
THE ART OFCOMPUTER PROGRAMMINGVOLUME 4 PRE-FASCICLE 4A

A DRAFT OF SECTION 7.2.1.6:GENERATING ALL TREES

DONALD E. KNUTH Stanford University

ADDISON{WESLEY 677

-1



Internet page http://www-s-faulty.stanford.edu/~knuth/taop.html ontainsurrent information about this book and related books.See also http://www-s-faulty.stanford.edu/~knuth/sgb.html for informationabout The Stanford GraphBase, inluding downloadable software for dealing with thegraphs used in many of the examples in Chapter 7.Another page, http://www-s-faulty.stanford.edu/~knuth/programs.html, on-tains auxiliary programs by the author.See also http://www-s-faulty.stanford.edu/~knuth/mmixware.html for down-loadable software to simulate the MMIX omputer.Copyright  2004 by Addison{WesleyAll rights reserved. No part of this publiation may be reprodued, stored in a retrievalsystem, or transmitted, in any form, or by any means, eletroni, mehanial, photo-opying, reording, or otherwise, without the prior onsent of the publisher, exeptthat the oÆial eletroni �le may be used to print single opies for personal (notommerial) use.Zeroth printing (revision 15), 28 Otober 2005

-2



PREFACE
Explain the signi�ane of the following sequene:un, dos, tres, quatre, in, sis, set, vuit, nou, deu, : : :| RICHARD P. STANLEY, Enumerative Combinatoris (1999)

This booklet ontains draft material that I'm irulating to experts in the�eld, in hopes that they an help remove its most egregious errors before toomany other people see it. I am also, however, posting it on the Internet forourageous and/or random readers who don't mind the risk of reading a fewpages that have not yet reahed a very mature state. Beware: This material hasnot yet been proofread as thoroughly as the manusripts of Volumes 1, 2, and 3were at the time of their �rst printings. And those arefully-heked volumes,alas, were subsequently found to ontain thousands of mistakes.Given this aveat, I hope that my errors this time will not be so numerousand/or obtrusive that you will be disouraged from reading the material arefully.I did try to make it both interesting and authoritative, as far as it goes. But the�eld is so vast, I annot hope to have surrounded it enough to orral it ompletely.Therefore I beg you to let me know about any de�ienies you disover.To put the material in ontext, this is Setion 7.2.1.6 of a long, long hapteron ombinatorial algorithms. Chapter 7 will eventually �ll three volumes (namelyVolumes 4A, 4B, and 4C), assuming that I'm able to remain healthy. It willbegin with a short review of graph theory, with emphasis on some highlightsof signi�ant graphs in the Stanford GraphBase, from whih I will be drawingmany examples. Then omes Setion 7.1, whih deals with the topi of bitwisemanipulations. (I drafted about 60 pages about that subjet in 1977, butthose pages need extensive revision; meanwhile I've deided to work for awhileon the material that follows it, so that I an get a better feel for how muhto ut.) Setion 7.2 is about generating all possibilities, and it begins withSetion 7.2.1: Generating Basi Combinatorial Patterns|whih, in turn, beginswith Setion 7.2.1.1, \Generating all n-tuples," Setion 7.2.1.2, \Generating allpermutations," : : : , Setion 7.2.1.5, \Generating all set partitions." (Readersof the present booklet should have already looked at those setions, drafts ofwhih are available as Pre-Fasiles 2A, 2B, 3A, and 3B.) The stage is now setfor the main ontents of this booklet, Setion 7.2.1.6: \Generating all trees."Then will ome Setion 7.2.1.7, about the history of ombinatorial generation.Setion 7.2.2 will deal with baktraking in general. And so it will go on, if allgoes well; an outline of the entire Chapter 7 as urrently envisaged appears onthe taop webpage that is ited on page ii.iii
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iv PREFACEEven the apparently lowly topi of tree generation turns out to be surpris-ingly rih, with ties to Setions 1.2.3, 1.2.6, 1.2.9, 2.2.1, 2.3, 2.3.1, 2.3.2, 2.3.3,2.3.4.1, 2.3.4.2, 2.3.4.4, 2.3.4.5, 2.3.4.6, 2.4, 4.6.1, 5.1.1, 5.1.3, 5.1.4, 5.2.1, 5.3.4,6.2.1, 6.2.2, 6.2.3, and 6.4 of the �rst three volumes. I strongly believe in buildingup a �rm foundation, so I have disussed this topi muh more thoroughly thanI will be able to do with material that is newer or less basi. To my surprise, Iame up with 124 exerises, even though|believe it or not| I had to eliminatequite a bit of the interesting material that appears in my �les.Some of the things presented are new, to the best of my knowledge, althoughI will not be at all surprised to learn that my own little \disoveries" have beendisovered before. Please look, for example, at the exerises that I've lassed asresearh problems (rated with diÆulty level 46 or higher), namely exerises 17,76, 89, 101, 102, and 109; I've also impliitly posed additional unsolved questionsin the answers to exerises 34, 37, 46, 59, and 103. Are those problems still open?Please let me know if you know of a solution to any of these intriguing questions.And of ourse if no solution is known today but you do make progress on any ofthem in the future, I hope you'll let me know.I urgently need your help also with respet to some exerises that I madeup as I was preparing this material. I ertainly don't like to reeive redit forthings that have already been published by others, and most of these results arequite natural \fruits" that were just waiting to be \pluked." Therefore pleasetell me if you know who deserves to be redited, with respet to the ideas foundin exerises 13, 15, 25, 27(e), 28(e), 29, 31, 36, 37, 42, 47, 54, 55, 60(), 72, 74,75, 77, 78, 80, 82, 110, 112{119, 122, 123, and the remarks about D0 ! D00 andD� in answer 108. Has anybody published the onept of \prepostorder" or itsequivalent?I shall happily pay a �nder's fee of $2.56 for eah error in this draft when it is�rst reported to me, whether that error be typographial, tehnial, or historial.The same reward holds for items that I forgot to put in the index. And valuablesuggestions for improvements to the text are worth 32/ eah. (Furthermore, ifyou �nd a better solution to an exerise, I'll atually reward you with immortalglory instead of mere money, by publishing your name in the eventual book:�)Cross referenes to yet-unwritten material sometimes appear as `00'; thisimpossible value is a plaeholder for the atual numbers to be supplied later.Happy reading!Stanford, California D. E. K.09 July 2004
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PREFACE vA note on notation. At the beginning of Chapter 7 I'll de�ne some operationson graphs for whih many di�erent notations are presently rampant. My urrentplan is to say that, if G is a graph on the verties U = fu1; : : : ; umg and if H isa graph on the verties V = fv1; : : : ; vng, then:� G+H is the sum, aka juxtaposition, of G and H: It has the m+ n vertiesU [ V and the edges of G and H.� G �+H is the osum, aka join, of G and H, namely the omplement of thejuxtaposition of their omplements. (Thus its edges are those of G and H,plus all uj���vk.)� G�H is the Cartesian produt of G and H: It has the mn verties U � V ;its edges are (u; v)��� (u0; v) when u���u0 in G, and (u; v)��� (u; v0) whenv���v0 in H.� G H is the diret produt, aka onjuntion, of G and H: Again its vertiesare U � V , but its edges are (u; v)���(u0; v0) if and only if u���u0 in G andv���v0 in H.� G H is the strong produt of G and H: As its symbol implies, it ombinesthe edges of G�H and G H.� There also are oproduts, analogous to the osum.
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0 COMBINATORIAL ALGORITHMS (F4A)

Just as in a single body there are pairs of individual members,alled by the same name but distinguished as right and left,so when my speehes had postulated the notion of madness,as a single generi aspet of human nature,the speeh that divided the left-hand portionrepeatedly broke it down into smaller and smaller parts.| SOCRATES, Ph�drus 266A (. 370 B.C.)7.2.1.6. Generating all trees. We've now ompleted our study of the lassialonepts of ombinatoris: tuples, permutations, ombinations, and partitions.But omputer sientists have added another fundamental lass of patterns tothe traditional repertoire, namely the hierarhial arrangements known as trees.Trees sprout up just about everywhere in omputer siene, as we've seen inSetion 2.3 and in nearly every subsequent setion of The Art of ComputerProgramming. Therefore we turn now to the study of simple algorithms bywhih trees of various speies an be exhaustively explored.First let's review the basi onnetion between nested parentheses and for-ests of trees. For example,(1 (2 )1 )2 (3 (4 (5 )3 )4 (6 (7 (8 )5 (9 (a )6 )7 )8 (b )9 )a ( (d )b (e (f ) )d )e )f (1)
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7.2.1.6 GENERATING ALL TREES 1illustrates a string ontaining �fteen left parens `(' labeled 1, 2, : : : , f, and �fteenright parens `)' also labeled 1 through f; gray lines beneath the string show howthe parentheses math up to form �fteen pairs 12, 21, 3f, 44, 53, 6a, 78, 85, 97,a6, b9, e, db, ed, and f. This string orresponds to the forestk12k21 k3fk44k53 k6ak78k85 k97ka6
kb9 kekdb kedkf (2)

in whih the nodes are k12 , k21 , k3f , : : : , kf in preorder (sorted by �rst oor-dinates) and k21 , k12 , k53 , : : : , k3f in postorder (sorted by seond oordinates).If we imagine a worm that rawls around the periphery of the forest,kk kkk kkk kk
k kk kk (3)

seeing a `(' whenever it passes the left edge of a node and a `)' whenever it passesa node's right edge, that worm will have reonstruted the original string (1).The forest in (2) orresponds, in turn, to the binary treek k
kkk kk

kkk kkk kkk21 k12
k53 k44

k85 ka6 k97 k78 kb9 k6a kdb kf ked ke
k3f

(4)
via the \natural orrespondene" disussed in Setion 2.3.2; here the nodes arek21 , k12 , k53 , : : : , k3f in symmetri order, also known as inorder. The leftsubtree of node kx in the binary tree is the leftmost hild of kx in the forest,or it is an \external node" if kx is hildless. The right subtree of kx in thebinary tree is its right sibling in the forest, or if kx is the rightmost hild inits family. Roots of the trees in the forest are onsidered to be siblings, and theleftmost root of the forest is the root of the binary tree.
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2 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6Table 1NESTED PARENTHESES AND RELATED OBJECTS WHEN n = 4a1a2 : : : a8 forest binary tree d1d2d3d4 z1z2z3z4 p1p2p3p4 1234 mathing()()()() 1111 1357 1234 0000
()()(()) 1102 1356 1243 0001()(())() 1021 1347 1324 0010
()(()()) 1012 1346 1342 0011
()((())) 1003 1345 1432 0012(())()() 0211 1257 2134 0100(())(()) 0202 1256 2143 0101(()())() 0121 1247 2314 0110
(()()()) 0112 1246 2341 0111
(()(())) 0103 1245 2431 0112((()))() 0031 1237 3214 0120((())()) 0022 1236 3241 0121
((()())) 0013 1235 3421 0122
(((()))) 0004 1234 4321 0123

A string a1a2 : : : a2n of parentheses is properly nested if and only if itontains n ourrenes of `(' and n ourrenes of `)', where the kth `(' preedesthe kth `)' for 1 � k � n. The easiest way to explore all strings of nested paren-theses is to visit them in lexiographi order. The following algorithm, whihonsiders `)' to be lexiographially smaller than `(', inludes some re�nementsfor eÆieny suggested by I. Semba [Inf. Proessing Letters 12 (1981), 188{192℄:
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7.2.1.6 GENERATING ALL TREES 3Algorithm P (Nested parentheses in lexiographi order). Given an integern � 2, this algorithm generates all strings a1a2 : : : a2n of nested parentheses.P1. [Initialize.℄ Set a2k�1  `(' and a2k  `)' for 1 � k � n; also set a0  `)'and m 2n� 1.P2. [Visit.℄ Visit the nested string a1a2 : : : a2n. (At this point am = `(', andak = `)' for m < k � 2n.)P3. [Easy ase?℄ Set am  `)'. Then if am�1 = `)', set am�1  `(', m m�1,and return to P2.P4. [Find j.℄ Set j  m � 1 and k  2n � 1. While aj = `(', set aj  `)',ak  `(', j  j � 1, and k  k � 2.P5. [Inrease aj .℄ Terminate the algorithm if j = 0. Otherwise set aj  `(',m 2n� 1, and go bak to P2.We will see later that the loop in step P4 is almost always short: The operationaj  `)' is performed only about 13 times per nested string visited, on the average.Why does Algorithm P work? Let Apq be the sequene of all strings � thatontain p left parentheses and q � p right parentheses, where (q�p� is properlynested, listed in lexiographi order. Then Algorithm P is supposed to generateAnn, where it is easy to see that Apq obeys the reursive rulesApq = )Ap(q�1); (A(p�1)q; if 0 � p � q 6= 0; A00 = �; (5)also Apq is empty if p < 0 or p > q. The �rst element of Apq is )q�p() : : : (),where there are p pairs `()'; the last element is (p)q. Thus the lexiographigeneration proess onsists of sanning from the right until �nding a trailingstring of the form aj : : : a2n = )(p+1)q and replaing it by ()q+1�p() : : : ().Steps P4 and P5 do this eÆiently, while step P3 handles the simple ase p = 0.Table 1 illustrates the output of Algorithm P when n = 4, together with theorresponding forest and binary tree as in (2) and (4). Several other equivalentombinatorial objets also appear in Table 1: For example, a string of nestedparentheses an be run-length enoded as()d1()d2 : : : ()dn ; (6)where the nonnegative integers d1d2 : : : dn are haraterized by the onstraintsd1 + d2 + � � �+ dk � k for 1 � k < n; d1 + d2 + � � �+ dn = n: (7)We an also represent nested parentheses by the sequene z1z2 : : : zn, whihspei�es the indies where the left parentheses appear. In essene, z1z2 : : : zn isone of the �2nn � ombinations of n things from the set f1; 2; : : : ; 2ng, subjet tothe speial onstraintszk�1 < zk < 2k for 1 � k � n; (8)if we assume that z0 = 0. The z's are of ourse related to the d's:dk = zk+1 � zk � 1 for 1 � k < n. (9)Algorithm P beomes partiularly simple when it is rewritten to generate theombinations z1z2 : : : zn instead of the strings a1a2 : : : a2n. (See exerise 2.)
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4 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6A parenthesis string an also be represented by the permutation p1p2 : : : pn,where the kth right parenthesis mathes the pkth left parenthesis; in other words,the kth node of the assoiated forest in postorder is the pkth node in preorder.(By exerise 2.3.2{20, node j is a desendant of node k in the forest if and onlyif j < k and pj > pk, when we label the nodes in postorder.) The inversion table12 : : : n haraterizes this permutation by the rule that exatly k elements tothe right of k are less than k (see exerise 5.1.1{7); allowable inversion tableshave 1 = 0 and 0 � k+1 � k + 1 for 1 � k < n. (10)Moreover, exerise 3 proves that k is the level of the forest's kth node in preorder(the depth of the kth left parenthesis), a fat that is equivalent to the formulak = 2k � 1� zk: (11)Table 1 and exerise 6 also illustrate a speial kind of mathing, by whih 2npeople at a irular table an simultaneously shake hands without interferene.Thus Algorithm P an be useful indeed. But if our goal is to generate allbinary trees, represented by left links l1l2 : : : ln and right links r1r2 : : : rn, thelexiographi sequene in Table 1 is rather awkward; the data we need to getfrom one tree to its suessor is not readily available. Fortunately, an ingeniousalternative sheme for diret generation of all linked binary trees is also available:Algorithm B (Binary trees). Given n � 1, this algorithm generates all binarytrees with n internal nodes, representing them via left links l1l2 : : : ln and rightlinks r1r2 : : : rn, with nodes labeled in preorder. (Thus, for example, node 1 isalways the root, and lk is either k + 1 or 0; if l1 = 0 and n > 1 then r1 = 2.)B1. [Initialize.℄ Set lk  k + 1 and rk  0 for 1 � k < n; also set ln  rn  0,and set ln+1  1 (for onveniene in step B3).B2. [Visit.℄ Visit the binary tree represented by l1l2 : : : ln and r1r2 : : : rn.B3. [Find j.℄ Set j  1. While lj = 0, set rj  0, lj  j + 1, and j  j + 1.Then terminate the algorithm if j > n.B4. [Find k and y.℄ Set y  lj and k  0. While ry > 0, set k  y and y  ry.B5. [Promote y.℄ If k > 0, set rk  0; otherwise set lj  0. Then set ry  rj ,rj  y, and return to B2.[See W. Skarbek, Theoretial Computer Siene 57 (1988), 153{159; step B3uses an idea of J. Korsh.℄ Exerise 44 proves that the loops in steps B3 and B4both tend to be very short. Indeed, fewer than 9 memory referenes are needed,on the average, to transform a linked binary tree into its suessor.Table 2 shows the fourteen binary trees that are generated when n = 4,together with their orresponding forests and with two related sequenes: Arrayse1e2 : : : en and s1s2 : : : sn are de�ned by the property that node k in preorder hasek hildren and sk desendants in the assoiated forest. (Thus sk is the size of k'sleft subtree in the binary tree; also, sk + 1 is the length of the SCOPE link in thesense of 2.3.3{(5).) The next olumn repeats the fourteen forests of Table 1 inthe lexiographi ordering of Algorithm P, but mirror-reversed from left to right.
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7.2.1.6 GENERATING ALL TREES 5Table 2LINKED BINARY TREES AND RELATED OBJECTS WHEN n = 4l1l2l3l4 r1r2r3r4 binary tree forest e1e2e3e4 s1s2s3s4 olex forest lsib/rhild2340 0000 1110 3210
0340 2000 0110 0210
2040 0300 2010 30102040 3000 1010 1010
0040 2300 0010 0010
2300 0040 1200 3200
0300 2040 0200 0200
2300 0400 2100 3100
2300 4000 1100 21000300 2400 0100 0100
2000 0340 3000 3000
2000 4300 2000 2000
2000 3040 1000 1000
0000 2340 0000 0000
And the �nal olumn shows the binary tree that represents the olex forest; italso happens to represent the forest in olumn 4, but by links to left sibling andright hild instead of to left hild and right sibling. This �nal olumn provides aninteresting onnetion between nested parentheses and binary trees, so it givesus some insight into why Algorithm B is valid (see exerise 19).
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6 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6*Gray odes for trees. Our previous experienes with other ombinatorialpatterns suggest that we an probably generate parentheses and trees by makingonly small perturbations to get from one instane to another. And indeed, thereare at least three very nie ways to ahieve this goal.Consider �rst the ase of nested parentheses, whih we an represent bythe sequenes z1z2 : : : zn that satisfy ondition (8). A \near-perfet" way togenerate all suh ombinations, in the sense of Setion 7.2.1.3, is one in whihwe run through all possibilities in suh a way that some omponent zj hangesby �1 or �2 at eah step; this means that we get from eah string of parenthesesto its suessor by simply hanging either ()$ )( or ())$ ))( in the viinityof the jth left parenthesis. Here's one way to do the job when n = 4:1357; 1356; 1346; 1345; 1347; 1247; 1245; 1246; 1236; 1234; 1235; 1237; 1257; 1256:And we an extend any solution for n � 1 to a solution for n, by taking eahpattern z1z2 : : : zn�1 and letting zn run through all of its legal values using endo-order or its reverse as in 7.2.1.3{(45), proeeding downward from 2n�2 and thenup to 2n� 1 or vie versa, and omitting all elements that are � zn�1.Algorithm N (Near-perfet nested parentheses). This algorithm visits all n-ombinations z1 : : : zn of f1; : : : ; 2ng that represent the indies of left parenthesesin a nested string, hanging only one index at a time. The proess is ontrolledby an auxiliary array g1 : : : gn that represents temporary goals.N1. [Initialize.℄ Set zj  2j � 1 and gj  2j � 2 for 1 � j � n.N2. [Visit.℄ Visit the n-ombination z1 : : : zn. Then set j  n.N3. [Find j.℄ If zj = gj , set gj  gj � 1 (thereby omplementing the leastsigni�ant bit), j  j � 1, and repeat this step.N4. [Home streth?℄ If gj � zj is even, set zj  zj + 2 and return to N2.N5. [Derease or turn.℄ Set t  zj � 2. If t < 0, terminate the algorithm.Otherwise, if t � zj�1, set t  t + 2[t< zj�1 ℄ + 1. Finally set zj  t andgo bak to N2.[A somewhat similar algorithm was introdued by D. Roelants van Baronaigien inJ. Algorithms 35 (2000), 100{107; see also Xiang, Ushijima, and Tang, Inf. Pro.Letters 76 (2000), 169{174. F. Ruskey and A. Proskurowski, in J. Algorithms11 (1990), 68{84, had previously shown how to onstrut perfet Gray odesfor all tables z1 : : : zn when n � 4 is even, thus hanging some zj by only �1at every step; but their onstrution was quite omplex, and no known perfetsheme is simple enough to be of pratial use. Exerise 48 shows that perfetionis impossible when n � 5 is odd.℄If our goal is to generate linked tree strutures instead of strings of paren-theses, perfetion of the z-index hanges is not good enough, beause simpleswaps like ()$ )( don't neessarily orrespond to simple link manipulations. Afar better approah an be based on the \rotation" algorithms by whih we were
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7.2.1.6 GENERATING ALL TREES 7able to keep searh trees balaned in Setion 6.2.3. Rotation to the left hangesa binary tree
from � � !

A B to � � !A B ; (12)
thus the orresponding forest is hanged

from � � � � � !A B to � � �
� � !A B : (13)

\Node A beomes the leftmost hild of its right sibling." Rotation to the rightis, of ourse, the opposite transformation: \The leftmost hild of B beomesits left sibling." The vertial line in (12) stands for a onnetion to the overallontext, either a left link or a right link or the pointer to the root. Any or allof the subtrees �, �, or ! may be empty. The ` � � � ' in (13), whih representsadditional siblings at the left of the family ontaining B , might also be empty.The nie thing about rotations is that only three links hange: The rightlink from A , the left link from B , and the pointer from above. Rotationspreserve inorder of the binary tree and postorder of the forest. (Notie also thatthe binary-tree form of a rotation orresponds in a natural way to an appliationof the assoiative law (��)! = �(�!) (14)in the midst of an algebrai formula.)A simple sheme very muh like the lassial reeted Gray ode for n-tuples(Algorithm 7.2.1.1H) and the method of plain hanges for permutations (Algo-rithm 7.2.1.2P) an be used to generate all binary trees or forests via rotations.Consider any forest on n � 1 nodes, with k roots A1 , : : : , Ak . Then there arek+1 forests on n nodes that have the same postorder sequene on the �rst n�1nodes but with node n last; for example, when k = 3 they are
�1 �2 �3A1 A2 A3 n ; �1 �2 �3

A1 A2 A3n ; �1 �2 �3
A1 A2 A3n ; �1 �2 �3A1 A2 A3n ;

obtained by suessively rotating A3 , A2 , and A1 to the left. Moreover, atthe extremes when n is either at the right or at the top, we an performany desired rotation on the other n � 1 nodes, beause node n isn't in theway. Therefore, as observed by J. M. Luas, D. Roelants van Baronaigien, andF. Ruskey [J. Algorithms 15 (1993), 343{366℄, we an extend any list of the(n � 1)-node trees to a list of all n-node trees by simply letting node n roam
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8 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6bak and forth. A areful attention to low-level details makes it possible in fatto do the job with remarkable eÆieny:Algorithm L (Linked binary trees by rotations). This algorithm generates allpairs of arrays l0 l1 : : : ln and r1 : : : rn that represent left links and right links ofn-node binary trees, where l0 is the root of the tree and the links (lk; rk) pointrespetively to the left and right subtrees of the kth node in symmetri order.Equivalently, it generates all n-node forests, where lk and rk denote the left hildand right sibling of the kth node in postorder. Eah tree is obtained from its pre-deessor by doing a single rotation. Two auxiliary arrays k1 : : : kn and o0o1 : : : on,representing bakpointers and diretions, are used to ontrol the proess.L1. [Initialize.℄ Set lj  0, rj  j + 1, kj  j � 1, and oj  �1 for 1 � j < n;also set l0  o0  1, ln  rn  0, kn  n� 1, and on  �1.L2. [Visit.℄ Visit the binary tree or forest represented by l0 l1 : : : ln and r1 : : : rn.Then set j  n and p 0.L3. [Find j.℄ If oj > 0, set m lj and go to L5 if m 6= 0. If oj < 0, set m kj ;then go to L4 if m 6= 0, otherwise set p  j. If m = 0 in either ase, setoj  �oj , j  j � 1, and repeat this step.L4. [Rotate left.℄ Set rm  lj , lj  m, x  km, and kj  x. If x = 0, setlp  j, otherwise set rx  j. Return to L2.L5. [Rotate right.℄ Terminate if j = 0. Otherwise set lj  rm, rm  j, kj  m,x km. If x = 0, set lp  m, otherwise set rx  m. Go bak to L2.Exerise 38 proves that Algorithm L needs only about 9 memory referenes pertree generated; thus it is almost as fast as Algorithm B. (In fat, two memoryreferenes per step ould be saved by keeping the three quantities on, ln, and knin registers. But of ourse Algorithm B an be speeded up too.)Table 3 shows the sequene of binary trees and forests visited by Algorithm Lwhen n = 4, with some auxiliary tables that shed further light on the proess.The permutation q1q2q3q4 lists the nodes in preorder, when they have beennumbered in postorder of the forest (symmetri order of the binary tree); itis the inverse of the permutation p1p2p3p4 in Table 1. The \oforest" is theonjugate (right-to-left reetion) of the forest; and the numbers u1u2u3u4 areits sope oordinates, analogous to s1s2s3s4 in Table 2. A �nal olumn showsthe so-alled \dual forest." The signi�ane of these assoiated quantities isexplored in exerises 11{13, 19, 24, 26, and 27.The links l0 l1 : : : ln and r1 : : : rn in Algorithm L and Table 3 are not om-parable to the links l1 : : : ln and r1 : : : rn in Algorithm B and Table 2, beauseAlgorithm L preserves inorder/postorder while Algorithm B preserves preorder.Node k in Algorithm L is the kth node from left to right in the binary tree, sol0 is needed to identify the root; but node k in Algorithm B is the kth node inpreorder, so the root is always node 1 in that ase.Algorithm L has the desired property that only three links hange per step;but we an atually do even better in this respet if we stik to the preorderonvention of Algorithm B. Exerise 25 presents an algorithm that generates
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7.2.1.6 GENERATING ALL TREES 9Table 3BINARY TREES AND FORESTS GENERATED BY ROTATIONS WHEN n = 4l0 l1l2l3l4 r1r2r3r4 k1k2k3k4 binary tree forest q1q2q3q4 oforest u1u2u3u4 dual10000 2340 0123 1234 0000
10003 2400 0122 1243 1000
10002 4300 0121 1423 2000
40001 2300 0120 4123 3000
40021 3000 0110 4132 3100
10023 4000 0111 1432 210010020 3040 0113 1324 010030010 2040 0103 3124 0200
40013 2000 0100 4312 3200
40123 0000 0000 4321 321030120 0040 0003 3214 021020100 0340 0023 2134 001020103 0400 0022 2143 101040102 0300 0020 4213 3010

all linked binary trees or forests by hanging just two links per step, preservingpreorder. One link beomes zero while another beomes nonzero. This prune-and-graft algorithm, whih is the third of the three \very nie Gray odes fortrees" promised above, has only one downside: Its ontrolling mehanism is a bittrikier than that of Algorithm L, so it needs about 40% more time to do the al-ulations when we inlude the ost of deiding what links to hange at eah step.
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10 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6The number of trees. There's a simple formula for the total number of outputsthat are generated by Algorithms P, B, N, and L, namelyCn = 1n+ 1�2nn � = �2nn �� � 2nn� 1�; (15)we proved this fat in Eq. 2.3.4.4{(14). The �rst few values aren = 0 1 2 3 4 5 6 7 8 9 10 11 12 13Cn = 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900and they are alled Catalan numbers beause of some inuential papers writtenby Eug�ene Catalan [Journal de math. 3 (1838), 508{515; 4 (1839), 95{99℄.Stirling's approximation tells us the asymptoti value,Cn = 4np� n3=2�1� 98n + 145128n2 � 11551024n3 + 3693932768n4 +O(n�5)�; (16)in partiular we an onlude thatCn�kCn = 14k�1 + 3k2n +O�k2n2�� when jkj � n2 : (17)(And of ourse Cn�1=Cn is equal to (n+1)=(4n�2), exatly, by (15).) In Setion2.3.4.4 we also derived the generating funtionC(z) = C0 + C1z + C2z2 + C3z3 + � � � = 1�p1� 4z2z (18)and proved the important formula[zn℄C(z)r = rn+ r�2n+ r � 1n � = �2n+ r � 1n �� �2n+ r � 1n� 1 �; (19)see the answer to exerise 2.3.4.4{33, and CMath equation (5.70).These fats give us more than enough information to analyze Algorithm P,our algorithm for lexiographi generation of nested parentheses. Step P2 isobviously performed Cn times; then P3 usually makes a simple hange and goesbak to P2. How often do we need to go on to step P4? Easy: It's the numberof times that step P2 �nds m = 2n� 1. And m is the loation of the rightmost`(', so we have m = 2n � 1 in exatly Cn�1 ases. Thus the probability thatP3 sets m  m � 1 and returns immediately to P2 is (Cn � Cn�1)=Cn � 3=4,by (17). On the other hand when we do get to step P4, suppose we need to setaj  `)' and ak  `(' exatly h � 1 times in that step. The number of aseswith h > x is the number of nested strings of length 2n that end with x trivialpairs () : : : (), namely Cn�x. Therefore the total number of times the algorithmhanges aj and ak in step P4 isCn�1 + Cn�2 + � � �+ C1 = Cn�Cn�1Cn + Cn�2Cn + � � �+ C1Cn�= 13Cn�1 + 2n +O� 1n2��; (20)by (17); we have proved the laim for eÆieny made earlier.
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7.2.1.6 GENERATING ALL TREES 11For a deeper understanding it is helpful to study the reursive strutureunderlying Algorithm P, as expressed in (5). The sequenes Apq in that formulahave Cpq elements, whereCpq = Cp(q�1) + C(p�1)q ; if 0 � p � q 6= 0; C00 = 1; (21)and Cpq = 0 if p < 0 or p > q. Thus we an form the triangular arrayC00C01 C11C02 C12 C22C03 C13 C23 C33C04 C14 C24 C34 C44C05 C15 C25 C35 C45 C55C06 C16 C26 C36 C46 C56 C66
=

11 11 2 21 3 5 51 4 9 14 141 5 14 28 42 421 6 20 48 90 132 132
(22)

in whih every entry is the sum of its nearest neighbors above and to the left;the Catalan numbers Cn = Cnn appear on the diagonal. The elements of thistriangle, whih themselves have a venerable pedigree going bak to de Moivrein 1711, are alled \ballot numbers," beause they represent sequenes of p + qballots for whih a running tabulation never favors a andidate with p votes overan opponent who reeives q votes. The general formulaCpq = q � p+ 1q + 1 �p+ qp � = �p+ qp �� �p+ qp� 1� (23)an be proved by indution or in a variety of more interesting ways; see exerise 39and the answer to exerise 2.2.1{4. Notie that, beause of (19), we haveCpq = [zp℄C(z)q�p+1: (24)When n = 4, Algorithm P essentially desribes the reursion tree3423 2412 13 12 13 1401 02 01 02 03 01 02 01 02 03 01 02 03 04 (25)
beause the spei�ation (5) implies that Ann = (A(n�1)n and thatApq = )q�p(A(p�1)p; )q�p�1(A(p�1)(p+1); )q�p�2(A(p�1)(p+2);: : : ; (A(p�1)q when 0 � p < q. (26)The number of leaves below node pq in this reursion tree is Cpq, and node pqappears exatly C(n�q)(n�1�p) times on level n� 1� p; therefore we must haveXq C(n�q)(n�1�p)Cpq = Cn; for 0 � p < n. (27)The fourteen leaves of (25), from left to right, orrespond to the fourteen rowsof Table 1, from top to bottom. Notie that the entries in olumn 1234 ofthat table assign the respetive numbers 0000, 0001, 0010, : : : , 0123 to the leaves
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12 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6of (25), in aord with \Dewey deimal notation" for tree nodes (but with indiesstarting at 0 instead of 1, and with an extra 0 taked on at the beginning).A worm that rawls from one leaf to the next, around the bottom of thereursion tree, will asend and desend h levels when h of the oordinates 1 : : : nare hanged, namely when Algorithm P resets the values of h `('s and h `)'s.This observation makes it easy to understand our previous onlusion that theondition h > x ours exatly Cn�x times during a omplete rawl.Yet another way to understand Algorithm P arises when we ontemplate anin�nite direted graph that is suggested by the reursion (21):0001 1102 12 2203 13 23 3304 14 24 34 44
(28)

