was botched, indicating the limits of his knowledge at the time. (See exercise 13.)

12
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On page 411 van Schooten observed that the weights (a, b, c,d) = (1,2,4,8)
could be assigned in (14), leading to

O’![\D’
—_
W

56 (18)

89 10 11 12 13 14 15

after addition. But he didn’t see the connection with radix-2 arithmetic.

Sebastian Izquierdo’s two-volume work Pharus Scientiarum (Lyon: 1659),
“The Lighthouse of Science,” included a nicely organized discussion of combina-
torics entitled Disputatio 29, De Combinatione. He gave a detailed discussion of
four key parts of Stanley’s Twelvefold Way, namely the n-tuples, n-variations,
n-multicombinations, and n-combinations of m objects that appear in the first
two rows and the first two columns of Table 7.2.1.4-1.

In Sections 81 84 of De Combinatione he listed all combinations of m letters
taken n at a time, for 2 <n <5 and n < m <9, always in lexicographic order;
he also tabulated them for m = 10 and 20 in the cases n = 2 and 3. But when
he listed the m™ wvariations of m things taken n at a time, he chose a more
complicated ordering (see exercise 14).

Izquierdo was first to discover the formula (
things taken n at a time with unlimited repetition; this rule appeared in §48 §51
of his work. But in §105, when he attempted to list all such combinations in the
case n = 3, he didn’t know that there was a simple way to do it. In fact, his
listing of the 56 cases for m = 6 was rather like the old, awkward ordering of (12).

Combinations with repetition were not well understood until James Ber-
noulli’s Ars Conjectandi, “The Art of Guessing,” came out in 1713. In Part 2,
Chapter 5, Bernoulli simply listed the possibilities in lexicographic order, and
showed that the formula (m+:_1) follows by induction as an easy consequence.
[Niccold Tartaglia had, incidentally, come close to discovering this formula in his
General trattato di numeri, et misure 2 (Venice: 1556), 17" and 69"; so had the
Maghrebi mathematician Ibn Mun‘im in his 13th-century Figh al-Hisab.

mt:“l) for combinations of m

The null case. Before we conclude our discussion of early work on combinations,
we should not forget a small yet noble step taken by John Wallis on page 110
of his Discourse of Combinations (1685), where he specifically considered the
combination of m things taken 0 at a time: “It is manifest, That, if we would
take None, that is, if we would leave All; there can be but one case thereof, what
ever be the Number of things exposed.” Furthermore, on page 113, he knew that
(8) = 1: “(for, here, to take all, or to leave all, is but one and the same case.)”
However, when he gave a table of n! for n < 24, he did not go so far as to
point out that 0! = 1, or that there is exactly one permutation of the empty set.

The work of Narayana. A remarkable monograph entitled Ganita Kaumudl
(“Treatise on Calculation”), written by Narayana Pandita in 1356, has recently
become known in detail to scholars outside of India for the first time, thanks
to an English translation by Parmanand Singh [Ganita Bharatr 20 (1998), 25—
82; 21 (1999), 10-73; 22 (2000), 19-85; 23 (2001), 18-82; 24 (2002), 35-98].

13
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Chapter 13 of his work, subtitled Arnka Pasa (“Concatenation of Numbers”), was
devoted to combinatorial generation. Indeed, although the 97 “sutras” of this
chapter were rather cryptic, they presented a comprehensive theory of the subject
that anticipated developments in the rest of the world by several hundred years.
For example, Narayana dealt with permutation generation in sutras 49-55a,
where he gave algorithms to list all permutations of a set in decreasing colex or-
der, together with algorithms to rank a given permutation and to unrank a given
serial number. In this way he essentially discovered the factorial representation
of positive integers. Then in sutras 57 60 he extended the algorithms to handle
general multisets; for example, he listed the permutations of {1,1,2,4} as

1124,1214, 2114, 1142, 1412, 4112, 1241, 2141, 1421, 4121, 2411, 4211

again in decreasing colex order.
Narayana’s sutras 88-92 dealt with systematic generation of combinations.
Besides illustrating the combinations of {1,...,8} taken 3 at a time, namely

(678, 578, 478, ..., 134, 124, 123)

he also considered a bit-string representation of these combinations in the reverse
order (increasing colex):

(11100000, 11010000, 10110000, ...,00010011, 00001011, 00000111).

He almost, but not quite, discovered Theorem 7.2.1.3L.

Thus we can legitimately regard Narayana Pandita as the founder of the
science of combinatorial generation  even though, like many other pioneers who
were significantly “ahead of their time,” his work on the subject never became
well known even in his own country.

Permutable poetry. Let’s turn now to a curious question that attracted
the attention of several prominent mathematicians in the seventeenth century,
because it sheds considerable light on the state of combinatorial knowledge in
Europe at that time. A Jesuit priest named Bernard Bauhuis had composed a
famous one-line tribute to the Virgin Mary, in Latin hexameter:

Tot tibi sunt dotes, Virgo, quot sidera czlo. (19)

[“Thou hast as many virtues, O Virgin, as there are stars in heaven”; see
his Epigrammatum Libri V (Cologne: 1615), 49.] His verse inspired Erycius
Puteanus, a professor at the University of Louvain, to write a book entitled
Pietatis Thaumata (Antwerp: 1617), presenting 1022 permutations of Bauhuis’s
words. For example, Puteanus wrote

107 Tot dotes tibi, quot ceelo sunt sidera, Virgo.
270 Dotes tot, caelo sunt sidera quot, tibi Virgo.
329 Dotes, caelo sunt quot sidera, Virgo tibi tot.
384 Sidera quot calo, tot sunt Virgo tibi dotes. (20)
725 Quot caelo sunt sidera, tot Virgo tibi dotes.
949 Sunt dotes Virgo, quot sidera, tot tibi calo.
1022 Sunt czelo tot Virgo tibi, quot sidera, dotes.

14
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He stopped at 1022, because 1022 was the number of visible stars in Ptolemy’s
well-known catalog of the heavens.

The idea of permuting words in this way was well known at the time; such
wordplay was what Julius Scaliger had called “Proteus verses” in his Poetices
Libri Septem (Lyon: 1561), Book 2, Chapter 30. The Latin language lends itself
to permutations like (20), because Latin word endings tend to define the function
of each noun, making the relative word order much less important to the meaning
of a sentence than it is in English. Puteanus did state, however, that he had
specifically avoided unsuitable permutations such as

Sidera tot czelo, Virgo, quot sunt tibi dotes, (21)

because they would place an upper bound on the Virgin’s virtues rather than a
lower bound. [See pages 12 and 103 of his book.]

Of course there are 8! = 40,320 ways to permute the words of (19). But
that wasn’t the point; most of those ways don’t “scan.” Each of Puteanus’s 1022
verses obeyed the strict rules of classical hexameter, the rules that had been
followed by Greek and Latin poets since the days of Homer and Vergil, namely:

i) Each word consists of syllables that are either long (—) or short (~—);
ii) The syllables of each line belong to one of 32 patterns,

e R L e A e

In other words there are six metrical feet, where each of the first four is either a

dactyl or a spondee in the terminology of (5); the fifth foot should be a dactyl,
and the last is either trochee or spondee.

The rules for long versus short syllables in Latin poetry are somewhat tricky

in general, but the eight words of Bauhuis’s verse can be characterized by the
following patterns:

tot = —, tibi = {::}, sunt = —, dotes = ——,
Virgo = {::}, quot = —, sidera = ———, calo = ——. (23)

Notice that poets had two choices when they used the words ‘tibi’ or ‘Virgo’.
Thus, for example, (19) fits the hexameter pattern

—_— — — —_— _—

Tot ti-bi sunt do- tes, Vir-  go, quot si-de-ra cae-lo. (24)

(Dactyl, spondee, spondee, spondee, dactyl, spondee; “dum-diddy dum-dum
dum-dum dum-dum dum-diddy dum-dum.” The commas represent slight pauses,
called “caesuras,” when the words are read; they don’t concern us here, although
Puteanus inserted them carefully into each of his 1022 permutations.)

A natural question now arises: If we permute Bauhuis’s words at random,
what are the odds that they scan? In other words, how many of the permutations
obey rules (i) and (ii), given the syllable patterns in (23)? G. W. Leibniz raised

15
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this question, among others, in his Dissertatio de Arte Combinatoria (1666), a
work published when he was applying for a position at the University of Leipzig.
At this time Leibniz was just 19 years old, largely self-taught, and his under-
standing of combinatorics was quite limited; for example, he believed that there
are 600 permutations of {ut,ut,re, mi, fa,sol} and 480 of {ut,ut,re,re, mi, fa},
and he even stated that (22) represents 76 possibilities instead of 32. [See §5 and
§8 in his Problem 6.]

But Leibniz did realize that it would be worthwhile to develop general
methods for counting all permutations that are “useful,” in situations when
many permutations are “useless.” He considered several examples of Proteus
verses, enumerating some of the simpler ones correctly but making many errors
when the words were complicated. Although he mentioned Puteanus’s work, he
didn’t attempt to enumerate the scannable permutations of (19).

A much more successful approach was introduced a few years later by Jean
Prestet in his Elémens des Mathématiques (Paris: 1675), 342-438. Prestet gave
a clear exposition leading to the conclusion that exactly 2196 permutations of
Bauhuis’s verse would yield a proper hexameter. However, he soon realized that
he had forgotten to count quite a few cases—including those numbered 270,
384, and 725 in (20). So he completely rewrote this material when he published
Nouveaux Elémens des Mathématiques in 1689. Pages 127-133 of Prestet’s new
book were devoted to showing that the true number of scannable permutations
was 3276, almost 50% larger than his previous total.

