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PREFACE
Quhen a word fales to be divyded at the end of a lyne,the partition must be made at the end of a syllab.| ALEXANDER HUME, Orthographie : : : of the Britan Tongue (. 1620)

This booklet ontains draft material that I'm irulating to experts in the�eld, in hopes that they an help remove its most egregious errors before toomany other people see it. I am also, however, posting it on the Internet forourageous and/or random readers who don't mind the risk of reading a fewpages that have not yet reahed a very mature state. Beware: This material hasnot yet been proofread as thoroughly as the manusripts of Volumes 1, 2, and 3were at the time of their �rst printings. And those arefully-heked volumes,alas, were subsequently found to ontain thousands of mistakes.Given this aveat, I hope that my errors this time will not be so numerousand/or obtrusive that you will be disouraged from reading the material arefully.I did try to make it both interesting and authoritative, as far as it goes. But the�eld is so vast, I annot hope to have surrounded it enough to orral it ompletely.Therefore I beg you to let me know about any de�ienies you disover.To put the material in ontext, this pre-fasile ontains Setions 7.2.1.4and 7.2.1.5 of a long, long hapter on ombinatorial algorithms. Chapter 7 willeventually �ll three volumes (namely Volumes 4A, 4B, and 4C), assuming thatI'm able to remain healthy. It will begin with a short review of graph theory, withemphasis on some highlights of signi�ant graphs in The Stanford GraphBase,from whih I will be drawing many examples. Then omes Setion 7.1, whihdeals with the topi of bitwise manipulations. (I drafted about 60 pages aboutthat subjet in 1977, but those pages need extensive revision; meanwhile I'vedeided to work for awhile on the material that follows it, so that I an get abetter feel for how muh to ut.) Setion 7.2 is about generating all possibilities,and it begins with Setion 7.2.1: Generating Basi Combinatorial Patterns|whih, in turn, begins with Setion 7.2.1.1, \Generating all n-tuples," Setion7.2.1.2, \Generating all permutations," and Setion 7.2.1.3, \Generating all om-binations." (Readers of the present booklet should have already looked at thosesetions, drafts of whih are available as Pre-Fasiles 2A, 2B, and 3A.) The stageis now set for the main ontents of this booklet, Setion 7.2.1.4: \Generating allpartitions," and Setion 7.2.1.5: \Generating all set partitions." Then will omeSetion 7.2.1.6 (about trees), et. Setion 7.2.2 will deal with baktraking ingeneral. And so it will go on, if all goes well; an outline of the entire Chapter 7as urrently envisaged appears on the taop webpage that is ited on page ii.iii
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iv PREFACEEven the apparently lowly topi of partition generation turns out to besurprisingly rih, with ties to Setions 1.2.5, 1.2.6, 1.2.9, 1.2.10, 1.2.11.2, 1.3.3,2.3.3, 2.3.4.2, 2.3.4.4, 2.3.4.5, 3.3.2, 3.3.3, 3.4.1, 4.5.4, 4.6.2, 4.7, 5, 5.1.1, 5.1.2,5.1.3, 5.1.4, 5.2.2, 5.2.3, and 5.2.5 of the �rst three volumes. I strongly believein building up a �rm foundation, so I have disussed this topi muh morethoroughly than I will be able to do with material that is newer or less basi.Indeed, the theory of partitions is one of the niest hapters in all of mathematis.To my surprise, I ame up with 154 exerises, even though|believe it or not|I had to eliminate quite a bit of the interesting material that appears in my �les.Some of the things presented are new, to the best of my knowledge, althoughI will not be at all surprised to learn that my own little \disoveries" havebeen disovered before. Please look, for example, at the exerises that I'velassed as researh problems (rated with diÆulty level 46 or higher), namelyexerises 7.2.1.4{51, 62, 63, 71, and 7.2.1.5{18, 66, 74, 77; I've also impliitlyposed additional unsolved questions in the answers to exerises 7.2.1.4{48 and69. Are those problems still open? Please let me know if you know of a solutionto any of these intriguing questions. And of ourse if no solution is known todaybut you do make progress on any of them in the future, I hope you'll let meknow.I urgently need your help also with respet to some exerises that I madeup as I was preparing this material. I ertainly don't like to get redit for thingsthat have already been published by others, and most of these results are quitenatural \fruits" that were just waiting to be \pluked." Therefore please tellme if you know who I should have redited, with respet to the ideas found inexerises 7.2.1.4{20, 27, 48, 49, 50, 56; 7.2.1.5{2, 6, 8, 9, 25, 26, 35, 38(e), 47,50, 52, 56, and/or 76.I shall happily pay a �nder's fee of $2.56 for eah error in this draft when it is�rst reported to me, whether that error be typographial, tehnial, or historial.The same reward holds for items that I forgot to put in the index. And valuablesuggestions for improvements to the text are worth 32/ eah. (Furthermore, ifyou �nd a better solution to an exerise, I'll atually reward you with immortalglory instead of mere money, by publishing your name in the eventual book:�)Cross referenes to yet-unwritten material sometimes appear as `00'; thisimpossible value is a plaeholder for the atual numbers to be supplied later.Happy reading!Stanford, California D. E. K.14 February 2004
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0 COMBINATORIAL ALGORITHMS (F3B)7.2.1.4. Generating all partitions. Rihard Stanley's magni�ent book Enu-merative Combinatoris (1986) begins by disussing The Twelvefold Way, a2� 2� 3 array of basi ombinatorial problems that arise frequently in pratie(see Table 1). All twelve of Stanley's basi problems an be desribed in termsof the ways that a given number of balls an be plaed into a given number ofurns. For example, there are nine ways to put 2 balls into 3 urns if the balls andurns are labeled:
A B C12 A B C1 2 A B C1 2 A B C12 A B C12 A B C1 2 A B C12 A B C12 A B C12(The order of balls within an urn is ignored.) But if the balls are unlabeled,some of these arrangements are indistinguishable, so only six di�erent ways arepossible:

A B C A B C A B C A B C A B C A B C : (1)
If the urns are unlabeled, arrangements like 1 2 and 12 are essentiallythe same, hene only two of the original nine arrangements are distinguishable.And if we have three labeled balls, the only distint ways to plae them intothree unlabeled urns are123 12 3 13 2 1 23 1 2 3 : (2)Finally, if neither balls nor urns are labeled, these �ve possibilities redue to onlythree: : (3)The Twelvefold Way onsiders all arrangements that are possible when balls andurns are labeled or unlabeled, and when the urns may optionally be required toontain at least one ball or at most one ball.Table 1THE TWELVEFOLD WAYballs per urn unrestrited � 1 � 1n labeled balls,m labeled urns n-tuplesof m things n-permutationsof m things partitions of f1; : : : ; nginto m ordered partsn unlabeled balls,m labeled urns n-multiombinationsof m things n-ombinationsof m things ompositions of ninto m partsn labeled balls,m unlabeled urns partitions of f1; : : : ; nginto � m parts n pigeonsinto m holes partitions of f1; : : : ; nginto m partsn unlabeled balls,m unlabeled urns partitions of ninto � m parts n pigeonsinto m holes partitions of ninto m parts
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7.2.1.4 GENERATING ALL PARTITIONS 1We've learned about n-tuples, permutations, ombinations, and omposi-tions in previous setions of this hapter; and two of the twelve entries in Table 1are trivial (namely the ones related to \pigeons"). So we an omplete ourstudy of lassial ombinatorial mathematis by learning about the remaining�ve entries in the table, whih all involve partitions.Let us begin by aknowledging that the word \partition"has numerous meanings in mathematis.Any time a division of some objet into subobjets is undertaken,the word partition is likely to pop up.| GEORGE ANDREWS, The Theory of Partitions (1976)Two quite di�erent onepts share the same name: The partitions of a setare the ways to subdivide it into disjoint subsets; thus (2) illustrates the �vepartitions of f1; 2; 3g, namelyf1; 2; 3g; f1; 2gf3g; f1; 3gf2g; f1gf2; 3g; f1gf2gf3g: (4)And the partitions of an integer are the ways to write it as a sum of positiveintegers, disregarding order; thus (3) illustrates the three partitions of 3, namely3; 2 + 1; 1 + 1 + 1: (5)We shall follow the ommon pratie of referring to integer partitions as simply\partitions," without any qualifying adjetive; the other kind will be alled\set partitions" in what follows, to make the distintion lear. Both kinds ofpartitions are important, so we'll study eah of them in turn.Generating all partitions of an integer. A partition of n an be de�nedformally as a sequene of nonnegative integers a1 � a2 � � � � suh that n =a1 + a2 + � � � ; for example, one partition of 7 has a1 = a2 = 3, a3 = 1, anda4 = a5 = � � � = 0. The number of nonzero terms is alled the number of parts,and the zero terms are usually suppressed. Thus we write 7 = 3 + 3 + 1, orsimply 331 to save spae when the ontext is lear.The simplest way to generate all partitions, and one of the fastest, is to visitthem in reverse lexiographi order, starting with `n' and ending with `11 : : : 1'.For example, the partitions of 8 are8; 71; 62; 611; 53; 521; 5111; 44; 431; 422; 4211; 41111; 332; 3311;3221; 32111; 311111; 2222; 22211; 221111; 2111111; 11111111; (6)when listed in this order.If a partition isn't all 1s, it ends with (x+1) followed by zero or more 1s,for some x � 1; therefore the next smallest partition in lexiographi orderis obtained by replaing the suÆx (x+1)1 : : : 1 by x : : : xr for some appropriateremainder r � x. The proess is quite eÆient if we keep trak of the largest sub-sript q suh that aq 6= 1, as suggested by J. K. S. MKay [CACM 13 (1970), 52℄:
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2 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.4Algorithm P (Partitions in reverse lexiographi order). This algorithm gen-erates all partitions a1 � a2 � � � � � am � 1 with a1 + a2 + � � � + am = n and1 � m � n, assuming that n � 1.P1. [Initialize.℄ Set a0  0 and m 1.P2. [Store the �nal part.℄ Set am  n and q  m� [n=1℄.P3. [Visit.℄ Visit the partition a1a2 : : : am. Then go to P5 if aq 6= 2.P4. [Change 2 to 1+1.℄ Set aq  1, q  q� 1, m m+1, am  1, and returnto P3.P5. [Derease aq.℄ Terminate the algorithm if q = 0. Otherwise set x aq � 1,aq  x, n m� q + 1, and m q + 1.P6. [Copy x if neessary.℄ If n � x, return to step P2. Otherwise set am  x,m m+ 1, n n� x, and repeat this step.Notie that the operation of going from one partition to the next is partiularlyeasy if a 2 is present; then step P4 simply hanges the rightmost 2 to a 1 and ap-pends another 1 at the right. This happy situation is, fortunately, the most om-mon ase. For example, nearly 79% of all partitions ontain a 2 when n = 100.Another simple algorithm is available when we want to generate all partitionsof n into a �xed number of parts. The following method, whih was featuredin C. F. Hindenburg's 18th-entury dissertation [In�nitinomii Dignitatum Ex-ponentis Indeterminati (G�ottingen, 1779), 73{91℄, visits the partitions in olexorder, namely in lexiographi order of the reeted sequene am : : : a2a1:Algorithm H (Partitions into m parts). This algorithm generates all integerm-tuples a1 : : : am suh that a1 � � � � � am � 1 and a1+ � � �+am = n, assumingthat n � m � 2.H1. [Initialize.℄ Set a1  n � m + 1 and aj  1 for 1 < j � m. Also setam+1  �1.H2. [Visit.℄ Visit the partition a1 : : : am. Then go to H4 if a2 � a1 � 1.H3. [Tweak a1 and a2.℄ Set a1  a1 � 1, a2  a2 + 1, and return to H2.H4. [Find j.℄ Set j  3 and s a1+a2�1. Then, if aj � a1�1, set s s+aj ,j  j + 1, and repeat until aj < a1 � 1. (Now s = a1 + � � �+ aj�1 � 1.)H5. [Inrease aj .℄ Terminate if j > m. Otherwise set x  aj + 1, aj  x,j  j � 1.H6. [Tweak a1 : : : aj .℄ While j > 1, set aj  x, s  s � x, and j  j � 1.Finally set a1  s and return to H2.For example, when n = 11 and m = 4 the suessive partitions visited are8111; 7211; 6311; 5411; 6221; 5321; 4421; 4331; 5222; 4322; 3332: (7)The basi idea is that olex order goes from one partition a1 : : : am to the next by�nding the smallest j suh that aj an be inreased without hanging aj+1 : : : am.The new partition a01 : : : a0m will have a01 � � � � � a0j = aj +1 and a01+ � � �+ a0j =
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7.2.1.4 GENERATING ALL PARTITIONS 3a1 + � � � + aj , and these onditions are ahievable if and only if aj < a1 � 1.Furthermore, the smallest suh partition a01 : : : a0m in olex order has a02 = � � � =a0j = aj + 1.Step H3 handles the simple ase j = 2, whih is by far the most ommon.And indeed, the value of j almost always turns out to be quite small; we willprove later that the total running time of Algorithm H is at most a small onstanttimes the number of partitions visited, plus O(m).Other representations of partitions. We've de�ned a partition as a sequeneof nonnegative integers a1a2 : : : with a1 � a2 � � � � and a1 + a2 + � � � = n, butwe an also regard it as an n-tuple of nonnegative integers 12 : : : n suh that1 + 22 + � � �+ nn = n: (8)Here j is the number of times the integer j appears in the sequene a1a2 : : : ;for example, the partition 331 orresponds to the ounts 1 = 1, 2 = 0, 3 = 2,4 = 5 = 6 = 7 = 0. The number of parts is then 1+2+� � �+n. A proedureanalogous to Algorithm P an readily be devised to generate partitions in part-ount form; see exerise 5.We have already seen the part-ount representation impliitly in formulaslike Eq. 1.2.9{(38), whih expresses the symmetri funtionhn = XN�dn�����d2�d1�1xd1xd2 : : : xdn (9)as X1;2;:::;n�01+22+���+nn=n S11111! S22222! � � � Snnnnn! ; (10)
where Sj is the symmetri funtion xj1 + xj2 + � � � + xjN . The sum in (9) isessentially taken over all n-multiombinations of N , while the sum in (10) istaken over all partitions of n. Thus, for example, h3 = 16S31 + 12S1S2 + 13S3, andwhen N = 2 we havex3 + x2y + xy2 + y3 = 16 (x+ y)3 + 12 (x+ y)(x2 + y2) + 13 (x3 + y3):Other sums over partitions appear in exerises 1.2.5{21, 1.2.9{10, 1.2.9{11,1.2.10{12, et.; for this reason partitions are of entral importane in the study ofsymmetri funtions, a lass of funtions that pervades mathematis in general.[Chapter 7 of Rihard Stanley's Enumerative Combinatoris 2 (1999) is anexellent introdution to advaned aspets of symmetri funtion theory.℄Partitions an be visualized in an appealing way by onsidering an arrayof n dots, having a1 dots in the top row and a2 in the next row, et. Suh anarrangement of dots is alled the Ferrers diagram of the partition, in honor ofN. M. Ferrers [see Philosophial Mag. 5 (1853), 199{202℄; and the largest squaresubarray of dots that it ontains is alled the Durfee square, after W. P. Durfee[see Johns Hopkins Univ. Cirular 2 (Deember 1882), 23℄. For example, theFerrers diagram of 8887211 is shown with its 4� 4 Durfee square in Fig. 28(a).
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4 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.4

(a) 8887211 (b) 75444443
Fig. 28. The Ferrersdiagrams and Durfeesquares of two onju-gate partitions.

The Durfee square ontains k2 dots when k is the largest subsript suh thatak � k ; we may all k the trae of the partition.If � is any partition a1a2 : : : , its onjugate �T = b1b2 : : : is obtained bytransposing the rows and olumns of the orresponding Ferrers diagram. Forexample, Fig. 28(b) shows that (8887211)T = 75444443. When � = �T weobviously have � = �T ; the partition � has a1 parts and � has b1 parts. Indeed,there's a simple relation between the part-ount representation 1 : : : n of � andthe onjugate partition b1b2 : : : , namelybj � bj+1 = j for all j � 1. (11)This relation makes it easy to ompute the onjugate of a given partition, or towrite it down by inspetion (see exerise 6).The notion of onjugation often explains properties of partitions that wouldotherwise be quite mysterious. For example, now that we know the de�nition of�T , we an easily see that the value of j � 1 in step H5 of Algorithm H is justthe seond-smallest part of the onjugate partition (a1 : : : am)T . Therefore theaverage amount of work that needs to be done in steps H4 and H6 is essentiallyproportional to the average size of the seond-smallest part of a random partitionwhose largest part is m. And we will see below that the seond-smallest part isalmost always quite small.Moreover, Algorithm H produes partitions in lexiographi order of theironjugates. For example, the respetive onjugates of (7) are41111111; 4211111; 422111; 42221; 431111;43211; 4322; 4331; 44111; 4421; 443; (12)these are the partitions of n = 11 with largest part 4. One way to generate allpartitions of n is to start with the trivial partition `n', then run Algorithm H form = 2, 3, : : : , n in turn; this proess yields all � in lexiographi order of �T(see exerise 7). Thus Algorithm H an be regarded as a dual of Algorithm P.There is at least one more useful way to represent partitions, alled therim representation. Suppose we replae the dots of a Ferrers diagram by boxes,thereby obtaining a tableau shape as we did in Setion 5.1.4; for example, thepartition 8887211 of Fig. 28(a) beomes
: (13)
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7.2.1.4 GENERATING ALL PARTITIONS 5The right-hand boundary of this shape an be regarded as a path from the lowerleft orner to the upper right orner of an n�n square, and we know from Table7.2.1.3{1 that suh a path orresponds to an (n; n)-ombination.For example, (13) orresponds to the 70-bit string0 : : : 01001011111010001 : : : 1 = 0281102110115011103127; (14)where we plae enough 0s at the beginning and 1s at the end to make exatly n ofeah. The 0s represent upward steps of the path, and the 1s represent rightwardsteps. It is easy to see that the bit string de�ned in this way has exatly ninversions; onversely, every permutation of the multiset fn � 0; n � 1g that hasexatly n inversions orresponds to a partition of n. When the partition has tdi�erent parts, its bit string an be written in the form0n�q1�q2�����qt 1p1 0q1 1p2 0q2 : : : 1pt 0qt 1n�p1�p2�����pt ; (15)where the exponents pj and qj are positive integers. Then the partition's stan-dard representation isa1a2 : : : = (p1 + � � �+ pt)qt (p1 + � � �+ pt�1)qt�1 : : : (p1)q1 ; (16)namely (1+1+5+1)3(1+1+5)1(1+1)1(1)2 = 8887211 in our example.The number of partitions. Inspired by a question that was posed to him byPhilipp Naud�e in 1740, Leonhard Euler wrote two fundamental papers in whihhe ounted partitions of various kinds by studying their generating funtions[Commentarii Aademi� Sientiarum Petropolitan� 13 (1741), 64{93; NoviComment. Aad. Si. Pet. 3 (1750), 125{169℄. He observed that the oeÆientof zn in the in�nite produt(1+z+z2+� � �+zj+� � � )(1+z2+z4+� � �+z2k+� � � )(1+z3+z6+� � �+z3l+� � � ) : : :is the number of nonnegative integer solutions to the equation j+2k+3l+� � � = n;and 1 + zm + z2m + � � � is 1=(1� zm). Therefore if we writeP (z) = 1Ym=1 11� zm = 1Xn=0 p(n)zn; (17)the number of partitions of n is p(n). This funtion P (z) turns out to have anamazing number of subtle mathematial properties.For example, Euler disovered that massive anellation ours when thedenominator of P (z) is multiplied out:(1�z)(1�z2)(1�z3) : : : = 1� z � z2 + z5 + z7 � z12 � z15 + z22 + z26 � � � �= X�1<n<1(�1)nz(3n2+n)=2: (18)A ombinatorial proof of this remarkable identity, based on Ferrers diagrams,appears in exerise 5.1.1{14; we an also prove it by setting u = z and v = z2 in
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6 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.4the even more remarkable identity of Jaobi,1Yk=1(1� ukvk�1)(1� uk�1vk)(1� ukvk) = 1Xn=�1(�1)nu(n2)v(�n2 ); (19)beause the left-hand side beomes Q1k=1(1 � z3k�2)(1 � z3k�1)(1 � z3k); seeexerise 5.1.1{20. Euler's identity (18) implies that the partition numbers satisfythe reurrenep(n) = p(n�1) + p(n�2)� p(n�5)� p(n�7) + p(n�12) + p(n�15)� � � � ; (20)from whih we an ompute their values more rapidly than by performing thepower series alulations in (17):n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15p(n) = 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176We know from Setion 1.2.8 that solutions to the Fibonai reurrenef(n) = f(n � 1) + f(n � 2) grow exponentially, with f(n) = �(�n) when f(0)and f(1) are positive. The additional terms `� p(n�5)� p(n�7)' in (20) have adampening e�et on partition numbers, however; in fat, if we were to stop thereurrene there, the resulting sequene would osillate between positive and neg-ative values. Further terms `+p(n�12)+p(n�15)' reinstate exponential growth.The atual growth rate of p(n) turns out to be of order Apn=n for a ertainonstant A. For example, exerise 33 proves diretly that p(n) grows at least asfast as e2pn=n. And one fairly easy way to obtain a deent upper bound is totake logarithms in (17),lnP (z) = 1Xm=1 ln 11� zm = 1Xm=1 1Xn=1 zmnn ; (21)and then to look at the behavior near z = 1 by setting z = e�t :lnP (e�t) = Xm;n�1 e�mntn = Xn�1 1n 1etn � 1 < Xn�1 1n2t = �(2)t : (22)Consequently, sine p(n) � p(n+ 1) < p(n+ 2) < � � � and et > 1, we havep(n)1� e�t < 1Xk=0 p(k)e(n�k)t = entP (e�t) < ent+�(2)=t (23)for all t > 0. Setting t =p�(2)=n givesp(n) < Ce2Cpn=pn; where C =p�(2) = �=p6. (24)We an obtain more aurate information about the size of lnP (e�t) byusing Euler's summation formula (Setion 1.2.11.2) or Mellin transforms (Se-tion 5.2.2); see exerise 25. But the methods we have seen so far aren't powerfulenough to dedue the preise behavior of P (e�t), so it is time for us to add anew weapon to our arsenal of tehniques.
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7.2.1.4 GENERATING ALL PARTITIONS 7Euler's generating funtion P (z) is ideally suited to the Poisson summationformula [J. �Eole Royale Polytehnique 12 (1823), 404{509, x63℄, aording towhih 1Xn=�1 f(n+ �) = limM!1 MXm=�M e2�mi� Z 1�1 e�2�miyf(y) dy; (25)whenever f is a \well-behaved" funtion. This formula is based on the fatthat the left-hand side is a periodi funtion of �, and the right-hand side is theexpansion of that funtion as a Fourier series. The funtion f is suÆiently nieif, for example, R 1�1��f(y)�� dy <1 and eitheri) f(n + �) is an analyti funtion of the omplex variable � in the regionj=�j � � for some � > 0 and 0 � <� � 1, and the left-hand side onvergesuniformly in that retangle; orii) f(�) = 12 lim�!0�f(� � �) + f(� + �)� = g(�) � h(�) for all real numbers �,where g and h are monotone inreasing and g(�1), h(�1) are �nite.[See Peter Henrii, Applied and Computational Complex Analysis 2 (New York:Wiley, 1977), Theorem 10.6.2.℄ Poisson's formula is not a panaea for summationproblems of every kind; but when it does apply the results an be spetaular,as we will see.Let us multiply Euler's formula (18) by z1=24 in order to \omplete thesquare": z1=24P (z) = 1Xn=�1(�1)n z 32 (n+ 16 )2 : (26)Then for all t > 0 we have e�t=24=P (e�t) =P1n=�1 f(n), wheref(y) = e� 32 t(y+ 16 )2 os�y ; (27)and this funtion f quali�es for Poisson's summation formula under both of theriteria (i) and (ii) stated above. Therefore we an try to integrate e�2�miyf(y),and for m = 0 the result isZ 1�1 f(y) dy = r �2t e��2=6t: (28)To this we must add1Xm=1 Z 1�1(e2�miy + e�2�miy) f(y) dy = 2 1Xm=1 Z 1�1 f(y) os 2�my dy; (29)again the integral turns out to be doable. And the results (see exerise 27) �ttogether quite beautifully, givinge�t=24P (e�t) = r2�t 1Xn=�1(�1)ne�6�2(n+ 16 )2=t = r2�t e��2=6tP (e�4�2=t) : (30)Surprise! We have proved another remarkable fat about P (z):
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8 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.4Theorem D. The generating funtion (17) for partitions satis�es the funtionalrelation lnP (e�t) = �(2)t + 12 ln t2� � t24 + lnP (e�4�2=t) (31)when <t > 0.This theorem was disovered by Rihard Dedekind [Crelle 83 (1877), 265{292,x6℄, who wrote �(�) for the funtion z1=24=P (z) when z = e2�i� ; his proof wasbased on a muh more ompliated theory of ellipti funtions. Notie that whent is a small positive number, lnP (e�4�2=t) is extremely tiny; for example, whent = 0:1 we have exp(�4�2=t) � 3:5 � 10�172. Therefore Theorem D tells usessentially everything we need to know about the value of P (z) when z is near 1.G. H. Hardy and S. Ramanujan used this knowledge to dedue the asymp-toti behavior of p(n) for large n, and their work was extended many years laterby Hans Rademaher, who disovered a series that is not only asymptoti butonvergent [Pro. London Math. So. (2) 17 (1918), 75{115; 43 (1937), 241{254℄. The Hardy{Ramanujan{Rademaher formula for p(n) is surely one of themost astonishing identities ever disovered; it states thatp(n) = �25=433=4(n� 1=24)3=4 1Xk=1 Ak(n)k I3=2�r23 �kpn� 1=24�: (32)Here I3=2 denotes the modi�ed spherial Bessel funtionI3=2(z) = �z2�3=2 1Xk=0 1�(k + 5=2) (z2=4)kk! = r2z� �osh zz � sinh zz2 �; (33)
and the oeÆient Ak(n) is de�ned by the formula

Ak(n) = k�1Xh=0 [h? k℄ exp�2�i��(h; k; 0)24 � nhk �� (34)
where �(h; k; 0) is the Dedekind sum de�ned in Eq. 3.3.3{(16). We haveA1(n) = 1; A2(n) = (�1)n; A3(n) = 2 os (24n+ 1)�18 ; (35)and in general Ak(n) lies between �k and k.A proof of (32) would take us far a�eld, but the basi idea is to use the\saddle point method" disussed in Setion 7.2.1.5. The term for k = 1 is derivedfrom the behavior of P (z) when z is near 1; and the next term is derived fromthe behavior when z is near �1, where a transformation similar to (31) an beapplied. In general, the kth term of (32) takes aount of the way P (z) behaveswhen z approahes e2�ih=k for irreduible frations h=k with denominator k;every kth root of unity is a pole of eah of the fators 1=(1 � zk), 1=(1 � z2k),1=(1� z3k), : : : in the in�nite produt for P (z).
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7.2.1.4 GENERATING ALL PARTITIONS 9The leading term of (32) an be simpli�ed greatly, if we merely want a roughapproximation: p(n) = e�p2n=34np3 �1 +O(n�1=2)�: (36)Or, if we hoose to retain a few more details,p(n) = e�p2n0=34n0p3 �1� 1�r 32n0 ��1 +O�e��pn=6��; n0 = n� 124 : (37)For example, p(100) has the exat value 190,569,292; formula (36) tells us thatp(100) � 1:993� 108, while (37) gives the far better estimate 190,568,944.783.Andrew Odlyzko has observed that, when n is large, the Hardy{Ramanujan{Rademaher formula atually gives a near-optimum way to ompute the preisevalue of p(n), beause the arithmeti operations an be arried out in nearlyO�log p(n)� = O(n1=2) steps. The �rst few terms of (32) give the main ontri-bution; then the series settles down to terms that are of order k�3=2 and usuallyof order k�2. Furthermore, about half of the oeÆients Ak(n) turn out to bezero (see exerise 28). For example, when n = 106, the terms for k = 1, 2,and 3 are � 1:47 � 101107, 1:23 � 10550, and �1:23 � 10364, respetively. Thesum of the �rst 250 terms is � 1471684986 : : : 73818:01, while the true value is1471684986 : : : 73818; and 123 of those 250 terms are zero.The number of parts. It is onvenient to introdue the notation��� nm ��� (38)for the number of partitions of n that have exatlym parts. Then the reurrene��� nm ��� = ��� n� 1m� 1 ���+ ���n�mm ��� (39)holds for all integersm and n, beause ��n�1m�1�� ounts the partitions whose smallestpart is 1 and ��n�mm �� ounts the others. (If the smallest part is 2 or more, we ansubtrat 1 from eah part and get a partition of n�m into m parts.) By similarreasoning we an onlude that ��m+nm �� is the number of partitions of n into at mostm parts, namely into m nonnegative summands. We also know, by onsideringFerrers diagrams, that ��nm�� is the number of partitions of n whose largest partis m. Thus ��nm�� is a good number to know. The boundary onditions���n0 ��� = Æn0 and ��� nm ��� = 0 for m < 0 or n < 0 (40)make it easy to tabulate ��nm�� for small values of the parameters, and we obtainan array of numbers analogous to the familiar triangles for �nm�, �nm�, �nm	, and
nm� that we've seen before; see Table 2. The generating funtion isXn ��� nm ���zn = zm(1� z)(1� z2) : : : (1� zm) : (41)
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10 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.4Table 2PARTITION NUMBERSn ���n0 ��� ���n1 ��� ���n2 ��� ���n3 ��� ���n4 ��� ���n5 ��� ���n6 ��� ���n7 ��� ���n8 ��� ���n9 ��� ��� n10 ��� ��� n11 ���0 1 0 0 0 0 0 0 0 0 0 0 01 0 1 0 0 0 0 0 0 0 0 0 02 0 1 1 0 0 0 0 0 0 0 0 03 0 1 1 1 0 0 0 0 0 0 0 04 0 1 2 1 1 0 0 0 0 0 0 05 0 1 2 2 1 1 0 0 0 0 0 06 0 1 3 3 2 1 1 0 0 0 0 07 0 1 3 4 3 2 1 1 0 0 0 08 0 1 4 5 5 3 2 1 1 0 0 09 0 1 4 7 6 5 3 2 1 1 0 010 0 1 5 8 9 7 5 3 2 1 1 011 0 1 5 10 11 10 7 5 3 2 1 1Almost all partitions of n have �(pn logn) parts. This fat, disovered byP. Erd}os and J. Lehner [Duke Math. J. 8 (1941), 335{345℄, has a very instrutiveproof:Theorem E. Let C = �=p6 and m = 12Cpn lnn+ xpn+O(1). Then1p(n)���m+ nm ��� = F (x)�1 +O(n�1=2+�)� (42)for all � > 0 and all �xed x as n!1, whereF (x) = e�e�Cx=C : (43)This funtion F (x) approahes 0 quite rapidly when x ! �1, and it rapidlyinreases to 1 when x ! +1; so it is a probability distribution funtion. Fig-ure 29(b) shows that the orresponding density funtion f(x) = F 0(x) is largelyonentrated in the region �2 � x � 4. The values of ��nm�� = ��m+nm ��� ��m�1+nm�1 �� areshown in Fig. 29(a) for omparison when n = 100; in this ase 12Cpn lnn � 18.Proof. We will use the fat that ��m+nm �� is the number of partitions of n whoselargest part is � m. Then, by the priniple of inlusion and exlusion, Eq. 1.3.3{(29), we have���m+nm ��� = p(n)�Xj>m p(n�j)+ Xj2>j1>mp(n�j1�j2)� Xj3>j2>j1>mp(n�j1�j2�j3)+ � � � ;beause p(n� j1 � � � � � jr) is the number of partitions of n that use eah of theparts fj1; : : : ; jrg at least one. Let us write this as1p(n)���m+nm ��� = 1��1+�2��3+ � � � ; �r = Xjr>���>j1>mp(n�j1� � � � �jr)p(n) : (44)
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7.2.1.4 GENERATING ALL PARTITIONS 11
a) ��100m ��: 0 8 18 28 38 48 58 m
b) f(x): �2 �1 0 1 2 3 4 xFig. 29. Partitions of n withm parts, when (a) n = 100; (b) n!1. (See Theorem E.)In order to evaluate �r we need to have a good estimate of the ratiop(n� t)=p(n). And we're in luk, beause Eq. (36) implies thatp(n� t)p(n) = exp�2Cpn� t� ln(n� t) +O�(n� t)�1=2�� 2Cpn+ lnn�= exp��Ctn�1=2 +O(n�1=2+2�)� if 0 � t � n1=2+�: (45)Furthermore, if t � n1=2+� we have p(n � t)=p(n) � p(n � n1=2+�)=p(n) �exp(�Cn�), a value that is asymptotially smaller than any power of n. Thereforewe may safely use the approximationp(n� t)p(n) � �t; � = exp(�Cn�1=2); (46)for all values of t � 0. For example, we have�1 = Xj>m p(n� j)p(n) = �m+11� � �1 +O(n�1=2+2�)�+ Xn�j>n1=2+�p(n� j)p(n)= e�CxC �1 +O(n�1=2+2�)�+O(ne�Cn�);beause �=(1� �) = n1=2=C + O(1) and �m = n�1=2e�Cx. A similar argument(see exerise 36) proves that, if r = O(logn),�r = e�CrxCrr! �1 +O(n�1=2+2�)�+O(e�n�=2): (47)Finally|and this is a wonderful property of the inlusion-exlusion prini-ple in general| the partial sums of (44) always \braket" the true value, in thesense that1��1+�2�� � ���2r�1 � 1p(n)���m+nm ��� � 1��1+�2�� � ���2r�1+�2r (48)for all r. (See exerise 37.) When 2r is near lnn and n is large, the term �2r isextremely tiny; therefore we obtain (42), exept with 2� in plae of �.
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12 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.40 pn 2pn
pn2pn