Clearly Cpq is the number of paths from pq to 00 in this digraph, beauseof (21). And indeed, every string of parentheses in Apq orresponds diretly tosuh a path, with `(' signifying a step to the left and `)' signifying a step upward.Algorithm P explores all suh paths systematially by trying �rst to go upwardwhen extending a partial path.Therefore it is easy to determine the Nth string of nested parentheses thatis visited by Algorithm P, by starting at node nn and doing the followingalulation when at node pq : If p = q = 0, stop; otherwise, if N � Cp(q�1),emit `)', set q  q � 1, and ontinue; otherwise set N  N � Cp(q�1), emit`(', set p p� 1, and ontinue. The following algorithm [Frank Ruskey, Ph.D.thesis (University of California at San Diego, 1978), 16{24℄ avoids the need topreompute the Catalan triangle by evaluating Cpq on the y as it goes:Algorithm U (Unrank a string of nested parentheses). Given n and N , where1 � N � Cn, this algorithm omputes the Nth output a1 : : : a2n of Algorithm P.U1. [Initialize.℄ Set q  n and m  p    1. While p < n, set p  p + 1and  ((4p� 2))=(p+ 1).U2. [Done?℄ Terminate the algorithm if q = 0.U3. [Go up?℄ Set 0  ((q + 1)(q � p))=((q + p)(q � p+ 1)). (At this point wehave 1 � N �  = Cpq and 0 = Cp(q�1).) If N � 0, set q  q � 1,  0,am  `)', m m+ 1, and return to U2.U4. [Go left.℄ Set p  p � 1,    � 0, N  N � 0, am  `(', m  m + 1,and return to U3.Random trees. We ould hoose a string a1a2 : : : a2n of nested parenthesesat random by simply applying Algorithm U to a random integer N between 1
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7.2.1.6 GENERATING ALL TREES 13and Cn. But that idea isn't really very good, when n is bigger than 32 or so, be-ause Cn an be quite large. A simpler and better way, proposed by D. B. Arnoldand M. R. Sleep [ACM Trans. Prog. Languages and Systems 2 (1980), 122{128℄,is to generate a random \worm walk" by starting at nn in (28) and repeatedlytaking leftward or upward branhes with the appropriate probabilities. Theresulting algorithm is almost the same as Algorithm U, but it deals only withnonnegative integers less than n2 + n+ 1:Algorithm W (Uniformly random strings of nested parentheses). This algo-rithm generates a random string a1a2 : : : a2n of properly nested (s and )s.W1. [Initialize.℄ Set p q  n and m 1.W2. [Done?℄ Terminate the algorithm if q = 0.W3. [Go up?℄ Let X be a random integer in the range 0 � X < (q+p)(q�p+1).If X < (q + 1)(q � p), set q  q � 1, am  `)', m  m + 1, and returnto W2.W4. [Go left.℄ Set p p� 1, am  `(', m m+ 1, and return to W3.A worm's walk an be regarded as a sequene w0w1 : : : w2n, where wm is theworm's urrent depth after m steps. Thus, w0 = 0; wm = wm�1 + 1 when am =`('; wm = wm�1�1 when am = `)'; and we have wm � 0, w2n = 0. The sequenew0w1 : : : w30 orresponding to (1) and (2) is 0121012321234345432321232343210.At step W3 of Algorithm W we have q + p = 2n+ 1�m and q � p = wm�1.Let's say that the outline of a forest is the path that runs through the points(m;�wm) in the plane, for 0 � m � 2n, where w0w1 : : : w2n is the worm walkorresponding to the assoiated string a1 : : : a2n of nested parentheses. Figure 36shows what happens if we plot the outlines of all 50-node forests and darken eahpoint aording to the number of forests that lie above it. For example, w1 isalways 1, so the triangular region at the upper left of Fig. 36 is solid blak.But w2 is either 0 or 2, and 0 ours in C49 � C50=4 ases; so the adjaentdiamond-shaped area is a 75% shade of gray. Thus Fig. 36 illustrates the shapeof a random forest, analogous to the shapes of random partitions that we've seenin Figs. 30, 31, and 35 of Setions 7.2.1.4 and 7.2.1.5.

Fig. 36. The shape of a random 50-node forest.Of ourse we an't really draw the outlines of all those forests, sine thereare C50 = 1;978;261;657;756;160;653;623;774;456 of them. But with the help ofmathematis we an pretend that we've done so. The probability that w2m = 2kis C(m�k)(m+k)C(n�m�k)(n�m+k)=Cn, beause there are C(m�k)(m+k) ways tostart with m + k (s and m � k )s, and C(n�m�k)(n�m+k) ways to �nish with
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14 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6

Fig. 37. Loations of the internal nodes in a random 50-node binary tree.n � (m+ k) (s and n� (m � k) )s. By (23) and Stirling's approximation, thisprobability is(2k + 1)2(n+ 1)(m+ k + 1)(n�m+ k + 1)� 2mm� k�� 2n� 2mn�m+ k�.�2nn �= (2k + 1)2p� ��(1� �)n�3=2 e�k2=(�(1��)n)�1 +O�k + 1n �+O�k3n2�� (29)when m = �n and n ! 1, for 0 < � < 1. The average value of w2m is workedout in exerise 57; it omes to(4m(n�m) + n)�2mm ��2n�2mn�m �
n�2nn � � 1 = 4r�(1� �)n� � 1+O(n�1=2); (30)

and it is illustrated for n = 50 as a urved line in Fig. 36.When n is large, worm walks approah the so-alled \Brownian exur-sion," whih is an important onept in probability theory. See, for example,Paul L�evy, Proessus Stohastiques et Mouvement Brownien (1948), 225{237;Guy Louhard, J. Applied Prob. 21 (1984), 479{499, and BIT 26 (1986), 17{34; David Aldous, Eletroni Communiations in Probability 3 (1998), 79{90;Jon Warren, Eletroni Communiations in Probability 4 (1999), 25{29; J.-F.Markert, Random Strutures and Algorithms 24 (2004), 118{132.What is the shape of a random binary tree? This question was investigatedby Frank Ruskey in SIAM J. Algebrai and Disrete Methods 1 (1980), 43{50,and the answer turns out to be quite interesting. Suppose we draw a binary tree
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7.2.1.6 GENERATING ALL TREES 15

Fig. 38. Loations of the external nodes in a random 50-node binary tree.
as in (4), with the mth internal node at horizontal position m when the nodesare numbered in symmetri order. If all of the 50-node binary trees are drawnin this way and superimposed on eah other, we get the distribution of nodepositions shown in Fig. 37. Similarly, if we number the external nodes from 0to n in symmetri order and plae them at horizontal positions .5, 1.5, : : : , n+:5,the \fringes" of all 50-node binary trees form the distribution shown in Fig. 38.Notie that the root node is most likely to be either number 1 or number n, atthe extreme left or right; it is least likely to be either b(n+1)=2 or d(n+1)=2e,in the middle.As in Fig. 36, the smooth urves in Figs. 37 and 38 show the average nodedepths; exat formulas are derived in exerises 58 and 59. Asymptotially, theaverage depth of external node m is8r�(1� �)n� � 1 +O� 1pn�; when m = �n and n!1; (31)for all �xed ratios � with 0 < � < 1, uriously like (30); and the average depthof internal node m is asymptotially the same, but with `�1' replaed by `�3'.Thus we an say that the average shape of a random binary tree is approximatelythe lower half of an ellipse, n units wide and 4pn=� levels deep.Three other noteworthy ways to generate random enodings of forests aredisussed in exerises 60, 61, and 62. They are less diret than Algorithm W,yet they have substantial ombinatorial interest. The �rst one begins with anarbitrary random string ontaining n (s and n )s, not neessarily nested; eahof the �2nn � possibilities is equally likely. It then proeeds to onvert every suhstring into a sequene that is properly nested, in suh a way that exatly n+ 1
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16 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6strings map into eah �nal outome. The seond method is similar, but it startswith a sequene of n+ 1 0s and n 2s, mapping them in suh a way that exatly2n + 1 original strings produe eah possible result. And the third methodprodues eah output from exatly n of the bit strings that ontain exatlyn� 1 1s and n+ 1 0s. In other words, the three methods provide ombinatorialproofs of the fat that Cn is simultaneously equal to �2nn �=(n+1), �2n+1n �=(2n+1),and � 2nn�1�=n. For example, when n = 4 we have 14 = 70=5 = 126=9 = 56=4.If we want to generate random binary trees diretly in linked form, we anuse a beautiful method suggested by J. L. R�emy [RAIRO Informatique Th�eorique19 (1985), 179{195℄. His approah is partiularly instrutive beause it showshow random Catalan trees might atually our \in nature," using a deliiouslysimple mehanism based on a lassial idea of Olinde Rodrigues [J. de Math.3 (1838), 549℄. Let us suppose that our goal is to obtain not only an ordinaryn-node binary tree, but a deorated binary tree, namely an extended binary treein whih the external nodes have been labeled with the numbers 0 to n in someorder. There are (n + 1)! ways to deorate any given binary tree; so the totalnumber of deorated binary trees with n internal nodes isDn = (n+ 1)!Cn = (2n)!n! = (4n� 2)Dn�1: (32)R�emy observed that there are 4n� 2 easy ways to build a deorated tree oforder n from a given deorated tree of order n � 1: We simply hoose any oneof the 2n� 1 nodes (internal or external) in the given tree, say x, and replae itby either kn x or knx ; (33)thus inserting a new internal node and a new leaf while moving x and itsdesendants (if any) down one level.For example, here's one way to onstrut a deorated tree of order 6:
0 ; 1 0e ; 1 2 0e e ; 1 2 0 3e e e ; 4 1 2 0 3e e e e ; 4 1 2 0 3 5e e e e e ; 4 6 1 2 0 3 5e e e e e e(34)Notie that every deorated tree is obtained by this proess in exatly one way,beause the predeessor of eah tree must be the tree we get by striking out thehighest-numbered leaf. Therefore R�emy's onstrution produes deorated treesthat are uniformly random; and if we ignore the external nodes, we get randombinary trees of the ordinary, undeorated variety.One appealing way to implement R�emy's proedure is to maintain a table oflinks L0L1 : : : L2n where external (leaf) nodes have even numbers and internal(branh) nodes have odd numbers. The root is node L0; the left and righthildren of branh node 2k � 1 are respetively L2k�1 and L2k, for 1 � k � n.Then the program is short and sweet:
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7.2.1.6 GENERATING ALL TREES 17Algorithm R (Growing a random binary tree). This algorithm onstruts thelinked representation L0L1 : : : L2N of a uniformly random binary tree with Ninternal nodes, using the onventions explained above.R1. [Initialize.℄ Set n 0 and L0  0.R2. [Done?℄ (At this point the links L0L1 : : : L2n represent a random n-nodebinary tree.) Terminate the algorithm if n = N .R3. [Advane n.℄ Let X be a random integer between 0 and 4n + 1, inlusive.Set n  n + 1, b  X mod 2, k  bX=2, L2n�b  2n, L2n�1+b  Lk,Lk  2n� 1, and return to R2.*Chains of subsets. Now that we've got trees and parentheses �rmly in mind,it's a good time to disuss the Christmas tree pattern,* whih is a remarkableway to arrange the set of all 2n bit strings of length n into � nbn=2� rows and n+1olumns, disovered by de Bruijn, van Ebbenhorst Tengbergen, and Kruyswijk[Nieuw Arhief voor Wiskunde (2) 23 (1951), 191{193℄.The Christmas tree pattern of order 1 is the single row `0 1'; and the patternof order 2 is 1000 01 11 : (35)In general we get the Christmas tree pattern of order n+ 1 by taking every row`�1 �2 : : : �s' of the order-n pattern and replaing it by the two rows�20 : : : �s0�10 �11 : : : �s�11 �s1 : (36)(The �rst of these rows is omitted when s = 1.)Proeeding in this way, we obtain for example the pattern of order 8 thatappears in Table 4 on the next page. It is easy to verify by indution thati) Eah of the 2n bit strings appears exatly one in the pattern.ii) The bit strings with k 1s all appear in the same olumn.iii) Within eah row, onseutive bit strings di�er by hanging a 0 to a 1.If we think of the bit strings as representing subsets of f1; : : : ; ng, with 1-bitsto indiate the members of a set, property (iii) says that eah row represents ahain in whih eah subset is overed by its suessor. In symbols, using thenotation of Setion 7.1, every row �1 �2 : : : �s has the property that �j � �j+1and �(�j+1) = �(�j) + 1 for 1 � j < s.Properties (i) and (ii) tell us that there are exatly �nk� elements in olumn k,if we number the olumns from 0 to n. This observation, together with the fatthat eah row is entered among the olumns, proves that the total number ofrows is max0�k�n �nk� = � nbn=2�, as laimed. Let us all this number Mn.* This name was hosen for sentimental reasons, beause the pattern has a general shapenot unlike that of a festive tree, and beause it was the subjet of the author's ninth annual\Christmas Tree Leture" at Stanford University in Deember 2002.
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18 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6Table
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7.2.1.6 GENERATING ALL TREES 19A set C of bit strings is alled a lutter, or an \antihain of subsets," ifits bit strings are inomparable in the sense that � 6� � whenever � and � aredistint elements of C. A famous theorem of Emanuel Sperner [Math. Zeitshrift27 (1928), 544{548℄ asserts that no lutter on f1; : : : ; ng an have more thanMn elements; and the Christmas tree pattern provides a simple proof, beauseno lutter an ontain more than one element of eah row.Indeed, the Christmas tree pattern an be used to show that muh moreis true. Let's note �rst that exatly �nk� � � nk�1� rows of length n + 1 � 2k arepresent, for 0 � k � n=2, beause there are exatly �nk� elements in olumn k.For example, Table 4 has one row of length 9, namely the bottom row; it alsohas �81�� �80� = 7 rows of length 7, �82�� �81� = 20 rows of length 5, �83�� �82� = 28of length 3, and �84�� �83� = 14 of length 1. Moreover, these numbers �nk�� � nk�1�appear in the Catalan triangle (22), beause they're equal to Ck(n�k) aordingto Eq. (23).Further study reveals that this Catalan onnetion is not simply a o-inidene; nested parentheses are, in fat, the key to a deeper understandingof the Christmas tree pattern, beause the theory of parentheses tells us wherean arbitrary bit string �ts into the array. Suppose we use the symbols ( and )instead of 1 and 0, respetively. Any string of parentheses, nested or not, an bewritten uniquely in the form�0) : : : �p�1)�p(�p+1 : : : (�q (37)for some p and q with 0 � p � q, where the substrings �0, : : : , �q are properlynested and possibly empty; exatly p of the right parentheses and q � p of theleft parentheses are \free" in the sense that they have no mate. For example,the string ) ( ( ) ) ( ) ) ( ) ) ) ) ( ( ( ( ( ( ) ( ( ) ( ) ( ( ( ) ) (38)has p = 5, q = 12, �0 = �, �1 = (())(), �2 = (), �3 = �, : : : , �12 = (()). Ingeneral, the string (37) is part of a hain of length q + 1,�0) : : : �q�1)�q; �0) : : : �q�2)�q�1(�q; : : : ; �0(�1 : : : (�q; (39)in whih we start with q free )s and hange them one by one into free (s. Everyrow of the Christmas tree pattern is obtained in exatly this manner, but using1 and 0 instead of ( and ); for if the hain �1 : : : �s orresponds to the nestedstrings �0, : : : , �s�1, its suessor hains in (36) orrespond respetively to�0, : : : , �s�3, �s�2(�s�1) and to �0, : : : , �s�3, �s�2, �s�1, �. [See CurtisGreene and Daniel J. Kleitman, J. Combinatorial Theory A20 (1976), 80{88.℄Notie furthermore that the rightmost elements in eah row of the pattern|suh as 10101010, 10101011, 10101100, 10101101, : : : , 11111110, 11111111 inthe ase n = 8|are in lexiographi order. Thus, for example, the fourteenrows of length 1 in Table 4 orrespond preisely to the fourteen strings ofnested parentheses in Table 1. This observation makes it easy to generate therows of Table 8 sequentially from bottom to top, with a method analogous toAlgorithm P; see exerise 77.
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20 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6Let f(x1; : : : ; xn) be any monotone Boolean funtion of n variables. If � =a1 : : : an is any bit string of length n, we an write f(�) = f(a1; : : : ; an) foronveniene. Any row �1 : : : �s of the Christmas tree pattern forms a hain, sowe have 0 � f(�1) � � � � � f(�s) � 1: (40)In other words, there is an index t suh that f(�j) = 0 for j < t and f(�j) = 1for j � t; we will know the value of f(�) for all 2n bit strings � if we know theindies t for eah row of the pattern.Georges Hansel [Comptes Rendus Aad. Si. (A) 262 (Paris, 1966), 1088{1090℄ notied that the Christmas tree pattern has another important property:If �j�1, �j , and �j+1 are three onseutive entries of any row, the bit string�0j = �j�1 � �j � �j+1 (41)lies in a previous row. In fat, �0j lies in the same olumn as �j , and it satis�es�j�1 � �0j � �j+1; (42)it is alled the relative omplement of �j in the interval (�j�1 : : �j+1). Hansel'sobservation is easy to prove by indution, beause of the reursive rule (36) thatde�nes the Christmas tree pattern. He used it to show that we an dedue thevalues of f(�) for all � by atually evaluating the funtion at relatively few well-hosen plaes; for if we know the value of f(�0j), we will know either f(�j�1) orf(�j+1) beause of relation (42).Algorithm H (Learning a monotone Boolean funtion). Let f(x1; : : : ; xn) be aBoolean funtion that is nondereasing in eah Boolean variable, but otherwiseunknown. Given a bit string � of length n, let r(�) be the number of the rowin whih � appears in the Christmas tree pattern, where 1 � r(�) � Mn. If1 � m �Mn, let s(m) be the number of bit strings in row m; also let �(m; k) bethe bit string in olumn k of that row, for (n+1�s(m))=2 � k � (n�1+s(m))=2.This algorithm determines the sequene of threshold values t(1), t(2), : : : , t(Mn)suh that f(�) = 1 () �(�) � t�r(�)�; (43)by evaluating f at no more than two points per row.H1. [Loop on m.℄ Perform steps H2 through H4 for m = 1, : : : , Mn; then stop.H2. [Begin row m.℄ Set a (n+ 1� s(m))=2 and z  (n� 1 + s(m))=2.H3. [Do a binary searh.℄ If z � a+1, go to H4. Otherwise set k  �(a+z)=2�,and �  �(m; k � 1)� �(m; k)� �(m; k + 1): (44)If k � t�r(�)�, set z  k; otherwise set a k. Repeat step H3.H4. [Evaluate.℄ If f(�(m; a)) = 1, set t(m)  a; otherwise, if a = z, sett(m) a+ 1; otherwise set t(m) z + 1� f(�(m; z)).
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7.2.1.6 GENERATING ALL TREES 21Hansel's algorithm is optimum, in the sense that it evaluates f at the fewestpossible points in the worst ase. For if f happens to be the threshold funtionf(�) = ��(�) > n=2�; (45)any valid algorithm that learns f on the �rst m rows of the Christmas treepattern must evaluate f(�) in olumn bn=2 of eah row, and in olumn bn=2+1of eah row that has size greater than 1. Otherwise we ould not distinguish ffrom a funtion that di�ers from it only at an unexamined point. [See V. K.Korobkov, Problemy Kibernetiki 13 (1965), 5{28, Theorem 5.℄Oriented trees and forests. Let's turn now to another kind of tree, in whihthe parent-hild relationship is important but the order of hildren in eah familyis not. An oriented forest of n nodes an be de�ned by a sequene of pointersp1 : : : pn, where pj is the parent of node j (or pj = 0 if j is a root); the diretedgraph on verties f0; 1; : : : ; ng with ars fj ! pj j 1 � j � ng will have nooriented yles. An oriented tree is an oriented forest with exatly one root.(See Setion 2.3.4.2.) Every n-node oriented forest is equivalent to an (n + 1)-node oriented tree, beause the root of that tree an be regarded as the parent ofall the roots of the forest. We saw in Setion 2.3.4.4 that there are An orientedtrees with n nodes, where the �rst few values aren = 1 2 3 4 5 6 7 8 9 10 11 12 13 14An = 1 1 2 4 9 20 48 115 286 719 1842 4766 12486 32973 ; (46)asymptotially, An = �nn�3=2+O(�nn�5=2) where � � 2:9558 and  � 0:4399.Thus, for example, only 9 of the 14 forests in Table 1 are distint when we ignorethe horizontal left-to-right ordering and onsider only the vertial orientation.Every oriented forest orresponds to a unique ordered forest if we sort themembers of eah family appropriately, using an ordering on trees introduedby H. I. Soins [Mahine Intelligene 3 (1968), 43{60℄: Reall from (11) thatordered forests an be haraterized by their level odes 1 : : : n, where node jin preorder appears on level j . An ordered forest is alled anonial if the levelode sequenes for the subtrees in eah family are in noninreasing lexiographiorder. For example, the anonial forests in Table 1 are those whose level odes1234 are 0000, 0100, 0101, 0110, 0111, 0120, 0121, 0122, and 0123. The levelsequene 0112 is not anonial, beause the subtrees of the root have respetivelevel odes 1 and 12; the string 1 is lexiographially less than 12. We an readilyverify by indution that the anonial level odes are lexiographially largest,among all ways of reordering the subtrees of a given oriented forest.T. Beyer and S. M. Hedetniemi [SICOMP 9 (1980), 706{712℄ notied thatthere is a remarkably simple way to generate oriented forests if we visit them indereasing lexiographi order of the anonial level odes. Suppose 1 : : : n isanonial, where k > 0 and k+1 = � � � = n = 0. The next smallest sequene isobtained by dereasing k, then inreasing k+1 : : : n to the largest levels onsis-tent with anoniity; and those levels are easy to ompute. For if j = pk is theparent of node k, we have j = k�1 < l for j < l � k, hene the levels j : : : k
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22 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6represent the subtree urrently rooted at node j. To get the largest sequene oflevels less than 1 : : : n we therefore replae k : : : n by the �rst n+1�k elementsof the in�nite sequene (j : : : k�1)1 = j : : : k�1j : : : k�1j : : : . (The e�etis to remove k from its urrent position as the rightmost hild of j, then toappend new subtrees that are siblings of j, by loning j and its desendantsas often as possible. This loning proess may terminate in the midst of thesequene j : : : k�1, but that auses no diÆulty beause every pre�x of aanonial level sequene is anonial.) For example, to obtain the suessor ofany sequene of anonial odes that ends with 23443433000000000, we replaethe �nal 3000000000 by 2344343234.Algorithm O (Oriented forests). This algorithm generates all oriented forestson n nodes, by visiting all anonial n-node forests in dereasing lexiographiorder of their level odes 1 : : : n. The level odes are not omputed expliitly,however; eah anonial forest is represented diretly by its sequene of parentpointers p1 : : : pn, in preorder of the nodes. To generate all oriented trees onn+ 1 nodes, we an imagine that node 0 is the root.O1. [Initialize.℄ Set pk  k � 1 for 0 � k � n. (In partiular, this step makesp0 nonzero, for use in termination testing; see step O4.)O2. [Visit.℄ Visit the forest represented by parent pointers p1 : : : pn.O3. [Easy ase?℄ If pn > 0, set pn  ppn and return to step O2.O4. [Find j and k.℄ Find the largest k < n suh that pk 6= 0. Terminate thealgorithm if k = 0; otherwise set j  pk and d k � j.O5. [Clone.℄ If pk�d = pj , set pk  pj ; otherwise set pk  pk�d + d. Return tostep O2 if k = n; otherwise set k  k + 1 and repeat this step.As in other algorithms we've been seeing, the loops in steps O4 and O5 tend tobe quite short; see exerise 88. Exerise 90 proves that slight hanges to thisalgorithm suÆe to generate all arrangements of edges that form free trees.Spanning trees. Now let's onsider the minimal subgraphs that \span" agiven graph. If G is a onneted graph on n verties, the spanning trees of Gare the subsets of n� 1 edges that ontain no yles; equivalently, they are thesubsets of edges that form a free tree onneting all the verties. Spanning treesare important in many appliations, espeially in the study of networks, so theproblem of generating all spanning trees has been treated by many authors. Infat, systemati ways to list them all were developed early in the 20th enturyby Wilhelm Feussner [Annalen der Physik (4) 9 (1902), 1304{1329℄, long beforeanybody thought about generating other kinds of trees.In the following disussion we will allow graphs to have any number of edgesbetween two verties; but we disallow loops from a vertex to itself, beauseself-loops annot be part of a tree. Feussner's basi idea was very simple, yeteminently suited for alulation: If e is any edge of G, a spanning tree eitherontains e or it doesn't. Suppose e joins vertex u to vertex v, and suppose it ispart of a spanning tree; then the other n � 2 edges of that tree span the graph
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7.2.1.6 GENERATING ALL TREES 23G = e that we obtain by regarding u and v as idential. In other words, thespanning trees that ontain e are essentially the same as the spanning trees ofthe ontrated graph G= e that results when we shrink e down to a single point.On the other hand the spanning trees that do not ontain e are spanning treesof the redued graph G n e that results when we eliminate edge e. Symbolially,therefore, the set S(G) of all spanning trees of G satis�esS(G) = e S(G = e) [ S(G n e): (47)Malolm J. Smith, in his Master's thesis at the University of Vitoria (1999),introdued a nie way to arry out the reursion (47) by �nding all spanning treesin a \revolving-door Gray ode" order: Eah tree in his sheme is obtained fromits predeessor by simply removing one edge and substituting another. Suhorderings are not diÆult to �nd, but the trik is to do the job eÆiently.The basi idea of Smith's algorithm is to generate S(G) in suh a way thatthe �rst spanning tree inludes a given near tree, namely a set of n � 2 edgesontaining no yle. This task is trivial if n = 2; we simply list all the edges.If n > 2 and if the given near tree is fe1; : : : ; en�2g, we proeed as follows:Assume that G is onneted; otherwise there are no spanning trees. Form G=e1and append e1 to eah of its spanning trees, beginning with one that ontainsfe2; : : : ; en�2g; notie that fe2; : : : ; en�2g is a near tree of G=e1, so this reursionmakes sense. If the last spanning tree found in this way for G= e1 is f1 : : : fn�2,omplete the task by listing all spanning trees for G n e1, beginning with onethat ontains the near tree ff1; : : : ; fn�2g.For example, suppose G is the graphG = 1 23 4q r stp (48)with four verties and �ve edges fp; q; r; s; tg. Starting with the near tree fp; qg,Smith's proedure �rst forms the ontrated graphG = p = q r st1,23 4 (49)and lists its spanning trees, beginning with one that ontains q. This list mightbe qs, qt, ts, tr, rs; thus the trees pqs, pqt, pts, ptr, and prs span G. Theremaining task is to list the spanning trees ofG n p = 1 23 4q r st ; (50)starting with one that ontains fr; sg; they are rsq, rqt, qts.A detailed implementation of Smith's algorithm turns out to be quite in-strutive. As usual we represent the graph by letting two ars u! v and v ! uorrespond to eah edge u���v, and we maintain lists of \ar nodes" to representthe ars that leave eah vertex. We'll need to shrink and unshrink the graph's
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24 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6edges, so we will make these lists doubly linked. If a points to an ar node thatrepresents u! v, thena� 1 points to the \mate" of a, whih represents v ! u;ta is the \tip" of a, namely v (hene ta�1 = u);ia is an optional name that identi�es this edge (and equals ia�1);na points to the next element of u's ar list;pa points to the previous element of u's ar list;and la is a link used for undeleting ars as explained below.The verties are represented by integers f1; : : : ; ng; and ar number v � 1 is aheader node for vertex v's doubly linked ar list. A header node a is reognizableby the fat that its tip, ta, is 0. We let dv be the degree of vertex v. Thus, forexample, the graph (48) might be represented by (d1; d2; d3; d4) = (2; 3; 3; 2) andby the following fourteen nodes of ar data:a = 0 1 2 3 4 5 6 7 8 9 10 11 12 13ta = 0 0 0 0 1 2 1 3 2 3 2 4 3 4ia = p p q q r r s s t tna = 5 4 6 10 9 7 8 0 13 11 12 1 3 2pa = 7 11 13 12 1 0 2 5 6 4 3 9 10 8The impliit reursion of Smith's algorithm an be ontrolled onvenientlyby using an array of ar pointers a1 : : : an�1. At level l of the proess, arsa1 : : : al�1 denote edges that have been inluded in the urrent spanning tree; alis ignored; and ars al+1 : : : an�1 denote edges of a near tree on the ontratedgraph ( : : : (G=a1) : : : )=al�1 that should be part of the next spanning tree visited.There's also another array of ar pointers s1 : : : sn�2, representing staksof ars that have been temporarily removed from the urrent graph. The topelement of the stak for level l is sl, and eah ar a links to its suessor, la(whih is 0 at the bottom of the stak).An edge whose removal would disonnet a onneted graph is alled abridge. One of the key points in the algorithm that follows is the fat that wewant to keep the urrent graph onneted; therefore we don't set G  G n ewhen e is a bridge.Algorithm S (All spanning trees). Given a onneted graph represented withthe data strutures explained above, this algorithm visits all of its spanning trees.A tehnique alled \daning links," whih we will disuss extensively inSetion 7.2.2.1, is used here to remove and restore items from and to doublylinked lists. The abbreviation \delete(a)" in the steps below is shorthand for thepair of operations npa  na; pna  pa ; (51)similarly, \undelete(a)" stands forpna  a; npa  a: (52)
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7.2.1.6 GENERATING ALL TREES 25S1. [Initialize.℄ Set a1 : : : an�1 to a spanning tree of the graph. (See exerise 94.)Also set x 0, l 1, and s1  0. If n = 2, set v  1, e n0, and go to S5.S2. [Enter level l.℄ Set e al+1, u te, and v  te�1. If du > dv, interhangev $ u and set e e� 1.S3. [Shrink e.℄ (Now we will make u idential to v by inserting u's adjaeny listinto v's. We also must delete all former edges between u and v, inluding eitself, beause suh edges would otherwise beome loops. Deleted edges arelinked together so that we an restore them later in step S7.) Set k  du+dv ,f  nu�1, and g  0. While tf 6= 0, do the following: If tf = v, delete(f),delete(f � 1), and set k  k � 2, lf  g, g  f ; otherwise set tf�1  v.Then set f  nf and repeat these operations until tf = 0. Finally set le  g,dv  k, g  v � 1, npf  ng, png  pf , pnf  g, ng  nf , and al  e.S4. [Advane l.℄ Set l  l + 1. If l < n � 1, set sl  0 and return to S2.Otherwise set e nv�1.S5. [Visit.℄ (The urrent graph now has only two verties, one of whih is v.)Set an�1  e and visit the spanning tree a1 : : : an�1. (If x = 0, this is the�rst spanning tree to be visited; otherwise it di�ers from its predeessor bydeleting x and inserting e.) Set x e and e ne. Repeat step S5 if te 6= 0.S6. [Derease l.℄ Set l  l � 1. Terminate the algorithm if l = 0; otherwise sete al, u te, and v  te�1.S7. [Unshrink e.℄ Set f  u � 1, g  v � 1, ng  npf , png  g, npf  f ,pnf  f , and f  pf . While tf 6= 0, set tf�1  u and f  pf . Then setf  le, k  dv; while f 6= 0 set k  k + 2, undelete(f � 1), undelete(f),and set f  lf . Finally set dv  k � du.S8. [Test for bridge.℄ If e is a bridge, go to S9. (See exerise 95 for one wayto perform this test.) Otherwise set x  e, le  sl, sl  e; delete(e) anddelete(e� 1). Set du  du � 1, dv  dv � 1, and go to S2.S9. [Undo level l deletions.℄ Set e  sl. While e 6= 0, set u  te, v  te�1,du  du + 1, dv  dv + 1, undelete(e� 1), undelete(e), and e le. Returnto S6.The reader is enouraged to play through the steps of this algorithm on a smallgraph suh as (48). Notie that a subtle ase arises in steps S3 and S7, if u'sadjaeny list happens to beome empty. Notie also that several shortuts wouldbe possible, at the expense of a more ompliated algorithm; we will disuss suhimprovements later in this setion.*Series-parallel graphs. The task of �nding all spanning trees beomes espe-ially simple when the given graph has a serial and/or parallel deomposition. Aseries-parallel graph between s and t is a graph G with two designated verties,s and t, whose edges an be built up reursively as follows: Either G onsists ofa single edge, s��� t; or G is a serial superedge onsisting of k � 2 series-parallelsubgraphs Gj between sj and tj , joined in series with s = s1 and tj = sj+1 for
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26 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.61 � j < k and tk = t; or G is a parallel superedge onsisting of k � 2 series-parallel subgraphs Gj between s and t joined in parallel. This deomposition isessentially unique, given s and t, if we require that the subgraphs Gj for serialsuperedges are not themselves serial superedges, and that the subgraphs Gj forparallel superedges are not themselves parallel.Any series-parallel graph an be represented onveniently as a tree, with nonodes of degree 1. The leaf nodes of this tree represent edges, and the branhnodes represent superedges, alternating between serial and parallel from levelto level. For example, the tree Aa B Db C e f g d (53)
orresponds to the series-parallel graphs and subgraphs