Meanwhile John Wallis had treated the problem in his Discourse of Combi-
nations (London: 1685), 118-119, published as a supplement to his Treatise of
Algebra. After explaining why he believed the correct number to be 3096, Wallis
admitted that he may have overlooked some possibilities and/or counted some
cases more than once; “but I do not, at present, discern either the one and other.”

An anonymous reviewer of Wallis’s work remarked that the true number of
metrically correct permutations was actually 2580 — but he gave no proof [Acta
Eruditorum 5 (1686), 289]. The reviewer was almost certainly G. W. Leibniz
himself, although no clue to the reasoning behind the number 2580 has been
found among Leibniz’s voluminous unpublished notes.

Finally James Bernoulli entered the picture. In his inaugural lecture as
Dean of Philosophy at the University of Basel, 1692, he mentioned the tot-
tibi enumeration problem and stated that a careful analysis is necessary to
obtain the correct answer which, he said, was 3312(!). His proof appeared
posthumously in the first edition of his Ars Conjectandi (1713), 79-81. [Those
pages were, incidentally, omitted from later editions of that famous book, and
from his collected works, because he didn’t actually intend them for publication;
a proofreader had inserted them by mistake. See Die Werke von Jakob Bernoulli
3 (Basel: Birkhauser, 1975), 78, 98 106, 108, 154 155.]

So who was right? Are there 2196 scannable permutations, or 3276, or 3096,
or 2580, or 33127 W. A. Whitworth and W. E. Hartley considered the question
anew in The Mathematical Gazette 2 (1902), 227-228, where they each presented
elegant arguments and concluded that the true total was in fact none of the

16
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above. Their joint answer, 2880, represented the first time that any two math-
ematicians had independently come to the same conclusion about this problem.

But exercises 21 and 22, below, reveal the truth: Bernoulli is vindicated,
and everybody else was wrong. Moreover, a study of Bernoulli’s systematic
and carefully indented 3-page derivation indicates that he was successful chiefly
because he adhered faithfully to a discipline that we now call the backtrack
method. We shall study the backtrack method thoroughly in Section 7.2.2, where
we will also see that the tot-tibi question is readily solved as a special case of
the ezxact cover problem.

Even the wisest and most prudent people often suffer from
what Logicians call insufficient enumeration of cases.

— JAMES BERNOULLI (1692)

Set partitions. The partitions of a set seem to have been studied first in Japan,
where a parlor game called gengji-ko (“Genji incense”) became popular among
upperclass people about A.D. 1500. The host of a gathering would secretly select
five packets of incense, some of which might be identical, and he would burn
them one at a time. The guests would try to discern which of the scents were
the same and which were different; in other words, they would try to guess which
of the ws = 52 partitions of {1,2,3,4,5} had been chosen by their host.

D gy
II,I Fig. 47. Diagrams used to represent set partitions
— _"' in 16th century Japan. [From a copy in the collec-
'- -Il l | m' tion of Tamaki Yano at Saitama University.]

Soon it became customary to represent the 52 possible outcomes by diagrams
like those in Fig. 47. For example, the uppermost diagram of that illustration,
when read from right to left, would indicate that the first two scents are identical
and so are the last three; thus the partition is 12/345. The other two diagrams,
similarly, are pictorial ways to represent the respective partitions 124|35 and
1/24]35. As an aid to memory, each of the 52 patterns was named after a
chapter of Lady Murasaki’s famous 11th-century Tale of Genji, according to the
following sequence [Encyclopedia Japonicz (Tokyo: Sanseido, 1910), 1299]:

1 1 1 o R
1017 1 1 s R
M fm iml @1 i {m ool oo oW o sie
i [ i o i mioane oo mme o

(Once again, as we've seen in many other examples, the possibilities were not
arranged in any particularly logical order.)

17
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The appealing nature of these genji-ko patterns led many families to adopt
them as heraldic crests. For example, the following stylized variants of (25) were
found in standard catalogs of kimono patterns early in the 20th century:

RO O O 8
e

0 T 2
() () () (0 D D (o () (e
I mnmmmmmmlmm

Early in the 17005, Takakazu Seki and his students began to investigate the
number of set partitions w, for arbitrary n, inspired by the known result that

EEE%

ws = 52. Yoshisuke Matsunaga found formulas for the number of set partitions
when there are k; subsets of size n; for 1 < 7 < ¢, with kyny +---+ kg = n
(see the answer to exercise 1.2.5-21). He also discovered the basic recurrence
relation 7.2.1.5 (14), namely

v = (et (on (st (oo G

by which the values of w,, can readily be computed.

Matsunaga’s discoveries remained unpublished until Yoriyuki Arima’s book
Shiiki Sanpé came out in 1769. Problem 56 of that book asked the reader to
solve the equation “ww, = 678570” for n; and Arima’s answer, worked out in
detail (with credit duly given to Matsunaga), was n = 11.

Shortly afterwards, Masanobu Saka studied the number {Z} of ways that
an n-set can be partitioned into k subsets, in his work Sanpo-Gakkai (1782). He
discovered the recurrence formula

S I 1 SR PR ¢ (21)

and tabulated the results for n < 11. James Stirling, in his Methodus Differen-
tialis (1730), had discovered the numbers {Z} in a purely algebraic context; thus
Saka was the first person to realize their combinatorial significance.

An interesting algorithm for listing set partitions was subsequently devised
by Toshiaki Honda (see exercise 24). Further details about genji-ko and its rela-
tion to the history of mathematics can be found in Japanese articles by Tamaki
Yano, Sugaku Seminar 34,11 (Nov. 1995), 58-61; 34,12 (Dec. 1995), 56-60.

Set, partitions remained virtually unknown in Europe until much later, ex-

cept for three isolated incidents. First, George and/or Richard Puttenham
published The Arte of English Poesie in 1589, and pages 70-72 of that book
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7.2.1.7 HISTORY AND FURTHER REFERENCES 19

contain diagrams similar to those of genji-ko. For example, the seven diagrams
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were used to illustrate possible rhyme schemes for 5-line poems, “whereof some
of them be harsher and unpleasaunter to the eare then other some be.” But this
visually appealing list was incomplete (see exercise 25).

Second, an unpublished manuscript of G. W. Leibniz from the late 1600s
shows that he had tried to count the number of ways to partition {1,...,n}
into three or four subsets, but with almost no success. He enumerated {g} by
a very cumbersome method, which would not have led him to see readily that
{g} = 2n~1 _ 1. He attempted to compute {g} and {Z} only for n < 5, and
made several numerical slips leading to incorrect answers. [See E. Knobloch,
Studia Leibnitiana Supplementa 11 (1973), 229-233; 16 (1976), 316-321.]

The third European appearance of set partitions had a completely different
character. John Wallis devoted the third chapter of his Discourse of Combina-
tions (1685) to questions about “aliquot parts,” the proper divisors of numbers,
and in particular he studied the set of all ways to factorize a given integer. This
question is equivalent to the study of multiset partitions; for example, the factor-
izations of p3¢®r are essentially the same as the partitions of {p, p, p, ¢, ¢, 7}, when
P, q, and r are prime numbers. Wallis devised an excellent algorithm for listing
all factorizations of a given integer n, essentially anticipating Algorithm 7.2.1.5M
(see exercise 28). But he didn’t investigate the important special cases that arise
when n is the power of a prime (equivalent to integer partitions) or when n is
squarefree (equivalent to set partitions). Thus, although Wallis was able to solve
the more general problem, its complexities paradoxically deflected him from dis-
covering partition numbers, Bell numbers, or Stirling subset numbers, or from de-
vising simple algorithms that would generate integer partitions or set partitions.

Integer partitions. Partitions of integers arrived on the scene even more
slowly. Bishop Wibold (c. 965) knew the partitions of n into exactly three
parts < 6. So did Galileo, who wrote a memo about them (c. 1627) and also
studied their frequency of occurrence as rolls of three dice. [“Sopra le scoperte de
i dadi,” in Galileo’s Opere, Volume 8, 591 594; he listed partitions in decreasing
lexicographic order.]

Mersenne listed the partitions of 9 into any number of parts, on page 130 of
his Traitez de la Voix et des Chants (1636). With each partition 9 = aq +---+ag
he also computed the multinomial coefficient 9!/(a4! .. .ax!); as we’ve seen earlier,
he was interested in counting various melodies, and he knew for example that
there are 9!/(3!3!3!) = 1680 melodies on the nine notes {a,a,a,b,b,b,c,c, c}.
But he failed to mention the cases 8 + 1 and 34+ 24+ 1+ 1+ 1+ 1, probably
because he hadn’t listed the possibilities in any systematic way.

Leibniz considered two-part partitions in Problem 3 of his Dissertatio de
Arte Combinatoria (1666), and his unpublished notes show that he subsequently
spent considerable time trying to enumerate the partitions that have three or
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20 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7

more summands. He called them “discerptions,” or (less frequently) “divul-

sions” —in Latin of course— or sometimes “sections” or “dispersions” or even
“partitions.” He was interested in them primarily because of their connection
with the monomial symmetric functions »z{'z;>.... But his many attempts

led to almost total failure, except in the case of three summands, when he almost
(but not quite) discovered the formula for |} in exercise 7.2.1.4-31. For example,
he carelessly counted only 21 partitions of 8, forgetting the case 2+2+2+1+1;
and he got only 26 for p(9), after missing 3+2+2+2,3+2+2+4+1+1,
242+24+141+1,and2+2+14+1+1+1+4+1 in spite of the fact that
he was trying to list partitions systematically in decreasing lexicographic order.
[See E. Knobloch, Studia Leibnitiana Supplementa 11 (1973), 91-258; 16 (1976),
255-337; Historia Mathematica 1 (1974), 409-430.]