Fig. 30. Temperley's urve (49) for thelimiting shape of a random partition.
Theorem E tells us that the largest part of a random partition almost alwaysis 12Cpn lnn + O(pn ), and when n is reasonably large the other parts tend tobe preditable as well. Suppose, for example, that we take all the partitionsof 25 and superimpose their Ferrers diagrams, hanging dots to boxes as in therim representation. Whih ells are oupied most often? Figure 30 shows theresult: A random partition tends to have a typial shape that approahes alimiting urve as n!1.H. N. V. Temperley [Pro. Cambridge Philos. So. 48 (1952), 683{697℄gave heuristi reasons to believe that most parts ak of a large random partitiona1 : : : am will satisfy the approximate lawe�Ck=pn + e�Cak=pn � 1; (49)and his formula has subsequently been veri�ed in a strong form. For example, atheorem of Boris Pittel [Advanes in Applied Math. 18 (1997), 432{488℄ allowsus to onlude that the trae of a random partition is almost always ln 2C pn �0:54pn, in aordane with (49), with an error of at most O(pn lnn)1=2; thusabout 29% of all the Ferrers dots tend to lie in the Durfee square.If, on the other hand, we look only at partitions of n with m parts, wherem is �xed, the limiting shape is rather di�erent: Almost all suh partitions haveak � nm ln mk ; (50)if m is reasonably large. Figure 31 illustrates the ase n = 50, m = 5. In fat,the same limit holds when m grows with n, but at a slower rate than pn [seeVershik and Yakubovih, Mosow Math. J. 1 (2001), 457{468℄.0 n=m 2n=m
m Fig. 31. The limiting shape (50) when there are m parts.
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7.2.1.4 GENERATING ALL PARTITIONS 13The rim representation of partitions gives us further information about par-titions that are doubly bounded, in the sense that we not only restrit the numberof parts but also the size of eah part. A partition that has at most m parts,eah of size at most l, �ts inside an m � l box. All suh partitions orrespondto permutations of the multiset fm � 0; l � 1g that have exatly n inversions, andwe have studied the inversions of multiset permutations in exerise 5.1.2{16. Inpartiular, that exerise derives a nonobvious formula for the number of waysn inversions an happen:Theorem C. The number of partitions of n that have no more than m partsand no part larger than l is[zn℄� l +mm �z = [zn℄ (1� zl+1)(1� z) (1� zl+2)(1� z2) : : : (1� zl+m)(1� zm) : (51)This result is due to A. Cauhy, Comptes Rendus Aad. Si. 17 (Paris, 1843),523{531. Notie that when l!1 the numerator beomes simply 1. An interest-ing ombinatorial proof of a more general result appears in exerise 39 below.Analysis of the algorithms. Now we know more than enough about thequantitative aspets of partitions to dedue the behavior of Algorithm P quitepreisely. Suppose steps P1, : : : , P6 of that algorithm are exeuted respetivelyT1(n), : : : , T6(n) times. We obviously have T1(n) = 1 and T3(n) = p(n); further-more Kirhho�'s law tells us that T2(n) = T5(n) and T4(n)+T5(n) = T3(n). Weget to step P4 one for eah partition that ontains a 2; and this is learly p(n�2).Thus the only possible mystery about the running time of Algorithm P isthe number of times we must perform step P6, whih loops bak to itself. Amoment's thought, however, reveals that the algorithm stores a value � 2 intothe array a1a2 : : : only in steps P2 and P6; and every suh value is eventuallydereased by 1, either in step P4 or step P5. ThereforeT 002 (n) + T6(n) = p(n)� 1; (52)where T 002 (n) is the number of times step P2 sets am to a value � 2. Let T2(n) =T 02(n)+ T 002 (n), so that T 02(n) is the number of times step P2 sets am  1. ThenT 02(n) + T4(n) is the number of partitions that end in 1, heneT 02(n) + T4(n) = p(n� 1): (53)Aha! We've found enough equations to determine all of the required quantities:�T1(n); : : : ; T6(n)� =�1; p(n)� p(n�2); p(n); p(n�2); p(n)� p(n�2); p(n�1)� 1�: (54)And from the asymptotis of p(n) we also know the average amount of ompu-tation per partition:�T1(n)p(n) ; : : : ; T6(n)p(n) � = �0; 2Cpn; 1; 1� 2Cpn; 2Cpn; 1� Cpn� + O� 1n�; (55)where C = �=p6 � 1:283. (See exerise 45.) The total number of memoryaesses per partition therefore omes to only 4� 3C=pn+O(1=n).
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14 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.4Whoever wants to go about generating all partitionsnot only immerses himself in immense labor,but also must take pains to keep fully attentive,so as not to be grossly deeived.| LEONHARD EULER, De Partitione Numerorum (1750)Algorithm H is more diÆult to analyze, but we an at least prove a deentupper bound on its running time. The key quantity is the value of j, the smallestsubsript for whih aj < a1 � 1. The suessive values of j when m = 4 andn = 11 are (2; 2; 2; 3; 2; 2; 3; 4; 2; 3; 5), and we have observed that j = b l�1 + 1when b1 : : : bl is the onjugate partition (a1 : : : am)T . (See (7) and (12).) Step H3singles out the ase j = 2, beause this ase is not only the most ommon, it isalso espeially easy to handle.Let m(n) be the aumulated total value of j � 1, summed over all of the��nm�� partitions generated by Algorithm H. For example, 4(11) = 1+ 1+ 1+ 2+1 + 1 + 2 + 3 + 1 + 2 + 4 = 19. We an regard m(n)=��nm�� as a good indiationof the running time per partition, beause the time to perform the most ostlysteps, H4 and H6, is roughly proportional to j � 2. This ratio m(n)=��nm�� is notbounded, beause m(m) = m while ��mm�� = 1. But the following theorem showsthat Algorithm H is eÆient nonetheless:Theorem H. The ost measure m(n) for Algorithm H is at most 3��nm��+m.Proof. We an readily verify that m(n) satis�es the same reurrene as ��nm��,namely m(n) = m�1(n� 1) + m(n�m); for m;n � 1; (56)if we arti�ially de�ne m(n) = 1 when 1 � n < m; see (39). But the boundaryonditions are now di�erent:m(0) = [m> 0℄; 0(n) = 0: (57)Table 3 shows how m(n) behaves when m and n are small.To prove the theorem, we will atually prove a stronger result,m(n) � 3 ��� nm ���+ 2m� n� 1 for n � m � 2. (58)Exerise 50 shows that this inequality holds when m � n � 2m, so the proofwill be omplete if we an prove it when n > 2m. In the latter ase we havem(n) = 1(n�m) + 2(n�m) + 3(n�m) + � � �+ m(n�m)� 1 + �3��n�m2 ��+ 3�n+m�+ �3��n�m3 ��+ 5�n+m�+ � � �+ �3��n�mm ��+ 2m�1�n+m�= 3��n�m1 ��+ 3��n�m2 ��+ � � �+ 3��n�mm ��� 3 +m2 � (m� 1)(n�m)= 3��nm��+ 2m2 �m� (m� 1)n� 3by indution; and 2m2�m� (m�1)n�3 � 2m�n�1 beause n � 2m+1.
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7.2.1.4 GENERATING ALL PARTITIONS 15Table 3COSTS IN ALGORITHM Hn 0(n) 1(n) 2(n) 3(n) 4(n) 5(n) 6(n) 7(n) 8(n) 9(n) 10(n) 11(n)0 0 1 1 1 1 1 1 1 1 1 1 11 0 1 1 1 1 1 1 1 1 1 1 12 0 1 2 1 1 1 1 1 1 1 1 13 0 1 2 3 1 1 1 1 1 1 1 14 0 1 3 3 4 1 1 1 1 1 1 15 0 1 3 4 4 5 1 1 1 1 1 16 0 1 4 6 5 5 6 1 1 1 1 17 0 1 4 7 7 6 6 7 1 1 1 18 0 1 5 8 11 8 7 7 8 1 1 19 0 1 5 11 12 12 9 8 8 9 1 110 0 1 6 12 16 17 13 10 9 9 10 111 0 1 6 14 19 21 18 14 11 10 10 11*A Gray ode for partitions. When partitions are generated in part-ountform 1 : : : n as in exerise 5, at most four of the j values hange at eah step.But we might prefer to minimize the hanges to the individual parts, generatingpartitions in suh a way that the suessor of a1a2 : : : an is always obtained bysimply setting aj  aj+1 and ak  ak�1 for some j and k, as in the \revolvingdoor" algorithms of Setion 7.2.1.3. It turns out that this is always possible; infat, there is a unique way to do it when n = 6:111111; 21111; 3111; 2211; 222; 321; 33; 42; 411; 51; 6: (59)And in general, the ��m+nm �� partitions of n into at most m parts an always begenerated by a suitable Gray path.Notie that � ! � is an allowable transition from one partition to anotherif and only if we get the Ferrers diagram for � by moving just one dot in theFerrers diagram for �. Therefore �T ! �T is also an allowable transition. Itfollows that every Gray ode for partitions into at most m parts orresponds toa Gray ode for partitions into parts that do not exeed m. We shall work withthe latter onstraint.The total number of Gray odes for partitions is vast: There are 52 whenn = 7, and 652 when n = 8; there are 298,896 when n = 9, and 2,291,100,484when n = 10. But no really simple onstrution is known. The reason is probablythat a few partitions have only two neighbors, namely the partitions dn=d when1 < d < n and d is a divisor of n. Suh partitions must be preeded and followedby f(d+1)dn=d�2(d�1); dn=d�1(d�1)1g, and this requirement seems to rule outany simple reursive approah.Carla D. Savage [J. Algorithms 10 (1989), 577{595℄ found a way to surmountthe diÆulties with only a modest amount of omplexity. Let
�(m;n) = bn=mz }| {m m : : : m (nmodm) (60)
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16 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.4be the lexiographially largest partition of n with parts � m; our goal willbe to onstrut reursively de�ned Gray paths L(m;n) and M(m;n) from thepartition 1n to �(m;n), where L(m;n) runs through all partitions whose partsare bounded by m while M(m;n) runs through those partitions and a few more:M(m;n) also inludes partitions whose largest part is m + 1, provided thatthe other parts are all stritly less than m. For example, L(3; 8) is 11111111,2111111, 311111, 221111, 22211, 2222, 3221, 32111, 3311, 332, while M(3; 8) is11111111; 2111111; 221111; 22211; 2222; 3221;3311; 32111; 311111; 41111; 4211; 422; 332; (61)the additional partitions starting with 4 will give us \wiggle room" in otherparts of the reursion. We will de�ne L(m;n) for all n � 0, but M(m;n) onlyfor n > 2m.The following onstrution, illustrated for m = 5 to simplify the notation,almost works:
L(5) = 8<:L(3)4L(1)R5L(1)

9=; if n � 7;
8>>>>><>>>>>:
L(3)4L(2)R5L(2)4314453

9>>>>>=>>>>>; if n = 8; 8<:M(4)54L(4)R55L(5)
9=; if n � 9;(62)

M(5) = 8>>><>>>:
L(4)5L(4)R6L(3)64L(1)R55L(1)

9>>>=>>>; if 11 � n � 13; 8>>><>>>:
L(4)5M(4)R6L(4)554L(4)R555L(5)

9>>>=>>>; if n � 14. (63)
Here the parameter n in L(m;n) and M(m;n) has been omitted beause it anbe dedued from the ontext; eah L or M is supposed to generate partitions ofwhatever amount remains after previous parts have been subtrated. Thus, forexample, (63) spei�es thatM(5; 14) = L(4; 14); 5M(4; 9)R; 6L(4; 8); 554L(4; 0)R; 555L(5;�1);the sequene L(5;�1) is atually empty, and L(4; 0) is the empty string, so the�nal partition of M(5; 14) is 554 = �(5; 14) as it should be. The notation L(1)stands for L(1; n) = L(n; n), the Gray path of all partitions of n, starting with1n and ending with n1.In general, L(m) and M(m) are de�ned for all m � 3 by essentially thesame rules, if we replae the digits 2, 3, 4, 5, and 6 in (62) and (63) by m�3,m�2, m�1, m, and m+1, respetively. The ranges n � 7, n = 8, n � 9 beomen � 2m�3, n = 2m�2, n � 2m�1; the ranges 11 � n � 13 and n � 14 beome2m + 1 � n � 3m � 2 and n � 3m � 1. The sequenes L(0), L(1), L(2) haveobvious de�nitions beause the paths are unique when m � 2. The sequeneM(2) is 1n, 21n�2, 31n�3, 221n�4, 2221n�6, : : : , �(2; n) for n � 5.
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7.2.1.4 GENERATING ALL PARTITIONS 17Theorem S. Gray paths L0(m;n) form;n � 0 andM 0(m;n) for n � 2m+1 � 5exist for all partitions with the properties desribed above, exept in the aseL0(4; 6). Furthermore, L0 and M 0 obey the mutual reursions (62) and (63)exept in a few ases.Proof. We noted above that (62) and (63) almost work; the reader may verifythat the only glith ours in the ase L(4; 6), when (62) givesL(4; 6) = L(2; 6); 3L(1; 3)R; 4L(1; 2); 321; 33; 42= 111111; 21111; 2211; 222; 3111; 411; 321; 33; 42: (64)If m > 4, we're OK beause the transition from the end of L(m�2; 2m�2) tothe beginning of (m�1)L(m�3;m�1)R is from (m�2)(m�2)2 to (m�1)(m�3)2.There is no satisfatory path L(4; 6), beause all Gray odes through those ninepartitions must end with either 411, 33, 3111, 222, or 2211.In order to neutralize this anomaly we need to path the de�nitions ofL(m;n) and M(m;n) at eight plaes where the \buggy subroutine" L(4; 6) isinvoked. One simple way is to make the following de�nitions:L0(4; 6) = 111111; 21111; 3111; 411; 321; 33; 42;L0(3; 5) = 11111; 2111; 221; 311; 32: (65)Thus, we omit 222 and 2211 from L(4; 6); we also reprogram L(3; 5) so that 2111is adjaent to 221. Then exerise 60 shows that it is always easy to \splie in"the two partitions that are missing from L(4; 6).EXERCISESx 1. [M21 ℄ Give formulas for the total number of possibilities in eah problem of TheTwelvefold Way. For example, the number of n-tuples of m things is mn. (Use thenotation (38) when appropriate, and be areful to make your formulas orret evenwhen m = 0 or n = 0.)x 2. [20 ℄ Show that a small hange to step H1 yields an algorithm that will generateall partitions of n into at most m parts.3. [M17 ℄ A partition a1 + � � � + am of n into m parts a1 � � � � � am is optimallybalaned if jai�aj j � 1 for 1 � i; j � m. Prove that there is exatly one suh partition,whenever n � m � 1, and give a simple formula that expresses the jth part aj as afuntion of j, m, and n.4. [M22 ℄ (Gideon Ehrlih, 1974.) What is the lexiographially smallest partitionof n in whih all parts are � r? For example, when n = 19 and r = 5 the answer is 766.x 5. [23 ℄ Design an algorithm that generates all partitions of n in the part-ount form1 : : : n of (8). Generate them in olex order, namely in the lexiographi order ofn : : : 1, whih is equivalent to lexiographi order of the orresponding partitionsa1a2 : : : . For eÆieny, maintain also a table of links l0 l1 : : : ln so that, if the distintvalues of k for whih k > 0 are k1 < � � � < kt, we havel0 = k1; lk1 = k2; : : : ; lkt�1 = kt; lkt = 0:(Thus the partition 331 would be represented by 1 : : : 7 = 1020000, l0 = 1, l1 = 3,and l3 = 0; the other links l2, l4, l5, l7 an be set to any onvenient values.)
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18 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.46. [20 ℄ Design an algorithm to ompute b1b2 : : : = (a1a2 : : : )T , given a1a2 : : : .7. [M20 ℄ Suppose a1 : : : an and a01 : : : a0n are partitions of n with a1 � � � � � an � 0and a01 � � � � � a0n � 0, and let their respetive onjugates be b1 : : : bn = (a1 : : : an)T ,b01 : : : b0n = (a01 : : : a0n)T . Show that b1 : : : bn < b01 : : : b0n if and only if an : : : a1 < a0n : : : a01.8. [15 ℄ When (p1 : : : pt; q1 : : : qt) is the rim representation of a partition a1a2 : : : asin (15) and (16), what is the onjugate partition (a1a2 : : : )T = b1b2 : : : ?9. [22 ℄ If a1a2 : : : am and b1b2 : : : bm = (a1a2 : : : am)T are onjugate partitions, showthat the multisets fa1+1; a2+2; : : : ; am+mg and fb1+1; b2+2; : : : ; bm+mg are equal.10. [21 ℄ Two simple kinds of binary trees are sometimes helpful for reasoning aboutpartitions: (a) a tree that inludes all partitions of all integers, and (b) a tree thatinludes all partitions of a given integer n, illustrated here for n = 8:�111 2111 21 31111 211 22 31 411111 2111 221 311 32 41 5
111111112111111221111 31111122211 32111 411112222 3221 3311 4211 5111332 422 431 521 61144 53 62 71 8(a) (b)Dedue the general rules underlying these onstrutions. What order of tree traversalorresponds to lexiographi order of the partitions?11. [M22 ℄ How many ways are there to pay one euro, using oins worth 1, 2, 5, 10,20, 50, and/or 100 ents? What if you are allowed to use at most two of eah oin?x 12. [M21 ℄ (L. Euler, 1750.) Use generating funtions to prove that the number ofways to partition n into distint parts is the number of ways to partition n into oddparts. For example, 5 = 4 + 1 = 3 + 2; 5 = 3 + 1 + 1 = 1 + 1 + 1 + 1 + 1.[Note: The next two exerises use ombinatorial tehniques to prove extensions ofthis famous theorem.℄x 13. [M22 ℄ (F. Franklin, 1882.) Find a one-to-one orrespondene between partitionsof n that have exatly k parts repeated more than one and partitions of n that haveexatly k even parts. (The ase k = 0 orresponds to Euler's result.)x 14. [M28 ℄ (J. J. Sylvester, 1882.) Find a one-to-one orrespondene between parti-tions of n into distint parts a1 > a2 > � � � > am that have exatly k \gaps" whereaj > aj+1 + 1, and partitions of n into odd parts that have exatly k + 1 di�erentvalues. (For example, when k = 0 this onstrution proves that the number of ways towrite n as a sum of onseutive integers is the number of odd divisors of n.)15. [M20 ℄ (J. J. Sylvester.) Find a generating funtion for the number of partitionsthat are self-onjugate (namely, partitions suh that � = �T ).16. [M21 ℄ Find the generating funtion for partitions of trae k, and sum it on k toobtain a nontrivial identity.
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7.2.1.4 GENERATING ALL PARTITIONS 1917. [M26 ℄ A joint partition of n is a pair of sequenes (a1; : : : ; ar; b1; : : : ; bs) ofpositive integers for whih we havea1 � � � � � ar; b1 > � � � > bs; and a1 + � � �+ ar + b1 + � � �+ bs = n:Thus it is an ordinary partition if s = 0, and a partition into distint parts if r = 0.a) Find a simple formula for the generating funtion Pur+svszn, summed over alljoint partitions of n with r ordinary parts ai and s distint parts bj .b) Similarly, �nd a simple formula forP vszn when the sum is over all joint partitionsthat have exatly r + s = t total parts, given the value of t.) What identity do you dedue?x 18. [M23 ℄ (Doron Zeilberger.) Show that there is a one-to-one orrespondene be-tween pairs of integer sequenes (a1; a2; : : : ; ar; b1; b2; : : : ; bs) suh thata1 � a2 � � � � � ar; b1 > b2 > � � � > bs;and pairs of integer sequenes (1; 2; : : : ; r+s; d1; d2; : : : ; dr+s) suh that1 � 2 � � � � � r+s; dj 2 f0; 1g for 1 � j � r + s;related by the multiset equationsfa1; a2; : : : ; arg = fj j dj = 0g and fb1; b2; : : : ; bsg = fj + r + s� j j dj = 1g:Consequently we obtain the interesting identityXa1�����ar>0b1>���>bs>0ur+svsza1+���+ar+b1+���+bs =
X1�����t>0d1;:::;dt2f0;1gutvd1+���+dtz1+���+t+(t�1)d1+���+dt�1 :

19. [M21 ℄ (E. Heine, 1847.) Prove the four-parameter identity1Ym=1 (1�wxzm)(1�wyzm)(1�wzm)(1�wxyzm) = 1Xk=0 wk(x�1)(x�z) : : : (x�zk�1)(y�1)(y�z) : : : (y�zk�1)zk(1�z)(1�z2) : : : (1�zk)(1�wz)(1�wz2) : : : (1�wzk) .Hint: Carry out the sum over either k or l in the formulaXk;l�0ukvlzkl (z � az)(z � az2) : : : (z � azk)(1� z)(1� z2) : : : (1� zk) (z � bz)(z � bz2) : : : (z � bzl)(1� z)(1� z2) : : : (1� zl)and onsider the simpli�ations that our when b = auz.x 20. [M21 ℄ Approximately how long does it take to ompute a table of the partitionnumbers p(n) for 1 � n � N , using Euler's reurrene (20)?21. [M21 ℄ (L. Euler.) Let q(n) be the number of partitions into distint parts. Whatis a good way to ompute q(n) if you already know the values of p(1), : : : , p(n)?22. [HM21 ℄ (L. Euler.) Let �(n) be the sum of all positive divisors of the positiveinteger n. Thus, �(n) = n + 1 when n is prime, and �(n) an be signi�antly largerthan n when n is highly omposite. Prove that, in spite of this rather haoti behavior,�(n) satis�es almost the same reurrene (20) as the partition numbers:�(n) = �(n�1) + �(n�2)� �(n�5)� �(n�7) + �(n�12) + �(n�15)� � � �for n � 1, exept that when a term on the right is `�(0)' the value `n' is used instead.For example, �(11) = 1 + 11 = �(10) + �(9) � �(6) � �(4) = 18 + 13 � 12 � 7;�(12) = 1+2+3+4+6+12 = �(11)+�(10)��(7)��(5)+12 = 12+18�8�6+12.
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20 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.423. [HM25 ℄ Use Jaobi's triple produt identity (19) to prove another formula thathe disovered:1Yk=1(1� zk)3 = 1� 3z + 5z3 � 7z6 + 9z10 � � � � = 1Xn=0(�1)n(2n+ 1)z(n+12 ):24. [M26 ℄ (S. Ramanujan, 1919.) Let A(z) = Q1k=1(1� zk)4.a) Prove that [zn℄A(z) is a multiple of 5 when nmod 5 = 4.b) Prove that [zn℄A(z)B(z)5 has the same property, if B is any power series withinteger oeÆients.) Therefore p(n) is a multiple of 5 when nmod 5 = 4.25. [HM27 ℄ Improve on (22) by using (a) Euler's summation formula and (b) Mellintransforms to estimate lnP (e�t). Hint: The dilogarithm funtion Li2(x) = x=12 +x2=22 + x3=32 + � � � satis�es Li2(x) + Li2(1� x) = �(2)� (lnx) ln(1� x).26. [HM22 ℄ In exerises 5.2.2{44 and 5.2.2{51 we studied two ways to prove that1Xk=1 e�k2=n = 12(p�n� 1) +O(n�M ) for all M > 0.Show that Poisson's summation formula gives a muh stronger result.27. [HM23 ℄ Evaluate (29) and omplete the alulations leading to Theorem D.28. [HM42 ℄ (D. H. Lehmer.) Show that the Hardy{Ramanujan{Rademaher oeÆ-ients Ak(n) de�ned in (34) have the following remarkable properties:a) If k is odd, then A2k(km+ 4n+ (k2 � 1)=8) = A2(m)Ak(n).b) If p is prime, pe > 2, and k ? 2p, thenApek(k2m+ p2en� (k2 + p2e � 1)=24) = (�1)[pe=4℄Ape(m)Ak(n):In this formula k2 + p2e � 1 is a multiple of 24 if p or k is divisible by 2 or 3;otherwise division by 24 should be done modulo pek.) If p is prime, jApe(n)j < 2[p>2℄pe=2.d) If p is prime, Ape(n) 6= 0 if and only if 1 � 24n is a quadrati residue modulo pand either e = 1 or 24nmod p 6= 1.e) The probability that Ak(n) = 0, when k is divisible by exatly t primes � 5 andn is a random integer, is approximately 1� 2�t.x 29. [M16 ℄ Generalizing (41), evaluate the sum Pa1�a2�����am�1 za11 za22 : : : zamm .30. [M17 ℄ Find losed forms for the sums(a) Xk�0 ���n� kmm� 1 ��� and (b) Xk�0 ��� nm� k ���(whih are �nite, beause the terms being summed are zero when k is large).31. [M24 ℄ (A. De Morgan, 1843.) Show that ��n2�� = bn=2 and ��n3�� = b(n2 + 6)=12;�nd a similar formula for ��n4��.32. [M15 ℄ Prove that ��nm�� � p(n�m) for all m;n � 0. When does equality hold?33. [HM20 ℄ Use the fat that there are exatly �n�1m�1� ompositions of n into m parts,Eq. 7.2.1.3{(9), to prove a lower bound on ��nm��. Then set m = bpn  to obtain an ele-mentary lower bound on p(n).
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7.2.1.4 GENERATING ALL PARTITIONS 21x 34. [HM21 ℄ Show that ��n�m(m�1)=2m �� is the number of partitions of n into m distintparts. Consequently��� nm ��� = nm�1m! (m� 1)!�1 +O�m3n �� when m � n1=3.35. [HM21 ℄ In the Erd}os{Lehner probability distribution (43), what value of x is(a) most probable? (b) the median? () the mean? (d) What is the standard deviation?36. [HM24 ℄ Prove the key estimate (47) that is needed in Theorem E.37. [M22 ℄ Prove the inlusion-exlusion braketing lemma (48), by analyzing howmany times a partition that has exatly q di�erent parts exeeding m is ounted in therth partial sum.38. [M20 ℄ What is the generating funtion for the partitions of n that have exatlym parts, and largest part l?x 39. [M25 ℄ (F. Franklin.) Generalizing Theorem C, show that, for 0 � k � m,[zn℄ (1� zl+1) : : : (1� zl+k)(1� z)(1� z2) : : : (1� zm)is the number of partitions a1a2 : : : of n into m or fewer parts with the property thata1 � ak+1 + l.40. [M22 ℄ (A. Cauhy.) What is the generating funtion for partitions into m parts,all distint and less than l?41. [HM42 ℄ Extend the Hardy{Ramanujan{Rademaher formula (32) to obtain aonvergent series for partitions of n into at most m parts, with no part exeeding l.42. [HM42 ℄ Find the limiting shape, analogous to (49), for random partitions of ninto at most �pn parts, with no part exeeding 'pn, assuming that �' > 1.43. [M21 ℄ Given n and k, how many partitions of n have a1 > a2 > � � � > ak?x 44. [M22 ℄ How many partitions of n have their two smallest parts equal?45. [HM21 ℄ Compute the asymptoti value of p(n�1)=p(n), with relative errorO(n�2).46. [M20 ℄ In the text's analysis of Algorithm P, whih is larger, T 02(n) or T 002 (n)?x 47. [HM22 ℄ (A. Nijenhuis and H. S. Wilf, 1975.) The following simple algorithm,based on a table of the partition numbers p(0), p(1), : : : , p(n), generates a randompartition of n using the part-ount representation 1 : : : n of (8). Prove that it produeseah partition with equal probability.N1. [Initialize.℄ Set m n and 1 : : : n  0 : : : 0.N2. [Done?℄ Terminate if m = 0.N3. [Generate.℄ Generate a random integer M in the range 0 �M < mp(m).N4. [Choose parts.℄ Set s  0. Then for j = 1, 2, : : : , n and for k = 1, 2,: : : , bm=j, repeatedly set s s+ kp(m� jk) until s > M .N5. [Update.℄ Set k  k + j, m m� jk, and return to N2.Hint: Step N4, whih is based on the identitymXj=1 bm=jXk=1 kp(m� jk) = mp(m);hooses eah partiular pair of values (j; k) with probability kp(m� jk)=(mp(m)).
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22 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.448. [HM40 ℄ Analyze the running time of the algorithm in the previous exerise.x 49. [HM26 ℄ (a) What is the generating funtion F (z) for the sum of the smallest partsof all partitions of n? (The series begins z + 3z2 + 5z3 + 9z4 + 12z5 + � � � .)(b) Find the asymptoti value of [zn℄F (z), with relative error O(n�1).50. [HM33 ℄ Let (m) = m(2m) in the reurrene (56), (57).a) Prove that m(m+ k) = m� k + (k) for 0 � k � m.b) Consequently (58) holds for m � n � 2m if (m) < 3p(m) for all m.) Show that (m)�m is the sum of the seond-smallest parts of all partitions of m.d) Find a one-to-one orrespondene between all partitions of n with seond-smallestpart k and all partitions of numbers � n with smallest part k + 1.e) Desribe the generating funtion Pm�0 (m)zm.f) Conlude that (m) < 3p(m) for all m � 0.51. [M46 ℄ Make a detailed analysis of Algorithm H.x 52. [M21 ℄ What is the millionth partition generated by Algorithm P when n = 64?Hint: p(64) = 1741630 = 1000000 + ��7713��+ ��6010��+ ��478 ��+ ��355 ��+ ��273 ��+ ��222 ��+ ��181 ��+ ��150 ��.x 53. [M21 ℄ What is the millionth partition generated by Algorithm H when m = 32and n = 100? Hint: 999999 = ��8012��+ ��6611��+ ��507 ��+ ��416 ��+ ��335 ��+ ��264 ��+ ��214 ��.x 54. [M30 ℄ The partition � = a1a2 : : : is said to majorize the partition � = b1b2 : : : ,written � � � or � � �, if a1 + � � �+ ak � b1 + � � �+ bk for all k � 0.a) True or false: � � � implies � � � (lexiographially).b) True or false: � � � implies �T � �T .) Show that any two partitions of n have a greatest lower bound � ^ � suh that� �  and � �  if and only if � ^ � � . Explain how to ompute � ^ �.d) Similarly, explain how to ompute a least upper bound �_� suh that  � � and � � if and only if  � � _ �.e) If � has l parts and � has m parts, how many parts do � ^ � and � _ � have?f) True or false: If � has distint parts and � has distint parts, then so do � ^ �and � _ �.x 55. [M37 ℄ Continuing the previous exerise, say that � overs � if � � �, � 6= �,and � �  � � implies  = � or  = �. For example, Fig. 32 illustrates the overingrelations between partitions of 12.a) Let us write � � � if � = a1a2 : : : and � = b1b2 : : : are partitions for whihbk = ak � [k= l℄ + [k= l + 1℄ for all k � 1 and some l � 1. Prove that � overs �if and only if � � � or �T � �T .b) Show that there is an easy way to tell if � overs � by looking at the rimrepresentations of � and �.) Let n = �n22 �+ �n11 � where n2 > n1 � 0. Show that no partition of n overs morethan n2 � 2 partitions.d) Say that the partition � is minimal if there is no partition � with � � �. Provethat � is minimal if and only if �T has distint parts.e) Suppose � = �0 � �1 � � � � � �k and � = �00 � �01 � � � � � �0k0 , where �k and�0k0 are minimal partitions. Prove that k = k0 and �k = �0k0 .f) Explain how to ompute the lexiographially smallest partition into distint partsthat majorizes a given partition �.g) Desribe �n, the lexiographially smallest partition of n into distint parts. Whatis the length of all paths n1 = �0 � �1 � � � � � �Tn?
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7.2.1.4 GENERATING ALL PARTITIONS 23

Fig. 32. The majorizationlattie for partitions of 12.(See exerises 54{58.) 11111111111121111111111221111111122211111122221111 2222222222211311111111132111111132211111 3222111322221331111113321111 332211 33222333111 333213333

41111111142111111 4221111422211 422224311111 432111 4322143311 4332441111 4421144224431444