A = db ea
f g ; B = db e ; C = d ; D = f g ; (54)if the top node A is taken to be parallel. Edges are named in (54), but notverties, beause edges are of prime importane with respet to spanning trees.Let's say that a near tree of a series-parallel graph between s and t is a setof n � 2 yle-free edges that do not onnet s to t. The spanning trees andnear trees of a series-parallel graph are easy to desribe reursively, as follows:(1) A spanning tree of a serial superedge orresponds to spanning trees of all itsprinipal subgraphs Gj ; a near tree orresponds to spanning trees in all but oneof the Gj , and a near tree in the other. (2) A near tree of a parallel superedgeorresponds to near trees of all its prinipal subgraphs Gj ; a spanning tree or-responds to near trees in all but one of the Gj , and a spanning tree in the other.Rules (1) and (2) suggest the following data strutures for listing the span-ning trees and/or near trees of series-parallel graphs. Let p point to a node in atree like (53). Then we de�netp = 1 for serial superedges, 0 otherwise (the \type" of p);vp = 1 if we have a spanning tree for p, 0 if we have a near tree;lp = pointer to p's leftmost hild, or 0 if p is a leaf;rp = pointer to p's right sibling, wrapping around ylially;dp = pointer to a designated hild of p, or 0 if p is a leaf.If q points to the rightmost hild of p, its \right sibling" rq equals lp. And if qpoints to any hild of p, rules (1) and (2) state thatvq = � vp; if q = dp;tp; if q 6= dp. (55)
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7.2.1.6 GENERATING ALL TREES 27(For example, if p is a branh node that represents a serial superedge, we musthave vq = 1 for all but one of p's hildren; the only exeption is the designatedhild dp. Thus we must have a spanning tree for all of the subgraphs that werejoined serially to form p, exept for one designated subgraph in the ase that wehave a near tree for p.)Given any setting of the designated-hild pointers dp, and given any value0 or 1 for vp at the root of the tree, Eq. (55) tells us how to propagate valuesdown to all of the leaves. For example, if we set vA  1 in the tree (53), andif we designate the leftmost hild of eah branh node (so that dA = a, dB = b,dC = , and dD = f), we �nd suessivelyva=1, vB =0, vb=0, vC =1, v=1, vd=0, ve=1, vD =0, vf =0, vg =1. (56)A leaf node q is present in the spanning tree if and only if vq = 1; hene(56) spei�es the spanning tree aeg of the series-parallel graph A in (54).For onveniene, let's say that the on�gs of p are its spanning trees ifvp = 1, its near trees if vp = 0. We would like to generate all on�gs of theroot. A branh node p is alled \easy" if vp = tp; that is, a serial node is easyif its on�gs are spanning trees, and a parallel node is easy if its on�gs arenear trees. If p is easy, its on�gs are the Cartesian produt of the on�gs of itshildren, namely all k-tuples of the hildren's on�gs, varying independently; thedesignated hild dp is immaterial in the easy ase. But if p is uneasy, its on�gsare the union of suh Cartesian k-tuples, taken over all possible hoies of dp.As luk would have it, easy nodes are relatively rare: At most one hild ofan uneasy node (namely the designated hild) an be easy, and all hildren of aneasy node are uneasy unless they are leaves.Even so, the tree representation of a series-parallel graph makes the reursivegeneration of all its spanning trees and/or near trees quite straightforward andeÆient. The operations of Algorithm S|shrinking and unshrinking, deletingand undeleting, bridge detetion|are not needed when we deal with series-parallel graphs. Furthermore, exerise 99 shows that there is a pleasant way toobtain the spanning trees or near trees in a revolving-door Gray ode order, byusing fous pointers as in several algorithms that we've seen earlier.*Re�nements of Algorithm S. Although Algorithm S provides us with a simpleand reasonably e�etive way to visit all spanning trees of a general graph, itsauthor Malolm Smith realized that the properties of series-parallel graphs an beused to make it even better. For example, if a graph has two or more edges thatrun between the same verties u and v, we an ombine them into a superedge;the spanning trees of the original graph an then be obtained readily from thoseof the simpler, redued graph. And if a graph has a vertex v of degree 2, so thatthe only edges touhing v are u���v and v���w, we an eliminate v and replaethose edges by a single superedge between u and w. Furthermore, any vertex ofdegree 1 an e�etively be eliminated, together with its adjaent edge, by simplyinluding that edge in every spanning tree.After the redutions in the preeding paragraph have been applied to a givengraph G, we obtain a redued graph Ĝ having no parallel edges and no verties
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28 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6of degrees 1 or 2, together with a set of m � 0 series-parallel graphs S1, : : : , Sm,representing edges (or superedges) that must be inluded in all spanning treesof G. Every remaining edge u���v of Ĝ orresponds, in fat, to a series-parallelgraph Suv between verties u and v. The spanning trees of G are then obtainedas the union, taken over all spanning trees T of Ĝ, of the Cartesian produtof the spanning trees of S1, : : : , Sm and the spanning trees of all Suv for edgesu���v in T , together with the near trees of all Suv for edges u���v that are inĜ but not in T . And all spanning trees T of Ĝ an be obtained by using thestrategy of Algorithm S.In fat, when Algorithm S is extended in this way, its operations of replaingthe urrent graph G by G=e or G n e typially trigger further redutions, as newparallel edges appear or as the degree of a vertex drops below 3. Therefore itturns out that the \stopping state" of the impliit reursion in Algorithm S,namely the ase when only two verties are left (step S5), never atually arises:A redued graph Ĝ either has only a single vertex and no edges, or it has at leastfour verties and six edges.The resulting algorithm retains the desirable revolving-door property ofAlgorithm S, and it is quite pretty (although about four times as long as theoriginal); see exerise 100. Smith proved that it has the best possible asymptotirunning time: If G has n verties, m edges, and N spanning trees, the algorithmvisits them all in O(m+ n+N) steps.The performane of Algorithm S and of its souped-up version Algorithm S0an best be appreiated by onsidering the number of memory aesses thatthose algorithms atually make when they generate the spanning trees of typialgraphs, as shown in Table 5. The bottom line of that table orresponds tothe graph plane miles (16; 0; 0; 1; 0; 0; 0) from the Stanford GraphBase, whihserves as an \organi" antidote to the purely mathematial examples on theprevious lines. The random multigraph on the penultimate line, also fromthe Stanford GraphBase, an be desribed more preisely by its oÆial namerandom graph (16; 37; 1; 0; 0; 0; 0; 0; 0; 0). Although the 4 � 4 torus is isomorphito the 4-ube (see exerise 7.2.1.1{17), those isomorphi graphs yield slightly dif-ferent running times beause their verties and edges are enountered di�erentlywhen the algorithms are run.In general we an say that Algorithm S is not too bad on small examples,exept when the graph is quite sparse; but Algorithm S0 begins to shine whenmany spanning trees are present. One Algorithm S0 gets warmed up, it tendsto rank out a new tree after every 18 or 19 mems go by.Table 5 also indiates that a mathematially-de�ned graph often has asurprisingly \round" number of spanning trees. For example, D. M. Cvetkovi�[Srpska Akademija Nauka, Matematiheski Institut 11 (Belgrade: 1971), 135{141℄ disovered, among other things, that the n-ube has exatly22n�n�1 1(n1) 2(n2) : : : n(nn) (57)of them. Exerises 104{109 explore some of the reasons why that happens.
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7.2.1.6 GENERATING ALL TREES 29Table 5RUNNING TIME IN MEMS NEEDED TO GENERATE ALL SPANNING TREESm n N Algorithm S Algorithm S0 � per treepath P10 9 10 1 794 � 473 � 794.0 473.0path P100 99 100 1 9,974 � 5,063 � 9974.0 5063.0yle C10 10 10 10 3,480 � 998 � 348.0 99.8yle C100 100 100 100 355,605 � 10,538 � 3556.1 105.4omplete graph K4 6 4 16 1,213 � 1,336 � 75.8 83.5omplete graph K10 45 10 100,000,000 3,759.58 M� 1,860.95 M� 37.6 18.6omplete bigraph K5;5 25 10 390,625 23.43 M� 8.88 M� 60.0 22.74�4 grid P4�P4 24 16 100,352 12.01 M� 1.87 M� 119.7 18.75�5 grid P5�P5 40 25 557,568,000 54.68 G� 10.20 G� 98.1 18.34�4 ylinder P4�C4 28 16 2,558,976 230.96 M� 49.09 K� 90.3 19.25�5 ylinder P5�C5 45 25 38,720,000,000 3,165.31 G� 711.69 G� 81.7 18.44�4 torus C4�C4 32 16 42,467,328 3,168.15 M� 823.08 M� 74.6 19.44-ube P2�P2�P2�P2 32 16 42,467,328 3,168.16 M� 823.38 M� 74.7 19.4random multigraph 37 16 59,933,756 3,818.19 M� 995.91 M� 63.7 16.616 ities 37 16 179,678,881 11,772.11 M� 3,267.43 M� 65.5 18.2
A general quasi-Gray ode. Let's lose this setion by disussing somethingompletely di�erent, yet still related to trees. Consider the following hybridvariants of the two standard ways to traverse a nonempty forest:Prepostorder traversal Postpreorder traversalVisit the root of the �rst tree Traverse the subtrees of the �rstTraverse the subtrees of the �rst tree, in prepostordertree, in postpreorder Visit the root of the �rst treeTraverse the remaining trees, Traverse the remaining trees,in prepostorder in postpreorderIn the �rst ase, every tree of the forest is traversed in prepostorder, with its root�rst; but the subtrees of those roots are traversed in postpreorder, with rootsoming last. The seond variant is similar but with `pre' and `post' interhanged.And in general, prepostorder visits roots �rst on every even-numbered level ofthe forest, but visits them last on the odd-numbered levels. For example, theforest in (2) beomesk1k2 k3k5k4 k11k6k7 k9k8

k10 k15k12 k13k14 (58)
when we label its nodes in prepostorder.
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30 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6Prepostorder and postpreorder are not merely uriosities; they're atuallyuseful. The reason is that adjaent nodes, in either of these orders, are alwaysnear eah other in the forest. For example, nodes k and k+1 are adjaent in (58)for k = 1, 4, 6, 8, 10, 13; they are separated by only one node when k = 3, 12, 14;and they're three steps apart when k = 2, 5, 7, 9, 11 (if we imagine an invisiblesuper-parent at the top of the forest). A moment's thought proves indutivelythat at most two nodes an possibly intervene between prepostorder neighbors orpostpreorder neighbors|beause postpreorder(F ) always begins with the rootof the �rst tree or its leftmost hild, and prepostorder(F ) always ends with theroot of the last tree or its rightmost hild.Suppose we want to generate all ombinatorial patterns of some kind, andwe want to visit them in a Gray-ode-like manner so that onseutive patternsare always \lose" to eah other. We an form, at least oneptually, the graph ofall possible patterns p, with edges p���q for all pairs of patterns that are lose toeah other. The following theorem, due to Milan Sekanina [Spisy P�r��rodov�edek�eFakulty University v Brn�e, No. 412 (1960), 137{142℄, proves that a pretty goodGray ode is always possible, provided only that we an get from any pattern toany other in a sequene of short steps:Theorem S. The verties of any onneted graph an be listed in a yli order(v0; v1; : : : ; vn�1) so that the distane between vk and v(k+1) mod n is at most 3,for 0 � k < n.Proof. Find a spanning tree in the graph, and traverse it in prepostorder.Graph theorists traditionally say that the kth power of a graph G is thegraph Gk whose verties are those of G, with u���v in Gk if and only if there's apath of length k or less from u to v in G. Thus they an state Theorem S muhmore suintly, when n > 2: The ube of a onneted graph is Hamiltonian.Prepostorder traversal is also useful when we want to visit the nodes of atree in loopless fashion, with a bounded number of steps between stops:Algorithm Q (Prepostorder suessor in a triply linked forest). If P points to anode in a forest represented by links PARENT, CHILD, and SIB, orresponding toeah node's parent, leftmost hild, and right sibling, this algorithm omputes P'ssuessor node, Q, in prepostorder. We assume that we know the level L at whihP appears in the forest; the value of L is updated to be the level of Q. If P happensto be the �nal node in prepostorder, the algorithm sets Q � and L �1.Q1. [Pre or post?℄ If L is even, go to step Q4.Q2. [Continue postpreorder.℄ Set Q SIB(P). Go to Q6 if Q 6= �.Q3. [Move up.℄ Set P PARENT(P) and L L� 1. Go to Q7.Q4. [Continue prepostorder.℄ If CHILD(P) = �, go to Q7.Q5. [Move down.℄ Set Q CHILD(P) and L L+ 1.Q6. [Move down if possible.℄ If CHILD(Q) 6= �, set Q CHILD(Q) and L L+1.Terminate the algorithm.
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7.2.1.6 GENERATING ALL TREES 31Q7. [Move right or up.℄ If SIB(P) 6= �, set Q  SIB(P); otherwise set Q  PARENT(P) and L L� 1. Terminate the algorithm.Notie that, as in Algorithm 2.4C, the link PARENT(P) is examined only ifSIB(P) = �. A omplete traversal is really a worm walk around the forest,like (3): The worm \sees" the nodes on even-numbered levels when it passesthem on the left, and it sees the odd-level nodes when it passes them on the right.EXERCISES1. [15 ℄ If a worm rawls around the binary tree (4), how ould it easily reonstrutthe parentheses of (1)?2. [20 ℄ (S. Zaks, 1980.) Modify Algorithm P so that it produes the ombinationsz1z2 : : : zn of (8) instead of the parenthesis strings a1a2 : : : a2n.x 3. [23 ℄ Prove that (11) onverts z1z2 : : : zn to the inversion table 12 : : : n.4. [20 ℄ True or false: If the strings a1 : : : a2n are generated in lexiographi order,so are the orresponding strings d1 : : : dn, z1 : : : zn, p1 : : : pn, and 1 : : : n.5. [15 ℄ What tables d1 : : : dn, z1 : : : zn, p1 : : : pn, and 1 : : : n orrespond to thenested parenthesis string (1)?x 6. [20 ℄ What mathing orresponds to (1)? (See the �nal olumn of Table 1.)7. [16 ℄ (a) What is the state of the string a1a2 : : : a2n when Algorithm P terminates?(b) What do the arrays l1l2 : : : ln and r1r2 : : : rn ontain when Algorithm B terminates?8. [15 ℄ What tables l1 : : : ln, r1 : : : rn, e1 : : : en, and s1 : : : sn orrespond to the ex-ample forest (2)?9. [M20 ℄ Show that the tables 1 : : : n and s1 : : : sn are related by the lawk = [s1� k � 1℄ + [s2� k � 2℄ + � � �+ [sk�1� 1℄:10. [M20 ℄ (Worm walks.) Given a string of nested parentheses a1a2 : : : a2n, let wjbe the exess of left parentheses over right parentheses in a1a2 : : : aj , for 0 � j � 2n.Prove that w0 + w1 + � � �+ w2n = 2(1 + � � �+ n) + n.11. [11 ℄ If F is a forest, its onjugate FR is obtained by left-to-right mirror reetion.For example, the fourteen forests in Table 1 are, , , , , , , , , , , , ,and their onjugates are respetively, , , , , , , , , , , , ,as in the olex forests of Table 2. If F orresponds to the nested parentheses a1a2 : : : a2n,what string of parentheses orresponds to FR?12. [15 ℄ If F is a forest, its transpose FT is the forest whose binary tree is obtainedby interhanging left and right links in the binary tree representing F . For example,the transposes of the fourteen forests in Table 1 are respetively, , , , , , , , , , , , , .What is the transpose of the forest (2)?13. [20 ℄ Continuing exerises 11 and 12, how do the preorder and postorder of alabeled forest F relate to the preorder and postorder of (a) FR? (b) FT ?
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32 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6x 14. [21 ℄ Find all labeled forests F suh that FRT = FTR.15. [20 ℄ Suppose B is the binary tree obtained from a forest F by linking eah nodeto its left sibling and its rightmost hild, as in exerise 2.3.2{5 and the last olumn ofTable 2. Let F 0 be the forest that orresponds to B in the normal way, via left-hildand right-sibling links. Prove that F 0 = FRT , in the notation of exerises 11 and 12.16. [20 ℄ If F and G are forests, let FG be the forest obtained by plaing the trees of Fto the left of the trees of G; also let F jG = (GTFT )T . Give an intuitive explanationof the operator j, and prove that it is assoiative.17. [M46 ℄ Charaterize all unlabeled forests F suh that FRT =FTR. (See exerise 14.)18. [30 ℄ Two forests are said to be ognate if one an be obtained from the other byrepeated operations of taking the onjugate and/or the transpose. The examples in ex-erises 11 and 12 show that all forests on 4 nodes belong to one of three ognate lasses:� ; � � � � � ;� � � � � :Study the set of all forests with 15 nodes. How many equivalene lasses of ognateforests do they form? What is the largest lass? What is the smallest lass? What isthe size of the lass ontaining (2)?19. [28 ℄ Let F1, F2, : : : , FN be the sequene of unlabeled forests that orrespondto the nested parentheses generated by Algorithm P, and let G1, G2, : : : , GN bethe sequene of unlabeled forests that orrespond to the binary trees generated byAlgorithm B. Prove that Gk = F RTRk , in the notation of exerises 11 and 12. (Theforest FRTR is alled the dual of F ; it is denoted by FD in several exerises below.)20. [25 ℄ Reall from Setion 2.3 that the degree of a node in a tree is the number ofhildren it has, and that an extended binary tree is haraterized by the property thatevery node has degree either 0 or 2. In the extended binary tree (4), the sequene ofnode degrees is 2200222002220220002002202200000 in preorder; this string of 0s and 2sis idential to the sequene of parentheses in (1), exept that eah `(' has been replaedby 2, eah `)' has been replaed by 0, and an additional 0 has been appended.a) Prove that a sequene of nonnegative integers b1b2 : : : bN is the preorder degreesequene of a forest if and only if it satis�es the following property for 1 � k � N :b1 + b2 + � � �+ bk + f > k if and only if k < N:Here f = N � b1 � b2 � � � � � bN is the number of trees in the forest.b) Reall from exerise 2.3.4.5{6 that an extended ternary tree is haraterized by theproperty that every node has degree 0 or 3; an extended ternary tree with n internalnodes has 2n + 1 external nodes, hene N = 3n + 1 nodes altogether. Design analgorithm to generate all ternary trees with n internal nodes, by generating theassoiated sequenes b1b2 : : : bN in lexiographi order.x 21. [26 ℄ (S. Zaks and D. Rihards, 1979.) Continuing exerise 20, explain how togenerate the preorder degree sequenes of all forests that have N = n0+ � � �+nt nodes,with exatly nj nodes of degree j. Example: When n0 = 4, n1 = n2 = n3 = 1, andt = 3, and the valid sequenes b1b2b3b4b5b6b7 are1203000; 1230000; 1300200; 1302000; 1320000;2013000; 2030010; 2030100; 2031000; 2103000;2130000; 2300010; 2300100; 2301000; 2310000;3001200; 3002010; 3002100; 3010200; 3012000;3020010; 3020100; 3021000; 3100200; 3102000;3120000; 3200010; 3200100; 3201000; 3210000:
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7.2.1.6 GENERATING ALL TREES 33x 22. [30 ℄ (J. Korsh, 2004.) As an alternative to Algorithm B, show that binary treesan also be generated diretly and eÆiently in linked form if we produe them in olexorder of the numbers d1 : : : dn�1 de�ned in (9). (The atual values of d1 : : : dn�1 shouldnot be omputed expliitly; but the links l1 : : : ln and r1 : : : rn should be manipulatedin suh a way that we get the binary trees orresponding suessively to d1d2 : : : dn�1 =000 : : : 0, 100 : : : 0, 010 : : : 0, 110 : : : 0, 020 : : : 0, 001 : : : 0, : : : , 000 : : : (n�1).)x 23. [25 ℄ (a) What is the last string visited by Algorithm N? (b) What is the lastbinary tree or forest visited by Algorithm L? Hint: See exerise 40 below.24. [22 ℄ Using the notation of Table 3, what sequenes l0 l1 : : : l15, r1 : : : r15, k1 : : : k15,q1 : : : q15, and u1 : : : u15 orrespond to the binary tree (4) and the forest (2)?x 25. [30 ℄ (Pruning and grafting.) Representing binary trees as in Algorithm B, designan algorithm that visits all link tables l1 : : : ln and r1 : : : rn in suh a way that, betweenvisits, exatly one link hanges from j to 0 and another from 0 to j, for some index j.(In other words, every step removes some subtree j from the binary tree and plaes itelsewhere, preserving preorder.)26. [M31 ℄ (The Kreweras lattie.) Let F and F 0 be n-node forests with their nodesnumbered 1 to n in preorder. We write F < F 0 (\F oaleses F 0") if j and k aresiblings in F whenever they are siblings in F 0, for 1 � j < k � n. Figure 39 illustratesthis partial ordering in the ase n = 4; eah forest is enoded by the sequene 1 : : : nof (9) and (10), whih spei�es the depth of eah node. (With this enoding, j and kare siblings if and only if j = k � j+1; : : : ; k�1.)

00000001 00100011 001201000101011001110112 012001210122 0123

Fig. 39. The Kreweras lattie of order 4. Eah forest is represented byits sequene of node depths 1234 in preorder. (See exerises 26{28.)a) Let � be a partition of f1; : : : ; ng. Show that there exists a forest F , with nodeslabeled (1; : : : ; n) in preorder and withj � k (modulo �) () j is a sibling of k in F ;if and only if � satis�es the nonrossing propertyi < j < k < l and i � k and j � l (modulo �) implies i � j � k � l (modulo �).b) Given any two n-node forests F and F 0, explain how to ompute their least upperbound F _F 0, the element suh that F < G and F 0 < G if and only if F _F 0 < G.) When does F 0 over F with respet to the relation <? (See exerise 7.2.1.4{55.)d) Show that if F 0 overs F , it has exatly one less leaf than F .e) How many forests over F , when node k has ek hildren for 1 � k � n?f) Using the de�nition of duality in exerise 19, what is the dual of the forest (2)?
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34 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6g) Prove that F < F 0 holds if and only if F 0D < FD. (Beause of this property, dualelements have been plaed symmetrially about the enter of Fig. 39.)h) Given any two n-node forests F and F 0, explain how to ompute their greatestlower bound F ^ F 0; that is, G< F and G< F 0 if and only if G< F ^ F 0.i) Does this lattie satisfy a semimodular law analogous to exerise 7.2.1.5{12(f)?x 27. [M33 ℄ (The Tamari lattie.) Continuing exerise 26, let us write F a F 0 if thejth node in preorder has at least as many desendants in F 0 as it does in F , for all j.In other words, if F and F 0 are haraterized by their sope sequenes s1 : : : sn ands01 : : : s0n as in Table 2, we have F a F 0 if and only sj � s0j for 1 � j � n. (See Fig. 40.)0123
0012

0112
01010001

0122
0011

0121 0111
01200010 0110 01000000(a)

3210
0210

3010
10100010

3200
0200

3100 3000
21000100 2000 10000000(b)Fig. 40. The Tamari lattie of order 4. Eah forest is represented byits sequenes of (a) node depths and (b) desendant ounts, in preorder.(See exerises 26{28.)a) Show that the sope oordinates min(s1; s01)min(s2; s02) : : :min(sn; s0n) de�ne aforest that is the greatest lower bound of F and F 0. (We denote it by F ? F 0.)Hint: Prove that s1 : : : sn orresponds to a forest if and only if 0 � k � sj impliessj+k + k � sj , for 0 � j � n, if we de�ne s0 = n.b) When does F 0 over F in this partial ordering?) Prove that F a F 0 if and only if F 0D a FD . (Compare with exerise 26(g).)d) Explain how to ompute a least upper bound, F > F 0, given F and F 0.e) Prove that F < F 0 in the Kreweras lattie implies F a F 0 in the Tamari lattie.f) True or false: F ^ F 0 a F ? F 0.g) True or false: F _ F 0 < F > F 0.h) What are the longest and shortest paths from the top of the Tamari lattie to thebottom, when eah forest of the path overs its suessor? (Suh paths are alledmaximal hains in the lattie; ompare with exerise 7.2.1.4{55(h).)28. [M26 ℄ (The Stanley lattie.) Continuing exerises 26 and 27, let us de�ne yetanother partial ordering on n-node forests, saying that F � F 0 whenever the depthoordinates 1 : : : n and 01 : : : 0n satisfy j � 0j for 1 � j � n. (See Fig. 41).a) Prove that this partial ordering is a lattie, by explaining how to ompute thegreatest lower bound F \F 0 and least upper bound F [F 0 of any two given forests.b) Show that Stanley's lattie satis�es the distributive lawsF \ (G [H) = (F \G) [ (F \H); F [ (G \H) = (F [G) \ (F [H):
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7.2.1.6 GENERATING ALL TREES 35