Abraham de Moivre had the first real success with partitions, in his paper
“A Method of Raising an infinite Multinomial to any given Power, or Extracting
any given Root of the same” [Philosophical Transactions 19 (1697), 619-625 and
Fig. 5]. He proved that the coefficient of z™*" in (az + bz? + ¢z® + ---)™ has
one term for each partition of n; for example, the coefficient of 2™%6 is

(72) a™6p8 4+ 5(75") a™ %btc + 4(72) a™ 4b3d + 6(2") a™ 4b%c?
+ 3(’;’) a™ 3b%e + 6(’;) a™ 3bed + 2(”21) a™ 2bf + (rg) am™3¢c3
(D) ar e+ (a2 + (amlg.  (ao)

If we set @ = 1, the term with exponents b’c/d*e! ... corresponds to the partition
with ¢ 1s, 5 2s, k 3s, [ 4s, etc. Thus, for example, when n = 6 he essentially
presented the partitions in the order

111111, 11112, 1113, 1122, 114, 123, 15, 222, 24, 33, 6.  (30)

He explained how to list the partitions recursively, as follows (but in different

language related to his own notation): For k = 1, 2, ..., n, start with k& and
append the (previously listed) partitions of n — k whose smallest part is > k.

[My solution] was ordered to be published in the Transactions,

not so much as a matter relating to Play,

but as containing some general Speculations
not unworthy to be considered by the Lovers of Truth.

— ABRAHAM DE MOIVRE (1717)

P. R. de Montmort tabulated all partitions of numbers < 9 into < 6 parts

in his Essay d’Analyse sur les Jeux de Hazard (1708), in connection with dice
problems. His partitions were listed in a different order from (30); for example,

111111, 21111, 2211, 222, 3111, 321, 33, 411, 42, 51, 6.  (31)

He probably was unaware of de Moivre’s prior work.

So far almost none of the authors we’ve been discussing actually described
the procedures by which they generated combinatorial patterns. We can only
infer their methods, or lack thereof, by studying the lists that they actually pub-
lished. Furthermore, in rare cases such as de Moivre’s paper where a tabulation
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method was explicitly described, the author assumed that all patterns for the
first cases 1, 2, ..., n — 1 had been listed before it was time to tackle the case of
order n. No method for generating patterns “on the fly,” moving directly from
one pattern to its successor without looking at auxiliary tables, was actually
explained by any of the authors we have encountered, except for Kedara and
Narayana. Today’s computer programmers naturally prefer methods that are
more direct and need little memory.

Roger Joseph Boscovich published the first direct algorithm for partition
generation in Giornale de’ Letterati (Rome, 1747), on pages 393-404 together
with two foldout tables facing page 404. His method, which produces for n = 6
the respective outputs

111111, 11112, 1122, 222, 1113, 123, 33, 114, 24, 15, 6,  (32)

generates partitions in precisely the reverse order from which they are visited by
Algorithm 7.2.1.4P; and his method would indeed have been featured in Section
7.2.1.4, except for the fact that the reverse order turns out to be slightly easier
and faster than the order that he had chosen.

Boscovich published sequels in Giornale de’ Letterati (Rome, 1748), 12-27
and 84-99, extending his algorithm in two ways. First, he considered generating
only partitions whose parts belong to a given set S, so that symbolic multinomials
with sparse coefficients could be raised to the mth power. (He said that the ged
of all elements of S should be 1; in fact, however, his method could fail if 1 ¢ S.)
Second, he introduced an algorithm for generating partitions of n into m parts,
given m and n. Again he was unlucky: A slightly better way to do that task,
Algorithm 7.2.1.4H, was found subsequently, diminishing his chances for fame.

Hindenburg’s hype. The inventor of Algorithm 7.2.1.4H was Carl Friedrich
Hindenburg, who also rediscovered Narayana’s Algorithm 7.2.1.2L, a winning
technique for generating multiset permutations. Unfortunately, these small suc-
cesses led him to believe that he had made revolutionary advances in mathemat-
ics—although he did condescend to remark that other people such as de Moivre,
Euler, and Lambert had come close to making similar discoveries.

Hindenburg was a prototypical overachiever, extremely energetic if not in-
spired. He founded or cofounded Germany’s first professional journals of math-
ematics (published 1786 1789 and 1794 1800), and contributed long articles to
each. He served several times as academic dean at the University of Leipzig,
where he was also the Rector in 1792. If he had been a better mathematician,
German mathematics might well have flourished more in Leipzig than in Berlin
or Gottingen.

But his first mathematical work, Beschreibung einer ganz neuen Art, nach
einem bekannten Gesetze fortgehende Zahlen durch Abzahlen oder Abmessen
bequem und sicher zu finden (Leipzig: 1776), amply foreshadowed what was to
come: His “ganz neue” (completely new) idea in that booklet was simply to give
combinatorial significance to the digits of numbers written in decimal notation.
Incredibly, he concluded his monograph with large foldout sheets that contained
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22 COMBINATORIAL ALGORITHMS (F4B) 7.2.1.7

a table of the numbers 0000 through 9999 — followed by two other tables that
listed the even numbers and odd numbers separately(!).

Hindenburg published letters from people who praised his work, and invited
them to contribute to his journals. In 1796 he edited Sammlung combinatorisch-
analytischer Abhandlungen, whose subtitle stated (in German) that de Moivre’s
multinomial theorem was “the most important proposition in all of mathematical
analysis.” About a dozen people joined forces to form what became known as
Hindenburg’s Combinatorial School, and they published thousands of pages filled
with esoteric symbolism that must have impressed many nonmathematicians.

The work of this School was not completely trivial from the standpoint
of computer science. For example, H. A. Rothe, who was Hindenburg’s best
student, noticed that there is a simple way to go from a Morse code sequence
to its lexicographic successor or predecessor. Another student, J. C. Burkhardt,
observed that Morse code sequences of length n could also be generated easily
by first considering those with no dashes, then one dash, then two, etc. Their
motivation was not to tabulate poetic meters of n beats, as it had been in India,
but rather to list the terms of the continuant polynomials K(zy,za,...,z,),
Eq. 4.5.3—(4). [See Archiv fiir reine und angewandte Mathematik 1 (1794), 154—
194.] Furthermore, on page 53 of Hindenburg’s 1796 Sammlung cited above,
G. S. Kligel introduced a way to list all permutations that has subsequently
become known as Ord-Smith’s algorithm; see Egs. (23) (26) in Section 7.2.1.2.

Hindenburg believed that his methods deserved equal time with algebra,
geometry, and calculus in the standard curriculum. But he and his disciples
were combinatorialists who only made combinatorial lists. Burying themselves
in formulas and formalisms, they rarely discovered any new mathematics of real
interest. Eugen Netto has admirably summarized their work in M. Cantor’s
Geschichte der Mathematik 4 (1908), 201-219. “For a while they controlled
the German market; however, most of what they dug up soon sank into a not-
entirely-deserved oblivion.”

The sad outcome was that combinatorial studies in general got a bad name.
Gosta Mittag-Leffler, who assembled a magnificent library of mathematical lit-
erature about 100 years after Hindenburg’s death, decided to place all such
work on a special shelf marked “Dekadenter.” And this category still persists
in the library of Sweden’s Institut Mittag-Leffler today, even as that institute
attracts world-class combinatorial mathematicians whose research is anything
but decadent.

Looking on the bright side, we may note that at least one good book did
emerge from all of this activity. Andreas von Ettingshausen’s Die combina-
torische Analysis (Vienna: 1826) is noteworthy as the first text to discuss com-
binatorial generation methods in a perspicuous way. He discussed the general
principles of lexicographic generation in §8, and applied them to construct good
ways to list all permutations (§11), combinations (§30), and partitions (§41-§44).

Where were the trees? We've now seen that lists of tuples, permutations,
combinations, and partitions were compiled rather early in human history, by
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interested and interesting researchers. Thus we’ve accounted for the evolution
of the topics studied in Sections 7.2.1.1 through 7.2.1.5, and our story will be
complete if we can trace the origins of tree generation, Section 7.2.1.6.

But the historical record of that topic before the advent of computers is
virtually a blank page, with the exception of a few 19th-century papers by Arthur
Cayley. Cayley’s major work on trees, originally published in 1875 and reprinted
on pages 427-460 of his Collected Mathematical Papers, Volume 4, was climaxed
by a large foldout illustration that exhibited all the free trees with 9 or fewer
unlabeled vertices. Earlier in that paper he had also illustrated the nine oriented
trees with 5 vertices. The methods he used to produce those lists were quite
complicated, completely different from Algorithm 7.2.1.60 and exercise 7.2.1.6—
90. All free trees with up to 10 vertices were listed many years later by F. Harary
and G. Prins [Acta Math. 101 (1958), 158-162], who also went up to n = 12 in
the cases of free trees with no nodes of degree 2 or with no symmetries.

The trees most dearly beloved by computer scientists  binary trees or the
equivalent ordered forests or nested parentheses are however strangely absent
from the literature. We saw in Section 2.3.4.5 that many mathematicians of the
1700s and 1800s had learned how to count binary trees, and we also know that
the Catalan numbers C,, enumerate dozens of different kinds of combinatorial
objects. Yet nobody seems to have published an actual list of the Cy = 14
objects of order 4 in any of these guises, much less the C5 = 42 objects of
order 5, before 1950. (Except indirectly: The 42 genji-ko diagrams in (25) that
have no intersecting lines turn out to be equivalent to the 5-node binary trees
and forests. But this fact was not learned until the 20th century.)