511111115211111522111 52221531111 53211 5322533154111 5421 5435511 552

6111111621111 62211 622263111 6321 6336411 642651 66

71111172111 72217311732 741 75
811118211 822831 849111 921 9310 11 10 211 112

h) What are the lengths of the longest and shortest paths of the form n1 = �0, �1,: : : , �l = 1n, where �j overs �j+1 for 0 � j < l?x 56. [M27 ℄ Design an algorithm to generate all partitions � suh that � � � � �,given partitions � and � with � � �.Note: Suh an algorithm has numerous appliations. For example, to generate allpartitions that have m parts and no part exeeding l, we an let � be the smallest suhpartition, namely dn=me : : : bn=m as in exerise 3, and let � be the largest, namely((n�m+1)1m�1) ^ (lbn=l(nmod l)). Similarly, aording to a well-known theorem ofH. G. Landau [Bull. Math. Biophysis 15 (1953), 143{148℄, the partitions of �m2 � suhthat jm2 kbm=2jm� 12 kdm=2e � � � (m�1)(m�2) : : : 21are the possible \sore vetors" of a round-robin tournament, namely the partitionsa1 : : : am suh that the jth strongest player wins aj games.
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24 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.457. [M22 ℄ Suppose a matrix (aij) of 0s and 1s has row sums ri =Pj aij and olumnsums j = Pi aij . Then � = r1r2 : : : and � = 12 : : : are partitions of n = Pi;j aij .Prove that suh a matrix exists if and only if � � �T .58. [M23 ℄ (Symmetrial means.) Let � = a1 : : : am and � = b1 : : : bm be partitionsof n. Prove that the inequality1m!Xxa1p1 : : : xampm � 1m!Xxb1p1 : : : xbmpmholds for all nonnegative values of the variables (x1; : : : ; xm), where the sums range overall m! permutations of f1; : : : ;mg, if and only if � � �. (For example, this inequalityredues to (y1 + � � � + yn)=n � (y1 : : : yn)1=n in the speial ase m = n, � = n0 : : : 0,� = 11 : : : 1, xj = y1=nj .)59. [M22 ℄ The Gray path (59) is symmetrial in the sense that the reversed sequene6, 51, : : : , 111111 is the same as onjugate sequene (111111)T , (21111)T , : : : , (6)T .Find all Gray paths �1, : : : , �p(n) that are symmetrial in this way.60. [23 ℄ Complete the proof of Theorem S by modifying the de�nitions of L(m;n)and M(m;n) in all plaes where L(4; 6) is alled in (62) and (63).61. [26 ℄ Implement a partition-generation sheme based on Theorem S, always spei-fying the two parts that have hanged between visits.62. [46 ℄ Prove or disprove: For all suÆiently large integers n and 3 � m < n suhthat nmodm 6= 0, and for all partitions � of n with a1 � m, there is a Gray pathfor all partitions with parts � m, beginning at 1n and ending at �, unless � = 1n or� = 21n�2.63. [47 ℄ For whih partitions � and � is there a Gray ode through all partitions �suh that � � � � �?x 64. [32 ℄ (Binary partitions.) Design a loopless algorithm that visits all partitions of ninto powers of 2, where eah step replaes 2k + 2k by 2k+1 or vie versa.65. [23 ℄ It is well known that every ommutative group of m elements an be repre-sented as a disrete torus T (m1; : : : ;mn) with the addition operation of 7.2.1.3{(66),where m = m1 : : :mn and mj is a multiple of mj+1 for 1 � j < n. For example, whenm = 360 = 23 � 32 � 51 there are six suh groups, orresponding to the fatorizations(m1;m2;m3) = (30; 6; 2), (60; 6; 1), (90; 2; 2), (120; 3; 1), (180; 2; 1), and (360; 1; 1).Explain how to generate all suh fatorizations systematially with an algorithmthat hanges exatly two of the fators mj at eah step.x 66. [M25 ℄ (P-partitions.) Instead of insisting that a1 � a2 � � � � , suppose we wantto onsider all nonnegative ompositions of n that satisfy a given partial order. Forexample, P. A. MaMahon observed that all solutions to the \up-down" inequalitiesa4 � a2 � a3 � a1 an be divided into �ve nonoverlapping types:a1 � a2 � a3 � a4; a1 � a2 � a4 > a3;a2 > a1 � a3 � a4; a2 > a1 � a4 > a3; a2 � a4 > a1 � a3:Eah of these types is easily enumerated sine, for example, a2 > a1 � a4 > a3 isequivalent to a2 � 2 � a1 � 1 � a4 � 1 � a3; the number of solutions with a3 � 0 anda1+a2+a3+a4 = n is the number of partitions of n�1�2�0�1 into at most four parts.Explain how to solve a general problem of this kind: Given any partial orderrelation � onm elements, onsider allm-tuples a1 : : : am with the property that aj � ak
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7.2.1.5 GENERATING ALL SET PARTITIONS 25when j � k. Assuming that the subsripts have been hosen so that j � k implies j � k,show that all of the desired m-tuples fall into exatly N lasses, one for eah of the out-puts of the topologial sorting algorithm 7.2.1.2V. What is the generating funtion forall suh a1 : : : am that are nonnegative and sum to n? How ould you generate them all?67. [M25 ℄ (P. A. MaMahon, 1886.) A perfet partition of n is a multiset that hasexatly n+1 submultisets, and these multisets are partitions of the integers 0, 1, : : : , n.For example, the multisets f1;1;1;1;1g, f2;2;1g, and f3;1;1g are perfet partitions of 5.Explain how to onstrut the perfet partitions of n that have fewest elements.68. [M23 ℄ What partition of n into m parts has the largest produt a1 : : : am, when(a) m is given; (b) m is arbitrary?69. [M30 ℄ Find all n < 109 suh that the equation x1 + x2 + � � � + xn = x1x2 : : : xnhas only one solution in positive integers x1 � x2 � � � � � xn. (There is, for example,only one solution when n = 2, 3, or 4; but 5 + 2 + 1 + 1 + 1 = 5 � 2 � 1 � 1 � 1 and3 + 3 + 1 + 1 + 1 = 3 � 3 � 1 � 1 � 1 and 2 + 2 + 2 + 1 + 1 = 2 � 2 � 2 � 1 � 1.)70. [M30 ℄ (\Bulgarian solitaire.") Take n ards and divide them arbitrarily into oneor more piles. Then repeatedly remove one ard from eah pile and form a new pile.Show that if n = 1+2+ � � �+m, this proess always reahes a self-repeating statewith piles of sizes fm;m � 1; : : : ; 1g. For example, if n = 10 and if we start with pileswhose sizes are f3; 3; 2; 2g, we get the sequene of partitions3322! 42211! 5311! 442! 3331! 4222! 43111! 532! 4321! 4321! � � � :What yles of states are possible for other values of n?71. [M46 ℄ Continuing the previous problem, what is the maximum number of stepsthat an our before n-ard Bulgarian solitaire reahes a yli state?72. [M25 ℄ Suppose we write down all partitions of n, for example6; 51; 42; 411; 33; 321; 3111; 222; 2211; 21111; 111111when n = 6, and hange eah jth ourrene of k to j:1; 11; 11; 112; 12; 111; 1123; 123; 1212; 11234; 123456:a) Prove that this operation yields a permutation of the individual elements.b) How many times does the element k appear altogether?7.2.1.5. Generating all set partitions. Now let's shift gears and onentrateon a rather di�erent kind of partition. The partitions of a set are the waysto regard that set as a union of nonempty, disjoint subsets alled bloks. Forexample, we listed the �ve essentially di�erent partitions of f1; 2; 3g at thebeginning of the previous setion, in 7.2.1.4{(2) and 7.2.1.4{(4). Those �vepartitions an also be written more ompatly in the form123; 12j3; 13j2; 1j23; 1j2j3; (1)using a vertial line to separate one blok from another. In this list the elementsof eah blok ould have been written in any order, and so ould the bloksthemselves, beause `13j2' and `31j2' and `2j13' and `2j31' all represent the samepartition. But we an standardize the representation by agreeing, for example,to list the elements of eah blok in inreasing order, and to arrange the bloks in
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26 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.5inreasing order of their smallest elements. With this onvention the partitionsof f1; 2; 3; 4g are1234; 123j4; 124j3; 12j34; 12j3j4; 134j2; 13j24; 13j2j4;14j23; 1j234; 1j23j4; 14j2j3; 1j24j3; 1j2j34; 1j2j3j4; (2)obtained by plaing 4 among the bloks of (1) in all possible ways.Set partitions arise in many di�erent ontexts. Politial sientists andeonomists, for example, often see them as \oalitions"; omputer system de-signers may onsider them to be \ahe-hit patterns" for memory aesses;poets know them as \rhyme shemes" (see exerises 34{37). We saw in Setion2.3.3 that any equivalene relation between objets|namely any binary relationthat is reexive, symmetri, and transitive|de�nes a partition of those objetsinto so-alled \equivalene lasses." Conversely, every set partition de�nes anequivalene relation: If � is a partition of f1; 2; : : : ; ng we an writej � k (modulo �) (3)whenever j and k belong to the same blok of �.One of the most onvenient ways to represent a set partition inside a om-puter is to enode it as a restrited growth string, namely as a string a1a2 : : : anin whih we havea1 = 0 and aj+1 � 1 + max(a1; : : : ; aj) for 1 � j < n. (4)The idea is to set aj = ak if and only if j � k, and to hoose the smallestavailable number for aj whenever j is smallest in its blok. For example, therestrited growth strings for the �fteen partitions in (2) are respetively0000; 0001; 0010; 0011; 0012; 0100; 0101; 0102;0110; 0111; 0112; 0120; 0121; 0122; 0123: (5)This onvention suggests the following simple generation sheme, due to GeorgeHuthinson [CACM 6 (1963), 613{614℄:Algorithm H (Restrited growth strings in lexiographi order). Given n � 2,this algorithm generates all partitions of f1; 2; : : : ; ng by visiting all stringsa1a2 : : : an that satisfy the restrited growth ondition (4). We maintain anauxiliary array b1b2 : : : bn, where bj+1 = 1 + max(a1; : : : ; aj); the value of bn isatually kept in a separate variable, m, for eÆieny.H1. [Initialize.℄ Set a1 : : : an  0 : : : 0, b1 : : : bn�1  1 : : : 1, and m 1.H2. [Visit.℄ Visit the restrited growth string a1 : : : an, whih represents apartition into m+ [an=m℄ bloks. Then go to H4 if an = m.H3. [Inrease an.℄ Set an  an + 1 and return to H2.H4. [Find j.℄ Set j  n� 1; then, while aj = bj , set j  j � 1.
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7.2.1.5 GENERATING ALL SET PARTITIONS 27H5. [Inrease aj .℄ Terminate if j = 1. Otherwise set aj  aj + 1.H6. [Zero out aj+1 : : : an.℄ Set m  bj + [aj = bj ℄ and j  j + 1. Then, whilej < n, set aj  0, bj  m, and j  j + 1. Finally set an  0 and go bakto H2.Exerise 47 proves that steps H4{H6 are rarely neessary, and that the loopsin H4 and H6 are almost always short. A linked-list variant of this algorithmappears in exerise 2.Gray odes for set partitions. One way to pass quikly through all setpartitions is to hange just one digit of the restrited growth string a1 : : : an ateah step, beause a hange to aj simply means that element j moves from oneblok to another. An elegant way to arrange suh a list was proposed by GideonEhrlih [JACM 20 (1973), 507{508℄: We an suessively append the digits0; m; m� 1; : : : ; 1 or 1; : : : ; m� 1; m; 0 (6)to eah string a1 : : : an�1 in the list for partitions of n � 1 elements, wherem = 1+max(a1; : : : ; an�1), alternating between the two ases. Thus the list `00,01' for n = 2 beomes `000, 001, 011, 012, 010' for n = 3; and that list beomes0000; 0001; 0011; 0012; 0010; 0110; 0112; 0111;0121; 0122; 0123; 0120; 0100; 0102; 0101 (7)when we extend it to the ase n = 4. Exerise 14 shows that Ehrlih's shemeleads to a simple algorithm that ahieves this Gray-ode order without doingmuh more work than Algorithm H.Suppose, however, that we aren't interested in all of the partitions; we mightwant only the ones that have exatly m bloks. Can we run through this smallerolletion of restrited growth strings, still hanging only one digit at a time?Yes; a very pretty way to generate suh a list has been disovered by FrankRuskey [Leture Notes in Comp. Si. 762 (1993), 205{206℄. He de�ned twosuh sequenes, Amn and A0mn, both of whih start with the lexiographiallysmallest m-blok string 0n�m01 : : : (m�1). The di�erene between them, ifn > m + 1, is that Amn ends with 01 : : : (m�1)0n�m while A0mn ends with0n�m�101 : : : (m�1)0. Here are Ruskey's reursive rules, when 1 < m < n:Am(n+1) = (A(m�1)n(m�1); ARmn(m�1); : : : ; ARmn1; Amn0; if m is even;A0(m�1)n(m�1); Amn(m�1); : : : ; ARmn1; Amn0; if m is odd; (8)
A0m(n+1) = (A0(m�1)n(m�1); Amn(m�1); : : : ; Amn1; ARmn0; if m is even;A(m�1)n(m�1); ARmn(m�1); : : : ; Amn1; ARmn0; if m is odd. (9)Of ourse the base ases are simply one-element lists,A1n = A01n = f0ng and Ann = f01 : : : (n�1)g: (10)
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28 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.5With these de�nitions the �53	 = 25 partitions of f1; 2; 3; 4; 5g into three bloksare 00012; 00112; 01112; 01012; 01002; 01102; 00102;00122; 01122; 01022; 01222; 01212; 01202;01201; 01211; 01221; 01021; 01121; 00121;00120; 01120; 01020; 01220; 01210; 01200: (11)
(See exerise 17 for an eÆient implementation.)In Ehrlih's sheme (7) the rightmost digits of a1 : : : an vary most rapidly,but in Ruskey's sheme most of the hanges our near the left. In both ases,however, eah step a�ets just one digit aj , and the hanges are quite simple:Either aj hanges by �1, or it jumps between the two extreme values 0 and1+max(a1; : : : ; aj�1). Under the same onstraints, the sequene A01n, A02n, : : : ,A0nn runs through all partitions, in inreasing order of the number of bloks.The number of set partitions. We've seen that there are 5 partitions off1; 2; 3g and 15 of f1; 2; 3; 4g. A quik way to ompute these ounts was dis-overed by C. S. Peire, who presented the following triangle of numbers in theAmerian Journal of Mathematis 3 (1880), page 48:12 15 3 215 10 7 552 37 27 20 15203 151 114 87 67 52

(12)
Here the entries $n1, $n2, : : : , $nn of the nth row obey the simple reurrene$nk = $(n�1)k+$n(k+1) if 1 � k < n; $nn = $(n�1)1 if n > 1; (13)and $11 = 1. Peire's triangle has many remarkable properties, some of whihare surveyed in exerises 26{31. For example, $nk is the number of partitionsof f1; 2; : : : ; ng in whih k is the smallest of its blok.The entries on the diagonal and in the �rst olumn of Peire's triangle, whihtell us the total number of set partitions, are ommonly known as Bell numbers,beause E. T. Bell wrote several inuential papers about them [AMM 41 (1934),411{419; Annals of Math. 35 (1934), 258{277; 39 (1938), 539{557℄. We shalldenote Bell numbers by $n, following the lead of Louis Comtet, in order to avoidonfusion with the Bernoulli numbers Bn. The �rst few ases aren = 0 1 2 3 4 5 6 7 8 9 10 11 12$n = 1 1 2 5 15 52 203 877 4140 21147 115975 678570 4213597Notie that this sequene grows rapidly, but not as fast as n!; we will prove belowthat $n = �(n=logn)n.The Bell numbers $n = $n1 for n � 0 must satisfy the reurrene formula$n+1 = $n + �n1�$n�1 + �n2�$n�2 + � � � = Xk �nk�$n�k; (14)
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7.2.1.5 GENERATING ALL SET PARTITIONS 29beause every partition of f1; : : : ; n + 1g is obtained by hoosing k elements off1; : : : ; ng to put in the blok ontaining n+1 and by partitioning the remainingelements in $n�k ways, for some k. This reurrene, found by Yoshisuke Matsu-naga in the 18th entury (see Setion 7.2.1.7), leads to a nie generating funtion,�(z) = 1Xn=0 $n znn! = eez�1; (15)disovered by W. A. Whitworth [Choie and Chane, 3rd edition (1878), 3.XXIV℄.For if we multiply both sides of (14) by zn=n! and sum on n we get� 0(z) = 1Xn=0$n+1 znn! = � 1Xk=0 zkk! �� 1Xm=0$m zmm!� = ez�(z);and (15) is the solution to this di�erential equation with �(0) = 1.The numbers $n had been studied for many years beause of their uriousproperties related to this formula, long before Whitworth pointed out theirombinatorial onnetion with set partitions. For example, we have$n = n!e [zn℄ eez = n!e [zn℄ 1Xk=0 ekzk! = 1e 1Xk=0 knk! (16)[Mat. Sbornik 3 (1868), 62; 4 (1869), 39; G. Dobi�nski, Arhiv der Math. undPhysik 61 (1877), 333{336; 63 (1879), 108{110℄. Christian Kramp disussedthe expansion of eez in Der polynomishe Lehrsatz, ed. by C. F. Hindenburg(Leipzig: 1796), 112{113; he mentioned two ways to ompute the oeÆients,namely either to use (14) or to use a summation of p(n) terms, one for eahordinary partition of n. (See Arbogast's formula, exerise 1.2.5{21. Kramp,who ame lose to disovering that formula, seemed to prefer his partition-basedmethod, not realizing that it would require more than polynomial time as n gotlarger and larger; and he omputed 116015, not 115975, for the oeÆient of z10.)*Asymptoti estimates. We an learn how fast $n grows by using one of themost basi priniples of omplex residue theory: If the power series P1k=0 akzkonverges whenever jzj < r, thenan�1 = 12�i I a0 + a1z + a2z2 + � � �zn dz; (17)if the integral is taken along a simple losed path that goes ounterlokwisearound the origin and stays inside the irle jzj = r. Let f(z) = P1k=0 akzk�nbe the integrand. We're free to hoose any suh path, but speial tehniquesoften apply when the path goes through a point z0 at whih the derivative f 0(z0)is zero, beause we havef(z0 + �ei�) = f(z0) + f 00(z0)2 �2e2i� +O(�3) (18)in the viinity of suh a point. If, for example, f(z0) and f 00(z0) are real andpositive, say f(z0) = u and f 00(z0) = 2v, this formula says that the value of
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30 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.5
<f(z0)

z0 z0+�z0+i�z0�� z0�i�
Fig. 33. The behavior of an analytifuntion near a saddle point.

f(z0� �) is approximately u+ v�2 while f(z0� i�) is approximately u� v�2. If zmoves from z0� i� to z0+ i�, the value of f(z) rises to a maximum value u, thenfalls again; but the larger value u+v�2 ours both to the left and to the right ofthis path. In other words, a mountaineer who goes hiking on the omplex plane,when the altitude at point z is <f(z), enounters a \pass" at z0; the terrainlooks like a saddle at that point. The overall integral of f(z) will be the sameif taken around any path, but a path that doesn't go through the pass won't beas nie beause it will have to anel out some higher values of f(z) that ouldhave been avoided. Therefore we tend to get best results by hoosing a path thatgoes through z0, in the diretion of inreasing imaginary part. This importanttehnique, due to P. Debye [Math. Annalen 67 (1909), 535{558℄, is alled the\saddle point method."Let's get familiar with the saddle point method by starting with an examplefor whih we already know the answer:1(n� 1)! = 12�i I ezzn dz: (19)Our goal is to �nd a good approximation for the value of the integral on the rightwhen n is large. It will be onvenient to deal with f(z) = ez=zn by writing it aseg(z) where g(z) = z�n ln z; then the saddle point ours where g0(z0) = 1�n=z0is zero, namely at z0 = n. If z = n+ it we haveg(z) = g(n) + 1Xk=2 g(k)(n)k! (it)k
= n� n lnn� t22n + it33n2 + t44n3 � it55n4 + � � �beause g(k)(z) = (�1)k(k � 1)!n=zk when k � 2. Let's integrate f(z) on aretangular path from n� im to n+ im to �n+ im to �n� im to n� im:12�i I ezzn dz = 12� Z m�m f(n+ it) dt+ 12�i Z �nn f(t+ im) dt+ 12� Z �mm f(�n+ it) dt+ 12�i Z n�n f(t� im) dt:
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7.2.1.5 GENERATING ALL SET PARTITIONS 31Clearly jf(z)j � 2�nf(n) on the last three sides of this path if we hoose m = 2n,beause jez j = e<z and jzj � max(<z;=z); so we're left with12�i I ezzn dz = 12� Z m�m eg(n+it) dt+O� nen2nnn�:Now we fall bak on a tehnique that we've used several times before|for example to derive Eq. 5.1.4{(53): If f̂(t) is a good approximation to f(t)when t 2 A, and if the sums Pt2BnA f(t) andPt2CnA f̂(t) are both small, thenPt2C f̂(t) is a good approximation to Pt2B f(t). The same idea applies tointegrals as well as sums. [This general method, introdued by Laplae in 1782,is often alled \trading tails"; see CMath x9.4.℄ If jtj � n1=2+� we haveeg(n+it) = exp�g(n)� t22n + it33n2 + � � ��= ennn exp�� t22n + it33n2 + t44n3 +O(n5��3=2)�= ennn e�t2=(2n)�1 + it33n2 + t44n3 � t618n4 +O(n9��3=2)�:And when jtj > n1=2+� we havejeg(n+it)j < jf(n+ in1=2+�)j = ennn exp��n2 ln(1 + n2��1)� = O�en�n�2�=2nn �:Furthermore the inomplete gamma funtionZ 1n1=2+� e�t2=(2n)tk dt = 2(k�1)=2n(k+1)=2 ��k + 12 ; n2�2 � = O(nO(1)e�n2�=2)is negligible. Thus we an trade tails and obtain the approximation12�i I ezzn dz = en2�nn Z 1�1 e�t2=(2n)�1 + it33n2 + t44n3 � t618n4 +O(n9��3=2)�dt= en2�nn�I0 + i3n2 I3 + 14n3 I4 � 118n4 I6 +O(n9��3=2)�;where Ik = R1�1 e�t2=(2n)tk dt. Of ourse Ik = 0 when k is odd. Otherwise wean evaluate Ik by using the well-known fat thatZ 1�1 e�at2t2l dt = ��(2l + 1)=2�a(2l+1)=2 = p2�(2a)(2l+1)=2 lYj=1(2j � 1) (20)when a > 0; see exerise 39. Putting everything together gives us, for all � > 0,the asymptoti estimate1(n� 1)! = enp2�nn�1=2�1 + 0 + 34n � 1518n +O(n9��3=2)�; (21)this result agrees perfetly with Stirling's approximation, whih we derived byquite di�erent methods in 1.2.11.2{(19). Further terms in the expansion of
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32 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.5g(n + it) would allow us to prove that the true error in (21) is only O(n�2),beause the same proedure yields an asymptoti series of the general formen=(p2�nn�1=2)�1 + 1=n+ 2=n2 + � � �+ m=nm +O(n�m�1)� for all m.Our derivation of this result has glossed over an important tehniality: Thefuntion ln z is not single-valued along the path of integration, beause it growsby 2�i when we loop around the origin. Indeed, this fat underlies the basimehanism that makes the residue theorem work. But our reasoning was validbeause the ambiguity of the logarithm does not a�et the integrand f(z) =ez=zn when n is an integer. Furthermore, if n were not an integer, we ouldhave adapted the argument and kept it rigorous by hoosing to arry out theintegral (19) along a path that starts at �1, irles the origin ounterlokwiseand returns to �1. That would have given us Hankel's integral for the gammafuntion, Eq. 1.2.5{(17); we ould thereby have derived the asymptoti formula1�(x) = 12�i I ezzx dz = exp2�xx�1=2�1� 112x +O(x�2)�; (22)valid for all real x as x!1.So the saddle point method seems to work|although it isn't the simplestway to get this partiular result. Let's apply it now to dedue the approximatesize of the Bell numbers:$n�1(n� 1)! = 12�ie I eg(z) dz; g(z) = ez � n ln z: (23)A saddle point now ours at the point z0 = � > 0, where�e� = n: (24)(We should atually write �(n) to indiate that � depends on n; but that wouldlutter up the formulas below.) Let's assume for the moment that a little birdhas told us the value of �. Then we want to integrate on a path where z = �+ it,and we haveg(� + it) = e� � n�ln � � (it)22! � + 1�2 � (it)33! �2 � 2!�3 � (it)44! �3 + 3!�4 + � � ��:By integrating on a suitable retangular path, we an prove as above that theintegral in (23) is well approximated byZ n��1=2�n��1=2eg(�)�na2t2�nia3t3+na4t4+��� dt; ak = �k�1+(�1)k(k�1)!k! �k ; (25)see exerise 43. Noting that aktk is O(nk��k=2) inside this integral, we obtain anasymptoti expansion of the form$n�1 = ee��1(n� 1)!�n�1p2�n(� + 1)�1 + b1n + b2n2 + � � �+ bmnm +O� lognn �m+1�; (26)
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7.2.1.5 GENERATING ALL SET PARTITIONS 33where (� + 1)3kbk is a polynomial of degree 4k in �. (See exerise 44.) Forexample,b1 = �2�4�3�3�20�2�18�+224(�+1)3 ; (27)b2 = 4�8�156�7�695�6�696�5+1092�4+2916�3+1972�2�72�+41152(�+1)6 : (28)Stirling's approximation (21) an be used in (26) to prove that$n�1 = exp�n�� � 1 + 1��� � � 12 ln(� + 1)� 1� �12n +O� lognn �2�; (29)and exerise 45 proves the similar formula$n = exp�n�� � 1 + 1��� 12 ln(� + 1)� 1� �12n +O� lognn �2�: (30)Consequently we have $n=$n�1 � e� = n=�. More preisely,$n�1$n = �n�1 +O� 1n��: (31)But what is the asymptoti value of �? The de�nition (24) implies that� = lnn� ln � = lnn� ln(lnn� ln �)= lnn� ln lnn+O� log lognlogn �; (32)and we an go on in this vein, as shown in exerise 49. But the asymptotiseries for � developed in this way never gives better auray than O(1=(logn)m)for larger and larger m; so it is hugely inaurate when multiplied by n informula (29) for $n�1 or formula (30) for $n.Thus if we want to use (29) or (30) to alulate good numerial approxima-tions to Bell numbers, our best strategy is to start by omputing a good numerialvalue for �, without using a slowly onvergent series. Newton's root�ndingmethod, disussed in the remarks preeding Algorithm 4.7N, yields the eÆientiterative sheme �0 = lnn; �k+1 = �k�k + 1(1 + �0 � ln �k); (33)whih onverges rapidly to the orret value. For example, when n = 100 the�fth iterate�5 = 3:38563 01402 90050 18488 82443 64529 72686 74917� (34)is already orret to 40 deimal plaes. Using this value in (29) gives us suessiveapproximations(1:6176088053 : : : ; 1:6187421339 : : : ; 1:6187065391 : : : ; 1:6187060254 : : : )� 10114when we take terms up to b0, b1, b2, b3 into aount; the true value of $99 is the115-digit integer 16187060274460 : : : 20741.
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34 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.5

0 10 20 30 40 50 60 70 80 90 100m
5� 10114 Fig. 34. The Stirling numbers �100m 	are greatest near m = 28 and m = 29.

Now that we know the number of set partitions $n, let's try to �gure outhow many of them have exatly m bloks. It turns out that nearly all partitionsof f1; : : : ; ng have roughly n=� = e� bloks, with about � elements per blok.For example, Fig. 34 shows a histogram of the numbers �nm	 when n = 100 ande� � 29:54.We an investigate the size of �nm	 by applying the saddle point method toformula 1.2.9{(23), whih states thatn nmo = n!m! [zn℄ (ez � 1)m = n!m! 12�i I em ln(ez�1)�(n+1) ln z dz: (35)Let � = (n+1)=m. The funtion g(z) = ��1 ln(ez � 1)� ln z has a saddle pointat � > 0 when �1� e�� = �: (36)Notie that � > 1 for 1 � m � n. This speial value � is given by� = �� �; � = T (�e��); (37)where T is the tree funtion of Eq. 2.3.4.4{(30). Indeed, � is the value between0 and 1 for whih we have �e�� = �e��; (38)the funtion xe�x inreases from 0 to e�1 when x inreases from 0 to 1, then itdereases to 0 again. Therefore � is uniquely de�ned, and we havee� = �� : (39)All suh pairs � and � are obtainable by using the inverse formulas� = �e�e� � 1 ; � = �e� � 1 ; (40)for example, the values � = ln 4 and � = ln 2 orrespond to � = ln 2.We an show as above that the integral in (35) is asymptotially equivalent toan integral of e(n+1)g(z) dz over the path z = �+it. (See exerise 58.) Exerise 56
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7.2.1.5 GENERATING ALL SET PARTITIONS 35proves that the Taylor series about z = �,g(� + it) = g(�)� t2(1� �)2�2 � 1Xk=3 (it)kk! g(k)(�); (41)has the property thatjg(k)(�)j < 2(k � 1)! (1� �)=�k for all k > 0. (42)Therefore we an onveniently remove a fator of N = (n + 1)(1 � �) from thepower series (n+ 1)g(z), and the saddle point method leads to the formulan nmo = n!m! 1(�� �)n�m�mp2�N �1+ b1N + b2N2 + � � �+ blN l +O� 1N l+1�� (43)as N ! 1, where (1 � �)2kbk is a polynomial in � and �. (The quantity(� � �)n�m�m in the denominator omes from the fat that (e� � 1)m=�n =(�=� � 1)m=(�� �)n, by (37) and (39).) For example,b1 = 6� �3 � 4��2 � �2�8(1� �) � 5(2� �2 � ��)224(1� �)2 : (44)Exerise 57 proves that N ! 1 if and only if n�m ! 1. An asymptoti ex-pansion for �nm	 similar to (43), but somewhat more ompliated, was �rstobtained by Leo Moser and Max Wyman, Duke Math. J. 25 (1957), 29{43.Formula (43) looks a bit sary beause it is designed to apply over theentire range of blok ounts m. Signi�ant simpli�ations are possible when mis relatively small or relatively large (see exerises 60 and 61); but the simpli�edformulas don't give aurate results in the important ases when �nm	 is largest.Let's look at those ruial ases more losely now, so that we an aount forthe sharp peak illustrated in Fig. 34.Let �e� = n as in (24), and suppose m = exp(� + r=pn) = ner=pn=�; wewill assume that jrj � n�, so that m is near e�. The leading term of (43) an berewrittenn!m! 1(�� �)n�m�mp2�(n+ 1)(1� �) =mnm! (n+ 1)!(n+ 1)n+1 en+1p2�(n+ 1)�1� ���m�n e��mp1� � ; (45)and Stirling's approximation for (n+ 1)! is evidently ripe for anellation in themidst of this expression. With the help of omputer algebra we �ndmnm! = 1p2� exp�n�� � 1 + 1��� 12�� + r2 + r2� �� �r2 + r36 + r33�� 1pn +O(n4��1)�;
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36 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.5and the relevant quantities related to � and � are�� = �n + r�2npn +O(�3n2��2);
e��m = exp��� � r�2pn +O(�3n2��1)�;�1� ���m�n = exp�� � 1 + r(�2 � � � 1)pn +O(�3n2��1)�:Therefore the overall result isn ne�+r=pno = 1p2� exp�n�� � 1 + 1��� �2 � 1
� � + 12� �r + 3�(2� + 3) + (� + 2)r26(� + 1)pn �2 +O(�3n4��1)�: (46)The squared expression on the last line is zero whenr = � �(2� + 3)2(� + 1)pn +O(�2n�3=2);thus the maximum ours when the number of bloks ism = n� � 3 + 2�2 + 2� +O� �n�: (47)By omparing (47) to (30) we see that the largest Stirling number �nm	 for agiven value of n is approximately equal to �$n=p2�n.The saddle point method applies to problems that are onsiderably morediÆult than the ones we have onsidered here. Exellent expositions of advanedtehniques an be found in several books: N. G. de Bruijn, Asymptoti Methodsin Analysis (1958), Chapters 5 and 6; F. W. J. Olver, Asymptotis and SpeialFuntions (1974), Chapter 4; R. Wong, Asymptoti Approximations of Integrals(2001), Chapters 2 and 7.*Random set partitions. The sizes of bloks in a partition of f1; : : : ; ngonstitute by themselves an ordinary partition of the number n. Thereforewe might wonder what sort of partition they are likely to be. Figure 30 inSetion 7.2.1.4 showed the result of superimposing the Ferrers diagrams of allp(25) = 1958 partitions of 25; those partitions tended to follow the symmetrialurve of Eq. 7.2.1.4{(49). By ontrast, Fig. 35 shows what happens when wesuperimpose the orresponding diagrams of all $25 � 4:6386 � 1018 partitionsof the set f1; : : : ; 25g. Evidently the \shape" of a random set partition is quitedi�erent from the shape of a random integer partition.This hange is due to the fat that some integer partitions our only a fewtimes as blok sizes of set partitions, while others are extremely ommon. Forexample, the partition n = 1 + 1 + � � � + 1 arises in only one way, but if n is
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7.2.1.5 GENERATING ALL SET PARTITIONS 370 � e��
e� � 1

Fig. 35. The shape of a randomset partition when n = 25.
even the partition n = 2+2+ � � �+2 arises in (n� 1)(n� 3) : : : (1) ways. Whenn = 25, the integer partition25 = 4 + 4 + 3 + 3 + 3 + 2 + 2 + 2 + 1 + 1atually ours in more than 2% of all possible set partitions. (This partiularpartition turns out to be most ommon in the ase n = 25. The answer toexerise 1.2.5{21 explains that exatly n!1! 1!1 2! 2!2 : : : n!n!n (48)set partitions orrespond to the integer partition n = 1 � 1+ 2 � 2+ � � �+ n �n.)We an easily determine the average number of k-bloks in a random par-tition of f1; : : : ; ng: If we write out all $n of the possibilities, every partiulark-element blok ours exatly $n�k times. Therefore the average number is�nk�$n�k$n : (49)An extension of Eq. (31) above, proved in exerise 64, shows moreover that$n�k$n = � �n�k�1 + k�(k� + k + 1)2(� + 1)2n +O�k3n2�� if k � n2=3, (50)where � is de�ned in (24). Therefore if, say, k � n�, formula (49) simpli�es tonkk! � �n�k�1 +O� 1n�� = �kk! �1 +O(n2��1)�: (51)There are, on average, about � bloks of size 1, and �2=2! bloks of size 2, et.The variane of these quantities is small (see exerise 65), and it turns outthat a random partition behaves essentially as if the number of k-bloks werea Poisson deviate with mean �k=k!. The smooth urve shown in Fig. 35 runsthrough the points �f(k); k� in Ferrers-like oordinates, wheref(k) = �k+1=(k + 1)! + �k+2=(k + 2)! + �k+3=(k + 3)! + � � � (52)
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38 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.5is the approximate distane from the top line orresponding to blok size k � 0.(This urve beomes more nearly vertial when n is larger.)The largest blok tends to ontain approximately e� elements. Furthermore,the probability that the blok ontaining element 1 has size less than � + ap�approahes the probability that a normal deviate is less than a. [See JohnHaigh, J. Combinatorial Theory A13 (1972), 287{295; V. N. Sahkov, Prob-abilisti Methods in Combinatorial Analysis (1997), Chapter 4, translated froma Russian book published in 1978; Yu. Yakubovih, J. Mathematial Sienes 87(1997), 4124{4137, translated from a Russian paper published in 1995; B. Pittel,J. Combinatorial Theory A79 (1997), 326{359.℄A nie way to generate random partitions of f1; 2; : : : ; ng was introdued byA. J. Stam in the Journal of Combinatorial Theory A35 (1983), 231{240: LetM be a random integer that takes the value m with probabilitypm = mnem!$n ; (53)these probabilities sum to 1 beause of (16). One M has been hosen, generatea random n-tuple X1X2 : : : Xn, where eah Xj is uniformly and independentlydistributed between 0 and M � 1. Then let i � j in the partition if and only ifXi = Xj . This proedure works beause eah k-blok partition is obtained withprobability Pm�0(mk=mn)pm = 1=$n.For example, if n = 25 we havep4 � :00000372p5 � :00019696p6 � :00313161p7 � :02110279p8 � :07431024
p9 � :15689865p10 � :21855285p11 � :21526871p12 � :15794784p13 � :08987171

p14 � :04093663p15 � :01531445p16 � :00480507p17 � :00128669p18 � :00029839
p19 � :00006068p20 � :00001094p21 � :00000176p22 � :00000026p23 � :00000003and the other probabilities are negligible. So we an usually get a randompartition of 25 elements by looking at a random 25-digit integer in radix 9, 10,11, or 12. The number M an be generated using 3.4.1{(3); it tends to beapproximately n=� = e� (see exerise 67).*Partitions of a multiset. The partitions of an integer and the partitions ofa set are just the extreme ases of a far more general problem, the partitions ofa multiset. Indeed, the partitions of n are essentially the same as the partitionsof f1; 1; : : : ; 1g, where there are n 1s.From this standpoint there are essentially p(n) di�erent multisets with n el-ements. For example, �ve di�erent ases of multiset partitions arise when n = 4:1234; 123j4; 124j3; 12j34; 12j3j4; 134j2; 13j24; 13j2j4;14j23; 14j2j3; 1j234; 1j23j4; 1j24j3; 1j2j34; 1j2j3j4;1123; 112j3; 113j2; 11j23; 11j2j3; 123j1; 12j13; 12j1j3; 13j1j2; 1j1j23; 1j1j2j3;1122; 112j2; 11j22; 11j2j2; 122j1; 12j12; 12j1j2; 1j1j22; 1j1j2j2;1112; 111j2; 112j1; 11j12; 11j1j2; 12j1j1; 1j1j1j2;1111; 111j1; 11j11; 11j1j1; 1j1j1j1: (54)
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7.2.1.5 GENERATING ALL SET PARTITIONS 39When the multiset ontains m distint elements, with n1 of one kind, n2 ofanother, : : : , and nm of the last, we write p(n1; n2; : : : ; nm) for the total numberof partitions. Thus the examples in (54) show thatp(1; 1; 1; 1) = 15; p(2; 1; 1) = 11; p(2; 2) = 9; p(3; 1) = 7; p(4) = 5: (55)Partitions with m = 2 are often alled \bipartitions"; those with m = 3 are\tripartitions"; and in general these ombinatorial objets are known as multi-partitions. The study of multipartitions was inaugurated long ago by P. A.MaMahon [Philosophial Transations 181 (1890), 481{536; 217 (1917), 81{113; Pro. Cambridge Philos. So. 22 (1925), 951{963℄; but the subjet is so vastthat many unsolved problems remain. In the remainder of this setion and inthe exerises below we shall take a glimpse at some of the most interesting andinstrutive aspets of the theory that have been disovered so far.In the �rst plae it is important to notie that multipartitions are essentiallythe partitions of vetors with nonnegative integer omponents, namely the waysto deompose suh a vetor as a sum of suh vetors. For example, the ninepartitions of f1; 1; 2; 2g listed in (54) are the same as the nine partitions of thebipartite olumn vetor 22, namely22 ; 21 01 ; 20 02 ; 20 01 01 ; 12 10 ; 11 11 ; 11 10 01 ; 10 10 02 ; 10 10 01 01 : (56)(We drop the + signs for brevity, as in the ase of one-dimensional integerpartitions.) Eah partition an be written in anonial form if we list its partsin noninreasing lexiographi order.A simple algorithm suÆes to generate the partitions of any given multiset.In the following proedure we represent partitions on a stak that ontains triplesof elements (; u; v), where  denotes a omponent number, u > 0 denotes theyet-unpartitioned amount remaining in omponent , and v � u denotes the omponent of the urrent part. Triples are atually kept in three arrays(0; 1; : : : ), (u0; u1; : : : ), and (v0; v1; : : : ) for onveniene, and a \stak frame"array (f0; f1; : : : ) is also maintained so that the (l + 1)st vetor of the partitiononsists of elements fl through fl+1 � 1 in the , u, and v arrays. For example,the following arrays would represent the bipartition 31 22 20 11 11 03 01:j 0 1 2 3 4 5 6 7 8 9 10j 1 2 1 2 1 1 2 1 2 2 2uj 9 9 6 8 4 2 6 1 5 4 1vj 3 1 2 2 2 1 1 1 1 3 1
f 0=0 f 1=2 f 2=4 f 3=5 f 4=7 f 5=9 f 6=10 f 7=11