00000001 001000110012 01000101 011001110112 0120012101220123
Fig. 41. The Stanley lattie of order 4. Eahforest is represented by its sequene of nodedepths in preorder. (See exerises 26{28.)) When does F 0 over F in this lattie?d) True or false: F � G if and only if FR � GR.e) Prove that F � F 0 in the Stanley lattie whenever F a F 0 in the Tamari lattie.29. [HM31 ℄ The overing graph of a Tamari lattie is sometimes known as an \assoia-hedron," beause of its onnetion with the assoiative law (14), proved in exerise27(b). The assoiahedron of order 4, depited in Fig. 40, looks like it has three squarefaes and six faes that are regular pentagons. (Compare with Fig. 23 in exerise7.2.1.2{60, whih shows the \permutahedron" of order 4, a well-known Arhimedeansolid.) Why doesn't Fig. 40 show up in lassial lists of uniform polyhedra?30. [M26 ℄ The footprint of a forest is the bit string f1 : : : fn de�ned byfj = [node j in preorder is not a leaf ℄:a) If F has footprint f1 : : : fn, what is the footprint of FD? (See exerise 27.)b) How many forests have the footprint 10101101111110000101010001011000?) Prove that fj = [dj =0℄, for 1 � j < n, in the notation of (6).d) Two elements of a lattie are alled omplementary if their greatest lower boundis the bottom element while their least upper bound is the top element. Show thatF and F 0 are omplementary in the Tamari lattie if and only if their footprintsare omplementary, in the sense that f 01 : : : f 0n�1 = �f1 : : : �fn�1.x 31. [M28 ℄ A binary tree with n internal nodes is alled degenerate if it has height n�1.a) How many n-node binary trees are degenerate?b) We've seen in Tables 1, 2, and 3 that binary trees and forests an be enoded byvarious n-tuples of numbers. For eah of the enodings 1 : : : n, d1 : : : dn, e1 : : : en,k1 : : : kn, p1 : : : pn, s1 : : : sn, u1 : : : un, and z1 : : : zn, explain how to see at a glaneif the orresponding binary tree is degenerate.) True or false: If F is degenerate, so is FD.d) Prove that if F and F 0 are degenerate, so are F ^F 0 = F?F 0 and F _F 0 = F>F 0.x 32. [M30 ℄ Prove that if F a F 0, there is a forest F 00 suh that for all G we haveF 0 ?G = F if and only if F a G a F 00:Consequently the semidistributive laws hold in the Tamari lattie:F ?G = F ?H implies F ? (G>H) = F ?G;F >G = F >H implies F > (G?H) = F >G:
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36 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6x 33. [M27 ℄ (Permutation representation of trees.) Let � be the yle (1 2 : : : n).a) Given any binary tree whose nodes are numbered 1 to n in symmetri order, provethat there is a unique permutation � of f1; : : : ; ng suh that, for 1 � k � n,LLINK[k℄ = � k�; if k� < k;0; otherwise; RLINK[k℄ = � k��; if k�� > k;0; otherwise.Thus � neatly paks 2n link �elds into a single n-element array.b) Show that this permutation � is partiularly easy to desribe in yle form whenthe binary tree is the left-sibling/right-hild representation of a forest F . What isthe yle form of �(F ) when F is the forest in (2)?) Find a simple relation between �(F ) and the dual permutation �(FD).d) Prove that, in exerise 26, F 0 overs F if and only if �(F 0) = (j k)�(F ), wherej and k are siblings in F .e) Consequently the number of maximal hains in the Kreweras lattie of order nis the number of ways to fator an n-yle as a produt of n � 1 transpositions.Evaluate this number. Hint: See Eq. 1.2.6{(16).34. [M25 ℄ (R. P. Stanley.) Show that the number of maximal hains in the Stanleylattie of order n is (n(n� 1)=2)!=(1n�13n�2 : : : (2n� 5)2(2n� 3)1).35. [HM37 ℄ (D. B. Tyler and D. R. Hikerson.) Explain why the denominators of theasymptoti formula (16) are all powers of 2.x 36. [M25 ℄ Analyze the ternary tree generation algorithm of exerise 20(b). Hint:There are (2n+ 1)�1�3nn � ternary trees with n internal nodes, by exerise 2.3.4.4{11.x 37. [M40 ℄ Analyze the Zaks{Rihards algorithm for generating all trees with a givendistribution n0, n1, n2, : : : , nt of degrees (exerise 21). Hint: See exerise 2.3.4.4{32.38. [M22 ℄ What is the total number of memory referenes performed by Algorithm L,as a funtion of n?39. [22 ℄ Prove formula (23) by showing that the elements of Apq in (5) orrespond toYoung tableaux with two rows.40. [M22 ℄ (a) Prove that Cpq is odd if and only if p & (q + 1) = 0, in the sense thatthe binary representations of p and q+1 have no bits in ommon. (b) Therefore Cn isodd if and only if n+ 1 is a power of 2.41. [M21 ℄ Show that the ballot numbers have a simple generating funtionPCpqwpzq.x 42. [M22 ℄ How many unlabeled forests with n nodes are (a) self-onjugate? (b) self-transpose? () self-dual? (See exerises 11, 12, 19, and 26.)43. [M21 ℄ Express Cpq in terms of the Catalan numbers hC0; C1; C2; : : : i, aiming fora formula that is simple when q � p is small. (For example, C(q�2)q = Cq � Cq�1.)x 44. [M27 ℄ Prove that Algorithm B makes only 8 23 +O(n�1) referenes to memory perbinary tree visited.45. [M26 ℄ Analyze the memory referenes made by the algorithm in exerise 22. Howdoes it ompare to Algorithm B?46. [M30 ℄ (Generalized Catalan numbers.) Generalize (21) by de�ningCpq(x) = Cp(q�1)(x) + xq�pC(p�1)q(x); if 0 � p � q 6= 0; C00(x) = 1;and Cpq(x) = 0 if p < 0 or p > q; thus Cpq = Cpq(1). Also let Cn(x) = Cnn(x), so thathC0(x); C1(x); : : : i = h1; 1; 1+x; 1+2x+x2+x3; 1+3x+3x2+3x3+2x4+x5+x6; : : : i:
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7.2.1.6 GENERATING ALL TREES 37a) Show that [xk℄Cpq(x) is the number of paths from pq to 00 in (28) that havearea k, where the \area" of a path is the number of retangular ells above it.(Thus an L-shaped path has the maximum possible area, p(q � p) + �p2�.)b) Prove that Cn(x) = PF x1+���+n = PF xinternal path length(F ), summed over alln-node forests F .) If C(x; z) =P1n=0 Cn(x)zn, show that C(x; z) = 1 + zC(x; z)C(x; xz).d) Furthermore, C(x; z)C(x; xz) : : : C(x; xrz) =P1p=0 Cp(p+r)(x)zp.47. [M27 ℄ Continuing the previous exerise, generalize the identity (27).48. [M28 ℄ (F. Ruskey and A. Proskurowski.) Evaluate Cpq(x) when x = �1, and usethis result to show that no \perfet" Gray ode for nested parentheses is possible whenn � 5 is odd.49. [17 ℄ What is the lexiographially millionth string of 15 nested parenthesis pairs?50. [20 ℄ Design the inverse of Algorithm U: Given a string a1 : : : a2n of nested paren-theses, determine its rank N � 1 in lexiographi order. What is the rank of (1)?51. [M22 ℄ Let �z1�z2 : : : �zn be the omplement of z1z2 : : : zn with respet to 2n; in otherwords, �zj = 2n� zj , where zj is de�ned in (8). Show that if �z1�z2 : : : �zn is the (N +1)stn-ombination of f0; 1; : : : ; 2n � 1g generated by Algorithm 7.2.1.3L, then z1z2 : : : znis the (N � �nN + 1)st n-ombination of f1; 2; : : : ; 2ng generated by the algorithm ofexerise 2. (Here �n denotes the nth Kruskal funtion, de�ned in 7.2.1.3{(60).)52. [M23 ℄ Find the mean and variane of the quantity dn in Table 1, when nestedparentheses a1 : : : a2n are hosen at random.53. [M28 ℄ Let X be the distane from the root of an extended binary tree to theleftmost external node. (a) What is the expeted value of X, when all binary trees withn nodes are equally likely? (b) What is the expeted value of X in a random binarysearh tree, onstruted by Algorithm 6.2.2T from a random permutation K1 : : :Kn?() What is the expeted value of X in a random degenerate binary tree, in the senseof exerise 31? (d) What is the expeted value of 2X in all three ases?54. [HM29 ℄ What are the mean and variane of 1 + � � �+ n? (See exerise 46.)55. [HM33 ℄ Evaluate C 0pq(1), the total area of all the paths in exerise 46(a).56. [M23 ℄ (Renzo Sprugnoli, 1990.) Prove the summation formulam�1Xk=0 CkCn�1�k = 12Cn + 2m� n2n(n+ 1)�2mm ��2n� 2mn�m �; for 0 � m � n.57. [M28 ℄ Express the sums Sp(a; b) =Pk�0 � 2aa�k�� 2bb�k�kp in losed form for p = 0,1, 2, 3, and use these formulas to prove (30).58. [HM34 ℄ Let tlmn be the number of n-node binary trees in whih external node mappears at level l when the external nodes are numbered from 0 to n in symmetriorder. Also let tmn = Pnl=1 ltlmn, so that tmn=Cn is the average level of externalnode m; and let t(w; z) be the super generating funtionXm;n tmnwmzn = (1+w)z + (3+4w+3w2)z2 + (9+13w+13w2+9w3)z3 + � � � :Prove that t(w; z) = (C(z) � wC(wz))=(1� w) � 1 + zC(z)t(w; z) + wzC(wz)t(w; z),and dedue a simple formula for the numbers tmn.
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38 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.659. [HM29 ℄ Similarly, let Tlmn ount all n-node binary trees in whih internal nodemappears at level l. Find a simple formula for Tmn =Pnl=1 lTlmn.x 60. [M26 ℄ (Balaned strings.) A string � of nested parentheses is atomi if it hasthe form (�0) where �0 is nested; every nested string an be represented uniquely as aprodut of atoms �1 : : : �r. A string with equal numbers of left and right parenthesesis alled balaned ; every balaned string an be represented uniquely as �1 : : : �r whereeah �j is either an atom or a o-atom (the reverse of an atom). The defet of abalaned string is half the length of its o-atoms. For example, the balaned string( ( ) ) ) ( ( ( ) ) ) ) ) ) ( ( ) ( ( ( ) ) ( ( ( ) ) ( ( )has the fatored form �1�2�3�4�5�6�7�8 = �1�R2 �3�R4 �R5 �6�R7 �8, with four atomsand four o-atoms; its defet is j�2�4�5�7j=2 = 9.a) Prove that the defet of a balaned string is the number of indies k for whih thekth right parenthesis preedes the kth left parenthesis.b) If �1 : : : �r is balaned, we an map it into a nested string by simply reversingits o-atoms. But the following mapping is more interesting, beause it produesunbiased (uniformly random) nested strings from unbiased balaned strings: Letthere be s o-atoms �i1 = �Ri1 , : : : , �is = �Ris . Replae eah o-atom by (; thenappend the string )�0is : : : )�0i1 , where �j = (�0j). For example, the string aboveis mapped into �1(�3((�6(�8)�07)�05)�04)�02, whih just happens to equal thestring (1) illustrated at the beginning of this setion.Design an algorithm that applies this mapping to a given balaned string b1 : : : b2n.) Also design an algorithm for the inverse mapping: Given a nested string � =a1 : : : a2n and an integer l with 0 � l � n, ompute a balaned string � = b1 : : : b2nof defet l for whih � 7! �. What balaned string of defet 11 maps into (1)?x 61. [M26 ℄ (Raney's Cyle Lemma.) Let b1b2 : : : bN be a string of nonnegative integerssuh that f = N � b1 � b2 � � � � � bN > 0.a) Prove that exatly f of the yli shifts bj+1 : : : bN b1 : : : bj for 1 � j � N satisfythe preorder degree sequene property in exerise 20.b) Design an eÆient algorithm to determine all suh j, given b1b2 : : : bN .) Explain how to generate a random forest that has N = n0 + � � �+ nt nodes, withexatly nj nodes of degree j. (For example, we obtain random n-node t-ary treesas a speial ase of this general proedure when N = tn + 1, n0 = (t � 1)n + 1,n1 = � � � = nt�1 = 0, and nt = n.)62. [22 ℄ A binary tree an also be represented by bit strings (l1 : : : ln; r1 : : : rn), wherelj and rj tell whether the left and right subtrees of node j in preorder are nonempty.(See Theorem 2.3.1A.) Prove that if l1 : : : ln and r1 : : : rn are arbitrary bit stringswith l1 + � � � + ln + r1 + � � � + rn = n � 1, exatly one yli shift (lj+1 : : : ln l1 : : : lj ;rj+1 : : : rnr1 : : : rj) yields a valid binary tree representation, and explain how to �nd it.63. [16 ℄ If the �rst two iterations of R�emy's algorithm have produed 1 2 0e e , whatdeorated binary trees are possible after the next iteration?64. [20 ℄ What sequene of X values in Algorithm R orresponds to the deoratedtrees of (34), and what are the �nal values of L0L1 : : : L12?65. [38 ℄ Generalize R�emy's algorithm (Algorithm R) to t-ary trees.
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7.2.1.6 GENERATING ALL TREES 3966. [21 ℄ A Shr�oder tree is a binary tree in whih every nonnull right link is oloredeither white or blak. The number Sn of n-node Shr�oder trees isn = 0 1 2 3 4 5 6 7 8 9 10 11 12Sn = 1 1 3 11 45 197 903 4279 20793 103049 518859 2646723 13648869for small n. For example, S3 = 11 beause the possibilities are :(White links are \hollow"; external nodes have also been attahed.)a) Find a simple orrespondene between Shr�oder trees with n internal nodes andordinary trees with n+ 1 leaves and no nodes of degree one.b) Devise a Gray ode for Shr�oder trees.67. [M22 ℄ What is the generating funtion S(z) =Pn Snzn for Shr�oder numbers?68. [10 ℄ What is the Christmas tree pattern of order 0?69. [20 ℄ Are the Christmas tree patterns of orders 6 and 7 visible in Table 4, possiblyin slight disguise?x 70. [20 ℄ Find a simple rule that de�nes, for every bit string �, another bit string �0alled its mate, with the following properties: (i) �00 = �; (ii) j�0j = j�j; (iii) either� � �0 or �0 � �; (iv) �(�) + �(�0) = j�j.71. [M21 ℄ Let Mtn be the size of the largest possible set S of n-bit strings with theproperty that, if � and � are members of S with � � � , then �(�) < �(�) + t. (Thus,for example, M1n =Mn by Sperner's theorem.) Find a formula for Mtn.x 72. [M28 ℄ If you start with a single row �1 �2 : : : �s of length s and apply the growthrule (36) repeatedly n times, how many rows do you obtain?73. [15 ℄ In the Christmas tree pattern of order 30, what are the �rst and last elementsof the row that ontains the bit string 011001001000011111101101011100?74. [M26 ℄ Continuing the previous exerise, how many rows preede that row?x 75. [HM23 ℄ Let (r(n)1 ; r(n)2 ; : : : ; r(n)n�1) be the row numbers in whih the Christmas treepattern of order n has n� 1 entries; for example, Table 4 tells us that (r(8)1 ; : : : ; r(8)7 ) =(20; 40; 54; 62; 66; 68; 69). Find formulas for r(n)j+1 � r(n)j and for limn!1 r(n)j =Mn.76. [HM46 ℄ Study the limiting shape of the Christmas tree patterns as n!1. Doesit, for example, have a fratal dimension under some appropriate saling?77. [21 ℄ Design an algorithm to generate the sequene of rightmost elements a1 : : : anin the rows of the Christmas tree pattern, given n. Hint: These bit strings areharaterized by the property that a1 + � � �+ ak � k=2 for 0 � k � n.78. [20 ℄ True or false: If �1 : : : �s is a row of the Christmas tree pattern, so is��Rs : : : ��R1 (the reverse sequene of reverse omplements).79. [M26 ℄ The number of permutations p1 : : : pn that have exatly one \desent"where pk > pk+1 is the Eulerian number 
n1� = 2n�n� 1, aording to Eq. 5.1.3{(12).The number of entries in the Christmas tree pattern, above the bottom row, is the same.a) Find a ombinatorial explanation of this oinidene, by giving a one-to-one or-respondene between one-desent permutations and unsorted bit strings.b) Show that two unsorted bit strings belong to the same row of the Christmas treepattern if and only if they orrespond to permutations that de�ne the same Ptableau under the Robinson{Shensted orrespondene (Theorem 5.1.4A).
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40 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.680. [30 ℄ Say that two bit strings are onordant if we an obtain one from the othervia the transformations 010 $ 100 or 101 $ 110 on substrings. For example, thestrings 011100$ 011010$ 010110$ 010101$ 011001l l100110$ 100101$ 101001$ 110001are mutually onordant, but no other string is onordant with any of them.Prove that strings are onordant if and only if they belong to the same olumnof the Christmas tree pattern and to rows of the same length in that pattern.81. [M30 ℄ A bilutter of order (n; n0) is a family S of bit string pairs (�; �0), wherej�j = n and j�0j = n0, with the property that distint members (�; �0) and (�; � 0) of Sare allowed to satisfy � � � and �0 � � 0 only if � 6= � and �0 6= � 0.Use Christmas tree patterns to prove that S ontains at most Mn+n0 string pairs.x 82. [M26 ℄ Let E(f) be the number of times Algorithm H evaluates the funtion f .a) Show that Mn � E(f) �Mn+1, with equality when f is onstant.b) Among all f suh that E(f) =Mn, whih one minimizesP� f(�)?) Among all f suh that E(f) =Mn+1, whih one maximizesP� f(�)?83. [M20 ℄ (G. Hansel.) Show that there are at most 3Mn monotone Boolean funtionsf(x1; : : : ; xn) of n Boolean variables.x 84. [HM27 ℄ (D. Kleitman.) Let A be an m�n matrix of real numbers in whih everyolumn v has length kvk � 1, and let b be an m-dimensional olumn vetor. Prove thatat most Mn olumn vetors x = (a1; : : : ; an)T , with omponents aj = 0 or 1, satisfykAx� bk < 12 . Hint: Use a onstrution analogous to the Christmas tree pattern.85. [HM35 ℄ (Philippe Golle.) Let V be any vetor spae ontained in the set ofall real n-dimensional vetors, but ontaining none of the unit vetors (1; 0; : : : ; 0),(0; 1; 0; : : : ; 0), : : : , (0; : : : ; 0; 1). Prove that V ontains at most Mn vetors whoseomponents are all 0 or 1; furthermore the upper bound Mn is ahievable.86. [15 ℄ If (2) is regarded as an oriented forest instead of an ordered forest, whatanonial forest orresponds to it? Speify that forest both by its level odes 1 : : : 15and its parent pointers p1 : : : p15.87. [M20 ℄ Let F be an ordered forest in whih the kth node in preorder appears onlevel k and has parent pk, where pk = 0 if that node is a root.a) How many forests satisfy the ondition k = pk for 1 � k � n?b) Suppose F and F 0 have level odes 1 : : : n and 01 : : : 0n, respetively, as wellas parent links p1 : : : pn and p01 : : : p0n. Prove that, lexiographially, 1 : : : n �01 : : : 0n if and only if p1 : : : pn � p01 : : : p0n.88. [M20 ℄ Analyze Algorithm O: How often is step O4 performed? What is the totalnumber of times pk is hanged in step O5?89. [M46 ℄ How often does step O5 set pk  pj?x 90. [M27 ℄ If p1 : : : pn is a anonial sequene of parent pointers for an oriented forest,the graph with verties f0; 1; : : : ; ng and edges fk ��� pk j 1 � k � ng is a free tree,namely a onneted graph with no yles. (See Theorem 2.3.4.1A.) Conversely, everyfree tree orresponds to at least one oriented forest in this way. But the parent pointers011 and 000 both yield the same free tree ; similarly, 012 and 010 both yield .
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7.2.1.6 GENERATING ALL TREES 41The purpose of this exerise is to restrit the sequenes p1 : : : pn further so thateah free tree is obtained exatly one. We proved in 2.3.4.4{(9) that the number ofstruturally di�erent free trees on n+1 verties has a fairly simple generating funtion,by showing that a free tree always has at least one entroid.a) Show that a anonial n-node forest orresponds to a free tree with a single entroidif and only if no tree in the forest has more than bn=2 nodes.b) Modify Algorithm O so that it generates all sequenes p1 : : : pn that satisfy (a).) Explain how to �nd all p1 : : : pn for free trees that have two entroids.91. [M37 ℄ (Nijenhuis and Wilf.) Show that a random oriented tree an be generatedwith a proedure analogous to the random partition algorithm of exerise 7.2.1.4{47.92. [15 ℄ Are the �rst and last spanning trees visited by Algorithm S adjaent, in thesense that they have n� 2 edges in ommon?93. [20 ℄ When Algorithm S terminates, has it restored the graph to its original state?94. [22 ℄ Algorithm S needs to \prime the pump" by �nding an initial spanning treein step S1. Explain how to do that task.95. [26 ℄ Complete Algorithm S by implementing the bridge test in step S8.x 96. [28 ℄ Analyze the approximate running time of Algorithm S when the given graphis simply (a) a path Pn of length n� 1; (b) a yle Cn of length n.97. [15 ℄ Is (48) a series-parallel graph?98. [16 ℄ What series-parallel graph orresponds to (53) if A is taken to be serial?x 99. [30 ℄ Consider a series-parallel graph represented by a tree as in (53), togetherwith node values that satisfy (55). These values de�ne a spanning tree or a near tree,aording as vp is 1 or 0 at the root p. Show that the following method will generateall of the other on�gs of the root:i) Begin with all uneasy nodes ative, other nodes passive.ii) Selet the rightmost ative node, p, in preorder; but terminate if all nodes arepassive.iii) Change dp  rdp , update all values in the tree, and visit the new on�g.iv) Ativate all uneasy nodes to the right of p.v) If dp has run through all hildren of p sine p last beame ative, make node ppassive. Return to (ii).Also explain how to perform these steps eÆiently. Hints: To implement step (v),introdue a pointer zp; make node p passive when dp beomes equal to zp, and at suhtimes also reset zp to the previous value of dp. To implement steps (ii) and (iv), usefous pointers fp analogous to those in Algorithms 7.2.1.1L and 7.2.1.1K.100. [40 ℄ Implement the text's \Algorithm S0" for revolving-door generation of allspanning trees, by ombining Algorithm S with the ideas of exerise 99.101. [46 ℄ Is there a simple revolving-door way to list all nn�2 spanning trees of theomplete graph Kn? (The order produed by Algorithm S is quite ompliated.)102. [46 ℄ An oriented spanning tree of a direted graph D on n verties, also knownas a \spanning arboresene," is an oriented subtree of D ontaining n � 1 ars. Thematrix tree theorem (exerise 2.3.4.2{19) tells us that the oriented subtrees having agiven root an readily be ounted by evaluating an (n� 1)� (n� 1) determinant.Can those oriented subtrees be listed in a revolving-door order, always removingone ar and replaing it with another?
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42 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6x 103. [HM39 ℄ (Sandpiles.) Consider any digraph D on verties V0, V1, : : : , Vn with eijars from Vi to Vj , where eii = 0. Assume that D has at least one oriented spanningtree rooted at V0; this assumption means that, if we number the verties appropriately,we have ei0 + � � � + ei(i�1) > 0 for 1 � i � n. Let di = ei0 + � � � + ein be the totalout-degree of Vi. Put xi grains of sand on vertex Vi for 0 � i � n, and play thefollowing game: If xi � di for any i � 1, derease xi by di and set xj  xj + eij forall j 6= i. (In other words, pass one grain of sand from Vi through eah of its outgoingars, whenever possible, exept when i = 0. This operation is alled \toppling" Vi,and a sequene of topplings is alled an \avalanhe." Vertex V0 is speial; instead oftoppling, it ollets partiles of sand that essentially leave the system.) Continue untilxi < di for 1 � i � n. Suh a state x = (x1; : : : ; xn) is alled stable.a) Prove that every avalanhe terminates in a stable state after a �nite number oftopplings. Furthermore, the �nal state depends only on the initial state, not onthe order in whih toppling is performed.b) Let �(x) be the stable state that results from initial state x. A stable state isalled reurrent if it is �(x) for some x with xi � di for 1 � i � n. (Reurrentstates orrespond to sandpiles that have evolved over a long period of time, afternew grains of sand are repeatedly introdued at random.) Find the reurrentstates in the speial ase when n = 4 and when the only ars of D areV1 ! V0; V1 ! V2; V2 ! V0; V2 ! V1; V3 ! V0; V3 ! V4; V4 ! V0; V4 ! V3:) Let d = (d1; : : : ; dn). Prove that x is reurrent if and only if x = �(x+ t), wheret is the vetor d� �(d).d) Let ai be the vetor (�ei1; : : : ;�ei(i�1); di;�ei(i+1); : : : ;�ein), for 1 � i � n;thus, toppling Vi orresponds to hanging the state vetor x = (x1; : : : ; xn) tox � ai. Say that two states x and x0 are ongruent, written x � x0, if x � x0 =m1a1+ � � �+mnan for some integers m1, : : : , mn. Prove that there are exatly asmany equivalene lasses of ongruent states as there are oriented spanning treesin D, rooted at V0. Hint: See the matrix tree theorem, exerise 2.3.4.2{19.e) If x � x0 and if both x and x0 are reurrent, prove that x = x0.f) Prove that every ongruene lass ontains a unique reurrent state.g) IfD is balaned, in the sense that the in-degree of eah vertex equals its out-degree,prove that x is reurrent if and only if x = �(x+ a), where a = (e01; : : : ; e0n).h) Illustrate these onepts when D is a \wheel" with n spokes: Let there be 3n ars,Vj ! V0 and Vj $ Vj+1 for 1 � j � n, regarding Vn+1 as idential to V1. Finda one-to-one orrespondene between the oriented spanning trees of this digraphand the reurrent states of its sandpiles.i) Similarly, analyze the reurrent sandpiles when D is the omplete graph on n+1verties, namely when eij = [i 6= j ℄ for 0 � i; j � n. Hint: See exerise 6.4{31.x 104. [HM21 ℄ If G is a graph on n verties fV1; : : : ; Vng, with eij edges between Vi andVj , let C(G) be the matrix with entries ij = �eij + Æijdi, where di = ei1 + � � �+ ein isthe degree of Vi. Let us say that the aspets of G are the eigenvalues of C(G), namelythe roots �0, : : : , �n�1 of the equation det(�I�C(G)) = 0. Sine C(G) is a symmetrimatrix, its eigenvalues are real numbers, and we an assume that �0 � �1 � � � � � �n�1.a) Prove that �0 = 0.b) Prove that G has exatly (G) = �1 : : : �n�1=n spanning trees.) What are the aspets of the omplete graph Kn?
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7.2.1.6 GENERATING ALL TREES 43105. [HM37 ℄ Continuing exerise 104, we wish to prove that there is often an easyway to determine the aspets of G when G has been onstruted from other graphswhose aspets are known. Suppose G0 has aspets �00, : : : , �0n0�1 and G00 has aspets�000 , : : : , �00n00�1; what are the aspets of G in the following ases?a) G = G0 is the omplement of G0. (Assume that e0ij � [i 6= j ℄ in this ase.)b) G = G0 +G00 is the sum (juxtaposition) of G0 and G00.) G = G0 �+G00 is the osum (join) of G0 and G00.d) G = G0�G00 is the Cartesian produt of G0 and G00.e) G = L(G0) is the line graph of G0, when G0 is a regular graph of degree d0 (namelywhen all verties of G0 have exatly d0 neighbors, and there are no self-loops).f) G = G0 G00 is the diret produt (onjuntion) of G0 and G00, when G0 is regularof degree d0 and G00 is regular of degree d00.g) G = G0 G00 is the strong produt of regular graphs G0 and G00.x 106. [HM37 ℄ Find the total number of spanning trees in (a) an m� n grid Pm � Pn;(b) an m� n ylinder Pm �Cn; () an m� n torus Cm �Cn. Why do these numberstend to have only small prime fators? Hint: Show that the aspets of Pn and Cn anbe expressed in terms of the numbers �kn = 4 sin2 k�2n .107. [M24 ℄ Determine the aspets of all onneted graphs that have n � 5 vertiesand no self-loops or parallel edges.108. [HM40 ℄ Extend the results of exerises 104{106 to direted graphs.109. [M46 ℄ Find a ombinatorial explanation for the fat that (57) is the number ofspanning trees in the n-ube.x 110. [M27 ℄ Prove that if G is any onneted multigraph without self-loops, it has(G) >p(d1 � 1) : : : (dn � 1)spanning trees, where dj is the degree of vertex j.111. [05 ℄ List the nodes of the tree (58) in postpreorder.112. [15 ℄ If node p of a forest preedes node q in prepostorder and follows it inpostpreorder, what an you say about p and q?x 113. [20 ℄ How do prepostorder and postpreorder of a forest F relate to prepostorderand postpreorder of the onjugate forest FR? (See exerise 13.)114. [15 ℄ If we want to traverse an entire forest in prepostorder using Algorithm Q,how should we begin the proess?115. [20 ℄ Analyze Algorithm Q: How often is eah step performed, during the om-plete traversal of a forest?x 116. [28 ℄ If the nodes of a forest F are labeled 1 to n in prepostorder, say that node kis luky if it is adjaent to node k + 1 in F , unluky if it is three steps away, andordinary otherwise, for 1 � k � n; in this de�nition, node n + 1 is an imaginarysuper-root onsidered to be the parent of eah root.a) Prove that luky nodes our only on even-numbered levels; unluky nodes ouronly on odd-numbered levels.b) Show that the number of luky nodes is exatly one greater than the number ofunluky nodes, unless n = 0.117. [21 ℄ How many n-node forests ontain no unluky nodes?
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44 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6118. [M28 ℄ How many luky nodes are present in (a) the omplete t-ary tree with(tk�1)=(t�1) internal nodes? (b) the Fibonai tree of order k, with Fk+1�1 internalnodes? (See 2.3.4.5{(6) and Fig. 8 in Setion 6.2.1.)119. [21 ℄ The twisted binomial tree ~Tn of order n is de�ned reursively by the rules~T0 = ; ~Tn = ~TR0 ~TR1 ~TRn�1: : :0 1 n� 1 for n > 0:(Compare with 7.2.1.3{(21); we reverse the order of hildren on alternate levels.) Showthat prepostorder traversal of ~Tn has a simple onnetion with Gray binary ode.120. [22 ℄ True or false: The square of a graph is Hamiltonian if the graph is onnetedand has no bridges.121. [M32 ℄ (F. Neuman, 1964.) The derivative of a graph G is the graph G(0) obtainedby removing all verties of degree 1 and the edges touhing them. Prove that, when Tis a free tree, its square T 2 ontains a Hamiltonian path if and only if its derivative hasno vertex of degree greater than 4 and the following two additional onditions hold:i) All verties of degree 3 or 4 in T (0) lie on a single path.ii) Between any two verties of degree 4 in T (0), there is at least one vertex that hasdegree 2 in T .x 122. [31 ℄ (Dudeney's Digital Century puzzle.) There are many urious ways to obtainthe number 100 by inserting arithmetial operators and possibly also parentheses intothe sequene 123456789. For example,100 = 1 + 2� 3 + 4� 5� 6 + 7 + 8� 9 = (1 + 2� 3� 4)� (5� 6� 7� 8� 9)= ((1=((2 + 3)=4� 5 + 6))� 7 + 8)� 9 :a) How many suh representations of 100 are possible? To make this questionpreise, in view of the assoiative law and other algebrai properties, assumethat expressions are written in anonial form aording to the following syntax:h expression i ! hnumber i j h sum i j hprodut i j h quotient ih sum i ! h term i+ h term i j h term i � h term i j h sum i+ h term i j h sum i � h term ih term i ! hnumber i j h produt i j h quotient ihprodut i ! h fator i � h fator i j hprodut i � h fator i j (h quotient i)� h fator ih quotient i ! h fator i=h fator i j hprodut i=h fator i j (h quotient i)=h fator ih fator i ! hnumber i j (h sum i)hnumber i ! hdigit iThe digits used must be 1 through 9, in that order.b) Extend problem (a) by allowing multidigit numbers, with the syntaxh number i ! hdigit i j hnumber ihdigit iFor example, 100 = (1=(2 � 3 + 4)) � 567 � 89. What is the shortest suhrepresentation? What is the longest?) Extend problem (b) by also allowing deimal points:hnumber i ! hdigit string i j :hdigit string ihdigit string i ! hdigit i j hdigit string ihdigit iFor example, 100 = (:1� 2� 34� :5)=(:6� :789), amazingly enough.
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7.2.1.6 GENERATING ALL TREES 45123. [21 ℄ Continuing the previous exerise, what are the smallest positive integersthat annot be represented using onventions (a), (b), ()?