There are a few isolated instances where authors of yore did prepare lists of
C3 = 5 Catalan-related objects. Cayley, again, was first; he illustrated the binary
trees with 3 internal nodes and 4 leaves as follows in Philosophical Magazine 18

(1859), 374-378:
O K0 A A A &2

(That same paper also illustrated another species of tree, equivalent to so-called
weak orderings.) Then, in 1901, E. Netto listed the five ways to insert parentheses
into the expression ‘a + b+ c+d’:

(a+b)+(c+d), [(a+b)+c]+d, [a+(b+c)|+d, a+[(b+c)+d], a+[b+(c+d)]. (34)

[Lehrbuch der Combinatorik, §122.] And the five permutations of {41, +1,+1,
—1,—1, -1} whose partial sums are nonnegative were listed in the following way
by Paul Erdds and Irving Kaplansky [Scripta Math. 12 (1946), 73-75]:

1414+1-1-1—-1, 1+41—1+41—-1-1, 141-1—-1+1—1
1-1+1+1-1-1, 1-1+1-1+41-1.  (35)

Even though only five objects are involved, we can see that the orderings in (33)
and (34) were basically catch-as-catch-can; only (35), which matches Algorithm
7.2.1.6P, was systematic and lexicographic.
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We should also note briefly the work of Walther von Dyck, since many recent
papers use the term “Dyck words” to refer to strings of nested parentheses. Dyck
was an educator known for co-founding the Deutsches Museum in Munich, among
other things. He wrote two pioneering papers about the theory of free groups
[Math. Annalen 20 (1882), 1-44; 22 (1883), 70-108]. Yet the so-called Dyck
words have at best a tenuous connection to his actual research: He studied the
words on {z,z7',...,x,, '} that reduce to the empty string after repeatedly
erasing adjacent letter-pairs of the forms z,z;! or ;7 'x;; the connection with
parentheses and trees arises only when we limit erasures to the first case, x;z; 1.

Thus we may conclude that, although an explosion of interest in binary trees
and their cousins occurred after 1950, such trees represent the only aspect of our
story whose historical roots are rather shallow.

After 1950. Of course the arrival of electronic computers changed everything.
The first computer-oriented publication about combinatorial generation methods
was a note by C. B. Tompkins, “Machine attacks on problems whose variables
are permutations” [Proc. Symp. Applied Math. 6 (1956), 202 205]. Thousands
more were destined to follow.

Several articles by D. H. Lehmer, especially his “Teaching combinatorial
tricks to a computer” in Proc. Symp. Applied Math. 10 (1960), 179-193, proved
to be extremely influential in the early days. [See also Proc. 1957 Canadian
Math. Congress (1959), 160 173; Proc. IBM Scientific Computing Symposium
on Combinatorial Problems (1964), 23—-30; and Chapter 1 of Applied Combina-
torial Mathematics, edited by E. F. Beckenbach (Wiley, 1964), 5-31.] Lehmer
represented an important link to previous generations. For example, Stanford’s
library records show that he had checked out Netto’s Lehrbuch der Combinatorik
in January of 1932.

The main publications relevant to particular algorithms that we’ve studied
have already been cited in previous sections, so there is no need to repeat them
here. But textbooks and monographs that first put pieces of the subject together
in a coherent framework were also of great importance. Three books, in partic-
ular, were especially noteworthy with respect to establishing general principles:

e Elements of Combinatorial Computing by Mark B. Wells (Pergamon Press,
1971), especially Chapter 5.

e Combinatorial Algorithms by Albert Nijenhuis and Herbert S. Wilf (Aca-
demic Press, 1975). A second edition was published in 1978, containing
additional material, and Wilf subsequently wrote Combinatorial Algorithms:
An Update (Philadelphia: STAM, 1989).

e Combinatorial Algorithms: Theory and Practice by Edward M. Reingold,
Jurg Nievergelt, and Narsingh Deo (Prentice-Hall, 1977), especially the
material in Chapter 5.

Robert Sedgewick compiled the first extensive survey of permutation generation
methods in Computing Surveys 9 (1977), 137 164, 314. Carla Savage’s survey
article about Gray codes in SIAM Review 39 (1997), 605-629, was another
milestone.
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We noted above that algorithms to generate Catalan-counted objects were
not invented until computer programmers developed an appetite for them. The
first such algorithms to be published were not cited in Section 7.2.1.6 because
they have been superseded by better techniques; but it is appropriate to list
them here. First, H. I. Scoins gave two recursive algorithms for ordered tree
generation, in the same paper we have cited with respect to the generation of
oriented trees [Machine Intelligence 3 (1968), 43-60]. His algorithms dealt with
binary trees represented as bit strings that were essentially equivalent to Polish
prefix notation or to nested parentheses. Then Mark Wells, in Section 5.5.4 of his
book cited above, generated binary trees by representing them as noncrossing
set partitions. And Gary Knott [CACM 20 (1977), 113-115] gave recursive
ranking and unranking algorithms for binary trees, representing them via the
inorder-to-preorder permutations ¢ . .. g, of Table 7.2.1.6-3.

Algorithms to generate all spanning trees of a given graph have been pub-
lished by numerous authors ever since the 1950s, motivated originally by the
study of electrical networks. Among the earliest such papers were works of
N. Nakagawa, IRE Trans. CT-5 (1958), 122-127; W. Mayeda, IRE Trans.
CT-6 (1959), 136-137, 394; H. Watanabe, IRE Trans. CT-7 (1960), 296-302;
S. Hakimi, J. Franklin Institute 272 (1961), 347-359.

A recent introduction to the entire subject can be found in Chapters 2
and 3 of Combinatorial Algorithms: Generation, Enumeration, and Search by
Donald L. Kreher and Douglas R. Stinson (CRC Press, 1999).

Frank Ruskey is preparing a book entitled Combinatorial Generation that
will contain a thorough treatment and a comprehensive bibliography. He has
made working drafts of several chapters available on the Internet.

EXERCISES

Many of the exercises below ask a modern reader to find and/or to correct errors in
the literature of bygone days. The point is not to gloat over how smart we are in the
21st century; the point is rather to understand that even the pioneers of a subject can
stumble. One good way to learn that a set of ideas is not really as simple as it might
seem to today’s computer scientists and mathematicians is to observe that some of the
world’s leading thinkers had to struggle with the concepts when they were new.

1. [15] Does the notion of “computing” arise in the I Ching?

2. [M30] (The genetic code.) DNA molecules are strings of “nucleotides” on the
4-letter alphabet {T,C, A, G}, and most protein molecules are strings of “amino acids” on
the 20-letter alphabet {A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y}. Three

consecutive nucleotides zyz form a “codon,” and a strand zi1y1z122y222 ... of DNA
specifies the protein f(z1,y1, 21) f(z2,y2,22) . .., where f(z,y, z) is the element in row z
and column y of matrix = in the array

F S Y C L P H R I T N S V A D G

F S Y C L P H R I T N S V A D G

L s - - L P Q R I T K R V A E G

L S - W L P Q R M T K R V A E G

(Here (T,C,A,G) = (1,2,3,4); for example, f(CAT) is the element in row 1 and column 3

of matrix 2, namely H.) Encoding proceeds until a codon leads to the stopper ‘—’.
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a) Show that there is a simple way to map each codon into a hexagram of the I Ching,
with the property that the 21 possible outcomes {A,C,D, ..., W,Y, —} correspond
to 21 consecutive hexagrams of the King Wen ordering (1).

b) Is that a sensational discovery?

3. [20] What is the millionth meter that has 30 beats, in colex ordering analogous
to (2)? What is the rank of ———————— v —— 7

4. [19] Analyze the imperfections of Donnolo’s list of permutations in Table 1.
5. [16] What’s wrong with Kircher’s list of five-note permutations in (7)?

6. [25] Mersenne published a table of the first 64 factorials on pages 108 110 of his
Traitez de la Voix et des Chants (1636). His value for 64! was = 2.2 x 10%%; but it should
have been & 1.3 x 10%°. Find a copy of his book and try to figure out where he erred.

7. [20] What permutations of {1, 2, 3,4,5} are “alive” and “dead” according to Seki’s
rules (8) and (9)?

8. [M27] Make a patch to (9) so that Seki’s procedure will be correct.
9. [15] From (11), deduce the Arabic way to write the Arabic numerals (0,1, ...,9).

10. [HM27] In Ludus Clericalis, what is the expected number of times the three dice
are rolled before all possible virtues are acquired?

11. [21] Decipher Llull’s vertical table at the right of Fig. 45. What 20 combinatorial
objects does it represent? Hint: Don’t be misled by typographic errors.

12. [M20] Relate Schillinger’s universal cycle (13) to the universal cycle of Poinsot in
exercise 7.2.1.3-106.

13. [21] What should van Schooten have written, instead of (17)? Give also the
corresponding tableau for combinations of the multiset {a, a,a,b,b,c}.

14. [20] Complete the following sequence, from §95 of Izquierdo’s De Combinatione:
ABC ABD ABE ACD ACE ACB ADE ADB ADC AEB ....

15. [15] If all n-combinations of {1,..., m} with repetition are listed in lexicographic

order, how many of them begin with the number ;7

16. [20] (Narayana Pandita, 1356.) Design an algorithm to generate all compositions
of n into parts < g, namely all ordered partitions n = a1 + -+ - + a¢, where 1 < a; < ¢
for 1 < j <t and t is arbitrary. Illustrate your method when n =7 and ¢ = 3.