(57)
Algorithm M (Multipartitions in dereasing lexiographi order). Given amultiset fn1 � 1; : : : ; nm � mg, this algorithm visits all of its partitions usingarrays f0f1 : : : fn, 01 : : : n, u0u1 : : : un, and v0v1 : : : vn as desribed above,where n = n1 + � � �+ nm. We assume that m > 0 and n1; : : : ; nm > 0.
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40 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.5M1. [Initialize.℄ Set j  j + 1 and uj  vj  nj+1 for 0 � j < m; also setf0  a  l  0 and f1  b  m. (In the following steps, the urrentstak frame runs from a to b� 1, inlusive.)M2. [Subtrat v from u.℄ (At this point we want to �nd all partitions of thevetor u in the urrent frame, into parts that are lexiographially � v.First we will use v itself.) Set j  a and k  b. Then while j < b do thefollowing: Set uk  uj�vj , and if uk � vj set k  j , vk  vj , k  k+1,j  j + 1. But if uk is less than vj after it has been dereased, the ationhanges: First set k  j , vk  uk, and k  k + 1 if uk was nonzero;then set j  j + 1. While j < b, set uk  uj � vj , k  j , vk  uk, andk  k + 1 if uj 6= vj ; then again j  j + 1, until j = b.M3. [Push if nonzero.℄ If k > b, set a  b, b  k, l  l + 1, fl+1  b, andreturn to M2.M4. [Visit a partition.℄ Visit the partition represented by the l + 1 vetorsurrently in the stak. (For 0 � k � l, the vetor has vj in omponent j ,for fk � j < fk+1.)M5. [Derease v.℄ Set j  b� 1, and if vj = 0 set j  j � 1 until vj > 0. Thenif j = a and vj = 1, go to M6. Otherwise set vj  vj � 1, and vk  uk forj < k < b. Return to M2.M6. [Baktrak.℄ Terminate if l = 0. Otherwise set l  l � 1, b  a, a  fl,and return to M5.The key to this algorithm is step M2, whih dereases the urrent residual vetor,u, by the largest permissible part, v; that step also dereases v, if neessary, tothe lexiographially largest vetor � v that is less than or equal to the newresidual amount in every omponent.Let us onlude this setion by disussing an amusing onnetion betweenmultipartitions and the least-signi�ant-digit-�rst proedure for radix sorting(Algorithm 5.2.5R). The idea is best understood by onsidering an example. SeeTable 1, where Step (0) shows nine 4-partite olumn vetors in lexiographiorder. Serial numbers 1{ 9 have been attahed at the bottom for identi�a-tion. Step (1) performs a stable sort of the vetors, bringing their fourth (leastsigni�ant) entries into dereasing order; similarly, Steps (2), (3), and (4) do astable sort on the third, seond, and top rows. The theory of radix sorting tellsus that the original lexiographi order is thereby restored.Suppose the serial number sequenes after these stable sorting operations arerespetively �4, �3�4, �2�3�4, and �1�2�3�4, where the �'s are permutations;Table 1 shows the values of �4, �3, �2, and �1 in parentheses. And now omesthe point: Wherever the permutation �j has a desent, the numbers in row jafter sorting must also have a desent, beause the sorting is stable. (Thesedesents are indiated by aret marks in the table.) For example, where �3 has8 followed by 7, we have 5 followed by 3 in row 3. Therefore the entries a1 : : : a9 inrow 3 after Step (2) are not an arbitrary partition of their sum; they must satisfya1 � a2 � a3 � a4 > a5 � a6 > a7 � a8 � a9: (58)
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7.2.1.5 GENERATING ALL SET PARTITIONS 41Table 1RADIX SORTING AND MULTIPARTITIONSStep (0): Original partition63641
52622
51313
40134
34135
25516
16217
04028
02759 �4 = (

Step (1): Sort row 4027599^̂
636411
401344
341355^̂
526222
040288^̂
513133
255166
162177 ) �3 = (

Step (2): Sort row 3027591
636412
526225
255168
^
^
513137
162179
^
^
401343
341354
040286 )

�2 = (
Step (3): Sort row 2162176
^
^
255164
341358
040289
^
^
636412
^
^
027591
526223
513135
401347 ) �1 = (

Step (4): Sort row 1636415
526227
513138
401349
^
^
341353
^
^
255162
^
^
162171
040284
027596 )But the numbers (a1�2; a2�2; a3�2; a4�2; a5�1; a6�1; a7; a8; a9) do form anessentially arbitrary partition of the original sum, minus (4+6). The amount ofderease, 4 + 6, is the sum of the indies where desents our; this number iswhat we alled ind�3, the \index" of �3, in Setion 5.1.1.Thus we see that any given partition of an m-partite number into at most rparts, with extra zeros added so that the number of olumns is exatly r, anbe enoded as a sequene of permutations �1, : : : , �m of f1; : : : ; rg suh thatthe produt �1 : : : �m is the identity, together with a sequene of ordinary one-dimensional partitions of the numbers (n1 � ind�1, : : : , nm � ind�m) into atmost r parts. For example, the vetors in Table 1 represent a partition of(26; 27; 31; 22) into 9 parts; the permutations �1, : : : , �4 appear in the table,and we have (ind�1; : : : ; ind�4) = (15; 10; 10; 11); the partitions are respetively26�15 = (322111100); 27�10 = (332222210);31�10 = (544321110); 22�11 = (221111111):Conversely, any suh permutations and partitions will yield a multipartitionof (n1; : : : ; nm). If r and m are small, it an be helpful to onsider theser!m�1 sequenes of one-dimensional partitions when listing or reasoning aboutmultipartitions, espeially in the bipartite ase. [This onstrution is due toBasil Gordon, J. London Math. So. 38 (1963), 459{464.℄A good summary of early work on multipartitions, inluding studies ofpartitions into distint parts and/or stritly positive parts, appears in a paperby M. S. Cheema and T. S. Motzkin, Pro. Symp. Pure Math. 19 (Amer. Math.So., 1971), 39{70.EXERCISES1. [20 ℄ (G. Huthinson.) Show that a simple modi�ation to Algorithm H willgenerate all partitions of f1; : : : ; ng into at most r bloks, given n and r � 2.
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42 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.5x 2. [22 ℄ When set partitions are used in pratie, we often want to link the elementsof eah blok together. Thus it is onvenient to have an array of links l1 : : : ln and anarray of headers h1 : : : ht so that the elements of the jth blok of a t-blok partitionare i1 > � � � > ik, wherei1 = hj ; i2 = li1 ; : : : ; ik = lik�1 ; and lik = 0:For example, the representation of 137j25j489j6 would have t = 4, l1 : : : l9 = 001020348,and h1 : : : h4 = 7596.Design a variant of Algorithm H that generates partitions using this representation.3. [M23 ℄ What is the millionth partition of f1; : : : ; 12g generated by Algorithm H?x 4. [21 ℄ If x1 : : : xn is any string, let �(x1 : : : xn) be the restrited growth string thatorresponds to the equivalene relation j � k () xj = xk. Classify eah of the�ve-letter English words in the Stanford GraphBase by applying this � funtion; forexample, �(tooth) = 01102. How many of the 52 set partitions of �ve elements are rep-resentable by English words in this way? What's the most ommon word of eah type?5. [22 ℄ Guess the next elements of the following two sequenes: (a) 0, 1, 1, 1, 12, 12,12, 12, 12, 12, 100, 121, 122, 123, 123, : : : ; (b) 0, 1, 12, 100, 112, 121, 122, 123, : : : .x 6. [25 ℄ Suggest an algorithm to generate all partitions of f1; : : : ; ng in whih thereare exatly 1 bloks of size 1, 2 bloks of size 2, et.7. [M20 ℄ How many permutations a1 : : : an of f1; : : : ; ng have the property thatak�1 > ak > aj implies j > k?8. [20 ℄ Suggest a way to generate all permutations of f1; : : : ; ng that have exatlym left-to-right minima.9. [M20 ℄ How many restrited growth strings a1 : : : an ontain exatly kj ourrenesof j, given the integers k0, k1, : : : , kn�1?10. [25 ℄ A semilabeled tree is an oriented tree in whih the leaves are labeled with theintegers f1; : : : ; kg, but the other nodes are unlabeled. Thus there are 15 semilabeledtrees with 5 verties:
1 1 2 1 2 1 2 1 2 3 1 2 1 2 1 2 1 2 3 21 3 31 2 1 2 3 1 2 3 1 2 3 1 2 3 4

Find a one-to-one orrespondene between partitions of f1; : : : ; ng and semilabeledtrees with n+ 1 verties.x 11. [28 ℄ We observed in Setion 7.2.1.2 that Dudeney's famous problem send+more =money is a \pure" alphameti, namely an alphameti with a unique solution. His puzzleorresponds to a set partition on 13 digit positions, for whih the restrited growthstring �(sendmoremoney) is 0123456145217; and we might wonder how luky he had tobe in order to ome up with suh a onstrution. How many restrited growth strings oflength 13 de�ne pure alphametis of the form a1a2a3a4 + a5a6a7a8 = a9a10a11a12a13?12. [M31 ℄ (The partition lattie.) If � and � 0 are partitions of the same set, we write� � � 0 if x � y (modulo �) whenever x � y (modulo � 0). In other words, � � � 0means that � 0 is a \re�nement" of �, obtained by partitioning zero or more of thelatter's bloks; and � is a \rudi�ation" or oalesene of � 0, obtained by mergingzero or more bloks together. This partial ordering is easily seen to be a lattie, with
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7.2.1.5 GENERATING ALL SET PARTITIONS 43� _ � 0 the greatest ommon re�nement of � and � 0, and with � ^ � 0 their leastommon oalesene. For example, the lattie of partitions of f1; 2; 3; 4g is

00000001 0010 00110012 0100 01010102 0110 01110112 0120 0121 01220123

if we represent partitions by restrited growth strings a1a2a3a4; upward paths in thisdiagram take eah partition into its re�nements. Partitions with t bloks appear onlevel t from the bottom, and their desendants form the partition lattie of f1; : : : ; tg.a) Explain how to ompute � _� 0, given a1 : : : an and a01 : : : a0n.b) Explain how to ompute � ^� 0, given a1 : : : an and a01 : : : a0n.) When does � 0 over � in this lattie? (See exerise 7.2.1.4{55.)d) If � has t bloks of sizes s1, : : : , st, how many partitions does it over?e) If � has t bloks of sizes s1, : : : , st, how many partitions over it?f) True or false: If � _� 0 overs �, then � 0 overs � ^� 0.g) True or false: If � 0 overs � ^� 0, then � _� 0 overs �.h) Let b(�) denote the number of bloks of �. Prove thatb(�) + b(� 0) � b(� _� 0) + b(� ^� 0):13. [M28 ℄ (Stephen C. Milne, 1977.) If A is a set of partitions of f1; : : : ; ng, itsshadow �A is the set of all partitions � 0 suh that � overs � 0 for some � 2 A. (Weonsidered the analogous onept for the subset lattie in 7.2.1.3{(54).)Let �1, �2, : : : be the partitions of f1; : : : ; ng into t bloks, in lexiographi orderof their restrited growth strings; and let � 01, � 02, : : : be the (t � 1)-blok partitions,also in lexiographi order. Prove that there is a funtion fnt(N) suh that�f�1; : : : ; �Ng = f� 01; : : : ;� 0fnt(N)g for 0 � N � nnt o.Hint: The diagram in exerise 12 shows that (f43(0); : : : ; f43(6)) = (0; 3; 5; 7; 7; 7; 7).14. [23 ℄ Design an algorithm to generate set partitions in Gray-ode order like (7).15. [M21 ℄ What is the �nal partition generated by the algorithm of exerise 14?16. [16 ℄ The list (11) is Ruskey's A35; what is A035?17. [26 ℄ Implement Ruskey's Gray ode (8) for all m-blok partitions of f1; : : : ; ng.18. [M46 ℄ For whih n is it possible to generate all restrited growth strings a1 : : : anin suh a way that some aj hanges by �1 at eah step?19. [28 ℄ Prove that there's a Gray ode for restrited growth strings in whih, at eahstep, some aj hanges by either �1 or �2, when (a) we want to generate all $n stringsa1 : : : an; or (b) we want to generate only the �nm	 ases with max(a1; : : : ; an) = m�1.
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44 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.520. [17 ℄ If � is a partition of f1; : : : ; ng, its onjugate �T is de�ned by the rulej � k (modulo �T ) () n+ 1� j � n+ 1� k (modulo �):Suppose � has the restrited growth string 001010202013; what is the restrited growthstring of �T ?21. [M27 ℄ How many partitions of f1; : : : ; ng are self-onjugate?22. [M23 ℄ If X is a random variable with a given distribution, the expeted value ofXn is alled the nth moment of that distribution. What is the nth moment when X is(a) a Poisson deviate with mean 1 (Eq. 3.4.1{(40))? (b) the number of �xed points ofa random permutation of f1; : : : ;mg, when m � n (Eq. 1.3.3{(27))?23. [HM30 ℄ If f(x) =P akxk is a polynomial, let f($) stand for P ak$k.a) Prove the symboli formula f($ + 1) = $f($). (For example, if f(x) is thepolynomial x2, this formula states that $2 + 2$1 +$0 = $3.)b) Similarly, prove that f($ + k) = $kf($) for all positive integers k.) If p is prime, prove that $n+p � $n + $n+1 (modulo p). Hint: Show �rst thatxp � xp � x.d) Consequently $n+N � $n (modulo p) when N = pp�1 + pp�2 + � � �+ p+ 1.24. [HM35 ℄ Continuing the previous exerise, prove that the Bell numbers satisfy theperiodi law $n+pe�1N � $n (modulo pe), if p is an odd prime. Hint: Show thatxpe � ge(x)+1 (modulo pe, pe�1g1(x), : : : , and pge�1(x)); where gj(x) = (xp�x�1)pj.25. [M27 ℄ Prove that $n=$n�1 � $n+1=$n � $n=$n�1 + 1.x 26. [M22 ℄ Aording to the reurrene equations (13), the numbers $nk in Peire'striangle ount the paths from nk to 11 in the in�nite direted graph1121 2231 32 3341 42 43 44Explain why eah path from n1 to 11 orresponds to a partition of f1; : : : ; ng.x 27. [M35 ℄ A \vaillating tableau loop" of order n is a sequene of integer partitions�k = ak1ak2ak3 : : : with ak1 � ak2 � ak3 � � � � for 0 � k � 2n, suh that �0 = �2n = e0and �k = �k�1 + (�1)ketk for 1 � k � 2n and for some tk � 0; here et denotes theunit vetor 0t�110n�t when t > 0, and e0 is all zeros.a) List all the vaillating tableau loops of order 4. [Hint: There are 15 altogether.℄b) Prove that exatly $nk vaillating tableau loops of order n have t2k�1 = 0.x 28. [M25 ℄ (Generalized rook polynomials.) Consider an arrangement of a1 + � � �+ amsquare ells in rows and olumns, where row k ontains ells in olumns 1, : : : , ak.Plae zero or more \rooks" into the ells, with at most one rook in eah row and atmost one in eah olumn. An empty ell is alled \free" if there is no rook to its rightand no rook below. For example, Fig. 35 shows two suh plaements, one with fourrooks in rows of lengths (3,1,4,1,5,9,2,6,5), and another with nine on a 9 � 9 squareboard. Rooks are indiated by solid irles; hollow irles have been plaed above and

44



7.2.1.5 GENERATING ALL SET PARTITIONS 45to the left of eah rook, thereby leaving the free ells blank.
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Fig. 35. Rook plaementsand free ells.

Let R(a1; : : : ; am) be the polynomial in x and y obtained by summing xryf over alllegal rook plaements, where r is the number of rooks and f is the number of free ells;for example, the left-hand plaement in Fig. 35 ontributes x4y17 to the polynomialR(3; 1; 4; 1; 5; 9; 2; 6; 5).a) Prove that we have R(a1; : : : ; am) = R(a1; : : : ; aj�1; aj+1; aj ; aj+2; : : : ; am); inother words, the order of the row lengths is irrelevant, and we an assume thata1 � � � � � am as in a Ferrers diagram like 7.2.1.4{(13).b) If a1 � � � � � am and if b1 : : : bn = (a1 : : : am)T is the onjugate partition, provethat R(a1; : : : ; am) = R(b1; : : : ; bn).) Find a reurrene for evaluating R(a1; : : : ; am) and use it to ompute R(3; 2; 1).d) Generalize Peire's triangle (12) by hanging the addition rule (13) to$nk(x; y) = x$(n�1)k(x; y) + y$n(k+1)(x; y); 1 � k < n:Thus$21(x; y) = x+y, $32(x; y) = x+xy+y2, $31(x; y) = x2+2xy+xy2+y3, et.Prove that the resulting quantity$nk(x; y) is the rook polynomial R(a1; : : : ; an�1)where aj = n� j � [j < k ℄.e) The polynomial$n1(x; y) in part (d) an be regarded as a generalized Bell number$n(x; y), representing paths from n1 to 11 in the digraph of exerise 26 that havea given number of \x steps" to the northeast and a given number of \y steps" tothe east. Prove that$n(x; y) = Xa1:::an xn�1�max(a1;:::;an)ya1+���+ansummed over all restrited growth strings a1 : : : an of length n.29. [M26 ℄ Continuing the previous exerise, let Rr(a1; : : : ; am) = [xr℄R(a1; : : : ; am)be the polynomial in y that enumerates free ells when r rooks are plaed.a) Show that the number of ways to plae n rooks on an n� n board, leaving f ellsfree, is the number of permutations of f1; : : : ; ng that have f inversions. Thus, byEq. 5.1.1{(8) and exerise 5.1.2{16, we haveRn( nz }| {n; : : : ; n) = n!y = nYk=1(1 + y + � � �+ yk�1):
b) What is Rr( mz }| {n; : : : ; n), the generating funtion for r rooks on an m� n board?) If a1 � � � � � am and t is a nonnegative integer, prove the general formulamYj=1 1� yaj+m�j+t1� y = mXk=0 t!y(t� k)!y Rm�k(a1; : : : ; am):
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46 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.5[Note: The quantity t!y=(t�k)!y =Qk�1j=0 ((1�yt�j)=(1�y)) is zero when k > t � 0.Thus, for example, when t = 0 the right-hand side redues to Rm(a1; : : : ; am). Wean ompute Rm, Rm�1, : : : , R0 by suessively setting t = 0, 1, : : : , m.℄d) If a1 � a2 � � � � � am � 0 and a01 � a02 � � � � � a0m � 0, show that wehave R(a1; a2 : : : ; am) = R(a01; a02; : : : ; a0m) if and only if the assoiated multisetsfa1+m;a2+m�1; : : : ; am+1g and fa01+m; a02+m�1; : : : ; a0m+1g are the same.30. [HM30 ℄ The generalized Stirling number �nm	q is de�ned by the reurrenenn+ 1m oq = (1 + q + � � �+ qm�1)n nmoq + n nm� 1oq; n 0moq = Æm0 :Thus �nm	q is a polynomial in q; and �nm	1 is the ordinary Stirling number �nm	, beauseit satis�es the reurrene relation in Eq. 1.2.6{(46).a) Prove that the generalized Bell number $n(x; y) = R(n�1; : : : ; 1) of exerise 28(e)has the expliit form $n(x; y) = nXm=0xn�my(m2 )n nmoy:b) Show that generalized Stirling numbers also obey the reurreneqmn n+ 1m+ 1oq = qnn nmoq + �n1�qn�1nn� 1m oq + � � � = Xk �nk�qkn kmoq:) Find generating funtions for �nm	q , generalizing 1.2.9{(23) and 1.2.9{(28).31. [HM23 ℄ Generalizing (15), show that the elements of Peire's triangle have asimple generating funtion, if we ompute the sumXn;k $nk wn�k(n� k)! zk�1(k � 1)! :32. [M22 ℄ Let Æn be the number of restrited growth strings a1 : : : an for whih thesum a1 + � � �+ an is even minus the number for whih a1 + � � �+ an is odd. Prove thatÆn = (1; 0;�1;�1; 0; 1) when nmod 6 = (1; 2; 3; 4; 5; 0):Hint: See exerise 28(e).33. [M21 ℄ How many partitions of f1; 2; : : : ; ng have 1 6� 2, 2 6� 3, : : : , k � 1 6� k?34. [14 ℄ Many poeti forms involve rhyme shemes, whih are partitions of the linesof a stanza with the property that j � k if and only if line j rhymes with line k. Forexample, a \limerik" is generally a 5-line poem with ertain rhythmi onstraints andwith a rhyme sheme desribed by the restrited growth string 00110.What rhyme shemes were used in the lassial sonnets by (a) Guittone d'Arezzo(. 1270)? (b) Petrarh (. 1350)? () Spenser (1595)? (d) Shakespeare (1609)?(e) Elizabeth Barrett Browning (1850)?35. [M21 ℄ Let $0n be the number of shemes for n-line poems that are \ompletelyrhymed," in the sense that every line rhymes with at least one other. Thus we haveh$00, $01, $02, : : : i = h1, 0, 1, 1, 4, 11, 41, : : : i. Give a ombinatorial proof of the fatthat $0n +$0n+1 = $n.36. [M22 ℄ Continuing exerise 35, what is the generating funtion Pn$0nzn=n!?
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7.2.1.5 GENERATING ALL SET PARTITIONS 4737. [M18 ℄ Alexander Pushkin adopted an elaborate struture in his poeti novelEugene Onegin (1833), based not only on \masuline" rhymes in whih the sounds ofaented �nal syllables agree with eah other (pain{gain, form{warm, pun{fun, buks{rux), but also on \feminine" rhymes in whih one or two unstressed syllables also par-tiipate (humor{tumor, tetrameter{pentameter, leture{onjeture, iguana{piranha).Every stanza of Eugene Onegin is a sonnet with the strit sheme 01012233455477,where the rhyme is feminine or masuline aording as the digit is even or odd. Severalmodern translators of Pushkin's novel have also sueeded in retaining the same formin English and German.How do I justify this stanza? / These feminine rhymes? My wrinkled muse?This whole pass�e extravaganza? / How an I (areless of time) useThe dusty bread molds of Onegin / In the brave bakery of Reagan?The loaves will surely fail to rise / Or else go stale before my eyes.The truth is, I an't justify it. / But as no shroud of ritial termsCan save my orpse from boring worms, / I may as well have fun and try it.If it works, good; and if not, well, / A theory won't postpone its knell.| VIKRAM SETH, The Golden Gate (1986)A 14-line poem might have any of $014 = 24;011;157 omplete rhyme shemes,aording to exerise 35. But how many shemes are possible if we are allowed tospeify, for eah blok, whether its rhyme is to be feminine or masuline?x 38. [M30 ℄ Let �k be the yli permutation (1; 2; : : : ; k). The objet of this exeriseis to study the sequenes k1k2 : : : kn, alled �-yles, for whih �k1�k2 : : : �kn is theidentity permutation. For example, when n = 4 there are exatly 15 �-yles, namely1111; 1122; 1212; 1221; 1333; 2112; 2121; 2211; 2222; 2323; 3133; 3232; 3313; 3331; 4444:a) Find a one-to-one orrespondene between partitions of f1; 2; : : : ; ng and �-ylesof length n.b) How many �-yles of length n have 1 � k1, : : : , kn � m, given m and n?) How many �-yles of length n have ki = j, given i, j, and n?d) How many �-yles of length n have k1, : : : , kn � 2?e) How many partitions of f1; : : : ; ng have 1 6� 2, 2 6� 3, : : : , n� 1 6� n, and n 6� 1?39. [HM16 ℄ Evaluate R10 e�tp+1 tq dt when p and q are nonnegative integers. Hint:See exerise 1.2.5{20.40. [HM20 ℄ Suppose the saddle point method is used to estimate [zn�1℄ ez. Thetext's derivation of (21) from (19) deals with the ase  = 1; how should that derivationhange if  is an arbitrary positive onstant?41. [HM21 ℄ Solve the previous exerise when  = �1.42. [HM23 ℄ Use the saddle point method to estimate [zn�1℄ ez2 with relative errorO(1=n2).43. [HM22 ℄ Justify replaing the integral in (23) by (25).44. [HM22 ℄ Explain how to ompute b1, b2, : : : in (26) from a2, a3, : : : in (25).x 45. [HM23 ℄ Show that, in addition to (26), we also have the expansion$n = ee��1n!�np2�n(� + 1)�1 + b01n + b02n2 + � � �+ b0mnm +O� 1nm+1��;where b01 = �(2�4 + 9�3 + 16�2 + 6� + 2)=(24(� + 1)3).
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48 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.546. [HM25 ℄ Estimate the value of $nk in Peire's triangle when n!1.47. [M21 ℄ Analyze the running time of Algorithm H.48. [HM25 ℄ If n is not an integer, the integral in (23) an be taken over a Hankelontour to de�ne a generalized Bell number $x for all real x > 0. Show that, as in (16),$x = 1e 1Xk=0 kxk! :x 49. [HM35 ℄ Prove that, for large n, the number � de�ned in Eq. (24) is equal tolnn� ln lnn+ Xj;k�0 h j + kj + 1 i�j �kk! ; � = � 1lnn; � = ln lnnlnn :x 50. [HM21 ℄ If �(n)e�(n) = n and �(n) > 0, how does �(n+ k) relate to �(n)?51. [HM27 ℄ Use the saddle point method to estimate tn = n! [zn℄ ez+z2=2, the numberof involutions on n elements (aka partitions of f1; : : : ; ng into bloks of sizes � 2).52. [HM22 ℄ The umulants of a probability distribution are de�ned in Eq. 1.2.10{(23). What are the umulants, when the probability that a random integer equals k is(a) e1�e�$k�k=k!? (b) Pj �kj	 ee�1�1�j=k!?x 53. [HM30 ℄ Let G(z) = P1k=0 pkzk be the generating funtion for a disrete prob-ability distribution, onverging for jzj < 1 + Æ; thus the oeÆients pk are non-negative, G(1) = 1, and the mean and variane are respetively � = G0(1) and�2 = G00(1) +G0(1)�G0(1)2. If X1, : : : , Xn are independent random variables havingthis distribution, the probability that X1 + � � � +Xn = m is [zm℄G(z)n, and we oftenwant to estimate this probability when m is near the mean value �n.Assume that p0 6= 0 and that no integer d > 1 is a ommon divisor of allsubsripts k with pk 6= 0; this assumption means that m does not have to satisfyany speial ongruene onditions mod d when n is large. Prove that[z�n+r℄G(z)n = e�r2=(2�2n)�p2�n +O� 1n� as n!1;when �n+ r is an integer. Hint: Integrate G(z)n=z�n+r on the irle jzj = 1.54. [HM20 ℄ If � and � are de�ned by (40), show that their arithmeti and geometrimeans are respetively �+�2 = s oth s and p�� = s sh s, where s = �=2.55. [HM20 ℄ Suggest a good way to ompute the number � needed in (43).x 56. [HM26 ℄ Let g(z) = ��1 ln(ez � 1)� ln z and � = �� � as in (37).a) Prove that (��)n+1g(n+1)(�) = n! �Pnk=0 
nk��k�n�k, where the Eulerian num-bers 
nk� are de�ned in Setion 5.1.3.b) Prove that ��n! <Pnk=0 
nk��k�n�k < n! for all � > 0. Hint: See exerise 5.1.3{25.) Now verify the inequality (42).57. [HM22 ℄ In the notation of (43), prove that (a) n+1�m < 2N ; (b)N< 2(n+1�m).58. [HM31 ℄ Complete the proof of (43) as follows.a) Show that for all � > 0 there is a number � � 2� suh that � is a multiple of 2�and je�+it � 1j=j� + itj is monotone dereasing for 0 � t � � .b) Prove that R ��� exp((n+ 1)g(� + it)) dt leads to (43).) Show that the orresponding integrals over the straight-line paths z = t � i� for�n � t � � and z = �n� it for �� � t � � are negligible.
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7.2.1.5 GENERATING ALL SET PARTITIONS 49x 59. [HM23 ℄ What does (43) predit for the approximate value of �nn	?60. [HM25 ℄ (a) Show that the partial sums in the identityn nmo = mnm! � (m� 1)n1! (m� 1)! + (m� 2)n2! (m� 2)! � � � �+ (�1)m 0nm! 0!alternately overestimate and underestimate the �nal value. (b) Conlude thatn nmo = mnm! (1�O(ne�n�)) when m � n1��.() Derive a similar result from (43).61. [HM26 ℄ Prove that if m = n� r where r � n� and � � n1=2, Eq. (43) yieldsn nn� ro = n2r2rr!�1 +O(n2��1) +O�1r��:62. [HM40 ℄ Prove rigorously that if �e� = n, the maximum �nm	 ours either whenm = be� � 1 or when m = de� � 1e.x 63. [M35 ℄ (J. Pitman.) Prove that there is an elementary way to loate the maximumStirling numbers, and many similar quantities, as follows: Suppose 0 � pj � 1.a) Let f(z) = (1+p1(z�1)) : : : (1+pn(1�z)) and ak = [zk℄ f(z); thus ak is the proba-bility that k heads turn up after n independent oin ips with the respetive prob-abilities p1, : : : , pn. Prove that ak�1 < ak whenever k � � = p1+ � � �+pn, ak 6= 0.b) Similarly, prove that ak+1 < ak whenever k � � and ak 6= 0.) If f(x) = a0 + a1x + � � � + anxn is any nonzero polynomial with nonnegativeoeÆients and with n real roots, prove that ak�1 < ak when k � � and ak+1 < akwhen k � �, where � = f 0(1)=f(1). Therefore if am = max(a0; : : : ; an) we musthave either m = b� or m = d�e.d) Under the hypotheses of (), and with aj = 0 when j < 0 or j > n, show thatthere are indies s � t, suh that ak+1 � ak < ak � ak�1 if and only if s � k � t.(Thus, a histogram of the sequene (a0; a1; : : : ; an) is always \bell-shaped.")e) What do these results tell us about Stirling numbers?64. [HM21 ℄ Prove the approximate ratio (50), using (30) and exerise 50.x 65. [HM22 ℄ What is the variane of the number of bloks of size k in a randompartition of f1; : : : ; ng?66. [M46 ℄ What partition of n leads to the most partitions of f1; : : : ; ng?67. [HM20 ℄ What are the mean and variane of M in Stam's method (53)?68. [20 ℄ How large an the stak get in Algorithm M, when it is generating allp(n1; : : : ; nm) partitions of fn1 � 1; : : : ; nm �mg?x 69. [21 ℄ Modify Algorithm M so that it produes only partitions into at most r parts.x 70. [M22 ℄ Analyze the number of r-blok partitions possible in the n-element multi-sets (a) f0; : : : ; 0; 1g; (b) f1; 2; : : : ; n� 1; n� 1g. What is the total, summed over r?71. [M20 ℄ How many partitions of fn1 � 1; : : : ; nm �mg have exatly 2 parts?72. [M26 ℄ Can p(n;n) be evaluated in polynomial time?x 73. [M32 ℄ Can p(2; : : : ; 2) be evaluated in polynomial time when there are n 2s?74. [M46 ℄ Can p(n; : : : ; n) be evaluated in polynomial time when there are n ns?75. [HM41 ℄ Find the asymptoti value of p(n; n).76. [HM36 ℄ Find the asymptoti value of p(2; : : : ; 2) when there are n 2s.77. [HM46 ℄ Find the asymptoti value of p(n; : : : ; n) when there are n ns.
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50 COMBINATORIAL ALGORITHMS (F3B) 7.2.1.578. [20 ℄ What partition of (15; 10; 10; 11) leads to the permutations �1, �2, �3, and�4 shown in Table 1?79. [22 ℄ A sequene u1, u2, u3, : : : is alled universal for partitions of f1; : : : ; ng ifits subsequenes (um+1; um+2; : : : ; um+n) for 0 � m < $n represent all possible setpartitions under the onvention \j � k if and only if um+j = um+k." For example,(0; 0; 0; 1; 0; 2; 2) is a universal sequene for partitions of f1; 2; 3g.Write a program to �nd all universal sequenes for partitions of f1; 2; 3; 4g withthe properties that (i) u1 = u2 = u3 = u4 = 0; (ii) the sequene has restrited growth;(iii) 0 � uj � 3; and (iv) u16 = u17 = u18 = 0 (hene the sequene is essentially yli).80. [M28 ℄ Prove that universal yles for partitions of f1; 2; : : : ; ng exist in the senseof the previous exerise whenever n � 4.81. [29 ℄ Find a way to arrange an ordinary dek of 52 playing ards so that the fol-lowing trik is possible: Five players eah ut the dek (applying a yli permutation)as often as they like. Then eah player takes a ard from the top. A magiian tellsthem to look at their ards and to form aÆnity groups, joining with others who holdthe same suit: Everybody with lubs gets together, everybody with diamonds formsanother group, and so on. (The Jak of Spades is, however, onsidered to be a \joker";its holder, if any, should remain aloof.)Observing the aÆnity groups, but not being told any of the suits, the magiianan name all �ve ards, if the ards were suitably arranged in the �rst plae.82. [22 ℄ In how many ways an the following 15 dominoes, optionally rotated, bepartitioned into three sets of �ve having the same sum when regarded as frations?12+13+41+15+16 = 23+42+25+43+45 = 26+53+36+64+65