(a) (b)

()

(d)Fig. 42. \Organi" illustrations of binary trees.x 124. [40 ℄ Experiment with methods for drawing extended binary trees that are in-spired by simple models from nature. For example, we an assign a value v(x) to eahnode x, alled its Horton{Strahler number, as follows: Eah external (leaf) node hasv(x) = 0; an internal node with hildren (l; r) has v(x) = max(v(l); v(r))+[v(l)= v(r)℄.The edge from internal node x to its parent an be drawn as a retangle with heighth(v(x)) and width w(v(x)), and the edge retangles with hildren (l; r) an be o�set byangles �(v(l(x)); v(r(x))), ��(v(r(x)); v(l(x))), for ertain funtions h, w, and �. Theexamples in Fig. 42 show typial results when we hoose w(k) = 3 + k, h(k) = 18k,�(k; k) = 30Æ, �(j; k) = ((k+ 1)=j)� 20Æ for 0 � k < j, and �(j; k) = ((k� j)=k)� 30Æfor 0 � j < k; the roots appear at the bottom. Part (a) of Fig. 42 is the binary tree (4);part (b) is a random 100-node tree generated by Algorithm R; part () is the Fibonaitree of order 11, whih has 143 nodes; and part (d) is a random 100-node binary searhtree. (The trees in parts (b), (), and (d) learly belong to di�erent speies.)
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46 ANSWERS TO EXERCISES 7.2.1.6SECTION 7.2.1.61. It ould \see" a left parenthesis at the left of every internal node and a rightparenthesis at the bottom of every internal node. Alternatively, it ould assoiate rightparentheses with the external nodes that it enounters|exept for the very last ;see exerise 20.2. Z1. [Initialize.℄ Set zk  2k � 1 for 0 � k � n. (Assume that n � 2.)Z2. [Visit.℄ Visit the tree-ombination z1z2 : : : zn.Z3. [Easy ase?℄ If zn�1 < zn � 1, set zn  zn � 1 and return to Z2.Z4. [Find j.℄ Set j  n�1 and zn  2n�1. While zj�1 = zj �1, set zj  2j�1and j  j � 1.Z5. [Derease zj ℄. Terminate the algorithm if j = 1. Otherwise set zj  zj � 1and go bak to Z2.3. Label the nodes of the forest in preorder. The �rst zk � 1 elements of a1 : : : a2nontain k � 1 left parentheses and zk � k right parentheses. So there is an exess of2k�1�zk left parentheses over right parentheses when the \worm" �rst reahes node k ;and 2k � 1� zk is the level (or depth) of that node.Let q1 : : : qn be the inverse of p1 : : : pn, so that node k is the qkth node in postorder.Sine k ours to the left of j in p1 : : : pn if and only if qk < qj , we see that k is thenumber of nodes j that preede k in preorder but follow it in postorder, namely thenumber of anestors of k; again, this is the level of k.Alternative proof: We an also show that both sequenes z1 : : : zn and 1 : : : n haveessentially the same reursive struture as (5): Zpq = (Zp(q�1)+1p), 1(Z(p�1)q +1p�1)when 0 � p � q; and Cpq = Cp(q�1), (q�p)C(p�1)q. (Consider the mate of the last,next-to-last, et., left parenthesis.)Inidentally, the formula `k+1 + dk = k + 1' is equivalent to (11).4. Almost true; but d1 : : : dn and z1 : : : zn our in dereasing order, while p1 : : : pnand 1 : : : n are inreasing. (This lexiographi property for a sequene of permutationsp1 : : : pn is not automatially inherited from lexiographi order of the orrespondinginversion tables 1 : : : n; but the result does hold for this partiular lass of p1 : : : pn.)5. d1 : : : d15 = 02 0 0 2 0 0 1 0 3 2 0 1 0 4; z1 : : : z15 = 12 5 6 7 10 11 12 14 15 19 22 23 25 26;p1 : : : p15 = 21 5 4 8 10 9 7 11 6 13 15 14 12 3; 1 : : : 15 = 01 0 1 2 1 2 3 3 4 2 1 2 2 3.6. Math up the parentheses as usual; then simply url the string upand around until a2n beomes adjaent to a1, and notie that thedistintion between left and right parentheses an be reonstrutedfrom the ontext. Letting a1 orrespond to the bottom of the irle,as in Table 1, yields the diagram shown. [A. Errera, M�emoires dela Classe Si. 8Æ, Aad. Royale de Belgique (2) 11, 6 (1931), 26 pp.℄7. (a) It equals ))() : : : (); setting a1  `(' will restore the initialstring. (b) The initial binary tree (from step B1) will have been restored,exept that ln = n+ 1.8. l1 : : : l15 = 2 0 4 5 0 7 8 0 10 0 0 13 0 15 0; r1 : : : r15 = 3 0 0 6 0 12 11 9 0 0 0 0 14 0 0;e1 : : : e15 = 1 0 3 1 0 2 2 0 1 0 0 2 0 1 0; s1 : : : s15 = 1 0 12 1 0 5 3 0 1 0 0 3 0 1 0.9. Node j is an anestor of node k if and only if sj + j � k. (As a onsequene, wehave 1 + � � �+ n = s1 + � � �+ sn.)10. If j is the index zk of the kth left parenthesis, we have wj = k + 1 and wj0 = k,where j0 is the index of the mathing right parenthesis.
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7.2.1.6 ANSWERS TO EXERCISES 4711. Swap left and right parentheses in a2n : : : a1 to get the mirror image of a1 : : : a2n.12. The mirror reetion of (4) orresponds to the forestk12 k21k3f k44 k53k6a k78 k85k97 ka6kb9ke kdbked kf
;

but the signi�ane of transposition is learer, forest-wise, if we draw right-sibling andleft-hild links horizontally and vertially, then do a matrix-like transposition:k12k21 k3fk44k53 k6ak78k85 k97ka6
kb9 kekdb kedkf

k12 k21k3f k44 k53k6a k78 k85k97 ka6kb9ke kdbked kf13. (a) By indution on the number of nodes, we have preorder(FR) = postorder(F )Rand postorder(FR) = preorder(F )R.(b) Let F orrespond to the binary tree B; then preorder(F ) = preorder(B)and postorder(F ) = inorder(B), as noted after 2.3.2{(6). Therefore preorder(FT ) =preorder(BR) = postorder(B)R has no simple relationship to either preorder(F ) orpostorder(F ). But postorder(FT ) = inorder(BR) = inorder(B)R = postorder(F )R.14. Aording to answer 13, postorder(FRT ) = preorder(F ) = preorder(B) when Forresponds naturally to B; and postorder(FTR) = preorder(FT )R = postorder(B).Therefore the equation FRT = FTR holds if and only if F has at most one node.15. If FR orresponds naturally to the binary tree B0, the root of B0 is the root of F 'srightmost tree. The left link of node x in B0 is to the leftmost hild of x in FR, whihis the rightmost hild of x in F ; similarly, the right link is to x's left sibling in F .Note: Sine B orresponds naturally to FRT, answer 13 tells us that inorder(B) =postorder(FRT ) = postorder(FR)R = preorder(F ).16. The forest F jG is obtained by plaing the trees of F below the �rst node of G inpostorder. Assoiativity follows beause F j(GjH) = (HTGTFT )T = (F jG)jH. Notie,inidentally, that postorder(F jG) = postorder(F )postorder(G), and that F j (GH) =(F jG)H when G is nonnull.17. Any nonnull forest an be written F = (G j �)H, where � denotes the 1-node forest;then FR = HR(GR j �) and FT = (HT j �)GT . In partiular we annot have FR = FTunless H is the null forest �, sine the �rst tree of HR an't be HT j � ; and G mustthen also be �. Furthermore F = FT if and only if G = HT . In that ase we annotalso have FR = FRT unless G = �; the �rst tree of GTR would otherwise have morenodes than G itself.
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48 ANSWERS TO EXERCISES 7.2.1.6It appears to be true that we annot have FRT = FTR unless F = FR. Underthat assumption, FRT = FTR if and only if F and FT are both self-onjugate. DavidCallan has disovered two in�nite families of suh forests, with parameters i; j; k � 0:
F = i i

ij ;
FT = ii ij ; or F =

i i
i i

i ii i
k
j

j j
j

; FT =
i

i i ii i
i i
j jkj j

:

(In these examples, i = 2, j = 3, and k = 5.) Are there any other ases?18. The C15 = 9;694;845 forests are partitioned into 20,982 lasses. The largest isa yle of length 58,968, one of whose elements is ((()(()))())()((()(())())())().The shortest are six two-element lasses (orresponding to exerise 17), onsisting of()()()()()()()()()()()()()()(); ()()()()((()()()()()))()()()();()()()(((((()()()())))))()()(); ()()((((((((()()()))))))))()();()((()())((()(())()))(()()))(); ()(((((((((((()())))))))))))();and their transposes. The somewhat strange strings (((((((())))))))()()()()()()(),()()()()()()()(((((((()))))))), and (((((((()()()()()()()()))))))) eah havewedge-shaped binary trees and form a unique lass of size 3. The path that runs from()((()(()()))(())((()())()))() to ((()())(()())(())(()())(()())) has 3120 el-ements, one of whih is (2). Aording to the onjeture in answer 19, the shortestpossible yle has length 6; when n = 15 there are 66 suh yles. (The next-shortestyle, whih is unique, has length 10 and inludes ()(()()())()((((())()))((()))).)19. The transformation from Fj to Fj+1 by Algorithm P an be paraphrased as follows:\Find the last node in preorder, say x, that has a left sibling, say y. Remove x fromits family and make it the new rightmost hild of y. And if x < n, hange all of x'sdesendants x+ 1, : : : , n into trivial one-node trees."The transformation that takes FRj into FRj+1 an therefore be stated as follows,if we reall that the kth node of Fj in preorder is the kth-from-last node of FRj inpostorder: \Find the �rst node in preorder, say x, that has a right sibling, say y.Remove x from its family and make it the new leftmost hild of y. And if x < n,hange all of x's desendants x+ 1, : : : , n into trivial one-node trees."Similarly, we an paraphrase the transformation from Gj to Gj+1 that is spei�edby Algorithm B: \Find j, the root of the leftmost nontrivial tree; then �nd k, itsrightmost hild. Remove k and its desendants from j's family, and insert them betweenj and j's right sibling. Finally, if j > 1, make j and its siblings all hildren of j � 1,and j � 1 a hild of j � 2, et."When this transformation hanges the left-sibling/right-hild representation fromGRTj to GRTj+1 (see exerise 15), it turns out to be idential to the transformation thattakes FRj to FRj+1 in the left-hild/right-sibling representation. Therefore GRTj = FRj ,beause this identity learly holds when j = 1.
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7.2.1.6 ANSWERS TO EXERCISES 49(It follows that the sequene of tables e1 : : : en�1 for the binary trees generatedby Algorithm B is exatly the sequene of tables dn�1 : : : d1 for the parenthesis stringsgenerated by Algorithm P; this phenomenon is illustrated in Tables 1 and 2.)The forest FRTR is alled the dual of F ; see exerise 26(f). Several symmetriesbetween lists of forests have been explored by M. C. Er, Comp. J. 32 (1989), 76{85.20. (a) This assertion, whih generalizes Lemma 2.3.1P, is readily proved by indution.(b) The following proedure is, in fat, almost idential to Algorithm P:T1. [Initialize.℄ Set b3k�2  3 and b3k�1  b3k  0 for 1 � k � n; also set b0  bN  0 and m N � 3, where N = 3n+ 1.T2. [Visit.℄ Visit b1 : : : bN . (Now bm = 3 and bm+1 : : : bN = 0 : : : 0.)T3. [Easy ase?℄ Set bm  0. If bm�1 = 0, set bm�1  3, m m� 1, and go to T2.T4. [Find j.℄ Set j  m � 1 and k  N � 3. While bj = 3, set bj  0, bk  3,j  j � 1, and k  k � 3.T5. [Inrease bj .℄ Terminate the algorithm if j = 0. Otherwise set bj  3, m N �3,and return to T2.[See S. Zaks, Theoretial Comp. Si. 10 (1980), 63{82. In that artile, Zaks pointedout that it is even easier to generate the sequene z1 : : : zn of indies j suh that bj = 3,using an algorithm virtually idential to the answer to exerise 2, beause a valid ternarytree ombination z1 : : : zn is haraterized by the inequalities zk�1 < zk � 3k � 2.℄21. For this problem we an essentially ombine Algorithm P with Algorithm 7.2.1.2L.We shall assume for onveniene that nt > 0 and n1 + � � �+ nt > 1.G1. [Initialize.℄ Set l  N . Then for j = t, : : : , 2, 1 (in this order), do the followingoperations nj times: Set bl�j  j, bl�j+1  � � �  bl�1  0, and l  l � j.Finally set b0  bN  0  0 and m N � t.G2. [Visit.℄ Visit b1 : : : bN . (At this point bm > 0 and bm+1 = � � � = bN = 0.)G3. [Easy ase?℄ If bm�1 = 0, set bm�1  bm, bm  0, m m� 1, and return to G2.G4. [Find j.℄ Set 1  bm, bm  0, j  m � 1, and k  1. While bj � k, setk  k + 1, k  bj , bj  0, and j  j � 1.G5. [Inrease bj .℄ If bj > 0, �nd the smallest l � 1 suh that bj < l, and interhangebj $ l. Otherwise, if j > 0, set bj  1 and 1  0. Otherwise terminate.G6. [Reverse and spread out.℄ Set j  k and l  N . While j > 0, set b l�j  j ,l l � j , and j  j � 1. Then set m N � k and go bak to G2.This algorithm assumes that N > n1+2n2+ � � �+ tnt. [See SICOMP 8 (1979), 73{81.℄22. Note �rst that d1 an be inreased if and only if r1 = 0 in the linked representation.Otherwise the suessor of d1 : : : dn�1 is obtained by �nding the smallest j with dj > 0and setting dj  0, dj+1  dj+1 + 1. We may assume that n > 2.K1. [Initialize.℄ Set lk  k + 1 and rk  0 for 1 � k < n; also set ln  rn  0.K2. [Visit.℄ Visit the binary tree represented by l1l2 : : : ln and r1r2 : : : rn.K3. [Easy ases?℄ Set y  r1. If y = 0, set r1  2, l1  0, and return to K2.Otherwise if l1 = 0, set l1  2, r1  r2, r2  l2, l2  0, and return to K2.Otherwise set j  2 and k  1.K4. [Find j and k.℄ If rj > 0, set k  j and y  rj . Then if j 6= y � 1, set j  j + 1and repeat this step.
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50 ANSWERS TO EXERCISES 7.2.1.6K5. [Shu�e subtrees.℄ Set lj  y, rj  ry, ry  ly, and ly  0. If j = k, go to K2.K6. [Shift subtrees.℄ Terminate if y = n. Otherwise, while k > 1, set k  k � 1, j  j�1, and rj  rk. Then while j > 1, set j  j�1 and rj  0. Return to K2.(See the analysis in exerise 45. Korsh [Comp. J. 48 (2005), 488{497℄ has shown thatthis algorithm an be extended in an interesting way to t-ary trees; and he has alsofound an eÆient t-ary generalization of Algorithm B.)23. (a) Sine zn begins at 2n � 1 and goes bak and forth Cn�1 times, it ends at2n � 1 � (Cn�1 mod 2), when n > 1. Furthermore the �nal value of zj is onstant forall n � j. Thus the �nal string z1z2 : : : is 1 2 5 6 9 11 13 14 17 19 : : : , ontaining allodd numbers < 2n exept 3, 7, 15, 31, : : : .(b) Similarly, the preorder permutation that haraterizes the �nal tree is 2k 2k�1: : : 1 3 5 6 7 9 10 : : : , where k = blgn. Forestwise, node 2j is the parent of 2j�1 nodesf2j�1; 2j�1 + 1; : : : ; 2j � 1g, for 1 < j � k, and the trees f2k + 1; : : : ; ng are trivial.Note: If Algorithm N is restarted at step N2 after it has terminated, it will generatethe same sequene, but bakwards. Algorithm L has the same property.24. l0 l1 : : : l15 = 20 1 0 3 0 0 6 5 0 8 0 0 12 11 4; r1 : : : r15 = 015 0 10 7 0 0 9 0 14 13 0 0 0 0;k1 : : : k15 = 00 2 2 4 5 5 4 8 4 10 11 11 10 2; q1 : : : q15 = 21 15 4 3 10 8 5 7 6 9 14 11 13 12; andu1 : : : u15 = 12 3 1 0 0 5 0 3 1 0 0 1 0 1 0. (If nodes of the forest F are numbered in post-order, kj is the left sibling of j; or, if j is the leftmost hild of p, kj = kp. Statedanother way, kj is the parent of j in the forest FTR. And kj is also j� 1�un+1�j , thenumber of elements to the left of j in q1 : : : qn that are less than j.)25. Taking a ue from Algorithms N and R, we want to extend eah (n� 1)-node treeto a list of two or more n-node trees. The idea in this ase is to make n a hild ofn� 1 in the binary tree at the beginning and the end of every suh list. The followingalgorithm uses additional link �elds pj and sj , where pj points to the parent of j in theforest, and sj points to j's left sibling or to j's rightmost sibling if j is the leftmost inits family. (These pointers pj and sj are, of ourse, not the same as the permutationsp1 : : : pn in Table 1 or the sope oordinates s1 : : : sn in Table 2. In fat s1 : : : sn is thepermutation � of exerise 33 below.)M1. [Initialize.℄ Set lj  j+1, rj  0, sj  j, pj  j�1, and oj  �1 for 1 � j � n,exept that ln  0.M2. [Visit.℄ Visit l1 : : : ln and r1 : : : rn. Then set j  n.M3. [Find j.℄ If oj > 0, set k  pj and go to M5 if k 6= j � 1. If oj < 0, set k  sjand go to M4 if k 6= j � 1. If k = j � 1 in either ase, set oj  �oj , j  j � 1,and repeat this step.M4. [Transfer down.℄ (At this point k is j's left sibling, or the rightmost member ofj's family.) If k � j, terminate if j = 1, otherwise set x pj , lx  0, z  k, andk  0 (thereby detahing node j from its parent and heading for the top level).But if k < j, set x  pj + 1, z  sx, rk  0, and sx  k (thereby detahingnode j from k and going down a level). Then set x  k + 1, y  sx, sx  z,sj  y, ry  j, and x j. While x 6= 0, set px  k and x rx. Return to M2.M5. [Transfer up.℄ (At this point k is j's parent.) Set x  k + 1, y  sj , z  sx,sx  y, and ry  0. If k 6= 0, set y  pk, rk  j, sj  k, sy+1  z, and x j;otherwise set y  j � 1, ly  j, sj  z, and x j. While x 6= 0, set px  y andx rx. Return to M2.
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7.2.1.6 ANSWERS TO EXERCISES 51Running time notes: We an argue as in exerise 44 that step M3 osts 2Cn+3(Cn�1+� � �+C1) mems, and that steps M4 and M5 together ost 8Cn�2(Cn�1+ � � �+C1), plustwie the number of times x rx. The latter quantity is diÆult to analyze preisely;for example, when n = 15 and j = 6, the algorithm sets x rx exatly (1; 2; 3; 4; 5; 6)times in respetively (45; 23; 7; 9; 2; 4) ases. But heuristially the average number oftimes x  rx should be approximately 2 � 2j�n when j is given, therefore about(2Cn � (Cn � Cn�1)� (Cn�1 � Cn�2)=2� (Cn�2 � Cn�3)=4� � � � )=Cn � 8=7 overall.Empirial tests on�rm this predited behavior, showing that the total ost per treeapproahes 265=21 � 12:6 mems as n!1.26. (a) The ondition is learly neessary. And if it holds, we an uniquely onstrut F :Node 1 and its siblings are the roots of the forest, and their desendants are de�nedindutively by nonrossing partitions. (In fat, we an ompute the depth oordinates1 : : : n diretly from �'s restrited growth sequene a1 : : : an: Set 1  0 and i0  0.For 2 � j � n, if aj > max(a1; : : : ; aj�1), set j  j�1 + 1 and iaj  j , otherwiseset j  iaj .)(b) If � and � 0 satisfy the nonrossing ondition, so does their greatest ommonre�nement � _� 0, so we an proeed as in exerise 7.2.1.5{12(a).() Let x1, : : : , xm be the hildren of some node in F , and let 1 � j < k � m.Form F 0 by removing xj+1, : : : , xk from their family and reattahing them as hildrenof xj+1 � 1, the rightmost desendant of xj .(d) Obvious, by (). Thus the forests are ranked from bottom to top by the numberof nonleaf nodes they ontain (whih is one less than the number of bloks in �).(e) ExatlyPnk=0 ek(ek�1)=2, where e0 = n�e1�� � ��en is the number of roots.(f) Dualization is similar to the transposition operation in exerise 12, but we useleft-sibling and right-hild links instead of left-hild and right-sibling, and we transposeabout the minor diagonal:k12k21 k3fk44k53 k6ak78k85 k97ka6
kb9 kekdb kedkf

k12k21

k3f
k44k53
k6ak78k85k97ka6 kb9
kekdbkedkf

(\Right" links now point downward. Notie that j is the rightmost hild of k in F ifand only if j is the left sibling of k in FD . Preorder of FD reverses the preorder of F ,just as postorder of FT reverses postorder of F .)(g) From (f) we an see that F 0 overs F if and only if FD overs F 0D . (ThereforeFD has n+ 1� k leaves if F has k.)(h) F ^ F 0 = (FD _ F 0D)D.(i) No. If it did, equality would neessarily hold, by duality. But, for example,0101 ^ 0121 = 0000 and 0101 _ 0121 = 0123, while leaves(0101) + leaves(0121) 6=leaves(0000) + leaves(0123).[Nonrossing partitions were �rst onsidered by H. W. Beker in Math. Mag. 22(1948), 23{26. G. Kreweras proved in 1971 that they form a lattie; see the referenesin answer 2.3.4.6{3.℄
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52 ANSWERS TO EXERCISES 7.2.1.627. (a) This assertion is equivalent to exerise 2.3.3{19.(b) If we represent a forest by right-hild and left-sibling links, preorder or-responds to inorder of the binary tree (see exerise 2.3.2{5), and sj is the size ofnode j's right subtree. Rotation to the left at any nonleaf of this binary tree dereasesexatly one of the sope oordinates, and the amount of derease is as small as possibleonsistent with a valid table s1 : : : sn. Therefore F 0 overs F if and only if F is obtainedfrom F 0 by suh a rotation. (Rotation in the left-hild=right-sibling representation issimilar, but with respet to postorder.)() Dualization preserves the overing relation but exhanges left with right.(d) F > F 0 = (FD ? F 0D)D. Equivalently, as noted in exerise 6.2.3{32, we anindependently minimize the left-subtree sizes.(e) The overing transformation in answer 26() obviously makes sj � s0j for all j.(f) True, beause F ^ F 0 < F a F ? F 0 and F ^ F 0 < F 0 a F ? F 0.(g) False; for example, 0121 _ 0122 = 0123 and 0121> 0122 = 0122. (But we dohave F > F 0 a F _ F 0, by taking duals in (f).)(h) The longest path, of length �n2�, repeatedly dereases the rightmost nonzero sjby 1. The shortest, of length n� 1, repeatedly sets the leftmost nonzero sj to 0.Answer 6.2.3{32 gives many referenes to the literature of Tamari latties.28. (a) Just ompute min(1; 01) : : :min(n; 0n) and max(1; 01) : : :max(n; 0n), be-ause 1 : : : n is a valid sequene if and only if 1 = 0 and j � j�1 + 1 for 1 < j � n.(b) Obvious beause of (a). Note: The elements of any distributive lattie an berepresented as the order ideals of some partial ordering. In the ase of Fig. 41,that partial ordering is shown at the right, and a similar triangular grid withsides of length n� 2 yields Stanley's lattie of order n.() Take a node k of F that has a left sibling, j. Remove k from its family andplae it as a new right hild of j, followed by its former hildren as new hildren of j;the former hildren of k retain their own desendants. (This operation orrespondsto hanging )( to () in a nested parenthesis string. Thus a \perfet" Gray odefor parentheses orresponds to a Hamiltonian path in the over graph of Stanley'slattie. Exatly 38 suh paths exist when n = 4, namely (8; 6; 6; 8; 4; 6) from 0123 to(1001; 0010; 0012; 0100; 0111; 0120) respetively.)(d) True, beause the over relation in () is left-right symmetri. (We haveF � F 0 if and only if wj � w0j for 0 � j � 2n, where the worm depths wj are de�nedin exerise 10. If w0 : : : w2n is the worm walk of F , its reverse w2n : : : w0 is the wormwalk of FR. Notie that the over relation hanges just one oordinate wj . One anompute F \ F 0 and F [ F 0 by taking min and max of the w's instead of the 's.)(e) See exerise 9. (Thus F ? F 0 � F \ F 0, et., as in exerise 27(f).)Notes: Stanley introdued this lattie in Fibonai Quarterly 13 (1975), 222{223.Sine three important latties are de�ned on the same elements, we need three notationsfor the di�erent orderings; the symbols <, a , and � adopted here are intended to bereminisent of the names of Kreweras, Tamari, and Stanley (who is Stenli in Russia).29. If we paste six regular pentagons together, we get 14 verties whose oordinatesafter suitable rotation and saling are respetivelyp1010 = p�0000 = p�3000 = p��2100 = (�1;p3; 2=�);p0010 = p�3100 = (��2;p3�; 0); p3010 = p�0100 = (0; 0; 2); p3210 = p�0200 = (2; 0; 2=�);p0210 = p�3200 = (p5;p3; 0); p1000 = p�2000 = (��2;p3=�; 0);
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7.2.1.6 ANSWERS TO EXERCISES 53here (x; y; z)� means (x;�y; z) and (x; y; z)� means (x; y;�z). But then the three4-edged \faes" are not squares; in fat, they don't even lie in a plane.(One an however get a similar-looking solid, with true squares but irregularpentagons, by gluing together two suitable tetrahedra and lopping o� the three glued-together orners. Alternative sets of oordinates for the assoiahedron, of substantialmathematial interest but less appealing to the eye, are disussed by G�unter Ziegler inhis Letures on Polytopes (New York: Springer, 1995), example 9.11.)30. (a) �fn�1 : : : �f1 0, beause internal node j in symmetri order has a nonempty rightsubtree if and only if internal node j+1 in symmetri order has an empty left subtree.(b) In general if the footprint were 1p10q1+11p2+10q2+1 : : : 1pk+10qk+1, we wouldwant to ount all binary trees whose nodes in symmetri order have the spei�ationRp1NLq1BRp2NLq2B : : : RpkNLqk , where B means \both subtrees are nonempty,"R means \the right subtree is nonempty but not the left," L means \the left subtreeis nonempty but not the right," and N means \neither subtree is nonempty." Thisnumber in general is �p1 + q1p1 ��p2 + q2p2 � : : :�pk + qkpk �Ck�1;and in partiular it is �1+01 ��0+00 ��1+01 ��5+35 ��0+00 ��0+00 ��0+20 ��0+00 ��1+21 �C8 = 240240.() dj = 0 if and only if j+1 > j , by exerise 3.(d) In general, the footprint of F ?F 0 is f1 : : : fn ^ f 01 : : : f 0n, by exerise 27(a); thefootprint of F > F 0 is f1 : : : fn _ f 01 : : : f 0n, by (a) and exerise 27(d).[The fat that omplements always exist in the Tamari lattie is due to H. Lakser;see G. Gr�atzer, General Lattie Theory (1978), exerise I.6.30.℄31. (a) 2n�1; see exerise 6.2.2{5.(b) 1 � � � � � n; d1, : : : , dn�1 � 1; ej > 0 implies ej + � � � + en = n � j;kj+1 � kj + 1; p1 � � � � � pj � � � � � pn for some j; sj > 0 implies sj = n � j;u1 � � � � � un; zj+1 � zj +2. (Other onstraints, whih apply in general, whittle downthe number of possibilities to 2n�1 in eah ase. For example, u1 : : : un must be a validsequene of sope oordinates.)() True in only n ases out of 2n�1. (But FT is degenerate.)(d) The degenerate forest with footprint f1 : : : fn has j+1 = j + fj . Elementsj < k are siblings if and only if fj = fj+1 = � � � = fk�1 = 0. Thus if F 00 is thedegenerate forest with footprint f1 : : : fn ^ f 01 : : : f 0n, then F 00 < F and F 00 < F 0; heneF 00 < F ^ F 0 a F ? F 0. And we also have F ? F 0 a F 00 by (b). A similar argumentproves that F _F 0 = F >F 0 is the degenerate forest with footprint f1 : : : fn _ f 01 : : : f 0n.Thus, when the Kreweras and Tamari latties are restrited to degenerate forests,they beome idential to the Boolean lattie of subsets of f1; : : : ; n� 1g. [This result,in the ase of Tamari latties, is due to George Markowsky, Order 9 (1992), 265{290,whose paper also shows that Tamari latties enjoy many further properties.℄32. Suppose F and F 0 have sope oordinates s1 : : : sn and s01 : : : s0n. Call index jfrozen if sj < s0j or j = 0. We want to speify the values of the frozen oordinates andmaximize the others. Let s0 = n, and for 0 � k � n lets00k = sj � k + j; where j = maxfi j 0 � i � k, i is frozen, and i+ si � kg.Sine sk � sj � (k � j) whenever 0 � k � j � sj , we have s00k � sk, with equality whenk is frozen.
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54 ANSWERS TO EXERCISES 7.2.1.6The sopes s000s001 : : : s00n orrespond to a valid forest aording to the ondition ofexerise 27(a). For if k � 0 and 0 � l � s00k = sj � k+ j and s00k+l = sj0 � k� l+ j0, wehave s00k+l + l � s00k if 0 � j0 � j � sj , beause sj0 + j0 � j � sj in that ase. And wean't have j > j0 or j0 > j + sj , beause j + sj � k + l � j0.Let F 000 be a forest with sopes satisfying sk � s000k � s00k . Then min(s0k; s000k ) = sk,beause sk = s00k when k is frozen, otherwise sk = s0k.Conversely, if F 000 is a forest with F 0 ? F 000 = F , we must have sk � s000k � s00k .For s000k < sk would imply s000k < s0k. And if k is minimal with s000k > s00k , we haves00k = sj � k+ j for some frozen j with 0 � j � k and j+ sj � k. Then s000j � sj impliesk � j � s000j , hene s000k + k � j � s000j . If j < k we have s000j � s00j = sj , a ontradition.But j = k implies min(s000k ; s0k) > sk.To get the �rst semidistributive law, apply this priniple with F replaed by F?Gand F 0 replaed by F ; then the hypotheses F a G a F 00 and F a H a F 00 imply thatF a G>H a F 00. The seond semidistributive law follows by taking duals in the �rst.(Ralph Freese suggests alling F 00 the pseudo-omplement of F 0 over F .)33. (a) Let k� = LLINK[k℄ if LLINK[k℄ 6= 0, otherwise RLINK[k � 1℄ if k 6= 1, otherwisethe root of the binary tree. This rule de�nes a permutation beause k� = j if and onlyif k = parent(j) + [j is a right hild℄, or k = 1 and j is the root. Also k� � k whenLLINK[k℄ = 0 and k�� � k when RLINK[k℄ = 0. [For a generalization to t-ary trees,see P. H. Edelman, Disrete Math. 40 (1982), 171{179.℄(b) Using the representation of (2) in answer 26(f), we see that �(F ) is (3 1)(2)(12 6 4)(5)(11 7)(14 13)(9 8)(15)(10) in that ase. In general the yles are the familiesof the forest, in dereasing order within eah yle; nodes are numbered in preorder.[See Dershowitz and Zaks, Disrete Math. 62 (1986), 215{218.℄() �(FD) = ����, where � is the \ip" permutation (1n)(2n�1) : : : , beause thedual forest interhanges LLINK$ RLINK and ips the preorder numbering.(d) The yle breakup (xj xk)(x1 : : : xm) = (x1 : : : xjxk+1 : : : xm)(xj+1 : : : xk) or-responds to answer 26().(e) By (d), eah overing path orresponds to a fatorization of (n : : : 2 1). Letqn denote the number of suh fatorizations. Then we have the reurrene q1 = 1 andqn =Pn�1l=1 (n� l)�n�2l�1�qlqn�l, beause there are n� l hoies with k � j = l by whihthe �rst transposition breaks the yle into parts of sizes l and n� l, then �n�2l�1� waysto interleave the subsequent fators. The solution is qn = nn�2, beausen�1Xl=1�n� 1l �l l�1(y � l)n�1�l = limx!0 n�1Xl=1�n� 1l �(x+ l)l�1(y � l)n�1�l
= limx!0 (x+ y)n�1 � yn�1x = (n� 1)yn�1:[See J. D�enes, Magyar Tudom�anyos Akad�emia Matematikai Kutat�o Int�ezet�enekK�ozlem�enyei 4 (1959), 63{70. It is natural to seek a orrespondene between fatoriza-tions and labeled free trees, sine there also happen to be nn�2 of the latter. Perhapsthe simplest is the following, given (1 2 : : : n) = (x1 y1) : : : (xn�1 yn�1) where xj < yj :Suppose the yle ontaining xj and yj in (xj yj) : : : (xn�1 yn�1) is (z1 : : : zm), wherez1 < � � � < zm. If yj = zm, let aj = z1, otherwise let aj = minfzi j zi > xjg. Then onean show that a1 : : : an�1 is a \wake-up sequene" for parking n� 1 ars, and exerise6.4{31 onnets it to free trees.℄
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7.2.1.6 ANSWERS TO EXERCISES 5534. Eah overing path from bottom to top is equivalent to a Young tableau of shape(n� 1; n� 2; : : : ; 1), so we an use Theorem 5.1.4H. (See exerise 5.3.4{38.)[The enumeration of suh paths in Tamari latties remains mysterious; the relevantsequene is 1, 1, 2, 9, 98, 2981, 340549, : : : :℄35. Multiply by n+ 1, then see AMM 97 (1990), 626{630.36. We might as well generalize to t-ary trees for arbitrary t � 1, by making obviousamendments to steps T1{T5. Let C(t)n be the number of t-ary trees with n internalnodes; thus Cn = C(2)n and C(t)n = ((t � 1)n + 1)�1�tnn �. If h of the degrees bj arehanged between visits, we have h � x in C(t)n�x ases. So the easy ase ours withprobability 1�C(t)n�1=C(t)n � 1� (t� 1)t�1=tt, and the average number of times bj  0in step T4 is (C(t)n�1+ � � �+C(t)1 )=C(t)n � (t�1)t�1=(tt� (t�1)t�1), or 4/23 when t = 3.Indeed, we an also study the t-ary reursive struture A(t)pq = 0A(t)p(q�1), t A(t)(p�1)qwhen 0 � (t � 1)p � q 6= 0, generalizing (5). The number of suh degree sequenes,C(t)pq , satis�es the reurrene (21) exept that C(t)pq = 0 when p < 0 or (t�1)p > q. Thegeneral solution isC(t)pq = q � (t�1)p+ 1q + 1 �p+ qp � = �p+ qp �� (t�1)�p+ qp� 1�;and we have C(t)n = C(t)n((t�1)n). The triangle for t = 3 beginsas shown at the right.
111 11 21 3 31 4 71 5 12 121 6 18 301 7 25 55 551 8 33 88 14337. The basi lexiographi reursion for all suh forests isA(n0; n1; : : : ; nt) = 0A(n0 � 1; n1; : : : ; nt);1A(n0; n1 � 1; : : : ; nt); : : : ; t A(n0; n1; : : : ; nt � 1)when n0 > n2 + 2n3 + � � �+ (t�1)nt and n1, : : : , nt � 0; otherwise A(n0; n1; : : : ; nt) isempty, exept that A(0; : : : ; 0) = � is the sequene onsisting of the empty string alone.Step G1 omputes the �rst entry of A(n0; : : : ; nt). We want to analyze �ve quantities:C, the number of times G2 is exeuted (the total number of forests);E, the number of times G3 goes to G2 (the number of easy ases);K, the number of times G4 moves some bi into list ;L, the number of times G5 ompares bj with some i;Z, the number of times G5 sets 1  0.Then the loop in step G6 sets bl�j  j a total of K � Z � n1 � � � � � nt times.Let n be the vetor (n0; n1; : : : ; nt), and let ej be the unit vetor with 1 inoordinate position j. Let jnj = n0 + n1 + � � � + nt and knk = n1 + 2n2 + � � � + tnt.Using this notation we an rewrite the basi reurrene above in the onvenient formA(n) = 0A(n� e0); 1A(n� e1); : : : ; t A(n� et) when jnj > knk.Consider the general reurrene relationF (n) = f(n) + � tXj=0 F (n� ej)�[jnj > knk℄;