17. [HM27] Analyze the algorithm of exercise 15.

18. [10] Trick question: Leibniz published his Dissertatio de Arte Combinatoria in
1666. Why was that a particularly auspicious year, permutationwise?

19. [17] In which of Puteanus’s verses (20) is ‘tibi’ treated as —— instead of ——?
20. [M25] To commemorate the visit of three illustrious noblemen to Dresden in 1617,
a poet published 1617 permutations of the hexameter verse

Dant tria jam Dresdee, ceu sol dat, lumina lucem.

“Three give now to Dresden, as the sun gives, lights to light.” [Gregor Kleppis, Proteus
Poeticus (Leipzig: 1617).] How many permutations of those words would actually scan
properly? Hint: The verse has dactyls in the first and fifth feet, spondees elsewhere.
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21. [HM30] Let f(p,q,7;s,t) be the number of ways to make (o?,07,0") by concate-
nating the strings {s-o,t- 00}, when p+q-+r = s+ 2t. For example, f(2,3,2;3,2) =5
because the five ways are

(0o, 0loo, 00),  (olo, 00jo, 00), (00,000, 00), (00,000, 00), (00,000,a0).

a) Show that f(p,q,r;s,t) = [uPv w'2°] 1/((1 — zu — u?)(1 — zv — v?)(1 — 2w — w?)).
b) Use the function f to enumerate the scannable permutations of (19), subject to

the additional condition that the fifth foot doesn’t begin in the middle of a word.
¢) Now enumerate the remaining cases.

22. [M40] Look up the original discussions of the tot-tibi problem that were published
by Prestet, Wallis, Whitworth, and Hartley. What errors did they make?

23. [20] What order of the 52 genji-ko diagrams corresponds to Algorithm 7.2.1.5H?

24. [23] Early in the 1800s, Toshiaki Honda gave a recursive rule for generating all par-
titions of {1,...,n}. His algorithm produced them in the following order when n = 4:

WO InE e mennan i e onomeim e mem

Can you guess the corresponding order for n = 57 Hint: See (26).

25. [15] The 16th-century author of The Arte of English Poesie was interested only in
rhyme schemes that are “complete” in the sense of exercise 7.2.1.5-35; in other words,
every line should rhyme with at least one other. Furthermore, the scheme should
be “indecomposable” in the sense of exercise 7.2.1.2 100: A partition like 12]|345
decomposes into a 2-line poem followed by a 3-line poem. And the scheme shouldn’t
consist trivially of lines that all rhyme with each other. Under these conditions, is (28)
a complete list of 5-line rhyme schemes?

26. [HM25] How many n-line thyme schemes satisfy the constraints of exercise 247

27. [HM31] The set partition 14|25|36 can be represented by a genji-ko diagram such
as Ifﬁl but every such diagram for this partition must have at least three places where
lines cross, and crossings are sometimes considered undesirable. How many partitions
of {1,...,n} have a genji-ko diagram in which the lines cross at most once?

28. [25] Let a, b, and c be prime numbers. John Wallis listed all possible factorizations
of a3b2c as follows: cbbaaa, cbbaa - a, bcaaa - b, bbaaa - ¢, cbba - aa, cbba - a - a, cbaa - ba,
cbaa - b - a, bbaa - ca, bbaa - ¢ - a, caaa - bb, caaa - b - b, baaa - cb, baaa - ¢ - b, cbb - aaa,
cbb-aa-a, cbb-a-a-a, cba-baa, cba -ba-a, cba-aa-b, cba-b-a-a, bba-caa, bba - ca -
bba-aa-c, bba-c-a-a, caa-bb-a, caa-ba-b, caa-b-b-a, baa-cb-a, baa-ca-b, baa-ba -
baa -c-b-a,aaa-cb-b, aaa -bb-c, aaa-c-b-b,cb-ba-aa,cb-ba-a-a,ch-aa-b-
cb-b-a-a-a,bb-ca-aa,bb-ca-a-a,bb-aa-c-a,bb-c-a-a-a,ca-ba-ba,ca-ba-b-
ca-aa-b-b,ca-b-b-a-a,ba-ba-c-a,ba-aa-c-b,ba-c-b-a-a,aa-c-b-b-
c-b-b-a-a-a. What algorithm did he use to generate them in this order?
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29. [24] In what order would Wallis have generated all factorizations of the number
abcde =5-7-11-13-17?7 Give your answer as a sequence of genji-ko diagrams.

30. [M20] What is the coefficient of ai'aZ2 ...2™*" in (aoz + a12® + ap2® + ---)™?
(See (29).)

31. [20] Compare de Moivre’s and de Montmort’s orders for partitions, (30) and (31),
with Algorithm 7.2.1.4P.

32. [21] (R. J. Boscovich, 1748.) List all partitions of 20 for which all parts are 1, 7,
or 10. Also design an algorithm that lists all such partitions of any given integer n > 0.
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SECTION 7.2.1.7

1. Perhaps under hexagram 21, “crunching” (££); however, the ancient commentators
related this hexagram more to law enforcement than to the interaction of electrons.

2. (a) For the first nucleotide in the codon, let (T,C, A, G) be respectively represented
by (i, £5 i1 1); represent the second nucleotide, similarly, by (55,53, $); repre-

id); represent the second nucleotide, similarly, by (£, 5%, =
); and superlmpose those three representations. Thus,
for example, hexagram number 34 is E = Li+ 2= + 75, it represents the codon TTC,
which maps to the amino acid F. Under this correspondence, hexagrams 34 through 54
inclusive map into the respective values (F,G,L,Q,W,D,S,—, P, Y, K, A, I, T,N,H, M,
R, V,E, C). Moreover, the three hexagrams that map to ‘—’ are numbers 1, 9, and 41,

namely =, £, and £, which mean “creation”, “taming,” and “removal of excess” in
the I Ching— all quite appropriate for the notion of completing a protein.
. 64 ~ 69
(b) Consider the (6’6’6,4,4’4’4,4,3’3’2,2’2’2’2,2’2’2’2’1’1) ~ 2.3 x 10°® ways to permute

the elements of the 4 x 4 x 4 genetic code array. Exactly
2402880402175789790003993681964551328451668718750185553920000000 ~ 2.4 x 10%?

of them contain at least one run of 21 distinct consecutive elements. [Using the principle
of inclusion and exclusion one can show that any multiset {(ni1+1)-z1,..., (n,+1) -z}
with r distinct elements and n, = 0 has exactly

T

n - B U — k)] ( n—k )
(n-{—l)(nl’”.’nT)T ;(nﬂ k) k! (r — k) akosa;drg .
di+---+dr=k
such permutations, where n = n; + --- + n, and aj is the number of indecomposable
permutations with k elements (exercise 7.2.1.2-100).] Thus only about one out of every
million permutations has the stated property.

But there are 4!3(2’272) = 1244160 ways to represent codons as in part (a), and
most of them correspond to different permutations of the amino acids (except for
interchanging the representations of T and C in third position).

Empirically, in fact, about 31% of all permutations of the 64 hexagrams turn out
to have suitable codon mappings. Thus the construction in part (a) gives no reason to
believe that the authors of the I Ching anticipated the genetic code in any way.

3. Since Fi; — 108 = Fog + Fho + Fao + Fis + Fig + Fia + Fy, the millionth is

Going the other way is easier: F31 — (F5+ Fs + Fig + Fi6 + Fis + For + F30) = 314159.

4. One of the two appearances of 99793 on line 4 should be 9793; this glitch may
simply be a typographical error. Similarly, one 3979 on line 8 should be 3709. But
the six cases with rightmost letters 73 appear twice, in lines 3 and 4, while the cases
with rightmost 93 are missing. Donnolo himself must be responsible for this flaw.

5. The last one should have been 5%——5 not -%e-

R4, "Aduy

6. The nth value m,, in Mersenne’s list agrees Wlth n! only for 1 < n < 13 and
15 < n < 38. Mersenne knew that 14! = 87178291200 # m14 = 8778291200, because he
inserted the missing ‘1’ in his personal copy of the book (now owned by the Bibliotheque
Nationale; a facsimile was published in 1975). But the other errors in his table were not
merely typographical, because they propagated into subsequent entries, except in the
case of mso: mag = 39! +10%¢ —10'%; myo = 40msg; ma1 = 41mgo —4-10%° — 14 -10*?;
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Mn = nmy_1 for n = 42, 43, 44, 46, 47, 48, 49, 55, 60, and 62; mse = 50m4g + 10°°;
ms1 = 5150 - mag. When he computed mas = 9-45 - maq — 10*° 4+ 10%°, he apparently
decided to take a shortcut, because it’s easy to multiply by 5 or by 9; but he multiplied
twice by 9. Most of his errors indicate an unreliable multiplication technique, which
may have depended on an abacus: ms2 = 52ms1 + 5 - 10%6 — 2. 10%7 + 1034; ms3 =
53m52 —4 - 1029; msq = 5477153 + 1016; ms7 = 57m56 + 1033 + 1024; msg = 58m57 =+
1087 —10%° +10%2 +11-10%5; ms9 = 59mss + 106 +10%° — 102%; me; = 61meo — 5- 10%;
me3 = 63mea + 1052 — 107; mes = 64mez + 3 - 1081 + 1057 + 2. 10%® — 2. 10%% — 102,

The remaining case, mse ~ 10.912ms5 is baffling; it is = 56mss (modulo 1017), but
its other digits seem to satisfy neither rhyme nor reason. Can they be easily explained?