50



7.2.1.4 ANSWERS TO EXERCISES 51SECTION 7.2.1.41. mn mn m!�nm	�m+n�1n � �mn� � n�1n�m��n0	+ � � �+ �nm	 [m�n℄ �nm	��m+nm �� [m�n℄ ��nm��2. In general, given any integers x1 � � � � � xm, we obtain all integer m-tuplesa1 : : : am suh that a1 � � � � � am, a1+� � �+am = x1+� � �+xm, and am : : : a1 � xm : : : x1by initializing a1 : : : am  x1 : : : xm and am+1  xm � 2. In partiular, if  is anyinteger onstant, we obtain all integer m-tuples suh that a1 � � � � � am �  anda1 + � � � + am = n by initializing a1  n � m + , aj   for 1 < j � m, andam+1  � 2, assuming that n � m.3. aj = b(n+m� j)=m = d(n+ 1� j)=me, for 1 � j � m; see CMath x3.4.4. We must have am � a1 � 1; therefore aj = b(n+m� j)=m for 1 � j � m, wherem is the largest integer with bn=m � r, namely m = bn=r.5. [See Eugene M. Klimko, BIT 13 (1973), 38{49.℄C1. [Initialize.℄ Set 0  1, 1  n, 2 : : : n  0 : : : 0, l0  1, l1  0. (Weassume that n > 0.)C2. [Visit.℄ Visit the partition represented by part ounts 1 : : : n and linksl0l1 : : : ln.C3. [Branh.℄ Set j  l0 and k  lj . If j = 1, go to C6; otherwise, if j > 1, goto C5.C4. [Change 1+1 to 2.℄ Set 1  1 � 2, 2  2 + 1. Then if 1 = 0, set l0  2,and set l2  l1 if k 6= 2. If 1 > 0 and k 6= 2, set l2  l1 and l1  2. Returnto C2.C5. [Change j � j to (j+1) + 1 + � � �+ 1.℄ Set 1  j(j � 1)� 1 and go to C7.C6. [Change k � k + j to (k+1) + 1 + � � �+ 1.℄ Terminate if k = 0. Otherwise setj  0; then set 1  k(k � 1) + j � 1, j  k, and k  lk.C7. [Adjust links.℄ If 1 > 0, set l0  1, l1  j + 1; otherwise set l0  j + 1.Then set j  0 and j+1  j+1 + 1. If k 6= j + 1, set lj+1  k. Returnto C2.Notie that this algorithm is loopless; but it isn't really faster than Algorithm P. StepsC4, C5, and C6 are performed respetively p(n� 2), 2p(n)� p(n+ 1)� p(n� 2), andp(n + 1) � p(n) times; thus step C4 is most important when n is large. (See exerise45 and the detailed analysis by Fenner and Loizou in Ata Inf. 16 (1981), 237{252.)6. Set k  a1 and j  1. Then, while k > aj+1, set bk  j and k  k � 1 untilk = aj+1. If k > 0, set j  j + 1 and repeat until k = 0. (We have used (11) in thedual form aj � aj+1 = dj , where d1 : : : dn is the part-ount representation of b1b2 : : : .Notie that the running time of this algorithm is essentially proportional to a1 + b1,the length of the output plus the length of the input.)7. We have b1 : : : bn = nan(n�1)an�1�an : : : 1a1�a20n�a1 , by the dual of (11).8. Transposing the Ferrers diagram orresponds to reeting and omplementing thebit string (15). So we simply interhange and reverse the p's and q's, getting thepartition b1b2 : : : = (qt + � � �+ q1)p1 (qt + � � �+ q2)p2 : : : (qt)pt .
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52 ANSWERS TO EXERCISES 7.2.1.49. By indution: If ak = l� 1 and bl = k� 1, inreasing ak and bl preserves equality.10. (a) The left hild of eah node is obtained by appending `1'. The right hild isobtained by inreasing the rightmost digit; this hild exists if and only if the parent nodeends with unequal digits. All partitions of n appear on level n in lexiographi order.(b) The left hild is obtained by hanging `11' to `2'; it exists if and only if theparent node ontains at least two 1s. The right hild is obtained by deleting a 1 andinreasing the smallest part that exeeds 1; it exists if and only if there is at least one 1and the smallest larger part appears exatly one. All partitions of n into m parts ap-pear on level n�m in lexiographi order; preorder of the entire tree gives lexiographiorder of the whole. [T. I. Fenner and G. Loizou, Comp. J. 23 (1980), 332{337.℄11. [z100℄ 1=((1� z)(1� z2)(1� z5)(1� z10)(1� z20)(1� z50)(1� z100)) = 4563; and[z100℄ (1+ z+ z2)(1+ z2+ z4) : : : (1+ z100+ z200) = 7. [See G. P�olya, AMM 63 (1956),689{697.℄ In the in�nite series Qk�1(1 + zk + z2k)(1 + z2k + z4k)(1 + z5k + z10k), theoeÆient of z10n is 2n+1 � 1, and the oeÆient of z10n�1 is 2n.12. To prove that (1 + z)(1 + z2)(1 + z3) : : : = 1=((1 � z)(1 � z3)(1 � z5) : : : ), writethe left-hand side as (1� z2)(1� z) (1� z4)(1� z2) (1� z6)(1� z3) : : :and anel ommon fators from numerator and denominator. Alternatively, replae zby z1, z3, z5, : : : in the identity (1 + z)(1 + z2)(1 + z4)(1 + z8) : : : = 1=(1 � z) andmultiply the results together. [Novi Comment. Aad. Si. Pet. 3 (1750), 125{169, x47.℄13. Map the partition 1�1+ 2�2+ � � � into b1=2�2+ b2=2�4+ � � �+ r1�1+ r3�3+ � � � ,where rm = (m mod 2) + 2(2m mod 2) + 4(4m mod 2) + � � � . [Johns Hopkins Univ.Cirular 2 (1882), 72.℄14. Sylvester's orrespondene is best understood as a diagram in whih the dots ofthe odd permutation are entered and divided into disjoint hooks. For example, thepartition 17 + 15 + 15 + 9 + 9 + 9 + 9 + 5 + 5 + 3 + 3, having �ve di�erent odd parts,orresponds via the diagram

to the all-distint partition 19 + 18 + 16 + 13 + 12 + 9 + 5 + 4 + 3 with four gaps.Conversely, a partition into 2t distint nonnegative parts an be written uniquelyin the form (a1+b1�1)+(a1+b2�2)+(a2+b2�3)+(a2+b3�4)+� � �+(at�1+bt�2t+2)+(at+bt�2t+1) + (at+bt+1�2t) where a1 � a2 � � � � � at � t and b1 � b2 � � � � � bt �bt+1 = t. It orresponds to (2a1�1)+ � � �+(2at�1)+(2A1�1)+ � � �+(2Ar�1), whereA1 + � � �+Ar is the onjugate of (b1�t) + � � �+ (bt�t). The value of t is essentially thesize of a \Durfee retangle."The relevant odd-parts partitions when n = 10 are 9+1, 7+3, 7+1+1+1, 5+5,5 + 3+ 1+ 1, 5 + 1+ 1+ 1+ 1+ 1, 3 + 3+ 3+ 1, 3 + 3+ 1+ 1+ 1+ 1, 3 + 1+ � � �+ 1,1 + � � �+ 1, orresponding respetively to the distint-parts partitions 6 + 4, 5 + 4 + 1,
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7.2.1.4 ANSWERS TO EXERCISES 537 + 3, 4 + 3 + 2 + 1, 6 + 3 + 1, 8 + 2, 5 + 3 + 2, 7 + 2 + 1, 9 + 1, 10. [See Sylvester'sremarkable paper in Amer. J. Math. 5 (1882), 251{330; 6 (1883), 334{336.℄15. Every self-onjugate partition of trae k orresponds to a partition of n into kdistint odd parts (\hooks"). Therefore we an write the generating funtion either asthe produt (1+z)(1+z3)(1+z5) : : : or as the sum 1+z1=(1�z2)+z4=((1�z2)(1�z4))+z9=((1�z2)(1�z4)(1�z6)) + � � � . [Johns Hopkins Univ. Cirular 3 (1883), 42{43.℄16. The Durfee square ontains k2 dots, and the remaining dots orrespond to twoindependent partitions with largest part � k. Thus, if we use w to ount parts andz to ount dots, we �nd1Ym=1 11� wzm = 1Xk=0 wkzk2(1� z)(1� z2) : : : (1� zk)(1� wz)(1� wz2) : : : (1� wzk) :[This impressive-looking formula turns out to be just the speial ase x = y = 0 of theeven more impressive identity of exerise 19.℄17. (a) ((1 + uvz)(1 + uvz2)(1 + uvz3) : : : )/((1� uz)(1� uz2)(1� uz3) : : : ).� � � � � � � �+�� � � � � � � �� � � � � � � �� � � � � �+�� � � � �� � � �+��+�
(b) A joint partition an be represented by a generalized Ferrersdiagram in whih we merge all the parts together, putting ai abovebj if ai � bj , then mark the rightmost dot of eah bj . For example,the joint partition (8; 8; 5; 9; 7; 5; 2) has the diagram illustrated here,with marked dots shown as `+� '. Marks appear only in orners; thusthe transposed diagram orresponds to another joint partition, whih in this ase is(7; 6; 6; 4; 3; 7; 6; 4; 1). [See J. T. Joihi and D. Stanton, Pai� J. Math. 127 (1987),103{120; S. Corteel and J. Lovejoy, Trans. Amer. Math. So. 356 (2004), 1623{1635;Igor Pak, \Partition bijetions, a survey," to appear in The Ramanujan Journal.)Every joint partition with t > 0 parts orresponds in this way to a \onjugate"in whih the largest part is t. And the generating funtion for suh joint partitions is((1 + vz) : : : (1 + vzt�1))/((1� z) : : : (1� zt)) times (vzt + zt), where vzt orrespondsto the ase that b1 = t, and zt orresponds to the ase that r = 0 or b1 < t).() Thus we obtain a form of the general z-nomial theorem in answer 1.2.6{58:(1 + uvz)(1� uz) (1 + uvz2)(1� uz2) (1 + uvz3)(1� uz3) : : : = 1Xt=0 (1 + v)(1� z) (1 + vz)(1� z2) : : : (1 + vzt�1)(1� zt) utzt:18. The equations obviously determine the a's and b's when the 's and d's are given,so we want to show that the 's and d's are uniquely determined from the a's and b's.The following algorithm determines the 's and d's from right to left:A1. [Initialize.℄ Set i r, j  s, k  0, and a0  b0  1.A2. [Branh.℄ Stop if i+ j = 0. Otherwise go to A4 if ai � bj � k.A3. [Absorb ai.℄ Set i+j  ai, di+j  0, i i� 1, k  k+1, and return to A2.A4. [Absorb bj .℄ Set i+j  bj � k, di+j  1, j  j � 1, k  k + 1, and returnto A2.There's also a left-to-right method:B1. [Initialize.℄ Set i 1, j  1, k  r + s, and ar+1  bs+1  �1.B2. [Branh.℄ Stop if k = 0. Otherwise set k  k�1, then go to B4 if ai � bj�k.B3. [Absorb ai.℄ Set i+j�1  ai, di+j�1  0, i i+ 1, and return to B2.B4. [Absorb bj .℄ Set i+j�1  bj�k, di+j�1  1, j  j+1, and return to B2.
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54 ANSWERS TO EXERCISES 7.2.1.4In both ases the branhing is fored and the resulting sequene satis�es 1 � � � � � r+s.Notie that r+s = min(ar; bs) and 1 = max(a1; b1�r�s+1).We have thereby proved the identity of exerise 17() in a di�erent way. Extensionsof this idea lead to a ombinatorial proof of Ramanujan's \remarkable formula withmany parameters,"1Xn=�1wn 1Yk=0 1� bzk+n1� azk+n = 1Yk=0 (1�a�1bzk)(1�a�1w�1zk+1)(1�awzk)(1�zk+1)(1�a�1bw�1zk)(1�a�1zk+1)(1�azk)(1�wzk) :[Referenes: G. H. Hardy, Ramanujan (1940), Eq. (12.12.2); D. Zeilberger, Europ. J.Combinatoris 8 (1987), 461{463; A. J. Yee, J. Comb. Theory A105 (2004), 63{77.℄19. [Crelle 34 (1847), 285{328.℄ By exerise 17(), the hinted sum over k is�Xl�0 vl (z � bz) : : : (z � bz l)(1� z) : : : (1� z l) (1� uz) : : : (1� uz l)(1� auz) : : : (1� auz l)� � 1Ym=1 1� auzm1� uzm ;and the sum over l is similar but with u$ v, a$ b, k $ l. Furthermore the sum overboth k and l redues to 1Ym=1 (1� uvzm+1)(1� auzm)(1� uzm)(1� vzm)when b = auz. Now let u = wxy, v = 1=(yz), a = 1=x, and b = wyz; equate thisin�nite produt to the sum over l.20. To get p(n) we need to add or subtrat approximately p8n=3 of the previousentries, and most of those entries are �(pn ) bits long. Therefore p(n) is omputed in�(n) steps and the total time is �(n2).(A straightforward use of (17) would take �(n5=2) steps.)21. Sine P1n=0 q(n)zn = (1 + z)(1 + z2) : : : is equal to (1 � z2)(1 � z4) : : : P (z) =(1� z2 � z4 + z10 + z14 � z24 � � � � )P (z), we haveq(n) = p(n)� p(n� 2)� p(n� 4) + p(n� 10) + p(n� 14)� p(n� 24)� � � � :[There is also a \pure reurrene" in the q's alone, analogous to the reurrene for �(n)in the next exerise.℄22. From (21) we haveP1n=1 �(n)zn =Pm;n�1mzmn = z ddz lnP (z) = (z+2z2�5z5�7z7 + � � � )=(1� z � z2 + z5 + z7 + � � � ). [Biblioth�eque Impartiale 3 (1751), 10{31.℄23. Set u = w and v = z=w to get1Yk=1(1� zkw)(1� zk=w)(1� zk) = 1Xn=�1(�1)nwnzn(n+1)=2=(1� w)
= 1Xn=0(�1)n(w�n � wn+1)zn(n+1)=2=(1� w)
= 1Xn=0(�1)n(w�n + � � �+ wn)zn(n+1)=2:These manipulations are legitimate when jzj < 1 and w is near 1. Now set w = 1.[See x57 of Sylvester's paper ited in answer 14. Jaobi's proof is in x66 of hismonograph Fundamenta Nova Theori� Funtionum Elliptiarum (1829).℄
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7.2.1.4 ANSWERS TO EXERCISES 5524. (a) By (18) and exerise 23, [zn℄A(z) =P(�1)j+k(2k+1)[3j2 + j + k2 + k=2n℄,summed over all integers j and k. When nmod 5 = 4, the ontributions all havej mod 5 = 4 and kmod 5 = 2; but then (2k + 1) mod 5 = 0.(b) B(z)p � B(zp) (modulo p) when p is prime, by Eq. 4.6.2{(5).() Take B(z) = P (z), sine A(z) = P (z)�4. [Pro. Cambridge Philos. So. 19(1919), 207{210. A similar proof shows that p(n) is a multiple of 7 when nmod 7 = 5.Ramanujan went on to obtain the beautiful formulas p(5n + 4)=5 = [zn℄P (z)6=P (z5);p(7n + 5)=7 = [zn℄ (P (z)4=P (z7)3 + 7zP (z)8=P (z7)7). Atkin and Swinnerton-Dyer, inPro. London Math. So. (3) 4 (1953), 84{106, showed that the partitions of 5n + 4and 7n + 5 an be divided into equal-size lasses aording to the respetive valuesof (largest part � number of parts) mod 5 or mod 7, as onjetured by F. Dyson.A slightly more ompliated ombinatorial statisti proves also that p(n) mod 11 = 0when nmod 11 = 6; see F. G. Garvan, Trans. Amer. Math. So. 305 (1988), 47{77.℄25. [The hint an be proved by di�erentiating both sides of the stated identity. It isthe speial ase y = 1� x of a beautiful formula disovered by N. H. Abel in 1826:Li2(x) + Li2(y) = Li2� x1�y�+ Li2� y1�x�� Li2� xy(1�x)(1�y)�� ln(1�x) ln(1�y):See Abel's �uvres Compl�etes 2 (Christiania: Gr�ndahl, 1881), 189{193.℄(a) Let f(x) = ln(1=(1� e�xt)). Then R x1 f(x) dx = �Li2(e�tx)=t and f (n)(x) =(�t)netxPk 
n�1k � ektx=(etx � 1)n, so Euler's summation formula gives Li2(e�t)=t +12 ln(1=(1 � e�t)) + O(1) = (�(2) + t ln(1 � e�t) � Li2(1 � e�t))=t � 12 ln t + O(1) =�(2)=t+ 12 ln t+O(1), as t! 0.(b) We havePm;n�1 e�mnt=n = 12�iPm;n�1 R 1+i11�i1 (mnt)�z�(z) dz=n, whih sumsto 12�i R 1+i11�i1 �(z + 1)�(z)t�z�(z) dz. The pole at z = 1 gives �(2)=t; the doublepole at z = 0 gives ��(0) ln t + � 0(0) = 12 ln t � 12 ln 2�; the pole at z = �1 gives��(�1)�(0)t = B2B1t = �t=24. Zeros of �(z + 1)�(z) anel the other poles of �(z),so the result is lnP (e�t) = �(2)=t+ 12 ln(t=2�)� t=24+O(tM ) for arbitrarily large M .26. Let F (n) =P1k=1 e�k2=n. We an use (25) either with f(x) = e�x2=n[x> 0℄+ 12Æx0,or with f(x) = e�x2=n for all x beause 2F (n) + 1 =P1k=�1 e�k2=n. Let's hoose thelatter alternative; then the right-hand side of (25), for � = 0, is the rapidly onvergentlimM!1 MXm=�M Z 1�1 e�2�miy�y2=ndy = 1Xm=�1 e��2m2n2 Z 1�1 e�u2=n du
if we substitute u = y+ �mni; and the integral is p�n. [This result is formula (15) onpage 420 of Poisson's original paper.℄27. Let gn = p�=6t e�n2�2=6t os n�6 . Then R1�1 f(y) os 2�my dy = g2m+1 + g2m�1,so we have e�t=24P (e�t) = g1 + g�1 + 2 1Xm=1(g2m+1 + g2m�1) = 2 1Xm=�1 g2m+1:The terms g6n+1 and g�6n�1 ombine to give the nth term of (30). [See M. I. Knopp,Modular Funtions in Analyti Number Theory (1970), Chapter 3.℄
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56 ANSWERS TO EXERCISES 7.2.1.428. (a,b,,d) See Trans. Amer. Math. So. 43 (1938), 271{295. In fat, Lehmer foundexpliit formulas for Ape(n), in terms of the Jaobi symbol of exerise 4.5.4{23:A2e(n) = (�1)e��1m �2e=2 sin 4�m2e+3 ; if (3m)2 � 1� 24n (modulo 2e+3);A3e(n) = (�1)e+1�m3 � 2p33e=2 sin 4�m3e+1 ; if (8m)2 � 1� 24n (modulo 3e+1);2� 3pe�pe=2 os 4�mpe ; if (24m)2 � 1� 24n (modulo pe), p � 5,and 24nmod p 6= 1;Ape(n) =
8>>>><>>>>:� 3pe�pe=2 [e=1℄; if 24nmod p = 1 and p � 5.(e) If n = 2a3bpe11 : : : pett for 3 < p1 < � � � < pt and e1 : : : et 6= 0, the probabilitythat Ak(n) 6= 0 is 2�t(1 + (�1)[e1=1℄=p1) : : : (1 + (�1)[et=1℄=pt).29. z1z2 : : : zm=((1� z1)(1� z1z2) : : : (1� z1z2 : : : zm)).30. (a) ��n+1m �� and (b) ��m+nm ��, by (39).31. First solution [Marshall Hall, Jr., Combinatorial Theory (1967), x4.1℄: From thereurrene (39), we an show diretly that, for 0 � r < k!, there is a polynomialfk;r(n) = nk�1=(k!(k�1)!) +O(nk�2) suh that ��nk�� = fn;nmod k!(n).Seond solution: Sine (1 � z) : : : (1 � zm) = Qp?q(1 � e2�ip=qz)bm=q, wherethe produt is over all redued frations p=q with 0 � p < q, the oeÆient of znin (41) an be expressed as a sum of roots of unity times polynomials in n, namely asPp?q e2�ipn=qfpq(n) where fpq(n) is a polynomial of degree less than m=q. Thus thereexist onstants suh that ��n2�� = a1n+ a2 + (�1)na3; ��n3�� = b1n2 + b2n+ b3 + (�1)nb4 +!nb5 + !�nb6, where ! = e2�i=3; et. The onstants are determined by the values forsmall n, and the �rst two ases are���n2 ��� = 12n� 14 + 14(�1)n; ���n3 ��� = 112n2 � 772 � 18(�1)n + 19!n + 19!�n:It follows that ��n3�� is the nearest integer to n2=12. Similarly, ��n4�� is the nearest integerto (n3 + 3n2 � 9n [n odd℄)=144.[Exat formulas for ��n2��, ��n3��, and ��n4��, without the simpli�ation of oor funtions,were �rst found by G. F. Malfatti, Memorie di Mat. e Fis. Soiet�a Italiana 3 (1786),571{663. W. J. A. Colman, in Fibonai Quarterly 21 (1983), 272{284, showed that��n5�� is the nearest integer to (n4+10n3+10n2�75n�45n(�1)n)=2880, and gave similarformulas for ��n6�� and ��n7��.℄32. Sine ��m+nm �� � p(n), with equality if and only if m � n, we have ��nm�� � p(n �m)with equality if and only if 2m � n.33. A partition into m parts orresponds to at most m! ompositions; hene �n�1m�1� �m! ��nm��. Consequently p(n) � (n � 1)!=((n � m)!m! (m � 1)!), and when m = pnStirling's approximation proves that ln p(n) � 2pn� lnn� 12 � ln 2�.34. a1 > a2 > � � � > am > 0 if and only if a1�m+1 � a2�m+2 � � � � � am � 1. Andpartitions into m distint parts orrespond to m! ompositions. Thus, by the previousanswer, we have 1m!� n� 1m� 1� � ��� nm ��� � 1m!�n+m(m� 1)=2m� 1 �:
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7.2.1.4 ANSWERS TO EXERCISES 57[See H. Gupta, Pro. Indian Aad. Si. A16 (1942), 101{102. A detailed asymptotiformula for ��nm�� when n = �(m3) appears in exerise 3.3.2{30.℄35. (a) x = 1C ln 1C � �0:194.(b) x = 1C ln 1C � 1C ln ln 2 � 0:092; in general we have x = 1C (ln 1C � ln ln 1F (x) ).() R 1�1 x dF (x) = R10 (Cu)�2(lnu)e�1=(Cu) du = � 1C R 10 (lnC + ln v)e�v dv =( � lnC)=C � 0:256:(d) Similarly, R 1�1 x2e�Cx exp(�e�Cx=C)dx = (2+�(2)�2 lnC+(lnC)2)=C2 �1:0656. So the variane is �(2)=C2 = 1, exatly(!).[The probability distribution e�e(a�x)=b is ommonly alled the Fisher{Tippettdistribution; see Pro. Cambridge Phil. So. 24 (1928), 180{190.℄36. The sum over jr � (m+ r � 1) � � � � � j2 � (m+ 1) � j1 �m � 1 gives�r =Xt ��� t� rm� r(r � 1)=2r ���p(n� t)p(n)= �1� � �21� �2 : : : �r1� �r �rm(1 +O(n�1=2+2�))+ E= n�1=2��1 � 1 n�1=2��2 � 1 : : : n�1=2��r � 1 exp(�Crx+O(rn�1=2+2�))+ E;where E is an error term that aounts for the ases t > n1=2+�. The leading fatorn�1=2=(��j�1) is 1jC (1+O(jn�1=2)). And it is easy to verify that E = O(nlogne�Cn�),even if we use the rude upper bound ��t�rm�r(r�1)=2r �� � tr, beauseXt�xN tre�t=N = O�Z 1xN tre�t=N dt� = O(Nr+1xre�x=(1� r=x));where N = �(pn), x = �(n�), r = O(logn).37. Suh a partition is ounted one in �0, q times in �1, �q2� times in �2, : : : ; soit is ounted exatly Prj=0(�1)j�qj� = (�1)r�q�1r � times in the partial sum that endswith (�1)r�r. This ount is at most Æq0 when r is odd, at least Æq0 when r is even.[A similar argument shows that the generalized priniple of exerise 1.3.3{26 also hasthis braketing property. Referene: C. Bonferroni, Pubbliazioni del Reale IstitutoSuperiore de Sienze Eonomihe e Commeriale di Firenze 8 (1936), 3{62.℄38. zl+m�1�l+m�2m�1 �z = zl+m�1(1� zl) : : : (1� zl+m�2)=((1� z) : : : (1� zm�1)).39. If � = a1 : : : am is a partition with at most m parts, let f(�) = 1 if a1 � l,otherwise f(�) = minfj j a1 > l + aj+1g. Let gk be the generating funtion forpartitions with f(�) > k. Partitions with f(�) = k < 1 are haraterized by theinequalities a1 � a2 � � � � � ak � a1 � l > ak+1 � � � � � am+1 = 0:Thus a1a2 : : : am = (bk+l+1)(b1+1) : : : (bk�1+1)bk+1 : : : bm, where f(b1 : : : bm) � k;and the onverse is also true. It follows that gk = gk�1 � zl+kgk�1.[See Amerian J. Math. 5 (1882), 254{257.℄40. zm(m+1)=2� lm�z = (z� zl)(z2� zl) : : : (zm� zl)=((1� z)(1� z2) : : : (1� zm)). Thisformula is essentially the z-nomial theorem of exerise 1.2.6{58.41. See G. Almkvist and G. E. Andrews, J. Number Theory 38 (1991), 135{144.