55



56 ANSWERS TO EXERCISES 7.2.1.6with F (n) = 0 whenever the vetor n has a negative omponent. If f(n) = [jnj=0℄,then F (n) = C(n) is the total number of forests. Answer 2.3.4.4{32 tells us thatC(n) = (jnj � 1)! (jnj � knk)n0!n1! : : : nt! = tXj=0 (1� j)� jnj � 1n0; : : : ; nj�1; nj � 1; nj+1; : : : ; nt�;generalizing the formula for C(t)pq in answer 26 (whih is the ase n0 = (t� 1)q+ 1 andnt = p). Similarly, we obtain reurrenes for the other quantities E(n), K(n), L(n),and Z(n) needed in our analysis by hoosing other kernel funtions f(n):f(n) = [jnj = n0 + 1 and n0 > knk℄ yields F (n) = E(n);f(n) = [jnj > n0 ℄ yields F (n) = E(n) +K(n);f(n) = [jnj = knk+ 1℄ yields F (n) = C(n) +K(n)� Z(n);f(n) =P1�j<k�t nj [nk> 0℄ yields F (n) = L(n):The symboli methods of exerise 2.3.4.4{32 do not seem to yield quik solutionsto these more general reurrenes, but we an readily establish the value of C � E bynoting that bm +m < N in step G2 if and only if the previous step was G3. ThereforeC(n)� E(n) = tXj=1C(n� fj); where fj = ej � (j�1)e0 ;this sum ounts the subforests in whih n1+ � � �+ nt, the number of internal (nonleaf)nodes, has dereased by 1. Similarly we an letC(x)(n) =XfC(n� i1f1 � � � � � itft) j i1 + � � �+ it = xgbe the number of subforests having n1 + � � �+ nt � x internal nodes. Then we haveK(n)� Z(n) = jnjXx=1C(x)(n);a formula analogous to (20), beause k � [bj =0℄ � x � 1 in step G5 if and onlyif bm�x > 0 and bm�x+1 � � � � � bm. Suh preorder degree strings are in one-to-one orrespondene with the forests of C(x)(n) if we remove bm�x+1 : : : bm and anappropriate number of trailing 0s from the string b1 : : : bN .From these formulas we an onlude that the Zaks{Rihards algorithm needsonly O(1) operations per forest visited, whenever n1 = n2 + � � � + nt + O(1), beauseC(n� fj)=C(n) = njnj�10 =(jnj � 1) j � 1=4 +O(jnj�1) when j > 1. Indeed, the valueof K is quite small in nearly all ases of pratial interest. However, the algorithm anbe slow when n1 is large. For example, if t = 1, n0 = m + r + 1, and n1 = m, thealgorithm essentially omputes all r-ombinations of m+ r things; then C(n) = �m+rr �and K(n) � Z(n) = �m+rr+1 � = 
(mC(n)) when r is �xed. [To ensure eÆieny inall ases, we an keep trak of trailing 1s; see Ruskey and Roelants van Baronaigien,Congressus Numerantium 41 (1984), 53{62.℄Exat formulas for K, Z, and (espeially) L do not seem to be simple, but we anompute those quantities as follows. Say that the \ative blok" of a forest is the right-most substring of nonzero degrees; for example, the ative blok of 302102021230000000is 2123. All permutations of the ative blok our equally often. Indeed, let D(n)denote the sum of \trailing zeros(�)� 1" over all preorder degree strings � for forests
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7.2.1.6 ANSWERS TO EXERCISES 57of spei�ation n. Then a blok with n0j ourrenes of j for 1 � j � t is ative inexatly D(n� n01f1 � � � � � n0tft) + [n01 + � � �+ n0t=n1 + � � �+ nt ℄ ases. For example,given the string 3021020000, we an insert 21230000 in three plaes to obtain a forestwith ative blok 2123. The ontributions to K and L when the ative blok is ushleft (not preeded by any 0s) an be omputed as in exerise 7.2.1.2{6, namelyk(n) = w(en1(z) : : : ent(z)); l(n) = w�en1(z) : : : ent(z) X1�i<j�t(ni � zri(z))rj(z)�in the notation of that answer. Analogous ontributions our in general; thereforeK(n) = k(n)+XD(n�n0)k(n0); L(n) = l(n)+XD(n�n0)l(n0); Z(n) =XD(n�n0);summed over all vetors n0 suh that n0j � nj for 1 � j � t and jn0j � kn0k = jnj � knkand n01 + � � �+ n0t � n1 + � � �+ nt � 2.It remains to determine D(n). Let C(n; j) be the number of forests of spei�ationn = (n0; : : : ; nt) in whih the last internal node in preorder has degree j. Then we haveC(n) = tXj=1C(n; j) and C(n+e1; 1) = C(n+e2; 2) = � � � = C(n+et; t) = C(n)+D(n):From this in�nite system of linear equations we an dedue that C(n) +D(n) isn2Xi2=0 : : : ntXit=0(�1)i2+���+it� i2 + � � �+ iti2; : : : ; it �C(n+ (1+i2+ � � � +it)e1 � i2f2 � � � � � itft):Simpler expressions would of ourse be desirable, if they exist.38. Step L1 obviously uses 4n+2 mems. Step L3 exits to L4 or L5 exatly Cj �Cj�1times with a partiular value of j; therefore it osts 2Cn+3Pnj=0(n� j)(Cj�Cj�1) =2Cn +3(Cn�1 + � � �+C1 +C0) mems. Steps L4 and L5 jointly ost a total of 6Cn � 6.Therefore the entire proess involves 9 +O(n�1=2) mems per visit.39. A Young tableau of shape (q; p) and entries yij orresponds to an element of Apqthat has left parens in positions p + q + 1 � y21, : : : , p + q + 1� y2p and right parensin positions p+ q + 1� y11, : : : , p+ q + 1� y1q. The hook lengths are fq + 1; q; : : : ; 1;p; p�1; : : : ; 1gnfq�p+1g; so Cpq = (p+q)!(q�p+1)=(p!(q+1)!) by Theorem 5.1.4H.40. (a) Cpq = �p+qp �� �p+qp�1� � �p+qp � + �p+qp�1� = �p+q+1p � (modulo 2); now use exerise1.2.6{11. (b) By Eq. 7.1{(00) we know that �(n& (n+ 1)) = �(n+ 1)� 1.41. It equals C(wz)/(1�zC(wz)) = 1/(1�z�wzC(wz)) = (1�wC(wz))/(1�w�z),where C(z) is the Catalan generating funtion (18). The �rst of these formulas, C(wz)+zC(wz)2+z2C(wz)3+� � � , is easily seen to be equivalent to (24). [See P. A. MaMahon,Combinatory Analysis 1 (Cambridge Univ. Press, 1915), 128{130.℄42. (a) Elements a1 : : : an determine an entire self-onjugate nested string a1 : : : a2n,and there are Cq(n�q) possibilities for a1 : : : an having exatly q right parentheses. Sothe answer is bn=2Xq=0 Cq(n�q) = bn=2Xq=0 ��nq �� � nq � 1�� = � nbn=2�:(b) Exatly C(n�1)=2 [n odd℄, beause a self-transpose binary tree is determined by itsleft subtree. And () has the same answer, beause F is self-dual if and only if FR isself-transpose.
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58 ANSWERS TO EXERCISES 7.2.1.643. Cpq = Cq � �q�p�11 �Cq�1 + � � � =Pq�pr=0(�1)r�q�p�rr �Cq�r, by indution on q � p.44. The number of mems between visits is 3j � 2 in step B3, h+ 1 in step B4, and 4in step B5, where h is the number of times y  ry . The number of binary trees withh � x, given j and x, is [zn�j�x�1℄C(z)x+3 when j < n, beause we get suh trees byattahing x+3 subtrees below j+x+1 internal nodes. Setting x = 0 tells us that a givenvalue of j ours C(n�j�1)(n�j+1) = Cn+1�j � Cn�j times, using (24) and exerise 43.ThusP j over all binary trees is n+Pnj=1(Cn+1�j �Cn�j)j = Cn+Cn�1 + � � �+C1.Similarly, P(h + 1) is Pn�1j=1 Pn�j�1x=0 C(n�j�x�1)(n�j+1) = Pn�1j=1 C(n�j�1)(n�j+2) =Pnj=1(Cn�j+2� 2Cn�j+1) = Cn+1� (Cn+Cn�1+ � � �+C0). So overall, the algorithmosts Cn+1+4Cn+2(Cn�1+ � � �+C1)+O(n) = (26=3� 10=(3n)+O(n�2))Cn mems.45. Eah of the easy ases in step K3 ours Cn�1 times, so the total ost of that step is3Cn�1+8Cn�1+2(Cn�2Cn�1) mems. Step K4 fethes ri a total of [zn�i�1℄C(z)i+2 =C(n�i�1)n times; summing for i � 2 gives C(n�3)(n+1) = Cn+1 � 3Cn + Cn�1 memsaltogether in that loop. Step K5 osts 6Cn�12Cn�1. Step K6 is a bit more ompliated,but one an show that the operation rj  rk is performed Cn� 3Cn�1+1 times whenn > 2, while the operation rj  0 is performed Cn�1 � n+ 1 times. The total numberof mems therefore omes to Cn+1+7Cn�9Cn�1+n+3 = (8:75�9:375=n+O(n�2))Cn.Although this total is asymptotially worse than that of Algorithm B in answer 44,the large negative oeÆient of n�1 means that Algorithm B atually wins only whenn � 58; and n won't ever be that big.46. (a) Going to the left from pq inreases the area by q � p.(b) The leftward steps on a path from nn to 00 orrespond to the left parenthesesin a1 : : : a2n, and we have q � p = k at the kth suh step.() Equivalently, Cn+1(x) = Pnk=0 xkCk(x)Cn�k(x). This reurrene holds be-ause an (n + 1)-node forest F onsists of the root of the leftmost tree together witha k-node forest Fl (the desendants of that root) and an (n � k)-node forest Fr (theremaining trees), and beause we haveinternal path length(F ) = k + internal path length(Fl) + internal path length(Fr):(d) The strings of Ap(p+r) have the form �0)�1) : : : �r�1)�r where eah �j isproperly nested. The area of suh a string is the sum over j of the area of �j plus r� jtimes the number of left parens in �j .Notes: The polynomials Cpq(x) were introdued by L. Carlitz and J. Riordan inDuke Math. J. 31 (1964), 371{388; the identity in part (d) is equivalent to their formula(10.12). They also proved thatCpq(x) = Xr (�1)rxr(r�1)�(q�p2 )�q � p� rr �xCq�r(x);generalizing the result of exerise 43. From part () we have the in�nite ontinuedfration C(x; z) = 1/(1� z/(1� xz=(1� x2z=(1� � � � )))), whih G. N. Watson provedis equal to F (x; z)=F (x; z=x), whereF (x; z) = 1Xn=0 (�1)n xn2zn(1� x)(1� x2) : : : (1� xn) ;see J. London Math. So. 4 (1929), 39{48. We have already enountered the samegenerating funtion, slightly disguised, in exerise 5.2.1{15.
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7.2.1.6 ANSWERS TO EXERCISES 59The internal path length of a forest is the \left path length" of the orrespondingbinary tree, namely the sum over all internal nodes of the number of left branhes onthe path from the root. The more general polynomialCn(x; y) =Xxleft path length(T )yright path length(T );summed over all n-node binary trees T , seems to obey no simple additive reurrene likethe one for Cnn(x) = Cn(x; 1) studied in this exerise; but we do have Cn+1(x; y) =Pk xkCk(x; y)yn�kCn�k(x; y). Therefore the super generating funtion C(x; y; z) =Pn Cn(x; y)zn satis�es the funtional equation C(x; y; z) = 1+zC(x; y; xz)C(x; y; yz).(The ase x = y was onsidered in exerise 2.3.4.5{5.)47. Cn(x) =Pq x(q�p2 )Cpq(x)C(n�q)(n�1�p)(x) for 0 � p < n.48. Let �C(z) = C(�1; z) in the notation of exerise 46, and let �C(z) �C(�z) = F (z2).Then �C(z) = 1 + zF (z2) and �C(�z) = 1 � zF (z2); so F (z) = 1 � zF (z)2, andF (z) = C(�z). It follows that Cpq(�1) = [zp℄C(�z2)d(q�p)=2e(1 + zC(�z2))[q�p even℄,whih is (�1)(p=2)C(p=2)(q=2�1)[p even℄ when q is even, (�1)bp=2Cbp=2bq=2 when q isodd. A perfet Gray ode through the strings of Apq an exist only if jCpq(�1)j � 1,beause the assoiated graph is bipartite (see Fig. 41); jCpq(�1)j is the di�erenebetween the sizes of the parts, beause eah perfet transposition hanges 1+ � � �+ nby �1.49. By Algorithm U with n=15 and N=106, it is ()(()())(((()())))((((())()))).50. Make the following hanges to Algorithm U: In step U1, also set r  0. In stepU3, test if am = `)' instead of testing if N � 0. In step U4, set r  r + 0 instead ofN  N � 0. And omit the assignments to am in steps U3 and U4.The string in (1) turns out to have rank 3141592. (Who knew?)51. By Theorem 7.2.1.3L, N = ��z1n �+� �z2n�1�+ � � �+��zn1 �; hene �nN = � �z1n�1�+� �z2n�2�+� � �+ ��zn0 �, sine �zn � 1. Now note that N � �nN is the rank of z1z2 : : : zn, beause of(23) and exerise 50. (For example, let z1 : : : z4 = 1256, whih has rank 6 in Table 1.Then �z1 : : : �z4 = 7632, N = 60, and �460 = 54. Notie that N is fairly large, beause�z1 = 2n� 1; Fig. 27 shows that �nN usually exeeds N when N is smaller.)52. The number of trailing right parentheses has the same distribution as the numberof leading left parentheses, and the sequene of nested strings that begin with `(k)' is(k)A(n�k)(n�1). Therefore the probability that dn = k is C(n�k)(n�1)=Cn. We �ndnXk=0�kt �C(n�k)(n�1) = nXk=0��2n� 1� kn� 1 �� �2n� 1� kn ���kt �= � 2nn+ t�� � 2nn+ t+ 1� = C(n�t)(n+t)using Eq. 1.2.6{(25), and it follows that the mean and variane are respetively equalto 3n=(n+2) = 3�6=(n+2) and 2n(2n2�n�1)=((n+2)2(n+3)) = 4+O(n�1). [Themoments of this distribution were �rst alulated by R. Kemp in Ata Informatia 35(1998), 17{89, Theorem 9. Notie that n = dn � 1 has essentially the same behavior.℄53. (a) 3n=(n+2), by exerise 52. (b)Hn, by exerise 6.2.2{7. () 2�2�n, by indution.(d) Any partiular (but �xed) sequene of left or right branhes has the samedistribution of steps before a leaf is enountered. (In other words, the probability thata node with Dewey binary notation 01101 ours is the same as the probability that00000 ours.) Thus if X = k with probability pk, eah of the 2k potential nodes on
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60 ANSWERS TO EXERCISES 7.2.1.6level k is external with probability pk. The expeted value Pk 2kpk is therefore theexpeted number of external nodes, namely n+1 in all three ases. (One an of oursealso verify this result diretly, with pk = C(n�k)(n�1)=Cn in ase (a), pk = �nk�=n! inase (b), and pk = 2�k+[k=n℄ in ase ().)Notes: The average path length turns out to be �(pn ), �(log n), and �(n) inthese three ases; thus it is longer when the expeted time to hit a leaf is shorter! Thereason is that ubiquitous \holes" near the root fore other paths to be long. Case (a)has an interesting generalization to t-ary trees, when pk = C (t)(n�k)((t�1)n�1)=C(t)n in thenotation of answer 36. Then the mean distane to a leaf is (t+1)n=((t� 1)n+2), andit is instrutive to prove via telesoping series thatXk tkC(t)(n�k)((t�1)n�1) = � tnn �:54. Di�erentiating with respet to x we haveC 0(x; z) = zC 0(x; z)C(x; xz) + zC(x; z)(C 0(x; xz) + zC0(x; xz));where C0(x; z) denotes the derivative of C(x; z) with respet to z. Thus C 0(1; z) =2zC 0(1; z)C(z)+z2C(z)C 0(z); and sine C 0(z) = C(z)2+2zC(z)C 0(z) we an solve forC 0(1; z), obtaining z2C(z)3=(1�2zC(z))2. ThereforeP(1+ � � �+ n) = [zn℄C 0(1; z) =22n�1 � 12 (3n+ 1)Cn, in agreement with exerise 2.3.4.5{5. Similarly we �ndX(1 + � � �+ n)2 = [zn℄C 00(1; z) = �5n2 + 19n+ 66 ��2nn �� �1 + 3n2 �4n:Thus the mean and variane are 12p�n3=2+O(n) and ( 56 � �4 )n3=2+O(n), respetively.55. Di�erentiating as in answer 54, and using the formulas of exerises 46(d) and5.2.1{14 together with [zn℄C(z)r=(1� 4z) = 22n+r �Prj=1 2r�j�2n+jn �, yieldsC 0p(p+r)(1) = [zp℄�(r+1)z2C(z)r+31� 4z + �r+12 �zC(z)r+2p1� 4z �= [zp℄�(r+1)C(z)r+1�2C(z)r+C(z)r�11� 4z + �r+12 �C(z)r+1�C(z)rp1� 4z �
= (r+1)�22p+r�1��2p+r+1p ��r�1Xj=1 2r�1�j�2p+jp ��+ �r+12 ��2p+rp�1 �:56. Use 1.2.6{53(b). [See BIT 30 (1990), 67{68.℄57. 2S0(a; b) = �2aa ��2bb �+ �2a+2ba+b � by 1.2.6{(21). Exerise 1.2.6{53 tells us thataXk=a�m� 2aa� k�� 2bb� k�k = (m+ 1)(a+ b�m)� 2am+ 1�� 2ba+ b�m�;therefore 2S1(a; b) = �2aa ��2bb � aba+b . And sine b2Sp(a; b)� Sp+2(a; b) = Sp(a; b� 1), we�nd 2S2(a; b) = �2a+2ba+b � ab2a+2b�1 ; 2S3(a; b) = �2aa ��2bb �a2b2=(a+b)2. Formula (30) followsby setting a = m, b = n�m, and C(x�k)(x+k) = � 2xx�k�� � 2xx�k�1�.Similarly, the average of w2m�1 isPk�0(2k�1)C(m�k)(m+k�1)C(n�m�k+1)(n�m+k)divided by Cn, namely2S3(m;n+1�m)� S2(m;n+1�m)m(n+1�m)Cn = m(n+1�m)n �2mm ��2n+2�2mn+1�m �.�2nn �� 1:
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7.2.1.6 ANSWERS TO EXERCISES 61[R. Kemp, BIT 20 (1980), 157{163; H. Prodinger, Soohow J. Math. 9 (1983), 193{196.℄58. Summing over ases in whih the left subtree has k internal nodes, we havetlmn = [l=m=n=0℄ + m�1Xk=0 Ckt(l�1)(m�k�1)(n�k�1) + n�1Xk=mCn�1�kt(l�1)mk:Thus the triple generating funtion t(v;w; z) =Pl;m;n tlmnvlwmzn satis�est(v; w; z) = 1 + vwzC(wz)t(v;w; z) + vzC(z)t(v;w; z);and the analogous linear relation for t(w; z) = �t(v; w; z)=�v jv=1 follows, beauset(1; w; z) =P1n=0Pnm=0 Cnwmzn = (C(z)�wC(wz))=(1�w) and zC(z)2 = C(z)�1.Algebrai manipulation now yieldst(w; z) = C(z) + wC(wz)� (1 + w)(1� w)2z � 2wC(z)C(wz)(1� w)2 � C(z)� wC(wz)1� w ;and we obtain the formula tmn = (m+ 1)Cn+1 � 2Pmk=0(m� k)CkCn�k � Cn. Nowm�1Xk=0 (k + 1)CkCn�1�k = m2n�2mm ��2n� 2mn�m �
an be proved as in exerise 56, and it follows thattmn = 2�2mm ��2n� 2mn�m � (2m+ 1)(2n� 2m+ 1)(n+ 1)(n+ 2) � Cn; for 0 � m � n.[P. Kirshenhofer, J. Combinatoris, Information and System Sienes 8 (1983), 44{60.For higher moments and generalizations, see W. J. Gutjahr, Random Strutures andAlgorithms 3 (1992), 361{374; A. Panholzer and H. Prodinger, J. Statistial Planningand Inferene 101 (2002), 267{279. Note that the generating funtion t(v; w; z) yieldstlmn =Xk � lk�C(m�k)(m�1)C(n�m�l+k)(n�m�1):Using the fat that Pk �kr�C(n�k)(m�1) = C(n�r)(m+r) when m � 1, we obtain theformula tmn+Cn =Pk(k+1)C(m�k)(m�1)C(n�m)(n�m+k+1), a sum that an therefore(surprisingly) be expressed in losed form.℄59. T (w; z) = w(C(z)�C(wz))(1� w) � wzC(z)C(wz)+zC(z)T (w; z) + wzC(wz)T (wz)= w((C(z)+C(wz)�2)=z � (1+w)C(z)C(wz)� (1�w)(C(z)�C(wz)))(1� w)2 :Hene Tmn = tmn �Pnk=m CkCn�k. [Is there a ombinatorial proof?℄ AndTmn = �2mm ��2n+2�2mn+1�m �4m(n+1�m) + n+ 12(n+ 1)(n+ 2) � 12Cn+1 � Cn; for 1 � m � n.60. (a) It is the number of right parentheses in o-atoms. (Therefore it is also thenumber of k for whih w2k�1 < 0 in the assoiated \worm walk.")(b) For onveniene let d(`(') = +1 and d(`)') = �1.A1. [Initialize.℄ Set i j  1 and k  2n.A2. [Done?℄ Terminate the algorithm if j > k. Otherwise set aj  `(', j  j + 1.
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62 ANSWERS TO EXERCISES 7.2.1.6A3. [Atom?℄ If bi = `)', set s  �1, i  i + 1, and go to A4. Otherwise set s  1,i i+1, and while s > 0 set aj  bi, j  j+1, s s+ d(bi), i i+1. Returnto A2.A4. [Co-atom.℄ Set s s+d(bi). Then if s < 0, set ak  bi, k  k�1, i i+1, andrepeat step A4. Otherwise set ak  `)', k  k�1, i i+1, and return to A2.() The defet-11 inverse of (1) is (()))((())))))(()((())(()))(((. In generalwe �nd it by loating the subsriptm just before the lth-from-last right parenthesis, andthe indies (u0; v0), : : : , (us�1; vs�1) of mathing parentheses suh that uj � m < vj .I1. [Initialize.℄ Set  j  s 0, k  m 2n, and u0  2n+ 1.I2. [San right to left.℄ If ak = `)', go to I3; if ak = `(', go to I4; if k = 0, go to I5.I3. [Proess a `)'.℄ Set rj  k, j  j + 1,    + 1. If  = l, set m  k � 1, s  j,and us  k. Then derease k by 1 and return to I2.I4. [Proess a `('.℄ (At this point the left parenthesis ak mathes the right parenthesisarj�1 .) Set j  j � 1. If rj > m, set uj  k and vj  rj . Then derease k by 1and return to I2.I5. [Prepare to permute.℄ Set i j  1, k  2n, and  0.I6. [Permute.℄ While j 6= u, set bi  aj , i i+1, j  j+1. Then terminate if  = s;otherwise set bi  `)', i i+ 1, j  j + 1. While k 6= v, set bi  ak, i i+ 1,k  k�1. Then set bi  `(', i i+1, k  k�1,  +1, and repeat step I6.Notes: The fat that exatly Cn balaned strings of length 2n have defet l, for0 � l � n, was disovered by P. A. MaMahon [Philosophial Transations 209 (1909),153{175, x20℄, then redisovered by K. L. Chung and W. Feller [Pro. Nat. Aad. Si.35 (1949), 605{608℄, using generating funtions. A simple ombinatorial explanationwas found subsequently by J. L. Hodges, Jr. [Biometrika 42 (1955), 261{262℄, whoobserved that if �1 : : : �r has defet l > 0 and if �k = �Rk is its rightmost o-atom, thebalaned string �1 : : : �k�1(�k+1 : : : �r)�0Rk has defet l� 1 (and this transformation isreversible). The eÆient mapping in the present exerise is similar to a onstrution ofM. D. Atkinson and J.-R. Sak [Information Proessing Letters 41 (1992), 21{23℄.61. (a) Let j = 1� bj ; thus j � 1, 1 + � � �+ N = f , and we must prove that1 + 2 + � � �+ k < f if and only if k < Nholds for exatly f yli shifts. We an de�ne j for all integers j by letting j�N = j .Let us also de�ne �j for all j by letting �0 = 0 and �j = �j�1 + j ; then �j+Nt =�j+ft, and �j+1 � �j+1. It follows that for eah integer x there is a smallest integerj = j(x) suh that �j = x. Moreover, j(x) < j(x+ 1); and j(x+ f) = j(x) +N . Thusthe desired ondition holds if and only if we shift by j(x) modN for x = 1, 2, : : : , or f .(The history of this important lemma is disussed in answer 2.3.4.4{32.)(b) Start with l  m  s  0. Then for k = 1, 2, : : : , N (in this order) do thefollowing: Set s s+ 1� bk; and if s > m, set m s, jl  k, and l (l+ 1) mod f .The answers are j0, : : : , jf�1, by the proof in part (a).() Start with any string b1b2 : : : bN ontaining nj ourrenes of j for 0 � j � t.Apply a random permutation to this string, then apply the algorithm of part (b).Choose randomly between (j0; : : : ; jf�1) and use the resulting yli shift as a preordersequene to de�ne the forest.[See L. Alonso, J. L. R�emy, and R. Shott, Algorithmia 17 (1997), 162{182, foran even more general algorithm.℄
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7.2.1.6 ANSWERS TO EXERCISES 6362. Bit strings (l1 : : : ln; r1 : : : rn) are valid if and only if b1 : : : bn is valid in exerise 20,where bj = lj + rj . Therefore we an use exerise 61. [See J. F. Korsh, InformationProessing Letters 45 (1993), 291{294.℄63. 3 1 2 0e e e 1 2 0 3e e e 3 1 2 0e e e 1 3 2 0e e e 1 3 2 0e e e 1 2 0 3e e e 1 3 2 0e e e 1 2 3 0e e e 1 2 3 0e e e 1 2 0 3e e e64. X = 2k + b where (k; b) = (0; 1), (2; 1), (0; 0), (5; 1), (6; 0), (1; 1); eventuallyL0L1 : : : L12 = 5 11 3 4 0 7 9 8 1 6 10 12 2.65. See A. Panholzer and H. Prodinger, Disrete Mathematis 250 (2002), 181{195;M. Luzak and P. Winkler, Random Strutures and Algorithms 24 (2004), 420{443.66. (a) \Shrink" the white edges, merging the nodes that they onnet. For example,
are the ordinary trees that orrespond to the eleven Shr�oder trees depited for n = 3.Under this orrespondene a left link means, \here is a hild"; a white right link means,\look here for more hildren"; a blak right link means, \here's the last hild."(b) Mimi Algorithm L, but between rotations use an ordinary Gray binary odeto run through all olor patterns of whatever right links are present. (The ase n = 3has, in fat, been illustrated in the example.)Note that Shr�oder trees also orrespond to series-parallel graphs, as in (53). Theydo, however, impose an order on the edges and/or superedges that are joined in parallel;so they orrespond more preisely to series-parallel graphs as embedded in the plane(and with edges and verties unlabeled, exept for s and t).67. S(z) = 1 + zS(z)(1 + 2(S(z)� 1)), beause 1 + 2(S(z)� 1) enumerates the rightsubtrees; therefore S(z) = (1 + z �p1� 6z + z2 )=(4z).Notes: We've seen Shr�oder numbers in exerise 2.3.4.4{31, where G(z) = zS(z);and in exerise 2.2.1{11, where bn = 2Sn�1 for n � 2 and where we found the reurrene(n � 1)Sn = (6n � 3)Sn�1 � (n � 2)Sn�2. They grow asymptotially as explored inexerise 2.2.1{12. A triangle of numbers Spq, analogous to (22), an be used to generaterandom Shr�oder trees. These numbers satisfySpq = Sp(q�1) + S(p�1)q + S(p�2)q + � � �+ S0q = Sp(q�1) + 2S(p�1)q � S(p�1)(q�1)= q�p+1q+1 pXk=0� q+1p�k��p�1k �2k = pXk=0�� qp�k��p�1k �� � qp�k�1��p�1k�1��2k= [wpzq ℄S(wz)=(1� zS(wz));the double generating funtion on the last line is due to Emeri Deutsh. Manyother properties of Shr�oder trees are disussed in Rihard Stanley's EnumerativeCombinatoris 2 (1999), exerise 6.39.68. A single row that ontains only the empty string �. (The general rule (36) forgoing from n� 1 to n onverts this row into `0 1', the pattern of order 1.)69. The �rst �63� = 20 rows are the Christmas tree pattern of order 6, if we ignore the`10' at the beginning of eah string. The pattern of order 7 is a bit more diÆult to see;but there are �73� = 35 rows in whih the leftmost entry begins with 0. Disregard therightmost string in all suh rows, and ignore the 0 at the beginning of eah remainingstring. (Other answers are also possible.)
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64 ANSWERS TO EXERCISES 7.2.1.670. If � appears in olumn k of the Christmas tree pattern, let �0 be the string inolumn n � k of the same row. (If we think of parentheses instead of bits, this ruletakes the mirror reetion of the free parentheses in the sense of answer 11, by (39).)71. Mtn is the sum of the t largest binomial oeÆients �nk�, beause eah row of theChristmas tree pattern an ontain at most t elements of S, and beause we do getsuh a set S by hoosing all strings � with (n � t)=2 � �(�) � (n + t � 1)=2. (Theformula Mtn = Xn�t�2k�n+t�1�nk�is about as simple as possible; however, speial formulas like M(2)n = Mn+1 hold forsmall t, and we also have Mtn = 2n for t > n.)72. You get Msn, the same number as in the previous exerise. In fat, one an proveby indution that there are exatly � nn�k�� � nk�s� rows of length s+ n� 2k � 0.73. 011001001000000000100101001100, 111001011011111111101101011100; see (38).74. By the lexiographi property, we want to ount the number of rows whose right-most elements have the respetive forms 0�29, 10�28, 110�27, 111000�24, 11100100�22,111001010�21, 11100101100�19, 111001011010�18, 1110010110110�17, : : : , namely all30-bit strings that preede � = 111001011011111111101101011100.If � has p more 1s than 0s, the number of Christmas tree rows ending with ��n isthe same as the number of rows ending with 1p�n; and this is M(p+1)n, by exerise 71,beause all suh rows are the n-step desendants of the starting row `0p 0p�11 : : : 1p '.Consequently the answer is M0(29) +M1(28) +M2(27) +M1(24) + � � � +M(12)3 +M(13)2 =P21k=1M(2k�1�zk)(n�zk) = 0+�2814�+�2714�+�2713�+�2412�+ � � �+8+4 = 84867708,where (z1; : : : ; z21) = (1; 2; 3; 6; : : : ; 27; 28) is the sequene of plaes where 1s our in � .75. We have r(n)1 = Mn�2, beause row r(n)1 is the bottom desendant of the �rstrow in (33). We also have r(n)j+1 � r(n)j = Mj(n�1�j) �M(j�1)(n�2�j) = M(j+1)(n�2�j)by the formula in answer 74, beause the relevant sequene z1 : : : zn�1 for row r(n)j is1j01n�1�j . Therefore, sine Mjn=Mn ! j for �xed j as n!1, we havelimn!1 r(n)jMn = jXk=1 k2k+1 = 1� j + 22j+1 :And we've also impliitly proved that Pnk=0Mk(n�k) =Mn+1 � 1.76. The �rst �2nn � elements of the in�nite sequeneQ = 1313351313351335355713133513133513353557131335133535571335355735575779 : : :are the row sizes in the pattern of order 2n; this sequene Q = q1q2q3 : : : is the unique�xed point of the transformation that maps 1 7! 13 and n 7! (n�2)nn(n+2) for oddn > 1, representing two steps of (36).Let f(x) = lim supn!1 s(dxMne)=n for 0 < x � 1. This funtion apparentlyvanishes almost everywhere; but it equals 1 when x has the form (q1 + � � � + qj)=2n,beause of answer 72. On the other hand if we de�ne g(x) = limn!1 s(dxMne)=pn,the funtion g(x) appears to be measurable, with R 10 g(x) dx = p�, although g(x) isin�nite when f(x) > 0. (Rigorous proofs or disproofs of these onjetures are soliited.)77. The hint follows from (39), by onsidering worm walks; so we an proeed thus:
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7.2.1.6 ANSWERS TO EXERCISES 65X1. [Initialize.℄ Set aj  0 for 0 � j � n; also set x  1. (In the following steps wewill have x = 1 + 2(a1 + � � �+ an).)X2. [Corret the tail.℄ While x � n, set ax  1 and x x+ 2.X3. [Visit.℄ Visit the bit string a1 : : : an.X4. [Easy ase?℄ If an = 0, set an  1, x x+ 2, and return to X3.X5. [Find and advane aj .℄ Set an  0 and j  n� 1. Then while aj = 1, set aj  0,x x�2, and j  j�1. Stop if j = 0; otherwise set aj  1 and go bak to X2.78. True, by (39) and exerise 11.79. (a) List the indies of the 0s, then the indies of the 1s; for instane, the bit stringin exerise 73 orresponds to the permutation 1 4 5 7 8 10 11 12 13 20 23 25 29 30 2 36 9 14 15 16 17 18 19 21 22 24 26 27 28.(b) Using the onventions of (39), the P tableau has the indies of left parenthesesand free parentheses in its top row, other indies in the seond row. Thus, from (38),P = 1 2 3 6 8 9 11 12 13 14 15 16 17 18 19 21 22 24 26 27 284 5 7 10 20 23 25 29 30 :[See K.-P. Vo, SIAM J. Algebrai and Disrete Methods 2 (1981), 324{332, for ageneralization to hains of submultisets.℄80. This urious fat is a onsequene of exerise 79 together with Theorem 6 in theauthor's paper on tableaux; see Pai� J. Math. 34 (1970), 709{727.81. Suppose � and �0 belong respetively to hains of length s and s0 in the Christmastree patterns of order n and n0. At most min(s; s0) of the ss0 pairs of strings in thosehains an be in the bilutter. Furthermore, beause of (39), those ss0 pairs of stringsatually onstitute exatly min(s; s0) hains in the Christmas tree pattern of ordern + n0, when they are onatenated. Therefore the sum of min(s; s0) over all pairs ofhains is Mn+n0 , and the result follows. We have inidentally proved the nonobviousidentity Xj; k min(m+ 1� 2j; n+ 1� 2k)Cj(m�j)Ck(n�k) = Mm+n:Notes: This extension of Sperner's theorem was proved independently by G. Katona[Studia Si. Math. Hungar. 1 (1966), 59{63℄ and D. J. Kleitman [Math. Zeitshrift 90(1965), 251{259℄. See Greene and Kleitman, J. Combinatorial Theory A20 (1976),80{88, for the proof given here and for further results.82. (a) There is at least one evaluation in eah row m; there are two if and onlyif s(m) > 1 and the �rst evaluation yields 0. Thus if f is identially 1, we get theminimum,Mn; if f is identially 0, we get the maximum,Mn+Pm[s(m)> 1℄ =Mn+1.(b) Let f(�(m;n=2)) = 0 in the Cn=2 ases where s(m) = 1; otherwise letf(�(m;a)) = 1, where a is de�ned by the algorithm. When n is odd, this rule impliesthat f(�) is always 1; but when n is even, f(�) = 0 if and only if � is �rst in its row.(To see why, use the fat that the row ontaining �0j in (41) always has size s � 2.)This funtion f is indeed monotoni; for if � � � and if � has a free left parenthesis,so does � . For example, in the ase n = 8 we havef(x1; : : : ; x8) = x8 _ x6x7 _ x4x5(x6 _ x7) _ x2x3(x4(x5 _ x6 _ x7) _ x5(x6 _ x7)):() In these irumstanes (45) is the solution for all n.
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66 ANSWERS TO EXERCISES 7.2.1.683. At most 3 outomes are possible in step H4| in fat, at most 2 when s(m) = 1.[See exerise 5.3.4{31 for sharper bounds; in the notation of that exerise, there areexatly Æn + 2 monotone Boolean funtions of n Boolean variables.℄84. For this problem we partition the 2n bit strings into Mn bloks instead of hains,where the strings f�1; : : : ; �sg of eah blok satisfy kA�Ti � A�Tj k � 1 for i 6= j; thenat most one bit string per blok an satisfy kA�T � bk < 12 .Let A0 denote the �rst n� 1 olumns of A, and let v be the nth olumn. Supposef�1; : : : ; �sg is a blok for A0, and number the subsripts so that vTA0�T1 is theminimum of vTA0�Tj . Then rule (36) de�nes appropriate bloks for A, beause we havekA(�i0)T � A(�j0)Tk = kA(�i1)T �A(�j1)Tk = kA0�Ti � A0�Tj k andkA(�j1)T � A(�10)T k2 = kA0�Tj + v � A0�T1 k2= kA0(�j � �1)T k2 + kvk2 + 2vTA0(�j � �1)T � kvk2 � 1:[And more is true; see Advanes in Math. 5 (1970), 155{157. This result extends atheorem of J. E. Littlewood and A. C. O�ord, Mat. Sbornik 54 (1943), 277{285, whoonsidered the ase m = 2.℄85. If V has dimension n�m, we an renumber the oordinates so that(1; 0; : : : ; 0; x11; : : : ; x1m)(0; 1; : : : ; 0; x21; : : : ; x2m)... ... . . . ... ... ...(0; 0; : : : ; 1; x(n�m)1; : : : ; x(n�m)m)is a basis, with none of the row vetors vj = (xj1; : : : ; xjm) entirely zero. Let vn�m+1 =(�1; 0; : : : ; 0), : : : , vn = (0; 0; : : : ;�1). Then the number of 0{1 vetors in V is the num-ber of 0{1 solutions to Ax = 0, where A is the m� n matrix with olumns v1, : : : , vn.But this quantity is at most the number of solutions to kAxk < 12 min(kv1k; : : : ; kvnk),whih is at most Mn by exerise 84.Conversely, the basis with m = 1 and xj1 = (�1)j�1 yields Mn solutions. [Thisresult has appliation to eletroni voting; see Golle's Ph.D. thesis (Stanford, 2004).℄86. First reorder the 4-node subtrees so that their level odes are 0121 (plus a on-stant); then sort larger and larger subtrees until everything is anonial. The re-sulting level odes are 0 1 2 3 4 3 2 1 2 3 2 1 2 0 1, and the parent pointers are0 1 2 3 4 3 2 1 8 9 8 1 12 0 14.87. (a) The ondition holds if and only if 1 < � � � < k � k+1 � � � � � n for some k,so the total number of ases is Pk �n�1n�k� = 2n�1.(b) Note that 1 : : : k = 01 : : : 0k if and only if p1 : : : pk = p01 : : : p0k; and in suhases, k+1 < 0k+1 if and only if pk+1 < p0k+1.88. Exatly An+1 forests are visited, and Ak of them have pk = � � � = pn = 0.Therefore O4 is performed An times; and pk is hanged Ak+1 � 1 times in step O5, for1 � k < n. Step O5 also hanges pn a total of An � 1 times. The average number ofmems per visit is therefore only 2+3=(��1)+O(1=n) � 3:534, if we keep pn in a register.[See E. Kubika, Combinatoris, Probability and Computing 5 (1996), 403{417.℄89. If step O5 sets pn  pj exatly Qn times, it sets pk  pj exatly Qk + Ak+1 �Ak times, for 1 < k < n, beause every pre�x of a anonial p1 : : : pn is anonial.We have (Q1; Q2; : : : ) = (0; 0; 1; 2; 5; 9; 22; 48; 118; 288; : : : ); and one an show thatQn =Pd�1P1�<n=d�1 a(n�d)(n�d�d), where ank is the number of anonial parentsequenes p1 : : : pn with pn = k. But these numbers ank remain mysterious.