Notes: Athanasius Kircher must have copied from Mersenne when he tabulated n!
for 1 < n < 50 on page 157 of his Ars Magna Sciendi (1669), because he repeated all of
Mersenne’s mistakes. Kircher did, however, list the values 10m14, m4s5/10, and 10my4e
instead of m14, mas, and mug; perhaps he was trying to make the sequence grow more
steadily. It is not clear who first calculated the correct value of 39!; exercise 1.2.5—4
tells the story of 1000!.

7. The basic permutations are 12345, 13254, 14523, 15432, 12453, 14235, 15324,
13542, 12534, 15243, 13425, 14352. But then we find that all 60 of the even
permutations are both alive and dead, because (g) differs by an even permutation
from (8). (Moreover, if we somehow repair the case n = 5, half of the live permutations
for n = 6 will turn out to be odd.)

8. For example, we can replace (9) by
anaz ...Anp-10201, A1Ap—-1...0p,A342, ..., Ap_-102...0n_-2010n,

thus flipping the ends and cyclically shifting the other elements in the permutations
of (8). This modification works because all permutations have the correct parity, and
because the live and dead ones both have a; in every possible position. (We essentially
have a dual Sims table for the alternating group, as in Eq. 7.2.1.2—(32); but our elements
are named (n,n — 1,...,1) instead of (0,1,...,n—1).)
A simpler way to generate permutations with the proper signs was published by

E. Bézout [Mémoires Acad. Royale des Sciences (Paris, 1764), 292]: Each permutation
ai...an_1 of {1,...,n — 1} yields n others, a1 ...an_1a, — @1 ...an_2an0n_1 + - -.

9. (+,\,Y,Y,¢,0,,V,A,4); or perhaps we should say (4,A,V,\,0,¢,¥,Y,\, +). Notes:
A different system was used for the index numbers of the equations; for example, ‘3
stood for 200. Moreover, it should be noted that (11) is actually a transcription of al-
Samaw’al’s work into modern Arabic; Ahmad and Rashed based their work on a 14th-
century copy that used similar but older forms of the digits: (¢, V,Y,¥,¥,8,1,V,A 4).
Al-Samaw’al himself may well have used numerals of an even earlier vintage.

10. If the 56 cases were equally likely, the answer would be 56 Hss ~ 258.2, as in
the coupon collector’s problem (exercise 3.3.2 8). But (6, 30,20) cases occur with the
respective probabilities (1/216,1/72,1/36); so the correct answer turns out to be

/ (1= (1= e~t/210)8 (1 _ o=t/72)30(1 _ o=t/36)20y gy o 5466,
0

about 42% of the upper bound 216H316. [See P. Flajolet, D. Gardy, and L. Thimonier,
Discrete Applied Math. 39 (1992), 207 229.]

11. It tabulates the (g) = 20 combinations of (b,c,d,B,C,D) taken three at a time;

furthermore, they appear in lexicographic order if we regard b<c<d < B < C < D.
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The letter t (€ ) means “shift from lowercase to uppercase.” [See A. Bonner, Selected
Works of Ramon Llull (Princeton: 1985), 596-597.] There are two typos: ‘d’ should
be ‘b’ at the beginning of line 6; ‘c’ should be ‘d’ at the end of line 18. Line 1 would
have been more consistent with the others if Llull had presented it as

b cjdc
but in that line, of course, no case shift was needed.
12. Multiply Poinsot’s cycle by 5 (mod 7).

13. It’s best to have just n lines when there are n different letters:

-+

3

a. aa. aaa

b. ab. aab. aaab. bb. abb. aabb. aaabb

Then, assigning the weights (a,b) = (1,4) gives the numbers 1 through 11 as in (18).
(The first line of (16) should also be omitted.) Similarly, for {a,a,a,b,b,c} we would
implicitly give ¢ the weight 12 and add the additional line

c. ac. aac. aaac. be. abe. aabe. aaabe. bbe. abbe. aabbe. aaabbe.

[J. Bernoulli almost did it right in Ars Conjectandi, Part 2, Chapter 6.]

14. ABC ABD ABE ACD ACE ACB ADE ADB ADC AEB AEC AED BCD BCE BCA BDE
BDA BDC BEA BEC BED BAC BAD BAE CDE CDA CDB CEA CEB CED CAB CAD
CAE CBD CBE CBA DEA DEB DEC DAB DAC DAE DBC DBE DBA DCE DCA DCB
EAB EAC EAD EBC EBD EBA ECD ECA ECB EDA EDB EDC. It’s a genlex ordering
(see Algorithm 7.2.1.3R), proceeding cyclically through the letters not yet used.

[A similar ordering had been used to form all 120 permutations of five letters in a
kabbalistic work entitled Sha‘ari Tzedeq, ascribed to the 13th-century author Natan ben
Sa‘adyah Har’ar of Messina, Sicily; see Le Porte della Giustizia (Milan: Adelphi, 2001).]
15. After j we place the (n — 1)-combinations of {j,...,m} with repetition, so the
answer is ((m+1_]2f§”_1)_1) = (mt?:lj_l). [Jean Borrel, also known as Buteonis,
pointed this out on pages 305-309 of his early book Logistica (Lyon: 1560). He
tabulated all throws of n dice for 1 < n < 4, then used a sum over j to deduce that
there are 56 4+ 35 4+ 20 + 10 + 4 + 1 = 252 distinct throws for n = 5, and 462 for n = 6.]

16. N1. [Initialize.] Set 7 < n, t + 0, and ag + 0.

N2. [Advance.] Whiler > g, set t < t+ 1, a; < g, and r < r — q. Then if 7 > 0,
set t < t+ 1 and as < r.

N3. [Visit.] Visit the composition ai ... a;.
N4. [Find j.] Set j «t,t—1, ..., until a; # 1. Terminate the algorithm if j = 0.
N5. [Decrease a;.] Set aj < aj — 1, r ¢t —j+ 1, t « j; return to N2. |

For example, the compositions for n = 7 and ¢ = 3 are 331, 322, 3211, 313, 3121, 3112,
31111, 232, 2311, 223, 2221, 2212, 22111, 2131, 2122, 21211, 2113, 21121, 21112, 211111,
133, 1321, 1312, 13111, 1231, 1222, 12211, 1213, 12121, 12112, 121111, 1132, 11311,
1123, 11221, 11212, 112111, 11131, 11122, 111211, 11113, 111121, 111112, 1111111.
Narayana’s sutras 79 and 80 gave essentially this procedure, but with the strings
reversed (133, 223, 1123, ...), because he preferred decreasing colex order. Curiously,
he called this a “famous method, told by scholars of old dramatic art,” although no
references to prior descriptions are currently known except in the case ¢ = 2.

17. The number V,, of visits is F£2q71 = O(ayg); see exercise 5.4.2 7. The number

X, of times step N4 tests a; = 1 satisfies X,, = X1 + -+ + Xn—gq + 1, and we find
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Xn = Vo + 4 Vo = (an + (q— 1)Vn71 + - +Vn7q+1 — 1)/(q— 1) = C"‘)(Vn) The
number Y,, of times step N2 sets a; < ¢ satisfies the same recurrence, and we find
Y, = Xn—q. And the number of times step N2 finds r = 0 turns out to be V,,_q.

18. It was MDCLXVI in Roman numerals, where M > D >C>L>X >V > 1.
19. Lines 329 and 1022. (Puteanus included 139 such verses among his list of 1022.)

20. With ‘tria’ preceding ‘lumina’, there are 5! x 2! x (11,12,12,16) ways having a
dactyl in the (1st, 2nd, 3rd, 4th) foot, respectively; with ‘lumina’ preceding ‘tria’ there
are 5! x 2! x (16,12,12,11). So the total is 24480. [Leibniz considered this problem
near the end of his Dissertatio de Arte Combinatoria, and came up with the answer
45870; but his argument was riddled with errors.]

21. (a) The generating function 1/((1 — zu — yu?)(1 — 20 — yo*)(1 — zw — yw?)) is
clearly equal to Ep,q,r,s,t>0 f(p,q,r; s, t)uPviwzy".

(b) If “tibi’ is —— and ‘Virgo’ is ——, the number is 3!3! times 3_0_ (f(2k + 1,
6 — 2k, 2;3,3) + f(2k,6 — 2k, 2; 2, 3)), namely 36((7+7) + (9+5) + (10+5) + (14+7)) =
2304. Otherwise ‘tibi’ is ——, ‘Virgo’ is ——, and the number is 2! 3! times Zz:o (f(2k,
5—2k,2;3,2)+ f(2k,6 — 2k, 1;3,2)), namely 12((7+6) + (5+4) + (4+4) + (0+6) ) = 432.

(c) The fifth foot begins with the second syllable of ‘calo’, ‘dotes’, or ‘Virgo’.
Hence the additional number is 313! S°2_  f(2k,5 — 2k,2;3,2) = 36(7 + 5+ 4) = 576,
and the grand total is 2304 + 432 4+ 576 = 3312.

22. Let a € {quot,sunt,tot}, 8 € {czlo,dotes, Virgo}, o = sidera, and 7 = tibi.
Prestet’s analysis was essentially equivalent to that of Bernoulli, but he forgot to include
the 36 cases aaarfBofB. (In his favor one can say that those cases are poetically sterile;
Puteanus found no use for them.) The 1675 edition of Prestet’s book had also omitted
all permutations that end with 7.