57



58 ANSWERS TO EXERCISES 7.2.1.442. A. Vershik [Funtional Anal. Appli. 30 (1996), 90{105, Theorem 4.7℄ has statedthe formula 1� e�'1� e�(�+') e�k=pn + 1� e��1� e�(�+') e�ak=pn � 1;where the onstant  must be hosen as a funtion of � and ' so that the area of theshape is n. This onstant  is negative if �' < 2, positive if �' > 2; the shape reduesto a straight line k�pn + ak'pn � 1when �' = 2. If ' =1 we have  = pLi2(t) where t satis�es � = (ln 11�t )=pLi2(t).43. We have a1 > a2 > � � � > ak if and only if the onjugate partition inludeseah of the the parts 1, 2, : : : , k � 1 at least one. The number of suh partitions isp(n� k(k � 1)=2); this total inludes ��n�(k�1)(k�2)=2k�1 �� ases with ak = 0.44. Assume that n > 0. The number with smallest parts unequal (or with only onepart) is p(n+1)� p(n), the number of partitions of n+1 that don't end in 1, beausewe get the former from the latter by hanging the smallest part. Therefore the answeris 2p(n)� p(n+1). [See R. J. Bosovih, Giornale de' Letterati (Rome, 1748), 15. Thenumber of partitions whose smallest three parts are equal is 3p(n)�p(n+1)�2p(n+2)+p(n+ 3); similar formulas an be derived for other onstraints on the smallest parts.℄45. By Eq. (37) we have p(n� j)=p(n) = 1�Cjn�1=2+ (C2j2 + 2j)=(2n)� (8C3j3 +60Cj2 + Cj + 12C�1j)=(48n3=2) +O(j4n�2).46. If n > 1, T 02(n) = p(n � 1) � p(n � 2) � p(n) � p(n � 1) = T 002 (n), beausep(n)�p(n�1) is the number of partitions of n that don't end in 1; every suh partitionof n � 1 yields one for n if we inrease the largest part. But the di�erene is rathersmall: (T 002 (n)� T 02(n))=p(n) = C2=n+O(n�3=2).47. The identity in the hint follows by di�erentiating (21); see exerise 22. Theprobability of obtaining the part-ounts 1 : : : n when 1 + 22 + � � �+ nn = n isPr(1 : : : n) = nXk=1 kXj=1 kp(n� jk)np(n) Pr(1 : : : k�1(k�j)k+1 : : : n)
= nXk=1 kXj=1 knp(n) = 1p(n) ;by indution on n. [Combinatorial Algorithms (Aademi Press, 1975), Chapter 10.℄48. The probability that j has a partiular �xed value in step N5 is 6=(�2j2) +O(n�1=2), and the average value of jk is order pn. The average time spent in step N4is �(n), so the average running time is of order n3=2. (A more preise analysis wouldbe desirable.)49. (a) We have F (z) = P1k=1 Fk(z), where Fk(z) is the generating funtion for allpartitions whose smallest part is � k, namely 1=((1� zk)(1� zk+1) : : : )� 1.(b) Let fk(n) = [zn℄Fk(z)=p(n). Then f1(n) = 1; f2(n) = 1 � p(n�1)=p(n) =Cn�1=2 + O(n�1); f3(n) = (p(n)� p(n � 1) � p(n � 2) + p(n � 3))=p(n) = 2C2n�1 +O(n�3=2); and f4(n) = 6C3n�3=2 + O(n�2). (See exerise 45.) It turns out thatfk+1(n) = k!Ckn�k=2 + O(n�(k+1)=2); in partiular, f5(n) = O(n�2). Hene f5(n) +� � �+ fn(n) = O(n�1), beause fk+1(n) � fk(n).Adding everything up yields [zn℄F (z) = p(n)(1 + C=pn+O(n�1)).
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7.2.1.4 ANSWERS TO EXERCISES 5950. (a) m(m + k) = m�1(m � 1 + k) + m(k) = m � 1 � k + (k) + 1 by indutionwhen 0 � k < m.(b) Beause ��m+km �� = p(k) for 0 � k � m.() When n = 2m, Algorithm H essentially generates the partitions of m, andwe know that j � 1 is the seond-smallest part in the onjugate of the partition justgenerated|exept when j�1 = m, just after the partition 1 : : : 1 whose onjugate hasonly one part.(d) If all parts of � exeed k, let �kq+1j orrespond to � (k+1).(e) The generating funtion Gk(z) for all partitions whose seond-smallest part is� k is (z+� � �+zk�1)Fk(z)+Fk(z)�zk=(1�z) = Fk+1(z)=(1�z), where Fk(z) is de�nedin the previous exerise. Consequently C(z) = (F (z)� F1(z))=(1� z) + z=(1� z)2.(f) We an show as in the previous exerise that [zn℄Gk(n)=p(n) = O(n�k=2) fork � 5; hene (m)=p(m) = 1 + O(m�1=2). The ratios ((m) + 1)=p(m), whih arereadily omputed for small m, reah a maximum of 2.6 at m = 7 and derease steadilythereafter. So a rigorous attention to asymptoti error bounds will omplete the proof.Note: B. Fristedt [Trans. Amer. Math. So. 337 (1993), 703{735℄ has proved,among other things, that the number of k's in a random partition of n is greater thanCxpn with asymptoti probability e�x.52. In lexiographi order, ��64+1313 �� partitions of 64 have a1 � 13; ��50+1010 �� of them havea1 = 14 and a2 � 10; et. Therefore, by the hint, the partition 14 11 9 6 4 3 2 115 ispreeded by exatly p(64) � 1000000 partitions in lexiographi order, making it themillionth in reverse lexiographi order.53. As in the previous answer, ��8012�� partitions of 100 have a1 = 32 and a2 � 12, et.;so the lexiographially millionth partition in whih a1 = 32 is 32 13 12 8 7 6 5 5 112.Algorithm H produes its onjugate, namely 20 8 8 8 6 5 4 3 3 3 3 2 119.54. (a) Obviously true. This question was just a warmup.(b) True, but not so obvious. If �T = a01a02 : : : we havea1 + � � �+ ak + a01 + � � �+ a0k � n� kl when k � a0lby onsidering the Ferrers diagram, with equality when k = a0l. Thus if � � � anda01+ � � �+a0l > b01+ � � �+ b0l for some l, with l minimum, we have n�kl = b1+ � � �+ bk+b01 + � � �+ b0l < a1 + � � �+ ak + a01 + � � �+ a0l � n� kl when k = b0l, a ontradition.() The reurrene k = min(a1+ � � �+ak; b1+ � � �+ bk)� (1+ � � �+ k�1) learlyde�nes a greatest lower bound, if 12 : : : is a partition. And it is; for if 1+ � � �+ k =a1+ � � �+ak we have 0 � min(ak+1; bk+1) � k+1 � ak+1 � ak = k�(1+ � � �+k�1)�(a1 + � � �+ ak�1) � k.(d) � _ � = (�T ^ �T )T . (Double onjugation is needed beause a max-orientedreurrene analogous to the one in part () an fail.)(e) � ^ � has max(l;m) parts and � _ � has min(l;m) parts. (Consider the �rstomponents of their onjugates.)(f) True for � ^ �, by the derivation in part (). False for � _ � (although true inFig. 32); for example, (17 16 5 4 3 2) _ (17 9 8 7 6) = (17 16 5 5 4):Referene: T. Brylawski, Disrete Mathematis 6 (1973), 201{219.55. (a) If � � � and � �  � �, where  = 12 : : : , we have a1 + � � � + ak =1 + � � � + k = b1 + � � � + bk for all k exept k = l and k = l + 1; thus � overs �.Therefore �T overs �T .Conversely, if � � � and � 6= � we an �nd  � � suh that � �  or T � �T ,as follows: Find the smallest k with ak > bk, and the smallest l with ak > al+1. If
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60 ANSWERS TO EXERCISES 7.2.1.4al > al+1+1, de�ne  = 12 : : : by k = ak� [k= l℄+[k= l + 1℄. If al = al+1+1, �ndthe smallest l0 with al+1 > al0+1 and let k = ak�[k= l0 ℄+[k= l0 + 1℄ if al0 > al0+1+1,otherwise k = ak � [k= l℄ + [k= l0 + 1℄.(b) Consider � and � to be strings of n 0s and n 1s, as in (15). Then � � � ifand only if � ! �, and �T � �T if and only if � ) �, where `!' denotes replaing asubstring of the form 011q10 by 101q01 and `)' denotes replaing a substring of theform 010q10 by 100q01, for some q � 0.() A partition overs at most [a1>a2 ℄ + � � � + [am�1>am ℄ + [am� 2℄ others.The partition � = (n2+n1�1)(n2�2)(n2�3) : : : 21 maximizes this quantity in the aseam = 1; ases with am � 2 give no improvement. (The onjugate partition, namely(n2�1)(n2�2) : : : 21n1+1, is just as good. Therefore both � and �T are also overed bythe maximum number of others.)(d) Equivalently, onseutive parts of � di�er by at most 1, and the smallest partis 1; the rim representation has no onseutive 1s.(e) Use rim representations and replae � by the relation !. If � ! �1 and�! �01 we an easily show the existene of a string � suh that �1 ! � and �01 ! �;for example, 101q0111r10% &011q1011r10 101q1011r01:& %011q1101r01Let � = �2 � � � � � �m where �m is minimal. Then, by indution on max(k; k0), wehave k = m and �k = �m; also k0 = m and �0k0 = �m.(f) Set �  �T ; then repeatedly set �  �0 until � is minimal, using anyonvenient partition �0 suh that � � �0. The desired partition is �T .Proof: Let �(�) be the ommon value �k = �0k0 in part (e); we must prove that� � � implies �(�) � �(�). There is a sequene � = �0, : : : , �k = � where �j ! �j+1or �j ) �j+1 for 0 � j < k. If �0 ! �1 we have �(�) = �(�1); thus it suÆes to provethat �) � and �! �0 implies �0 � �(�). But we have, for example,100q0111r10=) &010q1011r10 100q1011r01& =)010q1101r01! 010q�110011r01beause we may assume that q > 0; and the other ases are similar.(g) The parts of �n are ak = n2 + [k�n1 ℄� k for 1 � k < n2; the parts of �Tn arebk = n2 � k + [n2 � k <n1 ℄ for 1 � k � n2. The algorithm of (f) reahes �Tn from n1after �n2+13 �� �n2�n12 � steps, beause eah step inreases P kbk =P�ak+12 � by 1.(h) The path n, (n�1)1, (n�2)2, (n�2)11, (n�3)21, : : : , 321n�5, 31n�3, 221n�4,21n�2, 1n, of length 2n� 4 when n � 3, is shortest.It an be shown that the longest path has m = 2�n23 �+n1(n2�1) steps. One suhpath has the form �0, : : : , �k, : : : , �l, : : : , �m where �0 = n1; �k = �n; �l = �Tn ;�j � �j+1 for 0 � j < l; and �Tj+1 � �Tj for k � j < m.Referene: C. Greene and D. J. Kleitman, Europ. J. Combinatoris 7 (1986), 1{10.56. Suppose � = u1 : : : um and � = v1 : : : vm. The following (unoptimized) algo-rithm applies the theory of exerise 54 to generate the partitions in olex order,maintaining � = a1a2 : : : am � � as well as �T = b1b2 : : : bl � �T . To �nd thesuessor of �, we �rst �nd the largest j suh that bj an be inreased. Then we have
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7.2.1.4 ANSWERS TO EXERCISES 61� = b1 : : : bj�1(bj+1)1 : : : 1 � �T , hene the desired suessor is �T ^�. The algorithmmaintains auxiliary tables rj = bj+ � � �+bl, sj = v1+ � � �+vj , and tj = wj+wj+1+ � � � ,where �T = w1w2 : : : .M1. [Initialize.℄ Set q  0, k  u1. For j = 1, : : : , m, while uj+1 < k settk  q  q + j and k  k � 1. Then set q  0 again, and for j = 1, : : : , mset aj  vj , sj  q  q + aj . Then set q  0 yet again, and k  l  a1.For j = 1, : : : , m, while aj+1 < k set bk  j, rk  q  q+ j, and k  k�1.Finally, set t1  0, b0  0, b�1  �1.M2. [Visit.℄ Visit the partition a1 : : : am and/or its onjugate b1 : : : bl.M3. [Find j.℄ Let j be the largest integer < l suh that rj+1 > tj+1 and bj 6= bj�1.Terminate the algorithm if j = 0.M4. [Inrease bj .℄ Set x  rj+1 � 1, k  bj , bj  k + 1, and ak+1  j. (Theprevious value of ak+1 was j � 1. Now we're going to update a1 : : : ak usingessentially the method of exerise 54() to distribute x dots into olumnsj + 1, j + 2, : : : .)M5. [Majorize.℄ Set z  0 and then do the following for i = 1, : : : , k: Setx  x + j, y  min(x; si), ai  y � z, z  y; if i = 1 set l  p  a1 andq  0; if i > 1 while p > ai set bp  i � 1, rp  q  q + i � 1, p  p � 1.Finally, while p > j set bp  k, rp  q  q+k, p p�1. Return to M2.57. If � = �T there obviously is only one suh matrix, essentially the Ferrers diagramof �. And the ondition � � �T is neessary, for if �T = b1b2 : : : we have b1+ � � �+bk =min(1; k)+min(2; k)+ � � � , and this quantity must not be less than the number of 1sin the �rst k rows. Finally, if there is a matrix for � and � and if � overs �, we anreadily onstrut a matrix for � and � by moving a 1 from any spei�ed row to anotherthat has fewer 1s.Notes: This result is often alled the Gale{Ryser theorem, beause of well-knownpapers by D. Gale [Pai� J. Math. 7 (1957), 1073{1082℄ and H. J. Ryser [CanadianJ. Math. 9 (1957), 371{377℄. But the number of 0{1 matries with row sums � andolumn sums � is the oeÆient of the monomial symmetri funtion Px1i1 x2i2 : : : inthe produt of elementary symmetri funtions er1er2 : : : , whereer = [zr℄ (1 + x1z)(1 + x2z)(1 + x3z) : : : :In this ontext the result has been known at least sine the 1930s; see D. E. Littlewood'sformula for Qm;n�0(1 + xmyn) in Pro. London Math. So. (2) 40 (1936), 40{70.[Cayley had shown muh earlier, in Philosophial Trans. 147 (1857), 489{499, that thelexiographi ondition � � �T is neessary.℄58. [R. F. Muirhead, Pro. Edinburgh Math. So. 21 (1903), 144-157.℄ The ondition� � � is neessary, beause we an set x1 = � � � = xk = x and xk+1 = � � � = xn = 1and let x ! 1. It is suÆient beause we need only prove it when � overs �. Thenif, say, parts (a1; a2) beome (a1 � 1; a2 + 1), the left-hand side is the right-hand sideplus the nonnegative quantity12m!Xxa2p1xa2p2 : : : xampm (xa1�a2�1p1 � xa1�a2�1p2 )(xp1 � xp2):[Historial notes: Muirhead's paper is the earliest known appearane of the oneptnow known as majorization; shortly afterward, an equivalent de�nition was givenby M. O. Lorenz, Quarterly Publ. Amer. Stat. Asso. 9 (1905), 209{219, who wasinterested in measuring nonuniform distribution of wealth. Yet another equivalent
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62 ANSWERS TO EXERCISES 7.2.1.4onept was formulated by I. Shur in Sitzungsberihte Berliner Math. Gesellshaft22 (1923), 9{20. \Majorization" was named by Hardy, Littlewood, and P�olya, whoestablished its most basi properties in Messenger of Math. 58 (1929), 145{152; seeexerise 2.3.4.5{17. An exellent book, Inequalities by A. W. Marshall and I. Olkin(Aademi Press, 1979), is entirely devoted to the subjet.℄59. The unique paths for n = 0, 1, 2, 3, 4, and 6 must have the stated symmetry.There is one suh path for n = 5, namely 11111, 2111, 221, 311, 32, 41, 5. And thereare four for n = 7:1111111; 211111; 22111; 2221; 322; 3211; 31111; 4111; 511; 421; 331; 43; 52; 61; 7;1111111; 211111; 22111; 2221; 322; 421; 511; 4111; 31111; 3211; 331; 43; 52; 61; 7;1111111; 211111; 31111; 22111; 2221; 322; 3211; 4111; 421; 331; 43; 52; 511; 61; 7;1111111; 211111; 31111; 22111; 2221; 322; 421; 4111; 3211; 331; 43; 52; 511; 61; 7:There are no others, beause at least two self-onjugate partitions exist for all n � 8(see exerise 16).60. For L(6; 6), use (59); otherwise use L0(4; 6) and L0(3; 5) everywhere.In M(4; 18), insert 444222, 4442211 between 443322 and 4432221.In M(5; 11), insert 52211, 5222 between 62111 and 6221.In M(5; 20), insert 5542211, 554222 between 5552111 and 555221.In M(6; 13), insert 72211, 7222 between 62221 and 6322.In L(4; 14), insert 44222, 442211 between 43322 and 432221.In L(5; 15), insert 542211, 54222 between 552111 and 55221.In L(7; 12), insert 62211, 6222 between 72111 and 7221.62. The statement holds for n = 7, 8, and 9, exept in two ases: n = 8, m = 3,� = 3221; n = 9, m = 4, � = 432.64. If n = 2kq where q is odd, let !n denote the partition (2k)q, namely q parts equalto 2k. The reursive rule B(n) = B(n� 1)R1; 2�B(n=2)for n > 0, where 2�B(n=2) denotes doubling all parts of B(n=2) (or the empty sequeneif n is odd), de�nes a pleasant Gray path that begins with !n�11 and ends with !n, ifwe let B(0) be the unique partition of 0. Thus,B(1) = 1; B(2) = 11; 2; B(3) = 21; 111; B(4) = 1111; 211; 22; 4:Among the remarkable properties satis�ed by this sequene is the fat thatB(n) = (2� B(0))1n; (2� B(1))1n�2; (2�B(2))1n�4; : : : ; (2�B(n=2))10;when n is even; for example,B(8) = 11111111; 2111111; 221111; 41111; 4211; 22211; 2222; 422; 44; 8:The following algorithm generates B(n) looplessly when n � 2:K1. [Initialize.℄ Set 0  p0  0, p1  1. If n is even, set 1  n, t  1; other-wise let n� 1 = 2kq where q is odd and set 1  1, 2  q, p2  2k, t 2.K2. [Even visit.℄ Visit the partition ptt : : : p11 . (Now t + � � �+ 1 is even.)K3. [Change the largest part.℄ If t = 1, split the largest part: If pt 6= 2pt�1, sett  2, pt  pt=2, otherwise set t�1  t�1 + 2, t  t � 1. But if t > 1,merge two of the largest parts: If t = 2, set t  1, pt  2pt, otherwise sett  t � 2, t+1  1, pt+1  2pt, t t+ 1.
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7.2.1.4 ANSWERS TO EXERCISES 63K4. [Odd visit.℄ Visit the partition ptt : : : p11 . (Now t + � � �+ 1 is odd.)K5. [Change the next-largest part.℄ Now we wish to apply the following transfor-mation: \Remove t � [t is even℄ of the largest parts temporarily, then applystep K3, then restore the removed parts." More preisely, there are nineases: (1a) If t is odd and t = 1, terminate. (1b1) If t is odd, t�1 = 1, andpt�1 = 2pt�2, set t�2  t�2 + 2, t�1  t, pt�1  pt, t  t � 1. (1b2) Ift is odd, t�1 = 1, and pt�1 6= 2pt�2, set t�1  2, pt�1  pt�1=2. (11) Ift is odd, t�1 = 2, and pt = 2pt�1, set t�1  t + 1, pt�1  pt, t  t � 1.(12) If t is odd, t�1 = 2, and pt 6= 2pt�1, set t�1  1, pt�1  2pt�1.(1d1) If t is odd, t�1 > 2, and pt = 2pt�1, set t�1  t�1 � 2, t  t + 1.(1d2) If t is odd, t�1 > 2, and pt 6= 2pt�1, set t+1  t, pt+1  pt, t  1,pt  2pt�1, t�1  t�1 � 2, t  t + 1. (2a) If t is even and pt = 2pt�1,set t  t � 1, t�1  t�1 + 2. (2b) If t is even and pt 6= 2pt�1, sett+1  t � 1, pt+1  pt, t  2, pt  pt=2, t t+ 1. Return to K2.[The transformations in K3 and K5 undo themselves when performed twie in a row.This onstrution is due to T. Colthurst and M. Kleber, \A Gray path on binarypartitions," to appear. Euler onsidered the number of suh partitions in x50 of hispaper in 1750.℄65. If pe11 : : : perr is the prime fatorization of m, the number of suh fatorizations isp(e1) : : : p(er), and we an let n = max(e1; : : : ; er). Indeed, for eah r-tuple (x1; : : : ; xr)with 0 � xk < p(ek) we an let mj = pa1j1 : : : parjr , where ak1 : : : akn is the (xk + 1)stpartition of ek. Thus we an use a reeted Gray ode for r-tuples together with aGray ode for partitions.66. Let a1 : : : am be an m-tuple that satis�es the spei�ed inequalities. We an sort itinto noninreasing order ax1 � � � � � axm , where the permutation x1 : : : xm is uniquelydetermined if we require the sorting to be stable; see Eq. 5{(2).If j � k, we have aj � ak, hene j appears to the left of k in the permutationx1 : : : xm. Therefore x1 : : : xm is one of the permutations output by Algorithm 7.2.1.2V.Moreover, j will be left of k also when aj = ak and j < k, by stability. Hene axi isstritly greater than axi+1 when xi > xi+1 is a \desent."To generate all the relevant partitions of n, take eah topologial permutationx1 : : : xm and generate the partitions y1 : : : ym of n� t where t is the index of x1 : : : xm(see Setion 5.1.1). For 1 � j � m set axj  yj+ tj , where tj is the number of desentsto the right of xj in x1 : : : xm.For example, if x1 : : : xm = 314592687 we want to generate all ases with a3 >a1 � a4 � a5 � a9 > a2 � a6 � a8 > a7. In this ase t = 1 + 5 + 8 = 14; so we seta1  y2+2, a2  y6+1, a3  y1+3, a4  y3+2, a5  y4+2, a6  y7+1, a7  y9,a8  y8+1, and a9  y5+2. The generalized generating funtionP za11 : : : za99 in thesense of exerise 29 is z21z2z33z24z25z6z8z29(1� z3)(1� z3z1)(1� z3z1z4)(1� z3z1z4z5) : : : (1� z3z1z4z5z9z2z6z8z7) :When � is any given partial ordering, the ordinary generating funtion for all suhpartitions of n is thereforeP zind�=((1� z)(1� z2) : : : (1� zm)), where the sum is overall outputs � of Algorithm 7.2.1.2V.[See R. P. Stanley,Memoirs Amer. Math. So. 119 (1972), for signi�ant extensionsand appliations of these ideas. See also L. Carlitz, Studies in Foundations andCombinatoris (New York: Aademi Press, 1978), 101{129, for information aboutup-down partitions.℄
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64 ANSWERS TO EXERCISES 7.2.1.467. If n + 1 = q1 : : : qr, where the fators q1, : : : , qr are all � 2, we get a perfetpartition f(q1�1) � 1; (q2�1) � q1; (q3�1) � q1q2; : : : ; (qr�1) � q1 : : : qr�1g that orrespondsin an obvious way to mixed radix notation. (The order of the fators qj is signi�ant.)Conversely, all perfet partitions arise in this way. Suppose the multiset M =fk1 � p1; : : : ; km � pmg is a perfet partition, where p1 < � � � < pm; then we must havepj = (k1+1) : : : (kj�1+1) for 1 � j � m, beause pj is the smallest sum of a submultisetof M that is not a submultiset of fk1 � p1; : : : ; kj�1 � pj�1g.The perfet partitions of n with fewest elements our if and only if the qj are allprime, beause pq � 1 > (p�1) + (q�1) whenever p > 1 and q > 1. Thus, for example,the minimal perfet partitions of 11 orrespond to the ordered fatorizations 2 � 2 � 3,2 � 3 � 2, and 3 � 2 � 2. Referene: Quarterly Journal of Mathematis 21 (1886), 367{373.68. (a) If ai + 1 � aj � 1 for some i and j we an hange fai; ajg to fai+1; aj�1g,thereby inreasing the produt by aj � ai � 1 > 0. Thus the optimum ours only inthe optimally balaned partition of exerise 3. [L. Oettinger and J. Derb�es, Nouv. Ann.Math. 18 (1859), 442; 19 (1860), 117{118.℄(b) No part is 1; and if aj � 4 we an hange it to 2 + (aj�2) without dereasingthe produt. Thus we an assume that all parts are 2 or 3. We get an improvement byhanging 2 + 2 + 2 to 3 + 3, hene there are at most two 2s. The optimum therefore is3n=3 when nmod 3 is 0; 4 � 3(n�4)=3 = 3(n�4)=3 � 2 � 2 = (4=34=3)3n=3 when nmod 3is 1; 3(n�2)=3 � 2 = (2=32=3)3n=3 when nmod 3 is 2. [O. Mei�ner, Mathematish-naturwissenshaftlihe Bl�atter 4 (1907), 85.℄69. All n > 2 have the solution (n; 2; 1; : : : ; 1). We an \sieve out" the other ases � Nby starting with s2 : : : sN  1 : : : 1 and then setting sak�b  0 whenever ak � b � N ,where a = x1 : : : xt� 1, b = x1+ � � �+xt� t� 1, k � x1 � � � � � xt, and a > 1, beausek + x1 + � � �+ xt + (ak � b� t� 1) = kx1 : : : xt. The sequene (x1; : : : ; xt) needs to beonsidered only when (x1 : : : xt�1)x1� (x1+ � � �+xt) < N � t; we an also ontinue toderease N so that sN = 1. In this way only (32766; 1486539;254887; 1511; 937; 478; 4)sequenes (x1; : : : ; xt) need to be tried when N is initially 230, and the only survivorsturn out to be 2, 3, 4, 6, 24, 114, 174, and 444. [See E. Trost, Elemente der Math. 11(1956), 135; M. Misiurewiz, Elemente der Math. 21 (1966), 90.℄Notes: No new survivors are likely asN !1, but a new idea will be needed to rulethem out. The simplest sequenes (x1; : : : ; xt) = (3) and (2; 2) already exlude all n > 5with nmod 6 6= 0; this fat an be used to speed up the omputation by a fator of 6.The sequenes (6) and (3; 2) exlude 40% of the remainder (namely all n of the forms5k� 4 and 5k� 2); the sequenes (8), (4; 2), and (2; 2; 2) exlude 3/7 of the remainder;the sequenes with t = 1 imply that n � 1 must be prime; the sequenes in whihx1 : : : xt = 2r exlude about p(r) residues of nmod (2r�1); sequenes in whih x1 : : : xtis the produt of r distint primes will exlude about$r residues of nmod (x1 : : : xt�1).70. Eah step takes one partition of n into another, so we must eventually reah arepeating yle. Many partitions simply perform a yli shift on eah northeast-to-southwest diagonal of the Ferrers diagram, hanging it
from

x1 x2 x4 x7 x11 x16 : : :x3 x5 x8 x12 x17 x23 : : :x6 x9 x13 x18 x24 x31 : : :x10 x14 x19 x25 x32 x40 : : :x15 x20 x26 x33 x41 x50 : : :x21 x27 x34 x42 x51 x61 : : :... ... ... ... ... ...
to

x1 x3 x6 x10 x15 x21 : : :x2 x4 x7 x11 x16 x22 : : :x5 x8 x12 x17 x23 x30 : : :x9 x13 x18 x24 x31 x39 : : :x14 x19 x25 x32 x40 x49 : : :x20 x26 x33 x41 x50 x60 : : :... ... ... ... ... ...
;
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7.2.1.5 ANSWERS TO EXERCISES 65in other words, they apply the permutation � = (1)(2 3)(4 5 6)(7 8 9 10) : : : to the ells.Exeptions our only when � introdues an empty ell above a dot; for example, x10might be empty when x11 isn't. But we an get the orret new diagram by movingthe top row down, sorting it into its proper plae after applying � in suh ases. Suh amove always redues the number of oupied diagonals, so it annot be part of a yle.Thus every yle onsists entirely of permutations by �.If any element of a diagonal is empty in a yli partition, all elements of thenext diagonal must be empty. For if, say, x5 is empty, repeated appliation of � willmake x5 adjaent to eah of the ells x7, x8, x9, x10 of the next diagonal. Thereforeif n = �n22 � + �n11 � with n2 > n1 � 0 the yli states are preisely those with n2 � 1ompletely �lled diagonals and n1 dots in the next. [This result is due to J. Brandt,Pro. Amer. Math. So. 85 (1982), 483{486. The origin of the problem is unknown;see Martin Gardner, The Last Rereations (1997), Chapter 2.℄71. When n = 1 + � � � + m > 1, the starting partition (m�1)(m�1)(m�2) : : : 211has distane m(m � 1) from the yli state, and this is maximum. [K. Igusa, Math.Magazine 58 (1985), 259{271; G. Etienne, J. Combin. Theory A58 (1991), 181{197.℄In the general ase, Griggs and Ho [Advanes in Appl. Math. 21 (1998), 205{227℄ haveonjetured that the maximum distane to a yle is max(2n+2�n1(n2+1); n+n2+1;n1(n2+1))�2n2 for all n > 1; their onjeture has been veri�ed for n � 100. Moreover,the worst-ase starting partition appears to be unique when n2 = 2n1 + f�1; 0; 2g.72. (a) Swap the jth ourrene of k in the partition n = j � k + � with the kthourrene of j in k � j + �, for every partition � of n� jk. For example, when n = 6the swaps are6a; 5b11; 4f2g; 4111g; 3h3i; 3j2k11; 3d111k1h; 2n222i; 2m22111n; 2e111m1j1f; 111e1d11b1a:(b) p(n�k) + p(n�2k)+ p(n�3k)+ � � � . [A. H. M. Hoare, AMM 93 (1986), 475{476.℄SECTION 7.2.1.51. Whenever m is set equal to r in step H6, hange it bak to r � 1.2. L1. [Initialize.℄ Set lj  j � 1 and aj  0 for 1 � j � n. Also set h1  n, t 1,and set l0 to any onvenient nonzero value.L2. [Visit.℄ Visit the t-blok partition represented by l1 : : : ln and h1 : : : ht. (Therestrited growth string orresponding to this partition is a1 : : : an.)L3. [Find j.℄ Set j  n; then, while lj = 0, set j  j � 1 and t t� 1.L4. [Move j to the next blok.℄ Terminate if j = 0. Otherwise set k  aj + 1,hk  lj , aj  k. If k = t, set t t+ 1 and lj  0; otherwise set lj  hk+1.Finally set hk+1  j.L5. [Move j + 1, : : : , n to blok 1.℄ While j < n, set j  j + 1, lj  h1, aj  0,and h1  j. Return to L2.3. Let �(k; n) be the number of strings a1 : : : an that satisfy the ondition 0 � aj �1+max(k�1; a1; : : : ; aj�1) for 1 � j � n; thus �(k; 0) = 1, �(0; n) = $n, and �(k; n) =k�(k; n�1)+�(k+1; n�1). [S. G. Williamson has alled �(k; n) a \tail oeÆient"; seeSICOMP 5 (1976), 602{617.℄ The number of strings that are generated by Algorithm Hbefore a given restrited growth string a1 : : : an is Pnj=1 aj�(bj ; n � j), where bj =1+max(a1; : : : ; aj�1). Working bakwards with the help of a preomputed table of thetail oeÆients, we �nd that this formula yields 999999 when a1 : : : a12 = 010220345041.
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66 ANSWERS TO EXERCISES 7.2.1.54. The most ommon representatives of eah type, subsripted by the number oforresponding ourrenes in the GraphBase, are zzzzz0, ooooh0, xxxix0, xxxii0,ooops0, llull0, llala0, eeler0, iitti0, xxiii0, xxv0, eerie1, llama1, xxvii0,oozed5, uhuuu0, mamma1, puppy28, anana0, hehee0, vivid15, rarer3, etext1, amass2,again137, ahhaa0, esses1, teeth25, yaaay0, ahhhh2, pssst2, seems7, added6, lxxii0,books184, swiss3, sense10, ended3, hek160, level18, tepee4, slyly5, never154,sells6, motto21, whooo2, trees384, going307, whih151, there174, three100, their3834.(See S. Golomb, Math. Mag. 53 (1980), 219{221. Words with only two distint lettersare, of ourse, rare. The 18 representatives listed here with subsript 0 an be foundin larger ditionaries or in English-language pages of the Internet.)5. (a) 112 = �(0225). The sequene is r(0), r(1), r(4), r(9), r(16), : : : , where r(n) isobtained by expressing n in deimal notation (with one or more leading zeros), applyingthe � funtion of exerise 4, then deleting the leading zeros. Notie that n=9 � r(n) � n.(b) 1012 = r(452). The sequene is the same as (a), but sorted into order and withdupliates removed. (Who knew that 882 = 7744, 2122 = 44944, and 2642 = 69696?)6. Use the topologial sorting approah of Algorithm 7.2.1.2V, with an appropriatepartial ordering: Inlude j hains of length j, with their least elements ordered. Forexample, if n = 20, 2 = 3, and 3 = 4 = 2, we use that algorithm to �nd allpermutations a1 : : : a20 of f1; : : : ; 20g suh that 1 � 2, 3 � 4, 5 � 6, 1 � 3 � 5,7 � 8 � 9, 10 � 11 � 12, 7 � 10, 13 � 14 � 15 � 16, 17 � 18 � 19 � 20,13 � 17, forming the restrited growth strings �(f(a1) : : : f(a20)), where � is de�nedin exerise 4 and (f(1); : : : ; f(20)) = (1; 1; 2; 2; 3; 3; 4; 4; 4; 5; 5; 5; 6; 6; 6; 6; 7; 7; 7; 7). Thetotal number of outputs is, of ourse, given by (48).7. Exatly $n. They are the permutations we get by reversing the left-right order ofthe bloks in (2) and dropping the `j' symbols: 1234, 4123, 3124, 3412, : : : , 4321.[See A. Claesson, European J. Combinatoris 22 (2001), 961{971. S. Kitaev, in\Partially ordered generalized patterns," Disrete Math., to appear, has disovered afar-reahing generalization: Let � be a permutation of f0; : : : ; rg, let gn be the numberof permutations a1 : : : an of f1; : : : ; ng suh that ak�0� > ak�1� > � � � > ak�r� > ajimplies j > k, and let fn be the number of permutations a1 : : : an for whih thepattern ak�0� > ak�1� > � � � > ak�r� is avoided altogether for r < k � n. ThenPn�0 gnzn=n! = exp(Pn�1 fn�1zn=n!).℄8. For eah partition of f1; : : : ; ng into m bloks, arrange the bloks in dereasingorder of their smallest elements, and permute the non-smallest blok elements in allpossible ways. If n = 9 and m = 3, for example, the partition 126j38j4579 would yield457938126 and eleven other ases obtained by permuting f5; 7; 9g and f2; 6g amongthemselves. (Essentially the same method generates all permutations that have exatlyk yles; see the \unusual orrespondene" of Setion 1.3.3.)9. Among the permutations of the multiset fk0 � 0; k1 � 1; : : : ; kn�1 � (n�1)g, exatly k0 + k1 + � � �+ kn�1k0; k1; : : : ; kn�1 ! k0(k0 + k1 + � � �+ kn�1) k1(k1 + � � �+ kn�1) : : : kn�1kn�1have restrited growth, sine kj=(kj + � � � + kn�1) is the probability that j preedesfj + 1; : : : ; n� 1g.The average number of 0s, if n > 0, is 1 + (n � 1)$n�1=$n = �(logn), beausethe total number of 0s among all $n ases isPnk=1 k�n�1k�1�$n�k = $n + (n� 1)$n�1.10. Given a partition of f1; : : : ; ng, onstrut an oriented tree on f0; 1; : : : ; ng by lettingj � 1 be the parent of all members of a blok whose least member is j. Then relabel
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7.2.1.5 ANSWERS TO EXERCISES 67the leaves, preserving order, and erase the other labels. For example, the 15 partitionsin (2) orrespond respetively to1 2 3 4 1 2 3 1 2 3 1 2 3 1 2 1 2 3 21 3 1 2 31 2 1 2 3 1 2 1 2 1 2 1 2 1To reverse the proess, take a semilabeled tree and assign new numbers to its nodesby onsidering the nodes �rst enountered on the path from the root to the smallestleaf, then on the path from the root to the seond-smallest leaf, et. The number ofleaves is n + 1 minus the number of bloks. [This onstrution is losely related toexerise 2.3.4.4{18 and to many enumerations in that setion. See P. L. Erd}os andL. A. Sz�ekely, Advanes in Applied Math. 10 (1989), 488{496.℄11. We get pure alphametis from 900 of the 64855 set partitions into at most 10bloks for whih �(a1 : : : a13) = �(a5 : : : a8a1 : : : a4a9 : : : a13), and from 563,527 of the13,788,536 for whih �(a1 : : : a13) < �(a5 : : : a8a1 : : : a4a9 : : : a13). The �rst examplesare aaaa + aaaa = baaa, aaaa + aaaa = bbbb, and aaaa + aaab = baaa; thelast are abd + efgd = deab (goat + newt = tango) and abd + efgd = deaf(lad + nerd = dane). [The idea of hooking a partition generator to an alphametisolver is due to Alan Sutli�e.℄12. (a) Form �((a1a01) : : : (ana0n)), where � is de�ned in exerise 4, sine we have x � y(modulo � _� 0) if and only if x � y (modulo �) and x � y (modulo � 0).(b) Represent � by links as in exerise 2; represent � 0 as in Algorithm 2.3.3E;and use that algorithm to make j � lj whenever lj 6= 0. (For eÆieny, we an assumethat � has at least as many bloks as � 0.)() When one blok of � has been split into two parts; that is, when two bloksof � 0 have been merged together.(d) �t2�; (e) (2s1�1 � 1) + � � �+ (2st�1 � 1).(f) True: Let�_� 0 have bloks B1jB2j � � � jBt, where� = B1B2jB3j � � � jBt. Then� 0 is essentially a partition of fB1; : : : ; Btg with B1 6� B2, and � ^� 0 is obtained bymerging the blok of � 0 that ontains B1 with the blok that ontains B2. [A �nitelattie that satis�es this ondition is alled lower semimodular ; see G. Birkho�, LattieTheory (1940), xI.8. The majorization lattie of exerise 7.2.1.4{54 does not have thisproperty when, for example, � = 4111 and �0 = 331.℄(g) False: For example, let � = 0011, � 0 = 0101.(h) The bloks of � and � 0 are unions of the bloks of � _� 0, so we an assumethat � _� 0 = f1; : : : ; tg. As in part (b), merge j with lj to get � in r steps, when �has t� r bloks. These merges applied to � 0 will eah redue the number of bloks by0 or 1. Hene b(� 0)� b(� ^� 0) � r = b(� _� 0)� b(�).[In Algebra Universalis 10 (1980), 74{95, P. Pudl�ak and J. T�uma proved that every�nite lattie is a sublattie of the partition lattie of f1; : : : ; ng, for suitably large n.℄13. [See Advanes in Math. 26 (1977), 290{305.℄ If the j largest elements of a t-blokpartition appear in singleton bloks, but the next element n � j does not, let us saythat the partition has order t� j. De�ne the \Stirling string" �nt to be the sequeneof orders of the t-blok partitions �1, �2, : : : ; for example, �43 = 122333. Then�tt = 0, and we get �(n+1)t from �nt by replaing eah digit d in the latter by thestring dd(d+1)d+1 : : : tt of length �t+12 �� �d2�; for example,�53 = 122333̂22333̂22333̂333̂333̂333:
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68 ANSWERS TO EXERCISES 7.2.1.5The basi idea is to onsider the lexiographi generation proess of Algorithm H.Suppose � = a1 : : : an is a t-blok partition of order j; then it is the lexiographiallysmallest t-blok partition whose restrited growth string begins with a1 : : : an�t+j . Thepartitions overed by � are, in lexiographi order, �12, �13, �23, �14, �24, �34,: : : , �(t�1)t, where �rs means \oalese bloks r and s of �" (that is, \hange allourrenes of s � 1 to r � 1 and then apply � to get a restrited growth string"). If� 0 is any of the last �t2� � �j2� of these, from �1(j+1) onwards, then � is the smallestt-blok partition following � 0. For example, if � = 001012034, then n = 9, t = 5,j = 3, and the relevant partitions � 0 are �(001012004), �(001012014), �(001012024),�(001012030), �(001012031), �(001012032), �(001012033).Therefore fnt(N) = fnt(N � 1) + �t2�� �j2�, where j is the Nth digit of �nt.14. E1. [Initialize.℄ Set aj  0 and bj  dj  1 for 1 � j � n.E2. [Visit.℄ Visit the restrited growth string a1 : : : an.E3. [Find j.℄ Set j  n; then, while aj = dj , set dj  1� dj and j  j � 1.E4. [Done?℄ Terminate if j = 1. Otherwise go to E6 if dj = 0.E5. [Move down.℄ If aj = 0, set aj  bj , m aj + 1, and go to E7. Otherwise ifaj = bj , set aj  bj � 1, m  bj , and go to E7. Otherwise set aj  aj � 1and return to E2.E6. [Move up.℄ If aj = bj � 1, set aj  bj , m aj + 1, and go to E7. Otherwiseif aj = bj , set aj  0, m bj , and go to E7. Otherwise set aj  aj + 1 andreturn to E2.E7. [Fix bj+1 : : : bn.℄ Set bk  m for k = j + 1, : : : , n. Return to E2.[This algorithm an be extensively optimized beause, as in Algorithm H, j is almostalways equal to n.℄15. It orresponds to the �rst n digits of the in�nite binary string 01011011011 : : : ,beause $n�1 is even if and only if nmod 3 = 0 (see exerise 23).16. 00012, 01012, 01112, 00112, 00102, 01102, 01002, 01202, 01212, 01222, 01022,01122, 00122, 00121, 01121, 01021, 01221, 01211, 01201, 01200, 01210, 01220, 01020,01120, 00120.17. The following solution uses two mutually reursive proedures, f(�; �; �) andb(�; �; �), for \forward" and \bakward" generation of A�� when � = 0 and of A0��when � = 1. To start the proess, assuming that 1 < m < n, �rst set aj  0 for1 � j � n�m and an�m+j  j � 1 for 1 � j � m, then all f(m;n; 0).Proedure f(�; �; �): If � = 2, visit a1 : : : an; otherwise all f(� � 1; � � 1;(�+�) mod 2). Then, if � = � + 1, do the following: Change a� from 0 to � � 1,and visit a1 : : : an; repeatedly set a�  a� � 1 and visit a1 : : : an, until a� = 0. But if� > � + 1, hange a��1 (if �+� is odd) or a� (if �+� is even) from 0 to � � 1; thenall b(�; ��1; 0) if a� + � is odd, f(�; ��1; 0) if a� + � is even; and while a� > 0, seta�  a� � 1 and all b(�; ��1; 0) or f(�; ��1; 0) again in the same way until a� = 0.Proedure b(�; �; �): If � = �+1, �rst do the following: Repeatedly visit a1 : : : anand set a�  a� + 1, until a� = � � 1; then visit a1 : : : an and hange a� from � � 1to 0. But if � > �+ 1, all f(�; ��1; 0) if a� + � is odd, b(�; ��1; 0) if a� + � is even;then while a� < � � 1, set a�  a� + 1 and all f(�; ��1; 0) or b(�; ��1; 0) again inthe same way until a� = � � 1; �nally hange a��1 (if �+� is odd) or a� (if �+� iseven) from �� 1 to 0. And �nally, in both ases, if � = 2 visit a1 : : : an, otherwise allb(�� 1; � � 1; (�+�) mod 2).
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7.2.1.5 ANSWERS TO EXERCISES 69Most of the running time is atually spent handing the ase � = 2; faster routinesbased on Gray binary ode (and deviating from Ruskey's atual sequenes) ould besubstituted for this ase. A streamlined proedure ould also be used when � = � � 1.18. The sequene must begin (or end) with 01 : : : (n�1). By exerise 32, no suh Grayode an exist when 0 6= Æn 6= (1)0+1+���+(n�1), namely when nmod 12 is 4, 6, 7, or 9.The ases n = 1, 2, 3, are easily solved; and 1,927,683,326 solutions exist whenn = 5. Thus there probably are zillions of solutions for all n � 8 exept for the asesalready exluded. Indeed, we an probably �nd suh a Gray path through all$nk of thestrings onsidered in answer 28(e) below, exept when n � 2k+(2; 4; 5; 7) (modulo 12).Note: The generalized Stirling number �nm	�1 in exerise 30 exeeds 1 for 2 <m < n, so there an be no suh Gray ode for the partitions of f1; : : : ; ng into mbloks.19. (a) Change (6) to the pattern 0, 2, : : : , m, : : : , 3, 1 or its reverse, as in endo-order(7.2.1.3{(45)).(b) We an generalize (8) and (9) to obtain sequenes Amn� and A0mna thatbegin with 0n�m01 : : : (m�1) and end with 01 : : : (m�1)� and 0n�m�101 : : : (m�1)a,respetively, where 0 � a � m�2 and � is any string a1 : : : an�m with 0 � aj � m�2.When 2 < m < n the new rules areAm(n+1)(�a) = (A(m�1)n(b�)x1; ARmn�x1; Amn�x2; : : : ; Amn�xm; if m is even;A0(m�1)nbx1; Amn�x1; ARmn�x2; : : : ; Amn�xm; if m is odd;A0m(n+1)a = (A0(m�1)nbx1; Amn�x1; ARmn�x2; : : : ; ARmn�xm; if m is even;A(m�1)n(b�)x1; ARmn�x1; Amn�x2; : : : ; ARmn�xm; if m is odd;here b = m� 3, � = bn�m, and (x1; : : : ; xm) is a path from x1 = m� 1 to xm = a.20. 012323212122; in general (a1 : : : an)T = �(an : : : a1), in the notation of exerise 4.21. The numbers hs0; s1; s2; : : : i = h1; 1; 2; 3; 7; 12; 31; 59; 164; 339; 999; : : : i satisfy thereurrenes s2n+1 =Pk �nk�s2n�2k, s2n+2 =Pk �nk�(2k + 1)s2n�2k, beause of the waythe middle elements relate to the others. Therefore s2n = n! [zn℄ exp((e2z�1)=2+ez�1)and s2n+1 = n! [zn℄ exp((e2z � 1)=2+ ez + z � 1). By onsidering set partitions on the�rst half we also have s2n = Pk �nk	xk and s2n+1 = Pk �n+1k 	xk�1, where xn =2xn�1 + (n� 1)xn�2 = n! [zn℄ exp(2z + z2=2). [T. S. Motzkin onsidered the sequenehs2ni in Pro. Symp. Pure Math. 19 (1971), 173.℄22. (a)P1k=0 kn Pr(X=k) = e�1P1k=0 kn=k! = $n by (16). (b)P1k=0 kn Pr(X=k) =P1k=0 knPmj=0 �jk�(�1)j�k=j!, and we an extend the inner sum to j = 1 beausePk �jk�(�1)kkn = 0 when j > n. Thus we get P1k=0(kn=k!)P1l=0(�1)l=l! = $n. [SeeJ. O. Irwin, J. Royal Stat. So. A118 (1955), 389{404; J. Pitman, AMM 104 (1997),201{209.℄23. (a) The formula holds whenever f(x) = xn, by (14), so it holds in general. (Thuswe also have P1k=0 f(k)=k! = ef($), by (16).)(b) Suppose we have proved the relation for k, and let h(x) = (x�1)kf(x), g(x) =f(x+1). Then f($+k+1) = g($+k) = $kg($) = h($+1) = $h($) = $k+1f($).[See J. Touhard, Ann. So. Si. Bruxelles 53 (1933), 21{31. This symboli \umbralalulus," invented by John Blissard in Quart. J. Pure and Applied Math. 4 (1861),279{305, is quite useful; but it must be handled arefully beause f($) = g($) doesnot imply that f($)h($) = g($)h($).℄
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70 ANSWERS TO EXERCISES 7.2.1.5() The hint is a speial ase of exerise 4.6.2{16(). Setting f(x) = xn and k = pin (b) then yields $n � $p+n �$1+n.(d) Modulo p, the polynomial xN � 1 is divisible by g(x) = xp � x � 1, beausexpk � x + k and xN � xp � xp � xp � x � 1 (modulo g(x) and p). Thus if h(x) =(xN � 1)xn=g(x) we have h($) � h($ + p) = $ph($) � ($p � $)h($); and 0 �g($)h($) = $N+n �$n (modulo p).24. The hint follows by indution on e, beause xpe = Qp�1k=0(x� kpe�1)pe�1 . We analso prove by indution on n that xn � rn(x) (modulo g1(x) and p) impliesxpe�1n � rn(x)pe�1 (modulo ge(x), pge�1(x), : : : , pe�1g1(x), and pe):Hene xpe�1N = 1+h0(x)ge(x)+ph1(x)ge�1(x)+ � � �+pe�1he�1(x)g1(x)+pehe(x) forertain polynomials hk(x) with integer oeÆients. Modulo pe we have h0($)$n �h0($ + pe)($ + pe)n = $peh0($)$n � (ge($) + 1)h0($)$n; hene$pe�1N+n = $n + h0($)ge($)$n + ph1($)ge�1($)$n + � � � � $n:[A similar derivation applies when p = 2, but we let gj+1(x) = gj(x)2 + 2[j=2℄, andwe obtain $n � $n+3�2e (modulo 2e). These results are due to Marshall Hall; see Bull.Amer. Math. So. 40 (1934), 387; Amer. J. Math. 70 (1948), 387{388. For furtherinformation see W. F. Lunnon, P. A. B. Pleasants, and N. M. Stephens, Ata Arith.35 (1979), 1{16.℄25. The �rst inequality follows by applying a muh more general priniple to the treeof restrited growth strings: In any tree for whih deg(p) � deg(parent(p)) for all non-root nodes p, we have wk=wk�1 � wk+1=wk when wk is the total number of nodes onlevel k. For if the m = wk�1 nodes on level k�1 have respetively a1, : : : , am hildren,they have at least a21 + � � �+ a2m grandhildren; hene wk�1wk+1 � m(a21 + � � �+ a2m) �(a1 + � � �+ am)2 = w2k.For the seond inequality, note that $n+1 �$n =Pnk=0(�nk�� �n�1k�1�)$n�k; thus$n+1$n � 1 = n�1Xk=0�n� 1k �$n�k$n � n�1Xk=0�n� 1k �$n�k�1$n�1 = $n$n�1beause, for example, $n�3=$n = ($n�3=$n�2)($n�2=$n�1)($n�1=$n) is less thanor equal to ($n�4=$n�3)($n�3=$n�2)($n�2=$n�1) = $n�4=$n�1.26. There are �n�1n�t� rightward paths from n1 to tt ; we an represent them by 0s and1s, where 0 means \go right," 1 means \go up," and the positions of the 1s tell us whihn�t of the elements are in the blok with 1. The next step, if t > 1, is to another vertexat the far left; so we ontinue with a path that de�nes a partition on the remaining t�1elements. For example, the partition 14j2j3 orresponds to the path 0010 under theseonventions, where the respetive bits mean that 1 6� 2, 1 6� 3, 1 � 4, 2 6� 3. [Manyother interpretations are possible. The onvention suggested here shows that $nkenumerates partitions with 1 6� 2, : : : , 1 6� k, a ombinatorial property disovered byH. W. Beker; see AMM 51 (1944), 47, and Mathematis Magazine 22 (1948), 23{26.℄