66



7.2.1.6 ANSWERS TO EXERCISES 6790. (a) This property is equivalent to 2.3.4.4{(7); vertex 0 is the entroid.(b) Let m = bn=2. At the end of step O1, set pm+1  0, and also p2m+1  0 ifn is odd. At the end of step O4, set i j and while pi 6= 0 set i pi. (Then i is theroot of the tree ontaining j and k.) At the beginning of step O5, if k = i +m andi < j, set j  i and d m.() If n is even, there are no bientroidal trees with n+1 verties. Otherwise �ndall pairs (p01 : : : p0m; p001 : : : p00m) of anonial forests on m = bn=2 nodes, with p01 : : : p0m �p001 : : : p00m; let p1 = 0, pj+1 = p0j + 1, and pm+j+1 = (p00j +m+ 1)[p00j > 0℄ for 1 � j � m.(Two inarnations of Algorithm O will generate all suh sequenes. This algorithm forfree trees is due to F. Ruskey and G. Li; see SODA 10 (1999), S939{S940.)91. Use the following reursive proedure W (n): If n � 2, return the unique n-nodeoriented tree. Otherwise hoose positive integers j and d so that a given pair (j; d)is obtained with probability dAdAn�jd=((n� 1)An). Compute random oriented treesT 0  W (n�jd) and T 00  W (d). Return the tree T obtained by linking j lones of T 00to the root of T 0. [Combinatorial Algorithms (Aademi Press, 1975), Chapter 25.℄92. Not always. [R. L. Cummins, in IEEE Trans. CT-13 (1966), 82{90, proved thatthe graph of S(G) always ontains a yle; see also C. A. Holzmann and F. Harary,SIAM J. Applied Math. 22 (1972), 187{193. But their onstrutions are unsuitable foreÆient omputation, beause they require foreknowledge of the parity of the sizes ofintermediate results.℄93. Yes. Step S7 undoes step S3; step S9 undoes the deletions of step S8.94. For example, we an use depth-�rst searh, with an auxiliary table b1 : : : bn:i) Set b1 : : : bn  0 : : : 0, then v  1, w 1, b1  1, and k  n� 1.ii) Set e nv�1. While te 6= 0, do the following substeps:a) Set u te. If bu 6= 0, go to substep ().b) Set bu  w, w  u, ak  e, k  k � 1. Terminate if k = 0.) Set e ne.iii) If w 6= 1, set v  w, w  bw, and return to (ii). Otherwise report an error: Thegiven graph was not onneted.We ould atually terminate as soon as substep (b) redues k to 1, sine Algorithm Snever looks at the initial value of a1. But we might as well test for onnetivity.95. The following steps perform a breadth-�rst searh from u, to see if v is reahablewithout using edge e. An auxiliary array b1 : : : bn of ar pointers is used, whih shouldbe initialized to 0 : : : 0 at the end of step S1; we will reset it to 0 : : : 0 again.i) Set w  u and bw  v.ii) Set f  nu�1. While tf 6= 0, do the following substeps:a) Set v0  tf . If bv0 6= 0, go to substep (d).b) If v0 6= v, set bv0  v, bw  v0, w  v0, and go to substep (d).) If f 6= e� 1, go to step (v).d) Set f  nf .iii) Set u bu. If u 6= v, return to step (ii).iv) Set u te. While u 6= v, set w  bu, bu  0, u w. Go to S9 (e is a bridge).v) Set u te. While u 6= v, set w bu, bu  0, u w. Then set u te again andontinue step S8 (e is not a bridge).Two quik heuristis an be used before starting this alulation: If du = 1, then e isobviously a bridge; and if lle 6= 0, then e is obviously a nonbridge (beause there's an-other edge between u and v). Suh speial ases are deteted readily by the breadth-�rst
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68 ANSWERS TO EXERCISES 7.2.1.6searh, yet experiments by the author indiate that both heuristis are de�nitely worth-while. For example, the test on lle typially saves 3% or so of the total running time.96. (a) Let ek be the ar k � 1 ! k. The steps in answer 94 set ak  en+1�k forn > k � 1. Then at level k we shrink en�k, for 1 � k < n � 1. After visiting the(unique) spanning tree en�1 : : : e2en, we unshrink en�k and disover quikly that it isa bridge, for n � 1 > k � 1. Thus the running time is linear in n; in the author'simplementation it turns out to be exatly 102n� 226 mems for n � 3.However, this result depends ritially on the order of the edges in the initialspanning tree. If step S1 had produed \organ-pipe order" suh asen=2+1 en=2 en=2+2 en=2�1 : : : en�1 e2in positions a2 : : : an�1 when n is even, the running time would have been 
(n2),beause 
(n) of the bridge tests would eah have taken 
(n) steps.(b) Now ak is initially en�k for n > k � 1, where e1 is the ar n ! 1. Thespanning trees visited, when n � 4, are respetively en�2 : : : e1en, en�2 : : : e1en�1,en�2 : : : e2en�1en, en�2 : : : e3en�1ene1, : : : , en�1ene1 : : : en�3. Following the treeen�2 : : : ek+2en�1ene1 : : : ek the omputations move down to level n � k � 3 and upagain, for 0 � k � n� 4; the bridge tests are all eÆient. Thus the total running timeis quadrati (in the author's version, exatly 35:5n2 + 7:5n� 145 mems, for n � 5).Inidentally, Pn is board (n; 0; 0; 0; 1; 0; 0) in the notation of the Stanford Graph-Base, and Cn is board (n; 0; 0; 0; 1; 1; 0); the SGB verties are named 0 through n� 1.97. Yes, when fs; tg is f1; 2g, f1; 3g, f2; 3g, f2; 4g, or f3; 4g, but not f1; 4g.
98. A0 = a b de fg ; this is the \dual planar graph" of the planar graph A.(The near trees of A0 are omplements of the spanning trees of A, and vie versa.)99. The stated method works, by indution on the size of the tree, for essentially thesame reasons that it worked for n-tuples in Setion 7.2.1.1|but with the additionalproviso that we must suessively designate eah hild of an uneasy node.Leaf nodes are always passive, and they are neither easy nor uneasy; so we willassume that the branh nodes are numbered 1 to m in preorder. Let fp = p for allbranh nodes, exept when p is a passive uneasy node for whih the nearest uneasy nodeto its right is ative; in the latter ase, fp should point to the nearest ative uneasynode to its left. (For purposes of this de�nition, we imagine that arti�ial nodes 0and m+ 1 are present at the left and right, both of whih are uneasy and ative.)F1. [Initialize.℄ Set fp  p for 0 � p � m; also set t0  1, v0  0, and set eah zp sothat rzp = dp.F2. [Selet node p.℄ Set q  m; then while tq = vq set q  q � 1. Set p  fq andfq  q; terminate the algorithm if p = 0.F3. [Change dp.℄ Set s dp, s0  rs, k  vp, and dp  s0. (Now k = vs 6= vs0 .)F4. [Update the values.℄ Set q  s and vq  k � 1. While dq 6= 0, set q  dq andvq  k � 1. (Now q is a leaf that has entered the on�g if k = 0, left it if k = 1.)Similarly, set q  s0 and vq  k. While dq 6= 0, set q  dq and vq  k � 1. (Nowq is a leaf that has left the on�g if k = 0, entered it if k = 1.)F5. [Visit.℄ Visit the urrent on�g, represented by all the leaf values.
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7.2.1.6 ANSWERS TO EXERCISES 69F6. [Passivate p?℄ (All uneasy nodes to p's right are now ative.) If dp 6= zp, returnto step F2. Otherwise set zp  s, q  p � 1; while tq = vq, set q  q � 1. (Nowq is the �rst uneasy node to the left of p; we will make p passive.) Set fp  fq,fq  q, and return to F2.Although step F4 may hange uneasy nodes to easy nodes and vie versa, the fouspointers need not be updated, beause they're still set orretly.100. A omplete program, alled GRAYSPSPAN, appears on the author's website. Itsasymptoti eÆieny an be proved by using the result of exerise 110 below.102. If so, ordinary spanning trees an be listed in a strong revolving-door order, wherethe edges that enter and leave at eah step are adjaent.Interesting algorithms to generate all the oriented spanning trees with a givenroot have been developed by Harold N. Gabow and Eugene W. Myers, SICOMP 7(1978), 280{287; S. Kapoor and H. Ramesh, Algorithmia 27 (2000), 120{130.103. (a) Toppling inreases (x0; x1; : : : ; xn) lexiographially, but does not hange x0+� � �+ xn. If we an topple at both Vi and Vj , either order gives the same result.(b) Adding a grain of sand hanges the 16 stable states as follows:Given 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111+ 0001 0001 0010 0011 0001 0101 0110 0111 0101 1001 1010 1011 1001 1101 1110 1111 1101+ 0010 0010 0011 0001 0010 0110 0111 0101 0110 1010 1011 1001 1010 1110 1111 1101 1110+ 0100 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 0100 0101 0110 0111+ 1000 1000 1001 1010 1011 1100 1101 1110 1111 0100 0101 0110 0111 1000 1001 1010 1011The reurrent states are the nine ases with x1 + x2 > 0 and x3 + x4 > 0. Notie thatrepeated addition of 0001 leads to the in�nite yle 0000 ! 0001 ! 0010 ! 0011 !0001! 0010! � � � ; but the states 0001, 0010, and 0011 are not reurrent.() If x = �(x + t) then also x = �(x + kt) for all k � 0. All omponentsof t are positive; thus x = �(x + max(d1; : : : ; dn)t) is reurrent. Conversely, supposex = �(d + y), where all yi � 0; then d + y + t topples to x + t and it also topples to�(d) + y + t = d+ y. Therefore �(x+ t) = �(d+ y) = x.(d) There are N = det(aij) lasses, beause elementary row operations (exerise4.6.1{19) triangularize the matrix while preserving ongruene.(e) There are nonnegative integers m1, : : : , mn, m01, : : : , m0n suh thatx+m1a1 + � � �+mnan = x0 +m01a1 + � � �+m0nan = y; say:For suÆiently large k, the vetor y+ kt topples in m1 + � � �+mn steps to x+ kt, andin m01 + � � �+m0n steps to x0 + kt. Therefore x = �(x+ kt) = �(x0 + kt) = x0.(f) The triangularization in (d) shows that x � x + Ny for arbitrary vetors y.And toppling preserves ongruene; hene every lass ontains a reurrent state.(g) Sine a = a1 + � � � + an in a balaned digraph, we have x � x + a. If x isreurrent, we see in fat that every vertex topples exatly one when x+a redues to x,beause the vetors fa1; : : : ; ang are linearly independent.Conversely, if �(x+ a) = x we must prove that x is reurrent. Let zm = �(ma);there must be some positive k and m with zm+k = zm. Then every vertex topplesk times when zm + ka redues to zm; hene there are vetors yj = (yj1; : : : ; yjn) withyjj � dj suh that (m + k)a topples to yj . It follows that x + n(m + k)a topples tox+ y1 + � � �+ yn, and �(x+ y1 + � � �+ yn) = �(x+ n(m+ k)a) = x.(h) Treating subsripts ylially, the spanning trees with ars Vj ! V0 for j = i1,: : : , ik have n � k other ars: Vj ! Vj�1 for il < j � il + ql and Vj ! Vj+1 for
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70 ANSWERS TO EXERCISES 7.2.1.6il + ql < j < il+1. The reurrent states, similarly, have xj = 2 for j = i1, : : : , ik, andxj = 1 for il < j < il+1, exept that xj = 0 when j = il + ql and ql > 0.(i) In this ase state x = (x1; : : : ; xn) is reurrent if and only if (n�x1; : : : ; n�xn)solves the parking problem in the hint, beause t = (1; : : : ; 1), and a sequene thatdoesn't get parked leaves a \hole" that stops x+ t from toppling to x.Notes: This sandpile model, introdued by Deepak Dhar [Phys. Review Letters64 (1990), 1613{1616℄, has led to many papers in the physis literature. Dhar notedthat, if M grains of sand are introdued at random, eah reurrent state is equallyprobable as M ! 1. The present exerise was inspired by the work of R. Cori andD. Rossin, European J. Combinatoris 21 (2000), 447{459.Sandpile theory proves that every digraph D yields an abelian group whoseelements orrespond somehow to the oriented spanning trees of D with root V0. Inpartiular, the same is true when D is an ordinary graph, with ars u! v and v ! uwhenever u and v are adjaent. Thus, for example, we an \add" two spanning trees;and some spanning tree an be regarded as \zero." An elegant orrespondene betweenspanning trees and reurrent states, in the speial ase when D is an ordinary graph,has been found by R. Cori and Y. Le Borgne, Advanes in Applied Math. 30 (2003),44{52. But no simple orrespondene is known for general digraphs D. For example,suppose n = 2 and (e10; e12; e20; e21) = (p; q; r; s); then there are pr + ps+ qr orientedtrees, and the reurrent states orrespond to generalized two-dimensional toruses as inexerise 7{00. Yet even in the \balaned" ase, when p+ q � s and r + s � q, no easymapping between spanning trees and reurrent states is apparent.104. (a) If det(�I � C) = 0, there is a vetor x = (x1; : : : ; xn)T suh that Cx = �xand max(x1; : : : ; xn) = xm = 1 for some m. Then � = �xm = mm �Pj 6=m emjxj �mm �Pj 6=m emj = 0. (Inidentally, a real symmetri matrix whose eigenvalues arenonnegative is alled positive semide�nite. Our proof establishes the well-known fatthat any real symmetri matrix with mm � jPj 6=m mj j for 1 � m � n has thisproperty.) Thus �0 � 0; and �0 = 0 beause C(1; : : : ; 1)T = (0; : : : ; 0)T .(b) det(xI�C(G)) = x(x��1) : : : (x��n�1); and the oeÆient of x is (�1)n�1ntimes the number of spanning trees, by the matrix tree theorem.() det(�I � C(Kn)) = det((� � n)I + J) = (� � n)n�1� by exerise 1.2.3{36;here J is the matrix of all 1s. The aspets are therefore 0, n, : : : , n.105. (a) If eij = a+ be0ij we have C(G) = naI � aJ + bC(G0). And if C is any matrixwhose row sums are zero, the identitydet(xI + yJ � zC) = x+ nyx zn det((x=z)I � C)an be proved by adding olumns 2 through n to olumn 1, fatoring out (x + ny)=x,subtrating y=x times olumn 1 from olumns 2 through n, then subtrating olumns2 through n from olumn 1. Therefore, by setting x = ��na, y = a, z = b, a = 1, andb = �1, we �nd that G has the aspets 0, n � �n�1, : : : , n � �1. (In partiular, thisresult agrees with exerise 104() when G0 is the empty graph Kn.)(b) Sort f�00; : : : ; �0n0�1; �000 ; : : : ; �00n00�1g into order. (An easy ase, for variety.)() Here G = G0 + G00, so G's aspets are f0; n0 + n00; n00 + �01; : : : ; n00 + �0n0�1;n0+�001 ; : : : ; n0+�00n00�1g by (a) and (b). (In partiular, G is Km;n when G0 = Km andG00 = Kn, hene the aspets of Km;n are f0; (n� 1) �m; (m� 1) � n; m+ ng.)(d) C(G) = In0
C(G00)+C(G0)
In00 , where In denotes the n�n identity matrixand 
 denotes the Kroneker produt of matries. The aspets of C(G) are f�0j +�00k j0 � j < n0; 0 � k < n00g; for if A and B are arbitrary matries whose eigenvalues
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7.2.1.6 ANSWERS TO EXERCISES 71are f�1; : : : ; �mg and f�1; : : : ; �ng, respetively, the eigenvalues of A 
 In + Im 
 Bare the mn sums �j + �k. Proof: Choose S and T so that S�AS and T�BT aretriangular. Then use the matrix identity (A 
 B)(C 
 D) = AC 
 BD to show that(S
T )�(A
In+Im
B)(S
T ) = (S�AS)
In+Im
(T�BT ). (In partiular, repeateduse of this formula shows that the aspets of the n-ube are f�n0��0; �n1��2; : : : ; �nn��2ng,and Eq. (57) follows from exerise 104(b).)(e) When G is a regular graph of degree d0, its aspets are �j = d0 � �j+1, where�1 � � � � � �n are the eigenvalues of the adjaeny matrix A = (eij). The adjaenymatrix of G0 is A0 = BTB � d0In0 , where B = (bij) is the n� n0 inidene matrix withentries bij = [edge i touhes vertex j℄, and where n = n0d0=2 is the number of edges.The adjaeny matrix of G is A = BBT � 2In. Now we havexn det(xIn0 �BTB) = xn0det(xIn �BBT );this identity follows from the fat that the oeÆients of det(xI�A) an be expressed interms of trae(Ak) for k = 1, 2, : : : , via Newton's identities (exerise 1.2.9{10). So theaspets of G are the same as those of G0, plus n� n0 aspets equal to 2d0. [This resultis due to E. B. Vakhovsky, Sibirski�� Mat. Zhurnal 6 (1965), 44{49; see also H. Sahs,Wissenshaftlihe Zeitshrift der Tehnishen Hohshule Ilmenau 13 (1967), 405{412.℄(f) A = A0
A00, so the aspets are fd00�0j+d0�00k��0j�00k j 0 � j < n0; 0 � k < n00g.(g) A(G) = In0 
A00 +A0 
 In00 +A0 
A00 = (In0 +A0)
 (In00 +A00)� In yieldsthe aspets f(d00 + 1)�0j + (d0 + 1)�00k � �0j�00k j 0 � j < n0; 0 � k < n00g.106. (a) If � is an aspet of the path Pn, there's a nonzero solution (x0; x1; : : : ; xn+1)to the equations �xk = 2xk�xk�1�xk+1 for 1 � k � n, with x0 = x1 and xn = xn+1.If we set xk = os(2k�1)�, we �nd x0 = x1 and 2xk�xk�1�xk+1 = 2xk�(2 os 2�)xk;hene 2� 2 os 2� = 4 sin2� will be an aspet if we hoose � so that xn = xn+1 and sothat the x's are not all zero. Thus the aspets of Pn turn out to be �0n, : : : , �(n�1)n.We must have �1 : : : �n�1 = n, by exerise 104(b), sine (Pn) = 1; therefore(Pm � Pn) = m�1Yj=1 n�1Yk=1 (�jm + �kn):(b; ) Similarly, if � is an aspet of the yle Cn, there's a nonzero solution to thestated equations with xn = x0. For this ase we try xk = os 2k� and �nd solutionswhen � = j�=n for 0 � j < dn=2e. And xk = sin k� gives further, linearly independentsolutions for dn=2e � j < n. The aspets of Cn are therefore �0n, �2n, : : : , �(2n�2)n;and we have(Pm�Cn) = nm�1Yj=1 n�1Yk=1 (�jm + �(2k)n); (Cm�Cn) = mnm�1Yj=1 n�1Yk=1 (�(2j)m + �(2k)n):Let fn(x) = (x+ �1n) : : : (x+ �(n�1)n) and gn(x) = (x+ �2n) : : : (x+ �(2n�2)n).These polynomials have integer oeÆients; indeed, fn(x) = Un�1(x=2+1) and gn(x) =2(Tn(x=2+1)�1)=x, where Tn(x) and Un(x) are the Chebyshev polynomials de�ned byTn(os �) = osn� and Un(os �) = (sin(n+ 1)�)=sin �. The alulation of (Pm � Pn)an be redued to the evaluation of an m�m determinant, beause it is the resultant offm(x) with fn(�x); see exerise 4.6.1{12. Similarly, 1n(Pm �Cn) and 1mn (Cm �Cn)are the respetive resultants of fm(x) with gn(�x) and of gm(x) with gn(�x).Let �n(x) =Qdnn fd(x)�(n=d); thus �1(x) = 1, �2(x) = x+ 2, �3(x) = (x+ 3)�(x+ 1), �4(x) = x2 + 4x+ 2, �5(x) = (x2 + 5x+ 5)(x2 + 3x+ 1), �6(x) = x2 + 4x+ 1,
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72 ANSWERS TO EXERCISES 7.2.1.6et. By onsidering so-alled �eld polynomials one an show that �n(x) is irreduibleover the integers when n is even, otherwise it is the produt of two irreduible fatorsof the same degree. Similarly, if �n(x) = Qdnn gd(x)�(n=d), it turns out that �n(x)is the square of an irreduible polynomial when n � 3. These fats aount for thepresene of fairly small prime fators in the results. For example, the largest primefator in (Pm � Pn) for m � n � 10 is 1009; it ours only in the resultant of �6(x)with �9(�x), whih is 662913 = 32 � 73 � 1009.107. There are (1; 1; 2; 6; 21) nonisomorphi graphs for n = (1; : : : ; 5); but we needonsider only ases with � 12�n2� edges, beause of exerise 105(a). The surviving aseswhen n = 4 are free trees: The star is the omplement of K1 +K3, with aspets 0, 1,1, 4; and P4 has aspets 0, 2�p2, 2, 2+p2 by exerise 106. There are three free treeswhen n = 5: The star has aspets 0, 1, 1, 1, 5; P5's aspets are 0, 2� �, 3� �, 1 + �,2+�; and the aspets of are 0, r1, 1, r2, r3, where (r1; r2; r3) � (0:52; 2:31; 4:17)are the roots of x3 � 7x2 + 13x� 5 = 0.Finally, there are �ve ases with a single yle: is K1 �+ (K2 + K2), so itsaspets are 0, 1, 1, 3, 5; C5 has aspets 0, 3� �, 3� �, 2 + �, 2 + �; has aspets0, r1, r2, 3, r3; its omplement has aspets 0, 5� r3, 2, 5� r2, 5 � r1; and theaspets of turn out to be 0, (5�p13)=2, 3� �, 2 + �, (5 +p13)=2.108. Given a digraph D on verties fV1; : : : ; Vng, let eij be the number of ars from Vito Vj . De�ne C(D) and its aspets as before. Sine C(D) is not neessarily symmetri,the aspets are no longer guaranteed to be real. But if � is an aspet, so is its omplexonjugate ��; and if we order the aspets by their real parts, again we �nd �0 = 0. Theformula (D) = �1 : : : �n�1=n remains valid if we now interpret (D) as the averagenumber of oriented spanning trees, taken over all n possible roots Vj . The aspets ofthe transitive tournament Tn, whose ars are Vi ! Vj for 1 � i < j � n, are obviously0, 1, : : : , n� 1; and those of its subgraphs are equally obvious.The derivations in parts (a){(d) of answer 105 arry over without hange. Forexample, onsider K1 �+T3, whih has aspets 0, 2, 3, 4; this digraph D has (2; 4; 6; 12)oriented spanning trees with the four possible roots, and (D) is indeed equal to2�3�4=4. Notie also that the digraph is its own omplement, and that ithas the same aspets as T3.Direted graphs also admit another family of interesting operations: If D0 andD00 are digraphs on disjoint sets of verties V 0 and V 00, onsider adding a ars v0 ! v00and b ars v00 ! v0 whenever v0 2 V 0 and v00 2 V 00. By manipulating determinantsas in answer 105(a), we an show that the resulting digraph has aspets f0; an00 + bn0;an00 + �01; : : : ; an00 + �0n0�1; bn0 + �001 ; : : : ; bn0 + �00n00�1g. In the speial ase a = 1 andb = 0, we an onveniently denote the new digraph by D0 ! D00; thus, for example,Tn = K1 ! Tn�1. The digraph Kn1 ! Kn2 ! � � � ! Knm on n1 + n2 + � � � + nmverties has aspets f0; nm � sm; : : : ; n2 � s2; (n1�1) � s1g, where sk = nk + � � �+ nm.The aspets of the oriented path Qn from V1 to Vn are obviously 0, 1, : : : , 1. Theoriented yle On has aspets f0; 1� !; : : : ; 1� !n�1g, where ! = e2�i=n.There is also a nie result for ar digraphs: The aspets of D� are obtained fromthose of D by simply adding �k � 1 opies of the number �k, for 1 � k � n, where �kis the in-degree of Vk and �k is its out-degree. (If �k = 0, we remove one aspet equalto �k.) The proof is similar to, but simpler than, the derivation in answer 2.3.4.2{21.Historial remarks: The results in exerises 104(b) and 105(a) are due to A. K.Kelmans, Avtomatika i Telemekhanika 26 (1965), 2194{2204; 27, 2 (February 1966),56{65; English translation in Automation and Remote Control 26 (1965), 2118{2129;
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7.2.1.6 ANSWERS TO EXERCISES 7327 (1966), 233{241. Miroslav Fiedler [Czeh. Math. J. 23 (1973), 298{305℄ introduedexerise 105(d), and proved interesting results about the aspet �1, whih he alledthe \algebrai onnetivity" of G. Germain Kreweras, in J. Combinatorial TheoryB24 (1978), 202{212, enumerated spanning trees on grids, ylinders, and toruses, aswell as oriented spanning trees on direted toruses suh as Om � On. An exellentsurvey of graph aspets was published by Bojan Mohar inGraph Theory, Combinatorisand Appliations (Wiley, 1991), 871{898; Disrete Math. 109 (1992), 171{183. For athorough disussion of important families of graph eigenvalues and their properties,inluding a omprehensive bibliography, see Spetra of Graphs by D. M. Cvetkovi�,M. Doob, and H. Sahs, third edition (1995).109. Perhaps there is also a sandpile-related reason; see exerise 103.110. By indution: Suppose there are k � 1 parallel edges between u and v. Then(G) = k(G1) + (G2), where G1 is G with u and v identi�ed, and G2 is G with thosek edges removed. Let du = k + a and dv = k + b.Case 1: G2 is onneted. Then ab > 0, so we an write a = x+ 1 and b = y + 1.We have (G1) > �px+ y + 1 and (G2) > �pxy, where � is a produt over the othern� 2 verties; and it is easy to verify thatkpx+ y + 1 +pxy � p(x+ k)(y + k):Case 2: There are no suh u and v for whih G2 is onneted. Then every multi-edge of G is a bridge; in other words, G is a free tree exept for parallel edges. Inthis ase the result is trivial if there's a vertex of degree 1. Otherwise suppose u is anendpoint, with du = k edges u��� v. If dv > k + 1, we have (G) = k(G1) > �kpxwhere dv = k+1+x, and it is easy to hek that kpx >p(k � 1)(k + x) when x > 0.If dv = k we have (G) = k >p(k � 1)2. Finally if dv = k+1, let v0 = u, v1 = v, andonsider the unique path v1���v2���� � ����vr where r > 1 and vr has degree greaterthan 2; only one edge joins vj to vj+1 for 1 � j < r. Again the indution goes through.[Other lower bounds on the number of spanning trees have been derived by A. V.Kostohka, Random Strutures and Algorithms 6 (1995), 269{274.℄111. 2 1 5 4 11 7 9 8 6 10 15 12 14 13 3.112. Either p appears on an even level and is an anestor of q, or q appears on an oddlevel and is an anestor of p.113. prepostorder(FR)=postpreorder(F )R and postpreorder(FR)=prepostorder(F )R.114. The most elegant approah, onsidering that the forest might be empty, is to setthings up so that CHILD(�) points to the root of the leftmost tree, if any. Then initiatethe �rst visit by setting Q �, L �1, and going to step Q6.115. Suppose there are ne nodes on even levels and no nodes on odd levels, and thatn0e of the even-level nodes are nonleaves. Then steps (Q1, : : : , Q7) are performedrespetively (ne + no, no, n0e, ne, n0e, no + 1, ne) times, inluding one exeution of Q6beause of answer 114.116. (a) This result follows from Algorithm Q.(b) In fat, non-ordinary nodes stritly alternate between luky and unluky,beginning and ending with a luky one. Proof: Consider the forest F 0 obtained bydeleting the leftmost leaf of F , and use indution on n.117. Suh forests are preisely those whose left-hild/right-sibling representation is adegenerate binary tree (exerise 31). So the answer is 2n�1.
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74 ANSWERS TO EXERCISES 7.2.1.6118. (a) tk�2, for k > 1; lukiness ours only near extreme leaves.(b) An interesting reurrene leads to the solution (Fk + 1� (k + 1) mod 3)=2.119. Label eah node x with the value v(x) = Pf 2k j k is an ar label on the pathfrom the root to xg. Then the node values in prepostorder are exatly the Gray binaryode �n, beause exerise 113 shows that they satisfy reurrene 7.2.1.1{5.(If we apply the same value labeling to the ordinary binomial tree Tn and traverseit in preorder, we simply get the integers 0, 1, : : : , 2n � 1.)120. False: Only four of the \hollow" verties in the illustration an appearnext to the two \square" verties, in a Hamiltonian yle; one hollow pair istherefore out of luk. [See H. Fleishner and H. V. Kronk, Monatshefte f�urMathematik 76 (1972), 112{117.℄121. Furthermore, there is a Hamiltonian path from u to v in T 2 if and only if similaronditions hold; but we retain u and/or v in T (0) if they have degree 1, and we requirethat the path in (i) be inside the path from u to v (exluding u and v themselves).Condition (ii) is also strengthened by hanging `verties of degree 4' to `dangerousverties', where a vertex of T (0) is alled dangerous if it either has degree 4 or hasdegree 2 and equals u or v. The smallest impossible ase is T = P4, with u and v hosento be the non-endpoints. [�Casopis pro P�estov�an�� Matematiky 89 (1964), 323{338.℄Consequently T 2 ontains a Hamiltonian yle if and only if T is a aterpillar,namely a free tree whose derivative is a path. [See Frank Harary and A. J. Shwenk,Mathematika 18 (1971), 138{140.℄122. (a) We an represent an expression by a binary tree, with operators at the internalnodes and digits at the external nodes. If binary trees are implemented as in Algo-rithm B, the essential onstraint imposed by the given grammar is that, if rj = k > 0,then the operator at node j is + or � if and only if the operator at node k is � or =.Therefore the total number of possibilities for a tree with n leaves is 2nSn�1, where Snis a Shr�oder number; namely 10,646,016 when n = 9. (See exerise 66, but interhangeleft with right.) We an rather quikly generate them all, enountering exatly 1640solutions. Only one expression, namely 1+2=((3�4)=(5+6)� (7�8)=9), does the jobwith no multipliations; twenty of them, suh as (((1� 2)=((3=4)� 5� 6))� 7+8)� 9,require �ve pairs of parentheses; only 15 require no parentheses whatever.(b) Now there are 1 +P8k=1�8k�2k+1Sk = 23;463;169 ases, and 3365 solutions.The shortest, of length 12, was found by Dudeney [The Weekly Dispath (18 June1899)℄, namely 123�45�67+89; but he wasn't sure at the time that it was best. Thelongest solutions have length 27; there are twenty of them, as mentioned above.() The number of ases rises dramatially to 2+P8k=1�8k�4k+1Sk = 8;157;017;474,and there now are 96,504 solutions. The longest, whih is unique, has length 40:((((:1=(:2 + :3))=:4)=:5)=(:6 � :7))=(:8 � :9). There are �ve amusing examples suh as:1 + (2 + 3 + 4 + 5) � 6 + 7 + 8 + :9, with seven +'s; furthermore, there are ten like(1� :2� :3� 4� :5� 6)� (7� 8� 9), with seven �'s.There is in fat very little priniple in the thing,and there is no ertain way of demonstratingthat we have got the best possible solution.| HENRY E. DUDENEY (1899)Notes: Marie Leske's Illustriertes Spielbuh f�ur M�adhen, �rst published in 1864,ontained the earliest known appearane of suh a problem; in the eleventh edition
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7.2.1.6 ANSWERS TO EXERCISES 75(1889), the fat that 100 = 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8� 9 was the solution to puzzle16 in setion 553. See also the referenes in exerise 7.2.1.1{111.Rihard Bellman explained in AMM 69 (1962), 640{643, how to handle thespeial ase of part (a) in whih the operators are restrited to be either + and �,without parentheses. His tehnique of dynami programming an be used also inthis more general problem to redue the number of ases being onsidered. The ideais to determine the rational numbers obtainable from every subinterval of the digitsf1; : : : ; ng, having a given operator at the root of the tree. We an also save a gooddeal of omputation by disarding ases for the subintervals f1; : : : ; 8g and f2; : : : ; 9gthat annot lead to integer solutions. In this way the number of essentially di�erenttrees to onsider is redued to (a) 2,747,275 ases; (b) 6,834,708; () 741,167,401.Floating point arithmeti is unreliable in this appliation. But the exat rationalarithmeti routines of Setion 4.5.1 do the job niely, never needing to work with aninteger greater than 109 in absolute value.123. (a) 2284; but 2284 = (1 + 2 � 3) � (4 + 5 � 67) � 89. (b) 6964; but 6964 =(1=:2)� 34+ 5+ 6789. () 14786; but 14786 = �1+ 2� (:3+ 4+ 5)� (6+ 789). [If weallow also a minus sign at the left of the expression, as Dudeney did, we atually obtain1361, 2758, and 85054 additional solutions to problems 120(a), (b), and (), inludingnineteen longer expressions in ase (a) suh as �(1�2)�((3+4)�(5�(6�7)�8)+9).With suh an extension, the smallest unreahable numbers in the present problembeome (a) 3802, (b) 8312, and () 17722.℄ The total number of representable integers(positive, negative, or zero) turns out to be (a) 27,666; (b) 136,607; () 200,765.124. Horton{Strahler numbers originated in studies of river ows: R. E. Horton, Bull.Geol. So. Amer. 56 (1945), 275{370; A. N. Strahler, Bull. Geol. So. Amer. 63 (1952),1117{1142. Many tree-drawing ideas are explored and illustrated in a lassi paper byViennot, Eyrolles, Janey, and Arqu�es, Computer Graphis 23, 3 (July 1989), 31{40.
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INDEX AND GLOSSARYWhen an index entry refers to a page ontaining a relevant exerise, see also the answer tothat exerise for further information. An answer page is not indexed here unless it refers to atopi not inluded in the statement of the exerise.0{1 vetors, 40.�, see Mems.�(x): The number of 1s (= Sideways sum).� (irle ratio), as \random" example,19, 39, 59.Abelian group, 70.Adjaeny matrix, 71.Aldous, David John, 14.Algebrai onnetivity, 73.Alonso, Laurent, 62.Analysis of algorithms, 10, 36, 40, 43, 51.Anestor, in a tree struture, 4, 46, 73.Antihain of subsets, 19.Arboresenes, see Oriented trees.Ar digraph of a digraph, 72.Arhimedes of Syrause (>Arqim dhå SurakoÔsio), solids, 35.Arnold, David Bryan, 13.Arqu�es, Didier, 75.Aspets of a graph, 42{43.Assoiahedron, 35.Assoiative law, 7, 32, 35, 44.Atkinson, Mihael David, 62.Atomi strings of parentheses, 38.Avalanhes, 42.Balaned digraphs, 42.Balaned strings, 38.Ballot numbers, 11{12, 36.generalized, 36{37.table, 11.Baronaigien, see Roelants van Baronaigien.Beker, Harold W., 51.Bellman, Rihard Ernest, 75.Beyer, Wendell Terry, 21.Bilutters, 40.Bigraph: A bipartite graph.Binary searh, 20.Binary searh trees, 37, 45.Binary trees, 1{2, 4{10, 31{39.deorated, 16, 38.degenerate, 35, 37, 74.drawings of, 1, 14, 15, 45, 47, 51.extended, 1, 16, 32, 37, 45.Gray odes for, 6{9, 33.linked, 4{9, 32.random, 16{17, 38, 45.representation of, 4, 8, 16, 36.rotations in, 7{9, 52.Binomial oeÆient identities, 37.Binomial trees, 44, 74.