Wallis divided the possibilities into 23 types, T1 UT> U --- U T»3. He claimed that
his types 6 and 7 each yielded 324 verses; but actually |Ts| = |T7| = 252, because his
variable ¢ should be 7, not 9. He also counted many solutions twice: |T3 N T5| = 72,
|To NT7| = |Ts N T7| = |T5 N Ts| = |Ts N T1o| = 36, and |T11 N Ti2| = [Th2 N Ths| =
|Th4 N T1s5| = 12. He missed the 36 possibilities afBacar (19 of which were used by
Puteanus). And he also missed all the permutations of exercise 20(c); Puteanus had
used 250 of those 576. The Latin edition of Wallis’s book, published in 1693, corrected
several typographic errors in this section, but none of the mathematical mistakes.

Whitworth and Hartley omitted all cases with ‘tibi’ = —— (see exercise 18),
possibly because people’s knowledge of classical hexameter was beginning to fade.

[Speaking of errors, Puteanus actually published only 1020 distinct permutations,
not 1022, because lines 592 and 593 in his list were identical to lines 601 and 602. But
he would have had no trouble finding two more cases — for example, by changing ‘tot
sunt’ to ‘sunt tot’ in lines 252, 345, 511, 548, 659, 663, 678, 693, or 797.]

23. Reading each diagram left-to-right, so that 12|345 < ||, we get

M mi o mn mi mn e ol am o o i
Mn i mm ol i @ Gneodloomeoan mnnie
i T 1 1 T 1 T
1 1 1T 11 1 6
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24. His rule was: For £k =0, 1, ..., n — 1, and for each combination 0 < j; < --- <
jr < n of n—1 things taken k at a time, visit all partitions of {1,...,n—1}\{j1,...,Jk}
together with the block {j1,...,jx,n}. His order for n = 5 was:

1 1 1 1 11 1 T 1 T
111 1 111 1 1 s T
T T T T 11 11 A
101 s T 11 11 1

But strictly speaking, the answer to this exercise is “No”  because Honda’s rule is not
complete until the order of the combinations is specified. He generated combinations
in colez order (lexicographic on j; ... j1). Lexicographic order on ji ... j: would also be
consistent with the list given for n = 4, but it would put |[[{l [Tl before [N Reference:
T. Hayashi, Téhoku Math. J. 33 (1931), 332-337.

25. No; (28) misses 14]235 (the top-bottom reflection of its second pattern).

26. Let a, be the number of indecomposable partitions of {1,...,n}, and let a),
be the number that are both indecomposable and complete. These sequences begin
{a1,a2,...) = (1,1,2,6,22,92,426,...), {(a},as,...) = (0,1,1,3,9,33,135,...); and
the answer to this exercise is al, — 1 for n > 2. It turns out that a, is also the number of
symmetric polynomials of degree n in noncommuting variables. [See M. C. Wolf, Duke
Math. J. 2 (1936), 626—637, who also tabulated indecomposable partitions into k parts.]

If A(z) =3, anz™, and if B(z) = >, wnz" is the non-exponential generating
function for Bell numbers, we have A(z)B(z) = B(z) — 1, hence A(z) =1 — 1/B(z).
And the result of exercise 7.2.1.5-35 implies that Y an2z" = zA(2)/(1 + z — A(2)) =
z(B(z)—1)/(14zB(z)). Unfortunately B(z) has no especially nice closed form. Notice
that indecomposable set partitions with n > 1 correspond to vacillating tableau loops
with no three consecutive As equal to zero (see exercise 7.2.1.5-27).

27. The problem is ambiguous because genji-ko diagrams are not well defined. Let’s
require all vertical lines of a block to have the same height; then, for example, 145|236
has no single-crossing diagram because ﬁ-ml is not allowed.

The number of partitions with no crossing is Cy, (see exercise 7.2.1.6-26). For one
crossing, the elements of the two blocks that cross must appear within the restricted
growth sequence as either z'yziy* or z'y’Tzy® or ziy’zy*a!, where 1,3, k,1 > 0.

Suppose the pattern is z'yz’y®. The number of such partitions is

[anifjfkfl] C(z)i+j+k+2 _ C(nfifjfkfl)n
by Eq. 7.2.1.6-(24). Summing on k gives C(p_i_j_2)(n+1); then summing on j and %
gives C(n_4)(n+3)-

Similarly, the other two patterns contribute C(n_s5)(nt+3) and Cin_s5y(ny4)- The
total number of single-crossing partitions is therefore C(,, _5y(n+3) + Cin—a)(nt4)-

28. Order the divisors of cbbaaa by their number of prime factors and then colexico-
graphically: 1 <a <b <c<aa <ba < ca <bb<cb =< aaa < baa < caa < bba <
cba < cbb < baaa < caaa < bbaa < cbaa < cbba < bbaaa < cbaaa < cbbaa < cbbaaa.
For every such divisor d, in decreasing order, let d be the first factor; recursively append
all factorizations of cbbaaa/d whose first factor is < d.
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If the divisors had been ordered lexicographically (namely 1 < a < aa < aaa <
b < ba < -+ < chbaa < cbbaaa), Wallis’s algorithm would have been equivalent to
Algorithm 7.2.1.5M with (n1,n2,mn3) = (1,2,3). He probably chose his more compli-
cated ordering of the divisors because it tends to agree more closely with ordinary
numerical order when a & b = ¢; for example, his ordering is precisely numerical when
(a,b,c¢) = (7,11,13). By generating the divisors according to his somewhat complex
scheme, Wallis was essentially generating multiset combinations, which we noted in
Section 7.2.1.3 are equivalent to bounded compositions. [Reference: A Discourse of
Combinations (1685), 126128, with two typographic errors corrected.]

29. The factorizations edcba, edchb-a, edca-b, ..., e-d-c-b-a correspond respectively to

M (M om mn m me am im rno M iwheime i
111 T T 7 11
I mn mn o i sl e ime e Ao i i
T T 7 1 T 11 1

30. The coefficient is zero unless i1 + 2i2 + - - - = n; in that case it is (7:) ag“k(i1 Zkz )

where k = iy 44z + -+ -. (Consider (apz)™ times (1 + (a1/ao)z + (as/ag)z> +---)™.)
31. The order produced by that algorithm is decreasing lexicographic, the reverse
of (31), if we assume that partitions ai...ar have a1 > --- > ag; de Moivre’s was
increasing colexicographic.

32. 2001 =7413-1=2-746-1=104+10-1=104+74+3-1=2-10. In general,
Boscovich suggested starting with n-1 and computing the successor of a-10+b-7+c- 1
as follows: If ¢ > 7, the successor is a-10+ (b+1) -7+ (¢—7) - 1; otherwise if c+7b > 10,
the successor is (a + 1) - 10 4+ (¢ + 7b — 10) - 1; otherwise stop.
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Compositions, 2, 6, 26, 33.
Compression, 10.
Concentric wheels, 11.
Confucius (fL it = fLf )& = L F), 0.
Continuant polynomials, 22.
Coupon collector’s problem, 29.
Crests, Japanese heraldic, 18.
Crossings in a set partition, 27.

Dactyls, 3, 15, 26.

de Bruijn, Nicolaas Govert, cycles, 3.

de Moivre, Abraham, 20-22, 27.

de Montmort, Pierre Rémond, 20, 27.

Deo, Narsingh (7¢fag ), 24.

Determinants, 6.

Dice, 7 8, 19, 20, 26, 30.

Diomedes (Atopndng), 3.

Divisors, 12, 19.

DNA, 25.

Donnolo, Shabbetai ben Avraham
("7 BNMaN 12 Oonav), 4, 26.

Drexel (= Drechsel = Drexelius), Jeremias
(= Hieremias), 4-5.

Dyck, Walther Franz Anton von, 23 24.

words, 23-24.

Elements (earth, air, fire, water), 0, 11.

Empty set, 13.

Erdés, P4l (= Paul), 23.

Errors, 1, 4-6, 16-17, 25-26.

Ettingshausen, Andreas von, 22.

Euler, Leonhard (Eiineps, Jleonapan =
Sitnep, Jleonapn), 21.

Eulerian trail, 12.

Even permutations, 6, 26.

Exact cover problem, 17.
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Factorial number system, 14.

Factorials, tables of, 13, 26.

Factorizations, 19, 27.

Fibonacci, Leonardo, of Pisa [= Leonardo

filio Bonacci Pisano|, numbers, 2, 28.

generalized, 2, 30.

Flajolet, Philippe Patrick Michel, 29.

Flavors, 6.

Fontana Tartaglia, Niccolo, 13.

Forests, 23.

France, queen of, 10.

Free groups, 24.

Free trees, 23.

Galilei, Galileo, 19.

Games, 7-8, 17, 26.
Gardner, Martin, 11.

Gardy, Daniele, 29.
Generating functions, 27, 32.
Genetic code, 25.

Genji-ko (JR G &), 17-19, 23, 27.
Genlex order, 30.

Gershwin, George, 12.

God, 8-10.

Gradenigo, Pietro, 9.

Gray, Frank, codes, 11, 24.
Greedy algorithm, 2.

Greek poetry, 3, 15.

Hakimi, Seifollah Louis, 25.
Hammond, Eleanor Prescott, 8.
Har’ar, Natan ben Sa‘adyah

(70 Yo 12 3M), 30.
Harary, Frank, 23.
Hartley, William Ernest, 16—17, 27.
Hayashi, Tsuruichi (Fk # —), 32.
Hebrew letters, 4.
Hexagrams, 0 1, 25, 28.
Hexameter, 14-17, 26.
Hindenburg, Carl Friedrich, 21-22.
Hindu mathematics, 1-3, 5-6, 13-14, 21, 26.
Homer (“Opnpog), 15.
Honda, Toshiaki (A~ HH #| BA), 18, 27.

I Ching (5 1%), 0-1, 25-26.