70



7.2.1.5 ANSWERS TO EXERCISES 7127. (a) In general, �0 = �1 = �2n�1 = �2n = 0. The following list shows also therestrited growth strings that orrespond to eah loop via the algorithm of part (b):0;0;0;0;0;0;0;0;0 01230;0;0;0;0;0;1;0;0 01220;0;0;0;1;0;0;0;0 01120;0;0;0;1;0;1;0;0 01110;0;0;0;1;1;1;0;0 0121
0;0;1;0;0;0;0;0;0 00120;0;1;0;0;0;1;0;0 00110;0;1;0;1;0;0;0;0 00010;0;1;0;1;0;1;0;0 00000;0;1;0;1;1;1;0;0 0010

0;0;1;1;1;0;0;0;0 01020;0;1;1;1;0;1;0;0 01000;0;1;1;1;1;1;0;0 01200;0;1;1;11;1;1;0;0 01010;0;1;1;2;1;1;0;0 0110(b) The name \tableau" suggests a onnetion to Setion 5.1.4, and indeed thetheory developed there leads to an interesting one-to-one orrespondene. We anrepresent set partitions on a triangular hessboard by puttinga rook in olumn lj of row n + 1 � j whenever lj 6= 0 in thelinked list representation of exerise 2 (see the answer to exerise5.1.3{19). For example, the rook representation of 135j27j489j6is shown here. Equivalently, the nonzero links an be spei�ed ina two-line array, suh as �1 2 3 4 83 7 5 8 9�; see 5.1.4{(11). �
� � �

�

01 23 45 67 89 1011 1213 1415 1617 18

1 2 3 4 5 6 7 8 9
Consider the path of length 2n that begins at the lower leftorner of this triangular diagram and follows the right boundaryedges, ending at the upper right orner: The points of this pathare zk = (bk=2; dk=2e) for 0 � k � 2n. Moreover, the retangle above and to the leftof zk ontains preisely the rooks that ontribute oordinate pairs ij to the two-linearray when i � bk=2 and j > dk=2e; in our example, there are just two suh rookswhen 9 � k � 12, namely �2 47 8�. Theorem 5.1.4A tells us that suh two-line arrays areequivalent to tableaux (Pk; Qk), where the elements of Pk ome from the lower lineand the elements of Qk ome from the upper line, and where both Pk and Qk have thesame shape. It is advantageous to use dereasing order in the P tableaux but inreasingorder in the Q tableaux, so that in our example they are respetivelyk Pk Qk2 3 13 3 14 73 125 7 26 7 5 2 3

k Pk Qk7 7 5 2 38 8 57 2 349 87 2410 87 2411 87 24

k Pk Qk12 87 2413 8 414 8 415 � �16 9 8while Pk and Qk are empty for k = 0, 1, 17, and 18.In this way every set partition leads to a vaillating tableau loop �0, �1, : : : , �2n,if we let �k be the integer partition that spei�es the ommon shape of Pk and Qk.(The loop is 0, 0, 1, 1, 11, 1, 2, 2, 21, 11, 11, 11, 11, 1, 1, 0, 1, 0, 0 in our example.)Moreover, t2k�1 = 0 if and only if row n + 1 � k ontains no rook, if and only if k issmallest in its blok.Conversely, the elements of Pk and Qk an be uniquely reonstruted from thesequene of shapes �k. Namely,Qk = Qk�1 if tk = 0. Otherwise, if k is even, Qk isQk�1
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72 ANSWERS TO EXERCISES 7.2.1.5with the number k=2 plaed in a new ell at the right of row tk; if k is odd, Qk is obtainedfrom Qk�1 by using Algorithm 5.1.4D to delete the rightmost entry of row tk. A similarproedure de�nes Pk from the values of Pk+1 and tk+1, so we an work bak from P2nto P0. Thus the sequene of shapes �k is enough to tell us where to plae the rooks.Vaillating tableau loops were introdued in the paper \Crossings and nestings ofmathings and partitions" by W. Y. C. Chen, E. Y. P. Deng, R. R. X. Du, R. P. Stanley,and C. H. Yan (preprint, 2005), who showed that the onstrution has signi�ant(and surprising) onsequenes. For example, if the set partition � orresponds tothe vaillating tableau loop �0, �1, : : : , �2n, let's say that its dual �D is the setpartition that orresponds to the sequene of transposed shapes �T0 , �T1 , : : : , �T2n.Then, by exerise 5.1.4{7, � ontains a \k-rossing at l," namely a sequene of indieswith i1 < � � � < ik � l < j1 < � � � < jk and i1 � j1, : : : , ik � jk (modulo �),if and only if �D ontains a \k-nesting at l," whih is a sequene of indies withi01 < � � � < i0k � l < j0k < � � � < j01 and i01 � j01, : : : , i0k � j0k (modulo �D). Notie alsothat an involution is essentially a set partition in whih all bloks have size 1 or 2; thedual of an involution is an involution having the same singleton sets. In partiular, thedual of a perfet mathing (when there are no singleton sets) is a perfet mathing.Furthermore, an analogous onstrution applies to rook plaements in any Ferrersdiagram, not only in the stairstep shapes that orrespond to set partitions. Given aFerrers diagram that has at most m parts, all of size � n, we simply onsider the pathz0 = (0; 0), z1, : : : , zm+n = (n;m) that hugs the right edge of the diagram, and stipulatethat �k = �k�1+ etk when zk = zk�1+(1; 0), �k = �k�1� etk when zk = zk�1+(0; 1).The proof we gave for stairstep shapes shows also that every plaement of rooks in theFerrers diagram, with at most one rook in eah row and at most one in eah olumn,orresponds to a unique tableau loop of this kind.[And muh more is true, besides! See S. Fomin, J. Combin. Theory A72 (1995),277{292; M. van Leeuwen, Eletroni J. Combinatoris 3, 2 (1996), paper #R15.℄28. (a) De�ne a one-to-one orrespondene between rook plaements, by interhangingthe positions of rooks in rows j and j+1 if and only if there's a rook in the \panhandle"of the longer row: � �ÆÆ ÆÆÆÆÆÆÆ () � �ÆÆ ÆÆÆÆÆÆÆ ;
�� ÆÆÆ ÆÆ () �� ÆÆÆ ÆÆ :(b) This relation is obvious from the de�nition, by transposing all the rooks.() Suppose a1 � a2 � � � � and ak > ak+1. Then we haveR(a1; a2; : : : ) = xR(a1�1; : : : ; ak�1�1; ak+1; : : : ) + yR(a1; : : : ; ak�1; ak�1; ak+1; : : : )beause the �rst term ounts ases where a rook is in row k and olumn ak. AlsoR(0) = 1 beause of the empty plaement. From these reurrenes we �ndR(1) = x+ y; R(2) = R(1; 1) = x+ xy + y2; R(3) = R(1; 1; 1) = x+ xy + xy2 + y3;R(2; 1) = x2 + 2xy + xy2 + y3;R(3; 1) = R(2; 2) = R(2; 1; 1) = x2 + x2y + xy + 2xy2 + xy3 + y4;R(3; 1; 1) = R(3; 2) = R(2; 2; 1) = x2 + 2x2y + x2y2 + 2xy2 + 2xy3 + xy4 + y5;R(3; 2; 1) = x3 + 3x2y + 3x2y2 + x2y3 + 3xy3 + 2xy4 + xy5 + y6:
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7.2.1.5 ANSWERS TO EXERCISES 73(d) For example, the formula $73(x; y) = x$63(x; y) + y$74(x; y) is equivalentto R(5; 4; 4; 3; 2; 1) = xR(4; 3; 3; 2; 1) + yR(5; 4; 3; 3; 2; 1), a speial ase of (); and$nn(x; y) = R(n� 2; : : : ; 0) is obviously equal to $(n�1)1(x; y) = R(n� 2; : : : ; 1).(e) In fat yk�1$nk(x; y) is the stated sum over all restrited growth stringsa1 : : : an for whih a2 > 0, : : : , ak > 0.29. (a) If the rooks are respetively in olumns (1; : : : ; n), the number of free ells isthe number of inversions of the permutation (n+1�1) : : : (n+1�n). [Rotate theright-hand example of Fig. 35 by 180Æ and ompare the result to the illustrationfollowing Eq. 5.1.1{(5).℄(b) Eah r� r on�guration an be plaed in, say, rows i1 < � � � < ir and olumnsj1 < � � � < jr, yielding (m�r)(n�r) free ells in the unhosen rows and olumns; thereare (i2�i1+1)+2(i3�i2�1)+ � � �+(r�1)(ir�ir�1�1)+ r(m�ir) in the unhosen rowsand hosen olumns, and a similar number in the hosen rows and unhosen olumns.Furthermore X1�i1<���<ir�m y(i2�i1+1)+2(i3�i2�1)+���+(r�1)(ir�ir�1�1)+r(m�ir)
may be regarded as the sum of ya1+a2+���+am�r over all partitions r � a1 � a2 � � � � �am�r � 0, so it is �mr �y by Theorem C. The polynomial r!y generates free ells for thehosen rows and olumns, by (a). Therefore the answer is y(m�r)(n�r)�mr �y�nr�y r!y =y(m�r)(n�r)m!yn!y=((m� r)!y(n� r)!yr!y).() The left-hand side is the generating funtion Rm(t + a1; : : : ; t + am) for theFerrers diagram with t additional olumns of height m. For there are t + am ways toput a rook in row m, yielding 1+y+ � � �+yt+am�1 = (1�yt+am)=(1�y) free ells withrespet to those hoies; then there are t+ am�1 � 1 available ells in row m� 1, et.The right-hand side, likewise, equals Rm(t + a1; : : : ; t + am). For if m � k rooksare plaed into olumns > t, we must put k rooks into olumns � t of the k unusedrows; and we have seen that t!y=(t� k)!y is the generating funtion for free ells whenk rooks are plaed on a k � t board.[The formula proved here an be regarded as a polynomial identity in the variablesy and yt; therefore it is valid for arbitrary t, although our proof assumed that t is anonnegative integer. This result was disovered in the ase y = 1 by J. Goldman,J. Joihi, and D. White, Pro. Amer. Math. So. 52 (1975), 485{492. The general asewas established by A. M. Garsia and J. B. Remmel, J. Combinatorial Theory A41(1986), 246{275, who used a similar argument to prove the additional formula1Xt=0 zt mYj=1 1� yaj+m�j+t1� y = nXk=0 k!y � z1� yz� : : :� z1� ykz�Rm�k(a1; : : : ; am):(d) This statement, whih follows immediately from (), also implies that we haveR(a1; : : : ; am) = R(a01; : : : ; a0m) if and only if equality holds for all x and for any nonzerovalue of y. The Peire polynomial $nk(x; y) of exerise 28(d) is the rook polynomial for�n�1k�1� di�erent Ferrers diagrams; for example, $63(x; y) enumerates rook plaementsfor the shapes 43321, 44221, 44311, 4432, 53221, 53311, 5332, 54211, 5422, and 5431.30. (a) We have $n(x; y) =Pm xn�mAmn, where Amn = Rn�m(n�1; : : : ; 1) satis�esa simple law: If we don't plae a rook in row 1 of the shape (n � 1; : : : ; 1), that rowhas m� 1 free ells beause of the n�m rooks in other rows. But if we do put a rook
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74 ANSWERS TO EXERCISES 7.2.1.5there, we leave 0 or 1 or � � � or m�1 of its ells free. Hene Amn = ym�1A(m�1)(n�1)+(1+ y+ � � �+ ym�1)Am(n�1), and it follows by indution that Amn = ym(m�1)=2�nm	y .(b) The formula $n+1(x; y) =Pk �nk�xn�kyk$k(x; y) yieldsAm(n+1) =Xk �nk� ykA(m�1)k:() From (a) and (b) we havezn(1� z)(1� (1 + q)z) : : : (1� (1 + q + � � �+ qn�1)z) =Xk nknoqzk;Xk �nk�q(�1)kq(k2)e(1+q+���+qn�k�1)z = q(n2) n!q Xk nknoq zkk! :[The seond formula is proved by indution on n, beause both sides satisfy thedi�erential equation G0n+1(z) = (1 + q + � � � + qn)ezGn(qz); exerise 1.2.6{58 provesequality when z = 0.℄Historial note: Leonard Carlitz introdued q-Stirling numbers in Transations ofthe Amer. Math. So. 33 (1933), 127{129. Then in Duke Math. J. 15 (1948), 987{1000,he derived (among other things) an appropriate generalization of Eq. 1.2.6{(45):(1 + q + � � �+ qm�1)n = Xk nnkoqq(k2) m!q(m� k)!q :31. exp(ew+z +w� 1); therefore $nk = ($+1)n�k$k�1 = $n+1�k($� 1)k�1 in theumbral notation of exerise 23. [L. Moser and M. Wyman, Trans. Royal So. Canada(3) 43 (1954), Setion 3, 31{37.℄ In fat, the numbers $nk(x; 1) of exerise 28(d) aregenerated by exp((exw+xz � 1)=x+ xw).32. We have Æn = $n(1;�1), and a simple pattern is easily pereived in the generalizedPeire triangle of exerise 28(d) when x = 1 and y = �1: We have j$nk(1;�1)j � 1and $n(k+1)(1;�1) � $nk(1;�1) + (�1)n (modulo 3) for 1 � k < n. [In JACM 20(1973), 512{513, Gideon Ehrlih gave a ombinatorial proof of an equivalent result.℄33. Representing set partitions by rook plaements as in answer 27 leads to the answer$nk, by setting x = y = 1 in exerise 28(d). [The ase k = n was disovered byH. Prodinger, Fibonai Quarterly 19 (1981), 463{465.℄34. (a) Guittone's Sonetti inluded 149 of sheme 01010101232323, 64 of sheme01010101234234, two of sheme 01010101234342, seven with shemes used only one(like 01100110234432), and 29 poems that we would no longer onsider to be sonnetsbeause they do not have 14 lines.(b) Petrarh's Canzoniere inluded 115 sonnets of sheme 01100110234234, 109 ofsheme 01100110232323, 66 of sheme 01100110234324, 7 of sheme 01100110232232,and 20 others of shemes like 01010101232323 used at most three times eah.() In Spenser's Amoretti, 88 of 89 sonnets used the sheme 01011212232344; theexeption (number 8) was \Shakespearean."(d) Shakespeare's 154 sonnets all used the rather easy sheme 01012323454566,exept that two of them (99 and 126) didn't have 14 lines.(e) Browning's 44 Sonnets From the Portuguese obeyed the Petrarhan sheme01100110232323.
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7.2.1.5 ANSWERS TO EXERCISES 75Sometimes the lines would rhyme (by hane?) even when they didn't need to; forexample, Browning's �nal sonnet atually had the sheme 01100110121212.Inidentally, the lengthy antos in Dante's Divine Comedy used an interlokingsheme of rhymes in whih 1 � 3 and 3n� 1 � 3n+ 1 � 3n+ 3 for n = 1, 2, : : : .35. Every inomplete n-line rhyme sheme � orresponds to a singleton-free partitionof f1; : : : ; n+1g in whih (n+1) is grouped with all of �'s singletons. [H. W. Bekergave an algebrai proof in AMM 48 (1941), 702. Notie that $0n =Pk�nk�(�1)n�k$k,by the priniple of inlusion and exlusion, and $n =Pk�nk�$0k; we an in fat write$0 = $�1 in the umbral notation of exerise 23. J. O. Shallit has suggested extendingPeire's triangle by setting $n(n+1) = $0n; see exerises 38(e) and 33. In fat, $nkis the number of partitions of f1; : : : ; ng with the property that 1, : : : , k � 1 are notsingletons; see H. W. Beker, Bull. Amer. Math. So. 58 (1954), 63.℄36. exp(ez � 1 � z). (In general, if #n is the number of partitions of f1; : : : ; nginto subsets of allowable sizes s1 < s2 < � � � , the exponential generating funtionPn #nzn=n! is exp(zs1=s1! + zs2=s2! + � � � ), beause (zs1=s1! + zs2=s2! + � � � )k is theexponential generating funtion for partitions into exatly k parts.)37. There arePk�nk�$0k$0n�k possibilities of length n, hene 784,071,966 when n = 14.(But Pushkin's sheme is hard to beat.)38. (a) Imagine starting with x1x2 : : : xn = 01 : : : (n�1), then suessively removingsome element bj and plaing it at the left, for j = 1, 2, : : : , n. Then xk will be thekth most reently moved element, for 1 � k � jfb1; : : : ; bngj; see exerise 5.2.3{36.Consequently the array x1 : : : xn will return to its original state if and only if bn : : : b1is a restrited growth string. [Robbins and Bolker, �quat. Math. 22 (1981), 281{282.℄In other words, let a1 : : : an be a restrited growth string. Set b�j  j andbj+1  an�j for 0 � j < n. Then for 1 � j � n, de�ne kj by the rule that bj is the kjthdistint element of the sequene bj�1, bj�2, : : : . For example, the string a1 : : : a16 =0123032303456745 orresponds in this way to the �-yle 6688448628232384.(b) Suh paths orrespond to restrited growth strings with max(a1; : : : ; an) � m,so the answer is �n0	+ �n1	+ � � �+ �nm	.() We may assume that i = 1, beause the sequene k2 : : : knk1 is a �-ylewhenever k1k2 : : : kn is. Thus the answer is the number of restrited growth stringswith an = j � 1, namely �n�1j�1	+ �n�1j 	+ �n�1j+1	+ � � � .(d) If the answer is fn we must have Pk �nk�fk = $n, sine �1 is the identitypermutation. Therefore fn = $0n, the number of set partitions without singletons(exerise 35).(e) Again $0n, by (a) and (d). [Consequently $0p mod p = 1 when p is prime.℄39. Set u = tp+1 to obtain 1p+1 R10 e�uu(q�p)=(p+1) du = 1p+1�( q+1p+1 ).40. We have g(z) = z�n ln z, so the saddle point ours at n=. The retangular pathnow has orners at �n= � mi=; and exp g(n= + it) = (enn=nn) exp(�t22=(2n) +it33=(3n2) + � � � ). The �nal result is en(=n)n�1=p2�n times 1 + n=12 +O(n�2).(Of ourse we ould have obtained this result more quikly by letting w = z inthe integral. But the answer given here applies the saddle point method mehanially,without attempting to be lever.)41. Again the net result is just to multiply (21) by n�1; but in this ase the left edgeof the retangular path is signi�ant instead of the right edge. (Inidentally, when = �1 we annot derive an analog of (22) using Hankel's ontour when x is real and
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76 ANSWERS TO EXERCISES 7.2.1.5positive, beause the integral on that path diverges. But with the usual de�nition of zx,a suitable path of integration does yield the formula �(os�x)=�(x) when n = x > 0.)42. We have H ez2dz=zn = 0 when n is even. Otherwise both left and right edges ofthe retangle with orners �pn=2� in ontribute approximatelyen=22�(n=2)n=2 Z 1�1 exp��2t2 � (�it)33 23=2n1=2 + (it)4n � � � �� dt;when n is large. We an restrit jtj � n� to show that this integral is I0+ (I4 � 49I6)=nwith relative error O(n9��3=2), where Ik = R1�1 e�2t2tk dt. As before, the relative erroris atually O(n�2); we dedue the answer1((n� 1)=2)! = en=2p2�(n=2)n=2�1 + 112n +O� 1n2��; n odd:(The analog of (22) is (sin �x2 )2=�((x� 1)=2) when n = x > 0.)43. Let f(z) = eez=zn. When z = �n+ it we have jf(z)j < en�n; when z = t+2�in+i�=2 we have jf(z)j = jzj�n < (2�n)�n. So the integral is negligible exept on a pathz = � + it; and on that path jf j dereases as jtj inreases from 0 to �. Already whent = n��1=2 we have jf(z)j=f(�) = O(exp(�n2�=(logn)2)). And when jtj > � we havejf(z)j=f(�) < 1=j1 + i�=�jn = exp(�n2 ln(1 + �2=�2)).44. Set u = na2t2 in (25) to obtain < R10 e�u exp(n�1=23(�u)3=2 + n�14(�u)2 +n�3=25(�u)5=2+ � � � ) du=pna2u where k = (2=(�+1))k=2(�k�1+(�1)k(k�1)!)=k! =ak=ak=22 . This expression leads tobl = Xk1+2k2+3k3+���=2lk1+k2+k3+���=mk1;k2;k3;:::�0
��12�l+m k13k1! k24k2! k35k3! : : : ;

a sum over partitions of 2l. For example, b1 = 34 4 � 1516 23.45. To get $n=n! we replae g(z) by ez � (n + 1) ln z in the derivation of (26).This hange multiplies the integrand in the previous answer by 1=(1 + it=�), whihis 1=(1� n�1=2a(�u)1=2) where a = �p2=(� + 1). Thus we getb0l = Xk+k1+2k2+3k3+���=2lk1+k2+k3+���=mk;k1;k2;k3;:::�0
��12�l+m ak k13k1! k24k2! k35k3! : : : ;

a sum of p(2l) + p(2l � 1) + � � � + p(0) terms; b01 = 344 � 1516 23 + 34a3 � 12a2. [TheoeÆient b01 was obtained in a di�erent way by L. Moser and M. Wyman, Trans.Royal So. Canada (3) 49, Setion 3 (1955), 49{54, who were the �rst to dedue anasymptoti series for $n. Their approximation is slightly less aurate than the resultof (26) with n hanged to n + 1, beause it doesn't pass exatly through the saddlepoint. Formula (26) is due to I. J. Good, Iranian J. Siene and Teh. 4 (1975), 77{83.℄46. Eqs. (13) and (31) show that $nk = (1 � �=n)k$n(1 + O(n�1)) for �xed k asn ! 1. And this approximation also holds when k = n, but with relative errorO((logn)2=n).
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7.2.1.5 ANSWERS TO EXERCISES 7747. Steps (H1, : : : , H6) are performed respetively (1;$n;$n � $n�1;$n�1;$n�1;$n�1 � 1) times. The loop in H4 sets j  j � 1 a total of $n�2 + $n�3 + � � � + $1times; the loop in H6 sets bj  m a total of ($n�2 � 1) + � � � + ($1 � 1) times. Theratio $n�1=$n is approximately (lnn)=n, and ($n�2 + � � �+$1)=$n � (lnn)2=n2.48. We an easily verify the interhange of summation and integration ine$x�(x+ 1) = 12�i I eezzx+1 dz = 12�i I 1Xk=0 ekxk! zx+1 dz= 1Xk=0 1k! 12�i I ekzzx+1 dz = 1Xk=0 1k! kx�(x+ 1) :49. If � = lnn � ln lnn + x, we have � = 1 � e�x � �x. Therefore by Lagrange'sinversion formula (exerise 4.7{8),x = 1Xk=1 �kk [tk�1℄� f(t)1� �f(t)�k = 1Xk=1 1Xj=0 �kk �j�k + j � 1j � [tk�1℄ f(t)j+k;where f(t) = t=(1� e�t). So the result follows from the handy identity� z1� e�z �m = 1Xn=0 h mm� ni zn(m� 1)(m� 2) : : : (m� n) :(This identity should be interpreted arefully when n � m; the oeÆient of zn is apolynomial in m of degree n, as explained in CMath equation (7.59).)The formula in this exerise is due to L. Comtet, Comptes Rendus Aad. Si.(A) 270 (Paris, 1970), 1085{1088, who identi�ed the oeÆients previously omputedby N. G. de Bruijn, Asymptoti Methods in Analysis (1958), 25{28. Convergene forn � e was shown by Je�rey, Corless, Hare, and Knuth, Comptes Rendus Aad. Si. (I)320 (1995), 1449{1452, who also derived a formula that onverges somewhat faster.(The equation �e� = n has omplex roots as well. We an obtain them all byusing lnn + 2�im in plae of lnn in the formula of this exerise; the sum onvergesrapidly when m 6= 0. See Corless, Gonnet, Hare, Je�rey, and Knuth, Advanes inComputational Math. 5 (1996), 347{350.)50. Let � = �(n). Then �0(n) = �=((� + 1)n), and the Taylor series�(n+ k) = � + k�0(n) + k22 �00(n) + � � �an be shown to onverge for jkj < n+ 1=e.Indeed, muh more is true, beause the funtion �(n) = �T (�n) is obtained fromthe tree funtion T (z) by analyti ontinuation to the negative real axis. (The treefuntion has a quadrati singularity at z = e�1; after going around this singularitywe enounter a logarithmi singularity at z = 0, as part of an interesting multi-levelRiemann surfae on whih the quadrati singularity appears only at level 0.) Thederivatives of the tree funtion satisfy zkT (k)(z) = R(z)k pk(R(z)), where R(z) =T (z)=(1 � T (z)) and pk(x) is the polynomial of degree k � 1 de�ned by pk+1(x) =(1 + x)2p0k(x) + k(2 + x)pk(x). For example,p1(x) = 1; p2(x) = 2 + x; p3(x) = 9 + 10x+ 3x2; p4(x) = 64 + 113x+ 70x2 + 15x3:
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78 ANSWERS TO EXERCISES 7.2.1.5(The oeÆients of pk(x), inidentally, enumerate ertain phylogeneti trees alledGreg trees: [xj ℄ pk(x) is the number of oriented trees with j unlabeled nodes andk labeled nodes, where leaves must be labeled and unlabeled nodes must have atleast two hildren. See J. Felsenstein, Systemati Zoology 27 (1978), 27{33; L. R.Foulds and R. W. Robinson, Leture Notes in Math. 829 (1980), 110{126; C. Flight,Manusripta 34 (1990), 122{128.) If qk(x) = pk(�x), we an prove by indution that(�1)mq(m)k (x) � 0 for 0 � x � 1. Therefore qk(x) dereases monotonially from kk�1to (k � 1)! as x goes from 0 to 1, for all k;m � 1. It follows that�(n+ k) = � + kxn � �kxn �2 q2(x)2! + �kxn �3 q3(x)3! � � � � ; x = �� + 1 ;where the partial sums alternately overshoot and undershoot the orret value if k > 0.51. There are two saddle points, � =pn+5=4�1=2 and �0 = �1��. Integration on aretangular path with orners at ��im and �0�im shows that only � is relevant as n!1 (although �0 ontributes a relative error of roughly e�pn, whih an be signi�antwhen n is small). Arguing almost as in (25), but with g(z) = z + z2=2 � (n + 1) ln z,we �nd that tn is well approximated byn!2� Z n��n� eg(�)�a2t2+a3it3+���+al(�it)l+O(n(l+1)��(l�1)=2)dt; ak = � + 1k�k�1 + [k=2℄2 :The integral expands as in exerise 44 ton! e(n+�)=22�n+1p�a2 (1 + b1 + b2 + � � �+ bm +O(n�m�1)):This time k = (� + 1)�1�k(1 + 1=(2�))�k=2=k for k � 3, hene (2� + 1)3k�kbk is apolynomial in � of degree 2k; for example,b1 = 34 4 � 1516 23 = 8�2 + 7� � 112�(2� + 1)3 :In partiular, Stirling's approximation and the b1 term yieldtn = 1p2nn=2e�n=2+pn�1=4�1 + 724n�1=2 � 1191152n�1 � 7933414720n�3=2 +O(n�2)�after we plug in the formula for �|a result substantially more aurate than equation5.1.4{(53), and obtained with onsiderably less labor.52. Let G(z) = Pk Pr(X = k)zk, so that the jth umulant �j is j! [tj ℄ lnG(et). Inase (a) we have G(z) = ee�z�e�; henelnG(et) = e�et�e� = e�(e�(et�1)�1) = e� 1Xk=1(et�1)k �kk! ; �j = e�Xk nkj o�k[j 6=0℄:Case (b) is sort of a dual situation: Here � = j = $j [j 6=0℄ beauseG(z) = ee�1�1Xj;k nkj oe�j zkk! = ee�1�1Xj (ez�1 � e�1)jj! = eez�1�1:[If �e� = 1 in ase (a) we have �j = e$ [j 6=0℄. But if �e� = n in that ase, themean is �1 = n and the variane �2 is (�+1)n. Thus, the formula in exerise 45 statesthat the mean value n ours with approximate probability 1=p2�� and relative errorO(1=n). This observation leads to another way to prove that formula.℄
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7.2.1.5 ANSWERS TO EXERCISES 7953. We an write lnG(et) = �t + �2t2=2 + �3t3=3! + � � � as in Eq. 1.2.10{(23), andthere is a positive onstant Æ suh thatP1j=3 j�j j tj=j! < �2t2=6 when jtj � Æ. Hene, if0 < � < 1=2, we an prove that[z�n+r℄G(z)n = 12� Z ��� G(eit)ndteit(�n+r)= 12� Z n��1=2�n��1=2 exp��irt� �2t2n2 +O(n3��1=2)� dt+O(e�n2�)as n!1, for some onstant  > 0: The integrand for n��1=2 � jtj � Æ is bounded inabsolute value by exp(��2n2�=3); and when Æ � jtj � � its magnitude is at most �n,where � = max jG(eit)j is less than 1 beause the individual terms pkekit don't all lieon a straight line by our assumption. Thus[z�n+r℄G(z)n = 12� Z 1�1 exp��irt� �2t2n2 +O(n3��1=2)� dt+O(e�n2�)= 12� Z 1�1exp���2n2 �t+ ir�2n�2� r22�2n +O(n3��1=2)� dt+O(e�n2�)
= e�r2=(2�2n)�p2�n +O(n3��1):By taking aount of �3, �4, : : : in a similar way we an re�ne the estimate to O(n�m)for arbitrarily large m; thus the result is valid also for � = 0. [In fat, suh re�nementslead to the \Edgeworth expansion," aording to whih [z�n+r℄G(z)n is asymptoti toe�r2=(2�2n)�p2�n Xk1+2k2+3k3+���=mk1+k2+k3+���=lk1;k2;k3;:::�00�s�l+m=2