Boolean funtions, 20, 40.Boolean latties, 53.Branh nodes: Nonleaves, 26{27.Breadth-�rst searh, 67.Bridges of a graph, 24{25, 41, 44, 68, 73.Brown, Robert, see Brownian exursion.Brownian exursion, 14.Bruijn, Niolaas Govert de, 17.Cn (Catalan number), 10{12, 16, 36{37.Cn (yli graph), 41, 68, 71.Cpq (ballot number), 11{12, 36{37.Callan, Columille David, 48.Canonial forest, 21{22, 40{41.Canonial form of algebrai expression, 44.Carlitz, Leonard, 58.Cartesian produt of graphs, v, 27, 43.Catalan, Eug�ene Charles, 10.Catalan numbers, 10{12, 16, 36{37.generalized, 36{37.tables, 10{11.Catalan triangle, 11{12, 19, 36{37.t-ary, 55.Caterpillar graphs, 74.Centroid of an oriented tree, 41.Chains of submultisets, 65.Chains of subsets, 17{21.Charateristi polynomial of a matrix,42, 71.Chebyshev, Pafnutii Lvovih (Qebyxev,Pafnuti� L~voviq), polynomials, 71.Christmas tree pattern, 17{21, 39{40, 64.Chung, Kai Lai ( ), 62.Clutters, 19.Co-atoms, 38.Coforests, 8.Cognate forests, 32.Colex order: Lexiographi from rightto left, 5, 33.Combinations, 3, 6, 49, 56.Complement of a graph, 43, 72.Complementary elements of a lattie, 35.Complete bigraph, 70.Complete graph, 41, 42.Complete t-ary tree, 44.Complex onjugate, 72.Conordant bit strings, 40.Con�gs, 27, 41.Conjugate of a forest, 8, 31{32, 36, 43.Conjuntion of graphs, v, 43.Conneted graphs, 24, 30, 44.Connetivity test, 67, 72.Context-free grammar, 44.76
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INDEX AND GLOSSARY 77Contration of a graph, 23{25, 63.Coprodut of graphs, v.Cori, Robert, 70.Cosum of graphs, v, 43.Covering in a lattie, 17, 33{36.Crossings in a set partition, 33.Cube of a graph, 30.Cummins, Rihard Lee, 67.Cvetkovi�, Drago�s Mladen (Cvetkovi�,Dragox Mladen), 28, 73.Cyle Lemma, 38.Cyli graph (Cn), 41, 68, 71.Cyli permutations, 36.Cyli shifts, 38.Cylinder graphs, 29, 43, 73.Daning links, 24.Data strutures for graphs, 24{26.de Bruijn, Niolaas Govert, 17.de Moivre, Abraham, 11.Deorated binary trees, 16, 38.Defet of a balaned string, 38.Degenerate binary trees, 35, 37, 73.Degree of a node, 32.Degree of a vertex, 24, 43.Degree one, nodes of, 26, 27, 39.verties of, 44, 73.D�enes, J�ozsef, 54.Depth oordinates k, 4, 21{22, 31,33, 37, 40, 51.Depth-�rst searh, 67.Derivative of a graph, 44.Dershowitz, Nahum (UIAEYXC MEGP), 54.Desendant, in a tree struture, 4, 46, 73.Desents of a permutation, 39.Determinants, 70{72.Deutsh, Emeri, 63.Dewey, Melvil, notation for binary trees(due to Galton), 59.notation for trees, 12.Dhar, Deepak (dFpk Dr), 70.Diagonally dominant matrix, 70.Digital Century puzzle, 44.Digraph: A direted graph.Diret produt of graphs, v, 43.Direted graphs, 42{43.Direted torus graphs, 73.Distributive laws, 34.Doob, Mihael, 73.Doubly linked lists, 24{25.Drawing a binary tree, 1, 14, 15, 45, 47, 51.Dual of a forest, 8{9, 32{34, 49.Dual of a planar graph, 68.Dudeney, Henry Ernest, 44, 74.Dyk, Walther Franz Anton von, paths,see Nested parentheses.Dynami programming, 75.

e, as \random" example, 35.Easy nodes, 27, 41.Ebbenhorst Tengbergen, Cornelia van, 17.Edelman, Paul Henry, 54.Eigenvalues, 42{43, 73.Ellipses, 15.Empty graph, 70.Empty string, 63.Endo-order, 6.Endpoint of a graph, 44, 73.Equivalene lasses, 42.Er, Meng Chiau ( ), 49.Errera, Alfred, 46.Eulerian numbers, 39.Extended binary trees, 1, 16, 32, 37, 45.Extended ternary trees, 32.External nodes, 1, 15, 16, 32, 37, 45, 46.Eyrolles, Georges, 75.Fatoring an n-yle, 36.Feller, Willibald (= Vilim = Willy =William), 62.Feussner, Wilhelm, 22.Fibonai trees, 44, 45.Fiedler, Miroslav, 73.Field polynomials, 72.Fleishner, Herbert, 74.Flip permutations, 54.Floating point arithmeti, 75.Fous pointers, 27, 41.Footprints, 35, 53.Forests, 0{75.anonial, 21{22, 40{41.ognate, 32.onjugate of, 8, 31{32, 36, 43.dual of, 8{9, 33, 49.Gray odes for, 6{9, 33.oriented, 21{22, 40.outline of, 13.random, 38.representation of, seeLeft-hild/right-siblinglinks, Nested parentheses,Right-hild/left-sibling links.roots of, 1.shape of, 13{14.super-root of, 30, 43.transpose of, 31{32, 36.triply linked, 30{31, 40, 50.Fratal dimension, 39.Free parentheses, 19, 65.Free trees, 22, 40{41, 44, 54, 72, 73.Freese, Ralph Stanley, 54.Gabow, Harold Neil, 69.Galton, Franis, 77.Generalized Catalan numbers, 36{37.Generating funtions, 10, 36, 37, 39, 41, 63.Golle, Philippe, 40, 66.
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78 INDEX AND GLOSSARYGrammar, ontext-free, 44.Graphs, 22{30, 41{44.Gr�atzer, George, 53.Gray, Frank, odes, 30.binary, 44, 63.for binary trees, 6{9, 33.for ombinations, 6.for forests, 6{9, 33.for nested parentheses, 6, 33, 37, 52.for Shr�oder trees, 39.for spanning trees, 23.for trees, 6{9.modular, 41.quasi-, 30.reeted, 7.revolving-door, 6, 23, 27, 28, 41.Greatest lower bound, 33{34.Greene, Curtis, 19, 65.Grid graphs, 29, 43, 73.triangular, 52.Gutjahr, Walter Josef, 61.Hamilton, William Rowan, yle, 74.path, 44, 52.Hamiltonian graph: A graph that ontainsa Hamiltonian yle, 30, 44.Handshaking at a irular table, 4, 31.Hansel, Georges, 20{21, 40.Harary, Frank, 67, 74.Hariharan, Ramesh (�U�q ����h), 69.Hedetniemi, Sarah Lee Mithell, 21.Hikerson, Dean Robert, 36.Hodges, Joseph Lawson, Jr., 62.Holzmann Poisson, Carlos Alfonso, 67.Horton, Robert Elmer, 75.Horton{Strahler number, 45.Identity matrix, 70.In-degree of a vertex, 42, 72.Inidene matrix, 71.Inorder (symmetri order), 1, 7, 8, 15,36, 37, 47, 52, 53.Internal path length, 37.Internet, ii, iii, 69.Inverse of a permutation, 8.Inversion tables, 4, 31, 46.Isthmuses, see Bridges of a graph.Janey, Niolas, 75.Join of graphs, v, 43.Juxtaposition of graphs, v, 43.Juxtaposition of forests, 32.kth power of a graph, 30.Kapoor, Sanjiv (s\jFv kp�r), 69.Katona, Gyula (Optim�alis Halmaz), 65.Kelmans, Alexander Kolmanovih(Kel~mans, Aleksandr Kol~manoviq),72.

Kemp, Rainer, 59, 61.Kirshenhofer, Peter, 61.Kleitman, Daniel J (Isaiah Solomon),19, 40, 65.Knuth, Donald Ervin ( ), i, iv,17, 65, 68, 69.Korobkov, Vitaly Konstantinovih(Korobkov, Vitali�Konstantinoviq), 21.Korsh, James F., 4, 33, 50, 51, 63.Kostohka, Alexandr Vasilievih (Kostoqka,Aleksandr Vasil~eviq), 73.Kreweras, Germain, 51, 52, 73.lattie, 33{36, 53.Kroneker, Leopold, produt of matries, 70.Kronk, Hudson Van Etten, 74.Kruskal, Joseph Bernard, Jr., funtion, 37.Kruyswijk, Dirk, 17.Kubika, Ewa, 66.Lakser, Harry, 53.Latties of trees, 33{36.Le Borgne, Yvan Franoise Andr�e, 70.Leaf nodes, 26, 33, 51.Least upper bound, 33{34.Left path length, 59.Left-sibling/right-hild links, 5, 32,36, 48, 51{52.Left-hild/right-sibling links, 1, 5, 7,30, 47, 48, 51{52.Leske, Marie, 74.Level oordinates k, 4, 21{22, 31,33, 37, 40, 51.L�evy, Paul, 14.Lexiographi order, 2{3, 19, 21, 31, 40.Li, Gang (= Kenny) ( ), 67.Line graph of a graph, 43.Linked binary trees, generation of, 4{9, 32.random, 16{17, 38.Littlewood, John Edensor, 66.Loopless algorithm, 30.Loops in a graph, 22, 25.Louhard, Guy, 14.Luas, Joan Marie, 7.Luky nodes, 43{44.Luzak (=  Luzak), Malwina Joanna, 63.Mn (middle binomial oeÆient), 17, 39{40.MaMahon, Pery Alexander, 57, 62.Markert, Jean-Fran�ois, 14.Markowsky, George, 53.Mathings, 4, 31.Mate of a bit string, 39.Mate of an ar node, 24.Matrix tree theorem, 41, 42, 70.Maximal hains, 34, 36.Mems (�): Memory aesses, 28{29,36, 51, 66, 68.Mirror image, 4, 31, 47, 51, 64.MMIX omputer, ii.
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INDEX AND GLOSSARY 79Modular Gray ode for tuples, 41.Mohar, Bojan, 73.Moivre, Abraham de, 11.Monotone Boolean funtions, 20, 40.Morphi sequene, 64.Myers, Eugene Wimberly, Jr., 69.n-ube, 28{29, 43, 71.Natural orrespondene, 1; seeLeft-hild/right-sibling links.Near trees, 23{28, 68.Near-perfet Gray ode for nestedparentheses, 6.Nested parentheses, 0{6, 10{13, 15{16,19, 31{32, 37, 38, 46, 52.Neuman, Franti�sek, 44.Newton, Isaa, identities, 71.Nijenhuis, Albert, 41.Nonrossing hords, 4, 31.Nonrossing partitions, 33.Notational onventions:FD , 32.FR, FT , 31.F < F 0, F a F 0, F � F 0, 33{35, 52.G + H, G �+ H, G �H, G ÆH, G
H, v.Numbers, Catalan, iii.O�ord, Albert Cyril, 66.Optimum algorithm, 21.Order ideals, 52.Organ-pipe order, 68.Organi illustrations, 45.Oriented forests, 21{22, 40.Oriented spanning trees, 41{42, 72.Oriented tree numbers, table, 21.Oriented trees, 21{22, 40{42.Out-degree of a vertex, 42, 72.Outline of a forest, 13.Pn (path graph), 29, 41, 43, 68, 71, 74.Pan-digital puzzles, 44{45.Panholzer, Alois, 61, 63.Parent pointers, 21{22, 30{31, 40.Parentheses, 0{4, 6, 12{13, 15{16, 19,31{32, 38, 46, 52.Parking problem, 54, 70.Path graph (Pn), 29, 41, 43, 68, 71, 74.Path length, 60.Pendant vertex, see Endpoint.Pentagons, 35.Perfet Gray ode for nested parentheses,6, 37, 52.Permutahedron, 35.Permutation representation of binarytrees, 36.Permutations, yli, 36.desents of, 39.ip, 54.inverses of, 8.

Pi (�), as \random" example, 19, 39, 59.Plain hanges, 7.Plato = Aristoles, son of Ariston(Pl�twn = >Aristokl¨ >Ar�stwno), 0.Polish pre�x notation, see Preorderdegree sequene.Polyhedra, 35.Positive semide�nite matries, 70.Postorder, 1, 4, 7, 8, 31, 47, 51.Postpreorder, 29{31, 43.Power of a graph, 30, 44.Preorder, 1, 4, 8{9, 21, 22, 31{35, 38,40, 51, 68.Preorder degree sequene, 32.Prepostorder, iv, 29{31, 43{44.Prodinger, Helmut, 61, 63.Proskurowski, Andrzej, 6, 37.Prune-and-graft algorithm, 9, 33.Pseudo-omplement in a lattie, 54.Pun resisted, 30.q-ballot numbers, 36{37.q-Catalan numbers, 36{37.q-nomial oeÆients, 58.Quasi-Gray ode, 30.Ramesh, Hariharan (�U�q ����h), 69.Random binary tree, 14{17, 38, 45.Random forest, 13{14, 38.Random oriented tree, 41.Random Shr�oder tree, 63.Raney, George Neal, 38.Ranking, 37, 39.Rational arithmeti, 75.Reahability test, 67.Reurrene relations, 54{56, 61, 74.Reurrent states, 42.Reursion, 24.Reursion tree, 11.Reursive proedure, 67.Reursive struture, 3, 11, 46, 55.Reeted Gray ode, 7.Reetion of a forest, 31, see Conjugate.Regular graph, 43.Regular polygon, 35.Relative omplement, 20.R�emy, Jean-Lu, 16, 38, 62.Restrited growth sequenes, 51.Resultants, 71.Revolving-door Gray odes, 23, 27, 28, 41.near-perfet, 6.strong, 69.Rihards, Dana Sott, 32, 36.Right path length, 59.Right-hild/left-sibling links, 5, 32,36, 48, 51{52.Right-sibling/left-hild links, 1, 30,47, 48, 51{52.Riordan, John, 58.River ows, 75.
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80 INDEX AND GLOSSARYRobinson, Gilbert de Beauregard, 39.Rodrigues, Benjamin Olinde, 16.Roelants van Baronaigien, Dominique,6, 7, 56.Rooted unlabeled trees, see Oriented trees.Roots of a forest, 1.Rossin, Dominique Gilles, 70.Rotation lattie, see Tamari lattie.Rotations in a binary tree, 6{9, 52.Run-length oordinates dk, 2, 3, 31, 37, 49.Ruskey, Frank, 6, 7, 12, 14, 37, 56, 67.Sn (Shr�oder number), 39.Sahs, Horst, 71, 73.Sak, J�org-R�udiger Wolfgang, 62.Sandpiles, 42, 73.Shensted, Craige Eugene (= Ea Ea), 39.Shott, Ren�e Pierre, 62.Shr�oder, Ernst, numbers, 39, 74.trees, 39, 63.triangle, 63.Shwenk, Allen John, 74.Soins, Hubert Ian, 21.Sope oordinates, 8, 34.SCOPE links, 4.Self-onjugate forests, 36, 48.Self-dual forests, 36.Self-transpose forests, 36.Sekanina, Milan, 30.Semba, Ihiro ( ), 2.Semidistributive laws, 35.Semimodular law, 34.Series-parallel graphs, 25{28, 41, 63.Set partitions, 33.Shape of a random binary tree, 14{15.Shape of a random forest, 13{14.Shrinking an edge, 23{25, 63.Skarbek, W ladys law Kazimierz, 4.Sleep, Mihael Ronan, 13.Smith, Malolm James, 23, 24, 27, 28.Sorates, son of Sophronisus ofAlopee (Swkr�th Swfrwn�skou>Alwpek¨jen), 0.Spanning arboresenes, 41, see Orientedspanning trees.Spanning trees, 22{29, 41{43.enumeration of, 42{43.Spetrum of a graph, 71, 73.Sperner, Emanuel, 19.theorem, 19, 39, 65.Sprugnoli, Renzo, 37.Square of a graph, 30, 44.Stable states, 42.Stanford GraphBase, ii, iii, 28, 68.Stanley, Rihard Peter, iii, 36, 52, 63.lattie, 34{36.Star graphs, 72.Strahler, Arthur Newell, 45, 75.Strong produt of graphs, v, 43.

Strong revolving-door order, 69.Sum of graphs, v, 43.Super-root of a forest, 30, 43.Superedge of a graph, 25{28, 63.Symmetri order (inorder), 1, 7, 8, 15,36, 37, 47, 52, 53.Syntax, ontext-free, 44.t-ary trees, 38, 55, 60.omplete, 44.random, 38.Tableaux, 36, 39, 55, 65.Tamari, Dov, lattie, 34{35, 55.Tang, Changjie ( ), 6.Tengbergen, Cornelia van Ebbenhorst, 17.Ternary trees, 32, 36; see also t-ary trees.Threshold funtions, 21, 65.Toppling, 42.Torus graphs, 28, 29, 43, 70, 73.direted, 73.Tournament digraphs, 72.Transitive tournaments, 72.Transpose of a forest, 31{32, 36.Transpositions: Cyli permutationsof order 2, 36.Traversal of a binary tree, 29{31.Tree representation of a series-parallelgraph, 26, 41.Trees, 0{75.binary, 1{2, 4{10, 16, 31{39.binomial, 44, 74.Fibonai, 44, 45.free, 22, 40{41, 44, 54, 72, 73.Gray odes for, 6{9.latties of, 33{36.oriented, 21{22, 40{43.random, 12{17, 38, 41, 45, 64.Shr�oder, 39, 63.spanning, 22{29, 41{43.t-ary, 32, 36, 38, 55, 60.traversal of, 29{31.Triangular grids, 52.Triangularizing a matrix, 69.Triply linked forest, 30{31, 40, 50.Trivial trees, 48.Twisted binomial trees, 44.Tyler, Douglas Blaine, 36.Uneasy nodes, 27, 41.Unit vetors, 40.Unlabeled free trees, 22, 40, 44.Unlabeled rooted trees, see Oriented trees.Unluky nodes, 43.Unranking, 12, 37.Unrooted trees, see Free trees.Ushijima, Kazuo ( ), 6.
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INDEX AND GLOSSARY 81Vakhovsky, Evgenii Borisovih (Bahovski�,Evgeni� Borisoviq), 71.van Baronaigien, see Roelants vanBaronaigien.van Ebbenhorst Tengbergen, Cornelia, 17.Vetor spaes, 40.Viennot, G�erard Mihel Fran�ois Xavier, 75.Vo, Kiem-Phong, 65.Voting, 11, 66.Warren, Jon, 14.Watson, George Neville, 58.

Wheel graph, 42.Wilf, Herbert Saul, 41.Winkler, Peter, 63.Worm's walk, 1, 12{14, 31, 46, 52, 61, 64.Xiang, Limin ( ), 6.Young, Alfred, tableaux, 36, 39, 55, 65.Zaks, Shmuel (QWF L�ENY), 31, 32, 36, 49, 54.Ziegler, G�unter Matthias, 53.
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