Tbn Mun‘im (asie (yl), 13.

Idel, Moshe (DN nwn), 11.

Inclusion and exclusion, 28.
Indecomposable permutations, 27-28.
Indian mathematics, 1-3, 5-6, 13-14, 21, 26.
Indian numerals, 5.

Inorder, 25.

Integer partitions, 19-22, 27.

Islamic mathematics, 7, 13.
Izquierdo, Sebastidn, 12-13, 26.
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Japanese mathematics, 6, 17-19.
Jesus of Nazareth, son of Joseph
(P73 12 9P 12 Y,
"Incote &mo Naloptd vioe Twong), 5.

Kabbalah, 4, 11, 30.

Kak, Subhash Chandra (§WTY I=¢ &Ts), 3.

Kaplansky, Irving, 23.

Kedara Bhatta (#&TT 9g), 2, 21.

Keil, Heinrich, 4.

Kimono, 18.

King Wen of Chou ({li & = & X T),
0 1, 26.

Kircher, Athanasius, 4, 5, 11, 25, 29.

Klee, Victor La Rue, Jr., iii.

Kleppis, Gregor (= Kleppisius,
Gregorius), 26.

Kliigel, Georg Simon, 22.

Knobloch, Eberhard Heinrich, 19, 20.

Knott, Gary Don, 25.

Knuth, Donald Ervin (75 & 44), i, iv.

Kreher, Donald Lawson, 25.

Lambert, Johann Heinrich, 21.

Latin poetry, 14-17, 26.

Lehmer, Derrick Henry, 24.

Leibniz, Gottfried Wilhelm, Freiherr von,
1, 15-16, 19-20, 26, 31.

Lexicographic order, 1, 5, 7, 8, 13, 19,

20, 22, 23, 30.
Llull, Ramon (= Lullus, Raimundus),
8-11, 26.

London, John, 10.
Ludus Clericalis, 7, 26.
Lydgate, John, 8.
Lynn, Richard John, 1.

Markov (= Markoff), Andrei Andreevich
(Mapkos, Aunpeit Aunpeesuu),
the elder, process, 1.

Mary, Saint ("Ayix Moplo. ©eotdxog,
Tovorytor, opBevog), 14-15.

Matsunaga, Yoshisuke (5 7k K i), 18.

Mayeda, Wataru (Hij H ), 25.

McLean, lain Sinclair, 10.

Medicine, 6, 9.

Melodies, 5, 12, 19.

Mersenne, Marin, 5, 19, 26.

Meters, poetic, 1-4, 6, 14-17, 22, 26.

Metrical feet, 3, 15, 26.

Mikami, Yoshio (= F & k), 6.

Mittag-Leffler, Magnus Gésta (=
Gustaf), 22.

Mixed-radix number systems, 30.

MMIX computer, ii.

Moivre, Abraham de, 20—22, 27.

Monomial symmetric functions, 20.

Montmort, Pierre Rémond de, 20, 27.

Morse, Samuel Finley Breese, code, 2, 22.
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Multicombinations: Combinations with
repetition, 7-8, 14, 26.
Multinomial coefficients, 19.
Multinomial theorem, 20, 22, 27.
Multipartitions: Partitions of a multiset,
19, 27.
Multiset combinations, 26, 33.
Multiset permutations, 5, 15, 21.
Murasaki Shikibu (= Lady Murasaki,
3£ 5 1), 17.
Music, 2-5, 11-12, 19.
notation, 4-5.
rhythm, 2 4, 12.

Nakagawa, Noriyuki, 25.

Narayana Pandita, son of Nrsimha
(AT gfve, JiEseT 91), 2,
5, 13-14, 21, 26.

Needham, Joseph, 1.

Nested parentheses, 23-25.

Netto, Otto Erwin Johannes Eugen, 22-24.

Nievergelt, Jirg, 24.
Nijenhuis, Albert, 24.
Noncommuting variables, 32.
Noncrossing partitions, 25, 27.
Nooten, Barend Adrian Anske Johannes
van, 2.
Nucleotides, 25.
Null case, 13.
Numerals, Arabic, 7, 26.
Roman, 31.
Sanskrit, 5.
Nylan, Michael, 1.

Odd permutations, 6, 26.

Ord-Smith, Richard Albert James (=
Jimmy), 22.

Ordered forests, 23.

Ordered partitions, 2, 6, 26, 32.

Ordered trees, 23, 25.

Oriented trees, 23, 25.

Parentheses, nested, 23-25.
Partitions, 22.
noncrossing, 25, 27.
of an integer, 19 22, 27.
of a multiset, 19, 27.
of a set, 17-19, 25, 27.
ordered, see Compositions.
Party games, 8, 17.
Permutations, 4-6, 14, 22.
even and odd, 6, 26.
indecomposable, 27 28.
null, 13.
of a Latin verse, 14-17, 26.
of a multiset, 5, 21.
restricted, 15-17, 26.
Pi (), as “random” example, 0, 28.

Pingala, Acarya (AT=Td fage), 1-2.

Plain changes, 5, 12.
Poetry, 8, 19.
meters for, 1-4, 6, 14-17, 22, 26.
rhyme schemes, 19, 27.
Poinsot, Louis, 26.
Polish prefix notation, 25.
Polyphase sorting, 2.
Prakrta Pairigala (ITHT IgoT), 2, 26.
Preferential arrangements, see Weak
orderings.
Preorder, 25.
Prestet, Jean, 16, 27.
Prins, Geert Caleb Ernst, 23.
Prosody, 1-3, 15-17, 26.
Proteins, 25.
Proteus verses, 15, 16, 26.
Ptolemy, Claudius, of Alexandria
(MroAepaiog KAoddrog 6 "AAeEavdpvic),

15.

Puteanus, Erycius (= de Putte, Eerrijk),
14 16, 26, 31.

Puttenham, George and/or Richard,
18-19, 27.

Pyrrhics, 3 4.

Rabbinic script, 4.

Radix-2 arithmetic, 13.

Radix-2 number system, 1, 4.

Radix-3 number system, 1.

Ranking, 1-2, 14, 26.

Rashed, Roshdi (= Rashid, Rushdi)
(_\.‘ib ‘5_\.‘5]_;), 7, 29.

Recursive algorithms, 25, 27.

Reingold, Edward Martin (75907,
D»N )2 YN PNYd), 24,

Rémond de Montmort, Pierre, 20, 27.

Restricted growth sequences, 32.

Reverse colex order, 14, 30.

Rhyme schemes, 19, 27.

Rhythms, 2-4, 11-12.

Roman numerals, 31.

Rothe, Heinrich August, 22.

Ruskey, Frank, 25.

Saka, Masanobu (3 1F 7k ), 18.

Sanskrit, 1-3, 5, 6.

Savage, Carla Diane, 24.

Scaligero, Giulio (= Scaliger, Julius
Caesar), 15.

Schillinger, Joseph Moiseyevich
(Mnnnaunarep, Nocud Monceesnu),
11 12, 26.

Schooten, Frans van, 12-14, 26.

Scoins, Hubert Ian, 25.

Sedgewick, Robert, 24.

Sefer Yetzirah (N1X> 19D), 4.

Seki, Takakazu (32 #0), 6, 18, 26.

Set partitions, 17-19, 25, 27.

Seven deadly sins, 9-10.

Shaari Tzedeq (P18 »yv), 30.
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Shao Yung (f %E), 1.
Sims, Charles Coffin, table, 29.

Singh, Parmanand (I¥9T9E fHg), 2, 13.

Spanning trees, 25.
Spondees, 3 4, 15, 26.
Squarefree integers, 19.
Stanford University, 24.
Stanley, Richard Peter, 13.
Stinson, Douglas Robert, 25.
Stirling, James, 18.

subset numbers, 18-19.
Susruta (GHd), 6.
Swetz, Frank Joseph, 1.
Symmetric polynomials, 32.

Tacquet, André, 12.
Tartaglia, Niccolo Fontana, 13.
Tastes, 6.

Thimonier, Loys, 29.
Three-valued logic, 10.
Tompkins, Charles Brown, 24.
Tot tibi ..., 14 17, 26.

Trees, 22-25.

Tribonacci sequence, 2, 30.
Trochees, 3, 15.

Tuples, 04, 13.

Twelvefold Way, 13.

Universal cycles, 12, 26.
Unranking, 1-2, 14, 26.
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Vacillating tableau loops, 32.

van Nooten, Barend Adrian Anske
Johannes, 2.

van Schooten, Frans, 12 13, 26.

Variations, 13.

Vedic chants, 1.

Venice, doge of, 9.

Vergil (= Publius Vergilius Maro), 15.

Vices, 9 10.

Virgin, 14-15.

Virtues, 7-10, 14-15, 26.

von Christ, Wilhelm, 4.

von Dyck, Walther Franz Anton, 23—24.

von Ettingshausen, Andreas, 22.

Voting, 10.

Wallis, John, 5, 13, 16, 19, 27.
Watanabe, Hitoshi (J& & #1), 25.
Weak orderings, 23.

Wells, Mark Brimhall, 24, 25.
Wheels, concentric, 11.

Whitworth, William Allen, 16-17, 27.
Wibold, bishop of Cambrai (= Wiboldus,
Cameracensis episcopus), 7-9, 19.

Wilf, Herbert Saul, 24.
Wolf, Margarete Caroline, 32.

Yang Hsiung (35 HE or 5 i), 1-2.
Yano, Tamaki (& ¥7 ), 17, 18.
Yijing, see I Ching.

Yin and yang, 0-1.

Zhou Wenwang, see King Wen.
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