(�1)s(2l +m)2s�4l+2m�2s2ss! r2l+m�2snl+m�s 1k1! k2! : : : ��33! �k1��44! �k2 : : : ;
the absolute error is O(n�p=2), where the onstant hidden in the O depends only on pand G but not on r or n, if we restrit the sum to ases with m < p� 1. For example,when p = 3 we get[z�n+r℄G(z)n = e�r2=(2�2n)�p2�n �1� �32�4� rn�+ �36�6� r3n2��+O� 1n3=2�;and there are seven more terms when p = 4. See P. L. Chebyshev, Zapiski Imp. Akad.Nauk 55 (1887), No. 6, 1{16; Ata Math. 14 (1890), 305{315; F. Y. Edgeworth,Trans. Cambridge Phil. So. 20 (1905), 36{65, 113{141; H. Cram�er, SkandinaviskAktuarietidsskrift 11 (1928), 13{74, 141{180.℄54. Formula (40) is equivalent to � = s oth s+ s, � = s oth s� s.55. Let  = �e��. The Newtonian iteration �0 = , �k+1 = (1� �k)e�k=(1� e��k )rises rapidly to the orret value, unless � is extremely lose to 1. For example, �7di�ers from ln 2 by less than 10�75 when � = ln 4.56. (a) By indution on n, g(n+1)(z) = (�1)n�Pnk=0 
nk�e(n�k)z�(ez � 1)n+1 � n!zn+1�.
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80 ANSWERS TO EXERCISES 7.2.1.5
(b) Pnk=0 
nk�ek�=n! = R 10 : : : R 10 exp(bu1 + � � �+ un�) du1 : : : dun< R 10 : : : R 10 exp((u1 + � � �+ un)�) du1 : : : dun = (e��1)n=�n:The lower bound is similar, sine bu1 + � � �+ un > u1 + � � �+ un � 1.() Thus n! (1��=�) < (��)ng(n+1)(�) < 0, and we need only verify that 1��=� <2(1� �), namely that 2�� < �+ �. But �� < 1 and �+ � > 2, by exerise 54.57. (a) n + 1 �m = (n + 1)(1 � 1=�) < (n + 1)(1 � �=�) = (n + 1)�=� � 2N as inanswer 56(). (b) The quantity �+ �� inreases as � inreases, beause its derivativewith respet to � is 1 + � + �(1 � �)=(1 � �) = (1 � ��)=(1� �) + � > 0. Therefore1� � < 2(1� 1=�).58. (a) The derivative of je�+it � 1j2=j� + itj2 = (e�+it � 1)(e��it � 1)=(�2 + t2) withrespet to t is (�2 + t2) sin t� t(2 sin t2 )2� (2 sinh �2 )2 t times a positive funtion. Thisderivative is always negative for 0 < t � 2�, beause it is less than t2 sin t�t(2 sin t2 )2 =8u sinu osu(u� tanu) where t = 2u.Let s = 2 sinh �2 . When � � � and 2� � t � 4�, the derivative is still negative,beause we have t � 4� � s2 � �2=(2�) � s2 � �2=t. Similarly, when � � 2� thederivative remains negative for 4� � t � 168�; the proof gets easier and easier.(b) Let t = u�=pN . Then (41) and (42) prove thatZ ��� e(n+1)g(�+it) dt =(e� � 1)m�npN Z N��N� exp��u22 + (�iu)3a3N 1=2 + � � �+ (�iu)lalN l=2�1 +O(N (l+1)��(l�1)=2)�du;where (1 � �)ak is a polynomial of degree k � 1 in � and �, with 0 � ak � 2=k. (Forexample, 6a3 = (2 � �(� + �))=(1� �) and 24a4 = (6 � �(�2 + 4�� + �2))=(1 � �).)The monotoniity of the integrand shows that the integral over the rest of the range isnegligible. Now trade tails, extend the integral over �1 < u <1, and use the formulaof answer 44 with k = 2k=2ak to de�ne b1, b2, : : : .() We will prove that jez � 1jm�n+1=((e� � 1)mjzjn+1) is exponentially small onthose three paths. If � � 1, this quantity is less than 1=(2�)n+1 (beause, for example,e� � 1 > �). If � > 1, we have � < 2jzj and jez � 1j � e� � 1.59. In this extreme ase, � = 1+ n�1 and � = 1� n�1 + 23n�2 +O(n�3); hene N =1+ 13n�1+O(n�2). The leading term ��n=p2�N is e=p2� times 1� 13n�1+O(n�2).(Notie that e=p2� � 1:0844.) The quantity ak in answer 58(b) turns out to be1=k +O(n�1). So the orretion terms, to �rst order, arebjN j = [zj ℄ exp�� 1Xk=1 B2kz2k�12k(2k � 1)�+O� 1n�;namely the terms in the (divergent) series orresponding to Stirling's approximation11! � ep2��1� 112 + 1288 + 13951840 � 5712488320 � � � ��:60. (a) The number ofm-ary strings of length n in whih allm digits appear ism!�nm	,and the inlusion-exlusion priniple expresses this quantity as �m0 �mn��m1 �(m�1)n+� � � . Now see exerise 7.2.1.4{37.
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7.2.1.5 ANSWERS TO EXERCISES 81(b) We have (m� 1)n=(m� 1)! = (mn=m!)m exp(n ln(1� 1=m)), and ln(1� 1=m)is less than �n��1.() In this ase � > n� and � = �e��e� < �e1��. Therefore 1 < (1��=�)m�n <exp(nO(e��)); and 1 > e��m = e�(n+1)�=� > exp(�nO(e��)). So (45) beomes(mn=m!)(1 +O(n�1) +O(ne�n�)).61. Now � = 1 + rn + O(n2��2) and � = 1� rn + O(n2��2). Thus N = r + O(n2��1),and the ase l = 0 of Eq. (43) redues tonr �n2�r errrp2�r�1 +O(n2��1) +O�1r��:(This approximation meshes well with identities suh as � nn�1	 = �n2� and � nn�2	 =2�n4�+ �n+14 �; indeed, we haven nn� ro = n2r2rr!�1 +O� 1n�� as n!1when r is onstant, aording to formulas (6.42) and (6.43) of CMath.)62. The assertion is true for 1 � n � 10000 (with m = be� � 1 in 5648 of thoseases). E. R. Can�eld and C. Pomerane, in a paper that niely surveys previous workon related problems, have shown that the statement holds for all suÆiently large n,and that the maximum ours in both ases only if e� mod 1 is extremely lose to 12 .[Integers 2 (2002), A1, 1{13.℄63. (a) The result holds when p1 = � � � = pn = p, beause ak�1=ak = (k=(n+1�k))�((n� �)=�) � (n� �)=(n+ 1� �) < 1. It is also true by indution when pn = 0 or 1.For the general ase, onsider the minimum of ak�ak�1 over all hoies of (p1; : : : ; pn)with p1 + � � �+ pn = �: If 0 < p1 < p2 < 1, let p01 = p1 � Æ and p02 = p2 + Æ, and notiethat a0k�a0k�1 = ak�ak�1+ Æ(p1�p2� Æ)� for some � depending only on p3, : : : , pn.At a minimum point we must have � = 0; thus we an hoose Æ so that either p01 = 0or p02=1. The minimum an therefore be ahieved when all pj have one of three valuesf0; 1; pg. But we have proved that ak � ak�1 > 0 in suh ases.(b) Changing eah pj to 1� pj hanges � to n� � and ak to an�k.() No roots of f(x) are positive. Hene f(z)=f(1) has the form in (a) and (b).(d) Let C(f) be the number of sign hanges in the sequene of oeÆients of f ;we want to show that C((1 � x)2f) = 2. In fat, C((1 � x)mf) = m for all m � 0.For C((1 � x)m) = m, and C((a + bx)f) � C(f) when a and b are positive; heneC((1� x)mf) � m. And if f(x) is any nonzero polynomial whatsoever, C((1� x)f) >C(f); hene C((1� x)mf) � m.(e) SinePk �nk�xk = x(x+1) : : : (x+n�1), part () applies diretly with � = Hn.And for the polynomials fn(x) =Pk �nk	xk, we an use part () with � = $n+1=$n�1,if fn(x) has n real roots. The latter statement follows by indution beause fn+1(x) =x(fn(x) + f 0n(x)): If a > 0 and if f(x) has n real roots, so does the funtion g(x) =eaxf(x). And g(x)! 0 as x ! �1; hene g0(x) = eax(af(x) + f 0(x)) also has n realroots (namely, one at the far left, and n� 1 between the roots of g(x)).[See E. Laguerre, J. de Math. (3) 9 (1883), 99{146; W. Hoe�ding, Annals Math.Stat. 27 (1956), 713{721; J. N. Darroh, Annals Math. Stat. 35 (1964), 1317{1321;J. Pitman, J. Combinatorial Theory A77 (1997), 297{303.℄64. We need only use omputer algebra to subtrat ln$n from ln$n�k.
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82 ANSWERS TO EXERCISES 7.2.1.565. It is $�1n times the number of ourrenes of k-bloks plus the number of our-renes of ordered pairs of k-bloks in the list of all set partitions, namely (�nk�$n�k +�nk��n�kk �$n�2k)=$n, minus the square of (49). Asymptotially, (�k=k!)(1+O(n4��1)).66. (The maximum of (48) when n = 100 is ahieved for the partitions 71625446372614and 71625446382513.)67. The expeted value ofMk is$n+k=$n. By (50), the mean is therefore$n+1=$n =n=� + �=(2(� + 1)2)+O(n�1), and the variane is$n+2$n � $2n+1$2n = �n� �2�1+ �(2� + 1)(� + 1)2n �1� �2(� + 1)2n +O� 1n2�� = n�(� + 1) +O(1):68. The maximum number of nonzero omponents in all parts of a partition is n =n1 + � � � + nm; it ours if and only if all omponent parts are 0 or 1. The maximumlevel is also equal to n.69. At the beginning of step M3, if k > b and l = r�1, go to M5. In step M5, if j = aand (vj � 1)(r � l) < uj , go to M6 instead of dereasing vj .70. (a) ��n�1r�1��+ ��n�2r�1��+ � � �+ ��r�1r�1��, sine ��n�kr�1�� ontain the blok f0; : : : ; 0; 1g with k 0s.The total, also known as p(n� 1; 1), is p(n� 1) + � � �+ p(1) + p(0).(b) Exatly N = �n�1r 	+�n�2r�2	 of the r-blok partitions of f1; : : : ; n�1; ng are thesame if we interhange n�1$ n. So the answer isN+ 12 (�nr	�N) = 12 (�nr	+N), whihis also the number of restrited growth strings a1 : : : an with max(a1; : : : ; an) = r � 1and an�1 � an. And the total is 12 ($n +$n�1 +$n�2).71. b 12 (n1+1) : : : (nm+1)� 12, beause there are (n1+1) : : : (nm+1)�2 ompositionsinto two parts, and half of those ompositions fail to be in lexiographi order unlessall nj are even. (See exerise 7.2.1.4{31. Formulas for up to 5 parts have been workedout by E. M. Wright, Pro. London Math. So. (3) 11 (1961), 499{510.)72. Yes. The following algorithm omputes ajk = p(j; k) for 0 � j; k � n in �(n4)steps: Start with ajk  1 for all j and k. Then for l = 0, 1, : : : , n and m = 0,1, : : : , n (in any order), if l +m > 1 set ajk  ajk + a(j�l)(k�m) for j = l, : : : , n andk = m, : : : , n (in inreasing order).(See Table A-1. A similar method omputes p(n1; : : : ; nm) in O(n1 : : : nm)2 steps.Cheema and Motzkin, in the ited paper, have derived the reurrene relationn1p(n1; : : : ; nm) = 1Xl=1 Xk1;:::;km�0 k1p(n1 � k1l; : : : ; nm � kml);but this interesting formula is helpful for omputation only in ertain ases.)Table A-1MULTIPARTITION NUMBERSn 0 1 2 3 4 5 6p(0; n) 1 1 2 3 5 7 11p(1; n) 1 2 4 7 12 19 30p(2; n) 2 4 9 16 29 47 77p(3; n) 3 7 16 31 57 97 162p(4; n) 5 12 29 57 109 189 323p(5; n) 7 19 47 97 189 339 589
n 0 1 2 3 4 5P (0; n) 1 2 9 66 712 10457P (1; n) 1 4 26 249 3274 56135P (2; n) 2 11 92 1075 16601 325269P (3; n) 5 36 371 5133 91226 2014321P (4; n) 15 135 1663 26683 537813 13241402P (5; n) 52 566 8155 149410 3376696 91914202
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7.2.1.5 ANSWERS TO EXERCISES 8373. Yes. Let P (m;n) = p(1; : : : ; 1; 2; : : : ; 2) when there are m 1s and n 2s; thenP (m; 0) = $m, and we an use the reurrene2P (m;n+ 1) = P (m+ 2; n) + P (m+ 1; n) +Xk �nk�P (m;k):This reurrene an be proved by onsidering what happens when we replae a pairof x's in the multiset for P (m;n + 1) by two distint elements x and x0. We get2P (m;n + 1) partitions, representing P (m + 2; n), exept in the P (m + 1; n) aseswhere x and x0 belong to the same blok, or in �nk�P (m;n� k) ases where the bloksontaining x and x0 are idential and have k additional elements.Notes: See Table A-1. Another reurrene, less useful for omputation, isP (m+ 1; n) = Xj;k �nk��n� k +mj �P (j; k):The sequene P (0; n) was �rst investigated by E. K. Lloyd, Pro. Cambridge Philos.So. 103 (1988), 277{284, and by G. Labelle, Disrete Math. 217 (2000), 237{248, whoomputed it by ompletely di�erent methods. Exerise 70(b) showed that P (m; 1) =($m + $m+1 + $m+2)=2; in general P (m;n) an be written in the umbral notation$mqn($), where qn(x) is a polynomial of degree 2n de�ned by the generating funtionP1n=0 qn(x)zn=n! = exp((ez + (x+ x2)z � 1)=2). Thus, by exerise 31,1Xn=0P (m;n)znn! = e(ez�1)=2 1Xk=0 $(2k+m+1)(k+m+1)2k zkk! :Labelle proved, as a speial ase of muh more general results, that the number ofpartitions of f1; 1; : : : ; n; ng into exatly r bloks isn! [xrzn℄ e�x+x2(ez�1)=2 1Xk=0 ezk(k+1)=2 xkk! :75. The saddle point method yields CeAn2=3+Bn1=3=n55=36, where A = 3�(3)1=3, B =�2�(3)�1=3=2, and C = �(3)19=36(2�)�5=63�1=2 exp(1=3 + B2=4 + � 0(2)=(2�2) � =12).[F. C. Auluk, Pro. Cambridge Philos. So. 49 (1953), 72{83; E. M. Wright, AmerianJ. Math. 80 (1958), 643{658.℄76. Using the fat that p(n1; n2; n3; : : : ) � p(n1 + n2; n3; : : : ), hene P (m + 2; n) �P (m;n+1), one an prove by indution that P (m;n+1) � (m+n+1)P (m;n). Thus2P (m;n) � P (m+ 2; n� 1) + P (m+ 1; n� 1) + eP (m;n� 1):Iterating this inequality shows that 2nP (0; n) = ($2 + $)n + O(n($2 + $)n�1) =(n$2n�1+$2n)(1+O((logn)3=n)). (A more preise asymptoti formula an be obtainedfrom the generating funtion in the answer to exerise 75.)78. 3 3 3 3 2 1 0 0 01 0 0 0 2 2 3 2 0 (beause the enoded partitions2 2 1 0 0 2 1 0 2 must all be (000000000))2 1 0 2 2 0 0 1 379. There are 432 suh yles. But they yield only 304 di�erent yles of set partitions,sine di�erent yles might desribe the same sequene of partitions. For example,(000012022332321) and (000012022112123) are partitionwise equivalent.
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84 ANSWERS TO EXERCISES 7.2.1.580. [See F. Chung, P. Diaonis, and R. Graham, Disrete Mathematis 110 (1992),52{55.℄ Construt a digraph with $n�1 verties and $n ars; eah restrited growthstring a1 : : : an de�nes an ar from vertex a1 : : : an�1 to vertex �(a2 : : : an), where � isthe funtion of exerise 4. (For example, ar 01001213 runs from 0100121 to 0110203.)Every universal yle de�nes an Eulerian trail in this digraph; onversely, every Euleriantrail an be used to de�ne one or more universal sequenes of restrited growth on theelements f0; 1; : : : ; n� 1g.An Eulerian trail exists by the method of Setion 2.3.4.2, if we let the last exitfrom every nonzero vertex a1 : : : an�1 be through ar a1 : : : an�1an�1. The sequenemight not be yli, however. For example, no universal yle exists when n < 4; andwhen n = 4 the universal sequene 000012030110100222 de�nes a yle of set partitionsthat does not orrespond to any universal yle.The existene of a yle an be proved for n � 6 if we start with an Euleriantrail that begins 0nxyxn�3u(uv)b(n�2)=2u[n odd℄ for some distint elements fu; v; x; yg.This pattern is possible if we alter the last exit of 0k121n�3�k from 0k�1121n�2�k to0k�1121n�3�k2 for 2 � k � n�4, and let the last exits of 0121n�4 and 01n�32 be respe-tively 010n�41 and 0n�310. Now if we hoose numbers of the yle bakwards, therebydetermining u and v, we an let x and y be the smallest elements distint from f0; u; vg.We an onlude in fat that the number of universal yles having this extremelyspeial type is huge|at least�n�1Yk=2(k! (n� k))fn�1k g�/((n� 1)! (n� 2)332n�522); when n � 6.Yet none of them are known to be readily deodable. See below for the ase n = 5.81. Noting that $5 = 52, we use a universal yle for f1; 2; 3; 4; 5g in whih theelements are 13 lubs, 13 diamonds, 13 hearts, 12 spades, and a joker. One suh yle,found by trial and error using Eulerian trails as in the previous answer, is(�����|}~J|~}~�||}~|}|~}}|~|~|�||}|}}|}��}~~~�~~~��}}):(In fat, there are essentially 114,056 suh yles if we branh to ak = ak�1 as a lastresort and if we introdue the joker as soon as possible.) The trik still works withprobability 4752 if we all the joker a spade.82. There are 13644 solutions, although this number redues to 1981 if we regard12 � 24 � 36 ; 13 � 26 ; 23 � 46 :The smallest ommon sum is 5/2, and the largest is 25/2; the remarkable solution21+15+42+53+63 = 13+61+25+26+45 = 41+23+43+46+65is one of only two essentially distint ways to get the ommon sum 118/15. [Thisproblem was posed by B. A. Kordemsky in Matematiheska��a Smekalka (1954); it isnumber 78 in the English translation, The Mosow Puzzles (1972).℄
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INDEX AND GLOSSARYWhen an index entry refers to a page ontaining a relevant exerise, see also the answer tothat exerise for further information. An answer page is not indexed here unless it refers to atopi not inluded in the statement of the exerise.0{1 matries, 61.� (irle ratio), as \random" example,44{45, 63.$n, 28, see Bell numbers.$0n (singleton-free partitions), 46.�(�): restrited growth string funtion, 42.�-yles, 47.�(n): sum of divisors, 19.Abel, Niels Henrik, 55.Abelian groups, 24.Almkvist, Gert Einar Torsten, 57.Alphametis, 42.Analysis of algorithms, 13{15, 22, 48.Andrews, George W. Eyre, 1, 57.Arbogast, Louis Fran�ois Antoine, 29.Arithmeti mean, 24, 48.Asymptoti methods, 6{12, 20{22,29{36, 47{49.Atkin, Arthur Oliver Lonsdale, 55.Auluk, Faqir Chand ('kFr �d aOlk), 83.Balaned partitions, 17.Balls, 0.Beker, Harold W., 70, 75.Bell, Eri Temple, 28.numbers, 28{29, 44{48, 64.numbers, asymptoti value, 32{33, 47-48.Bell-shaped urve, 34, 38, 48.Bell-shaped sequene, 49.Bernoulli, Jaques (= Jakob = James),numbers, 28, 55.Bessel, Friedrih Wilhelm, funtion, 8.Binary partitions, 24.Binary relations, 26.Bipartitions, 39{41, 82{83.Birkho�, Garrett, 67.Blissard, John, 69.Bloks, 25.Bolker, Ethan David, 75.Bonferroni, Carlo Emilio, 57.Bo�skovi�, Ruder Josip (Boxkovi�, RuÆerJosip = Bosovih, Ruggiero Giuseppe= Roger Joseph), 58.Brandt, J�rgen, 65.Browning, Elizabeth Barrett, 46.Bruijn, Niolaas Govert de, 36, 77.Brylawski, Thomas Henry, 59.Bulgarian solitaire, 25.Cahe-hit patterns, 26.Can�eld, Earl Rodney, 81.

Carlitz, Leonard, 63, 74.Cauhy, Augustin Louis, 13, 21.Cayley, Arthur, 61.Change-making, 18.Chebyshev (= Tshebyshe�), PafnutiiLvovih (Qebyxev, Pafnuti�L~voviq), 79.Cheema, Mohindar Singh (moEh�dr Es�hFmA), 41, 82.Chen, William Yong-Chuan ( ), 72.Chung Graham, Fan Rong King( ), 84.Claesson, Anders Karl, 66.Coalesene, 42.Coalitions, 26.Coins, 18.Colex order, 2, 17, 60.Colman, Walter John Alexander, 56.Colthurst, Thomas Wallae, 63.Column sums, 24.Combinations, 0.with repetitions, 0, 3.Combinatorial number system, 22, 65.Commutative groups, 24.Completing the square, 7, 79.Compositions, 0, 20, 82.Comtet, Louis, 28, 77.Conjugate, 4, 18, 22, 24, 52, 58, 59.of a joint partition, 53.of a set partition, 44.Conseutive integers, 18.Contingeny tables, 24.Contour integration, 29{34.Corless, Robert Malolm, 77.Corteel, Sylvie Marie-Claude, 53.Covering in a lattie, 22, 43.Cram�er, Carl Harald, 79.Crossings in a set partition, 72.Cumulants of a distribution, 48, 79.Cyles of a permutation, 66.Cyli permutations, 47.Dante Alighieri, 75.Darroh, John Newton, 81.de Bruijn, Niolaas Govert, 36, 77.De Morgan, Augustus, 20.Debye, Peter Joseph William (= Debije,Petrus Josephus Wilhelmus), 30.Deimal notation, 66.Dedekind, Julius Wilhelm Rihard, 8.sums, 8.Deng, Eva Yu-Ping ( ), 72.Derb�es, Joseph, 64.85
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86 INDEX AND GLOSSARYDesents of a permutation, 40, 63.Diaonis, Persi Warren, 84.Diamond lemma, 60.Dilogarithm funtion, 20, 55, 58.Disrete torus, 24.Distint parts, 18, 19, 21, 22, 41.Divisors, sum of, 19.Dobi�nski, G., 29.Dominoes, 50.Doubly bounded partitions, 13, 21, 23.Du, Rosena Ruo-Xia ( ), 72.Dudeney, Henry Ernest, 42.Durfee, William Pitt, 3.retangle, 52.square, 3{4, 12, 53.Dyson, Freeman John, 55.e, as \random" example, 75.Edgeworth, Franis Ysidro, expansion, 79.Ehrlih, Gideon (JILX� OERCB), 17, 27, 28, 74.Elementary symmetri funtions, 61.Ellipti funtions, 8.Endo-order, 69.Enveloping series, 11, 21, 49, 78.Equivalene relations, 26, 42.Erd}os, P�al (= Paul), 10, 21.Erd}os, P�eter L., 67.Etienne, Gwihen, 65.Euler, Leonhard (E�ler�, Leonard� =��ler, Leonard), 5, 14, 18, 19, 63.summation formula, 6, 20.Eulerian numbers, 48, 55.Eulerian trails, 84.Evolutionary trees, 78.Exponential generating funtions, 29,46, 75, 83.Exponential growth, 6.Felsenstein, Joseph, 78.Fenner, Trevor Ian, 51, 52.Ferrers, Norman Maleod, 3.diagrams, 3{4, 9, 12, 15, 36, 45, 59,61, 64, 72.diagrams, generalized, 53.Fibonai, Leonardo, of Pisa [= Leonardo�lio Bonai Pisano℄, reurrene, 6.Fisher, Ronald Aylmer, 57.Five-letter English words, 42.Fixed points of a permutation, 44.Flight, Colin, 78.Foulds, Leslie Rihard, 78.Fourier, Jean Baptiste Joseph, series, 7.Franklin, Fabian, 18, 21.Fristedt, Bert, 59.Gale, David, 61.Gamma funtion, 31{32, 55.Gaps, 18.Gardner, Martin, 65.

Garsia, Adriano Mario, 73.Garvan, Franis Gerard, 55.Generalized Bell numbers, 45, 48.Generalized Stirling numbers, 46, 69.Generating funtions, 5, 9, 18{19, 21,25, 29, 46, 75, 83.Geometri mean, 24, 48.Goldman, Alan Joseph, 73.Golomb, Solomon Wolf, 66.Gonnet Haas, Gaston Henry, 77.Good, Irving John, 76.Gordon, Basil, 41.Graham, Ronald Lewis ( ), 84.Gray, Frank, binary ode, 69.odes for binary partitions, 62.odes for partitions, 15{17, 24, 63.odes for set partitions, 27{28, 43.odes, reeted, 63.Greene, Curtis, 60.Greg, Walter Wilson, trees, 78.Griggs, Jerrold Robinson, 65.Groups, ommutative, 24.Guittone d'Arezzo, 46.Gumbel, Emil Julius, distribution,see Fisher.Gupta, Hansraj (h�srAj g� =tA), 57.Haigh, John, 38.Hall, Marshall, Jr., 56, 70.Handy identity, 77.Hankel, Hermann, 32, 75.ontour, 48.Hardy, Godfrey Harold, 8, 9, 20, 21, 54, 62.Hare, David Edwin George, 77.Heine, Heinrih Eduard, 19.Henrii, Peter Karl Eugen, 7.Hindenburg, Carl Friedrih, 2, 29.Ho, Chih-Chang Daniel ( ), 65.Hoare, Arthur Howard Malortie, 65.Hoe�ding, Wassily, 81.Hooks, 52{53.Hume, Alexander, iii.Huthinson, George Allen, 26, 41.Hyperboli funtions, 48.Igusa, Kiyoshi ( ), 65.Inlusion-exlusion priniple, 10, 21, 75, 80.Inomplete gamma funtion, 31.ind �: the index of �, 41.Index of a permutation, 41, 63.Integer partitions, 1{25, 38{41, 44, 71.Internet, ii, iii, 66.Inversions of a permutation, 5, 45.Involutions, 48, 72.Irwin, Joseph Osar, 69.Jaobi, Carl Gustav Jaob, 6, 20.symbol, 56.Je�rey, David John, 77.Joihi, James Tomei ( ), 53, 73.Joint partitions, 19.
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INDEX AND GLOSSARY 87Kirhho�, Gustav Robert, law, 13.Kitaev, Sergey Vladimirovih (Kitaev,Serge� Vladimiroviq), 66.Kleber, Mihael Steven, 63.Kleitman, Daniel J (Isaiah Solomon), 60.Klimko, Eugene Martin, 51.Knopp, Marvin Isadore, 55.Knuth, Donald Ervin ( ), i, iv, 77.Kordemsky, Boris Anastas'evih(Kordemski�, Boris Anastas~eviq),84.Kramp, Christian, 29.Labeled objets, 0, 42, 78.Labelle, Gilbert, 83.Lagrange (= de la Grange), Joseph Louis,Comte, inversion formula, 77.Laguerre, Edmond Niolas, 81.Landau, Hyman Garshin, 23.Laplae (= de la Plae), Pierre Simon,Marquis de, 31.Lattie paths, 5.Latties of partitions, 22{23, 42{43.Law of large numbers, 48.Least reently used replaement, 75.Left-to-right minima, 42.Lehmer, Derrik Henry, 20, 56.Lehner, Joseph, 10, 21.Lexiographi order, 1{2, 4, 17{18, 26,39{41, 43, 59.Li2 (dilogarithm), 20, 55, 58.Limeriks, 46.Linked lists, 17, 42.Littlewood, John Edensor, 61, 62.Lloyd, Edward Keith, 83.Logarithm, as a multivalued funtion,32, 77.Loizou, Georghios (Loòzou, Ge¸rgio), 51, 52.Loopless algorithm, 51.Lorenz, Max Otto, 61.Lovejoy, Jeremy Kenneth, 53.Lunnon, William Frederik, 70.MaMahon, Pery Alexander, 24, 25, 39.Magi trik, 50.Majorization, 61.lattie, 22{24, 67.Malfatti, Giovanni Franeso Giuseppe, 56.Marshall, Albert Waldron, 62.Mathings, perfet, 72.Matsunaga, Yoshisuke ( ), 29.MKay, John Keith Stuart, 1.Mean values, 24, 48.Mei�ner, Otto, 64.Mellin, Robert Hjalmar, transforms, 6, 20.Mems, 13.Milne, Stephen Carl, 43.Minimal partition, 22.Misiurewiz, Miha l, 64.

Mixed radix notation, 64.MMIX, ii.modulo �, 26.Moments of a distribution, 44, 82.Monomial symmetri funtions, 61.Moser, Leo, 35, 74, 76.Most reently used replaement, 75.Motzkin, Theodor Samuel(OIWVEN L�ENY XECE�IZ), 41, 69, 82.Mountain passes, 30.Muirhead, Robert Franklin, 61.Multiombinations: Combinations withrepetions, 0, 3.Multipartition numbers, tables, 82.Multipartitions: Partitions of a multiset,39{41, 49, 84.Multiset permutations, 5.n-tuples, 0.Naud�e, Philippe (= Philipp), der j�ungere, 5.Nestings in a set partition, 72.Newton, Isaa, root�nding method, 33, 79.Nijenhuis, Albert, 21.Normal distribution, 38.Odlyzko, Andrew Mihael, 9.Oettinger, Ludwig, 64.Olkin, Ingram, 62.Olver, Frank William John, 36.Onegin, Eugene (On+gin�, Evgen��), 47.Order of a set partition, 67.Ordered fatorizations, 64.Oriented trees, 42, 78.Overpartitions, see Joint partitions.P -partitions, 24.Pak, Igor Markovih (Pak, Igor~Markoviq), 53.Part-ount form, 3, 17, 42.Partial order, 24.Partition lattie, 42{43.Partition numbers, 5{11, 19{21.tables of, 6, 10, 82.Partitions, 0{50.balaned, 17.doubly bounded, 13, 21, 23.of a multiset, 38{41, 49, 84.of a set, 1, 25{50.of an integer, 1{25, 38{41, 44, 71.random, 10{12, 21, 36{38.sums over, 3, 29, 76, 79.with distint parts, 18, 19, 21, 22, 41.without singletons, 9, 46, 58, 72, 75.Paths on a grid, 5.Patterns in permutations, 66.Peire, Charles Santiago Sanders, 28.triangle, 28, 44{46, 48, 73, 75, 83.Pentagonal numbers, 5, 19.Perfet partitions, 25.
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88 INDEX AND GLOSSARYPermutations, 0, 42.balaned,of a multiset, 64.Petrara, Franeso (= Petrarh), 46.Phylogeneti trees, 78.Pi (�), as \random" example, 44{45, 63.Pigeons, 0{1.Pitman, James William, 49, 69, 81.Pittel, Boris Gershon (Pittel~, BorisGerxonoviq), 38.Playing ards, 50.Pleasants, Peter Arthur Barry, 70.Poetry, 46{47.Poisson, Sim�eon Denis, 55.distribution, 37, 44.summation formula, 7, 20.P�olya, Gy�orgy (= George), 52, 62.Pomerane, Carl, 81.Powers of 2, 24.Probability distribution funtions,10, 38, 44, 48.Prodinger, Helmut, 74.Pudl�ak, Pavel, 67.Pure alphametis, 42.Pushkin, Alexander Sergeevih (Puxkin�,Aleksandr� Serg+eviq�), 47.q-Stirling numbers, 46, 69.q-nomial oeÆients, 73.q-nomial theorem, 53, 57.Rademaher, Hans, 8, 9, 20, 21.Radix sorting, 40{41.Ramanujan Iyengar, Srinivasa (ÿ��W��W�WÈ{h I�axWm), 8, 9, 20,21, 54, 55.Random partitions, 10{12.generating, 21.Random set partitions, 36{38.generating, 38.Reagan, Ronald Wilson, 47.Real roots, 49.Reurrenes, 6, 14, 19, 82.Reursive proedures, 68.Re�nement, 42.Reeted Gray ode, 63.Remmel, Je�rey Brian, 73.Residue theorem, 29, 32.Restrited growth strings, 26{28, 42,70, 71, 75, 82.Revolving door algorithm, 15.Rhyme shemes, 26, 46{47.Riemann, Georg Friedrih Bernhard,surfae, 77.Rim representation, 4{5, 12, 18, 22.Robbins, David Peter, 75.Robinson, Robert William, 78.Rook polynomials, 44{45.Rooks, nonattaking, 44{45, 71{72.

Roots of a polynomial, 49.Roots of unity, 8, 56.Round-robin tournaments, 23.Row sums, 24.Ruskey, Frank, 27, 43.Ryser, Herbert John, 61.Sahkov, Vladimir Nikolaevih (Saqkov,Vladimir Nikolaeviq), 38.Saddle point method, 8, 29{36, 47{49, 83.Savage, Carla Diane, 15.Shur, Issai, 62.Sore vetors, 23.Seond-smallest parts, 22.Self-onjugate partitions, 18, 44, 62.Semilabeled trees, 42.Semimodular latties, 67.Sequenes, totally useless, 42.Set partitions, 1, 25-50.onjugate of, 44.dual of, 72.Gray odes for, 27{28, 43.order of, 67.random, 36{38.shadow of, 43.Seth, Vikram (ib�m ex#), ii, 47.Shadow of a set partition, 43.Shakespeare (= Shakspere), William, 46.Shallit, Je�rey Outlaw, 75.Shape of a random partition, 12, 21.Shape of a random set partition, 36{37.Sieve method, 64.Smallest parts, 21, 22.Sonnets, 46.Spenser, Edmund, 46.Stable sorting, 40{41, 63.Stak frames, 39.Stam, Aart Johannes, 38, 49.Stanford GraphBase, ii, iii, 42.Stanley, Rihard Peter, 0, 3, 63, 72.Stanton, Dennis Warren, 53.Stephens, Nelson Malolm, 70.Stirling, James,approximation, 31, 33, 35, 80.yle numbers, 81.subset numbers, asymptoti value, 34{36.subset numbers, generalized 46, 69.Stirling strings, 67.Sums over all partitions, 3, 29, 76, 79.Sutli�e, Alan, 67.Swinnerton-Dyer, Henry Peter Franis, 55.Sylvester, James Joseph, 18, 54.Symmetri funtions, 3, 61.Symmetrial mean values, 24.Sz�ekely, L�aszl�o Alad�ar, 67.
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INDEX AND GLOSSARY 89Tableau shapes, 4, 44, see Ferrers diagrams.Tail oeÆients, 65.Taylor, Brook, series, 35, 77.Temperley, Harold Neville Vazeille, 12.Tippett, Leonard Henry Caleb, 57.Topologial sorting, 25, 66.Touhard, Jaques, 69.Tournament, 23.Trae, 4, 12, 18, 53.Trading tails, 31, 80.Transitive relations, 26.Tree of partitions, 18.of restrited growth strings, 70.Tree funtion, 34, 77.Tree traversal, 18.Trik, magi, 50.Tripartitions, 39.Triple produt identity, 6, 20.Trost, Ernst, 64.T�uma, Ji�r��, 67.Twelvefold Way, 0, 17.Two-line arrays, 71{72.Umbral notation, 69, 74, 75, 83.Union-�nd algorithm, 67.Universal sequenes for partitions, 50.Unlabeled objets, 0, 42, 78.Unranking a partition, 22.

Unranking a set partition, 42.Unusual orrespondene, 66.Up-down partitions, 24, 63.Urns, 0.Useless sequenes, 42.Vaillating tableau loops, 44.Vetor partitions, 39{41, 49.Vershik, Anatoly Moiseevih (Verxik,Anatoli� Moiseeviq), 12, 58.White, Dennis Edward, 73.Whitworth, William Allen, 29.Wilf, Herbert Saul, 21.Williamson, Stanley Gill, 65.Wong, Roderik Sue-Chuen ( ), 36.Wright, Edward Maitland, 82, 83.Wyman, Max, 35, 74, 76.Yakubovih, Yuri Vladimirovih (�kuboviq,�ri� Vladimiroviq), 12, 38.Yan, Catherine Huafei ( ), 72.Yee, Ae Ja ( ), 54.z-nomial theorem, 53, 57.Zeilberger, Doron (XBXALIIV OEXEC), 19, 54.Zeta funtion, 6, 55, 83.
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